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Deuts
he Zusammenfassung

Der Boden unter einem Bauwerk trägt dessen gesamte Last, eins
hlieÿli
h der auf ihn wir-

kenden Windlasten. Die Summe dieser Lasten wird über die Fundamente in den Boden

übertragen. Entspre
hend ist der Boden eins der Hauptglieder in der Stabilitätskette der

gesamten Konstruktion. Der Boden muss die Aufnahme der Lasten mit mögli
hst gerin-

gen Deformationen erfolgen, denn andernfalls besteht die Gefahr eines Bös
hungs- oder

Grundbru
hversagens, was mit einer Instabilität bzw. mit einer Einsturzgefährdung des

Bauwerks einhergeht. Des Weiteren kann ein Bodenversagen aus starken Nieders
hlagser-

eignissen oder Erdbeben hervorgehen und zu Hangruts
hungen führen oder Dämme zum

Versagen bringen und damit katastrophale S
häden für Mens
h und Natur anri
hten. Be-

vor das destruktive Versagen eintritt, kommt es zum abrupten Verlust der Tragfähigkeit

des Bodens dur
h die im Boden statt�ndenden vers
hiedenen physikalis
hen Vorgänge,

wie die Lokalisierung von plastis
hen Deformationen. Da der Boden hauptsä
hli
h aus

einem Korngerüst besteht, bei dem die Lasten über Normal- und Reibungskräfte zwi-

s
hen den Körnern getragen werden, ist jede Erhöhung der Bodenbelastung stets mit

plastis
hen Deformationen verbunden. Des Weiteren wird das Deformationsverhalten des

Bodens zusätzli
h dur
h die strömenden Poren�uide, Wasser und Luft, stark beein�usst.

Es besteht also eine starke Kopplung zwis
hen den Deformations- und Strömungsprozes-

sen. Insofern sind die experimentelle Untersu
hung und die theoretis
he Modellierung des

Bodenverhaltens eine groÿe Herausforderung für den Ingenieur und Fors
her. Nur auf der

Basis einer detaillierten Erfors
hung des Bodenverhaltens ist es mögli
h, realistis
he Ver-

sagensprognosen von Naturhängen oder Dämmen dur
h Vorausbere
hnungen zu geben.

Für die Realisierung dieser Ziele werden ho
h entwi
kelte Materialmodelle für Böden so-

wie e�ziente und robuste numeris
he Bere
hnungsmethoden benötigt. Der Einsatz von

Computersimulationen wird in sol
hen geome
hanis
hen Fragestellungen immer wi
htiger

werden, weil anhand der Simulation das Verständnis über die ablaufenden komplexen,

physikalis
hen Prozesse deutli
h verbessert werden kann.

Motivation

In den letzten Jahren ist die Anzahl von Hangruts
hungen, die dur
h lang anhaltende

starke Nieders
hlagsereignisse ausgelöst werden, weltweit angestiegen. Als Beispiel hier-

zu ist der Erdruts
h im Jahr 2009 in Na
hterstedt (Deuts
hland) zu nennen, bei dem

si
h etwa 1 Million Kubikmeter Erde löste und in den Con
ordia-See ruts
he. Dieser See

wurde dur
h kontrolliertes Fluten einer stillgelegten Mine künstli
h angelegt, wofür der

Grundwasserspiegel stufenweise erhöht wurde. Dies war aber letztendli
h der Grund für

das Versagen der Bös
hung. Im Gegensatz zu diesem s
hlagartig eintretenden Erdruts
h

sind Hangbewegungen wie die des Heumöser Hangs langsam und unstetig. Dieser Hang,

der in Ebnit in der Nähe von Dornbirn (Österrei
h) liegt, krie
ht etwa im Dur
hs
hnitt

10 
m im Jahr, und dies � bis jetzt � ohne Anzei
hen auf ein abruptes Abruts
hen des

Hangs. Daher ist es von besonderem Interesse, das Gefahrenpotential von sol
hen kri-
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tis
hen Hängen zu analysieren, bevor es tatsä
hli
h zum Versagen kommt. Dazu können

Computeranalysen einen groÿen Beitrag leisten, indem sie mögli
he Hangbewegungen und

-ruts
hungen prognostizieren.

Im Angesi
ht der immer häu�ger auftretenden Ho
hwasserereignisse sind viele di
ht be-

siedelte Gebiete in der Nähe von Seen und Flüssen permanent gefährdet. Der S
hutz von

sol
hen Ho
hwassergebieten dur
h Dämme und Dei
he erlangt immer mehr eine gewi
h-

tige Bedeutung. Ein weiterer nennenswerter Aspekt ist hier die globale Klimaerwärmung

und das damit verbundene Abs
hmelzen der polaren Eiskappen mit verheerenden Folgen

eines steigenden Meeresspiegels. Des Weiteren werden Dämme ni
ht nur zum S
hutz vor

Ho
hwasser gebaut, sondern au
h immer mehr zur Gewinnung von regenerierbaren Ener-

gien eingesetzt. So werden dur
h das Aufstauen von Flüssen hohe Wasserkräfte generiert,

um dann entspre
hend Turbinen anzutreiben. Die riesige, aufgestaute Wassermenge be-

sitzt allerdings eine enorme zerstöreris
he Kraft, die bei einem Dammbru
h, wie z. B.

beim Versagen des Teton Damms (1976) oder des Taum Sauk Damms (2005), für Mens
h

und Natur eine groÿe Gefahr bedeutet. Der Einsturz dieser Dämme wurde dur
h eine

innere Erosion des Bodens induziert. Bei der inneren Erosion werden die Körner von der

Kornstruktur des Bodens dur
h die Strömungskraft des Porenwassers gelöst, so dass die

Porosität des Bodens zunimmt, und der Boden hierdur
h fortlaufend seine Tragfähigkeit

verliert, bis s
hlieÿli
h der Damm zusammenbri
ht. Aus diesem Grund ist es wi
htig, kri-

tis
he S
hwa
hstellen in der Dammkonstruktion so früh wie mögli
h zu erkennen, um

re
htzeitig notwendige Gegenmaÿnahmen einzuleiten. Hierzu können Computersimulatio-

nen von Dämmen helfen, kritis
he S
hwa
hstellen einer Konstruktion zu �nden.

Stand der Fors
hung

Genaue numeris
he Bere
hnungen von komplexen geote
hnis
hen Problemstellungen ge-

winnen immer mehr an Bedeutung. Diese Anforderungen beziehen si
h insbesondere auf

fundierte Vorhersagen des Spannungs-Dehnungsverhaltens von granularen Materialien un-

ter si
h ständig ändernden me
hanis
hen und hydraulis
hen Belastungsbedingungen. In

der Hinsi
ht besteht der Bedarf an geeigneten mathematis
hen Materialmodellen, die

jeweils die Fähigkeit besitzen, das Verhalten von teilgesättigten deformierbaren Böden

realistis
h abzubilden. Im Folgenden wird ein Überbli
k über die Fors
hungsthemen ge-

geben, die in dieser Arbeit behandelt werden.

Konstitutivmodellierung von teilgesättigten Böden

Teilgesättigte Reibungsmaterialien werden im Allgemeinen dur
h ein Dreiphasenmodell

bes
hrieben. Die individuellen Phasen sind das materiell inkompressible, elastis
h-plast-

is
he oder elastis
h-viskoplastis
he Festkörperskelett, das materiell inkompressible Poren-

wasser und die materiell kompressible Porenluft. Basierend auf einem kontinuumsme-


hanis
hen Ansatz haben Ehlers und Blome [58℄ oder Ehlers et al. [64℄ im Rahmen der

Theorie Poröser Medien (TPM) das Dreiphasenmodell in einer thermodynamis
h konsi-

stenten Form hergeleitet. Die TPM ist ein erweitertes Modell der Mis
hungstheorie (MT)

im Kontext des Konzepts der Volumenanteile. Im Gegensatz zur MT berü
ksi
htigt die
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TPM die mikro-strukturellen Informationen des porösen Materials in einer homogeni-

sierten Weise. Die Mis
hungstheorie �ndet vorwiegend Anwendung in der 
hemis
hen

Ingenieurwissens
haft, wo Mis
hungen mit 
hemis
h reagierenden (mis
hbaren) Konstitu-

ierenden bes
hrieben werden. Bei derglei
hen Mis
hungen ist die mikrostrukturelle Infor-

mation im System prinzipiell irrelevant. Die vorwiegende Entwi
klung der MT geht auf

die Arbeiten von Truesdell und Toupin [163℄, Bowen [19℄ sowie Truesdell [161℄ zurü
k,

wohingegen die grundlegenden Ansätze und Herleitungen der TPM in den Arbeiten von

Bowen [20, 21℄, de Boer [13, 14℄, de Boer und Ehlers [15, 16℄ oder Ehlers [46, 47, 52, 53℄

sowie in den darin zitierten Arbeiten zu �nden sind.

Eine anspru
hsvolle Aufgabe im Berei
h der Geome
hanik ist die Bestimmung des komple-

xen Spannungs- und Dehnungsverhaltens von kohäsionslosen granularen Materialien wie

Sand. Um das plastis
he Verhalten sol
h eines Materials numeris
h zu bes
hreiben, wur-

den in den letzten se
hs Jahrzehnten vers
hiedene Flieÿfunktionen entwi
kelt, vgl. z. B.

die Arbeiten [12, 32, 38, 39, 96, 100, 121, 128℄. Die Vor- und Na
hteile von einigen dieser

Flieÿfunktionen werden in [49℄ ausführli
h diskutiert. In der vorliegenden Arbeit wird das

Ein�ä
hen�ieÿkriterium von Ehlers [48℄ verwendet, wel
hes abwärtskompatibel zu ande-

ren plastis
hen Modellen ist, wie z. B. zu dem bekannten Dru
ker-Prager-Kriterium oder

dem von-Mises-Kriterium für ni
ht poröse Materialien. Charakteristis
h ist, dass granu-

lare Materialien bereits mit der ersten Belastung ein ho
hgradig ni
ht-lineares Material-

verhalten aufzeigen, wel
hes mit elastis
hen und plastis
hen Deformationen gekoppelt ist.

Das entspre
hende Verfestigungsverhalten wird dur
h die Entwi
klung der Flieÿkontur be-

s
hrieben und dabei entweder dur
h die plastis
he Arbeit [66℄ oder dur
h die plastis
hen

Dehnungen [67℄ gesteuert. Dur
h die Zerlegung der plastis
hen Verzerrung in einen volu-

metris
hen und einen deviatoris
hen Anteil ist es mögli
h, das isotrope Verfestigungs- und

Entfestigungsverhalten in einer einfa
hen und e�zienten Art zu modellieren, vgl. Krenk

[96℄, Desai [40℄ (Seite 181) und S
holz [137℄. Die Verfestigung der Flieÿ�ä
he wird hier

dur
h eine konstante Bru
h- bzw. Grenz�ieÿ�ä
he begrenzt, die die Flieÿ�ä
he bei maxi-

maler Deviatorspannung wiedergibt. Diese Annahme wurde experimentell von Ehlers und

Av
i [56℄ untersu
ht mit dem Ergebnis, dass die Bru
h�ä
he zum einen variabel ist und

zum anderen vom Spannungszustand abhängt. Das bedeutet, dass das granulare Material

bestrebt ist, im Bru
hzustand eine mögli
hst kleine Grenz�ieÿ�ä
he zu generieren. Als

Konsequenz auf das spannungsabhängige Bru
hverhalten haben Ehlers und Av
i [56℄ eine

variable Funktion für die si
h entwi
kelnde Grenz�ieÿ�ä
he eingeführt. Diese wird vom

hydrostatis
hen Spannungszustand reguliert. In dieser Arbeit wird diese besondere Eigen-

s
haft von granularem Material hinsi
htli
h der experimentellen Untersu
hungen und der

konstitutiven Modellierung im Detail diskutiert. Die daraus gewonnene Erkenntnis zeigt,

dass dieses Bru
hverhalten für die genaue Modellierung von Anfangsrandwertproblemen

(ARWP) wesentli
h ist.

Um den 
harakteristis
hen Eigens
haften teilgesättigter Böden Re
hnung zu tragen, po-

stulierten Alonso et al. [1℄, Bolzon et al. [18℄ und Laloui und Nuth [102℄, dass die Flieÿ�ä
he

im Rahmen der elastis
h-plastis
hen Theorie eine Funktion des Spannungszustands sowie

der Porenwassersättigung ist. Im Gegensatz hierzu wird beim e�ektiven Spannungskon-

zept (vgl. z. B. bei Skempton [146℄, Ehlers und Blome [58℄ oder Ehlers et al. [57, 64℄) der

Ein�uÿ der Kapillareigens
haft des Bodens auf das elastis
h-plastis
he Verhalten dur
h
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den resultierenden Porendru
k berü
ksi
htigt. In der ungesättigten Zone reduziert der

negative Poren�uiddru
k, der dem Kapillardru
k entspri
ht, die e�ektive Festkörperspan-

nung. Folgli
h können das plastis
he Verhalten und die Sättigungseigens
haft des Bodens

hier entkoppelt betra
htet werden. Diese Entkopplung vereinfa
ht au
h die experimen-

telle Ermittlung des me
hanis
hen und hydraulis
hen Verhaltens des Bodens sowie die

Parameteridenti�kation. Basierend auf dem e�ektiven Spannungskonzept haben Ehlers

et al. [57℄ den Versteifungse�ekt einer Bös
hung infolge der Kapillarwirkung im Boden

numeris
h untersu
ht.

Experimentelle Untersu
hung

Ausgehend von ni
ht-mis
hbaren Materialien in Verbindung mit dem Prinzip der Phasen-

trennung können das Deformationsverhalten sowie die hydraulis
hen Eigens
haften des

teilgesättigten Bodens entkoppelt untersu
ht werden, indem nur einer dieser beiden Pro-

zesse für die jeweilige Untersu
hung aktiviert wird. Die me
hanis
h-hydraulis
hen Kopp-

lungsme
hanismen werden dann ans
hlieÿend dur
h Konstitutivansätze berü
ksi
htigt.

Dadur
h werden die experimentelle Untersu
hung und die theoretis
he Modellierung des

Bodens deutli
h vereinfa
ht. Demzufolge können die Spannungs-Dehnungs
harakteristika

des Festkörperskeletts des zu untersu
henden teilgesättigten Bodens anhand von �uid-

gesättigten (Porenluft oder -wasser) Proben unter homogenen Randbedingungen dur
h

Triaxialversu
he bestimmt werden. Dahingegen können die hydraulis
hen Eigens
haften

des Bodens wie die Permeabilität, die Bewegung der Poren�uide in der ungesättigten Zone,

et
., dur
h deformationsfreie Experimente erfasst werden, d. h., ohne externe Belastung

der Bodenprobe, 
f. Ehlers et al. [57℄.

Kohäsionslose granulare Reibungsmaterialien wie Sand sind statis
h nur dann stabil, wenn

sie unter hydrostatis
hem Dru
k stehen. Daher wird das Materialverhalten eines Sands

dur
h Triaxialversu
he bestimmt. Hier wird die Sandprobe in der Triaxialzelle in eine La-

texmembran eingepa
kt und dur
h entgastes Zellwasser unter Vorspannung gesetzt. Der

Wasserdru
k, der auf die Probe wirkt, wird dabei mit einem Volumen-Dru
k-Messgerät

reguliert. Die zentrale Herausforderung bei der Dur
hführung von Triaxialversu
hen be-

steht darin, die Volumendeformation der Probe exakt zu messen. Hierzu werden in der

eins
hlägigen Literatur vers
hiedene Methoden mit unters
hiedli
hen Anforderungen an

die Volumenmessgenauigkeit vorges
hlagen. Die meisten dieser Methoden wurden von

Alva-Hurtado und Selig [2℄ oder von Geiser et al. [74℄ dokumentiert, wobei Alva-Hurtado

und Selig [2℄ die Messmethoden in drei Kategorien unterteilen. Die erste und zweite Kate-

gorie stehen jeweils für eine Methode, bei der das ein- und ausströmende Zellwasser infolge

Probendeformation gemessen bzw. bei der die Porenvolumenänderung dur
h die Messung

des Zu- und Ab�usses des Porenwassers ermittelt wird. Die letztgenannte Methode ist

jedo
h nur mit gesättigten Proben und drainierten Randbedingungen dur
hführbar. Im

Gegensatz zu den Methoden der ersten beiden Kategorien wird beim Ansatz der dritten

Kategorie die Volumendehnung dur
h Wegmesser direkt an der Probe gemessen.

Im Rahmen dieser Arbeit werden Triaxialversu
he mit homogenen und drainierten Bedin-

gungen dur
hgeführt. Folgli
h kommen hier alle drei Kategorien in Frage. Den einfa
hsten

und unkompliziertesten Ansatz, um Volumenänderungen einer Probe zu messen, liefert

die Methode der ersten Kategorie. Bei ihr spielen die Stei�gkeit und das Fassungsver-
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mögen der Zelle hinsi
htli
h der Fehlerkalibrierung eine zentrale Rolle. Leong et al. [105℄

haben von vers
hiedenen Triaxialzellen, wie z. B. von Triaxiallzellen aus A
rylglas, aus

Stahl oder von Konstruktionen aus doppelwandigen Zellen, den diesbezügli
hen Messfeh-

ler analysiert. Ihren Untersu
hungen na
h liefern die Zelldeformation und die benötigte

Menge an Zellwasser den Hauptanteil des Messfehlers. In Anbetra
ht dieser beiden Feh-

lerquellen wird in der vorliegenden Arbeit eine neue steife Triaxialzelle aus Aluminium

vorgestellt, deren Kapazität genau auf die Volumendehnung der Probe optimiert ist. Da-

mit konnte der absolute Kalibrierungsfehler der Triaxialversu
hsanlage deutli
h minimiert

werden, vgl. Ehlers et al. [57℄.

Zur Kalibrierung der Konstitutivglei
hungen des Spannungs-Dehnungsverhaltens des zu

untersu
henden Sands sind in dieser Arbeit etli
he Triaxialexperimente an zylinderför-

migen, tro
kenen und di
ht gepa
kten Sandproben unter homogenen und drainierten

Randbedingungen dur
hgeführt worden. Dieser Satz an Experimenten besteht zum ei-

nem aus hydrostatis
hen Kompressionsversu
hen und zum anderen aus Kompressions-

und Extensionss
herversu
hen mit unters
hiedli
hen Vorspannungen, um die Abhängig-

keit des Materialverhaltens vom isotropen Spannungszustand zu untersu
hen. In diesem

Zusammenhang konnte dur
h spannungspfadabhängige Triaxialversu
he eine wesentli
he

Eigens
haft des Sands in Bezug auf das Flieÿ - und Bru
hverhalten ermittelt werden.

Parameteridenti�kation

Dur
h stetig verbesserte experimentelle Verfahren nimmt das Wissen über das physikali-

s
he Verhalten von Böden stetig zu. Dieses Wissen erlaubt in der Tat, immer anspru
hs-

vollere Materialmodelle zu entwi
keln. Die Weiterentwi
klung der Modelle hat allerdings

zumeist zur Folge, dass die Anzahl der Materialparameter zunimmt. Insofern wird die

Bestimmung der Materialparameter immer s
hwieriger, so dass der Einsatz von Optimie-

rungsverfahren für deren Identi�zierung unumgängli
h wird. Die Parameteridenti�zierung

erfolgt dur
h die inverse Bere
hnung der Experimente, wobei die Re
hnung stets mit ver-

besserten Parametern wiederholt wird. Der verbesserte Parametersatz wird dur
h den

Einsatz von gradienten-basierten Optimierungsverfahren ermittelt. Die zugrunde liegen-

de Iteration ist hier dann beendet, wenn der optimale Parametersatz gefunden ist, der

die experimentellen Ergebnisse bestmögli
h approximiert. Die Optimierungsaufgabe der

Parameteridenti�kation wird dur
h eine vorgegebene Zielfunktion ausgedrü
kt. Diese ist

dur
h die Summe der Quadrate der Approximationsfehler de�niert, die es zu minimieren

gilt. Dieses Vorgehen wird au
h als dieMethode der kleinsten Fehler-Quadrate bezei
hnet.

Die Strategien vers
hiedener Optimierungsmethoden, die zur Lösung der Zielfunktion ein-

gesetzt werden, werden in deterministis
he (reproduzierbare) Verfahren (Luenberger und

Ye [109℄, Bertsekas [8℄ und Spellu

i [147℄) und in sto
hastis
he (ni
ht reproduzierbare)

Verfahren (Bä
k und S
hwefel [4℄ und S
hwefel [142℄) di�erenziert. Des Weiteren werden

die Verfahren der ersten Gruppe in die Kategorien gradienten-basierte und gradienten-freie

Methoden unterteilt. Zu der ersten Kategorie, also zu den gradienten-basierten Metho-

den, gehören die Newton-Verfahren und die Quasi-Newton-Verfahren. Im Gegensatz zu

den erstgenannten Verfahren approximieren die zweitgenannten � hierzu zählen z. B. das

Gauss-Newton-Verfahren, das Levenberg-Marquardt-Verfahren oder das BFGS (Broyden-

Flet
her-Goldfarb-Shannon)-Verfahren � die re
henaufwendige Hesse-Matrix (diese Ma-



XVIII Deuts
he Zusammenfassung

trix stellt die zweite Ableitung der Zielfunktion dar) � auf der Basis der ersten Ableitung

der Zielfunktion. Die Kategorie der gradienten-freien Verfahren umfasst ebenso zwei groÿe

Gruppen. Diese sind auf der einen Seite die deterministis
h-basierten Simplex Methoden,

vgl. Nelder und Mead [119℄, und auf der anderen Seite die sto
hastis
hen Methoden. Ein

Überbli
k über die wi
htigsten Optimierungsverfahren ist z. B. in Rao [129℄ zu �nden.

Die Lösung eines Optimierungsproblems ist aufgrund der groÿen Anzahl der Parameter

meist ni
ht eindeutig. So liegt das hier angestrebte Ziel darin, die optimale Kombination

der Parameter zu �nden, die unter den vielen vorhandenen lokalen Minima das globale

Minimum des Optimierungsproblems repräsentiert. Allerdings führen ni
ht alle Optimie-

rungsmethoden zum optimalen Parametersatz, anhand dessen die beste Übereinstimmung

zwis
hen den experimentellen und numeris
hen Ergebnissen errei
ht wird. Wel
he Metho-

de nun zur Lösung des betra
hteten Problems am besten geeignet ist, hängt von den

Anforderungen des formulierten Optimierungsproblems ab. Zum Beispiel ist die Qualität

der Lösung von gradienten-basierten Optimierungsverfahren stark von den Anfangswer-

ten der Parameter abhängig, weil jeder neu verbesserte Parametersatz in Ri
htung des

steilsten Abstiegs der Zielfunktion ermittelt wird. Folgli
h endet der Optimierungspro-

zess meist in einem der lokalen Minima. Demgegenüber de
ken sto
hastis
he Verfahren,

wie die Evolutionsstrategien, ein breites Optimierungsgebiet ab. Die Wahrs
heinli
hkeit

das globale Minimum zu �nden, ist in dem Fall deutli
h gröÿer. Jedo
h benötigen diese

Verfahren eine hohe Anzahl an Auswertungen der Zielfunktion, insbesondere bei Opti-

mierungsproblemen mit vielen Parametern (Mahnken [111℄).

Numeris
he Untersu
hungen von Hangruts
hungen

Numeris
he Untersu
hungen von Naturhängen mit der Finite-Elemente-Methode (FEM)

werden immer wi
htiger. Denn zum einen kann man dur
h numeris
he Stabilitätsuntersu-


hungen von bestehenden aber gefährdeten Hängen mögli
he Versagensprognosen geben

und zum anderen kann man dur
h Simulationen von bereits ereigneten Hangruts
hung-

en eine Modellveri�zierung vornehmen. Zum Beispiel haben Ferrari et al. [72℄ in diesem

Zusammenhang die Hangruts
hung der Steinernase im Kanton Aargau (S
hweiz) na
hsi-

muliert. Diese Bere
hnungen basieren auf einer s
hwa
h gekoppelten me
hanis
hen und

hydraulis
hen Simulationsmethode, bei der fortlaufend die entspre
henden Randbedin-

gungen aktualisiert werden. Die entspre
henden Modellparameter wurden in dieser Arbeit

auf der Basis der Daten eines am Hang dur
hgeführten Langzeitmonitorings identi�ziert.

Einen anderen vollgekoppelten Ansatz, verfolgen hingegen Ehlers et al. [57℄ in ihrer Ar-

beit, worin basierend auf einem vollgekoppelten Modell der Heumöser Hang in Ebnit

(Österrei
h) entlang idealisierte Quers
hnitte (Lindenmaier [107℄) numeris
h untersu
ht

wurde. Wenn jedo
h Hangruts
hungen anhand von anspru
hsvolleren Materialmodellen

untersu
ht werden sollen, z. B. bei besonderem Interesse des Ein�usses der interagierenden

hydraulis
hen und me
hanis
hen Prozesse, ist es ein gängiges Vorgehen, auf idealisierte

und wohlde�nierte Hanggeometrien zurü
kzugreifen (Darve und Laouafa [35℄, Tsaparas

et al. [164℄, Ehlers et al. [57, 64℄, Klubertanz et al. [94℄). Allerdings erfordern zuverlässige

Vorhersagen über das Stabilitätsverhalten von Hängen auf der Basis von FEM Analysen

eine hohe räumli
he Au�ösung der Lokalisierungszonen von plastis
hen Deformationen. In

dieser Hinsi
ht haben Ehlers et al. [64℄ zur hinrei
hend genauen Bestimmung der S
her-
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bänder in teilgesättigten Böden ortsadaptive Methoden angewendet. Groÿe dreidimen-

sionale Baugrubenprobleme wurden von Ammann [3℄, Wieners et al. [177℄ und Graf [78℄

auf einem Multiprozessorsystem parallel bere
hnet (ohne Ortsadaptivität). Das plastis
he

Flieÿverhalten des Bodens wurde in diesen Arbeiten jedo
h ohne die Ver- und Entfesti-

gungseigens
haft des Materials simuliert.

Simulation der inneren Erosion

Das Ablösen der Körner von der Kornstruktur des Bodens dur
h die Si
kerges
hwindigkeit

des Porenwassers und der ans
hlieÿende Transport dieser Körner dur
h das Netzwerk von

Porengängen werden als die innere Erosion des Bodens bezei
hnet. Ziems [183℄ ist hier

genauer und di�erenziert zwis
hen der inneren Erosion und der inneren Su�usion. Diese

unters
heiden si
h darin, dass die Su�usion si
h nur auf den Transport des Klein- oder

Feinkornanteils des Bodens bes
hränkt � so bleibt die Haupttragstruktur des Bodens, die

vom Grobkornanteil gebildet wird, hier unberührt � und dass die Erosion alle Körner der

Struktur umfasst. Im Erosionsfall kann die Hauptkornstruktur dementspre
hend dur
h

hohe Si
kerges
hwindigkeiten lokal aufgebro
hen werden, so dass si
h langsam forts
hrei-

tend ein Erosionskanal entwi
keln kann, vgl. Bendahmane et al. [6℄, Wan und Fell [170℄

und Indraratna et al. [90℄. In diesem Sinne ist die Su�usion ein Sonderfall der Erosion,

wel
he nur bei niedrigen Si
kerges
hwindigkeiten vorzu�nden ist. In dieser Arbeit wird nur

die innere Su�usion betra
htet und im Folgenden allgemein als innere Erosion bezei
h-

net. Ein innerer Erosionsprozess ist insbesondere bei Dämmen vorzu�nden. Dieser kann

die Tragfähigkeit des Bodens sowie dessen Di
htheit gegen die In�ltration des aufgestau-

ten Wassers lokal ents
heidend herabsetzen und im s
hlimmsten Fall ein Dammversagen

auslösen.

Eine kontinuumsme
hanis
he Bes
hreibung von erodierbaren gesättigten Böden wurde

von Vardoulakis et al. [168℄ und Wang und Wan [173℄ vorgestellt. Sie verwenden ein allge-

mein bekanntes Zweiphasenmodell, das aus einer Festkörperphase und einer Poren�uid-

phase besteht und erweitern diese um eine Erosionsphase. Die Erosionsphase repräsentiert

die gelösten und die im Fluid freibewegli
hen Körner. Auf diesem Modellansatz basierend

haben Steeb und Diebels [151℄ im Rahmen der TPM ein Dreiphasenmodell für erodier-

bare gesättigte Böden in einer thermodynamis
h konsistenten Darstellung hergeleitet.

Der Fluidisierungsprozess der Kornstruktur wird in dem Fall dur
h den Massenaustaus
h

bzw. die Massenproduktion zwis
hen der Festkörper- und der Fluidphase bes
hrieben.

Die antreibende Kraft ist hier die Si
kerges
hwindigkeit des Poren�uids, vgl. Vardulakis

et al. [168℄ und Steeb et al. [153℄, oder des Porengases, vgl. Steeb [150℄. Angesi
hts dessen,

dass die Su�usion nur auf den Anteil der Feinkorngröÿen bes
hränkt ist, haben Steeb et

al. [153℄ die gesamte Kornstruktur in einen stabilen Anteil, der den ni
ht erodierbaren

Anteil der Struktur darstellt, und in einen instabilen erodierbaren Feinkornanteil unter-

teilt. Jedo
h führt dieses Vorgehen zu einer gröÿeren Anzahl an Bilanzglei
hungen für das

kontinuumsme
hanis
he Problem.

Das me
hanis
he Verhalten eines Bodens wird nur vom Su�usionsprozess beein�usst, wenn

der Groÿkornanteil weniger als 70% beträgt. Diese Eigens
haft wurde für Böden wur-

de von Vallejo [165℄ dur
h Triaxialversu
he an Proben beoba
htet, die mit vers
hiede-

nen Mengenverhältnissen von zwei unters
hiedli
h groÿen Glaskugeln homogen aufgebaut
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wurden. Er hat dabei festgestellt, dass die maximale Festigkeit einer Probe bei minimaler

Porosität errei
ht wird. Diese ergibt si
h dann, wenn zwis
hen dem Klein- und Groÿku-

gelanteil ein optimales Verhältnis besteht. Das Haupttraggerüst des Bodens wird in dem

Fall hauptsä
hli
h vom Groÿkornanteil gebildet. Die Festigkeit wird aber denno
h anteilig

vom Klein- und Groÿkorn bestimmt. So werden die me
hanis
hen Eigens
haften des Bo-

dens ausgehend vom besagten optimalen Verhältnis dur
h Variation des Kleinkornanteils

entspre
hend reduziert. Ein ähnli
hes Verhalten wurde au
h bei Sand-Ton-Mis
hungen

beoba
htet (Vallejo et al. [166℄ und Sterpi [154℄). Bezieht man diese Ergebnisse nun auf

die innere Su�usion, so ergibt si
h als Konsequenz, dass der Verlust des Feinkornanteils im

Boden und die damit verbundene Zunahme der Porosität sowohl die Stei�gkeit als au
h

die Festigkeit des Bodens reduziert. Das hat natürli
h zur Folge, dass der Reibwiderstand

des Bodens gegen S
herkräfte abnimmt und die Deformation unter der gegenwärtigen Last

hingegen zunimmt.

Aufgrund der inneren Erosion werden die Stei�gkeit und die Festigkeit des Bodens dur
h

die Zunahme der Porosität degradiert. Entspre
hend dazu haben Papami
hos und Vardou-

lakis [124℄ oder Wood et al. [179℄ die Flieÿ�ä
he in Abhängigkeit der zunehmenden Po-

rosität im Sinne der Materialentfestigung reduziert. Steeb et al. [153℄ haben indessen

dur
h Einführung einer S
hädigungsvariable, wie sie im Kontext der Modellierung des

S
hädigungsverhaltens von spröden Materialien benutzt wird, einen Ansatz zur Abmin-

derung der elastis
hen Parameter vorgestellt, vgl. Ka
hanov [91℄ oder Rempler [130℄ bei

S
hädigung von Mehrphasenmaterialien. In diesem Zusammenhang ist das grundlegende

Ziel dieser Arbeit, die Umsetzung der inneren Erosion in ein gekoppeltes, ges
hlossenes

Bodenmodell, mit der Intention physikalis
h anspru
hsvolle geote
hnis
he Problemstel-

lungen numeris
h zu untersu
hen. Dafür müssen aber aufgrund der Prozesskomplexität

der inneren Erosion denno
h einige Vereinfa
hungen getro�en werden, z. B. bezügli
h der

Modellidealisierung und der konstitutiven Bes
hreibung des Bodens.

Zielsetzung und Vorgehensweise

Um ein reales ARWP numeris
h zu untersu
hen, muss zunä
hst dessen Materialverhalten

entspre
hend der Belastungsart des realen Problems analysiert werden. Denn die Bela-

stungsbedingung � diese kann statis
h, dynamis
h oder zyklis
h sein � gibt für das beim

ARWP zugrundeliegende Material vor, auf wel
he Weise es im Hinbli
k auf die Bestim-

mung seiner Materialeigens
haften wie beispielsweise elastis
hes, elastis
h-(visko)plas-

tis
hes oder viskoelastis
hes Verhalten zu untersu
hen ist. Daher müssen hier entspre
hend

geeignete experimentelle Verfahren ausgewählt werden. Anhand der Ergebnisse von Ka-

librierungsexperimenten

∗
wird entweder ein konstitutives Materialmodell entwi
kelt oder

ein geeignetes aus den bereits vorhandenen ausgewählt. Betre�end der Zielformulierung

der vorliegenden Arbeit kann an dieser Stelle festgehalten werden, dass das Material

∗
Kalibrierungsexperimente sind Elementversu
he, die si
h besonders dur
h ihre einfa
he Belastungs-

und Randbedingungen kennzei
hnen. Dur
h die einfa
he Wahl der Systembedingungen soll eine homogene

Spannungs-Deformationsverteilung innerhalb der Probe sowie die Reproduzierbarkeit der Experimente

gewährleistet werden. Diese Versu
he bilden das wahre Materialverhalten überwiegend ab und werden

zur Kalibrierung der Konstitutivglei
hungen bzw. zur Identi�kation der Materialparameter verwendet.
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des realen Problems aus teilgesättigtem Sand besteht. Sol
her Sand kommt nahezu in

allen geome
hanis
hen Problemstellungen vor. Das Ziel ist hier eine mögli
hst genaue

Simulation des Deformations- und Strömungsprozesses des teilgesättigten Sands dur
h-

zuführen, um damit die Basis für eine realistis
he Simulation des ARWP zu s
ha�en.

Dafür werden die verwendeten Materialgesetzte auf der Grundlage des Dreiphasenboden-

modells geprüft und verbessert, vgl. [57℄, insbesondere die Modellierung des Spannungs-

Dehnungsverhaltens. So wurden für dieses Vorhaben diverse Experimente dur
hgeführt,

um die verwendeten Konstitutivmodelle letztendli
h zu veri�zieren und zu validieren,

vgl. [56, 57℄.

Die Prozedur zur Untersu
hung des Bodenmodells kann grob in die folgenden drei Auf-

gabenfelder unterteilt werden: Experimentelle Untersu
hung, Konstitutive Modellierung

und Parameteridenti�kation. Diese Aufgabenfelder sind in Abb. 0.1 als Kreislaufs
he-

ma abgebildet, worin die gegenseitigen Abhängigkeiten der Felder zu erkennen sind. Das

kalibrierte Materialmodell wird hier auf der Basis von Vorsimulationen zusätzli
her Expe-

rimente oder dur
h numeris
he Untersu
hungen von ARWP validiert. Damit werden die

anderen Aufgabenfelder direkt oder indirekt mit überprüft. Dementspre
hend ist die Mo-

dellvalidierung im Zentrum des Kreislaufs
hemas platziert. Die Inhalte können im Kontext

der Bodenmodellierung grob zusammengefasst wie folgt wiedergegeben werden:

Experimentelle Untersu
hung. In Abhängigkeit von der Art der Belastung des realen

Problems wird die experimentelle Untersu
hung des Bodenmaterials entweder unter quasi-

statis
hen oder dynamis
hen Belastungsbedingungen dur
hgeführt. Zum Beispiel neigen

granulare Materialien unter dynamis
her Belastung zur Bodenver�üssigung. Kennzei
h-

nend für dieses Verhalten ist ein plötzli
her Verlust der Bodenstei�gkeit [26, 28, 86, 132℄.

In dieser Arbeit werden die Materialeigens
haften des Sands auss
hlieÿli
h unter quasi-

statis
her Belastung untersu
ht. Böden weisen im Allgemeinen eine isotrope (Aufwei-
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felder des Materialmodellierungsprozesses.
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tung der Flieÿ�ä
he) sowie eine kinematis
he (translatoris
he Vers
hiebung des Zentrums

der Flieÿ�ä
he) Verfestigungseigens
haft auf. Die kinematis
he Verfestigung tritt bei zy-

klis
hen Kompressions-Extensions-We
hselbelastungen auf (Baus
hinger-E�ekt). Da hier

keine zyklis
hen Belastungen für das reale Problem vorgesehen sind, kann die kinematis
he

Verfestigung dementspre
hend sowohl von der experimentellen Untersu
hung als au
h von

der Konstitutivmodellierung ausges
hlossen werden. Glei
hwohl müssen aber mögli
hst al-

le Eigens
haften des Materials, die für das reale Problem relevant sein können, dur
h die

jeweiligen Experimente erfasst und dur
h die konstitutiven Modelle abgebildet werden.

Konstitutive Modellierung. Zur numeris
hen Modellierung des Materialverhaltens

werden mathematis
he Modelle auf der Grundlage von experimentellen Ergebnissen ent-

wi
kelt. Hierzu stehen vers
hiedene mathematis
he Ansätze zur Verfügung. Diese sind

z. B. empiris
he, rheologis
he oder konstitutive Modellierungsansätze. Na
h Mahnken

[111℄ erfüllen empiris
he und rheologis
he Modelle � im Gegensatz zu Konstitutivmodelle

� ni
ht notwendigerweise den zweiten Hauptsatz der Thermodynamik. Denn beispiels-

weise sind die empiris
hen Modelle im Grunde nur bestrebt, die experimentellen Daten,

vorzugsweise, mit mögli
hst wenigen Parametern zu approximieren, ohne dabei zwingen-

de physikalis
he Restriktionen zu erfüllen. Indessen bes
hreiben die rheologis
hen Modelle

komplexes Materialverhalten dur
h Verknüpfungen von rheologis
hen Basiselementen wie

Wegfeder, viskoser Dämpfer und Reibelement, mit dem Na
hteil, dass mit forts
hreitender

Modellkomplexität die Anzahl der Materialparameter zunimmt. Im Verglei
h zu diesen

beiden Modellansätzen basieren die thermodynamis
h konsistenten Konstitutivmodelle,

die im Rahmen einer Kontinuumstheorie entwi
kelt werden, auf phänomenologis
hen Be-

oba
htungen von physikalis
hen Prozessen, die experimentell bestimmbar und messbar

sind. In dieser Arbeit wird der zuletzt genannte Modellierungsansatz weiterverfolgt, also

die phänomenologis
he Vorgehensweise der konstitutiven Materialbes
hreibung.

Parameteridenti�kation. Zur e�zienten und s
hnellen Lösung von restringierten Opti-

mierungsproblemen, die aus einem Hauptproblem und aus sekundären Restriktionen mit

Glei
hheits- und Unglei
hheitsbedingungen bestehen, ist die Sequentielle Quadratis
he

Programmierung (SQP) ( [17, 87, 135, 136, 149℄ ) eine bevorzugte Wahl. Die SQP-Methode

gehört zu der Gruppe der gradienten-basierten Verfahren und löst das Optimierungspro-

blem in einer Lagrange -Formulierung. Trotz der Tatsa
he, dass gradienten-basierte de-

terministis
he Verfahren nur die lokale Lösung des Optimierungsproblems in der Regel

�nden, hat si
h die SQP-Methode für den Einsatz im Rahmen der Parameteridenti�ka-

tion sehr gut etabliert. Da die Wahl der Startwerte der Parameter bei dieser Methode

einen groÿen Ein�uss auf die Lösung des Optimierungsproblems hat, muss der Anwender

dieser Methode insofern gute Kenntnisse über das Materialverhalten und über die Kon-

stitutivbeziehungen im verwendeten Materialmodell verfügen. Des Weiteren wird hier zur

Bere
hnung des Gradienten der Zielfunktion eine umfangrei
he Sensitivitätsanalyse der

Optimierungsparameter hinsi
htli
h der zu kalibrierenden physikalis
hen Gröÿen benötigt.

Modellvalidierung. Das kalibrierte Materialmodell wird dur
h numeris
he Bere
hnun-

gen von zusätzli
hen Experimenten validiert. Diese Experimente müssen unabhängig von

jenen Experimenten sein, die für die Kalibrierung des Modells verwendet wurden, und

sollten zudem inhomogene Deformationsverteilungen und Lokalisierungen von plastis
hen

S
herzonen aufweisen. Hierdur
h kann die Qualität der Modellierung des plastis
hen Ma-
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terialverhaltens überprüft werden. Für den Fall, dass die Validierung des Materialmodells

ni
ht erfolgrei
h ist, obwohl die Elementversu
he vom Materialmodell ri
htig wiedergege-

ben wurden, muss die Ursa
he für dieses Problem in den drei Feldern des Materialidenti�-

kationsprozesses (Abb. 0.1) gesu
ht werden. Ein eventueller Grund für den Fehler könnte

sein, dass das Materialverhalten dur
h die vorhandenen Elementversu
he ni
ht vollstän-

dig abgede
kt wird und bestimmte physikalis
he Eigens
haften des Materials erst dur
h

die Validierungsexperimente aktiviert werden. Folgli
h müssen diese Eigens
haften dur
h

zusätzli
he Elementversu
he erfasst und dur
h Konstitutivmodelle entspre
hend abgebil-

det werden. Ansonsten kann der Fehler der Validierungsre
hnung dur
h das angewendete

numeris
he Verfahren resultieren, z. B. infolge der Netzabhängigkeit der Lösung. Dieser

Fehler kann dur
h numeris
he Konvergenzstudien mit feineren Diskretisierungsstufen des

Finite-Elemente Netzes untersu
ht werden. Letztendli
h ist der Modellidenti�kationspro-

zess dann beendet, wenn der Validierungsvorgang erfolgrei
h abges
hlossen ist.

Simulation von ARWP. Ausgehend von einem erfolgrei
h abges
hlossenen Prozess der

Modellkalibrierung und -validierung können unter Verwendung dieses Materialmodells

numeris
he Analysen von realistis
hen ARWP dur
hgeführt werden.

Gliederung der Arbeit

Beginnend mit dem Kapitel 2 wird das grundlegende Konzept der TPM, wel
hes zur Be-

s
hreibung von porösen Mehrphasenmaterialien entwi
kelt wurde, eingeführt. Darin wer-

den die kinematis
hen Relationen der einzelnen Konstituierenden und die me
hanis
hen

Bilanzglei
hungen des Mehrphasenmaterials angegeben. Die komplexen Zusammenhän-

ge von porösen Mehrphasenmaterialien, die aus einer Festköpermatrix und einem oder

mehreren Poren�uidkomponenten bestehen, werden in einem bekannten kontinuumsme-


hanis
hen Rahmen eines Einphasenmaterials erläutert.

Das poröse Material, das in dieser Arbeit untersu
ht wird, ist der GEBA

†
-Sand. Das

me
hanis
he Verhalten des GEBA-Sands wird dur
h Triaxialversu
he bestimmt. Hierzu

werden in Kapitel 3 die experimentelle Versu
hsausrüstung sowie die Eliminierung des

Messfehlers der Versu
hsapperatur aufgezeigt. Des Weiteren werden in diesem Kapitel die

grundlegenden Triaxialbelastungspfade im Hauptspannungsraum erläutert, ferner wird

hier au
h das komplexe Spannungs-Dehnungsverhalten des di
hten Sands ausführli
h dis-

kutiert. In diesem Kapitel werden ebenfalls die no
h neu beoba
hteten Phänomene zum

Flieÿ- und Bru
hverhalten des Sands präsentiert.

Basierend auf den experimentellen Ergebnissen aus den Triaxialversu
hen und aus dem

Einsatz der TPM werden in Kapitel 4 die konstitutiven Beziehungen für den teilge-

sättigten Sand in einer thermodynamis
h konsistenten Weise unter Berü
ksi
htigung der

Interaktionen zwis
hen den Konstituierenden hergeleitet. Hierzu wird für die materiell

inkompressible Festköpermatrix ein ni
htlineares Elastizitätsgesetz und ein plastis
her

Verfestigungs- und Entfestigungsansatz für das Flieÿverhalten formuliert. Für die kom-

pressible Porenluft (Porengas) wird eine bekannte Konstitutivbeziehung hergeleitet, wobei

†
Sand aus der Gebenba
her Sandgrube (Handelsname GEBA, Dorfner, Hirs
hau, Deuts
hland)
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he Zusammenfassung

das Porenwasser als materiell inkompressibel angenommen wird.

In Kapitel 5 wird die numeris
he Umsetzung des Dreiphasenmodells � d. h., die Diskre-

tisierung der Hauptbilanzglei
hungen in Ort und Zeit � unter Berü
ksi
htigung der Kon-

stitutivglei
hungen im Rahmen der FEM präsentiert. Auÿerdem wird in diesem Kapitel

der Optimierungsprozess zur Lösung des ni
htlinearen Optimierungsproblems der Para-

meteridenti�kation diskutiert. Dabei liegt der Fokus auf der gradienten-basierten SQP

Methode mit semi-analytis
her Bere
hnung der Sensitivitäten.

Die Kalibrierungs- und Validierungsergebnisse des Dreiphasenmodells für den GEBA-

Sand werden in Kapitel 6 präsentiert. Die Kalibrierung des Festkörpermodells wird

dur
h Triaxialexperimente vorgenommen. Die Modellvalidierung erfolgt indessen dur
h

numeris
he Bere
hnungen von kleinskaligen Versagensexperimenten. Dahingegen werden

die Konstitutivmodelle zur Bes
hreibung des Sättigungsverhaltens des Sands anhand von

deformationsfreien hydraulis
hen Experimenten bestimmt. Ans
hlieÿend wird das voll-

ständig kalibrierte Dreiphasenmodell dur
h Simulation von Bös
hungsbru
hversu
hen im

Te
hnikmaÿstab numeris
h validiert. Dabei erfolgt die Belastung der Bös
hung sowohl

dur
h me
hanis
he als au
h dur
h hydraulis
he Kräfte.

Ausgehend vom kalibrierten Bodenmodell werden in Kapitel 7 die numeris
hen Unter-

su
hungen des krie
henden realen Heumöser Hangs gezeigt. Der Heumöser Hang besitzt

ein äuÿerst komplexes Deformations- und Strömungsverhalten. Diese Komplexität ba-

siert ni
ht nur auf der starken Heterogenität des Hangmaterials, sondern ist au
h mit der

s
hwierigen Topologie und Untergrundstruktur des Hangs verbunden. Der Heumöser Hang

wurde im Rahmen der von der Deuts
hen Fors
hungsgemeins
haft (DFG) geförderten For-

s
hergruppe 581 ,Groÿhang ` eingehend wissens
haftli
h untersu
ht. Die Fors
hergruppe

hat zur Verwirkli
hung der hier gezeigten numeris
hen Simulationen des Heumöser Hangs

ents
heidend dazu beigetragen.

In Kapitel 8 wird der Modellierungsansatz des inneren Erosionsprozesses von Böden im

Rahmen der TPM bes
hrieben. Hierzu wird das Dreiphasenmodell um die Porositätsent-

wi
klung des Bodens dur
h Ablösen des Feinkornanteils vom Festkörperskelett erweitert.

Mit Hilfe dieses Bodenerosionsmodells werden in diesem Kapitel einige typis
he Erosions-

probleme untersu
ht.

In Kapitel 9 werden alle behandelten Themenpunkte zusammengefasst und einige An-

merkungen für zukünftige Fors
hungsmögli
hkeiten bezügli
h dieser Themen gegeben. Des

Weiteren sind im Anhang Informationen und Ausarbeitungen zu einigen ausgewählten

Sa
hverhalten angegeben, um damit das Verständnis der Arbeit zu erlei
htern.



Nomen
lature

In this monograph, the 
onventions of the nomen
lature most 
losely 
orrespond to the


ommon modern tensor 
al
ulus, su
h as given in the textbook of de Boer [11℄ and of the

le
ture notes on ve
tor and tensor 
al
ulus of Ehlers [55℄. Therein, detailed explanations

of applied notations and rules 
an be found. With regard to the nomen
lature of the

porous-media theories, the well-established 
onventions dis
ussed in [14℄ and [47, 52℄ are

adhered in this monograph.

Conventions

Basi
 
onventions

( · ) pla
eholder for arbitrary physi
al quantities

s , ǫ , . . . s
alars (0-th order tensors)

s , t , . . . ve
tors (1-st order tensors)

S , σ , . . . 2-nd order tensors

n

S
,

n

T
, . . . n-th or higher-order tensors

s , t , . . . general 
olumn ve
tors (n × 1)

S , T , . . . general matri
es (n × m)

Index and su�x 
onventions

i, j, k, l, . . . indi
es as super- or subs
ripts range from 1 to N , whereas,

for N = 3, the three dimensional physi
al spa
e is denoted

( · )α subs
ripts indi
ate kinemati
al quantities of a 
onstituent

within porous-media or mixture theories

( · )α supers
ripts indi
ate the belonging of non-kinemati
al quan-

tities to a 
onstituent within mixture theories

( · )′α material time derivative following the motion of a 
onstituent

α with the solid and �uid 
onstituents α = {S, F}
( · )α0α initial value of a non-kinemati
al quantity with respe
t to the

referential 
on�guration of α

( · )Se, ( · )Sp subs
ripts `elasti
' and `plasti
' indi
ate elasti
 and plasti


solid parts asso
iated with plasti
 solid deformations

( · )αE extra (e�e
tive) quantities

( · )αEm purely me
hani
al extra (e�e
tive) quantities

( · )D, ( · )H , ( · )V deviatori
, hydrostati
 and volumetri
 part of a tensor

( · )h supers
ript indi
ates quantities in the dis
rete spa
e (Ω ≈ Ωh
)

XXV
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Symbols

Remark: The set of 
alibrated material parameters of the elasto-vis
oplasti
 triphasi


partially saturated soil model is presented in Table C.1 and C.2. Hen
e, these parameters

are not listed in the nomen
lature.

