
Multi-Field Modelling and Simulation

of the Human Hip Joint

Von der Fakultät Bau- und Umweltingenieurwissenschaften

der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Abhandlung

Vorgelegt von

DDipl.-Ing. Joffrey Mabuma

aus

Lille, Frankreich

Hauptberichter: Prof. Dr.-Ing. Wolfgang Ehlers

1. Mitberichter: Prof. Dr.-Ing. Bernd Markert

2. Mitberichter: Prof. Dr.-Ing. Udo Nackenhorst

Tag der mündlichen Prüfung: 31. Juli 2014
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Deutschsprachige Zusammenfassung

Motivation

Die langsame Selbstheilungs- und Regenerationsfähigkeit des Knorpels ist ein aktuelles
Problem in der Biomechanik. Grund dafür ist, dass Knorpelgewebe sehr anfällig gegen
Degenerierung ist, was zu starken Schmerzen und Arbeitsunfähigkeit bei Menschen mitt-
leren und höheren Alters führt. Insbesondere ist die Osteoarthrose (OA) eine verbreitete
Form der Knorpeldegenerierung, an der weltweit etwa 630 Millionen Menschen leiden, was
15% der gesamten Weltbevölkerung entspricht.

Das Robert-Koch-Institut für Gesundheit berichtet, dass in Deutschland über 1,6% der
unter dreißigjährigen Menschen Symptome der OA aufweisen. Bis zum 50. Lebensjahr er-
reicht die Prävalenz von OA 14,9% und nach dem 60. Lebensjahr ist ein Drittel der weibli-
chen Bevölkerung und ein Viertel der männlichen Bevölkerung davon betroffen. Außerdem
sind die eingetragenen OA-Fälle zwischen 2003 und 2010 von 22,6% auf 27,1% bei Frauen
und von 15,5% auf 17,9% bei Männern gestiegen. Dieser deutliche Anstieg der OA-Fälle ist
eng mit der Kostenerhöhung des Gesundheitssystems verbunden. Im Jahr 2004 belegten
Krankheiten des Muskelknochensystems den dritten Platz in Bezug auf die verursachten
Kosten von 24,46Milliarden Euro nach den Herz-Kreislauf-Erkrankungen und Verdau-
ungsstörungen. Von den Kosten der Muskelknochensystem-Erkrankungen beziehen sich
6,77Milliarden Euro auf die OA. Außerdem lassen sich 39% der Arbeitsunfähigkeitsfälle
wegen OA im Jahr 2012 auf OA im Hüftgelenk zurückführen.

Eines der Ziele dieser Arbeit besteht darin, dem Arzt eine neuartige Möglichkeit zu bie-
ten, die Diagnose zu sichern. Zu diesem Zweck wurde ein numerisches Werkzeug ent-
wickelt, um eine korrekte Darstellung des OA-Vorkommens und den Einfluss auf die
Hüftgelenkanatomie zu gewährleisten. Dies setzt eine geometrisch und konstitutiv hoch-
komplexe Modellierung voraus, um die In-vivo-Eigenschaften, die entsprechenden Rand-
bedingungen sowie die Beschreibung des anisotropen und heterogenen hydratisierten Weich-
gewebes darstellen zu können. Hierzu wird ein thermodynamisch konsistentes Modell im
Rahmen der Theorie Poröser Medien (TPM) vorgestellt und für den speziellen Fall eines
Knorpelgewebes angepasst.

Dies führt zum zweiten Ziel der Arbeit, der Ausarbeitung einer konsistenten Kalibrie-
rungsstrategie für das komplexe Rechenmodell. Im Rahmen der vorgestellten Kalibrie-
rungsmethode werden wichtige Fragen über die Parameterindentifizierungstechniken und
die Sensitivität des erhaltenen Satzes von Materialparametern angesprochen. Danach liegt
der Fokus auf der Berücksichtigung von realen Randbedingungen für die Knorpelober-
fläche des Femurkopfes. In diesem Zusammenhang werden die Kontaktspannungen an der
Oberfläche untersucht, um den Einfluss der OA während normaler und pathologischer
Ganganalysen auszuwerten.

V
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Zielsetzung und Vorgehensweise

Modellierung des Knorpelgewebes

Seit langer Zeit interessieren sich die Wissenschaftler für die experimentelle Erforschung
(Benninghoff [22], Maroudas [178]) und die Modellierung von Knorpel. Typischerweise
sind Einzelphasenmodelle (Hayes et al. [109]) für die Modellierung des Knorpelgewe-
bes verwendet worden. Diese Modellierungsart sorgt für eine starke Vereinfachung der
Knorpelstruktur und seiner Eigenschaften. Der Fokus dieser Arbeit liegt in den Mehrpha-
senmodellen, welche immer mehr Popularität gewinnen. Im Allgemeinen basieren diese
Modelle auf der Mischungstheorie (Lai et al. [152]) oder auf einer verfeinerten Versi-
on, der Theorie der Porösen Medien (TPM) (de Boer [30, 31], Bowen [34, 35], Ehlers
[68-72]). Insbesondere schlagen Lai et al. [152] ein erstes Dreiphasenmodell vor, in dem
Eigenschaften wie elektro-chemische Effekte schon berücksichtigt werden. Dieses Modell
beruht auf einer getrennten Beschreibung der Festkörper- und der Flüssigkeitsphase, die
anhand der Elektroneutralitätsbedingung vereinfacht wird. Weitere Dreiphasenmodelle
sind aus dieser Darstellung (Frijns et al. [92], Acartürk et al. [3]) entstanden. Durch die
Lanirsche Annahme (Lanir [154]) werden weitere Modellreduzierungen möglich, zum Bei-
spiel Zweiphasenmodelle, die als weniger rechenintensiv gelten (Mow et al. [190], Huang
et al. [124], Wieners et al. [253], Julkunen et al. [132], Karajan et al. [139]). Diese Modelle
sind auch in Stande, osmotische Effekte zu beschreiben, die Quell- und Schrumpfprozesse
hervorrufen. Zweiphasenmodelle werden auch intensiv verwendet, um Kriech- und Rela-
xationsverhalten im Knorpel zu simulieren. Insbesondere werden Modelle, die in der Lage
sind, Kriechphänomene zu beschreiben, als poroviskoelastische Modelle (Ehlers & Markert
[75], Julkunen et al. [133], Markert [174], Suh & Bai [239]) durch Mak [169] eingeführt.

Die Modelle von Li et al. [158], Wieners et al. [253] und Julkunen et al. [132] erweitern
noch die numerische Darstellung von Knorpelgeweben durch das Einbeziehen von He-
terogenitätseigenschaften. Basierend auf der TPM erstellen Ehlers et al. [73, 76–78] ein
thermodynamisch konsistentes Modell für die menschliche Bandscheibe, das größenteils
die oben genannten Eigenschaften berücksichtigt. Zur gleichen Zeit entwickelten die For-
schungsgruppen von Julkunen et al. [133] und Lilledahl et al. [162] unterschiedliche Knor-
pelmodelle. In Lilledahl et al. [162] wurden wichtige Knorpeleigenschaften wie Kolla-
genfaseranordnung, ortsabhängige Heterogenitäten und anisotrope Permeabilität genau
ermittelt.

Parameteridentifizierung

Im Wandel der Zeiten sind Materialmodelle eindeutig komplexer geworden. Eine ho-
he Modellkomplexität sorgt zwar für eine bessere Materialbeschreibung, hat aber auch
Nachteile. Die Rechenzeit kann aufgrund des umfangreichen experimentellen Datensat-
zes für die Identifizierung problematisch sein. Eine weitere Überlegung bezieht sich auf
die Anwendbarkeit solcher komplexen Modelle. Was ist die optimale Modellkomplexität?
Welche gemessenen Effekte müssen untersucht werden? Welche Parameter sind nicht rele-
vant und gehören somit nicht zum reduzierten Modell? Basierend auf der Nichtlinearität
des Problems und der Anforderung eines Anfangsparametersatzes werden unterschied-
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liche Methoden angewandt, um diese Fragen zu beantworten. Im Rahmen dieser Arbeit
wird eine gradienten-freie Optimierungstechnik basierend auf der COBYLA Trust-region-
Methode von Powell [210] verwendet. Diese Methode beruht auf der Konstruktion eines
quadratischen Modells für den Parameterraum anhand eines ausgesuchten Radius’ (die
Trust-Region). Diese Region breitet sich aus oder schrumpft schrittweise, bis der Radius
einen vorgegebenen Toleranzwert erreicht hat. Diese Technik bietet Effizienz bezogen auf
die Rechenzeit und die Funktionsevaluierung und ist flexibel genug, um lokale Minimal-
werte zu überwinden. Weitere Optimierungsmethoden sind ausführlich in den Arbeiten
von Brent [38], Dennis & Torczon [55], Johnson & Faunt [130], Markert [172] oder Nocedal
& Wright [204] erläutert.

Sensitivitätsstudie

Nach einer erfolgreichen Indentifizierung der Modellparameter muss untersucht werden,
welche dieser Parameter relevant sind und welche aus dem Modell entfernt werden können.
Die Frage über eine mögliche Korrelation zwischen Parametern soll ebenfalls gestellt wer-
den. Diesbezüglich werden Sensitivitätsstudien durchgeführt. In diesem Zusammenhang
gibt es die sogenannte subjektive Analyse (Downing et al. [57]) als einfachste und in-
tuitivste Variante der Sensitivitätsanalyse. Basierend auf dem Experiment werden die
Parameter nicht berücksichtigt, die a priori am wenigsten Einfluss auf die Modellant-
wort haben. Diese qualitative Methode ist anwendbar, um die Anzahl der Parameter in
umfangreichen Modellen zu erniedrigen. In dieser Arbeit wird der Fokus auf eine lokale
Sensitivitätsstudie gelegt (Gardner et al. [94]). Insbesondere wird jeder einzelne Parameter
über die Zeit variiert, während die anderen festgehalten werden.

Messung und Berechnung der Kontaktspannungen im Hüftgelenk im Bezug

auf die OA

Der Zweck einer Modellkalibrierung liegt üblicherweise in einer späteren Modellanwen-
dung. Hier richtet sich der Fokus auf numerische Untersuchungen des gesunden und des
degenerierten Hüftgelenks. Die Mechanismen, die für die Knorpeldegenierung verantwort-
lich sind, sind noch teilweise unbekannt. Dennoch erhöhen hohe lokale Kontaktspannungen
das Risiko einer möglichen Entwicklung von OA (Mavcic et al. [184], Maxian et al. [185]).
Darum ist eine Berechnung dieser Spannungen klinisch relevant, um sich präoperative
Konzepte ausdenken und die Effizienz der eingesetzten chirurgischen Behandlungen aus-
werten zu können. Allerdings ist eine direkte Messung der In-vivo-Kontaktspannungen
technisch aufwendig. Eine Alternative dazu stellt die Modellbildung dar. In dieser Arbeit
werden die Kontaktspannungen im Hüftgelenk anhand von Finite-Elemente-Analysen un-
tersucht.
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Gliederung der Arbeit

Eine ausführliche Einführung ist in Kapitel 1 enthalten mit dem aktuellen Stand der
Forschung und den Zielen der vorgestellten Arbeit sowie den angewandten Methoden.

In Kapitel 2 werden die Grundlagen der TPM und der Mischungskinematik eingeführt
mit Fokus auf die zweiphasige Modellierung weicher, biologischer Gewebe. In diesem Zu-
sammenhang werden Bilanzgleichungen anhand bestimmter Annahmen und die Konsti-
tutivgleichungen aufgestellt. Nach einer kurzen Beschreibung bekannter Eigenschaften,
wie der Poroviskoelastizität und der osmotischen Effekte, richtet sich der Fokus auf die
Erläuterung eines komplexen Filtergesetzes und der Faser-Matrix-Schubinteraktion.

Kapitel 3 beschäftigt sich mit den für die Implementierung benötigten numerischen Tech-
niken. Nach der Herleitung der schwachen Formulierung findet eine konsistente örtliche
und zeitliche Diskretisierung statt.

Kapitel 4 konzentriert sich auf die Modellverfeinerung in Bezug auf eine präzise Knorpel-
beschreibung. Diesbezüglich werden zusätzliche Merkmale des Knorpels vorgestellt und
nach ihrer Relevanz für die Modellierung untersucht. Hierbei werden zentrale Begriffe der
Sensitivitätsanalyse und der Parameteridentifikation implizit eingeführt. Dies geschieht
mithilfe von kleinen numerischen Beispielen bezogen auf die anisotrope Viskoelastizität
und die Faser-Matrix-Interaktion.

In Kapitel 5 wird eine Kalibrierungsstrategie für das komplexe Knorpelmodell aufge-
stellt, nachdem theoretische Grundlagen über die Parameteridentifizierung und die Sen-
sitivitätsanalyse erläutert wurden. Danach wird die Kalibrierungsstrategie bezüglich Ein-
drucksversuche und richtungsabhängiger Schubversuche der Forschungsgruppe von PD
Hurschler (Medizinische Hochschule Hannover) verwendet.

Relevante Anwendungen werden in Kapitel 6 ausführlich untersucht. In diesem Rah-
men wird zunächst die komplexe drei-dimensionale (3-d) Anatomie des Hüftgelenks an-
hand von Daten der Magnetresonanztomographie (MRT) aus der Forschungsgruppe von
Prof. Schick (Universitätsklinik Tübingen) rekonstruiert. Die Ergebnisse einer Gangana-
lyse mit einem durch die Forschungsgruppe von PD Hurschler entwickelten Mehrkörper-
system-Modell des Unterkörpers werden als reale Randbedingungen in das FE Rechenmo-
dell des Femurkopfes eingesetzt. Hierbei werden unterschiedliche Szenarien berücksichtigt,
beispielsweise gesundes oder degeneriertes Knorpelgewebe sowie normale oder pathologi-
sche Gehbewegungen. Im Anschluss werden anhand einer stereographischen Projizierung
der Kontaktspannungen die Gefahrenbereiche auf der Knorpeloberfläche visualisiert. Wei-
terhin werden Aspekte der Mechanobiologie diskutiert, wobei Knorpelzellen als weiche
Einschlüsse modelliert werden und die lokalen Spannungen in den verschiedenen Zellpo-
sitionen berechnet werden.

Zum Schluss bietet Kapitel 7 eine kurze Zusammenfassung der Ergebnisse und einen
Ausblick auf weitere Aufgaben sowie Modellierungsalternativen aus der Forschungsgruppe
von Prof. Nackenhorst (Leibniz Universität Hannover).

Desweiteren werden relevante Modellannahmen und neu eingeführte Verzerrungsenergie-
funktionen im Anhang angesprochen.



Chapter 1:

Introduction and Overview

1.1 Motivation

A major biomedical problem is the poor self-healing and regeneration of cartilage. There-
fore, cartilage tissues are easily prone to degenerate, leading to pain and working dis-
abilities in middle-aged and older people. In particular, osteoarthritis (OA), a commonly
occurring form of cartilage degeneration, is estimated to affect 630 million people world-
wide, representing 15% of the global population.

In Germany, the Robert-Koch Institute, responsible for national health data reporting,
mentions only 1,6% of the under 30-year-old population displaying symptoms of OA.
Until the age of 50, the OA prevalence reaches 14,9%, and after the age of 60, one-
third of the female population and one-fourth of the male population suffer from OA,
respectively. Moreover, between 2003 and 2010, the registered OA cases increased from
22,6% to 27,1% for women and from 15,5% to 17,9% for men. Obviously, the overall
increase of OA cases is intimately connected to the rising cost of the healthcare. In 2004,
diseases of the muscle-skeleton system occupied the third position in terms of generated
costs at 24.46 billion euros, after cardiovascular and digestive diseases. From the costs
related to muscle-skeleton diseases in 2012, 6.77 billion euros were incurred for OA, and
39% of the cases of missed work due to OA disease referred to hip-joint OA (see Figure
1.1).

Figure 1.1: Healthy (left) and degenerated hip joint (right) [http://www.cookinglight.com,
www.hipflexor.org, www.wisegeek.org].

In this general context, OA appears as a well-known clinical syndrome related to cartilage
degeneration. Still, the mechanisms responsible for OA remain poorly understood. Up
to now, the diagnoses are based on a combination of clinical, radiological and anamnestic
criteria, mainly concentrating on the statistical occurrence of OA without a strong focus
on the characteristics of the patient. One goal of this monograph is to extend the range
of available possibilities for clinicians to strengthen their diagnoses.

1



2 1 Introduction and Overview

For this purpose, a numerical tool is provided to guarantee a valid representation of the
OA occurrence for a real hip-joint anatomy. This process naturally requires a highly
complex geometrical and constitutive modelling in order to represent the patient-specific,
highly anisotropic and heterogeneous features of the hydrated cartilage tissue. Therefore,
a thermodynamically consistent model of soft biological tissue based on the Theory of
Porous Media (TPM) is presented and adapted to the specific case of articular cartilage.
In this connection, a consistent calibration strategy for the complex computational model
is elaborated, which is the second objective of this work. Next, the focus lies on the con-
sideration of realistic boundary conditions applied at the cartilage surface of the femoral
head. Based on the contact stresses at the articular surface, a novel visualisation tool
is introduced to evaluate the influence of OA during normal and pathological walking
processes.

1.2 State of the Art

1.2.1 Articular-Cartilage Modelling

For a long time, scientists have demonstrated much interest in the experimental study
(Benninghoff [22], Maroudas [178]) and modelling of cartilage. The interest in carti-
lage has been observed in the intense research work, particularly over the last decades,
through the proliferation of numerical cartilage models on the scientific market. Clas-
sically, single-phase models have been used for the articular-cartilage modelling (Hayes
et al. [109]). These models significantly simplified the cartilage structure and properties.
However, their evident flaws came from the lack of incorporation of the pore-fluid con-
tribution in the overall macroscopic behaviour. In this regard, multiphase models have
been developed and became more popular, mostly based on the theory of mixtures (Lai
et al. [152]) or on the more elaborate TPM (de Boer [30, 31], Bowen [34, 35], Ehlers [65–
69]). Lai et al. [152] proposed the first triphasic model, which incorporated additional
features such as electromechanical effects. In this model, a separate description of the
solid and the fluid phases was adopted, including a reduction of the fluid components by
using the electroneutrality condition. Further triphasic models appeared based on this
description (Acartürk et al. [3], Frijns et al. [92]). Next, other considerations with re-
spect to further model reductions were inspired by Lanir’s assumption (Lanir [154]). It
justified the emergence of biphasic models (Huang et al. [124], Julkunen et al. [132], Kara-
jan et al. [139], Mow et al. [190], Wilson et al. [253–256]), which were computationally
less expensive. The models of Ehlers et al. [73, 74] were even able to precisely match
the osmotic effects obtained from Acartürk et al. [3] and Frijns et al. [92] by means of
a constitutively computed osmotic pressure. Biphasic models have been also intensively
used to model creep and stress relaxation of articular cartilage. Both fluid flow-dependent
and -independent phenomena were soon considered after biphasic poroviscoelastic models
(Ehlers & Markert [75], Julkunen et al. [133], Markert [174], Suh & Bai [239]) were intro-
duced by Mak [169]. The models of Li et al. [158], Wieners et al. [253] and Julkunen et al.
[132] even complexified the numerical description of cartilage when incorporating supple-
mentary features such as heterogeneities. Based on the TPM, Ehlers et al. [73, 76–78]
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proposed a thermodynamically consistent model that included most of these features but
was specially designed for intervertebral discs. Simultaneously, other research groups de-
veloped various cartilage models (Julkunen et al. [133], Lilledahl et al. [162]). In Lilledahl
et al. [162], important cartilage features such as collagen fibre disposition as well as zone-
dependent heterogeneities and anisotropic permeability were precisely determined.

1.2.2 Parameter Identification

Obviously, material models are becoming more complex through the ages. A high model
complexity allows for a better material description and representation despite having its
downsides. The computational time for performing calculations tends to be problematic,
and the high model complexity necessitates enormous experimental support for the param-
eters finding. Moreover, a crucial question is whether such complex models are practical.
What is the optimal model complexity? Which measurable effects need to be captured?
In order to answer these questions, many classifications exist based on the nonlinearity of
the problem, the required convergence grade or the initial guess of the parameters. A typi-
cal distinction amongst different methods relies on the use of gradient-based identification
techniques (Bock et al. [28], Johnson & Faunt [130]). In this monograph, the trust region
method of constraint optimisation by linear approximation (COBYLA) (Powell [210]),
belonging to the gradient-free methods (Brent [38], Dennis & Torczon [55], Johnson &
Faunt [130], Markert [172], Nocedal & Wright [204]), is adopted. This method consists
of the construction of a quadratic model for the area within a given radius (the trust
region). This region expands or shrinks iteratively until the radius reaches a specified
tolerance value. This method is mostly efficient in terms of the computational time and
the function evaluations, and is flexible enough not to drop into local minima.

1.2.3 Sensitivity Analysis

Following this, a further question needs to be answered. What is the correlation between
the parameters and the influence of a parameter variation on the numerical results? In
this regard, sensitivity analyses are conducted. Here again, various classification types
are presented in the literature (Bauer & Hamby [20], Box et al. [36], Helton [113], Helton
et al. [114]).The easiest and most intuitive sensitivity analysis method is definitely the
subjective analysis (Downing et al. [57]), thereby, the parameters which a priori slightly
influence the model output are removed, based on the experience of the “simulator”. This
qualitative method is eventually used to reduce the number of parameters of large models
but is not easily manageable with quantitative techniques. The method chosen in this
monograph, is the local sensitivity analysis (Gardner et al. [94]). In this context, each
parameter is varied at a time while holding the others fixed. The obtained sensitivity is
locally defined because of its specification at a fixed point in the parameter space.
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1.2.4 Measurement and Calculation of Stresses in Hip Joints

The calibration of a model generally introduces some relevant applications. In this regard,
the focus lies on the numerical investigation of healthy and degenerated hip joints. Even
though the mechanisms responsible for the degeneration of articular cartilage are still par-
tially shrouded in mystery, one fact remains certain: high local contact stresses increase
the risk of contracting OA (Mavcic et al. [184], Maxian et al. [185]). The calculation of
contact stresses is then clinically relevant to propose pre-operative plans and evaluate the
efficiency of surgical treatments. For this purpose, Hodge et al. [119] acquired data from
telemetering inter-articular pressure measured on femoral head prostheses. Other in-vitro
methods (Day et al. [54]) based on excision of concentric rings of cartilage estimated
the joint pressure. Nevertheless, a direct measurement of in-vivo contact stresses is still
technically complicated to perform. A way to predict such contact stresses resides in the
development of computational models. In this framework, Abraham et al. [1], Genda et al.
[96] and Yoshida et al. [262] performed discrete-element analyses (DEA). This discretisa-
tion using spring deformations and rigid bones led to high computational efficiency and
to mostly qualitative match with experimental data. Then Anderson et al. [8] and Abra-
ham et al. [1] proposed finite-element analyses of hip joints by means of single-phasic and
biphasic models, respectively. Both teams of authors accurately estimated the contact
stresses calculated for daily-life activities. The present contribution fits in the framework
of finite-element analyses in order to investigate hip contact stresses.

1.3 Outline of the Thesis

As a brief overview, Chapter 2 introduces the basics of the TPM and the mixture
kinematics with a direct focus on the biphasic modelling of soft biological tissues. In
this regard, balance relations are specified under given assumptions. The constitutive
assumptions are then presented in a general framework. After a short description of
classical features of soft biological tissues such as poroviscoelasticity and osmotic swelling,
the author concentrates on the presentation of less common properties such as a complex
non-Darcyan flow and the fibre-matrix shear interaction.

In Chapter 3, the numerical techniques required for implementing the constitutive model
in the FE code are briefly recalled. In particular, starting from the derivation of the weak
formulation of the balance relations, the domain is discretised in space and time leading
to a consistent numerical procedure.

Chapter 4 focuses on the model refinement related to a precise cartilage description. In
this context, additional characteristics are presented and discussed in terms of their rele-
vance for the investigated phenomena. Important notions such as sensitivity analysis are
implicitly introduced by means of short numerical examples displaying specific cartilage
features such as anisotropic viscoelasticity and fibre-matrix shear interaction.

Chapter 5 aims to present a sophisticated model calibration strategy that is able to
deal with the complex computational model. First, the theoretical background related
to parameter identification and sensitivity analysis is recalled. In particular, a constraint
optimisation by linear approximation (COBYLA) is used as a derivative-free method for
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identifying the material parameters. Regarding the sensitivity, correlation matrices are
systematically introduced. Next, the calibration method is applied to various experimen-
tal set-ups such as multiple-indentation tests and multi-directional shear tests performed
by the associated research unit of PD Hurschler at the Medical School of Hannover.

Applications of the calibrated model are presented in Chapter 6. A complex three-
dimensional (3-d) hip-joint anatomy is reconstructed from magnetic resonance imaging
(MRI) scans provided by the associated research unit of Prof. Schick at the University
Hospital of Tübingen and used for test simulations. Thereafter, an introductive numerical
example is presented in relation to the solid-fluid coupling in the hip joint between articu-
lar cartilage and synovial fluid. After reducing the initial geometry to the cartilage surface
and its underlying femoral bone, multi-body system (MBS) calculations of the lower body
part performed by the associated research unit of PD Hurschler are mixed with the pre-
sented constitutive model for a realistic representation of boundary conditions given by
walking processes. In this connection, simulations are performed with consideration of
different scenarios of healthy or OA-degenerated cartilage, normal or pathological walking
and their combinations. Furthermore, the results are stereographically projected to allow
a direct visualisation of contact stresses. Following this, aspects of mechanobiology are
discussed, and the cartilage cells are modelled as weak inclusions. Then, observations on
local stresses at presumed cell positions are presented.

Finally, the work done in this thesis and some future research aspects are summarised in
Chapter 7. Therein, alternative concepts developed by the associated research unit of
Prof. Nackenhorst at the Leibniz University of Hannover are addressed.

Additional information regarding various assumptions in the modelling is provided in
Appendix A. Further aspects related to the polyconvexity of newly introduced contri-
butions to the strain-energy function are mathematically investigated in Appendix B.
Thereafter, Appendix C takes an interest in the numerical stability and the physical
behaviour of the fibre-matrix shear contribution to the strain-energy function.





Chapter 2:

Biphasic Modelling of Soft Biological

Tissues

In this section, a broad continuum-mechanical framework is recalled. A brief overview of
the Theory of Porous Media (TPM), the kinematic relations and the balance relations is
presented. Then, soft biological tissues are described, leading to well-known constitutive
equations. Particularly, sections 2.2 to 2.3.2 are based on previous models thoroughly
described in Acartürk [2], Karajan [138] and Markert [172]. The sections thereafter con-
centrate on further extensions of these models and introduce the material specifications
for articular cartilage and other tissues, as discussed in Chapter 4.

2.1 Theoretical Fundamentals of the Theory of Porous

Media

2.1.1 Homogenisation and Volume Fractions

The TPM (de Boer [30, 31], Bowen [34, 35], Ehlers [65–69]) offers an adapted framework
for macroscopically describing the complex microstructure of soft biological tissues. In
this framework, the inner structure of the tissue is smeared over an arbitrarily chosen rep-
resentative elementary volume (REV) by means of a volumetric averaging process. Next,
the original microstructure is statistically substituted by the homogenised microstructure.
In this regard, the soft biological tissue is represented by means of a binary aggregate of
immiscible solid and fluid constituents ϕα denoted by α = {S (solid), F (fluid)}, leading
to a model

ϕ =
⋃

α

ϕα = ϕS ∪ ϕF (2.1)

of superimposed and interacting continua (see Figure 2.1). In particular, the model con-
sists of a deformable extracellular matrix (ECM) ϕS composed of proteoglycan aggre-
gates (PGA) and a network of collagen fibres. Attached to the PGA chains are mass-
and volume-free fixed charges ϕfc resulting from a large number of silicate or carbonate
groups (Mow & Ratcliffe [194]). A further constituent of the model is the interstitial pore
fluid ϕF described as a miscible mixture of its components, given by the liquid solvent
(water) ϕL and the freely movable ions (Na+) ϕ+ and (Cl−) ϕ− of dissolved salt.

Hence, the overall volume V of the aggregate B is the sum of the partial volumes V α of
its constituents ϕα:

V =

∫

B

dv =
∑

α

V α, where V α =

∫

B

dvα =

∫

B

nαdv. (2.2)

7
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REV

homogenised model

homogenisation

volume
fractions

dvS

dvF

Figure 2.1: Representative elementary volume (REV) of soft biological tissue exemplary de-
picted for a cartilage layer with homogenised model and concept of volume fractions.

Therein, the local constitution of the solid-fluid aggregate is given by the volume fraction
nα defined as

nα =
dvα

dv
(2.3)

relating the volume element dvα of the constituent ϕα to the volume element dv of the
overall model ϕ. By summing up all volume fractions nα, the saturation constraint is
obtained as ∑

α

nα = nS + nF = 1 , (2.4)

stating that no vacant space is existent in the overall aggregate. Herein, nS and nF are
the so-called solidity and porosity, respectively. The solidity nS is made up of the solid
fractions nS

ECM and nS
coll as

nS = nS
ECM + nS

coll , (2.5)

where nS
ECM and nS

coll are the solid fractions of the ECM and the collagen fibres, respec-
tively.

