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Preface

Many applications in chemical engineering [27, 97], fluid mechanics [33], geology [85],

and biology involve systems of particles immersed in a liquid or gas flow. Examples of

such systems are sedimentation processes, gas-solid or liquid-solid fluidized beds, blood,

mixing processes when sediment-laden rivers enter lakes or the sea, powder transport by

pneumatic conveying, the ticking of hour glasses, flocculation in suspensions, and many

more.

Although all suspensions are based on the same fundamentals – solid particles are sus-

pended in a fluid or a gas – the physical properties that dominate the behavior could not

be more diverse.

• In colloidal chemistry the behavior of a suspension is dominated by physical and

chemical properties of the particles and the fluid, so that interparticle forces such

as repulsive electrostatic or attractive van der Waals forces determine the state of a

suspension. The addition of a small amount of additive containing, e.g. free ions,

to the fluid may cause a stable suspension to flocculate.

• If particles like sand or dust are transported by the air flow in low concetrations,

they do not cause a distinct change of the flow. Therefore, clouds of dust, e.g. from

volcanic eruptions, are transported over large distances in the atmosphere.

• In contrast to low particles concentrations, the behavior changes dramatically if we

consider high particle concentrations, as they occur in dust avalanches, where e.g.

powdery snow slides down a mountain. The particles themselves drive the airflow

and are able to cause wind velocities in excess of 200 km/h [32].

This selection of examples is far from being complete but it already shows that the physics

of suspensions is very rich in phenomena and the classical problem of sedimentation is

only a starting point for the exploration of the vast field of particles suspensions.

Particle suspensions have all in common that the long-ranged hydrodynamic interactions

mediated by the fluid in the interstitial voids of a particulate, granular system greatly
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change its physical behavior as compared to the “dry” state without medium. The dry state

is characterized by the short-ranged, mostly viscoelastic forces that act when single grains

come into contact. Thus the behavior of a dry granular system depends very strongly on

the particle volume fraction. Dust avalanches are an ideal example of this phenomenon.

As long as the dust rests on the ground the air in the in the interstitial voids is of no interest

and the dust may be described like a heap of sand. But as soon as the particles start to

move, the particle volume fraction is reduced and the particles lose contact. Now the air

between the particles mediates a coupling of the movements of single particles.

The analytical description of suspensions is limited to special cases, such as zero Reynolds

numbers, spherical particles, infinite system sizes, or periodic boundary conditions. We

therefore have to rely on phenomenological descriptions of the suspension or on computer

simulations. Phenomenological descriptions have proven to provide accurate predictions

for special cases [15, 57] but they are limited to parameter ranges where the physical

mechanisms dominating the suspension behavior do not change. Computer simulations in

principle overcome this restriction but suffer from the enormous expense that is associated

with the numerical representation of freely moving boundaries in a fluid. It is therefore

necessary to find a description of suspensions which allows to transfer the particle scale

phenomena to a macroscopic scale. However, such a project is not possible without a

detailed understanding of the suspension.

To gain such an understanding, we study the sedimentation of mono- and bidisperse sus-

pensions. We restrict our studies to non-Brownian, hard spheres with a discrete distribu-

tion of sizes and densities settling under the influence of gravity in a quadrilateral con-

tainer. The container may either have walls on the boundaries or be periodically contin-

ued.

The thesis is organized as follows: In Chapter 1 we describe the fluid dynamical foun-

dation of the problem and describe some basic properties of particles suspended in a

fluid. We then describe in Chapter 2 a numerical simulation technique that is capable of

simulating more than 109 degrees of freedom and use this simulation technique to study

monodisperse (Chapter 3) and bidisperse (Chapter 4) suspensions. Based on the simu-

lations and experimental data, we show that a advection-diffusion model for the particle

concentration is able to describe the settling of polydisperse suspensions (Chapter 5).



Chapter 1

The Physics of Particle Suspensions

1.1 The Fluid

1.1.1 Continuum Mechanical Description

The theoretical description of liquids is based on the continuum hypothesis, which states

that it is possible to associate the macroscopic properties of the fluid with any volume of

fluid, no matter how small it is, and that the fluid consists of a continuous aggregate of

such fluid elements [101]. We know that the continuum hypothesis breaks down for very

small length scales of the order of the length of the mean free path of the molecules which

form the fluid. However if the scale of the phenomena of interest is seperated clearly from

that of the mean free path, then we can choose an averaging length scale on which each

volume element contains so many particles that the fluctuations of the mean value of a

physical quantity is negligible.

Building on the continuum hypothesis we can describe the movement of a fluid by its local

velocity ~v(~x, t), local density ρ(~x, t), and local pressure p(~x, t) where ~x is the position in

space fixed coordinates and t is the time. We will only deal with isothermal processes

and therefore not include the temperature in our considerations. To formulate the basic

equations for the fluid we utilize the conservation of mass and momentum.

We consider a volume V of fluid in Eulerian (space fixed) coordinates. The mass of the

volume changes due to the in- and outflow of fluid through the surface S. So that the

change of mass is

∂

∂t

∫

V

ρ dV = −
∫

S

ρ~v · d~S (1.1)
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where d~S is a volume element of the surface with an outward normal. Because the in-

tegration volume does not change with time we can exchange the integral with the time

derivative and by applying Gauss’s theorem we find the continuity equation,

∂ρ

∂t
+∇ · (ρ~v) = 0. (1.2)

Additional equations are found by using the conservation of momentum, or Newton’s

second law, i.e. the change of momentum of a fluid element is equal to the force acting

on it. We follow the movement of a fluid element such that it always contains the same

molecules. This implies that the volume of this fluid element may change, but that its

mass is constant. As a consequence, the momentum of the fluid element changes only

due to changes in the velocity

ρ
d~v

dt
= ρ

∂~v

∂t
+ ρ

(
dx

dt

∂~v

∂x
+

dy

dt

∂~v

∂y
+

dz

dt

∂~v

∂z

)

, (1.3)

or equivalently

ρ
d~v

dt
= ρ

∂~v

∂t
+ ρ(~v · ∇)~v. (1.4)

Here the velocity enters Eq. (1.4) in two ways: First as the quantity that changes as the

fluid moves and second as the quantity that controls how fast the change occurs.

Now that we know how the momentum changes we must consider the forces acting on a

fluid element. In principle there are two type of forces, namely surface and volume forces,

so that we can write

d

dt

∫

V

ρ~v dV =

∫

S

T(~x, t) d~S +

∫

V

~f(~x, t) dV (1.5)

where T is the symmetric stress tensor which describes the surface forces in case of no

internal torques in the fluid and ~f is an arbitrary force acting on the fluid volume like, e.g.,

gravity. As Eq. (1.5) is valid independent of the actual form of the integration volume, the

relation must therefore hold also for the integrands only. By applying Gauss’s theorem to

the surface integral on the right hand side we obtain

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = ∇T(~x, t) + ~f(~x, t). (1.6)

Eq. (1.6) together with Eq. (1.2) provide 4 equations for the 5 variables velocity, pressure

and density. The last equation is given by the equation of state for the fluid ρ = ρ(p). In

many cases, especially when the fluid velocities are much smaller than the speed of sound

in the fluid, the fluid can be regarded as incompressible and ρ is a constant.

We now have to specify the nature of the stress tensor T. Often the symmetric stress

tensor T is divided into two contributions, (i) the diagonal part of Tij and (ii) the off
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diagonal part T̃ij = Tij − 1/dδijTkk. The trace of the first is the pressure acting in normal

direction on a fluid element, and the second the shear force acting perpendicular to the

surface normal. In an ideal fluid with no friction T̃ij is zero and Eq. (1.6) reduces to the

Euler equation

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p+ ~f. (1.7)

For a viscous fluid T̃ is not zero and friction occurs when the distance between two neigh-

boring fluid elements changes,i.e. they move relative to each other. The force is propor-

tional to the relative velocity of the two fluid elements. The most general form of the

stress tensor for isotropic fluids linear in the velocity gradients is [101]

Tij = −pδij + η

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij

∂vk
∂xk

)

+ ξδij
∂vk
∂xk

, (1.8)

where η is called shear viscosity and ξ the bulk viscosity, which is the resistance of the

fluid against compression. For the case of an incompressible fluid ρ = const the continu-

ity equation (1.2) reduces to ∇ · ~v = 0, so that the compressible part of the stress tensor

disappears. By inserting Eq. (1.8) in Eq. (1.6) we arrive at the Navier-Stokes equation for

a incompressible fluid

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p + η∇2~v + ~f. (1.9)

The Navier-Stokes equation is a set of three nonlinear partial differential equations for ~v

and p, whose nonlinearity is due to the convective term of the time derivative. Together

with appropriate boundary conditions and the incompressibility constraint, these four un-

knowns can be determined in space and time.

1.1.2 Boundary Conditions

Since the Navier-Stokes equations of the fluid motion are partial differential equations,

we need boundary and initial conditions to solve these equations. The typical boundaries

for a fluid are (i) solid, impermeable walls, (ii) the boundary to another fluid and (iii) a

free surface of the fluid. We will only consider the case where the boundary consists of

solid walls, because we will only deal with solid suspended particles in this thesis.

One condition in case of a solid, impermeable wall is that no fluid may pass through the

wall. Thus the velocity component normal to the boundary must equal the velocity of the

wall.

~v · ~n = ~VS · ~n, (1.10)
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where ~VS is the velocity of the wall.

The second condition for the tangential component of the velocity is not as obvious. It has

been shown by experiments that the no-slip boundary condition applies for the boundary

of normal fluids and solid walls, because the surface of the wall acts like a layer of fluid

moving with velocity ~VS. The viscosity of the fluid prevents a discontinuity of the velocity

between the fluid and the wall. The no-slip boundary condition is expressed by

~v × ~n = ~VS × ~n, (1.11)

and is independent of the condition for the normal component.

We will later utilize the equivalence of a solid wall boundary with a fluid moving with the

same velocity in our numerical method to describe the suspended particles.

1.1.3 Dimensionless Description

The concept of dynamical similarity says that under some conditions the flow patterns

of two similar geometries are also similar. This concept allows for the usage of small-

scale models and wind-tunnels or towing-tanks to design and test the fluid dynamical

properties of aeroplanes, cars, and ships. The question is now under which condition two

similar geometries will produce similar flow patterns.

Let us introduce typical length and velocity scales L and U of our system. These are

typical scales of the system, e.g. the size of an obstacle in the flow and a typical velocity

of the fluid. We use this characteristic values to obtain a non-dimensional form of the

variables, which we denote by primes,

~x ′ = ~x/L, ~v ′ = ~v/U, t′ = tU/L. (1.12)

Substituting Eq. (1.12) into (1.9) and multiplying the resulting equation by L/ρU 2 gives

the dimensionless Navier-Stokes equation

∂~v ′

∂t′
+ (~v ′ · ∇′)~v ′ = − 1

ρU2
∇′p+

η

ULρ
∇′2~v ′ +

L

ρU2
~f. (1.13)

where the spatial and time derivative transform like

∇′ = L∇, and
∂

∂t′
=

L

U

∂

∂t
. (1.14)

If we measure the pressure and the force in units of 1/ρU 2 and L/ρU 2 then the equations

for the non-dimensional variables are the same if η/ULρ is the same in the two geometri-

cally similar situations As all variables are now primed we drop the primes and write the

final, dimensionless form of the Navier-Stokes equation

∂~v

∂t
+ (~v · ∇)~v = −∇p + 1

Re
∇2~v + ~f, (1.15)
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where Re is the so called Reynolds number

Re =
ULρ

η
=

UL

ν
(1.16)

and ν = η/ρ is the kinematic viscosity.

If we neglect the external forces ~f then two geometrically identical situations will have

the same solutions and therefore the same flow patterns if the Reynolds number is the

same in both situations because then the Navier-Stokes equations are identical. Thus the

Reynolds number is the condition for dynamical similarity.

1.1.4 The Stokes Equations

We find a physical interpretation of the Reynolds number Re, introduced in the previous

section, by comparing the ratio of the inertial term of the Navier-Stokes equation

|~v · ∇~v| ∼ U2

L
(1.17)

to the viscous term

|ν∇2~v| ∼ νU

L2
. (1.18)

We find that the Reynolds number indicates the ratio of inertia forces to viscous forces

|~v · ∇~v|
|ν∇2~v| ∼

UL

ν
= Re. (1.19)

Thus, when the Reynolds number is very small (Re � 1) the inertia term of the Navier-

Stokes equation (1.15) is very small compared to the viscous forces and we may neglect

it. This leads to the so called Stokes equation for a viscous fluid,

∂~v

∂t
= −∇p + 1

Re
∇2~v + ~f. (1.20)

The Stokes equation is a linear equation in ~v and therefore analytically easier to handle

than the full Navier-Stokes equation. It also shows two features present in low Reynolds

number flow, namely flow reversibility and the long-range nature of the viscous interac-

tions. Due to the linearity new solutions to the Stokes equation can be found by superpo-

sition of known solutions.

1.2 Particles in Fluid

In this section we look at the flow of viscous fluid in the presence of a single or many

spherical particles. The analytical calculations are only possible in the limit of low-

Reynolds number flows where the Stokes equation is still valid.
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1.2.1 A Single Particle

A famous solution of the Stokes equation (1.20) is the flow past a sphere. The solution of

the flow field is used to calculate the force on the sphere.

The problem is best considered in spherical coordinates. We choose a frame of reference

where the sphere is at rest and the orientation so that Θ = 0 in the flow direction. By

symmetry the azimuthal component of the velocity is equal to zero vφ = 0. The fluid is

moving with constant velocity ~v0 at infinity, which gives the boundary conditions

vr = v0 cosΘ, and vΘ = −v0 sinΘ (1.21)

at r =∞. The boundary conditions on the sphere can be expressed by

vr = vΘ = 0 at r = a (1.22)

where a is the radius of the sphere. The solution of Eq. (1.20) is then [39]

vr = v0 cosΘ

(

1− 3a

2r
+

a3

2r3

)

, (1.23)

vΘ = −v0 sin Θ
(

1− 3a

4r
+

a3

4r3

)

, (1.24)

p− p0 = −3

2

ηv0a

r2
cosΘ. (1.25)

The main characteristic of the solution is that the disturbance from the velocity field with-

out a sphere decays ∼ 1/r. This shows that the flow field is influenced by the presence of

a sphere over large distances. To calculate the force on the particle we need the stress on

the surface of the particle. On a boundary at rest the pressure and viscous forces per unit

area are given by

TΘΘ = −η
(
∂vΘ
∂r

)

r=a

sin Θ− (p− p0)r=a cosΘ, (1.26)

which equals the constant value

T =
3ηv0
2a

(1.27)

By (trivial) integration over the surface we get

FD = 6πηav0, (1.28)

the drag on a sphere in an unbounded fluid. It should be noted that due to the fact that the

viscous effect extends over a long range, even distant boundaries have a large effect on

the particles. E.g. in a falling-sphere viscometer the radius of the container has to be 100

times larger than that of the sphere to reduce the error to less than 2% [39].
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It is now easy to calculate the velocity of a particle settling under gravity in a unbounded

fluid. The resulting velocity USt is called the Stokes velocity,

USt =
2

9

a2(ρp − ρ)g

η
, (1.29)

where ρp is the density and a the radius of the particle.

1.2.2 A Fixed Array Of Particles

One of the first approaches to calculate the velocity of suspended particles was to com-

pute the resistance of a fixed assemblage of particles. In the presence of walls the method

of reflections [39] is used to find the correct flow field and the forces on the particles it-

eratively. The solution is approximated by considering the boundary conditions with one

particle at a time, which is called a reflection. A different technique was used by Hasi-

moto [41] to calculate the force on a periodic array of particles. He used the periodicity

of the problem to expand the fluid fields into Fourier series. By using a point particle

approximation he found that the force on a particle is given by

F =
6πaηu

1− 1.7601φ
1
3 + φ− 1.5593φ2

(1.30)

where φ is the fraction of the volume occupied by the particles. The settling velocity U

of such an array is therefore given by

U =
USt

1− 1.7601φ
1
3 + φ− 1.5593φ2

. (1.31)

For φ� 1 the change in the velocity is proportional to φ−
1
3 and therefore proportional to

the inverse of the particle separation.

1.2.3 Freely Moving Particles

In a real suspension the particle positions are not fixed, so that the particles are able

to change their relative positions. This renders the calculation of the settling velocities

difficult, because we must know the particle distribution to determine the average particle

velocity 〈U〉, which is defined by

〈U〉 = 1

N

N∑

i=1

Ui. (1.32)

For monodisperse suspensions the particle distribution is not known a priori. We must

distinguish between two cases
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1. The particles are so small that the continuum hypothesis is only partially fulfilled.

Then the particles show an erratic random motion, the so called Brownian motion.

2. The particles are large enough so that the Brownian motion is neglegible.

The so called Péclet number Pe provides an estimate whether the Brownian motion of

particles may be neglected. The Péclet number compares the ratio of heat advection to

heat conduction and is defined by

Pe =
Ua

D
, (1.33)

where U is a typical velocity of the particle, a its radius and D is the thermal diffusion

coefficient. For Pe� 1 the advective motion of the particle dominates and the Brownian

motion can be neglected, whereas for Pe � 1 the Brownian motion is dominating and

the particle movement will be largely of random nature. In case of low Péclet number we

therefore expect to find a locally homogeneous particle distribution. This shows that even

if we do not consider interparticle forces, the particle distribution is not known a priori.

There have been many approaches to calculate the average settling velocity of the particles

in a suspension. We will briefly describe Batchelor’s idea [7] which is based on two-

particle interactions.

Batchelor considers a random suspension at low volume fraction φ. He assumes that the

particle distribution is homogeneous and calculates the pair interaction between a test

sphere positioned at ~x0 and all possible positions of particles. The mean settling velocity

is then given by

〈U〉 = 1

N !

∫

U(~x0, CN)P (CN |~x0)dCN , (1.34)

where C is a configuration of N spheres, and P (CN |~x0) is the conditional probability

density of a configuration of N +1 particles given that there is a sphere at the position ~x0.

The main problem is that the integral (1.34) is divergent because the velocity field of a

particle decays ∼ r−1. He overcomes this problem by calculating U − V where V is the

translational velocity due to the nonuniform environment. In this fashion, he finds 〈U〉 up

to order φ,

〈U〉 = USt(1− 6.55φ). (1.35)

Although Eq. (1.35) is only valid at low volume fractions, Batchelor’s linear approxima-

tion of the hindered settling function captures one of the main features of particle suspen-

sions. If the particle volume fraction is increased, the settling of the particles is hindered

due to the backflow of liquid caused by the other particles.
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For particle volume fractions larger than ≈ 0.15 the Eq. (1.35) predicts negative settling

velocities, i.e. the particles will rise. This shows that the linear theory must not be applied

over the whole range of possible volume fractions. A second order approximation of the

hindered settling function would require to take three particle interactions into account.

This approach has been taken e.g. by P. Mazur et. al. and Brady et.al. [70, 13] and

leads to better approximations of the hindered settling function. But in all cases one has

to make assumptions on the particle distribution within the suspension.

The calculations of the hindered settling function assume that the particles are distributed

homogeneously within the volume. If this is not the case, say due to the initial conditions

or generated by inclined walls as shown in Figure 1.1, the calculations are not valid any

more. In case of inhomogeneous initial conditions as shown on the left side of Figure

1.1, the backflow generated by the particles is not forced to move through the particles

but avoids the region of high particle concentration. Thus the hindered settling effect is

reduced. In the case of inclined walls, an initially homogeneous distribution of particles

will develop areas of higher concentrations (dark grey in Figure 1.1) and areas of lower

particle concentration (light grey), where the upward moving fluid flows without the hin-

drance of settling particles.

Figure 1.1: Sketch of two situations where the average particle settling velocity is in-

creased due to a inhomogeneous initial particle distribution (left side) or inclined walls

(right side). In both cases the backflow generated by the settling particles avoids the

particles and the average particle velocity is increased.

A similar situation occurs when there are long-range interparticle forces or other physical

effects that lead to clustering of the particles. In such cases the hindered settling function
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does not need to be a monotonically decreasing function of the volume fraction.



Chapter 2

Simulation Method

Because of its great importance, the problem of particle suspensions has been and is

still attracting considerable attention on both the experimental and theoretical level. As

is known from the physics of liquids on the molecular scale [37], long-time tails will

arise in the correlation functions of conserved currents as, e.g., the liquid’s velocity field,

and the long-range character of the hydrodynamic interaction necessitates very careful

studies of the system size dependence of the results. Short of analytic solutions of the

problem, the challenge therefore is to find simulation techniques that are on the one hand

accurate enough to allow reliable predictions, but on the other hand of sufficient numerical

efficiency to permit studies on “large” systems in terms of particle numbers and confining

geometry and “long” times with respect to the intrinsic velocities and length scales.

Some techniques, notably finite element or finite volume techniques [22, 34, 49, 51, 69],

can reproduce very precisely the behavior of a small number of particles, but they are too

computer intensive to simulate in three dimensions inherently collective, many-particle

effects as, for example, the influence of the presence of a fluid phase on convection in

granular assemblies, the bubbling in fluidized beds, or instabilities associated with gravi-

tational overturning. Recently however, in two dimensions successful simulations of rhe-

ological behavior [34, 69] have been performed. The most time consuming part of these

algorithms is the recurrent necessity to generate new, geometry adapted grids because

continuous distortion of the initial grid will quickly result in very elongated elements or

even overlaps with parts of the internal boundary (a particle).

Other techniques can deal with many particles, but use phenomenological expressions

[53, 91, 102, 107] for the coupling between particles and fluid that are incapable of

rendering correctly single particle behavior and limit severely the predictive power of a

method when new parameter ranges are explored. These include also the averaged equa-

tion techniques and the Euler-Lagrangian formulations that are popular in turbulent flow
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simulations, where direct simulation is prohibitively expensive [96, 99, 102].

Several techniques are based on the assumption of low Reynolds numbers, which turns

the Navier-Stokes equation into the linear Stokes equation. Then one exploits the fun-

damental solution of the Stokes equation to eliminate the need to compute the solution

everywhere in space, but rather uses a boundary element formulation [105] or a multipole

expansion for the stress on the particle surface [10, 12, 58] possibly together with specific

precautions for the divergent near-field lubrication forces [88]. Naive implementations

of these methods require the storage and inversion of a full matrix. Only rather complex

clustering techniques that exploit the decay of the influence of one particle on the other

with increasing distance between the two can reduce this effort to be proportional to the

number of particles (apart from logarithmic corrections). However, no efficient boundary

integral technique is known to us for the nonlinear Navier-Stokes problem.

The most powerful techniques in terms of the ability to deal with large systems of the

described kind have proved to be those that use a fixed nonadaptive grid to represent

the fluid flow. The particle boundaries can then be represented only approximately as

permitted by the regular discretization. Such techniques have been successfully used by

Ladd in conjunction with a lattice-Boltzmann flow solver [60, 61] or in Ref. [103] with a

more conventional finite difference Navier-Stokes solver.

The method that we propose here follows the immersed boundary technique proposed by

Fogelson and Peskin [25]. Similar ideas are also employed in the fictitious domain method

developed by Glowinski and co-workers [30, 28, 29] and earlier domain embedding meth-

ods [16] about which we learned only after most of this work had been completed. The

basic idea of these two approaches is to use the same constant grid for the resolution of

the fluid flow at all times and represent the particles not as boundary conditions to the

flow, but by a volume force term or Lagrange multipliers in the Navier-Stokes equation.

The fluid equation can then still be solved by very fast specialized Fourier or multigrid

techniques that exploit the regular grid structure.

