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Chapter 1

Deutsche Zusammenfassung

Ein Verbundwerkstoff ist ein kompliziertes festes Material, das aus zwei oder mehr Be-
standteilen besteht. Auf einer makroskopischen Skala hat es strukturelle und funktionelle
Eigenschaften, die in jedem einzelnen Bestandteil nicht vorhanden sind. In der Regel
werden sie hergestellt, um die besten Eigenschaften ihrer Bestandteile aufzuweisen.

Die Natur hat Verbundwerkstoffe wie Meerespflanzen, Holz und Knochen geliefert.
Außerdem gibt es viele zahlreiche künstliche Strukturen wie bewehrter Beton und
Faserverbundwerkstoffe. Überraschenderweise sind sie nicht neu im alltäglichen Leben.
Sogar die alten Ägypter benutzten Sperrholz und die Römer Beton. Heutzutage
wiegen neue Faserverbundwerkstoffe ungefähr ein Fünftel von Stahl, aber sie können in
Steifigheit und Stärke vergleichbar sein. Das ist abhängig von Fasergehalt und Lagebes-
timmung. Diese Faserverbundwerkstoffe verrosten oder korrodieren nicht wie Stahl
oder Aluminium. Eine der wichtigsten Errungenchalten ist, dass die Automobilindus-
trie Trägergewicht nahe zu um

�����
verringern und Trägerbrennstoffersparnis erheblich

erhöhen konnten.

Ein Faserverbundwerkstoff wird aus Fasern gebildet, die in einem schützenden Material
eingebettet werden, das Matrix genannt wird. Eine Kopplung mit dem Medium wird an
die Fasern angebracht, um die Adhäsion der Faser zum Matrixmaterial zu verbessern.
Die Funktionen der Matrix, ob organisch, keramisch oder metallisch, ist es, die Fasern zu
stützen und zu schützen. Außerdem dient die Matrix als Medium für die Übertragung der
Spannungsüberhöhung zwischen Fasern.

Der Lastsausfall der Faserverbundwerkstoffe wird im Allgemeinen durch den Ausfall der
Faserbündel bestimmt. Wenn eine einachsige Last in die Richtung parallel zu den Fasern
angewendet wird, kann die tatsächliche Spannung ��� als

���
	������������������������ (1.1)
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ausgedrückt werden, wobei  � den Faservolumenbruch bezeichnet, � � ist die durch die
Fasern getragene Spannung und ��� die normalerweise kleinere durch die Matrix getra-
gene Spannung.

Die Matrix in Metallmatrix-Verbundwerkstoffen trägt Last mit. Aber in Keramikmatrix-
Verbundwerkstoffen (C/C-SiC), trägt nach dem Bruch der Matrix diese fast Nulllast.
Damit kann die Matrixbelastung ��� normalerweise vernachlässigt werden. Jedoch
fährt Spannungsüberhöhung zwischen den Fasern durch die Matrixtätigkeit trotz der
stufenweisen Beschädigung fort. Folglich hat sie eine sehr wichtige Rolle in der Last-
neuverteilung.

Um den Ausfall der Faserverbundwerkstoffe zu verstehen muß, man sich auf das Reissen
der Fasern konzentrieren. Folglich sind die zwei Faktoren, die den Faserausfall in den
Faserverbundwerkstoffe steuern,

� die statistische Faserfestigkeit

� der Lastumlagerungstyp (type of load sharing).

Die Spannung entlang der Faser hängt von der angewandten externen Spannung ab,
aber auch davon, wie die Spannung einer defekten Faser auf die umgebenden intakten
Fasern und in die Umgebung der Matrix übertragen wird. Diese Spannungsübertragung
wird durch die elastischen Eigenschaften der Bestandteile und durch die Faser/Matrix
Schnittstelle geregelt. Es ist schwierig, sie bei mehr als einer defekten Faser zu erhalten.
Für eine realistische Modellierung des Beschädigungsprozesses des Faserverbundwerk-
stoffs unter einer einachsigen Last müsste die Druckverteilung im vollständigen Volu-
men der Probe errechnet werden. Selbst wenn man die Zahl der unabhängigen Vari-
ablen begrenzt, die benötigt werden, um die interne Mikrostruktur des Probestücks zu
beschreiben, ist eine genaue Vorhersage der Endfestigkeit eine rechnerisch anspruchsvolle
Aufgabe.

Folglich basiert die Modellierung der Faserzusammensetzungen im allgemeinen auf bes-
timmten Vereinfachungen der Geometrie der Faseranordnung und der Spannungsneu-
verteilung nach Faserausfällen in der Probe. Außerdem muß die Zahl der Fasern, die
das System bilden, sehr groß sein, um zuverlässige Ergebnisse zu erreichen. Dies macht
die numerische Berechnung in vielen Fällen zu zeitaufwendig, um die Studie in einem
angemessenen Zeitraum durchzuführen. Deswegen wurde viel Aufwand in analytischen
Näherungen und einfacheren numerischen Modellen betrieben.

Eines dieser Modelle, das Faserbündelmodell, hat viel Aufmerksamkeit erhalten, da
einige wichtige Größen im dessen Rahmen analytisch hergeleitet werden können. Außer-
dem können leistungsfähige Simulationstechniken entwickelt werden, die die Studie von
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großen Proben erlaubt. Trotz ihrer Einfachheit beziehen sie die wichtigsten Aspekte von
Sachschäden und Zusammenbrüchen mit ein. Sie haben ein größeres Verständnis von
Bruchprozessen geliefert und als Ausgangspunkt komplizierterer Modelle von Faserw-
erkstoffen und anderen mikro-mechanischen Modellen gedient.

Faserbündelmodelle mit kontinuierlicher Schädigung

Das Faserbündelmodell mit kontinuierlicher Schädigung ist eine Erweiterung der klassis-
chen Faserbündelmodelle mit verallgemeinertem Schädigungsgesetz für Faserversagen.
Das Modell besteht wieder aus

�
parallel angeordneten Fasern mit identischen Elas-

tizitätsmoduli � � aber zufälligen Faserfestigkeiten ��� , � 	 ���	�	�
��� � . Für die Fasern
nehmen wir linear elastisches Verhalten bis zu ihrem spröden Versagen an, das unter
uni-axialer Belastung des Systems bei Überschreitung der Faserfestigkeit ��� eintritt. Die
Besonderheit unseres Modells besteht nun darin, dass bei Faserversagen die Steifigkeit
der Faser durch einen Faktor � mit

�� ��� � auf ��� � gemindert wird. Damit wird
mehrfaches Faserversagen möglich. Die maximal zulässige Zahl der Steifigkeitsabmin-
derungen ������� geht als zusätzlicher Parameter in das Modell ein. Eine weitere, in Abb.1.1
dargestellte Variation kann in der Festigkeit ��� einer Faser bestehen, die entweder auf
dem anfänglich zufälling gewählten Wert fixiert wird (eingefrorene Unordnung) oder aber
nach jedem Versagen aus der selben Wahrscheinlichkeitsverteilung neu zugewiesen wird
(ereignisabhängige Unordnung). Auf diese Weise können z.B. durch Bruchvorgänge ini-
tiierte mikroskopische Umordnungen im Material berücksichtigt werden.

Die Darstellung der Schädigung mittels eines kontinuierlichen Schädigungsparameters
im Rahmen von Diskrete-Elemente-Modellen entspricht einer Systembeschreibung auf
einer größeren Längenskala als der charakteristischen Rissgröße. Dies kann in mehrfacher
Weise interpretiert werden: so können Fasern die kleinsten Elemente des Modells bilden,
deren kontinuierliches Versagen z.B. mehrfaches Faserversagen repräsentiert, oder aber
auf einer gröberen Skala werden mehrere Fasern mit Matrix als kleinste Elemente des
Faserbündelmodells diskretisiert. Bei dieser Interpretation werden die mikroskopischen
Schädigungsmechanismen bei graduellem Versagen von Matrix und Fasern eines Ele-
ments in Form von mehrfachem Elementversagen berücksichtigt. Wegen dieser alterna-
tiven Modellvorstellungen definieren wir die Elemente des Faserbündelmodells im Fol-
genden als Fasern. Für die Lastumlagerung nehmen wir ��� � , also globale Las-
tumlagerung und die Bedingung identischer Dehnungen an, was impliziert, dass steifere
Fasern mehr Last tragen als weichere. Bei der Dehnung � herrscht in der Faser � , bei der
bereits � ��� � mal Versagen aufgetreten ist, die Spannung

� � ����� 	�� ��� ��! �#" �$� (1.2)

mit der aktuellen Fasersteifigkeit � �%� ��! �#" . Trotz des unendlichen Wechselwirkungsradius
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Figure 1.1: Schädigungsgesetz einer Einzelfaser � mit mehrfachem Faserversagen
für � � � eingefrorene und �� � ereignisabhängige Unordnung. Die horizontalen Linien
repräsentieren die Faserfestigkeit ��� .

unterscheidet sich Gl.1.2 folglich von der oben beschriebenen globalen Lastumlagerung,
bei der alle intakten Fasern die selbe Last tragen.

In der folgenden Ableitung der konstitutiven Gesetze des Faserbündelmodells mit kon-
tinuierlicher Schädigung ist � � die Einheitssteifigkeit. Betrachtet man zunächst die kon-
stitutive Gleichung für den Fall einfachen Faserversagens. So gilt

�
� 	 ��� ����� � � � � � ����� ����� � (1.3)

mit � � � � bzw. � ��� ��� � als Anteil gebrochener bzw. intakter Fasern. Hieraus geht
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unmittelbar die Beziehung für trockene Faserbündel ��� 	 � � [1–4], sowie für � 	 � ���
auch das mikromechanische Modell faserverstärker Keramik-Matrix-Verbundwerkstoffe
(CMC) bei Belastung in Faserrichtung hervor [5–7]. Die mikromechanische Erklärung
für die Fähigkeit gebrochener Fasern in CMCs Last zu tragen, ist Faser-Matrix-Ablösung
in der Nähe des Faserbruches und Spannungsaufbau in der Faser über Reibung.

Bei mehrfachem Faserversagen ist eine Unterscheidung zwischen eingefrorener und
ereignisabhängiger Unordnung notwendig:

(i) Eingefrorene Unordnung: Ist zweifaches Faserversagen erlaubt, erweitert sich Gl.1.3
zu

�
� 	 ����� � � � � � � � ����� � � � � � � � ��� ����� ��� ��� ��� � � � (1.4)

mit dem Anteil bereits einmal versagter Fasern � � ��� � � � ��������� und dem Anteil bereits
zweimal versagter Fasern � ����� � . Der allgemeine Fall bei � -fachem Faserversagen führt
zu:

�
� 	 ����� � � ����� � � �
	��������

��� �
� � ��� � ��� � ��� � � ��� ��� � � ��� � � ��	��� ��� ��� ��	������� � � (1.5)

(ii) Ereignisabhängige Unordnung: Für ereignisabhängige Unordnung und zweifaches
Faserversagen ergibt sich

�
� 	 ��� ��� � � � � � � � � � � � � ��� � � ������� � � ��� ��� � � � � � ��� � � (1.6)

mit dem Anteil einmal versagter Fasern � � � � ��� � � ��� � � � und dem Anteil bereits zweimal
versagter Fasern � ��� � � � ��� � . Der allgemeine Fall, bei dem ������� -faches Faserversagen
zugelassen ist, wird zu

�
� 	 �
	��������

����� � � ��� � � � � � � �����
� ����
 ��� � ���

 
� � � � � 	��� � �
	��������

����� � � � � � � � (1.7)

wobei ��� ��� auch unendlich werden kann.

Faserbündelmodelle zur alternativen Beschreibung des konstitutiven
Verhaltens granularer Medien

In komprimiertem granularen Material werden Kräfte im System durch perkolierende
Kraftlinien übertragen, die z.B. in Abb. 1.2 visualisiert sind. Die Ähnlichkeiten dieser
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lo
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Figure 1.2: Experimentelle Visualisierung von Kraftlinien (links) und Grundmodel-
lvorstellung (rechts).

Kraftlinien zu Fasern in Faserverbundmaterialien bilden die Grundlage unserer Model-
lierung. Invertiert man gedanklich die Schädigungssimulation in Faserbündelmodellen,
so entsteht eine Analogie zur Ausbildung und Verstärkung von Kraftpfaden, wie sie bei
der Kompression granularer Packungen beobachtet werden. Das FBM mit kontinuier-
licher Schädigung bildet den Ausgangspunkt, da es graduelle Steifigkeitsänderungen der
Elemente (bisher graduelles Faserversagen) berücksichtigt. Unser Modell zur Ausbildung
und Verstärkung von Kraftpfaden invertiert diese Situation. Die individuellen Linien des
Netzwerkes bilden in unserer Vorstellung Fasern, die anstelle von Brüchen unter Zugspan-
nung nun unter Druck durch Umordnung von Kontakten verfestigen. Da viele Umord-
nungen möglich sind, bilden die FBM mit kontinuierlicher Schädigung den besten Aus-
gangspunkt als Modell. In dem Modell werden Kraftlinien als parallele Linien auf einem
Quadratgitter angeordnet. Jeder Linie wird eine zufällige Grenzspannung � zugewiesen,
bei der sich ein Kontakt entlang der Faser umstrukturiert, was typischerweise zu geraderen
und steiferen Kraftlinien führt, die im Modell durch eine Steifigkeitserhöhung mit dem
Faktor � berücksichtigt werden. Zudem wird beim Erreichen der � -ten Grenzspannung
eine neue Grenzspannung zugewiesen, die nicht zwangsläufig höher ist als die Vorherige,
aber aus einer gegebenen Wahrscheinlichkeitsdichtefunktion � � � ��� ����� stammt. ��� ist der
typische Wert der Grenzspannung und erhöht sich abhängig von � wenn ��� 	 � �� ist. Auf
diese Weise wird bei jeder Umorientierung der Kraftlinie die Steifigkeit mit � und der
effektive aber zufällige Grenzwert mit � � multipliziert. Die maximal mögliche Anzahl an
Umstrukturierungen ��� � � ist proportional zur Anzahl der Kontakte, und damit zu ���
	 �
(vgl. Abb. 1.2).

Ergänzend wurden einachsige Kompressionstests mit Glaskugeln durchgeführt. Das
gemessene nichtlineare Last-Verschiebungsverhalten wird in Abb. 1.3 mit unseren Mod-
ellergebnissen verglichen.
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Figure 1.3: Vergleich von gemessenem und gerechnetem konstitutiven Verhalten
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Figure 1.4: Lawinengröße � während der Belastung und ihre Größenverteilung
� ����� .

Die Verteilung der Restrukturierungsereignisse wurde analytisch und numerisch in Abb.
1.4 verglichen. Dabei zeigt sich exzellente Übereinstimmung der Umlagerungsereignisse
bei theoretischen und experimentellen Ergebnissen . Das gefundene Potenzgesetz, sowie
die Werte des Exponenten und der analytischen und numerischen Lösung sind eine Konse-
quenz der Lokalität der Umstrukturierung aufgrund der Abwesenheit von Lastumlagerun-
gen. Die gute Übereinstimmung weist darauf hin, dass sich dahinter der Mikromechanis-
mus verbirgt, der für die Exponentialstatistik der akustischen Signale verantwortlich ist.
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Faserbündelmodelle mit variablem Wechselwirkungsra-
dius

Das Bruchverhalten heterogener Systeme ist charakterisiert durch stark lokalisierte Span-
nungskonzentrationen an der Rissspitze, die zur Bildung neuer Risse in dieser Region
führen und somit zum Wachstum des Risses beitragen, der letztlich zum Systemversagen
führen kann. In elastischen Materialien folgt die Spannungsumlagerung einem Potenzge-
setz

� ����������� � � (1.8)

das die Spannungsüberhöhung � ����� in einem Punkt im Abstand � von der Rissspitze
beschreibt. Diese allgemeingültige Beziehung bezieht über den Wechselwirkungsparam-
eter 	 die Extremfälle globaler �
	 � � � sowie lokaler Lastumlagerung ��	 � � � mit ein,
die im FBM als Grenzwerte weit verbreitet sind.

Dieser allgemeine Zusammenhang aus der Bruchmechanik wurde als Lastumlagerungs-
gesetz in das klassische FBM eingesetzt. Ausgangspunkt bildet ein Bündel von

�
parallel angeordneten Fasern mit jeweils statistisch verteilter Faserfestigkeit gemäß der
Wahrscheinlichkeitsverteilung � � � ��� � � , die mit dem Index � bei �  �  �

versehen
sind. Dabei findet die Weibullverteilung

� � � � 	 � �� � ������ ��� (1.9)

zur Repräsentation der Faserfestigkeit mit dem Formparameter � und dem Skalenparam-
eter ��� Verwendung. Die Belastung des Systems erfolgt quasistatisch bis zum Versagen
der ersten Faser � bei der Last � � 	 � ��� ���� . Die Umverteilung dieser Last auf intakte
Fasern kann nun zum Versagen weiterer Fasern führen, deren Last wiederum auf die noch
intakten Fasern umgelagert wird, und so fort. Dieser Prozess kann zu vollständigem Sys-
temversagen oder aber zu einem Gleichgewichtszustand führen, bei dem die Last auf
allen intakten Fasern geringer als deren individuelle Festigkeit ist. In diesem Fall wird die
externe Last weiter erhöht, bis die geringste Festigkeit der zu diesem Zeitpunkt noch in-
takten Fasern erreicht ist. Dieser Prozess wird nun bis zum makroskopischen Systemver-
sagen bei der makroskopischen Spannung � � wiederholt. Zwischen zwei aufeinanderfol-
genden Lasterhöhungen bezeichnen wir die Anzahl gebrochener Fasern als Lawinengröße
� und die Zahl der Lastumlagerungen als Lebenszeit � .

Wir nehmen weiter an, dass die Wahrscheinlichkeit aller intakten Fasern, von einem
Schädigungsereignis unberührt zu bleiben, kleiner als eins ist, und die durch das Ereignis
umgelagerte zusätzliche Last auf die Faser � von deren Abstand ���  zu der zuletzt ver-
sagten Faser � bei ���  ���  � abhängt. Zwischen den einzelnen Fasern herrscht elastische
Wechselwirkung in der Weise, dass die auf eine Faser aufgebrachte Last dem Potenzge-
setz aus Gl.1.8 folgt. Die Spannungsumlagerungsfunktion

� ���%�  ��	 � für unser diskretes
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Modell ergibt sich damit zu

� � �
�  � � � 	 � � ��  � , mit
� 	

�
�����

� � ��  � (1.10)

mit dem Normalisierungsterm
�

, der aus der Summe über alle intakten Elemente �
hervorgeht. Zusätzlich gelten periodische Randbedingungen, was zu einem maximal
möglichen Abstand � � ��� von ��� � ��� 	 
 � 
 führt. Variationen des Wechselwirkungspa-
rameters 	 von stark lokalisierten bis gänzlich globalen ��	 � � � Wechselwirkungen
beziehen grundsätzlich das gesamte System mit ein, weswegen wir fortan vom effektiven
Wechselwirkungsradius als dem Radius eines Ereignisses reden, in dem die Wechsel-
wirkung zu signifikanten Spannungserhöhungen führt.

Variable Wechselwirkung bei Holz unter Belastung in Faserrichtung

Reale Materialien wie Holz werden, abgesehen von wenigen Ausnahmen wie z.B.
Faserbündeln ohne Matrix und Faserreibung, nicht durch die Extremfälle der globalen
bzw. lokalen Lastumlagerung von versagten Materialzonen zu intakten charakterisiert.
Vielmehr weist eine uni-direktionale Materialprobe bestehend aus

�
Fasern bei Belas-

tung in Faserrichtung eine mit der charakteristischen Festigkeit der Fasern � � normierte
makroskopische Festigkeit � � � � � ����� zwischen den Grenzen der globalen und lokalen
Lastumlagerung auf. Mit dem in Kap. 1 beschriebenen FBM mit variablem, Lastwech-
selwirkungsparameter 	 steht uns ein flexibles Modell zur Verfügung, dessen Parameter
��� und 	 wir zur Beschreibung des natürlichen Faserverbundwerkstoffes Fichtenholz ex-
emplarisch bestimmt haben.

In den Abb. (1.5,1.6) ist die Abhängigkeit der mittleren globalen Fes-
tigkeit des Faserbündels von der Systemgröße

�
für unterschiedliche Werte des

Wechselwirkungsparameters 	 dargestellt. Die numerischen Ergebnisse unserer
Faserbündelmodelle bestätigen die analytischen Überlegungen von [1–4]. Auffällig ist,
dass bei kleinen Werten von 	 �
	��



�

 � die Systemgröße unbedeutender wird, was im

Einklang mit der Annahme globaler Lastumlagerung steht. Zunächst erfolgt eine Ab-
schätzung der oberen und unteren Grenzen von � � über die Extremfälle globaler und
lokaler Lastumlagerung. Numerische Ergebnisse mit einer Weibullverteilung mit Form-
faktor ��� 	 


sind in den Abb. (1.5,1.6) dargestellt. Der Fall globaler Lastumlagerung
��	 	 � � führt wegen der Unabhängigkeit von der Systemgröße in Abb. (1.6) auf die zur
Abszisse parallele Linie � � � � � 	 �������� ��������� 	 � ��� 
�� . Diese Linie markiert die obere
Grenze der Probenfestigkeit der Proben mit ca.

� 	 � ����� Fasern. Mit der experimentell
bestimmten Festigkeit erhält man dann die untere Grenze von � ��	�� 
�
 ����� � � . In iden-
tischer Weise wird mit dem zweiten Extremfall der lokalen Lastumlagerung ��	 	 � �
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verfahren. Die Linie � � � ��� 	 � � ��� ������� � � ��� � � � 
 � beschreibt die untere Grenze für
Proben mit ca.

� 	 � ��� ��� Fasern, und damit den oberen Grenzwert � � 	 � 
 � ����� � � .

Auf diese Weise ist es möglich, aus experimentellen Ergebnissen über deren Festigkeit
bei unterschiedlicher Systemgröße � � der Einzelfasern, sowie über deren Lage in Abb.
(1.6) den Wechselwirkungsparameter 	 über die Steigung zu bestimmen. In Tab. 1.1 sind
alle Ergebnisse zusammengefasst.

Die dargestellten Ergebnisse wurden für zwei Extremewerte des Weibull-Formparameters
�� errechnet, die von Thuvander u.a [8] verwendet wurden. Der invers für Fichtenholz
bestimmte Wechselwirkungsparameter (vgl. Tab.1.1 und Abb.(1.6)) liegt bereits in einem
Bereich, der durch rein lokale Lastumlagerung ausreichend gut beschrieben wird.

Weibull Form- Weibull Skalen- Steigung Wechselwirkungs-
parameter parameter � � � � � parameter

�� 	 � ����� � � � � � � � 
 � � � � ��� ��� ��� � � � � 	 � � �
�� 	 
 � 
�
 � � � � � � � 
 � � � � � � ��� ��� � � � � 	 � � �

Table 1.1: Aus Experimenten an unterschiedlich großen Fichtenholzproben bestimmte
Modellparameter.

Faserbündelmodelle mit viskoelastischen Fasern und der
langsamen Relaxation gebrochener Fasern

Unter hohen, konstanten Belastungen kann in Faserverbundwerkstoffen zeitabhängiges
Kriechbruchversagen auftreten. Für die Anwendungen solcher Materialien ist die Ken-
ntnis der Lebenszeit von hoher Bedeutung. Natürliche Faserverbundwerkstoffe wie
Holz, aber auch eine Reihe anderer faserverstärkter Werkstoffe, wie z.B. Metall-Matrix-
Composite (MMC) weisen Kriechbruchverhalten auf.

Zur theoretischen Beschreibung des Kriechbruchverhaltens viskoelastischer Faserver-
bundwerkstoffe gehen wir wieder von klassischen Faserbündelmodellen [9, 10] aus, die
sehr viel zum Verständnis des Bruchverhaltens ungeordneter Materialien beigetragen
haben. Unser Modell jedoch besteht aus einem Bündel von

�
parallel angeordneten ein-

fachen Fasern mit viskoelastischem konstitutiven Verhalten. Diese bestehen jeweils aus
einem Kelvin-Voigt Element, also aus einer einfachen Feder mit parallel angeordnetem
Dämpfer, was zu der bekannten Beziehung

�
	 	���� � � �$� (1.11)



12

mit Dämpfungskoeffizient � und Elastizitätsmodul � der Einzelfaser führt. Eine Lösung
der Differentialgleichung (Gl.1.11) liefert die zeitabhängige Deformation ����� � der Faser

����� � 	 � �
� � ���� � � � � � � � � 	 � � � � � � � (1.12)

bei gegebener, externer Spannung � � und der Anfangsdehnung � � zum Zeitpunkt � 	 �
.

Für � � � konvergiert ����� � gegen � � � � , dem Hookschen Gesetz.

Bei Abwesenheit von Faserversagen wäre Gl.(1.12) zur Beschreibung der zeitlichen En-
twicklung ausreichend. Motiviert von akustischen Emissionsmessungen an kriechen-
den Faserverbundwerkstoffen [11] führen wir ein Bruchkriterium für Einzelfasern ein,
das erfüllt ist, sobald die Faserdehnung ihren Bruchdehnung � � erreicht. Diese ist
eine zufällige Variable der individuellen Faser mit der Wahrscheinlichkeitsdichtefunktion
� � � � � 	����
	��� ��� � � � . Aufgrund der Gültigkeit des Hookschen Gesetzes für asymptotische
Dehnungswerte bedeutet die Verwendung eines Dehnungskriteriums anstelle eines Span-
nungskriteriums für das Faserversagen, dass bei konstanter Last die selben Schädigungen
auftreten, wie mit Spannungskriterien, nur dass Faserbrüche nicht unmittelbar auftreten,
sondern über die Zeit verteilt sind.

