
Demonstration of Supercomputing Activities

Alfred Geiger

During the inauguration of HLRS a broad variety of supercomputing-activities was
demonstrated. As HLRS is involved in the development of Software for supercomputers as
well as in their usage, the demos concentrated on the development of novel simulation-codes
in the field of Computational Fluid Dynamics, the software-tools which are necessary for the
developper and on the presentation of typical applications from engineering in the VR-lab.

Collaborative Supercomputer Simulation Visualization

Andreas Wierse

In the visualization lab, the COVISE software environment was presented, which enables
researchers and engineers to directy and interactively visualize results of ongoing
supercomputer-simulations. The first application shown was a vortex-breakdown
simulation running on the NEC SX-4. The result of this simulation is immediately sent via
the network to a graphics workstation connected to a virtual environment based on a large
projection screen which allows 3D display with stereo glasses to a group of people. The
second application (picture) showed the flow-visualization of an internal combustion engine.
The data were generated with the STAR-HPC Code from Computational Dynamics in the
framework of an EC-funded project of RUS, Computational Dynamics, Daimler-Benz,
Renault and Cray Research.

Figure 1: Flow-visualization of an internal combustion engine

Integrated Grid Generation and Flow Simulation on Arbitrary Unstructured Grids

Clemens Helf/Thomas Schmidt/Katina Warendorf/Uwe Küster

For a variety of engineering disciplines Computational Fluid Dynamics (CFD) has emerged as a
powerful and important analysis tool. CFD is concerned with the numerical simulation and
visualization of fluid flows using very powerful computers.

While CFD became essential in more traditional areas of application such as aircraft,
turbomachinery problems and car design, other disciplines increasingly make use of this
technology as it becomes available, like weather prediction, environmental sciences (air/ground
water pollution models, climate models), civil engineering (room/house climatization) or medical
research (blood flows). With the introduction of CFD to new disciplines, increasingly complex
computational domains need to be handled. The generation of appropriate spatial discretizations
(grids) for these domains currently is a limiting factor, because it is a very time consuming task
in terms of human effort and gets increasingly difficult with complex domains. Furthermore, the
accuracy of a computed flow solution heavily depends on the interaction of the flow solvers with
the provided grid.

More flexible grid representations, self-adaptive grid generation and the integration of flow
simulation and grid generation into a single process provide a way to tackle these difficulties. As
an example, a simple, inviscid flow around an airfoil profile (2D) is presented.

The flow solver ceq is based on a very flexible grid representation, which is capable of supporting
a direct CAD interface. The process of flow simulation starts with the single control volume grid
imported from CAD. No initial grid generation is necessary to start the simulation process
(figure a). Obviously, an accurate solution will not be obtained on a single control volume grid.
Therefore, a heuristic refinement strategy is used to create a reasonable coarse grid, by repeated
refinement of control volumes at the body surface (figure b).

The flow solver ceq integrates grid generation into the process of flow simulation. Starting from

a coarse, but reasonable grid, grid and flow solution are improved together by self-adaptive
refinement and recoarsening. Therefore, no extra effort is necessary for grid generation, i.e. grid
generation is fully automated. Finally, a fully developed grid and an accurate solution are
obtained (figure c-f).

In order to provide simulation results quickly, ceq is available on vector and distributed memory
parallel supercomputers. The flow solver is completely parallelized using the Distributed
Dynamic Data (DDD) library. DDD automatically builds up processor interface descriptions and
keeps them uptodate across transfer operations. Data at processor interfaces are synchronized by
explicit interface communications. Dynamic load balancing is achieved using the Metis library.
Use of parallel supercomputers enables us to solve very large problems and speeds up the
simulation process. The different shadings (figure b-e) show the distribution of the computation
grid to eight processors.

The vizard vizualization tool was used to create the figures presented here. The vizard directly
supports complex control volumes and piecewise continuous solution representations that are
used by the flow solver and user objects, independent of the flow representation. Therefore, no
data transformations are necessary in order to visualize computed results. This is an essential
feature for algorithmic developments and debugging. The most apparent feature of this support
are discontinuous isolines as presented in figure f.

Ceq uses a very flexible grid representation, based on arbitrary polygonal control volumes,
which even may be multiply connected. Therefore, no initial grid generation is necessary.
Furthermore, grid generation and flow simulation are completely integrated. Therefore, no
seperate grid generation is necessary and the full information from the flow solver is available for
self-adaptive refinement. This provides us with a strategy for automatic grid generation. The
vizard vizualization tool provides graphical support for flow analysis and code development on
high-end graphics workstations.

