Hindawi Publishing Corporation

Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 517287, 14 pages
http://dx.doi.org/10.1155/2013/517287

Hindawi

Research Article

Modeling the Chemoelectromechanical
Behavior of Skeletal Muscle Using the Parallel Open-Source
Software Library OpenCMISS

Thomas Heidlauf"? and Oliver Rohrle'?

! Universitit Stuttgart, Institut fiir Mechanik (Bauwesen), Lehrstuhl II, Pfaffenwaldring 7, 70569 Stuttgart, Germany
2 Stuttgart Research Centre for Simulation Technology, Pfaffenwaldring 5a, 70569 Stuttgart, Germany

Correspondence should be addressed to Thomas Heidlauf; thomas.heidlauf@mechbau.uni-stuttgart.de
Received 25 July 2013; Revised 28 August 2013; Accepted 13 September 2013
Academic Editor: Eduardo Soudah

Copyright © 2013 T. Heidlauf and O. Réhrle. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An extensible, flexible, multiscale, and multiphysics model for nonisometric skeletal muscle behavior is presented. The skeletal
muscle chemoelectromechanical model is based on a bottom-up approach modeling the entire excitation-contraction pathway
by strongly coupling a detailed biophysical model of a half-sarcomere to the propagation of action potentials along skeletal muscle
fibers and linking cellular parameters to a transversely isotropic continuum-mechanical constitutive equation describing the overall
mechanical behavior of skeletal muscle tissue. Since the multiscale model exhibits separable time scales, a special emphasis is
placed on employing computationally efficient staggered solution schemes. Further, the implementation builds on the open-source
software library OpenCMISS and uses state-of-the-art parallelization techniques taking advantage of the unique anatomical fiber
architecture of skeletal muscles. OpenCMISS utilizes standardized data structures for geometrical aspects (FieldML) and cellular
models (CellML). Both standards are designed to allow for a maximum flexibility, reproducibility, and extensibility. The results
demonstrate the model’s capability of simulating different aspects of nonisometric muscle contraction and efficiently simulating

the chemoelectromechanical behavior in complex skeletal muscles such as the tibialis anterior muscle.

1. Introduction

Skeletal muscles’ ability to actively generate force in a con-
trolled fashion allows us to consciously move our body. The
force generation is achieved through complex processes on
multiple scales and multiple parts of the musculoskeletal sys-
tem, for example, neural stimuli generation, depolarization
at neuromuscular junctions, force generation within skeletal
muscle sarcomeres, force transmission to the tendons, and
sensory feedback to the nervous system. These processes are
extremely complex, strongly coupled with each other, and by
far not fully understood. Like in many other research areas,
detailed simulation frameworks appealing to realistic models
can provide an effective tool to investigate functional and
structural interrelations of skeletal muscle force generation.
An improved understanding of the physiological mecha-
nisms may also lead to a better understanding of mechanisms
behind musculoskeletal disorders.

State-of-the-art simulations taking into account the force
generating capabilities of skeletal muscles are subject to
either phenomenological descriptions using discrete [1-4] or
continuum-mechanical models [5-7]. The most commonly
used skeletal muscle modeling frameworks investigating the
musculoskeletal system as a whole are based on discrete
mechanics, that is, rigid-body dynamics simulations, in
which the skeletal muscles are described by Hill-type models
(cf. the review by Zajac [8]). Although such models are widely
used to analyze movement, they exhibit significant draw-
backs. All functional and structural properties are lumped
together to a few parameters. For example, Hill-type skeletal
muscle models are described at a point in space through
spring constants, damper properties, and one overall acti-
vation level, and the calculated muscle force acts along a
predefined line of action. Since such models lack a volu-
metrical representation of the skeletal muscles, they are not
capable of properly taking into account structural properties,



for example, complex fiber architectures, motor unit fiber
distributions, or the interaction of a skeletal muscle with
surrounding tissue, for example, bones, muscles, or fat tissue.

While continuum-mechanical skeletal muscle models
can take into account complex muscle fiber distributions
[9], regional activation properties, and a dynamically gen-
erated line of action [7], they are computationally more
challenging and restrict their findings purely to mechanical
aspects of muscle force generation; for example, see [6]. Fur-
ther, researchers appealing to continuum-mechanical models
mainly focus on skeletal muscles in isolation. However,
considering natural motor unit (MU) recruitment principles
to activate specific skeletal muscle fibers by action potentials
(APs, electrical signals of short duration), one has to replace
such single scale continuum-mechanical models with multi-
scale, multiphysics models that take into account the entire
pathway from neural stimulation to muscle force generation
and feedback to the neural system.

Models describing the excitation-contraction coupling
(ECC) do exist [10, 11] but are typically limited to describe
the force generation within a sarcomere and, hence, on the
cellular level and not on the level of an entire skeletal muscle.
Models that are guided by either the natural principles of
MU recruitment, MU fiber distributions, or muscle force
generation on the cellular level and its effect on the force
generation of an entire skeletal muscle are rare and do
often have significant limitations. For example, Hernandez-
Gascon et al. [12] include a phenomenological description
of the cellular processes and ignore biophysical principles
of AP propagation and crossbridge dynamics. Fernandez
et al. [13] use a neuron model to simultaneously generate
an AP at all neuromuscular junctions that is propagated
through the muscle tissue using the three-dimensional (3D)
bidomain equations neglecting functional structures such as
MU fiber distributions or the fact that APs propagate along
a single muscle fiber and do not effect neighboring ones.
Furthermore, the model describing the cellular behavior of a
sarcomere was adopted from cardiac mechanics. Bol et al. [14]
couple 3D electrical field equations with phenomenological
fiber models. The model of Rohrle and coworkers is currently
the only one that can take into account a biophysical cell
model, which includes multiple subcellular models including
fatigue, and allows for spatial descriptions, MU fiber distribu-
tions, MU recruitment principles, and skeletal muscle force
generation [15-18].

