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Zusammenfassung

Ziel dieser Arbeit ist es, einen theoretischen und computerbasierten Zugang zur spröden
und duktilen Bruchmechanik zu entwickeln, welcher die Simulation von komplexen Bruch-
phänomenen bei großen Verzerrungszuständen ermöglicht. Ein zentraler Aspekt dieser
Arbeit ist eine umfassende theoretische Untersuchung von Rissphasenfeld-Modellen in
der Bruchmechanik, im Speziellen für die Anwendung zur Beschreibung von Brüchen in
gummi- und glassartigen Kunststoffen bei großen thermo-viskoelastischen Deformationen.
Daneben stellt die Entwicklung neuer Algorithmen für Rissfortschritt und die Erforschung
der Vorhersagekraft dieser neuen Methoden einen zentralen Aspekt dar.

Unter Bruch versteht man die vollständige oder teilweise Trennung eines ursprünglich
ganzen Körpers. Man unterscheidet häufig lineare und nichtlineare Bruchmechanik. eine
Vielzahl an Versagenshypothesen ist bekannt, darunter Bedingungen bezüglich der Haupt-
spannungen, der Hauptdehnungen oder bezüglich eines Vergleichsspannungszustandes.

Im Jahre 1920 legte Griffith einen ersten Grundstein für eine Bruchtheorie von Rissen,
indem er die für den Rissfortschritt erforderliche Energie in die Beschreibung einführte
und damit das energetische Bruchkonzept schuf. Die Charakterisierung des Rissspitzenzus-
tandes mit Hilfe von Spannungsintensitätsfaktoren geht auf Irvin zurück. Für die Beschrei-
bung von Bruchmechanismen existieren Modelle für sowohl scharfe, als auch unscharfe
Rissdiskontinuitäten. Modelle, die scharfe Rissdiskontinuitäten beschreiben, sind unter
anderem Kohäsiv-Zonen-Modelle oder Konfigurations-Adaption-Modelle, welche allerd-
ings bei komplexer Rissentwicklung versagen. Computerorientierte Modelle mit unschar-
fen Rissdiskontinuitäten, sogenannte Rissphasenfeld-Modelle, ermöglichen eine direkte
Berechnung von gekrümmten Rissen und Rissphänomenen wie Rissinitiierung, Rissverzwei-
gung oder Rissarrest.

Kunststoffe zeigen aufgrund ihrer molekularen Struktur ein sehr großes Spektrum
an sowohl mechanischem Materialverhalten als auch Bruchverhalten. Elastomere zeigen
hochgradig nichtlineares Verhalten und einen charakteristischen S-förmigen Spannungs-
Dehnungs-Verlauf. Ursache der Elastizität ist überwiegend die Fähigkeit der geknäulten
Polymerketten, auf eine Zugbelastung mit einer Streckung bzw. Entflechtung der Ket-
ten zu reagieren. Die Makromoleküle richten sich bevorzugt in Richtung der Belastung
aus. Der komplexe Aufbau eines Elastomers aus chemisch vernetzten und sich durchdrin-
genden, verknäulten Makromolekülen führt zu komplexem viskoelastischem Materialver-
halten. Bei kleinen Deformationsraten können sich die Moleküle leicht drehen und neu
ausrichten, sodass die Verschlaufungen kaum zur Steifigkeit beitragen und sich das Ma-
terial nahezu elastisch verformt. Mit steigender Deformationsgeschwindigkeit steigt auch
die Materialsteifigkeit, da die Umformung der Molekülsegmente erschwert stattfindet.

Die Bruchfestigkeit eines Elastomers ist ebenfalls durch die molekulare Struktur bes-
timmt. Um einen Riss zu erzeugen, müssen die Ketten zwischen den Vernetzungspunten
gebrochen werden. Diese Überlegungen resultieren in der Bestimmung einer Rissenergie,
die zur Bildung einer Rissfläche nötig ist. Das Bruchverhalten von Elastomeren ist selten
spröde, sondern meistens ein zähes Auseinanderreißen des Materials, das unter ständigem
Energieverbrauch erfolgt. Abhängig von der Geschwindigkeit des Risszuwachses steigt die
Energieaufnahme im Bruch. Dissipative Effekte im Material im Allgemeinen sowie in der
Prozesszone an der Rissspitze sind Gründe dafür. Eine Zunahme der Mobilität der Poly-
mermokleküle mit steigender Temperatur bewirkt eine Verringerung dissipativer Effekte
und somit eine Verringerung der Rissenergie.
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Amorphe Thermoplaste zeigen einen Bereich kleiner elastischer Verzerrungen, in dem
nahezu linearelastisches Materialverhalten auftritt. Die Festigkeit wird durch Sprödbruch,
Kaltverstrecken, Scherbandausbildung oder Crazing begrenzt. Unter einachsiger Zugbe-
lastung lassen sich manche amorphe Thermoplaste kaltziehen. Nach Erreichen des Fließ-
punktes bleibt die Last über einen größeren Deformationsbereich nahezu konstant. Eine
stabile Einschnürungszone breitet sich über die Probe aus, innerhalb derer die Moleküle
gestreckt werden und sich in Richtung der Belastung zu einem Strang ausrichten. Craz-
ing ist ein weiterer plastischer Deformationsmechanismus, welcher die Festigkeit beein-
trächtigt. Crazes sind mikroskopisch kleine poröse rissartige Strukturen, bestehend aus
Fibrillen und Mikroporen. Sie werden als Vorstufe einer Spannungsrissbildung in Kun-
ststoffen betrachtet. Crazes können zu Rissen wachsen und schließlich zum Bruch des
Bauteils führen. Die genannten Deformationsweisen treten nicht nur für verschiedene
Polymere auf, sondern auch für ein Polymer bei unterschiedlichen Randbedingungen. Ein
Übergang von duktilem zu sprödem Materialverhalten wird durch das Erhöhen der Be-
lastungsgeschwindigkeit und das Herabsenken der Temperatur ausgelöst da durch die
veränderte Mobilität der Polymermoleküle die Fließspannung über den Wert der Spröd-
spannung hinaus steigt.

Die vorliegende Arbeit, zur Untersuchung von Brüchen in gummi- und glassartigen
Kunststoffen bei großen thermo-viskoelastischen Deformationen unter Verwendung von
Rissphasenfeld-Modellen, ist wie folgt strukturiert:

In Kapitel 2 wird zunächst die Notation, die in dieser Arbeit verwendet wird, vorgestellt.
Aufeinander folgend werden die Kinematik eines endlich deformierbaren materiellen Kör-
pers, sowie grundlegende Verformungs- und Spannungsgrößen eingeführt. Die wesentlichen
Bilanzgleichungen werden für einen Festkörper zusammengefasst, an dem endliche und
eventuell inelastische Deformationen stattfinden.

Kapitel 3 liefert einen Überblick zur Bruchmechanik, wobei grundlegende Konzepte
der klassischen Bruch- und Schädigungsmechanik in Kürze wiederholt werden. Es folgt
eine Einbettung des regularisierten Rissphasenfeldmodells in den Kontext der allgemeinen
Bruchkonzepte. Basierend auf einer geometrischen Interpretation der regularisierten Ris-
stopologie wird ein umfassendes theoretisches Verständnis für das Rissfunktional entwick-
elt. Eine sehr anschauliche Erläuterung liefert dabei der eindimensionale Fall; anschließend
wird das Funktional auf den mehrdimensionalen Fall verallgemeinert. Die Betrachtung
resultiert in der Definition eines regularisierten Rissoberflächenfunktionals, das vom Ris-
sphasenfeld abhängt und für verschwindenden Längenskalenparameter zu einer scharfen
Risstopologie konvergiert. Dieses Rissfunktional kann als Rissoberfläche selbst betrachtet
werden. Die regularisierte Beschreibung von Rissdiskontinuitäten durch ein Rissphasen-
feld wird durch eine gradientenbasierte Bilanzgleichung getrieben. Die Theorie ist in den
Rahmen gradientenbasierter standarddissipativer Festkörper eingebettet und liefert eine
Art Kontinuums-Schädigungs-Bruchtheorie mit spezifischen konstitutiven Funktionen.

Ein grundlegendes Schema zur Kopplung des mechanischen Verhaltens und des Rissver-
haltens wird in Kapitel 4 vorgestellt. Es wird ein klarer, rein geometrischer Zugang zur
Beschreibung des Rissfortschritts unter Verwendung des Phasenfeldes vorgestellt, indem
eine Bilanzgleichung für die regularisierte Rissoberfläche eingeführt wird. Unter Ein-
beziehung thermomechanischer Kopplung werden drei gekoppelte Bilanzgleichungen vorge-
stellt. Ein Konzept für spröde und duktile Rissinitiierung und -ausbreitung und deren Reg-
ularisierung in Raum und Zeit wird entwickelt. Weiterhin wird eine Zusammenstellung
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von energie-, spannungs-, verzerrungs-, und inelastizitätsbasierten Kriterien vorgenom-
men. Für die Berechnung wird eine gestaffelte Lösungsstrategie vorgestellt, welche auf
einem

”
one-pass“ Operator basiert. Derartige Lösungsalgorithmen sind besonders robust,

einfach zu implementieren und bestens geeignet für Probleme im Ingenieurwesen. Die Leis-
tungsfähigkeit und die enormen Möglichkeiten des Rissphasenfeld-Modells werden anhand
von komplexen numerischen Beispielen in den jeweiligen Anwendungskapiteln aufgezeigt.

In Kapitel 5 wird das in Kapitel 4 vorgestellte Konzept zur Beschreibung raten-
unabhängigen Rissfortschritts in gummiartigen Polymeren unter großen Verformungs-
zuständen spezifiziert. Aus statistischen Größen der Molekülstruktur und der Netzwerk-
struktur werden Materialkennwerte, sowohl des elastischen Materialverhaltens als auch der
Rissfestigkeit eines idealen Netzwerkes hergeleitet. Der von Griffith eingeführte Materi-
alkennwert der Energiefreisetzungsrate wird zur Herleitung eines energiebasierten Kriteri-
ums zur Beschreibung von Rissinitiierung und -fortschritt verwendet. Die Vorhersagekraft
des modularen Konzepts in der Anwendung auf spröde elastische Bruchvorgänge in gum-
miartigen Polymeren wird anhand von Vergleichen zwischen Simulationsergebnissen und
experimentellen Daten belegt.

In Kapitel 6 wird das allgemeine Konzept auf die Untersuchung von Sprödbruch in
thermomechanischen Problemen spezifiziert. Im Vordergrund steht die detaillierte Anal-
yse von Wärmeflüssen durch sich gegenüberliegende Bruchflächen, sowie die Untersuchung
von konvektiven Wärmeübergängen die auf Bruchflächen entstehen, die im Kontakt zu
einem Umgebungsmedium stehen. Um Rissentwicklung differenziert für Zug- und Druck-
belastungen beschreiben zu können, wird ein spannungsbasiertes Kriterium zur Beschrei-
bung von Rissinitiierung und -fortschritt entwickelt. Dessen Notwendigkeit wird anhand
der Simulation eines klassischen Dreipunktbiegeversuchs gezeigt. Eine Vielzahl von nu-
merischen Simulationen veranschaulicht die entwickelte Theorie der Kopplungsphänomene
zwischen den Feldgrößen Deformation, Temperatur und Bruch.

Die Beschreibung von temperatur- und ratenabhängigen Bruchvorgängen in gummi-
artigen Elastomeren wird in Kapitel 7 vorgestellt. Das thermo-viskoelastische Materi-
alverhalten wird durch die Verwendung mikromechanischer Modelle beschrieben, wobei
ein mehrstufiges System aus sekundären Netzwerken angenommen wird. Das raten- und
temperaturabhängige Rissverhalten wird durch eine Dämpfung im Rissfortschritt und
ein temperaturabhängiges, spannungsbasiertes Kriterium beschrieben. Eine Vielzahl von
Simulationen wird mit Experimenten verglichen und belegt die Vorhersagekraft des mod-
ularen Konzepts in der Anwendung auf raten- und temperaturabhängige Bruchvorgänge
in viskoelastischen, gummiartigen Polymeren.

Kapitel 8 beschreibt Bruchphänomene in amorphen glassartigen Polymeren, welche
durch Crazing hervorgerufen werden. Die auftretenden inelastischen Deformationen sind
entweder durch Kaltverstrecken (engl. shear-yielding) oder Crazing bestimmt. Ein span-
nungsbasiertes Kriterium für den Wechsel von shear-yielding zu Crazing wird eingeführt.
Als Maß für die Entwicklung von Crazes wird eine skalare plastische Verzerrungsgröße bes-
timmt. Basierend auf dieser Crazing-Verzerrungsgröße wird ein Kriterium zur Beschrei-
bung von Rissinitiierung und -fortschritt festgelegt. Die Vorhersagekraft des vorgestellten
Modells wird schließlich anhand von Beispielen mit rein sprödem oder duktil-sprödem
Versagensverhalten aufgezeigt.
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Abstract

The goal of this work is to provide a theoretical and computer based model for brittle and
ductile fracture mechanics, which enables the modeling of complex fracture phenomena
with large deformations. A central aspect of this work is to provide a comprehensive the-
oretical study of a phase field model of fracture and its application towards the modeling
of crack initiation and growth in rubbery and glassy polymers at finite thermo-viscoelastic
deformations. The other main aspects are the development of new algorithms for crack
propagation and investigations towards the predictive quality of these new methods.

Fracture is the partial or full separation of an object or material into two or more
pieces under the influence of stress. A wide variety of failure hypotheses exist, including
some related to a principal stresses, principal strains or to an equivalent tensile stress
state. In 1920, Griffith introduced the so-called energy release rate for brittle elastic ma-
terials which is the energy required for crack propagation and thus, created the energetic
fracture criterion. Irvin characterized the crack tip state with the help of stress intensity
factors. Fracture mechanic models exist for the description of both sharp and diffusive
crack discontinuities. Models describing sharp crack discontinuities include cohesive-zone
models or configurational-force-driven models. These, however, suffer in situations with
complex crack evolution. In contrast, phase field type diffusive crack approaches are
smooth continuum formulations. These avoid the modeling of discontinuities and thus al-
low a straightforward computation of complex curved crack and fracture phenomena such
as crack initiation, crack branching or crack arrest. This work presents the application
of a fracture phase field model towards the modeling of crack initiation and growth in
rubbery and glassy polymers at finite thermo-viscoelastic deformations.

Due to their molecular structure, polymeric materials show a wide range of both, me-
chanical material behavior as well as fracture behavior. Rubbery polymers show highly
nonlinear elasticity, characterized by the typical S-shaped uniaxial nominal stress-stretch
relation. The origin of the characteristic of rubber to undergo large elastic deformations,
is the ability of the coiled and entangled polymer chains to elongate and disentangle
under tensile stress, such that the macromolecules align in the direction of the applied
force. The complex three-dimensional structure of rubbery polymers consists of chemically
crosslinked and entangled macromolecules. These take up compact, random configura-
tions, which lead to complex viscoelastic material behavior. Thermoelastic polymers and
elastomers show rate dependent material behavior. During slow deformation, the molec-
ular segments can easily rotate and realign. Thus, the entanglements contribute little
to the stiffness and the material deforms almost completely elastically. However, with
increasing deformation rate, the transformations of the molecular segments can no longer
keep up with the rate of defomation. Hence, the stiffness of the material increases.

Macroscopic fracture of rubbery polymers is a result of the failure of the molecular
network. Crack propagation takes place when molecular chains whose crosslinks lie on
opposite sides of the crack plane are broken. These considerations resulted in the definition
of a micromechanically motivated energy release rate, necessary for crack propagation.
Crack growth in rubbery polymers is rarely brittle, but mostly a gradual tearing of the
material under constant energy consumption, which strongly depends on the velocity
of the crack tip. Reasons for this are dissipative effects in both the bulk material and
the process zone. An increase in temperature results in an increasing polymer molecule
mobility, a decrease of dissipative effects and thus a decrease of energy release rate.
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Amorphous glassy polymers exhibit a small range of linear elastic deformation. The
strength is limited by brittle fracture, cold drawing, shear yielding or crazing. Cold
drawing is characterized by a small range of linear elastic strains up to the yield point,
followed by a large amount of plastic deformation during which, the stress remains almost
constant. Macroscopically a stable neck spreads over the object in question within which
the molecules are stretched and align in the direction of the applied force. Crazing is
also termed dilatational normal stress yielding and is a plastic deformation mechanism.
Crazes consist of dense arrays of fibrils separated by voids. They can grow in width and
length until the fibrils break down, which eventually leads to structural failure. Shear
yielding and crazing are not completely independent, nor do they exclude each other.
Changing the temperature or the rate of deformation and thus modifying the mobility
and reaction of the molecules, causes a change of yield stress and brittle fracture stress.
Thus a transition from ductile to brittle material response can take place.

As mentioned before, this work presents the application of a fracture phase field model
towards the modeling of crack initiation and growth in rubbery and glassy polymers at
finite thermo-viscoelastic deformations. It is structured as follows:

Chapter 2 outlines a short introduction to nonlinear continuum mechanics and the
notation used in this work. Subsequent to the description of the kinematics of a material
body at finite deformations, basic stress measures and heat flux are examined. Finally,
some essential balance equations of a solid body undergoing finite, possibly inelastic de-
formations, are summarized.

The aim of Chapter 3 is to give an introduction to the fundamental features of fracture
mechanics representing the basis of the phase field model of fracture. A geometric de-
scriptive motivation is introduced for the one-dimensional setting and then generalized to
the multidimensional case, resulting in the definition of a regularized crack surface func-
tional dependent on the crack phase field. This crack functional is considered as the crack
surface itself. The surface functional converges to a sharp crack topology when the length
scale parameter tends to zero. The proposed model describes a crack discontinuity in a
regularized method, using a crack phase field which is driven by a gradient type balance
equation. The theory is embedded into the framework of standard dissipative solids and
results in a continuum damage type theory of fracture with specific constitutive functions.

A modular scheme for the coupling of the mechanical material response and the phase
field model of fracture is presented in Chapter 4. A purely geometric approach for the
description of crack propagation is presented by introducing a balance equation for the
regularized crack surface in terms of the regularized crack surface functional. The model
bases on the introduction of a set of balance equations, describing the three field problem of
finite thermo-viscoelasticity, coupled with fracture. A concept for brittle and ductile crack
initiation and propagation, as well as its regularization in space and time is developed.
The key aspect is the definition of a criterion for crack initiation and crack growth.
Therefore, a summary of energy, stress, strain and inelasticity based criteria is presented.
A staggered scheme is introduced for the numerical solution, which bases on a one-pass
operator split. Such a solution algorithm is extremely robust, easy to implement and
ideally suited for engineering problems. The performance and the vast possibilities of
the phase field fracture model at large strains, are demonstrated by means of complex
numerical examples in the respective chapters dealing with application.
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In Chapter 5, the framework is specified for the description of brittle, rate independent
crack propagation in rubbery polymers at large deformations. The approach accounts for
micromechanically based features of both the elastic bulk response, as well as the crack
toughness of idealized polymer networks. The statistically based fracture toughness of
polymer networks is reviewed and an energetically based crack driving force is derived.
The crack driving state function is governed by the micromechanically based critical en-
ergy release rate. The predictive capability of the modular concept, applied to brittle
fracture in elastic rubbery polymers, is successfully demonstrated by comparison of sim-
ulation results and experimental data.

Chapter 6 deals with the specification of the general framework towards fully coupled
thermomechanical problems at large strains. An important aspect is the constitutive
modeling of degrading heat fluxes across cracks. This includes the generation of convec-
tive heat exchanges based on additional constitutive functions defined at the crack faces.
The introduced maximum principal stress criterion with a critical fracture stress thresh-
old, differentiates between tensile and compression regions. It can be extended towards
complex anisotropies in material modeling. The need for such a criterion is demonstrated
by means of a classic three point bending test. Various numerical simulations illustrate
the developed theory and the coupling in the multifield context.

A model for rate and temperature dependent failure of viscoelastic rubbery polymers
is presented in Chapter 7. Viscoelasticity in rubbery polymers is modeled on a microme-
chanical basis. A hierarchy of superimposed networks related to the ground state network
by entanglement mechanisms is associated with the modeling of the overstress response.
The rate and temperature dependent crack growth is considered by viscous damping in
the fracture phase field evolution equation and by a temperature dependent, stress based
fracture criterion. A variety of simulations demonstrates the predictive capability of the
modular concept, applied to rate and temperature dependent failure in viscoelastic rub-
bery polymers.

Chapter 8 describes crazing induced fracture in amorphous glassy polymers. The
ductile response is either determined by diffuse shear zones, formed by shear yielding or
by crazing. The competition between shear yielding and crazing is controlled in terms of
a stress based transition criterion. A scalar state variable is introduced as a measure of
accumulated viscoplastic flow due to crazing. From a micromechanical point of view, this
models the cumulative distribution of broken fibrils. A ductile fracture criterion based on
a critical accumulated viscoplastic flow is introduced. It is devised, such that the crack
phase field develops solely under craze flow. Finally, we demonstrate the capability of
the phase field model for crazing induced fracture with representative boundary value
problems. The model successfully captures the temperature dependent ductile to brittle
failure mode transitions.
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1. Introduction

The prediction of failure mechanisms in polymeric materials is of utmost importance
for engineering applications. The forecasting of crack growth in rubber products such as
tires, seals, conveyor belts and base insulations of buildings is a major issue. Furthermore,
the prediction of failure of glassy polymers in applications ranging from micro-electronics
over housewares to aerospace components is of high interest. The goal of this work is to
provide a phase field model for brittle and ductile fracture mechanisms, which is capable
of modeling complex fracture phenomena with large deformations. The emphases are on
the description of brittle crack propagation in elastic rubbery polymers and thermoelastic
solids. Besides this, the main focus is on the rate and temperature dependent failure of
viscoelastic rubbery polymers and crazing induced fracture in amorphous glassy polymers.

1.1. Motivation and State of the Art

Any polymeric material is created from simple molecules, monomers, which are poly-
merized to long chain molecules. Polymer molecules are either in a crystalline or random
amorphous structure. Amorphous glassy polymers are made up of molecules in random
configurations, which build a network via entanglements. Polymers of this group are
termed thermoplastic and are essentially viscous liquids, however they are in solid state
at room temperature. By heating, the material can be melted and the solid state turns
to a viscous liquid state in which the material can easily be reshaped and formed or
welded. Examples of the group of glassy thermoplastic polymers are Polycarbonate PC
or Poly(methyl methacrylate) (PMMA). Thermoplastic elastomers are viscoelastic soft
solids at room temperature. However, as thermoplastic glassy polymers, they can be
melted to a viscous liquid state, which is attractive for manufacturing processes. Block
co-polymers consisting of polystyrene blocks and rubber blocks, for example SBS are com-
posed of styrene-butadiene-styrene molecules.
Chemical crosslinking creates a second class of polymeric materials, called thermosets.
A fixed molecular network is generated by bonding the long molecules together at rela-
tively large distances. Thermosets or thermosetting resins, for example epoxy resin, are
solid at room temperature and the material is in fixed shape and size after crosslinking.
Thermosets are used as the matrix component in many fiber reinforced plastics such as
glass reinforced plastic and graphite reinforced plastic. Elastomers or rubbery polymers
are thermosets which are viscoelastic soft solids at room temperature. Examples are nat-
ural rubber or polybutadiene, among many others. After crosslinking by vulcanization,
thermosets cannot be melted or reshaped. For a deeper insight see Gent [84], Ashby &
Jones [16] or Strobl [203].

1.1.1. Elasticity of Rubbery Polymers. Rubbery polymers consist of long flexible
molecules that are in continuous Brownian motion at room temperature due to thermal ag-
itation. As a result, the rubber molecules take up a variety of random configurations. The
molecules are highly flexible and therefore highly extensible; upon loading, the molecules
elongate and disentangle. On the other hand, in the absence of an external force they
adopt rather compact, random configurations; when the load is released, they spring back
to random shapes as fast as their thermal motion allows. This is the origin of the unique
ability of rubber to undergo large elastic deformations and recover completely. To give
rubber a permanent shape, the molecules are tied together by a few chemical bonds in a
process known as crosslinking or vulcanization. Molecular sequences or strands between
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Figure 1.1: a) typical S-shaped material response in uniaxial tension, see Miehe et al.
[158]. b) Rate dependent hysteresis loops of stress cycles from Miehe & Göktepe [152]

sites of interlinking still move about and change their shape, but they are now subject to
the restrictions that the crosslinks remain in more or less stationary positions. Network
strands are formed both by crosslinking and by molecular entanglement. Even though the
original rubber molecules are very long (typically 10,000 to 50,000 main chain atoms), the
degree of crosslinking is rather narrow, typically within one crosslink site for every 100
to 1,000 main chain atoms. On the other hand, long polymer molecules tend to entangle
with each other, forming temporary physical crosslinks at a spacing, characteristic to the
particular molecular structure. This spacing ranges from one crosslink site for 250 to 1,000
main chain atoms. For further details the reader is referred to Gent [84]. Practically,
rubbery polymers are incompressible materials possessing the volumetric stiffness nearly
four powers of ten larger than the shear modulus, while they are readily deformable in
shear. The highly nonlinear elasticity is characterized by the typical S-shaped uniaxial
nominal stress-stretch relation, see Figure 1.1a from Miehe et al. [158].

The dominant contribution to the elastic bulk response of rubbery polymers is due to
changes in conformations of network constituents, yielding the so-called entropy elasticity
theory. Entropic elasticity of chain molecules is well established in the context of statis-
tical mechanics, see Kuhn [128, 129], Kuhn & Grün [130],Treloar [216], Flory [70]
and references cited therein. A vast number of constitutive models for the macroscopic
elastic response of rubbery polymers has been developed, see Boyce & Arruda [33] and
Miehe et al. [158] for a literature overview. Purely phenomenological macro-models in-
volve invariant or principal stretch based isotropic free energy functions Recently, Lion &
Johlitz [139] suggested ageing in an invariant based model. They often base on polyno-
mial functions, whereas the most advanced formulations are those of Ogden [174, 175].
However, the direct relation to the molecular structure of the material is missing. This
is achieved by micromechanically based network models, such as the three chain model
proposed by James & Guth [115], the eight chain model suggested by Arruda &
Boyce [12] and the affine full network models considered in Treloar [215], Treloar
& Riding [217] and Wu & van der Giessen [226]. It is well known that the affinity
assumption between microscopic and macroscopic deformation is not in agreement with
experimental observations, in particular in the range of large deformations. Consequently,
Boyce & Arruda [33] argued that the eight chain model yields more realistic results
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than the seemingly more precise affine full network models. A further improvement pro-
vides the non-affine microsphere model proposed in Miehe et al. [158], which allows a
flexible modeling of the locking stretches in multi-dimensional deformations. The above
mentioned micromechanically based models consider idealized polymer networks with
free motions of its single chains. In real networks, topological constraint effects arise due
to entanglements. Molecular based statistical approaches, that incorporate these effects
are constrained junction theories and constrained segment theories. The constraint junc-
tion theories formulate the topological constraints around the junctions. The constraint
junction part of the model proposed by Flory & Erman [71] was used by Boyce &
Arruda [33] to improve the performance of the eight chain model. The constraint seg-
ment approach is consistent with the so called tube model of rubber elasticity, see Deam
& Edwards [55], Edwards & Vilgis [64], Heinrich & Straube [106] and Heinrich
& Kaliske [105]. In Miehe et al. [158], the microsphere model was equipped with a
characteristic tube deformation that is linked to the macroscopic deformation.

1.1.2. Viscoelasticity of Rubbery Polymers. The assumed elastic behavior, that
the relation between load and displacement is fully reversible, is an idealization. In
practice, deviations from such ideal elastic behavior are to be expected. The differences
between the loading and unloading curves reflect mechanical energy losses from internal
dissipation processes, such as viscous flow or internal bond breaking. Introduction to
viscoelastic material response can be found in Bhowmick [25], or Eirich [65] among
others. The main cause of the viscoelastic response of rubbery solids is the internal
viscosity between molecular chains. In the three-dimensional network of the rubbery
solid, small segments of a molecule move to new positions as a result of random Brownian
motions from thermal agitation. Below the glass transition temperature Tg the molecular
strands appear to be stationary and the material becomes glass stiff. At a temperature
T above Tg, the response of an elastomer depends on the temperature. Macroscopically
one observes a decreasing elastic stiffness with increasing temperature. This observation
results from the internal viscosity between molecular chains, which is strongly affected
by temperature through the thermally activated Brownian motions. With increasing
temperature, the frequency of molecular jumps increases strongly. The segments of the
chains can slip more easily in relation to each other. When the temperature is raised,
the rate of Brownian motion increases. The characteristic response of molecular segments
speeds up and the elastic stiffness and the viscosity decrease. At a temperature T above Tg,
the response of a rubbery solid also depends on the rate of deformation. When subjected to
a stress cycle, the stress-strain curve is a hysteresis loop instead of a reversible curve, with
the deformation lagging behind the stress, see Figure 1.1b fromMiehe & Göktepe [152].
Typically, dynamic mechanical analyses with oscillating cyclic stresses are performed,
to derive stress-strain relations and dissipation measures that characterize the material
through the dynamic storage and loss modulus see Figure 1.2. During deformation at
low rates (frequency in oscillation test) molecular segments respond readily, the dynamic
modulus is low and nearly constant. As the frequency is raised, the molecular segment
transformations are retarded in relation to the applied deformation and load is carried
through the entanglement sites. Hence, the stiffness of the material increases. Eventually,
the molecules can no longer keep up with the rate of deformation and the polymer material
theoretically becomes glass hard. Figure 1.2 from Bhowmick [25] shows the dynamic
storage modulus measured over a range of frequencies at various temperatures. The
increasing stiffness with increasing frequency is clearly visible, as well as the effect of
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Figure 1.2: Construction of a master curve of dynamic modulus µ′ versus log(frequency)
by lateral shifting of experimental results made over a small frequency range but at several
different temperatures, taken from Bhowmick [25].

temperature on the storage modulus which increases with decreasing temperature. For
thermorheologically simple materials, it is observed that a change in temperature from T0
to T is equivalent to changing the frequency, see also Gent [84].

Finite viscoelasticity has been investigated by many researchers from different view-
points. Comprehensive reviews are outlined in the textbooks Ferry [68], Tanner [206],
Doi & Edwards [56], Findley et al. [69] and Drozdov [60]. Purely phenomenologi-
cal approaches to finite viscoelasticity usually introduce tensorial stress or strain like inter-
nal variables. The recent formulations Simó [200], Govindjee & Simó [87], Holzapfel
& Simó [109], Lion [137] and Kaliske & Rothert [117] use internal variables of the
stress type. These approaches exploit the structure of linear viscoelastic standard solids
and can be interpreted as special cases of the general theory of a simple materials with
fading memory such as outlined in Truesdell & Noll [218] and Coleman & Noll
[47]. The K-BKZ model of Kaye [121] and Bernstein et al. [24] represents a class
of optimal single-integral models of viscoelasticity, see Tanner [207] for an comprehen-
sive review. Besides these theories employing stress-like internal variables in the form of
convolution integrals, the formulations of Sidoroff [198], Lubliner [143], Lion [138],
Keck & Miehe [122], Bergström & Boyce [23], Reese & Govindjee [187], Haupt
& Sedlan [104] and Reese [186] use the multiplicative split of the deformation gradient
into elastic and inelastic parts. The inelastic part enters the formulation as a strain-like
tensorial state variable in the sense of Coleman & Gurtin [46]. A different kinematic
approach to viscoelasticity, based on the introduction of evolving viscous metric tensors as
internal variables, was outlined by Miehe & Keck [154] and Miehe et al. [158]. This
framework avoids a priori difficulties of the above mentioned intermediate configuration
theories, in particular questions concerning a separate modeling of viscous rotations.

Some of the above mentioned approaches are purely phenomenological while others are
motivated by the micromechanical material structure. Several molecular theories for the
modeling of viscous behavior of molten polymers and physically cross linked concentrated
polymer networks were proposed in the last decades. Following Wientjes et al. [223],
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these molecular approaches can be classified into three groups. The first group consists of
bead-spring models conceptually in line withRouse [192] and Zimm [232], seeBird et al.
[26] for an extensive review. The reptation type tube models proposed by de Gennes [53]
and Doi & Edwards [56] can be considered to define a second group of more advanced
versions of bead-spring models. Ideas of the reptation model have already been utilized in
the above mentioned macroscopic model of Bergström & Boyce [23], see also Lulei
& Miehe [144] and Miehe et al. [158]. The transient network model was originally
proposed by Green & Tobolsky [88] and further developed and revised by Lodge
[141], Yamamoto [230], Phan-Thien [181] and Tanaka & Edwards [204, 205]. In this
third group of micromechanical approaches, polymer segments located between junction
points are assumed to be destroyed and reformed during the deformation process. The
effect of the chain breakage and formation on the network distribution was investigated in
Scott & Stein [193] and Furukawa [75]. Basic ideas of transient network models have
been employed in the macroscopic models of Lubliner [143], Drozdov [61], Drozdov
& Dorfmann [62], Reese [186], among others. Recently, Linder et al. [136] derived
the viscous evolution equation by Lubliner from a diffusion problem.

In order to determine temperature dependent mechanical properties of linear viscoelas-
tic materials from known properties at a reference temperature, the time-temperature
superposition principle is used. A shift factor aT gives the ratio of internal viscosity at
operating to internal viscosity at reference temperature. Williams et al. [224] proposed
a simple, empirical function for the shift factor aT . The so-called Williams-Landel-Ferry
Equation depends on operating temperature, glass transition temperature and two con-
stants. It is found to be of general validity for most thermorheologically simple elastomers.
It applies to temperatures at or above the glass transition temperature only. Alternative
functions for the shift factor use the Arrhenius equation, which describes the temperature
dependence of reaction rates. It depends on the activation energy associated with the re-
laxation, the operating and a reference temperature. The Arrhenius equation is typically
used to describe behavior below the glass transition region, see Gent [84]. On frequency
dependence of thermomechanical response, see Lion & Peters [140].

