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Rows in Two-Dimensional Quasilattices 
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S. HOFFMANN and H.-R. TREBIN 

Pentagonal Penrose tilings and their octagonal and dodecagonal counterparts represent simple models 
for two-dimensional quasicrystals. We investigate the properties of rows, which are the analogues to 
lattice lines of periodic lattices, by a method based on the projection formalism. It enables us to derive 
the vertex pattern and the mean vertex density of an arbitrary row as well as the mean vertex density 
of the corresponding family and its dependence on the row direction. The row separation and their 
quasiperiodic sequences are also being studied. 

Penrosemuster und ihre okta- und dodekagonalen Verwandten stellen einfache Modelle fUr zwei­
dimensionale Quasikristalle dar. Wir untersuchen die Eigenschaften von Atomketten, die den 
Gittergeraden in periodischen Gittern entsprechen, mit Hilfe eines auf dem Projektionsformalismus 
beruhenden Verfahrens. Wir konnen sowohl das Muster der Vertexpunkte und die mittlere Vertexdich te 
auf einer beliebigen Geraden als auch die iiber die gesamte Geradenschar gemittelten Vertexdichten 
und ihre Abhangigkeit von der Scharrichtung bestimmen. Ebenso berechnen wir die zwischen den 
Geraden einer Schar auftretenden Abstande und ihre quasiperiodische Abfolge. 

1. Introdudion 

Shortly after the discovery of an icosahedral quasicrystal by Schechtman et al. [1], Bendersky 
[2] reported the observation of another quasicrystalline phase with fivefold symmetry. It is 
build up by periodically stacked planes, each plane being quasiperiodic. Later quasicrystals 
with eightfold and twelvefold symmetry were seen (Wang et al. [3] and Ishimasa et al. [ 4]). 

These discoveries strengthened the interest in quasiperiodic tilings of the plane, which con­
stitute basic models for two-dimensional quasicrystals and were first proposed by Penrose [ 5]. 

After the work of the de Bruijn [6], it has been shown by Kramer and Neri [7], Levine 
and Steinhardt [8], Duneau and Katz [9], and Kalugin et al. [10] that quasiperiodic structures 
can be obtained by a cut and projection method in a higher dimensional periodic lattice. 

Katz and Duneau [11] had generalized the notion of lattice planes and lines to 
three-dimensional icosahedral q uasilattices and had developed a method to investigate their 
properties by an appropriate cut and projection method. We extend this method to study 
quasilattice lines in two-dimensional quasilattices of eightfold and tenfold symmetry. Results 
for icosahedral quasilattices derived by Kupke and Trebin [12] are presented elsewhere. 

Our interest in quasilattice geometry was stimulated by a computer simulation showing 
that channeling is feasible in quasicrystals, and by the following experimental confirmation 
by Carstanjen et al. [13]. Furthermore the knowledge oflattice planes and lines is essential 
for the understanding of other experiments such as electron transmission microscopy. 

After repeating the cut and projection method for the Fibonacci sequence in one dimension 
we briefly describe the method for arbitrary quasilattices and then specialize to the cases 

1) Pfaffenwaldring 57, W-7000 Stuttgart 80, FRG. 
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of interest here. Results on the vertex pattern on an arbitrary row, its mean vertex density 
and properties of families of parallel rows are given for octagonal and decagonal quasi­
lattices. 

2. The Cut and Projection Method 

2.1 A one-dimensional model 

To establish the notations we briefly repeat the cut and projection method for one­
dimensional quasicrystals (Fig. 1). 

The quasilattice consists of two types of tiles, a long (l) and a short (s) interval. A tiling 
line 1E is drawn across a square lattice 7L2 and a strip S is generated by shifting the unit 
cell y<2

l of 7L2 along lE. The tiling is obtained by orthogonal projection of all lattice points 
inside the strip onto lE, the two intervals just being the projection of the two nonparallel 
edges of the unit cell. If the slope of the line 1E is irrational, the lattice and 1E have at most 
one point in common. Clearly the tiling is aperiodic. Projecting all lattice points onto a 
line perpendicular to 1E yields L', a dense set of points in lE'. The projection of the strip 
onto lE' is called acceptance domain K = n'(S) = n' (y<2l), n' being the projector onto lE'. 
A point in K n L' uniquely corresponds to a point of the tiling. This correspondence can 
be extended to lines in two-dimensional quasilattices. It is the basis of our investigation. 

