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A numerical model concept for simulating multi phase flow processes is presented. The 
conceptual model involves the approximation of heterogeneous porous and fractured 
porous media. by application of one-, two- and threedimensional elements in space 
that can be combined arbitrarily in a single model. The mathematical formulation of 
multiphase flow is valid for both saturated and unsaturated regions, so that dynamic 
front propagation behaviour as well as different geology-related retention character­
istics can be accounted for in the model. For every Finite Element model problems 
arise when capillary pressure effects can be neglected and the governing equations 
are of hyperbolic type. To overcome these difficulties, the differential equations were 
formulated in terms of pressure and saturation as primary variables. To provide an 
accurate representation of the resulting saturation-front velocities and to avoid nu­
merical oscillations a modified Petrov-Galerkin method w .. employed. To verify the 
code, the BUCKLEy-LEVERETI problem w .. solved, and together with an adaptive 
Finite Element algorithm excellent results were obtained. 

1 INTRODUCTION 

Contamination of ground water resources by hazardous substances has become an is· 
sue of increasing interest. Petroleum products and halogenated hydrocarbon solvents, 
ubiquitous in our industrialized society, are among the most serious threats to ground 
water systems. These organic compounds (non-aqueous ph .. e liquids (NAPL's)) are 
characterized by their immiscibility with water and air, and low, but toxicologically 
significant air- and water- phase solubilities. In situations where water, air and N APL 
phases occupy the pore space in the subsurface, complex muliphase flow systems are 
generated. 

Modeling of multiph .. e flow systems involves a number of distinct steps, proceed­
ing from conceptual to mathematical to numerical models. The first task is to develop 
a conceptual model of the flow system. Based on empirical observations and accepted 
scientific principles, the conceptual model sets forth general notions about the phys­
ical and geometric makeup of the system and its constituents, the important flow 
and transport processes, and the nature of expected perturbations and constraints. 
Subsequently a mathematical model can be developed. 
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Perhaps the most critical step in a successful modelling effort is the development 
of the conceptual model. This must strike a proper balance between the complexity 
of a subsurface system, that will always be only incompletely known, and the level of 
detail required to address specific engineering issues. The analyst also needs to come 
to grips with the broad range of space and time scales that may playa role in system 
definition and performance. 

A major issue in numerical modelling is the credibility of computer programs 
(codes) and simulation results. This is of special importance in technical areas that 
involve public acceptance. To develop credibility for model predictions, "code veri· 
fication" exercises are performed. There one seeks to establish, by comparison with 
independently (often analytically) derived results, that a numerical simulation code 
does indeed provide accurate solutions for the problem that it was designed to solve. 
The much more ambitious and difficult task of process interpretation (validation) 
aims at demonstrating that a numerical model provides a valid representation of 
physical reality. Verification and process interpretation can only be performed for 
specific limited conditions; one very obvious limitation being the space and time 
scales over which the behaviour of a subsurface Bow system can be evaluated. 

The design and the accurate modelling of the multiphase flow processes e.g. of 
a subsurface remediation scheme require accurate data of site specific parameters 
like properties of the porous medium and the present fluids. Also the interactions of 
the NAPLs with the matrix and with other phases (e.g. water and air) are repre­
sented in the relative permeability- and capillary pressure-saturation functions and 
are important basic inputs although difficult to establish. 

The most promising aspects to overcome these problems are offered by well COD­

trolled laboratory experiments at different sizes from column to technical scales -
such as e.g. the VEGASprogram (Research Facility for Subsurface Remediation) 
(Fig. 1) KOBUS ET. AL. (1993) [8). 

2 GOVERNING EQUATIONS 

Multiphase flow in porous or fractured-porous media is described hy a set of non­
linear partial differential equations of two basic categories: the material balance or 
continuity equation (conservation law) and the equation of motion (Darcy's law). For 
multiphase fluid Bow, these equations must hold for each phase. The conservation law 
for each phase Q is given by a hyperbolic equation which relates porosity, velocity, 
saturation, density and mass flux. Darcy's law for each phase Q is given by an elliptic 
equation which relates the physical properties of the fluids and pore space with the 
driving forces of pressure differences and changes in elevation. The multiphase pres­
sure differential equation, including the continuity equation combined with Darcy's 
law, is widely applied for formulating hydrological problems [3J. 
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Figure 1: Interdisciplinary cooperation of physical and numerical modelers 
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where n denotes the porosity, K is the permeability tensor, ~o, jJo, Po, Sa and 
qa denote density, viscosity, pressure, saturation and volumetric production rate of 
phase Q respectively. When several Huid phases are present simultaneously in the void 
space of a porous medium or in a fracture, the presence of anyone of these phases 
will interfere with the How of all the others. Quantitatively, this mobility reduction is 
expressed in terms of the relative permeability factor kro . To solve for the unknowns 
P. and S., more equations are needed. One is given by the fact that the sum of the 
volume fractions at any point must add to unity: 

