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Deutsche Zusammenfassung

Der Boden unter einem Bauwerk triagt dessen gesamte Last, einschliefslich der auf ihn wir-
kenden Windlasten. Die Summe dieser Lasten wird iiber die Fundamente in den Boden
iibertragen. Entsprechend ist der Boden eins der Hauptglieder in der Stabilitéitskette der
gesamten Konstruktion. Der Boden muss die Aufnahme der Lasten mit moglichst gerin-
gen Deformationen erfolgen, denn andernfalls besteht die Gefahr eines Boschungs- oder
Grundbruchversagens, was mit einer Instabilitit bzw. mit einer Einsturzgefihrdung des
Bauwerks einhergeht. Des Weiteren kann ein Bodenversagen aus starken Niederschlagser-
eignissen oder Erdbeben hervorgehen und zu Hangrutschungen fiihren oder Dédmme zum
Versagen bringen und damit katastrophale Schiden fiir Mensch und Natur anrichten. Be-
vor das destruktive Versagen eintritt, kommt es zum abrupten Verlust der Tragfihigkeit
des Bodens durch die im Boden stattfindenden verschiedenen physikalischen Vorgénge,
wie die Lokalisierung von plastischen Deformationen. Da der Boden hauptséchlich aus
einem Korngeriist besteht, bei dem die Lasten iiber Normal- und Reibungskréfte zwi-
schen den Kornern getragen werden, ist jede Erhohung der Bodenbelastung stets mit
plastischen Deformationen verbunden. Des Weiteren wird das Deformationsverhalten des
Bodens zusitzlich durch die stromenden Porenfluide, Wasser und Luft, stark beeinflusst.
Es besteht also eine starke Kopplung zwischen den Deformations- und Strémungsprozes-
sen. Insofern sind die experimentelle Untersuchung und die theoretische Modellierung des
Bodenverhaltens eine grofte Herausforderung fiir den Ingenieur und Forscher. Nur auf der
Basis einer detaillierten Erforschung des Bodenverhaltens ist es moglich, realistische Ver-
sagensprognosen von Naturhingen oder Ddmmen durch Vorausberechnungen zu geben.
Fiir die Realisierung dieser Ziele werden hoch entwickelte Materialmodelle fiir Boden so-
wie effiziente und robuste numerische Berechnungsmethoden benétigt. Der Einsatz von
Computersimulationen wird in solchen geomechanischen Fragestellungen immer wichtiger
werden, weil anhand der Simulation das Verstdndnis iiber die ablaufenden komplexen,
physikalischen Prozesse deutlich verbessert werden kann.

Motivation

In den letzten Jahren ist die Anzahl von Hangrutschungen, die durch lang anhaltende
starke Niederschlagsereignisse ausgelost werden, weltweit angestiegen. Als Beispiel hier-
zu ist der Erdrutsch im Jahr 2009 in Nachterstedt (Deutschland) zu nennen, bei dem
sich etwa 1 Million Kubikmeter Erde 16ste und in den Concordia-See rutsche. Dieser See
wurde durch kontrolliertes Fluten einer stillgelegten Mine kiinstlich angelegt, wofiir der
Grundwasserspiegel stufenweise erhoht wurde. Dies war aber letztendlich der Grund fiir
das Versagen der Boschung. Im Gegensatz zu diesem schlagartig eintretenden Erdrutsch
sind Hangbewegungen wie die des Heumdser Hangs langsam und unstetig. Dieser Hang,
der in Ebnit in der Nithe von Dornbirn (Osterreich) liegt, kriecht etwa im Durchschnitt
10cm im Jahr, und dies — bis jetzt — ohne Anzeichen auf ein abruptes Abrutschen des
Hangs. Daher ist es von besonderem Interesse, das Gefahrenpotential von solchen kri-

X1
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tischen Hangen zu analysieren, bevor es tatsdchlich zum Versagen kommt. Dazu kénnen
Computeranalysen einen grofen Beitrag leisten, indem sie mégliche Hangbewegungen und
-rutschungen prognostizieren.

Im Angesicht der immer hiufiger auftretenden Hochwasserereignisse sind viele dicht be-
siedelte Gebiete in der Ndhe von Seen und Fliissen permanent gefihrdet. Der Schutz von
solchen Hochwassergebieten durch Ddmme und Deiche erlangt immer mehr eine gewich-
tige Bedeutung. Ein weiterer nennenswerter Aspekt ist hier die globale Klimaerwiarmung
und das damit verbundene Abschmelzen der polaren Eiskappen mit verheerenden Folgen
eines steigenden Meeresspiegels. Des Weiteren werden Démme nicht nur zum Schutz vor
Hochwasser gebaut, sondern auch immer mehr zur Gewinnung von regenerierbaren Ener-
gien eingesetzt. So werden durch das Aufstauen von Fliissen hohe Wasserkrifte generiert,
um dann entsprechend Turbinen anzutreiben. Die riesige, aufgestaute Wassermenge be-
sitzt allerdings eine enorme zerstorerische Kraft, die bei einem Dammbruch, wie z. B.
beim Versagen des Teton Damms (1976) oder des Taum Sauk Damms (2005), fiir Mensch
und Natur eine grofe Gefahr bedeutet. Der Einsturz dieser Ddmme wurde durch eine
innere Erosion des Bodens induziert. Bei der inneren Erosion werden die Kérner von der
Kornstruktur des Bodens durch die Stromungskraft des Porenwassers gelost, so dass die
Porositiat des Bodens zunimmt, und der Boden hierdurch fortlaufend seine Tragfahigkeit
verliert, bis schliefslich der Damm zusammenbricht. Aus diesem Grund ist es wichtig, kri-
tische Schwachstellen in der Dammkonstruktion so friih wie mdglich zu erkennen, um
rechtzeitig notwendige Gegenmafnahmen einzuleiten. Hierzu kénnen Computersimulatio-
nen von Didmmen helfen, kritische Schwachstellen einer Konstruktion zu finden.

Stand der Forschung

Genaue numerische Berechnungen von komplexen geotechnischen Problemstellungen ge-
winnen immer mehr an Bedeutung. Diese Anforderungen beziehen sich insbesondere auf
fundierte Vorhersagen des Spannungs-Dehnungsverhaltens von granularen Materialien un-
ter sich stindig d&ndernden mechanischen und hydraulischen Belastungsbedingungen. In
der Hinsicht besteht der Bedarf an geeigneten mathematischen Materialmodellen, die
jeweils die Fahigkeit besitzen, das Verhalten von teilgeséttigten deformierbaren Boden
realistisch abzubilden. Im Folgenden wird ein Uberblick iiber die Forschungsthemen ge-
geben, die in dieser Arbeit behandelt werden.

Konstitutivmodellierung von teilgesdttigten Bdden

Teilgesittigte Reibungsmaterialien werden im Allgemeinen durch ein Dreiphasenmodell
beschrieben. Die individuellen Phasen sind das materiell inkompressible, elastisch-plast-
ische oder elastisch-viskoplastische Festkorperskelett, das materiell inkompressible Poren-
wasser und die materiell kompressible Porenluft. Basierend auf einem kontinuumsme-
chanischen Ansatz haben Ehlers und Blome [58] oder Ehlers et al. [64] im Rahmen der
Theorie Poroser Medien (TPM) das Dreiphasenmodell in einer thermodynamisch konsi-
stenten Form hergeleitet. Die TPM ist ein erweitertes Modell der Mischungstheorie (MT)
im Kontext des Konzepts der Volumenanteile. Im Gegensatz zur MT beriicksichtigt die
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TPM die mikro-strukturellen Informationen des pordsen Materials in einer homogeni-
sierten Weise. Die Mischungstheorie findet vorwiegend Anwendung in der chemischen
Ingenieurwissenschaft, wo Mischungen mit chemisch reagierenden (mischbaren) Konstitu-
ierenden beschrieben werden. Bei dergleichen Mischungen ist die mikrostrukturelle Infor-
mation im System prinzipiell irrelevant. Die vorwiegende Entwicklung der MT geht auf
die Arbeiten von Truesdell und Toupin [163], Bowen [19] sowie Truesdell [161] zuriick,
wohingegen die grundlegenden Ansitze und Herleitungen der TPM in den Arbeiten von
Bowen [20, 21|, de Boer [13, 14|, de Boer und Ehlers [15, 16] oder Ehlers [46, 47, 52, 53|
sowie in den darin zitierten Arbeiten zu finden sind.

Eine anspruchsvolle Aufgabe im Bereich der Geomechanik ist die Bestimmung des komple-
xen Spannungs- und Dehnungsverhaltens von kohésionslosen granularen Materialien wie
Sand. Um das plastische Verhalten solch eines Materials numerisch zu beschreiben, wur-
den in den letzten sechs Jahrzehnten verschiedene Fliefsfunktionen entwickelt, vgl. z. B.
die Arbeiten [12, 32, 38, 39, 96, 100, 121, 128|. Die Vor- und Nachteile von einigen dieser
Flieffunktionen werden in [49] ausfiihrlich diskutiert. In der vorliegenden Arbeit wird das
EinflichenflieRkriterium von Ehlers [48] verwendet, welches abwértskompatibel zu ande-
ren plastischen Modellen ist, wie z. B. zu dem bekannten Drucker-Prager-Kriterium oder
dem von-Mises-Kriterium fiir nicht porése Materialien. Charakteristisch ist, dass granu-
lare Materialien bereits mit der ersten Belastung ein hochgradig nicht-lineares Material-
verhalten aufzeigen, welches mit elastischen und plastischen Deformationen gekoppelt ist.
Das entsprechende Verfestigungsverhalten wird durch die Entwicklung der Flielkontur be-
schrieben und dabei entweder durch die plastische Arbeit [66] oder durch die plastischen
Dehnungen [67] gesteuert. Durch die Zerlegung der plastischen Verzerrung in einen volu-
metrischen und einen deviatorischen Anteil ist es moglich, das isotrope Verfestigungs- und
Entfestigungsverhalten in einer einfachen und effizienten Art zu modellieren, vgl. Krenk
[96], Desai [40] (Seite 181) und Scholz [137]. Die Verfestigung der Flieffliche wird hier
durch eine konstante Bruch- bzw. Grenzfliekfliche begrenzt, die die Fliefsfliche bei maxi-
maler Deviatorspannung wiedergibt. Diese Annahme wurde experimentell von Ehlers und
Avci [56] untersucht mit dem Ergebnis, dass die Bruchfliche zum einen variabel ist und
zum anderen vom Spannungszustand abhingt. Das bedeutet, dass das granulare Material
bestrebt ist, im Bruchzustand eine moglichst kleine Grenzflieffliche zu generieren. Als
Konsequenz auf das spannungsabhéngige Bruchverhalten haben Ehlers und Avci [56] eine
variable Funktion fiir die sich entwickelnde Grenzfliekfliche eingefiihrt. Diese wird vom
hydrostatischen Spannungszustand reguliert. In dieser Arbeit wird diese besondere Eigen-
schaft von granularem Material hinsichtlich der experimentellen Untersuchungen und der
konstitutiven Modellierung im Detail diskutiert. Die daraus gewonnene Erkenntnis zeigt,
dass dieses Bruchverhalten fiir die genaue Modellierung von Anfangsrandwertproblemen
(ARWP) wesentlich ist.

Um den charakteristischen Eigenschaften teilgesittigter Boden Rechnung zu tragen, po-
stulierten Alonso et al. [1], Bolzon et al. [18] und Laloui und Nuth [102|, dass die Fliefsflache
im Rahmen der elastisch-plastischen Theorie eine Funktion des Spannungszustands sowie
der Porenwassersiittigung ist. Im Gegensatz hierzu wird beim effektiven Spannungskon-
zept (vgl. z. B. bei Skempton [146], Ehlers und Blome [58] oder Ehlers et al. [57, 64]) der
Einflufs der Kapillareigenschaft des Bodens auf das elastisch-plastische Verhalten durch
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den resultierenden Porendruck beriicksichtigt. In der ungeséittigten Zone reduziert der
negative Porenfluiddruck, der dem Kapillardruck entspricht, die effektive Festkorperspan-
nung. Folglich kénnen das plastische Verhalten und die Sittigungseigenschaft des Bodens
hier entkoppelt betrachtet werden. Diese Entkopplung vereinfacht auch die experimen-
telle Ermittlung des mechanischen und hydraulischen Verhaltens des Bodens sowie die
Parameteridentifikation. Basierend auf dem effektiven Spannungskonzept haben Ehlers
et al. [57] den Versteifungseffekt einer Boschung infolge der Kapillarwirkung im Boden
numerisch untersucht.

Experimentelle Untersuchung

Ausgehend von nicht-mischbaren Materialien in Verbindung mit dem Prinzip der Phasen-
trennung kénnen das Deformationsverhalten sowie die hydraulischen Eigenschaften des
teilgesittigten Bodens entkoppelt untersucht werden, indem nur einer dieser beiden Pro-
zesse fiir die jeweilige Untersuchung aktiviert wird. Die mechanisch-hydraulischen Kopp-
lungsmechanismen werden dann anschlieffend durch Konstitutivansitze beriicksichtigt.
Dadurch werden die experimentelle Untersuchung und die theoretische Modellierung des
Bodens deutlich vereinfacht. Demzufolge konnen die Spannungs-Dehnungscharakteristika
des Festkorperskeletts des zu untersuchenden teilgesittigten Bodens anhand von fluid-
gesittigten (Porenluft oder -wasser) Proben unter homogenen Randbedingungen durch
Triaxialversuche bestimmt werden. Dahingegen konnen die hydraulischen Eigenschaften
des Bodens wie die Permeabilitit, die Bewegung der Porenfluide in der ungeséittigten Zone,
etc., durch deformationsfreie Experimente erfasst werden, d. h., ohne externe Belastung
der Bodenprobe, cf. Ehlers et al. [57].

Kohésionslose granulare Reibungsmaterialien wie Sand sind statisch nur dann stabil, wenn
sie unter hydrostatischem Druck stehen. Daher wird das Materialverhalten eines Sands
durch Triaxialversuche bestimmt. Hier wird die Sandprobe in der Triaxialzelle in eine La-
texmembran eingepackt und durch entgastes Zellwasser unter Vorspannung gesetzt. Der
Wasserdruck, der auf die Probe wirkt, wird dabei mit einem Volumen-Druck-Messgerit
reguliert. Die zentrale Herausforderung bei der Durchfithrung von Triaxialversuchen be-
steht darin, die Volumendeformation der Probe exakt zu messen. Hierzu werden in der
einschliagigen Literatur verschiedene Methoden mit unterschiedlichen Anforderungen an
die Volumenmessgenauigkeit vorgeschlagen. Die meisten dieser Methoden wurden von
Alva-Hurtado und Selig [2] oder von Geiser et al. [74] dokumentiert, wobei Alva-Hurtado
und Selig [2] die Messmethoden in drei Kategorien unterteilen. Die erste und zweite Kate-
gorie stehen jeweils fiir eine Methode, bei der das ein- und ausstromende Zellwasser infolge
Probendeformation gemessen bzw. bei der die Porenvolumenénderung durch die Messung
des Zu- und Abflusses des Porenwassers ermittelt wird. Die letztgenannte Methode ist
jedoch nur mit gesdttigten Proben und drainierten Randbedingungen durchfiihrbar. ITm
Gegensatz zu den Methoden der ersten beiden Kategorien wird beim Ansatz der dritten
Kategorie die Volumendehnung durch Wegmesser direkt an der Probe gemessen.

Im Rahmen dieser Arbeit werden Triaxialversuche mit homogenen und drainierten Bedin-
gungen durchgefiihrt. Folglich kommen hier alle drei Kategorien in Frage. Den einfachsten
und unkompliziertesten Ansatz, um Volumeninderungen einer Probe zu messen, liefert
die Methode der ersten Kategorie. Bei ihr spielen die Steifigkeit und das Fassungsver-
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mogen der Zelle hinsichtlich der Fehlerkalibrierung eine zentrale Rolle. Leong et al. [105]
haben von verschiedenen Triaxialzellen, wie z. B. von Triaxiallzellen aus Acrylglas, aus
Stahl oder von Konstruktionen aus doppelwandigen Zellen, den diesbeziiglichen Messfeh-
ler analysiert. Thren Untersuchungen nach liefern die Zelldeformation und die bendtigte
Menge an Zellwasser den Hauptanteil des Messfehlers. In Anbetracht dieser beiden Feh-
lerquellen wird in der vorliegenden Arbeit eine neue steife Triaxialzelle aus Aluminium
vorgestellt, deren Kapazitit genau auf die Volumendehnung der Probe optimiert ist. Da-
mit konnte der absolute Kalibrierungsfehler der Triaxialversuchsanlage deutlich minimiert
werden, vgl. Ehlers et al. [57].

Zur Kalibrierung der Konstitutivgleichungen des Spannungs-Dehnungsverhaltens des zu
untersuchenden Sands sind in dieser Arbeit etliche Triaxialexperimente an zylinderfor-
migen, trockenen und dicht gepackten Sandproben unter homogenen und drainierten
Randbedingungen durchgefiihrt worden. Dieser Satz an Experimenten besteht zum ei-
nem aus hydrostatischen Kompressionsversuchen und zum anderen aus Kompressions-
und Extensionsscherversuchen mit unterschiedlichen Vorspannungen, um die Abhéngig-
keit des Materialverhaltens vom isotropen Spannungszustand zu untersuchen. In diesem
Zusammenhang konnte durch spannungspfadabhéngige Triaxialversuche eine wesentliche
Eigenschaft des Sands in Bezug auf das Fliefs- und Bruchverhalten ermittelt werden.

Parameteridentifikation

Durch stetig verbesserte experimentelle Verfahren nimmt das Wissen iiber das physikali-
sche Verhalten von Bdden stetig zu. Dieses Wissen erlaubt in der Tat, immer anspruchs-
vollere Materialmodelle zu entwickeln. Die Weiterentwicklung der Modelle hat allerdings
zumeist zur Folge, dass die Anzahl der Materialparameter zunimmt. Insofern wird die
Bestimmung der Materialparameter immer schwieriger, so dass der Einsatz von Optimie-
rungsverfahren fiir deren Identifizierung unumgénglich wird. Die Parameteridentifizierung
erfolgt durch die inverse Berechnung der Experimente, wobei die Rechnung stets mit ver-
besserten Parametern wiederholt wird. Der verbesserte Parametersatz wird durch den
Einsatz von gradienten-basierten Optimierungsverfahren ermittelt. Die zugrunde liegen-
de Iteration ist hier dann beendet, wenn der optimale Parametersatz gefunden ist, der
die experimentellen Ergebnisse bestmdglich approximiert. Die Optimierungsaufgabe der
Parameteridentifikation wird durch eine vorgegebene Zielfunktion ausgedriickt. Diese ist
durch die Summe der Quadrate der Approximationsfehler definiert, die es zu minimieren
gilt. Dieses Vorgehen wird auch als die Methode der kleinsten Fehler-Quadrate bezeichnet.

Die Strategien verschiedener Optimierungsmethoden, die zur Losung der Zielfunktion ein-
gesetzt werden, werden in deterministische (reproduzierbare) Verfahren (Luenberger und
Ye [109], Bertsekas [8] und Spellucci [147]) und in stochastische (nicht reproduzierbare)
Verfahren (Béck und Schwefel [4] und Schwefel [142]) differenziert. Des Weiteren werden
die Verfahren der ersten Gruppe in die Kategorien gradienten-basierte und gradienten-freie
Methoden unterteilt. Zu der ersten Kategorie, also zu den gradienten-basierten Metho-
den, gehoren die Newton-Verfahren und die Quasi-Newton-Verfahren. Im Gegensatz zu
den erstgenannten Verfahren approximieren die zweitgenannten — hierzu zéhlen z. B. das
Gauss-Newton-Verfahren, das Levenberg-Marquardt-Verfahren oder das BFGS (Broyden-
Fletcher-Goldfarb-Shannon)-Verfahren — die rechenaufwendige Hesse-Matrix (diese Ma-
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trix stellt die zweite Ableitung der Zielfunktion dar) — auf der Basis der ersten Ableitung
der Zielfunktion. Die Kategorie der gradienten-freien Verfahren umfasst ebenso zwei grofse
Gruppen. Diese sind auf der einen Seite die deterministisch-basierten Simplex Methoden,
vgl. Nelder und Mead [119], und auf der anderen Seite die stochastischen Methoden. Ein
Uberblick iiber die wichtigsten Optimierungsverfahren ist z. B. in Rao [129] zu finden.

Die Losung eines Optimierungsproblems ist aufgrund der grofen Anzahl der Parameter
meist nicht eindeutig. So liegt das hier angestrebte Ziel darin, die optimale Kombination
der Parameter zu finden, die unter den vielen vorhandenen lokalen Minima das globale
Minimum des Optimierungsproblems reprasentiert. Allerdings fithren nicht alle Optimie-
rungsmethoden zum optimalen Parametersatz, anhand dessen die beste Ubereinstimmung
zwischen den experimentellen und numerischen Ergebnissen erreicht wird. Welche Metho-
de nun zur Lésung des betrachteten Problems am besten geeignet ist, hdngt von den
Anforderungen des formulierten Optimierungsproblems ab. Zum Beispiel ist die Qualitit
der Losung von gradienten-basierten Optimierungsverfahren stark von den Anfangswer-
ten der Parameter abhéngig, weil jeder neu verbesserte Parametersatz in Richtung des
steilsten Abstiegs der Zielfunktion ermittelt wird. Folglich endet der Optimierungspro-
zess meist in einem der lokalen Minima. Demgegeniiber decken stochastische Verfahren,
wie die Evolutionsstrategien, ein breites Optimierungsgebiet ab. Die Wahrscheinlichkeit
das globale Minimum zu finden, ist in dem Fall deutlich grofer. Jedoch benétigen diese
Verfahren eine hohe Anzahl an Auswertungen der Zielfunktion, insbesondere bei Opti-
mierungsproblemen mit vielen Parametern (Mahnken [111]).

Numerische Untersuchungen von Hangrutschungen

Numerische Untersuchungen von Naturhingen mit der Finite-Elemente-Methode (FEM)
werden immer wichtiger. Denn zum einen kann man durch numerische Stabilitdtsuntersu-
chungen von bestehenden aber gefihrdeten Hingen mogliche Versagensprognosen geben
und zum anderen kann man durch Simulationen von bereits ereigneten Hangrutschung-
en eine Modellverifizierung vornehmen. Zum Beispiel haben Ferrari et al. [72] in diesem
Zusammenhang die Hangrutschung der Steinernase im Kanton Aargau (Schweiz) nachsi-
muliert. Diese Berechnungen basieren auf einer schwach gekoppelten mechanischen und
hydraulischen Simulationsmethode, bei der fortlaufend die entsprechenden Randbedin-
gungen aktualisiert werden. Die entsprechenden Modellparameter wurden in dieser Arbeit
auf der Basis der Daten eines am Hang durchgefiihrten Langzeitmonitorings identifiziert.
Einen anderen vollgekoppelten Ansatz, verfolgen hingegen Ehlers et al. [57] in ihrer Ar-
beit, worin basierend auf einem vollgekoppelten Modell der Heumdoser Hang in Ebnit
(Osterreich) entlang idealisierte Querschnitte (Lindenmaier [107]) numerisch untersucht
wurde. Wenn jedoch Hangrutschungen anhand von anspruchsvolleren Materialmodellen
untersucht werden sollen, z. B. bei besonderem Interesse des Einflusses der interagierenden
hydraulischen und mechanischen Prozesse, ist es ein géngiges Vorgehen, auf idealisierte
und wohldefinierte Hanggeometrien zuriickzugreifen (Darve und Laouafa [35]|, Tsaparas
et al. [164], Ehlers et al. [57, 64], Klubertanz et al. [94]). Allerdings erfordern zuverléssige
Vorhersagen iiber das Stabilitdtsverhalten von Hingen auf der Basis von FEM Analysen
eine hohe raumliche Auflosung der Lokalisierungszonen von plastischen Deformationen. In
dieser Hinsicht haben Ehlers et al. [64] zur hinreichend genauen Bestimmung der Scher-
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béander in teilgesittigten Boden ortsadaptive Methoden angewendet. Grofe dreidimen-
sionale Baugrubenprobleme wurden von Ammann [3], Wieners et al. [177] und Graf [7§]
auf einem Multiprozessorsystem parallel berechnet (ohne Ortsadaptivitét). Das plastische
Fliekverhalten des Bodens wurde in diesen Arbeiten jedoch ohne die Ver- und Entfesti-
gungseigenschaft des Materials simuliert.

Simulation der inneren Erosion

Das Ablésen der Korner von der Kornstruktur des Bodens durch die Sickergeschwindigkeit
des Porenwassers und der anschliefende Transport dieser Koérner durch das Netzwerk von
Porengéingen werden als die innere Erosion des Bodens bezeichnet. Ziems [183] ist hier
genauer und differenziert zwischen der inneren Erosion und der inneren Suffusion. Diese
unterscheiden sich darin, dass die Suffusion sich nur auf den Transport des Klein- oder
Feinkornanteils des Bodens beschriankt — so bleibt die Haupttragstruktur des Bodens, die
vom Grobkornanteil gebildet wird, hier unberiihrt — und dass die Erosion alle Kérner der
Struktur umfasst. Im Erosionsfall kann die Hauptkornstruktur dementsprechend durch
hohe Sickergeschwindigkeiten lokal aufgebrochen werden, so dass sich langsam fortschrei-
tend ein Erosionskanal entwickeln kann, vgl. Bendahmane et al. [6], Wan und Fell [170]
und Indraratna et al. [90]. In diesem Sinne ist die Suffusion ein Sonderfall der Erosion,
welche nur bei niedrigen Sickergeschwindigkeiten vorzufinden ist. In dieser Arbeit wird nur
die innere Suffusion betrachtet und im Folgenden allgemein als innere Erosion bezeich-
net. Ein innerer Erosionsprozess ist insbesondere bei Didmmen vorzufinden. Dieser kann
die Tragfahigkeit des Bodens sowie dessen Dichtheit gegen die Infiltration des aufgestau-
ten Wassers lokal entscheidend herabsetzen und im schlimmsten Fall ein Dammversagen
auslosen.

Eine kontinuumsmechanische Beschreibung von erodierbaren gesittigten Boden wurde
von Vardoulakis et al. [168] und Wang und Wan [173] vorgestellt. Sie verwenden ein allge-
mein bekanntes Zweiphasenmodell, das aus einer Festkorperphase und einer Porenfluid-
phase besteht und erweitern diese um eine Erosionsphase. Die Erosionsphase reprisentiert
die gelosten und die im Fluid freibeweglichen Korner. Auf diesem Modellansatz basierend
haben Steeb und Diebels [151] im Rahmen der TPM ein Dreiphasenmodell fiir erodier-
bare gesittigte Boden in einer thermodynamisch konsistenten Darstellung hergeleitet.
Der Fluidisierungsprozess der Kornstruktur wird in dem Fall durch den Massenaustausch
bzw. die Massenproduktion zwischen der Festkorper- und der Fluidphase beschrieben.
Die antreibende Kraft ist hier die Sickergeschwindigkeit des Porenfluids, vgl. Vardulakis
et al. [168] und Steeb et al. [153], oder des Porengases, vgl. Steeb [150]. Angesichts dessen,
dass die Suffusion nur auf den Anteil der Feinkorngréfen beschrinkt ist, haben Steeb et
al. [153] die gesamte Kornstruktur in einen stabilen Anteil, der den nicht erodierbaren
Anteil der Struktur darstellt, und in einen instabilen erodierbaren Feinkornanteil unter-
teilt. Jedoch fiihrt dieses Vorgehen zu einer groferen Anzahl an Bilanzgleichungen fiir das
kontinuumsmechanische Problem.

Das mechanische Verhalten eines Bodens wird nur vom Suffusionsprozess beeinflusst, wenn
der Grofkornanteil weniger als 70 % betrigt. Diese Eigenschaft wurde fiir Boden wur-
de von Vallejo [165] durch Triaxialversuche an Proben beobachtet, die mit verschiede-
nen Mengenverhiltnissen von zwei unterschiedlich grofen Glaskugeln homogen aufgebaut
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wurden. Er hat dabei festgestellt, dass die maximale Festigkeit einer Probe bei minimaler
Porositit erreicht wird. Diese ergibt sich dann, wenn zwischen dem Klein- und Grofku-
gelanteil ein optimales Verhiltnis besteht. Das Haupttraggeriist des Bodens wird in dem
Fall hauptsédchlich vom Grofkornanteil gebildet. Die Festigkeit wird aber dennoch anteilig
vom Klein- und Grofkorn bestimmt. So werden die mechanischen Eigenschaften des Bo-
dens ausgehend vom besagten optimalen Verhiltnis durch Variation des Kleinkornanteils
entsprechend reduziert. Ein dhnliches Verhalten wurde auch bei Sand-Ton-Mischungen
beobachtet (Vallejo et al. [166] und Sterpi [154]). Bezieht man diese Ergebnisse nun auf
die innere Suffusion, so ergibt sich als Konsequenz, dass der Verlust des Feinkornanteils im
Boden und die damit verbundene Zunahme der Porositit sowohl die Steifigkeit als auch
die Festigkeit des Bodens reduziert. Das hat natiirlich zur Folge, dass der Reibwiderstand
des Bodens gegen Scherkrifte abnimmt und die Deformation unter der gegenwértigen Last
hingegen zunimmt.

Aufgrund der inneren Erosion werden die Steifigkeit und die Festigkeit des Bodens durch
die Zunahme der Porositéit degradiert. Entsprechend dazu haben Papamichos und Vardou-
lakis [124] oder Wood et al. [179] die Flieffliche in Abhéngigkeit der zunehmenden Po-
rositdt im Sinne der Materialentfestigung reduziert. Steeb et al. [153] haben indessen
durch Einfiihrung einer Schidigungsvariable, wie sie im Kontext der Modellierung des
Schiadigungsverhaltens von sproden Materialien benutzt wird, einen Ansatz zur Abmin-
derung der elastischen Parameter vorgestellt, vgl. Kachanov [91] oder Rempler [130] bei
Schidigung von Mehrphasenmaterialien. In diesem Zusammenhang ist das grundlegende
Ziel dieser Arbeit, die Umsetzung der inneren Erosion in ein gekoppeltes, geschlossenes
Bodenmodell, mit der Intention physikalisch anspruchsvolle geotechnische Problemstel-
lungen numerisch zu untersuchen. Dafiir miissen aber aufgrund der Prozesskomplexitét
der inneren Erosion dennoch einige Vereinfachungen getroffen werden, z. B. beziiglich der
Modellidealisierung und der konstitutiven Beschreibung des Bodens.

Zielsetzung und Vorgehensweise

Um ein reales ARWP numerisch zu untersuchen, muss zunichst dessen Materialverhalten
entsprechend der Belastungsart des realen Problems analysiert werden. Denn die Bela-
stungsbedingung — diese kann statisch, dynamisch oder zyklisch sein — gibt fiir das beim
ARWP zugrundeliegende Material vor, auf welche Weise es im Hinblick auf die Bestim-
mung seiner Materialeigenschaften wie beispielsweise elastisches, elastisch-(visko)plas-
tisches oder viskoelastisches Verhalten zu untersuchen ist. Daher miissen hier entsprechend
geeignete experimentelle Verfahren ausgewéhlt werden. Anhand der Ergebnisse von Ka-
librierungsexperimenten® wird entweder ein konstitutives Materialmodell entwickelt oder
ein geeignetes aus den bereits vorhandenen ausgewihlt. Betreffend der Zielformulierung
der vorliegenden Arbeit kann an dieser Stelle festgehalten werden, dass das Material

*Kalibrierungsexperimente sind Elementversuche, die sich besonders durch ihre einfache Belastungs-
und Randbedingungen kennzeichnen. Durch die einfache Wahl der Systembedingungen soll eine homogene
Spannungs-Deformationsverteilung innerhalb der Probe sowie die Reproduzierbarkeit der Experimente
gewihrleistet werden. Diese Versuche bilden das wahre Materialverhalten iiberwiegend ab und werden
zur Kalibrierung der Konstitutivgleichungen bzw. zur Identifikation der Materialparameter verwendet.
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des realen Problems aus teilgeséittigtem Sand besteht. Solcher Sand kommt nahezu in
allen geomechanischen Problemstellungen vor. Das Ziel ist hier eine moglichst genaue
Simulation des Deformations- und Stromungsprozesses des teilgeséttigten Sands durch-
zufithren, um damit die Basis fiir eine realistische Simulation des ARWP zu schaffen.
Dafiir werden die verwendeten Materialgesetzte auf der Grundlage des Dreiphasenboden-
modells gepriift und verbessert, vgl. [57|, insbesondere die Modellierung des Spannungs-
Dehnungsverhaltens. So wurden fiir dieses Vorhaben diverse Experimente durchgefiihrt,
um die verwendeten Konstitutivmodelle letztendlich zu verifizieren und zu validieren,
vgl. [56, 57].

Die Prozedur zur Untersuchung des Bodenmodells kann grob in die folgenden drei Auf-
gabenfelder unterteilt werden: Experimentelle Untersuchung, Konstitutive Modellierung
und Parameteridentifikation. Diese Aufgabenfelder sind in Abb. 0.1 als Kreislaufsche-
ma abgebildet, worin die gegenseitigen Abhéngigkeiten der Felder zu erkennen sind. Das
kalibrierte Materialmodell wird hier auf der Basis von Vorsimulationen zusétzlicher Expe-
rimente oder durch numerische Untersuchungen von ARWP validiert. Damit werden die
anderen Aufgabenfelder direkt oder indirekt mit iiberpriift. Dementsprechend ist die Mo-
dellvalidierung im Zentrum des Kreislaufschemas platziert. Die Inhalte konnen im Kontext
der Bodenmodellierung grob zusammengefasst wie folgt wiedergegeben werden:

Experimentelle Untersuchung. In Abhéngigkeit von der Art der Belastung des realen
Problems wird die experimentelle Untersuchung des Bodenmaterials entweder unter quasi-
statischen oder dynamischen Belastungsbedingungen durchgefiihrt. Zum Beispiel neigen
granulare Materialien unter dynamischer Belastung zur Bodenverfliissigung. Kennzeich-
nend fiir dieses Verhalten ist ein plotzlicher Verlust der Bodensteifigkeit |26, 28, 86, 132].
In dieser Arbeit werden die Materialeigenschaften des Sands ausschlieflich unter quasi-
statischer Belastung untersucht. Boden weisen im Allgemeinen eine isotrope (Aufwei-

Experimentelle

Untersuchung

Abbildung 0.1: Veranschaulichung der gegenseitigen Abhédngigkeiten der einzelnen Aufgaben-
felder des Materialmodellierungsprozesses.
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tung der Flieffliche) sowie eine kinematische (translatorische Verschiebung des Zentrums
der Fliekfliche) Verfestigungseigenschaft auf. Die kinematische Verfestigung tritt bei zy-
klischen Kompressions-Extensions-Wechselbelastungen auf (Bauschinger-Effekt). Da hier
keine zyklischen Belastungen fiir das reale Problem vorgesehen sind, kann die kinematische
Verfestigung dementsprechend sowohl von der experimentellen Untersuchung als auch von
der Konstitutivmodellierung ausgeschlossen werden. Gleichwohl miissen aber moglichst al-
le Eigenschaften des Materials, die fiir das reale Problem relevant sein konnen, durch die
jeweiligen Experimente erfasst und durch die konstitutiven Modelle abgebildet werden.

Konstitutive Modellierung. Zur numerischen Modellierung des Materialverhaltens
werden mathematische Modelle auf der Grundlage von experimentellen Ergebnissen ent-
wickelt. Hierzu stehen verschiedene mathematische Ansitze zur Verfiigung. Diese sind
z. B. empirische, rheologische oder konstitutive Modellierungsanséitze. Nach Mahnken
[111] erfiillen empirische und rheologische Modelle — im Gegensatz zu Konstitutivmodelle
— nicht notwendigerweise den zweiten Hauptsatz der Thermodynamik. Denn beispiels-
weise sind die empirischen Modelle im Grunde nur bestrebt, die experimentellen Daten,
vorzugsweise, mit moglichst wenigen Parametern zu approximieren, ohne dabei zwingen-
de physikalische Restriktionen zu erfiillen. Indessen beschreiben die rheologischen Modelle
komplexes Materialverhalten durch Verkniipfungen von rheologischen Basiselementen wie
Wegfeder, viskoser Dampfer und Reibelement, mit dem Nachteil, dass mit fortschreitender
Modellkomplexitéit die Anzahl der Materialparameter zunimmt. Im Vergleich zu diesen
beiden Modellanséitzen basieren die thermodynamisch konsistenten Konstitutivmodelle,
die im Rahmen einer Kontinuumstheorie entwickelt werden, auf phinomenologischen Be-
obachtungen von physikalischen Prozessen, die experimentell bestimmbar und messbar
sind. In dieser Arbeit wird der zuletzt genannte Modellierungsansatz weiterverfolgt, also
die phinomenologische Vorgehensweise der konstitutiven Materialbeschreibung.

Parameteridentifikation. Zur effizienten und schnellen Losung von restringierten Opti-
mierungsproblemen, die aus einem Hauptproblem und aus sekundéren Restriktionen mit
Gleichheits- und Ungleichheitsbedingungen bestehen, ist die Sequentielle Quadratische
Programmierung (SQP) ([17, 87, 135, 136, 149] ) eine bevorzugte Wahl. Die SQP-Methode
gehort zu der Gruppe der gradienten-basierten Verfahren und 16st das Optimierungspro-
blem in einer Lagrange-Formulierung. Trotz der Tatsache, dass gradienten-basierte de-
terministische Verfahren nur die lokale Losung des Optimierungsproblems in der Regel
finden, hat sich die SQP-Methode fiir den Einsatz im Rahmen der Parameteridentifika-
tion sehr gut etabliert. Da die Wahl der Startwerte der Parameter bei dieser Methode
einen grofen Einfluss auf die Losung des Optimierungsproblems hat, muss der Anwender
dieser Methode insofern gute Kenntnisse iiber das Materialverhalten und iiber die Kon-
stitutivbeziehungen im verwendeten Materialmodell verfiigen. Des Weiteren wird hier zur
Berechnung des Gradienten der Zielfunktion eine umfangreiche Sensitivititsanalyse der
Optimierungsparameter hinsichtlich der zu kalibrierenden physikalischen Grofen benotigt.

Modellvalidierung. Das kalibrierte Materialmodell wird durch numerische Berechnun-
gen von zuséitzlichen Experimenten validiert. Diese Experimente miissen unabhéngig von
jenen Experimenten sein, die fiir die Kalibrierung des Modells verwendet wurden, und
sollten zudem inhomogene Deformationsverteilungen und Lokalisierungen von plastischen
Scherzonen aufweisen. Hierdurch kann die Qualitdt der Modellierung des plastischen Ma-
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terialverhaltens iiberpriift werden. Fiir den Fall, dass die Validierung des Materialmodells
nicht erfolgreich ist, obwohl die Elementversuche vom Materialmodell richtig wiedergege-
ben wurden, muss die Ursache fiir dieses Problem in den drei Feldern des Materialidentifi-
kationsprozesses (Abb. 0.1) gesucht werden. Ein eventueller Grund fiir den Fehler konnte
sein, dass das Materialverhalten durch die vorhandenen Elementversuche nicht vollstan-
dig abgedeckt wird und bestimmte physikalische Eigenschaften des Materials erst durch
die Validierungsexperimente aktiviert werden. Folglich miissen diese Eigenschaften durch
zusitzliche Elementversuche erfasst und durch Konstitutivmodelle entsprechend abgebil-
det werden. Ansonsten kann der Fehler der Validierungsrechnung durch das angewendete
numerische Verfahren resultieren, z. B. infolge der Netzabhéngigkeit der Losung. Dieser
Fehler kann durch numerische Konvergenzstudien mit feineren Diskretisierungsstufen des
Finite-Elemente Netzes untersucht werden. Letztendlich ist der Modellidentifikationspro-
zess dann beendet, wenn der Validierungsvorgang erfolgreich abgeschlossen ist.

Simulation von ARWP. Ausgehend von einem erfolgreich abgeschlossenen Prozess der
Modellkalibrierung und -validierung kénnen unter Verwendung dieses Materialmodells
numerische Analysen von realistischen ARWP durchgefiihrt werden.

Gliederung der Arbeit

Beginnend mit dem Kapitel 2 wird das grundlegende Konzept der TPM, welches zur Be-
schreibung von porosen Mehrphasenmaterialien entwickelt wurde, eingefiihrt. Darin wer-
den die kinematischen Relationen der einzelnen Konstituierenden und die mechanischen
Bilanzgleichungen des Mehrphasenmaterials angegeben. Die komplexen Zusammenhén-
ge von porosen Mehrphasenmaterialien, die aus einer Festkopermatrix und einem oder
mehreren Porenfluidkomponenten bestehen, werden in einem bekannten kontinuumsme-
chanischen Rahmen eines Einphasenmaterials erldutert.

Das pordse Material, das in dieser Arbeit untersucht wird, ist der GEBAf-Sand. Das
mechanische Verhalten des GEBA-Sands wird durch Triaxialversuche bestimmt. Hierzu
werden in Kapitel 3 die experimentelle Versuchsausriistung sowie die Eliminierung des
Messfehlers der Versuchsapperatur aufgezeigt. Des Weiteren werden in diesem Kapitel die
grundlegenden Triaxialbelastungspfade im Hauptspannungsraum erldutert, ferner wird
hier auch das komplexe Spannungs-Dehnungsverhalten des dichten Sands ausfiihrlich dis-
kutiert. In diesem Kapitel werden ebenfalls die noch neu beobachteten Phinomene zum
Flief- und Bruchverhalten des Sands présentiert.

Basierend auf den experimentellen Ergebnissen aus den Triaxialversuchen und aus dem
Einsatz der TPM werden in Kapitel 4 die konstitutiven Beziehungen fiir den teilge-
sittigten Sand in einer thermodynamisch konsistenten Weise unter Beriicksichtigung der
Interaktionen zwischen den Konstituierenden hergeleitet. Hierzu wird fiir die materiell
inkompressible Festkopermatrix ein nichtlineares Elastizitdtsgesetz und ein plastischer
Verfestigungs- und Entfestigungsansatz fiir das Fliekverhalten formuliert. Fiir die kom-
pressible Porenluft (Porengas) wird eine bekannte Konstitutivbeziehung hergeleitet, wobei

fSand aus der Gebenbacher Sandgrube (Handelsname GEBA, Dorfner, Hirschau, Deutschland)
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das Porenwasser als materiell inkompressibel angenommen wird.

