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Models of skeletal muscle can be classified as phenomenological or biophysical. Phenome-
nological models predict the muscle’s response to a specified input based on experimental
measurements. Prominent phenomenological models are the Hill-type muscle models,
which have been incorporated into rigid-body modeling frameworks, and three-dimensional
continuum-mechanical models. Biophysically based models attempt to predict the muscle’s
response as emerging from the underlying physiology of the system. In this contribution,
the conventional biophysically based modeling methodology is extended to include several
structural and functional characteristics of skeletal muscle. The result is a physiologically
based, multi-scale skeletal muscle finite element model that is capable of representing
detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together
with a well-established model of motor-unit recruitment, the electro-physiological behav-
ior of single muscle fibers within motor units is computed and linked to a continuum-
mechanical constitutive law. The bridging between the cellular level and the organ level
has been achieved via a multi-scale constitutive law and homogenization. The effect of
homogenization has been investigated by varying the number of embedded skeletal mus-
cle fibers and/or motor units and computing the resulting exerted muscle forces while
applying the same excitatory input. All simulations were conducted using an anatomically
realistic finite element model of the tibialis anterior muscle. Given the fact that the under-
lying electro-physiological cellular muscle model is capable of modeling metabolic fatigue
effects such as potassium accumulation in the T-tubular space and inorganic phosphate
build-up, the proposed framework provides a novel simulation-based way to investigate
muscle behavior ranging from motor-unit recruitment to force generation and fatigue.

Keywords: skeletal muscle mechanics, multi-scale, continuum mechanics, excitation-contraction coupling, motor-
unit recruitment, tibialis anterior

1. INTRODUCTION
Research on investigating and analyzing functional or structural
properties of skeletal muscles, e.g., fatigue, injury, aging, or mus-
cle fiber composition, focuses almost entirely on in vitro or in vivo
experiments. The restricted knowledge on the underlying complex
mechanisms and their causal correlations often fosters a research
environment focusing on mechanisms and components in isola-
tion. Each knowledge gain is invaluable and provides a valuable
step toward understanding skeletal muscle mechanics and the
musculoskeletal system as a whole. However, if experimentalists
worked hand-in-hand with theorists to exploit the dormant power
of detailed biophysical computer models, it might be possible to
approach this goal much quicker and more efficiently.

Using computer simulations in conjunction with experimental
findings can provide an invaluable tool to test and evaluate com-
plex hypothesis and conclusions. Comprehensive in silico analysis
are able to identify important aspects or correlations needing fur-
ther insights, and hence provide, a priori, valuable information for
experimental research.

The limiting factor of combining in vivo or in vitro experiments
with in silico ones is often the acceptance and/or the simplicity of
existing (detailed) biophysical models. Moreover, in case of analyz-
ing muscle fatigue, injury, or aging of skeletal muscles, the models
need to extend beyond modeling “only” skeletal muscle tissue.
They need to touch and embrace related research areas and fields.
For example, comprehensive skeletal muscle models should also
take into account neurophysiological aspects, such as motor-unit
recruitment principles, functional aspects of motor unit, and mus-
cle fiber type distributions, sub-cellular mechanism, as well as the
mechanical behavior of adjacent tissue, and/or the dynamics of
(parts of) the musculoskeletal system.

Current computational models of skeletal muscle models do
typically either focus on sub-cellular processes of a (half) sarcom-
ere or on simplified phenomenological relationships mimicking
the overall (mechanical) behavior of a single skeletal muscle.
Based on the focus of the respective skeletal muscle models, one
can divide most of the existing skeletal muscle models into two
very broad categories: (i) biophysically based models and (ii)
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phenomenologically based models. Biophysically based skeletal
muscle models calculate the output of skeletal muscle using an
analysis of intrinsic physiological properties (e.g., Hodgkin and
Huxley, 1952; Huxley, 1957). Phenomenological ones use math-
ematical representations to describe the relationships between
input and output properties (e.g., Hill, 1938; Winters and Stark,
1987) – mainly to describe the mechanical properties of skeletal
muscle.

Phenomenological models often use the findings of experimen-
talists to describe their input-output relationship and hence are
less suitable for testing hypothesis and assumptions on the same
scale, e.g., the scale of a single skeletal muscle. However, they can
provide great insights into the applicability and validity of the
input-output relationships by using these models on larger scales,
e.g., the musculoskeletal system. Hill-type skeletal muscle models
(e.g., Hill, 1938; Winters and Stark, 1987) appeal, for example, to a
simple mechanical system, e.g., often to a three-element spring-
dashpot system, to describe the force-generating properties of
skeletal muscles. Clearly, they cannot be used to investigate intrin-
sic properties of skeletal muscle force generation, but they can be
used to test the force-generating relationships of single skeletal
muscles in the overall musculoskeletal system, e.g., to answer the
question of whether experimentally derived force relationships are
sufficient to act against physiological loads. Hill-models, like any
other model, do exhibit modeling deficiencies; here for example
on the organ system scale (the musculoskeletal system), where they
cannot account for the three-dimensional structural complexity of
an individual muscles and therefore cannot account for its interac-
tion with surrounding tissue. Further, the model reduces a skeletal
muscle to a force acting between an insertion point and an origin
point, i.e., to an one-dimensional object.

Recently, full three-dimensional models of skeletal muscles
have been created by a number of authors (Johansson et al., 2000;
Oomens et al., 2003; Blemker et al., 2005; Lemos et al., 2005; Röhrle
and Pullan, 2007; Böl and Reese, 2008). These models have led to
a fuller understanding of muscle force distributions. The three-
dimensional nature of the models resulted in the ability to analyze
dynamic changes to the line of muscle action that cannot be deter-
mined from the more common one-dimensional models (Röhrle
and Pullan, 2007), as well as elucidating possible causes of on-
linear muscle strains (Blemker et al., 2005). These models are
all based on the principles of continuum mechanics and result
in macroscopic models that do not explicitly include any infor-
mation from finer scales, e.g., the cellular level. This finer detail,
however, is required to represent the changes in muscle properties
as a result of disease or injury. The continuum representation also
prohibits the use of functional information, which is important for
rehabilitation techniques (e.g., functional electrical stimulation).
Examples of such functional information include, motor-unit dis-
tributions, fiber firing rates, and different locations of fiber types.
Furthermore, continuum-mechanical models cannot account for
physiological changes, e.g., fatigue induced changes to mechanical
output. Within these continuum-mechanical models, fatigue can
essentially only be considered in a phenomenological way (e.g., Böl
et al., 2009). This however, is of limited use, if one wants to jointly
investigate functional and physiological aspects in conjunction
with experimental studies.

More recently, researchers have focused on extending the
continuum-mechanical models by taking into account the under-
lying electrophysiology. The aim is to drive the mechanics of full
three-dimensional skeletal muscle models by electro-physiological
principles, i.e., Fernandez et al. (2005) and Böl et al. (2011). These
models, while providing more realistic responses, however do not
fully represent the detailed electrophysiology (electrically isolated,
independent motor units) of skeletal muscle.