The introduction of the volume fractions motivates the definition of two different density
functions, the effective density ραR and the partial density ρα. The first one relates the
mass element dmα of a constituent ϕα to its volume dvα, while the second one relates
dmα to the bulk volume dv. Thus,

ραR =
dmα

dvα
and ρα =

dmα

dv
. (2.6)

These two densities are related to each other via

ρα = nαραR . (2.7)
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Note in passing that a biphasic description of soft biological tissue is justified by the
combined use of the saturation condition (2.4) and Lanir’s assumption (Lanir [154]). It
states that the mobile ions instantaneously reach their electrochemical equilibrium due to
a rapid diffusion through the liquid. Following Lanir’s assumption, the motion of mobile
ions does not have to be considered separately (Acartürk [2], Karajan [138]).

2.1.2 Kinematical Relations

According to the concept of superimposed and interacting continua, each constituent
ϕα follows its own motion function starting from different positions Xα in the reference
configuration at time t0. At time t in the actual configuration, each spatial point P α

of the body B is occupied simultaneously by each constituent ϕα (see Figure 2.2). This
leads to the following vector-valued field functions of motion, velocity and acceleration,
respectively:

x = χα(Xα, t),
′
xα=

∂

∂t
[χα(Xα, t)] and

′′
xα=

∂2

∂t2
[χα(Xα, t)] . (2.8)

Herein, (.)′α and (.)′′α denote the first and second material time derivatives following the
motion of ϕα.

reference configuration (t0)

actual configuration (t)

PS, PF

PS
PF

B

B0

x
O

XS

XF
χS(XS , t)

χF (XF , t)

Figure 2.2: Motion of a biphasic aggregate.

Furthermore, the requirement of a unique and uniquely invertible motion function is

Xα = χ−1
α (x, t) if Jα = det

∂χα

∂Xα
6= 0 , (2.9)

where the Jacobian Jα differs from zero.

In this regard, the material deformation gradient Fα and its inverse F−1
α are given by

Fα =
∂χα

∂Xα
= Gradα x and F−1

α =
∂χ−1

α

∂x
= gradXα . (2.10)
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Here, the gradient operator “Gradα” represents the partial derivative with respect to the
reference position vector Xα, and “grad” denotes the partial derivative with respect to
the actual position vector x.

In the framework of solid-fluid coupled problems, the solid motion is usually expressed
in a Lagrangean description via the displacement vector uS, and the fluid is considered
using a modified Euler ian description via the seepage velocity wF as

uS = x−XS and wF =
′
xF −

′
xS = vF − vS . (2.11)

Here, vF and vS denote the velocity of the fluid and solid phases, respectively.

Generally, the solid displacement vector uS is introduced as the primary kinematic variable
of the solid phase. Using (2.10)1 and (2.11)1, the solid deformation gradient FS is given
as

FS = I+GradSuS , (2.12)

where I represents the second-order identity tensor.

2.1.3 Strain and stress measures

Next, the deformation and strain measures of each constituent ϕα are briefly recalled,
based on the transport mechanism of a line element between the reference and the actual
configuration, i. e., dx = Fα dXα. In this context, the right Cα and left Bα Cauchy-Green
deformation tensors are obtained as

dx · dx = Fα dXα · Fα dXα = dXα · (FT
α Fα︸ ︷︷ ︸
Cα

) dXα (2.13)

and
dXα · dXα = F−1

α dx · F−1
α dx = dx · (FT−1

α F−1
α︸ ︷︷ ︸

B
−1

α

) dx . (2.14)

In particular, Cα = FT
α Fα represents a deformation measure in the reference configura-

tion, while Bα = FαF
T
α is related to the deformation in the actual configuration.

In connection to the body deformation measures, the Green-Lagrangean and Almansian
strain tensors, Eα and Aα, are introduced as

dx · dx− dXα · dXα = dXα · (Cα − I︸ ︷︷ ︸
2Eα

) dXα = dXα · (I−B−1
α︸ ︷︷ ︸

2Aα

) dXα . (2.15)

Therein, Eα = 1
2
(Cα−I) is expressed in the reference configuration, whileAα = 1

2
(I−B−1

α )
is defined in the actual configuration. Note that for transporting a tensor from the ref-
erence to the actual configuration, a push-forward transformation is required, while a
transport from the actual to the reference configuration necessitates a pull-back opera-
tion. Further information about transport mechanisms is given in Ehlers [65], Holzapfel
[121] and Truesdell & Noll [242].
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After formulating the deformation and strain measures, deformation and strain rates
are introduced, starting from the definition of the deformation gradient Fα (cf. equation
(2.10)1) and the material time derivative of the line element dx as

d
′
xα= (Fα)

′
α dXα = (Fα)

′
αF

−1
α︸ ︷︷ ︸

Lα

dx . (2.16)

Herein, Lα is defined as the spatial velocity gradient of the constituent ϕα. After some
rearrangements, one obtains

Lα = grad
′
xα and Lα · I = div

′
xα . (2.17)

Following this, a unique decomposition of Lα into its symmetric part Dα and skew-
symmetric part Wα is expressed as

Lα = 1
2
(Lα + LT

α)︸ ︷︷ ︸
Dα

+ 1
2
(Lα − LT

α)︸ ︷︷ ︸
Wα

. (2.18)

Therein, the deformation velocity or strain rate tensor is represented by Dα, and Wα

denotes the spin or vorticity tensor.

In this connection, the rate of the right Cauchy-Green deformation tensor Cα is calculated
from equation (2.13) via

(Cα)
′
α = (FT

α Fα)
′
α = 2FT

α Dα Fα . (2.19)

From the previous relation and from equation (2.15), the Green-Lagrangean strain rate is
obtained as

(Eα)
′
α = 1

2
(Cα)

′
α = FT

α DαFα . (2.20)

For the sake of completeness, stress measures are addressed according to the Cauchy
theorem. In this regard, the surface traction vector tα(x,n, t) is related to the partial
Cauchy stress tensor Tα and the outward-oriented unit surface vector n of the body
surface Γ as

tα(x,n, t) = Tα(x, t)n . (2.21)

Further stress tensors can be derived from the definition of the incremental surface force
dkα as

dkα = tα da = (Tα n) da = Tα (n da) = Tα da

= JαT
α

︸ ︷︷ ︸
τα

J−1
α da︸ ︷︷ ︸
dāα

= JαT
αFT−1

α︸ ︷︷ ︸
Pα

J−1
α FT

α da︸ ︷︷ ︸
dAα

,

(2.22)

where da represents the oriented area element of the current configuration, dāα is the
corresponding weighted area element, and dAα is the area element in the reference con-
figuration of ϕα. In this context, the Cauchy stress tensor Tα is understood as the true
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stress due to its expression in the actual configuration, and the Kirchhoff stress tensor
τ α is the weighted Cauchy stress. Furthermore, the first Piola-Kirchhoff stress tensor Pα

relates the force vector in the current configuration to the surface element of the reference
configuration of ϕα. A full pull-back transport of τα towards this reference configuration
leads to the second Piola-Kirchhoff stress tensor Sα:

Sα = F−1
α Pα = F−1

α τ αFT−1
α . (2.23)

2.2 Balance Relations

Continuum mechanics rests upon equations expressing the balances of mass, linear mo-
mentum, moment of momentum and energy in a body. These balance equations apply
to all bodies, independent of the material constitution. Just as time, position and ve-
locity are primary notions in kinematics, equally important are the concepts of mass,
energy and force with respect to the classical mechanics of continua. These entities can
be axiomatically introduced via master balances, which give a frame for all balances. In
this regard, Truesdell’s metaphysical principles [241] extend the classical balance laws,
valid for a single-phase material, to the multiphasic materials, in which the interactions
between the constituents are taken into account, as follows:
1. All properties of the mixture must be mathematical consequences of properties of the
constituents.
2. In order to describe the motion of a constituent, we may imagine isolating it from the
rest of the mixture, provided we properly allow for the actions of the other constituents
upon it.
3. The motion of the mixture is governed by the same equations as those in a single body.

Then, the formulation of the governing equations in their global form is simplified using
the following assumptions:

• mass exchange between the constituents excluded and mass production terms ρ̂α

neglected, i. e., ρ̂α = 0,

• material incompressibility of the constituents under physiological pressure (Bachrach
et al. [13]), i. e., ραR = const.,

• uniform temperature for each constituent, i. e., Θα = Θ = const.,

• gravitational forces neglected, i. e., ρα g ≈ 0 (see Appendix A.1),

• quasi-static conditions, i. e., ρα
′′
xα≈ 0 (see Appendix A.2).

2.2.1 Volume Balances

Under the two first assumptions, the local mass balances (Ehlers [65]) of the solid and fluid
constituents transform into volume balances. The volume balance of the overall aggregate
is obtained after summing up the local volume balances of its constituents yielding

(nS)′S + nS div
′
xS = 0

}
−→ div [ (uS)

′
S + nFwF ] = 0 .

(nF )′F + nF div
′
xF = 0

(2.24)
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The volume balance of the solid constitutent and its adhering fixed charges can be inte-
grated analytically from the initial solidity nS

0S (Ehlers [65]), yielding

nS = nS
0S J

−1
S , (2.25)

where the Jacobian JS = detFS is the determinant of the solid deformation gradient FS.
Note that according to the saturation equation (2.4), the initial porosity nF

0S in the solid
reference configuration is obtained as

nF
0S = 1− nS

0S . (2.26)

Similarly to (2.25), the molar concentration cfcm of the fixed charges is obtained, after
analytical integration from the the initial value cfcm,0S of the concentration of the fixed
charges, as (Acartürk [2])

cfcm = cfcm,0S

1− nS
0S

JS − nS
0S

. (2.27)

2.2.2 Momentum Balance

Following the first and the two last assumptions expressed in section 2.2, the momentum
balance of the overall aggregate is obtained from the sum of the local momentum balances
of the solid and fluid constituents (Ehlers [65]) as

div TS + ρS g + p̂S − ρS
′′
xS = 0

}
−→ div (TS +TF ) = 0 .

div TF + ρF g + p̂
F − ρF

′′
xF = 0

(2.28)

Therein, the overall Cauchy stress tensor T = TS +TF is the sum of the partial Cauchy
stresses of the solid and the pore fluid, and p̂

F = −p̂
S is the momentum production

term. For more details, the interested reader is referred to the works of Karajan [138] and
Acartürk [2] and to Appendix A.2.

2.3 Constitutive Relations

Next to the local balance equations, the physical response of soft tissues is described by
means of constitutive equations. Depending on its function, every soft tissue will exhibit a
different characteristic behaviour. In this general framework, a soft tissue is described as
an anisotropic, viscoelastic and osmotically swelling material. A more precise description
related to a specific soft tissue such as articular cartilage will be the focus of Chapter 4.

In this context, the presented formulations are related to the partial Cauchy stress tensors
of the solid and the pore fluid, and the momentum production term. Exploiting the
material incompressibility condition, the so-called extra values TS

E, T
F
E and p̂F

E, for which
constitutive relations are needed, are as follows (Ehlers [66], Skempton [233]):

TS
E = nS

P I + TS ,

TF
E = nF

P I + TF ,

p̂
F
E = −P grad nF + p̂

F .

(2.29)
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Here, P is the Lagrangean multiplier from the entropy inequality, identified as the hy-
draulic pore-fluid pressure (Ehlers [66]). The hydraulic pore-fluid pressure is defined as
the difference between the overall pressure p and the osmotic pressure difference ∆π as
(Karajan [138])

P = p−∆π (2.30)

To account for the mechanical and osmotic properties of soft biological tissues, the extra
Cauchy solid stress TS

E can be split into a purely mechanical contribution TS
mech and an

osmotic contribution TS
osm:

TS
E = TS

osm +TS
mech . (2.31)

The mechanical contribution TS
mech can further be divided into an isotropic part TS

ISO due
to the ECM, an anisotropic part TS

ANI deduced from the anisotropic structure and an
interaction part TS

INT related to the shear interaction between ECM and the anisotropic
structure, i. e.,

TS
mech =

nS
ECM

nS
TS

ISO +
nS
coll

nS
TS

ANI +
nS
ECM

nS

nS
coll

nS
TS

INT

= (1−
nS
coll

nS
)TS

ISO +
nS
coll

nS
TS

ANI + (1−
nS
coll

nS
)
nS
coll

nS
TS

INT .

(2.32)

If the solid constituent is only composed of the ECM (nS
coll = 0), a fully isotropic behaviour

is expected, i. e., TS
mech = TS

ISO. In the extreme case of the only presence of collagen
fibres (nS

coll = 1), the purely mechanical stresses are described by TS
mech = TS

ANI. The
contributions TS

osm, T
S
ISO, T

S
ANI and TS

INT are expressed mathematically in subsections
2.3.1 to 2.3.4. An overview of the additive splits for each contribution to TS

E is provided
in Figure 2.3.

TS
E

TS
mech TS

osm

TS
ISO TS

ANITS
INT

T
EQ
ISO T

NEQ
ISO T

EQ
ANI T

NEQ
ANI

Figure 2.3: Additive split of different Cauchy stress tensors.
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Regarding the fluid phase, the extra fluid stress TF
E is neglected after a dimensional

analysis (Ehlers et al. [72]). Following this, the overall Cauchy stress T is rearranged
after substituting (2.29) in (2.28) and using the saturation condition (2.4) as

T = TS +TF = TS
E − P I . (2.33)

Finally, the remaining unspecified extra value p̂F
E is quantified by means of a constitu-

tive formulation reflecting the features of a viscous, interstitial pore-fluid. After some
mathematical rearrangements (Ehlers et al. [74]), a modified Darcy’s equation for the
incompressible pore-fluid flow is discussed in subsection 2.3.5.

2.3.1 Osmotic Swelling

Many hydrated, soft biological tissues change their dimensions, volume and weight (Eisen-
berg & Grodzinsky [81, 82], Maroudas & Bannon [180], Mow & Schoonbeck [195], Myers
et al. [198], Parsons & Black [207]). This change is due to the presence of fixed negative
charges, yielding a greater ion concentration inside the tissue than that in the external
bathing solution. As a consequence of the imbalance of ions, an osmotic pressure between
the interstitial pore fluid and the external solution takes place, and the external fluid
flows within the tissue to dilute the ionic solution of the pore fluid. This leads to a me-
chanical counterpressure, i. e., a pre-stress of the ECM (Grodzinsky et al. [98], Maroudas
[179], Maroudas & Bannon [180]).

In particular, the associated osmotic pressure difference (Lai et al. [152], Maroudas [178])
is given by van’t Hoff’s osmotic law as (Karajan [138])

∆π = RΘ
(√

4 c̄ 2
m + (cfcm )2 − 2 c̄m

)
. (2.34)

Herein, R denotes the universal gas constant, Θ is the absolute Kelvin’s temperature, and
c̄m is the molar concentration of the external salt solution surrounding the tissue. The
osmotic pressure difference ∆π is inserted into the osmotic contribution TS

osm, yielding

TS
osm = −∆ π I . (2.35)

Note that the mechanical relevance of osmotic swelling in the load-carrying system of soft
biological tissues has been confirmed by many authors such as Best et al. [27], Mow et al.
[196] and Urban et al. [245], amongst others.

2.3.2 Isotropic Viscoelasticity

The structural similarity of the protein-made ECM with polymeric network structures
justifies the description of a viscoelastic material. In particular, the intrinsic viscoelas-
ticity is understood by means of an adapted Ogden-like, finite viscoelastic formulation
(Ogden [205]) for TS

ISO, which is based on previous works in the linear and nonlinear
poroviscoelasticity field (Ehlers et al. [74], Markert [174]). In this context, the behaviour
of the solid phase is described by means of a discrete relaxation spectrum associated with
the generalised Maxwell rheological model (Markert [174]).
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Hereby, use is made of a multiplicative de-
composition of the deformation gradient
FS into elastic parts (FSe)n and inelastic
(viscous) parts (FSi)n as

FS = (FSe)n (FSi)n . (2.36)

This multiplicative split is illustrated in
Figure 2.4 by a stress-free, geometrically
incompatible, intermediate configuration
describing the purely inelastic deforma-
tion state.

FS

(FSi)n (FSe)n

reference actual

intermediate

configuration

configuration

configuration

Figure 2.4: Concept of an inelastic
intermediate configuration.

Proceeding from (2.36), the elastic (JSe)n and inelastic (JSi)n parts of the Jacobian JS,
and the solid volume fractions (nS

Si)n of the n = {1, .., N}Maxwell elements are introduced
as

JS = (JSe)n (JSi)n and nS = (nS
Si)n (J

−1
Se )n with (nS

Si)n = nS
0S (J

−1
Si )n . (2.37)

Equation (2.36) also motivates the following split of TS
ISO into an equilibrium contribution

T
EQ
ISO and a non-equilibrium contribution T

NEQ
ISO as depicted in Figure 2.3, yielding

TS
ISO = T

EQ
ISO +T

NEQ
ISO . (2.38)

In particular, the equilibrium and non-equilibrium contributions are

T
EQ
ISO = J−1

S

{
µS
0

3∑

k=1

(λS(k) − 1)NS(k)+

+
λS
0

γS
0 − 1 +

1

(1− nS
0S)

2

(
J
γS
0

S −
JS

JS − nS
0S

+
JS n

S
0S

1− nS
0S

)
I
}

and

T
NEQ
ISO = J−1

S

N∑

n=1

{
µS
n

3∑

k=1

(λSe(k) − 1)NSe(k)+

+
λS
n

γS
n − 1 +

1

[1− (nS
Si)n]

2

[
(J

γS
n

Se )n −
(JSe)n

(JSe)n − (nS
Si)n

+
(JSe)n (n

S
Si)n

1− (nS
Si)n

]
I
}
.

(2.39)
The equilibrium partTEQ

ISO given in (2.39)1 is related to a neo-Hookean formulation (Eipper
[80]). The parameters λS

0 and λS
n and µS

0 and µS
n are identified as the first and second Lamé

constants, respectively. Furthermore, the parameters γS
0 and γS

n represent the volumetric
extension term of Markert [172], as elaborately discussed in Eipper [80], Karajan [138]
and Markert [172]. The eigenvalues and eigentensors of the solid deformation tensors CS

and BS are represented by λS(k) and NS(k), respectively.

Regarding equation (2.39)2, the eigenvalues and eigentensors of the left Cauchy-Green
elastic deformation (BSe)n = (FSe)n (F

T
Se)n in the actual configuration are denoted by
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λSe(k) and NSe(k), respectively. The inelastic evolution equation formulated by the mate-
rial time derivative of the right Cauchy-Green inelastic deformation (CSi)n = (FT

Si)n (FSi)n
in the solid reference configuration, reads (Markert [174])

[(CSi)n ]
′
S
−

1

ηSn
(CSi)n S

S
n (CSi)n +

ζSn
ηSn(2η

S
n + 3ζSn )

[SS
n · (CSi)n ] (CSi)n = 0 . (2.40)

Therein, SS
n represents the second Piola-Kirchhoff non-equilibrium stress tensor contri-

bution related to the n-th Maxwell element, and ηSn and ζSn are defined as the respective
macroscopic shear and bulk viscosities (Markert [172, 174]).

2.3.3 Anisotropic Viscoelasticity

The viscoelastic behaviour of collagen fibres was demonstrated by means of tensile tests
by Li & Herzog [156]. In the modelling, the anisotropic viscoelasticity of the collagen
fibre network is considered within a continuum-mechanical description. In this context,
the anisotropic structure is represented by structural tensors N S and MS, based on
unit vectors aS

0 (Spencer [236]) pointing, in the solid reference configuration, in the fibre
direction. Thus,

N S = FS M
S FT

S = FS (a
S
0 ⊗ aS

0 )F
T
S = FS a

S
0 ⊗ FS a

S
0 ≡ aS ⊗ aS . (2.41)

Here, aS is the vector pointing, in the actual configuration, in the fibre direction. More-
over, the squared value aS · aS of the fibre stretch can be expressed in terms of the fourth
invariant JS4 as

aS · aS = FS a
S
0 · FS a

S
0 = FT

S FS a
S
0 · aS

0 = (CS a
S
0 ) · a

S
0

= CS · (aS
0 ⊗ aS

0 ) = CS ·MS ≡ JS4 ,
(2.42)

where CS is the right Cauchy-Green deformation in the solid reference configuration. A
multiplicative split of JS4 into an elastic part (JS4e)n and inelastic part (JS4i)n yields

JS4 = (JS4e)n (JS4i)n . (2.43)

Similar to the isotropic viscoelasticity, the additive split of TS
ANI into the equilibrium

contribution T
EQ
ANI and the non-equilibrium contribution T

NEQ
ANI is

TS
ANI = T

EQ
ANI +T

NEQ
ANI . (2.44)

In particular, the equilibrium and non-equilibrium contributions are obtained from an
Ogden-like strain-energy function (Karajan [138], Markert [174], Markert et al. [175]) as

T
EQ
ANI =

Mf∑

m=1

µ̃m

JS
J−1
S4 (J

(γ̃m/2)
S4 − 1)N S and

T
NEQ
ANI =

N∑

n=1

[ Mfe∑

m=1

(µ̃m)n
JS

J−1
S4 (J

((γ̃m)n/2)
S4e − 1)

]
N S .

(2.45)
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Regarding the equilibrium anisotropic contribution T
EQ
ANI, µ̃m and γ̃m are the anisotropic

parameters, andMf is the number of polynomial terms. The parameters (µ̃m)n, (γ̃m)n and
Mfe of the n = {1, .., N} Maxwell elements are likewise defined for the non-equilibrium

anisotropic contribution T
NEQ
ANI . To solve (2.45)2, the evolution equation for the viscous

counterpart JS4i of the fourth invariant is obtained from its material time derivative
(JS4i)

′
S as (Markert [174], Zinatbakhsh [267])

(JS4i)
′
S =

1

ηf

N∑

n=1

Mfe∑

m=1

(µ̃m)n J
−1
S4

[
(JS4e)

((γ̃m)n/2)
n − 1

]
. (2.46)

Herein, ηf is a parameter related to the fibre viscosity.

Note that TS
ANI expressed in equation (2.45) is derived from the anisotropic strain-energy

function W S
ANI, yielding

TS
ANI = 2 J−1

S FS
∂W S

ANI

∂CS
FT

S . (2.47)

In particular, the additional split given in equation (2.44) leads to

T
EQ
ANI +T

NEQ
ANI = 2 J−1

S FS

( ∂WEQ
ANI

∂CS

+
∂WNEQ

ANI

∂CS

)
FT

S . (2.48)

For more information about the derivation of the equilibrium part WEQ
ANI of the anisotropic

strain-energy function, the interested reader is referred to the works of Karajan [138],
Markert [174] and Zinatbakhsh [267]. The requirements for polyconvexity of the non-
equilibrium part WNEQ

ANI of the anisotropic strain-energy function are verified in Appendix
B.2.

2.3.4 Fibre-Matrix Shear Interaction

The fibre-matrix interaction is related to the interaction phenomena observed by Wagner
& Lotz [250] between fibres and ECM, and amongst fibres within the same lamella. The
collagen cross-links constrain the fibres from sliding past one another. Subsequently, the
resistance to shear along fibres disposed in the same plane is directly related to collagen
cross-linking. The fibre-matrix shear-interaction stresses can be quantified depending on
the extent of along-fibre shear deformation. As a preliminary step in the description of
shear deformation, the definition of the fifth invariant

JS5 ≡ tr (C 2
S M

S ) = aS
0 · C 2

S a
S
0 (2.49)

is required. This invariant has no physical meaning as a single entity. However, a com-
bination of JS5 and JS4 is adapted for the mathematical expression of shear interactions.
Shear interactions can be exemplary illustrated by cutting out a REV.
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The chosen REV contains fibres embedded in
a plane, which are formulated using a right-
handed set of mutually orthogonal unit vectors
ξ1, ξ2 and ξ3 in Figure 2.5. The local anisotropy
is represented by the local unit fibre direction
given by aS

0 of the form

aS
0 = sinφS

0 ξ1 + cos φS
0 ξ2 , (2.50)

where φS
0 is the fibre angle in the solid reference

configuration. Considering the same orientation
of ξi and the global orthogonal unit vectors ei,
the structural tensorMS and the right Cauchy-
Green tensor CS can be expressed in the same
orthogonal basis.

aS0

ξ1

ξ2

φS
0

Figure 2.5: In-plane embedded
fibres of a REV.

Then, after inserting (2.50) into (2.42) and (2.49) and assuming pure stretch deformations
in the direction of ξ2, one obtains for a plane-strain state:

JS4 = C11 sin
2 φS

0 + C22 cos
2 φS

0 and JS5 = C2
11 sin

2 φS
0 + C2

22 cos
2 φS

0 . (2.51)

Therein, C11 and C22 are the diagonal components of the right Cauchy-Green tensor CS in
the solid reference configuration and are related to the principal strains E11 =

1
2
(C11− 1)

and E22 =
1
2
(C22−1) by the definition of the Green-Lagrangean solid strain ES in (2.15).

In particular, the shear strain γa along the fibre direction aS
0 can be expressed as a function

of the principal strains after a Mohr’s circle analysis yielding

γa =
1

2
(E11 − E22) sin (2φ

S
0 )

=
1

4
(C11 − C22) sin (2φ

S
0 ) .

(2.52)

To represent the fibre-matrix interaction by an even function of both positive and negative
shear strains, the squared value γ2

a of the shear strain is determined based on trigonomet-
rical relations as

γ2
a =

1

16
(C11 − C22)

2 sin2 (2φS
0 )

=
1

4
(C2

11 sin
2φS

0 cos
2φS

0 − 2C11C22 sin
2φS

0 cos
2φS

0 + C2
22 sin

2φS
0 cos

2φS
0 )

=
1

4
[C2

11 sin
2φS

0 (1− sin2φS
0 )− 2C11C22 sin

2φS
0 cos

2φS
0 + C2

22 cos
2φS

0 (1− cos2φS
0 )]

=
1

4
[C2

11 sin
2φS

0 + C2
22 cos

2φS
0︸ ︷︷ ︸

JS5

− (C11 sin
2φS

0 + C22 cos
2φS

0 )
2

︸ ︷︷ ︸
J2
S4

] ,

(2.53)
which recovers the expressions of JS4 and JS5 given in (2.51). Other authors such as Guo
et al. [104, 105, 106] and Wagner & Lotz [250] also interpreted JS5 − J2

S4 as the extent of
along-fibre shear deformation.
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Following this, the stress contribution TS
INT is derived from a fibre-matrix interaction

strain-energy function W S
INT yielding

TS
INT = 2 J−1

S FS
∂W S

INT

∂CS
FT

S

= µint αint J
−1
S (JS5 − J2

S4)
(αint−1)FS ( 2 JS4M

S +CS M
S +MS CS )F

T
S ,
(2.54)

where µint and αint are material parameters. In the particular case of no shear along the
fibres, i. e., JS5−J2

S4 = 0, the fibre-matrix interaction stresses vanish, i. e., TS
INT = 0. For

more information about the function W S
INT, the interested reader is referred to Appendix

B.3. Therein, the requirement for polyconvexity of W S
INT and the detailed calculation of

TS
INT are also presented.

Note that the fibre-matrix shear interaction is generally neglected due to the much higher
fibre stiffness than the stiffness of the ECM. However, neglecting this term often leads to
excessive rotation of the fibres in the ECM, called strongly directional behaviour (SDB)
(Duong et al. [58], Gasser et al. [95]) (see Appendix C).

2.3.5 Interstitial Pore-Fluid Flow

Empirical evidence of Forcheimer [91] and Maroudas [178] showed the restrictions of
Darcy’s filter law

nF wF = −KF gradP , (2.55)

to lingering fluid flows. In equation (2.55), the specific permeability KF (in mm4/N s) is
related to the Darcy flow coefficient (hydraulic conductivity) kF (in mm/s) by

kF = γFRKF , (2.56)

where γFR = ρFR g is the effective fluid weight, ρFR is the effective fluid density and
g = |g| is the vectorial norm of the gravitation g. In particular, the linearity between the
seepage velocity wF and the pressure gradient gradP breaks down due to turbulences in
the seepage flow, created by the tortuosity of the pore structure (Mow & Mansour [193]).
The nonlinear influence of the pressure gradient on the seepage velocity is constitutively
described by the Forchheimer equation (Forcheimer [91]) and extended by Hassanizadeh
& Gray [108] as

−grad P = (
1

KF
+

ρFR

BS
|wF |)wF , (2.57)

where BS is the tortuosity parameter.

