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Disclinations in Quasicrystals 
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The most significant feature in the transition from the quasicrystalline to the amorphous state is the 
loss of long-range bond-orientational order. Disclinations are candidates for elementary excitations 
which destroy angular correlations. Generalizing the topological defect classification, we investigate 
point singularities in two-dimensional pentagonal quasicrystals and construct disclinations, dislocations, 
and disclination dipoles. 

PACS numbers: 61.55.Hg, 61.50.Em, 61.70.Ga 

The AI-Mn alloy "shechtmanite," which exhibits a 
diffraction pattern of icosahedral symmetry, 1 is com­
monly interpreted as a quasicrystalline state of matter. 2 

Soon after the discovery of this exceptional phase, Ur­
ban, Moser, and Kronmiiller 3 studied transitions from 
the quasicrystalline to the amorphous state of Als6Mn 14 

by electron irradiation. During the process a series of 
electron diffraction patterns was taken. These show 
several of the decagonal stars of sharp diffraction spots 
gradually developing into rings of the same radial dis­
tance. The results indicate that the local neighborhoods 
of the atoms are preserved while the angular correlations 
of different neighborhoods are perturbed. 

The features remind us of the melting process of the 
two-dimensional hexatic phase proposed by Nelson and 
Halperin. 4 The melting is initiated by the unbinding of 
disclination-antidisclination pairs. It is quite possible 
that disclinations are the relevant elementary excitations 
destroying the angular correlations in quasicrystals and 
thus driving the transition to the amorphous state. But 
what is a disclination in a quasicrystal? 

To approach an answer to this question, we restrict 
ourselves to two-dimensional pentagonal quasiperiodic 
patterns and study their topologically stable point 
singularities- including disclinations. These patterns­
frequently called Penrose 5 patterns- have been analyzed 
in detail by de Bruijn 6 and- in three-dimensional 
extension- by Mackay, 7 Duneau and Katz, 8 and Kra­
mer and Neri. 9 

Topological defects are closely related to the symme­
try of the perfect system. They are characterized by 
closed loops traversing the so-called order-parameter 
space V. 1° For periodic crystals this space is found in 
the following way: At a point P of the defected crystal a 
copy of the perfect medium is placed such that the two 
structures coincide locally. The order parameter at P is 
constituted by the set of rigid-body operations, which 
move a uniform reference system into the position of the 
copy. This set is the coset gH, where H denotes the 
space group of the perfect crystal and g is an element of 
the unbroken symmetry group G. The group G leaves 
the free energy of the system invariant. The order-

parameter space itself is the coset space G I H. 
Quasicrystals do not possess a space group, because 

they are not periodic, and we cannot specify the order­
parameter space immediately. We have to investigate 
the symmetry properties with care, starting from the 
construction principles of a perfect Penrose pattern. 

One method to obtain a Penrose pattern is the projec­
tion method, 8•9 which we apply here in a slightly 
modified form. 11 It is based on a hypercubic lattice L 1 

in the five-dimensional Euclidean space E 5. The lattice 
is shifted from the ongm of E 5 by a vector 
yE R 5:L 1 = y+ Z 5. In E 5 a two-dimensional subspace 
Pr, the tiling plane, is embedded in such a way that it 
remains invariant under C 5, the group of cyclic permuta­
tions of the canonical basis vectors of E 5. Aside from Pr 
the group C 5 leaves the diagonal A- ( 1, 1, 1, I, 1) and and 
another two-dimensional subspace P .~. of E 5 invariant 
and divides E 5 into three subspaces: E 5 = Pr + P .J. +A. 
By moving the unit cube W 5 along Pr one cuts out a 
strip S = Pr + W 5. The projection of the union of all 
two-faces entirely contained in S yields a tiling of Pr of 
fivefold long-range bond-orientational symmetry. 

With respect to a lattice point, the symmetry group 
HL of L 1 is the semidirect product of the hyperoc­
tahedral group n (5) and the translational group z 5• If 
we consider all operations with respect to the origin of 
£ 5, we have to conjugate HL with a translation {l,y} by 
the shift vector r. H[0 "i-{t,y}{n(5)11Z 5Hl,y}- 1; 11 
denotes the semidirect product. Our perfect system con­
sists of three parts: I 1, S, and Pr. By definition all sym­
metry operations act only on L 1 (active viewpoint); S 
and Pr are fixed in E 5• Now we can state that HfO"i is 
"a symmetry group of the Penrose pattern," in the sense 
that a tiling projected from L 1 is identical to one project­
ed from H[0 "iL 1 =L 1 . 

