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Abstract

Statistical learning theory has proved itself in many practical applications such as com-
puter vision, speech recognition, bioinformatics, etc. So far, most results in statistical
learning theory presume that successive data points are independent of one another. This
is mathematically convenient, but clearly not always suitable for non-i.i.d. processes in-
cluding many time series. For instance, most of the techniques have been developed in
ways which have rendered it impossible to apply it immediately to time series forecasting
problems. To address these problems, recent work has adapted key results such as the
concentration inequalities and the resulting oracle inequalities to the situations where
time widely-separated data points are asymptotically independent. Motivated by this, in
this thesis, we will establish a new oracle inequality for generic regularized empirical risk
minimization algorithms based on a generic form of a Bernstein inequality and use this
oracle inequality to derive learning rates from two classes of non-i.i.d. processes called α-
and C-mixing processes.

Applying this oracle inequality to α-mixing processes, we derive learning rates for some
learning methods such as empirical risk minimization (ERM), least squares support vector
machines (LS-SVMs) using given generic kernels, and support vector machines (SVMs)
using the Gaussian RBF kernels for both least squares and quantile regression. It turns
out that for i.i.d. processes our learning rates for ERM and SVMs with Gaussian kernels
match, up to some arbitrarily small extra term in the exponent, the optimal rates, while
in the remaining cases our rates are at least close to the optimal rates.

For geometrically C-mixing processes that include the classical geometrically φ-mixing
processes, Rio’s generalization of these processes, as well as many time-discrete dynamical
systems, we establish a Bernstein-type inequality of the generic form that coincides with
the classical Bernstein inequality for i.i.d. data modulo a logarithmic factor and some
constants. Applying the oracle inequality to support vector machines using the Gaussian
kernels for both least squares and quantile regression, it turns out that the resulting
learning rates match, up to some arbitrarily small extra term in the exponent, the optimal
rates for i.i.d. processes.



Zusammenfassung

Die statistische Lerntheorie findet viele praktische Anwendungen, beispielsweise in den
Bereichen der Bildverarbeitung, der Spracherkennung oder der Bioinformatik. Bisher set-
zten die meisten Resultate der statistischen Lerntheorie voraus, dass aufeinanderfolgende
Datenpunkte unabhängig voneinander sind. Dies ist aus mathematischer Sicht angenehm,
für einige Situationen aber nicht geeignet, wie zum Beispiel für nicht-u.i.v. Prozesse
einschließlich vieler Zeitreihen. Weiterhin sind bisher einige Techniken in einer Weise
konstruiert worden, die es einem unmöglich machen, diese direkt für Vorhersagen von
Zeitreihen anzuwenden. Um diese Probleme anzugehen, haben neueste Arbeiten wichtige
Ergebnisse geliefert für den Fall, dass Datenpunkte asymptotisch unabhängig sind. Wie
zum Beispiel die Konzentrationsungleichungen und die daraus resultierenden Orakelungle-
ichungen. Dadurch motiviert werden wir in dieser Arbeit eine neue Orakelungleichung für
allgemeine, regularisierte empirische Risikominimierungsalgorithmen vorstellen, welche
auf einer allgemeinen Form der Bernstein-Ungleichung basiert. Darüber hinaus leiten
wir Lernraten für zwei Klassen von nicht-u.i.v. Prozessen her, nämlich, den α- und den
C-mischenden Prozess.

Unter Verwendung dieser Orakelungleichung für α-mischende Prozesse leiten wir Lern-
raten für einige Lernmethoden her, wie zum Beispiel für empirische Risikominimierung
(ERM), least square support vector machines (LS-SVMs) mit allgemeinen Kernen und
support vector machines (SVMs) mit Gaußkernen für least square and Quantilregression.
Es stellt sich heraus, dass für u.i.v. Prozesse, unsere erhaltenen Lernraten für ERM und
SVMs mit Gaußkernen – bis zu einem gewissen beliebig kleinen zusätzlichen Term im
Exponenten – den optimalen Raten entsprechen, während in den übrigen Fällen unsere
Raten zumindest nahe an den optimalen Raten sind.

Für geometrische C-mischende Prozesse, welche klassische geometrische φ-mischende
Prozesse, Rio’s Verallgemeinerungen dieser Prozesse, als auch viele zeitdiskrete dynamis-
chen Systeme enthalten, leiten wir eine Bernstein-Typ-Ungleichung her, welche die all-
gemeine Form besitzt und mit der klassischen Bernstein-Ungleichung für u.i.v. Daten –
modulo eines logarithmischen Faktors und einiger Konstante – übereinstimmt. Unter Ver-
wendung der Orakelungleichung für SVMs mit Gausskernen für least square und Quantil-
regression stellt sich heraus, dass die resultierenden Lernraten – bis zu einem gewissen be-
liebig kleinen zusätzlichen Term im Exponenten – den optimalen Raten für u.i.v. Prozesse
entsprechen.
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1. Introduction

Statistical Learning Theory (SLT) is a mathematical framework that deals with how
machines or mechanisms predict results through a process of learning. Learning, in this
case, is thought to be “an alteration of behavior as a result of individual experience. When
an organism can perceive and change its behavior, it is said to learn.” (Encyclopedia
Britannica, Vol. 7, 2007.)

The goal of supervised learning is to find a decision function fD : X → Y between a
sampled set of input variables x ∈ X and a predicted series of output values y ∈ Y from
a training data D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n of observations drawn from an
unknown distribution P . Every point in the process of training will see a piece of input
data matched to a piece of output data, so that the resulting learned function will be able
to predict an output from any given future input.

For example, consider a simple classification algorithm which should differentiate two
animals, namely foxes and cats, based on certain behaviourial characteristics. This is a
classic problem of classification, where the object belongs to a defined finite set of labels
y, which are usually denoted by the values −1 and 1. In this case, we aim to find a
binary classification algorithm that takes the data D as input and outputs a functional
relationship fD : X → {−1, 1}.

In other supervised learning scenarios the output Y can take on a range of continuous
values such as the real numbers R. These are often called problems of regression. As
an example, in salary prediction the output values are non-discrete in nature. Here, the
regression is focused on finding a functional relationship fD : X → Y between these
variables to enable an accurate prediction of an outcome with any given input values.

To evaluate the quality of a decision function fD, we often use a loss function L :
X × Y × R → [0,∞) to measure the difference between estimated and true values. For
example, we usually take the binary classification loss and the least square loss for the
classification and regression problems, respectively. Given a loss L, the goal of supervised
learning is to find an estimator fD : X → R such that its L-risk

RL,P (f) :=

∫
X×Y

L(x, y, fD(x)) dP (x, y)

is as small as possible. In other words, the L-risk of fD ought to be close to the Bayes
risk that is defined to be the minimal L-risk

R∗L,P := inf
f :X→R

measurable

RL,P (f) .

Now, a learning method, or learning algorithm L, that assigns every data set D to a
function fD, is called consistent, if

RL,P (fD)
n→∞−−−→ R∗L,P (1.1)
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with probability 1. Moreover, L is said to be universally consistent, if (1.1) holds for all
P on X × Y with, e.g., R∗L,P <∞.

To describe the speed of the convergence in (1.1), let cP > 0 be a constant and
(εn) ⊂ (0, 1] be a decreasing sequence converging to 0. Then L learns with rate (εn), if,
for all τ ∈ (0, 1], there exists a constant cτ ∈ [1,∞) only depending on τ such that, for
all n ≥ 1 and all τ ∈ (0, 1], the inequality

RL,P (fD) ≤ R∗L,P + cP cτεn

holds with probability not less that 1− τ .
In the literature, consistency and learning rates have already been investigated in

a variety of scenarios, see e.g. [39, 49, 32, 98]. In essentially all cases concentration
inequalities such as

• Hoeffding’s inequality [52], which states that for independent random variables
Z1, . . ., Zn : Ω→ [−B,B] with some B > 0,

P

(
1

n

n∑
i=1

(Zi − EPZi) ≥ ε

)
≤ exp

(
− nε

2

2B2

)
(1.2)

holds for all ε > 0,

• Bernstein’s inequality [13], namely that for independent random variables Z1,
. . ., Zn : Ω→ [−B,B] with some B > 0,

P

(
1

n

n∑
i=1

Zi ≥ ε

)
≤ exp

(
− nε2

2(σ2 + εB/3)

)
(1.3)

holds for all ε > 0, providing EPZi = 0 and EPZ2
i ≤ σ2 with σ > 0, for all

i = 1, . . . , n,

McDiarmid’s inequality [68], and Talagrand’s inequality [109, 19] play an important role.
Indeed, the analysis of various methods from non-parametric statistics and machine learn-
ing crucially depend on these inequalities, see e.g. [39, 40, 49, 98]. For example, if the
training samples come from an i.i.d. process, it was shown that an important class of
learning methods called support vector machines (SVMs), which will be introduced in
detail in Section 2.3, enjoy both universal consistency, see e.g. [93, 125, 94, 28], and good
learning rates, see e.g. [25, 104, 15, 62, 105]. Here, stronger results can typically be
achieved by Bernstein’s inequality and/or Talagrand’s inequality, since these inequalities
allow for localization due to their specific dependence on the variance. In particular, most
derivations of minimax optimal learning rates are based on one of these inequalities.

Notice that all concentration inequalities mentioned above assume the data to be gen-
erated in an i.i.d. fashion. In fact, this i.i.d. scenario is the predominantly considered
scenario in the literature, see e.g. [39, 49, 32, 98] and the references therein. However, in
practice, this i.i.d. assumption may be violated due to the nature of the data. Typical ex-
amples for this phenomenon are applications from financial predictions, signal processing,
system observation and diagnosis, and speech or text recognition, where the observations
come from a (suitably pre-processed) time series. Therefore, to understand the behavior
of learning methods in such situations, the independence assumption must be weakened,
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so that various types of stochastic processes including Markov chains and many classical
time series models are covered.

A set of natural and widely accepted notions for modelling weak dependencies are
classical mixing concepts such as α-, β-, and φ-mixing, see e.g. [21, 22, 23], since on the
one hand, they quantify the dependence structure in a conceptionally simple way, which
is accessible to various types of analysis, while on the other hand they include many of
the classical time series models.

Considerable effort has been made to establish concentration inequalities for these
mixing processes. For example, [18, 73, 71] established a Bernstein-type inequality for
the α-mixing processes, while [123, 69, 74, 75, 76, 90] used the so-called blocking tech-
nique to study other concentration properties for β- and φ-mixing processes. All these
results have been used to analyze particular learning algorithms. For example, [48] stud-
ied a classification algorithm based on a regularization scheme in a reproducing kernel
Hilbert space and a generic convex loss function for α- and β-mixing processes. For
the regression problem, [102] established consistency of SVMs learning from α-mixing
processes, while [119, 107, 106, 82] analyzed least squares support vector machines (LS-
SVMs) with α-mixing inputs, and [127] established generalization bounds for empirical
risk minimization (ERM) when the sampling sequence satisfies an α-mixing condition.
Moreover, the Bernstein-type inequality established in [18] was used in [124] to obtain
convergence rates for sieve estimates from α-mixing strictly stationary processes in the
special case of neural networks. More recently, by applying the Bernstein-type inequality
in [73], [99] obtained a general oracle inequality for generic regularized learning algorithms
from α-mixing observations, [128] analyzed the generalized performance of empirical risk
minimization algorithms with α-mixing samples and [126, 45, 29] considered the regular-
ized learning algorithm associated with the least-square loss and α-mixing observations.
Moreover, by employing the Bernstein-type inequality in [71], [11] derived almost sure
uniform rates of convergence for the estimated Lévy density both in mixed-frequency and
low-frequency setups and proved that these rates are optimal in the minimax sense. For
the smaller class of β-mixing processes, PAC-learning questions have been investigated in
[113], while [64] established consistency of regularized boosting algorithms learning from
β-mixing processes. For the even smaller class of φ-mixing processes, in the particular
case of the least square loss, [2] obtained the optimal learning rate for φ-mixing processes
by applying the Bernstein-type inequality established in [90].

In this work, one of the main goals is to derive an oracle inequality for a generic class
of learning algorithms including ERM and SVMs, which is based on a generic form of
Bernstein’s inequality. On the technical side, the new oracle inequality is achieved by a
refinement of the analysis of [99]. To be more precise, the analysis in [99] partially ignored
localization with respect to the regularization term, which we now address by a carefully
arranged peeling approach inspired by [98]. As a result, the stochastic error term of our
new oracle inequality is always smaller than that of [99]. As far as we know, the best
learning rates for LS-SVMs from exponentially α-mixing processes are those derived in
[119, 107, 106, 45]. When applied to LS-SVMs from exponentially α-mixing processes, it
turns out that our oracle inequality leads to a polynomial learning rate with exponent

−αmin

{
β,

β

β + pβ + p

}
.

This is obviously better than the exponent −αmin{β, β
β+2pβ+p

} established by [99] and
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the exponent − αβ
2p+1

established by [119] and [45]. For sufficiently smooth kernels, our

exponent is also better than the exponent − 2αβ
β+3

derived in [106] as well as the improved

exponent − 3αβ
2β+4

in [107]. We refer to Examples 3.15 and 3.16 for more precise comparisons
between all these learning rates.

However, there exist many dynamical systems such as uniformly expanding maps
given in [34, p. 41] that are not α-mixing. To deal with such non-mixing processes
Rio [84] introduced so-called φ̃-mixing coefficients, which extend the classical φ-mixing
coefficients. Unfortunately, the φ̃-mixing class is still not large enough to cover many
commonly considered dynamical systems including uni-modal maps [67, Section 4.2]. To
include such dynamical systems, [67] proposed the C-mixing coefficients, which further
generalize φ̃-mixing coefficients.

In contrast to the classical mixing case, so far there are only a few such concentration
inequalities known for C-mixing processes. Among these inequalities, it is worth men-
tioning that for dynamical systems with exponentially decreasing, modified φ̃-coefficients,
[116] derived a Bernstein-type inequality that turns out to be the same as the one for
i.i.d. processes modulo some logarithmic factor. However, this modification of the φ̃-
coefficients seems to be significantly stronger than Rio’s original φ̃-mixing coefficients, so
it remains unclear when the Bernstein-type inequality in [116] is actually applicable. For
this reason, the second main goal of this work is to establish a Bernstein-type inequality
for stationary geometrically (time-reversed) C-mixing processes Z := (Zn)n≥0 with asso-
ciated semi-norm ‖ · ‖. More precisely, let A > 0, B > 0, σ ≥ 0, and h : Z → [−B,B] be
such that EPh = 0, ‖h‖ ≤ A, and EPh2 ≤ σ2. Then we will show that for all ε > 0 and
all n ≥ n0 with n0 being some constant depending on A and B,

1

n

n∑
i=1

h(Zi(ω)) ≥

√
8(log n)

2
γ σ2τ

n
+

8(log n)
2
γBτ

3n
(1.4)

holds with probability not less than 1−2e−τ . Notice that apart from the constant n0, the

additional logarithmic factor 4(log n)
2
γ , and the constant 2 in front of e−τ , (1.4) coincides

with (1.3). Moreover, in this case, our oracle inequality is applicable, since (1.4) is also
of the generic form.

This thesis is organized as follows: In Chapter 2, we first present the basic notions of
statistical learning. Inter alia, we recall the formal concepts such as loss functions and
risks, learning methods, kernels and reproducing kernel Hilbert spaces (RKHSs) as well
as their properties. Then, based on a generic form of Bernstein’s inequality, we derive an
oracle inequality for a generic class of learning algorithms including ERM and SVMs.

In Chapter 3, applying the oracle inequality to learning from α-mixing processes, it
turns out that, for ERM, our results cover those in the i.i.d. case. In this sense, our rates
for LS-SVMs with Gaussian kernels match essentially the optimal learning rates, while
for LS-SVMs with given generic kernel, we only obtain rates that are close to the optimal
ones. Moreover, if the α-mixing coefficients decay fast enough, the resulting learning
rates for SVMs for both least squares and quantile regression with Gaussian kernels will
match the optimal rates for i.i.d. processes up to some arbitrarily small extra term in the
exponent.

In Chapter 4, we first prove a Bernstein-type inequality for geometrically C-mixing
processes that turns to be of the generic form. Hence, our oracle inequality can also be
applied to these processes. Here it turns out that for both least squares and quantile
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regression using Gaussian kernels, up to several constants associated with some semi-
norm, we recover the (essentially) optimal rates recently found for the i.i.d. case, see [43],
where the data is generated by a geometrically C-mixing process. Moreover, we establish
an oracle inequality for the problem of forecasting an unknown dynamical system. This
oracle will make it possible to extend the purely asymptotic analysis in [97] to learning
rates. Then, in the experiments, we compare the LS-SVMs to some other learning methods
such as the polynomial regression, local polynomial regression and multilayer perceptron
neural network for learning from some dynamical systems.

In the last chapter, we give a brief summary of this thesis and discuss some open
questions and suggestions for refinement.

Finally, we would like to point out that most of the results presented in the thesis have
been published or submitted in advance. More precisely, the core techniques of Theorem
2.23 establishing oracle inequality for generic regularized learning algorithms and general
exponentially α-mixing observations have been published in [50] in a simplified form.
Moreover, the new Bernstein-type inequality for exponentially C-mixing observations with
an application to learning can be found in [51].
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2. Statistical Learning Theory

In this chapter, we first recall some essential notations that will be used in this thesis. In
the second section, we introduce the notion of loss functions and their risks which basically
build the basis for the statistical learning. After giving the most important definitions, we
discuss properties related to them. Then, Section 2.4 deals with RKHSs and the related
reproducing kernels and Section 2.3 is devoted to describe the commonly used learning
methods such as ERM and SVMs. In Section 2.5, we recall some concepts that describe
the capacity of hypothesis function set. In the last section, based on a generic form of
Bernstein’s inequality, we establish an oracle inequality for a generic class of learning
algorithms including ERM and SVMs by additionally using a rather involved version of
the so-called peeling method introduced in [111].

2.1 Preliminaries

Let (Ω,A, µ) be a measurable space and L0(Ω) be the set of all real-valued measurable
functions on Ω. For 1 ≤ p ≤ ∞, we say that two functions f, g ∈ L0(Ω) are equiva-
lent if they are equal µ-a.e. The Lebesgue space Lp(µ) consists of equivalence classes of
measurable functions f : Ω→ R such that the Lp-norm ‖f‖p is finite, where

‖f‖p :=

(∫
Ω

|f |p dµ
)1/p

for 1 ≤ p <∞,

and

‖f‖∞ := ess sup
x∈Ω

|f(x)| := inf{a ∈ R : µ{x ∈ Ω : f(x) > a} = 0}.

Moreover, if A′ ⊂ A is a sub-σ-algebra, then Lp(A′, µ) denotes the space of all A′-
measurable functions f ∈ Lp(µ). It is well-known that, the space Lp(µ) equipped with
the Lp-norm, forms a Banach space.

For a Banach space E, we denote its closed unit ball by BE. In particular, for the
d-dimensional Euclidean space, we write B`d2

. For t ∈ R, btc denotes the largest integer n
satisfying n ≤ t, and similarly, dte is the smallest integer n satisfying n ≥ t.

For 1 ≤ p ≤ ∞, the Sobolev space of order m ∈ N0 is defined by

Wm
p (µ) :=

{
f ∈ Lp (µ) : ∂(α)f ∈ Lp (µ) exists for all α ∈ Nd

0 with |α| ≤ m
}
, (2.1)

where ∂(α) is the α-th weak derivative for a multi-index α = (α1, . . . , αd) ∈ Nd
0 with

|α| =
∑d

i=1 αi. The Sobolev norm is given by

‖f‖pWm
p (µ) :=

∑
|α|≤m

∥∥∂(α)f
∥∥p
Lp(µ)

.
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If Ω ⊂ Rd and µ is the Lebesgue measure, we write Wm
p (Ω) := Wm

p (µ).
Clearly, Sobolev spaces are subspaces of Lp (µ). To introduce another subspace of

Lp (µ), we first need to recall the modulus of smoothness. To this end, let Ω be a subset
of Rd with non-empty interior, f ∈ Lp (µ) for some p ∈ (0,∞], and h = (h1, . . . , hd) ∈ Rd.
For s ∈ N, the s-th modulus of smoothness of f is defined by

ωr,Lp(µ) (f, t) = sup
‖h‖2≤t

‖4r
h (f, · )‖Lp(µ) , t ≥ 0 ,

where ‖ · ‖2 denotes the Euclidean norm and the r-th difference 4s
h (f, · ) of f is given

by

4r
h (f, x) =

{∑r
j=0

(
r
j

)
(−1)r−j f (x+ jh) , if x, x+ h, . . . , x+ rh ∈ Ω ,

0 , otherwise.

For 1 ≤ p, q ≤ ∞, α > 0, s := bαc+ 1, the Besov space Bα
p,q (µ) is defined by

Bα
p,q (µ) :=

{
f ∈ Lp (µ) : |f |Bαp,q(µ) <∞

}
, (2.2)

where the semi-norm | · |Bαp,q(µ) is given by

|f |Bαp,q(µ) :=

(∫ ∞
0

(
t−αωs,Lp(µ) (f, t)

)q dt
t

) 1
q

, 1 ≤ q <∞ ,

and

|f |Bαp,∞(µ) := sup
t>0

(
t−αωs,Lp(µ) (f, t)

)
.

Note that

‖f‖Bαp,q(µ) := ‖f‖Lp(µ) + |f |Bαp,q(µ)

actually forms a norm of Bα
p,q (µ) for all q ∈ [1,∞]. Again, if µ is the Lebesgue measure

on Ω, we write Bα
p,q (Ω) := Bα

p,q (µ).
In the following X is always a measurable space if not mentioned otherwise and Y ⊂ R

is always a closed subset. Moreover, metric spaces are always equipped with the Borel
σ-algebra, and products of measurable spaces are always equipped with the corresponding
product σ-algebra.

2.2 Basic Properties of Losses and Their Risks

As already mentioned in the introduction, the goal of (supervised) statistical learning is
to find a function f : X → R such that for (x, y) ∈ X × Y generated according to the
distribution P , the value f(x) is a good prediction of y at x. When we found a function
f : X → R, its quality can be assessed. Now, we introduce some quite well-known
concepts of a loss function, see also [98, Definitions 2.1].

Definition 2.1. A function L : X × Y × R→ [0,∞) is called a loss function, or simply
a loss, if it is measurable.
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We say that a loss L(x, y, · ) : R→ [0,∞] is convex (or continuous), if L is convex (or
continuous) for all x ∈ X, y ∈ Y .

Given a loss function L and an f : X → R, we often use the notation L ◦ f for
the function (x, y) 7→ L(x, y, f(x)). A loss can express the approximation ability of a
function f of the response value y of some input value x ∈ X. The smaller the value
of L ◦ f , the better is the prediction of y in x by f(x). Therefore, small values of L ◦ f
should be considered. Until now, only loss functions for a fixed pair (x, y) have been
considered. However, our major goal is to have a small average loss for future unseen
observations (x, y). The following definition formalizes the concept of the average quality
of the function f , see also [98, Definitions 2.2 and 2.3].