Bei Faserversagen muss wiederum die ursprünglich von der Faser getragene Last auf
intakte Fasern umgelagert werden. Als einfachster Fall wird zunächst die globale Um-
lagerung der Last [1–4] zu gleichen Teilen auf alle bei der Dehnung � intakten Fasern� � ��� � untersucht, was auf die Faserlast

� � � � 	 ��� � � � � � � � 	���� ��������� ��� � � (1.13)

führt. Die zeitliche Entwicklung des Systems unter konstanter externer Belastung � �
lautet somit

���
����� � � � 	 � � � � �$� (1.14)

und verknüpft viskoelastisches Materialverhalten mit stochastischem Faserversagen im
Kontext globaler Lastumlagerung. Die Lösung von Gl.(1.14) führt auf zwei Bereiche in
Abhängigkeit der externen Last � � : unterhalb eines kritischen Wertes � � führt Gl.(1.14)
bei � 	 �

auf die stationäre Lösung ��� mit

��� 	 � ����� ��� � ����� ��� � (1.15)

Solange diese Beziehung gilt, konvergiert für eine gegebene makroskopische Last � �
die Lösung für ����� � bei ��� � � � , und es kommt nicht zu makroskopischem Versagen.
Übersteigt � � jedoch � � , existiert keine stationäre Lösung, und �� �

. Das System versagt
in diesem Fall global zum Zeitpunkt � � � ��� � .
Wir konnten mit unseren Modellen zeigen, dass für Kriechbruchversagen eine kritische
Last � � existiert, die den Versagensverlauf vorherbestimmt. Unterhalb dieser Last � 	 
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Figure 1.7: Analytische Lösungen ����� � für unterschiedliche Werte von � 	 oberhalb
und unterhalb ��� . Die kritische Dehnung ��� ist beispielhaft für einen Wert mit seiner
entsprechenden Versagenszeit � � eingezeichnet.

��� wird die Lebenszeit � � unendlich, während bei Lasten � 	  ��� globales Versagen
bei der endlichen Zeit � � eintritt. Folglich konvergiert das Faserbündel bei abnehmender
Schädigungsaktivität und bei Lasten � 	  ��� gegen die stationäre Verformung ��� (vgl.
Abb. (1.7)). Die charakteristische Zeitskala dieses Prozesses � hängt gemäß

� � � � � � �
	 � ����� � � für �
	 � ��� (1.16)

vom Abstand zur kritischen Last ab. Interessant an diesem Ergebnis ist, dass, wenn man
sich dem kritischen Punkt von unten (vgl. Abb.(1.7)) nähert, die Relaxationszeit gemäß
dem universellen Potenzgesetz Gl. (1.16) mit Exponenten � � � 
 divergiert, unabhängig
von der Form der Unordnungsverteilung � � � � .
Aus theoretischer und experimenteller Sicht ist es wichtig, die Abhängigkeit der Ver-
sagenszeit � � von der aufgebrachten Last � 	 vorhersagen zu können. Analytisch konnten
wir für globale Lastumlagerung beweisen dass die Beziehung

� � � � �
	�� ��� � ����� � � mit � 	  ��� (1.17)
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Figure 1.8: Versagenszeit � � als Funktion von � � �
� � für den Wechselwirkungsparameter�  	  �
.

gilt. Die Versagenszeit � � divergiert folglich ebenfalls nach einem Potenzgesetz mit iden-
tischem Exponenten und ist ebenfalls unabhängig von � � � � .

Um die Auswirkungen der Lastumlagerungsstategien auf das Kriechbruchverhalten zu
verstehen, haben wir untersucht, wie sich das Systemverhalten in der Umgebung des kri-
tischen Punktes verändert, wenn die Lastumlagerung gänzlich lokal wird. Zu diesem
Zweck wurden Simulationen unter Variation des effektiven Wechselwirkungsradius über
den Lastumlagerungsparameter 	 der Lastumlagerungsfunktion durchgeführt (vgl. Kap.
1, 1).

Das Diagramm in Abb. 1.8 zeigt die Lebenszeit � � eines Faserbündels, dessen Fasern
auf einem Quadratgitter der Kantenlänge � 	 � � � als Funktion des Abstandes vom
kritischen Punkt � � 	 � � � � � für unterschiedliche Wechselwirkungsparameter 	 an-
geordnet sind. Die � � ��� ����	 � Kurven formen dabei zwei Gruppen unterschiedlicher
Form: eine obere Gruppe für

�� 	  ��� � � , die globale Lastumlagerung beschreibt,
sowie eine untere Gruppe für 	  


�
�

für lokale Lastumlagerung. Hier konvergiert
� � ��� ����	 � bei Erreichen der kritischen Last � � rasch gegen einen konstanten Wert mit
schwachem Skaleneffekt, was an einen Phasenübergang erster Ordnung erinnert. Unsere
Ergebnisse deuten auf die Existenz zweier Universalitätsklassen für Kriechbruchversagen
hin: vollständig globales bzw. vollständig lokales Verhalten, abhängig von dem Wech-
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selwirkungsparameter 	 mit einem scharfem Übergang. Wir führen die normierte Größe
� ��	 � 	 � � � ��	 � � � � ��	
	 � � ��� ��� � � ��	 	 � � � � � ��	
	 � � ��� ein, bei der � � ��	 � den Wert von
� � bei kleinstem � � zur Berechnung von � � ��� ����	 � bei gegebenem 	 bedeutet. Durch
diese Darstellung nimmt

� ��	 � bei rein lokaler Lastumlagerung den Wert
�

und � . Auch
in dieser Darstellung zeigt sich der scharfe Übergang zwischen globaler und lokaler Las-
tumlagerung bei einem Wert 	 ��� 


. Mit wachsender Systemgröße wird dieser Übergang
noch schärfer. Die Existenz zweier Universalitätsklassen bedeutet unter anderem, dass
Ergebnisse der globalen Lastumlagerung auch jenseits 	
	 �

Gültigkeit haben.

Analytische und numerische Berechnungen haben gezeigt, daß auch während der lan-
gasamen Relaxation gebrochener Fasern ein Übergang aus einem teilweise versagten Zu-
stand unendlicher Lebenzeit in einen Zustand, in dem sich ein globales Versagen mit einer
endlichen Zeit ergibt stattfindet. So divergiert die makroskopische Versagenszeit in der
Nähe des kritischen Belastungswertes � � , gemäss der Potenzfunktion.

� � � � � � � �
	 � � ! � �
�
� " � für �
	 � ��� (1.18)

Der kritische Exponent ist unabhängig von der kumulativen Festigkeitsverteilung, welche
von der Natur des Relaxationprozesses abhängt ( ��� � � � Nichtlinearität). Die Existenz
von zwei Universalitätsklassen beim Kriechbruch von Faserverbundwerkstoffen wurde



16

durch diese Ergebnisse bestätigt. Reale Materialien mit spezifischen Werten von 	
fallen folglich in eine der Universalitätsklassen, weshalb wir in Experimenten entweder
einen kontinuierlichen Phasenübergang mit Skaleneffekten oder sehr abruptes Versagen
beobachten.



Chapter 2

Introduction

A composite material or composite is a complex solid material composed of two or more
constituents. On macroscopic scale, they have structural or functional properties not
present in any individual component and generally they are designed to exhibit the best
properties or qualities of its constituents.

Nature has provided composite materials in biomatter such as seaweed, wood, and hu-
man bone and there are several artificial structures as reinforced concrete, fiber-reinforced
composites and so on. Surprisingly, they are not new in common life, even the ancient
Egyptians made plywood and the Romans had concrete.

Nowadays, the new carbon-fiber composites weigh about five times less than steel, but can
be comparable or better in terms of stiffness and strength, depending on fiber orientation.
These composites do not rust or corrode like steel or aluminum. Perhaps most important,
the automobile industry could reduce vehicle weight by as much as

�����
, significantly

saving vehicle fuel.

A fiber-reinforced composite is a system made of fibers embedded in a protective material
called a matrix, with a coupling agent applied to the fiber to improve the adhesion of the
fiber to the matrix material. The functions of a matrix, whether organic, ceramic, or
metallic, are to support and protect the fibers, and to provide a means of distributing the
load among and transmitting it between the fibers without itself fracturing.

The tensile failure of fiber composites is generally dominated by failure of the fiber bun-
dles. If an uniaxial load is applied in the direction parallel to the fibers the actual com-
posite stress ��� can be obtained as � �
	 ����������������������� , where �� denotes the fiber
volume fraction, ��� is the mean stress carried by the fibers and ��� is the usually small
stress carried by the matrix. The matrix can carry some load in a metal or polymer matrix
composite but, after matrix cracking, carries almost zero load in ceramic matrix compos-
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ites. So that, the matrix stress � � can normally be neglected in damage modeling since
already at relatively low load levels, the matrix gets multiply cracked or yields plastically
limiting its load bearing capacity. However, stress transfers between the fibers by the
matrix action continues despite gradual damage, therefore, it has a very important role in
the load redistribution. In reconstituted artificial construction materials the range of load
redistribution also called load sharing can be controlled by varying the properties of the
matrix material and the fiber-matrix interface.

To understand the failure of composites one has to concentrate on the breaking of the
fibers. Hence, in fiber composites the two factors controlling fiber failure are

� the statistical fiber strength

� the stress re-distribution (load sharing) after the fiber fails.

The stress along the fiber depends on the applied external stress, but also on precisely how
stress is transferred from a broken fiber to the surrounding intact fibers and in the matrix
environment. This stress transfer is governed by the elastic properties of the constituents
and by the fiber/matrix interface, and is difficult to obtain in the presence of more than
one broken fiber.

For a realistic modeling of the damage process of fiber composites under an uniaxial
load, the stress distribution would have to be calculated in the whole volume of the sam-
ple. Even limiting the number of independent variables needed to describe the internal
microstructure of the specimen, an accurate prediction of the ultimate strength is a com-
putationally demanding task. Hence, in general, the modeling of fiber composites is based
on certain idealizations about the geometry of the fiber arrangement and the stress redis-
tribution following fiber failures in the specimen. Moreover , in order to obtain reliable
conclusions the number of fibers forming the system has to be very large which makes
the numerical problem, in many cases, too time consuming as to perform the study in a
reasonable amount of time.

Thus, a lot of effort has been spent on analytical approaches and more simple numerical
models which may also provide a solid ground. One of those models, the fiber bundle
model, received a lot of attention because severals important quantities can be derivated
analytically in their frameworks, furthermore, efficient simulation techniques can be de-
veloped which allow for the study of large samples. Despite their simplicity, they capture
most of the main aspects of material damage and breakdown. They have provided a deeper
understanding of fracture processes and have served as a starting point for more complex
models of fiber reinforced composites and other micro-mechanical models
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2.1 Overview

Firstly, in Chapter 3 we describe the general physics involved in the fiber reinforced com-
posites modeling, when the specimens are loaded parallel to the fiber direction. The prin-
cipal concepts, such as fiber bundle, load sharing, disorder distribution, creep rupture are
briefly treated. In Chapter 4 we study the constitutive behavior, the damage process, and
the properties of bursts in the continuous damage fiber bundle model introduced recently.
This model provides various types of constitutive behaviors including also macroscopic
plasticity. Furthermore, for stress controlled experiments we develop a simulation tech-
nique and explore numerically the distribution of bursts of fiber breaks assuming infinite
range of interaction. Based on the analogy of force chains in granular packings and fibers
in fiber reinforced composites, we propose a novel theoretical approach in Chapter 5 to
describe the gradual emergence and hardening of force chains occurring under uniaxial
compression. In parallel, the restructuring events that take place during the compres-
sion of a granular media were accessed experimentally. A fiber bundle model where the
interaction among fibers is modeled by an adjustable stress-transfer function which can
interpolate between the two limiting cases of load redistribution, the global and the local
load sharing schemes are introduced in Chapter 6. By varying the range of interaction
several features of the model are numerically studied. In Chapter 7 the size effect of
tension strength of softwood loaded parallel to fiber direction has been numerically and
experimentally studied. It was revealed that the average strength is a decreasing function
of the cross-sectional specimen size. For qualitative characterization of the load sharing
it has been assumed that the load-transfer function has a power law form (described in
Chapter 7). A novel method to deal with the real time dependence in the breakdown pro-
cess of the fiber materials is presented in Chapter 8 and 9. In Chapter 8 we develop a
fiber bundle model whose fibers have viscoelastic behavior and the macroscopic damage
mechanism leading to creep rupture is the strain dependent breaking of the fibers during
the time evolution of the deformation of the system. On the other hand, in Chapter 9
the slow relaxation of a fiber composite was studied. In this case, the components of the
solid are linearly elastic until they break, however, after breaking they undergo a slow
relaxation process.
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Chapter 3

Basics

3.1 Fracture of heterogeneous materials

Fracture processes have attracted the attention of the scientific community since many
years. Processes involving heterogeneous systems, for which a definite and complete
physical description has not been found despite the many partial successes of the last
decades, are of special theoretical and practical interest [12, 13]. In particular, the latest
developments of statistical mechanics have led to a deeper understanding of breakdown
phenomena in heterogeneous systems, but some fundamental questions remain unsolved.
The difficulties arise because in modeling fracture of heterogeneous materials, one has
to deal with systems formed by many interacting constituents, each one having different
statistical properties related to some breaking characteristics of the material, distributed
randomly in space and/or time [12, 13].

Under applied external stress the solid materials elongate and get strained. The constitu-
tive behavior i.e., the stress � and strain � relation generally is linear for small stresses.
After reaching the elastic limit, the weakest parts of the sample, i.e. defect, dislocation,
pores, and so on, tend to get destabilized and microscopic internal failure is noted. Those
weakest parts are often called nucleation centers, due to the cracks evolve around them, so
that they play a mayor role in the breakdown properties. In that way, the internal structure
of the sample becomes damaged and the nonlinearity appears in the constitutive behavior.
Finally at a critical stress value � � , depending on the material, the amount of disorder and
the specimen size, the solid breaks in two or more pieces, so that the macroscopic fracture
occurs [12, 13].

The major challenge in dealing with fracture problems is to combine the statistical evolu-
tion of damage across the entire macroscopic system and the associated stress redistribu-
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tion to accurately predict the point of final rupture of the material. In doing this linkage,
one has to take care not to make too strong simplifications particularly in the redistribution
rule, where a great deal of the physics of the problem is hidden. The complete analytical
solution is in almost all cases impossible and one has to solve the problem by means of
numerical simulations or to study simplified models which are analytically tractable (at
least in some limits) in order to gain physical insight that guide our understanding.

Models, which computer simulations are based on, can be classified as lattice models and
fiber bundle models. In lattice models the elastic medium is represented by a spring net-
work, and disorder is captured either by random dilution or by assigning random failure
thresholds to the bonds [12]. The failure rule usually applied in lattice models is discon-
tinuous and irreversible: when the local load exceeds the failure threshold of a bond, the
bond is removed from the calculations (i.e. its elastic modulus is set to zero). This kind of
models are relevant for brittle fracture of disordered solid, laminar composites, polymers
and so on, and they are a powerful tools to study the geometrical and topological proper-
ties of those systems. The fiber bundle models are the main topic of the present thesis and
their properties are thoroughly described in the next sections.

3.2 Extreme statistics

The fracture or breakdown of a solid sample is always determined essentially by the ex-
treme statistics of the most dangerous weakest defect cluster or crack within the sample
volume. The general features of this extreme statistics are discussed below.

A solid of linear size � , containing � cracks within its volume is assumed. Each of these
cracks has a probability

� � � � � , � � 	 ��� 
 � � ��� � to fail independently under an applied stress
� , as long as the perturbed or stress-released regions of each of these cracks are separate
and do not overlap. Denoting the cumulative failure probability of the entire sample,
under stress � by � � � � , the probability that the specimen does not fail under the stress � ,
i. e. ����� � � � can be written as [13]

� � � � � � 	
��
��� �
� ��� � � � � � � � (3.1)

which can be approximated by
��
��� �
� ��� � � � � � � � � � ������ � � � !
	 " (3.2)

and finally gives
� � � � 	 ��� � � � 	� !�	 " � (3.3)
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where � � � � denotes the density of cracks within the sample volume � � (coming from the
sum � � over the entire volume), which starts propagating at and above the stress level
� . The above equation arises from the fact that the sample survives if each of the cracks
within the sample survives. This is the essential origin of the extreme statistical nature of
the failure probability (cumulative distribution) � � � � [13].

In material science, the Weibull distribution has been proved to be a good empirical sta-
tistical distribution to represent solid strength [8, 14–16],

� � � � 	 � � � �
�
������� � � (3.4)

where � is the so-called Weibull disorder parameter, which controls the degree of thresh-
old disorder in the system (the bigger the Weibull index, the narrower the range of thresh-
old values), and ���� is a reference load which acts as stress unity. This cumulative distri-
bution comes from the generally accepted assumption that the density of cracks is related
to the external stress � by a power law

� � � � 	
	 �� ���� � � (3.5)

The Weibull distribution is one of the classical extreme value distributions. Only Weibull
and Gumbel distributions

� � � � 	 ���� �� ����� ������� � (3.6)

are reasonable to describe the tensile strength of disordered materials. [8, 14–16]

3.3 Fiber bundle models

Fiber Bundle Models (FBM) form a fundamental class of approaches to the fracture prob-
lem. They are in close connection with Daniels’ and Coleman’s seminal works on the
strength of bundles of textile fibers [9, 10] and have harbored an intense research activ-
ity in recent years[1–4, 17–50]. FBM’s are important, despite their very simple nature,
because they exhibit most of the essential aspects of material breakdown. In addition,
they provide a deep understanding of fracture processes which has served as a starting
point for more complex models [7, 28, 35, 51–55]. Generally, FBM’s simulate the fail-
ure of materials by quasistatic loading, i.e., by very slow steady increase in the load up
to the macroscopic failure. One of the basis outputs is precisely the value of the ultimate
strength. They are constructed so that a set of fibers is arranged in parallel each one having
a statistically distributed strength. The most common cumulative distribution functions,
used to express the breaking properties of individual elements are the Weibull Eq. 3.4 and
the Gumbel distribution Eq. 3.6.
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The FBM’s are generally used to model specimens loaded parallel to the fiber direction,
the fibers break if the load acting on them exceeds their threshold value. Once the fibers
begin to fail one can choose among several load transfer rules, usually also called type of
load sharing. There are two standard types of load sharing comprising the FBM and they
correspond to the extreme limits of stress redistribution. In global load sharing (GLS) ap-
proach, the load of a failed fiber is equally redistributed among the active fibers remaining
in the system. On the other hand, in local load sharing (LLS) the load of a failed fiber
is redistributed among the intact fibers that are nearest neighbors to the failed ones. This
assumes short-range interaction among the fibers and it can not, in general, be solved
analytically. Moreover, some variable range of interaction models have been developed
during the last ten years [7, 28, 53–55].

In fiber-reinforced composites, due to the fiber-matrix interaction a well defined symmet-
ric stress profile � � �
� � is established in the neighborhood of the breaking points. The
variable � is the distance from the break point, in the direction parallel to the fiber. This
aspect has also been addressed using FBM’s [35, 51, 52]. Hence, the stress � � ��� � on
a given broken element of the bundle depends on the chosen cross section. The � � �
� �
decreases asymptotically to zero and at a critical distance 	 � from the breaking point, the
stress on the broken fiber can be neglected. In the framework of the FBM’s, the mean
value of the stress carried by the broken elements has also been analytically deduced [35].

On the other hand, there are fiber-reinforced composites in which the microscopic damage
mechanism is gradual [56, 57]. For this kind of materials a fiber bundle model with a
continuous damage evolution has been recently introduced [58].

3.3.1 FBM, global load sharing approach

As it was already mentioned, the simplest case of load transfer from broken to unbroken
fibers is to assume global load sharing (GLS) which means that after each fiber failure,
the load of the broken fiber is equally redistributed among all the intact remaining fibers.
This model, known as global fiber bundle model, is a mean field approximation where
long range interactions among the elements of the system are assumed and can be solved
analytically [1–4, 19, 20]. The failure process is completely random and the clusters of
broken fibers formed during the evolution of the fracture process in global load sharing
do not have any spatial structure since this case corresponds to the mean field approach.

GLS models have been used to predict the failure under tension in elastic yarns and cables
with no twist, since in these arrangements the load supported by a failing fiber or cable
is shared equally by all the remaining elements in the bundle. The existence of a loose
arrangement and a tension load (for some boundary conditions) facilitates this global
redistribution of load.



Basics 25

�������������������������������������������������������������
�������������������������������������������������������������
�������������������������������������������������������������
�������������������������������������������������������������

�������������������������������������������������������������
�������������������������������������������������������������
�������������������������������������������������������������
�������������������������������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������

�����������������������������������
�����������������������������������
�����������������������������������

FPSfrag replacements

Figure 3.1: A bundle of
�

fibers stretched between two rigid supports with a load
�

Some thermodynamics ideas

Very recently Pride et al [4] have developed a novel and interesting thermodynamics the-
ory which easily explains the main physical aspect of the global load sharing approach.

The model is shown in Fig. 3.1. A collection of
� � fibers are stretched between two rigid

supports.One support is held fixed, while the other is free to move. A load
�

is applied to
the bundle through the free support so that the fibers are in a state of tension. Usually, the
load

�
is normalized by

�
to define the overall tension stress � 	 �

�

� . Each non-broken
fiber in a bundle has the same length � . When � 	 �

, this length is 	 � , then the measure
of strain is � 	 � � � �� � . Experiments may be performed on the bundle either by controlling
the stress � or the strain � .

Each of the fibers has the same Young’s modulus which is taken to be unity ( � 	 � )
so that the axial strain � of each fiber is identical to the tension in the fiber. The

� �
fibers have strengths � � , � � ,... � � � which are independent random variables sampled from
a distribution � � � � , whose cumulative distribution is defined as � ����� 	 � �� � ��� � � � . As
the strain � of the bundle is increased, the individual fibers will break once their tension
(strain) gets to their fixed strength threshold. All of this defines the fiber bundle model
with global load sharing. Of interest are the mechanical properties of such bundles as
averaged over all possible realizations of fiber strengths. The first needed magnitude
is the probability �  of observing one of the realizations to be in a particular state � of
damage when the ensemble as a whole is at an applied strain � . In the fiber bundle model,
a damage state � is defined by which of the

�
fibers are broken. One could define � using
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a local order parameter that is 1 if a fiber is intact and 0 if the fiber is broken.

This theory postulates that the fraction �  of all realizations observed to be in state � is
obtained by maximizing Shannon’s measure of disorder

� 	 �
�
 �  ��� �  (3.7)

subject to constraints. Such constraints must involve the independent variables of
�

. To
identify the independent variables, we consider how the average energy in the ensemble
of bundles changes as the strain is increased.

When � increases to � � ��� , there is both a work carried out in reversible stretching the
fibers and an additional work carried out due to irreversible fiber breaks. Due to breaking,
some of the members of the ensemble (individual realizations of the disorder) will be led
out of their current damage state and into state � , while others that were in state � will
transfer to still different states. If there is a difference in the number of members entering
and leaving state � , there will be a change � �  in the occupation probability of state � and
such changes are what cause Shannon’s disorder measure

�
to change.

The average energy density (average energy normalized by
�

) in the ensemble is given
by

� 	 �  �  �  . Here, �  is the energy density required to create state � at imposed
strain � and averaged over all members that have been led to state � . Depending on the
breaking strengths of a given realization, the work performed in arriving at state � can
be different. It is through �  that all dependence on the quenched-disorder distribution
enters the problem. The change of intern energy that occurs when � increases to ��� ��� is

� � 	
�
 �  � �  �

�
 �  ���  � (3.8)

The first term is the free energy expended in changing the disorder over the collection of
realizations. It is thus proportional to the disorder change and can be written

� � � 	
�
 �  � �  � (3.9)

The second term is written � � � 	
�
 �  ���  � (3.10)

and represents both the reversible stretching energy in those members that did not experi-
ence breaks during the deformation increment, as well as the irreversible energy changes
due to all the breaks that did not result in a net change in the occupation numbers of each
state.
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From these expressions it may be concluded that if
�

is to be treated as a fundamental
function, then

� 	 � � � � � � , or equivalently if
�

is to be treated as the fundamental func-
tion then

� 	 � � � � � � . In other words, the independent variables that must be involved
in the constraints on the maximization of

�
are

�
and � . The proportionality constants �

and
�

are defined

��	 	 � �� � � � and
� 	 	 � �� � ��� � (3.11)

The state function
�

is something different than the overall tension � since we also have
that � ��� 	 � �

. Thus, in general, � � � � � � ����	 � � � so that
���	 � � due to fibers

breaking in a positive increment ��� . If strain were to be decreased, fibers do not break
and so � � 	 �

and the state function
�

would be defined using only the purely elastic part
of the energy changes � �  . Changes in

�
in this case are equivalent to changes in � .

The constraint involving � is that each non-broken fiber throughout the entire ensemble
has the same length which implies �  	�� . The constraint involving

�
is that

� 	
�
 �  �  � (3.12)

Carrying out the maximization of
�

subject to these constraints using Lagrangian multi-
pliers gives the probability distribution as

�  ��� � � � 	 � � � ��� ! � "� ��� � � � (3.13)

where � 	 � � � and where the partition function
�

is defined

� ��� � � � 	
�
 � � � ��� ! � " � (3.14)

The average work density (Hamiltonian) required to create the state � (with �  broken
fibers) averaged over all realizations of the quenched disorder is then in general

�  	���� � �  �
	 � �
 � �
� � � ��� �� � �
 � ��� � � � (3.15)

where the first term denotes the potential energy accumulated in the system, the second
the average energy that is lost when each fiber breaks. and � � � � 	 � �� � �
� � � �
For example, under the special assumption that the breaking strengths are randomly sam-
pled from a uniform distribution in the interval

�  � �  � , we have that � � � � 	 � ,
� � � � 	�� ,

�  	�� � � 
 � � �  � � ��� � ��� � (3.16)
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Nevertheless, the following analysis is valid for any properly normalized quenched-
disorder distribution � ����� .
There are two key average properties upon which all the thermodynamic functions de-
pend; namely, the average fraction of broken fibers in each bundle � �  � ��� and the average
of this fraction squared � � �  � � � � � . Using the exact probability of Eq. (3.13) one obtains� �  ��� 	 �

 �  �
 
� 	 � ����� � (3.17)

which is a known result consistent with the meaning of � � � � . For � � �  � � � � � results� � �  � 	 ��� 	 � � � ��� � � � � � ��� � � ����� �� � (3.18)

Using these two results, the other averages defining the thermodynamic variables are eas-
ily read off.

