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Notation

The following table shows the significant symbols used in this work.

Symbol Definition Dimension

Greek Letters:

αk Arbitrary temporal characteristic of order k [-]
αL Longitudinal dispersivity [L]
αT Transversal dispersivity [L]
βtot Capacity coefficient [-]
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ΓDiri Dirichlet boundary [-]
ΓNeu Neumann boundary [-]
κ Shape parameter of Matérn family [-]
λ Isotropical correlation length of quantity specified by
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[L]

μ Mean value of quantity specified by subscript [-]
ν Slope parameter [-]
ω Moment of memory function [-]
σ Standard deviation of quantity specified by subscript [-]
θ Vector of uncertain structural parameters [-]
ξ Vector of uncertain boundary parameters [-]
ξ Arbitrary base function [T]
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b Saturated thickness [L]
c Solute concentration of mobile domain [M/L3]
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De Effective diffusion coefficient [L2/T]
Dm Molecular diffusion coefficient [L2/T]
D Dispersion tensor [L2/T]
h Water head [L]
k Vector of uncertain conceptual parameters [-]
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k Temporal moment order [-]
K Highest temporal moment order [-]
m∗

k kth raw temporal moment [Tk]
mk kth normalized temporal moment [Tk]
mk,c kth centralized temporal moment [Tk]
mk,s kth standardized temporal moment [-]
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n Unit vector normal to interface [-]
p System pressure [M/LT2]
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r General system response, e.g., pressure p [-]
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T Transmissivity (2d) [L2/T]
t Time [T]
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Operators and Other Symbols:

∂ ( ) Partial derivative
Δ Differential operator
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∇ Nabla operator
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Abbreviations:
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FEM Finite Element Method
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Abstract

It is often stated that computational models are the only means to predict the future of hy-
dro(geo)logical systems. Those cases that would inevitably benefit from a view into the fu-
ture make reliable predictions often a challenging endeavor because they typically involve
complex, coupled and dynamic systems addressing large-scale relationships. Examples in-
clude global warming [e.g., Schmidt et al., 2006], reactive transport on the catchment scale
[e.g., Destouni et al., 2010], CO2 sequestration [e.g., Kopp et al., 2009], radioactive waste
disposal [e.g., Pollock, 1986; Olivella et al., 1994] or, very recently, hydraulic fracking [e.g.,
Myers, 2012].

Computational model complexity becomes even more drastic, when facing the ubiquitous
fact that hydro(geo)logical systems can never be fully described because their parameters
are incompletely known [Oreskes et al., 1994]. This leads to the need of quantifying the un-
certainty and assessing the risk inherent in model predictions [Christakos, 1992; Oreskes
et al., 1994; Rubin, 2003; Tartakovsky, 2007]. Incorporating field data into models helps to
reduce the uncertainty of predictions [e.g., Kitanidis, 1995; Gómez-Hernández et al., 1997;
Evensen, 2007; Franssen et al., 2009], but inevitably leads to so-called inverse problems
[Tarantola, 1987] which imposes yet another computational burden.

For that reason, reducing computational complexity by adequate mathematical techniques
has been the focus of many research efforts [Hooimeijer, 2001]. This allows the modeler or in-
vestigator to maintain the required prediction quality at a reasonably high level whilst con-
trolling the computational demand, or, alternatively, to admit more conceptual complexity,
finer resolutions or larger domains at the same computational costs, or to make brute force
optimization tasks more feasible [Razavi et al., 2012].

The computational demand of complex hydro(geo)logical systems can be broken down into
contributions from spatial, temporal and stochastic resolution, e.g., spatial grid resolution,
time step size and number of repeated simulations dedicated to uncertainty quantification.
Temporal model complexity is owed to the dynamic character of hydro(geo)logical systems
which appears in time-dependent system response (prediction) curves. Examples include
aquifer reactions due to recharge events, tidal pumping or changing river stages [e.g. Yeh
et al., 2009], drawdown curves (DC) due to the excitation of the subsurface water level in
pumping tests [e.g. Fetter, 2001], solute breakthrough curves (BTC) during the injection of
water-borne tracers and contaminant spills [e.g. Fetter, 1999], or reactions of river discharge
to precipitation in hydrological models [e.g. Nash and Sutcliffe, 1970].

In the last two decades, temporal model reduction has been subjected to many research ef-
forts. The most important contributions have been based on integral transformations. This
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line of research led among others to the so-called temporal moment (TM) generating equa-
tions [e.g., Harvey and Gorelick, 1995] paving the way for a variety of applications [Goode,
1996; Varni and Carrera, 1998; Cirpka and Kitanidis, 2000c; Cirpka and Nowak, 2004; Li
et al., 2005; Zhu and Yeh, 2006; Luo et al., 2008; Pollock and Cirpka, 2008; Yin and Illman,
2009; Enzenhöfer et al., 2011; Molson and Frind, 2011, e.g.,]. The prevalent use of TM is
not merely by chance, because they unite many advantages: Their conceptual simplicity, the
possibility to jointly reduce models and observations allowing for a swift incorporation of
data, and the non-intrusiveness when applying them to existing (commercial) codes.

In general, TM reduce the time-dependent governing equations to steady state and directly
simulate the temporal characteristics of the system, if the equations are linear and coeffi-
cients are time-independent. This is achieved by an integral transform, projecting the dy-
namic system response (prediction) onto monomials in time before even solving the equa-
tions. In comparison to classical approaches of model reduction that involve orthogonal base
functions, however, the base functions for TM are non-orthogonal. Also, most applications
involving TM used only lower-degree TM without providing reasons for their choice.

This leads to a number of open research questions to be addressed in this thesis:

1. Does non-orthogonality impair the quality and efficiency of TM?

2. Can other temporal base functions reduce dynamic systems more efficiently than the
monomials that lead to TM?

3. How can compression efficiency associated with temporal model reduction methods
be quantified and how efficiently can information be compressed?

4. What is the value of temporal model reduction in competition with the computational
demand of other reduced or discretized model dimensions, e.g., repetitive model runs
through Monte-Carlo (MC) simulations?

The goal of this work is to analyze and assess existing techniques that reduce hy-
dro(geo)logical models in time. This allows to answer the questions posed above and helps
to better exploit the potential of temporal model reduction. To this end, I developed a four-
fold approach described in the following. The individual steps are consecutive, following
the mentality of typical top-down approaches.

Step (I) considers temporal model reduction from the most general perspective. To this
end, I derived a formulation for temporal model reduction based on integral trans-
formation with general base functions. This allows to classify base functions and to
compare their reduction efficiency. Efficiency in this context means the ability of con-
verting dynamic systems to simpler systems at reasonable computational times (see
Chap. 5).

Step (II) assesses the most efficient model reduction techniques in terms of their compres-
sion efficiency. Here, efficiency refers to the absence of compression errors in data due
to a loss-less compression. To this end, I developed a suitable method that can access
the information content of data in a generic and rational way. This allows to measure
and compare the performance of temporal model reduction techniques (see Chap. 6).
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Step (III) judges the compression efficiency of temporal model reduction against the effi-
ciency of other reduced or discretized model dimensions (e.g., spatial discretization or
number of MC simulations). I developed a concept to combine errors from different
model dimensions and assess their joint error in the light of available computational
power. This allows to find the trade-off between different model dimensions and so
optimally allocates computational resources (see Chap. 7).

Step (IV) employs TM in a new method for numerical upscaling of high-contrast frac-
tured porous media. The method is based on flow-aligned blocks and uses multi-rate
mass transfer (MRMT) models to parameterize unresolved sub-block heterogeneity.
TM make the scale transition of parameters swift and simple (see Chap. 8).

Finally, I show the universality of my developed tools by applying them to other challenges
of subsurface hydrogeology (see Chap. 9).

Based on the results of Steps (I) - (IV) I find the following conclusions most important. There
is no way of temporal model reduction for dynamic systems based on arbitrary integral
transforms with (non-)polynomial base functions that is better than the monomials leading
to TM. This is due to the nature of TM allowing to mimic any temporal characteristic based
on arbitrary polynomial base functions. Non-polynomial base functions generally lead to an
inefficient or impossible evaluation of their temporal characteristics. The only remaining in-
tegral transform that even more efficiently reduces dynamic system responses is the Laplace
transform (LT). However, the choice of orders (number of considered Laplace coefficients)
remains unclear making LT impractical, e.g. in inverse problems.

The order of model reduction based on TM as opposed to the reduction or discretization
of other model dimensions (e.g., number of repeated model runs trough MC simulations)
should be carefully determined prior the model evaluation. This is because there always ex-
ists an optimal trade-off between these differently reduced or discretized model dimensions.
The trade-off optimally exploits computational resources leading to the smallest joint error
given a certain computational budget. Also, I found that TM help to improve the upscaling
of high-contrast media leading to conceptual and computational advantages.

The tools I developed in this work can be employed in a variety of other applications. Op-
timal allocation of resources (from Chap. 7) can be applied to arbitrary combinations of dif-
ferent discretized or reduced model dimensions. The rational assessment of the explanatory
power of data (from Chap. 6) is of utmost interest in optimal design of experiments. Here,
my method outmatches linearized methods (such as Ensemble Kalman Filters) because lin-
ear methods fail to recognize relevant non-linear relations between potential measurement
locations and the prediction goal, and hence oversample locations considered to be most
informative from the limited viewpoint of linearized analysis.

Although TM have been used in different applications over the last two decades, their po-
tential has, in my eyes, not been fully exploited. Based on my findings, I hope to encourage
more studies to work with the concept of TM. Especially because the number of studies
that employ TM with real data is vanishingly small, improved tests on existing data sets
should be performed. Also, I hope to encourage those who limited their TM applications
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to only lower order TM to consider a longer moment sequence. My study results specifical-
ly provide valuable advice for hydraulic tomography studies under transient conditions to
use TM up to the fourth order. This might potentially alleviate the loss of accuracy used as
argument against TM by certain authors.



Kurzfassung

Die Umweltforschung erfährt in den letzten Jahren einen drastischen Anstieg des Rechen-
bedarfs von Simulationsmodellen. Trotz der Vervielfachung von Rechenkapazitäten durch
technischen Fortschritt stellen benötigte Rechenzeiten eine immerwährende Herausforde-
rung dar. Diese Entwicklung wird vor allem dadurch unterstützt, dass die aktuell von
Wissenschaftlern untersuchten Probleme immer komplexere Zusammenhänge auf immer
größeren Simulationsgebieten abdecken, z. B. Globale Erwärmung [z. B. Schmidt et al.,
2006], reaktiver Transport auf Einzugsgebietsgröße [z. B. Destouni et al., 2010], unterirdi-
sche CO2 Speicherung [z. B. Kopp et al., 2009], atomare Endlagerung [z. B. Pollock, 1986;
Olivella et al., 1994] oder seit jüngster Zeit auch hydraulische Frakturierung [z. B. Myers,
2012].

Während es vor zehn Jahren noch oft akzeptabel schien, Systeme im statischen Zustand
zu beschreiben, sind heute dynamische Simulationen gefragt. Besonders die Tatsache,
dass Umweltsysteme in ihren Beschaffenheiten niemals vollständig nachvollzogen werden
können [Oreskes et al., 1994], macht die Berücksichtigung von Unsicherheiten in Modell-
vorhersagen und die damit verbundenen Risikobetrachtungen unausweichlich [Christakos,
1992; Oreskes et al., 1994; Rubin, 2003; Tartakovsky, 2007]. Dies führt zu einer weiteren
Explosion von Rechenzeiten. Die Kalibrierung von Simulationen mit Messdaten ist dann
die einzige Möglichkeit, die inhärenten Unsicherheiten in Modelvorhersagen zu reduzieren
[Gómez-Hernández and Wen, 1998; Evensen, 2007; Franssen et al., 2009], erfordert aber die
Invertierung des Modells, was ebenfalls einen weiteren Rechenaufwand mit sich bringt.

Oft ist dann der einzige Ausweg die sogenannte Modellreduktion, seit jeher ein Schwer-
punkt vieler Forschungsbemühungen [Hooimeijer, 2001]. Modellreduktion reduziert Re-
chenzeiten, oder kann bei gleich bleibendem Rechenaufwand mehr Komplexität oder akku-
ratere räumlich/ zeitliche Auflösungen größerer Modellgebiete erlauben, oder macht auf-
wendige Optimierungsziele überhaupt erst möglich [Razavi et al., 2012]. Methoden zur Mo-
dellreduktion können generell eingeteilt werden in Methoden, die sich mit der Reduktion
der räumlichen, zeitlichen oder stochastischen Dimensionalität von Modellen beschäftigen.
Die zeitliche Dimensionalität von Modellen rührt z. B. von natürlichen Schwankungen im
Wasserstand durch Regenereignisse oder Interaktionen mit Flüssen [Yeh et al., 2009] oder
zeigt sich in hydraulischen Absenkkurven als Reaktion auf Pumptests [Fetter, 2001] oder
Konzentrationsdurchbruchskurven die nach der Einleitung von Markierungsstoffen beob-
achtet werden können [Fetter, 1999].

In den letzten beiden Jahrzehnten stand die Modellreduktion der zeitlichen Dimensiona-
lität im Fokus vieler Forschungsarbeiten. Die bedeutendsten Beiträge beruhten dabei auf
Integraltransformationen, die zu den sog. zeitlichen Momenten (TM) [z. B. Harvey and Go-
relick, 1995] führten und den Weg zu einer Vielzahl von Anwendungen ebneten [u. A., Goo-
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de, 1996; Varni and Carrera, 1998; Cirpka and Kitanidis, 2000c; Cirpka and Nowak, 2004; Li
et al., 2005; Zhu and Yeh, 2006; Luo et al., 2008; Pollock and Cirpka, 2008; Yin and Illman,
2009; Enzenhöfer et al., 2011; Molson and Frind, 2011]. TM vereinen viele Vorteile: Konzep-
tionelle Einfachheit, intuitive Aussagekraft, die Kompatibilität mit kommerziellen Program-
men, sowie die Möglichkeit Modellreduktion und Datenkompression zu koppeln. Letzteres
führt unter anderem auch zu einer schnellen Datenassimilierung und Modellkalibrierung.

Generell betrachtet, machen TM die zeitabhängigen Hauptgleichungen innerhalb eines Mo-
dells stationär, indem sie nicht das volle Zeitverhalten eines Systems simulieren, sondern
lediglich eine Auswahl an ausgewählten Zeitcharakteristiken. Dies wird durch eine Inte-
graltransformation erreicht, in welcher das Zeitverhalten auf bestimmte Ansatzfunktionen,
sog. Monome, projiziert wird. Im Vergleich zu klassischen Modellreduktionen, die auf or-
thonormalen Ansatzfunktionen beruhen, setzen TM auf nicht-orthonormale Ansatzfunktio-
nen. Auch verwenden die meisten Anwendungen nur TM niedrigen Grades, ohne diese
Wahl auf konkrete Gründe zurück zu führen.

Dies führt mich zu einer Anzahl an offenen Fragen:

1. Beeinträchtigt nicht-Orthonormalität die Qualität und Effizienz von TM?

2. Gibt es zeitliche Ansatzfunktionen, die ein zeitabhängiges System effizienter reduzie-
ren, als die Monome die zu TM führen?

3. Wie kann der Kompressionsgrad von Modellen gemessen werden und wie effizient
können Daten komprimiert werden?

4. Was wiegt der Wert von zeitlicher Modellreduktion gegenüber anderen reduzier-
ten oder diskretisierten Modelldimensionen, z. B. die Auflösung der stochastischen
Dimension durch wiederholte Simulationen im Rahmen von Monte-Carlo (MC)
Ansätzen.

Das Ziel dieser Arbeit ist es, Methoden zur zeitlichen Modellreduktion mit Hilfe dafür ge-
eigneter Werkzeuge zu analysieren und zu bewerten. Dies ermöglicht es, die oben gestellten
Fragen in Zusammenhang mit TM zu beantworten und das Potential zeitlicher Modellre-
duktion besser auszuschöpfen. Zu diesem Zweck habe ich den im Folgenden beschriebe-
nen vierstufigen Ansatz entwickelt und angewandt. Der Ansatz ist an das klassische “Top-
Down-Design“ angelehnt.

Schritt (I) betrachtet zeitliche Modellreduktion so allgemein wie möglich. Dazu wurden
alternative polynomiale und nicht-polynomiale Ansatzfunktionen klassifiziert und in
ihrer Reduktionseffizienz verglichen. Reduktionseffizienz definiere ich hierbei als das
Vermögen einer Ansatzfunktion ein Modell so zu konvertieren, dass dadurch eine si-
gnifikanter Rechenvorteil entsteht (siehe Kap. 5).

Schritt (II) fokusiert schließlich die Analyse und bewertet die effizientesten Techniken
zu Modellreduktion hinsichtlich ihrer Kompressioneffizienz. Kompressioneffizienz
ist dabei mit der Frage verbunden, wie effizient Informationen gespeichert werden
können. Dazu wurde eine neue Methode namens PreDIA (pre-posterior data impact
assessor) entwickelt und angewandt. PreDIA ist ein generisches Werkzeug, das in der
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Lage ist, den Informationsgehalt von Daten und damit TM auf möglichst rationale
Weise zu messen und ist damit linearisierte Methoden der Informationsverarbeitung
überlegen (siehe Kap. 6).

Schritt (III) spiegelt die Ergebnisse aus den Schritten (I)-(II) im Lichte einer globalen und
praktischen Betrachtung wider und vergleicht diese gegen andere reduzierte oder dis-
kretisierte Modelldimensionen, wie z. B. die Anzahl an TM und die Anzahl an wie-
derholten Modelldurchläufen durch MC Simulationen. Dafür wurde eine weitere von
mir entwickelte Methode zum optimalen Einsatz von Rechenleistungen (ORA) ange-
wandt. ORA ermöglicht es, die vereinten Fehler aus verschiedenen Modelldimensio-
nen kombiniert zu betrachten und minimiert den gemeinsamen Fehler für eine ge-
gebene Rechenzeit. Das Fehlerminimum ist durch eine optimale Auflösung zweier
Modelldimensionen gegeben (siehe Kap. 7).

Schritt (IV) adaptiert die Ergebnisse und wendet TM in einer neuen Methode zur nume-
rischen Skalierung von hoch-kontrastierten (z. B. geklüftet-porösen) Medien an. Die
Methode beruht auf einer Gitterstruktur die das Strömungsfeld nachbildet, sowie ein
kinetisches Massentransfermodell (MRMT), um die anomalen Transportphänomene
in geklüfteten Medien abzubilden. Durch den Einsatz von zeitlichen Momenten ist es
möglich, die subskaligen Transportphänomene einzufangen und den Skalenübergang
schnell und einfach zu gestalten (siehe Kap. 8).

In einem letzten Schritt unterstreiche ich den universellen Charakter, der von mir entwickel-
ten Methoden und wende diese auf zwei weitere Fragestellungen an (siehe Kap. 9).

Basierend auf den Teilergebnissen aus allen vier Schritten kann zusammengefasst gesagt
werden, dass es im Bereich zeitlicher Modellreduktionsmethoden die auf Integraltransfor-
mationen beruhen, keine effizienteren Ansatzfunktionen gibt, als die Monome, die zu zeitli-
chen Momenten führen. Dabei liegt es in der Natur der TM, dass diese alle Zeitcharakteristi-
ken imitieren können, die auf polynomialen Ansatzfunktionen beruhen. Nicht-polynomiale
Ansatzfunktionen führen generell zu einer ineffizienten oder gar unmöglichen Auswertung
ihrer Zeitcharakteristiken. Die einzige Klasse von Ansatzfunktionen, die eine noch effizi-
entere Berechnung ihrer Zeitcharakteristiken zulässt, ist die Laplace Transformation (LT).
Jedoch bringt diese den Nachteil mit sich, dass die Ordnung (Anzahl an Zeitcharakteristi-
ken), im Gegensatz zu TM, beliebig ist.

Der Grad an Modellreduktion, bestimmt durch die Anzahl von TM, sollte immer sorgfälltig
gegen andere reduzierte oder diskretisierte Modelldimensionen (z. B. die Anzahl an wieder-
holten Modelldurchläufen durch sog. MC Simulationen) abgewägt werden. Hierbei lässt
sich für jedes physikalische Rechenszenario eine individuelle und optimale Rechenauftei-
lung ermitteln, die das verfügbare Rechenaufgebot am Besten ausnutzt und den vereinten
Fehler für ein gegebenes Rechenbudget minimiert. Der Einsatz von TM in einer neuen Me-
thode zur numerischen Skalierung von geklüfteten Medien bringt konzeptionelle und rech-
nerische Vorteile.

Die von mir in dieser Arbeit entwickelten Werkzeuge lassen sich auf eine Vielzahl von wei-
teren Anwendungen übertragen. Der optimale Einsatz von Rechenleistungen (aus Kap. 7)
ist dabei auf beliebige Kombinationen von Modelldimensionen anwendbar. Weiter spielt
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die rationale Bemessung des Informationsgehaltes durch PreDIA (aus Kap. 6) bei der op-
timalen Versuchsplanung eine bedeutende Rolle. Hierbei zeigt PreDIA eindeutige Vorteile
gegenüber linearisierten Methoden (z. B. Ensemble Kalman Filter), welche oft daran schei-
tern, dass sie den nicht-linearen Zusammenhang zwischen potentiellen Messwerten und
dem Vorhersageziel nicht richtig erkennen können und daher Messorte mit ausschließlich
linearem Informationsgehalt bevorzugen.

Obwohl TM in den letzten zwei Jahrzehnten durchaus eine breite Anwendung gefunden
haben, ist ihr Potential in meinen Augen weitaus noch nicht voll ausgeschöpft. Basierend
auf meinen Ergebnissen erhoffe ich mir eine noch breitere Anwendung von TM, besonders
bei Arbeiten, welche mit realen TM arbeiten. Darüber hinaus hoffe ich, diejenigen zu ermu-
tigen höhere TM zu benutzen, die ihre Auswahl bisher auf TM niedrigen Grades gestützt
haben. Gerade im Bereich der hydraulischen Tomographie wäre die Verwendung von TM
bis zum vierten Grad empfehlenswert und könnte den Verlust an Genauigkeit, welcher von
gewissen Autoren als Argument gegen TM angeführt wurden, ausgleichen.



1. Introduction

1.1. Motivation and Goals

It is often stated that computational models are the only means to predict the future of
hydro(geo)logical systems. Those cases that would inevitably benefit from a view into the
future typically involve complex, coupled and dynamic systems addressing large-scales re-
lationships and, hence, make reliable predictions a challenging endeavor. Examples include
global warming [e.g., Schmidt et al., 2006], reactive transport on the catchment scale [e.g.,
Destouni et al., 2010], CO2 sequestration [e.g., Kopp et al., 2009], radioactive waste disposal
[e.g., Pollock, 1986; Olivella et al., 1994] or, very recently, hydraulic fracking [e.g., Myers,
2012].

Computational model complexity becomes even more drastic, when facing the ubiquitous
fact that hydro(geo)logical systems can never be fully described because their parameters
are incompletely known [Oreskes et al., 1994]. This leads to the need of quantifying the un-
certainty and assessing the risk inherent in model predictions [Christakos, 1992; Oreskes
et al., 1994; Rubin, 2003; Tartakovsky, 2007]. Incorporating field data into models helps to
reduce the uncertainty of predictions [e.g., Kitanidis, 1995; Gómez-Hernández et al., 1997;
Evensen, 2007; Franssen et al., 2009], but inevitably leads to so-called inverse problems
[Tarantola, 1987] which imposes yet another computational burden.

Assumed
Future Input

Prediction

Figure 1.1.: Illustration of a complex, uncertain, dynamic system (black box) coupled
with other systems (upper and lower dashed rectangles), dynamic input and
prediction.

For that reason, reducing computational complexity by adequate mathematical techniques
has been the focus of many research efforts [Hooimeijer, 2001]. This allows the modeler
or investigator to maintain the required prediction quality at a reasonably high level whilst
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controlling the computational demand, or, alternatively, to admit more conceptual complex-
ity, finer resolution or larger domains at the same computational costs, or to make brute force
optimization tasks more feasible [Razavi et al., 2012].

The computational demand of complex hydro(geo)logical systems can be broken down into
contributions from spatial, temporal and stochastic resolution, e.g., spatial grid resolution,
time step size and number of repeated simulations dedicated to uncertainty. Temporal mod-
el complexity is owed to the dynamic character of hydro(geo)logical systems which appears
in time-dependent system response (prediction) curves (see Fig. 1.1 right side). Examples in-
clude aquifer reactions due to recharge events, tidal pumping or changing river stages [e.g.
Yeh et al., 2009], drawdown curves (DC) due to the excitation of the subsurface water level
in pumping tests [e.g. Fetter, 2001], solute breakthrough curves (BTC) during the injection of
water-borne tracers and contaminant spills [e.g. Fetter, 1999], or reactions of river discharge
to precipitation in hydrological models [e.g. Nash and Sutcliffe, 1970].

In the last two decades, temporal model reduction has been subject to many research efforts.
The most important contributions have been based on integral transformations. This line of
research led among others to the so-called temporal moment (TM) generating equations
[e.g., Harvey and Gorelick, 1995] paving the way for a variety of applications [Goode, 1996;
Cirpka and Kitanidis, 2000b; Li et al., 2005]. The prevalent use of TM is not merely by chance,
because they unite many advantages: Their conceptual simplicity, the possibility to jointly
reduce models and observations allowing for a swift incorporation of data, and the non-
intrusiveness when applying them to existing (commercial) codes.

In general, TM reduce time-dependent governing equations to steady state and directly sim-
ulate the temporal characteristics of the system, if the equations are linear and coefficients
are time-independent. This is achieved by an integral transform, projecting the dynamic
system response (prediction) onto monomials in time before even solving the equations. In
comparison to classical approaches of model reduction that involve orthogonal base func-
tions, however, the base functions for TM are non-orthogonal. Also, most applications in-
volving TM used only lower-degree TM without providing reasons for their choice.

This leads to a number of open research questions to be addressed in this thesis:

1. Does non-orthogonality impair the quality and efficiency of TM?

2. Can other temporal base functions more efficiently reduce dynamic systems than the
monomials that lead to TM?

3. How can compression efficiency associated with temporal model reduction methods
be quantified and how efficiently can information be compressed?

4. What is the value of temporal model reduction in competition with the computational
demand of other discretized or reduced model dimensions, e.g., repetitive model runs
through Monte-Carlo (MC) simulations?

The goal of this work is to analyze and assess existing techniques that reduce hy-
dro(geo)logical models in time. This allows to answer the questions posed above and helps
to better exploit the potential of temporal model reduction.
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1.2. State of the Art

The most powerful contribution to the reduction of model complexity in time has been
made by Harvey and Gorelick [1995]. Their approach reduces dynamic models to steady
state models by employing a Laplacian transformation to the time dimension. After Taylor
expansion of the Laplace coefficients (LC), this allows to directly simulate characteristics of
the time-dependent response curves, the so called temporal moments (TM), with steady-
state equations. Alternatively, TM can be derived by projecting the time-dependent govern-
ing equations onto a series of monomials tk of order k = 0 ...K [e.g., Cirpka and Kitanidis,
2000b]. The generating equations for TM are steady-state equivalents of the original govern-
ing equations, and so allow swift evaluation.

However, almost all applications of TM in the field of hydro(geo)logy (a detailed review
on applications ca be found in Chap. 4.4) predominantly employed low-order moments.
Reservations against using TM are, among other, the loss of information in inverse modeling
based on an analysis only up to the first-order TM [Zhu and Yeh, 2005; Yin and Illman, 2009].
Also, all the studies I could find rarely provide reasons for the choice of order, and none of
them assessed the information lost by not looking at higher orders.

Another way of removing the time dependence within the governing equation is to directly
apply Laplace transform techniques without the transition to TM. They have been proven
to be suitable in forward model reduction (including reconstruction of the full time-series
from simulated LC) when considering sequences of more than 10 and up to 100 LC [e.g.,
Sudicky, 1989]. Here, the unresolved question is both how many, and which LC are required
to properly represent the system.

Besides integral transformations, increasing attention has been drawn by snapshot-based
model reduction methods [Vermeulen et al., 2004; McPhee and William, 2008]. Via Prop-
er Orthogonal Decomposition (POD) into dominant spatial patterns [Papoulis, 1984], the
model is reduced to some number of orthogonal base functions in physical space with time-
dependent coefficients. Within other disciplines, this method is referred to as Principal Com-
ponent Analysis (PCA) [Pearson, 1901], or Karhunen Loève Transform (KLT) [Loève, 1955].
I refer to these methods as spatial reduction methods since the model is, in its proper effects,
reduced in physical space while the time-related model complexity remains untouched. The
scope of this work, however, is strictly limited to temporal reduction methods. This strict
focus is legitimate, because reduction methods in time can be evaluated independently of
spatial methods. Reduction techniques in space and in time can be arbitrarily combined,
because space and time are independent coordinates.

1.3. Approach

The general approach of my work is fourfold and described in the following in more detail.
The individual steps are consecutive, following the mentality of typical top-down research
designs. Starting from the very general perspective in Step (I) the analysis becomes more



4 Introduction

Reduction Efficiency (Step I)

Compression Efficiency (Step II)

Reflection (Step III)

Adaption (Step IV)

Figure 1.2.: General top-down approach illustrating the individual Steps (I)-(IV) to analyze
and assess existing techniques that reduce hydro(geo)logical models in time.

focused in Step (II) and finally reflects the result in a global and practical light in Step (III).
Step (IV) involves the application to a novel method.

Step (I) considers temporal model reduction from the most general perspective. To this end
I derive a formulation for temporal model reduction based on integral transformation
with general base functions. This allows to classify all possible base functions and
to compare their reduction efficiency. Efficiency in this context means the ability of
converting dynamic systems to simpler systems at reasonable computational times.