The shortcoming of linking an electrical stimuli at the neu-
romuscular junction with mechanical output through a biophys-
ically based cellular model, which is also capable of mimicking
muscle fatigue, was first addressed in Röhrle et al. (2008) and then
further extended to a specific muscle geometry in Röhrle (2010).
Röhrle et al. (2008) also demonstrated on a cube that the proposed
homogenization methodology, which links the output of a detailed
biophysical model to a continuum-mechanical constitutive law, is
feasible and delivers for different finite element (FE) discretiza-
tions FE convergence rates, which are comparable to a continuum-
mechanical model. The key difference of Röhrle et al. (2008) and
Röhrle (2010) to all other existing electromechanical skeletal mus-
cle models (e.g., Fernandez et al., 2005; Böl et al., 2011) is the
fact that in the proposed model the active contribution within
the continuum-mechanical constitutive law is directly coupled to
a detailed skeletal muscle model of the (sub-)cellular processes
(Shorten et al., 2007) through a multi-scale constitutive law.

This paper aims to extend the framework proposed by Röhrle
et al. (2008) and Röhrle (2010) to include a much larger array
of anatomical and physiological properties; properties that are the
key to modeling the underlying mechanisms behind many diseases
and rehabilitation techniques. The main focus therefore is to pro-
vide the fundamental algorithms and modeling considerations for
incorporating muscle fiber and motor-unit distributions within
skeletal muscles and the ability to link a neurophysiological model
of motor-unit recruitment to the electromechanical model. The
methodology, here enhanced by structural and functional compo-
nents, is applicable to any skeletal muscle. Herein, the feasibility
of developing such a framework is demonstrated on the tibialis
anterior (TA) muscle. The result is one of the most advanced and
detailed skeletal muscle model currently available.

Such a detailed model becomes necessary, if one strives to
obtain a deeper understanding of skeletal muscle function dur-
ing muscle recruitment and to obtain a better understanding of
how the interplay between muscle fiber recruitment mechanisms
and mechanical force generation can be affected by alterations
to the underlying muscle properties. This model will be able to
provide for many different fields a framework capable of investi-
gating injuries and disease processes that affect skeletal muscle
encompassing the cellular composition, the functional recruit-
ment processes, and the gross mechanical structure. Moreover,
the proposed model will have potential to generate impact to the
general field of computational neuroscience, in which all state-of-
the-art recruitment models link their findings to simplistic muscle
force models neglecting any kind of spatial characteristics. In gen-
eral, the modular structure of the proposed framework shall allow
easy model adaptations, such that the overall framework can be
successfully applied to many different fields of musculoskeletal
research.
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2. MATERIALS AND METHODS
The skeletal muscle framework proposed in Röhrle et al. (2008)
and Röhrle (2010) focused on developing the underlying method-
ology to embed electrically isolated skeletal muscle fibers within
a three-dimensional skeletal muscle geometry and to link their
cellular behavior to mechanical output. Based on the same tibialis
anterior mesh as introduced in Röhrle (2010; cf. Section 2.1.1), the
modeling framework presented herein is extended by the following
anatomical and physiological enhancements:

1. Grouping of skeletal muscle fibers into functional units, i.e., the
motor units (cf. Section 2.1.2),

2. fiber type segregation of motor units into fast- or slow-
twitch type (Henneman and Olson, 1965; Wuerker et al.,
1965; Andreassen and Arendt-Nielsen, 1987; Monti et al., 2001;
Duchateau et al., 2006),

3. a physiological distribution of fibers within motor units (Enoka
and Fuglevand, 2001),

4. an anatomically based spatial distribution of fibers into motor
units (Bodine-Fowler et al., 1990; Roy et al., 1995; Monti et al.,
2001),

5. motor-unit territory sizes proportional to the number of fibers
per motor unit (Fuglevand et al., 1993; Roy et al., 1995; Yao
et al., 2000; Monti et al., 2001),

6. recruitment of each skeletal muscle fiber of a particular motor
unit through the neural input of an α-motor neuron (cf.
Section 2.4), and

7. controlling the muscle force output by recruitment and rate
coding of motor units (Fuglevand et al., 1993).

In summary, the proposed modeling framework encompasses
(i) an anatomically based, three-dimensional mechanical model
of a skeletal muscle, (ii) the electrophysiology of a single muscle
fiber, (iii) the coupling of the electrophysiology (cellular) to the
mechanical description through a cellular based multi-scale con-
stitutive law, and (iv) the mechanical response of an entire muscle
due to neural stimulation using a phenomenological model of
motor-unit recruitment.

2.1. A THREE-DIMENSIONAL, ANATOMICALLY BASED MUSCLE
GEOMETRY

2.1.1. The FE mesh and the embedding of the muscle fibers
The basis of this framework is a three-dimensional, anatomically
based representation of the TA muscle. To generate the geometri-
cal representation of the muscle, two-dimensional photographic
slices of the Visible Human male data set (Spitzer and Whitlock,
1998) were manually digitized to create a three-dimensional data
cloud. The data cloud was used to fit a three-dimensional quadratic
Lagrange FE mesh using a least-squares minimization algorithm.
For details about the fitting algorithm, the reader is referred to
Bradley et al. (1997). The generated FE mesh distinguishes between
the superficial and deep compartments of the TA, which are sep-
arated through an aponeurosis, and is depicted in Figure 1. To
simplify the embedding of the muscle fibers, the FE mesh of the
TA has been constructed in such a way that the muscle fibers within
the TA will be aligned with a direction of the local FE coordinate
system of each element. All fibers within the three-dimensional FE

FIGURE 1 |The tri-quadratic FE mesh of the tibialis anterior (TA). The
shaded section represents the element boundaries that are aligned with the
aponeurosis separating the superficial and deep compartments of the TA.

mesh are represented as one-dimensional lines consisting of evenly
spaced grid points. Moreover, all fibers are assumed to have the
same cross-sectional fiber area. The necessary fiber angle data for
achieving the respective fiber angles within the FE mesh are taken
from the fiber pennation angle data published in Lansdown et al.
(2007). The pennation angle measurements in Lansdown et al.
(2007) are based on in vivo diffusion-tensor magnetic resonance
imaging (DT-MRI).

2.1.2. Functional grouping of muscle fibers
Within this work, the distribution of muscle fibers per motor
unit is based on the work of Enoka and Fuglevand (2001). They
assume that the number of muscle fibers per motor unit exhibits
an exponential distribution: many motor units exert small forces,
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i.e., contain a small number of muscle fibers, and relatively few
motor units exert large forces, i.e., contain a large number of mus-
cle fibers. Such an exponential distribution of muscle fibers per
motor unit can be determined for a fixed number of total mus-
cle fibers, f M, by computing for each motor unit i the number of
associated fibers through

fi = f1 · exp

(
i − 1

m
· ln f m/1

ratio

)
, (1)

while ensuring that
∑m

i=1 fi = f M . In equation (1), f m/1
ratio deter-

mines the ratio between the number of muscle fibers of the largest
motor unit, fm, and the smallest motor unit, f1. As the number
of fibers within this work is dictated by the number of embedded
fibers, equation (1) has to be solved iteratively. As the solution
of equation (1) typically results in non-integer values, each fi is
rounded to its nearest integer. To fulfill the constraint that the
sum of all assigned muscle fibers has to equal f M, the number of
fibers of the last motor unit is adjusted by fm = f M

−
∑m−1

i=1 fi .
Each motor unit is assumed to be composed of either fast- or

slow-twitch muscle fibers, with smaller motor units composed of
slow type muscle fibers (Henneman et al., 1965b; Wuerker et al.,
1965). The proportion of slow versus fast muscle fibers is specified
by ps/f (about 70% of a human TA’s muscle fibers are of slow type).
Hence, by defining the first s motor units to be slow, and the last
m− s motor units to be fast, one can determine for a pre-defined
ps/f the number of s slow motor units by the following relationship:

s = argmin
l

∣∣∣∣∣
∑l

i=1 fi∑m
i=l+1 fi

− ps/f

∣∣∣∣∣ . (2)