2.1 Numerical Method

We now describe the essentials of our technique to treat large numbers of rigid particles

moving in a fluid modeled by the Navier-Stokes equations. The problem can be quite

cleanly separated into three parts: (i) the fluid equations, (ii) the motion of the suspended

particles, and (iii) their mutual coupling. Most of the technical details of the first two

subproblems can be found in the literature and we will here give only the most important

facts for completeness. The way of coupling these two phases will be addressed in more

detail.
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2.1.1 Liquid

Our starting points are the Navier-Stokes equations describing the motion of a Newtonian

fluid with inertia,

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p + η∇2~v + ~f. (2.1)

Here ρ and η denote the fluid density and viscosity, ~v and p its velocity and pressure,

respectively, and ~f a volume force term. As usual [63], we will not consider the time

independent gravity contribution to ~f explicitly, but cancel it against the hydrostatic pres-

sure and omit both terms from Eq. (2.1). The corresponding buoyancy forces will be taken

into account explicitly in the equations of motion of the suspended particles. However,

we will require a fluctuating component of ~f as an essential ingredient of our simulation

technique (see below), so that the volume force term must be left in Eq. (2.1). For the

following, we will consider the liquid as incompressible, i.e., ∇ · ~v = 0, and choose the

solution method for the fluid equation accordingly. Incompressibility is not a necessary

condition for the coupling technique.

We use a staggered marker and cell (MAC) mesh as the base for a second order spatial

finite-difference discretization of (2.1), which simplifies considerably the treatment of the

pressure boundary conditions [26]. Details can be found, e.g., in Ref. [78], Chap. 6. If

we denote the components of the velocity by u, v and w the discretized Navier-Stokes

equation is given by

u
(n+1)
i,j,k − u

(n)
i,j,k

∆t
= −∆x(u

2)
(n)
i,j,k −∆y(uv)

(n)
i,j,k −∆z(uw)

(n)
i,j,k

−∆xp
(n+1)
i,j,k +

1

Re
∇2u

(n)
i,j,k , (2.2)

v
(n+1)
i,j,k − v

(n)
i,j,k

∆t
= −∆x(vu)

(n)
i,j,k −∆y(v

2)
(n)
i,j,k −∆z(vw)

(n)
i,j,k

−∆yp
(n+1)
i,j,k +

1

Re
∇2v

(n)
i,j,k ,

w
(n+1)
i,j,k − w

(n)
i,j,k

∆t
= −∆x(wu)

(n)
i,j,k −∆y(wv)

(n)
i,j,k −∆z(w

2)
(n)
i,j,k

−∆zp
(n+1)
i,j,k +

1

Re
∇2w

(n)
i,j,k .
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where ∆t is the time step and the differential operators are defined by

∆xfl,m,n =
1

h
(fl+1/2,m,n − fl−1/2,m,n) , (2.3)

∆yfl,m,n =
1

h
(fl.m+1/2,n − fl,m−1/2,n) ,

∆zfl,m,n =
1

h
(fl.m,n+1/2 − fl,m,n−1/2) ,

∇2fl,m,n = ∆x∆xfl,m,n +∆y∆yfl,m,n +∆z∆zfl,m,n ,

∆x∆xfl,m,n = ∆xxfl,m,n =
fl+1,mn − 2fl,m,n + fl−1,m,n

h2
.

We calculate the values of u, v and w located between the grid points by averaging the

on-grid values, so that the approximation is still of second order.

The incompressibility constraint is satisfied via an explicit operator-splitting, fractional-

time-step method, described in detail in the same reference. In that framework, one intro-

duces an additional provisional “velocity” ~v∗ without physical meaning in order to split

the one velocity equation (2.1) into two,

ρ
~v∗ − ~vn

∆t
= −ρ(~∇ · ~vn)~vn + η∇2~vn + ~fn , (2.4)

ρ
~vn+1 − ~v∗

∆t
= −∇pn+1 . (2.5)

Here, the superscripts n and n + 1, respectively, denote the values at t = n ∆t and

t = (n + 1) ∆t. This system of two equations is mathematically equivalent to the single

equation that we started out with.

An equation for the pressure variable is obtained from Eq. (2.5) by taking the divergence

and using that the divergence of the updated velocity field ~vn+1 must vanish,

∇2pn+1 =
ρ

∆t
~∇ · ~v∗. (2.6)

The steps above are often considered to be a projection of Eqs. (2.4,2.5) onto a diver-

gence free subspace of the velocity vector field—the pressure equation is used to remove

the “perpendicular” velocity components contained in ~v∗—and thus the term “projection

method” is often employed in this context. The exact distribution of terms to the split

equations is not unique; in principle, some of the velocity terms on the right hand side of

(2.4) could appear in (2.5). Consequently, the unphysical temporary field ~v∗ would take

different values, without affecting ~vn+1.

The fluid equations must be solved subject to the boundary and initial conditions implied

by the confining geometry, in our case a quadrilateral volume which is either (i) limited

by fixed walls on which no-slip conditions hold or (ii) periodically repeated in space.

To obtain the boundary conditions for Eq. (2.6), we project expression (2.5) onto the



Simulation Method 23

boundary’s outward pointing normal ~n,

ρ

∆t

(
vn+1⊥ − v∗⊥

)
= −(~n · ∇)pn+1. (2.7)

Let us now consider the spatially discretized forms of Eq. (2.6) and (2.7) in the vicinity

of a boundary, as e.g., displayed in Fig. 2.1,

1
h

(
pn+1
1,m−pn+1

0,m

h
− pn+1

0,m−pn+1
−1,m

h

)

+ 1
h

(
pn+1
0,m+1−p

n+1
0,m

h
− pn+1

0,m−pn+1
0,m−1

h

)

= ρ
∆t

(
v∗x;0,m−v

∗

x;Γ

h
+

v∗y;0,m−v
∗

y;0,m−1

h

) (2.8)

and

1

h
(pn+10,m − pn+1−1,m) = − ρ

∆t

(
vn+1x;Γ − v∗x;Γ

)
. (2.9)

Here, h is the lattice spacing of the grid used for the discretization and the suffix Γ refers

to values on the boundary.

PSfrag replacements

Γ

p0,mp−1,m p1,m

p0,m+1

p0,m−1

v∗x;Γ vx;0,m

vy;0,m−1

vy;0,m

Figure 2.1: Staggered marker and cell (MAC) mesh in the vicinity of a vertical boundary.

The pressure p0,m discretization is centered in cell (0, m), the velocities are shifted by

half the cell size to the right vx;0,m and upward vy;0,m, respectively. The evaluation of the

Laplace operator applied to p involves one leg on which the pressure derivative across

the boundary needs to be known. This derivative can be replaced by a term that involves

both the unknown velocity v∗Γ on the boundary and the updated velocity vn+1x;−1,m on the

boundary at the same location (not shown).

If we now substitute the expression (pn+10,m − pn+1−1,m)/h from Eq. (2.9) in (2.8), we see

that the the value of v∗x;Γ cancels from both sides of the equation. In other words, the

solution of the pressure equation does not depend on the specific values of v∗x;Γ on the
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boundary. For computational convenience, we can thus in particular demand that the left

hand side of the equation specifying the boundary conditions shall vanish, i.e., vn+1x;Γ =

v∗x;Γ, corresponding to vanishing normal derivatives of the pressure across the boundary.

Thus, we do not need to know these two values when we solve the pressure equation.

Also, the incompressibility guarantees that we satisfy the integrability conditions for the

pressure equation with Neumann conditions:

0 =

∮

d ~A · ~∇p

!
=

ρ

∆t

∫

d~x ∇ · ~v∗ = ρ

∆t

∮

dA~n · ~v∗ = ρ

∆t

∮

dA~n · ~vn+1 = 0. (2.10)

The actual solution of the pressure equation is effected by a fast multigrid scheme that ex-

ploits the regularity of the grid used for discretization. The general idea [35] and details

for two dimensions (2D) [53, 82] are given in the literature; the three dimensional (3D)

implementation is described in [46]. The hierarchical structure of a multigrid scheme

ensures that the time to solve the pressure equation is asymptotically proportional to the

number of grid points, a highly desirable feature for large-scale simulations. Since no

transform into abstract spaces is necessary as, e.g., in Fourier techniques, multigrid is

memory efficient and also well-suited for parallelization by domain composition, as de-

scribed, e.g., in [104].

One fluid time step hence consists of first computing the provisional velocity ~v∗ from

Eq. (2.4), which provides the information for the source terms of the pressure Eq. (2.6).

Next the Poisson problem is solved with Neumann conditions ~n ·∇p = 0 on the boundary

where applicable, i.e., for the nonperiodic directions. For uniqueness, we demand that

the average pressure is zero. Finally, the pressure values are substituted in Eq. (2.5) to

calculate the updated velocities ~vn+1.

A local and linear Neumann stability analysis of the numerical scheme neglecting the

coupling of the velocity equations by the pressure term leads to the condition

1 >
η2

ρ2h4





(

ρh2

η
+ 2∆t

(

d−
d∑

i=1

cos(kih)

))2

+

(

ρh

η
∆t

d∑

i=1

vi sin(kih)

)2




(2.11)

for linear stability of a standing wave perturbation with wave number ki; the vi are the

local fluid velocity components. The inequality (2.11) must be satisfied at all discretiza-

tion nodes and for all wave numbers ki. We obtain two simpler necessary conditions from

(2.11) by demanding that the inequality holds for the two squares separately. In the first,

we set cos(kih) = −1 and find

∆t <
1

2d

ρh2

η
, (2.12)
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which is familiar from discretizations of the diffusion equation. Now we define the max-

imum value of all velocities components over all space, vmax = max |vi(~x)|, and set

sin(kih) = 1 in the second square. Then it follows that

∆t <
h

dvmax
, (2.13)

a term due to the presence of the convective nonlinearity of the Navier-Stokes equations.

2.1.2 Particle-fluid coupling

The most challenging part of the problem is the treatment of the no-slip boundary condi-

tion for the fluid on the particle surfaces. We here build on an idea that has been applied

by Fogelson and Peskin [25] to the case of viscous flow. Instead of implementing the

no-slip boundary conditions by modifying coefficients of the discretized system [90] or

employing grid adaptivity as in finite-volume or finite-element techniques, we use the

body-force term in the Navier-Stokes equations to implement constraints acting on the

fluid such as to mimic the presence of rigid particles at appropriate regions in the flow.

These regions will move as the physical particles will and they will comprise sufficiently

many grid points in order to represent the geometry of the physical particles. Since the

lattice points are spatially fixed, but the particles move, the association of grid points to

particle representing regions will change in the course of the simulation.

In more detail, the computation of the motion of a physical particle i is decomposed into

two contributions. A moving liquid volume element Vi of the same shape as the particle

constitutes the first contribution. Let us for the moment assume that we knew how to

move this element rigidly within the rest of the fluid, just as if it were a solid particle of

fluid density ρf with mass M l
i = Viρf and moment of inertia I li = cM l

ia
2. For simplicity

we assume that we deal with disks or spheres so that I is represented by a scalar, a being

the particle radius and c = 1/2 or 2/5 in two and three dimensions, respectively. As will

become clear, our approach is not limited to these cases.

The second contribution is a particle template that also has the shape of the rigid physical

particle, but it carries the mass M t
i , and the moment of inertia I ti . These values comple-

ment those of the fluid contribution and sum to the values of the physical particle i, i.e.,

Mi = M l
i +M t

i and Ii = I li + I ti . The particle template is rigid by definition. We like to

think of the template motion as representing the particle motion.

To make the general idea work, we must now describe how to achieve a rigid coupling

between the template and the associated fluid element. To this end, we first introduce a

number ni of reference positions ~rrij, j = 1 . . . ni distributed over the volume of template
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i. The ~rrij are vectors relative to the center of mass of template i. The associated spatial

coordinates ~xrij change only due to the movement and rotation of the rigid template,

~xrij(t) = ~xi(t) +Oi(t) · ~rrij, (2.14)

where Oi describes the instantaneous orientation and ~xi is the position of the template. In

the 2D case, we obtain Oi by forming the rotation matrix associated with the one angular

degree of freedom of the particle, in 3D we use quaternions [3] to represent the particle

orientation and to compute the rotation matrix Oi.

Associated with each reference position is a tracer ~xmij , j = 1 . . . ni which tracks the

motion of the fluid,

~̇x
m

ij = ~v(~xmij ). (2.15)

Here and in the following we use dots to indicate the time derivative along the trajectories.

Please note that the tracers are passively convected with the fluid and do not by themselves

constitute new degrees of freedom.

The comparison of the location of the tracer to the position of its reference point allows us

to judge whether the fluid volume Vi has changed shape or taken another trajectory as the

associated template. The condition of rigid coupling translates into zero offset and zero

difference velocity of the tracer and the reference point position. The density and location

of the tracers should in general be chosen such that the number of degrees of freedom of

the fluid that need to be controlled should equal the controlling number of tracers (please

note the pertinent comments at the end of this section). That is to say that each tracer

should control a fluid volume of hd, d being the spatial dimension.

Now we obtain an explicit numerical scheme for the computation of the force density ~f

constraining the fluid motion as follows. Whenever between tracer and reference position

there occurs a nonvanishing difference in position ~ξij = ~xmij − ~xrij or in velocity ~̇ξij , we

generate an additive contribution ~fij to the force density in the fluid that tends to drive

the liquid and thus the tracer back to the reference position and to diminish their relative

velocity. One possible choice is

~fij(~x) = (−k~ξij − 2γ~̇ξij)δ(~x− ~xmij ), (2.16)

where k is a “spring” constant, γ a damping constant, and δ(~x) the Dirac distribution. In

our explicit technique, k must be chosen large enough so that |ξij| � h holds at all times.

Similarly, the dissipation introduced by the velocity-proportional friction controlled by

γ must be small enough to be negligible against the external physical sources of energy

dissipation. The force density ~f in the fluid equation (2.1) is the sum over all particles

i and reference points j of ~fij. A slight modification is needed in the case of periodic

boundary conditions which will be discussed separately in Section 2.1.4.
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We must regularize the δ functions in the first part of the sum (2.16) by, e.g., linearly

or quadratically weighted, interpolation to the nearest grid points. For example, in 2D,

δ(~x− ~x′) is “distributed” linearly to the four grid points closest to ~x′ with weights w∆k,∆l

according to the perpendicular distances of ~x′ = (x′, y′) from the discretization grid point

(xkl, ykl) just below to the left. The indices k and l shall here denote grid indices as used

in Fig. 2.1

w00 =
1

h2

(

1− |x′ − xkl|
h

)(

1− |y′ − ykl|
h

)

,

w10 =
1

h2
|x′ − xkl|

h

(

1− |y′ − ykl|
h

)

,

w01 =
1

h2

(

1− |x′ − xkl|
h

) |y′ − ykl|
h

,

w11 =
1

h2
|x′ − xkl|

h

|y′ − xkl|
h

.

Please note that due to the use of a staggered grid, the (xi, yi) will in general be different

for different components of the force.

The prefactor 1/h2 present in the expression for the weights above ensures that the spa-

tial integral over this representation yields unity [91]. Generalization of this formula to

quadratic or nth order weights as well as general dimensions d is straightforward,

w
(n)
∆l1,...,∆ld

=
1

hd

d∏

i=1

[

δ0∆li

(

1− |x′i − xi;l1,...ld |n
hn

)

+ δ1∆li

|x′i − xi;l1,...ld|n
hn

]

. (2.17)

Here, the index i refers to the vector component and the indices li the location of the

closest grid point whose position components are all just smaller than those of ~x′. Larger

n tend to concentrate the weight in the grid point closest to ~x′. The application of such

higher order weights has advantages when the reference points are placed up to exactly

the radius of the particle.

Fogelson, Peskin [25] and Stockie [98] use smoother, longer ranged kernels, involving

exponentials and trigonometric functions which (i) are numerically more expensive to

evaluate and (ii) do not seem to accelerate convergence of the pressure solution even if the

source terms are smoother. We consider as the advantage of these kernels their capability

to obtain a grid independent limit for the force density and thus the emerging motion if

the number of control points is fixed and h→ 0.

In order to estimate the largest possible k at a given time step ∆t we consider a system of

coupled masses. The value of k together with the reduced mass

M =
M t

i∆Mf

M t
i +∆Mf

(2.18)
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of the particle template M t
i and the fluid element ∆Mf = ρfh

d at ~xrij introduces a time

scale of oscillation,

T t =
1

2π

√

M

nik
, (2.19)

which must be resolved by the integration, i.e., ∆t� T t.Only for these sufficiently small

∆t, we can guarantee stability and numerical correctness of the particle integration.

For many computations we have adjusted k so that the above inequality is satisfied when

∆t is of the order of the diffusive stability limit (2.12) imposed by the fluid integration,

i.e.,

∆t <
1

2d

ρh2

η
. (2.20)

Thus, k can be determined from

k = const
M

ni∆t2
(2.21)

In our tests that we have performed, stability was always achieved if ∆t < 1/20
T t .

In 2D simulations we have had good experiences with γ values close to aperiodic damp-

ing of the particle template—in this case the assumption that the tracer positions are fixed

yields γ =
√
kMt. This has often eliminated small, but unphysical oscillations of the par-

ticles, in particular in the beginning of the simulations. These oscillations do not indicate

instabilities of the numerical scheme, but reflect the oscillatory time scale resulting from

template mass and coupling constant k.

In 3D simulations, probably due to the larger number of control points, γ = 0 seems to

suffice. Our empirical experiences concerning the admissible maximum number of trac-

ers are not conclusive. Whereas in dynamical simulations with moving particles it seems

often possible to increase the number beyond the number of grid cells within one particle

volume, in low-Reynolds-number computations with static particle arrangements, we of-

ten need to decrease the tracer density to be slightly below this limit to avoid instabilities.

Since the strongest gradients of the stress occur on the particle surface, computational

efficiency suggests to reduce the tracer density in the particle interior. Moreover, in the

viscous regime, the inertial effects due to the fluid in the interior of each particle domain

are negligible. Interior tracers are only necessary to resolve changes in the angular veloc-

ity accurately. These will be important if significant changes in the angular velocity occur

on time scales shorter than those for the diffusion of vorticity across the particle diameter,

i.e., when we leave the regime of validity of the quasistatic approximation. For particle

Reynolds numbers of about 1 and sufficiently small concentrations Φ / 0.2, where it

follows from the work of Goldman et al. [31] that effects from the rotational motion in
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viscous suspensions are generally weak, we consider the neglect of interior tracers justi-

fied.

2.1.3 Particle motion

The constraint force distribution that we have introduced to guarantee quasi rigid fluid

motion must be cancelled by opposite equal terms acting on the particle templates so

that only external forces remain in the momentum balance of the combined system. This

cancellation is quite naturally achieved by applying Newton’s second law to the “spring”

associated with each reference-point-tracer pair. That is to say that

~Fij = k~ξij + 2γ~̇ξij (2.22)

is the force acting on particle template i at the location of reference point j. Similarly, the

angular momentum balance will be satisfied when we take the torque to be

~τij = (~xrij − ~xi)× ~Fij (2.23)

with respect to the template center of mass ~xi.

As further contributions single particle forces, gravity and buoyancy need to be taken into

account,

~F s
i = −Mig~ez + ρVig~ez = (ρ− ρp)Vig~ez, (2.24)

where we have used ρp for the particle density and Vi for its volume (or area in 2D).

We now need to address the question of direct particle-particle interactions. In most

non-Brownian suspensions these are negligible compared to the hydrodynamic effects at

short distances between particles. For example, the approach of two particles is very

strongly damped by the hydrodynamical lubrication forces between the two surfaces (see,

e.g., [20]). Numerically these forces will be strongly underestimated when the distance

between two particles becomes of the order of the lattice spacing. It is clear that all

fixed grid techniques (including lattice Boltzmann) show this shortcoming, but even off-

lattice particle methods (as DPD) similarly underestimate the lubrication forces because

the model intrinsic mean free path sets a length scale below which viscous stresses cannot

be properly represented.

We model surface contacts between particles—and solve at the same time the numerical

problems arising from possible large particle overlaps—by introducing a pairwise repul-

sive force that acts when the centers of two particles come closer than the sum of their radii
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ai+ak. Let the overlap between particles i and k be defined as ~ζik = (ai+ak−|~xi−~xk|)~eik,
with ~eik denoting the unit vector pointing from k to i. Then we take the force on i to be

~F p
ik = −kp~ζik. (2.25)

In a similar manner, one may consider explicit interaction terms to restore the correct

forces on the particles at short distances / h [61, 91]. However, our results indicate

that in the studied concentration range the lubrication effects are recovered to a sufficient

degree by our numerics. At increasing concentrations, such corrections will be of crucial

importance [72].

The total force ~Fi on particle template i is the sum ~Fi = ~F s
i +

∑

k
~F p
ik +

∑

j
~Fij. Apart

from the fluid reaction force ~Fij, which also describes the “unphysical” constraint forces,

(cf. Sec. 2.1.2), these terms are those that we expect for a “physical” particle to be present.

A Velocity-Verlet integrator [3] serves to integrate the equations of motion for the trans-

lation of the template,

~̈xi = ~Fi/Mi (2.26)

and a Gear-predictor-corrector integrator of fourth order [82] for the rotation. For the

quaternion formulation of the rotation, we refer the reader to Ref. [3].

To briefly summarize the above, we would like to stress again that the modeling of a

rigid, heavy particle requires the (i) “freezing” of the region of fluid occupying the space

of the particle and (ii) the coupling of this region to a particle template whose dynamical

properties supplement those of the fluid in such a fashion that the coupled system behaves

just as the modeled particle would. The arguments above can be put in a slightly more

stringent mathematical context, for which we refer the reader to the appendix of this paper.

2.1.4 Treatment of periodic systems and driving

In order to minimize effects from rigid walls it is often convenient to study periodically

repeated cells. Periodicity in the following will always mean periodicity in space only.

One should be aware, however, that the long range nature of the hydrodynamic interac-

tions might cause some artifacts in this case [55], mainly increasing auto-correlation times

associated with the vertical motion.

Gravity, or an imposed driving pressure gradient single out one specific direction, say

the vertical. Whereas periodic boundary conditions pose no additional difficulties for the

solution of the fluid and particle equations perpendicular to that direction, we need to

specify more precisely what we mean by periodicity parallel to it. We will here consider
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the case of driving the system gravitationally via the density difference of particles and

fluid.

For the fluid velocity field we require periodicity of the solution across the horizontal

system boundary in z direction, i.e., ~v(~x + NLz~ez) = ~v(~x), where N is an arbitrary

integer and Lz the size of the system in z direction. Similarly, the particle positions and

associated velocities can be periodically extended.

If we consider the case of a section of a vertically positioned tube, then we can also

demand the pressure to be a function periodic with period Lz~ez. Due to the periodicity

of ~f arising from the (periodic) particle motion and the periodic velocity field, the source

term of the pressure equation is also periodic, the integrability conditions are satisfied and

we obtain a periodic solution for the pressure which is unique up to a constant which we

choose so that the average pressure vanishes. Physically, this system will evolve towards

a statistically stationary state in which on average the viscous forces originating at the

walls balance the gravitational driving.

In the case of sedimenting systems, it is however more natural to imagine the simulation

cell as a small part of a larger system. In this case, there are no walls that could provide

balancing viscous forces to counteract the gravitation. The least constraining condition

on the system that still guarantees evolution to a stationary state is to assume that there is

no net acceleration at any time on the components within the considered cell. That is to

say, that at any time, we must make sure that the integral over the simulation volume of

the right hand side

D

Dt
ρ~v = −~∇p

︸ ︷︷ ︸

(I)

+ η∇2~v
︸ ︷︷ ︸

(II)

+ ~f
︸︷︷︸

(III)

(2.27)

of the Navier-Stokes equation (2.1) vanishes. Now, for the term (II) we apply Gauss’s

theorem and find that it depends only on the values of the velocity gradient tensor inte-

grated over the surface of the cell. Since the velocity field is periodic, contributions from

opposite faces cancel identically and this term is always zero. If we decompose the pres-

sure into (i) a linearly varying part and (ii) a purely periodic contribution, then for similar

reasons, the volume integral over the gradient of the periodic part vanishes.

Thus we are left with contributions from the integrated force density (III) and an average

pressure gradient (I), which arise in addition to the well-known hydrostatic part. If we take

these two time dependent terms to be equal—in formal analogy to the hydrostatic case—

then they cancel from Eq. (2.27). The total acceleration of the fluid in the simulation

volume thus vanishes.

For computational purposes, we simply subtract from the field ~f its spatial average and
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thus obtain fluid and pressure equations that allow spatially periodic solutions.