1.1.3. Fracture Toughness of Rubbery Polymers. Fracture of rubber can initi-
ate from imperfections anywhere in the specimen, either in the interior or on the surface.
Cracks may grow under an applied load, often slowly at first, until one or more of them
reaches sufficient size for gross fracture to occur. When a rubber-like material is deformed,
the network constituents change their conformation and polymer chains align. At a crit-
ical load level, the first molecular chain ruptures, inducing the overload and breakage of
neighboring chains. Further loading of the body leads to rupturing of additional chains
and finally a macroscopic crack is generated. Thus, the occurrence of macroscopic fracture
of rubbery polymers is a result of failure within the molecular network. A measure for
the fracture toughness is the energy release rate. Griffith [97] originally had the idea
that a crack grows, if the energy needed for crack growth is provided by the material. For
glass, the basic strength property appears to be the surface energy. For rubber this is
not true. When a crack grows, irreversible processes occur in the vicinity of the moving
crack tip, leading to energy losses that must be made up for from the available elastic
energy. In some elastomers, energy losses may occur in the bulk of the sample under the
applied loading. These must also be taken into account. Thus, the energy necessary to
propagate a crack at a particular rate is likely to be a characteristic of the rubber itself,
even though it greatly exceeds the thermodynamic surface free energy. The characteristic
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of the polymer to be strain-crystallizing or amorphous, affects the tear behavior signifi-
cantly. Tearing of strain-crystallizing elastomers such as natural rubber, occurs typically
in a stick-slip manner. The energy release rate does not depend strongly on the rate of
tearing. Greensmith & Thomas [91] documented the stick-slip tearing processes in a
simple extension tearing test. The force and rate of crack propagation fluctuate in a reg-
ular manner, resembling frictional phenomena. The stick-slip process is associated with
a decreasing stored energy with increasing rate of crack propagation, see Greensmith
& Thomas [91]. The influence of strain crystallization on crack propagation in natural
rubber is also discussed in Persson et al. [179] or Kadir & Thomas [116]

This work focuses on non-crystallizing elastomers which exhibit steady tearing behav-
ior. Elastomers that do not crystallize upon stretching are often found to tear in a steady,
time dependent manner. Tear measurements on non-crystallizing styrene-butadiene rub-
ber have been carried out and the derived values of energy release rate can be expressed in
terms the rate of crack growth. In Figure 1.3a, the experimental results from Gent [82]
are visualized, showing the variation of energy release rate g to crack speed v. The energy
release rate increases for increasing crack speed. Energy dissipation at the advancing crack
in a viscoelastic solid has two contributors, see Persson et al. [179] for a review. Ac-
cording to Müller & Knauss [167] the two contributors can be additively decomposed.
The first is associated with the innermost region at the crack tip, where a new macroscopic
crack surface is created by cavity forming, stringing, chain pull out or bond breaking. This
contribution is related to the basic molecular strength of the material. In their pioneering
work, Lake & Thomas [133] proposed a simple molecular theoretical model, which deter-
mines this critical surface energy in terms of the parameters of the network. As noted by
Ahagon & Gent [1], a reasonably good agreement between the theoretical results and
experimental measurements can be obtained under near equilibrium conditions, such as
reported in Müller & Knauss [167]. The second contribution to energy dissipation at
the advancing crack comes from the viscoelastic dissipation in front of the crack tip and in
the bulk, see for example Persson & Brener [178] andKroon [126]. Rupture of rubber
has been investigated by many researchers from different viewpoints. Thomas, Green-
smith, Gent, Knauss and coworkers [82, 91, 92, 116, 167, 209, 91, 89, 90, 208, 210, 132]
performed experiments on tearing of rubber to show that the energy release rate increases
with increasing rate of crack propagation. Gent [82] pointed out that the strength prop-
erties are greatly enhanced by viscous resistance to internal motion or, more generally,
by internal losses. Persson et al. [179] proposed that this results from the molecular
network flexibility. During fast loading, the polymer chains do not have enough time to
rearrange themselves by thermally activated flipping of the polymer segments. Thus, the
external tensile forces acting onto the rubber volume element will distribute themselves
rather uniformly in the rubber matrix. A large stress is necessary to break the chemical
bonds in the block. On the other hand, for a very low crack tip velocity, the tensile loading
is very slow and the polymer chain segments between the crosslinks rearrange themselves
such that much of the external load will be distributed on the crosslinked bonds. Thus,
the bond breaking at slow rates will start much earlier than at high velocities.

The tear strength of non-crystallizing elastomers depends not only on the rate of
crack growth, but also on temperature. These variations closely parallel the variations of
viscoelastic properties with rate and temperature. Gent & Lai [83] performed fracture
tests on simple unfilled rubbery solids at various temperatures and measured the energy
release rate and the crack speed, see Figure 1.3b. As the test conditions change from low



1.1 Motivation and State of the Art 7

a) b)

lo
g
g
J
/
m

2

lo
g
g
J
/
m

2

log v m/slog v m/s

Figure 1.3: Experimental results from Gent [82] and Gent & Lai [83] on the variation
of energy release rate g with crack speed v and temperature.

tear speeds at high temperatures to high tear speeds at low temperatures, the values of
the energy release rate are seen to change by a large factor, see Fig. 1.3b. The change
in energy release rate shows that the internal dissipation from segmental motion governs
the strength of elastomers and that reduced molecular mobility is associated with high
strength. At low crack speeds and high temperatures the viscous energy dissipation is
minimized and the strength approaches a lower limit gc. The values of energy release
rate appear to be superposeable by horizontal shifts using time-temperature shift factors.
Figure 1.3a shows the shifted experimental values from 1.3b. In this context, the shift
factor aT gives a relation between temperature and crack speed. The crack speed is
multiplied by the shift factor aT to obtain the master curve containing high and low crack
speeds that cannot be easily obtained experimentally. In Bhowmick [25] it is observed
that the wide range of tear rates needed to cover the complete rubber to glass transition,
is about twice as large as the corresponding range of frequency needed to cover the change
in the dynamic modulus function. Molecular rearrangements are apparently much slower
in fracture than under an imposed deformation.

Studies from Carbone & Persson [43] and Persson & Brener [178] predict the
viscoelastic contribution to fracture toughness numerically. Recently, some time depen-
dent cohesive models were introduced in Rahul-Kumar et al. [184, 185], Nguyen
& Govindjee [172], Elmukashfi & Kroon [66] with rate dependent cohesive laws
of traction separation. Kroon [126] introduced a model for steady-state crack growth
in rubber-like solids, where the crack speed is a primary variable to a steady problem.
Geissler et al. [78], Geissler & Kaliske [77], Nase et al. [170] analyzed peeling
tests with cohesive zone modeling, Netzker et al. [171] analyzed global energy balance
during stable crack propagation. Grellmann et al. [94] covers lecture notes on fracture
mechanics of elastomer blends. Nguyen et al. [173] introduced a material force method
for inelastic fracture. Experiments from Gent & Schultz [80], Gent [82], Maugis &
Barquins [147] and theoretical investigations D’Amico et al. [51], Greenwood [93],
de Gennes [54] Carbone & Persson [43, 42], Persson & Brener [178], Baney
& Hui [17] show that the energy release rate depends on the crack tip velocity and on
the temperature. However, a three-dimensional thermodynamically consistent thermo-
mechanically coupled continuum model is of high importance for modern computational
material design.

1.1.4. Finite Viscoplasticity of Amorphous Glassy Polymers. Amorphous
glassy polymers exhibit strong rate and temperature dependent mechanical responsive-
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Figure 1.4: a) Schematic true stress-strain diagram of an amorphous glassy polymer un-
der tension taken from Ashby & Jones [15]. The picture clearly shows the molecular
re-arrangements taking place when the material is drawn, yielding a frozen reversible plas-
tic deformation. b) Temperature dependence of polycarbonate under isothermal uniaxial
tension results in a drop in yield stress, see Miehe et al. [162].

ness, accompanied by volume preserving inelastic deformations. The elasto-viscoplastic
response stems from the inherent disordered microstructure of the material, that is formed
by polymer chains in a frozen state. The basic deformation mechanism of amorphous
glassy polymers is of entropic nature. The molecules, initially forming an amorphous
agglomerate, can be rearranged in such a way that the flow orients the strings. The
molecules thus align up to a certain level, building a fibrous structure, see Figure 1.4a.
The stress-strain curve can be separated into a reversible range of linear elastic strains up
to the yield point. The polymer yields at high stresses, followed by a strain softening at
moderate strains. A drawing region follows, characterized by a large increase of plastic
strain during which the stress remains almost constant. A strain hardening is observed at
large strains when the drawing is complete. Bauwens-Crowet et al. [20] measured
the yield stress over a wide range of true strain rates and temperatures on polycarbon-
ate and poly(vinyl chloride) in tension tests. Their study revealed that the yield stress
in amorphous glassy polymers appears to be dependent on the true strain rate, i.e. a
larger imposed strain rate invariably results in a greater yield stress. Furthermore, the
yield stress as well as yield strain increase with decreasing temperature, see Figure 1.4b
from Miehe et al. [162]. Over the past decades, considerable effort was undertaken
to develop three-dimensional constitutive models which account for the finite viscoplastic
behavior of glassy polymers. The fundamental works of Argon [7], Boyce et al. [34],
Arruda & Boyce [12], Arruda et al. [14] and Hasan & Boyce [102] have been
followed, for instance, by Wu & van der Giessen [226, 227, 228], Tomita & Tanaka
[213], Govaert et al. [86], Anand & Gurtin [3], Miehe et al. [159]. In most of
these works, the thermally activated viscoplastic flow is described by the molecular double-
kink theory, developed by Argon [7] and extended to the three-dimensional setting by
Boyce et al. [34]. The framework yields an abrupt transition from a linear elastic
to a plastic response. An overview and further developments of advanced flow models
for amorphous polymers which account for temperature and strain rate dependencies are
given in Richeton et al. [189, 190], however, restricted to the one-dimensional setting.
An advanced free volume flow theory, developed in Hasan & Boyce [102], takes into
account several micromechanically motivated internal variables and makes for a smooth
transition. A three-dimensional, thermomechanical extension of this approach is proposed
in Miehe et al. [162].
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10mm 0.5µm

Figure 1.5: Photograph of crazing near a fracture surface in polystyrene from [220]. Mi-
crograph of a single craze from Berger & Kramer [22].

1.1.5. Crazing in Amorphous Glassy Polymers. Crazes consist of dense arrays of
fibrils, separated by voids, see Figure 1.5. Crazing can occur due to surface degradation
under combined mechanical and chemical action in the interior of a specimen, due to
mechanical loading. Alternatively, it can occur at a crack tip. Crazing is also termed
dilatational normal stress yielding and is a plastic deformation mechanism. The fibrils in
a craze lie perpendicular to the craze-bulk interface and grow in the direction of maximum
principal stress in the unoriented material. The plane including the craze fibrils grows in
a direction normal to the maximum principal stress. Three phases can be associated with
crazing phenomena. An overview will be given on craze initiation, growth and breakdown,
respectively in the following sections. For more comprehensive information, we refer to
reviews of Kambour [119], Kramer [124], Kinloch & Young [123], Narisawa &
Yee [169], Donald [59] and references therein.

Craze Nucleation. Craze nucleation is accompanied by cavitation which later sta-
bilizes in terms of a fibrillar form along the maximum principal stress direction. Despite
the abundance of experimental work on the morphology, growth and failure of the crazes,
craze initiation remains the most controversial issue and there exists no unified explanation
agreed upon this phase. This fact stems from the difficulties associated with monitoring
the embryonic crazes having an initial width ranging between 5 − 20 nm. In addition,
craze nucleation is very sensitive to surface imperfections, such as scratches or flaws and
to internal defects such as air bubbles, voids, dust particles or molecular inhomogeneities,
which are very difficult to eliminate during production. These defects provide the stress
concentrations necessary for the formation of the initial microvoids, which then turn into
the stable fibrillar crazes. This makes the criteria developed from the far field stress mea-
surements questionable. Craze nucleation is enhanced by both tensile, hydrostatic and
deviatoric components of the applied stress. Sternstein & Myers [201], Sternstein
& Ongchin [202] carried out combined torsion and tension loading tests on specimen,
revealing four distinct regions of loading in the principal stress planes. They stated that
the stress bias loosens the tight molecular structure, permitting the mean normal stress
σvol to initiate a craze in terms of plastic dilatation. Oxborough & Bowden [176] for-
mulated an alternative criterion for craze initiation in terms of principal strains. Gent
[81] suggested that negative pressure locally decreases the glass transition temperature
to room temperature and crazing results from cavitation of the rubbery phase under hy-
drostatic tension. Gent’s approach was disproved by further investigations, which showed
that the local decrease in the glass transition temperature is not strong enough to cause
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glass to rubber transition at room temperature. Argon [8] proposed a kinetic equation
for craze nucleation, treating the problem of craze nucleation in terms of cavitation. This
approach was further advanced by Argon & Hannoosh [5] and supported by exper-
imental results. Argon and Hannoosh considered the incipient cavities of cellular form
growing under plastic expansion to form embryonic crazes, which finally transform into
a stable craze in fibrillar form. The microscopic scenario proposed by Kramer [124]
considers the phenomenon in three steps. First, the local plastic deformation by shear in
the neighborhood of a previously existing defect leads to a development of lateral stresses.
Secondly, voids nucleate to release the triaxial components of the stress. Finally, the void
growth and strain hardening of the intervening polymer ligaments occur, as the molecular
orientation proceeds. Owing to the sensitivity of craze nucleation to imperfections and
sharp crack tips, Andrews & Bevan [4] have suggested a craze toughness Kcraze as an
intrinsic material parameter for craze nucleation around a notch. This approach has not
gained much popularity due to the insensitivity of the critical stress at fracture for crack
lengths a0 < 1 mm. This led the researchers to dismiss the fracture mechanics crite-
rion for craze initiation in favor of the void nucleation mechanism. Recently, Bucknall
[39] criticized the void nucleation mechanism, stating that the craze initiation mechanism
in terms of cellular voids and the craze growth mechanism due to meniscus instability
contradict each other, since these two mechanisms lead to the coexistence of two most
unlikely microstructures. He described the failure mechanism of a high molecular weight
glassy polymer in a similar manner to the failure of a fiber reinforced composite, where
the failure of the matrix material and the fiber occurs at two different stages. In glassy
polymers, the first phase of the fracture occurs due to partial failure in the secondary
intermolecular bonds leading to the fibrillar structure, whereas the final failure is dictated
by rupture of the intramolecular primary covalent bonds. Then, the fracture toughness is
characterized by two parameters Kcraze and Kfailure for craze initiation and macroscopic
crack initiation, respectively. Bucknall described the misinterpretation of macroscopic
cracks with lengths a0 < 1 mm due to the existence of microscopic surface or volume
imperfections, randomly distributed in the bulk acting as craze nucleation sites. These
lead to the failure mechanisms with identical macroscopic critical stress for craze ini-
tiation. Bucknall’s explanation seems quite reasonable for crazes nucleating around an
existing crack and is less complicated, since it does not require complex stress analysis. It
simplifies the overall kinetics and mechanisms with one critical parameter, which is quite
attractive for engineering design, as are the various stress based initiation criteria. How-
ever, the crazes cannot be completely eliminated even at geometrically smooth surfaces
where the linear elastic fracture mechanics does not apply. According to Argon [10] cav-
ities emerge in cellular form, which eventually turn oblate and form a fibrillar structure,
surrounded by continuous voids. Argon’s approach is theoretically sound and elaborate.
However, it includes many micromechanical parameters whose identification involves con-
siderable effort. While the fracture mechanics approach derives the total energy required
to transform a unit surface of uncrazed into crazed matter at a crack or craze tip in a
discrete setting, it is better suited as a craze growth, rather than an initiation criterion.
Argon’s kinetic equation, on the other hand, explains the micro mechanisms leading to
this transformation in a continuum setting.
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a) b) c)

Figure 1.6: Micrographs from Yang et al. [231] showing fibril breakdown using a) light
microscopy, b) transmission electron microscopy. Micrograph c) shows craze breakdown
inducing catastrophic fracture using light microscopy.

Craze Elongation and Widening. Two descriptions exist for the elongation of the
craze fibrils. The craze fibrils can grow in length due to drawing of new material from the
craze-bulk interface into the craze fibrils, where the stretch of the fibrils remains constant
for a given stress level. Alternatively, fibrils grow by a creep mechanism whereby the
craze elongates by an increase in stretch and decrease in fibril diameter without significant
amount of new material drawn into the craze fibrils. In the former mechanism, the fibrils
elongate under constant stretch without significant damage in the fibril matter whereas
the latter mechanism precedes the final breakdown of the fibrils. Lauterwasser &
Kramer [134] have shown that craze fibrils elongate with constant thickness by cold-
drawing from the bulk material at the craze wall. When a craze grows in width, a
midrib region becomes clearly visible under an electron microscope. Within the midrib,
the fibrils have lower density, which proves the existence of a creep mechanism. The
growth of a plane containing the craze fibrils is reasonably well explained in terms of the
meniscus instability mechanism, which is observed when two rigid plates with a liquid in
between are pulled apart. It was first introduced as a craze growth mechanism at a craze
front by Argon [9]. Later on it was elaborated as a detailed model and calibrated with
respect to experiments carried out on polystyrene (PS) by Argon & Salama [6]. Unlike
emerging crazes, where the cavities have a cellular isolated form, the pores in a stable
craze are interconnected. According to the meniscus instability mechanism, the yielded
polymer at an air-polymer interface at a craze tip is unstable to perturbations of a well-
defined wavelength. The polymer breaks up due to repeated convolutions leading to the
topologically correct form of a stable craze in a cyclic and continuous manner. Electron
microscopy observations around the craze tip, reveal no cellular voids supporting the
meniscus instability as a driving mechanism for craze widening, see Donald & Kramer
[58], Kramer [124].

Craze Breakdown. Crazes grow both in width and length, until somewhere within
one craze the fibrils break down to form large voids see Figure 1.6a,b. Yang et al. [231]
investigated the failure events in a large number of independent film specimens under a
reflected light microscope. They have shown that craze fibril breakdown is a statistical
event and obeys a Weibull distribution which can be characterized by two additional ma-
terial parameters. On further loading, a large void can become a sub-critical crack, which
grows and leads to catastrophic fracture. Thus, fibril breakdown is of crucial importance
for fracture. A variety of craze breakdown criteria exist, including some related to a craze
opening displacement, a critical inelastic strain or to a fracture toughness. The assump-
tion of a critical craze opening displacement is based on the interferometric measurements
carried out by Döll [57] and depends on various factors such as molecular weight and
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crack tip velocity. The critical crack tip opening displacement is incorporated into cohe-
sive zone type discrete models e.g. Tijssens et al. [211, 212]. A critical inelastic strain
criterion is utilized in Gearing & Anand [76], whereas Brown [38] and Hui et al.
[111] made use of a fracture toughness criterion.

1.1.6. Phase Field Modeling of Fracture. Fracture is the partial or full separation
of an object or material into two or more pieces under the influence of stress. The
prediction of crack initiation and propagation through computational models is of great
importance for engineering applications. Theoretical foundations of the classical theory
of brittle fracture in solids are outlined in the works of Griffith [95, 96], Irwin [112,
113] and Barenblatt [18]. Following the energetic considerations of Griffith, a crack
propagates if the available energy to extend a crack reaches a critical value, the so called
critical energy release rate. For brittle materials like glass, it is the thermodynamic surface
energy. In 1957, Irwin [112] proposed the concept of a stress intensity factor K. Instead
of considering the energy of a whole system with a given crack, it describes the intensity of
the stress in the neighborhood of a crack tip as a function in terms of the crack geometry
and the loading. These theories provide criteria for crack propagation. However, they all
require a precracked specimen as they are unable to predict crack initiation in an ideal
body.

Fracture mechanic models exist for both the sharp and diffusive description of crack
discontinuities. Models describing sharp crack discontinuities include cohesive-zone mod-
els or configurational-force-driven models. The numerical implementation of sharp crack
discontinuities based on interface finite element formulations, or on element/nodal en-
riched finite elements, suffers in cases of three-dimensional applications with crack branch-
ing. Successful computational formulations with adaptive interface elements are Xu &
Needleman [229]Camacho & Ortiz [41], Pandolfi & Ortiz [177], Geißler et al.
[79], Kaliske et al. [118] and Miehe & Gürses[153, 99], with the latter describing the
modeling of configurational-force-driven sharp crack propagation. Finite element formu-
lations with embedded discontinuities, which allow velocity-based crack branching, were
recently outlined in Armero & Linder [11] and Linder & Armero [135].

Smooth continuum formulations avoid the modeling of discontinuities and allow a
straightforward computation of complex curved cracks and fracture phenomena such as
crack initiation, crack branching or crack arrest. The diffusive approximation of a sharp
crack surface topology in the solid, is governed by a scalar auxiliary variable. This vari-
able is a phase field, which interpolates between the intact and the broken state of the
material. To numerically deal with such problems, smooth approximation functionals
may be defined. These may be obtained from the original variational problem via Γ-
convergence, see Dal Maso [49]. Variational methods for brittle fracture mechanisms
based on Griffith-type energy minimization were suggested by Francfort & Marigo
[72], see also Bourdin et al. [30], Dal Maso & Toader [50] and Buliga [40]. The
regularized setting of their framework, considered in Bourdin et al. [29, 31], is ob-
tained by Γ-convergence, inspired by the work of image segmentation by Mumford &
Shah [166]. The reader is referred to Ambrosio & Tortorelli [2] and the reviews
of Dal Maso [49] and Braides [36, 37] for details on Γ-convergent approximations of
free discontinuity problems. Recently outlined phase field approaches to brittle fracture
based on the classical Ginzburg-Landau type evolution equation as reviewed in Hakim
& Karma [101] are conceptually similar, see also Karma et al. [120] and Eastgate
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et al. [63]. These models may be considered as time dependent viscous regularizations
of the above mentioned rate independent theories of energy minimization. In this context,
the reader is referred to the work of Kuhn & Müller [127] on particular aspects of the
numerical implementation by means of the introduction of exponential shape functions.
However, these approaches still have a few drawbacks, which limit their application to
particular model problems. The model outlined in Hakim & Karma [101] is based on
a Ginzburg-Landau-type evolution equation of the fracture phase field, which does not
differentiate between energy storage and dissipation. These are very strong simplifications
of the physical mechanisms of brittle fracture. The formulation of rate independent diffu-
sive fracture proposed by Bourdin et al. [29] models the irreversibility of the process
only on a time-discrete level by setting hard Dirichlet-type conditions on the phase field.
Furthermore, both existing phase field models consider energy release driven fracture in
both tension and compression. Clearly, these fully symmetric formulations are unrealistic
for most materials and restricted to the modeling of boundary value problems with tensile
stresses in the full solid domain. These approaches are, in general, not thermodynami-
cally consistent and applicable only in particular situations with monotonous loading of
arbitrary sub-domains of a fracturing solid. Observe, that most existing phase field ap-
proaches to fracture are related to brittle crack propagation in elastic solids. The phase
field model, on the other hand, has an enormous potential with respect to the prediction
of complex crack phenomena. Energy, stress or strain based criteria for brittle or ductile
failure can be included in a modular form. Furthermore, crack growth in multi-physics
problems, such as thermo-, electro- or chemo-mechanical problems can be directly mod-
eled with a fracture phase field. The key advantage is that the constitutive formulation of
the crack propagation in regularized phase field models is related to the three-dimensional
bulk response. The recent works of Miehe et al. [161, 160], Miehe & Schänzel [156],
Borden et al. [27, 28], Pham et al. [180] and Verhoosel & de Borst [221] out-
line a general thermodynamically consistent framework for the phase field modeling of
crack propagation at small strains and serve as a basis for the development of phase field
fracture approach at large strains.

1.2. Scope and Outline

A central aspect of this work is a comprehensive theoretical study of phase field formu-
lations in fracture mechanics, especially towards the application for polymeric materials.
In addition, the development of new algorithms for crack propagation and the investi-
gation of the predictive quality of these new methods are central aspects. Chapter 2
outlines a short introduction to nonlinear continuum mechanics and the notation used in
this work. Subsequent to the description of the kinematics of a material body at finite
deformations, basic stress measures and heat flux are examined. Finally, some essential
balance equations of a solid body undergoing finite, possibly inelastic deformations, are
summarized.

The aim of Chapter 3 is to give an introduction to the fundamental features of fracture
mechanics representing the basis of the phase field model of fracture. A geometric de-
scriptive motivation is introduced for the one-dimensional setting and then generalized to
the multidimensional case, resulting in the definition of a regularized crack surface func-
tional dependent on the crack phase field. This crack functional is considered as the crack
surface itself. The surface functional converges to a sharp crack topology when the length
scale parameter tends to zero. The proposed model describes a crack discontinuity in a
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regularized method, using a crack phase field which is driven by a gradient type balance
equation. The theory is embedded into the framework of standard dissipative solids and
results in a continuum damage type theory of fracture with specific constitutive functions.

A modular scheme for the coupling of the mechanical material response and the phase
field model of fracture is presented in Chapter 4. A purely geometric approach for the
description of crack propagation is presented by introducing a balance equation for the
regularized crack surface in terms of the regularized crack surface functional. The model
bases on the introduction of a set of balance equations, describing the three field problem of
finite thermo-viscoelasticity, coupled with fracture. A concept for brittle and ductile crack
initiation and propagation, as well as its regularization in space and time is developed.
The key aspect is the definition of a criterion for crack initiation and crack growth.
Therefore, a summary of energy, stress, strain and inelasticity based criteria is presented.
A staggered scheme is introduced for the numerical solution, which bases on a one-pass
operator split. Such a solution algorithm is extremely robust, easy to implement and
ideally suited for engineering problems. The performance and the vast possibilities of
the phase field fracture model at large strains, are demonstrated by means of complex
numerical examples in the respective chapters dealing with application.

In Chapter 5, the framework is specified for the description of brittle, rate independent
crack propagation in rubbery polymers at large deformations. The approach accounts for
micromechanically based features of both the elastic bulk response, as well as the crack
toughness of idealized polymer networks. The statistically based fracture toughness of
polymer networks is reviewed and an energetically based crack driving force is derived.
The crack driving state function is governed by the micromechanically based critical en-
ergy release rate. The predictive capability of the modular concept, applied to brittle
fracture in elastic rubbery polymers, is successfully demonstrated by comparison of sim-
ulation results and experimental data.

Chapter 6 deals with the specification of the general framework towards fully coupled
thermomechanical problems at large strains. An important aspect is the constitutive
modeling of degrading heat fluxes across cracks. This includes the generation of convec-
tive heat exchanges based on additional constitutive functions defined at the crack faces.
The introduced maximum principal stress criterion with a critical fracture stress thresh-
old, differentiates between tensile and compression regions. It can be extended towards
complex anisotropies in material modeling. The need for such a criterion is demonstrated
by means of a classic three point bending test. Various numerical simulations illustrate
the developed theory and the coupling in the multifield context.

A model for rate and temperature dependent failure of viscoelastic rubbery polymers
is presented in Chapter 7. Viscoelasticity in rubbery polymers is modeled on a microme-
chanical basis. A hierarchy of superimposed networks related to the ground state network
by entanglement mechanisms is associated with the modeling of the overstress response.
The rate and temperature dependent crack growth is considered by viscous damping in
the fracture phase field evolution equation and by a temperature dependent, stress based
fracture criterion. A variety of simulations demonstrates the predictive capability of the
modular concept, applied to rate and temperature dependent failure in viscoelastic rub-
bery polymers.
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Chapter 8 describes crazing induced fracture in amorphous glassy polymers. The
ductile response is either determined by diffuse shear zones, formed by shear yielding or
by crazing. The competition between shear yielding and crazing is controlled in terms of
a stress based transition criterion. A scalar state variable is introduced as a measure of
accumulated viscoplastic flow due to crazing. From a micromechanical point of view, this
models the cumulative distribution of broken fibrils. A ductile fracture criterion based on
a critical accumulated viscoplastic flow is introduced. It is devised, such that the crack
phase field develops solely under craze flow. Finally, we demonstrate the capability of
the phase field model for crazing induced fracture with representative boundary value
problems. The model successfully captures the temperature dependent ductile to brittle
failure mode transitions.
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2. Fundamentals of Continuum Mechanics

This chapter outlines a short introduction to non-linear continuum mechanics and the
notation used in this work, based on the lecture notes Miehe [148, 149]. Subsequent to
the description of the kinematics of a material body at finite deformations, basic stress
and heat flux measures are presented. Finally, some essential balance equations of a
solid body undergoing finite, possibly inelastic, deformations are considered. This is of
interest within the forthcoming chapters. For a more comprehensive treatment the reader
is referred to the textbooks of Truesdell & Noll [218], Marsden & Hughes [145] or
the publications of Chadwick [44], Holzapfel [110] and Haupt [103], among others.

2.1. The Motion, Fundamental Geometric Maps and Deformation Measures

A material body B is a physical object consisting of specific physical properties, such
as stiffness, density, etc. defining its material behavior. B is composed of infinitely many
material points P ∈ B which are mapped to a subset of the Euclidean space R3 by the
placement χt defined by

χt :=

{
B → Bt ∈ R3 ,

P ∈ B 7→ xt = χt(P ) ∈ Bt ,
(2.1)

see Figure 2.1. It is convenient to relate the motion of a material body at the time t0
to the reference configuration that generally possesses an undistorted stress-free state in
the absence of physical forces and is henceforth denoted as B ≡ χt0(B). Likewise, the
configuration of the body at current time t is hereafter denoted as S ≡ χt(B). The refer-
ence and the spatial positions occupied by a material point P within the Euclidean space
are labeled by the reference coordinates X := χt0(P ) ∈ B and the spatial coordinates
x := χt(P ) ∈ S, respectively. In order to describe the motion of the solid body in the
Euclidean space, we introduce a non-linear deformation map ϕt(X) between χt0(P ) and
χt(P )

ϕt(X) :=

{
B → S ,
X 7→ x = ϕt(X) := χt ◦ χ−1

0 (X)
(2.2)

which maps the material pointsX ∈ B onto their deformed spatial positions x = ϕt(X) ∈
S at time t ∈ R+, see Figure 2.2.

P ∈ B

B

R

R

χt1

χt2

χt1

χt4

path of P

B1

B2

B3

B4

x1

x2

x3

x4R

3

Figure 2.1: The motion of a material body B in the Euclidean space R3 is a series of
placements χt of the physical body B by a family of configurations χt : B → B ∈ R3.
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Figure 2.2: Reference configuration B with positions X and current configuration S with
positions x of the physical body B in the Euclidean space R3 at time t.

The partial derivative of the deformation of a fixed material point with respect to
the time t defines the material velocity. A parametrization by Eulerian coordinates x is
obtained by a composition with the inverse deformation map. Hence, material and spatial
velocities are defined as

V (X, t) =
∂

∂t
ϕ(X, t) and v(x, t) =

∂

∂t
ϕ(X, t) ◦ϕ−1(x). (2.3)

They both represent the same quantity but in different parametrizations.

The orthonormal Cartesian reference basis {EA}A=1,2,3 and the orthonormal Carte-
sian spatial basis {ea}a=1,2,3 are introduced, to differentiate between reference and spatial
quantities also in index notation. The reference positions, spatial positions and the de-
formation map are represented by X = XAEA, x = xaea and ϕt = ϕaea. According to
the summation convention, equal Latin indices imply summation over {1, 2, 3}. The base
vectors are related through the orthogonality relation

δAB = EA ·EB and δab = ea · eb with δij =

{
1 if a = b
0 if a 6= b

(2.4)

representing the Kronecker-Delta δ. Covariant elements are denoted with superscript
indices and contravariant elements with subscript indices. For now, the differentiation
is maintained but as curvilinear coordinates are not considered in this work, the base
vectors coincide.