Equation (2.57) can be rewritten as

wF = − (
1

KF
+

ρFR

BS
|wF |)

−1

︸ ︷︷ ︸
KF

F

grad P , (2.58)

where KF
F is the nonlinear permeability. After taking the norm of (2.57), solving the

obtained quadratic equation for|wF | and inserting |wF | into (2.58), the dependency of
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KF
F on the seepage velocity is substitued to the pressure-gradient dependence yielding

(Knupp & Lage [146], Markert [172])

KF
F = KF

(
1

2
+

√
1

4
+

ρFR

BS
(KF )2 |gradP|

)−1

. (2.59)

Herein, the influence of the deformation state on the specific permeability KF and the
tortuosity BS takes the form (Markert [173])

KF = KF
0S (

nF

nF
0S

nS
0S

nS
)κ, κ ≥ 0 and BS = BS

0S (
nF

nF
0S

nS
0S

nS
)β, β ≥ 0 , (2.60)

where KF
0S and BS

0S are the initial values in the solid reference configuration, and κ and
β are the factors governing the nonlinear deformation dependence.

Further investigations on fibre-reinforced porous materials by Federico & Herzog [86]
revealed a strong correlation between pore-fluid flow directions and collagen fibre orien-
tation. The preferred pore-fluid flow directions along the collagen fibres are captured by
means of the permeability tensor (Eipper [80])

HS = HS
0S K

S . (2.61)

Herein, the natural hydraulic anisotropy HS
0S is the constant part of the permeability

tensor HS and is expressed analogously to the additive split of the stresses in (2.32) by
Federico & Herzog [86] and Ricken & Bluhm [217] as

HS
0S = (1−

nS
coll

nS
) I+

nS
coll

nS
MS . (2.62)

Besides, the deformation-dependent part KS of the permeability tensor HS expressed in
(2.61) is related to the development of preferred flow paths under finite deformation of
the solid skeleton and is described by Eipper [80] as

KS =
1

2

3∑

k=1
j 6=l 6=k 6=j

[λS(j)λS(l)]
θ NS(k) ≡ (cofBS)

θ with θ ≥ 0 , (2.63)

where λS(j)λS(l) (j 6= l) represents the eigenvalues of the cofactor of BS, and θ is the real-
valued power governing the nonlinearity. If θ = 0, the deformation-induced anisotropy is
not considered, i. e., KS = I .

The expressions obtained in (2.59), (2.61), (2.62) and (2.63) are finally introduced into
the generalised 3-d filter law for the incompressible pore-fluid flow, yielding

nF wF = −KF gradP with KF = KF
F HS , (2.64)

where KF is the generalised permeability tensor.





Chapter 3:

Numerical Treatment

A short overview of the numerical techniques involved in the computation of the proposed
model is provided in the present section. After establishing the governing and constitutive
equations and choosing primary variables as well as boundary and initial conditions, an
initial-boundary-value problem (IBVP) can be defined.

The set of coupled partial differential equations (PDE) given in Chapter 2 is rearranged to
suit a numerical solution scheme such as the finite-element method (FEM) involved in the
finite-element (FE) software PANDAS (Porous Media Adaptive Nonlinear Finite Element
Solver based on Differential Algebraic Systems). In this regard, weak formulations are
derived from the governing equations. Thereafter, the spatial discretisation is performed
using the FE scheme, whereas the temporal discretisation is carried out by means of the
finite-difference method.

3.1 Finite-Element Method

The obtained PDE are solved within the framework of the FEM. Herein, weak forms are
obtained by multiplying the governing equations by test functions and integrating over
the spatial domain. Then, the overall domain is discretised in space by means of FE. In
a further step, the time discretisation based on the implicit Euler scheme is performed
before briefly introducing the numerical solution procedure of the Newton method. The
interested reader is referred to the works of Bathe [19], Braess [37] and Schwarz [228] for
further general information about the FEM. Further works of Ammann [6] and Ellsiepen
[83] include porous materials in the framework of the FEM.

3.1.1 Weak Formulation

The governing equations of the coupled solid-fluid problem are solved within a numerical
solution procedure by the FEM. However, solving the equations given in their strong
forms is generally not possible for a numerical solution strategy. Therefore, the governing
equations are transformed into their weak counterparts. Consequently, the validity of the
obtained equations is guaranteed for the overall domain in an integral manner but not for
each single spatial point.

As established in Chapter 2, the strong formulation of the coupled solid-fluid problem
comprises the following:

23
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• Saturation condition:

nS + nF = 1

• Overall volume balance:

0 = div [ (uS)
′
S + nFwF ]

• Solidity:

nS = nS
0S J

−1
S

• Overall momentum balance:

0 = div T

• Overall stress:

T = TS
E − P I

• Generalised filter law:

nFwF = −KF gradP

In this connection, the primary variables are defined as the solid displacement uS and
the hydraulic pore-fluid pressure P. The choice of the hydraulic pore-fluid pressure P is
motivated by its constant value over the domain boundary. Choosing the overall pressure p
as the primary variable would easily lead to unstable numerical solutions with oscillations
(Ehlers & Acartürk [70], Karajan [138], Snijders et al. [235]).

Furthermore, the set of trial functions yields

SuS
(t) = { uS ∈ H1 (Ω)d : uS(x) = ūS(x, t) on ΓuS

}, and

SP(t) = { P ∈ H1 (Ω) : P(x) = P̄(x, t) on ΓP },
(3.1)

where H1 (Ω) is the Sobolev space corresponding to functions, which first derivatives are
square integrable within the spatial domain Ω, and d ∈ {1, 2, 3} relates to the space
dimension of the problem. Herein, ΓuS

and ΓP are the domain boundaries on which
the Dirichlet boundary conditions {ūS, P̄} are described for the set {uS, P} of primary
variables. Furthermore, the Neumann or natural boundary conditions {t̄, q̄} are defined
on the boundaries Γt and Γq.

In summary, every PDE can mathematically be split over the overall domain surface Γ as

Γ = ΓuS
∪ Γt with ΓuS

∩ Γt = ∅ , and

Γ = ΓP ∪ Γq with ΓP ∩ Γq = ∅ .
(3.2)

Similar to equations (3.1), arbitrary test functions δuS and δP of the corresponding
primary variables are defined as

TuS
(t) = { δuS ∈ H1 (Ω)d : δuS(x) = 0 on ΓuS

}, and

TP(t) = { δP ∈ H1 (Ω) : δP(x) = 0 on ΓP } .
(3.3)

Then, the weak counterparts of the given set of strong balance equations are defined after
multiplication of the balance relations with the test functions and integration over the
domain Ω. After this, Gauß ian divergence theorem is applied to specify the boundary
integrals. In particular, the weak form of the overall momentum balance is

GuS
( δuS,uS,P ) ≡

∫

Ω

(TS
E − P I) · grad δuS dv −

∫

Γt

t · δuS da = 0 , (3.4)
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where t = (TS
E − P I )n is the external load vector acting on the boundary of the entire

aggregate. Herein, n is the outward-oriented surface normal unit vector.

Furthermore, the weak form of the overall volume balance is given as

GP( δP,uS,P ) ≡

∫

Ω

div (uS)
′
S δP dv +

∫

Ω

nFwF · grad δP dv +

+

∫

Γq

q̄ δP da = 0 ,

(3.5)

where q̄ = nFwF · n represents the outward-directed fluid flow.

3.1.2 Initial Conditions

Starting from the natural initial conditions uS = 0 and P = 0, it is worth mentioning
that the model does not present a stress-free reference configuration. The system always
develops an initial osmotic pressure (Karajan [138])

∆π0S = RΘ
(√

4 c̄ 2
m + (cfcm,0S)

2 − 2 c̄m

)
, (3.6)

which generates initial values of the Cauchy stress tensor T0S different from 0. In order
to solve this problem, the solid matrix is pre-stressed without any deformation when
adding the initial osmotic part ∆π0S I to the extra mechanical solid stress TS

mech, i. e.,
TS

0S,mech = ∆π0S I. For more details, the interested reader is referred to Karajan [138].

3.1.3 Space Discretisation with Mixed Finite Elements

In this section, an IBVP has to be solved within the spatial domain x ∈ Ω and the time
domain t ∈ [0, T ] by means of a numerical procedure. Therefore, the spatial domain Ω is
fragmented into several finite subdomains Ωe and leads to the approximated domain Ωh,
yielding

Ω ≈ Ωh =

Ne⋃

e=1

Ωe , (3.7)

where the number Ne of subdomains or FE, characterised by Nn nodes, assembles the FE
mesh Ωh.

In a further step, the discrete counterparts Sh
uS

and Sh
P
of the spatially continuous, infi-

nite dimensional trial and test spaces SuS
and SP given in equations (3.1) and (3.3) are

obtained as
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uS (x, t) ≈ uh
S(x, t) = ūh

S(x, t) +

NuS∑

j=1

φj
uS
(x)uj

S(t) ∈ Sh
uS
(t) ,

P (x, t) ≈ P
h(x, t) = P̄

h(x, t) +

NP∑

j=1

φj
P
(x)P

j(t) ∈ Sh
P
(t) ,

δuS (x) ≈ δuh
S(x) =

NuS∑

j=1

φj
uS
(x)δuj

S ∈ Th
uS
(t) ,

P (x, t) ≈ δPh(x) =

NP∑

j=1

φj
P
(x)δP

j ∈ Th
P
(t) .

(3.8)

Herein, ūh
S(x, t) and P̄

h(x, t) are the Dirichlet boundary conditions. Moreover, uj
S(t) and

P
j(t) are the time-dependent values at the Nn nodes of the FE mesh, where

{NuS
, NP} ≤ Nn depends on the approximation accuracy. Besides, φj

uS
= {φ1

uS
, ..., φd

uS
}

and φj
P = {φ1

P
, ..., φd

P
} are the space-dependent global basis functions for the trial and test

functions. In this context, the Bubnov-Galerkin method justifies the coincidence between
the basis functions for the trial and test functions. Consequently, homogeneous Dirichlet
boundary conditions are obtained at the Dirichlet boundaries, i. e., the test functions δuS

and δP vanish at ΓuS
and ΓP . In particular, the obtained discrete version Gh

uS
and Gh

P
of

the weak forms is expressed by a system of d ·NuS
+NP linearly independent equations

(Ammann [6], Ellsiepen [83]).

In the framework of a strongly coupled solid-fluid problem, an adapted, mixed FE formu-
lation is used. The primary variables {uS, P} appear simultaneously in the weak forms of
the overall volume and momentum balances. To achieve an equal-order approximation for
the solid extra stresses TS

E and the hydraulic pressure P in (3.4), the choice of Taylor-Hood
elements formulated by means of quadratic approximation for the solid displacement uS

and linear approximation for the hydraulic pore-fluid pressure P comes up naturally. In
particular, the 2-d rectangular and 3-d hexahedral Taylor-Hood elements are depicted in
Figure 3.1.

From a mathematical point of view, this choice of Taylor-Hood elements fulfils the require-
ments of stability and accuracy expressed by the Ladyzhenskaya-Babuška-Brezzi (LBB)
condition (Braess [37], Brezzi & Fortin [39]) and the patch test for mixed formulations
(Zienkiewicz et al. [265]). Considering the aforementioned conditions, oscillations in the
numerical solution can be avoided.

Next, an adapted numerical integration of the weak form of the set of equations is per-
formed by means of the Gauß quadrature (Zienkiewicz & Taylor [266]). As given in
equation (3.7), the continuous integral over the domain Ω is approximated on the dis-
crete domain Ωh consisting of the summation over its subdomains Ωh

e . Then the global
coordinates x are reformulated in the local element coordinates ξ via the Jacobian Je. In
this regard, the geometrical transformation is performed using an isoparametric concept,
i. e., the same basis functions are chosen for the geometry and the displacements. Then
the numerical integration is carried out after the approximation of its continuous coun-
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solid displacement uj
S,

hydraulic pressure P
j

solid displacement uj
S

nodal degrees of freedom

2-d element 3-d element

Figure 3.1: 2-d rectangular and 3-d hexahedral Taylor-Hood elements.

terpart at Kg discrete Gauß points ξk and the definition of weight factors wk (Ellsiepen
[83], Zienkiewicz & Taylor [266]). The whole procedure is as follows:

∫

Ω

f(x) dx ≈

∫

Ωh

f(x) dx =

Ne∑

e=1

∫

Ωh
e

f(x) dx ≈
Ne∑

e=1

Kg∑

k=1

f(ξk) Je(ξk)wk . (3.9)

3.1.4 Semi-Discrete Initial-Value Problem

Before introducing the time discretisation, the aforementioned considerations can be sum-
marised within the framework of a semi-discrete initial-value problem based on Ehlers &
Ellsiepen [71] and Ellsiepen [83]. In particular, only the spatial domain is so far discre-
tised, whereas the time domain is still continuous. Next, the space-discrete values of the
NuS

displacement nodes and the NP hydraulic pressure nodes are collected in the vector
of unknowns u which consists of all degrees of freedom (DOF) as

u =
[
(u1

S,P
1), ..., (u

NP
S ,P

NP ), ..., (u
NuS

S )
]T

. (3.10)

Furthermore, the internal (or history) variables related to the isotropic and anisotropic
viscoelasticity are contained in the vectors qISO (cf.Karajan [138], Markert [172]) and
qANI at the Q quadrature points and for the N Maxwell elements, yielding

qISO =
[
(CSi)

1
1, ..., (CSi)

1
N , ..., (CSi)

Q
1 , ..., (CSi)

Q
N

]T 

 q = (qT

ISO,q
T
ANI)

T .
qANI =

[
(JS4i)1, ..., (JS4i)N

]T (3.11)

Herein, the vector q is defined as the combination of qISO and qANI. Besides, a local vector
L is introduced containing the N ·(Q+1) evolution equations of the N ·Q tensorial history
variables resulting from the viscous ECM behaviour and the N scalar history variables
due to the viscous anisotropic setting. In particular, L belongs to the class of systems of
ordinary differential equations (ODE) of first order in time. In a similar way, the global
equations are gathered in the space-discrete function vector G = [Gh

uS
,Gh

P
]T corresponding

to a system of differential-algebraic equations (DAE) of first order in time (Ellsiepen [83]).
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After combining the vectors u and q in the general vector of unknowns y = (uT ,qT )T ,
the implicit initial-value problem is formulated by the space-discrete vector F as

F(t,y,y′) =

[
G(t,u,u′,q)
L(t,q,q′,u)

]
=

[
Mu′ + k(u,q)− f

Aq′ − r(q,u)

]
!
= 0 , (3.12)

where y′, u′ and q′ are the time derivatives with respect to the solid motion. Moreover,
M is the generalised mass matrix, and k corresponds to the generalised stiffness vector.
Furthermore, f is the generalised external force vector containing the Neumann boundary
conditions, and A is a regular identity matrix (Acartürk [2], Ammann [6], Karajan [138]).

3.1.5 Temporal Discretisation

In the next step, the time discretisation of the semi-discrete initial-value problem is per-
formed. In this context, the Runge-Kutta methods deal with the numerical time inte-
gration of differential equations of first order in time such as the equations contained in
the vectors G and L. In particular, a stiffly accurate, s-stage diagonally implicit Runge-
Kutta (DIRK) method together with mixed-order FEM provides unconditionnally stable
numerical solutions for the given problem. If instead, an explicit time integration scheme
is applied, special stabilisation techniques have to be used, since explicit schemes are con-
ditionally stable (Diebels et al. [56], Ellsiepen [83], Heider [111]). Amongst the existing
DIRK methods, the implicit (backward) Euler method is the present concern. Herein, the
time derivatives y′

n, u
′
n and q′

n of the vectors of unknowns y, u and q at the n-th time
step are approximated respectively as

y′
n =

yn − yn−1

∆t
=

∆yn

∆t
with yn = yn−1 +∆yn ,

u′
n =

un − un−1

∆t
=

∆un

∆t
with un = un−1 +∆un ,

q′
n =

qn − qn−1

∆t
=

∆qn

∆t
with qn = qn−1 +∆qn ,

(3.13)

where ∆t is the time increment, and yn−1, un−1 and qn−1 represent the vectors of un-
knowns at the (n− 1)-th time step.

In order to conclude the time discretisation procedure, equation (3.13) is inserted into the
global and local systems of equations given in (3.12), yielding

Fn(tn,yn,
∆yn

∆t
) =




Gn(tn,un,
∆un

∆t
,qn)

Ln(tn,qn,
∆qn

∆t
,un)


 =




M
∆un

∆t
+ k(un,qn)− f

A
∆qn

∆t
− r(qn,un)




= Rn(∆yn)
!
= 0 .

(3.14)
Herein, the nonlinear functional Rn(∆yn) has to vanish after solving the nonlinear equa-
tion system with respect to the unknown increment ∆yn.
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3.2 Numerical Solution Procedure

A convenient way to solve the nonlinear system formulated in (3.14) is proposed by the

Newton-Raphsonmethod. In particular, the Jacobian (tangent) matrix Jn =
dRn

d∆yn

of the

system has a block-structured nature (Karajan [138], Markert [172]). For this purpose,
the use of the generalised Block Gauß-Seidel-Newton method, also called the multi-level
or two-stage Newton procedure, is appropriate. More information about the solution
procedure is given in Ellsiepen [83] and Diebels et al. [56]. In this regard, a local Newton-
Raphson scheme is applied for each substep of the global Newton iteration. In particular,
the local system containing the nonlinear evolution equations Ln is first solved for the
local increments ∆qn of the internal variables. Regarding the history variables ∆qn,ISO

related to the intrinsic viscoelasticity of the ECM, a local Newton-Raphson procedure
with given increments of ∆un provides a local solution at each integration point Q and
for each Maxwell element N .

In terms of the internal variables ∆qn,ANI = [(JS4i)1, ..., (JS4i)N ]
T referring to the viscous

behaviour of the anisotropic structure, the numerical implementation is treated as follows.
For clarity reasons, the evolution equation (2.46) of the inelastic counterpart of the fibre
stretch is expressed for one Maxwell element (N = 1) as

(JS4i)
′
S = J−1

S4

1

ηf

Mfe∑

m=1

(µ̃m)1 (J
((γ̃m)1/2)
S4e − 1) . (3.15)

Equation (3.15) is discretised in time by means of an implicit Euler ian scheme as

(JS4i)
′
S =

JS4i,n − JS4i,n−1

∆t
, (3.16)

where JS4i,n is the unknown viscous counterpart of the fibre stretch at the n-th time step,
and JS4i,n−1 is the preceding value of the viscous counterpart of the fibre stretch at the
(n− 1)-th time step. A local residuum rn of the form

rn = Jk
S4i,n − JS4i,n−1 − J−1

S4

∆t

ηf

Mfe∑

m=1

(µ̃m)1

[( JS4

Jk
S4i,n

)((γ̃m)1/2)

− 1
]

!
= 0 (3.17)

is evaluated and numerically solved using a Newton-Raphson iteration process to meet
the requirement ||rn|| < εloc, where εloc is a given tolerance. Herein, Jk

S4i,n is the viscous
counterpart of the fibre stretch at the n-th time step after the k-th local Newton iteration.
For instance, the (k + 1)-th Newton iteration delivers the value J

(k+1)
S4i,n at the n-th time

iteration, yielding

J
(k+1)
S4i,n = Jk

S4i,n − rn

(drn
dJk

S4i,n

)−1

. (3.18)

In this context,
drn
dJk

S4i,n

is the derivative of rn calculated as

drn
dJk

S4i,n

= 1 +
∆t

2 ηf

Mfe∑

m=1

(µ̃m)1 (γ̃m)1
J
((γ̃m)1/2−1)
S4

(Jk
S4i,n)

((γ̃m)1/2+1)
. (3.19)
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After updating sequentially the isotropic and anisotropic contributions of the internal
variables, the overall new vector qm,k+1

n of the internal variables at the (k + 1)-th local
Newton-Raphson iteration is

qm,k+1
n = qm,k

n +∆qm,k
n . (3.20)

Following this, the consistent global Jacobian (tangent) matrix JGn
=

dGn

d∆un
, which

indirectly depends on ∆qn, can be computed.

As a next step, the global system Gn is solved for the Newton increment ∆um
n by means

of the iterative method of the generalised minimal residual (GMRES) (Saad & Schultz
[220], Wieners et al. [252]). This method is faster and less memory consuming than direct
solvers for large DAE systems. In this case, the simplified Newton method is applied in
order to avoid a multiple calculation of the Jacobian matrix for each Newton step, in
contrast to the standard Newton method.

After solving the system, the global vector um at the m-th global Newton-Raphson itera-
tion is updated as

um+1
n = um

n +∆um
n . (3.21)

Here again, the iteration process is performed until the condition on the L2-norm of the
function vector Gn is fulfilled, i. e., ||Gn|| < εglob, where εglob is a given tolerance.



Chapter 4:

Model Refinement

In this chapter, the constitutive model presented in Chapter 2 is refined to make it pos-
sible to describe the behaviour of multiphasic, anisotropic, viscoelastic materials such as
articular cartilage and skin tissue. The aim is to extend the existing model with required
additional features such as anisotropy or heterogeneity. In particular, sections 4.1 and 4.2
are related to specific properties observed in articular cartilage. The modelling of these
specifications in the proposed model is thorougly explained. In sections 4.3 and 4.4, fur-
ther properties such as anisotropic viscoelasticity and fibre-matrix shear interaction are
investigated. The presented numerical simulations introduce the central topics of model
calibration and sensitivity analysis addressed in Chapter 5. Finally, section 4.5 proposes
a first reduction of the computational model.

4.1 Main Features of Articular Cartilage

4.1.1 Description of Cartilage

Within the human body, there are three different types of cartilage with slightly varying
structures and functions, i. e., elastic cartilage, fibrocartilage and hyaline or articular
cartilage (see Figure 4.1). Articular cartilage is the most abundant type.

cartilage layer

subchondral bone

articular cartilage

elastic cartilage

fibrocartilage

Figure 4.1: Cartilage types in the human body (left) [http://lyceum.algonquincollege.com]
and section through cartilage layer and subchondral bone (right) [http://www.vetmed.vt.edu].
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Along with the synovial fluid, articular cartilage enables smooth motion within synovial
joints and acts as a shock absorber. Furthermore, it contributes to an even distribution
of the loads between the femoral head and the acetabular cup in a synovial joint.

In its healthy state, articular cartilage is an aneural and avascular, soft biological tissue
consisting of a bluish-white, smooth and shiny ground elastic material into which collagen
fibrils and cartilage cells are embedded. In this context, cartilage can be regarded as a
multiphase material. Approximately 70 to 85% of the weight of the whole tissue comprises
interstitial water. The remainder of the tissue is composed primarily of proteoglycans
(PG) and collagen (Maroudas [178], Mow et al. [191]). PG consist of a protein core to
which glycosaminoglycans (chondroitin sulfate and keratan sulfate) are connected to each
other, forming a bottlebrush-like structure. Approximately 30% of the dry weight of
articular cartilage is composed of PG, while collagen makes up the remaining 60 to 70%.
Collagen type II is predominant in articular cartilage, although other types are present
in smaller amounts.

4.1.2 Arcade-Like Collagen Structure

In early 1925, Benninghoff [22] suggested a simplified arcade-like form of the collagen
structure related to the cartilage layer of the femoral head (see Figure 4.2, left). Later,
the exact ultrastructure of articular cartilage could be visualised by means of light and
electron microscopes (Broom & Myers [42]) and also magnetic resonance imaging (MRI)
techniques (Azuma et al. [12], Gründer [100]). The arrangement of collagen fibres can
be divided into three distinct zones between the surface of articular cartilage and the
subchondral bone (see Figure 4.2, right). Directly underneath the articular surface is
the superficial zone, where the collagen fibres are tangentially oriented to the articular
surface. This zone neighbours the middle zone, where the fibrils are randomly oriented.
In the deep zone connecting to the subchondral bone, they are perpendicularly aligned to
the bone surface and anchored into the subchondral bone.

split line

fovea capitis

articular surface

superficial zone

middle zone

deep zone
subchondral bone

Figure 4.2: Top view of the femoral head with split-line contours (left) (Lieser [160]) and
schematic representation of a section through the cartilage layer with fibre orientation (right)
[http://www.jaaos.org].
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From a mathematical point of view, the arcade-like fibre alignment is represented by the
fibre vector aS

0 in the reference configuration. The angular variation φS
0 of the direction

of aS
0 with respect to the normal direction n to the articular surface is calculated at each

Gauß point (GP) using a function of the normalised depth z̃ = z/h, starting from the
articular surface (see Figure 4.3).

φS
0

h

z
superficial zone

middle zone

deep zone

subchondral bone

GP

n

aS
0

Figure 4.3: Angular fibre variation φS
0 as a function of the normalised depth z̃ = z/h.

In particular, the angle φS
0 (in radians) is approximated by the function

φS
0 =

π

2
(z̃ − 1)2 . (4.1)

If z̃ = 0, the fibres are parallel to the articular surface, i. e., φS
0 = π/2 while they are

oriented perpendicularly to the cartilage-bone interface, i. e., φS
0 = 0 , if z̃ = 1.

Then, the components of aS
0 are stored at each GP of the spatial domain as internal (his-

tory) variables. The same procedure is used for the depth-dependent heterogeneities of
cartilage addressed in section 4.2.1. Further information about FE modelling of inhomo-
geneities related to intervertebral discs is given by Karajan [138].

4.1.3 Split-Line Contours

Figure 4.2 (left) also shows preferred orientations of the collagen network structure at
the cartilage surface of the femoral head, which can be revealed by means of the split
lines. Split lines are observed after puncturing the cartilage surface at multiple sites
with a circular awl. The resulting holes are not circular but elliptical. The long axes of
the ellipses are aligned in a so-called split-line direction. The direction of the split lines
matches that of the highest tensile stresses within the cartilage (Bae et al. [15], Lieser
[160]).

In the modelling, the split lines are assumed to be radial to the fovea capitis, the pit on
the femoral head, where the ligament inserts, and oriented in the direction of the beeline
between the cartilage margins. Here, the zones of circular distribution of the split lines
(Lieser [160]) are neglected.
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4.2 Further Properties of Cartilage

4.2.1 Depth-Dependent Heterogeneities

The inhomogeneous distribution of the collagen structure within the cartilage layer leads
to inhomogeneous features of articular cartilage (Lipshitz et al. [165], Mow et al. [192]).

The distribution
nS
coll

nS
of the collagen fibres with respect to the solid constituent is depicted

in Figure 4.4 (left) based on Wilson et al. [255]. This distribution is approximated by a
quadratic function of the normalised depth z̃ of the form (Wilson et al. [255])

nS
coll

nS
= 1.4 z̃2 − 1.1 z̃ + 0.59 . (4.2)

The expression in (4.2) is then inserted into the calculation of the extra mechanical stresses
TS

E,mech formulated in (2.32).

Note that recent studies of Lilledahl et al. [162] involved a detailed characterisation of

the anisotropy using an imaging process. Therein,
nS
coll

nS
was associated to the dispersion

parameter of the collagen fibres over the depth of the cartilage layer.

Next, observations of Maroudas [178] about the variation of the specific permeability
KF

0S over the cartilage layer are depicted in Figure 4.4 (right). The variation of KF
0S is

approximated by means of a quadratic function of the normalised depth z̃ reading

KF
0S = (−2.14 z̃2 + 1.67 z̃ + 0.88) K̄F

0S [mm4/N s ] , (4.3)

where K̄F
0S is the mean value over the cartilage domain.
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Figure 4.4: Distribution of the collagen fibres [255] (left) and measured specific permeability
[178] (right).

The porosity also displays a heterogeneous distribution throughout the cartilage (Lipshitz
et al. [165], Wilson et al. [255]), as depicted in Figure 4.5 (left). This distribution is
inspired from Wilson et al. [255], yielding

nF
0S = (1.13 − 0.26 z̃) n̄F

0S , (4.4)

where n̄F
0S is the mean initial porosity.

Another heterogeneity is caused by the unequal distribution of the fixed charge’s density
over the cartilage layer’s thickness, as depicted in Figure 4.5 (right) (Wilson et al. [255]).
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The distribution of the concentration of the fixed charges is defined by a quadratic function
of the normalised depth. After modification of Wilson et al. [255] using the mean value
c̄fcm,0S of the initial concentration of the fixed charges over the cartilage domain, it reads

cfcm,0S = (−0.82 z̃2 + 1.97 z̃ + 0.29) c̄fcm,0S [mol/l ] . (4.5)

The concentration of the fixed charges is also influenced by another phenomenon whose
mechanical significance has been advocated by Maroudas & Bannon [180], Maroudas et al.
[181] and Urban & McMullin [246]. A part of the interstitial pore fluid is attached to
the collagen fibres and hence, is chemically inactive (Lipshitz et al. [165]). Therefore,
the effective concentration cfcm,eff of the fixed charges is defined as the freely movable

extrafibrillar part of the initial concentration cfcm,0S of the fixed charges, yielding (Wilson
et al. [255])

cfcm,eff = cfcm,0S

nF
0S

nF
free,0S

, (4.6)

where nF
free,0S represents the initial volume ratio of the freely movable, interstitial pore

fluid as follows (Wilson et al. [255]):

nF
free,0S = (−1.96 z̃2 + 0.01 z̃ + 3.2) n̄F

0S . (4.7)

The effective concentration cfcm,eff formulated in (4.6) is then substituted to cfcm,0S in the
calculation of the concentration of the fixed charges given in (2.27).
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Figure 4.5: Distribution of porosity [255] (left) and fixed charge’s concentration [255] (right).