Step (II) assesses the most efficient model reduction techniques from Step (I) in terms of
their compression efficiency. Here, efficiency refers to the absence of compression er-
rors in data due to a loss-less compression. To this end, I develop a suitable method
that can access the information content of data in a generic and rational way. This
allows to objectively measure and compare the performance of temporal model re-
duction techniques.

Step (III) judges the compression efficiency of temporal model reduction against the effi-
ciency of other reduced or discretized model dimensions (e.g., spatial discretization
or number of MC simulations). I develop a concept to combine errors from different
model dimensions and assess their joint error in the light of available computation-
al power. This allows to find the trade-off between different reduced or discretized
model dimensions and so optimally allocates computational resources.

Step (IV) employs TM in a new method for numerical upscaling of high-contrast fractured
porous media.

Finally, I show the universality of my developed tools by applying them to other challenges
of subsurface hydrogeology.

1.4. Structure of Work

The remainder of this work is organized as follows. Chap. 2 repeats the governing physical
equations employed throughout the later analysis and introduces the basic features of statis-
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tics and geostatistics. Chap. 3 introduces different physical scenarios to be employed repeat-
edly through the later work. Chap. 4 summarizes the concept of TM. Chap. 5 formulates a
general approach for temporal model reduction based on integral transforms and discusses
the reduction efficiency of alternative integral transforms (covering Step I). Chap. 6 devel-
ops and applies a suitable method to asses the compression efficiency of temporal model
reduction techniques (covering Step II), and Chap. 7 features the compromise between TM
and the discretization or reduction of other model dimensions (covering Step III). Chap. 8
applies TM to fractured porous media (covering Step IV) and Chap. 9 shows the generic
nature of the methods developed in Chap. 6 and Chap. 7 by applying them to other tasks of
subsurface hydrogeology.

The structure of the present work is partly reflected in a series of papers published by the
author. Chap. 5 is based on the analysis in Leube et al. [2012b], whereas Chap. 6 falls back on
the method developed in Leube et al. [2012a]. Chap. 7 is taken from the concept published
in Leube et al. [2013]. The applications in Leube et al. [2012a] and Leube et al. [2013] both
make up Chap. 9.





2. Governing Equations and Basic Methods

“State of the art“ tools aiming to predict the complex behavior of hydro(geo)logical systems
cope, among others, with two major challenges. There are (1) to describe as precisely as
necessary the physical processes on all scales, and (2) to adequately fill the ubiquitous lack of
knowledge on (hydro)geological properties. As my work touches both challenges, I dedicate
this chapter to:

1. introduce the governing equations of groundwater flow and solute transport (Sec. 2.1),
all of them repeatedly employed throughout the later derivations (Chap. 5) and appli-
cations (Chaps. 6-8)

2. refresh the geostatistical working hypothesis (Sec. 2.4) also used heavily throughout
my work. For the sake of completeness and due to their familiarity to the temporal
moments (TM) that will be introduced in Chap. 4, I briefly touch the fundamentals of
descriptive statistics (Sec. 2.2) and theoretical distribution functions (Sec. 2.3) including
their statistical moments. Also, I repeat Bayes Theorem in Sec. 2.5 and Bootstrap Filters
in Sec. 2.6.

2.1. Governing Equations

In this section, I provide the governing equations of groundwater flow and solute transport,
as well as the extension towards multi-rate mass-transfer (MRMT) [Haggerty and Gorelick,
1995].

2.1.1. Groundwater Flow

Two-dimensional flow in confined aquifers

Two-dimensional (depth-averaged) flow in confined aquifers can be described by the fol-
lowing partial differential equation [Bear, 1972]:

S
∂h

∂t
−∇ · (T ∇h) =W −Q, (2.1)

where S [-] is the specific storage coefficient, T [L2/T] is the locally isotropic and depth-
integrated transmissivity with T = Kb, where K [L/T] is the hydraulic conductivity and b

[L] the saturated thickness. h [L] is the hydraulic head, W [L/T] is an internal volumetric
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source/ sink term and Q [L3/T] is the pumping rate, for example if the system is excited by
a well. Generic initial and boundary conditions are

h = h0 at t = t0 (2.2)

h = hDiri on ΓDiri ∀t (2.3)

−n · (T ∇h) = qNeu on ΓNeu ∀t, (2.4)

where h0 [L] is the head prior to excitation, t [T] is time, t0 [T] is the time at which the con-
sideration starts (e.g., when pumping starts), ΓDiri and ΓNeu denote Dirichlet and Neumann
boundaries with fixed-head Dirichlet head hDiri [L] and constant specific Neumann fluxes
qNeu [L/T], respectively, and n is the unit vector normal to the boundaries pointing outward.
No-flow boundaries are given by qNeu = 0.

For constant-rate pumping Q = const., time-independent source/ sink term W and t → ∞,
the system response h(t → ∞) reaches a state of equilibrium. This is also known as the
steady-state for flow and is described by Eq. (2.5) [Bear, 1972]:

−∇ · (T ∇h) =W −Q, (2.5)

with generic boundary conditions

h = hDiri on ΓDiri (2.6)

−n · (T ∇h) = qNeu on ΓNeu. (2.7)

For Q = 0 (no pumping), the steady-state h(Q = 0) can be considered as initial head h0 in
Eq. (2.4) prior to pumping, and the drawdown s [L] is given by

s = h0 − h. (2.8)

For time-independent boundary conditions and source/sink term W , Eq. (2.1) can be sub-
tracted from h0 the corresponding steady-state arriving at the drawdown equation during
pumping at any (possibly time-dependent pumping rate) Q(t):

S
∂s

∂t
−∇ · (T ∇s) =W −Q(t), (2.9)

with initial and general boundary conditions

s = 0 at t = t0 (2.10)

s = 0 on ΓDiri ∀t (2.11)

−n · (T ∇s) = qNeu on ΓNeu ∀t. (2.12)
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Two-dimensional flow in unconfined aquifers

Opposed to the confined case, the saturated thickness changes under unconfined conditions
and is equal to the head h. Thus, the transmissivity T becomes a product of K and h. Then,
steady-state in Eq. (2.5) can be rewritten as [Fetter, 2001]:

−1

2
∇ · (K∇h2) =W −Q, (2.13)

with boundary conditions

h = hDiri on ΓDiri (2.14)

−n · (K∇h2) = qNeu on ΓNeu. (2.15)

2.1.2. Solute Transport

Transient transport in confined aquifers

Contaminant conservative transport is described by the well-known advection-dispersion
equation [Fetter, 1999]

∂c

∂t
+∇ · (vc−D∇c) = 0, (2.16)

with time t [T], concentration c [M/L3], velocity field v [L/T], and dispersion tensor
D [L2/T] commonly described according to Scheidegger [1954]:

D =
v ⊗ v

|v| (αL − αT ) + I(|v|αT +De) (2.17)

where v ⊗ v is the tensor product of v with itself, |v| is the absolute value of v, αL [L]
and αT [L] are the local-scale longitudinal and transverse dispersivities, respectively, and
De [L2/T] is the effective diffusion coefficient with De = Dm ne where Dm [L2/T] indicates
the molecular diffusion coefficient and ne [-] is the porosity.

Generic initial and boundary conditions are given by:

c = c0 at t = t0 (2.18)

c = cDiri on ΓDiri ∀t (2.19)

−n · (vc−D∇c) = JNeu on ΓNeu ∀t, (2.20)

where cDiri [M/L3] denotes a fixed-concentration at the Dirichlet boundaries ΓDiri and
JNeu [M/TL2] describes a constant specific mass flux over Neumann boundaries ΓNeu. No-
flux boundaries are given by JNeu = 0.
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Steady-state transport in confined aquifers

Under steady-state conditions, Eq. (2.16) simplifies to

∇ · (vc−D∇c) = 0, (2.21)

with generic initial and boundary conditions:

c = cDiri on ΓDiri (2.22)

−n · (vc−D∇c) = JNeu on ΓNeu. (2.23)

2.1.3. Multi-Rate Mass Transfer

Complex mass transfer processes between slow and rapid zones below the scale described
by the above equations overall result in complex non-Fickian behavior and cannot be
described by Eq. (2.16) [Berkowitz, 2002]. Yet, this can be tackled with so-called dual-
continuum models [Barenblatt et al., 1960; Warren and Root, 1963] by simply adding a trans-
fer term to Eq. (2.16). The formulation of Carrera et al. [1998] arrives at:

∂c

∂t
+ β

∂cim
∂t

= −∇ · (vc−D∇c), (2.24)

where c is the concentration in the mobile domain, cim [M/L3] is the concentration in the
immobile domain and β = nim/ne [-] is the capacity coefficient describing the ratio of the
porosities between the immobile and mobile domain [Harvey and Gorelick, 1995]. Accord-
ing to Carrera et al. [1998], the immobile concentration cim can be written as function of the
mobile concentration c:

cim =

∫ t

0
φ
(
t− t′

)
c d t′, (2.25)

where φ(t) is a memory function describing the retention time in the immobile domain
[Villermaux, 1987]. The formulation in Eq. (2.25) also allows to describe an entire spectrum
if immobile domains, each one with its own capacity or rate coefficient.

Generic initial and boundary conditions are given by:

c = c0 at t = t0 (2.26)

c = cDiri on ΓDiri ∀t (2.27)

−n · (vc−D∇c) = JNeu on ΓNeu ∀t, (2.28)

where cDiri denotes a fixed-concentration at the Dirichlet boundaries ΓDiri and JNeu describes
constant specific mass fluxes over Neumann boundaries ΓNeu. No-flux boundaries are given
by JNeu = 0.
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2.2. Descriptive Statistics

Descriptive statistics is the discipline of quantitatively describing the main features of col-
lected data. If only a single variable is considered and analyzed, e.g., all (hydro)geological
data collected in a specific area with no respect to space, we speak of univariate statistics.
If two variables are considered, e.g., comparing two subsets of collected data towards their
dependency, we speak of bivariate statistics. The most prominent metrics in data analysis
for both univariate and bivariate statistics shall be briefly described in the following.

Univariate Statistics

Given a set of data xi, with i = 1 ... n, the most frequently employed univariate statistics are
the (arithmetic) mean, variance (or standard deviation), and skewness. The sample mean,
or in more popular words “average“ m is defined as the normalized sum over n samples
values xi

m =
1

n

n∑
i=1

xi. (2.29)

The sample variance s2 or in other words, the spreading of the data set about its mean m, is
given by

s2 =
1

n− 1

n∑
i=1

(xi −m)2 . (2.30)

Taking the square root gives the standard deviation s =
√
s2. The asymmetry of the spread-

ing about the mean is described by the dimensionless skewness ks

ks =

(
1

n− 1

n∑
i=1

(xi −m)3
)/

s3. (2.31)

Symmetrically distributed values are defined by zero skewness ks = 0, whereas asymmetric
distributions assume positive or negative values of skewness depending on whether they
are right- or left skewed, respectively.

Bivariate Statistics

The most common statistics to measure the combined behavior of two data sets is the co-
variance. Given two sets of collected data xi and x′i with i = 1 ... n, the similarity of their
deviations from the mean can be described by the sample covariance q

q =
1

n− 1

n∑
i=1

(
xi −m

) (
x′i −m′

)
. (2.32)

From that the correlation coefficient ρ between the two sets xi and x′i is found by removing
the individual standard deviations s and s′ from q:

ρ =
q

ss′
. (2.33)
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2.3. Distribution Functions

A much more complete measure to describe data sets is their entire distribution of values
such as by plotting histograms [Weiss, 2006]. When applying statistical rules of inference,
one can obtain information on the distribution of all possible values (called population).
Here, distribution functions, or in more popular words, “random numbers“ serve to de-
scribe the variability of (hydro)geological parameters and of resulting system states. For
example, the possible values that parameters such as hydraulic conductivity may assume
are modeled as probability distributions. In the most general way, a random variable U can
be described by its cumulative density function (cdf ):

F (u) = P (U ≤ u), (2.34)

representing the probability of a random variable U being lower or equal to a given value u,
with F taking values in the interval [0, 1], and

lim
u→−∞

F (u) = 0 and lim
u→∞

F (u) = 1. (2.35)

If F (u) is differentiable for all u, then U is a continuous random variable, and its probability
density function (pdf ) p(u) can be defined as

p(u) =
dF (u)

du
(2.36)

where p(u) du is the probability that U lies within the infinitesimally small interval between
u and u+ du.

p
(u
)

u

F
(u
)

u
u∗

F
(u

∗
)

u∗
0

0.5

0

1

Figure 2.1.: Illustration of cdf (left) and pdf (right). The black area
∫ u∗

0 p(u) du in right plot
refers to the abscissa value F (u∗) in the left plot.

For two jointly distributed variables u and u′, the joint (bivariate) pdf is defined by p(u, u′).
If both variables are independent their joint distribution simply factorizes to the product
of their marginal distributions p(u, u′) = p(u) p(u′). Integration over u or u′ respectively,
by

∫
p(u, u′) du′ = p(u) and

∫
p(u, u′) du = p(u′) yields the marginal distributions p(u)

and p(u′), respectively. From p(u, u′), the conditional pdfs p(u|u′) and p(u′|u) can be defined.
They represent the distribution of u given knowledge on u′ and vice versa. Fig. 2.2 illustrates
how the marginal, the conditional and the joint pdfs are linked to each other. Similar to the
sample mean and variance described in Sec. 2.2, distribution functions can be characterized
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p(u′|u = u0)

p(u′)

p(u)

u

u′

Figure 2.2.: Illustration of marginal pdfs p(u) and p(u′), joint pdf p(u, u′) and exemplary con-
ditional pdf p(u′|u) for u = u0.

by their means and variances. The mean μ of a random variable u is defined as expectation
over the spectrum of possible values by a possibility-weighted integral:

E [u] = μ =

∫ +∞

−∞
u p(u) du, (2.37)

The second central moment, or variance σ2, is defined as

Var [u] = σ2 = E
[
(u− μ)2

]
=

∫ +∞

−∞
(u − μ)2 p(u) du. (2.38)

The expression for Var [u] can be rewritten be means of expansion [Weiss, 2006]

Var [u] = E
[
u2
]− E [u]2 =

∫ +∞

−∞
u2 p(u) du−

(∫ +∞

−∞
u p(u) du

)2

. (2.39)

For conditional pdfs the condition mean Eu|u′ [u] and conditional variance Varu|u′ [u] is de-
fined in a similar fashion:

Eu|u′ [u] =

∫ +∞

−∞
u p(u|u′) du, (2.40)

and

Varu|u′ [u] =

∫ +∞

−∞

(
u − Eu|u′ [u]

)2
p(u|u′) du = Eu|u′

[
u2
]− Eu|u′ [u]2 . (2.41)

Higher order moments, e.g., skewness, can be derived in a similar fashion but are not shown
here. The derivation of statistical moments such as mean μ, variance σ2 and higher order
moments is similar to the definition of temporal moments as shown in Chap. 4.

For two variables u and u′ the covariance can be calculated as

Cov
[
u, u′

]
= E

[(
u− μ

) (
u′ − μ′

)]
(2.42)

=

∫ +∞

−∞

∫ +∞

−∞

(
u− μ

) (
u′ − μ′

)
p(u, u′) du du′, (2.43)
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with joint pdf p(u, u′). If u and u′ are independent variables, their covariance Cov [u, u′]

equals zero.

In the following, exemplary theoretical distribution functions are described in more detail:

• Gaussian Distribution

A variable u influenced by a multitude of factors (natural and technical processes),
such as measurement errors or marks on a test are often said to have a symmetric, and
unimodal distribution. Meeting these prerequisites, the bell-shaped, normal or Gaus-
sian distribution gained much popularity. This is also supported by the central limit
theorem Weiss [2006]. Being conceptually and statistically attractive the Gaussian dis-
tribution depends on only two parameters, its mean μ and variance σ2 and is defined
as

p(u) =
1√
2πσ2

exp

[
−(u− μ)2

2σ2

]
. (2.44)

The Gaussian distribution is unbounded on the interval [−∞,+∞]. For μ = 0 and
σ2 = 1 it is referred to as standard-Gaussian (or normal) distribution. An exemplary
normal distribution is given in Fig. 2.3 (left).

• Log-normal Distribution

If the logarithm of a variable follows a Gaussian distribution, this variable can be con-
sidered log-normally distributed, which is defined as

p(u) =
1

u
√
2πσ2

exp

[
−(lnu− μ)2

2σ2

]
. (2.45)

The log-normal distribution is left-bounded on the interval [0,+∞]. It is, hence, often
applied to parameters or variables that are physically constrained to take positive val-
ues. Examples for physically restricted variables are concentrations, drawdown or pre-
cipitation. In geosciences, the most prominent parameter is the hydraulic conductivity,
and it is typically assumed to be log-normally distributed [e.g., Gómez-Hernández and
Wen, 1998]. An exemplary log-normal distribution is given in Fig. 2.3 (center).

• Exponential distribution

Exponential distributions can be used to describe the lengths of the inter-arrival times
in a Poisson process. The later is typically employed to define the distribution of frac-
tures Priest and Hudson [1976]. The exponential distributions is defined only based
on its mean value μ by

p(u) =
1

μ
exp

[−u
μ

]
. (2.46)

The exponential distribution is supported on the interval [0,+∞]. An exemplary ex-
ponential distribution is given in Fig. 2.3 (right).

• Multivariate Gaussian Distribution

In most natural processes, a multitude of distributed parameters is involved. Typically,
the values of these parameters depend on each other and need to be described includ-
ing their mutual correlation by so-called multivariate distributions. For two Gaussian
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distributed random variables u, u′ acting jointly, their bivariate distribution is given
by:

p(u) =
1√

(2π)2|Σ exp

[
−1

2
(u− μ)TΣ−1(u− μ)

]
, (2.47)

with random variables u =
(

u

u′

)
, their mean μ =

(
μ

μ′

)
and covariance matrix

Σ =

(
Cov[u, u] Cov[u, u′]

Cov[u, u′] Cov[u′, u′]

)
.

uu

p
(u
)

u

Figure 2.3.: Illustration of three exemplary pdfs featuring a normal (left), log-normal (center)
and exponential (right) distribution.

2.4. Geostatistical Approach

In order to characterize and predict the spatial patterns of distributed variables in (hy-
dro)geosystems, the spatial consideration of parameter variations and their mutual depen-
dence becomes inevitable. This is where geostatistics drift from univariate statistics. In the
most common geological models, two-point statistics come into play. Opposed to single-
point statistics with no attention paid to the spatial arrangement of data, two-point statistics
invite spatial dimensions into relevant statistical metrics. Thus, the statistics of spatial pat-
terns can be observed. To this end, experimental variograms or more theoretical covariance
functions can be employed. In this section, I briefly repeat how geostatistics can be em-
ployed in order to model and simulate spatial features. The statistical theories, however,
consolidating the geostatistical hypothesis are not repeated here. For more information, I
refer to Kitanidis [1997].

Spatial patterns of parameters u(x) in locations x can be interpreted as random space func-
tions (RSF). The most common descriptions of RSFs typically rely on the mean μ(x) =

E[u(x)], the variance σ2(x) = E[u(x) − μ(x))2] and the covariance function R(x, x′) =

E[(u(x) − μ(x))(u(x′) − μ(x))]. With constant mean μ(x) = μ and variance σ2(x) = σ2, and
R(x, x′) depending only on the separation distance h = ||x−x′|| is classified as second-order
stationary. Eqs. (2.48)-(2.49) give two exemplary theoretical covariance functions commonly
employed in hydro(geo)logical models, the Gaussian and the exponential model. Both are
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illustrated in Fig. 2.4. The Gaussian covariance model is defined as

R(h) = σ2 exp

(
−h2

L2

)
, (2.48)

with length parameter L. The exponential covariance model is defined as

R(h) = σ2 exp

(
− h

L2

)
. (2.49)

Their major difference lies in the fact that the Gaussian model leads to very smooth pat-
terns whereas the exponential model reveals sharper contours. This is due to the distinctly
different gradient R(h)′ for zero distance h = 0.

To relax on assumptions associated with the covariance model, several recent studies, in-
cluding Feyen [2003], Nowak et al. [2010] and Murakami et al. [2010], suggested to use the
Matérn covariance function [Matérn, 1986]:

C(l) =
σ

2κ−1Γ(κ)
(2
√
κl)κBκ(2

√
κl)

l =

√(
Δx1
λ1

)2

+

(
Δx2
λ2

)2

, (2.50)

with Gamma function Γ(·) and correlation length λ1 and λ2. Bκ(·) is the modified Bessel
function of the third kind [Abramowitz and Stegun, 1972]. The additional shape parameter
κ controls the shape of the covariance function, e.g.: κ = 0.5 is the exponential and κ = ∞ the
Gaussian model. The benefits of the Matérn family have been discussed extensively by, e.g.,
Handcock and Stein [1993] and Diggle and Ribeiro Jr. [2002]. The relevance of the Matérn
family within Bayesian geostatistics has recently been pointed out by Nowak et al. [2010].

h

R
(h
)/
σ
2

h
0

1

Figure 2.4.: Illustration of two exemplary covariance functions featuring a Gaussian (left),
and an exponential (right) model.

Given only the mean μ, variance σ2 and covariance function R(h), spatially distributed pa-
rameter fields can be represented by multivariate Gaussian distributions (see Eq. 2.47) be-
cause these distribution parameter are sufficient to define the multivariate Gaussian distri-
bution, and because as little as possible additional information is included in the so chosen
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distribution shape. This assumption has received some criticism because the range of possi-
ble pattern types to describe is limited [Zinn and Harvey, 2003; Bárdossy and Li, 2008]. Nev-
ertheless, its presence in hydro(geo)logical models is striking. Alternative representations
resolving more complex spatial features include, among others, copulas [Bárdossy and Li,
2008; Haslauer et al., 2012].

Treating spatially distributed parameters as RSFs also allows to include uncertainty in their
statistical descriptions, leading to Bayesian geostatistics. For more information, I refer to
Diggle and Ribeiro Jr. [2007].

2.5. Bayes’ Theorem

One of the most basic laws in statistics and geostatistics is the so-called Bayes’ theorem
[Papoulis, 1984]. Being a fundamental ingredient in parameter inference, Bayes’ theorem
describes how additional new information can reduce prior uncertainty.

To this end, different pdfs are considered. The prior pdf p(u) refers to the initial uncertainty
of some quantity u. The choice of p(u) often results in flat (least subjective as possible) prior
or sometimes improper priors Kass and Wasserman [1996]. The posterior pdf p(u|y) defines
the reduced state of uncertainty about u after having considered observations y distributed
according to p(y).

Both prior and posterior knowledge are related to each other via the so-called likelihood
function p(y|u) in the Bayes’ theorem. The likelihood function describes the probability that
given the prior pdf p(u) how likely the observed data y are. The Bayes’ theorem then states:

p(u|y) = p(y|u)p(u)
p(y)

, (2.51)

where p(y) can be directly inferred from p(y) ≈∑ p(y|u) [Robert and Casella, 2004].

2.6. Bootstrap Filter

Bootstrap filter (BF) Gordon et al. [1993] can be seen as a direct translation from Bayes’
theorem to the sequential estimation of posterior distributions in a Monte-Carlo framework.
BF generally comprise two repetitive steps (1) prediction and (2) update. Let us define model
states uk at time steps k and measurements yk available at time steps k. Then their initial pdf
at time step k = 0 is given by p(u0|y0) with y0 being a set of no measurements).

(1) In the prediction step, model states uk at time k are calculated from previous states uk−1 at
time k−1 via the model f(), e.g., an appropriate hydro(geo)logical model with uk = f(uk−1).
From that the prior pdf p(uk|y1:k−1) can be calculated where y1:k−1 represent available mea-
surements up to time step k − 1.
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(2) At time step k new measurements yk become available and may be used to update the
prior p(uk|y1:k−1) via Bayes’ theorem:

p(uk, y1:k) =
p(uk|yk)p(uk|y1:k−1)

p(yk|y1:k−1)
. (2.52)

From that model states p(uk+1|y1:k) can be predicted during the next time step k + 1.

In order to characterize the uncertainty about p(uk|y1:k), typically two metrics the mean
and the variance are employed. Both metrics are calculated in the weighted sense. For n
realizations of uk, the weighted mean can be found by:

Euk|y1:k [uk] ≈
1

v1

n∑
i=1

uki p(uki|y1:k), (2.53)

and the weighted variance

Varuk|y1:k [uk] ≈
v1

v21 − v2

⎡
⎣ n∑

i=1

u2ki p(uki|y1:k)−
(

n∑
i=1

uki p(uki|y1:k)
)2
⎤
⎦ , (2.54)

with v1 =
∑n

i=1 p(uki|y1:k) and v2 =
∑n

i=1 p(uki|y1:k)2. Both quantities are approximated
in the weighted sample sense and, therefore, employ v1 and v2 [Weiss, 2006, p. 355]. The
corresponding correction factor in Eq. (2.54) resembles the well-known factor 1

n−1 for the
non-weighted sample variance. This is an unbiased estimator of the population variance.

BF rely, as a matter of their nature, on MC simulations of random system responses. Thus,
they have the desirable property that non-linear systems dependencies are entirely pre-
served during the updating step [Snyder et al., 2008] making them superior to linearized
frameworks such as Ensemble Kalman Filters.

In the context of this thesis, BF and its derivative are used to update parameters, whereas
BF, as described by Eq. (2.52), have been originally designed to sequentially update model
states.



3. Scenarios

Throughout my thesis, I will employ five different scenarios of groundwater flow and solute
transport. For that reason, I present them in the current chapter before continuing to develop
my thesis in the following chapters. In the later analyses I only refer to the different scenarios
and its individual cases by numbers.

3.1. Scenario (1): Simple Scenario based on Well Flow

Scenario (1) considers transient groundwater flow in a two-dimensional depth-averaged
confined aquifer during a pumping test according to Eqs. (2.1)-(2.4). The well is located
at [xw, yw] = [50, 50] whereas the response is monitored at [xm, ym] = [25, 25] (see Fig. 3.1
left). In order to reduce the impact of boundary effects, the numerical domain is chosen to
be greater then the actual sample domain. Boundary conditions are Dirichlet-conditions at
the western and eastern boundaries and Neumann no-flow conditions at the northern and
southern boundaries. All relevant parameters are summarized in Table 3.1 (left column).
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Figure 3.1.: Illustration of scenarios (1) (left) and (2) (right). The centered pumping well in
scenario (1) is depicted by a crossed circle. Solid lines indicate the mean sta-
tionary flow field. The contaminant line source in scenario (2) is illustrated as
rectangle, whereas the uncertainty about the plume evolution is shown by two
exemplary shapes. Diamonds in both scenarios indicate monitoring locations.
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Scenario (1) Scenario (2)

Numerical Domain
Domain size [L1, L2] [m] [180, 180] [300, 150]
Grid spacing [Δ1,Δ2] [m] [2, 2] [2, 1]

Study Domain
Domain size [L1, L2] [m] [100, 100] [300, 150]
Grid spacing [Δ1,Δ2] [m] [2, 2] [2, 1]

Flow, Transport- and Geostatistical Parameters
Mean ln T μT ln[m2/s] −∗ ln 10−5

Variance ln T σ2T ln2[(m2/s)2] −∗ 1

Integral scale ln T λT,1,2 [m] −∗ [20, 20]

Mean ln S μS [−] −∗ −
Variance ln S σ2S [−] −∗ −
Integral scale ln S λS,1,2 [−] −∗ −
Diffusion Dm [m2/s] − 1×10−9

Dispersion αl, αt [m] − 0.1, 0.01

Porosity ne [-] − 0.3

Pumping Parameters
Injection well [xw, yw] [m] [50,50] −
Monitoring well [xm, ym] [m] [25,25] −
Strength Q [m3/s] -0.05 −
Stress interval Δts [s] 72 × 102 −
Relaxation interval Δtr [s] 72 × 103 −
Time spacing Δt [s] 120 −

Source Parameters
Source center [xs, ys] [m] − [20,50]
Source width [ws] [m] − [70]
Fixed concentration c0 [kg/m3] − 1
Monitoring wells [xm, ym] [m] − −∗

Time spacing Δt [s] − 120

Table 3.1.: Parameters for scenarios (1) and (2). Values indicated with ∗ vary and are specified
in Tab. 3.3.
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3.2. Scenario (2): Simple Scenario based on Contaminant
Transport

Scenario (2) considers transient solute transport in a two-dimensional depth-averaged con-
fined aquifer according to Eqs. (2.16)-(2.20) in a stationary flow field according to Eqs. (2.5)-
(2.7) (see Fig. 3.1, right). A contaminant line source is located at x = 20 m and ranges from
y = 15 − 85 m. The system responses are monitored at four different locations. The under-
lying flow problem features Dirichlet-conditions at the western and eastern boundaries and
Neumann no-flow conditions at the northern and southern boundaries. The transport prob-
lem has zero-flux boundaries at the western, northern and southern boundaries. All relevant
parameters are summarized in Tab. 3.1 (right column).

3.3. Scenario (3): Complex Scenario based on Well Flow

Scenario (3) considers a two-dimensional depth-averaged unconfined aquifer with two
pumping wells that influence the water budget of an ecologically sensitive wetland area
(crossed box, see Fig. 3.2, left). The stationary flow problem involves Eqs. (2.5)-(2.7) and has
Dirichlet-conditions at the western and eastern boundaries and Neuman zero-flux condi-
tions at the northern and southern boundaries. All relevant parameters are summarized in
Tab. 3.2 (left column).

3.4. Scenario (4): Complex Scenario based on Contaminant
Transport

Scenario (4) considers a two-dimensional depth-averaged unconfined aquifer with a reme-
diation (gray box) clean-up task as shown in Fig. 3.2 (right): Well 3 injects a reactant at con-
centration c0 = 1 into a stationary groundwater flow. The injected reactant passes through
the contaminated zone, and wells 1 and 2 extract the residual reactant after passing through
the contamination. The stationary flow problem is described by Eqs. (2.5)-(2.7) featuring
Dirichlet-conditions at the western and eastern boundaries and Neumann no-flow condi-
tions at the northern. The stationary transport problem relies on Eqs. (2.21)-(2.23) with zero-
flux boundaries at the western, northern and southern boundaries. All relevant parameters
are summarized in Tab. 3.2 (right column).