Probably the most fundamental deformation measure used in kinematics of finite de-
formation is the deformation gradient defined by the Fréchet derivative as

F t(X) := ∇Xϕt(X) = Grad(ϕt) =
∂ϕa

∂XB

ea ⊗EB = ϕa,Bea ⊗EB . (2.5)

By ∇X(·) and Grad(·) we introduced the referential gradient with respect to X of (·)
and ⊗ defines the dyadic product. The partial derivative of ϕa with respect to XB is
abbreviated by ϕa,B . Because ϕt is a one-to-one mapping between reference and current
positions without material penetration, we have the constraint that det(F t) 6= 0 and
det(F t) > 0. The deformation gradient can be considered as a linear map of the referential
tangent vectors onto the spatial counterparts. To this end, let Ĉ(Θ) ∈ B and ĉ(Θ) ∈ S be
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Figure 2.3: The deformation gradient F defined as a tangent map linearly transforming
the material vector T ∈ TXB tangent to the material curve Ĉ(Θ) at X onto the the spatial
vector t ∈ Tx S tangent to the spatial curve ĉ(Θ) at x.

the material and spatial curves parameterized by a common variable Θ ∈ R. Furthermore,
we consider that the spatial curve is related to the reference curve by the non-linear
deformation map ĉ(Θ) = ϕt(Ĉ(Θ)) due to (2.2). Tangents of the curves belonging to
the respective tangent spaces, defined as the derivatives T := dĈ(Θ)/dΘ ∈ TXB and
t := dĉ(Θ)/dΘ ∈ Tx S are depicted in Figure 2.3. Through the chain rule, the spatial
tangent t can be expressed in terms of the material tangent T

t =
d

dΘ
ĉ(Θ) = ∇Xϕt(X)

d

dΘ
Ĉ(Θ) = F tT with ta = F a

AT
A . (2.6)

From (2.6) it can be seen that the deformation gradient F t linearly maps material tangent
vectors to associated deformed spatial tangent vectors. It is thus also referred to as the
tangent map

F t :=

{
TXB → Tx S ,

T 7→ t = F tT ,
(2.7)

between the tangent spaces TXB and Tx S of the manifolds B and S, respectively. Note
that (2.6) generally does not preserve the length of T . Two further fundamental maps can
be expressed through the deformation gradient. In order to derive a definition of volume
map, let dV and dv denote the infinitesimal volumes of parallelepipeds

dV := dX1 · (dX2 × dX3) and dv := dx1 · (dx2 × dx3) (2.8)

defined as the scalar triple product of vectors dX i=1,2,3 ∈ TXB and dxi=1,2,3 ∈ Tx S,
respectively. Each spatial tangent vector dxi is defined as a tangential map of its material
counterpart, i.e. dxi := F dX i for i = 1, 2, 3. This then leads to the definition of the
volume map

dv = (F dX1) · ((F dX2)× (F dX3)) = detF dV =: J dV (2.9)

following the conventional coordinate-free definition of the determinant of a second order
tensor. Then, we say that the volume map, detF , maps the reference volume elements
onto their spatial counterparts

J = detF :=

{
R+ → R+ ,
dV 7→ dv = detF dV .

(2.10)

The co-factor of the deformation gradient cof F is defined as the derivative of the volume
map J := detF with respect to deformation gradient F

cof F := ∂FdetF = (det F )F−T . (2.11)
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Figure 2.4: The inverse transpose of the deformation gradient F−T
t maps material normal

vectors N onto spatial normal vectors n = F−T
t N .

In order to make the geometrical meaning of cof F more transparent, let us define the
reference and spatial area co-vectors NdA := dX2× dX3 and nda := dx2× dx3, respec-
tively. With these definitions at hand, we can recast (2.10) into the following from

dx1 · nda = JdX1 ·NdA . (2.12)

If we incorporate the identity dx1 = F dX1 in (2.12) and solve this equality for nda for
an arbitrary tangent vector dX1, we end up with the interpretation of co-factor as the
area map

nda = JF−TNdA = (cof F )NdA , (2.13)

transforming the co-vectors (one-forms) of the material surfaces onto the normal vectors
of spatial surfaces. Furthermore, we observe that the tensorial quantity carrying out
the mapping operation in (2.13) is none other than F−T . Thus, we consider F−T as
the normal map transforming the reference co-vectors N onto the spatial co-vectors n,
belonging to the respective co-tangent spaces T ∗

XB and T ∗
x S. The normal map is then

defined as

F−T :=

{
T ∗
XB → T ∗

x S ,
N 7→ n = F−TN .

(2.14)

We introduce metric tensors associated with the Lagrangian and the Eulerian configura-
tion

G =δABE
A ⊗EB and g =δabe

a ⊗ eb

G−1=δABEA ⊗EB and g−1=δabea ⊗ eb

. (2.15)

We can interpret the covariant reference G and the spatial g metrics as the mappings from
the tangent spaces TXB and Tx S to the co-tangent spaces T ∗

XB and T ∗
x S, respectively

G :

{
TXB → T ∗

XB
T 7→N = GT

and g :

{
Tx S → T ∗

x S
t 7→ n = gt

. (2.16)

That is, G and g map tangents onto co-vectors by the index lowering operation e.g. t∗ =
gt = ta = gabt

b. Analogously, the inverse metrics perform the mappings from the co-
tangent spaces T ∗

XB and T ∗
x S to the tangent spaces TXB and Tx S through the index

raising e.g. T = G−1T ∗ = TA = gABtB. With the definitions (2.15), (2.16) at hand, we
are ready to construct the commutative diagrams, Figure 2.5, illustrating the pull-back
and the push-forward operations on G and g and their contravariant inverse metrics G−1

and g−1, separately. As shown in Figure 2.5a, the push-forward of the inverse of the
reference metric b := ϕ∗(G

−1) and the metric itself c := ϕ∗(G) are defined by

b :=ϕ∗(G
−1)= FG−1F T , bab=F a

AG
ABF b

B ,

c := ϕ∗(G) = F−TGF−1 , cab=(F−1)AaGAB(F
−1)Bb

(2.17)
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T ∗
XBT ∗

XB T ∗
x ST ∗

x S

G G−1 c b g g−1C C−1

a) b)

Figure 2.5: The push-forward and pull-back of the reference G and spatial g metrics and
their contravariant inverse forms G−1 and g−1, separately.

and called the left Cauchy-Green tensor (Finger deformation tensor) and the inverse
left Cauchy-Green tensor, respectively. Similarly, based on the commutative diagram
depicted in Figure 2.5b, the pull-back of the spatial metric C := ϕ∗(g) and its inverse
C−1 := ϕ∗(g−1) are defined by

C := ϕ∗(g) = F TgF , CAB=F
a
AgabF

b
B ,

C−1 :=ϕ∗(g−1)= F−1g−1F−T , (C−1)AB=(F−1)Aag
ab(F−1)Bb

(2.18)

and denoted as the right Cauchy-Green tensor (convected spatial metric) and the inverse
right Cauchy-Green tensor, respectively. As mentioned above, both metric tensors and
their inverse tensors are symmetric and positive definite and therefore so do their respec-
tive push-forwards (2.17) and pull-backs (2.18). With the objective of measuring strains
locally at a material point, the length of an infinitesimal line element is compared in both
its reference as well as its current state

δ :=
1

2
[|dx|2g − |dX|2G] = dX ·E · dX = dx · e · dx. (2.19)

Obviously, this comparison can be carried out either in the Lagrangian or in the Eulerian
setting. On the one hand the Lagrangian Green strain tensor E = 1

2
[C − G] and on

the other hand the Eulerian Almansi strain tensor e = 1
2
[g − c] are obtained. A general

representation of strain tensors is given by the Seth-Hill family, cf. Seth [196], Hill
[107], of strain measures

E(m) =

{
1
m
[Cm/2 −G] if m 6= 0

1
2
ln[C] if m = 0

and e(m) =

{
1
m
[g − cm/2] if m 6= 0

1
2
ln[c] if m = 0

(2.20)

The Green and Almansi strain tensors are obtained for m = 2 and the logarithmic strains
m = 0 are denoted Hencky strains.

2.2. Cauchy’s Stress Theorem and the Fundamental Stress Measures

Consider a part PB ⊂ B cut off from the reference body B and its spatial counterpart
PS ⊂ S closed by the respective boundaries ∂PB and ∂PS as depicted in Figure 2.6. In the
deformed configuration, we introduce the stress vector t that acts on the surface element
da of ∂PS and represents the infinitesimal force vector df = tda, acting of the rest of the
body in the vicinity PS \ S on ∂PS . The Cauchy stress theorem states that the spatial
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Figure 2.6: The material T̃ (X, t;N) ∈ TXB and spatial t(x, t;n) ∈ Tx S traction (stress)
vectors representing the force action of the rest of the body at the vicinity, on the surfaces
of the cut parts ∂PB and ∂PS , respectively.

traction vector t ∈ Tx S linearly depends on the spatial normal n ∈ T ∗
x S of the surface

∂PS , i.e.
t(x, t;n) := σ(x, t) n (2.21)

through the Cauchy (true) stress tensor σ. In the geometrical framework outlined so
far, the Cauchy stress tensor can be understood as a contravariant mapping transforming
normals n ∈ T ∗

x S onto vectors t ∈ Tx S

σ :=

{
T ∗
x S → Tx S ,
n 7→ t = σ n .

(2.22)

Another spatial stress measure, the Kirchhoff stress tensor, also known as the weighted
Cauchy stress tensor, is defined as

τ := Jσ (2.23)

and is widely used in the spatial description of stress power terms in the reference volume.
Owing to the scalar scaling by the Jacobian J , the Kirchhoff stresses retain the geometrical
transformation characteristics of the Cauchy stress, i.e. τ : T ∗

x S → Tx S. Now let us
consider the so called nominal surface traction vector T ∈ Tx S, defined by the force
equality T dA := t da by scaling the spatial force term (df) through the Lagrangian area
element dA. Based on this definition, we introduce the first Piola-Kirchhoff stress tensor
by the reference Cauchy theorem T := PN , leading to PN dA = σn da. Using the
area map (2.13), we obtain the relation P = τF−T = JσF−T between the first Piola-
Kirchhoff stress tensor and the spatial stress measures introduced in (2.22) and (2.23).
Notice that P is a two-point tensor possessing the geometrical mapping properties

P :=

{
T ∗
XB → Tx S ,
N 7→ T = P N .

(2.24)

The Lagrangian stress vector T̃ ∈ TXB may be defined through the pull-back of the spatial
stress vector T ∈ Tx S

T̃ = ϕ∗(t) = F−1T ∈ TXB , T̃A = (F−1)AaT
a ,

as depicted in Figure 2.6. The third fundamental stress measure, the second Piola-
Kirchhoff stress tensor S, is then defined by T̃ := SN yielding

S :=

{
T ∗
XB → TXB ,
N 7→ T̃ = S N .

(2.25)
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Figure 2.7: Commutative diagram illustrating the push-forward and pull-back operations
among the stress measures.

Incorporating the definitions (2.22)-(2.24) in (2.25), we can express the second Piola-
Kirchhoff stress tensor in terms of the other stress tensors

S := ϕ∗(P ) = F−1P , SAB = (F−1)AaP
aB ,

S := ϕ∗(τ ) = F−1τF−T , SAB = (F−1)Aaτ
ab(F−1)Bb

as the pull-back of the contravariant two-point and spatial objects. Apparently the con-
verse push-forward relations do also hold for the spatial stress tensors

τ = Jσ = ϕ∗(P ) = PF T and τ = ϕ∗(S) = FSF T ,

as shown in the commutative diagram, Figure 2.7.

Analogous to the definition of the first Piola-Kirchhoff stress tensor, we introduce the
reference heat flux vector Q. As shown in Figure 2.8, the thermal effects onto the part
PS ∈ S are described by the scalar heat flux qn, characterizing the heat flux through the
surface in the direction of the normal n. Analogously to Cauchys theorem for the stresses,
Stokes heat flux theorem

qn(x, t,n) = q(x, t) · n (2.26)

assumes a linear dependence of the heat flux on the normal with q representing the true
heat flux vector defined per unit deformed area. Through q · n da = Q · NdA, the
Lagrangian counterpart of q is introduced which yields with Nansons formula (2.13) the
identity

Q = JF−1
q (2.27)

in terms of the Lagrangian or nominal heat flux vector Q.

2.3. Balance Principles of Continuum Thermomechanics

The balance laws of continuum mechanics serve as a basic set of equations, required
to solve an initial boundary value problem of thermomechanics for the primary variables.
This section is devoted to the derivation of the fundamental balance laws of continuum
thermomechanics. In what follows, we consider a certain spatial volume PS closed by the
boundary ∂PS , as shown in Figure 2.6. For this part of the body, we write a balance
equation, where we will often have the volumetric source and the surface flux terms con-
tributing a temporal change of the quantity, for which the balance principle is constructed.
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Figure 2.8: The material Q(X , t) ∈ TXB and spatial q(x, t) ∈ Tx S heat flux vectors
representing the conduction of heat through the rest of the body over the surfaces of the
cut parts ∂PB and ∂PS , respectively.

In order to derive the local forms of the balance laws, we follow these basic steps. First,
we carry the surface flux terms into the body through the Gaussian integral theorem.
Once the balance equation is completely recast into a volume integral, the expression can
be localized to its local form by stating that integrand must also fulfill the equality for
an infinitely small part PS , provided that the continuity conditions are met. This spatial
balance equation is then recast into its reference form.

Balance of Mass. The balance law demands that the total mass of a closed system,
the part of a body PS under consideration, remains constant; that is, the system is free
of agencies that produce or destroy mass within the volume PS or is not subjected to flux
terms that transfer mass over the surface ∂PS . To this end, we define the spatial mass
density ρ(x, t) and its material counterpart the reference mass density ρ0(X) and require

d

dt
M :=

d

dt

∫

PS

ρ(x, t)dv =
d

dt

∫

PB

Jρ(x, t)dV =
d

dt

∫

PB

ρ0(X)dV = 0 . (2.28)

Making use of the identity J̇ := dJ/dt = cof F : Ḟ = J div(v) in (2.28)3 and equating
the integrands of (2.28)2 and (2.28)3, we end up with the spatial and material forms of
the local mass balance equations

ρ̇+ ρ div(v) = 0 and Jρ(x, t) = ρ0(X) . (2.29)

Balance of Linear Momentum. Being analogous to classical discrete mechanics,
the time rate of linear momentum of the volume PS is equal to the sum of the forces acting
on the body. Two types of forces are considered: the mass specific body forces γ(x, t) due
to the action of other bodies at a distance and the surface forces (stress vectors) t due to
the action at a vicinity. These can also be regarded as momentum source and momentum
flux terms, respectively. The balance of linear momentum then requires

d

dt
L :=

d

dt

∫

PS

ρv(x, t)dv =

∫

PS

ργ(x, t)dv +

∫

∂PS

t(x, t;n)da . (2.30)

Incorporation of the mass balance (2.29) in the time derivative and the Cauchy stress
theorem (2.21) through the Gaussian surface integral theorem, we obtain the local form
of the spatial linear momentum balance

ρv̇ = ργ + div(σ) . (2.31)
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Multiplication of the spatial form (2.31) with the Jacobian J and incorporation of the
mass balance (2.29)1 and the Piola identity (Div[JF−T ] = 0) yields the material form of
the local linear momentum balance

ρ0V̇ = ρ0Γ+Div(P ) (2.32)

where V̇ denotes the material acceleration and Γ(X, t) := γ(x, t) ◦ϕt(X) stands for the
material body force defined per unit mass.

Balance of Angular Momentum. The time derivative of the moment of linear
momentum of PS is required to be equal to the sum of the moments of the forces acting
on the body with respect to the same point. Without loss of generality, taking the moment
with respect to the origin yields

d

dt

∫

PS

x× ρvdv =
∫

PS

x× ργ dv +

∫

∂PS

x× t da . (2.33)

Exploiting the mass balance (2.29), the equality v×v = 0 in (2.33)1 and the Cauchy stress
theorem (2.21) through the Gaussian integral theorem in the surface integral (2.33)3, we
obtain ∫

PS

x× (ρv̇ − ργ − div(σ)) dv =

∫

PS

ιdv = 0 (2.34)

where we demand ιa := ǫabcσ
cb = 0. Since the permutation symbol ǫabc is skew symmetric

with respect to two indices, e.g. ǫabc = −ǫacb, the equality (2.34) is fulfilled only when the
Cauchy stresses is symmetric. Thus, the balance of angular momentum results in

σ = σT , σab = σba . (2.35)

Owing to the push-forward and pull-back relations derived in Section 2.2, the other two
stress measures τ and S are required to satisfy the following symmetry relations

τ = τ T , PF T = FP T , S = ST (2.36)

as well. Observe that the first Piola-Kirchhoff stresses are generally non-symmetric.

Balance of Energy. First Law of Thermodynamics. The balance of energy
is often referred to as the first law of thermodynamics, a fundamental balance principle
describing the evolution of internal energy in a system. Energy is a quantity of deformable
bodies measuring the capacity to do work, i.e. a change in energy causes work to be done
by mechanical and thermal forces acting on the system. The balance law states the
conservation of energy in the sense that the rate of total energy is equilibrated with the
sum of the external mechanical and thermal power. The total energy is defined as the
sum of kinetic energy K and internal energy E given in the specific form

K =

∫

PS

1
2
ρv · v dv and E =

∫

PS

ρe dv . (2.37)

Here, e(x, t) denotes the internal energy density per unit volume which is in the material
representation e0(X, t) = e(x, t) ◦ ϕ(x, t). The external mechanical and thermal power
is given by

P =

∫

PS

ργ · v dv +
∫

∂PS

t · v da and Q =

∫

PS

ρr dv −
∫

∂PS

q · n da , (2.38)
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where qn(x, t;n) = q(x, t)n is the heat flux entering the body across the surface ∂PS
and r(x, t) a given heat source per unit mass generated by internal quantities. The global
form of the balance of internal energy or conservation of energy reads

d

dt
[K + E] = P+ Q (2.39)

stating that the time rate of change in total energy is balanced by the mechanical power
and thermal heating of the body. For the surface term in the mechanical power expression
(2.38)1 we obtain the form

∫

∂PS

t · v da =
∫

PS

div[σ] · v dv +
∫

PS

σ : l dv (2.40)

valid in the domain PS , by using Cauchy’s theorem and the spatial velocity gradient
l = ∇xv. Application of the volume map (2.9) and the Piola identity (Div[JF −T ] = 0)
gives the Lagrangian representation together with Jσ : l = JσF−T : Ḟ = P : Ḟ = P : Ḟ

∫

∂PS

t · v da =

∫

BP

Div[P ] · V dV +

∫

BP

P : Ḟ dV . (2.41)

A straightforward transformation of all other quantities to the Lagrangian manifold results
in the local Lagrangian form of the balance of energy

ρ0ė0 = P : Ḟ + ρ0R− Div[Q] (2.42)

with the material representation of the heat source R(X, t) = r(x, t) ◦ ϕ(x, t). Push-
forward to the current configuration gives the Eulerian form of the balance of energy

ρė = σ : l + ρr − div[q] . (2.43)

For the transformation of the heat flux vector from the Eulerian to the Lagrangian man-
ifold the equation Q = JF−1

q was used.

Entropy Production Inequality. Second Law of Thermodynamics. The sec-
ond law of thermodynamics serves as a major mathematical restriction on the constitutive
equations governing, for instance, heat conduction or evolution of internal variables de-
scribing an internal dissipative mechanism. The concept of entropy may be conceived as a
measure of disorder, providing a bridge between thermomechanics with the treatments of
statistical mechanics. The global form of the entropy inequality principle states a positive
entropy production

G =
d

dt
S− Q ≥ 0 (2.44)

within the part of the body PS under consideration. The entropy S is defined by inte-
grating the specific entropy η over the volume

S :=

∫

PS

ρη(x, t)dv (2.45)

and the total rate of entropy production G is the integration over the volume of the specific
rate of entropy production

G :=

∫

PS

ργ(x, t)dv (2.46)
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based on the local entropy production per unit mass γ. The rate of entropy input Q is
characterized by

Q :=

∫

PS

ρr

θ
dv +

∫

∂PS

q · n
θ

da (2.47)

in terms of the heat flux (2.26) and the absolute temperature θ > 0. Following the
conventional steps, we end up with the local spatial entropy balance

ργ = ρη̇ − ρr
θ
+ div

(
q

θ

)
= ρη̇ − ρr

θ
+

1

θ
div(q)− 1

θ2
q · ∇xθ ≥ 0 . (2.48)

The inequality (2.48)3 can also be written in the form commonly referred to as the
Clausius-Duhem inequality

ρη̇ ≥ ρ
r

θ
− 1

θ
div(q) +

1

θ2
q · ∇xθ . (2.49)

The material version of (2.49) then reads

ρ0η̇ ≥ ρ0
R

θ
− 1

θ
Div(Q) +

1

θ2
Q · ∇Xθ . (2.50)

2.4. Dissipation and Thermomechanics with Internal Variables

The spatial dissipation is defined as the product of the rate of entropy production in
(2.43), with the absolute temperature θ(x, t) > 0, i.e.

D := ργθ ≥ 0 . (2.51)

The equation (2.49) can be reformulated by insertion of the local balance of total energy
(2.42) in the form

ρ0D0 = P : Ḟ + ρ0θη̇0 − ρ0ė0 −
1

θ
q · ∇xθ ≥ 0 . (2.52)

In order to use the absolute temperature θ as an independent variable in the material
equations, we introduce the free Helmholtz energy Ψ by the Legendre-Fenchel transfor-
mation

e0(F , η0, . . . ,X) = Ψ(F , θ, . . . ,X)− η0θ . (2.53)

Insertion into the Clausius-Duhem inequality (2.52) yields

ρ0D0 = P : Ḟ + ρ0η0θ̇ − ρ0Ψ̇−
1

θ
q · ∇xθ ≥ 0 . (2.54)

It makes sense to satisfy this equation separately for the local and conductive part, i.e.
demanding the sharper conditions

ρ0Dloc := P : Ḟ + ρ0η0θ̇ − ρ0Ψ̇ ≥ 0 and ρ0Dcon := −1
θ
q · ∇Xθ ≥ 0 (2.55)

known as the Clausius-Planck inequality and the Fourier inequality. Thermodynamic
consistency means that all material equations have to satisfy these two inequalities. In
the context of continuum thermomechanics, the material state generally depends on a set
of variables which is formed through a mutual combination between the sets {P ,F } and
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{η, θ}. For inelastic materials, these sets are supplemented by additional internal vari-
ables, say q, employed for the description of inelastic dissipative processes. The concept of
internal variables has widely been used in the constitutive formulation of dissipative ma-
terials through the initial value problems, governing their temporal evolution. The set q
may have scalar, tensorial or n-vector character. The internal variables may be observable
but generally cannot be externally controlled, see Maugin [146] for an excellent review.
The thermodynamical forces, say p, conjugate to the set q on the bases of dissipation,
generally are not externally defined. Let us focus on a problem of thermoelasticity for a
homogeneous material where the free energy depends on the internal variables. Consis-
tent with the principle of equipresence, we assume that the constitutive equations, the
free energy Ψ and the heat flux vector Q, depend upon the same set of field variables

Ψ = Ψ̂(F , θ,q) and Q = Q̂(F , θ,q) . (2.56)

Based on this assumption, we can include the time derivative of the free energy Ψ̇ = ∂FΨ :
Ḟ + ∂θΨ : θ̇ + ∂qΨ : q̇ in the Clausius-Planck inequality given in (2.55)1. Gathering the
coefficients of the time rates of the common terms, we obtain

ρ0Dloc := (P − ρ0∂FΨ) : Ḟ − ρ0(η + ∂θΨ)θ̇ − ρ0∂qΨ · q̇ ≥ 0 . (2.57)

Following the celebrated reasoning of Coleman & Noll [48] and Coleman & Gurtin
[46] within the framework of thermodynamics with internal variables, we contend that
the thermodynamic restriction should be fulfilled for an arbitrary rate of deformation
gradient and temperature. Therefore, (2.57) implies a particular form of constitutive
equations such that

P := ρ0∂FΨ , η := −∂θΨ . (2.58)

These two equations state that the free energy acts as a potential for the stresses and the
entropy. With the results obtained in (2.58), the Clausius-Planck inequality can be recast
into its reduced form

ρ0Dloc := p : q̇ ≥ 0 with p := −ρ0∂qΨ . (2.59)

In view to use the absolute temperature θ as an independent variable in the material
equations, we derive the heat conduction equation that describes the distribution of heat
(or variation in temperature) in a given region over time. Let us rewrite the Clausius-
Planck inequality (2.55) by using the time derivative of the Legendre Transformation
Ψ̇ = ė− θ̇η − θη̇ and sort for the rate of internal energy:

ρ0ė0 = P : Ḟ + ρ0θη̇ − ρ0Dloc . (2.60)

Along with the balance of internal energy (2.43) we obtain

ρ0θη̇ = −Div[Q] + ρ0[R +Dloc] . (2.61)

Exploiting the definition of the entropy (2.58)2, the left hand side of the equation (2.61)
can be expressed as

ρ0θη̇ = ρ0csθ̇ − ρ0H (2.62)

with the heat capacity per unit mass and the latent heating

cs = −θ∂2θθΨ and H = θ∂2θFΨ : Ḟ + θ∂2θqΨ : q̇ . (2.63)
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Devising the result (2.62) in (2.61) we end up with the transient heat conduction equation

ρ0csθ̇ = −Div[Q] + ρ0[R +H +Dloc] . (2.64)

Note that the first bracket vanishes in an adiabatic process, i.e for Q ≡ 0 and R ≡ 0.
Equation (2.64) is known as the coupled temperature evolution equation of thermo-
viscoelasticity. The last two terms on the right-hand side characterize the latent (ther-
moelastic) and dissipative coupling effects. Similar to applications of metal thermo-
viscoelasticity we expect the situation |H| ≪ Dloc. Investigations of Miehe [150] for
entropic thermoelasticity demonstrated a small amount of latent heating. In our sub-
sequent investigation we neglect the latent heating effect in the temperature evolution
equation (2.64) by setting H ≈ 0.
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3. Fundamentals of Fracture Mechanics

3.1. Basic Definitions of Fracture Mechanics

From the macroscopic point of view, a crack is defined as a cut through a three-
dimensional body B yielding two opposite surfaces, the so called crack surfaces that
intersect in the crack front. In a planar description of a body, the crack yields two
opposite crack edges that meet in the crack tip. Regarding the deformation of a crack,
one may distinguish between three different relative displacements of the opposite crack
surfaces. The so-called crack opening modes depend on the direction of the load in relation
to the orientation of the crack surfaces and the crack front. The different opening modes
in a local neighborhood are depicted in Figure 3.1. The Mode I crack is characterized by

xx x
yy y

zz z

Mode I Mode II Mode III

Figure 3.1: The crack opening modes. Mode I crack: Opening mode symmetric to the
{x, z}-plane. Mode II crack: relative displacement of crack surfaces in x-direction. Mode

III crack: relative displacement of crack surfaces in z-direction.

a discontinuity in the displacement field in y-direction, i.e. |uy(x)| 6= 0, a discontinuous
displacement symmetric to the {x, z}-plane. The Mode II crack opening is also called
plane shear or sliding mode. The displacement discontinuity appears in x direction normal
to the crack front, thus |ux(x)| 6= 0. Finally, for the Mode III crack, the anti-plane shear
or tearing mode, describes a separation in z-direction tangential to the crack tip with
|uz(x)| 6= 0. The symmetries corresponding to the crack opening modes are in general
only local. They are valid for an entire body only in special cases. In general, each crack
may be described as a superposition of the three failure modes.

3.1.1. Stress State Near the Crack Tip and Stress Intensity Factors. Linear
elastic fracture mechanics considers bodies with linear elastic material behavior. Eventual
material or geometrical nonlinearities occurring in the process zone around crack tips,
must be negligibly small. Consequently, linear elastic fracture mechanics are suitable
for the description of brittle fracture. The crack mechanism of a precracked solid is
determined by the stress and strain concentration in the vicinity of the crack tip or the
crack front. The singular crack tip field with the intensity KI describes the intensity
of load in a narrow region R around the crack tip. The stress intensity factors are an
excellent basis for the formulation of fracture criteria. A criterion states that a crack
starts propagating when reaching a critical material state in the process zone, i.e.

Ki = Kic . (3.1)

This critical state is characterized by the so-called fracture toughness Kc. The fracture
toughness may be interpreted as the material resistance against crack evolution, while the
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stress intensity factor represents the material state induced by the corresponding loading.
Considering a general loading of a material body as a combination of the three fracture
modes, the stresses may be written in terms of a function B, depending on the three
K-factors. The general crack criterion reads

B(KI , KII , KIII) = Bc . (3.2)

The fracture toughness itself is obtained from experimental considerations. For a detailed
consideration of the concept of stress intensity factors, the reader is referred to Irwin
[112, 113] or regarding a compact overview to Gross & Seelig [98] and Kuna [131].

3.1.2. Griffith Energetic Fracture Approach. The energy release rate was intro-
duced for brittle elastic materials by Griffith [97, 96]. He observed that failure occurs
as soon as a critical value of the energy release rate is reached. This critical value is, in
contrast to the above described stress intensity factor, independent of the geometry of the
body. It depends solely on the material properties, i.e. it is a material parameter. The
critical energy release rate may be interpreted as the energy needed for the formation of
the two crack surfaces. Griffith’s theory is a global approach to fracture mechanics based
on the balance of energy. With reference to the work of Gross & Seelig [98] and Kuna
[131], this subsection starts with the investigation of a cracked body with elastic material
behavior, yielding a typical brittle crack mechanism. Finally, the theory is extended to
ductile fracture.

Following the first principle of thermodynamics, the temporal change of total energy
d
dt
(E + K + D) = Pint which coincides with the internal power, equals the power due to

external loading Pext = P+ Q

d

dt
(E+K+D) = P+ Q . (3.3)

The rate of the kinetic energy K̇ takes into account dynamic effects. Thermal effects
are considered by means of Q. For simplicity, we investigate an isothermal, quasi-static
problem with Q = 0, θ̇ = 0 and K̇ = 0. The external loading P represents the energy
supply due to mechanical power

P =

∫

S
ργv dv +

∫

∂St

t̄ · v da (3.4)

also discussed with (2.38) in terms of the given body force field per unit volume γ and
the traction forces t̄. A detailed discussion of the balance equation is given in (2.39). For
isothermal processes, the rate of the internal energy Ė may be defined in terms of the
specific internal energy e, or in terms of the Helmholtz free energy Ψ yielding

Ė =

∫

S
ρėdv =

∫

S
ρΨ̇dv . (3.5)

Finally, the energy dissipated in the crack zone D is introduced. It is required for the
creation of the crack surfaces and may consequently be related to the surface A and the
material constant γ. The factor 2 considers that during crack growth two crack faces are
generated

D = 2γA . (3.6)
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Considering a body with elastic material behavior, the internal energy is an internal
potential E = Πint. Further, it is assumed that external loads are conservative loads, thus
it is possible to assign a potential Πext, which decreases with external power Π̇ext = −P.
Insertion into (3.3) finally yields

P = Ė+ Ḋ , −Π̇ext = Π̇int + Ḋ (3.7)

With these assumptions, the quasi-static crack growth between an initial crack state A1

at time t1 and the grown crack state A2 = A1 + ∆A at time t2 = t1 + ∆t is analyzed.
The difference in total energy between these two states can either be related to the time
or crack increment

−(Πext2 −Πext1) = (Πint2 − Πint1) + 2γ(A2 − A1) . (3.8)

Relating this equation to the change of the crack surface ∆A = A2−A1 and summing up
the internal and the external potentials to the total potential Π = Πext +Πint one finally
obtains

−∆Π

∆A
!
=

∆D

∆A
= 2γ . (3.9)

The left hand side of (3.9) describes the energy which is available and that may be used
for the crack mechanism. It is the so-called energy release rate and is defined for an
infinitesimal crack propagation via

g = −∆Π

∆A
. (3.10)

The right hand side of (3.9) is the energy needed for the creation of new crack surfaces
2∆A. It depends on the material properties and is defined via the critical energy release
rate gc = 2γ. With these definitions at hand, one may formulate the crack criterion
introduced by Griffith

−∆Π

∆A
= g = gc = 2γ . (3.11)

Griffith’s energetic fracture criterion postulates that for crack initiation and quasi-static
crack growth in a conservative system, the available energy release rate must be equal
the critical fracture energy dissipated per surface. The critical energy release rate gc is a
material parameter which corresponds to the energy needed for crack propagation. Thus,
a crack may start propagating only if the available energy reaches a critical value. Griffith
derived, for a plate under plane stress tension, with a crack of length 2a, the energy release
rate g = 2πσ2a/E = 4γ, in terms of the Young’s modulus E. With this expression at
hand, one directly obtains the critical stress which may be related to the K-factor

σc =

√
2Eγ

πa
=

KIc√
πa

. (3.12)

The balance of energy during crack propagation formulated in (3.3) is enhanced to in-
corporate inelastic material effects. According to the first law of thermodynamics, the
temporal change of total energy equals the power due to external loading, see (3.3). The
internal energy (2.37)2, is redefined for the inelastic material response as

E = Ee + ED (3.13)
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Figure 3.2: Simple extension fracture test correlating a Mode III crack opening. An
increase ∆c in the cut-length increases the region C in simple extension at the expense of
the undeformed region A.

with Ee being the elastic stored internal energy and ED the work dissipated to heat or
used for viscous or plastic deformation processes. Insertion of (3.13) into (3.3) yields the
global balance of energy for quasi-static, isothermal, ductile crack propagation

d

dt
(Ee + ED +D) = P . (3.14)

Consider the elastic internal energy of the type of an internal potential E = Πint and
further assume that external loads are governed by the potential Πext, which decreases
with external power Π̇ext = −P, (3.14). This yields

−∆Π

∆A
!
=

∆D

∆A
+

∆ED

∆A
= g . (3.15)

The energy released g is not only used for the crack propagation process ∆D/∆A =
2γ. The energy release rate includes both the geometry dependent viscous or plastic
dissipation of the specimen, the inelastic effects occurring in the process zone and the
chemical dissociation energy. Experimentally, it is very difficult to distinguish between
these effects. As a result, the entire energy dissipated during crack growth is interpreted
as the energy release rate.

3.2. Experimental Identification of Energy Release Rate

Three common testing strategies are presented, which are used to identify the energy
release rate as a material characteristic parameter of fracture toughness.