In Kapitel 5 wird die numerische Umsetzung des Dreiphasenmodells — d. h., die Diskre-
tisierung der Hauptbilanzgleichungen in Ort und Zeit — unter Beriicksichtigung der Kon-
stitutivgleichungen im Rahmen der FEM présentiert. Auferdem wird in diesem Kapitel
der Optimierungsprozess zur Lésung des nichtlinearen Optimierungsproblems der Para-
meteridentifikation diskutiert. Dabei liegt der Fokus auf der gradienten-basierten SQP
Methode mit semi-analytischer Berechnung der Sensitivitaten.

Die Kalibrierungs- und Validierungsergebnisse des Dreiphasenmodells fiir den GEBA-
Sand werden in Kapitel 6 prisentiert. Die Kalibrierung des Festkorpermodells wird
durch Triaxialexperimente vorgenommen. Die Modellvalidierung erfolgt indessen durch
numerische Berechnungen von kleinskaligen Versagensexperimenten. Dahingegen werden
die Konstitutivmodelle zur Beschreibung des Sittigungsverhaltens des Sands anhand von
deformationsfreien hydraulischen Experimenten bestimmt. Anschliefend wird das voll-
standig kalibrierte Dreiphasenmodell durch Simulation von Béschungsbruchversuchen im
Technikmafstab numerisch validiert. Dabei erfolgt die Belastung der Boschung sowohl
durch mechanische als auch durch hydraulische Kréfte.

Ausgehend vom kalibrierten Bodenmodell werden in Kapitel 7 die numerischen Unter-
suchungen des kriechenden realen Heumdser Hangs gezeigt. Der Heumoser Hang besitzt
ein duferst komplexes Deformations- und Stromungsverhalten. Diese Komplexitit ba-
siert nicht nur auf der starken Heterogenitit des Hangmaterials, sondern ist auch mit der
schwierigen Topologie und Untergrundstruktur des Hangs verbunden. Der Heumdser Hang
wurde im Rahmen der von der Deutschen Forschungsgemeinschaft (DFG) geforderten For-
schergruppe 581 , Grofshang ‘ eingehend wissenschaftlich untersucht. Die Forschergruppe
hat zur Verwirklichung der hier gezeigten numerischen Simulationen des Heumdéser Hangs
entscheidend dazu beigetragen.

In Kapitel 8 wird der Modellierungsansatz des inneren Erosionsprozesses von Béden im
Rahmen der TPM beschrieben. Hierzu wird das Dreiphasenmodell um die Porositétsent-
wicklung des Bodens durch Ablésen des Feinkornanteils vom Festkorperskelett erweitert.
Mit Hilfe dieses Bodenerosionsmodells werden in diesem Kapitel einige typische Erosions-
probleme untersucht.

In Kapitel 9 werden alle behandelten Themenpunkte zusammengefasst und einige An-
merkungen fiir zukiinftige Forschungsmoglichkeiten beziiglich dieser Themen gegeben. Des
Weiteren sind im Anhang Informationen und Ausarbeitungen zu einigen ausgewéhlten
Sachverhalten angegeben, um damit das Verstindnis der Arbeit zu erleichtern.



Nomenclature

In this monograph, the conventions of the nomenclature most closely correspond to the
common modern tensor calculus, such as given in the textbook of de Boer [11] and of the
lecture notes on vector and tensor calculus of Ehlers [55]. Therein, detailed explanations
of applied notations and rules can be found. With regard to the nomenclature of the
porous-media theories, the well-established conventions discussed in [14] and [47, 52| are
adhered in this monograph.

Conventions

Basic conventions

(+) placeholder for arbitrary physical quantities
s, €, scalars (0-th order tensors)

s,t,. vectors (1-st order tensors)

S, o, 2-nd order tensors

g , %, n-th or higher-order tensors

s,t,... general column vectors (n x 1)

S, T, ... general matrices (n x m)

Index and suffiz conventions

1,7, kL, ... indices as super- or subscripts range from 1 to /N, whereas,
for N = 3, the three dimensional physical space is denoted

(+)a subscripts indicate kinematical quantities of a constituent
within porous-media or mixture theories

()™ superscripts indicate the belonging of non-kinematical quan-
tities to a constituent within mixture theories

(+), material time derivative following the motion of a constituent
a with the solid and fluid constituents o = {5, F'}

(*)oa initial value of a non-kinematical quantity with respect to the

referential configuration of «

(+)se, (+)sp subscripts ‘elastic’ and ‘plastic’ indicate elastic and plastic
solid parts associated with plastic solid deformations

()% extra (effective) quantities

() %m purely mechanical extra (effective) quantities

(P, (HE, (DY deviatoric, hydrostatic and volumetric part of a tensor

(- )h superscript indicates quantities in the discrete space (2 ~ Q")

XXV
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Nomenclature

Symbols

Remark: The set of calibrated material parameters of the elasto-viscoplastic triphasic
partially saturated soil model is presented in Table C.1 and C.2. Hence, these parameters
are not listed in the nomenclature.

Greek letters

Symbol Unit

Description

«

Q; [-]

5

Lo

g, e [J/kg]
E* [J/m3s]
Eup [-]

w, p*

¢ [s/m]
& [J/Km3s]|
7, n® [J/Kkg]
7, 1 [J/Km?®s]
0, 6~ [K]

S) [rad |

A [s]

p [kg/m? |
p*, p*% [kg/m?|
" [kg/m?s]
D, D, [-]

of [-]

?S, ;a’ [']

U;%ak [ MPa |
Y, Y* [J/kg]
v [J/m?]
Q, 60

Q., Q"

constituent identifier, i.e., a = {S, F'}

internal plastic variables defining the isotropic hardening
fluid component identifier, i.e., 8 = {W, A, £}
Neumann or Dirichlet boundaries

mass specific internal energy of ¢ and p®
volume-specific direct energy production

equivalent plastic strain

overall mixture and the constituent «

parameter governs the process speed of erosion
volume-specific direct entropy production of ¢
mass-specific entropy of ¢ and ¢“

volume-specific total entropy production of ¢
absolute Kelvin’s temperature of ¢ and ¢

Lode angle

plastic consistency parameter (plastic multiplier)
density of the overall aggregate ¢

partial and effective density of ¢

volume-specific mass production of ¢

simulation and experimental output quantities
maximal value of the respective experimental data &

shape functions of the FE discretisation

peak shear stress reached at the constant confining triaxial cell

pressure ol = —p

mass-specific Helmholtz free energy of ¢

volume-specific solid Helmholtz free energy

spatial domain and boundary of the aggregate body B
one finite element and approximated spatial domain of €2

one and reference finite element in local coordinates
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Aw [-] active Lagrange parameter set of inequality constrains
& [-] local coordinates of the reference finite element

Xos Xa© [m] motion and inverse motion function of p®

€s [-] geometrical linear solid strain tensor

o’ [ MPa | geometrical linear total solid stress tensor

oy trial [ MPa | elastic trial stress tensor of the elastic predictor step
T [ MPa] Kirchhoff stress tensor of ¢

Latin letters

Symbol Unit Description

p; [MPa|  scalar-valued function governed by the stress invariants I,
I2 and W2 to control the hardening parameters p;

Cu [-] uniformity coefficient

d, D [-] damage variables (D=1-d)

d(-) differential operator

dm® [kg ] local mass element of ¢

dv® [m?] local volume element of ¢

dv [m?] actual volume element of ¢

do [m3] reference volume element of 2,

dVv, [m3] reference volume element of ¢*

D [-] dimension in space D € {1, 2, 3}

e [-] soil void ratio

€maz> Cmin [-] maximal and minimal soil void ratio

e [J/m3s] volume-specific total energy production of o

f(s) [-] object function or Least-Square function

F. G [MPa| plastic yield and potential function

I, [-] simulation error ®, — ®,, at discrete output values u,,

Ip [-] soil density index

Jo [-] Jacobian determinant of p*

K [-] measured experimental data sets

n® [-] volume fraction of ¢

ne [1/s] volume production of ¢

Ney My [-] degradation exponent of elastic and plastic parameters

nZ, nd [-] elastic and plastic part of the solid volume fraction

nt [-] actual limit of the eroded grain volume fraction n

NEims N2 [-] initial and maximal limit of n”
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Ny [-] eroded initial solid volume fraction

Neg, N; [-] number of equality and inequality constrains

Ng [-] number of discrete data points of K

p¢ [-] capillary pressure of the partially saturated soil zone

pf'l [MPa]  overall pore fluid pressure p® := p

pPE [MPa| effective pore pressure of ¢ (primary variables)

P« material point of p®

q* [kg/m?s| area-specific mass efflux of ¢* over the boundary T,

r, re [J/kgs| mass-specific external heat supply of ¢ and p®

R [MPa|  radius in the deviatoric principle stress space

R., R., R, [MPa|  compression, deviatoric and shear radius

RA [J/kg K] specific gas constant of the pore air (R4 = 287.058 J /kg K)
sP [-] saturation of the fluid components ©” related to nf’

t, At [s] time and time increment

t; [MPa|  thermodynamical internal stress (hardening variables)

Up [-] discrete value of physical input quantities

oW [m/s]  area-specific volume efflux of ©" over the boundary T,

vV, Ve [m?] overall volume of B and B*

b, b [m/s?]  mass-specific body force vector action on B and B*

d, [m/s] diffusion velocity vector of ¢® concerning to x

d.r [m/s] diffusion velocity vector of ¢” concerning to Xp

da [m?] oriented actual area element of ¢

dAg [m?] oriented reference area element of ¢°

dfe [N] actual force vector of p®

dx [m] actual line element of ¢

dX, [m] reference line element of p®

Fucots Fuint [N] vector of all external and internal nodal forces of the FEM
Facats Frnint [N] vector of external and internal nodal forces of an element
o [N] global sensitivity load term

g [m/s*|  constant gravitation vector with |g| = 9.81 m/s?

g(s), h(s) [-] vector of inequality and equality constrains

Iw [-] Active set of inequality constrains

h(o;) [-] hardening functions of the plastic hardening parameters p

governed by the internal plastic hardening variables «;
h" [MPa|  volume-specific total angular momentum production of ¢*
¢ [MPa|  volume-specific direct angular momentum production of ¢*

outward oriented unit surface normal vector
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Us

WB, WﬁR

5Wu,ezt ) 5Wu,int

W,

u,ext’

ow

X

-1

(-1
[N/m?]
[J/m?s]
-1

-1
[N/m?]
[ MPa |
[ MPa |

vector of plastic hardening parameter of F'

vector of van Genuchten model parameters
volume-specific direct momentum production of ¢*
heat influx vector of ¢ and p*

column vector of all internal variables of the FE mesh
vector collects the optimisation material parameters
volume-specific total momentum production of *
surface traction vector acting on 0B and 0B“
external load vector acting on the boundary I';

DOF column vector of the primary variables u =
[uL, pWE pAB]T of the FE mesh and its test function

solid displacement vector (primary variable)

filter and seepage velocity vector of the fluid components
905

external and internal virtual work vector of G,
external and internal virtual work vector of an element
actual position vector

aggregate (barycentric) velocity vector

constituent velocity vector

aggregate (barycentric) acceleration vector

constituent acceleration vector

reference position vector of P¢

vector of all global and local variables of the FE mesh

Almansian solid strain tensor
left Cauchy-Green solid deformation tensor

right Cauchy-Green solid deformation tensor

4-th order elasticity tensor (C% := éSe)
strain rate tensor of ¢

Green-Lagrangean solid strain tensor
material deformation gradient tensor of ¢

Hessean matrix
2-nd and 4-th order identity tensor (fundamental tensor)

4-th order deviatoric projection tensor
entire, global and local Jocabian matrix
spatial velocity gradient tensor of ¢
1-st Piola-Kirchhoff stress tensor of ¢*
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Qg [-] proper orthogonal tensor

S [MPa|  2-nd Piola-Kirchhoff stress tensor of ¢®

T [MPa|  Cauchy stress tensor of ¢

W, [1/s] spin or vorticity tensor of ¢

Calligrahic letters

Symbol Unit Description

B, B* aggregate body and partial constituent body

Ding [J/m3s] entire volume-specific internal dissipation

Dsint, [J/m3s] volume-specific internal solid and fluid dissipation

Dping

g, 0g elastic domain and boundary of G

Fp deviatoric part of the multiplicative split of F'

Fu [ MPa | hydrostatic part of the multiplicative split of I’

P [ MPa | Lagrangean multiplier representing the pore air pressure pA¢

Su(t), Tu trial and test space of u

V3 proper Fuclidean vector space

F vector including the global and local system of equations

Gus abstract function containing all global weak forms

? vector of internal and hardening variables ¢ and p

L Lagrange function of the constrained optimisation problem

L, abstract function containing all local equations of visco-
plasticity with isotropic hardening

Sp, Sy sets of plastic parameters controlling the shape of F' in the
deviatoric and hydrostatic principle stress plane

w Active Set of inequality constrains g(s)

Selected acronyms

Symbol Description

BFGS Broyden-Fletcher-Goldfarb-Shanno
CT Computed Tomography

DAE Differential-Algebraic Equation
DOF Degrees of Freedom

FEM Finite Element Method

f-s (n-c)

failure surface of the new concept
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f-s (0-¢) failure surface of the old concept

GDS Grain Size Distribution

IBVP Initial Boundary Value Problem

LBB Ladyshenskaya-Bauska-Brezzi

ODE Ordinary-Differential Equation

PANDAS Porous Media Adaptive Nonlinear Finite Element Solver based on
Differential Algebraic Systems

PDE Partial-Differential Equation

REV Representative Elementary Volume

SQP Sequential Quadratic Programming

™ Theory of Mixtures

TPM Theory of Porous Media

VEGAS Versuchseinrichtung zur Grundwasser- und Altlastensanierung - Re-

y-S

search Facility for Subsurface Remediation

yield surface






Chapter 1:
Introduction and Overview

The soil on which a building is constructed carries the complete load of the building
including wind loads acting on the building. The sum of these loads is transferred to the
soil by the foundations. Accordingly, the soil is the main link in the chain of stability
of the entire construction. The absorption of loads has to take place with minor soil
deformations. Otherwise, there is a risk to slope or foundation failure. This would lead
to an unstable building associated with the danger of collapse of the building. Moreover,
soil failure induced by heavy precipitation events or earthquakes can trigger landslides or
failure of embankment dams and which in turn may wreak havoc on human and nature.
Before the destructive failure is triggered, various physical processes within the soil such
as the initiation of localisation zones with plastic deformations lead to a sudden decrease
of the load carrying capacity of the soil. By virtue of the fact that the soil consists
mainly of a solid grain matrix, in which the load is carried by normal and friction forces
between the grains, irreversible plastic deformations of the grain structure almost occur
with any increase of load conditions. Additionally, the soil deformation behaviour is
strongly influenced by the pore fluids like water and air streaming within the matrix. Thus,
due to strongly coupled deformation and flow processes, the experimental investigation
and the theoretical modelling of the partially saturated soil behaviour is a huge challenge
for engineers and scientists. Only on the basis of a detailed study of the soil behaviour, it is
possible to give realistic predictions of failure situations of landslides or embankments. For
the realisation of this ambitious goal, advanced soil models as well as efficient and robust
numerical computing methods are necessary. The application of computer simulations
is more and more important, because, therewith, a better understanding of the ongoing
complex physical processes of the constructions can be reached.

1.1 Motivation

In recent years, the increasing number of landslides occurrences caused by long-lasting
heavy precipitation events has been observed all over the world. For instance, a landslide
happened in Nachterstedt (Germany) in the year 2009 where approximately 1 million
cubic meters soil slid down to the Concordia Lake, cf. Figure 1.1 (left). This lake was
laid out artificially by a controlled flooding of the disused mine through an increase of
the groundwater level, which finally caused the landslide. In contrast to this landslide,
the motion of the natural Heumds hillslope situated in Ebnit near Dornbirn (Austria) is
slow and discontinuous, cf. Figure 1.1 (right). In some regions, the Heumds hillslope is
creeping approximately 10 cm per year still without any indication of a sudden landslide.
Hence, it is particularly of interest to determine the hazard potential of hillslopes before
actual the failure happens. On that point, computer analysis can give a good contribution
towards the prediction of possible motion situations of the slope.



2 1 Introduction and Overview

Figure 1.1: (left) Landslide (2009) in Nachterstedt, Germany, (http://i418.photobucket.
com/albums/pp263/glenlatterach/) and (right) creeping Heumos hillslope in Ebnit, Austria
(http://www.grosshang.de).

In the face of more frequently occurring flood water events, densely populated regions
close to rivers and lakes are always exposed to danger. The protection of these regions
by embankment dams or dikes will become more and more important. Furthermore,
the global climate warming leads to a melting of the polar ice caps with the additional
devastating effect that the global sea level is rising. Beside the protective function against
high flood, dams are more and more built for the production of renewable energy by using
the water force of the dammed-up river to run turbines. The large amount of dammed
water constitutes a huge destructive force against human life and nature in case of a dam
failure as happened for example at the Teton Dam (1976) or the Taum Sauk reservoir
(2005), cf. Figure 1.2. In both cases, the failure was triggered by the internal soil erosion,
during which the soil grains are detached from the solid grain structure by the seepage
force of the streaming pore water. Thereby, the porosity of the soil increases continuously
with the consequence that the dam gradually loses its bearing capacity until it fails.
Therefore, it is important to detect weak zones of the dam as early as possible in order

Figure 1.2: (left) The Teton Dam (1976) near Rexburg, Idaho, USA (http://web.mst.edu/
rogersda/teton_dam/) and (right) the Taum Sauk reservoir (2005) in Lesterville, Missouri, USA
(Figure is taken from the United States Geological Survey published in Wikipedia).

to take necessary and precautionary measures. Concerning this, computer simulations of
dams can help to detect weak zones of construction.
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1.2 State of the Art

The accurate numerical simulations of complex geotechnical problems are becoming more
and more important. In particular, this addresses the well-founded prediction of the
stress-strain behaviour of frictional granular material subjected to a frequent change of
mechanical and hydraulic loading conditions. Therefore, there is a need for suitable
mathematical models, which are able to realistically predict the deformation behaviour of
partially saturated soils. In the following, an overview of some important research fields
treated in this thesis is given.

Constitutive modelling of partially saturated soils

Partially saturated frictional soils are commonly described by a triphasic model, where the
individual phases are the materially incompressible, elasto-plastic or elasto-viscoplastic
solid skeleton and the two pore fluids, namely, the materially incompressible pore water
and the materially compressible pore air. Based on a continuum-mechanical approach,
Ehlers and Blome [58| or Ehlers et al. [64] derived a triphasic model in a thermodynam-
ically consistent manner in the framework of the Theory of Porous Media (TPM). The
TPM is the Theory of Mixtures (TM) extended by the Concept of Volume Fractions in
order to take into account the micro-structural information of the porous material in a
homogenised fashion. In contrast, the TM is commonly used in chemical-engineering ap-
plications for describing mixtures consisting of miscible chemically reacting constituents,
like gases, where the micro-structural information of the mixture is irrelevant. The main
developments of the TM go back to the works of Truesdell and Toupin [163|, Bowen [19]
or to a later work of Truesdell [161]. The general fundamental approaches and derivations
of the TPM can be found in Bowen |20, 21], de Boer [13, 14|, de Boer and Ehlers [15, 16|
or Ehlers [46, 46, 47, 52, 53| and in the citations therein. To describe partially satu-
rated soils, the TPM builds the main theoretical framework, while the material specific
informations of the soil have to be introduced via constitutive equations.

The challenging task in the field of geomechanics is the determination of the very com-
plex stress-strain behaviour of cohesionless granular materials such as sand. In order
to describe the plastic material behaviour numerically, various yield functions for soils
have been developed during the last six decades, compare, for example, [12, 32, 38, 39,
96, 100, 121, 128|. The assets and drawbacks of some of these yield functions are dis-
cussed in [49]. In these contributions, the single-surface yield criterion introduced by
Ehlers [48] is used, which is downward compatible to other plasticity models, such as the
well-known Drucker-Prager criterion [45] or the von Mises criterion [116] for non-porous
solids. Moreover, granular materials show with the first loading a materially non-linear
coupled elastic-plastic deformation behaviour. The hardening behaviour is described by
the evolution of the yield surface and is governed by either the plastic work [66] or the
plastic strain [67]. However, it is known from Desai [40] (pp. 181) that using the plastic
strain provides a more consistent formulation than using the plastic work. It is possible
to model the isotropic hardening and softening behaviour in a simple and efficient way
by the separation of the plastic strain into a volumetric and a deviatoric part, cf. Krenk
[96], Desai [40] (pp. 181) and Scholz [137]. However, the increase (hardening) of the yield
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surface is limited. This yield limit is commonly defined by a constant failure surface,
which is reached at the deviatoric limit stress. This assumption has been experimentally
examined by Ehlers and Avci [56]. They found out that the failure surface is variable
and depends strongly on the stress state. This means that starting from an initial small
failure surface of the unloaded granular material, the failure surface is adapted to the
current stress state. As a consequence, Ehlers and Avci [56] have introduced a variable
limit of the yield surface controlled by a hydrostatic stress dependent failure surface as it
is essential for accurate modelling of the soil behaviour as well as initial-boundary-value
problems (IBVP). This particular characteristic of granular materials will be discussed
with respect to experimental studies on sand and the constitutive modelling in detail in
this contribution.

In order to take the special properties of partially saturated soil into account, Alonso
et al. [1], Bolzon et al. [18] and Laloui and Nuth [102] postulated that the yield surface
within the elasto-plastic theory is a function of the stress state as well as of the pore-water
saturation. Proceeding from the triphasic model (|58, 64]) based on the effective stress
concept (Skempton [146]), the influence of the capillary property of the unsaturated zone
of the soil on the elasto-plastic solid behaviour is already considered. Thereby, the effec-
tive solid stress is reduced by the resulting negative fluid pressure, which corresponds to
the capillary pressure. As a consequence, the constitutive modelling of the plastic and
saturation behaviour of soil is decoupled and, therewith, experimental investigations of
the material properties are also simplified. Concerning this, Ehlers et al. [57] could show
the slope stiffening through the capillary effect by numerical studies of slope failure prob-
lems.

Ezxperimental Investigation

Based on the property of immiscible materials together with the principle of phase separa-
tion (Ehlers [46]), the mechanical and hydraulic behaviours of partially saturated soils can
be studied in a decoupled fashion such that only one of the two processes is ever active,
and put together later by adding the coupling mechanisms. Therewith, the experimen-
tal investigation and theoretical modelling of soil are significantly simplified. Proceeding
from this approach, the stress-strain characteristics of the solid skeleton of the partially
saturated soil are determined from triaxial tests performed with fluid saturated (with
pore air or water) soils under homogeneous loading conditions. To describe the material
properties of the individual fluid components of the multiphasic material such as ma-
terial compressibility or viscosity, etc., the constitutive approaches derived for a single
material can be used for the fluid constituents, e.g., ideal gas law (for compressible gas),
Newtonian fluids (viscous fluid stress), etc. In the next step, the motion characteristics
(hydraulic properties) of the pore fluids, such as the permeability properties of the soil, the
mobility of the pore fluids within the partially saturated zone, etc., can be measured with
deformation-free experiments without any external mechanical load onto the specimen,

cf. Ehlers et al. [57].

Cohesionless frictional granular materials such as sand are only statically stable if they
are under a hydrostatic pressure state. Therefore, the material behaviour of sand is
determined via triaxial experiments, while the sand specimen positioned in the triaxial



1.2 State of the Art 5

cell is confined with degassed water. The pressure on the specimen is regulated by a
volume-pressure controller. The central challenge of performing triaxial experiments is in
the exact measurement of the deforming specimen. Concerning this, several methods have
been proposed in the related literature with different demands on the volume measurement
accuracy depending on the specific problem under study. Most of these methods were
documented by Alva-Hurtado and Selig [2] or by Geiser et al. [74], whereas Alva-Hurtado
and Selig 2] differentiate the measuring methods in three categories. The first category
is the measurement of the outflow and the inflow of cell water caused by the deforming
specimen. The second one measures the pore volume change through out- and inflow
of the pore water. However, this is only feasible on saturated specimens and drained
boundary conditions. In contrast to this, the third category measures directly the volume
change on the specimen.

Within this thesis, the focus is on triaxial tests with homogeneous and drained conditions.
Thus, all three categories of the measurement techniques are qualified. Nevertheless, the
simplest and most straightforward way to measure the volume change of the specimen
is carried out by the first category. Therein, the stiffness and the volume capacity of
the triaxial cell are particularly important. Leong et al. [105] investigated the measuring
error of different standard triaxial cells built of acrylic glass, steal or double-wall cell
systems. These investigations showed that the cell deformation and the volume capacity
of the cell yield the major parts of the measuring error. To avoid these disadvantages, a
new stiff triaxial aluminium cell with an appropriate cell-water capacity was constructed.
Moreover, the cell is well adapted for the volume deformation of the specimen, such that
the absolute volume-deformation measuring error of the test setup could be minimised,
cf. Ehlers et al. [57].

For the calibration of the constitutive approaches for the solid stress-strain behaviour of
the investigated material, quite a few triaxial experiments on dry sand using compact
cylindrical specimen under homogeneous and drained conditions have been performed.
This set of experiments consists of hydrostatic-compression, shear-compression and shear-
extension tests with different confining pressures to investigate the dependency of the
stress-strain response on the isotropic stress state. An important yielding and failure
behaviour of sand could be detected via stress-path-dependent triaxial experiments. This
is discussed in detail later in this thesis.

Parameter Identification

Due to improved experimental techniques, the knowledge of the physical behaviour of soil
is increasing, whereas more and more sophisticated material laws have been developed
with the drawback that the number of material parameters increases. Consequently, the
determination of these material parameters becomes more and more difficult. Therefore,
the use of optimisation methods is inevitable for their identification. The parameter identi-
fication process is realised by a numerical inverse computation of the experiments, whereas
the computation is iterated with always improved parameters by use of gradient-based
optimisation methods. The iteration process is performed until the optimal parameter
set is found by which the experimental results are best approximated. Proceeding from
this consideration, the optimisation task (object function) is defined by the squared dif-
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ferences of the approximation error, which has to be minimised. This procedure is called
the Least-Squares method.

The solution strategies of the optimisation methods to evaluate the object functions are
differentiated between deterministic (reproducible) methods (Luenberger and Ye [109],
Bertsekas [8] and Spellucci [147]) and stochastic (non-reproducible) methods (Béck and
Schwefel [4] and Schwefel [142]). The first group can be subdivided into two categories
of gradient-based and gradient-free methods. To the first category of gradient-based
methods, the Newton-like methods belongs to. In contrast to the Newton method, the
most popular Quasi-Newton methods, such as the Gauss-Newton method, the Levenberg-
Marquardt method or the very famous BFGS (Broyden-Fletcher-Goldfarb-Shannon) me-
thod, approximate the computationally intensive Hessean matrix, the second derivative
of the Least Squares object function. The category of gradient-free methods is a huge
group and compromises also two categories of deterministic simpler-based methods, cf.
Nelder and Mead [119], and the stochastic methods. An overview of the most important
optimisation methods can be found in Rao [129].

By the reason of the high number of parameters, solving the optimisation problem is not
unique. Therefore, the goal is to find an optimal combination of the parameters, which
represents the global minimum with many local minima. However, not each optimisa-
tion method, which solves the parameter-identification problem, obviously determines
the optimal material parameter set with the best fit to experimental results. To decide
which method is the most suitable one for solving the considered problem depends on
the requirements of the optimisation problem. For example, the quality of the solution of
gradient-based methods strongly depends on the initial parameter set, because each new
set, of parameters is determined by the steepest descent of the object function. Accord-
ingly, the optimisation procedure almost always finishes at a local minimum. In contrast,
evolution strategies screen a large region of minima, where the probability to find the
global minimum is much greater, but it requires a high number of computations of the
object function, especially, optimisation problems with quite a few number of parameters
(Mahnken [111]).

Numerical Investigations of Landslides

Numerical analyses of natural slopes using the Finite-Element Method (FEM) are getting
increasingly important. On the one hand, by numerical stability investigations of existing
but endangered slopes, possible failure prognoses can be given, and, on the other hand,
by simulation of already happened landslides, the capability of the used model can be ver-
ified. For example, Ferrari et al. [72] simulated the Steinernase landslide (Switzerland),
proceeding from a weak coupling of the hydrological and mechanical modelling tools by
repeatedly updating the respective boundary conditions. The included model parame-
ters were identified on the basis of long-term field measuring data. On the other hand,
Ehlers et al. [57] numerically investigated the Heumés hillslope (Austria) along idealised
cross sections on the basis of a fully-coupled mechanical-hydraulic soil model, wherein the
analysed cross sections have been determined by Lindenmaier [107]. However, if more
sophisticated models are used for the description of the slope material and the apparent
influence of the mutual interaction between hydrological and mechanical processes is of



1.2 State of the Art 7

particular interest, it is common practice to revert to idealised but well-defined slope ge-
ometries (Darve and Laouafa [35|, Tsaparas et al. [164], Ehlers et al. [57, 64|, Klubertanz
et al. [94]). Admittedly, reliable predictions of the stability behaviour of slopes on the basis
of FEM analyses demand a high spatial resolution of localisation zones of plastic defor-
mations. In this regard, Ehlers et al. [64] applied space-adaptive methods for an adequate
determination of shear bands in partially saturated soil in two-dimensional simulations
of embankment scenarios. Three-dimensional investigations of excavation problem have
been computed on a multiprocessor system by Wieners et al. [177], Ammann [3] and Graf
[78]. However, these simulations have been carried out without taking into account the
plastic soil hardening and softening behaviour.

Simulation of Internal Erosion

The detachment of grains from the soil matrix and, subsequently, the transport of these
grains through the pore-channel network driven by the pore water seepage flow is denoted
as the internal erosion of soil. Concerning this, Ziems [183] distinguished between internal
erosion and internal suffusion. The difference is that the suffusion process involves only
the detachment and transport of the fine grain content of the soil, while the coarse grains,
building up the main structure of the soil, remain unaffected by the suffusion. In contrast,
during an erosion process, where all grains are affected, the coarse grains can burst from
the main grain structure. Following this, an erosion pipe can be gradually developed
through the soil with adverse reactions to the load-bearing capacity of e.g., dams, cf.
Bendahmane et al. [6], Wan and Fell [170] and Indraratna et al. [90]. In this sense, the
suffusion is denoted as a special case of erosion driven at low seepage forces. However,
in this thesis, only internal suffusion processes are treated, although it is called internal
erosion.

A continuum-mechanical description of erodible saturated soils has been proposed by Var-
doulakis et al. [168] and Wang and Wan [173]. They extended a common biphasic model
consisting of a solid and a fluid phase by an erosion phase representing the amount of flu-
idised grains, which are in motion within the pore fluid. Based on this, Steeb and Diebels
[151] derived an erodible-soil model in the framework of the TPM in a thermodynamically
consistent representation. Within the TPM, the fluidising process of grain structure is
described by the mass exchange or mass production between the solid and the erosion
phases. The driving force of the mass production is the seepage velocity of the pore fluid,
cf. Vardulakis et al. [168] and Steeb et al. [153], or the pore gas, cf. Steeb [150]. Due to the
fact that the suffusion is limited only to the fine grain content of the soil, Steeb et al. [153]
have separated the solid grains in a stable grain part, which characterises the unerodible
main matrix of large grains, and an unstable erodible fine grain part. However, this leads
to a larger set of balance equations governing the continuum-mechanical system.

The mechanical behaviour of the soil is only affected by the suffusion process, when the
soil consists of less than 70 % of large grains. This property of soils has been investigated
by Vallejo [165] via triaxial tests on samples made up with glass beads using different
compositions only of a large and a small bead size. He has detected that the maximal
strength of a sample is obtained at the minimum porosity defined by the optimal ratio
between the small and the large bead content. The large beads build the main stiff matrix
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of the soil. Proceeding from the minimal porosity at which both bead groups sharing the
applied load, the mechanical properties are reduced by a variation of the fine bead content
due to the increase of the porosity. Similar behaviour was also observed in sand-clay soil
mixtures (Vallejo et al. [166] and Sterpi [154]). Relating these results to internal suffusion,
the loss of the fine grains leads to an increase of the porosity with the consequence that
the stiffness and the strength are reduced. Thus, the resistance of the soil against friction
forces is decreasing with the result of increasing deformations under the current load.

Due to the internal erosion, the strength and stiffness of the soil is degraded by the
increase of the soil porosity. Proceeding from this, Papamichos and Vardoulakis [124] or
Wood et al. [179] have reduced the yield surface in dependence of growing porosity like the
behaviour of material softening. Moreover, Steeb et al. [153] have presented an approach
to reduce the elastic parameters by introducing a damage variable as it is a common
practise in modelling of damage-behaviour of brittle materials, cf. Kachanov [91] or of
damage in multiphasic materials, cf. Rempler [130]. In this context, the principle challenge
of this thesis is the integration of the internal erosion process into a closed soil model with
the goal to investigate physically sophisticated geotechnical issues by numerical methods.
Nevertheless, due to the complexity of the internal erosion process, some simplifications
must be made,e. g., concerning the modelling approach and the constitutive description.

1.3 Aims and Scopes

In order to numerically investigate realistic IBVP, the IBVP has to be firstly analysed with
regard to the material behaviour, the loading and the boundary conditions. The loading
conditions of the real problem, that means whether it is a static, a dynamic or a cyclic
loading, etc., constitute how the used material of the IBVP has to be experimentally inves-
tigated for determining the material characteristics such as elastic, elasto-(visco)plastic,
viscoelastic behaviour, etc. Concerning this, appropriate testing methods have to be
chosen. Proceeding from the results of these calibration experiments*, the constitutive
material model is developed, or the most appropriate one from already available material
laws is picked up. Referring this to the objective of this thesis, the material of the real
problem is partially saturated sand, which can be found in almost all geomechanical prob-
lems. Thus, the goal is to simulate the deformation and flow processes of the partially
saturated sand as accurately as possible in order get the basis for a realistic simulation of
complex IBVP. Concerning this, based on the triphasic soil model, the used constitutive
models are tested and improved, cf. [57], in particular, the modelling of the stress-strain
behaviour. For this purpose, several experiments have been carried out in order to verify
and to validate the applied constitutive models, cf. [56, 57].

Following the process of the soil-model investigation, the task field can be roughly sub-

*Calibration experiments are elementary tests, which are particularly characterised by their simple
loading and boundary conditions. By the simplicity of the system conditions, a homogeneous stress-
strain distribution within the specimen as well as the reproducibility of the experiments is ensured.
These experiments mainly represent the pure material behaviour and they are used for the calibration of
the constitutive equations or for the identification of the constitutive material parameters, respectively.
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divided into three task fields of Ezperimental Investigation, Constitutive Modelling and
Parameter Identification. They are illustrated in Figure 1.3 by a circular loop representing
the mutual dependency, whereas the calibrated material model is validated by simulations
of additional experiments or by numerical investigations of IBVP. Therewith, the other
fields are directly or indirectly proved. Hence, the Model Validation is located in the
centre of the circle loop of the material modelling procedure, cf. Figure 1.3. The content
of the individual task fields can be roughly summarised as follows:

Experimental Investigation. Depending on the type of the loading condition of the
real problem, the experimental investigation of the soil material is carried out either
under quasi-static or dynamic loading conditions. However, granular materials under
dynamic loading strongly tend to soil liquefaction accompanied by an abrupt loss of the soil
stiffness. Modelling such a material behaviour demands a different theoretical approach
([26, 28, 86, 132] ) as the soil behaviour of quasi-static loading conditions, which is treated
in this contribution. In general, soils exhibit isotropic (enlargement of the yield surface)
as well as kinematic (translational shift of the centre of the yield surface) hardening. The
kinematic hardening process occurs during cycle loads from compression to extension and
vice versa (Bauschinger effect). However, kinematic hardening can be excluded from the
experimental and theoretical investigations of the test material if cyclic-loading paths are
not provided for the real problem investigated in this thesis. Nevertheless, all detected
material properties by the experiments, which may be relevant for the real problem, have
to be reproduced by the constitutive models.

Constitutive Modelling. For the numerical modelling of the material behaviour,
mathematical models have to be developed based on experimental results. Concerning
this, different mathematical approaches are available as empirical, rheological or consti-
tutive models. Following Mahnken [111], the empirical and rheological models do not
necessarily fulfil the 2-nd law of thermodynamics in contrast to the constitutive models.
Empirical models have only the task to approximate the experimental data preferably by

Experimental

Investigation

Validation

Figure 1.3: [Illustration of the individual task-field dependencies of the material modelling
procedure.
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few parameters and without pursuing stringently any physical restriction. Rheological
models are able to describe complex material behaviour by combination of basic elements
such as spring, dashpot and friction types. The disadvantage, however, is that the number
of material parameters is increasing with advancing model complexity. In contrast to these
approaches, thermodynamically consistent models are formulated within the framework of
a classical continuum-mechanics theory. They base on the phenomenological description
of the thermodynamic process of the material under consideration, which are experimen-
tally determinable and measurable (observable). In this thesis, the phenomenological
approach of constitutive material formulation is pursued.

Parameter Identification. In order to solve constrained optimisation problems con-
sisting of a main problem and secondary constraints of equality and inequality conditions
fast and efficiently, the Sequential-Quadratic-Programming (SQP) (17, 87, 135, 136, 149] )
method is a proper choice. The SQP method belongs to the group of gradient-based meth-
ods and solves the optimisation problem in a Lagrangean formulation. Despite the fact
that gradient-based deterministic methods only find the local solution, the SQP method is
well established in the engineering field of parameter optimisation. Since the choice of the
initial parameter set has a great impact on the results of this method, however, the user
of this method needs a good knowledge of the material behaviour and the constitutive
laws used in the material model. Moreover, the gradient of the object function requires an
extensive sensitivity analysis of the optimised parameters related to the matched physical
quantities.

Model Validation. The calibrated material model is validated by numerical compu-
tations of additional experiments. These experiments must be independent from those
used for the model calibration, and they should exhibit an inhomogeneous deformation
distribution and a localisation of plastic deformation zones. With such experiments, the
modelling quality of the plastic material behaviour can be proven. In case that the vali-
dation of the material model is not successful, although the material model matched the
elementary tests well, the problem has to be searched within the other three task fields of
the material identification process (Figure 1.3). The potential reason for this may be, for
instance, that the material behaviour is not completely covered by the present elemen-
tary tests, and particular physical properties of the material are only activated during
the validation experiments. To capture these properties, further elementary tests have
to be carried out. Accordingly, the constitutive model has to be extended. However,
the inaccuracy of the numerical computation of the validation experiment could also be
caused directly by the numerical method, e. g., the mesh dependency of the numerical so-
lution. The resulting numerical error can be analysed by convergence studies using more
refined discretisation levels of the finite-element mesh (FE mesh). Finally, the parame-
ter identification procedure is finished if the model validation procedure is successfully
completed.

Simulation of IBVP. Proceeding from a successfully calibrated and validated soil model,
numerical analyses of realistic IBVP using this material model can be carried out.
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1.4 Outline of the Thesis

Starting with Chapter 2, the fundamental concept of the Theory of Porous Media devel-
oped for the description of multiphasic porous materials is briefly outlined. Therein, the
kinematic relations of the individual constituents and the mechanical balance equations
of the multiphasic materials are presented. The complex coherences of multiphasic porous
material consisting of a solid matrix and one or more pore-fluid components are explained
in the frame of the well-known continuum mechanics of single-phase materials.

The porous material investigated in this thesis is the GEBAT sand. Its mechanical be-
haviour is determined via triaxial experiments. Concerning this, the required experimen-
tal equipment as well as the elimination of the measuring error of the test system are
presented in Chapter 3. Furthermore, the fundamental triaxial loading paths in the
principle stress space are illustrated and the complex stress-strain behaviour of dense
compacted sand is discussed in detail. Therein, the newly observed yielding and failure
behaviour is highlighted.

Based on the experimental results from the triaxial tests and using the TPM, the con-
stitutive relations for the partially saturated soil are derived in Chapter 4 in a ther-
modynamically consistent manner with regard to the interactions between the individual
constituents. For the materially incompressible solid matrix, a non-linear elastic material
law and a plastic hardening and softening approach for the yielding behaviour is formu-
lated. For the pore air (pore gas), a well-known constitutive relation is derived, while the
pore water is assumed to be incompressible.

The numerical treatment of the triphasic model — discretisation of the governing balance
equations in space and time — under consideration of constitutive relations is presented
in Chapter 5 within the frame of the FEM. Furthermore, the solution procedure of non-
linear optimisation problems, such as the parameter identification, is discussed using the
gradient-based SQP method with a semi-analytically computation of the sensitivities.

In Chapter 6, the results of the calibration and the validation procedure of the triphasic
model for the GEBA sand are presented. The calibration of the solid matrix is carried
out using triaxial experiments, while the model validation is obtained by numerical com-
putation of small-scale failure experiments. Moreover, the constitutive models for the
saturation behaviour of the sand are fitted on the basis of deformation-free hydraulic
experiments. Following this, the complete calibrated triphasic model is numerically val-
idated by simulations of slope failure scenarios at the technical scale, where the loading
conditions of the slope are driven by mechanical as well as by hydraulic forces.

Proceeding from the validated soil model, the numerical analysis of the still creeping
real Heumos hillslope is carried out in Chapter 7. The Heumos hillslope occupies a
highly complex deformation and flow behaviour. This complexity based not only on
the heterogeneities of the slope material, but also because of the intricate topology and
substructure of the slope. For the success of this numerical investigation, the Research
Unit 581 ‘Grosshang’ funded by the Deutsche Forschungsgemeinschaft (DFG) decisively
contributed.

fsand from the Gebenbacher sand pit (trade name GEBA, Dorfner, Hirschau, Germany)
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In Chapter 8, the modelling approach of an internal erosion process of soil is described.
Concerning this matter, the triphasic model is further extended by taken into account
the porosity development via detaching fine grains from the solid skeleton. Using the
soil erosion model, some typical erosion soil problems are numerically investigated in this
chapter.