Greek letters

Symbol Unit Des
ription

α 
onstituent identi�er, i. e., α = {S, F}
αi [ - ℄ internal plasti
 variables de�ning the isotropi
 hardening

β �uid 
omponent identi�er, i. e., β = {W,A,E}
Γ(·) Neumann or Diri
hlet boundaries

ε, εα [ J/kg ℄ mass spe
i�
 internal energy of ϕ and ϕα

ε̂α [ J/m

3
s ℄ volume-spe
i�
 dire
t energy produ
tion

εvp [ - ℄ equivalent plasti
 strain

ϕ, ϕα
overall mixture and the 
onstituent α

ζ [ s/m ℄ parameter governs the pro
ess speed of erosion

ζ̂α [ J/Km

3
s ℄ volume-spe
i�
 dire
t entropy produ
tion of ϕα

η, ηα [ J/Kkg ℄ mass-spe
i�
 entropy of ϕ and ϕα

η̂, η̂α [ J/Km

3
s ℄ volume-spe
i�
 total entropy produ
tion of ϕα

θ, θα [ K ℄ absolute Kelvin's temperature of ϕ and ϕα

Θ [ rad ℄ Lode angle

λ [ s ℄ plasti
 
onsisten
y parameter (plasti
 multiplier)

ρ [ kg/m

3
℄ density of the overall aggregate ϕ

ρα, ραR [ kg/m

3
℄ partial and e�e
tive density of ϕα

ρ̂α [ kg/m

3
s ℄ volume-spe
i�
 mass produ
tion of ϕα

Φn, Φ̃n [ - ℄ simulation and experimental output quantities

Φk
0 [ - ℄ maximal value of the respe
tive experimental data k

φi
uS
, φi

pa,

φi
pw

[ - ℄ shape fun
tions of the FE dis
retisation

σH
peak [MPa ℄ peak shear stress rea
hed at the 
onstant 
on�ning triaxial 
ell

pressure σH
3 = −p

ψ, ψα
[ J/kg ℄ mass-spe
i�
 Helmholtz free energy of ϕ

ΨS
[ J/m

3
℄ volume-spe
i�
 solid Helmholtz free energy

Ω, ∂Ω spatial domain and boundary of the aggregate body B
Ωe, Ω

h
one �nite element and approximated spatial domain of Ω

Ω̂e one and referen
e �nite element in lo
al 
oordinates
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λW [ - ℄ a
tive Lagrange parameter set of inequality 
onstrains

ξi [ - ℄ lo
al 
oordinates of the referen
e �nite element

χα, χ
−1
α [m ℄ motion and inverse motion fun
tion of ϕα

εS [ - ℄ geometri
al linear solid strain tensor

σS
[MPa ℄ geometri
al linear total solid stress tensor

σS trial
E m [MPa ℄ elasti
 trial stress tensor of the elasti
 predi
tor step

τ α
[MPa ℄ Kir
hho� stress tensor of ϕα

Latin letters

Symbol Unit Des
ription

apj [MPa ℄ s
alar-valued fun
tion governed by the stress invariants Iσ,
IIDσ and IIIDσ to 
ontrol the hardening parameters pj

Cu [ - ℄ uniformity 
oe�
ient

d, D [ - ℄ damage variables (D=1-d)

d (·) di�erential operator

dmα
[ kg ℄ lo
al mass element of ϕα

dvα [m

3
℄ lo
al volume element of ϕα

dv [m

3
℄ a
tual volume element of ϕ

dv̂ [m

3
℄ referen
e volume element of Ωe

dVα [m

3
℄ referen
e volume element of ϕα

D [ - ℄ dimension in spa
e D ∈ {1, 2, 3}
e [ - ℄ soil void ratio

emax, emin [ - ℄ maximal and minimal soil void ratio

êα [ J/m

3
s ℄ volume-spe
i�
 total energy produ
tion of ϕα

f(s) [ - ℄ obje
t fun
tion or Least-Square fun
tion

F , G [MPa ℄ plasti
 yield and potential fun
tion

In [ - ℄ simulation error Φn − Φ̃n at dis
rete output values un

ID [ - ℄ soil density index

Jα [ - ℄ Ja
obian determinant of ϕα

K [ - ℄ measured experimental data sets

nα
[ - ℄ volume fra
tion of ϕα

n̂α
[ 1/s ℄ volume produ
tion of ϕα

ne, np [ - ℄ degradation exponent of elasti
 and plasti
 parameters

nS
e , n

S
p [ - ℄ elasti
 and plasti
 part of the solid volume fra
tion

nE
lim [ - ℄ a
tual limit of the eroded grain volume fra
tion nE

nE
0 lim, n

E
max [ - ℄ initial and maximal limit of nE
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nS
tS [ - ℄ eroded initial solid volume fra
tion

Neq, Niq [ - ℄ number of equality and inequality 
onstrains

NK [ - ℄ number of dis
rete data points of K

pC [ - ℄ 
apillary pressure of the partially saturated soil zone

pFR
[MPa ℄ overall pore �uid pressure pFR := p

pβR [MPa ℄ e�e
tive pore pressure of ϕβ
(primary variables)

P α
material point of ϕα

q̄A [ kg/m

2
s ℄ area-spe
i�
 mass e�ux of ϕA

over the boundary Γq

r, rα [ J/kg s ℄ mass-spe
i�
 external heat supply of ϕ and ϕα

R [MPa ℄ radius in the deviatori
 prin
iple stress spa
e

Rc, Re, Rs [MPa ℄ 
ompression, deviatori
 and shear radius

R̄A
[ J/kgK ℄ spe
i�
 gas 
onstant of the pore air (R̄A = 287.058 J/kgK)

sβ [ - ℄ saturation of the �uid 
omponents ϕβ
related to nF

t, ∆t [ s ℄ time and time in
rement

ti [MPa ℄ thermodynami
al internal stress (hardening variables)

un [ - ℄ dis
rete value of physi
al input quantities

v̄W [m/s ℄ area-spe
i�
 volume e�ux of ϕW
over the boundary Γv

V , V α
[m

3
℄ overall volume of B and Bα

b, bα
[m/s

2
℄ mass-spe
i�
 body for
e ve
tor a
tion on B and Bα

dα [m/s ℄ di�usion velo
ity ve
tor of ϕα

on
erning to ẋ

dαF [m/s ℄ di�usion velo
ity ve
tor of ϕβ

on
erning to

′
xF

da [m

2
℄ oriented a
tual area element of ϕ

dAS [m

2
℄ oriented referen
e area element of ϕS

dfα [ N ℄ a
tual for
e ve
tor of ϕα

dx [m ℄ a
tual line element of ϕ

dXα [m ℄ referen
e line element of ϕα

fu,ext, fu,int [ N ℄ ve
tor of all external and internal nodal for
es of the FEM

f e
u,ext, f

e
u,int [ N ℄ ve
tor of external and internal nodal for
es of an element

f s
ni [ N ℄ global sensitivity load term

g [m/s

2
℄ 
onstant gravitation ve
tor with |g| = 9.81m/s

2

g(s), h(s) [ - ℄ ve
tor of inequality and equality 
onstrains

gW [ - ℄ A
tive set of inequality 
onstrains

h(αi) [ - ℄ hardening fun
tions of the plasti
 hardening parameters p

governed by the internal plasti
 hardening variables αi

ĥ
α

[MPa ℄ volume-spe
i�
 total angular momentum produ
tion of ϕα

m̂α
[MPa ℄ volume-spe
i�
 dire
t angular momentum produ
tion of ϕα

n [ - ℄ outward oriented unit surfa
e normal ve
tor
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p [ - ℄ ve
tor of plasti
 hardening parameter of F

pvG
[ - ℄ ve
tor of van Genu
hten model parameters

p̂α
[ N/m

3
℄ volume-spe
i�
 dire
t momentum produ
tion of ϕα

q, qα
[ J/m

2
s ℄ heat in�ux ve
tor of ϕ and ϕα

q [ - ℄ 
olumn ve
tor of all internal variables of the FE mesh

s [ - ℄ ve
tor 
olle
ts the optimisation material parameters

ŝα [ N/m

3
℄ volume-spe
i�
 total momentum produ
tion of ϕα

t, tα [MPa ℄ surfa
e tra
tion ve
tor a
ting on ∂B and ∂Bα

t̄ [MPa ℄ external load ve
tor a
ting on the boundary Γt

u, δu DOF 
olumn ve
tor of the primary variables u =
[uT

S , p
WR, pAR]T of the FE mesh and its test fun
tion

uS [m ℄ solid displa
ement ve
tor (primary variable)

wβ, wβR [m/s ℄ �lter and seepage velo
ity ve
tor of the �uid 
omponents

ϕβ

δW u,ext, δW u,int [ Nm ℄ external and internal virtual work ve
tor of GuS

δW e
u,ext, δW

e
u,int [ Nm ℄ external and internal virtual work ve
tor of an element

x [m ℄ a
tual position ve
tor

ẋ [m/s ℄ aggregate (bary
entri
) velo
ity ve
tor

′
xα = vα [m/s ℄ 
onstituent velo
ity ve
tor

ẍ [m/s ℄ aggregate (bary
entri
) a

eleration ve
tor

′′
xα = vα [m/s ℄ 
onstituent a

eleration ve
tor

Xα = x0α [m ℄ referen
e position ve
tor of P α

y ve
tor of all global and lo
al variables of the FE mesh

AS [ - ℄ Almansian solid strain tensor

BS [ - ℄ left Cau
hy-Green solid deformation tensor

CS [ - ℄ right Cau
hy-Green solid deformation tensor

4

CSe
[MPa ℄ 4-th order elasti
ity tensor (CSe :=

4

CSe
)

Dα [ 1/s ℄ strain rate tensor of ϕα

ES [ - ℄ Green-Lagrangean solid strain tensor

Fα [ - ℄ material deformation gradient tensor of ϕα

H [ - ℄ Hessean matrix

I,
4

I
[ - ℄ 2-nd and 4-th order identity tensor (fundamental tensor)

4

ID
[ - ℄ 4-th order deviatori
 proje
tion tensor

J , JG, JL [ - ℄ entire, global and lo
al Jo
abian matrix

Lα [ 1/s ℄ spatial velo
ity gradient tensor of ϕα

Pα
[MPa ℄ 1-st Piola-Kir
hho� stress tensor of ϕα
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QS [ - ℄ proper orthogonal tensor

Sα
[MPa ℄ 2-nd Piola-Kir
hho� stress tensor of ϕα

Tα
[MPa ℄ Cau
hy stress tensor of ϕα

Wα [ 1/s ℄ spin or vorti
ity tensor of ϕα

Calligrahi
 letters

Symbol Unit Des
ription

B, Bα
aggregate body and partial 
onstituent body

D
int

[ J/m

3
s ℄ entire volume-spe
i�
 internal dissipation

DS int

,

DF int

[ J/m

3
s ℄ volume-spe
i�
 internal solid and �uid dissipation

G, ∂G elasti
 domain and boundary of G
FD deviatori
 part of the multipli
ative split of F

FH [MPa ℄ hydrostati
 part of the multipli
ative split of F

P [MPa ℄ Lagrangean multiplier representing the pore air pressure pAG

Su(t), Tu trial and test spa
e of u

V3
proper Eu
lidean ve
tor spa
e

F ve
tor in
luding the global and lo
al system of equations

GuS
abstra
t fun
tion 
ontaining all global weak forms

ı ve
tor of internal and hardening variables q and p

L Lagrange fun
tion of the 
onstrained optimisation problem

Lı abstra
t fun
tion 
ontaining all lo
al equations of vis
o-

plasti
ity with isotropi
 hardening

SD, SH sets of plasti
 parameters 
ontrolling the shape of F in the

deviatori
 and hydrostati
 prin
iple stress plane

W A
tive Set of inequality 
onstrains g(s)

Sele
ted a
ronyms

Symbol Des
ription

BFGS Broyden-Flet
her-Goldfarb-Shanno

CT Computed Tomography

DAE Di�erential-Algebrai
 Equation

DOF Degrees of Freedom

FEM Finite Element Method

f-s (n-
) failure surfa
e of the new 
on
ept
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f-s (o-
) failure surfa
e of the old 
on
ept

GDS Grain Size Distribution

IBVP Initial Boundary Value Problem

LBB Ladyshenskaya-Bauška-Brezzi

ODE Ordinary-Di�erential Equation

PANDAS Porous Media Adaptive Nonlinear Finite Element Solver based on

Di�erential Algebrai
 Systems

PDE Partial-Di�erential Equation

REV Representative Elementary Volume

SQP Sequential Quadrati
 Programming

TM Theory of Mixtures

TPM Theory of Porous Media

VEGAS Versu
hseinri
htung zur Grundwasser- und Altlastensanierung - Re-

sear
h Fa
ility for Subsurfa
e Remediation

y-s yield surfa
e





Chapter 1:

Introdu
tion and Overview

The soil on whi
h a building is 
onstru
ted 
arries the 
omplete load of the building

in
luding wind loads a
ting on the building. The sum of these loads is transferred to the

soil by the foundations. A

ordingly, the soil is the main link in the 
hain of stability

of the entire 
onstru
tion. The absorption of loads has to take pla
e with minor soil

deformations. Otherwise, there is a risk to slope or foundation failure. This would lead

to an unstable building asso
iated with the danger of 
ollapse of the building. Moreover,

soil failure indu
ed by heavy pre
ipitation events or earthquakes 
an trigger landslides or

failure of embankment dams and whi
h in turn may wreak havo
 on human and nature.

Before the destru
tive failure is triggered, various physi
al pro
esses within the soil su
h

as the initiation of lo
alisation zones with plasti
 deformations lead to a sudden de
rease

of the load 
arrying 
apa
ity of the soil. By virtue of the fa
t that the soil 
onsists

mainly of a solid grain matrix, in whi
h the load is 
arried by normal and fri
tion for
es

between the grains, irreversible plasti
 deformations of the grain stru
ture almost o

ur

with any in
rease of load 
onditions. Additionally, the soil deformation behaviour is

strongly in�uen
ed by the pore �uids like water and air streaming within the matrix. Thus,

due to strongly 
oupled deformation and �ow pro
esses, the experimental investigation

and the theoreti
al modelling of the partially saturated soil behaviour is a huge 
hallenge

for engineers and s
ientists. Only on the basis of a detailed study of the soil behaviour, it is

possible to give realisti
 predi
tions of failure situations of landslides or embankments. For

the realisation of this ambitious goal, advan
ed soil models as well as e�
ient and robust

numeri
al 
omputing methods are ne
essary. The appli
ation of 
omputer simulations

is more and more important, be
ause, therewith, a better understanding of the ongoing


omplex physi
al pro
esses of the 
onstru
tions 
an be rea
hed.

1.1 Motivation

In re
ent years, the in
reasing number of landslides o

urren
es 
aused by long-lasting

heavy pre
ipitation events has been observed all over the world. For instan
e, a landslide

happened in Na
hterstedt (Germany) in the year 2009 where approximately 1 million


ubi
 meters soil slid down to the Con
ordia Lake, 
f. Figure 1.1 (left). This lake was

laid out arti�
ially by a 
ontrolled �ooding of the disused mine through an in
rease of

the groundwater level, whi
h �nally 
aused the landslide. In 
ontrast to this landslide,

the motion of the natural Heumös hillslope situated in Ebnit near Dornbirn (Austria) is

slow and dis
ontinuous, 
f. Figure 1.1 (right). In some regions, the Heumös hillslope is


reeping approximately 10 
m per year still without any indi
ation of a sudden landslide.

Hen
e, it is parti
ularly of interest to determine the hazard potential of hillslopes before

a
tual the failure happens. On that point, 
omputer analysis 
an give a good 
ontribution

towards the predi
tion of possible motion situations of the slope.

1



2 1 Introdu
tion and Overview

Figure 1.1: (left) Landslide (2009) in Na
hterstedt, Germany, (http://i418.photobu
ket.


om/albums/pp263/glenlattera
h/) and (right) 
reeping Heumös hillslope in Ebnit, Austria

(http://www.grosshang.de).

In the fa
e of more frequently o

urring �ood water events, densely populated regions


lose to rivers and lakes are always exposed to danger. The prote
tion of these regions

by embankment dams or dikes will be
ome more and more important. Furthermore,

the global 
limate warming leads to a melting of the polar i
e 
aps with the additional

devastating e�e
t that the global sea level is rising. Beside the prote
tive fun
tion against

high �ood, dams are more and more built for the produ
tion of renewable energy by using

the water for
e of the dammed-up river to run turbines. The large amount of dammed

water 
onstitutes a huge destru
tive for
e against human life and nature in 
ase of a dam

failure as happened for example at the Teton Dam (1976) or the Taum Sauk reservoir

(2005), 
f. Figure 1.2. In both 
ases, the failure was triggered by the internal soil erosion,

during whi
h the soil grains are deta
hed from the solid grain stru
ture by the seepage

for
e of the streaming pore water. Thereby, the porosity of the soil in
reases 
ontinuously

with the 
onsequen
e that the dam gradually loses its bearing 
apa
ity until it fails.

Therefore, it is important to dete
t weak zones of the dam as early as possible in order

Figure 1.2: (left) The Teton Dam (1976) near Rexburg, Idaho, USA (http://web.mst.edu/

rogersda/teton_dam/) and (right) the Taum Sauk reservoir (2005) in Lesterville, Missouri, USA

(Figure is taken from the United States Geologi
al Survey published in Wikipedia).

to take ne
essary and pre
autionary measures. Con
erning this, 
omputer simulations of

dams 
an help to dete
t weak zones of 
onstru
tion.
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1.2 State of the Art

The a

urate numeri
al simulations of 
omplex geote
hni
al problems are be
oming more

and more important. In parti
ular, this addresses the well-founded predi
tion of the

stress-strain behaviour of fri
tional granular material subje
ted to a frequent 
hange of

me
hani
al and hydrauli
 loading 
onditions. Therefore, there is a need for suitable

mathemati
al models, whi
h are able to realisti
ally predi
t the deformation behaviour of

partially saturated soils. In the following, an overview of some important resear
h �elds

treated in this thesis is given.

Constitutive modelling of partially saturated soils

Partially saturated fri
tional soils are 
ommonly des
ribed by a triphasi
 model, where the

individual phases are the materially in
ompressible, elasto-plasti
 or elasto-vis
oplasti


solid skeleton and the two pore �uids, namely, the materially in
ompressible pore water

and the materially 
ompressible pore air. Based on a 
ontinuum-me
hani
al approa
h,

Ehlers and Blome [58℄ or Ehlers et al. [64℄ derived a triphasi
 model in a thermodynam-

i
ally 
onsistent manner in the framework of the Theory of Porous Media (TPM). The

TPM is the Theory of Mixtures (TM) extended by the Con
ept of Volume Fra
tions in

order to take into a

ount the mi
ro-stru
tural information of the porous material in a

homogenised fashion. In 
ontrast, the TM is 
ommonly used in 
hemi
al-engineering ap-

pli
ations for des
ribing mixtures 
onsisting of mis
ible 
hemi
ally rea
ting 
onstituents,

like gases, where the mi
ro-stru
tural information of the mixture is irrelevant. The main

developments of the TM go ba
k to the works of Truesdell and Toupin [163℄, Bowen [19℄

or to a later work of Truesdell [161℄. The general fundamental approa
hes and derivations

of the TPM 
an be found in Bowen [20, 21℄, de Boer [13, 14℄, de Boer and Ehlers [15, 16℄

or Ehlers [46, 46, 47, 52, 53℄ and in the 
itations therein. To des
ribe partially satu-

rated soils, the TPM builds the main theoreti
al framework, while the material spe
i�


informations of the soil have to be introdu
ed via 
onstitutive equations.

The 
hallenging task in the �eld of geome
hani
s is the determination of the very 
om-

plex stress-strain behaviour of 
ohesionless granular materials su
h as sand. In order

to des
ribe the plasti
 material behaviour numeri
ally, various yield fun
tions for soils

have been developed during the last six de
ades, 
ompare, for example, [12, 32, 38, 39,

96, 100, 121, 128℄. The assets and drawba
ks of some of these yield fun
tions are dis-


ussed in [49℄. In these 
ontributions, the single-surfa
e yield 
riterion introdu
ed by

Ehlers [48℄ is used, whi
h is downward 
ompatible to other plasti
ity models, su
h as the

well-known Dru
ker-Prager 
riterion [45℄ or the von Mises 
riterion [116℄ for non-porous

solids. Moreover, granular materials show with the �rst loading a materially non-linear


oupled elasti
-plasti
 deformation behaviour. The hardening behaviour is des
ribed by

the evolution of the yield surfa
e and is governed by either the plasti
 work [66℄ or the

plasti
 strain [67℄. However, it is known from Desai [40℄ (pp. 181) that using the plasti


strain provides a more 
onsistent formulation than using the plasti
 work. It is possible

to model the isotropi
 hardening and softening behaviour in a simple and e�
ient way

by the separation of the plasti
 strain into a volumetri
 and a deviatori
 part, 
f. Krenk

[96℄, Desai [40℄ (pp. 181) and S
holz [137℄. However, the in
rease (hardening) of the yield
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surfa
e is limited. This yield limit is 
ommonly de�ned by a 
onstant failure surfa
e,

whi
h is rea
hed at the deviatori
 limit stress. This assumption has been experimentally

examined by Ehlers and Av
i [56℄. They found out that the failure surfa
e is variable

and depends strongly on the stress state. This means that starting from an initial small

failure surfa
e of the unloaded granular material, the failure surfa
e is adapted to the


urrent stress state. As a 
onsequen
e, Ehlers and Av
i [56℄ have introdu
ed a variable

limit of the yield surfa
e 
ontrolled by a hydrostati
 stress dependent failure surfa
e as it

is essential for a

urate modelling of the soil behaviour as well as initial-boundary-value

problems (IBVP). This parti
ular 
hara
teristi
 of granular materials will be dis
ussed

with respe
t to experimental studies on sand and the 
onstitutive modelling in detail in

this 
ontribution.

In order to take the spe
ial properties of partially saturated soil into a

ount, Alonso

et al. [1℄, Bolzon et al. [18℄ and Laloui and Nuth [102℄ postulated that the yield surfa
e

within the elasto-plasti
 theory is a fun
tion of the stress state as well as of the pore-water

saturation. Pro
eeding from the triphasi
 model ([58, 64℄) based on the e�e
tive stress


on
ept (Skempton [146℄), the in�uen
e of the 
apillary property of the unsaturated zone

of the soil on the elasto-plasti
 solid behaviour is already 
onsidered. Thereby, the e�e
-

tive solid stress is redu
ed by the resulting negative �uid pressure, whi
h 
orresponds to

the 
apillary pressure. As a 
onsequen
e, the 
onstitutive modelling of the plasti
 and

saturation behaviour of soil is de
oupled and, therewith, experimental investigations of

the material properties are also simpli�ed. Con
erning this, Ehlers et al. [57℄ 
ould show

the slope sti�ening through the 
apillary e�e
t by numeri
al studies of slope failure prob-

lems.

Experimental Investigation

Based on the property of immis
ible materials together with the prin
iple of phase separa-

tion (Ehlers [46℄), the me
hani
al and hydrauli
 behaviours of partially saturated soils 
an

be studied in a de
oupled fashion su
h that only one of the two pro
esses is ever a
tive,

and put together later by adding the 
oupling me
hanisms. Therewith, the experimen-

tal investigation and theoreti
al modelling of soil are signi�
antly simpli�ed. Pro
eeding

from this approa
h, the stress-strain 
hara
teristi
s of the solid skeleton of the partially

saturated soil are determined from triaxial tests performed with �uid saturated (with

pore air or water) soils under homogeneous loading 
onditions. To des
ribe the material

properties of the individual �uid 
omponents of the multiphasi
 material su
h as ma-

terial 
ompressibility or vis
osity, et
., the 
onstitutive approa
hes derived for a single

material 
an be used for the �uid 
onstituents, e. g. , ideal gas law (for 
ompressible gas),

Newtonian �uids (vis
ous �uid stress), et
. In the next step, the motion 
hara
teristi
s

(hydrauli
 properties) of the pore �uids, su
h as the permeability properties of the soil, the

mobility of the pore �uids within the partially saturated zone, et
., 
an be measured with

deformation-free experiments without any external me
hani
al load onto the spe
imen,


f. Ehlers et al. [57℄.

Cohesionless fri
tional granular materials su
h as sand are only stati
ally stable if they

are under a hydrostati
 pressure state. Therefore, the material behaviour of sand is

determined via triaxial experiments, while the sand spe
imen positioned in the triaxial
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ell is 
on�ned with degassed water. The pressure on the spe
imen is regulated by a

volume-pressure 
ontroller. The 
entral 
hallenge of performing triaxial experiments is in

the exa
t measurement of the deforming spe
imen. Con
erning this, several methods have

been proposed in the related literature with di�erent demands on the volume measurement

a

ura
y depending on the spe
i�
 problem under study. Most of these methods were

do
umented by Alva-Hurtado and Selig [2℄ or by Geiser et al. [74℄, whereas Alva-Hurtado

and Selig [2℄ di�erentiate the measuring methods in three 
ategories. The �rst 
ategory

is the measurement of the out�ow and the in�ow of 
ell water 
aused by the deforming

spe
imen. The se
ond one measures the pore volume 
hange through out- and in�ow

of the pore water. However, this is only feasible on saturated spe
imens and drained

boundary 
onditions. In 
ontrast to this, the third 
ategory measures dire
tly the volume


hange on the spe
imen.

Within this thesis, the fo
us is on triaxial tests with homogeneous and drained 
onditions.

Thus, all three 
ategories of the measurement te
hniques are quali�ed. Nevertheless, the

simplest and most straightforward way to measure the volume 
hange of the spe
imen

is 
arried out by the �rst 
ategory. Therein, the sti�ness and the volume 
apa
ity of

the triaxial 
ell are parti
ularly important. Leong et al. [105℄ investigated the measuring

error of di�erent standard triaxial 
ells built of a
ryli
 glass, steal or double-wall 
ell

systems. These investigations showed that the 
ell deformation and the volume 
apa
ity

of the 
ell yield the major parts of the measuring error. To avoid these disadvantages, a

new sti� triaxial aluminium 
ell with an appropriate 
ell-water 
apa
ity was 
onstru
ted.

Moreover, the 
ell is well adapted for the volume deformation of the spe
imen, su
h that

the absolute volume-deformation measuring error of the test setup 
ould be minimised,


f. Ehlers et al. [57℄.

For the 
alibration of the 
onstitutive approa
hes for the solid stress-strain behaviour of

the investigated material, quite a few triaxial experiments on dry sand using 
ompa
t


ylindri
al spe
imen under homogeneous and drained 
onditions have been performed.

This set of experiments 
onsists of hydrostati
-
ompression, shear-
ompression and shear-

extension tests with di�erent 
on�ning pressures to investigate the dependen
y of the

stress-strain response on the isotropi
 stress state. An important yielding and failure

behaviour of sand 
ould be dete
ted via stress-path-dependent triaxial experiments. This

is dis
ussed in detail later in this thesis.

Parameter Identi�
ation

Due to improved experimental te
hniques, the knowledge of the physi
al behaviour of soil

is in
reasing, whereas more and more sophisti
ated material laws have been developed

with the drawba
k that the number of material parameters in
reases. Consequently, the

determination of these material parameters be
omes more and more di�
ult. Therefore,

the use of optimisationmethods is inevitable for their identi�
ation. The parameter identi-

�
ation pro
ess is realised by a numeri
al inverse 
omputation of the experiments, whereas

the 
omputation is iterated with always improved parameters by use of gradient-based

optimisation methods. The iteration pro
ess is performed until the optimal parameter

set is found by whi
h the experimental results are best approximated. Pro
eeding from

this 
onsideration, the optimisation task (obje
t fun
tion) is de�ned by the squared dif-
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feren
es of the approximation error, whi
h has to be minimised. This pro
edure is 
alled

the Least-Squares method.

The solution strategies of the optimisation methods to evaluate the obje
t fun
tions are

di�erentiated between deterministi
 (reprodu
ible) methods (Luenberger and Ye [109℄,

Bertsekas [8℄ and Spellu

i [147℄) and sto
hasti
 (non-reprodu
ible) methods (Bä
k and

S
hwefel [4℄ and S
hwefel [142℄). The �rst group 
an be subdivided into two 
ategories

of gradient-based and gradient-free methods. To the �rst 
ategory of gradient-based

methods, the Newton-like methods belongs to. In 
ontrast to the Newton method, the

most popular Quasi-Newton methods, su
h as the Gauss-Newton method, the Levenberg-

Marquardt method or the very famous BFGS (Broyden-Flet
her-Goldfarb-Shannon) me-

thod, approximate the 
omputationally intensive Hessean matrix, the se
ond derivative

of the Least Squares obje
t fun
tion. The 
ategory of gradient-free methods is a huge

group and 
ompromises also two 
ategories of deterministi
 simplex-based methods, 
f.

Nelder and Mead [119℄, and the sto
hasti
 methods. An overview of the most important

optimisation methods 
an be found in Rao [129℄.

By the reason of the high number of parameters, solving the optimisation problem is not

unique. Therefore, the goal is to �nd an optimal 
ombination of the parameters, whi
h

represents the global minimum with many lo
al minima. However, not ea
h optimisa-

tion method, whi
h solves the parameter-identi�
ation problem, obviously determines

the optimal material parameter set with the best �t to experimental results. To de
ide

whi
h method is the most suitable one for solving the 
onsidered problem depends on

the requirements of the optimisation problem. For example, the quality of the solution of

gradient-based methods strongly depends on the initial parameter set, be
ause ea
h new

set of parameters is determined by the steepest des
ent of the obje
t fun
tion. A

ord-

ingly, the optimisation pro
edure almost always �nishes at a lo
al minimum. In 
ontrast,

evolution strategies s
reen a large region of minima, where the probability to �nd the

global minimum is mu
h greater, but it requires a high number of 
omputations of the

obje
t fun
tion, espe
ially, optimisation problems with quite a few number of parameters

(Mahnken [111℄).

Numeri
al Investigations of Landslides

Numeri
al analyses of natural slopes using the Finite-Element Method (FEM) are getting

in
reasingly important. On the one hand, by numeri
al stability investigations of existing

but endangered slopes, possible failure prognoses 
an be given, and, on the other hand,

by simulation of already happened landslides, the 
apability of the used model 
an be ver-

i�ed. For example, Ferrari et al. [72℄ simulated the Steinernase landslide (Switzerland),

pro
eeding from a weak 
oupling of the hydrologi
al and me
hani
al modelling tools by

repeatedly updating the respe
tive boundary 
onditions. The in
luded model parame-

ters were identi�ed on the basis of long-term �eld measuring data. On the other hand,

Ehlers et al. [57℄ numeri
ally investigated the Heumös hillslope (Austria) along idealised


ross se
tions on the basis of a fully-
oupled me
hani
al-hydrauli
 soil model, wherein the

analysed 
ross se
tions have been determined by Lindenmaier [107℄. However, if more

sophisti
ated models are used for the des
ription of the slope material and the apparent

in�uen
e of the mutual intera
tion between hydrologi
al and me
hani
al pro
esses is of
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parti
ular interest, it is 
ommon pra
ti
e to revert to idealised but well-de�ned slope ge-

ometries (Darve and Laouafa [35℄, Tsaparas et al. [164℄, Ehlers et al. [57, 64℄, Klubertanz

et al. [94℄). Admittedly, reliable predi
tions of the stability behaviour of slopes on the basis

of FEM analyses demand a high spatial resolution of lo
alisation zones of plasti
 defor-

mations. In this regard, Ehlers et al. [64℄ applied spa
e-adaptive methods for an adequate

determination of shear bands in partially saturated soil in two-dimensional simulations

of embankment s
enarios. Three-dimensional investigations of ex
avation problem have

been 
omputed on a multipro
essor system by Wieners et al. [177℄, Ammann [3℄ and Graf

[78℄. However, these simulations have been 
arried out without taking into a

ount the

plasti
 soil hardening and softening behaviour.

Simulation of Internal Erosion

The deta
hment of grains from the soil matrix and, subsequently, the transport of these

grains through the pore-
hannel network driven by the pore water seepage �ow is denoted

as the internal erosion of soil. Con
erning this, Ziems [183℄ distinguished between internal

erosion and internal su�usion. The di�eren
e is that the su�usion pro
ess involves only

the deta
hment and transport of the �ne grain 
ontent of the soil, while the 
oarse grains,

building up the main stru
ture of the soil, remain una�e
ted by the su�usion. In 
ontrast,

during an erosion pro
ess, where all grains are a�e
ted, the 
oarse grains 
an burst from

the main grain stru
ture. Following this, an erosion pipe 
an be gradually developed

through the soil with adverse rea
tions to the load-bearing 
apa
ity of e. g., dams, 
f.

Bendahmane et al. [6℄, Wan and Fell [170℄ and Indraratna et al. [90℄. In this sense, the

su�usion is denoted as a spe
ial 
ase of erosion driven at low seepage for
es. However,

in this thesis, only internal su�usion pro
esses are treated, although it is 
alled internal

erosion.

A 
ontinuum-me
hani
al des
ription of erodible saturated soils has been proposed by Var-

doulakis et al. [168℄ and Wang and Wan [173℄. They extended a 
ommon biphasi
 model


onsisting of a solid and a �uid phase by an erosion phase representing the amount of �u-

idised grains, whi
h are in motion within the pore �uid. Based on this, Steeb and Diebels

[151℄ derived an erodible-soil model in the framework of the TPM in a thermodynami
ally


onsistent representation. Within the TPM, the �uidising pro
ess of grain stru
ture is

des
ribed by the mass ex
hange or mass produ
tion between the solid and the erosion

phases. The driving for
e of the mass produ
tion is the seepage velo
ity of the pore �uid,


f. Vardulakis et al. [168℄ and Steeb et al. [153℄, or the pore gas, 
f. Steeb [150℄. Due to the

fa
t that the su�usion is limited only to the �ne grain 
ontent of the soil, Steeb et al. [153℄

have separated the solid grains in a stable grain part, whi
h 
hara
terises the unerodible

main matrix of large grains, and an unstable erodible �ne grain part. However, this leads

to a larger set of balan
e equations governing the 
ontinuum-me
hani
al system.

The me
hani
al behaviour of the soil is only a�e
ted by the su�usion pro
ess, when the

soil 
onsists of less than 70% of large grains. This property of soils has been investigated

by Vallejo [165℄ via triaxial tests on samples made up with glass beads using di�erent


ompositions only of a large and a small bead size. He has dete
ted that the maximal

strength of a sample is obtained at the minimum porosity de�ned by the optimal ratio

between the small and the large bead 
ontent. The large beads build the main sti� matrix
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of the soil. Pro
eeding from the minimal porosity at whi
h both bead groups sharing the

applied load, the me
hani
al properties are redu
ed by a variation of the �ne bead 
ontent

due to the in
rease of the porosity. Similar behaviour was also observed in sand-
lay soil

mixtures (Vallejo et al. [166℄ and Sterpi [154℄). Relating these results to internal su�usion,

the loss of the �ne grains leads to an in
rease of the porosity with the 
onsequen
e that

the sti�ness and the strength are redu
ed. Thus, the resistan
e of the soil against fri
tion

for
es is de
reasing with the result of in
reasing deformations under the 
urrent load.

Due to the internal erosion, the strength and sti�ness of the soil is degraded by the

in
rease of the soil porosity. Pro
eeding from this, Papami
hos and Vardoulakis [124℄ or

Wood et al. [179℄ have redu
ed the yield surfa
e in dependen
e of growing porosity like the

behaviour of material softening. Moreover, Steeb et al. [153℄ have presented an approa
h

to redu
e the elasti
 parameters by introdu
ing a damage variable as it is a 
ommon

pra
tise in modelling of damage-behaviour of brittle materials, 
f. Ka
hanov [91℄ or of

damage in multiphasi
 materials, 
f. Rempler [130℄. In this 
ontext, the prin
iple 
hallenge

of this thesis is the integration of the internal erosion pro
ess into a 
losed soil model with

the goal to investigate physi
ally sophisti
ated geote
hni
al issues by numeri
al methods.

Nevertheless, due to the 
omplexity of the internal erosion pro
ess, some simpli�
ations

must be made,e. g., 
on
erning the modelling approa
h and the 
onstitutive des
ription.

1.3 Aims and S
opes

In order to numeri
ally investigate realisti
 IBVP, the IBVP has to be �rstly analysed with

regard to the material behaviour, the loading and the boundary 
onditions. The loading


onditions of the real problem, that means whether it is a stati
, a dynami
 or a 
y
li


loading, et
., 
onstitute how the used material of the IBVP has to be experimentally inves-

tigated for determining the material 
hara
teristi
s su
h as elasti
, elasto-(vis
o)plasti
,

vis
oelasti
 behaviour, et
. Con
erning this, appropriate testing methods have to be


hosen. Pro
eeding from the results of these 
alibration experiments

∗
, the 
onstitutive

material model is developed, or the most appropriate one from already available material

laws is pi
ked up. Referring this to the obje
tive of this thesis, the material of the real

problem is partially saturated sand, whi
h 
an be found in almost all geome
hani
al prob-

lems. Thus, the goal is to simulate the deformation and �ow pro
esses of the partially

saturated sand as a

urately as possible in order get the basis for a realisti
 simulation of


omplex IBVP. Con
erning this, based on the triphasi
 soil model, the used 
onstitutive

models are tested and improved, 
f. [57℄, in parti
ular, the modelling of the stress-strain

behaviour. For this purpose, several experiments have been 
arried out in order to verify

and to validate the applied 
onstitutive models, 
f. [56, 57℄.

Following the pro
ess of the soil-model investigation, the task �eld 
an be roughly sub-

∗
Calibration experiments are elementary tests, whi
h are parti
ularly 
hara
terised by their simple

loading and boundary 
onditions. By the simpli
ity of the system 
onditions, a homogeneous stress-

strain distribution within the spe
imen as well as the reprodu
ibility of the experiments is ensured.

These experiments mainly represent the pure material behaviour and they are used for the 
alibration of

the 
onstitutive equations or for the identi�
ation of the 
onstitutive material parameters, respe
tively.
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divided into three task �elds of Experimental Investigation, Constitutive Modelling and

Parameter Identi�
ation. They are illustrated in Figure 1.3 by a 
ir
ular loop representing

the mutual dependen
y, whereas the 
alibrated material model is validated by simulations

of additional experiments or by numeri
al investigations of IBVP. Therewith, the other

�elds are dire
tly or indire
tly proved. Hen
e, the Model Validation is lo
ated in the


entre of the 
ir
le loop of the material modelling pro
edure, 
f. Figure 1.3. The 
ontent

of the individual task �elds 
an be roughly summarised as follows:

Experimental Investigation. Depending on the type of the loading 
ondition of the

real problem, the experimental investigation of the soil material is 
arried out either

under quasi-stati
 or dynami
 loading 
onditions. However, granular materials under

dynami
 loading strongly tend to soil liquefa
tion a

ompanied by an abrupt loss of the soil

sti�ness. Modelling su
h a material behaviour demands a di�erent theoreti
al approa
h

( [26, 28, 86, 132℄ ) as the soil behaviour of quasi-stati
 loading 
onditions, whi
h is treated

in this 
ontribution. In general, soils exhibit isotropi
 (enlargement of the yield surfa
e)

as well as kinemati
 (translational shift of the 
entre of the yield surfa
e) hardening. The

kinemati
 hardening pro
ess o

urs during 
y
le loads from 
ompression to extension and

vi
e versa (Baus
hinger e�e
t). However, kinemati
 hardening 
an be ex
luded from the

experimental and theoreti
al investigations of the test material if 
y
li
-loading paths are

not provided for the real problem investigated in this thesis. Nevertheless, all dete
ted

material properties by the experiments, whi
h may be relevant for the real problem, have

to be reprodu
ed by the 
onstitutive models.

Constitutive Modelling. For the numeri
al modelling of the material behaviour,

mathemati
al models have to be developed based on experimental results. Con
erning

this, di�erent mathemati
al approa
hes are available as empiri
al, rheologi
al or 
onsti-

tutive models. Following Mahnken [111℄, the empiri
al and rheologi
al models do not

ne
essarily ful�l the 2-nd law of thermodynami
s in 
ontrast to the 
onstitutive models.

Empiri
al models have only the task to approximate the experimental data preferably by
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few parameters and without pursuing stringently any physi
al restri
tion. Rheologi
al

models are able to des
ribe 
omplex material behaviour by 
ombination of basi
 elements

su
h as spring, dashpot and fri
tion types. The disadvantage, however, is that the number

of material parameters is in
reasing with advan
ing model 
omplexity. In 
ontrast to these

approa
hes, thermodynami
ally 
onsistent models are formulated within the framework of

a 
lassi
al 
ontinuum-me
hani
s theory. They base on the phenomenologi
al des
ription

of the thermodynami
 pro
ess of the material under 
onsideration, whi
h are experimen-

tally determinable and measurable (observable). In this thesis, the phenomenologi
al

approa
h of 
onstitutive material formulation is pursued.

Parameter Identi�
ation. In order to solve 
onstrained optimisation problems 
on-

sisting of a main problem and se
ondary 
onstraints of equality and inequality 
onditions

fast and e�
iently, the Sequential-Quadrati
-Programming (SQP) ( [17, 87, 135, 136, 149℄ )

method is a proper 
hoi
e. The SQP method belongs to the group of gradient-based meth-

ods and solves the optimisation problem in a Lagrangean formulation. Despite the fa
t

that gradient-based deterministi
 methods only �nd the lo
al solution, the SQP method is

well established in the engineering �eld of parameter optimisation. Sin
e the 
hoi
e of the

initial parameter set has a great impa
t on the results of this method, however, the user

of this method needs a good knowledge of the material behaviour and the 
onstitutive

laws used in the material model. Moreover, the gradient of the obje
t fun
tion requires an

extensive sensitivity analysis of the optimised parameters related to the mat
hed physi
al

quantities.

Model Validation. The 
alibrated material model is validated by numeri
al 
ompu-

tations of additional experiments. These experiments must be independent from those

used for the model 
alibration, and they should exhibit an inhomogeneous deformation

distribution and a lo
alisation of plasti
 deformation zones. With su
h experiments, the

modelling quality of the plasti
 material behaviour 
an be proven. In 
ase that the vali-

dation of the material model is not su

essful, although the material model mat
hed the

elementary tests well, the problem has to be sear
hed within the other three task �elds of

the material identi�
ation pro
ess (Figure 1.3). The potential reason for this may be, for

instan
e, that the material behaviour is not 
ompletely 
overed by the present elemen-

tary tests, and parti
ular physi
al properties of the material are only a
tivated during

the validation experiments. To 
apture these properties, further elementary tests have

to be 
arried out. A

ordingly, the 
onstitutive model has to be extended. However,

the ina

ura
y of the numeri
al 
omputation of the validation experiment 
ould also be


aused dire
tly by the numeri
al method, e. g., the mesh dependen
y of the numeri
al so-

lution. The resulting numeri
al error 
an be analysed by 
onvergen
e studies using more

re�ned dis
retisation levels of the �nite-element mesh (FE mesh). Finally, the parame-

ter identi�
ation pro
edure is �nished if the model validation pro
edure is su

essfully


ompleted.

Simulation of IBVP. Pro
eeding from a su

essfully 
alibrated and validated soil model,

numeri
al analyses of realisti
 IBVP using this material model 
an be 
arried out.
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1.4 Outline of the Thesis

Starting with Chapter 2, the fundamental 
on
ept of the Theory of Porous Media devel-

oped for the des
ription of multiphasi
 porous materials is brie�y outlined. Therein, the

kinemati
 relations of the individual 
onstituents and the me
hani
al balan
e equations

of the multiphasi
 materials are presented. The 
omplex 
oheren
es of multiphasi
 porous

material 
onsisting of a solid matrix and one or more pore-�uid 
omponents are explained

in the frame of the well-known 
ontinuum me
hani
s of single-phase materials.

The porous material investigated in this thesis is the GEBA

†
sand. Its me
hani
al be-

haviour is determined via triaxial experiments. Con
erning this, the required experimen-

tal equipment as well as the elimination of the measuring error of the test system are

presented in Chapter 3. Furthermore, the fundamental triaxial loading paths in the

prin
iple stress spa
e are illustrated and the 
omplex stress-strain behaviour of dense


ompa
ted sand is dis
ussed in detail. Therein, the newly observed yielding and failure

behaviour is highlighted.

Based on the experimental results from the triaxial tests and using the TPM, the 
on-

stitutive relations for the partially saturated soil are derived in Chapter 4 in a ther-

modynami
ally 
onsistent manner with regard to the intera
tions between the individual


onstituents. For the materially in
ompressible solid matrix, a non-linear elasti
 material

law and a plasti
 hardening and softening approa
h for the yielding behaviour is formu-

lated. For the pore air (pore gas), a well-known 
onstitutive relation is derived, while the

pore water is assumed to be in
ompressible.

The numeri
al treatment of the triphasi
 model � dis
retisation of the governing balan
e

equations in spa
e and time � under 
onsideration of 
onstitutive relations is presented

in Chapter 5 within the frame of the FEM. Furthermore, the solution pro
edure of non-

linear optimisation problems, su
h as the parameter identi�
ation, is dis
ussed using the

gradient-based SQP method with a semi-analyti
ally 
omputation of the sensitivities.

In Chapter 6, the results of the 
alibration and the validation pro
edure of the triphasi


model for the GEBA sand are presented. The 
alibration of the solid matrix is 
arried

out using triaxial experiments, while the model validation is obtained by numeri
al 
om-

putation of small-s
ale failure experiments. Moreover, the 
onstitutive models for the

saturation behaviour of the sand are �tted on the basis of deformation-free hydrauli


experiments. Following this, the 
omplete 
alibrated triphasi
 model is numeri
ally val-

idated by simulations of slope failure s
enarios at the te
hni
al s
ale, where the loading


onditions of the slope are driven by me
hani
al as well as by hydrauli
 for
es.

Pro
eeding from the validated soil model, the numeri
al analysis of the still 
reeping

real Heumös hillslope is 
arried out in Chapter 7. The Heumös hillslope o

upies a

highly 
omplex deformation and �ow behaviour. This 
omplexity based not only on

the heterogeneities of the slope material, but also be
ause of the intri
ate topology and

substru
ture of the slope. For the su

ess of this numeri
al investigation, the Resear
h

Unit 581 `Grosshang' funded by the Deuts
he Fors
hungsgemeins
haft (DFG) de
isively


ontributed.

†
sand from the Gebenba
her sand pit (trade name GEBA, Dorfner, Hirs
hau, Germany)
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In Chapter 8, the modelling approa
h of an internal erosion pro
ess of soil is des
ribed.

Con
erning this matter, the triphasi
 model is further extended by taken into a

ount

the porosity development via deta
hing �ne grains from the solid skeleton. Using the

soil erosion model, some typi
al erosion soil problems are numeri
ally investigated in this


hapter.

In the Con
lusion, Chapter 9, a brief summary of the investigated topi
s und some

remarks to future work in these �elds are presented. Subsequently, in the Appendix, re-

quired information and elaborations to some sele
ted issues are given in order to fa
ilitate

the understanding of the thesis.



Chapter 2:

Continuum-Me
hani
al Fundamentals of

the Theory of Porous Media

This 
hapter is based on previous work by Ehlers [47, 48, 50, 52�54℄ and 
itations therein.

It is subdivided in three fundamental parts of the TPM. In the �rst part, the general

basis of the TPM are dis
ussed followed by the se
ond part the kinemati
 relations of

multiphasi
 materials. Additionally, the me
hani
al and thermodynami
al balan
e laws

are brie�y presented in the third part. Therein, the lo
al forms of the balan
e laws of

a 
onstituent as well as for the overall aggregate of multiphasi
 materials are presented.

The main fo
us within the formulations is addressed on the produ
tion terms des
ribing

the ex
hange of physi
al quantities between the 
onstituents. These produ
tion terms

have to vanish in regard to the overall aggregate of a 
losed system where no material 
an

enter or leave the system from the outside of the body.

Remark: In this 
hapter as well as in the following ones, tensorial operations based on

the tensor 
al
ulus of de Boer [11℄ and of the le
ture notes on ve
tor and tensor 
al
ulus

of Ehlers [55℄ are used.

2.1 Theoreti
al Basis

The individual 
onstituents of a heterogeneously 
onstituted porous material are in a

state of ideal disarrangement and, therefore, ea
h individual 
onstituent is statisti
ally

homogeneously distributed over the Representative Elementary Volume (REV) of the

overall aggregate ϕ . Based on 
ontinuum-me
hani
al 
onsideration of the multiphasi


material, the mi
ro-s
ale informations of the overall aggregate ϕ and its 
onstituents ϕα

are homogenised to ma
ro-s
ale quantities. This is a
hieved by real or virtual averaging

pro
esses over the REV des
ribed by average fun
tions. This homogenisation pro
ess

leads to a smeared model ϕ of superimposed and intera
ting 
ontinua ϕα
:

ϕ =

k⋃

α=1

ϕα . (2.1)

Therein, α = 1, ..., k indi
ate the di�erent 
onstituents.

The geometri
al and physi
al properties of the 
onstituents are des
ribed by mathemati-


al �eld fun
tions de�ned over the entire aggregate ϕ. Thereby, the e�e
tive values of the

onstituents are smeared out over the REV applying a volumetri
 homogenisation pro-


edure. Introdu
ing the 
on
ept of volume fra
tions, the homogenised mi
ro-stru
tural

information of the REV are virtually separated by the individual volume fra
tions of ϕα
.

Based on a saturated soil problem whi
h is idealised by a biphasi
 model, the volumetri
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PSfrag repla
ements

solid ϕS

�uid ϕF

REV of the

mi
ro-stru
ture

homogenisation


on
ept of volume fra
tions

dv

dvF

dvS

Figure 2.1: REV of the qualitative mi
ro-stru
ture of a �uid saturated porous material (left),

multi-
omponent TPM ma
ro model obtained by a volumetri
 homogenisation pro
ess, (right).

homogenisation pro
edure is s
hemati
ally illustrated in Figure 2.1. Therein, the mi
ro-

stru
ture of the soil is built by the grain matrix mainly stabilised by normal and fri
tion

for
es between the grains. Furthermore, the pore spa
es are 
onsisting of �lled with one

or more pore �uids ϕβ
summarising to the overall �uid phase ϕF

. Thereby, β denotes the

�uid 
omponents.

Con
erning the overall aggregate ϕ, the volume of the multiphasi
 body B is determined

by the sum over all volume parts V α
of the 
onstituents:

V =

∫

B

dv =
k∑

α=1

V α , where V α =

∫

B

dvα =:

∫

B

nαdv . (2.2)

Herein, nα
represent the volume fra
tions of the 
onstituents at a lo
al material point P α

and is introdu
ed as the lo
al ratio of the partial volume element dvα of ϕα
with respe
t

to the bulk volume element dv of ϕ, while the sum over all volume fra
tions leads to the

saturation 
ondition of the overall aggregate ϕ :

nα =
dvα

dv
and

k∑

α=1

nα = 1 . (2.3)

Following the 
ase of several �uid 
onstituents ϕβ
, the volume fra
tion nF

of the overall

�uid phase is 
omposed of the volume parts of nβ
:

nF =

l∑

β=1

nβ = 1− nS . (2.4)

Therein, l = k−1 is the number of the pore-�uid 
omponents ϕβ
. The ratio of the volume

fra
tions nβ
of the �uid 
omponents with regard to the �uid volume fra
tion nF

yields

the saturation sβ of the �uid 
omponents. Thus,

sβ =
nβ

nF
where

l∑

β=1

sβ = 1 (2.5)
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represents the �uid saturation 
ondition.