However, the chemoelectromechanical model of Rohrle
and coworkers has framework-inherent limitations that do
not allow its extension to a fully coupled framework embrac-
ing neural inputs, force generation, and feedback mech-
anisms. The major limitation is the fact that the cellular
equations are only unidirectionally coupled to the mechanical
model. The behavior of a single skeletal muscle fiber is
precomputed and stored in a look-up table. Within the
mechanical model, the cellular variables associated with
force generation, that is, the crossbridge concentrations in
the attached pre- and postpower stroke state (A, and A,,
resp.), are copied into a detailed 3D structural model and
homogenized to compute the resulting stress tensor. Any
geometrical variations of a skeletal muscle fiber due to a
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contraction, for example, a length change, are not considered.
The same applies to feedback, that is, an alternation of the
recruitment sequence due to the mechanical state. The choice
of precomputing the cellular behavior has been chosen to
reduce the overall computational cost. This was necessary
as the original framework is based on serial legacy code
(CMISS) appealing to data structures not necessarily suitable
for parallelization. Further, only isometric contractions were
considered. The isometric case provided justification for
neglecting the force-velocity relationship. In reality, however,
series elastic elements against which the muscle shortens dur-
ing tension development prevent true isometric conditions.

The aim of this contribution is to introduce a com-
pletely new, computationally efficient, fully coupled, mul-
tiphysics simulation framework for skeletal muscle model-
ing providing the basis to include biophysical motor unit
recruitment and feedback mechanisms at a later stage. The
framework is based on the open-source software library
OpenCMISS [19], which, together with the entire model
described in this contribution, can be downloaded from
https://github.com/OpenCMISS. OpenCMISS was designed
to achieve maximal flexibility and efficiency through the
use of new data structures such as FieldML [20], access
to well-established model repositories via CellML [21, 22],
and a distributed-memory foundation for executing large
problems. The new libraries and the data structure provide
the basis to combine different mesh regions with different
dimensionality, for example, 0D models for the cellular
behavior, 1D models for the AP propagation, and 3D models
for the mechanical model, within one framework. This allows
for a strong and bidirectional coupling of the chemoelec-
trical cellular behavior and the mechanical model—a major
advantage over commercially available software packages.
Furthermore, the modular organization of the framework
allows for straightforward extensions of the model and
substitution of model components, for example, the cellular
model.

2. Materials and Methods

Figure 1 provides an overview of the proposed computational
framework. The individual parts of the framework (model of
the half-sarcomere, propagation of the AP, and continuum-
mechanical model) are presented in the subsequent sections.
Here, the interactions and couplings between the individual
model parts are explained.

The muscle fibers of one MU are stimulated through their
corresponding motoneuron at the neuromuscular junction.
In the proposed model, the neural discharges are modeled as
an ionic current that is applied at the center of a fiber, which
represents the neuromuscular junction. In this contribution,
the MU discharge times are predefined, for example, by a
regular frequency. However, computing the discharge rates of
a motoneuron pool, one could, for example, also appeal to the
model of Fuglevand et al. [23], as shown in Rohrle [16], orto a
biophysical model like the one by Negro and Farina [24]. The
coupling of a motoneuron-pool model to the muscle model
is unidirectional; that is, the flow of information between the
models only occurs from the motoneuron-pool model to the
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FIGURE 1: Overview of the modeling framework. Each box indicates
amodel part. The couplings between the parts are indicated through
arrows together with the transferred information. The membrane
voltage, V,,, couples the half-sarcomere model to the diffusion
equation. Together, they represent the electrophysiological behavior
of the muscle fiber. Further, A 1 is the shortening velocity, and P*" is
the active stress. The model of the motoneuron pool is not part of
the proposed model, which is symbolized by a dashed box.

muscle model. Hence, the MU recruitment and firing times
can be precomputed independently of the muscle model.

In contrary to [15], the governing equations for describing
the bioelectrical field and those of 3D finite elasticity theory
are solved in a strongly coupled way, where the solution of the
mechanics influences the bioelectrical fields and vice versa.

The bioelectrical field itself is determined by solving the
so-called monodomain equation, which is a reaction-diffu-
sion equation. The monodomain equation is solved using
an operator splitting technique providing the mathematical
justification to separately treat the reaction part, which is
given by the half-sarcomere model [11], and the diffusion part,
which describes the AP propagation. The half-sarcomere
model is biophysically based and is described by a set of ordi-
nary differential equations (ODEs) in time, that is, exhibit-
ing no spatially varying quantities (0D). The diffusive part
is described by a transient 1D partial differential equation
(PDE). Since the two parts of the monodomain equation are
solved separately, the operator splitting technique requires a
mapping of the membrane voltage, V,,,, between the two parts
at each time step. Among many other cellular quantities, the
half-sarcomere model (reaction term) computes the active
stress contribution at a particular location along a skeletal
muscle fiber. The active stress, P*!, enters the constitu-
tive equation through a mapping (homogenization) to the
continuum-mechanical model. In return, the shortening
velocity, A ; < 0, is passed from the continuum-mechanical
model to the half-sarcomere model.

To take into account the length changes due to skeletal
muscle tissue deformations, the bioelectrical field equations
are solved on a deforming/moving domain. Thus, the equa-
tions describing the AP propagation along the muscle fibers
have to be adjusted to the deformation. This can be achieved
either by modifying the conductivity tensor or by solving the
monodomain equation on the deformed geometry. In this
contribution, the latter is employed.

In the following sections, the different parts of the
computational framework, that is, the mechanical model
(Section 2.1), the half-sarcomere model (Section 2.2), and the

AP propagation model (Section 2.3), are introduced. Fur-
thermore, implementation and high-performance computing
aspects of the resulting multiphysics discretization schemes
are presented in Section 2.4.

2.1. The Mechanical Problem. In continuum mechanics, the
motion of a body % is described by the placement function
x that assigns each point X in the reference configuration
at time t,, a corresponding point x in the actual (deformed)
configuration at time t > f,; that is, x = y(X, ). The defor-
mation of a body is commonly measured by the deformation
gradient tensor

o 20X 0
0X oX
and the strain by the Green-Lagrangian strain tensor E :=
(1/2)(C - 1), where C = F'F is the right Cauchy-Green
deformation tensor and I denotes the second-order identity
tensor.
Inertia forces and body forces are assumed to be small
compared to the forces acting in the muscle. Thus, the balance
of linear momentum reduces to

divT =0, )

where T denotes the Cauchy stress tensor. The Cauchy stress
can be derived from the second Piola-Kirchhoff stress tensor,
S, via a scaled covariant push forward operation: T =
J'FSFY, with J := detF being the Jacobian.