The average stress � ����� is thus obtained to be

� ��� � 	
�
 �  �  (3.19)

which gives
� ����� 	 � � � � � � � � �$� (3.20)

where � ��� � and � � � � � � are the fraction of failed
� � and intact fibers

� � , respectively.
This constitutive behavior is shown in figure 3.2 for different thresholds cumulative dis-
tributions.

The global strength � � of the sample can be obtained from the maximization of Eq. (3.20)

��� � � �
��� 	 ��� � � � � � � � � � � ���� (3.21)

Then using the extreme necessary condition

��� �����
��� 	 �

(3.22)

we obtain

� � � � � ��� � � � � � � � ���� 	 �
(3.23)

For an uniform cumulative distribution � � � � 	 �� � the relation (3.23) is valid for

� � 	 � �
 � (3.24)



Basics 29

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Uniform
Weibull ρ=2
Weibull ρ=3

PSfrag replacements

�

����
�

Figure 3.2: Numerical (lines) and analytical (symbols) constitutive behaviors of the dry
bundle model in global load sharing approximation, using different thresholds cumulative
distributions

and the strength value is

� � 	 � �
� � (3.25)

Each of the fibers has the same Young’s modulus which is taken to be unity. Hence, the
axial strain � of each fiber is identical to the tension in the fiber. On the other hand for
using a Weibull type cumulative distribution

� ����� 	 ��� � � ���� � ��� (3.26)

relation (3.23) is valid for
� � 	�� � �

�

� (3.27)

and the strength becomes

� � 	 � � ��� ��� �
�

� � (3.28)

Note that those results are independent of the system size, which is characteristic of this
mean field approach.
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Figure 3.3: Pure local load sharing approach, after one fiber breaks the load is redis-
tributed among the first near neighbors. Fiber composites microscopic real scenario and
sketch of a fiber bundle model.

3.3.2 FBM, local load sharing approach

In the local load sharing (LLS) approach for the fiber bundle model the load borne by
failing elements is transferred to their nearest neighbors which represents short range
interactions among the fibers (see Fig. 3.3). In this case the damage in the system is
completely localized. Initially, the evolution of independent clusters of broken fibers is
observed and then global failure is initiated when one cluster reaches a critical size � �
after which the cluster becomes unstable, which induces the macroscopic fracture of the
system.

The size effects on the strength of fiber bundle models in LLS have been extensively
studied. Actually, when local load sharing rules are assumed, the mean strength � � de-
creases with increasing composite size [19, 26, 28, 31, 59]. The relatively weak fibers in
the composite initiate the failure process and govern the strength of the composite. Larger
composites contain a larger number of these weaker fibers. In the local load sharing
framework, these weaker fibers may also serve as potential nucleation sites from which
eventually the critical cluster could grow.

In Ref. [19, 26] the asymptotic dependence between the strength and the system size of
a linear fiber bundle was found to be � � � ���� � . Moreover, for some modalities of stress
transfer, which can be considered as intermediate between global and local load sharing,
� � decreases for large system sizes following the relation � � � ����

!
��� � " as in the case of

hierarchical load transfer models [31, 59].

The Local Load Sharing approach has its application in the failure of composite materials,
and more specifically in the fiber-reinforced composites with elastic fibers embedded in a



Basics 31

brittle matrix. There, as fiber breaks appear, the matrix serves the important function of
transferring the shear traction to the neighborhood of the fiber. This arrangement results
in a very short range of interaction, both laterally across fibers and longitudinally along
the fibers axis, with most of the load going to the nearest neighbors.

3.3.3 Burst statistics and acoustic emission

One of the most interesting aspects of the damage mechanism of disordered solids is that
the breakdown is preceded by an intensive precursor activity in the form of avalanches of
microscopic breaking events [19, 20, 34, 45]. Under a given external load

�
in a bundle of

fibers a certain fraction of fibers fails immediately. Due to the load transfer from broken
to intact fibers this primary fiber breaking may initiate secondary breaking that may also
trigger a whole avalanche of breaking. If

�
is large enough the avalanche does not stop

and the material fails catastrophically. For the dry FBM it has been shown by analytic
means that in the case of global load transfer the size distribution of avalanches follows
asymptotically a universal power law

� � ��� � � � �

(3.29)

with an exponent � 	 �

� , i.e. it does not depend on the disorder distribution. [3, 19,
20, 60]. However, in the case of local load transfer no universal behavior exists, and the
characteristic size of the avalanche is bounded [3, 19–21]. In spite that a power law for the
burst-avalanche distribution is also approximately correct, the exponent � is not universal,
since it depends on the strength distribution as well as the size of the system [3, 19–21] .

It is well known that the breakdown of a disordered solid is preceded by intense precursors
in the form of avalanches. That is why acoustic emission has been used for developing
of a wide class of non-destructive testing (NDT) techniques for practical applications.
It has been observed that the response acoustic emission (AE) to an increasing external
stress takes place in bursts distributed over a wide range of scales. Examples are found
in the fracturing of wood [61], cellular glass [62], and concrete [63]. Those experiments
are usually performed increasing the external pressure slowly until the material (wood,
concrete or fiberglass) macroscopically breaks. The acoustic energy is releasing and its
amplitude shows a net increase as the material approaches the breakdown point. The
integrated distribution of burst energies has often been found to follow a power law with
an exponent between one and two [61, 62].

Application of AE for estimation of failure of disordered materials represents a complex
problem and rises many questions that require solutions. Creation of the basic conception
of composite failure is one of these problems. Without this conception it is impossible to
explain physical processes which generates AE and, thus, to use AE for testing. Due to
great varieties of types of composite materials it is a tough task to find a general model
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for the description of their failure. In this framework the FBM’s are excellent candidate
models. Despite of considerable difference between those models and the actual mate-
rial they explain the main effects to understand the relation between the evolution of the
damage and the acoustic emission process.

3.3.4 Continuous damage model

Recently, a novel continuous damage law has been introduced in lattice models [17] of
fracture. In this model when the failure threshold of a lattice bond is exceeded the elastic
modulus of the bond is reduced by a factor � (

� � � � � ), furthermore, multiple failures
of bonds are allowed. Simulations revealed that under strain controlled loading the system
develops into a self organized state, which is macroscopically plastic, and is characterized
by a power law distribution of avalanches of breaks [17].

An extension of fiber bundle models by implementing a continuous damage law for the
fibers, in the spirit of Ref. [17] was presented in Ref. [58]. It has been demonstrated
in Ref. [58] that the continuous damage fiber bundle model (CDFBM) provides a broad
spectrum of description of materials varying its parameters and for certain parameter set-
tings the model recovers variants of fiber bundle models known in the literature. CDFBM
is relevant for materials where the microscopic damage mechanism is a gradual multiple
failure of components, i.e. matrix and fibers [56, 57]. One of the most appealing results
on CDFBM was that the multiple failure of brittle elements can give rise to a macro-
scopic plastic behavior of the specimen, which is then followed by a hardening or soften-
ing regime, furthermore, under certain conditions damage localization occurs. However,
the microscopic damage process of CDFBM had not been explored. Very recently, the
CDFBM was further developed by Moral et al. [44] taking into account time dependence
in the failure process.

The CDFBM is thoroughly described in chapter 4. One of the goals of this thesis is to
reveal the microscopic failure process in order to understand the emergence of the plastic
macroscopic state. Analytic results are obtained to characterize the damage process un-
der strain controlled loading, furthermore, for stress controlled experiments we develop
a simulation technique and explore numerically the distribution of bursts of fiber breaks.
The effect of localization on the process of damage is clarified and a phase diagram of
the model characterizing the possible constitutive behaviors and burst distributions is con-
structed in terms of the two parameters of the model.
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3.4 Fiber reinforced composite models

More realistic modeling of the damage process of fiber composites under an uniaxial load
have also been performed [7, 28, 53, 55, 64–67]. Nevertheless, even limiting the number
of independent variables needed to describe the internal microstructure of the specimen,
an accurate prediction of the ultimate strength is a computationally demanding task.

So early, based on the continuum theory, Hedgepeth [65] obtained the stress concentra-
tions in two dimensional unidirectional composites consisting of elastic fibers in a matrix
which can only carry shear stresses, with fiber breaks aligned transverse to the fiber di-
rection. Later the same group extended the results to three dimensions [66] .

A powerful numerical technique to investigate the failure of fiber composites has been
developed during the last ten years [7, 28, 53–55]. This technique uses 2D and 3D lattice
Green functions to calculate load transfer from broken to unbroken fibers, and commonly
includes important effects of fiber/matrix sliding. This Green function technique initially
introduced by Zhou and Curtin in 1995, determines the tensile stress field in a model
composite for an arbitrary configuration of broken fibers, and for a given pre-selected load
sharing rule. A Green’s function is a response function

� ���  which relates the displacement
at a point � due to a unit point force

�  applied at point � through

� � 	 � ���  �  � (3.30)

Moreover, the stress profiles in the direction parallel to the fibers is commonly described
as a shear-lag action [7, 28, 53–55, 64, 67].

Shear-lag analysis is one of the most frequently used models for estimating stress dis-
tributions, stress concentrations, and failure in fiber-reinforced composites [64, 67]. The
shear-lag philosophy treats the fibers as one-dimensional spring elements, thus neglecting
the possible variations in axial stress in the fiber cross-sections, and approximates the ma-
trix shear behavior as governed by the axial displacements of the fiber elements bounding
the matrix region. The shear-lag method assumes that the matrix carries no tensile loads
and that the matrix shear � � in the position � is governed by the smaller one of the shear
stresses associated with the neighboring fiber displacements,

� � ����� 	 � � �
� � ����� � � ������� �

� (3.31)

where � � is the displacement of the � ��� near-neighboring fiber to fiber � ,
� � is the matrix

shear modulus, and � is the distance between the fibers.

3D finite element models have recently been proposed and developed by many researchers
[7, 53, 68–70]. Especially, Landis et al. [70] proposed a shear-lag model based on the
finite element method in order to calculate the stress profile around a broken fiber and to
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simulate the damage progress using a Monte Carlo method. They also showed that the
finite element shear-lag model can include the influence of matrix axial stress [68].

Although those models are sophisticated, the applications are limited to well-bonded,
elastic fiber/matrix composite systems. In this case, the inter-facial shear stress near a
broken fiber is quite high, and physically some stress relaxation should occur in real
composites. Therefore, a model which considers additional micro-damage mechanisms
was recently developed [55, 71, 72]. This pure 3D shear-lag model considers the micro-
damage phenomena of inter-facial debonding and inter-facial yielding. Monte Carlo sim-
ulations were conducted to obtain the global strength � � as a function of the fiber strength
and inter-facial properties. The damage progression, the type of inter-facial damage, and
the size-scaling of the tensile strengths, were carefully examined [72].

3.5 Creep and time dependent models

Under high steady stresses fiber composites may undergo time dependent deformation
resulting in failure called creep rupture which limits their lifetime, and hence, has a high
impact on the applicability of these materials as construction elements. Both natural
fiber composites like wood [73–76] and various types of fiber reinforced composites [57,
77–79] show creep rupture phenomena, which have attracted continuous theoretical and
experimental interest over the past years. Creep failure tests are usually performed under
uniaxial tensile loading when the specimen is subjected either to a constant load � 	 or to
an increasing load (ramp-loading). The time evolution of the damage process is monitored
by recording the strain � (see Fig. 3.4) of the specimen and the acoustic signals emitted
by microscopic failure events [57, 77].

The underlying microscopic failure mechanism of creep rupture is very complex depend-
ing on several characteristics of the specific types of materials, and is far from being well
understood. Theoretical studies encounter various challenges: on the one hand, appli-
cations of fiber composites require the development of analytical and numerical models
which are able to predict the damage histories of loaded composites in terms of the specific
parameters of constituents. On the other hand, creep rupture, similarly to other rupture
phenomena, presents a very interesting problem for statistical physics. It is still an open
problem to embed creep rupture into the general framework of statistical physics and to
understand the analogy between rupture phenomena and phase transitions.

A time-dependent method, which describes the failure of materials under stress, within
the fiber bundle paradigm, was early proposed by Coleman in 1957 [10]. In this model a
bundle of elements is considered with each element having a prescribed lifetime � � when
subject to an applied stress � � . When elements fail, their load is redistributed to other
elements of the set according to a prescribed transfer rule. The expressions of the life time
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Figure 3.4: Typical experimental setup of creep experiments

distributions of the fibers for the most simple cases of loading histories were deduced.
Based on those pioneering ideas some interesting analytical and numerical results have
been obtained for the time evolution of the failure [24, 31, 78, 80, 81].

In 1995 Newman et al [31] proposed a phenomenological model for the failure process
of a bundle of

�
independent elements, in global load sharing approximation. So that,

the external stress � � and the stress on an unbroken fiber � are related by the following
expression

� � 	
�
� � � (3.32)

where
� � is the number of unbroken fibers. Moreover the rate at which elements fail is
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approximated as:
� � �
� � 	 ��� � � (3.33)

where the hazard rate � is related to the stress by

� 	�� � 	 �� � � � � (3.34)

Substituting Eq.(3.32), Eq.(3.33) gives

� � �
� � 	 ��� � � ��� � ���� 	 � �� � � � � �� ������ � � (3.35)

Integrating with the initial condition
� � 	 �

at � 	 �
we obtain

� � ��� � 	 � �
�
����� � 	 � �� � � � ��� (3.36)

From this results, the dependence between the external stress � � and the time to failure � �
can be analytically deduced as

� � 	 �� � 	 � �� � � � � (3.37)

Note, the existence of an unrealistic characteristic time scale � � 	 �� � . in this phenomeno-
logical approach Nevertheless, this relation (3.37) is usually accepted by the experimental
community. Moreover, certain local load sharing versions of that model were also consid-
ered, and it was found that the life time distribution of the system also strongly depends
on the breakdown exponent � [22].

Recently, Du and McMeeking [82] developed an useful creep model from the more ba-
sic McLean model of creep in continuous fiber composites [83, 84]. They improved
McLean’s ideas including damage accumulation in the form of fiber fracture as creep
strain increases. In a McLean’s composite loaded in creep, the matrix undergoes stress
relaxation and, in doing so, transfers stress to the fiber reinforcement. The elastic response
of the fibers determines the limit of the composites strain. Thus, in the Du and McMeek-
ing model, the creep strain rate is controlled by the rate of matrix stress relaxation and
the magnitude of the strain at which the global failure occurs is controlled by the stress
supported by the fibers [82].

Guarino et al. [61] have introduced another variant of creep model, taking into account
a thermally activated fracture initiation. There are many different ways to introduce such
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thermally activated rupture. In particular, Phoenix and Tierney [80] derived a breakdown
rule based on the inter-atomic potential between atoms as fitted by a Morse potential.
The approach of Guarino is based on a different spirit, namely thermal fluctuations are
assumed to induce an additional white Gaussian noise in the load carried by the fibers.
Based on a numerical study of this model, they obtained results which agree with a num-
ber of experimental results [85–88].

Other interesting probabilistic approaches to solve the time dependence of the load trans-
fer in models of fracture have been developed [32, 33, 43–50]. In spite of the fact that these
theoretical approaches are so far of the experimental scenario for the real fiber materials
[57, 73–79], the possible parallelism existing between phase transitions and fracture in
disordered materials have been explored using the fiber bundle models. Their results sug-
gest that fracture process can be seen as a second-order (continuous) phase transition for
the global load sharing approximation, whereas for the case of short range interactions the
bundle fails suddenly with no prior significant precursor activity signaling the imminent
collapse of the system, this case being a first-order like phase transition.
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Chapter 4

Bursts in a fiber bundle model with
continuous damage

In this chapter we study the constitutive behavior, the damage process, and the properties
of bursts in the continuous damage fiber bundle model introduced recently. Depending
on its two parameters, the model provides various types of constitutive behaviors includ-
ing also macroscopic plasticity. Analytic results are obtained to characterize the damage
process along the plastic plateau under strain controlled loading, furthermore, for stress
controlled experiments we develop a simulation technique and explore numerically the
distribution of bursts of fiber breaks assuming infinite range of interaction. Simulations
revealed that under certain conditions a power law distribution of bursts arises with an
exponent significantly different from the mean field exponent

�

� . A phase diagram of the
model characterizing the possible burst distributions is constructed [36].

4.1 Model

The modeled system is composed of
�

parallel fibers with identical Young-modulus � �
but with random failure thresholds ��� , � 	 ���	�	�
��� � . The failure strength ��� of individual
fibers is an independent identically distributed random variable with a probability density

� ��� � and a cumulative probability distribution � ��� � 	 � �� � ��� � � � . The fibers are assumed
to have linear elastic behavior up to breaking (brittle failure). Under uniaxial loading of
the specimen a fiber fails if it experiences a load larger than its breaking threshold � � . In
the framework of the model at the failure point the stiffness of the fiber gets reduced by a
factor � , where

�  � � � , i.e. the stiffness of the fiber after failure is ��� � . In principle, a
fiber can fail more than once and the maximum number � � � � of failures allowed for fibers
is a parameter of the model. Once a fiber has failed its damage threshold � � can either be
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Figure 4.1: The damage law of a single fiber of the continuous damage model when
multiple failure is allowed � � for quenched, and � � for annealed disorder. The horizontal
lines indicate the damage threshold ��� .

kept constant for the further breakings (quenched disorder) or new failure thresholds of the
same distribution can be chosen (annealed disorder), which can model some microscopic
rearrangement of the material after failure. The damage law of the model is illustrated
in Fig. 4.1 for both types of disorder. The characterization of damage by a continuous
parameter corresponds to describe the system on length scales larger than the typical
crack size. This can be interpreted such that the smallest elements of the model are fibers
and the continuous damage is due to cracking inside fibers. However, the model can also
be considered as the discretization of the system on length scales larger than the size of
single fibers, so that one element of the model consists of a collection of fibers with matrix
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material in between. In this case the microscopic damage mechanism resulting in multiple
failure of the elements is the gradual cracking of matrix and the breaking of fibers. In the
following we refer to the elements of the continuous damage FBM as fibers, but we have
the above two possible interpretations in mind.

After failure the fiber discharges a certain amount of load which has to be taken by the
other fibers. For the load redistribution we assume an infinite range of interaction among
fibers (mean field approach), furthermore, equal strain condition is imposed which implies
that stiffer fibers of the system carry more load. At a strain � the load of fiber � that has
failed � ��� � times reads as

� � ����� 	�� ��� ��! �#" �$� (4.1)

where � ��� ��! �#" is the actual stiffness of fiber � . It is important to note that, in spite of the
infinite interaction range, Eq. (4.1) is different from the usual global load sharing where
all the intact fibers carry always the same amount of load. In the following the initial fiber
stiffness � � will be set to unity.

4.2 Constitutive laws

This general theoretical framework facilitates to obtain analytic results also for the micro-
scopic failure process. The key quantity is the probability � � � ��� � that during the loading
of a specimen an arbitrarily chosen fiber failed precisely � -times at a strain � , where
��	 � �	�
�	�
� � � � � denotes the failure index, and ��	 �

is assigned to the intact fibers.

� � � ��� � can be cast in the following form for annealed disorder

� � � ��� � 	 � ��� � ��� � � ��� � ����
 ��� � � �

 
� � � (4.2)

for
�  �  ��� � � � ���

and � � � 	��� ��� � 	
� 	��� ����
 ��� � � �  � � �

and for quenched disorder

� � ��� � � 	 ����� � � � �
� � � ��� � 	 � ��� � ��� � � � � � � � � � � for �  �  � ����� � ��� (4.3)

and � � �
	��� � � � 	 � � � ��	������� � � �
It can be easily seen that the probabilities Eqs. (4.2,4.3) fulfill the normalization condition

� 	����
� ���

� � � ����� 	 ��� (4.4)
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Average quantities of the fiber ensemble during a loading process can be calculated using
the probabilities Eqs. (4.2,4.3). For instance, the average load or stress on a fiber � at a
given strain � reads as

� 	��
�
� 	����
� ���

��� � � � ������� � (4.5)

which provides the macroscopic constitutive behavior of the model, and the expression in
the brackets can be considered as the macroscopic effective Young modulus of the sample
( � � 	 � ).
Then we can derive the constitutive law for continuous damage FBM and show how the
FBMs used in the literature can be recovered in particular limits. We first consider the
case in which fibers are allowed to fail only once: the constitutive equation, using Eq.
(4.5) with ������� 	 � reads as

� 	 ��� ����� � � � � � ����� ����� � (4.6)

where � � � � and ��� � ����� are the fraction of failed and intact fibers, respectively, and the
Young-modulus � � of intact fibers is taken to be unity. In Eq. (4.6) the first term provides
the load carried by intact fibers while the second term is the contribution of the failed
ones. Note that this particular case together with the parameter choice � 	 �

(i.e. broken
fibers carry no load) corresponds to the dry FBM [1, 2, 9, 10], while setting � 	 � � � in
Eq. (4.6) we recover the so-called micromechanical model of fiber reinforced ceramic
matrix composites (CMC’s), which has been extensively studied in the literature [5–7].
In CMC’s the physical origin of the load bearing capacity of failed fibers is that in the
vicinity of the broken face of the fiber the fiber-matrix interface debondings and the stress
builds up again in the failed fiber through the sliding fiber-matrix interface.

When the fibers are allowed to fail more than once we have to distinguish between
quenched and annealed disorder.

(i) Quenched disorder: When the fibers are allowed to fail twice the constitutive equation,
using Eq. (4.5) with ��� � � 	 


, can be written as

� 	 ����� � � ��� � � � � � � � ����� � � ��� � ��� � ��� ��� � ��� � � (4.7)

where � � � � � � � ��� � ��� is the fraction of those fibers which failed only once, and � � ��� �
provides the fraction of fibers which failed already twice. In the general case, when fibers
are allowed to fail ������� times, where ��� � � can also go to infinity, the constitutive equation
can be cast into the form

� 	���������� ��� � � � ��	��� ����
��� �

� � � � � ��� � ��� � � ��� � � � � ��� (4.8)

� � �
	��� ��� ��� �
	������� � � �
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(ii) Annealed disorder: As in the previous case we consider first the case in which fibers
are allowed to fail twice, obtaining

� 	 ����� � � ����� � � ����� � � � ��� � � ��� � � � (4.9)

� ��� ��� � � � � � ��� � �
where � � � � ��� � � ��� � � � is the fraction of fibers which failed only once, and � � � � � � ��� �
is the fraction of fibers which failed already twice. Finally, when fibers are allowed to fail
� ����� times, where ��� � � can also go to infinity, the constitutive equation is given by

� 	 � 	��� ����
����� � � � � � � � � � � ��� �

� ����
 ��� � ���

 
� � (4.10)

� � � 	��� � �
	��������
����� � � � � ��� �

In Fig. 4.2 we show the explicit form of the constitutive law for quenched disorder for
different values of ������� in the case of the Weibull distribution

� � � � 	 ��� � � � 		�� ��� � (4.11)

with disorder parameter � 	 

and Weibull modulus ��� 	 � . It is important to remark

that the constitutive laws derived above are exact only in the infinite size limit (
� � � ),

while fluctuations in the value of the failure stress
� � have been observed and studied for

finite size bundles. For this reason, we compare the theoretical results with numerical
simulations of bundles of size

� 	 � 
 � � . The agreement between simulations and theory
turns out to be satisfactory both for quenched (Fig. 4.2) and annealed disorder.



44 4.2 Constitutive laws

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a)

10
8
5
2
kmax

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2

0.3

0.4

0.5
b)

PSfrag replacements

����
�

����
�

Figure 4.2: Constitutive behavior of the model of quenched disorder � � with � � without
residual stiffness at � 	 � ��� for different values of � � � � and ��� respectively. In � � the
lowest curve presents the constitutive behavior of the dry bundle model for comparison.
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Figure 4.3: Comparison of the constitutive behaviors with annealed and quenched dis-
order. We show data with and without remaining stiffness. The inset demonstrates how
the shape of the constitutive curves changes when increasing � � with different types of
disorders.

In Fig. 4.2 a the fibers have � �
	��� residual stiffness after having failed ��� � � times, which
gives rise to hardening of the material, i.e. the � curves asymptotically tend to straight
lines with slope � ��	��� . Increasing ��� � � the hardening part of the constitutive behavior is
preceded by a longer and longer plastic plateau, and in the limiting case of � � � � � �
the materials behavior becomes completely plastic (see Fig. 4.2). A similar plateau and
asymptotic linear behavior has been observed in brittle matrix composites, where the
multiple cracking of matrix turned to be responsible for the relatively broad plateau of the
constitutive behavior, and the asymptotic linear part is due to the linear elastic behavior
of fibers that remained intact after matrix cracking [57].

In order to describe macroscopic cracking and global failure instead of hardening, the
residual stiffness of the fibers has to be set to zero after a maximum number � � of allowed
failures [17]. In this case the constitutive law can be obtained from the general form
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Eqs. (4.8) and (4.10) by skipping the last term corresponding to the residual stiffness of
fibers, and by setting ������� 	 ��� in the remaining part. A comparison of the constitutive
laws of the dry and continuous damage FBM is presented in Fig. 4.2b for the case of
quenched disorder. Annealed disorder yields similar results. One can observe that the
dry FBM constitutive law has a relatively sharp maximum, however, the continuous dam-
age FBM curves exhibit a plateau whose length increases with increasing � � . Note that
the maximum value of � corresponds to the macroscopic strength of the material and in
stress controlled experiments the plateau and the decreasing part of the curves cannot be
reached. However, by controlling the strain � , the plateau and the decreasing regime can
also be realized. The value of the driving stress corresponding to the plastic plateau is
determined by the damage parameter � , while the length of the plateau is controlled by
� � � � and ��� .

