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Abstract

In the field of geostatistics and spatial statistics, variogram based models have proved a very
flexible and useful tool. However, such spatial models take into account only interdepen-
dencies between pairs of variables, mostly in the form of covariances. In the present work,
we point out to the necessity to extend the interdependence models beyond covariance mod-
eling; we summarize some of the difficulties arising when attempting such extensions; and
propose an approach to address these difficulties.
The necessity for extending covariance models, apart from the common sense notion that
there can be more structure in a data-set than that expressed in terms of pairwise relations,
has been suggested recently in the hydrological literature (Bárdossy and Pegram (2009,
2012)). For example, two multivariate data-sets/models with identical correlation matrices
can exhibit systematically different congregation patterns, as expressed by entropy based
measures applied to multivariate (d ≥ 3) marginals.
An initial difficulty in trying to consider interdependence measures which go beyond pair-
wise measures, is to conceptualize what, say, a three-wise correlation coefficient might mean,
or how is it to be interpreted. We suggest that joint cumulants are legitimate extensions of
the covariance coefficients, since both represent the integral of a well known interaction
measure (the Lancaster Interaction Measure); the covariance being the special case for d =

2. Then, from a more practical point of view, we suggest to address the issue of higher
order interdependence via subject-matter relevant manifestations of such interdependence.
Three example manifestations are provided, and their connection with multivariate joint
cumulants is exhibited, namely: the distribution of the sum, the joint survival function, and
the differential entropy of subsets S of the random vector representing the random field
under study, where ‖S‖ > 2. The importance of the first of these for rainfall modeling is
illustrated.
An important difficulty in trying to consider extensions to covariance models is the high di-
mensionality incurred. This high dimensionality is palliated by the use of low dimensional
variogram models in traditional spatial statistics. By considering a cumulant generating
function (c.g.f.) as a dependence structure, and introducing an archetypal c.g.f., we show
that much of this low-dimensional approach can be kept, while allowing the explicit con-
sideration of higher order interdependence. The issue of parameter estimation is dealt with,
and three examples illustrate the consequences of manipulating joint cumulants on diverse
interaction manifestations.
Finally, it is indicated how we can use this archetypal dependence structure (i.e., c.g.f.) to-
gether with marginal transformations, both monotonic and non-monotonic, in order to give
more flexibility to the method, while retaining its low-dimensional desirable properties.





Zusammenfassung

Im Bereich der Geostatistik und der räumlichen Statistik haben sich variogrammbasierte
Modelle in der Praxis als ntüzlich und flexibel erwiesen um räumliche Zusammenhänge zu
beschreiben. Allerdings beziehen diese Modelle nur Wechselwirkungen zwischen Paaren
von Variablen, vor allem in Form von Kovarianzen, mit ein. In dieser Dissertation weisen
wir auf die Notwendigkeit hin, räumliche Modelle jenseits der Kovarianz Modellierung zu
erweitern. Wir fassen einige Schwierigkeiten zusammen, die bei solch einer Erweiterung
entstehen. Letztendlich präsentieren wir einen Ansatz, mit dem man diesen Schwierigkeiten
behandeln kann.
Dass mehrdimensionale Datensätze eine Zusammenhangstruktur aufweisen können, die
nicht ausschließlich mit Kovarianzen erfasst werden kann, mag selbstverständlich sein. Die
Notwendigkeit, Kovarianz-basierte Modelle zu erweitern, ist beispielsweise neulich in der
hydrologischen Fachliteratur aufgetaucht (siehe Bárdossy and Pegram (2009, 2012)). In
dieser Arbeit wurde gezeigt, dass zwei multivariate Datensätze bzw. Modelle, identis-
che Kovarianzmatrizen aufweisen, aber trotzdem sehr unterschiedliche Eigenschaften oder
Cluster-Bildungen aufweisen können. Cluster-Bildungen werden dabei anhand eines En-
tropiemaßes, das dreidimensionale Randverteilungen umfasst, quantifiziert.
Eine der ersten Hürden für die Bildung eines Maßes, das die gegenseitige Abhängigkeit von
mehr als zwei Variablen betrachtet, ist das Problem der Konzeptualisierung. Was soll eine
Korrelation zwischen drei Variablen bedeuten? Wie soll man so etwas interpretieren? Wir
schlagen in dieser Arbeit vor, dass multivariate Kumulanten eine legitime Erweiterung des
Korrelationskoeffizienten bereitstellen, denn sie repräsentieren das Integral eines bekannten
Wechselwirkungsmaßes, des “Lancaster Interaction Measure”. Die Kovarianz ist dabei der
Sonderfall für die Dimension d = 2.
Aus einer praktischeren Sicht betrachten wir die anwendungsspezifischen Wechselwirkung-
seigenschaften von Daten als Schlüsselkonzept zur Quantifizierung von Interaktionen. Die
Kumulanten werden dabei daraufhin angepasst, die beschriebenen Wechselwirkungseigen-
schaften richtig widerzuspiegeln. Zur Veranschaulichung werden drei Wechselwirkung-
seigenschaften aufgeführt und deren Verbindung mit multivariate Kumulanten aufgezeigt.
Die drei Wechselwirkungseigenschaften umfassen Teilmengen S von Komponenten eines
stochastischen Vektors: die Verteilung der Summe, die multivariate Verteilung, und die Dif-
ferentialentropie mehrerer Komponenten. Wobei ‖S‖ > 2. Die Relevanz der beschriebe-
nen Wechselwirkungseigenschaften wird exemplarisch mit Niederschlagsmodellen veran-
schaulicht.
Eine weitere Hürde für die Erweiterung von kovarianzbasierten Modellen für Räumliche
Statistik ist die Anzahl an Parametern, die angepasst werden müssen. Bei der Kovarianz An-
passung wird die Anzahl an Parametern üblicherweise mit Hilfe von niedrig-dimensionalen
Variogrammmodellen stark reduziert und kontrolliert. Wir stellen eine Abhängigkeitsstruk-
tur in Form einer kumulantenerzeugenden Funktion (K.e.F) vor, die eine Anpassung von
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Kovarianzen durch das Variogrammmodell zulässt, aber auch das Anpassen von Kumu-
lanten höherer Ordnungen (also, höher als 2) erlaubt. Solche Kumulanten höherer Ord-
nung können angepasst werden, um beobachtete, relevante Wechselwirkungseigenschaften
besser zu reproduzieren. Möglichkeiten der Parameteranpassung für die vorgeschlagene
Abhängigkeitsstruktur werden in dieser Dissertation ebenfalls behandelt.
Zur Veranschaulichung werden drei Beispielfelder betrachtet. Dabei experimentieren wir
mit verschieden Konstellationen von Kumulanten höherer Ordnung und werten die Konse-
quenzen für bestimmte Wechselwirkungseigenschaften aus.
Abschließend wird gezeigt, wie die vorgeschlagene Abhängigkeitsstruktur (K.e.F.) in Verbindung
mit monotonen oder nicht-monotonen Komponenten-Transformationen verwendet werden
kann. Die vorgeschlagene Methode zur Generierung von hochdimensionalen Abhängigkeiten
gewinnt damit an Flexibilität, während sie ihre niedrig-dimensionalen Vorteile beibehält.



1. Introduction

1.1. Relevance of the topic

From a purely methodological viewpoint, in statistics generally and in spatial statistics, in
particular, very little work has been done to explicitly take into account inter-dependencies
of more than two variables simultaneously. By taking it into account we mean diagnosing
its existence, identifying its manifestations within specific subjects (e.g. in meteorology),
quantifying its intensity and modeling it.
To our knowledge, only in the field of computational neuroscience there have been a con-
sistent effort to address the issue of simultaneous interactions: Modern theories of the brain
intend to use ensemble or groups of neurons as building blocks for representation and pro-
cessing of information, rather than individual neurons. It is thus of interest to determine the
cardinality or size of such groups, and the nature and dynamics of the interaction among its
members Grün and Rotter (2010). The idea, according to Grün and Rotter (2010), dates back
to an influential 1949 theory of behavior Hebb (2002). The fact that the area is still one of in-
tense research suggests its complexity and potential. Though inspiring for the work below,
the methods employed in parallel spike train (such is the field-name in Neuroscience) are
not entirely adequate for spatial statistics.
In a context more related to spatial statistics, namely in that of rainfall modeling, Bárdossy
and Pegram (2009) and Bárdossy and Pegram (2012) have raised the question of the need
to consider dependence among more than two variables (i.e. Rainfall amounts at two lo-
cations) simultaneously. Bárdossy and Pegram (2009) propose a novel weather generation
model. Their model reproduces well many important characteristics of rainfall adequately,
such as mean daily precipitation, wet-dry spells, rank correlation among rainfall values,
etc. However, interdependence is systematically underestimated, according to the entropy
measure they employ for validation.
A similar situation was found in Bárdossy and Pegram (2012, 2011), where the authors deal
with the rainfall output of three RCMs having a spatial resolution of 25Km×25Km, and
daily temporal resolution. They have also gauging-stations’ daily rainfall data at their dis-
posal, which they aggregate block-wise into a resolution of 25Km×25Km. The RMCs out-
puts are corrected in such a way that the (marginal) probability distribution at each block,
and the correlations among every two blocks of the area under analysis are exactly matched
to those of the gauging stations-based block aggregations. By analyzing the sum of every
four blocks of the bias-corrected variable, and comparing these sums with those found from
gauge-based interpolation, it is found that the sums behaves in a different way regarding
extreme values. That is, matching the correlation (pair-wise) characteristics of data does
not automatically mean that we are having four-wise characteristics of data right, rainfall
data is essentially higher dimensional than that. Bárdossy and Pegram (2012) employ the
same entropy-based congregation measure as in their former research, Bárdossy and Pegram
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(2009), and find also in this case that the congregation of every three sites interpolated val-
ues is significantly higher than the reconstructed values, even though the correlation among
sites is exactly the same.
For the sake of clarity, we mention some instances of what we mean by d-wise character-
istics: The entropy of d-dimensional marginals distributions, the behavior (distribution) of
the sum of values at d sites, the simultaneous trespassing by d components of a vector over a
threshold value, etc. The interest in one characteristic or the other will depend on the specific
application motivating the analysis. We call in this research such characteristics interaction
manifestations. Not considering such interaction manifestations may lead to considerable
underestimation of subject-matter relevant statistics: consider in the context of rainfall mod-
eling, for example, statistic T =”99% quantile of the sum of the positive components of a
vector”.
Although we deal in the present research with the typical problem of field estimation and
interpolation, accounting for interactions that go beyond covariance is likely to useful in
various research areas where statistics plays an important role, such as Dowscaling, weather
generator models, time series analysis and empirical finance, among others.
All the above suggests considering models that can reproduce relevant interaction mani-
festations. Some issues come immediately to mind. For example, given a random vector
X ∈ RJ , how can one go from, say, the entropy of a 4-dimensional marginal to a model that
reproduces such an entropy value? Even more important for Spatial Statistics: how to ob-
tain a model that stays manageable as dimension increases (potentially letting J → +∞),
and that can be extended consistently, so as to allow for interpolation into non-gauged sites?
How can one build models that preserve the well-established techniques for first and second
order statistics (e.g. mean and co-variance)?
In this research, we propose joint cumulants as building blocks for models that can address
the questions posed above. In the context of spatial statistics, we propose a basic model,
defined in terms of a cumulant generating function (c.g.f.), adequate for tackling the need of
low dimensionality and consistent extension. This model is seen to be a natural extension
to the Gaussian model, which currently dominates spatial and spatio-temporal statistics (cf.
Cressie and Wikle (2011)). Parameter estimation and random simulation are addressed.
Two simulation based examples illustrate the possible implications for real environmental
variable modeling. Gaussian and non-gaussian fields are simulated that look very similar
regarding their one and two dimensional marginal distributions, but which exhibit very
different interaction manifestations, as defined for each example. All the additional non-
gaussianity is induced by manipulating joint cumulants of order greater than 4.
Extension possibilities, in order to give more flexibility to the model are considered. These
are given in the form of monotonic and non-monotonic transformations applied to each
marginal component.
Finally, the need to take into account subject-matter relevant interaction manifestations ex-
plicitly in estimation is acknowledged and illustrated. A course of action is given in the
form of a two-step procedure, whereby the whole model is estimated at a first step (i.e. via
Maximum Likelihood estimation). At a second step, lower order statistics (e.g. mean and
co-variance) are held fixed, while parameters connected with higher order statistics are op-
timized, so as to make the interaction manifestations expected from the model as similar as
possible as those observed in data. The structure of the suggested c.g.f. defining our basic
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model is such that statistics of increasing order can be fitted “orthogonally”, that is, without
altering the statistics of lower order (e.g. mean and co-variance).
We conclude this work with an outline of desirable future research.





Part I.

Theory and Methodology





2. Preliminaries

2.1. Brief summary of the concept of statistical dependence

The study of statistical dependence was begun by Francis Dalton (1822-1911) in the context
of two related problems Pearson (2011): The influence of parents height on adult children’s
height, which lead to the concept of “regression”, and the association among anatomical
measures of the same individual, such as foot length, head length, stature, etc. This second
problem led to the concept of correlation, since the different anatomical measurements had
different scales; Galton had to standardize them (by subtracting the observed median of
the respective measure to each observation and dividing the result by one half of the inter-
quartile distance) and then apply his formerly found measure of “regression”. In this way,
even both interpretations assigned in practice to correlation, i.e. that of “partial causation”
and that of association measure (not implying any sort of causation) were considered by
Galton. Elementary though the correlation concept may appear today, it meant a revolu-
tionary invention for the experimental science of Galton’s time. We quote the view of Karl
Pearson, mathematician and philosopher, usually called the founder of modern statistics
Pearson (2011):

Up to 1889 men of science had thought only in terms of causation, in future
they were to admit another working category, that of correlation, and thus open
to quantitative analysis wide fields of medical, psychological and sociological
research. [...] Galton, turning over two different problems in his mind, reached
the conception of correlation: A is not the sole cause of B, but it contributes to
the production of B; there may be other, many or few, causes at work, some
of which we do not know and may never know. Are we then to exclude from
mathematical analysis all such cases of incomplete causation? Galton’s answer
was: "No, we must endeavour to find a quantitative measure of this degree of
partial causation". This measure of partial causation was the germ of the broad
category, that of correlation, which was to replace not only in the minds of many
of us the old category of causation, but deeply to influence our outlook on the
universe. [...] The idea Galton placed before himself was to represent by a single
numerical quantity the degree of relationship, or of partial causality, between the
different variables of our ever-changing universe.

Thus, it was possible analyze rationally objects belonging to more complex systems than
were conceivable before, knowing that we could not identify all causes determining their
development (which for practical purposes are infinite) but that at least it was possible to
quantify the partial influence from postulated important causes or “factors”. The correlation
coefficient proposed by Galton was further developed by K. Pearson into the so-called prod-
uct moment correlation coefficient, which is widely used today. The paradigmatic step had
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been made by Galton, though, acknowledging the importance and clarification potential of
a “soft” or “probabilistic” or “average” type of causality and of association.
The concept was general enough to allow its application to the most diverse disciplines,
from psychology to economics. Since the concept was already discovered, new measures
expressing the concept, but adapted to specific applications or created to solve any specific
data type difficulty, appeared in the course of time. Both the Spearman’s ρ and the Kendall’s
τ coefficients were developed by Spearman and Kendall, respectively, with a view to their
application in Psychology (Spearman (1904), Kendall (1938)), whereas Gini’s γ was devel-
oped in the context of economics. Other measures of dependence include Blomqvist Beta
Blomqvist (1950), Goodman and Kruskal’s τ and γ (for categorical data), etc.
As usual in mathematics, concepts are first developed in connection with a specific appli-
cation and then they are generalized and their theory systematized. In a theoretical paper,
Rényi (1959) formulated seven “rather natural postulates” to be fulfilled by a reasonable
measure of dependence. The postulates of Rényi are rather restrictive and he mentions
only one measure of dependence fulfilling his postulates (the “maximal correlation coeffi-
cient”, due to Gebelein (1941)). Schweizer and Wolff (1981) build on Rényi’s work and come
up with copula-based measures of dependence which fulfill “reasonable modifications” of
Rényi’s seven postulates.
As a final step in this brief summary of theoretical works on stochastic dependence, we
mention the paper due to Schmid et al. (2010). In this paper, the authors gather a set of
desirable properties for dependence measures proposed in the literature and introduce ex-
tensions to well-known measures of bi-variate dependence, such as Spearman’s ρ, Kendall’s
τ , Bomqvist’s Beta, Ginni’s γ. They also survey other types of measures, such as measures
based on information/entropy and on distances between distributions. For each explained
dependence measure, the authors check which of the listed properties are fulfilled; it is
noteworthy that none of the measures fulfill all properties listed, but different measures ful-
fill different sub-sets of them. The unifying concept of all these measures is that they are
expressed in terms of the copula of the random vector’s distribution under study. Estima-
tion is performed non-parametrically via estimation of the empirical copula. The paper of
Schmid et al. (2010) was inspiring for the present work: they generalize many well known
measures of dependence using the copula as unifying element and pay attention to the-
oretically attractive properties such a measure should have, at the same time. Moreover,
these measures consider more than just pair-wise dependence. Concerning spatial statis-
tics, however, the non-parametric nature of these dependence measure’s estimation makes
them unsuitable for model-building, which in turn is a complication if we are to impute the
value of the random variable in an ungauged site (interpolation), or if we want to have a
forecast of the random field conditioned on additional variables (say, circulation patterns),
since in this case we have no parameters to “connect” the response (say, rainfall) with the
conditioning variables.
The approach or guiding principles employed in this work can be summarized as follows:
We try to provide a theoretical, logically appealing basis for our dependence quantifica-
tion and modeling method, but we are also concerned with the specific case of spatial data
analysis, as outlined in the next sections. Application-relevance is for us primary, theory
compliance is complementary.
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2.2. Dependence in the context of Spatial Statistics

2.2.1. Generalities

In the statistical practice, “we typically start with a subject-matter question. Data are or
become available to address this question” Cox (2006). Sometimes, such data considered
relevant for the research question(s) possess labels indicating their location in space. If
statistics can be described as a methodology for “utilizing data to make inferences about un-
measured quantities” Kitanidis (1997), then the geographic principle that locations in space
that are closer tend to look or react more similar must be taken into account. This effect of
the location at which an event or measurement occurs, its identification, quantification and
modeling is the object of Spatial Statistics.
A generic Spatial model can be defined as follows Cressie (1991): Let s ∈ Rg be a generic
location in the G-dimensional Euclidean space and suppose the potential datum Z (s) at spa-
tial location s is a random quantity. Let s vary over an index set D ⊂ Rg, then a multivariate
random field is generated

{Z (s) : s ∈ D} (2.2.1)

For example, if D = {s1, s2, s3, . . . , sN} is a fixed finite set, we obtain the random field

(Z (s1) , . . . ,Z (sN)) (2.2.2)

in case set D ⊂ Rg is countably infinite and fixed, the generated field can be written as

(Z (s1) ,Z (s2), . . .) (2.2.3)

The above two instances are usually called “lattice data models”. If set D ⊂ Rg is fixed
and non-countable, then the model is a “Geostatistical model”, the name coming from the
original context in which this type of model was first developed. If the index set D ⊂ Rg is
not provided in advance, and the model for the process of interest can be decomposed into
two steps: 1. a location s is generated on Rg; 2. given location s, a random quantity is gener-
ated Z (s). Then the model is a “Point pattern” model; important instances of this model are
the “Poisson point process” and the “Cox Process”Cressie and Wikle (2011), in which only
the location generation mechanisms are random, and Z (s) = 1,∀s. Those models do not
exhaust the Spatial Statistics types of models. The reader is referred to Cressie and Wikle
(2011) for more details. We focus in this work on the Lattice and the Geostatistics models.
The key issue regarding these models is that the field is only partially observed, i.e. observed
at some locations or sites only. The values at sites where no observations are available must
be estimated on the basis of the observed values and the dependence structure of the multi-
variate field. This dependence structure, which takes into account the position of the sites,
must also be inferred from the observed data.

2.2.2. The Covariance Function

There follows an example that intends to introduce the topic and possible issues in the types
of Spatial Statistics models dealt with in this dissertation. It is simple enough not to distract
the flow of reading excessively, but is likely to provide the necessary background for the
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Figure 2.2.1.: Example site configuration. Circles represent sites with observed data, the “x”
represent a site with not observation where an estimation is required.

rest of the work. The kind of model dealt with in this research falls in the sub-class of those
for which a valid covariance function can be found, probably after describing the expected
value of Z (s) by means of a deterministic function of external variables and location s (such
as geographical variables: elevation, coordinates of site location, etc.). This kind of model
is called a “second order stationary model” in the literature; the reader is referred to the
specialized literature for more details (Cressie and Wikle (2011); Cressie (1991); Diggle and
Ribeiro (2007)).
We see in figure 2.2.1 five sites on the plane at which observations are available, represented
by circles, and one site at which no observation is available but an estimation is required,
represented by an “x”. This is an example of a lattice model with a location set D ⊂ Rg, g = 2

of 6 elements, where the value of the random quantity Z (s) is not observed at one location.
A possible solution to this problem is to set up a multidimensional probability model such
as, for example, the multivariate Gaussian model:

(X1, . . . , X6)
′
∼ N6 (0,Γ6x6) (2.2.4)

whereXj = Z (sj), j = 1, . . . , 6, 0 is a vector of zeros, and Γ is a 6×6 covariance matrix. This
would imply that the marginal distribution of the random quantity at each location is Gaus-
sian with zero mean. Moreover, it is a well known result that the conditional distribution of
X6 | Xj , j 6= 6, is normally distributed with mean

µ∗6 = Γ12Γ−1
22 (x1, . . . , x5)

′
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and variance
σ2∗

6 = Γ66 − Γ12Γ−1
22Γ21

where each xj represent the observed value of Xj = Z (sj), and

Γ12 = (Γ62, . . . ,Γ65)

Γ22 =

 Γ22 . . . Γ25
...

. . .
...

Γ52 . . . Γ55


Γ21 = (Γ26, . . . ,Γ56)

′

In this manner, it is possible to obtain an estimate for X6 = Z (s6) and even a measure of
the quality of the estimation, namely σ2∗

6 . If the association between values of the random
quantity at two locations, Z (si) and Z (sj), can be assumed to be reasonably determined
by the distance between si and sj, then the geographic principle demanding that closer
things look more similar can be represented by a correlation matrix ρ6x6, with entries ρij =

Γij/
√

ΓiiΓjj that are described by some decreasing function h of the (euclidean) distance
between sites si = (si1, si2) and sj = (sj1, sj2):

ρij = corr (Z (si),Z (sj)) = h (Dist (si, sj)) (2.2.5)

A field whose correlations can be expressed in this way is said to be isotropic. If all variances
Γjj , j = 1, . . . , 6, are considered equal on the basis of some analysis specific subject-matter
considerations, then an adequate and equivalent means of representing the geographic prin-
ciple mentioned above is the isotropic covariance function, C:

Γij = cov (Z (si),Z (sj)) = C (Dist (si, sj)) (2.2.6)

and it is clear that
h (Dist (si, sj)) = C (Dist (si, sj)) /C (0) (2.2.7)

Since usually matrix Γ of the example is not known in advance, it must be estimated from
observed data (which data comprises the locations of the observed values). The represen-
tation of covariance at (2.2.6) is desirable, since: 1. If only one observation is available at
each of the sites providing the data, then it is impossible to estimate the covariance matrix
of the model without postulating assumptions on the nature of the spatial dependence. De-
pendence as a function of distance seems a harmless assumption. 2. If an adequate function
C is found which depends on a reduced number of parameters (such as two or three, as
below), then the number of parameters to estimate in order to have an estimation of Z (s6)

is small, providing a parsimonious model; 3. If the dependence structure, i.e. the covariance
matrix, can be represented as a function of distance, then in principle the value of the ran-
dom quantity Z (s) can be estimated at any point on the plane s. Thus a whole field on the
plane can be obtained, as in the Geostatistics models.
However, this covariance function C cannot be an arbitrary function, since the resulting
covariance matrix Γ must be positive definite, namely

vΓv
′
> 0, ∀v ∈ R6

A number of functions satisfying this requirement have been developed, two of which are:



12 Preliminaries

Powered-exponential: given by equation

C (d) = σ2
0.I (d = 0) + σ2

1 exp
(
− (d/θ1)θ2

)
(2.2.8)

where I (∗) stands for the indicator function.

Mátern’s: given by equation

C (d) = σ2
0.I (d = 0) + σ2

1

[
2θ2−1Γ (θ2)

]−1
[d/θ1]θ2 Kθ2 (d/θ1) (2.2.9)

where Γ (∗) stands for the Gamma function and Kθ2 (d/θ1) for the modified Bessel
function of the second kind of order θ2 (see, for example Abramowitz (1972)).

Parameters
(
θ1, θ2, σ

2
0, σ

2
1

)
are the covariance function parameters, and must usually be es-

timated on the basis of observed data by means of a computerized optimization procedure.
If a model such as (2.2.4) is employed, maximum likelihood estimation is a possibility.

2.2.3. Dealing with Anisotropy

Sometimes it is unreasonable to assume that the association between the values at two sites
is merely a function of distance. For example, if the circles at figure 2.2.1 represent air pol-
lution gauges and wind flow is known to be predominantly in a specific direction for the
times estimation at point “x” is supposed to be made, then the isotropic assumption is not
reasonable. If this wind direction is, for example, from North-West to South-East, then the
four locations at the upper part of the figure are somehow drawn “closer” to the estimation
or prediction location, by the effect of the wind, than the site located at the lowest part of
the plane. The random field is said to be anisotropic in such a case. Sometimes it is possi-
ble to transform the original “geographic plane” into a “dispersion plane”, where isotropy
holds, compute the estimation at the ungauged location, and then transform back into the
geographic space. This is the idea underlying the two methods mentioned subsequently.

2.2.3.1. Geometric Anisotropy

Define dij = si − sj to be the lag vector obtained by (component-wise) subtracting two loca-
tion vectors. This lag has not only magnitude Dist (si, sj) as above, but also a direction. If
there exists an invertible matrix Agxg, such that process Z (As) is isotropic, then the process
is said to be geometrically anisotropic, and its covariance function can be written as

C∗ (dij) := C (Dist (Asi,Asj)) (2.2.10)

by using any of the available isotropic covariance functions.

2.2.3.2. Deformation Approach

Another approach, which we shall name the Sampson-Guttorp or deformation approach (see
Sampson and Guttorp (1992) and Schmidt and O’Hagan (2003)), considers more general
transformations. It is assumed in this case that a series of observations is available at each
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gauging site, and thus it is possible to compute sample covariances for the values at these
sites, Γ̂ij , i, j = 1, . . . , J . The covariance matrix thus obtained can be interpreted as a
similarity matrix, and this idea is implemented by constructing a distance matrix given by

Dij =
√

Γ̂ii + Γ̂jj − 2Γ̂ij . Note that in the presence of anisotropy, the distances at Dij do not
correspond to a monotonic function of the euclidean geographical distances Dist (si, sj), as
would be the case in the isotropic case. This new distance matrix is inputted into Kruskal
and Shepard’s non-metric multidimensional scaling procedure (see Kruskal (1964)), thus
obtaining a new 2-dimensional representation of the original J gauged locations, that we
can call dispersion locations, in accord with Sampson and Guttorp’s exposition. The idea
is that, by using multidimensional scaling on the distance matrix, the original geographic
locations have been mapped from the Geographic Space into a Dispersion Space. On this Dis-
persion Space, the covariance between values at any two sites is approximately a function
of the distance between them1, so that an isotropic covariance function such as in (2.2.8) or
(2.2.9) can be fitted on the basis of available data. It is relatively simple now to work in
the dispersion space, by using an isotropic model: at any new location on the Dispersion
Space, the value of the random quantity can be estimated as above. However, it is at the Ge-
ographic Space that the estimation is required, and thus one must be able to identify the co-
ordinates transformation T implicitly performed by multidimensional scaling. Namely, we
have proceeded as represented from left to right at figure 2.2.2, implicitly defining a Disper-
sion Space D∗ = T (D), where D is our original geographic locations set. Transformation T
has been implicitly defined by finding a distance matrix on the basis of observed covariances
and then producing a 2-dimensional representation of locations possessing (approximately)
such distances among them. Sampson and Guttorp use multidimensional thin-plate Splines
to approximate the mapping

T : R2 → R2 (2.2.11)

on the basis of the two sets of coordinates available. That is, we have two sets of locations
(s1, . . . , sJ) and (T (s1) , . . . , T (sJ)), the second one obtained from the multidimensional
scaling procedure. With the Splines, we find a parsimonious representation T̂ of T , such
that T̂ (si) ≈ T (si). The theory of Splines implies that extrapolation to points outside the
observed ones, (s1, . . . , sJ), is reasonable.
Summarizing, assume a series of observations of an interesting random quantity is avail-
able at each of J sites, (s1, . . . , sJ). For a new ungauged site such as “x” in figure 2.2.1, an
estimation of the random quantity can be obtained as follows:

1. Identify the new location at which an estimation is required, snew, on the Geographical
Space.

2. Use observed data (possibly after some pre-processing to remove temporal effects,
etc.) to compute sample covariances, Γ̂ij , for i, j = 1, . . . , J .