The assignment of embedded fibers to a specific motor unit is
achieved by defining motor-unit territories within the mesh and
then assigning random fibers within the territories to a motor
unit. As fibers within a motor unit are defined to be of the same
physiological type (i.e., fast or slow type) and as muscle fibers of
a certain type are preferentially located in a certain region of the
muscle (Polgar et al., 1973; Henriksson-Larsén et al., 1983), addi-
tional weighting centers W t with t∈ {s, f } are introduced. The
distance between a weighting center, W t, and a particular center
of a motor-unit territory, Ci, is assumed to be normal distrib-
uted, i.e., N (µt , σ 2

t ). The mean,µt, is given by the location of the
weighting center, W t, while the variance is determined based on
the location of the muscle fiber center points, f c

k , and is therefore
dependent on the anatomical arrangement of the muscle fibers
and on the muscle geometry itself. The two variances for t∈ {s, f }
are given by

σt =
2ωt

3

(
max

k

{
dk,t

}
−min

k

{
dk,t

})
, (3)

where k = 1,. . ., f M is an index for a particular fiber, ωt denotes a
scaling factor, and

dk,t =‖ f c
k −W t

‖2 (4)

defines the Euclidean distance between the muscle fiber midpoint
of the kth-fiber, f c

k , and the respective weighting center W t. The

scaling parameter, ωt, is introduced to account for cases in which
the motor-unit territory centers are defined to be in close proxim-
ity to the weighting center or for cases in which this condition shall
be relaxed. In case that no weighting points can be specified, or
if one prefers to distribute the motor-unit territory center points
over the entire geometry of the muscle, the normal random distri-
bution is substituted by an uniform random distribution. Within
this work, the scaling parameter, ωt, is chosen to be 1.

The motor-unit territory centers, Ci for i= 1,. . ., f M, are
selected by choosing s random numbers X s

i ∼ N (µs , σs) and

m− s random numbers X
f
i ∼ N (µf , σf ), and by determining the

closest muscle fiber midpoint

Ci = argmin
f c
k ∈F

∥∥∥∥f c
k − (min

k
{dk,t } + X t

i )

∥∥∥∥
2

(5)

with i= 1,. . ., m and t∈ {s, f } accordingly.
To determine the spatial distribution of muscle fibers for each

motor unit i, single fibers from the pool of all available fibers,
which is denoted by Mr and coincides with F prior of selecting
the first fiber, are successively selected and removed from the set
of all remaining fibers,Mr . The selection algorithm for F i, which
is the set of all muscle fibers numbers associated with motor unit
i, is described in the following in more detail: First, all potential
muscle fiber midpoints for motor unit i are determined by:

Pi =
{

k | fk ∈Mr and
∥∥fk − Ci

∥∥
2 ≤ Ri

}
, (6)

where the radius,

Ri =

√
fi

ρi · π
, (7)

denotes a spatial constraint depending on the number of fibers,
fi, and the fiber density, ρi, of the respective motor-unit territory.
The fiber density of a motor-unit territory, ρi, is based on phys-
iological data (Roy et al., 1995; Monti et al., 1999). A total of fi

muscle fiber midpoints are randomly selected and removed from
the sets P i and Mr, i.e., P i :=P i− {k}, Mr :=Mr

− {k}, and
F i :=F i ∪ {k}. Note, in some cases, the choice of Ri might be too
restrictive resulting in an initial setP i (before selecting any muscle
fibers for motor unit i) that does not contain enough elements,
i.e., card (P i)= |P i|≤ fi. In this case, the radius, Ri is succes-
sively increased by 5% until the set of potential assignable muscle
fibers, P i, is sufficiently large. The same procedure is repeated
m-times, starting from the smallest motor unit and ending with
the largest one. Following this procedure, all muscle fibers are
uniquely assigned to a particular motor unit.

2.2. MODELING THE PHYSIOLOGY OF A SKELETAL MUSCLE FIBER
Although fibers within a skeletal muscle are mechanically coupled,
from an electro-physiological point of view, they are independent.
We assume that the activity of all fibers in a motor unit can be
modeled as identical and that all fibers are innervated at their
midpoint. Hence, it is sufficient to model the activation of a single
muscle fiber per motor unit, and use its output for all associated
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ones. The overall electro-physiological model of a single muscle
fiber can be split up in two parts: (i) the first part focuses on mod-
eling the (sub-)cellular behavior at a particular point along the
muscle fiber and (ii) the second part focuses on the propagation
of the AP along its muscle fiber. The first part can be described by
a Hodgkin–Huxley-like cellular model and is elucidated in more
detail in Subsection 2.2.1. The propagation of the AP along a single
skeletal muscle fiber is an interplay between the cellular response
of the muscle fiber at a particular location and of the propagation
of the electrical signal (AP). The homogenization of the intra-
and extracellular processes and the propagation of the AP along
the muscle fiber can be modeled using the bidomain equations,
which are described in detail in Subsection 2.2.2.

2.2.1. The cellular model
Many electro-physiological models describing various aspects of
(sub-)cellular processes have been introduced. The specific skele-
tal muscle cell model used within this work is, like in Röhrle
et al. (2008) and Röhrle (2010), the model developed by Shorten
et al. (2007). This cell model describes by means of two sep-
arate sets of parameters the electro-physiological behavior of a
(half-)sarcomere within slow- and fast-twitch type skeletal mus-
cle fibers using a Hodgkin–Huxley-like description. The resulting
system of coupled ordinary differential equations (ODEs) has
been implemented using CellML, which is a Markup-Language
specifically designed to describe cellular processes (cf. Lloyd et al.,
2008). The model can be downloaded1 from the CellML-website,
www.cellml.org.

In brief, the Shorten et al. (2007) model can be described as
an amalgamation of cell models, which each individually describe
parts of the muscle cell physiology. The model contains descrip-
tions of cellular processes such as the sarcolemmal membrane
potential, excitation-contraction coupling, and the dynamics of
the actin-myosin crossbridges. In modeling the membrane poten-
tials, the sarcolemmal and T-tubular membranes are represented
separately allowing the representation of fatigue effects through
potassium accumulation in the T-tubular space. In addition, the
effects of inorganic phosphate build-up are modeled to represent
metabolic fatigue properties. The actin-myosin crossbridge model
is an “eight-state model,” in which the eight “states” can be asso-
ciated with regulatory units on the thin filaments and, therefore,
can be are related to different states of the troponin-tropomyosin
complex. Specifically, the different states within this model are
distinguished into six detached states and two attached states,
i.e., the concentration of attached myosin crossbridges during
the pre-powerstroke state, A1, and the concentration of attached
myosin crossbridges during the post-powerstroke state, A2. The
parameters A1 and A2 will be used later within the multi-scale
constitutive law describing the overall electromechanical behavior
of the skeletal muscle.

The Shorten et al. (2007) cell model is selected, because it rep-
resents the cellular properties of skeletal muscle fibers from action
potential (AP) activation right through to the crossbridge dynam-
ics. The main advantage of this model is that the entire chain of

1http://models.cellml.org/exposure/159ba2f081022ca651284404f39eeb40/view

processes allows for a more physiologically realistic representation
of complex cellular behavior such as membrane fatigue, metabolic
fatigue, force summation, potentiation, and the catch-like effect
(Shorten et al., 2007). Further, it allows the modeling of different
muscle fiber types, e.g., fast and slow-twitch muscle, without the
necessity of separate cell models.