3.5. Scenario (5): Scenario based on Fractured Porous Media

In scenario (5), I consider flow and transport in a fractured porous media (FPM) (see Fig. 3.3).
The scenario features a two-dimensional depth-averaged confined aquifer with a contam-
inant line source extending over 1/3 of the western boundary. The stationary flow prob-
lem described by Eqs. (2.5)-(2.7) features Dirichlet-conditions at the western and eastern
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Figure 3.2.: Illustration of scenarios (3) (left) and (4) (right). Left: Wetland scenario featuring
regional groundwater flow from left to right and two pumping wells (marked by
crossed circles). The sensitive area is illustrated by a shaded box. Right: Scenario
from remediation management with well (3) injecting a reactant passing through
the contamination (gray box). The reactant is eventually being captured by the
extraction wells (1) and (2). Lost reactant mass fluxes are assessed at the shaded
control plane.
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Figure 3.3.: Scenario (5) based on fractured porous media. The differently shaded lines in-
dicate two fracture families with two different conductivities. Underlaid is the
almost impermeable rock matrix. The contaminant line source extends over 1/3
of the western boundary.

boundaries and Neumann no-flow conditions at the northern and southern boundaries. The
transport problem relies on Eqs. (2.16)-(2.20) and features zero-flux Neumann boundaries at
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Scenario (3) Scenario (4)

Numerical Domain
Domain Size [L1, L2] [m] [10λ, 10λ] [12λ, 12λ]
Grid Spacing [Δx/λ] [−] −∗ −∗

Sensitive Domain [L1, L2] [m] [3λ, 4λ] [−]
Control Plane [L1, L2] [m] [3λ, 4λ] [−, 12λ]
Contaminated Area [L1, L2] [m] [−] [−, 1λ]

Flow, Transport- and Geostatistical Parameters
Mean ln T μT ln[m2/s] ln 3× 10−4 ln 2.5× 10−3

Variance ln T σ2T ln[(m2/s)2] 3 3

Integral scale ln T λT,1,2 [m] [64, 64] [64, 64]

Diffusion Dm [m2/s] − 1 × 10−9

Dispersion αl, αt [m] − 0.1, 0.01

Porosity ne [-] − 0.3

Well Parameters
Well 1 [xw, yw] [m,m] [7λ,3λ] [8λ,4λ]
Well 2 [xw, yw] [m,m] [7λ,7λ] [8λ,8λ]
Well 3 [xw, yw] [m,m] − [4λ,6λ]
Strength 1 Q [m3/s] 0.4 0.005
Strength 2 Q [m3/s] 0.4 0.005
Strength 3 Q [m3/s] − -0.01

Table 3.2.: Parameters for scenarios (3) and (4). Values indicated with ∗ vary and are specified
in Sec. 9.2.1. All dimensions are specified as multiples of the integral scale λ for
ln T

the western, northern and southern boundaries. All relevant parameters are summarized in
Tabs. 8.1-8.2 of Chap. 8.

Throughout my later work, I vary some of the scenarios (1) - (5) regarding their geostatistical
parameter assumptions, their prediction goals or the tools to evaluate target properties (e.g.,
in optimal design of experiments). For the sake of completeness, Tab. 3.3 summarizes all
variations denoted be different cases.

3.6. Scenario Implementations

All scenarios (1) trough (4) feature transmissivity T (x) as a discretized random space func-
tion represented by cell-wise values on a fine numerical grid. Following classical geostatis-
tical ideas, I use E[T ] as a known constant, and assume that lnT ′ = lnT −E[lnT ] is second-
order stationary with isotropic Gaussian covariance function C(h) that only depends on the
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Scenario Case Specific Variation

(1)

⎧⎪⎪⎨
⎪⎪⎩

(a)
⎫⎪⎪⎬
⎪⎪⎭ Geostatistical Model (in Sec. 6.4 and Sec. 7.3.1)

(b)
(c)
(d)

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
⎫⎪⎪⎬
⎪⎪⎭ Monitoring Location (in Sec. 6.5 and Sec. 7.3.2)

(b)
(c)
(d)

(e)
}

Exploration of Information (in Sec. 9.1.3)
(f)

(g)
}

Prediction Goal (in Sec. 9.1.3)
(h)

(i) Conceptual Model (in Sec. 9.1.3)

(3) - -

(4)
{

(a)
}

Error metric (in Sec. 9.2.2)
(b)

(5) - -

Table 3.3.: Case variations for all scenarios (1) - (5).

separation vector h [e.g., Kitanidis, 1997]. Realizations of T (x) are generated with the same
implementation of FFT-based methods [Newsam and Dietrich, 1994] as used in Nowak et al.
[2008].

The flow problems of scenarios (1) and (3) are solved in parallel by using MODFLOW-2005
[Harbaugh, 2005] on 80 cores with 2.8 GHz. Solutions of the transport-related problems of
scenarios (2) and (4) are based on Eulerian descriptions and rely on a finite element method
(FEM) scheme already used in Nowak et al. [2008] and Nowak et al. [2010]. The flow prob-
lem of scenario (5) is solved by the Complex Systems Modeling Platform (CSMP) involving
a FEM approximation [e.g., Geiger et al., 2010]. The transport solution of scenario (5) fea-
tures different scales tackled by particle tracking random walk (PTRW) simulations [e.g.,
Salamon et al., 2006; Koch and Nowak, 2013], and a finite volume (FV) scheme [e.g., Cirpka
et al., 1999a], respectively.



4. Temporal Moments

As listed in Sec. 1.2, there has been a great deal of work dedicated to the model reduction
along the time dimension. The most striking one is the approach of Harvey and Gorelick
[1995], establishing the so-called moment generating equations (MGE). As their work marks
the starting point of my later analysis, I first refresh the idea of temporal moments (TM) in
Sec. 4.1, discuss their physical meaning in Sec. 4.2, and then head to a brief discussion of
MGE in Sec. 4.3 including applications Sec. 4.4.

4.1. Definition

Let r(t) be a time-dependent response of a system to an external excitation starting at time
t0 = 0 and measured at some location x0. Examples include drawdown curves (DC) due
to the excitation of the subsurface water level in pumping tests [e.g. Fetter, 2001], reactions
due to recharge events, tidal pumping or changing river stages [e.g. Yeh et al., 2009], so-
lute breakthrough curves (BTC) during the injection of water-borne tracers and contaminant
spills [e.g. Fetter, 1999], or reactions of river discharge to precipitation in hydrological mod-
els [e.g. Nash and Sutcliffe, 1970]. Such responses r(t) may look like the solid black curve
enveloping the gray shaded area in Fig. 4.1.

r(t)

t

m1 ≡ m∗

1

m∗

0

m2,c ≡ m∗

2

m∗

0

−m2
1

m∗
0

Figure 4.1.: Illustration of the first three TM, i.e., response strength m∗
0, mean response time

m1 and mean response duration m2,c, and their relation to an exemplary re-
sponse curve r(t).

The kth TM m∗
k of r(t) is defined as

m∗
k =

∫ ∞

0
tkr(t) d t, (4.1)
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where tk is a monomial of order k used as a base function. Then, the kth raw moment mk is
calculated by normalization with m∗

0

mk =

∫ ∞

0
tk
r(t)

m∗
0

d t =
m∗

k

m∗
0

[Tk]. (4.2)

The normalization bym∗
0 makes r(t) a function with density properties, i.e.,

∫∞
−∞ r(t) d t = 1,

similar to pdfs. Raw temporal moments mk are then closely related to statistical moments,
simply applied to time rather than to some random variable. Due to their familiarity with
statistical moments, I refer the interested reader to Sec. 2.3 where distribution functions and
associated statistical moments have been summarized.

Typically, higher order TM are centralized to m1 = 0 and then standardized to m2 = 1 using
the binomial transform [e.g. Papoulis, 1984]

mk,c =
k∑

j=0

(
n

k

)
(−1)n−j mj

m∗
0

mn−j [Tk], (4.3)

and

mk,s(x) =
mk,c

m
k/2
2,c

[−], (4.4)

with mk,c and mk,s being centralized and standardized TM, respectively.

This normalization, centralization and standardization is in analogy to image pattern recog-
nition, where algebraic moment invariants are calculated in order to make image features
invariant with respect to scale, translation and rotation [Prokop and Reeves, 1992]. TM can
also be derived from the Laplacian transformation of r(t) [Kubo, 1962; Harvey and Gore-
lick, 1995], as Taylor series coefficients in the spectral domain [Kendall and Stuart, 1977] (see
Appendix A).

4.2. Physical Meaning

Based on the order k of the respective base function tk, TM capture different individual fea-
tures of the response curves r(t). As summarized later in Sec. 4.4, most existing applications
only consider lower-order TM. Fig. 4.1 illustrates the zeroth through second TM including
the underlying response curve r(t).

Zeroth TM The zeroth temporal moment m∗
0 is a simple integral of the response r(t) over

time, and so measures the overall response strength. This is marked as the gray shaded
area under the enveloping black solid curve in Fig. 4.1.

First TM The first raw (normalized) TM m1 provides information on the time between ex-
citation and bulk response, i.e., a characteristic response time of the system. This is
marked by the vertical dashed line in Fig. 4.1.
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Second TM The second normalized and centralized TM m2,c is the squared response de-
viation from the characteristic response time m1. In other words, m2,c measures the
characteristic response duration (horizontal double arrows).

Third TM The third normalized, centralized and standardized TM m3,s describes the asym-
metry (skewness) of the response curve r(t) and so characterizes the tailing, e.g.,
caused by kinetic sorption [e.g., Fetter, 1999].

Fourth TM The fourth normalized, centralized and standardized TM m4,s describes the
peakedness (kurtosis) of the response curve r(t).

In many situations, these features can be put into relation to the governing physical flow
and transport processes and their parameters. In the following, two examples are provided:

First example based on drawdown (case 1a)

For a drawdown curve obtained from slug-like aquifer tests,m∗
0 is related to the steady-state

drawdown that would result from continuous pumping. m1 is the characteristic relaxation
time, also bearing some transient information that is needed to estimate the storativity [Li
et al., 2005]. As a matter of physics, pressure waves propagate approximately radially sym-
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Figure 4.2.: Illustration of spatial TM distribution from m∗
0 through m4,s based on scenario

(1). The scenario features a centered pumping well.

metric (strictly in homogeneous isotropic media) from where the system has been excited.
This is reflected in the spatial distribution of TM from drawdown curves revealing a strong
spatial correlation as shown in Fig. 4.2 exemplary for the zeroth through fourth TM. The ex-
ample features scenario (1) and the shown TM are calculated from the transient drawdown
r(t) due to extraction in the center of the domain. The transmissivity field has been gener-
ated based on μT = 10−4, σ2T = 1, λT,1,2 = [20,20], and a Gaussian description of the spatial
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correlation pattern. For more details on scenario (1), I refer to Sec. 3.1. Generally, the spatial
pattern of TM is shaped by the heterogeneous nature of the underlying conductivity field,
making TM from drawdown curves a promising measurement data type for estimating hy-
draulic conductivity fields [Li et al., 2005].

Second example based on solute transport (scenario 2)

Solute transport in porous or fractured-porous media is different to pressure-driven draw-
down scenario, as information propagate from the point (volume) of solute injection path-
wise to the point (area, volume) of observation. Hence, TM represent a path-integrated mea-
sure of transport characteristics. This makes TM from tracer experiments (e.g., measured
tracer breakthrough curves) a useful data type to quantify aquifer properties different to
the hydraulic conductivity, complementing the explanatory power of drawdown-based TM
when jointly inverting conductivity fields [Cirpka and Kitanidis, 2000b; Nowak and Cirpka,
2006]. Fig. 4.3 shows an example for transport-based TM featuring scenario (2) for a pulse-
like injection. The transmissivity field has been generated based on μT = 10−4, σ2T = 1, λT,1,2
= [20,20], and an exponential description of the spatial correlation pattern. For a detailed
description I refer to Sec. 3.2.
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Figure 4.3.: Illustration of spatial TM distribution from m∗
0 through m4,s based on scenario

(2). The scenario features a contaminant line source ranging over 1/3 of the west-
ern boundary.

Here, the zeroth TM m∗
0 is the total observed mass at a given point x0. The first TM m1 is

related to the bulk arrival time along the travel path, reflecting the apparent average seep-
age velocity [Aris, 1956; Cirpka and Kitanidis, 2000a; Goode, 1996]. The second centralized
TM m2,c describes solute spreading, a process attributed to diffusion, local dispersion, ki-
netic sorption [Valocchi, 1989], and macrodispersion [Gelhar and Axness, 1983; Cirpka and
Kitanidis, 2000a]. Thus, m2,c may be used to define apparent dispersion coefficients [e.g.,
Cirpka and Kitanidis, 2000a]. Higher TM represent more complex information on structural
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properties of porous media, e.g., caused by non-uniform grain-size distributions [Cunning-
ham and Roberts, 1998]. Luo et al. [2008] derived a direct relation between TM of break-
through curves (BTC) and TM of memory functions in multi-rate mass transfer processes
(MRMT). A great advantage in this context is that TM remove the non-locality in time from
MRMT equations, as will be explained in more detail in Chap. 8.

4.3. Moment Generating Equations

Besides their intuitive understanding, physical meaning and significance in theoretical anal-
yses, TM have the advantage that they can be simulated at very low computational costs.
Let us consider a generic linear dynamic and distributed system (e.g., described by a system
of coupled PDEs or a single PDE such as Eq. (2.9) and Eq. (2.16)):

∂r(t)

∂t
−D(r(t)) = Q(t), (4.5)

linear differential operator D(∗) of arbitrary order and forcing termQ(t). For the sake of sim-
plicity and without loss of generality, I set source/ sink terms W equal to zero and neglect
system coefficients, e.g., the specific storage coefficient S0.

Generic initial and boundary conditions are

r(t) = r0 at t = t0 (4.6)

r(t) = rDiri on ΓDiri ∀t (4.7)

−n · ∇ r(t) = JNeu on ΓNeu ∀t, (4.8)

where rDiri and JNeu are the corresponding values on the Dirichlet and Neumann condi-
tions.

Applying Eq. (4.1) to Eqs. (4.5)-(4.8) reduces the transient PDE in Eq. (4.5) to a set of steady-
state equations:

D (m∗
k) = m∗

k−1 +m∗
Q,k (4.9)

D (m∗
0) = m∗

Q,k, (4.10)

with generic boundary conditions

m∗
k = m∗

k,Diri on ΓDiri (4.11)

−n · ∇m∗
k = m∗

k,Neu on ΓNeu, (4.12)

where m∗
Q,k is the kth TM of the forcing term, now including the model forcing by the initial

condition (if it is not equal to the steady-state at t → ∞), and m∗
k,Diri and m∗

k,Neu are the
kth TM of the boundary values. The transition from Eq. (4.5) to Eqs. (4.9)-(4.12) requires
integration by parts, which leads to the appearance of lower order TM as source/ sink terms
on the right hand side.
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Quite obviously, the considered TM of rDiri and JNeu have to be finite, which is satisfied
if the forcing persists over a finite time. This is apparently given in most experiments with
pulse-like system excitation such as slug tests. The detailed steps that lead to Eqs. (4.9)-
(4.12) are provided for arbitrary base functions in Chap. 5. Auxiliary conditions required
for integrating the time derivative are tkr(t) → 0 ∀ k and tkQ(t) → 0 ∀ k at t → ∞, i.e., the
system response has to asymptotically decay to zero faster than the highest power of t used
in the analysis approaches infinity. Two more prerequisite are that Eq. (4.5) must be a linear
(system) of PDEs or ODEs, and the coefficients must be time-invariant.

For drawdown from pumping tests in confined aquifers, which occurs as parabolic PDE,
TM reduce Eqs. (4.8)-(4.10) to an elliptic PDE with formally time-independent boundary
conditions. An important observation is that TM are now calculated recursively, where the
previous TM of order (k − 1) serves as source term for the respective current TM of order
k. This makes it impossible to directly access TM of higher orders. On the other hand, this
type of recursive coupling is computationally very appealing as a fully coupled system of
equations can be avoided.

Overall, this allows to simulate TM m∗
k at the computational costs of a few recursive steady-

state simulations, avoiding the costly need for time marching schemes in transient simula-
tions. Applications to specific problems existing in the literature can be found in Sec. 4.4.

4.4. Review of Temporal Moment Applications

As discussed in Sec. 4.2, TM capture the most significant aspects of a system response r(t)
such as strength, delay, duration, etc., and often have well-defined physical meanings. Thus,
TM intuitively bear a high information density, dramatically reducing computational costs.
This allows to cover many challenges in hydro(geo)logy such as prediction, uncertainty
quantification, calibration/inversion, or probabilistic risk assessment. In the following, I
review the applications of TM that can be found in the hydrogeological literature, with a
specific focus on how many TM have been considered.

Harvey and Gorelick [1995] (three TM) where the first to provide moment-generating equa-
tions for transport with complex initial and boundary conditions and a variety of mass trans-
fer models. Their moment-generating equations were of recursive-type to be solved numer-
ically, and extended the earlier analytical work on TM studying chromatographic properties
in chemical engineering by Kucĕra [1965]; Kreft and Zuber [1978]; Villermaux [1981a,b], and
later mass transfer in the subsurface by Valocchi [1985]; Goltz and Roberts [1987]; Valocchi
[1990]; Sardin et al. [1991]; Cunningham and Roberts [1998]; Lawrence et al. [2002].

Representative numerical studies following the mentality of Harvey and Gorelick [1995]
range from prediction of groundwater age or life expectancy by Goode [1996] (two TM),
Molson and Frind [2011] (two TM), Varni and Carrera [1998] (two TM), and probabilistic
assessment of well vulnerability zones [Enzenhöfer et al., 2011] (five TM) to solute travel
time analysis [Cirpka and Nowak, 2004] (two TM). Cirpka and Kitanidis [2000b] (two TM),
Li et al. [2005] (two TM), Zhu and Yeh [2006] (two TM), Pollock and Cirpka [2008] (two TM)
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and Yin and Illman [2009] (two TM) applied TM to make calibration or stochastic inverse
modeling more efficient. Cirpka and Kitanidis [2000a] (three TM) and Cirpka and Kitanidis
[2000c] (three TM) deterministically related TM to transport characteristics. Luo et al. [2008]
generalized the pioneer work of Harvey and Gorelick [1995] to mass transfer models with
arbitrary formulations of the memory function.

When it comes to applications, I observed that almost all applications involve hypothetical
data and scenarios to test and demonstrate their method, and almost no field applications
exist. Among all work known to me, only Varni and Carrera [1998] (two TM), Cunningham
and Roberts [1998] (four TM) and Nowak and Cirpka [2006] (three TM) compared their nu-
merical simulations against field measurements of groundwater age, grain-size distributions
and solute breakthrough curves, respectively. Nowak and Cirpka [2006] and Yin and Illman
[2009] reduced measured real breakthrough curves and experimental drawdown curves,
respectively, and then used TM in geostatistical inversion.





5. Reduction Efficiency via Alternative
Integral Transforms

In the last chapter, we have seen that there is a great potential in reducing transient models,
e.g., by means of temporal moments (TM). They, generally, reduce a time-dependent partial
differential equation (PDE) into a recursive set of steady-state PDEs by projection onto a set
of monomial base functions. Due to the simple coupling among higher and lower-order TM,
a swift evaluation can be achieved. The only prerequisites are that (1) the partial differential
equation is linear and (2) the coefficients must be independent of time and independent of
the solution r(t). The question is whether monomials are the only base functions that lead
to this efficient recursive conversion of the governing equations. And, if no, are there other
types of well-suited base functions and how efficiently do they reduce PDEs?

This leads me to Step (I) of my overall approach. In the following, I consider model re-
duction in time from the very most general perspective. First, I derive alternative integral
transformations based on arbitrary base functions (Sec. 5.1). Second, I classify them and dis-
cuss their different properties towards reduction efficiency (Sec. 5.2). The material of the
following chapter has been published in Leube et al. [2012b].

5.1. Alternative Base Functions

It can be anticipated from Eqs. (4.1)-(4.10), that choosing other base functions than the mono-
mials tk will lead to other, more general, temporal characteristics αk than TM. The key ques-
tion will be, whether their resulting generating equations are fully coupled, recursively cou-
pled (like for TM) or independent. In order to analyze this issue, I replace the monomials tk

in Eqs. (4.1)-(4.12) with a set of yet unspecified base functions ξk(t), k = 0 ...K, and repeat
all steps analogously. This leads to a definition for arbitrary temporal characteristics:

αk =

∫ ∞

0
ξk(t)r(t) d t, (5.1)
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with their corresponding generating equations∫ ∞

0
ξk(t)

∂r(t)

∂t
d t︸ ︷︷ ︸

(1)

+

∫ ∞

0
ξk(t)D (r(t)) d t︸ ︷︷ ︸

(2)

=

∫ ∞

0
ξk(t)Q(t) d t︸ ︷︷ ︸

(3)

, k = 0 ...K. (5.2)

The boundary conditions are similar to those defind for TM in Sec. 4.3∫ ∞

0
ξk(t) r(t) d t =

∫ ∞

0
ξk(t) rDiri(t) d t on ΓDiri ∀ t (5.3)

∫ ∞

0
ξk(t)n · ∇ r(t) d t =

∫ ∞

0
ξk(t)n · ∇ rNeu(t) d t on ΓNeu ∀ t. (5.4)

Integrating terms (2) and (3) and the boundary conditions is trivial, since ξk(t) and the
time integral can be moved into the spatial differential operator. This leads to a differential
expression for the new temporal characteristics αk. Term (1) requires integration by parts
and leads to terms (4) and (5) in the following equation:

[ξk(t) r(t)]
∞
0︸ ︷︷ ︸

(4)

−
∫ ∞

0

∂ξk(t)

∂t
r(t) d t︸ ︷︷ ︸

(5)

+ D (αk) d t︸ ︷︷ ︸
(2)

= αQ,k︸︷︷︸
(3)

, (5.5)

where αk are the temporal characteristics of order k that correspond to the TM in Eq. (4.1)
when setting ξk(t) = tk, and αQ,k are the corresponding characteristics of the forcing func-
tion Q(t). When the auxiliary conditions are changed accordingly, term (4) vanishes. The
required conditions are tkr(t) → 0 ∀ k and tkQ(t) → 0 ∀ k at t→ ∞, i.e., the system response
has to asymptotically decay to zero faster than the highest power of t used in the analysis
approaches infinity. The associated boundary conditions become

αk = α̂k on ΓDiri (5.6)

n · ∇αk = α̂Q,k on ΓNeu. (5.7)

Eq. (5.5) can be solved without reverting to a time-dependent solution of Eq. (4.8), if and only
if the remaining term (5) can be expressed through a combination of characteristics with
arbitrary orders k ranging from α0 to αk, k = 0 ...K such that all time-related differential
and integral operators disappear:∫ ∞

0

∂ξk(t)

∂t
r(t) d t︸ ︷︷ ︸

(5)

= c0k

∫ ∞

0
ξ0(t) r(t) d t︸ ︷︷ ︸

α0

+ ... + cKk

∫ ∞

0
ξK(t) r(t) d t︸ ︷︷ ︸

αK

(5.8)

where cKk are linear coefficients. Applying Eq. (5.1) and auxiliary conditions to both sides
of Eq. (5.8) allows to replace the various integrals over r(t) by the characteristics αk of r(t)
and rewrite Eq. (5.8) as a system of ordinary differential equations (ODEs):

∂ξk(t)

∂t
= c0k ξ0(t) + ... + cKk ξK(t). (5.9)

This set of equations will allow to finally replace all remaining time-related operators in
term (5) of Eq. (5.2), and leads to a coupling between the K replicants of Eq. (5.2) for all
k = 0 ...K.
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5.2. Coupling Matrices

I will now investigate specific coupling cases that can occur in Eq. (5.9). The goal is to find the
set of base functions ξk(t) that allows to most swiftly simulate temporal characteristics from
Eq. (5.2). This way, I wish to find the approach that most efficiently reduces models in time.
Putting Eq. (5.9) into matrix notation reveals different cases of coupling schemes between the
replicates of Eq. (5.2) as illustrated in Fig. 5.1. Four specific cases are of particular relevance
for further analysis and will be discussed in the following paragraphs.

5.2.1. Fully Populated Case

In the most general case (a), term (5) can only be expressed as a linear combination of all
lower and higher order characteristics, leading to a fully populated coupling matrix. This
will occur only if the base functions ξk(t) are non-polynomial, e.g. rational, trigonometric,
etc., such that none of their time derivatives vanish, or if they are polynomial approxima-
tions of arbitrary non-polynomial base functions truncated at order K ≥ k.

For the final purpose of simulating temporal characteristics, this will lead to a fully coupled
finite or even infinite system of equations in Eq. (5.2). This is unfeasible, because it will be
much more expensive to solve than recursively coupled systems or decoupled equations
(see the other cases). Also, it may exclude commercial software packages from being used if
they do not allow solving coupled equations. Therefore, I can immediately remove case (a)
from my further considerations.

5.2.2. Lower Order Case

Case (b) resembles the situation where term (5) can be expressed as a linear combination of
characteristics of order only smaller than k, leading to a lower triangular coupling matrix.
This can only occur if the base functions ξk(t) are polynomials of order k (or polynomial
approximations of, e.g., trigonometric, hyperbolic, square root, logarithmic, or any other
arbitrary base functions, truncated at order k, sorted in ascending order). From Eq. (5.9) it
can be seen, that, in case (b), the first line directly leads to ξ0(t) = const, such that ξ1(t) must
have first order in t, and so on.

Let us now consider an arbitrary polynomial base function expressed via linear combina-
tions of monomials ti

ξk(t) =

k∑
i=0

ψik t
i, (5.10)

with time-independent coefficients ψik. When pursuing this approach, I get

αk =

∫ ∞

0
ξk(t) r(t) d t =

∫ ∞

0

k∑
i=0

ψik t
i r(t) d t. (5.11)
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Figure 5.1.: Coupling matrices comprising four different cases: (a) full coupling, (b) the en-
tire lower triangular matrix occupied for the general case, (c) only the secondary
diagonal occupied in the Appell case, and (d) only the main diagonal occupied
in the Laplace case.
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Pulling the sum and ψik outside the integral yields

αk =
k∑

i=0

ψik

∫ ∞

0
ti r(t) d t, (5.12)

which can be expressed as linear combination of TM mi of order i = 0 ... k:

αk =
k∑

i=0

ψikm
∗
i . (5.13)

From this, it follows that any temporal characteristic based on arbitrary polynomial base
functions ξk(t) obeying case (b) can be mimicked by TM through linear re-combination.
Therefore, arbitrary polynomials of order k = 0 ...K will capture the same temporal infor-
mation, yet at slightly higher computational costs (due to the treatment of multiple source
terms in Eq. 5.5).

5.2.3. Appell Case

Case (c) is a special case of (b) involving the so-called Appell sequences [Appell, 1880]. Appell
sequences include Hermite polynomials, Bernoulli polynomials, Euler polynomials, and the
monomials that lead to TM. They are in fact defined via an ODE system that is simpler than
Eq. (5.9), occupying only the secondary diagonal of the coupling matrix. By the nature of
this coupling, it is obvious that the recursive coupling is computationally the most efficient
way to simulate temporal characteristics, together with the last case (d).

5.2.4. Laplace Diagonal Case

Case (d) considers the situation where the coupling term only occupies the main diagonal.
Guaranteeing that ∂ξk(t)

∂t is proportional to ξk(t) can be fulfilled if and only if ξk(t) ∝ e−kt,
which directly leads to the Laplace transformation (LT). The relation of the LT to TM is
recalled in Appendix A. In brief, the LT yields the spectrum of the system response, and
TM are the Taylor expansion coefficients of the spectrum. As a consequence of diago-
nal coupling, the Laplace coefficients can be determined independently (uncoupled, non-
recursively). This advantage is, however, bought at the fact that it is unclear which Laplace
coefficients summarize the dynamic behavior in r(t) best. As a direct consequence, appli-
cations employing the LT typically used between 10 and 40, sometimes even 100 Laplace
coefficients to accurately restore the solution r(t) [e.g., Li et al., 1992; Sudicky and McLaren,
1992]. I rate this case as fast but impractical since the choice of considered orders k remains
unclear. A quantification of this statement for a specific system setup will be presented in
Sec. 6.4.3.
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5.2.5. Orthogonal Case

Characteristics αk should summarize the dynamic behavior of r(t) as good as possible, al-
ready with a small number. Only then, the sequence of considered characteristics can be
truncated at low k = 0 ...K, leading to a small set of replicates for Eq. (5.2) to be solved.
In analogy to signal processing, I refer to this desired property as optimal compression. A
prerequisite for optimal compression is, that temporal characteristics αk in the order of the
sequence k = 0 ...K add large and possibly non-redundant information units, sorted from
most to least significant information units in descending order. Using the terminology of
Fourier, Laplace, or more general integral transforms [e.g., Debnath and Bhatta, 2007], the
spectrum (αk)

2 has to decay as fast as possible with increasing order k, by adequate choice
of ξk(t). The goal of non-redundancy can be achieved by guaranteeing orthogonality among
the respective base functions ξk(t).

Taking advantage of orthogonal base functions has already been done in fields different to
my study. In image processing, Teague [1980] established orthogonal polynomials in order
to derive moments invariant with respect to image translation. In the context of object re-
construction, Prokop and Reeves [1992] resumed that monomials are highly correlated and
thus introduced orthogonalized moments in order to reduce the information redundancy
among conventional moments. Furthermore, they concluded that orthogonal moments are
more suitable in image reconstruction and may be used to determine the minimum num-
ber of moments required to adequately reconstruct and thus, uniquely characterize, a given
image. In chromatography, Kucĕra [1965] suggested to expand a time-dependent response
in order to analytically solve the advection-dispersion equation including linear sorption
kinetics. To this end, he suggested to use orthogonal Hermite polynomials.