In Fig. 4.3, we directly compare the constitutive law for quenched and annealed disorder
and confirm that the differences between the cases are very small. In particular, all the
basic constitutive behavior are reproduced in the two cases.

It is important to remark that the behavior of the dry FBM model ( � 	 �
) under unloading

and reloading to the original stress level is completely linear, since no new damage can
occur during unloading-reloading sequences and the effect of the matrix material is com-
pletely neglected. This also implies that in each damage state the model is completely
characterized by the Young modulus defined as the slope of the unloading curve. If the
value of the damage parameter is larger than

� ���  � � the behavior of the system under
unloading and reloading is rather complicated. Due to the sliding of broken fibers with
respect to the matrix, hysteresis loops and remaining inelastic strain occur (for examples
see Ref. [35] and references therein).

4.3 Damage

The damage state of the model at a certain � can be characterized by the average number
of failures occurred. Based on the probabilities Eqs. (4.2,4.3), we introduce a damage
variable

� ��� � as

� ��� � 	 �
� �����

��	����
� � �

� � � � ��� � � (4.12)

which is an integral quantity of the damage process. From the properties of � � � ��� � it can
be seen that

�
is a monotonically increasing function, and

��� � � � � � . Then the average
number of failures can be obtained as

� � � � � � ��� � . Fig. 4.4 illustrates the behavior of
�

for three different values of ��� � � .
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Figure 4.4: The damage variable
�

for annealed (open symbols) and quenched (filled
symbols) disorder for several different values of � � � � . The damage variable was chosen
to be � 	 � � � .

It can be observed in Fig. 4.4 that the overall behavior of the damage variable
�

is nearly
the same for annealed and quenched disorder, however, there is a significant difference
between the microscopic damage processes in the two cases. In spite of the infinite range
of interaction among fibers, localization of damage occurs for the case of quenched dis-
order. It means that weaker fibers tend to break more often than the stronger ones. For
quenched disorder, the strain � � where the weakest fiber of failure threshold � � reaches
� ����� , is

��� 	 ���
� ��	��� � (4.13)

Hence, at this loading stage the failure index � of fibers as a function of the damage
threshold � can be obtained as

� � � � 	 �
��� � ���

�
��� � � � � � � (4.14)

Localization of damage means that � is a decreasing function of � , and it can be seen from
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Figure 4.5: The failure index � of fibers as a function of their failure threshold � for
several different values of the damage parameter � . The number of fibers was chosen to
be

� 	 � ��� . The continuous lines represent the corresponding analytical results of Eq.
(4.14).

Eq. (4.14) that the localization gets more pronounced when the damage parameter � � � .
This localization effect is illustrated in Fig. 4.5, where the analytic result Eq. (4.14) is
compared to simulations for three different values of � .

4.4 Distribution of bursts

One of the most interesting aspects of the damage mechanism of disordered solids is that
the breakdown is preceded by an intensive precursor activity in the form of avalanches
of microscopic breaking events [19, 20, 34, 45]. Under a given external load

�
a certain

fraction of fibers fails immediately. Due to the load transfer from broken to intact fibers
this primary fiber breaking may initiate secondary breaking that may also trigger a whole
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avalanche of breakings. If
�

is large enough the avalanche does not stop and the material
fails catastrophically. For the dry FBM it has been shown by analytic means that in the
case of global load transfer the size distribution of avalanches follows asymptotically
a universal power law with an exponent � �

� [3, 19, 20, 60], however, in the case of local
load transfer no universal behavior exists, and the avalanche characteristic size is bounded
[3, 19–21].

Introducing a continuous damage law in lattice models, simulations revealed that under
strain controlled conditions the system tends to a steady state, which is macroscopically
plastic [17], similarly to our case. Due to the long range interaction, the plastic steady
state is characterized by power law distributed avalanches of breaks and it has been ar-
gued that the underlying damage mechanism displays self organized criticality [17]. In
the following we study the distribution of bursts in our CDFBM under strain and stress
controlled conditions.

4.4.1 Strain controlled case

Under strain controlled conditions of fiber bundles there is no load transfer from broken to
intact fibers since the load carried by each fiber is determined by the externally imposed
strain and the local fiber stiffness according to Eq. (4.1). This implies that the number
of fibers which break due to an infinitesimal increase of the external strain is completely
determined by the statistics of fiber strength, i.e. by � � � � and � � � � . It has been discussed
in Sec. 4.2 that the plastic plateau and the decreasing part of the constitutive law can only
be realized in strain controlled experiments. To reveal the nature of ductility arising in
our model it turns out to be useful to study the statistics of bursts occurring under strain
controlled conditions.

The basic quantity to characterize bursts is the probability � � �
� �� ��� � � � that a fiber, which

has failed � times up to strain � imposed externally, will fail again under an infinitesimal
strain increment � � . From Eqs. (4.2,4.3) � � �

� �� ��� � can be cast in the form for annealed
disorder

� � �
� �� � � � 	 � ����

 ��� � � �
 
��� ��

�����
� � � � � � � �
� � � � ��� � (4.15)

� 	 � �
�	�	�
� ��� ��� � � �

and for quenched disorder

� � �
� �� � � � 	 � � � � � � � � � � 	 � �	�
�	��� ��� ��� � � � (4.16)
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Figure 4.6: ��� � � � � � � � as a function of � for annealed disorder, comparison of simulations
and analytic results of Eq. (4.15) (continuous lines). The integral of the functions is
always equal to ��� . In the upper part of the figure the corresponding constitutive curves
are also presented for comparison.
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and the total probability of fiber breaking can be obtained by summing over �

� ��� � � ��� � 	 �
� �����

� 	��� ����
� ���

� � �
� �� ��� � � (4.17)

The number of fiber failures occurring in the strain interval � �
� � � � ����� � � can be obtained
as

� � � 	 � � ����� � ��� � � ��� � � �
� (4.18)

This is a very important characteristic quantity of the microscopic damage process since it
can be monitored experimentally by means of acoustic emission techniques. The behavior
of � � � � � is shown in Fig. 4.6 for the softening case with several values of � � , where also the
corresponding constitutive curves are presented. It can be seen that � � � � � has a maximum
where the plastic regime of the constitutive curve starts, and it is a decreasing function of
� in the whole plastic region. Due to the stiffness reduction of the system caused by the
subsequent failures, in the plastic regime the same increase of strain results in smaller and
smaller load increments on fibers, and hence, � � � � � and the number of failures decreases.
It also implies that the breaking activity, which can be measured by acoustic emission
techniques, decreases along the plateau in agreement with experimental results [56].

It follows from the above argument that decreasing the value of the damage parameter
� while ��� ��� is kept fixed, the length of the plastic plateau, preceding the decreasing
or hardening part of the constitutive behavior, increases since larger strain is required
to achieve successive failure. This is demonstrated in Fig. 4.7, where one can also see
that for small � the constitutive curve develops distinct maxima. In order to clarify the
occurrence of these maxima in the plastic plateau, in Fig. 4.7 we also plotted � �
�

� �� for
three different values of � at � 	 � ��� . With decreasing � the length of the plastic plateau
increases, however, the consecutive maxima of � � �

� �� get more and more separated giving
rise to visible maxima in the plateau. The broader the disorder distribution, the smaller is
the value of � where the maxima of � appear.

The energy dissipation rate is also a very important aspect of the ductile regime of the
model. The energy dissipation rate � � � � ��� � is defined so that the energy dissipated due to
the failure of fibers in the strain interval � �
� � � � ��� can be obtained as � � � � ��� � � �

��� � � ��� � 	 � 	��� ����
� ���

� �
 � � � ��� ��� � � � � � � � �� ��� � � (4.19)

where the expression in the brackets provides the energy dissipated by the failure of a fiber
which has already failed � -times. In Fig. 4.8 the energy dissipation rate � ��� � ��� � is plotted
for two different values of ��� ��� . Comparing Fig. 4.8 to the corresponding constitutive
curves in Fig. 4.2 can observe that in the plastic regime � � � � ��� � is constant.



52 4.4 Distribution of bursts

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

pb
kk+

1 (
)

k=0

k=1

k=2

a = 0.4

0.0

0.2

0.4

0.6

0.8

1.0

a = 0.4
a = 0.6
a = 0.7
a = 0.8
k* = 8

PSfrag replacements

����
�

Figure 4.7: � � The constitutive behavior varying the damage threshold at a fixed � � . � �
� � �
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Figure 4.8: The energy dissipation rate for two different values of � ����� .

4.4.2 Stress controlled case

Under stress controlled loading conditions the microscopic dynamics of the damage pro-
cess is more complicated than in the strain controlled case, since the failure of each fiber
is followed by a redistribution of load, which can provoke further fiber breakings resulting
in an avalanche of failure events. Studying the statistics of avalanches under quasi-static
loading of a specimen, important information can be gained about the dynamics of dam-
age, which can be then compared to the results of acoustic emission experiments. Due
to the difficulties of the analytic treatment, we develop a simulation technique and ex-
plore numerically the properties of bursts in our continuous damage fiber bundle model.
The interaction of fibers, i.e. the type of load redistribution is crucial for the avalanche
activity. A very important property of CDFBM is that in spite of the infinite range of inter-
action the load on intact fibers is not equal, but stiffer fibers carry more load, furthermore,
for quenched disorder damage localization occurs, which might also affect the avalanche
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activity.

To implement the quasi-static loading of a specimen of
�

fibers in the framework of
CDFBM, the local load on the fibers

� � has to be expressed in terms of the external driving�
. Making use of Eq. (4.1) it follows that

� 	
��
��� �

� � 	 �

��
��� �

� ��! �#" � (4.20)

and hence, the strain and the local load on fibers can be obtained as

� 	
�� ���� � � � ! �#" � � � 	 � � � ! �#"� ���� � � � ! �#" � (4.21)

when the external load
�

is controlled. The simulation of the quasi-static loading pro-
ceeds as follows: in a given stable state of the system we determine the load on the fibers� � from the external load

�
using Eq. (4.21). The next fiber to break ��� can be found

minimizing
� �� � . Let us define

� 	��
�
�

� �
������ ��� � �� ��� (4.22)

To ensure that the local load of a fiber is proportional to its stiffness, the external load has
to be increased in a multiplicative way, so that

� � � � (4.23)

is imposed, and the failure index of fiber � � is increased by one

� ��� � � � � � � � � � ��� (4.24)

After the breaking of fiber � � , the load
� � carried by the fibers has to be recalculated

making use of Eq. (4.21), which provides also the correct load redistribution of the model.
If there are fibers, whose load exceeds the local breaking threshold, they fail, i.e. their
failure index is increased by 1 and the local load is again recalculated until a stable state
is obtained. A fiber cannot break any longer if its failure index � has reached � � or � �����
during the course of the simulations. This dynamics gives rise to a complex avalanche
activity of fiber breaks, which is also affected by the type of disorder. The size of an
avalanche

�
is defined as the number of breakings initiated by a single failure due to an

external load increment.

Simulations revealed that varying the two parameters of the model � ����� � � , or ����� � and
the type of disorder, the CDFBM shows an interesting variety of avalanche activities,
characterized by different shapes of the avalanche size distributions.
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Figure 4.9: Avalanche size histograms for different values of � ����� and � when fibers have
remaining stiffness and the disorder is annealed. The number of fibers was

� 	 � ����� and
averages were made over 2000 samples. The number of avalanches � of size

�
are shown

to demonstrate also how the total number of avalanches changes.

In Fig. 4.9 the histograms � � � � of the avalanche sizes
�

are shown which were obtained
for a system of remaining stiffness and annealed disorder with Weibull parameters � 	 


,
��� 	 � . Since in the limiting case of � � �

the CDFBM recovers the global load sharing
dry fiber bundle model, in Fig. 4.9 the curves with small � and � � � � 	 � are power laws
with an exponent � 	 � � 
 in agreement with the analytic results [3, 19, 20, 60]. Increasing
the value of � at a fixed ��� � � only gives rise to a larger number of avalanches, i.e. parallel
straight lines are obtained on a double logarithmic plot, but the functional form of � � � �
does not change. However, when � exceeds a critical value � � ( ��� � � ��� was obtained
with the Weibull parameters specified above) the avalanche statistics drastically changes.
At a fixed �  ��� when � ����� is smaller than a specific value ��� ��� � , the avalanche sizes
show exponential distribution, while above ��� � � � the distribution takes a power law form
with an exponent � 	 


� � 
�� � � � � .

Based on the above results of simulations a phase diagram is constructed which sum-
marizes the properties of avalanches with respect to the parameters of the model. Fig.
4.10 demonstrates the existence of three different regimes. If the damage parameter �
is smaller than ��� , the dynamics of avalanches is close to the simple Dry Bundle Model
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Figure 4.10: Phase diagram for the continuous damage model with remaining stiffness
for both types of disorder. The functional form of the avalanche statistics is given in the
parameter regimes. The location of the Dry Bundle Model (DBM) in the parameter space
is also indicated.

characterized by a power law of the mean field exponent ��	 � �

� . However, for �  ���
the avalanche size distribution depends on the number of failures � � � � allowed. The
curve of ��� ��� � in the phase diagram separates two different regimes. For the parameter
regime below the curve, avalanche distributions with an exponential shape were obtained.
However, the parameter regime above ��� � � � is characterized by a power law distribution
of avalanches with a constant exponent � 	 


� � 
 � � � � � significantly different from the
mean field exponent � 	 � �

� [3, 19, 20, 60]. It is important to emphasize that the overall
shape of the phase diagram is independent on the type of disorder (annealed or quenched),
moreover, the specific values ��� � � ��� and ��� ��� � depend on the details of the disorder dis-
tribution � � � � .

A very different behavior was obtained for the system when fibers do not have remaining
stiffness after � � number of failures. Simulations revealed that in this case the avalanche
statistics strongly depends on the type of disorder. When the disorder is quenched the
size distribution of avalanches follows always the dry bundle results for the whole do-
main of parameters, i.e.

� � � � shows power law behavior with an exponent � 	 � �

� .
When ���  � the larger number of breakings results in more avalanches but the over-
all distribution does not change. Nevertheless, when the disorder is annealed the system
shows a more complex behavior. When � falls below a certain critical value ��� the re-
sults are similar to DBM independently of the value of � � , however, for �  ��� a novel
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Figure 4.11: Avalanche size distributions for different values of � � at a fixed �  ��� when
fibers have no remaining stiffness and the disorder is annealed.

avalanche dynamics appears (for the present values of the Weibull parameters ��� � � �����
was obtained). In Fig. 4.11 the avalanche distributions are shown for an � value above
��� , varying the value of � � . It is very important to emphasize that the curves in all the
cases can be well fitted with a power law, however, the value of the exponent depends on
� � . Two extreme cases can be distinguished: for � � 	 � the system recovers the DBM
avalanche dynamics. On the other hand, for � �  � � � � � the exponent of the power laws is
� 	 


� � 
�� � � � � , similarly to the case of remaining stiffness. Below ��� � � � the exponents
� vary as a function of � � between the mean field exponent � and � . The phase diagram
of Fig. 4.12 summarizes the properties of avalanches with respect to the parameters of the
model. It is well known that the breakdown of the reinforced composites is preceded by
intense precursors in the form of avalanches. It has been observed that the acoustic emis-
sion (AE) response to an increasing external stress takes place in bursts distributed over
a wide range of scales. Examples are found in the fracturing of wood [61], and concrete
[63]. Those experiments are usually performed increasing the external traction slowly
until the material (wood, concrete or fiberglass) macroscopically breaks. The acoustic
energy is released and its amplitude shows a net increase as the material approaches the
breakdown point. The integrated distribution of burst energies has often been found to
follow a power law with an exponent between � and



[61, 63], which is good agreement

with our numerical results.



58 4.5 Conclusions

PSfrag replacements

�
1����

1

� �

	 ��� �������	�

	 ��� �	 � ���

DBM

Figure 4.12: Phase diagram for the continuous damage model without remaining stiffness
for annealed disorder. The functional form of the avalanche statistics is given in the
parameter regimes. The location of the Dry Bundle Model (DBM) in the parameter space
is also indicated.

On the other hand, based on Refs. [19] the different types of avalanche size distributions
can also be understood up to some extent in terms of the constitutive curves of Sec. 4.2.
Checking Fig. 4.3 and Figs. 4.9, 4.11 one can recognize that if the constitutive curve has
a single quadratic maximum the corresponding avalanche size distribution of CDFBM
follows the mean field results, while other types of avalanche statistics arise when this
condition does not hold.

4.5 Conclusions

A detailed analytical and numerical study of the continuous damage fiber bundle model
was presented. The model is an extension of the classical fiber bundle model by introduc-
ing a continuous damage law, and allowing for multiple failure of fibers with quenched
and annealed disorders. A simple general derivation of the constitutive behavior of the
model is provided, which also facilitates to obtain analytic results for the microscopic
damage process. Varying its parameters, the model provides a broad spectrum for the
description of materials ranging from strain hardening to perfect plasticity, and hence,
the model can be relevant to describe the damage process of various types of materials
[56, 57, 61, 63]. It is a remarkable feature of the model that multiple failure of brittle
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elements can result in a macroscopically plastic state, which has also been observed ex-
perimentally in materials where the damage mechanism is the gradual multiple failure of
ingredients. We also focused on the microscopic damage process to understand the emer-
gence of the plastic plateau under strain controlled loading, and the resulting avalanche
activity under stress controlled loading of the continuous damage fiber bundle model.
Analytic results are obtained to characterize the damage process along the plateau un-
der strain controlled loading, furthermore, for stress controlled experiments a simulation
technique was developed and the distribution of avalanches of fiber breaks was explored
numerically. Simulations showed that depending on the parameters of the model the dis-
tribution of bursts of fiber breaks can be exponential or power law. Based on extensive
computer simulations, a phase diagram characterizing the possible avalanche distributions
is constructed in terms of the two parameters of the model. One of the most appealing
outcomes is that the model has a broad parameter regime where the avalanche statistics
shows a power law behavior with an exponent significantly different from the well know
mean field exponent, in spite of the infinite range of interaction among fibers. The results
obtained have relevance to understand the acoustic emission measurements performed on
various elasto-plastic materials [61, 63].
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Chapter 5

Evolution of percolating force chains in
compressed granular media

In a granular packing the forces are transfered from grain to grain through their contacts
which one can consider as nearly point-like. In this way the forces go along lines which
can branch at a grain generating a force network. These force networks can be experimen-
tally visualized by means of photoelasticity using grains made of photoelastic material,
and putting them between crossed polarizers and shining light through the setup. When
the packing is loaded and a certain grain is stressed, it rotates the optical axis and lights
up. In this way the force network becomes visible as a beautiful lightened pattern as figure
5.1 shows. One can even observe in these photoelastic experiments that while the external
stress is increased, more and more force lines appear and that each force line undergoes an
erratic transformation before reaching a stationary state at high enough load in which all
the grains light up equally [89]. In this chapter the generation and evolution of percolating
force chains is studied experimentally and theoretically in granular packings subjected to
an uniaxial external load. The macroscopic constitutive behavior and the acoustic signals
emitted by microscopic restructuring events compressing an ensemble of spherical glass
bead confined in a cylinder were measured. Based on an analogy of force lines perco-
lating through the system and fibers of a fiber composite we propose a novel theoretical
approach, namely, an inversion of the Continuous Damage Model of fiber bundles to de-
scribe the stress transmission through granular assemblies. The model naturally captures
the emergence and gradual hardening of force chains and provides analytic solutions for
the constitutive behavior and acoustic activity [90–92].

61



62 5.1 Compression of a Granular Media

Figure 5.1: An image of the force chains in a granular media as viewed between two
crossed circular polarizers. The particles, 3-mm Pyrex spheres are surrounded by an
index-matching fluid. The force is exerted on a piston that covers the top surface [89].

5.1 Compression of a Granular Media

Recently, the behavior of granular materials has been extensively studied under various
conditions due to their scientific and technological importance. Huge experimental and
theoretical efforts have been devoted to obtain a better understanding of the global be-
havior of granular media in terms of microscopic phenomena which occur at the level
of discrete particles [89, 93–98]. Subjecting a confined granular packing to an uniaxial
compression a rather peculiar constitutive behavior can be observed: for small strains a
strong deviation from the linear elastic response can be found implying that the system
drastically hardens in this regime [93, 98]. Linear elastic behavior can only be achieved
asymptotically at larger deformations when the system gets highly compacted. When the
external load is decreased again the system shows an irreversible increase in its effective
stiffness, furthermore, under cyclic loading hysteretic behavior is obtained.

Microscopically, inside a compressed granular packing, stresses are transferred by the
contact of particles. Under gradual loading conditions the particles get slightly displaced
changing their contacts and the local load supported by them, which can be experimen-
tally visualized using photoelastic materials for grains. These experiments revealed that in
a compressed granular system the stresses are transmitted along the direction of the exter-
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Figure 5.2: Experimental set up and sketch of the array of force chains used in the model.
The eight acoustic emission sensors can be observed on the container

nal load by force chains which can branch at the grains and form a complex network [89].
Particles lying between lines of the force network do not support any load and can even
be removed from the packing without changing its mechanical properties. Increasing the
external load, more and more force lines appear and they all undergo erratic changes until
the system reaches a saturated state when all the particles hold typically the same load and
the system behaves as a bulk material. The creation and restructuring of percolating force
chains implies relative displacements of particles which can be followed experimentally
by recording the acoustic waves emitted, however, up to now no such experiments have
been performed systematically. Theoretically, this problem has been mainly studied by
means of contact dynamics simulations using spherical or cylindrical particles, and cellu-
lar automata [95–98]. Computer simulations also revealed the generation and evolution
of force chains in compressed granular materials, however, the statistics of microscopic
restructuring events, the emergence of the array of force chains and their relation to the
macroscopic constitutive behavior remained unclarified.
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5.2 Experiment Description

In collaboration with the Institute of Construction Materials (IWB) at University of
Stuttgart, the evolution of effective force chains percolating through a granular system un-
der uniaxial compression was experimentally investigated. The actual experiments were
performed by the group of Dr. Christian Große.

In the experiments a cylindrical container made of PMMA was filled with glass beads of
5 mm diameter and water. The cylinder has a thickness of 5 mm and a diameter of 140
mm. An uniaxial compression test was carried out applying monotonically increasing
displacements at the top level of the glass beads. Experiments were performed under
strain controlled conditions at a fixed strain rate, i.e. moving the traverse at a constant
speed of some mm/minute. The examples of the nonlinear elastic response of the system
can be observed in Fig. 5.3 where the measured force is presented as a function of relative
displacement of the cylinder top.

To obtain information about microscopic processes, the acoustic waves emitted due to
sudden relative displacements of particles were monitored. Eight acoustic sensors were
placed at the container wall to record the signals emitted during the compression of the
beads, as can be seen in Fig. 5.2. The position of the sensors was chosen in a way that
subsequently a 3D localization would be carried out using the sensor data of the acoustic
emissions. Usually, the acoustic emission signal energy is relatively weak and a proper
coupling of the sensors is required. To enhance the data quality in regard to the signal-to-
noise ratio the space between the beads was saturated with water. The water pressure was
kept constant during the course of the experiments by making holes in the upper side of
the cylinder. An eight channel (two with 10 MHz and six with 1 MHz) transient recorder
was used as an analogue-digital converter to enable the storing of the acoustic emission
waveforms and a signal-based data. This implies a sampling rate of 1 ms or 100 ns.

Typically several hundred signals were recorded during the experiment. The inset of Fig.
5.4 shows the automatically extracted peak amplitudes of the burst signals versus time.
The energy is defined as the integral of the acoustic emission signal amplitude following
the onset time. The energy values of the acoustic emissions are summed up in intervals
of � � seconds to elucidate the time dependent evaluation of acoustic emission activity.
More details of acoustic emission data analysis and especially signal-based techniques
can be found in [99–102]. The statistics of restructuring events is characterized by the
distribution

� ����� of the height � of peaks, which is presented in Fig. 5.4 on a double
logarithmic plot. It can be seen that

� � ��� shows a power law behavior over two orders
of magnitude, the exponent of the fitted straight line is � 	 � � � � � � � � � . The data in Fig.
5.4 are obtained from the eight recorders so that the event size distribution presented is an
average over the event size distributions detected by each recorder independently. In this
way the influence of the position of the recorders is reduced.
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Figure 5.3: Experimental constitutive behavior for different strain rate between� � � � � � � � � and � � � � � � � � �

5.3 Model

We propose a model for the hardening of the individual force lines during compression by
using an analogy to the fiber models used in rupture mechanics to describe the failure of
fiber-reinforced composites. Our theoretical approach is named an inverted fiber bundle
model. Under applied external load the constitutive behavior of the fiber bundle models
are linear for small stresses (see Chapter 3). With increasing stress, the weakest elements
reach their breaking threshold values and the nonlinearity appears. So that, the micro-
scopic damage evolves inside the sample and after each breaking event the fiber becomes
softer. Our model for hardening force networks inverts this situation. The individual lines
of the network are considered as fibers which instead of rupturing under tension do harden
under pressure due to contact rearrangements.

Fiber bundles are composed of parallel fibers of identical elastic properties but stochas-
tically distributed breaking thresholds. A fiber fails during the loading process when the
local load on it exceeds its breaking threshold. Fiber failures are followed by a redis-
tribution of load on the remaining intact fibers according to the range of interaction in
the system. The so-called Continuous Damage Model (CDM) introduced in section 4, is
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Figure 5.4: The statistics of acoustic signals. A power law of an exponent � 	 ��� � � � � � � �
was fitted to the size distribution of the signals of the inset.

particularly suited to model granular materials since it captures gradual stiffness changes
of elements of the model. In our model of compressed packings, force lines formed by
particles are represented by an array of lines organized in a square lattice as illustrated
in the inset of Fig. 5.2. A randomly distributed rearrangement threshold � is assigned to
each line of the array from a cumulative probability distribution � ��� ��

�
� , where ��� denotes

the characteristic strength of force lines.