3. Build distance matrix Dij =
√

Γ̂ii + Γ̂jj − 2Γ̂ij , from the computed covariances.

1Given a J × J distance matrix M , Multidimensional Scaling returns a set of J vectors (v1, . . . ,vJ) on the
n-dimensional space, n ≤ J , such that the distances matrix M∗ij = Dist (vi,vj) is as close as possible to M .
In general, however, equality Mij = M∗ij for all i, j = 1, . . . , J can only be obtained when n ≥ J − 1.
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Figure 2.2.2.: Schematic process of deformation from Geographic to Dispersion spaces

4. Obtain J new locations by performing multidimensional scaling on matrix {Dij}. This
results in a new set of locations on the Dispersion Space, (T (s1) , . . . , T (sJ)).

5. Find the estimate T̂ of T , such that T̂ (si) ≈ T (si), for i = 1, . . . , J , using Splines.

6. Find the corresponding location of snew on the Dispersion Space by using T̂ , namely
set s∗new = T̂ (snew).

7. Compute the estimation of the random field at the new dispersion location, s∗new, by
using an isotropic model in the Dispersion Space. The estimation obtained is our esti-
mation for Z (snew).

2.2.4. Some Remarks

Second order stationary models must not be necessarily Gaussian, as in (2.2.4), although this
is a widely used model, even after suitable transformation of observed data. Copula based
models are also available, whereby the distribution of the ranks is addressed independently
of the marginal distributions in a multivariate model such as (2.2.4). This type of model has
been used recently in Spatial Statistics (e.g. Bárdossy and Li (2008); Bárdossy and Pegram
(2009)) with very good results.
It was seen that the covariance function (or the variogram, in the more general “intrinsically
stationary” model, not addressed here) is a powerful tool for dealing with a potentially
infinite random field in a parametrically low dimensional way. Actually, computing co-
variances among the random field’s components becomes unfeasible, both computationally
and in terms of the data required, without the aid of such a tool. For example, a set up with
J = 100 sites would require to estimate J(J+1)

2 = 5050 components of the covariance matrix,
whereas in the isotropic case, using one of the covariance functions of the above section, the
number of parameters to estimate is just 4.
Covariance quantification is a central topic in identifying dependence structure in Spatial
Statistics, even though it addresses interdependence between two variable at a time only.
The issue of the possible high dimensionality must be kept in mind if we intend to extend
the concept of interdependence to more than two variables simultaneously.
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2.3. Difficulties in Extending Covariance

2.3.1. Conceptual

The possibilities for finding a measure for interdependence among a set of variables are infi-
nite. Even for the case of two variable, many measures are available, as stated in section 2.1.
It seems reasonable to begin with the most common measures of covariance and correlation.
Additionally, these measures are key measures for Spatial Statistics, which is the focus of
the present research.
Having chosen to extend the concept of covariance in order to have a more detailed picture
of dependence, the natural question is: how could the covariance coefficient be extended?
The covariance coefficient is defined by

cov (X,Y ) = E (XY )− E (X)E (Y ) (2.3.1)

Asking themselves this very question, Staude et al. (2010) note that a straightforward exten-
sion of (2.3.1) could be

cov (X,Y, Z) = E (XY Z)− E (X)E (Y )E (Z) (2.3.2)

If two random variables, X and Y are independent, then it is well known that cov(X,Y ) = 0.
If three random variables are mutually independent, it can be seen that the covariance coeffi-
cient (2.3.2) would be zero. However, if X is independent of both Y and Z, but cov (Y,Z) 6= 0,
then it can be seen that cov (X,Y, Z) 6= 0. Thus, our provisional 3-wise "covariance" coeffi-
cient is not zero even though there is no set of three variables interacting. If, given a ran-
dom vector (X1, . . . , XJ), we seek to find the size of the smallest set of non-independent
components, a coefficient fulfilling cov (Xi1 , . . . , Xik) = 0 whenever a subset of the random
variables in the set {Xi1 , . . . , Xik} (for 1 ≤ ik ≤ J) is independent of another can be stated
to be a desirable measure. With it, a kind of interdependence index = "size of greatest subset
of interacting components", for example, can be used to rank the random vectors in term of
dependence.
Assuming for the moment that we have found such a coefficient, the next question is: How
is it supposed to be interpreted? The interpretation of the standard covariance if relatively
straightforward, and its scaled version, the correlation coefficient

ρ =
cov (X,Y )√

V ar (X)V ar (Y )
(2.3.3)

allows us to form a quick idea of the type of association between X and Y, by means of its
sign and its proximity to -1 or 1, even though one must always remember that ρ is not a
good measure for every type of dependence. If data is available that can be considered as
realizations of X and Y, ρ is of course more revealing when an x-y dispersion plot shows
data falling roughly on a line on the x-y plane. A simple x-y dispersion plot of the data
under study helps find out whether ρ is reliable or not as a dependence indicator.
But to interpret a value of, say, cov (X1, X2, X3, X4) = −1, requires much imagination. Is
this a "high" or a "low" value, indicating "intense" or "weak" association? Is it possible to
find a scaled, more useful, analog to ρ? If our coefficient can be interpreted as a measure of
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linear dependence, just like the standard covariance, best suited for the case in which data
values fall roughly on a 4-dimensional hyper-plane P ⊂ R5: how can this be visualized?
It is clear that there are conceptual difficulties, without saying anything yet about appli-
cability, when trying to extend even the simple concept of correlation to more than two
dimensions.

2.3.2. The "curse" of dimensionality

2.3.2.1. The number of parameters problem

Interpreting a coefficient such as cov (X1, X2, X3, X4) has its difficulties. Another difficulty
is: How many coefficients of this type can be calculated for a random vector of J compo-
nents? Only coefficients of the form cov (Xi, Xj) and cov (Xi, Xj , Xk, Xl), with 1 ≤ i, j, k, l ≤
J , are selected for exploration. The number of covariance coefficients for a vector of J com-
ponents is of course J(J+1)

2 . Assuming symmetry on the 4-wise covariance coefficient (the
order of the indexes does not alter the value of the measure), the number of four-wise co-
variance coefficients can be found to be J3(J+1)

2 . These numbers, for J set at 4, 6 and 8,
are: 10, 21 and 36 for the case of coefficients of the form cov (Xi, Xj); and 160, 756 and 2304
for coefficients of the form cov (Xi, Xj , Xk, Xl). Thus, the number of coefficients to estimate
increases rapidly with the dimension of the field, J.
The above is an instance of the so called "curse of dimensionality" (e.g. kot (2006)), in the
form of huge data requirements if all these coefficients are to be estimated without any
further assumption. An assumption such as isotropy and the subsequent introduction of
valid covariance functions was found to be essential for recovering spatial dependence, as
quantified by covariances among the components of the random field. An analogous idea
is required for quantification of higher order dependence parameters, or at least a judicious
exploitation of the covariance function in combination with other assumptions (a suggestion
in this last direction, can be found in this work).

2.3.2.2. The Number of data features problem

Another instance of the "curse of dimensionality", is the number of potentially interesting
characteristics of the random field representing the process of interest. In the one dimen-
sional case, these characteristics are relatively few, and they are easy to conceptualize or
"paraphrase": We have location, dispersion, skewness, and kurtosis as characteristics of
the probability distribution representing the output of some process, which convey usu-
ally much of the information required in practice. They can be easily visualized with the
aid of a plot of the frequency curve of the distribution, and so "paraphrased": around what
point are the realizations of the random variable are mostly concentrated (location), how
much information gives us the location measure (dispersion), the degree of symmetry of
the distribution (skewness), to what extent one can expect occasional values observed "far
away" (i.e. in terms of a Normal distribution with the same dispersion) from the location
value (kurtosis). Additionally, these measures are readily expressed in terms of the first
four moments of the distribution; one could practically say that the measures indicating to
what extent those interesting characteristics belong to the probability distribution are the
moments of the distributions.
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As dimension of the random variable increases, the number of potentially interesting char-
acteristics increases. The richness of higher dimensional models can be seen, even staying
within the mind-set of characteristics of one-dimensional probability distributions, by con-
sidering the full conditional distributions of the form

Pr (Xj ≤ xj | X1 = x1, . . . , Xj−1 = xj−1, Xj+1 = xj+1, . . . , XJ = xJ) (2.3.4)

There are as many as J distributions of this form, with their specific characteristics, for
every observed vector (x1, . . . , xj−1, xj+1, . . . , xJ). Conditioning variables can of course be
lumped into classes, reducing the amount of possible conditional distributions to analyze.
But there can be anyway a great number of 1-dimensional conditional distributions, each of
which one may wish to analyze in terms of its first four moments, for example. Additionally,
in practice, some measure quantifying association is necessary among at least two variables,
and this cannot be addressed conveniently by moments of the 1-dimensional conditional
distributions.
For the two dimensional case, the characteristics of the association can be captured to some
extent with the aid of dependence coefficients such as Pearson’s product moment correla-
tion, Spearman’s rank correlation ρ, Kendall’s τ , etc. But the richness of the possible types of
dependence can be hardly captured by a single coefficient: several distributions can possess
the same dependence coefficients. We focus on the three coefficients just mentioned in order
to make this point clear, since they are often used in practice, and because they will be used
later on in this work.

2.4. Dependence Quantification in 2-D

In this section, we present some issues related to dependence quantification in two dimen-
sions. The approach is as applied as possible, addressing measures employed in practice.
We shall see that, unlike the one-dimensional case, in two dimensions single coefficients are
but an incomplete measure of the possible types of dependence. Copulas are introduced at
the end as excellent pictures of 2-dimensional dependence.

2.4.1. Product moment correlation coefficient

This is the most used correlation coefficient, its definition is given by (2.3.3), and it is as-
sumed that the reader is acquainted with it. In figure 2.4.1, we have two data-sets of size
N = 5000 simulated from distributions having the same correlation coefficients, namely
0.472.
Data values (xi,1, xi,2), i = 1, . . . , 5000, on the right panel shown at figure 2.4.1 is a random
sample from a 2-dimensional Gaussian distribution with mean µ = (0, 0)

′
and covariance

matrix

M =

(
1 0.472

0.472 1

)
Data values (yi,1, yi,2), i = 1, . . . , 5000, shown on the left panel were simulated from a prob-
ability distribution constructed as follows:
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1. Sample (ψ1, ψ2) from a 2-dimensional Gaussian distribution with covariance coeffi-
cient 0.546, and unit variance on each marginal distribution.

2. Set Yj = ψj + 0.01ψ2
j + 0.5ψ3

j , for j = 1, 2. A technique for computing covariances and
other characteristics-related coefficients of transformations of this form is provided in
section 4.4.2.

The type of association is of course different. Accordingly, data values with different char-
acteristics are to be expected from these two distributions. For example, the “x” shape of
the distribution on the left panel of figure 2.4.1 makes the observations of very high values
of variable Y2 given values of Y1relatively close to the median of its sample marginal distri-
bution (which is 0.01); this phenomenon is not observable at the data on the right panel. On
this right panel, higher values of X2 are associated with higher values of X1. If these distri-
butions are supposed to model jointly the behavior of two environmental variables, and X2

can be somehow considered as a response variable, then the expected highest or lowest val-
ues of this response variable are to be expected at different regions of the distribution of X1,
depending on whether the assumed distribution is of the type in (a) or in (b). Summarizing,
the correlation coefficient does not tell everything about the kind of dependence between
two variables.

2.4.2. Spearman’s and Kendall’s coefficients

2.4.2.1. Spearman’s correlation coefficient

Computation of the sample product moment coefficient from the 5000 samples shown at
figure 2.4.1 results in 0.472 and in 0.471 for the data sets plotted with an (a) and a (b) label,
respectively. This similarity is not surprising, since the theoretical common correlation coef-
ficient is 0.472. We now consider the ranks of the data, namely values ui,1 = rank (xi,1 | x1)

and ui,2 = rank (xi,2 | x2), and vi,1 = rank (yi,1 | y1) and vi,2 = rank (yi,2 | y2), for i =

1, . . . , 5000. Vectors in the rank function argument indicate the that ranks are taken on each
marginal sample separately. Since there are no ties in the simulated data sets, all ranks com-
puted are unique. The resulting data is shown in figure 2.4.2. The plots look more similar to
one another than in figure 2.4.1, though they are not entirely equal.
In connection with figure 2.4.2, the sample correlations of data sets (vi,1, vi,2) to the left and
(ui,1, ui,2) to the right, i = 1, . . . , 5000, are ρv = 0.539 and ρu = 0.452, respectively. A
Bootstrap-based 95% confidence interval for the value of ρv − ρu, created by using 2000
Bootstrap samples, was computed to be (q2.5%, q97.5%) = (0.057, 0.117). So, the difference
between both rank correlation coefficients, also known as “Spearman’s correlation coeffi-
cients”, is significant. It is clear then that the information provided by the ranks of data is
different from the one provided by the absolute values of data, which one to use is a consid-
eration connected with the research question. However, also when working with ranks, it is
possible to obtain equal correlation values for distributions whose ranks behave differently,
or which distributions are different regarding important dependence-related characteristics.
This aspect will be shown shortly but before that, Kendall’s τ coefficient of correlation is in-
troduced, following Long (2006).
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Figure 2.4.1.: Two Data sets simulated from two different distributions having the same
product moment correlation coefficient.

Figure 2.4.2.: Plot of ranks of example data sets
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2.4.2.2. Kendall’s correlation coefficient

Kendall’s τ is “a measure of agreement or disagreement between two sets of rankings” Long
(2006). A concrete example can help to work out the definition of this coefficient. Assume
you are given two data sets, corresponding to realizations of two random variables X and
Y :

Y: 14 5 8 11 7

X: 19 41 12 26 17

Table 2.4.1.: Two example data sets for the sake of Kendall’s τ illustration

By rank ordering according to “x”, table 2.4.1 is converted into table 2.4.2.

y: 8 7 14 11 5

x: 12 17 19 26 41

Table 2.4.2.: The same as 2.4.1 but after rank ordering according to “x”

Data from the “x” row is ordered increasingly, the question is: to what extent has this or-
dering also rank ordered the other data set? Or, equivalently: to what extent the ranks of
the "x" row coincide with the ranks of the "y" row?. If it has induced a perfect increasing
(decreasing) rank order, then there is evidence of high positive (negative) association. As
the ordering of this “y” row becomes more erratic, the degree of association is considered
smaller. In order to have a quantitative answer to the question just posed, the dominance
score function is introduced now, which is defined for every two real values vi and vj , as:

ds (vi, vj) = sign (vj − vi) (2.4.1)

It is convened that ds (vi, vj) = 0, if vi = vj . Applying this function to every pair of data
from Y results in values:

ds (8, 7) = −1

ds (8, 14) = 1

...
...

...

ds (11, 5) = −1

The whole list of values, excluding results of the form ds (yi, yi), is

dy = (−1, 1, 1,−1, 1, 1,−1,−1,−1) (2.4.2)

Since all values of variable X are rank ordered increasingly, the result for this variable is

dx = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (2.4.3)

As when computing a correlation matrix, the number of pair-wise comparisons included in
vectors dy and dx is n(n−1)

2 = 5×4
2 = 10. A predominant number of positive (negative) values
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in vector dy at (2.4.2) indicate a higher intensity of positive (negative) association between
X and Y . In other words, the value τ∗ = 1

10

∑10
i=1 dy (i) can be taken as an answer to the

question of to what extent the ranks of the two data sets coincide: if it is very close to 1, it
means that they coincide for most of the data values X (positive association); a value close
to -1 indicates that the ranks of Y decrease for increasing ranks of X (negative association);
and a value near 0 indicate that there is little association between the pair sample.
However, since some values from X can be tied, introducing zeros into dx. This information
must be taken into account. Hence, it is better to define the τ correlation coefficient as
τ = 1

10

∑10
i=1 (dy (i) dx (i)), for our example.

In general, it is defined as

τ =
2

n (n− 1)

n(n−1)
2∑
i=1

(dx (i) dy (i)) (2.4.4)

Since Kendall’s τ coefficient is computed using information of the ranks of data only, it is
invariant to transformations on data that preserve rank ordering. That is, it is said to be
invariant with respect to increasing monotonic transformations on data.

2.4.3. Copulas

The fact that rank-based correlation coefficients convey only a partial picture of 2-dimensional
dependence, can be illustrated as follows. A sample of size 5000 from a Gaussian random
vector (X1, X2) with the same characteristics as in section 2.4.1, and a sample from a random
vector (Y1, Y2) having a t-distribution with three degrees of freedom and the same correla-
tion were obtained by simulation. Their ranks were taken as in section 2.4.2.1. Additionally,
each value was divided by 5001 in order to ensure it would fall in interval (0, 1) ⊂ R. The
plots are presented at figure 2.4.3. Even though it is well-known that these two distributions
possess different strengths of dependence far away from the mean (see below), this fact is
not captured neither by Spearman’s nor by Kendall’s coefficient. To see that this is the case,
we resort again to a Monte Carlo technique:

1. A sample of size 5000 was simulated from each distribution, Gaussian and Student.

2. The ranking and scaling was performed, as explained in the paragraph above.

3. The Sample values of Kendall’s and Spearman’s coefficients were computed for each
model and subtracted, obtaining τv − τu and ρv − ρu.

4. After iterating steps 1 through 3 a total of 2000 times, an approximate 90% confidence
interval was created on the basis of the 2000 computed coefficients subtractions.

The approximate confidence intervals thus obtained for the differences are: Iτ (5%, 90%) =

(−0.022, 0.021), for the Kendall coefficients; and Irho (5%, 90%) = (−0.012, 0.046), for the
Spearman coefficient. That is, the coefficients are practically the same for the two data sets.
This time we used 90% instead of 95%, since the point is to show the incapacity of these
coefficients to grasp the difference in association between data of these two distributions.
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Figure 2.4.3.: Scaled ranks of 5000 values from a t-distribution (left) with 3 degrees of free-

dom and dispersion matrix Γ =

(
1 .472

.472 1

)
, and a Gaussian distribution

with mean µ = (0, 0) and covariance matrix Γ.

Then, the fact that the 90% confidence interval does contain zero, provides a more convinc-
ing argument.
The difference in association occurs most importantly at the upper and lower joint tails of the
distribution. To see this, select a value close to 100%, say 0.95. Compute values q̂yj ,95% such
that the proportion of observations of Yj , j = 1, 2, smaller than or equal to q̂yj ,95% is 0.95,
and do the same for the observations from Xj , j = 1, 2, obtaining q̂x1,95% and q̂x2,95%. The
proportion of values (yi,1, yi,2) from (Y1, Y2) simultaneously trespassing q̂y1,95% and q̂y2,95% is
greater than the proportion of values (xi,1, xi,2) from (X1, X2) simultaneously trespassing
q̂x1,95% and q̂x2,95%. In mathematical notation, and labeling N = 5000∣∣{(xi,1, xi,2) :xi,1 > q̂x1,95%, :xi,2 > q̂x2,95%

}∣∣
N

<

∣∣{(yi,1, yi,2) :yi,1 > q̂y1,95%, :yi,2 > q̂y2,95%

}∣∣
N

That is, even in their respective scales, the probability of simultaneous trespassing is higher
for the t-distribution. For the example, the quantiles values are

(
q̂x1,95%, q̂x2,95%

)
= (1.678, 1.610)

and
(
q̂y1,95%, q̂y2,95%

)
= (2.454, 2.348). The respective proportions are∣∣{(xi,1, xi,2) :xi,1 > q̂x1,95%, :xi,2 > q̂x2,95%

}∣∣
N

:= p̂x = 0.012∣∣{(yi,1, yi,2) :yi,1 > q̂y1,95%, :yi,2 > q̂y2,95%

}∣∣
N

:= p̂y = 0.0186

A Monte Carlo confidence interval for the difference based on 2000 simulations is found to
be, for data from the given distributions, Ip̂y−p̂x (5%, 95%) = (0.0032, 0.009). This difference
in the upper tail (or lower tail) dependence, can be crucial, depending on the specific subject
matter questions posed (compare Embrechts et al. (2002)) .
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Figure 2.4.3 of standardized ranks allows to visualize quickly the difference in the tail de-
pendence association. And the technique of using the quantile of each marginal distribution,
as in the example above, allows to make comparisons in the very scales of the variables in-
volved: the question is whether each variable is “big” or “small” with respect to its own par-
ticular distributions. This idea has proved very useful in multivariate statistics applications,
as implemented via the use of copula methodology, which we summarize subsequently. We
can cite, just for illustrating the applicability of the concept: Jaworski (2010), Singh and
(ed.), Cherubini et al. (2004).

2.4.3.1. Sklar’s Theorem

A bi-variate probability distribution FXY (x, y) = Pr (X ≤ x, Y ≤ y) describing random
variables X and Y , having marginal probability distribution functions FX and FY , can al-
ways be written in terms of a particular type of probability distribution function,C (∗, ∗):[0, 1]×
[0, 1]→ [0, 1], as

FXY (x, y) = C (FX (x) , FY (y)) (2.4.5)

This result is known as Sklar’s Theorem (see, for the topics in this section Nelsen (1999)).
Function C (∗, ∗) must fulfill, in order to be a well defined probability distribution function:

1. C (u, 1) = C (1, u) = u, for every u ∈ [0, 1].

2. C (u, 0) = C (0, u) = 0, for every u ∈ [0, 1].

3. C (u1, u2) + C (v1, v2) − C (u1, v2) − C (v1, u2) ≥ 0, for 1 ≥ u1 ≥ v1 ≥ 0 and 1 ≥ u2 ≥
v2 ≥ 0.

Additionally, if random variables X and Y are continuous, then representation (2.4.5) is
unique. Any function having domain [0, 1] × [0, 1] and fulfilling conditions 1 through 3
above is called Copula. There are many well-known parametric models for Copulas used
in practice: Clayton Copula, Frank Copula, Gumbel Copula, Gaussian Copula, etc., the
parameters of which can then be considered as quantitative association coefficients. The
number of these parameters is not inflated by the complexity of the marginals, which can
be considered separately. The reader should see Nelsen (1999) or the applied literature on
Copulas mentioned above.
Copulas can be studied on their own, merely as probability distribution functions of random
values (U, V ) ∈ [0, 1]× [0, 1]. But these values are almost always in practice interpreted to be
(approximations to) random variables resulting from other random variables, X ∼ FX and
Y ∼ FY , in the form

U = FX (X)

V = FY (Y ) (2.4.6)

Thus, given a data set considered to be representable by a random vector (X,Y ) ∼ FXY , it
is possible to model this data by: First, estimate marginal distributions F̂X and F̂Y of X and
Y , respectively. Second, estimate a suitable Copula Ĉ (∗, ∗), such that Ĉ

(
F̂X (∗) , F̂Y (∗)

)
is a

good approximation to FXY (∗, ∗). These method is called the Inference Function for Margins
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(IFM) method (see Joe (1997, 2005)). The strength of using Copulas for modeling multivari-
ate random variables becomes then clear. Instead of attempting to fit a joint distribution that
fits all characteristics of data, the task if divided into two simpler sub-tasks. So, in principle,
more flexibility in the fitted distribution is attained.
The estimates for FX (X) and FY (Y ) can be either parametric or non-parametric, dealing
with each marginal independently. In the parametric case, subject-matter adequate prob-
ability distributions are fitted using standard parametric methods, such as maximum like-
lihood or the method of moments. As non-parametric estimates, the empirical probability
distribution function can be used. For a generic marginal X of which a realized sample
x1, . . . , xN is available, this function would be:

F̂X (a) :=
‖{xi:xi ≤ a}‖

N + 1
(2.4.7)

for any given a ∈ R.
The Copula density,

c (u, v) =
∂2

∂v∂u
C (u, v) (2.4.8)

is mostly used for estimation via the IFM method. Inference on the Copula can thus begin
with a data-set of values on [0, 1] × [0, 1]. As usual in statistic, regions with more concen-
tration of points indicate an underlying probability density function with higher values.
Whereas regions with fewer or no points indicate a low value of the underlying density
function. The reader can then have an idea of the copula density by examining the data
illustrated at figure 2.4.3.
To sum up, copulas provide a flexible means of modeling 2-dimensional data. By fitting
marginals first and the Copula second, the parameters of the copula do not have to manage
the potential complexity of marginals; its parameters focus on dependence. Copulas can
also be defined analogously in higher dimensions, J > 2. Then, each of the J marginals is
fitted separately. The domain or support of the Copula is then [0, 1]× . . .× [0, 1] := [0, 1]J .
Apart from parametric models, such as those mentioned in the literature provided in this
section, it is also possible to fit non-parametric copulas to rank-scaled data. Standard, un-
modified kernel smoothing (e.g. Scott (1992)) are inconvenient, since these methods work
best when there is no restriction on the support of the distribution. For more details see
Charpentier et al. (2006). To circumvent this problem, modifications to the original kernel
smoothing technique must be performed Marron and Ruppert (1994). Other approaches
include wavelets-based estimation Genest et al. (2009), and using a special kind of kernel
smoothing Chen (1999). However, all those non-parametric techniques suffer from the curse
of dimensionality. They become useless as dimension increases. For the case of J > 10 (typ-
ical in spatial statistics) they are almost useless.
More in connection with Spatial Statistics, the problem arises of what kinds of Copulas can
be extended in dimension as much as necessary. The Gaussian and the t-Copula allow this,
with the aid of a covariance function, such as 2.2.8, for example. A recent model, that al-
lows much flexibility in the form of the dependence modeled, is the V-transformed Copula
(Bárdossy and Pegram (2009); Bárdossy and Li (2008)), which has been used in Geostatis-
tical applications. Vine Copulas (Joe (1996); Bedford and Cooke (2001); Aas et al. (2009)),
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whereby high-dimensional Copulas are built pair-wise, can also be extended indefinitely.
They have already been applied to Spatial interpolation in Gräler and Pebesma (2011).
The approach presented in this work, attempts to focus on aspects of dependence that are
directly relevant for applications, at the same time providing acceptable theory at its foun-
dation.