The stress tensor (e.g., T or S) is derived from a constitu-
tive equation. A constitutive equation characterizes the mate-
rial behavior under load; that is, it relates the stress in a body
to the strain. Skeletal muscle tissue is generally considered
to be transversely isotropic and hyperelastic. Furthermore,
muscle tissue is considered to be incompressible under
physiological conditions. The second Piola-Kirchhoff stress
tensor of a hyperelastic material can be derived from a strain
energy function W defined per unit reference volume by

ow 4
§=2-5-rC, (3)
with hydrostatic pressure p entering (3) as Lagrange multi-
plier associated with the incompressibility constraint ] — 1 =
0; see, for example, [25].

For transversely isotropic materials, the strain energy
function can be expressed in terms of the right Cauchy-Green
deformation tensor and a second-order structural tensor
M = a, ® a,, where a, denotes a unit vector in the reference
configuration pointing in the fiber direction. Applying the
theory of invariants (see Spencer [26]), the strain energy
function of a transversely isotropic material can be expressed
as

W(C, M) =W (I, 1, 15,1, I5), (4)

with principal invariants I}, = trC, I, = (1/2)[(tr C)? -
tr(C*)], and I, = detC = J* and mixed invariants I, =
tr(CA) and I; = tr(C> ).



TABLE 1: Parameters of the passive part of the constitutive equation.

S0 o1 b, d,
6.352¢ " kPa 3.627 kPa 2.756¢° kPa 43.373 [—]

Following the idea of a fiber-reinforced material (cf.
Spencer [27]), the strain energy function is split into an
isotropic part W that represents the ground matrix and an
anisotropic part W*" that represents the embedded fibers.
Furthermore, a term W is introduced to represent the
muscle’s ability to actively generate force via crossbridge
cycling:

W (I, L, I3, I, Is) = W (I, L) + W™ (I, I) + W™
(5)

On the right-hand side of (5), a dependence on the third prin-
cipal invariant has directly been omitted due to the incom-
pressibility constraint I, = (detF)* = 1. Being based on
the principle of superposition, the ansatz in (5) neglects any
couplings between the individual parts of the strain energy
leading to the assumptions that (i) the active behavior is
independent of the other terms and (ii) there is no interaction
between the fibers and the matrix.

In the following, first the terms representing the passive
behavior of skeletal muscle are introduced before describing
the active part of the strain energy.

2.1.1. Passive Material Behavior. For the isotropic contribu-
tion, the Mooney-Rivlin material description is employed;
see, for example, Holzapfel [28]. This material description is
known to be well suited for representing J-like stress-stain
curves of soft biological tissues:

W (I, 1) = o (I, = 3) + 6oy (I, = 3). (6)

The material parameters of the Mooney-Rivlin model, ¢, and
1> are determined in a uniaxial compression test using the
experimental data of Zheng et al. [29]. The set of parameters
used within this work is summarized in Tablel. For the
anisotropic contribution, a polynomial strain-energy func-
tion of the fiber stretch, A, = /I, > 0, has been adopted
from Markert et al. [30]:

N
Wani(/\f):El(gii(/\?—l)—bilnkf), (7)

1

where N is the number of polynomial terms and b, and
d; denote material parameters. Note that the anisotropic
contribution applies only to the tensile range, that s, for A ; >
1. A uniaxial extension test in fiber direction is used to fit
material parameters b, and d; to the experimental data of
Hawkins and Bey [31]. A single polynomial term (N = 1) was
found to be sufficient to reproduce the experimental data.

2.1.2. Active Contractile Behavior. In many physiological con-
ditions the mechanical behavior of skeletal muscle is domi-
nated by its active, force generating behavior. In accordance
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with previously published skeletal muscle models [6, 15, 32],
it is assumed that the active stress only acts in fiber direction.
Furthermore, the generated force depends on the length of
the muscle [33] and the shortening velocity [34]. Following
this, the active part of the strain energy W is assumed to
be a function of deformation, represented through the fiber
stretch A (, the rate of deformation A 7, and the fiber direction.
Proceeding from (3), the active part of the stress tensor yields

aWaCt - 2aWact aA_f%

act:2 —
° aC A, dl, oC
(8)
B 1 aWaCta ®a Pacta ®a
T3 T3y 0P8 T 589 @a.
Ay OAy As

In (8), the scalar-valued active stress function, P**, which
takes the form of a nominal (or engineering) stress, is intro-
duced. Further, the active stress function, P*, is assumed
to depend on a constant maximum active stress P™* =
73 N/cm? (cf. [31]), a function relating the generated stress to
the muscle length f,(Af), and a function that links the
macroscopic continuum-mechanical system to the quantities
at the microscale y, which depends on the level of activation

o and the velocity A Iz

P =P (Af) P (). )

The function y is determined in a biophysical model at
the microscale (see Section 2.2). The force-length relation is
adopted from Rohrle et al. [15] (see also [6]):

fe(Ay)
2
A A A
B L) 20 shs ifo6< L <14
— 4\ port 2 )\opt oPt
f f
0, otherwise.
(10)

In (10), )L(}Pt denotes the optimal fiber stretch, which, based
on experimental data [31], is assumed to take a value of 1.2.

In summary, the second Piola-Kirchhoff stress tensor, S,
yields

S = Siso + Sani + Sact _ pC_l,

$° = 2¢,,I + 2¢, (I,I - C),
(1)

s =b (M7 =17 ag @ 2y,

§* = )L}leaxfe (Af) y (oc,)\f) a, ®a,.

2.2. The Micromodel of a Half-Sarcomere. The basis for
modeling subcellular processes in the present contribution is
the Shorten et al. [11] model. The Shorten model describes
the complex, nonlinear, biophysical processes leading from
electrical excitation to contraction and force generation of a
half-sarcomere by means of ODEs. Two versions of the model



Computational and Mathematical Methods in Medicine

using slightly different parametrizations allow the distinction
between slow-twitch (type I) and fast-twitch (type II) muscle
fibers. The model has been validated on mouse muscles.