For ϕα
, two di�erent density fun
tions 
an be introdu
ed, viz.

ραR =
dmα

dvα
and ρα =

dmα

dv
. (2.6)

Therein, the material density ραR, whi
h represents the realisti
 or the e�e
tive lo
al

averaged density of ϕα
, relates the partial mass element dmα

to the partial volume element

dvα , while the partial (global or bulk) density ρα relates the same mass element to the

bulk volume element dv. By use of the de�nition of the volume fra
tion in equation (2.3),

the material and the partial densities are related to ea
h other as follows:

ρα = nαραR . (2.7)

Ex
luding thermal loads, the partial density ρα varies through the realisti
 density ραR

and the volume fra
tion nα
. This implies that even if the 
onstituent ϕα

is materially

in
ompressible by ραR = const., the partial density ρα is 
hanged by varying nα
.

2.2 Kinemati
al relations

2.2.1 Motion fun
tion

Following superimposed and intera
ting 
ontinua of multiphasi
 materials within the

framework of the TPM, the overall body B 
onsists of a 
oherent manifold of mate-

rial points P α
of all 
onstituent ϕα

. Thereby, the material point P α
of ea
h 
onstituent

ϕα
in the referen
e 
on�guration at time t0 is de�ned by the referen
e position ve
tor Xα,


f. Figure 2.2. The motion of a 
onstituent ϕα
is given by the individual motion fun
tion

χα. Hen
e, the a
tual position ve
tor x at time t in the Lagrangean des
ription reads

x = χα(Xα, t) ,
′
xα =

d

dt
χα(Xα, t) and

′′
xα =

d2

dt2
χα(Xα, t) . (2.8)

Herein,

′
xα is the velo
ity and

′′
xα is the a

eleration �eld. The inverse motion χ−1

α of ϕα

exist only if the Ja
obians determinants Jα are non-zero:

Xα = χ−1
α (x, t) , if Jα = det

∂χα

∂Xα

6= 0 . (2.9)

Inserting the inverse motion fun
tion of equation (2.9) in (2.8)1, the Eulerian represen-

tation of the motion of ϕα
in regard to the position ve
tor x of the 
urrent 
on�guration

yields

′
xα =

′
xα[χ

−1
α (x, t), t] =

′
xα(x, t) and

′′
xα=

′′
xα(x, t) . (2.10)

The velo
ity of the overall aggregate results from the sum of the partial velo
ities weighted

with their 
orresponding densities ρα and is introdu
ed as the bary
entri
 velo
ity

ẋ =
1

ρ

k∑

α=1

ρα
′
xα . (2.11)
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Figure 2.2: Motion of a superimposed multiphasi
 porous material with ϕS
as the solid skeleton

and ϕβ
as the �uid 
omponents where the solid and the �uids follows their own individual motion

fun
tion.

The material and total time derivatives of an arbitrary, steady and su�
iently steady

di�erentiable s
alar and ve
torial �eld fun
tion (Γ)′α and (Γ)′α of a 
onstituent ϕα
read

(Γ)′α =
dα

dt
Γ(x, t) =

∂Γ

∂t
+ grad Γ· ′

xα ,

(Γ)′α =
dα

dt
Γ(x, t) =

∂Γ

∂t
+ (gradΓ)

′
xα .

(2.12)

Therein, the �rst part represents the lo
al time derivative, while the se
ond part is the so-


alled 
onve
tive part, whi
h denotes the 
hange of the �eld fun
tion by the di�erential

operator grad(·) = ∂ (·)/∂x in the a
tual 
on�guration x and the velo
ities

′
xα of the


onstituents ϕα
.

Pro
eeding from the referen
e 
on�guration, the porous solid stru
ture is at any time

known in 
ontrast to the �uid phase. Therefore, the kinemati
s of the solid phase generally

pro
eed from a Lagrangean des
ription using the displa
ement ve
tor uS, while the pore-

�uid �ow is better des
ribed by the Eulerian des
ription by the seepage velo
ities wβ,

whi
h is de�ned by the relative relation of �uid and solid velo
ities:

uS = x−XS , wβ =
′
xβ − ′

xS , where (uS)
′
S =

′
xS . (2.13)

Moreover, two di�usion velo
ities are introdu
ed. The �rst one is de�ned by the di�eren
e

of the velo
ity of a 
onstituent ϕα
with respe
t to the bary
entri
 velo
ity ẋ, while the

se
ond one is related to the �uid velo
ity

′
xF :

dα =
′
xα − ẋ and dβF =

′
xβ −

′
xF . (2.14)

Regarding the whole aggregate and the �uid phase, the di�usion velo
ities have to vanish:

k∑

α=1

ραdα = 0 and

l∑

β=1

ρβdβF = 0 . (2.15)
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To note that the supers
ript (·)α denotes the single 
onstituent, while the subs
ript (·)α

hara
terises the motion of the physi
al quantity, whi
h depends on the kinemati
 quantity

of the 
onstituent α.

2.2.2 Deformation and strain measures

The lo
al deformation of a material point is measured by the deformation gradient Fα,

whi
h inter
onne
ts the undeformed state of a body with the deformed state. Thus, Fα

transports the line element dXα of the referen
e 
on�guration to the line element dx of

the 
urrent 
on�guration via

dx = Fα dXα and dXα = F−1
α dx . (2.16)

Considering a natural basis system, Fα is a so-
alled two-�eld tensor

∗
:

Fα = Gradαx =
∂x

∂Xα

and F−1
α = gradXα =

∂Xα

∂x
. (2.17)

Therefore, the transport me
hanism of the line elements in (2.16)1 is the so-
alled 
ovariant

push-forward operation, while the inverse transport is the 
ovariant pull-ba
k operation.

Further geometri
al transport me
hanisms are the 
ontravariant push-forward transport

of the referen
e quantities of the oriented area elements dAα and the transport of the

volume elements dVα to the 
orresponding 
urrent quantities da and dv, respe
tively:

da = (detFα)F
T−1
α dAα and dv = (detFα) dVα . (2.18)

The determinant of the deformation gradient, detFα, is also 
alled the Ja
obian Jα, whi
h
des
ribes the volume 
hange of a physi
al body, is 
onstrained to positive values be
ause

the body 
annot be 
ompressed to zero volume. Thus,

detFα = Jα > 0 , where detFα(t0) = 1 (2.19)

is the undeformed state at the initial time t0. Pro
eeding from the di�eren
es of the

squares of the 
urrent and the referen
e line elements

||dx||2 − ||dXα||2 = dXα ·CαdXα − dXα · dXα = dXα · (Cα − I) dXα ,

||dx||2 − ||dXα||2 = dx · dx− dx ·B−1
α dx = dx · (I−B−1

α ) dx ,
(2.20)

further strain tensors Cα and Bα are introdu
ed, where Cα = FT
α Fα is the right Cau
hy-

Green deformation tensor, while Bα = FαF
T
α is the left Cau
hy-Green deformation tensor.

Based on (2.20), the Green-Lagrangean Eα and the Almansian Aα strain tensors are

de�ned by

Eα = 1
2
(Cα − I) and Aα = 1

2
(I−B−1

α ) . (2.21)

∗
The �rst basis system of the two �eld tensor Fα = aαi ⊗ h

j
α is 
ovariant and lo
ated in the a
tual


on�guration aαi, while the se
ond 
ontravariant basis system is lo
ated in the referen
e 
on�guration

h
j
α. The 
o- and 
ontravariant basis systems of the inverse of Fα are vi
e versa as well as the positions

are transposed, F−1
α = hαj ⊗ aiα, 
f. Ehlers [47℄ and Markert [114℄.
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The basis systems of both strain tensors are 
ontravariant, while the metri
 is 
ovariant.

Applying a 
ontravariant transport me
hanism on either of the strain tensors, the other

one 
an be 
omputed via

Aα = FT−1
α EαF

−1
α and Eα = FT

αAαFα . (2.22)

The deformation tensors Cα and Bα at the undeformed initial state (time t0) 
orrespond
to the identity tensor Cα(t = t0) = Bα(t = t0) = I, whereas the strain tensors Eα and

Aα are equivalent to the 0-tensor.

In 
ase of a small-strain 
onsideration of the solid phase, the geometri
al linearisation of

the solid strain tensors Eα and Aα reads:

linES = linAS =: εS = 1
2
[ GradS uS + (GradS uS)

T ] , (2.23)

wherein εS is the linear well-known Hookean strain tensor. For the 
omputation of strain

rates, the time derivative of the deformation tensor Fα is introdu
ed by

(Fα)
′
α = LαFα , where Lα = (Fα)

′
αF

−1
α = grad

′
xα (2.24)

is the spatial velo
ity gradient of the 
onstituent ϕα
. Lα 
an be uniquely de
omposed

into a symmetri
 (strain tensor rate) and a skew-symmetri
 (spin tensor) part, Dα and

Wα, respe
tively,

Lα = Dα + Wα , where





Dα = 1
2
(Lα + LT

α)

Wα = 1
2
(Lα − LT

α)
. (2.25)

2.2.3 Stress measures

At ea
h material point P α
of a deformed body B exists a three-dimensional(3-d) spa
ial

information of the stress-strain state in the proper Eu
lidean ve
tor spa
e V3 †

aused

by a
ting of external me
hani
al 
onta
t for
es t̄α or gravitation for
es bα
. By use of

the me
hani
al 
utting prin
iple of Euler, the internal for
es in the body B 
an be il-

lustrated through a virtual 
ut through the body. The stress ve
tors tα a
ting on both


utting planes of the body B at the material point P α
are equal and outward oriented,

t(x,n, t) = −t(x,−n, t), where n is the unit ve
tor. This is referred to as the Cau
hy

lemma. Introdu
ing the Cau
hy theorem,

tα(x, t, n) = Tα(x, t)n , (2.26)

the stress ve
tor tα is mapped by a linear proje
tion of the Cau
hy stress tensor Tα
in

dire
tion to n. Geometri
ally expressed, Tα
is also 
alled the true stress tensor while tα

is a
ting on the oriented 
urrent area element da:

dfα = tα da = (Tαn) da = Tα (n da) = Tα da . (2.27)

†
In general, Vn

is a n-dimensional ve
tor spa
e, wherein the elementary ve
tor 
al
ulus is valid and,

additionally, the s
alar produ
t must be positive, |v|2 = v ·v > 0 ∀ v 6= 0. The Eu
lidean ve
tor spa
e is

a physi
al spa
e and it is restri
ted in n = 3 dimension. Hen
e, the ve
tor v has three linear independent

basis ve
tors, 
f. de Boer [11℄ and Ehlers [55℄.
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A

ordingly, the a
tual for
e ve
tor dfα 
an be also expressed with other stress tensors

relating to the weighted area element dāα = (detFα)
−1da or to the referen
e area element

dAα:

dfα = τα dāα = Pα dAα . (2.28)

Herein, τα
is the Kir
hho� stress tensor (or weighted Cau
hy stress tensor) and Pα

is the

�rst Piola-Kir
hho� stress tensor. They are related to ea
h other as follows:

Tα = (detFα)
−1 τα = (detFα)

−1PαFT
α = (detFα)

−1Fα S
αFT

α . (2.29)

Therein, Pα
is a two �eld-tensor, be
ause the �rst basis system is in the 
urrent 
on�g-

uration, while the se
ond one is lo
ated in the referen
e 
on�guration. Furthermore, the

se
ond Piola-Kir
hho� stress tensor Sα = F−1
α Pα

is determined by mapping the �rst basis

system of Pα
to the referen
e 
on�guration by applying the 
ovariant pull-ba
k transport

theorem. All presented stress tensors exist in the �nite theory of large deformations. Con-

sidering only a geometri
ally linear approa
h to the displa
ement of the solid phase (small

deformations) (2.23), all stress tensors 
oin
ide to the geometri
al linear stress tensor σS
:

σS :≈ SS ≈ PS ≈ τ S ≈ TS . (2.30)

2.3 Balan
e relations

The deformation and thermal pro
esses of a 
ontinuum me
hani
al body B are des
ribed

by fundamental balan
e relations. These balan
es of mass, momentum, moment of mo-

mentum, energy (1-st law of thermodynami
s) and entropy (2-nd law of thermodynami
s)

are axiomati
ally introdu
ed, i. e., they are derived by observation of physi
al pro
esses.

Regarding a 
onstituent within a mixture, the own physi
al regularities as well as the e�e
t

resulting from the mutual intera
tions between the other 
onstituents have to be 
onsid-

ered. These interrelationships demand additional produ
tion terms of mass, moment,

energy, et
., a

ording to ea
h individual 
onstituent, whereas the overall aggregate itself

behaves like a single-phase material. This implies that the produ
tion quantities have

to annul ea
h other. For the mathemati
al des
ription of multiphasi
 materials, Trues-

dell [161℄ introdu
ed the fundamental statements of mixtures, the so-
alled `metaphysi
al

prin
iples':

Truesdell's metaphysi
al prin
iples

1. All properties of the mixture must be mathemati
al 
onsequen
es

of properties of the 
onstituents.

2. So as to des
ribe the motion of a 
onstituent, we may in imagination

isolate it from the rest of the mixture, provided we allow properly

for the a
tions of the other 
onstituents upon it.

3. The motion of the mixture is governed by the same equations as is

a single body.

(2.31)
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This prin
iple implies that a single 
onstituent of a mixture 
an be des
ribed as if the

other phases were not existing, namely, like a single-phase material. But the mutual

intera
tions must be 
onsidered by produ
tion terms for whi
h additional 
onstitutive

equations have to be formulated. Based on these prin
iples, the 
onstitutive modelling

of multiphasi
 materials 
an be further simpli�ed through extension by the prin
iple of

phase separation, 
f. Ehlers [46℄, whi
h predi
ates that ea
h 
onstituent depends only on

its own pro
ess variables as a single-phase material, 
f. Chapter 4.

2.3.1 General stru
ture of the balan
e relations

All fundamental balan
e relations 
an be generally expressed by the master balan
e

(Haupt [84℄). Using this abstra
t shape in its global representation, a general stru
-

ture of a volume-spe
i�
 s
alar Ψ and ve
tor-valued Ψ me
hani
al quantity of the overall

aggregate with respe
t to the whole body B 
an be introdu
ed via

d

dt

∫

B

Ψdv =

∫

∂B

(φ · n) da +

∫

B

σ dv +

∫

B

Ψ̂ dv ,

d

dt

∫

B

Ψdv =

∫

∂B

(Φn) da +

∫

B

σ dv +

∫

B

Ψ̂dv .

(2.32)

Therein, φ · n and Φn represent the e�ux of physi
al quantities over the surfa
e ∂B of

the aggregate B (external vi
inity), whereas the supply of the volume-spe
i�
 physi
al

quantities, σ and σ, results from distan
e a
tivities (external sour
e). The last term is

the volume-spe
i�
 produ
tions Ψ̂ and Ψ̂, whi
h allow the produ
tion of the physi
al

represents quantities Ψ and Ψ pro
eeding from opened systems. Applying the material

time derivative on the me
hani
al quantities and theGauss theorem on (2.32) (transferring

the surfa
e integral on ∂B into the volume integral over B), the lo
al representation of

the master balan
e reads

Ψ̇ + Ψdiv ẋ = divφ + σ + Ψ̂ ,

Ψ̇ + Ψ div ẋ = divΦ + σ + Ψ̂ ,
(2.33)

whi
h is valid at any material point P of B. The individual balan
es 
an be derived by

inserting for Ψ (or Ψ) the 
orresponding quantities for the mass, momentum, moment of

momentum (m. o. m.), energy and entropy balan
es:

Ψ, Ψ φ, Φ σ, σ Ψ̂, Ψ̂

mass ρ 0 0 0

momentum ρ ẋ T ρb 0

m. o. m. x× (ρ ẋ) x×T x× (ρb) 0

energy ρ ε+ 1
2
ẋ · (ρ ẋ) TT ẋ− q ẋ · (ρb) + ρ r 0

entropy ρ η φη ση η̂ ≥ 0

(2.34)
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Herein, ρ ẋ denotes the momentum of the overall aggregate and x×(ρ ẋ) is the 
orrespond-
ing moment of momentum, where the 
ross sign denotes the outer ve
tor produ
t. Further

physi
al quantities of the energy balan
e in (2.35) are the internal energy ε, the heat in-

�ux ve
tor q and the external heat supply r, whereas the entropy balan
e 
onsists by the

entropy η, the e�ux of the entropy φη, the external entropy supply ση and the entropy

produ
tion η̂. The balan
e equations of the overall aggregate in (2.34) is 
onstrained to


losed systems, i. e., from the surrounding of the body B no supply of physi
al quantities

are admitted. Therefore, the produ
tion terms Ψ̂ (or Ψ̂) are zero for all balan
es ex
ept

of η̂, whi
h is the measure for the irreversibility of the thermodynami
al pro
ess. The

thermodynami
al pro
ess is irreversible, if the entropy produ
tion η̂ is positive, otherwise,

it is zero (reversible pro
ess), but never negative. Evaluating the lo
al master balan
e

(2.33) for the individual balan
es in (2.34), the spe
i�
 well-known me
hani
al balan
e

laws in the lo
al form of the overall aggregate result in:

Balan
e equations of the overall aggregate

mass: ρ̇+ ρ div ẋ = 0

momentum: ρ ẍ = divT+ ρb

m. o.m.: 0 = I×T −→ T = TT

energy: ρ ε̇ = T · L− divq + ρ r

entropy: ρ η̇ ≥ divφη + ση

(2.35)

The stru
ture of the master balan
e of the 
onstituent ϕα
is equivalent to (2.32), however,

with the di�eren
e that a

ording to Truesdell's prin
iples, the produ
tion terms have to

be taken into a

ount for ea
h balan
e in order to 
onsider the mutual ex
hange of physi
al

quantities. Hen
e, the master balan
e of ϕα
reads

dα

dt

∫

B

Ψα dv =

∫

∂B

(φα · n) da +

∫

B

σα dv +

∫

B

Ψ̂α dv ,

dα

dt

∫

B

Ψα dv =

∫

∂B

(Φα n) da +

∫

B

σα dv +

∫

B

Ψ̂
α
dv ,

(2.36)

and, analogously to (2.33), the lo
al form of the master balan
e of an individual 
on-

stituent ϕα
yields

(Ψα)′α + Ψα div
′
xα = divφα + σα + Ψ̂α ,

(Ψα)′α + Ψα div
′
xα = divΦα + σα + Ψ̂

α
.

(2.37)

Referring (2.37) to the overall aggregate with regard to the bary
entri
 kinemati
s (2.11)

of the mixture, the master balan
e (2.34) of a single-phase material has to result. For the
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individual physi
al quantities of ϕα
, this leads to the following 
onditions:

s
alar-value ve
tor-value

physi
al quantity Ψ =
∑

α

Ψα Ψ =
∑

α

Ψα

e�ux φ · n =
∑

α

(φα −Ψαdα) · n Φn =
∑

α

(Φα −Ψα ⊗ dα)n

supply σ =
∑

α

σα σ =
∑

α

σα

produ
tion Ψ̂ =
∑

α

Ψ̂α Ψ̂ =
∑

α

Ψ̂
α

(2.38)

Evaluating (2.38) for ea
h balan
e equation analogously to the overall aggregate in (2.34),

the individual physi
al quantities of a 
onstituent ϕα
are 
onstituted as follows:

Ψα, Ψα φα, Φα σα, σα Ψ̂ α, Ψ̂
α

mass ρα 0 0 ρ̂α

momentum ρα
′
xα Tα ρα bα ŝα

m. o. m. x× (ρα
′
xα) x×Tα x× (ρα bα) ĥα

energy ρα εα+ 1
2

′
xα · (ρα

′
xα) (Tα)T

′
xα− qα ′

xα · (ρα bα)+ρα rα êα

entropy ρα ηα φα
η σα

η η̂α

(2.39)

Therein, ρ̂α is the mass produ
tion, ŝα is the total momentum produ
tion, ĥ
α
is the total

produ
tion of angular momentum, êα denotes the total energy produ
tion and η̂α is the

total entropy produ
tion of the 
onstituent ϕα
. These total produ
tion terms 
onsist of

two parts. The �rst part is the dire
t produ
tion term and the other one results from the

produ
tions of the lower balan
es:

total dire
t additional

produ
tion = produ
tion + terms

ŝα = p̂α + ρ̂α
′
xα

ĥα = m̂α + x× (p̂α + ρ̂α
′
xα)

êα = ε̂α + p̂α · ′
xα + ρ̂α(ε + 1

2

′
xα ·

′
xα)

η̂α = ζ̂α + ρ̂α ηα

(2.40)

Herein, the dire
t moment produ
tion p̂α
expresses the volume-spe
i�
 for
e intera
tion

of the 
onstituent ϕα
with the other 
onstituents in ϕ, the dire
t moment of momen-

tum produ
tion m̂α
denotes the angular momentum 
oupling between the 
onstituents,
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and the quantities ε̂α and ζ̂α are the dire
t energy and entropy produ
tions. A

ord-

ing to the Truesdell's prin
iples for the overall aggregate ϕ, the sum of the produ
tion

terms of a multiphasi
 material within a 
losed system must vanish expe
ting the entropy

produ
tion, whi
h 
an also be greater than zero:

∑

α

ρ̂α = 0 ,
∑

α

ŝα = 0 ,
∑

α

ĥα = 0 ,
∑

α

êα = 0 ,
∑

α

η̂α ≥ 0 . (2.41)

Pro
eeding from the general formulation and the substitution of total produ
tion terms

by the dire
t ones with (2.40), the balan
e equations of the individual 
onstituents ϕα

yield:

Constituent balan
e equations

mass: (ρα)′α + ρα div
′
xα = ρ̂α

momentum: ρα
′′
xα = divTα + ρα bα + p̂α

m. o.m.: 0 = I×Tα + m̂α

energy: ρα (εα)′α = Tα · Lα − divqα + ρα rα + ε̂α

entropy: ρα (ηα)′α = div (− 1

θα
qα) +

1

θα
ρα rα + ζ̂α

(2.42)

Therein, for the entropy e�ux φα
η and the entropy supply σα

η , a-priori 
onstitutive as-

sumptions 
orresponding to a single-phase material have been used, viz.

φα
η = − 1

θα
qα

and σα
η =

1

θα
ρα rα , (2.43)

where, for ea
h ϕα
, an individual absolute Kelvin's temperature �eld θα > 0 is allowed.

Furthermore, standard Cau
hy materials possess a symmetri
 Cau
hy stress tensor T =
TT

in 
onsequen
e of I × T = 0, whi
h is the result of the angular momentum balan
e.

Considering the mixture theory, the individual stress tensors Tα
is not generally sym-

metri
 due to the skew-symmetri
 moment of momentum 
oupling tensor M̂
α
(
f. Ehlers

[54℄):

Tα = (Tα)T − M̂
α

with m̂α = 1
2
(I× M̂

α
) . (2.44)

However, by evaluating the sum of ĥ
α
in (2.41)3 over the overall aggregate, the sum of M̂

α

must vanish. Thus, the stress tensor T of the overall aggregate is symmetri
. Pro
eeding

frommixture materials with immis
ible 
onstituents, where the individual 
onstituents are

of a Cau
hy-material typ, the stress tensor Tα
of ea
h 
onstituent ϕα

is symmetri
 at the

mi
ro s
ale. Hen
e, the symmetri
 mi
ro-stress property of the 
onstituents is preserved

after the homogenisation pro
edure over the mi
ro stru
ture, and the individual dire
t

moment of momentum produ
tions m̂α
is not existing (Hassanizadeh and Grey [82℄ and

Ehlers [52℄):

Tα = (Tα)T −→ m̂α ≡ 0 . (2.45)
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In 
ontrast to mixture materials, granular materials, wherein the individual grains 
an

rotate, belong to the group of mi
ro-polarmaterials. In order to take the mi
ro-rotations of

the parti
les into 
onsideration, the rotational degree of freedom has to be regarded, whi
h

implies an unsymmetri
 stress tensor Tα 6= (Tα)T . The idea of the extended 
ontinuum

theory on rotational kinemati
s for granular materials goes ba
k to the Cosserat brothers

[31℄, why these materials are also 
alled Cosserat 
ontinua. Treating the Cosserat theory

in the framework of the TPM, the interested reader is referred to the works of, e. g.,

[42, 43, 68, 69, 137℄.

Moreover, the balan
e relations (2.34) of the overall aggregate ϕ and of the individual


onstituent ϕα
(2.42) are in relation to ea
h other by the sum over all 
onstituents referred

to the bary
entri
 motion of ϕ. Carrying out this pro
edure, some restri
tions result:

ρ =
∑

α

ρα ; ρb=
∑

α

ρα bα

ρ ẋ=
∑

α

ρα
′
xα ; ρ ẍ=

∑

α

[ ρα
′′
xα − div (ρα dα ⊗ dα) + ρ̂α

′
xα ]

T =
∑

α

(Tα−ρα dα ⊗ dα) ;q =
∑

α

[qα−(Tα)Tdα+ρ
α εαdα+

1
2
(dα· dα)dα ]

ρ r =
∑

α

ρα (rα + bα· dα) ; ρ ε =
∑

α

ρα (εα +
1

2
dα· dα)

(2.46)

The 
alori
 primary variable entropy ηα of the internal energy εα is not suited for de-

s
ribing temperature dependent material behaviour in 
ontrast to the 
onjugated 
alori


primary variable temperature θα. This is why θα is measurable or observable during the

natural pro
esses 
ompared to ηα. Therefore, the mass-spe
i�
 
onstituent Helmholtz free

energy ψα
is introdu
ed via the Legendre transformation,

ψα = εα − θαηα , (2.47)

whi
h is a fun
tion of the primary variables of the 
alori
 quantities θ and of the me
hani
al-

strain quantities. Therewith, the entropy inequality (2.42) is rewritten to

η̂ =
∑

α

η̂α =
∑
α

1

θα
{Tα · Lα − ρα[ (ψα)′α + (θα)′αη

α ]− p̂α · ′
xα−

−ρ̂α(ψα + 1
2

′
xα · ′

xα)−
1

θα
qα · grad θα + êα } ≥ 0 .

(2.48)

In this 
ontribution, only isothermal IBVP with a 
onstant and single temperature for all


onstituents are investigated (θα ≡ θ ≡ 
onst.). Hen
e, the entropy inequality (2.48) is

transferred to the so-
all Clausius-Plan
k inequality

D
int

=

k∑

α=1

[Tα ·Dα − ρα(ψα)′α − p̂α · ′
xα − ρ̂α(ψα + 1

2

′
xα · ′

xα) ] ≥ 0 . (2.49)
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Therein, D
int

represents the internal dissipation of the me
hani
al energy. For D
int

= 0,
reversible me
hani
al pro
esses of the 
onsidered material are des
ribed, while, for D

int

>
0, dissipative pro
esses are identi�ed as irreversible pro
esses of plasti
, vis
oelasti
 or

vis
oplasti
 deformations of the solid skeleton or the motion of vis
ous pore �uids with

mutual momentum intera
tions between the 
onstituents or mass produ
tion pro
esses of

internal erosion (Steeb and Diebels [151℄) or of growing biologi
al tissues (Ehlers et al.

[65℄). Moreover, pro
eeding from non-polar material properties, the symmetri
 Cau
hy

stress tensor Tα = (Tα)T refers only to the symmetri
 part of the deformation velo
ity

gradient Lα = Dα, 
f. (2.25).





Chapter 3:

Triaxial Experimental Investigations of

Granular Materials

The stress-strain behaviour of materials is 
ommonly investigated by elementary experi-

ments. The results of these experiments uniquely des
ribe the general material behaviour,

and they are used for the 
onstitutive modelling and the model 
alibration. However, for

that purpose, elementary deformation experiments on partially saturated soils are not

parti
ularly suited due to the strongly 
oupled deformation and �ow pro
esses. Thus,

the dete
ted physi
al properties 
annot be uniquely mapped to the individual phases.

Pro
eeding from the prin
iple of phase separation (Ehlers [46℄), the experimental investi-

gation of a partially saturated sand are split into deformation-governed experiments and

non-deformation-governed hydrauli
 experiments. Based on drained triaxial tests, the

deformation behaviour of the solid skeleton with va
ant pore spa
es (dry sand) is exam-

ined in the 
urrent 
hapter, while the experimental study of the hydrauli
 sand properties

is dis
ussed in Se
tion 6.2. Prior to this study, the triaxial equipments and the error

analysis of the triaxial test setup as well as the basi
s of experimental me
hani
s of tri-

axial testing are dis
ussed. Then, the 
omplex stress-strain behaviour of dense sand is

demonstrated on the basis of monotoni
 and non-monotoni
 stress-path-depending tri-

axial experiments, whereas, in parti
ular, new experimental observations to the yielding

and failure behaviour of dense sand are illustrated.

3.1 Triaxial experimental

The stress-strain behaviour of granular materials is very 
omplex and demands spatial

experimental investigations. A 
omplete 3-d information of the me
hani
al loading be-

haviour is obtained by a true triaxial apparatus using 
ubi
al spe
imens, where all three

prin
iple loading dire
tions 
an be individually 
ontrolled. The pioneering work on 
on-

stru
tions of su
h triaxial apparatus was made, e. g., by Ko and S
ott [95℄, Pear
e [125℄

and Lade and Dun
an [99℄ and also the resear
hers referred therein. Despite of the 
om-

plexity of this apparatus in operating, they are signi�
ant for investigations of parti
ular

behaviour of granular materials.

Con
erning to true triaxial results, Lade and Wang [174℄ have shown that shear bands

o

ur when all three prin
iple stresses di�ers from ea
h other. However, evolving of

shear bands are always asso
iated with a strong de
rease of the shear stress and an

inhomogeneous stress-strain distribution within the spe
imen. But, for 
alibration of the


onstitutive models, a homogeneous stress-strain relation is required, i. e., the boundary


onditions have to be 
hosen in su
h a way that the homogeneous development of the

stresses and strains is not disturbed. For the true triaxial experiments, this is obtained

by 
oupling the stresses of two prin
iple stress dire
tions. Therewith, shear bands may

27
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be developed only at a very large strain state, whi
h is 
learly initiated after the peak

shear stress has been passed. This is automati
ally ful�lled by drained triaxial tests

using 
ylindri
al spe
imens and applying a homogeneous load and homogeneous boundary


onditions (elementary tests), 
f. Appendix A. The homogeneous boundary 
onditions

are obtained by lubri
ation of the endplates. Therewith, the shear stresses at the top

and the bottom of the spe
imen are minimised to zero, otherwise, the spe
imen bulges

be
ause the in�uen
e of the boundaries on the stress-strain relation, where the volume

extensions of the spe
imen are impeded, gradually de
lines away from the boundaries. As

a 
onsequen
e, shear bands through the spe
imens are developed and the spe
imen owns

no more homogeneous stress-strain relation.

In general, the material 
hara
teristi
s of granular materials are investigated by 
ylindri
al

spe
imens, where the spe
imen is permanently under a surrounding 
ell-water pressure

within the triaxial 
ell. The 
ell pressure 
ontrols the radial and tangential stresses of

the spe
imen, σ2 = σ3 = −p , whereas the axial for
e σ1 is driven by the load piston.

Despite of the two 
oupled stress dire
tions, almost the 
omplete 
hara
teristi
s of the

material 
an be determined, whi
h are required for the model 
alibration (Müllers
hön

[118℄). Furthermore, 
ompared to the true triaxial apparatus, the handling is mu
h easier.

However, triaxial tests using rotational symmetri
 spe
imens have some spe
i�
 di�
ulties

to perform `error-free' experiments. The most di�
ulties are the elimination of the errors

resulting from the 
ell deformation, the measuring instruments or air bubbles within the


ell and pipes, 
f. Leong [105℄. These essential issues will be dis
ussed next.

3.1.1 Triaxial 
ell

As mentioned in the introdu
tion, one di�
ulty of triaxial testing is the 
orre
t volume

measurement, parti
ularly, if small 
ontra
tion or dilatation spe
imen deformations must

be a

urately resolved. Be
ause of the 
omparably large 
ell deformation of 
onventional

a
ryli
 glass 
ells, di�erent kinds of double-wall 
ell systems were developed, whi
h elimi-

nate the 
ell deformation by 
ontrolling the pressure in the inner and the outer 
ell. The

pri
e to pay is the high 
omplexity of the test system and the 
ir
umstantial handling of

the spe
imen setup. For these reasons, a new triaxial 
ell had to be developed, whi
h is

illustrated in Figure 3.1 in the assembled state (left) and as the individual parts of the


ell (middle), while the right �gure shows the 
ell 
over for extension tests with a larger

diameter of the load piston (∅ 10 
m). The triaxial 
ell presented in Figure 3.1 retains its

simpli
ity but redu
es unwanted volume deformations to a minimum.

The 
ell was 
onstru
ted of a massive aluminium pipe (A) with 2.5 
m thi
k 
ell wall, whi
h

has been spe
ially anodised to avoid air bubble adhesion, su
h that the 
ell deformation


ould be almost eliminated. In order to remove preferable all air bubbles within the


ell, the inner surfa
e of the 
ell 
over (E) has a 
onvex shape, where the highest two

points are positioned at the two air-bleed vents at top of the 
ell, respe
tively. Therewith,

the air bubbles 
an freely as
end along the plane surfa
e to the air-bleed vents. The


ounterpart (D) is only for the purpose to �ll the inner spa
e of the 
ell in order to redu
e

the amount of required 
ell water. Furthermore, two di�erent diameters of the load piston


an be installed depending on whether 
ompression or extension tests are intended to be
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Figure 3.1: (left) Assembled aluminium 
ell with a load piston of ∅ 2.5 
m, (middle) dissembled

parts, whi
h are assembled in alphabeti
al order (A)-(E) where (F) is the so
ket of the spe
imen

laying on (A) and (right) the top 
ell 
over with the load piston of ∅ 10 
m for extension tests.

performed. For the 
ompression loading, a load piston of ∅ 2.5 
m is used, 
f. in Figure

3.1 (left). However, this load piston 
annot be applied for extension tests. Hen
e, no axial

for
e on the load piston during the hydrostati
 loading path is building up, whi
h 
an

be subsequently redu
ed for the extension loading, be
ause the 
on�ned water pressure is

a
ting on the 
omplete sample as well as on the top of the spe
imen. Therefore, a load

piston with the same diameter as the spe
imen (∅ 10 
m) has been 
onstru
ted by whi
h

the 
omplete axial load is applied. Thus, a

ording to the intended tests of 
ompression

or extension loading, the top 
ell 
over (E) together with (D) and the load piston with

∅ 2.5 
m 
an be ex
hanged with the top 
ell 
over with the load piston of ∅ 10 
m (Figure

3.1). A further measure to rid the 
ell from air bubbles is to �ood the 
ell with CO2

before it is �lled with degassed water.

Pro
eeding from a homogeneous deformation of 
ompa
t spe
imens, their volumetri
 de-

formation 
an be easily measured via in- and out�ow of the degassed 
on�ned 
ell water.

Due to the fa
t that the main error sour
e in 
alibration of the volume measuring of the

triaxial experiment is the amount of water in the system, it is very important to redu
e

it to a minimum. Following this, the new system, whi
h is made up of the new 
ell (Fig-

ure 3.1), pipes and the volume-pressure devi
e (Figure 3.2), requires only a total water

volume of ≈ 1100 
m

3
using a 
ylindri
al spe
imen with a volume of 785 
m

3
(diameter

and height of 10 
m). This is a very low value of 
on�ned 
ell water and, therewith, the

volume measuring error has been redu
ed signi�
antly. Unfortunately, the aluminium


ell has one obvious disadvantage, namely, it is not possible to look inside the 
ell to

observe the deforming spe
imen during the experiment. However, it is not indispensably

ne
essary for investigation of homogeneously deforming spe
imens (elementary tests).

3.1.2 Volume-
hange monitoring

The variation of the amount of 
ell water representing the volume 
hange of the spe
imen

is very few, in parti
ular, during hydrostati
 
ompression tests. Therefore, a pre
ise

measuring devi
e in
luding a setup with few 
alibration errors is essential for a good
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quality of the experimental results.

For 
ontrolling the in-/out�ow of the 
on-

�ned 
ell water, the pressure-volume 
on-

troller (p-v 
ontroller), whi
h is shown in

Figure 3.2, from the 
ompany Wille GmbH

(Willsdru�, Germany) is applied. The max-

imal pressure limit of the s
rew-driven p-v


ontroller is at 950 kPa and the water tank


apa
ity is 200 
m

3
. However, 
alibration

tests of the p-v 
ontroller pointed out that

some modi�
ations on the 
ontroller have to

be made in order to redu
e the measuring

error. The water tank 
apa
ity of the p-v


ontroller is too huge for standard triaxial

testing of sand and, additionally, the 
on-

stru
tion of the tank is not sti� enough. The

extension of the tank amounts 2.8 
m

3
at the

maximal pressure state. By installing a new

sti�er tank with only 50 
m

3

apa
ity, the

systemati
 error 
ould be redu
ed to 0.3 
m

3
.

Figure 3.2: P-v 
ontroller: (left)

plunger 
ylinder on whi
h a water tank


apa
ity of 50 
m

3
is atta
hed and

(right) the p-v 
ontroller devi
e.

The p-v 
ontroller 
omputes the volume 
hange by the rotational movement of the gear.

Due to the gear ba
klash of the s
rew-driven p-v 
ontroller, it is important to verify the

resulting volume measuring error of the p-v 
ontroller. The play of the gear be
omes

evident through the following tests, where the results are illustrated in Figure 3.3. Con-


erning this, the triaxial 
ell is �lled with degassed water and is 
on�ned until 100 kPa.
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Figure 3.3: (left) The 
ontroller test by whi
h the load piston is driven down and up at


onstant 
ell pressure of 100 kPa and (right) the results of in-/out�ow of 
ell water during the

piston motion � 
omparison of measured data re
eived by the p-v 
ontroller (the red 
urve with

square dots) and the real motion of the plunger 
ylinder re
orded by the dial gauge (the bla
k


urve with 
ir
le dots).
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Thereafter, the load piston (∅ 2.5 
m) is slowly moved into the 
ell and ba
k to the start-

ing point, while the 
ell pressure is kept 
onstant through in- and out�ow of 
on�ned 
ell

water. Figure 3.3 (right) shows the volume 
hange of the 
ell water measured with the p-v


ontroller (red 
urve with square points), whereas the bla
k 
urve with points represents

the volume 
hange 
onverted from the real motion of the s
rew, whi
h is measured with

a digital distan
e indi
ator over the load-piston displa
ement u. The results show a 
lear

measuring error of more than 3 
m

3
, whi
h additionally varies with the 
ell pressure. Pro-


eeding from this test, only the measured data taken from the digital distan
e indi
ator

is used for further appli
ations.

After the individual error has been minimised best as possible, the remaining systemati


error is identi�ed. Thereby, hydrostati
 tests with a steal dummy owning the same di-

mensions as the spe
imen have been 
arried out. In order to ensure that almost the same

systemati
 error is reprodu
ed, the identi
al testing pro
edure is exa
tly performed for
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Figure 3.4: Systemati
 volume 
alibration error of the 
omplete triaxial system.

the sand tests. The results are shown in Figure 3.4. For instan
e, a systemati
 error at

the maximal pressure amounts 1.6 
m

3
, whi
h 
orresponds only about 0.2% volume of the

tested spe
imen.

Besides this, further systemati
 error sour
es as bedding error, membrane penetration or

fri
tion for
e of the load piston has been also 
onsidered, whereas, for the tested material,

these error sour
es are not so signi�
ant 
ompared with the presented ones. Nevertheless,

they have to be taken into a

ount.

3.1.3 Homogeneous standard triaxial tests

Pro
eeding from a homogeneous stress-strain distribution, only the prin
iple stress di-

re
tions of the geometri
ally linear se
ond-order stress tensor σ (2.30) are a
tivated, 
f.

Appendix A.2. Therewith, σ 
an be also expressed as a ve
tor σ = σi ei, wherein σi are
the prin
iple stresses and ei the 
orresponding orthonormal eigenve
tors. For graphi
al

illustrations, the prin
iple stresses are spanning a ve
tor spa
e, whi
h is better des
ribed

by the 
ylindri
al 
oordinate system with the Reuss variables Iσ, R and Θ. Thereby, the

�rst prin
iple stress invariant Iσ of the stress tensor σ represents the hydrostati
 axis and

R and Θ des
ribe the deviatori
 stress spa
e, where R is the radius and Θ denotes the
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Lode angle:

Iσ = σ · I , R :=
√
2 IIDσ and Θ :=

1

3
arcsin

(√
27

2

IIIDσ
(IIDσ )

3/2

)
. (3.1)

Therein, R and Θ depend on the (negative) se
ond and the third prin
ipal deviatori


invariants IIDσ and IIIDσ of σ:

IIDσ = 1
2
σD · σD

and IIIDσ = 1
3
σDσD · σD , (3.2)

where σD = (σ − 1/3σ · I) I is the deviatori
 stress tensor. Based on these important

relations, the loading path progression within the prin
iple stress spa
e of two standard

triaxial 
ompression tests will be dis
ussed in the following. Above all, the Reuss variables

are parti
ularly used for the 
onstitutive modelling of the plasti
 behaviour, see Se
tion

4.2.2.

By way of illustration, Figures 3.5 and 3.6 show the loading stress paths of two 
ompression

tests in the prin
iple stress spa
e. Firstly, in both 
ases, the test is isotropi
ally driven

by the hydrostati
 stress σH
along the hydrostati
 axis Iσ until point H. Afterwards, in

Figure 3.5, the axial load σ1 is in
reased along the path HP, while the other both prin
iple

stress dire
tions σ2 and σ3 are kept 
onstant, whereas in Figure 3.6, Iσ stays 
onstant by

redu
ing σ2 and σ3 from H to P

′
(or its proje
tion H

′
P

′′
in the σ2-σ3 plane) during the
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in
rease of σ1 from P

′
P, where the amount of σ2 and σ3 
orresponds to σ1. This load path

is de�ned as a pure deviatori
 stress loading σD
.

Furthermore, in these Figures, the dashed 
ir
le represents the deviatori
 or the o
tahedral

plane, whi
h is perpendi
ular to the hydrostati
 axis Iσ. Therein, the load dire
tion within

this deviatori
 plane is de�ned by the radius R and the Lode angle Θ. In 
ontrast to true

triaxial apparatus, where arbitrary Lode angles 
an be derived, 
f. [174, 181℄, 
ylindri
al

triaxial tests are restri
ted only to 
ompression shear tests Rc = R(Θ = −30◦) and

extension shear tests Re = R(Θ = 150◦). However, the simple shear loading is de�ned by

Rs = R(Θ = 0). The 
ompression and extension points are regularly repeated within the

deviatori
 plane and o

ur at ea
h 120◦, while the shear load points follow the sequen
es

of every 60◦.

Figure 3.7 represents the stress paths in the prin
iple hydrostati
 and in the deviatori


stress plane, whereas triaxial stress paths are 
ommonly dis
ussed at the hydrostati
 plane.

Therein, three types of possible monotoni
 loading paths A, B and C are illustrated. They

are driven as follows:

• A := σ1 ↑↓ ; σ2 = σ3 = 
onst. • B := σ1 ↓↑ ; σ2 = σ3 ↑↓ ; Iσ = 
onst.

• C := σ2 = σ3 ↓↑ ; σ1 =
onst.

The monotoni
 stress paths in the parentheses in Figure 3.7 have been not 
arried out in

the framework of this 
ontribution.
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3.2 Experimental observations of yielding and failure

behaviour of sand

Investigating dry sand, the pore 
ontent is air, whi
h has, espe
ially under drained 
on-

ditions, no physi
al in�uen
e on the solid behaviour and 
an thus be negle
ted. Further-

more, as the sand grains are in
ompressible and widely un
rushable, the dilatation and


ompression behaviour of sand only results from a 
hange of the pore volume or from

the 
ompa
tness of the pa
king, respe
tively. However, 
on
erning this, Yamamuro and

Lade [182℄ experimentally investigated the in�uen
e of 
rushing grains on the material

behaviour. Therefore, they 
arried out triaxial 
ompression tests with di�erent 
on�ning

pressures and observed the onset of 
rushing of parti
les at a 
on�ning pressure of ap-

proximately 2.1MPa, while the in�uen
e of 
rushing on the stress-strain behaviour ended

around a 
on�ning pressure of 4MPa. During grain 
rushing, the stress-strain 
urves are

�attening as well as the sti�ness and strength of the granular material de
reases. However,


on�ning pressures higher than 2.1MPa 
an only be found at very spe
ial geote
hni
al

problems, while, in general, pressures o

urring in pra
ti
e are 
learly lo
ated below the

signi�
ant limit of parti
le 
rushing. In further 
onsideration of grain properties in this


ontribution, they are assumed to be in
ompressible and un
rushable within the applied

range of moderate pressures.

Con
erning the des
ription of an elasto-plasti
ally deforming solid skeleton 
onsisting of
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granular matter, the most di�
ult part is the des
ription of the evolution of the plasti


yield surfa
e with its asso
iated hardening and softening behaviour. In 
ase of fri
tional

granular material, the yielding behaviour was experimentally investigated in the late six-

ties of the last 
entury, for example, by Poorooshasb et al. [127, 128℄ and by Tatsuoka and

Ishihara [155℄. These investigators 
arried out triaxial stress-path-depending 
ompression

tests in
luding unloading and reloading 
y
les, where the shear stress was properly kept

below the peak value in order to dete
t the restarting points of yielding at various 
on-

�ning pressures. These points were identi�ed as lo
i on a yield surfa
e. Lade and Kim

[100℄ assumed that yield points with the same plasti
 work uniquely belong to the same


ontour of a yield surfa
e evolving independently from the stress path or the stress level

until the failure surfa
e is rea
hed. As a 
onsequen
e, the standard failure behaviour was

des
ribed by only one �xed failure surfa
e. In 
ontrast to this, it was dete
ted from the

stress-path-dependent experiments on dry sand presented in the following that there must

exist an individual failure surfa
e at ea
h stress level at the failure state, 
f. Ehlers and

Av
i [56℄. This led to the 
on
lusion that the failure surfa
e is not �xed, but depends on

the stress level, instead. Similar experiments were 
arried out by Lade and Prabu
ki [101℄,

where they found the same results, namely, that preshearing until the peak failure state

in
reases the failure strength of lower stress levels. To explain this material behaviour,


onsider the di�eren
es of granular matter in 
omparison to standard solid materials like,

for instan
e, metalli
 poly
rystals. In metal plasti
ity, the hardening pro
ess irreversibly


hanges the internal stru
ture of the material, thus extending the elasti
 domain in the

prin
ipal stress spa
e, when isotropi
 hardening was assumed. In
reasing the external

load 
ontinues the hardening pro
ess until the material fails and the 
orresponding failure

surfa
e is rea
hed. Close to the failure surfa
e, unloading and reloading 
y
les exhibit an

elasti
 material up to the failure state. In 
ontrast to metals, where the yield and failure

fun
tions do not depend on the hydrostati
 stress (plasti
 in
ompressibility), the solid

behaviour of granular material 
ru
ially depends on it through the 
on�ning pressure. As

a result, the loading paths of triaxial experiments start by applying a hydrostati
 stress

up to a 
ertain value of the 
on�ning pressure 
ontinued by a shear loading both a

om-

panied by elasto-plasti
 deformations. The appli
ation of the hydrostati
 stress leads to

a 
ertain densi�
ation of the grain pa
king. During shear loading, this pa
king is �rstly

furthermore densi�ed and then loosened at higher shear-stress levels. The densi�
ation

and dilatation pro
ess 
oming along with a stru
tural interlo
k of the parti
les �nally

de�nes the 
orresponding failure surfa
e, namely, when the peak shear stress is rea
hed.

After shear unloading and redu
ing the 
on�ning pressure to a smaller value, one ob-

serves the intergranular stru
ture un
hanged. If the shear stress is in
reased again, one

�rstly obtains a shear-stress value higher than that obtained during monotoni
 loading

at the smaller 
on�ning pressure. However, any ongoing displa
ement-
ontrolled loading

immediately redu
es the shear-stress level to that smaller value belonging to a monotoni


loading path at the smaller 
on�ning pressure. At the mi
rostru
ture of the sand grains,

this behaviour is due to the fa
t that the parti
les 
hange their stru
ture towards a looser

pa
king, while the loading pro
ess is 
ontinued and the parti
les partly lose their mutual

interlo
k. This state approximately belongs to a new but smaller failure surfa
e with a


orresponding peak shear stress.
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3.2.1 Test-sand properties

The granular material under study is a GEBA �ne sand with an e�e
tive density (grain

density) of ρSR = 2.65 g/cm3
. All experiments were performed under dry 
onditions with

an initial partial density (assembly density) of ρS0S = nS
0S ρ

SR = 1.55 g/cm3

orresponding

to a volume fra
tion of nS
0S = 0.585 and a

∗
void ratio of e = 0.709. The assembly density of

the sand 
an be adjusted between ρS0S = 1.37 g/cm3
in the loosest 
ase with a maximum

void ratio of e = 0.934 to ρS0S = 1.66 g/cm3
in the densest 
ase with a void ratio of

e = 0.596. Moreover, the

†
Density Index ID = 0.67 of the tested spe
imens 
orresponds

to dense sand with grain sizes ranging between 0.06mm and 0.3mm with a sieve retention

of d10 = 0.09mm and d60 = 0.11mm, 
f. the grain size distribution 
urve in Figure 3.8. A

uniformity 
oe�
ient of Cu = 1.22 
lassi�es the GEBA sand as well-graded with roundly

shaped parti
les.
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Figure 3.8: Grain size distribution (GSD) of the GEBA �ne sand (Germer and Braun [77℄).

The triaxial experiments have been 
arried out with a uniform 
ylindri
al shape of the

spe
imen of 10 
m both in height and diameter. Furthermore, the endplates were lubri-


ated by latex rubber sheets with thin layers of sili
one grease to ensure a homogeneous

strain �eld of the spe
imen during the deformation. The spe
imen is drained through a

porous stone (∅ 1 
m), whi
h is worked into the middle of the bottom plate. Therewith,

no pore pressure 
an be developed during the deformation pro
edure, 
f. Appendix A.

3.2.2 Chara
teristi
s of homogeneous test 
onditions

In this se
tion, the general behaviour of 
ompa
t sand determined via monotoni
 triaxial

tests as well as the aforementioned new observations made on non-monotoni
 stress-path-

dependent tests will be presented. Then, on the basis of these experiments, the modelling

approa
h for the yielding and failure behaviour of 
ompa
t sand with the old failure


on
ept using a �xed failure surfa
e and the new failure 
on
ept with a variable failure

surfa
e will be dis
ussed, whereas the 
onstitutive modelling is presented in Se
tion 4.2.2.