During the compression process, when the local load on a line exceeds its threshold value
� the line undergoes a sudden restructuring as a result of which it becomes stiffer and
straighter. The lines’ stiffness increases in a multiplicative manner, i.e. the stiffness is
multiplied by a factor �  � at each restructuring so that the constitutive equation of a
single line after suffering � restructurings reads as � 	 � 	 � � � � . Here � 	 denotes the stiff-
ness characterizing single particle contacts, and the exponent � takes into account possible
non-linearities of a single contact like for Hertz law � 	 ��� � . After each rearrangement
the force chain gets a new threshold value (annealed disorder) from a distribution of the
same functional form, but the characteristic strength � � of the distribution is increased in
a multiplicative way so that after � rearrangement events the disorder distribution takes
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Figure 5.5: Constitutive behavior of the model for different values of � � � � and � . The
cumulative Weibull distribution with � 	 


and � � 	 � was used.

the form

� � �
�
��� � 	 � ��� �

� ��� � � � (5.1)

The corresponding distribution density reaches as

� � ��� � 	
� � � � � �� � � (5.2)

The maximum value of possible restructurings ������� is proportional to the number of
contacts, and therefore, to

�
�

� (see inset of Fig. 5.2). The ratio � 	 � � is a very important
parameter of the model, it decides whether the force chain becomes more fragile ( �  � )
or more ductile ( � � � ) as a result of restructuring.
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Following the derivation of the constitutive behavior of the CDFBM of fiber bundles (see
Sec. 4) the relation between the stress � and the strain � is given by

� � � � 	 �
	��������
����� � � � � � � � ��� � ����� � � ���

� ����
 ��� �

 � �  � � � � ��	��� � � � �
��	��� ����
����� � ����� � � � � (5.3)

The first part of Eq. (5.3) contains the elements which have undergone � � � ����� restruc-
turings characterized by the local stiffness � � � � . The second part includes the elements
which have already reached ��� � � and the local stiffness � � � �
	��� .
When the particles are elastic � �
	��� is a finite value related to the stiffness of an individual
particle as ��� 	 � ��	��� � � . In this cases after all the fibers reach the allowed restructuring
event number ��� � � the system will have the same constitutive behavior as a single contact.

The nonlinear stress-strain curves observed in the figures 5.5 � � , � � and � � are in good
qualitative agreement with previous experimental and numerical works [93, 95, 96]. The
superposition of the curves for �  � and big values of � ����� supports that the solution
for � ����� 	 � will have the same shape. Moreover for � � � the shape of the curves
suggests the existence of a finite and non-zero critical value of strain ��� .
For the case � 	 � the stress and the threshold stress increase with exactly the same pref-
actor. Therefore the cumulative distribution for restructuring the � th time is independent
on � and consequently the same for all the fibers and only depends on the strain value
� � ��� � � � 	 � � � � � . For that case the constitutive law Eq. (5.3) takes de form

� ����� 	 � � � ����� � � � � � � 	��� ����
����� � � � ��� � � � � � ��	��� � � � � � � � �
	��� � (5.4)

It can be seen from Eq. (5.4) that if the maximum number � � � � of possible restructuring
events goes to infinity the stress � has finite values only for � � ������� � � . In this case the
summation can be performed in the first term, while the second term tends to zero, and
the constitutive equation takes the form

� ����� 	�� � � � � ��� � ��������� �
��� � � ������� � (5.5)

It follows that the stress � diverges when � approaches a critical value ��� , where � � satisfies
the equation � ��� � ��� 	 � � � . Expanding � ��� � � into a Taylor series at � �

� ����� � 	 � ����� � � � � ����� � � � � � � � � ���
�	�
� (5.6)

and assuming linear contact ( � 	 � ) the behavior of � in the vicinity of ��� reads as:

� � � � � � � � � � � ��� � (5.7)
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with

� � 	 �
� � (5.8)

This result is also valid for other distributions, while the critical value ��� changes. For a
cumulative Weibull distribution

� � � � � 	 ��� � � ! 		��� " � � (5.9)

a value of critical strain

� � 	
�
��� 	 �

� � � � �
�

� (5.10)

was obtained.

It means that the stress � shows a power law divergence when � approaches the critical
value �
� . The value of the exponent is universal; it does not depend on the form of disorder
distribution � ������� , while the value of � � depends on it. It is interesting to note that in
Ref. [97] the same power law divergence with an exponent 5.7 was found in large scale
molecular dynamics simulations of a hard sphere system. Unfortunately, this divergence
in the vicinity of �
� could not be studied with the present experimental setup.

When the number of force lines is fixed it is possible to obtain analytic results also for
the statistics of restructuring events. Under strain controlled loading of a fiber bundle
the load on a fiber is determined by its local stiffness and the strain imposed externally.
Applying the CDM to compressed granular systems the same assumption is made, i.e.
there is no load redistribution among existing force lines, hence, the restructuring of a
force line does not affect other elements of the system. Restructuring occurs during the
compression process when the local load on a force line exceeds its threshold value. If
the new threshold value, assigned to the force line after rearrangement, is smaller than
the local load, the force line undergoes successive restructurings until it gets stabilized.
The number of steps to reach the new stable state defines the size � of the restructuring
events. The number of restructuring events

�
� � � of size � starting in force chains which

have already suffered � restructurings can be deduced as
�
� � � � � �� � 	 � ��� � � � � �

������ ����� � � � � � � � ��� � (5.11)

for � � �  � � � � � � , and
�
� � � � � �� � 	 � ����� � � ��	�������� ����� � (5.12)

for � � � 	���� ���
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Figure 5.6: Conditional probability for the appearance of an event of size � 	 

if the line

of force had already � reordering events. Both numerical and analytical results are shown.

This conditional probability is normalized by the total number of elements
� � and is

shown in Fig. 5.3 for severals values of � . The number of events of size � , i. e.
� ����� is

deduced taking into account the whole compression process and all the starting configu-
rations. Hence, this magnitude can be calculated as

� � ��� 	 � 	��� � ��
� ��� � �

�

�
�
� � � � � �� � � � � � � ��

�
��	����� � � � ��� �� � ��� � (5.13)

Here � � denotes the strain value for which all the force chains have reached the maximum
number � ����� of reordering events, thus � ����� � � 	 � follows. Finally, substituting Eqs.
(5.11,5.12) into Eq. (5.13)

� � ��� 	 � 	��� � ��
� ��� �

�
� � � �

� ��� � ����� � � � � � �
� � �
	������� � � � (5.14)

and performing the calculations yields

� � ��� 	 � ��� � (5.15)



Evolution of percolating force chains in compressed granular media 71

10
0

10
1

10
2

s

10
−8

10
−6

10
−4

10
−2

10
0

D
(s

)

τ > 1

kmax  = 10
kmax  = 20
kmax  = 50
kmax  = 100

10
0

10
1

10
2

s

10
−8

10
−6

10
−4

10
−2

10
0

D
(s

)

τ < 1

kmax  = 10
kmax  = 20
kmax  = 50
kmax = 100

10
0

10
1

10
2

s

10
−3

10
−2

10
−1

10
0

D
(s

)

τ = 1

kmax = 10
kmax = 20
kmax = 50
kmax = 100

Figure 5.7: Distributions of local avalanches for different values of � .

The distribution of microscopic restructuring events exhibits an universal power law be-
havior with an exponent 1, which is completely independent on the disorder distribution.

The numerical results obtained applying the algorithm of the continuous damage model
(see Chapter 4) show how the statistics of the process is governed by the value of � . Our
results reveal the existence of different local avalanche regimes which was deduced check-
ing the shape of the local avalanche size distributions. In Fig. 5.7 the results obtained for
different values of � are shown. The condition �  � (see Fig. (5.7) � )) implies whether
one element of the system reaches the restructuring threshold value with high probabil-
ity in the next step it will reach again the new restructuring threshold value. When the
element reached the maximum value of ������� the local avalanches stop. This results in a
peak at the value � 	 ��� � � in the local avalanche distribution which coincides with the
cut off value

� � 	 � � � � .
The system exhibits the inverse behavior for ��� � . In those conditions whether one
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element of the system reaches the restructuring threshold value, the probability to reach
the new restructuring threshold value in the next step is very low. This effect is reflected
by the shape of the local avalanche size distribution and its maximum at � 	 � , Fig. 5.7 � � .
In this case the results for different ��� � � imply that the local avalanche size distribution
for hard particles ( ������� 	 � ) will have the same shape and a finite cut off

� � .
In the case � 	 � , for all the values of ������� the avalanche size distributions have a power
law shape with an universal exponent ��	 � � . Only the statistics of the events changes
with the increase of ������� .
The normalized total number of restructuring events

���

�

� is presented in the Fig. 5.8 for
different system sizes. The collapse of the curves shows that the results are independent on
the transversal area of the sample. Moreover, the numerical results suggest the existence
of a logarithmic dependence between the total number of events and � ����� , in the case
� 	 � . Integrating the equation (5.15),

� �

�

� is deduced as

� �� � 	
� 	����
� � �

�
�
� � �
	���

�
� �
�
	 � � � � � ��� (5.16)

As it was already pointed out, the maximum number of restructuring events � ����� is related
to the height of the container � and the particle size 	 � as ��� � � �

�
�

� . In this manner, with
the assumption of � 	 � , the above result Eq. 5.16 could be used to argue about the
type of relationship between the total number of events

� � and the geometrical size of the
particles 	 � and the container � , since it holds

� �� � � � � � � �	 � � � (5.17)

At the time of writing this thesis, experiments with different ratios
�
�

� were being accom-
plished. Moreover, it can be seen in Fig. 5.8 that for �  � a saturation of the total number
of events

� � appears, and for � � � it diverges with increasing � � ��� .

5.4 Application

Experiments and discrete element simulations [89, 98] have revealed that the number of
effective force chains increases during the compression process until it reaches a satura-
tion value. To capture this effect in our model, for the number of elements we prescribe
the form � � � � 	 � � � � � � � (5.18)

where
� � denotes the saturation number of chains, and the profile

� � � � has the property� � � � � � with increasing � . Hence, the number of force lines � � emerging due to an
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Figure 5.8: Total number of restructuring events for different values of � and different
system sizes

infinitesimal deformation increment from � to � � ��� is

� � 	 � � � ��� � ��� � (5.19)

where � � � � 	�� � � � � � ���$� (5.20)

As shown before, following the derivation of the constitutive behavior of the CDFBM of
fiber bundles (see Chapter 4), the macroscopic constitutive equation of the compressed
granular system for � 	 � can be cast into the form

� ����� 	 � � �
	��� ����
����� � �� � � � � � � � � � � � � � � � �� ��� � � � � � � � � � � � � � � ��� ��� �

� � �� � ��	������� � � � � � � � � � � � �
	���� � � � � � � ��� � � (5.21)

The first part of Eq. (5.21) contains the elements which have undergone � ��� ����� restruc-
turings characterized by the local stiffness � � � � . The second part includes the elements
which have already reached ��� � � and the local stiffness � � � ��	��� . Eq. (5.21) takes also
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Figure 5.9: Constitutive behavior for small strain values measured experimentally and
comparison to the theoretical results.

into account that the local strain of force lines � � � � is different from the externally im-
posed strain value � since it also depends on the initial strain � � . The integral is performed
over the whole loading history to take into account all the generated lines. For explicit
calculations we imposed an exponential form

� ����� 	 � � ��� �� � �� � (5.22)

for the number of chains.

The best fit obtained to the experimental data is presented in Fig. 5.9 where the force� 	 � � � is plotted against deformation � . It can be seen that using Eq. (5.21) a good fit
was achieved with physically reasonable parameter values. A power law of an exponent
2.6 was obtained as a good fit to the measured data in a reasonable agreement with former
experiments of Ref. [93]. The maximum possible number of percolating force chains

� �
that can emerge in the system was estimated as the ratio of the total area of the container� � to the cross section of a single particle

�
� , i. e. we choose

� � 	 � �
���

	 � ��� . An
uniform distribution of the restructuring thresholds and a big value of � � � � were used. The
value of the other parameters are � � 	 � ����� �� � � � � 	 � � , � 	 � � � � and �
	 � 	 ��� � � .
The value of � falls close to one meaning that a single restructuring gives rise only to
a slight increase of stiffness of a force chain. Model calculations revealed that the zero
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Figure 5.10: Event sizes � occurring during the loading history � , and their size distribu-
tion

� � ��� on a double logarithmic plot.

derivative at the starting part of the constitutive curve is due to the gradual creation of load
bearing force chains [95, 96]. The small value of � implies that the generation of new
force chains stops at a relatively small strain value, and hence, the later rapid increase of�

as a function of � is mainly caused by the hardening of the existing force lines occurring
due to restructurings.

Numerical simulations revealed that the universal power law behavior also holds when the
gradual creation of force chains is taken into account, i.e. when the system is described
by the full Eq. (5.21). The statistics of restructuring events obtained by Monte Carlo
simulations taking also into account the gradual emergence of force lines is presented in
Fig. 5.10. The power law behavior of the analytic prediction is verified. It is important to
emphasize that the theoretical results on event statistics (see Fig. 5.10) are in a very good
quantitative agreement with the experimental findings (see Fig. 5.4).

Note, that the functional form and the value of the exponent of
� ����� in the analytic cal-

culations is mainly the consequence of the locality of restructurings due to the absence of
load redistribution. Hence, entire restructuring events of size � can occur on a single force
line before any of the other force lines is modified. The excellent agreement observed
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indicates that this is likely the microscopic mechanism responsible for the power law
statistics of acoustic signals observed experimentally. At the time of writing this thesis,
the localization of the acoustic emission sources was being experimentally accessed.

5.5 Conclusion

The evolution of effective force chains percolating through a compressed granular system
was investigated. The experiments were made by compressing an ensemble of spherical
particles in a cylindrical container monitoring the macroscopic constitutive behavior and
the acoustic signals emitted by microscopic rearrangements of particles. We have pre-
sented a simple model of parallel force lines which harden under load due to restructuring
events. If the increase of stiffness and the increase in the restructuring threshold stress are
equal, the model can be solved analytically. So that, we applied the continuous damage
model of fiber bundles to describe the evolution of the array of force chains during the
loading process. The model provides a nonlinear constitutive behavior in good quantita-
tive agreement with the experimental results. The stress � shows a power law divergence
when � approaches the critical value � � . The value of the exponent is universal; it does
not depend on the form of disorder distribution � � � � � , while the value of �
� depends on it.
Unfortunately, this divergence in the vicinity of � � could not be studied with the present
experimental setup. The rearrangement of granular materials results in a spontaneous re-
lease of acoustic energy radiating waves similar to that observed in other brittle materials
under load. The amplitude distribution of acoustic signals was found experimentally to
follow a power law with an exponent � 	 ��� � � � � � � � which is in a good agreement with
the analytic solution of the model

� ����� 	 � ��� . We argue that this is a consequence of the
locality of restructurings due to the absence of load redistribution.



Chapter 6

A fracture model with variable range of
interaction

In this chapter, it presents a fiber bundle model where the interaction among fibers is
modeled by an adjustable stress-transfer function which can interpolate between the two
limiting cases of load redistribution, the global and the local load sharing schemes is
introduced. By varying the range of interaction several features of the model are numer-
ically studied and a crossover from mean field to short range behavior is obtained. The
properties of the two regimes and the emergence of the crossover in between are explored
by numerically studying the dependence of the ultimate strength of the material on the
system size, the distribution of avalanches of breakings, and of the cluster sizes of broken
fibers [38].

6.1 Model

The fracture of heterogeneous systems is characterized by a highly localized concentra-
tion of stresses at the crack tips that makes possible the nucleation of new cracks at these
regions such that the actual crack grows leading to the final collapse of the system. In
elastic materials, the stress redistribution follows a power law,

� ����� ��� � � � (6.1)

where � ����� is the stress increase on a material element at a distance � from the crack
tip. In fiber-reinforced composites the stress is transfered from the broken elements to
the unbroken ones through the matrix. In the neighborhood of a single fiber embedded
in an infinite matrix , the stress profile can also be approximated by Eq. 6.1. Moreover,

77
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Figure 6.1: Illustration of the model construction.
�

indicates a fiber, which is going
to break, and  is an intact fiber in the square lattice.

the global and local load sharing approaches, introduced before and widely used in fiber
bundle models of fracture, are covered by Eq. 6.1 as the limiting cases 	 � �

, and
	 � � , respectively.

Motivated by the above statements we introduce a fiber bundle model where the load
sharing rule takes the form of Eq. (6.1). Suppose a set of

�
parallel fibers each one having

statistically distributed strength taken from a cumulative distribution function � � 		 � � and
identified by an integer � , �  �  �

on a square lattice. Thus, to each fiber � a random
threshold value � ����� is assigned. The system is driven by increasing quasistatically the
load on it, which is performed by locating the fiber which minimizes � � � � ����� and adding
this amount of load to all the intact fibers in the system. This provokes the failure of
at least one fiber which transfers its load to the surviving elements of the set. This may
provoke other fractures in the system which in turn induce tertiary ruptures and so on until
the system fails or reaches an equilibrium state where the load on the intact fibers is lower
than their individual strengths. In this later case, the slow external driving is applied again
and the process is repeated up to the macroscopic failure of the material. The number of
broken fibers between two successive external drivings is the size of an avalanche � , and
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the number of parallel updates of the lattice during an avalanche is called its lifetime � .

We now focus on the load transfer process following fiber failures. We suppose that,
in general, all intact fibers have a nonzero probability of being affected by the ongoing
failure event, and that the additional load received by an intact fiber � depends on its
distance �
�  from fiber � which has just been broken. Furthermore, elastic interaction is
assumed between fibers such that the load received by a fiber follows the power law form
of Eq. (6.1). Hence, in our discrete model the stress-transfer function

� ���%�  ��	 � takes the
form

� � �
�  � � � 	 � � ��  � � (6.2)

where 	 is our adjustable parameter,
�

is given by the normalization condition

� 	
�
�����

� � ��  � (6.3)

the sum runs over the set � of all intact elements and � �  is the distance of fiber � to the
rupture point �
�  ���  � , i.e.,

�
�  	�� �
� � � �  � � � � � ��� �  � � (6.4)

in 2D. Periodic boundary conditions are assumed so that the largest � value is � � ��� 	� � ! � ��� "� , where � is the linear size of the system. We note here that the assumption of
periodic boundary conditions is made for simplicity. In principle, an Ewald summation
procedure would be more accurate. The model construction is illustrated in Fig. 6.1. It is
easy to see that in the limits 	 � �

and 	 � � we recover the two extreme cases of load
redistribution in fiber bundle models: the global load sharing and the local load sharing,
respectively. We should note here that, strictly speaking, for all 	 the range of interaction
covers the whole lattice. However, when changing this exponent, one moves from a very
localized effective range of interaction to a truly global one as 	 approaches zero. So, we
will refer henceforth to a change in the effective range of interaction.

In summary, during an avalanche of failure events, an intact fiber � receives at each time
step � the load borne by failing elements � . Consequently, its load increases by an amount,

� ����� � ��� 	 � � ��� � � � ��� �
�

 ��� ! � "
�  ��� � � � ��� � ���
�  ��	 � � (6.5)

where the sum runs over the set � � ��� of elements that have failed in a time step � . Thus,

� � ����� �� � 	
��

� � �
� ������� � ��� (6.6)

is the total load element � receives during an avalanche initiated at � � and which ended
at ��� � � . In this way, when an avalanche ends, the external field is applied again and
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another avalanche is initiated. The process is repeated until no intact elements remain in
the system and the ultimate strength of the material � � , is defined as the maximum load
the system can support before its complete breakdown.

Unfortunately, the complete analytical approach to the general model introduced here is
not possible. There are a few cases where this task can be achieved such as the global load
sharing model where the load acting on surviving elements for a given external force

�
is

known [1–3, 19, 20]. The main difficulty is that in order to analytically solve the problem,
one needs to know the transition probabilities for all the possible paths leading the system
from the state in which all the elements are intact to the state in which they have failed.
This calculation eventually becomes impossible for large system sizes. So, a first step is
to learn from Monte Carlo simulations which, furthermore, allows us to better understand
the physical mechanisms of fracture and to study models difficult to handle analytically
as well as to guide our search for analytical calculations.

6.2 Monte Carlo simulation of the failure process

We have carried out large scale numerical simulations of the model described above in
two dimensions. The fibers are identified with the sites of a square lattice of linear size �
with periodic boundary conditions. The failure process is then simulated by varying the
effective range of interaction between fibers by controlling 	 , and recording the avalanche
size distribution, the cluster size distribution and the ultimate strength of the material for
several system sizes. Each numerical simulation was performed over at least 50 different
realizations of the disorder distribution.

Figure 6.2 shows the ultimate macroscopic strength of a bundle of single fibers which

have a cumulative Weibull threshold distribution � � 		 � � 	 � ��� � ���� � ��� . In that case a
disorder parameter � 	 


and a characteristic strength � � 	 � were used. Different values
of the parameter 	 were explored and the calculation was made for several system sizes
from � 	 ��� to � 	 
 � � . Clearly, two distinct regions can be distinguished. For small 	 ,
� � is independent, within statistical errors, of both the effective range of interaction and
the system size. At a given point 	 	 	 � a crossover is observed, where 	 � falls in the
vicinity of 	 	 


. The region 	  	 � might eventually be further divided into two parts,
the first region characterized by the dependence of the ultimate strength of the bundle on
both the system size and the effective range of interaction; and a second region where
� � only depends on the system size. This would mean that there might be two transition
points in the model, for which the system displays qualitatively and quantitatively differ-
ent behaviors. For 	  	 � the ultimate strength of the bundle behaves as in the limiting
case of global load sharing, whereas for 	 � 	�� the local load sharing behavior seems
to prevail. Nevertheless, the most important feature is that when decreasing the effective
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Figure 6.2: Variation of the material strength with
�

for several values of 	 . Note that
when 	 increases the critical load vanishes in the thermodynamic limit, whereas, for small
	 it has a nonzero value independent on the system size.

range of interaction in the thermodynamic limit, for 	  	�� , the critical load is zero. This
observation is further supported by Fig. 6.3, where we have plotted the evolution of � � as
a function of ���� � for different values of the exponent 	 . Here, the two limiting cases are
again clearly differentiated. For large 	 all curves decrease when

� � � as

� � � � � � �
� � � ��� � (6.7)

This qualifies for a genuine short range behavior as found in LLS models where the same
relation was obtained for the asymptotic strength of the bundle [19, 103]. It is worth noting
that in the model we are analyzing, the limiting case of local load sharing corresponds to
cases in which short range interactions are considered to affect the nearest and the next-
nearest neighbors. In the transition region, the maximum load the system can support
also decreases as we approach the thermodynamic limit, but in this case much slower
than for 	�� 	�� . It has been pointed out that for some modalities of stress transfer,
which can be considered as intermediate between GLS and LLS, � � decreases for large
system sizes following the relation � � � ����

!
��� � " as in the case of hierarchical load transfer

models [31]. In our case, we have fitted our results with this relation but we have not
obtained a single collapsed curve because the slopes continuously vary until the LLS limit
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Figure 6.3: Ultimate strength of the material for different system sizes as a function of
the effective range of interaction 	 . A crossover from mean field to short range behavior
is clearly observed.

is reached. Finally, the region where the ultimate stress does not depend on the system
size shows the behavior expected for the standard GLS model, where the critical load can
be exactly computed as 	 �	 � 	 ��� ��� ������� for the Weibull distribution. The numerical values
obtained for different values of � are in excellent agreement with this later expression.
To determine the position of the crossover point more accurately we also analyzed the
behavior of � characterizing the strength � of the logarithmic size effect in Eq. (6.7), as
a function of 	 (see Fig. 6.4). The fracture process can also be investigated by looking
at the precursory activity before the complete breakdown. The statistical properties of
rupture sequences are characterized by the avalanche size distribution which from the
experimental point of view could be related to the acoustic emissions generated during the
fracture of materials. Figure 6.5 shows the avalanche size distribution for different values
of 	 . Again, we observe that for decreasing effective range of interaction (increasing 	 )
there is a crossover in the distribution of avalanche sizes. The upper curves can be very
well fitted by a power law

� � � � � � � � � (6.8)

with � � � �

� , the value obtained for long range interactions [3, 19, 20]. As soon as the
localized nature of the interaction becomes dominant 	  	�� , the power law dependence
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is observed

of the avalanche size distribution with the exponent � � � �

� does not apply anymore. The
lack of a characteristic size is a fingerprint of a highly fluctuating activity that could be
related to the very nature of the long range interactions. The avalanche size distribution
is a measure of causally connected broken sites and the spatial correlations in this limit
are ruled out. All the intact elements have a nonzero chance to fail independent on the
(spatial) rupture history, and any given element could be near to its rupture point regard-
less on its position in the lattice. This is not the case when 	 is large enough and the short
range interaction prevails. Now, the spatial correlations are important and concentration
of stress takes place in the fibers located at the perimeter of an already formed cluster.
Fibers far away from the clusters of broken elements have significantly lower stresses and
thus the size of the largest avalanche is reduced as well as the number of failed fibers
belonging to the same avalanche, leading to a lower precursory activity.

A further characterization of what is going on in the fracture process can be carried out
by focusing on the properties of clusters of broken fibers. The clusters formed during the
evolution of the fracture process are sets of spatially connected broken sites on the square
lattice. We consider the clusters just before the global failure and they are defined taking
into account solely nearest neighbor connections. It is important to note that the case of
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Figure 6.5: Avalanche size distributions for different values of the exponent of the stress-
transfer function 	 . The upper group of curves can be very well fitted with a straight line
with a slope � 	 � �

� ( � 	 
 � � ).

global load sharing does not assume any spatial structure of fibers since it corresponds to
the mean field approach. However, in our case it is obtained as a limiting case of a local
load sharing model on a square lattice, which justifies the cluster analysis also for GLS.
Fig. 6.6 illustrates how the cluster structure just before complete breakdown changes for
various values of 	 .

