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Kurzfassung

In dieser Doktorarbeit wurde die Entfaltung von DNA als Paradigma für die
Betrachtung von zwei Themen in dem Feld der Nichtgleichgewichtsthermo-
dynamik von kleinen Systemen benutzt. In dem ersten Projekt wurde eine
Vielfalt von Systemen in einen stationären Nichtgleichgewichtszustand (NESS)
getrieben, um zu untersuchen, ob diese Systeme mit einer effektiven Tem-
peratur equilibrieren (siehe Kapitel 4). Dabei reichen die betrachteten Sys-
teme von einem kolloidalen Teilchen in einer optischen Falle hin zu DNA-
Hairpins mit zwei oder vielen Zuständen. Für alle Systeme sind sowohl ex-
perimentelle als auch theoretische Ergebnisse verfügbar. Das zweite Projekt
betrachtet den Feedback-Mechanismus für die angewendete Kraft in dem DNA-
Entfaltungssetup (siehe Kapitel 5). Mit Hilfe von experimentellen Daten und
Simulationen wird hier die Feedback-kontrollierte Dynamik untersucht und
damit die Feedback-Parameter, für die die Kontrolle der Kraft optimiert ist,
bestimmt.

In Kapitel 1 wird eine kurze Einführung in kleine Systeme im Allgemei-
nen und Experimente mit einzelnen Molekülen im Besonderen gegeben. Dabei
wird die wichtige Rolle, die die Entfaltung von DNA in den letzten Jahren für
die Entwicklung der Nichtgleichgewichtsthermodynamik von kleinen Systemen
eingenommen hat, hervorgehoben. Anschließend wird das Konzept eingeführt,
eine effektive Temperatur über das Fluktuations-Dissipations-Theorem für in
das Nichtgleichgewichtsregime getriebene Systeme zu identifizieren. Es wird
dann der in dieser Arbeit betrachtete stochastisch getriebene NESS beschrie-
ben und am Beispiel des kolloidalen Teilchens in der optischen Falle illustriert.
In der Folge wird ein kurzer Überblick über die experimentellen Systeme, für
die die effektive Temperatur identifiziert wurde, und ihre zugehörigen theore-
tischen Modelle gegeben. Im Anschluss wird das Projekt zum Kraft-Feedback
in der DNA-Entfaltung eingeführt, indem zunächst auf aktuelle Fortschritte
in dem zugehörigen Forschungsgebiet verwiesen und dann das Feedback für
die lange Hairpin beispielhaft dargestellt wird. Die Einleitung wird durch eine
Skizze der experimentellen und theoretischen Grundlagen, die in den Kapiteln
2 und 3 gegeben werden, abgeschlossen.
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Das Kapitel 2 beschreibt das experimentelle DNA-Entfaltungssetup. In die-
sem Setup wird ein kolloidales Teilchen, das an einer DNA-Hairpin befestigt
ist, mit einer optischen Falle eingefangen. Das anschließende Bewegen der Falle
entfaltet die DNA. Die beiden experimentell zugänglichen Größen sind die Posi-
tion der optischen Falle und die Kraft, die auf das gefangene Teilchen wirkt. Da-
mit kann während des Entfaltungsprozesses eine Kraft-Abstandskurve (FDC)
aufgenommen werden. Diese FDC spiegelt die Freie-Energie-Landschaft der
Entfaltung der Hairpin wider: Je mehr ein Zustand der Hairpin energetisch
bevorzugt ist, desto größer ist die Kraft, die benötigt wird, um den nächsten,
weiter entfalteten Zustand zu erreichen. Die konkrete Form der FDC wird für
die kurze und für die lange Hairpin diskutiert. Im Anschluss wird skizziert,
wie mit Hilfe von elastischen Modellen für die verschiedenen Teile des Setups
die Freie-Energie-Landschaft der Hairpin aus der FDC gewonnen werden kann.
Diese Prozedur wird mit dem Beispiel der langen Hairpin illustriert.

Kapitel 3 behandelt die stochastische Dynamik, die zur Beschreibung so-
wohl der Bewegung des kolloidalen Teilchens als auch der Entfaltung von DNA
verwendet wird. Insbesondere werden die Langevin- und die Fokker-Planck-
Gleichung als Beschreibungen der stochastischen Dynamik von Systemen mit
kontinuierlichen Freiheitsgraden eingeführt. Der letzte Teil dieses Kapitels wid-
met sich der Master-Gleichung, die die stochastische Dynamik von diskreten
Systemen wie den DNA-Hairpins bestimmt.

Kapitel 4 präsentiert die Identifizierung der effektiven Temperatur für ein-
zelne Moleküle, die stochastisch in einen NESS getrieben wurden. Dieses Ka-
pitel beginnt mit dem FDT, welches aussagt, dass im Gleichgewicht die Ant-
wortfunktion χ eines Systems auf eine externe Störung gleich der Korrelations-
funktion C geteilt durch die Badtemperatur T (und die Boltzmann-Konstante
kB) ist. Einem früheren, für glasartige Systeme vorgebrachten Vorschlag fol-
gend wird dann das FDT in das Nichtgleichgewichtsregime erweitert, indem T
durch die effektive Temperatur Teff ersetzt wird. Des Weiteren wird das exter-
ne Protokoll, mit dem der NESS erzeugt wird, definiert. Mit diesem Protokoll
wird die Kraft zufällig auf einer Zeitskala τe zwischen zwei Werten, die durch
das Zweifache der Kraftamplitude ∆f getrennt sind, hin- und hergeschaltet.

Als erstes von drei Systemen wird dann das Auftreten der effektiven Tempe-
ratur für ein kolloidales Teilchen in einer optischen Falle untersucht. Für dieses
System wird beobachtet, dass die experimentelle Antwortfunktion χ exponen-
tiell auf einer einzelnen Zeitskala τs relaxiert, die durch die Mobilität des Teil-
chens und die Rigidität der Falle bestimmt ist. Falls die Kraftänderungszeit τe
des externen Treibens kleiner als diese Systemrelaxationszeit τs ist, zeigen die
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Experimente, dass die effektive Temperatur für lange Zeiten identifiziert wer-
den kann. Diese experimentellen Ergebnisse stimmen mit theoretischen Vor-
hersagen überein, die aus der Modellierung des gefangenen Kolloids als einem
einer überdämpften Langevin-Dynamik gehorchenden Teilchen in einer har-
monischen Falle folgen. Das Modell legt darüber hinaus nahe, dass es eine
Übergangszeit τc in das Langzeitregime gibt, in dem die effektive Temperatur
beobachtet wird. Für Kraftänderungszeiten τe, die sehr viel kleiner als τs sind,
ist τc sehr klein, so dass nur für sehr kurze Zeiten keine effektive Temperatur
existiert. Dieses Resultat gibt wieder, dass sich die externen zufälligen Kräfte
in diesem Limes τe � τs wie ein zusätzliches thermisches Rauschen verhalten.
Die Betrachtung des gefangenen Kolloids wird durch die Analyse des entgegen-
gesetzten Limes von Kraftänderungszeiten τe, die sehr viel größer als τs sind,
abgeschlossen. In diesem Limes gibt es keine effektive Temperatur bei großen
Zeiten, allerdings ist das Gleichgewichts-FDT für kleine Zeiten wiederherge-
stellt. Dieses Resultat demonstriert, dass das Kolloid für jede angewendete
Kraft equilibrieren kann, falls τe � τs.

Im Anschluss wird der stochastisch getriebene NESS einer kurzen DNA-
Hairpin mit zwei Zuständen betrachtet. Die Experimente mit zwei verschiede-
nen kurzen Hairpins zeigen, dass die Antwortfunktion χ eine einzelne Relaxati-
onszeit τs hat, so wie es auch für das gefangene kolloidale Teilchen beobachtet
wurde. Des Weiteren kann eine effektive Temperatur für die kurzen Hairpins für
große Zeiten identifiziert werden, falls die externe Kraftänderungszeit τe kleiner
als τs ist. Diese Resultate werden bestätigt, wenn die zufällig getriebene kur-
ze Hairpin als Markovsches Vier-Zustands-System modelliert wird. Zusätzlich
hebt das theoretische Modell hervor, dass für die kurze Hairpin erstens die
Relaxationszeit τs das Inverse der Entfaltungsrate bei der größeren der beiden
angewendeten Kräfte ist und zweitens der Wert der effektiven Temperatur, die
man für τe < τs identifiziert, unabhängig von der Wahl der Observablen ist. Das
Modell sagt darüber hinaus aus, dass sowohl die Existenz als auch der Wert der
effektiven Temperatur durch das Verhältnis τe/τs bestimmt sind. Insbesondere
sagt das Modell in Übereinstimmung mit der naiven Erwartung vorher, dass
die effektive Temperatur kleiner für schwächeres Treiben, also kleineres τe/τs,
wird. Für beide der vorgenannten Vorhersagen wird gezeigt, dass sie durch eine
Serie von Messungen mit einem dritten Hairpin-Typ experimentell bestätigt
sind.

Das letzte, komplexeste System ist eine lange DNA-Hairpin mit sehr vielen
teilweise entfalteten Zwischenzuständen. Die größere Anzahl an Zuständen ist
mit einer gewachsenen Anzahl an Systemrelaxationszeiten verbunden, die, falls
sie nicht gut separiert sind, komplexe Formen der Antwortfunktion χ und der
Korrelationsfunktion C verursachen können, die nicht durch einen einzelnen
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zeitunabhängigen Faktor wie die effektive Temperatur verbunden sind. Die Ex-
perimente zeigen jedoch, dass die Antwortfunktion χ der langen Hairpin eine
gut separierte Zeitskala τs hat, was die Identifikation einer effektiven Tempe-
ratur erlaubt, falls die Kraftänderungszeit τe kleiner als τs ist. Obwohl dieses
Resultat einen Spezialfall repräsentiert, kann dennoch erwartet werden, dass
es typisch für Systeme ist, die wie die lange Hairpin große, nicht degenerier-
te Barrieren besitzen, da in solchen Systemen die mit der Überwindung der
größten Barriere verbundene Zeitskala exponentiell größer ist. Das experimen-
telle Ergebnis, dass es eine effektive Temperatur für die lange Hairpin gibt, falls
τe < τs, wird durch Simulationen bestätigt, die ein detailliertes Modell der lan-
gen Hairpin verwenden, welches sowohl ihre elastischen Eigenschaften als auch
ihre Basenpaarsequenz berücksichtigt. Als Abschluss dieses Kapitels folgen eine
Zusammenfassung der zentralen Resultate, ein Ausblick auf zukünftige Arbeit
und eine Diskussion eines früheren Vorschlags, die effektive Temperatur durch
einen an das stochastisch getriebene System gekoppelten Oszillator zu messen.

In Kapitel 5 wird der Feedback-Mechanismus für die Kraft in dem DNA-
Entfaltungssetup diskutiert. Das Kapitel zeigt zunächst, dass das Feedback
durch seine Betriebszeit τF und seinen Stellfaktor G bestimmt ist. Dieser Stell-
faktor legt die Reaktion des Feedbacks auf ein gegebenes Messergebnis der
Kraft fest. Der Feedback-Mechanismus wird anschließend am Beispiel der sto-
chastisch getriebenen langen Hairpin illustriert, um zu zeigen, wie die Feedback-
kontrollierte Kraft dem externen Protokoll folgt. Dieses Beispiel führt darüber
hinaus eine Erweiterung der basenpaarweisen Simulation der Dynamik der lan-
gen Hairpin ein, die den Feedback-Mechanismus explizit einbezieht.

Als Toy-Model für das Kraft-Feedback in der DNA-Entfaltung wird im An-
schluss ein Feedback-kontrolliertes Teilchen in einem harmonischen Oszillator
betrachtet. Für dieses System wird die Trajektorie der mittleren Kraft nach
einem Wechsel der Zielkraft als Größe eingeführt, die Zugang zu der Reakti-
on des Feedbacks auf Änderungen des externen Protokolls bietet. Diese Größe
zeigt, dass es einen optimalen Wert G0 des Stellfaktors gibt, für den die Kraft
am schnellsten auf einen neuen Wert eingestellt wird. Darüber hinaus wird be-
obachtet, dass das Erhöhen des Stellfaktors über einen Schwellwert Gmax > G0

die Reaktion des Feedbacks so sehr verstärkt, dass die mittlere Kraft mit fort-
laufender Zeit anwachsende Oszillationen zeigt, die das System destabilisieren.
Zuletzt legt die Trajektorie der mittleren Kraft in Übereinstimmung mit der
naiven Erwartung nahe, dass sich die Feedback-Kontrolle für kleinere Betriebs-
zeiten τF verbessert.

Für die lange DNA-Hairpin wird beobachtet, dass die Trajektorie der mitt-
leren Kraft sowohl im Experiment als auch in der Theorie eine bedeutend
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komplexere Form annimmt, die die verschiedenen in den Entfaltungsprozess
involvierten Zeitskalen widerspiegelt. Im Regime kurzer Zeiten verhält sich die
mittlere Kraft jedoch wie im Fall des harmonischen Oszillators: Die Kraft wird
am schnellsten neu eingestellt, falls das Feedback einen optimalen Stellfaktor
G0 benutzt; sie wächst allerdings für Stellfaktoren, die über einer Schwelle
Gmax > G0 liegen, in der Zeit an. Darüber hinaus belegt die Trajektorie der
mittleren Kraft, dass die Feedback-Kontrolle für kleinere Betriebszeiten τF ver-
bessert ist. Die Diskussion des Kraft-Feedbacks in der DNA-Entfaltung wird
im Anschluss erweitert, indem zusätzlich das Krafthistogramm in einem gege-
benen Zustand der Hairpin betrachtet wird. Diese Größe demonstriert sowohl
im Experiment als auch in der Theorie, dass das Feedback das System aus
dem Gleichgewicht heraus treibt, während es versucht das durch das externe
Protokoll diktierte stochastische Treiben zu realisieren. Insbesondere wird das
System für größere Stellfaktoren G und kleinere Betriebszeiten τF stärker in
das Nichtgleichgewichtsregime verschoben. Das Krafthistogramm zeigt auch,
dass es einen optimalen Wert von G gibt, für den die Übereinstimmung der
Kraft mit ihrem Zielwert maximiert ist. Dieser optimale Wert liegt nahe an
der entsprechenden Abschätzung, die durch die Trajektorie der mittleren Kraft
verfügbar ist.
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Abstract

In this thesis, the unfolding of DNA is used as a paradigm to address two
topics in the field of the nonequilibrium thermodynamics of small systems. In
the first project, a variety of systems is driven into a nonequilibrium steady
state (NESS) to investigate whether these systems equilibrate with an effective
temperature (see Chapter 4). The systems considered range from a colloidal
particle in an optical trap to two-state and multiple-state DNA hairpins. For
all systems, both experimental and theoretical results are available. The sec-
ond project focuses on the feedback mechanism for the applied force in the
DNA unfolding setup (see Chapter 5). Both experimental data and simula-
tions are used to study the feedback-controlled dynamics, thus determining
the set of feedback parameters for which the control of the force is optimized.