2.5. The Edgworth-Sargant distribution

This section intends to provide a bridge between the topics just discussed and the approach
proposed in this work for dealing with interdependence of more than two variables simul-
taneously.
We saw for the 1-dimensional case, that some coefficients or parameters were directly con-
nected with distribution characteristics of interest. Namely the parameters were the mo-
ments, and the characteristics were the location, dispersion, skewness and kurtosis of the
distribution. This simple approach has consistently paid results in practice, since the origins
of mathematical statistics. It was the reason for the introduction of systems of distributions
that could match the sample characteristics of data, such as Pearson’s (see, e.g. Kendall and
Stuart (1969)) and Johnson’s Johnson (1949); Slifker and Shapiro (1980) systems.
The “Edgeworth-Sargan” (E-S) distribution, used in econometrics (Mauleon and Perote (2000);
Sargan (1976)), is so defined that moments are explicitly expressed in terms of the parame-
ters of the distribution, to be estimated by maximum likelihood, for example. Moments of
all orders exist. The number of moments to use is application-dependent and can, in prin-
ciple, be found on the basis of an information criterion, such as the AIC criterion Akaike
(1974). The distribution provides great flexibility. Thus, a great spectrum of distribution
characteristics can be modeled.
The density of the E-S distribution is given by

fES (x) = φ (x)

{
1 +

R∑
r=1

δrHr (x)

}
(2.5.1)

where parameters δr, r = 1, . . . , R , are the parameters to estimate; φ (∗) stands for the stan-
dard Normal probability density function, and Hr (x) is the r-th order Hermite Polynomial
(see Kendall and Stuart (1969)), obtainable by means of identity

(−1)rHr (x)φ (x) =
dr

dxr
φ (x) (2.5.2)

It can be seen with little work that the moments of the distribution whose density is (2.5.1),
are given by

E (X) = δ1

E
(
X2
)

= 1 + 2δ2

E
(
X3
)

= 6δ3 + 3δ1

E
(
X4
)

= 24δ4 + 12δ2 + 3 (2.5.3)

Moments of order k are obtained similarly as functions of δ1, . . . , δk. We can consider as
many moments (i.e. distribution characteristics) as data complexity demands, avoiding
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over-fitting with the aid of the AIC criterion, for example. We see from (2.5.3) that higher
order moments (i.e. data characteristics) can be fitted without altering lower order ones,
“orthogonally”, by fitting only the parameter corresponding to the highest index. This con-
venient aspect is imitated by our approach in the multidimensional case, with a specific
implementation adequate for Spatial Statistics.
As Mauleon and Perote (2000) report, the E-S can model conveniently heavy tailed data, and
is flexible in terms of asymmetry. It can, under minor modification, also represent truncated
data.
A closely related distribution was introduced by Gallant and Nychka (1987). We call it the
N-G distribution for brevity. It is considered a variant of the E-S distribution by Mauleon
and Perote (2000), circumventing the problem of careful selection of δ1, . . . , δR in order to
ensure non-negativity of (2.5.1). The density is given in the one-dimensional can be written
as

fNG (x) = φ (x)

w0 +

(
R∑
r=1

wrx
r

)2
 =

φ (x)

{
w0 +

R∑
r=1

R∑
s=1

wrwsx
r+s

}
(2.5.4)

This function is clearly non-negative everywhere, provided that w0 ≥ 0. In order to ensure
integration to unity, we can impose the following parameters constraints:

0 < w0 = 1−
R∑
r=1

R∑
s=1

wrwsµ
∗
r+s (2.5.5)

where µ∗r+s is the moment of order r+ s of a standard Normal distribution. Moments of this
distribution are

E
(
Xk
)

=

∞̂

−∞

xkfNG (x) dx = w0

∞̂

−∞

xkφ (x) dx

+

R∑
r=1

R∑
s=1

wrws
∞̂

−∞

xr+s+kφ (x) dx


= w0µ

∗
k +

R∑
r=1

R∑
s=1

wrwsµ
∗
r+s+k (2.5.6)

Again, moments of all orders exist and can be written explicitly in terms ofw0, . . . , wR. Max-
imum likelihood estimation and inference can be then performed on distribution parameters
w0, . . . , wR. The aspect to highlight for this distribution, as for the “basic” S-E distribution, is
its flexibility in reproducing important characteristics of data, and the “extendable” capacity
of increasing the order R in w0, . . . , wR, as data complexity requires it.
The flexibility of E-S type of distributions has lead to research for its generalization to more
than one dimensions. We summarize this research briefly.
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The paper Gallant and Nychka (1987) deals with the multivariate case directly. A simple
version of the two-dimensional case can be written as

fNG (x1, x2) =
1

2π
exp

(
−x2

1 − x2
2

){ R1∑
r1=0

R2∑
r2=0

αr1r2x
r1
1 x

r2
2

}2

Then the dependence parameters αr1r2 , for 1 ≤ r1 ≤ R1 and 1 ≤ r2 ≤ R2, are estimated on
the basis of data. A restriction must be set on α00 such that the density integrate to unity. The
joint moments can be readily found in terms of the moments of a 1-dimensional standard
Normal distribution, as:

E
(
Xk1

1 Xk2
2

)
=

R1∑
r1=0

R1∑
r∗1=0

R2∑
r2=0

R2∑
r∗2=0

{
αr1r2αr∗1r∗2

(
µ∗r1+r∗1+k1

)(
µ∗r2+r∗2+k2

)}
The computational demand of the density increases rapidly with dimension. Additionally
it is necessary to constrain the αr1...rJ values to ensure integration to unity. However, this
approach might be more accurately explored in future research.
A direct generalization of (2.5.1) has been proposed by Perote (2004), and its application
tested in financial returns data. Unfortunately, as in the case of (2.5.1), the resulting “prob-
ability density” can take on negative values. This by no means demerits the usefulness of
the distribution, but increases the computational and analytical effort required for its appli-
cation. Of course, this effort increases dramatically with dimension of the random vector
modeled, which is inconvenient for Spatial Statistics modeling.
In order to circumvent the problem of eventual negativity met by Perote (2004), and to frame
this distribution in a more general family, Del Brio et al. (2009) deal with densities they call
“Multivariate Gram-Charlier densities”. The flexibility of the approach, the possibility of
adding parameters as data complexity requires, makes of this a very attractive approach.
Marginal distributions of different shapes and tail thickness can be, in particular, conve-
niently represented. We consider the full model as tow high-parametric for Spatial appli-
cations, though we made no serious attempt to find a convenient re-parametrization. A
simplified density model for X = (X1, . . . , XJ) is of the form (equation (10) in Del Brio et al.
(2009)):

fGC (X) =
1

J + 1
GΓ (X) +

1

J + 1


J∏
j=1

gj (xj)

×
×


J∑
j=1

1

1 + s2
jt/6

[
1 +

sjt
6

(
x3
j − 3xj

)2] (2.5.7)

where GΓ (X) stands for the probability density function of a multivariate Normal distri-
bution with covariance matrix ΓJ×J , gj (∗) represent each marginal density of GΓ (X), and
(s1t, . . . , sJt) are J parameters to fit. These parameters are intended to model the various
features of data, as expressed in terms of moments, and conditional moments, which can
be readily derived for this distribution. We have used the notation of Del Brio et al. (2009)
here, including the possible dependence of (s1t, . . . , sJt) on time t. Thus, important features,
relevant for the evolution in time of financial variables of interest can be modeled.
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These generalizations of the E-S distribution into multivariate distributions provided part
of the inspiration to the approach presented in this work, and can be considered as paths to
be explored in the future. However, we have attempted to come up with an implementa-
tion more closely related to a type of measure or coefficient of multivariate interdependence
given below, namely the joint cumulants of a random vector. This measure we consider the-
oretically appealing and practicably connectable with important data features, as explained
subsequently.



3. The Proposed Approach: General

In chapter 2 it has been seen that the richness of multivariate interdependence demands
that we focus on subject-matter relevant features of data, and come up with flexible mod-
els, parametrically extendible and shrinkable as the complexity of these (interdependence)
features demands.
But in addition to this ad-hoc approach, we want also to introduce some foundational basis
for the concept of multivariate interdependence, to provide some minimal requirements for
a measure of interdependence, and to show how a measure fulfilling such minimal require-
ments can be connected with subject-matter relevant characteristics. These are the topics of
the present chapter.
In the present chapter we refer to Spatial Statistics for the sake of clarity and illustration
of ideas, but in principle any other area of applied Statistics where we need to consider
interdependence among random variables might be adapted for illustration.

3.1. Application-relevant interaction manifestations

The following aspects are inherent to spatial statistics, and must be taken into account:

1. High-dimensionality, which implies a need for really parsimonious models. Just think
of a full model with 10 variables; it would have, assuming symmetry (the order of the
random variables does not alter the value of the dependence measure), some O

(
1010

)
interdependence parameters!

2. The need to interpolate or extrapolate the variable of interest to ungauged sites.

We consider the behavior of the following parameters as manifestations of multivariate in-
terdependence, relevant for spatial statistical analysis. They are related to a random vector
X ∈ RJ representing the phenomenon under study (e.g. rainfall, temperature, mineral
quantity in geostatistical applications, etc., at several locations).

Joint probabilities such as
Pr (Xj1≤qj1,α, . . . , Xjk≤qjk,α)

where {j1, . . . , jk} ⊆ {1, . . .,J} is a set of indices, and vector (q1,α, . . . , qJ,α) is such
that Pr (X1 ≤ q1,α) = α, . . . ,Pr (XJ ≤ qJ,α) = α, for a given α. For example, α ∈
{0.5, 0.75, 0.9, 0.99} might be of interest. The modeling of these probabilities is rele-
vant, for example, in the context of flood forecasting. Our model should reproduce, as
well as possible, these probabilities and they should be considered upon estimation of
the model’s parameters, whatever this model and these parameters may be.
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The value of the differential entropy of X or of subsets of its components. This repre-
sents an omnibus measure of dependence, which relies on the very generally applica-
ble concept of entropy. It is a powerful concept, helpful for verification, but usually
not helpful for model-building or elucidation of the processes causing the interdepen-
dence among variables. For a random vector with probability density function f , the
entropy is given by H (X) =

´
f (X) . log (f (X)) dX. If we take a (low-dimensional)

sub-set V = (Xj1 , . . . Xjk) of components of X and estimate their joint entropy Ĥ (V)

by using, for example, kernel smoothing Joe (1989a), we want our fitted model to have
similar values of differential entropy for the marginal distribution of V = (Xj1 , . . . Xjk)

as the estimated Ĥ (V). We would like to be able to “fit” Ĥ (V) as we estimate our
model’s parameters.

The distribution of sums of components of X ∈ RJ , as expressed in conveniently selected
parameters of the resulting random variable SX =

∑J
j=1Xj , such as its moments or

cumulants (see below). As seen in the previous chapter, these parameters convey im-
portant information about the 1-dimensional distribution of the sum. We consider
this a most important set of parameters in the context of rainfall modeling, in that
they can help better understand the relationship between the rainfall field and the ex-
pected discharge at the outlet of the basin covered by such rainfall field. Since we
are mostly concerned with rainfall modeling in this research, we consider these pa-
rameters as of primary importance, the other two above, though also considered, are
considered complementary. As seen shortly, the cumulants of SX =

∑J
j=1Xj can be

found straightforwardly in terms of the joint cumulants of random vector X ∈ RJ .

None of the above three manifestations-related parameters of interdependence qualify as
suitable dependence measures, according to the postulates of Rényi or of Schmid, men-
tioned at the introduction, even though Joe (1989b) proposed a set of entropy-based mea-
sures having theoretically appealing properties. These parameters are also not very helpful,
on their own, for model building; they are not nice “building blocks” for a model nor suggest
any manageable dependence structure (in terms of parameter estimation, interpretation,
and with a view to interpolation). Model building is desirable since it implies, if the model
is validated, a better understanding of the phenomenon studied. That is why we shall call
the values listed from 1 through 3, just “interaction manifestation parameters”. We shall look
somewhere else for a dependence structure and “dependence structure parameters”, which
may provide a manageable structure and in terms of which the manifestation-related pa-
rameters can be expressed.

3.1.1. Interaction manifestations versus dependence structure

This section intends to serve as a guide to the topics next dealt with in section 3.2, and its
subsections.
We introduce in section 3.2 our suggested “dependence structure parameters” for a random
vector X ∈ RJ .
We shall see that the interaction manifestation parameters of section 3.1 can be represented
in terms of quantities or parameters related to X’s distribution which:
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1. Are logically appealing as dependence parameters, in that: a.) They are capable of an
interpretation in terms of a very elementary set of axioms desirable for a dependence
measure; b.) they have sometimes, and depending on the application, a physical inter-
pretation in terms of subject-matter relevant parameters.

2. Comprise both mean and covariance/correlation as particular cases, thus providing
potential for the extension of techniques based on correlation to groups of more than
two random variables.

3. Work as better building blocks for a model, as compared to interaction manifestations
listed at section 3.1, since it is easier to establish a functional relation between these
quantities and the distribution of X and thus can be used as parameters to estimate.

We suggest that such quantities are the joint cumulants of X, which are introduced in section
3.2.1.
We show subsequently that they are a suitable basis for addressing the issues inherent to
spatial statistics mentioned above, and that they provide a link between model building
(and estimation) and the interaction manifestation parameters mentioned on the last section.
We state that they are logically appealing measures of dependence, in that, departing from
simple first principles, we can consider them as summary measures of interaction among
the components of a random vector, as seen in section 3.2.2.
For these reasons, we shall call the joint cumulants “dependence parameters”, and the cu-
mulant generating function “dependence structure”.
The knowledge of the cumulant generating function of a random vector implies an approx-
imation to its probability density function or distribution function, via the Edgeworth Ex-
pansion or the Saddle-point Approximation (section 3.3.1). Hence this dependence structure
seems to be flexible enough to tackle different subject-matter relevant interaction manifesta-
tions. The connection between joint cumulants and the interaction manifestations listed in
section 3.1, is dealt with at section 3.3.2.
The new idea in this work is to use the cumulants as parameters to fit that can reproduce as
good as possible the manifestation parameters at hand, in a “method of moments” fashion.
Thus the dependence structure may be simple (and with relatively few parameters), as long
as the manifestations parameters are modeled properly.

3.2. Joint cumulants as interdependence parameters

3.2.1. Definition and preliminaries

Moments and cumulants are constants summarizing important information about a proba-
bility distribution and sometimes, even determining it completely Kendall and Stuart (1969).
In this section we deal with random variables having a probability density function. The de-
velopment is also valid for discreet distributions, under simple modifications. The reader
is referred to Kendall and Stuart (1969); Muirhead (1982); Billingsley (1986) for more details
on moments and cumulants.
In this section, we intend to make cumulants a little more known to the reader, by explaining
its connection with the more common concept of moments. Some detail is given to the uni-
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variate case, since the analysis will be useful in section 4.1.1, when dealing with moments of
a multivariate model that is suggested as convenient for Spatial Statistics.
In the one dimensional case, let a random variable X ∈ R with probability density function
fX (X) have a moment generating function

MX (t) =

ˆ +∞

−∞
extfX (x) dx

This moment generating function is here assumed to exist, at least for t in a sufficiently small
interval around zero, t ∈ [−ε, ε].
The k-th moment of random variable X with probability density function fX is given by

µk := E
(
Xk
)

=

+∞ˆ

−∞

xkfX (x) dx (3.2.1)

These quantities can determine, to some extent, the distribution of X .
Due to the exponential representation exp (x) = 1 + x+ x2

2! + x3

3! + x4

4! + . . ., and the linearity
property of the integral,

MX (t) =

ˆ
fX (x) dx+ t

ˆ
xfX (x) dx+

t2

2!

ˆ
x2fX (x) dx+

t3

3!

ˆ
x3fX (x) dx+ . . .

= 1 + tµ1 +
t2

2!
µ2 +

t3

3!
µ3 + . . . (3.2.2)

and so, moments are also defined to be derivatives of functionMX (t) evaluated at zero, that
is,

E
(
Xk
)

= µk :=
dk

dtk
MX (t) |t=0 (3.2.3)

The cumulant generating function of X is given by

KX (t) = log (MX (t))

For t in a sufficiently small interval around zero, t ∈ [−ε, ε], one has that MX (t) ∈ (0, 2), and
then it is possible to use the series representation for the logarithm (see eq. 3.3.7)

KX (t) = log (MX (t)) = log

(
1 + tµ1 +

t2

2!
µ2 +

t3

3!
µ3 + . . .

)
=

(
tµ1 +

t2

2!
µ2 +

t3

3!
µ3 + . . .

)
−

(
tµ1 + t2

2!µ2 + t3

3!µ3 + . . .
)2

2
+(

tµ1 + t2

2!µ2 + t3

3!µ3 + . . .
)3

3
−

(
tµ1 + t2

2!µ2 + t3

3!µ3 + . . .
)4

4
+ . . . (3.2.4)

Finally, after re-arranging (3.2.4) in terms of powers of t, the series can be written as

KX (t) = tκ1 +
t2

2!
κ2 +

t3

3!
κ3 +

t4

4!
κ4 + . . . (3.2.5)
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and the coefficients κr of this series are called “cumulants”. These can be obtained by differ-
entiating KX (t) and evaluating the result at t = 0,

κr =
drKX (t)

dt
|t=0 (3.2.6)

Since

log

(
1 + tµ1 +

t2

2!
µ2 +

t3

3!
µ3 + . . .

)
= tκ1 +

t2

2!
κ2 +

t3

3!
κ3 + . . . (3.2.7)

it is possible to differentiate on both sides of (3.2.7) and evaluate derivatives at zero, in order
to obtain moments in terms of cumulants, and vice versa. The first four cumulants are given
by

κ1 = µ1

κ2 = µ2 − µ2
1

κ3 = µ3 − 3µ2µ1 + 2µ3
1

κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1 (3.2.8)

A computationally convenient algorithm for finding cumulants in terms of moments, and
vice versa, is given by Smith (1995).
The cumulant generating function and cumulant coefficients can be, depending on the sta-
tistical problem at hand, more convenient tools of analysis than the moment generating
function and the moments. In this work we shall see actually part of their usefulness.
An important characteristic of cumulants, is that they are location invariant (except for κ1),
and they are not distorted by affine transformations. Namely, if random variable X has
cumulants κ1, κ2, κ3, κ4, . . ., then Y = m+ aX has cumulants κ∗r of the form

κ∗1 = m+ aκ1

κ∗2 = a2κ2

...

κ∗r = arκr

Quite similarly in the multivariate case, with X ∈ RJ , and departing from the moment gen-
erating function

MX (t) =

ˆ
. . .

ˆ
et
′
xfX (x) dx1 . . . dxJ

we obtain the cumulant generating function

KX (t) = log (MX (t))

.
The joint moments of X,

µr1,...,rJ = E (Xr1 . . . XrJ )

are the coefficients of expansion,

MX (t) =
∞∑
r1=0

. . .
∞∑

rJ=0

µr1,...,rJ .t
r1
1 . . . trJJ

r1! . . . rJ !
(3.2.9)
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Similarly, we find the joint cumulants to be the coefficients of the expansion

KX (t) =
∞∑
r1=0

. . .
∞∑

rJ=0

κr1,...,rJ .t
r1
1 . . . trJJ

r1! . . . rJ !
(3.2.10)

Where κ0,...,0 = 0. In this case, too, the joint cumulants κr1,...rJ can be computed by deriva-
tion of KX (t) and evaluation at t = 0, that is

∂r1+...+rJ

∂trJ . . . ∂tr1
KX (t) |t=0= κr1,...,rJ

The relationship between joint cumulants and moments can also be found, as in the univari-
ate case, by noticing that

log

( ∞∑
r1=0

. . .
∞∑

rJ=0

µr1,...,rJ .t
r1
1 . . . trJJ

r1! . . . rJ !

)
=
∞∑
r1=0

. . .
∞∑

rJ=0

κr1,...,rJ .t
r1
1 . . . trJJ

r1! . . . rJ !

and differentiating on both sides, followed by evaluation at vector zero, t = 0, we can find
moments in terms of cumulants and vise versa. This is the basis for an alternative definition
for joint cumulants. Since it requires the definition of some notation which, anyway, will be
developed for section 3.2.2, we postpone this alternative definition until section 3.2.3.1.
The most well-known types of joint cumulants are: the one having only two indexes, cor-
responding to indexes j1 and j2 say, set to 1 and all others set to zero, which is the covari-
ance, Cov (Xj1 , Xj2); and the one having only one index distinct from zero and set to 1 or
2, which corresponds respectively to the mean or the variance of a specific component of
vector X ∈ RJ .
For example, if J = 4, thenκ0,1,1,0 = Cov (X2, X3), κ1,0,0,1 = Cov (X1, X4), κ0,2,0,0 = V ar (X2),
κ0,0,0,1 = E (X4), and so on.
An alternative (and equivalent) definition of the joint cumulants based on the moments,
together with properties of the joint cumulants can be found in Brillinger (1974).
Joint cumulants and cumulant generating functions have found application within statistics
in several forms: In time series Analysis Brillinger (1974) and signal analysis Mendel (1991),
where the important joint cumulant property of vanishing in case of a set of independent
variables is exploited; in the asymptotic analysis of the covariance matrix distribution Muir-
head (1982); in distribution approximation, by means of the Edgeworth Expansion and the
Saddlepoint approximation Barndorff-Nielsen and Cox (1990); and in other, more specific
applications.

3.2.2. "Lancaster interactions" and joint cumulants

We deal now with a function, called “additive interaction measure” or “Lancaster interaction
measure”, introduced by Lancaster (1969) and later modified by Streitberg (1990).
An additive interaction measure ∆F (X) is a signed1 measure determined by a given distri-
bution F (X) on RJ . Its defining characteristic is that it is equal to zero for all X ∈ RJ , if
F (X) can be written as the non-trivial product two or more of its (multivariate) marginal

1This just means that the measure is allowed to be negative.
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distributions (Streitberg (1990)). For example, if J = 4 and F can be written as F124F3, being
F124 and F3 the marginal distributions of (X1, X2, X4) and X3, respectively, then ∆F ≡ 0.
An alternative explanation is that ∆F ≡ 0 if one subset of X’s components is independent
of another subset of components.
The measure ∆F is called "additive" because it is a measure written as a linear combina-
tion of products of (univariate and multivariate) marginal distributions of X, as we shall see
shortly. It was studied by Lancaster and further modified by Streitberg (1990) and Streit-
berg (1999) to address a number of issues in the analysis of interactions in high-dimensional
contingency tables, most notably: The need to be able to analyze interactions in a sub-set
(Xj1 , . . . , Xjk) of variables of X without having to impose any conditions on the joint distri-
bution of all X.
We make an effort to explain here briefly the ideas, but the reader is referred to Streitberg’s
papers for details. We introduce first some preliminary notation.
To our random vector X ∈ RJ under study, corresponds a set of indexes C = {1, . . . , J}.
This set of indexes can be partitioned into |π| non-overlapping subsets, C = C1 ∪ . . . ∪ C|π|.
The set of non-overlapping sets of which the union is C, i.e. π =

{
C1, . . . , C|π|

}
, is called a

"partition" of C. A set of J elements has a total of BJ possible partitions2, where B0 = B1 =

1 and any subsequent Bk>1 can be found Rota (1964) by the recurrence relation Bk+1 =∑k
r=0

(
k
r

)
Br.

For example, forC = {1, 2, 3, 4} there are 15 partitions, three of which are: π1 = {{1} , {2} , {3, 4}},
π2 = {{1, 4} , {2, 3}}, π3 = {{1, 2, 3, 4}}.
It is convenient to use shorthand notation, the one we use is illustrated as follows for the
partitions above: π1 = 1 | 2 | 34, π2 = 14 | 23 and π3 = 1234. Additionally, we illustrate the
meaning of |π| by noting that |π1| = 3 , |π2| = 2 and |π3| = 1.
Now, concerning probability distribution F on RJ , we define Fπ to be the factorization of F
implied by partition π. For instance,

Fπ1 (X) = F1 (X1)F2 (X2)F34 (X3, X4) (3.2.11)

where the factors correspond to the respective marginal distributions. It will be convenient
to define partition operator Jπ, to be applied to F for a given partition π, by

JπF → Fπ (3.2.12)

where Fπ is as in the example at equation (3.2.11).
As a final peace of nomenclature, a distribution is called "decomposable" if there exists
π 6= {C}, such that F = Fπ. That is, if it can be written as a product of at least two of
its (multidimensional) marginal distributions. For example, if F (X) = Fπ1 (X) at (3.2.11),
then F is said to be decomposable.
We are ready for the uniqueness result that provides a definition for our additive interaction
measure Streitberg (1990, 1999):

Theorem 1. Let F be a probability distribution function on RJ and let ∆F be a function fulfilling
the following conditions:

2The number BJ is often called Bell’s number.
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1. ∆F is a linear combination of all factorizations ofF implied by the partitions ofC = {1, . . . , J},
that is, ∆F =

∑
π aπFπ, for some real numbers aπ.

2. For partition π∗ = {C}, also called "unity partition", the corresponding coefficient is one:
aπ∗ = 1.

3. (Interaction property) If F is decomposable, then ∆F (X) = 0, for all X ∈ RJ .

Then ∆F is uniquely given by:

∆F =
∑
π

{(
(−1)|π|−1 (|π| − 1)!

)
Fπ

}
(3.2.13)

Or equivalently: each coefficient aπ, corresponding to partition π, is uniquely defined by aπ =

(−1)|π|−1 (|π| − 1)!.

Condition 1 above states the additive nature of ∆F , note that this definition makes ∆F

existent for every distribution, since it just utilizes its marginal distributions and adds them
in a weighted manner. Condition 2 makes trivial forms of non-uniqueness impossible, as
would be the case in obtaining a "different" interaction measure ∆F ∗ satisfying 1 and 3, by
multiplication by a constant, ∆F ∗ = c.∆F . Condition 3 is a most reasonable requirement
one might demand from an interaction measure: it should vanish whenever the components
of X are completely or group-wise independent.
Paraphrasing: for every probability distribution function F , we have identified the only
function ∆F , built as a linear combination of products of (multivariate) marginal distribu-
tions of F , such that ∆F (X) := 0, whenever F is decomposable. “Decomposable” can be
read: “one subset of X’s components is independent of another subset”. Such a function is
given by equation (3.2.13).
Since the interaction measure is defined in terms of a given distribution F , it is convenient
sometimes to define the interactions operator:

∆ =
∑
π

{(
(−1)|π|−1 (|π| − 1)!

)
Jπ

}
(3.2.14)

which, upon application to the distribution in question, returns the additive interaction mea-
sure.

3.2.3. Relation of the Additive Interaction Measure with Joint Cumulants

In this section we show the relationship between Lancaster interaction measure and joint
cumulants. Building on the Lancaster interaction measure, we explain why joint cumulants
can be interpreted as legitimate interdependence measures.
We begin by indicating two alternative notations for the cumulants. The most explicit no-
tation is the one that includes the random variables as arguments; this is the notation used
e.g. by Brillinger (1974). Thus, the joint cumulants of vector (Xj1 , . . . , Xjk) are expressed by
cum (Xj1 , . . . , Xjk). The second notation type is the "index" notation used e.g. by McCul-
lagh (1987), where the indexes of the vector’s components, of which the joint cumulants are
computed, appear as superscripts: κj1,...,jk .
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Both of those notation variants have the advantage of not having to indicate explicitly the
size of the vector, of which the components subset is taken. A few examples with X ∈ R4

should suffice to make the relation among the three notation systems clear:

κ1,1,0,0 = cum (X1, X2) = κ1,2

κ0,0,2,0 = cum (X3, X3) = κ3,3

k1,2,0,1 = cum (X1, X2, X2, X4) = κ1,2,2,4

k1,1,1,0 = cum (X1, X2, X3) = κ1,2,3

In the following, either of the two new notations will be used.
If we concentrate for new on the case X ∈ R2, then Lehmann (1966) reports that:

Cov (X1, X2) = cum (X1, X2) =

+∞ˆ

−∞

+∞ˆ

−∞

[F12 (x1, x2)− F1 (x1)F2 (x2)] dx1dx2 (3.2.15)

under the condition that E
(∣∣∣Xk1

1 Xk2
2

∣∣∣) < +∞, for kj = 0, 1.
This equation is often called "Hoeffding’s formula" since it was discovered by Hoeffding
(1940). Of course, the above equation can be written in terms of Lancaster interaction mea-
sure (3.2.13), as

cum (X1, X2) =

+∞ˆ

−∞

+∞ˆ

−∞

∆F (x1, x2) dx1dx2 (3.2.16)

It turns out that this equation can be extended to higher dimensions.
Let X ∈ RJ be a random vector. According to Block and Fang (1988), we have that (after
suitable identification of ∆F on page 1808):

cum (X) = (−1)J
+∞ˆ

−∞

. . .

+∞ˆ

−∞

∆F (X) dX (3.2.17)

under the condition that E
(∣∣∣XJ

j

∣∣∣) < +∞, for j = 1, . . . , J .
Thus, joint cumulants are equal (up to a known constant) to the integral of Lancaster Inter-
action measure; they are “summary” or “integral” measures of additive interaction. It goes
without much explanation that the joint cumulants of a random vector X vanish whenever
a subset of the vector is independent of another, since then the integrating function is iden-
tically zero. This property is well-known and oftentimes the reason why joint cumulants
are used. The only contribution here is that they are seen as the integral of the Lancaster
interaction measure.
Now, as seen in Theorem 1 it is the only additive measure, built very elementarily with the
marginal distributions of the random vector, which fulfills the interaction property (condi-
tion 3).
We have provided a theoretical basis for declaring joint cumulants “dependence parame-
ters”, and the cumulant generating function a “dependence structure”.
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3.2.3.1. Small digression: Alternative definition of joint cumulants

With the aid of the interactions operator (3.2.14) one can present, with little additional work,
an alternative definition for joint cumulants. This definition is the one given, for example,
at Brillinger (1974). It has the advantage of expressing joint cumulants in terms of joint
moments. Sample estimates of the latter are readily obtainable.
This definition is also useful for section 4.4.2, when dealing with transformations of random
vectors.
Let X ∈ RJ be a random vector. For a set (Xj1 , . . . , Xjd) of X´s components, where some
sub-indexes jr may be repeated, consider joint moments

E (Xj1 . . . Xjd)

and a partition operator J∗π , analogous to (3.2.12), related to each partition π of (j1, . . . , jd).
This operator convertsE (Xj1 . . . Xjd) into the product of the factors determined by partition
π.
For example, for d = 4 , (j1, j2, j3, j3) and π = 1 | 23 | 4, one has partition components
v1 = {1}, v2 = {2, 3} and v3 = {4}. Upon application of J∗π , we have,

J∗πE (Xj1 . . . Xj4) = E (Xj1)E (Xj2Xj3)E (Xj4)

In the general case

J∗πE (Xj1 . . . Xjd) =
∏
v∈π

E

∏
jr∈v

Xjr


The alternative definition of joint cumulants can now be given.
For random variables (Xj1 , . . . , Xjd), their joint cumulant of order d is given by,

cum (Xj1 , . . . , Xjd) :=
∑
π

{(
(−1)|π|−1 (|π| − 1)!