I will now investigate whether any orthogonal base functions exist that allow to reduce
Eq. (5.2). Generally, orthogonality between base functions ξk(t) and ξ�(t) is defined as∫ b

a
ξk(t) ξ�(t)w(t)dt =

{
0, ∀ k = �

Nk, ∀ k = �
, (5.14)

with respect to the weighting function w(t). Nk is the squared weighted L2-norm and de-
pends on the choice of the base function ξk(t). In this context, the optimal choice of the base
functions strongly depends on the associated weighting function w(t) and its own moments
[e.g., Abramowitz and Stegun, 1972; Oladyshkin et al., 2011] and on the integration interval
[a, b]. For most dynamic and distributed systems of interest in hydro(geo)logical applica-
tions, I have [a, b] = [0,∞] and w(t) = 1. Finding an arbitrary orthogonal base function
ξk(t) =

∑k
i=0 ψik t

i with time-independent coefficients ψik meeting these constraints would
lead to (according to Eq. (5.14)):∫ ∞

0
ξ20 ω(t) d t =:

∫ ∞

0
ψ2
0 d t = ψ2

0 [t]∞0 = ψ2
0 ∞. (5.15)

Under these conditions, it is impossible to define orthogonal base functions because there
is no real-valued non-zero base function to fulfill Eq. (5.14). Orthogonal base functions can,
since they do not exist for the class of problems I am interested in, be excluded from my
considerations.
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5.2.6. Cumulant Case

For the sake of completeness, I recall the case of cumulants (or semi-invariants). Similar to
TM, cumulants characterize the nature of random variables, however, they do it a unique
fashion [Gardiner, 1985]. Cumulants have the elegant property that they allow to recon-
struct the dynamic response r(t) using the so-called Edgeworth expansion which has highly
advantageous convergence properties for nearly-Gaussian problems [e.g., Chatwin, 1970].
However, non-negativity of r(t) is often a physical requirement, and the Edgeworth expan-
sion can not guarantee non-negativity. Joint cumulants of several variables have the desir-
able property that if any of the involved random variables are independent, then their joint
cumulants become zero (whereas the TMs would factorize).

As summarized in Appendix B cumulants can be expressed as a non-linear recombination of
equal and lower order TM [Kubo, 1962]. Cumulants are also related to the Laplace transform
(LT): Applying the natural logarithm to the moment generating equation (MGE) yields the
spectrum of so called cumulants κk. Cumulants are not able to reduce Eq. (5.2) because
applying the logarithm converts terms (1) and (2) to mixed integro-differential expressions
and, hence, irreversibly changes the character of the parabolic PDE. For these reasons, I can
also exclude cumulants for my purposes.

5.3. Summary and Conclusions

In this chapter, I performed Step (I) of my overall approach. I investigated base functions
different to the monomials that lead to TM. By analyzing them towards their reduction effi-
ciency, I found that they can be classified exhaustively by a limited set of cases. By compar-
ing these cases to the monomials that lead to TM, I found the following conclusions most
important:

1. Any temporal characteristic based on arbitrary polynomial base functions ξk(t) or on
cumulants can be mimicked by TM through linear re-combination, and would not
offer improved computational efficiency compared to TM.

2. Polynomial-based temporal characteristics in general contain the same information as
TM, simply arranged in different linear combinations. They can, hence, not capture
more information from the dynamic system.

3. As overall consequence, there is no way of temporal model reduction for dynamic
systems based on arbitrary integral transforms with polynomial base functions that
leads to more efficiently reduced systems than the monomials leading to TM.

4. The only remaining integral transform that reduces Eq. (4.5) to a non-coupled sys-
tem of steady-state PDEs is the Laplace transform. In all applications of the Laplace
transform involving forward problems that I could find, the number of characteristics
necessary to capture the dynamic behavior was in the range of tens to hundreds. This
is not satisfying for model reduction in comparison to the overall efficiency of TM, as
I will illustrate in Chap. 6.
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It should be mentioned that the derivations in Eqs. (5.1)-(5.9) hold for a quite generic form
of PDEs. For example, this form includes parabolic PDEs (e.g., representing a dynamic con-
fined groundwater model). The examples by Harvey and Gorelick [1995] or Luo et al. [2008]
for advective-dispersive contaminant transport or MRMT, respectively, illustrate how this
concept also holds for other parabolic or partial integro-differential equations. In fact, the
results apply to any (system of) linear PDEs with the following properties:

• The spatial derivatives may have any arbitrary-order,

• There may be an arbitrary number of arbitrary-order time derivatives.

• For the integration by parts to work out, the coefficients must be independent of time
and independent of the solution r(t), and the dynamic model response has to decay to
zero sufficiently fast.

In Chap. 6, I will proceed with Step (II) of my overall approach. To this end, I assess and
compare the compression efficiency of the results from this chapter (i.e., the two based func-
tions leading to the most swift evaluation of temporal characteristics, TM and LC).



6. Compression Efficiency via the
Pre-Posterior Data Impact Assessor

In the last section I showed that there are only two ways of model reduction in time that
lead to an efficiently reduced system, i.e., via the integral transformation based on monomial
base functions that lead to temporal moments (TM) or via the Laplace transform providing
the Laplace coefficients (LC). There remains, however, another fundamental question: How
many TM or LC are necessary to achieve a sufficient degree of compression? Answering
this question would also open the door to compare TM to LC. LC can be obtained from
fully decoupled generating equations, as shown in Chap. 5. However, they conceal their
most informative coefficients in the shadow of an arbitrary order. Comparing the resulting
achievable compression efficiency is stated as Step (II) of my overall approach and carried
out in the following chapter.

To this end, I develop a novel and versatile method called PreDIA (Preposterior Data Impact
Assessor) to be introduced in Secs. 6.1-6.2. PreDIA analyzes, among others, the level of in-
formation carried by TM and LC. In Sec. 6.3 I employ PreDIA to scenarios where I consider
reduced flow- and transport models, and discuss my observations in Secs. 6.4-6.5. Later in
this thesis (Chap. 9), I will show the much more general application fields of PreDIA for
optimal design of experiments. The material of the following chapter has been published in
parts in Leube et al. [2012a] and Leube et al. [2012b].

6.1. General Approach

In order to answer the question on achievable compression efficiency, I propose first to
rephrase the question and rather ask in a more intuitive context: What is the error between
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a fully resolved dynamic model, e.g., represented by a time-series r(t) and its appropriate
reconstruction r̃(t)? The reconstruction would be based on a set of temporal characteristics
αk truncated at some order K with k = 0 ...K. The answer is straightforward and can be
expressed through the so-called L2-norm:

L2(K, t) = [r(t)− r̃(t)]2 . (6.1)

The individual choice of reconstruction techniques, e.g., maximum entropy [Jaynes, 1957], or
Edgeworth series expansion [Kendall and Stuart, 1977] would, however, introduce an error
of its own. To make my later analysis independent of the error in the specific reconstruction
technique chosen, I propose to replace the L2-norm by a statistically motivated norm like
the Conditional Standard Deviation (CStD) (for similarity see Eq. 2.41):

CStD(K, t) = (V arr [r(t)|αk])
1/2 (6.2)

which is the conditional standard deviation of r(t) given a set of temporal characteristics
αk with k = 0 ...K (e.g., TM or LC). The CStD represents the motivation that TM (or LC)
should at least be informative enough to identify response curves among a set of physically
plausible random response curves r(t). Such sets of plausible responses occur “naturally“ in
our context where a geostatistical model description is necessary in order to account for the
ubiquitous lack of knowledge on model parameters (see Sec. 2.4). The CStD is then build
around the set of possible r(t).

The crucial question is now, how to identify the conditional standard deviation. To empha-
size this, I make a short excursion in order to point out the drawbacks of common approach-
es and make the reader more sensible to the novelty of my approach. The most commonly
employed method to assess the conditional standard deviation of a data set u given just
another data set u′ is based on covariances. However, covariances restrict the analysis of
the data sets to be linear or only weakly non-linear [e.g., Schweppe, 1973]. This behavior
is illustrated in Fig. 6.1, showing a strictly linear case with proper fitting and a non-linear
case revealing a total failure capturing the dependency with covariances. It should be men-
tioned that most cases occurring in nature are somewhere in between those two antipodes
(strictly linear and strongly non-linear). There will be always a linear share of dependency
properly captured and a non-linear share missed. The dependency between temporal char-
acteristics αk (e.g., TM or LC) and the underlying dynamic response r(t) is not necessarily
linear. Hence, a linear framework such as Ensemble Kalman Filters (EnKF) [e.g., Evensen,
2007; Nowak, 2009; Schöniger et al., 2012] or first-order second-moment methods (FOSM)
[e.g., Kunstmann et al., 2002; Cirpka et al., 2004], might miss important features in a glob-
al assessment of TM or LC. To overcome this constraint, I propose a novel method being
capable to properly capture non-linear dependencies (e.g., as occurring in Fig. 6.1 right).

The Pre-posterior Data Impact Assessor (PreDIA), as introduced in this chapter, is an ex-
tension of the Bootstrap Filters (BF) [Gordon et al., 1993] (see Sec. 2.6) towards information
theory. BF rely on Monte Carlo (MC) simulations of random system responses and can, as
a matter of nature, handle non-linear system dependencies [Snyder et al., 2008]. This opens
the path to an assessment of the CStD without loss of non-linear features. To this end, let us
consider a sample of nr potential response realizations r(t). Note, that r(t) is now written in
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u

u
′

u

Figure 6.1.: Illustration of dependency structure between a linearly (left) and non-linearly
(right) dependent set of data u and u′ (black scattered cloud) and the perfor-
mance of the covariance measure (gray dashed line) applied to the data sets in
both cases.

bold as I consider a sample of nr realizations. Then, for a given sample of nα synthetically
generated temporal characteristics αk = f(r(t)) with k = 1 ...K and integral transformation
f() based on arbitrary base function ξ, the likelihood L(αk|r(t)) penalizing the discrepan-
cy between any potential temporal characteristic αk and the spectrum of overall possible
characteristics f(r(t) can be calculated as

L(αk|r(t)) = pdfNormal(f(r(t)),Rε). (6.3)

with Gaussian distribution around the mean f(r(t)) and the K ×K covariance matrix Rε.
Rε stems from the context of assimilating real data and refers to the physical measurement
error [Evensen, 2007]. In our context, where αk are synthetically generated (and not taken
from field observations), Rε is better considered as a kernel bandwidth for kernel density
estimations of pdfs [Silverman, 1986]. Given Bayes’ theorem (see Sec. 2.51), the posterior
distribution p(r(t)|αk) can be determined according to:

p(r(t)|αk) ∝ L(αk|r(t)) p(r(t)), (6.4)

whereas r(t) represents the prior distribution. From that, CStD(K, t) (see Eq. (2.41)) can be
determined according to:

CStD(K, t) =
{
Var

r(t)|αk
[r(t)]

}1/2
. (6.5)

The final goal of PreDIA is to average CStD(K, t) over the total spectrum of nα possible αk

values, arriving at the expectation (see Eq. (2.37)) over the Conditional Standard Deviation
R(K, t):

R(K, t) =
{
Eαk

Var
r(t)|αk

[r(t)]
}1/2

. (6.6)

In the context of the analysis performed in this chapter, PreDIA is a specific case of Leube
et al. [2012a]. A brief excursion to a different application as found in the original application
is given in Chap. 9.
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6.2. Implementation

The following section focuses on the implementation of PreDIA. For nr realizations of r(t)
independently drawn from p(r(t)) and one (hypothetically given) αk, a BF would evaluate
an nr × 1 weight vector w according to Eq. (6.4) with wi = p(ri(t)|αk). The weight vec-
tor w given a sequence of K TM is found be simply multiplying the individual likelihoods
L(αK |r(t)) =

∏K
k=0 L(αk|r(t)). This is allowed because the individual likelihoods are as-

sumed to be independent from each other (which is similar to the independence assumption
among measurement errors [Evensen, 2007]). The optimal bandwidth for Rε can be chosen
according to simple “rule of thumbs“ [Silverman, 1986] and is (in this analysis) kept con-
stant for every time-step t of the response curves r(t). Weighted averaging of nr realizations
ri(t), i = 1...nr, yields CStD(K, t) according to Eq. 2.39:

CStD(K, t) ≈
⎧⎨
⎩ v1
v21 − v2

⎡
⎣ nr∑

i=1

ri(t)
2 wi −

(
nr∑
i=1

ri(t) wi

)2
⎤
⎦
⎫⎬
⎭

1/2

, (6.7)

with v1 =
∑nr

i=1wi and v2 =
∑n

i=1w
2
i . Here, I approximate both quantities in the weighted

sample sense and, therefore, employ v1 and v2 [Weiss, 2006, p. 355]. The corresponding cor-
rection factor in Eq. (6.7) resembles the well-known factor 1

n−1 for the non-weighted sample
variance. This makes Eq. (6.7) an unbiased estimator of the population variance.

Calculating the weight vector w for the set of nα potential realizations of K sequences αk

yields an nr × nα weight matrix W

R(K, t) ≈
⎧⎨
⎩ 1

nα

nα∑
j=1

v1,j
v21,j − v2,j

⎡
⎣ nr∑

i=1

ri(t)
2 Wij −

(
nr∑
i=1

ri(t)Wij

)2
⎤
⎦
⎫⎬
⎭

1/2

. (6.8)

Finally, R(K, t) is normalized by its value for k = 0, i.e., by the uncertainty in absence of any
TM (or LC). This yields the normalized compression error Rn(K, t)

Rn(K, t) =
R(K, t)

(Var[r(t)])1/2
. (6.9)

For time-integrated analysis, I first integrate R(K, t) over time, normalize again, and define
the total normalized compression error Rt(K) by

Rt(K) =

(∫∞
0 R(K, t)2 d t∫∞
0 Var[r(t)] d t

)1/2

. (6.10)

This nested scheme is illustrated in Fig. 6.2 illustrates the above introduced implementa-
tion. For the sake of simple illustration, I consider a function y(t, a, b, c) described by three
unknown parameters a through c:

y(t, a, b, c) = exp
(−a log(t)− b log(t)2 − c log(t)3

)
, (6.11)
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Figure 6.2.: Schematic illustration of PreDIA (Pre-posterior Data Impact Assessor) envelop-
ing the BF (Bootstrap Filter). Both are nested together for the derivation of the
compression error R(K, t).

where parameters a through c are assumed to be log-normal distributed. The uncertainty
in y(t) due to the lack of knowledge on a through c is steadily decreased when learning
about the parameters a through c, eventually decreasing to zero when knowing all 3 pa-
rameters. Storing only zero to three parameters instead of the entire curve resembles a data
compression, and the resulting uncertainty in y(t) integrated over time is the related com-
pression error. When normalized by the compression error for zero parameters, this yields
the normalized compression error Rt(K) in Eq. (6.10).

6.3. Application

Two illustrative examples shall serve to investigate the compression efficiency of TM and
LC. To this end, I employ scenario (1), the simple scenario from well flow (see Sec. 3.1) and
scenario (2), the simple scenario from solute transport (see Sec. 3.2). For more details on the
specific scenario parameters and boundary conditions I refer to Sec. 3.1 and 3.2. In order to
investigate the sensitivity of the analysis results towards the choice of the underlying geosta-
tistical scenario settings, I repeat the analysis for scenario (1) in several scenario variations
where I vary the most relevant geostatistical parameters. This has been defined as cases (1a)
- (1d). Varied parameters include σ2T , σ2S , λT,1,2 as summarized in Tab. 6.1. For the variation
of the storage coefficient S, I follow the suggestion of Li et al. [2005], who reviewed the
sparse literature on the variability of S and finally recommended to use a spatial constant
with log-normal distribution and log-variance σ2S = 1.

As for scenario (2), I vary the monitoring locations in cases (2a) - (2d). They are summarized
in Tab. 6.2.
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Figure 6.3.: Illustrative example on PreDIA. The unknown function y in Eq. (6.11) relying
on parameters a through c is being analyzed regarding the remaining uncertain-
ty when knowing only a limited number of its parameters. Left: Normalized
compression error R(K, t) (± 2 standard deviations as shown as gray shaded ar-
eas) plotted around the expected response curve (dashed line). The lightest area
indicates minimal knowledge. Knowledge of all three parameters eventually re-
duces the uncertainty down to zero. Right: The respective time-averaged error
Rt(K). Crossed circles indicate numerical values for Rt(K).

Cases considered within scenario (1)

Case (1a) (1b) (1c) (1d)

Mean ln T μT ln[m2/s] 10−3 10−3 10−3 10−3

Variance ln T σ2T ln2[(m2/s)2] 0.8 2.5 0.8 0.8
Integral scale ln T λT,1,2 [m] [20,20] [20,20] [10,10] [20,20]
Mean ln S μS ln[−] 10−3 10−3 10−3 10−4

Variance ln S σ2S ln2[−] - - - 1
Integral scale ln S λS,1,2 [−] - - - [20,20]

Table 6.1.: Variation of geostatistical parameters in scenario (1).

To guarantee highly accurate sampling of r(t) and its TM and LC respectively, I employ a
MC ensemble consisting of 250k realizations for scenario (1) and 100k realizations for sce-
nario (2), respectively. As a matter of the weighting-based importance resampling used in
PreDIA, the accuracy of the analysis is degenerating with increasing TM sequence length
K or, in general, with stronger conditioning on data [Leube et al., 2012a]. These limitations,
also known as the “curse of dimensionality“ or “filter degeneracy“, have been the scope of
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Cases considered within scenario (2)

Case (2a) (2b) (2c) (2d)

Monitoring location [xm, ym] [m] [140,50] [260,90] [80,120] [140,120]

Table 6.2.: Variation of the monitoring location in scenario (2).

many studies in the past [e.g. Liu [2008]; Snyder et al. [2008]; Van Leeuwen [2009]]. I ensure
that the study results are unaffected by this problem by assessing the associated MC-error of
computing R, Rn and Rt by means of the non-parametric statistical Bootstrapping method
[Efron, 1982]. This has, to the best of my knowledge, not been done before in the context
of any reweighting-based MC analysis. For more details on the technical implementation
of this Bootstrapping method I refer to Appendix C. For the solution of scenario (2), 100k
Monte-Carlo realizations are generated in order to accurately resolve the spatial uncertainty.

6.4. Analysis based on Well Scenario (cases 1a - 1d)

In this section, I present and discuss the results based on scenario (1). In Sec. 6.4.1, I con-
sider TM sequences of increasing higher order 0 ...K in order to investigate the cumulative
compression efficiency towards loss-less compression. Sec. 6.4.2 considers individual TM of
specific orders k to answer the question whether TM provide the most important informa-
tion units first, and possibly in a strictly ordered fashion. Sec. 6.4.3 compares the results from
TM against LC.

6.4.1. Cumulative Compression Efficiency

Fig. 6.4 (left) shows for case (1a) the expected response curve E[r(t)]. Here, r(t) represents
the drawdown s at the monitoring location in absence of any TM data (dashed-dotted line),
enveloped by its uncertainty (Var[r(t)])1/2 (lightest gray shaded area). Using TM sequences
of increasing highest order K then helps to know more and more details about the dynamic
response as illustrated by the differently shaded areas R(K, t) for various values of K. Ob-
viously, a relatively high reduction of compression error is achieved by the first two TM in
some time interval around the mean response time (zeroth TM only) and peak time (zeroth
and first TM). The additional information when adding higher TM can hardly be seen in
this type of visualization.

Fig. 6.4 (right) shows the time-averaged compression error Rt(K) mapped against the high-
est TM order K for all four cases (1a) through (1d). The MC-error of Rt(K), estimated by
the Bootstrapping method, is visualized by the gray-shaded areas. These areas represent ±
2 standard deviations of assessing the Rt(K)-values. For all cases, Rt(K) decreases strict-
ly with increasing K, i.e., the longer the TM sequence considered. This is apparent, since



48 Compression Efficiency via the Pre-Posterior Data Impact Assessor

1c
1a
1d
1b

lo
g
R

t(
K
)

highest TM-order considered

E[r(t)]
K : 4
K : 3
K : 2
K : 1
K : 0
no TM

R
n
(K
,t
)

t

0 300 600 − 0 2 4 6 8

0

1

2

0.1

1

Figure 6.4.: Cumulative compression efficiency for TM featuring scenario (1). Left: Time-
dependent compression errors R(K, t) (± 2 standard deviations as gray shad-
ed areas) plotted around the expected response curve (dashed line) for TM se-
quences of increasing length K. Right: Their respective time integrals Rt(K) for
highest TM orders 0 ... 9, and in absence of any TM data (marked by minus).
Four cases (1a) - (1d) are compared. Crossed circles indicate numerical values
for Rt(K), shaded areas show ± 1 standard deviation of the MC-error in com-
puting the Rt(K) values.

longer TM sequences bear more information about the underlying time series. The first two
TM (the zeroth and first) convey more than about 80 % of the information in all four cases,
whereas the second and third TM contribute another 10 %. The remaining 10 % of informa-
tion is distributed among an unquantifiable number of higher moments.

Comparing the different cases (1a) through (1d), I find the compression error generally iden-
tical with only slight differences (±3 %). Although these differences appear to be small, they
allow some meaningful insight into the driving physical processes: Case (1c) ranks com-
paratively best (Rt(K) of (1c) is below that for 1a) in the sense that the overall information
is concentrated best in the lower-order TM. This is because case (1c) causes less variabili-
ty (smaller λT,1,2) associated with the possible dynamic shapes and features of drawdown
curves compared to case 1a. With less variability in dynamic features, fewer units of infor-
mation (a lower number of TM) suffice to infer the actual shape of the dynamic response.

The opposite behavior can be observed when analyzing cases (1b) and (1d). They introduce
more variability compared to case (1a) (higher σ2T for case 1b and uncertain S for case 1d),
causing more variable dynamic features. Case (1d) produces even more drastic dynamic
features through a much stiffer system with less diffuse behavior (small μS). Hence, both
scenarios require additional information, i.e., more TM in order to achieve the same level of
information.



6.4 Analysis based on Well Scenario 49

All the above analyses may suffer to some extent from filter degeneracy making my results
for longer TM sequences slightly less reliable. Based on my Bootstrapping-based error es-
timate, however, I found critical levels of filter degeneracy not to occur for a TM sequence
length below 10. This is when most information (> 90 %) has already been captured, and so
does not affect the conclusions I made above.

6.4.2. Individual Compression Efficiency

In the previous section, I analyzed the compression error of entire TM sequences of highest
order 0 ...K. The final remaining question is: Is the order of 0 ... k TM given by the recursive
character of Eqs. (4.9)-(4.10) the one that provides the most informative TM at first? To this
end, I analyze Rt(k) individually for every TM of order k. The results are shown in Fig. 6.5
(left).
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Figure 6.5.: Individual compression efficiency for TM in an application from groundwater
flow (Scenario 1). Left: Analysis of the compression error Rt(k) evaluated in-
dividually for every TM of order k = 0 ... 9 for cases (1a) through (1d). Right:
Temporal evolution of the compression error Rn(k, t) for individual TM of order
k = 0 ...6 in scenario 1a. The expected response curve E[r(t)] is illustrated by the
dashed-dotted curve.

Obviously, for all cases, lowest-order TM are again the more informative ones, and the com-
pression error Rt(k) of individual TM is steadily increasing with increasing order k and
eventually climbs up to 90 %. The same behaviour can be observed for scenarios 1b through
1d.

For cases (1b) and (1d), higher-order TM convey more important information compared to
cases (1a) and (1c), while they contribute much less in the cumulative analysis in Chap. 6.4.1.
This seeming inconsistency is explained by the fact that TM are not statistically independent,
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i.e., they are not orthogonal, convey partially redundant information and their information
content is not simply additive. Apparently, the more variable cases (1b) and (1d) produce
more redundancy among different TM.

Fig. 6.5 (right) shows the time dependence of Rn(k, t) for TM of increasing order k on the
example of case (1a). The curves indicate that each TM has specific time ranges in which
it contributes most information. For higher-orders, the conveyed information is shifted to
later times due to the increased leverage of higher order monomials at later times. Thus,
higher-order TM capture later-time features of the response curve. This turns out impor-
tant in slug-like pumping test analyses, where even the late-time features of drawdown re-
covery still contribute valuable information for estimating transmissivity [Oliver, 1993; Wu
et al., 2005; Zhu and Yeh, 2006]. Also, the late-time behavior of solute breakthrough curves
is important to identify non-Fickian transport phenomena, e.g., in multi-rate mass transfer
models [Haggerty and Gorelick, 1995; Luo et al., 2008].

When working with TM of noisy time series measured in the field, in the context of inverse
modeling, higher-order TM may be subject to large errors. Such errors have the potential
to compromise their information content, requiring more TM to compensate for that loss.
While this is not the scope of this chapter, it will be discussed further in the outlook.

6.4.3. Comparison against Laplace Case

As described in Chap. 5.2.4, LC are computationally attractive since they can be computed
independently. However, it is a priori unknown which parts of the spectrum or precisely
which LC will be most informative. This triggers the question if there exists a set of LC (and
if yes, then which one) that is superior to TM in terms of information content.

I mimick the lack of knowledge on the optimal choice of LC sets by randomly sampling
from a large spectrum of potential Laplace variables u, with u = 10−5 ... 105. I repeat this
500 times and measure the total normalized compression error Rt(K) for different sequence
lengths K in each repetition. As physical scenario I use scenario (1) with case (1a).

Fig. 6.6 shows the resulting total normalized compression error for the ensemble of 500 sets
(gray lines), and the ensemble mean (dashed line). For comparison, I include the results for
TM (dashed-dotted line) obtained in Sec. 6.4.1. I observe there is only a small fraction of
LC sets performing slightly better than TM. The ensemble mean (expected Laplace perfor-
mance), however, performs considerably worse than TM. Because the optimal set of LC is
unknown in practical applications, the possibly better performance of LC can not be exploit-
ed.

Whether or not this disadvantage of LC could be outbalanced by the advantage of easier
curve reconstruction for K > 10/40 [e.g., Li et al., 1992] will depend in the specific applica-
tion context.
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Figure 6.6.: Comparison between compression efficiency of LC and TM. Total normalized
compression error Rt(K) for sets of randomly drawn LC (grey lines), its mean
(dashed line) and, for comparison the evolution of the respective TM case
(dashed-dotted line).

6.5. Analysis based on Transport Scenario (cases 2a - 2d)

The next section considers the application of PreDIA to scenario (2) including cases (2a) -
(2d). This section is concerned with the same analysis done in Sec. 6.4. Sec. 6.5.1 considers
cumulative TM sequences of increasing order 0 ...K, whereas the individual analysis is not
conducted for the transport scenario.

6.5.1. Cumulative Compression Efficiency

Similar to Fig. 6.4, Fig. 6.7 (left) shows the expected response curve E[r(t)]. Here r(t) is the
normalized concentration c/c0 for case (2b) in absence of any TM data (dashed-dotted line),
enveloped by its uncertainty (Var[r(t)])1/2 (lightest gray shaded area). Using TM sequences
of increasing highest order K then helps to know more and more details about the dynamic
response as illustrated by the decreasing shaded areas R(K, t) for various values of K. Ob-
viously, (Var[r(t)])1/2 has a much smaller larger magnitude related to E[r(t)] as compared to
the drawdown in scenario (1). This means, the featured transport scenario is subject to more
uncertainty. Also, the zeroth TM carries almost no information: The lightest gray shaded
area is almost not distinguishable from the next darker. Only the first and next higher TM
deliver considerable informations on r(t), reducing the gray-shaded areas more distinctly.

Fig. 6.7 (right) shows the time-averaged compression error Rt(K) mapped against the high-
est TM order K for all four cases (2a) - (2d). The MC-error of Rt(K), estimated by the
Bootstrapping-based method, is again plotted around Rt(K), however, the areas are not
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visible with naked eyes in this case. This is due to the lower (Var[r(t)])1/2 values leading to
smaller MC-errors.

For all monitoring locations, Rt(K) decreases strictly with increasing K, i.e., the longer the
TM sequence considered, and reaches 10 % for sequences up to three and more TM. The
remaining information is distributed among an unquantifiable number of higher moments.
The interesting observation is that the cases featuring monitoring locations which are close
to or aligned with the center line of the expected plume path, and hence are almost always
hit by the plume (cases 2a and 2b) have a zeroth TM with no information content. This is
obvious because all observable responses receive the identical mass (namely the initialized
mass c/c0 = 1). By contrast, the cases featuring monitoring locations flanking the expected
plume path north (cases 2c and 2d) are seldom hit by the plume. The zeroth TM can take
on values between zero and the initialized mass, and provides more distinguishable obser-
vations. This leads to an uncertainty reduction of almost 20 % (please note the logarithmic
scale in Fig. 6.7, right).

2b
2a
2d
2c

E[r(t)]
K: 4
K: 3
K: 2
K: 1
K: 0
−

lo
g
R

t(
K
)

highest TM-order considered

R
n
(K
,t
)

t
0 300 − 0 2 4 6

0

0.03

0.1

1

Figure 6.7.: Left: Time dependent compression errors R(K, t) (± 2 standard deviations as
gray shaded areas) plotted around the expected response curve (dashed line)
for TM sequences of increasing length K. Right: Their respective time integrals
Rt(K) for highest TM-orders 0 ... 7, and in absence of any TM data (marked by
minus). Four different cases (2a) - (2d) featuring different monitoring locations
are compared. Crosses and circles indicate numerical values for Rt(K), shaded
areas (not visible by eyes in this case) show ± 1 standard deviation of the MC-
error in computing the Rt(K) values.
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6.6. Summary and Conclusions

This chapter aimed at assessing the compression efficiency of temporal model reduction
based on TM and LC defined as (Step II) of my thesis. To this end, I developed a novel and
versatile method called PreDIA (Preposterior Data Impact Assessor). The method was then
applied to two physical scenarios from subsurface flow and transport.