In Chapter 1, a brief introduction is given to small systems in general and
to single-molecule experiments in particular, highlighting the important role
which the unfolding of DNA has played for the development of the nonequilib-
rium thermodynamics of small systems in recent years. The concept of iden-
tifying an effective temperature through the fluctuation-dissipation theorem
(FDT) for systems driven into the nonequilibrium regime is then introduced.
Subsequently, the stochastically driven NESS considered in this thesis is de-
scribed and illustrated with the example of a colloidal particle in an optical
trap. A brief overview over the experimental systems for which the effective
temperature has been identified and their corresponding theoretical models
then follows. Afterwards, the project on the force feedback in DNA unfolding
is introduced by first recollecting several recent advances in the field and then
exemplifying the feedback for the long hairpin. The introduction is concluded
by a sketch of the experimental and theoretical foundations given in Chapter
2 and 3.

Chapter 2 describes the experimental DNA unfolding setup. This setup
uses an optical trap to capture a colloidal particle attached to the DNA hair-
pin. Moving the trap subsequently unzips the DNA. The two experimentally
accessible quantities are the position of the optical trap and the force acting
on the trapped particle, allowing for the collection of a force-distance curve
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(FDC) during the unfolding process. This FDC reflects the unfolding free en-
ergy profile of the hairpin. Indeed, the more energetically favored a state of the
hairpin is, the larger the force needed to reach the next, more unfolded state.
The specific shape of the FDC is discussed for both the short and the long
hairpin. Afterwards, an outline is given of how by setting up elastic models for
each part of the setup, the FDC can be used to calculate the free energy pro-
file of the hairpin, a procedure which is briefly exemplified for the long hairpin.

In Chapter 3, the stochastic dynamics framework used to model both the
motion of the colloidal particle and the unfolding of DNA is described. Specif-
ically, the Langevin and the Fokker-Planck equation are introduced as descrip-
tions of the stochastic dynamics of systems with continuous degrees of freedom.
The final part of this chapter is dedicated to discussing the master equation
which governs the stochastic dynamics of discrete systems such as the DNA
hairpins.

Chapter 4 presents the single-molecule identification of the effective tem-
perature for systems stochastically driven into a NESS. The chapter begins
with the FDT which states that in equilibrium, the response χ of a system to
an external perturbation is equal to the correlation function C divided by the
bath temperature T (and the Boltzmann constant kB). Following an earlier
proposal brought forward for glassy systems, the FDT is then extended to the
nonequilibrium regime by replacing T by the effective temperature Teff. Fur-
thermore, the external force protocol used to generate the NESS is defined.
With this protocol, the force is randomly switched on the time scale τe between
two values separated by twice the force amplitude ∆f .

As the first of three systems, the emergence of the effective temperature is
then investigated for a colloidal particle in an optical trap. For this system,
the experimental response χ is observed to relax exponentially on a single
time scale τs determined by the mobility of the particle and the stiffness of the
trap. If the force switching time τe of the external driving is smaller than this
system relaxation time τs, the experiments show that the effective temperature
can be identified for large times. These experimental results are confirmed by
theoretical predictions which are obtained by modeling the optically trapped
colloid as a particle in a harmonic oscillator obeying an overdamped Langevin
equation. The model moreover suggests that there is a crossover time τc into
the large-time regime where the effective temperature is observed. For force
switching times τe much smaller than τs, τc is very small so that there is an
effective temperature for all but very short times. This result reflects that in
this limit τe � τs, the external random forces behave as additional thermal
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noise. The discussion of the trapped colloid is concluded by considering in
both theory and experiment the opposite limit of force switching times τe
much larger than τs. In this limit, there is no effective temperature at large
times but the original equilibrium FDT is restored for small times. This result
demonstrates that the colloid can equilibrate for each applied force if τe � τs.

Subsequently, the stochastically driven NESS of a short DNA hairpin which
unfolds in a two-state manner is considered. The experiments with two dif-
ferent short hairpins show that the response χ has a single relaxation time
τs, as in the case of the trapped colloid. Furthermore, an effective temper-
ature can be identified for the short hairpins for large times if the external
force switching time τe is smaller than τs. These results are reproduced when
modeling the randomly driven short hairpin as a four-state Markov system.
Additionally, the theoretical model highlights that for the short hairpin, i) the
relaxation time τs is the inverse of the unfolding rate at the larger of the two
applied forces and ii) the value of the effective temperature one identifies for
τe < τs is independent of the choice of the observable. The model further-
more states that both the existence and the value of the effective temperature
are determined by the ratio τe/τs. Specifically, the model predicts that the
effective temperature gets smaller for weaker forcing, i.e., for smaller τe/τs, in
agreement with the naive expectation. Both these predictions are shown to
be confirmed experimentally by a series of measurements with a third hairpin
type.

The final, most complex system is a long DNA hairpin which has numerous
partially unfolded intermediate states. The larger number of states comes with
an increased number of system relaxation times which, if not well-separated,
can cause the response χ and the correlation function C to take different com-
plex forms not related by a single time-independent factor such as the effective
temperature. However, the experiments show that the response χ of the long
hairpin does have a well-separated time scale τs, allowing for the identification
of an effective temperature if the force switching time τe is smaller than τs.
Although representing a special case, this result can nevertheless be expected
to be typical for a system with large non-degenerate barriers such as the long
hairpin where the time scale connected to surpassing the biggest barrier is
exponentially larger. The experimental result that there is an effective tem-
perature for the long hairpin if τe < τs is reproduced by simulations using a
detailed model of the long hairpin which includes both its elastic properties
and its base-pair sequence. The chapter is concluded by a summary of the
main results, a brief outlook on future work and a discussion of an earlier sug-
gestion to measure the effective temperature by coupling a harmonic oscillator
to the stochastically driven system.
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Abstract

In Chapter 5, the feedback mechanism for the force in the DNA unfold-
ing setup is discussed. The chapter begins by showing that the feedback is
determined by its operation time scale τF and by its gain G. This gain dic-
tates the feedback reaction to a given measurement of the force. The feedback
mechanism is afterwards exemplified for the stochastically driven long hairpin
to illustrate how the feedback-controlled force follows the external protocol.
This example moreover introduces an extension of the base-pairwise simula-
tion of the long hairpin dynamics which explicitly incorporates the feedback
mechanism.

As a toy model for the force feedback in DNA unfolding, a feedback-controlled
particle in a harmonic oscillator is then considered. For this system, the mean
force trajectory after a change of the target force is introduced. This quantity
provides access to the feedback reaction to changes of the external protocol.
The mean force trajectory shows that there is an optimal value G0 of the
feedback gain for which the force is most quickly adjusted to a new value.
Moreover, increasing the feedback gain above some threshold Gmax > G0 is
observed to strengthen the feedback reaction to the point that the mean force
shows oscillations which grow over time, thus destabilizing the system. Fi-
nally, the mean force trajectory suggests that the feedback control improves if
its operation time τF is smaller, as is naively expected.

For the long DNA hairpin, the mean force trajectory is observed in both
theory and experiment to take a noticeably more complex form, reflecting the
various time scales involved in the unfolding process. However, in the short-
time regime, the mean force behaves as in case of the harmonic oscillator: The
force is most quickly adjusted if the feedback uses an optimal gain G0 but grows
over time for gains larger than some threshold Gmax > G0. Furthermore, the
mean force trajectory states that the feedback control is enhanced for smaller
operation times τF . The discussion of the force feedback in DNA unfolding is
then extended by additionally considering the force population in a given state
of the hairpin. In both theory and experiment, this quantity demonstrates that
the feedback drives the system away from equilibrium while trying to realize
the stochastic driving dictated by the external protocol. In particular, the
feedback pushes the system more into the nonequilibrium regime for larger
gains G and smaller operation times τF . The force population also shows that
there is an optimal value of G for which the agreement of the force with its
target value is maximized. This optimal value is close to the corresponding
estimate provided by the mean force trajectory.
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1. Introduction

The mechanical unfolding of DNA is a paradigm among the class of nonequi-
librium processes of small systems. These systems are small in the sense that
the fluctuations they show as a result of thermal excitations are relevant. This
description applies to many molecular biological systems. The better under-
standing of small systems can thus provide important insights in the physics
of life at the molecular level. Over the past two decades, there has been
significant advance in this field (see [1–5] for reviews), both due to theoreti-
cal progress and because of the development of new experimental techniques
which, in particular, allow one to follow the dynamics of single molecules for
the first time. Among the first to perform one of these so-called single molecule
experiments were Bustamante et al. who measured the elastic response of sin-
gle DNA molecules by applying forces in the piconewton range [6, 7]. Further
early examples of single molecule experiments used optical tweezers [8, 9] and
atomic force microscopy [10, 11] to investigate the unfolding process of single
titin and RNA/DNA molecules.

The experimental progress in the manipulation of small systems was accom-
panied by a breakthrough in the theoretical description of these systems when
Jarzynski derived a theorem relating nonequilibrium work fluctuations to an
equilibrium free energy difference [12]. This Jarzynski relation is one of many
so-called fluctuation theorems [13–15] which give information about the dis-
tributions of fluctuating thermodynamic quantities and which can be derived
from a single master fluctuation theorem [16]. The first experimental tests of
fluctuations theorems were performed by unfolding RNA with a setup similar
to the one used in this thesis [17–20]. In these experiments, the fluctuations of
the work needed to irreversibly unfold RNA are connected to the equilibrium
free energy difference between the folded and unfolded state of the molecule.

The unfolding of DNA (or RNA) has thus indeed served as a paradigm in
the field of the nonequilibrium thermodynamics of small systems in recent
years. In this thesis, the paradigmatic role of the DNA unfolding system has
been exploited by using it to investigate whether small systems driven into the
nonequilibrium regime can equilibrate with an effective temperature. Following
an earlier suggestion raised in the context of glassy systems [21,22], this effec-
tive temperature is identified via the fluctuation-dissipation theorem (FDT).
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1. Introduction

Figure 1.1.: Scheme of the stochastic driving. An external agent A drives a sys-
tem S embedded in a heat bath with temperature T into a NESS by
applying a random force f(t). As an example for such a system, the
experimental video image of a colloidal particle in an optical trap im-
mersed in aqueous solution is shown (the image is from an experiment
performed by the research group of Felix Ritort at the Universitat de
Barcelona). In this case, the external agent is the mini-tweezers appa-
ratus driving the particle with position x(t) by changing the position
of the optical trap. Chapter 4 demonstrates that under some condi-
tions, the stochastic driving effectively increases the temperature of
the system. Chapter 5 discusses the feedback mechanism needed to
apply this stochastic driving to single DNA hairpins. Figure reprinted
from [23].

In equilibrium, the FDT states that the response of the system to an exter-
nal perturbation is proportional to a correlation function, the proportionality
factor being the inverse of the bath temperature (aside from the Boltzmann
constant kB). The physical observation behind this theorem is that in equi-
librium, the system reacts to an external perturbation as it would react to a
spontaneous thermal excitation. This thesis examines whether the FDT can
be restored for small systems outside of equilibrium if the bath temperature is
replaced by a so-called effective temperature.

The emergence of an effective temperature has been tested for the specific
class of small systems driven into a nonequilibrium steady state (NESS) by
random external forces. As illustration, Fig. 1.1 exemplifies this stochastic
external driving for a small colloidal particle which is trapped in a harmonic
potential and immersed in an aqueous environment: The particle is driven into
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a NESS by applying a force randomly changing over time between two values.
As a result, the particle fluctuates more strongly, as if, loosely speaking, the
temperature of the bath had been increased to some effective temperature.
The external random forcing is thus intended to mimic an additional thermal
noise raising the temperature of the system. However, since the external forces
have a finite correlation time, they are not exactly thermal. Therefore, one
can expect that there are conditions which must be met to observe an effective
temperature.

In Chapter 4, these conditions are determined by testing whether the FDT
is restored with an effective temperature in the stochastically driven NESS.
The stochastic driving is applied to three different small systems of growing
complexity. First, the colloidal particle in the harmonic trap as shown in Fig.
1.1 is considered. Subsequently, a short and a long DNA hairpin is studied.
While the short DNA molecule unfolds in a two-state manner when subject to
an external force, the long one has numerous partially unfolded intermediate
states (see Fig. 1.2A). The long hairpin thus exhibits a significantly more
complex stationary dynamics.

For all three systems considered, the response and the correlation function
in the FDT have been both measured experimentally and calculated (or simu-
lated) theoretically. The theoretical predictions have been obtained by setting
up a dedicated model for each experimental system. In particular, the col-
loidal particle in the optical trap has been modeled as an overdamped particle
in a harmonic oscillator whose dynamics is governed by a Langevin equation.
Furthermore, the stochastically driven short hairpin has been described as a
four-state system with a Markov dynamics. Finally, a detailed Markov model
of the base-pairwise dynamics of the long hairpin taking into account both its
elastic properties and its base pair sequence has been set up. These theoretical
models not only provide a test of the experimental data. They also produce a
variety of analytical results illustrating the behavior of the system in general
and the conditions for the emergence of the effective temperature in particu-
lar. This chapter is concluded by a summary of the main results and a short
outlook on future work.

The external protocol used to generate the NESS with the effective tempera-
ture requires control of the applied force. In the DNA unfolding setup, the force
is controlled by a feedback mechanism. Feedback in nonequilibrium systems
has attracted significant interest in recent years. In particular, systems with
feedback have been shown to obey generalized fluctuation theorems [24–26]
which allow one to extract work from a single heat bath [27, 28]. However, it
comes at the cost of storing information that later on needs to be erased [29–31].
These results demonstrate the importance of feedback mechanisms such as the
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1. Introduction

Figure 1.2.: DNA hairpins and force feedback. - (A) Single DNA hairpins are
unfolded by applying an external force f . The short hairpin jumps
to the unfolded state directly, while the long hairpin passes through
numerous partially unfolded intermediate states. Details of the exper-
imental unfolding setup introduced here are given in Chapter 2. - (B)
The applied force is experimentally controlled by a feedback mecha-
nism. This feedback attempts to adjust the measured force (red) to
the random switching dictated by the external protocol (black).

force feedback in DNA unfolding considered here.

In Chapter 5, a detailed discussion of this force feedback is given. As a
first illustration, Fig. 1.2B shows how the experimental force matches the ex-
ternal protocol for the randomly driven long hairpin. One can observe that
the experimental feedback control is good enough to let the force follow the
external protocol closely but that the force nevertheless shows noticeable fluc-
tuations. The size of these fluctuations and the general quality of the control
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of the force depends on how the feedback is set up, i.e., on which feedback
parameters are chosen. For the force feedback used, these parameters are the
time the feedback needs to measure the force and then respond to this input
and the so-called feedback gain which determines this response. In this thesis,
an extensive discussion of the feedback-controlled dynamics as a function of
these feedback parameters is presented. This discussion is started by consid-
ering, as a toy model for the DNA unfolding system, an analytically solvable
model for a force feedback in an harmonic oscillator.

In the introductory Chapters 2 and 3, a brief account of the experimen-
tal and theoretical foundations of this thesis is given. Specifically, Chapter
2 describes the DNA unfolding setup and introduces the force-distance curve
(FDC) as the natural result of an unfolding experiment. The FDC reflects
the consecutive unzipping of the DNA hairpin and can be used to infer the
free energies of the DNA base pairs. With these free energies, one can con-
struct unfolding free energy profiles, as is demonstrated for the long hairpin in
Chapter 2.