3.2.1. Simple Extension Test. Greensmith & Thomas [91] performed simple
extension tests to measure the energy release rates in thin rubber sheets. An initial
cut is introduced in a rectangular strip to produce two arms which are clamped in a
tension testing machine and pulled apart, see Figure 3.2. The extension ratio in this
region is denoted by λ. It is assumed that the thickness h is small enough, such that the
couple required to bend the arms is negligible in comparison to the tensile tearing force.
The arms are required to be sufficiently long in comparison to the width w, to generate
regions of steady strain state. When the specimen is deformed, a simple extension region
C develops. The strain distributions in the neighborhood D of the clamps and in the
neighborhood B of the tip of the cut are complicated in character. However, provided
the uncut portion of the test piece is also sufficiently long, there is a region A which
is substantially undeformed. A small increase ∆c in the cut length at constant applied
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Figure 3.3: a) Specimen geometry. b) Deformation induced strains in the pure shear region
C are measured as λ1 = 1, λ2 and λ3 = −1/λ2. c) A cut is introduced. The stress free
region A and a transition region B develop. d) Crack opens. e) Steady crack growth, region
A grows at the expense of C. f) Steady tearing ends when C is consumed.

force F , increases the size of the region C in simple extension. This occurs at the expense
of the undeformed region A, while leaving the strain distributions in the neighborhood of
the cut tip and of the clamps unaltered. The increase in volume of the regions C, at the
expense of the region A, is ∆V = wh∆c, referring to the undeformed state. The extension
ratio of the material in the region C is unaltered, since it depends only on the applied
force F . The increase in stored elastic energy in the test piece is ∆E = wh∆cΨ(λ) in
terms of the free energy per unit volume Ψ. The separation ∆l of the grips, by which
the force is applied, is given by ∆l = 2λ∆c. The energy release rate is thus computed
according to (3.10) with ∆A = h∆c and ∆Πext = −2∆lF as

g =
2λ∆cF + wh∆cΨ(λ)

h∆c
= 2λF/h+ wΨ(λ) . (3.16)

It has been shown in Rivlin & Thomas [191] that, if the width w of the test piece is
sufficiently large, λ ≈ 1 and F ≫ Ψhw/2. Thus (3.16) reduces to

g ≈ 2F/h (3.17)

in terms of the undeformed thickness h of the specimen and the tearing force F .

3.2.2. Pure Shear Test. Measurements of the energy release rate with pure-shear
test pieces of thin rubber sheets go back to Rivlin & Thomas [191], Thomas [208,
210]. The energy release rate can be calculated from the over-all strain. The shape and
dimensions of the specimen are shown in Figure 3.3a. Suitable dimensions are l0 ≈ 4 cm,
w ≈ 30 cm and h ≈ 1mm for the height, width and thickness of the specimen sheets. The
specimen is clamped at the long edges and a strain is imposed by separating the clamps
in a direction parallel to the short edge l0. Two strain type regions develop, a region C
in pure shear and the regions D, where a slight departure from pure shear takes place
close to the force free edge. Two pairs of marks were made on the rubber to measure the
strain λ2 and λ1 in the region C. The measured λ1 = 0.994 was considered to be close
enough to λ1 = 1, required for pure shear. For a pure shear state, the extension ratios
in the three principal directions are thus λ1 = 1, λ2 > 1 and λ3 = 1/λ2, see Figure 3.3b.
The incision was then made, Fig. 3.3c. The regions A and B develop in the test piece,
where A is substantially undeformed and the region B, lying between A and C, is in a
complicated state of strain, Fig. 3.3d. Provided that the overall separation between the
clamps is unchanged, the extension ratio λ2, defining the amount of pure shear in the
region C, is unchanged during crack growth. An increase in the cut length of ∆c does
not alter the state of the strain in the region B but merely shifts this region parallel to
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Figure 3.4: a) Peel test geometry. Two layers of flexible polymer are bonded together in
the seal area. The peel arms are pulled apart, the angle of separation between the layers is
180◦. b) Load-displacement curves from Geissler et al. [78].

the direction of the cut. This causes the regions A to grow at the expense of the region
C, Fig. 3.3e. Thus, an increase in crack length ∆c transfers a volume ∆V = l0h∆c of the
rubber from a state of pure shear to the undeformed state until the region C is completely
consumed by the growth of A. This marks the end of the steady tearing under pure shear
state Fig. 3.3f. As the crack advances a step ∆c, the width of the region C decreases by
the same amount. The energy in the pure shear state, released during crack growth, must
be known in terms of λ2. Hence the net variation ∆E of stored elastic energy is

∆E = −Ψ(λ1, λ2, λ3)l0h∆c . (3.18)

The quantity Ψ can easily be estimated assuming a material model. To derive the crack
speed, equidistant points are marked on the undeformed specimen surface. The passage
of the tip past the reference marks is timed, giving the crack speed v. The energy release
rate is thus computed according to (3.10) with ∆A = ∆ch and −∆Π = −∆E as

g = −∆E/(∆ch) = Ψ(λ1, λ2, λ3)l0 (3.19)

in terms of the undeformed length l0 of the specimen and the free energy per unit volume.

3.2.3. T-Peel Adhesion Test. The T-peel test is used to analyze the adhesion
of sealed polymeric films. Gent & Lai [83] analyzed partially crosslinked sheets of
elastomer, where the interlinking of two sheets was controlled. Nase et al. [170] analyzed
two-component peel systems, consisting of a film and interface component. The interface
between two films acts as a predetermined breaking point upon mechanical loading. For
testing purposes, the end parts of the layers remain unsealed. These unbonded ends are
bent and clamped in the tension testing machine. A constant head speed is applied and
the load versus the head movement is recorded. The bent, unbonded ends form a T-
shape when pulled apart and the angle of separation between the layers is 180 degrees,
see Figure 3.4a. Experiments performed by Geissler et al. [78] are shown in Fig. 3.4b,
where the peel force F is plotted over the peel separation u. First, an elastic loading is
observed, until the peel force reaches a local maximum at the peel initialization, whereafter
the load drops slightly. A plateau like curve progression is followed, in which the force
remains constant, except for some fluctuations. An increase of force is observed when
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peeling the border region at the end of the test piece. Geissler et al. [78] performed
peeling tests at three different constant head speeds, to demonstrate the crack speed
dependence of the energy release rate. The peel force F is observed to increase with
increasing displacement rate. Transferring the simplification that λ ≈ 1 in the peel arms
from the simple-extension test to the T-peel test, the head movement ∆u is equal to the
distance peeled ∆c. Thus, the crack speed v is equal to the displacement rate of the peel
arms u̇. According to (3.10) the energy release rate is g = −∆Π/∆A. Similar to the
simple-extension test shown in Rivlin & Thomas [191], the arms which are in simple
extension store comparably little energy, compared to the external power due to loading.
By neglecting the increase in stored elastic energy, the energy release rate is computed
with ∆A = ∆cw and −∆Π = 2F∆u as

g ≈ 2F∆u

w∆c
=

2F

w
. (3.20)

The energy release rate may therefore be derived from the tearing force F and is inde-
pendent of the length Γ of the crack. The rate of propagation of the crack is governed
only by the rate of separation of the grips.

3.3. Phase Field Approximation of Crack Topology

This section considers the introduction of a phase field model of crack surface topology.
The idea of regularizing a sharp crack by a diffusive crack topology was motivated in
Miehe et al. [161]. The introduced crack phase field d and the crack functional Γl are
essential constituents of the phase field model. Based on purely geometrical aspects, a
comprehensive understanding of phase field fracture is obtained. In a first step, a one-
dimensional bar is investigated, which is then generalized to the two and three dimensional
settings.

3.3.1. One-Dimensional Motivation: Bar with a Crack. Imagine an infinitely
expanded bar with L = [−∞,+∞], with cross-section Γ, occupying the domain B = Γ×L
and the position x ∈ L defined on the axis. Assume a crack at the axial position x = 0
with the crack surface Γ. This sharp crack topology is indicated by an auxiliary field
variable d(x) ∈ [0, 1] with

d(x) :=

{
1 for x = 0
0 otherwise

(3.21)

characterizing the unbroken state for d = 0 and the fully broken state of the material for
d = 1, illustrated in Figure 3.5a. In the following, this auxiliary variable d(x) is termed
the crack phase field. Obviously, such an approach is related to the continuum theory
of damage, where the scalar damage field d describes the development of micro cracks
and micro voids in a homogenized macroscopic sense. With this concept in mind, the
non-smooth phase field (3.21) is approximated by the exponential function

d(x) = e−|x|/l . (3.22)

It smears out the crack over the axial domain L of the bar, representing a regularized or
diffusive crack topology as depicted in Figure 3.5b. The regularization is governed by the
length scale parameter l and gives the discontinuous crack topology (3.21) for l → 0. The
exponential function (3.22) has the property

d(0) = 1 and d(±∞) = 0 (3.23)
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Figure 3.5: Sharp and diffusive crack modeling. a) Sharp crack at x = 0 and b) diffusive
crack at x = 0 modeled with the length scale l.

and is obtained as the solution of the homogeneous differential equation

d(x)− l2d′′(x) = 0 in B (3.24)

subject to the Dirichlet-type boundary conditions (3.23). This differential equation is the
Euler equation of the variational principle

d = Arg

{
inf
d∈W

I(d)

}
with W = d|d(0) = 1, d(±∞) = 0 , (3.25)

in terms of the functional

I(d) =
1

2

∫

B
{d2 + l2d′2} dV. (3.26)

This functional can easily be constructed by integrating a Galerkin-type weak form of the
differential equation (3.24). Insertion of the exponential function (3.22) into (3.26) and
evaluation with dV = Γ dx

I(d = e−|x|/l) = lΓ (3.27)

gives a relation between the functional I and the crack surface Γ. Dividing the functional
(3.26) by the length scale parameter l, yields the functional

Γl(d) :=
1

l
I(d) =

1

2l

∫

B

{
d2 + l2d′2

}
dV (3.28)

alternatively to (3.26). The minimization of this scaled functional also gives the regu-
larized crack topology (3.22) shown in Figure 3.5b. Resulting from the scaling by the
length scale parameter l, the functional Γl(d) may be considered as the crack surface
itself. In the one-dimensional problem under consideration, the evaluation of Γl(d) at the
solution point x = 0 gives the crack surface Γ for arbitrary length scales l. This property
characterizes the functional Γl as an important ingredient of the subsequent constitutive
modeling of diffusive crack propagation.

3.3.2. Continuous Formulation: Regularized Crack Topology. The idea of
regularizing a sharp crack topology by a diffusive crack topology, based on the introduction
of a crack phase field d, outlined above, can easily be extended to the multi-dimensional
context. Let B ⊂ Rδ be the reference configuration of a material body with dimension
δ ∈ [2, 3] in space and ∂B ⊂ Rδ−1 its surface as shown in Figure 3.6. To study cracks
evolving inside the solid within the time range T ∈ R+ we introduce the time dependent
crack phase field d(X, t)

d :=

{
B × T → [0, 1]
(x, t) 7→ d(x, t)

(3.29)
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Figure 3.6: Finite deformation of a body with a regularized crack. a) the crack phase field

dt defines a regularized crack surface functional Γl(d) which converges to the sharp crack
surface Γ when l→ 0. b) the level set Γc{X|d = c} defines for a constant c ≈ 1 the crack
faces in the regularized setting. Parts of the continuum with d(X, t) > c are considered to
be free space and are not displayed.

defined on the solid B. Then, a multi-dimensional extension of the regularized crack
functional (3.28) reads

Γl(d) =

∫

B
γ(d,∇d) dV , (3.30)

where the crack surface density function per unit volume of the solid

γ(d,∇d) = 1

2l
d2 +

l

2
|∇d|2 (3.31)

has been introduced. This function depends on the crack phase field d and its spatial
gradient ∇d. It is governed by the length scale parameter l and plays a critical role in the
subsequent modeling of crack propagation. Imagine a given sharp crack surface topology
Γ(t) ⊂ Rδ−1 inside the solid B at time t as depicted in Figure 3.6. In analogy to the
one-dimensional variation principle (3.25), the crack phase field d(X, t) on B is obtained
from the minimization principle of approximated crack topology

d(X, t) = Arg

{
inf

d ∈ WΓ(t)

Γl(d)

}
(3.32)

proposed in Miehe et al. [161], with the Dirichlet-type boundary constraint WΓ(t) =
{ d |d(X, t) = 1 at X ∈ Γ(t) }. The Euler equations of this variational principle are

d− l2∆d = 0 in B and ∇d · n = 0 on ∂B , (3.33)

where the Laplacian of the phase field is ∆d and n is the outward normal on ∂B. Figure 3.7
depicts numerical solutions of the variational problem (3.32) for two dimensional problems,
which demonstrate the influence of the length scale l. Note that the limit of the principle
(3.32)

lim
l→0

{
inf

d ∈ WΓ(t)

Γl(d)

}
= Γ(t) (3.34)

gives the sharp crack surface Γ for vanishing length scale l → 0. A more detailed derivation
of the above formulation is outlined in [161]. The crack opening is defined by the level set
of the crack phase field

Γc = {X ∈ B | d(X, t) = c} . (3.35)



40 Fundamentals of Fracture Mechanics
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Figure 3.7: Continuum approximations of crack discontinuities with the crack phase field
d ∈ [0, 1] for different length scales la > lb > lc. Solutions of the variational problem (3.32)
of diffusive crack topology for a circular specimen with a given sharp crack Γ, prescribed
by the Dirichlet condition d = 1. The sequence of plots visualizes the limit Γl → Γ of the
regularized crack surface functional (3.30) towards the sharp crack surface for l → 0.

Here, c is a constant, for example c = 0.98. Parts of the continuum with a crack phase
field d(X, t) > c above the level set, are considered to be free space and are not displayed.
In the current configuration, we recognize the opening of the crack by a separation of the
crack faces defined by the level set, see Figure 3.6.
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4. Phase Field Modeling of Fracture

In this chapter, a model for phase field fracture inmulti-physics problems is introduced.
The overall goal is to design a continuum theory of crack propagation applicable in a
modular format, to a large spectrum of coupled multi-field problems, where focus is
put on the model problem of finite thermo-viscoelasticity that covers dissipation and
thermomechanics with internal variables. A mainly geometric approach to the diffusive
crack modeling is introduced. It is based on the introduction of a balance of diffusive crack
surfaces and defined in terms of the crack functional and the crack phase field, introduced
in Chapter 3. In order to obtain a model for irreversible crack evolution, a restriction on
the phase field evolution is introduced to ensure local crack growth. Along with a positive
crack driving force, this induces a representation of the crack driving force in terms of
a crack driving state function. This constitutive function, which depends on a set of
state variables of the multi-physics bulk response, provides the key impact from the bulk
response to the crack evolution. Rate independent and rate dependent evolution equations
are outlined for the phase field. A key aspect is the definition of a criterion for crack
initiation and crack growth. Therefore, a summary of energy, stress, strain and inelasticity
based criteria is presented. The energetic approach to brittle fracture introduced inMiehe
et al. [161] is briefly reviewed. Furthermore, a maximum stress criterion is introduced,
which makes a differentiation between tensile and compression regions simple and is open
for complex anisotropies in the constitutive modeling. The qualitative features of the
different driving forces are demonstrated with one-dimensional studies. For the three
field coupled problem, consisting of the mechanical deformation field, the temperature
field and the phase field, a staggered solution scheme is outlined. Practical investigations
use an operator splitting technique with fracture phase field predictor, followed by a
mechanical subproblem and a heat conduction corrector in line with treatments in Miehe
[150], Miehe et al. [161]. Such a tool offers a simple algorithm for crack updates, that
can be linked for any crack driving state function to any multi-physics problem via one-
pass operator splits or Gauss-Seidel-type iterations between crack and bulk response.

4.1. Primary Fields and Functionals

In the large strain context, the response of the fracturing solid is characterized by the
deformation field, the absolute temperature field and the crack phase field

ϕ :

{
B × T → Rδ

(X, t) 7→ ϕ(X, t)
, θ :

{
B × T → R+

(X, t) 7→ θ(X, t)
and d :

{
B × T → [0, 1]
(X, t) 7→ d(X, t) .

(4.1)

ϕ (2.2) maps material points X ∈ B onto spatial points x = ϕ(X, t) at time t ∈ T . d
(3.29) determines locally the fractured state of the material point X ∈ B at time t ∈ T ,
that is for d = 0 unbroken and for d = 1 fully broken. The gradients of the deformation
and the temperature field are

F := ∇ϕt and F := ∇θ . (4.2)

The spatial temperature gradient is obtained by a parametrization of the temperature by
the spatial coordinates x = ϕ(X, t), yielding the relationship

f := ∇xθ(x, t) = F−T
F . (4.3)
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Figure 4.1: Primary fields of thermo-viscoelasticity coupled with phase field fracture. The
deformation field ϕ, temperature field θ, internal variables q and phase field d are defined
on the solid domain B. The boundary ∂B of the solid is decomposed for Dirichlet- and
Neumann-type boundary conditions associated with the mechanical and thermal problem.
The diffusive fracture problem has zero Neumann conditions on the full boundary.

Let σ denote the Eulerian (true) Cauchy stress tensor (2.22). Then, the Kirchhoff (2.23),
the first Piola (2.24) and the symmetric Piola stress tensor (2.25) are

τ := Jσ , P := JσF−T and S := F−1JσF−T , (4.4)

respectively. Furthermore, let q (2.26) denote the Eulerian (true) heat flux vector and
h := Jq the Kirchhoff-type heat flux. Then

Q := JF−1
q (4.5)

is the Lagrangian heat flux vector (2.27). The regularized crack surface Γl (3.30) is defined

Γl(d) =

∫

B
γ(d,∇d) dV with γ(d,∇d) = 1

2l
d2 +

l

2
|∇d|2 (4.6)

in terms of the crack surface density function (3.31). This function, which depends on
the crack phase field d and its spatial gradient, ∇d, plays a central role in the modeling
of crack propagation.

4.2. Boundary Conditions of the Coupled Problems

In order to solve the set of balance equations defined in Section 2.3 for finite thermo-
viscoelasticity coupled with the fracture phase field equation, we have to postulate bound-
ary conditions for the coupled problem. To this end, the surface ∂B of the reference
configuration is decomposed into mechanical and thermal parts

∂B = ∂Bϕ ∪ ∂Bt and ∂Bθ ∪ ∂Bq (4.7)

with ∂Bϕ ∩ ∂Bt = ∅ and ∂Bθ ∩ ∂Bq = ∅. We postulate Dirichlet- and Neumann-type
boundary conditions for the mechanical problem

ϕ = ϕ̄(X, t) on ∂Bϕ and σn = t̄(x, t) on ∂St (4.8)

and for the thermal problem

θ = θ̄(X, t) on ∂Bθ and qn = q̄(x, t) on ∂Sq (4.9)

with prescribed deformation ϕ̄, traction t̄ , temperature θ̄ and heat outflux q̄, see Figure
4.1. The convective heat exchange is of particular importance. It is governed by the
constitutive equation

q̄ = hc(θ − θ∞) on ∂Sq (4.10)
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defined on the exterior boundary, where hc is the convective heat exchange coefficient and
θ∞ a given ambient temperature. In addition, the homogeneous Neumann-type boundary
conditions

∂∇dγ · n0 = 0 on ∂B (4.11)

are applied for the fracture phase field d, see Figure 4.1.

4.3. General Equations of Finite Thermo-Viscoelasticity

The state of a local material point is assumed to be described by the deformation
gradient F , the temperature θ and the phase field d. For inelastic materials, this set is
extended by additional internal variables, say q, employed for the description of inelastic
dissipative processes. The Helmholtz free energy per unit mass is then formulated in terms
of these state variables

Ψ = Ψ̂(F , θ,q, d) . (4.12)

The specific constitutive function will be presented in detail in each chapter. With this
functional dependency at hand, we get the intrinsic (local) dissipation from the Clausius-
Planck inequality (2.55)

ρ0Dloc := P : Ḟ − ρ0Ψ̇− ρ0ηθ̇ ≥ 0 , (4.13)

defined per unit reference volume. Here, P is the nominal stress tensor introduced in
(2.24) and η is the specific entropy per unit mass. Incorporation of the time derivative of
the free energy function gives the expression

ρ0Dloc = (P − ρ0∂FΨ) : Ḟ − (ρ0η + ρ0∂θΨ) θ̇ − ρ0∂qΨ : q̇ − ρ0∂dΨḋ ≥ 0 . (4.14)

The constitutive expressions for the nominal stress tensor P and the entropy η are then
determined by the free energy. Following a standard argument, we obtain

P = ρ0∂FΨ(F , θ,q, d) and η = −∂θΨ(F , θ,q, d) . (4.15)

These assumptions reduce the Clausius-Planck inequality (4.14) to the form

ρ0Dloc = p : q̇+ βḋ ≥ 0 with

{
p:= −ρ0∂qΨ(F , θ,q, d)

β:= −ρ0∂dΨ(F , θ,q, d)
, (4.16)

where we introduced, per definition, the thermodynamic driving forces p, conjugated to
the internal variables q. β is the energetic dual variable to the fracture phase field d. A
typical form of the evolution system of internal variables is provided by the constitutive
initial-value problem

∂qΨ(F , θ,q, d) + ∂q̇Φ(q̇) = 0 with q(0) = q0 (4.17)

in terms of a dissipation function Φ that depends smoothly on the temporal evolution q̇

of the internal variables with normalization condition Φ(0) = 0. Assuming local crack
growth ḋ ≥ 0, Φ to be convex and Ψ to be convex and monotonically decreasing with
d, we observe that (4.16) is automatically satisfied. An alternative form of the evolution
system of internal variables is provided by the constitutive initial-value problem

q̇ = F(F , θ,q, d) with q̇(0) = q̇0 . (4.18)



44 Phase Field Modeling of Fracture

Note, that the overall constitutive model of thermo-viscoelasticity is governed by the
constitutive functions Ψ for the free energy and Φ or F for the dissipation.

The heat flux in the interior of the body is assumed to be governed by an isotropic
Eulerian Fourier-type law for the Kirchhoff heat flux h. This gives the constitutive for-
mulation

Q = −kC−1
F (4.19)

for the Lagrangian heat flux defined in (4.5), in terms of the material temperature gradient
(4.2)2. This provides a positive dissipation

Dcon := −1
θ
Q · F ≥ 0 (4.20)

for a positive heat conductivity parameter k > 0. The coupling of the heat flux with the
deformation is governed by its dependence on the right Cauchy Green tensor C = F TF ,
which is a positive definite tensor.

We now embed the above outlined general constitutive functions into the global bal-
ance equations. These govern the initial boundary value problem of coupled thermo-
viscoelasticity at finite strains. The first set of equations covers the balances of linear
(2.32) and angular momentum (2.34)

ρ0ϕ̈ = Div[P ] + ρ0γ and FP T = PF T . (4.21)

Here, γ is a prescribed body-force field, P is the nominal stress tensor introduced in
(2.24) and Div(·) is the divergence operator with respect to the Lagrangian coordinates
X. The second essential global equation is the balance of internal energy (2.43)

ρ0ė0 = P : Ḟ − Div[Q] + ρ0R . (4.22)

The internal energy density is e0, with respect to the volume of the reference configuration.
R denotes a predefined heat source with respect to the unit of the reference volume and
P : Ḟ is the stress power with respect to the unit of the reference volume. Based on the
Legendre transformation e0 = Ψ + θη, we insert the constitutive equations (4.15) and
(4.16) to obtain the evolution ρ0ė0 = P : Ḟ + ρ0θη̇ − ρ0Dloc. Insertion into (4.22) gives
the evolution equation for the entropy

ρ0θη̇ = Div[−Q] + ρ0R + ρ0Dloc (4.23)

in terms of the dissipation Dloc ≥ 0, defined in (4.16). Starting from (4.15)2, we obtain
the constitutive rate equation

ρ0θη̇ = ρ0cs θ̇ − ρ0H , (4.24)

with the heat capacity

cs := −θ∂2θθΨ(F ,q, θ, d) (4.25)

and the latent heating

H := θ∂θ [P : Ḟ −Dloc ] = (θ∂θP ) : Ḟ − (θ∂θp) : q̇− (θ∂θβ)ḋ . (4.26)
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Insertion into (4.23) finally gives an evolution equation for the temperature

ρ0csθ̇ = Div[−Q] + ρ0(R +H +Dloc) . (4.27)

Note that the first bracket vanishes in an adiabatic process, i.e for Q ≡ 0 and R ≡ 0.
Equation (4.27) is known as the coupled temperature evolution equation of thermo-
viscoelasticity. The last two terms on the right-hand side, characterize the latent (ther-
moelastic) and dissipative coupling effects. Similar to applications of metal thermo-
viscoelasticity, we expect the situation |H| ≪ Dloc. Investigations of Miehe [150] for
entropic thermoelasticity demonstrated the small amount of latent heating. In our sub-
sequent investigation we neglect the latent heating effect in the temperature evolution
equation (4.27) by setting H ≈ 0.

4.4. Balance Equation of Phase Field Fracture

We consider a generalized formulation for the evolution of the phase field d(X, t) that
is open for different constitutive models of energetic and non-energetic driving forces.
Keeping in mind a purely geometric picture, we introduce a balance of the regularized
crack surface functional Γl defined in (3.30)

Γ̇l(d) = Sl − Rl . (4.28)

Γ̇l is the evolution of regularized crack surface, Sl is a local crack source and Rl is a local
viscous crack resistance term. The evolution of regularized crack surface can be recast
into the form

Γ̇l(d) =

∫

B
δdγ · ḋ dV +

∫

∂B
(∂∇dγn) · ḋ dA (4.29)

where we have introduced the variational or functional derivative of the crack surface
density function

δdγ := ∂dγ − Div[∂∇dγ] =
1

l
[d− l2∆d] . (4.30)

In (4.29), n is the outward normal on B. In what follows, we assume homogeneous
Neumann-type boundary conditions on the surface ∂B of the reference configuration B

∇d · n = 0 on ∂B . (4.31)

As a consequence ∂∇dγn = l∇d · n = 0 and the right hand side of (4.29) vanishes. We
obtain the evolution of the regularized crack surface

Γ̇ =
1

l

∫

B
Dc · ḋ dV with Dc := lδdγ = d− l2∆d (4.32)

the dimensionless geometric crack resistance, defined by the variational derivative of the
crack density function γl introduced in (3.31). The local crack source Sl and the local
viscous crack resistance Rl are introduced as power type expressions, in terms of a crack
driving force H and a crack evolution time η

Sl =
1

l

∫

B
(1− d)H · ḋ dV ≥ 0 and Rl =

1

l

∫

B
(ηḋ)ḋ dV (4.33)
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Thus, the global balance of the regularized crack surface reads

∫

B
Dcḋ dV =

∫

B
(1− d)H · ḋ dV −

∫

B
(ηḋ)ḋ dV . (4.34)

Reformulating the balance equation (4.34) into a local constraint, we obtain the local
balance equation

[d− l2∆d] = (1− d)H− ηḋ (4.35)

that governs the nonlocal evolution of crack phase field d, in the case of loading and
unloading and is defined in terms of a local effective driving force H. The term ∆(·) =
Div(∇X(·)) denotes the Laplace operator. We focus on an irreversibility of the crack
evolution, governed by the constraint

d

dt
Γl(d) ≥ 0 (4.36)

on the evolution of the regularized crack surface. Hence, the constitutive crack driving
power must be positive. Taking into account the constitutive representation (4.33), this
is achieved for the physically based restrictions

d ∈ [0, 1] , ḋ ≥ 0 and H ≥ 0 . (4.37)

These conditions ensure a growth of the fracture phase field up to the fully broken state.
The condition (4.37)1 demands locally, that the phase field d, which starts from the initial
condition d = 0 for the unbroken state, is bounded by d → 1 when cracks accumulate.
In order to obtain further insight to the constitutive definition of the driving force H,
consider a rate-independent crack growth with η = 0 for a homogeneous problem with
∇d = 0. Then (4.35) gives a one-to-one relationship between the crack phase field d and
the crack driving force H. As a consequence, conditions (4.37)1,2 can be recast into the
constraints

d =
H

1 +H ∈ [0, 1] and ḋ =
Ḣ

(1 +H)2 ≥ 0 (4.38)

in terms of the driving force H and its evolution Ḣ, which must be satisfied by the
constitutive expression (4.37). Clearly, as indicated by (4.38)1, locally unbroken and fully
broken states are associated with

d = 0⇔H = 0 and d→ 1⇔H →∞ . (4.39)

Taking into account these relationships, the driving force H must satisfy the constraint

d

dt
H ≥ 0 . (4.40)

Hence, the constitutive driving force H must be a positive, monotonously growing func-
tion. This is realized by expressing the local crack driving force H by the maximum value
of the associated crack driving state function D̃

H(X, t) = max
s∈[0,t]

D̃(X, s) with D̃(X, s) ≥ 0 (4.41)
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obtained in the full process history s ∈ [0, t]. D̃ is independent of the crack phase field d.
It is assumed to be a positive constitutive function of physical state variables, responsible
for the accumulation of the phase field. Combining the evolution equation (4.35) with
(4.41) is consistent with the structure

ηḋ = 〈(1− d)D̃ −Dc〉 ≥ 0 . (4.42)

Hence, a non-smooth evolution of the crack phase field takes place, when the nominal state
function (1 − d)D̃ exceeds the geometric crack resistance Dc. For the rate-independent
limit η → 0, the associated local evolution system is

ḋ ≥ 0 , [(1− d)D̃ −Dc] ≤ 0 , ḋ[(1− d)D̃ −Dc] = 0 . (4.43)

Observe again, that the dimensionless crack state function D̃ is the key constitutive input
on the driving side, while the dimensionless geometric crack resistance Dc = lδdγl is
related to the variational derivative of the crack surface density function γl.

4.5. Crack Driving State Functions for Different Fracture Criteria

The definition of the effective crack driving state function D̃ allows a strong flexibility,
with regard to alternative crack driving criteria. In the following, some examples are
presented to complete specific definitions of the phase field equation (4.35).

4.5.1. Evolution Equations in Gradient Damage Mechanics. A class of gradi-
ent damage approaches to the modeling of brittle fracture assumes a total pseudo-energetic
density W per unit volume, which consists of the sum

W (ε, d,∇d) =Wbulk(ε; d) +Wfrac(d,∇d) (4.44)

of a degrading elastic bulk energy Wbulk and a contribution due to fracture Wfrac, which
contains the accumulated dissipative energy. The bulk contribution is assumed to have
the simple form

Wbulk(ε; d) = g(d)Ψ̃(ε) , (4.45)

where Ψ̃(ε) is the effective energy stored in the undamaged material and g(d) = (1− d)2
is a degradation function that satisfies the properties Wbulk(ε; 0) = Ψ̃(ε),Wbulk(ε; 1) =
0, ∂dWbulk(ε; d) < 0 and ∂dWbulk(ε; 1) = 0. In the finite deformation context, ε is Al-
mansi’s tensor as defined in (2.20). The above introduction of competing bulk and sur-
face energy densities is in line with treatment of gradient damage theories outlined in the
works Frémond & Nedjar [74], Frémond [73], Marigo and collaborators Benal-
lal & Marigo [21] and Pham et al. [180]. See also Miehe [164] for an embedding
into variational principles. The evolution of the damage variable d is then determined by
the variational derivative of this potential density. In a rate independent setting, this is
provided by the Kuhn-Tucker-type equations

ḋ ≥ 0 ; −δdW ≤ 0 , ḋ[−δdW ] = 0 . (4.46)

This equation is shown in Miehe [164] to be the Euler equation of a rate-type variational
principle for the evolution problem of gradient damage mechanics. It provided the basis
for the phase field modeling of brittle fracture proposed by Miehe et al. [161].
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4.5.2. Strain CriterionWithout Threshold. An energetic criterion without thresh-
old used by Miehe et al. [161] is based on the fracture contribution to the total pseudo-
energy (4.44)

Wfrac(d,∇d) = gcγl(d,∇d) =
gc
l
[d2 + l2|∇d|2] . (4.47)

It is directly related to the crack surface density function γl defined in (3.31). Here, gc
is Griffith’s critical energy release rate. Hence, a fracture surface energy per unit volume
is obtained by multiplying gc with the crack surface density function. The total pseudo-
energy potential takes the form

W (ε, d,∇d) = (1− d)2Ψ̃(ε) + gcγl(d,∇d) (4.48)

in terms of the two functions Ψ̃ and γl. Then, the loading criterion (4.46) for the phase
field includes the loading function

−δdW = 2(1− d)Ψ̃ + gcδdγl(d,∇d) (4.49)

and can be recast into the form

gc
l
[d− l2∆d] = 2(1− d) max

s∈[0,t]
Ψ̃(ε(X, s)) , (4.50)

see Miehe et al. [161]. The comparison with (4.35) identifies the effective crack driving
state function

D̃ =
2Ψ̃(ε)

gc/l
. (4.51)

Note that this driving state function depends on the ratio of the locally stored effective
elastic energy Ψ̃ to the critical energy release rate gc, that can be considered to be smeared
out over the length scale l. The function Ψ̃(ε) is monotonously growing and may be
considered to be a norm of the strain ε. Hence, the driving state function is related to the
amount of local distortion. A formulation based on a decomposition of the free energy
into tensile and compression parts was considered in Miehe et al. [161]

4.5.3. Strain Criterion With Threshold. The criterion (4.51) is a monotonous
increasing function of the strains ε, as shown in Figures 4.2a and 4.3a. As a consequence,
a damage-type degradation already occurs at low stress and strain levels. In order to
avoid this effect, an energetic criterion with threshold can be constructed based on the
fracture contribution to the total pseudo-energy (4.44)

Wfrac(d,∇d) = 2Ψc[d+ l2|∇d|2] . (4.52)

Here, Ψc is the specific fracture energy per unit volume. Note that, in contrast to the
definition (4.47), the phase field d enters the formulation by a linear term. Such for-
mulations of gradient damage mechanics are discussed in Frémond [73], Frémond &
Nedjar [74], Pham et al. [180], Miehe [164]. After some algebraic manipulation, the
total energy potential (4.44) reads

W (ε, d,∇d) = (1− d)2[Ψ̃(ε)−Ψc] + 2Ψclγl(d,∇d) (4.53)

in terms of the crack surface density function γl defined in (3.31). Then, the loading
criterion (4.46) for the phase field includes the loading function

−δdW = 2(1− d)[Ψ̃(ε)−Ψc]− 2Ψclδdγl(d,∇d) (4.54)
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and can be recast into the form

2Ψc[d− l2∆d] = 2(1− d) max
s∈[0,t]
〈Ψ̃(ε(X, s))−Ψc〉 . (4.55)

The comparison with (4.35) identifies the crack driving state function

D̃ =
〈Ψ̃(ε)

Ψc
− 1

〉
(4.56)

in terms of the ramp function 〈·〉 := (·+ | · |)/2 determined by the McAuley bracket. Note
that this criterion is independent of the length scale l, because the material parameter Ψc

for the specific fracture energy refers to the unit volume.