I found the following conclusions most important:

1. Based on an example from groundwater flow, the first two TM cover more than 80 %
of the information required to identify a drawdown curve. Considering up to four TM
captures 90 % or more of the overall information. The remaining 10 % of information
are distributed among an unquantifiable number of higher moments. The lowest-order
TM are always the most informative.

2. The distribution of information content over time differs among the TM orders. Late-
time behavior can mostly be inferred from higher orders. The relevance of higher-order
TM has to be judged in the light of any specific application task.

3. This is by far better than what I found for LC. One advantage of LC is that their equa-
tions are fully decoupled, such that arbitrary coefficients can be chosen in arbitrary
order. This is, at the same time, their greatest disadvantage, because it is a priori un-
known which ones are the most informative ones. Hence, it will be close to impossible
to pick the optimal set of LC that could compete with TM.

4. For an example from contaminant transport, I arrive at almost the same conclusions
than for groundwater flow. The interesting observation here is that the zeroth TM is
only informative for monitoring locations flanking the plume (in the ensemble sense).

The next step of my overall approach (Step III) is to reflect these results against the dis-
cretization or reduction of other model dimensions, i.e., the number of repeated model runs
through MC simulations. This step is performed in Chap. 7.





7. Reflection within Optimal Resource
Allocation

In the last chapter I, showed how to rationally quantify the compression efficiency of tem-
poral characteristics such as temporal moments (TM) or Laplace coefficients (LC). By com-
paring both TM and LC, I found that TM are superior to LC in terms of their compression
efficiency. Also I found that, there is only a limited number of TM necessary to reduce the
error in a truncated compression to an acceptable level. As the reduction of the temporal
dimension is only one possibility to cope with increasing computational costs (see Sec. 1.1)
it seems reasonable to ask how TM would compete against the discretization or reduction
of other model dimensions (e.g., the numerical discretization of the physical domain or the
number of repeating model runs through Monte Carlo (MC) simulation in order to resolve
the parameter space).

This is defined as Step (III) of my overall approach and aims at more wisely allocating
limited computational resources whilst keeping the joint error from combinations of dis-
cretization or model reductions at a global minimum. To this end, I present a new approach,
denoted as optimal resources allocation (ORA), to be introduced in Sec. 7.1 and applied to
a synthetic test scenario in Sec. 7.2. Parts of this chapter have been published in Leube et al.
[2013].

7.1. Methodology

In the following, I treat the number of TM to be used as a resource allocation problem. The
potential gain of accuracy (yield side) due to using more TM is assessed against the possible



56 Reflection within Optimal Resource Allocation

gain in computational time by reduction or coarser discretizations of other model dimen-
sions. The general idea is that there always exists an optimum ratio between these different
model dimensions. The optimum can be found in the light of their associated computation-
al costs (cost side). In order to find that optimal compromise, one has to properly quantify
the yield and cost side via meaningful metrics. Sec. 7.1.1 shows how to generally quantify
yields, whereas Sec. 7.1.2 addresses the computational costs. Sec. 7.1.3 then describes how
to assemble these cost and error surfaces into an overall joint cost-to-error surface serving to
finally determining the optimal trade-off between different combinations of discretized or
reduced model dimensions.

7.1.1. Error Metrics

Let us suppose a hydro(geo)logical model output is defined by space varying in the P×T×S
domain, where P refers to the physical space, T is the time space and S represents the
parameter or stochastic space. Then, errors associated with the numerical solution of SPDEs
originate from either limited spatial resolution Δx of the physical space domain P , limited
temporal resolution Δt of the time axis T or limited series of TM mk with k = 0 ...K, or
limited statistical resolution Δξ of the parameter space S, respectively. In the most general
formulation, the combined overall error in evaluating Ω, caused by its discretization in P , T
and S, can be found by:

RTot(Δx,Δt,Δξ) =
1

Va

∫
a
Ea(Ω) d a with a ∈ P, T, S, (7.1)

where Ea denotes some suitable, task-specific error norm (e.g., the L2-norm) for the com-
bined total error in the quantity of interest Ω and Va is the total volume in space a to be
integrated. Ea with a ∈ P, T, S, acts on either P , T or S, or on suitable combinations. It is
enveloped by an outer, possibly multi-dimensional integral aggregating the yet remaining
(complementary) dimensions a (such that a × a = P × S × T ), ensuring RTot becomes a
scalar quantity. Therefore, Ea can be employed to evaluate errors for arbitrary predictions,
including point predictions, areal predictions, percentiles, mean values, variances or other
statistics of predictions. Specific examples for illustration will be provided in Sec. 7.2.

While the L1 or L2-norms and variances are commonly used measures, most specific tasks
will suggest the use of other norms. As an example, risk assessment problems may ask for
minimal error probability in predicting that a critical risk percentile has been exceeded [e.g.
de Barros and Rubin, 2008]. In general, one should measure the quality or confidence of the
decision support offered by the model on the level of the overall modeling and simulation
purpose [Saltelli et al., 2008]. In Chap. 9, I employ specific task-driven error norms and also
show their applicability within the method.

The error as defined in Eq. (7.1) may simplify significantly, if independence of the individual
error components within Ea from discretizations P , T , or S is assumed. For instance, when
choosing L2-type norms, independence leads to simple additivity of individual errors in
each space P , S and T , respectively. The test cases in Chap. 9 will exemplify, however, that
such assumptions have to be treated with care.
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It should also be kept in mind that the notation of Δx for spatial discretization is not neces-
sarily implying a fixed uniform grid spacing.

7.1.2. Budget Metrics

The available computational budget is typically limited. Thus, it is necessary to quantify the
required budget of any proposed computational design. This can be done in different ways,
either by measuring the simulation costs in units of elapsed time or by counting compu-
tational floating point operations (FLOPS). FLOPS are a direct measure and often used to
specify asymptotic complexities (at the limit of fine discretizations) from theoretical prop-
erties and construction of specific algorithms. However, wall-clock run time may often be
preferable because it accounts for inefficiencies of operation systems and programming lan-
guages, and always relies on the respective present computer architecture. Using wall-clock
time in a given system will make the resource allocation specific to that system.

I define BTot(Δx,Δt,Δξ) as the total required budget:

BTot(Δx,Δt,Δξ) =

∫
S
Σ(Ω) dS. (7.2)

Here, Σ is some budget norm (e.g., FLOPS, wall-clock time) quantifying the budget required
to evaluate one realization of the model at the given resolution Δx, Δt. The integral over
the probability space is required because the convergence of the space/ time solver may
depend on the degree of value contrasts in the parameter vector, which may change between
different realizations.

For the total budget BTot, independence assumptions are quite plausible. For example, the
number of repeated simulations to resolve the event space S will often simply multiply with
the average evaluation time per space/time solution, denoted as Σ:

BTot(Δx,Δt,Δξ) = nMC · Σ, (7.3)

where nMC is the budget multiplier to generate nMC realizations Ω at the resolution Δx

and Δt. If (asymptotic) computational complexity models for the spatial or temporal reso-
lution are available, they can be fitted to experimental values of Σ or BTot at low Δx and
Δt values. Sometimes, the budget may be linear in the number of time steps. However, lin-
ear relationships as in Eq. (7.3) are not necessarily true since later realizations or time steps
might benefit from speedups from common grid-setup or from computing the solution to
the first realization as initial guesses.

The proposed framework for optimal resource allocation can also support the choice be-
tween different numerical higher-level computing strategies. For example, if parallel com-
putation is a viable option, there could be trade-offs involving running multiple small calcu-
lations in contrast to one large calculation influencing the balance between more MC sam-
pling and finer grids. Such choices complicate the experimental designs required to search
for the optimal resource application. Therefore, the examples provided later in this work
will be restricted to a non-parallel strategy.
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7.1.3. Methodology

The final goal of ORA is to assemble both the cost surface and the error surface into
an overall joint cost-to-error surface in order to optimally allocate resources. Estimating
RTot(Δx,Δt,Δξ) as a function of Δx, Δt and Δξ, yields the error surface shown in Fig. 7.1
a). The same surface for time budget BTot(Δx,Δt,Δξ) is shown in Fig. 7.1 b). The next step

a) b)

c)d)

RTot

RTot

BTot

Δ1

Δ1Δ1

Δ2

Δ2
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Figure 7.1.: Illustration of the ORA scheme. In clockwise direction: a) Joint error surface with
iso-error-lines RTot, b) joint computational budget surface with iso-budget-lines
BTot, c) assembled error-to-budget isoplot with optimal resource pairs (illustrat-
ed by black circles) and d) optimal resource pair Δ1 and Δ2 exemplary for one
given budget. Optimal resource pairs are found by minimizing the joint error
along the budget isoline that corresponds to a target budget.

is to derive the budget-to-error surface which is done by projecting BTot(Δx,Δt,Δξ) onto
RTot(Δx,Δt,Δξ) as shown in Fig. 7.1 c).

The resulting surface reveals, for every iso-surface of given time budget BTot, an opti-
mal ratio of Δx = Δxopt against Δt = Δtopt and Δξ = Δξopt, allowing the total error
RTot,min(Δxopt,Δtopt,Δξopt) to reach its minimum. The optima can be regarded as the mini-
mal of the cost-slice along the contour for a given budget. I hypothesize that the error surface
is convex, leading to convex functions along each budget isosurface, although the proof is
beyond the scope of this thesis. The algorithm for constructing the budget-to-error surface
involving all four prescribed steps is illustrated in Fig. 7.2.
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Fig. 7.1 (top, left)

Fig. 7.1 (top, right)

Fig. 7.1 (bottom, right)

Fig. 7.1 (bottom, left)
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Figure 7.2.: Flowchart for assembling error and budget surfaces RTot and BTot, respectively
and to find the optimal allocation for a given budget B = BTarget.

7.2. Application

In order to quantify and determine the optimal allocation of TM, I apply the methodology
to the four cases (1a) - (1d) from scenario (1) and the four cases (2a) - (2d) from scenario
(2). The time resolution parameter Δt will simply be replaced by the highest order K of TM
considered.

The driving questions I wish to answer are:

• Does the hypothesized optimal trade-off between stochastical Δξ (number of repeated
model runs through MC simulations) and temporal resolution Δt (highest order of
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TM) actually exist?

• What key factors influence the position of the optimal trade-off?

• Are the different components of approximations errors independent anywhere in the
relevant range around the optimum (tackled only in Chap. 9)?

The predictions Ω(Δt,Δξ) for cases (1a) - (1d) are defined as the mean drawdown curve at
the monitoring well xm = [25, 25]. In order to investigate the sensitivity of ORA towards the
choice of the underlying geostatistical scenario settings I vary again the most relevant geo-
statistical parameters throughout cases (1a) - (1d) similar to the application in Sec. 6.3. Varied
parameters include σ2T , σ2S , λT,1,2 as summarized in Tab. 7.1. The predictions Ω(Δt,Δξ) for

Cases considered within scenario (1)

Case (1a) (1b) (1c) (1d)

Mean ln T μT ln[m2/s] 10−3 10−3 10−3 10−3

Variance ln T σ2T ln2[(m2/s)2] 0.8 2.5 0.8 0.8
Integral scale ln T λT,1,2 [m] [20,20] [20,20] [10,10] [20,20]
Mean ln S μS ln[−] 10−3 10−3 10−3 10−4

Variance ln S σ2S ln2[−] - - - 1
Integral scale ln S λS,1,2 [−] - - - [20,20]

Table 7.1.: Variation of geostatistical parameters in scenario (1).

cases (2a) - (2d) are defined as the mean breakthrough curves at different monitoring wells
as defined in Tab. 7.2. To vary Δξ and Δt, respectively, nMC = 2 × 105 Monte Carlo realiza-

Cases considered within scenario (2)

Case (2a) (2b) (2c) (2d)

Monitoring location [xm, ym] [m] [140,50] [260,90] [80,120] [140,120]

Table 7.2.: Variation of the monitoring location in scenario (2).

tions and different TM sequences ranging from K = 0 ... 9 were generated according to the
transient and moment-generating equations in Sec. 2.1 and Sec. 4.3, respectively.

The error normEa accounts for both the temporal dimensionP and the stochastic dimension
S, respectively, in the sense of Eq. (7.1). Assuming independence of both errors significantly
simplifies the joint error. For L2-type norms, the joint error can be determine by simple
addition of the individual errors:

RTot(K,nMC) = EP (K,nMC) + ES(K,nMC). (7.4)
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For the temporal error EP (K,nMC), I employ the same error metric as introduced in Sec. 6.2
to assess the compression efficiency of TM:

EP (K,nMC) ≈
∫ ∞

0

1

nMC

nMC∑
j=1

v1,j
v21,j − v2,j

⎡
⎣nMC∑

i=1

Ωi(r(t), nMC)
2 Wij −

(
nMC∑
i=1

Ωi(r(t), nMC)Wij

)2
⎤
⎦ d t.

(7.5)

The stochastic error ES(K,nMC) due to insufficient sampling by MC realizations is deter-
mined with the non-parametric statistical bootstrapping method [Efron, 1982]:

ES(K,nMC) =
1

B − 1

B∑
b=1

[
Ω(b)(K,nMC)− Ω(K,nMC)

]2
, (7.6)

where b = 1 ... B indicates the repetition over randomly drawn subsets with size n∗MC <

2 × 105 from the total number of potential realizations 2 × 105, and Ω(b) is the respective
prediction obtained by working with the b−th subset instead of nMC . Ω(K,nMC) denotes
the average over the set of B realization subsets.

The average wall clock time required to generate one realization of Ω(K,nMC = 1) at highest
TM order, denoted as Σ, is utilized as the computational budget norm for all cases. Then
BTot(Δx,Δξ) can be found by:

BTot(Δt,Δξ) = nMC · Σ, (7.7)

where nMC is the budget multiplier to generate nMC realizations Ω(Δx, ξk) at the resolution
Δt.

Based on the algorithm described in Sec. 7.1 and Eqs. (7.4)-(7.7), I evaluate error-to-budget
surfaces for all cases (1a) - (1d) and cases (2a) - (2d), and use these in order to find the optima.
Results of the optimal resource patterns are presented in Sec. 7.3.

7.3. Results and Discussion

7.3.1. Simple Well Scenario (cases 1a - 1d)

The results for cases (1a) through (1d) are given in Fig. 7.3. Quite intuitively, their trade-
offs move from low to high MC samples and from few to many TM. This behavior can
generally observed for all involved cases (1a) trough (1d). The explanation is that temporal
and statistical discretization should go hand in hand, because it does not make sense to
statistically refine a poor dynamic description and vice versa. Surprisingly, when employing
typical TM sequence lengths (K ≤ 4, see discussion in Sec. 4.4), all cases achieve this optima
with less MC samples (nMC ≤ 500) then typically used in literature [e.g., Englert et al., 2006;
Nowak et al., 2008].

By comparing the differences in the individual patterns, it can be observed that more vari-
ability (case 1b has σ2T = 2.5 and λT,1,2 = [20, 20]) tends to require larger Monte-Carlo
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Figure 7.3.: Error-to-budget surfaces of the four pressure-based cases (1a) through (1d). Op-
tima for given budgets are depicted by circles. Dashed-dotted contours mark the
budget-surface, whereas the solid lines represent the error-surfaces.

samples, whereas less variability (case 1c has σ2T = 0.8 and λT,1,2 = [10, 10]) leads to less
MC samples as compared to case (1a). Surprisingly, case (1d) is not in line with the afore-
mentioned findings. Case (1d) reveals a pattern similar to case (1a) although it involves more
variability due to the uncertainty in the storage coefficient S.

This surprising behavior can be explained by looking at the statistical variance and skew-
ness of system responses as drivers for increased MC needs versus shape characteristics
of individual response curves as drivers for increased time resolution needs. Fig. 7.4 (left)
shows the time-dependent variance Rt(K = 0) of Ω(K,nMC) at minimal reduction (zero
TM) together with the time-averaged skewness values (see legend). For more details on the
definition of Rt(K), I refer to Eq. (6.8) in Sec. 6.2.

By comparing the magnitudes of Rt(K = 0) for all four cases (Fig. 7.4, left), I find consis-
tently increased magnitudes for the cases where more parameter uncertainty is involved
(cases 1b and 1d) and a slightly decreased magnitude for case (1c) with less uncertainty. The
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Figure 7.4.: Analysis of the variance (left) and mean (right) for all four cases (1a) through
(1d).

resulting MC needs are made even more drastic by the individual skewness values depict-
ed along with the legend. Larger variance and skewness values generally slow down the
convergence of MC simulations and explain why the MC needs are largest in cases (1b) and
(1d). However, by comparing the mean shapes of system responses in Fig. 7.4 (right), cases
(1a) through (1c) show strong similarities, whereas case (1d) is distinctly different due to
its strong peakedness. Here, the increased stiffness of the system (mean storage coefficient
μS = 10−4 instead of 10−3) comes into play, leading to more distinct shapes of system re-
sponse curves. This shifts the TM needs to higher numbers as compared to smoother cases
(1a) through (1c) because more distinct features require more TM to be captured (also see
discussion in Sec. 6.4.1). This balances the increased TM and MC needs in case (1d), whereas
the patterns in cases (1a) through (1c) tend to be controlled by their different MC needs.

7.3.2. Simple Transport Scenario (cases 2a - 2d)

The results for the four transport-based cases (2a) - (2d) are given in Fig. 7.5. Similar to
cases (1a) - (1d) discussed in the previous section, I find the trade-offs moving from low
to high MC samples and few to many TM. This behavior can generally observed for all
involved cases (2a) trough (2d). Again, all cases achieve there optima with less MC samples
(nMC ≤ 500) then typically used in literature [e.g., Englert et al., 2006; Nowak et al., 2008]
when employing typical TM sequence lengths.

By comparing the differences in the individual patterns, two things can be observed: First,
cases (2a) and (2b) reveal almost similar features, with test case (2b) tending only slightly
towards more MC samples. Both monitoring locations involved in these cases are close to or
aligned with the center line of the expected plume path (see Fig. 7.6, right). The monitoring
location in case (2a) is closer to the contaminant release and thus observes stronger concen-
tration contrasts over time whereas in case (2b) smoother concentration curves are received.
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Figure 7.5.: Error-to-budget surfaces of the four transport-based cases (2a) through (2d). Op-
tima for given budgets are depicted by circles. Dashed-dotted contours mark the
budget-surface, whereas the solid lines represent the error-surfaces.

This can directly be explained by the fact that concentration gradients being generated by
the system forcing and by heterogeneity have been dissipated only to a smaller extent before
reaching the monitoring location of case (2a) as compared to case (2b). This triggers a larg-
er need for time resolution for case (2a). This effect is counteracted by the time-dependent
variance Rt(K = 0) of Ω(K,nMC) at minimal reduction (zero TM), shown in Fig. 7.6 (left).
Case (2a) has a much higher variance and mean skewness value as compared to case (2b).
As overall result, this contrast in variance, however, is reflected only to a small extent in
their trade-off patterns.

Second, trade-off patterns of cases (2c) and (2d) have a strong tendency towards more MC
samples and strongly contrast with those of cases (2a) and (2b). This behavior cannot be
explained by higher variance values as shown in Fig. 7.6 (left). However, when comparing
their skewness values, a difference in the order of one magnitude can be observed. This
slows down the convergence of MC simulations and increases the MC needs for cases (2c)
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Figure 7.6.: Analysis of the variance for test cases (2a) through (2d) (left) and the spatial
arrangement of the measurement locations (right).

and (2d). The extreme skewness values can be explained by the fact that the monitoring lo-
cations in both cases (2c) and (2d) flank the plume at a relatively strong lateral offset relative
to the expected fringe location. This leads to very distinctive and skewed statistical dis-
tribution shapes (Bernoulli distribution, [e.g., Weiss, 2006]), revealing values equal to zero
(location missed by plume) and only a few non-zero values (location hit by plume). The dif-
ferent needs for the zeroth TM as found in Sec. 6.5 are not reflected in the trade-off patterns
of Fig. 7.5.

7.4. Summary and Conclusions

In this chapter, I showed the importance of reflecting the choice of TM-order against the
discretization of other model dimensions, here featuring the number of MC realizations in
order to resolve the parameter space. This was defined as Step (III) of my thesis. To this
end, I developed a new method based on jointly considering the numerical error due to in-
sufficiently reduced or discretized model dimensions (e.g., time, physical space, stochastical
space) and their associated computational costs of different model dimensions. I obtained
cost-to-error surfaces which served to find the optimal pair of computational resources giv-
en a certain computational budget. The method was applied to eight different cases from
two scenarios from subsurface flow and transport. Each scenario involved four test cases.

Based on my results, I highlight the following points:

• There always exists an optimal trade-off between the choice of discretizing different
model dimensions, e.g. temporal and stochastic dimensions. The trade-off optimally
exploits computational resources, leading to the smallest joint error given a certain
computational budget.

• The choice of TM order heavily depends on the specific underlying physical problem
(e.g., flow, or transport), the geostatistical model, the choice of error metric and the
prediction task.
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• When reflecting the choice of TM order against the number of MC runs, I found that
the trade-off requires less MC runs as compared to typical numbers of MC runs found
in literature.

In Sec. 9.2, the same methodology is applied to other model dimensions (spatial discretiza-
tion and MC resolution), coupled with different and more complex scenarios, predictions
and error metrics. The results found will lead to an extended discussion and conclusions
towards more generality, hence emphasizing the meaning of optimal resources allocation.
In the next chapter, I adapt TM to a novel method for upscaling of high-contrast fractured-
porous media (Step IV).



8. Adaption to Numerical Upscaling of High
Contrast Media

As shown in Sec. 4.2, temporal moments (TM) have useful properties and offer physically
meaningful quantities when characterizing conservative transport in heterogeneous media.
Examples include apparent velocities, apparent dispersion coefficients or apparent Péclet
numbers from observed travel time distributions of solute components [Cirpka and Kitani-
dis, 2000a]. In other words, TM capture some of the systems behavior on the lower scale
and express it on a larger scale defined by the support volume of observation by means of
apparent values. This property can be very valuable for upscaling of transport simulations,
especially when the underlying system shows large contrasts in material parameters that
lead to complex system dynamics, such as in fractured porous media (FPM). In the follow-
ing chapter, I present a new framework for upscaling high-contrast media. The idea involves
TM at a certain step of the scale transition, making the whole procedure swift and accurate.
I called this Step (IV) of my overall approach.

8.1. Background

High-contrast media (e.g., fractured porous media) pose one of the largest unresolved chal-
lenges for simulating large hydrogeological systems. Their presence is pervasive on earth,
affecting the predictability of many current topics such as carbon sequestration and stor-
age, hydraulic fracturing, groundwater exploitation, etc. Model-based simulations and pre-
dictions of such systems can be very helpful but are massively challenged by the com-
plex nature of FPM: Low-permeable rock matrices are intersected by a network of dis-
connected or interconnected fractures, giving rise to a highly contrasted transport pattern
with velocities typically ranging over several orders of magnitude throughout the domain
[Berkowitz, 2002]. Dominant advection takes place in the high-permeable pathways, where-
as the rock matrix contributes through much slower advection and solute diffusion into
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almost-stagnant regions. Overall, this results in anomalous transport behavior with early
peaks and late-time tails [Berkowitz, 2002]. Thus, the interaction between fractures and the
matrix body are considered to be a key ingredient in the accurate prediction of solute trans-
port in FPM.

Conceptually, there exist two ways to describe FPM: Discrete models or continuum models
[Dietrich et al., 2005]. Discrete models allow for the most detailed description including fea-
tures on the local (microscopic) level and, hence, lead to most accurate predictions of solute
transport. However, applications are limited to small scales due to the enormous compu-
tational needs that would be required for larger problems, e.g., at the well catchment or
reservoir scale. Also, detailed data on fracture geometries are hardly available, triggering
issues of parameter and prediction uncertainties. The traditional alternative is to aggregate
the system properties according to their role (weather they conduct or store mass) into two
superposed continua, leading to so-called dual-continuum models [Barenblatt et al., 1960;
Warren and Root, 1963]. The underlying idea is that flow is mainly occurring in the fractures
whereas the rock matrix acts as storage term. In the two superimposed continua, steep gra-
dients between solute concentrations causing a local disequilibrium have to be accounted
for by so-called transfer functions [Berkowitz, 2002].

Dual-continuum models are frequently applied in the form of double-porosity (mobile-
immobile) models, assuming that fluid flow occurs solely in the mobile continuum whereas
the immobile zone is assumed to be impermeable [Gerke and van Genuchten, 1993; Simunek
et al., 2003]. Transport into the immobile zone relies on diffusion only and can be approxi-
mated by first-order transfer terms [Huyakorn et al., 1983], higher-order transfer terms [Bib-
by, 1981; Dykhuizen, 1990; Zimmerman et al., 1993], multi-continuum models [Lichtner and
Kang, 2007] and linear Boltzman transport equations [Benke and Painter, 2003; Painter and
Cvetkovic, 2005]. Another more generalized class of transfer terms is considered by multi-
rate mass transfer (MRMT) models [Villermaux, 1987; Brusseau et al., 1989; Valocchi, 1990;
Sardin et al., 1991; Haggerty and Gorelick, 1995]. Instead of considering individual mass
transfer models, MRMT models can simultaneously describe different types of mass trans-
fer occurring on an entire spectrum of time scales, and hence cover a much greater spectrum
of transfer features [Haggerty and Gorelick, 1995; Haggerty et al., 2000].

Already Haggerty et al. [2000] and McKenna et al. [2001] showed the applicability of MRTM
to FPM and fitted simple mass transfer models to their observations. Hollenbeck et al. [1999]
showed how to efficiently estimate mass transfer models from field experiments. In order to
compensate for the discrepancy associated with transport prediction in transport upscaling,
Willmann et al. [2008] suggested to fit tracer breakthrough curves via an appropriate choice
of the memory function. MRMT models, however, make the governing equation non-local
in time. This means that storage and re-mobilization does not depend solely on the concen-
tration values in the mobile phase at the current time, but also on their history. This leads to
so-called integro-differential equations and imposes its own challenge for the efficiency of
numerical solution schemes.

Alternative non-local-in-time formulations have been introduced. For example Carrera et al.
[1998] expressed MRMT as convolution of so-called memory functions and concentrations
rather than a sum of predefined mass transfer models. Berkowitz and Scher [1995] mod-
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eled the movements of solute particles as random walks in space and time, with space and
time increments coupled. This method is known as continuous time random walk (CTRW).
The different formulations have been compared and reviewed extensively by Carrera et al.
[1998]; Dentz and Berkowitz [2003]; Silva et al. [2009]. In the context of FP, CTRW was in-
troduced by Cortis and Birkholzer [2008] as an alternative to Eulerian approaches when
modeling FPM. Due to the involved waiting time distribution, CTRW is also non-local in
time, and the upscaling from discrete fracture simulations (i.e., inferring the waiting time
distribution) is non-trivial [Geiger et al., 2010].

Compared to the great body of studies from the last almost four decades that reproduced
observations by MRMT formulations, there are only few studies that obtain MRMT param-
eters from numerical upscaling of small-scale simulations. Fernàndez-Garcia et al. [2009]
used MRMT formulations to compensate for the loss of information when upscaling trans-
port simulations, whereas Li et al. [2011] extended their work to 3D. However, their work
did not consider transport in FPM. Only Cortis and Birkholzer [2008] and later Geiger et al.
[2010] upscaled numerical transport simulations in FPM using the CTRW formulation.

Most of the applications have done their upscaling globally, i.e., on the macro scale [e.g., Cor-
tis and Birkholzer, 2008; Geiger et al., 2010]. This leads to a solution that depends on a single
globally valid set of parameters describing the effective overall transport behavior within
the entire domain. Lower-scale behavior and associated processes are not within the entire
domain resolved but their effects on the domain scale are parameterized. Another mentality
is the upscaling on the meso-scale or block-scale. This bears the advantage that transport
behavior can also be described on the lower block-scale and so allows to resolve, e.g., plume
location, plume shape, mixing, etc. However, block-scale upscaling is challenging by itself
because blocks often require to represent the upscaled parameters by tensors in order to
account for anisotropic effects on the block scale [e.g., Wen and Gómez-Hernández, 1996;
Fernàndez-Garcia et al., 2009]. Another way out is to work with streamline-oriented grids
[e.g., Cirpka et al., 1999b,c]. There, blocks are aligned with streamlines and isopotentials and,
hence overcome to some extent the need of anisotropic descriptions on the block scale. Al-
so, they are known to overcome the drawbacks of coarse Eulerian discretizations triggered
by numerical dispersion and the related overestimation of mixing [Cirpka et al., 1999b,c].
Another advantage is their conceptual ease, as advection, longitudinal and transverse dis-
persion terms can clearly be separated by their direction relative to the blocks [Cirpka et al.,
1999b].

8.2. Approach

In this framework, I consider transport in fractured-porous media (FPM) following a multi-
scale mixed Lagrangian/Eulerian MRMT approach. Numerical tracer experiments are con-
ducted, and all relevant physical small-scale features are account for via Lagrangian sim-
ulations (PTRW). For the macro-scale model, a Eulerian dual-porosity (mobile-immobile)
approach is applied, accounting for matrix diffusion by MRMT with memory functions. Via
the concept of TM, the large-scale MRMT equation is reduced. At the same time, this lo-
calizes the governing PDE in time, leading to a highly efficient large-scale model. The TM
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approach allows to directly infer the memory function from the arrival time statistics of the
local-scale results, yielding a conceptually smart approach for scale transition.

8.3. Methodology

The methodology involves five steps a) through e) as illustrated in Fig. 8.1. In the following,
all steps shall be explained in more detail.

a) involves the fine grid generation including fully resolved complex features. From that,
the local-scale pressure field can be calculated by solving the stationary 2d pressure
equation in confined aquifers (see Eqs. (2.5)-(2.7)).

b) calculates the velocity field from Darcy’s law which serves to calculate streamlines.
One possible way, is via the so-called streamfunction Ψ(x, y) [e.g., Bear, 1972]:

Ψ(x, y) = −
∫ y

0
vx(x, y)dy =

∫ x

0
vy(x, y)dx, (8.1)

from which streamlines (values of Ψ(x, y) = const) can be picked. Alternatives in-
clude direct simulation of Ψ(x, y) by streamfunction conductivities KΨ [e.g., Cirpka
et al., 1999c] or trajectory tracking by simple advective particle tracking [e.g., Pollock,
1986].