~f(~x) =
∑

ij

~fij(~x)−
1

V

∫

V

d~x
∑

ij

~fij(~x) =
1

V

∑

ij

Fij. (2.28)

Physically, we can think of the associated constant pressure gradient

∇plin =
1

V

∫

d~x ~f, (2.29)

which drops from Eq. (2.27), as giving rise to a buoyancy force. This buoyancy force,

however, is already correctly included in the “tracer-spring” forces appearing in the parti-

cle equations of motion (cf. Sec. 2.1.3), since we would reduce the tracer forces by their

average and add the same term again, now in the form of a buoyancy contribution from

the liquid.

2.1.5 Summary of the numerical procedure

We now briefly summarize the sequence of steps described above that are necessary to

perform one time step in our simulation.

1. We perform the predictor part of the Gear algorithm for both the template and

marker positions. No forces need to be known at this point, because the predic-

tion is solely based on Taylor coefficients of the trajectories which were previously

recorded.

2. Likewise, we update the quaternions and the angular velocity representing the de-

grees of freedom of rotation of each template. We then use their values to compute

the rotation matrix Oi(t) to find the predicted location of the reference points [cf.

Eq. (2.14].

3. From the predicted particle template location the interparticle forces are computed

according to Eq. (2.25).

4. Now we are in a position to compare the predicted tracer positions to the predicted

reference point locations and infer the constraint forces ~fij necessary to impose

rigid motion on the fluid [(Eq. 2.16)]. The integration of ~fij over its support and

summation over all tracers associated to template i yields the reaction force of the

fluid onto the template. Similarly, we determine the acting torque using Eq. (2.23).

5. Knowing the force distribution ~fij and the fluid velocity field, we now know all

terms on the right hand side of Eq. (2.4) and can perform a fluid update by
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(a) calculation of the provisional “velocity” field ~v∗, from the current velocities

~vn and the constraint forces ~fij,

(b) determination of the pressure from the Poisson equation (2.6) by a multigrid

procedure,

(c) and finally by advancing the fluid velocity to ~vn+1 from the knowledge of the

pressure field and the “old” velocities ~vn [Eq. (2.5)].

6. From the predicted tracer positions and the new fluid velocity values we obtain the

correction terms for the tracer trajectories necessary for the second (correction) part

of Gear’s integrator for the tracers [Eq. (2.26)].

7. Similarly, a correction step is performed for the translational and the angular ve-

locity of the templates using the previously computed torques and forces. The cor-

rected angular velocity will then be used to correct the quaternion values that trace

the orientation of the particle (Sec. 2.1.3).

At this point we have completed the time step and can perform measurements on a con-

sistent set of dynamical quantities.

2.2 Validation of the Navier-Stokes solver

The Navier-Stokes solver outlined in Sec. 2.1.1 has been tested on the limiting stationary

flow pattern in the driven-cavity problem [11] for Reynolds numbers on the box scale

of Re = ULρ/η < 100, where U denotes the scale of the imposed velocities. As time

dependent flows we have tested sinusoidal velocity profiles between parallel plates and

verified the exactly exponential approach to rest and the associated decay constant.

Due to the explicit method and the inherent “diffusive” stability constraint, ∆t < ρh2/2dη,

very low-Reynolds-number calculations (η →∞) require increasingly shorter time steps

and will become prohibitively expensive. However, this limitation can be overcome by an

implicit time stepping, possibly exploiting that the Navier-Stokes equations turn into the

linear Stokes equations for Re→ 0.

We do not think that it is practical to use the proposed method in many particle sys-

tems (order of 10000) beyond Reynolds numbers on the particle scale larger than Re =

ρaU/η = 10 . . . 20, because the flow on and below the Kolmogorov scale must be re-

solved. In this regime the grid refinement for methods without turbulence modeling will

soon render the computational effort unacceptable.
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It should also be noted that modern implicit and adaptive-grid methods are more suitable

for high precision computation of time dependent pure fluid flows in static geometries.

In the context of model building for suspension flows with moving particles however,

fixed grid methods do not require remeshing. Moreover, an explicit technique like the

one proposed above provides great flexibility to implement particle-particle interactions,

i.e., additional short-range attractive forces of van der Waals type to model aggregation

phenomena, or material properties of the particles.

2.3 The case of one particle: cubic periodic arrays

2.3.1 Setup

As the first test case in which boundary conditions on the particle surface have a non-

trivial influence on the flow we consider a fluid passing through a cubic periodic arrange-

ment of fixed spheres at low Reynolds numbers. The arising flow has been analyzed in

the point particle approximation by Hasimoto [41] for small volume fractions Φ. Among

others, Ladd [58] as well as Sangani and Acrivos [89] have considered larger volume

fractions up to the limit of Φ = π/6 with numerical methods in the viscous regime.

More recently, Koch and Ladd [54] have published results for cylinder arrays at moderate

Reynolds numbers using lattice-Boltzmann techniques.

To this end, we impose at each point of the grid at first a constant acceleration ~f =

~ez∆P/L corresponding to a constant pressure drop ∆P/L over the length L of the cubic

cell. Periodic boundary conditions are used on the fluctuating, non-linearly increasing

part of the pressure and the flow velocities. The particle positions and orientations are

fixed to be the initial ones.

The simulations are performed in 2D and 3D as dynamical calculations starting from a

fluid field at rest until a steady flow state results. The approach to stationarity is slower

at lower solid volume/area fractions. In 3D, we stop when an exponential approximation

indicates that the expected additional changes to the flow rate are less than a fraction of

0.02. In 2D, we have adjusted the pressure drop during the simulation to obtain constant

volumetric flow rates and thus constant Reynolds numbers.

The drag force ~FD on one particle is determined by summing the contributions from all

the corresponding reference-point-tracer pairs according to Eq. (2.22). If we divide the

modulus FD = |~FD| of the drag force by the volumetric flow rate U,

U =
1

V

∫

d~x vz(~x) (2.30)
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obtained by averaging the flow velocity over the cell volume V, and refer the value to that

of an isolated sphere, then the dimensionless drag coefficient

χD =
FD

6πηaU
(2.31)

results.

In 2D, FD is the drag force per unit length of the cylinder. We refer it to ηU which has

the required units of force per unit length,

χD =
FD

ηU
. (2.32)

Both these drag coefficients are known to have corrections O(Re2) in arrays which have

reflection symmetry with respect to the axis of the flow [54, 71].

Similarly, the rotational drag coefficients can be computed by imposing constant angular

velocities on the particles and letting the flow adjust. In the viscous regime, both in 2D

and 3D, the torque is proportional to the angular velocity. In 3D, we refer the resulting

torque on the sphere to the theoretical value of an isolated sphere

χR =
τR

8πηa3ω
. (2.33)

In 2D, the theoretical value of the torque per unit length on an isolated cylinder in an

infinite medium is 4πa2ηω, so that a dimensionless drag coefficient

χR =
τR

4πa2ηω
(2.34)

can be defined.

2.3.2 Mesh size dependence

Due to the lack of adaptivity at the particle surface, we expect the effective hydrodynamic

radius of the particles to be slightly larger than the geometrical radius of the reference

point arrangement, because each point controls a fluid volume of extent hd reaching be-

yond its geometric location by h/2 in each direction. In fact, if the confining radius of the

reference point placement is taken to be the geometric template radius, then we measure

as a function of mesh size the drag coefficients shown in Fig. 2.2, here Φ = 0.0335. We

see that indeed the values extrapolate to asymptotic values as h → 0 with leading error

proportional to h.

We can thus improve the accuracy of the simulation by taking this effect explicitly into

account [61] by modifying the placement of the reference points. Let us write for the

effective hydrodynamic radius aeff , assuming that ∆a is linear in h,

aeff(h) = a+∆a(h) = a +mh. (2.35)
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Figure 2.2: Dependence on mesh size h of the dimensionless translational χD/6πηa and

rotational friction coefficient χR/8πηa
2 in three dimensions, denoted by symbols + and

�, respectively. The values are for a volume fraction of Φ = 0.0335 at Re→ 0. It can be

seen that the necessary correction to the drag coefficient is linear in h.

The dependence of the friction coefficient on the volume fraction can be Taylor expanded

around the volume fraction corresponding to a particle with radius a,

χ(Φ(aeff)) = χ(Φ(a)) + χ′(Φ(a))Φ′(a)∆a(h)

= χ(Φ(a)) + χ′(Φ(a))Φ′(a)mh. (2.36)

Comparing the slope in Fig. 2.2 to the prefactor of h, and using the derivative χ′(Φ(a))

from the literature [58], we find m ≈ 0.3. This value holds for 3D and quadratic n = 2

interpolation scheme for the δ functions in the force density [cf. Eq. (2.17)]. For the

dynamical simulations in the next section, we therefore retract the tracers by an amount

of 0.3h from the geometric surface; in 2D we use m = 0.5h with n = 1 interpolation.

2.3.3 Translational drag and rotational friction coefficients

In Fig. 2.3 we show the results of the extrapolation to h = 0 of the translational drag for

2D and 3D. In 3D we compare with Ladd’s [58] numerical solutions of the Stokes equa-

tion with the same boundary conditions. In 2D, we compare to the results of Sangani [89].

In the 3D simulations the pressure drop is adjusted during the simulation to achieve the

same volumetric flow rate (and thus Reynolds number) independent of volume or area

fraction of the obstacles. In 2D, the Reynolds number based on the flow rate and the

radius of the obstacle does not exceed 0.1.
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Figure 2.3: (a) Drag coefficient χD in (a) a periodic, 3D simple cubic arrangement of

spheres. (b) Natural Logarithm lnχD of the drag coefficient in an array of cylinders for

two different unit cells that are expected to yield the same resistance to flow. The solid

line in (b) is a cubic spline through the logarithm of the semi-analytical results for the

friction coefficients given in Ref. [89].

In Fig. 2.4 the corresponding results for the rotational friction coefficients χR are shown

as functions of volume and area fraction. In two dimensions different symbols denote

different arrangements of the cylinders with respect to the discretization. In one case the

particle is located at position (0,0) in the cell of size L × L, in the other the unit cell was

chosen to include two particles, one at (0,0), the other at (L/2, L/2). The symmetries of

the array imply that in both cases the same scalar friction coefficient must result.

In both 2D and 3D, we have computed the drag coefficients by linear interpolation to

h = 0 of the h-dependent results. For the densest packings in 2D, the gap between the

particles is about 13 grid cells wide for the finest grid used. The relative difference of the

friction coefficients computed for the two finest grids (13 grid cells and 6 grid cells across

the gap) is about 0.04. Table 2.1 summarizes the numerical results for the rotational drag

in the cylinder array for which we did not find values in the literature available to us.

2.4 Sedimentation velocity as a function of volume frac-

tion

The measurement of the sedimentation velocity of an ensemble of many spheres as a

function of the volume fraction constitutes a more realistic test than the two above. As
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Figure 2.4: Rotational friction coefficient χR in a periodic arrangement of (a) 3D spheres,

(b) 2D cylinders. In 3D, the solid line is a cubic spline through the numerical results of

Ladd [58].

Φ χR = τR/4πa
2ηω

0.0314 1.07

0.049 1.08

0.0872 1.11

0.125 1.15

0.155 1.2

0.196 1.27

0.256 1.36

0.297 1.45

0.349 1.58

0.415 1.78

0.502 2.12

0.62 3.08

0.649 3.38

0.679 3.83

0.712 5.05

0.747 7.9

Table 2.1: Dimensionless resistance to rotation in an array of cylinders atRe = a2ωρ/η =

0.1.
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in the case of the fixed sphere arrangement in the two preceding tests we choose periodic

boundary conditions on our sample cell that now, however, contains many spheres whose

position and orientation can evolve dynamically without artificial kinematic constraints.

Gravitation acts as the driving force via the density difference of particles and fluid. It

was chosen such that the Reynolds number on the particle scale of a single sedimenting

particle, in 3D,

Re =
2

9

a3

η2
ρ(ρp − ρ)g (2.37)

is about 0.1. In 2D, we assured by test simulations on single falling discs that we are in

the same range of Reynolds numbers.

As motivated in Sec. 2.1.2, we use only one shell of tracers such that their hydrodynamic

radius equals the geometric radius of the template. Their number is taken to be the integer

part of 4πa2/h2, i.e., approximately equal to the number of fluid volume elements on the

surface of each particle.

The mean sedimentation velocityUs is measured in experiments either as the velocity with

which the upper front of the particle rich phase settles or, when single particle velocities

can be measured, as the mean velocity of the particle phase. We will here adopt the latter

method because we cannot observe concentration fronts in a periodic simulation cell,

Us =
1

N

N∑

i=1

~Ui · ~ez. (2.38)

To obtain a dimensionless quantity, we refer the value of Us to the velocity U0 of a single

falling particle in the same cell. This procedure takes some corrections due to finite cell

size and Reynolds number into account.

Fig. 2.5 shows the results for the sedimentation velocity as a function of volume fraction

for 2D and 3D. In 3D we compare to the empirical law of Richardson and Zaki

Us/U0 = (1− Φ)n, (2.39)

with n = 5.0. We see good agreement to the experimental findings in the viscous regime

which find values of n = 5 . . . 6 [75].

In 2D, the computation of a hindered settling function is a somewhat academic exercise

which we have done to juxtapose the results to the 3D ones. We have fixed the Reynolds

number for the single cylinder experiment to 0.1 on the particle scale. We vary the area

fraction, keeping all other parameters constant. The mean settling velocity as a function

of area fraction is then been computed and normalized by the single particle value.

In 2D, the best fit of a Richardson-Zaki like law yields an exponent of n ≈ 3.8, sub-

stantially smaller than in 3D. The effect of a lower n in 2D has been seen before using
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Figure 2.5: Sedimentation velocity in a periodically repeated cell: (a) 3D, (b) 2D. The

action of gravity is counteracted by a constant pressure gradient in the opposite direction,

such that at all times the volume flux across a horizontal cut through the cell vanishes.

The size of the 3D cell is 12a× 12a× 12a, that of the 2D cell 64a× 64a(h = 0.25). Both

simulations are performed at a Reynolds number of approximately 0.1 on the particle

scale (for single particles falling)

point-force approximations for the suspended particles [52]. However, the fit to such a

power law is only motivated by the analogy to 3D and is in fact not convincing. Most

of the difference at larger volume fractions might be related to the area fraction of the

random loose disk packing in 2D (≈ 0.7) as compared to the smaller value of the random

loose sphere packing in 3D (≈ 0.6), where we expect the sedimentation velocity to drop

to 0 [73].

2.5 Some Numerical Questions

2.5.1 Performance Data

As described in Sec. 2.1 our method requires the time stepping of the Navier-Stokes

equation, the computation of the tracer movement with two interpolation steps for the

fluid velocity and force density, and the integration of the ordinary differential equations

that describe the particle motion. For this latter part, we use a linked-cell technique to

reduce the determination of the particle contact forces to an O(N) problem in the number

of particles. The time spend in this part of the algorithm is only a few percent of the total
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computation time and is negligible.

Because the exact ratio of time spent in the fluid-solver and in the coupling between the

fluid and the particles depends on various parameters, as e.g. the mesh size h, the volume

fraction Φ and the number of tracers per particle, we just want to give an example for the

computational cost of a typical simulation done to calculate the sedimentation velocity

of a suspension. In this particular case we used 653 ≈ 2.7 × 105 fluid grid points and

h = 0.375. Thus the cell was of a cube with edges of approximately 24 particle radii

length. A volume fraction of Φ = 0.1 corresponds therefore to 331 particles with 93

tracers each, representing a total of 30 783 tracers.

One time step of this system takes on average 2.6 seconds on a Digital Personal Work-

station 433au. The fluid solver needs about 54% and the coupling code 35% of the time.

The rest was spend in miscellaneous statistical calculations, file input/output, etc. The

computation of particle interactions and the trajectory integration requires less than 1%

of the total CPU time.

In other words, per time step we spent about 5.1× 10−6s on each grid point, about 29×
10−6s on each tracer and about 50 × 10−6s on each suspended particle. The memory

requirements sum up to 80 bytes per tracer and 120 bytes per fluid grid point, including

the data structures necessary for the implicit pressure update.

2.5.2 Comparison to other techniques

Particle Methods

As we have seen, the major challenge of direct suspension simulation is the proper repre-

sentation of moving boundaries in conjunction with numerical efficiency. Since particles

are naturally described in a Lagrangian picture by comoving dynamical variables, one

could justifiably ask why not to go the whole way and also use Lagrangian techniques for

the fluid. This is even more true as the Navier-Stokes equations result as the continuum

limit of the average motion of particle systems under quite general circumstances [40].

The following issues should be considered:

1. the implementation of a pure Lagrangian technique is cleaner and more straight-

forward from a technical point. At the same time, even very simple interparticle

potentials (as in the dissipative particle dynamics method (DPD) or in direct simu-

lations of, e.g., Lennard-Jones systems) require a lot more computational effort than

the treatment of a grid node in a Navier-Stokes solver. Our experiences point to fac-

tors of 3 − 5 for structureless particles with linear spring interactions as compared

to one Navier-Stokes node in 3D.
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2. in general, it is not simple to predict the average material properties of the parti-

cle phase from the properties of the interaction. One strong point of DPD with

respect to other computational methods is the theoretical knowledge that has been

collected in the recent past about how the microscopic simulation parameters con-

trol the macroscopic properties of the DPD liquid. However, as the discussion about

modeling heat conduction within the DPD framework has shown, such extensions

require quite considerable contrivances and yet often material parameters of the

pure suspending phase have to be determined a posteriori from the simulation be-

fore the properties of the multi-phase system can be determined.

3. in particle codes, one often takes the route to model larger or different particles by

gluing together several (constituent) particles of the type constituting the solvent

phase [81]. Such an approach is convenient and efficient because it normally does

not require special measures to track the orientation or the translation of the com-

posite particle, because these can be reconstructed from the position of the glued

particles. Also, the interactions between the solvent and the constituents of the

composite complex particles are often of the same nature as those between the sol-

vent particles and can thus be computed in the same fashion without changing the

structure of the simulation program.

However, this convenience comes at the price of computing pair interactions be-

tween the constituents to fix the shape of the composite particles. In contrast, the

marker-template coupling is a single particle interaction.

Of course it is also quite possible to connect the constituents of a solute particle to

a shape preserving (possibly massless) rigid template as has been suggested here

for the fluid-particle coupling. This approach seems to have been taken in the DPD

framework by a technique used in Ref. [9].

4. In general one must be aware of proper scale separation. For example, the discrete

nature of the particle phase introduces a “noise” term which causes fluctuating mo-

tion of the suspended particles. This noise can be considered a feature if simulations

at low Peclèt numbers shall be performed (as the Lennard-Jones simulations by Ra-

paport [44]) but must be eliminated in one way or the other in the limit of large

Peclèt numbers. Similarly, the discrete nature of the solvent particles will cause

breakdown of lubrication forces when the solute particles approach surface-surface

distances closer than the mean free path (Knudsen length) of the solvent, as we have

discussed in the context of lubrication force modeling in Sec. 2.1.3 for fixed grid

methods.

5. Particle codes with short-ranged interactions, similar to explicit lattice-Boltzmann

techniques, display a built-in compressibility of the solvent phase. The speed of
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sound in these simulations is often very small because the particle interactions are

taken to be rather soft in order to allow (apparently) large time steps. In contrast, in

continuum techniques one has efficient methods to impose incompressibility (solv-

ing a Laplace equation for the pressure equation in our case) or to resort to penalty

techniques [78] that effectively replace the long-range Laplace solver by introduc-

ing an artificially compressible material law.

Fixed lattice based methods

If instead of using a particle technique one attempts to solve a continuum equation for the

fluid phase then one has considerable freedom in the choice of solution methodology and

in the choice of the phenomenological parameters entering the equation. Every numerical

solution of a continuum equation requires a discretization of the computational domain. If

a high precision of the solution is required, the discretization is often taken on an unstruc-

tured grid and locally refined in the course of the solution process. The computational

drawbacks are the complex data structures required and the entrained computational cost.

In addition, since particle-fluid systems are characterized by moving boundary conditions,

a remeshing of the computational grid must occur when it is distorted to such an extent

that the requirements of the, e.g., finite-element or finite-volume technique cannot longer

be met.

As we have outlined in the introduction of this paper, it is thus advantageous for the

simulation of many-particle systems and if the demands on the precision of the solution

are not too high, to pick a nonadaptive, regular grid to discretize the continuum fluid

equation. On such a lattice we can for example use the lattice-Boltzmann technique, a

finite-difference compressible or incompressible Navier-Stokes or Stokes solver, certain

lattice gas automata, etc.

As in particle methods, certain issues should be kept in mind:

1. Perhaps the most problematic point is the implementation of the no-slip conditions

on the particle surfaces and the computation of the stresses. Concerning the match-

ing of the particles to the grid, considerable freedom exists and includes

(a) (first order) discretization of the particle surface on appropriate grid nodes or

links of the respective technique [60, 87, 104] (first order),

(b) smoothly varying “interpolation” coefficients to obtain a better, possibly sec-

ond order accurate estimate of the local influence of the boundary; for lattice

Boltzmann, cf. Ref. [23], for finite differences Ref. [90].
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Similarly, boundary stresses must be evaluated. For lattice Boltzmann, typically

the knowledge of the change of the velocity population associated with a boundary

link or node is required, whereas the stress evaluation for finite differences involves

direct evaluation of the stress tensor using local pressure and velocity. Please note

that in our method none of the above steps is necessary, as the penalty forces on the

fluid include the stresses that are determined already in the course of the fluid time

step.

2. Depending on the type of discretization used, stabilization measures need to be

taken. The explicit lattice-Boltzmann described in [60] requires time averaging

(over two time steps) of the torque to avoid instabilities. Nonstaggered finite dif-

ference grids may show grid decoupling instabilities. Also the general stability

constraints from linear analysis of all explicit methods have to be considered, most

notably the Neumann diffusive criterion linking time step and square of the grid

size.

3. In most modern (explicit or implicit) methods the computational effort to perform

one time step is proportional to the number of discretization “cells” that represent

often a set of variables describing the local configuration of the continuum. For

example, in our method, the explicit part of the Navier-Stokes time step and the

implicit solution of the pressure equation both have this property. Likewise, lattice-

Boltzmann methods require only a reweighting of locally available information to

update the local velocity histogram. So, the computational effort differs due to

the constant of proportionality. An explicit lattice-Boltzmann technique can most

directly be compared to a penalty technique for incompressible flows [78], which

are of similar computational complexity.

4. The inclusion of energy conservation into a lattice-Boltzmann scheme, which is

necessary to compute heat flow, is to our knowledge still an open question [2, 84].

There is no comparable difficulty when using directly discretized flux-conservation

equations as, e.g., the Navier-Stokes equation for the momentum flux.

To summarize the above, in suspension physics there is not one single simulation method

that addresses the entire spectrum of possible conditions, with or without fluid inertia,

with or without particle inertia, low or high Peclèt numbers, constitutive properties of the

suspending fluid, constitutive properties of the suspended phase (surface tension, elastic-

ity, additional interactions), particle geometry, etc. with flexibility and efficiency. As we

have stated in the introduction, the niche for the fixed grid method presented here is com-

putation at moderate or zero Reynolds number with likewise good to moderate accuracy

depending on the price in processing time that one is willing to pay. In that respect it is

very similar to the lattice-Boltzmann methods [58, 60, 61].
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Brownian motion

The Navier-Stokes describes the evolution of average velocity and pressure and is thus

naturally suitable for systems at high Peclèt numbers where no information about the

discrete nature of the fluid and the associated fluctuations is required.

On the other extreme, molecular simulation captures all fluctuating quantities as well as

their spatial and temporal correlations. In between these two extremes we find Brownian

dynamics ideas [3, 12]—incorporating thermal fluctuations into the particle equations of

motions—and fluctuating hydrodynamics (cf. [63], Ch. XVII); both neglect spatial and

temporal correlations of the thermal driving forces.

In fluctuating hydrodynamics stress fluctuations σ ′ij(~x) are built into the fluid equations

and their statistical properties are found by considering ideas from nonequilibrium ther-

modynamics [63],

〈σ′ik(~x1, t1)σ′lm(~x2, t2)〉 = 2kBTη (δilδkm + δimδkl) δ(~x1 − ~x2)δ(t1 − t2), (2.40)

where kB is Boltzmann’s constant and T the temperature. From this expression, we can

find for any given discretization a finite stress vector to be included on the right hand side

of the Navier-Stokes equation (2.1). We thus see that the description of fluid thermal fluc-

tuations can quite naturally be included in our numerical framework and might be subject

of a future study. It should be mentioned here that in the context of lattice-Boltzmann

methods similar ideas have been used to include thermal fluctuations [24, 59, 60].