2.2.2. The bidomain equations
The behavior of AP propagation in biological tissue is typically
modeled using the bidomain equations (Pullan et al., 2005), which
are a set of coupled reaction-diffusion equations. The reactive part
stems from the cellular behavior, while the diffusive part describes
the propagation of the AP. For examples of implementation of
ODE models of cellular activity refer to Fernandez et al. (2005),
Kim et al. (2007), and Röhrle and Pullan (2007).

Within this work, we assume a fiber diameter of 80µm,
which is within the range of a human fiber diameter of 80–
100µm (e.g., Lexell et al., 1986; Sjöström et al., 1991; Miller
et al., 1993) motivating the surface-to-volume ratio of 50 mm−1.
The capacitance of the membrane was set at 0.01µFmm−2 for
the fast-twitch fibers and 0.0058µFmm−2 for the slow-twitch
fibers (cf. Shorten et al., 2007). The intracellular and extracel-
lular conductivity tensors are, in the case of solving the bidomain
equations for a one-dimensional fiber, scalars and are chosen to
be σ i= 0.893 mSmm−1 (Bryant, 1969) and σ e= 0.67 mSmm−1

(Schwann and Kay, 1957; Rush et al., 1963), respectively.
The bidomain equations are discretized in space using lin-

ear Lagrange finite elements and the resulting system of ODEs
is then solved using LSODA (Hindmarsh, 1982; Petzold, 1983).
The key electro-physiological parameters that will be used later
within a multi-scale constitutive law (cf. Section 2.3.1) are
the concentration of actin-myosin crossbridges in the pre- and
post-powerstroke, A1 and A2.

2.3. THE CONTINUUM-MECHANICAL SKELETAL MUSCLE MODEL
This work appeals to the same mechanical model as proposed and
used in Röhrle et al. (2008) and Röhrle (2010). For completeness,
however, a brief overview is given in the following.

The continuum-mechanical model proceeds form the local
form of the balance of linear momentum,

ρ ẍ = divT + ρ b , (8)

where ρ denotes the mass density, x is a material point position in
the current configuration and ẍ its second time derivative, b are
the body forces, and T denotes the Cauchy stress tensor. By assum-
ing quasi-static conditions and small body forces (in comparison
to the forces generated by the muscle), the local form of the bal-
ance of linear momentum reduces to div T= 0. For biological
tissues, it is often advantageous to express the stress-strain rela-
tionship with respect to anatomical features, which are typically
defined in the reference state. To do so, one can express the Cauchy
stress tensor in terms of the second Piola–Kirchhoff stress tensor
via the push-forward operation T= J−1FSF−1, where J = det F
and F= ∂x/∂X is the deformation gradient tensor mapping points
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between the reference configuration, X, and the current configu-
ration, x (deformed state). The strain is typically measured by the
Green strain tensor

E =
1

2
(FT F− I) =

1

2
(C − I), (9)

where C is the right Cauchy–Green deformation tensor and I is
the identity tensor. The relationship between stress and strain can
be specified for hyperelastic materials by a strain energy function
ψ . A detailed introduction and overview to non-linear continuum
mechanics and tensor analysis can be found in Holzapfel (2004).

A skeletal muscle tissue’s overall mechanical behavior can be
modeled by distinguishing between an passive and an active behav-
ior. During contraction (the active part) the muscle generates a
contractile force in the longitudinal direction, which is (locally)
described by a vector a0. The material behavior of the passive
part is described through the mechanical behavior of the tissue’s
ground matrix, i.e., the extracellular matrix consisting of a net-
work of collagen, fat, etc. Given the mechanical behavior’s additive
nature, the free energy of the entire muscle tissue,ψmuscle, can be
written as the sum of the free energy of the ground substance,
ψmatrix, and the free energy of the active part,ψactive:

ψmuscle(C, a0) =ψ
matrix(C, f passive(λ), a0)

+ ψactive(C, a0,α, f active(λ)), (10)

where α ∈ [0, 1] is an internal variable that describes the level of
activation, λ =

√
a0 · Ca0 is the fiber stretch, and f passive(λ)and

f active(λ) are the normalized force-length relationships. For the
active part, f active(λ) describes the overlap of actin and myosin and
hence the ability to generate tension through crossbridge dynam-
ics. The normalized force-length relationship is a commonly used
tool to incorporate the physiological behavior of fiber stretch in
purely mechanical models (e.g., Blemker et al., 2005; Röhrle and
Pullan, 2007; Böl and Reese, 2008).

Differentiating the free energy with respect to C and assuming
a simple and isotropic Mooney–Rivlin-type material behavior for
the ground matrix, results in the following definition of the second
Piola–Kirchhoff stress tensor

Smuscle
= c1I+ c2(I1I− C)− p

√
I3C−1︸ ︷︷ ︸

=: Siso

+

[
σ

ff
pass

I4
f passive(I4)

]
(a0 ⊗ a0)︸ ︷︷ ︸

=: Saniso

+ α

[
σ

ff
ten

I4
f active(I4)

]
(a0 ⊗ a0)︸ ︷︷ ︸

=: Sactive

, (11)

where

I1 = tr(C), (12)

I2 =
1

2
[(tr(C))2 − tr(C2)], (13)

I3 = det C, (14)

are the standard invariants and invariant

I4 = a0 · Ca0 (15)

is associated with the fiber stretch in the current configuration,

σ
ff
pass = σ

ff
ten = 0.03 MPa are the maximal passive and active stiff-

ness in the along-the-fiber direction, p is the hydrostatic pressure
and Smatrix

= Siso
+ Saniso. The dyadic product, P, between two

three-dimensional vectors is defined by

P = u ⊗ v =

(
3∑

i=1

ui ei

)
⊗

 3∑
j=1

vj ej

 = 3∑
i,j=1

uivj ei ⊗ ej ,

(16)
where

ei⊗ej = ei eT
j =

ei,1

ei,2

ei,3

[ej ,1, ej ,2, ej ,3] =

ei,1ej ,1 ei,1ej ,2 ei,1ej ,3

ei,2ej ,1 ei,2ej ,2 ei,2ej ,3

ei,3ej ,1 ei,3ej ,2 ei,3ej ,3

.

(17)

At each point, the local fiber direction, a0, can be expressed in
terms of the global basis spanning the overall world coordinate
system, i.e., ei, i= 1,2,3. Hence, the dyadic product of the local
fiber orientation describes the contribution of the fiber orienta-
tions to the overall second Piola–Kirchhoff stress tensor in terms
of the global coordinate system. In the special case that the local
fiber direction is aligned with the first basis vector of the global
coordinate system, i.e., a0= e1= [1,0,0], the tensor resulting from
the dyadic product results into a tensor a0⊗ a0 with a 1 in (1,1)-
component and zeros for all other components. Hence, the fiber
will only have a contribution to the (1,1)-component of the second
Piola–Kirchhoff stress tensor.

The mechanical model itself is based on solving the govern-
ing equations of finite elasticity theory using the FE method. The
unknowns describing the displacements are discretized using tri-
quadratic Lagrange FE basis functions whilst the unknowns for the
hydrostatic pressure are discretized by linear FE basis functions.
Solving for the mechanical deformation due to skeletal muscle
activity or due to a change in the muscle attachment location
(i.e., movement of the bone) requires the evaluation of the second
Piola–Kirchhoff stress tensor.