Definition 2.2. Let L : X × Y × R→ [0,∞) be a loss function and P be a probability
measure on X × Y . Then, for f ∈ L0(X) the L-risk is defined by

RL,P (f) :=

∫
X×Y

L(x, y, f(x)) dP (x, y)

Moreover, the minimal L-risk

R∗L,P := inf{RL,P (f) | f : X → R measurable}

is called the Bayes risk with respect to P and L. In addition, a measurable function
f ∗L,P : X → R satisfying RL,P (f ∗L,P ) = R∗L,P is called a Bayes decision function.

Note that the above integral over X × Y always exists because L is non-negative and
measurable. Moreover, it is easy to verify that the risk of a convex loss is convex on L0(X).
However, in general the risk of a continuous loss is not necessarily continuous. In order
to ensure this continuity and several others like the Lipschitz continuity, we introduce the
following definition, see also [98, Definitions 2.16].

Definition 2.3. A loss L : X × Y ×R→ [0,∞) is called a Nemitski loss, if there exist a
measurable function b : X × Y → [0,∞) and an increasing function h : [0,∞) → [0,∞)
with

L(x, y, t) ≤ b(x, y) + h(|t|)

for all (x, y, t) ∈ X×Y ×R. Furthermore, L is called a Nemitski loss of order p ∈ (0,∞),
if there exists a constant c > 0 such that

L(x, y, t) ≤ b(x, y) + c|t|p

for all (x, y, t) ∈ X × Y × R. Besides, for a distribution P on X × Y with b ∈ L1(P ) we
call L a P -integrable Nemitski loss.

Note that for all f ∈ L∞(PX), a P -integrable Nemitski loss functions L satisfy
RL,P (f) <∞. In particular, we have RL,P (0) <∞ and R∗L,P <∞.

Now, we recall the Lipschitz continuity that are satisfied by nearly all commonly used
loss functions, see also [98, Definitions 2.18].

Definition 2.4. Let L : X × Y × R→ [0,∞) be a loss function. We say that L is:
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(i) locally Lipschitz continuous, if for all a > 0 we have

|L|a,1 := sup
t,t′∈[−a,a]

t6=t′

sup
x∈X
y∈Y

L(x, y, t)− L(x, y, t′)

|t− t′|
<∞. (2.3)

(ii) Lipschitz continuous, if we have |L|1 := supa>0 |L|a,1 <∞.

Note that if Y ⊂ R is finite and the loss L : Y ×R→ [0,∞) is convex, then L is locally
Lipschitz continuous by [98, Lemma A.6.5]. Moreover, a locally Lipschitz continuous loss
function L is a Nemitski loss, since (2.3) yields

L(x, y, t) ≤ L(x, y, 0) + |L||t|,1|t|, (x, y, t) ∈ X × Y × R.

In particular, a locally Lipschitz continuous loss L is a P -integrable Nemitski loss if and
only if RL,P (0) <∞. Moreover, if L is Lipschitz continuous then L is a Nemitski loss of
order 1.

The following examples discuss the above mentioned properties of losses which are
often used in learning algorithms for classification and regression problems, for more
details we refer to [98, Sections 2.3 & 2.4].

Example 2.5. A loss L : Y × R→ [0,∞) is called margin-based, if there exists a repre-
senting function ϕ : R→ [0,∞) such that

L(y, t) = ϕ(yt), y ∈ Y := {−1, 1}, t ∈ R.

Many commonly used losses in classification algorithms, such as the least squares loss, the
(squared) hinge loss and the logistic loss are margin-based, see [98, Examples 2.26-2.29].

Since the representing function ϕ simplifies the form of a loss function, properties like
convexity, continuity or (locally) Lipschitz continuity are easier to check for the repre-
senting function instead of the loss function itself. Moreover, convexity of L implies local
Lipschitz continuity of L. In addition, L is always a P -integrable Nemitski loss since we
have

L(y, t) ≤ max{ϕ(−t), ϕ(t)}

for all y ∈ Y and all t ∈ R. Consequently we can easily derive a characterization for L
being a P -integrable Nemitski loss of order p.

Example 2.6. We say that a loss L : Y × R→ [0,∞) is distance-based, if there exists a
representing function ψ : R→ [0,∞) such that ψ(0) = 0 and

L(y, t) = ψ(y − t), y ∈ Y := R, t ∈ R.

Many commonly used losses for regression problems, such as the least squares loss, Hu-
ber’s insensitive loss, the logistic loss, the ε-insensitive loss, or the pinball loss are distance-
based, see [98, Examples 2.39-2.42]. Moreover, it is easy to see that L is convex, contin-
uous, or Lipschitz continuous if and only if ψ is. However, in general, the local Lipschitz
continuity of ψ does not imply the local Lipschitz continuity of the corresponding distance-
based loss function, see again [98, Section 2.4].
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Later, we always assume the label set Y to be [−M,M ] for some M > 0, consequently
it is meaningful to present the following concept that enables us to restrict a loss L to
X × Y × [−M,M ], see also [98, Definition 2.22].

Definition 2.7. We say that a loss L : X × Y ×R→ [0,∞) can be clipped at M > 0 if,
for all (x, y, t) ∈ X × Y × R, we have

L(x, y, Ût ) ≤ L(x, y, t), (2.4)

where Ût denotes the clipped value of t at ±M , that is

Ût :=


−M , if t < −M ,

t , if t ∈ [−M,M ] ,

M , if t > M .

With all these preparations we can now summarize assumptions on the loss function
L that will be used throughout this thesis.

Assumption 2.8. The loss function L : X × Y × R → [0,∞) can be clipped at some
M > 0. Moreover, it is both bounded in the sense of L(x, y, t) ≤ 1 and locally Lipschitz
continuous, that is,

|L(x, y, t)− L(x, y, t′)| ≤ |t− t′| , (2.5)

where both inequalites are supposed to hold for all (x, y) ∈ X × Y and t, t′ ∈ [−M,M ].
Note that the former assumption can typically be enforced by scaling.

The following examples illustrate the generality of the made assumptions on L for
classification and regression problems:

Example 2.9. Let us first consider the case of binary classification, that is Y := {−1, 1}.
For this learning problem one often uses a convex surrogate for the original discontinuous
classification loss 1(−∞,0](y sign t), since the latter may lead to computational infeasible
approaches. Typical surrogates L belong to the class of margin-based losses and hence
can be clipped, if and only if the representing function ϕ has a global minimum, see [98,
Lemma 2.23]. In particular, the hinge loss, the least squares loss for classification, and the
squared hinge loss can be clipped, but the logistic loss for classification and the AdaBoost
loss cannot be clipped. On the other hand, [95] established a simple technique, which
is similar to inserting a small amount of noise into the labeling process, to construct
a clippable modification of an arbitrary convex, margin-based loss. Finally, both the
Lipschitz continuity and the boundedness of L can be easily verified for these losses,
where for the latter it may be necessary to suitably scale the loss.

Example 2.10. Bounded regression is another class of learning problems, where the
assumptions made on L are often satisfied. Indeed, if Y := [−M,M ] and L is a convex,
distance-based loss, then L can be clipped, see again [98, Lemma 2.23]. In particular, the
least squares loss and the τ -pinball loss used for quantile regression can be clipped. Again,
for both losses, the Lipschitz continuity and the boundedness can be easily enforced by a
suitable scaling of the loss.
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2.3 Learning Methods

Informally, given a data set

Dn :=
(
(X1, Y1), . . . , (Xn, Yn)

)
∈ (X × Y )n

generated from some unknown distribution P on X × Y , the goal of supervised learning
is to find a decision function fD such that RL,P (fD) is close to the minimal risk R∗L,P .
The following definition will formalize this idea, see e.g. [98, Definition 6.1].

Definition 2.11. Let X be a set and Y ⊂ R be a closed subset. A learning method L
on X × Y maps every set Dn ∈ (X × Y )n, n ≥ 1, to a function fD : X → R.

Now a natural question about learning is the consistency which basically describes
methods producing decision functions close to the optimum with high probability, pro-
vided the training set is sufficiently large, see e.g. [39, Definitions 6.1&6.2], [98, Definition
6.4].

Definition 2.12. Let L : X × Y ×R→ [0,∞) be a loss, P be a distribution on X × Y .
A learning method L is L-risk consistent for P if for all ε > 0,

RL,P (fD)
n→∞−−−→ R∗L,P + ε

holds with probability 1. Moreover, if L is L-risk consistent for all distributions P on
X × Y with R∗L,P <∞, it is called universally L-risk consistent.

In the i.i.d. case many learning methods are known to be universally consistent, see
e.g. [39] for classification methods, [49] for regression methods, and [98] for generic SVMs.
For consistent methods, it is natural to ask how fast the convergence above, is. See e.g.
[98, Lemma 6.5].

Definition 2.13. Let L : X × Y ×R→ [0,∞) be a loss function, P be a distribution on
X × Y , and L be a learning method on X × Y . Moreover, let cP > 0 be a constant and
(εn) ∈ (0, 1] be a decreasing sequence converging to 0. If, for all τ ∈ (0, 1], there exists a
constant cτ ∈ [1,∞) only depending on τ such that, for all n ≥ 1 and all τ ∈ (0, 1],

RL,P (fD) ≤ R∗L,P + cP cτεn

holds with probability P not less that 1− τ , then L learns with rate (εn) and confidence
(cτ )τ∈(0,1].

Unfortunately, by the no-free-lunch theorem of Devroye [38], we know that in most
situations uniform convergence rates are impossible, see [39, Theorem 7.2], and hence
learning rates require some assumptions on the underlying distribution P . Again, results
in this direction can be found in the above-mentioned books [39, 49, 98].

In the non-i.i.d. case, [77] showed that no uniform consistency is possible if one only
assumes that the data generating process Z is stationary and ergodic. On the other hand,
if some further assumptions of the dependence structure of Z are made, then consistency
is possible, see e.g. [102]. The most widely made assumptions in this direction are in terms
of so called α-mixing coefficients, which will be introduced in Chapter 3, but these are
by no means necessary. Indeed, certain dynamical systems which will be dealed with in
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Chapter 4 are not necessarily α-mixing. Fortunately, under some additional assumptions,
[97] has established consistency for SVMs. Finally, learning rates are possible for data
generated by some mixing process, if one makes additional assumptions on P , see again
[102] and the references therein.

In order to introduce our generic learning algorithms, we write Dn := 1
n

∑n
i=1 δ(Xi,Yi),

where δ(Xi,Yi) denotes the (random) Dirac measure at (Xi, Yi). In other words, Dn is the
empirical measure associated to the data set D := ((X1, Y1), . . . , (Xn, Yn)) ∈ (X × Y )n.
Finally, the risk of a function f : X → R with respect to this measure

RL,Dn(f) =
1

n

n∑
i=1

L(Xi, Yi, f(Xi))

is called the empirical L-risk.
Now we introduce the class of learning methods we are interested in, see also [98,

Definition 7.18].

Definition 2.14. Let L : X × Y × R → [0,∞) be a loss that can be clipped at some
M > 0, F be a hypothesis set, that is, a set of measurable functions f : X → R, with
0 ∈ F , and Υ be a regularizer on F , that is, Υ : F → [0,∞) with Υ(0) = 0. Then, for
δ ≥ 0, a learning method whose decision functions fDn,Υ ∈ F satisfy

Υ(fDn,Υ) +RL,Dn( ÛfDn,Υ) ≤ inf
f∈F

(Υ(f) +RL,Dn(f)) + δ (2.6)

for all n ≥ 1 and D ∈ (X × Y )n is called δ-approximate clipped regularized empirical risk
minimization (δ-CR-ERM) with respect to L, F , and Υ.

Moreover, in the case δ = 0, we simply speak of clipped regularized empirical risk
minimization (CR-ERM).

Note that, in (2.6), we consider the clipped function on the left-hand side and the
unclipped loss on the right-hand side. Hence, in general, CR-ERMs minimize neither
the regularized risk Υ( · ) + RL,Dn( · ) nor the regularized clipped empirical risk Υ( · ) +
RL,Dn(Û· ). Nevertheless, if we have a minimizer of the unclipped regularized risk, then it
automatically satisfies (2.6).

In the rest of the section, we briefly introduce two specific CR-ERMs, namely, ERM
and SVMs.

2.3.1 Empirical Risk Minimization (ERM)

An important class of learning methods is called empirical risk minimization (ERM)
whose decision functions fD satisfy

RL,Dn(fD) = inf
f∈F
RL,Dn(f)

for all n ≥ 1 and Dn ∈ (X × Y )n with respect to L and F , see e.g. [39, Section 4.5], [98,
Definition 6.16].

Obviously, ERM decision functions satisfy (2.6) for the regularizer Υ := 0 and δ := 0.
In other words, ERMs are CR-ERMs.

Unfortunately, note that in general such a minimizer fD does not need to exist. More-
over, it is critical to choose the size of the hypothesis set F , since on the one hand, a too
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small set F may cause “underfitting” and on the other hand, a too large set F may lead
to “overfitting”.

To avoid these unfavorable phenomena, in the 1990s, V. Vapnik and co-workers [17, 31]
have developed a new generation of learning algorithms, support vector machines (SVMs).

2.3.2 Support Vector Machines (SVMs)

Let us recall the kernel-based regularized empirical risk minimiziers, the so-called support
vector machines (SVMs), see [98] for details. To this end, let L : X×Y ×R→ [0,∞) be a
convex loss function and k be a measurable (reproducing) kernel on X with reproducing
kernel Hilbert space (RKHS) H, which are special Hilbert spaces containing functions
f : X → R and will be introduced in more detail in the Section 2.4. It is well-known, see
e.g. [98, Lemma 5.1 and Theorem 5.2], that for all λ > 0 and all observations D, there
exists exactly one element fDn,λ ∈ H such that

fDn,λ = arg min
f∈H

(
λ‖f‖2

H +RL,Dn(f)
)
. (2.7)

In particular, SVMs using the least-squares loss

L(y, t) = (y − t)2 (2.8)

are called least-squares SVMs (LS-SVMs), see [112, 108], while SVMs using the τ -pinball
loss

Lτ (y, t) := ψ(y − t) =

{
−(1− τ)(y − t), if y − t < 0

τ(y − t), if y − t ≥ 0
(2.9)

are called SVMs for quantile regression.
Note that SVM decision functions (2.7) satisfy (2.6) for the regularizer Υ := λ‖ · ‖2

H

and δ := 0. In other words, SVMs are CR-ERMs. Moreover, Assumption 2.8 implies that

λ‖fDn,λ‖2
H ≤ λ‖fDn,λ‖2

H +RL,Dn(f) = min
f∈H

(
λ‖f‖2

H +RL,Dn(f)
)
≤ RL,Dn(0) ≤ 1.

In other words, for a fix λ > 0, we have

fDn,λ ∈ λ−1/2BH , (2.10)

where BH denotes the closed unit ball of the RKHS H.

2.4 Kernels and Reproducing Kernel Hilbert Spaces

In this section, we briefly recall some basic properties of kernels and reproducing kernel
Hilbert spaces (RKHSs) presented in [98, Chapter 4]. Let us begin with the definition of
kernels, see also [98, Definition 4.1].

Definition 2.15. Let X be a non-empty set. Then a function k : X ×X → R is called
a kernel on X, if there exists a Hilbert space H and a map Φ : X → H such that, for all
x, x′ ∈ X, we have

k(x, x′) = 〈Φ(x),Φ(x′)〉 . (2.11)

Here, Φ is called a feature map and H a feature space of k.
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Note that the feature space H and the feature map Φ are, in general, not uniquely
determined. However, in the following, this problem can be resolved by finding a way of
assigning to every kernel a unique feature space and feature map. Namely, we construct
a feature space which is in some sense a canonical choice. It is called the reproducing
kernel Hilbert space (RKHS) and is defined as follows.

Definition 2.16 (cf. [98, Definition 4.18]). Let X 6= ∅ and H be a Hilbert function
space over X, i.e., a Hilbert space that consists of functions mapping from X into R.

1. A function k : X ×X → R is called a reproducing kernel of H if k( · , x) ∈ H holds
for all x ∈ X and the reproducing property

f(x) = 〈f, k( · , x)〉

is satisfied for all f ∈ H and all x ∈ X.

2. The space H is called a reproducing kernel Hilbert space (RKHS) over X if, for all
x ∈ X, the Dirac functional δx : H → R defined by

δx(f) := f(x) , f ∈ H ,

is continuous.

It is well-known, see e.g. [98, Theorems 4.20 & 4.21], that there exists a one-to-one
correspondence between kernels and RKHSs. This means that for every kernel k there
exists exactly one RKHS, such that k is a reproducing kernel of H. Conversely, for every
RKHS H there exists exactly one reproducing kernel of H which was shown to be indeed
a kernel.

To describe the approximation properties of H, we further need the approximation
error function

A(λ) := inf
f∈H

(
λ‖f‖2

H +RL,P (f)−R∗L,P
)
, λ > 0. (2.12)

Moreover, given a distribution P on X ×Y , we say that the RKHS H is (L, P )-rich if we
have

R∗L,P,H := inf
f∈H
RL,P (f) = R∗L,P , (2.13)

i.e. if the Bayes risk can be approximated by functions from H.
Note that if the kernel of H is universal in the sense of [92], i.e. X is a compact

metric space and H is dense in the space C(X) of continuous functions, the condition
(2.13) is satisfied, see e.g. [98, Corollary 5.29]. Moreover, [92] has proved (2.13) under
less restrictive assumptions on H and X and established some necessary and sufficient
conditions for (L, P )-richness on countable spaces X.

Example 2.17. The Gaussian RBF kernels kσ on X, are defined by

kσ(x, x′) = exp

(
−‖x− x

′‖2
2

σ2

)
, x, x′ ∈ X,

for some width σ ∈ (0, 1]. We write Hσ for the RKHS of kσ, which are described in some
detail in [101]. [92] has shown that the Gaussian RBF kernels on Rd are (L, P )-rich for
all distributions P on Rd× Y and all continuous, P -integrable Nemitski losses L of order
p ∈ [1,∞).
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2.5 Covering and Entropy Numbers

In this section, we recall some concepts describing the capacity of hypothesis set F in
Definition 2.14. Assume that we have a hypothesis set F consisting of bounded measurable
functions f : X → R, which is pre-compact with respect to the supremum norm ‖ · ‖∞.
Since F can be infinite, we need to recall the following concept, which will enable us to
approximate infinite F by finite subsets, see e.g. [60, 61] and [98, Definition 6.19].

Definition 2.18. Let (T, d) be a metric space and ε > 0. We call S ⊂ T an ε-net of T
if for all t ∈ T there exists an s ∈ S with d(s, t) ≤ ε. Moreover, the ε-covering number of
T is defined by

N (T, d, ε) := inf

{
n ≥ 1 : ∃s1, . . . , sn ∈ T such that T ⊂

n⋃
i=1

Bd(si, ε)

}
,

where inf ∅ :=∞ and Bd(s, ε) := {t ∈ T : d(t, s) ≤ ε} denotes the closed ball with center
s ∈ T and radius ε.

Note that our hypothesis set F is assumed to be pre-compact, and hence for all ε > 0,
the covering number N (F , ‖ · ‖∞, ε) is finite.

Besides covering numbers, we introduce the following “inverse” concept, which is also
frequently used in the literature, see also [98, Definition 6.20].

Definition 2.19. Let (T, d) be a metric space and i ≥ 1 be an integer. Then the i-th
(dyadic) entropy number of (T, d) is defined by

ei (T, d) := inf

ε > 0 : ∃t1, . . . , t2i−1 ∈ T such that T ⊂
2i−1⋃
j=1

Bd(tj, ε)

 ,

where the convention inf ∅ := ∞ is used. Moreover, let S : E → F be a bounded, linear
operator between the normed spaces E and F , then ei (S) := ei (SBE, ‖ · ‖F ).

Indeed, there exits an equivalence between covering and entropy numbers, we refer to
[98, Lemma 6.21] for the proof.

Lemma 2.20. Let (T, d) be a metric space and a, q > 0 be constants such that

en (T, d) ≤ an−1/q, n ≥ 1.

Then, for all ε > 0, we have

lnN (T, d, ε) ≤ ln(4) ·
(a
ε

)q
.

In the following, for an RKHS H, we assume that there exist constants a > 0 and
p > 0 such that

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p, ε > 0. (2.14)

The following example shows that the covering numbers of Gaussian RKHSs are of the
form (2.14), for more examples and discussions we refer to [98, Section 6.4].
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Example 2.21. Let Hσ be the Gaussian RKHS and PX be a distribution on X. By [98,
Theorem 7.34] we know that, for all ε > 0 and 0 < p < 1, there exists a constant cε,p ≥ 0
such that

ei (id : Hσ → L2 (PX)) ≤ cε,pσ
− (1−p)(1+ε)d

2p i−
1
2p

for all i ≥ 1. Lemma 2.20 yields then

lnN (BHσ , ‖ · ‖∞, ε) ≤ ap,ζσ
−(1−p)(1+ζ)dε−2p, ε > 0, (2.15)

for some constants ap,ζ > 0 and p ∈ (0, 1).

2.6 An Oracle Inequality for Generic Learning Algo-

rithms

In this section, we present the key result of this thesis, an oracle inequality for a generic
class of learning algorithms including ERM and SVMs based on a generic form of a
Bernstein inequality.

2.6.1 Bernstein’s Inequality of Generic Form

A generic form of Bernstein’s inequality for stationary processes can be stated as follows:

Assumption 2.22. Let Z := (Zi)i≥1 be an X × Y -valued, stationary stochastic process
and P := µZ0. Furthermore, let h : X × Y → R be a bounded measurable function
for which there exist constants B > 0 and σ ≥ 0 such that EPh = 0, EPh

2 ≤ σ2, and
‖h‖∞ ≤ B. Assume that, there exists a constant η ∈ [0, 1] such that for all ε > 0 and all
n ≥ n0 with n0 independent of ε, we have

µ

({
ω ∈ Ω :

1

n

n∑
i=1

h(Zi(ω)) ≥ ε

})

≤ C exp

(
− ε2n

Cσ(n)σ2 + Cη(n)σ2η + CE(n)B2/n+ CB(n)εB

)
, (2.16)

where C is a constant independent of n, Cη(n) is a constant depending on η, and Cσ(n) ≥
0, Cη(n) ≥ 0, CE(n) ≥ 0, and CB(n) ≥ 1 are some constants that may depend on n.

For later use, we need to reformulate (2.16). Setting

τ =
ε2n

Cσ(n)σ2 + Cη(n)σ2η + CE(n)B2/n+ CB(n)εB
,

with some simple transformations we obtain

µ

({
ω ∈ Ω :

1

n

n∑
i=1

h(Zi(ω)) ≥
√
τCσ(n)σ2

n
+

√
τCη(n)σ2η

n

+

√
τCE(n)B

n
+
τCB(n)B

n

})
≤ Ce−τ . (2.17)
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for all τ > 0 and n ≥ n0.
Clearly, the classical Bernstein’s inequality satisfies (2.16) with n0 = 1, C = 1, Cσ(n) =

2, Cη(n) = 0, η ∈ [0, 1], CE(n) = 0, and CB(n) = 2/3. Moreover, in the literature, there
are actually many Bernstein-type inequalities for non-i.i.d. processes of the generic form
(2.17), we refer to Section 3.3 and Section 4.2 for some examples.