As in the case of periodic crystals we identify the 
order-parameter space with a coset space V= G I H. G is 
the group which produces set of patterns of the same free 
energy. Such sets are the local ismorphism (LI) 
classes. 12 The tiling projected from a lattice gL 1, g E G, 
is in the same LI class as the tiling projected from L 1, if 
the following conditions are fulfilled. 
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(a) The vectors tin the translations {l,t} E G are ele­
ments of the orthogonal complement of~ in E 5, denoted 
by R 4 because the shift vectors r+t of the lattices 
{l,dL 7 -L 7 +t must have the same projection onto ~ 
as y. 

(b) Certainly, pure rotations in G must be compatible 
with the translations in R 4• So the rotational part Go of 
G is a subgroup of the direct product S0(4) R•® lA. 
Furthermore, the slope of Pr with respect to the lattice 
must not change. Otherwise even the shape of the tiles is 
altered. It follows that G0 equals S0(2)r ® S0(2) .L 

®lA. G itself is the semidirect product Go/\R 4• 

The group H has to be a subgroup of G, and so it can­
not be the full symmetry group Hf.<>ni, but only the sub­
group 

H -G n Hf.""i = ll, y}{C5/\ T*Hl, rl -t. 
T* c R 4 is the group of those discrete translations of Z 5 

which have no component along ~. An element t* has 
the form t* -~f- 1 n;a;; n; E Z; a; =eo -e;. 

As in the case of normal crystals, every point in V 
Ci.e., every coset of H in G) corresponds to a perfect sys­
tem, which arises from a reference system by the action 
of any element of the coset. But in contrast to periodic 
crystals, two perfect quasiperiodic patterns which belong 
to different points in V may not be matched by a rigid 
motion. They are only locally isomorphic and not glo­
bally. This is a consequence of the fact that in general 
the action of an element g E G on L 7 changes the union 
of two-faces in Sand also the tiling itself. 

More general defects can be constructed by choosing 
as order-parameter space V-£(5)/Hf.""i. 

Point singularities in two-dimensional patterns are 
topologically classified by the fundamental group of the 
order-parameter space, .1r1 (V). 10 Because His discrete, 
1r1 (V) is isomorphic to the lift ii of H into the universal 
covering group G of G: 1r1 (V) - ii- { 1, rHZ 1\ Z 4} 

x {I, y} -I. An element r E Z labels a rotation by 
r x 72°. An element (n "n2,n3,n4) E Z 4 marks a transla­
tion by the vector t* -~f- 1 n;a;. 

1. Dislocations.- If we consider only translational 
displacements in a pattern, we have to deal with a re­
duced order-parameter space V- R 4/T*, which already 
has been investigated by Kleman, Gefen, and Pavlo­
vitch.13 

The defects are labeled by 1r1 (V)- Z 4• Each element 
Cn,,n2,n3,n4) E Z 4 corresponds to a Burgers vector 
b=t*. 

2. Disclinations.-A pure disclination corresponds to 
the conjugation class {I, y} {r, Tiubl {I, y} -t of an element 
{l,yHr,OHI,y)-I. Tiuh denotes a sublattice ofT*.' It is 
spanned by the vectors (1-r)a;, i=l,2,3,4 (details are 
described in a forthcoming publication; see also Ref. 10). 

As an example we consider a 72° disclination at the 
origin of E 5. The corresponding element of .~r 1 (V) is 

{I , rHr, ol {I, rl - I; r - I. (!) 

Before discussing this disclination, we recall a disclina­
tion in a square lattice. It is classified by the element 
{r,Ol, where r denotes a rotation about rx90° . As an 
example, take r =I. Again we use the Volterra process, 
which now consists of the following two steps: (!) Cut 
out the third quadrant of the square lattice and identify 
the lip at 0° and the lip at 270°. (2) Glue the two lips 
together by rotation of the lip at 270°, thus distorting 
the medium. 

In a Penrose pattern, it is generally not possible to 
construct a disclination by cutting out or, in the case of 
r < 0, adding a sector of the tiling, because there is no 
global fivefold symmetry (an exception is the highly 
singular case y-0). How to proceed becomes clear if 
we rewrite Eq. (I) in the following way: 

{I, y} {r,O} {I, y} -I- {r,O} {i,r -I y- y}. 

After one encircles the core of the defect, the lattice L 7 

has changed to a lattice Lr+b· We have to choose a spa­
tially varying shift vector y(x). In the si m pi est case r is 
only a variable in e, the polar angle in Pr: y(8) 
= y(O) + (8/2.~r)b (see, for example, Lubensky, Socolar, 
and Steinhardt 14 ). To construct a dislocated tiling, we 
have recourse to the Volterra process. For periodic crys­
tals, it consists of two steps. (I) Remove a slice of 
matter corresponding to the Burgers vector and identify 
the lips. (2) Glue the lips together by distorting the lat­
tice. If b is a lattice vector, they match. 