In the Conclusion, Chapter 9, a brief summary of the investigated topics und some
remarks to future work in these fields are presented. Subsequently, in the Appendix, re-
quired information and elaborations to some selected issues are given in order to facilitate
the understanding of the thesis.



Chapter 2:
Continuum-Mechanical Fundamentals of
the Theory of Porous Media

This chapter is based on previous work by Ehlers [47, 48, 50, 52-54] and citations therein.
It is subdivided in three fundamental parts of the TPM. In the first part, the general
basis of the TPM are discussed followed by the second part the kinematic relations of
multiphasic materials. Additionally, the mechanical and thermodynamical balance laws
are briefly presented in the third part. Therein, the local forms of the balance laws of
a constituent as well as for the overall aggregate of multiphasic materials are presented.
The main focus within the formulations is addressed on the production terms describing
the exchange of physical quantities between the constituents. These production terms
have to vanish in regard to the overall aggregate of a closed system where no material can
enter or leave the system from the outside of the body.

Remark: In this chapter as well as in the following ones, tensorial operations based on
the tensor calculus of de Boer [11] and of the lecture notes on vector and tensor calculus
of Ehlers [55] are used.

2.1 Theoretical Basis

The individual constituents of a heterogeneously constituted porous material are in a
state of ideal disarrangement and, therefore, each individual constituent is statistically
homogeneously distributed over the Representative Elementary Volume (REV) of the
overall aggregate ¢. Based on continuum-mechanical consideration of the multiphasic
material, the micro-scale informations of the overall aggregate ¢ and its constituents ¢*
are homogenised to macro-scale quantities. This is achieved by real or virtual averaging
processes over the REV described by average functions. This homogenisation process
leads to a smeared model ¢ of superimposed and interacting continua ¢*:

p=1Je" (2.1)

Therein, o = 1, ..., k indicate the different constituents.

The geometrical and physical properties of the constituents are described by mathemati-
cal field functions defined over the entire aggregate . Thereby, the effective values of the
constituents are smeared out over the REV applying a volumetric homogenisation pro-
cedure. Introducing the concept of volume fractions, the homogenised micro-structural
information of the REV are virtually separated by the individual volume fractions of .
Based on a saturated soil problem which is idealised by a biphasic model, the volumetric
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homogenisation

concept of volume fractions

N =

solid %

REV of the
micro-structure dvs

Figure 2.1: REV of the qualitative micro-structure of a fluid saturated porous material (left),
multi-component TPM macro model obtained by a volumetric homogenisation process, (right).

homogenisation procedure is schematically illustrated in Figure 2.1. Therein, the micro-
structure of the soil is built by the grain matrix mainly stabilised by normal and friction
forces between the grains. Furthermore, the pore spaces are consisting of filled with one
or more pore fluids ¢ summarising to the overall fluid phase . Thereby, 8 denotes the
fluid components.

Concerning the overall aggregate ¢, the volume of the multiphasic body B is determined
by the sum over all volume parts V' of the constituents:

k
V= /dv = ZV”‘, where V< = /dva =: /nadv. (2.2)
B a=1

B B
Herein, n® represent the volume fractions of the constituents at a local material point P¢
and is introduced as the local ratio of the partial volume element dv® of ¢ with respect
to the bulk volume element dv of ¢, while the sum over all volume fractions leads to the
saturation condition of the overall aggregate ¢:
dv® i
n* =—— and n*=1. 2.3
- > (2:3)
a=1
Following the case of several fluid constituents ¢©°, the volume fraction n’ of the overall
fluid phase is composed of the volume parts of n”:

!
nF:Znﬁzl—ns. (2.4)
B=1

Therein, [ = k— 1 is the number of the pore-fluid components ¢”. The ratio of the volume
fractions n” of the fluid components with regard to the fluid volume fraction n’ yields
the saturation s of the fluid components. Thus,

B l
s = Z_F where Zsﬁ =1 (2.5)
B=1
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represents the fluid saturation condition.

For %, two different density functions can be introduced, viz.

— ((iizla and Pt = dgr; . (2.6)
Therein, the material density p®¥, which represents the realistic or the effective local
averaged density of ¢“, relates the partial mass element dm® to the partial volume element
dv® | while the partial (global or bulk) density p® relates the same mass element to the
bulk volume element dv. By use of the definition of the volume fraction in equation (2.3),
the material and the partial densities are related to each other as follows:

p* = n*pt. (2.7)
Excluding thermal loads, the partial density p® varies through the realistic density p%
and the volume fraction n®. This implies that even if the constituent ¢ is materially
incompressible by p®® = const., the partial density p® is changed by varying n®.

2.2 Kinematical relations

2.2.1 Motion function

Following superimposed and interacting continua of multiphasic materials within the
framework of the TPM, the overall body B consists of a coherent manifold of mate-
rial points P® of all constituent p®. Thereby, the material point P“ of each constituent
©® in the reference configuration at time ¢, is defined by the reference position vector X,,
cf. Figure 2.2. The motion of a constituent ¢ is given by the individual motion function
X.- Hence, the actual position vector x at time ¢ in the Lagrangean description reads

d " d?

/
X = XQ(XCH t)7 Xa = &XQ(XCH t) and Xa = @XQ(XOU t) (28)

Herein, >/<a is the velocity and ééa is the acceleration field. The inverse motion x ! of ©*

exist only if the Jacobians determinants J, are non-zero:

o 4. (2.9)

Xa: —1 t f a:dt
X, (x, 1), it J e X,

Inserting the inverse motion function of equation (2.9) in (2.8);, the Eulerian represen-
tation of the motion of ¢ in regard to the position vector x of the current configuration
yields

/ / 1 / " "
X, = Xo|X, (X, 1), t] = X4(x, 1) and Xo = Xo(X, ). (2.10)
The velocity of the overall aggregate results from the sum of the partial velocities weighted
with their corresponding densities p® and is introduced as the barycentric velocity

k

1
X = ;Zpa)lca. (2.11)
a=1
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Figure 2.2: Motion of a superimposed multiphasic porous material with o as the solid skeleton
and P as the fluid components where the solid and the fluids follows their own individual motion
function.

The material and total time derivatives of an arbitrary, steady and sufficiently steady
differentiable scalar and vectorial field function (I')!, and (T")!, of a constituent ¢* read
de or
(M), = T(x, ) = — +gradl" X,

dt ot (2.12)

(T), = %r(x, t) = 88—1; + (gradT) x,, .

Therein, the first part represents the local time derivative, while the second part is the so-
called convective part, which denotes the change of the field function by the differential
operator grad(+) = 9d(+)/0x in the actual configuration x and the velocities X, of the
constituents .

Proceeding from the reference configuration, the porous solid structure is at any time
known in contrast to the fluid phase. Therefore, the kinematics of the solid phase generally
proceed from a Lagrangean description using the displacement vector ug, while the pore-
fluid flow is better described by the Fulerian description by the seepage velocities wg,
which is defined by the relative relation of fluid and solid velocities:

Ug = X — Xs, W3 = )/(B — >,(S> where (ug)fg = )/(5 . (213)

Moreover, two diffusion velocities are introduced. The first one is defined by the difference
of the velocity of a constituent ¢® with respect to the barycentric velocity %, while the

second one is related to the fluid velocity >,cF:

/

dy =%, — % and dgp = Xs— Xp. (2.14)

Regarding the whole aggregate and the fluid phase, the diffusion velocities have to vanish:

k l
> pda=0 and > pldsr=0. (2.15)
a=1 B=1
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To note that the superscript (-)® denotes the single constituent, while the subscript (+),
characterises the motion of the physical quantity, which depends on the kinematic quantity
of the constituent a.

2.2.2 Deformation and strain measures

The local deformation of a material point is measured by the deformation gradient F,,
which interconnects the undeformed state of a body with the deformed state. Thus, F,
transports the line element dX, of the reference configuration to the line element dx of
the current configuration via

dx = F,dX, and dX, = F,'dx. (2.16)

Considering a natural basis system, F,, is a so-called two-field tensor*:

0X,,
ox

0x

00X

F, = Grad,x = and F_!=gradX, = (2.17)
Therefore, the transport mechanism of the line elements in (2.16); is the so-called covariant
push-forward operation, while the inverse transport is the covariant pull-back operation.
Further geometrical transport mechanisms are the contravariant push-forward transport
of the reference quantities of the oriented area elements dA, and the transport of the

volume elements dV,, to the corresponding current quantities da and dv, respectively:
da = (detF,)FI-1dA, and dv = (detF,)dV,. (2.18)

The determinant of the deformation gradient, det F, is also called the Jacobian J,, which
describes the volume change of a physical body, is constrained to positive values because
the body cannot be compressed to zero volume. Thus,

detF, =J, >0, where detF,(tp) =1 (2.19)

is the undeformed state at the initial time t;,. Proceeding from the differences of the
squares of the current and the reference line elements

|dx|]2 = [|[dX, |2 = dX,-CodX, — dX, -dX, = dX,-(C,—1)dX,,

(2.20)
||dx||* — ||[dX,|]? = dx-dx—dx-B;'dx = dx-(I-B;!)dx,
further strain tensors C, and B, are introduced, where C, = FL F,, is the right Cauchy-
Green deformation tensor, while B, = FQFZ is the left Cauchy-Green deformation tensor.
Based on (2.20), the Green-Lagrangean E, and the Almansian A, strain tensors are
defined by

E,=1(C,—1) and A,=i(I-B;Y). (2.21)

1
2

*The first basis system of the two field tensor F, = a,; ® hg is covariant and located in the actual
configuration a,;, while the second contravariant basis system is located in the reference configuration
hé. The co- and contravariant basis systems of the inverse of F,, are vice versa as well as the positions
are transposed, ;! = h,; @ a’,, cf. Ehlers [47] and Markert [114].
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The basis systems of both strain tensors are contravariant, while the metric is covariant.
Applying a contravariant transport mechanism on either of the strain tensors, the other
one can be computed via

A,=F"'E,F' and E,=F.A,F,. (2.22)

The deformation tensors C, and B, at the undeformed initial state (time ¢y) correspond
to the identity tensor C,(t = tg) = B,(t = t9) = I, whereas the strain tensors E, and
A, are equivalent to the O-tensor.

In case of a small-strain consideration of the solid phase, the geometrical linearisation of
the solid strain tensors E, and A, reads:

lin ES = lin AS —. &9 — [Grads ug + (Grads uS)T] s (223)

1
2
wherein €y is the linear well-known Hookean strain tensor. For the computation of strain
rates, the time derivative of the deformation tensor F, is introduced by

(Fo), = L,F., where L, = (F,).F.' = gradx, (2.24)

is the spatial velocity gradient of the constituent ¢*. L, can be uniquely decomposed
into a symmetric (strain tensor rate) and a skew-symmetric (spin tensor) part, D, and
W, respectively,

D, = 3(L,+Ll)
L, = D, + W,, where ) (2.25)
W, = (La - LZ)

N[

2.2.3 Stress measures

At each material point P of a deformed body B exists a three-dimensional(3-d) spacial
information of the stress-strain state in the proper Euclidean vector space V2T caused
by acting of external mechanical contact forces t* or gravitation forces b®. By use of
the mechanical cutting principle of Fuler, the internal forces in the body B can be il-
lustrated through a virtual cut through the body. The stress vectors t* acting on both
cutting planes of the body B at the material point P® are equal and outward oriented,
t(x,n,t) = —t(x, —n,t), where n is the unit vector. This is referred to as the Cauchy
lemma. Introducing the Cauchy theorem,

t¥(x, t, n) = TYx, t)n, (2.26)

the stress vector t¢ is mapped by a linear projection of the Cauchy stress tensor T in
direction to n. Geometrically expressed, T is also called the true stress tensor while t*
is acting on the oriented current area element da:

df* = t*da = (T°n)da = T (nda) = T%da. (2.27)

tIn general, V" is a n-dimensional vector space, wherein the elementary vector calculus is valid and,
additionally, the scalar product must be positive, |v|? = v-v > 0V v # 0. The Euclidean vector space is
a physical space and it is restricted in n = 3 dimension. Hence, the vector v has three linear independent
basis vectors, cf. de Boer [11] and Ehlers [55].
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Accordingly, the actual force vector df* can be also expressed with other stress tensors
relating to the weighted area element da, = (det F,) 'da or to the reference area element
dA,:

df* = v*da, = P*dA, . (2.28)

Herein, 7 is the Kirchhoff stress tensor (or weighted Cauchy stress tensor) and P is the
first Piola-Kirchhoff stress tensor. They are related to each other as follows:

T = (detF,) ' 7* = (det F,) ' P°F. = (detF,) 'F,S*F. . (2.29)

Therein, P® is a two field-tensor, because the first basis system is in the current config-
uration, while the second one is located in the reference configuration. Furthermore, the
second Piola-Kirchhoff stress tensor S* = F_'P is determined by mapping the first basis
system of P to the reference configuration by applying the covariant pull-back transport
theorem. All presented stress tensors exist in the finite theory of large deformations. Con-
sidering only a geometrically linear approach to the displacement of the solid phase (small
deformations) (2.23), all stress tensors coincide to the geometrical linear stress tensor o”:

o~ 8 ~ P x 7%~ T, (2.30)

2.3 Balance relations

The deformation and thermal processes of a continuum mechanical body B are described
by fundamental balance relations. These balances of mass, momentum, moment of mo-
mentum, energy (1-st law of thermodynamics) and entropy (2-nd law of thermodynamics)
are axiomatically introduced, i.e., they are derived by observation of physical processes.
Regarding a constituent within a mixture, the own physical regularities as well as the effect
resulting from the mutual interactions between the other constituents have to be consid-
ered. These interrelationships demand additional production terms of mass, moment,
energy, etc., according to each individual constituent, whereas the overall aggregate itself
behaves like a single-phase material. This implies that the production quantities have
to annul each other. For the mathematical description of multiphasic materials, Trues-
dell [161] introduced the fundamental statements of mixtures, the so-called ‘metaphysical
principles’:

Truesdell’s metaphysical principles

1. All properties of the mixture must be mathematical consequences
of properties of the constituents.

2. So as to describe the motion of a constituent, we may in imagination (2.31)
isolate it from the rest of the mixture, provided we allow properly
for the actions of the other constituents upon it.

3. The motion of the mixture is governed by the same equations as is
a single body.
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This principle implies that a single constituent of a mixture can be described as if the
other phases were not existing, namely, like a single-phase material. But the mutual
interactions must be considered by production terms for which additional constitutive
equations have to be formulated. Based on these principles, the constitutive modelling
of multiphasic materials can be further simplified through extension by the principle of
phase separation, cf. Ehlers [46], which predicates that each constituent depends only on
its own process variables as a single-phase material, cf. Chapter 4.

2.3.1 General structure of the balance relations

All fundamental balance relations can be generally expressed by the master balance
(Haupt [84]). Using this abstract shape in its global representation, a general struc-
ture of a volume-specific scalar ¥ and vector-valued ¥ mechanical quantity of the overall
aggregate with respect to the whole body B can be introduced via

d .
T Udv = /(q’)-n)da + /adv + /\I’dv,

. B oB B B (2.32)
&/\Ildv = /((I)n)da + /adv + /\ildv.
B oB B B

Therein, ¢ - n and ® n represent the efflux of physical quantities over the surface 0B of
the aggregate B (external vicinity), whereas the supply of the volume-specific physical
quantities, o and o, results from distance activities (external source). The last term is
the volume-specific productions ¥ and ¥, which allow the production of the physical
represents quantities ¥ and W proceeding from opened systems. Applying the material
time derivative on the mechanical quantities and the Gauss theorem on (2.32) (transferring
the surface integral on 9B into the volume integral over B), the local representation of
the master balance reads

U + Udivk = divg + o + U,
_ ) (2.33)
U + Wdivk = divd + o + U,

which is valid at any material point P of B. The individual balances can be derived by
inserting for U (or W) the corresponding quantities for the mass, momentum, moment of
momentum (m. 0. m.), energy and entropy balances:

v, v ¢, ¢ o, o v, w
mass p 0 0 0
momentum pX T pb 0
. (2.34)
m. 0. m. x X (px) xx T x X (pb) 0
energy | pe+3%-(px) T'x—q %x-(pb)+pr 0
entropy pn ?, oy 7 >0
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Herein, px denotes the momentum of the overall aggregate and x x (pX) is the correspond-
ing moment of momentum, where the cross sign denotes the outer vector product. Further
physical quantities of the energy balance in (2.35) are the internal energy ¢, the heat in-
flux vector q and the external heat supply r, whereas the entropy balance consists by the
entropy 7, the efflux of the entropy ¢,, the external entropy supply o, and the entropy
production 7. The balance equations of the overall aggregate in (2.34) is constrained to
closed systems, i.e., from the surrounding of the body B no supply of physical quantities
are admitted. Therefore, the production terms ¥ (or \il) are zero for all balances except
of 7, which is the measure for the irreversibility of the thermodynamical process. The
thermodynamical process is irreversible, if the entropy production 7) is positive, otherwise,
it is zero (reversible process), but never negative. Evaluating the local master balance
(2.33) for the individual balances in (2.34), the specific well-known mechanical balance
laws in the local form of the overall aggregate result in:

Balance equations of the overall aggregate

mass: p+ pdivx = 0
momentum: px = divT +pb

(2.35)
m.o.m.: 0=IxT — T=17
energy: pe =T -L—divq+pr
entropy: pn = dive, + o,

The structure of the master balance of the constituent ¢ is equivalent to (2.32), however,
with the difference that according to Truesdell’s principles, the production terms have to
be taken into account for each balance in order to consider the mutual exchange of physical
quantities. Hence, the master balance of p® reads

d .
d—(; U*dov = /(qbo‘-n)da + /ao‘dv + /\Ilo‘dv,

B o8 B B
; (2.36)
d_z U dy = /(@O‘ n)da + / oc*dv + / U du,

B oB B B

and, analogously to (2.33), the local form of the master balance of an individual con-
stituent o yields

(v) + e divx, = divg® + o> + 0>,
(2.37)

~

(T, + divx, = divd® + o + ¥°.

Referring (2.37) to the overall aggregate with regard to the barycentric kinematics (2.11)
of the mixture, the master balance (2.34) of a single-phase material has to result. For the
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individual physical quantities of ¢, this leads to the following conditions:

scalar-value vector-value

physical quantity | & = Z e v = Z pe
efflux [ ¢-n =) (¢*—V°d,)-n|®n=> (- ¥ ®@d,)n
supply | o = Z o o = Z o”

production v = Z e U = Z v

(2.38)

Evaluating (2.38) for each balance equation analogously to the overall aggregate in (2.34),
the individual physical quantities of a constituent ¢® are constituted as follows:

g, g o, P ot o W ¢
mass P 0 0 pe
momentum p* )lca T p* b s
, . (2.39)
m. 0. m. x X (p*X,) x x T x X (p*b%) h®

>

energy | p® e+ Xo- (p*X,) (TO‘)T;(Q— q° X, (p* DY) +p*r®

entropy p

i ¥ o i

Therein, p® is the mass production, §” is the total momentum production, h" is the total
production of angular momentum, é“ denotes the total energy production and n* is the
total entropy production of the constituent ¢®. These total production terms consist of
two parts. The first part is the direct production term and the other one results from the
productions of the lower balances:

total direct additional
production =  production + terms

5 = p° + %

. . . o (2.40)
h* = m" + X X (p* + p°%X,)

N N N / . 1! /

v = o + P Xo + (e + 3Xa Xa)

ﬁa — Ca + ﬁa na

Herein, the direct moment production p® expresses the volume-specific force interaction
of the constituent ¢® with the other constituents in ¢, the direct moment of momen-
tum production m® denotes the angular momentum coupling between the constituents,
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and the quantities £€* and é’o‘ are the direct energy and entropy productions. Accord-
ing to the Truesdell’s principles for the overall aggregate , the sum of the production
terms of a multiphasic material within a closed system must vanish expecting the entropy
production, which can also be greater than zero:

d =0, ) & =o, dh =0, D e =0, D i*=0. (241)

o

Proceeding from the general formulation and the substitution of total production terms
by the direct ones with (2.40), the balance equations of the individual constituents p®
yield:

Constituent balance equations

mass:  (p®),, + p® divx, = P

momentum: p* X, = divT® + p*b®* + p©
. (2.42)
m.o.m.: 0=1IxT*+m"
energy: p* (e®), = T Ly — divg® + p® r® 4 &%
. 1 1 .
entropy: pa (T]a)/a = div <_9_a qa) + e_a pa 7,0{ + Ca

Therein, for the entropy efflux ¢; and the entropy supply oy, a-priori constitutive as-

sumptions corresponding to a single-phase material have been used, viz.

o, = ——q and T = Ga

) %a ptre, (2.43)

where, for each ¢*, an individual absolute Kelvin’s temperature field ¢ > 0 is allowed.

Furthermore, standard Cauchy materials possess a symmetric Cauchy stress tensor T =
T7 in consequence of I x T = 0, which is the result of the angular momentum balance.
Considering the mixture theory, the individual stress tensors T is not generally sym-
~
metric due to the skew-symmetric moment of momentum coupling tensor M (cf. Ehlers
[541): B -
T = (T*)" - M with  m® = J(IxM ). (2.44)

However, by evaluating the sum of h" in (2.41)3 over the overall aggregate, the sum of M
must vanish. Thus, the stress tensor T of the overall aggregate is symmetric. Proceeding
from mixture materials with immiscible constituents, where the individual constituents are
of a Cauchy-material typ, the stress tensor T of each constituent ¢ is symmetric at the
micro scale. Hence, the symmetric micro-stress property of the constituents is preserved
after the homogenisation procedure over the micro structure, and the individual direct
moment of momentum productions m® is not existing (Hassanizadeh and Grey [82] and
Ehlers [52]):

T = (T — m*=o. (2.45)



2 Continuum-Mechanical Fundamentals of
24 the Theory of Porous Media

In contrast to mixture materials, granular materials, wherein the individual grains can
rotate, belong to the group of micro-polar materials. In order to take the micro-rotations of
the particles into consideration, the rotational degree of freedom has to be regarded, which
implies an unsymmetric stress tensor T # (T*)?. The idea of the extended continuum
theory on rotational kinematics for granular materials goes back to the Cosserat brothers
[31], why these materials are also called Cosserat continua. Treating the Cosserat theory
in the framework of the TPM, the interested reader is referred to the works of, e.g.,
[42, 43, 68, 69, 137|.

Moreover, the balance relations (2.34) of the overall aggregate ¢ and of the individual
constituent ¢ (2.42) are in relation to each other by the sum over all constituents referred
to the barycentric motion of ¢. Carrying out this procedure, some restrictions result:

po=>0" pb=>p"b"

px=Ypx, %= [0 Xe — div (0% do ® da) + 7 X, ]

(2.46)
T = Z (T*—p"da ®da);q = Z [q"— (Ta)Tda_'_pa 5ada+% (do do) da ]

« «

1
pr:Z p* (r* +b%d,) ;pe :Z po‘(sa+§da.da)

The caloric primary variable entropy n® of the internal energy & is not suited for de-
scribing temperature dependent material behaviour in contrast to the conjugated caloric
primary variable temperature 6. This is why “ is measurable or observable during the
natural processes compared to n®. Therefore, the mass-specific constituent Helmholtz free
energy 1 is introduced via the Legendre transformation,

P =" —0%n", (2.47)

which is a function of the primary variables of the caloric quantities # and of the mechanical-
strain quantities. Therewith, the entropy inequality (2.42) is rewritten to

~ A 1 « (1 o o o N
B= Y0 = S (T Ly N+ (0] — BT K
a « 1 (2.48)
/ /

—p* (V™ + 5% - Xg) — e—aqa ~grad0“ +¢é*} > 0.
In this contribution, only isothermal IBVP with a constant and single temperature for all
constituents are investigated (% = 6 = const.). Hence, the entropy inequality (2.48) is
transferred to the so-call Clausius-Planck inequality

k
laye ~Q « / /
Diny = Z[Ta'Da_pa(wa);_p “Xo — P (W +%Xa'xa)] > 0. (2.49)

a=1
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Therein, D;,, represents the internal dissipation of the mechanical energy. For D;,, = 0,
reversible mechanical processes of the considered material are described, while, for D;,; >
0, dissipative processes are identified as irreversible processes of plastic, viscoelastic or
viscoplastic deformations of the solid skeleton or the motion of viscous pore fluids with
mutual momentum interactions between the constituents or mass production processes of
internal erosion (Steeb and Diebels [151]) or of growing biological tissues (Ehlers et al.
[65]). Moreover, proceeding from non-polar material properties, the symmetric Cauchy
stress tensor T* = (T)T refers only to the symmetric part of the deformation velocity
gradient L, = D,, cf. (2.25).






Chapter 3:
Triaxial Experimental Investigations of
Granular Materials

The stress-strain behaviour of materials is commonly investigated by elementary experi-
ments. The results of these experiments uniquely describe the general material behaviour,
and they are used for the constitutive modelling and the model calibration. However, for
that purpose, elementary deformation experiments on partially saturated soils are not
particularly suited due to the strongly coupled deformation and flow processes. Thus,
the detected physical properties cannot be uniquely mapped to the individual phases.
Proceeding from the principle of phase separation (Ehlers [46]), the experimental investi-
gation of a partially saturated sand are split into deformation-governed experiments and
non-deformation-governed hydraulic experiments. Based on drained triaxial tests, the
deformation behaviour of the solid skeleton with vacant pore spaces (dry sand) is exam-
ined in the current chapter, while the experimental study of the hydraulic sand properties
is discussed in Section 6.2. Prior to this study, the triaxial equipments and the error
analysis of the triaxial test setup as well as the basics of experimental mechanics of tri-
axial testing are discussed. Then, the complex stress-strain behaviour of dense sand is
demonstrated on the basis of monotonic and non-monotonic stress-path-depending tri-
axial experiments, whereas, in particular, new experimental observations to the yielding
and failure behaviour of dense sand are illustrated.

3.1 'Triaxial experimental

The stress-strain behaviour of granular materials is very complex and demands spatial
experimental investigations. A complete 3-d information of the mechanical loading be-
haviour is obtained by a true triazial apparatus using cubical specimens, where all three
principle loading directions can be individually controlled. The pioneering work on con-
structions of such triaxial apparatus was made, e.g., by Ko and Scott [95], Pearce [125]
and Lade and Duncan [99] and also the researchers referred therein. Despite of the com-
plexity of this apparatus in operating, they are significant for investigations of particular
behaviour of granular materials.

Concerning to true triaxial results, Lade and Wang [174| have shown that shear bands
occur when all three principle stresses differs from each other. However, evolving of
shear bands are always associated with a strong decrease of the shear stress and an
inhomogeneous stress-strain distribution within the specimen. But, for calibration of the
constitutive models, a homogeneous stress-strain relation is required, i.e., the boundary
conditions have to be chosen in such a way that the homogeneous development of the
stresses and strains is not disturbed. For the true triaxial experiments, this is obtained
by coupling the stresses of two principle stress directions. Therewith, shear bands may

27
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be developed only at a very large strain state, which is clearly initiated after the peak
shear stress has been passed. This is automatically fulfilled by drained triaxial tests
using cylindrical specimens and applying a homogeneous load and homogeneous boundary
conditions (elementary tests), cf. Appendix A. The homogeneous boundary conditions
are obtained by lubrication of the endplates. Therewith, the shear stresses at the top
and the bottom of the specimen are minimised to zero, otherwise, the specimen bulges
because the influence of the boundaries on the stress-strain relation, where the volume
extensions of the specimen are impeded, gradually declines away from the boundaries. As
a consequence, shear bands through the specimens are developed and the specimen owns
no more homogeneous stress-strain relation.

In general, the material characteristics of granular materials are investigated by cylindrical
specimens, where the specimen is permanently under a surrounding cell-water pressure
within the triaxial cell. The cell pressure controls the radial and tangential stresses of
the specimen, oo = 03 = —p, whereas the axial force oy is driven by the load piston.
Despite of the two coupled stress directions, almost the complete characteristics of the
material can be determined, which are required for the model calibration (Miillerschon
[118]). Furthermore, compared to the true triazial apparatus, the handling is much easier.

However, triaxial tests using rotational symmetric specimens have some specific difficulties
to perform ‘error-free’ experiments. The most difficulties are the elimination of the errors
resulting from the cell deformation, the measuring instruments or air bubbles within the
cell and pipes, cf. Leong [105]. These essential issues will be discussed next.

3.1.1 Triaxial cell

As mentioned in the introduction, one difficulty of triaxial testing is the correct volume
measurement, particularly, if small contraction or dilatation specimen deformations must
be accurately resolved. Because of the comparably large cell deformation of conventional
acrylic glass cells, different kinds of double-wall cell systems were developed, which elimi-
nate the cell deformation by controlling the pressure in the inner and the outer cell. The
price to pay is the high complexity of the test system and the circumstantial handling of
the specimen setup. For these reasons, a new triaxial cell had to be developed, which is
illustrated in Figure 3.1 in the assembled state (left) and as the individual parts of the
cell (middle), while the right figure shows the cell cover for extension tests with a larger
diameter of the load piston (@ 10cm). The triaxial cell presented in Figure 3.1 retains its
simplicity but reduces unwanted volume deformations to a minimum.

The cell was constructed of a massive aluminium pipe (A) with 2.5 cm thick cell wall, which
has been specially anodised to avoid air bubble adhesion, such that the cell deformation
could be almost eliminated. In order to remove preferable all air bubbles within the
cell, the inner surface of the cell cover (E) has a convex shape, where the highest two
points are positioned at the two air-bleed vents at top of the cell, respectively. Therewith,
the air bubbles can freely ascend along the plane surface to the air-bleed vents. The
counterpart (D) is only for the purpose to fill the inner space of the cell in order to reduce
the amount of required cell water. Furthermore, two different diameters of the load piston
can be installed depending on whether compression or extension tests are intended to be
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Figure 3.1: (left) Assembled aluminium cell with a load piston of @ 2.5 cm, (middle) dissembled
parts, which are assembled in alphabetical order (A)-(E) where (F) is the socket of the specimen
laying on (A) and (right) the top cell cover with the load piston of @ 10 cm for extension tests.

performed. For the compression loading, a load piston of @ 2.5cm is used, cf. in Figure
3.1 (left). However, this load piston cannot be applied for extension tests. Hence, no axial
force on the load piston during the hydrostatic loading path is building up, which can
be subsequently reduced for the extension loading, because the confined water pressure is
acting on the complete sample as well as on the top of the specimen. Therefore, a load
piston with the same diameter as the specimen (& 10 cm) has been constructed by which
the complete axial load is applied. Thus, according to the intended tests of compression
or extension loading, the top cell cover (E) together with (D) and the load piston with
@ 2.5cm can be exchanged with the top cell cover with the load piston of @ 10 cm (Figure
3.1). A further measure to rid the cell from air bubbles is to flood the cell with CO,
before it is filled with degassed water.

Proceeding from a homogeneous deformation of compact specimens, their volumetric de-
formation can be easily measured via in- and outflow of the degassed confined cell water.
Due to the fact that the main error source in calibration of the volume measuring of the
triaxial experiment is the amount of water in the system, it is very important to reduce
it to a minimum. Following this, the new system, which is made up of the new cell (Fig-
ure 3.1), pipes and the volume-pressure device (Figure 3.2), requires only a total water
volume of ~ 1100 cm?® using a cylindrical specimen with a volume of 785cm? (diameter
and height of 10cm). This is a very low value of confined cell water and, therewith, the
volume measuring error has been reduced significantly. Unfortunately, the aluminium
cell has one obvious disadvantage, namely, it is not possible to look inside the cell to
observe the deforming specimen during the experiment. However, it is not indispensably
necessary for investigation of homogeneously deforming specimens (elementary tests).

3.1.2 Volume-change monitoring

The variation of the amount of cell water representing the volume change of the specimen
is very few, in particular, during hydrostatic compression tests. Therefore, a precise
measuring device including a setup with few calibration errors is essential for a good
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quality of the experimental results.

For controlling the in-/outflow of the con-
fined cell water, the pressure-volume con-
troller (p-v controller), which is shown in
Figure 3.2, from the company Wille GmbH
(Willsdruff, Germany) is applied. The max-
imal pressure limit of the screw-driven p-v
controller is at 950 kPa and the water tank
capacity is 200cm?®. However, calibration
tests of the p-v controller pointed out that
some modifications on the controller have to
be made in order to reduce the measuring
error. The water tank capacity of the p-v
controller is too huge for standard triaxial
testing of sand and, additionally, the con-
struction of the tank is not stiff enough. The
extension of the tank amounts 2.8 cm® at the
maximal pressure state. By installing a new
stiffer tank with only 50 cm? capacity, the
systematic error could be reduced to 0.3 cm?.

Figure 3.2: P-v controller: (left)
plunger cylinder on which a water tank
capacity of 50cm? is attached and
(right) the p-v controller device.

The p-v controller computes the volume change by the rotational movement of the gear.
Due to the gear backlash of the screw-driven p-v controller, it is important to verify the
resulting volume measuring error of the p-v controller. The play of the gear becomes
evident through the following tests, where the results are illustrated in Figure 3.3. Con-
cerning this, the triaxial cell is filled with degassed water and is confined until 100 kPa.

g p = 100 kPa
a { (water tank)
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cell &
p-v controller %
(]
5
X 3
5]
p = 100 kPa, gear =
=
\clb 0.0l
£
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Figure 3.3: (left) The controller test by which the load piston is driven down and up at
constant cell pressure of 100 kPa and (right) the results of in-/outflow of cell water during the
piston motion — comparison of measured data received by the p-v controller (the red curve with
square dots) and the real motion of the plunger cylinder recorded by the dial gauge (the black
curve with circle dots).
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Thereafter, the load piston (& 2.5 cm) is slowly moved into the cell and back to the start-
ing point, while the cell pressure is kept constant through in- and outflow of confined cell
water. Figure 3.3 (right) shows the volume change of the cell water measured with the p-v
controller (red curve with square points), whereas the black curve with points represents
the volume change converted from the real motion of the screw, which is measured with
a digital distance indicator over the load-piston displacement u. The results show a clear
measuring error of more than 3 cm?, which additionally varies with the cell pressure. Pro-
ceeding from this test, only the measured data taken from the digital distance indicator
is used for further applications.

After the individual error has been minimised best as possible, the remaining systematic
error is identified. Thereby, hydrostatic tests with a steal dummy owning the same di-
mensions as the specimen have been carried out. In order to ensure that almost the same
systematic error is reproduced, the identical testing procedure is exactly performed for
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Figure 3.4: Systematic volume calibration error of the complete triaxial system.

the sand tests. The results are shown in Figure 3.4. For instance, a systematic error at
the maximal pressure amounts 1.6 cm?, which corresponds only about 0.2 % volume of the
tested specimen.

Besides this, further systematic error sources as bedding error, membrane penetration or
friction force of the load piston has been also considered, whereas, for the tested material,
these error sources are not so significant compared with the presented ones. Nevertheless,
they have to be taken into account.

3.1.3 Homogeneous standard triaxial tests

Proceeding from a homogeneous stress-strain distribution, only the principle stress di-
rections of the geometrically linear second-order stress tensor o (2.30) are activated, cf.
Appendix A.2. Therewith, o can be also expressed as a vector o = 0; e;, wherein o; are
the principle stresses and e; the corresponding orthonormal eigenvectors. For graphical
illustrations, the principle stresses are spanning a vector space, which is better described
by the cylindrical coordinate system with the Reuss variables I,, R and ©. Thereby, the
first principle stress invariant I, of the stress tensor o represents the hydrostatic axis and
R and © describe the deviatoric stress space, where R is the radius and © denotes the
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Lode angle:

1 (V27 TP
Io =0 - I, R := \/ 2]101.) and C'_') = g arcsin (TW) . (31)

Therein, R and © depend on the (negative) second and the third principal deviatoric
invariants 17 and M2 of o

I?=1oP.0” and MW?=1loPo? 0P, (3.2)

1
2

where o” = (00 — 1/3 0 - I)1 is the deviatoric stress tensor. Based on these important

relations, the loading path progression within the principle stress space of two standard
triaxial compression tests will be discussed in the following. Above all, the Reuss variables
are particularly used for the constitutive modelling of the plastic behaviour, see Section
4.2.2.

By way of illustration, Figures 3.5 and 3.6 show the loading stress paths of two compression
tests in the principle stress space. Firstly, in both cases, the test is isotropically driven
by the hydrostatic stress ol along the hydrostatic axis I, until point H. Afterwards, in
Figure 3.5, the axial load o is increased along the path HP, while the other both principle
stress directions oy and o3 are kept constant, whereas in Figure 3.6, [, stays constant by
reducing o, and o3 from H to P’ (or its projection H'P” in the o9-03 plane) during the

A0
compression

o1 < 03
09 = 03

—0o9

OH: 01 =09 =03 =0 %
H

—03 HP : 01 1; 09 = 03 = 0" =const.

Figure 3.5: Illustration of the stress path of a standard compression test with the confining

pressure ol = —p = const. in the principle stress space.
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Figure 3.6: Illustration of the stress path of a standard compression test with I, = const, in
the principle stress space.

increase of o from ﬁ, where the amount of o5 and o3 corresponds to 7. This load path
is defined as a pure deviatoric stress loading o”.

Furthermore, in these Figures, the dashed circle represents the deviatoric or the octahedral
plane, which is perpendicular to the hydrostatic axis I,. Therein, the load direction within
this deviatoric plane is defined by the radius R and the Lode angle ©. In contrast to true
triaxial apparatus, where arbitrary Lode angles can be derived, cf. [174, 181], cylindrical
triaxial tests are restricted only to compression shear tests R. = R(© = —30°) and
extension shear tests R, = R(© = 150°). However, the simple shear loading is defined by
Rs = R(© = 0). The compression and extension points are regularly repeated within the
deviatoric plane and occur at each 120°, while the shear load points follow the sequences
of every 60°.

Figure 3.7 represents the stress paths in the principle hydrostatic and in the deviatoric
stress plane, whereas triaxial stress paths are commonly discussed at the hydrostatic plane.
Therein, three types of possible monotonic loading paths A, B and C are illustrated. They
are driven as follows:

e A:c=01]; 09 =03 =const. eB:=0|1; 00 =03 1T|; I, =const.
o C:=09 =03 ]T; 01 =const.

The monotonic stress paths in the parentheses in Figure 3.7 have been not carried out in
the framework of this contribution.
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Figure 3.7: Standard cylindrical triaxial compression and extension loading paths presented in
the hydrostatic (left) and deviatoric (right) stress planes.

3.2 Experimental observations of yielding and failure
behaviour of sand

Investigating dry sand, the pore content is air, which has, especially under drained con-
ditions, no physical influence on the solid behaviour and can thus be neglected. Further-
more, as the sand grains are incompressible and widely uncrushable, the dilatation and
compression behaviour of sand only results from a change of the pore volume or from
the compactness of the packing, respectively. However, concerning this, Yamamuro and
Lade [182] experimentally investigated the influence of crushing grains on the material
behaviour. Therefore, they carried out triaxial compression tests with different confining
pressures and observed the onset of crushing of particles at a confining pressure of ap-
proximately 2.1 MPa, while the influence of crushing on the stress-strain behaviour ended
around a confining pressure of 4 MPa. During grain crushing, the stress-strain curves are
flattening as well as the stiffness and strength of the granular material decreases. However,
confining pressures higher than 2.1 MPa can only be found at very special geotechnical
problems, while, in general, pressures occurring in practice are clearly located below the
significant limit of particle crushing. In further consideration of grain properties in this
contribution, they are assumed to be incompressible and uncrushable within the applied
range of moderate pressures.

Concerning the description of an elasto-plastically deforming solid skeleton consisting of
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granular matter, the most difficult part is the description of the evolution of the plastic
yield surface with its associated hardening and softening behaviour. In case of frictional
granular material, the yielding behaviour was experimentally investigated in the late six-
ties of the last century, for example, by Poorooshasb et al. [127, 128] and by Tatsuoka and
Ishihara [155]. These investigators carried out triaxial stress-path-depending compression
tests including unloading and reloading cycles, where the shear stress was properly kept
below the peak value in order to detect the restarting points of yielding at various con-
fining pressures. These points were identified as loci on a yield surface. Lade and Kim
[100] assumed that yield points with the same plastic work uniquely belong to the same
contour of a yield surface evolving independently from the stress path or the stress level
until the failure surface is reached. As a consequence, the standard failure behaviour was
described by only one fixed failure surface. In contrast to this, it was detected from the
stress-path-dependent experiments on dry sand presented in the following that there must
exist an individual failure surface at each stress level at the failure state, cf. Ehlers and
Avci [56]. This led to the conclusion that the failure surface is not fixed, but depends on
the stress level, instead. Similar experiments were carried out by Lade and Prabucki [101],
where they found the same results, namely, that preshearing until the peak failure state
increases the failure strength of lower stress levels. To explain this material behaviour,
consider the differences of granular matter in comparison to standard solid materials like,
for instance, metallic polycrystals. In metal plasticity, the hardening process irreversibly
changes the internal structure of the material, thus extending the elastic domain in the
principal stress space, when isotropic hardening was assumed. Increasing the external
load continues the hardening process until the material fails and the corresponding failure
surface is reached. Close to the failure surface, unloading and reloading cycles exhibit an
elastic material up to the failure state. In contrast to metals, where the yield and failure
functions do not depend on the hydrostatic stress (plastic incompressibility), the solid
behaviour of granular material crucially depends on it through the confining pressure. As
a result, the loading paths of triaxial experiments start by applying a hydrostatic stress
up to a certain value of the confining pressure continued by a shear loading both accom-
panied by elasto-plastic deformations. The application of the hydrostatic stress leads to
a certain densification of the grain packing. During shear loading, this packing is firstly
furthermore densified and then loosened at higher shear-stress levels. The densification
and dilatation process coming along with a structural interlock of the particles finally
defines the corresponding failure surface, namely, when the peak shear stress is reached.
After shear unloading and reducing the confining pressure to a smaller value, one ob-
serves the intergranular structure unchanged. If the shear stress is increased again, one
firstly obtains a shear-stress value higher than that obtained during monotonic loading
at the smaller confining pressure. However, any ongoing displacement-controlled loading
immediately reduces the shear-stress level to that smaller value belonging to a monotonic
loading path at the smaller confining pressure. At the microstructure of the sand grains,
this behaviour is due to the fact that the particles change their structure towards a looser
packing, while the loading process is continued and the particles partly lose their mutual
interlock. This state approximately belongs to a new but smaller failure surface with a
corresponding peak shear stress.
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3.2.1 Test-sand properties

The granular material under study is a GEBA fine sand with an effective density (grain
density) of p°% = 2.65g/cm3. All experiments were performed under dry conditions with
an initial partial density (assembly density) of p5s = nsg p°% = 1.55 g/cm? corresponding
to a volume fraction of njs = 0.585 and a *void ratio of e = 0.709. The assembly density of
the sand can be adjusted between pjg = 1.37g/cm?® in the loosest case with a maximum
void ratio of e = 0.934 to pjs = 1.66g/cm® in the densest case with a void ratio of
e = 0.596. Moreover, the "Density Index Ip = 0.67 of the tested specimens corresponds
to dense sand with grain sizes ranging between 0.06 mm and 0.3 mm with a sieve retention
of djp = 0.09 mm and dgy = 0.11 mm, cf. the grain size distribution curve in Figure 3.8. A
uniformity coefficient of Cu = 1.22 classifies the GEBA sand as well-graded with roundly
shaped particles.
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Figure 3.8: Grain size distribution (GSD) of the GEBA fine sand (Germer and Braun [77]).