2.3.1. A multi-scale constitutive law
The continuum-mechanical constitutive law does not yet contain
any information from the smaller scales such as the cellular level.
For a given time t, the activation level, α, in equation (11) is
substituted by cellular variables, i.e., A1 and A2. Moreover, the
mechanical description of the contractile response is split into
two parts: the first one is based on the generation of tension in the
post-powerstroke state and the second one is related to the change
of passive stiffness due to the attached crossbridges in the pre-
and post-powerstroke states. As both mechanisms act in the direc-
tion along a muscle fiber, the second Piola–Kirchhoff stress tensor
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for the multi-scale constitutive law can be expressed in terms of
cellular parameters by

Smuscle
= Siso

+ Saniso

+

[
A1 + A2

ctrop

σ
ff
pass

I4
f active (λ)+

A2

Amax
2

σ
ff
ten

I4
f active (λ)

]
(a0 ⊗ a0),

where c trop is the normalization factor and is the maximum
possible amount of troponin within the cellular model (here:
c trop= 140) and Amax

2 presents the maximal concentration of
attachable crossbridges in the post-powerstroke. Hence, the term
containing A2/Amax

2 is comparable to α in equation (11), while the
term containing (A1+A2)/c trop relates to an additional passive
tension due to the activation.

2.3.2. Upscaling
From a computational point of view, the mechanical model of the
skeletal muscle cannot be discretized with the same fine resolu-
tion as the embedded fibers due to accuracy constraints dictated
by solving the system of ODEs describing the cellular processes.
This mismatch in mesh resolutions requires a homogenization
procedure to upscale the fine-grid solutions of the cellular vari-
ables to the nearest Gauss points of the mechanical FE mesh, at
which the second Piola–Kirchhoff stress tensor is evaluated. This
is done by computing in the vicinity of each Gauss point the aver-
age concentration of attached crossbridges. This homogenization
procedure has been proposed and validated in Röhrle et al. (2008).

2.4. MOTOR-UNIT RECRUITMENT
Motor units are recruited in an order determined by the number of
muscle fibers in each motor unit, the so-called size principle (Hen-
neman and Olson, 1965; Henneman et al., 1965a,b). The number
of active motor units and their firing frequency is modulated as a
result of the excitatory drive coming from the motor cortex. This
framework assumes that the drive to each motor unit in the pool is
equal (De Luca et al., 1982; Yao et al., 2000), though this is still an
unresolved issue (Heckman and Binder, 1988; Heckman, 1994).
The activation of each motor unit is calculated using a method
derived by Fuglevand et al. (1993). Briefly, the recruitment of a
specific motor unit and its resulting firing frequency is dependent
on a single pre-defined variable E(t ), where, 0≤ E(t )≤ 1, is a user
defined activation parameter. If E(t ) is greater than the recruit-
ment threshold of motor unit i, then motor unit i becomes active
with a firing rate which is linearly dependent on E(t ). The recruit-
ment thresholds of the motor units are defined to be exponentially
varying over the pool of motor units

T excite
i = expi·(ln(RR)/m), (18)

where Ti is the recruitment threshold of motor unit i, RR is the
range of recruitment thresholds in the motor pool, and m is the
number of motor units. Active motor units, i.e., E(t )≥T excite

i , are
assumed to increase their firing rate linearly from the minimum
firing rate to the maximum firing rate. Although it is possible to
model variations in minimum and maximum firing rates over the
motor pool (Fuglevand et al., 1993), all simulations within this

work assume for each active motor unit an uniform minimum
firing rate of 8 Hz and a maximum firing rate of 40 Hz. The mini-
mum firing rate is based on the average reported rates in Grimby
and Hannerz (1977), Bellemare et al. (1983), Broman et al. (1985),
Kamen and Du (1999), McNulty and Cresswell (2004), and Do
and Thomas (2005), while the maximum is based on the average
value reported in Bellemare et al. (1983) and Enoka and Fuglevand
(2001). Hence, the firing times for motor unit i can be computed
by the following equation:

t next
i = t last

i +
1

(1+ η · cν)(ge ·
[
E(t next

i )− T excite
i

]
+ F min

i )
,

(19)

if E(t )≥T excite
i . In equation (19), t last

i is the point in time motor
unit i has fired last, η a Gaussian-distributed random number
mimicking the natural variability of motor-unit activation, cν a
coefficient of variation, ge the gain of motor unit i, and F min

i the
minimum firing rate of motor unit i. The exact parameter values
for equation (19) are given in Table 3.

The firing times of each motor unit are used in conjunction with
the one-dimensional fiber models to produce the cellular output
for each motor unit. It is important to note that each muscle fiber
of a specific motor unit has approximately the same behavior as
they are innervated by the same motor neuron and are of the same
physiological type. Hence, the distribution of the pre- and post-
powerstroke concentrations, i.e., the cellular variables A1 and A2,
are computed for all fibers and serve, after homogenization, as
input to the multi-scale constitutive law. Therefore, a change in
the state of activation or a displacement boundary conditions at
the end of the muscle causes a change in the muscles mechanical
state and, hence, the exerted muscle force of the overall skeletal
muscle.

3. RESULTS
3.1. MUSCLE FIBER DISTRIBUTION WITHIN THE TA
A particular choice of muscle fiber distribution for the TA, which
will be used for most numerical investigations within this section,
is depicted in Figure 2. The allocation of the muscle fibers to
particular motor units has been carried out as described above.
A (homogenized) muscle fiber diameter of 2000µm has been
assumed resulting in a total of 903 muscle fibers for the TA muscle
geometry depicted in Figure 1. Further, within the muscle-fiber-
to-motor-unit-allocation algorithm described above, a total of 30
motor units and a ratio between the number of fibers of the
largest and the smallest motor unit of 10, i.e., f m/1

ratio = 10 in equa-
tion (1), is considered. The discretization with a grid spacing of
0.0625 mm results in a total of about 50,000 grid points, at which
cellular variables need to be computed/assigned. The grid spacing
of 0.0625 mm is justified in a convergence study of the AP prop-
agation speed, which is presented within Section 3.2. Figure 2
depicts the anatomical location of the TA (in blue), the muscle
fibers associated with motor units 1, 5, and 10, as well as the motor
unit territory center C1 of the first motor unit. This muscle fiber
allocation provides the basis for the remaining simulations, except
for the simulations considering a total of 10 and 50 motor units in
Section 3.4.
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FIGURE 2 | Subfigure (A) shows the location of theTA within the lower limb; (B–D) show the muscle fibers associated with motor units 1, 5, and 10.
Further (B) depicts the motor-unit territory center midpoint, C1, for motor unit 1 and (the sphere with) radius R1 that was used to select the fibers for motor
unit 1.

3.2. VERIFICATION OF COMPUTATIONAL PARAMETERS
The contractile properties of the multi-scale constitutive law are
directly linked to the electro-physiological behavior of single skele-
tal muscles. Hence, it is of importance to properly model the
physiological behavior of the AP propagation, i.e., the shape of the
AP and its conduction velocity along the fiber. All single muscle
fiber simulations carried out within this section aim to determine
the appropriate temporal and spatial discretization parameters
resulting in a correctly simulated AP propagation. The parame-
ters for the bidomain equations are given in Table 1. The values
for the Shorten et al. model are outlined in Shorten et al. (2007).