y 
• 

X 

Fig. 1. A one-dimensional quasilattice T is obtained by the cut and projection method . Shifting the 
unit cell of 7L2 along the tiling space lE yields the strip, the projection of the unit cell on lE' gives the 
acceptance domain K. The projection n(~) of the lattice points inside the strip onto the tiling space lE 
yields the vertex points of the tiling. The tiles consist of long (/) and short (s) intervals. The tiling ir. 
quasi periodic if the slope is irrational (tan 4> rt <Q). The image of a vertex point under the natural 
isomorphism (pis the projection of the lattice point e onto the orthogonal space JE' : cp(n(~)) = n' (~} 
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Each lattice point whose projection onto lE is followed by a long (short) interval projects 
to a point above (below) 1E in lE'. As L' fills lE' densely and homogeneously, the ratio of 
the lengths or the two parts of K yields the relative probability of long and short intervals. 
This analysis can be extended to arbitrary finite subpatterns of the tiling by the polar 
calculus [11 ]. The knowledge of the lengths l and s and of their probabilities of occurrence 
allows us to calculate the mean distance between two points of the tiling. The mean density 
of vertex points is the inverse of the mean distance and is obtained directly as the quotient 
of the surface F k of the acceptance domain K and the volume Q of the unit cell of the 
lattice: Qv = FKjQ (ELSER [14]). 

As we shall see later the sequence of points on any line of a planar quasilattice is 
constructed by a cut and projection method in a two-dimensional lattice just as above, 
with two generalizations: Neither it is necessary that the lattice is a square lattice nor that 
the acceptance domain is the projection of the unit cell. 

2.2 The cut and projection method in general 

In general we start with a discrete periodic lattice A embedded in Euclidian space .IR.n which 
is invariant under the action of the symmetry group under consideration (here C8 , C10J 
Euclidian space divides as a rule into two invariant subspaces 1E and JE.L of dimension d 
and a lattice subspace U of dimension u such that n = 2d + u. 1E is the tiling or physical 
space, lE' = JE.L EB U is the orthogonal space. Let n, n.t, n', and nu denote the orthogonal 
projection of the lattice points on lE, IE\ lE', and U, respectively. The projection L = n(A) 
and L .l = nj_(A) of the lattice A onto 1E and 1EJ_ yields dense point sets, whereas the projection 
onto U is discrete. Thus the set L' = n' (A) consists of densely filled hyperplanes perpendicular 
to U. 

The quasilattice T is obtained by projecting all lattice points inside a strip S onto the 
physical space lE: T = n(A n S). S is generated by translating a subset K of lE' along IE: 
S = IE + K. The projected pattern is discrete as long as K is bounded [11 ]. Because of the 
saturation [11] of the projection n' the equalities n'(S n A) = n'(S) n n'(A) = K n L' are 
valid, and the strip method amounts to select all lattice points whose projection to lE' falls 
into the acceptance domain K. A shift of K along U yields a different local isomorphism 
class (Ll-class) of the tiling, see [15]. n is not necessarily injective whenever there is a 
nontriviallattice subspace U. But the strip S can always be chosen such that the restriction 
n

1
s is injective. Let us denote the lattice basic vectors by ~;i and their projections onto lE, 

lE' etc. by ei, e~ etc. A generic lattice vector ~ is divided into components in lE, JE.l, and U : 
~ = n(~) + n.l (~) + nu(~)=: ~ 11 + ~.L + ~u. There is a unique correspondence rp, the natural 
isomorphism, between the points of the pattern and the points ofK n L' :rp: T --+ K n L' with 
rp = n' a n 1~ 1. 

We now treat the two cases of interest separately: 
Octagonal quasilattices as shown in Fig. 2 (bottom) are obtained by projecting points of 

a hypercubic lattice 7l4
. The acceptance domain is a regular octagon given by the projection 

of the unit cell into lE' (Fig. 2, top left). The area of the surface of K is F K = 1 + V2· The 
four-dimensional volume of the unit cell n being unity this leads to a vertex density 

Qv = 1 + V2 of the tiling. The pattern consists of two types of tiles, a square of surface 

F = 1/2 and a rhombus ofF = 1/4 V2, the latter being V2-times more frequent than the 
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W = D EB D..L 

• • • • • 

• • • 

K .l. 