With the free energy profile then introduced, the following Chapter 3 is
dedicated to defining the dynamics of the hairpin within this profile. While
the unfolding of DNA is a discrete process involving the breaking and closing
of single base pairs, the dynamics of a system with a continuous degree of
freedom is nevertheless discussed first. This discussion allows one to derive a
model for the optically trapped colloidal particle which is considered in Chapter
4. The dynamics of this particle and of the DNA hairpin is stochastic since
both systems are embedded into an aqueous solution where water molecules
permanently exert random kicks. Chapter 3 demonstrates that the stochastic
dynamics of a system can be described on different, yet equivalent levels. For
systems with a continuous degree of freedom, the Langevin equation is shown
to govern the dynamics of a single realization of the stochastic process while
the Fokker-Planck equation is observed to dictate the time evolution of the full
statistical ensemble. The master equation is then introduced as the analogue
of the Fokker-Planck equation for discrete systems such as the DNA unfolding
setup. This chapter is concluded by briefly outlining a numerical solution of
the master equation which is needed to simulate the dynamics of the long
hairpin in the main Chapters 4 and 5.
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2. Unfolding DNA

2.1. DNA Unfolding Setup

The DNA unfolding experiments presented and discussed in this thesis were
performed by Joan Camunas-Soler and Marco Ribezzi-Crivellari from the group
of Felix Ritort at the Universitat de Barcelona, using an optical tweezers in-
strument originally designed by Smith et al. [32–35]. In this setup, a small
transparent sphere (the bead) is attached to each strand of a DNA hairpin
immersed in aqueous solution via a 29 base pairs fragment of double-stranded
DNA (the handle [36]). While one of these beads is kept immobilized by a
pipette, the other one is captured by a harmonic optical trap whose position
is controlled and monitored with a resolution of 1 nm and at a rate of 1 kHz
(see Fig. 2.1A)1. At the same rate and with a precision of 0.1 pN, the optical
tweezers additionally collects the force acting upon the trapped bead [32, 39].
The tweezers instrument therefore allows one to unfold the DNA hairpin by
moving the optical trap away from the pipette while simultaneously measuring
the force the hairpin exerts on the captured bead.

The unfolding process breaks the base pairs of the hairpin and thus releases
single stranded DNA (ssDNA). Referring to the extension of the released ss-
DNA by x, the distance λ of the center of the optical trap to the tip of the
pipette therefore takes the form

λ = xb + 2xh + x, (2.1)

where xb is the displacement of the bead from the center of the optical trap
and xh the molecular extension of the handle (see Fig. 2.1A). Modeling the
optical trap as a harmonic oscillator with stiffness k, the displacement of the
bead is given by

xb(f) =
f

k
(2.2)

1In a related setup, both beads are trapped optically [37]. This alternative dual-trap setup
has been used to perform partial work measurements from which free energies can be
inferred via fluctuation theorems [38].
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2. Unfolding DNA

hairpin

handle

released ssDNA

Figure 2.1.: DNA unfolding setup. - (A) Moving the trap up and down, i.e.,
changing the distance λ of the center of the trap to the pipette, unfolds
and refolds the DNA hairpin. The distance λ gets contributions from
all parts of the setup through λ = xb + 2xh + x, where xb is the
displacement of the bead from the center of optical trap and where
2xh and x are the molecular extensions of the handles and the released
ssDNA, respectively. - (B) In violet (green), FDC of a short 20 base
pairs hairpin (un)folding in a two-state manner. - (C) Unfolding FDC
of a long 6838 base pairs hairpin with multiple intermediate states.
Figure in part reprinted from [23].
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2.2. Force-Distance Curve and Free Energy Profile

if the force f is applied. Furthermore, one can model the handles as a worm-
like chain with the elastic response [40]

f(xh) =
kBT

4lp

((
1− xh

L0

)−2

− 1 + 4
xh
L0

)
, (2.3)

with the temperature T , the Boltzmann constant kB, the persistence length
lp = 50 nm and the contour length L0 = 9.86 nm of the handle. Finally,
the released ssDNA can be described by the freely-jointed chain model for
which [7, 41]

x(f, n) = dsn

(
coth

(
bf

kBT

)
− kBT

bf

)
, (2.4)

where ds = 0.59 nm is the distance between consecutive base pairs in the
hairpin if no force is applied, n the number of open base pairs and b = 1.15 nm
the Kuhn length. With these elastic models, a number n of open base pairs
can be related to each experimental data point (λ, f), allowing one to directly
follow the breaking and closing of DNA base pairs along the experimental
trajectory.

The discussion of the DNA unfolding setup is concluded by pointing out
that this setup has found many applications in recent years, where examples
are the verification of fluctuation theorems already referred to in the intro-
duction [17, 19], a measurement of the free energies of kinetic states [42] and
studies on how peptides bind to DNA [43,44].

2.2. Force-Distance Curve and Free Energy
Profile

The above discussed setup allows one to unfold the DNA hairpin by increas-
ing the distance λ between the trap and the pipette linearly over time while
monitoring the force f on the captured bead. This experiment generates a
force-distance curve (FDC) that displays both the elastic properties of the
setup and, in particular, the strength of the base pair interactions within the
DNA hairpin. The FDC has a sawtooth pattern which is characteristic for the
hairpin sequence which has been unfolded. For the example of a short hairpin
that unzips in a two-state manner, the FDC shows a distinct drop of the force
once the hairpin unfolds (see Fig. 2.1B), corresponding to a sudden release of
the trapped bead from the tension applied by the hairpin. Before and after
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2. Unfolding DNA

the transition of the hairpin, increasing the distance just probes the elastic
response of the setup, leading to a steady growth of the measured force. Since
the unzipping of the hairpin releases single strands of DNA which decrease the
stiffness of the setup, the elastic response is weaker in the unfolded state. This
effect becomes more pronounced the longer the hairpin is.

A remarkable property of the DNA unfolding setup used here is that the
unzipping leaves the hairpin unharmed: Reversing the protocol for the dis-
tance by decreasing λ linearly over time brings the hairpin back to its folded
state (see Fig. 2.1B). The force at which the hairpin folds back depends on the
pulling speed. If the trap is moved infinitely slowly (quasistatically) in both
directions, the system is always in equilibrium and therefore, the average un-
folding and folding force are the same. In contrast, the FDC shows hysteresis
for nonvanishing pulling speeds (see Fig. 2.1B), equivalent to dissipation of
heat into the medium and thus a signature of a nonequilibrium process. The
larger the pulling speed, the more the system is driven into nonequilibrium and
the more heat is dissipated. The unfolding of DNA (or RNA) hence represents
a well controllable process which can be used to test nonequilibrium relations.

If one unfolds long hairpins with several intermediate states instead of the
above short two-state hairpin, the FDC obtains a complex structure that re-
flects the successive unzipping of the hairpin (see Fig. 2.1C). Increasing the
distance λ then does not unfold the whole hairpin at once but rather breaks
several base pairs [45] until the next intermediate state is reached. In the
FDC, this process corresponds to a drop of the force followed by the elastic
response of the intermediate state. The more stable this state is, the more one
has to increase the distance, i.e., raise the force, before unfolding into the next
intermediate takes place. The shape of the FDC is thus a direct reflection of
the free energy profile of the hairpin. If the hairpin sequence is known, the
FDC can therefore be used to access the (nearest neighbor) free energies of
single base pairs [46].

By adding these free energies along any given hairpin sequence, the free
energy GDNA(n) of this hairpin when n base pairs are open and no external
force is applied can be calculated. Adding an external force then contributes
the free energy

Gs(f, n) = −
∫ f

0

x(f ′, n) df ′ (2.5)

representing the stretching of the ssDNA released in the unfolding process.
The total free energy G(f, n) of a DNA hairpin with n open base pairs and
subject to the external force f thus follows as

G(f, n) = Gs(f, n) +GDNA(n). (2.6)
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2.2. Force-Distance Curve and Free Energy Profile
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Figure 2.2.: Free energy profile G(f, n) of a long 6838 base pairs DNA hairpin with
numerous intermediate states for the applied force f = 17.1 pN.

As illustration, the free energy profile of the long hairpin is shown in Fig. 2.2
for a force for which the hairpin has several coexisting intermediate states.
At larger forces, the more unfolded states become energetically favored, while
decreasing the force tends to fold the DNA. Changing the force randomly over
time thus drives the DNA stochastically across its free energy profile, similarly
to if one had increased the temperature of the heat bath. This analogy will be
further explored in Chapter 4.
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3. Stochastic Dynamics

In this chapter, the unfolding dynamics of the DNA hairpin introduced in
Chapter 2 will be discussed. This dynamics gets a stochastic contribution
through the water molecules the hairpin is surrounded by. At finite temper-
atures, these molecules are in perpetual motion and thus permanently kick
against the hairpin. Since the water molecules move much faster than the
DNA, these kicks appear as random and hence force the hairpin on a stochas-
tic trajectory.

The first experimental observation of this kind of stochastic motion is at-
tributed to Robert Brown, a botanist who in 1827 investigated small pollen im-
mersed in water with a microscope [47]. At the beginning of the 20th century,
works by Einstein [48], Smoluchowski [49] and Langevin [50] gave a theoretical
explanation for this phenomenon. Their framework has soon afterwards been
confirmed in various experiments, including the Nobel-prize winning work by
Perrin [51] who verified Einstein’s diffusion law and thus gave first experi-
mental evidence for the existence of atoms. Nowadays, the stochastic dynam-
ics of mesoscopic objects in aqueous solution is well-established and reviewed
in many textbooks [52–54]. In particular, the stochastic dynamics has been
formally derived from the underlying microscopic dynamics which explicitly
incorporates the dynamics of the heat bath [55–57].

A system with a stochastic dynamics can be described on different, yet
equivalent levels. On the lowest level, one considers single realizations of the
stochastic process, i.e., single trajectories of the system for specific sequences
of random kicks by the water molecules. Another option is to look at the
time evolution of the probability distribution of the full statistical ensemble to
directly have information about the average system behavior. The Langevin
equation is the fundamental equation of motion on the trajectory level for
systems with a continuous degree of freedom such as the optically trapped
bead. On the ensemble level, the time evolution of such systems is dictated
by the Fokker-Planck equation. In the following, both the Langevin and the
Fokker-Planck equation will be discussed in more detail (see Sec. 3.1 and Sec.
3.2). Furthermore, the master equation will be introduced as the analogue
of the Fokker-Planck equation for discrete systems to be able to model the
opening and closing of single base pairs in a DNA hairpin (see Sec. 3.3).
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3. Stochastic Dynamics

3.1. Langevin Equation

The Langevin equation describes the motion of a colloidal particle with mass
m immersed in aqueous solution and subjected to an external force F (x, λ)
depending on both the position x of the particle and an external (possibly time-
dependent) control parameter λ. In one dimension, the Langevin equation
reads

mẍ+ γẋ = F (x, λ) + ξ(t), (3.1)

where γ is the friction coefficient and ξ(t) the thermal force arising from the
collisions of the particle with the water molecules. This force creates the
irregular Brownian motion of the particle but has no systematic effect on it.
Its statistical mean is therefore zero, i.e.,

〈ξ〉 = 0, (3.2)

where here and in the following, 〈. . . 〉 denotes the average over the statistical
ensemble. Since the thermal force changes quickly with respect to the relax-
ation times of the colloidal particle, it can be assumed to be delta-correlated
with

〈ξ(t2)ξ(t1)〉 = 2Bδ(t2 − t1). (3.3)

The strength B of the thermal force is connected to the friction coefficient γ
and the temperature T of the medium through the Einstein relation

B = γkBT, (3.4)

where kB is the Boltzmann constant, so that

〈ξ(t2)ξ(t1)〉 = 2γkBTδ(t2 − t1). (3.5)

The systematic external force F (x, λ) on the colloidal particle in general in
part stems from a potential V (x, λ) and has a nonconservative contribution
f(x, λ), i.e.,

F (x, λ) = −∂xV (x, λ) + f(x, λ) (3.6)

which inserted in Eq. 3.1 gives

mẍ+ γẋ = −∂xV (x, λ) + f(x, λ) + ξ(t). (3.7)

The first term mẍ in this equation represents the inertia of the particle. This
term acts on the time scale τ ≡ m/γ which for typical friction coefficients γ is
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3.2. Fokker-Planck Equation and Nonequilibrium Steady States

small compared to the other system relaxation times1. On these time scales,
the inertia term can thus be neglected, leading to the overdamped Langevin
equation

ẋ = µ(−∂xV (x, λ) + f(x, λ)) + ζ(t), (3.8)

where the mobility µ ≡ 1/γ and the thermal noise ζ(t) ≡ µξ(t) have been
introduced.

3.2. Fokker-Planck Equation and Nonequilibrium
Steady States

The ensemble level description of the stochastic dynamics considers the time
evolution of the probability p(x, t) for the system to be in position x at time t.
Assuming that this probability is known, the Kramers-Moyal expansion [61,62]
states that at a later time t+ τ , it has changed to

p(x, t+ τ) =
∞∑
n=0

(−1)n

n!
∂nx (Mn(x, t+ τ, t)p(x, t)), (3.9)

with the moments

Mn(x, t+ τ, t) ≡ 〈(x(t+ τ)− x(t))n〉 n = 0, 1, 2, . . . . (3.10)

These moments can be calculated with the Langevin equation Eq. 3.8, leading
to the Fokker-Planck equation

∂tp(x, t) = lim
τ→0

p(x, t+ τ)− p(x, t)
τ

= −µ∂x(F (x, λ)p(x, t)) +D∂2
xp(x, t)

(3.11)

which governs the system dynamics on the ensemble level.
The Fokker-Planck equation can be written in the form of a continuity equation
as

∂tp(x, t) = −∂xj(x, t), (3.12)

introducing the probability current

j(x, t) ≡ µF (x, λ)p(x, t)−D∂xp(x, t). (3.13)

1In recent years, experiments have accessed the short-time ballistic regime where the inertia
is relevant [58–60].
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3. Stochastic Dynamics

If

∂tp(x, t) = 0, (3.14)

the system is in a stationary state with probability distribution p(x, t) = ps(x).
In particular, the system is in equilibrium with the Boltzmann distribution

peq(x) =
exp(−V (x)/kBT )∫∞

−∞ exp(−V (x)/kBT ) dx
(3.15)

if the probability current Eq. 3.13 is zero. For time-independent non-zero cur-
rents j(x) = js 6= 0 on the other hand, the system is in a so-called nonequilib-
rium steady state (NESS) which is characterized by permanent heat dissipation
and therefore needs external driving to be maintained.

3.3. Master Equation and Detailed Balance

The unfolding of DNA is a discrete process since it involves the breaking of
single base pairs. A model for the unfolding dynamics can thus be reached
by considering, in general terms, a discrete system which performs stochastic
transitions within a set of states {n}, where n = 1, 2, . . . , N . Referring to
the rate for the transition from state n into m by knm, the probability for the
system to be in state n at time t is governed by the master equation

∂tpn =
N∑
m=1

kmnpm − knmpn

=
N∑
m=1

L0
nmpm,

(3.16)

with the time evolution operator

L0
nm ≡ kmn − δnm

∑
l

knl. (3.17)

In analogy to Eq. 3.13, the master equation suggests that one identifies the
probability current

jnm(t) ≡ pmkmn − pnknm (3.18)

between the states n and m. If

∂tpn = 0, (3.19)
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3.3. Master Equation and Detailed Balance

the system is in a stationary state [63] with distribution pn(t) = psn. As in the
continuous case, this stationary state is either a NESS if the currents Eq. 3.18
are nonvanishing or corresponds to equilibrium if the currents are all zero. The
equilibrium state with probability distribution peq

n thus satisfies the so-called
detailed balance condition jnm = 0, i.e.,

peq
n knm = peq

mkmn (3.20)

(see Eq. 3.18). The equilibrium distribution peq
n is the Boltzmann distribution,

in analogy to Eq. 3.15.
In many cases, the discrete Markov dynamics described by the master equation
cannot be solved analytically. Then, one can fall back on the numerical solution
offered by the Gillespie algorithm (also known as BKL or kinetic Monte Carlo
algorithm) which randomly generates both the transitions of the system and
the times the system needs to jump [64, 65]. Suppose that the system is in
state n after the last jump, then in each iteration, the algorithm first calculates
the time increment according to

∆t = − ln a∑N
m=1 knm

, (3.21)

where a is a random number uniformly distributed over the interval (0, 1]. In
the next step, the algorithm lets the system perform a transition into the state
j which satisfies

j−1∑
m=1

knm < b
N∑
m=1

knm ≤
j∑

m=1

knm, (3.22)

with b a uniform random number in (0, 1] like a.
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4. Effective Temperature in DNA
Unfolding

The projects presented in the following two chapters have been developed in
close collaboration with the experimental research group led by Felix Ritort at
the Universitat de Barcelona. We stress that this chapter 4 is to a large extent
based on the manuscript ”Single molecule measurement of the effective tem-
perature in nonequilibrium steady states” which will be published in Nature
Physics [23].