The triaxial experiments have been carried out with a uniform cylindrical shape of the
specimen of 10 cm both in height and diameter. Furthermore, the endplates were lubri-
cated by latex rubber sheets with thin layers of silicone grease to ensure a homogeneous
strain field of the specimen during the deformation. The specimen is drained through a
porous stone (& 1cm), which is worked into the middle of the bottom plate. Therewith,
no pore pressure can be developed during the deformation procedure, cf. Appendix A.

3.2.2 Characteristics of homogeneous test conditions

In this section, the general behaviour of compact sand determined via monotonic triaxial
tests as well as the aforementioned new observations made on non-monotonic stress-path-
dependent tests will be presented. Then, on the basis of these experiments, the modelling
approach for the yielding and failure behaviour of compact sand with the old failure
concept using a fixed failure surface and the new failure concept with a variable failure
surface will be discussed, whereas the constitutive modelling is presented in Section 4.2.2.

e = (1-ngs)/ngs
TID - (emax - e)/(emax - emin)
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Drained monotonic loading condition

Figure 3.9 shows a drained triaxial compression test on a dry dense sand specimen with
a height-to-diameter rate of h/d= 1 under a constant confining pressure (cell pressure)
of 03 = 0.2MPa. During the loading process, the volume deformation changed from a
small contraction to dominant dilatation behaviour. Over the whole monotonic loading
path, the material response showed a non-linear progression of the stress-strain behaviour,
which was almost governed by plastic hardening. However, the continuous increase of
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Figure 3.9: Triaxial compression test with a constant confining pressure of o3 = 0.2 MPa.

loosening the grain structure led to a smooth stress softening. This is a consequence
of the volumetric dilatation and not of a localisation of plastic strains towards shear
bands. Through computer tomography (CT), Desrues et al. [41] illustrated that shear
band structures inside the sample are only initiated when imperfections either disturb
the axial symmetry or the homogeneity of the specimen, for example, by an eccentric
application of the external load or by poorly prepared samples. Small imperfections, which
are generally unpreventable, only have a marginal impact on the stress-strain behaviour
and may only become dominant at very large strains of e; > 25%. Nevertheless, internal
shear bands are generally invisible at the surface of the sample.

In contrast to Desrues’ choice of samples with a height-to-diameter rate of h/d =1, Lade
[98] used slender specimens of h/d = 2.66 for his triaxial experiments. On the basis of his
results, he postulated that the initiation of shear bands appears with diminishing the di-
latation rate, while, in contrast, Desrues et al. [41] could not detect any pronounced shear-
banding effect by CT scans of compact specimens with h/d =1. Shear banding preferably
occurs when slender specimens are tested, which strongly tend to load imperfections with
increasing deformations, therewith encouraging the development of localisation zones of
plastic strains. In general, a shear band is characterised by a local increase of voids.
Desrues et al. [41] compared the change of voids at a local point within an evolving shear
band with the average value of the considered cross section, which represents the global
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behaviour. In case of slender specimens or specimens with non-lubricated boundary con-
ditions, the void ratios between local and global values showed sharp distinctions, while
compact specimens under ideal test conditions exhibited only marginal differences. The
differences between local and global void ratios did not start before an axial strain £, of
more than approximately 20 % was reached. This value is clearly located after the peak
stress. Therefore, the poor distinct shear-band pattern inside of drained lubricated com-
pact specimens, which may develop at a very high deformation state, has no significant
influence on the global material behaviour and cannot be the reason of stress softening.

Drained non-monotonic loading condition

The plastic hardening, softening and failure behaviour of sand strongly depends on the
stress level and is described by the sophisticated shape of the yield surface explained in
detail in Section 4.2.2. In the framework of cohesive-frictional materials, the characteristic
contour of yield surfaces was experimentally determined by Tatsuoka and Ishihara [155].
In particular, they carried out complex triaxial stress-path-depending compression tests by
applying different stress levels during reloading, while repeatedly changing the confining
pressures after unloading. In Figure 3.10, such a stress path in the hydrostatic plane is
illustrated, where the points P1-P12 denote the stress points at which the loading path
is changed. Therein, POP1, P3P4, P6P7 and P9P10 are the hydrostatic loading paths,
whereas P1P2, P4P5, P7P8 and P10P11 are the compression loading paths. Furthermore,
P2P3, P5P6, P8P9 and P11P12 represent the unloading paths. Thereby, the stress level
during unloading is chosen well below the failure load in order to detect yield loci by
the onset of hardening during the reloading path. At the unloading path, the plastic
deformation is frozen and only elastic deformations are occurring. Immediately after
reaching the elastic limit at the higher stress state, the plastic yielding process starts again.
The yield locus at the reloading path is detected through the stress-strain (Poorooshasb
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Figure 3.10: Generic sketch of one of the triaxial stress path test for the determination of the
contour of yield surfaces and the hardening behaviour presented (Tatsuoka and Ishihara [155]).

et al. [127]) or axial-volume strain (Tatsuoka and Ishihara [155]) behaviour, while the
progression switches from a linear to a non-linear behaviour. The yield loci of the restart
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of yielding and those of the lower stress level are marked in Figure 3.10 by the same shade
of grey level. Accordingly, Lade and Kim [100] have assumed that such a pair of yield
loci with the same grey-level owns the same plastic work. Proceeding from an infinite
number of the yield loci with the same plastic work, the contour of one yield surface is
characterised, cf. [66, 100]. In Figure 3.10, such contours of yield surfaces are illustrated
by dashed lines, respectively. Proceeding from the lowest yield surface to the higher ones,
a hardening process takes place, which is governed by the plastic work. Accordingly, on
the basis of these experiments, it was concluded that the evolution of the yield surface
ends at the failure surface independent from the stress path (Ehlers and Miillerschon [66]).
It was assumed that the failure surface (black line) in Figure 3.10 is the approximation
of the black points representing the peak shear stresses with respect to the confining
pressures. This assumption led to a fixed failure surface with an unchangeably large size
and to an almost linear relation with minimal curvature at lower stresses. To overcome
this problem, Lade and Kim [100]| have introduced an additional failure surface differing
from the shape of the yield function to improve the approximation of the failure states of
monotonically loaded experiments. Within this approach, the failure state is defined by
the intersection point between the evolving yield surface and the fixed failure surface at
the current stress state.

To clarify the assumption of a fixed failure surface, three stress-path-depending triaxial
experiments have been performed, while the standard monotonic tests serve as reference
solutions to detect differences in the stress-strain progression. A sketch of the stress-strain
progression of these stress-path tests is given in Figures 3.11 and 3.13 (left), while the
corresponding stress paths in the hydrostatic stress plane are shown in Figures 3.12 and
3.13 (right). Based on these experiments, it could be observed that the failure surface is
not fixed. It is varying with the stress level. As a consequence, a new failure concept with
a variable failure surface has been developed.

Figure 3.11 illustrates the stress-strain procedure of the stress-path tests 1 and 2 and
also includes the order of the applied loading and unloading steps indicated by the stress
points P1-P5 and P1-P7. By comparing the peak stress o7l of the reference test with

pea
the peak stress 511;2119 of the presheared test in the points P4 and P6 in Figure 3.11 (a) and
(b), respectively, a distinct increase of the peak shear stress could be observed. Moreover,
during the load path P3P4 in Figure 3.11 (b), the stress-strain progression changes from
a linear to a non-linear behaviour, although it was presheared at the lower stress level
until ofl}, (P2). That means that the shear stress exceeds the elastic domain and the
hardening process is restarted. In contrast, the old failure concept with the fixed failure

surface can only predict a linear elastic approach after preshearing until the peak stress.

Proceeding from the observed stress-strain behaviour of the stress-path tests 1 and 2
(Figure 3.11), a new failure concept illustrated in Figure 3.12 by a sketch of both tests in
the hydrostatic stress plane has been developed. Therein, two failure surfaces indicated
by f-s (n-c) are sketched, where n-c denotes the new failure concept. The failure surfaces
are depicted by a green and a red solid curve corresponding to triaxial compression tests
under different confining pressures o' and o¥2, respectively, and two different values of
the maximally applied hydrostatic stress expressed by I,. However, it should be noted that
the failure surface is an imaginary limit of the evolving yield surface basically governed
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Figure 3.11: Sketch of the observed stress-strain behaviour of stress-path test 1 (a) and 2 (b).
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Figure 3.12: Different types of stress-path experiments and evolution of the failure surfaces
f-s (n-c) of the new concept and f-s (o-c) of the old concept, respectively.

by the applied hydrostatic pressure. On the other hand, the fixed failure surface of the
old failure concept f-s (o-c) indicated by the dashed black lines, which illustrates the
failure surface introduced by Lade and Kim [100], has to approximate all possible peak
shear stresses independently from how the stress path is driven up to peak-stress values.
Obviously, this triggers a larger size of the failure surface compared with the new failure
concept.

Furthermore, the stress-path test in Figure 3.13 exhibits the effect of a previous hydro-
static consolidation up to the limit of our triaxial device and applied to the specimen
before shear-stress loading. In Figure 3.13 (right), the green curve represents the yield
surface at the end of the preconsolidation process. However, the yield surface has not
yet reached the failure surface in direction to the deviatoric stress loading. Therefore,
the stress-strain behaviour is only marginally influenced by the preconsolidation. Only a
short part at the beginning of the shear stress behaves linearly elastic, whereas the failure
behaviour is not affected compared to the reference compression test without preconsoli-
dation.

The modelling of the continuously changing failure behaviour is realised by a variable
failure surface depending on the hydrostatic pressure state as illustrated in Figure 3.12.
In contrast, Lade and Prabucki [101] modelled this effect, which is known as the so-called
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Figure 3.13: Stress-path test 3: (left) the observed stress-strain behaviour and (right) the
vielding behaviour.

preshearing of sand, by interpreting the yield surface f-s(n-c) (red solid curve) as the
actual failure surface up to the intersection point with the fixed failure surface f-s (o-c)
(dashed black line) followed by the failure surface f-s (0-c). As a result, one obtains a
discontinuous shape of the failure surface, which can be avoided by introducing the stress-
dependent failure concept presented in Section 4.2.2. Experimental results and numerical
simulations using the old concept with a fixed failure surface and, on the other hand, the
new concept with a variable failure surface are given in Section 6.1.2. Additionally, in
that chapter, differences of both concepts are more precisely discussed. It will be shown
that these experimentally observed properties of granular materials are crucial for correct
matching their failure behaviour.






Chapter 4:
Constitutive Modelling

Proceeding from a multiphasic porous material with isothermal conditions (0* = 0 =
const.), the primary kinematic field variables of the individual constituents are the known
physical quantities of the balance laws of mass, momentum and entropy. The energy
balance is not required because of the assumption of a constant temperature. However,
the resulting system of balance equations is indeterminate. To complete the system of
equations, the unknown quantities of the balance equations have to be identified and,
subsequently, for these quantities, constitutive equations have to be formulated on the
basis of experimental observations of the considered material. This procedure is also
known as the so-called closure problem of continuum mechanics, cf., e.g. [52, 85, 162,
163] . Moreover, for a thermodynamically consistent derivation of constitutive equations,
the principles of Rational Thermodynamics (Truesdell [160]) have to be satisfied, which
prevent non-physical assumptions for the constitutive modelling of the material behaviour.
In the current chapter, the procedure of the constitutive setting for the triphasic model
is presented, cf. [53, 64]. The experimental observed stress-strain behaviour of the solid
skeleton discussed in Chapter 3 is incorporated into the constitutive modelling approaches.

4.1 Triphasic model for partially saturated sand

The fundamental constituent of the partially saturated soil is the solid skeleton, which is
assumed as a materially incompressible solid phase a = S, whereas the pore spaces of the
solid structure are filled by the materially compressible pore air & = A and the materially
incompressible pore water « = W . In Table 4.1, the triphasic model is summarised:

Triphasic Soil Model

overall aggregate: ¢ = @7 U o where of = oV U ¢4
saturation of ¢ : n% +nf =1, nff =1-—n% =n" + nt

W A 4.1
fluid saturation of ' : s n Aa_ " (4.1)

volume fractions: n" = sW(1-n%), nt = (1-s")(1-n")

effective densities: p°% = const., p" = const., pf # const.

43
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Balance of mass

Excluding the mass exchange between the constituents, p* = 0, the local mass balance
in (2.42) is reduced to

(p™)., + p° divx, = 0. (4.2)
Evaluating (4.2) for the materially incompressible solid phase ¢°, the volume balance

results ,
(n®)s + ndivxg = 0. (4.3)

An integration of (4.3) over time yields
n® = nje (det Fg) ™', (4.4)

where nj3g characterises the solidity in the solid reference configuration at time ¢y and Fg
is the solid deformation gradient.

Using the transformation of the material time derivative of the fluid volume fraction n”
with regard to the solid motion

(n”)s = (n”); — gradn’ - wg, (4.5)

the volume balance of the materially incompressible pore water " and the mass balance
of the materially compressible pore air phase ¢ are obtained as

0 = (n")s+n" div(us)y + div(nVwy),

(4.6)
0 = n(pB)s + pB(n)s + npAR div (ug)y + div(n?prFwy).

Balance of momentum

In this contribution, the investigated IBVP are only restricted to quasi-static problems.

Therewith, the acceleration of the individual constituents is neglected, 3,204 = 0, whereas
the barycentric acceleration X in (2.46) is not implicitly zero. Excluding therein the mass
production, p* = 0, the barycentric acceleration X leads to

k
p o= = div(p"da®da). (4.7)

a=1

The diffusion processes within the partially saturated soil are very slow and, thus, the
gradient of the diffusion velocities is negligibly small, cf. Ehlers [53]. Therefore, the
barycentric acceleration can be ignored: X = 0. As consequence, the total Cauchy-
stress tensor in (2.46) is only composed by the sum of the individual stress components,
T = ZZ=1 T =T° + TW 4 T4 . Hence, the overall momentum balance reads

0=div(T® + TV + T*) + pg, (4.8)

wherein pg is the constant gravitation force, which is a constitutive assumption for b® =
b = g, while p is the density of the overall aggregate built by the sum of the individual
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densities p = nSpSF +nW pWE L nApAR cf (2.46). Moreover, based on (2.40); with (2.41),
and p* = 0, the sum over the direct momentum productions p® must vanish and, thus,
the solid momentum production p° can be expressed by terms of the pore fluids:

k
dpr=p"+pV+p'=0 — p’=—(p"+p"). (4.9)
a=1

Thermodynamical restrictions

Evaluating (2.49) for the partially saturated soil model with p® = 0, the following ex-
pression of the entropy inequality can be found:

. J

0 < (T4+nPI)-Dg + (TY +2"VPI) Dy + (T +nPI)-Dy—
~—_—— ~—_————

T%, TVYEV ., T4
— [P + PV V)i + pA WA ] + P;TR (), — (4.10)
— (p" —Pgradn' ) W — Sf)A — P gradn’ ) Wi

Therein, the constraint of the local composition of the multiphasic material is included.
This constraint is derived by the material time derivative of the saturation condition of
the overall aggregate ¢ (4.1), which implies that the sum of the temporal change of volume
fractions has to vanish:

0 = (¥ +n" +0t)s = () + (n")s + (n)s
= P[nsdiV)I(S+aniV)liw+nAdiV}/(A+ (4.11)

AT

+gradnw-ww+gradn‘4-w,4+;TR(p n

wherein the relation in (4.5) is applied, and P is the Lagrangean multiplier, which has
to be identified yet. Proceeding from the symmetric deformation tensor D, (2.25), the
relations div >/<a = D, -Tareused in (4.11) and (4.10), respectively. Furthermore, in (4.10),

the power resulting from the momentum production of the solid phase p® is substituted
using (4.9) and (2.13),:

!/

R / R / . N .
pY xg+ PV xp+pt x4 =pV wiw + P wa. (4.12)

Based on the principle of effective stress concept (Bishop [9] and Skempton [146]), the
expressions in the parentheses in (4.10) are summarised to the effective or extra quantities
(1)% for which constitutive equations have to be found, cf. de Boer and Ehlers [16].
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Constitutive variables and conditions

From the continuum-mechanical point of view, the initial values of the individual quan-
tities (motion, densities, volume fractions, temperatures) and the total state-field quan-
tities (motion and temperature) of a general IBVP are assumed to be given. However,
the temperature field is excluded in this contribution because of treating only isothermal
processes, whereas temperature-dependent deformable partially saturated soil problems
have been treated, e.g., by Graf [78]. For the general procedure, cf. Ehlers [47], all quan-
tities, which are not directly determinable by the given total motion field x = x (X4, )
and the balance relations, are summarised into the response functional R, viz.

R={¢>, T%, p}. (4.13)

Hence, R = R(V) includes material-dependent quantities and is governed by the inde-
pendent set of process or constitutive variables V = V(x,t), which are defined by the
actual position x at time ¢ and are known by the motion functions x,,. In order to enable
the fulfilment of the entropy inequality in (4.10), the constitutive functions in R can be
derived from the material time derivatives of the Helmholtz free energies ¢)* . Thereby, in
order to avoid an arbitrariness of the constitutive modelling, they have to fulfil the fun-
damental thermodynamical principles of equipresence, determinism, local action, frame
indifference and dissipation (Truesdell [160], Noll [120], Coleman and Noll [30]). First
of all, following the principle of equipresence, the response functions R of multiphasic
materials are postulated to depend by the basic set of process variables V),

V = {n®, gradn®, p*f grad p*f, Fg, gradFg, )25, gradfcg, X, }, (4.14)

which results from the thermodynamical process. Multiphasic materials depending on the
given set of parameters in (4.14), which includes the basic form of the process variables as
well as their gradients (Ehlers [47]), are called second-grade materials . Following the state-
ment of Bowen [20, 21|, the second-grade character of these materials is only influenced
by the production terms concerning the coupling effects of physical processes between
the constituents ¢®. In contrast, first-grade materials or simple materials (Truesdell and
Noll [162]) depend only on the local material point P* and its immediate neighbourhood
(principle of local action). Therefore, the gradients of the process variables are removed
from (4.15). For partially saturated soil, the set of process variables yields

VE={sW pAf Fg, ws, Dg}, where VICV (4.15)

is the subset of the process variables in (4.14). In (4.15), a homogeneous distribution of
the material quantities at the reference configuration is assumed, such that X, has been
dropped. Based on the principle of frame indifference (Ehlers [54]), the fluid motions )25
can be substituted by the seepage velocities ws (2.13)2 due to wy is frame indifferent to
an arbitrary change of the observer position. Furthermore, only the symmetric part of the
deformation gradient Lg = grad >,cﬁ is frame indifferent and, therefore, Lg is substituted by
the symmetric deformation velocity tensor D, which governs the extra stress T% (friction
stress) describing viscous properties of fluids. Moreover, in (4.15), both fluid volume
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fractions, n"V' and n?, are substituted by the water saturation s" with the expression

in (4.1)3, while n° is determined by (4.4) and n’ by the saturation condition (4.1),.
Therefore, n® is no more an independent variable and can be removed from the general
set of V.

Applying the principle of phase separation (Ehlers [46]), the set of V! can be separated
in parts corresponding to the individual constituent. Thereby, it is assumed that each
constituent ¢ depends only on its own set of process variables and, additionally, a further
meaningful reduction of the process variables is allowed regarding the considered material
properties. Hence, the corresponding dependencies of the Helmholtz free energies result
in

v® = 95(Fs), W =W (sY), gt = A, (4.16)
The dependency of ¥° can be also expressed by Cg or Bg as well as Eg or Ag, which
results by the evaluation of the principle of frame indifference. This statement is based
on the property that each deformation tensor owns the same principle invariants, which
are indifferent to the transformation with the so-called proper orthogonal rotation tensor
Qs™.
For the modelling of finite elasto-plastic material behaviour (Lee [103|, Haupt [83], Ehlers
[48]), the deformation gradient Fg can be multiplicatively decomposed in an elastic part
Fg. and a plastic part Fg,:
Fs=Fs.Fg,. (4.17)

Thereby, a stress-free intermediate configuration is introduced. This configuration is ge-
ometrically incompatible concerning to the pure unloading step of the external forces.
Because within the body B, additional elastic stresses remain after unloading, which are
released by virtually cutting of B into finite stress-free pieces. The reversal of the residual
stresses is connected by additional elastic deformations, which leads to the geometrically
incompatible plastic intermediate configuration. In case of a homogeneous deformation
state, the intermediate configuration is geometrically compatible with respect to the un-
loading step. Thus, no elastic stresses remain after the unloading step because the reversed
elastic strains are completely related to the elastic stresses (Kleiber [93|, Haupt [83] and
Ehlers [46]).

Inserting the multiplicative split of Fig (4.17) in (2.21), the Green-Lagrangean deformation
tensor Eg can be additively decomposed into an elastic and a plastic part, viz.

Es. = F{ T Fs,=1(Cs—Csg,),
ES = ESe + Egp where Esp = % (Cgp — I) s (418)
Is. = 2(Cs—1).

Therein, f‘Se is the elastic strain measures at the intermediate configuration and is ex-
pressed by the elastic intermediate right Cauchy-Green deformation tensor Cse. The
topscript (¢) characterises the quantities of the intermediate configuration. Applying this
to fse a contravariant pull-back transport mechanism, ng (+)Fg,p, the elastic Green-
Lagrangean deformation tensor Eg. in terms of the reference configuration is obtained,

*Qg is properly orthogonal, such that QSQg =T and det Qg = 1, (Ehlers [48] and Haupt [85]).
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cf. Ehlers [48, 54] and Markert [114]. Following a geometrically linear approach of the
deformations, the reference and actual configurations coincide with each other and, thus,
the intermediate configuration is vanishing. Hence, the linearisation of Eg leads to the
total solid strain tensor eg (2.23), wherein eg. and eg, are the elastic and plastic strain
parts of solid deformations, respectively:

liHES — Eg :ESe+€Sp- (419)

In contrast to the elastic strain tensor €g., the internal history-dependent quantities such
as the plastic strains eg, are determined by the internal dissipation process and cannot be
set from the exterior. They are evaluated by evolution equations. This group of internal
variables can also consist of several internal scalar-valued hardening parameters «;, which
control the expansion and the shrinkage of the elastic stress limit. The conjugated stress
quantities to the elastic strains €g. and internal variables «; are derived by the solid
Helmholtz free-energy function ¢, which is governed by es., €5, and ;. The Helmholtz
free-energy function ¢° can be additively decomposed in an elastic and a plastic part,
Y5 and 1°P, respectively:

¢S(€Sea €Sp7 ai) - ¢Se(€Se) + Qpsp(e‘Spa ai) . (420)

Based on the ideal elasto-plastic material behaviour, the mechanical free energy v° is only
described by the elastic part ¢°¢, which can be assumed to be governed by the elastic
strains €g., Ehlers [47, 54]. For isotropic hardening materials, Y°P is only a function of
the internal parameters o;, while g, is required for the kinematic hardening in order to
compute the back-stress tensor, cf. Lubliner [108|, Ehlers [48|, Wriggers [180] and Simo
and Hughes [144]. However, 1°? is only active if the hardening process has been taken
place (a; # 0). For the case of ¥P(a; = 0) = 0, only ideal elasto-plasticity is considered.

Carrying out the material time derivatives of the Helmholtz free-energy functions ¢,

/ a¢Se / 8wsp /
PosW%)s = pos Des, (€se)s + Pos Do (i),
. a@Z)W 8wW
P = o 20 Y = o 2O (Y — 8 ()
a W !/ !/
= A I [0+ 5 (0] (1.21)
w OO W, S w s
= —pFas—W(n I-Ly +s"n’I-Lg—s"gradn” - wy),
A AY 4 00" Ry
P (’17/) )A = P 8pAR (p )Aa

and inserting the results in (4.10) including the decomposition of the rate of the total
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strains (eg)s = (€s¢)s + (€sp)%, the entropy inequality yields

8wW o Se
0 < (\UE + pp W ° Vnil _Posa Se)‘(ese),s+
O Em
awSp
T ok (Esn)s — pis o (s +
+ (TgV+p%VMn )-Dw + T4 -Dy +
- oW v (4.22)
Tem
A
n-a oy AR\ _
+ iR TP 8pAR)(p )4 — PE-Wa
. oV
= (PE + Pk s gradn®) - wy
R
Em

Therein, a7%,, is the geometrical linear effective solid elastic stress tensor, cf. (2.30), while
the fluid extra stresses T4 4 and T are the dissipative friction forces of the viscous pore
fluids. By evaluating the entropy 1nequal1ty in (4.22) at the thermodynamical equilibrium
state, the internal dissipation is zero and, therewith, the internal variables, (eg,)s = 0,
(a;)s = 0 and also wg = 0. Thus, the terms within the parentheses in (4.22) have to
vanish for arbitrary values of the free variables (es.)s and (pf)’,, whereas the sum-
marised terms in the parentheses indicated with (-)%, = denote the pure mechanical extra
quantities which consist of the saturation quantities resulting from the Helmholtz free
energy " (4.21), and the extra quantities (-)%. Proceeding from this argumentation at
the thermodynamical equilibrium, the following dependencies result:

8wSe a\DSe 8wA
s — P = AR _ AR\2
Obm — pOS aeSe 885’@ ) p (p ) 8pAR ) (4 23)
C AR WR W WR a’g/)W
p=p —p =S5 p W

Therein, ¥°¢ is the mass-specific elastic free energy and the capillary pressure p¢ is defined
as the difference between the effective pressure p# of the non-wetting pore air and the
effective pressure p'"'# of the wetting pore water, cf. Brooks and Corey |25, Ehlers |53] and
Graf |78], and the Lagrangean multiplier P is identified as the effective pore air pressure
P = p®. Moreover, the thermodynamical internal stresses t; = t;(a;) can be introduced
via s
s O

—Pos 7 A

which is related to the internal hardening variables «; (strain-like quantities), cf. Lubliner
[108], Wriggers [180] and Simo and Hughes [144|. Thereby, the thermodynamical stresses

t; = (4.24)
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t; or the internal hardening variables «;, respectively, are responsible for the evolution of
the plastic material parameters describing the yield surface and, therefore, for the increase
or decrease of the elastic stress limit of the considered material during the plastic yielding
procedure.

Under consideration of the relations in (4.23), the total quantities in the parentheses in
(4.22) yield to following expressions after carrying out some transformations, see Appendix
B:

Total and Effective Quantities of the Triphasic Soil Model
o5 = —nSpfRI + o3 |
T4 = p4p" I + T) ~-n'p?l with T4 =0,
™ = —nWpWET + TV ~ -n"p"I with TY =~0, (4.25)
p' = pMgradn? + pj,
W _ AR w C W S AW
= p"fgradn” + p~s” gradn” + pg,, .
= pWEgradn + pC(sgradn® — sWgradn?) + pp.. .

In (4.25), the fluid pressure components in o are summarised to the effective fluid pres-

sure pf'® using the well-known Dalton’s law, which is composed by the saturations s° of
the individual pore fluids with their corresponding fluid pressures p°, viz.

pFR = W pWR | gApAR — gW gWR 4 (] _ W) AR (4.26)

By a dimensional analysis of the physical quantities of the soil model, Ehlers et al. [63]
has shown that in the frame of geotechnical applications the friction force of the viscous
pore fluids T4 and T}, can be neglected compared to f)fzJ and p°.

At the thermodynamical equilibrium, where the processes are reversible, the thermo-
dynamic relations of variable pairs can be found. These conjugated variable pairs are
{o3m ese}, {p*F, p*7} and {p“, s} . Their relations to each other are derived by the
corresponding Helmholtz free energies ¢ . However, the non-equilibrium part of the dis-
sipative processes in (4.22) remains. These processes are the plastic yielding behaviour
resulting from the dissipation of the mechanical work Dg;,; and the dissipation energies
D iy follow from friction forces of the percolating pore fluids:

Dii = Oh-(€sp)s + ti(i)s + DPpo - Wi + Pgp-Wa > 0. (4.27)

Dgint > 0 Dping > 0

The internal dissipation resulting from plastic yielding Dy, takes only place if the current

effective solid stress a9,  is located at the boundary 9G of the elastic domain G, which is

defined by the yield function F' = F (0%, , ;) depending on the effective mechanical solid

stress tensor o3, and the internal hardening variables «; .
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Moreover, the percolation of the pore fluids is always associated with a dissipative process
Dpins > 0. Only in case of stagnant water, wg = 0, the fluid is located in a state of ther-
modynamic equilibrium. For the constitutive approach, 15% should proportionally depend
on the seepage velocities, i oc wy and Py o< Wy, such that a quadratic term of w3
in Dgiy governed by positive material parameters can be created. Based on this general
procedure for developing thermodynamical consistent constitutive equations, the dissipa-
tive restriction of the entropy inequality is still satisfied. This procedure corresponds to
the approach used for developing the well-known Fourier’s law for heat influx of bodies.

4.2 Constitutive setting of the solid skeleton

In this section, based on the results of drained triaxial experiments on dry dense sand (see
Sections 3.2 and 6.1), the constitutive modelling approach for the elasto-plastic behaviour
of the solid skeleton is presented.

4.2.1 FElastic behaviour

For modelling the non-linear elastic behaviour of sand, various formulations can be found
in the literature. Thereby, the modelling approach of elasticity is generally classified in
three basic theoretical categories, namely, in elasticity, hyperelasticity and hypoelasticity,
cf. Truesdell and Noll [162], Ciarlet [29] and Miillerschon [118]. In this contribution, the
elastic behaviour is modelled by a hyperelasticity formulation using an elastic potential.
Following this approach of a conservative relation between stresses and strains, only the
elastic response occurs during cycle loading without any dissipation of energy, which is
not generally true for the other two elasticity categories, cf. Miillerschon [118].

In the framework of linear elasto-plasticity, the local effective solid stress a3, . is obtained

from an elastic potential given as a function of the local elastic strain eg.. However,
although the material description is based on a geometrically linear theory, the elastic
material behaviour of sand is highly non-linear during shear and hydrostatic loading
cycles (Ehlers and Miillerschon [66]). Concerning the shear stiffness, the elastic non-
linear behaviour occurs within a very small shear strain range 5. < 1-107% (Benz [7])
and influences the common sand behaviour marginally compared to the highly elastic non-
linear behaviour during hydrostatic loading cycles, which takes place within an elastic
volume strain range of about €%, ~ 0.02. By this reason, the small non-linearity of
the shear module can be assumed to a constant average value, which is acceptable for
generally investigations of sand, whereas an accurate modelling of the hydrostatic non-
linear stiffness evolution of sand is very important for correct performing the elasto-plastic
deformation behaviour.

Under consideration of moderate confining pressures, the hydrostatic non-linear behaviour
results from the assumption of rigid and uncrushable grains, where the closest packing
at no  defines the so-called point of compaction, cf. Ehlers [46]. However, to reach this

point, an infinitely large energy is needed. With this in mind, Ehlers and Scholz [67] in-
troduced a general elastic potential formulated as a volume-specific Helmholtz free-energy



52 4 Constitutive Modelling

function WS¢, which has been modified in order to obtain a better fit of the experimental
data observed during hydrostatic loading and unloading loops, cf. Ehlers and Avci [56]:

U = g, eg +
v v v
ESecrit — €S €4 4.28
P = kD) 57 — b (ehcn?| o (o=t ) g e | 429
€Secrit €Secrit
Therein, €, = eg. — 1/3¢Y, - L is the elastic strain deviator and
s
v n

€Secrit = 1— msax (429)

np

is the critical value of the elastic volume strain belonging to the compaction point given
by nJ . Based on the assumption of incompressible single grains, the compaction of the
solid skeleton is theoretically limited to n°/njs = 1/n5s = (det Fg)~l. Since the pore
space between the grains cannot be totally eliminated, the volume fraction n° is restricted
ton® <nd <1. Follovving this, n . defines the maximum solidity reached during the
hydrostatic loading, while n is the plastic volume fract10n formally located in the plastic
intermediate configuration. The computation of np is derived by the multiplicative split
of Fg in (4.17) into elastic and plastic parts. Therewith, (4.4) can be reformulated to
yield

n® =njs (det Fs) ™" = njg (det Fs.) ™" (det Fg,) " (4.30)

In the geometrically linear case of porous media elasto-plasticity, the higher order terms
can be neglected, cf. Ehlers and Scholz [67|. Thus, (4.30) reduces to the small-strain
expression

n® =ngg(1—cg) =n) (1—eg,) with n = ngg(1—eg,). (4.31)
Therein, €§ = €g - I is the volumetric part of the linear solid strain eg, where e, =
€se - I and egp = €gp, - I are the corresponding volumetric elastic and plastic strains,
respectively. It is seen from (4.28) that the deviatoric part of the elastic potential including
the first Lamé constant or the solid shear modulus p°, respectively, follows the standard
formulation of linear elasticity, while the volumetric part is highly non-linear and proceeds
from two bulk material parameters, ky and ki, where ky denotes the initial volumetric
stiffness, while k; characterises the non-linear stiffness part.

Taking the derivative of (4.28) with respect to g, yields the effective solid stress

s 0w S D S s € Se ar
o = = 2p’ eg {k + k (¢—1):|85 I, (4.32)
o aES@ ‘ ’ ' ggecrit - 656 ‘
where 1, ko, k1 and n? __ have to be found from experimental data. According to the
strain tensor, the effective stress tensor is also split into a deviatoric stress tensor o2,
and a hydrostatic stress tensor o2 | viz.
Ok = Of o, = og +opih1
(4.33)
with: o2l = 2%, -1 =31,, o = o}, —ozhl.
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4
The second derivative of U°¢ leads to the fourth-order elasticity stiffness tensor C°¢ =:
Ce:

82 \I,Se
0 ESe X ESe

CS& _ — 9 Sil:D + kS + kS (ggecrit)z -1 I®I (4 34)
- - 1% 0 1 Vv Vv )2 9 .

(ESe crit 656

4 4 4 4
where I” is the fourth order deviatoric projection tensor I”? =1 — 1/3I1® I and I =:
23

(I®I)T is the fourth order identity tensor, cf. Ehlers [55]. The elastic stiffness tensor

C5¢ is positive definite for eg. # 0 by satisfying the condition C¢ - (g5, ® €g.) > 0 and
12 34

owns the symmetry property C%¢ = (C%¢)T = (C%¢) T = (C%¢) T based on the symmetries

12

of a3, = (o%,)" and €5, = (€5.)T, wherein the numbers over the transpose index (-)”

denote the exchange of the basis vector positions, e.g., of the first with second basis
vector.

4.2.2 Plastic behaviour

For the description of the plastic or the viscoplastic part of the material behaviour, re-
spectively, one firstly has to define a yield function F'(o3,,) enveloping the elastic domain
G. In order to capture the hydrostatic plastic compressibility and the non-isotropic be-
haviour at deviatoric loading, the single-surface yield criterion defined by Ehlers [48, 49|
is applied, cf. Figure 4.1:

F(o%,) = ®Y% + BI, + €12 — k = 0, where
(4.35)
® = IP(1 4+ ~I2/@0)»*)™ + Lal2 + 5212,

This function depends on the first principal invariant I, as well as on the (negative) second
and the third principal deviatoric invariants T2 and 2 of the effective solid stress o3, |
cf. equation (3.2). As many authors do, compare, for example, the paper by Ehlers [48|,

the constitutive parameters included in (4.35) are summarised in a hydrostatic and a

70’%7713 —Is
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Figure 4.1: Limit state described by the fully convex single-surface yield envelope F(O’%m).
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Figure 4.2: Illustration of the yield surface characteristics of granular materials and its yielding
behaviour: (left) the hydrostatic stress plane and (right) the deviatoric stress plane.

deviatoric set given by
Sy={a,p,0,e,k} and Sp={y,m} (4.36)

depending on whether they control the shape of the yield surface in the hydrostatic (Sg)
or in the deviatoric plane (Sp). Ehlers [48] has used the Reuss variables given in (3.1) for
the reformulation of yield function F. Therewith, (4.35) can be replaced by

R(@, IU) =Fp (@)JTH(IO), (4.37)
where

Fp = [1+\/%_77 sin(30)]7™/2,
Fg = \/5[(62—52)13—1—26613—1—(62—%a2—265)13—26/§10+mz]”2.

(4.38)

Therein, Ry(1,) = Fy governs the simple shear radius of the yield function in the hy-
drostatic plane spanned by (2I2)'/2 and I,,, while Fp, yields the deviation of Fp towards
the compression and extension radii, R. and R, . Following this, the Lode angle © at any
value of the first stress invariant I, is zero at simple shear and reaches its maximum value
at triaxial compression at © = —30° yielding R. = R(© = —30°) and its minimum value
at triaxial extension at © = 150° yielding R, = R(© = 150°), cf. Section 3.1.3. As a
consequence, a typical triangle shape with rounded corners of the yield surface results, cf.
Lade and Duncan [99]. For a better understanding and clarification of these coherences,
the yield surface is graphically illustrated in Figure 4.2 through two cross sections of the
yield surface. The left picture shows the cross section of the yield surface in the hydro-
static stress plane, while the right one represents the shape in the deviatoric stress plane.

Figure 4.2 (left) illustrates the stress path of an arbitrary compression load, where %, s

the current stress state at the yield surface F', whereas Ao, = denotes the direction of its
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incremental increase. Moreover, Aa9, = can be rewritten in term of the temporal change:
Ao?, = (03,,)s At, where At is the time increment. In order to assess the elasto-plastic
material response, the orientation of the stress change (o%,,)s has to be evaluated. Based
on the geometrical interpretation, the plastic yielding is determined by the angle o, which
is defined between the yielding direction 0F/do%,  (associated plasticity), and the load

direction (o3, ). Hence, the following loading/unloading condition yields, viz.

OF > 0 : plastic loading = A >0,
(a%,)s = 0 : neutral loading = A =0, (4.39)
< 0 : unloading =A=0.

o<}l ——7
5
doy,,

In case of plastic loading, the consistency condition (F)y = 0 is fulfilled by introducing
the consistency parameter or the plastic multiplier A. Under numerical consideration of
the plastic yielding step within the frame of an elastic-predictor and plastic-corrector step
(see following remark and also Chapter 5), A maps the trial elastic stress from outside of
the yield surface back onto the yield surface such that (F)y = 0 is fulfilled again. Thus,
A is only active if plastic loading occurs, whereas, for an elastic loading step (F < 0) or
neutral loading, A is zero, but never negative.

However, A is either computed in the framework of rate-independent elasto-plasticity by
the Kuhn-Tucker conditions

F<0, A>0, AF=0, (4.40)

or by use of a viscoplastic approach according to the overstress concept of Perzyna [126]:

A:1<£>T or nA—<E>T:O. (4.41)
T \0%o 00

Herein, 7 is the relaxation (viscosity) parameter, r is the viscoplastic exponent, o is an
equivalent stress, and (-) are the Macauley brackets. Note that for very small values of
n, the viscoplastic approach coincides with the plastic description. Proceeding from a
computational treatment, the viscoplasticity approach is beneficial as it also regularises
the ill-posed plasticity problem during the localisation of shear bands, cf. Simo and Hughes
[144], Hartmann et al. [81] and Ehlers et al. [64]. Following this, the assumption of
viscoplastic material behaviour will be continued in this thesis by choosing n and r such
that the elasto-viscoplastic model is close to elasto-plasticity.

In contrast to metal plasticity, frictional material is characterised by a dependency of
F(a%,,) on I, . As a result, it does not follow the concept of associated plasticity, where
the yield function F(o%, ) coincides with the plastic potential G(o%, ) (Hill [88], Lemaitre
and Chaboche [104] and Simo and Hughes [144]). Proceeding from an associate flow rule
where F' = G, the dilatation behaviour of porous materials is overestimated (Lade [97]).
Instead, a separate plastic potential

Glof,) = i ID + Jal2 + 8213 + 4 Bl, + cI2 (4.42)



56 4 Constitutive Modelling

has been formulated by Ehlers and Miillerschon [66], see also Kim and Lade [92], which
is defined as the directional potential for the plastic strain rate:

oG

(esp)s =A 905 (4.43)

Therein, the additional parameters ¢); and 1, are required to adjust the dilatation angle
v, to experimental data, which is defined between the deviatoric direction with constant
volume changing and the yielding direction, (sgp)’s and (eg,)s, respectively, cf. Figure 4.2
(left). The influence of both parameters on 1, has been numerically studied by Mahnkopf
[113|. For the parameter values ¢ = 1), = 1, the non-associated plastic yielding is trans-
ferred to the associated plasticity, while for ¥); — oo the associated ideal Mises plasticity
is approximated. Concerning to experimental studies on sand, Yamada and Ishihara [181]
and also Lade and Duncan [99] detected via true triaxial tests that the deviatoric strain
increment in the principle deviatoric stress plane shows an almost coaxially flow direction
to the origin. Due to this fact, a circle shape in the deviatoric principle stress plane has
been chosen for the plastic potential G, while the third principle stress invariant ]II? in
(4.42) is left out, see in Figure 4.2 (right). Therewith, the deviatoric plastic strain (g, )’
is always coaxially oriented in the deviatoric stress plane, which is a good approximation
for the observed behaviour of Yamada and Ishihara [181].