∗
e = (1− nS

0S)/n
S
0S

†ID = (emax − e)/(emax − emin)
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Drained monotoni
 loading 
ondition

Figure 3.9 shows a drained triaxial 
ompression test on a dry dense sand spe
imen with

a height-to-diameter rate of h/d= 1 under a 
onstant 
on�ning pressure (
ell pressure)

of σ3 = 0.2MPa. During the loading pro
ess, the volume deformation 
hanged from a

small 
ontra
tion to dominant dilatation behaviour. Over the whole monotoni
 loading

path, the material response showed a non-linear progression of the stress-strain behaviour,

whi
h was almost governed by plasti
 hardening. However, the 
ontinuous in
rease of
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Figure 3.9: Triaxial 
ompression test with a 
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on�ning pressure of σ3 = 0.2MPa.

loosening the grain stru
ture led to a smooth stress softening. This is a 
onsequen
e

of the volumetri
 dilatation and not of a lo
alisation of plasti
 strains towards shear

bands. Through 
omputer tomography (CT), Desrues et al. [41℄ illustrated that shear

band stru
tures inside the sample are only initiated when imperfe
tions either disturb

the axial symmetry or the homogeneity of the spe
imen, for example, by an e

entri


appli
ation of the external load or by poorly prepared samples. Small imperfe
tions, whi
h

are generally unpreventable, only have a marginal impa
t on the stress-strain behaviour

and may only be
ome dominant at very large strains of ε1 > 25%. Nevertheless, internal

shear bands are generally invisible at the surfa
e of the sample.

In 
ontrast to Desrues' 
hoi
e of samples with a height-to-diameter rate of h/d=1, Lade

[98℄ used slender spe
imens of h/d=2.66 for his triaxial experiments. On the basis of his

results, he postulated that the initiation of shear bands appears with diminishing the di-

latation rate, while, in 
ontrast, Desrues et al. [41℄ 
ould not dete
t any pronoun
ed shear-

banding e�e
t by CT s
ans of 
ompa
t spe
imens with h/d=1. Shear banding preferably

o

urs when slender spe
imens are tested, whi
h strongly tend to load imperfe
tions with

in
reasing deformations, therewith en
ouraging the development of lo
alisation zones of

plasti
 strains. In general, a shear band is 
hara
terised by a lo
al in
rease of voids.

Desrues et al. [41℄ 
ompared the 
hange of voids at a lo
al point within an evolving shear

band with the average value of the 
onsidered 
ross se
tion, whi
h represents the global
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behaviour. In 
ase of slender spe
imens or spe
imens with non-lubri
ated boundary 
on-

ditions, the void ratios between lo
al and global values showed sharp distin
tions, while


ompa
t spe
imens under ideal test 
onditions exhibited only marginal di�eren
es. The

di�eren
es between lo
al and global void ratios did not start before an axial strain ε1 of

more than approximately 20% was rea
hed. This value is 
learly lo
ated after the peak

stress. Therefore, the poor distin
t shear-band pattern inside of drained lubri
ated 
om-

pa
t spe
imens, whi
h may develop at a very high deformation state, has no signi�
ant

in�uen
e on the global material behaviour and 
annot be the reason of stress softening.

Drained non-monotoni
 loading 
ondition

The plasti
 hardening, softening and failure behaviour of sand strongly depends on the

stress level and is des
ribed by the sophisti
ated shape of the yield surfa
e explained in

detail in Se
tion 4.2.2. In the framework of 
ohesive-fri
tional materials, the 
hara
teristi



ontour of yield surfa
es was experimentally determined by Tatsuoka and Ishihara [155℄.

In parti
ular, they 
arried out 
omplex triaxial stress-path-depending 
ompression tests by

applying di�erent stress levels during reloading, while repeatedly 
hanging the 
on�ning

pressures after unloading. In Figure 3.10, su
h a stress path in the hydrostati
 plane is

illustrated, where the points P1-P12 denote the stress points at whi
h the loading path

is 
hanged. Therein, P0P1, P3P4, P6P7 and P9P10 are the hydrostati
 loading paths,

whereas P1P2, P4P5, P7P8 and P10P11 are the 
ompression loading paths. Furthermore,

P2P3, P5P6, P8P9 and P11P12 represent the unloading paths. Thereby, the stress level

during unloading is 
hosen well below the failure load in order to dete
t yield lo
i by

the onset of hardening during the reloading path. At the unloading path, the plasti


deformation is frozen and only elasti
 deformations are o

urring. Immediately after

rea
hing the elasti
 limit at the higher stress state, the plasti
 yielding pro
ess starts again.

The yield lo
us at the reloading path is dete
ted through the stress-strain (Poorooshasb
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hes from a linear to a non-linear behaviour. The yield lo
i of the restart
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of yielding and those of the lower stress level are marked in Figure 3.10 by the same shade

of grey level. A

ordingly, Lade and Kim [100℄ have assumed that su
h a pair of yield

lo
i with the same grey-level owns the same plasti
 work. Pro
eeding from an in�nite

number of the yield lo
i with the same plasti
 work, the 
ontour of one yield surfa
e is


hara
terised, 
f. [66, 100℄. In Figure 3.10, su
h 
ontours of yield surfa
es are illustrated

by dashed lines, respe
tively. Pro
eeding from the lowest yield surfa
e to the higher ones,

a hardening pro
ess takes pla
e, whi
h is governed by the plasti
 work. A

ordingly, on

the basis of these experiments, it was 
on
luded that the evolution of the yield surfa
e

ends at the failure surfa
e independent from the stress path (Ehlers and Müllers
hön [66℄).

It was assumed that the failure surfa
e (bla
k line) in Figure 3.10 is the approximation

of the bla
k points representing the peak shear stresses with respe
t to the 
on�ning

pressures. This assumption led to a �xed failure surfa
e with an un
hangeably large size

and to an almost linear relation with minimal 
urvature at lower stresses. To over
ome

this problem, Lade and Kim [100℄ have introdu
ed an additional failure surfa
e di�ering

from the shape of the yield fun
tion to improve the approximation of the failure states of

monotoni
ally loaded experiments. Within this approa
h, the failure state is de�ned by

the interse
tion point between the evolving yield surfa
e and the �xed failure surfa
e at

the 
urrent stress state.

To 
larify the assumption of a �xed failure surfa
e, three stress-path-depending triaxial

experiments have been performed, while the standard monotoni
 tests serve as referen
e

solutions to dete
t di�eren
es in the stress-strain progression. A sket
h of the stress-strain

progression of these stress-path tests is given in Figures 3.11 and 3.13 (left), while the


orresponding stress paths in the hydrostati
 stress plane are shown in Figures 3.12 and

3.13 (right). Based on these experiments, it 
ould be observed that the failure surfa
e is

not �xed. It is varying with the stress level. As a 
onsequen
e, a new failure 
on
ept with

a variable failure surfa
e has been developed.

Figure 3.11 illustrates the stress-strain pro
edure of the stress-path tests 1 and 2 and

also in
ludes the order of the applied loading and unloading steps indi
ated by the stress

points P1 �P5 and P1 �P7. By 
omparing the peak stress σH1
peak of the referen
e test with

the peak stress

⋆
σH1
peak of the presheared test in the points P4 and P6 in Figure 3.11 (a) and

(b), respe
tively, a distin
t in
rease of the peak shear stress 
ould be observed. Moreover,

during the load path P3P4 in Figure 3.11 (b), the stress-strain progression 
hanges from

a linear to a non-linear behaviour, although it was presheared at the lower stress level

until σH1
peak (P2). That means that the shear stress ex
eeds the elasti
 domain and the

hardening pro
ess is restarted. In 
ontrast, the old failure 
on
ept with the �xed failure

surfa
e 
an only predi
t a linear elasti
 approa
h after preshearing until the peak stress.

Pro
eeding from the observed stress-strain behaviour of the stress-path tests 1 and 2

(Figure 3.11), a new failure 
on
ept illustrated in Figure 3.12 by a sket
h of both tests in

the hydrostati
 stress plane has been developed. Therein, two failure surfa
es indi
ated

by f-s (n-
) are sket
hed, where n-
 denotes the new failure 
on
ept. The failure surfa
es

are depi
ted by a green and a red solid 
urve 
orresponding to triaxial 
ompression tests

under di�erent 
on�ning pressures σH1
3 and σH2

3 , respe
tively, and two di�erent values of

the maximally applied hydrostati
 stress expressed by Iσ. However, it should be noted that

the failure surfa
e is an imaginary limit of the evolving yield surfa
e basi
ally governed



40 3 Triaxial Experimental Investigations of Granular Materials

PSfrag repla
ements

−ε1

|σ1 − σ3|

σH1
peak

σH2
peak

⋆
σ
H1

peak

=

=

f-s (n-
)

f-s (o-
)

yield surfa
e

P1

P1/5

P2

P2/7

P3

P4

P5

P6

P7

yield point

e�e
ted elasti
 range

PSfrag repla
ements

−ε1

|σ1 − σ3|

σH1
peak

σH2
peak

⋆
σ
H1

peak

=

=

f-s (n-
)

f-s (o-
)

yield surfa
e

P1

P1/5

P2

P2/7

P3

P4

P5

P6

P7

yield point

e�e
ted elasti
 range

(a) stress-path test 1 (b) stress-path test 2

Figure 3.11: Sket
h of the observed stress-strain behaviour of stress-path test 1 (a) and 2 (b).
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Figure 3.12: Di�erent types of stress-path experiments and evolution of the failure surfa
es

f-s (n-
) of the new 
on
ept and f-s (o-
) of the old 
on
ept, respe
tively.

by the applied hydrostati
 pressure. On the other hand, the �xed failure surfa
e of the

old failure 
on
ept f-s (o-
) indi
ated by the dashed bla
k lines, whi
h illustrates the

failure surfa
e introdu
ed by Lade and Kim [100℄, has to approximate all possible peak

shear stresses independently from how the stress path is driven up to peak-stress values.

Obviously, this triggers a larger size of the failure surfa
e 
ompared with the new failure


on
ept.

Furthermore, the stress-path test in Figure 3.13 exhibits the e�e
t of a previous hydro-

stati
 
onsolidation up to the limit of our triaxial devi
e and applied to the spe
imen

before shear-stress loading. In Figure 3.13 (right), the green 
urve represents the yield

surfa
e at the end of the pre
onsolidation pro
ess. However, the yield surfa
e has not

yet rea
hed the failure surfa
e in dire
tion to the deviatori
 stress loading. Therefore,

the stress-strain behaviour is only marginally in�uen
ed by the pre
onsolidation. Only a

short part at the beginning of the shear stress behaves linearly elasti
, whereas the failure

behaviour is not a�e
ted 
ompared to the referen
e 
ompression test without pre
onsoli-

dation.

The modelling of the 
ontinuously 
hanging failure behaviour is realised by a variable

failure surfa
e depending on the hydrostati
 pressure state as illustrated in Figure 3.12.

In 
ontrast, Lade and Prabu
ki [101℄ modelled this e�e
t, whi
h is known as the so-
alled
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Figure 3.13: Stress-path test 3: (left) the observed stress-strain behaviour and (right) the

yielding behaviour.

preshearing of sand, by interpreting the yield surfa
e f-s (n-
) (red solid 
urve) as the

a
tual failure surfa
e up to the interse
tion point with the �xed failure surfa
e f-s (o-
)

(dashed bla
k line) followed by the failure surfa
e f-s (o-
). As a result, one obtains a

dis
ontinuous shape of the failure surfa
e, whi
h 
an be avoided by introdu
ing the stress-

dependent failure 
on
ept presented in Se
tion 4.2.2. Experimental results and numeri
al

simulations using the old 
on
ept with a �xed failure surfa
e and, on the other hand, the

new 
on
ept with a variable failure surfa
e are given in Se
tion 6.1.2. Additionally, in

that 
hapter, di�eren
es of both 
on
epts are more pre
isely dis
ussed. It will be shown

that these experimentally observed properties of granular materials are 
ru
ial for 
orre
t

mat
hing their failure behaviour.





Chapter 4:

Constitutive Modelling

Pro
eeding from a multiphasi
 porous material with isothermal 
onditions (θα ≡ θ ≡

onst.), the primary kinemati
 �eld variables of the individual 
onstituents are the known

physi
al quantities of the balan
e laws of mass, momentum and entropy. The energy

balan
e is not required be
ause of the assumption of a 
onstant temperature. However,

the resulting system of balan
e equations is indeterminate. To 
omplete the system of

equations, the unknown quantities of the balan
e equations have to be identi�ed and,

subsequently, for these quantities, 
onstitutive equations have to be formulated on the

basis of experimental observations of the 
onsidered material. This pro
edure is also

known as the so-
alled 
losure problem of 
ontinuum me
hani
s, 
f., e. g. [52, 85, 162,

163℄ . Moreover, for a thermodynami
ally 
onsistent derivation of 
onstitutive equations,

the prin
iples of Rational Thermodynami
s (Truesdell [160℄) have to be satis�ed, whi
h

prevent non-physi
al assumptions for the 
onstitutive modelling of the material behaviour.

In the 
urrent 
hapter, the pro
edure of the 
onstitutive setting for the triphasi
 model

is presented, 
f. [53, 64℄. The experimental observed stress-strain behaviour of the solid

skeleton dis
ussed in Chapter 3 is in
orporated into the 
onstitutive modelling approa
hes.

4.1 Triphasi
 model for partially saturated sand

The fundamental 
onstituent of the partially saturated soil is the solid skeleton, whi
h is

assumed as a materially in
ompressible solid phase α = S, whereas the pore spa
es of the
solid stru
ture are �lled by the materially 
ompressible pore air α = A and the materially

in
ompressible pore water α = W . In Table 4.1, the triphasi
 model is summarised:

Triphasi
 Soil Model

overall aggregate: ϕ = ϕS ∪ ϕF
where ϕF = ϕW ∪ ϕA

saturation of ϕ : nS + nF = 1 , nF = 1− nS = nW + nA

�uid saturation of ϕF : sW =
nW

nF
, sA =

nA

nF

volume fra
tions: nW = sW (1− nS) , nA = (1− sW )(1− nS)

e�e
tive densities: ρSR = 
onst. , ρWR = 
onst. , ρAR 6= 
onst.

(4.1)

43



44 4 Constitutive Modelling

Balan
e of mass

Ex
luding the mass ex
hange between the 
onstituents, ρ̂α ≡ 0, the lo
al mass balan
e

in (2.42) is redu
ed to

(ρα)′α + ρα div
′
xα = 0 . (4.2)

Evaluating (4.2) for the materially in
ompressible solid phase ϕS
, the volume balan
e

results

(nS)′S + nS div
′
xS = 0 . (4.3)

An integration of (4.3) over time yields

nS = nS
0S (detFS)

−1 , (4.4)

where nS
0S 
hara
terises the solidity in the solid referen
e 
on�guration at time t0 and FS

is the solid deformation gradient.

Using the transformation of the material time derivative of the �uid volume fra
tion nβ

with regard to the solid motion

(nβ)′S = (nβ)′β − gradnβ ·wβ , (4.5)

the volume balan
e of the materially in
ompressible pore water ϕW
and the mass balan
e

of the materially 
ompressible pore air phase ϕA
are obtained as

0 = (nW )′S + nW
div (uS)

′
S + div (nWwW ) ,

0 = nA(ρAR)′S + ρAR(nA)′S + nAρAR
div (uS)

′
S + div (nAρAR wA) .

(4.6)

Balan
e of momentum

In this 
ontribution, the investigated IBVP are only restri
ted to quasi-stati
 problems.

Therewith, the a

eleration of the individual 
onstituents is negle
ted,

′′
xα ≡ 0, whereas

the bary
entri
 a

eleration ẍ in (2.46) is not impli
itly zero. Ex
luding therein the mass

produ
tion, ρ̂α ≡ 0, the bary
entri
 a

eleration ẍ leads to

ρ ẍ = −
k∑

α=1

div (ρα dα ⊗ dα) . (4.7)

The di�usion pro
esses within the partially saturated soil are very slow and, thus, the

gradient of the di�usion velo
ities is negligibly small, 
f. Ehlers [53℄ . Therefore, the

bary
entri
 a

eleration 
an be ignored: ẍ = 0 . As 
onsequen
e, the total Cau
hy-

stress tensor in (2.46) is only 
omposed by the sum of the individual stress 
omponents,

T =
∑k

α=1T
α = TS + TW + TA

. Hen
e, the overall momentum balan
e reads

0 = div (TS + TW + TA ) + ρg , (4.8)

wherein ρg is the 
onstant gravitation for
e, whi
h is a 
onstitutive assumption for bα =
b ≡ g, while ρ is the density of the overall aggregate built by the sum of the individual
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densities ρ = nSρSR+nWρWR+nAρAR
, 
f. (2.46). Moreover, based on (2.40)1 with (2.41)2

and ρ̂α ≡ 0, the sum over the dire
t momentum produ
tions p̂α
must vanish and, thus,

the solid momentum produ
tion p̂S

an be expressed by terms of the pore �uids:

k∑

α=1

p̂α = p̂S + p̂W + p̂A = 0 → p̂S = − ( p̂W + p̂A) . (4.9)

Thermodynami
al restri
tions

Evaluating (2.49) for the partially saturated soil model with ρ̂α ≡ 0, the following ex-

pression of the entropy inequality 
an be found:

0 ≤ (TS + nSP I )︸ ︷︷ ︸
TS

E

·DS + (TW + nWP I )︸ ︷︷ ︸
TW

E

·DW + (TA + nAP I )︸ ︷︷ ︸
TA

E

·DA−

− [ ρS(ψS)′S + ρW (ψW )′W + ρA(ψA)′A ] + P nA

ρAR
(ρAR)′A−

− ( p̂W −P gradnW )︸ ︷︷ ︸
p̂
W
E

·wW − ( p̂A − P gradnA )︸ ︷︷ ︸
p̂
A
E

·wA .

(4.10)

Therein, the 
onstraint of the lo
al 
omposition of the multiphasi
 material is in
luded.

This 
onstraint is derived by the material time derivative of the saturation 
ondition of

the overall aggregate ϕ (4.1), whi
h implies that the sum of the temporal 
hange of volume

fra
tions has to vanish:

0 = (nS + nW + nA)′S = (nS)′S + (nW )′S + (nA)′S

= P [nS
div

′
xS + nW

div

′
xW + nA

div

′
xA +

+ gradnW ·wW + gradnA ·wA +
nA

ρAR
(ρAR)′A ] ,

(4.11)

wherein the relation in (4.5) is applied, and P is the Lagrangean multiplier, whi
h has

to be identi�ed yet. Pro
eeding from the symmetri
 deformation tensor Dα (2.25), the

relations div

′
xα = Dα ·I are used in (4.11) and (4.10), respe
tively. Furthermore, in (4.10),

the power resulting from the momentum produ
tion of the solid phase p̂S
is substituted

using (4.9) and (2.13)2:

p̂
S · ′

xS + p̂
W · ′

xW + p̂
A · ′

xA = p̂
W ·wW + p̂

A ·wA . (4.12)

Based on the prin
iple of e�e
tive stress 
on
ept (Bishop [9℄ and Skempton [146℄), the

expressions in the parentheses in (4.10) are summarised to the e�e
tive or extra quantities

(·)αE for whi
h 
onstitutive equations have to be found, 
f. de Boer and Ehlers [16℄.
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Constitutive variables and 
onditions

From the 
ontinuum-me
hani
al point of view, the initial values of the individual quan-

tities (motion, densities, volume fra
tions, temperatures) and the total state-�eld quan-

tities (motion and temperature) of a general IBVP are assumed to be given. However,

the temperature �eld is ex
luded in this 
ontribution be
ause of treating only isothermal

pro
esses, whereas temperature-dependent deformable partially saturated soil problems

have been treated, e. g., by Graf [78℄ . For the general pro
edure, 
f. Ehlers [47℄ , all quan-

tities, whi
h are not dire
tly determinable by the given total motion �eld x = χα(Xα, t)
and the balan
e relations, are summarised into the response fun
tional R, viz.

R = {ψα , Tα
E , p̂

β
E } . (4.13)

Hen
e, R = R(V) in
ludes material-dependent quantities and is governed by the inde-

pendent set of pro
ess or 
onstitutive variables V = V(x, t), whi
h are de�ned by the

a
tual position x at time t and are known by the motion fun
tions χα. In order to enable

the ful�lment of the entropy inequality in (4.10), the 
onstitutive fun
tions in R 
an be

derived from the material time derivatives of the Helmholtz free energies ψα
. Thereby, in

order to avoid an arbitrariness of the 
onstitutive modelling, they have to ful�l the fun-

damental thermodynami
al prin
iples of equipresen
e, determinism, lo
al a
tion, frame

indi�eren
e and dissipation (Truesdell [160℄, Noll [120℄, Coleman and Noll [30℄). First

of all, following the prin
iple of equipresen
e, the response fun
tions R of multiphasi


materials are postulated to depend by the basi
 set of pro
ess variables V,

V = {nα, gradnα, ραR, grad ραR, FS, gradFS,
′
xβ, grad

′
xβ, Xα } , (4.14)

whi
h results from the thermodynami
al pro
ess. Multiphasi
 materials depending on the

given set of parameters in (4.14), whi
h in
ludes the basi
 form of the pro
ess variables as

well as their gradients (Ehlers [47℄), are 
alled se
ond-grade materials . Following the state-

ment of Bowen [20, 21℄, the se
ond-grade 
hara
ter of these materials is only in�uen
ed

by the produ
tion terms 
on
erning the 
oupling e�e
ts of physi
al pro
esses between

the 
onstituents ϕα
. In 
ontrast, �rst-grade materials or simple materials (Truesdell and

Noll [162℄) depend only on the lo
al material point P α
and its immediate neighbourhood

(prin
iple of lo
al a
tion). Therefore, the gradients of the pro
ess variables are removed

from (4.15). For partially saturated soil, the set of pro
ess variables yields

V1 = { sW , ρAR, FS, wβ, Dβ } , where V1 ⊂ V
(4.15)

is the subset of the pro
ess variables in (4.14). In (4.15), a homogeneous distribution of

the material quantities at the referen
e 
on�guration is assumed, su
h that Xα has been

dropped. Based on the prin
iple of frame indi�eren
e (Ehlers [54℄), the �uid motions

′
xβ


an be substituted by the seepage velo
ities wβ (2.13)2 due to wβ is frame indi�erent to

an arbitrary 
hange of the observer position. Furthermore, only the symmetri
 part of the

deformation gradient Lβ = grad

′
xβ is frame indi�erent and, therefore, Lβ is substituted by

the symmetri
 deformation velo
ity tensor Dβ , whi
h governs the extra stress T
β
E (fri
tion

stress) des
ribing vis
ous properties of �uids. Moreover, in (4.15), both �uid volume
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fra
tions, nW
and nA

, are substituted by the water saturation sW with the expression

in (4.1)3, while nS
is determined by (4.4) and nF

by the saturation 
ondition (4.1)2 .

Therefore, nα
is no more an independent variable and 
an be removed from the general

set of V .

Applying the prin
iple of phase separation (Ehlers [46℄), the set of V1

an be separated

in parts 
orresponding to the individual 
onstituent. Thereby, it is assumed that ea
h


onstituent ϕα
depends only on its own set of pro
ess variables and, additionally, a further

meaningful redu
tion of the pro
ess variables is allowed regarding the 
onsidered material

properties. Hen
e, the 
orresponding dependen
ies of the Helmholtz free energies result

in

ψS = ψS(FS) , ψW = ψW (sW ) , ψA = ψA(ρAR) . (4.16)

The dependen
y of ψS

an be also expressed by CS or BS as well as ES or AS, whi
h

results by the evaluation of the prin
iple of frame indi�eren
e . This statement is based

on the property that ea
h deformation tensor owns the same prin
iple invariants, whi
h

are indi�erent to the transformation with the so-
alled proper orthogonal rotation tensor

QS
∗
.

For the modelling of �nite elasto-plasti
 material behaviour (Lee [103℄, Haupt [83℄, Ehlers

[48℄), the deformation gradient FS 
an be multipli
atively de
omposed in an elasti
 part

FSe and a plasti
 part FSp:

FS = FSeFSp . (4.17)

Thereby, a stress-free intermediate 
on�guration is introdu
ed. This 
on�guration is ge-

ometri
ally in
ompatible 
on
erning to the pure unloading step of the external for
es.

Be
ause within the body B, additional elasti
 stresses remain after unloading, whi
h are

released by virtually 
utting of B into �nite stress-free pie
es. The reversal of the residual

stresses is 
onne
ted by additional elasti
 deformations, whi
h leads to the geometri
ally

in
ompatible plasti
 intermediate 
on�guration. In 
ase of a homogeneous deformation

state, the intermediate 
on�guration is geometri
ally 
ompatible with respe
t to the un-

loading step. Thus, no elasti
 stresses remain after the unloading step be
ause the reversed

elasti
 strains are 
ompletely related to the elasti
 stresses (Kleiber [93℄, Haupt [83℄ and

Ehlers [46℄).

Inserting the multipli
ative split of FS (4.17) in (2.21), the Green-Lagrangean deformation

tensor ES 
an be additively de
omposed into an elasti
 and a plasti
 part, viz.

ES = ESe + ESp where





ESe = FT
Sp Γ̂Se FSp =

1
2
(CS −CSp) ,

ESp = 1
2
(CSp − I) ,

Γ̂Se = 1
2
(ĈSe − I) .

(4.18)

Therein, Γ̂Se is the elasti
 strain measures at the intermediate 
on�guration and is ex-

pressed by the elasti
 intermediate right Cau
hy-Green deformation tensor ĈSe. The

tops
ript (̂·) 
hara
terises the quantities of the intermediate 
on�guration. Applying this

to Γ̂Se a 
ontravariant pull-ba
k transport me
hanism, FT
Sp (·)FSp, the elasti
 Green-

Lagrangean deformation tensor ESe in terms of the referen
e 
on�guration is obtained,

∗QS is properly orthogonal, su
h that QSQ
T
S = I and detQS = 1, (Ehlers [48℄ and Haupt [85℄).
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f. Ehlers [48, 54℄ and Markert [114℄. Following a geometri
ally linear approa
h of the

deformations, the referen
e and a
tual 
on�gurations 
oin
ide with ea
h other and, thus,

the intermediate 
on�guration is vanishing. Hen
e, the linearisation of ES leads to the

total solid strain tensor εS (2.23), wherein εSe and εSp are the elasti
 and plasti
 strain

parts of solid deformations, respe
tively:

linES := εS = εSe + εSp . (4.19)

In 
ontrast to the elasti
 strain tensor εSe, the internal history-dependent quantities su
h

as the plasti
 strains εSp are determined by the internal dissipation pro
ess and 
annot be

set from the exterior. They are evaluated by evolution equations. This group of internal

variables 
an also 
onsist of several internal s
alar-valued hardening parameters αi, whi
h


ontrol the expansion and the shrinkage of the elasti
 stress limit. The 
onjugated stress

quantities to the elasti
 strains εSe and internal variables αi are derived by the solid

Helmholtz free-energy fun
tion ψS
, whi
h is governed by εSe, εSp and αi. The Helmholtz

free-energy fun
tion ψS

an be additively de
omposed in an elasti
 and a plasti
 part,

ψSe
and ψSp

, respe
tively:

ψS(εSe, εSp, αi) = ψSe(εSe) + ψSp(εSp, αi) . (4.20)

Based on the ideal elasto-plasti
 material behaviour, the me
hani
al free energy ψS
is only

des
ribed by the elasti
 part ψSe
, whi
h 
an be assumed to be governed by the elasti


strains εSe, Ehlers [47, 54℄. For isotropi
 hardening materials, ψSp
is only a fun
tion of

the internal parameters αi, while εSp is required for the kinemati
 hardening in order to


ompute the ba
k-stress tensor, 
f. Lubliner [108℄, Ehlers [48℄, Wriggers [180℄ and Simo

and Hughes [144℄. However, ψSp
is only a
tive if the hardening pro
ess has been taken

pla
e (αi 6= 0). For the 
ase of ψSp(αi = 0) = 0, only ideal elasto-plasti
ity is 
onsidered.

Carrying out the material time derivatives of the Helmholtz free-energy fun
tions ψα
,

ρS0S(ψ
S)′S = ρS0S

∂ψSe

∂εSe

· (εSe)′S + ρS0S
∂ψSp

∂αi

(αi)
′
S ,

ρW (ψW )′W = ρW
∂ψW

∂sW
(sW )′W = ρWF

∂ψW

∂sW
[(sWnF )′W − sW (nF )′W ]

= ρWF
∂ψW

∂sW
[(nW )′W + sW (nS)′W ]

= −ρWF
∂ψW

∂sW
(nW I · LW + sWnSI · LS − sWgradnS ·wW ) ,

ρA(ψA)′A = ρA
∂ψA

∂ρAR
(ρAR)′A ,

(4.21)

and inserting the results in (4.10) in
luding the de
omposition of the rate of the total
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strains (εS)
′
S = (εSe)

′
S + (εSp)

′
S, the entropy inequality yields

0 ≤ (σS
E + ρWF

∂ψW

∂sW
sWnSI

︸ ︷︷ ︸
σS

Em

− ρS0S
∂ψSe

∂εSe
) · (εSe)′S +

+ σS
E · (εSp)′S − ρS0S

∂ψSp

∂αi
(αi)

′
S +

+ (TW
E + ρWF

∂ψW

∂sW
nW I

︸ ︷︷ ︸
TW

Em

) ·DW + TA
E ·DA +

+ (P nA

ρAR
− ρA

∂ψA

∂ρAR
) (ρAR)′A − p̂A

E ·wA −

− ( p̂W
E + ρWF

∂ψW

∂sW
sWgradnS )

︸ ︷︷ ︸
p̂W
Em

·wW .

(4.22)

Therein, σS
Em is the geometri
al linear e�e
tive solid elasti
 stress tensor, 
f. (2.30), while

the �uid extra stresses TA
E and TW

Em are the dissipative fri
tion for
es of the vis
ous pore

�uids. By evaluating the entropy inequality in (4.22) at the thermodynami
al equilibrium

state, the internal dissipation is zero and, therewith, the internal variables, (εSp)
′
S = 0,

(αi)
′
S = 0 and also wβ = 0 . Thus, the terms within the parentheses in (4.22) have to

vanish for arbitrary values of the free variables (εSe)
′
S and (ρAR)′A , whereas the sum-

marised terms in the parentheses indi
ated with (·)αEm denote the pure me
hani
al extra

quantities whi
h 
onsist of the saturation quantities resulting from the Helmholtz free

energy ψW
(4.21)2 and the extra quantities (·)αE . Pro
eeding from this argumentation at

the thermodynami
al equilibrium, the following dependen
ies result:

σS
Em = ρS0S

∂ψSe

∂εSe

=
∂ΨSe

∂εSe

, P = pAR = ( ρAR )2
∂ψA

∂ρAR
,

pC := pAR − pWR = −sW ρWR ∂ψ
W

∂sW
.

(4.23)

Therein, ΨSe
is the mass-spe
i�
 elasti
 free energy and the 
apillary pressure pC is de�ned

as the di�eren
e between the e�e
tive pressure pAR
of the non-wetting pore air and the

e�e
tive pressure pWR
of the wetting pore water, 
f. Brooks and Corey [25℄, Ehlers [53℄ and

Graf [78℄, and the Lagrangean multiplier P is identi�ed as the e�e
tive pore air pressure

P = pAR
. Moreover, the thermodynami
al internal stresses ti = ti(αi) 
an be introdu
ed

via

ti = −ρS0S
∂ψSp

∂αi
, (4.24)

whi
h is related to the internal hardening variables αi (strain-like quantities), 
f. Lubliner

[108℄, Wriggers [180℄ and Simo and Hughes [144℄. Thereby, the thermodynami
al stresses
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ti or the internal hardening variables αi, respe
tively, are responsible for the evolution of

the plasti
 material parameters des
ribing the yield surfa
e and, therefore, for the in
rease

or de
rease of the elasti
 stress limit of the 
onsidered material during the plasti
 yielding

pro
edure.

Under 
onsideration of the relations in (4.23), the total quantities in the parentheses in

(4.22) yield to following expressions after 
arrying out some transformations, see Appendix

B:

Total and E�e
tive Quantities of the Triphasi
 Soil Model

σS = −nS pFR I + σS
Em ,

TA = −nA pAR I + TA
E ≈ −nA pA I with TA

E ≈ 0 ,

TW = −nW pWR I + TW
Em ≈ −nW pW I with TW

Em ≈ 0 ,

p̂
A = pAR gradnA + p̂

A
E ,

p̂W = pAR gradnW + pCsWgradnS + p̂W
Em ,

= pWR gradnW + pC(sAgradnW − sWgradnA) + p̂W
Em .

(4.25)

In (4.25), the �uid pressure 
omponents in σS
are summarised to the e�e
tive �uid pres-

sure pFR
using the well-known Dalton's law, whi
h is 
omposed by the saturations sβ of

the individual pore �uids with their 
orresponding �uid pressures pβR, viz.

pFR = sW pWR + sA pAR = sW pWR + (1− sW ) pAR .
(4.26)

By a dimensional analysis of the physi
al quantities of the soil model, Ehlers et al. [63℄

has shown that in the frame of geote
hni
al appli
ations the fri
tion for
e of the vis
ous

pore �uids TA
E and TW

Em 
an be negle
ted 
ompared to p̂
β
E and pβ .

At the thermodynami
al equilibrium, where the pro
esses are reversible, the thermo-

dynami
 relations of variable pairs 
an be found. These 
onjugated variable pairs are{
σS

Em, εSe
}
,

{
pAR, ρAR

}
and

{
pC , sW

}
. Their relations to ea
h other are derived by the


orresponding Helmholtz free energies ψα
. However, the non-equilibrium part of the dis-

sipative pro
esses in (4.22) remains. These pro
esses are the plasti
 yielding behaviour

resulting from the dissipation of the me
hani
al work DS int

and the dissipation energies

DF int

follow from fri
tion for
es of the per
olating pore �uids:

D
int

= σS
Em · (εSp)′S + ti (αi)

′
S︸ ︷︷ ︸

DS int

≥ 0

+ p̂W
Em ·wW + p̂A

E ·wA︸ ︷︷ ︸
DF int

≥ 0

≥ 0 .
(4.27)

The internal dissipation resulting from plasti
 yieldingDS int

takes only pla
e if the 
urrent

e�e
tive solid stress σS
Em is lo
ated at the boundary ∂G of the elasti
 domain G, whi
h is

de�ned by the yield fun
tion F = F (σS
Em, αi) depending on the e�e
tive me
hani
al solid

stress tensor σS
Em and the internal hardening variables αi .
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Moreover, the per
olation of the pore �uids is always asso
iated with a dissipative pro
ess

DF int

> 0 . Only in 
ase of stagnant water, wβ = 0, the �uid is lo
ated in a state of ther-

modynami
 equilibrium. For the 
onstitutive approa
h, p̂
β
E should proportionally depend

on the seepage velo
ities, p̂W
Em ∝ wW and p̂A

E ∝ wA, su
h that a quadrati
 term of wβ

in DF int

governed by positive material parameters 
an be 
reated. Based on this general

pro
edure for developing thermodynami
al 
onsistent 
onstitutive equations, the dissipa-

tive restri
tion of the entropy inequality is still satis�ed. This pro
edure 
orresponds to

the approa
h used for developing the well-known Fourier's law for heat in�ux of bodies.

4.2 Constitutive setting of the solid skeleton

In this se
tion, based on the results of drained triaxial experiments on dry dense sand (see

Se
tions 3.2 and 6.1), the 
onstitutive modelling approa
h for the elasto-plasti
 behaviour

of the solid skeleton is presented.

4.2.1 Elasti
 behaviour

For modelling the non-linear elasti
 behaviour of sand, various formulations 
an be found

in the literature. Thereby, the modelling approa
h of elasti
ity is generally 
lassi�ed in

three basi
 theoreti
al 
ategories, namely, in elasti
ity, hyperelasti
ity and hypoelasti
ity,


f. Truesdell and Noll [162℄, Ciarlet [29℄ and Müllers
hön [118℄. In this 
ontribution, the

elasti
 behaviour is modelled by a hyperelasti
ity formulation using an elasti
 potential.

Following this approa
h of a 
onservative relation between stresses and strains, only the

elasti
 response o

urs during 
y
le loading without any dissipation of energy, whi
h is

not generally true for the other two elasti
ity 
ategories, 
f. Müllers
hön [118℄.

In the framework of linear elasto-plasti
ity, the lo
al e�e
tive solid stress σS
Em is obtained

from an elasti
 potential given as a fun
tion of the lo
al elasti
 strain εSe . However,

although the material des
ription is based on a geometri
ally linear theory, the elasti


material behaviour of sand is highly non-linear during shear and hydrostati
 loading


y
les (Ehlers and Müllers
hön [66℄). Con
erning the shear sti�ness, the elasti
 non-

linear behaviour o

urs within a very small shear strain range εDSe < 1 · 10−6
(Benz [7℄)

and in�uen
es the 
ommon sand behaviour marginally 
ompared to the highly elasti
 non-

linear behaviour during hydrostati
 loading 
y
les, whi
h takes pla
e within an elasti


volume strain range of about εVSe ≈ 0.02 . By this reason, the small non-linearity of

the shear module 
an be assumed to a 
onstant average value, whi
h is a

eptable for

generally investigations of sand, whereas an a

urate modelling of the hydrostati
 non-

linear sti�ness evolution of sand is very important for 
orre
t performing the elasto-plasti


deformation behaviour.

Under 
onsideration of moderate 
on�ning pressures, the hydrostati
 non-linear behaviour

results from the assumption of rigid and un
rushable grains, where the 
losest pa
king

at nS
max de�nes the so-
alled point of 
ompa
tion, 
f. Ehlers [46℄ . However, to rea
h this

point, an in�nitely large energy is needed. With this in mind, Ehlers and S
holz [67℄ in-

trodu
ed a general elasti
 potential formulated as a volume-spe
i�
 Helmholtz free-energy
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fun
tion ΨSe
, whi
h has been modi�ed in order to obtain a better �t of the experimental

data observed during hydrostati
 loading and unloading loops, 
f. Ehlers and Av
i [56℄:

ΨSe = µS εDSe · εDSe +
+ 1

2
(kS0 − kS1 ) (ε

V
Se)

2 − kS1 (ε
V
Se crit)

2

[
ln

(
εVSe crit − εVSe
εVSe crit

)
+

εVSe
εVSe crit

]
.

(4.28)

Therein, εDSe = εSe − 1/3 εVSe · I is the elasti
 strain deviator and

εVSe crit = 1− nS
max

nS
p

(4.29)

is the 
riti
al value of the elasti
 volume strain belonging to the 
ompa
tion point given

by nS
max . Based on the assumption of in
ompressible single grains, the 
ompa
tion of the

solid skeleton is theoreti
ally limited to nS/nS
0S = 1/nS

0S = (detFS)
−1
. Sin
e the pore

spa
e between the grains 
annot be totally eliminated, the volume fra
tion nS
is restri
ted

to nS ≤ nS
max < 1 . Following this, nS

max de�nes the maximum solidity rea
hed during the

hydrostati
 loading, while nS
p is the plasti
 volume fra
tion formally lo
ated in the plasti


intermediate 
on�guration. The 
omputation of nS
p is derived by the multipli
ative split

of FS in (4.17) into elasti
 and plasti
 parts. Therewith, (4.4) 
an be reformulated to

yield

nS = nS
0S (detFS)

−1 = nS
0S (detFSe)

−1 (detFSp)
−1 . (4.30)

In the geometri
ally linear 
ase of porous media elasto-plasti
ity, the higher order terms


an be negle
ted, 
f. Ehlers and S
holz [67℄ . Thus, (4.30) redu
es to the small-strain

expression

nS = nS
0S (1− εVS ) = nS

p (1− εVSe) with nS
p = nS

0S (1− εVSp) . (4.31)

Therein, εVS = εS · I is the volumetri
 part of the linear solid strain εS, where εVSe =
εSe · I and εVSp = εSp · I are the 
orresponding volumetri
 elasti
 and plasti
 strains,

respe
tively. It is seen from (4.28) that the deviatori
 part of the elasti
 potential in
luding

the �rst Lamé 
onstant or the solid shear modulus µS
, respe
tively, follows the standard

formulation of linear elasti
ity, while the volumetri
 part is highly non-linear and pro
eeds

from two bulk material parameters, k0 and k1, where k0 denotes the initial volumetri


sti�ness, while k1 
hara
terises the non-linear sti�ness part.

Taking the derivative of (4.28) with respe
t to εSe yields the e�e
tive solid stress

σS
Em =

∂ΨSe

∂ εSe
= 2µS εDSe +

[
kS0 + kS1

(
εVSe crit

εVSe crit − εVSe
− 1

)]
εVSe I , (4.32)

where µS
, k0, k1 and nS

max have to be found from experimental data. A

ording to the

strain tensor, the e�e
tive stress tensor is also split into a deviatori
 stress tensor σSD
Em

and a hydrostati
 stress tensor σSH
Em, viz.

σS
Em = σSD

Em + σSH
Em = σSD

Em + σSH
Em I

with: σSH
Em = 1

3
σS

Em · I = 1
3
Iσ , σSD

Em = σS
Em − σSH

Em I .
(4.33)
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The se
ond derivative of ΨSe
leads to the fourth-order elasti
ity sti�ness tensor

4

CSe =:
CSe

:

C
Se =

∂2 ΨSe

∂ εSe ⊗ εSe
= 2µS

4

ID +

[
kS0 + kS1

(
(εVSe crit)

2

(εVSe crit − εVSe)
2
− 1

)]
I⊗ I , (4.34)

where

4

ID
is the fourth order deviatori
 proje
tion tensor

4

ID =
4

I − 1/3 I ⊗ I and

4

I =:

(I ⊗ I)
23

T

is the fourth order identity tensor, 
f. Ehlers [55℄. The elasti
 sti�ness tensor

CSe
is positive de�nite for εSe 6= 0 by satisfying the 
ondition CSe · (εSe ⊗ εSe) > 0 and

owns the symmetry property CSe = (CSe)T = (CSe)
12

T = (CSe)
34

T

based on the symmetries

of σS
Em = (σS

Em)
T
and εSe = (εSe)

T
, wherein the numbers over the transpose index (·)

12

T

denote the ex
hange of the basis ve
tor positions, e. g., of the �rst with se
ond basis

ve
tor.

4.2.2 Plasti
 behaviour

For the des
ription of the plasti
 or the vis
oplasti
 part of the material behaviour, re-

spe
tively, one �rstly has to de�ne a yield fun
tion F (σS
Em) enveloping the elasti
 domain

G . In order to 
apture the hydrostati
 plasti
 
ompressibility and the non-isotropi
 be-

haviour at deviatori
 loading, the single-surfa
e yield 
riterion de�ned by Ehlers [48, 49℄

is applied, 
f. Figure 4.1:

F (σS
Em) = Φ1/2 + β Iσ + ǫ I2σ − κ = 0 , where

Φ = IIDσ (1 + γ IIIDσ /(II
D
σ )

3/2)m + 1
2
α I2σ + δ2 I4σ .

(4.35)

This fun
tion depends on the �rst prin
ipal invariant Iσ as well as on the (negative) se
ond

and the third prin
ipal deviatori
 invariants IIDσ and IIIDσ of the e�e
tive solid stress σS
Em,


f. equation (3.2). As many authors do, 
ompare, for example, the paper by Ehlers [48℄,

the 
onstitutive parameters in
luded in (4.35) are summarised in a hydrostati
 and a

PSfrag repla
ements

1.0

1.0

1.0

2.0

2.0

3.0

−σS
Em1

−σS
Em2

−σS
Em3

−Iσ
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Em).



54 4 Constitutive Modelling

PSfrag repla
ements

−1/3 Iσ1/3 Iσ

R
=

√

2
II
D σ

σ
SH
Em

σ
S
D

E
m

σ
SD
Em




o

m

p

r

e

s

s

i

o

n


ompression

e

x

t

e

n

s

i

o

n

extension

densi�
ation
dilatation

brittle du
tile


onstant volume

simple shear

Rc

Rc

ReRe

R(Θ)|
Iσ=const.

∂F

∂σS
Em

(εSp)
′

S

(εD
Sp

)′
S

α

νp

σ

S
E
m

∆σ
S
Em

−σS
Em1

−σS
Em2

−σS
Em3

Θ

GG

F = 0

F = 0
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 stress plane and (right) the deviatori
 stress plane.

deviatori
 set given by

SH = {α, β , δ , ǫ , κ} and SD = {γ ,m} (4.36)

depending on whether they 
ontrol the shape of the yield surfa
e in the hydrostati
 (SH)

or in the deviatori
 plane (SD). Ehlers [48℄ has used the Reuss variables given in (3.1) for

the reformulation of yield fun
tion F . Therewith, (4.35) 
an be repla
ed by

R (Θ, Iσ ) = FD (Θ)FH ( Iσ ) , (4.37)

where

FD = [1 +
2√
27
γ sin(3Θ)]−m/2 ,

FH =
√
2 [(ǫ2 − δ2) I4σ + 2 β ǫ I3σ + (β2 − 1

2
α2 − 2 ǫ κ) I2σ − 2 β κ Iσ + κ2 ]1/2.

(4.38)

Therein, Rs( Iσ) = FH governs the simple shear radius of the yield fun
tion in the hy-

drostati
 plane spanned by (2IIDσ )
1/2

and Iσ, while FD yields the deviation of FH towards

the 
ompression and extension radii, Rc and Re . Following this, the Lode angle Θ at any

value of the �rst stress invariant Iσ is zero at simple shear and rea
hes its maximum value

at triaxial 
ompression at Θ = −30◦ yielding Rc = R(Θ = −30◦) and its minimum value

at triaxial extension at Θ = 150◦ yielding Re = R(Θ = 150◦), 
f. Se
tion 3.1.3 . As a


onsequen
e, a typi
al triangle shape with rounded 
orners of the yield surfa
e results, 
f.

Lade and Dun
an [99℄ . For a better understanding and 
lari�
ation of these 
oheren
es,

the yield surfa
e is graphi
ally illustrated in Figure 4.2 through two 
ross se
tions of the

yield surfa
e. The left pi
ture shows the 
ross se
tion of the yield surfa
e in the hydro-

stati
 stress plane, while the right one represents the shape in the deviatori
 stress plane.

Figure 4.2 (left) illustrates the stress path of an arbitrary 
ompression load, where σS
Em is

the 
urrent stress state at the yield surfa
e F , whereas ∆σS
Em denotes the dire
tion of its
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in
remental in
rease. Moreover, ∆σS
Em 
an be rewritten in term of the temporal 
hange:

∆σS
Em = (σS

Em)
′
S ∆t, where ∆t is the time in
rement. In order to assess the elasto-plasti


material response, the orientation of the stress 
hange (σS
Em)

′
S has to be evaluated. Based

on the geometri
al interpretation, the plasti
 yielding is determined by the angle α, whi
h
is de�ned between the yielding dire
tion ∂F/∂σS

Em (asso
iated plasti
ity), and the load

dire
tion (σS
Em)

′
S. Hen
e, the following loading/unloading 
ondition yields, viz.

α∢
∂F

∂σS
Em

· (σS
Em)

′
S





> 0 : plasti
 loading ⇒ Λ > 0 ,

= 0 : neutral loading ⇒ Λ = 0 ,

< 0 : unloading ⇒ Λ = 0 .

(4.39)

In 
ase of plasti
 loading, the 
onsisten
y 
ondition (F )′S = 0 is ful�lled by introdu
ing

the 
onsisten
y parameter or the plasti
 multiplier Λ . Under numeri
al 
onsideration of

the plasti
 yielding step within the frame of an elasti
-predi
tor and plasti
-
orre
tor step

(see following remark and also Chapter 5), Λ maps the trial elasti
 stress from outside of

the yield surfa
e ba
k onto the yield surfa
e su
h that (F )′S = 0 is ful�lled again. Thus,

Λ is only a
tive if plasti
 loading o

urs, whereas, for an elasti
 loading step (F < 0) or
neutral loading, Λ is zero, but never negative.

However, Λ is either 
omputed in the framework of rate-independent elasto-plasti
ity by

the Kuhn-Tu
ker 
onditions

F ≤ 0 , Λ ≥ 0 , ΛF = 0 , (4.40)

or by use of a vis
oplasti
 approa
h a

ording to the overstress 
on
ept of Perzyna [126℄:

Λ =
1

η

〈
F

σ0

〉
r or ηΛ−

〈
F

σ0

〉
r = 0 . (4.41)

Herein, η is the relaxation (vis
osity) parameter, r is the vis
oplasti
 exponent, σ0 is an

equivalent stress, and 〈·〉 are the Ma
auley bra
kets. Note that for very small values of

η, the vis
oplasti
 approa
h 
oin
ides with the plasti
 des
ription. Pro
eeding from a


omputational treatment, the vis
oplasti
ity approa
h is bene�
ial as it also regularises

the ill-posed plasti
ity problem during the lo
alisation of shear bands, 
f. Simo and Hughes

[144℄, Hartmann et al. [81℄ and Ehlers et al. [64℄ . Following this, the assumption of

vis
oplasti
 material behaviour will be 
ontinued in this thesis by 
hoosing η and r su
h

that the elasto-vis
oplasti
 model is 
lose to elasto-plasti
ity.

In 
ontrast to metal plasti
ity, fri
tional material is 
hara
terised by a dependen
y of

F (σS
Em) on Iσ . As a result, it does not follow the 
on
ept of asso
iated plasti
ity, where

the yield fun
tion F (σS
Em) 
oin
ides with the plasti
 potentialG(σS

Em) (Hill [88℄, Lemaitre

and Chabo
he [104℄ and Simo and Hughes [144℄). Pro
eeding from an asso
iate �ow rule

where F = G, the dilatation behaviour of porous materials is overestimated (Lade [97℄).

Instead, a separate plasti
 potential

G(σS
Em) =

√
ψ1 II

D
σ + 1

2
α I2σ + δ2 I4σ + ψ2 β Iσ + ǫ I2σ (4.42)
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has been formulated by Ehlers and Müllers
hön [66℄, see also Kim and Lade [92℄, whi
h

is de�ned as the dire
tional potential for the plasti
 strain rate:

(εSp)
′
S = Λ

∂G

∂σS
Em

. (4.43)

Therein, the additional parameters ψ1 and ψ2 are required to adjust the dilatation angle

νp to experimental data, whi
h is de�ned between the deviatori
 dire
tion with 
onstant

volume 
hanging and the yielding dire
tion, (εDSp)
′
S and (εSp)

′
S, respe
tively, 
f. Figure 4.2

(left). The in�uen
e of both parameters on νp has been numeri
ally studied by Mahnkopf

[113℄ . For the parameter values ψ1 = ψ2 = 1, the non-asso
iated plasti
 yielding is trans-

ferred to the asso
iated plasti
ity, while for ψ1 → ∞ the asso
iated ideal Mises plasti
ity

is approximated. Con
erning to experimental studies on sand, Yamada and Ishihara [181℄

and also Lade and Dun
an [99℄ dete
ted via true triaxial tests that the deviatori
 strain

in
rement in the prin
iple deviatori
 stress plane shows an almost 
oaxially �ow dire
tion

to the origin. Due to this fa
t, a 
ir
le shape in the deviatori
 prin
iple stress plane has

been 
hosen for the plasti
 potential G, while the third prin
iple stress invariant IIIDσ in

(4.42) is left out, see in Figure 4.2 (right). Therewith, the deviatori
 plasti
 strain (εDSp)
′
S

is always 
oaxially oriented in the deviatori
 stress plane, whi
h is a good approximation

for the observed behaviour of Yamada and Ishihara [181℄.