4.5.4. Stress Criteria With and Without Threshold. In order to obtain a simple
approach to brittle fracture that takes into account a decomposition into tension and
compression, a stress criterion is developed. To this end, consider the Legendre-Fenchel
transformation of the effective energy Ψ̃ to its dual Ψ̃∗

Ψ̃∗(σ̃) = sup
ε

[σ̃ : ε− Ψ̃(ε)] (4.57)

in terms of the effective Cauchy stress σ̃. Insertion into (4.51) and (4.56) gives the
alternative representations

D̃ =
2

gc/l
[σ̃ : ε− Ψ̃∗(σ̃)] and D̃ =

〈 1

Ψ c
[σ̃ : ε− Ψ̃∗(σ̃)]− 1

〉
(4.58)

of the fracture driving state functions in terms of the stress function Ψ̃∗. Inspired by the
linear theory of elasticity, based on quadratic functions with identical images Ψ̃∗(σ̃) =

Ψ̃(ε) = 1
2
σ̃ : ε, we postulate the criteria

D̃ =
2Ψ̃∗(σ̃)

gc/l
and D̃ =

〈Ψ̃∗(σ̃)

Ψc
− 1

〉
(4.59)

dual to (4.51) and (4.56) and apply it to nonlinear elasticity.

4.5.5. Principal Tensile Stress Criterion With Threshold. In order to obtain
a simple criterion for mixed tensile compression stress modes applicable to general non-
linear and possibly anisotropic elasticity, consider first the decomposition of the effective
stresses into tensile and compressive parts

σ̃ = σ̃
+ + σ̃

− with σ̃
+ =

3∑

a=1

〈σ̃a〉na ⊗ na (4.60)

in terms of the ramp function 〈·〉 := (· + | · |)/2. In a second step, a quadratic effective
stress function is introduced for the definition of the fracture driving force

Ψ̃∗
frac(σ̃

+) =
1

2E
|σ̃+|2 = 1

2E

3∑

a=1

〈σ̃a〉2 , (4.61)



50 Phase Field Modeling of Fracture

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

D̃1

D̃1

D̃2

d

d

d

1

1

1

εεε

εεε

εεε

σ

σ

σ

εc

εc εcεc

εc

σc

σc

σc

l
l

ζ
ζ

ζ

a)

b)

c)

Figure 4.2: Qualitative features of different driving forces in homogeneous test. Perfor-
mance of a) energetic criterion D̃1 = Eε2/(gc/l) for different length scale parameters l, b)

energetic criterion D̃1 = Eε2/(gc/l) with gc in terms of critical stress σc and length scale l

gc =
σcl
E

4·
√
2

3
and c) maximum stress criterion D̃2 = ζ · 〈(σ̃/σ̃c)

2 − 1〉.

independent of the bulk response, where E is a parameter related to Young’s modulus.
Next, assume the critical fracture energy Ψc per unit volume, to be related to a critical
fracture stress σc via

Ψc :=
σ2
c

2E
. (4.62)

Then, insertion of (4.61) and (4.62) into (4.59)2 gives the simple principal tensile stress
criterion

D̃ = ζ
〈 3∑

a=1

〈σ̃a/σc〉2 − 1
〉
, (4.63)

where an additional dimensionless parameter ζ > 0 was introduced that influences the
growth of the crack phase field for ζ 6= 1, in the post-critical range. The driving state
function provides a quadratically increasing barrier function for stress levels above a failure
surface in the principal stress space. It is determined by the critical tensile stress σc as
depicted in Figure 4.4, whose slope can be influenced by the parameter ζ . Such a criterion
is extremely simple to implement and applicable to brittle fracture in nonlinear possibly
anisotropic finite elasticity. It generalizes the classical maximum principle stress criterion,
which can be traced back to Rankine, Lamé and Navier, to the phase field modeling of
fracture. A pure Rankine-type criterion would be related to the phase field driving state
function

D̃ = ζ
〈
max(〈σ̃1〉2, 〈σ̃2〉2, 〈σ̃3〉2)/σ2

c − 1
〉
. (4.64)

It is related to the simple scenario of decohesion of surfaces perpendicular to the maximum
principle stress. Figures 4.2c and 4.3c demonstrate qualitative features of the criterion
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(4.63). In particular, Figure 4.3c characterizes the force (4.63) as being physically mean-
ingful. It preserves the elastic properties in uncracked zones.

4.5.6. Ductile Strain Criterion with Threshold. Simple criteria for ductile frac-
ture, occurring after large plastic deformations, can be related to a critical amount of
the plastic strains. Let q denote a tensorial internal variable that measures the plastic
strain, e.g. the Lagrangian logarithmic plastic strain. A simple, non-energetic criterion
for ductile fracture may be based on the accumulated plastic strain

ǫ(X , t) :=

∫ t

s=0

|q̇(X, s)| ds . (4.65)

In formal analogy to the criteria (4.56) and (4.63) of brittle fracture, a crack driving state
function can be defined as a barrier function of the equivalent state variable ǫ, as

D̃ = ζ〈 ǫ
2

ǫ2crit
− 1〉 , (4.66)

where ǫcrit is a critical equivalent plastic strain at which ductile fracture occurs. This
function can be considered as the regularization of an indicator function

D̃ =

{
0 for ǫ < ǫcrit
∞ otherwise

(4.67)

that triggers the fracture at ǫ = ǫcrit. Conceptually, this type of barrier function can be
applied to any other plastic state variable, such as the void fraction f in the Gurson-
Tvergaard-Needleman models of ductile damage, see Gurson [100] and Tvergaard &
Needleman [219]. Chapter 8 uses this state function (4.66) in the analysis of fracture
in glassy polymers, related to a critical value of crazes.

4.6. Qualitative Features of Different Driving Forces

Though crack propagation is a highly inhomogeneous phenomenon and should be only
considered in the multi-dimensional context, a look at homogeneous and one-dimensional
states in Figures 4.2 and 4.3 may illustrate the modeling capabilities. For homogeneous
states with η = 0 and zero Laplacian ∆d = 0, equation (4.35) has the closed-form solution

d(t) =
H(t)

1 +H(t) with H(t) := max
s∈[0,t]

D̃(s) (4.68)

with starting value d(0) = 0 for a virgin state D̃(0) = 0. Note the limit d→ 1 forH →∞.
As depicted in Figure 4.2, the length scale l controls the shape of the fracture phase field
d that turns out to be jump-like for l → ∞. Assuming for the qualitative description in
Figures 4.2 and 4.3, the quadratic effective energy functions

Ψ̃ =
E

2
ε2 and Ψ̃∗ =

1

2E
σ̃2 (4.69)

in the small strain context, the stress function is postulated to have the form

σ = (1− d)2σ̃ with σ̃ = Eε . (4.70)
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Figure 4.3: Qualitative features of different driving forces in a one-dimensional finite
element simulation. Performance of a) energetic criterion D̃1 = Eε2/gc, b) energetic criterion

D̃1 = Eε2/gc(σc) with gc in terms of critical stress σc and length scale l gc =
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and

c) maximum stress criterion D̃2 = 〈(σ̃/σ̃c)
2 − 1〉 for different length scale parameters l with

l/L = {0.004, 0.008, 0.016, 0.032}.

The phase field is computed by the closed-form result (4.68). The energetic criterion
without threshold (4.51) takes the form

D̃1 =
2Ψ̃

gc/l
=
Eε2

gc/l
or D̃1 =

2Ψ̃∗

gc/l
=
σ2/E

gc/l
, (4.71)

alternatively, in terms of the strains ε or the effective stresses σ̃. As shown in Figure 4.2a
the stress σ defined in (4.70) has different peak values for a given critical energy release
rate gc

σc =
9

16
Eεc with εc =

√
gc/l

3E
, (4.72)

which depend on the length scale l. This has been pointed out by Borden et al. [27].
A modification of (4.70), that uses the critical fracture stress σc as a material parameter,
resolves (4.72)1 for a length scale dependent gc

ĝc(l) =
256

27

σ2
c l

E
, (4.73)

yielding driving state functions which do not depend on the length scale l

D̃1 =
27

256
(
Eε

σc
)2 or D̃1 =

27

256
(
σ̃

σc
)2 . (4.74)
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Figure 4.4: Failure surface for the principle stress criterion (4.63). Stress states above the
failure surface, determined by the critical fracture stress σc, rise the driving force function
D̃ in (4.63), whose slope can be pronounced by the additional parameter ζ ≥ 1.

Figure 4.2b shows that such a setting gives a homogeneous stress response σ, independent
of the length scale l. This is also the case for the energetic criterion with threshold, (4.56)
that takes the form

D̃2 = ζ
〈
Ψ̃/Ψc − 1

〉
= ζ

〈
(ε/εc)

2 − 1
〉

or D̃2 = ζ
〈
Ψ̃∗/Ψ∗

c − 1
〉
= ζ

〈
(σ̃/σc)

2 − 1
〉
(4.75)

alternatively, in terms of tensile strains ε or the tensile effective stresses σ̃. Here, the
energetic threshold was expressed by Ψc := Eε2c/2 or Ψ∗

c := σ̃2
c/2E and by strain and

stress thresholds εc and σc, respectively. Note that the response of D̃2 shown in Figure
4.2c, is independent of the length scale l. Figure 4.3 depicts the simulation of cracking in
a one-dimensional bar, with a slight perturbation of the fracture toughness in its center.
In contrast to the energetic criterion D̃1 in Figures 4.3a-b, the maximum stress criterion
D̃2 in Figure 4.3c does not affect zones in a far distance of the crack. This is a strong
argument for the criterion (4.63) with threshold.

4.7. Time-Space Discretization and Solution Algorithms

We now construct a robust solution procedure of the multifield problem, built of
the three equations (4.21), (4.27) and (4.35), associated with the fields visualized in
Figure 4.1. It is based on convenient algorithmic operator splits, in line with the small-
strain treatment. The algorithm extends the formulation proposed in Miehe et al.
[160], from the small-strain setting, to finite deformation problems. The one-pass split
provides three sub-problems for the evolution of the deformation field, the temperature
and the phase field, respectively.

4.7.1. Time-Discrete Field Variables in Incremental Setting. We now consider
field variables at the discrete times 0, t1, t2, . . . , tn, tn+1, . . . , T of the process interval [0, T ].
In order to advance the solution within a typical time step, we focus on the finite time
increment [tn, tn+1], where

τn+1 := tn+1 − tn > 0 (4.76)

denotes the step length. In the subsequent treatment, all field variables at time tn are
assumed to be known. The goal is then to determine the fields at time tn+1. In order to
keep the notation compact, subsequently all variables without subscript are evaluated at
time tn+1. As a consequence, the rates of the deformation, temperature and phase field
are considered to be constant in the time increment (4.76) under consideration, defined
by

ϕ̇τ := (ϕ−ϕn)/τ , ḋτ := (d− dn)/τ and θ̇τ := (θ − θn)τ . (4.77)
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Note that, due to the given fields at time tn, the above rates associated with the time incre-
ment (4.76), are linear functions of the variables at the current time tn+1. An algorithmic
expression

(·)α := (1− α)(·)n + α(·) (4.78)

is introduced in terms of an algorithmic parameter α ∈ [0, 1], which gives the backward
Euler scheme for α = 1, the trapezoidal rule and for α = 1/2 and the forward Euler
scheme for α = 0. A robust, algorithmically decoupled system is obtained for staggered
one-pass operations using explicit updates, which is in line with the treatment of Miehe
et al. [160] or Miehe [150, 151].

Update of Fracture Phase Field. A robust algorithm for the update of the phase
field is obtained by explicit update of the driving state function as H = Hα=0 = Hn.
This induces an algorithmic decoupling of updates for the phase field and the bulk re-
sponse in the time interval under consideration and is the key ingredient of a modular
implementation of phase field fracture. We introduce the algorithmic representation of
the Euler-Lagrange equation of phase field fracture

[d− l2∆d] + ηḋτ − (1− d)H = 0 . (4.79)

The weak form is constructed by a standard Galerkin procedure. Let X 7→ δd ∈ Wd :=
{δd|δd = 0 on ∂Bd} be the test function for the fracture phase field, then

Gd(d, δd) =

∫

B
[l2∇Xd · ∇Xδd+ (ηḋτ + (1 +H)d−H)δd] dV = 0 (4.80)

is the weak form of the phase field equation. The linearization of the weak form of the
fracture phase field (4.80) is the following

Glin
d (δd,∆d, d) := Gd(δd, d) + ∆Gd(δd,∆d, d) = 0 (4.81)

in terms of the increment ∆Gd reading

∆Gd(δd,∆d, d) :=

∫

B
∇X∆d (1 l2) ∇Xδd+∆d (η/τ + 1 +H) δd dV . (4.82)

Update of Deformation Field. For a known fracture phase field d at time tn+1, we
compute the current deformation field ϕ from the algorithmic Euler-Lagrange equation
(4.21) for the quasistatic case

Div[P ] + ρ0γ = 0 , (4.83)

using a decoupling from the temperature evolution by an explicit update of the temper-
ature field θ = θα=0 = θn, together with the boundary condition (4.8)2. The weak form
is constructed by a standard Galerkin procedure. Let X 7→ δϕ ∈ Wϕ := {δϕ|δϕ =
0 on ∂Bϕ} be the test function for the deformation, then

Gτ
ϕ(ϕ, δϕ) =

∫

B
[P : δF − ρ0γδϕ] dV −

∫

∂Bt

T̄ δϕ dA = 0 (4.84)

is the weak form of the balance of momentum, when inertia effects are neglected. The
linearization of the weak form of the balance of momentum (4.84) reads

Glin
ϕ (δϕ,∆ϕ,ϕ) := Gϕ(δϕ,ϕ) + ∆Gϕ(δϕ,∆ϕ,ϕ) = 0 , (4.85)
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with the linear increment of the weak form

∆Gϕ(δϕ,∆ϕ,ϕ) :=

∫

B
∆F : C : δF dV . (4.86)

Here, the linear increment of the first Piola stresses is replaced by the expression ∆P =
∆F : C. For updated fracture phase field d and deformation field ϕ of bulk response,
the crack driving state function is updated based on the constitutive crack driving state
function

H(X, t) = max
s∈[0,t]

D̃(X, s) with D̃(X, s) ≥ 0 . (4.87)

Update of Temperature Field. An algorithm for the update of the temperature
field θ in the increment [tn, tn+1] at time tn+1, can be based on the time-discrete form of
the evolution equation (4.27)

ρ0cθ̇
τ = −Div[Qα] + ρsα with sα := Rα +Hα +Dα

loc . (4.88)

An implicit update of the already updated phase field d and deformation map ϕ at time
tn+1, is obtained by setting α = 1. Let X 7→ δθ ∈ Wθ := {δθ|δθ = 0 on ∂Bθ} be the test
function for the temperature, then

Gτ
θ(ϕ, θ, d; δθ) =

∫

B
[Qα · δ∇θ + ρ0{sα − cθ̇τ} · δθ] dV −

∫

∂Sh

q̄αδθda = 0 (4.89)

is the weak form of the temperature evolution equation. The linearization of (4.89) reads

Glin
θ (δθ,∆θ, θ) := Gθ(δθ, θ) + ∆Gθ(δθ,∆θ, θ) = 0 , (4.90)

with the linear increment of the weak form

∆Gθ(δθ,∆θ, θ) :=

∫

B
[∆F · (−kC−1)δF−∆θρ0cδθ] dV . (4.91)

4.7.2. Space-Time-Discrete Finite Element Formulation. Now consider a stan-
dard finite element discretization of the spatial domain B of the reference configuration
and Neumann surfaces ∂St and ∂Sq of the current configuration. We write

B =

Ne⋃

e=1

Be , ∂St =

Nt
s⋃

st=1

∂St st and ∂Sq =

Nq
s⋃

sq=1

∂Sq sq (4.92)

where Ne is the number of bulk finite elements, N t
s and N

q
s are the numbers of surface finite

elements for the mechanical traction and the heat flow, respectively. The discretization
by bulk elements Be ⊂ B in the reference configuration is based on the finite element
shapes

ϕh(X) = N e
ϕ(X)de

ϕ

θh(X) = N e
θ(X)de

θ

dh(X) = N e
d(X)de

d



 and

∇ϕh(X) = Be
ϕ(X)de

ϕ

∇θh(X) = Be
θ(X)de

θ

∇dh(X) = Be
d(X)de

d



 (4.93)
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in terms of the matricesN e
ϕ, N

e
θ andN e

d of bulk shape functions and their derivatives Be
ϕ,

Be
θ and Be

d. Here, de
ϕ, d

e
θ and de

d are the space-time-discrete values of the deformation,
as well as the temperature and phase field at typical nodal points of the finite element
mesh. The discretization of the Neumann surfaces by surface elements ∂St st ⊂ ∂St and
∂Sq sq ⊂ ∂Sq is based on the finite element shapes

ϕh(x) = N s
ϕ(x)d

e
ϕ

θh(x) = N s
θ(x)d

e
θ

}
(4.94)

in terms of the matrices N s
ϕ and N s

θ of surface shape functions. Insertion of shapes (4.93)
and (4.94) into the time-discrete weak forms (4.84), (4.89) and (4.80) gives the decoupled
system of equations, for the presented, staggered update scheme

Rd=
Ne

A
e=1

∫

Be

[BeT
d l2∇dh +N eT

d (ηḋτ + (1 +H)dh −H)] dV = 0 ,

Rϕ=
Ne

A
e=1

∫

Be

[BeT
ϕ P −N eT

ϕ ρ0γ] dV −
Nt

s

A
st=1

∫

∂St st

N sT
ϕ t̄ da = 0 and

Rθ =
Ne

A
e=1

∫

Be

[BeT
θ Q

α−N eT
θ ρ0(s

α − cθ̇τ )] dV −
Nq

s

A
sq=1

∫

∂Sq sq
N sT

θ q̄
α da= 0 .

(4.95)

For the staggered update scheme, according to the choice of update α presented above,
this is a decoupled system for the determination of the nodal values for the deformation,
the temperature and the phase field de

ϕ, d
e
θ and de

d at the current time tn+1.

4.7.3. Solution of the Coupled Algebraic Finite Element System. The al-
gebraic system (4.95) can be solved by standard methods for the solution of nonlinear
equations. Introducing the compact notation for the global degrees of freedom and the
residual of the finite element mesh

R := [ Rϕ Rθ Rd ]
T and d := [dϕ dθ dd ]

T , (4.96)

we write the algebraic problem (4.95)

R(d) = 0 . (4.97)

A canonical solver is the Newton-Raphson scheme, with iterations based on the updates

d⇐ d− [DR(d)]−1R (4.98)

until convergence is achieved in the sense ||R|| < tol. In general, it is based on a full
linearization of the nonlinear algebraic system, based on the monolithic tangent DR(d).
However, for the staggered update scheme presented above, we obtain three decoupled
residual, expressions that are solved stepwise, using Newton-Raphson schemes. The tan-
gent DR(d) is obtained from discretization of the increments introduced above.
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5. Brittle Crack Propagation in Rubbery Polymers

In this chapter, a phase field model for the analysis of fracture in polymer materials
undergoing finite strains is presented. The goal is to design a continuum theory of crack
propagation in rubber-like materials for the rate independent limit, which accounts for
the micromechanical roots of the bulk response and the fracture toughness. We show
that the two basic macroscopic parameters, namely the elastic bulk stiffness µ, as well
as the critical energy release rate gc, are linked by concepts of statistical mechanics to
the microstructure of the polymer network. Embedded in the framework presented in
Chapter 4, we specify the constitutive equations for the crack propagation in elastic rub-
bery polymers under isothermal conditions, where we make use of the statistically derived
material parameters. We start our investigation in Section 5.1, with a review of the mi-
cromechanical basis of modeling bulk elasticity. This concerns the outline of models for
the elastic bulk stiffness, with expressions for entropic elasticity. Fundamental theories on
polymer elasticity base on Gaussian statistics, whereas more advanced theories, applicable
to large deformation problems, replace the Gaussian by Langevin statistics. Network mod-
els provide a link between the response of a single polymer chain and the macroscopic
deformation of a continuum. The nominal energy is governed by the micromechanical
network model for the bulk response and a specific crack degradation function. In Sec-
tion 5.2 the statistically based critical energy release rate of polymer networks is reviewed
and Section 5.3 an energetically based crack driving force is derived. The crack driving
state function is governed by the micromechanically based critical energy release. Finally,
Section 5.4 outlines representative numerical examples, which demonstrate the capability
of the proposed phase field model of fracture in rubbery polymers. The general framework
of coupled problems presented in Chapter 4, is specified to isothermal elastic problems
in this chapter. Therefore the internal variables q (4.12) are dropped, as well as the
temperature evolution θ̇ = 0 (4.27). A two field coupled problem is obtained, governed
by the balance equations (4.21) and (4.35)

ρ0ϕ̈ = Div[P ] + ρ0γ

(d− l2∆d) = (1− d)H− ηḋ . (5.1)

The crack evolution time η is treated as a numerical regularization and the sensitivity of
the structural response with respect to this parameter is studied in the following. For
the modeling of brittle crack propagation the, crack evolution time is chosen very small,
η → 0 s. Within the modular treatment summarized in Chapter 4, the impact from the
bulk response on the crack propagation is governed by the crack driving state function D̃.
Vice versa, the crack phase field enters the bulk state response function Ψ, by modeling
degradation from the initial unbroken, to the fully broken state.

5.1. Micromechanical Modeling of Bulk Elasticity

The degradation of the solid response needs to be constructed, depending on the phase
field d ∈ [0, 1]. We consider isothermal elastic problems and assume the constitutive
structure

Ψ(F ; d) = g(d)Ψ̃(F ) , (5.2)

where the volume specific effective energy function Ψ̃ is associated with the intact solid.
The monotonically decreasing degradation function g(d) describes the softening of the
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Figure 5.1: Network models for rubbery polymers. a) Single chain with N segments
of length l, end-to-end distance r and contour length L = Nl. b) Three chain model:
chains in principal stretch directions ni. c) Eight-chain model: chains placed along the
space-diagonals of a cube, all undergoing the same stretch. d) Microsphere model: chain
orientation continuum with directors r, stretch fluctuation determined by a principle of
minimum averaged energy.

material with evolving damage. It is assumed to have the properties

g(0) = 1 , g(1) = 0 and g′(1) = 0 . (5.3)

The first two conditions include the limits for the intact and the fully broken case. As
shown below, the latter constraint ensures that the fracture force converges to a finite
value, if the damage converges to the fully broken state d = 1. A simple example of a
function that fulfills the above properties, is g(d) = (1 − d)m, whereas g(d) recovers the
classical damage theory for m = 1. The variational theory of brittle fracture in elastic
solids, outlined in Miehe et al. [161], is obtained for m = 2.

In classical entropic elasticity of polymer networks, the entropy η of a single polymer
chain is governed by the Boltzmann equation. Hence, the free energy of a chain is

ψ = −θη with η = k ln p , (5.4)

where p is the probability density that describes the free chain response. k is the Boltz-
mann constant and θ is the absolute temperature. Now consider a single polymer consist-
ing of N segments of equal length l, as depicted in Figure 5.1a. The classical Gaussian
statistics derived by Kuhn [128, 129] considers the unconstrained chain with end-to-end
distance r := |r| ≪ L := Nl much smaller than the contour length L, i.e. moderate
deformations of the chain. Here, the probability density per unit volume of a randomly
jointed chain, characterized by the end-to-end vector r, has the form

p(r) = p0 exp[−
3

2
λ2] with p0 := (3/2Nl2π)3/2 , (5.5)

see Treloar [216] in terms of the stretch λ := r/r0 ∈ [0,
√
N). Here, r0 :=

√
Nl is the

random-walk mean-square distance of a chain. Insertion of (5.5) into (5.4) gives the free
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energy of the chain

ψ(λ) =
3

2
kθλ2 (5.6)

as a function of the stretch λ. The simplest network model that links the response of a
single polymer chain to the macroscopic deformation of a continuum is the three-chain
model, which can be traced back to Kuhn & Grün [130] and James & Guth [115].
It considers a network of n chains per unit volume and links, by an affine deformation
assumption, the microscopic stretch λ of a single chain to the three macroscopic principal
stretches {λi}i=1,3 of the continuum, obtained by the singular value decomposition of the
(isochoric) deformation gradient

F := ∇ϕ(X) =
3∑

i=1

λini ⊗N i with det[F ] = 1 (5.7)

at a typical point X ∈ B of the continuum B ⊂ R3. The macroscopic free energy of the
continuum is constructed by taking the arithmetic average of three representative chain
energies, aligned with the macroscopic principal stretch directions, as depicted in Figure
5.1b, i.e.

Ψ = n〈ψ〉 with 〈ψ〉 := 1

3
[ψ(λ1) + ψ(λ2) + ψ(λ3)] . (5.8)

Insertion of (5.6) into (5.8) and taking into account tr [F TF ] = λ21 + λ22+ λ23, finally gives
the classical closed-form macroscopic free energy function of the polymer network

Ψ(F ) =
µ

2
tr [F TF ] with µ := nkθ . (5.9)

The macroscopic elastic response of the rubber-like material is then governed by the
principle of minimum potential energy

ϕ = Arg
{

inf
ϕ

∫

B
Ψ(∇ϕ)dV

}
, (5.10)

that determines the deformation map ϕ : X 7→ x of the continuum. In continuum
mechanics, this energy function is known as the Neo-Hookean free energy. It has a well-
defined micromechanically motivated network stiffness µ. More advanced network theories
of rubbery polymers, applicable to large deformations, replace the Gaussian statistics by
the inverse Langevin statistics, developed by Kuhn & Grün [130] and James & Guth
[115], which take account of the finite extensibility of the chain. It results in the free
energy of a single chain

ψ(λ) = Nkθ
(
λrL−1(λr) + ln

L−1(λr)

sinhL−1(λr)

)
, (5.11)

which advances (5.6) for end-to-end distances r up to the limiting value L. Here, L(x) =
coth x − 1/x is the well-known Langevin function, see Treloar [216] and the relative
stretch is λr := r/L = λ/

√
N ∈ [0, 1). Furthermore, the restrictive affine deformation

assumption can be relaxed by more advanced network models, such as the non-affine
microsphere network model developed in Miehe et al. [158].
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Figure 5.2: Performance of the non-affine micro-sphere model developed in Miehe et al.
[158]. Fit of multi–dimensional test data from Treloar [214] with five micromechanically
motivated material parameters µ = 0.292MPa,N = 22.01, p = 1.472, U = 0.744, q =
0.1086. a) uniaxial deformation b) equi-biaxial and pure shear deformation.

It links the micro-stretch λ of the single chain to the macroscopic deformation gradient
(5.7) by a particular homogenization method on the unit sphere S ⊂ R2 with the p-root
average of the macroscopic stretch.

〈λ̄〉p :=
[
|S|−1

∫

S
λ̄p dA

]1/p
with λ̄ := |Fr| , (5.12)

where r is the unit director to the surface of the sphere. The macroscopic free energy of
the non-affine network model is derived as

Ψ(F ) = nψ(〈λ̄〉p) . (5.13)

This function describes the idealized network with free fluctuation of the chains between
the crosslinks of the network. An additional free energy, representing the energy due to
interaction of the chains, is added. The model is based on five, physically motivated,
material parameters and shows excellent fits to multi-dimensional experimental results,
as demonstrated in Figure 5.2. The eight chain model proposed by Arruda & Boyce
[12], see Figure 5.1c, is obtained from the microsphere model by the specific choice of
p = 2. The macroscopic free energy is

Ψ(F ) = nψ(〈λ̄〉2) with 〈λ̄〉2 =
√

tr[F TF ]/3 , (5.14)

which is attractive due to its closed-form relationship to the invariant tr[F TF ] of F .
This summarizes our overview about physically motivated network models of rubbery
polymers. Further details can be found in the textbooks Treloar [216], Flory [70] and
Doi & Edwards [56], as well as in the papersBoyce & Arruda [33] andMiehe et al.
[158]. For the subsequent development, we consider the weakly volumetric compressible
Neo-Hookean function as a model problem

ρ0Ψ0(F ) =
µ

2
[tr[F TF ]− 3] +

µ

β
[(detF )−β − 1] , (5.15)

with the shear modulus µ > 0 defined by the Gaussian network model in (5.9). The
parameter β > 0 can be linked to the classical Poisson number of linear elasticity via
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Figure 5.3: Molecular structure of natural rubber. The polymer molecule consists of N
monomer units (isoprene) with cross-sectional area A. The breaking of a C-C bond gives a
first estimate of the energy release rate and the fracture toughness.

β = 2ν/1− 2ν. The constitutive function (4.15) is evaluated for the effective stress
tensor

P̃ := ∂FΨ(F ) = µ[F − J−βF−T ] . (5.16)

The consistent tangent modulus necessary for the numerical solution is C = µI+µβF−T⊗
F−T + µJ−βF−T ⊙ F−T = Cijkl = µδijδkl + µβF−1

ji F
−T
kl + µJ−βF−1

li F
−1
jk .

5.2. Micromechanically Motivated Fracture Toughness

Not only the elastic response of rubbery polymers but also basic characteristics of
the rupture of rubbers at finite strains, can be micromechanically motivated by a network
theory. Rivlin & Thomas [191] examined how the stored energy can be used to describe
a criterion for tearing in rubbery polymers. Their approach is based on the classical brittle
fracture criterion suggested by Griffith [97]. This criterion predicts crack propagation,
if the change in elastic strain energy per unit area of crack growth, also denoted as energy
release rate

g := − δ

δΓ
E(ϕ) with E(ϕ) = inf

ϕ

∫

BΓ

Ψ(∇ϕ)dV , (5.17)

reaches a critical value gc. In this context, Γ is the crack surface generated inside of the
body BΓ and δ(·)/δΓ is the variational or functional derivative of the stored bulk energy
EΓ. Ψ is the stored energy function obtained by the micromechanical network models
outlined above, see (5.9), (5.13) or (5.14) and (5.15). Rivlin & Thomas [191] studied
the tearing energy, which they called the energy release rate, experimentally. Different
test specimens were loaded slowly, up to a point of sudden rupture. The load-displacement
relations were recorded and analyzed. The work required until rupture was evaluated and
related to the initial cut length, to get a relation between increase in cut length and work
required. From the slope of these curves, they identified experimental values of the critical
energy release rate gc. They concluded that gc is a characteristic material constant. Some
years later, Lake & Thomas [133] proposed a simple micromechanical model, which
determines the critical energy release rate gc, explaining the experimental observations.
They derived gc by analyzing the rupture of a polymer molecule, as schematically depicted
in Figure 5.3. A first estimate of fracture toughness is achieved by the considering the
energy necessary to rupture a molecule, in particular the chemical binding energy between
the carbon atoms and the average cross-sectional area. The monomer unit (isoprene) of
the natural rubber depicted in Figure 5.3 has a cross-sectional area A and an average
dissociation energy U 1 of the C-C bonds. Thus, the surface energy for rupture of a

1The dissociation of a chemical substance is usually expressed in [kJ/mol]. For a single monomer, we
obtain U by dividing the molar dissociation energy with Avogadro’s constant.
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X ∈ BΓ

BΓ

r̄

Γ

∆Γ

Figure 5.4: Macro-continuum BΓ with a crack Γ and zoom out of the deformed crack
tip. Chains whose crosslinks lie on opposite sides of a possible extension ∆Γ of the crack
surface Γ must break if crack propagation takes place. This microscopic failure governs the
macroscopic critical energy release rate gc.

monomer is
gmonomer = U/A . (5.18)

This simple analysis of monomer rupture does not take into account the real microstruc-
ture, consisting of flexible long-chain molecules that form a network via crosslinks. Thus,
it dramatically underestimates experimental results for rubbers. As a consequence, Lake
& Thomas [133] analyzed a chain as depicted in Figure 5.4, as the part of a molecule
lying in between two crosslinks. Assume the molecule intersects the plane of crack propa-
gation and that the crosslinks lie on opposite sides of the plane. The chain consists of N
monomer units, with end-to-end distance between the two crosslinks r := |r|. To break
a particular bond within the chain, it is necessary to subject all other bonds in the same
chain, to the same breaking force. Each unit in the chain must be strained until rupture
before the chain will break. If the surface energy required to rupture a monomer unit is
gmonomer, defined in (5.18), the energy required to rupture a single chain consisting of N
monomers is

gchain = Ngmonomer . (5.19)

In order to calculate the energy required to rupture a network, we apply the Gaussian
statistics for the probability density p(r) per unit volume of a randomly jointed chain
already defined in (5.5). Then, the probability density per unit of the radius r of a
sphere, is obtained by multiplying p(r) with the surface area S := 4πr2

P (r) = p(r)S = 4πr2p0 exp[−
3

2
λ2] , (5.20)

see Treloar [216]. The mean end-to-end distance of the chains is thus

r̄ =

∞∫

0

r · P (r)dL =

∞∫

0

4πr3p0 exp[−
3

2
r2/Nl2] dr =

√
8N

3π
l . (5.21)

When a macroscopic crack growth occurs, a number nΓ of chains, that cross a unit area,
have to be broken to create the new surface ∆Γ. For a perfectly uniform network, where
all chains have the same mean end-to-end distance r̄ and contain the same number of
monomer units N , the number of chains crossing a unit area is

nΓ = 1
2
r̄n , (5.22)

where n is again the number of chains per unit volume. For these assumptions of perfectly
uniform networks, the micromechanically motivated expression for the macroscopic critical
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energy release rate is
gc = nΓgchain . (5.23)

This defines a criterion for crack propagation in rubbery polymer networks. Finally, a
micromechanically motivated Griffith-type criterion reads

− δ

δΓ
E(ϕ) = gc with gc :=

√
2

3π
nlN3/2U/A . (5.24)

Based on this micromechanically motivated approach to the fracture toughness of rubbers
at large strains, the following subsection develops a macroscopic crack driving force for
the phase field fracture model.