In the limiting case of global load sharing the breaking of fibers is a completely random
nucleation process, there is no correlated crack growth in the system, and the fiber failure
which results in the catastrophic avalanche occurs at a random position in the system. As
long as this microscopic damage mechanism holds when changing the exponent 	 , the
system will behave in a global load sharing manner. On the other hand, when the load
sharing is very localized, at the beginning of the failure process we get random nucleation
of microcracks but later, correlated growth of clusters of broken fibers occurs. It then
follows that along the perimeter of the clusters there is a high stress concentration and
the final avalanche is driven by a fiber located at the perimeter of one of the clusters
(the dominant one). At the fibers far away from the perimeter, the stress concentration
is significantly lower, and the stress distribution is very inhomogeneous. In the case of
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Figure 6.6: Snapshots of the clusters just before the complete breakdown of the material.
The change in the structure of the clusters can be seen. The values of 	 are: a) 	 	 �

, b)
	�� 	 


�


, c) 	 	 � , and d) 	
	 �

.

localized load sharing this mechanism gives rise also to the logarithmic size effect as
obtained also for the random fuse model [104].

We have also recorded the cluster size distribution as a function of the effective range of
interaction. Figure 6.7 shows the size distribution � ��� � � , of the two-dimensional clusters
for several values of the exponent of the load sharing function. The distributions have
clearly two groups as found for other quantities also. In the limit where the long range
interaction dominates, the clusters are randomly distributed on the lattice indicating that
there is no correlated crack growth in the system as well as that the stress is not concen-
trated in regions. The cluster structure of the limiting case of 	 	 �

can be mapped to
percolation clusters on a square lattice generated with the probability

� � � � � � � � � ,
where � � is the fracture strength of the fiber bundle. However, the value of � � � ��� depends
on the Weibull index � and is normally different from the critical percolation probability

� � 	 � � � ��
�� � � of the square lattice. � � � � � 	 � � is obtained for � 	 ��� � � � 
 , hence,
for physically relevant � values used in simulations the system is below � � at complete
breakdown. This argument also justifies the exponential-like shape of the cluster size
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distributions of GLS in Fig. 6.7. This picture radically changes when the short range in-
teraction prevails. In this case, the stress transfer is limited to a neighborhood of the failed
elements and there appear regions where a few isolated cracks drive the rupture of the ma-
terial by growth and coalescence. Thus, the probability of the existence of a weak region
somewhere in the system is high and a weak region in the bundle may be responsible for
the failure of the material. The differences in the structure of clusters also explain the lack
of a critical strength when

�
goes to infinity in models with local rearrangement of stress.

Since in the GLS model the clusters are randomly dispersed across the entire lattice, the
system can “store” more damage or stress, whereas for LLS models a small increment of
the external field may provoke a runaway event ending with the macroscopic breakdown
of the material. Up to now, the change of the behavior of the system was observed for a
certain value of 	 analyzing various measured quantities. All these numerical results sug-
gest that the crossover between the two regimes occurs in the vicinity of 	 	 


. Further
support for the precise value of 	 � can be obtained by studying the change in the cluster
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Figure 6.7: Cluster size distributions for different values of the stress-transfer function
exponent 	 . Clearly, two different groups of curves can be distinguished as also found for
other quantities ( � 	 
 � � ).
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Figure 6.8: Moments of the cluster size distribution as a function of 	 (see text for details
on the definition of � � ). A sharp maximum is observed at 	 	 	 � � 


�



for the average
cluster size � � � � 	 � �� � .

structure of broken fibers. The moments of � � � � � defined as

� �
� � � �� � ��� � � � � (6.9)

where � � is the � th moment, describe much of the physics associated with the breakdown
process. We will use these moments to quantitatively characterize the point where the
crossover from mean field to short range behavior takes place. The zero moment � � 	 � �
is the total number of clusters in the system and is plotted in Fig. 6.8a as a function of
the parameter 	 . Figure 6.8b represents the variation of the total number of broken sites� � (the first moment

� � 	 � � ) when 	 increases. It turns out that up to a certain value
of the effective range of interaction,

� � remains constant and then it decreases fast until
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a second plateau seems to arise. Note that the constant value of
� � for small 	 is in

agreement with the value of the fraction of broken fibers just before the breakdown of the
material in mean field models. This property clearly indicates a change in the evolution of
the failure process and may serve as a criterion to calculate the crossover point. However,
a more abrupt change is observed in the average cluster size � �
� � at varying 	 . According
to the moments description, the average cluster size is equal to the second moment of the
cluster distribution divided by the total number of broken sites, i.e. � �
� � 	 � � � � � . It can
be seen in Fig. 6.8d that � � � � has a sharp maximum at 	 	 


�

 � � � � , and thus the average

cluster size drastically changes at this point, which again suggests the crossover point to
be in the vicinity of 	 � 	 


.

We now discuss the finite size scaling (FSS) of the avalanche size and the cluster size
distributions. For local load sharing one expects that the cutoff in the avalanche distribu-
tion does not scale with � while for global load sharing the cutoff should scale with the
size of the system. We have plotted in Fig. 6.9 the avalanche size distribution for several
system sizes. As can be observed, the FSS hypothesis is verified for the values of the
exponent 	 corresponding to the global (Fig. 6.9 � ) and the local (Fig. 6.9 � ) load sharing
cases. Figure 6.9 � shows the moment analysis for five different system sizes in the range

� �  	  


� � . It can be seen that the position of the maximum of the � � � � � curves is
always at 	 	 


�

 � � � � , it does not scale with the system size. The value of 	 � defined

as the maximum of � � � � � (see Fig.6.9 � ) does not scale with � , and it turns out that its
value will asymptotically (when

� � � ) remain constant. We shall discuss this issue
in more details elsewhere. This test of scaling can also be used to obtain accurately the
critical value of 	 when the size of the system goes to infinity. Our numerical results point
out that again 	 � 	 


�

 � � � � as it was obtained by the moment analysis. Furthermore,

one could be tempted to infer that the critical point 	�� varies as the size of the system
increases.

From all the studies it turned out that a consistent interpretation of the numerical results
can be given assuming that the crossover occurs in the vicinity of 	 � 	 


� � but stronger
statement cannot be drawn due to the limited precision of calculations.

6.3 Conclusion

We have studied a fracture model of the fiber bundle type where the interaction among
fibers is considered to decay as a power law of the distance from an intact element to
the rupture point. Two very different regimes are found as the exponent of the stress-
transfer function varies and a crossover point is identified at 	 	 	�� . The strength of the
material for 	 � 	 � does not depend on the system size and 	 qualifying for mean-field
behavior, whereas for the short range regime, the critical load decreases with the system
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Figure 6.9: Finite size scaling analysis. � � Scaling of the cutoff with the system size for
the local load sharing case, � � Scaling of the cutoff with the system size for the global
load sharing case, and � � Average cluster size, � � � � 	 � �� � , for different system sizes. Note
that in � � the position of 	 � does not change.
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size as � � � � � � � � � � . The behavior of the model at both sides of the crossover point
was numerically studied by recording the avalanche and the cluster size distributions.
The numerical results suggest that the crossover point falls in the vicinity of 	 � 	 


� � .
An interesting aspect to be explored in future work is whether there is or not a second
transition point in the model when the 	 -dependence of � � seems to disappear (see Fig.
(6.2))



Chapter 7

Size dependency of tension strength in
natural fiber composites

7.1 Introduction

Scale effects of wood strength are well known with respect to tension loading perpen-
dicular to fiber direction. In this weak plane of wood, exhibiting the most brittle failure
mode of splitting, the pronounced scale effect of the stressed volume can be modeled ad-
equately by a simple weakest link approach for a purely serial system [105]. However,
recent investigations showed that the purely serial system approach is not fully applica-
ble for realistic length scales but that the stress redistribution effects of partial parallel
systems have to be taken into account.

In case of bending and tension parallel to fiber direction scale effects of width and depth
have been reported in several studies [106]. However, modeling of wood loaded parallel to
fiber as a parallel system of fibers has not yet been performed to our knowledge. Existing
models mostly treat all scale effects in view of some modified weakest link approach
thereby silently neglecting the effects of stress redistribution after the initial fracture of
the weakest fiber [107].

This chapter reports on a combined experimental and theoretical study on the size de-
pendency of tension strength of clear wood. The fracture behavior of the tested softwood
specimens was found to be rather brittle with low precursory activity and a statistical vari-
ation of the strength. A significant dependency of the mean strength of the material on
the cross-sectional size of the specimens was obtained. The range of load redistribution
in clear wood subjected to tension parallel to fiber was assessed by the theoretical concept
of fiber bundle models for fiber composites [40].

91



92 7.2 Experiment description

7.2 Experiment description

In collaboration with the Otto-Graf-Institute (FMPA) at University of Stuttgart, the size
dependency of tension strength of clear wood at loading parallel to fiber direction was
experimentally accessed. The actual experiments were performed by the group of Dr.
Simon Aicher.

The tested material was soft-wood of the species spruce (picea abies) being the most im-
portant wooden building material for load bearing timber structures in Europe. In order to
investigate the size effect of tension strength parallel to fiber direction, two sets of spec-
imens were manufactured with cross-sections varying by a factor of � � . The specimens
with the smaller cross-section will be denoted ”small” specimens and those with the large
cross-section will be denoted ”large” specimens. In order to minimize uncontrolled vari-
ability of material parameters of the natural wood several aspects had to be taken care
of:

1. All specimens were cut from one single log.

2. The specimens were selected to be free of macroscopic defects such as knots.

3. The most crucial parameter for the tension strength of the mainly unidirectional
fiber composite wood is the angle between fiber direction, or longitudinal direction
”L”, and applied tension load. Due to low tension strength perpendicular to the
fiber the off-axis strength decreases by about 50 percent at fiber deviations of � � �
[108]. Within a typical rectangularly sawn scantling the deviation between nominal
longitudinal direction of the stem and local fiber direction may vary considerably
between

� � and about � � � . Whereas a non-destructive evaluation of the fiber devia-
tion is technically quite demanding, the fracture surfaces of splitted wood indicate
the fiber direction in a straightforward manner. Therefore the specimen raw mate-
rial has been split to obtain straight grained wood pieces and the specimens were
then cut parallel to the split surfaces.

4. As an additional measure of scatter reduction the specimens have been matched as
twin-pairs consisting of one large and one small specimen each cut from adjacently
located wood segments. Thereby each pair showed the highest possible conformity
with respect to strength relevant parameters such as density or year ring width.

The specimen shape has been chosen with respect to three major aspects, being:

� the anisotropy of the material with high tension strength parallel to fiber vs. low
compression strength perpendicular to fiber direction;
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Figure 7.1: Specimen geometry and the used notations

� the low shear strength of the annual ring interface between high-density late wood
and low-density early wood and

� the necessity of scalability. Figure 7.1 shows the employed specimen shape and the
dimensional notations.

The dimensions of the small and large specimens are given in table 7.1.The specimen
shape is characterized by a rectangular cross-section with a shoulder shaped reduction of
the thickness � � parallel to the tangential growth direction � (following the annual rings).
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Nom. Dim. � � ��� � � � 	 � 	 � 	�� �
� 	 � � �

small

 � 
 ��� � ��� 
��

��� � � � � 


large
� � � � ��� 
 � ��� � � � � � � 
 � � 
 �

Table 7.1: Nominal dimensions of the small and large tension specimens (in mm)

In detail the specimen shape shows a straight section � ��� of length 	 � with a constant
minimal cross-section � � � , a curved shoulder section � 
 � of length 	 � and radius � � and,
����� the straight clamping section with cross section ��� � and length 	�� . The specimen’s
width � parallel to radial growth direction � (perpendicular to the annual rings) has been
chosen constant in order to minimize shear and transverse tension stresses perpendicular
to the weak annual ring interfaces.

In order to enlarge the clamping area in sections ����� , thereby reducing the necessary
compression stresses for load application in width direction, on-gluings of width � and
depth ��� were adhered both-sided to the ends of the specimens. All dimensions between
the small and the large specimens were scaled by a factor of about � �

�
� in order to achieve

geometrically similar shapes and a scale factor of � � between the cross-sections of the
small and the large specimens.

The load was applied to both, the small and large specimens by means of clamping.
In case of the small specimens a screw clamp has been used with a nominally equally
distributed compression stress at the clamping faces. In case of the large specimens hy-
draulic clamps were applied which allowed continuously decreasing compression stresses
towards the edge of the on-gluings. Both clamping arrangements yield, compared to usual
wedge type clamping devices, relatively smooth stress distributions at the transition from
the clamping section to the test section.

The sets of small and large specimens consisted of 23 specimens each. The experiments
were performed as stroke,(i.e. global deformation) controlled ramp-load tests with a con-
stant cross-head displacement rate of the test machine. The stroke rate was chosen based
on pre-testing of additional specimens such that fracture was obtained within � � � � ���
seconds. In case of the small specimens the tests were conducted in a screw-driven test
machine, whereas for the large specimens a servo-hydraulic type machine has been used.
Figures (7.2a,7.2b) show photographs of a small and large specimen, installed in the re-
spectively employed clamping arrangements of the different testing machines. In case of
the large specimens, the mean strain of the straight section has been recorded with a strain
gauge based extensiometer, too Fig.(7.2b). However, as the strain was only measured for
the large specimens the quantitative evaluation of the test results focuses solely on the
strength results.
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a) b)

Figure 7.2: Views of experimental setups for small (a) and large (b) tension specimens
mounted in the different test machines

7.3 Experimental results

The fracture of the tension specimens occurred throughout within the test sections, i. e.
predominantly in the straight section (1) and partly in the shoulder-shaped section (2).
No failure occurred within the clamping section. Two typical views of broken small and
large specimens are shown in Figs. (7.3a, 7.3b). The fracture surfaces were throughout
influenced by the inhomogeneity of the annual rings: Distinct blunt tension ruptures can
be observed in the early wood layers and then local shear failure planes along the early
wood-late wood interfaces yielding pronouncedly stepped fracture surfaces. During the
tension test it was not possible to follow the succession of fracture processes, however,
quite often some cracking sound and dust presumably from a crack, yet not visible for
blank eye could be observed prior to failure. Moreover, some of the stress-strain curves,
recorded in case of the large specimens, showed pre-peak load drops with load recovery,
which additionally indicated, that some kind of damage or crack evolution stop mech-
anism acted during loading. Figure (7.4) shows a measured curve of global stress vs.
global strain within the straight cross-section ����� of one large specimen exhibiting a pre-
peak load drop. The ultimate failure occurred throughout as an unstable, brittle fracture.
For all tests the maximum load was recorded and the strength was calculated on the ba-
sis of the individually measured minimal cross-sections. The mean values and standard
deviations of the tension strength � � and the mean values of the effective cross-sections� 	�� � � are summarized in Table 7.2 separately for both test sets. The small specimens
exhibited an � � 
 percent higher mean tension strength as compared to the large specimens.
Thus, the results indicate a size effect of tension strength parallel to fiber of wood on the
mean value level. However, also the scatter of the results is higher for the small specimens
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a)

b)

Figure 7.3: Views of typical failure appearance of small a) and large b) specimens

compared to the test set with the large cross-sections. Thus, the size effect seems to be
smaller for the lower values of the strength distribution.

The cumulative frequencies of both strength data sets are plotted in Fig. 7.5. Hereby the
empiric cumulative frequency � � of each individual strength value � � has been estimated
based on ranking of the results in increasing order of the strength values according to

� � 	 � �� � � � (7.1)

whereby � � and
�

denote the rank number and the total number of specimens in both
samples, respectively. For both sets of strength values a two-parameter Weibull distribu-
tion

� � � � � 	 ���������

�
� 	 � �� �� � � � (7.2)

has been fitted. In Eq. (7.2) quantity � �� denotes the stress scale parameter and � is the
Weibull shape parameter which characterizes the amount of disorder in the sample being
determined by the coefficient of variation. The numerical result for the Weibull param-
eters, ���� and � , obtained by least square fitting are given in table 7.2; the respective
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Figure 7.4: Typical stress-strain behavior obtained for a large specimen

Figure 7.5: Strength cumulative distribution from specimens with different sizes
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Specimen Cross-Section Number � � � � � � � �� �
Size � � � � � of Fibers � �� � � � � �� � � �
small � 
 ��� � � ����� � ��� � � � � � � � ��� � � 
 �$� �
large ��� � � � � � ����� � � 
 � � � � � � � � � ��� � � � � � �

Table 7.2: Summary of results of the tension tests

PSfrag replacements

�

� �

Figure 7.6: The structure of softwood (left) and illustration of the model build-up (right).
The wood fibers are arranged on a regular square lattice for which fiber bundle models
can provide an adequate description.

cumulative distribution functions are plotted in Fig. 7.5 together with the empirical data .

7.4 Modeling of damage development

For a realistic modeling of the damage process of natural fiber composites under an uni-
axial load, the local stress distribution should be calculated in the whole volume of the
sample. Even limiting the number of independent variables needed to describe the inter-
nal microstructure of the specimen, an accurate prediction of the ultimate strength is a
computationally demanding task. Hence, in general, the modeling of fiber composites is
based on certain idealizations about the geometry of the fiber arrangement and the stress
redistribution following fiber failures in the specimen. One of the most important type
of models of fiber composites are the so-called Fiber Bundle Models (FBM) and they
properties have been described in Chapter 3.
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Then, if global load sharing is assumed in the case of a small number of fibers, it can be
shown analytically that the global strength of a bundle of Weibull fibers approximately
follows a Weibull distribution [25, 59, 80, 103]. The Weibull strength distribution then
implies a decrease of the average strength according to a power law when the number of
fibers is increased. Finally, approaching very large system sizes the strength distribution
slowly converges to a normal distribution with a constant value of the average strength.

Contrary, when the load sharing mechanism is assumed to be completely localized, then
the approximated strength distribution takes again the Weibull form, whereby the param-
eters, describing the macroscopic distribution, are different from the microscopic ones.
The Weibull shape parameter of the bundle, � , is related to that of the single fibers as

� 	 � � �� (7.3)

where
� � denotes the size of the critical cluster of broken fibers. The Weibull distribution

of global strength implies again a power law size dependence of the average strength
which asymptotically turns into a slower logarithmic decrease [80, 103].

A wood sample may be modeled by an array of parallel fibers arranged approximately on
a regular square lattice. This is in agreement with the morphology of the real material
at the micro-scale (see Fig. 7.6). The amount of matrix material between fibers is rather
low, less than � � of the total volume of the sample. The macroscopic strength of fiber
composites is mainly determined by the strength distribution of individual fibers and the
interaction of fibers governing the load redistribution. Recently, the strength distribution
of single wood fibers extracted from softwood materials has been studied extensively
[8].Experiments showed that the rupture of wood fibers is caused by the flaws of various
sizes existing along fibers. The distribution of fiber strength values is controlled by the
size distribution of flaws. It was found that the strength values � � of single wood fibers
with a fixed length can be well described by a two-parameter Weibull distribution of the
form of Eq. (7.2), with the stress scale parameter � � and the Weibull shape parameter � � ,
which characterizes the amount of disorder in single fibers. It was found that the value of
�� for single fibers always ranges between � and



indicating the presence of high disorder

in wood fibers due to the pre-existing flaws [8].

In the above reported experiments on wood samples hardly any precursory breaking ac-
tivity could be observed. The constitutive curves were practically linear up to the failure
point and the final rupture occurred in a rather brittle manner suggesting a very localized
load redistribution. The strong locality of load redistribution is further supported by the
macroscopic Weibull shape parameters of � � � � � � , which are much larger than the
corresponding range of single fibers according to [8]. Assuming completely local load
sharing it follows from Eq. (7.3) that the size

� � of the critical cluster in softwood is in
the range of � ��� � ; so when a cluster of

� � broken fibers is formed, the sample becomes
instable and fails abruptly. If the empiric data follow a Weibull distribution, which cannot
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be proved , the size effect can approximately be given in the power-law form � �� � � � �� ,
where � � denotes the average strength of a sample of

�
fibers, which is in reasonable

agreement with the experimental results (see Tab. 7.2). The discrepancy between the cal-

culated value of � � �� � �
�

� 	 ��� 
 � . and the value of 	 �� �
	 �� � 	 ��� � � . vs the empiric data should

result from the fact, that the extreme LLS case is an approximation, and not an exact
model for wood at tension loading parallel to fiber direction.

7.5 Application of the fiber bundle model with variable
range of interaction

In order to get a deeper insight into the damage process of wood at uniaxial loading
in fiber direction the new fiber bundle model introduced in chapter 6 was applied. The
model is composed of

�
parallel fibers having statistically distributed strength drawn

from a cumulative distribution function � � 		 � � . Thus, to each fiber � a random strength
value is assigned. All intact fibers have a nonzero probability of being affected by the
ongoing damage process. In that model approach the interaction among fibers is modeled
by an adjustable stress-transfer function 6.2. Varying the parameters of the model an
interpolation can be performed between the two limiting cases of load redistribution, the
global and the local load sharing schemes.

In section 7.3 a significant dependency of the average failure strength of the specimens
on the size of their cross- section was obtained experimentally. Based on the empirical
results, an estimate of an effective exponent 	 , characterizing the load redistribution in
softwood, was provided in the framework of a model with variable range of interaction
(Chapter 6.2).

It is plausible that real materials are not characterized by the extreme cases of global or
local load sharing. A real specimen with

�
fibers should have a normalized strength value

	 ��!
� "

	 � which falls between the bounds of the GLS and LLS approaches. The normalization
constant � � is the characteristic stress value of the cumulative strength distribution of

Weibull Disorder Weibull Scaling Slope Load-Sharing
Parameter Parameter � �� � � � Parameter

�� 	 � ��� � � � � � � � � 
 � � � � � � ��� ����� � � � 	 ��� �
�� 	 
 � 
�
 � � � � � � � 
 � � � � � � ��� ����� � � � 	 ��� �

Table 7.3: Load sharing parameters estimated from the strength values obtained from test
samples with different sizes.
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single elements. As in the present case � � is unknown, it has been used as a free fit
parameter.

For an estimation of upper and lower boundaries of � � first the limits of GLS and LLS
were calculated. Numerical results, using a cumulative Weibull distribution with the dis-
order parameter ��� 	 


, are shown in the Figs. (6.2),(6.3). In can be seen that in the
global case, due to the independence of the system size, the 	 �	 �

vs �� 	�� � plot results a line
parallel to the �� 	�� � axis,

� �
� � 	 �������� �

�

� � � (7.4)

Note that given by Figs. (6.2) and (6.3) this value is 	 �	 �
	 � � � 
�� . This parallel line

is the upper bound for the strength data of the test series with smaller number of fibers� 	 � � ��� . Using its corresponding strength value (shown in Tab. 7.2) yields the lower
bound of � � 	 � 
�
 ��� �

� � � .
In the same manner the limiting case of LLS ( 	
	 �

), i.e. a line

� �
� � 	

� � � � �
� � � � � � � 
 ��� (7.5)

gives a lower bound of normalized strength, for the empirical test series with higher num-
ber of fibers

� 	 � ������� , and thereby yields the upper bound of � � 	 � 
 � ��� �

� � � .
In this way it is possible to fit the experimental results presented in section 7.3 with the
model using the fit parameter � � . The slope � of the fitted curves can be calculated,
enabling a numerical estimation of the value 	 .

In Tab. 7.3 the results of the limit case considerations are compiled including the ranges
of � � , the derived slopes � and finally the resulting values for the load sharing exponent 	 .
In the fitting procedure, two extreme values of the Weibull shape parameter � � , previously
determined by Thuvander et al, have been used [8].

Using the fitted values of � and the results of Chapter 6 the value of the exponent that
characterizes the load sharing type in wood was approximately obtained (see Tab.7.3).
Those results suggest, that in case of tension loading parallel to the fiber direction, the load
redistribution after the failure of a single fiber falls in the regime where the behavior of
the system can be well described by assuming almost completely localized load sharing.
This result is in agreement with the general arguments of the previous section.

7.6 Conclusions

The size effect of tension strength of softwood loaded parallel to fiber direction has been
assessed experimentally and theoretically. The macroscopic constitutive behavior of the
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specimens was rather brittle and the strength values showed a statistical variation which
could be well fitted in terms of a Weibull distribution. It was revealed that the average
strength is a decreasing function of the cross-sectional specimen size. In order to provide
a theoretical interpretation of the experimental results with respect to the size effect and
the modeling of the load sharing mechanism, the wood material was modeled as a natural
fiber composite with extremely small volume fraction of matrix material. Comparing the
strength distribution of single fibers and that of the macroscopic samples it was deduced
that the load redistribution among wood fibers is short ranged giving rise to a low pre-
cursory activity preceding final failure and small clusters of broken fibers. For qualitative
characterization of the load sharing it has been assumed that the load-transfer function
has a power law form and its effective exponent has been estimated. The experimental
and theoretical results are in satisfactory agreement.

Additional research is needed in order to confirm the results in a more quantitative man-
ner including experiments with intermediate size scales. Moreover, some aspects of the
damage evolution of wood tension loading parallel to fiber are not yet well described by
the used FBMs.



Chapter 8

Creep rupture of viscoelastic fiber
bundles

In this chapter a novel method to deal with the real time dependence in the breakdown pro-
cess of the fiber materials is presented. Here we develop a fiber bundle model whose fibers
have viscoelastic behavior and the macroscopic damage mechanism leading to creep rup-
ture is the strain dependent breaking of the fibers during the time evolution of the defor-
mation of the system. Both limit cases global and local load sharing have been treated.
Moreover, a variable range of interaction model has also been applied [37, 39]. This type
of model is relevant for the study of composites whose viscoelastic properties are concen-
trated on the fibers, i.e. viscoelastic fibers embedded in a brittle matrix.

8.1 Model

In order to work out a theoretical description of creep failure of viscoelastic fiber com-
posites we improve the classical fiber bundle model which has proven very successful in
the study of fracture of disordered materials (see Chapter 3).