)
J∗π

}
E (Xj1 . . . Xjd) (3.2.18)

Two examples are:

cum (X1, X2) = E (X1X2)− E (X1)E (X2)

and

cum (X1, X2, X3) = E (X1X2X3)− E (X1X2)E (X3)− E (X1X3)E (X2)

− E (X2X3)E (X1) + 2E (X1)E (X2)E (X3)

3.3. Joint cumulants as parameters and relation to "interaction
manifestations"

In this section we exhibit the relation between the cumulant generating function (our depen-
dence structure) and the interaction manifestation parameters introduced in subsection 3.1.
As before, none of the results is new, the difference is how we interpret and employ objects
and results.
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3.3.1. Preliminary: The Edgeworth Expansion and the Saddlepoint
Approximation

The following two approximations are relevant for this work: The Edgeworth Approxima-
tion and the Saddlepoint approximation. These approximate the probability density of X in
terms of its joint cumulants and c.g.f, respectively.
The Edgeworth Expansion is a series expansion of the probability density and of the prob-
ability distribution in terms of the joint cumulants (performing as coefficients) and of the
multivariate normal distribution (performing as basis function). Details for all topics of this
subsection can be found in Barndorff-Nielsen and Cox (1990); we present here just the ex-
pansion, in the context of a distribution having a probability density.
We employ in this section the shorthand notation for summations used in Barndorff-Nielsen
and Cox (1990), in order to avoid an overflow of symbols in these pages. Arrays are repre-
sented by symbols with superscripts and under-scripts. For example a matrix is represented
by ai,j or by bij . A three dimensional array would be ci,j,k or dijk, and so on. The product
of these symbols indicates summation along all dimensions for which the index is repeated.
For example the term 1

6
√
n
κj1,j2,j3hj1j2j3 , to be used below, should be interpreted as

1

6
√
n
κj1,j2,j3hj1j2j3 =

1

6
√
n

J1∑
j1=1

J2∑
j2=1

J3∑
j3=1

κj1,j2,j3hj1j2j3 (3.3.1)

We can now introduce the Edgeworth Expansion. Let Z ∈ RJ be a random vector with prob-
ability density function f . Assume also, without loss of generality, that Z has mean a vector
of zeros, a J×J covariance matrix κi,j = Γ, and joint cumulants

{
κj1,j2,j3

}
,
{
κj1,j2,j3,j4

}
, . . ..

If we have a random sample of n i.i.d. random vectors with the same distribution as Z,
namely Z1, . . . ,Zn, then we can form the average random vector X = 1

n

∑n
i=1 Zi. This latter

random vector has a density function fX which can be formally3 written as the following
series expansion, in terms of the summation shorthand notation:

fX (x) = φΓ (x)
{

1 +
1

6
√
n
κj1,j2,j3hj1j2j3 (x; Γ) +

1

24n
κj1,j2,j3,j4hj1j2j3j4

+
1

72n
κj1,j2,j3κj4,j5,j6hj1j2j3j4j5j6 (x; Γ)

}
+O

(
n−

3
2

)
(3.3.2)

Where φΓ is the multivariate Normal density function with zero mean and covariance ma-
trix Γ, and hj1...jk (x; Γ) represents the evaluation at x of the k-order Hermite polynomial
determined by the identity

φΓ (x)hj1...jk (x; Γ) = (−1)k
∂kφΓ (x)

∂xj1 . . . ∂xjk
(3.3.3)

The reader has surely noticed that we have considered only the case of an average X =
1
n

∑n
i=1 Zi of random vectors. However, if the distribution of Z is unimodal and not wildly

skewed or leptokurtic, then the Edgeworth Approximation given in 3.3.2 is often a good

3That is, without caring at the moment for issues of convergence, non-negativity, or the conditions Z must
fulfill in order for this to be a valid expansion.
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approximation in practice even with n = 1, as we shall use it. The reason is that a random
variable does not have to be the result of averaging n variables in order to have cumulants
as such an average variable. This is the case of the chi-squared distribution with n degrees of
freedom, for example, which can be interpreted as the sum of n standard Normal variables
after raising each to the second power.
The usefulness of retaining the dependence on n is that we are reminded of when the Edge-
worth Expansion is useful in practice: When the cumulants of X, of which the density must
be approximated, do not explode as their order increases, i.e. they behave as if X were
approximately an average.
The Edgeworth expansion is more accurate near the expected value of the distribution, but
degenerates as one moves towards the tails of the distribution.
The Saddlepoint Approximation, also called “tilted” Edgeworth Approximation, is a more ac-
curate approximation to the density of X at the tails, which we can apply if we know its
cumulant generating function KX (t). In the context of considering X as the mean of n
copies of Z, the relation between the cumulant generating functions is KX (t) = nKZ

(
t√
n

)
.

As mentioned above, we shall be using this approximations as if we were dealing with a
variable being the average of n = 1 random variables. Thus we remove in the following the
dependence on such an underlying n and work directly with KX (t).
We begin by a mathematical trick: we try to find the Edgeworth Expansion not of fX (x),
but of a related family of density functions, defined in terms of an auxiliary vector λ ∈ RJ ,

fX (x;λ) = exp
(
xT.λ−KX (λ)

)
fX (x) (3.3.4)

The idea is, for each x ∈ RJ to choose the most advantageous value λ̂ of λ ∈ RJ in order to
make the Edgeworth approximation f̂X (x;λ) to fX (x;λ) as accurate as possible. Of course,
this will provide automatically an approximation

f̂X (x) = exp
(
KX

(
λ̂
)
− xT.λ̂

)
f̂X

(
x; λ̂

)
which is in fact what we want.
The optimum value λ̂ can be proved to be the one fulfilling x = ∇KX

(
λ̂
)

, for the partic-

ular x ∈ RJ in question, because then density fX

(
x; λ̂

)
corresponds to a random vector

having its mean at x, where the Edgeworth Approximation is most accurate. Now, under
suitable regularity conditions, the leading term of the Edgeworth expansion of fX

(
x; λ̂

)
is

a multivariate Normal density with covariance matrix with entries(
Σ̂i,j

)
=
∂2KX (λ)

∂λi∂λj
|λ=λ̂

evaluated at its mean; that is,

fX

(
x; λ̂

)
≈ e0

(2π)J/2 det (Σ)1/2

Thus, the looked for approximation is given by

fX (x) = exp
(
KX

(
λ̂
)
− xT.λ̂

)
fX

(
x; λ̂

)
≈

exp
(
KX

(
λ̂
)
− xT.λ̂

)
(2π)J/2 det

(
Σ̂
)1/2

(3.3.5)
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The error of this approximation is of order O
(
n−1

)
for all x ∈ RJ , if the joint cumulants of

random vector X behave like an average of n iid random vectors. Suitable normalization
can bring this order to O

(
n−2

)
.

In spite of the apparent disadvantage of having to re-compute the density estimation for
each x, the computational cost becomes considerably smaller than that of the Edgeworth
Approximation as dimension increases, since the number of multivariate Hermite polyno-
mials at 3.3.2 to evaluate increases exponentially with the dimension of x.

3.3.2. Connection of dependence structure with interaction manifestations

We saw at section 3.3.1 that joint cumulants, by themselves or arranged in the form of a cu-
mulant generating function, can be "inverted" in order to find approximately the probability
density to which they correspond, via either the Edgeworth expansion or the Saddlepoint
approximation. We shall see now explicitly the connection of joint cumulants with the three
interaction manifestation parameters listed at section 3.1.

3.3.2.1. Connection of dependence structure with “joint” quantiles

In order to find probabilities of the form Pr (X ≥ x) = 1 − FX (x), one should in principle
integrate expression 3.3.5.
In the univariate case, it is a well-established practice Huzurbazar (1999) to employ instead
an accurate approximation to that integral, which is due to Lugannani and Rice (1980).
Namely, in the univariate case, we have:

FX (x0) ≈
x0ˆ

−∞

exp
(
KX

(
λ̂ (x)

)
− xλ̂ (x)

)
(2π)1/2

(
d2KX(λ)
dλ2

|λ=λ̂(x)

)1/2
dx

≈ Φ (r) + φ (r)

{
1

r
− 1

q

}
(3.3.6)

Where τ̂ is such that K
′
X (τ̂) = x0, and:

r = sign (τ̂) {2 [τ̂x0 −KX (τ̂)]}
1
2

q = τ̂

{
d2KX (λ)

dλ2
|λ=τ̂

} 1
2

Thus, we must not perform the numerical integration at all.
For the multivariate case, Kolassa and Li (2010) have provided a generalization of the Lugannani-
Rice formula, which produces an approximation to probability Pr (X ≥ x) of order O

(
n−1

)
,

for X ∈ RJ . This formula is extremely complicated and writing it here will most likely
obscure rather than clarify anything. Only the probability distribution function of a multi-
variate Normal distribution with covariance matrix given by

Γij =
∂2

∂ti∂tj
KX (t) |t=0
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must be computed. For this task there are accurate methods available for up to 20 dimen-
sions Genz (1993).
Since we intend to deal with vectors of dimension 3 or 4, corresponding to multidimensional
marginals of the random field modeled, we consider more convenient to use numerical in-
tegration of (3.3.5). For higher dimensions it would be better to use the result of Kolassa and
Li (2010) in order to avoid difficult and inaccurate integrations.

3.3.2.2. Connection of dependence structure with entropy

It is possible to approximate the entropy of a distribution via the Edgeworth Expansion
presented above, by using the technique presented at Hulle (2005). All the mathematical
ammunition we need is the classical expansion of the (natural) logarithm when 0 < x < 2,
the orthogonality property of the multivariate Hermite Polynomials defined by 3.3.3, and a
property of the entropy of a Gaussian random vector.
For the natural logarithm, it is well known that,

log (x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ . . . (3.3.7)

Concerning the Hermite polynomials, regardless of covariance matrix Γ,
ˆ
. . .

ˆ
hi1...ik (x; Γ)hj1...jl (x; Γ)φΓ (x) dx = 0, if k 6= l (3.3.8)

Note also the particular case h0 (x; Γ) = 1 for one of the Hemite Polynomials above.
Finally, for any random vector X with mean zero, covariance matrix Γ and probability den-
sity function fX, we have
ˆ
fX (x) log (fX (x)) dx = H (fX) = H (φΓ) −

ˆ
fX (x) log

(
fX (x)

φΓ (x)

)
dx (3.3.9)

where φΓ is the multivariate Normal density with mean zero and covariance matrix Γ.
Using the shorthand notation of 3.3.1, define Z (x) := 1

3!κ
j1,j2,j3hj1j2j3 (x; Γ). Now we can

easily follow argument of Hulle (2005), which utilizes only the first correction term in 3.3.2:

ˆ
fX (x) log (fX (x)) dx = H (φΓ)−

ˆ
fX (x) log

(
fX (x)

φΓ (x)

)
dx

≈ H (φΓ)−
ˆ
φΓ (x) (1 + Z (x)) log (1 + Z (x)) dx

≈ H (φΓ)−
ˆ
φΓ (x)

(
Z (x) +

1

2
Z (x)2

)
dx = H (φΓ)− 1

12

{ J∑
j=1

(
kj,j,j

)2
+ 3

J∑
i,j=1,i 6=j

(
κi,i,j

)2
+

1

6

J∑
i,j,k=1,i<j<k

(
κi,j,k

)2 }
(3.3.10)

The value of H (φΓ) can be found in closed form, H (φΓ) = 1
2 log (det (Γ)) + J

2 log (2π) + J
2 .

The approximation (3.3.10) is accurate to order O
(
n−2

)
. At Hulle (2005), the properties of

this approximation are studied.
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It might be necessary sometimes to apply a simple transformation, such as cX := Y, with
c < 1 a small constant, in order to ensure the validity of the logarithm expansion. Then the
resulting random vector Y has joint cumulants κ̃ given by

κ̃j1,j2 = c2κj1,j2

κ̃j1,j2,j3 = c3κj1,j2,j3

κ̃j1,j2,j3,j4 = c4κj1,j2,j3,j4

... (3.3.11)

with which we can work.

3.3.2.3. Connection of dependence structure with the distribution of the components
sum

We address now a connection that is very relevant for rainfall modeling an its impact quan-
tification. It is also the most straightforward connection between the dependence structure
of a distribution, as given by its cumulants or c.g.f., and the interaction manifestation pa-
rameters described in section 3.1.
Given a random vector X ∈ RJ representing, say, rainfall at a given time at several locations
on a basin, we are interested in the distribution of variable SX =

∑J
j=1Xj . The character-

istics of this new random variable can be, to a great extend, be identified on the basis of its
moments or cumulants.
Now, two of the properties of joint cumulants are Brillinger (1974) symmetry and multi-
linearity. Symmetry means that κj1,...,jk = κP (j1,...,jk) for any permutation P (j1, . . . , jk) of
the indexes (j1, . . . , jk). Concerning multi-linearity, write joint cumulants more explicitly as
cum (Xj1 , . . . , Xjk) := κj1,...,jk .
Then, for any random variable Z ∈ R,

cum (Z +Xj1 , . . . , Xjk) = cum (Z, . . . ,Xjk) + cum (Xj1 , . . . , Xjk)

With the aid of these two properties, it can be shown that

κr (SX) =

J∑
j1=1

 J∑
j2=1

. . .

 J∑
jr=1

κj1,...,jr

 (3.3.12)

where κr (SX) denotes the r-th cumulant of random variable SX =
∑J

j=1Xj , and κj1,...,jr

denote the joint cumulants of the random field under analysis, X ∈ RJ .



44 The Proposed Approach: General

3.3.2.3.1. Cumulant generating function of sums Additionally, given a random vector
X = (X1, . . . , XJ), one can study the joint distribution of aggregated variables of the form:

ξ1 =
∑
j1∈I1

Xj1

ξ2 =
∑
j2∈I2

Xj2 (3.3.13)

...
...

...

ξl =
∑
jl∈Il

Xjl (3.3.14)

where Ik, for k = 1, . . . , l represent non-overlapping index sets such that

I1 ∪ . . . ∪ Il = {1, . . . , J}

The cumulant generating function of the l-dimensional vector so obtained is given by

Kξ (t) = log
(
E
(

exp
(
t.ξ
′
)))

=

log (E (exp (t1ξ1 + . . .+ tlξl))) =

log

E
exp

t1∑
I1

Xj1 + . . .+ tl
∑
Il

Xjl

 =

log (E (exp (g1 (t)X1 + . . .+ gJ (t)XJ))) =

log
(
E
(

exp
(
g (t) .X

′
)))

= KX (g (t)) (3.3.15)

Function g : Rl → RJ is a vector function defined by

g (t) = (g1 (t) , . . . , gJ (t))

gj (t) = t. (1 (j ∈ I1) , . . . ,1 (j ∈ Il))
′

(3.3.16)

where

1 (j ∈ Ik) =

{
1, j ∈ Ik
0, j /∈ Ik

Summarizing, it is possible to find the cumulant generating function of random vector
ξ ∈ Rl in terms of that of the original vector X ∈ RJ . Then, if we know the c.g.f. of the
original random vector X, the cumulants, the cumulant generating function (and hence the
approximate density, via Saddlepoint approximation) of ξ ∈ Rl can be found. In this way it
is possible to deal with interaction manifestations of these aggregate variables, as well. An
example should help clarified these statements.

Example 2. Runoffs to a dam

For example, let X = (X1, . . . , X4) represent runoffs to a dam, during a specific 6-hour time-
span. At Mathai and Moschopoulos (1991), it is suggested that this process can be modeled
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by a random vector having dependence structure

KX (s1, . . . , s4) =

(
h +

(
γ0

β0

)
b

)
.s
′ − α0 log

(
1− b.s

′
)
−

4∑
j=1

αj log (1− βjsj) (3.3.17)

for parameters α0, β0 > 0, γ0 ≥ 0, h = (γ1, . . . , γ4) ≥ 0, b = (β1, . . . , β4) ≥ 0, and
(α1, . . . , α4) ≥ 0. The explanation and physical interpretations of these parameters can be
found at Mathai and Moschopoulos (1991).
We are interested in the c.g.f. of Y = (Y1, Y2), where

Y1 = X1 +X2

Y2 = X3 +X4 (3.3.18)

Then, we have

KY (t1, t2) = log (E (exp (t1Y1 + t2Y2))) =

log (E (exp (t1 (X1 +X2) + t2 (X3 +X4)))) =

log (E (exp (t1X1 + t1X2 + t2X3 + t2X4))) =

KX (g (t1, t2))

where
g (t1, t2) = (t1, t1, t2, t2)

Then, the dependence structure of Y is given by

KY (t1, t2) =

(
h +

(
γ0

β0

)
b

)
. (t1, t1, t2, t2)

′

− α0 log
(

1− b. (t1, t1, t2, t2)
′
)
−

2∑
j=1

αj log (1− βjt1)

−
4∑
j=3

αj log (1− βjt2) (3.3.19)

Joint cumulants (our interdependence) parameters can be found by differentiation of (3.3.19)
and evaluation at zero. For example, covariance is given by

cum (Y1, Y2) =
∂2

∂t2∂t1
KY (t1, t2) |(t1,t2)=(0,0)=

α0 (β1 + β2) (β3 + β4) (3.3.20)

Higher order cumulants can be found similarly.
If the original vector X has now dimension 9, for example, and at (3.3.18) we are also inter-
ested in a third variable, say

Y3 = X5 + . . .+X9

then along similar lines as above, and now considering b = (β1, . . . , β9), etc. , we would
have
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KY (t1, t2, t3) =

(
h +

(
γ0

β0

)
b

)
. (t1, t1, t2, t2, t3, . . . , t3)

′

− α0 log
(

1− b. (t1, t1, t2, t2, t3, . . . , t3)
′
)
−

2∑
j=1

αj log (1− βjt1)

−
4∑
j=3

αj log (1− βjt2)−
9∑
j=5

αj log (1− βjt3) (3.3.21)

and would have 3rd order interdependence parameters of the form:

cum (Yi, Yj , Yk) =
∂3

∂ti . . . ∂tk
KY (t1, t2, t3) |t=0

= 2α0 (β1 + β2) (β3 + β4) (β5 + . . .+ β9)

The case of higher dimensions and more summary variables can be found analogously.
In the example above, the distribution of the “parent” random vector X uses many pa-
rameters, which is inconvenient for Spatial Statistics. Below we see a parametrically lower
dimensional model that we consider suitable for Spatial Statistics.

3.3.3. Putting the pieces together

We have seen in this section that joint cumulants can be rightfully defined as “summary” or
“integral” measures of multivariate interaction. For this reason, we considered joint cumu-
lants and cumulant generating functions as dependence parameters and dependence struc-
tures, respectively. We have seen how to express the three (subject-matter specific) inter-
action manifestations presented in subsection 3.1 in terms of these dependence parameters
and structure.
The idea of our approach is to fit the dependence parameters and/or the dependence struc-
ture in such a way that the observed interaction manifestations are faithfully reproduced.
This amounts to a method of moment estimation procedure, or “method of cumulants”,
should we say.
The interaction manifestations to be reproduced may refer to those of low-dimensional
marginals, such as the 4 or 5 dimensional marginal distributions. For example, the entropy
of the four-dimensional marginals of the distribution. Actually, only up to such dimensions
can we estimate anything from the sample with precision.
But the model will be “glued” together by the dependence structure (our c.g.f.), which can
span hundreds or thousands of dimensions. It is usual in Geostatistics to deal with compo-
nents of the field two at a time, by using some kind of covariance function, such as (2.2.8)
or (2.2.9), trying to model properly covariance. In this way a model of hundreds or thou-
sands of dimensions is “glued” by its 2-dimensional marginals. In this work, we attempt to
work with 4 or 5 components at a time, trying to model properly both covariance and other
interaction manifestations (say, entropy) appearing in the 4 or 5 dimensional marginals, for
example.
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The dependence structure provided by the cumulants or the cumulant generating function
can be controlled to be low-dimensional, since it is a parametric function. Thus we counter-
act the worst enemy of interaction quantification: the “curse” of dimensionality. The issue
of interpolation to ungauged sites mentioned before, to which the 4 or 5 dimensional mani-
festations must also be carried over as faithfully as possible, can also be tackled in this way
(see chapter 4).
In spite of the issues mentioned in section 2.4, in two dimensions dependence parameters
are often considered practically the same thing as the interaction manifestations parame-
ters: both are summarized by any of the several correlation coefficients available, such as
Kendall’s τ , Spearman’s ρ, the product moment correlation coefficient, etc., and so they can
be readily integrated into modeling.
We mentioned the use of Copulas as an alternative to represent and analyze bi-variate inter-
actions. A Copula conveys a tremendous amount of information about dependence among
two variables, in that its density informs at what ranges dependence is higher, lower, etc.
Unfortunately, non-parametrically estimated Copulas are useful only in relatively low di-
mensions. In higher dimensions Copulas themselves require some parametric specification
to model the observed dependence, these parameters being usually either the correlation
parameters just mentioned, or some version of the same concept.
We suggested in this work, that data features which can be interpreted as dependence fea-
tures (“interaction manifestations”) also suffer from a version of the curse of dimensionality:
they increase exponentially. The reader may wish to add his/her favorite interaction mani-
festation to the list given in subsection 3.1. But “this” or “that” high dimensional interaction
manifestation usually does not provide any guide for model building, let alone for low-
dimensional model building.
For this reason, we propose to look for a flexible dependence structure, in terms of the cu-
mulants as building blocks, and try to see how well or bad the manifestations are recovered.
In this, joint cumulants are employed as the correlation coefficients above, of which they are
a generalization, but we don’t expect to compute them directly on the basis of the data; that
would require too many data. We rather attempt to match the interaction manifestations:
joint cumulants are estimated, so that these manifestations are better reproduced.





4. The Proposed Approach: Spatial
Statistics

In this chapter, the ideas put forward in the previous chapters are further elaborated with a
view to they application in spatial statistics. As our model, a low dimensional, “archetypal”
cumulant generating function (dependence structure) is provided. This dependence struc-
ture resembles that of the Gaussian distribution usually used in Geo-statistics, but allows
for non-zero interdependence parameters of order greater than two.
By using the Saddlepoint Approximation method introduced in section 3.3.1, this c.g.f. can
be (approximately) inverted. In this sense, we are actually proposing a density model for
X. Alternatively, we shall see that the c.g.f. can be identified to be that of an elliptically
contoured random vector, and accordingly a useful density model corresponding to this
c.g.f. will be presented in this chapter.
A method for giving more flexibility to the archetypal dependence structure is presented
and illustrated. It consists in applying polynomial transformations to the one-dimensional
marginal random variables of the random vector having a simple, low-dimensional depen-
dence structure. Joint cumulants of the transformed random vector can then be found in
terms of the polynomial transformation coefficients and the original dependence structure
parameters.
This chapter is mostly theoretical. The reader is referred to chapter 5, where two exam-
ples are presented that illustrate the differences in interaction manifestations that can occur
between distributions indistinguishable from their one or two-dimensional marginal distri-
butions, but having different interaction parameters of order 4 or 6.

4.1. Archetypal Dependence Structure

We introduce in this section a series expansion that represents a cumulant generating func-
tion (dependence structure) for a random vector X ∈ RJ . Examples of the characteristics of
data obtainable from this model can be seen in chapter 5.
We begin with a definition due to Cambanis et al. (1981): A random vector X ∈ RJ is said
to have an elliptically contoured distribution if there exists a vector µ ∈ RJ and an J × J
non-negative definite (covariance) matrix Γ such that the characteristic function Ψ of X− µ
can be written as

ΨX−µ (t) = Υ
(
tTΓt

)
(4.1.1)

for some function Υ : R→ R.
We suggest that elliptical distributions provide a departing point for implementing the ideas
presented in this dissertation. We shall be assuming the existence of sufficiently many joint
cumulants (or product moments) so as to provide a practically useful approximation to the
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processes modeled. Then it is more convenient, for our purposes, to conceptualize elliptical
distributions in terms of their moment generating function: We say that random vector
X ∈ RJ is “elliptically distributed” if and only if its moment generating function can be
written as

MX−µ (t) = Υ
(
tTΓt

)
(4.1.2)

for some function Υ : R→ R, and some µ ∈ RJ .
The most famous distribution of the elliptical family is the multivariate Normal distribution,
for which Υ (y) = exp

(
1
2y
)
. For ease of notation and argument we assume in the following,

without loss of generality, that µ = 0.
We shall be considering moment generating functions reminiscent of that of the multivariate
Normal distribution. The corresponding cumulant generating function will be an archetypi-
cal dependence structure for spatial statistics applications, for reasons that will be explained
shortly.
Consider a moment generating function of the form

MX (t) = exp

(
δ

(
1

2
tTΓt

))
(4.1.3)

for some function δ : R→ R. Then the cumulant generating function of X is given by

KX (t) = δ

(
1

2
tTΓt

)
(4.1.4)

This function δ (y) can be formally expanded in its Taylor Series around zero,

δ (y) = c0 +
c1

1!
y +

c2

2!
y2 +

c3

3!
y3 +

c4

4!
y4 + . . .

= c0 +
c1

1!

(
1

2
tTΓt

)
+
c2

2!

(
1

2
tTΓt

)2

+
c3

3!

(
1

2
tTΓt

)3

+ . . .

= δ

((
1

2
tTΓt

))
(4.1.5)

where cr = dr

dyr δ (y) |y=0.
A little thought shows that the assumption µ = 0 implies that c0 = 0. Thus, by virtue of
4.1.4 and 4.1.5 combined, we have that the c.g.f can be written as

KX (t) = c1
1

2
tTΓt +

1

2!
c2

[
1

2
tTΓt

]2

+
1

3!
c3

[
1

2
tTΓt

]3

+ . . . (4.1.6)

Steyn (1993) introduces cumulant generating functions of the form 4.1.6. The idea of Steyn
(1993) is to come up with distributions similar to those in the elliptical family, but with
added flexibility, in that they can have different kurtosis for the different marginal distribu-
tions. The apparently capricious inclusion of 1

2 in the argument of δ allows us to use directly
Steyn’s illustrative result, but it could also be “absorbed” by the coefficients cr.
As far as we are concerned, we shall use an expansion of the c.g.f up to some practical
order R, which shall constitute the dependence structure later to be connected with the inter-
action manifestations, presented in the previous chapters. The parameters cr are extremely
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important in our approach, since they provide the means for quantifying the (summary)
interactions of order greater than two, with a minimum of additional parameters.
At the same time, the form of KX (t), built on expression

(
tTΓt

)
, allows us to use available

spatial statistics techniques for estimation of correlation, i.e. based on covariance functions.
Then these correlations can be “enhanced” or complemented with higher order interdepen-
dence, via non-zero values for coefficients cr>1.
The joint cumulants of a random vector having a c.g.f as in 4.1.6 are readily found by dif-
ferentiating KX (t) with respect to the indexes of the joint cumulant, and evaluating the
result at t = 0. This is entirely analogous to finding moments with the aid of the moment
generating function.
All joint cumulants of odd order, κj1,...,jk (k odd), are zero for our dependence model. Some
of the non-zero joint cumulants are:

κj1,j2 = c1Γj1j2

κj1,j2,j3,j4 = c2 {Γj1j2Γj3j4 + Γj1j3Γj2j4 + Γj1j4Γj2j3}
κj1,j2,j3,j4,j5,j6 = c3 {Γj1j2Γj3j4Γj5j6 + . . .+ Γj1j6Γj2j4Γj5j3} (4.1.7)

and so on (see the appendix). In this manner, interaction among sets of four or six variables
can be conveniently summarized.
Joint cumulants of order r, κj1,...,jr , are similar. They are the product of cr times the summa-
tion of the product of all covariances involved. It will be convenient to introduce “covariance
interdependence factor” % (j1, . . . , jk) defined as the sum of the products of the covariance
coefficients at (4.1.7). Specifically,

% (j1, j2) = Γj1j2

% (j1, . . . , j4) = Γj1j2Γj3j4 + Γj1j3Γj2j4 + Γj1j4Γj2j3

% (j1, . . . , j6) = Γj1j2Γj3j4Γj5j6 + Γj1j3Γj2j4Γj5j6 + . . .+ Γj1j6Γj2j4Γj5j3

and so on. This is a “potential” interdependence factor, since its effect on higher order
interdependence parameters (i.e. joint cumulants of order greater than 2), is only present
if its corresponding coefficient ck/2 is non-zero. So every joint cumulant at (4.1.7) can be
written as

κj1,...,jk = c k
2
× % (j1, . . . , jk) (4.1.8)

Our interdependence parameter of order k > 2 can then be conceptually split into two com-
ponents: On the one hand, a “covariance interdependence component”, % (j1, . . . , jk), that
can be estimated via covariance function fitting, as usual in Geo-statistics. On the other
hand, an interdependence “enhancing” parameter ck/2, whose departure from zero deter-
mines the departure from zero of the k-th order joint cumulant.