• • 

r . 
D.L = cp(D) 

• • • 

Fig. 2. Investigation of rows in an octagonal quasilattice. In the octagonal tiling (bottom) a line D 
and some members of a family of rows perpendicular to D are being displayed. The row D n T of the 
tiling and the corresponding line DJ. = cp(D) in the orthogonal space (top left) span a lattice subspace 
W = D $ D·\ and the pattern D n T is completely determined by the lattice W n 7L4 and the strip 
W n S (top right). To investigate the distances between the rows perpendicular to Done has to analyse 
the pattern n:0 (T), which leads to a stdp method in the same plane W but with lattice nw(lr) and 
strip nw(S). W n 7l4 is a sublattice of nw(7L4

), the additional points of the latter are marked with open 
circles. The projection onto D of the additional points inside the strip corresponds to the sections of 
D with the rows of the family not falling on a vertex point 

square. Each vertex point belongs to one tile on the average, so the vertex density can be 
derived directly without using the argument of Elser [14], mentioned above. There is no 
invariant lattice subspace U, and L' fills lE' densely. 

Decagonal quasilattices also consist of two types of tiles, an oblate rhombus (F = sin (2n/5)) 
and a prolate one (F = sin (4n/5)), as shown in Fig. 3. Here the oblate rhombus is 
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Fig. 3. In the above Penrose tiling every vertex point P = n(~) is labeled with o, 6., <>, *• depending 
on the layer of K n L' into which the corresponding point <p(P) falls (see also Fig. 4). Some members 
for two different families of rows are shown, parallel (D1 11 e0 ) and perpendicular (D2 .l e0 ) to the basis 
vector e0 • Both cases discussed in the text are manifest: points from all four layers fall on the rows 
parallel to D 2 (case (a)), whereas only points from one layer lie on the rows parallel D1 (case (b)) 

. r-times more frequent, r = ! q/5 + 1) being the golden mean, and the mean vertex density 

of the tiling amounts to C!v = r ~ = tan (2n/ 5). In the projection formalism one 
starts with a lattice Z 5

. The acceptance domain is given by the projection of the unit 
cell onto E', a rhombic icosahedron (Fig. 4, top). The orthogonal space contains a lattice 
subspace U, here spanned by the main diagonal o = L e1• Therefore L' consists of equally 

. i 

spaced planes perpendicular to L\ = 1R · o of separation 11<>11/5. For the original Penrose 
pattern (Penrose-LI-class, Fig. 3) the acceptance domain contains four layers of pentagonal 
shape and two points of L' (Fig. 4). There are five layers if the acceptance domain is shifted 
by y and y · o fjo Z, leading to a generalized Penrose pattern. 

3. Rows in Quasilattices 

The natural generalization of lattice directions are the quasilattice directions spanned by 
vectors d, which are integral linear combinations of the projected basis vectors of the lattice: 

n 

d = L n1ei> n1 E 7l. A straight line along a quasilattice direction is called a row if one or 
i = O 

more vertex points fall on it. A set of parallel rows such that every vertex point of the 
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Fig. 4. The acceptance domain K of 
the Penrose tiling is a rhombic 
icosahcdron containing for layers of 
the projected points L'. Two sections 
through K n [ ' CL' is the closure of 
L') are shown, one parallel (left side, 
df = ef) and the other perpendicu­
lar (right side, d~ = ef+ 2 - ef+ 3 ) to 
one of the basis vectors ef. The main 
diagonal ~ gives the second direc­
tion of the cutting plane. The differ­
ent layers are labeled with o, 6, <>, 
* in the same way as in Fig. 3 and 
6. On the left side all four line 
segments of the section with K n [ ' 
contain points of L' (case (a)), whe­
reas this is true for only one segment 
on the right side (case (b)) 

infinite tiling falls on one of them will henceforth simply be referred to as a family of rows. 
n 

The direction d = I, niei of the rows is labelled by its "Miller indices" (n 1 n2 ... n"). Notice 
i = O 

that different indices can belong to the same direction. 
We will now investigate the properties of such families and for this purpose we extend 

a method developed by Katz and Duneau [11] for icosahedral quasilattices. It is based on 
the strip method. 