2.6.2 An Oracle Inequality

To present the following oracle inequality for learning from stationary stochastic processes
for which the generic Bernstein-type inequality (2.16) holds, we need to introduce a few
more notations. Let F be a hypothesis set in the sense of Definition 2.14. For

r∗ := inf
f∈F

Υ(f) +RL,P ( Ûf )−R∗L,P (2.18)

and r > r∗, we write

Fr :=
{
f ∈ F : Υ(f) +RL,P ( Ûf )−R∗L,P ≤ r

}
. (2.19)

Then we have r∗ ≤ 1, since L(x, y, 0) ≤ 1, 0 ∈ F , and Υ(0) = 0. Furthermore, we assume
that there exists a function ϕ : (0,∞)→ (0,∞) that satisfies

lnN (Fr, ‖ · ‖∞, ε) ≤ ϕ(ε)rp (2.20)

for all ε > 0, r > 0 and a suitable constant p ∈ (0, 1]. Note that there are actually many
hypothesis sets satisfying Assumption (2.20), see Section 3.4 for some examples.

Theorem 2.23. Suppose that Assumption 2.22 holds with the constants n0, η ∈ [0, 1],
C, Cσ(n) ≥ 0, Cη(n) ≥ 0, CE(n) ≥ 0, and CB(n) ≥ 1. Furthermore, let L be a loss
satisfying Assumption 2.8. Assume that there exists a Bayes decision function f ∗L,P and
constants ϑ ∈ [0, 1] and V ≥ 1 such that

EP (L ◦ Ûf − L ◦ f ∗L,P )2 ≤ V ·
(
EP (L ◦ Ûf − L ◦ f ∗L,P )

)ϑ
, f ∈ F , (2.21)

where F is a hypothesis set with 0 ∈ F . We define r∗ and Fr by (2.18) and (2.19),
respectively and assume that (2.20) is satisfied. Finally let Υ : F → [0,∞) be a regularizer
with Υ(0) = 0, f0 ∈ F be a fixed function, and B0 ≥ 1 be a constant such that ‖L◦f0‖∞ ≤
B0. Then, for all fixed ε > 0, δ ≥ 0, τ ≥ 1, n ≥ n0, and r ∈ (0, 1] satisfying

r ≥max

{(
CV (n)(τ + ϕ(ε/2)2prp)

n

) 1
2−ϑη

,

(
τCη(n)B0

n

) 1
2−η

,
CΣ(n)B0τCB(n)

n
, r∗

}
,

(2.22)

every learning method defined by (2.6) satisfies with probability µ not less than 1−8Ce−τ :

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗L,P < 2Υ(f0) + 4RL,P (f0)− 4R∗L,P + 9r + 5ε+ 2δ.

(2.23)

Here the constants CV (n) and CΣ(n) are defined by

CV (n) := 64(4(Cσ(n) + Cη(n))V + (CE(n) + CB(n))), (2.24)

CΣ(n) := 16(Cσ(n) +
√
CE(n) + 1). (2.25)
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Remark 2.24. Before we illustrate this theorem in the next section with the help of
a few examples, let us briefly discuss the variance bound (2.21). For example, if Y =
[−M,M ] and L is the least squares loss, then it is well-known that (2.21) is satisfied for
V := 16M2 and ϑ = 1, see e.g. [98, Example 7.3]. Moreover, under some assumptions on
the distribution P , [100] established a variance bound of the form (2.21) for the so-called
pinball loss used for quantile regression. In addition, for the hinge loss, (2.21) is satisfied
for ϑ := q/(q + 1), if Tsybakov’s noise assumption [110, Proposition 1] holds for q, see
[98, Theorem 8.24]. Finally, based on [16], [95] established a variance bound with ϑ = 1
for the earlier mentioned clippable modifications of strictly convex, twice continuously
differentiable margin-based loss functions.

Remark 2.25. One might wonder, why the constant B0 is necessary in Theorem 2.23,
since apparently it only adds further complexity. However, a closer look reveals that the
assumed boundedness of L only guarantees ‖L ◦ Ûf‖∞ ≤ 1, while B0 bounds the function

L ◦ f0 for an unclipped f0 ∈ F . Since we do not assume that all f ∈ F satisfy Ûf = f ,
we believe that in general B0 is necessary. We refer to Examples 3.15, 3.16 and 3.17 for
situations, where B0 is significantly larger than 1.

Remark 2.26. Modulo the parameter η, our oracle inequality match those in the i.i.d. case,
if one replaces the number of observations with the “effective number of observations”

neff := min

{
n

CV (n)
,

n

CΣ(n)CB(n)

}
. (2.26)

For the proof of Theorem 2.23, we need the so-called peeling method (see for example
[111, Chapter 5.3]). To this end, let 0 < r∗ < R < ∞ and Γ : G → [r∗, R) be some
function on a hypothesis function set G, r∗ = m0 < m1 < · · · < mK+1 < mK+2 = R be a
strictly increasing sequence. Then G can be “peeled off” into

G =
K+2⋃
k=1

Gk, (2.27)

where Gk are the disjoint “spheres”

Gk = {g ∈ G : mk−1 ≤ Γ(g) < mk}, k = 1, . . . , K + 2.

Now we can formulate the peeling as following:

Theorem 2.27. Let (Ω,A, µ) be a probability space, Z = (Zg)g∈G be a stochastic process
indexed by G, we have for all ε ≥ 0 and r > 0,

µ

(
sup
g∈G

|Zg|
Γ(g) + r

> ε

)
≤

K+2∑
k=1

µ

(
sup

g∈G,Γ(g)<mk

|Zg| > (mk−1 + r)ε

)
. (2.28)

Proof. With the peeling (2.27) we obtain{
sup
g∈G

|Zg|
Γ(g) + r

> ε

}
=

K+2⋃
k=1

{
sup
g∈Gk

|Zg|
Γ(g) + r

> ε

}
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for all ε ≥ 0 and r > 0. The subadditivity of the measure µ then implies

µ

(
sup
g∈G

|Zg|
Γ(g) + r

> ε

)
≤

K+2∑
k=1

µ

(
sup
g∈Gk

|Zg|
Γ(g) + r

> ε

)

≤
K+2∑
k=1

µ

(
sup

g∈G,Γ(g)<mk

|Zg| > ε(mk−1 + r)

)
. �

In addition, we will need the following simple and well-known lemma (see e.g. [98,
Lemma 7.1]):

Lemma 2.28. For q ∈ (1,∞), define q′ ∈ (1,∞) by 1/q+1/q′ = 1. Then, for all a, b ≥ 0,
we have (qa)2/q(q′b)2/q′ ≤ (a+ b)2 and ab ≤ aq/q + bq

′
/q′.

Since the proof of Theorem 2.23 is rather complicated, we first describe its main steps
briefly: First we decompose the regularized excess risk into an approximation error term
and two stochstic error terms. The approximation error and the first stochastic error term
can be estimated by standard techniques. Similarly, the first step in the estimation of
the second error term is a rather standard quotient approach, see e.g. [98, Theorem 7.20],
which allows for localization with respect to both the variance and the regularization. Due
to the absence of tools from empirical process theory, however, the remaining estimation
steps become more involved. To be more precise, we split the “unit ball” of the hypothesis
space F into disjoint “spheres”. For each sphere, we then use localized covering numbers
and Bernstein’s inequality from Assumption 2.22, and the resulting estimates are then
combined using the peeling method. This yields a quasi geometric series with rate smaller
than 1, if the radius of the innermost ball is sufficiently large. As a result, the estimated
error probability on the whole “unit ball” nearly equals the estimated error probability of
the innermost “ball”, which unsurprisingly leads to a significant improvement compared
to [99].

Proof (of Theorem 2.23). Main Decomposition. For f : X → R we define hf :=
L ◦ f − L ◦ f ∗L,P . By the definition of fDn,Υ, we then have

Υ(fDn,Υ) + EDnhÛfDn,Υ ≤ Υ(f0) + EDnhf0 + δ,

and consequently we obtain

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗L,P
= Υ(fDn,Υ) + EPhÛfDn,Υ
≤ Υ(f0) + EDnhf0 − EDnhÛfDn,Υ + EPhÛfDn,Υ + δ

= (Υ(f0) + EPhf0) + (EDnhf0 − EPhf0) + (EPhÛfDn,Υ − EDnhÛfDn,Υ) + δ. (2.29)

Estimating the First Stochastic Term. Let us first bound the term EDnhf0 −
EPhf0 . To this end, we further split this difference into

EDnhf0 − EPhf0 =
(
EDn(hf0 − hÛf0

)− EP (hf0 − hÛf0
)
)

+ (EDnhÛf0
− EPhÛf0

). (2.30)
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Now L ◦ f0 −L ◦ Ûf0 ≥ 0 implies hf0 − hÛf0
= L ◦ f0 −L ◦ Ûf0 ∈ [0, B0], and hence we obtain

EP
(

(hf0 − hÛf0
)− EP (hf0 − hÛf0

)
)2

≤ EP (hf0 − hÛf0
)2 ≤ B0EP (hf0 − hÛf0

).

Inequality (2.17) applied to h := (hf0 − hÛf0
)− EP (hf0 − hÛf0

) thus shows that

EDn(hf0 − hÛf0
)− EP (hf0 − hÛf0

)

≤

√
τCσ(n)B0EP (hf0 − hÛf0

)

n
+

√√√√τCη(n)
(
B0EP (hf0 − hÛf0

)
)η

n

+

√
CE(n)τB0

n
+
τCB(n)B0

n

holds with probability µ not less than 1− Ce−τ . Moreover, using
√
ab ≤ a

2
+ b

2
, we find√

n−1τCσ(n)B0EP (hf0 − hÛf0
) ≤ EP (hf0 − hÛf0

)/2 + n−1Cσ(n)B0τ/2.

In addition, since B0 ≥ 1 and η ∈ [0, 1], the second inequality in Lemma 2.28 implies for
q := 2

2−η , q′ := 2
η
, a := ( 1

η
)−

η
2 (n−1τCη(n)B0)1/2, and b := ( 1

η
EP (hf0 − hÛf0

))
η
2 , that√√√√τCη(n)

(
B0EP (hf0 − hÛf0

)
)η

n

=
(
n−1τCη(n)B0

)1/2
(
EP (hf0 − hÛf0

)
) η

2

≤
(

2

2− η

)−1(
1

η

)− η
2−η

(n−1τCη(n)B0)
1

2−η + EP (hf0 − hÛf0
)/2

≤
(
τCη(n)B0

n

) 1
2−η

+ EP (hf0 − hÛf0
)/2.

Consequently we have with probability µ not less than 1− Ce−τ that

EDn(hf0 − hÛf0
)− EP (hf0 − hÛf0

)

≤ EP (hf0 − hÛf0
) +

Cσ(n)B0τ

2n
+

(
τCη(n)B0

n

) 1
2−η

+

√
CE(n)τB0

n
+
B0τCB(n)

n
.

(2.31)

In order to bound the remaining term in (2.30), that is EDnhÛf0
− EPhÛf0

, we first observe

that (2.5) implies ‖hÛf0
‖∞ ≤ 1, and hence we have ‖hÛf0

− EPhÛf0
‖∞ ≤ 2. Moreover, (2.21)

yields

EP (hÛf0
− EPhÛf0

)2 ≤ EPh2Ûf0
≤ V (EPhÛf0

)ϑ.

Again, inequality (2.17) applied to h := hÛf0
− EPhÛf0

thus shows that

EDn(hÛf0
− EPhÛf0

) ≤

√
τCσ(n)V (EPhÛf0

)ϑ

n
+

√√√√τCη(n)
(
V (EPhÛf0

)ϑ
)η

n
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+
2
√
CE(n)τ

n
+

2τCB(n)

n

holds with probability µ not less than 1 − Ce−τ . If ϑ ∈ (0, 1], the second inequal-
ity in Lemma 2.28 implies for q := 2

2−ϑ , q′ := 2
ϑ
, a := (n−1Cσ(n)ϑϑV τ)1/2, and b :=

(ϑ−1EPhÛf0
)ϑ/2, that√

Cσ(n)V τ(EPhÛf0
)ϑ

n
≤
(

1− ϑ

2

)(
Cσ(n)ϑϑV τ

n

) 1
2−ϑ

+ EPhÛf0
/2

≤
(
Cσ(n)V τ

n

) 1
2−ϑ

+ EPhÛf0
/2.

In addition, since V ≥ 1 and η ∈ [0, 1], the second inequality in Lemma 2.28 implies for

q := 2
2−ϑη , q′ := 2

ϑη
, a := ( 1

ϑη
)−

ϑη
2 (n−1τCη(n)V )1/2, and b := ( 1

ϑη
EPhÛf0

)
ϑη
2 , that√√√√τCη(n)

(
V (EPhÛf0

)ϑ
)η

n

≤
(
n−1τCη(n)V

)1/2
(
EPhÛf0

)ϑη
2

≤
(

2

2− ϑη

)−1(
2

ϑη

)− ϑη
2−ϑη

(n−1τCη(n)V )
1

2−ϑη + EPhÛf0
/2

≤
(
τCη(n)V

n

) 1
2−ϑη

+ EPhÛf0
/2.

Since EPhÛf0
≥ 0, these inequalities also holds for ϑ = 0, and consequently we have

EDnhÛf0
− EPhÛf0

< EPhÛf0
+

(
Cσ(n)V τ

n

) 1
2−ϑ

+

(
τCη(n)V

n

) 1
2−ϑη

+
2
√
CE(n)τ

n
+

2τCB(n)

n
(2.32)

with probability µ not less than 1 − Ce−τ . By combining this estimate with (2.31) and
(2.30), we now obtain that with probability µ not less than 1− 2Ce−τ we have

EDnhf0 − EPhf0

< EPhf0 +

(
Cσ(n)V τ

n

) 1
2−ϑ

+

(
τCη(n)V

n

) 1
2−ϑη

+
2
√
CE(n)τ

n
+

2τCB(n)

n

+
Cσ(n)B0τ

2n
+

(
τCη(n)B0

n

) 1
2−η

+

√
CE(n)τB0

n
+
B0τCB(n)

n

≤ EPhf0 +

(
Cσ(n)V τ

n

) 1
2−ϑ

+

(
τCη(n)V

n

) 1
2−ϑη

+

(
τCη(n)B0

n

) 1
2−η

+
3(Cσ(n) +

√
CE(n) + 1)B0τCB(n)

n
, (2.33)
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since B0, τ ≥ 1, i.e., we have established a bound on the second term in (2.29).
Estimating the Second Stochastic Term. For the third term in (2.29) let us

first consider the case n < CV (n)(τ + ϕ(ε/2)2prp) with CV (n) defined as in (2.24).
Combining (2.33) with (2.29) and using 1 ≤ B0, 1 ≤ V , CΣ(n) as in (2.25), and
EPhÛfDn,Υ − EDnhÛfDn,Υ ≤ 2, then we find

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗L,P

≤ Υ(f0) + 2EPhf0 +

(
Cσ(n)V τ

n

) 1
2−ϑ

+

(
τCη(n)V

n

) 1
2−ϑη

+

(
τCη(n)B0

n

) 1
2−η

+
3(Cσ(n) +

√
CE(n) + 1)B0τCB(n)

n

+ (EPhÛfDn,Υ − EDnhÛfDn,Υ) + δ

≤ Υ(f0) + 2EPhf0 +

(
Cσ(n)V τ

n

) 1
2−ϑ

+

(
CV (τ + ϕ(ε/2)2prp)

n

) 1
2−ϑη

+

(
τCη(n)B0

n

) 1
2−η

+
3(Cσ(n) +

√
CE(n) + 1)B0τCB(n)

n

+ 2

(
CV (τ + ϕ(ε/2)2prp)

n

) 1
2−ϑη

+ δ

≤ Υ(f0) + 2EPhf0 +

(
Cσ(n)V τ

n

) 1
2−ϑ

+ 3

(
CV (τ + ϕ(ε/2)2prp)

n

) 1
2−ϑη

+

(
τCη(n)B0

n

) 1
2−η

+
3(Cσ(n) +

√
CE(n) + 1)B0τCB(n)

n
+ δ

with probability µ not less than 1 − 2Ce−τ . It thus remains to consider the case n ≥
CV (τ + ϕ(ε/2)2prp).

Introduction of the Quotients. To establish a non-trivial bound on the term
EPhÛfD − EDnhÛfD in (2.29), we define functions

gf,r :=
EPhÛf − hÛf

Υ(f) + EPhÛf + r
, f ∈ F , r > r∗.

For f ∈ F , we have ‖EPhÛf − hÛf‖∞ ≤ 2. Moreover, for f ∈ Fr, the variance bound (2.21)

implies

EP (hÛf − EPhÛf )2 ≤ EPh2Ûf ≤ V (EPhÛf )ϑ ≤ V rϑ. (2.34)

Peeling. For a fixed r ∈ (r∗, 1], let K be the largest integer satisfying 2Kr ≤ 1. Then
we can get the following disjoint partition of the function set F1:

F1 ⊂ Fr ∪
K+1⋃
k=1

(F2kr\F2k−1r) . (2.35)

We further write Cε,r,0 for a minimal ε-net of Fr and Cε,r,k for minimal ε-nets of F2kr\F2k−1r,

1 ≤ k ≤ K + 1, respectively. Then the union of these nets
⋃K+1
k=0 Cε,r,k =: Cε,1 is an ε-net



32 An Oracle Inequality for Generic Learning Algorithms

of the set F1. Moreover, we define

C̃ε,r,k :=
k⋃
l=0

Cε,r,l, 0 ≤ k ≤ K + 1, (2.36)

which are ε-nets of F2kr with C̃ε,r,k ⊂ C̃ε,r,k+1 for all 0 ≤ k ≤ K, and the net C̃ε,r,K+1

coincide with Cε,1. For A ⊂ B an elementary calculation shows that

N (A, ‖ · ‖∞, ε) ≤ N (B, ‖ · ‖∞, ε/2). (2.37)

By using (2.37) for F2kr\F2k−1r ⊂ F2kr we can estimate the cardinality of C̃ε,r,k by

|C̃ε,r,k| =

∣∣∣∣∣
k⋃
l=0

Cε,r,l

∣∣∣∣∣
≤

k∑
l=0

|Cε,r,l|

=
k∑
l=0

N (F2kr\F2k−1r, ‖ · ‖∞, ε)

≤
k∑
l=0

N (F2kr, ‖ · ‖∞, ε/2)

≤
k∑
l=0

exp
(
ϕ(ε/2)(2lr)p

)
≤ (k + 1) exp

(
ϕ(ε/2)2kprp

)
, 0 ≤ k ≤ K + 1. (2.38)

Peeling by Theorem 5.2 with Zf := EDn(EPhÛf − hÛf ), Γ(f) := Υ(f) + EPhÛf and

mk :=


r∗ for k = 0,

2k−1r for 1 ≤ k ≤ K,

1 for k = K + 1

by using ε = 1
4
> 0 imply

µ

(
sup
f∈Cε,1

EDngf,r >
1

4

)
= µ

(
sup
f∈Cε,1

EDn(EPhÛf − hÛf )
Υ(f) + EPhÛf + r

>
1

4

)

≤
K+2∑
k=1

µ

(
sup

f∈Cε,r,k
EDn(EPhÛf − hÛf ) > 1

4
(2k−1r + r)

)

≤ µ

(
sup

f∈Cε,r,0
EDn(EPhÛf − hÛf ) > 1

4
(r∗ + r)

)

+
K+1∑
k=1

µ

(
sup

f∈Cε,r,k
EDn(EPhÛf − hÛf ) > 1

4
(2k−1r + r)

)
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≤ µ

(
sup

f∈C̃ε,r,1
EDn(EPhÛf − hÛf ) > 1

4
r

)

+
K+1∑
k=1

µ

(
sup

f∈C̃ε,r,k
EDn(EPhÛf − hÛf ) > 1

4
2k−1r

)

≤ 2
K+1∑
k=1

µ

(
sup

f∈C̃ε,r,k
EDn(EPhÛf − hÛf ) > 2k−3r

)
. (2.39)

Estimating the Error Probabilities on the “Spheres”. Now we estimate all the
error probabilities in (2.39). By using the inequality (2.16) with (2.34) and the union
bound, we obtain

µ

(
sup

f∈C̃ε,r,k
EDn(EPhÛf − hÛf ) > 2k−3r

)

≤ C|C̃ε,r,k| exp

(
− (2k−3r)2n

Cσ(n)V (2kr)ϑ + Cη(n) (V (2kr)ϑ)η + 4CE(n)/n+ 2CB(n)(2k−3r)

)
.

Our assumption 2kr ≤ 1, 0 ≤ k ≤ K together with the last assumption in (2.22), namely,

r ≥
16(Cσ(n) +

√
CE(n) + 1)B0τCB(n)

n
≥ 1

n
for n ≥ n0,

implies that

Cσ(n)V (2kr)ϑ + Cη(n)
(
V (2kr)ϑ

)η
+ 4CE(n)/n+ 2CB(n)(2k−3r)

≤ Cσ(n)V (2kr)ϑη + Cη(n)V (2kr)ϑη + 2CE(n)(2k−3r) + 2CB(n)(2k−3r)

= (Cσ(n) + Cη(n))V (2kr)ϑη + 2(CE(n) + CB(n))(2k−3r),

since ϑ ∈ [0, 1]. With the estimate of the covering numbers (2.38) we obtain

µ

(
sup

f∈C̃ε,r,k
EDn(EPhÛf − hÛf ) > 2k−3r

)

≤ C|C̃ε,r,k| exp

(
− (2k−3r)2n

(Cσ(n) + Cη(n))V (2kr)ϑη + 2(CE(n) + CB(n))(2k−3r)

)
≤ C · (k + 1) exp

(
ϕ(ε/2)2kprp

)
·

· exp

(
− (2k−1r)2n

32(Cσ(n) + Cη(n))V (2k−1r)ϑη + 8(CE(n) + CB(n))(2k−1r)

)
.

For k ≥ 1, we denote the right-hand side of this estimate by pk(r), that is

pk(r) := C · (k + 1) exp
(
ϕ(ε/2)2kprp

)
·

· exp

(
− (2k−1r)2n

32(Cσ(n) + Cη(n))V (2k−1r)ϑη + 8(CE(n) + CB(n))(2k−1r)

)
.

Then we have

qk(r) :=
pk+1(r)

pk(r)
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≤ k + 2

k + 1
· exp

(
ϕ(ε/2)(2k+1r)p − ϕ(ε/2)(2kr)p

)
·

· exp

(
− 22(2k−1r)2n

32(Cσ(n) + Cη(n))V · 2(2k−1r)ϑ + 8(CE(n) + CB(n)) · 2(2k−1r)

+
(2k−1r)2n

32(Cσ(n) + Cη(n))V (2k−1r)ϑη + 8(CE(n) + CB(n))(2k−1r)

)
≤ 2 exp

(
ϕ(ε/2)2kp+1rp

)
·

· exp

(
− (2k−1r)2n

32(Cσ(n) + Cη(n))V (2k−1r)ϑη + 8(CE(n) + CB(n))(2k−1r)

)
,

and our assumption 2kr ≤ 1, 0 ≤ k ≤ K implies

qk(r) ≤ 2 exp
(
ϕ(ε/2)2kp+1rp

)
·

· exp

(
− (2k−1r)2n

32(Cσ(n) + Cη(n))V (2k−1r)ϑη + 8(CE(n) + CB(n))(2k−1r)

)
≤ 2 exp

(
2(k−1)p · 4rpϕ(ε/2)

− 2(k−1)(2−ϑη) · r2−ϑηn

32(Cσ(n) + Cη(n))V + 8(CE(n) + CB(n))

)
.