4.1.1. Moment generating function

The moment generating function of the archetypal dependence structure will be now intro-
duced. The form of the dependence structure, makes this function readily obtainable.
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For random vector X ∈ RJ , our dependence structure is given by (4.1.6). By setting short-
hand notation

y :=
1

2
tTΓt

the dependence structure can be written

KX (t) =
c1

1!
y +

c2

2!
y2 +

c3

3!
y3 + . . . (4.1.9)

On the other hand, the definition of our dependence structure, given originally by (4.1.3)
implies that we can write, using the same shorthand notation as above,

exp (KX (t)) := MX (t) =

exp (δ (y)) = 1 +
m1

1!
y +

m2

2!
y2 +

m3

3!
y3 + . . . (4.1.10)

for some coefficients m1,m2,m3, . . ., at least for y in a neighborhood of zero (that is, for t in
a sufficiently small neighborhood of 0). Summarizing, we have that

log
(

1 +
m1

1!
y +

m2

2!
y2 +

m3

3!
y3 + . . .

)
=
c1

1!
y +

c2

2!
y2 +

c3

3!
y3 + . . . (4.1.11)

and then we can obtain, as in the case of the one-dimensional cumulants in terms of the
one-dimensional moments, coefficients m1,m2,m3, . . . in terms of c1, c2, c3, . . . (see section
3.2.1). According to (3.2.8), we have,

c1 = m1

c2 = m2 −m2
1

c3 = m3 − 3m2m1 + 2m3
1

c4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1 (4.1.12)

which after some algebraic manipulation, returns,

m1 = c1

m2 = c2 + c2
1

m3 = c3 + 3c2c1 + c3
1

m4 = c4 + 4c3c1 + 3c2
2 + 6c2c

2
1 + c4

1 (4.1.13)

So, we have shown, that the moment generating function at (4.1.3) can be written as

MX (t) = 1 +
m1

1!

(
1

2
tTΓt

)
+
m2

2!

(
1

2
tTΓt

)2

+ . . . (4.1.14)

which is similar to the expansion of KX (t), except for the leading term 1 and coefficients
mr, r = 1, 2, . . .. We express joint moments analogously as joint cumulants by

µj1,...,jk := E (Xj1 . . . Xjk) (4.1.15)
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where jr ∈ {1, . . . J}, r = 1, . . . k, allowing repetition of indexes. Then it follows that

µj1,j2 = m1% (j1, j2)

µj1,j2,j3,j4 = m2% (j1, . . . , j4)

µj1,j2,j3,j4,j5,j6 = m3% (j1, . . . , j6) (4.1.16)

and so on, wheremr is as in (4.1.13). We see then, for example by setting c1 = 1 and cr>1 = 0,
that we can have non-zero joint moments of orders greater than two, even though no depen-
dence of order greater than two is present in the distribution of X, according to our defini-
tion. This indicates an important difference between joint moments and joint cumulants, in
terms of our research.

4.1.2. Some advantages of the archetypal dependence structure

Concerning Spatial Statistics, the archetypal dependence structure introduced above has the
following convenient characteristics:

Low dimensionality: With respect to covariance function based Geo-statistics, we need to
estimate only one additional parameter per additional order of interaction. For exam-
ple, assume we want to model interaction among ten variables, as in the example at
the outset of subsection 3.1. It was stated that, in principle, we would have to fit a set
of O

(
1010

)
parameters. Under the archetypal dependence structure model, by using

a covariance function such as (2.2.8), we need only to estimate four parameters for the
covariance matrix, plus five additional ones: c1, . . . , c5.

Geographically Sensible: If we employ a covariance function model for estimating co-
variances, then covariance between values of every two sites decrease as a function of
distance. Since the joint cumulants at (4.1.7) for a given set (j1, . . . , jk) of components
of field X ∈ RJ are partially a function of covariances between pairs of components,
values corresponding to sites closer together will result in higher k-th order interde-
pendence. On the other hand, values corresponding to sites further apart, will result
in smaller interdependence parameters, in a way that respects the principle of correla-
tion between pairs of sites-data as a function of distance between sites. This aspect is
noticed in the smooth, apparently Gaussian look of the fields generated for the sake of
illustration is chapter 5.

Flexibility according to data complexity: In section 2.5 we saw that one of the strengths
of the Edgeworth-Sargan distribution was its capacity to be extended, in a natural way,
depending on the (subject-matter relevant) features of data to be modeled. We saw as
well, that features of this distribution (e.g. location, dispersion, skewness, kurtosis,
and moments of order k > 4 in general) could be sequentially or “orthogonally” fitted
as data complexity required, without altering features already fitted. These charac-
teristics are partially recovered by the archetypal model suggested: joint cumulants
of increasing orders can be fitted “orthogonally”, by fitting coefficients c2, c3, c4, . . ..
For example, it is possible to have two models with the same covariance matrix, but
different fourth order joint cumulants, depending on the values for c2 fitted for each
model.
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Handy measure of higher order interdependence: Given a multivariate data set that seems
roughly Gaussian (i.e. symmetric, uni-modal, with roughly Normal 1-dimensional
marginals), fitting parameters of the model presented in this chapter, allows an imme-
diate measure of interdependence beyond order two interdependence (“gaussianity”).
Namely, the following divergence measure:

div.measure = ĉ2
2 + ĉ2

3 + ĉ2
4 + . . . (4.1.17)

Closeness under marginalization: Marginal distributions of this model, both one-dimensional
and multidimensional, belong to the same distribution type. This is a characteristic
of distributions whose moment generating functions are of the form (4.1.2), since they
are just instances of elliptical distributions for which the form of the characteristic does
not change with the dimension of X. See, for example Hult and Lindskog (2002); Kano
(1994). Closeness under marginalization is a sensible requirement for Spatial Statistics
models, since data from the environmental variable is often available at a limited num-
ber of sites, say J . We seek then estimations of the variable at N extra ungauged sites,
or summary statistics from them, even under the possibility of letting N → +∞. For
preventing inconsistencies in parameters and model interpretations, it is convenient
that the distribution model for J sites be of the same type as the model for J +N sites.

4.2. Useful representation of the archetypal model

Working directly with cumulant generating function 4.1.6 can be unwieldy in applications.
A more useful representation of the model is necessary, which allows parameters’ estimation
conveniently. In this section, we introduce a more convenient representation via the stan-
dard representation of an elliptical random vector. We use here standard results about the
theory of elliptically distributed random variables. An excellent and accessible introduction
can be found at Frahm (2004), see also Cambanis et al. (1981); Fang (1990).
Let X ∈ RJ be an elliptically distributed random vector, such as the one having c.g.f. (4.1.6).
Then X admits the following stochastic representation:

X = µ+R×UJ−1 × Γ
1
2 (4.2.1)

where,

µ ∈ RJ (Location vector)

R ≥ 0 (Non-negative r.v.)

UJ−1 (Uniform r.v. on the unit J-dimensional hypersphere)

Γ
1
2 (Squared root of covariance matrix)

Our model (4.1.6) assumes µ = 0, but a location vector can be added to X without altering
the models properties of interest for this research.
One dimensional random variateR receives the name of "generating variable". It determines
important characteristics of random vector X, such as tail behavior. Actually, the density of
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X, whenever it exists, can be written as:

fX (x) =
√

det (Γ−1)

Gamma
(
J
2

)
fR

((
(x− µ)

′
Γ−1 (x− µ)

)1/2
)

2π
J
2 ×

(
(x− µ)

′
Γ−1 (x− µ)

)(J−1)/2
(4.2.2)

In order to avoid confusion, we have used Gamma for the gamma function Abramowitz
(1972). Two examples of generating random variables:

• If X has a J-dimensional normal distribution, then R2 ∼ χ2
J .

• If X has a J-dimensional Student distribution with ν degrees of freedom, then the
squared generating variable is proportional to a random variable having Fisher’s F
distribution, R2 ∼ J × FJ,ν .

In the above two examples one can already see a possible issue with generating variables:
They depend on the dimension of the field, J . This issue will be addressed shortly.
Given a (flexible enough) model forR, maximum likelihood estimation (say) can be effected
on the basis of (4.2.2).
Hence, we shall strive to find the connection between (4.1.6) and R. Note that, since R ≥ 0,
it will be equally good to find a connection between (4.1.6) and R2.

4.2.1. Relation between R2 and the archetypal c.g.f.

Assume that we have random vector Z ∈ RJ with c.g.f (4.1.6), with µ = 0 and covariance
matrix equal to the identity matrix, Γ = IJ×J . For this special case, in agreement with
representation (4.2.1), we have

‖Z‖2 =
√
〈Z,Z〉 =

√
‖Z‖ ‖Z‖ cos (0) =

√
‖R×UJ−1‖ ‖R×UJ−1‖ = R× 1

and then,

R2 =

J∑
j=1

Z2
j (4.2.3)

which in turn means that,

E
((
R2
)k)

= E

 J∑
j1=1

Z2
j1

× . . .×
 J∑
jk=1

Z2
jk

 =

J∑
j1=1

. . .

J∑
jk=1

E
(
Z2
j1 . . . Z

2
jk

)
(4.2.4)

Since Z has c.g.f. given by

KZ (t) =
c1

1!

(
1

2
t
′
t

)
+
c2

2!

(
1

2
t
′
t

)2

+
c3

3!

(
1

2
t
′
t

)3

+ . . .

it follows, as seen in section 4.1.1, that
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MZ (t) = 1 +
m1

1!

(
1

2
t
′
t

)
+
m2

2!

(
1

2
t
′
t

)2

+
m3

3!

(
1

2
t
′
t

)3

+ . . .

with coefficients given by

m1 = c1

m2 = c2 + c2
1

m3 = c3 + 3c2c1 + c3
1

m4 = c4 + 4c3c1 + 3c2
2 + 6c2c

2
1 + c4

1 (4.2.5)

and so on. A particular case of this function is the Gaussian moment generating function,
for which all cr>1 are set to zero. In particular, for ξ ∼ NJ (0, IJ×J),

Mξ (t) = 1 +
c1

1!

(
1

2
t
′
t

)
+
c2

1

2!

(
1

2
t
′
t

)2

+
c3

1

3!

(
1

2
t
′
t

)3

+ . . . (4.2.6)

with c1 = 1. Hence joint moments of Z and ξ are similar, except for what pertains to coeffi-
cients c2, c3, . . .. In fact, calling

hr (t) =

(
1

2
t
′
t

)r
one has 

∂r1+...+rk

∂tj1 ...∂tjk
Mξ (t) = c1

1!
∂r1+...+rk

∂tj1 ...∂tjk
h1 (t) +

c21
2!
∂r1+...+rk

∂tj1 ...∂tjk
h2 (t) + . . .

∂r1+...+rk

∂tj1 ...∂tjk
MZ (t) = m1

1!
∂r1+...+rk

∂tj1 ...∂tjk
h1 (t) + m2

2!
∂r1+...+rk

∂tj1 ...∂tjk
h2 (t) + . . .

Hence, for odd orders joint moments of both random vectors are zero, and for even orders

E (ξiξj) =
c1

m1
E (ZiZj)

E (ξiξjξkξl) =
c2

1

m2
E (ZiZjZkZl)

...

E
(
ξr1j1 . . . ξ

rk
jk

)
=

c
1
2

∑k
j=1 rj

1

m 1
2

∑k
j=1 rj

E
(
Zr1j1 . . . Z

rk
jk

)
whenever order =

∑k
i=1 ri is an even integer. Since c1 = 1, it is clear that the following

relation holds, for joint moments of even order:

m1E (ξiξj) = E (ZiZj)

m2E (ξiξjξkξl) = E (ZiZjZkZl)

...

m 1
2

∑k
j=1 rj

E
(
ξr1j1 . . . ξ

rk
jk

)
= E

(
Zr1j1 . . . Z

rk
jk

)
(4.2.7)

Moments appearing on the left hand side of equation (4.2.7) can be readily found, since they
are the moments of a multivariate Gaussian distribution with covariance matrix equal to
identity matrix IJ×J .
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Coefficientsm1 = 1,m2,m3, . . . are given in terms of c1 = 1, c2, c3, . . . (and vice versa). Hence
we have, by virtue of (4.2.4), identified requirements on all moments of (squared) generat-
ing variable R2, so that the resulting multivariate distribution X has cumulant generating
function (4.1.6). The task would be now to find a generating random variable which fulfills
these moments restrictions.

Summarizing these results: Before proceeding, useful summarizing equations of the
preceding analysis are in place. First, since the multivariate Gaussian distribution referred
to at equation 4.2.7 has covariance matrix equal to identity, one can write for any set of
components (j1, . . . , jk),

mkE
(
ξ2
j1 . . . ξ

2
jk

)
= E

(
Z2
j1 . . . Z

2
jk

)
(4.2.8)

where ξ is a J-dimensional normally distributed vector with mean vector 0 and covariance
matrix IJ×J , the identity matrix on RJ×J . Equation (4.2.4) holds in particular for vector ξ, in
which case R2 ∼ χ2

J , and

J∑
j1=1

. . .

J∑
jk=1

E
(
ξ2
j1 . . . ξ

2
jk

)
= E

((
χ2
J

)k)
=

2kΓ
(
k + J

2

)
Γ
(
J
2

)
Second and more importantly, by virtue of (4.2.8), one can re-write (4.2.4) as

E
((
R2
)k)

=

J∑
j1=1

. . .

J∑
jk=1

mkE
(
ξ2
j1 . . . ξ

2
jk

)
= mk

2kΓ
(
k + J

2

)
Γ
(
J
2

) (4.2.9)

which expresses the moments of R2 in terms of parameters mk (hence indirectly of ck) and
the dimension of the random vector X. Thus, the generating variable can be inferred, via
method of moments, for dimensions other than J , for which data is available. This is im-
portant, since the generating variableR of random vector X having an elliptical distribution
usually changes with the dimension of X. In this dissertation work, we use this relation to
infer the generating variable of a big random field (J = 300 × 300 = 90000) on the basis of
the generating variable estimated from data at J = 30 sites, in the context of a synthetic data
example. See section 6.

4.2.2. A convenient model for R2

A convenient model for R2 should:

1. Be flexible enough, since we do not want to restrict a priori the interdependence prop-
erties of our multivariate model.

2. Provide means for estimating E
((
R2
)k) easily and ideally in closed form, since mo-

ments constraints such as 4.2.9 provide means for evaluating the squared generating
variable at a different dimension, and spatial interpolation becomes possible.

In this research we use the mixture of gamma distributions introduced by Venturini et al.
(2008). The model is given by the mixture

R2 ∼ fR2 (x) =

S∑
s=1

πsfs (x | θ) (4.2.10)
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where
fs (x | θ) =

θs

Γ (s)
xs−1e−θx

The parameters to fit are the weights (π1, . . . , πS) and the rate parameter θ. As reported by
Venturini et al. (2008), this model allows much flexibility and can model heavy tails of data.
The number of components, S, can be safely given a high value (say, 200, as in the authors’
application) without incurring in any kind of "under-smoothing". The only disadvantage of
increasing S too much, might be that of computational effort or instability of the fitting al-
gorithm. As the authors report, the moments of a random variable represented by a mixture
of gammas are given by

E
((
R2
)k)

=
S∑
s=1

πs

∏k
l=1 (s+ l − 1)

θk
(4.2.11)

Equation (4.2.11) is convenient for two reasons. First, it provides a straightforward means
of connecting the parameters of the (squared) generating variable with those of the depen-
dence structure analyzed in this dissertation. For example, after estimating the parameters
of the generating variable, an estimator for each coefficient mk is given by

m̂k =
1

JkE (Z2k)

S∑
s=1

π̂s

∏k
l=1 (s+ l − 1)

θ̂k
(4.2.12)

Secondly and most importantly, for any dimension J∗ 6= J , the parameters of the squared
generating variable R2 (J∗) can be inferred by solving for θ, π1, . . . , πS the following system
of non-linear equations, in a method of moments fashion:

S∑
s=1

πs
s

θ
= m̂1E

((
χ2
J∗
)1)

S∑
s=1

πs
s (s+ 1)

θ2
= m̂2E

((
χ2
J∗
)2)

...
...

...
S∑
s=1

πs

∏S
l=1 (s+ l − 1)

θs
= m̂SE

((
χ2
J∗
)S)

S∑
s=1

πs = 1 (4.2.13)

4.2.2.1. The data for estimating fR2

We recall that

fX (x) =
√

det (Γ−1)

Gamma
(
J
2

)
fR

((
(x− µ)

′
Γ−1 (x− µ)

)1/2
)

2π
J
2 ×

(
(x− µ)

′
Γ−1 (x− µ)

)(J−1)/2
(4.2.14)
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Since random variable R is non-negative, the function R 7→ R2 is a bijection. Upon appli-
cation of the change of variables theorem, it can be expressed in terms of the density of R2,
as

fX (x) =
√

det (Γ−1)
Gamma

(
J
2

)
fR2

(
(x− µ)

′
Γ−1 (x− µ)

)
π

J
2 ×

(
(x− µ)

′
Γ−1 (x− µ)

)(J−2)/2
(4.2.15)

Hence, given a sample x1, . . . ,xN of X ∈ RJ , and given Γ and µ, parameter estimation for
fX is effected by maximizing

L (θ, π1, . . . , πS) =

N∏
i=1

fX (xi) ∝
N∏
i=1

fR2 (ti) (4.2.16)

with respect to θ and (π1, . . . , πS), where ti = (xi − µ)
′
Γ−1 (xi − µ). But given Γ and µ,

if
∏N
i=1 fX (xi) is to attain its maximum, then

∏N
i=1 fR2 (ti) must also attain its maximum.

This means that the sample data necessary for estimating θ and (π1, . . . , πS) is given by
ti = (xi − µ)

′
Γ−1 (xi − µ), for i = 1, . . . , N .

4.3. Parameter estimation

The more convenient representation of our archetypal model at section (4.2) and indeed
equation (4.2.15) provide the basis for parameter estimation of the whole model. For exam-
ple, one can straightforwardly use maximum likelihood estimation.
However, whole model estimation might miss important subject-matter characteristics re-
lated to the research questions, such as the probability of groups of components, (Xj1 , . . . , Xjk),
simultaneously trespassing a given quantile. On the other hand, models based on mean and
covariance alone, have indeed proved useful in applications. These considerations suggests
the following 2-step estimation procedure:

1. Step one: Mean-Covariance determination:

a) Fit parameters of model (4.2.15) using maximum likelihood estimation or any
other method at hand. This results in estimated values θ̂, (π̂1, . . . , π̂S), µ̂ and Γ̂.

b) Estimate the respective values m̂1, m̂2, m̂3 . . ., up to the desired joint cumulant
oder, by using equation (4.2.9). Note that, implicitly you have estimates ĉ1, ĉ2, ĉ3, . . .

via equation 3.2.8.

2. Step Two: Letting Γ̂, µ̂ and m̂1 fixed, apply some optimization algorithm onm2,m3, . . .

in order to make the expected interaction manifestations produced by f̂X as similar as
possible as those observed in data. This second step intends to capture subject-matter
specific interaction manifestations and is outlined below.

Note that by letting Γ̂, µ̂ and m̂1 fixed at step two above, the mean values and covariances
fitted at the first step are not altered. Additionally, note that by optimizing onm2,m3, . . .we
are indeed optimizing on c2, c3, . . . of the dependence structure (4.1.6).
This approach is reminiscent of the approach due to Zheng and Katz (2008) in the context
of rainfall modeling, whereby pair-wise covariances among sites data were fitted on a first
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step, and then the whole distribution was fitted in a parsimonious manner on a second
step. A compromise between overall good fit and adequate covariance modeling was thus
attained.
We assume isotropy in the random field to model, so that a covariance function Cθ (d) is an
adequate definition of pair-wise dependence, if necessary, after applying a transformation
technique. Concerning the mean of the random field, we assume that it is constantly zero, if
necessary, after de-trending by means of a deterministic model on geographic coordinates,
or other geographic variables (see, e.g. section 3.6 of Diggle and Ribeiro (2007)). This trend
can be added later on for simulation or prediction purposes.

4.3.1. First step: Mean and Covariance determination

Let (s1, . . . , sJ) denote locations at which data is available. If only one observation per site
is available, data can be represented by vector

y = (y1, . . . , yJ)

The model for this data-set is given by probability density

fX (x) =
√

det (Γ−1)
Γ
(
J
2

)
fR2

(
(x− µ)

′
Γ−1 (x− µ)

)
π

J
2 ×

(
(x− µ)

′
Γ−1 (x− µ)

)(J−2)/2
(4.3.1)

where ΓJ×J is covariance matrix determined by Γj1j2 = C% (Dist (sj1 , sj2)), and

R2 ∼ fR2 (x) =

S∑
s=1

πsfs (x | θ) (4.3.2)

with
fs (x | θ) =

θs

Γ (s)
xs−1e−θx

Maximum likelihood estimation, for example, is effected by maximizing (4.3.1) as a function
of the covariance function’s vector of parameters %, the mean vector µ (possibly constant or
a function of geographical variables), and gamma mixture parameters θ and (π1, . . . , πS).
If at each location a series of I observations are available, so that one has a data matrix

YI×J = (y1, . . . ,yI)
′

(4.3.3)

where yi = (yi1, . . . , yiJ) represents the observations at all sites for time i, with i = 1, . . . , I .
The Gaussian model for each observation is as before, but now the function to maximize is
given by

fY (Y) =
I∏
i=1

fy (yi) =

(det (Γ))−
I
2

I∏
i=1

Γ
(
J
2

)
fR2

(
(x− µ)

′
Γ−1 (x− µ)

)
π

J
2 ×

(
(x− µ)

′
Γ−1 (x− µ)

)(J−2)/2
(4.3.4)
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which upon maximization effects the estimation of the model parameters.
This latter case poses a problem, since the definition of fR2 as a mixture with S components
indicates the term

∏S
s=1 fR2 becomes unmanageable. This issue is addressed by Venturini

et al. (2008), and their solution is to use a Bayesian estimation approach. They implemented
this solution in the R package GMS, which we use for the present work. Given Γ and µ,
one can apply the method of Venturini et al. (2008) to obtain (empirical) Bayes estimates of
θ and (π1, . . . , πS). In turn, given θ and (π1, . . . , πS), one can apply numerical optimization
on 4.3.4 in order to obtain Γ and µ. One can iterate along these two steps until no signifi-
cant difference between the parameters of one iteration and the other can be observed. We
consider the above estimation method, informally, an approximation to the maximum like-
lihood method.
In case missing data is present, one can implement an approximate version of the Stochastic
EM algorithm Gilks et al. (1998); Feodor Nielsen (2000). Briefly stated, one proceeds itera-
tively imputing missing data at every iteration, and using the complete dataset to estimate
all parameters as above. This produces an approximation to the maximum likelihood esti-
mators.
Missing data can be interpreted to be the case in daily rainfall modeling, where one has
many zero values. These are then considered as censored values.
Since data represented by (4.3.3) is usually taken chronologically, one should pre-process
it by e.g. applying a time-series model to each site’s data series. This produces, ideally, a
temporally uncorrelated sample of residuals at each site. Data at (4.3.3) would be then the
residual process of each time series model, which is Spatially interdependent. Alternatively,
one may consider a Spatio-Temporal model Cressie and Wikle (2011); Le and Zidek (2006).
Many variants are possible for this step. One can have missing data for periods of time at
some sites, gauging stations providing data might have different operations times, or one
can employ a Bayesian method of parameter estimation. The reader is referred to Le and
Zidek (2006) for details on variants.
The output of this first step is a fitted model for the data at hand, and indeed estima-
tors of all parameters of the archetypal structure: Γ̂and (ĉ1, ĉ2, ĉ3 . . .), these last found via
(m̂1, m̂2, m̂3, . . .), which in turn are expressed in terms of θ̂ and (π̂1, . . . , π̂S).

4.3.2. Second step: manifestations of higher order

For this step, we begin by computing adequate sample estimates of the interactions mani-
festations of interest. These may be computed for marginal distributions of dimension not
higher than 6, for example, where one can actually estimate them with some stability.
We proceed in this section in a mere conceptual, and rather vague manner. After many
attempts, we could not develop a computationally feasible algorithm to implement these
ideas, so that further details would be superfluous: We still do not know how to implement
these ideas efficiently. For these reasons, this topic must be studied as future research.
For the sake of clearness, we assume we work with interaction among four variables at a
time. We shall also use simple estimates of the interaction manifestations, in order to avoid
unnecessary distractions.
In the present work, we are interested in three interactions manifestations listed in section



62 The Proposed Approach: Spatial Statistics

3.1, namely

pj1j2j3j4 = Pr
(
Yj1 ≤ qYj1 ,α, . . . , Yj1 ≤ qYj1 ,α

)
(4.3.5)

Hj1,...,j4 =

+∞ˆ

−∞

log (fj1,...,j4) fj1,...,j4 (4.3.6)

Sj1,...,j4 (s0) = Pr

(
4∑

k=1

Yjk ≤ s0

)
(4.3.7)

where fj1...j4 stands for the marginal density of (Yj1 , . . . , Yj4). We seek to reproduce faithfully
these manifestations with our model, or at least, to take them into account.
The distribution of the sum of components (4.3.7) can be attacked either by computing sam-
ple estimates of sums’ cumulants, and then employing (3.3.12); or directly by using (3.3.15).
We employ here the former, for simplicity. Note that for this interaction manifestation, one
can consider also higher dimensional marginals, or even all components of Y ∈ RJ .
The estimates for the interdependence parameters given above, are

p̂j1,j2,j3,j4 =
#
{

(yi,j1 , . . . , yi,j4) :yi,jk ≤ qYjk ,α, k = 1, . . . , 4
}

I
(4.3.8)

Hj1,...,j4 =
1

I

I∑
i=1

log
(
f̂ (yi,j1 , . . . , yi,j4)

)
f̂ (yi,j1 , . . . , yi,j4) (4.3.9)

κ̂r

(
4∑

k=1

Yjk

)
= κ̂r

(
4∑

k=1

Yjk

)
, r = 1, . . . , 4 (4.3.10)

Estimates (4.3.8) and (4.3.10) are just the sample estimates of the parameters. Estimate
(4.3.10) can be found by computing sample moments of random variable S =

∑4
k=1 Yjk ,

and then apply the moment to cumulant formula (3.2.8).
Concerning estimate (4.3.9), f̂j1,...,j4 is a kernel smoothing estimate of the joint density of
(Yj1 , . . . , Yj4), see Joe (1989a).
The effect of c2, c3, . . . on the joint cumulants of Y ∈ RJ was shown in section 4.1, and
the connection of joint cumulants of interdependence manifestations here considered was
shown in section 3.3.2.
Thus one can in principle fit c2, c3, . . ., so as to minimize objective function

Z (c2, c3, . . .) =

w1

∑
j1,...,j4

{
p̂j1,...j4 − Pr

(
Yj1 ≤ qYj1 ,α, . . . , Yj1 ≤ qYj1 ,α | c2, c3, . . .

)}2
+

w2

∑
j1,...,j4

{
Ĥ (fj1,...,j4)−H (fj1,...,j4 | c2, c3, . . .)

}2
+

w3

∑
j1,...,j4

4∑
r=1

{
κ̂r

(
4∑

k=1

Yjk

)
− κ

(
4∑

k=1

Yjk | c2, c3, . . .