Isopotentials (values of equal pressure) can be directly taken from the pressure field,
sometimes also called isopotential function Φ(x, y). To guarantee orthogonality be-
tween isopotentials and streamlines, pseudopotential conductivities KΦ can be deter-
mined [Matanga, 1988]. For steady-state flow,KΦ satisfies the same type of equation as
the head h, and Eq. (2.7) may therefore be solved by the same numerical methods. Both
streamlines and isopotentials finally make up the block grid, featuring flow-aligned
blocks.

c) isolates single blocks from the block grid on which small-scale transport simulations
are run independently for all blocks. Here, a Lagrangian framework is implemented
by particle tracking random walk (PTRW) following Eq. (8.2):

Xp(t+Δt) = Xp(t) +A(Xp, t)Δt+B(Xp, t) · ξ(t)
√
Δt, (8.2)

where Δt is the time step, Xp(t) is the position of a particle at time t. A represents
the advective movement with A = v(Xp, t) +∇ ·D(Xp, t) and velocity v, and ξ(t) is
a vector of independent, normally distributed random variables with zero mean and
unit variance. B is a displacement matrix that has to fulfill B·BT = 2D [Salamon et al.,
2006]:

B =

(
vx
|v|

√
2(αl|v|+Dm) − vy

|v|

√
2(αt|v|+Dm)

vy
|v|

√
2(αl|v|+Dm) vx

|v|

√
2(αt|v|+Dm)

)
, (8.3)
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Fine pressure on fine grid

Flow-aligned grid generation

Block-wise particle simulations

Block-wise parameter fit

Block-scale solute transport by FV

Figure 8.1.: Methodology illustrating the five steps for numerical upscaling of transport in
fractured porous media.

with locale-scale longitudinal and transverse dispersivity coefficients αl,loc and αt,loc,
and molecular diffusion coefficient Dm. For more details on PTRW, I refer to [e.g.,
Salamon et al., 2006].

Particles are injected at the upstream boundary in a flux-weighted manner as an in-
stantaneous injection m∗

0,in. TM m∗
0, m1, m2,c are observed at the downstream and the

second centralized transverse spatial moment sm2,c at the lower and upper neighbor-
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ing outflow boundary. This procedure is illustrated by Fig. 8.2.

m∗
0

m1
m2,c
sm2,c

m∗
0,in

Figure 8.2.: Block-wise derivation of upscaling parameters by means of TM and particle
tracking simulations. Particles indicated by red circles are injected at the inflow
(left) according to their local velocity (flux-averaged). Averaged TMm∗

0,m1,m2,c

and the second centralized transverse spatial moment sm2,c capture the sub-
block behavior (e.g., retardation, transverse spreading and effective dispersion,
etc.). Solid lines indicate streamlines and iso-potentials.

d) determines the effective parameters of the upscaled model from the block-wise TM.
To this end, a localized MRMT equation is used. The localization simplifies this task
tremendously as TM can be directly matched with a 1d analytical solution of the local-
ized MRTM equation:

ω0 = 1, (8.4)

β = (m1 − x

veff
)/(ωo

x

veff
), (8.5)

ω1 = (m2 −
2x(De + αl,eff veff)

v3eff
− x2

v2eff
(1 + βω0)

− xβ(De + αl,eff veff)ω0

v3eff
)/(

2xβ

veff
),

(8.6)

whereas veff and De = Dm ne are the absolute effective velocity and effective diffusion
coefficient, respectively, with porosity ne and x is the integrated path length along
block centers. β is the capacity coefficient from Eq. (2.24), and ω0 and ω1 are the zeroth
and first moment of the memory function [Luo et al., 2008]. All values β, ω0 and ω1

are spatially distributed, i.e. they differ from block to block. Absolute effective veloc-
ities veff are calculated from balancing the volume streamtube water fluxes, whereas
the effective diffusion coefficient De is directly taken from the local scale. Note that
Eqs. (8.4)-(8.6) serve only to make predictions up to second-order TM. This is, howev-
er, not a limitation of the methodology. For higher-order TM predictions the relevant
equations for ω need to be derived.
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It remains to be discussed how the effective dispersions coefficients αt,eff and αl,eff are
determined. As the system of Eqs. (8.4)-(8.6) is underdetermined (the second TM has to
determine both αl,eff and ω1) an independent assumption for αl,eff is needed. For αl,eff,
simply the local-scale value αl,loc is taken. As for αt,eff different definitions covering
different scales are possible. As general suggestion, I opt to determine αt,eff from the
rate of increase in the second centralized transverse spatial moment. In the following,
this value is referred to as αt,mac. The rate of increase is given as [e.g., Freyberg, 1986]

Dmac =
1

2

Δsm2,c

Δt
, (8.7)

with macrodispersion coefficient Dmac and second centralized spatial transverse mo-
ment sm2,c. By substituting Dmac with De + αl,eff veff (for the 1d case) and Δt with
veff/Δx, Eq. (8.7) can be solved for αt,mac:

αt,mac =
1

2

Δsm2,c

Δx
− De

veff
, (8.8)

sm2,c is determined from the spatial particle statistics as illustrated in Fig. 8.2. Please
note that, in the later application, other definitions of αt,eff on different scales are im-
plemented and tested.

e) finally, employs effective parameters in a localized block-scale MRMT model on the
coarse scale. The localized MRMT model is obtained from reducing Eqs. (2.24)-(2.25)
by means of an integral transformation [Luo et al., 2008] to their moment generating
equations:

veff · ∇m∗
k −∇ · (D∇m∗

k) = km∗
k−1 + βk

k−1∑
l=0

(
k − 1

l

)
ωk−1−lm

∗
l (8.9)

with De according to Eq. (2.17) and boundary conditions

n · (veff m
∗
k −D∇m∗

k) =
mNeu

Q
n · veffδk0 on ΓNeu (8.10)

n · (D∇m∗
k) = 0 on Γ/ΓNeu. (8.11)

Here, ΓNeu is the inflow boundary and Γ/ΓNeu all other parts of the boundary. As mat-
ter of fact, the zeroth TM is free of sources and sinks, whereas higher-order TM are sub-
ject to sources and sinks controlled by the lower-order TMm∗

k−1 and the memory func-
tion moments ωk−1−l. This recursive coupling is known from the moment generating
equations in Sec. 4.3 and has been extensively discussed in Chap. 5. Eqs. (8.9)-(8.11) are
solved numerically by a Finite Volume (FV) approximation on the streamline-oriented
grid aligned by the blocks, representing the solution on the block-scale.

Fig. 8.3 illustrates the different fluxes occurring in the FV implementation. Advective
fluxes occur in the principal direction only. The dispersion tensor is a diagonal matrix.
Hence, transverse dispersion occurs in transverse and longitudinal dispersion in prin-
cipal direction only. These two effects not only simplify the solution of the advection-
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i,j

i,j+1

i,j-1

i+1,j

i-1,j

veff, αl,eff, De

veff, αl,eff, De

αt,eff, De

αt,eff, De

Figure 8.3.: FV scheme to evaluate the Block-scale solute transport, exemplary for one single
block. Due to the streamline-oriented grid, the FV solution simplifies. Advective
fluxes and longitudinal dispersion occur in the principal direction and trans-
verse dispersion only in transverse direction only.

dispersion equation but also reduce numerical-dispersion. Eq. (8.12) gives the princi-
pal FV equation, exemplary for one block i, j:

Jdisp(i, j − 1 → i, j) + Jdiff(i, j − 1 → i, j)

+Jdisp(i, j + 1 → i, j) + Jdiff(i, j + 1 → i, j)

+Jdisp(i− 1, j → i, j) + Jdiff(i− 1, j → i, j)

+Jdisp(i+ 1, j → i, j) + Jdiff(i+ 1, j → i, j)

+Jadv(i− 1, j → i, j)− Jadv(i+ 1, j → i, j) = 0. (8.12)

8.4. Application

In order to show and discuss its applicability, I apply the new method to an illustrative ex-
ample from solute transport in fractured porous media. The example is based on scenario
(5) described in Sec. 3.5. Tabs. 8.1-8.2 summarize the relevant physical and geometrical pa-
rameters for the local and block-scale model.

Throughout the study, I vary the block resolution in order investigate its effect on the pre-
diction accuracy. Overall, eight different block resolutions are considered, ranging from 304
to 9 blocks summarized in Tab. 8.3:

The goal of this study is to properly predict the spatially distributed mass m∗
0 (zeroth TM),

the arrival time m1 (first TM), and the effective dispersion m2,c (second TM). A fine-scale
PTRW simulation is conducted from which reference predictions for all three quantities are
calculated. To make the scale of both the block-wise and the reference solution conforming
for fair comparison, the reference solution is transfered to the block scale by block-wise
TM evaluation. This allows to quantitatively compare the accuracy by scalar measures that
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Fine Scale
Domain size [L1, L2] [m] [6, 3]
Grid spacing [n, n] [-] [3675, 395]

FE Parameters
Hydraulic Gradient Δh [-] 0.003
Fracture Transmissivity 1 TF [m/s] 1×10−3

Fracture Transmissivity 2 TF [m/s] 1×10−5

Matrix Transmissivity TM [m/s] 1×10−9

PTRW Parameters
Porosity Θ [-] 0.1
Trans. Disp. αt,loc [m] 1×10−3

Long. Disp. αl,loc [m] 5×10−3

Diffusion Dm [m2/s] 1×10−9

Particle resolution nP [-] 5000

Table 8.1.: Physical and geometrical parameters employed in the fine-scale model.

represent the scale of interest defined by the block scale. To this end, the relative volume-
averaged global L2-norm of mass discrepancies RAL0 is calculated:

RAL0 =

∑n
i=1 Vi(m

∗
0,i −m

∗(Ref)
0,i )2∑n

i=1 Vi(m
∗(Ref)
0,i )2

, (8.13)

with total number of blocks n on the respective scale, block volumes Vi and block index i.
As for the arrival time and the effective dispersion, I derive relative flux-averaged L2-norms
RAL1 and RAL2 at the outflow boundary according to Eqs. (8.14)-(8.15).

RAL1 =

∑nt

j=1 qj(m
∗
1,j −m

∗(Ref)
1,j )2∑nt

j=1 qj(m
∗(Ref)
1,j )2

, (8.14)

RAL2 =

∑nt

j=1 qj(m
∗
2,j −m

∗(Ref)
2,j )2∑nt

j=1 qj(m
∗(Ref)
2,j )2

, (8.15)

with total number of outflow-blocks nt, respective flux qj and block index j. Note, that mass
m∗

0 is assessed on the entire domain, whereas arrival time m1 and effective dispersion m2,c

are assessed only at the outflow boundary. This choice is aligned with typical prediction
goals and quantities of theoretical interest found in literature.

Block-based RAL values are only one possible error measure. Alternatively, the error could
have been determined on the local scale by mapping the block-wise values onto the refer-
ence scale, and then performing a finely resolved integration of squared differences over the
entire domain.
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Block Scale
Domain size [L1, L2] [m] [6, 3]
Block resolution [nS , nT ] [-] ∗

FV Parameters
Trans. Disp. αt,eff [m] ∗

Long. Disp. αl,eff [m] 5×10−3

Diffusion De [m2/s] 1×10−9

Velocity veff [m/s] tbd
- β [-] tbd
- ω0 [-] tbd
- ω1 [-] tbd

Table 8.2.: Grid and simulation parameters used for the block-scale model. Parameters
marked by ∗ will be altered throughout the test case, whereas tbd means that the
respective parameters need to be determined during the upscaling procedure.

Resolution
# Blocks n 304 144 99 80 49 36 25 9
# Tubes nt 16 12 9 8 7 6 5 3
# Sections ns 19 12 11 10 7 6 5 3

Table 8.3.: Different resolutions on block-scale are considered throughout the study ranging
from 304 to 9 blocks.

To test the choice of αt,mac (denoted as ”mac” in the following) as effective transverse dis-
persion coefficient other definitions covering other scales are implemented and tested. They
include local-scale αt,loc (denoted as ”loc” in the following) and block-scale αt,blo (defined as
proportion of particles arriving at the upper or lower neighboring block outflow boundary
multiplied by its specific discharge). The later is denoted as ”blo” in the following. In the
first step, however, only αt,mac is considered and the block resolution is set to 144 blocks.

8.5. Results and Discussion

This section compares and discusses the results from the study described above. Sec. 8.5.1
shows the prediction of mass, arrival time and effective dispersion for the mac implemen-
tation while using 144 blocks. Sec. 8.5.2 varies the block resolution and analyzes its impact
on the prediction accuracy, whereas Sec. 8.5.3 investigates the effect and the usefulness of
other αt,eff implementations, and Sec. 8.5.4 compares the MRMT-based predictions to a pure-
ly Fickian parameterization of dispersion. The later leads to the Fickian case based on the
traditional advection-dispersion equation (ADE).
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8.5.1. Prediction of Zeroth, First and Second Temporal Moment

Fig. 8.4 gives (in clock-wise direction) the fracture distribution, the pressure field, the veloc-
ity field and the coarse grid based on streamlines and isopotentials. Obviously, fast conduits
connected to the left boundary take most of the water (indicated by high velocities greater
than 1× 10−6 m/s). The overall pressure pattern is shaped by the orientation of the few fast
channels. Disconnected channel-networks impose sharp local pressure gradients when the
gaps between fast conduits become small. The same can be observed for the coarse flow-
aligned grid (based on streamlines and isopotentials). It follows the orientation of the few
fast channels and reveals extremely thin and bent blocks.

Velocity

x [m]

y
[m

]

x [m]

Coarse Grid

Pressure FieldFracture Distribution

y
[m

]

0 2 4 60 2 4 6
ln 10−10

ln 10−8

ln 10−6

ln 10−4

0

1

2

3

0.92

0.94

0.96

0.98

1

0

1

2

3

Figure 8.4.: In clock-wise direction: Synthetic fracture distribution (top left), pressure field
(top right), velocity field (bottom right) and block grid based on flow-aligned
blocks (bottom right).

Predicting mass distribution (zeroth TM)

The predictions of the spatial mass distribution for both the block-scale (left) and the refer-
ence case (right) are given in Fig. 8.5. Quantitatively, the shapes of both patterns are in good
agreement. By calculatingRAL0, I find a deviation of merely 6 % from the reference solution.
The overall good performance can be explained by two things. (1) The stream-line oriented
grid significantly reduces numerical dispersion and location uncertainty. (2) Matching the
second centralized spatial moment on the block scale measures the true spatial spreading at
the local-scale and, hence, leads to a proper description of lateral mixing also on the block
scale. Note that, in the case of predicting only the zeroth TM m∗

0, MRMT is obsolete as there
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Figure 8.5.: Prediction of m∗
0 for both the block-scale (left) and the reference (right) case.

is no dependency of MRMT parameters on the zeroth TM and because the governing equa-
tion for the zeroth TM contains no MRMT influence (see discussion at the end of Sec. 8.3).

Predicting arrival time (first TM)

The prediction of arrival times for both the block-scale (left) and the reference case (right)
is given in Fig. 8.6. Again, the overall pattern is preserved. However, a visible mismatch of
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Figure 8.6.: Prediction of m1 for both the block-scale (left) and the reference (right) case.

magnitudes at the northern and southern boundaries can be observed. Here, RAL1 reveals
a deviation of around 30 % from the reference solution. This worse performance as com-
pared to the mass prediction can be explained by the fact that αt,mac is now challenged by
two competing requirements: (1) to quantify properly the degree of transverse spreading of
mass and (2) to properly quantify the transverse mixing of different arrival times between
neighboring streamlines. This makes the present choice of αt,mac (designed for good trans-
verse spreading without considering its effects on mixing) less appropriate.

Another issue is that the non-Fickian behavior of arrival times is compensated to some ex-
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tent by introducing the β parameter from the MRMT model. However, β is determined by
isolating single blocks whereas in the FV approximation the effects of β interact between
neighboring streamlines. Since this is accounted for in the determination of β, errors might
be invoked.

Predicting effective dispersion (second TM)

The prediction of effective dispersion for both the block-scale and the reference case is given
in Fig. 8.7. The qualitative visual assessment reveals a good match with the overall disper-
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Figure 8.7.: Prediction of m2,c for both the block-scale (left) and the reference (right) case.

sion pattern, yet I find stronger deviations as compared to the arrival time case. By calcu-
lating RAL2, a deviation of 40 % from the reference solution can be found. Again, αt,mac

has to account for both good transverse spreading and proper mixing. Also, the effects of β
and, here additionally, ω1 onto neighboring streamlines within the FV model (similar to the
prediction of m1) might invoke errors.

8.5.2. Comparing Different Block Resolutions

Fig. 8.8 (left) showsRAL-profiles for different block resolutions ranging from 9 to 304 blocks.
I consider again the case of αt,mac. Starting with 304 blocks (right limit of Fig. 8.8), the
block resolution is steadily reduced, finally arriving at a 9-block approximation (left limit
of Fig. 8.8). For all three predictions m∗

0, m1 and m2,c an increase of the error (from right to
left) can be observed peaking somewhere between 1 and 50 blocks, and eventually dropping
down to zero when approaching the left limit (single block domain).

To explain the above observed behavior I arrive at the following conclusion: Over the spec-
trum of block resolutions the error is driven by two things: (1) the amount of local-scale
features to be properly transfered to the upper scale via MRMT parameters (β, ω1) and (2)
their interaction between neighboring streamlines in the upscaled model via block inter-
faces. RAL-values can be regarded as their combined product. Once either of both is zero,
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Figure 8.8.: Comparison of RAL-profiles for different temporal complexities m∗
0, m1 and

m2,c based on αt,mac (left) and comparison of different αt,eff definitions featur-
ing m∗

0 (right).

the product and hence RAL becomes zero. In other words: For high block numbers, the
blocks itself take over role of resolving the anomalous transport behavior, making addi-
tional parametrization by MRMT unnecessary. With no remaining need for upscaling, the
MRMT model becomes obsolete and the RAL-profiles converge to zero. For the opposite
case with small block numbers, the number of block interfaces and the resolution of velocity
contrasts decreases, and MRMT has to parameterize more and more sub-block contrasts. In
case of a single-block domain, I arrive at zero interaction between blocks and their involved
parameters. All sub-block features are captured by a single block which is defined to meet
the prediction goals precisely at the scale of interest defined by the single (macroscopic)
block. Thus, RAL become zero. In between these antipodes, the RAL-profiles reach their
maximum, e.g. as observed in Fig. 8.8 (left).

By comparing the position of the error peaks in the number of used blocks, I find the
RAL-profiles stretching towards higher resolution when increasing the order of temporal
complexity (m∗

0, m1 and m2,c). Obviously, predicting higher order TM imposes more errors
and requires higher resolutions to compensate for these errors. This is due to the fact that
(1) higher-order TM balances on block-scale become increasingly erroneous, (2) more un-
considered effects in MRMT parameters β and ω1 might invoke additional errors, and (3)
upscaling-based errors propagate both spatially and throughout the recursive coupled TM
orders.

8.5.3. Comparing Different Transversal Dispersion Coefficients

In the section, I analyze the sensitivity of RAL towards other definitions of αt,eff (described
in Sec. 8.3). To this end, I also employ local-scale αt,loc and block-scale αt,blo. The RAL-
profiles are shwon in Fig. 8.8 (right) and Fig. 8.9.

By comparing the results for the mass m∗
0 (see Fig. 8.8, right), little difference can be iden-
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Figure 8.9.: Comparison of different αt,eff definitions featuring m1 (left) and m2,c (right).

tified for all definitions when considering more than around 150 blocks. For less than 150
blocks, however, local-scale αt,loc (dashed line) starts deviating considerably. Here, αt,loc be-
comes too small to guarantee sufficient lateral spreading. This is caused by the eliminated
velocity contrasts within the homogenized blocks, and by the fact that the boosting effects
of streamline focusing on transverse mixing [e.g., Werth et al., 2006] are partially lost. On-
ly the components of streamline-focusing on block-scale are preserved. Consequently, the
local-scale αt,loc is too small to compensate for the lost components.

This can be explained by Fig. 8.10 (left) showing the median αt,eff values for all three defini-
tions αt,loc, αt,blo and αt,mac, depending on the block resolution. Here αt,loc is much smaller
(1-2 orders of magnitude) than the other two definitions. αt,mac yields the highest median
value almost constant over the spectrum of resolutions. This is because αt,mac represents by
definition the proper value for transverse mixing including effects of streamline focusing on
the reference scale. This type of effective block-wise transverse mixing coefficient has been
shown to be an intrinsic medium property and scale-independent of travel time and, hence,
also independent of the block volume used as sub-domain for measuring this effect.

The block-scale αt,blo represents the idea of properly capturing the mass balance on the block
scale and. This forces the block-scale mass fluxes on the FV-scheme and so allows for reason-
able RAL-values when predicting m∗

0. Regarding the median αt,blo in Fig. 8.10 (left), I find
that αt,blo increases with decreasing block resolution and ranks in between the magnitudes
of αt,loc and αt,mac.

As for arrival times m1 (see Fig. 8.9, left), I find that the RAL-profiles for the different def-
initions of αt,eff differ more strongly for higher resolutions and steadily converge for lower
resolutions. Among all definitions, αt,mac performs best over almost the entire spectrum of
block resolutions. The local-scale αt,loc underestimates transverse mixing of arrival times
and, hence, cannot match the reference m1. For less then around 50 blocks, however, the
RAL profiles for all three αt,eff definitions converge before dropping down to zero.

This is in line with the conclusions drawn in Sec. 8.5.2. For few blocks (here less than 50) the
MRMT model (here β) parameterizes most of the sub-block contrasts and the interactions
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Figure 8.10.: Comparison of median αt,eff values for different block resolutions (left) and the
effect of a Fickian parameterization of dispersion (right).

between neighboring streamlines in the upscaled model via block interfaces becomes little.
This makes RAL less sensitive to the choice of αt,eff.

Likewise for effective dispersion m2,c (see Fig. 8.9, right), the RAL-profiles for the different
definitions of αt,eff differ for higher resolutions and steadily converge for lower resolutions.
Yet, this happens at greater RAL-values as compared to the m1 case. Also, αt,mac performs
best over almost the entire spectrum of block resolutions. Here, the local-scale αt,loc cannot
match the reference m2,c because the underestimated transverse mixing of m1 propagates
through the prediction of m2,c.

It should be mentioned that the median values of αt,mac and αt,blo might be an incomplete
measure as they do not reflect the entire distribution. In my case, however, this choice is
convenient because the local-scale αt,loc is spatially constant.

8.5.4. Multi-Rate Mass Transfer Model vs. Advection Dispersion Equation

Fig. 8.10 (right) compares the RAL-profiles for all three predictions against the case where
no MRMT model is considered to parameterize the lost sub-block features in upscaling.
This means, in fact, to perform traditional transport upscaling with a purely Fickian param-
eterization of dispersion, and the claimed ADE. I choose αt,mac for all MRMT-based and
ADE-based predictions m∗

0, m1 and m2,c.

As a matter of fact, the case of predicting mass is insensitive to this change (the governing
equation for m∗

0 does not depend on any MRMT parameter even in the MRMT-based mod-
el). For both other cases m1 and m2,c, I observe that for resolutions higher than around 100
blocks, the ADE-based case has similar RAL-profiles as compared to the MRMT-based case.
This is different for smaller resolutions. Here, RAL increases at a higher rate as compared to
the MRMT-based case. This clearly indicates that the accuracy gain in upscaling by MRTM
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takes full effect for resolutions smaller than around 100 blocks (in this study). This is because
for more than 100 blocks most of the velocity contrasts are resolved by the blocks itself and
there are no sub-block features to be parameterized by the MRMT model. Hence, there is no
remaining need to use a MRMT-based model.

8.6. Summary and Conclusions

In this chapter, I introduced a new method for numerical upscaling of transport in high-
contrast media. The idea is partially based on the useful properties of TM, and uses flow-
aligned blocks for the upscaled model. The novelties include:

1. First-time application of flow-aligned blocks to FPM.

2. First-time application of TM to FPM.

3. First-time analysis of multi-scale arrival time statistics and effective dispersion in FPM
via TM.

4. Efficient multi-scale modeling of FPM via MRMT models, combined with model re-
duction of both fine and large-scale models.

5. Efficient determination of memory function TM from fine-scale TM.

The method has been applied and tested in a scenario from contaminant solute transport in
fractured-porous media. I found the following conclusions most relevant:

1. The prediction accuracy depends on the number of blocks representing the coarse-
scale resolution and the complexity of the prediction goal (mass distribution of steady
state, arrival time statistics or effective dispersion statistics). Generally, higher resolu-
tions can yield better accuracy, but higher resolutions are also prone to errors because
the nature of determining MRMT parameters does not account for their spatial effects
within the block-scale model.

2. Different definitions of dispersion coefficients have been tested. Generally, the defi-
nition based on the centralized second transverse spatial moment yields best results.
Local-scale and block-scale definition by mass balances underestimated transversal
mixing. They lead to a worse performance.

3. If a certain block resolution is exceeded the domain contrasts are fully resolved by the
block itself and the parameterization by MRMT becomes obsolete. This is similar to
the traditional ADE-based solution.

After having carried the four major steps of my overall approach, I emphasize in Chap. 9 the
universality of my developed methods. I show how the Pre-posterior Data Impact Assessor
helps to significantly improve the optimal design of experiments (Sec. 9.1), and how opti-
mal resource allocation can find the trade-off between other discretized or reduced model
dimensions (Sec. 9.2).





9. Other Applications of the Developed
Tools

In this work, I developed new tools in order to answer research questions associated with the
analysis and assessment of model reduction techniques in time. These tools are, however,
not limited to the applications shown in Chap. 6 and Chap. 7. Instead, they are generic
tools that can be employed in a variety of different applications. In this chapter, I show
how the Pre-posterior Data Impact Assessor (PreDIA) can be employed in optimal design of
experiments (Sec. 9.1), and how Optimal Resource Allocation (ORA) can find the trade-off
between the discretization of other model dimensions (Sec. 9.2).

9.1. Optimal Design of Experiments

PreDIA, as introduced in Chap. 6, has been described and employed as a method to identify
response curves among a set of physically plausible random response curves r(t) based on a
set of temporal characteristics, e.g., TM or LC. In the expected sense, namely if the identifica-
tion is repeated for all potential characteristics on all possible response curves r(t), PreDIA
can access the explanatory power of a temporal characteristic. In more general words, Pre-
DIA finds the explanatory power (in the sense of statistical inferrence) of a some potential
data y (temporal characteristics) towards a prediction z (response curve r(t)). This opens the
door to optimal design of experiments.

9.1.1. Design Problem and Bayesian Analysis

In optimal design (OD), the problem statement typically seeks confidence associated with
a certain hydro(geo)logical model prediction z, which shall be improved by collecting new
and then conditioning on field data y. Yet, sampling and investigation campaigns are re-
stricted by limited budgets, or by physical constraints, and therefore should be addressed
in a rational and optimal way. This leads to the optimal design problem of finding the best
sampling design or investigation strategy for the given problem at hand, i.e., the one that
maximizes some kind of utility function φ (in Chap. 6 represented by the Conditional Stan-
dard Deviation CStD) under the given constraints. The impact or utility of a design is de-
fined as its individual capability to reduce uncertainty associated with the prediction goal z,
or to maximize some related measure of data utility [e.g., Federov and Hackl, 1997; Uciński,
2005; Müller, 2007].
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The most important key ingredients to OD are adequate statistical or stochastic method-
ologies that properly transfer the uncertainty in model structure and parameters to model
predictions z, while taking into account the impact of noisy measured and yet unmeasured
(planned) data. Here, PreDIA comes into play, overcoming the limitations of (quasi-)linear
statistical inference tasks commonly employed in OD tasks (see Fig. 6.1). Examples for lin-
earizing methods include first-order second-moment methods (FOSM) [e.g., Kunstmann
et al., 2002; Cirpka et al., 2004] or the ensemble Kalman filter (EnKF) [e.g., Evensen, 2007;
Nowak, 2009; Schöniger et al., 2012].

The final step of OD is to find the best set of decision variables d (that specify, e.g., the num-
ber, locations, types, and experimental conditions for measurements which shall be acquired
in the vector of measurement values y(d)) by maximizing the utility function φ:

dopt = argmax
d∈D

[φ{d}], (9.1)

where D is the space of admissible designs. This step can be managed by a broad spec-
trum of optimization schemes that do not scan the entire design space. For more details and
background I refer to original publication by Leube et al. [2012b].

To make the consideration of uncertainty even more general, the current application em-
braces the concept of Bayesian geostatistics [Kitanidis, 1986]. This goes along with idea that
the selection of a single geostatistical, structural or conceptual model is often unjustifiable.
To reduce the subjectivity of a-priori assumptions, one may admit different model alterna-
tives and weight them according to their a priori credibility. The modeling task is performed
with all model alternatives, and posterior credibility values are assigned after comparison
with available data. This procedure is called Bayesian model averaging (BMA) [e.g., Hoet-
ing et al., 1999; Neuman, 2003]. When included into OD approaches it is called Bayesian
(geostatistical) design [Nowak et al., 2010]

In the following application structural uncertainty is split into (1) structural parameters θ

related to potentially involved geostatistical models, (2) uncertainties of boundary/initial
condition parameters ξ associated with each physical/conceptual model, and (3) uncertain
conceptual model selections within k that formally switches between several available con-
ceptual models, such as different structures of zonation or model forcing. Within PreDIA,
averaging over the unknown meta-parameters θ, boundary/initial conditions ξ and model
choice indicators k is done implicitly. For more details on continuous BMA, I refer to Leube
et al. [2012b]. Tab. 9.1.1 summarizes all meta-parameters and their assigned distributions.