4.1. Introduction

In equilibrium, the fluctuation-dissipation theorem (FDT) [66–68]

kBTR
eq(t2, t1) = ∂t1〈x(t2)Beq(t1)〉, (4.1)

connects the response

Req(t2, t1) ≡ δ〈x(t2)〉
δh(t1)

∣∣∣∣
h=0

(4.2)

of the observable x to an external perturbation h with a correlation function
involving the (equilibrium) conjugate variable

Beq = −∂hE, (4.3)

where E is the internal energy of the system. In this thesis, we have considered
a perturbation of the force f for which Beq = x. Since the integrated response
(or susceptibility) χ is experimentally available rather than the response Req

itself, we consider the time-integrated version of the FDT

kBTχ(t) = C(t), (4.4)

where
χ(t) ≡ 〈x(t)− x(0)〉/δf, (4.5)
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4. Effective Temperature in DNA Unfolding

with the size of the perturbation δf , and

C(t) ≡ 〈(x(0)− x(t))x(0)〉. (4.6)

It has been shown that the equilibrium FDT Eq. 4.4 can be restored for a
variety of nonequilibrium systems if one replaces the room temperature T by
an effective temperature Teff [22]. The resulting, so-called quasi-FDT then
reads

kBTeffχ(t) = C(t). (4.7)

Examples where this effective temperature has been identified include glassy
systems in the aging regime [21,69–73], jammed granular media [74] and driven
and active matter [75–77] (see [78, 79] for reviews on granular media, glassy
systems and active matter).
We rewrite the quasi-FDT Eq. 4.7 in the different, yet equivalent form

1

kBTeff

=
∂χ(C)

∂C

∣∣∣
C=C(t)

, (4.8)

to stress that one usually considers the so-called parametric plot χ(C), i.e.,
response χ over correlation function C, to identify an effective temperature.
In fact, if this parametric plot is linear in some regime, χ is proportional
to C with a single time-independent factor which (aside from a kB) is the
inverse of the effective temperature. We note that the quasi-FDT Eq. 4.8
should be distinguished from formally exact expressions for an FDT in a NESS
that involve quantities that look physically less transparent and are harder to
measure experimentally [80–85].
Here, we show for different systems spanning a wide range of complexity that
the quasi-FDT Eq. 4.8 can be restored with an effective temperature Teff if
these systems are driven into a NESS by a random external force [86–89]. This
external force f(t) = fc + fdi(t) has a mean value fc and a contribution fdi

which stochastically changes at rate 1/τe between the two values ±∆f , where
τe is the external force switching time and ∆f the force amplitude. The mean
of this stochastic contribution is zero, i.e., 〈fdi(t)〉 = 0, while its correlations
obey

〈fdi(0)fdi(t)〉 = (∆f)2 exp(−2t/τe). (4.9)

The stochastic driving has been applied to three systems of increasing com-
plexity, from a bead in an optical trap (Sec. 4.2) and a short (20 base pairs)
hairpin which unfolds in a two-state manner when subject to an external force
(see Sec. 4.3) to a long (6800 base pairs) hairpin with numerous intermediate
states (see Sec. 4.4).
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4.2. The Bead in the Optical Trap

4.2. The Bead in the Optical Trap

The bead in the optical trap [30,60,90–94] serves as an illustration to the gen-
eral theme as it can be analytically treated in the framework of an overdamped
Langevin equation for its motion x(t) as

ẋ = µ(−∂xV (x) + f(t)) + ζ(t) (4.10)

(see Sec. 3.1). Here, we model the optical trap as a harmonic potential V (x) =
kx2/2 with stiffness k, µ is the mobility and ζ(t) is the thermal noise. This
noise obeys 〈ζ(t)〉 = 0 and 〈ζ(t2)ζ(t1)〉 = 2µkBTδ(t2 − t1), where kBT is the
thermal energy. We search for an effective temperature by looking at the
parametric plot χ(C) where C is a correlation function of the bead position x
and χ is the response of this quantity to a stepwise perturbation in the force
f . If this parametric plot is linear in some regime, we can identify a quasi-
FDT there. For the harmonic oscillator, the application of a force corresponds
to shifting the potential, and therefore, one can experimentally implement the
stochastic driving of this system by randomly switching the position of the trap
in a dichotomous fashion (Fig. 4.1A and D). Along this NESS, the correlation
function C and the response function χ were measured for three different values
of the force switching time τe (Fig. 4.1B). We find that χ relaxes exponentially
on the time scale τs = 1/(µk) which is the relaxation time of the bead in a
harmonic trap. For all experiments where τe < τs, the parametric plots χ(C)
clearly show a linear regime at large times and thus demonstrate the existence
of an effective temperature in this driven harmonic oscillator system (right
hand side of Fig. 4.1B). In Appendix A, we show that if the experiment is
performed without applying external forces, i.e., without moving the trap, the
usual equilibrium FDT Eq. 4.1 holds. We stress that the experimental results
are in good agreement with the predictions we obtain by modeling the bead
dynamics with the Langevin equation Eq. 4.10. This model will be discussed
in the following.

Langevin model

For the Langevin dynamics of the driven harmonic oscillator described by Eq.
4.10, the response Eq. 4.5

χ(t) ≡ 〈x(t)− x(0)〉/δf (4.11)

of the bead position x to a step-like perturbation δf setting in at t = 0 is

χ(t) =
1

k

(
1− e−t/τs

)
, (4.12)
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4.2. The Bead in the Optical Trap

Figure 4.1: The bead in the optical trap.
(A) Sketch for the bead in a time-dependent harmonic trap and experimental
traces of the position λ of the optical trap (gray) and the position x of the bead
(orange). The relaxation time of the bead is τs ' 200− 250 ms in all following
experiments. The system is driven into a NESS by changing λ dichotomously
at the rate 1/τe with the amplitude ∆λ. A perturbation is applied by shifting
the position of the optical trap in a stepwise manner by δλ. The force ampli-
tude and force perturbation follow as ∆f ≡ k∆λ and δf = kδλ, respectively,
where k is the stiffness of the trap.
(B) On the left hand side, response function χ(t) ≡ 〈x(t) − x(0)〉/δf for a
stepwise perturbation setting in at t = 0 (main plot) and correlation func-
tion C(t) ≡ 〈(x(0)− x(t))x(0)〉 measured over the unperturbed NESS (inset).
The experimental parameters are ∆f ' 0.7 pN (∆λ ' 160 nm), δf ' 1.0 pN
(δλ ' 220 nm) and τe = 67 ms (red), τe = 100 ms (blue) and τe = 333 ms
(green). Note that for χ, we can use perturbation sizes δf > ∆f since
the driven harmonic oscillator is fully linear (Eq. 4.10, this statement is
also confirmed by the experimental verification of the equilibrium FDT pre-
sented in Appendix A). We show an average over four beads in the respective
darker color and results for single beads in lighter colors. Predictions from
the Langevin model of the system are shown in black. On the right hand
side, the corresponding parametric plots for τe = 67 ms, τe = 100 ms (main
plot) and τe = 333 ms (inset). The values Teff ' 5 T = 1490 K (red) and
Teff ' 7 T = 2086 K (blue) indicate substantial deviation from the equilibrium
FDT (gray).
(C) Identification of an effective temperature regime from the solvable model
Eq. 4.10. We show the analytical dependence of τc (main plot, dashed line,
Eq. 4.17) and Teff (inset contour plot, Eq. 4.18) versus τe/τs and the scaled
force amplitude α ≡ (∆f 2/k)/kBT , where the dots mark the experimental
conditions. A green point corresponding to τe = 333 ms is not shown because
no Teff was found in that case (τe/τs > 1).
(D) Contour plot of the logarithmic histogram of a stochastically driven tra-
jectory with ∆f ' 0.7 pN and τe = 100 ms. The bead (gray dot) in average
tends to relax towards the minimum of the harmonic potential. As the position
of this minimum is permanently changed in a dichotomous fashion (vertical
arrows), the bead in average shows clockwise motion in the (x, f) plane leading
to dissipation of heat. Figure reprinted from [23].
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4. Effective Temperature in DNA Unfolding

with τs = 1/µk. The correlation function Eq. 4.6

C(t) ≡ 〈(x(0)− x(t))x(0)〉 (4.13)

is evaluated over the unperturbed NESS and follows as

C(t) =
kBT

k

(
1− e−t/τs

)
+

2(∆f/k)2

τe(1− (2τs/τe)2)

(τe
2

(
1− e−2t/τe

)
− τs

(
1− e−t/τs

))
.

(4.14)

With these expressions, we find the parametric plot

C(χ) = kBTχ+
2(∆f/k)2

τe(1− (2τs/τe)2)

(τe
2

(
1− (1− kχ)2τs/τe

)
− τskχ

)
(4.15)

and its curvature

∂2C(χ(t))

∂(χ(t))2
∼ exp

(
−2(τs/τe − 1)t

τs

)
≡ exp (−t/τc) (4.16)

with

τc/τs =
1

2(τs/τe − 1)
. (4.17)

The approximate linearity of the parametric plot for all times t & τc suggests
that τc is the crossover time into an effective temperature regime (Fig. 4.1C).
The value of the effective temperature is the slope of the parametric plot in
the limit t� τc where its curvature has become negligible, leading to

Teff/T =
1

kBT

∂C(χ(t))

∂χ(t)

∣∣∣∣
t�τc
≈ 1 +

2ατs
τe((2τs/τe)2 − 1)

(4.18)

with the scaled force amplitude α = ((∆f 2)/k)/kBT .
For τe � τs, the crossover time is τc ≈ τe/2, so that only for very short times
(t < τc), correlation and response are not related by an effective temperature
which, in this limit, is

Teff/T ≈ 1 +
ατe
2τs

. (4.19)

The increase of the temperature generated by the stochastic driving becomes
particularly transparent in this limit τe � τs since the stochastic forces then
act as additional thermal noise to the system.
For larger τe outside the limit τe � τs, the effective temperature regime gets
smaller (τc gets larger) and ultimately vanishes for τe = τs. The experimental
condition τe < τs for the existence of an effective temperature Teff is thus
naturally recovered in this model.
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Figure 4.2.: The limit τe � τs for the bead in the optical trap.
(A) Experimental (colors) and theoretical (black) response χ (main
frame) and correlation function C (inset) in the limit τe � τs. For the
experimental parameters ∆f ' 0.9 pN, δf ' 1.1 pN and τe = 10 s, the
results for six single beads (various colors) and their average (violet)
are shown.
(B) The corresponding parametric plots where the gray line represents
the equilibrium FDT. We include from Fig. 4.1B the experimental
(dark green) and theoretical (black) parametric plot for ∆f ' 0.7 pN,
δf ' 1.0 pN and τe = 333 ms. Figure reprinted from [23].

The Limit τe � τs

For force switching times τe � τs, the expression for the correlation function
Eq. 4.14 turns into

C(t) ≈ kBT

k

(
1− e−t/τs

)
+ (∆f/k)2

(
1− e−2t/τe

)
(4.20)

while the response Eq. 4.12 remains the same. In this limit, the equilibrium
FDT is restored for times t� τe since

C(t� τe) ≈
kBT

k

(
1− e−t/τs

)
= kBTχ (τe � τs), (4.21)

reflecting the equilibration of the bead for each applied force.
To further illustrate this limit, we have experimentally measured the response
χ and the correlation function C for a large force switching time τe � τs (see
Fig. 4.2A). The corresponding parametric plot Fig. 4.2B demonstrates that
in comparison to a more moderate τe ' τs, the system is noticeably closer to
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4. Effective Temperature in DNA Unfolding

τe [ms] ∆λ [nm] k [pN/nm] τs [ms]

experiment 67 163.5
C : 0.00424
χ : 0.00428

' 200− 250

theory: C 55 163.5 0.00424 222

theory: χ - - 0.00440 235

experiment 100 162
C : 0.00425
χ : 0.00429

' 200− 250

theory: C 96 162 0.00425 226

theory: χ - - 0.00441 240

experiment 333 162.5
C : 0.00423
χ : 0.00414

' 200− 250

theory: C 346 162.5 0.00423 219

theory: χ - - 0.00401 254

experiment 10 s 191.5
C : 0.00481
χ : 0.00473

' 300− 400

theory: C 10.56 s 191.5 0.00481 298

theory: χ - - 0.00448 356

Table 4.1.: The experimental and theoretical parameters for the bead in the op-
tical trap. The position amplitude ∆λ, the stiffness k and the system
relaxation time τs is listed for experiments at four different position
switching times τe. Among these parameters, we use τs and τe as fit
parameters in Eq. 4.14 for C, and k and τs as fit parameters in Eq.
4.12 for χ. The experimental estimate of the system relaxation time
τs has been obtained from repeated measurements of the equilibrium
force autocorrelation function. Table reprinted from [23].
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4.3. The Two-State Short Hairpin

equilibrium in the short-time regime (i.e., for small χ and C). We point out
that the larger variability between results for single beads is due to the large
force switching time used which causes the system to relax more slowly into
the stationary state. Since the trajectory cannot exceed a certain length to
avoid a change of the experimental conditions over time, the statistics of χ
and C thus gets worse in the limit τe � τs. However, the statistics is still
good enough to clearly resolve that the system is closer to equilibrium in the
short-time regime.

Comparing Theory and Experiment

After a discussion of the different regimes of the force switching time τe, we
now verify the earlier statement that theory and experiment agree well for
the bead in the optical trap by comparing the predictions from the Langevin
model with the experimental response and correlation functions shown in Fig.
4.1B and 4.2A and B. We find that for all four values of τe considered, the
experimental results can be reproduced well by plugging the parameters listed
in Table 4.1 in the respective theoretical expression for χ and C.
The difference between these parameters and their experimental counterparts
is less than five percent in most cases, with the comparatively large deviation
between the experimental τe = 67 ms and the theoretical τe = 55 ms as the sole
exception. This deviation can be attributed to the fact that for fast switching,
i.e., for small τe, the optical trap struggles to accurately follow the external
protocol for its position. In these conditions, the experimental τe can therefore
be somewhat different from the externally chosen parameter.