)}2

(4.3.11)

where w1, w2, w3 are weights indicating a relative importance of the interaction manifesta-
tions, for the problem at hand.
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4.4. More flexibility: Transformations on marginals

We have introduced in section 4.1 a dependence structure that provides a probability model
which is suitable for Spatial Statistics applications. We have shown the simple structure of
its interdependence parameters (join cumulants). With this low dimensional model, inter-
dependence structure, and interdependence parameters, it is possible to consider interde-
pendencies of order greater than 2, along the lines of chapter 3.
We want now to increase the flexibility of our model by considering transformations on
its uni-variate marginal random variables. For example, we would like to deal with data
sets exhibiting skewed marginal distributions, or a specific degree of kurtosis. The model
proposed in 4.1 might not always be directly adequate for these observed characteristics.
Alternatively, one might wish to work with the copula of the multivariate distribution, and
then non-monotonic transformations on the marginal variables can modify the resulting
copula of the distribution, so as to make it more adequate for the research problem at hand.
Two cases are considered in this section: the quantile-quantile transformation, which is a
monotonically increasing1 transformation; and the polynomial transformation, which is not
necessarily a monotonic transformation.
Throughout, data at hand consists of a realized random sample of size I , represented by

YI×J = (y1, . . . ,yI)
′

(4.4.1)

with yi ∈ RJ , for i = 1, . . . , I , a row vector representing a multivariate observation. Data is
assumed to be representable by a random vector Y ∈ RJ ,

Y ∼ FY (4.4.2)

having marginal probability distributions FYj (yj), for j = 1, . . . , J .
On the other hand, a random vector possessing the archetypal dependence structure will be
identified by X ∈ RJ ,

X ∼ FX (4.4.3)

having marginal probability distributions FXj (xj), for j = 1, . . . , J .
Our aim in this section is to define transformations Tj , on each random variable Xj , such
that

Tj (Xj) ∼ FYj

where it is assumed that the copula provided by X is adequate for our modeling purposes,
that is,

(T1 (X1) , . . . , TJ (XJ)) ∼ FY (4.4.4)

for a convenient selection of the distribution parameters of FX, namely, covariance matrix Γ

and coefficients c1, c2, c3, . . ., as in (4.1.6).

1A function T : D ⊂ R → S ⊂ R is called monotonically increasing, if x < y implies that T (x) < T (y), for
every x, y ∈ D.
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4.4.1. Quantile-Quantile Transformations

4.4.1.1. One-dimensional marginals of X ∈ RJ

It is convenient, for this section, to begin with the identification of the one-dimensional
marginal distribution of our archetypal model, defined in section 4.1.
If our model is defined by a cumulant generating function, as in (4.1.6), then the cumulant
generating function of every one-dimensional marginal, j, can be found just by setting all
other arguments of KX (t) to zero, namely

KXj (tj) = log (E (exp (Xjtj))) =

log (E (exp (X1.0 + . . .+Xjtj + . . . XJ .0))) =

KX ((0, . . . , tj , . . . , 0))

Hence it is possible obtain FXj , the probability distribution function of Xj , by using (3.3.6),
the Lugganani and Rice approximation. The inverse function of FXj , that is F−1

Xj
(u), can

be found for every u ∈ (0, 1) by means of a root finding algorithm, such as the bisection
algorithm, for example.
Alternatively one can apply the techniques of section 4.2 to the specific case of J∗ = 1 and
approximate the 1-dimensional density and, through it, the distribution function of each
marginal variable Xj .

4.4.1.2. The Transformation

We assume we have at hand (at least an estimation of) marginal distribution FYj , for j =

1, . . . , J . This can be available, for example, by fitting a parametric probability distribution
to each marginal data set. For each j = 1, . . . , J , transformation Tj and its inverse T−1

j are
then given, respectively, by

Tj (Xj) : = F−1
Yj

(
FXj (Xj)

)
∼ FYj (4.4.5)

T−1
j (Yj) : = F−1

Xj

(
FYj (Yj)

)
∼ FXj (4.4.6)

The inverse is well defined, since both FXj and FYj are monotonically increasing functions.
That the distribution of the transformed variable is as stated at (4.4.5), follows from the fact
that FXj (Xj) ∼ uniform (0, 1). Then, whenever one applies the inverse of a distribution
function FYj to an uniformly distributed U , the result is a random variable distributed as
FYj (see, for example, chapter II of Devroye (1986)). The proof is similar for (4.4.6).
Since FYj (Tj (a)) = FXj (a) from definition at 4.4.5, we have that this transformation pre-
serves quantiles. If α ∈ (0, 1) is a subject-matter interesting threshold, and qj,α (Xj) is the
respective quantile for variable Xj , then

α = Pr (Xj ≤ qj,α) = FXj (qj,α) =

FYj (Tj (qj,α)) = Pr (Yj ≤ Tj (qj,α)) (4.4.7)

whereby, qj,α (Yj) = Tj (qj,α (Xj)). For ease of notation, the argument of the quantile is often
removed in this work, unless strictly necessary for preventing ambiguity. The argument of
the quantile function is understood to be the random variable preceding symbol ≤.
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The quantile preservation of transformation Tj is the reason it is called quantile-quantile
transformation. It can be used for dealing with one of the three interaction manifestations
listed in section 3.1. Namely, the k-dimensional marginal joint probabilities of the form

Pr (Xj1≤qj1,α, . . . , Xjk≤qjk,α)

where (Xj1 , . . . , Xjk) is a subset of the whole random field modeled, (X1, . . . , XJ). Values
qj1,α, . . . , qjk,α are quantiles such that Pr (Xji ≤ qji,α) = α, for 1 ≤ i ≤ k.
The fitting of a Spatial model that fits both covariance structure and this type of interdepen-
dence manifestations parameters, can be summarized as below. The method resembles the
Copula modeling for elliptical distributions (see, for example Demarta and McNeil (2005);
Fang et al. (2002)). The objective is to have a model for which rank correlations, marginal
distributions, and (multidimensional) marginal joint distributions are fitted consistent with
observed data, using relatively few parameters. For the following procedure, the mean vec-
tor is fixed to be µ = 0, since this location vector can be modeled by means of the marginal
distributions. We shall also set c1 = 1, since the marginals’ variances can also be absorved
by the plugged-in marginal distributions.

First Fit data-based marginal distributions FY1 , . . . , FYJ . Usually it will be the case that
FY1 = . . . = FYJ .

Second Set an interesting probability thresholdα, and compute, for low dimensional marginals
(e.g. of dimension 3 or 4) sample estimates

p̂j1,j2,j3 ≈ Pr (Yj1≤q̂j1,α, . . . , Yj3≤q̂j3,α) (4.4.8)

In this case, values q̂jk stand for the sample quantile of the respective marginal distribution.

Third Fit Kendall’s τj1,j2 coefficient to every pairs of marginal data, for 1 ≤ j1 < j2 ≤ J .
That is,

τj1,j2 = τ (Yj1 ,Yj2)

Since our dependence structure is a member of the elliptical distributions family, we know
(see Lindskog et al. (2003)) that this values provide us with an estimation for correlation
matrix Γ, via formula

sin
(
τj1,j2 ×

π

2

)
≈ Γj1,j2 (4.4.9)

Fourth Fit parameters c2, c3, . . . of dependence structure 4.1.6 in order to minimizeZ, where

Z =
∑

j1,j2,j3

(
p̂j1,j2,j3 − Pr

(
Xj1 ≤ T−1

j1
(q̂j1) , . . . , Xj3 ≤ T−1

j3
(q̂j3)

))2
(4.4.10)

where arguments of the inverse transformation are the sample quantiles found used
at (4.4.8). Note that the shape and characteristics imposed by c2, c3, . . . affect this ob-
jective function via the joint probability Pr (∗) and via the effect of each marginal, FXj ,
on each transformation T−1

j =F−1
Xj

(
FYj
)
.
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4.4.1.2.1. Some remarks

To reduce computational effort at (4.4.10), one might wish to work with a small subset of
triplets (j1, j2, j3), perhaps randomly selected.

In case only one observation is available at each location, the third step above cannot be
performed directly. Data in this case consists of a vector (y1, . . . , yN ) with associated location
labels (s1, . . . , sN). One possibility is to employ a covariance function, such as (2.2.8) or
(2.2.9) and to consider all marginal distributions FY1 , . . . , FYJ equal, FY1 = . . . = FYJ .
Some preliminary computations for this alternative are necessary. Namely, to compute
standardized data values, ui := FY1 (yi), for j = 1, . . . , N , on the basis of observed data
vector (y1, . . . , yN ). This results in a new data vector with same dimension as the latter,
(u1, . . . , uN )

′
, where ui ∈ [0, 1].

The alternative third step then consists of fitting, via maximum likelihood or otherwise, a
Gaussian copula model with correlation matrix prescribed by a covariance function model,
C (d) having C (0) = 1.

Third, alternative_variant Let Φ (∗) represent the standard Normal distribution function.
Compute transformed data vector

xi = Φ (ui) , i = 1, . . . , N

on the basis of observed data. Then fit the parameters of the covariance function so as
to maximize function

f (x1, . . . , xN ) = −1

2
log (det (Γ))− 1

2

N∑
i,j=1

xixjΓ
−1
ij (4.4.11)

where ΓN×N is a correlation matrix given by Γij = C (Dist (si, sj)), and Γ−1
ij stands for

entry i-j of the inverse of Γ. This corresponds to maximum likelihood estimation for a
dependence structure of the form (4.1.6), with c1 = 1 and cr>1 = 0.

Then we can proceed to the fourth step above. Note that, as we fit c2, c3, . . ., the correlations
of the underlying model are not altered, and thus the ranks correlations of data are properly
modeled, as desired.

4.4.2. Polynomial Transformations

In connection with a random vector X ∈ RJ , we have seen in section 4.4.1 the usefulness
of the quantile-quantile transformation for dealing with interdependence manifestations ex-
pressed in the form of quantiles or joint quantiles.
Unfortunately, quantile-quantile transformations do not preserve other interdependence
manifestations, such as characteristics of the sum of components and the entropy of (mul-
tivariate) marginals. See sections 3.3.2.3 and 3.3.2.2, respectively. If one could obtain the
dependence structure of the transformed random vector, then one could in principle model
the three types of interaction manifestations presented in this work, and presumably many
others. Remember that by dependence structure we mean the cumulant generating func-
tion.
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In general, it is not possible to know exactly into what the dependence structure and depen-
dence parameters are converted, when applying an arbitrary transformation. However, it is
sometimes possible to approximate them.
In appendix (Taylor_report), we present a method to do so. This method could, in principle,
be applied to any function fulfilling the assumptions given there. But there are two reasons
for focusing for now on polynomials: Firstly, the dependence structure of the transformed
vector can be found exactly, not just approximately. Secondly, they are flexible transforma-
tions, the usefulness of which has been documented (see Fleishman (1978); Headrick (2010);
Headrick and Zumbo (2008); Headrick (2002)).
Joint cumulants and cumulant generating functions of random vectors Y being the result of
applying polynomial transformations for (multivariate) marginals of a random vector X, are
topics addressed by McCullagh (1987, 1984); Barndorff-Nielsen and Cox (1990); wa Binya-
vanga (2009).

4.4.2.1. Polynomial transformations

The following method is useful rather for simulation of random vectors with prescribed
joint cumulants.
Estimation on the basis of Y is also possible, but in the case of non-monotonic transforma-
tions (a most important case), it becomes cumbersome, and would represent a large section
for a topic not dealt with in the illustrations section: If our polynomial should have k differ-
ent roots, then one has to include for each observed yi a latent indicator vector (ψ1, . . . , ψJ),
with ψj ∈ {1, . . . , k}, which determines which of the different possible pre-images xi cor-
responds to the observed yi. This latent variable should then be either integrated out, or
incorporated into an MCMC algorithm that samples from it at each iteration. Hence we
omit here the estimation part.
For each marginal random variable Xj of X ∈ RJ , we consider functions of the form

Tj (Xj)→
Rj∑
rj=1

arjX
rj
j := Yj (4.4.12)

whereRj ∈ N is a specified order, and coefficients ar1 , . . . , arRj
are to be fitted on the basis of

available data, in such a way that the resulting random vector Y = (Y1, . . . , YJ) presumably
constitutes an adequate multivariate model for data.
For the sake of simplicity, and since it is sensible to assume common marginal distributions
when dealing with many environmental variables, we assume the same order and coeffi-
cients for each transformation. Hence

R1 = . . . = RJ = R

and all marginal transformations are defined in terms of a common set of coefficients, a1, . . . , aR.
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4.4.2.2. Dependence structure of the transformed vector

Let random vector Y = (Y1, . . . , YJ) be defined by (4.4.12). Following appendix (Tay-
lor_report), its moment generating function is given by

MY (t) =

∞∑
r1+...+rJ=0

tr11 . . . trJJ
r1! . . . rJ !

(
R∑

s11,...,s
r1
1 =0

. . .

R∑
s1J ,...,s

rJ
J =0

as11 . . . as
r1
1

s1
1! . . . sr11 !

× . . .

. . .×
as1J

. . . asrJJ
s1
J ! . . . srJJ !

E

(
X

∑r1
i=1 s

i
1

1 . . . X
∑rJ

i=1 s
i
J

J

))
(4.4.13)

Whence each joint moment is given by

E (Y r1 . . . Y rJ ) =

R∑
s11,...,s

r1
1 =0

. . .

R∑
s1J ,...,s

rJ
J =0

as11 . . . as
r1
1

s1
1! . . . sr11 !

× . . .

. . .×
as1J

. . . asrJJ
s1
J ! . . . srJJ !

E

(
X

∑r1
i=1 s

i
1

1 . . . X
∑rJ

i=1 s
i
J

J

)
(4.4.14)

Finally, using the relation described by (3.2.18), one can use these joint moments to obtain
joint cumulants. In turn, with the joint cumulants at hand, κr1,...,rJ , one can write down the
dependence structure of Y in the form of its Taylor expansion, that is, as in equation (3.2.10).
Computation becomes quickly unmanageable, as J , the number of random variables for
which interdependence parameters are modeled, increases. Hence one can simulate fields
with interactions of orders 4 or 5, at the most. By means of polynomial transformations,
one can enrich considerably the spectrum of possible simulated fields characteristics. For
example, one could include diverse degrees of asymmetry into the modeling random vector
distribution by means of this technique.

Example 3. Polynomial of order three, four-wise dependence parameters sought.

For example, let X ∈ R4 and define Y ∈ R4 by,

Yj := a0 + a1Xj + a2X
2
j + a3X

3
j

for j = 1, . . . , 4.
We are interested in four-wise dependence parameters such as

cum (Yj1 , Yj2 , Yj3 , Yj4) (4.4.15)

One finds by (4.4.14) that, for example,

µ1,1,2,0,0,0 = E
(
Y1Y2Y

2
3

)
=

3∑
s1=0

3∑
s2=0

3∑
s13=0

3∑
s23=0

as1as2as13as23
s1!s2!s1

3!s2
3!
E
(
Xs1

1 X
s2
2 X

s13+s23
3

)
Then joint cumulants for Y can be found using the moments to cumulants conversion for-
mula (3.2.18),

cum (Yj1 , Yj2 , Yj3 , Yj4) =
∑
π

{(
(−1)|π|−1 (|π| − 1)!

)
J∗π

}
E (Yj1 . . . Yj4) (4.4.16)
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4.4.2.3. Fitting parameters “orthogonally”

We would like to keep for the transformed model Y the desirable property, originally in-
spired by the Edgeworth-Sargan distribution (section 2.5), of allowing the fitting of higher
order dependence parameters “orthogonally”. That is, that the fitting of order r joint cumu-
lants of Y, should not alter the value of joint cumulants of order s < r.
Covariances of the transformed model, Y, are

cum (Yj1 , Yj2) = E (Yj1Yj2)− E (Yj1)E (Yj2) =

R∑
s1=0

R∑
s2=0

as1as2
s1!s2!

E
(
Xs1
j1
Xs2
j2

)
−

(
R∑

s1=0

as1
s1!

E
(
Xs1
j1

))( R∑
s2=0

as2
s2!

E
(
Xs2
j2

))
=

R∑
s1=0

R∑
s2=0

as1as2
s1!s2!

E
(
Xs1
j1
Xs2
j2

)
−

R∑
s1=0

R∑
s2=0

as1as2
s1!s2!

E
(
Xs1
j1

)
E
(
Xs2
j2

)
=

R∑
s1=0

R∑
s2=0

as1as2
s1!s2!

{
E
(
Xs1
j1
Xs2
j2

)
− E

(
Xs1
j1

)
E
(
Xs2
j2

)}
(4.4.17)

We see that covariances of Y are affected by moments of the original variable, X, of order
up to 2R.
Since, according to section 4.1.1, one has

µj1,j2 = m1% (j1, j2)

µj1,j2,j3,j4 = m2% (j1, . . . , j4)

µj1,j2,j3,j4,j5,j6 = m3% (j1, . . . , j6)

...

and zero for odd orders. Additionally,

m1 = c1

m2 = c2 + c2
1

m3 = c3 + 3c2c1 + c3
1

m4 = c4 + 4c3c1 + 3c2
2 + 6c2c

2
1 + c4

1

...

Then, one notices that changing the value of ck/2 will affect, via mk/2, the order k joint mo-
ments of X. If k≤2R, these joint moments, in turn, will affect covariances between compo-
nents of the transformed variable, Y. But if k > 2R, then covariances of Y are not affected.
In general, one can show the following relation between moment orders k of variable X and
joint moments of transformed vector Y,

k ≤ R → E (Yj)

k ≤ 2R → E (Yj1Yj2)

k ≤ 3R → E (Yj1Yj2Yj3)

k ≤ 4R → E (Yj1 . . . Yj4)
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where symbol→ above must be read “affects”. Since the k-th joint moment of original vector
X is connected with coefficient mk/2, which in turn can be written in terms of

c1, c2, . . . , ck/2

one would have, in principle, to extend the number of these coefficients.
For example, in order to have flexibility in fitting covariances and third order joint cumu-
lants of Y, one would have to allow c1, c2, . . . , c2R in the structure of X for fitting covariance,
and then c2R+1, . . . , c3R for providing additional flexibility to third order joint cumulants. In
fact, we shall use c1, c2, . . . , c2R and coefficients a0, . . . , aR for fitting first and second order
moments.
Alternatively, one could impose that only a subset of each group of coefficients be non-zero.
For example, c1, 0, . . . , 0 for fitting covariances of Y, then c2R+1, 0 . . . , 0 for fitting third order
joint cumulants, then c3R+1, 0 . . . , 0 for fitting fourth order joint cumulants, and so on. Each
of these groups has only one non-zero coefficient, and R− 1 zeros.

4.4.3. Combinations of both types of transformations

A third variant of the use of transformations is combining both types. When dealing with
joint-quantiles related dependence manifestations, one can add more flexibility to the un-
derlying dependence structure of section 4.4.1 by allowing it to be itself the transformation
of a random vector having the archetypal dependence structure.
Namely, as in section 4.4.1, we have multivariate data to be modeled by random vector
Y ∼ FY; marginal distributions FY1 , . . . , FYJ ; an underlying random vector X ∈ RJ ; and
marginal transformations

Tj (Xj) := F−1
Yj

(
FXj (Xj)

)
such that

(TJ (XJ) , . . . , TJ (XJ)) ∼ FY

But in this section, random vector X ∈ RJ is assumed to be the result of polynomially trans-
forming random vector Z ∈ RJ , which Z possesses an archetypal dependence structure,

KZ (t) = c1
1

2
tTΓt +

1

2!
c2

[
1

2
tTΓt

]2

+
1

3!
c3

[
1

2
tTΓt

]3

+ . . .

In this way, additional flexibility is given to the quantile-quantile transformation approach.

4.5. Dealing with censored/truncated data

It is often the case that we are in need to model censored or truncated data, in Spatial Statis-
tics. Censored data arises, for example, when the precision of a gauging devise under a
certain threshold is questionable. Rainfall modeling provides a typical example of the need
to model truncated data: one can just not have “negative” rainfall.
The approach taken in the present research work, and applied in section 6, is to use MCMC
simulation to “fill in” the censored or truncated values with simulated latent variables con-
sistent with observed data. The approach is called “data augmentation” and was introduced
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by Tanner and Wong (1987); see also Gilks et al. (1998); van Dyk and Meng (2001). Two re-
sources on this approach in the context of rainfall modeling are Sanso and Guenni (2000,
1999), where an underlying multivariate Gaussian model.

4.6. Simulation

One can sample realizations from a model with dependence structure (4.1.6) by means of
Approximate Gibbs Sampler / Sequential simulation, both in the context of a random field,
and in the general context of a multivariate random variable. A second approach relies
on the "generating variable" of the model, which model is an instance of the familily of
Elliptically Contoured distributions. Both methods are briefly introduced in this section.

4.6.1. Gibbs Sampler / Sequential simulation

The objective is to sample X ∼ FX. This can be approximately attained by sampling each
component from the conditional distributions

X
(t)
j ∼ Pr

(
Xj | X(t)

1 , . . . , X
(t)
j−1, X

(t−1)
j+1 , . . . , X

(t−1)
J

)
(4.6.1)

one at a time, or block-wise. The super-index indicates the iteration number. After suffi-
ciently many iterations, realizations obtained,

(
X

(t)
1 , . . . , X

(t)
J

)
are approximately distributed

as FX. Details can be found at chapter 5 of Gilks et al. (1998).
In the context of Spatial Statistics, each component represents the value of the random field
at a specific location. Since the dimension of the fields to simulate makes specification of full
conditionals of the form (4.6.1) unfeasible, the conditioning components must be limited to
those representing a set of locations that are as close as possible to the new to-simulate
location, its so-called neighbors. Thus, a random field simulated with this method would
follow the next steps

1. Select, either randomly or in a systematic way, a new location on the plane sj at which
to sample your random quantity of interest Xj = Z (sj).

2. Identify a set of k neighbors, on which a realization of the random variable is already
available. The number of neighbors to select depends on the computational resources
at hand, but some playing around with this parameter indicates that it should not be
smaller than 5.

3. Sample Xj from its conditional distribution, given the values of its selected neighbors.

The reader is referred to chapter 3 of Diggle and Ribeiro (2007), and the references therein
for sequential simulation. The random fields presented in sections 5.1 and 5.2 of this disser-
tation were simulated using this scheme, with k = 5 and the sampling technique presented
below.
In terms of this work, the most important question is how to simulate from the conditional
distributions, given that all one has is the cumulant generating function of the full distribu-
tion. To this end we employ the formula due to Skovgaard (1987) (see also Kolassa (2006);
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Barndorff-Nielsen and Cox (1990)), which produces a precise approximation to the distribu-
tion function of conditional distributions of a multivariate random variable, when only the
cumulant generating function is available.
Namely, given x−j = (x1, . . . , xj−1, xj+1, . . . , xJ), one has

FX−j
(xj) = Pr (Xj ≤ xj | Xi = xi, i 6= j) ≈ Φ (r) + φ (r)

(
1

r
− q
)

(4.6.2)

where

r = sign
(
λ̂j

)√
2
{
λ̂Tx− λ̂T−jx−j −KX

(
λ̂
)

+KX−j

(
λ̂−j

)}
(4.6.3)

q =
1

λ̂j
det
(
K
′′
X−j

(
λ̂−j

))
det
(
K
′′
X

(
λ̂
))− 1

2 (4.6.4)

and λ̂ ∈ RJ , λ̂−j ∈ RJ−1 are the solutions to equations

∇KX

(
λ̂
)

= (x1, . . . , xJ)

∇KX−j

(
λ̂−j

)
= x−j

Additionally, λ̂j is the corresponding component of λ̂, and K
′′
X

(
λ̂
)

stands for the matrix of

second derivatives on the c.g.f. evaluated at λ̂. Finally, KX−j
is the c.g.f. of components of X

not including j.
With the aid of this approximation, one can readily sample from 4.6.1 by sampling u∗ ∼
Unif (0, 1) and then solving numerically equation

FX−j

(
x∗j
)

= u∗

for x∗j . This value x∗j constitutes an approximate simulation from the conditional distribution
in question.

4.6.2. Generating Variable method

The representation of elliptically distributed random vector X ∈ RJ given by (4.2.1) is very
useful for the sake of simulation. In order to sample from X having cumulant generating
function

KX (t) = c1
1

2
tTΓt +

1

2!
c2

[
1

2
tTΓt

]2

+
1

3!
c3

[
1

2
tTΓt

]3

+ . . . (4.6.5)

do the following:

1. Identify the connection parameters m1,m2,m3, . . . corresponding to the prescribed
c1, c2, c3, . . . by using (4.1.12).

2. Use equation (4.2.11) to identify the distribution of the squared generating variable
R2 through its moments, E

((
R2
)k). This results in parameters θ and (π1, . . . , πS) for

probability density fR2 (t) =
∑S

s=1 πs
θs

Γ(s) t
s−1 exp (−tθ).
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3. Sample R2 ∼ fR2 and set R =
√
R2. Sampling can be performed by sampling s ∈

{1, . . . , S} from a multinomial distribution with class probabilities (π1, . . . , πS), and
then using this value to sample R2 ∼ Gamma (s, θ).

4. Sample uJ−1, a random vector uniformly distributed on the unit hypersphere on RJ .
This can be attained by sampling J i.i.d. standard normal variates, ξ = (ξ1, . . . , ξJ),
and then dividing by the euclidean norm: uJ−1 := ξ/ ‖ξ‖2.

5. Your realization x of X is given by setting x := R× uJ−1 × Γ1/2. A vector of non-zero
means, µ ∈ RJ , can be added if necessary at this stage: x := µ+R× uJ−1 × Γ1/2.

One can then generate easily realizations of random fields using this approach, provided one
has matrix Γ

1
2 . As dimension J increases, this becomes unfeasible or unpractical. This is a

well-known issue in spatial statistics and several algorithms are available for producing (ap-
proximate) realizations from Gaussian random fields without having to compute Γ

1
2 , two of

which are the turning bands method (see, for example Ripley (1981)) and the Spectral Method
(see Cressie (1991)). The following section shows how we can exploit such techniques to
simulate random fields having a dependence structure prescribed by our model.

4.6.2.1. Deviance from Normality

It will be convenient, e.g. for simulating big random fields of dimension J >> 1, to be able
to express the squared generating variable R2 of our dependence model as a product of two
generating variables:

R2 = R2
∗ × χ2

J (4.6.6)

Then, simulation from random vector X ∈ RJ with location vector µ and dispersion matrix
Γ, can proceed by simulating a realization zi from a random vector Z ∼ NJ (0,Γ) and then
setting

xi := µ+
√
R2
∗ × zi (4.6.7)

As already mentioned, there are algorithms available for simulation of big Gaussian random
fields, hence we assume that the sampling of zi is not an issue.
In order to find the distribution of scaling variable R2

∗, assume the density of the squared
generating variable R2 of X ∈ RJ has been fitted as a mixture of gamma distributions,

fR2 (z) =

S∑
s=1

πs
θs

Γ (s)
zs−1e−θz

The idea is now to find a random variable R2
∗ such that R2

∗ × χ2
J = R2, where R2 is the

squared generating variable of the model. To avoid cumbersome notation we label:

R2
∗ := ξ

χ2
J := x

Now, if we had x, application of the change of variables theorem dictates that the density of
ξ is:

fξ|x (ξ) = fR2 (ξx)x
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We just have to integrate out this variable x, which is a χ2
J random variable. Specifically,

fξ (ξ) =

+∞ˆ

0

fξ|x (ξ) fx (x) dx =

+∞ˆ

0
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2 Γ
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Γ (s) Γ
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J
2

) (
θξ + 1

2

)s+J
2

ξs−1 (4.6.8)

Hence the density of ξ = R2
∗ is given by (4.6.8), using the same estimated parameters

θ, π1, . . . , πS for the R2 variable. One can then sample random vector X ∈ RJ possessing
the required dependence structure by using relation (4.6.7).
The usefulness of the formulas presented in this section will become evident in section 6,
when dealing with a big random field, simulated under the dependence structure studied
in this dissertation.
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5. Two Random fields

We shall present in this chapter the analysis of two random fields having non-zero inter-
dependence parameters (i.e. joint cumulants) of order higher than two. It will be noted
that they possess virtually the same variogram function as the Gaussian fields presented
for comparison. Still, they present non-Normal behavior with respect to other measures of
dependence.
The fields were simulated using sequential simulation with the aid of formula (4.6.2). Five
neighbors were used for each realization. For each example we generated 2650 independent,
uniformly distributed random variables, u1, u2, . . . ∼ Unif (0, 1). Using this "random path",
both the Gaussian field and the non-Gaussian fields were simulated, in order to prevent
confusion of the effect of the random path employed with the effect of the joint cumulants
used.
The 2650 random values correspond to a 50 × 53 grid on the plane. Simulation proceeded
along the rows of this grid, one row after the other (no random selection of the next location
to sample from). The values obtained for the first three rows of each field, that is, the first
150 simulated values, were discarded for analysis. The reason for this is to avoid a "one
dimensional" effect for those first simulation that had no neighbors in the Y-axis. Hence the
examples are concerned with a 50× 50 grid.

5.1. Random Fields Set 1

A powered exponential covariance model, as in (2.2.8), was used with parameter
(
θ1, θ2, σ

2
0, σ

2
1

)
=

(3, 1, 0, 1). Five random fields were simulated with the same random path, the difference
being only in the coefficients of the dependence structure (4.1.6). Meaningful names were
assigned to each field for convenience. So, field 2-D refers to a field with only c1 set to non-
zero; field 4-D refers to a field with non-zero c2, and so on. The values used for each field
are presented on table 5.1.1. Although more combinations are obviously possible, simple
configuration may help discriminate the effects of the different coefficients.
Additionally, a Gaussian random field simulated using the SVD method was also generated,
for comparisons purposes. This correspond to a theoretically correct random field, with no
artifacts produced by the sequential simulation.
Plots of the random fields appear on figures 5.1.1 through 5.1.3. These fields look very
similar.