To model the entire ECC, the half-sarcomere model
[11] combines several submodels describing (a) membrane
electrophysiology, (b) calcium release from the sarcoplas-
mic reticulum (SR), (¢) calcium dynamics, (d) crossbridge
dynamics, and (e) fatigue. In more detail, the individual parts
are as follows. (a) For a description of the Hodgkin-Huxley
electrophysiology of action potentials via ionic currents that
pass through various channels and pumps (sodium channels,
delayed rectifier and inverse rectifier potassium channels,
chloride channels, and Na™-K" pumps) in the sarcolemma
and T-tubules, see Adrian and Peachey [35] and Wallinga
et al. [36]. (b) Intracellular calcium release from the sar-
coplasmic reticulum to the cytosol in response to membrane
depolarization through RyR calcium release channels is
described by a ten-state model originally proposed by Rios
et al. [37]. This submodel couples the T-tubule membrane
voltage to the opening of the dihydropyridine receptor/RyR
complex. (c) The released calcium (Ca*") ions bind in the
cytosol to parvalbumin and ATP along with troponin on
the myofilaments. Moreover, intracellular magnesium ions
(Mg**) compete with Ca*" for parvalbumin and ATP binding
sites. After being transported back to the SR via Ca®*-ATPase,
Ca®" binds to calsequestrin. The description of the calcium
dynamics goes back to the model of Baylor and Hollingworth
[38]. (d) The binding of two Ca**ionsto troponin Cleads to a
conformational change in the troponin molecule that
removes the blocking tropomyosin from the actin filament
and thereby allows the myosin head to attach to the actin
binding sites. This model is based on an eight-state model
of crossbridge dynamics in skeletal muscle using the generic
models of Razumova et al. [39, 40] and Campbell et al. [41,
42]. (e) Muscle fatigue is modeled through subcellular mech-
anisms on the basis of phosphate dynamics. The accumula-
tion of phosphate (P;) is believed to be the primary mecha-
nism behind metabolic fatigue. Here, P; is formed from the
energy-providing reaction of ATP to adenosine diphosphate
(ADP) during crossbridge cycling when weakly bound cross-
bridges isomerize into strongly bound crossbridges. The
produced phosphate is transported passively to the SR where
it precipitates with Ca®* [11].

Although the degree of detail of the model of Shorten et al.
[11], for example, modeling the signaling pathway of the ECC
or fatigue, is not essential for the presented overall modeling
framework, the authors refrain from simplifying the model,
as this will be the basis for further developments that will
build on different biophysical components. Moreover, the
complexity of the model introduces new challenges for
efficiency and parallelization.

According to the sliding filament theory [43], the active
force production in skeletal muscle is due to crossbridge
cycling. The crossbridge dynamics model, which depends
on all above-described models, defines the force producing
step called power stroke as the transition between the two
attached states, that is, the prepower stroke state A, and the
postpower stroke state A,. Therefore, one can assume that

the actively generated stress in a half-sarcomere under iso-
metric conditions is proportional to the concentration of
crossbridges in the postpower stroke state A, [40]. The value
of A, is normalized using the value of A, at maximum tetanic
stimulation «™; that is, A,(«)/A,(a™) € [0,1].

The half-sarcomere model [11] was developed for iso-
metric contractions. Truly isometric conditions, however, do
not exist in skeletal muscle, since (i) contractile tissue is in
series with elastic components of the musculoskeletal system
stretching under contraction-induced stress increase and (ii)
various nonuniformities exist along the muscle fiber; that is,
while one part of the fiber shortens, another part is stretched.

The scaling quantity y, (cf. (9)) is found by multiplying the
normalized concentration of crossbridges in the postpower
stroke state by Hill's hyperbolic force-velocity relation [34]:

_ MA@ [FY+a,
Y Az((xmax) b_Af :

(12)

In (12), F**° denotes the maximum isometric active force, and
a and b are the Hill parameters, which are chosen such that
a/F* = 0.25 [44,45] and b/AT™ = 0.25 [46] with A7 being
the maximum shortening velocity at zero force production.

To extend the single half-sarcomere model to a model
of a muscle fiber, the electrophysiological characteristic of
propagating APs along the length of fibers is considered. The
equations representing the AP propagation are presented in
Section 2.3.

2.3. Action Potential Propagation. The propagation of an AP
along a skeletal muscle fiber is initiated at the neuromuscular
junction located in the middle of the length of each fiber.
Starting at the neuromuscular junction, the short-term depo-
larization of the muscle-fiber membrane voltage travels along
the length of the fiber towards its ends.

The macroscopic electrical conductivity of muscle tissue
perpendicular to the fiber direction is up to one magnitude
lower than the conductivity along the fiber direction [47, 48],
and electrical stimulation from one fiber to adjacent ones is
not observed. Therefore, the propagation of an AP along a
skeletal muscle fiber is modeled as a 1D system. The propa-
gation of APs in biological tissue is typically modeled using
the bidomain equations; see, for example, Pullan et al. [49].
In the 1D case, the bidomain equations reduce to the simpler
monodomain equation, a reaction-diffusion equation [50,
51], which is given by

3 ( v\ v,
2 (5e) - a(eGr i)

In (13), s denotes the spatial variable describing the position
along the path of the fiber, o is the conductivity, V,, represents
the membrane voltage, A, reflects the ratio of the membrane
surface area to the volume, and C,, is the capacitance of the
cell membrane per unit area. Depending on the twitch type
of the fiber, two different values are used for the membrane
capacitance, that is, C,, = 0.58 uF/cm? for slow-twitch fibers
and C,, = 1.0 MF/c:m2 for fast-twitch fibers [11]. The value
of A, = 500cm™ is identical for both fiber types [52].
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CMM (3D)

FIGURE 2: Time-stepping scheme, where At is the time step, HSM denotes the half-sarcomere model, DEQ is the diffusion equation, and

CMM is short for the continuum-mechanical model.

Furthermore, the reaction term I, , depends nonlinearly on
V,, and denotes the sum of ionic currents crossing the cell
membrane of the sarcolemma and the T-tubule.

2.4. High-Performance Computing. After introducing the
individual submodels and their interactions, this section
focuses on efficient solution strategies for this complex
and computationally very demanding multiphysics model
describing phenomena on different length and time scales.
To achieve this, various concepts of software engineering, for
example, advanced discretization schemes for multiphysics
problems, parallelization, or staggered solution schemes, are
adopted. These concepts have been implemented within the
open-source software library OpenCMISS [19].

