Demonstration of Supercomputing Activities

Alfred Geiger

During theinauguration of HLRS a broad variety of supercomputing-activities was
demonstrated. AsHLRS isinvolved in the development of Software for supercomputersas
well asin their usage, the demos concentrated on the development of novel simulation-codes
in thefield of Computational Fluid Dynamics, the softwar e-tools which are necessary for the
developper and on the presentation of typical applications from engineering in the VR-lab.

Collabor ative Supercomputer Simulation Visualization
Andreas Wierse

In thevisualization lab, the COVISE softwar e environment was presented, which enables
resear chers and engineersto directy and interactively visualize results of ongoing
supercomputer-simulations. Thefirst application shown was a vortex-breakdown
simulation running on the NEC SX-4. Theresult of thissimulation isimmediately sent via
the network to a graphics workstation connected to a virtual environment based on a large
projection screen which allows 3D display with stereo glassesto a group of people. The
second application (picture) showed the flow-visualization of an internal combustion engine.
The data wer e generated with the STAR-HPC Code from Computational Dynamicsin the
framework of an EC-funded project of RUS, Computational Dynamics, Daimler-Benz,
Renault and Cray Resear ch.

Figure 1: Flow-visualization of an internal combustion engine
Integrated Grid Generation and Flow Simulation on Arbitrary Unstructured Grids
Clemens Helf/Thomas Schmidt/Katina Warendorf/Uwe Kister

For avariety of engineering disciplines Computational Fluid Dynamics (CFD) hasemerged asa
power ful and important analysistool. CFD is concerned with the numerical simulation and
visualization of fluid flows using very powerful computers.

While CFD became essential in moretraditional areas of application such as air cr aft,
turbomachinery problems and car design, other disciplinesincreasingly make use of this
technology as it becomes available, like weather prediction, environmental sciences (air/ground
water pollution models, climate models), civil engineering (room/house climatization) or medical
resear ch (blood flows). With theintroduction of CFD to new disciplines, increasingly complex
computational domains need to be handled. The generation of appropriate spatial discretizations
(grids) for these domains currently isa limiting factor, becauseit isa very time consuming task

in terms of human effort and getsincreasingly difficult with complex domains. Furthermore, the
accuracy of a computed flow solution heavily depends on theinteraction of the flow solverswith
the provided grid.

Moreflexible grid representations, self-adaptive grid generation and theintegration of flow
simulation and grid generation into a single process provide a way to tackle these difficulties. As
an example, asimple, inviscid flow around an airfoil profile (2D) is presented.

Theflow solver ceq isbased on avery flexible grid representation, which is capable of supporting
adirect CAD interface. The process of flow simulation starts with the single control volume grid
imported from CAD. No initial grid generation is necessary to start the simulation process
(figurea). Obviously, an accurate solution will not be obtained on a single control volume grid.
Therefore, a heuristic refinement strategy isused to create areasonable coarse grid, by repeated
refinement of control volumes at the body surface (figureb).

Theflow solver ceq integrates grid generation into the process of flow simulation. Starting from

a coar se, but reasonable grid, grid and flow solution areimproved together by self-adaptive
refinement and recoar sening. Therefore, no extra effort isnecessary for grid generation, i.e. grid
generation isfully automated. Finally, a fully developed grid and an accurate solution are
obtained (figure c-f).

In order to provide simulation results quickly, ceq is available on vector and distributed memory
parallel supercomputers. Theflow solver iscompletely parallelized using the Distributed
Dynamic Data (DDD) library. DDD automatically builds up processor interface descriptions and
keepsthem uptodate across transfer operations. Data at processor interfaces are synchronized by
explicit interface communications. Dynamic load balancing is achieved using the Metislibrary.
Use of parallel supercomputers enablesusto solve very large problems and speeds up the
simulation process. The different shadings (figure b-€) show the distribution of the computation
grid to eight processors.

Thevizard vizualization tool was used to create the figures presented here. Thevizard directly
supports complex control volumes and piecewise continuous solution representationsthat are
used by the flow solver and user objects, independent of the flow representation. Therefore, no
data transformations are necessary in order to visualize computed results. Thisis an essential
featurefor algorithmic developments and debugging. The most apparent feature of this support
are discontinuousisolines as presented in figuref.

Ceq usesavery flexible grid representation, based on arbitrary polygonal control volumes,
which even may be multiply connected. Therefore, noinitial grid generation isnecessary.
Furthermore, grid generation and flow simulation are completely integrated. Therefore, no
seperate grid generation is necessary and the full information from the flow solver isavailable for
self-adaptive refinement. Thisprovidesuswith a strategy for automatic grid generation. The
vizard vizualization tool provides graphical support for flow analysis and code development on
high-end graphics workstations.