A unique point x' in the acceptance domain belongs to each vertex point x of the tiling 
T via the natural isomorphism: cp (x) = x' E K n L'. To an arbitrary quasilattice direction 
d corresponds a unique direction d .L E E.L. If there is a nontrivial lattice subspace U of 
dimension u however, those points in K n L' which are related to the vertex points on a 
line D = IR · d E lE, i.e. the points x E D n T, may lie in different planes of L'. In this case 
it is a (u + I)-dimensional volume D .L EB U in the orthogonal space which belongs to the 
row D n T: x E D n T ~ x ' E (D.L EB U) n (K n L'). Not every section of Dj_ EB U with 
K n [ ' (L' denotes the closure of L') necessarily contains points of L', depending on the 
direction under consideration, a fact which complicates the analysis of tilings obtained by 
projection with nonvanishing U. The number of vertex points on a given row clearly is 
equal to the number of points in (D.L EB U) n (K n L'), and because the nonempty sections 
are filled homogeneously, this number is proportional to their lengths. 

A quasilattice direction D and the corresponding volume D.L EB U span a (u + 2)­
dimensional lattice space V = D .L EB U EB D with V n lE' = D.L EB U and V n lE = D. 
(This is not necessarily the case for an arbitrary (non-quasilattice) direction D.) The row 
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D n T can therefore be derived by a cut and projection method in V with lattice Av = V n A 
and strip Sv = V n S where D is the tiling space, and the acceptance domain is given by 
(DJ. Ef) U) n (K n L'). So D n T can be investigated by the same methods as used for the 
investigation of the tiling itself. Furthermore the lattice points of Av are all situated in 
two,dimensional planes Wi perpendicular to U, whose number equals the number of layers 
of K n L'. This fact reduces the analysis to one or more two-dimensional problems. It 
allows us to determine the exact positions of vertex points on a given line D as well as the 
different intervals and their probability of occurrence. Also the mean separation a of strings 
can be calculated and leads directly to the mean string density ij = ev . a through the vertex 
density Qv· ij is the mean number of vertex points per unit length on the rows of a family. 

From one row to the next only the lengths of the sections (DJ. EB U) n (K n L') do 
change, so that the variation of the string density over a family of rows is completely 
determined by the shape of K. On the contrary, the differences in the mean string density 
from one direction to another are mainly caused by the different unit cells of Av. 

The projection ofthe pattern T onto a row D, n0 (T), is also calculated by a strip-projection 
technique, as it correspond to the projection of all points of K n L' onto DJ. EB U. So to 
every point of n0 (T) corresponds a point of n<Di EE> Ul (K n L'), and the pattern is obtained 
by a strip method in the volume V = DJ. EB U Ef) D with lattice A = nv(A) and strip 
Sv = nv(S). Clearly D n T is a subpattern of n0 (T). 

The separations between the points of n0 (T) are those between the rows of a family 
perpendicular to D. The acceptance domain n(oi®Ul (K n L') is bounded for any quasilattice 
direction and therefore leads to a discrete pattern. Hence the members of a: family always 
have discrete separations, justifying the notion of rows as generalisation of lattice lines. 

We now treat the two cases of interest separately and give results on the vertex density 
of rows, its variation with the members of the family, the separations between these members 
and their respective probability of occurrence. 

3.1 Rows in the octagonal tiling 

As the projected points L' fill the orthogonal space lE' densely, a unique line D J. = D' 
corresponds to each quasilattice line D in the octagonal tiling, and the pattern D n T 
(n0 (T)) can be obtained by a strip method in the plane W = D EB D ' with lattice W n 7l4 

(nwCZ4
)) and strip W n S (nw(S)), as outlined in Fig. 2. The occupation density e on a given 

row D is given by the section of D' n K and the area of the unit cell Fu of W n 7l4
: 

e = ID' n KI/F u· As F u is equal for all rows of a family, the shape ofK completely determines 
the possible values of e and the distribution over the members of a family can be derived 
by inspecting Fig. 5: Part a) shows the acceptance domain K with two possible sections 
D' n K denoted A and B. The lengths n of all possible sections for different (but still parallel) 
lines D' are shown in part b). As the sections of all D' with i' are densely and homogeneously 
distributed on i', the number of lines D' with density n between n0 and n0 + ~n is 
proportional to the intervals ~x~ and ~x~. In the limit ~n -+ 0 the probability p(n) dn of 
finding a row with occupation densities between n and n + dn is given by the inverse of 
ldnjdx'l, drawn in part c) of the figure. To get the occupation densities Q in the quasilattice 
one has to divide the values n by the corresponding surface F u of the unit cell. 