Since p ∈ (0, 1], k ≥ 1 and ϑ, η ∈ [0, 1], we have

2(k−1)p ≤ 2(k−1)(2−ϑη).

The second assumption in (2.22), namely,

r ≥
(

64(4(Cσ(n) + Cη(n))V + (CE(n) + CB(n)))(τ + ϕ(ε/2)2prp)

n

) 1
2−ϑη

implies that

r ≥
(

64(4(Cσ(n) + Cη(n))V + (CE(n) + CB(n)))ϕ(ε/2)rp

n

) 1
2−ϑη

or equivalently that

4rpϕ(ε/2) ≤ 1

2
· r2−ϑηn

32(Cσ(n) + Cη(n))V + 8(CE(n) + CB(n))
,

thus, using 2(k−1)(2−ϑη) ≥ 1, we find

qk(r) ≤ 2 exp

(
−1

2
· r2−ϑηn

32(Cσ(n) + Cη(n))V + 8(CE(n) + CB(n))

)
.

Moreover, since τ ≥ 1, the second assumption in (2.22) implies also

r ≥
(

64(4(Cσ(n) + Cη(n))V + (CE(n) + CB(n)))

n

) 1
2−ϑη
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or equivalently that

1

2
· r2−ϑηn

32(Cσ(n) + Cη(n))V + 8(CE(n) + CB(n))
≥ 4,

and hence qk(r) ≤ 2e−4, that is, pk+1(r) ≤ 2e−4pk(r) for all k ≥ 1.
Summing all the Error Probabilities. From the discussion above we have

µ

(
sup
f∈Cε,1

EDngf,r >
1

4

)

≤ 2
K+1∑
k=1

pk(r)

≤ 2 · p1(r) ·
K∑
k=0

(2e−4)k

≤ 2

1− 2e−4
· p1(r)

≤ 3p1(r)

= 6C exp (ϕ(ε/2)2prp) · exp

(
− r2n

32(Cσ(n) + Cη(n))V rϑη + 8(CE(n) + CB(n))r

)
≤ 6C exp (ϕ(ε/2)2prp) · exp

(
− r2n

32(Cσ(n) + Cη(n))V rϑη + 8(CE(n) + CB(n))rϑη

)
≤ 6C exp (ϕ(ε/2)2prp) · exp

(
− r2−ϑηn

32(Cσ(n) + Cη(n))V + 8(CE(n) + CB(n))

)
.

Then once again the second assumption in (2.22) gives

r ≥
(

(32(Cσ(n) + Cη(n))V + 8(CE(n) + CB(n)))(τ + ϕ(ε/2)2prp)

n

) 1
2−ϑη

and a simple transformation thus yields

µ

(
Dn ∈ (X × Y )n : sup

f∈Cε,1
EDngf,r ≤

1

4

)
≥ 1− 6Ce−τ .

Consequently we see that with probability µ not less than 1− 6Ce−τ we have

EPhÛf − EDnhÛf ≤ 1

4

(
Υ(f) + EPhÛf + r

)
(2.40)

for all f ∈ Cε,1. Since r ∈ (0, 1], we have fDn,Υ ∈ F1, i.e. either fDn,Υ ∈ Fr, or
there exists an integer k ≤ K + 1 such that fDn,Υ ∈ F2kr\F2k−1r. Thus there exists an
fDn ∈ Cε,r,0 ⊂ Fr or fDn ∈ Cε,r,k ⊂ F2kr\F2k−1r with ‖fDn,Υ−fDn‖∞ ≤ ε. By the assumed
Lipschitz continuity of the clipped L the latter implies

|hÛfDn (x, y)− hÛfDn,Υ(x, y)| ≤ | ÛfDn(x)− ÛfDn,Υ(x)| ≤ |fDn(x)− fDn,Υ(x)| ≤ ε (2.41)
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for all (x, y) ∈ X × Y . For fDn,Υ, fDn ∈ Fr we obviously have

Υ(fDn) + EPhÛfDn ≤ r

and for the other cases fDn,Υ, fDn ∈ F2kr\F2k−1r we obtain

Υ(fDn) + EPhÛfDn ≤ 2kr = 2 · 2k−1r ≤ 2
(

Υ(fDn,Υ) + EPhÛfDn,Υ) ,
consequently, we always have

Υ(fDn) + EPhÛfDn ≤ 2
(

Υ(fDn,Υ) + EPhÛfDn,Υ)+ r. (2.42)

Combining (2.41) with (2.40) and (2.42), we obtain

EPhÛfDn,Υ − EDnhÛfDn,Υ ≤ 1

2

(
Υ(fDn,Υ) + EPhÛfDn,Υ + ε+ r

)
+ 2ε

with probability µ not less than 1− 6Ce−τ . By combining this estimate with (2.29) and
(2.33), we then obtain that

Υ(fDn,Υ) + EPhÛfDn,Υ ≤ Υ(f0) + 2EPhf0 +

(
Cσ(n)V τ

n

) 1
2−ϑ

+

(
τCη(n)V

n

) 1
2−ϑη

+

(
τCη(n)B0

n

) 1
2−η

+
3(Cσ(n) +

√
CE(n) + 1)B0τCB(n)

n
+ δ

+
Υ(fDn,Υ) + EPhÛfDn,Υ

2
+

5

2
ε+

1

2
r

holds with probability µ not less than 1− 8Ce−τ . From the assumptions in (2.22) follows
that

Υ(fDn,Υ) + EPhÛfDn,Υ ≤ Υ(f0) + 2EPhf0 + r + r + r + r + δ

+
Υ(fDn,Υ) + EPhÛfDn,Υ

2
+

5

2
ε+

1

2
r

holds with probability µ not less than 1− 8Ce−τ . Consequently, we have

Υ(fDn,Υ) + EPhÛfDn,Υ ≤ 2Υ(f0) + 4EPhf0 + 9r + 5ε+ 2δ,

i.e. we have shown the assertion. �
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3. Learning from α-mixing Processes

In this chapter, we study the learning performance from geometrically α-mixing processes.
More precisely, in Section 3.1, we recall some of the classical mixing concepts including
α-, β-, and φ-mixing coefficients and give some concrete examples of α-mixing processes.
Then, in Section 3.3, with the help of some covariance inequalities from Section 3.2,
we show that some existing Bernstein-type inequalities for α-mixing processes in the
literature are of the generic form. In the last section, we apply the oracle inequality
established in Section 2.6 to derive learning rates for some α-mixing processes and several
learning methods such as ERM, LS-SVMs using given generic kernels, and SVMs using
the Gaussian RBF kernels for both least squares and quantile regression.

3.1 α-mixing Processes

Let (X,X ) be a measurable space and Y ⊂ R be closed. Assume that we also have a
measurable space (Z := X × Y,B) and a measurable map χ : Ω→ Z. Then σ(χ) denotes
the smallest σ-algebra on Ω for which χ is measurable. Moreover, µχ denotes the χ-image
measure of µ, which is defined by µχ(B) := µ(χ−1(B)), B ∈ B.

Furthermore, let (Ω,A, µ) be a probability space, Z := (Zi)i≥1 be an Z := X ×
Y -valued stochastic process on (Ω,A, µ), Ai1 and A∞i+n be the σ-algebras generated by
(Z1, . . . , Zi) and (Zi+n, Zi+n+1, . . .), respectively. Z is said to be stationary, if the (X×Y )n-
valued random variables (Zi1 , . . . , Zin) and (Zi1+i, . . . , Zin+i) have the same distribution
for all n, i, i1, . . . , in ≥ 1. In this case, we always write P := µZ0 .

To estimate the correlation between the σ-algebras Ai1 and A∞i+n, various mixing co-
efficients have been proposed and used in the literature:

α(Z, n) := sup
A∈Ai1,B∈A∞i+n

|µ(A ∩B)− µ(A)µ(B)|, (3.1)

β(Z, n) :=
1

2
sup
K,J≥1,

(Ak)1≤k≤K∈A
i
1,

(Bj)1≤j≤J∈A
∞
i+n

K∑
k=1

J∑
j=1

|µ(Ak ∩Bj)− µ(Ak)µ(Bj)|, (3.2)

φ(Z, n) := sup
A∈Ai1,B∈A∞i+n

|µ(B)− µ(B|A)|, (3.3)

φrev(Z, n) := sup
A∈A∞i+n,B∈Ai1

|µ(B)− µ(B|A)|. (3.4)

In the definition of β-coefficient, the supremum is taken over all measurable partitions
(Ak)1≤k≤K , (Bj)1≤j≤J of Ω.

Recall that the α-coefficient (3.1) was introduced by Rosenblatt [85], while the β-
mixing coefficient (3.2) was introduced by [114, 115], and was attributed there to Kol-
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φ-mixing β-mixing α-mixing

Figure 3.1: Relationship between α-, β-, and φ-mixing processes

mogorov. Moreover, Ibragimov [54] introduced the φ-coefficient, see also [56]. An exten-
sive and thorough account on mixing concepts including β- and (time-reversed) φ-mixing
is also provided by [21, 22, 23].

Definition 3.1. A stochastic process Z = (Zi)i≥1 is called α-mixing, if the α-mixing
coefficients satisfy

lim
n→∞

α(Z, n) = 0.

Similarly one can define β- and (time-reversed) φ-mixing sequences. Moreover, Z is called
geometrically α-mixing, if we have

α(Z, n) ≤ c exp(−bnγ), n ≥ 1, (3.5)

for some constants b > 0, c ≥ 0, and γ > 0.

Note the asymmetry in the definition of (3.3) and (3.4). There exist stationary,
countable-state Markov chains that are φ-mixing but not time-reversed φ-mixing, see
e.g. [83] or [86, pp. 213-214].

It is well-known, see e.g. [21, p. 186], that these coefficients satisfy

2α(Z, n) ≤ β(Z, n) ≤ φ(rev)(Z, n). (3.6)

By (3.6) we know that the β- and (time-reversed) φ-mixing sequences are also α-mixing,
see Figure 3.1. Therefore, in the following sections, we will only consider the α-mixing
processes.

Now let us briefly present some connections between mixing conditions and specific
processes.

Example 3.2 (i.i.d. processes). As a trivial example, i.i.d. processes satisfy (3.5) with
γ =∞.

Example 3.3 (Markov chains). Suppose Z = (Zi)i≥1 is a stationary Markov chain.
Rosenblatt [86] proves that that Z is α-mixing if and only if it is uniformly pure non-
deterministic and gives equivalent conditions for α-mixing in terms of the transition opera-
tor and the invariant probability measure. Moreover, Athreya and Pantula [6] established
the α-mixing property for a wide class of Harris-recurrent Markov chains.
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In the case where Z has countable (but not necessarily finite) state space and is
irreducible and aperiodic, it satisfies β-mixing, but the mixing rate can be arbitrarily
slow, see e.g. [59]. In the case where Z has real (but not necessarily countable) state
space,

(i) Harris recurrence and aperiodicity together are equivalent to β-mixing, see [81, 80,
72], and [22, Theorem 21.6],

(ii) the geometric ergodicity condition (3.5) in [24] is equivalent to β-mixing with at
least exponentially fast mixing rate, see e.g. [78, 79],

(iii) one particular version of Doeblin’s condition [24, Section 3.2] is equivalent to φ-
mixing and the mixing rate will then be at least exponentially fast, see [22, Theorem
21.23].

For this and other information on classical mixing conditions for Markov chains, see e.g.
[21, Chapters 7], [22, Chapters 21], [86, Chapter 7], and [42, 72].

Example 3.4 (Stationary Gaussian processes). For stationary Gaussian sequences
Z = (Zi)i≥1, Rozanov [87] has shown that Z is α-mixing, provided the spectral density
function of the process [24, Section 6.1] exists everywhere and is continuous and non-
vanishing over [−π, π]. Moreover, Ibragimov and Linnik [55] proved that Z is α-mixing if it
has a continuous spectral density that is bounded away from 0. It is worth mentioning that
Ibragimov and Rozanov [56] give characterizations of various mixing conditions in terms
of properties of spectral density functions. For some further closely related information on
stationary Gaussian sequences, see e.g. [24, Section 7], [21, Chapter 9], and [23, Chapter
27].

Example 3.5 (Dynamical systems). Many dynamical systems have mixing proper-
ties. For certain stationary finite-state stochastic processes built on piecewise expanding
mappings of the unit interval onto itself, the β-mixing condition holds with at least expo-
nentially fast mixing rate (3.5). The same is true for some dynamical systems perturbed
by dynamic noise, see e.g. [113, Chapter 3.5]. For more details on the mixing properties
of these and other dynamical systems, see also [36].

Example 3.6 (Linear and related processes). There is a large literature on mixing
properties of stationary linear processes including stationary ARMA processes, non-causal
linear processes, linear random fields, and some other related processes such as bilinear,
ARCH, or GARCH models. For example, using the result derived in [6], Athreya and
Pantula [6, 7] obtained a set of sufficient conditions to guarantee the α-mixing property
for AR and ARMA processes. Furthermore, based on [117], Withers [118] proved that the
exponentially α-mixing rate (3.5) holds for certain linear processes including some ARMA
processes with γ = 1. Moreover, several time series models such as GARCH processes,
which are often used to describe, e.g. financial data, satisfy (3.5) under natural conditions
[44, Chapter 2.6.1]. For details on mixing properties of these and other related processes,
see also [42, Chapter 2].
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3.2 Covariance Inequalities

In this section, we present some covariance inequalities for mixing processes which will be
used in subsequent sections. For the sake of brevity, we omit the proofs. We begin with
a covariance inequality for α-mixing processes derived in [14].

Proposition 3.7 (Billingsley). Let Z = (Zi)i≥1 be an α-mixing process on (Ω,A, µ).
Moreover, let ξ be a bounded Ai1-measurable random variable and η be a bounded A∞i+n-
measurable random variable, then we have

|cov(ξ, η)| ≤ 4α(Z, n)‖ξ‖∞‖η‖∞ (3.7)

Based on the above covariance inequality in L∞-norm, we can establish the following
covariance inequality in Lp-norm, see e.g. [33].

Proposition 3.8 (Davydov). Let Z = (Zi)i≥1 be an α-mixing process on (Ω,A, µ).
Moreover, for p, q, r ≥ 1 with 1

p
+ 1

q
+ 1

r
= 1, let ξ ∈ Lp(µ) be Ai1-measurable and η ∈ Lq(µ)

be A∞i+n-measurable, then we have

|cov(ξ, η)| ≤ 10α(Z, n)
1
r ‖ξ‖p‖η‖q. (3.8)

Finally, we recall the covariance inequality for φ-mixing processes derived in [33].

Proposition 3.9 (Davydov). Let Z = (Zi)i≥1 be a φ-mixing process on (Ω,A, µ). More-
over, for p, q ≥ 1 with 1

p
+ 1

q
= 1, let ξ ∈ Lp(µ) be Ai1-measurable and η ∈ Lq(µ) be

A∞i+n-measurable, then we have

|cov(ξ, η)| ≤ 2φ(Z, n)‖ξ‖p‖η‖q. (3.9)

3.3 Bernstein-type Inequalities for α-mixing Processes

In this section, we recall some Bernstein-type inequalities for α-mixing processes that are
of the general form (2.16) and give their “effective number of observations”as specified in
Remark 2.26.

Example 3.10. For stationary geometrically α-mixing processes satisfying (3.5), that is,

α(Z, n) ≤ c exp(−bnγ), n ≥ 1,

for some constants b > 0, c ≥ 0, and γ > 0, [73, Theorem 4.3] bounds the left-hand side
of (2.16) by

(1 + 4e−2c) exp

(
− 3ε2n(γ)

6σ2 + 2εB

)
(3.10)

for all n ≥ 1 and all ε > 0, where

n(γ) :=

n⌈(8n

b

) 1
γ+1

⌉−1
 .
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Observe that dte ≤ 2t for all t ≥ 1 and btc ≥ t/2 for all t ≥ 2. From this it is easy to
conclude that, for all n satisfying n ≥ n0 := max{b/8, 22+5/γb−1/γ}, we have

n(γ) ≥ 2−
2γ+5
γ+1 b

1
γ+1n

γ
γ+1 .

Hence, the left-hand side of (2.16) can also be bounded by

(1 + 4e−2c) exp

(
− ε2n

γ
γ+1

cσσ2 + εcBB

)
(3.11)

with cσ := (82+γ

b
)1/1+γ, and cB := cσ/3. It is not difficult to see that this bound is of the

general form (2.16) with n0 = max{b/8, 22+5/γb−1/γ}, C = 1 + 4e−2c, Cσ(n) = cσn
1

γ+1 ,

Cη(n) = 0, CE(n) = 0, and CB(n) = cBn
1

γ+1 ≥ 8
3
. Hence, we have neff = n

γ
γ+1 .

Example 3.11. If Z is a stationary geometrically α-mixing processes satisfying (3.5)
with γ ≥ 1, [71, Theorem 2] established a bound for the left-hand side of (2.16) of the
form

Cc exp

(
− Cbε

2n

v2 +B2/n+ εB(log n)2

)
, (3.12)

for all ε > 0 and n ≥ 2, where Cb is some constant depending only on b, Cc is some
constant depending only on c, and v2 is defined by

v2 := σ2 + 2
∑

2≤i≤n

|cov(h(X1), h(Xi))| . (3.13)

For any ζ > 0, by using Davydov’s covariance inequality (3.9) with p = q = 2 + ζ and
r = 2+ζ

ζ
, we obtain for i ≥ 2,

cov(h(Z1), h(Zi)) ≤ 8‖h(Z1)‖2+ζ‖h(Zi)‖2+ζα(Z, i− 1)
ζ

2+ζ

≤ 8
(
EPh

2+ζ
) 2

2+ζ
(
ce−b(i−1)

) ζ
2+ζ

≤ 8c
ζ

2+ζB
2ζ

2+ζ
(
σ2
) 2

2+ζ exp

(
− bζ

2 + ζ
(i− 1)

)
and consequently we have

v2 ≤ σ2 + 16c
ζ

2+ζB
2ζ

2+ζ
(
σ2
) 2

2+ζ

∑
2≤i≤n

exp

(
− bζ

2 + ζ
(i− 1)

)

≤ σ2 + 16c
ζ

2+ζB
2ζ

2+ζ
(
σ2
) 2

2+ζ

∞∑
i=1

exp

(
− bζi

2 + ζ

)
.

Hence, the probability bound (3.12) can be reformulated as

Cc exp

(
− Cbε

2n

σ2 + Cζσ
4

2+ζ +B2/n+ εB(log n)2

)
, (3.14)
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with

Cζ := 16c
ζ

2+ζB
2ζ

2+ζ

∞∑
i=1

exp

(
− bζi

2 + ζ

)
. (3.15)

It is easily seen that for n ≥ n0 := max{2, e
√
Cb}, (3.14) is also of the general form

(2.16) with C = Cc, Cσ(n) = 1/Cb, Cη(n) = Cζ/Cb, η = 2
2+ζ

, CE(n) = 1/Cb, and

CB(n) = (log n)2/Cb ≥ 1. Thus, we have neff = n/(log n)2.
In particular, Inequality (3.12) is valid for geometrically φ-mixing processes with γ ≥ 1.

By using the covariance inequality (1.1) for φ-mixing processes in [33], we can bound v2

defined as in (3.13) by C̃σ2 with some constant C̃ independent of n. Consequently the
probability bound in (3.14) becomes

Cc exp

(
− Cbε

2n

C̃σ2 +B2/n+ εB(log n)2

)
, (3.16)

which is of the general form (2.16) with C = Cc, Cσ(n) = 0, Cη(n) = C̃/Cb, η = 1,
CE(n) = 0, and CB(n) = (log n)2/Cb. Hence, we have neff = n.

Example 3.12. For stationary, geometrically α-mixing Markov chains with centered and
bounded random variables, [1] bounds the left-hand side of (2.16) by

exp

(
− nε2

σ̃2 + εB log n

)
, (3.17)

where σ̃2 = limn→∞
1
n
Var

∑n
i=1 h(Xi). Similar arguments as in Example 3.11 implies that,

for an arbitrary ζ > 0, we have

Var
n∑
i=1

h(Xi) = nσ2 + 2
∑

1≤i<j≤n

|cov(h(Xi), h(Xj))|

≤ nσ2 + 2n
∑

2≤i≤n

|cov(h(X1), h(Xi))|

= n · v2

≤ n
(
σ2 + Cζσ

4
2+ζ

)
,

where Cζ is defined as in (3.15). Consequently we obtain the bound

exp

(
− nε2

σ2 + Cζσ
4

2+ζ + εB log n

)
, (3.18)

which is also of the general form (2.16) with n0 = 3, C = 1, Cσ(n) = 1, Cη(n) = C̃ζ ,
η = 2

2+ζ
, CE(n) = 0, and CB(n) = log n ≥ 1. Therefore, we have neff = n/ log n.

Example 3.13. For a φ-mixing processes Z, [90] provides a bound for the left-hand side
of (2.16) of the form

exp

(
− ε2n

8Cφ(4σ2 + εB)

)
, (3.19)

where Cφ :=
∑∞

k=1

√
φ(Z, k). It is of the general form (2.16) with C = 1, Cσ(n) = 0,

Cη(n) = 32Cφ, η = 1, CE(n) = 0, and CB(n) = 8Cφ. Therefore, we have neff = n.
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3.4 Learning Rates for α-mixing Processes

In this section, we use the oracle inequality from Section 2.6.2 to establish learning rates
for α-mixing processes and some algorithms including ERM over finite sets and SVMs
using either a given generic kernel or a Gaussian kernel with varying widths. Let us now
present the first example, that is empirical risk minimization over a finite set.

Example 3.14 (ERM). Let the hypothesis set F be finite with 0 ∈ F and Υ(f) = 0 for
all f ∈ F . Moreover, assume that ‖f‖∞ ≤ M for all f ∈ F . Then, for accuracy δ := 0,
the learning method described by (2.6) is ERM, and Theorem 2.23 shows by some simple
estimates that

RL,P (fDn,Υ)−R∗L,P

< 4 inf
f∈F

(
RL,P (f)−R∗L,P

)
+ 9

(
τ + ln |F|

neff

) 1
2−ϑη

+ 9

(
τB0

neff

) 1
2−η

+
9τB0

neff

hold with probability µ not less than 1 − 8Ce−τ . Note that in the i.i.d. case we have
neff = n and η = 1. Besides constants, the oracle inequality (2.23) is thus an exact
analogue to standard oracle inequality for ERM learning from i.i.d. processes, see e.g. [98,
Theorem 7.2].

The next example discusses learning rates for LS-SVMs using a given generic kernel.