Il

R]

t

:

5 I o

Thefigureashowstheintegral grid, theairfoil with a box around it.
b up to e show an adaptive grid refinement process.
In figuref theisolines ofthe machnumber around the airfoil are presented

Softwar e Development for Supercomputers
I sabel Loebich/Jirgen Lepper

In thisdemonstration one step of the complete process of softwar e development for parallel
computerswas shown. Based on a parallel application that isalready running and producesthe
correct numerical and physical results, only the optimisation step was presented.

As an example a code for the simulation of turbulent flow and combustion processes in coal-fired
full-scale utility boilers has been chosen. This codeisbeing developed at 1VD, University of
Stuttgart, and isused to predict several physical phenomena, such asthe heat transfer at the
wallsor pollutant emissions, e.g. NO,. Theseresults help to improve the combustion efficiency

and to fulfil environmental legislation for pulverised coal combustion.

The numerical simulationstake quite long, because full-scale utility boilers are generally large
and the physical phenomena are very complex. To obtain a solution for a utility boiler with a

height of 100m and a cross section of mor e than 600n? simulation times of one week on the
fastest workstation are needed, but often even longer times become necessary. Using the parallel

version of the code consider ably reduces these timesto a couple of hours or even less, dependent
on the specific case. For the optimisation of this message passing code the characteristics of
computation and communication times have to be analysed.

On theintel Paragon, the development platform at RUS, the runtime behaviour can be observed
while the application isrunning with the SPV System Performance Visualisation) tool, which
provides an image of all processors of the Paragon. The colours of theindividual processor give
an impression of the actual work, and zooming provides some mor e information for each
processor: CPU time consumption, memory usage and amount of communication. This
information is gathered in pre-defined intervals from the hardware, and allows just the global
overview, whether some processors arein the average less utilised than others. Thisis obviously
not sufficient to improve the runtime behaviour and more detailed facts are needed.

With VAMPIR and ParaGraph two different tools were presented, which allow to analyse a
specific run of the application on a parallel computer. For both tools data have to be collected
during runtimethat are used later to replay the behaviour on a workstation. To restrict these
so-called “tracefiles' to reasonable sizesfor a demonstration, two different versions of the
application running on ten processorsfor only two iterations have been instrumented.

ParaGraph mainly allowsto replay, continuously or stepwise, several aspects of the program
execution. A few of the several display possibilities are shown in figure 1. Oneillustratesthe
messages that are sent and received by each processor, the animation display showing the
processor activities and the communication links, and the Kiviat display which gives a clear
image of the distribution of work among the processors (current utilisation and high water
mark). Thedifferencein theload balance can easily be recognized in the Kiviat display.

Figure 1: Example of the ParaGraph output

VAMPIR allows an even mor e detailed ook at the behaviour of the application. These views
show the activities of the processors over time (figure 2). The green tonesrepresent the
calculation phases, the yellow portions show phases where a processor iswaiting for a message
from another processor, the black lines show the messages going from one processor to another.

e |l
s s’ﬂ“ﬁwmhlm s it
Piocess 0 | 7 22y :I"EJLIEM
TR (B | B = | (el R O B IR BT (R P | T I WSalver
Piocess 1 WCoThustion
mlalculalon

Piogess 2 Iu?nnhim

Piocess WHotle_Cowrrm
1% I qﬂuﬂllmu

- ﬂ“iﬂ 1 '11 N -

pms! _k Hm .Hil |n|J Il

Process 2
Procuss
Pracessd |
Frocess 3
Pracess §
Frocess”
Promece I

T |

EFuidAmws
mEnlven
mlnmrhL<10n
LTS
I’l"!h&-mﬂmllm

Figure 2: Example of the VAMPIR output

One can identify several components of this application: the two main modules, fluid flow
(computation of the Navier-Stokes equations and the turbulence) and combustion (computation
of chemical reactions and radiative heat transfer), and additionally the solvers as one major part
of any numerical application. The two iterations can easily be distinguished and since they look
quitesimilar it would be unnecessary to instrument more than that. The communication pattern

reflects the implementation of the physical and numerical models.

Figure 3: Details of the VAMPIR output.

Zooming provides more detailed infor mation, down to theindividual routines of the program.

Alfred Geiger, NA-5719
E-Mail: geiger @r us.uni-stuttgart.de

Andreas Wierse, NA-5796
E-Mail: wierse@rus.uni-stuttgart.de

Clemens Helf, NA-5812
E-Mail: hef@rus.uni-stuttgart.de

Thomas Schmidt, NA-5718
E-Mail: thomas.schmidt@rus.uni-stuttgart.de

Katina Warendorf, NA-5784
E-Mail: warendorf@rus.uni-stuttgart.de

Uwe K Uster, NA-5984
E-Mail: kuester @rus.uni-stuttgart.de

|sabel Loebich, NA-5991
E-Mail: loebich@rus.uni-stuttgart.de

Jurgen Lepper, NA-5801
E-Mail: lepper @rus.uni-stuttgart.de