The same distribution is shown for the [1 TOO] and the [2100] directions in part d) and e). 
Due to the simple geometric shape of K, the probabilities are always constant on intervals, 

and there is always a finite maximum occupation density emax (in some directions occurring 
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Fig. 5. P robability distribution of the occupation densities in octagonal tilings. The height of the 
acceptance domain K (part a)) over the line i' is displayed in part b). i' is perpendicular to the line 
D' = cp(D), D being the direction under investigation, here the [1000] direction. From this picture the 

n + An 

probability distribution p(n) can be derived, part (c), see text for further explanations. J p(n') dn' is 
n 

the probability to find an occupation density in the interval (n, n + ~n). A minimal occupation density 
nmin > 0 exists in this particular direction, and the maximal density occurs infinitely many times. On 
the bottom (parts d), e)) the probability distribution in [1 lOO] and [2100] direction are being displayed 
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just once, in others infinitely often). With the exception of the [1000] direction the densities 
are densely distributed between 0 and l2max• each density occurring at most twice. The 
distribution p(n) = p(F ue) yields the mean vertex density Q, which can be calculated 
independently from the mean separation d of the rows via the equation Q = Qvd. 

The distances between the rows are being read off the projected pattern n0 (T), with D 
perpendicular to the rows. But two mutually perpendicular directions are equivalent due 
to the eightfold symmetry. D has always irrational slope with respect to the projected lattice 
nw(Z4

), and therefore the sequence of separations always is quasiperiodic. As the acceptance 
domain Kw is bounded the separations have a nonzero value. 

Table 1 
Row separations in the octagonal tiling for the [1000], [1 lOO], and [2100] direction 

1000 1100 2100 

a= !y2n = 0.5 q/2 - 1) n = 0.38268 Hl2n = 0.17870 

b= t (2 - }/2) n = 0.20711 t (2 - }/2) n = 0.27059 (}/2 - 1) n = 0.10468 

c= t (3 }12 - 4) n = 0.11209 ! (2 - }12) n = 0.07402 

p(a) = ! j/2 = 0.70711 t (t/2 - 1) = 0.20711 l4 (5 V2 - 6) = 0.07651 

p(b) = t (2 - t/2) = 0.2929 i (4 - t/2) = 0.64645 t (4 - y'l) = 0.36940 

p(c) = ~ (2 - j/2) = 0.14645 1
34 (4- }12) = 0.55409 

1 2-}12 20- 1 Vs- 2]/2 =0.09336 d V2 - 1 = 0.41421 
2V4-2J/2 707 

!Id!! V2 v4 _ 2 0 v10 + 4y'2 

gl 1000 1100 2100 

K2 0101 0011 1212 

Fu V2 2 V34 
1 + 20 

0lno·(K)I 1 + V2 v4 + 2 0 Vs - 2 0 
y'2 (1 + 0) Vs- 2 V2 

Q 1 * v4 + 2 0 
(1 + 2y'2)VJ.4 

The values are given for a tiling obtained through projection from the hypercubic lattice 7L4
. So the 

length of the edges of the tiles is Vi/2. n = 11 d 11 denotes the norm of the vector d spanning the line 
under consideration. a, b, c label the different separations, p(a) etc. their respective probabilities. The 
bottom part of the table contains a compilation of data for the investigated directions. a is the mean 
distance between the rows of a family, g 1, g2 span the lattice nw(Z4

) in the plane W = D EB D'. Fu is 
the area of the surface of the unit cell of nw(Z4

), F K = 1 + V2 that of the acceptance domain K. The 
length of the projection of K onto D' is ln0 .(K)j. The mean vertex density Q on the rows of a family 
is given by Q = FKJ'(In0 ,(K)I Fu) and related to the mean distances d between the rows via ij = evd, 
where the mean vertex density Qv of the tiling is given by Qv = 1 + y2. 
24 physica (b) 174/2 
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Of particular interest are the distances between the rows in the [1000] direction: There are 
only two of them and they build a so-called "Octonacci "-sequence, given by the substitution 
law A --l- AAB and B --l- A. In the other directions we always find three different distances, 
the length of the largest being the sum of the length of the other two. The values of the 
separations and their probabilities, calculated with the polar calculus as outlined in 
Section 2.1, are listed in Table 1 together with the mean separations d. 