Remark: In the framework of a numeri
al treatment of the elasto-plasti
 problem (see

Se
tion 5.1.4), a predi
tor-
orre
tor s
heme is pursued based on an in
remental pro
edure.

The predi
tor step is an elasti
 trial stress, whi
h is lo
ated in 
ase of plasti
 yielding

outside the elasti
 domain. However, this is not allowed by the 
onsisten
y 
ondition.

Therefore, the trial stress has to be dire
tly proje
ted ba
k onto the yield surfa
e. The

ba
k proje
ted stress point is numeri
ally determined by an expli
it or an impli
it return

mapping algorithm (Simo and Taylor [145℄ and Simo and Hughes [144℄) by solving the

lo
al plasti
ity problem with a set of unknown internal variables. The unique solution

of the resulting lo
al system of non-linear equations is guaranteed only if one ba
k stress

point at the yield surfa
e exists. For this reason, the yield surfa
e and the plasti
 potential

must be 
onvex fun
tions. However, the lo
al iteration pro
edure is �nished, when the

Kuhn-Tu
ker 
ondition is satis�ed.

Modelling of hardening and softening behaviour

The yield fun
tion, whi
h is generally formulated by the invariants of the prin
iple e�e
-

tive stresses (4.35), span a 3-d yield surfa
e, 
f. Figure 4.1 . Following sophisti
ated yield


riteria, the invariants are 
oupled with the plasti
 material parameters S = SH ∪ SD .

Therewith, the shape of the yield surfa
e 
an be individually formed as is demanded by

the investigated material behaviour. In 
ase of ideal material plasti
ity without plasti


hardening, the yield surfa
e is 
onstant. However, in order to 
orre
tly model the ma
ro-

s
opi
ally homogeneous stress-strain relation of granular materials, the behaviour of the

evolving yield surfa
e must in
lude the densi�
ation (hardening) and the loosening (soft-

ening) of the solid skeleton. This is a

omplished by an isotropi
 evolution of the yield

surfa
e by the 
hange of the plasti
 material parameters. Thereby, the size of the yielding
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surfa
e F is 
hanged by the amount of ∆F

F (σS
Em, αi) = F (σS

Em) + ∆F (σS
Em, αi) ,

where ∆F =
∑

pj

apj(σ
S
Em)∆pj(αi)

(4.44)

is a fun
tion of the in
rement of the hardening material parameters ∆pj(αi) governed by

the internal hardening variables αi and of the stress fun
tions apj(σ
S
Em), whi
h represent

the 
oupling of the material parameters pj with the stress invariants (Iσ, II
D
σ , III

D
σ ). The

initial values of the hardening material parameters pj0 des
ribe the initial size of the

yield surfa
e expressed by F (σS
Em) in (4.44). The 
hanging size of the yield surfa
e

governed by ∆F is a

omplished by formulating isotropi
 evolution laws for the parameter

subset p ⊂ S of the yield surfa
e, where p is the ve
tor of the hardening parameters

pj = { β , δ , ǫ , γ } evaluated by the evolution of αi . Thus, the dependen
ies of the yield


riterion F (4.44) 
an be reformulated to

F (σS
Em, αi) := F [σS

Em, pj(αi)] . (4.45)

The a
tual individual parameters of pj are determined through the update pres
ription

pj(αi) = pj0 + ∆pj(αi) = pj0 +

∫

t

(pj)
′
S dt̃ , (4.46)

where (pj)
′
S is the temporal 
hange of the individual parameters governed by the rate

of the internal variables (αi)
′
S. The evolution of pj is 
omputed by applying parti
ular

hardening fun
tions hj(αi).

For the internal hardening variables αi, two 
onstitutive approa
hes are prevalent, viz.,

the plasti
 work fun
tion W p(εSp) (e. g., Dafalias and Popov [33℄, Lade and Kim [100℄,

Ehlers and Müllers
hön [66℄) or the equivalent plasti
 strains εvp(εSp) (e. g., Simo and

Taylor [145℄, Desai [40℄, Ehlers [48, 49℄ and Ehlers and S
holz [67℄), whereas Desai [40℄

argued that a strain hardening provides a more 
onsistent formulation than a plasti


work 
on
eption. Pro
eeding from the strain hardening, a volumetri
-deviatori
 split of

the plasti
 strain rate tensor (εSp)
′
S is 
arried out, whi
h is expressed by the 
orresponding

s
alar values of equivalent plasti
 strains:

(αvp)
′
S ≡ (εvp)

′
S = (εVvp)

′
S + (εDvp)

′
S = −(εVSp)

′
S + ‖(εDSp)′S ‖ , (4.47)

wherein (εVvp)
′
S is the equivalent volumetri
-plasti
 strain rate, whi
h is de�ned positive

for the plasti
-
ompression strains and negative for the plasti
-dilatation strains, while

the equivalent plasti
-deviatori
 strain rate (εDvp)
′
S is only restri
ted to positive values

(hardening) expressed by the amount of (εDSp)
′
S. The volumetri
-deviatori
 spilt of (εvp)

′
S

as shown in (4.47) is ne
essary in order to map the volumetri
 yielding behaviour of sand

des
ribed in Se
tion 3.2.2 on the basis of a triaxial drained 
ompression test. During

su
h tests, dense sand materials show a plasti
 volumetri
 densi�
ation behaviour at the

hydrostati
 loading as well as at the initial shear load until the plasti
 volume deformation

swit
hes to a dilatation behaviour. The ongoing in
rease of the homogeneous plasti
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expansion of the sand grain stru
ture leads to material softening. These important plasti


volume properties of sand are 
onsidered by the equivalent volumetri
-plasti
 strain rate

(εVvp)
′
S .

Based on this approa
h, the evolution of the hardening parameters, (pj)
′
S = hj(εvp),

des
ribed by a linear hardening fun
tion hj is separated into volumetri
 and deviatori


parts, (pVj )
′
S and (pDj )

′
S, whi
h are driven by the 
orresponding rates of equivalent plasti


strains, (εVvp)
′
S
and (εDvp)

′
S
, 
f. Ehlers and S
holz [67℄):

(pj)
′
S = (pVj )

′
S + (pDj )

′
S = psatj

[
CV

pj
(εVvp)

′
S + CD

pj
(εDvp)

′
S

]

with psatj =
⋆
pj − pj : hardening saturation .

(4.48)

Therein, CV
pj

and CD
pj

are the 
onstant volumetri
 and deviatori
 hardening modulus. The

hardening pro
ess is limited by the saturation 
onditions psatj , where

⋆
pj denote the limit

values and pj the 
urrent values of the individual hardening parameters. The yield surfa
e

resulting from

⋆
pj 
hara
terises the maximal rea
hable size of the 
urrent yield surfa
e given

by pj and is denoted as the failure surfa
e. A

ordingly, the evolution of the yield surfa
e

stops if the saturation limit is rea
hed by psatj = 0. However, immediately thereafter,

the softening pro
ess starts with a shrinking of the yield surfa
e by reverse evolutions

of the parameters pj . Evidently, the deviatori
 part of (pDj )
′
S
in (4.48) only governs the

plasti
 hardening, whereas, in 
ontrast, the volumetri
 part (pVj )
′
S

an take positive or

negative values a

ording to both hardening and softening pro
ess of the yield surfa
e

in dependen
y of the plasti
 
ompression, (εVvp)
′
S > 0 , and plasti
 dilatation, (εVvp)

′
S < 0,

development.

Remark: The hardening parameters pj of the yield surfa
e F have di�erent e�e
ts on

the shape of the yield surfa
e. For the evolution of the parameters, it 
an be important

to know if the size of the yield surfa
e raises with in
reasing or de
reasing values of pj .
This depends on the 
oupling with the stress invariants in F . A detailed explanation

of the meaning of the individual plasti
 parameters S of F (4.35) is given by Ehlers

[48, 49℄. For example, β 
oupled with the �rst prin
iple stress invariant Iσ as in
luded in

the Dru
ker-Prager yield-surfa
e formulation is mainly responsible for the in
lination of

yield surfa
e F in the hydrostati
 stress plane. Whereas, γ is responsible for the shape of

the yield surfa
e in the deviatori
 stress plane. By the evolution of γ, the yield surfa
e


hanges the shape from a 
ir
le to the triangle with rounded 
orners. By evolving β and

γ to a higher value, the elasti
 domain in
reases. In 
ontrast, ǫ and δ in
rease the size of

the yield surfa
e with de
reasing values due to the 
oupling with even exponents of Iσ .
Hen
e, both parameters des
ribe the 
ap of the yield surfa
e in dire
tion of the plasti


stress 
ompression, whereas for ǫ = δ = 0, the yield surfa
e is an open 
one.

Stress-dependent evolving failure surfa
e

The experimentally observed stress-path-dependent failure behaviour of sand dis
ussed

in Se
tion 3.2.2, has to be theoreti
ally des
ribed. This behaviour is 
hara
terised by an

in
rease of the material strength at an arbitrary 
on�ned stress level by a preshearing
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until the peak shear stress at a higher 
on�ned stress state. As a 
onsequen
e, the limit

of the yield surfa
e denoted as the failure surfa
e is not 
onstant. Its variation is governed

by the 
urrent 
on�ned stress state. Hen
e, the evolution of the 
urrent yield surfa
e is

always guided by the a
tual failure surfa
e. This model approa
h is introdu
ed as the new

failure 
on
ept, whereas, using a �xed failure surfa
e, it is 
alled the old failure 
on
ept,


f. Ehlers and Av
i [56℄.

For modelling the stress-path-dependent failure behaviour, the parameters

⋆
p des
ribing

the failure surfa
e have to be variables. However, a parameter 
omparison shows that

when just the parameter

⋆
ǫ
taken into a

ount, it is su�
ient to perform the stress-path-

dependent failure surfa
e. This follows by the fa
t that

⋆
ǫ
, whi
h is 
oupled with the square

of Iσ in F (4.35), in
reases the size of the failure surfa
e slower at lower stress values, as,

for example, the parameter

⋆

β 
onne
ted only with Iσ. A

ordingly, at higher stress values,

the failure surfa
e is in
reased faster by

⋆
ǫ
as it is required. Thus, the new 
on
ept with

the variable failure surfa
e governing with the �rst prin
iple e�e
tive stress invariant Iσ
is introdu
ed by, 
f. Ehlers and Av
i [56℄,

⋆
ǫ ( Iσ) =

⋆
ǫ0 (1+

⋆

Cǫ Iσ ) with

⋆
ǫ ≥ ⋆

ǫlim , (4.49)

while the standard failure surfa
e of the old 
on
ept is 
onstant. In (4.49),

⋆

Cǫ is a 
onstant

evolution parameter of the failure surfa
e, while

⋆
ǫ0 theoreti
ally de�nes the failure surfa
e

for the unloaded virgin material. The initial failure surfa
e is adjusted as small as possible

but large enough for the smallest 
on�ning pressure of a triaxial experiment. Due to the

limited strength of the material by the grain 
rushing at very high pressure state, the

failure surfa
e 
annot be in
reased limitless. In order to avoid unrealisti
ally large size of

the failure surfa
e, it is limited by

⋆
ǫlim . Note that for small value of ǫ or

⋆
ǫ
, the yield or

failure surfa
e is in
reasing due to the square of Iσ joint with ǫ in the yield surfa
e (4.35).

To re
apitulate, the yield surfa
e evolving with (4.48) des
ribes the plasti
 hardening

and softening behaviour of sand, whereas the variation of the failure surfa
e des
ribed by

(4.49) restri
ts the evolution of the yield surfa
e 
orresponding to the a
tual hydrostati


stress state.

The 
ontext of the new failure 
on
ept is s
hemati
ally illustrated in Figure 4.3 by the

evolution of the yield and failure surfa
es in the hydrostati
 stress plane. Therein, the

unloaded material starts with the initial yield surfa
e y-s (p0) sket
hed by the dark grey

surfa
e, whi
h is determined by evaluating the yield 
riterion (4.35) with the initial param-

eter set pj0 = {β0, δ0, ǫ0, γ0}, whereas the light grey failure surfa
e f-s (
⋆
p,

⋆
ǫ0) is represented

by the limit parameters

⋆
pj = {

⋆

β ,
⋆

δ ,
⋆
ǫ0 ,

⋆
γ} . The evolution of y-s (p) driven by (4.48) is lim-

ited by f-s (
⋆
p,

⋆
ǫ) determined by (4.49), whi
h is also bounded by f-s (

⋆
p,

⋆
ǫlim) . However, a

granular material, whi
h has been shear-preloaded with a high 
on�ning pressure until

the peak shear stress, 
an o

upy a large size of y-s (p) at the lower 
on�ning pressure as

f-s (
⋆
p,

⋆
ǫ) 
omputed with the 
urrent pressure state. Indeed, the intergranular stability of

the grain stru
ture at the peak shear stress with the lower 
on�ning pressure is unstable.

Hen
e, a further in
rease of the load leads to the stress softening with shrinking of y-s (p)

to f-s (
⋆
p,

⋆
ǫ) . This behaviour is dis
ussed in more detail in Se
tion 6.1.2, where the simu-
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Figure 4.3: Sket
h of the yield surfa
e (y-s) evolution driven by plasti
 strains and the devel-

opment of the stress-dependent failure surfa
e (f-s) 
ontrolled by Iσ.

lations and experiments of stress-path tests are 
ompared with ea
h other. Additionally,

the performan
e of the old 
on
ept with using a �xed failure surfa
e is presented in order

to illustrate the di�eren
e between both model approa
hes 
on
erning to the yielding and

failure behaviour.

4.3 Constitutive setting of the mobile pore �uids

Geome
hani
al problems are often triggered by an in
rease of the water 
ontent within the

soil, whi
h may lead to the soil failure triggered by buoyan
y for
es. On the other hand,

the partially saturated zone has a positive e�e
t to the soil stability. Thus, the 
apillary

pressure of the partially saturated zone indu
es attra
tive for
es between grains, whi
h

in
rease the resistan
e to soil deformations. For realisti
 simulation of geome
hani
al

problems, these hydrauli
 e�e
ts resulting from the mobile pore �uids are essential and

have to be a

urately represented by 
onstitutive models.

Based on the simple per
olation experiments on saturated sand with homogeneous mate-

rial distribution, Dar
y [34℄ has dete
ted a linear laminar �ow behaviour and has de�ned

a proportional 
orrelation between the pressure drop and the �uid dis
harge rate through

the soil. However, the mobile pore �uids within the partially saturated zone are triggered

by the su
tion potential of the soil matrix, 
f. Figure 4.4. The strength of the matrix

potential to su
k the water up over the saturated zone depends on the 
apillary pressure

de�ned by the pressure di�eren
e between the non-wetting (air) and the wetting (wa-

ter) �uids, 
f. Brooks and Corey [25℄, while the relative saturation distribution of the

pore water and the pore air within the partially saturated zone is triggered by geometri


quantities su
h as pore and grain size distributions, the shape of grains and the soil tex-

ture. The experimental determination of the hydrauli
 
ondu
tivity properties of soil is


omprehensively illustrated in Fredlund and Rahardjo [73℄ .

In Figure 4.4, the partially saturated soil idealised by the triphasi
 model is sket
hed.

Therein, the fully saturated domain, sW = 1 or sA = 1, is per
olated by one pore �uid,

while the other �uid is not existing or is trapped with its residual saturation sAres or s
W
res,

respe
tively. Hen
e, the saturation limit values yield sW = 1 − sAres or s
A = 1 − sWres . In


ontrast, within the partially saturated zone of the soil lying between the two saturated
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Figure 4.4: Illustration of di�erent zones of a partially saturated soil.

domains, 0 <
{
sW , sA

}
< 1, both pore �uids, pore water and pore air, are mobile.

However, the hydrauli
 behaviour of the soil is still 
hanging by the soil deformation

(Ehlers and Eipper [60℄), whi
h 
an also lead to irregularities of the pore-
hannel networks

(tortuosity) and 
auses preferable �ow dire
tions (anisotropi
 �ow behaviour), 
f. Markert

[114℄ . In this 
ontribution, the �uid motion is restri
ted only to isotropi
 �ow behaviour.

Dar
y �uid �ow

Pro
eeding from the momentum balan
e of the pore �uids with the restri
tion to 
reep-

ing �ow (

′′
xβ ≈ 0) and applying the 
onstitutive approa
h for the e�e
tive momentum

produ
tions p̂
β
E (Ehlers [53℄),

p̂
β
E = − (nβ)2 γβR(Kβ

r )
−1wβ, (4.50)

the seepage velo
ities wβ yield

nAR wA = − KA
r

γAR

[
grad pAR − ρAR g

]
,

nWR wW = − KW
r

γWR

[
grad pWR − ρWR g− pC

nW
(sAgradnW − sWgradnA)

]
,

(4.51)

where γβR is the so-
alled spe
i�
 weight of ϕβ
, g is the 
onstant gravitational for
e

and Kβ
r is the relative permeability tensor, whi
h is related to the Dar
y permeability

tensor Kβ
spe
i�ed at a fully saturated 
ondition (sβ = 1) through the so-
alled relative

permeability fa
tor κβr on the saturation of ϕβ
:

Kβ
r = κβr (s

β)Kβ(nS) . (4.52)

Related to the porous solid skeleton, Kβ
is rewritten using the spe
i�
 weights γβR and

the e�e
tive shear vis
osities µβR
to the intrinsi
 permeability KS

through

Kβ =
γβR

µβR
KS . (4.53)
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The solid deformation-dependen
y of the intrinsi
 permeability tensor is des
ribed by the

isotropi
 distributed intrinsi
 permeability 
oe�
ient KS
(Ehlers and Eipper [60℄):

KS(nS) = KS(nS) I = KS
0S

(
1− nS

1− nS
0S

)
π I . (4.54)

Therein, KS
0S = KS

0S I is the initial intrinsi
 isotropi
 permeability tensor at an unstressed

initial state expressed by the initial intrinsi
 permeability 
oe�
ient KS
0S, where, analo-

gously to (4.53), the Dar
y and the intrinsi
 permeability 
oe�
ients, kβ0S and KS
0S, are

related to kβ0S = γβR/µβRKS
0S . Furthermore, π ≥ 0 is a material parameter, whi
h governs

the exponential development of the permeability by variations of the solidity nS
indu
ed

by volume deformations of the solid skeleton, 
f. equation (4.31). An alternative approa
h

to des
ribe the hydrauli
 
ondu
tivity is the Kozeny-Carman equation

KS(nS) = KS
0S

(1− nS)3

(nS)2
, (4.55)

whi
h is frequently used in modelling the variation of the permeability during the internal

erosion pro
ess, where the soil porosity nF
in
reases. Moreover, the permeability of

soil is mu
h more pronoun
ed by erosion than by the me
hani
al deformation. Thus, the

exponent π in (4.54) is very useful for 
onsidering the strongly in
rease of the permeability

with in
reasing porosity nF = 1− nS
.

Following the argumentation of Fredlund and Rahardjo [73℄, the �uid �ow within the

unsaturated soil domain 
an be treated like the saturated domain, be
ause the air-�lled

non-
ondu
tive pore 
hannels are preventing the water �ow. As a result, the 
apillary-

pressure-driven term in wW (4.51) 
an be negle
ted, see also Graf [78℄ . Following this,

the Dar
y law of the pore water is redu
ed to

nWR wW = − KW
r

γWR
( grad pWR − ρWR g ) . (4.56)

Partially saturated zone

The pore-�uid mobility within the partially saturated zone is determined via deformation-

free water-retention tests on soil samples, 
f. Fredlund and Rahardjo [73℄ . A retention


urve is 
hara
terised by the e�e
tive pore-pressure di�eren
e de�ned as the 
apillary

pressure pC = pAR − pWR
and the water saturation sW (4.23)3, whi
h 
an be derived

from the free Helmholtz energy of the in
ompressible pore water ψW (sW ) (Graf [78℄).

Con
erning the des
ription of the retention 
urves of soil, Brooks and Corey [25℄, Mualem

[117℄ and van Genu
hten [75℄ have been introdu
ed 
onstitutive relations for the e�e
tive

water saturation sWeff in dependen
e of pC or vi
e versa (Graf [78℄). Thereby, sWeff de�nes

the part of the partially saturated zone of the soil, where both pore �uids are mobile,

and is bounded by the residual saturations of the pore �uids sβres . To take these residual

properties of soil into a

ount, the formulation of Finsterle (1993) is adopted for sWeff :

sWeff :=
sW − sWres

1− sWres − sAres
. (4.57)
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For the 
omputation of sWeff , the 
apillary-pressure-saturation relation of van Genu
hten

[75℄ is applied yielding

sWeff(p
C) = [ 1 + (αgen p

C)jgen ]−hgen , (4.58)

where pvG = {αgen, jgen, hgen, ǫgen, γgen, hgen} in (4.58) and (4.59) is the set of the van

Genu
hten's hydrauli
 material parameters. Hen
e, the water saturation sW follows from

inserting (4.58) in (4.57) and solving the resulting equation for sW . Thus, the relative

permeability fa
tor κβr in (4.52) depending on sWeff is determined by the formulation of the

van Genu
hten model ([75℄):

κWr = (sWeff)
ǫgen{1− [1− (sWeff)

1/hgen ]hgen }2 , κAr = (1− sWeff)
γgen [1− (sWeff)

1/hgen ]2hgen . (4.59)

Compressible �uid

For the materially 
ompressible pore air, the 
onstitutive approa
h of the ideal gas law

(Boyle-Mariotte's law) is applied, whi
h 
an be derived from the Helmholtz free energy

ψA
, viz.:

ψA(ρAR, θ) = R̄Aθ ln ρAR + g(θ) → pAR(ρAR, θ) = (ρAR)2
∂ψA

∂ρAR
= R̄Aθ ρAR . (4.60)

Therein, R̄A
denotes the spe
i�
 gas 
onstant of the pore air, and θ is the absolute Kelvin's

temperature, whi
h is 
onstant in the 
ase of isothermal problems. Reformulating (4.60),

ρAR

an be also given as

ρAR =
p0 + pAR

R̄Aθ
. (4.61)





Chapter 5:

Numeri
al Treatment

For the numeri
al investigation of IBVP in the �eld of solid me
hani
s, the �nite-element

method (FEM) is 
ommonly applied. The FEM is a numeri
al method embedded within a

�nite-di�eren
e s
heme in time for solving systems of partial di�erential equations (PDE).

However, non-linear soil me
hani
s leads to a system of di�erential-algebrai
 equations

(DAE) 
onsisting of the PDE of the global balan
e laws and a se
ondary system of alge-

brai
 
onstraints of the lo
al problem of plasti
ity, 
f. Ellsiepen [70℄. For the numeri
al

treatment of DAE systems of deformable porous materials, e�
ient numeri
al solution

strategies are required, whi
h have been dis
ussed in, e. g., Ehlers [51, 52, 59, 61, 62℄,

Wieners et al. [176℄ and S
hre�er and 
oworkers, e. g., [106, 138�140℄. Con
erning this,

in the �rst part of this 
hapter, the numeri
al implementation of the triphasi
 model

within the framework of the FE tool PANDAS (Porous Media Adaptive Nonlinear Finite

Element Solver based on Di�erential Algebrai
 Systems) is dis
ussed.

In the se
ond part of this 
hapter, the numeri
al optimisation pro
edure for solving non-

linear 
onstraint optimisation problems o

urring in the task of parameter identi�
ation

is illustrated, while the results of the parameter identi�
ation pro
ess are presented in

Chapter 6. To over
ome this non-linear optimisation problem, the Least-Squares minimi-

sation fun
tion of the error between the 
omputed and experimental data is formulated,

whi
h is also 
alled the obje
t fun
tion. To solve the 
onstraint minimisation problem,

gradient-based optimisation methods based on the Sequential Quadrati
 Programming

(SQP) algorithm are applied, 
f. Spellu

i [149℄, S
hittkowski [135℄ or Boggs and Tolle [17℄,

whereas the required gradients of the obje
t fun
tion are determined by semi-analyti
al


omputations of the sensitivities. The sensitivities are de�ned as the deviation of the


omputed physi
al quantities with respe
t to the variation of the optimised material pa-

rameters (Mahnken and Stein [112℄ or S
holz [137℄).

5.1 Finite-element method

The FEM has nearly unlimited possibilities to investigate 
omplex engineering problems.

Its appli
ation takes pla
e in di�erent �elds, e. g., in automotive, aerospa
e or 
ivil engi-

neering industries as well as in the s
ope of university resear
h. Due to the fa
t of fast

in
rease of 
omputer power within the last two de
ades, the 
omplexity of the treated

problems has been extremely in
reased. Hen
e, FEM has be
ome indispensable in the

�eld of engineering. However, the user of FE tools has to be always aware that these

methods only approximate the 
orre
t solution of 
omplex IBVP, while the 
orre
t so-

lution itself is usually unknown. The a

ura
y of the solution depends on many fa
tors

as the approximation of the geometry or the primary �eld variables of the investigated

IBVP as well as the 
onstitutive approa
h of the material behaviour based on the qual-

ity of the experimental investigations of the material. Nevertheless, the FE user has to

65
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ensure that the generated numeri
al results 
onverge in all probability to the real solu-

tion. For detailed information on the FEM and the numeri
al treatment of non-linear

problems of 
ontinuum solid me
hani
s, the interested reader is referred to the works

of Bathe [5℄, Braess [22℄, Hughes [89℄, S
hwarz [141℄, Wriggers [180℄ or Zienkiewi
z and

Taylor [184, 185℄.

5.1.1 Weak formulation

The lo
al balan
e equations in (4.6), (4.8)1 and (4.8)2, whi
h are also 
alled the strong

formulation of the me
hani
al balan
e laws, are 
ontinuously ful�lled at ea
h lo
al material

point of the 
ontinuum mixture body B. In 
ontrast, the approximation pro
edure of the

FEM is based on an energeti
 expression of the me
hani
al balan
e laws. Thus, they are

satis�ed in the global or integral sense over the spatial domain Ω. This transformation of

the strong lo
al form of the me
hani
al balan
e equations into a weak global representation

is realised by multiplying them with independent test (weighting) fun
tions δuS, δp
WR

and δpAR
of the primary variables

∗ uS, p
WR

and pAR
(u-p-p formulation). This so-
alled

Galerkin method is equivalent to the well-known variational prin
iple of minimum of

potential energy (Zienkiewi
z and Taylor [184℄). After applying the integration-by-parts

rule and the Gaussian integral theorem, the weak form of the balan
e equations 
an be

summarised into the internal and external parts of virtual work, δWint and δWext, where

the former part represents the virtual shape-
hanging work, while the latter part is the

virtual work resulting from the external loads on B indu
ed from the vi
inity (surfa
e

load) and from the distan
e (gravitation for
e). For arbitrary variations of the primary

variables, the resulting equations of virtual work have to vanish under 
onsideration of

the boundary 
onditions. This 
onforms to the equilibrium statement of the variational

prin
iple:

Gu(u, δu) = δWu,int − δWu,ext = 0 . (5.1)

Therein the primary variables are summarised in the ve
tor u = [uS, p
WR, pAR ]T and

Gu is the system of the governing balan
e equations in the variational weak formulation.

Note that applying the integration-by-part rule, the order of the di�erential equation of

the strong form is redu
ed at least by one order. Therefore, the weak representation poses

lower requirements for satisfying the global equilibrium of the balan
e laws as the strong

formulations ful�lling the lo
al equilibrium at ea
h material point P α
of B. Hen
e, the

weak form of the momentum balan
e of the overall aggregate (4.6) yields by weighting with

∗
In the framework of the numeri
al treatment of me
hani
al balan
e laws, the pore-air pressure pAR

is used as the primary variable instead of the 
ontinuum-me
hani
al kinemati
 variable of the e�e
tive

density ρAR
. In 
ontrast, the e�e
tive density ρWR

of the materially in
ompressible pore water ϕW
is


onstant and, therewith, the indeterminate pore-water pressure �eld pWR
is determined from the given

boundary 
ondition p̄WR
of the 
onsidered problem. Consequently, for the triphasi
 model, the primary

variables uS , p
WR

and pAR
(u-p-p formulation) are generally used, whereas Graf [78℄ has also swit
hed

the primary variable pWR
with the water saturation sW (u-s-p formulation).
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the test fun
tion δuS and applying the produ
t rule and the Gaussian integral theorem

GuS
(uS, p

βR, δuS) =

∫

Ω

(σS
Em − pFRnF I) · grad δuS dv

︸ ︷︷ ︸
δWuS ,int

−

−
∫

Ω

ρ g · δuS dv −
∫

Γt

t̄ · δuS da

︸ ︷︷ ︸
δWuS ,ext

= 0 ,

(5.2)

where t̄ := t̄
S
+ t̄

W
+ t̄

A
= (σS

Em−nFpFR I)n is the external total stress load ve
tor a
ting

on the Neumann boundary Γt of the overall medium, and n is the outward-oriented unit

normal ve
tor on the surfa
e. Therein, the �uid extra stresses Tβ
are negle
ted, 
f. (4.25).

In 
ase of applying a drained boundary 
ondition for the pore �uids (pβR = 0 → t̄
βR

= 0),

t̄ 
orresponds to the stress load of the solid phase t̄ := t̄
S
= σS

Emn. Analogously to the

overall momentum balan
e (5.2), the weak form of the volume balan
e of the materially

in
ompressible pore-water phase (4.8)1,

Gpw(uS, p
WR, δpWR) =

∫

Ω

[(nW )′S + nW
div (uS)

′
S ] δp

WR dv

︸ ︷︷ ︸
δWpw,int

−

−
∫

Ω

nW wW · grad δpWR dv

︸ ︷︷ ︸
δWpw,int

+

∫

Γv

v̄W δpWR da

︸ ︷︷ ︸
δWpw,ext

= 0 ,

(5.3)

and of the mass balan
e of the materially 
ompressible pore air phase (4.8)2,

Gpa(uS, p
AR, δpAR) =

∫

Ω

[nA(ρAR)′S + ρAR(nA)′S + nAρAR
div (uS)

′
S] δp

ARdv

︸ ︷︷ ︸
δWpa,int

−

−
∫

Ω

nAρAR wA · grad δpAR dv

︸ ︷︷ ︸
δWpa,int

+

∫

Γq

q̄AδpAR da

︸ ︷︷ ︸
δWpa,ext

= 0 ,

(5.4)

are derived by weighting them with the test fun
tions δpWR
and δpAR

and then applying

the produ
t rule and integral theorem. Therein, v̄W = nWwW ·n is the e�ux of the water

volume through the Neumann boundary Γv, while q̄
A = nA ρARwA·n is the e�ux of the air

mass through the Neumann boundary Γq. Pro
eeding from quasi-stati
 IBVP, the seepage

velo
ities wβ are determined by a 
onstitutive assumption, e. g., through the Dar
y laws
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(4.51)1 and (4.56) governed by the pore-�uid pressures pβR. The resulting expressions of

the me
hani
al quantities t̄, v̄W and q̄A are a
ting on the Neumann (natural) boundaries

Γt, Γv and Γq of Ω, while the primary variables are applied on the Diri
hlet (essential)

boundaries ΓuS
, Γpw and Γpa. Thus, the boundary Γ = ∂Ω of the domain Ω is divided

into a Neumann and a Diri
hlet boundary as follows:

Γ = ΓuS
∪ Γt ; Γ = Γpw ∪ Γv ; Γ = Γpa ∪ Γq , (5.5)

where Diri
hlet and Neumann boundaries 
annot exist at the same pla
e:

∅ = ΓuS
∩ Γt ; ∅ = Γpw ∩ Γv ; ∅ = Γpa ∩ Γq . (5.6)

In 
onsideration of these boundary 
onditions de�ned for ea
h PDE, the unknown primary

�eld variables uS, p
WR

and pAR
governing the PDE are approximated by test fun
tions.

To ensure the solution of the PDE, the trial fun
tions must obtain the property of a

square-integrability 
ondition on Ω. This requirement is satis�ed if the trial fun
tions are


hosen from the standard Sobolev spa
e H1(Ω),

SuS
(t) = {uS ∈ H1(Ω)D : uS(x) = ūS(x, t) on ΓuS

} ,

Spw(t) = { pWR ∈ H1(Ω) : pWR(x) = p̄WR(x, t) on Γpw } ,

Spa(t) = { pAR ∈ H1(Ω) : pAR(x) = p̄AR(x, t) on Γpa } ,

(5.7)

whereas S(·)(t) with t ∈ [t0, T ] is the shifted Sobolev spa
e by the Diri
hlet boundaries,

ūS = uS, p̄
WR = pWR

and p̄AR = pAR
. The 
orresponding test fun
tions of δus, δp

WR

and δpAR
de�ned in the Sobolev spa
e T(·),

TuS
= { δuS ∈ H1(Ω)D : δuS(x) = 0 on ΓuS

} ,

Tpw = { δpWR ∈ H1(Ω) : δpWR(x) = 0 on Γpw } ,

Tpa = { δpAR ∈ H1(Ω) : δpAR(x) = 0 on Γpa } ,

(5.8)

ful�l the homogeneous boundary 
onditions and disappear at the Diri
hlet boundaries.

Therein, the Sobolev spa
e H1(Ω) represents fun
tions of whi
h the �rst derivation still

exists in a weak sense (Ellsiepen [70℄). The integer variable D ∈ {1, 2, 3} denotes the

dimension in spa
e.

Pro
eeding from the weak forms in (5.2), (5.3) and (5.4), the obje
tive of the FE problem


an be represented in a 
ompa
t formulation (Ellsiepen [70℄):

Find u ∈ Su(t) su
h that Gu(u, δu; q, p) = 0 ∀ δu ∈ Tu, t ∈ [t0, T ] . (5.9)

Therein, q := [ εSp,Λ ]T and p := [ β, δ, ǫ, γ ]T denote all internal (history) variables.

The internal variables are separated from the primary variables through a semi
olon by

the reason that the weak forms depends only indire
tly from the lo
al internal variables

through the me
hani
al e�e
tive solid stress σS
Em.
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5.1.2 Spatial-domain dis
retisation

The 
omputational spatial domain Ω is de
omposed in a �nite number of 
ontiguous

subdomains Ωe:

Ω ≈ Ωh =

E⋃

e=1

Ωe. (5.10)

Therein, Ωh
is the approximated domain of Ω by �nite elements building the FE mesh

with the total number E of elements, while e is the index of an individual �nite element

Ωe. Depending on the shape fun
tion, ea
h element 
onsists of Ne nodes, while the total

number of nodes is denoted by NE. Therewith, the 
ontinuous or in�nite-dimensional

trial and test spa
es, S(·)(t) and T(·)(t), are subdivided to N-dimensional �nite spa
es,

Sh
(·)(t) and T h

(·)(t), respe
tively. A

ordingly, the �eld variables u are dis
retised by the

global shape or trial fun
tions φi
u, additionally taking the Diri
hlet boundary 
onditions

ū = [ūS, p̄
WR, p̄AR]T into a

ount:

uS(x, t) ≈ uh
S(x, t) = ūh

S(x, t) +

NuS∑

i=1

φi
uS
(x)ui

S(t) ∈ Sh
uS
(t)

pWR(x, t) ≈ pWRh(x, t) = p̄WRh(x, t) +

Npw∑

i=1

φi
pw(x) p

WRi(t) ∈ Sh
pw(t),

pAR(x, t) ≈ pARh(x, t) = p̄ARh(x, t) +

Npa∑

i=1

φi
pa(x) p

ARi(t) ∈ Sh
pa(t) .

(5.11)

Therein, Nu = {NuS
;Npw;Npa} ≤ NE denotes the set of the total number of nodes of

the individual trial fun
tions. For the u-p-p formulation, the displa
ement ve
tor uS is

approximated by a quadrati
 ansatz fun
tion, whi
h 
orresponds to the node number of

the FE mesh NuS
= NE, whereas the �uid pressures are 
ommonly linearly interpolated

omitting the middle nodes of the �nite elements. Thus, the total number of nodes Npβ

of the ansatz φpβ is less than NE . This dis
retisation approa
h of the strongly 
oupled

solid-�uid problem is the so-
alled mixed �nite element formulation

†
. Due to the fa
t

that the position information is given by the trial fun
tion φi
u, the dis
rete values at the

node ui = [ui
S, p

WRi, pARi]T are only time-dependent. Furthermore, the test fun
tions

are approximated by ansatz fun
tions based on the well-known approa
h of the Bubnov-

Galerkin method, where the same ansatz fun
tions are used as for the trial fun
tions.

†
To solve the solid-�uid problem with a linear ansatz fun
tion for the solid displa
ement uS and the

�uid pressures pβR, 
onvergen
e problems 
an be en
ountered. Then, the solid stress over the element is


omputed with a 
onstant strain progression determined by the gradient of uS , while the �uid pressures

are linearly interpolated over the elements. The sum of these di�erent approa
hes, whi
h have to be


arried out in the divergen
e statement of the balan
e of momentum, leads to unstable solutions. To

over
ome this problem, a mixed approximation of the primary variables is used, 
f. the argumentation by

Graf [78℄. This so-
alled Taylor-Hood element ful�ls the LBB 
ondition (Ladyshenskaya-Bauška-Brezzi),
whi
h is an indi
ator for the stabilisation property of the numeri
al solution. For detail information the

interested reader is to referred to the work of Braess [22℄, Brezzi and Fortin [24℄ and Wieners [175℄.
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Hen
e, the approximation of the variational �eld quantities yields

δuS(x) ≈ δuh
S(x) =

NuS∑

i=1

φi
uS
(x) δui

S ∈ T h
uS
,

δpWR(x) ≈ δpWRh(x) =

Npw∑

i=1

φi
pw(x) δp

WRi ∈ T h
pw ,

δpAR(x) ≈ δpARh(x) =

Npa∑

i=1

φi
pa(x) δp

ARi ∈ T h
pa .

(5.12)

The gradients of the �eld quantities, gradu, are derived by the partial derivation of the

trial and test fun
tions, respe
tively,

graduh(x) =

Nu∑

i=1

gradφi
u(x)u

i ,

grad δuh(x) =
Nu∑

i=1

gradφi
u(x) δu

i .

(5.13)

Moreover, the geometry of the domain Ω is approximated by the basis fun
tion φi
geo

. To

simplify the numeri
al integration of the weak forms, φi
geo

is formulated in lo
al 
oordi-

nates ξ = (ξ1, ..., ξD) within a unit range of [-1,1℄ or [0,1℄, while the global 
oordinates

x = (x1, .., xD) are obtained by the 
oordinate transformation

x(ξ) =
Ne∑

i=1

φi
geo

(ξ)xi , (5.14)

whi
h is 
arried out for ea
h node Ne of the element e. The transformation of the dif-

ferential element dx into the lo
al 
oordinates is performed by the Ja
obian determinant

Je, viz.

Je =

∣∣∣∣det
(
dx(ξ)

dξ

)∣∣∣∣ . (5.15)

Inserting equations (5.14) and (5.15) into an integral of a fun
tion f(x) given in global


oordinates, the following expression 
an be found:

∫

Ωe

f(x) dv(x) =

∫

Ω̂e

f(x(ξ)) Je(ξ) dv̂(ξ) . (5.16)

Therein, Ω̂e is the domain of the referen
e element and dv̂ is the in�nitesimal referen
e

volume. The resulting integral expression represented in lo
al element 
oordinates 
an be

simply evaluated using the Gaussian quadrature:

∫

Ωe

f(x) dv(x) ≈
K∑

k=1

f(x(ξ)) Je(ξ)wk . (5.17)
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Therein, wk in
ludes the weighting fa
tors at the integration or Gauss point of the element

Ωe, respe
tively. The weighting fa
tors are �xed values depending on the number of Gauss

pointsK and their position. However, the integral solution of a fun
tion with a polynomial

order of 2K− 1 is exa
tly 
omputed at the Gauss points, while beyond the Gauss points,

the values deviate more or less from the 
orre
t solution depending on the approximation

a

ura
y.

The numeri
al integration of the weak form of the balan
e laws is 
arried out element-wise

by using the Gauss quadrature in (5.17). Thereby, for ea
h degree of freedom (DOF) ui

at the element node, test and trial fun
tions are evaluated by setting their values at the


onsidered node to one, whereas the values of the remaining nodes are zero. Analogously,

this has to be 
arried out for ea
h node of the element. Consequently, a system of

independent equations results at the element level with the unknown dis
rete DOF element

ve
tor ue
. This system of equations is assembled to the global system of equations of the

FE mesh applying the assembly operator

⋃E
e=1. It in
ludes the position information of

ea
h node of the FE mesh and transfers the numbering of the lo
al DOF ve
tor ue
of the

element Ωe into the global DOF ve
tor u of the FE mesh. Following this pro
edure, the

ve
tor of internal and external virtual works W e
u,int and W e

u,ext at the element level of the

balan
e equations G
h
u in (5.2), (5.3) and (5.4), 
an be rewritten in terms of internal and

external nodal for
e ve
tors f e
u,int and f e

u,ext. Assembling the element for
es of the FE

mesh, the global nodal for
es fu,int and fu,ext of the entire ve
tor of virtual works Wu,int

and Wu,ext (5.1) result. Furthermore, the virtual DOF ve
tor δue
at the element level or

δu of the FE mesh, respe
tively, is fa
tored out and, therewith, the equilibrium state of

the global balan
e relations in the pro
edure of the variational prin
iple reads:

G
h
u(u, δu; q,p) =

E⋃
e=1

(δW e
u,int − δW e

u,ext) = δu(fu,int − fu,ext) = 0

where δu =
E⋃

e=1

δue , fu,int =
E⋃

e=1

f e
u,int , fu,ext =

E⋃
e=1

f e
u,ext .

(5.18)

Therein, the generalised internal and external nodal for
e ve
tors are in equilibrium

fu,int = fu,ext. However, fu,int is non-linear in the solid extras stress σS
Em with regard

to the solid strain tensor εS, when plasti
 deformations o

ur. This leads to an addi-

tional lo
al system of equations L
h
ı with ı := [ qT , pT ]T independent equations 
omputed

at ea
h integration point K. All unknown quantities of the global and lo
al system of

equations are summarised to the ve
tor y := [uT , qT ,pT ]T . Pro
eeding from quasi-stati


IBVP with the initial 
ondition y(t0) = y0 and t ∈ [ t0, T ], the governing semi-dis
rete

DAE fun
tional F = [Gh
u,L

h
ı ]

T
in time 
an be 
ompa
tly formulated by the following

s
heme (Ellsiepen [70℄):

F [ t, y, (y)′S ] =


 G

h
u(t, u, (u)

′
S ; ı)

L
h
ı (t, ı, (ı)

′
S ; u)


 =

=


 M(u)′S + k(u ; ı) − fu,ext

A (ı)′S − g(ı ; u)


 !
= 0 ,

(5.19)



72 5 Numeri
al Treatment

where M(u)′S + k(u ; ı) := fu,int 
orresponds to the generalised internal for
e ve
tor.

Therein,M is a generalised mass matrix and k a generalised sti�ness ve
tor. Furthermore,

the lo
al system of the plasti
ity problem is expressed by L
h
ı in
luding the evolution

equations of all integration points of the FE mesh:

A (ı)′S − g(ı ; u) =




(εSp)
′
S

0

(p)′S




−




Λ
∂G

∂σS
Em

−Λ +
1

η

〈
F

σ0

〉
r

h(α)




= 0 . (5.20)

However, M is a singular mass matrix. This follows from the fa
t that the momentum

balan
e does not depend on the solid displa
ement velo
ity (uS)
′
S. On the other hand,

the volume balan
e of the in
ompressible pore water is independent from the temporal


hange of water pressure pWR
and, in addition, both pore �uid balan
es expli
itly depend

on (uS)
′
S. Moreover, the matrix A 
onsists of unit matri
es resulting from the individual

terms in ı = [ qT , pT ]T . Indeed, the �ow rule of the se
ond equation in (5.20) 
ontains

no time derivative. Thus, A is a singular matrix just as M . Due to the properties of

both matri
es M and A, the system of ordinary di�erential equations (ODE) (Hairer

and Wanner [80℄) of the FE problem is transferred to a system of algebrai
 di�erential

equations (DAE). To solve the DAE system, parti
ular strategies are needed, whi
h are

dis
ussed in se
tion 5.1.4, 
f. Brenan [23℄ and Ellsiepen [70℄.

5.1.3 Time-domain dis
retisation

For the numeri
al treatment of ODE or PDE systems, the temporal-dependent quantities

have to be dis
retised in time using a �nite-di�eren
e method. It has been shown that,

using an impli
it time integration method su
h as the impli
it Euler s
heme, whi
h 
an be

derived from the well-known error 
ontrolled Runge-Kutta methods (Hairer et al. [79℄),

gives a stable solution for the DAE system (5.19), 
f. Diebels et al. [44℄ and Ehlers and

Ellsiepen [62℄.

Pro
eeding from the impli
it Euler method, the set of unknown values yn at the a
tual

time step n, where n−1 denotes the old time step at whi
h yn−1 is known, is approximated

by the �rst-order ba
kward Euler method:

yn = yn−1 + y′(tn)∆tn where , ∆tn = tn − tn−1 (5.21)

is the time in
rement. Therein, yn is linearly approximated by negle
ting the higher-order

terms. Thus, the temporal 
hange y′ := (y)′S related to the solid motion is expressed by

the in
rements ∆yn and ∆tn :

y′(tn) =
∆yn

∆tn
with ∆yn = yn − yn−1 . (5.22)
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Inserting the time-dis
rete quantities (5.21) and (5.22) into the DAE fun
tional F (5.19),

the non-linear DAE system in the in
remental representation of the dependen
ies results

in

Rn(∆yn) := F [ tn, yn−1 +∆yn,
1

∆tn
∆yn ] = 0 .

(5.23)

Based on the known values yn−1 of the previous time step n−1, the in
rement ∆yn is the

sear
hed stage solution of Rn, whi
h has to be 
omputed iteratively within the 
urrent

time step n (Ehlers and Ellsiepen [62℄). Expressed in the presentation in global and lo
al

systems, the non-linear system Rn in (5.23) reads as follows

Rn :=



G(Un,In)

L(Un,In)


=



G

h
u(n) ( tn, un−1+Un,

1

∆tn
Un, ın−1+In)

L
h
ı(n) ( tn, ın−1 +In,

1

∆tn
In,un−1+Un)


=



0

0


 , (5.24)

where In := [∆qT
n ,∆pT

n ]
T
and Un := ∆un are introdu
ed.

5.1.4 Solution of the non-linear system

The non-linear DAE system Rn in (5.24) is solved iteratively by the well-known Newton-

Raphson method with regard to the initial values y(t = t0) = y0 within the time period

[t0, ..., tn−1, tn, ..., T ]. Con
erning this, a linearisation of Rn(∆yn) has to be 
arried out

with respe
t to Y n := ∆yn. A detailed des
ription of the linearisation pro
edure of the

triphasi
 model 
an be found in Blome [10℄. Hen
e, the iterative solution algorithm of

the non-linear 
oupled system of equations in a simple representation reads:

1. to solve : R
i+1
n = R

i
n +

dRi
n

dY i
n

∆Y i
n = 0

2. update : Y i+1
n = Y i

n +∆Y i
n

3. 
onvergen
e is not ful�lled : ‖ R
i+1
n (∆Y i

n) ‖> tol i = i+ 1 ba
k to 1


onvergen
e is ful�lled : ‖ R
i+1
n (∆Y i

n) ‖< tol

4. new time step/update : tn = tn−1 +∆tn and yn = yn−1 + Y i+1
n .

Therein, tol denotes the maximal toleran
e for the 
omputation error of R
i+1
n and i is the

index of the Newton iteration step, whereas the unknown quantities at the 
urrent time

step tn are lo
ated at the iteration step i+ 1. The quantity J i
n = dRi

n/dY
i
n denotes the

global tangent or the Ja
obian matrix and is 
omputed by

J i
n =

dRi
n

dY n

=
∂F

∂y

∣∣∣∣
z
+

1

∆tn

∂F

∂y′

∣∣∣∣
z
, (5.25)

where z = [ tin, (y
i
n)

T , (y′ i
n )

T ]T in
ludes the 
urrent set of arguments of F in R
i
n. Solving

the linear system R
i+1
n with a dire
t 
omputation of J i

n would lead to an ine�
iently
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�lled stru
ture of the matrix, be
ause of the strong 
oupling of G and L. Due to this

fa
t, the e�
ient sparse stru
ture of the FEM matrix of Gn is destroyed. To over
ome

this problem, the operator-spilt method has been introdu
ed by Miehe [115℄ and Simo and

Taylor [145℄, whi
h is also known as a two-stage Newton solution pro
edure. Thereby,

the global and lo
al system of equations, G and L, are solved in a de
oupled manner

in order to bene�t from the sparse matrix stru
ture of G. Thereby, for ea
h global

Newton iteration step i of the solution pro
edure Gi+1
n = 0, the lo
al system Lk+1

n = 0

is iteratively solved at the Gauss point when plasti
 yielding o

urs, while the primary

variables un are kept 
onstant. The lo
al iteration index is denoted by k. The time step

is a

epted if both the lo
al and the global iterations 
onverge. In Table 5.1 and 5.2,

the single steps of the solving pro
edure of Gn and Ln are illustrated within the frame

of an elasti
-predi
tor and a plasti
-
orre
tor/return-mapping-step algorithm (Simo and

Hughes [143, 144℄). Nevertheless, the dependen
y of the global balan
e laws from the

lo
al internal variables still has to be 
onsidered. This has been taken into a

ount by

the 
onsistent linearisation of Gn through the elasto-plasti
 algorithmi
 pro
edure better

known as the 
onsistent algorithmi
 linearisation introdu
ed by Simo and Taylor [145℄

(see also in, e. g., Simo and Hughes [144℄ or Wriggers [180℄).

Elasti
 predi
tor/plasti
 
orre
tor algorithm

Due to the plasti
 yielding of materials, global and lo
al systems are 
oupled through the

non-linearity of the e�e
tive solid stress related to the solid strain, σS
Em ∼ εS(uS, q,p).

Solution of the non-linear global system Gn = 0 of the FE mesh

1. Solve Gi+1
n

!
= 0 :

(JG)
i
n ∆U i

n = −Gi
n with (JG)

i
n =

dGi
n

dU i
n

, (5.26)

where i is the global Newton iteration step.

(a) If F (σS trial
Emn ,p) > 0, then solve Ln = 0 as shown in Table 5.2.