Example 3.15 (Generic Kernels). Let (X,X ) be a measurable space, Y = [−1, 1],
and Z and P as above. Furthermore, let L be the least-squares loss and H be an RKHS
over X such that the closed unit ball BH of H satisfies

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p, ε > 0, (3.20)

for some constants p ∈ (0, 1] and a > 0.
Because of Assumption (2.8), we only have to consider the hypothesis set F =

λ−1/2BH . Then, (2.19) implies that Fr ⊂ r1/2λ−1/2BH and consequently we find

lnN (Fr, ‖ · ‖∞, ε) ≤ aλ−pε−2prp. (3.21)

Thus, we can define ϕ(ε) := aλ−pε−2p. For the least square loss the variance bound (2.21)
is valid with ϑ = 1, hence the condition (2.22) is satisfied if

r ≥max

{(
23pa

) 1
2−η−p λ−

p
2−η−p

(
CV (n)

n

) 1
2−η−p

ε−
2p

2−η−p ,

(
τCη(n)B0

n

) 1
2−η

,
CΣ(n)B0τCB(n)

n
, r∗

}
, (3.22)

Therefore, let r be the sum of the terms on the right-hand side. In addition, assume that
the approximation error function satisfies A(λ) ≤ cλβ for some c > 0, β ∈ (0, 1], and all
λ > 0. Since for large n, the last term in (3.22) is dominated by the others, the oracle
inequality (2.23) becomes

λ‖fDn,λ‖2
H +RL,P ( ÛfDn,Υ)−R∗L,P
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≤ 4λ‖fP,λ‖2
H + 4RL,P (fP,λ)− 4R∗L,P + 9r + 5ε

≤ C

(
λβ + λ−

p
2−η−p

(
CV (n)

n

) 1
2−η−p

ε−
2p

2−η−p

+

(
τCη(n)B0

n

) 1
2−η

+
CΣ(n)B0τCB(n)

n
+ ε

)

≤ C

(
λβ + λ−

p
2−η−pn

− 1
2−η−p

eff ε−
2p

2−η−p + 2

(
τB0

neff

) 1
2−η

+ ε

)

≤ C

(
λβ + λ−

p
2−η−pn

− 1
2−η−p

eff ε−
2p

2−η−p + 2λβ−1n−1
eff τ + ε

)
,

where fP,λ is the function at which the infimum in (2.12) is attained and C is a constant
independent of n, λ, τ , and ε. Now optimizing over ε, we then see by [98, Lemma A.1.7]

that the LS-SVM using λn := n
−ρ/β
eff learns with rate n−ρeff , where

ρ := min

{
β,

β

β + pβ + p

}
. (3.23)

In particular, for geometrically α-mixing processes, we obtain the learning rate n−αρ,
where α := γ

γ+1
and ρ as in (3.23). Let us compare this rate with the ones previously

established for LS-SVMs in the literature. For example, [99] proved a rate of the form

n−αmin{β, β
β+2pβ+p

}

under exactly the same assumptions. Since β > 0 and p > 0, our new rate is always
better than that of [99]. In addition, [45] generalized the rates of [99] to regularization
terms of the form λ‖ · ‖qH with q ∈ (0, 2]. The resulting rates are again always slower than
the ones we established in this work. For the standard regularization term, that is q = 2,
[119] established the rate

n−
αβ

2p+1 ,

which is always slower than ours, too. Finally, in the case p = 1, [106] established the
rate

n−
2αβ
β+3 ,

which was subsequently improved to

n−
3αβ

2β+4

in [107]. The latter rate is worse than ours, if and only if (1+β)(1+3p) ≤ 5. In particular,
for p ∈ (0, 1/2] we always get better rates. Furthermore, the analysis of [106, 107] is
restricted to LS-SVMs, while our results hold for rather generic learning algorithms.
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Example 3.16 (Smooth Kernels). Let X ⊂ Rd be a compact subset, Y = [−1, 1], and
Z and P as above. Furthermore, let L be the least-squares loss and H = Wm(X) be a
Sobolev space with smoothness m > d/2. Then it is well-known, see e.g. [103] or [98,
Theorem 6.26], that

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p, ε > 0, (3.24)

where p := d
2m

and a > 0 is some constant. Let us additionally assume that the marginal
distribution PX is absolutely continuous with respect to the uniform distribution, where
the corresponding density is bounded away from 0 and ∞. Then there exists a constant
Cp > 0 such that

‖f‖∞ ≤ Cp‖f‖pH‖f‖
1−p
L2(PX), f ∈ H

for the same p, see [70] and [103, Corollary 3]. Consequently, we can bound B0 ≤ λ(β−1)p

as in [103]. Moreover, the assumption on the approximation error function is satisfied for
β := s/m, whenever f ∗L,P ∈ W s(X) and s ∈ (0,m], see e.g. [103]. Therefore, the resulting
learning rate is

n
− 2s

2s+d+ds/m

eff . (3.25)

Note that in the i.i.d. case, where neff = n, this rate is worse than the optimal rate n−
2s

2s+d ,
where the discrepancy is the term ds/m in the denominator. However, this difference can
be made arbitrarily small by picking a sufficiently large m, that is, a sufficiently smooth
kernel k.

Again, for geometrically α-mixing processes, the rate (3.25) becomes

n−
2sα

2s+d+ds/m ,

where α := γ
γ+1

. Comparing this rate with the one from [107], it turns out that their rate

is worse than ours, if m ≥ 1
16

(2s+ 3d+
√

4s2 + 108sd+ 9d2). Note that by the constraint
s ≤ m, the latter is always satisfied for m ≥ d.

In the next example for LS-SVMs we will consider the Gaussian RBF kernels kσ on
X.

Example 3.17 (Gaussian Kernels). Let Y := [−M,M ] for M > 0, and P be a distri-
bution on Rd × Y such that X := suppPX ⊂ B`d2

is a bounded domain with µ(∂X) = 0.
Furthermore, let PX be absolutely continuous w.r.t. the Lebesgue measure µ on X with
associated density g : Rd → R such that g ∈ Lq(X) for some q ≥ 1. Moreover, let
f ∗L,P : Rd → R be a Bayes decision function such that f ∗L,P ∈ L2(Rd) ∩ L∞(Rd) as well as
f ∗L,P ∈ Bt

2s,∞ for t ≥ 1 and s ≥ 1 with 1
q

+ 1
s

= 1. Here, Bt
2s,∞ denotes the Besov space

with the smoothness parameter t, see also [43, Section 2].
Similarly as above, since F = λ−1/2BHσ and Fr ⊂ r1/2λ−1/2BHσ , the covering number

(2.15) implies

lnN (Fr, ‖ · ‖∞, ε) ≤ ap,ζσ
−(1−p)(1+ζ)dλ−pε−2prp, (3.26)

and thus we can define

ϕ(ε) := ap,ζσ
−(1−p)(1+ζ)dλ−pε−2p. (3.27)
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Since the variance bound (2.21) is valid with ϑ = 1 for the least-square loss, the condition
(2.22) is satisfied if

r ≥max

{(
23pap,ζ

) 1
2−η−p σ−

(1+ζ)(1−p)d
2−η−p λ−

p
2−η−p

(
CV (n)

n

) 1
2−η−p

ε−
2p

2−η−p ,

(
τCη(n)B0

n

) 1
2−η

,
CΣ(n)B0τCB(n)

n
, r∗

}
, (3.28)

Moreover, [43, Section 2] shows that there exists a constant c > 0 such that for all λ > 0
and all σ ∈ (0, 1], there is an f0 ∈ Hσ with ‖f0‖∞ ≤ c and

λ‖f0‖2
Hσ +RL,P (f0)−R∗L,P ≤ cλσ−d + cσ2t .

Again, since for large n, the last term in (3.22) is dominated by the others, the oracle
inequality (2.23) becomes

λ‖fDn,λ‖2
H +RL,P ( ÛfDn,Υ)−R∗L,P

≤ 4λ‖fP,λ‖2
H + 4RL,P (fP,λ)− 4R∗L,P + 9r + 5ε

≤ C

(
λσ−d + σ2t + σ−

(1+ζ)(1−p)d
2−η−p λ−

p
2−η−p

(
CV (n)

n

) 1
2−η−p

ε−
2p

2−η−p

+

(
τCη(n)B0

n

) 1
2−η

+
CΣ(n)B0τCB(n)

n
+ ε

)

≤ C

(
λσ−d + σ2t + λ−

p
2−η−pn

− 1
2−η−p

eff ε−
2p

2−η−p + 2

(
τB0

neff

) 1
2−η

+ ε

)

≤ C

(
λσ−d + σ2t + λ−

p
2−η−pn

− 1
2−η−p

eff ε−
2p

2−η−p + ε

)
,

if n is large enough. Here C is a constant independent of n, λ, σ, τ , and ε. Again,
optimizing over ε together with some standard techniques, see [98, Lemma A.1.7], we
then see that for all ξ > 0 we can find ζ, p ∈ (0, 1) sufficiently close to 0 such that the
LS-SVM using Gaussian RKHS Hσ and

λn = n−1
eff and σn = n

− 1
2t+d

eff , (3.29)

learns with rate

n
− 2t

2t+d
+ξ

eff . (3.30)

In the i.i.d. case we have neff = n, and hence the learning rate (3.30) becomes

n−
2t

2t+d
+ξ . (3.31)

Recall that modulo the arbitrarily small ξ > 0 these learning rates are essentially optimal,
see e.g. [103, Theorem 13] or [49, Theorem 3.2].
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Particularly, for geometrically α-mixing processes, the rate (3.30) becomes

n−
2t

2t+d
α+ξ ,

where α := γ
γ+1

. This rate is optimal up to the factor α and ξ in the exponent.

Analogously, for geometrically α-mixing processes satisfying (3.5) with γ ≥ 1, geomet-
rically α-mixing Markov chains, and geometrically φ-mixing processes, we actually obtain
the essentially optimal learning rate (3.31).

To achieve these rates, however, we need to set λn and σn as in (3.29), which in turn
requires us to know neff and t. Since in practice we usually do not know these values
nor their existence, we can use the training/validation approach TV-SVM, see e.g. [98,
Chapters 6.5, 7.4, 8.2], to achieve the same rates adaptively, i.e. without knowing neff and t.
To this end, let Λ := (Λn) and Σ := (Σn) be sequences of finite subsets Λn,Σn ⊂ (0, 1] such

that Λn is an εn-net of (0, 1] and Σn is an δn-net of (0, 1] with εn ≤ n−1 and δn ≤ n−
1

2+d .
Furthermore, assume that the cardinalities |Λn| and |Σn| grow polynomially in n. For a
data set D := ((x1, y1) , . . . , (xn, yn)), we define

D1 := ((x1, y1) , . . . , (xm, ym))

D2 := ((xm+1, ym+1) , . . . , (xn, yn))

where m :=
⌊
n
2

⌋
+ 1 and n ≥ 4. We will use D1 as a training set by computing the SVM

decision functions

fD1,λ,σ := arg min
f∈Hσ

λ ‖f‖2
Hσ

+RL,D1 (f) , (λ, σ) ∈ Λn × Σn

and use D2 to determine (λ, σ) by choosing a (λD2 , σD2) ∈ Λn × Σn such that

RL,D2

( ÛfD1,λD2
,σD2

)
= min

(λ,σ)∈Λn×Σn
RL,D2

( ÛfD1,λ,σ

)
.

Then, analogous to the proof of Theorem 3.3 in [43] we can show that for all ξ > 0, the
TV-SVM producing the decision functions fD1,λD2

,σD2
with the above learning rates (3.30).

In the last example we will briefly discuss learning rates for SVMs for quantile regres-
sion. Let X ⊂ Rd, Y := [−1, 1], recall that the goal of quantile regression is to estimate
the conditional τ -quantile, i.e. the set valued function

F ∗τ,P (x) := {t ∈ R : P (Y ≤ t|x) ≥ τ and P (Y ≥ t|x) ≥ 1− τ} ,

where τ ∈ (0, 1) is a fixed constant. In the following example, we assume that F ∗τ,P consists
of singletons, i.e. there exists an f ∗τ,P : X → [−1, 1], such that F ∗τ,P (x) = {f ∗τ,P (x)} for PX-
almost all x ∈ X. To estimate the conditional τ -quantile function f ∗τ,P , we use the so-called
τ -pinball loss (2.9). It is well-known that the conditional τ -quantile function is, modulo
PX-zero sets, the only function that minimizes the Lτ -risk, that is R∗Lτ ,P = RLτ ,P (f ∗τ,P ).

Example 3.18 (Quantile Regression with Gaussian Kernels). Let P be a distri-
bution on X × Y such that suppPX ⊂ B`d2

and PX is absolutely continuous with re-
spect to the Lebesgue measure µ. Assume that the corresponding conditional density
h( · , x) := dP ( · |x)

dµ|Y
is uniformly bounded, that is, h(y, x) ≤ b for Lebesgue-almost all y ∈ Y .

Then, for p = ∞, P has a τ -quantile of upper p-average type q = 2 with ϕ(x) := b, see
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[43, Definition 4.4]. Furthermore, if we assume that, for PX-almost all x ∈ X, the density
h( · , x) is bounded away from 0, i.e., h(y, x) ≥ b̂ for some 0 < b̂ ≤ b for Lebesgue-almost
all y ∈ Y , then, for p = ∞, P also has a τ -quantile of lower p-average type q = 2 with
κ(x) := 2b̂, see [43, Definition 4.2]. Then for the τ -pinball loss Lτ , [100, Theorem 2.8]
yields a variance bound of the form

EP (Lτ ◦ Ûf − Lτ ◦ f ∗τ,P )2 ≤ V ·EP (Lτ ◦ Ûf − Lτ ◦ f ∗τ,P ) ,

for all f : X → R, where V ≥ 2 is a suitable constant. Moreover, let PX be absolutely
continuous w.r.t. the Lebesgue measure on X with associated density g ∈ Lu(X) for some
u ≥ 1 and for τ ∈ (0, 1), let f ∗τ,P ∈ L2(Rd) ∩ L∞(Rd) and f ∗τ,P ∈ Bt

2s,∞ for some t ≥ 1 and
s ≥ 1 such that 1

s
+ 1

u
= 1.

For the covering numbers of the Gaussian kernels (2.15) we define ϕ(ε) as in (3.27).
Consequently, Condition (2.22) is satisfied if

r ≥max

{(
23pap,ζ

) 1
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}
, (3.32)

Moreover, [43, Section 4] shows that there exists a constant c > 0 such that for all λ > 0
and all σ ∈ (0, 1], there is an f0 ∈ Hσ with ‖f0‖∞ ≤ c and

λ‖f0‖2
Hσ +RLτ ,P (f0)−R∗Lτ ,P ≤ cλσ−d + cσ2t .

Again, since for large n, the last term in (3.32) is dominated by the others, the oracle
inequality (2.23) becomes

λ‖fDn,λ‖2
H +RLτ ,P ( ÛfDn,Υ)−R∗Lτ ,P

≤ 4λ‖fP,λ‖2
H + 4RL,P (fP,λ)− 4R∗L,P + 9r + 5ε

≤ C

(
λσ−d + σ2t + σ−
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)
.

where C is a constant independent of n, λ, σ, τ , and ε. Again, for every ξ > 0 we can
then find ζ, p ∈ (0, 1) sufficiently close to 0 such that the SVM for quantile regression
using Gaussian RKHS Hσ and

λn = n−1
eff and σn = n

− 1
2t+d

eff , (3.33)

learns with rate

n
− 2t

2t+d
+ξ

eff . (3.34)



49

Note that these rates is for the excess Lτ -risk, but since [100, Theorem 2.7] shows

‖ Ûf − f ∗τ,P‖2
L2(PX) ≤ c

(
RLτ ,P ( Ûf )−R∗Lτ ,P

)
for some constant c > 0 and all f : X → R, we actually obtain the same rates for ‖ Ûf −
f ∗τ,P‖2

L2(PX). Last but not least, optimality for various α-mixing processes and adaptivity
can be discussed along the lines of LS-SVMs.
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4. Learning from C-mixing Processes

In the previous chapter we derived the learning rates for α-mixing processes. However,
as in Chapter 1, there exist many dynamical systems that are not α-mixing. To include
such dynamical systems, [67] proposed the C-mixing coefficients, which also generalize the
classical φ-mixing coefficients.

In this chapter, we investigate the learning performance from geometrically C-mixing
processes. More precisely, in Section 4.1, we recall the notion of (time-reversed) C-mixing
processes. We further illustrate this class of processes by some examples and discuss the
relation between C-mixing and other notions of mixing. As the main result of this chapter,
a Bernstein-type inequality for geometrically (time-reversed) C-mixing processes will be
formulated in Section 4.2. There, we also compare our new Bernstein-type inequality to
previously established concentration inequalities. Since our Bernstein-type inequality is
of the generic form, the oracle inequality established in Section 2.6 can also be applied
to derive learning rates for SVMs and C-mixing processes including certain dynamical
systems.

4.1 C-mixing Processes

In this section we recall two classes of stationary stochastic processes called (time-reversed)
C-mixing processes that have a certain decay of correlations for suitable pairs of functions.
We also present some examples of such processes including certain dynamical systems.

Let us begin by introducing some notations. Given a semi-norm ‖ · ‖ on a vector space
E of bounded measurable functions f : Z → R, we define the C-Norm by

‖f‖C := ‖f‖∞ + ‖f‖ (4.1)

and denote the space of all bounded C-functions by

C(Z) :=
{
f : Z → R

∣∣ ‖f‖C <∞}. (4.2)

Throughout this chapter, we only consider the semi-norms ‖ · ‖ in (4.1) that satisfy the
inequality∥∥ef∥∥ ≤ ∥∥ef∥∥∞‖f‖ (4.3)

for all f ∈ C(Z). We are mostly interested in the following examples of semi-norms
satisfying (4.3).

Example 4.1. Let Z be an arbitrary set and suppose that we have ‖f‖ = 0 for all
f : Z → R. Then, it is obviously to see that ‖ef‖ = ‖f‖ = 0. Hence, (4.3) is satisfied.
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Example 4.2. Let Z ⊂ R be an interval. A function f : Z → R is said to have
bounded variation on Z if its total variation ‖f‖BV (Z) is bounded. Denote by BV (Z)
the set of all functions of bounded variation. It is well-known that BV (Z) together with
‖f‖∞ + ‖f‖BV (Z) forms a Banach space. Moreover, we have (4.3), i.e. we have for all
f ∈ C(Z):∥∥ef∥∥

BV (Z)
≤
∥∥ef∥∥∞‖f‖BV (Z).

Proof (of Example 4.2). Consider the collection Π of ordered n+1-ples of points z0 <
z1 < . . . < zn ∈ Z, where n is an arbitrary natural number. The total variation of a
function f : I → R is given by

‖f‖BV (Z) := sup
(z0,z1,...,zn)∈Π

n∑
i=1

|f(zi)− f(zi−1)|.

Let us now assume that we have an 1 ≤ i ≤ n with f(zi−1) ≤ f(zi). Moreover, for t ≤ 0,
it is not difficult to verify that |1− et| ≤ |t|. This implies∣∣ef(zi) − ef(zi−1)

∣∣ = ef(zi)
∣∣1− ef(zi−1)−f(zi)

∣∣
≤
∥∥ef∥∥∞|f(zi)− f(zi−1)| .

By interchanging the roles of f(zi) and f(zi−1) we find the same estimate in the case of
f(zi−1) ≥ f(zi). Consequently we obtain

n∑
i=1

∣∣ef(zi) − ef(zi−1)
∣∣ ≤ ∥∥ef∥∥∞ n∑

i=1

|f(zi)− f(zi−1)|

for all collections Π. Taking the supremum we get ‖ef‖BV ≤ ‖ef‖∞‖f‖BV , i.e. (4.3) is
satisfied. �

Example 4.3. Let Z be a subset of Rd and Cb(Z) be the set of bounded continuous
functions on Z. For f ∈ Cb(Z) and 0 < α ≤ 1 let

‖f‖ := |f |α := sup
z 6=z′

|f(z)− f(z′)|
|z − z′|α

.

Clearly, f is α-Hölder continuous if and only if |f |α < ∞. The collection of bounded,
α-Hölder continuous functions on Z will be denoted by

Cb,α(Z) := {f ∈ Cb(Z) : |f |α <∞}.

Note that, if Z is compact, then Cb,α(Z) together with the norm ‖f‖Cb,α := ‖f‖∞ + |f |α
forms a Banach space. Given a function f ∈ Cb,α(Z), we assume that f(z) ≥ f(z′).
Again, by using |1− et| ≤ |t|, t ≤ 0, we obtain∣∣∣ef(z) − ef(z′)

∣∣∣ = ef(z)
∣∣∣1− ef(z′)−f(z)

∣∣∣
≤
∥∥ef∥∥∞|f(z′)− f(z)|
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≤
∥∥ef∥∥∞|f |α|z − z′|α.

By interchanging the roles of f(z) and f(z′) we find the same estimate in the case of
f(z′) ≥ f(z). Consequently we obtain ‖ef‖ ≤ ‖ef‖∞|f |α, i.e. (4.3) is satisfied.

As usual, we speak of Lipschitz continuous functions if α = 1 and write Lip(Z) :=
Cb,1(Z).

Example 4.4. Let Z ⊂ Rd be an open subset. For a continuously differentiable function
f : Z → R we write

‖f‖ := sup
z∈Z
|f ′(z)|

and C1(Z) :=
{
f : Z → R | f continuously differentiable and ‖f‖∞ + ‖f‖ < ∞

}
. It is

well-known, that C1(Z) is a Banach space with respect to the norm ‖f‖∞ + ‖f‖ and the
chain rule gives∥∥ef∥∥ =

∥∥(ef)′∥∥∞ =
∥∥ef · f ′∥∥∞ ≤ ∥∥ef∥∥∞‖f ′‖∞ =

∥∥ef∥∥∞‖f‖,
for all f ∈ C1(Z), i.e. (4.3) is satisfied.

To define certain dependency coefficients for Z, we denote, for ψ, ϕ ∈ L1(µ) satisfying
ψϕ ∈ L1(µ) the correlation of ψ and ϕ by

cor(ψ, ϕ) :=

∫
Ω

ψ ·ϕdµ−
∫

Ω

ψ dµ ·
∫

Ω

ϕdµ .

Several dependency coefficients for Z can be expressed by imposing restrictions on ψ and
ϕ. The following definition, which is taken from [67], introduces the restrictions on ψ and
ϕ we consider throughout this chapter.