2.4.1. Operator Splitting. For the numerical treatment of the
monodomain equation (cf. (13)), it is convenient to apply an
operator splitting technique (or fractional-step method) to
separate the nonlinear reaction term from the diffusion term;
see, for example, Sundnes et al. [50, 53]. Applying the first-
order accurate Godunov-type splitting, (13) yields

v -vk
m~ Vm _ _L[jon (Vr]:L) , (14a)
At C,,
Vk+l _v* aVk+1
m m — 1 2 (O_ m ) , (14b)
At A,C, Os 0s

where At refers to the time step, V,]:l and Vr]fl” denote the
values of the membrane voltage at discrete times kAt and (k+
1)At, respectively, and V, is the value at the intermediate time
t*. The advantage of the operator-splitting approach is that
different numerical methods can be applied to the different
subsystems; that is, the nonlinear reaction (14a) is solved
using an implicit multistep ODE integration method as com-
monly done for highly nonlinear, stiff, biophysical cell models
(see Pullan et al. [49]), while one uses the backward-Euler
method for the diffusion equation (14b). Furthermore, dif-
ferent time steps can be used for the different subsystems
(subcycling). For the discretization of the spatial derivative
term in (14b) the finite element method (FEM) [54] is applied.

2.4.2. Discretization in Space and Time. The solution of the
bioelectrical field equations, (14a) and (14b), requires an
extremely small time step and a very fine mesh due to the
rapid changes and steep gradients occurring in physiological
cell models; see [49, 52]. On the other hand, using a
similarly spatial and temporal discretization for the solution

of the 3D mechanical model is prohibitively expensive and
unnecessary, as changes on the scale of an entire muscle occur
at considerably larger time scales.

Following the idea of different characteristic length scales,
a multiphysics discretization scheme is proposed: a much
finer mesh is used for the bioelectrical model than for
the continuum-mechanical system. First, a relatively coarse
3D finite element (FE) mesh of the muscle’s geometry is
generated. Then, relatively fine 1D FE muscle fiber meshes
are embedded in the 3D elements (cf. [18]). The governing
equations of the continuum-mechanical model, (2), and the
incompressibility constraint are discretized using the coarse
3D mesh, while the diffusion part of the bioelectrical field
equation, (14b), is solved on the 1D fiber meshes. Some
variables exist on both meshes, and thus, transfer operations
between the two meshes are required. The transfer from the
coarse 3D FE mesh to the fine 1D fiber meshes is called inter-
polation, while the transfer in the opposite direction is termed
homogenization. The homogenization and interpolation pro-
cesses are discussed for each affected variable in Section 2.4.3.

Due to the different characteristic time scales of the
different physical phenomena, a staggered solution scheme
with three different time steps is applied in this work. A
schematic representation of the time-stepping scheme is
shown in Figure 2. First, the half-sarcomere models, (14a),
are solved for 50 time steps with time step size At™M, The
symbol (A) in Figure 2 denotes the solution process for
computing the states of the half-sarcomere model for time ¢ +
At"M Note, for simplicity and readability of Figure 2, only a
fractional number of time steps are depicted. In case of
computing the cellular states, which will be used within
the next time step of the diffusion equation, only 5 instead
of the actual 50 time steps are depicted in Figure 2. Each
discretization point of the monodomain equation is associ-
ated with its own half-sarcomere model. The half-sarcomere
model is mathematically described by ODEs in time, which
do not rely on any spatial quantities. Therefore, each half-
sarcomere model can be solved independently of all other
half-sarcomere models. The final values of the membrane
voltage computed in these steps are used as starting values for
the diffusion equation (14b). This process is denoted by (B)
in Figure 2. Following the solution of the diffusion equation
(14b) with time step AtPER which is indicated by (C) in
Figure 2, the updated values of the membrane voltage are
used as initial conditions for the next solution step of the
half-sarcomere model (indicated by (D) in Figure 2). This
procedure is repeated a number of times (3 times in Figure 2,
1000 times in the actual computations) before the values
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of the active stress y are homogenized (y — 7). The
homogenization process is denoted in Figure2 by (E).
The homogenized values y enter the continuum-mechanical
model, (2), through the stress tensor, which is given by (11).
The continuum-mechanical model is only solved in time
increments of size At“MM (cf. step (F) in Figure 2). Further,
the values of the sarcomere velocity are interpolated and
applied to the half-sarcomere models; see (G). At the same
time, the position of the nodes of the 1D fiber meshes is
updated based on the calculated deformation. The described
steps are repeated until the final time is reached.

2.4.3. Homogenization and Interpolation. As described
above, some variables are shared between the different
discretizations. For example, the values of the active stress
field are determined in the model of the half-sarcomere, that
is, at the nodes of the 1D fiber meshes. In order to include the
active stress field in the continuum-mechanical constitutive
equation, which is evaluated at the integration points,
for example, the Gaufl points, associated with the weak
formulation of the 3D finite elements, the values need to be
homogenized. Like in Rohrle et al. [15], the homogenization
is achieved by computing the arithmetic mean of all 1D
nodal values that are closest to a certain Gaufl point of
the continuum-mechanical 3D FE mesh. Other elaborate
homogenization techniques like those proposed in [55, 56]
could be adopted but are not further considered here.

The positions of the nodes of the 1D fiber meshes are
defined in terms of the local element coordinate system of
the 3D geometric FEs. Using this definition, their actual
positions can be determined from the deformation of the
muscle’s geometry, that is, from the actual configuration.
Using the basis functions of the 3D FEs for the interpolation,
the nodal positions of the 1D fiber meshes are updated after
each solution of the mechanical submodel.

Further, information about sarcomere velocity is required
in the half-sarcomere models located at the nodes of the
1D fiber meshes; see (12). The sarcomere velocity cannot be
determined in the biophysical model of the half-sarcomere,
as the velocity also relies on the boundary conditions of the
continuum-mechanical model of the entire muscle. There-
fore, the local sarcomere velocity A is approximated by a

backward finite difference scheme: A = (115”1 - 175‘)/ AtMM
where #; represents the distance between two adjacent nodes
and k and k + 1 denote two consecutive time steps of
the continuum-mechanical model. To avoid unrealistic high
variations in sarcomere velocity and to mimic the structural
links between adjacent skeletal muscle fibers, the average of
the velocity is calculated over a patch of seven sequential

nodes of one fiber.