(b) Computation of the 
onsistent material tangent C
Si
n (Eq. (5.37))

dΣi
n

d εiSn
=

(
∂Rloc i

n

∂Σi
n

)−1
∂Rloc i

n

∂ εiS n

→ C
Si
n =

dσS i
Emn

d εiS n

.
(5.27)

2. Update of the global (primary) variables

U i+1
n = U i

n +∆U i
n and i = i+ 1 with i = 1, ..., imax . (5.28)

3. Che
k the global residual related to the user-de�ned global Newton toleran
e

‖U i+1
n −U i

n ‖ < U i+1
n ǫgtolrel + ǫgtolabs with i ≤ imax . (5.29)

Table 5.1: The global iteration algorithm for the determination of the primary variables Un at

the Gauss point at time tn.
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Solution of the lo
al system Ln = 0 at ea
h single Gauss point

For F (σS trial
Emn ,p) > 0, the internal variables In = [∆qT

n ,∆pT
n ]

T
at �xed global (pri-

mary) variables Un are determined as follows:

1. Solve Lk+1
n

!
= 0 :

(JL)
k
n∆I

k
n = −Lk

n
(5.30)

with the Ja
obian matrix (JL)
k
n :

(JL)
k
n =

dLk
n

dIk
n

∣∣∣∣
Uk

n=�xed

=
∂Lk

n

∂Ik
n

+
1

∆tn

∂Lk
n

∂(Ik
n)

′
,

(5.31)

where k is the lo
al Newton iteration step.

2. Update the internal (history) variables:

I
k+1
n = I

k
n +∆I

k
n and k = k + 1 with k = 1, ..., kmax . (5.32)

3. Che
k the lo
al residual related to the user-de�ned lo
al Newton toleran
e:

‖Ik+1
n − I

k
n ‖ < I

k+1
n ǫltolrel + ǫltolabs with k ≤ kmax . (5.33)

4. Che
k the Kuhn-Tu
ker 
onditions in (4.40):

If they are ful�lled, go ba
k to Table 5.1, else reje
t the time step tn and start a

new global Newton iteration by bise
tion of the time step ∆t.

Table 5.2: The lo
al iteration algorithm to determine the internal variables In at ea
h single

Gauss point within the i-th global Newton iteration step at time tn. For reason of 
larity, the

index i is omitted.

The determination of σS
Em is 
arried out in two steps. Firstly, the 
omputation ofGi+1

n = 0

starts with an elasti
 predi
tor step σS trial
Emn = CSe(εS n − εSpn−1), whi
h is 
alled trial

e�e
tive solid stress. Afterwards, the yield 
riterion Fn ≤ 0 in (4.35) is evaluated for

σS trial
Emn . If the yield 
riterion is violated, Fn > 0, the lo
al system of equations Lk+1

n = 0

(Table 5.2) has to be solved numeri
ally applying the Newton method until an e�e
tive

elasti
 stress tensor σS
Emn = σS trial

Emn − CSe∆εSpn is found by whi
h the yield 
riterion is

ful�lled, Fn = 0. Con
erning this, the internal variables in In are iteratively determined

during the se
ond plasti
 
orre
tor step. Thereby, the elasti
 trial stress is proje
ted ba
k

onto the yield surfa
e through the 
onsisten
y parameter Λn:

σS
Emn = σS trial

Emn

︸ ︷︷ ︸
elasti
 predi
tor step

− C
Se

(
εSpn−1 +∆tΛn

∂Gn(σ
S
Emn,p)

∂σS
Emn

)

︸ ︷︷ ︸
plasti
 
orre
tor step

,
(5.34)

wherein, the plasti
 strain rate (εSpn)
′
S in the in
rement ∆εSpn = ∆tn(εSpn)

′
S is sub-

stituted by the �ow rule in (4.43). This pro
edure is the so-
alled impli
it return map-
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ping algorithm. In 
ase of F (σS trial
Emn ,p) < 0, the trial stress is an elasti
 loading step,

σS
Emn := σS trial

Emn , and, thus, the next time in
rement ∆tn 
an be applied.

Remark: The time step tn is a

epted if the global and lo
al iteration pro
edures satisfy

the L2-norm of the in
rements ∆Un (or G i+1
n ) and ∆In (or Lk+1

n ) of user-de�ned global

and lo
al error toleran
es given in absolute and relative values, ǫ
(g/l)tol
abs and ǫ

(g/l)tol
rel within

the user-de�ned maximal Newton iteration number imax (global) and kmax (lo
al), see

Table 5.1 and 5.2. In that 
ase, a new time step 
an be set otherwise the global Newton

pro
edure has to be repeated with a bise
tion of the time step ∆tn.

Algorithmi
 
onsistent tangent moduli

For the linearisation of Gn in Table 5.1, the lo
al dependen
ies resulting from the plasti


behaviour have to be taken into a

ount. Hen
e, the global Ja
obian tangent JG yields

(JG)
i
n =

dGi
n

dU i
n

=
∂Gi

n

∂U i
n

+
∂Gi

n

∂ I i
n

dI i
n

dU i
n

, (5.35)

wherein the �rst part of the sum denotes the elasti
 tangent, while the se
ond part is

the plasti
 tangent and is only a
tive if plasti
 yielding o

urs, whi
h depends on the

derivative of internal variables with respe
t to the global ones. Due to the fa
t that the

global and lo
al systems are only 
oupled by the solid stress σS
Emn regarding to εS n, the


onsistent elasto-plasti
 material tangent (5.35) 
an be dire
tly determined from the lo
al

problem (S
holz [137℄)

Rloc
n (εS n,Σn(εS n)) = 0 , (5.36)

whi
h depends on the unknown variables Σn(εS n) := [σS
Emn,Λn,p

T
n ]T . The equations of

Rloc
n are given in Table 5.3 in a time-dis
rete formulation. The 
onsistent material tangent

results from the derivation of Rloc
n with respe
t to the a
tual strain tensor εSn applying

the 
hain rule:

dRloc
n

d εS n
=
∂Rloc

n

∂εS n
+

∂Rloc
n

∂σS
Emn

dσS
Emn

d εS n
+
∂Rloc

n

∂Λn

dΛn

d εS n
+
∂Rloc

n

∂pn

dpn

d εS n

!
= 0 . (5.37)

Therein, the framed term is the sear
hed 
onsistent material tangent CS
n = σS

Emn/d εS n

at the global Newton iteration step i. For Fn < 0, it 
orresponds to the fourth order

elasti
 material tensor CS
n = CSe

(4.34) .

Elasti
ity : Rloc 1
n = σS

Emn − CSe
(
εS n − εSpn−1 −∆tΛn

∂Gn(σ
S
Emn,p)

∂σS
Emn

)
= 0

Vis
o-

plasti
ity

: rloc 2n = Λn −
1

η

〈
F

σ0

〉
r = 0

Plasti


hardening

: rloc 2+j
n =

pjn − pjn−1

∆t
− psatj

[
CV

pj
(εVvp)

′
S + CD

pj
(εDvp)

′
S

]
= 0

Table 5.3: The lo
al system of equations Rloc
n at the 
urrent time iteration step n and i denotes

the index number j = [1− 4] of the hardening parameters pj = {β , δ , ǫ , γ}.



5.2 Parameter identi�
ation 77

5.2 Parameter identi�
ation

For realisti
 simulations of IBVP, �rst of all, the physi
al behaviour of the material used

in the investigated IBVP has to be des
ribed as well as possible via 
onstitutive equations.

By the 
alibration pro
edure, the material parameters s of the 
onstitutive equations are

identi�ed on the basis of experimental data. Therefore, this pro
edure is also referred

to as the indire
t problem, while the 
omputation of an IBVP with an already identi�ed

parameter set s is 
alled the dire
t problem. From this 
omputation, the stress and the

deformation �elds of the investigated problem result from the applied boundary 
ondi-

tions. The a

ura
y of the results depends strongly on the performan
e of the 
onstitutive

equations, i. e. , how well they 
an 
apture the material behaviour.

The dire
t problem 
an be des
ribed by the abstra
t input quantity U and the known set

of material parameters s, while the unknown output quantity Φ has to be 
omputed by

solving the IBVP. This task of the problem is summarised by the model fun
tion f and


an be represented by a 
ompa
t formulation:

Find Φ⋆
su
h that f(s, U , Φ) = 0 is ful�lled for given {s, U} . (5.38)

Therein, Φ⋆
denotes the solution of the dire
t problem for whi
h the model fun
tion f is

satis�ed. For example, for the simulation of a displa
ement-
ontrolled triaxial experiment

(see Appendix A), the given input quantity U is the solid strain εS and the unknown

output quantity Φ is the solid stress σS
, whereas the parameter set s is known. With

regard to the identi�
ation pro
ess of s, the indire
t problem has to be solved:

Find s⋆ su
h that f(s, U , Φ) = 0 is ful�lled for given {U , Φ} . (5.39)

In this 
ase, the quantities U and Φ are obtained by the experiment. Thus, the parameter

set s⋆ has to be found by an inverse 
omputation of the experiment at whi
h the model

fun
tion f is satis�ed. Regarding to the simulation example of the aforementioned triaxial

experiment, the solid strain εS is known as the 
ontrolled quantity of U as well as the

solid stress σS
as the measured quantity of Φ. Generally, a 
omplex material behaviour

exhibits a non-linear stress-strain relation. Hen
e, the material parameters s have to be

identi�ed in the fashion that the error In = |Φn(s)− Φ̃n| at ea
h dis
rete data point n of

N (number of data points) between output quantities of simulation Φn(s) and experiment

Φ̃n is minimised as good as possible. To 
ompute the error In at the dis
rete data point n,
the same input quantity Un has to be used for both simulation and experiment, whereas,

treating rate-dependent problems, the time variable has to be also taken into a

ount.

However, 
omplex material behaviour represented by non-linear stress-strain relations is

des
ribed via a variety of material parameters. These parameters 
annot be dire
tly

determined by an independent set of experiments. Therefore, the indire
t problem 
an

only be solved by applying non-linear optimisation methods. This is 
arried out by an

ongoing improvement of the parameter set si → s⋆ until the simulation error satis�es a

user-de�ned error toleran
e, where i denotes the iteration steps. Hen
e, the identi�
ation

pro
ess should be started with well �tted initial values of the material parameters s0 in

order to redu
e the number of iterations until the solution s⋆ is rea
hed.
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Figure 5.1: Comparison of the simulated and experimental data set, where In is the error

between the output quantities |Φn − Φ̃n| determined at ea
h dis
rete point of n for given Un.

The simplest material law is the 1-dimensional Hookean law des
ribing an elasti
 be-

haviour. The identi�
ation of the 
onstant elasti
 moduli ES
is determined dire
tly from

the linear part of the stress-strain 
urve of a 1-d tension test via ES = ∆σ1/∆ε1. In


ontrast, due to the high number of parameters of more 
omplex materials, the optimi-

sation problem is over-determined and the parameters 
annot be uniquely identi�ed. By

this reason, the Least-Squares Method is applied, whi
h minimises the obje
t fun
tion f
representing the total simulation error. The obje
t fun
tion f is 
omputed by the squared

di�eren
es between the simulated and the true material behaviour, where the true ma-

terial behaviour is determined by experiments. In general, for a good approximation of

the material behaviour, various experimental data sets with di�erent measured quantities

have to be taken into a

ount. Therefore, a multi-
riterion obje
t fun
tion has to be

applied,

f(s) =
1

2

K∑

k=1

Nk∑

n=1

wk
n

(
Φk

n(s)− Φ̃k
n

)
2 → min. ,

where : wk
n =

1

|Φk
0|Nk

,

(5.40)

wherein all 
omputation errors In are summarised. Therein, wk
n is a weighting fa
tor,

whi
h is used for the normalisation of the output quantities Φk
n and Φ̃k

n. If w
k
n is assumed

to be 
onstant for all data points Nk of the 
onsidered experimental data set K, it 
an also

be rewritten to wk
. Hen
e, wk

is determined by the inverse of the maximally measured

value |Φk
0| of the data set K as well as the number of data points Nk. The optimisation

parameters s of the 
onstitutive equations, whi
h governs the material responds Φ(s), have
to be 
alibrated within a physi
al range. Therefore, the feasible range of s is represented

by the equality and inequality 
onstrains and leads to the following 
onstrained non-linear
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optimisation problem:

f(s) → min : obje
t fun
tion ,

hj(s) = 0 ; j = 1, ..., Neq : equality 
onstraints ,

gi(s) ≤ 0 ; i = 1, ..., Niq : inequality 
onstraints ,

(5.41)

where Neq and Niq denote the number of equality and inequality equations.

5.2.1 Gradient-based optimisation pro
edure

To solve the un
onstrained problem in (5.40) by applying gradient-based methods, the

value of the obje
t fun
tion f de
reases at ea
h iteration step with an improved parameter

set si+1 with regard to the previous set si

f(s i+1) < f(si) . (5.42)

The deepest extremal point of f is found at whi
h the gradient of f vanishes with respe
t

to the material parameter set s,

df(s)

ds
=

K∑

k=1

Nk∑

n=1

wk dΦ
k
n(s)

ds
(Φk

n(s)− Φ̃k
n)

!
= 0 , (5.43)

wherein the 
omponents of dΦk
n(s)/ds are 
ommonly denoted as the sensitivities of Φk

n.

This point is 
hara
terised by the extremal (�nal) parameter set s⋆. The non-linear

problem in (5.43) is solved by applying the Newton method with the iteration pro
edure

si+1 = si + αni where ni = −H
−1
i

df(s)

dsi
(5.44)

is the des
ent of f in the dire
tion of the lo
al minimum, and α is the step-length pa-

rameter of the line-sear
h algorithm. The parameter α has to be 
hosen in su
h a way

that the best new parameter set si+1 is obtained for whi
h f de
reases as steep as pos-

sible, e. g., applying the Armijo-Goldstein 
riterion, 
f. Dennis and Goldstein [36℄. For


onstrained non-linear problems, 
are has to be taken that si+1 is lo
ated within feasible

limits. Furthermore, H is the Hessean matrix of the Newton method and represents the

se
ond derivative of f :

H = H
N =

d2f(s)

ds dsT
. (5.45)

Due to H
N

whi
h is not always positive de�nite, the dire
tion of the line sear
h is not

always oriented to the steepest des
ent of f and, beyond that, the 
omputation of the

se
ond gradient is very time 
onsuming. Therefore, Quasi-Newton methods are 
ommonly

applied, be
ause they approximate the Hessean matrix H ≈ H̄ in a linear fashion only

using the �rst gradient of f . An overview of some popular iteration matri
es is given

in Table 5.4. However, the BFGS (Broyden, Flet
her, Goldfarb, Shanno) method is one
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Iteration matri
es

Steepest des
ent: H̄ i = I

Gauss-Newton: H̄ i := H
GN
i =

d2 f(s)

ds dsT

Levenberg-Marquardt: H̄ i := H
LM
i = H

GN + µ I

BFGS: H̄ i := H
BFGS
i

Table 5.4: Overview of the best-knowing approximation matri
es of H i.

of the mostly used and as well e�
ient methods. The update pro
edure of the BFGS

method is given by

H
BFGS
i+1 = H̄ i+1 = H̄ i +

q i q
T
i

qT
i pi

− H̄ i pi p
T
i H̄ i

pT
i H̄ i pi

,

where pi = si+1 − si and q i =
df(si+1)

dsi+1
− df(si)

dsi

(5.46)

are the update ve
tors of the optimisation parameters and the gradients of the obje
t

fun
tion f . However, the H BFGS
matrix needs an initial value. From the numeri
al point

of view, it is suitable to 
hoose initial values in a su
h way that the H
BFGS

matrix is

symmetri
 and positive de�nite. For example, the method of the steepest des
ent 
an be

applied as the starting matrix H
BFGS
0 = I. The update of H BFGS

i+1 in (5.46) is 
arried out

after the new parameter set si+1 in (5.44) has been solved.

5.2.2 Lagrangean dual problem (SQP method)

The 
onstrained non-linear problem (5.41) is 
ommonly solved by a very e�
ient and

popular Lagrangean pro
edure. Thereby, the 
onstrained optimisation problem is trans-

ferred into a dual problem by intodu
ing the Lagrange multipliers or dual variables of

the equality and inequality 
onstraints, µj and λi, respe
tively, 
f. [8, 17, 109, 129, 147℄.
Thus, the Lagrange fun
tion of the non-linear opimisation problem in (5.41) reads

L(s,µ,λ) = f(s) +

Neq∑

j=1

µj hj(s) +

Niq∑

i=1

λi gi(s) → stat.
(5.47)

Hereby, the optimisation problem is swit
hed from a minimisation to an extremal problem,

whi
h is 
hara
terised by a saddle-point or stationary (stat.) problem, respe
tively. The

saddle point de�nes the optimum solution at whi
h a variation of the primary variable s

with �xed dual variablesµ⋆
and λ⋆

minimises f , while, vi
e versa, with �xed s⋆ parameters

and a variation of µ and λ, f is maximised, 
f. Mahnken [110℄. Nevertheless, the optimum

solution s⋆ of the saddle point problem is equivalent to the optimal solution point of the
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primary optimisation problem (5.41), 
f. Spellu

i [147℄. For the validity of the solution

of (5.47), the optimised parameter set {s⋆, µ⋆, λ⋆} has to ful�l the ne
essary 
ondition

of the so-
alled Karush-Kuhn-Tu
ker (KKT) 
ondition:

dL
ds

=
df(s⋆)

ds
+

Neq∑

j=1

µ⋆
j

d hj(s
⋆)

ds
+

Niq∑

i=1

λ⋆i
d gi(s

⋆)

ds
= 0 ,

hj(s
⋆) = 0 , gi(s

⋆) ≤ 0 , λ⋆i ≥ 0 , λ⋆i gi(s
⋆) = 0 .

(5.48)

Therein, the �rst equation (5.48)1 is the Lagrangean 
ondition, (5.48)2,3 are the primal

admissibilities, while (5.48)4 is the dual admissibility, and (5.48)5 is the 
omplementary


ondition, 
f. Mahnken [110℄.

Moreover, the su�
ient 
ondition demands that L is 
onvex at the lo
al minimum. Hen
e,

the Hessean matrix, whi
h is the se
ond derivative of L with respe
t to s, must be positive

de�nite at the solution point

vT d2L(s⋆,µ⋆,λ⋆)

ds dsT
v > 0 , (5.49)

where v 6= 0 is an arbitrary ve
tor of the same dimension as s.

SQP Algorithm

Instead of 
omputing dire
tly the Lagrangean problem in (5.48), quadrati
 subproblems of

L (5.47) 
an be solved. These quadrati
 subproblems resulting from the quadrati
 approx-

imation of the non-linear Lagrangean problem 
an be 
omputed in a more e�
ient fashion

using the Sequential-Quadrati
-Programming (SQP) method, 
f. S
hittkowski [135℄, Boggs

and Tolle [17℄ and Spe
llu

i [148℄. Pro
eeding from the SQP method, the Lagrange fun
-

tion

L̃(s,µ,λ) = f̃(s) + µT h̃(s) + λT g̃(s) → stat. . (5.50)

is de�ned by quadrati
 and linear approximations of the obje
t fun
tion and the 
onstraint

equations, respe
tively:

f̃(s) = f(s) +
df(s)

ds
∆s +

1

2
∆sT

d2L(µ,λ, s)
ds dsT

∆s → min. ,

h̃(s) = h(s) +
dh(s)

ds
∆s = 0 ,

g̃(s) = g(s) +
d g(s)

ds
∆s ≤ 0 ,

(5.51)

where the KKT-
onditions of L̃ are summarised in F :

F (x) =
dL̃
dx

=




df̃(s)

ds
+ µT d h̃(s)

ds
+ λT d g̃(s)

ds

h̃(s)

g̃W(s)



=




0

0

0



. (5.52)
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Therein, x represents the unknown set of the optimisation variables x = [ sT , µT , λT
W ]T .

For an e�
ient 
omputation of F (x), the A
tive Set strategy is introdu
ed. Thereby, only

the inequality 
onstrains with g̃iW = 0 are in
orporated into the A
tive Set or working

set W , whereas the 
omputation of the ina
tive 
onstraints g̃i < 0 are redundant, 
f.

S
hnittkowski [135℄. Hen
e, the 
onstraint optimisation problem with inequality 
ondi-

tions is transferred to a non-linear system of equality equations. A

ordingly, λiW are

the Lagrangean multipliers of the a
tive set W . However, starting the 
omputation with

an initial a
tive set W0 
orresponding to the initial parameter set s0, F in (5.52) 
an be

simply solved in a sequential fashion by the Newton method:

F (xi) +
dF (xn)

dx
∆xn = 0

with xn = [∆sTn , ∆µT
n , ∆λT

Wn ]
T

= [(sn+1 − sn)
T , (µn+1 − µn)

T , (λWn+1 − λWn)
T ]T ,

(5.53)

where the solution in
rement ∆s = n of the quadrati
 subproblem is the new line-sear
h

dire
tion of the improved parameter set sn+1 = sn +α∆s, 
f. (5.44). The steplength α is


omputed in the fashion that sn+1 is still lo
ated in the feasible set, 
f. [8, 109, 129℄. The

Newton iteration in (5.53) is �nished if the user-de�ned error toleran
e is satis�ed, ‖∆sn ‖
< tol, and the KKT 
onditions in (5.48) of the Lagrange problem or (5.52) of the SQP

problem, respe
tively, are ful�lled. Otherwise, the violated inequality 
onstraint has to be

put into the new a
tive setW
n+1

. However, if one or more of Lagrangean multipliers λiWn

of the a
tual inequality 
onstraint are negative, the 
orresponding inequality 
onstraint

with the least negative value of λmin
iWn < 0 has to be removed from the a
tive set W

n
and

the Newton iteration step is repeated, 
f. [110, 112, 133℄.

Furthermore, the 
omputation of dF (x)/dx in (5.53),

dF (x)

dx
=

d2L̃
dx dxT

=




d2L̃
ds dsT

d h̃(s)

ds

d g̃W(s)

ds
d h̃(s)

ds
0 0

d g̃W(s)

ds
0 0



, (5.54)

may have di�
ulties 
on
erning the Hessean matrix d2L̃/(dsdsT ) ≈ H̄ , whi
h is not

generally positive de�nite. To over
ome this problem, the Hessean matrix is approximated

by Quasi-Newton methods given in Table 5.4, where the BFGS method is preferred in

this thesis. A

ordingly, in this 
ase, the solution parameters of the BFGS iteration have

the following expressions: pi = si+1 − si and q i = dL̃(si+1)/ds− dL̃(si)/ds.

5.2.3 Numeri
al sensitivity analysis

In this thesis, only the me
hani
al behaviour of sand is 
alibrated by use of the gradient-

based optimisation method. For the 
omputation of the required gradient of the obje
t
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fun
tion df/ds (5.43), whi
h maintains the sensitivities of the simulated quantities Φ(s)
with respe
t to the material parameters s, the momentum balan
e of the overall aggre-

gate has to be taken into 
onsideration. Following the experimental investigation of the

me
hani
al behaviour of dry sand with va
ant pore spa
es

‡
via drained triaxial tests, the

�uid pressure pFR = 0 
an be negle
ted (σ ≈ σS
E) and the momentum balan
e of the

biphasi
 model is redu
ed to the expression of a single phase material, Ehlers and Av
i

[56℄. Pro
eeding from this, the derivation of GMM (5.2) with respe
t to s yields

dGMM(s, εS(s))

dsi
=

∫

Ω

dσS
E

dsi
· grad δuS dv

!
= 0 . (5.55)

Therein, the sensitivities of the solid stress σS
E to s are the quantities, whi
h have to be

determined, whereas σS
E depends on the 
onstitutive equations governed by the material

parameters as well as by the solid strain, whi
h, in turn, depends (impli
itly) on the

material parameters, too. An impli
it derivation of the stress sensitivities reads

dσS
E

dsi
=
∂σS

E

∂si
+
∂σS

E

∂εS

dεS
dsi

, where
dεS
dsi

=

NuS∑

j=1

gradφj
uS

duSj

dsi
(5.56)

are the sensitivities of the solid strain εS. Inserting (5.56)1 into (5.55), a linear system of

equation yields

∫

Ω

∂σS
E

∂εS

dεS
dsi

· grad δuS dv = −
∫

Ω

∂σS
E

∂si
· grad δuS dv , (5.57)

whi
h 
an be expressed in a 
ompa
t form within a time iteration step n:

Kn
duS n

dsi
= −f sni . (5.58)

Therein, the term Kn is equivalent to the 
onsistent material tangent or the Ja
obian

matrix, whi
h is already solved for the global system of equation in Table 5.1, while the

se
ond term is the solution ve
tor of the unknown sensitivity of the displa
ement duS n/dsi
and the right-hand side of (5.58) is the so-
alled global sensitivity load term f sni.

The presented sensitivity analysis follows the work by Ehlers and S
holz [67℄ or S
holz

[137℄. Based on the Cosserat-
ontinuum theory, they have additionally taken the balan
e

of moment of momentum into a

ount in order to 
ompute the sensitivities of mi
rop-

olar parameters (Cosserat parameters) 
ontrolling the properties of the grain rotations

o

urring during the lo
alisation of shear bands.

Computation of f sni

The load term f sn 
onsisting of sensitivities of the solid stress ∂σS
E n/∂si = dσS

E/dsi|uS n
is

evaluated at the �xed deformation state (uS n = const.) at time step n. Its 
omputation

‡
For saturated soil (e. g. with air), the triphasi
 model is redu
ed to the biphasi
 model by eliminating

the pore water phase ϕW
. Thus, the pore-�uid pressure 
orresponds to the pore-air pressure, pFR := pAR

.
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is 
arried out using the lo
al set of equations Rloc
given in Table 5.3,

Rloc = Rloc[ s, σS
En(s), pn(s), pn−1(s), λn, εSpn−1(s) ] ≡ 0 , (5.59)

in 
onsideration of the internal and hardening dependen
ies, q = [λ, εSp ]
T

and p =
[ β, δ, ǫ, γ ]T . By derivation of (5.59) with respe
t to s and to the impli
it dependen
ies,

the lo
al system of equations yields

dRloc
n

ds

∣∣∣∣
εSn

=
∂Rloc

n

∂s
+
∂Rloc

n

∂σS
E n

dσS
E n

ds

∣∣∣∣
εSn

+
∂Rloc

n

∂pn

dpn

ds

∣∣∣∣
εSn

+
∂Rloc

n

∂pn−1

dpn−1

ds
+

+
∂Rloc

n

∂Λn

dΛn

ds

∣∣∣∣
εSn

+
∂Rloc

n

∂εSpn−1

dεSpn−1

ds
!
= 0

(5.60)

Introdu
ing the generalised stress ve
tor Σn = [σS
E n, Λn, p

T
n ]

T
, the linear system of equa-

tions (5.60) is solved by

dΣn

ds

∣∣∣∣
εSn

= −
(
∂Rloc

n

∂Σn

)−1(
∂Rloc

n

∂s
+

∂Rloc
n

∂pn−1

dpn−1

ds
+

∂Rloc
n

∂εSpn−1

dεSpn−1

ds

)
(5.61)

at the Gauss point. Therein, the generalised right-side ve
tor term is summarised by the

already known expressions ∂Rloc
n /∂s and the sensitivities of the internal and the hardening

parameters εSpn−1 and pn−1 of the last time step n−1. The generalised sti�ness matrix is

∂Rloc
n /∂Σn, and the unknown solution ve
tor term of the sensitivities is dΣn/ds. Hen
e,

the sensitivity of the load term 
an be determined by taking ∂σS
En/∂s from the solution

ve
tor and inserting in (5.57) or (5.58), respe
tively.

Sensitivities of the solid stress, hardening parameters and plasti
 multiplier

The 
omputation of the sensitivities of Σn = Σn(s, εS(s)) follows the same pro
edure

as has already been shown in the in
orporation of the impli
it derivations. Thereby, the

total derivative of Σn relative to s is 
omposed by the partial derivatives,

dΣn

ds
=

∂Σn

∂s
+

∂Σn

∂εS n

dεS n

ds
, (5.62)

wherein ∂Σn/∂s is taken from the solution of (5.61) and dεS n/ds is known from (5.56).

The derivatives ∂Σn/∂εS n are already determined by solving the system of equations in

(5.37).

Sensitivities of the internal variables

Applying the temporal dis
retisation of (εSpn)
′
S = ∆εSpn/∆tn = (εSpn − εSpn−1)/∆tn,

the sensitivities of εSpn are 
omputed by

dεSpn
ds

=
dεSpn−1

ds
+

d∆εSpn

ds
, (5.63)
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where d∆εSpn/ds is the in
remental in
rease of the sensitivities. Due to the time-

dependent history, the variables εSpn are governed by the hardening parameters pn; the

dependen
ies εSpn = εSpn(s, pn(s)) have to be taken into a

ount for the 
omputation of

the sensitivities of εSpn. Performing the total derivatives to s with regard to the impli
it

dependen
ies, the sensitivities of ∆εSpn result in

d∆εSpn

ds
=

∂∆εSpn

∂s
+
∂εSpn

∂pn

dpn

ds
.

(5.64)

Finally, the solutions dεSpn/ds in (5.63) and dΣn/ds in (5.62) are inserted into the right-

hand-side ve
tor of (5.61) as known quantities of the last time step for the 
omputation

of the sensitivities of the new time step n = n + 1. Hen
e, the sear
hed sensitivities

∂σS
E n/∂s 
an be taken out from the new solution dΣn/ds.





Chapter 6:

Calibration of the Partially Saturated Soil

Model

In this Chapter, the 
alibration and validation pro
ess of the partially saturated soil model

is presented. Based on the prin
iple of phase separation (Ehlers [47℄), 
f. Chapter 4, the

elasto-vis
oplasti
 material model of the solid skeleton is �tted to results from dry sand

triaxial experiments using the optimisation pro
edure presented in Se
tion 5.2 . The vali-

dation of the 
alibrated model is performed by the 
omputation of small-s
ale foundation-

and slope-failure experiments 
arried out on dry sand. Based on these experiments, the

performan
e of the new failure 
on
ept with a variable failure surfa
e (Se
tion 4.2.2) is


ompared with the old failure 
on
ept with a 
onstant failure surfa
e. On the other hand,

the motion of the pore �uids is identi�ed on deformation-free hydrauli
 
ondu
tivity ex-

periments. Then, the 
oupled pro
esses of soil deformation and the �uid motion of the

partially saturated soil model is numeri
ally validated by simulation of te
hni
al-s
ale

slope failure experiments by varying the hydrauli
 as well as the me
hani
al loading 
on-

ditions. These slope failure s
enarios have been experimentally investigated by Germer

and Braun [77℄. However, by the reason of strong variations of the experimental results,

the reprodu
ibility of the experimental results is not yet ensured and is still an ongoing

pro
ess of resear
h. Therefore, only numeri
al investigations of the slope failure s
enarios

are presented in this 
ontribution.

Remark: The presented results in this Chapter elaborated in the framework of this thesis

have been already published in the papers Ehlers and Av
i [56℄ and Ehlers et al. [57℄.

6.1 Me
hani
al behaviour of dry sand

The elasto-vis
oplasti
 model under 
onsideration is governed by 30 material parameters

to be found from experimental data. Apart from the 4 parameters of the elasti
 part (4.32)

of the model, the vis
oplasti
 part 
ontains 26 parameters, where 7 (in
luded in SH and

SD) belong to the basi
 yield 
ondition F (σS
E, p) with 4 of them (p = [β, δ, ǫ, γ]T ) fol-

lowing the hardening/softening law (4.48) yielding 3 further parameters ea
h. In addition,

the plasti
 potential G(σS
E, p) requires 2 (ψ1, ψ2) and the vis
oplasti
 evolution (4.41) 3

(η, r, σ0) additional parameters, while the new failure 
on
ept with variable failure surfa
e

(4.49) is based on only 2 (

⋆

Cǫ,
⋆
ǫlim) additional parameters.

The identi�
ation of the involved material parameters is 
arried out in two basi
 steps.

Firstly, the 4 parameters of the elasti
 part of the model are determined from loading and

unloading loops of both the triaxial 
ompression and hydrostati
 experiments. Se
ondly,

the remaining 26 parameters governing the plasti
 behaviour have to be identi�ed by

a rather 
omplex pro
edure. This pro
edure starts with a rough identi�
ation of the

87
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parameters `by guess' in order to re
eive a good initial parameter set for the numeri
al

optimisation pro
ess. During this pro
ess, several types of experiments are 
onsidered,

su
h as monotoni
ally loaded 
ompression and hydrostati
 tests as well as stress-path-

depending ones. Moreover, some of the parameters 
an be �xed during the numeri
al

optimisation pro
edure su
h that the number of the parameters to be determined redu
es

to only 14. The �nal set of parameters is then found on the basis of monotoni
ally loaded

experiments by applying a numeri
al optimisation strategy.

6.1.1 Calibration of the elasto-vis
oplasti
 model

The triaxial experiments have been 
arried out with drained 
onditions and slow loading

velo
ities (quasi-stati
 
onditions). Thereby, pore pressure 
annot be developed within

the spe
imen, pFR ≈ 0 . As a result, the e�e
tive me
hani
al solid stresses 
orrespond to

the total me
hani
al solid stress as well as to the total stress, σS
Em ≡ σS ≡ σ . In regard

of the dis
ussion of the drained triaxial experiments in Chapter 3, no di�eren
e between

the total and the e�e
tive me
hani
al solid stresses has to be made, e. g., σ1 := σS
E1m , 
f.

Appendix A.

Identi�
ation of elasti
 parameters

Cohesionless granular material like dry sand 
an only 
arry shear loads via fri
tional

for
es between the grains, whi
h therefore have to be under a permanent 
on�ning pres-

sure. Furthermore, starting a loading pro
edure from a fully unloaded state, the mate-

rial immediately behaves elasto-plasti
ally without a purely elasti
 domain. Only after

preloading, an elasti
 domain 
an be re
ognised.

From loading/unloading loops of triaxial 
ompression tests with a 
onstant 
on�ning pres-

sure of σ3 = 0.2MPa, the shear modulus µS
was dire
tly determined from the diagram

(Figure 6.1 (a)). The bulk moduli kS0 and kS1 were obtained by an estimation of the ba-

sis of hydrostati
 
ompression tests with large loading and unloading loops (Figure 6.1

(b)), while the maximal solidity nS
max was only roughly estimated from hydrostati
 stress
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Figure 6.1: Unloading/reloading 
y
les of (a) a triaxial 
ompression test and (b) a hydrostati


test of GEBA sand.
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progression, be
ause the 
ompression point 
annot be rea
hed by our volume-pressure 
on-

troller (σH = 0.95MPa). The parameter set of the elasti
 part of the material behaviour

are listed in Table C.1 together with the initial solidity nS
0S .

Identi�
ation of plasti
 parameters based on monotoni
 loading tests

During the identi�
ation pro
edure of the 26 parameters governing the plasti
 or the

vis
oplasti
 part of the overall material behaviour, respe
tively, one has to identify the


onstant parameters α, κ and m as well as the initial and saturation values pi0 and

⋆
pi

of the parameters β, δ, ǫ, γ . Note that all of them are in
luded in the yield 
ondition

(4.35). Furthermore, the parameters ψ1 and ψ2 of the plasti
 potential (4.42) have to be

found, and the hardening/softening behaviour of the evolution equations (4.48) has to be

�xed by the identi�
ation of the volumetri
 and deviatori
 evolution 
onstants CV
pi and

CD
pi . Furthermore, η, r and σ0 have to be found governing the evolution (4.48) of the

vis
oplasti
 strain, while �nally

⋆

Cǫ and
⋆
ǫlim have to be identi�ed to govern the new failure


on
ept.

The overall identi�
ation pro
edure was based on the multi-
riterion obje
t fun
tion

(5.40). Evaluating this for the 
onsidered identi�
ation problem of plasti
 parameters,

the following obje
t fun
tion results

f(spl) =
3∑

t=1

1

Nt

{
1

σt
0

Nt∑

i=1

( σt
1, sim − σt

1, exp )
2 +

1

εV t
S0

Nt∑

i=1

( εV t
S, sim − εV t

S, exp )
2

}
+

+
1

Nhyd ε
V hyd
S0

Nhyd∑

i=1

( εV hyd
S, sim − εV hyd

S, exp )
2 → min

with σS
Em ≈ σ → drained condition.

(6.1)

Therein, Nt and Nhyd are the numbers of the 
onsidered data points of the 
ompression

(t) and hydrostati
 (hyd) experiments. The referen
e values σt
0, ε

V t
S0 and ε

V hyd
S0 taken from

the experiments, whi
h denote the maximal shear and volume-
ompression-strain values,

are used for the normalisation of the data, and spl is the set of parameters that has to be

determined.

In general, 
ohesionless material like dry sand 
annot 
arry tensile loads. Thus, the

parameters α and κ 
ontrolling the range of hydrostati
 tension of the yield surfa
e have

to vanish. However, for 
omputational 
onvenien
e and in order to prevent numeri
al

instabilities during simulations, where pure tensile stresses may lo
ally o

ur during the

iteration pro
ess, α and κ are set to small values in order to avoid singularities at the tip

of the yield surfa
e. Note that these small values have to be 
hosen 
arefully, su
h that the

physi
al behaviour of the material is basi
ally una�e
ted. Furthermore, the parameters

governing the shape of the yield or failure fun
tion in the deviatori
 plane (m, γ0,
⋆
γ) have

been 
hosen su
h that the yield envelope 
an vary between an initial 
ir
le (m, γ0) and a

triangle with rounded 
orners (m,

⋆
γ). Following this, the ratio Rc/Re of the 
ompression

(Rc) over the extension (Re) radius lies between Rc/Re = 1 and its maximum value. To



90 6 Calibration of the Partially Saturated Soil Model

guarantee overall 
onvexity of the deviatori
 yield 
urve, 
f. [48, 49℄, m and γ are restri
ted

to

γ ≤ max γ (m) =

√
27

9m− 2
, m ≥ 0.54 , su
h that 0 ≤ γ ≤ 1.786 . (6.2)

Choosing m = 0.54, the ratio Rc/Re 
an vary between 1 (γ = 0) and a maximum value of

1.584 (γ = 1.786). However, it was found that 0 ≤ γ ≤ 1.66 is su�
ient to represent all


ompression/extension radii found during our experiments. This 
hoi
e also in
ludes the


hoi
e of the evolution parameters CD
γ and CV

γ , where C
V
γ is assumed to vanish su
h that

the deviatori
 yield 
urve only depends on the deviatori
 loading and the yield radius is

kept 
onstant during triaxial hydrostati
 
ompression. Furthermore, the failure surfa
e

parameters

∗

Cǫ and
⋆
ǫlim and the vis
oplasti
 parameters η, r and σ0 = κ have also been

ex
luded from the optimisation pro
ess. As a result, spl �nally in
ludes 14 remaining

parameters to be determined from (6.1).

During the testing pro
edure, hydrostati
 and 
onventional triaxial 
ompression tests have

been performed, the latter by monotoni
 shear loading after a 
onstant 
on�ning pressure

σ2 = σ3 had been applied, 
f. Figure 3.5 . In parti
ular, �ve experiments have been 
on-

sidered. These are one hydrostati
 
ompression test (hyd) and four triaxial 
ompression

tests (t := 1, ..., 4) with 
onstant 
on�ning pressures of σ3 = 0.05, 0.1, 0.2 and 0.3MPa,

f. Figure 6.2 . During the 
ompression tests, the axial load was displa
ement-
ontrolled

applied to the spe
imens with a velo
ity of u̇1 = 0.5mm/s. The solution of the non-linear
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Figure 6.2: Triaxial 
ompression tests and numeri
al simulations: (a) stress and volumetri


strain vs. longitudinal strain and (b) stress progression in the hydrostati
 plane.

optimisation problem (6.1) is 
arried out with the gradient-based SQP by use of the BFGS

method, 
f. Se
tion 5.2.1 . The numeri
al error is 
omputed by the sum of the squared dif-

feren
es between the numeri
al and experimental values using the Least-Squares Method .

The major advantage of the gradient-based method are the low 
omputational 
osts due

to a semi-analyti
al determination of the sensitivities, whi
h are required for the e�e
tive

solution of the minimisation problem (6.1). During the sensitivity analysis, the main

task is the 
omputation of the gradient of the obje
t fun
tion f(spl) with respe
t to the

material parameters spl, 
f. Se
tion 5.2.3.

Starting the identi�
ation pro
edure on the basis of a suitable guess of an initial parameter

set, the parameters 
ould be found by (6.1) as is shown in Table C.1 . Furthermore, the
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four laboratory 
ompression tests and their numeri
al 
omputation with the parameters

of these tables are shown Figure 6.2 . It is seen from Figure 6.2 (a) that the optimisation

pro
edure led to a good agreement between the numeri
al and the experimental results.

Figure 6.2 (b) illustrates the in
rease of the deviatori
 stresses in the hydrostati
 plane up

to failure values. In the standard interpretation of the failure 
on
ept, the failure values

of the deviatori
 stresses of the di�erent 
ompression tests are assumed to be on one

�xed failure surfa
e, 
f. Figure 6.3 (bla
k line), while the new failure 
on
ept presented

here implies individual failure surfa
es 1 � 4 for ea
h of the four peak shear stresses. As

a matter of fa
t, the standard failure 
on
ept is 
onstrained by a rather large failure

surfa
e in order to reprodu
e all possible peak-shear stresses o

urring between the lowest

and the highest 
on�ning pressure σ3. The detailed sub-�gures of Figure 6.3 exhibit the
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e with the old failure 
on
ept and stress-dependent failure
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es of the new failure 
on
ept.

experimentally determined failure stresses of the four 
ompression experiments and their

numeri
al 
ounterparts after parameter optimisation. The results of these sub-�gures are

twofold. On the one hand, it is seen that the experimental results 
ould be mat
hed with

only very little deviations. On the other hand, it is furthermore seen that the �xed failure

surfa
e does not ne
essarily en
ase the failure surfa
es 1 � 4 of the new 
on
ept.

To give an example of the 
omplex hardening/softening and failure behaviour of granular

material, 
onsider the experimental results and their numeri
al 
ounterpart of the triaxial


ompression experiment with a 
onstant 
on�ning pressure of σ3 = 0.2MPa as is shown

in Figure 6.4 (a). The evolution of the yield surfa
e is naturally a 
ontinuous pro
ess,

whi
h is numeri
ally realised by growing (hardening) or shrinking (softening) the yield
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Figure 6.4: (a) Triaxial 
ompression test and (b) evolution of the yield surfa
es.

envelope at ea
h time step of the 
omputation as long as the piston is driven into the

spe
imen. During the experiment exhibited in Figure 6.4 (a), a 
ontinuous displa
ement-


ontrolled loading pro
ess is applied. While the loading passes the stress points I�V, a

hardening (I�IV) and a softening behaviour (V) are observed, 
f. Figure 6.4 (b). The

experiment starts by applying an initial hydrostati
 load (stress point I) 
orresponding to

the 
on�ning pressure of σ3 = 0.2MPa . During this hydrostati
 loading, only little plasti

hardening is generated. As a result, the blue yield surfa
e I in Figure 6.4 (b) is rather

small. Thereafter, a shear load is applied by in
reasing the top load towards stress point

II, whi
h generates plasti
 deformations as the grains start slipping into a denser pa
king,

thus 
ausing a rapid in
rease of the yield envelope, 
ompare the green 
urve II in Figure 6.4

(b). Note again that the densi�
ation during the shear loading is stronger, when a higher


on�ning pressure is applied. Despite of the in
reasing dilatation of the sample between

stress points II�IV, further shear loading yields a furthermore growing shear envelope up

to the peak stress IV with small hydrostati
 softening between III and IV. This behaviour

is des
ribed by equation (4.48), where the deviatori
 and volumetri
 hardening evolves

separately. However, despite of the volumetri
 de
rease (loosening) of the yield surfa
e,

it is still growing in the deviatori
 dire
tion until the �nal hardening surfa
e IV (failure

surfa
e) is rea
hed. This behaviour is due to an in
rease of fri
tional for
es between the

grains generated by in
reasing fri
tional stresses as a result of an in
reasing top load, only

limited by the maximal deviatori
 stress or the peak stress, respe
tively. After the peak

stress is rea
hed, further loading is only possible with de
reasing shear stresses, while

the deviatori
 hardening is terminated, and the growing volumetri
 dilatation redu
es the

fri
tional for
es between the grains, thus leading to stress softening. Therefore, the smooth

stress softening between the stress points IV and V is a result of the strong dilatational

behaviour and 
auses a rapid loosening of the intergranular stru
ture. This behaviour is

approximated by a volumetri
 shrinkage of the yield surfa
e (softening) until the �nal size

V is rea
hed in this experiment.

The non-
ir
ular (anisotropi
) plasti
 response of the deviatori
 yield envelope of sand

during shear loading results in an in
reasing ratio Rc/Re from Rc/Re ≈ 1 towards its

maximum value. In order to 
apture this behaviour, six monotoni
 shear-load experi-

ments (3 triaxial 
ompression experiments and 3 triaxial extension experiments) at 
on-
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stant values of the �rst stress invariant Iσ have been 
arried out following the loading

path in Figure 3.6, while the results are presented in Figure 6.5 . The 
on�ning pressures

of these experiments have been set to σ3 = 0.1MPa 
orresponding to the stress invariants

Icσ = Ieσ = −0.3MPa, to σ3 = 0.2MPa (Icσ = Ieσ = −0.6MPa) and to σ3 = 0.3MPa

(Icσ = Ieσ = −0.9MPa). With in
reasing values of γ at 
onstant m, the 
ir
ular devia-

P

S

f

r

a

g

r

e

p

l

a




e

m

e

n

t

s

Icσ : −0.3
Icσ : −0.6
Icσ : −0.9
Ieσ : −0.3
Ieσ : −0.6
Ieσ : −0.9

sim.

σ
3
−
σ
1
[M

P
a]

−ε1 [−]

0.6

0.4

−0.4

−0.2

0.080.060.040.020

0

0.1

0.2

[MPa]

(a) (b)

 1

P

S

f

r

a

g

r

e

p

l

a




e

m

e

n

t

s

s

i

m

.

− Iσ [MPa]
R

c
/
e
=
√
2
II
D σ

0.80.60.4

0.4

0.2

0.2

−0.2

0

Figure 6.5: Triaxial 
ompression/extension tests with 
onstant stress invariants I
c/e
σ : (a) shear

stresses vs. strain and (b) shear stresses in the hydrostati
 plane.

tori
 envelope evolves towards a triangular shape with rounded 
orners, 
f. Figure 4.1 .

In Figure 6.5 (b), the stress paths are shown in the hydrostati
 plane for ea
h of the

three 
ompression and extension experiments, where the respe
tive ratios Rc/Re at the

limit state are (Rc/Re)
0.3 / (Rc/Re)

0.6 / (Rc/Re)
0.9=1.25 / 1.38 / 1.51 . Hen
e, the higher

the state of hydrostati
 pressure is, the greater is the in
rease of the ratio Rc/Re or the

anisotropi
 behaviour of sand, respe
tively.

In 
ase of only monotoni
 triaxial experiments, the old failure 
on
ept with a �xed failure

envelope is able to 
apture the stress-strain behaviour of the 
ompression 
alibration

experiments just as ni
ely as the new failure 
on
ept, 
f. Figures 6.1, 6.2 and 6.5, but

it will fail to reprodu
e the failure behaviour of the stress-path experiments taken as a

validation of the new model. On the other hand, it will be shown how ni
ely the new


on
ept 
an be veri�ed reprodu
ing the experimental eviden
e of foundation- and slope-

failure problems.

6.1.2 Loading-path-dependent stress-strain behaviour

Stress-path test 1

The stress-path test 1 is 
arried out as a validation experiment a

ording to the s
hemati


diagrams of Figure 3.12 (a), where a 
onventional monotoni
 
ompression test in the hy-

drostati
 stress plane is shown. In the experiment 
orresponding to these �gures, loading

and unloading is 
arried out in various steps. In the �rst step, a hydrostati
 pressure is

applied up to a 
on�ning pressure of σH2
3 = 0.3MPa at stress point P1. Thereafter, the

sample is loaded in the σ1-dire
tion, thus initiating an in
reasing shear stress at 
onstant


on�ning pressure until the peak stress is rea
hed at stress point P2. After shear-stress
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Figure 6.6: Experiment and simulation of the stress-path test 1 with growing and �xed failure
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es.

unloading, the 
on�ning pressure is redu
ed to σH1
3 = 0.05MPa at stress point P3, and

then sheared again up to P4 followed by a redu
tion to P5.

In Figure 6.6, the experimental results of the non-monotoni
 stress-path test 1 are indi-


ated by 
ir
les, while the asso
iated numeri
al 
omputation is shown by the red solid line.

Apart from this, the bla
k 
rosses exhibit two further 
onventional monotoni
 experiments

taken at σH1
3 = 0.05MPa and σH2

3 = 0.3MPa . These experiments have been in
luded in

the overall parameter determination pro
edure des
ribed before. Here, these experiments

are used for a 
omparison of monotoni
 and non-monotoni
 stress paths. Following the

red line at σH2
3 = 0.3MPa up to the peak stress 
orresponds to a shear loading between

P1 and P2, also 
ompare Figure 3.11 (a). Thereafter, the shear stress is 
ompletely re-

du
ed and the 
on�ning pressure is 
hanged towards σH1
3 = 0.05MPa (P3). Reloading

at σH1
3 = 0.05MPa basi
ally follows the 
rossed 
urve of the 
onventional (monotoni
)

experiment. However, it is seen from the zoomed region of Figure 6.6 that the shear

stress �rstly ex
eeds the peak shear stress that was obtained during the 
onventional ex-

periment at σH1
3 = 0.05MPa before it redu
es to the 
rossed 
urve. This behaviour is

s
hemati
ally in
luded in Figure 3.12 (a), where the ex
eeded value is indi
ated as P4

belonging to the experiment with the failure envelope rea
hed at P2 with the 
on�ning

pressure of σH2
3 = 0.3MPa . Sin
e loading beyond P4 is driven displa
ement-
ontrolled,

further shearing disturbs the intergranular stru
ture, the shear stress is unstable at the

a
tual hydrostati
 pressure and redu
es to P5 belonging to stable values of the monotoni


experiment at σH1
3 = 0.05MPa and the green failure surfa
e in
luded in Figure 3.12 (a).

These experimental results 
on�rm the assumption of stress-dependent failure surfa
es,


f. Figure 3.12 (a), and furthermore show that granular material always tries to keep the

size of the yield surfa
e as small as possible, whi
h obviously 
orresponds to stable stress

states as they are obtained by monotoni
 loading.

Moreover, when 
omparing the old failure 
on
ept to the new 
on
ept presented here,

there are no di�eren
es in the reprodu
tion of the stress-strain behaviour during the

stress paths towards P1 and P2. The strength of the new failure 
on
ept only be
omes
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apparent during the stress paths from P2 towards P3, P4 and P5, where the experimental

results 
annot be reprodu
ed with the old failure 
on
ept with its 
onstant shape.