The model consists of
�

parallel fibers having viscoelastic constitutive behavior. For
simplicity, the pure viscoelastic behavior of fibers is modeled by a Kelvin-Voigt element
which consists of a spring and a dashpot in parallel (see Fig. 8.1) and results in the con-
stitutive equation

�
	 	���� � � �$� (8.1)

where � denotes the damping coefficient, and � the Young’s modulus of fibers, respec-
tively. Eq. (8.1) provides the time dependent deformation ����� � of a fiber at a fixed external
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Figure 8.1: The viscoelastic fiber bundle: intact fibers are modeled by Kelvin-Voigt ele-
ments. After fiber breaking the corresponding element is removed from the model.

load �
	
����� � 	 � �

� � ���� � � � � � � � � 	 � � � � � � � (8.2)

where � � denotes the initial strain at � 	 �
. It can be seen that ����� � converges to � 	 � �

for � � � , which implies that the asymptotic strain fulfills Hook’s law. If no failure
occurs, Eq. (8.2) would fully describe the time evolution of the system. To incorporate
breaking in the model we introduce a strain controlled failure criterion for fibers: a fiber
fails during the time evolution of the system if its strain exceeds a damage threshold � � ,
which is an independent identically distributed random variable of fibers with probability
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density � ��� � � and cumulative distribution � � � � � 	 � � 	� � �
� � � � .

Due to the validity of Hook’s law for the asymptotic strain values, the formulation of the
failure criterion in terms of strain instead of stress implies that under a certain steady load
the same amount of damage occurs as in the case of stress controlled failure, however,
the breaking of fibers is not instantaneous but distributed over time. When a fiber fails
its load has to be redistributed to the intact fibers, according to the interaction law of the
fibers.

8.1.1 Global load sharing

Analytic model

Assuming global load sharing (see Chapter 3), the time evolution of the system under a
steady external load � � is finally described by the equation

�
	
����� � � � 	�� � � � � � (8.3)

where the viscoelastic behavior of fibers is coupled to the failure of fibers in a global load
sharing framework. Eq. (8.3) is a first order differential equation for ����� � which has to be
solved at fixed � � values.

For the behavior of the solutions of Eq. (8.3) two distinct regimes can be distinguished
depending on the value of the external load � 	 : When �
	 is below a given critical stress
value ��� Eq. (8.3) has a stationary solution ��� , which can be obtained by setting � 	 �

in
Eq. (8.3)

�
	 	 � � � � ��� � ��� � ��� � (8.4)

It means that until this equation can be solved for ��� at a given external load � 	 , the
solution ����� � of Eq. (8.3) converges to ��� when � � � , and no macroscopic failure
occurs. However, when � 	 exceeds the critical stress value � � no stationary solution
exists, furthermore, � remains always positive, which implies that for �  � � the strain of
the system ����� � monotonically increases until the system fails globally at a given time � � .
Below � � is called time to global failure or lifetime indifferently.

In the regime � 	  ��� Eq. (8.4) also provides the asymptotic constitutive behavior of the
fiber bundle which can be measured by controlling the external load � 	 and letting the
system relax to ��� . It follows from the above argument that the critical value of the load
� � is the static fracture strength of the bundle which can be determined from Eq. (8.4) as

� � 	 � � ��� ��� � � � � ��� � (8.5)
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Figure 8.2: Relation between the critical stress � � and strain �
� . An uniform cumulative
distribution � ����� 	�� has been used.

where � � is the solution of the equation [1, 2]

� �
	
��� �

�
�
�
�

���
	 � � (8.6)

Since �
	 ����� � has a maximum of ��� at ��� , in the vicinity of � � it can be approximated as

�
	 ����� � � ��� � � � � �
� � (8.7)

where the multiplication factor
�

depends on the probability distribution � ��� � . A com-
plete description of the system can be obtained by solving the differential equation Eq.
(8.3). After separation of variables the integral arises

� 	 � � ��� ����� ��� �
�
	 � � ��� ��� � � � ��� ��� � (8.8)

where the integration constant � is determined by the initial condition ����� 	 � � 	 �
.

The creep rupture of the viscoelastic bundle can be interpreted so that for � 	  ��� the
system suffers only a partial failure which implies an infinite lifetime � � 	 � and the
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emergence of a macroscopic stationary state, while above the critical load � 	  ��� global
failure occurs at a finite time � � , which can be determined by evaluating the integral Eq.
(8.8) over the whole domain of definition of � � � � .
In order to characterize the creep rupture transition occurring at � � we studied how the
system behaves when � � approaches � � form below and above.

Below the critical point � 	  ��� the bundle relaxes to the stationary deformation ���
through a decreasing breaking activity. To find the characteristic time scale of this relax-
ation process the behavior of ����� � has to be analyzed in the vicinity of �� . It is useful to
introduce a new variable � as

� ��� � 	 ��� � ����� � � (8.9)

The governing differential equation of � can be obtained from Eq. (8.3) by expanding it
around � �

� �
� � 	 � �

�
�
��� ��� � ��� � �

����� � � � � � � � (8.10)

The solution of Eq. (8.10) has the form

� � � � � � � � � ��� � (8.11)

where � is the characteristic time scale of the relaxation process

� 	 �
�

��
��� ��� � ��� � �

����� � � � � �
� (8.12)

We now study how the relaxation time � changes when the external driving approaches
the critical point ��� from below. Based on Eq. (8.7) it can be simply shown that

� � � � � � �
	 � ����� � � for � � � ����� (8.13)

which means that approaching the critical point from below the relaxation time of the
system diverges according to a universal power law with an exponent � �� independent on
the form of disorder distribution. Note that a similar power law divergence of the number
of successive relaxation steps was found in Refs. [32, 33] for a dry fiber bundle subjected
to a constant load.

Below the critical point the creep rupture of the viscoelastic bundle can be interpreted so
that for �
	  ��� the life time (or the time to failure) of the bundle is infinite � � 	 � ,
while above the critical load � 	  ��� global failure occurs at a finite time � � , which can
be determined by evaluating the integral Eq. (8.8) over the whole domain of definition of
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Figure 8.3: The analytic solution ����� � given by Eqs. (8.19,8.20) for several values of � 	
below and above � � . The critical strain � � and the time to failure � � for one example are
indicated.

� � � � . From the theoretical and experimental point of view it is very important how � �
depends on the external load above � � . When �
	 is in the vicinity of ��� , i.e.

�
	 	���� � � �
	�� (8.14)

where
� �
	 � � ����� (8.15)

we can expect that the curve of ����� � falls very close to � � after a very long time and the
breaking of the system occurs suddenly. Hence, the total time to failure, i.e. the integral
in Eq. (8.8), is dominated by the region close to � � when � � 	 is small. Making use of the
power series expansion Eq. (8.7) the integral in Eq. (8.8) can be rewritten as

� � � � � ��� ��� � ��� �
� �
	 � � ����� � � � � � (8.16)

which has to be evaluated over a small � interval in the vicinity of � � . After performing
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Figure 8.4: The analytic solution for the breaking rate Eq. (8.24) for several values of � 	
below and above ���

the integration it follows

� � � � �
	�� ��� � ����� � � for �
	  ����� (8.17)

Thus, � � has a power law divergence at � � with a universal exponent � �� independent of
the specific form of the disorder distribution � � � � .
For the purpose of explicit calculations we considered the case of a uniform distribution
of the damage thresholds between

�
and a maximum value � � , thus, � � � � 	 �� 	 and

� � � � 	 �� 	 . The stationary solution, the critical load and the corresponding critical strain
can be obtained as:

�
	 	�� ����� � �
��� � � (8.18)

� � 	�� ���
� � � � 	 ���
 �

Finally, the solution of the integral Eq. (8.8) taking the initial condition also into account
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can be cast into the implicit form

� 	 � �

�

���� �
� ����� 	��� � 	 ���

�� 		� � � � ���
� 	��� � 	�� � � 	��� � 	
�� 	 � ��� � ���
� 	��� � 	 � � � 	��� � 	

� � � � � � � � ��� � ���
	 ���
�
	 ���  (8.19)

for �
	 � � � (below the critical point), and

� 	 �
�

�� � �
� � 	��� � 	 � �

��
� � � � � 


�� 	 � �
� � 	��� � 	 � �

(8.20)

� � � � � � � �
� � 	��� � 	 � �

��
� �
 � � � � � � � ��� � ���
	 ���

�
	 ��� ����
for �
	  � � (above the critical point). The behavior of those analytical solutions are
illustrated in Fig. 8.3 for several different values of � 	 .
The time to failure � � can be determined by setting � 	 � � in Eq. (8.20), which results in
the form

� � � ���
�� ���
� � �
	�� � � � ����� � � (8.21)

in accordance with the above general arguments.

A further important general property of ����� � that can be deduced from Eqs. (8.3,8.8) is
that at the time to failure � � the deformation rate � �� � diverges. For disorder distributions
� � � � defined in a finite interval the exponent is universal

���
� � � ��� � � � � ����� � � (8.22)

In order to obtain information about the gradual breaking of fibers during the creep pro-
cess, in the experiments the acoustic signal emitted by breaking events in a short time
interval is investigated [109, 110]. In our fiber bundle model the number of fibers

� � ��� �
which have been broken up to time � can be determined as

� � ��� � 	 � � ������� � � � (8.23)

and hence, its derivative provides the quantity

��
� � �� � 	 � �

� �
���
� � 	

� � � � � �
�

� �
	
� � � � � � � � ��� � � � � (8.24)
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which is a measure for the acoustic response. The behavior of Eq. (8.24) for the uniform
distribution is illustrated in Fig. 8.4, where it can be observed that the acoustic activity,
i.e. fiber breaking, practically disappears in the plateau region of ����� � (compare to Fig.
8.3), however, it diverges at � � due to the diverging deformation rate.

Since during a creep test ����� � is monitored from which � �� � can be calculated, furthermore,
� � �� � is measured by means of acoustic emission techniques, Eq. (8.24) makes possible to
determine experimentally the distribution of the failure thresholds � � � � .

Simulation technique

The analytic results of the previous sections were obtained for infinite bundles. Computer
simulations of the creep rupture of finite bundles are needed to justify the validity of
analytic predictions for finite systems, and to be able to model the rupture process of

10-5 10-4

o- c

102

103

t f/
t o

=7
=2

uniform

Figure 8.5: The lifetime of a bundle of � ��� fibers as a function of � � � � � above the critical
point for three different disorder distributions, i.e. uniform and Weibull distributions with
� 	 


and
�

have been considered. The straight line of slope � � � � is a to guide the eye.
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realistic finite systems. In the framework of GLS an efficient simulation technique can be
worked out for the failure process. Based on the arguments of the previous subsection,
the GLS simulation of the creep process of a bundle of

�
fibers proceeds as follows:

� random breaking thresholds � � � � 	 ���
�	�	� � � are drawn from a probability distri-
bution � , then the thresholds are put into increasing order.

� The time ��� � ��� � ��� � � � between the breaking of the � th and ��� � th fibers is calculated
according to

��� � ��� � ��� � � � 	 � �� � ��� � ��� � � �
� �
� 	 � � � � ����� � �

� 	 � � (8.25)

� The time elapsed till the breaking of the � th fiber is obtained as:

� ���%� � 	
� ����
 ��� ��� � ��� � ���

� � � �

from which the deformation as a function of time ����� � can be determined by inversion.

To test the validity of the universal power law behavior of � � as a function of the distance
from the critical load given by Eq. (8.17), simulations were performed with various disor-
der distributions, i.e. besides the uniform distribution the Weibull distribution was used.
The value of the characteristic strain � �� was set to one, and the shape of the distribution
was controlled by varying the value of � . The results are presented in Fig. 8.5, where
an excellent agreement between the simulations and the analytic results can be observed.
Fig. 8.5 supports that the exponent of � � as a function of � � ��� � is universal, it does not
depend on the specific form of the disorder distribution.

Finite size effect

In the above analytic treatment the size of the system, i.e. the number of fibers in the
bundle, is infinite. However, it can be expected that the lifetime of a finite bundle has a
non-trivial size scaling even in the case of global load sharing.

In order to determine how � � depends on
�

, Eq. (8.26) has to be averaged over many
realizations of the disorder distribution, which can be performed analytically. The details
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Figure 8.6: The size dependent lifetime of the bundle. The inset shows the lifetime of
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lifetime of finite bundles and the infinite one obtained from Eq. (8.26) can be seen in a
double logarithmic plot. The slope of the fitted straight line is � � � ��� � � � � 
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of the analytic calculations are summarized in the Appendix of this chapter. Finally, the
average lifetime ��� � � � � � of a bundle of

�
fibers can be cast into the form

� � � � � � � ��� � � � � � � � �� � � ��� � � � � ����� ��� ���
� � � � � ����� � � ����� ��� � ��� � (8.26)

Eq. (8.26) shows that for finite bundles the average lifetime ��� � � � � � converges to the
lifetime of the infinite bundle � � � � � as � � � � with increasing number of fibers

�
. It

is interesting to note that in the case of global load sharing the average strength of the
bundle � � does not have any size dependence.

To study the finite size scaling of the time to failure � � a uniform distribution was used for
the failure thresholds. The value of the external load was fixed above � � and the number
of fibers

�
was varied from � � � � � to � � � . Averages were calculated over � � � samples

for each system size
�

. The results obtained by simulations are presented in Fig. 8.6,
where an excellent agreement of simulations and analytic results can be observed for four
orders of magnitude in the system size

�
.
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Statistics of events

As fibers fail one-by-one, furthermore, under GLS conditions, breakings occur in the
order of increasing breaking thresholds � � and the time � � ���%� � �%� � � � elapsed between the
breaking of � -th and � � � -th fibers can be analytically obtained. The inter-event time
��� is a fluctuating quantity which depends both on the breaking thresholds and the load
level. The statistics of inter-event times characterized by the distribution

� � ��� � provides
information on the microscopic dynamics of creep.

� ��� � � is presented in Fig. 8.7 for a
system of

� 	 

� � � � fibers.

Simulations revealed that
� ����� � exhibits a power law of the form

� ����� � � ��� � � (8.27)

both below and above the critical point whenever the macroscopic stationary state charac-
terized by the plateau of ����� � is attained. However, the value of the exponent � is different
on the two sides of the critical point, i.e. below � � the exponent of the distribution is
��	 � � � � � � � � � independent of � � , while above � � we obtained ��	 � ��� � � � � � . Increas-
ing the load above � � the stationary state gradually disappears implying that the power law
regime of

� � ��� � , which precedes the exponential cut-off, is getting shorter but the expo-
nent remains the same (see Fig. 8.7). It follows for the creeping bundle that: the threshold
dynamics of the system is characterized by a separation of time scales of the external driv-
ing and the relaxation process leads to the emergence of a macroscopic stationary state
accompanied by power law distributed microscopic events.

8.1.2 Local load sharing

Simulation technique

To clarify how the damage process and the behavior of the life time � � is affected by
the range of interaction among fibers, i.e. by the range of load sharing we performed
calculations with local load sharing. Since this case cannot be treated analytically, we
perform numerical simulations in the Kelvin viscoelastic model shown in the figure 8.1.

As in the global load sharing case we suppose a set of
�

parallel fibers each one having
statistically distributed strength taken from a probability distribution function � ��� � and
identified by an integer � , �  �  �

on a square lattice. After fiber failure the load is
redistributed equally among the intact nearest neighbors. As the load is locally distributed
the numerical task is more complicated than in the global case since the local stress is
different for each fiber.
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Figure 8.7: The distribution of inter-event times ��� for GLS ( 	 	 �
). Power law behavior

can be observed over up to five orders of magnitude.

Firstly, on all the fibers the same load is imposed. Then the algorithm to simulate the
creep process is as follows:

� The equation of motion Eq. 8.1 is integrated with a given time step � � for each
fiber of the system.

� If one of the fiber strain reaches its threshold value it breaks.

� The load carried by the failed fiber is redistributed equally on the intact nearest
neighbors, and the load of the broken fiber is set to zero.

� This procedure goes on until the breaking process stops, either when all the fibers
are broken ( � �  � � ) or when all the remaining intact fibers are strong enough to
survive (for � � � � � ).

Since now the strain of the fibers is a local quantity � � ��� � , the macroscopic strain can only
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Figure 8.8: The numerical result of ����� � for several values of � 	 below and above ��� in
local load sharing approach.

be defined as the mean value ����� � of � � ��� � ,

����� � 	 � ��� ��� �� � � (8.28)

The dependence � ��� � vs time for different values of external stress is presented in Fig. 8.8.
As in the global case there is a critical stress value � � . In numerical experiments using
external stress values lower than � � the macroscopic strain ����� � of the sample evolves to
an asymptotic state. And if �  � � the global failure of the sample occurs in a finite time.
As it can be checked in Fig. 8.8 the global failure is more abrupt than in the global case
(compare to Fig. 8.3) which is characteristic for brittle materials. The exact value of the
critical load � � is determined as the static fracture strength of a dry fiber bundle with local
load sharing assuming perfectly elastic behavior of fibers.
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Figure 8.9: The numerically calculated breaking rate for several values of � 	 below and
above ��� , in local load sharing approach

In Fig. 8.1.2 the numerical breaking rate �� � � �� � is also presented for different external
stress values. Again an intensive activity appears at the beginning of the creep process.
During the plateu period (constant strain � ) almost no activity is detected and finally the
catastrophic failure is preceded by increasing failure activity.

Comparing the time to failure results of the local load sharing simulations to the global
load sharing ones we observe that above � � the failure of the viscoelastic bundle occurs
much more abruptly than in the global case. Varying � as a control parameter the two
regimes of the creep rupture process are characterized by an infinite life time below � �
and by a finite one above the critical point. The nature of the transition between the
regimes in the global and local load sharing models can be characterized by studying
� � � � as a function of the control parameter � � . In Fig. 8.10 we observe that below the
critical point, when no global failure occurs, � � � � is zero, while above � � it takes a finite
value for both global and local load sharing. However, the behavior of � � � � in the vicinity
of � � is completely different in the two cases, for global load sharing the transition is
continuous. Nevertheless, for local load sharing � � � � has a finite jump, analogously to a
second and first order phase transition, respectively.
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Figure 8.10: Comparison of � � � � for the LLS and GLS cases as a function of the normal-
ized external load.

8.1.3 Variable range of interaction

To explore the effect of the details of load redistribution on the creep rupture process we
studied how the behavior of the system changes in the vicinity of the critical point when
the load sharing gets localized. Our fiber bundle model with variable range of interac-
tion, presented in Chapter 6, is able to interpolate between the limiting cases of global
and completely local load sharing considered above. Simulations have been performed
varying the effective range of interaction of fibers by controlling the exponent 	 of the
load sharing function (see Chapter 6).

Simulation technique

The system is composed of
�

parallel fibers identified by an integer � , �  �  �
on a

square lattice, which initially have identical Young-modulus � � but with random failure
thresholds � � , � 	 � �	�	�	��� � . The failure strength � � of individual fibers is an independent
identically distributed random variable with a probability density � � � � and a cumulative
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Figure 8.11: The lifetime � � as a function of � � � � � for different values of the exponent
	 between 0 and 10.

probability distribution � � � � 	 � �� � ��� � � � .

Firstly, on all the fibers the same load is imposed. Then after the �
��� fiber break, the
additional load received by an intact fiber � depends on its distance ���  from fiber � which
has just been broken. Hence the load received by a fiber follows the power law form of
Eq. (6.2). Then the algorithm to simulate the creep process is as follows: The stress in
the surviving element � at time � � � � i.e. � �� ��� � � � � is related to the stress at time � � in the
following manner:

� �� ��� � � � � 	�� �� ��� � � � ��� � ��� ��� � � � � � (8.29)

with
��� � 	 � � � � � � � � (8.30)

Note that � � denotes the time of the � � ��� breaking. Using Eq. (8.29), the time elapsed
that each element of the system would spend before it breaks under the present local load
can be deduced as:

��� � 	 � �� ���
�
��� � �� ��� � � � �

� �� ��� � ��� � (8.31)

Moreover, when the element � breaks, its stress can be assumed to be equal to its thresh-
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olds value � � , substituting � �� ��� � � � � 	���� results in:

��� � 	 � �� � �
�
��� ���

� �� ��� � � � � (8.32)

The minimum over the set ����� is the time interval between the � th and the � � � th break-
ings

��� � � � 	 �
�
�

� � � � � � � (8.33)

and the time elapsed till the breaking of the � � � th fiber is obtained as

� � � � 	
�

� ��
 � �

���  � (8.34)

Time to failure

Fig. 8.11 presents the lifetime � � of a bundle of fibers arranged on a square lattice of side
length � 	 � � � as a function of the distance from the critical point � ��	 � � � � � for
several values of the exponent 	 . It can be observed that the � � ��� ����	 � curves form two
groups of different functional form: The upper group is obtained for

�  	  ��� � � when
the load sharing is global. In the lower group, obtained for 	  


�
�

when the load sharing
gets localized, � � � � ����	 � rapidly takes a constant value showing an abrupt transition at the
critical load � � with no scaling, reminiscent of a first order transition. The results imply
the existence of two universality classes in creep rupture characterized by a completely
global (GLS), or a completely local (LLS) behavior depending on the effective range of
interaction 	 with a rather sharp transition between them. In order to quantify the behavior
of � � � � ����	 � under the variation of 	 we calculated the normalized quantity

� �
	 � 	 � � � �
	 � � � � ��� � ���
� � � � � � � � � ��� � ��� � (8.35)

where � � ��	 � denotes the value of � � at the smallest value of � � used to calculate � � � � ����	 �
at a given 	 . Fig. 8.12 shows that

� ��	 � provides a quantitative description of the creep
rupture transition in terms of the effective range of interaction so that

� ��	 � takes value
unity for the GLS, and has a value close to zero for the LLS class, respectively. We
can also observe in Fig. 8.12 that the transition between the two universality classes gets
sharper around 	 � � 


with increasing system size. Real materials described by a finite
value of 	 must fall into one of the above universality classes. The existence of only two
universality classes implies that the mean field analytical results can be extended beyond
	 	 �

, i.e., they apply for a wider interaction range which is relevant for real materials.
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Figure 8.12:
� �
	 � is presented for several system sizes � .

Extensive simulations revealed that whenever a macroscopic stationary state is attained
by the system, the distribution of inter-event times follows a power law irrespective of the
range of interaction 	 . Below the critical point the exponent � of the distribution has a
value � 	 � � � � � � � � � independent of 	 , while above the critical point � is different in the
two universality classes as illustrated by the Fig. 8.13. In the LLS class the exponent �
has practically the same value below and above � � .

The breaking process of fibers occurring in a solid under various loading conditions can
be monitored by acoustic emission techniques which has also been applied to study creep
rupture. The statistics of inter-event times has been studied in various types of materials
like wood, plaster, basalt, and fiber glass. It was found experimentally that the distribu-
tion of inter-event times always exhibits a power law behavior, however, the values of �
were found to depend on the material falling between � � 
 and ��� � [61, 62, 88] for � �  � � .
Hence, our theoretical findings are in quite reasonable agreement with the available ex-
perimental results. Moreover, the different values of � below and above � � predicted by
our model for long range interactions would correspond to different Omori’s exponents
for foreshocks and aftershocks in earthquake dynamics, which has also been observed
recently [111].
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Figure 8.13: The exponent � of the ��� distribution
� ��� � � as a function of the range of

interaction 	 for � �  � � .

8.2 Conclusions

We have studied the creep rupture of bundles of viscoelastic fibers occurring under uniax-
ial constant tensile loading. A novel fiber bundle model is introduced which combines the
viscoelastic constitutive behavior and the strain controlled breaking of fibers. Although
study of the model has been presented varying the range of interaction of fibers. Analyti-
cal and numerical calculations showed that above a critical external load the deformation
of the system monotonically increases in time resulting in global failure at a finite time � � ,
while below the critical load the deformation tends to a constant value giving rise to an
infinite lifetime. We have identified two universality classes of creep rupture depending
on the range of interaction of fibers. The critical behavior of the microfracturing process
can be seen as the result of the self-organization of the system into a macroscopic sta-
tionary state whose duration depends on the external perturbation (load). In this sense
the system is at some point of marginal stability jumping form one metastable state to
another with power-law distributed waiting times. This suggests the existence of a critical
dynamics underlying the process that seems to indicate self-organized criticality in creep.
Our theoretical results provide a consistent explanation of recent experimental findings in
the damage process of creep rupture [61, 62, 88, 112].
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8.3 Appendix

Here we provide the derivation of the average lifetime for the general case when the
lifetime � � of a bundle with a specific realization of the disorder can be cast in the form

� � 	
� ����
�����

�
� � ������ � � � � �

� � ������ � ��� � (8.36)

i.e. � � is a sum of terms which depend on the number of broken fibers � and on a single
breaking threshold � � that can be given as strain or stress. The � � -s are obtained by choos-
ing

�
breaking thresholds independently from a cumulative probability distribution � �
� �

and putting them into increasing order. This treatment includes both models discussed in
the present paper. The expectation value of a function

� �
� � � can be determined as

� � ��� � � � 	 � ���

� � � ��� � � � � � � � � �
� �
� ��� � ��� � �
� ��� � � � � � �
� � � �
� � � � � (8.37)

The probability distribution in Eq. (8.37) that the value of the � th largest breaking thresh-
old falls between � and � � � � has a sharp peak for large

�
values for each � . The

above integration can be carried out by expanding the distribution about its peak. After
expanding the result in terms of � � � and neglecting higher order terms we arrive at

� � ��� � � � 	 � � � � � � �
 � � � � � � ������� � � � � � �
� ��� � � � � �
� � � � � � ��� � �

��� � � � � � � � � � � �
� � � � � � ��� � � � (8.38)

where � � is defined implicitly by � � � � � 	�� ��� � ��� � . Applying Eq. (8.38) to Eq. (8.36)
the resulting summation can be approximated by integrals replacing � � � by the equivalent
� � � � � � � � � � � � . Neglecting corrections of higher order in � � � after straightforward
calculations we arrive at

� � � � � � � � � � � �� ��� � ��� �
� �
 � � � � � �
� � ����� � ��� � � � �� � � � �� ��� � ��� � � (8.39)

where
�
�
� � � ��� � �

� � � � ��� � � � � , and
� �� � � � � � ��� � �

� � � � � ��� � � � � � � � . Substituting
the actual form of

� ��� ��� � for a specific model the complete form of the size scaling of
lifetime can be obtained. However, it can be seen in the general expression Eq. (8.39) that
the first term provides the lifetime of the infinite bundle and the only size dependence is
in the prefactor of the second term. Eq. (8.39) states that if the lifetime can be written in
the form of Eq. (8.36) the lifetime of finite bundles converges to that of the infinite one as
� � � with increasing number of fibers

�
.
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Chapter 9

Slow relaxation of fiber composites

An important microscopic mechanism which can lead to macroscopic creep is the slow
relaxation following fiber failure. In this case, the components of the solid are linearly
elastic until they break, however, after breaking they undergo a slow relaxation process,
which can be caused, for instance, by the sliding of broken fibers with respect to the matrix
material or by the creeping matrix [39]. To take into account this effect, in this chapter we
present an approach based on the model introduced in Refs. [82], where the response of
a viscoelastic-plastic matrix reinforced with elastic and also viscoelastic fibers have been
studied.