4.2.2 Deformation- and Flow-Dependent Properties

Regarding the properties describing the interstitial pore-fluid flow, it can be observed
that permeability depends on the deformation state (Maroudas [178]) and the pressure
gradient, as depicted in Figure 4.6. Figure 4.6 (left) clearly represents to what extent
the applied pressure gradient modifies the measured permeability. The linear dependence
between the interstitial fluid flow and the hydraulic gradient breaks down. In other words,
a traditional Darcy law for lingering flows driven by slight pressure gradients does not
hold in the present case.

Furthermore, experimental observations suggest different permeability properties for the
radial and axial directions (Quinn et al. [211], Reynaud & Quinn [216]). Figure 4.6 (right)
depicts the variation of the ratio between measured radial and axial permeabilities with
respect to the compressive strain at different stress states. Further investigations reveal
the significant influence of the collagen fibres’ disposition on the pore-fluid flow (Federico
& Herzog [86], Reynaud & Quinn [216]).
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Figure 4.6: Permeability at different strain states and applied pressure differences [178] (left)
and anisotropic permeability at different stress states [211] (right).

4.3 Application to Anisotropic Viscoelasticity

This section is devoted to the extension and application of the constitutive viscoelastic
formulation presented in Chapter 2. The viscoelastic properties of the collagen fibres
are investigated in order to isolate the important anisotropic features of collagen from the
influences of the ECM. The focus lies on numerical investigations of the fibre viscoelasticity
and on its evaluation by means of academic numerical examples.

4.3.1 Tensile Test

First, the results obtained using the presented model are compared with tensile tests on
anisotropic materials. The experimental data for relaxation are adopted from Sanjeevi
et al. [225]. The experiments concern the stress relaxation of dry collagen fibres (l =
10mm) of rat tail tendons after a displacement jump is applied. The simulation is carried
out over 400 s on a geometry, which is discretised using 20 horizontally aligned, 20-noded
hexahedral Taylor-Hood elements, yielding 828 DOF. To express the pressure boundary
conditions, the excess pressure P̄ = P − P0 is defined with respect to the atmospheric
pressure P0. In the present case, all boundary surfaces are perfectly drained, i. e., P̄ = 0,
in order to concentrate only on the effects from the viscoelastic fibres. Besides, the
permeability and the solidity are artificially raised, and the stiffness of the matrix is
extremely decreased. The boundary surfaces of the geometry are fixed in the out-plane
direction, to mimic the one-dimensional behaviour of collagen fibres, except the lateral
surface on the right-hand side, which undergoes a horizontal displacement ūS(t), as shown
in the IBVP in Figure 4.7.

In the first step, a horizontal displacement of |ūS(t)| = 1mm is applied as a step function
in the fibre direction. The experimental and numerical results obtained with PANDAS are
compared in Figure 4.8 after a short manual calibration. The stress response, i. e., the
average stress related to the reaction force in the direction of the applied displacement,
is represented over the simulation time. The blue curve with cross points refers to the
results obtained from the experiment, and the red line indicates the simulation results.



4.3 Application to Anisotropic Viscoelasticity 37

It appears that the presented model with the optimised parameter set given in Table 4.1,
using one polynomial term (Mf = 1) for the equilibrium part and one Maxwell element
(N = 1) with one polynomial term (Mfe = 1) for the non-equilibrium part, leads to an
excellent approximation of the experimental results.

P̄ = 0

P̄ = 0

P̄ = 0

ūS(t)

l

Fibre direction

Figure 4.7: IBVP of the stress relaxation experiment and dimension of meshed geometry
(length l = 10mm) (top), side view (bottom, right) and plan view (bottom, left).
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Figure 4.8: Stress relaxation of a dry collagen fibre.
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Properties of Type Notation Range Unit

matrix and fibres

matrix elasticity
µS
0 0.3 · 10−4 MPa

λS
0 0.1 · 10−4 MPa

γS
0 1.0 -

fibre elasticity
µ̃1 287.52 MPa
γ̃1 2.0 -

fibre viscoelasticity
(µ̃1)1 54.32 MPa
(γ̃1)1 2.0 -
ηf 1228.68 MPa s

pore-fluid flow
porosity nF

0S 0.01 -
effective fluid density ρFR 10−6 kg/mm3

permeability KF
0S 6.9 mm4/N s

Table 4.1: Optimised constitutive parameters.

4.3.2 Loading-Holding Experiment

In the next step, the numerical model is calibrated with the experimental data presented
by Sanjeevi [224]. The same geometrical arrangement as depicted in Figure 4.8 is used.
Figure 4.9 presents the stress response when the specimen experiences a displacement
ūS(t) with a rate of |(uS)

′
S| = 0.012mm/s. The calculated non-equilibrium and equi-

librium contributions of the stress response are shown separately by means of the blue
and red curves, respectively. The curves with crossed points are the experimental equiva-
lents. Furthermore, the stress decay at small intervals of strain due to the loading-holding
imposition is indicated by the red dashed line.
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Figure 4.9: Stress-strain diagram for tension test on dry collagen fibres.

The material parameters with two polynomial terms (Mf = 2) for the equilibrium part
and two Maxwell elements (N = 2) with one polynomial term (Mfe = 1) for the non-
equilibrium part lead to the presented numerical results after a short parameter optimi-
sation by hand. The material parameters are summarised in Table 4.2.
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Properties of Type Notation Range Unit

matrix and fibres

matrix elasticity
µS
0 0.3 · 10−4 MPa

λS
0 0.1 · 10−4 MPa

γS
0 1.0 -

fibre elasticity

µ̃1 110.74 MPa
γ̃1 2.5 -
µ̃2 −21.56 MPa
γ̃2 −18.4 -

fibre viscoelasticity

(µ̃1)1 350.84 MPa
(γ̃1)1 2.0 -
(µ̃1)2 -177.38 MPa
(γ̃1)2 2.0 -
ηf 3430.0 MPa s

pore-fluid flow
porosity nF

0S 0.01 -
effective fluid density ρFR 10−6 kg/mm3

permeability KF
0S 6.9 mm4/N s

Table 4.2: Optimised constitutive parameters.

4.4 Application to Fibre-Matrix Shear Interaction

After investigating the intrinsic viscoelasticity of fibres, the next focus is on the shear
interactions between the fibres and the surrounding ground matrix. Parameter studies
are performed on a homogeneous, poroelastic, anisotropic material roughly related to the
human skin, for the following reasons. First, the computational effort when using the
complex model instead of a simplified one bears no relation to the gained information.
Second, the application of the complex constitutive model of cartilage would require
calibration strategies which go beyond the scope of this section (see Chapter 5). The
aim of the simplistic modelling in this section is obviously not to capture the features
of complex multi-layered structures such as skin tissues (Groves et al. [99], Naresh et al.
[200], Pailler-Mattei et al. [206], Ridge & Wright [218]). Instead, general considerations
of an academic case for the purpose of numerical investigations on shear interactions are
addressed here.

4.4.1 Concept of Tensile Tests on Notched Specimens

A concept of experimental procedure is proposed for identifying the material parameters
µint and αint related to the shear interaction between fibres and matrix. To “activate”
the shear interaction phenomena, a tensile test on notched specimens is proposed. Two
different configurations (L = 20mm, h = 1mm) are compared and evaluated with respect
to their ability to model shear interaction phenomena. In configuration 1 (Figure 4.10,
top), a notch (length l1) is cut at mid-length of the specimen, which spans between two
loading clamps. In configuration 2 (Figure 4.10, bottom), two notches are modelled. For
both configurations, a notch length ratio e = l1/L = (l1 + l1)/2L is defined. A horizontal
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displacement |ūS(t)| = 4mm is applied as a step function in the fibre direction, and the
resulting reaction force is calculated numerically. All surfaces are perfectly drained (P̄ =
0). Due to symmetry conditions, the simulation is performed on a half (for configuration
1) or a quarter (for configuration 2) of the geometry. The domain is discretised using 968
20-noded, hexaedral Taylor-Hood elements, yielding 18 630 DOF.

L

L

l1

l1

l1

h

ūS(t)

ūS(t)

P̄ = 0

P̄ = 0

P̄ = 0 P̄ = 0

P̄ = 0
Fibre direction

Figure 4.10: IBVP of configuration 1 (top) and 2 (bottom) and dimensions of geometry (length
L = 20mm, thickness h = 1mm, notch length l1).

4.4.2 Influence of the Involved Parameters

In order to determine the value of the material parameters experimentally, the sensitiv-
ity of the calculated reaction force to the interaction parameters is first evaluated. The
specimen under consideration is modelled as a skin tissue, where the fibres are oriented
parallel to Langer’s lines in the direction of the applied displacement. Langer’s lines cor-
respond to the natural orientation of the collagen fibres in the skin (Gallagher et al. [93]).
The material parameters for the matrix and the fibres are obtained from the literature
(Gallagher et al. [93], Groves et al. [99], Pailler-Mattei et al. [206], Silver et al. [232]).
Experimental data regarding fibre-matrix interaction in articular cartilage are lacking.
For the sake of clarity, only the interaction parameter µint is varied between 0.005 and
0.025MPa, while the other interaction parameter αint is kept constant. The complete set
of material parameters used for the computations is given in Table 4.3.

The results are summarised in Figure 4.11. All graphs show the stress response of the
material to the applied stretch (displacement) over strain. The difference between the
figures is the notch length ratio e. For the four notch-length-ratio values and the high and
low values of the interaction parameter, configurations 1 and 2 have been computed. The
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Properties of Type Notation Value/Range Unit

matrix and fibres

matrix elasticity
µS
0 0.288 MPa

λS
0 0.431 MPa

γS
0 1.0 -

fibre elasticity
µ̃1 0.006 MPa
γ̃1 2000 -

matrix-fibre interaction
µint [0.005-0.025] MPa
αint 500 -

pore-fluid flow
porosity nF

0S 0.01 -
effective fluid density ρFR 10−6 kg/mm3

permeability KF
0S 6.9 mm4/N s

Table 4.3: Chosen constitutive parameters.

red curves relate to the calculated stress in configuration 1. Configuration 2 is presented
by the green curve. The cases of low and high µint-values are described by simple curves
and curves with colored dots, respectively.
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Figure 4.11: Stress-strain diagrams for different notch length ratios e, configurations 1 and 2
and low and high values of the interaction parameter µint.

It appears that not only the notch length ratios e but also the configuration type have an
influence on the variation of the calculated stress. This observation is more noticeable in
Figure 4.12. Therein, configurations 1 and 2 are compared with respect to the percentaged



42 4 Model Refinement

sensitivity S =
∆σ

∆µint

100 [%] of the variation ∆σ of stress to the variation ∆µint of the

interaction parameter for different notch length ratios e. The crossed red curve and
the crossed green curve describe the sensitivity calculated in configurations 1 and 2,
respectively.
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Figure 4.12: Sensitivity S as a function of the notch length ratio e for configurations 1 and 2.

Figure 4.13 clearly shows that configuration 2 with high values of e leads to an easier
identification of the interaction parameter µint for the same applied displacement. In
other words, for the same value of e, one observes a more widespread distribution of the
overall in-plane shear stresses τ in configuration 2 than in configuration 1.

−5.0
τ [kPa]

5.0

Figure 4.13: Shear stress contours and mesh deformation in configuration 1 (left) and config-
uration 2 (right).

A difference can also be observed in the deformation characteristics due to the considera-
tion of the fibre-matrix shear component. Figure 4.14 represents the deformation contours
with and without the influence of the fibre-ground-matrix shear interaction for configu-
ration 2. More generally, the absence of the fibre-matrix shear interaction is a source of
errors, when the deformation characteristics of the soft tissues are relevant (Gasser et al.
[95], Peng et al. [208]). The origin of the incorrect deformation prediction is mostly related
to the neglect of the increase of the matrix stiffness when the fibres are stretched. With
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a smaller matrix stiffness, the fibres rotate more easily in the matrix ground substance
and match their direction to carry the loads. Subsequently, this excessive rotation leads
to larger transverse deformations than the deformations observed through experimental
data.

0
|uS | [mm]

4.0

Figure 4.14: Displacement contours and mesh deformation in configuration 2 without (left)
and with (right) fibre-matrix shear interaction.

4.5 First Model Reduction

After tackling the complexity of cartilage modelling in detail throughout this chapter, a
first model reduction is performed.

The discussed interaction mechanisms between the ECM and the collagen fibres will not
be further considered in the numerical model. Strong effects due to fibre-matrix shear
interactions were only observable for large deformations (applied strain > 20%), which
do not occur in the investigated experiments related to articular cartilage. Subsequently,
those effects are not part of the calibration strategy of Chapter 5.

Regarding the mechanical behaviour of the collagen fibres, the anisotropic viscoelasticity
in articular cartilage is generally investigated using tensile tests. However, cartilage is
a soft biological tissue mainly “designed” to resist compressive loads. In this regard,
various studies prove that even though tensile stresses exist within cartilage, their values
are relatively low (Eberhardt et al. [60, 61, 62]). From these considerations, the anisotropic
viscoelastic effects resulting from the fibres are not treated in the already complex cartilage
model.





Chapter 5:

Strategy for Cartilage Model Calibration

As already mentioned in sections 4.3 and 4.4, the validity of a given numerical model
cannot be investigated without addressing the central notion of model calibration, i. e.,
parameter identification and sensitivity analysis. Herein, these operations were mainly
manageable due to the model’s relative simplicity.

When considering the more complex case of articular cartilage described as a heteroge-
neous, anisotropic and osmotically swelling, poroviscoelastic solid, saturated by a fluid, as
summarised in section 4.5, a consistent strategy has to be proposed. A consequence of the
model complexity is the difficulty to estimate each constitutive parameter without utilis-
ing advanced numerical tools. Furthermore, some parameters might be coupled or cannot
be identified accurately due to the lack of experimental data or technical literature. More-
over, a small error in the initial simulation may exponentially increase the model output
when dealing with particularly “sensitive” parameters (Helton et al. [114], Iman et al.
[126]). This chapter introduces a model calibration strategy in which different aspects,
such as parameter identification and sensitivity analysis related to strongly coupled solid-
fluid problems, are thoroughly discussed.

5.1 Method for Parameter Identification

Identifying parameters is an extremely delicate task when dealing with soft biological tis-
sues such as articular cartilage. Many disruptive factors complexify an easy identification
of parameters. In addition to difficult interpretable parameters related to the strongly
coupled solid-fluid problem, other sources of errors have to be considered. Particularly,
the storage conditions of the specimens, as well as the procedure chosen by the exper-
imenter to test such tissues, are of great importance. Articular cartilage is also highly
patient-specific, i. e., depends on various factors such as age and overall state of health.
Hence, an adapted stepwise identification for multiple tests, combined with an individual
parameter identification technique for each given test, shall be considered.

5.1.1 Stepwise Identification for Multiple Testing

In order to identify material-specific and unknown parameters correlated with the exper-
imental data and given in the constitutive equations, a parameter optimisation strategy
is proposed. First, the material parameters governing solid elasticity are estimated si-
multaneously for a given set of experimental tests. Then, the remaining parameters
governing fluid viscosity and solid viscoelasticity are evaluated. In this context, an opti-
misation problem is solved, which implies the minimisation of a least-squares functional
f(s) subjected to a certain number of inequality constraints. At the end of the parameter

45
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identification process, a new variable vector of parameters generated from function values
is obtained.

5.1.2 Constraint Optimisation by Linear Approximation

In this work, a trust-region method is chosen out of the available gradient-free methods
for identifying the material parameters. This method rests upon a constraint optimisation
by linear approximation (COBYLA) (Powell [210]). Its advantage lies in the individual
treatment of the inequality constraints during the iterative optimisation procedure, in-
stead of bringing together all constraints into a single penalty function. This method
is also used because it allows black box computations with no direct access to material
routines. In particular, a merit function compares the quality of different variable vectors
with respect to the greatest constraint violation.

The objective function to minimise is

f(s) =
N∑

n=1

wn [φn(s)− φ̃n ]
2 , (5.1)

depending on the vector s of constitutive parameters and subjected to Ninq inequality
constraints

g(s) = gk (s) ≥ 0 , k = 1, ..., Ninq . (5.2)

Herein, φ̃n is the experimental output, and φn(s) is the output of the simulation. Besides,
wn and N are the weighting factors and the number of data points, respectively.

5.2 Method for Sensitivity Analysis

One important approach in the identification of uncertainty is sensitivity analysis. Sensi-
tivity analysis estimates how variations in the model output can be deduced from varia-
tions in model parameters (Crosetto et al. [52]).

A broad spectrum of sensitivity-analysis techniques is currently available (Crosetto et al.
[52], Helton [113]). In the following section, a local sensitivity analysis is conducted for
the sake of computational simplicity. A more comprehensive overview of the theoretical
background is provided by Ehlers & Scholz [79].

5.2.1 Definition of Sensitivity Vectors

The sensitivity vectors
dφn

ds
are contained in the objective function derivative in the form

of

df(s)

ds
= 2

N∑

n=1

wn
dφn

ds
[φn(s)− φ̃n ] . (5.3)



5.3 Cartilage Model Calibration Strategy 47

In particular, the i-th component of the sensitivity vector is numerically calculated by
means of the forward difference method as

dφn

ds

∣∣∣∣
ŝi

≈
φn(ŝi +∆ si)− φn(ŝi)

∆ si
, (5.4)

where ŝi is the i-th entry in the set of parameters, and the increment ∆ si is chosen to
avoid truncation and round-off errors.

5.2.2 Derivation of Correlation Matrices

Next, the conjoint effects of the change of two material parameters ŝi and ŝj on the
material response φ̃n, i. e., the covariances kij (with i 6= j), are gathered in the covariance
matrix K, yielding

K =
[ N∑

n=1

dφn

ds

(dφn

ds

)T]−1

. (5.5)

The correlation coefficients rij are obtained after normalisation of the covariances as

rij =
kij√
kii kjj

(5.6)

and gathered in the correlation matrix, which is per se symmetric. The values of the
correlation matrix entries vary between −1 and 1. A strong correlation between material
parameters is indicated by |rij| ≈ 1. In this case, the origin of an observed phenomenon
cannot be precisely assigned to one or another parameter, which handicaps a unique
parameter identification. Furthermore, if incertitude exists on the measurement of this
parameter, a rigorous parameter finding is almost impossible for a given set of experiments.

Note in passing that the correlation matrix only offers valuable clues to the sensitiv-
ity analysis. Contrary to the uncertainty analysis, where the parameter importance is
investigated, only the parameter sensitivity is examined. In this regard, an important
parameter is always sensitive with respect to the output. However, a sensitive parameter
is not necessarily important and thus might have only a slight influence on the output.

5.3 Cartilage Model Calibration Strategy

Before addressing experimental testing of cartilage, the model calibration strategy ex-
posed in the previous sections is recapitulated in Figure 5.1. At the beginning (“Start”),
an IBVP is carefully derived from a given experimental set-up. This first step requires a
close collaboration between the “simulator” and the “experimenter”. A well-thought-out
IBVP confronted with the technical possibilities of the laboratory facilities is the neces-
sary fundament of a valid model calibration. Subsequently, experiments and simulations
based on the elaborated computational model are performed, and the output from the
experiment is compared with the numerical results. Next, material parameters are it-
eratively identified by means of an optimisation procedure until the objective function
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f(s) is smaller than a chosen tolerance value. Then, a sensitivity analysis is performed
to evaluate the coupling pattern and the interdependency amongst the parameters. If
parameters appear to be fully decoupled, i. e., the variation of the output can be clearly
assigned to a single parameter, a model reduction can be eventually performed. In this
case, the reduced set of parameters should ideally be identified again. In the monograph,
this step is intentionally omitted to avoid a laborious presentation of multiple correlation
matrices related to the same IBVP, and the end of the calibration process is assumed
(“End”). If parameters are displaying high correlation, a unique parameter identification
is not guaranteed. In other words, the chosen IBVP is not adapted to calibrate the model.
Therefore, a new IBVP has to be elaborated, leading to a repeat of the same process from
the beginning (“Start”).

Start

End

yes

yes

no

no

yes

no

Experiment(s)

Simulation Results

Output

Sensitivity
analysis

Strong
coupling?

Model
reduction?

New
IBVP

Parameter
finding

f(s) < tol?

Figure 5.1: Flowchart of cartilage model calibration.

In the following sections, the flowchart of the model calibration is applied to real ex-
perimental set-ups such as multiple indentation testing of cartilage (see section 5.4) and
multi-directional shear loading of cartilage (see section 5.5).

5.4 Application to Indentation Testing of Cartilage

A classic way to calibrate cartilage models is to perform indentation tests. Indenta-
tion testing has been broadly used to measure the penetration depth and to obtain the
properties of various materials (Hayes & Mockros [110], Kang et al. [137]). In this re-
gard, the most commonly used indenters are the flat-ended cylindrical, spherical, conical
and Berkovich types (Khrushchov & Berkovich [144]). Depending on their configura-
tion (quantified as the projected area on the material loaded surface) and on the applied
indentation force, different displacement ranges are observed. For example, a Berkovich
indenter displaces more volume than a conical one and creates higher local stresses. Other



5.4 Application to Indentation Testing of Cartilage 49

effects related to the indenter geometry, such as friction, sharpness of the indenter tip and
size may also have a large influence on the experimental testing and, of course, on the FE
modelling.

In the framework of single-phase, isotropic and homogeneous materials loaded by flat-
ended cylindrical and spherical indenters, Hayes et al. [109] proposed an analytical solution
to determine the Young’s modulus and Poisson’s ratio. The mechanical response was
found to be dependent on a scaling factor called the aspect ratio, defined as the ratio
between the indenter radius and the material thickness. Jin & Lewis [128] proposed
the use of a dual indenter system to determine the unknown material parameters at
equilibrium.

In the case of soft biological tissues such as cartilage, indentation testing is commonly
the first choice for finding the mechanical properties (Kempson et al. [143], Li & Herzog
[157], Mak et al. [170], Mow et al. [190]). In particular, spherical and cylindrical indenters
present advantages and drawbacks, which should be briefly mentioned. On the one hand,
using a spherical indenter will achieve a more uniform deformation state. Besides, lower
deformation gradients in the tissue are observed for the same compression amount when
using a spherical cylinder. On the other hand, non-uniform stresses will appear at the
sharp edges of cylindrical indenters. This can naturally lead to tissue damage, which can
be avoided by choosing a cylindrical indenter with a fillet of sufficiently large radius. From
the experimental point of view, cylindrical indenters are preferred over their spherical
counterparts, because they do not slip so easily. From the numerical point of view, the
use of spherical indenters requires the modelling of more complex contact conditions.

For these reasons, flat-ended cylindrical indenters with radii ranging between 0.4mm
(Korhonen et al. [149]) and 0.75mm (Mow et al. [190]) are chosen. However, performing
single-indentation tests in order to obtain a unique parameter identification is not feasible
when dealing with solid-fluid coupled problems. Particularly, it is not easy to distinguish
the intrinsic viscoelasticity of the solid phase from the viscous drag resulting from the
pore-fluid flow due to the strong coupling between the solid and the fluid phases. One
way to quantify the contributions of the fluid percolation and the solid viscoelasticity to
the overall creep behaviour is to carry out a set of indentation tests that only differ in the
indenter size. A sensible suggestion would be that the viscous pore-fluid drag through the
cartilage layer plays a more relevant role when a larger indenter is used. Accordingly, the
influence of the pore-fluid contribution can be investigated more precisely and depending
on the indenter size, should lead to an easier identification of the parameters related to
the pore-fluid flow properties.

5.4.1 Multiple-Indentation Tests

Multiple-indentation tests on stifle joints of bovine origin collected from a local slaugh-
terhouse were performed at the Medical School of Hannover. Osteochondral cylinders
(diameter D = 6mm, thickness h = 1.98mm) were harvested from the load bearing area
of the femoral condyles immediately after the animals were sacrificed. Specimens were
then sorted out for uniform cartilage thickness. The specimens were preserved at 253K in
cryotubes containing phosphate buffered saline (PBS), a buffer solution commonly used
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in biological research, and inhibitors, prior to thawing for 30 minutes and stabilising for
an extra 30 minutes at 310K. The centre points of the specimens were marked using a
0.5mm Edding marker to assure the creep measurement at the same point while perform-
ing multiple creep tests. Creep tests were performed at 310K under atmospheric pressure
conditions, and the specimens were kept in 0.15mol/l of PBS, with proteases inhibitors
(0.001mol/l of PMSF (P7626); 0.001mol/l of iodoacetimide (I6125); 5 g/l of pepstatin
A (PP4265); 0.001mol/l of EDTA (ED4SS), all from Sigma) (Langelier & Buschmann
[153]). A total number of three specimens were measured under creep indentation by
means of three different indenter sizes. A custom-built creep-indentation testing machine
(Medical School of Hannover, central research workshop), featuring flat-end cylindrical
indenters of radii 0.4, 0.5, and 0.75mm, was used to apply an equivalent load vector t̄

corresponding to a maximal load of 0.1N as a step function, which was kept constant
until achievement of a steady-state indentation depth (see Figure 5.2, left). After each
creep test, the specimens were given two hours of swelling time. Then, a needle-probe
thickness measurement was performed at 310K. The thickness of the cartilage layer at
five locations including the CI measurement points in accordance with a location pattern
was measured using the needle-probe method (Jurvelin et al. [134]).

As depicted in Figure 5.2 (right), the axial-symmetric IBVP of the indentation test with
the arcade-like collagen structure in cartilage (Han et al. [107], Saarakkala et al. [222]) is
carried out on a half of the geometry, which is discretised using 385 8-noded, rectangular
Taylor-Hood elements yielding 2 903 DOF. The upper surface and the lateral border of
the cartilage are perfectly drained (P̄ = 0). The bottom surface is fixed and impermeable
due to its direct connection to the subchondral bone.

P̄ = 0

t̄

D/2

h

r

Fibre direction

Figure 5.2: Experimental set-up for multiple-indentation tests at the Medical School of Han-
nover (left) and IBVP of the indentation test with variable indenter radius r and average di-
mensions of cartilage specimen (diameter D = 6mm, thickness h = 1.98mm) (right).

5.4.2 Parameter Identification

The first step in parameter identification consists of the specification of the parameter
ranges or increments. These physiological ranges are always related to models, which



5.4 Application to Indentation Testing of Cartilage 51

might differ to some extent from the presented model. Therefore, an unknown uncer-
tainty still involves the choice of parameter ranges. Nevertheless, physiological ranges
are cautiously estimated according to the literature (Li & Herzog [156], Ratcliffe & Mow
[215], Wilson et al. [255]). In Table 5.1, the parameters which are not addressed with ( · )∗

are varied within the physiological range.

Properties of Type Notation Range Unit

matrix and fibres

matrix elasticity
µS
0 [ 0− 1 ] MPa

λS
0 [ 0− 1 ] MPa

γS∗
0 30.0 -

matrix viscoelasticity

µS
1 ? MPa

λS
1 ? MPa

ηS1 ? MPa s
ζS1 ? MPa s
γS∗
1 12.0 -

µS
2 ? MPa

λS
2 ? MPa

ηS2 ? MPa s
ζS2 ? MPa s
γS∗
2 12.0 -

fibre elasticity
µ̃1 [ 1− 10 ] MPa
γ̃1 [ 1− 10 ] MPa

osmosis
c̄fc ∗m,0S 0.2 mol/l
c̄∗m 0.15 mol/l
RΘ∗ 2477721 Nmm/mol

pore-fluid flow

porosity n̄F ∗
0S 0.75 -

effective fluid density ρFR ∗ 10−6 kg/mm3

def.-dep. permeability
K̄F

0S [ 10−4 - 10−2 ] mm4/N s
κ [ 1 - 20 ] -

tortuosity
BS

0S [ 0 - 10−16 ] mm
β [ 1 - 20 ] -

anisotropic permeability θ [ 1 - 20 ] -

Table 5.1: Constitutive parameters needed for the presented model.

Regarding the values of the volumetric extension terms γS
0 , γ

S
1 and γS

2 inspired by Kara-
jan [138], they are chosen in order to reflect the characteristics of the ECM, such as the
osmotically swelling features and the stiffening effect during dilatation. As indicated by
the symbol “?”, information was lacking for the starting values and the variation ranges
of the parameters µS

1 , λ
S
1 , η

S
1 , ζ

S
1 and µS

2 , λ
S
2 , η

S
2 , ζ

S
2 describing the intrinsic viscoelastic

behaviour by means of two Maxwell elements (N = 2). Furthermore, no information on
the variation ranges of the deformation-dependent factors β and θ could be gathered.
Hence, the same admissible range as for the exponent κ, governing the nonlinear depen-
dency of the permeability on the deformation rate, is assumed. For the determination of
the initial tortuosity parameter BS

0S, no precise data are available. However, to poten-
tially decrease the specific permeability KF

0S of one order of magnitude, as illustrated in
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Figure 4.6 (left), an extremal value of 10−16mm for the parameter BS
0S is estimated by

means of equation (2.59). During the parameter identification procedure, the material
properties of the chosen reference state are provided by the central values of the given
physiological ranges. Furthermore, the material parameters to be identified are subjected
to the following inequality constraints

µS
0 , λ

S
0 > 0 γ̃1 ≥ 2

µS
1 , λ

S
1 > 0 KF

0S > 0

ηS1 , ζ
S
1 > 0 BS

0S > 0

µS
2 , λ

S
2 > 0 κ ≥ 0

ηS2 , ζ
S
2 > 0 β ≥ 0

µ̃1 ≥ 0 θ ≥ 0 .