3.2 Rows in decagonal quasilattices 

Due to the nontrivial subspace U = ~ spanned by the main diagonal o of the cubic unit 
cell the analysis is here somewhat more complicated than in the octagonal case. We only 
investigated the original Penrose tiling, with y · o E 71.. In this case K n L' consists of four 
layers with pentagonal shape. 

t 01100 
- 10000 

20011 

J_r 

31121 

JJ 

11212 

~ 

J 

10112 

~ 

~ 

10111 

~ 

r 
n-.. 

Fig. 6. Probability distribution of 
the occupation density for some 
families of rows in a Penrose pat­
tern. The direction of the family is 
indicated by its Miller indices. This 
distribution can be derived anal­
ogously to octagonal quasilattices 
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Fig. 7. Investigation of separations be­
tween rows in a Penrose tiling. The four 
planes W; in the volume V spanned by 
D, D_~_, and L\ are shown (rows perpen­
dicular e0 , i.e. D 11 e0 ). The lattice points 
in the planes W; which fall into the 
strips nv(S) n W; are marked with o, 
6, <>, and *• according to the number 
i of the plane Wi. The width of the strip 
nv(S) n W; is the length of the line 
segment of Fig. 4. Notice that not every 
intersection of the lattice lines corre­
sponds to lattice points of nv(Z5)! Fig. 4, 
bottom left, shows a section through 
the planes W i parallel to L\. The layers 
with index 0 and 5 consists of one point 
only. The planes Wi are spanned by 
Kt = (11114) and g 2 = (tTTlO) 

The points in the sections (D_j_ EB ~) n (K n L') correspond to the points of a row 
D n T. There are two different cases, depending on the direction: Either all sections of 
(D_j_ EB 11) n (K n [')contain points of L' (case (a)) or only one (case (b)). In the latter case 
only points of one layer fall on a given row via <p - 1

, the next parallel row containing points 
of another single layer, as can be seen in Fig. 3, where the vertex points are marked according 
to the layer of L' where its partners lie (following an idea of Ishihara and Yamamoto [16]). 
If case (a) holds for a direction D, case (b) is realized for the perpendicular direction, and 
vice versa. Apart from that fact the determination of occupation densities and probability 
distributions for a family is analogous to the octagonal case, the distribution of the 
probabilities of the vertex densities is shown in Fig. 6. Case (a) holds for the directions of 
which the distributions are displayed on the left, the perpendicular directions are shown on 
the right. As in the octagonal case every density from zero to a maximum occurs, but the 
probability distribution is more complicated due to the four layers of K n L'. 

The same two cases (a) and (b) occur in the analysis of the projected pattern n0 (T). The 
lattice points in the lattice Av = nv(Z5

) fall into four lattices 1\ = Av n Wi. The projection 
of these four lattices onto one plane W parallel Wi is shown in Fig. 7 for the [OliOO] 
direction, for which case (a) holds. The calculation of the separations and of their probabilities 
with the polar calculus can be very time consuming, but the mean separation a can be 
derived directly from the lengths of the layers of the acceptance domain in the planes wi 
and the surface of the unit cells of A;. In case (b) one obtain identical lattices in all four 
planes Wi and the calculations are relatively simple. The mean separation a is given in 
Table 2 for the directions investigated. The values of a reflect the symmetry of the tiling, 

24* 
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Table 2 
Mean separations a between rows in Penrose tilings 

angle Miller- mean relative 
indices distance occupation density 

(%) 

0.000° 00001 0.256872 lOO 
4.386° 200II 0.054078 21 
6.645° 1T212 0.044134 17 
8.268° 21III 0.053674 21 
9.732° 10112 0.073876 29 

11.355° 3ti2I 0.032065 12 
13.614° 10111 0.074433 29 
18.000° OllOO 0.186628 73 

cl is proportional to the mean occupation density Q on the rows, 
which is given in percent for the directions investigated. The 
absolute values are presented for a tiling projected from the 
lattice 7L5

• The angles listed below are those between the 
quasilattice lineD and the bases vector e0 . Due to the symmetries 
d(36° + cp) = d(cp) and d(l8° - cp) = d(l8° + cp) (compare 
Fig. 9) we list only values in the range from 0" to 18°. 