In the featured application case, the set of uncertain structural parameters θ contains σ2

accounting for the field variance, and λi being the correlation length scales in spatial direc-
tions xi. To allow for more flexibility with the assumption on the covariance model, several
recent studies suggested to use the Matérn family (see Sec. 2.4). I opt this mentality and
implemented the Matérn family for the following scenarios.
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Uncertain structural parameters θ
Variance σ2T [-] N (μ = 2.0, σ = 0.3)

Integral scale λ [m] N (μ = 15, σ = 2.0)

Matérn Kappa κ [-] U(a = 5, b = 36)

Uncertain Boundary Parameters ξ
Deviation from center ν [◦] N (μ = 0.0, σ = 10)

Uncertain Conceptual Models k
Existence of hydraulic barrier - [-] B(p = 0.3)

Table 9.1.: Uncertain structural and boundary parameters and their assigned distributions.

9.1.2. Application

The features application is generally based on the setup of scenario (2) described in Sec. 3.2.
This application also assumes a drinking water well or a similar sensitive location threat-
ened by the upstream located source. This location is about seven expected-integral scales
downstream of the contaminant source and about half an integral scale offset from the center
line of the expected plume path. The goal of PreDIA is to find the sampling pattern which
optimally reduces the uncertainty of predicting the long-term (steady state) contaminant
concentration to be expected at the sensitive location.

The uncertain values for the Dirichlet flow boundary condition in ξ are determined by two
uncertain parameters γ and ν which define the regional head gradient via its slope γ and
orientation angle ν relative to the northern/southern boundaries.

Different to the scenario description in Sec. 3.2, this application also features an uncertain
conceptual model choice manifested in k. k encodes a possibly present hydraulic barrier
south of the prediction target due to uncertainty in geological medium boundaries. For the
sake of scenario variation, it is assumed that local hydrogeologists are uncertain about the
extent of a narrow zone filled with a different geological facies which might be present in
that area. For simplicity, this is implement as a rectangle (x = 180 m, width = 10 m, length =
75 m) with a different mean value for log-conductivity of T = ln 10−7. The prior probability
of this alternative model is set to 30 %. Please note that the possibly present barrier is only
considered in one case.

Concentrations c are considered to be not available as measurement data, because the spill
just happened and the plume has not evolved yet. Instead, only head and transmissivity
data shall be optimally collected in order to maximize the reduction of uncertainty in pre-
diction z. I define data on transmissivity T and hydraulic head h to have measurement
errors σr,T and σr,h, respectively, to be measurable at the point scale, e.g., by disturbed core-
samples and by small monitoring wells. For instructive reasons, transmissivities T are not
sampled at the same locations as hydraulic head h by default, since this will help to better
exhibit and discuss the underlying physics associated with the respective choice of location
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and data type. Locations where T is informative may not be informative for h measure-
ments, because different physical flow and transport-related phenomena may co-ordinate
the individual data types to different informative locations. However, my framework could
easily handle constraints such that T and hmeasurement locations can be forced to coincide.

A large sample size of 50,000 realizations has been chosen to ensure that my discussion of
the method and resulting designs is not compromised by statistical noise. I use a greedy
search followed by a sequential exchange algorithm [Christakos, 1992] in order to optimize
the design, and the utility of each design candidate is evaluated with PreDIA.

In order to quantify the filter degeneracy of PreDIA (see Sec. 6.3), I use an extension of the
Effective Sample Size (ESS) introduced by [Liu, 2008]. To this end, I average the ESS over the
spectrum of potential measurement values y(d) arriving at the Averaged Effective Sample
Size (AESS). To guarantee proper preposterior statistics, the AESS is monitored carefully
during the optimization procedure.

In the following, I consider five different cases (2f) - (2i) based on scenario (2), each one fol-
lowing a different research objective. They will serve to show that PreDIA can (1) include
arbitrary prediction goals regardless of their non-linearity and (2) that it can include arbi-
trary task-driven formulations. Also, I address the consideration of additional conceptual
model uncertainty, i.e., via incorporating a hydraulic barrier. The resulting cases are

Cases (2e) and (2f) Minimum-variance prediction of a contaminant concentration c at the
sensitive location. To emphasize the difference to conventional linear methods, I com-
pare the results of my method to results from an Ensemble Kalman Filter (EnKF) [e.g.
Herrera and Pinder, 2005; Evensen, 2007]. Therefore, I run a first scenario variation
with PreDIA (case 2e) and compare the results to a sampling pattern obtained from an
EnKF (case 2f).

Cases (2g) and (2h) Maximum-confidence prediction of whether a critical concentration
threshold will be exceeded. This is equivalent to predicting an indicator quantity z =

I(c > ccrit), with E[I] = P (c > ccrit). Since the indicator is a discrete variable that
depends very non-linearly on model parameters, it does not meet the requirements
under which EnKFs can be used for comparison. Instead, two threshold values are
considered with PreDIA: ccrit = P15 (case 2g) and ccrit = P75 (case 2h), where P15

and P75 are the c-values below which 15 % and 75 % of the c-values may be found,
respectively.

Case (2i) Consideration of a possibly present hydraulic barrier and minimum-variance pre-
diction of a contaminant concentration c at the sensitive location.

9.1.3. Results and Discussion

In this section, the sampling patterns resulting from the synthetic test case and its variations
defined in the previous section are presented and discussed.
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Figure 9.1.: Prior uncertainties (variance) associated with transmissivity (top), hydraulic

head (center) and concentration (bottom) based on the uncertain structural and

boundary parameters listed in Tab. 9.1.1.

Sampling Pattern Optimized for Predicting Concentration (Case 2e)

Case (2e) features optimal sampling for minimum-variance prediction of concentrations at

the sensitive location. The resulting sampling pattern, obtained with PreDIA, is shown in

Fig. 9.2 (left). Fig. 9.1 shows the respective variances of T , h and c prior to investigation. In

Fig. 9.2 (left), I also included the expected conditional variance of transmissivity (top), hy-

draulic head (center) and predicted concentration (bottom). The basic characteristics of the

design pattern mostly coincide with the results found in Nowak et al. [2010] who consid-

ered a similar scenario. However, there are important differences since they used an EnKF

and I employ PreDIA. With regard to the sampling pattern, I find two predominant groups:

(1) measurements gathering around the source and (2) measurements flanking the expected

migration path of the plume. Near-source measurements are exclusively occurring as trans-

missivity measurements. They are highly informative since they provide information about

the volumetric flow rate through the source area. The flow rate through the source, in turn, is
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a dominant factor that dictates the total contaminant mass flux, the expected width and the

dispersion characteristics of the plume further downstream [de Barros and Nowak, 2010].
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Figure 9.2.: PreDIA-based (left, case 2e) and EnKF-based (right, case 2f) sampling pattern

optimized for minimum prediction variance of concentration at the sensitive

location. Head measurements (crosses), transmissivity measurements (circles),

source (box) and target (diamond). Maps in the background are expected pre-

posterior variances for transmissivity (top), hydraulic head (center) and concen-

tration (bottom).

The measurements flanking the plume are head measurements which capture both the large-

scale drift of the plume (due to the uncertain regional head gradient) and the meso-scale

meandering of the plume (caused by heterogeneity).

In principle, the prediction task leads to information needs that manifest themselves most

in those regions where the statistical dependency between the measurable quantities (trans-

missivity or hydraulic head) and the prediction goal is highest, while avoiding mutually too

close measurements that would merely convey to redundant information. Fig. 9.3 shows

the statistical dependencies between observable quantities at potential measurement loca-

tions and the prediction target for a near-source transmissivity measurement location (A,
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Figure 9.3.: Scatter density plots depicting the relation between the sample of predicted con-

centrations and the sample of transmissivity values at a near-source location A

(left) and hydraulic head values at a near-boundary location B (right). The solid

line illustrates the relation via moving average.

left figure pane) and a near-boundary head measurement location (B, left figure pane). The

statistical dependencies are obtained by plotting the sample of possible measurement val-

ues against the sample of predicted concentrations. I additionally illustrate the non-linear

dependency in the scatter plot by a moving average line.

Obviously, T at the near-source location (A) has a mostly linear relation to the predicted

concentration. The higher the transmissivity at the source, the higher is the source discharge

and the broader is the plume on average after leaving the source. Therefore, the plume is

far more likely to maintain high concentrations even over long travel distances, and is more

likely to hit the target [de Barros and Nowak, 2010].

Opposed to that, h at the near-boundary location (B) exhibits a non-linear dependency to the

prediction goal. Extreme angles of the regional flow gradient divert the plume away from

the target location, for both positive and negative values of the angle. By contrast, regional

flow in the straight uniform direction drives the plume, most likely, through the target. The

resulting dependency between hydraulic heads close to the boundary and the predicted

concentration has an almost purely quadratic behavior, and shows almost no correlation in

a linear sense, i.e. has almost zero covariance.

Fig. 9.4 (left) illustrates how the individual transmissivity or hydraulic head measurements

added during the greedy part of the optimization reduce the variance of the prediction goal

and related physical quantities. The latter include the total solute mass flux through the

source, the angle of the boundary condition (causing a large-scale drift), the width of the

plume at the target (lateral spreading) and the lateral position of the plume’s centroid (also

affected by meso-scale meandering caused by heterogeneity).

I can clearly see that transmissivity measurements located closely to the source greatly re-
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Figure 9.4.: Expected variance reduction for PreDIA (left, case 2e) and EnKF (right, case

2f) during greedy-based placement of samples for different auxiliary quantities.

The sequential exchange (SE) phase is not shown in detail but only indicated

by the gray lines. Hydraulic head measurements are denoted by cross marks

and transmissivity measurements by circle marks. The right axis quantifies, for

the PreDIA-based optimization, the respective Averaged Effective Sample Size

(AESS).

duce the prediction uncertainty of the total solute flux (also see Fig. 9.4) for this case, while

the head measurements along the flanks are almost not informative to the total solute flux.

Instead, the uncertainty of the boundary condition (regional flow direction) is greatly re-

duced by the head measurements, whereas the transmissivity measurements around the

source contribute almost no related information (also see Fig. 9.4). Likewise, the position

of the plume center is revealed almost solely by head measurements. For the plume width

at the prediction target, I find a sensitivity to both head and transmissivity measurements,

where the first two transmissivity measurements at the source are clearly the most valuable

ones.

Comparison to EnKF (Case 2f)

The sampling pattern provided by the Ensemble Kalman Filter (EnKF) relies on exactly the

same geostatistical and boundary parameters used in case (2e), and hence uses the very

same MC set of possible sample data. For technical insights in the EnKF formalism, please

be referred to Herrera and Pinder [2005] or Evensen [2007]. The resulting pattern is shown

in Fig. 9.2 (right column). The underlaid maps of expected conditional variance are evalu-

ated by PreDIA, because the maps provided by the EnKF are inaccurate and would not be

comparable to those shown in the left part of Fig. 9.2.

Compared to the PreDIA-based sampling pattern (case 2e), I find again the group of trans-
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missivity samples in the source area. However, the number of measurements in this group is

much larger. The next fundamental difference to the PreDIA-based sampling pattern is that

the group of head measurements at the northern and southern domain boundary is smaller

in favor of head measurements in the corners of the design domain. Apparently, the rele-

vance of the variable boundary conditions that induce large-scale drift of the plume is also

recognized, but judged differently by the EnKF analysis scheme.

 

 

 

 

 

 

x [m]

y
[m

]

x [m]

y
[m

]
y

[m
]

c/c0

h

log T

c/c0

h

log T

0 150 3000 150 300
0

0.05

0.1

0.15

0.01

0.02

0.03

0.04
1

1.5

2

2.5

0

75

150

0

75

150

0

75

150

Figure 9.5.: PreDIA-based sampling pattern optimized for predicting the exceedance of a

low ccrit (left, case 2g) and high ccrit (right, case 2h). Head measurements (cross-

es), transmissivity measurements (circles), source (box) and target (diamond).

Maps in the background are preposterior variances for transmissivity (top), hy-

draulic head (center) and indicator variable (bottom). A selected near-source lo-

cation is marked by A, whereas a near-boundary location is marked by B.

The EnKF assesses statistical dependencies only via covariances, which are a measure for

linear dependence only. It is unable to capture even-order (e.g., quadratic) dependencies

such as between head measurements near the northern and southern boundary and the pre-

diction goal (see Fig. 9.3). Therefore, it simply ignores these head measurement locations as

potential sources of valuable information. Hence, crucial information about the meso-scale
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meandering of the plume is neglected. However, four measurement locations were placed

at the corners of the allowable design locations. Apparently, their non-linear dependency

exhibits a sufficiently large linear component due to the slight asymmetry of my setup.

Overall, this leads to a significantly worse performance in reducing the uncertainty associat-

ed with the plume center, even though the EnKF captures the uncertain boundary condition

reasonably well. This can be seen by comparing the expected conditional variance within

Fig. 9.4 (left and right). With a higher relative emphasis on the mostly linear source trans-

missivity information, the plume width and total solute flux are determined comparably

well. Still, the overall prediction quality of concentration c is reduced by ignoring and mis-

interpreting non-linear information, such that PreDIA clearly outmatches the EnKF. In my

setup, PreDIA achieves 25 % more uncertainty reduction with the same number of sampling

positions than the EnKF.

In more general terms, EnKFs and all linear(ized) methods can only measure correlation,

which is a very incomplete access to statistical dependence. For example, zero correlation

between a zero-mean variable and its square does not imply at all that a squared value is

independent of its square root. Hence, the limitations of linear(ized) methods illustrated in

my specific example generalize to all non-linear applications.

Sampling Patterns Optimized for Predicting Exceedance Probability (Cases 2g and
2h)

In this test case, I desire maximum-confidence prediction whether a critical concentration

value (e.g. imposed by a regulatory threshold) will be exceeded or not. The PreDIA-based

sampling patterns for cases (2g) and (2h) are shown in Fig. 9.5, again obtained from the same

MC sample.

Case (2g) (ccrit = P15) exhibits a sampling pattern which is mainly based on head measure-

ments at near-boundary and towards-target locations. Transmissivity measurements explor-

ing the source region are practically absent. For predicting low threshold values, it is only

important, and therefore sufficient, to know that the plume misses the sensitive location.

This information is obtained by head measurements flanking the plume, which can reveal

transverse gradients that could divert the plume from hitting the sensitive location.

Case (2h) (ccrit = P85) shows an inverted behavior, where the source is sampled repeatedly

using six transmissivity samples that are hardly distinguishable in Fig. 9.5. Two additional

transmissivity samples north of the source support the near-source samples by address-

ing the contrast in transmissivity between the source and its surroundings. Instead, head

measurements closely flanking the plume are disregarded. This is a direct consequence of

the different information needs between case (2g) and (2h). For high threshold values, it

is necessary to know whether the plume preserves its initial peak concentration over large

travel distances up to the sensitive location. Highly conductive sources favor this behavior,

and can be identified by increasing the source sampling density. In addition, highly con-

ductive sources statistically imply an increased downstream plume width. With the plume

sufficiently wide, the chances of bypassing the sensitive location by meso-scale meandering
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decrease and only a globally rotated mean flow direction can prevent the plume from hit-

ting the sensitive location. That is the reason why (1) transverse gradients and the related

head measurements are not closely flanking the plume, and (2) there are more remote head

samples at the northern and southern boundaries that help to infer the global flow direction

without being disturbed by heterogeneity-induced smaller-scale head fluctuations.

In order to emphasize the task-specific character of the individual design patterns towards

their respective prediction goal, I applied each design pattern to the prediction goals of all

other test cases. This yields the performance indices summarized in Tab. 9.2.

Case (2e) (2f) (2g) (2h

(2e) 100.00 % 75.14 % 79.10 % 95.99 %

(2g) 81.41 % 76.03 % 100.00 % 69.01 %

(2h) 90.43 % 38.79 % 27.54 % 100.00 %

Table 9.2.: Performance indices for every sampling design when applying on different pre-

diction goals.

The performance indices show that the PreDIA-based design pattern (2e) clearly outmatches

the EnKF (2f) for all three prediction goals. The EnKF-based design pattern is even surpassed

in its own objective by the PreDIA-based sampling patterns designed for cases (2g) and (2h).

The worst performance was found for the pattern of case (2g) (low threshold) when applied

to the objective of case (2h) (high threshold). This can be explained by the fact that these

two patterns lay their focus on opposed features in their respective design objectives, i.e. on

meso-scale meandering versus source conductivity. The opposite case (applying the pattern

of case 2g to case 2h) performs better. Obviously, in my specific examples, many source con-

ductivity measurements are more generic all-purpose information than head measurements

populating the boundaries.

Sampling Patterns Accounting for Conceptual Model Uncertainty (Case 2i)
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Figure 9.6.: Sampling pattern (case 2i) when considering conceptual model uncertainty ex-

emplary represented by a hydraulic barrier.
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The optimized sampling pattern for case (2i) is shown in Fig. 9.6. Opposed to the previ-
ous cases, case (2i) also considers conceptual model uncertainty, represented by a possibly
present hydraulic barrier. If present, the barrier causes a flow regime which forces the plume
to swerve northwards and so increases the chance that the plume hits the sensitive location.
The strong dependence of the predicted concentration on the presence of the hydraulic bar-
rier requires an adequate model choice. Therefore, the sampling pattern reacts to this addi-
tional uncertainty. Compared to case 1a, three transmissivity measurements are placed in
the area of the possibly present barrier, whereas most other design features are preserved.

Although I did not use model choice as objective function for the design (the importance
of model choice is only implicit via its role in my chosen prediction goal), the reliability
of correct model choice is improved by the adapted sampling pattern provided by PreDIA.
This effect can be illustrated best by computing the preposterior weights of the two different
hypothesized models: Among all possible data sets generated with the barrier, the model
with barrier obtains (on average over all those data sets) a weight of of 98%. Among all
possible data sets generated without the barrier, the model without the barrier receives an
average weight of 50%. Weighting both preposterior cases by their prior probabilities to
occur (i.e. 70% and 30% respectively) yields an expected reliability of 85% to choose the
correct model. This is a significantly increased reliability compared to the prior stage, where
the reliability lies at 58%.

PreDIA also allows to perform a full BMA analysis including measures like pre-posterior
inter-model and intra-model variances, because all statistics are available. However, I omit
this analysis here for the sake of brevity. As for the computational costs and convergence
issues, the AESS drops in case (2i) from 500 (cases 2e - 2h) to about 200. This is owed to the
increased variability and uncertainty in hydraulic conductivity introduced by the possibly
present hydraulic barrier.

9.1.4. Summary and Conclusions

In this chapter, I applied PreDIA to an optimal design problem taken from contaminant
hydrogeology, where I illustrated its applicability to different sources of uncertainty, various
prediction tasks and task-driven objective functions. Within a groundwater quality example,
I considered non-co-located hydraulic head and transmissivity measurements. In order to
show the limitations of linearized methods, I compared the optimal design patterns obtained
via PreDIA to those from an EnKF.

When applying PreDIA in a optimal desing framework, I found the following conclusions
most important:

1. PreDIA outmatches linearized methods (such as EnKFs) because linear methods fail to
recognize relevant non-linear relations between potential measurement locations and
the prediction goal, and hence oversample locations considered to be most informative
from the limited viewpoint of linearized analysis.

2. PreDIA can handle arbitrary task-driven formulations of optimal design. I demon-
strate this in a scenario variation that involves predicting the exceedance of a regula-
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tory threshold value, which is important for risk management [e.g., de Barros et al.,
2009]. The sampling pattern for the task-driven prediction strongly depends on the
level of the threshold value, because different information needs are triggered by the
underlying flow and transport physics. Neither this difference nor such classes of task-
driven formulations could be handled by linearized methods.

3. The number of MC realizations needed by PreDIA for convergence rises with the num-
ber of planned sampling points and their measurement accuracy. This is inherited from
BFs in general. The Averaged Effective Sample Size (AESS) serves as a sound measure
to monitor statistical convergence. However, the problem of filter degeneracy is still a
challenge when planning extensive sampling campaigns. An extension of PreDIA to-
wards more efficient stochastic methods would help to further increase the affordable
sampling size. Here, linear methods are superior as they benefit from fast analytical
solutions.

4. Bayesian model averaging is implicit in PreDIA at no additional conceptual costs, and
allows to reduce the subjectivity of prior assumptions on, e.g., geostatistical param-
eters, boundary parameters or physical/conceptual model alternatives. Introducing
more variability to models might increase the computational costs or might lead to a
decrease in the AESS. Incorrect prior assumptions could negatively affect the quality
of the resulting optimal designs.

5. My specific illustrative example showed that the uncertain direction of a regional
groundwater flow has a significant impact on the uncertainty of predicting contami-
nations, and should hence not be neglected. This additional uncertainty can be quickly
reduced by hydraulic head measurements at large distances.

6. In my specific case, the optimal design predominantly addressed uncertainty in head
boundary conditions and contaminant source hydraulics, rather than structural un-
certainty in the geostatistical model. This will change according to the relative impor-
tance of individual sources of uncertainty, and the availability of data types that are
adequate to address these individual uncertainties.

9.2. Optimal Resource Allocation in other Model Dimensions

ORA as introduced in Chap. 7 has been introduced as versatile tool to explore the potential
of optimally allocating limited computational resources. In an application the optimum be-
tween the number of TM and the number of repeated MC simulation has been determined
and discussed. In the following section, I will the extend the range of application towards
any other model dimension, two more complex scenarios and a more ambitious error mea-
sure.

9.2.1. Application

The principal question is again: Can a hypothesized optimal trade-off be found for between
the reduction or discretization of two different model dimensions, given a certain computa-
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tional budget? In this application, I choose the number of repeated MC simulations denoted
by Δξ and the spatial discretization denoted by Δx as the model dimensions to be investi-
gated. Overall, I consider two scenarios, the complex well scenario featuring a wetland man-
agement (scenario 3) and the complex transport scenario featuring a remediation campaign
(scenario 4) (see Chap. 3). Considering two different physical setups allows to investigate to
some extent the influence of system physics and optimal trade-offs. In order to evaluate the
sensitivity with respect to a goal-oriented choice the error metric Ea, scenario (4) features
two different predictions and overall modeling goals denoted by case (4a) and case (4b). In
the following, all three cases including their predictions Ω(Δx,Δξ) are described in more
detail.

Case (3) The prediction Ω(Δx,Δξ) is the spatial and statistical 95-th percentile s95 of all
drawdown values s in the sensitive area. This is the drawdown value s which is ex-
ceeded in only 5% of the wetland area, in only 5 % of all realizations. Due to the steady-
state condition and the selection of a single value from the spatial domain, the predic-
tion is independent of space and time. Thus, only spatial and statistical discretization
is required, and no spatial or temporal aggregation is performed in the error metric Ea

Eq. 7.1.

Case (4a) The prediction Ω4a(Δx,Δξ) is the mean total mass flux of reactants passing the
control plane. The mean total mass flux is defined as the integral of the concentration
c(x, ξk) [M/L3] times the velocity v(x, ξk) [L/T] over the plane, averaged over the
ensemble of MC realizations k = 1 ... nMC .

Case (4b) Motivated from decision theory, the prediction Ω4b(Δx,Δξ) is defined as the
model supported decision to conduct (Ω4b = 1) or abandon (Ω4b = 0) the remediation
endeavor that is involved in scenario 4. The remediation is conducted if a predefined
critical reactant loss (lost mass flux = 0.018 kg/s) is deceeded in 90 % of all MC real-
izations. This is a hypothesis-driven decision analysis, similar to the concept featured
by Nowak et al. [2012] for optimal design of site exploration.

In all three cases featured here, the performance of ORA is quantified by an error norm Ea

that accounts for both the spatial dimension P and the stochastic dimension S, respectively,
in the sense of Eq. (7.1). For the spatial dimension, the most common, straightforward and
reliable technique to assess numerical errors are systematic grid-convergence studies [e.g.,
Roache, 1997]. Such studies compare the numerical solution against a finer reference reso-
lution ΔxRef and ΔtRef in both space and time. For cases (3) and (4a), I use the L2-norm,
equivalent to the mean-squared-error, for error quantification. However, any other quantity
of interest could be used as well, as will be done for case (4b). When using the L2-norm, the
metric EP for spatial discretization error can be found by

EP (Δx,Δξref ) = [Ω(Δx,Δξref )− Ω(ΔxRef ,Δξref )]
2 . (9.2)

Cases (3) and (4a) rely on error variances as metric for statistical resolution. Since the spatial
and the statistical errors are not necessarily independent, I evaluate the total error jointly by
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enveloping Eq. (9.2) with the non-parametric statistical bootstrapping method [Efron, 1982]:

RTot(Δx,Δξ) =
1

B − 1

B∑
b=1

[
Ω(b)(Δx,Δξ)− Ω(Δxref ,Δξref )

]2
, (9.3)

where b = 1 ... B indicates the repetition over randomly drawn subsets with size n∗MC <

nMC,ref (according to Δξ) from the total number of potential realizations nMC,ref , and Ω(b)

is the respective prediction obtained by working with the b−th subset instead of Δξref .

Case (4b) considers a binary outcome with events 0 or 1, representing the decision to con-
duct (1) or abandon (0) the remediation plan. As total error metric, I assess the probability
of providing the wrong decision (compared to the decision resulting from the reference res-
olutions) due to insufficient spatial or statistical resolution.

The average wall clock time required to generate one realization of Ω(Δx, ξk) at resolution
Δx, denoted as Σ is utilized as the computational budget norm for all scenarios. Thus, the
required total budget BTot(Δx,Δξ) can be found by:

BTot(Δx,Δξ) = nMC · Σ, (9.4)

where nMC is the budget multiplier to generate nMC realizations Ω(Δx, ξk) at the resolution
Δx.

To generate the data required for Eqs. (9.2)-(9.4), I evaluate Ωk(Δx,Δξk) for different dis-
cretizations Δx and Δξ with Δx = 1/32λ ... 1λ and Δξ = 1× 101 ... 1× 104 MC realizations.
Notice that both examples (wetland and remediation management) consider steady-state
conditions, therefore only spatial discretization matters and resolutions of time is not re-
quired. I define Δx = 1/32λ to be the reference resolution ΔxRef , with a total number of
grid points ≈ 1× 105 for the wetland example and ≈ 1.5× 105 for the remediation example.
The randomly generated reference fields T (x, ξk) in each MC realizations are used to derive
the coarser parameter fields by simply homogenizing out the respective sub-grid cells (by
taking the geometric mean of 2× 2 finer cells in each coarsening step). The reference predic-
tions Ω(ΔxRef ,Δξk) serve to determine the numerical error norm EP (Δx). This is a simple
way of implementation and appears suitable for this study, but is not meant to be a gener-
al suggestion for future applications. For alternative and more practical implementations, I
refer to Sec. 9.2.3. I define Δx = 1λ as the lowest grid resolution. Even lower resolutions
can directly be excluded in my case, because they would loose too much of the parameter
variability by homogenization. Also, I do avoid compensating for sub-grid variability by
sub-grid dispersion coefficients as done by, e.g., Rubin et al. [1999], Bellin et al. [2004] and
de Barros and Rubin [2011].

Based on the algorithm described in Sec. 7.1 and Eqs. (9.2)-(9.4), I evaluate error-to-budget
surfaces for all three scenarios and use these in order to find the optima for allocating
computational resources between the spatial and stochastical discretization. Results of both
error-to-cost surfaces and optimal resource patterns are presented in Sec. 9.2.2.
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9.2.2. Results and Analyis

Fig. 9.7 displays examples of slices through the cost-to-error surface for different combina-
tions of Δx and Δξ for case (3). Both errors decrease with finer spatial resolutions and with
larger number of MC runs as expected. The errors eventually converge to the remaining
spatial error and MC error, respectively as shown in Fig. 9.7 (left) and Fig. 9.7 (right). Fig. 9.7
(left) also reveals that the total error curves over varying MC resolution nMC for given spa-
tial discretizations are not parallel to each other. This indicates that possible assumptions
on the independence of errors (leading to simple additivity for L2-type norms, where one
would have ETot = EP + ES) do not hold for my test case. Even for high spatial resolu-
tion (Δx < 1/16λ), the curves are still far from being parallel. The same behavior can be
observed in the error curves over Δx for fixed nMC , see Fig. 9.7 (right).
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Figure 9.7.: Evolution of statistical error (left) and spatial error (right) for given statistical
discretization (number of MC realizations nMC) and spatial discretization Δx,
respectively.

The resulting optimal allocations for cases (3), (4a) and (4b) are shown in Fig. 9.8. The op-
timal trade-offs depend on the available budget and move from low to high spatial and
stochastical discretizations for the first two scenarios. By comparing case (3) (Fig. 9.8, left)
and case (4a) (Fig. 9.8, center), the case (3) tends to achieve its optima with fewer MC realiza-
tions but with finer grids, compared to the case (4a). Both scenarios use different numerical
schemes for different types of differential equations, which leads to different numerical con-
vergence [Cainelli et al., 2012]. Still, the difference is surprising, because the solutions of a
Laplace-type (elliptic) equation (groundwater flow equation in case 3) are much smoother
than the numerical solution of the advective-dispersive equation at large Péclet numbers
(in case 4a). This makes the spatial discretization error in hydraulic heads less sensitive to
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increases in the grid size and to related issues of numerical dispersion. Additionally, the ve-
locity field from the groundwater flow equation is by far more sensitive to coarse resolutions
than the pressure solution alone, and enters only the remediation example, not the wetland
case. In the optimal resource allocation of these specific two scenarios, however, I observe
the opposite behavior: The transport-based case (4a) shows a tendency towards finer MC-
resolution, whereas the pressure-based case (3) prefers finer spatial resolution. One possible
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Figure 9.8.: Error-to-budget surfaces for cases (3) (left), (4a) (center) and (4b) (right). Opti-
ma for given budgets are depicted by circles. Dashed-dotted contours mark the
budget-surface, whereas the solid lines represent the error-surfaces. Gray boxes
interconnected with gray dashed-dotted lines mark exemplary pairs suggested
by literature to be compared at their performance in Sec. 9.2.2.

explanation is that concentrations and mass flux estimates tend not to be Gaussian distribut-
ed. In general, for this class of predictions, the pdf are asymmetric [Bellin and Tonina, 2007;
Schwede et al., 2008; Dentz and Tartakovsky, 2010; Cirpka et al., 2012]. Analyzing the his-
tograms of the featured model predictions for both case (3) and (4a), I find a two times larger
skewness in the remediation scenario (see Fig. 9.9). Larger skewness generally slows down
the convergence of MC simulations and explains why the total error in the remediation sce-
nario is controlled by the MC error. This, in turn, shifts the optimal allocation towards more
MC realizations in the remediation scenario. Please note that, when choosing alternative nu-
merical strategies with different convergence properties, the optimal allocation of resources
may be different and would lead to different conclusions.