4.3. The Two-State Short Hairpin

The harmonic oscillator has been used as a first simple example to illustrate
the emergence of an effective temperature in systems subject to stochastic
driving. We next consider single molecules with free energy landscapes far more
complex than the harmonic potential, leading to a more complex stationary
dynamics under the action of random forces. We have chosen DNA hairpins
as experimental model systems to address such questions [36, 95,96].
We start our study with short DNA hairpins (20 bp stem ended by a tetraloop)
which can either be in the folded or in the unfolded state if an external force
f is applied.
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4.3. The Two-State Short Hairpin

Figure 4.3: Short hairpin systems.
(A) Experimental force-distance curves for the short DNA hairpin. The teth-
ered hairpin is unfolded (green) and refolded (purple) by moving the optical
trap back and forth (increase/decrease λ). Data is recorded at 1 kHz (dark
colors) and filtered to 20 Hz (light colors). We use feedback to change f be-
tween ± ≡ fc ±∆f at rate 1/τe. For a perfect (infinite bandwidth) feedback,
the dynamics follows the black dashed line, where UF±/F± and ω±UF/F refer to

the unfolded/folded state and unfolding/folding rate at force ± in an effective
four state model. The force-distance curves have already been shown in Fig.
2.1.
(B) Experimental contour plot of the logarithmic probability distribution of
a driven hairpin with slow (top) and fast (bottom) hopping kinetics. The ex-
perimental parameters for the slow (fast) hairpin are fc = 14 pN, ∆f = 1.5 pN
and τe = 50 ms (fc = 15 pN, ∆f = 1 pN and τe = 100 ms). For the fast hair-
pin, the populations of the states UF+ and F− are enhanced since the force
switching is here relatively slow compared to the conformational dynamics.
The relaxation time τs is τs ' 120 ms (τs ' 50 ms) for the slow (fast) hairpin.
(C) Experimental traces of the force f (gray) and the molecular extension
x ≡ λ− f/k − x0 (orange, x0 is an offset) with δf the perturbation size.
(D) Response function χ(t) ≡ 〈x(t) − x(0)〉/δf for a stepwise perturbation
with size δf = 0.5 pN setting in at t = 0 (main plot) and correlation function
C(t) ≡ 〈(x(0) − x(t))x(0)〉 measured over the unperturbed NESS (inset) for
the slow (red) and the fast (blue) hairpin. We show an average over five (four)
molecules for χ and ten (five) molecules for C for the slow (fast) hairpin. The-
oretical predictions from the driven two state model are displayed in black. On
the right hand side, we show the corresponding parametric plots and the equi-
librium FDT prediction (gray). The effective temperature is Teff ' 2 T = 596 K
for the slow hairpin (red). For the fast hairpin, there is no Teff since τe > τs in
this case. Figure reprinted from [23].
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4. Effective Temperature in DNA Unfolding

The stochastic driving is implemented by randomly changing this force at
rate 1/τe between fc − ∆f and fc + ∆f , below and above the value of the
coexistence force fc of the hairpin, where the folded and unfolded states are
equally populated (Fig. 4.3A - C). The controlled force is applied by a feed-
back loop operating on a millisecond time scale much shorter than any of the
two characteristic times τs and τe, thereby leaving correlations and responses
unchanged in the relevant time regime where the effective temperature is ob-
served. A general discussion of the force feedback in DNA unfolding based
on experimental data and simulations which explicitly include the feedback
mechanism is given for the long hairpin in Chapter 5.
We have measured the correlation function C of the molecular extension and
the response χ of this variable to a stepwise perturbation in the applied force
for two different short hairpin sequences which in equilibrium show different
hopping rates (that we will refer to as fast and slow). In Appendix A, we
compare traces of these two hairpins to illustrate their different hopping dy-
namics. Driving the fast and the slow hairpin into a NESS with a similar force
protocol, we find (i) the response of both sequences relaxes on a single time
scale τs as in the case of the harmonic oscillator, and (ii) this time scale τs
is noticeably smaller for the fast hopper. In particular, we observe that for
this hairpin τs falls below the force switching time τe (see Fig. 4.3D, where
we show averages over several single-molecule experiments, the results of these
experiments are given in Appendix B). The corresponding parametric plot
then remains curved for all times (right hand side of Fig. 4.3D) and an effec-
tive temperature cannot be identified. In contrast, a linear regime and thus an
effective temperature can be observed in the parametric plot of the slow hop-
per, where τe < τs. In analogy to the harmonic oscillator system, we thus find
τe < τs as the necessary condition for a quasi-FDT and an effective tempera-
ture in the driven short hairpin system. To support these results, Appendix A
demonstrates that we again have verified that in equilibrium conditions (i.e.,
the random switching protocol turned off), the usual FDT Eq. 4.1 is fulfilled.
The driven two-state hairpin can be modeled by an effective four-state Marko-
vian dynamics (Fig. 4.3A) for which exact expressions for the response χ and
correlation function C can be derived, as will be shown in the following.

The Driven Two-State System

For any applied force, the short hairpin can either be in the unfolded state UF
or in the folded state F . If one applies the stochastic driving where the force
is changed in a dichotomous fashion between two values ± = fc ± ∆f , the
system therefore has four states (see Fig. 4.3A and B). Following the notation
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4.3. The Two-State Short Hairpin

introduced in Fig. 4.3A, we refer to these states as {F+, UF+, F−, UF−}. The
transitions between the states occur at rate 1/τe if the force is changed and at
the rate ω±F/UF if the hairpin folds/unfolds at force ±.

The probability to be in state m ∈ {1, 2, 3, 4} ≡ {F+, UF+, F−, UF−} at time
t is governed by the master equation (see Sec. 3.3)

∂tpm(t) =
∑
n

L0
mnpn(t), (4.22)

with

L0
mn =


−(1/τe + ω+

UF) ω+
F 1/τe 0

ω+
UF −(1/τe + ω+

F ) 0 1/τe
1/τe 0 −(1/τe + ω−UF) ω−F

0 1/τe ω−UF −(1/τe + ω−F )


≡ knm − δmn

∑
l

kml,

(4.23)

where the rates kmn comprise both the (un)folding rates ω±(U)F and the force

switching rate 1/τe. With each state m, we can associate a molecular extension
according to

x1 = 0 x2 = xUF x3 = 0 x4 = xUF, (4.24)

where xUF equals the distance between the states F and UF . The linear
response of this molecular extension x to a stepwise force perturbation δf
setting in at t = 0 is defined as in Eq. 4.5 with

χ(t) ≡ 〈x(t)− x(0)〉/δf. (4.25)

Exploiting the general theory of the response in a NESS developed in Ref. [84],
χ can be expressed by

χ(t) =

∫ t

0

〈x(∆t)B(0)〉 d∆t (4.26)

as the time integral over a correlation function involving the variable B which
is conjugate to the perturbation. The integral over time is necessary to change
from the response to a delta-like perturbation used in Ref. [84] to the response
to a stepwise perturbation considered here. We point out that B is the nonequi-
librium steady state analogue to the equilibrium conjugate variable Beq which
appears in the equilibrium FDT

kBTχ
eq(t) =

∫ t

0

∂t1〈x(t2)Beq(t1)〉 d(t2 − t1). (4.27)
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This quantity Beq is conjugate to the perturbation f and takes the form

Beq = −∂fG (4.28)

for our systems, where G is the free energy of the hairpin (see Eq. 2.6). In
the NESS, the conjugate variable B has been shown to have different, yet
equivalent representations all reproducing with the FDT Eq. 4.26 the NESS
response χ of the system to a perturbation f (see Ref. [84]).
For the driven two state system, Eq. 4.26 turns into

χ(t) =

∫ t

0

∑
mn

xmprob(m,∆t|n, 0)Bnp
s
n d∆t, (4.29)

where psn is the stationary distribution and where prob(m,∆t|n, 0) is the con-
ditional probability for the system to be in state m at time ∆t provided that
it was in state n at time t = 0. This probability can be calculated by solving
the master equation Eq. 4.22, leading to

χ(t) =

∫ t

0

∑
mn

xm
[
exp(L0∆t)

]
mn
Bnp

s
n d∆t. (4.30)

The conjugate variable B can be written in the ”Agarwal form” (among other
equivalent representations, as pointed out above)

Bn =
∑
l

(p0
l /p

s
n)klnαln −

∑
l

knlαnl, (4.31)

with αnl ≡ ∂f ln knl (with f being the perturbation). The response Eq. 4.30
is compared to the correlation function defined in Eq. 4.6 which takes the
expression

C(t) ≡ 〈(x(0)− x(t))x(0)〉 =
∑
mn

xm
(
δmn −

[
exp(L0t)

]
mn

)
xnp

s
n. (4.32)

for the driven two-state system.
Both χ and C can be simplified by expanding with

Bnp
s
n ≡

∑
i

c(i)
χ v

(i)
n xnp

s
n ≡

∑
i

c
(i)
C v

(i)
n n = 1, 2, 3, 4 (4.33)

in eigenstates v(i) of L0 with eigenvalues λ(i). Then,

χ(t) = −
∑
im

xmv
(i)
m c

(i)
χ (1− exp(λ(i)t))/λ(i), (4.34)

C(t) =
∑
im

xmv
(i)
m c

(i)
C (1− exp(λ(i)t)). (4.35)
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4.3. The Two-State Short Hairpin

For this system, apart from the trivial eigenvalue

λ(0) = 0 (4.36)

corresponding to the NESS, the three eigenvalues characterizing the relaxation
in this NESS are

λ(1) = −2/τe (4.37)

and

λ(2,3) =− (1/τe + (ω+
UF + ω+

F + ω−UF + ω−F )/2

±
[
1/τ 2

e + (ω−UF − ω
+
UF + ω−F − ω

+
F )2/4

] 1
2 ).

(4.38)

The fact that τe is independent of the perturbation leads to c1
χ = 0. In contrast

to the correlation function, the response therefore has no contribution from the
time scale τ (1) ≡ −1/λ(1) = τe/2. The time scales τ (2,3) ≡ −1/λ(2,3) differ from
τ (1) in that they reflect properties of the hairpin via the (un)folding rates
ω±(U)F . Since τ (2) < τ (1), the contribution of τ (2) converges faster than the

violation (curvature) term associated with τ (1). Moreover, in the experimental
conditions, this fast time scale τ (2) can be neglected even in the short-time
regime (see below comparison of theory and experiment). In analogy to the
harmonic oscillator system, the two relevant relaxation times of the driven two
state system are τ (1) = τe/2 and τ (3) ≡ τs. We thus recover both, τe < τs as
the condition for an effective temperature, and τc from Eq. 4.17 as the time
scale beyond which the parametric plot χ(C) becomes linear.
The effective temperature of the driven two state system then follows as

Teff/T =
1

kBT

∂C(χ(t))

∂χ(t)

∣∣∣∣
t�τc
≈ c

(3)
C

kBTc
(3)
χ τ (3)

. (4.39)

This expression illustrates that the effective temperature only depends on the
constants c

(3)
χ and c

(3)
C and the time scale τ (3). Through Eq. 4.33 and 4.38, re-

spectively, these quantities are connected with the molecular extension and the
(un)folding rates of the hairpin, the change of these rates to a force perturba-
tion and the driving parameters ∆f and τe of the external forcing. We stress
that by replacing the observable ”molecular extension xm” by an arbitrary
other observable Am, the expression Eq. 4.39 for the effective temperature
remains the same. The effective temperature Eq. 4.39 of the driven two-state
system is thus independent of the choice of the observable which adds further
support to Teff playing the role of the temperature of the system. We stress
that this result is not trivial since the effective temperature of a system can in
general be observable-dependent (see, e.g., [97]).

51



4. Effective Temperature in DNA Unfolding

Comparing Theory and Experiment

On the level of single base pairs, the free energy of the short hairpin can be
modeled as

G(f, n) = GDNA(n)−
∫ f

0

x(f ′, n) df ′ (4.40)

given an applied force f and for the first n base pairs open (see Eq. 2.6). The
four-state model, however, describes the hairpin on a more coarse-grained level
since it only distinguishes between the folded state F and the unfolded state
UF . We model the free energy of these two states as

GF = G0
F and GUF = G0

UF − afxUF (4.41)

where G0
F/UF is the respective free energy at zero force. Here, we have exploited

that in the folded state the hairpin has no molecular extension. We need to
keep a as a fit parameter which, however, will turn out to take the naively
expected value a = 1 for both equilibrium and the NESS of the fast hairpin.
We demand that detailed balance is fulfilled for the unfolding and folding rate
at each applied force. In particular, detailed balance has to hold for the two
forces ± = fc ±∆f used in the stochastic driving, so that

ω±UF
ω±F

= exp(−(G0
UF −G0

F − a(fc ±∆f)xUF )/kBT ) (4.42)

Since experimentally the unfolded and folded state are almost equally pop-
ulated when subject to the stochastic driving, we can assume that fc is the
coexistence force of the hairpin so that G0

UF −G0
F = afcxUF and

ω±UF
ω±F

= exp(±a∆fxUF/kBT ). (4.43)

Moreover, these two states are equally populated for any value of the force
switching time τe and the force amplitude ∆f only if

ω+
UF = ω−F and ω−UF = ω+

F , (4.44)

which suggests that a symmetric splitting of the ratio in Eq. 4.43 can be used.
Hence, we model the experimental unfolding and folding rate at force ± by

ω±UF = k0 exp(±a∆fxUF/2kBT ) (4.45)

ω±F = k0 exp(∓a∆fxUF/2kBT ), (4.46)
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4.3. The Two-State Short Hairpin

with the hopping frequency at coexistence k0.
Experimentally, the force amplitude ∆f is large so that

ω+
UF � ω+

F and ω−UF � ω−F . (4.47)

Referring to the fastest rates by

ω∗ ≡ ω+
UF = ω−F , (4.48)

the expressions Eq. 4.34 for the response and Eq. 4.35 for the correlation
function become

χ(t) =
ax2

UF

2kBT (2 + τeω∗)
(1− exp(−ω∗t)) (4.49)

and

C(t) =
x2
UF

4(4− (τeω∗)2)
(4(1− exp(−ω∗t))− (τeω

∗)2(1− exp(−2t/τe))) (4.50)

in the experimentally relevant regime of τe in the order of 1/ω∗ and smaller.
Fitting these expressions to the experimental response and correlation func-
tions gives ω∗ ' 8.2 s−1, a ' 0.68 and xUF ' 18.1 nm for the slow hopper (red
curve in Fig. 4.3D) and ω∗ ' 20.7 s−1, a ' 1.03 and xUF ' 17.8 nm for the
fast one (blue curve in the same figure). We point out that the response Eq.
4.49 and the correlation function Eq. 4.50 show that under the experimental
conditions, the relaxation time τs is simply the inverse of the unfolding rate at
the larger of the two applied forces, i.e.,

τs = 1/ω∗. (4.51)

For the slow and the fast hairpin, the relaxation time then follows as τs '
120 ms and τs ' 50 ms, respectively. Finally, we note that the effective tem-
perature of the driven two-state system is

Teff/T =
1

a(1− τeω∗/2)
(4.52)

under the experimental conditions, as follows by evaluating the general expres-
sion Eq. 4.39 with the response χ (Eq. 4.49) and the correlation function C
(Eq. 4.50).

53



4. Effective Temperature in DNA Unfolding
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Figure 4.4.: Further single-molecule measurements of Teff for short hairpins.
(A) For the slow hopper with a larger loop, the response χ and the
correlation function C (inset) is shown for fc ' 12.8 pN, ∆f = 1.5 pN
and τe = 50 ms (green) and τe = 200 ms (blue). The relaxation time
is τs ' 400−500 ms for both τe. An average over five (four) molecules
for χ and six (five) molecules for C for the condition τe = 50 ms (τe =
200 ms) is shown. The theoretical results (black) use ω∗ ' 2.5 s−1,
a ' 0.80, xUF ' 18.0 nm (ω∗ ' 1.9 s−1, a ' 0.62, xUF ' 19.1 nm) for
τe = 50 ms (τe = 200 ms).
(B) The corresponding parametric plots together with the equilibrium
FDT (gray). In red, the parametric plot for the slow hopper with a
smaller loop with τe = 50 ms and τs ' 120 ms is included from Fig.
4.3D. Figure reprinted from [23].