9.1 Model

The model consists of
�

parallel fibers, which break in a stress controlled way, i.e. sub-
jecting a bundle to a constant external load fibers break during the time evolution of the
system when the local load on them exceeds a stochastically distributed breaking thresh-
old � � � � 	 ���	�
�	�
� � . Intact fibers are assumed to be linearly elastic i.e. � 	 ������� holds
until they break, and hence, for the deformation rate applies

��� 	 �
��� � (9.1)

Here � � denotes the strain and � � is the Young modulus of intact fibers, respectively. The
main assumption of the model is that when a fiber breaks its load does not drop to zero
instantaneously, instead it undergoes a slow relaxation process introducing a time scale
into the system. In order to capture this effect, the broken fibers with the surrounding
matrix material are modeled by Maxwell elements as illustrated in Fig. 9.1, i.e. they are

125
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conceived as a serial coupling of a spring and a dashpot which results in a non-linear
response

��� 	 ���
��� �

� ��
� � (9.2)

where � � and ��� denote the time dependent load and deformation of a broken fiber, respec-
tively. The relaxation of the broken fiber is characterized by three parameters � � � � � and
� , where � � is the effective stiffness of a broken fiber, and the exponent � characterizes
the strength of non-linearity of the element. We study the behavior of the system for the
region �

� � .

9.1.1 Global load sharing

Analytical model

Assuming global load sharing for the load redistribution, the constitutive equation de-
scribing the macroscopic elastic behavior of the composite reads as

�
	�	 � ��� � � ��� � � � ��� � ��� � ��� ��� � � � � ��� � � � (9.3)

Eq. (9.3) takes into account that broken fibers carry also a certain amount of load � � ��� � ,
furthermore, � � � ��� � � and � � � � � ��� � � denote the fraction of broken and intact fibers at
time � , respectively. It can be seen from Eq. (9.3) that under a constant external load � � ,
the load of intact fibers � will also be time dependent due to the slow relaxation of the
broken ones.

Due to the boundary condition illustrated in Fig. 9.1, the two time derivatives have to be
always equal

��� 	 ��� � (9.4)

The differential equation governing the time evolution of the system can be obtained by
expressing ��� in terms of � from Eq. (9.3) and substituting it into Eq. (9.2) and finally
into Eq. (9.4)

�
� �
��� �

�
���

�
��� �

� � � � �
� � � �
� � � � � � � � �
	 � �  	 (9.5)

�
�
� �
	 � � � ��� � � � ���

� � � � � � �

In order to determine the initial condition for the integration of Eq. (9.5) the breaking
process of fibers has to be analyzed. Subjecting the undamaged specimen to an external
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Figure 9.1: The model solid when intact fibers are linearly elastic, and the broken ones
with the surrounding matrix are modeled by Maxwell elements.

stress � � all the fibers attain this stress value immediately due to the linear elastic response.
Hence the time evolution of the system can be obtained by integrating Eq. (9.5) with the
initial condition � ��� 	 � � 	 � � . Since intact fibers are linearly elastic, the deformation-
time history ����� � of the model can be deduced as ����� � 	 	�! � "��� , which has an initial jump
to � � 	 	 �� � . It follows that those fibers which have breaking thresholds � � smaller than
the externally imposed � � immediately break. To characterize the macroscopic behavior
of the composite the solutions � ��� � of Eq. (9.5) have to be analyzed at different values of
the external load � � . Similarly to the previous creep model (see Chapter 8), two different
regimes of � ��� � can be distinguished depending on the value of � � : if the external load
falls below a critical value � � a stationary solution � � of the governing equation exists
which can be obtained by setting � 	 �

in Eq. (9.5)

� � 	 � � � ����� � � � ��� � (9.6)

This means that until Eq. (9.6) can be solved for � � the solution � ��� � of Eq. (9.5) con-
verges asymptotically to � � resulting in an infinite lifetime � � of the composite. Note that
Eq. (9.6) also provides the asymptotic constitutive behavior of the model which can be
measured by quasistatic loading. If the external load falls above the critical value the
deformation rate � 	 �

	��� remains always positive resulting in a macroscopic rupture in a
finite time � � . It follows from Eq. (9.6) that the critical load � � of creep rupture coincides
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Figure 9.2: Simulation of � as a function of � for several value of � � below and above � � .� 	 � � � fibers were used.

with the static fracture strength of the composite.

The behavior of the system again shows universal aspects in the vicinity of the critical
point. Below the critical point the relaxation of � ��� � to the stationary solution � � is gov-
erned by a differential equation of the form

� �
� � � � � � (9.7)

where � denotes the difference ����� � 	 � � � � ��� � . Hence,the characteristic time scale � of
the relaxation process only emerges if � 	 � , furthermore, in this case also

� � � � � � � � � �
�
� (9.8)

holds when approaching the critical point. However, for �  � the relaxation process is
characterized by

� ��� � 	 � �
�
��� 	 � (9.9)

where � � �
with � � � � � .



Slow relaxation of fiber composites 129

Similarly to the previous creep model (see chapter 8), it can also be shown that the lifetime
� � of the bundle has a power law divergence when the external load approaches the critical
point from above

� � � � ����� ��� � � ! � �
�
� " � for � �  ��� � (9.10)

The exponent is universal in the sense that it is independent on the disorder distribution,
however, it depends on the stress exponent � , which characterizes the non-linearity of
broken fibers.

Simulation technique

Subjecting a finite bundle of
�

fibers to an external stress � � those fibers whose failure
threshold falls below � � break immediately. The number

� � of initially breaking fibers
can be estimated from the disorder distribution as

� � � � � � � � � . In the presence of
broken fibers the system slows down and the remaining fibers of the bundle break one-
by-one in the increasing order of their breaking thresholds

� � � � � � � � � � � � � � � (9.11)

In order to construct an efficient simulation technique one has to determine the time
elapsed between two consecutive breakings during the creep process.

The macroscopic constitutive equation for a system of
�

fibers when � fibers have already
failed can be written as

�
	 	 �
� � �� � ��� �� � (9.12)

Making use of Eqs. (9.2,9.4), the differential equation describing the time evolution of the
load of intact fibers � can be cast into the form

�
� �
� � �

�
� � 	 ���

�

� � � 	 � 	 � � � � � ��� � � � � (9.13)

where
� ���
� � is introduced for brevity as

� ���
� � 	 � � �
� � �� � (9.14)

The time ��� � � � � � � � � � elapsed between the breaking of the � th and � � � th fiber can be
determined by integrating Eq. (9.13) from � � to � � � � , which yields for �

�	 �

��� � � � � � � � � � 	
� �

� � � ��� � � � � � � � � � ���
� � � ��� � � � ��� � � � (9.15)
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Figure 9.3: Lifetime � � as a function of the distance from the critical point � � � � � for
two different values of the parameter � . The number of fibers in the bundle was taken� 	 � � � .

and the multiplication factor
� � reads as

� � 	
�

� � � 	 �� � � ��
� �
� � �

�
� � 	 ���

�

� � � � (9.16)

For � 	 � the corresponding equation has the form

��� � � ��� � � � � � 	
� ��� � � � ��� � � � � � � � �

� � � � � ��� � (9.17)

Then the simulation proceeds as in the case of viscoelastic bundles but in the above for-
mulas the number of broken fibers � varies as � 	 � � � � � ��� �	�	�	� � � ��� , so the time as
function of � can be obtained as

� � � � � 	
��

 � � � � �
��� � �  � �  � � � (9.18)

from which the deformation as a function of time � ����� � can be determined, since � 	�� �	� �
always holds. The lifetime � � of the system can be obtained by summing up all the ��� ’s.
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Figure 9.4: Size dependence of the lifetime � � for two different values of the parameter
� .

For the purpose of explicit calculations a uniform distribution was prescribed for the
breaking thresholds � � between 0 and 1. The deformation as a function of time is plotted
in Fig. 9.2 for several different values of the external load below and above the critical
load. Similarly to the previous model the two regimes of the creeping system can be
clearly distinguished.

To study the behavior of the time to failure as a function of the distance from the critical
point, simulations were performed for several different values of the exponent � . In Fig.
9.3 the results are presented for � 	 ��� � and � 	 


� � . The slope of the fitted straight
lines agrees very well with the analytic predictions of Eq. (9.10).

The size scaling of the time to failure � � was analyzed by simulating the creep rupture of
bundles of size

� 	 ��� � � � � � � � setting a uniform distribution for the breaking thresholds.
We found that � � � � � converges to the lifetime of the infinite system � � � � � according to
the universal law Eq. (8.26) independently on the value of the exponent � . In Fig. 9.4 the
best fit was obtained for both curves with slope � � � � � � � � � for both � values.
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Figure 9.5: The distribution of inter-event times ��� for 	 	 �
. Power law behavior can

be observed over up to five orders of magnitude.

Statistics of events

The inter-event time ��� is a fluctuating quantity which depends both on the breaking
thresholds and the load level. The statistics of inter-event times characterized by the
distribution

� � ��� � provides information on the microscopic dynamics of creep.
� � ��� � is

presented in Fig. 9.5 for a system of
� 	 � � � � � fibers.

Simulations revealed that
� ����� � exhibits a power law of the form

� ����� � � ��� � � (9.19)

both below and above the critical point whenever the macroscopic stationary state charac-
terized by the plateau of ����� � is attained. However, the value of the exponent � is different
on the two sides of the critical point, i.e. below � � the exponent of the distribution is
� 	 ��� � � � � � � � independent of � � , while above � � we obtained � 	 ����� � � � � � . In-
creasing the load above � � the stationary state gradually disappears implying that the
power law regime of

� � ��� � preceding the exponential cut-off is getting shorter but the
exponent remains the same (see Fig. 9.5). It follows that the slow relaxing bundle also
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Figure 9.6: Coupling between a pure elastic element and a Maxwell element

self-organizes into a critical state in the same manner than the creeping bundle of fibers
previously presented in chapter 8. Note that the exponents keep their universal values.

9.1.2 Variable range of interaction

Relaxation of a single Maxwell element

Firstly, we explore on the relaxation process of a single linear Maxwell element coupled
in parallel with an elastic surrounding under a fixed external load � � . The coupling is
shown in Fig. 9.6. There � � is the stiffness of the elastic element, � � and � are the
characteristic constants of the Maxwell viscoelastic element.

As the two elements are connected in parallel the external stress during the process is
equal to the sum of the stresses in each element which can be written as

� � 	�� � � ����� (9.20)

where � � and ��� are the stresses in the Maxwell element and the elastic element respec-
tively. The constitutive behavior of a linear Maxwell element reads as

� �
� � � � �� 	 � � � (9.21)

Which is a special case of Eq. 9.2 for � 	 � . On the other hand for the elastic element it
looks as

���
� � 	 � ��� (9.22)
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The boundary condition � � 	 � � must always be fulfilled. The solution of the equations
9.21, 9.22 emerges as

� � ��� � 	 � �
 � � �� � (9.23)

and

��� ��� � 	�� � � � �
 � � �� � (9.24)

where
�

is a characteristic relaxation time which depends on the parameters of the ele-
ments in the following way:

� 	 � � � ���� � � � � � � � (9.25)

Hence, the stress in the Maxwell element has an exponential relaxation and the elastic
element is continuously supporting it. So that, the Maxwell element behaves as a source
of stress and the elastic element as a sink. In � 	 � the elastic element will carry the
whole external stress � � .
For a non-linear Maxwell element (Eq. 9.2) the corresponding results read as:

� � ��� � 	 � � 	 ��� � � � ����� � ����
� � � �

�
��� 	 � � (9.26)

and

��� ��� � 	�� � � � � 	 ��� � � � � � � � ����
� � � �

�
��� 	 � � (9.27)

Simulation technique

Based on the previous simple system above we can simulate a fiber bundle model with
slowly relaxing fibers in the framework of the local load sharing approach.

The system is composed of
�

parallel fibers identified by an integer � , �  �  �
on a square lattice, which initially have identical Young-modulus � � but random failure
thresholds � � , � 	 ���
�	�	�
� � . The failure strength ��� of individual fibers is an indepen-
dent homogeneously distributed random variable with a probability density � � � � and a
cumulative probability distribution � ��� � 	 � �� � �
� � � � .

After one fiber breaks, the local stress of the broken fiber exponentially decreases with a
characteristic time

�
. Then, the excess of stress is re-distributed among the intact elements
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Figure 9.7: Example of the stress sharing between the Maxwell and the elastic element.
One can observe that the remaining intact fiber overtake the load of the broken one.

of the system, following a variable range of interaction rule which was already described
in chapter 6.

Hence, the stress in the surviving element � at time � � � � i.e. � �� ��� � � � � is related to the
stress at time � � in the following manner

� �� ��� � � � � 	 � �� ��� � � �
�
 ���

�
 � ��� � ��� � ����  �  � �

� �
�
� �

� � (9.28)

with ������	 � � � � � � � The sum runs over the set � of all broken elements and �����  is the
distance of fiber � to the source point ���  ���  � which has at time � � the stress value �

 � ��� � �
and

�  is the normalization constant (see chapter 6).

Using Eq. 9.28, the time elapsed for each element of the system before it breaks can be
deduced. Moreover, when the element � breaks, its stress can be assumed equal to its
threshold value � � . Solving Eq. 9.28 for the time interval ��� � and substituting � �� ��� � � � � 	��� results in

��� � 	 � � � � � � ��� � �� ��� � ��  � � �
 � ��� � ��� � �� �  � �  � (9.29)
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The minimum of the set ����� is the interval of time between the � th and the �
� � th
breakings

��� � � � 	 �
�
�

� � � � � � � (9.30)

and the time elapsed till the breaking of the � � � th fiber is obtained as

� � � � 	
�

� ��
 � �

���  � (9.31)

Obviously, this algorithm is more simple if global load sharing is assumed, and Eq.(9.29)
is given as:

��� � 	 � � � ��� �
� � � ��� � � � � � � � � ���

� � ���
(9.32)

where
� � is the number of broken elements at zero time ��� 	 � � and

� � ��� 	
� ����
� ���

� � �
�
�� (9.33)

Time to failure

Fig. 9.8 presents the lifetime � � of a bundle of fibers of linear size � 	 ��� as a function
of the distance from the critical point � � 	 � � � � � for several values of the exponent
	 . We observe that the � � ��� � ��	 � curves form two groups of different functional form:
The upper group is obtained for

�  	  

when the load sharing is global. In the

lower group, obtained for 	  

when the load sharing gets localized, � � � � ����	 � rapidly

takes a constant value showing an abrupt transition at the critical load � � with no scaling,
reminiscent of a first order transition. Note that similar results were obtained, for an array
of creeping fibers, which were represented by Kelvin’s viscoelastic elements and the same
load transfer rule was used (see chapter 8).

Following of the presentation of Chapter 8, in order to describe the behavior of � � � � ����	 �
under the variation of 	 we calculated the normalized quantity

� �
	 � previously define
in Eq. 8.35.

� �
	 � is illustrated for different system sizes in Fig. 9.9. As was already
explained in Chapter 8 this magnitude provides a quantitative description of the creep
rupture transition in terms of the effective range of interaction so that

� ��	 � takes value
unity for the GLS, and it has a value close to zero for the LLS class, respectively. We
can also observe in Fig. 9.9 that the transition between the two universality classes gets
sharper around 	 � � 


with increasing system size.
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138 9.2 Conclusions

The results confirm the existence of two universality classes in creep rupture of fiber-
reinforced composites, which was previously obtained in chapter 8. Those universality
classes are characterized by a completely global (GLS), or a completely local (LLS) be-
havior depending on the effective range of interaction 	 with a rather sharp transition
between them.

9.2 Conclusions

We have analyzed a model of creeping fibers composites where the time dependence is
introduced by the slow relaxation of fibers and their interaction was realistically modeled
by the power law transfer function introduced in Chapter 6. Analytical and numerical
calculations showed that also during the slow relaxation of broken fibers a transition takes
place from a partially failed state of infinite lifetime to a state where global failure occurs
at a finite time. Hence, the macroscopic time to failure diverges as power law function,
close to the critical stress value � � . The critical exponent is independent on the cumulative
threshold distribution, but is related with the nature of the relaxation process ( � non-
linearity). Similar to the previous chapter, the critical load turned out to be the static
fracture strength of the material. The existence of two universality classes in creep rupture
of fiber-reinforced composites was confirmed by our results, using a model with variable
range of interaction. The model can be relevant to describe metal matrix composites
reinforced by brittle fibers where also local load sharing approach is relevant.



Chapter 10

General Conclusions

In this thesis, our goal was to extend the fiber bundle models, used to describe failure
of fibers composites, in order to provide a more detailed and realistic description of the
failure process of fiber reinforced composites. Severals different damage mechanism rel-
evant for certain classes of materials have been examined. Our analytical and numerical
results have been described and some specific new application of those models have been
presented.

An extension of the classical fiber bundle model by introducing a continuous damage law,
was described in Chapter 4. This model allows for multiple failure of fibers with quenched
and annealed disorders. A simple general derivation of the constitutive behavior of the
model is provided, which also allows to obtain analytic results for the microscopic dam-
age process. Varying its parameters, the model provides a broad spectrum to describe
materials ranging from strain hardening to perfect plasticity, and hence, the model can
be relevant to describe the damage process of various types of materials [56, 57, 61–63].
It is a remarkable feature of the model that multiple failure of brittle elements can re-
sult in a macroscopically plastic state, which has also been observed experimentally in
materials where the damage mechanism is the gradual multiple failure of individual ele-
ments. We also focused on the microscopic damage process to understand the emergence
of the plastic plateau under strain controlled loading, and the resulted avalanche activity
under stress controlled loading of the continuous damage fiber bundle model. Analytic
results were obtained to characterize the damage process along the plateau under strain
controlled loading, furthermore, for stress controlled experiments a simulation technique
was developed and the distribution of avalanches of fiber breakings was explored numeri-
cally. Simulations showed that depending on the parameters of the model the distribution
of bursts of fiber breakings can be exponential or power law. The results obtained have
relevance to understand the acoustic emission measurements performed on various elasto-
plastic materials [61–63].
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In Chapter 5 we have presented an experimental and theoretical study about the evolution
of the force chains during the compression of a granular medium. For the theoretical
description we applied the concept of fiber bundle models based on the analogy of fibers
of composites and the array of force chains in a compacted granular material.

Our model for hardening force networks inverts the mechanism of the continuous damage
model for fiber-reinforced composites (Chapter 4). The individual lines of the network
are considered as fibers which instead of rupturing under tension do harden under pres-
sure due to contact rearrangements. If the increase of stiffness and the increase in the
restructuring threshold stress are equal, the model can be solved analytically. We provide
a nonlinear constitutive behavior in good quantitative agreement with the experimental
results. Moreover, the stress � shows a power law divergence when � approaches the cer-
tain critical value �
� ( � � � ��� � � � � ). The value of the exponent is universal ( � 	 � � ),i.e.
it does not depend on the form of disorder distribution, while the value of ��� depends on
it. The rearrangement of granular materials results in a spontaneous release of acoustic
energy radiating waves similar to those observed in other brittle materials under load. The
amplitude distribution of acoustic signals was found experimentally to follow a power law
of an exponent � 	 ��� � � � � � � � which is in good agreement with the analytic solution of
the model

� � ��� 	 � ��� .
In order to model realistic situation, where load sharing in materials fells between the
limiting cases of GLS and LLS; we have developed a fracture model of the fiber bundle
type where the interaction among fibers is considered to decay as a power law of the
distance from an intact element to the rupture point (see Chapter 6). Two very different
regimes are found as the exponent of the stress-transfer function varies and a crossover
point is identified at 	 	 	 � . The strength of the material for 	 � 	 � does not depend on
both the system size and 	 qualifying for mean-field behavior, whereas for the short range
regime, the critical load decreases with the system size as � ��� � � � � � � � . The behavior
of the model on both sides of the crossover point was numerically studied by recording
the avalanche and the cluster size distributions. The numerical results suggest that the
crossover point falls in the vicinity of 	 � 	 


� � .
The size effect of tension strength of softwood loaded parallel to fiber direction has been
studied experimentally and theoretically in chapter 7. The macroscopic constitutive be-
havior of the specimens was rather brittle and the strength values showed a statistical
variation which could be well fitted in terms of a Weibull distribution. It was revealed
that the average strength is a decreasing function of the cross-sectional specimen size.
In order to provide a theoretical interpretation of the experimental results with respect to
the size effect and the modeling of the load sharing mechanism, the wood material was
modeled as a natural fiber composite with extremely small volume fraction of matrix ma-
terial. Comparing the strength distribution of single fibers and the macroscopic samples
we deduced that the load redistribution among wood fibers is short ranged giving rise to
a low precursory activity preceding final failure and small clusters of broken fibers. For a
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qualitative characterization of the load sharing it has been assumed that the load-transfer
function has a power law form and its effective exponent has been estimated.

We studied the creep rupture of fibrous materials in the framework of fiber bundle mod-
els taking into account two possible microscopic mechanisms of creep: (i) in the first
(Chapter 8) approach the fibers themselves are viscoelastic and they break when their de-
formation exceeds a stochastically distributed threshold value, (ii) in the second model
(Chapter 9) the fibers are linearly elastic until they break, however, after breaking their
relaxation is not instantaneous but the creeping matrix introduces an intrinsic time scale
for the relaxation. The first model can be relevant for natural fiber composites like wood
which are composed of viscoelastic fibers, while the second model can provide an ade-
quate description of metal matrix composites reinforced by brittle fibers. Analytical and
numerical calculations showed in both models that increasing the external load on a spec-
imen a transition takes place from a partially failed state with infinite life time to a total
failure state with finite life time � � . We have identified two universality classes of creep
rupture depending on the range of interaction of fibers. The critical behavior of the mi-
crofracturing process can be seen as the result of the self-organization of the system into a
macroscopic stationary state whose duration depends on the external perturbation (load).
In this sense the system is at some point of marginal stability jumping form one metastable
state to another with power-law distributed waiting times. This suggests the existence of
a critical dynamics underlying the process that seems to indicate self-organized criticality
in creep.

Outlook

Although fiber bundle models have already been studied in great details, there still exists
a lot of new possible applications. Typical laminar composites are made up of different
layers of fiber bundles .This follows from the technological specifications which fix the
layer composition and the relative orientation between the fibers. The shear-failure in
this kind of composites is interesting. The damage evolution and the stress redistribution
during this failure process are still not well understood. Many other universal properties
could still be obtained. In future, these kind of systems can be better addressed through
more complex models developed on the basis of the FBM’s.

Currently the evolution of the force chain array inside a compact granular system is not
fully understood. Several recent experiments have used different types of materials for
the beads and more advanced acoustic emission techniques that include source localiza-
tion. In this way the evolution of the compact granular media close to the critical volume
fraction could now be studied. Moreover, the localization and the description of the local
restructuring events could be used to develop a new NDT to study the force distribution
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inside a compact granular media.

The fracture model with variable range of interaction presented in Chapter 6 can be further
improved. For example, the screening influence of the broken fiber clusters could also be
taken into account. This may significantly enhance the accuracy of the global strength
prediction. Moreover, the possible influence of the disorder on the crossover value 	 � is
still an open question. For this reason some analytical arguments are still missing in this
respect and a detailed numerical study is needed to clarify this. Such approach may also
allow us to develop a more realistic fiber-reinforced composites model in which the stress
parallel to the fiber direction could be modeled as a shear-lag interaction. This idea is
not completely new, but the efficiency of our algorithm might enable to make calculations
with bigger system sizes, an important aspect in this problem.

In Chapter 7 the size dependency of tension strength in soft-wood have been theoreti-
cally and experimentally accessed. Further experiments with intermediate size scales are
needed to confirm the results in a more quantitative manner. Some aspects of the damage
evolution of the wood tension loading parallel to the fiber are not very well described
by the FBMs. Nevertheless, our numerical results and existing analytical work by other
groups are expected to be the starting point for studying the failure of some real wood
structures . This will have significant technological relevance.

Concerning the creep modeling, recent experiments have shown the existence of a crit-
ical stress value � � in the creep of the soft-wood [112]. These experiments have been
performed applying different load values to several sets of wood specimens. The results
indicate that with increase of the fixed external load � � , a transition takes place from a
partially failed state with infinite life time to a total failure state with finite life time � � .
Although our models support that the critical stress value � � should be equivalent to the
global strength of the sample, in the experiments the critical stress value is found to be
around


 ��� � � ��� lesser than the global strength. Further theoretical studies are needed
to clarify this.

I conclude this thesis following one Philosophical Dialectic Principia. It is well under-
stood that the truth is always relative. The absolute truth is just an abstraction which can
never be reached. The scientific community will always get a better approximation of the
reality. For our children, our theories will only be the first step, that fortunately someone
has made before.
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