(5.7)

The elaborated model calibration strategy of Figure 5.1 leads to the set of optimised
parameters given in Table 5.2.

Material parameters

µS
0 = 0.58 [MPa] λS

0 = 0.02 [MPa] µS
1 = 0.10 [MPa]

λS
1 = 0.16 [MPa] ηS1 = 10.0 [MPa s] ζS1 = 10.64 [MPa s]

µS
2 = 10.0 [MPa] λS

2 = 9.4 [MPa s] ηS2 = 2.5 [MPa s]

ζS2 = 3.0 [MPa s] µ̃1 = 1.0 [MPa] γ̃1 = 2.0 [−]

KF
0S = 0.7 · 10−3 [mm4/N s] κ = 11.0 [−] β = 10.5 [−]

BS
0S = 10−19 [mm] θ = 3.0 [−]

Table 5.2: Optimised material parameters after model calibration strategy.

After model calibration for the different indenter geometries, the experimental and nu-
merical results are depicted over the simulation time t in Figure 5.3. In the upper dia-
gram, the raw experimental data (denoted by “exp”) are depicted by the light red, green
and blue curves with dots for the small (r = 0.4mm), medium (r = 0.5mm) and large
(r = 0.75mm) indenters, respectively. These curves are approximated by the logarithm
functions f1, f2 and f3 (denoted by “fit”) via

f1 = 20.531 log t− 0.0231 t+ 49.889 [mm] ,

f2 = 13.836 log t− 0.003 t+ 29.427 [mm] ,

f2 = 7.666 log t− 0.007 t+ 35.2731 [mm]

(5.8)

for the small, medium and large indenters. These functions are represented by the dark
red, green and blue dashed lines, respectively. Then, the aforementioned parameter iden-
tification technique is performed, in which f1, f2 and f3 are inserted in the objective
function f(s). After parameter identification, the model calibration delivers the results
presented by the curves denoted by “sim” in the lower diagram of Figure 5.3. The light
red curve refers to the numerical results of the simulation when using an indenter of ra-
dius r = 0.4mm. When using an indenter of radius r = 0.5mm, the light green curve is
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obtained from the simulation. A large indenter of radius r = 0.75mm leads to the light
blue curve, obtained from the simulation. It appears that the presented model leads to
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Figure 5.3: History plot of indenter displacement of experiments and simulations for different
indenter geometries.

a good match to the experimental results with the same parameter set for the different
indenter geometries. A slight mismatch between the experimental and the numerical re-
sults related to the indenters of radii r = 0.4, r = 0.5mm and r = 0.75mm is most likely
due to the appearance of “noise” in the experimental data when measuring the indenter
displacements.

5.4.3 Sensitivity Analysis

In this section, a detailed sensitivity analysis of the multiple-indentation IBVP intro-
duced in Figure 5.2 (right) is performed. With regard to a clear and concise represen-
tation of the already complex coupled phenomena, articular cartilage is first considered
as an isotropic, homogeneous and poroelastic material. In this framework, the consid-
erations are split between low and high permeability values in the physiological range,
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because the permeability value is a good indicator for evaluating the solid-fluid “coupling
strength”. In the following, low permeability of articular cartilage is described by values
of KF

0S = 10−4mm4/N s (equivalent to kF = 10−12m/s) while high permeability is given
by values of KF

0S = 10−2mm4/N s (equivalent to kF = 10−10m/s). This distinction be-
tween low and high permeability is helpful to quantify the respective contributions of the
pore-fluid effects and the intrinsic viscoelasticity to the overall creep response of carti-
lage. In this regard, Setton et al. [230] showed that for articular cartilage, the effects of
drag forces caused by fluid flow were more dominant for the time-dependent phenomena
compared to the intrinsic viscoelasticity, if the specific permeability KF

0S was smaller than
10−2mm4/N s. This value corresponds to the chosen limit of the permeability range. One
goal of this paragraph is to verify qualitatively and quantitatively the validity of this
statement and to extend it to small (r = 0.4mm) and large (r = 0.75mm) indenters.

In order to investigate the influence of a permeability change on the indentation testing
of cartilage under a vertical load of 0.1N, the first concern is the fluid flow, characterised
by the seepage velocity vectors wF whose directions are instantaneously tangential to
the stream lines. The stream lines are represented by the white lines in Figure 5.4 at
a low permeability regime (KF

0S = 10−4mm4/N s). Figure 5.4 also shows the contours
of the overall pore-fluid pressure p on snapshots for different time steps throughout the
simulation for the small (Figure 5.4, top) and the large indenter (Figure 5.4, bottom).
On the one hand, one observes a slightly deeper fluid flow when the cartilage is loaded
by a small indenter. Due to the more local loading with a small indenter, the peak of
pore-fluid pressure is more localised in the neighbourhood of the indenter. Therefore, the
fluid pressure below the small indenter has to be higher than that for the large indenter.
On the other hand, when loaded by a large indenter, high values of the pressure spread
throughout the cartilage layer under the indenter position. Nevertheless, the fluid flows
for both configurations at a low permeability regime look rather similar.

0
p [MPa]

0.1

(a) t = 150 s (b) t = 250 s (c) t = 500 s (d) t = 1000 s (e) t = 1500 s

Figure 5.4: Pore-fluid pressure contours and stream lines for small (top) and large (bottom)
indenters at low permeability regime for different time steps.

Figure 5.5 represents the same pattern at a high permeability regime (KF
0S = 10−2mm4/N s).

As expected, the permeability increase leads to a quicker fluid flow through the cartilage.
Here again, similar fluid flows can be observed for both configurations by means of a set
of chosen time steps. In this case, the stream lines under the small indenter concentrate
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earlier than those for large indenters.

0
p [MPa]

0.1

(a) t = 150 s (b) t = 250 s (c) t = 400 s (d) t = 450 s (e) t = 500 s

Figure 5.5: Pore-fluid pressure contours and stream lines for small (top) and large (bottom)
indenters at high permeability regime for different time steps.

A closer look at the domain in the neighbourhood of the indenter at the same time
t = 150 s leads to Figures 5.6 and 5.7. Figure 5.6 depicts the contours of the pressure
lens, as well as the uniformly scaled seepage velocity vectors, which are shown by red
arrows. The pressure lens is obtained after cutting off the pressure contours below a
given level.

0
p [MPa]

0.1

Figure 5.6: Pressure lense and uniformly scaled seepage velocity vectors (depicted by red
stripes) for small (left) and large (right) indenters at a low permeability regime at t = 150 s
(enlarged view).

A significant difference appears between the small and the large indenter configurations at
a low permeability regime. The pore fluid does not only flow deeper within the cartilage
domain, but a different form of the pressure lens can also be pinpointed. A large belly
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0
p [MPa]

0.1

Figure 5.7: Pressure lens and uniformly scaled seepage velocity vectors (depicted by red arrows)
for small (left) and large (right) indenters at a high permeability regime at t = 150 s (enlarged
view).

shape appears under the small indenter, in contrast to the large indenter. Additionally,
the more local pore-fluid pressure distribution under a small indenter is diverging from
a rather equally distributed pressure in the large indenter case. Consequently, an almost
impermeable cartilage layer loaded by a small indenter generates a mostly local pressure
peak under the indenter. A reasonable statement would be that using a small indenter,
a small variation of the cartilage permeability around a given permeability state mostly
influences the measured response locally, as opposed to the case of a large indenter.

The same comparison can be made in Figure 5.7 for cartilage tissues at a high permeability
regime. For both indenter configurations, a more homogeneous pressure distribution
can be observed in contrast to the case in Figure 5.6. Therefore, a small permeability
variation around the given low permeability value might cause a similar perturbation of
the measured response.

To verify these observations quantitatively and to compare the pore-fluid flow between
small and large indenters, a normalised pressure p̃ = p/pmax is defined, where pmax is the
maximal pore-fluid pressure depicted in Figures 5.6 and 5.7 directly beneath the centre
of the indenter. Similar to the definition of the normalised depth z̃ introduced in section
4.1.2, the normalised position x̃ = xr/r below the indenter on the cartilage side is given
by the radial distance xr from the vertical symmetry axis, depicted in Figure 5.2 (right),
referred to the indenter radius r. The normalised pressure distribution p̃ is depicted in
Figures 5.8 and 5.9 at time t = 150 s by the red curve with red dots, at time t = 700 s
by the crossed red curve and at the end of the simulation at time t = 1 500 s by the
red line. in Figure 5.8 (left), p̃ is depicted as a function of the normalised position x̃ for
cartilage loaded by a small indenter at high and low permeability regimes. The case of a
large indenter is represented in Figure 5.8 (right). A quicker diminution of the pore-fluid
pressure over time can be clearly observed for the small indenter. Negligible pressure
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values are obtained at a high permeability regime with the small indenter. Moreover, a
different pressure-distribution pattern occurs depending on the chosen indenter size.
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Figure 5.8: Normalised pore-fluid pressure underneath the indenter for small (left) and large
(right) indenters throughout the simulation.

In Figure 5.9, the normalised pore-fluid pressure p̃ is depicted along the vertical symmetry
axis below the indenter as a function of the normalised depth z̃. It appears that the high
pressure peaks located in the direct neighbourhood of the small indenter diminish rapidly
over the cartilage depth. This leads to high vertical pressure gradients responsible for a
deeper fluid flow within the cartilage tissue. Nonetheless, the time-dependent behaviour
of the pressure distribution reveals again that, by using the small indenter, the pressure
decreases more quickly than in the case with the large indenter.
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Figure 5.9: Normalised pore-fluid pressure along the vertical symmetry axis for small (left)
and large (right) indenters throughout the simulation.

Based on the aforementioned considerations on an isotropic, homogeneous material, a
complete sensitivity analysis of the sophisticated cartilage model is performed using the

same split in two permeability regimes. In this regard, the sensitivity vector
dφn

ds
related

to a given material parameter is calculated when varying a given material parameter and
holding other parameters at central value as defined in equation (5.4). In the context
of the creep-indentation test, the measured response φ̃n is represented by the vertical
displacement of the indenter. Then, the sensibility vectors are added as a column to a
matrix arranged in a data set. The correlation coefficients rij of equation (5.6) gathered in
the correlation matrix are automatically computed by utilising the commercial computer
algebra system Maple.

In the first step, the focus lies on the time-independent material parameters, i. e., the
material parameters governing the matrix (µS

0 and λS
0 ) and the collagen fibre elasticity
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(µ̃1 and γ̃1). The vertical displacement obtained at the end of the simulation is chosen
as the index for the output of the computational model. For cartilage tissues at a high
permeability regime, the correlation-matrix entries of the time-independent parameters
relative to the small indenter (Table 5.3, left) are slightly smaller than in the case of a
large indenter (Table 5.3, right). However, no significant difference could be observed in
order to give a more proper statement. It just appears that the values are generally much
smaller than 1, which means that a unique identification of each parameter should be
possible. The same observations are presented for cartilage at a low permeability regime
in Table 5.4.

rij µS
0 λS

0 µ̃1 γ̃1
µS
0 1.00 −0.062 −0.027 −0.041

λS
0 1.00 −0.224 −0.230

µ̃1 1.00 −0.213
γ̃1 1.00

rij µS
0 λS

0 µ̃1 γ̃1
µS
0 1.00 −0.114 −0.088 −0.086

λS
0 1.00 −0.236 −0.235

µ̃1 1.00 −0.221
γ̃1 1.00

Table 5.3: Complete correlation matrix for the parameters governing the time-independent
behaviour for r = 0.4 mm (left) and r = 0.75 mm (right) for KF

0S = 10−4 mm4/Ns.

rij µS
0 λS

0 µ̃1 γ̃1
µS
0 1.00 0.067 0.032 0.031

λS
0 1.00 −0.178 −0.179

µ̃1 1.00 −0.198
γ̃1 1.00

rij µS
0 λS

0 µ̃1 γ̃1
µS
0 1.00 0.047 0.040 0.095

λS
0 1.00 −0.242 −0.220

µ̃1 1.00 −0.223
γ̃1 1.00

Table 5.4: Complete correlation matrix for the parameters governing the time-independent
behaviour for r = 0.4 mm (left) and r = 0.75 mm (right) for KF

0S = 10−2 mm4/Ns.

In the second step, the sensitivity of each specific, time-dependent parameter to the
measured output is investigated throughout the simulation. In this regard, the time
dependency is carried out by means of a pseudo-analytical method, which calculates
the vertical displacement of the indenter accumulated over the simulation time. This
method for time-dependent phenomena is also used and extended by den Camp et al. [47]
for multiple measurement points within a heterogeneous domain in the framework of a
sensitivity analysis on soft biological tissues.

Tables 5.5 and 5.6 represent the complete correlation matrix for the parameters governing
the time-dependent behaviour for small and large indenters at the low permeability regime.
For the sake of simplicity, the matrice entries related to the parameters of the second
Maxwell element (N = 2) are omitted. The cells highlighted in dark grey in the matrices
are of special interest. They clearly show, at the low permeability regime, the correlation
between the specific permeability KF

0S and the specific parameters governing the solid
viscoelasticity (µS

1 , λ
S
1 , η

S
1 and ζS1 ). The values of the matrice entries displayed in dark

grey for the large indenter are higher than those of the small indenter case. In other words,
none of these parameters can be identified separately, when using a single indentation
test with a large indenter. It is reasonable to think that the influence of the pore-fluid
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flow is smaller for almost impermeable tissues loaded by a small indenter due to a local
concentration of the pore-fluid pressure below the indenter. The remaining entries of the
matrices do not reveal any strong coupling due to their lower values, except for the cells
of the first four rows directly related to the intrinsic solid viscoelasticity.

rij µS
1 λS

1 ηS1 ζS1 KF
0S κ BS

0S β θ

µS
1 1.00 0.968 0.999 −0.999 −0.369 0.110 0.108 0.109 0.090

λS
1 1.00 0.968 −0.969 −0.386 0.078 0.074 0.076 0.057

ηS1 1.00 −0.999 −0.369 0.111 0.108 0.110 0.091
ζS1 1.00 0.365 −0.115 −0.112 −0.114 −0.095
KF

0S 1.00 −0.156 −0.155 −0.156 −0.149
κ 1.00 −0.111 −0.111 −0.114
BS

0S 1.00 −0.112 −0.114
β 1.00 −0.114
θ 1.00

Table 5.5: Complete correlation matrix for the parameters governing the time-dependent be-
haviour for r = 0.4 mm and KF

0S = 10−4 mm4/Ns.

rij µS
1 λS

1 ηS1 ζS1 KF
0S κ BS

0S β θ

µS
1 1.00 0.977 0.999 −0.999 −0.998 0.110 0.110 0.110 0.184

λS
1 1.00 0.977 −0.977 −0.977 0.082 0.082 0.082 0.155

ηS1 1.00 −0.999 −0.998 0.110 0.110 0.110 0.184
ζS1 1.00 0.998 −0.114 −0.114 −0.113 −0.188
KF

0S 1.00 −0.118 −0.118 −0.117 −0.191
κ 1.00 −0.111 −0.111 −0.102
BS

0S 1.00 −0.111 −0.102
β 1.00 −0.102
θ 1.00

Table 5.6: Complete correlation matrix for the parameters governing the time-dependent be-
haviour for r = 0.75 mm and KF

0S = 10−4 mm4/Ns.

Regarding cartilage at the high permeable regime, Tables 5.7 and 5.8 represent the same
correlation between permeability, which refers to the viscosity due to the pore-fluid flow
through the cartilage, and intrinsic viscoelasticity, as shown by the dark grey displayed
entries. The next row of entries, also highlighted in dark grey, shows the correlation
of the deformation dependency of the permeability with the solid viscoelasticity. More-
over, the entries displayed in medium dark grey reveal the significant influence of the
parameters BS

0S and β governing the tortuosity effects on the parameters governing the
time-dependent phenomena. These effects appear for higher seepage velocity values at the
high permeability regime. Finally, the matrix elements displayed in light grey represent
the strong correlation between the the parameter θ governing the deformation-induced
anisotropy and the solid viscoelasticity parameters.
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rij µS
1 λS

1 ηS1 ζS1 KF
0S κ BS

0S β θ

µS
1 1.00 0.999 0.999 −0.999 −0.998 0.452 0.620 0.843 0.696

λS
1 1.00 0.999 −0.999 −0.998 0.452 0.612 0.843 0.696

ηS1 1.00 −0.999 −0.998 0.453 0.623 0.843 0.696
ζS1 1.00 0.998 −0.453 −0.624 −0.843 −0.696
KF

0S 1.00 −0.458 −0.681 −0.845 −0.699
κ 1.00 −0.083 −0.322 −0.235
BS

0S 1.00 −0.015 −0.046
β 1.00 −0.539
θ 1.00

Table 5.7: Complete correlation matrix for the parameters governing the time-dependent be-
haviour for r = 0.4 mm and KF

0S = 10−2 mm4/Ns.

rij µS
1 λS

1 ηS1 ζS1 KF
0S κ BS

0S β θ

µS
1 1.00 0.999 0.999 −0.999 −0.995 0.651 0.992 0.994 0.993

λS
1 1.00 0.999 −0.999 −0.999 0.650 0.992 0.994 0.993

ηS1 1.00 −0.999 −0.995 0.650 0.992 0.994 0.993
ζS1 1.00 0.995 −0.651 −0.992 −0.994 −0.993
KF

0S 1.00 −0.638 −0.989 −0.990 −0.989
κ 1.00 −0.657 −0.657 −0.657
BS

0S 1.00 −0.985 −0.984
β 1.00 −0.985
θ 1.00

Table 5.8: Complete correlation matrix for the parameters governing the time-dependent be-
haviour for r = 0.75 mm and KF

0S = 10−2 mm4/Ns.

5.4.4 Influence of Heterogeneities

The influence of each heterogeneity type on the macroscopic response is the concern of
this section. The normalised displacement ũ = |ūS (t)|/|ūS (t = 1 500 s)| is defined as the
ratio between the vertical indenter displacement |ūS (t)| over the simulation time and the
vertical indenter displacement |ūS (t = 1 500 s)| at the end of the simulation in the full
heterogeneous case. In Figures 5.10 and 5.11, ũ is represented over the simulation time
for small (top) and large (bottom) indenters. Figure 5.10 refers to the low permeability
regime and Figure 5.11 to the high permeability regime.

The role of each single heterogeneity is investigated by reducing the heterogeneous distri-
bution of the listed material features to its average value. By doing so, the distributions of
the remaining heterogeneities are not modified. For instance, the pink curve described by
“homogeneous porosity distribution” only considers the numerical results obtained using
a poroviscoelastic, anisotropic, osmotically swelling and heterogeneous model, in which
only the porosity is homogeneously distributed over the cartilage layer. In this context, it
appears that a fully heterogeneous model mostly leads to a physiological load support in
cartilage due to a reduction of its deformation, as depicted by the red curve. This means
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Figure 5.10: Influence of heterogeneities for small (top) and large (bottom) indenters through-
out the simulation at the low permeability regime.
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Figure 5.11: Influence of heterogeneities for small (top) and large (bottom) indenters through-
out the simulation at the high permeability regime.

that the introduction of heterogeneities in the cartilage model generates smaller displace-
ment values than the displacement values calculated by means of a fully homogeneous
model, depicted by the brown curve. In particular, a homogeneous distribution of fibres
over the cartilage thickness provides lower overall cartilage stiffness, as shown by the green
curve. A fraction of the vertical load in creep testing is carried by the tangential fibres
in the superficial zone. In this cartilage region, the higher fibre stiffness, represented in
Figure 4.4 (left), will be more adapted to withstand deformations of the cartilage surface.
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In the following, cartilage heterogeneities are not further considered in the modelling due
to their minor influence on the numerical response.

5.5 Application to Shear Loading of Cartilage

A multiple-indentation testing with different indenter sizes was not fully capable of dis-
tinguishing the transient effects caused by the interstitial fluid from the effects of the solid
phase due to the strong coupling between material parameters. In this connection, an
alternative method for identifying material parameters is proposed by means of a novel
concept of experimental set-up.

The second objective of this section is to determine experimentally the spatial orientation
of the collagen fibres, a key factor for investigating the functionality and load-bearing
mechanisms of soft tissues. In this regard, a few existing experimental techniques for de-
termining the fibre architecture are briefly summarised. The usual investigation methods
are the T2-weighted MRI (Smith & Mosh [234]) or the diffusion tensor MRI (DT-MRI)
(de Visser et al. [249]) on intact tissues. Other methods relying on tomography are
also used, such as optical coherence tomography (OCT) and polarisation-sensitive OCT
(Ugryumova et al. [243]). The X-ray diffraction method (Mollenhauer et al. [187], Muehle-
man et al. [197]) is mostly limited to thin tissue sections. By means of a Fourier trans-
formation imaging and micro-spectroscopy (Boskey & Camacho [33]), the zonal fibre
orientation is clearly observable. Further methods based on microscopy are available,
such as differential interference contrast microscopy (Broom & Flachsmann [41]) or laser
scanning confocal microscopy (Wu et al. [259]). A standard technique is given by po-
larised light microscopy (PLM) (Xia et al. [261]). To investigate small tissue regions, the
scanning electron microscopy (SEM) (Kaab et al. [136]) is appropriate but leads to a de-
hydration of cartilage specimens. Recently, multi-photon microscopes (MPM) (Lilledahl
et al. [162], Zipfel et al. [268]) have been used in in-vivo experiments for 3-d imaging of
collagen fibre architectures. However, due to its limited penetration depth, only the su-
perficial layer could be viewed, which requires tissue sectioning. In order to determine the
collagen fibre orientation of the articular cartilage’s superficial layer, simple destructive
methods such as the split-line technique (see section 4.1.3) can also be used. Alterna-
tively, a new experimental set-up is explored that combines a simultaneous determination
of fibre orientation with a mechanical shear loading of the cartilage.

5.5.1 Concept of Multi-Directional Shear Experiment

Classic indentation tests turned out not to be sufficient to distinguish the transient effects
influenced by a “volumetric” deformation, i. e., a change in the tissue’s overall volume,
from the effects caused by shear deformations. Therefore, an adapted loading configu-
ration is built up, in which shear is the dominant loading mode. In this framework, a
concept of experimental set-up of indentation testing is proposed.

Figure 5.12 (left) shows how the set-up of an indentation testing machine, as used by the
associated research partner PD Hurschler at the Medical School of Hannover, could be
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modified. The flat tip of a steel indenter of radius 4mm is equipped with freely retractile
needles, which can be fixed at the cartilage sample surface. Furthermore, a control mech-
anism allows the “experimenter” to apply a shear movement to the rotatably mounted
indenter in different directions, as depicted by the white crossed arrows. The reason for
applying an orientation change during shear loading is to reveal the 3-d anisotropic be-
haviour of cartilage. This behaviour is investigated on a cylindrical cartilage sample with
the same dimensions as in the previous multiple-indenter testing (see Figure 5.2). The
cartilage domain is discretised using 14 735 20-noded, hexahedral Taylor-Hood elements,
yielding 48 055 DOF. The time-dependent boundary conditions of the applied displace-
ment ūS are depicted on the IBVP in Figure 5.12 (right). The sample is fixed at its
bottom surface, and all the boundaries are perfectly drained (P̄ = 0), except for the
surface in contact with the indenter and the bottom surface. Furthermore, the searched
direction of the superficial fibres is given by the red stripes on the cartilage surface.

The detailed test procedure is as follows:

• 1. Apply a vertical displacement of 0.01mm for the indenter to be in contact with
the cartilage surface.

• 2. Wait for 5 800 s until the fluid outflow at the cartilage surface is negligible.

• 3. The retractile needles are pushed out of the indenter to create a grip on the
cartilage surface.

• 4. The indenter undergoes a single back-and-forth shear displacement of 0.1mm
within 3 s in a chosen direction at the cartilage surface.

• 5. The needles are pulled back into the indenter cavity, and the indenter is rotated
clockwise by an angle α = 10◦ from the previous direction.

• 6. Repeat the experiment starting from step 4 and increase regularly the applied
shear angle α in step 5 until 180◦ is reached.

sample

indenter ūS

Superficial fibre direction

P̄ = 0

Figure 5.12: Novel experimental set-up inspired from the laboratory installations at the
Medical School of Hannover (left) and IBVP with meshed geometry and superficial fibre di-
rection (right).
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5.5.2 Sensitivity Analysis

The chosen material parameters of the cartilage tissue are taken from the previous pa-
rameter identification in Tables 5.1 and 5.2. Regarding the specific permeability KF

0S, a
cartilage tissue sample at the low permeability regime is assumed. Table 5.9 represents
the correlation matrix for the parameters governing the time-dependent behaviour of the
IBVP depicted in Figure 5.12 (right). The entries of the matrix highlighted in dark grey
are first considered. They clearly show the low correlation between the permeability KF

0S

and the constitutive parameters µS
1 and ηS1 governing the deviatoric contribution to the

intrinsic solid viscoelasticity. Similarly, the negligible influence of the volumetric contri-
bution ζS1 to the intrinsic viscoelasticity is shown by the cells highlighted in light grey.
As expected, an uncertainty on the parameters relative to the volumetric time-dependent
properties of cartilage would still lead to an acceptable model calibration with experi-
mental data and would guarantee a unique identification of the remaining parameters.
The other entries of the matrix do not reveal any strong coupling due to their lower val-
ues, except for the cells of the second row. These cells contain the combined correlation
values of volumetric-dependent parameters. Due to the weak dependence of the output
on a change in the volumetric properties of cartilage, the combined influence of these
parameters can be neglected.

rij µS
1 λS

1 ηS1 ζS1 KF
0S κ

µS
1 1.00 −0.007 0.969 0.005 −0.011 −0.012

λS
1 1.00 0.236 0.998 0.999 0.999

ηS1 1.00 0.247 0.232 0.231
ζS1 1.00 0.998 0.997
KF

0S 1.00 0.999
κ 1.00

Table 5.9: Correlation matrix for the parameters governing the time-dependent behaviour.

5.5.3 Determination of Fibre Orientation

To investigate ductile materials such as articular cartilage subjected to complex 3-d load-
ing conditions (see Figure 5.12), the use of von-Mises stresses is of advantage. The von-
Mises stresses σv calculated from the overall Cauchy stress tensor T reduce the complex
stress state to one single scalar value, regardless of the mix of normal and shear stresses.
The evolution of the von-Mises stresses σv during the test procedure of multi-directional
shear loading described in section (5.5.1) is illustrated by a few snapshots in Figure 5.13.
At time t = 5 803 s, cf. Figure 5.13 (a), the rotatably mounted indenter applies a shear
loading in the starting direction given by the angle α0 = 20◦ with respect to the superficial
fibre direction captured in Figure 5.12 (right). At time t = 5 819 s, cf. Figure 5.13 (c), the
shear loading takes place in the same direction as the superficial fibre orientation after
rotating twice by the angle α = 10◦ from the starting direction α0. At time t = 5 837 s,
cf. Figure 5.13 (f), the shear loading is performed in the direction perpendicular to the
fibre orientation after 9 rotations of the indenter. Higher values of the computed stresses
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are clearly observed during loading in the fibre direction (see Figure 5.13 (c)) than in the
other directions, as depicted by the contours of the von-Mises stresses σv.

(a) t = 5803 s (b) t = 5811 s (c) t = 5819 s

0.1
σv [MPa]

3.4

(d) t = 5831 s (e) t = 5835 s (f) t = 5837 s

Figure 5.13: Evolution of the von-Mises stresses σv during multi-directional shear loading.

An alternative to this qualitative evaluation of the fibre orientation is to report every
registered stress value in each simulated direction in the form of a diagram. In this
regard, the von-Mises stress values measured under the indenter surface are depicted
using a polar description, yielding

{
σv,‖ = σv cosΩ

σv,⊥ = σv sinΩ
with Ω = b α , (5.9)

where b is the number of indenter rotations, and Ω is the angle of the actual position. The
von-Mises stresses σv,‖ and σv,⊥ are the computed stresses parallel and perpendicular to
the fibre direction, respectively. These stress values can be interpreted as the major and
minor axes of an idealised ellipse, as depicted in Figure 5.14.
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Ω

3.4

1.8

σv,‖ [MPa]

σv,⊥ [MPa]

0

Figure 5.14: Determination of the fibre direction using a polar description.