Further Single-Molecule Measurements of the Effective Temperature

The good match between theory and experiment observed for the short hair-
pins extends to another series of measurements we have performed with a
different molecule type which has the same hairpin sequence as the slow hop-
per but a larger loop, leading to a slower hopping kinetics. As a result, the
system relaxation time of this molecule has increased to τs ' 400 − 500 ms
which has allowed us to vary the force switching time τe more widely while
still matching the effective temperature condition τe < τs. In particular, we
have increased the force switching time to τe = 200 ms to restore the ratio
τe/τs ' 0.4 that we have observed for the original slow hopper with a smaller
loop. The experiment then confirms well the theoretical prediction (see Eq.
4.49 and 4.50) that the parametric plot depends on the force switching time
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4.4. The Multiple-State Long Hairpin

τe only through the ratio τe/τs, thus highlighting that this ratio is crucial for
both the existence and the value of the effective temperature (see Fig. 4.4A
and B, single-molecule results are given in Appendix B). For a smaller τe/τs,
the experiment clearly shows that the effective temperature approaches room
temperature, as is predicted by the four-state model (see Eq. 4.52). This re-
sult can be intuitively understood to reflect how for smaller τe/τs the hairpin
is driven more weakly and is thus closer to equilibrium.

4.4. The Multiple-State Long Hairpin

For systems with multiple states, the natural extension of the Markovian model
predicts an accordingly larger number of relaxation times which need not be
well-separated so that both χ and C can have a quite complex structure. More-
over, since different time scales in general contribute with different weights to χ
and C, the response and the correlation function are in general not connected
by a simple time-independent proportionality factor such as the effective tem-
perature. However, if one manages to find driving parameters for which the
response has one well-separated relaxation time τs, an effective temperature
still occurs, provided that the important constraint τe < τs is matched.
As an example of a system with numerous states and multiple timescales,
we considered a long 6800 base pairs DNA hairpin. The FDC of this hair-
pin shows many intermediates separated by random energy barriers that are
dynamically populated under stochastic driving (Fig. 4.5A and B). Because
(un)folding transitions can cover a much larger distance for the long hairpin,
the feedback struggles more to maintain the desired force value (Fig. 4.5A and
B). Still, on the relevant time scales τe and τs, the force is controlled to good
approximation.
We find that the experimental response function relaxes on a well-separated
time scale τs (Fig. 4.5C, single-molecule results are shown in Appendix B),
showing that the long hairpin represents a special case of a multiple-state
system with clear time scale separation. Such a result can nevertheless be
expected to be typical for a system with large, non-degenerate barrier heights
such as the long hairpin since the system relaxation times depend exponentially
on these heights.
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4.4. The Multiple-State Long Hairpin

Figure 4.5: Long hairpin system.
(A) Experimental unzipping force-distance curve (data filtered at 4 Hz in dark
green and unfiltered data in light green) for the 6.8kbp long hairpin. Large
force rips in the force-distance curve reflect the need to overcome large barriers
and thus mark stable intermediate states of the hairpin. Using feedback to
apply a dichotomous force f changing at rate 1/τe between ± ≡ fc ± ∆f ,
these states are populated most in the course of the dynamics. Accordingly,
the experimental contour plot of the logarithmic histogram over a NESS with
fc = 15.6 pN, ∆f = 1.6 pN and τe = 1.33 s takes large values for these states
(orange-brown colors). Because of the imperfect feedback, the system does not
rigorously evolve along the two forces ±. The force-distance curve has already
been shown in Fig. 2.1.
(B) Experimental traces of the force f (gray) and the molecular extension x
(orange), where δf is the size of the perturbation.
(C) Response function χ(t) ≡ 〈x(t) − x(0)〉/δf (main plot) and correlation
function C(t) ≡ 〈(x(0) − x(t))x(0)〉 (inset) for these parameters. For both χ
and C, we show an average over four molecules. The response and correlation
function relax on τs ' 2 s. We compare the experimental data with simulations
of the full base-pairwise dynamics (black). On the right hand side, we show
the corresponding parametric plots, where the effective temperature Teff '
190 T = 56620 K shows the pronounced deviation from the equilibrium FDT
prediction (near vertical gray line). Figure reprinted from [23].
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4. Effective Temperature in DNA Unfolding

Furthermore, we observe that in analogy to the short hairpins, the relaxation
time τs of the long hairpin decreases with growing force amplitude ∆f , since
a stronger stochastic forcing drives the hairpin more quickly across its barri-
ers during the steady-state dynamics. The condition τe < τs for an effective
temperature can therefore be matched experimentally by adjusting ∆f . The
parametric plot then shows a linear regime (right hand side of Fig. 4.5C), thus
demonstrating that there is an effective temperature for the multiple-state long
hairpin. This effective temperature is quite large which fits in nicely with the
observation that the stochastic driving significantly enhances the fluctuations
of the molecular extension as it helps the hairpin to explore its full molecular
free energy landscape whereas in equilibrium it would remain stuck in one re-
gion for exceedingly long times (Fig. 4.5B).
We support these experimental results with simulations describing the
stochastically driven (un)folding dynamics at the level of single base pairs. In
the following, we first define these simulations and subsequently show that they
reproduce both the experimental response and correlation function remarkably
well if one implements the random forcing with the experimental parameters
(black lines in Fig. 4.5C).

Simulation of the Base-pairwise Dynamics

We model the dynamics of the long hairpin as a Markov process within its free
energy profile G(f, n) where the applied force f changes stochastically over
time according to the external protocol Eq. 4.9. This free energy profile has
already been shown in Sec. 2.2 to take the expression

G(f, n) = GDNA(n) +Gs(f, n), (4.53)

with the free energies GDNA(n) of the hairpin and

Gs(f, n) = −
∫ f

0

x(f ′, n) df ′. (4.54)

of the single-stranded DNA released during the unfolding process.
Within this free energy profile, the Markov process is modeled with rates ωnn±1

to break or close one base pair if n base pairs are open. For these rates, we use
an asymmetric splitting of Kramers type rates [61,98] as suggested in Ref. [99]

ωnn+1 = k0 exp

(
−GDNA(n+ 1)−GDNA(n)

kBT

)
(4.55)

ωnn−1 = k0 exp

(
−Gs(f, n− 1)−Gs(f, n)

kBT

)
(4.56)

58



4.5. Conclusion

with the attempt frequency k0.
We stress that we have additionally taken into account that experimentally the
force baseline can change along the x axis. Specifically, we observe that the
actual applied force can vary by a few 0.1 pN across a distance of several µm.
In the simulations, these conditions are included by adding an offset to the
force decreasing linearly from zero at the most zipped state of the dynamics
(n ' 2000) to some minimal value foff at the fully unfolded state (n ' 6800).
Finally, we point out that we have neglected the contribution from the loop
which brings in an entropic barrier that has to be overcome to close the first
base pair when the hairpin is fully unfolded. In the experiments, single base
pair transitions cannot be resolved, though. Instead, we observe transitions in
which many base pairs break or open at once [45]. On this more coarse-grained
level, the entropic barrier caused by the loop is smoothed out so that it can
be expected to have little effect on the dynamics.

Comparing Theory and Experiment

We reach good agreement with the experiment by using the parameters foff =
−0.35 pN and k0 = 6.1·105 Hz for the simulations (see Fig. 4.5C). Furthermore,
all theoretical parameters but fc, i.e., τe, ∆f and δf , take the respective experi-
mental value. The theoretical mean force fc had to be adjusted somewhat since
we observe that the experimental mean unzipping force of the FDC can change
by up to 1 pN between molecules of the same type. In order to similarly pop-
ulate the states of the hairpin for different molecules, the experimental mean
force was always set 0.1 − 0.2 pN larger than the respective mean unzipping
force. Theoretically, the mean unzipping force is around 16.9 pN, and there-
fore, the experimental conditions have been reproduced using fc = 17.0 pN in
the simulations.

4.5. Conclusion

In summary, we have identified an effective temperature for three different
systems with varying complexity, from the bead in the optical trap to various
two-state short DNA hairpins and a multiple-state long hairpin. All of these
systems have been driven into a NESS by applying random forces. We have
found a necessary condition for observing an effective temperature in these
systems: the force switching time τe of the external driving has to be smaller
than the relaxation time τs of the system, i.e., τe < τs. We have observed
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4. Effective Temperature in DNA Unfolding

a wide range of effective temperatures, from Teff ' 2 T for the short hairpin,
Teff ' 7 T for the bead in the optical trap to Teff ' 190 T for the long hairpin.
All these values are well above the room temperature T , thus demonstrating
that we have identified effective temperatures for systems driven deep into the
nonequilibrium regime.
The experimental results have been found to be in good agreement with predic-
tions from theoretical models. These models include an overdamped Langevin
dynamics for the bead in the optical trap, a four-state Markov system for the
short hairpins and a base-pairwise simulation of the long hairpin dynamics
which takes into account both its elastic properties and its base pair sequence.
The analysis of these theoretical models has not only given support to our ex-
perimental results. It has also suggested the identification of the crossover time
τc into the effective temperature regime and highlighted the physical meaning
of the relaxation time τs. Furthermore, the four-state model for the short
hairpins has proven that the effective temperature is independent of the choice
of the observable, a statement whose generalization should be in the focus of
future work.
On a side note, we stress that an earlier suggestion [21] to measure the effective
temperature by coupling an isolated harmonic oscillator to the system is shown
in Appendix C to exactly reproduce the effective temperature for τe � τs and
to yield quite good agreement with Teff outside this limit. However, how to
implement this suggestion experimentally is far from obvious, since the oscil-
lator cannot be isolated. Rather, the oscillator feels additional noise by the
heat bath compromising a direct measurement of the effective temperature.
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5. Force Feedback in DNA
Unfolding

5.1. Introduction

In the previous chapter, it was demonstrated that an effective temperature can
be identified for single DNA hairpins driven into a NESS by random external
forces. Since the position of the optical trap is the control parameter in the
DNA unfolding setup rather than the force (see Sec. 2.1), a feedback mech-
anism is needed to gain control of the force and apply the stochastic driving
according to the external protocol.
This force feedback is implemented in our setup by repeatedly first measuring
the force f that works against the captured bead and then moving the optical
trap depending on the measurement outcome to get closer to some target force
fT [33, 100, 101]. More precisely, given some measured force f as input, the
feedback adjusts the trap position λ by means of

∆λ = G
fT − f
keff

, (5.1)

where G is the dimensionless feedback gain and where keff is an effective rigidity
with fixed value. Hence, if the force is smaller than the desired value fT , the
feedback increases the distance λ to pull stronger (∆λ > 0). Conversely, if f
is larger than fT , ∆λ < 0 to decrease the tension. At this point, we stress that
our notation differs somewhat from the one used in the previous chapter since
we now distinguish between the actual force f of the system and the external
target force fT . In the previous chapter where the feedback is assumed to be
perfect, these two forces coincide and are both referred to as f .

The force feedback has two parameters: The first one is the feedback gain
G which according to Eq. 5.1 determines by how much the trap is moved
given some measurement of the force f . The other free parameter is the time
scale τF on which the feedback operates, i.e., on which it measures the force
and adjusts the trap. The feedback responds to changes of the force with
some delay due to this finite operation time. Additionally, once it responds,
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Figure 5.1.: Feedback control of the force.
(A) Experimental trajectory segment of the target force fT (black)
and the measured force f (red) in the NESS, where fc = 15.6 pN,
∆f = 1.6 pN, τe = 1.33 s, τF = 1 ms and G = 0.5. This panel has
already been shown in the introductory Fig. 1.2.
(B) Corresponding simulated trajectory segments with the same pa-
rameters as in (A) but using a different mean force fc = 17.0 pN.
However, both the theoretical and the experimental fc are by the
same amount larger than the respective mean unzipping force which
in the experiments can change from molecule to molecule. Hence, the
physical situation is the same in theory and experiment even though
the value of fc is different. We note that here and in the following,
the force offset foff introduced in Sec. 4.4 has been set to zero.

it does not know the instantaneous force but rather a time-averaged one. The
trap adjustment which the feedback calculates therefore in general does not
match the actual state of the system and so even after the feedback operation
f might not coincide with the target value fT . Still, Fig. 5.1 shows that, with
an appropriate choice of the parameters G and τF , the force is in general close
to fT along the stochastically driven NESS. In this NESS, the target force is
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5.2. Toy Model: Harmonic Oscillator

randomly changed at rate 1/τe between the two values

f±T ≡ fc ±∆f (5.2)

(see Eq. 4.9). Furthermore, Fig. 5.1 not only contains experimental data but
also introduces the simulations our following discussion of the force feedback
in DNA unfolding will also be based on. These simulations use an extension
of the base-pairwise model introduced in Sec. 4.5 for the long hairpin by
explicitly implementing the experimental feedback mechanism according to
Eq. 5.1. With these simulations, the dependence of the feedback-controlled
dynamics on the parameters G and τF will be investigated.
However, before considering the DNA unfolding system, we discuss the force
feedback for the overdamped harmonic oscillator since this much simplified
system already illustrates some of the features of the feedback (Sec. 5.2). For
this system, we introduce a description of the feedback-driven dynamics in
terms of the time-resolved mean reaction of the force f to a change of the
target value fT . We subsequently move on to the DNA unfolding system for
which we combine the temporal resolution of the dynamics offered by this
mean force trajectory with a spatial one by additionally considering the force
population in a given state of the hairpin (Sec. 5.3).