Remark: In the framework of a numerical treatment of the elasto-plastic problem (see
Section 5.1.4), a predictor-corrector scheme is pursued based on an incremental procedure.
The predictor step is an elastic trial stress, which is located in case of plastic yielding
outside the elastic domain. However, this is not allowed by the consistency condition.
Therefore, the trial stress has to be directly projected back onto the yield surface. The
back projected stress point is numerically determined by an explicit or an implicit return
mapping algorithm (Simo and Taylor [145] and Simo and Hughes [144]) by solving the
local plasticity problem with a set of unknown internal variables. The unique solution
of the resulting local system of non-linear equations is guaranteed only if one back stress
point at the yield surface exists. For this reason, the yield surface and the plastic potential
must be convex functions. However, the local iteration procedure is finished, when the
Kuhn-Tucker condition is satisfied.

Modelling of hardening and softening behaviour

The yield function, which is generally formulated by the invariants of the principle effec-
tive stresses (4.35), span a 3-d yield surface, cf. Figure 4.1. Following sophisticated yield
criteria, the invariants are coupled with the plastic material parameters S = Sy U Sp .
Therewith, the shape of the yield surface can be individually formed as is demanded by
the investigated material behaviour. In case of ideal material plasticity without plastic
hardening, the yield surface is constant. However, in order to correctly model the macro-
scopically homogeneous stress-strain relation of granular materials, the behaviour of the
evolving yield surface must include the densification (hardening) and the loosening (soft-
ening) of the solid skeleton. This is accomplished by an isotropic evolution of the yield
surface by the change of the plastic material parameters. Thereby, the size of the yielding



4.2 Constitutive setting of the solid skeleton 57

surface F'is changed by the amount of AF
F(a%,,, ) = F(o3, )+ AF (o3, ),

where AF = Z apj(o'%m)Ap] (O[Z)

Dj

(4.44)

is a function of the increment of the hardening material parameters Ap;(«;) governed by
the internal hardening variables «; and of the stress functions apj(a%m), which represent
the coupling of the material parameters p; with the stress invariants (I,, I” T2). The
initial values of the hardening material parameters p;o describe the initial size of the
yvield surface expressed by F(o7%, ) in (4.44). The changing size of the yield surface
governed by AF' is accomplished by formulating isotropic evolution laws for the parameter
subset p C & of the yield surface, where p is the vector of the hardening parameters
p; = {B,0,€,7} evaluated by the evolution of a;. Thus, the dependencies of the yield
criterion F' (4.44) can be reformulated to

F(o%,,, ;) = Flog,, pila)]. (4.45)

The actual individual parameters of p; are determined through the update prescription

pi(es) = pjo + Apjle) = pjo + /<pj>'sdf, (4.46)
t

where (p;)s is the temporal change of the individual parameters governed by the rate
of the internal variables («;)s. The evolution of p; is computed by applying particular
hardening functions h; (o).

For the internal hardening variables «;, two constitutive approaches are prevalent, viz.,
the plastic work function WP (eg,) (e.g., Dafalias and Popov [33], Lade and Kim [100],
Ehlers and Miillerschon [66]) or the equivalent plastic strains e,,(es,) (e.g., Simo and
Taylor [145|, Desai [40], Ehlers [48, 49| and Ehlers and Scholz [67]), whereas Desai [40]
argued that a strain hardening provides a more consistent formulation than a plastic
work conception. Proceeding from the strain hardening, a volumetric-deviatoric split of
the plastic strain rate tensor (eg,)’ is carried out, which is expressed by the corresponding
scalar values of equivalent plastic strains:

(op)s = (Ewp)s = ()5 + (1) = —(€5,)5 + 1 (e5,)5 1l (4.47)

wherein (g,,) is the equivalent volumetric-plastic strain rate, which is defined positive
for the plastic-compression strains and negative for the plastic-dilatation strains, while
the equivalent plastic-deviatoric strain rate (eﬁ,)’s is only restricted to positive values
(hardening) expressed by the amount of (e§,)s. The volumetric-deviatoric spilt of (e,,)’
as shown in (4.47) is necessary in order to map the volumetric yielding behaviour of sand
described in Section 3.2.2 on the basis of a triaxial drained compression test. During
such tests, dense sand materials show a plastic volumetric densification behaviour at the
hydrostatic loading as well as at the initial shear load until the plastic volume deformation

switches to a dilatation behaviour. The ongoing increase of the homogeneous plastic
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expansion of the sand grain structure leads to material softening. These important plastic
volume properties of sand are considered by the equivalent volumetric-plastic strain rate
()

Based on this approach, the evolution of the hardening parameters, (p;)s = h;(ey,),
described by a linear hardening function h; is separated into volumetric and deviatoric
parts, (py)’s and (p? )'s, which are driven by the corresponding rates of equivalent plastic
strains, (e} )i and (gD, cf. Ehlers and Scholz [67]):

P

(pi)s = ) )s + (075 = P [Cy. (e,)s + Cp (b)) ]

sat
J

. (4.48)
with pi* = p;— Dt hardening saturation .
Therein, CI‘,; and C£ are the constant volumetric and deviatoric hardening modulus. The

hardening process is limited by the saturation conditions pj-‘”, where ]*oj denote the limit

values and p; the current values of the individual hardening parameters. The yield surface

resulting from 3*9 ; characterises the maximal reachable size of the current yield surface given
by p; and is denoted as the failure surface. Accordingly, the evolution of the yield surface
stops if the saturation limit is reached by pj“t = 0. However, immediately thereafter,
the softening process starts with a shrinking of the yield surface by reverse evolutions
of the parameters p;. Evidently, the deviatoric part of (pf)fg in (4.48) only governs the
plastic hardening, whereas, in contrast, the volumetric part (p;/)'s can take positive or
negative values according to both hardening and softening process of the yield surface
in dependency of the plastic compression, (51‘;)15, > (0, and plastic dilatation, (51‘;)15, <0,
development.

Remark: The hardening parameters p; of the yield surface F' have different effects on
the shape of the yield surface. For the evolution of the parameters, it can be important
to know if the size of the yield surface raises with increasing or decreasing values of p; .
This depends on the coupling with the stress invariants in F'. A detailed explanation
of the meaning of the individual plastic parameters S of I’ (4.35) is given by Ehlers
[48, 49]. For example, 8 coupled with the first principle stress invariant I, as included in
the Drucker-Prager yield-surface formulation is mainly responsible for the inclination of
yield surface F' in the hydrostatic stress plane. Whereas, ~ is responsible for the shape of
the yield surface in the deviatoric stress plane. By the evolution of ~, the yield surface
changes the shape from a circle to the triangle with rounded corners. By evolving 5 and
~ to a higher value, the elastic domain increases. In contrast, ¢ and 0 increase the size of
the yield surface with decreasing values due to the coupling with even exponents of I, .
Hence, both parameters describe the cap of the yield surface in direction of the plastic
stress compression, whereas for e = § = 0, the yield surface is an open cone.

Stress-dependent evolving failure surface

The experimentally observed stress-path-dependent failure behaviour of sand discussed
in Section 3.2.2, has to be theoretically described. This behaviour is characterised by an
increase of the material strength at an arbitrary confined stress level by a preshearing



4.2 Constitutive setting of the solid skeleton 59

until the peak shear stress at a higher confined stress state. As a consequence, the limit
of the yield surface denoted as the failure surface is not constant. Its variation is governed
by the current confined stress state. Hence, the evolution of the current yield surface is
always guided by the actual failure surface. This model approach is introduced as the new
failure concept, whereas, using a fixed failure surface, it is called the old failure concept,
cf. Ehlers and Avci [56].

For modelling the stress-path-dependent failure behaviour, the parameters 1*9 describing
the failure surface have to be variables. However, a parameter comparison shows that

when just the parameter ¢ taken into account, it is sufficient to perform the stress-path-

dependent failure surface. This follows by the fact that E, which is coupled with the square
of I, in F' (4.35), increases the size of the failure surface slower at lower stress values, as,

*
for example, the parameter S connected only with I,. Accordingly, at higher stress values,
the failure surface is increased faster by € as it is required. Thus, the new concept with

the variable failure surface governing with the first principle effective stress invariant I,
is introduced by, cf. Ehlers and Avci [56],

E(L) =6y (1+ Ce1,) with € > €y, (4.49)

*
while the standard failure surface of the old concept is constant. In (4.49), C. is a constant

evolution parameter of the failure surface, while Eo theoretically defines the failure surface
for the unloaded virgin material. The initial failure surface is adjusted as small as possible
but large enough for the smallest confining pressure of a triaxial experiment. Due to the
limited strength of the material by the grain crushing at very high pressure state, the
failure surface cannot be increased limitless. In order to avoid unrealistically large size of
the failure surface, it is limited by glim- Note that for small value of ¢ or é, the yield or
failure surface is increasing due to the square of I, joint with € in the yield surface (4.35).
To recapitulate, the yield surface evolving with (4.48) describes the plastic hardening
and softening behaviour of sand, whereas the variation of the failure surface described by
(4.49) restricts the evolution of the yield surface corresponding to the actual hydrostatic
stress state.

The context of the new failure concept is schematically illustrated in Figure 4.3 by the
evolution of the yield and failure surfaces in the hydrostatic stress plane. Therein, the
unloaded material starts with the initial yield surface y-s(p,) sketched by the dark grey
surface, which is determined by evaluating the yield criterion (4.35) with the initial param-
eter set p;o = {Bo, do, €0, Yo}, Whereas the light grey failure surface f-s (1*), EO) is represented
by the limit parameters ]*oj = {5 , (*5 €0 ,f*y} . The evolution of y-s (p) driven by (4.48) is lim-

ited by f-s (1*), é) determined by (4.49), which is also bounded by f-s (;), élzm) However, a
granular material, which has been shear-preloaded with a high confining pressure until
the peak shear stress, can occupy a large size of y-s (p) at the lower confining pressure as

f-s (1*9, 2) computed with the current pressure state. Indeed, the intergranular stability of
the grain structure at the peak shear stress with the lower confining pressure is unstable.
Hence, a further increase of the load leads to the stress softening with shrinking of y-s (p)

to f-s (P, é) . This behaviour is discussed in more detail in Section 6.1.2, where the simu-
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Figure 4.3: Sketch of the yield surface (y-s) evolution driven by plastic strains and the devel-
opment of the stress-dependent failure surface (f-s) controlled by 1.

lations and experiments of stress-path tests are compared with each other. Additionally,
the performance of the old concept with using a fixed failure surface is presented in order
to illustrate the difference between both model approaches concerning to the yielding and
failure behaviour.

4.3 Constitutive setting of the mobile pore fluids

Geomechanical problems are often triggered by an increase of the water content within the
soil, which may lead to the soil failure triggered by buoyancy forces. On the other hand,
the partially saturated zone has a positive effect to the soil stability. Thus, the capillary
pressure of the partially saturated zone induces attractive forces between grains, which
increase the resistance to soil deformations. For realistic simulation of geomechanical
problems, these hydraulic effects resulting from the mobile pore fluids are essential and
have to be accurately represented by constitutive models.

Based on the simple percolation experiments on saturated sand with homogeneous mate-
rial distribution, Darcy [34] has detected a linear laminar flow behaviour and has defined
a proportional correlation between the pressure drop and the fluid discharge rate through
the soil. However, the mobile pore fluids within the partially saturated zone are triggered
by the suction potential of the soil matrix, cf. Figure 4.4. The strength of the matrix
potential to suck the water up over the saturated zone depends on the capillary pressure
defined by the pressure difference between the non-wetting (air) and the wetting (wa-
ter) fluids, cf. Brooks and Corey [25], while the relative saturation distribution of the
pore water and the pore air within the partially saturated zone is triggered by geometric
quantities such as pore and grain size distributions, the shape of grains and the soil tex-
ture. The experimental determination of the hydraulic conductivity properties of soil is
comprehensively illustrated in Fredlund and Rahardjo [73].

In Figure 4.4, the partially saturated soil idealised by the triphasic model is sketched.

Therein, the fully saturated domain, s = 1 or s4 = 1, is percolated by one pore fluid,

while the other fluid is not existing or is trapped with its residual saturation s’ or s% |

respectively. Hence, the saturation limit values yield s =1 —s2 or s =1—3s% . In

Tes

contrast, within the partially saturated zone of the soil lying between the two saturated
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Figure 4.4: Illustration of different zones of a partially saturated soil.

domains, 0 < {sW, sA} < 1, both pore fluids, pore water and pore air, are mobile.
However, the hydraulic behaviour of the soil is still changing by the soil deformation
(Ehlers and Eipper [60]), which can also lead to irregularities of the pore-channel networks
(tortuosity) and causes preferable flow directions (anisotropic flow behaviour), cf. Markert
[114]. In this contribution, the fluid motion is restricted only to isotropic flow behaviour.

Darcy fluid flow

Proceeding from the momentum balance of the pore fluids with the restriction to creep-

ing flow (5&5 ~ 0) and applying the constitutive approach for the effective momentum
productions p’ (Ehlers [53]),

by = — (n”)* /" H(K]) ™ wg, (4.50)

the seepage velocities wg yield
A

K
ARy, = — ,YA:% [grad pAR _ AR g] ,
. i (4.51)
WR _ r WR WR b~ a W W A
nTwy = _VWR [gradp —p g—n—w(s gradn” — s" gradn )] ,

where v#% is the so-called specific weight of ¢°, g is the constant gravitational force
and Kf is the relative permeability tensor, which is related to the Darcy permeability
tensor K” specified at a fully saturated condition (s = 1) through the so-called relative
permeability factor 2 on the saturation of ¢

K? = k2(s”) KP (n”) . (4.52)

Related to the porous solid skeleton, K? is rewritten using the specific weights 7% and
the effective shear viscosities ;/*f to the intrinsic permeability K° through

BR

B _ 0 s
K? = MBRK . (4.53)
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The solid deformation-dependency of the intrinsic permeability tensor is described by the
isotropic distributed intrinsic permeability coefficient K (Ehlers and Eipper [60]):

1—n’
K®(n®) = K¥(n%)1 = K5 (1 g )”I. (4.54)
— Nog

Therein, Kgs = K35 Iis the initial intrinsic isotropic permeability tensor at an unstressed
initial state expressed by the initial intrinsic permeability coefficient Ky, where, analo-
gously to (4.53), the Darcy and the intrinsic permeability coefficients, kgs and K3, are
related to kJg = 4#% /PR K5 . Furthermore, 7 > 0 is a material parameter, which governs
the exponential development of the permeability by variations of the solidity n° induced
by volume deformations of the solid skeleton, cf. equation (4.31). An alternative approach
to describe the hydraulic conductivity is the Kozeny-Carman equation
1— ’I’LS 3

KS(nS) = KOSS( (ns)g) )
which is frequently used in modelling the variation of the permeability during the internal
erosion process, where the soil porosity n! increases. Moreover, the permeability of
soil is much more pronounced by erosion than by the mechanical deformation. Thus, the
exponent 7 in (4.54) is very useful for considering the strongly increase of the permeability

with increasing porosity nf =1 —nS.

Following the argumentation of Fredlund and Rahardjo [73|, the fluid flow within the
unsaturated soil domain can be treated like the saturated domain, because the air-filled
non-conductive pore channels are preventing the water flow. As a result, the capillary-
pressure-driven term in wy, (4.51) can be neglected, see also Graf [78]. Following this,
the Darcy law of the pore water is reduced to

(4.55)

w

KT
nWEwy = — TR (gradpf — p"Eg) . (4.56)

Partially saturated zone

The pore-fluid mobility within the partially saturated zone is determined via deformation-
free water-retention tests on soil samples, cf. Fredlund and Rahardjo [73]. A retention
curve is characterised by the effective pore-pressure difference defined as the capillary
pressure p¢ = pA® — pWE and the water saturation s" (4.23);, which can be derived
from the free Helmholtz energy of the incompressible pore water " (s"') (Graf [78]).
Concerning the description of the retention curves of soil, Brooks and Corey [25], Mualem
[117] and van Genuchten [75] have been introduced constitutive relations for the effective
water saturation s!y in dependence of p or vice versa (Graf [78]). Thereby, s} defines
the part of the partially saturated zone of the soil, where both pore fluids are mobile,
and is bounded by the residual saturations of the pore fluids s”_. To take these residual
properties of soil into account, the formulation of Finsterle (1993) is adopted for SZ]V?:

- sV — sl
Seff = m . (457)
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For the computation of se‘}V , the capillary-pressure-saturation relation of van Genuchten
[75] is applied yielding |
st () = [1 + (g p©)ie | Thom (4.58)

where p'C = {Qgn, Jgn, Pgns Egns Ygms Ngen ) in (4.58) and (4.59) is the set of the van
Genuchten’s hydraulic material parameters. Hence, the water saturation s" follows from
inserting (4.58) in (4.57) and solving the resulting equation for s . Thus, the relative
permeability factor x? in (4.52) depending on SZJVﬁc is determined by the formulation of the
van Genuchten model (|75]):

T €,

Ry = (sap) {1 =L = (i) /o [P 32 gl = (1= sggp) " [L = (sp) V1o 2o . (4.59)

Compressible fluid

For the materially compressible pore air, the constitutive approach of the ideal gas law
(Boyle-Mariotte's law) is applied, which can be derived from the Helmholtz free energy
YA, viz.:

_ A _
S0 = R g g(8) — ) = (A S = RO (4.60)

Therein, R4 denotes the specific gas constant of the pore air, and  is the absolute Kelvin’s
temperature, which is constant in the case of isothermal problems. Reformulating (4.60),

pA% can be also given as

AR _ Po +pAR

_ 4.61
RA0 (4.61)






Chapter 5:
Numerical Treatment

For the numerical investigation of IBVP in the field of solid mechanics, the finite-element
method (FEM) is commonly applied. The FEM is a numerical method embedded within a
finite-difference scheme in time for solving systems of partial differential equations (PDE).
However, non-linear soil mechanics leads to a system of differential-algebraic equations
(DAE) consisting of the PDE of the global balance laws and a secondary system of alge-
braic constraints of the local problem of plasticity, cf. Ellsiepen [70]. For the numerical
treatment of DAE systems of deformable porous materials, efficient numerical solution
strategies are required, which have been discussed in, e.g., Ehlers [51, 52, 59, 61, 62|,
Wieners et al. [176] and Schrefler and coworkers, e.g., [106, 138-140]. Concerning this,
in the first part of this chapter, the numerical implementation of the triphasic model
within the framework of the FE tool PANDAS (Porous Media Adaptive Nonlinear Finite
Element Solver based on Differential Algebraic Systems) is discussed.

In the second part of this chapter, the numerical optimisation procedure for solving non-
linear constraint optimisation problems occurring in the task of parameter identification
is illustrated, while the results of the parameter identification process are presented in
Chapter 6. To overcome this non-linear optimisation problem, the Least-Squares minimi-
sation function of the error between the computed and experimental data is formulated,
which is also called the object function. To solve the constraint minimisation problem,
gradient-based optimisation methods based on the Sequential Quadratic Programming
(SQP) algorithm are applied, cf. Spellucci [149], Schittkowski [135] or Boggs and Tolle [17],
whereas the required gradients of the object function are determined by semi-analytical
computations of the sensitivities. The sensitivities are defined as the deviation of the
computed physical quantities with respect to the variation of the optimised material pa-
rameters (Mahnken and Stein [112] or Scholz [137]).

5.1 Finite-element method

The FEM has nearly unlimited possibilities to investigate complex engineering problems.
Its application takes place in different fields, e. g., in automotive, aerospace or civil engi-
neering industries as well as in the scope of university research. Due to the fact of fast
increase of computer power within the last two decades, the complexity of the treated
problems has been extremely increased. Hence, FEM has become indispensable in the
field of engineering. However, the user of FE tools has to be always aware that these
methods only approximate the correct solution of complex IBVP, while the correct so-
lution itself is usually unknown. The accuracy of the solution depends on many factors
as the approximation of the geometry or the primary field variables of the investigated
IBVP as well as the constitutive approach of the material behaviour based on the qual-
ity of the experimental investigations of the material. Nevertheless, the FE user has to

65
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ensure that the generated numerical results converge in all probability to the real solu-
tion. For detailed information on the FEM and the numerical treatment of non-linear
problems of continuum solid mechanics, the interested reader is referred to the works
of Bathe [5], Braess [22], Hughes [89], Schwarz [141], Wriggers [180] or Zienkiewicz and
Taylor [184, 185].

5.1.1 Weak formulation

The local balance equations in (4.6), (4.8); and (4.8), which are also called the strong
formulation of the mechanical balance laws, are continuously fulfilled at each local material
point of the continuum mixture body B. In contrast, the approximation procedure of the
FEM is based on an energetic expression of the mechanical balance laws. Thus, they are
satisfied in the global or integral sense over the spatial domain €2. This transformation of
the strong local form of the mechanical balance equations into a weak global representation
is realised by multiplying them with independent test (weighting) functions dug, dp""'%
and 0pf of the primary variables* ug, p"# and pAf (u-p-p formulation). This so-called
Galerkin method is equivalent to the well-known variational principle of minimum of
potential energy (Zienkiewicz and Taylor [184]). After applying the integration-by-parts
rule and the Gaussian integral theorem, the weak form of the balance equations can be
summarised into the internal and external parts of virtual work, 0Wj;,,; and dW,,;, where
the former part represents the virtual shape-changing work, while the latter part is the
virtual work resulting from the external loads on B induced from the vicinity (surface
load) and from the distance (gravitation force). For arbitrary variations of the primary
variables, the resulting equations of virtual work have to vanish under consideration of
the boundary conditions. This conforms to the equilibrium statement of the variational
principle:

gu(ua 5“) - 5Wu,int - 5Wu,ea:t =0. (51)

Therein the primary variables are summarised in the vector u = [ug, p" %, pA%]T and

G. is the system of the governing balance equations in the variational weak formulation.
Note that applying the integration-by-part rule, the order of the differential equation of
the strong form is reduced at least by one order. Therefore, the weak representation poses
lower requirements for satisfying the global equilibrium of the balance laws as the strong
formulations fulfilling the local equilibrium at each material point P* of B. Hence, the
weak form of the momentum balance of the overall aggregate (4.6) yields by weighting with

*In the framework of the numerical treatment of mechanical balance laws, the pore-air pressure pA%
is used as the primary variable instead of the continuum-mechanical kinematic variable of the effective
density pAf. In contrast, the effective density p"V’* of the materially incompressible pore water ¢" is
constant and, therewith, the indeterminate pore-water pressure field p""' % is determined from the given
boundary condition p"V' % of the considered problem. Consequently, for the triphasic model, the primary
variables ug, p"V'# and pA% (u-p-p formulation) are generally used, whereas Graf [78] has also switched
the primary variable pV'#* with the water saturation s" (u-s-p formulation).
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the test function dug and applying the product rule and the Gaussian integral theorem

Gus(ug, Pl dug) = /(a%m — pfEn*T) - grad dugdv —
0

J

pg-éusdv—/t-éugda =0,

Iy

-~
5%5,6$t

I
({Q\

J/

where t := t°+t" +t* = (6%, —n"p" R I)n is the external total stress load vector acting
on the Neumann boundary I'; of the overall medium, and n is the outward-oriented unit
normal vector on the surface. Therein, the fluid extra stresses T are neglected, cf. (4.25).
In case of applying a drained boundary condition for the pore fluids (p?% = 0 — o7 = 0),
t corresponds to the stress load of the solid phase t := t° = o%,.n. Analogously to the
overall momentum balance (5.2), the weak form of the volume balance of the materially

incompressible pore-water phase (4.8),

Gy (1, PV, 5PV F) = / (") + " div (ug)s] 6p™ R dv —
9]

N J/

~
5%w,int

(5.3)
— /nWWW~grad5pWRdv +/17W5pWRda =0,

Q Ty

(. 7 (. 4

Vv vV
5%w,int (ﬂ%w,emt

and of the mass balance of the materially compressible pore air phase (4.8),

Gpa(ug, p7, 6pF) = / A (p*)s + pM (M) + npt div (ug)] dp?fidv —
Q

J/

~
5%a,int

—/nApARWA~grad5pARdv+/(jA5pARda =0,

Q Ty

. 7 (. 7

Vv VvV
5%a,int (ﬂ%a,emt

(5.4)

are derived by weighting them with the test functions 6p"# and dpA® and then applying

the product rule and integral theorem. Therein, " = n"Wwyy - n is the efflux of the water

volume through the Neumann boundary Iy, while ¢* = n? pA%w 4-n is the efflux of the air
mass through the Neumann boundary I';. Proceeding from quasi-static IBVP, the seepage

velocities wg are determined by a constitutive assumption, e.g., through the Darcy laws
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(4.51); and (4.56) governed by the pore-fluid pressures p®f. The resulting expressions of
the mechanical quantities t, v and ¢* are acting on the Neumann (natural) boundaries
I't, 'y and ', of ©, while the primary variables are applied on the Dirichlet (essential)
boundaries I'y,, I'y, and I',,. Thus, the boundary I' = 9 of the domain € is divided
into a Neumann and a Dirichlet boundary as follows:

=ryuly, ; r=r,ul, ; I'=>r,uly, (5.5)
where Dirichlet and Neumann boundaries cannot exist at the same place:
) =Ty,Nly ; 0=Tp,NT, ; =T, NT,. (5.6)

In consideration of these boundary conditions defined for each PDE, the unknown primary
field variables ug, p" % and pA% governing the PDE are approximated by test functions.

To ensure the solution of the PDE, the trial functions must obtain the property of a
square-integrability condition on €2. This requirement is satisfied if the trial functions are
chosen from the standard Sobolev space H'((),

Sus(t) = {us € HY QP : us(x) = ug(x,t) on Ty},
Spw(t) = {pVH e HY Q) : p"Ex) = p"(x,t) on T,,}, (5.7)
Sp(t) = {p € H' () : p(x) = p*(x,t) on T},

whereas S.y(t) with ¢ € [ty, T is the shifted Sobolev space by the Dirichlet boundaries,
g = ug, pVE = p" & and pA® = pAR. The corresponding test functions of du,, p"'%?
and §p?7 defined in the Sobolev space T,

Tas = {ous € H'Q)" : dus(x) = 0 on Ty},
Tow = {0p"" € H'(Q = p"(x) = 0 on Ty}, (5:8)

Too = {0pAft € HY Q) : prB(x) = 0 on [, 1},

fulfil the homogeneous boundary conditions and disappear at the Dirichlet boundaries.
Therein, the Sobolev space H'()) represents functions of which the first derivation still
exists in a weak sense (Ellsiepen [70]). The integer variable D € {1,2,3} denotes the
dimension in space.

Proceeding from the weak forms in (5.2), (5.3) and (5.4), the objective of the FE problem
can be represented in a compact formulation (Ellsiepen [70]):

Find w € S,(t) such that G,(u, du; q,p)=0 VouecT,, t€ltyT]. | (5.9)

Therein, q := [eg,,A]T and p := [, 6, ¢, v]* denote all internal (history) variables.
The internal variables are separated from the primary variables through a semicolon by
the reason that the weak forms depends only indirectly from the local internal variables

through the mechanical effective solid stress o3, .
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5.1.2 Spatial-domain discretisation

The computational spatial domain €2 is decomposed in a finite number of contiguous

subdomains 2,:
E

O~ Q"= 0. (5.10)

Therein, " is the approximated domain of ) by finite elements building the FE mesh
with the total number E of elements, while e is the index of an individual finite element
Q.. Depending on the shape function, each element consists of N, nodes, while the total
number of nodes is denoted by Ng. Therewith, the continuous or infinite-dimensional
trial and test spaces, S¢y(t) and 7(,(t), are subdivided to N-dimensional finite spaces,
S(’f) (t) and 7?1) (1), respectively. Accordingly, the field variables u are discretised by the
global shape or trial functions ¢¢,, additionally taking the Dirichlet boundary conditions

u = [ug, p"V %, pF]|T into account:

Nug
us(x, f) o~ ul(x ) = i)+ Y AL Xuyt)  eSL0)
i=1

Npw
PV ) o~ R ) = P t) ) G0 0V e Sh(n), (311)
1=1

Npa
PR 1)~ pMh(x 1) = PR )+ Y a () p () € Sh(D).
1=1

Therein, N, = {Nug; Npw; Npa} < Np denotes the set of the total number of nodes of
the individual trial functions. For the u-p-p formulation, the displacement vector ug is
approximated by a quadratic ansatz function, which corresponds to the node number of
the FE mesh N,, = Ng, whereas the fluid pressures are commonly linearly interpolated
omitting the middle nodes of the finite elements. Thus, the total number of nodes N,z
of the ansatz ¢,3 is less than Ng. This discretisation approach of the strongly coupled
solid-fluid problem is the so-called mixed finite element formulationt. Due to the fact
that the position information is given by the trial function ¢ft, the discrete values at the
node u' = [ul, p" & pARIT are only time-dependent. Furthermore, the test functions
are approximated by ansatz functions based on the well-known approach of the Bubnov-
Galerkin method, where the same ansatz functions are used as for the trial functions.

fTo solve the solid-fluid problem with a linear ansatz function for the solid displacement ug and the
fluid pressures p®?, convergence problems can be encountered. Then, the solid stress over the element is
computed with a constant strain progression determined by the gradient of ug, while the fluid pressures
are linearly interpolated over the elements. The sum of these different approaches, which have to be
carried out in the divergence statement of the balance of momentum, leads to unstable solutions. To
overcome this problem, a mixed approximation of the primary variables is used, cf. the argumentation by
Graf [78]. This so-called Taylor-Hood element fulfils the LBB condition (Ladyshenskaya-Bauska-Brezzi),
which is an indicator for the stabilisation property of the numerical solution. For detail information the
interested reader is to referred to the work of Braess [22], Brezzi and Fortin [24] and Wieners [175].
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Hence, the approximation of the variational field quantities yields

Nus

fug(x) =~ dul(x) = Zd’us x)ouy  €Tr,
Npw

opVE(x) ~ pVE(x) = Y g, (x) " e T, (5.12)
Npa

opMfix) o~ px) = Y da(x) ot e T
1=1

The gradients of the field quantities, grad w, are derived by the partial derivation of the
trial and test functions, respectively,

Nu,

gradu’(x) = Z grad @ (x) u

i=1

N (5.13)
grad du’(x) = Z grad ¢.(x) du
i=1
Moreover, the geometry of the domain € is approximated by the basis function q,’)geo To

simplify the numerical integration of the weak forms, d)g is formulated in local coordi-
nates &€ = (&1, ...,£p) within a unit range of [-1,1] or [0,1], while the global coordinates
x = (x1,..,xp) are obtained by the coordinate transformation

x(€) = D peol€) i (5.14)

which is carried out for each node N, of the element e. The transformation of the dif-
ferential element dx into the local coordinates is performed by the .Jacobian determinant

J., viz.
det (d’géé))' (5.15)

Inserting equations (5.14) and (5.15) into an integral of a function f(x) given in global
coordinates, the following expression can be found:

/f ) do(x /f )do(€) . (5.16)

Therein, Q). is the domain of the reference element and d¢ is the infinitesimal reference
volume. The resulting integral expression represented in local element coordinates can be
simply evaluated using the Gaussian quadrature:

/f x) dv(x Zf wy, . (5.17)

Je =
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Therein, wy, includes the weighting factors at the integration or Gauss point of the element
Q., respectively. The weighting factors are fixed values depending on the number of Gauss
points K and their position. However, the integral solution of a function with a polynomial
order of 2K — 1 is exactly computed at the Gauss points, while beyond the Gauss points,
the values deviate more or less from the correct solution depending on the approximation
accuracy.

The numerical integration of the weak form of the balance laws is carried out element-wise
by using the Gauss quadrature in (5.17). Thereby, for each degree of freedom (DOF) u’
at the element node, test and trial functions are evaluated by setting their values at the
considered node to one, whereas the values of the remaining nodes are zero. Analogously,
this has to be carried out for each node of the element. Consequently, a system of
independent equations results at the element level with the unknown discrete DOF element
vector u®. This system of equations is assembled to the global system of equations of the
FE mesh applying the assembly operator Ule. It includes the position information of
each node of the FE mesh and transfers the numbering of the local DOF vector u® of the
element (). into the global DOF vector w of the FE mesh. Following this procedure, the
vector of internal and external virtual works W ;.. and W _ . at the element level of the

balance equations G” in (5.2), (5.3) and (5.4), can be rewritten in terms of internal and
external nodal force vectors f,, .., and f; ... Assembling the element forces of the FE
mesh, the global nodal forces f,, ;,, and f, .., of the entire vector of virtual works Wy,
and Wy, ezt (5.1) result. Furthermore, the virtual DOF vector ju® at the element level or
ou of the FE mesh, respectively, is factored out and, therewith, the equilibrium state of
the global balance relations in the procedure of the variational principle reads:

E
gZ(“? 5“’7 q7p> = L_Jl<5W1el,,int - 5Wf1,,e:vt) = 5u<fu,int - fu,ext) =0
- (5.18)

E E
where 5“ = U 5“’6 ) fu,int = Ul f'i,int ) fu,ezt = Ul f'zel,,ext .
e= e=

Therein, the generalised internal and external nodal force vectors are in equilibrium

Juint = Fuewr- However, f, .., is non-linear in the solid extras stress o3, with regard

to the solid strain tensor g, when plastic deformations occur. This leads to an addi-

tional local system of equations E? with 2 := [g”, p”]T independent equations computed
at each integration point K. All unknown quantities of the global and local system of
equations are summarised to the vector y := [u”, g7, p’ |T. Proceeding from quasi-static

IBVP with the initial condition y(to) = y, and ¢t € [ty,T"], the governing semi-discrete
DAE functional F = [G", £ in time can be compactly formulated by the following
scheme (Ellsiepen [70]):

[ h u. (w2
Fliy ) = | S iy )
RAGEROED (5.19)

[ M)y + K(u;0) — fuo
A(r)s —g(r; u)
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where M (u)s + k(u;2) := f, ;. corresponds to the generalised internal force vector.
Therein, M is a generalised mass matrix and k a generalised stiffness vector. Furthermore,
the local system of the plasticity problem is expressed by Ef including the evolution
equations of all integration points of the FE mesh:

(es0)s Ns
A()s — glo; u) = AL/ EN | =0, 5.20
()5 — g(a; ) 0 A+n<o_o> (5.20)
(P)s h(c)

However, M is a singular mass matrix. This follows from the fact that the momentum
balance does not depend on the solid displacement velocity (ug)s. On the other hand,
the volume balance of the incompressible pore water is independent from the temporal
change of water pressure p"V'# and, in addition, both pore fluid balances explicitly depend
on (ug)s. Moreover, the matrix A consists of unit matrices resulting from the individual
terms in ¢ = [g?, p’ ]T. Indeed, the flow rule of the second equation in (5.20) contains
no time derivative. Thus, A is a singular matrix just as M. Due to the properties of
both matrices M and A, the system of ordinary differential equations (ODE) (Hairer
and Wanner [80]) of the FE problem is transferred to a system of algebraic differential
equations (DAE). To solve the DAE system, particular strategies are needed, which are
discussed in section 5.1.4, cf. Brenan [23] and Ellsiepen [70].

5.1.3 Time-domain discretisation

For the numerical treatment of ODE or PDE systems, the temporal-dependent quantities
have to be discretised in time using a finite-difference method. It has been shown that,
using an implicit time integration method such as the implicit Fuler scheme, which can be
derived from the well-known error controlled Runge-Kutta methods (Hairer et al. [79]),
gives a stable solution for the DAE system (5.19), cf. Diebels et al. [44] and Ehlers and
Ellsiepen [62].

Proceeding from the implicit Euler method, the set of unknown values y,, at the actual
time step n, where n—1 denotes the old time step at which y,,_; is known, is approximated
by the first-order backward Fuler method:

Yp = Ypn1 + Y (tn) At, where, At, =t, —1t,1 (5.21)
is the time increment. Therein, vy, is linearly approximated by neglecting the higher-order

terms. Thus, the temporal change ¥y’ := (y) related to the solid motion is expressed by
the increments Ay, and At,:

Ay, .
Y'(t,) = A?: with Ay, =y, — ¥, (5.22)
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Inserting the time-discrete quantities (5.21) and (5.22) into the DAE functional F (5.19),
the non-linear DAE system in the incremental representation of the dependencies results
in

1

Based on the known values y,,_; of the previous time step n — 1, the increment Ay,, is the
searched stage solution of R,, which has to be computed iteratively within the current
time step n (Ehlers and Ellsiepen [62]). Expressed in the presentation in global and local
systems, the non-linear system R, in (5.23) reads as follows

1

G(Un,In) Z(n) (tna un—1+ Una At Unazn—l +In) 0
R, = = ) " = . (5.24)
L(Unvzn) ‘Cf(n) (tna Tp—1 +In> Ezna Up_1+ Un) 0

where Z,, := [Aql, ApI]T and U, := Au,, are introduced.

5.1.4 Solution of the non-linear system

The non-linear DAE system R, in (5.24) is solved iteratively by the well-known Newton-
Raphson method with regard to the initial values y(t = ty) = y, within the time period
[toy s tn—1,tn, ..., T]. Concerning this, a linearisation of R,(Ay,,) has to be carried out
with respect to Y, := Ay,,. A detailed description of the linearisation procedure of the
triphasic model can be found in Blome [10]. Hence, the iterative solution algorithm of
the non-linear coupled system of equations in a simple representation reads:

dR!

1. to solve . R =R + TAY! =0
iy’
2. update L Y =Y! + AY]
3. convergence is not fulfilled : || R:™(AY?) ||> tol i =i+ 1 back to 1
convergence is fulfilled L REF(AYY) || < tol
4. new time step/update Dty =t, 1 +At, and y, =y, + Y.

Therein, tol denotes the maximal tolerance for the computation error of ’Ri:rl and 7 is the
index of the Newton iteration step, whereas the unknown quantities at the current time
step t, are located at the iteration step i + 1. The quantity J! = dR,/dY", denotes the
global tangent or the Jacobian matrix and is computed by

Jl._de;_aJ-' L L oF
» At 0y

(5.25)

" dY, Oy

z
where z = [}, (y5)", (y,))"]” includes the current set of arguments of F in R;,. Solving
the linear system R with a direct computation of J’, would lead to an inefficiently
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filled structure of the matrix, because of the strong coupling of G and L. Due to this
fact, the efficient sparse structure of the FEM matrix of G, is destroyed. To overcome
this problem, the operator-spilt method has been introduced by Miehe [115] and Simo and
Taylor [145|, which is also known as a two-stage Newton solution procedure. Thereby,
the global and local system of equations, G and L, are solved in a decoupled manner
in order to benefit from the sparse matrix structure of G. Thereby, for each global
Newton iteration step 4 of the solution procedure G = 0, the local system L*™ = 0
is iteratively solved at the Gauss point when plastic yielding occurs, while the primary
variables u,, are kept constant. The local iteration index is denoted by k. The time step
is accepted if both the local and the global iterations converge. In Table 5.1 and 5.2,
the single steps of the solving procedure of GG,, and L,, are illustrated within the frame
of an elastic-predictor and a plastic-corrector/return-mapping-step algorithm (Simo and
Hughes [143, 144]). Nevertheless, the dependency of the global balance laws from the
local internal variables still has to be considered. This has been taken into account by
the consistent linearisation of G,, through the elasto-plastic algorithmic procedure better
known as the consistent algorithmic linearisation introduced by Simo and Taylor [145]
(see also in, e.g., Simo and Hughes [144] or Wriggers [180]).

Flastic predictor/plastic corrector algorithm

Due to the plastic yielding of materials, global and local systems are coupled through the
non-linearity of the effective solid stress related to the solid strain, o3, ~ €s(ug,q,p).

Solution of the non-linear global system G,, = 0 of the FE mesh
1. Solve G ~0:
i i i . i dG,
(Ja), AU, = -G, with (Jg), = -, (5.26)
dU,,
where ¢ is the global Newton iteration step.
(a) If F(o%ral p) > 0, then solve L, = 0 as shown in Table 5.2.
(b) Computation of the consistent material tangent C>° (Eq. (5.37))
dEz 8Rl0ci -1 8Rl0ci ' do_Sz
‘no_ n n N (CSZ — Emn
e () e, - O 21
2. Update of the global (primary) variables
U =U" + AU!, and i=i+1 with i=1,... %m0 (5.28)
3. Check the global residual related to the user-defined global Newton tolerance
|US = UL || < U + €42 with i < s - (5.29)

Table 5.1: The global iteration algorithm for the determination of the primary variables U, at
the Gauss point at time t,,.
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Solution of the local system L, = 0 at each single Gauss point

For F(o% p) > 0, the internal variables Z,, = [Agl, Apl]" at fixed global (pri-
mary) variables U, are determined as follows:

!

1. Solve L*™ = 0:

(Jo)k ATE = —LF (5.30)
with the Jacobian matrix (Jg)¥:
dL; oL, 1 OL!
I P Y e 631
where k is the local Newton iteration step.
2. Update the internal (history) variables:
I =TF L ATE and k=k+1 with k=1, ... kna- (5.32)

3. Check the local residual related to the user-defined local Newton tolerance:

| ZE — T || < TRl 4 bl with b < Ky - (5.33)

rel abs

4. Check the Kuhn-Tucker conditions in (4.40):

If they are fulfilled, go back to Table 5.1, else reject the time step ¢, and start a
new global Newton iteration by bisection of the time step At.

Table 5.2: The local iteration algorithm to determine the internal variables I,, at each single
Gauss point within the i-th global Newton iteration step at time t,. For reason of clarity, the
index 7 is omitted.