5.3. Energetic Crack Driving Force

This section develops a macroscopic crack driving force for the Griffith-type phase field
fracture model in rubbers at large strains, which can be linked to the micromechanical
approaches of the fracture toughness, outlined above. In particular, it accounts for the
micromechanical parameter for the fracture toughness gc, outlined in (5.24). The Griffith
criterion predicts crack propagation, if the change in elastic strain energy per unit area
of crack growth, also denoted as the energy release rate

gc = −
δE(state)

δΓ
with E(state) =

∫

B
Ψ(state)dV , (5.25)

reaches a critical value gc. In this context, Γ is the crack surface generated inside of the
body BΓ and δE/δΓ is the variational or functional derivative of the stored bulk energy
E. Multiplication of (5.25) with δΓ/δd, shifts the variational derivative and yields the
expression

gcδdΓ = −δdE . (5.26)

On the left side we introduce the variation of the crack surface functional with respect to
the phase field d and obtain

gcδdΓ = gc

∫

B
δdγ(d,∇d) dV =

gc
l

∫

B
Dc dV (5.27)

in terms of the crack resistance Dc, defined in (4.32). The right hand side is expressed
with (5.25)2

−δdE = − δ

δd

∫

B
(1− d)2Ψ̃(X, t) dV =

∫

B
2(1− d)Ψ̃(X, t) dV , (5.28)

where use was made of the isotropic degradation defined in (5.2). Dividing (5.27) and
(5.28) by gc/l, we obtain the expression

∫

B
Dc dV =

∫

B
2(1− d)Ψ̃(X, t)l/gc dV , (5.29)

which is in the form of the global balance equation of crack surface (4.34). We can identify
the driving state function

D̃ = 2Ψ̃(X, t)l/gc (5.30)

as a ratio of effective elastic energy and energy release rate of the material. According
to (4.41) the maximum of the local effective crack driving state function D̃, obtained in
terms of time, enters the evolution equation for phase field fracture as the crack driving
force H.
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Figure 5.5: Penny shape tension test. Load-displacement curves for simulations with 5 000,
15 000 and 45 000 elements carried out with the same viscosity and with the length scales a)
l= 0.02mm and b) l=0.01mm. Different crack evolution times η at length scale l = 0.01mm
c). For vanishing η the graphs converge to the rate–independent limit.

5.4. Numerical Examples

We now demonstrate the modeling capability of the proposed approach to crack prop-
agation in rubbery polymers at large strains, by means of two representative examples.
As a first benchmark problem, we consider a penny shape precracked test specimen, sub-
jected to tensile loading. Furthermore, we investigate different geometries of a double
edge notched specimen under tension, which allow to validate the model prediction by
comparison with experimental data.

5.4.1. Penny Shaped Precracked Test Specimen. We investigate a rectangular
plate of 2mm width and 0.4mm height, with a horizontal notch of 0.2mm in length,
placed in the center of the specimen. The geometric setup is depicted in Figure 5.6a.
In order to capture the crack pattern properly, the mesh is refined where the crack is
expected to propagate. Three finite element discretizations are generated with Nele =
{5, 14, 45} × 103 finite elements, with an effective element size in the critical zone of
h ≈ 2, 1, 0.5 × 10−3mm, respectively. The macroscopic shear modulus, that had been
micromechanically motivated in (5.9), is chosen to µ = 5N/mm2. We consider a weakly
compressible response with Poisson’s ratio ν = 0.45. The critical fracture energy, which
was micromechanically motivated in (5.24), is set to gc = 2.4N/mm. The computation
is performed in a monotonic, displacement-driven context, with constant displacement
increments ∆u = 1×10−5mm. In order to point out the effects that arise due to the length
scale parameter l and the crack evolution time η, different simulations are performed. The
subsequent study analyzes the influence of the discretization on the global response. For
the three mesh densities mentioned before, the load-displacement curves are compared
in Figures 5.5a,b for the length scale l = 0.02mm and l = 0.01mm. Obviously, the
structural responses show minor differences and the results converge to a solution of
finest mesh density.

To analyze the effect of the regularizing crack evolution time η on the global response,
five simulations are performed with varying damping parameter η = {0.001, 0.01, 0.5} [s].
We observe that the curves obtained with the two lowest viscosities almost coincide and
a rate independent limit is obtained for vanishing crack evolution time η → 0. For
the simulation, using an effective element size of h = 2.0 × 10−3mm at a length scale of
l = 0.01mm, the deformed configuration of the specimen at different time steps is depicted
in Figure 5.6. It shows the crack evolution until final rupture. The corresponding load-
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Figure 5.6: Penny shape tension test. a) Boundary conditions. Crack pattern at a displace-
ment of b) ū = 0.334mm c) ū = 44mm d) ū = 494mm e) ū = 0.512mm, f) ū = 0.526mm,
g) ū = 0.536mm, h) ū = 0.538mm and finally i) ū = 0.5382mm for a length scale of
l = 0.01mm and an effective element size h = 2× 10−3mm.

displacement curve is plotted in Figure 5.5c. We see the contour of the fracture phase
field, where the blue color characterizes the undamaged state of the solid. If the fracture
phase field is fully developed, the field-variable d has the value d = 1, which corresponds
to the red color. Figure 5.6b shows the large deformation of a rubbery polymer. Up to this
deformation, the fracture phase field is virtually undeveloped, which can be clearly seen
from the overall blue color. The applied deformation is ū = 0.334mm in 5.6b. Figure 5.6c
shows the deformed configuration of the system and the contour of the phase field after
an overall deformation of ū = 0.44mm. Based on the changing color in the phase field
contour plot, it can be seen that the phase field begins to develop in the area near the
initial notch. For an applied deformation of ū = 0.494mm, the fracture phase field is fully
developed in the vicinity of the horizontal notch, see Fig.5.6d. Once the fracture phase
field has reached a value representing fully damaged material, a drastic increase in crack
growth occurs. Figures 5.6e-i report the system at prescribed boundary displacements of
ū = {0.512, 0.526, 0.536, 0.538, 0.5382}mm. The crack propagates continuously until the
body has fractured into two parts.

The technique for the visualization of crack opening, already used in Figure 5.6, is
explained in Figure 5.7, where the contour of the fracture phase field and the contour of
the normal stresses are depicted. It is constructed such that the left sides of the specimen
are displayed without graphic manipulation. In Figure 5.7a, on the left side, we observe
an area in which the contour plot shows red for d = 1. A crack has propagated from
the initial notch towards the edges. The stresses in 5.7b, on the left side, have the value
P22 = 0, in the areas where d = 1. On the right sides, the crack opening is visualized.
Since this is only post processing for graphic output, the real boundary of the continuum is
shown by the black lines. To visualize the crack opening and the crack growth we exploit
the level set function Γc introduced in (3.35). For the visualization of crack opening,
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1 00 12a) b) P22d

Figure 5.7: Penny shape tension test. The fully developed fracture phase field, depicted in
a) causes the degradation of material stiffness which is clearly visible through the zero P22

stress in the center of the specimen, depicted in b). Left sides without graphic manipulation,
right sides uses blanking to visualize crack opening for d beyond the level set c ≥ 0.98.

the delimitation for continua, which have negligible stiffness, contribution is chosen at
a level set of c ≥ 0.98. Based on this, the contour plots of the fracture phase field are
adapted, such that the finite elements with a level set of c ≥ 0.98 are not displayed. In
Figure 5.7a, on the right side, we see the boundary layer between undamaged state and
the cracked state where 0 > d > c. This represents the diffusive crack surface which has
developed. In Figure 5.7b, on the right side, the initial cut and the crack surface can only
be distinguished with the help of the continuum outline. The edges are traction free and
in front of the crack tip, stresses concentrate, as was expected.

5.4.2. Double Edge Notched Specimen in Tension. The next benchmark ap-
plies the model to five boundary value problems, which are related to experimental data
available in Hocine et al. [108]. They performed experiments on double edge notched
tension specimens to estimate the critical fracture energy. The geometric setup, which
all the specimen have in common, is depicted in Figure 5.8a. All dimensions are given
in [mm]. The initial crack length a varies and has the values ai={12, 16, 20, 24, 28}mm.
In our simulation we exploited the symmetry of the specimen and discretized one quar-
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Figure 5.8: Double edge notched specimen in tension. a) Boundary conditions and
geometry in [mm], discretized with quadrilateral elements. Varying initial notch length
ai = {12, 16, 20, 24, 28} [mm]. b) Comparison of experimental load-deflection curves from
Hocine et al. [108] with the simulations.
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ter of the specimen with approximately 7000 − 15000 elements. In order to capture the
crack pattern properly, the mesh is refined where the crack is expected to propagate. In
the critical zone, an effective element size of h = 0.05mm is chosen. The length scale
parameter applied in the simulations is l = 1mm, resembling 10 elements. The computa-
tions are performed in a monotonic, displacement driven context, with refinement of the
displacement increments ∆u as soon as the fracture has initiated due to the rapid crack
propagation. The elastic constants are µ = 0.203N/mm2 and ν = 0.45. The critical frac-
ture energy is gc = 2.67N/mm. Note, that µ and gc can be derived from micromechanical
quantities of the polymer network, according to (5.9) and (5.24). The artificial crack
evolution time parameter is chosen to η = 10−3 for all simulations of the five boundary
value problems. Figure 5.8b shows the load-displacement curves of the experiments and
those obtained from the simulations of the five specimen geometries. The dotted lines
are the load-displacement curves experimentally determined by Hocine et al. [108].
The solid curves are the results of the simulations. The geometric setup with the largest
initial notch ai = 28mm, yields the load-displacement curve with the lowest fracture force
level. The smaller the initial notch, the higher the strength of the entire system. When
comparing the experimental and the numerical results in Figure 5.8b, we observe that the

a) b) c) d) e)

f) g) h) i) j)

Figure 5.9: Crack pattern of the double edge notched tension specimen with smallest initial
notch of 12mm width.
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softening effect of the varying initial notch on the overall system response is captured for
all cases in an excellent way. The maximum load that is reached until the rapid crack
propagation occurs, is predicted by the model in all cases in a very satisfying way. This
validates the capabilities of the presented model for the prediction of fracture in rubbery
polymers. Finally, Figure 5.9 shows the resulting crack pattern with the smallest initial
crack a = 12mm. Again, blue and red colors correspond to the virgin and fully cracked
state, respectively. The visualization of the crack opening and the crack growth, exploits
the level set function Γc introduced in (3.35). The delimitation of continua which have
negligible stiffness contribution, is chosen at a level set of c ≥ 0.98. The contour plots
of the fracture phase field are adapted, such that these areas are not displayed. Fig-
ures 5.9a-c show the elastic deformation of the specimen until an overall deformation of
ū = 65.44mm at which the maximum load is almost reached. The contour plot shows
that the phase field is developed to some amount around the initial notch tip. Figure 5.9d
represents the onset of fracture, as the phase field exceeds the level set the first time, at an
overall deformation of ū = 65.608mm. Beyond this point the load drastically decreases.
Figures e-j depict the subsequent propagation of the crack, until the body has separated
into two parts.
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6. Brittle Crack Propagation in Thermoelastic Solids

The overall goal of this chapter is to design a continuum theory of crack propagation
applicable to the model problem of thermoelasticity at finite strains, according to the
recent publication Miehe et al. [163]. Therefore, the deformations are decomposed into
elastic stress producing and volumetric thermal expansion parts. A concept of transition
rules is proposed, which describes the degradation of the intact solid state and the rise of
crack state response, governed by the fracture phase field. In particular, all constitutive
functions of the bulk response are assumed to degrade with an evolving phase field. Hence,
the modeling of the bulk response is essentially restricted to the modeling of the nominal
response of the undamaged material. A maximum stress criterion based on a critical
fracture stress is introduced, that makes a differentiation between tensile and compression
region simple and is open for complex anisotropies in the constitutive modeling. A main
aspect is to outline a concept for the constitutive definition of non-mechanical fluxes at
the crack phases. This is achieved by approximating sharp crack surface integrals by
distinct volume integrals. As a consequence, a conduction across a crack is modeled by a
degrading heat flux function for the solid-freespace mixture. A convective heat exchange is
described by an extra contribution to the bulk heat source. The constitutive expressions
enter the governing Euler equations of the coupled problem, presented in Chapter 4.
Finally, numerical examples demonstrate fundamental geometric and physical coupling
effects in thermoelastic solids at fracture. These are the generation of heat due to cracking,
inducing an increase of temperature, the degradation of non-mechanical fluxes at crack
surfaces and the appearance of new fluxes at the generated crack surfaces. Furthermore,
the generation of cracks due to thermally induced stress states is investigated.

The general framework of coupled problems presented in Chapter 4 is specified to the
modeling of crack propagation in thermoelastic solids. Therefore, the internal variables q
are dropped. A three field coupled problem is obtained, governed by the balance equations
(4.21), (4.27) and (4.35)

ρ0ϕ̈ = Div[P ] + ρ0γ

ρ0cθ̇ = Div[−Q] + ρ0(R +H +Dloc)

(d− l2∆d) = (1− d)H− ηḋ .
(6.1)

The crack evolution time η is treated as a numerical regularization and for the modeling
of brittle crack propagation, η → 0 is used. Within the modular treatment of crack
propagation and bulk response, summarized in Chapter 4, the impact of the bulk response
on the crack propagation is governed by the crack driving state function D̃. Vice versa,
the crack phase field enters the bulk state response function Ψ, by modeling degradation
from the initial unbroken to the fully broken state.

6.1. Constitutive Energy Storage Function

6.1.1. Phase Transition from Unbroken to Broken Response. For the spe-
cific multi-physics scenario under consideration, constitutive functions for the degrading
elastic solid response as well as the rise of new non-mechanical effects in damaged zones
need to be constructed, depending on the crack phase field d ∈ [0, 1]. The first set of
functions considers the degradation of elastic stored energy, stresses and non-mechanical
fluxes in the solid with increasing phase field d. The second set of functions concerns a
new constitutive response in the damaged domain, that increases with increasing phase
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Figure 6.1: a) Fracture degradation function for solid response gs(d) = (1 − d)m with
m = {1, 2, 3}, b) Build up function for diffusive crack phase gc(d) = dm with m = {1, 2, 3}.

field d. With this approach, the rise of non-mechanical fluxes such as heat flow, diffusion,
electric displacement or magnetic induction across diffusive crack faces can be modeled.
A general structure for the phase transition from the intact to the fully broken response,
is introduced by the generic constitutive function

f = f̂ (·; d) , (6.2)

where (·) stands for a set of constitutive state variables, e.g. those for the treated case
of thermoelasticity. The above mentioned degrading and rising response in the range
d ∈ [0, 1] of the crack phase field, may be described by a rule of mixture, which assumes
the constitutive structure

f̂(·; d) = f̂
s
(·; d) + f̂

c
(·; d) (6.3)

with degrading functions f̂
s
for the solid response and growing functions f̂

c
in diffusive

crack zones. These functions are related to effective functions

f̃
s
(·) := f̂ (·; 0) and f̃

c
(·) := f̂ (·; 1) , (6.4)

which describe the responses at intact and fully broken states. The decreasing and in-
creasing functions must show the characteristic properties

∂df̂
s
(·; d) ≤ 0 ∧ f̂

s
(·; 1) = 0 and ∂df̂

c
(·; d) ≥ 0 ∧ f̂

c
(·; 0) = 0 . (6.5)

A simple constitutive function for the rule of mixture (6.3) is

f̂
s
(·; d) = gs(d)f̃

s
(·) + gc(d)f̃

c
(·) , (6.6)

where gs(d) and gc(d) are weight functions. Continuous functions are assumed for these
weight functions that fulfill the conditions

{
gs′(d) ≤ 0
gc′(d) ≥ 0

with

{
gs′(0) = 1
gc′(0) = 0

and

{
gs′(1) = 0
gc′(1) = 1 .

(6.7)

A choice, for instance, are the functions gs(d) = (1 − d)m with dual gc(d) = dm depicted
in Figure 6.3. For the mixture parameter m = 1, the classical (1 − d)-theory of damage
is recovered. The variational theory of brittle fracture in elastic solids outlined in Miehe
et al. [161] is obtained for m = 2. A quadratically increasing function gc(d) = d2 for
the diffusive crack zones can be motivated for a heat transfer across crack faces based on
geometric arguments, i.e. consistent with the crack surface functional γl defined in (3.31).
A more detailed description is given below.
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6.1.2. Nominal Constitutive Energy Storage Function. For the thermody-
namic model under consideration, the free energy storage in the bulk is assumed to be
additively split up into a part due to elastic distortions and a purely thermal part

Ψ̂(·; d) = gs(d)Ψ̃s
e(F , θ) + Ψ̃s

θ(θ) , (6.8)

where the nominal constitutive function for the solid-freespace mixture results from the
specific mixture rule (6.3), with gs(d) = (1 − d)2. A full degradation of Ψ̃s

e, the effective

elastic stored energy (6.11) but no degradation of the stored thermal energy Ψ̃s
θ (6.13) is

assumed.

Effective Elastic and Thermal Energy Storage Functions. In order to describe
the thermal expansion, we decompose the deformation gradient into a thermal expansion
part F θ and a stress producing part F e, defined by

F e := FF−1
θ with F θ := (Jθ(θ))

1/3
1 . (6.9)

F θ is defined, such that isotropic expansions are assumed, governed by the scalar consti-
tutive function

Jθ(θ) = exp[3αs(θ − θ0)] , (6.10)

with the linear thermal expansion coefficient αs, see for example Lu & Pister [142]. We
consider for the model problem a compressible Neo-Hookean function of the form

ρ0Ψ̃
s
e(F e) =

µ

2
[tr[F eTF e]− 3] +

µ

β
[J−β

e − 1] , (6.11)

with the shear modulus µ and a parameter β, related to the Poisson’s ratio of the linear
theory of elasticity via β = 2ν/(1 − 2ν). With the elastic energy Ψ̃s

e at hand, we may
evaluate the constitutive function (4.15) for the effective stresses

P̃ = µJ
−1/3
θ [F e − J−β

e F e−T ] . (6.12)

The purely thermal part of the free energy (6.8)2 is assumed to have the convenient form

ρ0Ψ
s
θ(θ) = ρ0Ψ0 − ρ0η0(θ − θ0)− ρ0cs[θ ln

θ

θ0
− θ + θ0] , (6.13)

where cs is a heat capacity parameter that is assumed to be a constant. With this function
(6.13) for the thermal energy at hand, we may evaluate the constitutive function (4.15)
for the entropy

η = η0 + cs ln
θ

θ 0
+ 3αsp/ρ0 with p := 1

3
tr[PF T ] . (6.14)

6.2. Nominal Constitutive Heat Flux and Heat Source Function

Besides the constitutive equations for the mechanical variables, a constitutive equation
with regard to the heat flux is needed. We apply the rule of mixture (6.3), which assumes
the constitutive structure

Q̂(F , θ; d) = gs(d)Q̃s(F , θ) + gc(d)Q̃c(F , θ) , (6.15)
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with the effective functions Q̃s and Q̃c, which describe the solid response at intact and
fully broken state and the corresponding degradation function gs(d) = (1− d)2 as well as
the rise function gc(d) = d2. The Kirchhoff heat flux Jq in the interior will be treated by
an isotropic Eulerian Fourier-Type law. For the Lagrangian heat flux defined in (2.27)
this gives the constitutive form

Q̃

s = −ksC−1∇θ , (6.16)

where the heat conductivity ks is introduced. The Fourier inequality is only satisfied for
positive values of the heat conductivity

ks ≥ 0 . (6.17)

New surfaces produced by a crack extend the surface of the body and undergo interchanges
with the surrounding medium.

6.2.1. Heat Conduction Across Crack Faces. The appearance of heat conduction
through the new crack surface of the body requires the construction of a constitutive
function in the damaged zone, as already considered in (6.3). In order to motivate a
constitutive equation for the heat flux across crack surfaces, consider a transition from
the sharp crack surface modeling to the diffusive phase field modeling. Let Γ denote the
sharp crack surface and γ± = ϕ±

t (Γ) the deformed crack faces. Assume that the deformed
crack surfaces γ± stay close to each other, as shown in Figure 6.2a and consider the simple
constitutive equation for the heat transport across the crack surfaces

qT = −hT [[θ]] on ϕ±(Γ) , (6.18)

where [[θ]] := θ+ − θ− is the temperature jump. The heat transition parameter hT is
introduced and the temperatures at the opposite crack faces γ± are denoted with θ±.
Consequently, the transport of heat across a sharp crack surface is

T c :=

∫ −

ϕt

(Γ)qtda = −
∫

Γ

lxhT
[[θ]]

lx
da , (6.19)

where lx is a characteristic length. A transition of this sharp crack setting to the regu-
larized phase field formulation is obtained by the transition of the material crack surface
element dA → γl(d,∇d) dV towards the volume element, governed by the crack surface
density function γl(d,∇d) dV defined in (3.31). Additionally, the spatial gradient in (6.19)
may be replaced by the continuum gradient normal to the crack, i.e. [[θ]]/lx → ∇xθ · n,
where n is the normal of the crack surface ϕ(Γ). Considering the geometric relationship
∇xθ = F−T∇θ, the volume and area map dv = det[F ] dV and nda = det[F ]F−TNdA,
introduced in (2.10) and (2.13), we obtain the continuum approximation

T c ≈ T c
l := −

∫

B
lxhT (C

−1∇θ ·N)γl(d;∇d)dv =
∫

B
Q

c ·Ndv (6.20)

of the transport (6.19), where

Q
c := −lxhT (C−1∇θ ·N)γl(d;∇d) = lxhT (C

−1∇θ 1
2l
[d2 + l2|∇d|2] (6.21)
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Figure 6.2: Thermal boundary conditions on sharp crack faces, which are treated in the
continuum phase field formulation in a regularized manner. a) Conduction across gap for
moderate crack opening with heat transport qT = −hT (θ

+ − θ−). b) Convective heat
exchange for large crack opening with heat source hc(θ

± − θ∞).

is a heat flux per unit volume across the damaged zone. Assuming both terms in the
bracket are of the same order, which is true for a damage profile of the form d(x) =
exp[−|x|/l] in terms of a scalar coordinate x perpendicular to the crack, a material heat
flux per area is estimated to have the constitutive form

Q

c ≈ lQc = −lxhTd2C−1∇θ = d2Q̃c . (6.22)

Note that the function d2 models a quadratic increase of the heat transport across a
regularized crack in the range d ∈ [0, 1]. This corresponds to the rise of crack state in
(6.15)2. It is furthermore clear, that lxhT is a reduced Fourier-Type heat conduction
coefficient in the damaged zone in the continuum phase field model. The effective heat
flux per unit volume in the damaged zone is expressed as

Q̃

c = −kcC−1∇θ with kc ≈ lxhT . (6.23)

Hence, in the phase field modeling of fracture, a reduced heat conductivity in the damaged
zone, models a heat transfer across nearby crack faces as visualized in Figure 6.2a.

6.2.2. Heat Source Function for Solid-Freespace Mixture. The appearance
of a possible convective heat exchange at a free crack surface can be described in the
continuum phase field model by an additional heat source. In order to motivate this,
assume that the deformed crack surfaces γ± = ϕ±

t (Γ) are in contact with a medium
of ambient temperature θ∞ inside of the free space generated by the crack opening, see
Fig. 6.2b. The heat exchange is incorporated by the simple constitutive equations

q±c (θ
±) = hc(θ

± − θ∞) on ϕ±
t (Γ) , (6.24)

as already considered for the exterior surfaces defined in (4.10). Here, θ± are the temper-
atures at the deformed crack faces γ± and hc is the convective heat exchange parameter.
Hence, the total influx of heat through the crack faces is

Qc := −
∫

Γ

(q+ + q−)dA = −
∫

Γ

2hc(θm − θ∞)dA , (6.25)

in terms of the mean temperature θm := (θ +− θ−)/2 defined on the sharp crack surface
Γ. A transition of this sharp crack setting to the regularized phase field formulation is
achieved by the transition of the crack surface element dA → γ(d;∇d)dV towards the
volume element, governed by the crack surface density function γl(d,∇d) defined in (3.31).
It yields the approximation

Qc ≈ Qc
l := −

∫

B0

2hc(θ − θ∞)γl(d,∇d)dV . (6.26)
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As a consequence of the spatial regularization, a convective heat exchange at crack faces
can be described by an additional heat source per unit volume

rc ≈ −2hc(θ − θ∞)γl(d,∇d) = −2hc(θ − θ∞)
1

2l
[d2 + l2|∇d|2] . (6.27)

Assuming both terms in the bracket are of the same order, which is true for a damage
profile of the form d(x) = exp[−|x|/l] in terms of a scalar coordinate x perpendicular to
the crack we may approximate (6.27) by

rc := −2hc
l
(θ − θ∞)d2 . (6.28)

Note that the function d2 models a quadratic increase of the action of a convective heat
exchange on the crack in the range d ∈ [0, 1].

6.3. Principal Tensile Stress Crack Driving Force

In order to obtain a simple criterion for mixed tensile-compression stress modes, ap-
plicable to general non-linear and possibly anisotropic elasticity, consider first the decom-
position of the effective stresses into tensile and compressive parts

σ̃ = σ̃
+ + σ̃

− with σ̃
+ =

3∑

a=1

〈σ̃a〉na ⊗ na , (6.29)

in terms of the ramp function 〈·〉 := ( · + | · |)/2. In a second step, specify a quadratic
effective stress function for the definition of the fracture driving force

ψ̃∗
frac(σ̃

+) =
1

2E
|σ̃+|2 = 1

2E

3∑

a=1

〈σ̃a〉2 , (6.30)

independent from the bulk response, where E is a parameter related to Young’s modulus.
Next, assume the critical fracture energy ψc per unit volume to be related to a critical
fracture stress σc via

ψc :=
σ2
c

2E
. (6.31)

Then, insertion of (6.30) and (6.31) into (4.59)2 gives the simple principal tensile stress
criterion

D̃ = ζ
〈 3∑

a=1

〈σ̃a/σc〉2 − 1
〉
, (6.32)

where an additional dimensionless parameter ζ > 0 was introduced, which influences the
growth of the crack phase field in the postcritical range for ζ 6= 1. The crack driving
state function provides a quadratically increasing barrier function for stress levels above
a failure surface in the principal stress space, determined by the critical tensile stress σc
as depicted in Figure 4.4, whose slope can be influenced by the parameter ζ . Such a
criterion is extremely simple to implement and applicable to brittle fracture in nonlinear,
possibly anisotropic, finite elasticity. It generalizes the classical maximum principle stress
criterion, which can be traced back to Rankine, Lamé and Navier, to the phase field
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Table 6.1: Material Parameters

No. Parameter Name Eq. Value Unit
1 µ shear modulus (6.11) 1.0 N/mm2

2 ν Poisson’s ratio (6.11) 0.45 [-]
3 αs linear thermal expansion (6.10) 1× 10−3 K−1

4 k thermal conductivity (6.16) 0.1 N/(Ks)
5 ρocs heat capacity (6.13) 10 N/(mm2K)
6 hC surface convection (4.10) 5 N/(s mm K)
7 θ∞ ambient temperature (4.10) 273 K
8 σc critical stress (6.32) 2.0 N/mm2

9 ζ driving force slope (6.32) 1 -
10 l/h length scale / mesh ratio (3.31) ≈ 2 -

modeling of fracture. A pure Rankine-type criterion would be related to the phase field
driving force

D̃ = ζ
〈
max(〈σ̃1〉2, 〈σ̃2〉2, 〈σ̃3〉2)/σ2

c − 1
〉
. (6.33)

It is related to the simple scenario of decohesion of surfaces, perpendicular to the maxi-
mum principle stress. Figures 4.2c and 4.3c demonstrate qualitative features of the cri-
terion (6.32). In particular, Figure 4.3c characterizes the force (6.32) as being physically
meaningful. It preserves the elastic properties in uncracked zones.

6.4. Numerical Examples

This section demonstrates the performance of the continuum phase field model for
fracture in thermoelastic solids by means of representative numerical examples. The
simulations are conceptual in nature and designed, such that the modeling capacity of
fundamental coupling phenomena of fracturing thermoelastic solids at finite strains are
highlighted. In particular, the subsequent simulations demonstrate

• the performance of phase field fracture with the stress criterion D̃ defined in (6.32),

• the temperature increase at crack faces due to the dissipative heating Dloc in (4.27),

• the generation of a convective heat exchange via the source rc defined in (6.28),

• the cracking due to inhomogeneous stress fields induced by thermal expansion (6.10).

The material parameters used in the subsequent simulations are related to rubber-like
polymers which show thermoelastic behavior at finite strains, see for example Miehe
[150]. A basic set of parameters is given in Table 6.1. Some of these values are modified
on demand, in order to emphasize particular effects. This is commented in the description
of the examples.

6.4.1. Fracture and Dissipative Heat Generation in Bending Test. This ex-
ample demonstrates the performance of the phase field model for fracture at large strains
and the thermomechanical coupling effect, namely temperature increase due to the dis-
sipative crack propagation. We perform a bending test on a simply supported notched
beam, under plane strain conditions, shown in Figure 6.3a. The dimensions are 40mm
in width and 10mm in height. The supports are located 4mm inwards from the outer
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Figure 6.3: Three point bending test. a) Geometry, b) stress contour, c) phase field contour
and d) temperature increase due to dissipation for several displacements.

edge, the load is applied in the middle of the upper edge by a predefined deformation. A
tiny initial notch of length 0.125mm is introduced in the middle of the lower edge. The
mesh is refined in the areas where the crack is expected to propagate. Exploiting sym-
metry, a discretization of half the specimen, with 1550 elements and an effective element
size in the refined region of h = 0.0625 mm is used. The computation is performed in a
displacement-driven context. As expected, the material in the top region of the beam is
compressed while the material at the bottom is stretched. Figure 6.3b shows the nominal
stress distribution P11 in axial direction. The stress-based crack driving state function
D̃ defined in (6.32) starts to evolve once the threshold σc is reached. Then the crack
phase field evolves and the crack grows from the initial notch towards the top region of
the beam. At two stages during crack propagation the phase field is depicted in Figure
6.3c. The blue color corresponds to virgin, undamaged material, whereas fully damaged
continuum (or free space continuum) is represented by red. The dissipation Dloc due to
phase field evolution defined in (4.16) enters the temperature evolution equation (4.27)
and causes an increase of temperature in regions close to the crack faces, shown in Fig.
6.3d. This temperature increase is small, with a maximum value of 0.5K. Here, the level
set function (3.35) Γc = {X | d = c} introduced in Figure 3.6b is used to visualize the
crack opening for the contour plots of the stresses and the temperature state.

Figure 6.4 investigates effects due to the length scale l and the driving force slope
parameter ζ introduced in (6.32). For a fixed ratio of length scale to element size
l1/h = 2, the influence of ζ is analyzed. Load-deflection curves for different values
ζ = {40, 50, 60, 100} are depicted in Figure 6.4a. Note the convergence towards a limit
associated with the failure surface determined by the ideal local stress limit σc. For in-
creasing ζ , the curves ζ = {60, 100} almost coincide. This is a structural counterpart to
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Figure 6.4: Three point bending test. a) Sensitivity of structural response on driving force
slope factor ζ introduced in (4.63). Curves for ζ = 60 and 100 almost coincide. b) Influence
of length scale l at fixed ζ = 60. Curves for l/h = {2, 4, 6} almost coincide.

the homogeneous problem investigated in Figure 4.2c. The influence of the length scale l
is analyzed at fixed ζ = 60 for three simulations with l1/h = 2, l2/h = 4 and l3/h = 6. As
shown in Figure 6.4b, the overall structural response is not very sensitive to the length
scale l. The curves nearly coincide.

6.4.2. Inhomogeneous Strip under Tension. This example shows a boundary
value problem in which curvilinear cracks develop. A rectangular strip of 60mm width and
30mm height with two excentrical holes of diameter 10mm is analyzed for tensile loading.
The geometry is depicted in Figure 6.5a. Notice that no initial crack is introduced. The
elastic constants in Table 6.1 are modified for this example to µ = 0.19N/mm2, ν = 0.45.
When the specimen is loaded, an inhomogeneous stress distribution in the strip develops,
with maximum values at the top and bottom positions of the holes. Once these values
exceed the threshold σc, the stress based crack driving state function evolves and thus, the
fracture phase field d evolves. A crack initiates and grows quickly through the narrow strip
towards the edge. The crack growth takes place in the direction of maximum stress. After
the fracture of the narrow strip, stresses develop towards a maximum at the opposite side
of the holes. There, new cracks initiate, growing through the specimen in the direction
of maximum principal tensile stress. Figure 6.6 displays the stress P11 on the deformed
configuration and shows different stages of failure of the deformation controlled problem.
As shown in the last plot, the specimen breaks into three parts. The phase field variable
d is shown in Figure 6.5b for the fractured state, on the undeformed configuration, to
highlight the curvilinear crack path that has developed.