2.4.4. Data Structure. The open-source software library
OpenCMISS [19] provides a highly flexible framework for the
simulation of coupled multiphysics problems. Being arranged
in a hierarchical fashion, the concepts of regions, meshes,
fields, and so forth (see [19] for details) allow for couplings
between different physical problems at different length and
time scales. The presented skeletal muscle model is built on a
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FIGURE 3: Schematic drawing of regions and meshes in OpenCMISS.
Different regions can be coupled via interface conditions. Several
meshes can be associated with a region.

single region, since the different physical models occupy the
same space (volume-coupled problem). When the interaction
of a skeletal muscle with neighboring structures such as other
muscles, bone, fat, or skin is of interest, these structures can
be added to the model as additional regions; see Figure 3. To
couple different regions, their interaction can be defined via
interface conditions, for example, contact.

The region used for the chemoelectromechanical muscle
model contains two meshes: a 3D representation of the geom-
etry that is used for the continuum-mechanical model (mesh
1 in Figure 3) and a second mesh (mesh 2 in Figure 3)
consisting of a number of 1D fibers that are used for the
solution of the bioelectrical model. The 1D fiber meshes are
embedded in the 3D FEs.

Fields are a key data structure in OpenCMISS. Any
quantity that can be associated with a mesh is represented
in OpenCMISS as a field. A field variable can be constant
across the mesh, it can vary from element to element, from
node to node, from interpolation point (e.g., Gaufl point) to
interpolation point, or from data point (arbitrarily located)
to data point. The representation of fields in OpenCMISS is
based on FieldML [20], which provides field transfer oper-
ators (homogenization or interpolation) to handle different
spatial scales; see also Section 2.4.3.

Further, OpenCMISS employs nested control loops to
handle different temporal scales. In the presented model, two
separate control loops for the continuum-mechanical model
and the bioelectrical problem, each with its own time step
size, are linked to a superior main control loop. The control
loop for the mechanical model is only associated with a single
solver, while the bioelectrical control loop is connected to a
solver for the diffusion equation and a second solver for the
half-sarcomere model.

The half-sarcomere model is provided in CellML format
[21]. CellML is a markup language for the description
of subcellular models based on XML (Extensible Markup
Language). In a multiscale model, CellML can be used to con-
veniently describe the physical processes occurring at a single
point within a model at a larger spatial scale. A CellML model
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FIGURE 4: Schematic drawing of the domain decomposition as
realized for the chemoelectromechanical skeletal muscle model. The
decomposition of the 3D mesh of the muscle geometry does not split
any of the muscle fiber meshes.

repository containing more than 500 models is available
for download at http://www.cellml.org/, among them the
biophysical model of a half-sarcomere of Shorten et al. [11]. In
OpenCMISS, the time step sizes for the CellML models can
be chosen independently of the time step sizes used to solve
equations representing different physics. For example, the
half-sarcomere model, (14a), requires a much smaller time
step than the diffusion equation, (14b), and hence, subcycling
of the CellML model is employed.

2.4.5. Parallelization. OpenCMISS is developed for parallel
computations in a heterogeneous multiprocessing environ-
ment [19], where the MPI standard (http://mpi-forum.org/) is
used for distributed memory parallelization and the OpenMP
standard (http://openmp.org/) is used for shared memory
parallelization.

The implementation of the distributed memory paral-
lelization in OpenCMISS builds on the concept of domain
decomposition. For the presented chemoelectromechanical
skeletal muscle model, the domain is decomposed in such a
way that each 1D embedded fiber mesh is uniquely assigned to
a processor; see Figure 4. This approach reduces the amount
of communication between the individual processors to a
minimum for the bioelectrical model. Parallel efficiency
is hereby guaranteed by the fact that the diffusion part of
the bioelectrical model is evaluated 1000 times more often
than the continuum-mechanical model (Af“MM =
1000 AtP EQ). Hence, a user-defined domain decomposition,
rather than a computed decomposition based on the graph
partitioning packages ParMETIS (http://glaros.dtc.umn.edu/
gkhome/metis/parmetis/overview) or Scotch (http://www
Jabri.fr/perso/pelegrin/scotch/), which is typically used
within OpenCMISS, is optimal with respect to the entire
chemoelectromechanical model.

Although currently not implemented, the individual
muscle fiber meshes within a single computational domain
could be further parallelized using an OpenMP shared
memory parallelization. Further, the integration of the ODEs
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TABLE 2: Execution time in seconds and resulting speedup for 1, 2,
and 4 processors.

36 fibers 400 fibers
No. of processors
Time [s] Speedup [—] Time [s] Speedup [—]
1 10004.32 177759.11
2 6940.91 1.441 81360.24 2.185
4625.88 1.500 41763.99 1.948

describing the half-sarcomere model is highly suitable for
parallel execution on GPGPUs.

3. Results

3.1. Computational Model. To analyze the performance of
the computational framework, a simple geometric model
is considered. A cubic geometry with 2cm edge lengths is
generated and discretized using eight triquadratic/trilinear
Lagrange finite elements (Taylor-Hood elements). A fiber
direction is defined that is uniformly aligned and parallel to
an edge of the cube. A total of 400 muscle fiber meshes are
evenly distributed in the cubic geometry, and each fiber is
discretized using 60 linear Lagrange finite elements.

First, the muscle is passively stretched in fiber direction
by 20% to reach the optimal fiber stretch of /\(}pt = 1.2. Under

isometric conditions (the muscle specimen is fixed at the
optimal length), a 100 Hz tetanic stimulation frequency is
applied to the central half-sarcomere model of all fibers in
the model.

To analyze the speedup in a parallel environment, the
described model is executed on 1, 2, and 4 processors. A
speedup of 2.18 is achieved when going from 1 to 2 processors,
while a speedup of 1.95 is achieved when comparing 2 to 4
processors. Further, the simulations were repeated using only
36 1D fiber meshes instead of 400. In this case, a speedup of
1.44 is achieved when going from 1 to 2 processors, while a
speedup of 1.50 is achieved when comparing 2 to 4 processors.
Table 2 lists the timing results and speedup factors for an Intel
Xeon Processor E5520 and 8 GB of RAM.

In the example with 400 fibers, the solution of the
bioelectrical model dominates the total computing time.
Here, a speedup factor of 2.18, which exceeds the theoretically
achievable value of 2, occurs, which can be explained by a
significantly higher number of cache misses on 1 processor
than on multiple processors, as the size of the bioelectrical
model for each processor scales down proportionally to the
number of processors. (No ghost elements exist, and no
communication between the processors is required in the
bioelectrical model.) The other end of the spectrum is marked
by the example using only 36 fibers, that is, 3 x 3 fibers per 3D
element, leading to a one by one correspondence between the
number of Gaufl points in the plane perpendicular to the
fibers and the number of embedded fibers. (The 3D elements
use 3 x 3 X 3 Gauf} points.)