As simulation parameters for solving the Shorten et al. (2007)
model using LSODA, a time increment of 1t= 0.01 and an
absolute error εtol= 0.1−4 have been identified to provide a good
balance between accuracy and computational speed. The spatial
discretization of the muscle fibers is determined by a grid con-
vergence analysis with respect to the conduction velocity. For this
purpose, a 32 mm long muscle fiber has been discretized using

different grid spacings and the AP propagation is calculated based
on the bidomain equations. The AP conduction velocity is deter-
mined by the distance that the maximum positive gradient in
membrane potential traveled for a given period of time. The results
of the computed conduction velocities for different grid point
spacings are presented in Table 2.

Based on the computed conduction velocities, a grid point
spacing of 0.0625 mm (16 grid points per mm) is assumed to
be adequate for solving the bidomain equations for fast- and
slow-twitch muscle fibers.

3.3. PHYSIOLOGICAL RECRUITMENT OF A TA
Choosing an excitatory drive function E(t ), i.e., the tempo-
ral recruitment of single motor units and, hence, the motor-
unit-associated fibers, the resulting electro-physiological changes
within the fibers, and the multi-scale constitutive law, allows to
compute the respective forces exerted by the TA. The TA is assumed
to undergo only isometric contractions, i.e., the attachment areas

Frontiers in Physiology | Striated Muscle Physiology September 2012 | Volume 3 | Article 358 | 8

http://www.frontiersin.org/Striated_Muscle_Physiology
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Röhrle et al. Modeling structure and function of skeletal muscle

Table 1 | Values for the fiber model (bidomain equations).

Variable Value Description Sources

Am 50 mm−1 Surface-to-

volume

ratio

Calculated based on a

cell diameter of 80µm:
cf. Lexell et al. (1986)

Miller et al. (1993)

Sjöström et al. (1991)

Cm 0.01 mFmm−2 Slow-twitch Shorten et al. (2007)

0.0058 mFmm−2 Fast-twitch fiber

membrane

capacitance

σ i 0.893 mSmm−1 Internal fiber

conductivity

Bryant (1969)

σ e 0.67 mSmm−1 External fiber

conductivity

Rush et al. (1963)
Schwann and Kay (1957)

Is 8000µA/mm2 External

stimulus current

Assumed

Table 2 | Computed conduction velocities based on different grid

spacing for slow- and fast-twitch muscle fibers.

Discretization

(grid points/mm)

Conduction velocities (m/s)

Slow-twitch

muscle fiber

Fast-twitch

muscle fiber

2 1.529 2.174

4 1.488 2.101

8 1.471 2.049

16 1.466 2.033

32 1.466 2.033

64 1.466 2.033

128 1.466 2.033

of the TA are fixed by assuming zero-displacement boundary con-
ditions. Further, as mentioned earlier, the TA model consists of 903
fibers (cf. Section 3.1), which are distributed over 30 motor units.
The total simulation duration is 500 ms. All the parameters of the
recruitment model used within this section are listed in Table 3.

Herein, a step function is assumed as a particular choice of
E(t ). Every 100 ms, E(t ) increases by 0.25 [the first 100 ms E(t )
is 0]. The time instances at which all the muscle fibers of a single
motor units are activated through a nerve signal, are computed
based on E(t ). The arrival of a nerve signal at the neuromuscular
junction of a skeletal muscle fiber has been modeled by applying
a stimulus at the midpoint of the fibers of the respective motor
unit as boundary condition within the bidomain equations. The
stimulus has been chosen such that the midpoint of the skeletal
muscle fiber initiates a depolarization. As one computes first the
cellular variables A1 and A2 before solving the governing equations
of finite elasticity with the already updated and homogenized cel-
lular variables, the coupling between the electrophysiological and
the mechanical model can only be considered as weak. There exists

Table 3 |Values of the coefficients and variables of the recruitment and

rate coding model used within this framework.

Variable Value Description Sources

F min
i 8 Hz Mean firing rate of motor

unit i

Averaged from several

sources (see Section 2.4)

F max
i 40 Hz Peak firing rate of motor

unit i

Averaged from several

sources (see Section 2.4)

1F max 0 Difference in peak firing

rate between the smallest

and largest MU

Assumed

cν 0.2 Coefficient of variation Fuglevand et al. (1993)

η N (0,1) Gaussian-distributed

random number

Fuglevand et al. (1993)

RR 30 Range of recruitment

threshold values

Assumed

ge 2 gain of the motor units Assumed

no coupling between the mechanical deformation and the cellular
model as of yet.

The electrophysiological and mechanical problem is solved in
1 ms increments. Based on the finite elasticity solution, one can
compute the exerted muscle force at the attachment areas of the
TA. Figure 3 depicts the exerted muscle force as a result of the
above described excitatory drive function, E(t ). For each (second)
motor unit, a separate time line has been included in Figure 3.
The small motor unit numbers correspond to the motor units
that contain fewer muscle fibers and are sorted in an ascending
order (the smallest at the bottom, the largest motor unit at the
top). The y-axis on the right reflects the exerted muscle force
(in kN).

3.4. IMPLICATIONS DUE TO DIFFERENT NUMBERS OF FIBERS AND
MOTOR UNITS

The number of muscle fibers and motor units in a human TA
varies greatly, e.g., between 96,000 and 162,000 fibers (Henriksson-
Larsén et al., 1983) and 150± 43 motor units (McNeil et al., 2005).
Modeling each fiber with a spatial resolution of 0.0625 mm would
result in more than 50 Mio. computational nodes, at which cellular
parameters need to be computed/stored. Moreover, the multi-scale
constitutive law will not benefit from such a high resolution after
homogenization. Hence, it is of interest to investigate the effects
of the number of embedded fibers and the number of motor units
on the force-generating capabilities of the TA.

3.4.1. Number of embedded muscle fibers
To investigate the effects of changing the number of embedded
fibers within the TA geometry, different muscle fiber diameters
have been considered, i.e., diameters of 2000, 1000, and 500µm.
Given actual muscle fiber diameters in humans of approximately
80–100µm (Lexell et al., 1986; Sjöström et al., 1991; Miller et al.,
1993), the simulation with the smallest muscle fiber diameter rep-
resents already a 1:25 fiber ratio reduction. All simulations in
Figure 4 assumed a constant number of motor units, i.e., 30 motor
units, while the muscle fiber diameter has been varied. The same
motor-unit recruitment protocol as described in Section 3.3 has
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FIGURE 3 |The stimulation times of every second motor unit are shown
with vertical strikes. It can be seen that the larger motor units become
active later in the simulation and the average frequency of all motor units

increases throughout the simulation. The sigmoidal shape of the force curve
can be seen, with a slow average change in curvature at the beginning and
end of the simulation and a relatively linear section in the middle.

FIGURE 4 |The force output ofTA muscle simulation with mechanical
fiber spacings of 2000, 1000, and 500 µm.

been applied to compute the resulting muscle forces. The three
computed force profiles for muscle fiber diameters of 2000µm (in
green), 1000µm (in brown), and 500µm (in black) muscle fiber
diameter are plotted in Figure 4. Note, a variation in muscle fiber
diameter also requires a recalculation of the muscle fibers associ-
ation with a particular motor unit. Hence, due to the randomness
in selecting muscle fibers to particular motor units, there is the
possibility that the location of the muscle fibers belonging to a
particular motor unit varies.