Definition 4.5. Let (Ω,A, µ) be a probability space, (Z,B) be a measurable space, Z :=
(Zi)i≥0 be a Z-valued, stationary process on Ω, and ‖ · ‖C be defined by (4.1) for some
semi-norm ‖ · ‖. Then, for n ≥ 0, we define:

(i) the C-mixing coefficients by

φC(Z, n) := sup
{

cor(ψ, h ◦ Zk+n) : k ≥ 0, ψ ∈ BL1(Ak0 ,µ), h ∈ BC(Z)

}
(4.4)

(ii) the time-reversed C-mixing coefficients by

φC,rev(Z, n) := sup
{

cor(h ◦ Zk, ϕ) : k ≥ 0, h ∈ BC(Z), ϕ ∈ BL1(A∞k+n,µ)

}
. (4.5)

Let (dn)n≥0 be a strictly positive sequence converging to 0. Then we say that Z is
(time-reversed) C-mixing with rate (dn)n≥0, if we have φC,(rev)(Z, n) ≤ dn for all n ≥ 0.
Moreover, if (dn)n≥0 is of the form

dn := c exp
(
−bnγ

)
, n ≥ 1, (4.6)

for some constants b > 0, c ≥ 0, and γ > 0, then Z is called geometrically (time-reversed)
C-mixing.
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Obviously, Z is C-mixing with rate (dn)n≥0, if and only if for all k, n ≥ 0, all ψ ∈
L1(Ak0, µ), and all h ∈ C(Z), we have

cor(ψ, h ◦ Zk+n) ≤ ‖ψ‖L1(µ)‖h‖C dn, (4.7)

or similarly, time-reversed C-mixing with rate (dn)n≥0, if and only if for all k, n ≥ 0, all
h ∈ C(Z), and all ϕ ∈ L1(A∞k+n, µ), we have

cor(h ◦ Zk, ϕ) ≤ ‖h‖C‖ϕ‖L1(µ) dn. (4.8)

In the rest of this section we consider examples of (time-reversed) C-mixing processes.
To begin with, let us assume that Z is a stationary φ-mixing process with rate (dn)n≥0.
By [33, Inequality (1.1)] we then have

cor(ψ, ϕ) ≤ ‖ψ‖L1(µ)‖ϕ‖L∞(µ)dn, n ≥ 1, (4.9)

for all Ak0-measurable ψ ∈ L1(µ) and all A∞k+n-measurable ϕ ∈ L∞(µ). By taking ‖ · ‖C :=
‖ · ‖∞ and ϕ := h ◦ Zk+n, we then see that (4.7) is satisfied, i.e. Z is C-mixing with
rate (dn)n≥0. Finally, by similar arguments we can deduce that time-reversed φ-mixing
processes are also time-reversed C-mixing with the same rate. In other words we have
found

φL∞(µ)(Z, n) = φ(Z, n) and φL∞(µ),rev(Z, n) = φrev(Z, n).

To deal with processes that are not α-mixing [85], Rio [84] introduced the following
relaxation of φ-mixing coefficients

φ̃(Z, n) := sup
k≥0,
f∈BV1

∥∥E(f(Zk+n)
∣∣Ak0)− Ef(Zk+n)

∥∥
∞ (4.10)

= sup
{

cor(ψ, h ◦ Zk+n) : k ≥ 0, ψ ∈ BL1(Ak0 ,µ), h ∈ BBV (Z)

}
and an analogous time-reversed coefficient

φ̃rev(Z, n) := sup
k≥0,
f∈BV1

∥∥E(f(Zk)
∣∣A∞k+n

)
− Ef(Zk)

∥∥
∞

= sup
{

cor(h ◦ Zk, ϕ) : k ≥ 0, ϕ ∈ BL1(A∞k+n,µ), h ∈ BBV (Z)

}
,

where the two identities follow from [35, Lemma 4]. In other words we have

φBV (Z)(Z, n) = φ̃(Z, n) and φBV (Z),rev(Z, n) = φ̃rev(Z, n)

Moreover, [34, p. 41] shows that some uniformly expanding maps are φ̃-mixing but not
α-mixing. Figure 4.1 summarizes the relations between φ, φ̃, and C-mixing.

Our next goal is to relate C-mixing to some well-known results on the decay of corre-
lations for dynamical systems. To this end, recall that (Ω,A, µ, T ) is a dynamical system,
if T : Ω → Ω is a measurable map satisfying µ(T−1(A)) = µ(A) for all A ∈ A. Let us
consider the stationary stochastic process Z := (Zn)n≥0 defined by Zn := T n for n ≥ 0.
Since An+1

n+1 ⊂ Ann for all n ≥ 0, we conclude that A∞k+n = Ak+n
k+n. Consequently, ϕ is

A∞k+n-measurable, if and only if it is Ak+n
k+n-measurable. Moreover Ak+n

k+n is the σ-algebra

generated by T k+n, and hence ϕ is Ak+n
k+n-measurable, if and only if it is of the form
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φ-mixing φ̃-mixing C-mixing

Figure 4.1: Relationship between φ-, φ̃-, and C-mixing processes

ϕ = g ◦ T k+n for some suitable, measurable g : Ω→ R. Let us now suppose that ‖ · ‖C(Ω)

is defined by (4.1) for some semi-norm ‖ · ‖. For h ∈ C(Ω) we then find

cor(h ◦ Zk, ϕ) = cor(h ◦ Zk, g ◦ Zk+n) = cor(h, g ◦ Zn)

=

∫
Ω

h · (g ◦ T n) dµ−
∫

Ω

h dµ ·
∫

Ω

g dµ

=: corT,n(h, g) .

The next result shows that Z is time-reversed C-mixing even if we only have generic
constants C(h, g) in (4.8).

Theorem 4.6. Let (Ω,A, µ, T ) be a dynamical system and the stochastic process Z :=
(Zn)n≥0 be defined by Zn := T n for n ≥ 0. Moreover, Let ‖ · ‖C be defined by (4.1) for
some semi-norm ‖ · ‖. Then, Z is time-reversed C-mixing with rate (dn)n≥0 iff for all
h ∈ C(Ω) and all g ∈ L1(µ) there exists a constant C(h, g) such that

corT,n(h, g) ≤ C(h, g)dn, n ≥ 0.

Proof (of Theorem 4.6). (⇒) The proof is straightforward.
(⇐) For p, q ∈ [1,∞] with 1/p + 1/q = 1, let E1 and E2 be Banach spaces that are
continuously embedded into Lp(µ) and Lq(µ), respectively, and let F be a Banach space
that is continuously embedded into `∞. Analysis similar to that in the proof of [97,
Theorem 5.1] shows that if, for all n ≥ 0, and all h ∈ E1, g ∈ E2, the correlation sequence
satisfies

corT,n(h, g) ∈ F,

then there exists a constant c ∈ [0,∞) such that

‖corT,n(h, g)‖F ≤ c · ‖h‖E1‖g‖E2 , h ∈ E1, g ∈ E2. (4.11)

In particular, (4.11) holds for E1 = C(Ω) and E2 = L1(µ) and the assertion is proved. �

Thus, we see that Z is time-reversed C-mixing, if corT,n(h, g) converges to zero for all
h ∈ C(Ω) and g ∈ L1(µ) with a rate that is independent of h and g.

For concrete examples, let us first mention that [67] presents some discrete dynamical
systems that are time-reversed geometrically C-mixing:
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• Lasota-Yorke maps (piecewise expanding maps) with a finite number of intervals of
monotonicity under [67, Assumption 3] with C = BV and C(h, g) = ‖g‖L1‖h‖BV ;

• Lasota-Yorke maps with an infinite number of intervals of monotonicity under [67,
Assumption 4] with C = BV and C(h, g) = ‖g‖L1‖h‖BV ;

• Uni-modal maps under [67, Assumptions (H1)-(H3)] with C = Lip and C(h, g) =
‖g‖L1‖h‖Lip;

• Lasota-Yorke maps in higher dimension under [67, Assumption 5] with C = Cb,α and
C(h, g) = ‖g‖L1‖h‖Cb,α .

Generally, in dynamical systems where chaos is weak, correlations often decay poly-
nomially, i.e. the correlations satisfy

|corT,n(h, g)| ≤ C(h, g) ·n−b , n ≥ 0, (4.12)

for some constants b > 0 and C(h, g) ≥ 0 depending on the functions h and g. Young
[122] developed a powerful method for studying correlations in systems with weak chaos
where correlations decay at a polynomial rate for bounded g and Hölder continuous h. Her
method was applied to billiards with slow mixing rates, such as Bunimovich billiards, see
[10, Theorem 3.5]. For example, modulo some logarithmic factors [66, 27] obtained (4.12)
with b = 1 and b = 2 for certain forms of Bunimovich billiards and Hölder continuous h
and g. Besides these results, Baladi [9] also compiles a list of “parabolic” or “intermittent”
systems having a polynomial decay.

It is well-known that, if the functions h and g are sufficient smooth, there exist dynam-
ical systems where chaos is strong enough such that the correlations decay exponentially
fast, that is,

|corT,n(h, g)| ≤ C(h, g) · exp
(
−bnγ

)
, n ≥ 0, (4.13)

for some constants b > 0, γ > 0, and C(h, g) ≥ 0 depending on h and g. Again, Baladi [9]
has listed some simple examples of dynamical systems enjoying (4.13) for analytic h and
g such as the angle doubling map and the Arnold’s cat map. Moreover, for continuously
differentiable h and g, [88, 91] proved (4.13) for two closely related classes of systems, more
precisely, C1+ε Anosov or the Axiom-A diffeomorphisms with Gibbs invariant measures
and topological Markov chains, which are also known as subshifts of finite type, see also
[20]. These results were then extended by [53, 89] to expanding interval maps with smooth
invariant measures for functions h and g of bounded variation. In the 1990s, similar results
for Hölder continuous h and g were proved for systems with somewhat weaker chaotic
behavior which is characterized by nonuniform hyperbolicity, such as quadratic interval
maps, see [121], [58] and the Hénon map [12], and then extended to chaotic systems with
singularities by [63] and specifically to Sinai billiards in a torus by [121, 26]. For some of
these extensions, such as smooth expanding dynamics, smooth nonuniformly hyperbolic
systems, and hyperbolic systems with singularities, we refer to [8] as well. Recently, for h
of bounded variation and bounded g, [65] obtained (4.13) for a class of piecewise smooth
one-dimensional maps with critical points and singularities. Moreover, [3] has deduced
(4.13) for h, g ∈ Lip(Z) and a suitable iterate of Poincaré’s first return map T of a large
class of singular hyperbolic flows.
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4.2 A Bernstein-Type Inequality

In this section, we present the key result of this chapter, a Bernstein-type inequality for
stationary geometrically (time-reversed) C-mixing process.

Theorem 4.7. Let Z := (Zn)n≥0 be a Z-valued stationary geometrically (time-reversed)
C-mixing process on (Ω,A, µ) with rate (dn)n≥0 as in (4.6), ‖ · ‖C be defined by (4.1)
for some semi-norm ‖ · ‖ satisfying (4.3), and P := µZ0. Moreover, let h ∈ C(Z) with
EPh = 0 and assume that there exist some A > 0, B > 0 , and σ ≥ 0 such that ‖h‖ ≤ A,
‖h‖∞ ≤ B, and EPh2 ≤ σ2. Then, for all ε > 0 and all

n ≥ n0 := max

{
min

{
m ≥ 3 : m2 ≥ 808c(3A+B)

B
and

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
,

(4.14)

we have

µ

({
ω ∈ Ω :

1

n

n∑
i=1

h ◦ Zi ≥ ε

})
≤ 2 exp

(
− nε2

8(log n)
2
γ (σ2 + εB/3)

)
, (4.15)

or alternatively, for all n ≥ n0 and τ > 0, we have

µ

{ω ∈ Ω :
1

n

n∑
i=1

h(Zi(ω)) ≥

√
8(log n)

2
γ σ2τ

n
+

8(log n)
2
γBτ

3n

} ≤ 2e−τ . (4.16)

Note that besides the additional logarithmic factor 4(log n)
2
γ and the constant 2 in front

of the exponential, (4.15) coincides with Bernstein’s classical inequality for i.i.d. processes.
Moreover, notice that (4.15) is also of the general form (2.16) with n0 as in (4.14), C = 2,

Cσ(n) = 0, Cη(n) = 8(log n)
2
γ , η = 1, CE(n) = 0, and CB(n) = 8(log n)

2
γ /3 ≥ 8/3.

4.2.1 Proof of Theorem 4.7

The following lemma, which may be of independent interest, supplies the key to the proof
of Theorem 4.7.

Lemma 4.8. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-mixing process
on the probability space (Ω,A, µ) with rate (dn)n≥0, and P := µZ0. Moreover, for f : Z →
[0,∞), suppose that f ∈ C(Z) and write fn := f ◦ Zn. Finally, assume that we have
natural numbers k and l satisfying

2l · ‖f‖C · dk ≤ ‖f‖L1(P ). (4.17)

Then we have

Eµ
l∏

j=0

fjk ≤ 2‖f‖l+1
L1(P ).
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Proof (of Lemma 4.8). We divide the proof into two parts.
(i) Suppose that the correlation inequality (4.7) holds. Obviously the case f = 0 P -a.s. is
trivial. For f 6= 0, we define

Dl :=

∣∣∣∣∣Eµ
l∏

j=0

fjk −
l∏

j=0

Eµfjk

∣∣∣∣∣ . (4.18)

Then we have

Dl ≤

∣∣∣∣∣Eµ
(
l−1∏
j=0

fjk

)
flk − Eµ

l−1∏
j=0

fjk Eµflk

∣∣∣∣∣+

∣∣∣∣∣Eµ
l−1∏
j=0

fjk Eµflk −
l∏

j=0

Eµfjk

∣∣∣∣∣
=

∣∣∣∣∣Eµ
(
l−1∏
j=0

fjk

)
flk − Eµ

l−1∏
j=0

fjk Eµflk

∣∣∣∣∣+

∣∣∣∣∣Eµ
l−1∏
j=0

fjk Eµflk −
l−1∏
j=0

Eµfjk Eµflk

∣∣∣∣∣ .
Since the stochastic process Z is stationary, the decay of correlations (4.7) together with
ψ :=

∏l−1
j=0 fjk, h := f , and the assumption f ≥ 0 yields∣∣∣∣∣Eµ
(
l−1∏
j=0

fjk

)
flk − Eµ

l−1∏
j=0

fjk Eµflk

∣∣∣∣∣
≤
∥∥∥ l−1∏
j=0

fjk

∥∥∥
L1(P )
‖f‖C dk

=
∣∣∣Eµ l−1∏

j=0

fjk

∣∣∣‖f‖C dk
≤

(∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣+
l−1∏
j=0

Eµfjk

)
‖f‖C dk

=
(
Dl−1 + ‖f‖lL1(P )

)
‖f‖C dk.

Moreover, for the second term, we find∣∣∣∣∣Eµ
l−1∏
j=0

fjk Eµflk −
l−1∏
j=0

Eµfjk Eµflk

∣∣∣∣∣ = ‖f‖L1(P )

∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣
= ‖f‖L1(P )Dl−1.

These estimates together imply that

Dl ≤
(
Dl−1 + ‖f‖lL1(P )

)
‖f‖C dk + ‖f‖L1(P )Dl−1

=
(
‖f‖L1(P ) + ‖f‖C dk

)
Dl−1 + ‖f‖C‖f‖lL1(P ) dk. (4.19)

In the following, we will show by induction that the latter estimate implies

Dl ≤ ‖f‖L1(P )

((
‖f‖L1(P ) + ‖f‖C dk

)l − ‖f‖lL1(P )

)
. (4.20)
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When l = 1, (4.20) is true because of (4.7). Now let l ≥ 1 be given and suppose (4.20) is
true for l. Then (4.19) and (4.20) imply

Dl+1 ≤
(
‖f‖L1(P ) + ‖f‖C dk

)
Dl + ‖f‖C‖f‖l+1

L1(P ) dk

≤
(
‖f‖L1(P ) + ‖f‖C dk

) (
‖f‖L1(P )

((
‖f‖L1(P ) + ‖f‖C dk

)l − ‖f‖lL1(P )

))
+ ‖f‖C‖f‖l+1

L1(P ) dk

= ‖f‖L1(P )

((
‖f‖L1(P ) + ‖f‖C dk

)l+1 − ‖f‖l+1
L1(P )

)
.

Thus, (4.20) holds for l + 1, and the proof of the induction step is complete. By the
principle of induction, (4.20) is thus true for all l ≥ 1.

Using the binomial formula, we obtain

Dl ≤ ‖f‖L1(P )

(
l∑

i=0

(
l

i

)
‖f‖l−iL1(P ) (‖f‖C dk)i − ‖f‖lL1(P )

)
.

For i = 0, . . . , l we now set

ai :=

(
l

i

)
‖f‖l−iL1(P ) (‖f‖C dk)i .

The assumption (4.17) implies for i = 0, . . . , l − 1

ai+1

ai
=

(
l

i+1

)
‖f‖l−i−1

L1(P ) (‖f‖C dk)i+1(
l
i

)
‖f‖l−iL1(P ) (‖f‖C dk)i

=

l!
(i+1)!(l−i−1)!

l!
i!(l−i)!

‖f‖C dk
‖f‖L1(P )

=
l − i
i+ 1

‖f‖C dk
‖f‖L1(P )

≤ l · ‖f‖C
‖f‖L1(P )

· dk ≤
1

2
.

This gives ai ≤ 2−ia0 for all i = 0, . . . , l and consequently we have

l∑
i=0

ai = a0 +
l∑

i=1

ai

≤ a0 +
l∑

i=1

2−ia0

= a0 ·

(
l∑

i=1

2−i

)
≤ 2a0.

This implies

Dl ≤ ‖f‖L1(P )

(
l∑

i=0

ai − ‖f‖lL1(P )

)
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≤ ‖f‖L1(P )

(
2a0 − ‖f‖lL1(P )

)
= ‖f‖L1(P )

(
2‖f‖lL1(P ) − ‖f‖lL1(P )

)
= ‖f‖l+1

L1(P ).

Using the definition of Dl we thus obtain

Eµ
l∏

j=0

fjk ≤ 2‖f‖l+1
L1(P ).

(ii) Suppose that the correlation inequality (4.8) holds.
Again, the case f = 0 P -a.s. is trivial. For f 6= 0, we estimate Dl defined as in (4.18) in
a slightly different way from above:

Dl ≤

∣∣∣∣∣Eµf0

l∏
j=1

fjk − Eµf0Eµ
l∏

j=1

fjk

∣∣∣∣∣+

∣∣∣∣∣Eµf0Eµ
l∏

j=1

fjk −
l∏

j=0

Eµfjk

∣∣∣∣∣
=

∣∣∣∣∣Eµf0

l∏
j=1

fjk − Eµf0Eµ
l∏

j=1

fjk

∣∣∣∣∣+

∣∣∣∣∣Eµf0Eµ
l∏

j=1

fjk − Eµf0

l∏
j=1

Eµfjk

∣∣∣∣∣ .
Since the stochastic process Z is stationary, the decay of correlations (4.8) together with
h := f , φ :=

∏l
j=1 fjk, and the assumption f ≥ 0 yields∣∣∣∣∣Eµf0

l∏
j=1

fjk − Eµf0Eµ
l∏

j=1

fjk

∣∣∣∣∣ ≤ ‖f‖C∥∥∥
l∏

j=1

fjk

∥∥∥
L1(µ)

dk

= ‖f‖C
∣∣∣Eµ l∏

j=1

fjk

∣∣∣ dk
= ‖f‖C

∣∣∣Eµ l−1∏
j=0

fjk

∣∣∣ dk
≤ ‖f‖C

(∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣+
l−1∏
j=0

Eµfjk

)
dk

= ‖f‖C
(
Dl−1 + ‖f‖lL1(P )

)
dk.

Moreover, for the second term, since the stochastic process Z is stationary, we find∣∣∣∣∣Eµf0Eµ
l∏

j=1

fjk − Eµf0

l∏
j=1

Eµfjk

∣∣∣∣∣ = ‖f‖L1(P )

∣∣∣∣∣Eµ
l∏

j=1

fjk −
l∏

j=1

Eµfjk

∣∣∣∣∣
= ‖f‖L1(P )

∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣
= ‖f‖L1(P )Dl−1.

Combining the above estimates, we get

Dl ≤ ‖f‖C
(
Dl−1 + ‖f‖lL1(P )

)
dk + ‖f‖L1(P )Dl−1
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=
(
‖f‖L1(P ) + ‖f‖C dk

)
Dl−1 + ‖f‖C‖f‖lL1(P ) dk.

This estimate coincides with (4.19). The rest of the argument is the same as in (i), and
the assertion is proved. �

To prove Theorem 4.7, we need to introduce some notations. In the following, we
write hi := h ◦ Zi and

Sn =
n∑
i=1

hi =
n∑
i=1

h ◦ Zi.

We now recall the so-called blocking method. To this end, we partition the set {1, 2, . . . , n}
into k blocks. Each block will contain approximatively l := bn/kc terms. Let r :=
n− k · l < k denote the remainder when we divide n by k.

We now construct k blocks as follows. Define Ii, the indexes of terms in the i-th block,
as

Ii =

{
{i, i+ k, . . . , i+ (l + 1)k}, if 1 ≤ i ≤ r,

{i, i+ k, . . . , i+ lk}, if r + 1 ≤ i ≤ k.

Note that the number of the terms satisfies

|Ii| =

{
l + 1, for 1 ≤ i ≤ r,

l, for r + 1 ≤ i ≤ k.

In other words, the first r blocks each contain l + 1 terms, while the last (k − r) blocks
each contain l terms. Moreover, we have

k∑
i=1

|Ii| =
r∑
i=1

|Ii|+
k∑

i=r+1

|Ii| = r(l + 1) + (k − r)l = n. (4.21)

Furthermore, for i = 1, 2, . . . , k, we define the i-th block sum as

gi =
∑
j∈Ii

hj (4.22)

such that

Sn =
k∑
i=1

gi. (4.23)

Finally, for i = 1, 2, . . . , k, define

pi :=
|Ii|
n
. (4.24)

It follows from (4.21) that

k∑
i=1

pi =
1

n

k∑
i=1

|Ii| = 1.

The following three lemmas will derive the upper bounds for the expected value of the
exponentials of Sn.
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Lemma 4.9. Let Z := (Zn)n≥0 be a Z-valued stationary stochastic process on the proba-
bility space (Ω,A, µ) and P := µZ0. Moreover, let k and l be defined as above, and for a
bounded h : Z → R we define gi and Sn by (4.22) and (4.23), respectively. Then, for all
t > 0, we have

Eµ exp

(
t
Sn
n

)
≤

k∑
i=1

piEµ exp

(
t
gi
|Ii|

)
.

Proof (of Lemma 4.9). It is well-known that the exponential function is convex. Jensen’s
inequality together with

∑k
i=1 pi = 1, (4.23), and (4.24) yields

Eµ exp

(
t
Sn
n

)
= Eµ exp

(
k∑
i=1

tpi
gi
|Ii|

)

≤
k∑
i=1

piEµ exp

(
t
gi
|Ii|

)
. �

Lemma 4.10. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-mixing pro-
cess on the probability space (Ω,A, µ) with rate (dn)n≥0, and P := µZ0. Moreover, for
h : Z → [0,∞), we write hn := h ◦Zn. Finally, let k and l be defined as above. Then, for
all t > 0 satisfying

e
t
|Ii|

h ∈ C(Z) and 2l · ‖e
t
|Ii|

h‖C · dk ≤ ‖e
t
|Ii|

h‖L1(P ), (4.25)

we have

Eµ exp

(
t
gi
|Ii|

)
≤ 2

(
EP exp

(
t
h

|Ii|

))|Ii|
.