2.5.3 Scope for improving the numerical scheme

There are some unresolved numerical questions that we would like to address before we

conclude.

In order to eliminate the purely numerical constants k and γ, we have tested an implicit

scheme that does not require tracers, but instead associates in a quite similar fashion a

force directly with each reference point. Then we make tentative fluid integration steps

using these forces and compare the resulting difference velocities of fluid and template at

the reference points. The forces are now modified by an additive term proportional to the

velocity difference, but with the opposite direction. We thus arrive at successively “better”

force distributions resulting in decreasing difference velocities. We have observed such a

procedure to converge in simulations with Re ≈ 1, but did not use it extensively due to

the additional computational effort.

Due to the small slip allowed in our explicit “penalty” coupling technique there occurs a

small residual fluid motion inside the particle regions. As a result, a certain amount of
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energy is dissipated even if the coupling of fluid and tracers is not dissipative. In 3D, we

find that the fraction of energy dissipated inside particle regions ranges from about 0.01

in suspensions with Φ = 0.05 up to about 0.1 in for Φ = 0.3. Correspondingly, one can

observe changes in the sedimentation speed, which, due to these additional dissipation

channels, turn out to be smaller than expected. For more precise measurements, this

purely numerical dissipation must be reduced by stiffer couplings and correspondingly

smaller time steps. More elaborate implicit techniques will also improve the situation,

because the relative motion inside particle domains can be suppressed entirely.

2.6 Some further remarks

2.6.1 on a continuum picture,

The arguments in Sec. 2.1.2 can be made more precise if we try to understand the proce-

dure described above as the discretized version of a continuum problem. Let us state the

momentum equation of the fluid (2.1) in the form

D

Dt
ρ~v = ~∇ ·T+ ~f. (2.41)

where T denotes the stress tensor of the fluid. Its divergence is the expression −~∇p +
η∇2v for Newtonian fluids used above. For the rigid particle template, we have

M t
i ~̇vi = ~F lp

i + ~F p
i − (Mi − ρVi)g~ez, (2.42)

with ~F lp
i as the force acting from the fluid on the template (determined by summation of

the constraint forces), ~F p
i the force due to the presence of other particles and the term

proportional to g represents weight and buoyancy.

Let the region of fluid covered by template i at time t = 0 be denoted by Ωi(0). Con-

tinuous time evolution according to Eq. (2.41) will deform this region into Ωi(t). The

positions of the tracers track this deformation and thus the maximum supj |~ξij| measures

the deviation of Ωi(t) from the original particle shape. It might be intuitive to think of the

marker elongations ~ξij as representative discrete amplitudes of a continuous displacement

field ~ui(~x) defined on template i, related to the position ~xmij by ~xmij = ~xrij + ~ui(~x
r
ij). The

constraint fluid force density ~fi for particle i is related to ~ui as implied by Eq. (2.16), i.e.,

~fi(~x
m
ij ) = −k~ui(~xrij)− 2γ(d/dt)~ui(~x

r
ij), (2.43)

where the time derivative must take the time dependence of ~xrij into account. If the exter-

nal stresses remain bounded, this form guarantees that ~u and the rate of change of ~u on



Simulation Method 47

∂Ωi(t) remain bounded and approach zero as k and γ increase. By construction, Ωi(t) is

the union of ~x + ~ui(~x) with ~x being one of the points constituting the template at time

t. The incompressibility of the flow guarantees that the volume of Ωi(t) is time invariant

and equals Vi, the volume of the template.

2.6.2 conserved quantities,

The last argument shows that the sum of the mass of fluid in Ωi(t) and the template mass

M t
i is constant and equal to the mass of the physical particle.

The total change of momentum of the coupled system is obtained by integrating (2.41)

over Ωi(t), which results in

~̇P
l

i =

∮

∂Ωi(t)

T · d ~A+ ~F l
i , (2.44)

where we have used Gauss’s theorem to convert the integral over the divergence of the

stress tensor into a surface integral. The vectors ~P l
i and ~F l

i denote the total fluid mo-

mentum in Ωi(t) and the sum of the constraint forces, respectively. By construction,
~F l
i +

~F lp
i = ~0. Up to a degree of accuracy determined by ∼ 1/k and ∼ 1/γ the center

of mass velocity of the fluid in Ωi(t) coincides with the template centers ẋi. Thus, for the

sum of Eq. (2.44) and (2.42) we recover the equation of motion for the center of mass of

a rigid particle P of mass Mi = M t
i + ρVi in the flow,

Mi~̈xi =

∮

∂P

T · d ~A− (Mi − ρVt)g~ez. (2.45)

To see what happens for the angular momentum balance, we form the vector products

of Eq. (2.41) with a vector pointing from the template center of mass ~xi to ~x before we

perform the integration over Ωi(t), i.e,
∫

Ωi(t)

d~x (~x− ~xi)×
D

Dt
ρ~v =

∫

Ωi(t)

d~x (~x− ~xi)× ~∇ ·T+

∫

Ωi(t)

d~x (~x− ~xi)× ~f.

(2.46)

The left hand side is the total change of angular momentum of the fluid ~̇L
l

i and we can

employ the symmetry of the stress tensor to convert the first term on the right hand side

to a surface integral,

~̇L
l

i =

∮

∂Ωi(t)

(~x− ~xi)× d ~A ·T+ ~τ li . (2.47)

As in the case of linear momentum, we also consider the corresponding equation for

the template. The contribution to the torque of the gravitational forces vanishes, and
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the contribution of the constraint forces cancels ~τ li by construction up to an accuracy

determined by the maximum deviation of a tracer from a reference point. To the same

accuracy, the change of angular momentum of the fluid can be written as the moment of

inertia times the change of angular velocity which equals that of the template, again to

the agree permitted by the tracer force law. We thus recover approximately the equation

of angular motion of a rigid particle P in a fluid in the absence of external torques,

Iiω̇ =

∮

∂P

(~x− ~xi)× d ~A ·T. (2.48)

2.6.3 and uniqueness

The distribution of the constraint forces in the particle/template region is not uniquely

determined by demanding that the fluid motion should match the rigid body motion of

the particle. Also, the motion of the system as a whole does not uniquely fix ~f . The

prescription given in the text selects one of the possible distributions, but leaves some

“gauge freedom” which is very similar to the indeterminacy of forces in static networks

of rigid elements. Also here, the rigid template can “absorb” inner stresses consequences

on the motion.

If we write the Navier-Stokes equations in the form,

~f − ~∇p = ~G(~v), (2.49)

where ~G collects the terms depending on spatial and temporal derivatives of ~v, then from

taking curl and divergence, we find

~∇× ~f = ~∇× ~G, (2.50)

∇2p = ~∇ · ~f − ~∇ · ~G. (2.51)

The first equation implies that the velocity distribution (and its rate of change) only de-

termines ~f up to the gradient ~∇φ of a scalar. In general, such contributions influence the

pressure distribution (2.51) and thus the motion. If, however, φ fulfills additional condi-

tions, i.e., φ = 0 on ∂Ωi, it will not have consequences for the motion or in the exterior

of Ωi. If we extend φ over the whole domain such that ~∇φ exists everywhere and φ = 0

in the exterior of all Ωi, then p + φ solves (2.51) for ~f → ~f + ~∇φ. The scalar φ does not

contribute to the momentum flux through ∂Ωi, if its surface integral
∮

∂Ωi
d ~A φ vanishes.

Likewise, the contribution to the torque, here with respect to the origin, but similarly for

any reference point, is
∫

Ωi

d~x ~x× (~∇φ) =

∫

Ωi

d~xφ~∇× ~x−
∫

Ωi

d~x~∇× (~xφ)

= −
∮

∂Ωi

d ~A× (~xφ) (2.52)



Simulation Method 49

and vanishes if the surface integral vanishes. This is the case in particular, if φ = 0 on

∂Ωi as advertised above.

Since the ~f acting on the fluid has a reaction force of opposite sign on the particle tem-

plate, these conditions guarantee also vanishing force and torque contributions on the

template as a whole.
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Chapter 3

Monodisperse Sedimentation

3.1 Velocity fluctuations

The average velocity of sedimenting non-Brownian suspensions can be predicted theoret-

ically [7, 13]. In contrast the understanding of the fluctuations of the particle velocities

is not yet satisfactory. While theories [17, 42, 100] predict that the velocity fluctuations

in random suspensions should diverge as the size L of the container is increased, exper-

iments find either no dependency on the size of the container [75] or that the velocity

fluctuations saturate if the container size is increased over a threshold [93]. In contrast to

the experimental results, simulations [62] which used periodic boundary conditions found

the predicted divergence of the velocity fluctuations with the system size.

3.1.1 Estimate of the velocity fluctuations

We will now calculate the magnitude of the velocity fluctuations using some scaling ar-

guments of Hinch [43] and the experimental results of Segrè et al. [93].

If we imagine the system of size 2L×L×L to be separated into 2 halves by an imaginary

wall, then we cannot expect both parts of the system to contain the same number N =

3/(4π)φ(L/a)3 of particles. We expect a difference of order
√
N as would be the case

if the particle distributions were random and independent. The difference in weight will

then lead to a relative motion of these two regions. More precisely,
√
N particles will

give rise to a excess force of

F1 = ±
√
N

4

3
πa3∆ρg. (3.1)

This will cause the velocities of two neighboring regions to differ until the driving force

is balanced by the shear force. The shear force can be estimated by the expected velocity
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gradient ∆U/L, the viscosity and the area ∼ L2 of the separated areas.

F2 = η
σ

L
L2, (3.2)

Here σ is the velocity difference between the different regions. In the stationary state of

a suspension, the two forces balance each other and we thus obtain the magnitude of the

velocity fluctuations,

σ =
4

3
π

√
φL3

a3
a3∆ρg

ηL
∼ USt

√

φL

a
, (3.3)

where USt is the Stokes velocity of a single particle.

If there is a length scale ξ on which the suspension is homogeneous due to correlations

between the particles, then our previous argumentation is valid only for L < ξ. For system

sizes L > ξ the size of the correlated regions replaces the role of the system size in our

previous arguments. Segrè et al. [93] have measured the correlations in suspensions and

found

ξ|| = 11aφ−1/3. (3.4)

If we use this ξ to estimate L, we find that

σ =
√
11VStφ

1/3 ≈ 3VStφ
1/3. (3.5)

With this argument we expect that the velocity fluctuations scale in large systems as

σ ∼ VStφ
1/3. (3.6)

This is consistent with experimental findings as shown in Fig. 3.1 (Figure 3 of [93]) where

the velocity fluctuations are measured in large systems of width W ≥ 100aφ−1/3.

As explained above, the velocity fluctuations can be expected to be independent of the

system size only if the size of the system is significantly larger than the correlation length.

If, in contrast, the container width is of the same magnitude as the correlations length, the

width of the container will control the absolute value of the velocity fluctuations. Eq. (3.3)

indicates that the velocity fluctuations in case of small containers should scale with the

square root of the container size.

With regard to the volume fraction dependency we expect that the fluctuations scale as

φ1/2 for small systems and φ1/3 for large systems.
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Figure 3.1: Figure 3 of [93]: Experimental measurements of the normalized velocity

fluctuations ∆V/VSt. The data shown are from Segrè (circles) and Nicolai [75] (squares).

3.1.2 Systems with periodic boundary conditions

In order to reduce wall effects in the simulations we use periodic boundary conditions in

all directions. We measure the velocity fluctuations in various systems of different sizes

and different volume fractions. The simulation details are given in Table 3.1.

Width Height φ Tfinal < U|| > σ||

24 24 0.02 200 0.76968 0.300879

48 48 0.02 200 0.83065 0.44554

128 128 0.02 232 0.858481 0.707185

32 64 0.1 200 0.519128 0.556742

64 128 0.1 121 0.539484 0.765868

128 256 0.1 150 0.551416 1.21439

22 22 0.1 200 0.463158 0.302273

24 48 0.1 200 0.513729 0.440247

64 128 0.3 200 0.134829 0.348823

Table 3.1: Simulations of monodisperse suspensions in a container with a square ground

section. The sampling started at T = 50 and ended at T = Tfinal shown in the table.

If the size of our simulations is below the limit where the velocity fluctuations become

independent on the size of the system we expect

(σ/USt) ∼ (Lφ)1/2. (3.7)
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(a) (b)

Figure 3.2: Snapshots of typical systems used to calculate the velocity fluctuations in

systems with periodic boundary conditions. (a) shows a system of size 24× 24× 24 at a

volume fraction of φ = 0.02 (68 particles) and (b) a system of size 128× 256× 128 at a

volume fraction of φ = 0.1 (100,132 particles) .

Consequently, a plot of the relative velocity fluctuations versus (Lφ)1/2 should show all

the data points on a straight line. We show the results in Table 3.1 and in Figure 3.3(a).

We fit the measured velocity fluctuations to a line f(x) = bx + c with b = 0.63 and

c = −0.12, which is also shown in Figure 3.3(a). However, due to the dependence of σ

on the product of L1/2 and φ1/2 a small change of one of the exponents does not lead to

a completely different rescaling. This is seen in Figure 3.3(b) where we use φ1/3 to scale

the data. Though the fit is better in (a), a φ1/3 dependence cannot be entirely excluded.

3.1.3 Systems with walls

In the previous section we used periodic boundary conditions to minimize the effects of

walls in the simulations. This approach is good for general studies of system size effects

and bulk properties. But as soon as we want to compare the results of the simulations

with experiments of a certain geometry this approach is problematic, because it is not

clear how the presence of walls influences the suspension. If we are able to simulate a

system of the same size as used in the experiment we use solid walls in all directions

perpendicular to gravity to match the conditions of the experiments as close as possible

and thus avoid effects from the absence of the walls.

In 1995 Nicolai and Guazzelli [76] published the results of experiments on the Effect of

the vessel size on the hydrodynamic diffusion of sedimenting spheres. They used glass

beads with a radius of a = 0.394mm in a viscous fluid (13 P) and a settling container
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Figure 3.3: Velocity fluctuations of the simulations listed in Table 3.1 versus (a) L1/2φ1/2

as predicted by Eq. (3.3) and (b) L1/2φ1/3. Scatter of the data in (a) is less than that in (b)

so that we conclude that the scaling with L1/2φ1/2 seems to be correct.

of height Ly = 1262a and width Lx = 252a and varied the depth of the vessel between

Lz = 50a and 200a (cf. Figure 3.4).

They tracked the the trajectories of marked particles in a suspension of unmarked particles

with a digital imaging system and calculated the local velocities of the particles in the x

and y directions and the corresponding velocity fluctuations. The particles were tracked

in a imaging window of approximately 150 by 300a. The depth of the imaging extended

through the whole system.

With this experimental setup they found velocity fluctuations σx ≈ 0.33± 0.04 and σy ≈
0.66 ± 0.08. The velocity fluctuations do not depend on the depth of the vessel, and the

ratio σy/σx ≈ 2.

The measurements of Nicolai and Guazzelli neglected the movement of the particles in

z direction, thus it was not possible to measure the velocities and their fluctuations in

in the z direction. It is therefore not clear if there is an influence of the vessel size in

the z direction on the fluctuations of the velocities’ z component. Our simulations are

chosen to match the setup of Nicolai and Guazzelli as closely as possible. Nevertheless

there are two major differences, namely, the boundary condition in the y direction and

the Reynolds number. The height of the vessel in Nicolai’s experiments was 1262a which

we cannot achieve in our numerical simulations. We therefore choose to use periodic

boundary conditions in the y direction and a vessel size of Ly = 250a. The second

difference, the Reynolds number, was less than 10−3 in the experiment, whereas we use a
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Figure 3.4: (a) simulation setup and coordinate system used in the simulations. Gravity

points in −y direction. The boundary conditions in the simulations are periodic parallel

to gravity and rigid wall perpendicular to it. (b) snapshot of a typical system of size

250× 250× 100 with 74719 particles.

Reynolds number of 0.1 in our simulations. The setup of the simulations is summarized

in Table 3.2.

a = 1 Lx = 250

ρ = 2.5 Ly = 250

g = 30 Lz = 25 . . . 200

φ = 0.05 h = 0.78

ν = 10

Table 3.2: Parameters used in the simulations of the experiments of Nicolai and Guazzelli.

We sample the particle positions and velocities in a area of size 150×250×10 in the center

of the simulated vessel. This ensures that we do not sample particles which are strongly

influenced by the walls. We first study the time dependency of the velocity fluctuations in

the suspension to learn when the velocity fluctuations reach a steady state and how they

change with time. We therefore measured the velocity fluctuations in intervals of 1tSt and

average over 10 measurements. The results for σy are shown in Figure 3.5 and for σx and

σz in Figure 3.6 .

The magnitude of the velocity fluctuations in our simulations is about 40% larger than in

the experiments of Nicolai and Guazzelli. One reason for this large value is that we only

sampled particles located in the sampling zone of size 150 × 250 × 20 in the center of
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Figure 3.5: Time dependency of the velocity fluctuations in y-direction for different depth

Lz of the vessel. The final value of the velocity fluctuations is independent of the depth

Lz for vessels with depth larger than 50a.

the system. Therefore, we do not sample particles that are close to the walls. Particles

close to the walls will show smaller velocity fluctuations. This explains that the velocity

fluctuations decrease from 0.91 to 0.82 when we extend the sampling region in the z

direction to span the whole system.

The second explanation is that a relatively coarse grid (h = 0.73) has been used to dis-

cretize the fluid. If the grid size of the fluid h is halved, the relative fluctuations decrease

from 0.91 to 0.87 for the system with Lz = 50. Thus part of the fluctuations is due to

numerical inaccuracies. As the computational effort scales with h5 we are presently not

able to calculate all the systems with higher accuracy. Nevertheless, the ratio of σy/σx in

all our simulations is 2, the same value as measured in the experiment.

The fluctuations for the different components increase very rapidly. They become station-

ary after approximately 150 tSt. But even as the stationary state is reached, the fluctuations

vary strongly on time scales of about 100 · · ·200tSt which corresponds to the time scale

on which the large scale structures (swirls) in the suspension change. We find in accor-

dance with Nicolai and Guazzelli that σx and σy do not change within the error bars if

the depth of the vessel is varied between 50 and 200a. But we find a reduction of σz
for Lz = 50, which has not been measured by Nicolai and Guazzelli. In contrast to the

experiments of Nicolai, we also simulated a system with a vessel of depth Lz = 25 and

find a significant reduction in all components of σ, especially in the z component.

There are two possible explanations of the findings of the experiments and the simula-
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Figure 3.6: Time dependency of the velocity fluctuations of the x-component (a) and

z-component (b) for different depths Lz of the vessel. Like the fluctuations of the y

component of the velocities, the final value of the velocity fluctuations is independent of

the depth Lz for vessels with depth larger than 50a. For Lz < 50 all components of σ

show a decrease of the velocity fluctuations.

tions:

1. The velocity fluctuations are dominated by the largest dimension of the vessel if

its smallest dimension exceeds a critical value. We expect that this critical length

should be of order of the spatial correlations of the velocities. If the smallest di-

mension of the vessel is smaller than the critical size the velocity fluctuations will

be limited by the size of the smaller dimension.

2. The velocity fluctuations are always dominated by the smallest dimension of the

vessel. If the smallest dimension of the vessel exceeds a critical size then the veloc-

ity fluctutations saturate and reach a final value independend of this size.

Both arguments would explain the results we have presented up to now. We try to find the

correct one by simulating a system where the smallest dimension of the vessel is above

the supposed critical length, and the larger dimension is decreased. We simulate a system

of size 150 × 250 × 100 and compare the velocity fluctuations with the fluctuations in a

system of size 250× 250× 100.

In Figure 3.7 we compare the velocity fluctuations of the simulations with Lx = 250

and Lx = 150. No component of the velocity fluctuations changes significantly when

the larger dimension of the vessel is reduced. This suggests that the smallest dimension

controls the magnitude of the velocity fluctuations and that assumption 2. is correct.
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Figure 3.7: Time dependency of the velocity fluctuations when the larger extension Lx

is changed from Lx = 250 to 150 and Lz = 100 is constant. The velocity fluctutations

do not change due to a decrease of the larger extension, which indicates that the smaller

dimension dominates the magnitude of the velocity fluctuations.
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Figure 3.8: Velocity fluctuations σy as a function of the system size. The left side (a)

shows the σy as a function of Lz for Lx = 250. On the right side Lx is varied and

Lz = 100. The fluctuations increase until the smallest dimension of the vessel reaches a

size of ≈ 100a.
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We show the velocity fluctuations as a function of the depth of the vessel in Figure 3.8(a).

Figure 3.8(b) shows the velocity fluctuations for a depth of 100a and various widths of

the system. The sampling started at t = 150tSt and we sampled all particles inside a

sampling region of size 150 × 250 × 20 located in the center of the vessel. We find that

the fluctuations increase for vessels with the smallest extension below 100a. As soon as

the smallest extension increases above 100a the fluctuations are constant.

This is consistent with the spatial distribution of the velocity fluctuations, which we show

in Figure 3.9 for σy and in Figure 3.10 for σx. To obtain the data shown, we divide the

system in Nx × Nz columns and sample the particle velocity of all particles inside each

column. All particles are sampled starting at t = 100tSt. To improve the statistics we

utilize the symmetry of the system in the x and z direction.
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Figure 3.9: Spatial distribution of the velocity fluctuations σy for the vessel of size 250×
250× 100 averaged over the height of the vessel.

Figure 3.9 and 3.10 show that the velocity fluctuations increase quickly and saturate to a

final value. The larger fluctuations of σy in Figure 3.9 are due to the fact that only one

simulation has been evaluated, so that long-lasting swirls are not well averaged. We find

that the distance from the wall up to which the fluctuations are affected by the wall is

approximately the same for the of the velocity components in the direction normal to the

wall as for the directions parallel to the wall (cf. Figure 3.10).

In Figure 3.11 we show the velocity fluctuations as a function of the depth of the system.

We find that σx and σz are reduced by the walls up to a distance of ≈ 50a from the wall.

For distances > 50a the velocity fluctuations are approximately constant. The distance of

50a is in accordance with our previous observations that the velocity fluctuations become

independent of the system size when the size exceeds 100a.
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Figure 3.10: Spatial distribution of the velocity fluctuations σx for a vessel of size 250×
250× 100.
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Figure 3.11: Velocity fluctuations as a function of z for a system of size 250× 250× 200.
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We previously suggested that the critical depth of the container should be of the same or-

der of magnitude as the spatial correlations of the velocities in the direction perpendicular

to gravity. To confirm this suggestion we measured the spatial correlation of the particle

velocities. The spatial correlation of Ui is defined as

CUi(~r) =
〈Ui(0)Ui(~r)〉 − 〈Ui(0)〉〈Ui(~r)〉

σUi(0)σUi(~r)
, (3.8)

where ~r = ~x2 − ~x1 is the distance vector of the particles. We measured the spatial

correlations as a function of r = |~r| and the angle θ between ~r and the y coordinate axis

~y. In the experiments of Segrè [93] the projection of the particle velocities on a plane have

been used to calculate the spatial correlations of the velocities. To make our measurements

comparable with the experimental results, we calculate the spatial correlations twice, once

for particle pairs with ~r lying in the yx-plane and also for pairs with ~r lying in the yz-

plane. To reduce the effect of the walls we sample particle pairs only if both particles are

located inside the measurement volume, which is located in the center of the vessel and

of size 150× 250× 20 for the system of size 250× 250× 100.
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Figure 3.12: Spatial correlations of the settling velocities Uy measured in the x direction

(solid line) and the z direction (dotted line). The depth Lz of the vessel was 100a and the

width Lx = 250a.