"p" •• 
L S. = I 
0=1 
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and the other is given as a relationship (or capillary pressures as a (unction o( satu· 
ration: 

tP = 1,2, ... , nph4'; tP 1= 0'. 

The system is nonlinear because k,o and Pc are functions of the saturation SQ' The 
shapes of these two ~ often nonlinear - functions are important in determining the 
nature of the system of equations. This system has a mixed nature and may even 
change type (elliptic· parabolic· hyperbolic) in certain regions. 

From the empirically determined relationship between capillary pressure and sat· 
uration, it is observed that the capillary pressure decreases in a strictly monotonic 
manner with decreasing saturation. An inverse function of the form Sa = So(PCOIP) 
therefore exists. A precondition (or the solution o( the system o( equations is that 
the capillary pressure p",~ '" O. In the case o( fractures ((ault zones). the capillary 
pressure Peaw is very small or even equal to zero. The above formulation is therefore 
not suitable as a mathematical basis (or investigating highly heterogeneous media. 

A pressure/saturation formulation involving the unknowns Pl1 5 21 S31 "" Snp" •• I 

which is valid for an arbitrary capillary pressure, is presented as follows: 

npA •• 

grad Pa - grad (p, + L Pda) 

and 

aS, 
at 

"=2 

o( " .•.. ) -- I-LS. at .=, 

(2) 

(3) 

where the phase a = I represents the fluid phase with the highest affinity to the 
matrix. 

This yields the (ollowing expression (or phase a = I: 

L, (PI. S.) := - div { 1:., :: K . grad P, } + div { u~ ~,' K . g} 

( 
".... ) du a " •••• aS 

+n 1- L S. d' oPi - nUl L a· - u,q, = 0 .=, PI t ~=, t 
(4) 

and (or the remaining phases a 2: 2: 

- div { k,a :: K . grad p, } + div { e! ~: K . g} 
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Equations 4 and 5 represent a coupled dynamic system of differential equations 
whicb describes the simultaneous transport of two or more immiscible fluids in an 
unsaturated or saturated porous medium. Due to the nonlinear dependence of the 
capillary pressure and the relative permeability on the degree or saturation, the system 
of equations behaves in a. highly nonlinear manner. This is further intensified by 
the fact that the physical parameters (such as relative permeability and degree of 
saturation) as well as the application of the law of motion in the matrix exhibit large 
differences between various parts such as fracture rault zones or systems with e.g. 
sand lenses. 

3 NUMERICAL REALIZATION 

The system of equations presented is solved using the Finite Element Method [2]. In 
discretiziog the transient problem, it is appropriate to formulate the time discretiza­
tion 00 the basis of an iterative concept. An implicit two-point algorithm developed 
for this purpose is incorporated into the Newton-type iterative concept for the consis­
tently linearized multi phase problem. The time integration algorithm presented here 
employs a central difference scheme with a weighting factor of 9 = 0,5, in which the 
unknowns PI and S .. are solved for a time step of ~t (CRANK-NICHOLSON method). 
With 9 = I, the implicit EULER method (backward difference method) is obtained. In 
order to describe the multiphase problem in fractured porous media, shape functions 
are employed within the framework of a standard isoparametric concept for approx­
imating the coordinate field (X), the pressure field of the first phase (PI), and the 
saturation field (S .. ) of phase 1jI. The degrees of freedom of the shape functions are 
identified by means of discrete nodal coordinates, nodal pressures and nodal satura­
tions. 

In order to describe various complicated geological structures (e.g. flow channels, 
fractures and rock matrix), it is necessary to employ arbitrary combinations of finite 
elements of different dimensions. Moreover, the finite elements must allow a correct 
description of the problem defined by the multi phase flow processes. 

The modelling system consists of one-, two- and three-dimensional elements with 
(multi-) linear shapefunctions applied to line elements, plane isoparametric quadri­
lateral elements and isoparametric hexahedral elements. 