The determination of o3, is carried out in two steps. Firstly, the computation of G =0
starts with an elastic predictor step o3"4 = C%(eg, — €spn_1), Which is called trial
effective solid stress. Afterwards, the yield criterion F,, < 0 in (4.35) is evaluated for
o3trial If the yield criterion is violated, Fj, > 0, the local system of equations L' =0
(Table 5.2) has to be solved numerically applying the Newton method until an effective
elastic stress tensor o3, =~ = o3rid — C5Agg,,, is found by which the yield criterion is
fulfilled, F,, = 0. Concerning this, the internal variables in Z,, are iteratively determined
during the second plastic corrector step. Thereby, the elastic trial stress is projected back

onto the yield surface through the consistency parameter A,,:

. oG, (a5, .
N - Emn

elastic predictor step plastic corrector step

wherein, the plastic strain rate (€g,,)s in the increment Aeg,, = At,(€spn)s is sub-
stituted by the flow rule in (4.43). This procedure is the so-called implicit return map-
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ping algorithm. In case of F(o%" p) < 0, the trial stress is an elastic loading step,

o3, = oaplred and, thus, the next time increment At, can be applied.

Remark: The time step £, is accepted if the global and local iteration procedures satisfy
the L2-norm of the increments AU, (or G/*') and AZ,, (or LF™) of user-defined global

and local error tolerances given in absolute and relative values, eg%él)ml and ef,ge{l)ml within
the user-defined maximal Newton iteration number i,,,, (global) and k., (local), see
Table 5.1 and 5.2. In that case, a new time step can be set otherwise the global Newton

procedure has to be repeated with a bisection of the time step At,,.

Algorithmic consistent tangent moduli

For the linearisation of GG,, in Table 5.1, the local dependencies resulting from the plastic
behaviour have to be taken into account. Hence, the global Jacobian tangent Jg yields

_dG, 0G, 0G, dT,
- dUl aUl 9T AU’

(Ja), (5.35)
wherein the first part of the sum denotes the elastic tangent, while the second part is
the plastic tangent and is only active if plastic yielding occurs, which depends on the
derivative of internal variables with respect to the global ones. Due to the fact that the
global and local systems are only coupled by the solid stress o9, = regarding to €g,, the

consistent elasto-plastic material tangent (5.35) can be directly determined from the local
problem (Scholz [137])

R (€50, Bn(esn)) =0, (5.36)

which depends on the unknown variables 3,,(es,) := [0%,,,, An, PL ]T. The equations of
R!°° are given in Table 5.3 in a time-discrete formulation. The consistent material tangent
results from the derivation of Rﬁfc with respect to the actual strain tensor g, applying
the chain rule:

deoc aRloc aRloc d S aRloc dAn 8Rloc d
deg, Oegy, doy,..| desy JA, deg, op, degy,

Therein, the framed term is the searched consistent material tangent C5 = o3, /deg,
at the global Newton iteration step i. For F, < 0, it corresponds to the fourth order
elastic material tensor C5 = C5¢ (4.34) .

0G (%105
ElaStICIty . RiLOCI = U%mn _ Cse (€Sn — E5pn_1 — At An (o-fmn p)) -0
8O-E'mn
1 /F
Visco- crlee? = A, — = <_>r _ 0
plasticity n \0o
Plastic : rlye = BBl _ et [0 (] ) 4+ CP (b )5 ~ 0
hardening At

Table 5.3: The local system of equations Rffc at the current time iteration step n and ¢ denotes
the index number j = [1 — 4] of the hardening parameters p; = {f,0,€,7}.
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5.2 Parameter identification

For realistic simulations of IBVP, first of all, the physical behaviour of the material used
in the investigated IBVP has to be described as well as possible via constitutive equations.
By the calibration procedure, the material parameters s of the constitutive equations are
identified on the basis of experimental data. Therefore, this procedure is also referred
to as the indirect problem, while the computation of an IBVP with an already identified
parameter set s is called the direct problem. From this computation, the stress and the
deformation fields of the investigated problem result from the applied boundary condi-
tions. The accuracy of the results depends strongly on the performance of the constitutive
equations, i.e., how well they can capture the material behaviour.

The direct problem can be described by the abstract input quantity U and the known set
of material parameters s, while the unknown output quantity ® has to be computed by
solving the IBVP. This task of the problem is summarised by the model function f and
can be represented by a compact formulation:

Find ®* such that f(s, U, ®) =0 is fulfilled for given {s, U} . (5.38)

Therein, ®* denotes the solution of the direct problem for which the model function f is
satisfied. For example, for the simulation of a displacement-controlled triaxial experiment
(see Appendix A), the given input quantity U is the solid strain €5 and the unknown
output quantity ® is the solid stress o, whereas the parameter set s is known. With
regard to the identification process of s, the indirect problem has to be solved:

Find s* such that f(s, U, ®) =0 is fulfilled for given {U, ®}. (5.39)

In this case, the quantities U and ® are obtained by the experiment. Thus, the parameter
set s* has to be found by an inverse computation of the experiment at which the model
function f is satisfied. Regarding to the simulation example of the aforementioned triaxial
experiment, the solid strain €g is known as the controlled quantity of U as well as the
solid stress o as the measured quantity of ®. Generally, a complex material behaviour
exhibits a non-linear stress-strain relation. Hence, the material parameters s have to be
identified in the fashion that the error I, = |®,(s) — ®,| at each discrete data point n of
N (number of data points) between output quantities of simulation ®,(s) and experiment
®,, is minimised as good as possible. To compute the error [, at the discrete data point n,
the same input quantity U,, has to be used for both simulation and experiment, whereas,
treating rate-dependent problems, the time variable has to be also taken into account.

However, complex material behaviour represented by non-linear stress-strain relations is
described via a variety of material parameters. These parameters cannot be directly
determined by an independent set of experiments. Therefore, the indirect problem can
only be solved by applying non-linear optimisation methods. This is carried out by an
ongoing improvement of the parameter set s; — s* until the simulation error satisfies a
user-defined error tolerance, where 7 denotes the iteration steps. Hence, the identification
process should be started with well fitted initial values of the material parameters sg in
order to reduce the number of iterations until the solution s* is reached.
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Figure 5.1: Comparison of the simulated and experimental data set, where I, is the error
between the output quantities |®,, — ®,| determined at each discrete point of n for given U,,.

The simplest material law is the 1-dimensional Hookean law describing an elastic be-
haviour. The identification of the constant elastic moduli £ is determined directly from
the linear part of the stress-strain curve of a 1-d tension test via E° = Acy/Ag;. In
contrast, due to the high number of parameters of more complex materials, the optimi-
sation problem is over-determined and the parameters cannot be uniquely identified. By
this reason, the Least-Squares Method is applied, which minimises the object function f
representing the total simulation error. The object function f is computed by the squared
differences between the simulated and the true material behaviour, where the true ma-
terial behaviour is determined by experiments. In general, for a good approximation of
the material behaviour, various experimental data sets with different measured quantities
have to be taken into account. Therefore, a multi-criterion object function has to be
applied,

k

K
1 -
fls) = 33> uk (cp’;(s) - c1>’;)2 & min.,
k=1 n=1 (540)
1
where wfl = — 0,
|‘I>0|Nk

wherein all computation errors I, are summarised. Therein, w¥ is a weighting factor,

which is used for the normalisation of the output quantities ®* and ®*. If w* is assumed
to be constant for all data points IV, of the considered experimental data set K, it can also
be rewritten to w*. Hence, w* is determined by the inverse of the maximally measured
value |®F| of the data set K as well as the number of data points Ny. The optimisation
parameters s of the constitutive equations, which governs the material responds ®(s), have
to be calibrated within a physical range. Therefore, the feasible range of s is represented
by the equality and inequality constrains and leads to the following constrained non-linear



5.2 Parameter identification 79

optimisation problem:

f(s) — min : object function
hij(s) = 0 ; j=1,..,Nq : equality constraints, (5.41)
gi(s) < 0 ; i=1,..,N;, : inequality constraints,

where N, and NV;, denote the number of equality and inequality equations.

5.2.1 Gradient-based optimisation procedure

To solve the unconstrained problem in (5.40) by applying gradient-based methods, the
value of the object function f decreases at each iteration step with an improved parameter
set s;.1 with regard to the previous set s;

f(siy1) < f(si). (5.42)

The deepest extremal point of f is found at which the gradient of f vanishes with respect
to the material parameter set s,

d(I)k

oF(s) — k) = 0, (5.43)

=2

K Ng
k=1 n=

,wk
1

wherein the components of d®*(s)/ds are commonly denoted as the sensitivities of ®F.
This point is characterised by the extremal (final) parameter set s*. The non-linear
problem in (5.43) is solved by applying the Newton method with the iteration procedure

Sit1=8; +an; where n; = —H ;' L(S) (5.44)
dSi

is the descent of f in the direction of the local minimum, and « is the step-length pa-
rameter of the line-search algorithm. The parameter o has to be chosen in such a way
that the best new parameter set s;,; is obtained for which f decreases as steep as pos-
sible, e.g., applying the Armijo-Goldstein criterion, cf. Dennis and Goldstein [36]. For
constrained non-linear problems, care has to be taken that s;, is located within feasible
limits. Furthermore, H is the Hessean matrix of the Newton method and represents the
second derivative of f:

H - HY — d2f(3) _ (5.45)

ds ds”
Due to H”Y which is not always positive definite, the direction of the line search is not
always oriented to the steepest descent of f and, beyond that, the computation of the
second gradient is very time consuming. Therefore, Quasi-Newton methods are commonly
applied, because they approximate the Hessean matrix H ~ H in a linear fashion only

using the first gradient of f. An overview of some popular iteration matrices is given
in Table 5.4. However, the BFGS (Broyden, Fletcher, Goldfarb, Shanno) method is one
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Iteration matrices
Steepest descent: H; = 1
: d* f(s)
. GN _
Gauss-Newton: H, := H, = Tede?
Levenberg-Marquardt: H; := H* = H 4,1
BFGS: H; := HP'CS

Table 5.4: Overview of the best-knowing approximation matrices of H ;.

of the mostly used and as well efficient methods. The update procedure of the BFGS
method is given by

_ _ o H,pp' H.
HPNOS — Hyyy = H, + Sidi  ZiPD
q; P; p; Hip,

df(siv1)  df(si)

ds;1 ds;

Y

(5.46)

where p, =s;;1—s; and gq,=

are the update vectors of the optimisation parameters and the gradients of the object
function f. However, the HPF%S matrix needs an initial value. From the numerical point
of view, it is suitable to choose initial values in a such way that the HPF%S matrix is
symmetric and positive definite. For example, the method of the steepest descent can be
applied as the starting matrix H5"“ = 1. The update of HﬁFlGS in (5.46) is carried out
after the new parameter set s;,; in (5.44) has been solved.

5.2.2 Lagrangean dual problem (SQP method)

The constrained non-linear problem (5.41) is commonly solved by a very efficient and
popular Lagrangean procedure. Thereby, the constrained optimisation problem is trans-
ferred into a dual problem by intoducing the Lagrange multipliers or dual variables of
the equality and inequality constraints, ;; and \;, respectively, cf. [8, 17, 109, 129, 147].
Thus, the Lagrange function of the non-linear opimisation problem in (5.41) reads

Neg Nig
L(s,pu,A) = f(s) + Z,U/j h;(s) + Z)\igi(s) — stat. (5.47)

Hereby, the optimisation problem is switched from a minimisation to an extremal problem,
which is characterised by a saddle-point or stationary (stat.) problem, respectively. The
saddle point defines the optimum solution at which a variation of the primary variable s
with fixed dual variables u* and X* minimises f, while, vice versa, with fixed s* parameters
and a variation of g and A, f is maximised, c¢f. Mahnken [110]. Nevertheless, the optimum
solution s* of the saddle point problem is equivalent to the optimal solution point of the
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primary optimisation problem (5.41), cf. Spellucci [147]. For the validity of the solution
of (5.47), the optimised parameter set {s*, pu*, A*} has to fulfil the necessary condition
of the so-called Karush-Kuhn-Tucker (KKT) condition:

N,
AL df(s) & dh dgl
— = =+ ) 4 E p 4ol
ds ds j=1 (5.48)

hj(8*> = 07 gi(‘s*) < 07 )‘: > 07 )‘:g2<8):0

Therein, the first equation (5.48); is the Lagrangean condition, (5.48), 5 are the primal
admissibilities, while (5.48), is the dual admissibility, and (5.48)s5 is the complementary
condition, cf. Mahnken [110].

Moreover, the sufficient condition demands that L is convex at the local minimum. Hence,
the Hessean matrix, which is the second derivative of £ with respect to s, must be positive
definite at the solution point

o d2L(s8*, p*, N¥)
ds dsT

where v # 0 is an arbitrary vector of the same dimension as s.

v >0, (5.49)

SQP Algorithm

Instead of computing directly the Lagrangean problem in (5.48), quadratic subproblems of
L (5.47) can be solved. These quadratic subproblems resulting from the quadratic approx-
imation of the non-linear Lagrangean problem can be computed in a more efficient fashion
using the Sequential-Quadratic- Programming (SQP) method, cf. Schittkowski [135], Boggs
and Tolle [17] and Specllucci [148]. Proceeding from the SQP method, the Lagrange func-
tion

L(s,mA) = f(s) + p"h(s) + Ag(s) — stat.. (5.50)

is defined by quadratic and linear approximations of the object function and the constraint
equations, respectively:

2 df(s) r 2L, A, 8) :
f(S) = f(S) ds A + — A W AS — min. s
h(s) = h(s) + dg‘f) As =0, (5.51)
. dg(s
g(s) = gls) + s <0
where the KKT-conditions of £ are summarised in F':
Af(s) | wdhls) | yrdas) ][,
47 ds ds ds
F(x) = Ie h(s) =10|. (5.52)
i gw(s) ] | 0]
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Therein,  represents the unknown set of the optimisation variables = [s”, u”, A, ]7.

For an efficient computation of F'(x), the Active Set strategy is introduced. Thereby, only
the inequality constrains with gy = 0 are incorporated into the Active Set or working
set W, whereas the computation of the inactive constraints §; < 0 are redundant, cf.
Schnittkowski [135]. Hence, the constraint optimisation problem with inequality condi-
tions is transferred to a non-linear system of equality equations. Accordingly, A\yy are
the Lagrangean multipliers of the active set WW. However, starting the computation with
an initial active set Wy corresponding to the initial parameter set so, F' in (5.52) can be
simply solved in a sequential fashion by the Newton method:

dF (x,)
de
with @, = [As], Aul, AN}, 17 (5.53)

= [(SnJrl - Sn)T7 (l’l'n—l—l - IJ’n)T7 ()‘WnJrl - )‘Wn)T]Tu

where the solution increment As = n of the quadratic subproblem is the new line-search
direction of the improved parameter set s,.1 = s, + @As, cf. (5.44). The steplength « is
computed in the fashion that s, is still located in the feasible set, cf. [8, 109, 129]. The
Newton iteration in (5.53) is finished if the user-defined error tolerance is satisfied, || As,, ||
< tol, and the KKT conditions in (5.48) of the Lagrange problem or (5.52) of the SQP
problem, respectively, are fulfilled. Otherwise, the violated inequality constraint has to be
put into the new active set W"*'. However, if one or more of Lagrangean multipliers Ay,
of the actual inequality constraint are negative, the corresponding inequality constraint
with the least negative value of A4 < 0 has to be removed from the active set W™ and
the Newton iteration step is repeated, cf. [110, 112, 133].

Furthermore, the computation of dF(x)/dx in (5.53),

2L dh(s) dgy(s) |
iF() 2f ds~dsT ds ds
x) _ _ dh(s) A
dx de dxT ds 0 0 ’ (5.54)
dgw<3)
_— 0 0
i ds J

may have difficulties concerning the Hessean matrix d2£/(dsds”) ~ H, which is not
generally positive definite. To overcome this problem, the Hessean matrix is approximated
by Quasi-Newton methods given in Table 5.4, where the BFGS method is preferred in
this thesis. Accordingly, in this case, the solution parameters of the BFGS iteration have
the following expressions: p, = s;11 — s; and q; = dL(s;41)/ds — dL(s;)/ds.

5.2.3 Numerical sensitivity analysis

In this thesis, only the mechanical behaviour of sand is calibrated by use of the gradient-
based optimisation method. For the computation of the required gradient of the object
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function df/ds (5.43), which maintains the sensitivities of the simulated quantities ®(s)
with respect to the material parameters s, the momentum balance of the overall aggre-
gate has to be taken into consideration. Following the experimental investigation of the
mechanical behaviour of dry sand with vacant pore spaces via drained triaxial tests, the
fluid pressure p/® = 0 can be neglected (o ~ o%) and the momentum balance of the
biphasic model is reduced to the expression of a single phase material, Ehlers and Avci

[56]. Proceeding from this, the derivation of Gysps (5.2) with respect to s yields

dGu(s,es(s)) _ /da%

1o To. -graddugdv = 0. (5.55)

Q

Therein, the sensitivities of the solid stress a7, to s are the quantities, which have to be
determined, whereas o, depends on the constitutive equations governed by the material
parameters as well as by the solid strain, which, in turn, depends (implicitly) on the
material parameters, too. An implicit derivation of the stress sensitivities reads

doy, 0oy 0oy deg des % ; dug;
=) grad ¢l —— (5.56)
i =1

= + where us s,

ds; 0s; Jeg ds; ds

are the sensitivities of the solid strain eg. Inserting (5.56); into (5.55), a linear system of
equation yields

S d S
630-75 di? -grad dug dv = _/ 6@2? -grad dugdv, (5.57)
Q Q

which can be expressed in a compact form within a time iteration step n:

duSn
dSi

Therein, the term K, is equivalent to the consistent material tangent or the Jacobian
matrix, which is already solved for the global system of equation in Table 5.1, while the
second term is the solution vector of the unknown sensitivity of the displacement dug,,/ds;
and the right-hand side of (5.58) is the so-called global sensitivity load term f?,.

K,

S (5.58)

The presented sensitivity analysis follows the work by Ehlers and Scholz [67] or Scholz
[137]. Based on the Cosserat-continuum theory, they have additionally taken the balance
of moment of momentum into account in order to compute the sensitivities of microp-
olar parameters (Cosserat parameters) controlling the properties of the grain rotations
occurring during the localisation of shear bands.

Computation of f?,

The load term f2 consisting of sensitivities of the solid stress do%,,/0s; = dop/ds;i|ug, is
evaluated at the fixed deformation state (ug, = const.) at time step n. Its computation

For saturated soil (e. g. with air), the triphasic model is reduced to the biphasic model by eliminating

the pore water phase ¢". Thus, the pore-fluid pressure corresponds to the pore-air pressure, pf ;= pA%,
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is carried out using the local set of equations R given in Table 5.3,
R = R"[s, 03,(5), Pu(8). Pu1(8), Any €5pn-1(8)] = 0, (5.59)

in consideration of the internal and hardening dependencies, ¢ = [\, €5,]7 and p =
(83,0, €, v]T. By derivation of (5.59) with respect to s and to the implicit dependencies,
the local system of equations yields

ARl _OR) OR[ dof, ORy* dp, OR) dp,_,

ds Esn_ s doy, ds es, Op, ds|g ~ Op,, ds 560
OR e dA,, IR degpn1 1 . '
0N, ds cs, Oespn—1 ds N

Introducing the generalised stress vector 3, = [o%,, A,, pL]T, the linear system of equa-

tions (5.60) is solved by

-1

~ [ORY OR!* N OR!* dp, , N OR!  degyn 1
Es., B 0%, Js op,_, ds Oespn—1 ds

dx,
ds

) (5.61)

at the Gauss point. Therein, the generalised right-side vector term is summarised by the
already known expressions O R /ds and the sensitivities of the internal and the hardening
parameters €g,,_1 and p,,_; of the last time step n—1. The generalised stiffness matrix is
OR!°°/0%,,, and the unknown solution vector term of the sensitivities is d%, /ds. Hence,
the sensitivity of the load term can be determined by taking do%, /s from the solution
vector and inserting in (5.57) or (5.58), respectively.

Sensitivities of the solid stress, hardening parameters and plastic multiplier

The computation of the sensitivities of ¥, = 3,(s, es(s)) follows the same procedure
as has already been shown in the incorporation of the implicit derivations. Thereby, the
total derivative of 3, relative to s is composed by the partial derivatives,

p— . 2
ds 0s * Oeg, ds '’ (562)

wherein 0%,,/0s is taken from the solution of (5.61) and deg,,/ds is known from (5.56).
The derivatives 0%, /0eg,, are already determined by solving the system of equations in
(5.37).

Sensitivities of the internal variables

Applying the temporal discretisation of (€g,n)y = A€gpn/Aty = (Espn — Espn—1)/Aln,
the sensitivities of €g,, are computed by

deSpn o deSpn—l i dAeSpn

, (5.63)
ds ds ds
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where dAeg,,/ds is the incremental increase of the sensitivities. Due to the time-
dependent history, the variables €g,, are governed by the hardening parameters p,,; the
dependencies €g,, = €spn(S, p,(s)) have to be taken into account for the computation of
the sensitivities of €g,,,. Performing the total derivatives to s with regard to the implicit
dependencies, the sensitivities of Aeg,, result in

dAESpn . 8A€Spn 8€Spn dpn
ds B Js * dop, ds ' (5:64)

Finally, the solutions deg,,/ds in (5.63) and dX,,/ds in (5.62) are inserted into the right-
hand-side vector of (5.61) as known quantities of the last time step for the computation
of the sensitivities of the new time step n = n + 1. Hence, the searched sensitivities
do3,. /0s can be taken out from the new solution dX2,,/ds.






Chapter 6:
Calibration of the Partially Saturated Soil
Model

In this Chapter, the calibration and validation process of the partially saturated soil model
is presented. Based on the principle of phase separation (Ehlers [47]), c¢f. Chapter 4, the
elasto-viscoplastic material model of the solid skeleton is fitted to results from dry sand
triaxial experiments using the optimisation procedure presented in Section 5.2. The vali-
dation of the calibrated model is performed by the computation of small-scale foundation-
and slope-failure experiments carried out on dry sand. Based on these experiments, the
performance of the new failure concept with a variable failure surface (Section 4.2.2) is
compared with the old failure concept with a constant failure surface. On the other hand,
the motion of the pore fluids is identified on deformation-free hydraulic conductivity ex-
periments. Then, the coupled processes of soil deformation and the fluid motion of the
partially saturated soil model is numerically validated by simulation of technical-scale
slope failure experiments by varying the hydraulic as well as the mechanical loading con-
ditions. These slope failure scenarios have been experimentally investigated by Germer
and Braun [77]. However, by the reason of strong variations of the experimental results,
the reproducibility of the experimental results is not yet ensured and is still an ongoing
process of research. Therefore, only numerical investigations of the slope failure scenarios
are presented in this contribution.

Remark: The presented results in this Chapter elaborated in the framework of this thesis
have been already published in the papers Ehlers and Avci [56] and Ehlers et al. [57].

6.1 Mechanical behaviour of dry sand

The elasto-viscoplastic model under consideration is governed by 30 material parameters
to be found from experimental data. Apart from the 4 parameters of the elastic part (4.32)
of the model, the viscoplastic part contains 26 parameters, where 7 (included in Sy and
Sp) belong to the basic yield condition F(o3, p) with 4 of them (p = [3, J, €, 7]7) fol-
lowing the hardening/softening law (4.48) yielding 3 further parameters each. In addition,
the plastic potential G(o%, p) requires 2 (11, ¥») and the viscoplastic evolution (4.41) 3
(n, r, 0¢) additional parameters, while the new failure concept with variable failure surface

(4.49) is based on only 2 ((*3’5, €im) additional parameters.

The identification of the involved material parameters is carried out in two basic steps.
Firstly, the 4 parameters of the elastic part of the model are determined from loading and
unloading loops of both the triaxial compression and hydrostatic experiments. Secondly,
the remaining 26 parameters governing the plastic behaviour have to be identified by
a rather complex procedure. This procedure starts with a rough identification of the

87
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parameters ‘by guess’ in order to receive a good initial parameter set for the numerical
optimisation process. During this process, several types of experiments are considered,
such as monotonically loaded compression and hydrostatic tests as well as stress-path-
depending ones. Moreover, some of the parameters can be fixed during the numerical
optimisation procedure such that the number of the parameters to be determined reduces
to only 14. The final set of parameters is then found on the basis of monotonically loaded
experiments by applying a numerical optimisation strategy.

6.1.1 Calibration of the elasto-viscoplastic model

The triaxial experiments have been carried out with drained conditions and slow loading
velocities (quasi-static conditions). Thereby, pore pressure cannot be developed within
the specimen, p™™ ~ 0. As a result, the effective mechanical solid stresses correspond to
the total mechanical solid stress as well as to the total stress, o3, = o° = o . In regard
of the discussion of the drained triaxial experiments in Chapter 3, no difference between
the total and the effective mechanical solid stresses has to be made, e.g., oy := 0%, , cf.

Appendix A.

Identification of elastic parameters

Cohesionless granular material like dry sand can only carry shear loads via frictional
forces between the grains, which therefore have to be under a permanent confining pres-
sure. Furthermore, starting a loading procedure from a fully unloaded state, the mate-
rial immediately behaves elasto-plastically without a purely elastic domain. Only after
preloading, an elastic domain can be recognised.

From loading/unloading loops of triaxial compression tests with a constant confining pres-
sure of o3 = 0.2 MPa, the shear modulus p® was directly determined from the diagram
(Figure 6.1 (a)). The bulk moduli k5 and kf were obtained by an estimation of the ba-
sis of hydrostatic compression tests with large loading and unloading loops (Figure 6.1

(b)), while the maximal solidity n2 _ was only roughly estimated from hydrostatic stress
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Figure 6.1: Unloading/reloading cycles of (a) a triaxial compression test and (b) a hydrostatic
test of GEBA sand.
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progression, because the compression point cannot be reached by our volume-pressure con-
troller (0¥ = 0.95 MPa). The parameter set of the elastic part of the material behaviour
are listed in Table C.1 together with the initial solidity nJs.

Identification of plastic parameters based on monotonic loading tests

During the identification procedure of the 26 parameters governing the plastic or the
viscoplastic part of the overall material behaviour, respectively, one has to identify the
constant parameters «, x and m as well as the initial and saturation values p;y and 1*)@
of the parameters (3, , ¢, 7. Note that all of them are included in the yield condition
(4.35). Furthermore, the parameters 1); and 1, of the plastic potential (4.42) have to be
found, and the hardening/softening behaviour of the evolution equations (4.48) has to be
fixed by the identification of the volumetric and deviatoric evolution constants C;‘)/z and
Cl . Furthermore, n, r and oy have to be found governing the evolution (4.48) of the

*
viscoplastic strain, while finally C\ and ¢,,,, have to be identified to govern the new failure
concept.

The overall identification procedure was based on the multi-criterion object function
(5.40). Evaluating this for the considered identification problem of plastic parameters,
the following object function results

3 Nt 1 N
t t 2 Vit Vit 2
Spl § § : 01, sim — Ul,exp) + Vit § (8.5' sim 8,5' exp ) +
i—

t=1 0 =1
o (6.1)
V hyd V hyd . .
+ Vhyd Z S sim ES exp) — min
N, hyd €g
with 0%, ~ o — drained condition.

Therein, Ny and Nyyq are the numbers of the considered data points of the compression
(t) and hydrostatic (hyd) experiments. The reference values of, e%¢ and £4,”® taken from
the experiments, which denote the maximal shear and volume- compressmn—strain values,
are used for the normalisation of the data, and sy, is the set of parameters that has to be

determined.

In general, cohesionless material like dry sand cannot carry tensile loads. Thus, the
parameters « and x controlling the range of hydrostatic tension of the yield surface have
to vanish. However, for computational convenience and in order to prevent numerical
instabilities during simulations, where pure tensile stresses may locally occur during the
iteration process, o and k are set to small values in order to avoid singularities at the tip
of the yield surface. Note that these small values have to be chosen carefully, such that the
physical behaviour of the material is basically unaffected. Furthermore, the parameters
governing the shape of the yield or failure function in the deviatoric plane (m, o, ) have
been chosen such that the yield envelope can vary between an initial circle (m, 79) and a

triangle with rounded corners (m, j;) Following this, the ratio R./R. of the compression
(R.) over the extension (R.) radius lies between R./R. = 1 and its maximum value. To
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guarantee overall convexity of the deviatoric yield curve, cf. [48, 49|, m and ~y are restricted
to
V27 _
v < max~y(m) = o3 ™ > 0.54, suchthat 0 <~ < 1.786. (6.2)
m J—
Choosing m = 0.54, the ratio R./R,. can vary between 1 (7 = 0) and a maximum value of
1.584 (v = 1.786). However, it was found that 0 < v < 1.66 is sufficient to represent all
compression /extension radii found during our experiments. This choice also includes the
choice of the evolution parameters CI” and C', where C' is assumed to vanish such that
the deviatoric yield curve only depends on the deviatoric loading and the yield radius is
kept constant during triaxial hydrostatic compression. Furthermore, the failure surface

parameters (. and Elim and the viscoplastic parameters 7, r and oy = x have also been
excluded from the optimisation process. As a result, s; finally includes 14 remaining
parameters to be determined from (6.1).

During the testing procedure, hydrostatic and conventional triaxial compression tests have
been performed, the latter by monotonic shear loading after a constant confining pressure
09 = o3 had been applied, cf. Figure 3.5. In particular, five experiments have been con-
sidered. These are one hydrostatic compression test (hyd) and four triaxial compression
tests (t := 1, ..., 4) with constant confining pressures of o3 = 0.05, 0.1, 0.2 and 0.3 MPa,
cf. Figure 6.2. During the compression tests, the axial load was displacement-controlled
applied to the specimens with a velocity of 4; = 0.5 mm/s. The solution of the non-linear
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Figure 6.2: Triaxial compression tests and numerical simulations: (a) stress and volumetric
strain vs. longitudinal strain and (b) stress progression in the hydrostatic plane.

optimisation problem (6.1) is carried out with the gradient-based SQP by use of the BEGS
method, cf. Section 5.2.1. The numerical error is computed by the sum of the squared dif-
ferences between the numerical and experimental values using the Least-Squares Method .
The major advantage of the gradient-based method are the low computational costs due
to a semi-analytical determination of the sensitivities, which are required for the effective
solution of the minimisation problem (6.1). During the sensitivity analysis, the main
task is the computation of the gradient of the object function f(sp) with respect to the
material parameters s, cf. Section 5.2.3.

Starting the identification procedure on the basis of a suitable guess of an initial parameter
set, the parameters could be found by (6.1) as is shown in Table C.1. Furthermore, the
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four laboratory compression tests and their numerical computation with the parameters
of these tables are shown Figure 6.2. It is seen from Figure 6.2 (a) that the optimisation
procedure led to a good agreement between the numerical and the experimental results.
Figure 6.2 (b) illustrates the increase of the deviatoric stresses in the hydrostatic plane up
to failure values. In the standard interpretation of the failure concept, the failure values
of the deviatoric stresses of the different compression tests are assumed to be on one
fixed failure surface, cf. Figure 6.3 (black line), while the new failure concept presented
here implies individual failure surfaces 1-4 for each of the four peak shear stresses. As
a matter of fact, the standard failure concept is constrained by a rather large failure
surface in order to reproduce all possible peak-shear stresses occurring between the lowest
and the highest confining pressure o3. The detailed sub-figures of Figure 6.3 exhibit the
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Figure 6.3: Fixed failure surface with the old failure concept and stress-dependent failure
surfaces of the new failure concept.

experimentally determined failure stresses of the four compression experiments and their
numerical counterparts after parameter optimisation. The results of these sub-figures are
twofold. On the one hand, it is seen that the experimental results could be matched with
only very little deviations. On the other hand, it is furthermore seen that the fixed failure
surface does not necessarily encase the failure surfaces 1—-4 of the new concept.

To give an example of the complex hardening/softening and failure behaviour of granular
material, consider the experimental results and their numerical counterpart of the triaxial
compression experiment with a constant confining pressure of o3 = 0.2 MPa as is shown
in Figure 6.4 (a). The evolution of the yield surface is naturally a continuous process,
which is numerically realised by growing (hardening) or shrinking (softening) the yield
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Figure 6.4: (a) Triaxial compression test and (b) evolution of the yield surfaces.

envelope at each time step of the computation as long as the piston is driven into the
specimen. During the experiment exhibited in Figure 6.4 (a), a continuous displacement-
controlled loading process is applied. While the loading passes the stress points [-V, a
hardening (I-IV) and a softening behaviour (V) are observed, cf. Figure 6.4 (b). The
experiment starts by applying an initial hydrostatic load (stress point I) corresponding to
the confining pressure of o3 = 0.2 MPa. During this hydrostatic loading, only little plastic
hardening is generated. As a result, the blue yield surface I in Figure 6.4 (b) is rather
small. Thereafter, a shear load is applied by increasing the top load towards stress point
IT, which generates plastic deformations as the grains start slipping into a denser packing,
thus causing a rapid increase of the yield envelope, compare the green curve Il in Figure 6.4
(b). Note again that the densification during the shear loading is stronger, when a higher
confining pressure is applied. Despite of the increasing dilatation of the sample between
stress points [[-1V, further shear loading yields a furthermore growing shear envelope up
to the peak stress IV with small hydrostatic softening between III and IV. This behaviour
is described by equation (4.48), where the deviatoric and volumetric hardening evolves
separately. However, despite of the volumetric decrease (loosening) of the yield surface,
it is still growing in the deviatoric direction until the final hardening surface IV (failure
surface) is reached. This behaviour is due to an increase of frictional forces between the
grains generated by increasing frictional stresses as a result of an increasing top load, only
limited by the maximal deviatoric stress or the peak stress, respectively. After the peak
stress is reached, further loading is only possible with decreasing shear stresses, while
the deviatoric hardening is terminated, and the growing volumetric dilatation reduces the
frictional forces between the grains, thus leading to stress softening. Therefore, the smooth
stress softening between the stress points IV and V is a result of the strong dilatational
behaviour and causes a rapid loosening of the intergranular structure. This behaviour is
approximated by a volumetric shrinkage of the yield surface (softening) until the final size
V is reached in this experiment.

The non-circular (anisotropic) plastic response of the deviatoric yield envelope of sand
during shear loading results in an increasing ratio R./R. from R./R. ~ 1 towards its
maximum value. In order to capture this behaviour, six monotonic shear-load experi-
ments (3 triaxial compression experiments and 3 triaxial extension experiments) at con-
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stant values of the first stress invariant I, have been carried out following the loading
path in Figure 3.6, while the results are presented in Figure 6.5. The confining pressures
of these experiments have been set to o3 = 0.1 MPa corresponding to the stress invariants
I¢ =1¢ = —0.3MPa, to 03 = 0.2MPa (IS¢ = 1¢ = —0.6 MPa) and to o3 = 0.3MPa
(I¢ =1¢ = —0.9MPa). With increasing values of v at constant m, the circular devia-
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Figure 6.5: Triaxial compression/extension tests with constant stress invariants 19/ (a) shear
stresses vs. strain and (b) shear stresses in the hydrostatic plane.

toric envelope evolves towards a triangular shape with rounded corners, cf. Figure 4.1.
In Figure 6.5 (b), the stress paths are shown in the hydrostatic plane for each of the
three compression and extension experiments, where the respective ratios R./R. at the
limit state are (R./R.)%*/(R./R.)"%/(R./R.)*?=1.25/1.38 /1.51. Hence, the higher
the state of hydrostatic pressure is, the greater is the increase of the ratio R./R, or the
anisotropic behaviour of sand, respectively.

In case of only monotonic triaxial experiments, the old failure concept with a fixed failure
envelope is able to capture the stress-strain behaviour of the compression calibration
experiments just as nicely as the new failure concept, cf. Figures 6.1, 6.2 and 6.5, but
it will fail to reproduce the failure behaviour of the stress-path experiments taken as a
validation of the new model. On the other hand, it will be shown how nicely the new
concept can be verified reproducing the experimental evidence of foundation- and slope-
failure problems.

6.1.2 Loading-path-dependent stress-strain behaviour

Stress-path test 1

The stress-path test 1 is carried out as a validation experiment according to the schematic
diagrams of Figure 3.12 (a), where a conventional monotonic compression test in the hy-
drostatic stress plane is shown. In the experiment corresponding to these figures, loading
and unloading is carried out in various steps. In the first step, a hydrostatic pressure is
applied up to a confining pressure of o4 = 0.3 MPa at stress point P1. Thereafter, the
sample is loaded in the o;-direction, thus initiating an increasing shear stress at constant
confining pressure until the peak stress is reached at stress point P2. After shear-stress
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Figure 6.6: Experiment and simulation of the stress-path test 1 with growing and fixed failure
surfaces.

unloading, the confining pressure is reduced to o' = 0.05 MPa at stress point P3, and
then sheared again up to P4 followed by a reduction to P5.

In Figure 6.6, the experimental results of the non-monotonic stress-path test 1 are indi-
cated by circles, while the associated numerical computation is shown by the red solid line.
Apart from this, the black crosses exhibit two further conventional monotonic experiments
taken at o't = 0.05 MPa and £ = 0.3 MPa. These experiments have been included in
the overall parameter determination procedure described before. Here, these experiments
are used for a comparison of monotonic and non-monotonic stress paths. Following the
red line at 012 = 0.3 MPa up to the peak stress corresponds to a shear loading between
P1 and P2, also compare Figure 3.11 (a). Thereafter, the shear stress is completely re-
duced and the confining pressure is changed towards of'! = 0.05 MPa (P3). Reloading
at o' = 0.05 MPa basically follows the crossed curve of the conventional (monotonic)
experiment. However, it is seen from the zoomed region of Figure 6.6 that the shear
stress firstly exceeds the peak shear stress that was obtained during the conventional ex-
periment at o' = 0.05 MPa before it reduces to the crossed curve. This behaviour is
schematically included in Figure 3.12 (a), where the exceeded value is indicated as P4
belonging to the experiment with the failure envelope reached at P2 with the confining
pressure of o4’ = 0.3 MPa. Since loading beyond P4 is driven displacement-controlled,
further shearing disturbs the intergranular structure, the shear stress is unstable at the
actual hydrostatic pressure and reduces to P5 belonging to stable values of the monotonic
experiment at 04! = 0.05 MPa and the green failure surface included in Figure 3.12 (a).

These experimental results confirm the assumption of stress-dependent failure surfaces,
cf. Figure 3.12 (a), and furthermore show that granular material always tries to keep the
size of the yield surface as small as possible, which obviously corresponds to stable stress
states as they are obtained by monotonic loading.

Moreover, when comparing the old failure concept to the new concept presented here,
there are no differences in the reproduction of the stress-strain behaviour during the
stress paths towards P1 and P2. The strength of the new failure concept only becomes
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apparent, during the stress paths from P2 towards P3, P4 and P5, where the experimental
results cannot be reproduced with the old failure concept with its constant shape.

Stress-path test 2

The stress path of this validation experiment is basically shown in Figure 3.11 (b) and
Figure 3.12 (b), where the loading is governed by the following order:

1. hydrostatic loading up to o2 = 0.05 MPa (P1),

2. first shear loading until the peak stress (P2) is reached at constant oi’!,
3. shear unloading followed by an increase of the confining pressure up to of? =

0.2 MPa (P3),
4. second shear loading until the peak stress (P4) is reached at constant o£/2

5. second shear unloading followed by a reduction of the confining pressure towards
olll = (0.05 MPa (P5),

6. third shear loading at constant oZ'* firstly reaching P6 at the red failure surface of
Figure 3.12 (b), while further loading leads to a softening back to P7 equivalent to
P2.

In a standard elasto-plastic process with hardening properties, the yield curve is reached
again after having passed a loading and an unloading process, when the applied stress
again reaches the greatest stress state obtained so far. Reloading up to this point is purely
elastic, while further loading is governed by the hardening process. In the stress-strain
diagram, cf. Figure 3.11 (b), this is seen from a switch of the loading curve from linear to
highly non-linear at the yield point, which is also indicated in Figure 6.7.
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Figure 6.7: Experiment and simulation of the stress-path test 2.

However, in case of granular material, each yield stress belongs to a certain state of the
confining pressure. Whenever the confining pressure is changed, the corresponding yield
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stress also changes. Following this, the yield-stress values of a stress-path test can only
be determined by the change of the stress-strain relation.

Considering the experimental results of the stress-path test 2 exhibited in Figure 6.7, the
stress-strain relation during the second shear loading, where the confining pressure has
been increased from of! = 0.05 MPa to o? = 0.2 MPa, shows |o; — o3| ranging between
zero shear stress and the peak value at point 8. It is furthermore seen that the stress-strain
relation exhibits a linear curve only between zero and point 5. Thereafter, a non-linear
behaviour is observed with a steady increase of plastic deformations, which can only be
captured using the new failure concept (4.49). In contrast, the old failure concept is only
able to model the shear-stress-strain relation during this stress path up to the yield point
5. Thereafter, the old failure concept follows the assumption of only elastic deformations

along the straight line until it reaches the failure curve at o¥? = 0.2 MPa of the monotonic
experiment.
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Figure 6.8: Computational results of evolving yield surfaces during the stress-path test 2: (a)
first shear loading at oi', (b) unloading and second shear loading at 052 (c) unloading and
reduction of 042 to o4, (d) third shear loading and softening at oi'!.

For a better understanding of the yielding behaviour during the loading path of Figure
6.7, the evolution of the yield surface of the new failure concept is presented at selected
states of the stress path through the points 1-11 indicated by white circles. Following
this, the evolving yield surface shown in Figure 6.8 (a) reaches the failure surface at the
peak stress during the first shear loading at point 4 corresponding to the failure surface
4. Tt should be noted that the yield surface 3 exhibiting the maximal hydrostatic stress

must not necessarily be a failure surface. The crucial factor of failure is the size of the
failure surface in the deviatoric direction.
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Following the second shear loading, cf. Figure 6.8 (b), it should be recognised that the
stress points 4 and 5 are on the same yield envelope, where, in case of the second loading,
the failure surface 4 of the first loading is stabilised by a higher confining pressure and,
therefore, changes its character towards a yield surface. Further loading between stress
points 5 and 8 leads to an extension of the yield envelope during plastic hardening governed
by (4.49) until the failure surface 8 is reached. Shear unloading and reducing the confining
pressure to o4t = 0.05 MPa, cf. Figure 6.8 (c), leads to stress point 9 during the third
shear loading process, cf. Figure 6.7 (extracted detail). Point 9 firstly belongs to the
failure surface 8. However, further compression immediately reduces the size of the yield
surface from 9 to 11 during softening again governed by (4.49), cf. Figure 6.8 (d). Note
that the applied stress paths are indicated by green arrows in Figure 6.8.