Figure 3.12 shows the correlation of the velocity compononent in y direction as a function

of the distance r in the x and z directions. The system size was 250 × 100 in the x and

z directions. Thus only distances up to 60a in the z direction could be measured without

using particles in the vicinity of a wall. The correlation functions decrease rapidly and

the distinct negative correlation in x-direction shows the presence of a structure of char-

acteristic size in the suspension. The faster decrease of the correlation in the z-direction
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shows that the correlation length of the y-component of the velocity is reduced.
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Figure 3.13: Spatial correlations of the settling velocities Uy measured in the direction

parallel to gravity in a vessel with depth Lz = 100a. For large separations the correlations

tend to zero.

Figure 3.13 shows the correlations of the velocities in the vertical direction. In the y direc-

tion the velocity corelation shows a less pronounced negative correlation when compared

to the correlations in the horizontal directions.

Segrè et al. [93] measured the spatial correlations of the velocities and found that the

particle distance with the minimum horizontal correlation can be well characterized by

ξ⊥ = 27aφ−1/3. (3.9)

This leads to a correlation length of ξ⊥ = 73a for φ = 0.05. We find a correlation length

of≈ 75a. In Figure 3.14 we show the measured spatial correlation of Segrè together with

our data. We use the same scaling as proposed by Segrè: x/aφ−1/3. We find that the

correlations are quite similar.

We have seen previously that the velocity fluctuations decrease significantly if the system

depth is reduced below 50a, so that the question arises as to how the spatial velocity

correlations in the x direction are affected when the system size is decreased in the z

direction. In Figure 3.15 we compare the spatial velocity correlations for a system where

Lz = 100 with a system where Lz = 25.

It is clearly visible that a reduction of the depth of the system in the z-direction causes a

reduction of the correlation length in the x-direction. This indicates that all the extensions
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Figure 3.14: Spatial correlations of the settling velocities Uy measured in the x direction

in a vessel with depth Lz = 100a and the data of Segrè t al. [93] (+) of a suspension with

φ = 0.03.
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Figure 3.15: Spatial corelations of Uy measured in the x direction for vessel depth Lz of

25 and 100a. Not only the velocity fluctuations change with the vessel depth but also the

correlation length.
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of a vessel have to be taken into account when the sizedependency of velocity fluctuaions

are studied.

In Figure 3.16 we show the velocities relative to the average particle velocity. We only

show the velocities of particles located in a slice of 10a located at the center of the con-

tainer. The container had periodic boundary conditions in the direction of gravity and

walls in the other directions. The depth of the system was (a) 25a, (b) 50a,(c) 100a,

and (d) 200a. It can be seen that the instantanious fluctuations of the velocities increase

significantly as the system depth is increased from 25a to 50a.

By drawing the relative velocities (Fig.3.16) we also see the meassured size of the cor-

relation length, which is approximately 1/4 of the system width for the large depths and

approximately 1/8 of the system width for the container with depth 25a.
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(a) (c)

(b) (d)

Figure 3.16: Particle velocities relative to the average particle velocity of particles located

in the center of a vessel with depth (a) 25a,(b) 50a,(c) 100a, and (d) 200a. The velocity

fluctuaions in (b,c,d) are significantely larger than in (a). Also the spatial extension of the

swirls are larger when the system depth is increased over 25a.



Chapter 4

Bidisperse Sedimentation

This chapter is dedicated to the study of the simplest cases of polydisperse suspensions

of spheres. We consider a bidisperse suspension of particles with different sizes (section

4.2.1) or different densities (section 4.2.2).

In addition to the volume fractions φl and φs, we require two other dimensionless parame-

ters to fully characterize the suspension, the particle radii ratio λ = al/as and the reduced

density ratio γ = ∆ρl/∆ρs, where ∆ρi = ρi−ρ denotes the density difference of particle

species i and the fluid.

The most important parameter remains the total volume fraction φt = φl + φs. The

influence of λ and γ is more complex to understand and generally less important if the

values do not differ significantly from unity. This is reflected in the history of models that

have been proposed for the particles’ velocities. Only a few take the influence of species

volume fraction, radii ratio and density ratio into account. The following types of models

have been proposed to describe multi-species suspensions:

• So called cell models where particles settle independently of each other in a cell.

The size of the cells is given by the particle volume fractions and the radii ratio [38,

94, 95]. The influence of density ratios is considered only in the single particle

settling velocities.

• Phenomenologically motivated polydisperse extensions of monodisperse equations

as, e.q. Lockett et al. [65, 66] or Mirza and Richardson [74]. These models take

into account only the influence of volume fractions on the settling velocities. The

particle radii and densities enter only indirectly via the single particle settling ve-

locity.

• Analytical studies from first principles, which calculate the mean settling velocities

for particles by solving the Stokes equations. Here, the analyses of Batchelor [6]
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and Batchelor and Wen [8] are the most comprehensive. The relative velocity of

particle pairs is calculated and used to determine the suspension structure, which

then is employed to calculate the average settling velocities of the suspension.

4.1 Theory

We will briefly summarize Batchelor’s theory [6, 8] because the discussion in the next

sections will rely on his basic arguments.

Batchelor considers particles in a Newtonian fluid of viscosity η where all effects of inertia

can be neglected [4, 6]. Thus, the Stokes equation

η∇2~u = ∇p, ∇~u = 0 (4.1)

is used to describe the fluid. A single particle settles with the Stokes velocity

~USt =
2a2∆ρg

9η
, (4.2)

where ∆ρ is the density difference of the particle and the fluid.

We consider a suspension of N different particle species where each species i can be

characterized by the particles radius ai, the particle density ρi and the particle volume

fraction φi. The particles are randomly distributed in space with equal probability such

that there is no overlap between spheres. The particles are represented by point forces and

a particle with velocity U0 at distance R changes the fluid velocity∼ aU0/R. The leading

order of the correction to the mean settling velocity due to the volume fraction depends

on how the particles are arranged. In the case of a regular geometrical arrangement of the

spheres, we find that a/R is proportional to φ1/3 which leads to a correction of the settling

velocities that is of order φ1/3U0. This is in contrast to a random distribution of spheres

where all accessible distances are sampled. Here the integral over the accessible positions

minus the integral over the inaccessible positions scales with order φ.

The settling velocity for each species is of the form

〈~Ui〉 = ~U
(0)
i (1 +

N∑

j=1

Sij φj). (4.3)

which is correct to order φ =
∑

i φi. Here ~U
(0)
i is the Stokes velocity ~USt of particle

species i. The sedimentation coefficients Sij depend on the particle radii ratio

λ =
aj
ai

(4.4)
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and the reduced density ratio

γ =
ρj − ρ

ρi − ρ
. (4.5)

The sedimentation coefficient is calculated by computing the interaction of pairs of par-

ticles of different densities and radii. We consider a sphere of species 1 located at ~x1
and a sphere of species 2 at ~x2. A force ~F1 or ~F2 respectively acts on each sphere. The

linearity of the underlying equations implies that the resulting velocity of sphere i can be

calculated by

~Ui = bii
~Fi + bij

~Fj (4.6)

where bij is the mobility tensor which is written as

bij =
1

3πη(ai + aj)

(

Aij
~r~r

|~r|2 +Bij(I−
~r~r

|~r|2 )
)

(4.7)

where we have introduced ~r = ~x2 − ~x1, the unit tensor I and the dimensionless two-

sphere mobility functions Aij and Bij. These functions have been calculated (e.g., by

Jeffrey [50]) and depend on the size ratio λ and the interparticle distance |~r| = r. They

are obtained for r � (a1 + a2)/2 by the method of reflections. If we use ~Fi = 6πηai~U
(0)
i

for the forces, then the relative velocities ~Vij of the two spheres can be calculated as a

function of the relative positions ~r.

~Vij(~r) = (λ2γ − 1)~U
(0)
i

(
~r~r

r2
L(s) + (I− ~r~r

r2
)M(s)

)

(4.8)

where we introduced the normalized interparticle distance s = 2r/(a1 + a2) and

L(s) =
λ2γA22 − A11

λ2γ − 1
+

2(1− λ3γ)A12

(1 + λ)(λ2γ − 1)
, (4.9)

M(s) =
λ2γB22 − B11

λ2γ − 1
+

2(1− λ3γ)B12

(1 + λ)(λ2γ − 1)
.

To calculate the mean velocities in the suspension we integrate the additional velocity

of particle i caused by the other particles over the whole volume. The integral has to

be weighted by the pair-distribution function gij to render the correct result. Now the

problem arises that this integral diverges with r → ∞ due to the terms of order r−1 and

r−3 in the mobility functions Aij and Bij . This problem has been solved by Batchelor

for the mean velocity in a monodisperse suspension [4] and for polydisperse suspensions

[5]. If we do not allow for interparticle forces, then the mean additional velocity can be

written as

〈∆~Ui〉 = ~U
(0)
i

N∑

j=1

φi

{(
1 + λ

2λ

)3

(J′ + γλ2J′′)− γ(λ2 + 3λ+ 1)I

}

(4.10)
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where

J
′ =

3

4π

∫

s≥2

{

A11
~s~s

s2
+B11

(

I− ~s~s

s2

)

− I

}

gij(~s)d~s, (4.11)

and

J
′′ =

3

4π

2λ

1 + λ

∫

s≥2

[{

A12
~s~s

s2
+B12

(

I− ~s~s

s2

)}

gij(~s) (4.12)

−
{

3

4s

(

I+
~s~s

s2

)

+
1 + λ2

(1 + λ)2s3

(

I− 3~s~s

s2

)}]

d~s.

In contrast to the case of a monodisperse suspension, where Batchelor assumed that the

particles in the suspension are randomly distributed, the pair distribution function in a

polydisperse suspension is not known a priori. The relative motion of two spheres in a

polydisperse suspension will cause a non uniform pair distribution function.

If we neglect interparticle forces and restrict our attention to the case of non-Brownian

particles (e.g. large Peclèt number), then we do not need to take diffusion into account

and the differential equation for the pair distribution function is the continuity equation

for gij (as a pair density) and the convective pair density flux ~Vijgij

∂gij
∂t

+ ~∇ · (~Vijgij) = 0. (4.13)

This equation can be solved [7] if the trajectories of the particle pair are infinite, e.g. the

particle distance r tends to ∞ for t→∞. Batchelor finds that

ln gij(~s) =

∫ ∞

s

(
2(L−M)

sL
+

1

L

dL

ds

)

ds. (4.14)

One may find asymptotic forms for gij from Eq. (4.14) in the limits of s� 1 and (s−2)�
1 but in general gij has to be determined numerically.

It is interesting to note that in the limit of a suspension of identical spheres, e.g. λ → 1

and γ → 1, the values of L(r) andM(r) depend on the order in which the limits are taken.

Therefore a suspension of equally dense particles with a slight dispersion will show a gij
different from that of a suspension with particles of the same size but a slight variation

of densities. Batchelor also argues that in case of almost identical particles the Peclèt

number could be of size unity since the relative velocity is small. Thus Brownian motion

will resolve the indeterminacy in the case discussed here.

From the pair distribution it is now possible to calculate the sedimentation coefficients

Sij(λ, γ) =

∫ ∞

2

[(
1 + λ

2λ

)3

(A11 + 2B11 − 3)gij (4.15)

+
1

4
γ(1 + λ)2

{

(A12 + B12)gij −
3

s

}]

s2ds

− γ(λ2 + 3λ+ 1).
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The values of gij and the sedimentation coefficients can be calculated numerically which

has been done by Batchelor and Wen [8].

We recollect some results for the case of non-Brownian particles and no interparticle

forces in Table 4.1.

λ\γ -2 -1 -0.5 0 0.6 1 1.5 2.25

0.25 -1.96 -2.00 -2.20 -2.56 -3.31 -3.83 -4.73 -6.90

0.5 -2.51 -2.27 -2.28 -2.53 -3.41 -4.29 -6.77

1 Sij = −2.52− 0.13γ (γ 6= 1)

2 3.18 -0.34 -1.89 -2.44 -9.85 -9.81 -11.16 -13.71

4 26.63 10.05 2.03 -2.66 -19.55 -24.32 -32.71

Table 4.1: Sedimentation coefficients calculated by Batchelor and Wen [8]

4.2 Sedimentation Velocities

4.2.1 Particles of different sizes

Theory

We now use the sedimentation coefficients of Batchelor and Wen [8] (c.f. section 4.1) and

the dependency of the sedimentation coefficients on λ and γ to calculate the sedimentation

velocities in particle suspensions when the radii ratio of the particles changes.

For constant γ = 1 and the case of bidisperse suspensions, Eq. (4.3) reduces to

< Us > = U (0)
s (1 + Sss φs + Ssl φl), (4.16)

< Ul > = U
(0)
l (1 + Sls φs + Sll φl),

where the subscript s and l denote the small and large particle species. The sedimentation

coefficients Sss and Sll are both equal to −5.6 as in the monodisperse case. The Sij are

now a function of λ only. The values calculated by Batchelor and Wen in [8] can be fitted

by a polynomial of second order

Ssl(λ) = −3.52− 1.04 λ− 1.03 λ2, (4.17)

Sls(λ) = −3.52− 1.04/λ− 1.03/λ2,

where λ is defined by λ = al/as ≥ 1.
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Thus we obtaion the settling velocities as functions of λ:

〈Us〉 = U (0)
s (1− 5.6φs − 3.52φl − 1.04φlλ− 1.03φlλ

2), (4.18)

〈Ul〉 = U
(0)
l (1− 5.6φl − 3.52φs − 1.04φs/λ− 1.03φs/λ

2).

Simulation

We simulate a bidisperse particle suspension in the dilute regime with constant particle

concentrations of φl = φs = 0.01. The size of the small particles remains unchanged at

as = 1 whereas the size of the large particles is varied between 1 and 2. The system is of

size 24× 24× 24 and periodic boundary conditions are applied in all directions.

In summary the following parameters are used:

as = 1 ν = 10

al = 1 . . . 2 g = 30

ρs = ρl = 2.5 System size = 24× 24× 24

φs = φl = 0.01 h = 0.375

Table 4.2: The parameters used in the simulations.

(a) (b)

Figure 4.1: Snapshots of the systems used to calculate the velocity fluctuations. (a) shows

a system of size 24×24×24 with 68 particles of size ratio λ = 1 and (b) with 44 particles

of size ratio λ = 1.5. The volume fraction of the particles is constant, φs = φl = 0.01.

We study the bulk (the so called mixing zone) of the suspension where the particle species

are not segregated. We can therefore apply periodic boundary conditions to our system

and consider the simulation volume to be located inside the mixing zone of the suspension
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and measure quantities associated with the bulk of the suspension. In principle this point

of view is not correct, as the periodic boundary conditions still influence various measured

quantities, such as the values of the settling velocities and their fluctuations. But even as

these values differ for periodic boundary conditions, we have seen that these differences

do not affect the effective particle interactions so that the change of the settling velocities

with volume fraction is not affected by the periodic setup.
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Figure 4.2: Typical examples of the evolution of the mean particle settling velocities for

λ = 1, 1.5, 2.

To reduce the statistical errors of our measurements we perform 30 simulations for each

set of parameters. Each simulation runs for at least 200 Stokes times. The statistical

evaluation of the simulations starts after 50 Stokes times to ensure that the measured

quantities are independent of initial transients. In Figure 4.2 we show the evolution of

the ensemble averaged settling velocities of three typical simulations with values of λ =

1, 1.5 and 2.0. As can be seen the suspension reaches a steady state in very short time

due to the dominance of viscous effects: the particles assume velocities comparable to

USt almost instantly (timescale a/USt ∼ a2/ν). Afterwards there are long-lived features

where the settling velocities change due to the changes in the local configurations of

particles.

In Figure 4.3 we show the predictions of Eq. (4.18) for λ = 1 . . . 2 as a dotted lines and

the measured values. It is evident that Eq. (4.18) overestimates the velocities. This is

due to the limited system size and the periodic boundary conditions, which changes the

settling velocities.

For a single particle of radius 1 in the simulated volume, which corresponds to a volume

fraction of φ = 0.000303 Batchelors theory predicts the settling velocity to be U =
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Figure 4.3: The dependence of the settling velocity of small (+) and large (×) particles

on λ compared with the predictions of Batchelors theory (dotted lines) and the correction

applied for the finite volume (dashed lines) and additional the finite Reynolds number

(solid lines).

1− 5.6φ = 0.998. Due to the periodic boundary conditions the particle feels the presence

of its periodic images and the settling velocity for the particle is not the one of a single

particle but the one for a periodic array of particles. In the limit of low volume fractions

the correction to the settling velocity has been calculated by Hasimoto [41] and is given

by

U/U∞ = 1− 1.7601 φ1/3 + φ− 1.5593 φ2. (4.19)

Note that here, the leading contribution is not linear in φ. A single particle of radius 1

will therefore settle with a velocity of U = 0.882. We therefore introduce the Hasimoto-

corrected single particle velocities U
′(0)
i with

U
′(0)
i = U

(0)
i

(

1− 1.7601

(
4πa3i
3L3

)(1/3)

+
4πa3i
3L3

− 1.5593

(
4πa3i
3L3

)2
)

. (4.20)

U
′(0)
i instead of U (0)

i is used to draw the dashed lines in Figure 4.3.

A second correction has to be applied due to the finite Reynolds number. If we consider a

single particle settling in an unbounded fluid the settling velocity of the particle will be the

Stokes velocity only if the Reynolds number Re → 0. For finite values of the Reynolds

number the settling velocity has to be corrected. Proudman and Pearson [83] calculated
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the drag on a sphere at low Reynolds number and found

~F = 6πaη~U

(

1 +
3

8
Re− 9

40
Re2 ln

1

Re

)

. (4.21)

A change in the particle Reynolds number Re = Ua/ν due to a change in the particle

velocity or the particle radius would therefore change the drag on the particle. To give a

estimate of the magnitude of the correction due the finite Reynolds number we show in

table 4.3 the correction to the drag force at various Reynolds numbers.

Re 0.01 0.1 0.2 0.4 0.6 1

U/USt = 1 + 3
8
Re− 9

40
Re2 ln 1

Re
1.004 1.032 1.061 1.117 1.184 1.375

Table 4.3: Correction to the Stokes drag at finite but low Reynolds numbers.

At Reynolds numbers Re > 0.1 the correction is > 3% and we must therefore apply a

second correction to the single particle velocities which we denote by U
′′(0)
i ,

U
′′(0)
i = U

′(0)
i

(

1 +
3

8
Re− 9

40
Re2 ln

1

Re

)−1

. (4.22)

Here we encounter the problem that the single particle velocity U
′′(0)
i depends on the ve-

locity of the particle due to the velocity dependency of the Reynolds number. To ensure

that our measurements are consistent with the theory, we use the measured particle veloc-

ity to calculate the Reynolds number for each λ. This measured Reynolds number is then

used to calculate the corrected single-particle’s velocity U
′′(0)
i .

We now use U
′′(0)
i in Eq. (4.18) instead of U (0)

i to calculate the settling velocities. The

solid lines in Figure 4.3 show the predictions of Batchelors theory after Hasimotos peri-

odic and Proudman and Pearson’s finite-Reynolds-number corrections.

The simulation results for the mean settling velocities Us and Ul show a very good agree-

ment with Batchelors predictions for the large particles, whereas the velocities for the

smaller particles are overestimated. This indicates that the increased back flow due to the

large particles has a stronger influence than predicted by Batchelor’s theory.

We must ensure that this effect is not due to numerical inaccuracies. Errors could arise

because particles with different radii have different values of a/h due to the fixed grid

spacing h and therefore the quality of the discretization varies with different radii. To

estimate the error introduced by the different radii we perform a reference simulation

of one particle with radius 1 settling in a periodic box of size 24x24x24 and compare the

results to those for a particle of radius 2 settling in the same box. We compare the resulting

velocitiesUi to the theoretical values. We find that the deviation from the theoretical value
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is ≈ 1% for both species and the difference in the errors between the two species is less

than 1%. We are therefore confident that the slower velocities are not due to numerical

effects caused by the discretization.
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Figure 4.4: Measured pair distribution function gls for λ = 1.5 (solid line) and λ = 2

(dashed line) compared to the theoretical predictions of Batchelor [8] for λ = 1.1 (dotted

line) and λ = 2 (dashed-dotted line). s = 2r/(ai + aj) is the dimensionless distance.

To understand why the small particles settle more slowly than expected we need to look

at the spatial structure of the suspension. To this end, we determine the pair distribution

function gij(r), i.e., the probability relative to an entirely homogeneous suspension of

finding a particle of species j at distance r from one of species i. Figure 4.4 shows the

measured values for the pair distribution function for pairs of one large and one small

particle (for λ = 1.25 and λ = 2) as a function of the dimensionless distance

s = 2r/(ai + aj), (4.23)

to make the results comparable for different radii ratios λ. The graph indicates that the

probability of close pairs decreases as λ increases, which is a genuine three-body effect.

Batchelors two-body predictions do not show a significant decrease of the pair probabili-

ties.

The reduction of particle pairs can also be seen in the pair distribution functions calculated

by Batchelor but it is much less pronounced. As we have seen in section 4.1 the pair

distribution function has been calculated for a dilute suspension by solving a conservation

equation for the pair distribution function. In Eq. (4.13) Vij is the relative velocity of pairs

of particles. As a consequence the calculated pair distribution function also neglects any

effects which are due to three and more particle interactions.
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Figure 4.5: (a) Measured pair correlation function gss(r) for pairs of small particles for

λ = 1 (solid line), λ = 1.5 (dashed line) and λ = 2 (dotted line). (b) shows the measured

pair correlation function gll(r) for the large particles. The values of gll(r) for λ = 2 have

been measured in a system of size 128×128×128 to make sure that the decrease of gll(r)

is not due to system size effects.

The decrease of the pair correlation function gls(r) implies that the correlations gll or gss
or both differ, which likewise cannot be understood in a particle pair approximation for

dilute suspensions. We find that gll(r) shows a pronounced decrease to values significantly

below 1 in the range s = 2 . . . 4 for λ > 1.5 (cf. Fig. 4.5). Since close pairs settle faster,

a reduced probability for such configurations implies smaller settling velocities. This

corresponds to the reduction of the velocities due to the higher Reynolds number of the

large particles. a

The reduction of gls(r) implies that we have a reduction of the number of small particles

in the vicinity of the large particles and therefore more small particles in the back-flow

area of the large particles. If we assume that the predicted pair correlation function of

Batchelor is correct for viscous flow, then we have to attribute the change in the pair

correlation function to the finite Reynolds number.

aTo quantitatively resolve what the influence of the Reynolds number is one would need to do the

same simulations at zero Reynolds number. Our numerical method to simulate the fluid implies that the

simulation time step has to be decreased with decreasing Reynolds number. Because of this limitation

one would have to solve the Stokes equations rather than the Navier-Stokes equations to overcome this

limitations.
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4.2.2 Particles of different densities

Now we study the case of suspensions of particles with different densities. We define

γ = ∆ρh/∆ρl ≥ 1 (4.24)

and identify the quantities associated with the heavy and light particle species by the

subscript h and l, respectively.

Theory

As described in section 4.1 the settling velocities are described by Eq. (4.3) in the approx-

imation of pair interactions. Batchelor and Wen [8] also calculated the settling coefficients

for the case of λ = 1 and for γ 6= 1 as a function of γ:

Sij = −2.52− 0.13γ. (4.25)

We are therefore able to rewrite Eq. (4.3) for a suspension of particles with different

densities.

〈Uh〉 = U
(0)
h (1− 5.6φh − 2.52φl − 0.13φl/γ) (4.26)

〈Ul〉 = U
(0)
l (1− 5.6φl − 2.52φh − 0.13φhγ)

In the limit of γ → 1 one would naively expect to find that

lim
λ=1,γ→1

Sij(γ, λ) = lim
γ=1,λ→1

Sij(γ, λ) (4.27)

However as can be seen comparing Eq. (4.26) and (4.18), Batchelors calculation suggests

that this is not the case. He finds the following values for Sij:

lim
γ=1,λ→1

Sij(γ, λ) = 5.6, (4.28)

lim
λ=1,γ→1

Sij(γ, λ) = 2.65.

As a consequence, even a small difference in the density of the particles should lead to a

sharp increase of the sedimentation velocity of more than 27% in our case.

Simulation

Starting from the same setup described in Sec. 4.2.1 with monodisperse and equally dense

spheres, we now perform simulations in which the density of one species (h) is increased.