When comparing case (4b) in Fig. 9.8 (right) against cases (3) and (4a), I observe significant-
ly different patterns. This is driven by the error-surface which is distinctly different in case
(4b) compared to that from case (4a) (remember that cases 4a and 4b share the exactly same
physics and budget surface). Here, the errors depend on how much the individual 90-th
percentiles of lost mass flux for each Δx differ from the critical lost mass. MC resolution is
preferred over spatial discretization, which remains fixed at Δx = 1/4. This is explained by
Fig. 9.10, revealing a consistent downward drift of the 90-th percentiles from low to high
spatial resolutions. The most plausible reason for this effect is the increased numerical dis-
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Figure 9.9.: Histograms analysis for case (3) (left) and case (4a) (right). Higher order statisti-
cal moments (skewness and kurtosis) are reported.
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Figure 9.10.: Percentile analysis featuring the 90-th percentile for case (4b) indicating a
downward drift from low to high resolutions. Obviously, the 90-th percentile
of Δx = 1/4 is the lowest resolution falling below the critical lost mass flux m
= 0.018 kg/s.

persion at lower discretizations, driving mass away from the pumping wells. Discretizations
of Δx = 1/4 or finer, however, are sufficiently accurate to predict that the 90-th percentile is
lower than its critical value. This makes resolutions finer than Δx = 1/4 unnecessary in the
light of ORA, although grid convergence for the percentile seems to be not achieved before
Δx = 1/16.

The apparent lesson behind these three scenarios is that, depending on the model predic-
tion and the chosen uncertainty and error measures, the overall joint error can be controlled
by different sources of error with a complex interplay and trade-offs that depend on many
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influence factors. Hence, the ORA can differ substantially from individual case to individ-
ual case. Also, these examples demonstrate clearly that ORA should be viewed within a
goal oriented approach. This establishes a strong similarity between optimal design of com-
puter experiments and the goal-oriented character of optimal design for field experiments
[de Barros and Rubin, 2008; de Barros et al., 2009; Nowak et al., 2010; de Barros et al., 2012].

9.2.3. Discussions and Practical Application

The results above showed that the trade-off patterns within ORA depend on the system,
numerical schemes, and modeling objectives under consideration. This includes the type
of physical problem, the general setup and boundary conditions, discretization types, the
geostatistical assumptions, the physical type of predictions Ω and the character of the in-
volved error measure ETot. A general suggestion on optimal resource allocation can, hence,
not be given. Instead, the optimal trade-off needs to be determined carefully prior to each
individual investigation endeavor.

For the sake of further discussions, I quantify the computational budget which could be
saved due to optimal allocation compared to typical discretization choices found in the lit-
erature. To this end, I calculated the corresponding budgets and errors for literature val-
ues in the wetland problem (case 3). For the spatial discretization, some studies from the
stochastic hydrogeological literature suggest to choose Δx according to 1/(1+σ)λ [Ababou
et al., 1989], or Δx = 1/4λ [Bellin et al., 1992] in order to sufficiently resolve spatial patterns
of geostatistical parameter fields. For nMC found in the literature, numbers range between
500 ∼ 10000, or sometimes even higher [e.g., Englert et al., 2006; Nowak et al., 2008], in-
dependent of the complexity of the problem. Thus, I computed the joint errors for two ex-
emplary pairs (Δx = 1/4λ, nMC = 500) and (Δx = 1/4λ, nMC = 10000), and estimated
the saved budget by comparison to optimally allocated resources with the same errors (also
see Fig. 9.8, left). I found that, for case (3), 81 % to 99 % of the computational time could
be saved. These numbers are merely rough guesses. Still, they indicate that there is a high
potential in saving computational resources or a corresponding potential for reducing the
overall errors.

While the cited references mentioned above had good reasons for suggesting Δx = 1/4λ

or Δx = 1/(1 + σ)λ in their featured problem setups, I find from my analysis that this
choice is good only together with small MC ensembles in my specific applications. This is
a very strong evidence that the computational optimal resource allocation analysis has to
be evaluated for each individual application, and guidelines for specific task should not be
generalized without great care, if at all.

A further situation-specific influence is the degree of system uncertainty. The synthetic test
cases I performed were both characterized by a log-conductivity variance of σ2 = 3. With
increasing variance, i.e. more parameter uncertainty, I expect the optimal trade-off to put less
emphasis on spatial discretization as a first guess. This becomes obvious from the opposite
limiting case: in absence of uncertainty (i.e., in a deterministic model), the spatial resolution
will receive all of the computational budget, as MC runs becomes unnecessary. However,
the increasing need for larger MC ensembles is in general not necessarily monotonic with
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increasing heterogeneity. The reason is that the numerical error of spatial discretization also
increases with contrasting parameter values in neighboring cells, and these contrasts also
increase with the log-conductivity variance [Cainelli et al., 2012].

Also, I point out that possible assumptions of independent errors should not be taken light-
ly. The cited literature suggests that a spatial discretization in the order of Δx = 1/4λ is
sufficient to accurately capture spatial statistics. This statement would imply independent
(and hence additive) L2-type errors at Δx = 1/4λ and above. However, I found even for
higher spatial discretizations (Δx ≤ 1/32λ) that the MC errors and the numerical errors are
still dependent on each other. I conclude that, only for immensely fine spatial discretizations
(beyond x = 1/32λ), the assumption of independent errors may become legitimate in my
cases.

The resulting methodology of computing all potential pairs of Δx and nMC in Eq. (7.1) is
more expensive than the final optimized computing tasks. Thus, my current procedure may
be suitable for fundamental investigations of problem classes, but not for specific practical
applications. As possible solutions for practical applications, I briefly outline three alterna-
tive approaches which could help bring forth these ideas into practice.

• Approach 1 is based on the idea of optimal search algorithms. As both the budget
and error surfaces are smooth and monotonically decreasing, it is straightforward to
employ a simple iterative search scheme to minimize the error under the constraint of
fixed budget. This scheme avoids evaluating the surface at every location.

• Approach 2 has its roots in the extrapolation of errors and budgets. For example, the
MC-error is monotonically decreasing down to zero, and a simple parametric func-
tion could be fitted and used for extrapolation. This would require to evaluate only
small MC-ensembles (nMC < 200). In fine discretization regions, the numerical error
surface may be approximated well by well-known a priori error scaling laws, such as
RNum ≈ 1/Δx for first-order accurate schemes. Again, fitting and extrapolation may
be possible.

• Approach 3 is a possible modification of approaches 1 and 2. Their most expensive
individual step is to evaluate the reference simulation. Instead of using a reference, it
could be possible to work with error gradients, where each finer resolution serves as
reference for each coarser resolution. This would require to re-assess the error metrics
from Sec. 7.1.1.

All three concepts will deliver challenges for future research.

Another important issue to be discussed in this context is conceptual model uncertainty. In
my work, I assumed that the conceptual model and its parameterization are fixed. In many
applications, however, there is uncertainty about the adequate choice of model equations,
boundary conditions or parameterizations. Nevertheless, there are several methods in the
community that could take into account these issues. For example, structural uncertainty in
geostatistics can be tackled using Bayesian geostatistics [Kitanidis, 1986; Nowak et al., 2010;
Leube et al., 2012a]. Also, anomalous transport models such as continuous-time random
walk [e.g. Berkowitz et al., 2006] or multi-rate mass transfer [e.g. Carrera et al., 1998] might
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be perceived as competing models to the advection dispersion equation in Bayesian mod-
el averaging frameworks [e.g., Hoeting et al., 1999; Neuman, 2003]. Within my framework,
these alternatives could be included within the MC ensemble by using different conceptual
models, different numerical schemes or different boundary conditions in each realization.
Alternatively, one might seek the respective optimal allocation under each of the compet-
ing models before they enter the model averaging procedure. While my optimal allocation
would serve to evaluate each of the competing models best, the conceptual dimension of
uncertainty cannot be resolved unless by collecting additional data. The optimal sampling
of environmental systems for minimal uncertainty is an entirely different issue and specific
techniques to reduce conceptual uncertainty have recently been proposed [e.g., Leube et al.,
2012a; Neuman et al., 2012; Nowak et al., 2012; Wöhling et al., 2013].

As final note, I would like to add that ambiguity may not only arise from conceptual un-
certainty in model formulations, but also from ambiguity or multi-objective formulations of
modeling goals and the related error measures. This may be approached via multi-objective
optimization techniques applied to the same underlying problem formulation, and will re-
veal the trade-offs between designing computations for one or another task-specific and
competing objective.

9.2.4. Summary and Conclusions

In this section, I showed the application of ORA to a different combination of model di-
mensions than in Chap. 7, looking at spatial versus statistical resolution instead of statistical
resolution versus number of TM for approximating the time coordinate. Also the current
application used two more complex scenarios and a more ambitious error measure.

Based on my results, I highlight the following points:

• The optimal allocation of computational resources is strongly sensitive to the physical
scenario, the prediction and the employed types of error metrics.

• For fine spatial resolution, I found a smaller number of MC runs when compared to
those found in the literature.

• Allocating computational budgets wisely reveals, that for my specific case (3a), 81 %

to 99 % of the computational time could be saved.

Despite the fact that my focus was on hydrogeological applications, the ideas put forth here
could be used for a variety of environmental problems where computation also plays a
strong role. Examples are pollution in open water bodies [e.g., Fischer et al., 1979] or in the
atmosphere [e.g., Seinfeld and Pandis, 1997], energy fluxes on fully coupled systems [e.g.,
Maxwell et al., 2007] and nitrogen exchange in the hyporheic zone [e.g., Marzadri et al.,
2011].

Overall, the conclusions from my study are highly similar to those from goal-oriented frame-
works for optimal data acquisition campaigns in environmental multi-component systems
[de Barros and Rubin, 2008]. In addition, other issues (not investigated in this paper) can
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influence the optimal allocation of computational resources. For example, de Barros et al.
[2009] showed within a risk-based context that the ratios between relevant scaling metrics
in contaminant transport affects the need for finer numerical meshes, characterization efforts
and MC runs.

On a last note, I remind that my results and conclusions are based on the chosen illustrations,
and that ORA should be conducted for each specific case. The challenge and relevance of
distributing computational resources wisely increases when dealing with optimal design of
experiments in large-scale hydro-systems [e.g. Reed et al., 2007] and when the underlying
physical and statistical models are uncertain [e.g. Neuman, 2003; Nowak et al., 2010].
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Model reduction techniques are essential tools to control the overburdening costs of com-
plex models. One branch of such techniques is the reduction of the time dimension. Major
contributions to solve this task have been based on integral transformation. They have the
elegant property that by choosing suitable base functions, e.g., the monomials that lead to
the so-called temporal moments (TM), the dynamic model can be simulated via steady-state
equations. TM allow to maintain the required accuracy of hydro(geo)logical applications
(e.g., forward predictions, model calibration or parameter estimation) at a reasonably high
level whilst controlling the computational demand, or, alternatively, to admit more concep-
tual complexity, finer resolutions or larger domains at the same computational costs, or to
make brute force optimization tasks more feasible.

In comparison to classical approaches of model reduction that involve orthogonal base func-
tions, however, the base functions that lead to TM are non-orthogonal. Also, most applica-
tions involving TM used only lower-degree TM without providing reasons for their choice.
This led to a number of open research questions:

1. Does non-orthogonality impair the quality and efficiency of TM?

2. Can other temporal base functions more efficiently reduce dynamic systems than the
monomials that lead to TM?

3. How can compression efficiency associated with temporal model reduction methods
be quantified and how efficiently can information be compressed?

4. What is the value of temporal model reduction in competition with the computational
demand of other discretized or reduced model dimensions, e.g., repetitive model runs
through Monte-Carlo (MC) simulations?

In this work, I successfully developed tools to analyze and assess existing techniques that
reduce hydro(geo)logical models in time, and answered the questions posed above. To this
end, I pursuit an approach starting from a classical top-down perspective considering tem-
poral model reduction from the most general point of view first (Step I). This has been done
by classifying alternative polynomial and non-polynomial base functions and comparing
their reduction efficiency (Chap. 5). Efficiency in this context means the ability of converting
dynamic systems to simpler systems at reasonable computational times.

The analysis, then, became more focused and the most efficient model reduction techniques
were assessed in terms of their compression efficiency (Step II). Here, efficiency refers to the
absence of compression errors in data due to a loss-less compression. To this end, I devel-
oped and applied a new method denoted as pre-posterior data impact assessor (PreDIA)
and measured the information content of TM in a rational and generic way (Chap. 6).
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Next, the results from steps Steps (I)-(II) were reflected in a global and practical light against
discretized or reduced model dimensions other than the temporal one (Step III). For this
purpose, I developed and applied a method for optimal resource allocation (ORA). The
method allows to combine errors from different reduced or discretized model dimension
(e.g., temporal, spatial, stochastical) and minimizes the combined error for a given compu-
tational budget (Chap. 7).

The results were then adapted and TM employed in a new method for numerical upscaling
of high-contrast fractured porous media (Step IV). The method is based on flow-aligned
blocks and uses multi-rate mass transfer (MRMT) models to parameterize unresolved sub-
block heterogeneity. TM are used to efficiently capture sub-block features in dynamic model
responses and so make the scale transition of parameters swift and simple (Chap. 8).

Finally, I proofed the universality of my developed tools by applying them to other tasks
of subsurface hydrogeology (Chap. 9). The most important conclusions from Step (I)-(IV)
identified in Chaps. 5-8 and Chap. 9 are summarized in the next five paragraphs, followed
by a brief outlook.

10.1. Summary of Conclusions

Reduction Efficiency (via Alternative Integral Transforms) - Step (I)

1. Polynomial or non-polynomial base functions for integral transforms can be classified
exhaustively by a limited set of cases. Each case has different properties regarding its
reduction efficiency. The most efficient case comprises the so-called Appell sequences.
They lead to the most simple recursive coupling in the reduced steady-state model
equation. The Appell sequences contain the monomial base functions that lead to TM.

2. Due to the linear combination of monomials inherent in all polynomials, any tempo-
ral characteristic based on arbitrary polynomial base functions (or on cumulants) can
be mimicked by TM through (non-)linear re-combination. Thus, more general poly-
nomials would, by no means, offer improved computational efficiency as compared
to TM. Also, they contain the same information as TM, simply arranged in different
(non-)linear combinations. They can, hence, not capture more information from the
dynamic system.

3. The only remaining integral transform that reduces the dynamic linear system of par-
tial differential equations (PDE) to a non-coupled system of steady-state PDEs is the
Laplace transform (LT). However, the choice of orders (number of considered Laplace
coefficients LC) remains unclear, making LC impractical, e.g. in inverse problems.

4. There exist no set of orthogonal base functions meeting the requirements of typical
hydro(geo)logical applications.

5. In total, I can conclude that TM and LC are the only temporal characteristics that can
be obtained from an efficiently reduced dynamic model. It remains to investigate and
compare their compression efficiency.
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The results apply to any (system of) linear PDEs with the following properties:

• The spatial derivatives may have any arbitrary order,

• There may be an arbitrary number of arbitrary-order time derivatives.

• For the integration by parts to work out, the coefficients must be independent of time
and independent of the dynamic model response, and the dynamic model response
has to decay to zero sufficiently fast.

Compression Efficiency (via the Pre-posterior Data Impact Assessor) -
Step (II)

1. Based on an example from groundwater flow, I found that the first two TM cover
more than 80 % of the information required to characterize dynamic system response
curves. Considering up to four TM captures 90 % or more of the overall information.
The remaining 10 % of information are distributed among an unquantifiable number
of higher moments. The lowest-order TM are always the most informative. I found
similar results for an example from solute transport.

2. The distribution of information content over time differs among the TM orders. Late-
time behavior can mostly be inferred from higher orders. The relevance of higher-order
TM has to be judged in the light of any specific application task.

3. This is by far better than what I found for LC. One advantage of LC is that their equa-
tions are fully decoupled, such that arbitrary coefficients can be chosen in arbitrary
order. This turns, however, into their greatest disadvantage, because it is a priori un-
known which ones are the most informative ones. Hence, it will be close to impossible
to pick the optimal set of LC that could compete with TM.

4. In total, I can conclude that there is no better way for physically based model reduction
in time, than by the monomials leading to TM. This holds at least for any (system of)
PDEs with the properties listed above.

Reflection (within Optimal Resource Allocation) - Step (III)

1. There always exists an optimal trade-off between arbitrary combinations of differ-
ent discretized or reduced model dimensions, e.g., the temporal and stochastical dis-
cretization. The trade-off optimally exploits computational resources, leading to the
smallest joint error given a certain computational budget.

2. When reflecting the choice of TM order against the number of MC runs, I found that
their optimum heavily depends on the specific underlying physical problem (e.g.,
flow, or transport), the geostatistical model and the prediction task under which the
optimization has been carried out.

3. Also, the optimal trade-off requires less MC runs as compared to typical numbers of
MC runs found in literature, at least for my specific example.
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4. In total, I can conclude that the choice of TM should always be weighted carefully
against other discretized or reduced model dimensions prior to the modeling endeav-
or.

Adaption (to Numerical Upscaling in Fractured Porous Media) - Step (IV)

1. Applying TM in a new method for numerical upscaling of fractured porous media
(FPM) allows for a swift scale transformation of parameters. Also, it is a first-time
application of TM to FPM. Overall, the method provides an efficient tool for multi-
scale modeling of FPM based on flow-aligned blocks and MRMT models.

2. The prediction accuracy of the coarse simulation depends on the coarse-scale resolu-
tion and the predicted temporal complexity (number of TM). Generally, higher resolu-
tions can yield better accuracy, but higher resolutions are also prone to errors because
the nature of determining MRMT parameters does not account for their spatial effects
within the block-scale model.

3. Different definitions of dispersion coefficients have been tested. Generally, the defini-
tion based on the centralized second transverse spatial moment yields best results.
Local-scale and block-scale definition by mass balances underestimate transversal
mixing. They lead to a worse performance.

4. If a certain block resolution is exceeded the domain contrasts are fully resolved by the
block itself and the parameterization by MRMT becomes obsolete. This is similar to
the traditional ADE-based solution.

5. In total, I can conclude that TM help to improve the upscaling of highly complex sys-
tems.

Other Applications of the Developed Tools I (to Optimal Design of
Experiments)

1. In the field of optimal design of experiments, the application of the Pre-posterior Data
Impact Assessor (PreDIA) clearly outmatches linearized methods (such as ensemble
Kalman filters) because linear methods fail to recognize relevant non-linear relations
between potential measurement locations and the prediction goal, and hence over-
sample locations considered to be most informative from the limited viewpoint of lin-
earized analysis.

2. PreDIA can handle arbitrary task-driven formulations of optimal design. I demon-
strate this in a scenario variation that involves predicting the exceedance of a regula-
tory threshold value, which is important for risk management. The resulting sampling
pattern strongly depends on the level of the threshold value, because different infor-
mation needs are triggered by the underlying flow and transport physics. Neither this
difference nor such classes of task-driven formulations could be handled by linearized
methods.
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3. Bayesian model averaging is implicit in PreDIA at no additional conceptual costs, and
allows to reduce the subjectivity of prior assumptions on, e.g. geostatistical parame-
ters, boundary parameters or physical/conceptual model alternatives (like hydraulic
barriers).

4. In total, I can conclude that fully non-linear and non-parametric inference engines for
optimal design may be computationally more expensive than existing (quasi-)linear
approaches, but these computational costs pay off in the form of better experimen-
tal designs and larger freedom in relaxing assumptions and in pursuing task-driven
optimization goals.

Other Applications of the Developed Tools II (to Optimal Resource Allocation
in other Model Dimensions)

1. The application spectrum of ORA has been successfully translated to other model
dimensions. By considering the spatial (grid resolution) and stochastical dimension
(number of repeated model runs through MC simulations), a clear optimum can be
found revealing interesting insights into the physical scenarios.

2. The optimal allocation of computational resources is strongly sensitive to physical sce-
nario, the type of prediction and the employed error metric.

3. Allocating computational budgets wisely leads, for my specific examples, to a speedup
in the order of 80 - 99 %.

4. In total, it can be concluded that ORA is a generic tool that helps to optimally exploit
computational resources in arbitrary combinations of different model discretizations
or reductions.

10.2. Overall Conclusions

Although TM have been used in different applications over the last two decades, their po-
tential has, in my eyes, not been fully exploited. Based on my findings, I hope to encourage
more studies to work with the concept of TM. Especially because the number of studies
found in the literature that employ TM with real data is small, more improved tests on ex-
isting data sets should be performed as proof of concept for practical applications in real
world scenarios. Also, I hope to encourage those who limited their TM applications to only
lower-order TM to consider a longer moment sequence. My study results specifically pro-
vide valuable advice for hydraulic tomography studies under transient conditions to use
TM up to the fourth order. This might potentially alleviate the loss of accuracy used as ar-
gument against TM by certain authors.
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10.3. Outlook

Following the conclusions from above, a few things remain to be said. The analysis and con-
clusions made in this work were mainly based on forward consideration of model reduction
in time. The context of inverse modeling has shortly been touched upon in the discussion
of LC, but was not subject to an independent quantitative analysis. The striking advantage
here is that TM offer a joint model reduction and data compression, leading to a simple
model calibration by measured data. As a matter of fact, measured data such as pressure
time series observed in pumping tests, are prone to noise. This imposes its own error to the
temporal characteristics and makes their determination inaccurate. Consequently, the com-
pression efficiency of TM reduces. For a quantitative assessment, however, measurement
errors have to be determined properly which has not been done in this thesis. This would
allow to assess the performance of TM versus alternatives as truncated TM or LC in the in-
verse problem and should be tested in future research. I expect similar results for inverting
tracer data based on TM. This hypothesis is supported in parts by the study of Nowak and
Cirpka [2006] who showed that including the second TM of tracer breakthrough curves for
geostatistical inversion leads to better results.

A way to tackle the problem of inaccurate TM due to noisy time series is the early truncation
of time series leading to truncated TM [Jawitz, 2004; Luo et al., 2006]. This helps to control
the integral under the noisy time-series by cutting off late-time data that would lead to enor-
mous integrals. Rather than sharply cutting off data time series like in truncated TM, time
series could be smoothly truncated by a weighting function inside the transformation. For
example, I found that weighting by e−t leads to an accurate integration and efficiently de-
creases the influence of measurement errors on higher-order TM in the late-time parts of the
integration integral. Also, the dynamic model can still be reduced to steady-state with such
a steady-state weighting. However, the model reduction introduces a new type of linear
PDE slightly different to the well known Laplace-type steady-state equations. The efficiency
should, hence, be carefully assessed and also the potential explored in the light of informa-
tion loss due the smoothing-based truncation versus the otherwise imminent information
loss due to noise. Also, reduction and compression efficiency should be compared against
those of the truncated TM of Jawitz [2004]; Luo et al. [2006].

Another issue is the reconstruction of time series from their TM. This is of interest in the
forward problem and has been addressed for quite some time. Kucĕra [1965] came up with
the idea of calculating orthonormal characteristics based on Hermite polynomials obtained
from linear recombinations of TM. This allows to reconstruct the original dynamic response
by means of expansion from TM [Kucĕra, 1965]. However, reconstructed time series from
polynomial expansion techniques tend to oscillate and can produce non-physical values.
This is especially undesired if late-time features such as tailing are of interest. A familiar
idea based on expansions is the so-called Edgeworth expansion involving cumulants [e.g.,
Chatwin, 1970]. Unfortunately, this series expansion requires TM to be close to the TM of
Gaussian curves. Otherwise, the series can again generate negative values in the tailing. If
the model reduction is based on the Laplace transform, distribution curves can be derived
by the inverse Laplace transform. This reveals reasonable accuracy, however, at the costs of
10 to 40 Laplace coefficients [e.g., Li et al., 1992; Sudicky and McLaren, 1992].
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A completely different idea is based on the maximum entropy (ME) method [e.g., Jaynes,
1957; Harvey and Gorelick, 1995]. Its greatest advantage is that ME can guarantee physically
reasonable curves. However, I found that ME lacks performance and accuracy when using
more than three TM. This is because the method has to solve a high-dimensional non-linear
optimization problem. Furthermore, I observed that the basic parametric functional shape
proposed by the principle of ME leads to undesired artifacts in the shape of reconstructed
curves. This is, in parts, due to oscillating polynomials within an exponential function. In my
eyes, this promising method could be strongly improved at two fronts: (1) The computation-
al demands of the involved optimization could be boosted by using specifically tailored and
adaptive Gauss-Hermite integration rules for calculating the expensive integrals appearing
within the optimization scheme. (2) In order to avoid the undesired artifacts, the method
could be extended to the principle of minimum relative entropy [e.g., Woodbury and Ul-
rych, 1993], which allows for a broader class of parametric shapes during reconstruction,
and allows to include prior knowledge, desired from physical principles, about the expect-
ed shape of the time series. Such improved versions of curve reconstruction could further
help TM-based model-reduction to penetrate deeper into practice.
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A. Moment Generating Equation

The Laplace transform (LT) of a response curve r(t) is expressed as:

L(r(t))u =

∫ ∞

0
e−ut r(t) d t, (A.1)

where u is the Laplace variable. Inserting the Taylor expansion of eut about t = 0

eut =
∞∑
n=0

(ut)k

k!
= 1 + ut+

u2t2

2!
+ ...+

uktk

k!
(A.2)

into Eq. (A.1) decomposes the spectral domain. Temporal moments (TM)m∗
k =

∫∞
0 tkr(t) d t

now occur as coefficients of the Tayler series and yield the so-called moment generating
equation [Van Kampen, 2007]:

L(r(t)) = m∗
0 +m∗

1u+
m∗

2u
2

2!
+ ...+

m∗
ku

k

k!
. (A.3)

Taking the derivative of L(r(t)) with respect to u, yields the kth TM

lim
u→0

[
∂kL(r(t))

∂uk

]
= m∗

k. (A.4)



B. Cumulant Functions and their Relation to
Temporal Moments

Applying the first natural logarithm to both sides of Eq. (A.2) and then performing just
another Taylor expansion (for the logarithm) about t = 0 yields the cumulants κk and the
associated cumulant function [Kubo, 1962]:

log L(r(t)) = κ1u+
κ2u

2

2!
+ ...+

κku
k

k!
. (B.1)

Cumulants can be expressed as a non-linear re-combination of equal- and lower order nor-
malized TM [Kubo, 1962]:

κ1 = m1

κ2 = m2 −m2
1

κ3 = m3 − 3m2m1 + 2m3
1

κ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1

...

κk = mk −
k−1∑
j−1

(
k − 1

j − 1

)
κj mk−j



C. Pre-Posterior Data Impact Assessor Error

In order to assess the so-called Monte Carlo (MC)-error associated with the computed mea-
sures R, Rn and Rt in Chap. 6.2, I developed and implemented a swift procedure based on
the well-known Bootstrapping method [Efron, 1982]. The general idea of the Bootstrapping
method is strikingly simple. In order to arrive at the sampling distribution of the full en-
semble (e.g., a set of ensemble mean values), it attempts to mimic the repetitive redrawing
of the full ensemble by redrawing subsets of the (one) full ensemble.

The same mentality can be applied to the Pre-posterior Data Impact Assessor (PreDIA).
Here, the most costly operation is the derivation of the n × m weight matrix Wij with i =

1 ... n and j = 1 ...m. Calculating Wij once, allows to redraw B random subsets b from Wij

each of it with i = 1 ... nb and nb ≤ n, and so opens the door to repetitive evaluations of
PreDIA on B subsets.

CStD(K, t)(b) ≈
nb∑
i=1

ri(t)
2 Wij −

⎛
⎝ nb∑

i=1

ri(t)Wij

⎞
⎠2

. (C.1)

If nb is relatively large compared to n (which is typical for Bootstrapping) the scheme can
further be sped up by calculating the terms

∑n
i=1 ri(t)

2 Wij and
∑n

i=1 ri(t) Wij for the full
ensemble with i = 1 ... n once and deduct the respective quantities for the B so-called com-
plementary subsets with i = 1 ... nc and nc+nb = n in order to arrive at CStD(K, t)(b). This,
however, requires some reweighting and compensation for the squared terms in Eq. (C.1):

CStD(K, t)(b) ≈
(

n∑
i=1

ri(t)
2 Wij −

nc∑
i=1

ri(t)
2 Wij

)
vj

−
(
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i=1

ri(t)Wij

)2

v2j −
(

nc∑
i=1

ri(t)Wij

)2

v2j

+2

(
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i=1

ri(t)Wij

)(
nc∑
i=1

ri(t)Wij

)
v2j , (C.2)

with reweighting term vj =
∑n

i=1Wij/(
∑n

i=1Wij−
∑nc

i=1Wij). Taking the variance about the
spectrum of subsets B in CStD(K, t)(b) yields the MC-error associated with the ensemble of
n potential realizations r(t) to be finally averaged about the set of m potential realizations
of m∗

k (similar to Eq. (6.8):

V arB[R(K, t)] ≈
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⎩ 1
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