Table 3 

Distances between rows in the [00001] and [01 lOO] direction 

distances probabilities 

[00001] direction ~ oo 

a = lo V 5 + vs (5 -vs)= 0.37176 p(a) = i <VS- 1) = 0.30902 

b = 2
1
0 V 5 + vs (3 vs - 5) = o.2297s p(b) = t = o.5 

c = 1
1
0 Vs+ vs(s - 2 vs)= o.142oo p(c) = !<3 - vs)= 0.19098 

a = i (3 - vs)/ lid 11 = * v 5 + vs (3 - vs) = 0.256872 

[01 lOO] direction ~ 18° 

a = vr t = 0.31623 

b = vr ~ qrs - 1) = 0.19544 

c = vr t (3 - vs) = 0.12079 

vr * (2 vs - 4) = 0.07465 

p(a) = VS - 2 = 0.23607 

p(b) = i (17 - 7 y5) = 0.336 XX 

p(c) = t (1/5 - 1) = 0.30902 

p(d) = ! ct/5 - 2) = o.118o3 

a= i cVS- 2)/lld 11 = Vf i q/5 - 2) = o.ts6628 

The separations are labelled with a, b, c, and d, their respective probabilities with 
p(a) etc. d is a vector spanning the projection lineD, lld 11 denotes its norm. The 
absolute values are valid for a tiling obtained through projection from the 
hypercubic lattice 71.5 , the length of the edges of the tiles is therefore V2;5. The 
sequence of distances is displayed graphically in Fig. 8 
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Fig. 8. Separations between the rows of the family parallel (left part) and perpendicular (right part) 
to one of the basis vectors e;. Three different distances a, b, and c occur in the case shown on the 
left-hand side, every second distance is b, a, and c appear according to a Fibonacci sequence. After 
regrouping the distances as shown on the right-hand side, the occurrence of these groups is governed 
by the same building law : every second sequence is b = acdca and a = bbcbb, and c = b follow a 
Fibonacci sequence. The length of the horizontal line segments is proportional to the occupation 
density 12 of the row. The values of the separations are given in Table 3 

that is d(q;) = d(36° + q;). But for the original Penrose pattern (i.e. y · t5 E .Z) a further 
symmetry exists, resulting from the symmetry of the layers of the acceptance domain: 
d(l8° + <p) = d(l8° - <p). This symmetry has been observed experimentally by Carstanjen 
et al. [13] and justifies our restriction to this special LI -class. The values for the separations 
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Fig. 9. Directional dependence of the mean vertex density on a family of rows in a) a pentagonal 
Penrose pattern and b) an octagonal quasilattice. The radius of the points is proportional to the density 
and their location on the unit circle indicates the direction of the corresponding family. Only a 90" 
section of the full circle is being displayed. See also Table 2 

itself are listed only for the two most symmetric directions in Table 3. In [10000] direction the 
separations a and care arranged according to a Fibonacci sequence, every second separation 
ish (Fig. 8). The sequence in [01 TOO] direction can be related to the same sequence as above 
by regrouping the separations as indicated in the figure. In Fig. 9 the directional dependence 
of the mean vertex density on a family of rows in a pentagonal Penrose pattern and an 
octagonal quasilattice is shown. 

4. Conclusions 

We have generalized a method of Katz and Duneau [11] developed for the investigation 
of rows in icosahedral quasilattices to quasilattices having several layers in the acceptance 
domain. 

By this method we have investigated the properties of rows in octagonal and pentagonal 
quasilattices. Such rows are well-defined. We have calculated the separations between 
parallel rows, the vertex pattern, and the occupation density of individual rows as well as 
the mean occupation density of a whole family for some highly symmetric directions. 
Especially the latter should be of great help for the interpretation of channeling experiments 
with decagonal quasicrystals, as the Lindhard theory [17] predicts good channeling properties 
for rows with high occupation density. 

For a direct comparison with experimental results one should investigate more realistic 
models of quasicrystals such as that by Steurer and Kuo [18] or Burkov [19}. They can 
also be investigated by our method, because the atomic hypersurfaces of different atoms 
(Al and Cu/Co in this model) correspond to the different layers of L' n K in the cut and 
projection method. The two cases discussed in the Penrose pattern have interesting 
consequences : Case (a) leads to mixed strings, that is strings containing both Al and Cu/Co, 
whereas case (b) gives rise to strings containing only one sort of atoms. 

Our method can also be applied to dodecagonal quasilattices, but due to the exis­
tence of at least twelve layers in the acceptance domain the calculations are rather 
tedious. 
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