We compare the results to the predictions of Eq. (4.26). As the velocities of the particles
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change due to the changes in the density, we must also apply the corrections introduced

in section 4.2.1 which account for the finiteness of the simulation volume and the finite

Reynolds number.

We find that the measured velocities for the heavy species agree with the prediction of

Eq. (4.26) of Batchelors theory. The data in Figure 4.6 even suggests the transition from

Sij = 5.6 at γ = 1 to Sij = 2.65 when γ 6= 1.
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Figure 4.6: The dependence of the settling velocity of light (+) and heavy (×) particles

on γ compared with the predictions of Eq. (4.26) and Eq. (4.18) with the corrected single

particle velocity of Eq. 4.22. The transition from Eq. (4.18) to Eq. (4.26) when γ 6= 1 is

observed.

Although the predictions of Batchelor are reproduced for the heavy particles, the small

particles show a clear deviation from the predictions for larger values of γ. The statistical

error of the data in Figure 4.6 is smaller than the size of the symbols used. The same

discrepancy has been observed for the suspension with particles of different sizes.

In order to explain this discrepancy we need to better understand the internal structure of

the suspension for the case of particles with different densities (Figure 4.7 and 4.8). We

see that the probability for pairs of heavy and light particles in close contact increases

for increasing density ratio, which is in contrast to the behavior of a suspensions with

particles of different sizes (see Figure 4.4). If we look at the probability to find pairs of

light particles (Figure 4.8(a)) we see no systematic change for the light particle pairs close

to contact. For the heavy particles we find a reduction of pair probability (Figure 4.8(b))

but it is less significant compared to Figure 4.5(b).
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Figure 4.7: Measured pair distribution function gij for γ = 1.5 solid line, γ = 2 dashed

line and γ = 4.33 dotted line. s is the dimensionless distance s = 2r/(ai + aj).
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Figure 4.8: (a) Measured pair correlation function gll(r) for pairs of light particles for

γ = 1 (solid line), γ = 2 (dashed line) and γ = 4.33 (dotted line). (b) shows the

measured pair correlation function ghh(r) for the heavy particles.
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4.3 Velocity Fluctuations

The prediction of the velocity fluctuations in suspended particle mixtures is of great im-

portance in process engineering. Many chemical processes use fluid or gas suspensions

and are sensitive to the diffusivity of the particles. As the velocity fluctuations control the

effective diffusivity of the particles it is therefore desirable to understand how the velocity

fluctuations change with the properties of the particles.

In contrast to the case of monodisperse suspensions where velocity fluctuations have been

studied in detail, much less is known about velocity fluctuations for polydisperse suspen-

sions. The only work on the velocity fluctuations in bidisperse suspensions is, to our

knowledge, the experimental study of Peysson and Guazzelli [79, 80]. They track single

particles in a bidisperse suspension with λ = 2 and different concentrations and calculate

the mean and variance of the settling velocity for the two particle species. For concen-

trations of φL = φS = 0.01 they find for the velocity fluctuations σ of the two species

that

σS
σL

= 0.85, (4.29)

and measure the velocity fluctuations as a function of the concentration of the large parti-

cles. They find that the fluctuations increase with particle concentrations φL and propose

a scaling of σ ∼ φ1/3.

We will now take a look at how the velocity fluctuations change when the particle radii

ratio λ and the reduced particle density ratio γ are changed. The limit of λ = γ = 1 has

been studied in section 3.1, where we have seen that the magnitude of the velocity fluctu-

ations depend on the volume fraction and on the size of the container. The dependency of

the velocity fluctuations on the system size will influence the results when λ is varied.

In the limit of λ → ∞ or γ → ∞ the small/light particles will act like tracer particles in

the fluid and will therefore show the same velocity fluctuations as the fluid in a suspension

of the large/heavy particles. On the other hand the settling velocity and the velocity

fluctuations of the large/heavy particles will be reduced by the increase of the effective

viscosity of the fluid with the suspended small/light particles. In the limit of low volume

fractions for the small/light particles this increase in the viscosity can be estimated by

Einstein’s relation

ηeff = η(1 +
5

2
φS). (4.30)

In case of low volume fractions the change in viscosity will be small (e.g. 2.5% at φ =

1%) and it requires very accurate experiments to measure the influence of the increased

viscosity on the velocity fluctuations.
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Figure 4.9: Velocity fluctuations in a bidisperse suspension of the large particles (+) and

the small particles (×) versus the radii ratio λ = aL/aS .

We will now show and discuss the results of the simulations described in section 4.2.1.

In Figure 4.9 we show the measured velocity fluctuations σ for the large and the small

particles in a bidisperse suspension. The velocity fluctuations of the small particles in-

crease for increasing radii ratio λ, whereas the velocity fluctuations of the large particles

first decrease and then start to increase. The observations for the small particles are easy

to understand. Due to the increasing velocities of the large particles (U 0 ∼ λ2) the set-

tling of the small particles is disturbed and some of the small particles will settle faster

in the neighbourhood of the large particles while others will settle slower (or rise faster)

as they are in the backflow region of the large particles. So the velocity fluctuations of

the small particles are dominated by the large particles. For increasing radii ratios λ we

will get closer to the case where the small particles are just tracer particles for the velocity

fluctuations in the fluid.

In case of the large particles we have three effects which govern the velocity fluctuations:

1. The single particle velocity of the large particles scales approximately with U 0 ∼
λ2. As the fluctuations should be proportional to U , we would expect an influence

of O(λ2) on the velocity fluctuations.

2. The relative size of the container decreases with increasing λ. As we have a con-

tainer size dependency of order O(
√

L/aL) (cf. section 3.1) we would expect the

resulting effect to be of O(1/
√
λ)

3. For λ = 1 we have one single particle species with a volume fraction φ = φS + φL.
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When λ is increased the large particles will become more and more independent

from the influence of the small particles – they decouple. This will reduce the initial

volume fraction and φ will reduce to the volume fraction of the large particles only

φ = φL. As the fluctuations increase with increasing volume fractions up to φ = 0.3

[75], we expect a reduction of the velocity fluctuations due to the decoupling of the

large particles from the small particles.

To see when the decoupling of the two particles species occurs we scale the fluctuations

with the velocity of the large particles and divide it by
√
λ for the large particles to ac-

count for the size dependency of the velocity fluctuations. As we see in Figure 4.10, the

fluctuations decrease rapidly and reach a constant value at λ ≈ 1.8.
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Figure 4.10: Velocity fluctuations of the large particles scaled with the mean sedimen-

tation velocity U and
√
λ to account for the dependency of the velocity fluctuations on

U and the system size L/a respectively. The rescaled velocity fluctuations decrease and

reach a constant value at λ ≈ 1.8.

The value of the rescaled fluctuations at λ = 2 is about half of the initial fluctuations. We

would have expected that the reduction of the velocity fluctuations due to the decoupling

of the two particle species would have been about
√
2. This indicates that there might

another mechanism (besides the decoupling) that reduces the velocity fluctuations.

We now turn to simulations of suspensions with particles of different densities. As the

sizes of the particles do not change, we do not see system size dependencies for different

values of γ, and the main contribution to changes in the velocity fluctuations will be from

the increasing settling velocities of the heavy particles. The setup of the simulations has

been discussed in section 4.2.2.
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Figure 4.11: Velocity fluctuations in a suspension of two particle species with different

densities for the heavy particles (+) and the light particles (×) versus the reduced density

ratio γ = (ρh − ρ)/(ρl − ρ).

In Figure 4.11 we show the measured values. The main difference with respect to the

measurements where λwas varied is that the heavy particles do not show a initial decrease

of the velocity fluctuations in contrast to the large particles. For both species, the heavy

and the light particles, the fluctuations increase roughly linearly in λ and the light particles

show slightly larger fluctuations.

To compare the results of the simulations where γ 6= 1 with the results of the simulations

where λ 6= 1, we scale the velocity fluctuations with U and in Figure 4.12 compare the

results of Figure 4.10 with the rescaled data of Figure 4.11. We find that the qualitative

behaviour for variations of γ and λ is the same, but that the reduction of the rescaled

velocity fluctuations at the same relative velocity of the particles is more pronounced for

variations of λ.

Another interesting quantity is the ratio of velocity fluctuations for large and small parti-

cles. Yannik Peysson found in his experiments [79] with a bidisperse suspension where

the particle radii ratio was λ = 2, that the ratio was

σS
σL

= 0.75± 0.05. (4.31)

To explain their results, they used the scaling argument by Hinch and considered a spher-

ical region of size L with N1 = φ(L/a1)
3 and N2 = φ(L/a2)

3 particles respectively.

The fluctuations in the number of particles is of order
√
N 1 and

√
N 2 if the particles are
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Figure 4.12: Rescaled velocity fluctuations of the heavy particles in a suspension of par-

ticles with different densities (+) compared with the rescaled velocity fluctuations of the

large particles in a bidisperse suspension.

randomly distributed. The resulting velocity fluctuations would be of size

σ ≈ (
√
N1a

3
1 +

√
N 2a

3
2)∆ρg/6πηL (4.32)

They now introduce a virtual radius a30 = (
√
N 1a

3
1 +

√
N2a

3
2)/
√
N1 +N2 and a charac-

teristic radius a3m = (N1a
3
1 + N2a

3
2)/(N1 + N2). With VS0 being the Stokes velocity of

a virtual particle of size a0 and φ = φ1 + φ2 the total volume fraction, Eq. (4.32) can be

written

σ ≈ VS0
√

φ(L/a0)(a0/am)
3/2. (4.33)

In [80] Peysson and Guazzelli now assume that they can calculate the correlation length

ξ of each species by

ξi ≈
ai
φ1/3

(
am
a0

)3

. (4.34)

The first part of the right hand side of this assumption is motivated by Segrès’ [93] finding

for monodisperse suspensions that ξ ∼ aiφ
−1/3 whereas the second part has not been

motivated. They assume that ξ from Eq. (4.34) can be used as L in Eq. (4.33). But it

should be noted that a0 and am both depend on Ni and therefore on L. Therefore ξ given

in Eq. (4.34) also depends on L.

If we use Eq. (4.34) and set ξ = L and solve for L we find L = 3.2a1 for the small and

L = 6.5a1 for the large particles, which is significantly smaller than typical correlation

lengths measured in experiments.
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We also doubt that the effective volume fraction in a bidisperse suspension is the sum of

the volume fractions of the two species, except in the limit of λ→ 1.

Nevertheless Peysson and Guazzelli find that the ratio of the velocity fluctuations for the

two particle species should be of size

σS
σL

=

√
aS
aL

, (4.35)

which agrees with their measurements.

In our simulations we find that the value of σS/σL = 1.7 for a radii ratio of aS/aL =

1/λ = 0.5. This is significantly larger than the values predicted and measured by Peysson

and Guazzelli.

One cause of the differences between the simulations and the experiments is again found

in the system size dependency of the velocity fluctuations. We use the same scaling laws

as derived in section 3.1 to draw the velocity fluctuations vs. the scaled system size.

Figure 4.13 shows the results of the bidisperse simulations (λ = 2) together with the

monodisperse simulations of section 3.1.
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Figure 4.13: Scaling of the velocity fluctuations with the system size in a bidisperse

suspension for the small particles (×), the large particles (∗) compared with simulations

of monodisperse suspensions (+). The radii ratio was λ = 2 and the Reynolds number on

the scale of the small particles Re = 0.1. We also show the velocity fluctuations for the

small particles scaled with the velocity of the large particles (�).

We find that the fluctuations of the small particles (×) scaled with their velocity are larger

than in the monodisperse case. This is to be expected as we will see later. The fluctuations
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of the small particles are dominated by the velocities and the velocity fluctuations of the

large particles. We therefore also show the fluctuations of the small particles scaled with

the average settling velocity of the large particles (�) which shows a close match with the

measured velocity fluctuations for the large particles (∗). The velocity fluctuations for the

large particles show a different scaling with the system size compared to the monodisperse

case.

Due to the fact that the velocity fluctuations of the small and the large particles scale

differently when the system size is changed, measurements in systems with different sizes

will give different results for the ratio of the velocity fluctuations.

In Figure 4.14 we show the ratio of the velocity fluctuations σS/σL versus the particles

size ratio λ = aL/aS.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 1.2 1.4 1.6 1.8 2

σ S
/σ

L

λ

vy
vz

Figure 4.14: Ratio of velocity fluctuations σS/σL versus the particles size ratio λ = aL/aS

for the velocity component parallel (+) and perpendicular (×) to gravity.
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Chapter 5

Modeling of Polydisperse Suspensions

So far we have studied systems which were infinite or periodic in the direction of gravity.

In such systems no large-scale separation of the involved particles species can emerge.

However, in systems, where the translational invariance in vertical direction is broken,

e.g, by the presence of horizontal walls, distinct regions with different concentrations of

the particle species will emerge. This is sketched in Figure 5.1 for a bidisperse suspen-

sion. At the top of the vessel there is a region void of particles, because all species have

moved downwards. Below, we find a region (I) with predominantly small, slowly settling

particles then a mixed region (II), in which still both species are present, and, finally, at the

bottom, a sediment, in which the fraction of large, quickly settling particles is increased.

The transition zones display a smooth change in the particle concentrations.

Most macroscopic theories describing the evolution of volume fractions in multidisperse

suspensions are based on the well known Kynch theory [57]. If the hindered settling

function is known the evolution of the volume fractions can be calculated. As long as the

hindered settling function is a monotonous decreasing function of the concentration the

Kynch model leads to jumps in the concentrations, because e.g. a continuous concentra-

tion gradient from a concentration φ0 at y0 to φ = 0 at y0 + ∆y will result in a situation

where the particles above y0 settle faster than the particles at y0 and therefore the width

of the transition zone ∆y will reduce. This mechanism is called the self-sharpening effect

[57]. Experimental investigations showed that the interfaces in multispecies suspensions

are broadened due to polydispersity and hydrodynamic diffusion [18, 19, 36, 64]. To ac-

count for this effect the theory of Kynch must be extended. This can be done by adding a

diffusive component to Kynch’s purely advective theory.

Many measurements on bidisperse suspensions have been performed, but most deal with

the settling velocities of either the interfaces or single particles within the different zones

of the suspension. Less publications are found on the measurements of volume fractions.
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Figure 5.1: (a) Sketch of the particle distribution within a bidisperse suspension and (b) a

snapshot of a (small) simulation.

Especially measurements where the volume fraction is measured for each species sep-

arately are not easy to perform experimentally. Therefore, we simulate the settling of

bidisperse suspensions to get a more detailled insight on the evolution of the volume frac-

tions. We compare the results of our three-dimensional simulations first with a model

based on Kynch’s theory and second with a advection-diffusion model, which accounts

for the hydrodynamic diffusion in particle suspensions.

5.1 The Kynch based Model

In order to allow the description of the three-dimensional problem of a particle suspension

by a set of one dimensional partial differential equations the following conditions must

be fulfilled. Firstly the extensions of the system in the directions perpendicular to gravity

must be much larger than the size of the particles. The result then does not depend in detail

on the boundaries. The second requirement is that the initial conditions of the suspension

are homogeneous in the directions perpendicular to gravity. Thirdly, there should be no

physical processes inducing lateral inhomogenities, as present e.g. in the case of settling

in inclined containers [1].

In order to model this kind of system, we define local particle volume fractions by av-

eraging over thin horizontal slices of the system [57], in which the particle concentra-

tions do not change appreciably as functions of the vertical coordinate. In this way, the
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problem is reduced to one dimension. The concentration changes due to vertical par-

ticle currents. These currents are assumed to be a function of the local concentrations

Φ = (φ1(y), φ2(y), . . . ) only. Here y is the vertical direction, parallel to gravity. The

conservation of mass for each species i = 1, . . . , N is expressed in the N hyperbolic

conservation equations

∂φi
∂t

+
∂ φiUi(Φ)

∂y
= 0. (5.1)

As the hindered settling function Ui(Φ) is a decreasing function of φi, Eq. (5.1) leads to

discontinuities, so called shock fronts, propagating with the velocity VS . The velocity of

the shock can be calculated by evaluating the continuity equation at the shock

(U+
i − VS)φ

+
i = (U−

i − VS)φ
−
i , (5.2)

where U+
i , φ

+
i , U

−
i , and φ−i denote the values of Ui and φi above and below the disconti-

nuity, respectively. Thus the velocity of the shock is

VS =
U+
i φ

+
i − U−

i φ
−
i

φ+i − φ−i
, (5.3)

which is also called the Rankine-Hugoniot condition. In case of a monodisperse suspen-

sion of initial concentration φ the shock front separates the homogeneous suspension from

the clear fluid at the top.

Given the initial and boundary conditions, we solve Eq. (5.1) numerically. The numerical

methods must take into account the jump conditions at the locations of the shocks. This

is done either by using the jump condition explicitly or by employing so called shock-

capturing schemes, which will approximate the physically relevant solution.

Properties of the Hindered Settling Function

In order to solve Eq. (5.1) we have to know the hindered settling function. There are

many different empirical proposals for the hindered settling function in multidisperse

suspensions [21, 65, 68, 74, 77]. Theoretical predictions of the hindered settling function

are due to Batchelor [6], Hinch [42],and Brady and Durlofsky [13].

As we have seen in chapter 4, Batchelor’s theory for dilute suspensions describes the

behavior of polydisperse suspensions accurately. Therefore we base our modeling on

Batchelor’s hindered settling function but in order to simplify the modeling, we require

that the hindered settling function vanishes as we approach the maximum total volume
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fraction φt ≡
∑

i φi → φ∞.a We therefore extend Batchelor’s form

〈Ui〉 = U
(0)
i (1 +

N∑

j=1

Sij φj) (5.4)

to a nonlinear equation

〈Ui〉 = U
(0)
i

e(1+
�

j Sijφj+2φt/φ∞)(φ∞ − φt)
2

e φ2∞
(5.5)

which preserves the asymptotic behavior as φi → 0, but vanishes at φt = φ∞. We

compare the form (5.5), Batchelor’s hindered settling function (5.4) and the empirical

relation of Richardson and Zaki [86] in Fig. 5.2.
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Figure 5.2: Hindered settling function Eq. (5.5) used in the advection diffusion model Eq.

(5.7). We also show the results of Batchelor Eq.(5.4) and the phenomenological relation

of Richardson and Zaki [86].

5.1.1 Comparison with Simulation Results

We consider particles of size as = 1 and al = 1.41 in a vessel with quadratic cross-section

of size 36× 567× 36 with walls at the bottom and top and periodic boundary conditions

in the other directions. This setup is chosen to resemble a settling column where the walls

are far apart from the center, so that their influence can be neglected.

aThere is no single maximum total volume fraction for polydisperse suspension, because the maximum

volume fraction of the sediment depends on the ratio of the particle radii and the actual composition of the

sediment. To simplify our argumentation we assume a single value for the maximum volume fraction φ∞.

Also, the hindered settling function need not vanish at φ∞, because in three dimensions flow through dense

packed spheres is still possible.
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Figure 5.3: Simulation of a bidis-

perse suspension used to compare

with the one-dimensional model

equations.

In summary the following parameters are used for

the simulations:

λ = al/as 1.414

φl,s 0.05

Lx,Ly,Lz 36, 576, 36

ρl,s 2.5

g 30

Re 0.1

Figure 5.4 shows the iso-concentration lines of a)

the small and b) the large particles obtained by

drawing the concentration of the particles as a func-

tion of the height y and the time. The long-dashed,

short-dashed, dotted and dash-dotted lines show the

concentrations of the three dimensional simulation

and correspond to φl = 0.1, 0.06, 0.04 and 0.01, re-

spectively. The solid lines correspond to the numer-

ical solution [14] of the advection model and to the

denoted concentration values.

Figure 5.5 shows the concentration profiles for dif-

ferent times. The results of the small and the large

particles are shown in Figure 5.5(a) and (b), respec-

tively.

In the three-dimensional simulations we find that

the concentration of the small particles increase

with time above the initial concentration of φs =

0.05 (cf. Fig. 5.4(a)). The increase in concentra-

tion occurs in the region of the suspension where

only the small particles are present and saturates at

a value of φs ≈ 0.064.

The enrichment of small particles in region I fol-

lows directly from the continuity condition (5.2) if we look at the initial condition where

the concentration of the small particles is (approximately) the same above and below the

shock 2. The effective flux Θ of small particles from the top to the bottom is then given
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Figure 5.4: Iso-concentration lines of a) the small and b) the large particles. The concen-

tration profiles are generated by drawing the concentration profiles as a function of the

height y for different time next to each other. The long-dashed, short-dashed, dotted and

dash-dotted lines show the concentrations obtained by the three dimensional simulation

and correspond to φl = 0.1, 0.06, 0.04 and 0.01, respectively. The solid lines correspond

to the numerical solution [14] of the advection model and to the denoted concentration

values.
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Figure 5.5: Concentration profiles of the small particles a) and the large particles b). The

symbols show the results of the three dimensional simulations and the solid lines the

numerical solution of the convection model.
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by

Θ = (U+
i − VS)φ

+
i − (U−

i − VS)φ
−
i (5.6)

As U−
i is smaller than U+

i due to the presence of the large particles in region II we have

a negative net flux of small particles, until the concentration φ+
i of small particles above

shock 2 is higher than below the shock.

In addition to the enrichment of the small particles volume fraction the width of the tran-

sient zone between the small particles and the clear fluid increases. The width of the

transient zone between region I and region II is even more enlarged compared to the tran-

sient zone between region I and the clear fluid.

We find that a purely advective model predicts the location of the shock and the magnitude

of the enhancement of the small particle concentration accurately. It also predicts the

particle concentrations in the sediment. The advection model cannot render the finite

width of the shock which is caused by the presence of hydrodynamic diffusion. Also

the enrichment of small particles above the mixed particle region occurs instantaneously,

which is not the case in the simulations. We can therefore say that a advection model

is only applicable when the length scale considered is much larger than the width of the

transition regions.

5.2 The Advection-Diffusion Model

It is not difficult to extend the advective model (5.1) by a diffusive contribution. To

this end we assume that vertical particle currents have two components. One is due

to the downward settling motion φi(y)Ui(Φ). The other describes the random, diffu-

sive component of the motion and is proportional to the gradient of the volume frac-

tion: −Di(Φ)(∂/∂y)φi(y). The continuity equations for each species then turn into an

advection-diffusion equation,

∂φi
∂t

= − ∂

∂y

(

φiUi(Φ)−Di(Φ)
∂φi
∂y

)

. (5.7)

This type of equation has been proposed previously [19, 64, 67] for the monodisperse

case. Provided that D(Φ) = D and Ui(Φ) are both constant the solution is known to be

φ(y, t) = φ0

(

1− erf

(
y − VSt√

4Dt

))

/2, (5.8)

under the boundary condition that the concentration is equal to 0 and φ0 for y = +∞ and

y = −∞, respectively. Because the diffusion coefficient in suspensions changes when the

volume fraction is varied, the solution (5.8) does not apply for suspensions. But, due to



Modeling of Polydisperse Suspensions 97

the fact that self-sharpening and diffusion broadening have opposing effects on the front,

they can balance each other and form a stabilized profile. This will hold for any functional

form of the hindered settling function that leads to self-sharpening [57].

In the case of a monodisperse suspension we calculate the traveling profile for a given

hindered settling function and a given functional form of the diffusion coefficient in the

frame of reference of the moving profile. By applying the transformation

ζ = y − VSt, (5.9)

where VS is the velocity of the stationary profile, we determine the stationary profile by

solving

∂φ(ζ)[U(φ)− VS]

∂ζ
=

∂D(φ)∂φ
∂ζ

∂ζ
, (5.10)

which yields

φ(ζ)[U(φ)− VS] = D(φ)
∂φ(ζ)

∂ζ
+ A (5.11)

where the values of VS and the integration constant A are determined by the boundary

conditions at +∞ and −∞. If we consider the top front between the clear fluid and the

particles of a initially homogeneous suspension of concentration φ0 we find A = 0 and

VS = U(φ0). The resulting integral

y − Vst =

∫ φ

0

D(φ′)

φ′(U(φ′)− VS) + A
dφ′ (5.12)

can be integrated at least numerical for a given set of a hindered settling function and a

diffusion coefficient.