5.2. Toy Model: Harmonic Oscillator

The force feedback for the overdamped particle in a harmonic oscillator is
modeled in analogy to the one for the DNA unfolding experiments. Hence, in
each time interval τF , the feedback first measures the mean force f that acts
on the particle and then adjusts the position λ of the oscillator according to
Eq. 5.1 in order to bring f closer to the desired target force fT . Assuming
that this adjustment has led to the oscillator position λ0 at time t = 0, this
position is kept until t = τF when the feedback has measured a new force and
responds to it with another trap adjustment. In the meantime, the dynamics
of the trapped particle is governed by the Langevin equation

ẋ = −µk(x− λ0) + ζ(t) (0 < t < τF ), (5.3)

where µ is the mobility and ζ(t) the thermal white noise with mean 〈ζ〉 = 0
and variance 〈ζ(t′)ζ(t′′)〉 = 2µkBTδ(t

′− t′′), with kBT the thermal energy (see
Sec. 3.1). During this dynamics, the feedback first measures the mean force

f1 ≡
1

τF

∫ τF

0

f(t) dt (5.4)
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5. Force Feedback in DNA Unfolding

and then, at time t = τF , changes the trap position to the new value

λ1 = G
fT − f1

keff

+ λ0 (5.5)

(see Eq. 5.1). In the following time interval, the particle follows the same
Langevin dynamics as before (see Eq. 5.3) but the position of the trap is up-
dated to λ1. The feedback then starts a new iteration in which it first measures
the force and afterwards adjusts the potential. The dynamics of the feedback-
controlled overdamped particle can therefore be solved in an iterative manner
provided that the external protocol for the target force is known. Here, we use
the same protocol as for the DNA unfolding setup and hence randomly switch
the target force between two values at rate 1/τe (see Eq. 5.2).
In the following, the resulting feedback-driven dynamics will be described by
looking at how the force changes on average over time once the target force
takes a new value. Here, we consider an average of the force over both the ther-
mal noise and the ensemble of all time segments in the course of the dynamics
where the target force takes the same value fT . Hence, we can evaluate this
quantity either for the larger (fT = f+

T ) or the smaller target force (fT = f−T )
of the stochastic driving. In general, the corresponding mean trajectories can
be different; however, for the harmonic oscillator they differ by just a sign due
to the symmetry of the oscillator with respect to its minimum.
As illustration, we show in Fig. 5.2A the mean force change after a transition
of the target force from f−T to f+

T for a given set of the feedback parameters
G and τF . We observe that the mean force approaches the new target force
periodically; hence, for these feedback parameters, the mean force gets closer
to the target force with every adjustment that the feedback performs. The
oscillations of the mean force which we see in Fig. 5.2A will later turn out to
be characteristic for large feedback gains. In fact, if G is further increased and
surpasses some threshold Gmax, these oscillations get stronger over time and
thus destabilize the system. In contrast, if G is small, the feedback applies only
soft changes to the trap position, leading to a monotonous increase of the force
towards its target value. However, as a common feature of this monotonous
increase of the force for small G and its oscillations for large G (but smaller
than Gmax), their enveloping function is an exponential decay on a time scale
τr towards a limit value f∞ (see Fig 5.2A).
For these two quantities, analytical expressions can be derived by solving the

dynamics in the iterative manner outlined above but including an average over
both the thermal noise and different time segments of the particle trajectory
with the same target force. While the former average can be implemented sim-
ply, the latter is more formal. Hence, in the following, we will first calculate
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Figure 5.2.: Force feedback for the harmonic oscillator.
(A) Mean force trajectory (orange) for G = 1.5, τF /τs = 0.1 and
τe/τs = 0.4. In blue, we show the exponential decay of the mean force
at times t = nτF (n = 0, 1, 2, . . . ) towards the limit value f∞ (black
line). The external protocol Eq. 5.2 for the target force runs with
fc = 0 and ∆f/

√
kkBT = 1 (dashed line).

(B) The threshold value Gmax (Eq. 5.14), the optimal value G0 (Eq.
5.19) and the two boundaries G+ (Eq. 5.21) and G− (Eq. 5.20) for the
feedback gain using τe/τs = 0.4. The colored dots mark the respective
conditions of the mean force trajectories shown in the inset. For this
inset, the axis are the same as in (A). For G = G0, the mean force
reaches its limit value f∞ after one feedback iteration. Increasing G
further leads to oscillations (shown data the same as in (A)) whereas
for G < G0, the mean force converges monotonically towards f∞.
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5. Force Feedback in DNA Unfolding

τr and f∞ for one time segment, i.e., one change of the target force, and then
state how these expressions change when one performs the ensemble average
over different trajectory segments with the same target force.
The thermal average can be implemented directly by just dropping the ther-
mal noise. Indeed, for the harmonic oscillator, since the noise enters the force
linearly, it is canceled by the thermal average with 〈ζ〉 = 0. Then, starting
the feedback at time t = 0 with the particle and the trap at the mean posi-
tions 〈x(0)〉 and 〈λ0〉, respectively, the mean particle trajectory for all times
0 < t < τF follows as

〈x(t)〉 = (〈x(0)〉 − 〈λ0〉) exp(−t/τs) + 〈λ0〉 (5.6)

by solving Eq. 5.3. With the mean initial force 〈f(0)〉 ≡ −k(〈x(0)〉 − 〈λ0〉),
the corresponding mean force trajectory in this time interval is

〈f(t)〉 = −k(〈x(t)〉 − 〈λ0〉) = 〈f(0)〉 exp(−t/τs), (5.7)

from which get the average force

〈f1〉 ≡
1

τF

∫ τF

0

〈f(t)〉 dt. (5.8)

The feedback uses this force to calculate with

〈λ1〉 ≡ G
fT − 〈f1〉

k
+ 〈λ0〉 (5.9)

the mean new position of the trap after the first feedback interval (see Eq.
5.5). The mean force at t = τF then follows as

〈f(τF )〉 = GfT + 〈f(0)〉α, (5.10)

where
α ≡ exp(−τF/τs)(1 +Gτs/τF )−Gτs/τF . (5.11)

This calculation can be iterated to get the mean force at time t = nτF

〈f(nτF )〉 = 〈f(0)〉αn +GfT

n−1∑
m=0

αm. (5.12)

In the limit n→∞, this force converges to some finite value only if

|α|
!
< 1. (5.13)
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5.2. Toy Model: Harmonic Oscillator

For a given feedback time τF , this condition is matched for feedback gains

G
!
< Gmax ≡

τF
τs

1 + exp(−τF/τs)
1− exp(−τF/τs)

(5.14)

(see Figure 5.2B). For these feedback gains, the mean force at time t = nτF is

〈f(nτF )〉 = 〈f(0)〉αn +
GfT
1− α

(1− αn)

= f∞ + αn(〈f(0)〉 − f∞).
(5.15)

with the limit force

f∞ ≡ lim
n→∞
〈f(nτF )〉 =

GfT
1− α

. (5.16)

The force relaxation towards the limit value f∞ is thus governed by an ex-
ponential law in n. The time scale of this relaxation τr can be determined
by

〈f((n+ 2)τF )〉 − f∞
〈f(nτF )〉 − f∞

= α2 ≡ exp(−2τF/τr) (5.17)

(see Figure 5.2A) or, equivalently,

exp(−τF/τr) = |α|. (5.18)

If one uses the optimal feedback gain

G0 =
τF
τs

exp(−τF/τs)
1− exp(−τF/τs)

(5.19)

(see Figure 5.2B), the relaxation time τr apparently becomes zero. However,
one should note that the mean force does not jump instantaneously to its limit
value if τr → 0. Instead, in this case, the force is equal to the limit value f∞ at
time t = τF , hence right after the first feedback adjustment. However, it can
be very different from f∞ for times t < τF . To ensure that the convergence
of the mean force is faster than the switching time τe, we thus not only need
τr < τe but also τF < τe. While the latter condition puts a constraint on the
feedback time scale, the former leads to the lower bound

G
!
> G− ≡

τF
τs

exp(−τF/τs)− exp(−τF/τe)
1− exp(−τF/τs)

(5.20)

and the upper bound

G
!
< G+ ≡

τF
τs

exp(−τF/τs) + exp(−τF/τe)
1− exp(−τF/τs)

(5.21)
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5. Force Feedback in DNA Unfolding

for the feedback gain. These bounds refine the previous constraint G < Gmax

(see Figure 5.2B).
In summary, we note that the feedback works well for the harmonic oscillator
if the conditions τF < τe and G− < G < G+ are both matched. In particular,
we observe that there is an optimal value G0 for which the relaxation time
of the force towards the target value is minimal. These statements, although
derived for just one realization of the change of the target force, are still true if
one additionally performs an average over the many of these changes that take
place in the course of the dynamics. In fact, this average leaves the relaxation
time τr unaffected and just replaces the limit force f∞ from Eq. 5.16 by the
mean value

f∞ ≡
1

τF

∫ τF

0

f∞ exp(−t/τs) dt =
GfT

τF/τs +G
. (5.22)

This expression emphasizes that for realistic feedbacks with finite operation
time scales τF , the mean force never converges to the target value fT . Instead,
the limit mean force is always below fT since the system inevitably tends to
relax towards its equilibrium state where the mean force is zero.

5.3. Feedback in DNA Unfolding

5.3.1. Mean Force Trajectory

We start the discussion of the force feedback in the DNA unfolding setup by
considering the mean force trajectory we have introduced for the harmonic
oscillator. We first demonstrate that theory and experiment agree reasonably
well for this quantity and then use further simulations to explore the parame-
ter space spanned by the feedback gain G and the feedback time scale τF .
Figure 5.3 shows that the feedback performs somewhat better in theory than
it does in the experiments, as the theoretical mean force relaxes faster towards
the target value. This better performance of the theoretical feedback is most
likely caused by the simplifications we have used to model the system dynam-
ics since these tend to make the feedback more (or too) efficient. However, we
observe that the theoretical and the experimental mean force trajectory agree
qualitatively so far as they both show the same structure of local maxima
and minima. This complex structure reflects the many relaxation times of the
DNA unfolding: While for small times, the feedback just needs to work against
the relaxation of single base pairs, big unfolding transitions that significantly
decrease the applied force kick in at larger times. Since the feedback needs
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Figure 5.3.: Mean force trajectory in DNA unfolding. Experimental (red) and
theoretical (other colors) mean force trajectories after a change of
the target force for fc = 17.0 pN (experiment: fc = 15.6 pN), ∆f =
1.6 pN, τe = 1.33 s, τF = 1 ms and G = 0.5 (red, blue), G = 2 (green)
or G = 2.7 (violet). Note that in contrast to the harmonic oscillator,
the mean force trajectory from the upper to the lower target force can
in principle look different. Under the experimental conditions, this
difference is small, though. The inset shows the short time regime of
the mean force trajectories. Figure in part reprinted from [23].

some time to respond to these transitions, the mean force first drops and then
rises again. The different maxima and minima of the mean force trajectories
illustrate that this process takes place on several time scales.
Hence, due to the various relaxation time scales of the DNA unfolding system,
its mean force trajectory is quite different from the one of the harmonic os-
cillator. However, one could expect that these two systems behave similarly
in the short time regime where the relaxation time scale of single base pairs
dominates. Fig. 5.3 demonstrates that for moderate G < 2.7, the periodic
adjustments of the feedback lead to a monotonous increase of the mean force
trajectory in the short-time regime that is indeed similar to that observed for
the harmonic oscillator for small G. The analogy breaks down, however, for
larger G where the mean force does not show decaying oscillations as predicted
by the harmonic oscillator but rather becomes unstable.
This abrupt instability can be attributed to the fact that the stiffness of the
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Figure 5.4.: Population in the (λ, f) plane in theory and experiment.
(A) Logarithm of the experimental histogram for fc = 15.6 pN, ∆f =
1.6 pN, τe = 1.33 s, τF = 1 ms and G = 0.5. Here and in the following,
the horizontal black lines represent the two target forces.
(B) Logarithm of the theoretical histogram for the same parameters as
in (A) except for the mean force, where we use fc = 17.0 pN. In black,
we show the theoretical force-distance curve (FDC) obtained if one
unfolds the hairpin infinitely slowly. For both panels, a darker color
represents a larger population. Figure in part reprinted from [23].
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hairpin, unlike the stiffness of the harmonic oscillator, is not fixed but depends
on which state the hairpin is in. If the hairpin is in a state where less base
pairs are open, it is stiffer and the same trap displacement leads to a larger
change of the force. Since the size of the trap displacement is controlled by
the feedback gain G, the same G that is rather soft when the hairpin is wide
open can destabilize the system if the hairpin is almost closed. However, since
the mean force trajectory does not know about the state of the hairpin, it will
display an average over all states. Therefore, the mean force trajectory can
suggest a moderate average reaction of the system to the feedback when the
feedback gain G is almost large enough to fully destabilize the hairpin if it is
closed. Increasing G any further then leads to the abrupt instability of the
system noted above.
Compared to the feedback gain G, the influence of the feedback operation
time scale τF on the system dynamics is more straightforward: A feedback
with smaller τF can control the system better, leading to a mean force that
converges faster towards the target value (data not shown).
Summarizing, we note that the mean force trajectories suggest that the feed-
back works best for the minimal value of τF available and for some optimal
value of the feedback gain G. This optimal value is estimated to be around
G ' 2.5 for the hairpin we considered. For larger and smaller G, the feedback
either excites the system too strongly or adjusts the trap position too softly,
leading to a slower relaxation towards the target force.

5.3.2. Population of States in the (λ, f) plane

The mean force trajectory has provided us with a temporal resolution of the
feedback-controlled dynamics of the DNA unfolding system. However, it hides
the dependence of the dynamics on the instantaneous state of the hairpin. This
spatial dependence can be resolved by considering the population of forces in
the state of the hairpin where n base pairs are open. As every number of open
base pairs can be translated into a trap position λ intuitively (see Eq. 2.1),
this population is equivalent to a histogram in the (λ, f) plane.
For this histogram, Fig. 5.4 demonstrates good agreement between the the-

oretical prediction and the experimental result. Although the experiments
naturally offer a lower resolution than the simulations, they coincide well with
the theoretical results in both the high and the low population regime. The
rough structure of the histogram can be understood when comparing it with
the FDC one would measure if the DNA were unfolded infinitely slowly (by
increasing λ). Since the system can then equilibrate for every fixed value of λ,
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Figure 5.5.: Logarithm of the theoretical histogram for fc = 17.0 pN, ∆f = 1.6 pN,
τe = 1.33 s, τF = 1 ms and G = 0.2 (A), G = 0.5 (B) and G = 2.0
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this curve marks the mean equilibrium force in the (λ, f) plane.
In the stochastic driving considered here, the feedback attempts to apply a
force which is either larger or smaller than this equilibrium force. However,
since the feedback operates on a finite time scale τF , it has to permanently
fight against the relaxation of the force towards its equilibrium value taking
place within each τF . The more it manages to do so, the more both larger and
smaller forces are applied in each state of the hairpin. Hence, to some degree
the system explores the elastic response of each of these states more than in
equilibrium. In the (λ, f) plane, these elastic responses are represented as force
ramps so that the histogram in this plane looks as if these force ramps were
extrapolated to larger and smaller values.
The good match of theory and experiment shown above allows us to use sim-
ulations to explore the feedback-driven dynamics outside the experimental
conditions, too. These simulations demonstrate that there is an optimal value
for the feedback gain G for which the force is closest to its target value along
the dynamics. This value can be estimated to be around G ' 2 (see Fig.
5.5C) which is in good agreement with the previous value derived on the basis
of the mean force trajectories (see Sec. 5.3.1). For both larger and smaller
values of G, the feedback is less efficient: While strong adjustments of the trap
destabilize the system for large G, the feedback is too soft for small ones. The
simulations show that for these G, the hairpin hardly leaves the equilibrium
states marked by the equilibrium FDC (see Fig. 5.5A). Indeed, for small G,
the feedback becomes weak in the sense that it does not change the position of
the optical trap significantly. Then, the system can relax into equilibrium for
every value of λ so that only forces in the proximity of the FDC are populated.
Keeping G fixed and varying τF instead reproduces the intuitive result already
stated for the mean force trajectories: The more often the feedback can adjust
the optical trap in a given time, i.e. the smaller τF , the better the target forces
can be generated. Specifically, Fig. 5.6A and 5.6B show that while the exper-
imental τF = 1 ms already leads to a good control of the force, the quality of
the feedback is dramatically increased when decreasing its operation time scale
down to τF = 0.1 ms. For large τF on the other hand, the system is hardly
driven out of equilibrium (see Fig. 5.6C).