10

10

10

10

10

202020
ū

a) b)

Figure 6.5: Inhomogeneous strip under tension. a) Geometry with all dimensions in [mm],
b) contour of fracture phase field d at the fractured state, on the reference configuration.
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Figure 6.6: Inhomogeneous strip under tension. Stress distribution P11 for different stages
of the deformation controlled loading process. Depicted are states at the onset of crack
evolution and crack growth towards a fully fractured state.

6.4.3. Heat Flux Response at Evolving Cracks in Notched Tension Test.

This example demonstrates alternative constraints for the heat flux at evolving crack
faces under large strains. A rectangular specimen of width 40mm and height 10mm,
with a horizontal centered notch of 10mm width, is loaded by a controlled displacement
at its top. In addition, a steady-state heat flux from the top to the bottom region
is enforced by prescribed temperatures at the surfaces. The geometry, including the
mechanical and thermal boundary conditions is depicted in Figure 6.7a. The mesh is
refined in areas where the crack is expected to propagate, i.e. in a centered horizontal
strip of the specimen. Exploiting symmetry, a discretization of half the specimen with
5300 elements with an effective element size of h ≈ 0.05mm in the refined zone is applied.
For this simulation, we modify some parameters of Table 6.1 towards µ = 0.19N/mm2,
σc = 50N/mm2, cs = 0, ks = 10 and αs = 0, in order to focus on basic effects associated
with the heat flux. The computation is performed in a monotonous, displacement-driven
context. The temperature field is increased by θ+ = 10K at the top and decreased by
θ− = −10K at the bottom, in relation to the ambient temperature θ∞.

Three simulations are performed, which show alternative treatments of heat flux Qc

across the crack, modeled by the phase transition of the heat flux defined in (6.15).
In the first case, no degradation of the heat flux is considered, i.e. kc = ks in (6.23).
The temperature of the deformed specimen is shown in Figure 6.8a for two crack states,
including the final fracture of the specimen into two parts. An intermediate state is
depicted in Figure 6.7b, where the phase field d and the temperature change θ are plotted,
respectively. The plot of the phase field shows the undamaged material in blue and in
the fully broken continuum in red, where a crack has developed at large strains. For
non-degraded conductivity, the generated free space part still conducts heat, as if it were
undamaged. The arrows in the picture symbolize the spatial heat flux qc and visualize
the conduction through the free space. Obviously, this result is unphysical.
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Figure 6.7: Notched tension test with prescribed temperature at boundaries. a) Geometry
[mm], discretized with quadrilateral elements, and boundary conditions. In the subsequent
plots: on the left, the phase field d and on the right, the temperature θ. b) Heat flux q,
indicated by arrows, with nonphysical conduction kc = ks through crack. c) Heat flux q
for impermeable crack kc = 0 that surrounds the crack tip. d) Convective heat exchange qc
with ambient temperature θ∞, modeled by the heat source rc defined in (6.28).

The second case study considers a fully degrading bulk conductivity, i.e. kc = 0 in
(6.23). The temperature field during crack growth is depicted for two deformation states
in 6.8b. For an intermediate state, Figure 6.7c shows the contours of the fracture phase
field d and the temperature change θ. Again, red represents the fully broken continuum,
i.e. the generated free space. Due to the vanishing conductivity in the free space, the
spatial heat flux qc becomes deformation-dependent and the heat flow surrounds the
crack, which is indicated by the arrows. Because the conductivity of the free space is
assumed to be zero, a thermally impermeable solution is obtained. Consequently, the
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a)

b)

c)

Figure 6.8: Notched tension test with prescribed temperature at boundaries. Tempera-
ture field on deformed configuration at crack growth and for fully fractured specimen. a)
Non-degraded conductivity kc = ks yielding nonphysical conduction through crack. b) Fully
degraded conductivity kc = 0 forms impermeable crack and two thermally decoupled frac-
tured pieces. c) Convective heat exchange on notch and created crack surface to surrounding
medium. The dotted lines indicate the position of the initial notch.

temperature contour lines are perpendicular to the newly created crack surfaces. Figure
6.8b shows that the continuing crack evolution, finally divides the specimen into two parts
with homogeneous distributions of temperature. The temperature changes of these two
parts are prescribed by the corresponding boundary conditions at the top and bottom
surfaces.

The third simulation represents a realistic scenario. Besides the fully degrading bulk
conductivity, it additionally takes into account convective heat exchange on generated
crack surfaces, i.e. convection to a surrounding medium in the free space. This is realized
in the context of the phase field description of fracture by the additional heat source
rc defined in (6.27). In addition to the prescribed temperature changes θ+ = 10K and
θ− = −10K at the top and bottom surfaces, a convective heat exchange qc is applied on
the full surface of the specimen, according to (4.10) and modeled on crack faces by the
heat source rc, defined in (6.27). The exchange coefficient is set to hc = 1N/(smmK).
Figure 6.8c depicts the temperature changes at two deformation states. As shown in the
pictures, the temperatures of the initial notch surface and the newly created crack surface
are equal. Especially in the final state, when the specimen is split into two parts, the
influence of surface convection on the temperature is significant, see Figure 6.8c. Here, in
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a)
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Figure 6.9: Circular body with initial notch and prescribed temperature decrease at the
boundary. Transient temperature field due to surface convection to medium with linearly
decreasing ambient temperature. Due to the inhomogeneous temperature gradient, the
boundary contracts, leading to tensile stresses which create cracks. Temperature distribution
a) without and b) with convection on crack faces, modeled by the heat source rc in (6.28)
at the times t={4.85, 6.5, 15.3, 25.3, 50, 90, 140 1000} s.

order to the separate the initial horizontal notch from the newly generated crack surface
we introduce dotted lines. In the zone where convection influences the temperature on
the body, the temperature field shows a uniform distribution in the zone of the initial
notch as well as on the crack faces.

6.4.4. Temperature Induced Crack Propagation in a Circular Plate. The
aim of this example is to predict crack propagation in solids, induced by inhomogeneous
stress fields triggered by thermal expansion. To this end, a circular plate with radius
r = 1mm, with a tiny initial notch of 0.025 r, is subjected to thermal loading. Exploiting
symmetry, half of the specimen is discretized with 4200 elements, the mesh is refined to
h ≈ 0.00625mm in the zone of expected crack propagation. A convective heat exchange qc
defined in (4.10) is applied to the entire surface of the specimen and modeled on crack faces
by the heat source rc defined in (6.27). The initial body temperature is θ(t = 0) = 300◦C,
whereas the ambient temperature is set to θ∞ = 0◦C. The convection coefficient is set
to h = 0.1N/(smmK). A transient temperature field in the bulk of the specimen results
from the boundary condition. It causes a thin layer with a high temperature gradient
and a core with almost no temperature change. The thermally induced contraction of the
boundary layer induces tension tangential to the surface of the specimen. At the tip of
the notch, the stresses concentrate and exceed the critical value σc in the driving force
D̃ defined in (6.32) and thus fracture is induced. At first, the crack speed is very high,
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Figure 6.10: Thin Glass Plate, clamped at the bottom. Prescribed temperature drop of
−100◦C on the upper surface leads to contraction and to natural tensile transversal stress
with maximum in the middle of the upper edge. Cracks open up, partitioning the upper
surface in regular segments. Stress plots and evolving cracks at t = {6.1, 6.78, 7.36, 9.33,
24.2, 60, 84, 1550} s.

so the crack evolves instantaneously. Then, the crack speed decreases and at some stage
the crack stops growing. While the crack opens, the contraction of the boundary layer
bends the body open. The crack surfaces obtain a convex, curved shape. The surface
convection cools down the specimen until, after a long period of time, the entire body has
adapted to the ambient temperature and returned to its circular form. Figure 6.9a shows
the temperature change with the thin layer of high gradients, when only the degrading
bulk conductivity is considered at the times t={4.85, 6.5, 15.3, 25.3, 50, 90, 140 1000} s.
The test is repeated by considering not only the convection on the outer surface, but
also a convective heat exchange at the generated crack surfaces, modeled by the additional
heat source rc defined in (6.27). The resulting temperature changes are depicted in Figure
6.9b. As long as the crack propagates with high speed, the results resemble the ones of the
previous example. When the crack speed slows down and the crack arrests, the surface
convection on the crack surface becomes visible. The surface convection cools down the
specimen until, after ≈ 1000 s, the entire body has adapted to the ambient temperature
and recovered its circular shape.

6.4.5. Thermal Shock Induced Crack in a Brittle Solid. This example demon-
strates the evolution of thermally induced complex crack patterns. An experimental study
of Geyer & Nemat-Nasser [85] on thermally induced cracks in brittle solids is sim-
ulated. An analysis of this problem was recently outlined in Sicsic et al. [197]. In
the experiment, a glass slab with uniform temperature is brought into contact with dry
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Figure 6.11: Stresses induced by cooling from manufacturing temperature of ≈ 700◦C to
room temperature. Composite 1 develops positive stresses in the spheres, see a), whereas
composite 2 shows maximum positive stresses around the particles, see b). Further cooling
induces spontaneous microcracks. In composite 1, circumferential cracks grow, see c), in
composite 2 radial cracks grow between the spheres in the matrix, see d).

ice. Because of the cooling of the contacting edge, a thermal boundary layer develops
in the solid within a transient process, yielding thermally induced cracks. In order to
simulate this effect, a rectangular plate of width 100mm and height 30mm is discretized.
The bottom surface is fixed in all directions and the temperature is held constant at
θ = 22◦C. The thermal loading through contact is modeled by a Dirichlet-type control of
the temperature field at the upper surface. In a period of 10 s, the temperature is linearly
decreased from θ̄ = 22◦C to a minimum of θ̄ = −78◦C, which is then held constant.
The shock-like thermal stimulation leads to contraction and a natural tensile transversal
stress in a thin layer. Through the natural stress state, a maximum in the middle of
the upper surface evolves, leading to a first crack there. In Figure 6.10, the stress P11

and the evolving cracks are shown at the times t = {6.1, 6.78, 7.36, 9.33, 24.2, 60, 84,
1550} s. With ongoing cooling, the stress on the upper surface again reaches its maximum
in the middle of the partitions, producing secondary cracks. This process repeats once
more. Because of the ongoing conduction process the cracks grow perpendicular to the
cooled edge. However, alternate cracks stop at critical points, while the remaining ones
continue to grow. When a homogeneous temperature gradient between upper and lower
surface is reached, all cracks end. The results are in good qualitative agreement with the
experiments reported in Geyer & Nemat-Nasser [85].

6.4.6. Fracture of a Two Phase Composite Material. This example treats the
crack evolution in different types of two-phase materials. Numerous commercial ceramic
materials consist of a crystalline phase embedded in a glass matrix. The strength control-
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a)

b)

Figure 6.12: Plate under tensile loading. a) Composite 1 with high internal residual
stresses inside the spheres. Cracks propagate around the spheres inside the matrix. b)
Composite 2 with tensile tangential stresses in the matrix-sphere interface. The crack is
directed towards the spheres and eventually cracking of the spheres is observed.

ling factors are the expansion coefficients of the two phases, the volume fraction, particle
size and the elastic properties. Davidge & Green [52] studied the effect of these me-
chanical properties on the stresses around particles. Different types of glass containing
10% thoria spheres were prepared and tested. On this basis, we investigate two different
composites, with µM = 29166N/mm2, νM = 0.2 and µS = 97847N/mm2, νs = 0.275
for the matrix and the spheres, respectively. The expansion coefficient of the spheres is
αS = 8.7 × 10−6. In Composite 1 with αS > αM1, the matrix expansion coefficient is
αM1 = 6.8 × 10−6, whereas in Composite 2 the matrix expands more than the spheres
αS < αM2 = 10.5 × 10−6. Fracture induced by sphere-matrix interaction occurs either
after fabrication due to the differences in thermal expansion, or due to the influence of
an externally applied load. For the simulation, a sample is created with the dimensions
1×1mm, containing 13 circular inclusions of diameter 0.09 or 0.1mm which yields a frac-
tion of ≈ 10%. The sample is meshed with ≈ 117000 quadrilateral elements having an
edge length of h ≈ 0.003mm. The length scale is l = 0.012mm, ζ = 10. The criti-
cal stress parameters for the matrix and the spheres are set to σc,M = 110N/mm2and
σc,S = 200N/mm2, respectively.

Stresses around the spheres originate from production processes, where the material is
first vacuum hot-pressed at around 700◦C and cooled down afterwards. In Composite 1,
where the particles contract more than the matrix, positive stresses develop in the spheres,
see Figure 6.11a. Composite 2 shows maximum positive stresses around the particles, see
Figure 6.11b. Further cooling induces spontaneous microcracks at the interfaces. At a very
low temperature, the stresses around the spheres exceed the critical stresses σc, initiating
cracks. The nature of cracking depends on the type of composite. In Composite 1, cracks
occur on the phase boundaries in a circumferential manner, separating the spheres from
the matrix, see Figure 6.11c. In Composite 2, cracks initiate on the boundaries and grow
radially between the spheres into the matrix, breaking the body into fragments, see Figure
6.11d. These failure mechanisms occur solely due to thermal contraction.
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The influence of sphere matrix interaction on the fracture of an externally loaded plate
at room temperature is also studied. Therefore, cooling from the production process to
room temperature is simulated first, followed by a simple tensile loading in vertical di-
rection. The internal residual stress state occurring from particle and matrix contraction
is already shown in Figure 6.11a,b. The stresses which arise from the deformation con-
trolled loading are superimposed on the internal residual stresses. Since the inclusions
are stiffer than the matrix, the inclusions reach higher stresses. Composite 1 shows high
stresses inside the spheres and on the interfaces. Tangential cracks develop at all sphere
boundaries in the brittle matrix. Cracks in higher stressed regions in the matrix prop-
agate around the spheres and approach each other. Finally the plate is separated into
two pieces. The internal residual stresses in the spheres are almost relieved. Composite
2 shows tensile tangential stresses in the matrix-sphere interface. A single crack grows
from the boundary inside the matrix. It is directed towards the spheres and either grows
along the interfaces or passes through the spheres. The Internal residual stresses around
the uncracked spheres remain in the fragments.
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7. Rate and Temperature Dependent Viscoelasticity and Failure

A phase field model for rate-independent crack propagation in rubbery polymers at
large strains was discussed in Chapter 5. In this chapter, the brittle fracture model for
finite elasticity is extended, towards the description of rate and temperature dependent
failure of viscoelastic rubbery polymers. Rubbery polymers may exhibit very complicated
inelastic effects, such as rate and temperature dependent bulk response. The microme-
chanical model of elasticity, presented in Chapter 5, is extended towards the modeling of
viscoelasticity by a time dependent motion of superimposed entangled chains, visualized
in Figure 7.1. The latter effect is micromechanically motivated by motion of the super-
imposed chains relative to the ground state network. Upon deformation, as shown in
Figure 7.1b,c, the dangling ends of the chains retract by Brownian motion, yielding the
relaxation of the non-equilibrium stresses. According to the molecular dynamics theory
of reptation, outlined in de Gennes [53] and Doi & Edwards [56], the rate of the
relaxation process differs with the elapsed time in the relaxation process. This result of
the theory of molecular dynamics is taken into account by a discrete spectrum of relax-
ation times. Conceptually following the work of Bergström & Boyce [23] or Miehe
& Göktepe [152], we now consider a hierarchy of superimposed chains, as schemati-
cally indicated in Figure 7.1b. These superimposed chains are related to the ground state
network by entanglement mechanisms. We associate the ground state network with the
macroscopically observed equilibrium curve and the superimposed chains with the viscous
overstress response of Figure 7.1a, respectively.

Crack propagation in non-crystallizing polymers is observed to be rate and temperature
dependent, with an energy release rate varying over decades with changing crack speed.
Fracture of rubber is initiated from imperfections in the body of the material or on its
surface. When a crack grows, irreversible processes occur in the vicinity of the moving
crack tip, leading to energy losses that must be made up for by the available elastic energy.
Thus, the energy necessary to propagate a crack at a particular rate may greatly exceed
the thermodynamic surface free energy. Elastomers that do not crystallize on stretching
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Figure 7.1: a) Non-equilibrium cyclic and elastic equilibrium curve without hysteresis
(thick line). A spectrum of non-equilibrium networks is superimposed via entanglements to
the equilibrium network. At a deformation b) to c), the dangling ends of the chains retract
by Brownian motion. Different lengths of the gray chains motivate the utilization of the
relaxation spectrum.
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ideal elastic network

brittle crack

viscoelastic networkviscoelastic network

slow crack fast crack

Figure 7.2: Chains crossing the fracture plane are broken during fracture. In an ideal
elastic network, a brittle crack occurs for g = gc. During slow crack growth in a viscoelastic
network, superimposed chains relax and the crack grows for g ' gc. During fast crack
growth, crosslinked and entangled chains are broken, since relaxation is retarded. The
fracture toughness is increased and crack grows for g ≫ gc.

are often found to tear in a steady, time dependent manner. In Figure 1.3 and 7.12, the
experimental results from Gent & Lai [83] show the variation of energy release rate g
with crack speed v. The energy release rate increases for increasing crack speed. Gent
[82] pointed out that the strength properties are greatly enhanced by viscous resistance
to internal motion or, more generally, by internal losses. We exploit the concept of a
hierarchy of chains superimposed to a three-dimensional ground state network for the
motivation of rate dependent fracture processes. In Figure 7.2, ideal and viscoelastic
networks are sketched. The viscoelastic network consists of an ideal elastic ground state
network, with a hierarchy of superimposed chains. The behavior of the brittle crack in
an ideal elastic network reconfirms the ideas of Chapter 5. Chains, whose crosslinks lie
on opposite sides of the plane of crack propagation, need to be broken to create the new
crack surface. At low crack tip velocity, the tensile loading is very slow and the polymer
chain segments between the cross links rearrange themselves. The superimposed chains
disentangle and relax. Much of the external load will be distributed on the cross link
bonds and a low fracture energy is observed. On the other hand, at a fast crack growth,
the polymer chains do not have enough time to rearrange themselves and large stress is
necessary to break the chemical bonds in the block. Additional to the chains in the ground
elastic network, superimposed chains need to be broken as well, to create crack surface.
The superimposed chains raise the resistance to fracture and damp the crack speed. Since
the mobility of the polymer chains is strongly affected by temperature, the resistance to
fracture increases with decreasing temperature, as does the material stiffness.

The remainder of this chapter is organized as follows. First, the constitutive model for
the thermo-viscoelastic bulk response is derived, then a maximum stress criterion based
on a critical fracture stress is introduced, which makes a differentiation between tensile
and compression region simple. A constitutive assumption on the decrease of fracture
toughness with increasing temperature is motivated and introduced in the crack driving
force. The constitutive expressions enter the governing Euler equations of the coupled
problem, presented in Chapter 4. The increase in crack resistance is modeled by a viscous
crack resistance. Finally, we demonstrate the performance of the phase field model of
rate and temperature dependent fracture at large strains, by means of representative
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numerical examples. They successfully demonstrate the ability of the model to predict
the experimentally observed relation between crack-speed, temperature and energy release
rate.

7.1. Specific Constitutive Functions for Rubbery Polymers

The general framework of coupled problems presented in Chapter 4 is specified towards
the modeling of crack propagation in thermo-visco-elastic rubbery polymers. A three field
coupled problem is obtained, governed by the balance equations (4.21), (4.27) and (4.35)

ρ0ϕ̈ = Div[P ] + ρ0γ

ρ0cθ̇ = Div[−Q] + ρ0(R +H +Dloc)

(d− l2∆d) = (1− d)H− ηḋ .
(7.1)

The crack evolution time η is a decisive parameter for the modeling of rate dependent
crack propagation. The parameter η is adapted to experimental results to model the
increase in crack resistance with increasing crack speed. Within the phase field model of
fracture at large strains, summarized in Chapter 4, the impact of the bulk response on
crack propagation is governed by the crack driving state function D̃. Vice versa, the crack
phase field enters the bulk state response function Ψ, by modeling degradation from the
initially unbroken, to the fully broken state. The dissipation potential (4.17) governs the
evolution of the internal variables q.

7.1.1. Nominal Constitutive Energy Storage Function. The degradation of the
solid response needs to be constructed, depending on the phase field d ∈ [0, 1]. We assume
the constitutive structure for the nominal free energy

Ψ(F ,q, θ; d) = g(d)Ψ̃(F , θ,q) + Ψθ(θ) (7.2)

where the volume specific effective energy function Ψ̃ is associated with the intact solid.
The purely thermal part of the free energy is assumed to have the convenient form

ρ0Ψ
s
θ(θ) = ρ0Ψ0 − ρ0η0(θ − θ0)− ρ0cs[θ ln

θ

θ0
− θ + θ0] , (7.3)

where cs is a heat capacity parameter that is assumed to be a constant. The monotonically
decreasing degradation function g(d) describes the softening of the material with evolving
damage. It is assumed to have the properties

g(0) = 1 , g(1) = 0 , g′(1) = 0 . (7.4)

The first two conditions include the limits for the intact and the fully-broken case. As
shown below, the latter constraint ensures that the fracture force converges to a finite
value, if the damage converges to the fully-broken state d = 1. A simple example of a
function that fulfills the above properties is g(d) = (1 − d)m, whereas g(d) recovers the
classical damage theory for m = 1. The variational theory of brittle fracture in elastic
solids outlined in Miehe et al. [161], is obtained for m = 2.

7.1.2. Decoupled Volumetric and Isochoric Stress Response. We consider a
class of weakly compressible polymers, where the bulk response is assumed to be elastic
and viscosity effects are exclusively restricted to the isochoric part of the deformation. A
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decoupling of the stress response into volumetric and isochoric contributions is based on
the decomposition

F = F̄ F vol with F vol := J1/3
1 . (7.5)

The unimodular part of the deformation gradient F̄ = J−1/3F is assumed to govern
the deviatoric stresses. In order to describe the thermal expansion, we decompose the
volumetric deformation F vol

F vol := F eF θ with F θ = J
1/3
θ 1 and F e := J1/3

e 1 (7.6)

into a stress producing part F e and a part F θ due to the thermal expansion. Jθ is defined
such that isotropic expansions are assumed, governed by the scalar constitutive function

Jθ(θ) = exp[3αs(θ − θ0)] , (7.7)

with the linear thermal expansion coefficient αs, see Lu & Pister [142]. The volumetric
stress producing invariant Je can be determined explicitly in terms of the total Jacobian

Je(J, θ) = J J−1
θ . (7.8)

A decoupled volumetric-isochoric structure of finite viscoelasticity is obtained by consid-
ering the specific form

Ψ̃ = U(Je) + Ψ̄(F̄ ,q, θ) (7.9)

of the effective stored energy of intact solid. Then, the effective stresses P̃ = ρ0∂F Ψ̃(F̄ ,q, θ)
additively decompose into spherical and deviatoric contributions

P̃ = p(J−1
θ JF−T ) +PF : P̄ with p := U ′(Je) and P̄ := ρ0∂F̄ Ψ̄(F̄ ,q, θ) , (7.10)

where PF := ∂F F̄ = J−1/3[I − 1
3
F ⊗ F−T ] with Iijkl = δikδjl is the fourth-order devia-

toric projection tensor. For an almost incompressible response of the polymer network,
the potential U can be considered as a penalty function, which approximately enforces
the incompressibility constraint. Appendix (B) presents a Q1-P0 element formulation
including phase field fracture aspects.

7.2. Decoupled Isochoric Equilibrium and Overstress Response

Based on the network model approach of rubber viscoelasticity, we decompose the
isochoric free energy into an elastic equilibrium and a viscoelastic overstress response, by
the additive split of the isochoric stress potential

Ψ̄ = Ψ̄0(F̄ , θ) + Ψ̄v(F̄ , θ,q) . (7.11)

This induces a further split of the stresses P̄ defined in (7.10)3 according to

P̄ = P̄
0
+ P̄

v
with P̄

0
:= ρ0∂F̄ Ψ̄

0(F̄ , θ) and P̄
v
:= ρ0∂F̄ Ψ̄

v(F̄ , θ,q) . (7.12)

The elastic equilibrium stress response P̄
0
of the polymer network is assumed to be

isotropic. The dissipative viscoelastic overstresses P̄
v
of the superimposed networks pro-

vide a deformation-induced anisotropy in the non-equilibrium state, which is described by
the evolution of the internal variables q over time.
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7.2.1. Free Energy of the Ground State Response. A constitutive model is
introduced for the description of the ground state network elasticity. A micromechanically
motivated network model is applied, based on the energy storage of a single chain in terms
of the inverse Langevin statistics and a homogenization scheme is applied for the network
structure. The advanced non-affine microsphere network model, developed in Miehe
et al. [158], links the micro-stretch of the single chain to the macroscopic deformation
gradient by an average of the macroscopic stretch, using a particular homogenization
method on the unit sphere. The eight chain model proposed by Arruda & Boyce [12]
obtains a closed-form relationship to the invariant tr[F TF ] and is applied for the model.

The stretches are defined as λ := [tr(F̄
T
F̄ )/3]1/2. With the definition of λ at hand, we

define the relative stretch λr := λ/
√
N , with the number of segments N in the fictitious

prototype chain. For a typical Langevin function, we then are able to define the free
energy to

ρ0Ψ̂
0(λr) = µ0(θ)N

(
λrL−1(λr) + ln

L−1(λr)

sinhL−1(λr)

)
, (7.13)

where µ0 is the shear modulus and L−1 the inverse of the Langevin function, defined by
L(·) := coth(·)− 1/(·). The shear modulus µ0 depends on the temperature through the
standard expression

µ0(θ) = nkBθ (7.14)

of the entropic polymer network theory, see Treloar [216]. Here, n is the chain density
and kB is the Boltzmann constant. Note that no exact formulation, but different approx-
imations of the inverse Langevin function exist. A possible approximation is the Padé
function L−1(λr) ≈ 1√

N
λ (3N − λ2)/(N − λ2), proposed by Cohen [45]. It is attrac-

tive for modeling the bulk response because of its compact form and good approximating
quality. However, it is unsuitable because of the discontinuity at λ =

√
N . Alternatively,

L−1 can be approximated by a Taylor series L−1(λr) ≈
∑∞

i=1Ci(λ/
√
N)2i−1, where Ci are

the Taylor coefficients. A list of the first relevant coefficients are documented in Itskov
et al. [114]. The Stress P̄

0
is computed as

P̄
0
= ∂F̄ ρ0Ψ

0 =
µ0(θ)

3λr
L−1 F̄ . (7.15)

7.2.2. Free Energy and Dissipation of Viscoelastic Overstress Response.

The formulation of inelasticity in the logarithmic strain space is a special, metric-based
approach to finite inelasticity. The modular structure of the formulation of finite viscoelas-
ticity in the logarithmic strain space consists of three basic steps: geometric pre-processor,
material modeling and geometric post-processor. The geometric pre-processor step de-
fines the logarithmic isochoric strain measure of Hencky-type ε := 1

2
ln C̄ which enters

the constitutive framework. The energy storage of the superimposed chain spectrum is
defined in terms of a Lagrangian elastic strain variable, depending on the isochoric right
Cauchy Green tensor C̄ = F̄

T
F̄ and the internal variables q. The elastic strains are

provided by the additive decomposition εe := ε −∑n
i=1 ε

v. Here, we introduced tenso-
rial, strain-like internal variables [εvi , . . . , ε

v
n] = q. The phenomenological modeling is

assumed to be governed by a spectrum of i = 1...n subnetworks, superimposed onto the
ground state that produces strains. We denote this discrete spectrum as a hierarchy of
non-equilibrium strains, described by the internal strain-tensor variables εvi . These vari-
ables are assumed to govern the viscoelastic overstress. The energy storage of the entire



92 Rate and Temperature Dependent Viscoelasticity and Failure

spectrum of subnetworks is obtained by the summation

Ψ̂v =
∑n

i=1 Ψ̂
v
i with ρ0Ψ̂

v
i (ε, ε

v, θ) = µi|ε− εvi |2 (7.16)

for each discrete superimposed network, where µi is the shear modulus of the i−th sub-
network, with temperature dependence according to (7.14). The viscous over-stresses can
be calculated from (7.16) as

svi = ∂εiρ0Ψ
v
i = 2µ(ε− εvi ) . (7.17)

For the evolution system provided in (4.17), we assume the dissipation functions of the
form

Φ̂v =
∑n

i=1 Φ̂
v
i with ρ0Φ̂

v
i (ε

v
i ) = µiτi(θ)|ε̇vi |2 , (7.18)

where τ is the relaxation time of the i-th subnetwork, that is shifted by time-temperature
shift. With the specific functions for the viscous free energy and the dissipation potential
of each subnetwork i at hand, we can now derive the specific flow rule of the specific
viscous strain tensor. From the dissipation potential (7.18), we obtain

∂ε̇vi ρ0Φ̂
v
i (ε

v
i ) = 2µiτiε̇

v
i . (7.19)

With the additive decomposition of logarithmic strains and the definition of the evolution
system (4.17), we derive the definition of the flow rule of the i-th viscous strain tensor

ε̇vi = svi /(2µiτi) . (7.20)

In total, n equations (7.20) govern the evolution of the overstresses of the superimposed
networks, in terms of 2 · n material parameters in addition to the elastic equilibrium
response. The final step, the geometric post-processor, is concerned with the mapping of
the algorithmic stresses (7.17), obtained in the logarithmic strain space onto their nominal
counterparts P̄ v = sv : L with L = ∂

F̄
ε. These transformation operations are nothing

more than chain rule exploitations. For more detailed discussion the reader is referred to
the works of Miehe & Lambrecht [155], Miehe et al. [157].

In order to model the temperature dependent material response, the mechanical re-
laxation times are expressed as the product of a shift factor aT and the known relaxation
time at reference temperature θref

τi(θ) = τi(θref) · aT . (7.21)

Generally, the shift factor allows a simple modeling of temperature dependent material
response. For the determination of the shift factor, we adapt the simple, empirical function
presented by Williams et al. [224]

log aT = −C1 · (θ − θref)/(C2 + θ − θref) , (7.22)

depending on the current and the reference temperature. This equation includes the
empirical constants C1 and C2, that are found to be of general validity for most ther-
morheologically simple elastomers. By selecting the glass transition temperature as the
reference value θref = θg, the parameters are C1 = 17.44 [-] and C2 = 51.6◦K, as proposed
by Williams et al. [224]. To transform the constants from those obtained at the ref-
erence temperature θref to a reference temperature θ′ref = θref + δ, the only changes in
(7.22) are the replacement of C1 by C

′
1 with C

′
1 = C1C2/(C2+δ) and of C1 by C

′
2 = C2+δ.

For δ = 50◦K, the parameters are C1= 8.86 [-] and C2= 101.6◦K. The range of definition
of (7.22) is restricted to θg < θ < θg + 100◦C.
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7.2.3. Internal Variable Update. Using a backward Euler scheme for the time
increment ∆t := t − tn, the evolution of the specific viscous strain for each subnetwork
can be written as

ε̇vi = (εvi − εvin)/∆t . (7.23)

With the specific flow rule (7.20) and the function for the driving stress tensor (7.17), we
obtain εvi = εvin +∆t/τi(dev[ε]− εvi ). The algorithmic value of the viscous strains is

εvi =
εvin + dev[ε] ∆t/τi

1 + ∆t/τi
. (7.24)

Resulting from the additive split of the isochoric free energy, the moduli can be split into
a ground state and a viscous part C̄algo = C̄

0 + C̄v. The ground state moduli read

C̄

0 = ∂2F̄ F̄ ρ0Ψ
0 =

µ0L−1

3λr
I+

µ0

9λ2r
F ⊗ F

(
∂λL−1 − L

−1

λ

)
. (7.25)

For the numerical approximation of the inverse Langevin function, the Taylor approxima-
tion is used. Finally, the moduli of the subnetworks are derived as the sum of the total
derivation of the i−th viscous stresses (7.17) by the strain

E

v =
∑n

i=1E
v
i with E

v
i =

dsvi
dε

= 2µi

(
1− ∆t/τi

1 + ∆t/τi

)
, (7.26)

in terms of the i−th shear modulus and relaxation time. The isochoric logarithmic moduli
E

v have to be projected to the Lagrangian moduli C̄v. The projection of C̄algo to the
isochoric contribution to the moduli Calgo follows by chain rule exploitation, see Miehe
& Lambrecht [155].

7.3. Principal Tensile Stress Crack Driving Force

In order to obtain a simple criterion for mixed tensile-compression stress modes appli-
cable to general non-linear and possibly anisotropic elasticity, consider first the decompo-
sition of the effective Cauchy stresses into tensile and compressive parts

σ̃
+ + σ̃

− with σ̃
+ :=

3∑

a=1

〈σ̃a〉na ⊗ na , (7.27)

in terms of the ramp function 〈·〉 := 1
2
( · + | · |). In a second step, we introduced the

simple principal tensile stress criterion

D̃ = ζ
〈 3∑

a=1

(〈σ̃a〉/σc)2 − 1
〉
, (7.28)

where an additional dimensionless parameter ζ > 0 is introduced, which influences the
growth of the crack phase field in the post-critical range for ζ 6= 1. The driving force
provides a quadratically increasing barrier function for stress levels, above a failure surface
in the principal stress space, determined by the critical tensile stress σc. From Figure
1.3 taken from Gent & Lai [83], one can see that the fracture toughness increases
with decreasing temperature. Gent [82] shows that the energy release rate values are
superposable by horizontal shifts using a shift factor. In order to model the temperature
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Figure 7.3: Uniaxial tension test at reference temperature θ0 = 20◦C. Simulation and
experimental data for getting the mechanical material parameter of the ground elasticity.

dependent shift in energy release rate, we assume a shift in critical tensile stress. Inspired
by Gent [82], Gent & Lai [83], Persson et al. [179], Persson & Brener [178] or
D’Amico et al. [51], we propose the critical tensile stress as

σc(θ) = σc(θref )(1 + asT ) . (7.29)

It is decomposed into a known constant low limit σc(θref) at reference temperature and
a variable part σc(θref )a

s
T as the product of the known critical tensile stress and the shift

factor asT with the exponent s. Such a criterion is extremely simple to implement.