It is straightforward to generalize this rule to the case 
of Penrose patterns. First we change from the former 
active viewpoint (unshifted stripS, shifted lattice L 7 ) to 
an equivalent passive viewpoint: lattice fixed, strip 
translated by - y. Then we manipulate both the lattice 
L and the strip S- 7. In L, step ( 1) of the Volterra pro-

FIG. I. Step (I) of the Volterra process for a dislocation of 
Burgers vector b- (0, I ,0,0,- I). Vertices outside the LI class 
of the perfect tiling are marked by dots. Step (2) Oips glued 
together) is depicted in Ref. 14. 
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FIG. 2. 72° disclination in a Pen rose pattern. (a) Step (I) of the Volterra process. Vertices outside the LI class are marked. (b) 
The same disclination after closure of the sector by angular distortion. 

cess is performed. Simultaneously, the strip S- 1 is bent 
such that it interpolates between the plane strips S -/0) 
and S- r<oJ -b according to the spatial dependence of y. 
Figure I represents the first step of the generalized Vol­
terra process. Removal of matter in L alone would not 
be sufficient to make the lips match. An additional rear­
rangement of the tiles is necessary, which naturally 
occurs if we bend the strip. 

Before the identification of the two lips (characterized 
by {r,O}), we have to change r into {I,r- 1y-y}y 
=r- 1y between 9-0o and 9-(S-r)X72°. A simple 
choice of y(9) for a 72° disclination is the following: 

Y; (9) = (9/ f 7!')[ Y;+ 1 (0)- y,(O) 1 + Y; (0); 

i=O, .. . ,4. 

As in the case of the dislocation, we carry out step (I) 
of a generalized Volterra process by changing from the 
active to the passive viewpoint: From the unshifted lat­
tice we remove a sector, and we use a curved strip 
S - r<oJ. The resulting pattern [Fig. 2 (a) 1 displays the 
rearrangement of tiles without distortions. In Fig. 2(b) 
the sector has been closed according to step (2). 

3. Disclination-antidisclination pair.- The topologi­
cal classification proves 10 that a disclination­
antidisclination pair, separated by the projection of a lat­
tice vector t on PT, corresponds to a dislocation of 
Burgers vector b = (r - I )t E T* . The dislocation with 
b = (0,0,3,- 3,0) shown in Fig. 3, is equivalent to a 
72°-disclination dipole. The cores are separated by 
t = (0,0,- 3,0,0). 

Topological defects in quasiperiodic patterns are ac­
companied by local neighborhoods of tiles (in the figures 
marked by dots), which do not belong to the LI class of 
the perfect pattern. These exceptional neighborhoods 
are denoted phasonlike defects or mistakes. 15 Phasons 
are new elementary excitations, which in incommensu­
rate structures appear in addition to phonons. 

Mistakes are a consequence of the special order-
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parameter space: A loop in V corresponds to many 
different patterns. In the defected state several perfect 
patterns are combined with the phasonlike defects serv­
ing as "adapter tiles." 

Line singularities in icosahedral quasicrystals.­
When use the method of projection from a six­
dimensional hypercubic lattice onto a three-dimensional 
tiling plane, all patterns belong to the same LI class. 12 

Therefore for the translational part of the unbroken sym­
metry group G all translations in six-dimensional space 
are permitted. The rotational part of G must leave the 
tiling space invariant; hence G = {S0(3 h ® S0(3) .i.} 
I\R 6 . The symmetry group of a pattern is 

H =G n {1, rHo (6) /\Z 6Ht , y} -I 

={I , y}{A (5) /\Z 6}{t, y} -I, 

• 

t-:'. ·--.... ·: ~ . i .. <, ·, 

.. \ ,· • ·ii. 
<. ' { \•· • . -~ 

.. -. 
' . .. 

. ,HlfJJ~~:j0c 
FIG. 3. Equivalence between a dislocation of Burgers vector 

b- (0,0,3,- 3,0) and a 72°-disclination dipole. The two cores 
are marked (A -antidisclination, the three points have to be 
identified; D -disclination). 
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where n (6) denotes the six-dimensional hyperoctahedral 
group and A (5) the icosahedral group. 16 The funda­
mental group of the order-parameter space G I H is 
n1(G/H)-{I,y}{A(5)AZ 6Hi,y}- 1• A(S) denotes the 
lift of the icosahedral group into SU(2). 10 The funda­
mental group classifies dislocation and disclination lines. 
The Volterra process proceeds as in the two-dimensional 
case. 
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