5.1.1. Empirical Variograms

In order to analyze the dependence structure, we present a series of empirical variograms
on figure 5.1.4.
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Coeff / F. Name c1 c2 c3 c4 c5

2-D 1 0 0 0 0
4-D 1 2 0 0 0
6-D 1 0 2 0 0
8-D 1 0 0 2 0
10-D 1 0 0 0 2

Table 5.1.1.: Random fields c.g.f coefficients configurations

First, the empirical variograms of the ranks, on the upper left plot. We notice that the se-
quentially simulated fields have virtually the same empirical variogram for their ranks. This
is not the case for the SVD simulated Gaussian field. This indicates an effect of the sequen-
tial simulation method employed, and points to the desirability in the future of using an
exact simulation method for the non-Gaussian fields also, e.g. by means of the "generating
variable" method presented in section 4.6.2.
Second, on the upper right plot, the empirical variograms of the fields indicate that the
inclusion of coefficients cr>1 have altered the variance of the fields. This is most clear for
field 4-D.
Third, empirical variograms resulting from scaling all variables are presented on the lower
left plot. By scaling it is meant to subtract the mean of all values and divide by their standard
deviation. The matching is better.
Fourth, by scaling only the values of the non-Gaussian fields, the variograms of all sequen-
tially simulated random fields are virtually the same. That is to say, with respect to this
bi-variate dependence parameter, they are almost indistinguishable. For the rest of this sec-
tion, we work with the unscaled 2-D field and the scaled non-Gaussian fields.

5.1.2. Marginal Distributions

The next step consists in testing whether the marginal distributions of all fields are the
same. To explore the matter, we present quantile-quantile plots of the fields values. In figure
5.1.5 the quantile-quantile plots that compare the marginal distribution of each of the non-
Gaussian fields with that of field 2-D are shown. Apart from some deviance for the lower
quantiles, the marginal distributions look quite similar. Moreover, one might not possess
data from all the fields in practice. Q-Q plots of randomly selected samples of size n=200 are
also presented for comparison: it is difficult to state from these plots that data come from
different distributions.
Further, two tests are applied for comparing data from the simulated fields; the Anderson-
Darling test and the Kolmogorov-Smirnov tests for equality in distributions. Since using all
data might result in spurious rejection of the equality hypothesis, a Monte Carlo procedure
was followed instead:

1. Randomly select a sample of size n=200 from each field’s data.

2. Perform the Anderson-Darling and the Kolmogorov-Smirnov tests on each pair of
samples. Check whether the attained p-value for each pairwise comparison was or
not greater than 0.05, and store this information.
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Figure 5.1.1.: Perfect Gaussian Random field (left). Sequentially simulated random field
(right)

Figure 5.1.2.: Field with 4-th (left) and 6-th (right) order non-zero joint cumulants
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Figure 5.1.3.: Field with 8-th (left) and 10-th (right) order non-zero joint cumulants

3. Repeat steps one and two B = 1000 times.

4. Check the proportion of times that the equality in distribution was rejected.

The results of this experiment are presented in table 5.1.2. The theoretically correct Gaussian
field was included as reference; an independent Normally distributed random sample was
simulated each iteration for comparison. As it is seen, the proportion of times that a truly
Gaussian variable is rejected to be equal in distribution to the Gaussian field data, is for both
tests greater that the same proportion for the non-Gaussian fields data. This points to the
near-normality of the marginal distributions of all fields. Additionally, non-Gaussian fields
have virtually indistinguishable marginals.

5.1.3. Two, Three and Four dimensional Marginals

The following step is to test for the normality of samples of two, three and four dimensional
marginal distributions of vectors formed from the fields. For this part of the analysis, "inter-
esting distances" were selected by visual analysis of the empirical variograms of figure 5.1.4.
Distances used appear on table 5.1.3.
For the two dimensional marginals, pairs of values from locations lying at distance approx-
imately two (2) were formed into samples from the 2-dimensional marginals.
In order to form three dimensional samples, triangles with sides approximately the selected
interesting distances were identified on the field grid and their values taken. In this manner,
samples of the three dimensional marginal were taken for each field.
For the four-dimensional marginals, one needs six distance categories in order to create
a 4 by 4 covariance matrix. Interesting distances were again selected, but this time no
straightforward representation on the plane is available. Hence we used non-metrical multi-
dimensional scaling in order to obtain an approximate 2-dimensional representation of the
six locations. This representation serves as a "mold", as the one seen in figure 5.1.6. This
mold was then randomly rotated and its center randomly assigned to locations on the field’s
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Figure 5.1.4.: Empirical variograms from simulated fields. More convenient variant corre-
sponds to scaling fields 4-D, 6-D, 8-D and 10-D. In this way all sequentially
simulated fields possess the same empirical variogram.
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Figure 5.1.5.: Quantile-Quantile plots of values of simulated fields: all data (left), a randomly
selected sample of size n=200 (right).

Anderson-Darlin Test
Gauss 2D 4D 6D 8D 10D

Gauss 0.197 0.016 0.116 0.137 0.124 0.103
2D NA NA 0.003 0.004 0.002 0.002
4D NA NA NA 0.000 0.000 0.000
6D NA NA NA NA 0.000 0.000
8D NA NA NA NA NA 0.000
10D NA NA NA NA NA NA

Kolmogorov-Smirnov Test
Gauss 2D 4D 6D 8D 10D

Gauss 0.197 0.016 0.116 0.137 0.124 0.103
2D NA NA 0.003 0.004 0.002 0.002
4D NA NA NA 0.000 0.000 0.000
6D NA NA NA NA 0.000 0.000
8D NA NA NA NA NA 0.000
10D NA NA NA NA NA NA

Table 5.1.2.: Tests for equality in marginal distributions of the different fields analyzed. Pro-
portion of times, out of 1000, in which p-value of the test was smaller than 0.05.
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grid. Values corresponding to locations on which the "arms" of the mold fell, were formed
into samples from the 4-dimensional marginals of the field’s data.
The testing for marginal normality was performed as follows for each dimension d of the
marginal: 2, 3 and 4.

1. Select a d-dimensional sample of size n = 500 from the field.

2. Apply the multivariate Shapiro test proposed by Villasenor Alva and Estrada (2009),
which test as alternative hypothesis non-Normality. This is a test specialized for Nor-
mality testing.

3. Perform steps one and two B = 100 times, and store the p-value obtained.

Since the Shapiro Test is very sensible, even with small sample sizes, a visual exploration of
the p-values produces by the tests will provide a quick view of the situation for the different
marginals. We see the results in figures 5.1.7, 5.1.8 and 5.1.9 the histograms of the p-values
obtained for marginal distributions of dimension 2, e and 4, respectively. In general, the test
rightly rejects the hypothesis of Normality. This rejection seems more marked as dimension
of the marginal increases.

5.1.4. Interaction Manifestation: Sums of components

Sums of values corresponding to sets of locations on the field are important statistics for
hydrological applications (for example, if the field represents precipitation values).
We analyze again the behavior of sums components of 2, 3 and 4 dimensional marginals.
Data samples are collected using the same interesting distances as in last section, and with
the same procedure for the 4-dimensional marginal.
Specifically, comparison was performed for each dimension d of the marginal, as follows:

1. Collect n = 2000 samples from the d-dimensional marginal of the field into a n × d
data matrix A.

2. Set to zero all negative values in A (other positive thresholds are also interesting).
This is to keep the analogy to precipitation modeling, and to prevent canceling out by
negative values with a great absolute value.

3. Compute the sums of the components, by adding along the rows of A. This results in
a vector a of size n containing the sums of components for this sample.

4. Compute the sample 75%, 90% and 99.5% quantiles of sums in vector a, and store this
information.

Marginals Approx. distances considered

2-dim 2
3-dim 1,3,7
4-dim 1,3,5,7,9,11

Table 5.1.3.: Interesting distances used for the multivariate marginals analysis
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Figure 5.1.6.: 2-dimensional approximate representation of the six distances involved in the
4-dimensional marginal analysis

5. Repeat steps 1 through 4 a total of B = 100 times.

This procedure provides a means of comparing the sums of components, particularly at their
uppermost tails. The results are presented in figures 5.1.10, 5.1.11 and 5.1.12, for marginal
distributions of dimension 2, 3 and 4, respectively.
A pattern can be observed, regardless of marginal dimension: quantiles of the sums cor-
responding to non-Gaussian fields are in general lower than those corresponding to the
Gaussian field for the 75% and 90% quantiles. But 99.5% quantiles are appreciably higher
for sums from non-Gaussian fields.

5.1.5. Interaction manifestations: A statistic built on the marginal joint
probability distributions

To finish this comparisons session, we employ the congregation measure used by Bárdossy
and Pegram (2009) for the sake of model validation. This measure is now briefly introduced.
The object of analysis is a random vector X of dimension J , which can correspond to a
multidimensional marginal vector of a higher dimensional random vector (as in the example
below). Set a threshold quantile, say a = 90%, and define binary random variables for each
j = 1, . . . , J

Vj =

{
1, Fj (Xj) > a

0, Fj (Xj) ≤ a
(5.1.1)

This results in a discrete random vector V = (V1, . . . , VJ). The congregation measure re-
ferred to is defined to be the entropy of V,

congr (X) = −
∑

Pr (V1, . . . , VJ) log (Pr (V1, . . . , VJ)) (5.1.2)
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Figure 5.1.7.: Histograms for Multivariate Shapiro’s test for Normality applied to the 2-
dimensional marginal distributions. The test rightly rejects most of the time
the hypothesis of normality.
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Figure 5.1.8.: Histograms for Multivariate Shapiro’s test for Normality applied to the 3-
dimensional marginal distributions. The test rightly rejects most of the time
the hypothesis of normality.
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Figure 5.1.9.: Histograms for Multivariate Shapiro’s test for Normality applied to the 4-
dimensional marginal distributions. The test rightly rejects most of the time
the hypothesis of normality.
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Figure 5.1.10.: Comparison of sums of components for 2-dimensional marginals. Increase is
appreciable for sums of components of non-Gaussian fields at the uppermost
quantile.

Figure 5.1.11.: Comparison of sums of components for 3-dimensional marginals. Increase is
appreciable for sums of components of non-Gaussian fields at the uppermost
quantile.
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Figure 5.1.12.: Comparison of sums of components for 4-dimensional marginals. Increase is
appreciable for sums of components of non-Gaussian fields at the uppermost
quantile.

summed over all possible values of (V1, . . . , VJ). That is, the measure is defined as the en-
tropy of the joint distribution of the binary variables just defined. A higher value of this
measure indicates less congregation.
One characteristic of this entropy or congregation measure, is that it is not affected by mono-
tonic transformations on random variables Xj , since each one is investigated as to whether
it trespasses its own quantile.
The comparison procedure is similar to the procedure used for the sums of components, and
uses the same interesting distances:

1. Collect n = 2000 J-dimensional samples from the field. This sample is considered to
be n-realizations of X.

2. Compute the sample estimate of congr (X), and store this information.

3. Repeat steps one and two a total of B = 100 times.

The results are presented in figure 5.1.13 for marginal distributions of dimension 2, 3 and 4.
The pattern observed is: congregation is greater for data from non-Gaussian fields, regard-
less of the dimension of the marginal under analysis.

Summary

We have seen that it is possible to simulate a random field having identical 1-dimensional
marginal distribution and variogram as a Gaussian field, but with different responses in
terms of the two interdependence manifestations considered: sums of higher dimensional
marginal components, and a congregation measure based on the joint probability of the
multivariate marginals.
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Figure 5.1.13.: Comparison of congregation measure for marginals of different dimensions
and data from the different fields. From left to right results of the comparison
procedure are given for marginals of dimension 2, 3 and 4. Congregation
seems to be always greater for the non-Gaussian fields.

For the next example, only the results of the analysis are presented, unless a comment is
strictly necessary. The procedures followed for comparison are identical with those of this
section.

5.2. Random Fields Set 2

We used the same covariance model as in last section for simulation of the fields. Namely a
powered exponential model with

(
θ1, θ2, σ

2
0, σ

2
1

)
= (3, 1, 0, 1). Coefficients of the dependence

structure used for this experiment are shown in table 5.2.1.
Plots of the simulated fields, including the theoretically correct Gaussian field, are presented
in figures 5.2.1, 5.2.2 and 5.2.3.
It is found, by observation of the empirical variogrms, that if all sequentially simulated fields
are scaled, then the empirical variograms are virtually the same. The analysis proceeds with
data of all sequentially simulated fields scaled.
Quantile-Quantile plots, presented in figure 5.2.5, indicate that 1-dimensional marginal dis-
tributions of all fields are similar. Additionally, the Anderson-Darling and Kolmogorov-
Smirnov tests very seldom reject the hypothesis of equality at level α = 0.05, as shown in
table 5.2.2.

Coeff / F. Name c1 c2 c3 c4 c5

2-D 1 0 0 0 0
4-D 1 1 0 0 0
6-D 1 0 1 0 0
8-D 1 0 0 1 0
10-D 1 0 0 0 1

Table 5.2.1.: Random fields c.g.f coefficients configurations
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Figure 5.2.1.: Perfect Gaussian Random field (left). Sequentially simulated random field
(right)

Figure 5.2.2.: Field with 4-th (left) and 6-th (right) order non-zero joint cumulants
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Figure 5.2.3.: Field with 8-th (left) and 10-th (right) order non-zero joint cumulants

Anderson-Darlin Test
Gauss 2D 4D 6D 8D 10D

Gauss 0.043 0.000 0.003 0.004 0.003 0.002
2D NA NA 0.005 0.005 0.001 0.001
4D NA NA NA 0.000 0.000 0.000
6D NA NA NA NA 0.000 0.000
8D NA NA NA NA NA 0.000
10D NA NA NA NA NA NA

Kolmogorov-Smirnov Test
Gauss 2D 4D 6D 8D 10D

Gauss 0.029 0.001 0.005 0.005 0.003 0.002
2D NA NA 0.001 0.000 0.000 0.000
4D NA NA NA 0.000 0.000 0.000
6D NA NA NA NA 0.000 0.000
8D NA NA NA NA NA 0.000
10D NA NA NA NA NA NA

Table 5.2.2.: Tests for equality in marginal distributions of the different fields analyzed. Pro-
portion of times, out of 1000, in which p-value of the test was smaller than 0.05.
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Figure 5.2.4.: Empirical variograms from simulated fields. More convenient variant corre-
sponds to scaling all fields: 2-D, 4-D, 6-D, 8-D and 10-D. In this way all se-
quentially simulated fields possess the same empirical variogram.
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Figure 5.2.5.: Quantile-Quantile plots of values of simulated fields: all data (left), a randomly
selected sample of size n=200 (right).

Concerning Shapiro-type multivariate tests for Normality, the non-Gaussian simulated fields
are closer to Normality, as can be inferred from figures 5.2.6, 5.2.7 and 5.2.8. Field 10D has
two-dimensional marginals that are very similar to those of a Gaussian distribution (figure
5.2.6).
Regarding the sums of components, non-Gaussian fields present a systematic increase in the
quantiles, as compared with the Gaussian field. This is true even for field 10D, which is very
similar to a Guassian field in its 2-dimensional marginals. See figures 5.2.9, 5.2.10 and 5.2.11.
The congregation measure presents a less clear picture, with respect to this criterion the
fields simulated are not visibly different.
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Figure 5.2.6.: Histograms for Multivariate Shapiro’s test for Normality applied to the 2-
dimensional marginal distributions. The test rightly rejects most of the time
the hypothesis of normality, except for field 10D, which exhibits a similar re-
jection pattern as the 2D and the true Gaussian fields.
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Figure 5.2.7.: Histograms for Multivariate Shapiro’s test for Normality applied to the 3-
dimensional marginal distributions. The test rightly rejects most of the time
the hypothesis of normality. Random field 10D is roughly Gaussian, however.
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Figure 5.2.8.: Histograms for Multivariate Shapiro’s test for Normality applied to the 4-
dimensional marginal distributions. The test rightly rejects most of the time
the hypothesis of normality. Random field 10D is roughly Gaussian, however.
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Figure 5.2.9.: Comparison of sums of components for 2-dimensional marginals. Increase is
appreciable for sums of components of non-Gaussian fields at the uppermost
quantile.

Figure 5.2.10.: Comparison of sums of components for 4-dimensional marginals. Increase
is appreciable for sums of components of non-Gaussian fields already at the
75% quantile.
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Figure 5.2.11.: Comparison of sums of components for 3-dimensional marginals. Increase is
appreciable for sums of components of non-Gaussian fields at the uppermost
quantile.

Figure 5.2.12.: Comparison of congregation measure for marginals of different dimensions
and data from the different fields. From left to right results of the comparison
procedure are given for marginals of dimension 2, 3 and 4. Congregation
seems to be always greater for the non-Gaussian fields.





6. Inference in a quasi-real setting

Our aim is now to study the consequences of higher order interdependence in an extended
period of time, and try to recover faithfully the characteristics (as expressed in parameters)
of a random field we can observe only at a very limited number of sites. We use a total
of n = 3650 realizations of the field. The reader might think of daily rainfall modeling as
represented by the following example, where the sites correspond to gaging stations, and
the study period spans ten years.
We examine the consequences of interdependence as expressed in the following three inter-
actions manifestations:

1. The sum of positive values of the field. The mean of the field is set to zero throughout
the simulation time.

2. The total number of components of the field (i.e. the number of locations or "pixels" in
a map) above a given threshold.

3. The entropy measure used by Bárdossy and Pegram (2009), as explained in section
5.1.5, applied to triples of variables. Each triple comprises three sites forming a right-
angled triangle.

We shall see the difference between a Normal field and a field with non-zero higher order
(> 2) joint cumulants, regarding these measures. The parameters of the non-Normal random
vector have been selected to make it look very similar to a Normal one, up to six order joint
cumulants (interdependence parameters).

6.1. The simulated fields

The J-dimensional random fields simulated for this example, where J = 300×300 = 90000,
correspond to a J-dimensional vector with dependence structure

KX (t) = c1
1

2
tTΓt +

1

2!
c2

[
1

2
tTΓt

]2

+
1

3!
c3

[
1

2
tTΓt

]3

+ . . . (6.1.1)

where

c1 = 1

c2 = 0

c3 = 10

c4 = 495

A total of n = 3650 fields were simulated as follows:
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1. Simulate n = 3650 Gaussian random fields yi, i = 1, . . . , n, of size J = 300 × 300 =

90000 using a fast algorithm. In this dissertation we used the method of circulant
embedding (see Chan and Wood (1997)), as implemented in the statistical Software
R. The fields are simulated with mean 0, and using an exponential covariogram as
dependence model with nugget effect 0, variance 1 and range parameter 20.

2. Simulate n = 3650 realizations of R2
∗, a random variable such that the moments of

R2 = R2
∗ × χ2

J are given by

E
((
R2
)k)

= JkmkE
(
ξ2k
)
⇐⇒ E

((
R2
∗
)k)

=
JkmkE

(
ξ2k
)

E
((
χ2
J

)k)
where ξ is a standard Normal Random variable. We used for the specific example
below representation:

R2
∗ =

(
5∑
s=0

asξ
s

)2

with ξ ∼ N (0, 1) and coefficients given in table (6.1.1). The resulting moments corre-
spond to parameters (m1,m2,m3,m4) that, on application of relation (4.1.13) result in
the desired coefficients: c1 = 1, c2 = 0, c3 = 10 and c4 = 495.

3. Each of the n = 3650 fields xi ∈ RJ employed for this example are given by

xi =
√
R2
∗ × yi (6.1.2)

In order to analyze to what extent the differences between the Gaussian and non-Gaussian
fields are altered by the marginal distributions of X, which are slightly non-Normal (they
are the same up to the 5th cumulant, being almost indistinguishable for most Normality
tests) , we also consider the random fields obtained by applying a Quantile-Quantile trans-
formation to each of the 90000 components of X. Hence, each component of field X ∈ RJ
is exactly normally distributed with mean 0 and variance 1. As we shall see, most of the
consequences on the interaction manifestations introduced by the scaling variable R2

∗ are
not altered by this Q-Q transformation.

6.2. Analysis

In Figure (6.2.1) the simulation mechanism, together with an approximation to the density of√
R2
∗, are shown. One can see that the distribution is highly concentrated around 1. How-

ever, values such as
√
R2
∗ = 6 or

√
R2
∗ = 7 are also possible, though with relatively low

a0 a1 a2 a3 a4 a5

0.918076529 0.023806437 0.004666416 0.059499895 0.010020358 0.001326858

Table 6.1.1.: Coefficients producing R2
∗ for the fields example. Coefficients were fitted by the

method of moments.
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Figure 6.2.1.: Simulation Scheme and kernel smoothing approximation to the density of√
R2
∗
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probability. As the size of the field increases, the consequences for an interaction manifesta-
tion such as the sum of components become huge.
Each field coming from the non-Gaussian mechanism is actually a Gaussian field that has
been scaled, but the characteristics of the fields in the long run are quite different. This is
most evidently observed in the QQ-transformed fields, where the QQ transformation for
each component ("pixel" of the map) is made on the basis of all the observations for that
pixel, along the 3650 realizations. As an example, see figure (6.2.2). We see a considerable
clustering of high values.
Hence it is possible, if necessary with the aid of QQ transforms, to model mechanisms lead-
ing to such clusterings. Actually, the scaling variable represented in figure (6.2.1) might be
identifiable, in the context of rainfall modeling, with some large scale atmospheric process.
In figure (6.2.3) we can see box-plots outlining the distributions of the sums of positive
values for the fields analyzed. The effect of the scaling variable (that is, of the high order
joint cumulants) is clearly manifested on the non-Gaussian and QQ-Transformed fields. This
effect is non attributable to scaling on the 1-D marginal distributions, as indicated by the
distribution of the sums for the QQ-transformed fields; the dependence structures of the
random fields are different.
If the random fields were to represent daily rainfall for a period of 10 years, a model based
on the Gaussian dependence structure would clearly prescribe a smaller total rainfall over
large areas. An increase in the total rainfall such as the one observed in the non-Gaussian
field might, for example, be due to a large scale atmospheric process. This process would
then be modeled with the aid of

√
R2
∗.

Even more impressive is the effect on the probability of simultaneously trespassing a given
threshold, in the course of n = 3650 realizations. In the remaining plots of figure (6.2.3),
we present box-plots giving an idea of the distribution of the number of components with
values above thresholds 1.04, 1.28 and 2.5, in the period given. These thresholds correspond
to the 85%, 90% and 99.38% quantiles of a Standard Normal distribution, which is approx-
imately the distribution of the Gaussian field here simulated. Note that the divergence be-
tween the responses of the Gaussian and non-Gaussian fields grows more and more as one
moves towards the uppermost quantile of the marginal distribution.
Again, in the context of rainfall modeling, this plot gives an idea of the total area over which
one might expect intense rainfall, both under the Gaussian dependence and under the non-
Gaussian dependence assumption. A single event with 40000 locations (44% of the total
area, in this example) receiving extreme rainfall above the 99.38% historical quantile, might
cause huge, totally unexpected losses in the course of only ten years. The left plot at figure
(6.2.2) provides an idea of the kind of field producing such an extreme response.
Note that the response, regarding this interaction manifestation, of the QQ-transformed ran-
dom vector, which has Standard Normal marginals, is very similar to that of the untrans-
formed, non-Gaussian field.
One can infer that by manipulation of the 6th and 8th joint cumulants of a random vector, as
introduced via the scaling variable R2

∗, one can model important features in its dependence
structure. This was to be expected, in view of the conceptualization of joint cumulants as ex-
tensions of correlation in section 3.2. Concerning coefficients c2, c3, c4, . . . of the dependence
structure (6.1.1), one can set more coefficients to zero, not just c2 as in this example, making
the distribution look more and more like a Gaussian multivariate distribution with respect to



6.2 Analysis 105

Figure 6.2.2.: Original Gaussian and Scaled sample Fields, after QQ transformation

its low dimensional marginal distributions. However, as the dimension of the random vec-
tor under analysis increases, the closeness to normality of these low dimensional marginals
tells less and less about the interdependence among big sets of components.
Already by letting the fourth joint cumulants be zero (i.e. setting c2 = 0) the resulting vari-
able is close to Normality in the two dimensional marginals. In Figure (6.2.4), the empirical
copulas formed of data from the first three locations of the random fields are presented. On
the basis of this similarity, it is not easy foresee great dissimilarity for higher dimensional
marginals distributions.
And still, even in terms of triplets of components, the distributions present a different behav-
ior, particularly in their upper quantiles. To see this, we apply the congregation or entropy
measure due to Bárdossy and Pegram (2009) to data from triplets of locations, randomly
selected from the fields locations. Specifically, we selected right-angled triangles with two
equal catheti. Several lengths for these catheti were selected and the entropy measure ap-
plied to all data (n = 3650) of the locations on which the triangles’ vertices fell. For each
distance, we selected randomly fifty triplets. Results are expressed in the form of box-plots
of the entropies obtained, and presented in figure (6.2.5). Since a lower value of this mea-
sure indicates more association, we notice that the association is systematically higher for
the non-Gaussian random variable. This result is similar to what Bárdossy and Pegram
(2009) observed in their analysis of rainfall data.
Taking as illustration data from locations 1, 3 and 5, we see in figure (6.2.6) that the increase
in entropy (disaggregation) of the data obtained from the Gaussian field increases consider-
ably at the uppermost corner of the distribution.



106 Inference in a quasi-real setting

Figure 6.2.3.: From left to right and downwards: Box-plots of the sum of positive values and
of number of components above 1.04, 1.28 and 2.5 on each field’s realization.
Regarding the number of components (locations) above the given thresholds,
divergence between the Gaussian and non-Gaussian fields become more and
more apparent as one moves towards the uppermost part of the marginal dis-
tribution.
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Figure 6.2.4.: Empirical copulas of data from locations 1,3 and 5 from the random fields sim-
ulated.

6.3. Estimating the parameters of the field

Now we intend to reproduce the situation often found in practice, where one has data from a
set of gaging stations taking measurements of a random field (e.g. rainfall), and one attempts
to infer characteristics of the whole field. We focus on the non-Gaussian field without any
transformation. A good command of this basic model can ensure fitting with little difficulty
copula models with given marginals, as well.
For this part of the example, we selected 30 locations on the plane and took the data of the
fields corresponding to those locations as given data. Values under zero were truncated at
zero and considered to be no-rain values. These will be considered upon model fitting as
censored values, and imputed in the course of the "Stochastic EM algorithm", henceforth St-
EM (see, for example Feodor Nielsen (2000); Gilks et al. (1998)). In appe, we explain briefly
the estimation method used for this example.
The locations selected are illustrated in figure (6.3.1), where negative values have been re-
moved.
To provide an idea of the data at hand, data from five of the sites are presented in figure
(6.3.2).

Estimated parameters

One hundred and twenty (120) iterations of the St-EM algorithm were run, and the first
sixty (60) discarded. The chains can be seen in figure 6.3.3 for the mean, and the covariance
model parameters. An average of the last 60 iterations produces our estimators for these
parameters, as presented and compared with the parameters used for the simulation in
table:
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Figure 6.2.5.: Entropy congregation measure applied to data from randomly selected triplets
of locations. Box-plots are organized in terms of the size of the catheti of the
right-angled triangles constituting the triplets. Fifty triplets were selected per
distance category and their entropies computed. Blue boxes represent the re-
sults for the Gaussian field data. Selected quantile threshold was 99.5%.
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Figure 6.2.6.: Ratio of the entropy measure computed for data from Gaussian to the entropy
computed from Non-Gaussian data, at thresholds 90%, 99%, 99.5% and 99.9%.
Locations for the triplet are 1,3 and 5. The increase in considerable above the
99% quantile.
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Figure 6.3.1.: Locations with "gaging stations" are marked with an x. Negative values were
regarded as zero.
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Figure 6.3.2.: Data at five of the sites from which the field’s characteristics are to be esti-
mated.
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• Estimated mean µ̂ = 0.0036, true parameter µ = 0.

• Estimated Nugget effect ŝ0 = 0.00003, true parameter s0 = 0.

• Estimated Range parameter R̂g = 20.29, true parameter Rg = 20.

We can say that the estimation is acceptable for these parameter.
Concerning the distribution of the generating variable R2, we used a mixture of S = 100

gamma distributions. A plot of the fitted density can be seen in figure 6.3.4. We notice
that values much higher than those typical of a Chi-squared distribution with 30 degrees of
freedom (which corresponds to a 30-D Gaussian distribution) appear.
The squared "deviance from normality" or scaling variable R2

∗ was also computed, using
the techniques of section 4.6.2.1. A plot of its density and probability distribution function
can be found in figure 6.3.5. The square root of this variable will be used for simulation of
validation fields.