Note that the discretization for the mechanics is inde-
pendent of the number of embedded fibers and is identical
in both cases. In case of 36 fibers, the speedup factors are
very poor, since the solution of the continuum-mechanical
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FIGURE 5: Model behavior for different time step sizes of the
continuum-mechanical model, At“™™ The solutions for the smaller
two time steps almost coincide (red dashed line and blue crosses),
while the solution for the largest time step size shows a nonphysical,
oscillatory behavior.

problem claims a larger fraction of the total computing time.
The poor scaling of the continuum-mechanical model is due
to the few 3D elements. Together with the required ghost
elements each processor has to compute (i) 8 FEs when 1
processor is used, (ii) 8 FEs when 2 processors are used,
and (iii) 6 FEs when 4 processors are used. (All elements that
share a surface with an actual element of the domain are ghost
elements.) For practical applications, however, a finer dis-
cretization of the continuum-mechanical model is desirable
to achieve a higher accuracy and a better approximation of
the muscle’s geometry. Furthermore, the application of more
fibers is preferable for a realistic muscle simulation.

Within this work, different time step sizes are used for the
solution of the different submodels. Critical time step sizes
for the bioelectrical model have already been investigated in
Davidson [52]. Here, the model behavior for different time
step sizes of the continuum-mechanical model, At“™™, are
investigated. Figure 5 shows the stress evolution of a shorten-
ing contraction (v = 0.1v,,,,) of a muscle that is uniformly
stimulated at 50 Hz. The results for three different time step
sizes (At“MM = 0.1 ms, 0.5 ms, and 2.0 ms) are shown, whereof
the solutions for the smaller two time steps almost coincide
(red dashed line and blue crosses) and the solution for the
largest time step size (At = 2.0 ms) depicts significant
deviations and oscillatory behavior.

3.2. Force-Velocity Relation. Under nonisometric conditions,
the force-velocity relation plays an important role in skeletal
muscle simulations. To illustrate the influence of the velocity
on the force, a geometrically simple model is examined.
Again, a rectangular tissue block with uniform fiber direction
and 2 cm length is first stretched in fiber direction by 20% to
reach the optimal muscle length. In a second step, all fibers
are jointly stimulated with 50 Hz, and the muscle specimen
is allowed to shorten at a certain velocity v. The numerical
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FIGURE 6: Force-velocity behavior I. Shown are shortening contrac-
tions at four different velocities using the fully coupled chemoelec-
tromechanical skeletal muscle model.
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FIGURE 7: Force-velocity behavior II. For three different shortening
contractions, the stress is plotted versus the actual muscle length.

experiment is repeated under isometric conditions and at
1, 10, and 25% of the maximum shortening velocity of
200 mm/s. The results are depicted in Figure 6. The model
predicts lower forces at higher velocities.

The decline in the force by choosing a shortening velocity
of 10 and 25% of the maximum shortening velocity is a direct
result of the force-length relationship and due to the fact that
the muscle reaches for higher velocities lengths at which it
can produce much less force in a shorter amount of time. To
segregate the influence of the force-length relation, Figure 7
shows the same results as Figure 6, however by plotting the
force versus the actual length of the specimen.

3.3. Feasibility of the Framework and Code. To demonstrate
the ability of the chemoelectromechanical model to represent
a realistic muscle, a model of a tibialis anterior (TA) muscle is
generated. The geometrical representation of the TA is based
on the Visible Human data set [57], and the fiber direction
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is based on diffusion tensor MRI data. The geometric model
has previously been used in Rohrle et al. [18]. Within the
present contribution, 10 MUs and stimulation frequencies
between 6 and 30 Hz are assumed for the TA model. Detailed
information on the methodology of assigning MU fiber dis-
tributions is given in [18]. The motor endplates are assumed
to be located at the center of the fibers, where a depolar-
izing current is injected at the times of stimulation. The
numerical experiment is carried out under isometric con-
ditions. Figure 8 shows the geometry of the TA muscle and
the fiber distribution (a). The fibers show the local membrane
potential distribution (blue indicates the resting potential, red
indicates the depolarized state). Further, the normalized mus-
cle fiber membrane voltage (blue), normalized free calcium
concentration in the myoplasm (green), and the normalized
active stress (red) are plotted versus time for MUs 2, 4, 6, 8,
and 10 (see Figure 8(b)).

4. Discussion

From a modeling point of view, this work appeals to a
very complex biophysical half-sarcomere model describing
the entire EEC. The model contains a large number of
parameters. Many of these parameters are difficult to deter-
mine, and only few are available for any muscle and any
species. The most trustworthy parameter sets are probably
given by Shorten et al. [11], who validated their model to
experimental data for different electrical stimulation patterns
on force production in soleus and extensor digitorum longus
(EDL) muscles of mice for slow-twitch and fast-twitch fibers,
respectively. Using in the proposed multiscale framework the
described detailed biophysical model provides the basis for
testing different physiological hypotheses and investigat-
ing different skeletal muscle phenomena, such as fatigue,
signaling pathways, residual force enhancement/depression,
myopathies, or influence of drugs in future studies.

Although the ECC model of Shorten et al. [11] describes
many aspects of the entire pathway from electrical stim-
ulation to force production, it does not consider the titin
filament that has recently gained attention in the literature
[58, 59]. Nevertheless, a model representing the effect of the
titin filament, for example, the one by Rode et al. [60], could
be included in the model of Shorten et al. [11] if conditions are
of interest, where the titin filament is expected to have a sig-
nificant influence.