5.4. Conclusion

We have considered a force feedback mechanism for an overdamped particle in
a harmonic oscillator and for a long multiple-state DNA hairpin with a rough
unfolding free energy profile. For the harmonic oscillator system, the analysis
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of the mean force trajectory after a change of the target force fT has confirmed
the naive expectation that the feedback reacts more quickly to a change of fT
if its operation time τF is smaller. Furthermore, the mean force trajectory
suggests that there is an optimal value of the feedback gain G for which the
feedback is most capable of following the external protocol for the force: For
feedback gains smaller than this optimal value, the mean force responds to a
change of fT more slowly since the feedback adjusts the trap more softly. For
larger feedback gains on the other hand, the trap adjustments are too strong,
leading to oscillations of the force which, if G is increased beyond a threshold
value, even grow over time, thus destabilizing the system.
In comparison, the mean force trajectory of the long DNA hairpin has a signif-
icantly more complex structure, reflecting the broad spectrum of system time
scales which range from the short times of the breaking and closing of single
base pairs to the large times for which big (un)folding transitions take place.
Yet, in the short-time regime, the mean force trajectory has been found to be
similar for the long hairpin and the overdamped particle in the harmonic trap.
In particular, we have confirmed the result that the feedback works better for
smaller τF and that there is an optimal value of G for which the force is most
quickly adjusted to a change of the target value.
A complementary perspective on the feedback-controlled dynamics has been
reached by considering the force histogram in a given state of the DNA hairpin.
This histogram illustrates that the feedback drives the system away from equi-
librium as it attempts to realize the external random forcing. In particular,
the system is pushed further into the nonequilibrium regime for larger G but
becomes unstable if G is increased beyond some threshold value. Furthermore,
we have observed that the agreement of the force with its target value is max-
imal for some optimal feedback gain whose value has turned out to agree well
with the prediction by the mean force trajectory. Finally, considering the force
population for fixed G but varying feedback operation times τF has confirmed
the earlier result that the feedback controls the force better if τF is smaller.
In conclusion, the consideration of the mean force trajectory and the force
population has clearly resolved the role of the gain G and the operation time
τF in the feedback-controlled dynamics of DNA hairpins. Along this dynamics,
thermodynamic quantities such as the heat which is dissipated by the hairpin
into the medium should be evaluated in future work. The analysis of such
quantities can be expected to further illustrate how the thermodynamics of
the DNA hairpin depends on the feedback parameters.
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A. Verification of the Equilibrium
FDT and Short Hairpin Traces

This appendix demonstrates that if the experiments with the trapped bead
(see Sec. 4.2) and the short hairpins (see Sec. 4.3) are performed in equilib-
rium conditions, the usual FDT Eq. 4.1 is fulfilled with room temperature
T . Additionally, we illustrate that the fast and the slow short hairpin have
different hopping rates when driven by a similar force protocol.

Equilibrium FDT for the Bead in the Optical Trap

We have measured the response and correlation function in equilibrium to
verify that the FDT is satisfied. Fig. A.1A shows that the FDT is fulfilled well
except for a small deviation in the short time regime which, however, covers
the first milliseconds of χ and C only. Note that the overall good agreement
with the equilibrium FDT also confirms the linearity of the response of the
driven harmonic oscillator even for large perturbation sizes such as the value
δf ' 1.7 pN used here.

Equilibrium FDT for the Short Hairpin

In analogy to the harmonic oscillator system, we verify the FDT by measur-
ing the response and correlation function in equilibrium which, for the DNA
hairpin systems, corresponds to the application of a constant force (Fig. 4.3C
and 4.5B). The results for χ and C of such an equilibrium experiment shown
in Fig. A.1B demonstrate that the FDT is fulfilled well across the whole time
axis for our experimental setup.
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Figure A.1: Verification of the equilibrium FDT and short hairpin traces.
(A) Verification of the equilibrium FDT for the bead in the optical trap. The
main frame shows the response function χ(t) ≡ 〈x(t)−x(0)〉/δf (dark red) and
the correlation function C(t) ≡ 〈(x(0)− x(t))x(0)〉 (light red), while the inset
depicts the corresponding parametric plot (red) together with the equilibrium
FDT (gray). The size of the perturbation is δf ' 1.7 pN (δλ ' 1700 nm).
(B) Verification of the equilibrium FDT for the slow hopping hairpin. The
main frame shows the response function χ(t) ≡ 〈x(t) − x(0)〉/δf (dark red)
and the correlation function C(t) ≡ 〈(x(0)− x(t))x(0)〉 (light red). The corre-
sponding parametric plot (red) is depicted in the inset together with the equi-
librium FDT (gray). Experiments use the protocol parameters fc = 14.7 pN
and δf = 0.5 pN.
(C) Experimental trace of the force (gray) and the molecular extension (or-
ange) for the fast (left) and the slow (right) hopping hairpin in the stochasti-
cally driven NESS. The NESS is generated with τe = 50 ms and ∆f = 1 pN,
fc = 15 pN (∆f = 1.5 pN, fc = 14 pN) for the fast (slow) hairpin. Figure
reprinted from [23].
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Short Hairpin Traces

The traces shown in Fig. A.1C exemplify that the two short hairpins we have
considered in Sec. 4.3 show hopping at different rates between the unfolded
and folded state although they are driven by similar force protocols. In fact,
the slow hopper is even driven a bit stronger, with larger ∆f , but still its
hopping rate is noticeably below the one for the fast hairpin. The difference in
the hopping rates reflects that the barrier which the hairpin needs to overcome
to fold or unfold is significantly larger for the slow hopper, as a result of its
different sequence of base pairs.
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B. Single-Molecule Results

In this appendix, we present single-molecule results for the response χ and the
correlation function C. With these results, we have calculated the average χ
and C which we show in Sec. 4.3 for the short hairpins and Sec. 4.4 for the
long hairpin.

Short Hairpins

Fig. B.1A and Fig. B.1B show that the variability among different experiments
is noticeably larger for the short hairpin experiments (first presented in Fig.
4.3D) than it is for the harmonic oscillator (see Fig. 4.1B). In particular, the
response functions for the slow short hairpin show large variability. Still, the
finding that there is a linear regime in the parametric plot, i.e., an effective
temperature, for τe < τs but none for τe > τs is recovered at the level of
single molecules. For the third molecule type with a larger loop (see Fig. 4.4A
and B), we also observe a variability of the response and correlation function
stronger than the one found for the harmonic oscillator (Fig. B.1C and B.1D).
We find, however, mostly similar effective temperatures on the single-molecule
level. Still, we point out that some of the single-molecule parametric plots
for the third hairpin type tend to be a bit noisy since on some occasions, the
hairpin broke before we could collect long traces for both the response and the
correlation function. However, for all molecules, at least either a long NESS
or a long perturbed NESS trace could be measured, so that reliable single-
molecule estimates of the response and the correlation function are available,
as is demonstrated by the left hand sides of Fig. B.1C and B.1D.

Long Hairpin

For the long hairpin discussed in Sec. 4.4, the variability among different
molecules is small, especially considering the complexity of the hairpin (Fig.
B.1E). In particular, all single molecules clearly show a linear regime in their
parametric plot, thus demonstrating the existence of an effective temperature
at the level of single experiments as well. Moreover, even the value of this
effective temperature is similar for different molecules.
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Figure B.1: Single-molecule results (various colors) and averages (red) for
the response χ and the correlation function C (left) and the corresponding
parametric plots (right) at the experimental conditions listed in below table.
Figure reprinted from [23].

panel molecule τe [ms] ∆f [pN] #mol for χ #mol for C

(A) slow 50 1.5 5 10

(B) fast 100 1.0 4 5

(C) larger loop 50 1.5 5 6

(D) larger loop 200 1.5 4 5

(E) long 1.33 s 1.6 4 4
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C. Coupling an Oscillator to the
System

Here, we follow a suggestion by Cugliandolo et al. [21] to measure the effective
temperature of a system by coupling a harmonic oscillator to it. Assuming
that this coupling is weak and linear and exploiting the equipartition theorem,
Cugliandolo et al. [21] found that an oscillator with resonance frequency ω
measures the temperature

T̃eff(ω) ≡ ωC̃ ′(ω)

kBR̃(ω)
. (C.1)

Here, we have introduced the Fourier transforms

R̃(ω) ≡ Im

(∫ ∞
0

R(t) exp(iωt) dt

)
(C.2)

and

C̃ ′(ω) ≡ Re

(∫ ∞
0

C ′(t) exp(iωt) dt

)
(C.3)

of the response

R(t) ≡ δ〈x〉(t)
δf(0)

(C.4)

of the system to a delta-like perturbation f at time t = 0 and of the correlation
function

C ′(t) ≡ 〈(x(t)− 〈x〉)(x(0)− 〈x〉)〉. (C.5)

In the following, we will compare this temperature T̃eff(ω) with the effective
temperature Teff which the quasi-FDT predicts for large enough times. In the
frequency domain, large times roughly correspond to small frequencies. There-
fore, we expect that T̃eff(ω) and Teff coincide for small ω. Since according to
the FDT, the system equilibrates at room temperature T in the short time
regime, we moreover expect to obtain T for large enough ω.
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Figure C.1: Coupling an oscillator to the system.
For each, the harmonic oscillator (A), the slow short hairpin (B) and the long
hairpin (C), we present the experimental R̃(ω) (red) and ωC̃ ′(ω)/kBT (blue) on
the left hand side and the experimental parametric plot R̃(ωC̃ ′/kBT ) (green)
on the right hand side. The respective theoretical prediction is displayed in
black. As a comparison, the equilibrium FDT prediction is shown in the para-
metric plots (gray). For each system, we give the theoretical (black) and ex-
perimental (green) value of the effective temperature Teff and the temperature
T̃eff ≡ T̃eff(ω � 1/τe, 1/τs) which an oscillator with small resonance frequency
would measure. The experimental parameters are ∆f ' 0.7 pN, δf ' 1.0 pN
and τe = 100 ms for the harmonic oscillator, ∆f = 1.5 pN, δf = 0.5 pN and
τe = 50 ms for the slow short hairpin and ∆f = 1.6 pN, δf = 0.5 pN and
τe = 1.33 s for the long hairpin. Note that for the short hairpin, the large
frequency regime of the parametric plot has been cut off since it shows strong
fluctuations. We also point out that we have added zeros to the ends of the ex-
perimental and simulated time signals R(t) and C ′(t) before calculating their
Fourier transforms in order to make the low frequency regime better visible.
This zero-padding is possible here since both R(t) and C ′(t) decay almost
entirely within the observed time span. Figure reprinted from [23].
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We present plots of both R̃(ω) and ωC̃ ′(ω) at the experimental conditions
for all of our systems (Fig. C.1). These plots show that at small frequencies,
T̃eff(ω), i.e., the ratio of ωC̃ ′(ω) and kBR̃(ω), is almost constant. Equivalently,
we observe that the parametric plots R̃(ωC̃ ′(ω)) show a linear regime at small
frequencies in analogy to the linear regime which the corresponding parametric
plot χ(C) shows at large times. This analogy breaks down, however, for force
switching times τe larger than τs: In the frequency domain, a linear regime
then still exists (data not shown) whereas in the time domain it does not.
As a consequence, there is strictly speaking no crossover frequency (indicating
the breakdown of the concept of an effective temperature) which is analogous
to the crossover time scale τc since τc diverges as τe approaches τs. Finding
the frequency ranges corresponding to the time ranges t � τc and t � τc for
which the quasi-FDT predicts room temperature and the effective temperature,
respectively, is thus not straightforward. Roughly, however, we can use the
limits ω � 1/τe, 1/τs and ω � 1/τe, 1/τs. In the following, these limits will be
discussed for the harmonic oscillator and the different hairpin systems using
both experimental results and theoretical predictions for the respective model
system.

Harmonic Oscillator

For the driven harmonic oscillator, the Langevin model introduced in Eq. 4.10
gives

R̃(ω) =
µωτ 2

s

1 + (ωτs)2
(C.6)

and

ωC̃ ′(ω)/kBT = R̃(ω) +
2ατs/τe

(2τs/τe)2 − 1

(
R̃(ω)− µω(τe/2)2

1 + (ωτe/2)2

)
. (C.7)

The temperature measured by an oscillator with resonance frequency ω follows
as

T̃eff(ω)/T =
ωC̃ ′(ω)/kBT

R̃(ω)
= 1 +

2ατs/τe
(2τs/τe)2 − 1

(
1−

(
τe
2τs

)2
1 + (ωτs)

2

1 + (ωτe/2)2

)
.

(C.8)
In the limits ω � 1/τe, 1/τs and ω � 1/τe, 1/τs, we find

T̃eff(ω � 1/τe, 1/τs)/T ≈ 1 (C.9)
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and

T̃eff(ω � 1/τe, 1/τs)/T ≈ 1+
2ατs/τe

(2τs/τe)2 − 1

(
1−

(
τe
2τs

)2
)

= 1+
ατe
2τs

, (C.10)

respectively. Hence, while at large frequencies the oscillator measures room
temperature as expected, the temperature at small frequencies is different from
the expression derived in Eq. 4.18

Teff/T ≈ 1 +
2ατs/τe

(2τs/τe)2 − 1
. (C.11)

In fact, these two temperatures are strictly the same only if τe � τs. However,
their deviation is still small for larger force switching times τe < τs outside this
limit. This statement is illustrated by Fig. C.1A which demonstrates that for
both, theory and experiment, the difference between T̃eff(ω � 1/τe, 1/τs) and
Teff is just around six percent even for a force switching time τe ' τs/2.
On a side note we point out that the discrepancy between the experimental
and the theoretical estimate of ωC̃ ′(ω) visible in Fig. C.1A is caused by the
finite experimental time resolution which at large frequencies leads to errors
in C̃ ′(ω).

Short Hairpins

As a toy model for the short hairpins, the driven two state system discussed
in Sec. 4.3 predicts that

R̃(ω) =
ax2

UF

2kBT (2 + τe/τs)

ωτs
1 + (ωτs)2

(C.12)

and

ωC̃ ′(ω)/kBT =
x2
UF

4kBT (4− (τe/τs)2)

(
4ωτs

1 + (ωτs)2
−
(
τe
τs

)2
ωτe/2

1 + (ωτe/2)2

)
(C.13)

which leads to the oscillator temperature

T̃eff(ω)/T =
ωC̃ ′(ω)/kBT

R̃(ω)
=

1

a(1− τe/2τs)

(
1−

(
τe
2τs

)3
1 + (ωτs)

2

1 + (ωτe/2)2

)
.

(C.14)
In analogy to the driven harmonic oscillator, we consider the limits

T̃eff(ω � 1/τe, 1/τs)/T ≈ 1/a (C.15)
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and

T̃eff(ω � 1/τe, 1/τs)/T = Teff

(
1−

(
τe
2τs

)3
)
. (C.16)

We note that an oscillator with a large resonance frequency reproduces the
short-time limit of the FDT. For small resonance frequencies, the oscillator
measures a temperature which is slightly different from the effective tempera-
ture. This deviation is, however, even smaller than in the case of the harmonic
oscillator. This statement is exemplified by Fig. C.1B which on the theory
side shows good agreement between the effective temperature and the oscilla-
tor temperature at small resonance frequencies. The agreement is less good for
the experimental data which is, however, quite noisy in the frequency domain
leading to a rather inaccurate estimate of the oscillator temperature.

Long Hairpin

For the long hairpin, the theoretical predictions are given by simulations rather
than by analytical expressions. Since these simulations operate with a finite
time resolution like the experiments do, the theoretical estimate for ωC̃ ′(ω)
is affected by errors for large frequencies as is the experimental one. These
estimates are good enough, however, to suggest that T̃eff(ω) becomes the room
temperature T at large ω (corresponding to the upper branch for small ωC̃ ′(ω)
in Fig. C.1C). For small ω (lower branch for small ωC̃ ′(ω) in Fig. C.1C),
we find little difference between the effective temperature and the oscillator
temperature in both theory and experiment.
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