Stress-path test 2

The stress path of this validation experiment is basi
ally shown in Figure 3.11 (b) and

Figure 3.12 (b), where the loading is governed by the following order:

1. hydrostati
 loading up to σH1
3 = 0.05MPa (P1),

2. �rst shear loading until the peak stress (P2) is rea
hed at 
onstant σH1
3 ,

3. shear unloading followed by an in
rease of the 
on�ning pressure up to σH2
3 =

0.2MPa (P3),

4. se
ond shear loading until the peak stress (P4) is rea
hed at 
onstant σH2
3 ,

5. se
ond shear unloading followed by a redu
tion of the 
on�ning pressure towards

σH1
3 = 0.05MPa (P5),

6. third shear loading at 
onstant σH1
3 �rstly rea
hing P6 at the red failure surfa
e of

Figure 3.12 (b), while further loading leads to a softening ba
k to P7 equivalent to

P2.

In a standard elasto-plasti
 pro
ess with hardening properties, the yield 
urve is rea
hed

again after having passed a loading and an unloading pro
ess, when the applied stress

again rea
hes the greatest stress state obtained so far. Reloading up to this point is purely

elasti
, while further loading is governed by the hardening pro
ess. In the stress-strain

diagram, 
f. Figure 3.11 (b), this is seen from a swit
h of the loading 
urve from linear to

highly non-linear at the yield point, whi
h is also indi
ated in Figure 6.7.
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Figure 6.7: Experiment and simulation of the stress-path test 2.

However, in 
ase of granular material, ea
h yield stress belongs to a 
ertain state of the


on�ning pressure. Whenever the 
on�ning pressure is 
hanged, the 
orresponding yield
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stress also 
hanges. Following this, the yield-stress values of a stress-path test 
an only

be determined by the 
hange of the stress-strain relation.

Considering the experimental results of the stress-path test 2 exhibited in Figure 6.7, the

stress-strain relation during the se
ond shear loading, where the 
on�ning pressure has

been in
reased from σH1
3 = 0.05MPa to σH2

3 = 0.2MPa, shows |σ1 − σ3| ranging between

zero shear stress and the peak value at point 8. It is furthermore seen that the stress-strain

relation exhibits a linear 
urve only between zero and point 5. Thereafter, a non-linear

behaviour is observed with a steady in
rease of plasti
 deformations, whi
h 
an only be


aptured using the new failure 
on
ept (4.49). In 
ontrast, the old failure 
on
ept is only

able to model the shear-stress-strain relation during this stress path up to the yield point

5. Thereafter, the old failure 
on
ept follows the assumption of only elasti
 deformations

along the straight line until it rea
hes the failure 
urve at σH2
3 = 0.2MPa of the monotoni


experiment.
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Figure 6.8: Computational results of evolving yield surfa
es during the stress-path test 2: (a)

�rst shear loading at σH1
3 , (b) unloading and se
ond shear loading at σH2

3 , (
) unloading and

redu
tion of σH2
3 to σH1

3 , (d) third shear loading and softening at σH1
3 .

For a better understanding of the yielding behaviour during the loading path of Figure

6.7, the evolution of the yield surfa
e of the new failure 
on
ept is presented at sele
ted

states of the stress path through the points 1-11 indi
ated by white 
ir
les. Following

this, the evolving yield surfa
e shown in Figure 6.8 (a) rea
hes the failure surfa
e at the

peak stress during the �rst shear loading at point 4 
orresponding to the failure surfa
e

4. It should be noted that the yield surfa
e 3 exhibiting the maximal hydrostati
 stress

must not ne
essarily be a failure surfa
e. The 
ru
ial fa
tor of failure is the size of the

failure surfa
e in the deviatori
 dire
tion.
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Following the se
ond shear loading, 
f. Figure 6.8 (b), it should be re
ognised that the

stress points 4 and 5 are on the same yield envelope, where, in 
ase of the se
ond loading,

the failure surfa
e 4 of the �rst loading is stabilised by a higher 
on�ning pressure and,

therefore, 
hanges its 
hara
ter towards a yield surfa
e. Further loading between stress

points 5 and 8 leads to an extension of the yield envelope during plasti
 hardening governed

by (4.49) until the failure surfa
e 8 is rea
hed. Shear unloading and redu
ing the 
on�ning

pressure to σH1
3 = 0.05MPa, 
f. Figure 6.8 (
), leads to stress point 9 during the third

shear loading pro
ess, 
f. Figure 6.7 (extra
ted detail). Point 9 �rstly belongs to the

failure surfa
e 8. However, further 
ompression immediately redu
es the size of the yield

surfa
e from 9 to 11 during softening again governed by (4.49), 
f. Figure 6.8 (d). Note

that the applied stress paths are indi
ated by green arrows in Figure 6.8.

Stress-path test 3

The in�uen
e of a hydrostati
 pre
onsolidation on the shear-stress-strain behaviour is in-

vestigated by two further validation experiments following the stress-path test 3, where

the 
orresponding loading path is illustrated in Figure 3.13 . Applying a hydrostati
 pres-

sure, the spe
imen rea
hes the stress point P1 only governed by the maximum value of

the volume-pressure 
ontroller at σH
3 = 0.95MPa 
orresponding to Iσ = −2.85MPa .

Thereafter, the 
on�ning pressure is redu
ed to σH1
3 = 0.05MPa or to σH2

3 = 0.1MPa
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Figure 6.9: Pre
onsolidated triaxial 
ompression tests with 
on�ning pressures of σH1
3 =

0.05MPa and σH2
3 = 0.1MPa: (a) shear stress vs. longitudinal strain, (b) hydrostati
 stress

vs. volumetri
 strain.

at P2, respe
tively, and the spe
imen is sheared towards P3 while keeping the respe
tive


on�ning pressure 
onstant.

The results of these experiments and the 
orresponding numeri
al simulations are shown

in Figure 6.9, 
f. Figure 3.13 (b). Figure 6.9 (b) exhibits the pre
onsolidation pro
ess

versus the volumetri
 strain ranging from zero to approximately 0.014. Thereafter, the

hydrostati
 unloading is applied and kept 
onstant during shear loading. From Figure

6.9 (a), a linear elasti
 behaviour of the stress-strain 
urves is observed until the white


ir
les are rea
hed, whereas the monotoni
ally loaded samples do not show a purely elasti


behaviour, 
ompare, for example, Figures 3.9 and 6.4 . This is due to the fa
t that the hy-

drostati
 pre
onsolidation results in an extension of the yield surfa
e from approximately

zero to a 
ertain extent, while the 
onventional 
ompression tests without pre
onsolidation



98 6 Calibration of the Partially Saturated Soil Model

exhibit elasto-plasti
 deformations and plasti
 hardening up to the failure load during the

whole shear-loading pro
ess. However, 
omparing the peak-stress values of the pre
onsol-

idated sample with the monotoni
ally loaded referen
e 
ompression tests with the same


on�ning pressures of σH1
3 = 0.05MPa and σH2

3 = 0.1MPa, 
f. Figure 6.2, it is found

that the failure behaviour is only marginally in�uen
ed by pre
onsolidation, 
f. Figure

3.13 (b). This e�e
t 
an also be explained by the development of the yield surfa
e during

the pre
onsolidation pro
ess, where the main in
rease of the yield envelope is obtained in

hydrostati
 dire
tion, while there is only a very small in
rease in the deviatori
 dire
tion.

As a result, the deviatori
 yield 
urve approximately remains a 
ir
le with Rc/Re ≈ 1.

Figure 6.10 (a) exhibits the development of the yield surfa
e during pre
onsolidation

with the �nal bla
k dashed-dotted line, while Figures 6.10 (b) and (
) show the di�erent

hardening-softening 
urves at σH1
3 (b) and σH2

3 (
). It is also seen from these �gures that

shear loading following the hydrostati
 pre
onsolidation �rstly extends the yield surfa
e

(a)
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Figure 6.10: Evolution of the yield surfa
e: (a) pre
onsolidation phase up to IH2
σ = −2.85MPa,

(b) shearing phase at 
onstant σH1
3 = 0.05MPa and (
) at 
onstant σH2

3 = 0.1MPa.

in the dire
tion of deviatori
 
ompression up to the failure surfa
e at the peak stress and

shrinks thereafter due to softening, while the hydrostati
 extension also shrinks, 
f. the

dashed lines with dire
tion arrows in
luded in Figures 6.10 (b) and (
).

Finally, it is 
on
luded from the experiments on granular material that the plasti
 yield-

ing during pure hydrostati
 loading is limited by the sti� grains, whi
h are rigid and

un
rushable under moderate pressures usually found in geote
hni
al appli
ations. Thus,

hydrostati
 loading under su
h a moderate pressure is not restri
ted by the failure limit.

This 
an be 
on
luded from the knowledge that an in
rease of the hydrostati
 pressure

�nally does not 
ause the grains to slide into a denser pa
king. As a 
onsequen
e, the

hydrostati
 evolution of the yield surfa
e is terminated, and the volumetri
 elasti
 stress-

strain 
urve tends towards a verti
al tangent, 
f. Figure 6.9 (b).

6.1.3 Numeri
al model validation via simulation of sand box ex-

periments

The large number of material parameters results in a di�
ult and not always unique

parameter identi�
ation pro
ess based on the experimental eviden
e. As a result, it is

basi
ally possible that there is more than only one parameter set su�
ient to mat
h

homogeneous triaxial experiments. This possibility led to a further restri
tion of the

physi
al range of parameters by not only 
onsidering monotoni
ally loaded experiments
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but also stress-path-depending ones. To 
he
k whether or not one 
an rely on the physi
al

model and the in
luded material parameters when �eld problems have to be evaluated,

it is useful to 
ontrol the whole model by the numeri
al simulation of non-homogeneous

validation experiments. Obviously, the validation experiments must pro
eed from the

same initial solid density like that of the triaxial experiments used during the overall

parameter identi�
ation pro
edure.

The validity and appli
ation of the used model was proven through the 
omputation of

foundation- and slope-failure problems initiated by lo
al shear-failure events. However,

other failure problems 
an be also pi
ked out from the range of possible validation ex-

periments. In parti
ular within the framework of this thesis, an experimental sand box

has been 
onstru
ted to 
arry out 3-d foundation- and slope-failure tests, approximately

restri
ted by plane-strain 
onditions resulting from rigid sand-box walls.

Sand box

The experimental sand box is 50 cm long, 30 cm wide, and 27 cm high. Its mainly 
on-

sists of steel, ex
ept of the front and ba
k sides, whi
h are made of glass su
h that the

development of shear bands 
an be observed, 
f. Figure 6.11 . For a better visibility of the

shear bands, stripes of bla
k-
oloured sand have been inserted in verti
al 
olumns at the

(a) (b)

Figure 6.11: (a) Experimental box and (b) me
hani
al devi
e for adjusting the slope angle.

glassy side walls of the box. The fri
tional for
es between the sand and the glass were

eliminated by applying lubri
ated transparent latex sleeves with a thi
kness of 0.35mm
on the inside of the glass walls. When the box is �lled, the GEBA sand is 
ompa
ted on

a vibration table until the same initial solid density of ρS0S = 1.55 g/cm3
(dense sand) is

rea
hed, whi
h was also used for the triaxial experiments.

In order to prepare the setup for the slope-failure experiments, a slope was 
reated by

pushing a thin steel plate into the sand with an angle of either 20◦ or 30◦, while the

remaining sand above the plate was removed. In order to avoid any boundary e�e
ts on

the foundation-failure experiment, one has to 
onsider that the horizontal proje
tion of

the expe
ted shear band yields approximately 13 times of the load plate width, whi
h was

experimentally and numeri
ally determined by use of load plate widths of 3 and 5 cm . Fi-

nally, a load-plate width of 3 cm was 
hosen in order to avoid any disturbing e�e
ts on the

shear-band evolution obtained from the left and right walls of the box. Furthermore, the

slope- and foundation-failure experiments have been performed displa
ement-
ontrolled

at a velo
ity of 1mm/min under 2-d plane-strain 
onditions.
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2-d failure experiments and numeri
al simulation

Figure 6.12 shows the geometry and the dimensions of the foundation- and slope-failure

experiments used for the validation of the proposed model and the in
luded parameter

set. For the numeri
al simulation of the failure experiments by use of the �nite element

method, the spatial domain is separated in two dis
retisation areas, where the area with

the expe
ted shear band is dis
retised with a �ner triangular mesh than the remainder

of the 
omputation domain. This will lead to a �ner and more realisti
 resolution of the

shear band and will simultaneously help to redu
e the 
omputation time.
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Figure 6.12: Geometry and dimensions of the experimental box tests [
m℄.

The shear bands of the foundation- and the slope-failure experiments are illustrated in

Figure 6.13 (b) and (d) together with the 
orresponding numeri
al simulations depi
ted

in Figure 6.13 (a) and (
). The evolving shear bands are dete
ted by the norm ‖εSp‖
of the a

umulated plasti
 strains, where small negligible values below 0.06 have been

deleted for 
larity reason. Note that the foundation-failure experiment was 
omputed by

assuming axial symmetry in order to redu
e the 
omputation time. A visual investigation

of the 
omputed shear bands reveals an almost identi
al shape in 
omparison with the

experimentally obtained shear bands of Figure 6.13 (b) and (d).
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Figure 6.13: Failure sand-box experiments and numeri
al simulations of shear bands illustrated

by ‖εSp‖: (a) and (b) foundation-failure problem, (
) and (d) slope-failure problem with a slope

angle of 20

◦
.

The 
orresponding stress-displa
ement 
urves of the load plate are shown in the diagrams

of Figure 6.14 . Therein, Figure 6.14 (a) presents the numeri
al results obtained with the

new failure 
on
ept by appli
ation of equation (4.49), while Figure 6.14 (b) shows the

results of the simulations using the old failure 
on
ept with a �xed failure surfa
e.
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In general, the proposed new failure surfa
e performs very well, as it is able to almost

exa
tly mat
h the measured results of all three experiments. In this regard, even the

softening behaviour is ni
ely reprodu
ed. Considering the numeri
al results of the old

failure 
on
ept, 
f. Figure 6.14 (b), neither the peak stress nor the softening is reason-

ably 
aptured. The reason for this poor performan
e of the old 
on
ept is found in the

hydrostati
 stress levels during the failure experiments, whi
h may strongly di�er from

the hydrostati
 stress levels during the 
alibration experiments for whi
h the �xed failure

surfa
e was exa
tly adapted.
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Figure 6.14: Stress-displa
ement 
urves for the foundation-failure experiment (found.) and

both slope-failure experiments with slope angles of 20◦ (slope

20
) and 30◦ (slope

30
) 
omputed by

(a) the new failure 
on
ept and (b) the old failure 
on
ept.

It is 
on
luded from these results representing non-homogeneous deformations of granular

material that a �xed failure surfa
e, although it 
an reprodu
e spe
i�
 
alibration exper-

iments, 
ompletely fails in 
ase of general appli
ations with di�erent hydrostati
 stress

levels. In 
ontrast, the new failure 
on
ept allows to 
ompute suitable failure surfa
es for

every shear-stress level at any 
orresponding hydrostati
 stress, whi
h leads to a better

approximation of the failure behaviour of an arbitrary initial-boundary-value problem.

Moreover, Figure 6.15 shows the evolution of the yield surfa
e in point A of Figure 6.13

(a) at the initial state (initial y-s), at the failure state (f-s), and at the end of the softening

(y-s after softening) during the foundation-failure simulations. The results obtained with

the new failure 
on
ept are shown in Figure 6.15 (a), while the results based on the old
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failure 
on
ept are depi
ted in Figure 6.15 (b), in both 
ases with the initial yield sur-

fa
e in green. The stress states rea
hed initially (approx. at the origin of the 
oordinate

system), at failure and after softening is indi
ated by bla
k points on the yield surfa
es.

However, the failure and softening values of the old failure 
on
ept 
an only be seen in

the extra
ted detail of Figure 6.15 (b) be
ause of the enormous size of the yield surfa
e at

the failure state. A 
omparison of the bla
k stress points at failure with the 
ir
les at the

theoreti
ally highest deviatori
 stress reveals that the yield surfa
e of the old failure 
on-


ept predi
ts a more than 10 times larger failure surfa
e in 
omparison to the new failure


on
ept. Thus, the old failure 
on
ept yields large plasti
 deformations when in
reasing

the yield surfa
e until the failure surfa
e is rea
hed at peak loading. Furthermore, it

also needs high plasti
 deformations to shrink the large yield surfa
e towards softening

behaviour. Hen
e, the peak stresses of all three simulations obtained with the old failure


on
ept are rea
hed at larger deformations 
ompared with the experiments. Finally, there

is almost no predi
tion of a stress de
rease after having passed the peak stress, 
f. Figure

6.14 (b).

6.2 Model 
alibration of the mobile pore �uids

The hydrauli
 properties of the GEBA sand are determined on the basis of the experi-

mental data provided by VEGAS

∗
using the van Genu
hten 
apillary-pressure-saturation

relation given in (4.59) and (4.58). The adapted hydrauli
 parameters are listed in Table

C.2 . In Figure 6.16 (left), the experimental results and the �tted 
urve of the 
apillary

pressure-saturation relation are shown. For the relative permeability relations of the �uids

in (4.59), no experimental data were available. Therefore, the dependen
y of the �uid

permeabilities on the saturation of the GEBA sand is 
hosen equivalently to that of a

typi
al uniform �ne sand, see Figure 6.16 (right).
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VEGAS (Versu
hseinri
htung zur Grundwasser- und Altlastensanierung) - Resear
h Fa
ility for Sub-

surfa
e Remediation of the University of Stuttgart
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6.3 Numeri
al study of slope instabilities under di�er-

ent hydrauli
 and me
hani
al loading s
enarios

In this subse
tion, the in�uen
e of 
apillary and �ow e�e
ts on the deformation and

stability behaviour of slopes is investigated. To this end, using the previously des
ribed

and 
alibrated triphasi
 TPM model, numeri
al simulations of a te
hni
al-s
ale sand slope

under di�erent loading and hydrauli
 
onditions are 
arried out and 
ompared.

6.3.1 The slope 
onditions

A sket
h of the slope is depi
ted in Figure 6.17 (left). The boundary 
onditions of the slope

problem are adapted in su
h a way that they mimi
 the supposed me
hanisms whi
h might

trigger real hillslope instabilities. In parti
ular, the following boundary 
onditions have

been implemented: a uniformly distributed me
hani
al load (for
e 
ontrolled) ex
ited

by a rigid but movable loading platen on top of the slope to determine the maximum

failure load qmax as an indi
ator of the slope stability. Moreover, hydrauli
 
onditions

are pres
ribed by independently in
reasing or de
reasing the water head on the left (hwl)
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Figure 6.17: (left) Geometry and dimension of the slope in 
entimetres and (right) 
omputed

water saturation for a water table on the left side of the slope (hwl) = the water head on the

right side of the slope (hwr) = 10 
m; q is the me
hani
al load and sW is the water saturation.

and the right (hwr) boundary of the slope or by in
reasing the pore-water pressure at the

bottom under the slope interse
tion (hwm). Please note that the 
onsidered GEBA sand

is very �ne and exhibits a distin
t partial saturated zone of about 100 
m. A

ordingly,

pro
eeding from a 
onstant water head of hwl = hwr = 10 cm as the initial 
ondition for

the unsaturated slope simulations, the domain is more than 80% saturated with water

up to a height of about 58 
m, 
f. Figure 6.17 (right).

The 
omputations were 
arried out by using the same dis
retisation of the domain for all

slope 
ases, 
f. Figure 6.18 . The part of the slope where the expe
ted shear band develops

is mu
h �ner dis
retised in order to be 
loser to the right solution. The 
omplete number

of the triangle �nite elements amounts to 11 347. Based on the quadrati
 ansatz fun
tions

for the displa
ement uS and the linear interpolation approa
h of the �uid pressures pWR

and pAR
, the �ne dis
retisation of the slope leads to a high number of degrees of freedom
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Figure 6.18: FE mesh with 11 347 triangle elements.

(dof) of 147 511 and, therewith, to a high 
omputation time. But the good resolution of

shear bands 
on�rms the 
hoi
e of the �ne mesh.

6.3.2 Numeri
al results and dis
ussion

In Table 6.1, all 
omputed failure s
enarios are listed, where for all 
ases the load is

applied linearly in
reasing with time, q(t) = 10 t kPa/min. In addition to the partially

saturated 
onditions, the dry 
ase without 
onsidering the water phase using a redu
ed

 −
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 −

 −

 −

 −

 −

 −

 − −

 −
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ase B 
ase C 
ase D

hwl [cm]

hwr [cm]

ḣwl [cm/s]

ḣwm [cm/s]

thyd [s]

qmax [kPa]

�

≈ 138 ≈ 153≈ 230 ≈ 220≈ 220

10 1010

10

10

10

10 65

11/600 11; 11/600

11; 11/600

30.8; 264 20.7; 647

10 (initial)

Table 6.1: Boundary values and loading data of the investigated slope s
enarios.

biphasi
 model was numeri
ally investigated. The slope in the dry 
ase and the 
ases

A and B is loaded until failure, but in A and B only after rea
hing a stationary water

table 
ontrolled by hwl and hwr . In 
ontrast, the 
ases C and D are �rst loaded by q to a

maximum of 220 kPa, whi
h is below the failure load of 
ase A, and afterwards subje
ted

to 
hanges in the hydrauli
 
onditions. In parti
ular, in 
ase C, the water head below

the slope interse
tion is in
reased with two velo
ities of ḣwm = 11 
m/s (the fast 
ase)

and (11/600) 
m/s (the slow 
ase) starting from the initial water table of 10 
m, while the

water head at the left and right side of the slope is kept 
onstant at hwl = hwr = 10 
m.

In 
ase D, the water level on the left side is in
reased in the same way as 
ase C with the

water head velo
ity ḣwl = 11 
m/s and (11/600) 
m/s.
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It be
omes dire
tly apparent from the failure loads in Table 6.1 that there is a signi�
ant

in�uen
e of the water saturation. Comparing the dry 
ase with 
ase A, there is an in
rease

of the maximum load prior to failure of about 92 kPa (66,7%) whi
h 
an only be explained

by the stabilising 
apillary pressure e�e
ts in the partially saturated zone. Even in 
ase

B, where the pore-water �ow driven by the hydrauli
 gradient destabilises the slope, the


omputed peak load is still 15 kPa (10,9%) above the one of the dry 
ase.

In Figure 6.19 (left), the water table at failure for 
ase A is visualised, whi
h shows a

slight drawdown under the slope. This 
an be explained by the fa
t that a dilatant shear

band develops su
king pore water from the surrounding into the lo
alisation zone, whi
h

is 
on�rmed by the streamline pathways depi
ted in Figure 6.19 (right). In Figure 6.20,

the water table, the streamlines and shear bands of 
ase B are given. Also in this 
ase, the
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Figure 6.19: Case A at time 1389 s: (left) water table (w-t) at slope failure and (right) stream-

lines of water seepage �ow and shear band.
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Figure 6.20: Case B at time 1290 s: (left) water table (w-t) at slope failure and (right) stream-

lines of water seepage �ow and shear band.

a

umulation of dilatant plasti
 strains yields a destabilising shear band whi
h develops

faster than in 
ase A be
ause of buoyan
y and �ow e�e
ts indu
ed by the in
reased water

head at the left boundary. Please note that the maximum value of hwl is 
hosen su
h that

the water table does not ex
eed the slope interse
tion to avoid the erosive leak of water

at the slope side. From the streamlines of the water seepage �ow (Figure 6.20, right), it

is 
learly seen that the pore water �ows from the left to the right side through the slope

without passing the slope interse
tion. Moreover, it is observed that the streamlines at

the left side of the slope move upwards be
ause of the 
apillary e�e
ts and of the evolving

dilatant shear band. The su
tion of water into the dilatant shear zone is not that mu
h

pronoun
ed as in 
ase A as this e�e
t is superposed by the pore-water �ow driven by the

potential di�eren
e.
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In 
ase C, after applying the top load of 220 kPa, an in
rease of the pore-water pressure

under the slope interse
tion triggers the destabilisation of the slope. The pressure sour
e

is lo
ated 125 
m away from the left boundary of the slope as depi
ted in Figure 6.17

(left) and has a width of 5 
m. In 
ase D, the water head hwl at the left boundary of
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Figure 6.21: Case C: (left) water table (w-t) at failure (higher dividing line: ḣwm =11 
m/s;

lower line: ḣwm =(11/600) 
m/s) and (right) streamlines of water seepage �ow and shear band

at 30.8 s after in
rease of the load (the fast 
ase).
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Figure 6.22: Case D: (left) water table (w-t) at failure (higher dividing line: ḣwm =11 
m/s;

lower line: ḣwm =(11/600) 
m/s) and (right) streamlines of water seepage �ow and shear band

at 20.7 s after in
rease of the load (the fast 
ase).

the slope is in
reased. For both 
ases, the maximum a
hievable height of the water head

is 65 
m, whi
h is applied within di�erent time intervals in order to �nd out if a fast

in
rease of the pore-water pressure or the water head, respe
tively, has any in�uen
e on

the stability habits of the slope. It is observed that the slope failure triggered by a slow

in
rease (11/600 
m/s) of ḣwm and ḣwl in 
ases C and D, respe
tively, o

urs at a lower

water table than for a fast in
rease (11 
m/s) as depi
ted in Figures 6.21 (left) and 6.22

(left). Apparently, the slope instability is not only dependent on the absolute height of

the water table but also on the in
rease rate of the pore pressure or the water head,

respe
tively. Transferring this �nding to real hillslopes may explain why landslides also

happen during or after long-lasting but moderate rainfall events asso
iated with a slow

but 
ontinuous in
rease of the water table.

To illustrate the shear band development, the a

umulated plasti
 strains at di�erent

time states for 
ase C are shown in Figure 6.23 . As 
an be seen, the shear band originates

from the load platen and from the interse
tion of the slope, whi
h �nally join together

building a smooth slip line, whereby the shear band pro
eeding from the slope interse
tion

mainly evolves. After the me
hani
al load is applied, only marginal plasti
 deformations

o

ur at the load platen, whi
h do not a�e
t the overall stability of the slope before the
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Figure 6.23: The a

umulated plasti
 strains ‖εSp‖ of Case C (the 5-s 
ase): (left) the inter-

mediate state at 20.7 s and (middle) 27.3 s after applying the load, and (right) the state at failure

at 29.4 s.

hydrauli
 loading is initiated. Figure 6.23 (left) depi
ts the beginning of the shear-band

development after the �rst 20.7 s of the hydrauli
 loading pro
ess, whi
h in the 
ourse of

the 
ontinuously in
reased water pressure develops very fast within the next 7-9 s until

failure (Figure 6.23, right). In these stress-
ontrolled simulations, the failure point has

been de�ned as the state, where a sudden displa
ement in
rease of the load platen is

observed. In fa
t, test 
ase C was born from the idea that some natural slopes may get

unstable due to an inherent 
on�ned water system that dire
tly responds to rainfall events

with a sudden pressure in
rease under the slope interse
tion.

In Figure 6.24, the load-settlement 
urves of the load platen are plotted for all 
ases of

Table 6.1. Clearly, the 
urves underline the aforementioned 
onsiderable positive in�uen
e

of the 
apillary e�e
ts on the slope stability. Regarding the time-settlement u−t and time-
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Figure 6.24: Load-displa
ement 
urves of the load platen; q is the me
hani
al load and u is

the verti
al displa
ement.

water-pressure pWR
- t 
urve in point A (see Figure 6.17) of the load platen of 
ases C and

D plotted in Figure 6.25, it is observed that the failure behaviour is rather dependent on

the in
rease rate of ḣwm or ḣwl, respe
tively, than on the type of the hydrauli
 boundary


ondition. Therein, lines with triangles are the fast 
ases and that ones with squares

are the slow 
ases of hydrauli
 loading. It is 
learly re
ognisable that the slope failure

is indu
ed with a fast in
rease of the water head at a higher water table. Moreover, in
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Figure 6.25: Displa
ement and water pressure in point A (see Figure 6.17) versus time pro-


eeding of (left) 
ases C and (right) 
ase D.


ase C, the failure of the fast one o

urs in 30.8 s, while, in 
ase D, it o

urs in 20.7 s.

However, for the slower 
ase C, the failure happens (264 s) mu
h earlier than in 
ase

D (647 s). The reason therefore 
ould be that in 
ase D, the fast in
rease of the water

table weakens almost the whole slope due to the high water table, while the in�uen
e

in 
ase C is 
onstrained to the lo
al surrounding at the water inje
tion point near the

slope interse
tion. In 
ontrast, the slow 
ase C fails 
learly rather (264 s) and at lower

pore water pressure pWR ≈ 1 kPa in point A (Figure 6.24) as the 
orresponding 
ase D

(647 s) and (pWR ≈ 1.55 kPa). The reason for this is that the slope interse
tion rea
ts

more sensitive to the loading of 
ase C than of 
ase D. Therefore, the slope fails earlier

and at a lower pore-water pressure.

Furthermore, the water pressure drops rapidly with an evolving dilatant shear band. The

pressure drop in the vi
inity of the shear band may be a signal for the development of a

slope failure due to a 
ontinuous in
rease of plasti
 deformations. This phenomenon may

be used as a failure indi
ator for potentially dangerous natural slopes (Ehlers et al. [57℄

and Germer and Braun [77℄). The 
oheren
es between a pore-water pressure drop and

the slope movement 
an be dete
ted in the �eld of natural slopes and has to be found out

by detailed �eld investigations via long-term monitoring systems.

Although our numeri
al results are physi
ally sound and 
learly reveal the 
onsiderable

in�uen
e of 
apillary and �ow pro
esses on slope instabilities, there is still the need of

experimental eviden
e to verify our �ndings on a quantitative basis. Therefore, our re-

sear
h partners from VEGAS 
onstru
ted a te
hni
al-s
ale sand slope experimental setup

for testing the presented 
ases (see Germer and Braun [76, 77℄).



Chapter 7:

Numeri
al Investigation of a Slow-Moving

Landslide

In this 
hapter, a numeri
al investigation of a natural hillslope is presented. The slope un-

der study is the `Heumös' hillslope, whi
h is 
ontinuously moving with a low motion rate.

It is of utmost interest to know, under whi
h boundary and loading 
onditions a sudden

landslide may happen. Therefore, to investigate the 
hara
teristi
s of this slope motion,

a DFG founded Resear
h Unit

∗
was founded in 2006. Regarding the 
omplexity of the


oupled �ow and deformation pro
esses and geologi
al stru
ture of the Heumeos hillslope

demands an interdis
iplinary resear
h team 
onsisting of spe
ialists in their individual

resear
h �eld of hydrology, geologi
, geophysi
s and 
omputational geome
hani
s.

The 
hapter begins with a brief introdu
tion of the general 
hara
teristi
s of the hillslope,

where detailed geologi
al information on the Heumös slope 
an be found in the work of

Lindenmaier [107℄ and Wienhöfer et al. [178℄. The idealisation pro
ess of the slope for a

numeri
al treatment is still a great 
hallenge due to the high 
omplexity of the hydrauli


pro
esses, the slope geometry and its strongly heterogeneous material distribution. For

that reason, numeri
al investigations of the Heumös hillslope have been �rstly restri
ted

to 2-d model approa
hes along a signi�
ant 
ross se
tion. This 
ross se
tion has been

profoundly investigated and stru
tured by Rumpf et al. [131℄, while Ehlers et al. [57℄

have numeri
ally examined a simpli�ed 
ross se
tion of the slope based on Lindenmaier

[107℄. Due to missing of some important substru
tural and geometri
al information, the

deformation pro
ess of the Heumös slope 
ould not be 
orre
tly reprodu
ed on the basis

of this 
ross se
tion.

7.1 Chara
teristi
s of the hillslope

The Heumös slope near the village Ebnit shown in Figure 7.1 is lo
ated in the Vorarlberg

Alps in Austria 
lose to the 
ity Dornbirn. The slope has a length of about 2 km, a width

of 500m and spans a height di�eren
e of 400m. The hillslope body is very heterogeneous

with the slope material 
onsolidated in the Rhine Gla
ier period for more than thousand

years, where the slope was 
overed with an i
e layer thi
kness up to 1 000m. In Figure

7.2, the motion rates of the slope are marked with red ellipses. Therein, the slope is


ategorised in three parts depending on the motions rates (Depenthal and S
hmitt [37℄).

The northern part of the slope is moving downhill to the east with a measured 
umulative

surfa
e displa
ement of about 10 
m per year, whereas the lower part is more a
tive with

∗
The Resear
h Unit 581 with the title 'Coupling of �ow and deformation pro
esses for modelling the

movement of natural slopes' has been founded to investigate the slow-motion pro
ess of the Heumös hill-

slope. This proje
t was supported by the Deuts
he Fors
hungsgemeins
haft (DFG). Detailed informations


on
erning the proje
t 
an be found at http://www.grosshang.de.

109



110 7 Numeri
al Investigation of a Slow-Moving Landslide

Figure 7.1: The Heumös slope in Ebnit, Vorarlberg (Austria): (left) the view from north to

south and (right) from east to west.

a slope motion rate over 10 
m per year, while the middle part is almost �xed. However,

there is no distin
t indi
ation that large pre
ipitation depths better 
orrelate with the

slope movement than moderate but long-lasting rainfall events. Nano-seismi
 monitoring

rather reveals an almost 
ontinuous `
reep �ow' of the hillslope but with varying velo
ities

(Figure 7.2), whi
h, however, 
annot be asso
iated with the observed hydrologi
al signals

(Walter et al. [169℄). Based on the long-term measurements and observations over the

past 15 years, it is supposed that the movement is mainly triggered by a 
on�ned aquifer

system under the slope, whi
h is fed by a fast in�ltration region at the southern hillside

(Wienhöfer et al. [178℄). The pre
ipitation on the slope surfa
e 
ould mostly not in�ltrate

into deeper regions of the slope body, be
ause of the low permeability of its super�
ial

soil stratum. Therefore, most of the surfa
e water �ows o� into the 
reeks. The in
rease

of the water table in the 
on�ned aquifer observed by piezometri
 head measurements

results from subsurfa
e �ow of water in�ltrating from the ma
ro pores and �ssures in

the forest soil at the immobile steep arboreous southern slope. The 
omplex hydrologi
al
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Figure 7.2: Topview of the Heumös slope: annual average mass movement of the slope measured

at the slope surfa
e (Depenthal and S
hmitt [37℄); the red line from west to east represents the

investigated 
ross-se
tion and the dotted red line illustrated the north-south 
ross-se
tion (Ehlers

et al. [57℄); HH4, HH5 and HH6 are boreholes.
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situations, whi
h are believed to govern the motion behaviour of the Heumös slope, are

des
ribed and dis
ussed in more detail in the works by Lindenmaier [107℄ and Wienhöfer

et al. [178℄.

However, by observing the slope surfa
e, several shear bands 
an be dete
ted. Hen
e, it


an be 
on
luded that the hillslope is not 
onsisting of a monolithi
 slip body. Instead, it

behaves as a slope body whi
h is segmented into several small sliding bodies. Certainly,

this statement has to be still experimentally veri�ed.

7.2 Idealisation of the hillslope to a 2-d 
ross se
tion

In Figure 7.2, a sket
h of the slope in topview is shown. The red line represents the 
ross

se
tion through the slope, whi
h interse
ts 
lose to the point of the boreholes HH4 and

HH5. The stru
tural information of the slope 
ross se
tion depi
ted in Figure 7.3 have

been determined by Rumpf et al. [131℄ applying refra
tion seismi
 methods. Thereby,

the identi�ed topography of the slope bedro
k shows very hilly progression 
ompared

to the assumption of Lindenmaier [107℄. Moreover, Rumpf et al. [131℄ stru
tured the

slope in three stratums, where the di�erentiation of the stratums has been based on

the p-wave (primary wave) velo
ity di�eren
es. However, p-waves only give qualitative

statements of the density variation of the slope material, i. e., the boundary stratum is not

un
onditionally the boundary of a spe
i�
 material type. Nevertheless, for the simulation,

only the upper two stratums are 
onsidered, while the bedro
k is assumed to be rigid and

is modelled as a �xed kinemati
 boundary 
ondition of the middle stratum.

PSfrag repla
ements

lower part

upper part

Figure 7.3: The substru
ture of the investigated 
ross-se
tion is subdivided into three stratums

determined by refra
tion seismi
 (Rumpf et al. [131℄).

Furthermore, at the point about 580m of the slope (see Figure 7.3), the bedro
k in
reases

very 
losely to the slope surfa
e and impedes further mass movement of the upper slope

part. Comparing this statement with the dete
ted surfa
e movements at the middle red

ellipse in Figure 7.2, there have also been dete
ted very low deformation rates (Rumpf et

al. [131℄). As a 
onsequen
e, the upper and lower movement of the slope 
an be analysed

in a de
oupled fashion with regard to the �xed barrier. In this 
ontribution, the upper

part of the Heumös slope illustrated in Figure 7.3 is numeri
ally studied 
on
erning a 2-d

model approa
h of the slope.
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The slope material 
omposition 
an be roughly summarised into two di�erent material

types of 
layey silt and sand, whi
h are assumed to be homogeneously distributed over

the 
orresponding stratums, respe
tively. Comparing both stratums, the top stratum

(
layey silt) is more impermeable and has more 
ohesion, but owns a lower material

strength be
ause of the smaller fri
tion angle than the middle stratum (sand). However,

due to the la
k of detailed material data, for the �rst qualitative simulations, the GEBA-

sand material-parameter sets given in Tables C.1 and C.2 are applied for both stratums,

whereas, for the top stratum, only the following material parameters are 
hanged 
on-


erning to the mentioned general physi
al di�eren
es between both stratums, where the

original GEBA-sand parameters are noted in the bra
kets: KS
0S = 5 · 10−14 (2 · 10−10)m2

,

κ = 0.015 (0.004)MPa and

⋆

β = 0.16 (0.266). Following this, the 
ross se
tions are spa-

tially dis
retised by triangular �nite elements, where an adaptive meshing strategy with

respe
t to the error indi
ator of the water saturation sW and the a

umulated plasti


deformations ‖εSp‖ is used during the simulations in order to a

urately resolve the water

table and the shear bands.

In the last several years, the heaviest pre
ipitation event was in the year 2006 with 248mm

pre
ipitation in 38 h (Wienhöfer et al. [178℄). Based on this value and a dedu
tion of the

surfa
e runo� and the evapotranspiration, Ehlers et al. [57℄ have taken an e�e
tive pore-

water pressure related to an in�ltration rate of 80mm/wk pres
ribed over distin
t regions

along the northern and southern hillside of the north-south 
ross se
tion (red dotted line

in Figure 7.2) representing the fast in�ltration areas, whereas along this 
ross se
tion no

deformation have been observed under the applied loading 
onditions. The in�ltrated

subsurfa
e water is dammed in the middle of the slope se
tion and �ows downhill along

the west-east 
ross se
tion (red line in Figure 7.2) and in
reases the water table. The

impound water under the west-east extent of the slope is modelled by a high pore-water-

pressure in
rease asso
iated with an in�ltration rate per week (wk) of a

umulated ḣpW =
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Figure 7.4: Representative 
ross-se
tion through the Heumös slope from west to east; ḣpW is

the pore water in�ltration rate per week.

3500mm/wk in the upper part of the west-east 
ross se
tion along the extent of the

southern hillside. The hydrauli
 boundary 
onditions for the numeri
al treatment are


hosen in the way as illustrated in Figure 7.4 to mimi
 the des
ribed situation at the

Heumös slope. Furthermore, the impermeable or less permeable layer is integrated into

the middle stratum in order to model a 
on�ned aquifer situation presumed by Wienhöfer
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et al. [178℄. However, su
h an impermeable layer 
ould not be dete
ted by Rumpf et

al. [131℄. Nevertheless, the Heumös slope has been numeri
ally studied without and with

the less permeable layer for whi
h the same material as of the top stratum was adopted.

7.3 Numeri
al results and dis
ussion

Computations without an impermeable layer

For a numeri
al study of the �ow and deformation pro
esses of the Heumös slope, the


urrent ground water table and the 
urrent state of slope deformations indu
ed, for in-

stan
e, by the gravitation for
e have to be approximated. The 
omputation starts with

an unstressed soil material, where the ground water table and the gravitation for
e are


ontinuously in
reased until their 
orre
t values are rea
hed. During these load steps,

plasti
 deformations are developed due to the dead load of the slope and buoyan
y for
es.

The simulated 
urrent (initial) state (t = t0) of the Heumös slope presented in Figure 7.6

(top) shows irreversible plasti
 deformations, while the 
orresponding initial saturation

sW is illustrated in Figure 7.5 (top).

t = t0 = 0

t = 6 h 25min

t = 7 h 51min
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Figure 7.5: Evolution of the water saturation sW .

The lo
alisation of shear bands under a dead load is mainly 
on
entrated at the step part

of the bedro
k substru
ture. With in
rease of the water head hpW , only little in
rease

of plasti
 deformations 
an be observed, although the water table is 
lose to the surfa
e,
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f. Figure 7.5 (middle) and 7.6 (middle) at time 6 h and 25min 
ounting from the initial

state. Further rise of the water head leads to in
reasing plasti
 deformations of the

already existing shear bands. Additionally, several new shear bands are developing, 
f.

Figure 7.5 (bottom) and 7.6 (bottom). In parti
ular, the initiation of the new shear

bands is 
on
entrated in the aforementioned steep part of the bedro
k as well as at the

border of the 
layey silt and sand stratum. The rigidity di�eren
e between both stratums

indu
es deformations resulting from kinemati
 
onstraints. Thus, these two fa
tors mainly

represent the weakened zones of the Heumös slope.
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Figure 7.6: Evolution of shear bands determined by the a

umulated plasti
 strains ‖εSp‖.

Remark: Due to the �at slope in
lination with an average of 19

◦
, the slope motion is

mainly triggered by in
reasing the saturation degree, be
ause of the growing dead load.

Consequently, this leads to a further in
rease of plasti
 deformations. Indeed, the de-

formation rates are very small in 
omparison to slopes with steep in
lination, whi
h,


onsequently, prone to fail abruptly. The simulation results of the Heumös slope mimi


a 
reeping slope motion, whi
h is segmented into several independent parts with varying

motion rates. The resulting shear-band stru
ture of the slope shows that a monolithi


slope body does not exist. It 
an be 
arefully asserted that it is not ne
essary to expe
t

a sudden failure of the Heumös slope.

Computations with impermeable layer

Figure 7.7 shows the simulation results with integration of a less permeable stratum within
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the middle stratum in order to analyse a 
on�ned pressure situation of the Heumös slope.

By 
omparison of the developed shear-band stru
tures in Figure 7.7 (top) with those in

Figure 7.6 (bottom), only few di�eren
es 
an be observed in the region of the additional

stratum, but almost the same water-saturation distribution exists after 8 h and 35min,


f. Figure 7.7 (bottom).
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Figure 7.7: (top) Developed shear bands and (bottom) the 
orresponding water saturation.

Remark: For the 
ase that slope deformations are triggered by a highly 
on�ned aquifer,

some 
onditions have to be ful�lled by the slope, whi
h may not exist at the Heumös

slope. This means that the pore-water-saturated stratum of the subsurfa
e has to be

entirely sealed by a water-impermeable stratum in order to dam the in�ux of pore water

resulting from, e. g., a heavy rainfall event, at the saturated stratum. Considering the 
ase

that the water-saturated stratum is only sealed in the upper dire
tion by an impermeable

stratum, the pore-water pressure must in
rease rapidly, otherwise, the water-saturated

stratum a
ts as an aquifer. Thus, the pore-water pressure 
ontinuously in
reases until a

pressure situation is rea
hed by whi
h the pore spa
es of the saturated soil stratum are

enlarged. A

ordingly, this soil-expansion pro
ess leads to slope deformations. However,

due to the high dead load of the slope, a very high pore-water pressure within the saturated

soil stratum is needed in order to trigger these soil deformations. In regard to the Heumös

slope, su
h a high 
on�ned pressure situation as des
ribed 
ould not be observed.





Chapter 8:

Modelling Internal Soil Erosion

In this 
hapter, an internal soil erosion model for partially saturated soil is presented.

Pro
eeding from the triphasi
 soil model dis
ussed in Chapter 4, an erosion phase is

introdu
ed. It represents the grains, whi
h are deta
hed from the grain matrix by the

streaming pore water. These grains 
an be 
onsidered as �uidised grains transported

by the pore water. The modelling approa
h for the soil erosion is based on the work of

Steeb and Diebels [151℄. They have introdu
ed a triphasi
 internal-erosion soil model for

saturated soils derived in a thermodynami
 
onsistent manner within the framework of

the TPM. Therefore, the internal erosion model presented in this 
hapter is only restri
ted

to the subje
ts of the idealisation of the erodible soil, governing balan
es and 
onstitutive

equations. Applying this model, several numeri
al problems of soil piping, 
old (sand)

produ
tion for quarrying oil-sand mixture by loading of a high �uid pressure and two

embankment failure s
enarios are investigated. By the reason of the 
omplexity of the

internal erosion pro
ess, several simpli�
ations of the erosion model have been made in

order to 
ompute, in parti
ular, the embankment problems without undertaking major

modi�
ation of the partially saturated soil model. Con
erning this, the main simpli�
ation

is, for example, that the transport of the deta
hed grains from the soil matrix is not further


onsidered. Hen
e, the fo
us here is not lying in the 
omplete and preferably a

urate

des
ription of the erosion pro
ess with regard to the movement and the deposition of

grains as well as the 
logging of pores, but rather in the development of soil porosity. Due

to the growing porosity, the me
hani
al and hydrauli
 soil behaviour are a�e
ted and, as

a 
onsequen
e, the probability of embankment or dam failure in
reases.

8.1 Restri
tions of the erosion-soil model

The amount of the eroded grains, whi
h are lo
ally deta
hed through the streaming pore

water (seepage velo
ity), 
an total up to several per
ent of the solid volume, but they are

distributed relatively fast in the streaming pore water. Therefore, the density of the pore

�uid is assumed to 
orrespond approximately to the pore-water density and, furthermore,

the motion of the pore �uid behaves like the streaming pore water with o

upying the

same �ow velo
ity. Pro
eeding from this, the �uidised grains and the pore �uid 
an be

treated together as one pore �uid. In this 
ontext, the 
logging of pores and the deposition

of the �uidised grains are not 
onsidered. Moreover, these and further assumptions and

restri
tions made for the erosion model read:

• The sus
eptibility of the soil to the internal erosion 
an be determined on the basis

of the soil-grain size distribution 
urve (GDS). The GDS temporally 
hanges during

the internal erosion pro
ess and, therewith, the sus
eptibility to internal erosion,

too. This is not 
urrently integrated within the applied 
ontinuum-me
hani
al soil

117
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model, 
f. [134℄.

• The pore water and the �uidised grains are 
onsidered as a suspension and sum-

marised to the pore-liquid phase.

• The velo
ity of the suspension is assumed to be equal to the pore-water velo
ity.

• An in
rease of suspension vis
osity through the eroded parti
les is not in
luded.

• Fluid velo
ities are only restri
ted to linear Dar
y-�ow 
onditions.

• The grain-weight-dependent velo
ity of free moving grains within the pore liquid is

not 
onsidered → segregation of grains, 
f. [167℄.

• Clogging of pore 
hannels and deposition of deta
hed grains are not 
onsidered.

• The transport of the �uidised grains is disregarded.

However, having in mind that, for a long-term analysis of 
onstru
tions with repeatedly


hanging loading 
onditions, the transport of �uidised grains has to be taken into 
on-

sideration, but also many other physi
al aspe
ts. As mentioned in the introdu
tion of

this 
hapter, the presented erosion-soil model is preferably kept simple in order to get a

better 
omprehension of the physi
al intera
ting pro
esses of soil deformation, �uid �ow

and growing porosity indu
ed by internal erosion within embankments.

8.2 Partially saturated soil-erosion model

Taking into a

ount the deta
hment of grains from the solid stru
ture, the soil model is

extended by the erosion 
onstituent α = E representing the �uidised grains. The deta
hed

grains are distributed within the pore water and are generally perpetually in motion as

long as the pore-�uid velo
ity is able to transport them through the pore 
hannel network

of the soil. The free moving grains behave as a liquid or a disperse phase within the water

phase like a suspension. Following this, the erosion phase ϕE
and the water phase ϕW


an be summed up to a liquid phase ϕL
, where ϕE

and ϕW
are the liquid 
omponents,

respe
tively. Therewith, the overall aggregate 
onsists of ϕ = ϕS ∪ ϕA ∪ ϕL
, whi
h


orresponds to the des
ription of the well-known triphasi
 model presented in Se
tion 4.1.

Pro
eeding from this, the lo
al 
omposition of the volume fra
tions yields

k∑

α=1

nα = nS + nA + nL = nS + nA + nW + nE = 1 . (8.1)

Therein, the volume fra
tion nL
of the liquid suspension phase is 
omposed of nW

and

nE
, while the soil porosity is 
omputed by

nF =

l∑

β=1

nβ = 1− nS = nA + nL , (8.2)
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where β represents the �uid 
omponents β = {A, L}. Due to the fa
t that the model of

the internal erosion is only restri
ted to model the porosity development, the same model

approa
h of the partially saturated soil in (4.1) with the 
onstituents α = {S, A, W}
is analogously applied for the erosion-soil model with α = {S, A, L} by repla
ing ϕW

with ϕL
. Moreover, the di�usion velo
ities of the liquid 
omponents dWL and dEL are

introdu
ed, wherein the 
omponent velo
ities are referred to the liquid velo
ity

′
xL, 
f.

(2.14)2.

Balan
e of mass

By integrating analyti
ally the lo
al mass balan
e in (2.42)1 using the helpful hint

∗
, the

density of the 
onstituent ϕα
yields (
f. Ehlers et al. [65℄)

ρα = ρα0α exp
( t∫

t0

ρ̂α

ρα
d t
)
(detFα)

−1 ,
(8.3)

where ρα0α is the initial density in the referen
e 
on�guration. Depending on the 
ondition

of the mass produ
tion ρ̂α > 0 or ρ̂α < 0, the density ρα grows or degenerates, respe
tively.

A more general expression of (8.3) is derived by a multipli
ative split into a deformation-

governing pro
ess and a mass-produ
tion pro
ess:

ρα = ραtα (detFα)
−1 with ραtα = ρα0α exp

( t∫

t0

ρ̂α

ρα
d t
)
.

(8.4)

Therein, ραtα 
an be interpreted as the density of a 
onstituent at time t in the �
tive refer-

en
e 
on�guration or the intermediate 
on�guration. This deformation-free part enables

to keep the geometri
al 
ompatibility analogi
al to the �nite elasto-plasti
ity (Haupt [84℄

and Ehlers [48℄). Thus, the total deformation gradient Fα,tot = FαFα,gr is multipli
atively

separated into a deformation-free gradient Fα,gr des
ribing the mass produ
tion pro
ess

and a deformation-dependent part Fα. Pro
eeding from a geometri
ally linear approa
h

for the deformation gradient lin(detFS) ≈ divuS +1 = (1− εVS )
−1

and taking the in
om-

pressibility of the solid phase (ρSR = const.) into a

ount, the volume solid fra
tion nS

follows from (8.4) to

nS = nS
tS (1− εVS ) with nS

tS = nS
0S exp

( t∫

t0

n̂S

nS
d t
)
, (8.5)

where nS
tS is the solidity at the intermediate state, while its 
hange is indu
ed by the

volume solid produ
tion n̂S
, and εVS is the volumetri
 solid strain.