Further, the modeling assumption that a fiber can be rep-
resented as a 1D geometrical object assumes that all parallel
aligned sarcomeres within the cross section of a fiber behave
identically not allowing for sarcomere inhomogeneities
within the cross section of the fiber. Moreover, the embedding
of the anatomically based 1D fiber meshes within the 3D
mesh for the continuum mechanics and the homogenization
process required due to the different meshes provide a few
restrictions on the micromechanical skeletal muscle model.
While assuming the electrical isolation of individual fibers
is physiologically valid, the proposed framework does not
distinguish individual fibers or fascicles in the mechanical
model. While there exist first works on investigating the
mechanical interaction of adjacent muscle fibers and fascicles
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FIGURE 8: Tibialis anterior muscle. Shown is the geometry of the
muscle and the fiber distribution, where the fibers indicate the local
membrane potential in color (a). The normalized muscle fiber mem-
brane voltage V,, (blue), normalized free calcium concentration in
the myoplasm [Ca*'] (green), and normalized active stress y (red)
are plotted versus time for motor units 2, 4, 6, 8, and 10 (b).

through the extracellular connective tissue, for example,
by Sharafi and Blemker [61, 62], the mechanical behavior
of the fibers and the connective tissue within this frame-
work is based on a macroscopic continuum-mechanical
approach. Including micromechanical considerations within
this framework, however, would lead to a computationally
extremely demanding muscle model. This is particularly due
to the fact that the mechanical considerations of Sharafi
and Blemker [61, 62], which have only been carried out on
a small block of tissue, are carried out for purely passive
muscle tissue and would need to be further extended to active
contractile behavior. Furthermore, material parameters of
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the extracellular connective tissue and stripped muscle fibers
are not readily available [61], and hence a further source of
uncertainty would be introduced into the model.

Within this framework, the active stresses determined
in the half-sarcomere model are homogenized and included
in the continuum-mechanical constitutive equation. The
homogenization is required for computational efficiency. A
skeletal muscle model that would use the same number of
elements for the bioelectrical and the mechanical problem no
longer require any homogenization; however, this approach
results in a computational model that is no longer feasible for
any practical application. It should be noted that the homoge-
nization process has little effect on the convergence behavior
of the mechanical problem. This has been demonstrated in
Rohrle et al. [15] by maintaining a fixed number of embedded
fiber models while successively refining the number of 3D
mechanical elements until homogenization is no longer
required. The investigation showed very good convergence
properties [15] if compared to the mechanical-only problem.

Improving the constitutive equation for describing the
macroscopic behavior of skeletal muscle mechanics does
not only apply to its active contribution. In general, future
research needs to further focus on experimental studies
and continuum-mechanical material descriptions to develop
valid constitutive equations for skeletal muscle mechanics in
general. Within this framework the isotropic Mooney-Rivlin
material model has been extended by a contribution acting in
the along-fiber stretch regime for describing the transversely
isotropic material behavior of passive muscle tissue. The
anisotropic contribution to the passive behavior is negligibly
small in the small strain regime, and hence the Mooney-
Rivlin parameters can be used to characterize the passive
material behavior around the reference configuration. Based
on a comparison with the infinitesimal strain theory, the
consistency condition for the Mooney-Rivlin parameters
yields a value of 4 = 2(c;y+¢y;) = 7 kPa for the shear modulus
[28], which is close to experimentally determined values [63].
However, there is some experimental evidence that under
compression passive muscle tissue exhibits a stiffer behav-
ior in the cross-fiber direction than in the fiber direction
[64]. Although this material behavior can be included in a
continuum-mechanical formulation [64], the material behav-
ior of the present contribution is isotropic in the compressive
range and exhibits a transversely isotropic material behavior
in the along-fiber stretch region, as in most other works in
this field of research; see, for example, [6, 15]. More accurate
or micromechanically based subject- or muscle-specific
material parameters would be desirable but are currently not
available.

Despite using two different discretizations, that is, one
grid for the mechanical model and a different grid for the
electrophysiological model, the computational cost of the
model is still very considerable. Hence, a staggered solution
is proposed to further reduce the computational effort.
Staggered solution schemes are often favorable when within
one model different subsystems describe processes with very
different characteristic time step sizes. The microscopic half-
sarcomere model shows rapid changes and steep gradients,
while the changes in the continuum-mechanical system occur

1

at a much larger time scale. The application of the staggered
solution scheme implies the following assumptions. The
changes in the variables in the bioelectrical field equations,
(14a) and (14b), are small within one time step of the
continuum-mechanical model; that is, these changes do not
have a strong effect on the continuum-mechanical system.
On the other hand, the changes introduced through one
solution step of the mechanical system, (2), are small; that
is, not updating the mechanical fields at every time step at
which the bioelectrical field equations are solved introduces a
rather small error (cf. Figure 5). Based on the results depicted
in Figure 5, the time step for the considered problem could
be chosen even larger; however, the authors have retained
from this possibility as they have an extended framework in
mind that also provides feedback from the mechanical to the
recruitment model. In that case, it is presumed that a smaller
mechanical time step might be more suitable. This, however,
has to be shown in future research. Equivalent assumptions
have to be made for the operator split within the bioelectrical
field problem, where the diffusion equation is separated from
the reaction term.

In contrast to staggered schemes, monolithic solution
schemes do not rely on these assumptions. A monolithic
scheme has been investigated for the bioelectrical field equa-
tions [65]; however, only a simple, phenomenological model
for the reaction term has been evaluated. Further, Goktepe
and Kuhl [66] propose a fully implicit approach for cardiac
electromechanics. As the proposed chemoelectromechanical
model uses a much more detailed, biophysical half-sarcomere
model for the reaction term, the staggered schemes have
been employed to reduce the overall cost while maintaining
accuracy and stability for long stimulation periods. Further,
the fact that the bioelectrical model is solved on a deforming
domain (as a result of the continuum-mechanical model)
results in monolithic solution schemes that are not so
straightforward to implement.

5. Conclusions

An extensible, flexible, multiscale, and multiphysics model-
ing framework for nonisometric skeletal muscle mechanics
has been presented. The skeletal muscle model spans the
entire excitation-contraction pathway using an electrophys-
iological membrane model, a biophysical half-sarcomere
model (including the hyperbolic force-velocity relationship)
for active force generation, action potential propagation
along individual muscle fibers, and a continuum-mechanical
description of the macroscopic muscle tissue allowing for
complex interactions with surrounding tissues. The frame-
work is based on state-of-the-art parallelization techniques
providing the basis to investigate many different aspects of
skeletal muscle physiology and mechanics in the future. In
particular, the extensible and flexible open-source software
library OpenCMISS will provide the basis for future exten-
sions such as including the effects of titin, neurocontrol,
feedback mechanisms, and many more aspects. The key to all
of that is its implementation within a single framework using
novel data structures, for example, FieldML and CellML,
not requiring any external data exchange, staggered solution
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schemes addressing computational efficiency in the presence
of different and separable time scales, and parallelization
strategies.
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