Proof (of Lemma 4.10). The ith block sum gi in (4.22) depends only on hi+jk with j
ranging from 0 through |Ii| − 1. Since Z is stationary, Lemma 4.8 with f := exp( t

|Ii|h)
then yields

Eµ exp

(
t
gi
|Ii|

)
= Eµ exp

 t

|Ii|

|Ii|−1∑
j=0

hi+jk


= Eµ exp

 t

|Ii|

|Ii|−1∑
j=0

hjk


= Eµ

|Ii|−1∏
j=0

exp

(
t

|Ii|
hjk

)

≤ 2

(
EP exp

(
t
h

|Ii|

))|Ii|
. �
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Lemma 4.11. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-mixing pro-
cess on the probability space (Ω,A, µ) with rate (dn)n≥0, and P := µZ0. Moreover, for
h : Z → [0,∞), we write hn := h ◦ Zn and suppose that EPh = 0, ‖h‖ ≤ A, ‖h‖∞ ≤ B,
and EPh2 ≤ σ2 for some A > 0, B > 0 and σ ≥ 0. Finally, let k and l be defined as
above. Then, for all i = 1, . . . , k, and all t > 0 satisfying 0 < t < 3l/B and (4.25), we
have

Eµ exp

(
t
gi
|Ii|

)
≤ 2 exp

(
t2σ2

2(l − tB/3)

)
.

Proof (of Lemma 4.11). Because of ‖h‖∞ ≤ B and 2 · 3j−2 ≤ j!, we obtain

exp

(
t

|Ii|
h

)
= 1 +

t

|Ii|
h+

∞∑
j=2

(
t

|Ii|

)j
hj

j!

≤ 1 +
t

|Ii|
h+

∞∑
j=2

(
t

|Ii|

)j
h2Bj−2

2 · 3j−2

= 1 +
t

|Ii|
h+

1

2

(
t

|Ii|

)2

h2

∞∑
j=2

(
tB

3|Ii|

)j−2

= 1 +
t

|Ii|
h+

1

2

(
t

|Ii|

)2

h2 1

1− tB/(3|Ii|)

if tB/(3|Ii|) < 1. This, together with EPh = 0, 1 + x ≤ ex, and l ≤ |Ii| ≤ l + 1, implies(
EP exp

(
t
h

|Ii|

))|Ii|
≤

(
1 +

1

2

(
t

|Ii|

)2

σ2 1

1− tB/(3|Ii|)

)|Ii|

≤

(
exp

(
1

2

(
t

|Ii|

)2

σ2 1

1− tB/(3|Ii|)

))|Ii|
= exp

(
t2σ2

2(|Ii| − tB/3)

)
≤ exp

(
t2σ2

2(l − tB/3)

)
, (4.26)

since the assumed tB/(3l) < 1 implies tB/(3|Ii|) < 1. Lemma 4.10 then yields

Eµ exp

(
t
gi
|Ii|

)
≤ 2 exp

(
t2σ2

2(l − tB/3)

)
. �

Proof (of Theorem 4.7). For k and l as above we define

t :=
lε

σ2 + εB/3
. (4.27)

Then we have

t

|Ii|
≤ t

l
=

ε

σ2 + εB/3
≤ ε

εB/3
=

3

B
. (4.28)
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In particular, this t satisfies 0 < t < 3l/B. Moreover, we find∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥
∞
≤ exp

(
3

B
·B
)

= e3. (4.29)

Then, the assumption (4.3) together with the bounds (4.29) and (4.28) implies∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥ ≤ ∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥
∞

∥∥∥∥ t

|Ii|
h

∥∥∥∥ ≤ e3 · t
|Ii|
‖h‖ ≤ 3e3A

B
. (4.30)

Since −B ≤ h ≤ B, we further find∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥
L1(P )

= EP exp

(
t

|Ii|
h

)
≥ exp

(
3

B
· (−B)

)
= e−3. (4.31)

Now we choose k := b(log n)
2
γ c+ 1, which implies k ≥ (log n)

2
γ . On the other hand, since

(log n)
2
γ ≥ 1 for n ≥ n0 ≥ 3, we have k ≤ 2(log n)

2
γ . This implies

l =
n− r
k
≥ n

k
− 1 ≥ 1

2

n

(log n)
2
γ

− 1 ≥ 1

4

n

(log n)
2
γ

, (4.32)

since we have n ≥ 4(log n)
2
γ for n ≥ n0. Now, by (4.29), (4.30), (4.31), (4.6), and (4.14)

we obtain

l · ‖e
t
|Ii|

h‖C
‖e

t
|Ii|

h‖L1(P )

· dk ≤ l · ‖e
t
|Ii|

h‖∞ + ‖e
t
|Ii|

h‖
‖e

t
|Ii|

h‖L1(P )

· c · exp (−bkγ)

≤ n ·
e3 + 3e3A

B

e−3
· c · exp

(
−b(log n)2

)
≤ n · 404c(3A+B)

B
· exp

(
−b log n · 3

b

)
≤ n · n

2

2
·n−3 =

1

2
,

i.e., the assumption (4.25) is valid.
Summarizing, the value of t defined as in (4.27) satisfies 0 < t < 3l/B and the

assumption (4.25). In other words, all the requirements on t in Lemma 4.11 are satisfied.
Now, for this t, by using Markov’s inequality, Lemma 4.9, and Lemma 4.11, we obtain

for any ε > 0,

P

(
Sn
n
> ε

)
= P

(
exp

(
t
Sn
n

)
> exp (tε)

)
≤ exp (−tε)Eµ exp

(
t
Sn
n

)
≤ exp (−tε)

k∑
i=1

piEµ exp

(
t
gi
|Ii|

)

≤ exp (−tε) · 2 exp

(
t2σ2

2(l − tB/3)

) k∑
i=1

pi
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= 2 exp

(
−tε+

t2σ2

2(l − tB/3)

)
. (4.33)

Substituting the definition of t into the exponent of inequality (4.33), we get

−tε+
t2σ2

2(l − tB/3)
= − lε2

σ2 + εB/3
+

l2ε2

(σ2 + εB/3)2 ·
σ2

2
(
l − lεB/3

σ2+εB/3

)
= − lε2

σ2 + εB/3
+

lε2

σ2 + εB/3
· σ2

2 (σ2 + εB/3− εB/3)

=
−lε2

2 (σ2 + εB/3)
,

hence

P
(

1

n
Sn > ε

)
≤ 2 exp

(
− −lε2

2 (σ2 + εB/3)

)
.

Using the estimate (4.32), we thus obtain

P
(

1

n
Sn > ε

)
≤ 2 exp

(
− nε2

8(log n)
2
γ (σ2 + εB/3)

)
,

for all n ≥ n0 and ε > 0. Setting τ := nε2

8(logn)
2
γ (σ2+εB/3)

, we then have

µ

({
ω ∈ Ω :

1

n

n∑
i=1

h(Zi(ω)) ≥ ε

})
≤ 2e−τ , n ≥ n0.

Simple transformations and estimations then yield

µ

ω ∈ Ω :
1

n

n∑
i=1

h(Zi(ω)) ≥

√
8(log n)

2
γ τσ2

n
+

8(log n)
2
γBτ

3n


 ≤ 2e−τ

for all n ≥ n0 and τ > 0. �

4.2.2 Comparisons

In the section, we compare Theorem 4.7 with some other concentration inequalities for
non-i.i.d. processes Z. Here, Z is real-valued and h is the identity map if not specified
otherwise.

Example 4.12. Theorem 2.3 in [8] shows that smooth expanding systems on [0, 1] have
exponential decay of correlations (4.7). Moreover, if, for such expanding systems, the
transformation T is Lipschitz continuous and satisfies the conditions at the end of Section
4 in [35] and the ergodic measure µ satisfies [35, condition (4.8)], then [35, Theorem 2]
shows that for all ε ≥ 0 and n ≥ 1, the left-hand side of (4.15) is bounded by

exp

(
−ε

2n

C

)
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where C is some constant independent of n. The same result has been proved in [30,
Theorem III.1] as well. Obviously, this is a Hoeffding-type bound instead of a Bernstein-
type one. Hence, it is always larger than ours if the denominator of the exponent in (4.15)
is smaller than C.

Example 4.13. For dynamical systems with exponentially decreasing φ̃-coefficients, see
[116, condition (3.1)], [116, Theorem 3.1] provides a Bernstein-type inequality for 1-
Lipschitz functions h : Z → [−1/2, 1/2] w.r.t. some metric d on Z, in which the left-hand
side of (4.15) is bounded by

exp

(
− Cε2n

σ2 + ε log f(n)

)
(4.34)

for some constant C independent of n and f(n) being some function monotonically in-
creasing in n. Note that modulo the logarithmic factor log f(n) the bound (4.34) is the
same as the one for i.i.d. processes. Moreover, if f(n) grows polynomially, cf. [116, Section
3.3], then (4.34) has the same asymptotic behaviour as our bound. However, geometri-
cally C-mixing is weaker than Condition (3.1) in [116]: Indeed, the required exponential
form of Condition (3.1) in [116], i.e.

sup
k≥0

φ̃(Ak0,Zk+2n−1
k+n ) := sup

k≥0
sup
f∈Fn

∥∥E(f(Zk+2n−1
k+n )

∣∣Ak0)− Ef(Zk+2n−1
k+n )

∥∥
∞ ≤ c · e−bn

for some c, b > 0 and all n ≥ 1, where Zk+2n−1
k+n := (Zk+n, . . . , Zk+2n−1) and Fn is the set

of 1-Lipschitz functions f : Zn → [−1
2
, 1

2
] w.r.t. the metric dn(x, y) := 1

n

∑n
i=1 d(xi, yi),

implies

sup
k≥0

sup
f∈F

∥∥E(f(Zk+n)
∣∣Ak0)− Ef(Zk+n)

∥∥
∞ ≤ c ·ne−bn ≤ c · e−b̃n

for some c, b̃ > 0 and all n ≥ 1, where F is the set of 1-Lipschitz functions f : Z → [−1
2
, 1

2
]

w.r.t. the metric d. In other words, processes satisfying Condition (3.1) in [116] are φ̃-
mixing, see (4.10), which is stronger than geometrically C-mixing, see again Figure 4.1.
Moreover, our result holds for all γ > 0, while [116] only considers the case γ = 1.

Example 4.14. In general, the probability bound in the inequality (3.10) and our result
are not comparable, since not every α-mixing process satisfies (4.7) and conversely, not
every process satisfying (4.7) is necessarily α-mixing, see Figure 4.2. Nevertheless, for
φ-mixing processes, it is easily seen that this bound is always worse than ours for a fixed
γ > 0, if n is large enough.

Example 4.15. If the additional ζ > 0 is ignored, (3.12) will have the same asymptotic
behavior as our bound. In general, however, the additional ζ does influence the asymptotic
behavior. For example, the oracle inequality we obtain in the next section would be slower
by a factor of nξ, where ξ > 0 is arbitrary, if we used (3.12) instead. Finally, note that in
general the bound (3.12) and ours are not comparable, see again Figure 4.2.

Moreover, it is easily seen that modulo the term n−1B in the denominator, the bound
(3.16) coincides with ours for geometrically φ-mixing processes with γ = 1. However, our
bound also holds for such processes with γ ∈ (0, 1).
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φ-mixingα-mixing C-mixing

Figure 4.2: Relationship between α-, φ-, and C-mixing processes

Example 4.16. Similarly as in Example 4.15, we conclude that modulo some arbitrary
small number ζ > 0 and the logarithmic factor log n instead of (log n)2, the bound (3.18)
coincides with ours. Again, this bound and our result are not comparable, see Figure 4.2.

Example 4.17. For stationary, weakly dependent processes of centered and bounded
random variables with |cov(X1, Xn)| ≤ c · exp(−bn) for some c, b > 0 and all n ≥ 1, [57,
Theorem 2.1] bounds the left-hand side of (4.15) by

exp

(
− ε2n

C1 + C2ε5/3n2/3

)
(4.35)

where C1 is some constant depending on c and b, and C2 is some constant depending on
c, b, and B. Note that the denominator in (4.35) is at least C1, and therefore the bound
(4.35) is more of Hoeffding type.

4.3 Learning Rates for C-mixing Processes

In this section, we derive learning rates for SVMS and observations generated by a ge-
ometrically C-mixing processes. More precisely, in Subsection 4.3.1, we use the oracle
inequality established in Section 2.6 to derive the learning rates for SVMs. Then, in
Subsection 4.3.2, we present an oracle inequality for forecasting of time-reversed C-mixing
dynamical systems and derive the learning rates for SVMs.

4.3.1 Learning Rates for SVMs

Since the Bernstein-type inequality (4.15) is of the general form (2.16) with n0 that

depends on the semi-norm bounds A and B, C = 2, Cσ(n) = 0, Cη(n) = 8(log n)
2
γ , η = 1,

CE(n) = 0, and CB(n) = 8(log n)
2
γ /3 ≥ 8/3, we immediately conclude that the oracle

inequality (2.23) holds also for geometrically (time-reversed) C-mixing processes with

CV (n) := 512(12V + 1)(log n)
2
γ /3, (4.36)

CΣ(n) := 16(log n)
2
γ , (4.37)

and some n∗0 associated with the semi-norm to be determined in the following.
In order to formulate the threshold number n∗0 for the oracle inequality, we need to

make following assumptions on the semi-norm bounds.
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Assumption 4.18. Let ‖ · ‖ be a semi-norm satisfying (4.3) and Fr be defined as in
(2.19), assume that we have a monotonic decreasing sequence (Ar)r∈(0,1] such that

‖L ◦ Ûf‖ ≤ Ar for all f ∈ Fr and r ∈ (0, 1] . (4.38)

Then it is easily to conclude that ‖L ◦ Ûf‖ ≤ A1 for all f ∈ Fr and r ∈ (0, 1].
Moreover, let f0 ∈ F be a fixed function, and A0, A

∗ ≥ 0 be constants such that
‖L ◦ f0‖ ≤ A0, ‖L ◦ Ûf0‖ ≤ A0, and ‖L ◦ f ∗L,P‖ ≤ A∗.

Now, recall that in the proof of Theorem 2.23, the Bernstein-type inequality has been
used three times, namely, for EDn(hf0−hÛf0

)−EP (hf0−hÛf0
) and EDnhÛf0

−EPhÛf0
in (2.30),

and EPhÛfDn,Υ − EDnhÛfDn,Υ in (2.29).

(i) h := (hf0 − hÛf0
)− EP (hf0 − hÛf0

).

Obviously, we have L◦f0−L◦ Ûf0 ≥ 0 which implies hf0−hÛf0
= L◦f0−L◦ Ûf0 ∈ [0, B0].

Moreover, we find

‖hf0 − hÛf0
‖ = ‖(L ◦ f0 − L ◦ f ∗L,P )− (L ◦ Ûf0 − L ◦ f ∗L,P )‖

= ‖L ◦ f0 − L ◦ Ûf0‖
≤ ‖L ◦ f0‖+ ‖L ◦ Ûf0‖
≤ 2A0.

Thus, n∗0 should at least be the maximum of e
3
b and

n
(1)
0 := min

{
m ≥ 3 : m2 ≥ 808c(6A0 +B0)

B0

and
m

(logm)
2
γ

≥ 4

}
.

(ii) h := hÛf0
− EPhÛf0

.

We first observe that the assumed L(x, y, t) ≤ 1 for all (x, y) ∈ X × Y and t, t′ ∈
[−M,M ] implies ‖hÛf0

‖∞ ≤ 1, and hence we have ‖hÛf0
−EPhÛf0

‖∞ ≤ 2. Furthermore,

we have

‖hÛf0
‖ = ‖L ◦ Ûf0 − L ◦ f ∗L,P‖

≤ ‖L ◦ Ûf0‖+ ‖L ◦ f ∗L,P‖
≤ A0 + A∗.

Thus, n∗0 should at least be the maximum of e
3
b and

n
(2)
0 := min

{
m ≥ 3 : m2 ≥ 808c(3A0 + 3A∗ + 2)

2
and

m

(logm)
2
γ

≥ 4

}
.

(iii) h := hÛf − EDnhÛf , f ∈ Fr.
For f ∈ Fr, we have ‖EPhÛf − hÛf‖∞ ≤ 2. Furthermore, for f ∈ Fr and k ≥ 0 with

2kr ≤ 1, by the assumption (4.38) we find

‖hÛf‖ = ‖L ◦ Ûf − L ◦ f ∗L,P‖ ≤ ‖L ◦ Ûf‖+ ‖L ◦ f ∗L,P‖ ≤ A2kr + A∗ ≤ A1 + A∗.
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Thus, n∗0 should at least be the maximum of e
3
b and

n
(3)
0 := min

{
m ≥ 3 : m2 ≥ 808c(3A1 + 3A∗ + 2)

2
and

m

(logm)
2
γ

≥ 4

}
.

To make the above conditions satisfied, we can set

n∗0 := max
{
n

(1)
0 , n

(2)
0 , n

(3)
0 , e

3
b

}
:= max

{
min

{
m ≥ 3 : m2 ≥ K and

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
(4.39)

with K = 1212c(4A0 + A∗ + A1 + 1).
The following lemma shows that the required bounds on ‖L ◦ f‖ do hold for specific

loss functions, if C = Lip and the involved functions f ∈ F are Lipschitz, too.

Lemma 4.19. Let (X, d) be a metric space, Y ⊂ [−M,M ] with M > 0. Moreover, let
f : X → R be a bounded, Lipschitz continuous function. Then the following statements
hold true:

(i) For the least square loss L, see (2.8), we have

|L ◦ f |1 ≤ 2
√

2 (M + ‖f‖∞) (1 + |f |1). (4.40)

(ii) For the τ -pinball loss L, see (2.9), we have

|L ◦ f |1 ≤
√

2(1 + |f |1). (4.41)

Proof (of Lemma 4.20). (i) For the least square loss (2.8), by using a + b ≤ (2(a2 +
b2))1/2, we obtain

|L(x, y, f(x))− L(x′, y′, f(x′))|
= |(y − f(x))2 − (y′ − f(x′))2|
= |y − f(x) + y′ − f(x′)| · |y − f(x)− y′ + f(x′)|
≤ (|y + y′|+ |f(x) + f(x′)|) (|y − y′|+ |f(x)− f(x′)|)
≤ 2 (M + ‖f‖∞) (|y − y′|+ |f |1|x− x′|)
≤ 2 (M + ‖f‖∞) (1 + |f |1) (|y − y′|+ |x− x′|)
≤ 2
√

2 (M + ‖f‖∞) (1 + |f |1)‖(x, y)− (x′, y′)‖2

for all (x, y), (x′, y′) ∈ X × Y , that is, we have proved the assertion.
(ii) Let L be the the τ -pinball loss (2.9) and define

D := L(x, y, f(x))− L(x′, y′, f(x′)).

We divide the proof into the following four cases. If y ≥ f(x) and y′ ≥ f(x′), we have

|D| = |τ(y − f(x))− τ(y′ − f(x′))| = τ |(y − y′)− (f(x)− f(x′))|.
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If y < f(x) and y′ < f(x′), in an exactly similar way we obtain

|D| = (1− τ)|(y − y′)− (f(x)− f(x′))|.

Moreover, in case of y ≥ f(x) and y′ < f(x′), we get

|D| = |τ(y − f(x)) + (1− τ)(y′ − f(x′))| ≤ |(y − f(x)) + (f(x′)− y′)|.

Similar arguments to the case y < f(x) and y′ ≥ f(x′) show that

|D| = | − (1− τ)(y − f(x))− τ(y′ − f(x′))| ≤ |(y − f(x)) + (f(x′)− y′)|.

Summarizing, for all (x, y), (x′, y′) ∈ X × Y , we have

|L(x, y, f(x))− L(x′, y′, f(x′))| ≤ |(y − y′)− (f(x)− f(x′))|
≤ |y − y′|+ |f(x)− f(x′)|.

The rest of the argument is similar to that of part (i), and the assertion is proved. �

If C = C1 and the involved functions f ∈ F are also continuous differentiable, we have
a similar result as (4.40) for least square loss,

‖L ◦ f‖C1 ≤ 2 (M + ‖f‖∞) (1 + ‖f‖C1).

However, an estimate like (4.41) can not be achieved for general f ∈ C1, since the τ -pinball
loss is not differentiable at the point 0.

Finally, we give the required bounds on ‖L◦f‖ for C = BV and the involved functions
f ∈ F are also of bounded variation. For the sake of brevity, we omit the proof.

Lemma 4.20. Let (X, d) be a metric space, Y ⊂ [−M,M ] with M > 0. Moreover, let
f : X → R be a bounded, Lipschitz continuous function. Then the following statements
hold true:

(i) For the least square loss L, we have

‖L ◦ f‖BV ≤ (M + ‖f‖∞) (2M + ‖f‖BV ).

(ii) For the τ -pinball loss L, we have

‖L ◦ f‖BV ≤ 2(M + ‖f‖BV ).

In this rest of section, we derive the learning rates for LS-SVMs and SVMs for quan-
tile regression using Gaussian RBF kernels from geometrically (time-reversed) C-mixing
processes.

Example 4.21 (Least Square Regression with Gaussian Kernels). For M > 0,
let Y := [−M,M ] and P be a distribution on Rd × Y such that X := suppPX ⊂ B`d2
is a bounded domain with µ(∂X) = 0, where B`d2

denotes the closed unit ball of d-

dimensional Euclidean space `d2. Furthermore, let PX be absolutely continuous w.r.t. the
Lebesgue measure µ on X with associated density g : Rd → R such that g ∈ Lq(X)
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for some q ≥ 1. Moreover, let f ∗L,P : Rd → R be a Bayes decision function such that
f ∗L,P ∈ L2(Rd)∩Lip(Rd) as well as f ∗L,P ∈ Bt

2s,∞ for some t ≥ 1 and s ≥ 1 with 1
q

+ 1
s

= 1.

Recall that there exists a constant c > 0 such that for all σ ∈ (0, 1], there is an f0 ∈ Hσ

with ‖f0‖∞ ≤ c, ‖f0‖2
Hσ
≤ cσ−d, and

RL,P (f0)−R∗L,P ≤ cσ2t ,

see e.g. [43, Section 2]. Moreover, [97, Lemma 5.5] shows every function f in Hσ is
Lipschitz continuous with

|f |1 ≤
√

2σ−1‖f‖Hσ(X) ,

and this implies

| Ûf0|1 ≤ |f0|1 ≤
√

2σ−1‖f0‖Hσ(X) ≤
√

2cσ−1.

Moreover, there exists a constant C∗ <∞ such that |f ∗L,P |1 ≤ C∗, since we have assumed
that f ∗L,P ∈ Lip(Rd). Then, Lemma 4.20 (i) yields

4A0+A1 + A∗ + 1

= 2
√

2 (M + ‖f‖∞)

(
4 + 4|f0|1 + 1 + sup

f∈F1

|f |1 + 1 + |f ∗L,P |1 + 1

)
+ 1

≤ 2
√

2 (M + ‖f‖∞)

(
7 + 4

√
2cσ−1 + sup

r≤1

√
2σ−1λ−1/2r1/2 + C∗

)
+ 1

= 2
√

2 (M + ‖f‖∞)
(

7 + 5
√

2cσ−1λ−1/2 + C∗
)

+ 1

≤ C
(
σ−1λ−1/2 + 1

)
≤ 2Cσ−1λ−1/2 ≤ 2Cn

for all σ, λ ∈ (0, 1] with λσ2 ≥ n−2, where C is a constant independent of n, λ, and σ.
Consequently, from (4.39) we obtain

n∗0 := max

{
2C,min

{
m ≥ 3 :

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
.