Stress-path test 3

The influence of a hydrostatic preconsolidation on the shear-stress-strain behaviour is in-
vestigated by two further validation experiments following the stress-path test 3, where
the corresponding loading path is illustrated in Figure 3.13. Applying a hydrostatic pres-
sure, the specimen reaches the stress point P1 only governed by the maximum value of
the volume-pressure controller at ¢’ = 0.95 MPa corresponding to I, = —2.85MPa.
Thereafter, the confining pressure is reduced to of! = 0.05 MPa or to ¢4 = 0.1 MPa
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Figure 6.9: Preconsolidated triaxial compression tests with confining pressures of agﬂ =
0.05 MPa and i = 0.1 MPa: (a) shear stress vs. longitudinal strain, (b) hydrostatic stress
vs. volumetric strain.

at P2, respectively, and the specimen is sheared towards P3 while keeping the respective
confining pressure constant.

The results of these experiments and the corresponding numerical simulations are shown
in Figure 6.9, cf. Figure 3.13 (b). Figure 6.9 (b) exhibits the preconsolidation process
versus the volumetric strain ranging from zero to approximately 0.014. Thereafter, the
hydrostatic unloading is applied and kept constant during shear loading. From Figure
6.9 (a), a linear elastic behaviour of the stress-strain curves is observed until the white
circles are reached, whereas the monotonically loaded samples do not show a purely elastic
behaviour, compare, for example, Figures 3.9 and 6.4 . This is due to the fact that the hy-
drostatic preconsolidation results in an extension of the yield surface from approximately
zero to a certain extent, while the conventional compression tests without preconsolidation
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exhibit elasto-plastic deformations and plastic hardening up to the failure load during the
whole shear-loading process. However, comparing the peak-stress values of the preconsol-
idated sample with the monotonically loaded reference compression tests with the same
confining pressures of of! = 0.05 MPa and o? = 0.1 MPa, cf. Figure 6.2, it is found
that the failure behaviour is only marginally influenced by preconsolidation, cf. Figure
3.13 (b). This effect can also be explained by the development of the yield surface during
the preconsolidation process, where the main increase of the yield envelope is obtained in
hydrostatic direction, while there is only a very small increase in the deviatoric direction.
As a result, the deviatoric yield curve approximately remains a circle with R./R, ~ 1.

Figure 6.10 (a) exhibits the development of the yield surface during preconsolidation
with the final black dashed-dotted line, while Figures 6.10 (b) and (c¢) show the different
hardening-softening curves at of’! (b) and o4 (c). It is also seen from these figures that
shear loading following the hydrostatic preconsolidation firstly extends the yield surface
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Figure 6.10: Evolution of the yield surface: (a) preconsolidation phase up to 17?2 = —2.85 MPa,
(b) shearing phase at constant o4/ = 0.05 MPa and (c) at constant o2 = 0.1 MPa.

in the direction of deviatoric compression up to the failure surface at the peak stress and
shrinks thereafter due to softening, while the hydrostatic extension also shrinks, cf. the
dashed lines with direction arrows included in Figures 6.10 (b) and (c).

Finally, it is concluded from the experiments on granular material that the plastic yield-
ing during pure hydrostatic loading is limited by the stiff grains, which are rigid and
uncrushable under moderate pressures usually found in geotechnical applications. Thus,
hydrostatic loading under such a moderate pressure is not restricted by the failure limit.
This can be concluded from the knowledge that an increase of the hydrostatic pressure
finally does not cause the grains to slide into a denser packing. As a consequence, the
hydrostatic evolution of the yield surface is terminated, and the volumetric elastic stress-
strain curve tends towards a vertical tangent, cf. Figure 6.9 (b).

6.1.3 Numerical model validation via simulation of sand box ex-
periments

The large number of material parameters results in a difficult and not always unique
parameter identification process based on the experimental evidence. As a result, it is
basically possible that there is more than only one parameter set sufficient to match
homogeneous triaxial experiments. This possibility led to a further restriction of the
physical range of parameters by not only considering monotonically loaded experiments
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but also stress-path-depending ones. To check whether or not one can rely on the physical
model and the included material parameters when field problems have to be evaluated,
it is useful to control the whole model by the numerical simulation of non-homogeneous
validation experiments. Obviously, the validation experiments must proceed from the
same initial solid density like that of the triaxial experiments used during the overall
parameter identification procedure.

The validity and application of the used model was proven through the computation of
foundation- and slope-failure problems initiated by local shear-failure events. However,
other failure problems can be also picked out from the range of possible validation ex-
periments. In particular within the framework of this thesis, an experimental sand box
has been constructed to carry out 3-d foundation- and slope-failure tests, approximately
restricted by plane-strain conditions resulting from rigid sand-box walls.

Sand box

The experimental sand box is 50 cm long, 30 cm wide, and 27 cm high. Its mainly con-
sists of steel, except of the front and back sides, which are made of glass such that the
development of shear bands can be observed, cf. Figure 6.11 . For a better visibility of the
shear bands, stripes of black-coloured sand have been inserted in vertical columns at the

Figure 6.11: (a) Experimental box and (b) mechanical device for adjusting the slope angle.

glassy side walls of the box. The frictional forces between the sand and the glass were
eliminated by applying lubricated transparent latex sleeves with a thickness of 0.35 mm
on the inside of the glass walls. When the box is filled, the GEBA sand is compacted on
a vibration table until the same initial solid density of pjs¢ = 1.55¢g/cm? (dense sand) is
reached, which was also used for the triaxial experiments.

In order to prepare the setup for the slope-failure experiments, a slope was created by
pushing a thin steel plate into the sand with an angle of either 20° or 30°, while the
remaining sand above the plate was removed. In order to avoid any boundary effects on
the foundation-failure experiment, one has to consider that the horizontal projection of
the expected shear band yields approximately 13 times of the load plate width, which was
experimentally and numerically determined by use of load plate widths of 3 and 5cm . Fi-
nally, a load-plate width of 3 cm was chosen in order to avoid any disturbing effects on the
shear-band evolution obtained from the left and right walls of the box. Furthermore, the
slope- and foundation-failure experiments have been performed displacement-controlled
at a velocity of 1 mm/min under 2-d plane-strain conditions.



100 6 Calibration of the Partially Saturated Soil Model

2-d failure experiments and numerical simulation

Figure 6.12 shows the geometry and the dimensions of the foundation- and slope-failure
experiments used for the validation of the proposed model and the included parameter
set. For the numerical simulation of the failure experiments by use of the finite element
method, the spatial domain is separated in two discretisation areas, where the area with
the expected shear band is discretised with a finer triangular mesh than the remainder
of the computation domain. This will lead to a finer and more realistic resolution of the
shear band and will simultaneously help to reduce the computation time.

50 15 22 13 19.7 17.3 13

IBI i 18 2 iw 3

Figure 6.12: Geometry and dimensions of the experimental box tests [cm].
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The shear bands of the foundation- and the slope-failure experiments are illustrated in
Figure 6.13 (b) and (d) together with the corresponding numerical simulations depicted
in Figure 6.13 (a) and (c). The evolving shear bands are detected by the norm ||eg,||
of the accumulated plastic strains, where small negligible values below 0.06 have been
deleted for clarity reason. Note that the foundation-failure experiment was computed by
assuming axial symmetry in order to reduce the computation time. A visual investigation
of the computed shear bands reveals an almost identical shape in comparison with the
experimentally obtained shear bands of Figure 6.13 (b) and (d).

lespll < 0.2
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Figure 6.13: Failure sand-box experiments and numerical simulations of shear bands illustrated
by |lespll: (a) and (b) foundation-failure problem, (c) and (d) slope-failure problem with a slope
angle of 20°.

The corresponding stress-displacement curves of the load plate are shown in the diagrams
of Figure 6.14. Therein, Figure 6.14 (a) presents the numerical results obtained with the
new failure concept by application of equation (4.49), while Figure 6.14 (b) shows the
results of the simulations using the old failure concept with a fixed failure surface.
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In general, the proposed new failure surface performs very well, as it is able to almost
exactly match the measured results of all three experiments. In this regard, even the
softening behaviour is nicely reproduced. Considering the numerical results of the old
failure concept, cf. Figure 6.14 (b), neither the peak stress nor the softening is reason-
ably captured. The reason for this poor performance of the old concept is found in the
hydrostatic stress levels during the failure experiments, which may strongly differ from
the hydrostatic stress levels during the calibration experiments for which the fixed failure
surface was exactly adapted.

new failure concept old failure concept

Figure 6.14: Stress-displacement curves for the foundation-failure experiment (found.) and
both slope-failure experiments with slope angles of 20° (slope®®) and 30° (slope®®) computed by
(a) the new failure concept and (b) the old failure concept.

It is concluded from these results representing non-homogeneous deformations of granular
material that a fixed failure surface, although it can reproduce specific calibration exper-
iments, completely fails in case of general applications with different hydrostatic stress
levels. In contrast, the new failure concept allows to compute suitable failure surfaces for
every shear-stress level at any corresponding hydrostatic stress, which leads to a better
approximation of the failure behaviour of an arbitrary initial-boundary-value problem.
Moreover, Figure 6.15 shows the evolution of the yield surface in point A of Figure 6.13
(a) at the initial state (initial y-s), at the failure state (f-s), and at the end of the softening
(y-s after softening) during the foundation-failure simulations. The results obtained with
the new failure concept are shown in Figure 6.15 (a), while the results based on the old
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Figure 6.15: Evolution of the yield surface in point A during the foundation-failure simulation
at different calculation times using (a) the new failure concept and (b) the old failure concept.
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failure concept are depicted in Figure 6.15 (b), in both cases with the initial yield sur-
face in green. The stress states reached initially (approx. at the origin of the coordinate
system), at failure and after softening is indicated by black points on the yield surfaces.
However, the failure and softening values of the old failure concept can only be seen in
the extracted detail of Figure 6.15 (b) because of the enormous size of the yield surface at
the failure state. A comparison of the black stress points at failure with the circles at the
theoretically highest deviatoric stress reveals that the yield surface of the old failure con-
cept predicts a more than 10 times larger failure surface in comparison to the new failure
concept. Thus, the old failure concept yields large plastic deformations when increasing
the yield surface until the failure surface is reached at peak loading. Furthermore, it
also needs high plastic deformations to shrink the large yield surface towards softening
behaviour. Hence, the peak stresses of all three simulations obtained with the old failure
concept are reached at larger deformations compared with the experiments. Finally, there

is almost no prediction of a stress decrease after having passed the peak stress, cf. Figure
6.14 (b).

6.2 Model calibration of the mobile pore fluids

The hydraulic properties of the GEBA sand are determined on the basis of the experi-
mental data provided by VEGAS* using the van Genuchten capillary-pressure-saturation
relation given in (4.59) and (4.58). The adapted hydraulic parameters are listed in Table
C.2. In Figure 6.16 (left), the experimental results and the fitted curve of the capillary
pressure-saturation relation are shown. For the relative permeability relations of the fluids
in (4.59), no experimental data were available. Therefore, the dependency of the fluid
permeabilities on the saturation of the GEBA sand is chosen equivalently to that of a
typical uniform fine sand, see Figure 6.16 (right).
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Figure 6.16: (left) Capillary pressure-saturation-relation and (right) relative permeability func-
tions.

*VEGAS (Versuchseinrichtung zur Grundwasser- und Altlastensanierung) - Research Facility for Sub-
surface Remediation of the University of Stuttgart
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6.3 Numerical study of slope instabilities under differ-
ent hydraulic and mechanical loading scenarios

In this subsection, the influence of capillary and flow effects on the deformation and
stability behaviour of slopes is investigated. To this end, using the previously described
and calibrated triphasic TPM model, numerical simulations of a technical-scale sand slope
under different loading and hydraulic conditions are carried out and compared.

6.3.1 The slope conditions

A sketch of the slope is depicted in Figure 6.17 (left). The boundary conditions of the slope
problem are adapted in such a way that they mimic the supposed mechanisms which might
trigger real hillslope instabilities. In particular, the following boundary conditions have
been implemented: a uniformly distributed mechanical load (force controlled) excited
by a rigid but movable loading platen on top of the slope to determine the maximum
failure load ¢, as an indicator of the slope stability. Moreover, hydraulic conditions
are prescribed by independently increasing or decreasing the water head on the left ()
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Figure 6.17: (left) Geometry and dimension of the slope in centimetres and (right) computed
water saturation for a water table on the left side of the slope (h,;) = the water head on the
right side of the slope (hy,) — 10cm; q is the mechanical load and sV is the water saturation.

and the right (h,,) boundary of the slope or by increasing the pore-water pressure at the
bottom under the slope intersection (k). Please note that the considered GEBA sand
is very fine and exhibits a distinct partial saturated zone of about 100 cm. Accordingly,
proceeding from a constant water head of h,; = h,, = 10 cm as the initial condition for
the unsaturated slope simulations, the domain is more than 80 % saturated with water
up to a height of about 58 cm, cf. Figure 6.17 (right).

The computations were carried out by using the same discretisation of the domain for all
slope cases, cf. Figure 6.18 . The part of the slope where the expected shear band develops
is much finer discretised in order to be closer to the right solution. The complete number
of the triangle finite elements amounts to 11 347. Based on the quadratic ansatz functions
for the displacement ug and the linear interpolation approach of the fluid pressures p"V#
and pA%, the fine discretisation of the slope leads to a high number of degrees of freedom
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Figure 6.18: FE mesh with 11347 triangle elements.

(dof) of 147511 and, therewith, to a high computation time. But the good resolution of
shear bands confirms the choice of the fine mesh.

6.3.2 Numerical results and discussion

In Table 6.1, all computed failure scenarios are listed, where for all cases the load is
applied linearly increasing with time, ¢(¢t) = 10tkPa/min. In addition to the partially
saturated conditions, the dry case without considering the water phase using a reduced

parameter case Dry case A case B case C case D
P [cm] - 10 65 10 10 (initial)
Py [cm /s] - 10 11/600 - 11;11/600
har [cm] - 10 10 10 10
Praom [cm/s] - - - 11;11/600 -
thyd 3] - - - 30.8; 264 20.7; 647
@maz kP2 ~ 138 ~ 230 ~ 153 ~ 220 ~ 220

- J AN J N AN J

Table 6.1: Boundary values and loading data of the investigated slope scenarios.

biphasic model was numerically investigated. The slope in the dry case and the cases
A and B is loaded until failure, but in A and B only after reaching a stationary water
table controlled by h,; and h,, . In contrast, the cases C and D are first loaded by ¢ to a
maximum of 220 kPa, which is below the failure load of case A, and afterwards subjected
to changes in the hydraulic conditions. In particular, in case C, the water head below
the slope intersection is increased with two velocities of f,, = 11cm/s (the fast case)
and (11/600) cm/s (the slow case) starting from the initial water table of 10 cm, while the
water head at the left and right side of the slope is kept constant at h,; = hy, = 10cm.
In case D, the water level on the left side is increased in the same way as case C with the
water head velocity f,; =11 cm/s and (11/600) cm/s.
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It becomes directly apparent from the failure loads in Table 6.1 that there is a significant
influence of the water saturation. Comparing the dry case with case A, there is an increase
of the maximum load prior to failure of about 92 kPa (66,7 %) which can only be explained
by the stabilising capillary pressure effects in the partially saturated zone. Even in case
B, where the pore-water flow driven by the hydraulic gradient destabilises the slope, the
computed peak load is still 15kPa (10,9 %) above the one of the dry case.

In Figure 6.19 (left), the water table at failure for case A is visualised, which shows a
slight drawdown under the slope. This can be explained by the fact that a dilatant shear
band develops sucking pore water from the surrounding into the localisation zone, which
is confirmed by the streamline pathways depicted in Figure 6.19 (right). In Figure 6.20,
the water table, the streamlines and shear bands of case B are given. Also in this case, the
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Figure 6.19: Case A at time 1389s: (left) water table (w-t) at slope failure and (right) stream-
lines of water seepage flow and shear band.
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Figure 6.20: Case B at time 1290s: (left) water table (w-t) at slope failure and (right) stream-
lines of water seepage flow and shear band.

accumulation of dilatant plastic strains yields a destabilising shear band which develops
faster than in case A because of buoyancy and flow effects induced by the increased water
head at the left boundary. Please note that the maximum value of A, is chosen such that
the water table does not exceed the slope intersection to avoid the erosive leak of water
at the slope side. From the streamlines of the water seepage flow (Figure 6.20, right), it
is clearly seen that the pore water flows from the left to the right side through the slope
without passing the slope intersection. Moreover, it is observed that the streamlines at
the left side of the slope move upwards because of the capillary effects and of the evolving
dilatant shear band. The suction of water into the dilatant shear zone is not that much
pronounced as in case A as this effect is superposed by the pore-water flow driven by the
potential difference.
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In case C, after applying the top load of 220 kPa, an increase of the pore-water pressure
under the slope intersection triggers the destabilisation of the slope. The pressure source
is located 125cm away from the left boundary of the slope as depicted in Figure 6.17
(left) and has a width of 5cm. In case D, the water head h,,; at the left boundary of
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Figure 6.21: Case C: (left) water table (w-t) at failure (higher dividing line: Pupm — 11 cm /s;
lower line: hyy, = (11/600) cm/s) and (right) streamlines of water seepage flow and shear band
at 30.8s after increase of the load (the fast case).
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Figure 6.22: Case D: (left) water table (w-t) at failure (higher dividing line: Pupm — 11 cm /s;
lower line: hyy, = (11/600) cm/s) and (right) streamlines of water seepage flow and shear band
at 20.7s after increase of the load (the fast case).

the slope is increased. For both cases, the maximum achievable height of the water head
is 65 cm, which is applied within different time intervals in order to find out if a fast
increase of the pore-water pressure or the water head, respectively, has any influence on
the stability habits of the slope. It is observed that the slope failure triggered by a slow
increase (11/600cm/s) of fyy, and hy, in cases C and D, respectively, occurs at a lower
water table than for a fast increase (11 cm/s) as depicted in Figures 6.21 (left) and 6.22
(left). Apparently, the slope instability is not only dependent on the absolute height of
the water table but also on the increase rate of the pore pressure or the water head,
respectively. Transferring this finding to real hillslopes may explain why landslides also
happen during or after long-lasting but moderate rainfall events associated with a slow
but continuous increase of the water table.

To illustrate the shear band development, the accumulated plastic strains at different
time states for case C are shown in Figure 6.23. As can be seen, the shear band originates
from the load platen and from the intersection of the slope, which finally join together
building a smooth slip line, whereby the shear band proceeding from the slope intersection
mainly evolves. After the mechanical load is applied, only marginal plastic deformations
occur at the load platen, which do not affect the overall stability of the slope before the
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Figure 6.23: The accumulated plastic strains ||egp|| of Case C (the 5-s case): (left) the inter-
mediate state at 20.7s and (middle) 27.3s after applying the load, and (right) the state at failure
at 29.4s.

hydraulic loading is initiated. Figure 6.23 (left) depicts the beginning of the shear-band
development after the first 20.7s of the hydraulic loading process, which in the course of
the continuously increased water pressure develops very fast within the next 7-9s until
failure (Figure 6.23, right). In these stress-controlled simulations, the failure point has
been defined as the state, where a sudden displacement increase of the load platen is
observed. In fact, test case C was born from the idea that some natural slopes may get
unstable due to an inherent confined water system that directly responds to rainfall events
with a sudden pressure increase under the slope intersection.

In Figure 6.24, the load-settlement curves of the load platen are plotted for all cases of
Table 6.1. Clearly, the curves underline the aforementioned considerable positive influence
of the capillary effects on the slope stability. Regarding the time-settlement u—t and time-
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Figure 6.24: Load-displacement curves of the load platen; q is the mechanical load and u is
the vertical displacement.

water-pressure p"V -t curve in point A (see Figure 6.17) of the load platen of cases C and
D plotted in Figure 6.25, it is observed that the failure behaviour is rather dependent on
the increase rate of hm Or hy, respectively, than on the type of the hydraulic boundary
condition. Therein, lines with triangles are the fast cases and that ones with squares
are the slow cases of hydraulic loading. Tt is clearly recognisable that the slope failure
is induced with a fast increase of the water head at a higher water table. Moreover, in
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Figure 6.25: Displacement and water pressure in point A (see Figure 6.17) versus time pro-
ceeding of (left) cases C and (right) case D.

case C, the failure of the fast one occurs in 30.8s, while, in case D, it occurs in 20.7s.
However, for the slower case C, the failure happens (264s) much earlier than in case
D (647s). The reason therefore could be that in case D, the fast increase of the water
table weakens almost the whole slope due to the high water table, while the influence
in case C is constrained to the local surrounding at the water injection point near the
slope intersection. In contrast, the slow case C fails clearly rather (264s) and at lower
pore water pressure pV# ~ 1kPa in point A (Figure 6.24) as the corresponding case D
(647s) and (p"% ~ 1.55kPa). The reason for this is that the slope intersection reacts
more sensitive to the loading of case C than of case D. Therefore, the slope fails earlier
and at a lower pore-water pressure.

Furthermore, the water pressure drops rapidly with an evolving dilatant shear band. The
pressure drop in the vicinity of the shear band may be a signal for the development of a
slope failure due to a continuous increase of plastic deformations. This phenomenon may
be used as a failure indicator for potentially dangerous natural slopes (Ehlers et al. [57]
and Germer and Braun [77]|). The coherences between a pore-water pressure drop and
the slope movement can be detected in the field of natural slopes and has to be found out
by detailed field investigations via long-term monitoring systems.

Although our numerical results are physically sound and clearly reveal the considerable
influence of capillary and flow processes on slope instabilities, there is still the need of
experimental evidence to verify our findings on a quantitative basis. Therefore, our re-
search partners from VEGAS constructed a technical-scale sand slope experimental setup
for testing the presented cases (see Germer and Braun [76, 77]).



Chapter 7:
Numerical Investigation of a Slow-Moving
Landslide

In this chapter, a numerical investigation of a natural hillslope is presented. The slope un-
der study is the ‘Heumds’ hillslope, which is continuously moving with a low motion rate.
It is of utmost interest to know, under which boundary and loading conditions a sudden
landslide may happen. Therefore, to investigate the characteristics of this slope motion,
a DFG founded Research Unit* was founded in 2006. Regarding the complexity of the
coupled flow and deformation processes and geological structure of the Heumeos hillslope
demands an interdisciplinary research team consisting of specialists in their individual
research field of hydrology, geologic, geophysics and computational geomechanics.

The chapter begins with a brief introduction of the general characteristics of the hillslope,
where detailed geological information on the Heumos slope can be found in the work of
Lindenmaier [107] and Wienhofer et al. [178]. The idealisation process of the slope for a
numerical treatment is still a great challenge due to the high complexity of the hydraulic
processes, the slope geometry and its strongly heterogeneous material distribution. For
that reason, numerical investigations of the Heumos hillslope have been firstly restricted
to 2-d model approaches along a significant cross section. This cross section has been
profoundly investigated and structured by Rumpf et al. [131], while Ehlers et al. [57]
have numerically examined a simplified cross section of the slope based on Lindenmaier
[107]. Due to missing of some important substructural and geometrical information, the
deformation process of the Heumds slope could not be correctly reproduced on the basis
of this cross section.

7.1 Characteristics of the hillslope

The Heumds slope near the village Ebnit shown in Figure 7.1 is located in the Vorarlberg
Alps in Austria close to the city Dornbirn. The slope has a length of about 2km, a width
of 500 m and spans a height difference of 400 m. The hillslope body is very heterogeneous
with the slope material consolidated in the Rhine Glacier period for more than thousand
years, where the slope was covered with an ice layer thickness up to 1000m. In Figure
7.2, the motion rates of the slope are marked with red ellipses. Therein, the slope is
categorised in three parts depending on the motions rates (Depenthal and Schmitt [37]).
The northern part of the slope is moving downhill to the east with a measured cumulative
surface displacement of about 10 cm per year, whereas the lower part is more active with

*The Research Unit 581 with the title ’Coupling of flow and deformation processes for modelling the
movement, of natural slopes’ has been founded to investigate the slow-motion process of the Heumés hill-
slope. This project was supported by the Deutsche Forschungsgemeinschaft (DFG). Detailed informations
concerning the project can be found at http://www.grosshang.de.
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Figure 7.1: The Heumds slope in Ebnit, Vorarlberg (Austria): (left) the view from north to
south and (right) from east to west.

a slope motion rate over 10 cm per year, while the middle part is almost fixed. However,
there is no distinct indication that large precipitation depths better correlate with the
slope movement than moderate but long-lasting rainfall events. Nano-seismic monitoring
rather reveals an almost continuous ‘creep flow’ of the hillslope but with varying velocities
(Figure 7.2), which, however, cannot be associated with the observed hydrological signals
(Walter et al. [169]). Based on the long-term measurements and observations over the
past 15 years, it is supposed that the movement is mainly triggered by a confined aquifer
system under the slope, which is fed by a fast infiltration region at the southern hillside
(Wienhofer et al. [178]). The precipitation on the slope surface could mostly not infiltrate
into deeper regions of the slope body, because of the low permeability of its superficial
soil stratum. Therefore, most of the surface water flows off into the creeks. The increase
of the water table in the confined aquifer observed by piezometric head measurements
results from subsurface flow of water infiltrating from the macro pores and fissures in
the forest soil at the immobile steep arboreous southern slope. The complex hydrological
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Figure 7.2: Topview of the Heumds slope: annual average mass movement of the slope measured
at the slope surface (Depenthal and Schmitt [37]); the red line from west to east represents the
investigated cross-section and the dotted red line illustrated the north-south cross-section (Ehlers
et al. [57]); HH4, HH5 and HH6 are boreholes.
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situations, which are believed to govern the motion behaviour of the Heumds slope, are
described and discussed in more detail in the works by Lindenmaier [107] and Wienhdfer
et al. [178].

However, by observing the slope surface, several shear bands can be detected. Hence, it
can be concluded that the hillslope is not consisting of a monolithic slip body. Instead, it
behaves as a slope body which is segmented into several small sliding bodies. Certainly,
this statement has to be still experimentally verified.

7.2 Idealisation of the hillslope to a 2-d cross section

In Figure 7.2, a sketch of the slope in topview is shown. The red line represents the cross
section through the slope, which intersects close to the point of the boreholes HH4 and
HH5. The structural information of the slope cross section depicted in Figure 7.3 have
been determined by Rumpf et al. [131] applying refraction seismic methods. Thereby,
the identified topography of the slope bedrock shows very hilly progression compared
to the assumption of Lindenmaier [107]. Moreover, Rumpf et al. [131] structured the
slope in three stratums, where the differentiation of the stratums has been based on
the p-wave (primary wave) velocity differences. However, p-waves only give qualitative
statements of the density variation of the slope material, i. e., the boundary stratum is not
unconditionally the boundary of a specific material type. Nevertheless, for the simulation,
only the upper two stratums are considered, while the bedrock is assumed to be rigid and
is modelled as a fixed kinematic boundary condition of the middle stratum.
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Figure 7.3: The substructure of the investigated cross-section is subdivided into three stratums
determined by refraction seismic (Rumpf et al. [131]).

Furthermore, at the point about 580 m of the slope (see Figure 7.3), the bedrock increases
very closely to the slope surface and impedes further mass movement of the upper slope
part. Comparing this statement with the detected surface movements at the middle red
ellipse in Figure 7.2, there have also been detected very low deformation rates (Rumpf et
al. [131]). As a consequence, the upper and lower movement of the slope can be analysed
in a decoupled fashion with regard to the fixed barrier. In this contribution, the upper
part of the Heumos slope illustrated in Figure 7.3 is numerically studied concerning a 2-d
model approach of the slope.
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The slope material composition can be roughly summarised into two different material
types of clayey silt and sand, which are assumed to be homogeneously distributed over
the corresponding stratums, respectively. Comparing both stratums, the top stratum
(clayey silt) is more impermeable and has more cohesion, but owns a lower material
strength because of the smaller friction angle than the middle stratum (sand). However,
due to the lack of detailed material data, for the first qualitative simulations, the GEBA-
sand material-parameter sets given in Tables C.1 and C.2 are applied for both stratums,
whereas, for the top stratum, only the following material parameters are changed con-
cerning to the mentioned general physical differences between both stratums, where the
original GEBA-sand parameters are noted in the brackets: Kjs = 51071 (2-107'%) m?,

*
k = 0.015 (0.004) MPa and = 0.16 (0.266). Following this, the cross sections are spa-
tially discretised by triangular finite elements, where an adaptive meshing strategy with
respect to the error indicator of the water saturation s and the accumulated plastic
deformations ||eg,|| is used during the simulations in order to accurately resolve the water
table and the shear bands.

In the last several years, the heaviest precipitation event was in the year 2006 with 248 mm
precipitation in 38 h (Wienhofer et al. [178]). Based on this value and a deduction of the
surface runoff and the evapotranspiration, Ehlers et al. [57] have taken an effective pore-
water pressure related to an infiltration rate of 80 mm /wk prescribed over distinct regions
along the northern and southern hillside of the north-south cross section (red dotted line
in Figure 7.2) representing the fast infiltration areas, whereas along this cross section no
deformation have been observed under the applied loading conditions. The infiltrated
subsurface water is dammed in the middle of the slope section and flows downhill along
the west-east cross section (red line in Figure 7.2) and increases the water table. The
impound water under the west-east extent of the slope is modelled by a high pore-water-
pressure increase associated with an infiltration rate per week (wk) of accumulated hpw =

less permeable layer
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Figure 7.4: Representative cross-section through the Heumds slope from west to east; hpw is
the pore water infiltration rate per week.

3500 mm/wk in the upper part of the west-east cross section along the extent of the
southern hillside. The hydraulic boundary conditions for the numerical treatment are
chosen in the way as illustrated in Figure 7.4 to mimic the described situation at the
Heumos slope. Furthermore, the impermeable or less permeable layer is integrated into
the middle stratum in order to model a confined aquifer situation presumed by Wienhofer



7.3 Numerical results and discussion 113

et al. [178]. However, such an impermeable layer could not be detected by Rumpf et
al. [131]. Nevertheless, the Heumos slope has been numerically studied without and with
the less permeable layer for which the same material as of the top stratum was adopted.

7.3 Numerical results and discussion

Computations without an impermeable layer

For a numerical study of the flow and deformation processes of the Heumos slope, the
current ground water table and the current state of slope deformations induced, for in-
stance, by the gravitation force have to be approximated. The computation starts with
an unstressed soil material, where the ground water table and the gravitation force are
continuously increased until their correct values are reached. During these load steps,
plastic deformations are developed due to the dead load of the slope and buoyancy forces.
The simulated current (initial) state (¢ = ¢) of the Heumos slope presented in Figure 7.6
(top) shows irreversible plastic deformations, while the corresponding initial saturation
s is illustrated in Figure 7.5 (top).

t =6h25min
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Figure 7.5: Evolution of the water saturation s".

The localisation of shear bands under a dead load is mainly concentrated at the step part
of the bedrock substructure. With increase of the water head h,w, only little increase
of plastic deformations can be observed, although the water table is close to the surface,
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cf. Figure 7.5 (middle) and 7.6 (middle) at time 6h and 25 min counting from the initial
state. Further rise of the water head leads to increasing plastic deformations of the
already existing shear bands. Additionally, several new shear bands are developing, cf.
Figure 7.5 (bottom) and 7.6 (bottom). In particular, the initiation of the new shear
bands is concentrated in the aforementioned steep part of the bedrock as well as at the
border of the clayey silt and sand stratum. The rigidity difference between both stratums
induces deformations resulting from kinematic constraints. Thus, these two factors mainly
represent the weakened zones of the Heumds slope.
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Figure 7.6: Evolution of shear bands determined by the accumulated plastic strains ||egp||.

Remark: Due to the flat slope inclination with an average of 19°, the slope motion is
mainly triggered by increasing the saturation degree, because of the growing dead load.
Consequently, this leads to a further increase of plastic deformations. Indeed, the de-
formation rates are very small in comparison to slopes with steep inclination, which,
consequently, prone to fail abruptly. The simulation results of the Heumdos slope mimic
a creeping slope motion, which is segmented into several independent parts with varying
motion rates. The resulting shear-band structure of the slope shows that a monolithic
slope body does not exist. It can be carefully asserted that it is not necessary to expect
a sudden failure of the Heumdos slope.

Computations with impermeable layer

Figure 7.7 shows the simulation results with integration of a less permeable stratum within
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the middle stratum in order to analyse a confined pressure situation of the Heumdos slope.
By comparison of the developed shear-band structures in Figure 7.7 (top) with those in
Figure 7.6 (bottom), only few differences can be observed in the region of the additional
stratum, but almost the same water-saturation distribution exists after 8 h and 35 min,
cf. Figure 7.7 (bottom).
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Figure 7.7: (top) Developed shear bands and (bottom) the corresponding water saturation.

Remark: For the case that slope deformations are triggered by a highly confined aquifer,
some conditions have to be fulfilled by the slope, which may not exist at the Heumos
slope. This means that the pore-water-saturated stratum of the subsurface has to be
entirely sealed by a water-impermeable stratum in order to dam the influx of pore water
resulting from, e. g., a heavy rainfall event, at the saturated stratum. Considering the case
that the water-saturated stratum is only sealed in the upper direction by an impermeable
stratum, the pore-water pressure must increase rapidly, otherwise, the water-saturated
stratum acts as an aquifer. Thus, the pore-water pressure continuously increases until a
pressure situation is reached by which the pore spaces of the saturated soil stratum are
enlarged. Accordingly, this soil-expansion process leads to slope deformations. However,
due to the high dead load of the slope, a very high pore-water pressure within the saturated
soil stratum is needed in order to trigger these soil deformations. In regard to the Heumos
slope, such a high confined pressure situation as described could not be observed.






Chapter 8:
Modelling Internal Soil Erosion

In this chapter, an internal soil erosion model for partially saturated soil is presented.
Proceeding from the triphasic soil model discussed in Chapter 4, an erosion phase is
introduced. It represents the grains, which are detached from the grain matrix by the
streaming pore water. These grains can be considered as fluidised grains transported
by the pore water. The modelling approach for the soil erosion is based on the work of
Steeb and Diebels [151]. They have introduced a triphasic internal-erosion soil model for
saturated soils derived in a thermodynamic consistent manner within the framework of
the TPM. Therefore, the internal erosion model presented in this chapter is only restricted
to the subjects of the idealisation of the erodible soil, governing balances and constitutive
equations. Applying this model, several numerical problems of soil piping, cold (sand)
production for quarrying oil-sand mixture by loading of a high fluid pressure and two
embankment failure scenarios are investigated. By the reason of the complexity of the
internal erosion process, several simplifications of the erosion model have been made in
order to compute, in particular, the embankment problems without undertaking major
modification of the partially saturated soil model. Concerning this, the main simplification
is, for example, that the transport of the detached grains from the soil matrix is not further
considered. Hence, the focus here is not lying in the complete and preferably accurate
description of the erosion process with regard to the movement and the deposition of
grains as well as the clogging of pores, but rather in the development of soil porosity. Due
to the growing porosity, the mechanical and hydraulic soil behaviour are affected and, as
a consequence, the probability of embankment or dam failure increases.

8.1 Restrictions of the erosion-soil model

The amount of the eroded grains, which are locally detached through the streaming pore
water (seepage velocity), can total up to several percent of the solid volume, but they are
distributed relatively fast in the streaming pore water. Therefore, the density of the pore
fluid is assumed to correspond approximately to the pore-water density and, furthermore,
the motion of the pore fluid behaves like the streaming pore water with occupying the
same flow velocity. Proceeding from this, the fluidised grains and the pore fluid can be
treated together as one pore fluid. In this context, the clogging of pores and the deposition
of the fluidised grains are not considered. Moreover, these and further assumptions and
restrictions made for the erosion model read:

e The susceptibility of the soil to the internal erosion can be determined on the basis
of the soil-grain size distribution curve (GDS). The GDS temporally changes during
the internal erosion process and, therewith, the susceptibility to internal erosion,
too. This is not currently integrated within the applied continuum-mechanical soil
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model, cf. [134].

e The pore water and the fluidised grains are considered as a suspension and sum-
marised to the pore-liquid phase.

e The velocity of the suspension is assumed to be equal to the pore-water velocity.
e An increase of suspension viscosity through the eroded particles is not included.
e Fluid velocities are only restricted to linear Darcy-flow conditions.

e The grain-weight-dependent velocity of free moving grains within the pore liquid is
not considered — segregation of grains, cf. [167].

e Clogging of pore channels and deposition of detached grains are not considered.

e The transport of the fluidised grains is disregarded.

However, having in mind that, for a long-term analysis of constructions with repeatedly
changing loading conditions, the transport of fluidised grains has to be taken into con-
sideration, but also many other physical aspects. As mentioned in the introduction of
this chapter, the presented erosion-soil model is preferably kept simple in order to get a
better comprehension of the physical interacting processes of soil deformation, fluid flow
and growing porosity induced by internal erosion within embankments.

8.2 Partially saturated soil-erosion model

Taking into account the detachment of grains from the solid structure, the soil model is
extended by the erosion constituent o = E representing the fluidised grains. The detached
grains are distributed within the pore water and are generally perpetually in motion as
long as the pore-fluid velocity is able to transport them through the pore channel network
of the soil. The free moving grains behave as a liquid or a disperse phase within the water
phase like a suspension. Following this, the erosion phase ¢ and the water phase ¢
can be summed up to a liquid phase o”, where ¥ and ¢" are the liquid components,
respectively. Therewith, the overall aggregate consists of p = ¢° U o4 U ¢, which
corresponds to the description of the well-known triphasic model presented in Section 4.1.
Proceeding from this, the local composition of the volume fractions yields

k
Zno‘:ns+nA+nL:nS+nA+nW+nE:1. (8.1)
a=1

Therein, the volume fraction n” of the liquid suspension phase is composed of n"V' and
n¥, while the soil porosity is computed by

!
nF:Znﬁzl—nS:nAjLnL, (8.2)
B=1
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where [ represents the fluid components 8 = {A, L}. Due to the fact that the model of
the internal erosion is only restricted to model the porosity development, the same model
approach of the partially saturated soil in (4.1) with the constituents o« = {S, A, W}
is analogously applied for the erosion-soil model with o = {S, A, L} by replacing "
with . Moreover, the diffusion velocities of the liquid components dy;, and dg;, are

introduced, wherein the component velocities are referred to the liquid velocity >/<L, cf.
(2.14)s.

Balance of mass

By integrating analytically the local mass balance in (2.42); using the helpful hint*, the
density of the constituent ¢® yields (cf. Ehlers et al. [65])

t

o = e ( / Z—adt> (det F,) ", (8.3)

to

where pf is the initial density in the reference configuration. Depending on the condition
of the mass production p* > 0 or p* < 0, the density p® grows or degenerates, respectively.
A more general expression of (8.3) is derived by a multiplicative split into a deformation-
governing process and a mass-production process:

t

p* = p2 (detF,)~ ' with p = pg‘aexp</2—adt>. (8.4)
to

Therein, pf, can be interpreted as the density of a constituent at time ¢ in the fictive refer-
ence configuration or the intermediate configuration. This deformation-free part enables
to keep the geometrical compatibility analogical to the finite elasto-plasticity (Haupt [84]
and Ehlers [48]). Thus, the total deformation gradient F, ;,, = F,F, ¢ is multiplicatively
separated into a deformation-free gradient F,, ;. describing the mass production process
and a deformation-dependent part F,. Proceeding from a geometrically linear approach
for the deformation gradient lin(det Fg) ~ divug +1 = (1 —&%)~! and taking the incom-
pressibility of the solid phase (p°f = const.) into account, the volume solid fraction n®
follows from (8.4) to

55
n® =nls (1 —c%) with nls =ndsexp (/ % dt) ) (8.5)

to

where n7 is the solidity at the intermediate state, while its change is induced by the
volume solid production 7%, and €% is the volumetric solid strain.

detF,), . . .
*Using the expression div )Ica = % and applying the separation of variables on the mass
et Fy
p* d det Fo, d0d t
a t Fa N6
balance (2.42);, the following integration parts result: / Py / % - [ qe
p et o P

PBa det FOQ to
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Evaluating the sum of the mass production (2.41); with assuming the same effective
density pF = pPR = const. for all grains, it follows that the volume productions of the
solid and eroded phases are equal:

k
doar =aS+n" =0 - a¥ =-nf%, (8.6)
a=1

whereas, the pore-water and pore-air phases are not involved in the mass exchange of the
erosion process, BV =n4 = 0.

The temporal change of the erosion phase resulting from the volume production #* and
the grain transport is determined by the volume balance of o,

— 0% = () + nPdiv (ug)y + div (nPwp), (8.7)

where 7% is substituted by 7° (8.6);, or, additionally, related to the liquid motion using
wg =W +dg:

—7% = (0P + nFdiv (ug)y + div(n®wy) + div(nFdgg). (8.8)

Both formulations are given with respect to the solid motion. Furthermore, for describing
the suspension behaviour, the mass balances of ©" and ¥ have to be summed up:

— S5t = (pH)gnt 4 pHR(nk)s + pMnl div (ug)y + div (p*nfwy), (8.9)

where the effective density p“* is no more constant. It is varying with a change of n”.

As mentioned, when only the modelling of the porosity development of the soil is the
point of interest and not the transport process of fluidised grains itself, some principle
assumptions can be made in order to simplify the governing equations, cf. Section 8.1.
For example, following the fact that the fluidised grains are immediately dispersed within
the water phase after detaching from the solid phase, it can be supposed that pft ~ p'
is constant. As a result, the material time derivative of p“# in (8.9) is dropped out of the
equation. Hence, the mass balance of the liquid suspension (8.9) is reduced to the volume

balance of a materially incompressible liquid phase:

SR
- ZL—R 7S = (n")s + n" div (ug)y + div(nfwy). (8.10)

The motion of the fluidsed grains within the pore-water phase with regard to grain sep-
aration by weights has been investigated by Vardoulakis [167|. However, by the reason
that the erosion (suffusion) process is a slowly proceeding process, it is assumed in the
first approximation to take the velocity of the pore water for the fluidised grains and to
neglect the diffusion velocity dgy. This leads to w; := wy = wg.