In experiments the particles are not monodisperse and thus the experiments have to take

the polydispersity of the particles into account. Particles of different sizes will have dif-

ferent velocities. Therefore the width of the interface will increase proportional to t. The

interface spreading due to a diffusion is ∼
√
t. Thus the spreading of the interface at the

beginning of the sedimentation process is dominated by diffusion, and it is in principle

possible to separate the two contributions in experiments.

Properties of the Diffusion Coefficient

In contrast to the purely advective model of section 5.1 we have to provide not only the

hindered settling function U(Φ) but also the diffusion coefficient D(Φ) to calculate the

evolution of the particle concentrations. Analogous to the hindered settling function the

diffusion coefficients have to fulfill some constraints.
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In the case of high volume fraction the mobility of the particles is reduced, and at least for

φt = φ∞ the particles get immobile and the diffusion coefficients of all particle species

must vanish. There is also no diffusion for φt → 0 because in the limit of independent

particles the trajectory of the particle is a straight line.

Measurements of Nicolai [75] and calculations of Schwarzer [92] showed for monodis-

perse suspensions that the diffusion coefficient increases for dilute suspensions φ < 0.1

with increasing particle volume fractions and decreases for φ > 0.1. In case of polydis-

perse suspensions the local concentrations of all particle species Φ determine the diffusion

coefficient of a species.
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Figure 5.6: Diffusion coefficient Eq. (5.13) used in the advection diffusion model Eq.

(5.7) compared with the normalized experimental data of Nicolai [75].

For the diffusion coefficients Di(Φ) we propose the following empirically expression

Di(Φ) = DmaxA aiU
(0)
i φi

(

Ui(Φ)

U
(0)
i

)2

, (5.13)

which shows good agreement with the measurements of Nicolai et al. [75] (cf. Fig. 5.6).

For A = 31.54, the maximum value of Di is Dmax. So Dmax = 6.4 corresponds to a

maximum of Di/aiU
(0)
i of 6.4.

The Stationary Profile

With the model equation for the diffusion coefficient (5.13) and the hindered settling

function (5.5) given, it is possible to integrate Eq. (5.12) numerically for a monodisperse
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suspension and we can find an analytical solution of the concentration profile for special

choices of U(φ) and D(φ). Especially for a linear hindered settling function U = U0(1−
Cφ) and a constant diffusion coefficient D = D0 Eq. (5.13) becomes a Burger’s equation,

where the solution is known for all times, and the stationary profile takes the form

φ(ζ) = φ1 +
φ2 − φ1

1 + e(U(φ2)−U(φ1))ζ/2D
. (5.14)

In Figure 5.7 we show the stationary solution of (i) the Burger’s equation (solid line) (ii) of

our model with the hindered settling function given by Eq. (5.5). Furthermore we display

the solution for a constant diffusion coefficient (dashed line) and the diffusion coefficient

given by Eq. 5.13 (dotted line). The profiles described by the Burger’s equation corre-

sponding to a linear hindered settling function and constant diffusion coefficient is almost

S-shaped. The nonlinear hindered settling function Eq. (5.5) with a constant diffusion

coefficient also shows an S-shape but the width is increased due to the nonlinearity of the

hindered settling function. The usage of a concentration dependent diffusion coefficient

modifies the S-shape of the profile. Especially at low volume fractions the S-shape is

truncated and the characteristic tail is suppressed.
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Figure 5.7: Stationary concentration profile of the Burger’s equation Eq. (5.14) with

D = 4 (solid line) and of the advection diffusion model with the nonlinear hindered

settling function Eq. (5.5) and a constant diffusion coefficient D = 4 (dashed line). The

dotted line shows the stationary profile for the concentration dependent diffusion coeffi-

cient Eq. (5.13).
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5.2.1 Comparison with Simulation Results

In this section we compare the results of three dimensional simulations to the predictions

of the advection-diffusion model proposed in the last section. We consider particles of

size as = 1 and al = 1.41 in a vessel with quadratic cross-section of size 36× 567× 36

with walls at the bottom and top and periodic boundary conditions in the other directions.

This setup is chosen to resemble a settling column where the walls are far apart from the

center, so that their influence can be neglected.

In summary we use the following parameters for the simulations:

λ = al/as 1.414

φl,s 0.05

Lx,Ly,Lz 36, 576, 36

ρl,s 2.5

g 30

Re 0.1

Due to the relatively small cross-section of the vessel of 36as × 36as which corresponds

to a cross-section of 25.5al × 25.5al for the large particles we expect that the magnitude

of the velocity fluctuations and accordingly of the diffusion coefficient will be less than

measured in the experiments (cf. section 3.1) .

We find that a maximum of Di/aiU
(0)
i , Dmax = 4.0± 0.5 shows the best agreement with

the simulations. Nicolai et al. found a maximum value of Di/aiU
(0)
i = 6.4± 1.0.

Figure 5.8 shows the predictions of the advection-diffusion model together with the data

of the three dimensional simulations. The advection-diffusion model predicts concentra-

tion profiles for the small and the large particles in the range of small volume fractions

very accurately. For higher concentrations φ > 0.3 the agreement is not as good, but the

general trend is captured. It seems that diffusion is too pronounced at higher concentra-

tions, in accordance with the experimental data shown in Figure 5.6. The experimentally

measured diffusion coefficient vanishes at φ = 0.4 whereas the model function (5.13)

becomes zero only at a volume fraction of φ = 0.68. The vanishing of the diffusion

coefficient at volume fractions smaller than φ = 0.68 is also explicable from geometri-

cal arguments. At a certain volume fraction the particles are so close to each other that

the particles are not able to move independently, the particles are trapped. We therefore

expect that the diffusion is strongly reduced, well before the maximum packing of parti-

cles is reached. Our model equation for the volume fraction dependency of the diffusion

coefficient does not capture this detail.
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Figure 5.8: Volume fraction of the small particles (a) and the large particles (b). The

solid lines show the predictions of the advection-diffusion model and the data points the

measurements from 3 dimensional simulations. The values of the concentrations have

been shifted by 0.1 for t >100. We also show the initial concentration φ = 0.05 (dotted

line).
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5.2.2 Comparison with Experimental Results

In experimental measurements of polydisperse suspension only the total volume fraction

of particles is accessible. We therefore compare our advection diffusion model with ex-

periments which study the concentration profile of a monodisperse suspension of glass

spheres in viscous fluid.

In general it is not easy to compare the theoretical predictions with experimental data,

because the stationary concentration profile is normally not available from experiments.

This is due to the fact that the particles used in experiments are never monodisperse. To

be able to compare with experiments we therefore have to account for the polydispersity

of the particles.

Lee, Jang, Choi and Lee [64] measured the broadening of the interface of a ’monodis-

perse’, non-colloidal suspension by NMR computerized tomography. They used particles

with a average radius of 68µm and a standard deviation of 4µm. In Figure 2 of Ref. [64]

they show the volume fraction as a function of the position for 332, 443, 567, 1288 and

2611 seconds which corresponds to 471, 628, 804, 1827 and 3703 Stokes times tSt.

We use Eq. (5.5) and (5.13) in the advection diffusion equation (5.7) to describe the con-

centration profiles by numerical integration of (5.7). The only free parameter is the scal-

ing factor of the diffusion coefficient Dmax. All other parameters which enter the partial

differential equation are given by the experimental setup. The concentration profile at

t = 471tSt can be well represented with Dmax = 10. But as we see in Figure 5.9 a value

of Dmax = 15 would be needed to describe the concentration profile at t = 804tSt. The

width of the profile grows faster than predicted by the advection diffusion equation.

This pronounced spreading of the profile is due to the polydispersity of the particles. As

described in section 5.2 the width of the profile increases proportional to t because of the

polydispersity of the suspension. To account for the polydispersity of the particle used

in Lee’s experiment, we represent the continuous distribution of particles sizes by NS

particle species with the same standard deviation. We use 5 particles species and weight

them as shown in Figure 5.10 to resemble a Gaussian distribution of particle sizes. We

also tried non-Gaussian distributions like a uniform distribution with the same variance,

but we find that the differences in the results are marginal.

We find that for a particles distribution with σ = 4 the predictions of our model match the

experimental data more closely than in the case of monodisperse particles, but the width

of the experimental profile still increases faster than in our model. If we increased the

width of our particle size distribution to σ = 6 the experimental results are reproduced

to a large extent. In Figure 5.11 we show the experimental data of Lee et al. and our

numerically calculated concentration profiles for different times.
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Figure 5.9: Measured concentration profile for t = 471tSt and 804tSt (+) and predicted

concentrations for a maximum value of the diffusion coefficient Dmax = 10 (solid line)

and Dmax = 15 dashed line.
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Figure 5.10: Approximation of a continuous Gaussian particle size distribution with σ =

4 by 5 particles species.
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Figure 5.11: Concentration profiles measured by Lee et al. (+) and predictions of our

model equation for monodisperse particles (dashed lines) and a distribution 5 particle

sizes with σ = 6 (cf. Fig. 5.10) (solid lines). In both cases the maximum value of the

diffusion coefficient was Dmax = 10.
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Our study shows that a model which takes the polydispersity of the particles into account

is able to yield much better results than a purely monodisperse description. It also shows

that the polydispersity of the particles is often the main cause of the spreading of the

interface even in seemingly monodisperse suspensions.

In Figure 5.12 we show how the suspension profile at (a) t = 471tSt and (b) t = 804tSt is

composed from the 5 particle species, distributed like shown in Figure 5.10. The width of

the transition zone for the total concentration increases due the different settling velocities

of the 5 particle species. As shown in Figure 5.12 the concentration of the slower settling

particles species (the particles of the particle size distribution with a radius smaller than

average) increases at the top of the suspension due to the continuum equation (5.3). Ad-

ditionally the width of the interface for the particle species larger than the average radius

is much larger as for the smaller particle species.

We have shown in this chapter that it is possible to us polydisperse hindered settling

functions in conjunction with concentration dependend diffusion coefficients to describe

concentration profiles of mono- and polydisperse particle suspensions. Even though the

time depended solutions of the resulting coupled partial differential equations are only

accesible by numerical integration it provides valuable insight into the particle segregation

and interface spreeding, and might even help to understand the composition of sediments.
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Figure 5.12: Concentration profiles at (a) t = 471tSt and (b) t = 804tSt for the different

particle types with a discrete Gaussian size distribution (σ = 6) as shown in Figure 5.10.
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Conclusion

We have presented a numerical simulation technique which allows us to study three-

dimensional, non-Brownian particle suspensions at low Reynolds numbers [47]. The pro-

gram has been parallelized, so that we are able to simulate polydisperse suspensions with

up to a few hundred thousand particles.

The simulation technique couples the particles and the fluid by means of constraint forces

and has been verified on various test cases like fluid flow through a bed of fixed spheres

and the calculation of the volume fraction dependency of the mean sedimentation velocity.

We have shown that the simulation is suitable for suspensions up to a particle volume

fraction of approximately 40%.

Monodisperse suspensions

The study of the velocity fluctuations of monodisperse suspensions has shown that the

velocity fluctuations in systems with periodic boundary conditions diverge with the sys-

tem size L. The increase of the velocity fluctuations is in agreement with the theoretical

arguments of Hinch [43] and scales like σ ∼ L1/2φα with α = 1/2 with an error bar

∆α = 1/6.

In the case of monodisperse suspensions where the container is bounded by walls in the

directions perpendicular to gravity no such scaling has been found. We have studied

systems of size 250 × 250 and varied the depth from 25 to 200 at a volume fraction

of φ = 0.05. We have found that the smallest extension of the container controls the

magnitude of the velocity fluctuations. If the smallest extension is increased, the velocity

fluctuations increase up to a limit and are then independent of the container size.

We also found that the instantaneous velocity fluctuations increase very rapidly when the

sedimentation process starts and reach a steady state after approximately 150tSt. After
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that the width of the instantaneous velocity distribution still fluctuates significantly around

its mean value on time scales of about 100tSt. The velocity fluctuations near the walls are

reduced up to a distance of approximately 40a from the walls.

In accordance with the observations of Segrè [93] we also found that the relative particle

velocities ~U−〈~U〉 show a swirl-like structure. The spatial correlation length perpendicular

to gravity is 75a at φ = 0.05 when the velocity fluctuations are independent of the system

extensions.

Bidisperse suspensions

In simulations of suspensions with particles of two sizes we have verified predictions of

Batchelor and Wen for the average settling velocities, if corrections due to the finite size

of the simulation volume and the finite Reynolds number are applied to the measured data.

The agreement of the predicted pair correlation functions with the measured data is not

as good as for the velocities, indicating that three particle effects are present even at very

low volume fracions without invalidating Batchelor’s two-body approximation.

In case of particles with different densities the subtle changes of the settling velocities

due to the different limits in the calculations of the sedimentation coefficients could not

be found.

The velocity fluctuations in bidisperse suspensions have also been measured. On one

hand the velocity fluctuations of the large particles first decrease and then increase as the

size of the large particles is increased in a suspension of particles with different radii. On

the other hand the velocity fluctuations of the more dense particles in a suspension with

particles of different densities do increase similarly to the velocity fluctuations of the light

particles. We found that the ratio of velocity fluctuations of small and large particles was

about twice the experimental value reported by Peysson [80].

The measurement of the velocity fluctuations in bidisperse suspension for different sizes

of the simulation volume could not be brought in accordance with the scaling behavior

found for monodisperse suspensions with periodic boundary conditions.

Modeling of polydisperse suspensions

Based on Kynch’s one-dimensional theory for the evolution of concentrations in monodis-

perse suspension [57], we formulated an extension for polydisperse suspensions. The

choice of the flux function has been based on Batchelor’s sedimentation coefficients [8],

which reproduces the basic features of the results of three-dimensional simulations of

batch sedimentation. The Kynch model did not show the broadening of the interfaces
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between the different settling zones in the polydisperse suspension and lacks a correct

description of the increase of small particle volume fraction in the zone of small particles

only [14].

We have therefore extended the Kynch model to an advection-diffusion model, where the

volume fraction dependency of the diffusion coefficient is described by the phenomeno-

logical expression

Di(Φ) = DmaxA aiU
(0)
i φi

(

Ui(Φ)

U
(0)
i

)2

(6.1)

which shows a good agreement with experimental data [75].

The system of coupled partial differential equations resembles the results of simulations to

a high degree and allows to describe the experimental concentration profiles of monodis-

perse particle suspensions of a given size distribution.

6.1 Outlook

Using this simulation technique in connection with the parallelization of the particle-

fluid interaction, it is now possible to efficiently simulate non-spherical particles, with

a large aspect ratio or particle suspensions with particles of different sizes [56]. Future

developments could aim in different directions.

• The study of non-spherical and especially elongated particle suspensions. The be-

havior of non-spherical particles at finite Reynolds number in a suspension is a par-

ticularly interesting problem, as the idealization of spherical particles is not often

met in real suspensions. We expect interesting effects, as, e.g., clustering.

• As soon as the Reynolds number is increased above approximately 0.5 the analytical

calculations based on the linear Stokes equations lose their validity. As our method

uses the full Navier-Stokes equation to model the fluid, it includes the nonlinear

effects, which come into play as the Reynolds number is increased. It is therefore

possible to study how the properties of the suspensions change when the Reynolds

number is varied.

• The most challenging is to find a description of particle suspensions which allows

an up-scaling of particle scale simulations to system sizes of technological rele-

vance. A consistent formulation on scales larger than the particle scale is required

and the necessary phenomenological parameters can be determined from particle

scale simulations. This would allow for the prediction of phenomena in large scale
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applications from first principles and could therefore help to explore wide parame-

ter ranges, which is not possible with classical phenomenological theories.



Appendix A

Technical Details

As we have seen in the section 2.5.1 the numerical method is still computationally expen-

sive and it requires large resources on memory and CPU time to simulate particle laden

flows with 105 and more particles. Due to the long-range, hydrodynamic interaction of

the particles, systems with many particles have to be simulated over a long physical time.

Such simulations are only possible on modern supercomputers, which implies either the

vectorization or the parallelization of the algorithm. As the amount of computer mem-

ory needed increases linearly with the fluid grid points and the number of particles and

the scalability of vector computers with regard to memory consumption is problematic,

we decided not to vectorize the program but to parallelize the algorithm for the usage on

massive parallel computers.

We chose the domain decomposition approach to port the algorithm to the parallel com-

puter, because the interaction between the particles and the fluid are localized at the lo-

cation of the particles and the inter particle forces are also short ranged. We used the

Message Passing Interface (MPI), which is available on most computer platforms for the

implementation of the communication. The program is integrated in and profits from the

P3T C++ library that is being developed at the ICA 1 [45].

A.1 Parallelization of the Fluid

For a finite difference discretization of the Navier-Stokes equation (cf. Sec. 2.1) do-

main decomposition is a good choice for the parallelization strategy, because the data

of only a fixed number of neighboring grid points is needed to update the information

associated with a given grid point. We will sketch the parallelization principle for the

two-dimensional case and appeal to the imagination of the reader for the generalization

to three dimensions because the two-dimensional description is more comprehensive.
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Figure A.1: Example of a two dimensional grid which is distributed across 4 PEs. The

circles show the grid points needed to calculate the new value of the array at the location

of the black circle. The shaded grid points are the shadow rows. They contain copies of

the nonshaded grid points with the same index.
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Figure A.1(a) shows an example of a two dimensional grid of size 12× 12 with periodic

boundary conditions. We want to distribute the computational domain onto 4 processing

elements (PEs). The distributed array is shown in Figure A.1(b). In order to update any

given grid point, for example the point marked with the black circle in Figure A.1 we

require the values on the grid point itself and the 2d nearest neighbors (grey circles) to

discretize the Poisson equation. Here d denotes the dimension of the discretization. To

discretize the Navier-Stokes equation we also need the neighbors in the diagonal direc-

tions (white circles) due to the nonlinear part of the Navier-Stokes equation.

Thus we must copy the values on the boundary of a PE domain to that PE which contains

the neighboring grid points, so that each PE can calculate the next time step independent

of the other PEs. For example the lower left PE has to send the grid points with i = 0 and

i = 5 to the upper left PE and the grid points with j = 0 and j = 5 to the lower right

PE. As the ratio of the surface area to the volume scales like 1/L where L is the linear

dimension, the additional work necessary for the communication will be less significant

as the arrays get larger.

The Poisson equation (2.6) has to be solved in each time step. If we apply an iterative

procedure like SOR to find the solution, the number of iterations needed would increase

with the size of the array and make large scale simulations disproportionately expensive.

Figure A.2: Sketch of the series of grids used in the multigrid algorithm to solve the

Poisson equation.

We therefore use a multigrid algorithm, which discretizes the Poisson equation on a series

of grids with increasing mesh spacings (cf. Fig. A.2). On each grid only few iterations

of e.g. the Gauss-Seidel relaxation method are needed to smooth the hight frequency
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part of the error on that discretization level. Thus the multigrid algorithm overcomes

the principal scaling problem and the effort is proportional to the number of grid points

[35, 106]. The problem is now that the multigrid algorithm uses a sequence of arrays

where the mesh size h is doubled from grid to grid as sketched in Figure A.2. Due to the

coarsening of the grids the number of grid points decreases by a factor of 1/2d. Therefore

the boundaries, which must be communicated play a important role as the ratio of surface

to volume increases. Thus the latency associated with each communication will result in

a reduced parallel efficiency of the coarse grid.

The effect of the communication latency is also visible if we measure the parallel effi-

ciency η of a Gauss-Seidel relaxation. The parallel efficiency is defined by

η =
T1
TN

, (A.1)

where T1 is the time needed to iterate a field of size L3 on one PE and TN the time to

iterate a field of size N L3 on N PEs. As we see in Figure A.3, latency causes a deviation

from the expected η = 1 − c/L dependency for small values of L. Here c is a constant

depending on the ratio of time spend updating the boundary points (so called shadow

points) and calculating the grid points in the volume.
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Figure A.3: Parallel efficiency of a parallel Gauss-Seidel iteration on 27 PEs. The size of

the field is L3 on one and (3L)3 on 27 PEs respectively. The solid line is the idealized

behavior η = 1− c/L without communication latency.

The usage of a multigrid algorithm for the Poisson equation results in a decrease of the

parallel efficiency of the Navier-Stokes solver from≈ 90% to≈ 70% for a fluid field with

L = 64. It is still much faster than an iterative method, due to its superior convergence

properties [35].
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A.2 Parallelization of the Particles

The particles in our simulation consist of the particle itself and the tracers which are

associated to the reference positions on the particles (cf. Sec. 2.1.2). The particles and

the tracers move continuously in space. If we decompose our computational domain in

the same way as for the fluid, the computation of the interaction between the particles and

the fluid does not require inter-processor communications.

amax

A A

PE 1

PE 2

Figure A.4: Conventional approach to parallelize the particles and tracers. Particles near

the boundary are shown for PE 1 on the left and for PE 2 on the right. The greyed

particles are shadow particles, i.e. copies of the particles located the other PE. The tracers

are stored with the particles on the same PE. The dashed line shows the interaction radius

of particles, i.e. all particles, whose center lie within the boundary and the dashed line

must be communicated. In the area of width amax between the boundary and the dotted

line the values of the fluid velocities have to be known, i.e. they must be stored in shadow

rows.

If a particle (e.g particle A in Fig. A.4) is located within a distance smaller than the parti-

cle radius from the physical boundary of the computational domain, parts of the particle

and therefore parts of the tracers will be located outside the computational domain. This

implies that we need the fluid grid values from the neighboring PE to calculate the move-

ment of the tracers and the forces on the particle (area between solid and dotted line in

Fig. A.4). Thus we must communicate Nsh = amax/h shadow rows from the neighboring

PE to calculate the force on the particle and to integrate the tracers, where amax is the
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maximum particle radius. In addition the neighboring PE needs the particle and tracer

positions to calculate the force on the fluid (greyed particle A on PE 2).

If this approach is utilized we must communicate Nsh rows of fluid velocity grid points

and all the particles including the associated tracers that lie within a particle radius from

the physical domain boundary [104]. Therefore large amounts of data must be communi-

cated, especially when the mesh size h becomes small compared to the particle radius or

when the particles are nonspherical, as, e.g., fiber-like particles.

To overcome this problem we split the calculation of the force from the fluid on a particle

so that each PE calculates the part of the force originating from the fluid located on the

PE. Additionally we store the tracers separately from the particles. This allows that tracers

migrate independent of the particles from one PE to the other as as soon as they cross the

boundary between the PEs. The situation shown in Figure A.4 then changes to the one

shown in Figure A.5.

h

A A

PE 1

PE 2

Figure A.5: Parallelization approach for the particles and the tracers used in the simula-

tions. Traces and particles migrate independent from each other from one PE to the other.

The particles and tracers that are copies from particles and tracers from another PE are

drawn in grey.

PE 1 now only contains parts of the tracers associated with particle A and calculates only

that part of the force acting on the particle and on the fluid which originates from this

tracers. The rest of the tracers are located on PE 2. The forces on the particle calculated on

PE 2 are stored in the shadow particle and after the calculation of all forces communicated
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back to the PE where the particle is located (PE 1 in this case). Therefore the amount of

data which has to be communicated is reduced significantly. The two tracers of particle

A shown in grey on PE 1 are copies of the tracers located on PE 2 and are necessary to

calculate the force on the fluid at the boundary grid points.

In summary we have to store the following (shadow) data from the neighboring PEs to

calculate a time step:

• 1 shadow row of the fluid velocities to integrate the tracer movement,

• particles which are within 2amax of the boundary (dashed line in Figure A.5),

• tracers which are within h of the boundary (dotted line in Figure A.5).

We do not want to conceal that the advantage of less communication has to be paid by

additional computations and storage requirements for the particles. Due to the fact that

the particles and tracers are stored separately each particle must be identified uniquely

and each tracer has to store this information in order to know with which particle it is

associated. In addition we need to find the corresponding particle before we can calculate

the force on the particle and on the fluid. Thus we use an associative map to minimize

the time spent to find the particles. Additional complexity is added due to the fact that a

particle might be present on up to 2d PEs in d dimensions if it is located in the corner of

the computational domain.