5.6 Further Model Reduction

From these investigations, the model addressed in section 4.5 can be further reduced.
Some material parameters related to cartilage properties revealed lower relevance than
other central features, such as low-permeability characteristics, matrix viscoelasticity
and anisotropic behaviour. When considering articular cartilage at the low permeability
regime, anisotropic permeability, deformation-induced hydraulic anisotropy, deformation-
and tortuosity-dependent permeability seemed not to play an important role, as is seen
from the angle of the introduced IBVP. For the sake of computational efficiency, these
features are removed from the proposed model in the following numerical applications.
Note in passing that the reason why these properties are negligible lies within the almost
impermeable character of the ECM. This assumption holds for healthy cartilage tissues;
however, it will also be assumed in Chapter 6, when dealing with degenerative cartilage
tissue properties.



Chapter 6:

Application to Walking Processes

After the calibration strategy executed in the previous chapter, this chapter focuses on
relevant applications of the computational model. In this regard, walking is an important
pattern in the analysis of the loading conditions of articular cartilage, since it is the
dominant cyclic activity of daily living. Moreover, walking processes are of interest for
understanding pathomechanics of osteoarthritis (OA). In this context, the modelling of
a complex hip-joint geometry is the first concern in order to investigate these processes.
Loads are first applied on full hip-joint geometries to consider the contact of cartilage with
synovial fluid by means of a continuum-mechanical treatment. Following this, simplified
considerations based on a reduced geometry and contact forces are adopted and extended
for further numerical studies. The last part of the present chapter is concerned with the
influence of the given mechanical environment on the cartilage cells, the chondrocytes.

6.1 Compression and Shear Loads on a Hip Joint

A first attempt to understand the coupled mechanisms within hip joints is addressed in this
section. A holistic biomechanical hip-joint model is elaborated, and first test calculations
are performed. In particular, a combination of compression and shear loading (Radin
et al. [212]) is applied on the designed biological structures.

6.1.1 Geometry and Finite-Element Mesh

In order to visualise the patient-specific, 3-d hip joint anatomy, MRI scans (Figure 6.1,
left) are acquired from the associated research partner Prof. Schick (University Hospital
of Tübingen). This non-invasive method is well suited for soft biological tissues filled
with large amounts of interstitial fluid, such as articular cartilage. In this regard, a 3-
d geometry obtained from the image processing software ScanIP is established by the
associated research partner Dr. Jäger (University of Stuttgart). This step involves the
identification of joint components (femur, ligament, cartilage layers, labrum, fluid gap
and pelvis) (Figure 6.1, bottom) and their geometrical representation by spline surfaces
(Figure 6.1, centre). The structures that are not directly related to the joint, such as
muscles, are neglected. Then, the femur and pelvis bones are truncated to minimise the
number of required finite elements and concentrate on the femoral head and the acetabular
cup, respectively. This procedure results in a spherical section of the pelvis bone and a
straightly cut femur.

Next, the meshing of each single component using 27 140 20-noded, hexaedral Taylor-Hood
elements and resulting in 366 145 DOF is performed by means of the software ScanFE and
CUBIT, as depicted in Figure 6.1 (right).

67
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labrum

cartilage

femur

ligament
pelvis

fluid gap

Figure 6.1: MRI scan of hip joint (left), segmentation of geometry (centre), finite-element
mesh (right) and decomposed representation (bottom).

6.1.2 Visualisation of Stresses in the Hip Joint

After discretisation of the obtained geometry, the outer nodes of the acetabular cup are
fixed in space, and all free surfaces are perfectly drained (P̄ = 0), as depicted in Figure
6.2. Moreover, test load vectors t̄v, t̄h are applied as a step function, perpendicular and
parallel to the section of the femoral bone, respectively. A further load vector t̄n is applied
perpendicular to the external labrum surface to replicate the “constraint” due to the joint
capsule (Hoffmann & Grigg [120], Wingstrand & Wingstrand [257]).

Next, the femoral head, the acetabular cup, the ligament and the labrum are modelled by
means of an isotropic poroelastic material (Ehlers [65, 68], Markert [172]) with parameters
taken from the literature (Carter & Spengler [48], Ferguson et al. [87], Henak et al. [115],
Hewitt et al. [116], Juszczyk et al. [135], Malo et al. [171], Yosibash et al. [263]). The
simplified properties of the mentioned biological constituents are summarised in Table
6.1. For a more realistic modelling of the heterogeneous bony structure of the hip-joint
constituents, the interested reader is referred to the works of Ascenzi et al. [9] and Kardas
& Nackenhorst [140] among others. Therein, the bone density distribution is estimated
from computed tomography (CT) data which is mapped onto the finite-element mesh.
Regarding the description of the cartilage layers of the femoral head and the acetabular
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t̄v

t̄h

t̄n

t̄n

P̄ = 0

Figure 6.2: IBVP of hip joint and meshed geometry.
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Figure 6.3: Solidity (left), von-Mises stress (centre) and absolute displacement contours (right).

cup, the complex bovine cartilage model of a stifle joint calibrated from the multiple-
indenter testing in Chapter 5 is adopted. Although differences between material properties
of bovine and human cartilage exist, bovine cartilage is often used as a model for human
articular cartilage in the framework of pilot clinical studies (Athanasiou et al. [10], Nissi
et al. [203]).

Bone Ligament Labrum

µS
0 = 6.53 · 103 [MPa] µS

0 = 1.03 [MPa] µS
0 = 0.20 [MPa]

λS
0 = 9.81 · 103 [MPa] λS

0 = 4.66 [MPa] λS
0 = 0.10 [MPa]

γS
0 = 1.0 [−] γS

0 = 1.0 [−] γS
0 = 1.0 [−]

ρFR = 10−6 [kg/mm3] ρFR = 10−6 [kg/mm3] ρFR = 10−6 [kg/mm3]

nF
0S = 0.15 [−] nF

0S = 0.5 [−] nF
0S = 0.8 [−]

KF
0S = 0.21 · 10−4 [mm4/N s] KF

0S = 0.21 · 10−2 [mm4/N s] KF
0S = 7.5 · 10−6 [mm4/N s]

Table 6.1: Material parameters of various hip-joint constituents [48, 87, 115, 116, 135, 171, 263]

As to the synovial fluid, a continuum-mechanical description is chosen, i. e., the fluid is
modelled as a linear poroelastic solid. In particular, the fluid behaviour is represented
by low values of solidity (nS

0S = 0.01) and very low values of permeability (KF
0S = 0.22 ·

10−6 [mm4/N s]). The incompressibility of the fluid flow is approached by Poisson’s ratio
equal to 0.499. Furthermore, the intrinsic incapability of a fluid to resist shear forces is
captured by values of the shear modulus or the second Lamé constant µS

0 , much smaller
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than the first Lamé constant λS
0 , yielding µS

0 << λS
0 , as presented in Table 6.2. In Figure

Synovial fluid

µS
0 = 0.02 [MPa]

λS
0 = 7.0 [MPa]

γS
0 = 1.0 [−]

nF
0S = 0.99 [−]

ρFR = 10−6 [kg/mm3]

KF
0S = 0.22 · 10−6 [mm4/N s]

Table 6.2: Chosen material parameters for the synovial fluid.

6.3 (left), the solidity contours are depicted by means of a slice through the components of
a whole hip joint. The von-Mises stress distribution in Figure 6.3 (centre) does not reveal
any strong discontinuities. In Figure 6.3 (right), relatively high absolute displacements
are already observed at the junction between labrum and synovial fluid elements for non-
physically small load vectors t̄v, t̄h and t̄n leading to maximal loads of 8N, 1N and 1N,
respectively. This result is related to the quick distortion of the “fluid” elements under
shear loading. Thus, numerical instabilities take place and do not render any further
computation feasible. This behaviour is obviously due to the treatment of the synovial
fluid as a porous material. In the next section, countermeasures are proposed in terms of
the implementation of physiological loads directly applied on the femoral head.

6.2 Walking Loads on the Femoral Head

This section presents an easier way to investigate the stress evolution in hip joints dur-
ing daily activities such as walking. Herein, only the cartilage layer and the underlying
femoral bone are considered. Next, a method to transfer reaction forces calculated from
multi-body systems (MBS) to external load vectors acting on the boundary of the entire
aggregate is explained thoroughly. This method is applied to physiological and patho-
logical walking loads. A further distinction between healthy and osteoarthritic (OA)
mechanical responses is also investigated.

6.2.1 Geometry and Finite-Element Mesh

The outer cartilage surface of the real-scale femoral head and its underlying femoral bone
are extracted from the previous hip-joint geometrical model. For convenience, the spatial
discretisation of the femoral head geometry is conserved and consists of 11 224 20-noded,
hexahedral Taylor-Hood elements, yielding a total of 157 062 DOF. Then the discretised
structure is subjected to the boundary conditions depicted in Figure 6.4 (left). The nodes
of the section of the femoral bone are fixed in space and a perfectly drained (P̄ = 0) outer
surface of the cartilage is assumed. Besides, the contact load vector t̄c and the load vector
t̄t are applied perpendicular and tangential to the cartilage surface, respectively.
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Figure 6.4: IBVP of femoral head (left) and meshed femoral head geometry (expressed in mm)
and solidity contours (right).

These load vectors are related to walking processes and are therefore variable in space and
time. The exact calculation of t̄c and its treatment as contact stresses σc is the concern
of section 6.2.3. Additionally, t̄t is related to the low friction in healthy synovial joints,
yielding

t̄t = −µk Fc s . (6.1)

Therein, µk ≈ 0.01 is the coefficient of friction (Caligaris & Ateshian [45], Linn [163],
Mabuchi et al. [167], McCutchen [186], Unsworth et al. [244]), and Fc is the norm of t̄c.
Moreover, s is the unit vector in the motion direction of t̄c along the cartilage surface.

Figure 6.4 (right) shows the outline of the meshed geometry placed in a metered box. The
solidity contours are represented by means of a slice through the cartilage layer and the
underlying femoral bone. Furthermore, the geometrical model is oriented according to
the joint coordinate system (JCS). To ensure simple comparability of results, this system
is recommended for investigations of human joints ([258]).

6.2.2 Osteoarthritic Cartilage Modelling

After constructing the finite-element mesh of the femoral head, this section is concerned
with cartilage degeneration and its implication for the presented model. A characterisation
of the cartilage damage is generally performed by means of arthroscopy. In this regard,
the International Cartilage Repair Society has established an arthroscopic grading system
by which cartilage defects can be ranked as follows (Kellgren & Bier [141], Kellgren &
Lawrence [142]):

• grade 0: healthy cartilage,

• grade 1: presence of soft spot or blisters at the cartilage surface,

• grade 2: small tears visible in the cartilage,
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• grade 3: deep crevices due to lesions and

• grade 4: underlying (subchondral) bone exposed.

It is now well accepted that even small articular cartilage defects can progress to a degen-
erative state such as osteoarthritis (OA) (Wang et al. [251]). The most studied form of
cartilage degeneration, OA, leads to a breakdown and eventual loss of the cartilage of one
or more joints. The histology of normal and osteoarthritic cartilage layers is depicted in
Figure 6.5. Healthy cartilage (Figure 6.5, top) has a smooth articular surface, while os-
teoarthritic cartilage (Figure 6.5, bottom) shows fibrillation, fissuring of articular surface
and clustering of cells in the superficial zone.

Figure 6.5: Histology of cartilage in healthy (top) and OA (bottom) state
[http://www.med.nyu.edu].

Generally, OA affects the large weight-bearing joints, such as the knee and hip joints.
This condition eventually leads to a complete loss of the cartilage cushion between the
bones of the synovial joints. Irritation and inflammation of cartilage are the consequences
of repetitive use of the worn joints over the years and cause joint pain due to friction,
swelling and limitation of joint mobility (Neusch et al. [202]).

Regarding the origin of cartilage degeneration, primary and secondary OA are distin-
guished. Primary OA is mostly a result of the joint’s natural ageing (Berenbaum [23]),
when tiny crevasses are formed during cartilage degeneration.

Secondary OA is usually caused by disease, obesity, repeated trauma or surgical inci-
dents, congenital abnormalities, gout and other hormonal disorders. Obesity is the most
significant risk factor for secondary OA. Due to an increase of the mechanical stresses on
the joint and therefore on the cartilage, an early development of OA is detected amongst
overweight individuals and soccer players. Interestingly, studies did not find an increased
risk of OA in long-distance runners. Moreover, uric acid and calcium pyrophosphate crys-
tals due to gout or pseudogout condition can cause OA. A few individuals are also born
with abnormally joint structures, since OA has a hereditary basis.

Many classifications of the OA degradation stages exist. From a clinical point of view, one
empirically distinguishes amongst early, moderate and late stages (Matzat et al. [183]).
The early stage occurs when cartilage starts to thin out. Cartilage has no nerves but as
soon as friction starts to affect the underlying bone, the first symptoms of OA appear.
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When cartilage wears down in the moderate stage, the underlying bone becomes thicker,
and reactive tissues, called bony spurs, form along joint margins. At this stage, OA starts
limiting physical activity, and muscles eventually become weaker, providing less support
for the joints. At the later stages of OA, the joint structures are affected, and healthy
lubricating synovial fluid is lost.

From a biomechanical point of view, the classifications of OA are based on the composition
and structure of articular cartilage (Saarakkala et al. [221, 222], Seifzadeh et al. [229]).
The different states of degradation regarding the collagen fibres, the PG and the cartilage
cells are depicted in Figure 6.6. The healthy state of articular cartilage has already been
addressed thoroughly in this work. The early OA stage describes superficial defects of
cartilage due to the abrasion of the upper tangential fibre layer. During this period, the
PG depletion leads to matrix degradation and thus, diminution of the concentration of
fixed charges. At the advanced OA stage, deep defects are characterised by collagenase
digestions, leading to a weakening of the overall collagen fibre structure. Additionally,
the matrix stiffness is further reduced, as well as the concentration of fixed charges. Due
to the dramatic PG depletion, the tissue permeability gradually increases.

Regarding the role of the cartilage cells, detailed information is provided in section 6.3.

healthy cartilage moderate OA advanced OA

fibre PG cell

Figure 6.6: Articular cartilage composition in healthy (left), moderate OA (centre) and ad-
vanced OA (right) state (Matzat et al. [183]).

In this thesis, the cartilage modelling and the setting of constitutive parameters are based
on the latter classification at the healthy and advanced OA stages.

The needed constitutive parameters are partially given in the literature (Saarakkala et al.
[221, 222], Seifzadeh et al. [229], Wu et al. [260]). For the remaining parameters, no
changes with respect to the healthy state, characterised by the parameters from the pre-
vious calibration strategy, are assumed. Table 6.3 summarises the structural changes of
articular cartilage at the advanced OA stage.
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OA state Material parameter Parameter change

Advanced OA

µS
0 decrease by 26%

c̄fcm,0S
decrease by 34%

µ̃1, γ̃1 decrease by 75%
K̄F

0S increase by 400%
tangential fibre layer inexistent

Table 6.3: Structural changes of articular cartilage in advanced OA state [221, 222, 229, 260].

6.2.3 Multi-Body System Calculation of Walking

Depending on the grade of OA degeneration, normal or pathological walking processes
are investigated. In this context, the use of MBS models in biomechanics and related
fields arises from the limited possibilities to measure any kind of forces in vivo, although
certain exceptions exist (Bergmann et al. [24, 25]). The general feasibility of such models
could be shown previously (Heller et al. [112]). In the presented individual case study
performed at the Medical School of Hannover, a 3-d inverse-dynamic MBS of the lower
part of the human body consisting of 11 rigid body segments and 8 idealised joints as
kinematic constraints was utilised (see left, top, front and right views in Figure 6.7).

Figure 6.7: Left (top left), top (top right), front (bottom left) and right (bottom right) views
of the MBS walking model (Medical School of Hannover).



6.2 Walking Loads on the Femoral Head 75

The remaining degrees of freedom were controlled by drivers derived from motion capture
data (Andersen et al. [7]). The physiological muscles were represented by a three-element
Hill-type musculo-tendon actuator (Hill [117]). Reaction forces were calculated at the hip
considering activation of muscles derived with the aid of a third-order polynomial opti-
misation criterion solved with a min-max approach (Rasmussen et al. [213], Vetterling &
Press [247]). These reaction forces were related to physiological and pathological walking
processes measured from two patients, who performed walking at a self-selected speed
during one gait cycle. A gait cycle is represented by the period of time between the same
repetitive events of walking, such as the contact of the same foot on the floor. The cycle
is generally subdivided into a stance phase, in which the foot strikes the ground, and a
swing phase, in which the foot is mostly in the air, as depicted in Figure 6.8.

Stance Swing

Figure 6.8: Phases of gait cycle [http://www.jaaos.org].

Data collection from the gait cycles were approved by the local ethics committee (Medi-
cal School of Hannover) and the patients provided written consent. Patient P1 (male, 46
years old, 80.2 kg, 1.71m) did not show any signs of joint degeneration, while patient P2
(male, 45 years old, 76.2 kg, 1.75m) displayed moderate OA (Kellgren-Lawrence grade 3)
(Kellgren & Bier [141], Kellgren & Lawrence [142]) after examination with plain radio-
graphs. The MBS model was scaled anthropometrically (Rasmussen et al. [214]) for an
adjustment to the individual patient. The data related to the individual case study is
summarised in Table 6.4.

Patient Sex Age Body mass Height OA grade

P1 male 46 years 80.2 kg 1.71m 0
P2 male 46 years 76.2 kg 1.75m 3

Table 6.4: Data of individual case study.

6.2.4 Treatment of Contact Forces as Contact Stresses

The transfer of the contact forces P′
c in resulting contact areas and pressures is analysed

in the framework of a contact problem. The solution for such a problem has been the
concern over the last decades. Numerous contact force models have been developed,
providing different ranges of application and accuracy, depending on the contact scenarios
(Machado et al. [168]). Studies of contact problems were initially introduced by Hertz
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The reaction forces Pc obtained from the MBS
model were calculated at the origin O of the JCS.
Assuming a perfectly spherical femoral head of ra-
dius rh = 25mm, the position vector xc of the
intersection point C of Pc with the surface of the
femoral head is expressed as

xc =
rh
Pc

Pc , (6.2)

where Pc = |Pc| is the vectorial norm of the force
Pc. Then, the contact force P′

c is determined af-
ter translation of Pc along its line of action. A
schematic 2-d representation of the idealised hip
joint is given in Figure 6.9.

Pc

P′
c

C

O

rh

Figure 6.9: Calculation of con-
tact forces from reactions forces.

(1881), who found an analytical form for the problem of the contact of two elastic spheres.
Hertz made the following assumptions:

• the contact area is small compared to the areas of the contacting bodies and their
relative radii of curvature,

• the body surfaces are smooth and have an ideal form,

• no friction is detected in the contact region and

• only linear elastic strains are measured in the contact zone.

Further studies showed that relaxing assumptions of the Hertz ian theory still lead to
highly accurate results and that the stresses and deformations of inelastic bodies could
be examined under certain conditions (Johnson [129]). In particular, the partial non-
slip case, i. e., caused by friction, was addressed, and it was observed that even contact
between non purely frictionless materials could be treated with the Hertz ian theory. The
contact stresses could be rather well predicted, even with large contact areas (Zhupanska
[264]). However, in the case of contacts at several points (Gonzalez-Perez et al. [97])
or for very large contact regions in connection with highly deformable contacting bodies
(Ciavarella et al. [51]), the Hertz ian theory did not hold any more.

Besides, the anterior Hertz ian contact theory, based upon the linear elastic theory, does
not comprehend the more recent framework of the TPM. Therefore, the parameters de-
fined for a single-phasic deformable material described by the Hertz ian theory are regarded
as estimations of material parameters deduced from the solid-fluid biphasic behaviour of
articular cartilage. Articular cartilage acts almost as an incompressible material under
rapid loading due to its very low permeability. Consequently, the overall Poisson’s ratio
ν, required by the Hertz ian theory, is assumed to be equal to 0.5 in a geometric linear
setting.

In contact studies, the hip joint is generally assimilated to a perfect ball-and-socket joint
by means of a spherical femoral head (Genda et al. [96], Yoshida et al. [262]) where
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the cartilage layers of the ball (femoral head) and the socket (acetabular cup) have the
same properties. A closer observation of the contact between cartilage layers reveals
the similarity of the hip joint with a perfect ball-and-socket joint, as shown in MRI
scans in Figure 6.1 (left). Nevertheless, it appears that a simplified contact study might
eventually lead to inaccuracies in the predicted magnitude and distribution of cartilage
contact pressures (Anderson et al. [8]). However, this assumption will be made in the
simplified Hertz ian contact modelling of cartilage.

As illustrated in Figure 6.10, the repartition of the
contact force P′

c is performed over the curved sur-
face of a spherical cap of radius rc reading (Sun &
Hao [240])

rc =
3

√
3PcR

2

1− ν2

E∗
, (6.3)

where, 1/R = 1/rh + 1/ra is the sum of the cur-
vatures of ball and socket, and ra = 28mm is
the estimated radius of the acetabular cup. The
height h of the spherical cap is easily calculated
from Pythagorean theorem as

h = rh −
√

r2h − r2c . (6.4)
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Figure 6.10: Hertz ian contact
surface.

In equation (6.3), the modulus E∗ ≈ E (hOK/h
∗) (Hayes et al. [109], Wu et al. [260]) is

inversely proportional to the cartilage thickness h∗ = {hOK, hOA} where hOK and hOA are
the cartilage thickness in its healthy and OA states, respectively. At the OA advanced
stage, the superficial fibre layer is abrased, i. e., hOA = 0.8 hOK. The overall cartilage
layer’s modulus is evaluated as E = 4.5MPa, due to the limitation of the contact surface
area Ac = 2 π rh h to maximal values of 2 450mm2 under physiological conditions (Daniel
et al. [53]). As a consequence of equation (6.3), the following interdependencies hold for
the evolution of the contact zone of radius rc:

• the smaller the overall Poisson’s ratio ν, the greater the contact zone radius rc,

• the smaller the overall stiffness E∗, the greater the contact zone radius rc,

• the higher the contact force Pc, the greater the contact zone radius rc.

The axial stresses σc obtained from this simplified Hertz ian contact model of cartilage in
(6.5) are implemented as Neumann boundary conditions in the overall momentum balance
of the aggregate and imported in PANDAS.
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Following this, the contact force P′
c
is distributed

over the contact surface by means of a paraboloidal
repartition of the load vectors t̄c (see Figure 6.11),
leading to axial stresses σc formulated as

σc = σc,max

√
1−

r

rc
with σc,max =

3Pc

2 π r2c
,

(6.5)
where r is the distance between an arbitrary point
X on the contact surface and the contact point C,
and σc,max is the maximal value of the axial contact
stresses σc.
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Figure 6.11: Load distribution
of Hertz ian contact force.

6.2.5 Visualisation of Stresses and Pressures in Cartilage

The visualisation of stresses and pressures in articular cartilage is subdivided in different
cases summarised in Table 6.5 related to data of the individual case study in Table 6.4.
Case I is related to healthy cartilage under physiological loading during the walking cycle
of patient P1. Case II considers OA cartilage properties in its advanced stage for normal
walking. Hereby, case II is a purely numerical case, in which the coexistence of OA
cartilage and normal walking is assumed. Case III represents the pathological walking of
OA cartilage related to patient P2.

Case Cartilage state Walking type Patient

I healthy normal P1
II advanced OA normal /
III advanced OA pathologic P2

Table 6.5: Different cases of OA and walking.

The von-Mises stress contours σv (expressed in MPa) related to the overall Cauchy stresses
T at the cartilage surface (isolated from the underlying femoral bone) are represented for
case I (top row), case II (centre row) and case III (bottom row), for different time steps
in Figure 6.12.

In cases I to III, the mean contact stresses rise to about 1.9MPa with peaks of 2.9MPa.
The mean values mainly range between 2.0 and 3.0MPa, as obtained from in-vitro ex-
periments (Day et al. [54]), though Hodge et al. [119] found maximum contact stresses of
4.0MPa after in-vivo experiments during walking. A comparison of this study’s results
with those of Hodge et al. [119] reveals lower values obtained with the presented model.
Multiple causes might be responsible for this discrepancy. One possible error source is
the patient’s unknown body weight, which plays an important role in the measured loads.
Furthermore, the calculation of the contact area, which has a significant influence on the
obtained contact stress values, may contain some imprecisions.

More recent numerical studies based on a discrete-element analysis (DEA) (Abraham et al.
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Figure 6.12: von-Mises stress contours related to the overall Cauchy stresses T for case I (top
row), case II (centre row) and case III (bottom row).

[1], Genda et al. [96], Yoshida et al. [262]) systematically predict higher values than the
contact stresses observed in the proposed model. In particular, due to an underestimation
of the contact area discretised by compressed springs in the DEA, stiffer behaviour is
expected. Comparisons of contact stresses predicted by both a finite-element analysis
and a DEA show a mismatch for FE multiple-layer models (Abraham et al. [1]). In the
context of a FE two-layer model, mean stress values between 2.0 and 2.5MPa are obtained
by Abraham et al. [1], whereas approximately 2.0MPa is calculated by Anderson et al.
[8]. These results mostly coincide with those obtained by the presented model.

Regarding case II, higher localised stress peaks and slightly smaller contact surfaces are ob-
served. Even though the OA overall cartilage stiffness diminishes with respect to healthy
cartilage, the predominant factor seems to be related to the combined effects of a reduction
of the shear modulus as well as the removal of the superficial fibre layer. Consequently,
smaller contact areas are obtained and thus, higher stresses are generated for the same
external loading as in case I. As expected, the load support in OA cartilage diminishes
and is more locally concentrated.

Another observation of the smaller contact areas in case II than those in case I is obtained
from the contours of the overall pore-fluid pressure p at the cartilage-bone interface in
Figure 6.13. Case II shows systematically smaller pressure surfaces at the cartilage-bone
interface with more localised pressure distributions. One possible reason is that the load
transfer is mostly redirected to the ECM. Subsequently, higher local stresses in the OA
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Figure 6.13: Overall pressure contours for case I (top row), case II (centre row) and case III
(bottom row).

state than in the healthy state are calculated under the same loading conditions.

In case III (Figure 6.12, bottom row), the external loading is related to a pathological
walking process combined with OA cartilage. In this context, the measured hip forces
from the MBS are smaller and their orientations are different from the previous cases. It
appears that in order to avoid pain, the patient suffering from OA modifies his walking
pattern. As shown here, it leads to no significant high stress peaks and thus reduces
the risk of further cartilage degradation. Note that the elongated red spots observed in
Figure 6.12 for case II and III demarcate the end of the cartilage surface and are related
to numerical inconsistencies due to accumulated boundary stresses at the bone interface.
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6.2.6 Stereographic Projection of Stresses

After investigating the mechanical effects of OA on the cartilage layer, the objective of
this section is to increase the practicability of the elaborated model for clinical purposes.
In particular, 3-d views of variables, such as the von-Mises stresses σv or the overall pore-
fluid pressure p, need to be presented in a concise way allowing for a comparison with
other observations. Here, the processing of variables for visual representations using a
simplified stereographic projection will be demonstrated.

The stereographic projection is per se a smooth and bijective mapping for projecting a
sphere onto a plane with some inevitable compromises. The projection is defined on the
entire sphere except at the projection point. It is conformal, i. e., the angles are preserved
but neither isometric nor area preserving. Due to the intensive use of spheres and planes
in many areas of mathematics, the applications of stereographic projection are numerous
in various fields such as cristallography, cartography, geology and photography, amongst
others. An upcoming field of application of projection techniques is the hip-joint and
cartilage histology. In this regard, Kurrat & Oberländer [151] made use of conical and
orthographic projections for deriving maps of distribution of cartilage thickness at the
femoral head and acetabular cup of many subjects. More recent studies of Najjar et al.
[199] investigated the excessive wear in prosthetic femoral heads due to clinical failures. In
this connection, they depicted the deformations in acetabular cups based on stereographic
projections of deviations between points located on the cup’s internal surfaces and the
points on an ideal hemisphere surface.

Similar to the globe, the femoral head geometry is divided into a system of meridians
and latitudes. Furthermore, the “south pole” is chosen as the centre of the projection,
as represented by the grid in Figure 6.14. Regarding the implementation procedure of
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10◦S 30◦S
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50◦E

70◦E
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Figure 6.14: Grid for stereographic projection of articular cartilage based on earth globe
[http://www.travel-babel.com].

stereographic mapping, two calculation steps are performed. First, the discrete nodal
points at the cartilage surface are automatically extracted from the post-processor Tecplot
using Matlab at each calculated time step, and the cartesian coordinates of the nodes are
transformed into spherical coordinates. Then, the toolkit matplotlib basemap is used by
the associated research partner Dr. Jäger as a library for plotting data on maps using
the programming language Python. Particularly, this tool enables plotting of contours,
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images, vectors or points in the chosen transformed coordinates.