Based on the assumption that the transport of fluidised grains is not considered in the
following description of internal erosion using the volume balance (8.10), the volume
fraction n” is no more an independent quantity and is computed by n” = njq —n?, while
nys is determined by (8.5) governed by 7 for which a constitutive assumption has to be
formulated. Concerning the materially compressible air phase ¢*, the mass balance in

(4.6)5 is applied without any modifications.
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Balance of momentum

Following quasi-static problems (ééa = 0), the local momentum balance (2.42)y of the
constituent ¢ using the formulation with the direct production term p® (2.40); leads to
the following form:

0 = divT® + pb* + p* with p* = 8 — ("X, . (8.11)

By the sum of all individual momentum balances given by (8.11); and involving (2.41),
the overall momentum balance of the erodible partially saturated soil yields

0 =div(T% + TF + T4) + pb + p*a%(wp +dg;). (8.12)

Based on the applied restrictions of the internal erosion process, dg is assumed to be
zero. However, the momentum production term triggered by 7° compared with the total
stress 22:1 div T? is several orders smaller. According to that it could be neglected as
well.

Remark: Considering the overall aggregate ¢, the sum of (8.11) reads

k k k k
Zp%’éa =) (divT*+p"b* +p°), where » §" = Z(pam%’ca) = 0 (8.13)
a=1 a=1

a=1 a=1

is the constraint for the total momentum production, cf. (2.41),. Inserting the definition
of barycentric motions, cf. (2.46),

k
S [0 %a — div(p*da @ da) + 57X, (8.14)

a=1

L1
X = —
p

in (8.13), the momentum balance of the overall aggregate ¢ results

k
pk = divT + pb with T =) (T — p*d, @d,). (8.15)

a=1

Note that regarding the overall aggregate ¢, the diffusion velocities are cancelling each
other (3XF_, p*d, = 0). For quasi-static problems with little change of the velocities

in time, the accelerations of the individual constituents can be neglected, ééa = 0 in
(8.14), but the acceleration terms of diffusion velocities and mass productions remain
and, therewith, the barycentric acceleration X is not zero. However, proceeding from
a slowly internal erosion (suffusion) process, the diffusion process proceeds without any
noticeable accelerations and, thus, the div(p*d, ® d,) terms is very small. This also
pertains to the amount of the mass production rate p, which is very slow, too.
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8.3 Saturated soil erosion model

To account the local composition of the mixture continuum of the erodible saturated soil,
the saturation condition of the volume fractions is composed by
k

Zn“:ns+nF:nS+nE+nW:1, (8.16)

a=1
where the fluid components are § = {E,W}. The volume fraction of the fluid phase is
composed to nf = nf + n". Proceeding from the simple approach of internal erosion
(8.1), the set of governing equations consists of the volume balance (8.5) of the solid phase,
the volume balances of the overall aggregate formulated with respect to solid motion:

0 = div(ug)y + div(nfwg), (8.17)
and the momentum balance of the overall aggregate

0=div(T + T") + pb + p*awp with dpr=o0. (8.18)

8.4 Constitutive settings

A thermodynamically consistent evaluation of the entropy inequality is omitted here. A
detailed elaboration can be found in the work by Diebels and Steeb [151] and Steeb
et al. [153]. According to this, the internal erosion or the mass production has to be
proportional to the square of the seepage velocity. This was also announced, e.g., by
Vardoulakis [167], Wan and Wang [172] or Wan and Fell [170] resulting from experimental
observations. However, for the constitutive approach of 7, the amount of the seepage
velocity is commonly used. In this contribution, a slightly modified approach for n°
compared to Steeb et al. [152] is applied. Furthermore, the constitutive equations of
the solid phase are also influenced by the increasing porosity. In particular, these are
the degradation of the elastic stiffness and the plastic strength, cf. [124, 153, whereas the
hydraulic equations remain unchanged. This is why the variation of the solidity is already
considered with the deformation-depended intrinsic permeability coefficient K governed
by the volume fraction n°, cf. (4.54) or (4.55).

Elastic law

The decrease of the solid fraction triggered by the internal erosion process can be anal-
ogously described as a damage-like behaviour for brittle materials by introducing the
damage variable d (Kachanov [91]). Proceeding from the isotropic damage behaviour, the
damage variable d = A/Ag describes the homogeneously distributed loss of material area
related to the ratio of the undamaged initial area Ay and the damaged area A, where d
is still positive, Td > 0. The ratio of the remaining material area 1 —d = (Ag — A)/Ag

"During the deposition of grains occurring in areas of low seepage velocity, the grains can be accu-
mulated at locations, where up to the present time no erosion has taken place. This would lead to an
increase of the initial solidity, i.e., the damage variable would be negative d < 0.
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corresponds to the expression formulated by the ratio of the solid volume fractions at the
stress free intermediate state ns to the initial state njg and reads 1 — d = ny/njs. On
the basis of the damage factor D = njs/njs, the mechanical properties are reduced as
the free Helmholtz energy W5? = D W5 given in (4.28). Proceeding from the derivative
of U5 with respect to eg., the elastic effective solid stress o3, is reduced by degrading

the elastic material parameters by the damage factor D, viz.

\%
I .
U%m = 2#%556 + |:k69E + kISE( Vv Serlt vV 1) :| 8}5{6 I
Secrit 656
(8.19)

5
n
where: uf = D"u®, kgy = D™ky, kip = D™ki, D = LSS’
Nos
are the reduced elastic parameters, whereby the exponent n. describes a non-linear degra-

dation process of the solid stiffness.

Plastic law

The strength of granular materials depends on different factors. For example, the general
yielding and failure behaviour of granular materials is typically characterised by its initial
density (loose or dense sand). In addition, the stress level at which the shear stress
is applied is decisive for the mobilisation of the friction strength of granular materials,
because the higher the confining pressure (compaction) the higher the failure stress, cf.
Section 4.2.2. According to this, the increase of the porosity has a negative impact on the
failure behaviour. During the internal erosion process, the structural cohesion between
the grains is continuously lost and the real failure state of the material (without erosion)
is no more reachable. This structural change of the failure behaviour has been taken into
account by reducing two plastic parameters by the damage factor D"»:

*

fp= D" and kp = D™k. (8.20)

Therein, é represents the inclination of the failure surface, while x depicts the cohesion of
the soil, while the exponent n, describes a non-linear degradation of the yield strength.
Note that the inclination of the evolving yield surface is affected by the erosion just after
the failure surface is reached. This happens much earlier due to a decrease of the failure
surface triggered by increasing porosity. Numerical studies of plastic material parameters

*
have shown that using only the parameters § and k is sufficient to describe the influence
of internal erosion on the yielding behaviour.

Simplified plastic hardening model

Moreover, to scale down the complexity of the presented sophisticated yielding model
given in section 4.2.2, the hardening effect can be restricted by reducing the number of
the evolving plastic hardening parameters with minor changes of the real soil behaviour.
Additionally, the computation time of the IBVP is strongly reduced.
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Proceeding from an unloaded soil, the plastic yielding begins immediately with the first
loading. This leads to the complex elasto-viscoplasticity model presented in section 4.2.
In some cases, it is appropriate to simplify the model complexity. For example, some
triaxial experimental data are lacking and the identification of all required parameters is
no more possible on the basis of the available experimental data set, which, of course,
would be necessary to give a precise description of the complex soil behaviour. Moreover,
a reduction of the model would be also appropriate, if only the general physical processes
of a complex IBVP are numerically investigated. However, the decisive factor here is, how
the material model can be reduced in order to be still close to the real soil behaviour.

The non-linear stress-strain behaviour governed mainly by the plastic hardening proceeds
until the limit shear-stress, which is described by the corresponding failure surface. The
size of the failure surface is variable and is defined by the confining pressure or the
hydrostatic stress level (4.49). In order to avoid the complex hardening procedure, the
initial yield surface can be set to the smallest size of the failure surface, which corresponds
to a very low confining pressure level. This is realised by setting the initial hardening

* *
parameter values py; = P; to the same value of the limit parameters p; excluding of €, which
is set to €q :EO. Thus, € can be still evaluated until the limit value of € ¢ bounded

by élim- This implies that the material was shear-preloaded until the peak shear stress
at a very low stress level so that the initial hardening behaviour is eliminated, i.e., the
material firstly behaves linear elastically until the enlarged initial yield surface is reached.
If the shear stress exceeds the yield surface, only then, the hardening process starts.

To illustrate this approach, the simulation results of the triaxial compression test with a
constant confining pressure of oo = 03 = 0.2 MPa using the simplified and complete hard-
ening approach are presented in Figure 8.1. Therein, the initial linear elastic behaviour of
the simplified model (red line, sim-simpl) is well recognisable compared to the non-linear
procedure of the general complex hardening model (green line, sim-gen), whereas the vol-
ume strain " is only slightly affected. Moreover, for a good modelling of plastic shear

0.8 1 0.08
&
E 06 1 0.06
7 ’
= T
o 04 1004 =
| exp. X
g 0.2 sim-simpl == 0.02

sim-gen
0 , , , 1o
0 0.05 0.1 0.15 0.2 0.25

—e1 [-]

Figure 8.1: Triaxial compression test with a confining pressure of oy = o3 = 0.2 MPa = const.
and the corresponding simulation applying the general (sim-gen) and the simplified hardening
model (sim-simpl).
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zones, one has to consider the softening effect of the material. Therefore, the parameter
0 mainly governing the softening behaviour has to be taken into account in the hardening
process.

Hence, the presented procedure gives users the opportunity to simplify the complex plas-
ticity model corresponding to the hardening behaviour under consideration of the real
strength of the soil. For the reason that the evolution of the hardening parameters § and
~ is not taken into account and the evolving of € and § starts just after exceeding the
enlarged elastic part, the computation costs are also reduced intensively. Nevertheless, if
it is necessary, the model complexity can be simply increased.

Erosion law

Steeb et al. [152] have proposed an approach for the solid volume production 72°. Therein,
the amount of erodible grains is limited by a constant saturation nf . but, generally it
depends on the strength of the seepage velocity of the pore liquid (suspension) w, or pore
fluid wp for the saturated soil, respectively. That means the higher w, the more grains
can be detached from the solid skeleton. In order to take this into account, the initial
limit of erodible grains nl}, . is increased by |wp|, which is expressed by the variable nf, .
However, nf is restricted by the maximal limit nZ . because the considered internal
erosion process is actually constrained by the fine grain content (internal suffusion). Under
consideration of these aspects, the solid volume production yields
E

nd = —nf [exp (1 - :T) - 1} Clwil (8.21)

lim
A <0, if |wy| > |wy |,

with s =0, if |wg| < |V*VL |,

nlEzm = n(?lzm(]' +w IWLD with nlEzm S annax .

Therein, w controls the growth of nf, and ¢ > 0 governs the process velocity. However,

the erosion process is only activated, when the soil specific limit value | wy, | is exceeded.
However, for the first computation of 7#°, a very small initial value of n” is necessary,
otherwise, n° is always zero.

8.5 Numerical Examples

In this section, several numerical examples of erosion-soil problems are presented. At the
beginning, two water-saturated soil piping problems are shown. In this context, there
is no total loss of grains at local points during the erosion process of the treated piping
problem, such as occurs at a real tube-flow problem. Thus, for the pipe, only a decrease of
the solidity is assumed. Further examples to internal erosion problems are the numerical
investigation of embankments, where the embankment is constructed without and with a
high impermeable internal core. For the embankment problems, the presented partially
saturated soil model is applied.
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8.5.1 1-d piping of a fully saturated column

Figure 8.2 illustrates a popular example of sat-
urated soil piping for testing erosion models, cf. N ||>
[152, 168, 172]. For the numerical treatment of
this problem, the water-saturated column is ho-
mogeneously fixed at the left side and at the bot-
tom, where also the pore-fluid pressure p/'? =
pt = —0.1¢[KPa/s| is applied. Furthermore, no flux
from the top, the column is loaded displacement-
controlled by ug = ut = 0.5t[mm/s]. The
left and right boundaries have no-flow conditions,
while the right side admits free flow.

Po

=
B
AVA
Na)

For this example, it is assumed that the erosion
process starts immediately after applying p*® by
setting | Wy | = 0. The variability of the max-
imal limit of erodible grains is not considered,
nf  =nb, =01 (w=0). For a better anal-
ysis of the coupled erosion-mechanical yielding
behaviour, the yield criterion in (4.35) has been
reduced to the von Mises ideal plasticity model
without taking any hardening behaviour into ac-
count. The material parameters, which come -— ”>A il
into consideration, are given in Table 8.1, while - prit =
the remaining plastic parameters are set to zero. |<—1m

The elastic behaviour is modelled by the general

Hookean elasticity law by setting the bulk mod- Figure 8.2: Sketch of the 1-d col-

ulus k¥ in (8.19) to zero. umn piping problem.

no flux

The piping problem in Figure 8.2 has been computed by the Darcy permeability parameter
of Ehlers-Eipper (EE) (4.54) and the formulation Kozeny-Carman (KC) given in (4.55) in
order to investigate their influences on the erosion progression. The results are illustrated
in Figure 8.3. Figure 8.3 (a) shows the development of the solidity n°, while (b) presents
the solid degeneration rate 2°. Due to the lack of experimental data, an arbitrary value for
the erosion parameter ¢ = 800s/m is chosen. This parameter is denoted for the KC-law
with ¢(¥¢ and for the EE-law with (#¥. The exponent of the EE-law is taken to 7 = 1.
Due to the fact that the solid deformation is generally several order smaller than the
soil degeneration, the change of n° induced by the soil deformation is hardly observable
in Figure 8.3 (a), but rather the soil degeneration. Comparing the results, the EE-law
behaves more sensitive to high values of (¥* compared to the KC-law. Accordingly, the
progress of n° and 7° slows down with lower values of (¥”. The EE-law agrees well
with the KC-law by fitting (¥ to 0.6s/m and 7 to 3.6. However, Steeb et al. [152] have
numerically investigated the behaving of the EE-law by variation of the exponent 7. They
compared the results with those of the KC-law by applying the same parameter  for both
laws. Therefore, the results were not corresponding.
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Parameters of the elastic behaviour and of the initial state
wd = 200 MPa nowe = 10 [—]
kS = 333 MPa nog = 075 []
P = 265 g/cm3 K = 1-100" m?
pVE = 10 g/em® | pMT = 1.1070 Pa-s

Parameters of the plastic and erosion behaviour
K = 07 1/MPa vir=v2= 1.0 m/s
ne=mnp, = 1.0 [—] ntm = 01 [—]

Table 8.1: Material parameters of the Hookean law, the Mises plasticity law without hardening
and the erosion law.

Figures 8.4 (a) and (b) illustrate the reduction of the shear modulus ;° and the stress-
displacement curves, respectively, computed with (¥¥= 800 and 0.6s/m. For high values
of (F¥, the shear modulus ;i decreases very fast until 130 MPa compared to the lower

0.76
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200

Figure 8.3: 1-d piping simulation results: (a) solid fraction n®; (b) solid production n°.
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Figure 8.4: 1-d piping simulation results: (a) shear modulus p°; (b) loading-displacement

curves related to the loading boundary.
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CEF and the stress progression is more flat than in the case without erosion (black-dashed
line). The stress of the black dashed line converges to the limit of P ~ 1.3 MPa, whereas
the fast erosion process (CF¥ = 800s/m) reaches P ~ 1.2MPa, while the slow case
(CPF = 0.6s/m) softens to the same low stress limit immediately after the high stress
limit has been reached like a top-down approach. Hence, it could be shown that the

stiffness and the strength are noticeably reduced compared with the case without erosion.

8.5.2 Cold production in oil saturated sand

Similar processes like soil erosion in embankments occur during the sand production by
quarrying a petroleum-sand mixture from the several hundred meter deep located sub-
stratum. Thereby, a high gas pressure is applied through a borehole in order to press the
viscous oil-sand mixture into a compound of boreholes and then it is sucked up to the
surface (Tremblay et al. [158]). This procedure is also called cold production. During the
sand removal process, several networks of wormholes are formed. As a consequence, the
porosity of the soil increases leading to instability problems with a sudden sinking of the
ground. Regarding the safety aspects, it is important to know, how wormholes propa-
gates. For this propose, the sand production process has been experimentally investigated
by many researches, e.g., cf. Tronvoll and Fjaer [159], Tremblay et al. [158|, Tremblay
and Oldakowski [156] and Papamichos et al. [123|. Besides experimental research, numer-
ical treatment of such a challenging task of the petroleum industry is getting more and
more important, in particular, for the simulation of sand production, cf. [124, 152, 172|.
It is expected that the efficiency of quarrying oil can be improved by use of computer
simulations. This may also contribute to a safe oil production.

The wormhole-propagation experiment of Tremblay et al. [158] is sketched in Figure 8.5.
For the test, an oil-saturated compacted sample was used, which had on its right side

©6.35 mm
high pressure low pressure
FR
pi psf < pf®
© 50.5 mm

| 365 mm |

Figure 8.5: Sand sample with the hydraulic loading condition.

an outlet orifice with a diameter of © 6.35 mm, where the sand production is initiated.
In order to press the heavy oil with a viscosity of 21.5Pa - s through the sample, a high
fluid pressure of 1.2 MPa was applied at the left side of the sample. The sample is fixed
by a cylindrical steel box, which obstruct any deformations. To visualise the porosity
development, Tremblay et al. [158] have recorded the porosity distribution of the sample
by CT (computed tomography) scans along the longitudinal section of the sample, which
is illustrated in Figure 8.6. Looking closer to the initial solid density distribution shown
in Figure 8.6 (a), it seems that some areas have a slightly lower solidity. This area of
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50
Perosity, %

Figure 8.6: Porosity propagation along the axis of the wormhole: (a) at the initial state; (b)
after developing (Tremblay et al. [158]).

lower solidity is bordered by dashed lines in Figure 8.6 (a). Despite the specimen was
previously compacted with very high pressure, an ideally homogeneous distribution of
the material through the whole sample could not be reached. Moreover, the wormhole
interestingly proceeds in those parts of the specimen with low porosity, cf. Figure 8.6
(b) at the final state, even the inhomogeneity of the solidity is very smooth. Moreover,
another specimen with a different smooth solid fluctuation has been tested by Tremblay
et al. [157]. Analogically to the presented one, the wormhole has been propagated to the
areas with the lower solidity.

Due to the fact that the wormhole is eccentrically propagating regarding to the longitudi-
nal axis, only 3-d computation of the problem can actually mimic the real development of
the wormhole. However, Wan and Wang [171] used a rotationally symmetric approach for
the geometry, which may be not appropriated, because it reproduces only axial symmet-
rically distributed results in respect to the longitudinal axis. Nevertheless, for the first
approach, the experiment was only qualitatively simulated along the longitudinal cross
section as a 2-d plain-strain problem.

The experiment was computed with two different initial solidity distributions. The first
one starts from a homogeneous distribution with njs = 0.635, while the second one has
a smooth fluctuation of the porosity at the initial state, which is shown in Figure 8.8
(a). Further material parameters are given in Table 8.2. At the beginning, the wormhole

0.64 0.5 0.36

Figure 8.7: Degradation of n® starting with a homogeneous solidity distribution.

develops fast into the longitudinal direction and also spreads into the width at the outlet,
cf. Figure 8.7. The diameter of the wormhole shrinks gradually in direction to the inlet
as a result of the fluid pressure gradient. Comparing with the second case in Figure 8.8,
the wormhole develops into the part of a minor lower density. Thus, the propagation of
wormbholes is greatly affected by the fluctuation of the solidity even the fluctuation is low.
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TR e e L S s s S —
0.635 0.634 0.633 0.64 0.5 0.36
(a) ngs (b) nS

Figure 8.8: (a) Initial solidity nyy (inhomogeneous distribution), (b) degeneration of n°.

Parameters of the elastic behaviour and of the initial state

1S = 1000 MPa nS. = 10 -]
ks = 1666 MPa nsg = 0635 [-]
PSR = 265  g/cm® ko = 9.918-1075 m/s
pWE = 0.985 g/cm? pWE = 215 Pa-s

Parameters of the erosion behaviour

ntm = 0.28 ] ¢ = 179-107% s/m
lwp| = 045 m/s Ne = 0 []
w = 0 i = 1.0 [—]

Table 8.2: Material parameters of the Hookean law and the erosion law.

8.5.3 Numerical investigation of embankment problems

Numerical investigation of embankment failure problems have been carried out by many
researches, e. g., Ehlers et al. [64], Chai and Carter [27] and Oka et al. [122], and is still
a challenge and ongoing subject of research. These simulations were performed without
considering the soil erosion problem. The objective of the presented computations of
embankments is that the destabilisation of the construction is mainly triggered by the
internal erosion process (increase of soil porosity). Using the triphasic soil model with
the extension to the internal erosion presented in Chapter 8.2, two embankment problems
have been investigated. Their boundary conditions have been chosen in such a way that
without the occurrence of an internal erosion, a stable behaviour would be predicted for
the embankments.

Proceeding from the simplified plasticity model described in Section 8.4, the evolution of
the yield surface concerning to the parameters v and 5 is deactwated by setting these

parameters to the values of the failure surface, ~q —’V and [y —6 while € is set to

€0 :eo. This corresponds to the failure state defined by the unloaded virgin sand. For
both embankment simulations, the elasto-viscoplastic and hydraulic parameters of the
GEBA sand given in Tables C.1 and C.2 have been applied. However, a minor cohesion
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of k = 0.013 MPa is applied to prevent numerical instabilities as a result of small tension
stresses during the computation. To regularise the ill-posed plasticity problem, a marginal
viscosity of n = 200s and an overstress of oy = 0.013 MPa are used. These numerical aids
are chosen in such a way that their influences on the mechanical behaviour are negligibly
small. Furthermore, the parameters of the erosion properties are chosen for each problem
differently. These are given within the corresponding subsections.

Soil embankment

Embankments are permanently loaded by the dammed water, which is continuously vary-
ing. The level of the dammed water is determinative for the strength of the seepage
velocity within the embankment. Thus, in dependence of the dammed water table (w-t),
the erosion process is accelerated or stopped. From an engineering point of view, it can
be very helpful to know how the dammed water affects the progression of the internal
erosion and, accordingly, the failure of the embankment. Concerning this, the embank-
ment sketched in Figure 8.9 is numerically investigated with varying the w-t at the left
slope of the embankment. In order to avoid a premature weakness or even failure of the

ha

hq

<5 — 292 | 7 —>

Figure 8.9: Geometry and dimensions of the embankment in [m].

slope through the buoyancy force induced by increasing the w-t, the inclination of the
right slope is chosen quite flat. In contrast, the left slope could be chosen much steeper,
because the weight of the dammed water stabilises the slope.

The embankment is loaded in four load steps. The load progression is sketched in Figure
8.10. The initial stage of the w-t is located on both sides of the embankment at the level
of the slope toes. In the first load path LP;, the w-t is slowly increased on the left side
to the height of h; = 3m within the time ¢; = 24 h and, thereafter, in LPy, it is kept
constant for a duration of t5 — t; = 168 h. In LPj3, the w-t is increased further by the
height of hy = 2m in t, — t3 = 24 h. Finally, the failure of the slope will occur in LP,4
at ts4, where the w-t is kept constant. The erosion process just starts after the seepage

velocity exceeds the value | Wy | = 7.6 - 10~ m/s, which already happens in LP;. Further
erosion parameters are nl}, = 0.05, w = 10*s/m and (¥ = 100s/m.

The amount n” and the rate 7° of eroded grains of the right slope toe are illustrated in
Figure 8.11 (left). Therein, close to the end of LPy, n® approaches the limit of ~ 0.07
controlled by w and |w|, cf. equation (8.21). Thereby, 7° decreases to zero after the peak
value at LP; has been reached. In Figure 8.11 (right), the proceeding of |wy| is shown.
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Figure 8.10: Loading phases LP; corresponding to the time (t) and the w-t (h) with respect
to the slope toe: t1 = 24h, to = 192h, t3 = 216 h and ty,; ~ 226.5h; hy = 3m and hy = 2m.

It increases each time with rising of the w-t. During LP4 where the w-t is constant, |wy|
still increases due to growing soil porosity until n” has been reached the new limit value
of =~ 0.1. Moreover, the failure occurs at time ¢z, ~ 226.5h characterised by a strong
increase of the horizontal displacement ugy, at the right slope toe, cf. Figure 8.11 (right).
Immediately before the failure occurs, |wy| drops slightly. This is a consequence of the
development of a dilatant shear band, cf. Figure 8.13 (right). Thereby, the pore water is
sucked up into the shear band and, therewith, the liquid pressure p“? as well as |wy| is
dropped. Similar physical processes could also be observed by simulations of the slope
failure problems in Section 6.3.

0.12 : : : : 5.1 0.0 N 4.5
nE —_— usp =— U\T)
7S — T [wi| — =
__0.08¢ 134 < — 1.3 3.0 -
i - § Z
S| Z < E
< — ©n J—
0.04 11.7 — s 2.7 1.5 3
0 3
<« —_—
I
0 : : 0 4.1 : : : : 0
0 50 100 150 200 250 50 100 150 200 250
t[h] t[h]

Figure 8.11: Progression of n¥ and 7 (left) and uj, and w, over time t of the right slope toe.

Moreover, in Figure 8.12 (top), the distribution of s’ is illustrated. Figure 8.12 (top-
left) shows the state of s at the end of LP,, whereas the Figure (top-right) the state
at failure. The corresponding distributions of n® are depicted in Figure 8.12 (bottom).
During the first two loading paths, the eroded part is primarily concentrated at the right
slope toe (Figure 8.12 (bottom-left)), whereby not any shear band is initiated, yet, cf.
Figure 8.13 (left). With the rise of the w-t, ugy, starts to grow particularly at the end of
the load path. During LP,, the eroded area is more and more extending and the overall
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LP, :t =tru

0.
st [-]

LP,y:t =tru

0.58 0.055 0.052

Figure 8.12: Simulation results at the end of LPy and at the failure state in LPy: (top) liquid
saturation s”; (bottom) solidity n”.

structure is continuously weakened by evolving of several shear bands, cf. Figure 8.13,
and ugy, of the slope toe increases faster. In Figure 8.13, low values (below 0.007) of
the accumulated plastic strain ||eg,|| are not visualised for clarity reason. By gradually
weakening the internal structure of the embankment, several shear bands are developed,
which are mainly triggered by the dead load. However, one dominant shear band seems
to enforce. It is proceeding from the right slope toe to the top. But it gets more and more
deflected by the other shear bands at the middle part of the embankment to the water
side, cf. Figure 8.13 (right).

2.3
lesyll - 1072

3.6

Figure 8.13: Evolution of shear bands: (left) at the end of LP5y; (middle) intermediate state in
LP, at t = 225s; (right) at failure state in LPy at time t 4.

The complete embankment deformation induced by the shear bands is illustrated in Figure
8.14 by the deformed FE mesh at the final state discretised with 8 614 triangle elements. In
Figure 8.14 (left), the deformation of the FE mesh is shown with a 10-times magnification.
Despite of this, hardly any mesh deformations within the internal area are observed,
because of the very high deformation values at the surrounding area of the slope toe,
which suppress low deformed elements in the internal area of the embankment. However,
using a magnification of 100-times, the deformation behaviour of the embankment is more
clear, cf. Figure 8.14 (right).

Moreover, in Figure 8.15 (left), the reduction of the elastic stiffness p3, is illustrated at an
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Figure 8.14: Deformed mesh at the final state (left) 10-times and (right) 100-times magnifica-
tion of the deformations.

arbitrarily chosen intermediate state (¢t —225s). As might be expected, the distribution
w3, over the embankment is identical to the degradation of n°, cf. Figure 8.12. At the same
intermediate state, the evolution of the plastic material parameters € and ¢ is presented in
Figure 8.15 (middle) and (right). Therein, it can be recognised that the progression of ¢
corresponds very close to the shear band progressions, cf. Figure 8.13 (middle). Thereby,
0 mainly performs the softening behaviour of the soil and is only activated at high stresses
compared to €. Thus, § is more concentrated at the dominant shear band.

\‘i-._
I . — e
150 > 145 140 3.0 2.25 1.5 7.8 7.5 7.2
we €-1072 §-1073

Figure 8.15: Evolving of the material parameters (left) u°, (middle) e and (right) ¢.

Soil embankment with a less permeable central core

Such embankments with internal core are built mainly by a loose raised soil and an
almost impermeable internal core compared to the surrounding soil material. The task of
the internal core is to protect the infiltration process of the dammed water through the
embankment. By the pressure difference between the dammed water and the air side, a

INITIATION N CONTINUATION N PROGRESSION - BREACH/FAILURE
Leakage exits on d/s Continuation of Backward erosion Breach mechanism
side of core and erosion progresses back to forms

backward erosion the reservoir

initiates

Figure 8.16: Initiation of embankment failure caused by backward erosion: illustrating the
development of a pipe within the core through backward erosion triggered by hydraulic gradient
(Figure is abstracted from Foster et al. [71]).
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high hydraulic gradient within the core is induced. Thus, a high seepage force develops
within the core. Due to this fact, an erosion process can be triggered starting from the
interface at the low-water side of the core and gradually proceeds through the core. In
addition, the seepage velocity is continuously strengthened by increasing porosity. As
a consequence, the backward erosion process is initiated, which finally generates a pipe
through the core and proceeds until the reservoir. By growing porosity within the core and
under the condition that the water level of the reservoir is still constant during the erosion
process, the water table in the core and at the air side of the embankment will increase.
This could lead to a collapse of the construction induced by buoyancy. Figure 8.16, which
is adopted from Fell et al. [71|, schematically illustrates the already described process of
initiation and progression of internal erosion through an embankment. However, there are
many other failure mechanism of embankments, which depend on the geometry, material
properties and loading conditions, etc. The goal of the following embankment simulation
is to recapture of the illustrated physical procedure and to investigate the initiation of
the embankment failure.

In order to study numerically the failure process of embankments with internal core,
the IBVP shown in Figure 8.17 has been generated. The dimensions are the same as
of the soil embankment presented before. The embedded internal core amounts a 20

— main soil (1)

core soil (2)

l— 5 —f=— 6 —f=— 6 — 10 | 7 —

Figure 8.17: Geometry and dimensions of the embankment with central core in [m].

times less permeability than the surrounding soil. To simplify the interpretation of the
numerical results, the same material parameters have been used for the whole embankment
except of the cohesion £/} = 0.013/0.35 MPa, the intrinsic permeability KOSS(I)/S@) —
2-107'2/107"¥ m? and the erosion velocity (FFMW/FER) — 150/1500s/m. Note that the
erosion velocity parameter (##?) of the internal core is chosen 10 times larger than of the
embankment soil (¥#() in order to enforce the erosion process within the core. Regarding
the loading paths of this problem, they have been kept simple. Thereby, the water table
is firstly increased at the left side of the embankment in 24 h to 5m and, afterwards, it is
kept constant.

Figure 8.18 shows the development of s© and n® of the embankment immediately after
increasing the water table to 5m and at the state of failure. The degradation of n” is
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Figure 8.18: (top) Simulation results after the second loading phase and (bottom) during the
third loading phase (failure state): (left) liquid saturation s” and (right) solidity n®.

initiated by the hydraulic gradient within the core. Due to increasing porosity, wy, is en-
forced, where gradually a porous pipe through the core is created and proceeds in direction
to the reservoir. As a consequence, the water table gradually starts to increase at the
water-protected side of the embankment, cf. Figure 8.18 (bottom-left). Thereby, the right
slope gets under buoyancy and, in the end, the embankment fails. The deformation state
at failure is shown in Figure 8.19 (left) by the deformed FE mesh with 10-times magnifi-
cation of the deformations. Therein, it can be recognised that the complete embankment
is in motion along the main shear band, cf. Figure 8.19 (right).

0.45 0.8 1.25
lespll - 1071

Figure 8.19: (left) Deformed FE mesh at the final state with 10-times magnification and (right)
the evolved shear band.

Despite of the restrictions of the internal erosion process mentioned in Section 8.1, signifi-
cant physical processes of embankment problems could be well recaptured by the presented
partially saturated soil erosion model.



Chapter 9:
Conclusion

9.1 Summary

The main focus of the presented thesis lies on realistic simulations of IBVP in the field of
geomechanics using a partially saturated soil. To reach this goal, the partially saturated
soil has been intensively analysed based on the topics of the experimental investigation, the
constitutive modelling, the parameter identification and model validation. An overview
to these topics was given in the introduction.

Due to the coupled deformation and flow process of partially saturated soils, accurate
experimental investigations of their mechanical and hydraulic behaviour are very sophis-
ticated. Based on the principle of phase separation, the mechanical properties of the
GEBA sand were experimentally investigated at dry conditions via triaxial experiments,
while the hydraulic behaviour was determined with deformation-free experiments. On
the basis of these experiments, constitutive approaches for the triphasic model have been
derived thermodynamically consistent in the framework of the Theory of Porous Media
(TPM). Concerning this, the fundamentals of the well-documented TPM concept was
briefly presented.

The most important point in the matter of material modelling is the experimental inves-
tigation, because false measurements or faulty experimental equipments produce faulty
data sets. Based on faulty results, wrong conclusions and assumptions of the material
behaviour would be drawn and, thus, would lead to incorrect constitutive modelling ap-
proaches. Before carrying out the triaxial experiments, the test setup was optimised
concerning some error sources. In particular, the main error was involved in the triaxial
cell. Hence, a new stiff triaxial cell was constructed. Including the triaxial cell and other
error sources, the measuring error of the complete triaxial device system could be reduced
to a reasonably low value.

The yield as well as the failure behaviour of dense sand was investigated by use of drained
monotonic and non-monotonic triaxial experiments. Especially, it could be shown through
triaxial stress-path-depending compression tests that the standard approach to limit the
hardening of the yield surface by a fixed failure surface is not correct. The evolution of the
yield surface has been limited by a hydrostatic stress-dependent failure surface. The good
agreement with all experiments shows that the presented approach is promising for re-
alistic simulations of quasi-static IBVP of cohesionless-frictional materials. Furthermore,
the triphasic soil model for describing the partially saturated soil was numerically vali-
dated by simulations of different slope failure scenarios at the technical scale. The results
showed that the presented TPM model is well suited to mimic the physical behaviour of
multiphasic materials such as partially saturated sand and also reliably predicted shear
failure triggered by the hydraulic conditions.
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For a numerical analysis of IBVP, the governing balance equations of the triphasic model
have been transferred into weak formulations and discretised in space and time. Because
of the elasto-plastic behaviour of the solid matrix, the resulting DAE system of global
and local equations was iteratively solved in the sense of a two-stage Newton procedure.
To consider the dependencies of the global tangent of the governing equations from the
local history variables, the algorithmically consistent material tangent was implemented.
Furthermore, for the identification of the material parameters, the FE tool was coupled
with the gradient-based non-linear SQP optimisation method. To solve the Hessean
matrix of the extremal of the constraint optimisation problem, the BFGS method was
applied. Hereto, the required sensitivities of the fitted quantities with respect to the
optimised material parameters were computed semi-analytically.

Moreover, the capability of the TPM model was tested by simulations of the Heumos
hillslope. Although the Heumos hillslope is flat, it is still creeping at several parts with
different velocities. Therewith, it could be concluded that several slope bodies are existing.
For the numerical analysis, the hillslope was described by a long representative cross-
section proceeding from a simplified material composition of the slope body. The cross-
section is divided into three stratums, while the lowest one is the bedrock with a very hilly
topology. Based on a hydraulic loading condition representing a large precipitation depth,
the FEM simulations revealed several shear bands between the stratum interfaces as well
as at deep parts of the bedrock. Thus, the numerically detected shear bands separate the
Heumeoes slope in several slip bodies, which may explain the observed motion situation
of the Heumds slope concerning the assumption of several slope bodies.

The triphasic model was further extended to model internal soil erosion problems. Con-
cerning this, an erosion phase has been introduced, which represents the fluidised grains.
However, the very complex erosion process was strongly subjected to restrictions, because
the objective of the numerical investigation of erosion problems was focused on the anal-
yses of embankment destabilisations induced by loosing solidity. The increase of the soil
porosity degrades the material stiffness and strength, which leads to the weakening of the
soil construction. These changes of the material behaviour have been taken into account
by reducing the elastic (reducing the stiffness) and plastic (shrinking the failure surface)
material parameters in dependence of the porosity development as in damage procedures.

9.2 Outlook

The presented new concept of a stress-dependent failure surface can be further improved
by determining the complete shape of an individual failure surface for a chosen confining
pressure state. Repeating this for different confining pressures, the evolution of the failure
surface can be approximated. Based on these results, the model concept of yielding
and failure evolution can be further optimised. Furthermore, the evolution of the yield
surface is only restricted to the isotropic hardening. This has to be extended to kinematic
hardening in order to consider large stress reversal from compression to extension range
and vice versa.

The reliability of the computations of natural slopes depends mainly on the quality of
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the model input data, which has to be obtained from field measurements. This is one of
the challenges faced by hydrologists and geophysicists because the valuable simulation of
real-scale problems requires 3-d information about the subsurface structure and the me-
chanical and hydraulic properties. The application of computer simulations to elucidate
the complex hydraulic pressure and flow systems that might trigger hillslope movements
poses also challenges to the numerical algorithms. In fact, the numerical treatment of
strongly coupled, inelastic solid-fluid IBVP on real-scale 3-d domains requires high com-
puting power exploiting parallel and distributed solution strategies which are far from
being standard.

The complexity of the presented internal soil erosion model has to be increased, for ex-
ample, concerning the transport of the grains, in order to treat more sophisticated IBVP.
Furthermore, non-linear fluid motion laws have to be implemented in order to simulate
the areas correctly, where very high and low porosity areas are connected. This is gen-
erally the case between the main soil and the erosion pipe. Moreover, 3-d simulations of
embankment failure triggered by internal erosion are an important and challenging goal
for future work.






Appendix A:
Elementary Triaxial tests

A.1 Deformation behaviour

Triaxial experiments have been carried out with lubricated latex membranes on the end-
plates of the cylindrical specimen in order to minimise the friction force between the
endplate and the specimen. Therewith, an almost homogeneous deformation behaviour is
ensured. In Figure A.1, the undeformed (left) and the deformed (right) specimen are illus-
trated, wherein the edges of the deformed specimen are almost plane like the initial state,
cf. Miillerschon [118]. However, a specimen with non-lubricated endplates would lead
to bulging of the specimen because the volume deformations are impeded at the bound-
aries of the specimen. However, this leads to an inhomogeneous deformation development
within the specimen and to the evolution of shear bands.

Figure A.1: (left) Undeformed (initial) state and (right) homogeneous deformed state of a
cylindrical sand specimen.

A.2 Boundary conditions

Due to homogeneous deformations of the specimen, the radial and tangential stresses o,
and o, expressed by the cylindrical coordinates r (radius) and ¢ (polar angle) are equal
o, = 0,, because, within the specimen, no stress gradients are developing. Hence, the
stresses expressed in Cartesian coordinates are also equal, 0o = o3, where the stress tensor
o can be reduced to the principle stress vector, cf. Miillerschon [118]:

oo 0 0 01
o = 0 o3 0 |e®e; = o3 | e (A1)
0 0 03 03

141



142 Appendix A: Elementary Triaxial tests

Using the rotational and axial symmetric conditions of the cylindrical specimen, the com-
putation model can be reduced to a 2-d plane strain problem, cf. Figure A.2.

0.05m

0.05m

0.05m 0.05m

Figure A.2: Idealisation of the cylindrical specimen for numerical computations.



Appendix B:
Important Relations

B.1 Derivations of the total and effective quantities

o5 = —nSpARI + pCsVnST + oS,
= —nSPART 4 (pAR — PVR)SVRST 4 oS
= —nSPART + pAR(1 — ST — pVRSWRST + o
= SR + SWPVRT 4 oS

= —npfRl + o3 |

T4 = 2RI + T4~ —ptI, (B.1)
TW - _nW(pAR _pC)I + T?}/m - _anWRI + T?}/m ~ _pW17
~ A

= p*fgradn? + pg
p"V = pMgradn + p© sV gradn® + py,,
= p*gradn’ — (pAf — pWE) gradn' + p© nF grad sV + py,

= pVEgradn" 4 pC© (s gradn® — sV gradn?) + ply,, .

With: p®nf gradsV = p©[(n" + n?)grad sV |
= p[grad (sWn?) — sWgradn? + grad (s"n") — sWgradn" |
= pY[gradn" — sWgradn" — sWgradn"']
= p“[(1 = s")gradn™ — sWgradn?]

I

= pY[s%gradn" — sWgradn?] .
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Appendix C:
Identified Triphasic Model of the GEBA Sand

C.1 Parameters of the solid skeleton

Parameters of the elastic behaviour and of the initial state:

S = 150 MPa nS 05935  [-]
kS = 25 MPa nys 0.585 [-]
k? = 50 MPa K&y 9.10-10  m?
p’ = 265 g/cm?

Parameters of the plastic behaviour:

initial yield surface (hardening parameters)
do 7.8-10~% 1/MPa Bo 0.095 [—]
€0 = 0.1 1/MPa Yo 0.0 =

limit values of the hardening parameters representing the failure surface

S

M+
\

0

7.3-1073
0.046

1/MPa
1/MPa

2% o+

0.267
1.66

-]
=

parameters controlling the evolution of the failure surface

C. =

0.293

1/MPa,

*
€lim

0.01

1/MPa

parameters controlling the evolution of the yield surface

cYy = 120 (] cp 22 []
cY = 690 (-] cP 280 []
Cy = 280 -] cy 280 -]
v = 00 [-] cP 30 -]

Additional yield surface, plastic potential and viscoplatic parameters

K = 1.107% 1/MPa a 0.01 [—]

m 0.54 -] 100 s

1 = 11 [~] r 1.5 [-]

P2 = 0.64 -] o0 1-10~4 1/MPa

Table C.1: Elasto-viscoplastic material parameters, cf. Ehlers and Avci [56].
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C.2 Parameters of the partially saturated zone

Hydraulic parameters of partially saturated soil

S = 0118 [] s = 0.0233 [-]
Qgen = 1421 1/kPa Jgn = 6.251 [—]
Dgn = 1.0 -] €gn = 15 -]
Yo = 0.001 [-] ™ = 1.0 [-]

Table C.2: Van Genuchten material parameters of the GEBA sand.
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