The figure a shows the integral grid, the airfoil with a box around it.
b up to e show an adaptive grid refinement process.

In figure f the isolines ofthe machnumber around the airfoil are presented

Software Development for Supercomputers

Isabel Loebich/Jürgen Lepper

In this demonstration one step of the complete process of software development for parallel
computers was shown. Based on a parallel application that is already running and produces the
correct numerical and physical results, only the optimisation step was presented.

As an example a code for the simulation of turbulent flow and combustion processes in coal-fired
full-scale utility boilers has been chosen. This code is being developed at IVD, University of
Stuttgart, and is used to predict several physical phenomena, such as the heat transfer at the
walls or pollutant emissions, e.g. NOx. These results help to improve the combustion efficiency
and to fulfil environmental legislation for pulverised coal combustion.

The numerical simulations take quite long, because full-scale utility boilers are generally large
and the physical phenomena are very complex. To obtain a solution for a utility boiler with a
height of 100m and a cross section of more than 600m2 simulation times of one week on the
fastest workstation are needed, but often even longer times become necessary. Using the parallel

version of the code considerably reduces these times to a couple of hours or even less, dependent
on the specific case. For the optimisation of this message passing code the characteristics of
computation and communication times have to be analysed.

On the intel Paragon, the development platform at RUS, the runtime behaviour can be observed
while the application is running with the SPV (System Performance Visualisation) tool, which
provides an image of all processors of the Paragon. The colours of the individual processor give
an impression of the actual work, and zooming provides some more information for each
processor: CPU time consumption, memory usage and amount of communication. This
information is gathered in pre-defined intervals from the hardware, and allows just the global
overview, whether some processors are in the average less utilised than others. This is obviously
not sufficient to improve the runtime behaviour and more detailed facts are needed.

With VAMPIR and ParaGraph two different tools were presented, which allow to analyse a
specific run of the application on a parallel computer. For both tools data have to be collected
during runtime that are used later to replay the behaviour on a workstation. To restrict these
so-called `trace files' to reasonable sizes for a demonstration, two different versions of the
application running on ten processors for only two iterations have been instrumented.

ParaGraph mainly allows to replay, continuously or stepwise, several aspects of the program
execution. A few of the several display possibilities are shown in figure 1. One illustrates the
messages that are sent and received by each processor, the animation display showing the
processor activities and the communication links, and the Kiviat display which gives a clear
image of the distribution of work among the processors (current utilisation and high water
mark). The difference in the load balance can easily be recognized in the Kiviat display.

Figure 1: Example of the ParaGraph output

VAMPIR allows an even more detailed look at the behaviour of the application. These views
show the activities of the processors over time (figure 2). The green tones represent the
calculation phases, the yellow portions show phases where a processor is waiting for a message
from another processor, the black lines show the messages going from one processor to another.

Figure 2: Example of the VAMPIR output

One can identify several components of this application: the two main modules, fluid flow
(computation of the Navier-Stokes equations and the turbulence) and combustion (computation
of chemical reactions and radiative heat transfer), and additionally the solvers as one major part
of any numerical application. The two iterations can easily be distinguished and since they look
quite similar it would be unnecessary to instrument more than that. The communication pattern
reflects the implementation of the physical and numerical models.

Figure 3: Details of the VAMPIR output.

Zooming provides more detailed information, down to the individual routines of the program.

Alfred Geiger, NA-5719
E-Mail: geiger@rus.uni-stuttgart.de

Andreas Wierse, NA-5796
E-Mail: wierse@rus.uni-stuttgart.de

Clemens Helf, NA-5812
E-Mail: helf@rus.uni-stuttgart.de

Thomas Schmidt, NA-5718
E-Mail: thomas.schmidt@rus.uni-stuttgart.de

Katina Warendorf, NA-5784
E-Mail: warendorf@rus.uni-stuttgart.de

Uwe Küster, NA-5984
E-Mail: kuester@rus.uni-stuttgart.de

Isabel Loebich, NA-5991
E-Mail: loebich@rus.uni-stuttgart.de

Jürgen Lepper, NA-5801
E-Mail: lepper@rus.uni-stuttgart.de �

