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Using the method integrity basis, the most general S0(3)-invariant free energy 
density up to all powers in Q.p and up to second order in Qa.p,, is established. The 
method provides all analytically independent elastic modes for nematics and 
cholesterics in the form of 33 so-called, irreducible invariants. Interestingly, among 
the irreducible invariants there are only three chiral terms (i.e. linear in Q.p,, ). They 
give rise locally to three independent helix modes in chiral, biaxial liquid crystals. 
This conclusion generalizes results of Trebin and Govers and Vertogen and 
contradicts a statement of Pleiner and Brandt, according to which only one twist 
term is supposed to exist. The most general free energy expansion can be written 
as sum of 39 additive invariants, which are multiplied by arbitrary polynomials in 
TrQ2 and TrQ3

. 

1. Introduction 
The orientational properties of liquid crystals can be described by a second order 

symmetric and traceless tensor order parameter Q(r) of cartesian components Qa.p(r) 
(a, f3 = x, y, z). In the most general case Q(r) has five independent components which 
describe the so-called general biaxial phase [1]. A spatial dependence of Q requires 
elastic terms in the Landau free energy expansion. Together with the thermal contri
bution the elastic terms form the orientational part of the free energy density ofliquid 
crystals. 

De Gennes [I] was the first to propose a Landau-Ginzburg type of expansion for 
the free energy density in terms of Q and its derivatives Qrzp,1 • In the absence of electric 
and magnetic fields, the original expression for the free energy is 

(1) 

where the parameters a, B, C, L; (i = 1-3) are assumed to be independent of 
temperature. Here erzfJy denotes the Levi-Civita tensor. Summation over repeated 
indices is to be understood if not stated otherwise. The last term in equation (l) is 
denoted chiral. It violates parity and is responsible for the formation of a helical 
ground state. It appears in the elastic free energy density of cholesteric liquid crystals. 

0267-8292/89 $3.00 © 1989 Taylor & Francis Ltd 



618 L. Longa and H.-R. Trebin 

The expansion (1), though already complicated, is still too simple to describe 
correctly elastic and thermodynamic properties of real nematic and cholesteric liquid 
crystal materials [2-6]. A possible improvement is to include in equation (1) higher 
order terms like QQ ... Q(oQ) and QQ ... Q(oQ)(oQ). These symbols denote a 
class of aiJ linearly independent S0(3)- symmetric invariants constructed from the 
tensors QIXpQyfl . .. QeAQJl •. ~) and Q11pQyb . .• Qea(Q1 ... q)(Q~,.() by means of contrac
tions with the Kronnecker deltas and the Levi-Civita tensors. Such a programme 
has partially been carried out by Schiele and Trimper [7) and has been generalized 
further by Berreman and Meiboom [8] and Poniewierski and Sluckin [9]. These 
theories apply, in principle, to strictly uniaxial liquid crystals. 

In a recent paper [6] we generalized the theories [7-9] to the biaxial case by 
enumerating all elastic terms up to forth order in Q and by changing to the spherical 
representation for Q11p and op.QctfJ· The spherical representation has been used to take 
into account the restrictions Q"'a = 0, Qa11,p which cannot be easily incorporated into 
the cartesian picture. However, in orders higher than four in Q, the use of the 
spherical representation also becomes very complicated. The aim of this paper is to 
show yet another way of expanding the elastic free energy of liquid crystals using the 
spherical representation. The method is based on a group theoretical construction 
called an integrity basis [10]. 

Rewriting the free energy in terms of an integrity basis offers four important 
advantages: 

(i) the expansion is given immediately to an arbitrary order in Q; 
(ii) the analytical independence of the various terms is evident: 

(iii) a formulation is possible of the most general free energy density for systems 
of prescribed symmetry; 

and finally 

(v) a classification is offered of basic elastic modes of Q. 

Furthermore we are going to show that locally the general biaxial phase can be 
described using only three chiral terms. 

2. S0(3)-symmetric integrity basis for the liquid crystal order parameter Q 
A problem often encountered in constructing a Landau-Ginzburg theory of phase 

transitions is to find all irreducible tensors with respect to a given discrete or compact 
Lie group, whose components are polynomials in the components of one or more 
given order parameters. These tensors are formed in terms of an integrity bases, i.e. 
a finite number of elementary tensors (polynomials) by which all others may be 
expressed as products. This very elegant group theoretical method has been developed 
by Judd et al. [10], Gaskell et al. [11] and Bistricky et al. (12]. 

To discuss the integrity basis for the symmetric and traceless tensor field Q of a 
liquid crystal, it is convenient to switch from cartesian to spherical components. The 
latter form basis functions of an irreducible representation of S0(3), namely an 
L = 2 quadrupole tensor Q(2l of components Q~l (m = ± 2, ± 1, 0). The spherical 
components of the vector operator o; = ojox; form an L = 1 dipole tensor a~> 
(m = ± 1, 0) [13, 14]. In the spherical representation all components Q~l are indepen
dent, and the constraints Q11p = Qp11 , Tr Q = 0 of the cartesian representation are 
automatically taken into account. 
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The problem now is to determine all irreducible S0(3)-symmetric tensors, whose 
components are homogeneous polynomials in Q~l. Next, by classifying the com
ponents of the derivatives oQ and (oQ)(oQ) according to the irreducible represen
tations of S0(3) and by coupling them with the irreducible tensors we can form all 
(analytically) independent S0(3) invariants for the free energy density. 

As we have indicated an essential step is the determination of an integrity basis for 
the irreducible tensors. The information about these tensors and the basis is contained 
in a generating function G(q, A) [10]. It is a rational expression, whose numerator and 
denominator are polynomials in variables q and A. The expansion of G in a power 
series contains only positive integer coefficients. The coefficients provide the number 
of linearly independent irreducible tensors of order n and momentum L. The infor
mation about the integrity basis is contained in a specific, rational form of G(q, A). 
In particular, for Q~;> the result is [11} 

1 + q3N 
G(q, A) = (1 - qA2)(1 - q2N)(l - q2)(1 - q3) ' (2a) 

= 1 + qA2 + l(N + N + A4
) 

+ q3(A0 + A2 + N + N + A6
) + . . . , IAI < 1. 

The rational form of the generating function (2 a) may be interpreted in terms 
of five elementary tensors Jjfl whose orders N and momenta L are respectively 
(N, L) = (1 , 2), (2, 2), (2, 0), (3, 0), (3, 3) where N corresponds to the powers of q, 
and L to the powers of A in the denominator and numerator of equation (2 a). These 
tensors are 

Jf2) - Q(2), 

Jf l = [ Q(2) ® Q(2) J<2l' 

no) - 12 = [Q<2l ® Q<2l J<Ol oc TrQ2, 
(3 a) 

JjOl = /3 = [If2l ® Jfl ]<0l oc Tr Q3 

and 

where 

[Tl) ® s<k>]~> = I ( 
1 k L) T~~ s,~~ (3 h) 

ml ,mz mlm2 m 

is the S0(3)-Clebsch-Gordan coupling. 
Now, using equations (3 a, b) we can construct an infinite set of tensors of the form 

(3 c) 

(3d) 

where m, n, n1, n2 run over the non-negative integers and where 

[ J
(nJ ) 

i~l A<J> = [ .. . [A<J> ® [A<Jl ® A(Jl]<2Jl](3Jl . . . ]<nJ>. (3 e) 
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The set of the tensors (3c, d) corresponds formally to the representation of the 
generating function (2 a, b) as 

(1 + Nl) l: (q2)"'(q3t(qNr~<r1Nr2 

These tensors are irreducible and linearly independent. Note that the tensor n3>, 
associated with the term q3N, can appear only linearly in equation (3d). The higher 
order couplings of this tensor with itself can be expressed as Clebsch-Gordan couplings 
of integrity basis elements (3 a). 

Finally, we note that any other tensor formed by means of coupling of several 
tensors Q<2l can be expressed uniquely as a linear combination of the tensors (3 c, d). 
For example, 

[JC2J tX" J(2>]<z> = 2J 5 I Q<2J 
JIC/2 7 2. 

3. Invariant expansion of the free energy 
In the previous section we listed all of the linearly independent, irreducible tensors 

constructed from Q<2>. Here we apply these results to construct systematically a 
general free energy expansion in terms of Q and its derivatives Qap,y . Only terms, 
that are linear or quadratic in derivatives of Q are considered, i.e. we restrict the 
expansion to the S0(3)-symmetric invariants of the form QQ ... Q(oQ) and 
QQ ... Q(oQ)(oQ) or equivalently, using spherical tensor notation 

[[ 

n J(L) ](0) 
i~l Q(2) ® oQ<L) 

and 

(4b) 

where 

(4c) 

The structure of the tensor space L~~ Q(2)JLJ has already been studied (see 

equations (3 c, d)). Thus, it remains to identify all of the linearly independent, irre
ducible representations oQ(L) and [oQ(LI ) ® oQ(L2)](L). First we note that ()(!)and Q(l) 

Table l. Irreducible representations (L1, L2 , L). 