Then, similar arguments as in Example 3.17 yield that, for all ξ > 0, all n ≥ n∗0, the
LS-SVM using Gaussian RKHS Hσ and

λn = n−1 and σn = n−
1

2t+d ,

learns with rate

n−
2t

2t+d
+ξ ,

since the requirement λnσ
2
n ≥ n−2 is automatically satisfied by the assumed t ≥ 1.

Again, modulo the arbitrarily small ξ > 0, these learning rates are optimal, see e.g.
[103, Theorem 13] or [49, Theorem 3.2]. Moreover, adaptivity can be discussed along the
lines in Section 3.4.

The following example discusses learning rates for SVMs for quantile regression. For
more information on such SVMs we refer to [43, Section 4].
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Example 4.22 (Quantile Regression with Gaussian Kernels). Let X ⊂ Rd, Y :=
[−1, 1], P be a distribution on X×Y such that suppPX ⊂ B`d2

and PX is absolutely contin-
uous with respect to the Lebesgue measure µ. Assume that the corresponding conditional
density h( · , x) := dP ( · |x)

dµ|Y
is uniformly bounded, that is, h(y, x) ≤ b for Lebesgue-almost

all y ∈ Y . Then, for p = ∞, P has a τ -quantile of upper p-average type q = 2 with
ϕ(x) := b, see [43, Definition 4.4]. Furthermore, if we assume that, for PX-almost all
x ∈ X, the density h( · , x) is bounded away from 0, i.e., h(y, x) ≥ b̂ for some 0 < b̂ ≤ b for
Lebesgue-almost all y ∈ Y , then, for p = ∞, P also has a τ -quantile of lower p-average
type q = 2 with κ(x) := 2b̂, see [43, Definition 4.2]. Then for the τ -pinball loss Lτ , [100,
Theorem 2.8] yields a variance bound of the form

EP (Lτ ◦ Ûf − Lτ ◦ f ∗τ,P )2 ≤ V ·EP (Lτ ◦ Ûf − Lτ ◦ f ∗τ,P ) ,

for all f : X → R, where V ≥ 2 is a suitable constant. Moreover, let PX be absolutely
continuous w.r.t. the Lebesgue measure on X with associated density g ∈ Lu(X) for some
u ≥ 1 and for τ ∈ (0, 1), let f ∗τ,P ∈ L2(Rd) ∩ L∞(Rd) and f ∗τ,P ∈ Bt

2s,∞ for some t ≥ 1
and s ≥ 1 such that 1

s
+ 1

u
= 1. Similar arguments to Theorem 4.21 shows then that the

essentially optimal learning rate (4.50) can be achieved as well. Note that this rate is for
the excess Lτ -risk, but since [100, Theorem 2.7] shows

‖ Ûf − f ∗τ,P‖2
L2(PX) ≤ c

(
RLτ ,P ( Ûf )−R∗Lτ ,P

)
for some constant c > 0 and all f : X → R, we actually obtain the same rates for
‖ Ûf −f ∗τ,P‖2

L2(PX). Last but not least, optimality and adaptivity can be discussed along the
lines of LS-SVMs.

4.3.2 Forecasting of Dynamical Systems

In this section, we proceed with the study of the forecasting problem of dynamical systems
considered in [97]. First, let us recall some basic notations and assumptions. Let Ω be
a compact subset of Rd, (Ω,A, µ, T ) be a dynamical system, and S0 ∈ Ω be a random
variable describing the true but unknown state at time 0. Moreover, for E > 0, assume
that all observations of the stochastic process described by the sequence T := (T n)n≥0

are additively corrupted by some i.i.d., [−E,E]d-valued noise process E = (εn)n≥0 defined
on the probability space (Θ, C, ν) which is (stochastically) independent of T . It follows
that all possible observations of the system at time n ≥ 0 are of the form

Xn = T n(S0) + εn. (4.42)

In other words, the process that generates the noisy observations (4.42) is (T n(S0)+εn)n≥0.
In particular, a sequence of observations (X0, . . . , Xn) generated by this process is of the
form (4.42) for a conjoint initial state S0.

Now, given an observation of the process T := (T n)n≥0 at some arbitrary time, our
goal is to forecast the next observable state. To do so, we will use the training set

Dn = ((X0, X1) , . . . , (Xn−1, Xn))

=
(
(S0 + ε0, T (S0) + ε1) , . . . ,

(
T n−1(S0) + εn−1, T

n(S0) + εn
))
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whose input/output pairs are consecutive observable states. In other words, our goal is
to use Dn to build a forecaster

fDn
: Rd → Rd

whose average forecasting performance on future noisy observations is as small as possible.
In order to render this goal, we will use the forecaster

fDn
:=
(
f
D

(1)
n
, . . . , f

D
(d)
n

)
, (4.43)

where f
D

(j)
n

is the forecaster obtained by using the training set

D(j)
n := ((X0, πj(X1)), . . . , (Xn−1, πj(Xn)))

which is obtained by projecting the output variable of Dn onto its jth-coordinate via the
coordinate projection πj : Rd → R.

In other words, we build the forecaster fDn by training separately d different decision

functions on the training sets D(1)
n , . . . ,D(d)

n . These problems can be considered as the
(supervised) statistical learning problems formulated in Chapter 2 with the help of the
following Notations.

For E > 0 and a fixed j ∈ {1, . . . , d}, we write X := K + [−E,E]d, Y := πj(X) and
Z := X × Y . Moreover, we define the X × Y -valued process Z = (Zn)n≥0 = (Xn, Yn)n≥0

on (K × Θ,B ⊗ C, µ ⊗ ν) by Xn := T n + εn and Yn := πj(T
n+1 + εn+1). In addition, we

write P := (µ⊗ ν)(X0,Y0). Obviously, if the stochastic process T is C-mixing and the noise
process E is i.i.d, then the stochastic processes

Z = (Xn, Yn)n≥0 = (T n(S0) + εn, πj(T
n+1(S0) + εn+1))n≥0

is C-mixing as well.
To formulate the oracle inequality for our original d-dimensional problem, we need to

introduce the following concepts. Firstly, for the decision function f : Rd → Rd, it is
necessary to introduce a loss function L : Rd → [0,∞) such that

L (Xi − f(Xi−1)) = L
(
T i(S0) + εi − f(T i−1(S0) + εi−1)

)
gives a value for the discrepancy between the forecast f(T i−1(S0) + εi−1) and the obser-
vation of the next state T i(S0) + εi. We say that a loss L : Rd → [0,∞) can be clipped
at M > 0, if, for all t = (t1, . . . , td) ∈ Rd, we have L(Ût ) ≤ L(t), where Ût = (Ût1, . . . , Ûtd)
denotes the clipped value of t at {±M}d. Moreover, the loss function L : Rd → [0,∞) is
called separable, if there exists a distance-based loss L : X × Y × R → [0,∞) such that
its representing function ψ : R→ [0,∞) has a unique global minimum at 0 and satisfies

L(r) = ψ(r1) + · · ·+ ψ(rd), r = (r1, . . . , rd) ∈ Rd. (4.44)

In our problem-setting, the average forecasting performance is given by the L-risk

RL,P (f) :=

∫∫
L (T (x) + ε1 − f(x+ ε0)) ν(dε)µ(dx), (4.45)
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where ε = (εi)i≥0 and P := ν⊗µ. Naturally, the smaller the risk, the better the forecaster
is. Hence, we ideally would like to have a forecaster f ∗L,P : Rd → Rd that attains the
minimal L-risk

R∗L,P := inf
{
RL,P (f)|f : Rd → Rd measurable

}
. (4.46)

The assumption (4.44) then implies RL,P (f) =
∑d

j=1RL,P (fDn
(j)) and

RL,Dn(fDn
) =

d∑
j=1

R
L,D

(j)
n

(f
D

(j)
n

) ,

where Dn, D
(j)
n are the empirical measures associated to Dn, D(j)

n respectively.
Finally, let L : Rd → [0,∞) be a clippable loss and F be a hypothesis set with 0 ∈ F .

A regularizer Υ on Fd, that is, a function Υ : Fd → [0,∞), is also said to be separable,
if there exists a regularizer Υ on F with Υ(0) = 0 such that Υ(f) =

∑d
j=1 Υ(fj) for

f = (f1, . . . , fd). Then, for δ ≥ 0, a learning method whose decision functions fDn,Υ ∈ Fd
satisfy

Υ(fDn,Υ) +RL,Dn(ÙfDn,Υ) < inf
f∈Fd

(Υ(f) +RL,Dn(f)) + dδ (4.47)

for all n ≥ 1 and Dn ∈ (X × Y )dn is called dδ-approximate clipped regularized empirical
risk minimization (dδ-CR-ERM) with respect to L, Fd, and Υ.

With all these preparations above, the oracle inequality for geometrically C-mixing
dynamical systems with i.i.d noise processes, can be stated as following:

Theorem 4.23. Let Ω ⊂ Rd be compact and (Ω,A, µ, T ) be a dynamical system. Suppose
that the stationary stochastic process T := (T n)n≥0 is geometrically time-reversed C-mixing
and E = (εn)n≥0 is some i.i.d. noise process defined on (Θ, C, ν) which is independent of
T . Furthermore, let L : Rd → [0,∞) be a clippable and separable loss function with the
corresponding loss function L : X × Y ×R→ [0,∞) satisfying the properties described as
in Theorem 2.23. Finally, let Υ : Fd → [0,∞) be a separable regularizer. Then, for all
fixed f0 = (f0, . . . , f0), ε > 0, δ ≥ 0, τ ≥ 1, n ≥ n0 as in (4.39), and r ∈ (0, 1] satisfying
(2.22), every learning method defined by (4.47) satisfies with probability µ ⊗ ν not less
than 1− 16e−τ :

Υ(fDn,Υ) +RL,P (ÙfDn,Υ)−R∗L,P
< 2Υ(f0) + 4RL,P (f0)− 4R∗L,P + 9dr + 5dε+ 2dδ. (4.48)

Here the constants CV (n) and CΣ(n) are defined by (4.36) and (4.37), respectively.

Proof (of Theorem 4.23). From the discussion in the beginning of Section 4.3.1 we
know that

Υ(f
D

(j)
n ,Υ

) + EPhÛf
D

(j)
n ,Υ

≤ 2Υ(f0) + 4EPhf0 + 4r + 5ε+ 2δ

holds with probability µ⊗ν not less than 1−16e−τ . Using (4.44) and the definition (4.43)
we then easily obtain the assertion. �
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Again, this general oracle inequality can be applied to SVMs.

Example 4.24 (Least Square Regression with Gaussian Kernels). For M > 0,
let Ω := [−M,M ]d and P be a distribution on [−M,M ]d+1 such that suppPX ⊂ B`d2
is a bounded domain with µ(∂X) = 0, where B`d2

denotes the closed unit ball of d-

dimensional Euclidean space `d2. Furthermore, let PX be absolutely continuous w.r.t. the
Lebesgue measure µ on X with associated density g : Rd → R such that g ∈ Lq(X)
for some q ≥ 1. Moreover, let f ∗L,P : Rd → R be a Bayes decision function such that
f ∗L,P ∈ L2(Rd)∩Lip(Rd) as well as f ∗L,P ∈ Bt

2s,∞ for some t ≥ 1 and s ≥ 1 with 1
q

+ 1
s

= 1.
Then, for all ξ > 0, all n ≥ n0 with

n0 := max

{
2C,min

{
m ≥ 3 :

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
.

where C is a constant independent of n, λ, and σ, the LS-SVM using Gaussian RKHS
Hσ and

λn = n−1 and σn = n−
1

2t+d , (4.49)

learns with rate

n−
2t

2t+d
+ξ . (4.50)

Again, modulo the arbitrarily small ξ > 0, these learning rates are (4.50) optimal.
Moreover, adaptivity can be discussed along the lines in Section 4.3.1. Finally, we present
the learning rates for SVMs for quantile regression.

Example 4.25 (Quantile Regression with Gaussian Kernels). Let Ω = [−1, 1]d,
P be a distribution on X × Y such that suppPX ⊂ B`d2

and PX is absolutely contin-
uous with respect to the Lebesgue measure µ. Assume that the corresponding conditional
density h( · , x) := dP ( · |x)

dµ|Y
is uniformly bounded, that is, h(y, x) ≤ b for Lebesgue-almost

all y ∈ Y . Then, for p = ∞, P has a τ -quantile of upper p-average type q = 2 with
ϕ(x) := b, see [43, Definition 4.4]. Furthermore, if we assume that, for PX-almost all
x ∈ X, the density h( · , x) is bounded away from 0, i.e., h(y, x) ≥ b̂ for some 0 < b̂ ≤ b for
Lebesgue-almost all y ∈ Y , then, for p = ∞, P also has a τ -quantile of lower p-average
type q = 2 with κ(x) := 2b̂, see [43, Definition 4.2]. Then for the τ -pinball loss Lτ , [100,
Theorem 2.8] yields a variance bound of the form

EP (Lτ ◦ Ûf − Lτ ◦ f ∗τ,P )2 ≤ V ·EP (Lτ ◦ Ûf − Lτ ◦ f ∗τ,P ) ,

for all f : X → R, where V ≥ 2 is a suitable constant. Moreover, let PX be absolutely
continuous w.r.t. the Lebesgue measure on X with associated density g ∈ Lu(X) for some
u ≥ 1 and for τ ∈ (0, 1), let f ∗τ,P ∈ L2(Rd) ∩ L∞(Rd) and f ∗τ,P ∈ Bt

2s,∞ for some t ≥ 1
and s ≥ 1 such that 1

s
+ 1

u
= 1. Similar arguments to Theorem 4.21 shows then that the

essentially optimal learning rate (4.50) can be achieved as well. Note that this rate is for
the excess Lτ -risk, but since [100, Theorem 2.7] shows

‖ Ûf − f ∗τ,P‖2
L2(PX) ≤ c

(
RLτ ,P ( Ûf )−R∗Lτ ,P

)
for some constant c > 0 and all f : X → R, we actually obtain the same rates for
‖ Ûf − f ∗τ,P‖2

L2(PX). Again, optimality and adaptivity can be discussed along the lines of
LS-SVMs.
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4.4 Experiments

In this section, we study the learning performances of LS-SVMs on data sets generated
from some dynamical systems including Logistic map, Hénon map and Lorenz System
and compare the square root of mean square errors (SR-MSE) with other algorithms such
as the polynomial regression (PR) and the multilayer perceptron neural network (MLP-
NN). For PR, we will use polynomials of degree 2. Moreover, for MLP-NN, we always
use Bayesian regularization, 10 neurons in the hidden layer, 70% as training data, 15% as
validation data and 15% as testing data. Finally, we employ a new SVM library provided
by Steinwart [96] to train hyper-parameter λ and σ based on a geometrically spaced 10
by 10 grid by using 5-fold cross validation.

4.4.1 Logistic Map

For r ∈ [0, 4], the logistic map is defined as follows:

xn = r ·xn−1 · (1− xn−1).

The selection for the parameter r = 4 has been widely studied and in this case the
dynamical system has an exponential decay of correlations of the form (4.6), see [37]
and [120]. With a start value from the uniform distribution on [0, 1] we generated data
samples D from this system with r = 4. Then, by adding N (0, σ2

i ) noises to D, σi = 0.1 · i,
i = 1, 2, 3, we obtain three data sets D1, D2, D3, respectively, with different noises.
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Figure 4.3: The SR-MSE of PR, MLP-NN, and LS-SVM for the data generated from the logistic
map with parameter r = 4 on the training set size 600, 3000, 15000, and 60000. Subfigures (a),
(b), and (c) show the results for data with low noise N (0, 0.01), medium noise N (0, 0.04), and
high noise N (0, 0.09), respectively.

Note that for data sets with low and medium noises, MLP-NN and LS-SVM are
significantly better than PR. In these cases, LS-SVM is only worse than MLP-NN for
small data sets. Moreover, LS-SVM has almost the same behaviour in all three cases.
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4.4.2 Hénon Map

For a, b ∈ R, the Hénon map is defined as follows:

xn+1 = 1− a ·x2
n + yn

yn+1 = b ·xn

The map depends on two parameters, a and b, [12] has proved that the Hénon map has
good convergence properties, if a < 2 and b small. In particular, the classical Hénon map
with parameters a = 1.4 and b = 0.3 has an exponential decay of correlations. With start
values from the uniform distribution on [−0.5, 0.5], we generated data samples from the
classical Hénon map.
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Figure 4.4: The SR-MSE of PR, MLP-NN, and LS-SVM for the data generated from the
Hénon map with parameters a = 1.4 and b = 0.3 on the training set size 600, 3000, 15000, and
60000. Subfigures (a), (b), and (c) show the results for data with low noise N (0, 0.01), medium
noise N (0, 0.04), and high noise N (0, 0.09), respectively.

Again, for data sets with low and medium noises, MLP-NN and LS-SVM performs
significantly better than PR. However, LS-SVM has a lower error than MLP-NN for small
data sets and in case of low noises MLP-NN is better than LS-SVM only for medium size
of data sets. Notice that there is a jump in the picture of high noises, SR-MSE becomes
larger when the size of data sets increases from 3000 to 15000.

4.4.3 Lorenz System

The Lorenz system is a system of ordinary differential equations defined as:

ẋ = σ(y − x)

ẏ = ρx− y − xz
ż = −βz + xy
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Recently, a first result on robust exponential decay of correlations was proved in [5] for
a nonempty open subset of geometric Lorenz attractors. Unfortunately, this open set
does not contain the classical Lorenz attractor with parameters σ = 10, ρ = 28, β = 8/3.
However, [4] has shown that all C∞ geometric Lorenz attractors including classical Lorenz
attractor have superpolynomial decay of correlations in the sense of [41], that is, we have
a polynomial decay of correlations of the form (4.12) with b larger than any integer. With
a start value of (x, y, z) = (−13,−14, 47) we have generated data samples by numerical
integration using a fourth order Runge-Kutta method from the classical Lorenz attractor
with parameters σ = 10, ρ = 28, β = 8/3.
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Figure 4.5: The SR-MSE of PR, MLP-NN, and LS-SVM for the data generated from the
classical Lorenz system with parameters σ = 10, ρ = 28, β = 8/3 on the training set size 600,
3000, 15000, and 60000. Subfigures (a), (b), and (c) show the results for data with low noise
N (0, 0.01), medium noise N (0, 0.04), and high noise N (0, 0.09), respectively.

Roughly speaking, in all these cases, MLP-NN performs better than LS-SVM and PR.
It is surprising that these latter two have almost the same behaviour.

4.4.4 Conclusions

Let us now briefly summarize the above results. Generally speaking, increasing sample
sizes lead to decreasing errors except for the case of the classical Hénon map with high
noises. Moreover, notice that for the logistic map and the classical Hénon map with low
or medium noises, MLP-NN and LS-SVM perform significantly better than PR. In these
cases, LS-SVMs has the lowest error for large data sets. However, we see that MLP-NN
performs at best for the classical Lorenz systems, particularly for these with high noises.
Hence, there is no algorithm which always has the best error. The performances of an
algorithm depend not only on the underlying system but also on the noise strength.
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5. Conclusion and Outlook

In this thesis, we established a new oracle inequality for generic regularized empirical risk
minimization algorithms and used them to derive the learning rates for α- and C-mixing
processes and some learning methods such as ERM and SVMs.

In Section 2, we first presented some elementary notions of statistical learning theory.
Then, based on a generic form of Bernstein’s inequality for stationary stochastic processes,
we derived an oracle inequality for a generic class of learning algorithms including ERM
and SVMs. Chapter 3 was then dedicated to investigate geometrically α-mixing processes
Z for which the α-mixing coefficients satisfy

α(Z, n) ≤ c exp
(
−bnγ

)
, n ≥ 1,

for some constants b > 0, c ≥ 0, and γ > 0. When our oracle inequality applied to
ERM, it turns out that our oracle inequality coincides with the one for ERM learning
from i.i.d. processes up to some constants and the effective number of observations neff

as in (2.26). Furthermore, we obtained learning rates for LS-SVMs using given generic
kernels of the form

n
−min{β, β

β+pβ+p}
eff , (5.1)

which are slightly worse than the recently obtained optimal rates [103] for i.i.d. observa-
tions because of the factor pβ in the denominator. This difference is not surprising, when
considering the fact that [103] used heavy machinery from empirical process theory such
as Talagrand’s inequality and localized Rademacher averages, while our results only use
a light-weight argument based on a generic Bernstein inequality and the peeling method.
However, when using sufficiently smooth kernels like Gaussian kernels for LS-SVMs and
SVMs for quantile regression, we actually obtain the rate

n
− 2t

2t+d
+ξ

eff . (5.2)

Modulo the arbitrarily small ξ > 0, (5.2) is optimal for geometrically α-mixing processes
satisfying (3.5) up to the factor γ

γ+1
in the exponent and optimal for geometrically α-

mixing processes satisfying (3.5) with γ ≥ 1, geometrically α-mixing Markov chains, and
geometrically φ-mixing processes.

In Chapter 4, we established a Bernstein-type inequality for geometrically C-mixing
processes with rate of decay

dn = c exp
(
−bnγ

)
, n ≥ 1,

for some constants b > 0, c ≥ 0, and γ > 0. It also turns out to be a Bernstein inequality
of general form in Chapter 3. Hence, we obtain the same oracle inequality as in Chapter 3
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with neff = n/(log n)
2
γ for n ≥ n0 with n0 being a number associated with the semi-norm.

Applying this oracle inequality to SVMs using the Gaussian kernels for both least squares
and quantile regression, it turns out that the resulting learning rates match, up to some
arbitrarily small extra term in the exponent, the optimal rates for i.i.d. processes.

Finally, we list some open questions about the refinement of the analysis of learning
from non-i.i.d. observations:

1. Oracle inequalities for non-stationary processes. In this thesis, we always assumed
that the processes are stationary. However, there exist dynamical systems that are
not stationary, see e.g. [47], but asymptotically mean stationary, see e.g. [46] and
[102, Definition 2.2].

2. Optimal learning rates for LS-SVMs with generic kernels. The peeling approach
enabled us to achieve the suboptimal rate (5.1) with an additional factor βp in
the denominator. Recall that for i.i.d. processes, the optimal learning rates are
obtained with the help of some heavy machinery from empirical process theory such
as Talagrand’s inequality, doubly localized Rademacher averages, and some recent
estimates on expectations of random covering numbers. However, so far, for non-
i.i.d. observations, these techniques are not available in the literature.

3. Optimal learning rates for SVMs using Gaussian kernels. So far, for Gaussian
kernels, we only achieved the essentially optimal learning rates (5.2). Comparing to
the optimal learning rates for i.i.d. processes, there is an additional term ξ > 0 in
the exponent.

4. Bernstein-type inequality for geometrically α-mixing processes. As we have seen, the
Bernstein-type inequality established by [73] has the effective number of observations

n
γ
γ+1 , which was improved to n/(log n)2 by [71] for the case γ ≥ 1. However, a

refinement for γ ∈ (0, 1) is still a challenging problem.
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