After simplifying the graphical representation of the results, a universal color code repre-
sented by the traffic lights, i. e., red, yellow and green, is adopted as a standardised legend
for high, middle and low stress levels, respectively. In this regard, a unique estimation of
the middle or normal stress level based on the literature seems not to be accepted over-
whelmingly. Contact stresses fluctuate significantly, depending on the considered joint
and the experimental conditions. In the particular case of contact stresses related to
healthy hip joints under physiological loading, Brown & Shawn [43] evaluated the normal
stress level at approximately 2.9MPa. Brinckmann et al. [40] and Maxian et al. [185] sug-
gested a normal stress level between 1.4 and 1.6MPa and lower than 2MPa, respectively.
In this context, a range of stress values between 1 and 2.6MPa is chosen.

The high or abnormal stress values found in the literature are mostly associated with
clinical conditions of cartilage abnormalities. Experimental studies of Iglic et al. [125]
and Hipp et al. [118] demonstrated an increase of contact stresses by two to five times,
compared to normal stresses. Again, these reports show considerable variations, as well
as overlaps with contact stress values under normal conditions. In this thesis, the high
stress level is defined as the stresses exceeding 2.6MPa, as introduced by Hipp et al.
[118]. Subsequently, the lower domain of variation of the stresses in cartilage is given
by stress values lower than 1MPa. In summary, the distinction amongst the von-Mises
stress contours across high, middle and low stress levels is presented in Figure 6.15.

high stress level: σv ≥ 2.6MPa

middle stress level: 1 ≤ σv < 2.6MPa

low stress level: 0 ≤ σv < 1MPa

Figure 6.15: Simplified legend for contact stress levels based on traffic lights
[http:/www.radiokiepenkerl-online.de].

Based on this, the application of the presented tool to the 3-d representation of the
stress contours depicted in Figure 6.12 leads to Figure 6.16. Here, as well as for case
I (healthy cartilage with normal walking) and case III (OA cartilage with pathological
walking), the values of the von-Mises stresses are mainly observable in the low and middle
ranges. Regarding case II (OA cartilage with normal walking), higher values of stresses
are depicted at time t = 0.1 s and t = 0.5 s. According to the chosen stress classification,
a danger of further increase in OA can be established.
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Figure 6.16: Simplified stereographic projection of the von-Mises stresses for case I (top row),
case II (centre row) and case III (bottom row).

6.3 Aspects of Mechanobiology

Embedded within the ECM of articular cartilage are dispersed cells, the chondrocytes.
The chondrocytes’ role is to remodel the ECM when changes in loading history occur
(Guilak et al. [103]). Their activity is mostly regulated by complex environmental influ-
ences and mechanical factors. In particular, the influence of the mechanical environment
on the cells has been shown to be crucial (Guilak et al. [103], Stockwell [238]). A change
in the mechanical environment is experienced through complex mechanisms of cell-matrix
interaction and influences the metabolic and biosynthesic activities (Buschmann et al.
[44], Kim et al. [145], Little & Ghosh [166], Sah et al. [223]). For instance, a specific
visualisation tool in Figure 6.17 identifies cells in cartilage that are producing PG. These
cells are represented by dark blue stains. When cartilage is not subjected to continuous
passive motion (Figure 6.17, left), less PG are produced by chondrocytes than when the
synovial joint is continuously moved (Figure 6.17, right).

Furthermore, cartilage degeneration such as OA will eventually lead to pathological
changes in the mechanical signals perceived by the chondrocytes (Alexopoulos et al.
[4], Guilak & Mow [101]). This section aims to investigate accurately the influence of
the mechanical environment on the chondrocytes’ response in healthy and OA cartilage
during physiological and pathological walking processes.
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Figure 6.17: Cell production state for low activity level (left) and for high activity level (right)
[http://www.jacobsschool.ucsd.edu].

6.3.1 Cells regarded as Weak Inclusions

Chondrocytes are further components of articular cartilage and occupy less than 10%
(Stockwell [237]) of the overall volume aggregate. They are composed of a solid phase
consisting of cytoskeletal elements and other proteins, and a fluid phase containing water
with dissolved proteins and ions. Previous studies show that chondrocytes change in
shape across the thickness of the cartilage layer (Guilak et al. [102]) and display different
material properties from the surrounding ECM (Jones et al. [131], Shin & Athanasiou
[231]). Here, chondrocytes are considered as perfectly spherical (Eggli et al. [63]) and
attached to the ECM through a narrow tissue region, the pericellular matrix (PCM). The
PCM is primarily characterised by the presence of type VI collagen but also possesses a
high concentration of PG. The PCM (2.5µm thick) combined with the encapsuled cell
(7.5µm diameter) build the chondron, a functional unit in cartilage tissues.

In this framework, chondrons are regarded as spherical inclusions, embedded in the overall
inhomogeneous tissue material of the ECM. The idea of using this concept for predicting
the effective properties of an inhomogeneous continuum, such as composite materials, was
originally introduced by Eshelby [84, 85]. Based on his theory, numerous models of elastic
and elastoplastic materials with direct application to natural or manufactured multi-phase
composites have been developed over the last three decades. Nevertheless, inadequacies
were detected when the reinforcement in volume fraction or when the inhomogeneity of the
inclusion and the matrix became important (Viéville & Lipinski [248]). In this approach,
the inclusion modelling an inhomogeneity is smeared in a homogenised material, whose
properties can be very different from those of the original matrix surrounding the inclusion.
In Mori & Tanaka [188], the inclusion directly interacts with a uniform matrix, which is
submitted to an external load or constraint. In the particular case of isotropic spherical
inclusions embedded in a matrix, the effective specific parameters of the homogenised
material for the effective compression modulus δS0,eff and shear modulus µS

0,eff are:

δS0,eff = δS0 + nC
0

(δC0 − δS0 ) δ
S
0

δS0 + αM (1− nC
0 )(δ

C
0 − δS0 )

(6.6)

and

µS
0,eff = µS

0 + nC
0

(µC
0 − µS

0 )µ
S
0

µS
0 + βM (1− nC

0 )(µ
C
0 − µS

0 )
, (6.7)
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where

αM =
3 δS0

3 δS0 + 4µS
0

and βM =
6 (δS0 + 2µS

0)

5 (3 δS0 + 4µS
0)

(6.8)

are scalar parameters. The parameters denoted by ( · )C0 are related to the chondrons, and
the parameters characterised by ( · )S0 are related to the ECM. In particular, nC

0 is the
inclusion concentration (also called the secondary porosity), i. e., the volume fraction of
the chondron.

In the present case of a cell coated by the PCM and embedded inside the ECM, a generic
way to handle coating is given by the multi-inclusion method of Nemat-Nasser & Hori
[201]. Thereby, the PCM (coating) behaves as if it were a second inclusion in the ECM
(matrix), additionally to the original cell (first inclusion), as depicted in Figure 6.18.

coating

first inclusion

matrix

Figure 6.18: Multi-inclusion concept of Nemat-Nasser & Hori.

In this framework,

nC
0 = nZ

0 + nP
0 , (6.9)

where nZ
0 and nP

0 are the volume fractions of the chondrocytes and the PCM, respectively.

Based on the volume of a sphere expressed for the cell and chondron volumes and assuming
nC
0 = 0.1 (Stockwell [237]),

nZ
0 =

1
6
π D3

Z
1
6
π D3

C

nC
0 = 0.042 and

nP
0 = nC

0 − nZ
0 = 0.058 ,

(6.10)

where DZ and DC are the diameters of a single chondrocyte and a chondron, respectively.

Subsequently, equations (6.6) and (6.7) are extended as

δS0,eff = δS0 + nZ
0

(δZ0 − δS0 ) δ
S
0

δS0 + αM (1− nZ
0 )(δ

Z
0 − δS0 )

+ nP
0

(δP0 − δS0 ) δ
S
0

δS0 + αM (1− nP
0 )(δ

P
0 − δS0 )

(6.11)

and

µS
0,eff = µS

0 + nZ (µZ
0 − µS

0 )µ
S
0

µS
0 + βM (1− nZ

0 )(µ
Z
0 − µS

0 )
+ nP

0

(µP
0 − µS

0 )µ
S
0

µS
0 + βM (1− nP

0 )(µ
P
0 − µS

0 )
. (6.12)

Therein, the parameters denoted by ( · )Z0 are related to the cells, and the parameters
denoted by ( · )P0 refer to the PCM. From equations (6.11) and (6.12), the effective first
Lamé constant λS

0,eff is easily deduced.
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Next, the effective permeability of tissue composed of the ECM and fluid-filled inclusions
of finite size is obtained by using effective medium schemes such as differential effective
medium, self-consistent or Maxwell methods or even more recent methods (Berryman &
Berge [26], Markov et al. [177]). According to Maxwell formula, the effective permeability
KS

0S,eff of the overall aggregate containing spherical inclusions is given by

KF
0S,eff = KF

0S

1 + 2nC
0 ζC

1− nC
0 ζC

with ζC =
KC

0 −KF
0S

KC
0 + 2KF

0S

. (6.13)

Here, ζC is a scalar parameter, and the chondron permeability KC
0 is postulated as the

volumetric average of the permeability KZ
0 of the cell and the permeability KP

0 of the
PCM, yielding

KC
0 =

nZ
0

nC
0

KZ
0 +

nP
0

nC
0

KP
0 . (6.14)

In this regard, the chondrons are modelled by means of an isotropic, poroviscoelastic
formulation (Markert [172]). For the sake of simplicity, the volumetric and deviatoric
retardation time constants of chondrocytes and PCM are assumed to be equal to the
time constants of the ECM. The above-mentioned homogenisation procedure can thus be
extended to predict the behaviour of viscoelastic inclusions (Camacho et al. [46], Lielens
[159], Pierard et al. [209]).

As the properties of the chondrons appear to be fairly uniform amongst the different zones
of the tissue (Alexopoulos et al. [4, 5]), constant material parameters over the cartilage
thickness are taken from the literature (Athanasiou et al. [11], Bachrach et al. [14], Chen &
Lu [49], Guilak &Mow [101], Koay et al. [147], Korhonen et al. [148], Leipzig & Athanasiou
[155], Likhitpanichkul et al. [161]). As explained in section 5.4.2, the parameters found
in the literature have to be considered in a very differentiated and careful way for several
reasons. First, these parameters are related to various models which might differ from
the present model and are generally identified by means of model-dependent calibration
strategies. Second, experimental tests performed on small entities such as cells are more
easily prone to measurement errors than experiments on cartilage tissues. This difference
becomes clear by examining closer the widespread range of parameters for cell and PCM
given in the literature. Accordingly, the chosen parameters for the cells and PCM are
summarised in Table 6.6.

Chondrocyte PCM

µZ
0 = 1.4 · 10−3 [MPa] µP

0 = 19.2 · 10−3[MPa]

λZ
0 = 0.2 · 10−3 [MPa] λP

0 = 1.7 · 10−3 [MPa]

KZ
0 = 0.72 · 104 [mm4/N s] KP

0 = 0.71 · 10−1 [mm4/N s]

Table 6.6: Material parameters of chondrocytes and PCM [11, 14, 49, 101, 147, 148, 155, 161].



6.3 Aspects of Mechanobiology 87

6.3.2 Local Stresses in Cells

This section intends to describe the simulation of a small number of cartilage cells at given
positions. This description is based on the “re-creation” of the mechanical environment
of the cells using the investigated walking processes. Furthermore, the calculated stress
states of single cells obtained with the proposed cartilage model are confronted with the
results from the extended cartilage model containing cells as weak inclusions.

In particular, three chosen cell locations, at the mid-depth of the articular cartilage layer,
are represented by the white dots depicted on the femoral head geometry in Figure 6.19.
For each single cell, the loading history during walking is represented by means of the
von-Mises stresses σv for case I (left column), case II (centre column) and case III (right
column). The red curves are related to the results obtained with the original cartilage
model. The green curves refer to the results calculated with the extended cartilage-cell
model. Almost no difference between both curves can be observed, except for one cell
position, where the cartilage-cell model provides slightly smaller stress values. This result
is likely due to the “weakening” of the ECM when considering cells as weak inclusions.
However, this influence is mostly negligible because of the small cell volume fraction in
the tissue (Stockwell [237]). The negligible influence of a small variation of the material
parameters (represented by the inclusion of cells) on the model output proves implicitely
the stability of the model calibration exposed in Chapter 5. In this regard, it seems
reasonable to “lump” the cell volume as part of the solid phase within the framework of
the cartilage biphasic modelling presented in Chapters 2 and 4.
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Figure 6.19: Local stresses in cell positions for case I (left column), case II (centre column)
and case III (right column) and comparison between model without (red curve) and with (green
curve) chondrocytes.



Chapter 7:

Summary and Outlook

7.1 Summary

In the framework of this monograph, different solutions have been proposed in order to
shed light on the intricacy related to the simulation of the inferences of walking processes
in the human hip joint. In this context, the author went through different steps from
the elaboration of a computational model to significant numerical applications, across the
construction of a problem-specific model calibration.

7.1.1 Articular-Cartilage Modelling

The first goal of this contribution was to adapt a thermodynamically consistent model
based on the Theory of Porous Media (TPM) of a soft biological tissue for the purpose of
modelling articular cartilage. In particular, the main features of articular cartilage, such
as arcade-like viscoelastic anisotropy, fibre-matrix shear interaction, anisotropic perme-
ability and cartilage-specific heterogeneities, were included in already existing biphasic,
anisotropic, poroviscoelastic and osmotic swelling models of a soft biological tissue. Next,
a first subjective reduction of the complex model was adopted. Introductive studies
showed a simplified model calibration related to the anisotropic viscoelasticity and the
influence of the shear interactions between fibres and the extracellular matrix (ECM).
In the discussion, the viscoelastic behaviour of the collagen fibres and the fibre-matrix
shear effects were neglected due to their irrelevance to the studied phenomena of carti-
lage, mostly represented under compression for physiological loading states, and the lack
of relevant experimental data and precise literature, amongst others.

An initial-boundary-value problem (IBVP) was then described after choosing the solid
displacement and the hydraulic pore-fluid pressure as primary variables for the strong
formulation of the balance relations including the set of constitutive equations and initial
and boundary conditions. The proposed coupled problem had to be solved within a nu-
merical solution procedure by the finite-element method (FEM). Therefore, the governing
partial differential equations (PDE) were transformed into their weak counterparts. In
particular, the spatial discretisation was performed using a mixed finite-element (FE) for-
mulation based on 2-d, axial-symmetrical rectangular and 3-d, hexahedral Taylor-Hood
elements with a quadratic formulation for the solid displacement and a linear formulation
for the hydraulic pore-fluid pressure. Furthermore, an implicit monolithic strategy by
means of an Euler ian time-integration scheme was used, which provided suitable numer-
ical solutions for the given coupled solid-fluid problem.

89



90 7 Summary and Outlook

7.1.2 Parameter Identification and Sensitivity Analysis

This work further aimed to propose a method to unambiguously find material parame-
ters in soft biological tissues and to determine the optimal cartilage model’s complexity
relevant to numerical calculations. To this end, a concept of calibration strategy for
the cartilage model was introduced. This concept was based on a stepwise identification
of material parameters using a constraint optimisation scheme by linear approximation
(COBYLA) and a local sensitivity analysis formulated from correlation matrices.

This calibration strategy was first implemented for a set of indentation tests with varying
indenter sizes performed at the Hannover Medical School by the associated research group
of PD Hurschler. After identifying the parameters in correlation with the experimental
data, a sensitivity study was performed, which underlays the goodness-to-fit index for the
parameter optimisation. It appeared that for cartilage tissues depicting low permeabil-
ity values within the physiological domain, some parameters with lower influence on the
measured output could be removed, such as tortuosity or anisotropic permeability. As
expected, the influence of a permeability change was not predominant when dealing with
small indenters. In this case, the creep behaviour of the solid-fluid aggregate could be
mainly associated with the solid phase. This could lead to an efficient parameter iden-
tification for the solid viscoelasticity. In contrary, fluid-flow phenomena played a bigger
role when dealing with larger indenters and considering higher values of the permeability.
This did not lead to a unique identification of material parameters. Further investigations
of the role of the heterogeneities in the vertical indenter displacement revealed a slight
increase in cartilage stiffness, compared to that of fully homogeneous models.

However, only a few material parameters could be obtained by means of a set of inden-
ter tests due to the lack of experimental data and the strong coupling amongst specific
parameters. In order to identify the set of remaining unknown parameters such as those
related to the deviatoric intrinsic viscoelasticity, a tailored sensitivity analysis was per-
formed on a concept of multi-directional shear loading experiment. In this context, the
superficial 3-d collagen fibre orientation could also be revealed, when changing direction
of shear loading, by means of qualitative and quantitative methods. Based on these two
numerical examples, a final model reduction could be performed.

7.1.3 Calculation of Stresses in Hip Joints and Mechanobiology

The capability of the computational model was tested to investigate complex phenomena
such as walking processes in healthy and osteoarthritic (OA) hip joints. In this regard,
a 3-d, patient-specific geometry was recreated from magnetic resonance imaging (MRI)
scans created at the University Hospital of Tübingen by the associated research group
of Prof. Schick. An introductive simulation was presented in which each component of
the hip joint was modelled using a continuum-mechanical description. In this case, the
calculation was aborted due to the rapid distortion of fluid elements under shear loading.
An alternative solution consisted of inserting the contact forces during walking, obtained
from multi-body systems (MBS) calculations performed by the associated research group
of PD Hurschler, in the FE computational model of cartilage. For this purpose, a practical
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scheme was adopted for transferring the contact forces as readable boundary conditions in
PANDAS. Furthermore, the cartilage model needed to be extended in order to gather the
modified properties of degenerative cartilage tissue. Next, the study focused on the dis-
tinctions amongst normal walking and healthy cartilage, normal walking and degenerated
cartilage, and pathological walking and degenerated cartilage. In particular, the influence
of cartilage degeneration and pathological walking was investigated by means of the stress
distribution at the cartilage surface and the pore-fluid pressure at the cartilage-bone inter-
face. In OA cartilage tissues, higher contact stresses than those in the healthy state were
detected for normal walking. Pathological walking reduced the risk of the appearance of
high local stresses in already degenerated cartilage tissues. Finally, the study introduced
the applicability of a new rendition technique to visualise simulation results based on a
standardised stereographic projection of the stresses along the curved cartilage surface.

After confronting the results obtained with the calibrated cartilage model and a cartilage
model extended with the presence of cells, a distinction between these two models could
be neglected due to the low volume fraction of the cells within the ECM. This revealed
that small perturbations of parameters due to the inclusion of cells did not change the
output of the calibrated cartilage model.

7.2 Outlook

In this monograph, a thermodynamically consistent cartilage modelling has been elabo-
rated for simulating relevant clinical processes in human hip joints. In this connection,
an adapted calibration strategy has been thoroughly explained, which could be princi-
pally adopted for other complex biphasic solid-fluid models. In a next step, the synovial
fluid-cartilage interaction mechanisms were introduced by means of simplified cartilage
modelling. Furthermore, OA and pathological walking were better understood on the
basis of the interpretation of the stress and pressure distributions for different cartilage
states. This development could give birth to novel applications of the MBS related to
FE models for a more realistic loading pattern. Based on the presented work, further
improvements could be gained, as specified in the following paragraphs.

7.2.1 Full Completion of the Parameter Identification Based on

Further Experimental Data

The full set of material parameters is still not fully obtained due to the lack of experimental
data. Particularly, an adaptation of the concept of multi-directional shear loading to the
given scope in laboratory installations would allow a final confrontation of the obtained
parameters by means of alternative test protocols. Similarly, a deeper insight into the
fibre-matrix shear interaction could be achieved when implementing the proposed IBVP
as an experimental set-up. Further cartilage tests should be preconceived and constructed
only after a controlling process given by the results of an introductive sensitivity analysis,
as presented in this work.
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7.2.2 Bone Material and Cartilage-Bone Interface Modelling

In contrast to the assumption made in this thesis, the subchondral bone structure is
not exactly an isotropic and homogeneous material, except within the range of small
applied loads. Moreover, the mechanical properties of the underlying subchondral bone
exhibit a continuous variation from the deeper cartilage layers to the compact bone of
the femur or the pelvis. An interface modelling would even out the actual high variations
between cartilage and bone. Consequently, the stress distribution within hip joints would
be represented more realistically, and the numerical solution would be more stable due
to a decreased parameter jump at the interface. Further possible improvements of the
cartilage-bone interactions would be to connect the complex cartilage model to bone
remodelling formulations. By doing this, a more representative bone structure could be
achieved due to the direct mechanical influence of the cartilage loading.

7.2.3 Towards a Macro-Meso Model for Cells

Regarding the influence of the mechanical environment on the cells, further numerical
investigations could be performed in the formulation of multi-scale models. The applied
loading obtained from the stress and strain states on the macro-scale could be addressed
in meso-scale FE models related to a realistic cell representation. Only a “one-way”
coupling would be needed due to the cells’ low influence on the macroscopical behaviour,
as discussed in this work. By doing this, key factors for cell evolution, such as local pore-
fluid pressure, stress distribution and deformations in chondrocytes, could be studied and
extended to the cases of OA degenerative cartilage and pathological walking pattern.

7.2.4 Multi-Body Systems for Full Hip-Joint Geometries

More realistic hip-joint simulations could be performed after applying the time- and
location-dependent contact forces obtained from the MBS directly on the femoral bone
in the same fashion than for the discussed half hip-joint geometry case. Practically, every
new loading step imposed from the MBS would need an internal calculation loop for the
solid-fluid system to “adapt” to the external loading.

7.2.5 Alternatives for Modelling Fluid-Cartilage Interaction

Different alternatives to the use of the MBS for dealing with synovial fluid-cartilage in-
teraction have been developped by the associated research group of Prof. Nackenhorst at
the Leibniz University of Hannover. One possibility to investigate interaction phenomena
in hip joints is given by a contact-based approach adapted to a gap filled with an incom-
pressible fluid. Another possibility relies on the solution of a fluid-structure interaction
(FSI) problem using a staggered scheme. Both computational strategies are analysed and
compared in Fietz [88] and Fietz & Nackenhorst [89, 90].
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7.2.6 Variety of Joint-Lubrication Modes

In the framework of this monograph, the synovial fluid-cartilage interaction, based on a
fluid-pressure contact, was considered as the only lubrication mode. However, sometimes
nature does not want to typecast. Apparently, it prevails when considering the joint lu-
brication in synovial joints. The load-bearing system within joints is generally recognised
as a combination of a fluid lubrication (at high loads and/or high velocity) and bound-
ary lubrication (at low loads and/or low velocity) (see Baykal et al. [21], Linn & Radin
[164], Roberts et al. [219], amongst others). Low-friction surfaces for joint movement can
also be obtained without a fluid film, through a mechanism called boundary lubrication.
At present, no exhaustive synovial joint model, which enables a switch between lubrication
modes depending on the applied load magnitude, could be found in the literature.





Appendix A:

Assumptions in the Modelling

A.1 Neglect of Gravitational Forces

Gravitational forces in soft biological tissues such as articular cartilage are neglected after
comparing the weight Pf ≈ 1.0N of the femoral head depicted in Figure 6.4 and the mean
vertical loads acting on the hip joint during walking. The hip forces Pc were calculated
by the associated research partner PD Hurschler at the Medical School of Hannover. In
Figure A.1, the red curves represent the vertical components Pv,1 and Pv,2 of Pc and the
green lines are their mean values Pmean,1 and Pmean,2 during one gait cycle for normal (see
Figure A.1, left) and pathological walking (see Figure A.1, right). In Figure A.1 (left),
an extremal value of Pv,1 = 3566N is reached.
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Figure A.1: Evolution of the vertical components Pv,1 and Pv,2 of the hip forces and their
mean value Pmean,1 and Pmean,2 during one normal (left) and pathological (right) gait cycle.

Under consideration of the mean values Pmean,1 = 1446N and Pmean,2 = 804N given in
Figure A.1, one calculates

|ρg| = Pf ≈ 1.0N and min (Pmean,1;Pmean,2) = min (1446N, 804N) = 804N , (A.1)

where ρ =
∑

α

ρα is the overall density of the aggregate. Then, the ratio between the

gravitational forces and the external vertical loads reads

Pf

min (Pmean,1;Pmean,2)
≈ 1.2 · 10−3 , (A.2)

which justifies the neglect of the term ρg in the overall momentum balance.
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The reason for high vertical forces in the hip joint,
as observed in Figure A.1 (left), is briefly explained
by the representation of the maximal hip force
Pv,max under purely static conditions in Figure A.2.
Therein, the force G acting at the centre of gravity
of the pelvis, represents the weight of the upperbody
(≈ 500N) and of one leg (≈ 150N) for a male pa-
tient of 80 kg. Besides, the muscle force M activated
by the abductors is attached at a distance a from the
hip joint and at a distance 5 a from the centre of the
pelvis. The static equilibrium of the pelvis is then
achieved if

Pv,max = G+M Pv,max = G (1 + 4)
→

M · a = G · 4 a = 3250N ,
(A.3)

where Pv,max, G and M are the vectorial norms of the
forces Pv,max, G and M, respectively.

G

G

Pv,max

M

a

4 a

Figure A.2: Schematic represen-
tation of equilibrium of forces in the
pelvis.

Note that the dynamic equilibrium of the femoral head due to the accelerating leg motion
can be expressed after considering the D’Alembert’s inertial forces t = −ρ

..
x in addition

to the external forces obtained from the overall momentum balance. Therein,
..
x is the

acceleration of the overall aggregate ϕ calculated as (de Boer & Ehlers [32])

..
x=

∑

α

[ ρα
′′
xα − div (ρα dα ⊗ dα) + ρ̂α

′
xα ] , (A.4)

where dα =
′
xα − ẋ is the diffusion velocity of ϕα and ẋ =

1

ρ

∑

α

ρα
′
xα is the barycentric

velocity of the aggregate ϕ. These inertial forces are already considered by the hip forces
depicted in Figure A.1 which do not differ much from the forces calculated in (A.3) under
purely static equilibrium. Hence, the influence of the dynamic effects on the system is
not relevant in the case of walking at moderate speed.

A.2 Quasi-Static Conditions

Assuming quasi-static conditions implies to neglect the acceleration terms of the solid and

fluid constituents, i. e., ρα
′′
xα≈ 0.

Due to the very low permeability of the ECM, only slow deformations
′
xS of the solid

skeleton are assumed under physiological loads. This leads to a negligible acceleration

term ρS
′′
xS, i. e.,

′′
xS ≈ 0 . (A.5)

Furthermore, a lingering fluid flow through the porous matrix described by the Darcy’s
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equation (2.55) is assumed. In this case, the acceleration term ρS
′′
xF is neglected, i. e.,

′′
xF ≈ 0 . (A.6)

Note that the sum TS + TF in equation (2.28) cannot generally be associated to the
overall Cauchy stress T which contains diffusive contributions reading (de Boer & Ehlers
[32])

T =
∑

α

(Tα − ρα dα ⊗ dα) . (A.7)

Under the action of loads on a femoral head fixed in space, one finds
..
x= 0. Besides, when

assuming no mass production, i. e., ρ̂α = 0, and vanishing
′′
xα, the term

∑

α

ρα dα ⊗dα in

(A.4) sufficiently vanishes, which simplifies equation (A.7) in

T =
∑

α

Tα = TS +TF . (A.8)





Appendix B:

Polyconvexity of Strain-Energy Functions

B.1 Notion of Polyconvexity

In a general framework, a strain-energy function is per se convex if the existence of min-
imisers is guaranteed. Unluckily, further requirements of material frame indifference and
material instabilities render this concept deficient (Ball [16]). A more suitable condition
is the concept of quasiconvexity introduced by Morrey [189]. This necessary and sufficient
condition claims isothermal stability of an all-round fixed homogeneous body of hypere-
lastic material and ensures the existence of the minimisers if the strain-energy function
is sequentially weakly lower semi-continuous. To have this condition satisfied is impor-
tant, since violating quasiconvexity can yield the break down of the initially homogeneous
bodies into coexisting stable phases (Ball & James [17], Krawietz [150]). However, qua-
siconvexity as an integral inequality is not really practicable and disallows singularities,
which cannot be reconciled with finite material behaviour. In this regard, Ball [16] es-
tablished the more practical notion of polyconvexity, which is a sufficient condition for
quasiconvex functions.