L1 Lz L 

I I 0 2 
I 2 2 3 
l 3 2 3 4 
2 2 0 2 4 
2 3 2 3 4 5 
3 3 0 2 4 6 
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Table 2. Chiral (J) and quadratic in oQ (D) invariants. These are formed by all possible 
couplings of the terms in the left column with the corresponding terms in the right 
column to give a total momentum L of zero. Invariants which can be replaced by J~Jp 
are underlined. (oQ<LJ = [o0 > ® Q<2>]<L>). 

Couplings of oQ(M) and its 
square to total angular 

momentum L 

Coupling of powers of Q<2J to the same angular 
momentum L as on left side via the method of integrity 

basis 
- ·-·-·-·-· ---- ----------- - - - ---- ------- -

1 times {oQ<2J} 
L=2 

[oQ<I> ® aQo>1<2> 

[oQ<l> ® aQ<2>J2> 

6 times [oQ<tJ ® oQ<3>]<21 

L = 2 [oQ<2> ® oQ(2)](2) 

[oQ<2> ® aQ<3>J 2> 

[oQ<3> ® aQ(3> J<2> 

[aQ<J> ® aQ<3>]<4> 

4 times [8Q(l) ® oQ(l)](4) 

L = 4 [oQ<2> ® oQ<3l j<4> 

[8Q(3) ® 8Q(3)](4) 

]-Invariants 

. {Q(2) } 2 times . . . . 
L 2 

2 Irreducible mvanants 
= /~2) 

1 times {J<J>} 1 . d 'bl . . L = 1 3 1rre uc1 e mvanant 

D-In variants 

1 times {I} 3 . d 'bl . . L = 0 1rre uc1 e mvanants 

2 times . . . . . {Q(2) } 
L 2 

12 Irreducible mvanants 
= Jfl 

1 times {J<Jl} 3 . d 'bl . . L = 3 3 1rre uc1 e mvanants 

. { [Q{2) ® /(3)]'5) } 2L tJmeSs 
3 

2 irreducible invariants 
= [Jfl ® 1?)1(5) 

4 times 
L = 6 

[Q(2) ® Q(2) ® Q(2)](6) 

(Q(2) ® Q(2) ® Jflj<6l 

[Qc21 ® IJ2> ® Jf> J<6> 

[J?> ® Jf> ® I12lj<6l 

4 irreducible invariants 
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can be coupled to obtain three independent irreducible representations with L = 1, 
2, 3 (see equation (4 c)). Now studying the second case (see equation (4 b)) and 
observing correctly the permutation symmetry with respect to aQ<Ll, we find that 
various irreducible representations (L1, L2 , L) can be classified as given in table I. 
Clearly, by combining these results with those of the previous section we find there 
are 39 invariants (4 a, b); these are listed in table 2. Not all of the couplings between 
spherical tensors (3 c, d) and the derivatives [aQcMJ ® aQ<N)rLJ to give a total momentum 
of zero are analytically independent. Six of them, underlined in table 2, can be 
expressed as polynomials of invariants of lower order. 

We conclude that the general free energy density of cholesteric liquid crystals is 
composed of 3 ]"-invariants, 6 JJp-invariants and 30 D-invariants. These can be 
multiplied by arbitrary polynomials in / 2 and / 3 (see equations (3 c, d)). 

Interestingly, the theory predicts a finite number of elementary distortion modes 
in a general, biaxial system corresponding to the three ]"-invariants and the 30 
D-invariations. Among the allowed distortions there are only three types of'chiral ones 
and this number cannot be reduced for biaxial phases. This result generalizes that of 
Trebin [ 15] and of Govers and Vertogen [ 16] and contradicts that of Pleiner and 
Brandt [17]. They argue that the ground state of a chiral biaxial nematic must consist 
of a single helix formation and that the description of such a state involves only one 
twist term. According to the theory presented here elastic terms with ] 1 or 12 give rise 
to different local structures than 11 so a ground state with single helix is impossible 
if these terms compete. 

This work has been partially supported by the Alexander von Humboldt 
Foundation and by the Polish Project C.P.B.P.OI.03. 
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