Figure 4 contains in addition to the force plots also “smoothed”
force profiles (dashed lines of the respective fiber diameter colors).
The smoothed force profiles have been computed through a least-
squares fit to a 6th-order polynomial. The purpose of fitting the
force profile to a smooth polynomial is to investigate the fluctua-
tions of the muscle forces. Hence, the deviation of the force output

from the best-fit curve is then given by

R2
= 1−

∑
(yk − ŷk)

2∑
y2

k +
1
n (
∑

yk)
2 , (20)

where yk is the computed muscle force at time k1t with k = 1,. . .,
n and n·1t= 0.5 s and ŷk is the respective value obtained from
evaluating the polynomial. For mechanical fiber spacings 2000,
1000, and 500µm, the R2 values are 0.9884, 0.9950, and 0.9958,
respectively. In Figure 4, the increase in R2 can be noticed by
observing the fact that the force profiles exhibited less variations
as the number of fibers increased. The increase in the force as the
muscle fiber diameter increases is due to the proportionally larger
increase in the number of fibers in the distal section of the muscle
with a smaller pennation angle.

3.4.2. Number of motor units
Representing the TA with fewer than the actual number of motor
units has similar benefits and drawbacks as reducing the number of
embedded fibers. Considering fewer motor units reduces the com-
putational cost for calculating the electro-physiological behavior
of muscle fibers associated with a motor unit, but increases the
possibility of less smooth force outputs. Like above, different sim-
ulations with 10, 30, and 50 motor units were carried out. The
number of fibers were set to be constant at 903 fibers, i.e., a fiber
diameter of 2000µm (cf. Section 3.3). The excitatory input to the
motor-unit pool is the same in each case. The respective force out-
put based on simulations with 10 (in green), 30 (in brown), and
50 motor units (in black) are depicted in Figure 5.

To investigate the smoothness of the different force profiles, the
least-square fits are repeated for each muscle force profile and the
measure of smoothness, R2 as defined in equation (20), is com-
puted for each force profile. For the 10, 30, and 50 motor units
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FIGURE 5 |The force output profiles of theTA with 10, 30, and 50 motor
units. The sigmoidal shapes of the force profile can be clearly seen in the
best-fit curves of the plots of 30 motor units and 50 motor units (dashed
lines). The change in curvature of the 10 motor-unit simulation is more
subtle. The variations in the base line force of the simulations are due to the
changing location of the slow and fast fiber types. Increasing the number of
motor units increases the maximum value of the force, which is also a
result of fiber type location.

per muscle, the R2 values are 0.9884, 0.9967, and 0.9972, respec-
tively. The 30 and 50 motor-unit muscle exhibits an even higher
smoothness coefficient than the TA with a 500µm fiber diameter.

4. DISCUSSION
The proposed skeletal muscle modeling framework is capable
of replicating many structural and functional aspects in skele-
tal muscles. The model’s complexity and versatility to examine
many different aspects of a skeletal muscle’s function and struc-
ture through simulation is certainly the model’s key strength. At
the same time, this is also the model’s weakness if muscle-specific
simulations are desired. The complexity and versatility requires
many input parameters about a skeletal muscle anatomy and func-
tional distribution. The current body of knowledge for some of the
input data is quite limited. This is in particular true for data con-
cerning the motor-unit territories and a skeletal muscle’s active and
passive mechanical behavior, and, hence, the proper definition of
the (multi-scale) constitutive within the theory of finite elasticity.
Nevertheless, the forces predicted by the model (i.e., peak forces
of 0.5–0.6 kN) agree well with experimental findings, e.g., Brand
et al. (1986), Maganaris (2001), or Maganaris et al. (2001).

4.1. UNCERTAINTIES IN MOTOR-UNIT TERRITORY DATA
The limitations regarding the motor-unit territories stem from
the fact that a rigorous description of all the parameters, which
define the muscle fiber distribution across the motor units, is not
available from the literature (Monti et al., 2001). Due to physical
limitations in experiments, it is difficult to spatially analyze more
than one motor unit at a time. Further, such analysis are generally
based on 2D sections. These two factors combined lead, from an
experimentally point of view, to limited insights into motor-unit
distributions. Nevertheless, investigation such as those carried out
by Bodine-Fowler et al. (1990), Roy et al. (1995), and Monti et al.
(2001) can provide enough data for the generic assumptions made
in this study.

Although three-dimensional descriptions of motor-unit fiber
distributions within a muscle have been attempted, e.g., by ana-
lyzing multiple 10–20µm thick cross-sectional segments of the
muscle, the data is essentially only valid for the analyzed muscle.
As far as the locations of a motor-unit’s muscle fibers is concerned,
there exists a substantial inter-subject variability of the location.

The definition of motor-unit territory weighting centers and
the proposed random muscle-fiber-selection algorithm for pop-
ulating motor units (cf. Section 2.1.2) provides in combination
with the proposed continuum-mechanical framework (cf. Section
2.3) an alternative but biophysically based way to analyze the influ-
ence of different muscle fiber and motor-unit distributions on its
mechanical behavior.

For example, from Figure 5, it becomes apparent that the force
output becomes smoother as more motor units are added. In case
of adding more motor units, however, there is a greater likelihood
that distally located fibers are being activated first. Activating those
fibers first would likely cause an increase in force as early activation
allows the fibers to obtain a higher total force by the end of the sim-
ulation and their distal location means that their pennation angle
is less and thus their effect on total force is greater. This is only one
example that provides evidence that internal structures of the mus-
cle can significantly contribute to the overall mechanical behavior
of the muscle and that more information concerning the force
transduction pathways within the muscle should be incorporated.

Further, one can carry out in analogy to the previous conclusion
many other simulations aiming to investigate the effect of different
muscle fiber and motor-unit distributions on the exerted muscle
force. A systematic approach to setup such numerical experiments
can lead, together with additional knowledge about the mus-
cle’s function and the purpose of other surrounding tissues, to
a reverse-engineering approach of deducing certain (additional
and unknown) information on motor-unit distributions.

4.2. LIMITATIONS IN CONSTITUTIVE MODELING
Despite the fact that the proposed multi-scale constitutive law
does not incorporate many (micro-structural) detailed informa-
tion on force transduction pathways, one obtains from the overall
continuum-mechanical framework muscle forces that are similar
to other numerical and physiological studies. Brand et al. (1986),
for example, report 535 N as maximal exerted muscle force of the
TA and Fukunaga et al. (1997) report for the force-length relation-
ship of TA muscle fibers a maximum force of slightly more than
400 N.

Further, a mathematical validation of the multi-scale consti-
tutive law has been carried out in Röhrle et al. (2008). In this
work, Röhrle et al. (2008) showed that the multi-scale consti-
tutive law exhibits for different activation principles, different
finite element basis functions, and sequentially refined meshes
similar finite element convergence rates as for the mechanical-only
problem. This, however, only provides evidence that the homoge-
nization of the cellular parameters for the multi-scale constitutive
law have been defined in a mathematical consistent way. A full
experimental validation of the coupling method is in fact cur-
rently almost impossible as the data required to generate a fully
accurate constitutive law does not exist. A large amount of experi-
mental and modeling work needs to be undertaken to fill the gap in
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the literature regarding the three-dimensional mechanical prop-
erties of skeletal muscle tissue in both passive and active states.
This work will almost definitely have to begin by looking at the
micro-structural linkages between muscle fibers and the role that
the epimysium, perimysium, and endomysium plays in modify-
ing both the force output of muscle fibers, and the path of the
generated force through the muscle. A more detailed mechanical
description of the structure of skeletal muscle is desirable.