A.3 Parallel performance

Due to the optimizations described in the previous section, the parallel efficiency of the

algorithm described is almost independent of the geometry of the particles and the relative

size of the particles with regard to the fluid discretization. Due to the fact that the par-

allelization of the particles is more efficient than that of the fluid, the parallel efficiency

increases slightly with higher particle concentrations.

The implementation of the multigrid algorithm does not allow for arbitrary sizes of the

fluid field. We therefore do not measure the parallel efficiency but a parallel scaleup,

i.e. we calculate a simulation of a given size on one PE and than increase the size of the

problem and accordingly the number of PEs. Therefore a ideal scaleup would result in

the situation that all simulations take the same time. In Figure A.6 we show

η(N) =
T1
TN

, (A.2)
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where N is the number of PEs and TN is the time needed for the simulation on N PEs.

The scaleup of the parallel efficiency is shown for three different system sizes: A system

with a fluid grid size of 323N (+), 643N (×), and 1283N (*) at a volume fraction of

φ = 0.2 and a mesh size h = 0.375.
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Figure A.6: Scaleup of the parallel efficiency. We show η as a function of the number of

PEs N for three different system sizes (+) 323N , (×) 643N , and (*)1283N .

In addition we show Nη in Figure A.7.The value Nη corresponds to the number of time

steps done in a fixed time as a function of the number of PEs.
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Figure A.7: Scaleup of the parallel efficiency. We shown Nη as a function of the number

of PEs N for three different system sizes (+) N323, (×) N643, and (*)N1283. The solid

line is the limit of a ideal scaleup.
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Deutsche Zusammenfassung i

1 Einleitung

Gekoppelte System aus Teilchen und einem Fluid, wie sie z. B. bei Suspensionen oder

Aerosolen vorliegen, zeigen Phänomene die sowohl auf molekulare als auch auf lang-

reichweitige hydrodynamische Kräfte zurückzuführen sind. Während bei Kolloiden (eine

Suspension von Brown’schen Teilchen) oft elektrostatische oder Van der Waals Kräfte

zwischen den Teilchen das Verhalten der Suspension bestimmen, ist z.B. bei Staubla-

winen die Wechselwirkung der Teilchen durch das Gas für das kollektive Verhalten der

Teilchen verantwortlich.

Die analytische Beschreibung von Suspensionen ist nur in wenigen, speziellen Situatio-

nen (geringe Teilchenkonzentration, unendlich ausgedehntes System, schleichende Strö-

mung) möglich, weshalb man oft auf phänomenologische Beschreibungen oder Com-

putersimulationen angewiesen ist. Phänomenologische Beschreibungen sind aber nur in

bestimmten Parameterbereichen gültig und können nicht für die Voraussage in anderen

Parameterbereichen verwendet werden, wohingegen in Computersimulationen wie Ex-

perimente neue Parameterbereiche erforschen können. Durch die sich bewegenden Teil-

chen, die als sich bewegende Ränder in der Flüssigkeit behandelt werden müssen, ist

die Simulation von Suspensionen auf der Teilchenskala sehr aufwendig. Durch einen

Übergang von der Teilchenskala zu einer makroskopischen Beschreibung der Suspensi-

on könnte der Aufwand beträchtlich reduziert werden. Dazu ist jedoch das detaillierte

Verständnis der Suspension Voraussetzung. Um einen besseren Einblick in das Verhalten

von Suspensionen zu bekommen, untersuchen wir mono- und bidisperse Suspensionen

in einem quaderförmigen Behälter unter dem Einfluß der Gravitation. Der Behälter kann

dabei periodische Randbedingungen oder feste Wände aufweisen. Außerdem wird ein

Advektions-Diffusions-Modell zur Beschreibung der Konzentrationen in polydispersen

Suspensionen aufgestellt.

2 Die Simulationsmethode

Die numerische Methode zur Simulation von suspendierten Teilchen basiert auf der so-

genannten immersed boundary Technik von Fogelson und Peskin [25]. Dabei werden die

Bewegungsgleichungen der Flüssigkeit auf einem regulären Gitter gelöst und die Teil-

chen durch Zwangskräfte modelliert. Dadurch können spezielle Lösungsverfahren für die

Navier-Stokes-Gleichungen verwendet werden, die die Regularität des Gitters ausnutzen.

Die Simulation läßt sich in drei Teilprobleme zerlegen: 1. die Lösung der Flüssigkeits-

gleichungen, 2. die Bewegung der suspendierten Teilchen und 3. die Kopplung zwischen

Flüssigkeit und Teilchen. Die Lösung der ersten beiden Teile sind hinreichend bekannt,
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und wir werden uns deshalb auf die Kopplung konzentrieren. Für eine detailliertere Be-

schreibung der Simulationsmethode verweisen wir auf Ref. [48].

Die Grundlage für die Flüssigkeitsbeschreibung ist die Navier-Stokes Gleichung,

ρ
∂~v

∂t
+ ρ(∇ · ~v)~v = −∇p+ η∇2~v + ~f. (Z.3)

Dabei bezeichnet ρ die Dichte, η die Viskosität, ~v die Geschwindigkeit, p den Druck der

Flüssigkeit und ~f die Volumenkraft, die auf die Flüssigkeit wirkt. Die Variablen werden

auf einem regulären Gitter, einem marker and cell Gitter in zweiter Ordnung durch finite

Differenzen diskretisiert und mit Hilfe eines zeitexpliziten und druckimpliziten Verfah-

rens unter Erfüllung der Inkompressibilitätsbedingung∇ · ~v = 0 gelöst.

Die Integration der Bewegungsgleichungen für die Teilchen erfolgt durch einen Ge-

schwindigkeits-Verlet-Algorithmus für die Translation und durch einen Gear-Prediktor-

Korrektor vierter Ordnung für die Rotation [3].

Das dritte Teilproblem, die Kopplung zwischen den Teilchen und der Flüssigkeit erfolgt

über die Volumenkraft in der Navier-Stokes-Gleichung (Z.3). Dazu wird das Teilchen

i durch zwei Anteile modelliert: Der erste besteht aus einem Flüssigkeitselement mit

derselben geometrischen Form wie das Teilchen. Die Flüssigkeit in diesem Volumen

wird nun durch Zwangskräfte so bewegt, dass sie sich wie ein Festkörper innerhalb der

restlichen Flüssigkeit bewegt. Sie verhält sich dann wie ein Teilchen der Dichte ρ mit

einer Masse M l
i = Viρ und einem Trägheitsmoment von I li = (2/5)M l

ia
2 im Falle ei-

ner Kugel mit Radius a. Der zweite Modellanteil ist eine Teilchenschablone, die eben-

falls die geometrische Form des physikalischen Teilchens hat und die Masse M t
i und das

Trägheitsmoment I ti trägt, die zusammen mit dem Flüssigkeitsanteil die Masse und das

Trägheitsmoment des physikalischen Teilchens ergeben: Mi = M l
i+M t

i und Ii = I li+I ti .

Die Kopplung zwischen der Flüssigkeit und der Teilchenschablone erfolgt über die

Zwangskräfte. Die Zwangskräfte werden durch ein explizites Verfahren berechnet, das

ähnlich wie bei sogenannten Penalty-Verfahren ein gewisse Deformation des vom Teil-

chen bedeckten Flüssigkeitsvolumens zulässt und aus dieser Deformation die Zwangs-

kräfte berechnet, die der Deformation entgegenwirken.

Konkret werden dazu in dem Flüssigkeitsvolumen, das vom Teilchen i überdeckt wird

sogenannte Markierungspunkte ~xm
ij in der Flüssigkeit verteilt. Diese Markierungspunkte

bewegen sich massenlos mit der Flüssigkeit ~̇x
m

ij = ~v(~xm
ij ). Mit jedem dieser Markie-

rungspunkte wird ein Referenzpunkt ~x r
ij auf der Teilchenschablone assoziiert, so dass

zum Zeitpunkt t = 0 die Beziehung ~ξij = ~xm
ij − ~x r

ij gilt.

Die Kraftdichte ~f auf die Flüssigkeit wird nun aus den Abständen zwischen Markierungs-
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und Referenzpunkten berechnet

~fij(~x) = (−k~ξij − 2γ~̇ξij)δ(~x− ~xm
ij ), (Z.4)

wobei k eine Federkonstante und γ eine Dämpfungskonstante darstellen. δ(~x) bezeichnet

die Dirac’sche Deltafunktion. Die Federkonstante k muss dabei hinreichend groß gewählt

werden, so dass die Differenz ξij immer wesentlich kleiner als die Gitterkonstante h des

Flüssigkeitsgitters ist, d.h. dass |ξij| � h zu allen Zeiten erfüllt ist.

Die Simulationsmethode wurde an verschiedenen Testfällen wie der Umströmung peri-

odischer Anordnungen von Kugeln und der Sedimentation monodisperser Kugeln verifi-

ziert.

3 Monodisperse Sedimentation

3.1 Geschwindigkeitsfluktuationen

Während es für die mittleren Sinkgeschwindigkeiten der Teilchen in nicht Brown’schen

Suspensionen theoretische Vorhersagen gibt [7, 13], ist das Verständnis der Geschwin-

digkeitsfluktuationen noch nicht befriedigend. Theoretische Betrachtungen [17, 42, 100]

sagen voraus, dass die Geschwindigkeitsfluktuationen in Suspensionen mit der Größe

des Behälters anwachsen. In experimentellen Untersuchungen wird diese Abhängigkeit

von der Systemgröße aber nicht oder nur bis zu einer bestimmten Systemgröße gefunden

[75, 93]. Simulationen von Suspensionen [62] zeigen eine Divergenz der Geschwindig-

keitsfluktuationen mit der Systemgröße.

Abschätzung der Geschwindigkeitsfluktuationen

Mit Hilfe einer Abschätzung von Hinch [43] und den experimentellen Resultaten von

Segrè et al. [93] kann ein Ausdruck für das Skalierungsverhalten der Geschwindigkeits-

fluktuationen hergeleitet werden. Wenn man sich ein System der Größe 2L × L × L

zufällig verteilter, suspendierender Teilchen vorstellt, das in zwei Hälften geteilt wird, so

erwartet man dass sich im Mittel in beiden TeilenN = (3/4π)φ(L/a)3 Teilchen befinden.

Bei einer zufälligen Teichenverteilung variiert die mittlere Teilchenzahl um
√
N Teilchen,

so dass sich ein antreibender Gewichtsunterschied von

F1 = ±
√
N

4

3
πa3∆ρg (Z.5)

ergibt. Diese Kraft verursacht solange einen Geschwindigkeitsunterschied zwischen den

beiden Hälften dem die viskose Scherkraft entgegenwirkt. Die Scherkraft zwischen
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diesen beiden Bereichen kann durch den zu erwartenden Geschwindigkeitsgradienten

∆U/L, die Viskosität der Flüssigkeit und die Fläche ∼ L2, die die beiden Bereiche trennt

abgeschätzt werden.

F2 = η
σ

L
L2. (Z.6)

Hier haben wir die Geschwindigkeitsdifferenz mit σ bezeichnet. In einem stationären

Zustand werden beide Kräfte sich gegenseitig aufheben, und man kann die Größe der

Geschwindigkeitsfluktuationen σ abschätzen:

σ =
4

3
π

√
φL3

a3
a3∆ρg

ηL
∼ USt

√

φL

a
, (Z.7)

wobei USt die Stokes Geschwindigkeit bezeichnet. Man erwartet also ein Anwachsen der

Geschwindigkeitsfluktuationen mit
√
L.

Wenn es hingegen eine Längenskala ξ gibt, jenseits derer die Suspension als homogen und

unkorreliert betrachtet werden kann, dann wäre unser Argument nur gültig für L < ξ. Für

Systemabmessungen L > ξ übernimmt die Größe der noch korrelierten Bereiche die Rol-

le der Systemgröße. Segrè et al. [93] fanden in ihren Experimenten eine Korrelationslänge

von ξ|| = 11aφ−1/3, woraus sich für die Geschwindigkeitsfluktuationen in großen Syste-

men folgendes Skalierungsverhalten ergäbe:

σ ∼ VStφ
1/3. (Z.8)

Systeme mit periodischen Randbedingungen

Um den Einfluß der Wände zu eliminieren, verwenden wir in allen Richtungen periodi-

sche Randbedingungen und messen die Fluktuationen der Sinkgeschwindigkeit der Teil-

chen in Systemen verschiedener Größe und verschiedenem Volumenanteil φ der Teilchen.

Wenn sich die Systemgröße unterhalb des Größe befindet, ab der die Geschwindigkeits-

fluktuationen unabhängig von der Systemgröße werden, erwartet man folgendes Verhal-

ten,

(σ/USt) ∼ (Lφ)1/2. (Z.9)

Bei einer Auftragung der normierten Geschwindigkeit gegen (Lφ)1/2 sollten deshalb alle

Datenpunkte auf einer Geraden liegen. Abbildung Z.8 zeigt die gemessenen Werte und

eine Ausgleichsgerade f(x) = bx + c mit b = 0.63 und c = −0.12.
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Abbildung Z.8: Geschwindigkeitsfluktuationen aufgetragen über L1/2φ1/2. Nach Glei-

chung (Z.7) erwartet man, dass die Datenpunkte auf einer Geraden liegen. Die gestrichel-

te Linie zeigt die Ausgleichsgerade f(x) = bx + c mit b = 0.63 und c = −0.12.

Systeme mit Wänden

In experimentellen Untersuchungen können periodische Randbedingungen nicht realisiert

werden. Um den Einfluß von Wänden auf die Suspension zu untersuchen und die Simu-

lationen mit Experimenten vergleichbar zu machen, werden in den Richtungen senkrecht

zur Gravitation feste Wände als Begrenzung des Simulationsvolumens eingebaut. Da-

durch sind die Bedingungen bis auf die Randbedingungen in Richtung der Gravitation

identisch mit den Experimenten von Nicolai und Guazzelli [75].

In ihren Experimenten verwendeten Nicolai und Guazzelli Glaskugeln in einer viskosen

Flüssigkeit und ließen sie bei einem Volumenanteil von φ = 0.05 in einem Behälter mit

einer Höhe von Ly = 1262a und Breite von Lx = 252a sedimentieren. Die Tiefe des

Behälters wurde von Lz = 50a bis 200a variiert. Die gemessenen Geschwindigkeitsfluk-

tuationen waren innerhalb der Fehlerbalken konstant und betrugen σx ≈ 0.33± 0.04 und

σy ≈ 0.66± 0.08. Das Verhältnis der Fluktuationen betrug σy/σx ≈ 2.

Unsere Simulationen zeigen (vgl. Abb. Z.9(a)), dass die Geschwindigkeiten in Systemen

mit einer Tiefe Lz > 100a innerhalb der Fehlerbalken unabhängig von der Tiefe des

Systems werden.

Um ausschließen zu können, dass die Breite des Systems einen Einfluß auf den Betrag

der Geschwindigkeitsfluktuationen hat, wurden auch Simulationen bei einer festen Tiefe

Lz = 100a und verschiedenen Breiten Lx = 50 . . . 250a durchgeführt. Diese sind in
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Abbildung Z.9: Geschwindigkeitsfluktuationen σy als Funktion der Systemgröße. Auf

der linken Seite (a) wird σy in Abhängigkeit von Lz bei Lx = 250 gezeigt. Auf der

rechten Seite (b) wird Lx variiert und Lz = 100 festgehalten. Die Fluktuationen wachsen

bis die kleinste Abmessung des Behälters einen Wert von ≈ 100a überschreitet.

Abbildung Z.9(b) gezeigt. Wie zu sehen ist, werden die Geschwindigkeitsfluktuationen

von der kleinsten Abmessung des Systems kontrolliert.

Die Anwesenheit der Wände ändert also das Skalierungsverhalten der Geschwindigkeits-

fluktuationen im Vergleich zu periodischen Randbedingungen drastisch.

4 Bidisperse Sedimentation

Die Sinkgeschwindigkeiten der Teilchen in einer Suspension polydispersen Teilchen

wurden von Batchelor [6, 8] in erster Ordnung angegeben. Dabei wurden die Wech-

selwirkungen von Teilchenpaaren in einer selbstkonsistenten Verteilung von Teilchen

berücksichtigt. Für die Sinkgeschwindigkeit der einzelnen Teilchensorten ergab sich

〈~Ui〉 = ~U
(0)
i (1 +

N∑

j=1

Sij φj). (Z.10)

Hierbei wird mit ~U (0)
i die Stokes Geschwindigkeit der Teilchensorte i bezeichnet. Die

Sedimentationskoeffizienten Sij sind Funktionen des Teilchengrößenverhältnisses

λ =
aj
ai

(Z.11)
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und des reduzierten Dichteverhältnisses

γ =
ρj − ρ

ρi − ρ
. (Z.12)

Die Sedimentationskoeffizienten Sij wurden für bestimmte Werte für λ und γ von Bat-

chelor und Wen [8] numerisch berechnet.

4.1 Sedimentationsgeschwindigkeiten

Für γ = 1 und zwei Teilchensorten reduziert sich die Gleichung (Z.10) zu

< Us > = U (0)
s (1 + Sss φs + Ssl φl), (Z.13)

< Ul > = U
(0)
l (1 + Sls φs + Sll φl),

wobei der Index s die kleinen und l die großen Teilchen bezeichnet. Die Sedimentations-

koeffizienten sind nur noch von λ abhängig. Die numerischen Werte von Batchelor und

Wen können durch ein Polynom zweiter Ordnung approximiert werden,

Ssl(λ) = −3.52− 1.04 λ− 1.03 λ2, (Z.14)

Sls(λ) = −3.52− 1.04/λ− 1.03/λ2,

wobei wir λ als λ = al/as ≥ 1 definieren. Die beiden Sedimentationskoeffizienten Sss

und Sll haben wie im monodispersen Fall beide den Wert −5.6.

Abbildung Z.10 zeigt die gemessenen Sedimentationsgeschwindigkeiten in Abhängigkeit

vom Radienverhältnis λ. Durch die endliche Systemgröße von 24× 24 × 24 werden die

Teilchen durch ihre periodischen Abbilder beeinflußt, und die erwartete Sedimentations-

geschwindigkeit muss um die Korrektur von Hasimoto [41]

U/U∞ = 1− 1.7601 φ1/3 + φ− 1.5593 φ2, (Z.15)

berichtigt werden. Eine zweite Korrektur wird wegen der endlichen Reynoldszahl not-

wendig, da mit zunehmendem Teilchenradius auch die Reynoldszahl ansteigt. Nach

Proudman und Pearson [83] muss die Stokes Kraft auf ein Teilchen durch

~F = 6πaη~U

(

1 +
3

8
Re− 9

40
Re2 ln

1

Re

)

, (Z.16)

korrigiert werden.

Durch das Berücksichtigen dieser beiden Effekte stimmen die Vorhersagen von Batchelor

und Wen für die Sedimentationsgeschwindigkeiten sehr gut mit den Ergebnissen der Si-

mulation überein. Für die von Batchelor und Wen vorhergesagte Paarverteilungsfunktion

g(r) ist die Übereinstimmung hingegen nicht so ausgeprägt, was auf Mehrteilchenwech-

selwirkungen zurückzuführen ist.
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Abbildung Z.10: Abhängigkeit der Sinkgeschwindigkeit der kleinen (+) und großen (×)

Teilchen von λ verglichen mit den Vorhersagen von Batchelor (gepunktete Linien), und

den Korrekturen aufgrund des endlichen Systemvolumens (gestrichelte Linien) und der

endlichen Reynoldszahl (durchgezogene Linien).

5 Modellierung polydisperser Suspensionen

Bisher wurden nur Systeme mit periodischen Randbedingungen in Richtung der Gravi-

tation betrachtet. Sobald aber die Translationsinvarianz in Richtung der Gravitation z.B.

durch das Vorhandensein von Wänden gebrochen wird, bilden sich verschiedene Zonen

(z.B. Sediment und klare Flüssigkeit) mit unterschiedlichen Teilchenkonzentrationen aus.

Bei jeder realen Suspension handelt es sich um ein System mit gebrochener Translations-

invarianz. Zur Beschreibung der Konzentrationsverläufe wird normalerweise das drei-

dimensionale System auf eine Dimension reduziert, indem das System in Richtung der

Gravitation in dünne Schichten zerlegt und die betrachteten Größen in den Richtungen

orthogonal zur Gravitation gemittelt werden.

Zur Beschreibung der Konzentrationen in Abhängigkeit von der Höhe wird häufig die

Kynch-Theorie [57] verwendet. Dabei handelt es sich um eine Advektionsgleichung der

Form

∂φi
∂t

+
∂ φiUi(Φ)

∂y
= 0, (Z.17)

wobei Φ(y) = (φ1(y), φ2(y), . . . ) die Konzentrationen der Teilchensorten i = 1 . . .N

an der vertikalen Position y darstellt und Ui(Φ) die Sedimentationsgeschwindigkeit der
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Teilchensorte i.

Wenn die Abhängigkeit der Sedimentationsgeschwindigkeit von der lokalen Konzentrat-

ion der Teilchen bekannt ist, kann mit Hilfe von Gleichung (Z.17) aus einer Anfangssi-

tuation die zeitliche Entwicklung der Konzentrationen berechnet werden. Der Vergleich

des advektiven Kynch-Modells mit Simulationen zeigt jedoch, dass das Kynch-Modell

zwar die großräumige Struktur der Konzentrationsverläufe wiedergeben kann, aber nicht

die genauen Verläufe an den Schockfronten [14].

Wir erweitern deshalb das Advektionsmodell um einen Diffusionsterm, der die hydro-

dynamische Diffusion der sedimentierenden Teilchen beschreiben soll. Das Advektions-

Diffusions-Modell hat nun folgende Form:

∂φi
∂t

= − ∂

∂y

(

φiUi(Φ)−Di(Φ)
∂φi
∂y

)

. (Z.18)

wobei Di(Φ) die effektive Diffusionskonstante in Abhängigkeit von den lokalen Kon-

zentrationen bezeichnet. Zur Vollständigkeit des Modells müssen noch die beiden kon-

stitutiven Beziehungen zwischen Konzentration und Sedimentationsgeschwindigkeit und

zwischen Konzentration und dem Diffusionskoeffizienten angegeben werden.

Für die Sedimentationsgeschwindigkeiten erweitern wir Batchelors lineare Beziehung für

polydisperse Suspensionen, deren Gültigkeit für kleine Konzentrationen gezeigt wurde

um sie auch bei höheren Konzentrationen einsetzen zu können. Die erweiterte Form

〈Ui〉 = U
(0)
i

e(1+
�

j Sijφj+2φt/φ∞)(φ∞ − φt)
2

e φ2∞
(Z.19)

ist für φ → 0 identisch mit Gl. (Z.10), weist aber nicht die unphysikalischen negativen

Werte für φ > 0.178 auf.

Für den Diffusionskoeffizienten schlagen wir folgenden funktionalen Zusammenhang vor

Di(Φ) = DmaxA aiU
(0)
i φi

(

Ui(Φ)

U
(0)
i

)2

, (Z.20)

der auch die experimentellen Resultate von Nicolai et al. [75] gut wiedergibt. In Glei-

chung (Z.20) ist A = 31.54 eine Normierungskonstante, die so gewählt ist, dass Dmax der

maximale Betrag des Diffusionskoeffizienten ist.

Durch die Vorgabe von Anfangs- und Randbedingungen kann der zeitliche Verlauf der

Konzentrationen durch numerische Integration der Differentialgleichung berechnet wer-

den. In Abbildung Z.11 vergleichen wir die Vorhersagen des Advektions-Diffusions-

Modells mit Dmax = 4.0 mit der dreidimensionalen Simulation eines Systems der Größe

36× 576× 36 mit zwei Teilchensorten (al/as = 1.414).



x

a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500

φ

y
b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500

φ

y

t=100
t=200
t=300
t=400
t=500

1D Model
φ=0.05

Abbildung Z.11: Volumenanteil der kleinen Teilchen (a) und der großen Teilchen (b). Die

durchgezogenen Linien zeigen die Vorhersagen des Advektions-Diffusions-Modells. Die

Datenpunkte sind Messungen einer dreidimensionalen Simulation. Die Konzentrations-

werte sind jeweils um 0.1 nach oben verschoben worden. Die gepunktete Linie zeigt die

Anfangskonzentration von φ = 0.05.