In particular, a scalar-valued function W as the scalar-valued strain energy of the system
is said to be polyconvex if it can be expressed as a convex function of subdeterminants of
its tensorial variables (Markert et al. [176]). Here, one proceeds from

W (FS) = Wl(FS) +Wa(cofFS) +Wv(detFS) (B.1)

as an additive polyconvex function, where each part is convex in the associated variable.
Assuming a twice differentiable W , the convexity is verified by showing that the second
derivatives are positive semi-definite, yielding

∂2W

∂FS ⊗ ∂FS
· (H⊗H) ≥ 0

∂2W

∂cofFS ⊗ ∂cofFS
· (H⊗H) ≥ 0

∂2W

∂(detFS)
≥ 0






∀H 6= 0 . (B.2)

Here, H represents an arbitrary second-order tensor (see Balzani [18], Ciarlet [50] and
Marsden & Hughes [182]). In order to mathematically investigate the polyconvexity of
strain-energy functions, some principles of the tensor calculus are required to deal with the
following tensor operations. Precise information about the utilised rules and definitions
is given by de Boer [29] and in the lecture notes of vector and tensor calculus by Ehlers
[64].
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B.2 The Non-Equilibrium Anisotropic Strain-Energy

Function

Similar to the equilibrium part of the anisotropic strain-energy function, the proposed
non-equilibrium contribution WNEQ

ANI is (Markert [174], Zinatbakhsh [267])

WNEQ
ANI =

Mfe∑

m=1

[ µ̃S
m

γ̃m
(J

γ̃m/2
S4e − 1)− µ̃S

m ln J
1/2
S4e

]
. (B.3)

Here, the only scalar variable is the elastic part JS4e of the squared fibre stretch. Then,
the condition (B.2) is evaluated for WNEQ

ANI yielding

∂2WNEQ
ANI

∂FSe ⊗ ∂FSe
=

∂

∂FSe

( ∂WNEQ
ANI

∂FSe

)
=

∂

∂FSe

( ∂WNEQ
ANI

∂JS4e

∂JS4e

∂FSe

)

=
∂

∂JS4e

( ∂WNEQ
ANI

∂JS4e

∂JS4e

∂FSe

) ∂JS4e

∂FSe

=
∂2WNEQ

ANI

(∂JS4e)2
∂JS4e

∂FSe
⊗

∂JS4e

∂FSe
+

+
∂WNEQ

ANI

∂FSe

[ ∂
∂JS4e

(∂JS4e

∂FSe

)]
⊗

∂JS4e

∂FSe
,

(B.4)

where
∂JS4e

∂FSe
is calculated as

∂JS4e

∂FSe

=
∂

∂FSe

[ tr (CSeM
S)] =

∂

∂FSe

[(FT
SeFSe) ·M

S ]

=
[ ∂
∂FSe

((FT
SeFSe)

]T
MS +

✚
✚
✚
✚
✚✚❃

=
4

0
(∂MS

∂FSe

)
T (FT

SeFSe)

=
[
(FT

Se ⊗ I)
23
T
+ (I⊗ FSe)

24
T
]T

MS

=
[

(FSe ⊗ I)
23
T

︸ ︷︷ ︸
identical map

+ (FSe ⊗ I)
24
T

︸ ︷︷ ︸
transposing map

]
MS

= FSeM
S + FSe (M

S)
T

= 2FSeM
S .

(B.5)

Inserting (B.5) in (B.4) and evaluating the derivatives of the strain-energy function WNEQ
ANI

with respect to JS4e leads to
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∂2WNEQ
ANI

∂FSe ⊗ ∂FSe
=

Mfe∑

m=1

µ̃S
m J−2

S4e

[
(γ̃m − 2) J

γ̃m/2
S4e + 2

]
FSeM

S ⊗ FSe M
S +

+

Mfe∑

m=1

µ̃S
m J−1

S4e (J
γ̃m/2
S4e − 1)FT−1

S,e ⊗ FSeM
S .

(B.6)

Next, the polyconvexity of the strain-energy function is established if the following re-
striction is respected:

∂2WNEQ
ANI

∂FSe ⊗ ∂FSe
· (H⊗H) =

Mfe∑

m=1

µ̃S
m J−2

S4e

[
(γ̃m − 2) J

γ̃m/2
S4e + 2

]
(FSeM

S ·H)
2
+

+

Mfe∑

m=1

µ̃S
m J−1

S4e (J
γ̃m/2
S4e − 1) (HMS ·H)

!
> 0 .

(B.7)

According to previous works of Karajan [138] and Markert et al. [176], the polyconvexity
is guaranteed under the following restrictions:

(i) JS4e ≥ 1 : restriction to fibre tension,

(ii)

Mfe∑

m=1

µ̃S
m ≥ 0 : overall positive fibre stiffness, and

(iii) µ̃S
m(γ̃m − 2) ≥ 0 →

{
µ̃S
m > 0 → γ̃m ≥ 2

µ̃S
m < 0 → γ̃m ≤ 2

Other methods for calculating polyconvex anisotropic strain-energy functions are pre-
sented in the works of Balzani [18], Holzapfel et al. [122], Itskov et al. [127] and Schröder
et al. [227].

B.3 The Fibre-Matrix Shear-Interaction Strain-Energy

Function

B.3.1 Polyconvexity of the Fibre-Matrix Shear-Interaction Func-

tion

A further term W S
INT of the strain-energy function is defined as

W S
INT = 0.5µint (JS5 − J2

S4)
αint . (B.8)

In this case, the polyconvexity of W S
INT with respect to the solid deformation gradient FS

is not evaluated by means of the general condition given in (B.2). A calculation using
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this framework would lead to highly complex derivations of invariants. Instead, existing
polyconvex terms given in Ebbing [59] and Schröder & Neff [226] are mathematically
combined, leading to an overall polyconvexity of the fibre-matrix interaction strain-energy
function.

In this connection, an additional structural tensor DS is introduced as (Schröder & Neff
[226])

DS = I−MS . (B.9)

Next, equation (B.9) is multiplied by CS CS ( · )M
S, yielding

CS CS D
S MS = CS CS M

S −CS CS M
S MS

= CS CS M
S −CS M

S CS M
S ,

(B.10)

due to the symmetric nature of CS and MS.

Then, the calculation of the trace of equation (B.10) is

tr (CS CS D
S MS) = tr (CS CS M

S − CS M
S CS M

S)

= tr (CS CS M
S) − tr (CS M

S CS M
S)

= tr (CS CS M
S)︸ ︷︷ ︸

JS5

− tr (CS M
S)︸ ︷︷ ︸

JS4

tr (CS M
S)︸ ︷︷ ︸

JS4

= JS5 − J2
S4 .

(B.11)

After raising equation (B.11) to the power of αint and multiplication by 0.5µint, one
calculates

0.5µint [tr (CS CS D
S MS)]

αint
= 0.5µint (JS5 − J2

S4)
αint = W S

INT , (B.12)

which is the expression of the fibre-matrix interaction strain-energy term. In other
words, proving the polyconvexity of W S

INT is equivalent to proving the polyconvexity of
0.5µint [tr (CS CS D

S MS)]
αint

.

This expression can be decomposed as

W S
INT = 0.5µint [tr (CS CS D

S MS)]
αint

= 0.5µint [tr (CS) tr (CS D
S) tr (MS)]

αint

= 0.5µint [tr (CS)]
αint [tr (CS D

S)]
αint

tr [(MS)]
αint

.

(B.13)

The term [tr (CS D
S)]

αint
was shown to be polyconvex with respect to the deformation

gradient FS with αint ≥ 1 by Schröder & Neff [226]. Obviously, both terms [tr (CS)]
αint

and tr [(MS)]
αint

are also polyconvex contributions.

Finally, the overall polyconvexity of the fibre-matrix shear-interaction strain-energy func-
tion is guaranteed due to the polyconvexity of its components under the following restric-
tions for the material parameters µint and αint:
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(i) αint ≥ 1 and

(ii) µint ≥ 0 .
(B.14)

B.3.2 Derivation of the Fibre-Matrix Shear-Interaction Stresses

The derivation of the fibre-matrix interaction strain-energy function W S
INT leads to the

expression of the stresses, yielding

SS
INT =

∂W S
INT

∂ES
= 2

∂W S
INT

∂CS
, (B.15)

where SS
INT is the second Piola-Kirchhoff stress tensor related to the fibre-matrix inter-

action and constitutes a conjugate pair together with the Green-Lagrangean solid strain
tensor ES. In particular, the application of the chain rule on equation (B.15) leads to

SS
INT = 2

(∂W S
INT

∂JS4

∂JS4

∂CS

+
∂W S

INT

∂JS5

∂JS5

∂CS

)
. (B.16)

Here,
∂W S

INT

∂JS4
= JS4 µint αint (JS5 − J2

S4)
(αint−1) ,

∂W S
INT

∂JS5
= 0.5µint αint (JS5 − J2

S4)
(αint−1)

(B.17)

and
∂JS4

∂CS

=
∂(CS ·MS)

∂CS

= MS . (B.18)

Furthermore,

∂JS5

∂CS
=

∂(CS ·CS M
S)

∂CS

= CS M
S +

[∂(CS M
S)

∂CS

]T
CS

= CS M
S + [ [ I⊗ (MS)

T
]
23
T ]T CS

= CS M
S + [MS ⊗ I ]

23
T CS

= CS M
S + MS CS .

(B.19)

Inserting equations (B.17), (B.18) and (B.19) in (B.16), the expression of the second
Piola-Kirchhoff stress tensor SS

INT takes the form

SS
INT = µint αint (JS5 − J2

S4)
(αint−1) ( 2 JS4M

S +CS M
S +MS CS ) . (B.20)



104 Appendix B: Polyconvexity of Strain-Energy Functions

After a covariant push-forward transport of SS
INT, the solid Cauchy stress tensor TS

INT is
obtained as

TS
INT = J−1

S FS S
S
INT FT

S

= µint αint J
−1
S (JS5 − J2

S4)
(αint−1)FS ( 2 JS4M

S +CS M
S +MS CS )F

T
S .
(B.21)

A more comprehensive overview of the transport mechanisms is given in Acartürk [2],
Karajan [138] and Markert [172], amongst others.



Appendix C:

Numerical Stability and Physical Behaviour

of the Strain-Energy Function for

Fibre-Matrix Shear Interaction

In this chapter, some investigations are performed on a simple geometry for a quick
evaluation of the influence of the fibre-matrix shear-interaction parameter µint on the
mechanical behaviour. In the following paragraphs, the model response along the non-
fibrous directions is investigated to capture the possible non-physical behaviour.

C.1 Influence of Interaction Parameter

In this framework, a pure shear test is performed, since it is widely applied to characterise
the stress-strain properties of soft materials (Duong et al. [58]). Here, the geometry
consists of a single 20-noded, hexahedral Taylor-Hood element (L = 1mm), yielding 80
DOF (see Figure C.1, left). The element is gripped along one edge to prevent lateral
contraction and is extended in the other direction with a displacement |ūS(t)| = 0.1mm
applied as a step function (Duong et al. [58]). The fibres are parallel oriented to the
direction of applied displacement. The element may freely contract in its third dimension
and all surfaces are perfectly drained (P̄ = 0). The set of material parameters is listed in
Table 4.3.

The stress-strain response of the pure shear test is depicted in Figure C.1 (right). The
black line indicates the isotropic case. The purely anisotropic case without fibre-matrix
shear interaction is represented by the blue curve. The red and the dashed red curves
are related to the cases of “low” and “high” interactions, respectively. “Low” and “high”
interactions correspond to values of the interaction parameter µint equal to 0.005MPa and
0.08MPa, respectively.

As expected higher stiffness due to anisotropic reinforcement and shear interaction be-
tween fibres and matrix is observed. Furthermore, for the given set of material parameters,
a purely artificial material stiffening occurs as depicted by the light-blue curve in Figure
C.1 (right), after reaching a certain value of the interaction parameter.

C.2 Physical Behaviour Along Non-Fibrous

Directions

After evaluating the influence of the interaction parameter on the proposed model re-
sponse, the model’s ability to describe the physical behaviour still needs to be inspected.
A well-know non-physical behaviour called “strongly directional behaviour” (SDB) can
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Fibre-Matrix Shear Interaction
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Figure C.1: IBVP of pure shear loading on hexahedral element of length L = 1mm (left)
and stress-strain diagram for isotropic, purely anisotropic and anisotropic with low and high
interaction parameters (right).

lead to an unstable numerical response, known as “fibre rotation” (Gasser et al. [95]).
When large stretching occurs, the fibres rotate in the loading direction and might create
wrong accumulated deformations in the perpendicular direction of the fibre plane. These
deformations lead to an artificial thickening of the specimen, when the matrix is too
soft to prevent fibre rotation. Duong et al. [58] relate the origin of SDB to a numerical
aspect. SDB would occur due to ill-conditioning in the system of differential equations
implemented in FEM codes. Due to the large difference between isotropic and anisotropic
strain-energy values, high loads generating large stretches cannot be carried by a soft
matrix. This characteristic leads to failure in the material.

In this regard, the occurrence of SDB is investigated in the presented, anisotropic model
considering the fibre-matrix shear interaction. In Figure C.2, the evolution of the strain ε⊥
in the direction perpendicular to the applied displacement is depicted as a linear function
of the strain ε‖ in the direction of applied displacement. Subsequently, the computational
model including fibre-matrix interaction effects does not show any bulging, in contrast to
other numerical models (Holzapfel et al. [123]).

ε ⊥

ε‖
0

0

−0.004

−0.008

−0.012

−0.016
0.10.080.060.040.02

Figure C.2: Evolution of the strain in the direction perpendicular to the applied strain.
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[203] Nissi, M. J.; Rieppo, J.; Töyräs, J.; Laasanen, M. S.; Kiviranta, I.; Nieminen, M. T.
& Jurvelin, J. S.: Estimation of mechanical properties of articular cartilage with
MRI - dGEMRIC, T2 and T1 imaging in different species with variable stages of
maturation. Osteoarthritis and Cartilage 15 (2007), 1141–1148.

[204] Nocedal, J. & Wright, S. J.: Numerical Optimization. Springer-Verlag, Wien 1999.

[205] Ogden, R. W.: Large deformation isotropic elasticity – On the correlation of theory
and experiment for incompressible rubberlike solids. Proceedings of the Royal Society
of London, Series A 326 (1972), 565–584.

[206] Pailler-Mattei, C.; Bec, S. & Zahouani, H.: In vivo measurements of the elastic
mechanical properties of human skin by indentation tests. Mechanical Engineering
& Physics 30 (2008), 599–606.



Bibliography 123

[207] Parsons, J. R. & Black, J.: Mechanical behavior of articular cartilage, quantitative
changes with alteration of ionic environment. Journal of Biomechanics 12 (1979),
765–773.

[208] Peng, X. Q.; Guo, Z. Y. & Moran, B.: An anisotropic hyperelastic constitutive
model with fiber-matrix shear interaction for the human annulus fibrosus. Transac-
tions of the American Society of Mechanical Engineers 73 (2006), 815–824.

[209] Pierard, O.; Friebel, C. & Doghri, I.: Mean-field homogenization of multi-phase
thermo-elastic composites: a general framework and its validation. Composites Sci-
ence and Technology 64 (2004), 1587–1603.

[210] Powell, M. J. D.: A direct search optimization method that models the objective and
constraint functions by linear interpolation. In Gomez, S. & Hennart, J. P. (eds.):
Advances in Optimization and Numerical Analysis. Kluwer Academic Publishers,
Dordrecht 1994, pp. 51–67.

[211] Quinn, T. M.; Dierickx, P. & Grodzinsky, A. J.: Glycosaminoglycan network geom-
etry may contribute to anisotropic hydraulic permeability in cartilage under com-
pression. Journal of Biomechanics 34 (2001), 1483–1490.

[212] Radin, E. L.; Burr, D. B. & Caterson, B.: Mechanical determinants of osteoarthro-
sis. Semin Arthritis Rheum 21 (1991), 12–21.

[213] Rasmussen, J.; Damsgaard, M. & Voigt, M.: Muscle recruitment by the min/max
criterion – a comparative numerical study. Journal of Biomechanics 34 (2001), 409–
415.

[214] Rasmussen, J.; Zee, M. D.; Damsgaard, M.; Marek, C. & Siebertz, K.: A general
method for scaling musculoskeletal models. Proceedings of the International Sym-
posium on Computer Simulation in Biomechanics 24 (2005), 755–756.

[215] Ratcliffe, A. R. & Mow, V. C.: Articular cartilage. In Comper, W. D. (ed.): Extra-
cellular Matrix. Harwood Academic Publishers 1996, pp. 234–302.

[216] Reynaud, B. & Quinn, T. M.: Anisotropic hydraulic permeability in compressed
articular cartilage 39 (2006), 131–137.

[217] Ricken, T. & Bluhm, J.: Remodeling and growth of living tissue: a multiphase
theory. Archive of Applied Mechanics 80 (2010), 453–465.

[218] Ridge, M. D. & Wright, V.: Mechanical properties of skin: a bioengineering study
of skin structure. Journal of applied Physiology 21 (1966), 1602–1606.

[219] Roberts, B. J.; Unsworth, A. & Mian, N.: Modes of lubrication in human hip joints.
Annals of the Rheumatic Disease 41 (1982), 217–224.

[220] Saad, Y. & Schultz, M. H.: GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing 7 (1986), 856–869.



124 Bibliography

[221] Saarakkala, S.; Julkunen, P.; Kiviranta, P.; Mäkitalo, J.; Jurvelin, J. S. & Ko-
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Nomenclature

Symbols

Symbol Unit Description

Aα [ - ] Almansian strain tensor of the constituent ϕα

α [ - ] constituent identifier i. e., α = {S, F}

αint [ - ] parameter of the interaction part of the strain-energy
function

αM [ - ] scalar parameter

aS
0 , a

S [ - ] vector of orientation of fibres in the solid reference
and actual configurations

A regular identity matrix

Bα [ - ] left Cauchy-Green deformation tensor of the con-
stituent ϕα

B aggregate body

β [ - ] deformation-dependent factor

βM [ - ] scalar parameter

BS
0S, B

S [mm ] tortuosity parameter in the solid reference and actual
configurations

BSe, BSi [ - ] elastic and inelastic part of left Cauchy-Green defor-
mation tensor of the constituent ϕS

Cα [ - ] right Cauchy-Green deformation tensor of constituent
ϕα

c̄m [mol/l ] molar concentration of the external salt solution

cfcm,0S, c
fc
m [mol/l ] initial and actual concentration of fixed charges

c̄fcm,0S [mol/l ] average concentration of fixed charges

cfcm,eff [mol/l ] effective concentration of fixed charges

χα motion function of the constituent ϕα

CS [ - ] right Cauchy-Green deformation tensor of the con-
stituent ϕS

da [mm2 ] area element

dāα [mm2 ] oriented weighted area element in reference configu-
ration of the constituent ϕα

Dα [ 1/s ] deformation velocity tensor

da [mm2 ] oriented area element in actual configuration
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dAα [mm2 ] oriented area element in reference configuration of the
constituent ϕα

DC [mm ] diameter of a chondron

∆ p [MPa ] pressure difference

δP [MPa ] test function for P

∆π0S , ∆π [MPa ] initial and actual osmotic pressure difference

∆qn local increment of the intern variables

∆t [ s ] time increment

δuS [mm ] testfunction of uS

δC0 [MPa ] compression modulus of chondron

δS0 [MPa ] compression modulus of ECM

δP0 [MPa ] compression modulus of PCM

δS0,eff [MPa ] effective compression modulus

δZ0 [MPa ] compression modulus of cell
dφn

ds
sensitivity vector

dv [mm3 ] actual volume element of ϕ

dvα [mm3 ] local volume element of the constituent ϕα

dXα [mm ] reference line element of the constituent ϕα

dx [mm ] actual line element of the constituent ϕ

DZ [mm ] diameter of the chondrocyte

e [ - ] notch length ratio

E [MPa ] overall Young’s modulus

Eα [ - ] Green-Lagrangean strain tensor of the constituent ϕα

εtol [ - ] tolerance value

ηf [MPa s ] fibre viscosity parameter

ηSn [MPa s ] shear viscosity related to the n-th Maxwell element

ζC [ - ] scalar parameter

ζSn [MPa s ] bulk viscosity related to the n-th Maxwell element

Fα [ - ] deformation gradient of the constituent ϕα

Fc [ N ] contact force value

Fc [ N ] oriented contact force

FSe, FSi [ - ] elastic and inelastic part of the deformation gradient
of the constituent ϕS

f(s) objective function

FS [ - ] deformation gradient of the constituent ϕS

f generalised external force vector

FV [ N ] vertically oriented force
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Γ overall domain boundary

γFR [ N/m3 ] effective fluid weight

γS
0 [ - ] parameters governing the volumetric response of ϕS

γS
n [ - ] parameters governing the volumetric response of ϕS

related to the n-th Maxwell element

γ̃m [ - ] parameters of the equilibrium part of the anisotropic
strain-energy function

(γ̃m)n [ - ] parameters of the non-equilibrium part of the
anisotropic strain-energy function related to the n-
th Maxwell element

g [m/s2 ] constant gravitation vector with |g| = 9.81m/s2

Gn global numerical system

G space-discrete function vector

H1(Ω) Sobolev function space

HS
0S, H

S [ - ] initial and actual hydraulic anisotropy

I [ - ] identity tensor (2nd-order fundamental tensor)

Jα [ - ] Jacobian of ϕα

Jk
S4i,n [ - ] inelastic counterpart of the fibre stretch at the n-th

time step after the k-th local Newton iteration

Jn Jacobian (tangent) matrix

JS [ - ] Jacobian of ϕS

JS4 [ - ] fourth invariant

JS4e, JS4i [ - ] elastic and inelastic part of the fourth invariant (fibre
stretch)

JS5 [ - ] fifth invariant (mixed invariant)

JSe, JSi [ - ] elastic and inelastic part of the Jacobian of ϕS

κ [ - ] exponent governing the nonlinear dependency of the
permeability

KC [mm4/N s ] permeability of the chondron

KF
0S, K

F [mm4/N s ] initial and actual specific permeability

K̄F
0S [mm4/N s ] average initial specific permeability

KF
F [mm4/N s ] nonlinear specific permeability

KF [mm4/N s ] anisotropic permeability tensor

kij [ - ] covariance coefficient of i-th parameter with j-th pa-
rameter

KP [mm4/N s ] permeability of PCM

KS [ - ] deformation-induced anisotropy

k generalised stiffness vector

KC
0 [mm4/N s ] initial permeability of the chondron
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KP
0 [mm4/N s ] initial permeability of the PCM

KZ
0 [mm4/N s ] initial permeability of the cell

Lα [ 1/s ] spatial velocity gradient of ϕα

λS
0 [MPa ] first Lamé constant

λS
0,eff [MPa ] effective first Lamé constant

λS(k), λSe(k) [ - ] eigenvalues of CS and CSe

λS
n [MPa ] first Lamé constant related to the n-th Maxwell ele-

ment

L local vector

Mf , Mfe [ - ] number of polynomial terms

MS, N S [ - ] structural tensors in solid reference and actual con-
figuration

M generalised mass matrix

µC
0 [MPa ] second Lamé constant of chondron

µint [MPa ] parameter of the interaction part of the strain-energy
function

µk [ - ] coefficient of friction

µP
0 [MPa ] second Lamé constant of PCM

µS
0 [MPa ] second Lamé constant of ECM

µS
0,eff [MPa ] effective shear modulus or effective second Lamé con-

stant

µ̃m [MPa ] fibre stiffness

(µ̃m)n [MPa ] fibre stiffness related to the n-th Maxwell element

µZ
0 [MPa ] second Lamé constant of chondrocyte

nα [ - ] volume fraction of constituent ϕα

nC
0 [ - ] volume fraction of chondron

nS
coll [ - ] solid fraction of collagen fibres

nS
ECM [ - ] solid fraction of ECM

Ne [ - ] number of FE elements

nF
0S , n

F [ - ] initial and actual porosity

n̄F
0S [ - ] average porosity

nF
extra,0S [ - ] extrafibrillar part of porosity

Ninq [ - ] number of inequality constraints

Nn [ - ] number of nodes

nP
0 [ - ] volume fraction of PCM

nS
0S , n

S [ - ] initial and actual solidity

NS(k), NSe(k) [ - ] eigenvectors of CS and CSe
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nS
Si [ - ] solid volume fraction (nS

Si)n related to the n-th
Maxwell element

ν [ - ] overall Poisson’s ratio

n [ - ] outward-oriented unit normal vector

nZ
0 [ - ] volume fraction of chondrocyte

Ω spatial domain

Ωe, Ω
h one finite element and the discretised finite element

mesh

p [MPa ] overall pore-fluid pressure

P material point in actual configuration

P α material point of ϕα

Pc [ N ] contact force value

P [MPa ] hydraulic pore-fluid pressure (primary variable)

P̄ [MPa ] Dirichlet boundary condition for P

p̂F
E [ J/mm2 s ] extra momentum production of ϕF

p̂F [ J/mm2 s ] momentum production of ϕF

p̂S [ J/mm2 s ] momentum production of ϕS

φS
0 [ rad ] fibre angle in the solid reference configuration

φn(s) output after parameter fluctuation around reference
state

φ̃n exact solution of inverse problem

p̃ [ - ] normalised pressure

qISO, qANI isotropic and anisotropic entries of vector of internal
variables

q̄ [mm/s ] volume efflux of ϕF over the boundary

q vector of internal variables

r [mm ] indenter radius

R [ J/molK ] universal gas constant

rc contact zone radius

ρα [ kg/mm3 ] partial density of ϕα

ραR [ kg/mm3 ] effective density of ϕα

rc [mm ] radius of contact zone

ρFR [ kg/mm3 ] effective fluid density

rij [ - ] correlation coefficient of i-th parameter with j-th pa-
rameter

rn local residuum value

r local residuum vector

Sα [MPa ] second Piola-Kirchhoff stress tensor of ϕS
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σc [MPa ] contact stress

σc,max [MPa ] peak of contact stress

σv [MPa ] vonMises stress

SS
n [MPa ] second Piola-Kirchhoff non-equilibrium stress tensor

contribution related to the n-th Maxwell element

t [ s ] time

t0 [ s ] initial time

Tα [MPa ] Cauchy stress of ϕα

tα [ N/m2 ] surface traction vector of ϕα

τα [MPa ] Kirchhoff stress tensor of ϕα

t̄ [MPa ] external load vector acting on the boundary

T
EQ
ANI, T

NEQ
ANI [MPa ] equilibrium and non-equilibrium part of anisotropic

Cauchy solid stresses

T
EQ
ISO, T

NEQ
ISO [MPa ] equilibrium and non-equilibrium part of isotropic

Cauchy solid stresses

TF
E [MPa ] extra Cauchy fluid stress

TF [MPa ] Cauchy fluid stress

θ [ - ] deformation-dependent factor

Θ [K ] overall temperature

Θα [ K ] temperature of ϕα

TS
ANI, T

S
ISO [MPa ] isotropic and anisotropic Cauchy solid stresses

TS
E [MPa ] extra Cauchy solid stress

TS
INT [MPa ] interaction part of Cauchy solid stress

TS
mech [MPa ] purely mechanical part of Cauchy solid stress

TS
osm [MPa ] osmotic part of Cauchy solid stress

TS [MPa ] Cauchy solid stress

T [MPa ] overall Cauchy stress

ūS [mm ] Dirichlet boundary condition for uS

uS [mm ] solid displacement vector (primary variable)

|uS| [mm ] absolute value of solid displacement

u vector of unknowns

V [mm3 ] overall volume

V α [mm3 ] volume of ϕα

WANI [ J/mm3 ] anisotropic part of the strain-energy function

WEQ
ANI, W

NEQ
ANI equilibrium and non-equilibrium part of the

anisotropic strain-energy function

wF [mm/s ] seepage velocity vector

wk, wn [ - ] weight factors
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W S
INT [ J/mm3 ] interaction part of the strain-energy function

x [mm ] actual position vector of ϕ
·
x [mm/s ] aggregate velocity vector of ϕ
··
x [mm/s2 ] aggregate acceleration vector of ϕ
′
xα or vα [mm/s ] velocity vector of ϕα

′′
xα [mm/s2 ] acceleration vector of ϕα

Xα [mm ] reference position vector of P α

XS [mm ] initial position vector of ϕS

′
xF or vF [mm/s ] velocity of ϕF

′
xS or vS [mm/s ] velocity vector of ϕS

ξ [ - ] local element coordinate

ξk discrete Gauß point

y general vector of unknown

z̃ [ - ] normalised depth

Acronyms

Selected Acronym Definition

COBYLA Constrained Optimization BY Linear Approximation

DAE Differential Algebraic Equation

DEA Discrete-Element Analysis

DIRK Diagonally Implicit Runge-Kutta

DOF Degree Of Freedom

ECM Extra-Cellular Matrix

FE Finite Element

FEM Finite-Element Method

GMRES Generalized Minimal RESidual method

IBVP Initial-Boundary-Value Problem

JCS Joint Coordinate System

MBS/MKS Multi-Body System/Mehrkörpersystem

MPM Multi-Photon Microscope

MRI/MRT Magnetic Resonance Imaging/Magnetresonanztomographie

OA Osteoarthritis/Osteoarthrose

OCT Optical Coherence Tomography

ODE Ordinary Differential Equation
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PANDAS Porous media Adaptive Nonlinear finite element solver based
on Differential Algebraic Systems

PCM Peri-Cellular Matrix

PG Proteoglycan

PDE Partial Differential Equation

QLV Quasi-Linear Viscoelasticity

REV Representative Elementary Volume

SDB Strong Directional Behaviour

SEM Scanning Electron Microscopy

TPM Theory of Porous Media/ Theorie der Porösen Medien
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