∗
Using the expression div

′
xα =

(detFα)
′
α

detFα
and applying the separation of variables on the mass

balan
e (2.42)1, the following integration parts result:

ρα∫

ρα
0α

d ρα

ρα
+

detFα∫

detF0α

d (detFα)

detFα
=

t∫

t0

ρ̂α

ρα
d t.
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Evaluating the sum of the mass produ
tion (2.41)1 with assuming the same e�e
tive

density ρSR = ρER = 
onst. for all grains, it follows that the volume produ
tions of the

solid and eroded phases are equal:

k∑

α=1

n̂α = n̂S + n̂E = 0 → n̂E = − n̂S , (8.6)

whereas, the pore-water and pore-air phases are not involved in the mass ex
hange of the

erosion pro
ess, n̂W = n̂A = 0.

The temporal 
hange of the erosion phase resulting from the volume produ
tion n̂E
and

the grain transport is determined by the volume balan
e of ϕE
,

− n̂S = (nE)′S + nE
div (uS)

′
S + div (nEwE) , (8.7)

where n̂E
is substituted by n̂S

(8.6)1, or, additionally, related to the liquid motion using

wE = wL + dEL:

− n̂S = (nE)′S + nE
div (uS)

′
S + div (nEwL) + div (nEdEL) . (8.8)

Both formulations are given with respe
t to the solid motion. Furthermore, for des
ribing

the suspension behaviour, the mass balan
es of ϕW
and ϕE

have to be summed up:

− n̂SρSR = (ρLR)′S n
L + ρLR(nL)′S + ρLR nL

div (uS)
′
S + div (ρLR nLwL) , (8.9)

where the e�e
tive density ρLR is no more 
onstant. It is varying with a 
hange of nE
.

As mentioned, when only the modelling of the porosity development of the soil is the

point of interest and not the transport pro
ess of �uidised grains itself, some prin
iple

assumptions 
an be made in order to simplify the governing equations, 
f. Se
tion 8.1.

For example, following the fa
t that the �uidised grains are immediately dispersed within

the water phase after deta
hing from the solid phase, it 
an be supposed that ρLR ≈ ρWR

is 
onstant. As a result, the material time derivative of ρLR in (8.9) is dropped out of the

equation. Hen
e, the mass balan
e of the liquid suspension (8.9) is redu
ed to the volume

balan
e of a materially in
ompressible liquid phase:

− ρSR

ρLR
n̂S = (nL)′S + nL

div (uS)
′
S + div (nLwL) . (8.10)

The motion of the �uidsed grains within the pore-water phase with regard to grain sep-

aration by weights has been investigated by Vardoulakis [167℄. However, by the reason

that the erosion (su�usion) pro
ess is a slowly pro
eeding pro
ess, it is assumed in the

�rst approximation to take the velo
ity of the pore water for the �uidised grains and to

negle
t the di�usion velo
ity dEL. This leads to wL := wW = wE.

Based on the assumption that the transport of �uidised grains is not 
onsidered in the

following des
ription of internal erosion using the volume balan
e (8.10), the volume

fra
tion nE
is no more an independent quantity and is 
omputed by nE = nS

0S−nS
tS , while

nS
tS is determined by (8.5) governed by n̂S

for whi
h a 
onstitutive assumption has to be

formulated. Con
erning the materially 
ompressible air phase ϕA
, the mass balan
e in

(4.6)2 is applied without any modi�
ations.
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Balan
e of momentum

Following quasi-stati
 problems (

′′
xα ≡ 0), the lo
al momentum balan
e (2.42)2 of the


onstituent ϕα
using the formulation with the dire
t produ
tion term p̂α

(2.40)1 leads to

the following form:

0 = divTα + ρα bα + p̂α with p̂α = ŝα − ρ̂α
′
xα . (8.11)

By the sum of all individual momentum balan
es given by (8.11)1 and involving (2.41)2 ,

the overall momentum balan
e of the erodible partially saturated soil yields

0 = div (TS + TL + TA ) + ρb + ρSRn̂S(wL + dEL) . (8.12)

Based on the applied restri
tions of the internal erosion pro
ess, dEL is assumed to be

zero. However, the momentum produ
tion term triggered by n̂S

ompared with the total

stress

∑k
α=1 divT

α
is several orders smaller. A

ording to that it 
ould be negle
ted as

well.

Remark: Considering the overall aggregate ϕ, the sum of (8.11) reads

k∑

α=1

ρα
′′
xα =

k∑

α=1

( divTα + ρα bα + p̂α) , where

k∑

α=1

ŝα =
k∑

α=1

( p̂α + ρ̂α
′
xα) = 0 (8.13)

is the 
onstraint for the total momentum produ
tion, 
f. (2.41)2 . Inserting the de�nition

of bary
entri
 motions, 
f. (2.46) ,

ẍ =
1

ρ

k∑

α=1

[ ρα
′′
xα − div ( ρα dα ⊗ dα) + ρ̂α

′
xα] , (8.14)

in (8.13), the momentum balan
e of the overall aggregate ϕ results

ρ ẍ = divT + ρb with T =

k∑

α=1

(Tα − ρα dα ⊗ dα) . (8.15)

Note that regarding the overall aggregate ϕ, the di�usion velo
ities are 
an
elling ea
h

other (

∑k
α=1 ρ

αdα = 0). For quasi-stati
 problems with little 
hange of the velo
ities

in time, the a

elerations of the individual 
onstituents 
an be negle
ted,

′′
xα ≡ 0 in

(8.14), but the a

eleration terms of di�usion velo
ities and mass produ
tions remain

and, therewith, the bary
entri
 a

eleration ẍ is not zero. However, pro
eeding from

a slowly internal erosion (su�usion) pro
ess, the di�usion pro
ess pro
eeds without any

noti
eable a

elerations and, thus, the div ( ρα dα ⊗ dα) terms is very small. This also

pertains to the amount of the mass produ
tion rate ρ̂α, whi
h is very slow, too.
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8.3 Saturated soil erosion model

To a

ount the lo
al 
omposition of the mixture 
ontinuum of the erodible saturated soil,

the saturation 
ondition of the volume fra
tions is 
omposed by

k∑

α=1

nα = nS + nF = nS + nE + nW = 1 , (8.16)

where the �uid 
omponents are β = {E,W}. The volume fra
tion of the �uid phase is


omposed to nF = nE + nW
. Pro
eeding from the simple approa
h of internal erosion

(8.1), the set of governing equations 
onsists of the volume balan
e (8.5) of the solid phase,

the volume balan
es of the overall aggregate formulated with respe
t to solid motion:

0 = div (uS)
′
S + div (nFwF ) , (8.17)

and the momentum balan
e of the overall aggregate

0 = div (TS + TF ) + ρb + ρSRn̂SwF with dEF = 0 . (8.18)

8.4 Constitutive settings

A thermodynami
ally 
onsistent evaluation of the entropy inequality is omitted here. A

detailed elaboration 
an be found in the work by Diebels and Steeb [151℄ and Steeb

et al. [153℄. A

ording to this, the internal erosion or the mass produ
tion has to be

proportional to the square of the seepage velo
ity. This was also announ
ed, e. g., by

Vardoulakis [167℄, Wan and Wang [172℄ or Wan and Fell [170℄ resulting from experimental

observations. However, for the 
onstitutive approa
h of n̂S
, the amount of the seepage

velo
ity is 
ommonly used. In this 
ontribution, a slightly modi�ed approa
h for n̂S


ompared to Steeb et al. [152℄ is applied. Furthermore, the 
onstitutive equations of

the solid phase are also in�uen
ed by the in
reasing porosity. In parti
ular, these are

the degradation of the elasti
 sti�ness and the plasti
 strength, 
f. [124, 153℄, whereas the

hydrauli
 equations remain un
hanged. This is why the variation of the solidity is already


onsidered with the deformation-depended intrinsi
 permeability 
oe�
ient KS
governed

by the volume fra
tion nS
, 
f. (4.54) or (4.55).

Elasti
 law

The de
rease of the solid fra
tion triggered by the internal erosion pro
ess 
an be anal-

ogously des
ribed as a damage-like behaviour for brittle materials by introdu
ing the

damage variable d (Ka
hanov [91℄). Pro
eeding from the isotropi
 damage behaviour, the

damage variable d = A/A0 des
ribes the homogeneously distributed loss of material area

related to the ratio of the undamaged initial area A0 and the damaged area A, where d
is still positive,

†d ≥ 0. The ratio of the remaining material area 1 − d = (A0 − A)/A0

†
During the deposition of grains o

urring in areas of low seepage velo
ity, the grains 
an be a

u-

mulated at lo
ations, where up to the present time no erosion has taken pla
e. This would lead to an

in
rease of the initial solidity, i. e., the damage variable would be negative d < 0.
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orresponds to the expression formulated by the ratio of the solid volume fra
tions at the

stress free intermediate state nS
tS to the initial state nS

0S and reads 1 − d = nS
tS/n

S
0S . On

the basis of the damage fa
tor D = nS
tS/n

S
0S, the me
hani
al properties are redu
ed as

the free Helmholtz energy ΨSd = DΨSe
given in (4.28). Pro
eeding from the derivative

of ΨSd
with respe
t to εSe, the elasti
 e�e
tive solid stress σS

Em is redu
ed by degrading

the elasti
 material parameters by the damage fa
tor D, viz.

σS
Em = 2µS

E εDSe +

[
kS0E + kS1E

(
εVSe crit

εVSe crit − εVSe
− 1

)]
εVSe I

where : µS
E = DneµS , kS0E = DnekS0 , kS1E = DnekS1 , D =

nS
tS

nS
0S

,

(8.19)

are the redu
ed elasti
 parameters, whereby the exponent ne des
ribes a non-linear degra-

dation pro
ess of the solid sti�ness.

Plasti
 law

The strength of granular materials depends on di�erent fa
tors. For example, the general

yielding and failure behaviour of granular materials is typi
ally 
hara
terised by its initial

density (loose or dense sand). In addition, the stress level at whi
h the shear stress

is applied is de
isive for the mobilisation of the fri
tion strength of granular materials,

be
ause the higher the 
on�ning pressure (
ompa
tion) the higher the failure stress, 
f.

Se
tion 4.2.2. A

ording to this, the in
rease of the porosity has a negative impa
t on the

failure behaviour. During the internal erosion pro
ess, the stru
tural 
ohesion between

the grains is 
ontinuously lost and the real failure state of the material (without erosion)

is no more rea
hable. This stru
tural 
hange of the failure behaviour has been taken into

a

ount by redu
ing two plasti
 parameters by the damage fa
tor Dnp
:

⋆

βE = Dnp
⋆

β and κE = Dnpκ . (8.20)

Therein,

⋆

β represents the in
lination of the failure surfa
e, while κ depi
ts the 
ohesion of

the soil, while the exponent np des
ribes a non-linear degradation of the yield strength.

Note that the in
lination of the evolving yield surfa
e is a�e
ted by the erosion just after

the failure surfa
e is rea
hed. This happens mu
h earlier due to a de
rease of the failure

surfa
e triggered by in
reasing porosity. Numeri
al studies of plasti
 material parameters

have shown that using only the parameters

⋆

β and κ is su�
ient to des
ribe the in�uen
e

of internal erosion on the yielding behaviour.

Simpli�ed plasti
 hardening model

Moreover, to s
ale down the 
omplexity of the presented sophisti
ated yielding model

given in se
tion 4.2.2, the hardening e�e
t 
an be restri
ted by redu
ing the number of

the evolving plasti
 hardening parameters with minor 
hanges of the real soil behaviour.

Additionally, the 
omputation time of the IBVP is strongly redu
ed.
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Pro
eeding from an unloaded soil, the plasti
 yielding begins immediately with the �rst

loading. This leads to the 
omplex elasto-vis
oplasti
ity model presented in se
tion 4.2.

In some 
ases, it is appropriate to simplify the model 
omplexity. For example, some

triaxial experimental data are la
king and the identi�
ation of all required parameters is

no more possible on the basis of the available experimental data set, whi
h, of 
ourse,

would be ne
essary to give a pre
ise des
ription of the 
omplex soil behaviour. Moreover,

a redu
tion of the model would be also appropriate, if only the general physi
al pro
esses

of a 
omplex IBVP are numeri
ally investigated. However, the de
isive fa
tor here is, how

the material model 
an be redu
ed in order to be still 
lose to the real soil behaviour.

The non-linear stress-strain behaviour governed mainly by the plasti
 hardening pro
eeds

until the limit shear-stress, whi
h is des
ribed by the 
orresponding failure surfa
e. The

size of the failure surfa
e is variable and is de�ned by the 
on�ning pressure or the

hydrostati
 stress level (4.49). In order to avoid the 
omplex hardening pro
edure, the

initial yield surfa
e 
an be set to the smallest size of the failure surfa
e, whi
h 
orresponds

to a very low 
on�ning pressure level. This is realised by setting the initial hardening

parameter values p0i =
⋆
pi to the same value of the limit parameters

⋆
pi ex
luding of ǫ, whi
h

is set to ǫ0 =
⋆
ǫ0. Thus, ǫ 
an be still evaluated until the limit value of ǫ → ⋆

ǫ
bounded

by

⋆
ǫlim. This implies that the material was shear-preloaded until the peak shear stress

at a very low stress level so that the initial hardening behaviour is eliminated, i. e., the

material �rstly behaves linear elasti
ally until the enlarged initial yield surfa
e is rea
hed.

If the shear stress ex
eeds the yield surfa
e, only then, the hardening pro
ess starts.

To illustrate this approa
h, the simulation results of the triaxial 
ompression test with a


onstant 
on�ning pressure of σ2 = σ3 = 0.2MPa using the simpli�ed and 
omplete hard-

ening approa
h are presented in Figure 8.1. Therein, the initial linear elasti
 behaviour of

the simpli�ed model (red line, sim-simpl) is well re
ognisable 
ompared to the non-linear

pro
edure of the general 
omplex hardening model (green line, sim-gen), whereas the vol-

ume strain εV is only slightly a�e
ted. Moreover, for a good modelling of plasti
 shear
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Figure 8.1: Triaxial 
ompression test with a 
on�ning pressure of σ2 = σ3 = 0.2MPa = const.
and the 
orresponding simulation applying the general (sim-gen) and the simpli�ed hardening

model (sim-simpl).
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zones, one has to 
onsider the softening e�e
t of the material. Therefore, the parameter

δ mainly governing the softening behaviour has to be taken into a

ount in the hardening

pro
ess.

Hen
e, the presented pro
edure gives users the opportunity to simplify the 
omplex plas-

ti
ity model 
orresponding to the hardening behaviour under 
onsideration of the real

strength of the soil. For the reason that the evolution of the hardening parameters β and

γ is not taken into a

ount and the evolving of ǫ and δ starts just after ex
eeding the

enlarged elasti
 part, the 
omputation 
osts are also redu
ed intensively. Nevertheless, if

it is ne
essary, the model 
omplexity 
an be simply in
reased.

Erosion law

Steeb et al. [152℄ have proposed an approa
h for the solid volume produ
tion n̂S
. Therein,

the amount of erodible grains is limited by a 
onstant saturation nE
lim, but, generally it

depends on the strength of the seepage velo
ity of the pore liquid (suspension) wL or pore

�uid wF for the saturated soil, respe
tively. That means the higher wL, the more grains


an be deta
hed from the solid skeleton. In order to take this into a

ount, the initial

limit of erodible grains nE
0 lim is in
reased by |wL|, whi
h is expressed by the variable nE

lim.

However, nE
lim is restri
ted by the maximal limit nE

max, be
ause the 
onsidered internal

erosion pro
ess is a
tually 
onstrained by the �ne grain 
ontent (internal su�usion). Under


onsideration of these aspe
ts, the solid volume produ
tion yields

n̂S = −nE
[
exp

(
1− nE

nE
lim

)
− 1
]
ζ |wL|

(8.21)

with





n̂S < 0, if |wL| > | ⋆
wL | ,

n̂S = 0, if |wL| ≤ | ⋆
wL | ,

nE
lim = nE

0 lim(1 + ω |wL|) with nE
lim ≤ nE

max .

Therein, ω 
ontrols the growth of nE
lim and ζ ≥ 0 governs the pro
ess velo
ity. However,

the erosion pro
ess is only a
tivated, when the soil spe
i�
 limit value | ⋆
wL | is ex
eeded.

However, for the �rst 
omputation of n̂S
, a very small initial value of nE

is ne
essary,

otherwise, n̂S
is always zero.

8.5 Numeri
al Examples

In this se
tion, several numeri
al examples of erosion-soil problems are presented. At the

beginning, two water-saturated soil piping problems are shown. In this 
ontext, there

is no total loss of grains at lo
al points during the erosion pro
ess of the treated piping

problem, su
h as o

urs at a real tube-�ow problem. Thus, for the pipe, only a de
rease of

the solidity is assumed. Further examples to internal erosion problems are the numeri
al

investigation of embankments, where the embankment is 
onstru
ted without and with a

high impermeable internal 
ore. For the embankment problems, the presented partially

saturated soil model is applied.
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8.5.1 1-d piping of a fully saturated 
olumn

Figure 8.2 illustrates a popular example of sat-

urated soil piping for testing erosion models, 
f.

[152, 168, 172℄. For the numeri
al treatment of

this problem, the water-saturated 
olumn is ho-

mogeneously �xed at the left side and at the bot-

tom, where also the pore-�uid pressure p̄FR =
ṗ t = −0.1 t [KPa/s] is applied. Furthermore,

from the top, the 
olumn is loaded displa
ement-


ontrolled by ūS = u̇ t = 0.5 t [mm/s]. The

left and right boundaries have no-�ow 
onditions,

while the right side admits free �ow.

For this example, it is assumed that the erosion

pro
ess starts immediately after applying p̄FR
by

setting | ⋆
wF | = 0. The variability of the max-

imal limit of erodible grains is not 
onsidered,

nE
lim ≡ nE

0 lim = 0.1 (ω = 0). For a better anal-

ysis of the 
oupled erosion-me
hani
al yielding

behaviour, the yield 
riterion in (4.35) has been

redu
ed to the von Mises ideal plasti
ity model

without taking any hardening behaviour into a
-


ount. The material parameters, whi
h 
ome

into 
onsideration, are given in Table 8.1, while

the remaining plasti
 parameters are set to zero.

The elasti
 behaviour is modelled by the general

Hookean elasti
ity law by setting the bulk mod-

ulus kS1 in (8.19) to zero.
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Figure 8.2: Sket
h of the 1-d 
ol-

umn piping problem.

The piping problem in Figure 8.2 has been 
omputed by the Dar
y permeability parameter

of Ehlers-Eipper (EE) (4.54) and the formulation Kozeny-Carman (KC) given in (4.55) in

order to investigate their in�uen
es on the erosion progression. The results are illustrated

in Figure 8.3. Figure 8.3 (a) shows the development of the solidity nS
, while (b) presents

the solid degeneration rate n̂S
. Due to the la
k of experimental data, an arbitrary value for

the erosion parameter ζ = 800 s/m is 
hosen. This parameter is denoted for the KC-law

with ζKC
and for the EE-law with ζEE

. The exponent of the EE-law is taken to π = 1.
Due to the fa
t that the solid deformation is generally several order smaller than the

soil degeneration, the 
hange of nS
indu
ed by the soil deformation is hardly observable

in Figure 8.3 (a), but rather the soil degeneration. Comparing the results, the EE-law

behaves more sensitive to high values of ζEE

ompared to the KC-law. A

ordingly, the

progress of nS
and n̂S

slows down with lower values of ζEE
. The EE-law agrees well

with the KC-law by �tting ζEE
to 0.6 s/m and π to 3.6. However, Steeb et al. [152℄ have

numeri
ally investigated the behaving of the EE-law by variation of the exponent π. They

ompared the results with those of the KC-law by applying the same parameter ζ for both
laws. Therefore, the results were not 
orresponding.
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Table 8.1: Material parameters of the Hookean law, the Mises plasti
ity law without hardening

and the erosion law.

Figures 8.4 (a) and (b) illustrate the redu
tion of the shear modulus µS
and the stress-

displa
ement 
urves, respe
tively, 
omputed with ζEE
= 800 and 0.6 s/m. For high values

of ζEE
, the shear modulus µS

de
reases very fast until 130MPa 
ompared to the lower
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Figure 8.3: 1-d piping simulation results: (a) solid fra
tion nS ; (b) solid produ
tion n̂S .
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urves related to the loading boundary.
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ζEE
and the stress progression is more �at than in the 
ase without erosion (bla
k-dashed

line). The stress of the bla
k dashed line 
onverges to the limit of P ≈ 1.3 MPa, whereas

the fast erosion pro
ess (ζEE = 800 s/m) rea
hes P ≈ 1.2MPa, while the slow 
ase

(ζEE = 0.6 s/m) softens to the same low stress limit immediately after the high stress

limit has been rea
hed like a top-down approa
h. Hen
e, it 
ould be shown that the

sti�ness and the strength are noti
eably redu
ed 
ompared with the 
ase without erosion.

8.5.2 Cold produ
tion in oil saturated sand

Similar pro
esses like soil erosion in embankments o

ur during the sand produ
tion by

quarrying a petroleum-sand mixture from the several hundred meter deep lo
ated sub-

stratum. Thereby, a high gas pressure is applied through a borehole in order to press the

vis
ous oil-sand mixture into a 
ompound of boreholes and then it is su
ked up to the

surfa
e (Tremblay et al. [158℄). This pro
edure is also 
alled 
old produ
tion. During the

sand removal pro
ess, several networks of wormholes are formed. As a 
onsequen
e, the

porosity of the soil in
reases leading to instability problems with a sudden sinking of the

ground. Regarding the safety aspe
ts, it is important to know, how wormholes propa-

gates. For this propose, the sand produ
tion pro
ess has been experimentally investigated

by many resear
hes, e. g., 
f. Tronvoll and Fjaer [159℄, Tremblay et al. [158℄, Tremblay

and Oldakowski [156℄ and Papami
hos et al. [123℄. Besides experimental resear
h, numer-

i
al treatment of su
h a 
hallenging task of the petroleum industry is getting more and

more important, in parti
ular, for the simulation of sand produ
tion, 
f. [124, 152, 172℄.

It is expe
ted that the e�
ien
y of quarrying oil 
an be improved by use of 
omputer

simulations. This may also 
ontribute to a safe oil produ
tion.

The wormhole-propagation experiment of Tremblay et al. [158℄ is sket
hed in Figure 8.5.

For the test, an oil-saturated 
ompa
ted sample was used, whi
h had on its right side
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Figure 8.5: Sand sample with the hydrauli
 loading 
ondition.

an outlet ori�
e with a diameter of ⊘ 6.35mm, where the sand produ
tion is initiated.

In order to press the heavy oil with a vis
osity of 21.5 Pa · s through the sample, a high

�uid pressure of 1.2MPa was applied at the left side of the sample. The sample is �xed

by a 
ylindri
al steel box, whi
h obstru
t any deformations. To visualise the porosity

development, Tremblay et al. [158℄ have re
orded the porosity distribution of the sample

by CT (
omputed tomography) s
ans along the longitudinal se
tion of the sample, whi
h

is illustrated in Figure 8.6. Looking 
loser to the initial solid density distribution shown

in Figure 8.6 (a), it seems that some areas have a slightly lower solidity. This area of
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before after

Figure 8.6: Porosity propagation along the axis of the wormhole: (a) at the initial state; (b)

after developing (Tremblay et al. [158℄).

lower solidity is bordered by dashed lines in Figure 8.6 (a). Despite the spe
imen was

previously 
ompa
ted with very high pressure, an ideally homogeneous distribution of

the material through the whole sample 
ould not be rea
hed. Moreover, the wormhole

interestingly pro
eeds in those parts of the spe
imen with low porosity, 
f. Figure 8.6

(b) at the �nal state, even the inhomogeneity of the solidity is very smooth. Moreover,

another spe
imen with a di�erent smooth solid �u
tuation has been tested by Tremblay

et al. [157℄. Analogi
ally to the presented one, the wormhole has been propagated to the

areas with the lower solidity.

Due to the fa
t that the wormhole is e

entri
ally propagating regarding to the longitudi-

nal axis, only 3-d 
omputation of the problem 
an a
tually mimi
 the real development of

the wormhole. However, Wan and Wang [171℄ used a rotationally symmetri
 approa
h for

the geometry, whi
h may be not appropriated, be
ause it reprodu
es only axial symmet-

ri
ally distributed results in respe
t to the longitudinal axis. Nevertheless, for the �rst

approa
h, the experiment was only qualitatively simulated along the longitudinal 
ross

se
tion as a 2-d plain-strain problem.

The experiment was 
omputed with two di�erent initial solidity distributions. The �rst

one starts from a homogeneous distribution with nS
0S = 0.635, while the se
ond one has

a smooth �u
tuation of the porosity at the initial state, whi
h is shown in Figure 8.8

(a). Further material parameters are given in Table 8.2. At the beginning, the wormhole
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develops fast into the longitudinal dire
tion and also spreads into the width at the outlet,


f. Figure 8.7. The diameter of the wormhole shrinks gradually in dire
tion to the inlet

as a result of the �uid pressure gradient. Comparing with the se
ond 
ase in Figure 8.8,

the wormhole develops into the part of a minor lower density. Thus, the propagation of

wormholes is greatly a�e
ted by the �u
tuation of the solidity even the �u
tuation is low.
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Figure 8.8: (a) Initial solidity nS0S (inhomogeneous distribution), (b) degeneration of nS .
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Table 8.2: Material parameters of the Hookean law and the erosion law.

8.5.3 Numeri
al investigation of embankment problems

Numeri
al investigation of embankment failure problems have been 
arried out by many

resear
hes, e. g., Ehlers et al. [64℄, Chai and Carter [27℄ and Oka et al. [122℄, and is still

a 
hallenge and ongoing subje
t of resear
h. These simulations were performed without


onsidering the soil erosion problem. The obje
tive of the presented 
omputations of

embankments is that the destabilisation of the 
onstru
tion is mainly triggered by the

internal erosion pro
ess (in
rease of soil porosity). Using the triphasi
 soil model with

the extension to the internal erosion presented in Chapter 8.2, two embankment problems

have been investigated. Their boundary 
onditions have been 
hosen in su
h a way that

without the o

urren
e of an internal erosion, a stable behaviour would be predi
ted for

the embankments.

Pro
eeding from the simpli�ed plasti
ity model des
ribed in Se
tion 8.4, the evolution of

the yield surfa
e 
on
erning to the parameters γ and β is dea
tivated by setting these

parameters to the values of the failure surfa
e, γ0 ≡ ⋆
γ

and β0 ≡
⋆

β, while ǫ is set to

ǫ0 ≡ ⋆
ǫ0. This 
orresponds to the failure state de�ned by the unloaded virgin sand. For

both embankment simulations, the elasto-vis
oplasti
 and hydrauli
 parameters of the

GEBA sand given in Tables C.1 and C.2 have been applied. However, a minor 
ohesion
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of κ = 0.013MPa is applied to prevent numeri
al instabilities as a result of small tension

stresses during the 
omputation. To regularise the ill-posed plasti
ity problem, a marginal

vis
osity of η = 200 s and an overstress of σ0 = 0.013MPa are used. These numeri
al aids

are 
hosen in su
h a way that their in�uen
es on the me
hani
al behaviour are negligibly

small. Furthermore, the parameters of the erosion properties are 
hosen for ea
h problem

di�erently. These are given within the 
orresponding subse
tions.

Soil embankment

Embankments are permanently loaded by the dammed water, whi
h is 
ontinuously vary-

ing. The level of the dammed water is determinative for the strength of the seepage

velo
ity within the embankment. Thus, in dependen
e of the dammed water table (w-t),

the erosion pro
ess is a

elerated or stopped. From an engineering point of view, it 
an

be very helpful to know how the dammed water a�e
ts the progression of the internal

erosion and, a

ordingly, the failure of the embankment. Con
erning this, the embank-

ment sket
hed in Figure 8.9 is numeri
ally investigated with varying the w-t at the left

slope of the embankment. In order to avoid a premature weakness or even failure of the
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Figure 8.9: Geometry and dimensions of the embankment in [m℄.

slope through the buoyan
y for
e indu
ed by in
reasing the w-t, the in
lination of the

right slope is 
hosen quite �at. In 
ontrast, the left slope 
ould be 
hosen mu
h steeper,

be
ause the weight of the dammed water stabilises the slope.

The embankment is loaded in four load steps. The load progression is sket
hed in Figure

8.10. The initial stage of the w-t is lo
ated on both sides of the embankment at the level

of the slope toes. In the �rst load path LP1, the w-t is slowly in
reased on the left side

to the height of h1 = 3m within the time t1 = 24 h and, thereafter, in LP2, it is kept


onstant for a duration of t2 − t1 = 168 h. In LP3, the w-t is in
reased further by the

height of h2 = 2m in t2 − t3 = 24 h. Finally, the failure of the slope will o

ur in LP4

at tfail, where the w-t is kept 
onstant. The erosion pro
ess just starts after the seepage

velo
ity ex
eeds the value | ⋆
wL | = 7.6 · 10−6m/s, whi
h already happens in LP1. Further

erosion parameters are nE
0 lim = 0.05 , ω = 104 s/m and ζEE = 100 s/m.

The amount nE
and the rate n̂S

of eroded grains of the right slope toe are illustrated in

Figure 8.11 (left). Therein, 
lose to the end of LP2, n
E

approa
hes the limit of ≈ 0.07

ontrolled by ω and |wL|, 
f. equation (8.21). Thereby, n̂S

de
reases to zero after the peak

value at LP1 has been rea
hed. In Figure 8.11 (right), the pro
eeding of |wL| is shown.
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orresponding to the time (t) and the w-t (h) with respe
t
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It in
reases ea
h time with rising of the w-t. During LP4 where the w-t is 
onstant, |wL|
still in
reases due to growing soil porosity until nE

has been rea
hed the new limit value

of ≈ 0.1. Moreover, the failure o

urs at time tfail ≈ 226.5 h 
hara
terised by a strong

in
rease of the horizontal displa
ement uSh at the right slope toe, 
f. Figure 8.11 (right).

Immediately before the failure o

urs, |wL| drops slightly. This is a 
onsequen
e of the

development of a dilatant shear band, 
f. Figure 8.13 (right). Thereby, the pore water is

su
ked up into the shear band and, therewith, the liquid pressure pLR as well as |wL| is
dropped. Similar physi
al pro
esses 
ould also be observed by simulations of the slope

failure problems in Se
tion 6.3.
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Figure 8.11: Progression of nE and n̂S (left) and uh and wL over time t of the right slope toe.

Moreover, in Figure 8.12 (top), the distribution of sL is illustrated. Figure 8.12 (top-

left) shows the state of sL at the end of LP2, whereas the Figure (top-right) the state

at failure. The 
orresponding distributions of nS
are depi
ted in Figure 8.12 (bottom).

During the �rst two loading paths, the eroded part is primarily 
on
entrated at the right

slope toe (Figure 8.12 (bottom-left)), whereby not any shear band is initiated, yet, 
f.

Figure 8.13 (left). With the rise of the w-t, uSh starts to grow parti
ularly at the end of

the load path. During LP4, the eroded area is more and more extending and the overall



8.5 Numeri
al Examples 133

0.0 0.5 1.0

sL [−]

LP2 : t = t2 LP4 : t = tfail
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Figure 8.12: Simulation results at the end of LP2 and at the failure state in LP4: (top) liquid

saturation sL; (bottom) solidity nS.

stru
ture is 
ontinuously weakened by evolving of several shear bands, 
f. Figure 8.13,

and uSh of the slope toe in
reases faster. In Figure 8.13, low values (below 0.007) of

the a

umulated plasti
 strain ‖εSp‖ are not visualised for 
larity reason. By gradually

weakening the internal stru
ture of the embankment, several shear bands are developed,

whi
h are mainly triggered by the dead load. However, one dominant shear band seems

to enfor
e. It is pro
eeding from the right slope toe to the top. But it gets more and more

de�e
ted by the other shear bands at the middle part of the embankment to the water

side, 
f. Figure 8.13 (right).

0.4 1.4 2.4

‖εSp‖ · 10−3

1.0 2.3 3.6

‖εSp‖ · 10−2

Figure 8.13: Evolution of shear bands: (left) at the end of LP2; (middle) intermediate state in

LP4 at t = 225 s; (right) at failure state in LP4 at time tfail.

The 
omplete embankment deformation indu
ed by the shear bands is illustrated in Figure

8.14 by the deformed FE mesh at the �nal state dis
retised with 8 614 triangle elements. In

Figure 8.14 (left), the deformation of the FE mesh is shown with a 10-times magni�
ation.

Despite of this, hardly any mesh deformations within the internal area are observed,

be
ause of the very high deformation values at the surrounding area of the slope toe,

whi
h suppress low deformed elements in the internal area of the embankment. However,

using a magni�
ation of 100-times, the deformation behaviour of the embankment is more


lear, 
f. Figure 8.14 (right).

Moreover, in Figure 8.15 (left), the redu
tion of the elasti
 sti�ness µS
E is illustrated at an
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Figure 8.14: Deformed mesh at the �nal state (left) 10-times and (right) 100-times magni�
a-

tion of the deformations.

arbitrarily 
hosen intermediate state (t=225 s). As might be expe
ted, the distribution

µS
E over the embankment is identi
al to the degradation of nS

, 
f. Figure 8.12. At the same

intermediate state, the evolution of the plasti
 material parameters ǫ and δ is presented in

Figure 8.15 (middle) and (right). Therein, it 
an be re
ognised that the progression of ε

orresponds very 
lose to the shear band progressions, 
f. Figure 8.13 (middle). Thereby,

δ mainly performs the softening behaviour of the soil and is only a
tivated at high stresses


ompared to ǫ. Thus, δ is more 
on
entrated at the dominant shear band.

150 > 145 140

µS
E

3.0 2.25 1.5

ǫ · 10−2

7.8 7.5 7.2

δ · 10−3

Figure 8.15: Evolving of the material parameters (left) µS, (middle) ǫ and (right) δ.

Soil embankment with a less permeable 
entral 
ore

Su
h embankments with internal 
ore are built mainly by a loose raised soil and an

almost impermeable internal 
ore 
ompared to the surrounding soil material. The task of

the internal 
ore is to prote
t the in�ltration pro
ess of the dammed water through the

embankment. By the pressure di�eren
e between the dammed water and the air side, a

Figure 8.16: Initiation of embankment failure 
aused by ba
kward erosion: illustrating the

development of a pipe within the 
ore through ba
kward erosion triggered by hydrauli
 gradient

(Figure is abstra
ted from Foster et al. [71℄).
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high hydrauli
 gradient within the 
ore is indu
ed. Thus, a high seepage for
e develops

within the 
ore. Due to this fa
t, an erosion pro
ess 
an be triggered starting from the

interfa
e at the low-water side of the 
ore and gradually pro
eeds through the 
ore. In

addition, the seepage velo
ity is 
ontinuously strengthened by in
reasing porosity. As

a 
onsequen
e, the ba
kward erosion pro
ess is initiated, whi
h �nally generates a pipe

through the 
ore and pro
eeds until the reservoir. By growing porosity within the 
ore and

under the 
ondition that the water level of the reservoir is still 
onstant during the erosion

pro
ess, the water table in the 
ore and at the air side of the embankment will in
rease.

This 
ould lead to a 
ollapse of the 
onstru
tion indu
ed by buoyan
y. Figure 8.16, whi
h

is adopted from Fell et al. [71℄, s
hemati
ally illustrates the already des
ribed pro
ess of

initiation and progression of internal erosion through an embankment. However, there are

many other failure me
hanism of embankments, whi
h depend on the geometry, material

properties and loading 
onditions, et
. The goal of the following embankment simulation

is to re
apture of the illustrated physi
al pro
edure and to investigate the initiation of

the embankment failure.

In order to study numeri
ally the failure pro
ess of embankments with internal 
ore,

the IBVP shown in Figure 8.17 has been generated. The dimensions are the same as

of the soil embankment presented before. The embedded internal 
ore amounts a 20
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Figure 8.17: Geometry and dimensions of the embankment with 
entral 
ore in [m℄.

times less permeability than the surrounding soil. To simplify the interpretation of the

numeri
al results, the same material parameters have been used for the whole embankment

ex
ept of the 
ohesion κ(1)/(2) = 0.013/0.35MPa, the intrinsi
 permeability K
S(1)/S(2)
0S =

2 · 10−12/10−13m2
and the erosion velo
ity ζEE(1)/EE(2)

= 150/1500 s/m. Note that the

erosion velo
ity parameter ζEE(2)
of the internal 
ore is 
hosen 10 times larger than of the

embankment soil ζEE(1)
in order to enfor
e the erosion pro
ess within the 
ore. Regarding

the loading paths of this problem, they have been kept simple. Thereby, the water table

is �rstly in
reased at the left side of the embankment in 24 h to 5m and, afterwards, it is

kept 
onstant.

Figure 8.18 shows the development of sL and nS
of the embankment immediately after

in
reasing the water table to 5m and at the state of failure. The degradation of nS
is
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LP2

0.0 0.5 1.0

sL [−]
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nS [−]
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Figure 8.18: (top) Simulation results after the se
ond loading phase and (bottom) during the

third loading phase (failure state): (left) liquid saturation sL and (right) solidity nS .

initiated by the hydrauli
 gradient within the 
ore. Due to in
reasing porosity, wL is en-

for
ed, where gradually a porous pipe through the 
ore is 
reated and pro
eeds in dire
tion

to the reservoir. As a 
onsequen
e, the water table gradually starts to in
rease at the

water-prote
ted side of the embankment, 
f. Figure 8.18 (bottom-left). Thereby, the right

slope gets under buoyan
y and, in the end, the embankment fails. The deformation state

at failure is shown in Figure 8.19 (left) by the deformed FE mesh with 10-times magni�-


ation of the deformations. Therein, it 
an be re
ognised that the 
omplete embankment

is in motion along the main shear band, 
f. Figure 8.19 (right).

0.45 0.8 1.25

‖εSp‖ · 10−1

Figure 8.19: (left) Deformed FE mesh at the �nal state with 10-times magni�
ation and (right)

the evolved shear band.

Despite of the restri
tions of the internal erosion pro
ess mentioned in Se
tion 8.1, signi�-


ant physi
al pro
esses of embankment problems 
ould be well re
aptured by the presented

partially saturated soil erosion model.



Chapter 9:

Con
lusion

9.1 Summary

The main fo
us of the presented thesis lies on realisti
 simulations of IBVP in the �eld of

geome
hani
s using a partially saturated soil. To rea
h this goal, the partially saturated

soil has been intensively analysed based on the topi
s of the experimental investigation, the


onstitutive modelling, the parameter identi�
ation and model validation. An overview

to these topi
s was given in the introdu
tion.

Due to the 
oupled deformation and �ow pro
ess of partially saturated soils, a

urate

experimental investigations of their me
hani
al and hydrauli
 behaviour are very sophis-

ti
ated. Based on the prin
iple of phase separation, the me
hani
al properties of the

GEBA sand were experimentally investigated at dry 
onditions via triaxial experiments,

while the hydrauli
 behaviour was determined with deformation-free experiments. On

the basis of these experiments, 
onstitutive approa
hes for the triphasi
 model have been

derived thermodynami
ally 
onsistent in the framework of the Theory of Porous Media

(TPM). Con
erning this, the fundamentals of the well-do
umented TPM 
on
ept was

brie�y presented.

The most important point in the matter of material modelling is the experimental inves-

tigation, be
ause false measurements or faulty experimental equipments produ
e faulty

data sets. Based on faulty results, wrong 
on
lusions and assumptions of the material

behaviour would be drawn and, thus, would lead to in
orre
t 
onstitutive modelling ap-

proa
hes. Before 
arrying out the triaxial experiments, the test setup was optimised


on
erning some error sour
es. In parti
ular, the main error was involved in the triaxial


ell. Hen
e, a new sti� triaxial 
ell was 
onstru
ted. In
luding the triaxial 
ell and other

error sour
es, the measuring error of the 
omplete triaxial devi
e system 
ould be redu
ed

to a reasonably low value.

The yield as well as the failure behaviour of dense sand was investigated by use of drained

monotoni
 and non-monotoni
 triaxial experiments. Espe
ially, it 
ould be shown through

triaxial stress-path-depending 
ompression tests that the standard approa
h to limit the

hardening of the yield surfa
e by a �xed failure surfa
e is not 
orre
t. The evolution of the

yield surfa
e has been limited by a hydrostati
 stress-dependent failure surfa
e. The good

agreement with all experiments shows that the presented approa
h is promising for re-

alisti
 simulations of quasi-stati
 IBVP of 
ohesionless-fri
tional materials. Furthermore,

the triphasi
 soil model for des
ribing the partially saturated soil was numeri
ally vali-

dated by simulations of di�erent slope failure s
enarios at the te
hni
al s
ale. The results

showed that the presented TPM model is well suited to mimi
 the physi
al behaviour of

multiphasi
 materials su
h as partially saturated sand and also reliably predi
ted shear

failure triggered by the hydrauli
 
onditions.
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lusion

For a numeri
al analysis of IBVP, the governing balan
e equations of the triphasi
 model

have been transferred into weak formulations and dis
retised in spa
e and time. Be
ause

of the elasto-plasti
 behaviour of the solid matrix, the resulting DAE system of global

and lo
al equations was iteratively solved in the sense of a two-stage Newton pro
edure.

To 
onsider the dependen
ies of the global tangent of the governing equations from the

lo
al history variables, the algorithmi
ally 
onsistent material tangent was implemented.

Furthermore, for the identi�
ation of the material parameters, the FE tool was 
oupled

with the gradient-based non-linear SQP optimisation method. To solve the Hessean

matrix of the extremal of the 
onstraint optimisation problem, the BFGS method was

applied. Hereto, the required sensitivities of the �tted quantities with respe
t to the

optimised material parameters were 
omputed semi-analyti
ally.

Moreover, the 
apability of the TPM model was tested by simulations of the Heumös

hillslope. Although the Heumös hillslope is �at, it is still 
reeping at several parts with

di�erent velo
ities. Therewith, it 
ould be 
on
luded that several slope bodies are existing.

For the numeri
al analysis, the hillslope was des
ribed by a long representative 
ross-

se
tion pro
eeding from a simpli�ed material 
omposition of the slope body. The 
ross-

se
tion is divided into three stratums, while the lowest one is the bedro
k with a very hilly

topology. Based on a hydrauli
 loading 
ondition representing a large pre
ipitation depth,

the FEM simulations revealed several shear bands between the stratum interfa
es as well

as at deep parts of the bedro
k. Thus, the numeri
ally dete
ted shear bands separate the

Heumeoes slope in several slip bodies, whi
h may explain the observed motion situation

of the Heumös slope 
on
erning the assumption of several slope bodies.

The triphasi
 model was further extended to model internal soil erosion problems. Con-


erning this, an erosion phase has been introdu
ed, whi
h represents the �uidised grains.

However, the very 
omplex erosion pro
ess was strongly subje
ted to restri
tions, be
ause

the obje
tive of the numeri
al investigation of erosion problems was fo
used on the anal-

yses of embankment destabilisations indu
ed by loosing solidity. The in
rease of the soil

porosity degrades the material sti�ness and strength, whi
h leads to the weakening of the

soil 
onstru
tion. These 
hanges of the material behaviour have been taken into a

ount

by redu
ing the elasti
 (redu
ing the sti�ness) and plasti
 (shrinking the failure surfa
e)

material parameters in dependen
e of the porosity development as in damage pro
edures.

9.2 Outlook

The presented new 
on
ept of a stress-dependent failure surfa
e 
an be further improved

by determining the 
omplete shape of an individual failure surfa
e for a 
hosen 
on�ning

pressure state. Repeating this for di�erent 
on�ning pressures, the evolution of the failure

surfa
e 
an be approximated. Based on these results, the model 
on
ept of yielding

and failure evolution 
an be further optimised. Furthermore, the evolution of the yield

surfa
e is only restri
ted to the isotropi
 hardening. This has to be extended to kinemati


hardening in order to 
onsider large stress reversal from 
ompression to extension range

and vi
e versa.

The reliability of the 
omputations of natural slopes depends mainly on the quality of
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the model input data, whi
h has to be obtained from �eld measurements. This is one of

the 
hallenges fa
ed by hydrologists and geophysi
ists be
ause the valuable simulation of

real-s
ale problems requires 3-d information about the subsurfa
e stru
ture and the me-


hani
al and hydrauli
 properties. The appli
ation of 
omputer simulations to elu
idate

the 
omplex hydrauli
 pressure and �ow systems that might trigger hillslope movements

poses also 
hallenges to the numeri
al algorithms. In fa
t, the numeri
al treatment of

strongly 
oupled, inelasti
 solid-�uid IBVP on real-s
ale 3-d domains requires high 
om-

puting power exploiting parallel and distributed solution strategies whi
h are far from

being standard.

The 
omplexity of the presented internal soil erosion model has to be in
reased, for ex-

ample, 
on
erning the transport of the grains, in order to treat more sophisti
ated IBVP.

Furthermore, non-linear �uid motion laws have to be implemented in order to simulate

the areas 
orre
tly, where very high and low porosity areas are 
onne
ted. This is gen-

erally the 
ase between the main soil and the erosion pipe. Moreover, 3-d simulations of

embankment failure triggered by internal erosion are an important and 
hallenging goal

for future work.





Appendix A:

Elementary Triaxial tests

A.1 Deformation behaviour

Triaxial experiments have been 
arried out with lubri
ated latex membranes on the end-

plates of the 
ylindri
al spe
imen in order to minimise the fri
tion for
e between the

endplate and the spe
imen. Therewith, an almost homogeneous deformation behaviour is

ensured. In Figure A.1, the undeformed (left) and the deformed (right) spe
imen are illus-

trated, wherein the edges of the deformed spe
imen are almost plane like the initial state,


f. Müllers
hön [118℄. However, a spe
imen with non-lubri
ated endplates would lead

to bulging of the spe
imen be
ause the volume deformations are impeded at the bound-

aries of the spe
imen. However, this leads to an inhomogeneous deformation development

within the spe
imen and to the evolution of shear bands.

Figure A.1: (left) Undeformed (initial) state and (right) homogeneous deformed state of a


ylindri
al sand spe
imen.

A.2 Boundary 
onditions

Due to homogeneous deformations of the spe
imen, the radial and tangential stresses σr
and σϕ expressed by the 
ylindri
al 
oordinates r (radius) and ϕ (polar angle) are equal

σr = σϕ, be
ause, within the spe
imen, no stress gradients are developing. Hen
e, the

stresses expressed in Cartesian 
oordinates are also equal, σ2 = σ3, where the stress tensor
σ 
an be redu
ed to the prin
iple stress ve
tor, 
f. Müllers
hön [118℄:

σ =




σ1 0 0

0 σ3 0

0 0 σ3


 ei ⊗ ej =̂




σ1

σ3

σ3


 ei . (A.1)
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142 Appendix A: Elementary Triaxial tests

Using the rotational and axial symmetri
 
onditions of the 
ylindri
al spe
imen, the 
om-

putation model 
an be redu
ed to a 2-d plane strain problem, 
f. Figure A.2.
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Figure A.2: Idealisation of the 
ylindri
al spe
imen for numeri
al 
omputations.



Appendix B:

Important Relations

B.1 Derivations of the total and e�e
tive quantities

σS = −nSpAR I + pCsWnS I + σS
Em

= −nSpAR I + (pAR − pWR)sWnS I + σS
Em

= −nSpAR I + pAR(1 − sA)nS I − pWRsWnS I + σS
Em

= −nS(sApAR + sWpWR) I + σS
Em

= −nSpFR I + σS
Em ,

TA = −nApAR I +TA
E ≈ −pA I ,

TW = −nW (pAR − pC) I +TW
Em = −nWpWR I +TW

Em ≈ −pW I ,

p̂
A = pAR gradnA + p̂

A
E

p̂W = pAR gradnW + pC sW gradnS + p̂W
Em

= pAR gradnW − (pAR − pWR) gradnW + pC nF
grad sW + p̂W

Em

= pWR gradnW + pC(sA gradnW − sW gradnA) + p̂W
Em .

(B.1)

With: pC nF
grad sW = pC [ (nW + nA) grad sW ]

= pC [ grad (sWnA)− sWgradnA + grad (sWnW )− sWgradnW ]

= pC [ gradnW − sWgradnW − sWgradnW ]

= pC [ (1− sW ) gradnW − sWgradnA ]

= pC [ sAgradnW − sWgradnA ] .
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Appendix C:

Identi�ed Triphasi
 Model of the GEBA Sand

C.1 Parameters of the solid skeleton

PSfrag repla
ements

Parameters of the elasti
 behaviour and of the initial state:

µS

kS0

kS1

ρSR

nS
max

nS
0S

KS
0S

150

25

50

0.5935

0.585

2 · 10−10

2.65

Parameters of the plasti
 behaviour:

initial yield surfa
e (hardening parameters)

δ0

ǫ0

β0

γ0

7.8 · 10−3

0.1

0.095

0.0

0.0

limit values of the hardening parameters representing the failure surfa
e

⋆

δ
⋆
ǫ0

⋆

β
⋆
γ

7.3 · 10−3

0.046

0.267

1.66

parameters 
ontrolling the evolution of the failure surfa
e

⋆

Cǫ
⋆
ǫlim0.293

parameters 
ontrolling the evolution of the yield surfa
e

CV
δ CD

δ

CV
ǫ CD

ǫ

CV
β CD

β

CV
γ CD

γ

120

690

280

22

280

280

30

Additional yield surfa
e, plasti
 potential and vis
oplati
 parameters

κ α

ηm

r

σ0

ψ1

ψ2

1 · 10−4

1 · 10−4

0.54 100

0.01

0.01

1.51.1

0.64

MPa

MPa

MPa

1/MPa

1/MPa

1/MPa

1/MPa

1/MPa

1/MPa

1/MPa

1/MPa

m2

g/cm3

s

=

=

=

=

=

=

=

=

=

=

=

=

=

=

= =

= =

= =

=

=

=

=

=

=

=

=

=

=

=

=

=

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

[−]

Table C.1: Elasto-vis
oplasti
 material parameters, 
f. Ehlers and Av
i [56℄.
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146 Appendix C: Identi�ed Triphasi
 Model of the GEBA Sand

C.2 Parameters of the partially saturated zone

PSfrag repla
ements

Hydrauli
 parameters of partially saturated soil

sWres sAres
αgen jgen

hgen ǫgen

γgen π

0.118 0.0233

1.421 6.251

1.0

1.0

1.5

0.001

1/kPa

=

=

=

=

=

=

=

=

[−]

[−]

[−]

[−]

[−]

[−]

[−]

Table C.2: Van Genu
hten material parameters of the GEBA sand.
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