6.3.0.0.1. Parameters fitted to the Squared Generating Variable: The parameters es-
timated for the mixture of S = 100 Gamma distributions are given at table D.0.1 of the
appendix. Via equation (4.2.12), it is possible to find the parameters mk, k = 1, 2, 3, . . . ,K,
that connect the generating variable of the random field with the dependence structure. We
computed values up to K = 49, but results are very similar already for K = 9. The first nine
coefficients are given in table (6.3.1).
Using (4.2.5) one can also have estimates for the coefficients of the dependence structure.
These are presented in table (6.3.1) as well. The interdependence coefficients, c2, c3,c4 are
clearly under-estimated. This is not surprising, since the approximate maximum likelihood
estimation effected by the St-EM algorithm attempts to fit the whole distribution. Hence a
second step is recommendable after estimating model parameters by maximum likelihood
or a similar method.
At this second step, interaction manifestations such as those listed in section (3.1) or the ones
used in this section are quantified for the available data and incorporated into the estimation
procedure. This two step procedure was suggested in section (4.3).

6.4. Inference for the whole field

We generate now n = 3650 fields of the same dimension as in the previous section using
the “dimension adaptation” technique, explained in section 4.6.2, for the scaling variable
R2
∗. We shall then be able to simulate big Non-Gaussian fields by simulating Gaussian fields

via a fast method (e. g. turning bands), and then multiplying each of these fields times a
realization from

√
R2
∗.

The dimension adaptation method consists in:

1. Find an estimate for the squared generating variable R2 at dimension J = 300 ×
300, using relations given by (4.2.13) and estimates m̂k. Parameters estimates θ̂ and
(π̂1, . . . , π̂100) are thus found, which fulfill the moments equations prescribed for a
model with c.g.f as in (6.1.1). These estimated parameters define a (squared) generat-
ing variable suitable for the new dimension, J = 300× 300.
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Figure 6.3.3.: St-EM produced chains for the mean, Nugget and range parameters.
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Figure 6.3.4.: Probability density (left) and distribution (right) functions of the squared gen-
erating variable, as estimated from the 30 Stations’ dataset. Estimated distribu-
tion for R2 appears in red as compared in its upper quantiles with the squared
generating variables of a multivariate normal distribution (black) and that of a
mult. Student r.v. with 15 degrees of freedom (blue).

Figure 6.3.5.: Density (left) and probability distribution (right) of the squared deviance from
normality random variable R2

∗
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k m̂k ĉk ck

1 1.1068 1.1068 1
2 1.0775 -0.1475 0
3 2.7323 1.8662 10
4 9.1687 0.4248 495
5 28.8510 6.3693
6 81.5158 -34.4707
7 205.6870 -12.9141
8 464.8952 -674.6965
9 947.6988 3279.9002

Table 6.3.1.: First nine mk and ck coefficients fitted on the basis of the 30 sites data. Original
ck interdependence coefficients of the c.g.f are also presented for comparison.
These coefficients are clearly underestimated for k ≥ 2, which calls for a second
estimation step addressing specifically interdependence manifestations.

2. Apply (4.6.8) to derive scaling variable R2
∗ from θ̂ and (π̂1, . . . , π̂100) fitted on step 1.

One can simulate random fields having the desired dependence structure, by sampling a
Gaussian field with covariance matrix prescribed by the estimated covariance function pa-
rameters, Y ∈ RJ , and setting X := µ̂+R∗Y.

Squared Generating variable, R2, for the new dimension

One ideally would solve, for step 1 above, the system of non-linear equations (4.2.13) to ob-
tain unequivocal estimates θ̂ and (π̂1, . . . , π̂100). However, the huge numbers involved when
dealing with moments of very high order make the system unstable when more thanK = 50

equations are considered. Hence one must content oneself with solving the following least
squares problem for some moment order K < S:

min
(θ,π1,...,π100)

K∑
k=1

(
S∑
s=1

πs

∏k
l=1 (s+ l − 1)

θk
− JkmkE

(
Z2k

))2

subject to:

S∑
s=1

πs
s

θ
= Jm̂1E

(
Z2
)

S∑
s=1

πs
s (s+ 1)

θ2
= J2m̂2E

(
Z4
)

...
...

...
K∑
s=1

πs

∏K
l=1 (s+ l − 1)

θs
= JKm̂KE

(
Z2K

)
S∑
s=1

πs = 1 (6.4.1)



116 Inference in a quasi-real setting

where S = 100 is the number of mixture components for the squared generating variable.
We used for this example K = 49. Additionally, in order to avoid sub-optimal local minima,
the algorithm implemented performed two steps per iteration i, namely:

1. Define some initial θ(0). For example, θ(0) = 1.

2. Given θ(i), solve the optimization problem in (π1, . . . , π100) as a quadratic problem
with linear constraints. For this problem very efficient methods are available for its
solution. Set (π1, . . . , π100)(i) to the solution of this problem.

3. Given (π1, . . . , π100)(i) minimize the objective function subject to θ > 0. This is a one-
dimensional problem, and efficient algorithms are available. Set θ(i+1) to the solution
of this problem.

4. Return to step 2 until some optimality criterion is reached, such as
∣∣θ(i) − θ(i+1)

∣∣ < tol,
for a given small positive constant tol.

Estimated parameters θ̂ and (π̂1, . . . , π̂100) are given at table (6.4.1).
A plot of the estimated distribution of the squared generating variable, R2, appears in red to
the right of figure 6.4.1, where those of a Gaussian distribution, χ2

90000, and a Student with
15 degrees of freedom, 90000× F90000,15, are also presented for comparison. We see that our
estimated variable lies somewhere in between for the new dimension of the field.

Scaling variable, R2
∗, for the new dimension

The second step necessary for inference on the whole field, consists in estimating scaling
variable R2

∗ adequately for the target dimension of the field, J = 300 × 300. This was done
applying equation (4.6.8), using the parameters just estimated for R2 at J = 300× 300. The
estimated density forR2

∗ and its estimated probability distribution can be seen in figure 6.4.2.
Now it is possible to simulate big Non-Gaussian fields with characteristics inferred from the
30 stations’ data.

θ̂,π̂87 − π̂93 π̂94 − π̂100

θ̂ =0.0009605027 0.076672074
0.003262554 0.087159170
0.013749613 0.097646270
0.024236676 0.108133376
0.034723745 0.118620488
0.045210820 0.129107604
0.055697899 0.139594726
0.066184984

Table 6.4.1.: Estimated parameters for the squared generating variable, R2, of the 90000-
dimensional non-Gaussian field. Estimated weights π̂1 through π̂86 are 0.00.
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Figure 6.4.1.: Left: Probability density function of the squared generating variable estimated
for dimension J = 90000. Right: squared generating variables for a Gaussian
(black), a Student-t with 15 degrees of freedom (blue), and the fitted generating
variable (red). These variables are adapted to dimension J = 90000 of the
random field.

Figure 6.4.2.: Estimated density (left) and probability distribution (right) of the squared scal-
ing variable for dimension J = 90000
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6.4.1. (Partial) Inferential results

Parameter estimation was performed, as formerly explained, by applying an approximation
to the Maximum likelihood method. Interaction manifestations such as those illustrated
in figures 6.2.5 or 6.2.3 were not considered explicitly for estimation, which in this work
is recommended as a second estimation step. Still, the estimated generating variable has
captured some of the non-Gaussian interactions present in the dataset. In this section we
shall see the implications for the complete field (J = 300× 300).
We first analyze the distribution of the sum of positive components, and the number of
locations having values greater than thresholds a ∈ {1.04, 1.28, 2.5}.
In figure (6.4.3), from left to right and downwards, observed values of the sum of posi-
tive components, together with observed values of the number of components above the
given thresholds, are presented. This figure corresponds to figure 6.2.3. One can see that
the interaction manifestations studied in this example are only partially recovered from the
simulated fields.
The components’ sums of the non-Gaussian fields realizations have been pulled up as com-
pared to those of the Gaussian one, with an increase of 12% and 10% for the maximum
values of the non-Gaussian and QQ-transformed fields, respectively.
The observed numbers of components above the given thresholds of the non-Gaussian and
QQ-transformed fields also differ sensibly from those of the Gaussian field. For thresholds
1.04, 1.28 and 2.5, the maximum values observed are 16%, 38% and 63% higher for data
of the non-Gaussian field, and 13%, 19% and 30% for data of the QQ-transformed field,
respectively. Of course, this difference is not even remotely as big as the ones inferred from
figure 6.2.3.
Concerning the entropy criterion, the newly simulated non-Gaussian field recovers little of
the behavior present on the original fields. In figure 6.4.4, one observes box-plots of the
obtained entropy criterion applied to the same locations used in figure 6.2.5. Blue box-plots
correspond to data from the Gaussian field. The congregation measure for each distance
class is virtually the same for the Gaussian and non-Gaussian cases. This supports once
again the necessity for the consideration during estimation of this type of interdependence
manifestation.
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Figure 6.4.3.: From left to right and downwards: Box-plots of the sum of positive values and
of number of components above 1.04, 1.28 and 2.5 on each field’s realization.
Regarding the number of components (locations) above the given thresholds,
divergence between the Gaussian and non-Gaussian fields become more and
more apparent as one moves towards the uppermost part of the marginal dis-
tribution. This figure corresponds to figure (6.2.3) of the original fields.
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Figure 6.4.4.: Entropy congregation measure applied to data from the same selected triplets
of locations as in figure 6.2.5. Box-plots are organized in terms of the size of
the catheti of the right-angled triangles constituting the triplets. Blue boxes rep-
resent the results for the Gaussian field data. Selected quantile threshold was
99.5%.



7. Summary and outlook

Summary

What Bárdossy and Pegram (2009, 2012) found in the course of their research, and the illus-
trative examples presented at this dissertation, both point out that there is a need to quantify
and model explicitly interactions of more than two variables at a time. This is what we call
higher order interactions in this research work.
Consequences of higher order interactions can be huge as dimension of the field increases,
as exemplified in the example at chapter 6. Neglecting higher order interactions in modeling
can lead to important underestimation of subject-matter relevant features of the mechanism
generating the data at hand. This would have in turn implications for the predictive capacity
of the statistical model fitted, one of its most important characteristics Dawid (1984).
We have taken an initial step in the direction of addressing the issue of higher order inter-
dependence in the context of Spatial Statistics, where low dimensionality of the model, and
ease to extend the model are important requirements.
Joint cumulants were shown to be sensible building blocks for models that allow explicitly
for higher order interdependencies. Joint cumulants have a reasonable interpretation as
measures of interdependence, are natural extensions of the covariance coefficient, and one
can impose conditions on then, so as to reduce the number of parameters to estimate in the
model.
An example of a convenient interdependence structure, in the form of a cumulant generating
function, was presented in this work. This model was seen to be a reasonable extension to
the Gaussian model, as its cumulant generating function is a particular case of our model.
However, we suggest that interaction quantification must proceed on an application-specific
basis. The specific aspect of interdependence (interaction manifestation) that is relevant to
the problem at hand must be the departure point for interaction quantification. A model
can then be built, on the basis of joint cumulants, such that data simulated from such a
model produces similar interaction manifestations as the observed data. For example, a
similar joint (empirical) distribution of low dimensional marginals above a given quantile,
or a similar distribution for the sums of the vector’s components.
We saw how to connect a number of such interaction manifestations to joint cumulants, our
building blocks. Inference can in principle proceed in a method of "moments" fashion. We
could produce interesting interaction manifestations at the examples in chapters 5 and 6, by
manipulating the joint cumulants of order greater than two.
We presented a method for performing approximate Maximum Likelihood Estimation for
the model proposed. However, we are not yet able to recover the joint cumulants in such a
way, that interactions manifestations are properly reproduced (see final part of chapter 6). A
second estimation step is required in which, leaving fixed joint cumulants of order one and
two (mean and covariance), one fits higher order cumulants so that observed interaction
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manifestations are better matched by those of the fitted model.

Outlook

There is a lot of future work to perfect and extend the methodology here presented.
One immediate step is to implement the second estimation step referred to above, whereby
the interesting interaction manifestations may be explicitly taken into account on param-
eter estimation. This is very likely to enhance the power of the methodology, and make
it capable of faithfully reproducing the interesting interaction manifestations observed in
data. Predictive capacity can then be increased, but also new insight into the data generat-
ing mechanism can be aided, if one can identify model parameters as mostly responsible for
specific interaction manifestations. Eventually such parameters or sets of parameters may
receive a physical interpretation.
In order to increase the flexibility of the methodology, one may work with the copula of
the model, rather than with the model itself. The copula characteristics themselves may be
altered by means of polynomial (non-monotonic) transformations on the marginal compo-
nents. These polynomials transformations were partially studied in this dissertation. This
opens up another course of future research, in order to make the methodology more appli-
cable.
A future course of action is to apply extended versions of the methodology to the research ar-
eas in which the issue of higher order interdependence was made clear. Namely, Downscal-
ing and Daily precipitation modeling. The question whether the method is able to reproduce
conveniently or not the application-specific interaction manifestations, will be elucidated by
applying it to real world problems. Our opinion is that the method has a lot of potential to
recover the relevant interaction characteristics and hence to provide better forecasts of the
variables analyzed (e.g. rainfall). This opinion is based on the illustrations presented in this
dissertation.
Additional research areas, in which considering higher order interactions can result in sub-
stantial model improvement are: Time Series Analysis, where diagnostics of a good model
could go beyond verifying lack of temporal autocorrelation of the residual process (linear
modeling) or some function of it (e.g. ARCH modeling). Empirical finance and economic
analysis, where our archetypal model can enlarge the spectrum of copulas at hand for joint
variable modeling (cf. Patton (2012)), and the consequences of dependence beyond correla-
tion can be better isolated.
Finally, the methodology provides the possibility of connecting joint cumulants of order
≥ 2 straightforwardly to summary interdependence statistics, such as addition of the ran-
dom vector’s components. Hence we conjecture that our methodology has a role to play
in the ongoing search for statistics that can better explain (re-)insurance losses. Recent re-
search due to Kousky and R.M. (2011) indicates that micro-correlations combined with tail
dependence can produce (in terms of current models) unexpected huge losses, provided
one aggregates sufficiently many loss-cases. This stands in direct connection with what we
observed for the example in chapter 6. More research in this connection is desirable.



A. Joint cumulants derivation

Our object of study is the cumulant generating function of a random variable X ∈ RJ . We
shall be interested in joint cumulants such as

cum (Xj1 , . . . , Xjr) (A.0.1)

where some, or all, of the indexes can be repeated. Hence it is convenient to refer to a
random vector X∗ ∈ RJ∗ having the components of X, even repeated, and then find the
joint cumulants that appear with degree at most one, of this “new” random vector. Thus we
can, without loss of generality, focus on finding the joint cumulants with degree not greater
than one, given by

∂r

∂tjr . . . ∂tj1
KX∗ (t) |t=0:= cum (Xj1 , . . . , Xjr) (A.0.2)

where no tj , for j ∈ {j1, . . . , jr}, is repeated.
For example, when computing the variance of a component, Xj , of X, one would rather
compute the covariance of vector X∗ = (Xj , Xj), namely κ11 (X∗).
The archetypal dependence structure advocated for in this work is given by

KX∗ (t) = c1
1

2
tTΓt +

1

2!
c2

[
1

2
tTΓt

]2

+
1

3!
c3

[
1

2
tTΓt

]3

+ . . . (A.0.3)

for some coefficients c1, c2, c3, . . . and covariance matrix ΓJ∗×J∗ , and t ∈ RJ∗ .
By expansion, the above expression can be written as

KX∗ (t) =
c1

1!

1

2

J∑
j1,j2=1

tj1tj2Γj1j2 +
c2

2!

1

22

J∑
j1,...,j4=1

tj1 . . . tj4Γj1j2Γj3j4+

c3

3!

1

23

J∑
j1,...,j6=1

tj1 . . . tj6Γj1j2Γj3j4Γj5j6 + . . . (A.0.4)

For each coefficient c r
2
, for r even, there appears a sum of the form

c r
2
r
2 !

1

2
r
2

J∑
j1=1

. . .

J∑
j2r=1

tj1 . . . tjrΓj1j2 . . .Γjr−1jr (A.0.5)

This is the only block-summand of (A.0.4) that does not vanish upon differentiation with
respect to each variable and equation to zero, as in (A.0.2). Other blocks will vanish either
upon differentiation with respect to a variable that does not appear in them, or upon equa-
tion to zero, since such blocks become a sum of zeroes. So, it suffices to focus on this block,
to differentiate it and equate it with zero.
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Let each member of the (A.0.5) be labeled

sj1...,jr = tj1 . . . tjrΓj1j2 . . .Γjr−1jr

then, we have stated that,

∂r

∂tjr . . . ∂tj1
KX∗ (t) |t=0=

c r
2
r
2 !

1

2
r
2

J∑
j1=1

. . .
J∑

j2r=1

∂r

∂tjr . . . ∂tj1
sj1,...,jr (A.0.6)

Partial differentiation of sj1,...,jr is readily found to be

∂r

∂tjr . . . ∂tj1
sj1,...,jr = Γj1j2 . . .Γjr−1jr (A.0.7)

Sub-indexes appearing in the factors, Γj1j2 , Γj3j4 , . . . constitute a partition of size r
2 of the set

A = {j1, j2, . . . , jr}. That is, the union of the r
2 non-overlapping sets

{j1, j2} , {j3, j4} , . . . , {jr−1, jr}

formed with elements of set A = {j1, j2, . . . , jr}, is equal to that set:

{j1, j2} ∪ {j3, j4} ∪ . . . ∪ {jr−1, jr} = A

Since the sum at (A.0.6) runs over all indexes in A, the sum returning the joint cumulant in
question comprises all partitions of size two ofA. How many different partitions of size two
can be obtained for A, by forming sets out of different combinations of indexes? In general,
a set with n elements, n even, can be seen to have

1× 3× . . .× (n− 1)

such partitions.
We have shown that joint cumulants of the archetypal dependence structure are given by

cum (Xj1 , . . . , Xjr) =
c r
2
r
2 !

1

2
r
2

J∑
j1,...,jr=1

Γj1j2 . . .Γjr−1jr (A.0.8)



B. Joint cumulants of transformed vectors

Let X ∈ RJ have cumulant generating function as in (A.0.3). We are interested in joint
cumulants and cumulant generating function of random vector Y ∈ RJ , obtained by

Yj = Tj (Xj) (B.0.1)

for some function Tj , and j = 1, . . . , J .
Our strategy is to find the joint moments of Y ∈ RJ so constructed, and then use moment
to cumulants formula (3.2.18) to get the joint cumulants.

One dimensional case

The technique employed here is usually called the “delta method” Casella and Berger (2001);
Hurt (1976); Oehlert (1992). For the sake of clarity, let us begin with X ∈ R and Y = T (X).
Having ideas so illustrated will help to better follow the notationally cumbersome multi-
variate case.
Assume that T (∗) has a valid Taylor expansion around a = µX

T (x) = T (a) +
1

1!
T
′
(a)× (x− a) +

1

2!
T
′′

(a)× (x− a)2 +

+
1

3!
T (3) (a)× (x− a)3 + . . . (B.0.2)

Then, by using the linearity property of the expected value, one has,

E (T (X)) = T (µX) +
1

1!
T
′
(µX)× E (X − µX) +

1
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T
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[
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1

3!
T (3) (µX)× E

[
(X − µX)3

]
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T
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(µX)× σ2
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1
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T (3) (µX)× µ̃3 + . . . (B.0.3)

where µ̃3 is the third moment of X around its mean. We consider, with no loss of generality,
that µX = 0. Then the general expression is

E (T (X)) = E

( ∞∑
r=0

T (r) (0)

r!
Xr

)
=

∞∑
r=0

T (r) (0)

r!
µr (B.0.4)

where µr = E (Xr).
Thus, the expected value of a function of a random variable can be approximated in terms of
the moments around the mean of the original random variable. In the literature, the series
is taken up to the second term.
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In order to find the moment generating function of Y ,

MY (t) = E (exp (tY )) = E
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one can apply the delta method to each summand of (B.0.5), namely, to each factor E (Y s),
s = 1, 2, . . ., up to a practically useful order r.
Then one has for each factor E (Y s),
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In practice, one truncates the summations at some useful order R, and so we can express
(B.0.5) as

MY (t) = 1 +
t
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where evaluation at zero of T (r) has been omitted to simplify notation. In this way, we
can express the moments and the moment generating function of transformed variable Y
in terms moments of X . To find cumulants of Y , one can use a moments to cumulants
inversion formula, such as explained in section 3.2.1.

Multidimensional case

Let Y ∈ RJ be defined in terms of another random vector, as in (B.0.1). Its moment generat-
ing function is

MY (t) =
∞∑
s1=0

. . .
∞∑

sJ=0

ts11 . . . tsJJ
s1! . . . sJ !

ms1...sJ (B.0.8)

where
ms1...sJ = E

(
Y s1

1 × . . .× Y
sJ
J

)
(B.0.9)

Joint moments of Y ∈ RJ of the form (B.0.9) are now the object of analysis. We set R as
truncation order for the Taylor expansion of each function Tj . One has, in analogy to the
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one-dimensional case,
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Each exponientiated term will be conveniently expanded as illustrated below for first com-
ponent,
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which can be written
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So, with the aid of equation (B.0.12) one can find both the joint moments and the moment
generating function of random vectorY ∈ RJ in terms of the moments of the original vector
X ∈ RJ . Joint cumulants, and cumulant generating function of Y can then be obtained by
moments to cumulants formula (3.2.18).

Conditions on Tj

We deal now briefly with conditions that function Tj (∗), for j = 1, . . . , J , has to fulfil in order
to have a valid Taylor expansion, as in (B.0.2). This is a well studied topic in mathematical
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analysis. More details, and proofs of the statements here presented, can be found on chapter
9 of Apostol (1974).
For the sake of this research, we assume that Tj ∈ C∞ on interval [−b, b], where b ∈ R will
be assumed to be as big as practically necessary.

Derivatives of polynomial growth If there exists a positive constantM , such that | T (n)
j (xj) |≤

Mn, for all n ∈ N, then the Taylor series can be shown to converge to function Tj (∗).
Compare this with Oehlert (1992).

Monotonically increasing transformations In the case Tj is a monotonically increasing
transformation, then the Taylor series also converges by virtue of the Bernstein theo-
rem for Taylor series.

Finally, in the useful case, explored in this work,

Tj (xj) =
R∑
r=0

arx
r
j

the Taylor expansion is in fact function Tj , if the truncation order is set to R, or grater.



C. Outline of Estimation Procedure at
section 6.3

We present now an outline of the estimation procedure used at section 6.3.
Data consists of a matrix X ∈ RI×J , where I represents the number of realizations of the
field, and J the dimension of the field. Each row Xi represents then a field a can be written

Xi =
(
Xobs

i ,XNA
i

)
(C.0.1)

where Xobs
i and XNA

i represent the observed and unobserved (censored) part of the field.
As the censored part we take all components having negative values. These values will be
imputed in the course of the Stochastic EM algorithm outlined below.
If we had no censored data, each row of X would have likelihood

LXi
(Θ) =

√
det (Γ−1)

Gamma
(
J
2

)
fR2

(
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′
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)
π
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)(J−2)/2
(C.0.2)

and the likelihood of the model would be

LX (Θ) =
I∏
i=1

√
det (Γ−1)
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(
J
2

)
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′
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)(J−2)/2
(C.0.3)

where µ ∈ RJ is a vector of means, ΓJ×J is a positive definite correlation matrix (defined in
terms of a covariance function), and fR2 is the density of the squared generating variable of
X. All parameters are considered in the parameter vector Θ.
The density of R2 is given by the mixture

fR2 (x) =
S∑
s=1

πs
θjxj−1e−xθ

Gamma (j)
(C.0.4)

We can maximize LX (Θ) as follows:

1. Assign some initial negative values to the censored values at X, and to parameters θ
and (π1, . . . , πS) of fR2 .

2. Given the available X, θ and (π1, . . . , πS), maximize LX (Θ) as a function of µ and
correlation matrix Γ. Since for Γ we are using a covariance model with σ2 := 1, opti-
mization will comprise the parameters of such covariance model: nuggets effect, range
parameter, etc.
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3. Given the available values for X, µ and correlation matrix Γ, maximize LX (Θ) as a
function of θ and (π1, . . . , πS). For this end, we use the Bayes estimate of Venturini
et al. (2008), giving a total weight to the prior distribution of 20%. We simulate 500
iterations of the MCMC algorithm as implemented by the authors for the R statistical
software, and use the mean of the last 400 iterations as estimator, for each parameter.

4. Given the available values for µ, Γ, θ and (π1, . . . , πS), run 100 iterations of the Metropolis-
Hastings algorithm in order to sample each XNA

i . The vector XNA
i takes here the place

of the unknown parameters to sample from in an MCMC algorithm. The "density" of
which XNA

i is the parameter is given by LXi
. We used for this application a Normal

transition kernel with standard deviation 0.5.

5. Return to item 2.

As explained in the text, we run 120 iteration of this algorithm for parameter estimation at
section 6.3.
Steps 2 and 3 represent an approximation to the maximization step of the stochastic EM
algorithm. Step 4 is an approximation to the simulation step.
Hence the above algorithm is an approximation to the well-known Stochastic Expectation
Maximization algorithm. At each iteration a new value for each parameter is obtained, but
after some iterations these parameters stabilize each around a mean value. Such mean value
is close to the maximum likelihood estimator.



D. Parameters fitted

The parameters of the fitted squared generating variable for the 30-dimensional data set of
section 6 are given below.
The estimated scale parameter is θ̂ = 0.1001. The estimated weights for the mixture are
shown in table (D.0.1).
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π1 − π25 π26 − π50 π51 − π75 π76 − π100

0.0102839943275482 6.4481467940787e-07 4.25248158706497e-06 9.2449300955788e-07

0.0194490400357542 8.99802080083257e-06 6.93153347633369e-05 9.48032987468127e-06

0.932763676114771 2.44297216708648e-05 2.46362171317745e-06 7.24961905082507e-07

0.0235093688707954 3.69539031868027e-05 3.4419397069178e-05 1.75589427501765e-06

0.00260751029388689 1.17208659431384e-05 3.21018232687351e-06 3.63718280516155e-06

0.000639273897128121 1.62040701813094e-06 1.03605807541582e-05 4.0838859054133e-06

0.000623981538329266 4.88543962800929e-06 1.33457899271894e-05 5.26231404637288e-06

9.86118056206257e-05 2.31109821479957e-06 4.43100804553691e-06 9.8716770049286e-06

5.19981182935072e-05 2.28990253896776e-06 1.75114481178519e-05 7.67959883100292e-06

2.16309695383026e-05 2.01547567163614e-06 8.16646486322687e-07 2.43599672513347e-06

3.19858463128171e-05 8.19651986368629e-07 2.43161303910772e-06 5.50503936874e-06

1.45261959615697e-05 3.9617751617422e-06 2.4786914449827e-06 1.43167643093757e-05

1.64103157085842e-05 5.27226668244265e-06 1.53768902610807e-05 2.53889853278942e-06

2.7092981227538e-05 4.93257685427866e-07 5.82088224063488e-06 5.20528055986649e-06

1.69635677596202e-05 2.80721785583637e-05 1.54985060460838e-06 2.17271609096933e-06

3.01403598010169e-06 7.52259418256762e-06 2.07247067963341e-06 3.80223511506013e-06

0.00274416870585206 2.1629007404713e-06 9.57845335436306e-07 5.50298810152373e-05

1.6515232058326e-05 0.00422370145635887 2.42803353978282e-06 3.38023758549003e-07

3.73285129947467e-06 9.02322580558261e-05 4.27195604921782e-06 3.02559221589016e-06

3.45703680969391e-06 3.95578223857611e-06 2.28222858308876e-06 8.75052068116695e-05

3.25414341475162e-05 4.4198280079391e-05 1.07792266856996e-06 5.64570039945599e-05

0.000130413762878289 0.000109373309893208 1.93668978119392e-06 1.95835208627243e-06

0.00122196647479606 0.000188241570657547 7.77133862265519e-07 0.000100843042477168

2.37386248440859e-05 3.6621641606569e-05 1.62941240328692e-06 5.11156959231813e-05

6.66869935770567e-06 1.78313484952466e-06 4.40808262633827e-07 0.000174107569063703

Table D.0.1.: Estimated weights for Gamma mixture representing squared generating vari-
able of 30-D model.
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