Another drawback of the current implementation of the cou-
pling between the zero-dimensional cellular model (the Shorten
et al., 2007 model), the one-dimensional fiber model (bidomain
equations), and the three-dimensional continuum-mechanical
model is the lack of force or length feedback from the continuum-
mechanical model to the Shorten et al. (2007) transmembrane
model and the recruitment model. The only data needed for each
bidomain simulation was the activation timing (from rate cod-
ing). This is a considerable drawback, as much of the afferent
input to the central nervous systems stems form feedback mech-
anisms within the muscle and tendon, e.g., muscle spindles and
Golgi tendon organs.

4.3. THE CELLULAR MODEL AND MUSCLE FIBER RECRUITMENT
Feedback of mechanical data to the cellular level can currently
not be directly included in the Shorten et al. (2007) model. More-
over, the Shorten et al. (2007) model is only valid for isometric
contractions. Therefore the pre- and post-powerstroke concentra-
tions (A1 and A2) have been multiplied by the normalized length

relationship for active contractions, i.e., f
fibre

active(λ), to account for
the probability by how much the actin and myosin overlap. The
Shorten et al. (2007) model can easily be extended to reflect non-
isometric contractions as well. In such a case, the actin-myosin
overlap might be directly considered within the cell model and
hence would make an additional multiplication with a force-
length relationship, which is typically derived from whole-muscle
experiments, redundant. While such an extension is a necessary
enhancement for a more general case, it would also provide a
direct and strong coupling between the cellular and continuum-
mechanical model. Another drawback of the Shorten et al. (2007)
model within the proposed framework is the fact that the cell
model has been precisely parameterized for mouse TA and not
for a human TA. However, no parameters for a human skeletal
muscle model are available. The bidomain parameters were taken
from experimental data on a mouse’s skeletal muscle. The parame-
ters for LSODA were selected to maximize accuracy and minimize
computational cost.

The major advantage of the proposed framework is that the
motor-unit recruitment model can be replaced, in a straight for-
ward fashion, by any other motor-unit recruitment model. In
particular in the field of computational neurophysiology, there
exist state-of-the-art motor neuron recruitment models that are
no longer phenomenological, e.g., the motor-unit recruitment
model used within this framework, but describe neural recruit-
ment based on complex networks of cellular models (e.g., Cisi and
Kohn, 2008). The drawback of all existing computational skele-
tal muscle mechanical models used in the field of computational
neurophysiology is the fact that the calculations of the exerted

muscle forces are extremely simplified neglecting any anatomi-
cal arrangements or mechanical behavior. This is an even more
severe restriction, if researchers draw conclusions from their neu-
rophysiological models based on computed muscle forces without
considering an anatomically detailed skeletal muscle mechanics
model. Linking both modeling approaches, i.e., the systems bio-
logical approaches for neural networks and the proposed skeletal
muscle mechanics model, can provide a powerful computational
framework to gain new insights in neurological disorders associ-
ated with muscle diseases. The proposed model is ideal for such
research.

4.4. FORCE-VELOCITY RELATIONSHIP
The current framework considers only the special case of isomet-
ric contractions of the TA. Throughout this paper, the authors
assumed that the force-velocity relationship provides only a very
minor contribution within the considered experiments and, hence,
can be neglected. Nevertheless, the force-length relationship can
be easily implemented within the proposed framework in a num-
ber of different ways. Firstly, one can include the force-velocity
relationship in a biophysical sense by alternating the Shorten et al.
(2007) model. This can be achieved by incorporating biophysical
effects altering the crossbridge kinetics as a result of the local con-
traction velocity. Secondly, the force-velocity relationship can be
incorporated into the multi-scale constitutive law in a similar way
as the force-length dependency, i.e., by multiplying the active stress
tensor, Sactive by a length dependent hyperbolic force-velocity rela-
tionship as it has been introduced, for the first time, by Hill (1938)
or by Johansson et al. (2000) within a FE framework.

4.5. SUBJECT-SPECIFIC VARIABILITY
The modeling of the muscle fiber distributions, cellular processes,
and its link to a continuum-mechanical skeletal muscle model
requires a large set of input variables. To be able to find adequate
model parameters, many parameters from different studies had to
be combined. In some cases, the parameter did not even originate
from humans as ethical measurements of such data in (living)
persons would not be able to be conducted. Due to the great inter-
subject variability of many of those parameters, it is essentially an
impossible task to obtain a realistic set of model parameters for a
subject-specific case.

Nevertheless, the proposed skeletal muscle model provides a
detailed biophysical skeletal muscle mechanics model. Almost all
of the parameters used within the framework are based on some
experimental studies. In particular following the described meth-
ods for embedding fibers within a three-dimensional geometry
and assigning the fibers to a specific motor unit results in anatom-
ically detailed models that could exist in such a way. For instance,
the origin and insertion of the skeletal muscle fibers are anatom-
ically realistic and their orientation agrees with published data
(Lansdown et al., 2007). The motor-unit distribution is consistent
with published physiological data (Monti et al., 2001) and is also
similar to the method used by other numerical studies (Yao et al.,
2000; Enoka and Fuglevand, 2001). The geometry and the muscle
fiber growth algorithm lead to a inherent description of the motor
endplate band, which is defined by the center points of all the mus-
cle fibers. The motor endplates within the proposed model form a
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parabola as it is described in Aquilonius et al. (1984). Hence, the
presented framework presents a great resource for exploring and
investigating many open questions in skeletal muscle physiology
and mechanics in a general and qualitative way.

4.6. VALIDATION AND HUMAN SPECIFIC PARAMETERS
Any physiologically based mathematical model relies on exper-
imentally determined parameters. The comparative scarcity of
human data generally means that models of human systems rely
on the assumption that meaningful results can be gained when
using parameters determined from different species. The benefit
of building models of human tissue is that the assumed accuracy
of parameters can be tested in a computational setting. Discrepan-
cies between experimentally determined parameters in one species
and the computationally predicted results of another species using
these parameters can provide an insight into areas where more
specific inquiry is needed.

Validation of the framework is therefore of key importance
to any model. This work aims to provide a qualitative vali-
dation of the model. The trends predicted by the model, e.g.,
effects of motor-unit location and recruitment effects, fit within
known experimental bounds. A more in-depth validation proce-
dure would see a number of subject-specific models created using
as many of the subject-specific material properties as possible.
In contrast to the simulated approach, a rigorous experimental
validation procedure can only be achieved for very simple sys-
tems, such as artificially activated ex vivo rodent muscle between
force transducers. In addition to artificial activation of a muscle,
the models predictive capabilities could be tested by accounting
for the roles of synergist and antagonist muscle groups similar to
the experimental approaches of Maganaris (2001) or Maganaris
et al. (2001). Each of the above mentioned validation procedure
would require a separate and thorough study. Other validation

options include numerical validation procedures to investigate the
effects of discretization errors, approximation errors, and errors
introduced through the homogenization process of coupling the
cellular level with the organ level. A in silico validation of the multi-
scale constitutive law has been provided previously (Röhrle et al.,
2008).

CONCLUSION
A novel approach to the three-dimensional modeling of skele-
tal muscle function is presented. This method has the poten-
tial to represent more of the known anatomical and physio-
logical information than other modeling techniques currently
available. This approach incorporates cellular physiology, anatom-
ical structure, and functional grouping into a finite elasticity
simulation of skeletal muscle. This multi-scale approach allows
analysis of the effects of alterations to a large range of phys-
iological and structural parameters, which is important when
investigating physiological diseases, mechanical injury, or changes
resulting from training and aging. While this framework still
requires rigorous validation, it provides one of the most integrated
electromechanical model of a skeletal muscle, which is currently
available.
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