As the solutions are computed for each element in tum, the geological parameters 
may vary from one element to the next. The afore-mentioned combinations of differ­
ent element types may be applied in a single model. The spatial orientation of the 
elements is arbitrary in order to simulate complex geological structures [7]. 
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Figure 2: Arbitrary coupling of !·D, 2-D and 3·D elements 

Formally speaking, the coupled, highly nonlinear multipbase equations (Eqns. (4) 
and (5» are of the parabolic type when the capillary pressure gradient is significant. 
If however this gradient becomes very small in relation to the size of the system 
to be solved, the equations become hyperbolic [4]. The numerical solution obtained 
from the finite difference and the STANDARD GALERKIN finite element formulation 
(BUBNOV-GALERKIN method) leads to invalid solutions, particularly when satura­
tion distributions are computed for small capillary pressure effects. These solutions 
are characterized by physically unjustifiable oscillations of phase shifts as well as an 
incorrect simulation of front velocities. 

In order to ensure convergence of the numerical solution, a modified PETROV­

GALERKIN method [2] was developed in which the test functions are up to two poly­
nomial degrees higher than the base function (shape function). In the following, the 
upwinding factors for the quadratic and cubic weighting functions are denoted by () 
and p, respectively. As a supplement to this, a lumped finite element formulation was 
also prepared. This results in a mathematical-numerical formulation which is specially 
tailored so that the transient multiphase algorithm can be improved by modifying 
the test function in time and space, thereby guaranteeing convergence. 

This type of approach was first proposed by West.rink and Shea (1989) [6] for the 
predominantly advective transport problem. 

4 VERIFICATION 

The standard method for verifying multiphase processes in the absence of capillary 
pressure effects represents the Buckley and Leverett (1942) [1] problem, which describes 
the unsteady displacement of oil by water in a one dimensional, horizontal system. 
The important point is that the absence of a capillary pressure gradient leads to 
a formulation of shock in the saturation profile. The following investigations were 
carried out using I-D elements. The saturation of the wetting phase (water) and 
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the pressure of the nonwetting phase (oil) were prescribed as boundary conditions 
on the left-hand boundary, with assigned values of Sw = 0,8 and Pn = 2·10' [Pal, 
respectively. A mass flow rate of mn = 1,505.10-3 (¥] leaving the system was chosen 
as the boundary condition on the right-hand boundary. 

In order to assess the influence of the relative penneability/saturation relationship 
on the solution behaviour of the method presented, a Brooks and Corey function was 
applied. The investigations confirm that the presented multiphase algorithm satisfac­
torily solves the Buckley· Leverett problem. In order to ensure a good approximation 
of the front propagation behaviour, it is necessary to employ the quadratic upwind­
ing formulation, whereby a significant reduction in the oscillation of the solution 
may be achieved with the aid of the lumped finite element or the cubic upwinding 
formulation. Under these conditions, the conservation of mass is also guaranteed. 

In order to reproduce a sharp dynamic front for a nearly 100% displacement (100% 
saturation for both phases), it was furthermore necessary to develop for ID elements 
an adaptive Petrov-Galerkin formulation based on the shown formulation. 

A comparison of the numerical and analytical solutions (see Welge (1952) [5)) is 
given in Fig. 3. 
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Figure 3: a) Modified Petrov Galerkin Method; b) Standard Galerkin Method 

5 CONCLUSIONS 

A numerical modelling system for multi-phase flow processes in porous and fractured 
porous media is discribed. To ensure the reproduction of the correct shape of the dy­
namic saturation front propagation of the phases, a modified Petrov-Galerkin method 
has been developed. 

The numerical model must provide a quantitative description of the relevant pro­
cesses and mechanisms, based on scientific principles. In cases where sufficient under-
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standing of the important processes has not yet been achieved, as e.g. for multiphase 
flow in a heterogeneous nature of the subsurface, numerical modelling must be guided 
by investigations of tbose processes in laboratory or field experiments. 
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Figure 4: Interpretation of Subsurface Processes by Numerical Models 

Presently DO method is known or is likely to emerge in the near future, which could 
demonstrate the accuracy or validity of a numerical model in general "final" terms. 
This limitation calls for a cautious approach in model applications. Numerical mod­
elling should be open to iterative refinement; models need to be complemented with 
engineering judgement, and provisions for monitoring and confirmation of system 
performance must be made. The test facility VEGAS will provide new possibilities 
for extending the experimental data base for checking and validating multi phase flow 
and transport models. 
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