7.4. Numerical Examples

We now assess the modeling capability of the proposed formulation, by comparing its
simulations to experimental data. The experimental data includes monotonous and cyclic
processes, at different loading rates and temperatures.

7.4.1. Simulation of Homogeneous Experiments. The model is first evaluated
by comparing the simulations with experimental data of the elastic equilibrium response.
The data from experiments with pre-damaged hydrogenated nitrile butadiene rubber
HNBR50 are reported in Miehe & Göktepe [152]. The parameters introduced for
the elastic equilibrium were identified as shear modulus µ = 0.24 N/mm2 and number
of segments N = 8.0. As can be seen in Figure 7.3, the elastic equilibrium response of
the material in uniaxial tension test fits very well, considering that only two parameters
determine the material response. In order to investigate the dependence of the stress
response on the loading rate, the cyclic uniaxial loading of pre-conditioned cylindrical
specimens, between the stretch values λ1 = 2 and λ1 = 0.75, is simulated at three differ-
ent absolute loading rates |λ̇1| = {0.05, 0.5, 5}min−1. The stress-stretch relation from
the simulations is compared to the experimental results from Miehe & Göktepe [152].
Figure 7.4a shows the uniaxial stress-stretch responses of the three test conditions to the
first two loading cycles. When the loading rate increases, the material response becomes
stiffer. Furthermore, the area in the hysteresis, which is proportional to the integrated
dissipation, becomes larger as the loading rate increases. An additional conclusion which
might be derived from the cyclic experiments, is that the difference between the first



7.4 Numerical Examples 95

0.60.6 0.80.8 11

1

1

1.21.2 1.41.4 1.61.6 1.81.8 22 2.2

0

0

−1

−1

0.5

0.5

−0.5

−0.5

a) b)

c) d)

P
1
1
[N

/
m
m

2
]

P
1
1
[N

/
m
m

2
]

λ1 [-]λ1 [-]

Experiment Experiment

Experiment

Simulation Simulation

Simulation

|λ̇1| = 0.05min−1

|λ̇1| = 0.5min−1 |λ̇1| = 5min−1

|λ̇1| = 0.05min−1

|λ̇1| = 0.5min−1

|λ̇1| = 5min−1

Figure 7.4: Cyclic uniaxial loading experiments and their simulations for three different
loading rates: a) experimental data of all three loading rates, b) |λ̇1| = 0.05min−1 c)
|λ̇1| = 0.5min−1 and d) |λ̇1| = 5min−1.

and the second stress-stretch curves becomes more apparent when the loading rate is
increased. The viscous overstress part of the network model is set to be modeled by
a spectrum of n = 7 subnetworks. The experimental results are utilized to determine
the material parameters of the viscous overstress part of the network model. During the
identification process, the 7 relaxation times are a priori assigned to the values τi = 10a s
with a = {−1, 0, 1, 2, 3, 4, 5} and kept frozen during the identification process. Identified
values of the remaining 7 material parameters are µi ={0.1, 0.13, 0.15, 0.15, 0.15, 0.07,
0.05}. The simulations with the proposed model successfully capture the material behav-
ior observed in experiments. Therefore, the presented approach is very suitable to model
finite viscoelasticity of rubbery polymers.

7.4.2. Temperature Dependent Material Response. To assess the modeling
of the temperature dependent material response, three cyclic uniaxial simulations are
performed at room temperature 20◦C, at 10◦C and at 35◦C, at an intermediate strain rate
|λ̇1| = 0.5min−1. The reference temperature in (7.22) is 20◦C, which is approximately
50◦C above the glass transition temperature. Thus, the utilized coefficients in (7.22) are
the suggested common values C1= 8.86 and C2= 101.6. The change in of the relaxation
times with the shift factor, results in a softer material response at a high temperature
and a stiffer response at a low temperature, see Figure 7.5a. The validity is proven by
comparing the simulation at low and high temperatures with the results from slow and
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Figure 7.5: Temperature dependent material response: a) Cyclic uniaxial loading at load-
ing rate |λ̇1| = 0.5min−1 at three temperatures {5, 20, 35}◦C. Decreasing stiffness with
increasing temperature. Time–Temperature Shift: b) Cyclic uniaxial curves from Figure 7.4
for fast loading resembles cold temperature and slow loading resembles high temperature.

fast cyclic tests. In Figure 7.5b, the results of cyclic uniaxial tests at strain rates of
|λ̇1| = {0.05, 5}min−1 are compared with the simulation at {5, 35}◦C, at an intermediate
strain rate |λ̇1| = 0.5min−1. The curve of the fast loading resembles the curve at low
temperature and the curve of the slow loading resembles the curve obtained at high
temperature.

7.4.3. Dissipative Heating of a Conical Spring. Conical springs, used for exam-
ple in trains, are associations of two materials. The discretized conical spring consists of
four layers of steel (light gray) and three layers of rubber (dark gray) between them. For
the geometry and dimensions of the spring see Figure 7.6a. The spring has a full height
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Figure 7.6: a) Geometry of a fourth conical spring with the two materials rubber (dark)
and steel (light), dimensions h1 = 110mm, h2 = 140mm, r1 = 45mm and r2 = 61mm.
b) Displacement u versus number of cycle for the periods T = {8,80,800} s. The maximum
amplitude increases with increasing period time.
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a) b)

c) d)
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Figure 7.7: Conical spring under cyclic loading with T = 8 s. Norm of viscous strains |εv|
at maximum extension in a) and compression in b). The maximum of viscous strain occurs
in the inner rubber layer. Temperature rise ∆θ [◦C] after 50 and 150 cycles in c) and d).

of h2 = 140mm and an outer radius of r2 = 61mm. Because of the symmetry, only a
quarter of the spring is discretized with 6430 elements. The spring is fixed at the bottom
in all directions, at the top only in the two horizontal directions. At the top, the spring is
loaded with a sinusoidal force F = F0 sin (2πt/T ) for different periods T={8, 80, 800} s,
F0 = 2960N. The displacement of the conical spring depends on the frequency f = 1/T
of loading, as can be seen in Figure 7.6b, where the deformation during cyclic loading is
given. A low frequency results in a high deformation. By a frequency of f = 1/8Hz, the
maximum vertical displacement is uz ≈ 14mm, by f = 1/80Hz, the maximum vertical
displacement is uz ≈ 19mm and by a frequency of f = 1/800Hz we obtain a value of
uz ≈ 25mm. It can also be seen that the deformation during tension is greater than
during compression. The amount of the viscous stretches differs within the rubber layers.
Figures 7.7a and 7.7b show the norm of the viscous strains |εv| = ∑n

i=1 |εvi | after 150
cycles with a frequency f = 1/8Hz of the loading. One can see that the inner layer of
rubber shows the largest amount of viscous strain, while only little viscous strains occur
in the outer layer. The amount of viscous strains is more pronounced under tension,
Fig. 7.7b, than under compression, see Fig. 7.7a. The amount of dissipative heating of
the material is related to the viscous strains. In Figures 7.7c and 7.7d, the temperature
rise in the conical spring, loaded at frequency of f = 1/8Hz, is plotted after 50 and 150
cycles. In the beginning, only the rubber layers are heated by about ∆θ = 2.0◦C, see Fig-
ure 7.7c. With increasing number of cycles, the temperature of the steel layers between
the rubber layers also increases, due to heat conduction. The outer steel layer undergoes
only a minimal temperature rise. Similar to the norm |εv|, the highest temperatures can
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Figure 7.8: Boundary value problem. Rectangular specimen with varying height and
length and varying deformation u. After deforming, a initial cut is introduced.

be found on the top and bottom of the innermost rubber layer. Here the temperature
increases about ∆θ = 5.5◦C after 150 cycles, see Figure 7.7d.

7.4.4. Steady Crack Growth in Simple Extension Test. In 1920, Griffith intro-
duced the so-called energy release rate for brittle elastic materials, see Griffith [97, 96].
This theory is a global approach to fracture mechanics, based on the balance of energy.
According to (3.10) the energy release rate is

g = −∆Π

∆A
, (7.30)

provided that the internal energy is an internal potential E = Πint and the external
loads are conservative governed by a potential Πext, already discussed in Section 3.1.2. If
inelastic material effects are considered, the internal energy (2.37)2 is redefined for the
inelastic material response as E = Ee+ED, with Ee being the stored elastic internal energy
of the type of an internal potential E = Πint and ED, the work dissipated to heat or used
for viscous or plastic deformation processes. As discussed in Section 3.1.2, the energy
released g is

g =
∆D

∆A
+

∆ED

∆A
= −∆Π

∆A
. (7.31)

The energy released during crack growth includes both the geometry dependent viscous or
plastic dissipation of the specimen, the inelastic effects occurring in the process zone and
the chemical dissociation energy D = 2γA. Experimental energy release rate values from
Gent [82], Greensmith & Thomas [91] and Thomas [210] are extracted and displayed
together in Figure 7.12. The experimental data shows a linear correlation between g and
the crack speed v in double logarithmic scale.

Five simulations on steady crack growth in rectangular test pieces under simple exten-
sion are performed, see Figure 7.8. The lower edge is fixed against vertical displacement
but displacements parallel to the edge are allowed. The specimen is stretched by dis-
placing the upper edge by u. The loading is linearly applied in 106 s to the ultimate
extension, which is then held constant. This guarantees a fully relaxed material state
without viscous overstress. To initiate the crack process, the incision is introduced as an
initial crack by Dirichlet boundary conditions with d = 1 at t1 = 0 s. The test geometries
have the particular dimensions and loadings (l [mm]×h [mm]×u [mm]) a: 100×40×40, b:
40×20×11, c: 40×20×15, d: 100×40×30 and e: 100×40×60. Due to symmetry, only
half the specimen is discretized. The mesh is refined to a size of 0.5mm in areas where
the crack is expected to propagate, the phase field length scale is set to l = 1mm.



7.4 Numerical Examples 99

t0 t2 t3 t4

t5 t6 t7 t8

u

0 7|εv|
Figure 7.9: Rectangular specimen of 100×40mm is stretched by u =40mm. Norm of
viscous strains |εv| at times t1 = 0, t2 = 6.4, t3 = 15.2, t4 = 25.3, t5 = 26.7, t6 =
34.8, t7 = 9940, t8 = 110000 s. Crack is faster than the relaxation time, the relaxation
takes place after fracture.

Test a. A rectangular test piece of 100mm×40mm is stretched with u = 40mm
under simple extension. A crack of length 12mm is introduced at t1 = 0 s, hereafter the
deformation and the stress state become inhomogeneous, with stresses concentrating at
the crack tip. Crack growth is initiated and the crack accelerates, until a steady crack
growth takes place. When the crack tip approaches the end of the test piece, the crack
accelerates again until the piece is fractured into two parts. During crack growth, the
material is unloaded. However, the viscous strains from the initial loading process, stored
in the material, balance the total strains in the ground network and the elastic strains in
the subnetworks, which slowly relax with time. The crack is faster than the relaxation
time, thus the parts of the body relax after the crack has splitted the body, until the
fragments return to their original shape. Figure 7.9 shows the contour plot of the norm
of viscous strains |εv| at several times. At t0, the undeformed specimen is shown and
the deformed configuration after uniaxial extension is sketched. The cut is introduced at
t1 = 0 s and at t2 = 6.4 s, the crack has opened and starts to grow. At times t3 = 15.2 s and
t4 = 25.3 s the crack grows steadily, at t5 = 26.7 s the specimen is completely fractured.
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Figure 7.10: Stress decomposition τ22 = p+ τ022 + τv22. Parts which are unloaded by crack
are macroscopically stress free, i.e. τ22 = 0 however, due to unrelaxed viscous strains, positive
residual stresses in the ground network and compressive over stresses in the subnetworks
exist which relax in time.
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Figure 7.11: Energy and crack length obtained from the simulation a are plotted over time
in a) in logarithmic scale to overview the full process and in b) in the time range t ∈ [0, 30] s
to focus on the crack growth process. The time points t1 − t8 correspond with the contour
plots in Figure 7.9. The constant crack growth is described by linear functions.

Relaxation of viscous strains occurs in the following, at t6 = 34.8 s and t7 = 9940 s,
until at t8 = 110000 s the fragments recover their original shape see Figure 7.9. The
effect of the residual viscous strains in the material after unloading is explained in Figure
7.10. The first contour shows the total Kirchhoff stress in vertical direction, τ22, which
is decomposed into pressure p, ground state τ 022 and viscous overstress τ v22. Unloaded by
the crack, the total stresses in the cracked parts are zero, however the network is not
instantaneously relaxed. The viscous strains from the initial loading process stored in the
material, are balanced by total strains in the ground network and elastic strains in the
subnetworks. The ground network is stretched, whereas the subnetworks are compressed.
Thus, the ground state stresses have small positive values whereas the viscous overstresses
have small negative values. These intrinsic stresses reduce with the strain relaxation over
time.

Energy Release Rate Computation. For the steady tearing of this body, we derive
the energy release rate and the crack speed. The crack length and the elastically stored
energy in the test piece are obtained from volume integrals. In each time step, the crack
length and the stored energy in the body are obtained as

Γ =

∫

B
γ(X, t)dV and E =

∫

B
Ψ(X, t)dV . (7.32)

The energy and the crack length obtained from the simulation a are plotted over time, in
Figure 7.11a, in logarithmic scale to overview the entire process and in 7.11b in the time
range t ∈ [0, 30] s to focus on the crack growth process. At t1 = 0 s the crack is introduced
into the stretched body, thus the crack opens and accelerates. The crack curve (red) is
nonlinear. After t2 the crack grows linearly with time until t4, where the crack approaches
the end of the specimen. Finally, the crack accelerates until the body fractures into two
pieces at t5. The energy curve (green) shows the same nonlinear initialization, the steady
part and the nonlinear split characteristic, see Figure 7.11. At crack initialization, the
elastically stored energy is maximum. During crack growth the material is unloaded and
the viscous strains stored in the material relax slowly over time. At the time t5, when
the body is fractured, a relevant amount of energy is still stored in the body. After
fracture, viscous strains relax and thus the elastic stored energy in the ground state and
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Figure 7.12: Energy release rate g increases with increasing crack speed. Simple extension
and peel test simulations are compared with experimental data from D’Amico et al. [51],
Greensmith & Thomas [91] and Gent [82] with auxiliary lines as guides for the eye.

the subnetwork relaxes. The relaxation process takes some time until at t8 the material
is undeformed and stress free again. From the energy and crack length plot, the crack
speed and energy release rate of the steady crack growth are determined. In the regime
of steady crack growth, the energy and crack length can be described by linear functions
fe,c = me,c · t+ be,c, where the slope m is the change of energy or the change in the crack
length per unit time, see Figure 7.11b. We can derive mc = ∂Γ

∂t
= v as the crack speed

and me =
∂E
∂t

as the rate of energy. We further obtain

g = −∂E
∂Γ

= −Ė
v

= −me

mc
. (7.33)

From the simulation, the slopes are read as ∂Γ
∂t

= v = 3.89 and ∂E
∂t

= Ė = −28.67. The
energy release rate is thus g = 28.67/3.89 = 7.37N/mm. This value for the energy release
rate is plotted in relation to the crack speed Γ̇ = v in Figure 7.12.

Tests b – e. Further simulations using the test geometries b–e also show the linear
range of stored elastic energy and crack length values over time with steady crack growth.
The resulting energy release rates are plotted against the respective crack speeds, see
Figure 7.12 in double logarithmic plot. Note that, despite some small fluctuations, the
energy release rate shows linear dependence on the crack speed. This precisely resembles
the various experimental data. For the slowest test b, the threshold σc was adapted to
the experimental data. The quasi-static crack growth (at a speed of ≈ 0.1mm/s) shows
little rate dependence of crack growth ḋ. Thus the critical stress parameter is obtained
as σc = 2N/mm2, ζ = 100. The other simulations were adapted to the experimental data
and the damping parameter η = 200 was identified.

7.4.5. Steady Crack Growth in T-Peel Test. The T-peel test is used to analyze
the adhesion of sealed polymeric films. Gent & Lai [83] analyzed partially crosslinked
sheets of elastomers, where the interlinking of two sheets was controlled. Nase et al.
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Figure 7.13: a) Peel test geometry. Two layers of flexible polymer are bonded together in
the seal area. The peel arms are pulled apart, the angle of separation between the layers is
180◦. b) Load-displacement curves from Geissler et al. [78].

[170] analyzed two-component peel systems, consisting of a film and an interface com-
ponent. The interface between two films acts as a predetermined breaking point upon
mechanical loading. For testing purposes, the end parts of the layers remain unsealed.
These unbonded ends are bent and clamped in a tension testing machine. A constant
head speed is applied and the load versus the head movement is recorded. The bent,
unbonded ends form a T-shape when pulled apart and the angle of separation between
the layers is 180 degrees, see Figure 7.13a. Experiments performed by Geissler et al.
[78] are shown in Fig. 7.13b, where the peel force F is plotted over the peel separation
u. First, an elastic loading is observed, until the peel force reaches a local maximum at
the peel initialization, whereafter the load drops slightly. A plateau like curve progres-
sion is followed, in which the force remains constant, except for some fluctuations. An
increase of force is observed when peeling the border region at the end of the test piece.
Geissler et al. [78] performed peeling tests at three different constant head speeds, to
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Figure 7.14: a) Peel test at u̇ =0.01mm/s at crack initialization and during steady crack
grow. b) Peel force - displacement curves obtained from simulations at u̇ ={0.01, 0.1,
1}mm/s. Constant peel forces read F={0.487, 0.743, 1.54}N per unit width.
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Figure 7.15: Peel test showing the dependence of energy release rate g on crack speed v
and temperature θ from Gent & Lai [83] in a) and simulation results in b).

demonstrate the crack speed dependence of the energy release rate. The peel force F is
observed to increase with increasing displacement rate.

Peel simulations are performed on specimens with layer thickness h = 1mm and length
70mm, using two-dimensional plane strain elements. The unsealed end parts are 20mm
in length. Due to the symmetry, only half of the specimen is discretized. The layer is
modeled only with the elastic ground state network, using µ = 4.0, N = 8 and σc ≈ ∞.
The interface component has a thickness of 0.3mm and is the rubber material used for
the previous simulations. The elements in the interface layer have a size of 0.15mm, the
length scale is l = 0.3mm. The peel arm end is displaced at a constant rate u̇ and the
reaction Force F , per unit width of 1mm of the peel arm is recorded. Peeling simulations
are performed at increasing rates u̇ = 0.01 mm/s, 0.1mm/s and 1mm/s. The load versus
head movement curves are given in Figure 7.14b. At u ≈ 25mm, the peel force reaches its
plateau value. Further constant loading results in a constant peeling force. The peeling is
performed until a head displacement of u = 35mm, where approximately 10mm constant
peeling occurred. The deformation and phase field d during peeling are shown in Figure
7.14. The rate dependence of the peel force F is recovered by the model. An increasing
peel force for increasing loading rate is observed, which is in good qualitative agreement
with the experiments of Geissler et al. [78]. Transferring the simplification, that λ ≈ 1
in the peel arms, from the simple-extension test to the T-peel test, the head movement ∆u
is equal to the distance peeled ∆c. Thus, the crack speed v is equal to the displacement
rate of the peel arms u̇. According to (3.10), the energy release rate is g = −∆Π/∆A.
Similar to the simple-extension test shown in Rivlin & Thomas [191], the arms which
are in simple extension store comparably little energy, compared to the external power
due to loading. By neglecting the increase in stored elastic energy, the energy release rate
is computed with ∆A = ∆cw and −∆Π = 2F∆u as

g ≈ 2F∆u

w∆c
=

2F

w
. (7.34)

According to the measured force, the energy release rates are evaluated as g={0.974,
1.468, 3.08}N/mm. The values of the energy release rate are plotted against the crack
speed, with square symbols in Figure 7.12. The results of the simulations are consistent
with the experiments. Since the values of peel toughness correspond to the simple tension
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Figure 7.16: Single edge notch tension specimen. a) Geometry and boundary condi-
tions in [mm]. b) Load displacement curves obtained for monotonous loading u̇a−d =
{10−6, 10−3, 0.1, 1}mm/s.

values, the objectivity of the model is demonstrated. The presented approach is well
suited for modeling rate dependent crack growth in non-crystallizing viscoelastic solids.

7.4.6. Temperature Dependent T-Peel Test. The T-peel test is used to analyze
the temperature dependent adhesion of sealed polymeric films. Results for g, obtained at
different temperatures from Gent & Lai [83] on partially crosslinked sheets of elastomer,
are shown in Figure 7.15a. In order to show that the model also captures this temperature
dependent effect, 9 simulations are performed. The temperature is set to θ=10◦C, 20◦C
and 30◦C and peel tests at the rates u̇ = 0.01mm/s, 0.1mm/s and 1mm/s are simulated.
20 ◦C is taken as a reference temperature for known material parameters. The shift factors
aT for 10◦C and 30◦C are computed and the relaxation times, as well as the critical stress
values, are shifted. The energy release rate values are derived according to (7.34) and
plotted against the crack speed in Figure 7.15. Since the parameters of the model are not
fitted to the material used in Gent & Lai [83], only a qualitative fitting is possible. The
energy release rate increases with increasing crack speed and decreasing temperature. The
resulting values for g are given in 7.15b, which show very good qualitative agreement with
the experimental values. The experimental data is captured very well by the proposed
model.
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Figure 7.17: Influence of loading rates u̇a−d = {10−6, 10−3, 0.1, 1}mm/s on the stress
τ22 [N/mm2] and viscous strain norm |εv| of pre-notched rectangular plates.
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7.4.7. Loading Rate Dependent Single Edge Notch Tension Test. A series
of simulations is performed, to show the effect of loading rate on the fracture process
of a pre-notched specimen. Therefore, a rectangular plate of 100mm×60mm having an
initial notch of 7mm, is stretched at various rates. The bottom of the specimen is fixed
and the top is displaced with constant speed u̇a−d = {10−6, 10−3, 10−1, 1}mm/s. The
geometry and the load displacement curves obtained from the simulations are shown in
Figures 7.16a and 7.16b. The stresses and viscous strains during fracture are pictured in
Figure 7.17. Generally, one observes an increase of load and deformation before fracture
with increasing loading rate. Simulation a, with an extension rate of u̇ = 10−6, is a quasi
elastic loading process followed by brittle fracture. During loading, only elastic stresses
evolve, viscous over-stresses are nearly zero and viscous strains are high. A relatively low
load level at the onset of fracture is observed. The unloading path drops steeply with
growing crack. With increasing rate of deformation, we observe an increasing amount of
viscous over-stresses and a decreasing amount of viscous strains in the material, see the
contour plots Figure 7.17. The stiffness contribution of the subnetwork can be seen from
the increased slope of the loading path. The viscous damping of crack evolution increases
the crack resistance, see simulations b, c and d, which leads to an increase of fracture
load and displacement.
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8. Crazing Induced Fracture in Glassy Polymers

High fracture toughness, light weight, optical properties and easy processability make
the use of amorphous glassy polymers very attractive in applications ranging from micro-
electronics over housewares to aerospace components. It is therefore of utmost interest to
investigate the durability and failure of glassy polymers due to mechanical loading. The
brittle behavior has been generally considered to be favored by high loading rates, low
temperature levels, tension dominated straining and the existence of flaws or grooves in
the material. This response is distinguished by very small inelastically deformed zones,
the so-called crazes, having the thickness of micrometers and spanning fractions of a mil-
limeter, see Kramer [124]. The ductile response of amorphous polymers, on the other
hand, is typically characterized by diffuse shear zones involving much greater amounts
of material than the former. The diffuse shear zones are formed by shear yielding mech-
anisms, preceding substantial volume-preserving plastic deformation. Most glassy poly-
mers, except thermosets, exhibit crazing prior to fracture. Although the crazes dissipate
considerable amounts of energy, the highly localized nature of the crazes leads to brittle
macroscopic fracture. The tailoring of glassy polymers in terms of various fillers, pro-
motes multiple, concurrent craze nucleation sites and enhances the fracture toughness
considerably, see for example Seelig & Van der Giessen [194, 195]. In order to enable
the tailored design of such materials, in the context of modern computational material
design tools, a continuum-based description of craze nucleation, propagation and crazing
induced fracture in a unified setting is of high interest.

Despite tremendous contributions on the particular aspects of glassy polymers, only
a few approaches exist, describing the initiation, elongation-widening and breakdown of
crazes, leading to a macroscopic failure in a unified continuum mechanics setting. van
der Giessen and co-workers [67, 211, 212] proposed a cohesive zone formulation for the
craze initiation, widening and breakdown. The competition between crazing and shear
yielding is incorporated through craze opening rate and craze initiation sensitivity of the
material. The shortcomings of this approach are the a priori existing crack and the lack of
information on the location and orientation of the cohesive elements within the continuum.
Gearing & Anand [76] have developed a stress based craze initiation criterion and a
continuum based viscous evolution equation for craze-growth. The model accounts for the
concurrent shear yielding and crazing, the latter initiating according to a switch function
based on the craze initiation criteria. The final breakdown of the material is modeled
by element deletion, according to a failure criteria depending on the accumulated crazing
strain. The advantage of this approach over the theories of Estevez et al. [67] and
Tijssens et al. [211, 212], is the independence of the model from an existing crack tip.
However, the theory is not mesh objective and the element deletion, based on accumulated
crazing strain, lacks physical basis.

As a novel aspect, we specify the general model for phase field fracture, introduced
in Chapter 4, towards the objective continuum formulation for concurrent shear yielding,
crazing and final breakdown of material. To this end, the specific forms of the constitutive
functions governing the finite inelasticity of glassy polymer are outlined. A continuum
model of glassy polymers of Argon type flow rule [7] is adopted, in the sense of Boyce
et al. [34] and Miehe et al. [159]. The nonlinear viscous flow rule of Gearing &
Anand [76] is used for the initiation and growth of the crazes. The competition between
shear yielding and crazing is controlled in terms of a stress based switch function in the
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sense of Gearing & Anand [76]. Once the crazes initiate, the fiber directions are frozen,
according to the eigenvector corresponding to the maximum principal stress direction. A
scalar state variable is introduced as a measure of accumulated viscoplastic flow due to
crazing. From a micromechanical point of view, this models the cumulative distribution
of broken fibrils. A ductile fracture criterion, based on a critical accumulated viscoplastic
flow is introduced, which is devised such that the crack phase field develops solely under
craze flow. Finally, we demonstrate the capability of the phase field model for crazing
induced fracture with representative boundary value problems.

8.1. Constitutive Model in the Logarithmic Strain Space

Within the treatment of phase field fracture presented in Chapter 4, a three field
coupled problem is obtained, governed by the balance equations (4.21), (4.27) and (4.35)

ρ0ϕ̈ = Div[P ] + ρ0γ

ρ0cθ̇ = Div[−Q] + ρ0(R +H +Dloc)

(d− l2∆d) = (1− d)H− ηḋ .
(8.1)

The crack evolution time η is treated as a numerical regularization and η → 0 is used
for the modeling of brittle crack propagation. The impact from the bulk response on
the crack propagation is governed by the crack driving state function D̃. Vice versa,
the crack phase field enters the bulk state response function Ψ, by modeling degradation
from the initially unbroken, to the fully broken state. The flow rule function F in (4.18)
governs the evolution of the internal variables q. Constitutive formulation in the loga-
rithmic strain space is a special case of metric-based approaches to finite inelasticity. The
modular structure of the formulation of finite elastoplasticity in the logarithmic strain
space, consists of three basic steps: geometric pre-processor, material modeling and ge-
ometric post-processor. The geometric pre-processor step defines the total logarithmic
strain measure of Hencky-type

ε := 1
2
lnC with C := F TF , (8.2)

that enters the constitutive framework. The plastic energy storage is defined in terms
of the logarithmic elastic strain variable and the internal variables q. The generalized
internal variables are composed of Hencky-type plastic and crazing strain variables

q = {εp, εc} , (8.3)

associated with shear yielding and crazing, with initial conditions εp,c(t = 0) = 0 . The
elastic strains are provided by the additive decomposition

εe := ε− εp − εc . (8.4)

The logarithmic strain measures serve as primary kinematic variables in the following
material model. The free energy is assumed to be additively decomposed into elastic,
plastic and purely thermal contributions such as

Ψ(ε, εp, εc, θ, d) := Ψe(εe, θ, d) + Ψp(εp, θ) + Ψθ(θ) . (8.5)

In the logarithmic strain space, the stress tensors are

s := ∂ερ0Ψ
e(εe, d) and sp := ∂εpρ0Ψ

p(εp) . (8.6)
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The generalized driving force in (4.16) decomposes to p := {pp,pc} with

pp = −∂εpρ0Ψe(εe, θ, d)− ∂εpρ0Ψp(εp, θ) = s− sp

pc = −∂εcρ0Ψe(εe, θ, d) = s .
(8.7)

For the evolution of the two inelastic strain variables, we define two constitutive functions

ε̇p,c = Fp,c(ε, εp, εc, θ, d) with ε̇p,c(0) = ε̇
p,c
0 . (8.8)

At craze initiation, the evolution of inelastic strains changes from shear yielding to crazing.
We postulate a function of stress state, which allows to identify whether the plastic shear
yielding strains or crazing strains grow

fc(s) :

{
≤ 0 shear yielding
> 0 crazing ,

(8.9)

where s is the stress tensor which is attributed to the logarithmic strain tensor. The
geometric post processing gives

P = P : s with P = ∂F ε . (8.10)

Observe the analogy between the proposed model in logarithmic strain space and the
geometrically linear theory of plasticity, which makes this constitutive framework very
attractive with regard to its numerical formulation.

8.2. Free Energy Storage Function

The degradation of the solid response needs to be constructed, depending on the phase
field d ∈ [0, 1]. We assume the constitutive structure

Ψ(ε, εp, εc, θ, d) = g(d)Ψ̃e(εe, θ) + Ψp(εp, θ) + Ψθ(θ) , (8.11)

where the volume specific effective elastic energy storage function Ψ̃e is associated with
the intact solid. The logarithmic stresses can be expressed in terms of the effective stress
tensor and the degradation function

s = g(d)s̃ with s̃ = ∂ερ0Ψ̃
e(ε, εp, εc, θ) . (8.12)

The monotonically decreasing degradation function g(d) describes the softening of the
material with evolving damage. It is assumed to have the properties

g(0) = 1 , g(1) = 0 and g′(1) = 0 . (8.13)

The first two conditions include the limits for the intact and the fully-broken case. As
shown below, the latter constraint ensures that the fracture force converges to a finite
value, if the damage converges to the fully-broken state d = 1. A simple example of a
function that fulfills the above properties is g(d) = (1 − d)m, whereas g(d) recovers the
classical damage theory for m = 1. The variational theory of brittle fracture in elastic
solids, outlined in Miehe et al. [161], is obtained for m = 2.
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Figure 8.1: Polymer network models employed for modeling the post-yield kinematic hard-
ening. a) The eight chain model of Arruda & Boyce [13] and b) the non-affine microsphere
model of Miehe et al. [158].

8.2.1. Thermal Contribution. The purely thermal contribution to the stored en-
ergy (8.11) is assumed to have the simple form

ρ0Ψ
s
θ(θ) = ρ0Ψ0 − ρ0η0(θ − θ0)− ρ0cs[θ ln

θ

θ0
− θ + θ0] , (8.14)

where cs is a heat capacity parameter, that is assumed to be a constant.

8.2.2. Elastic Contribution. Experimental observations indicate that the deforma-
tions in the pre-yield branch are limited to small values, compared to the plastic strains
attained. For this reason, linear elasticity in the logarithmic strain space is considered
to be sufficient for the current scope. For the isotropic elastic response, we adopt the
constitutive function

ρ0Ψ̃
e(εe, θ) =

κ

2
tr 2[εe]− καT tr[εe](θ − θ0) + µ

∣∣ dev[εe]
∣∣2, (8.15)

where κ is the bulk modulus. The shear modulus µ = µ(θ) is assumed to be dependent
on the temperature, as suggested by Boyce et al. [35], through the empirical relation

µ(θ) = exp[ log(µ0)− b(θ − θ0) ] , (8.16)

in terms of the modulus µ0 at the reference temperature θ0 and a sensitivity parameter b.
Exploitation of (8.12) gives the logarithmic stress tensor

s̃ := κ[tr[εe]1− αT (θ − θ0)] + 2µ dev[εe] . (8.17)

8.2.3. Plastic Contribution. This contribution to the free energy describes the
characteristic kinematic hardening effect due to the back stress sp, introduced in (8.6)2.
This back stress models the intramolecular resistance to the plastic flow, due to the align-
ment of the chains in the principal deformation direction. For this reason, it is common
practice to model the post-yield strain hardening by polymer network models. These
models provide a bridge between microscopic and macroscopic deformations, through
particular kinematic assumptions. Typical examples are the three chain model of James
& Guth [115] and Wang & Guth [222], the affine full network model of Treloar
[215], Treloar & Riding [217], the non-affine eight chain model of Arruda & Boyce
[12] and the non-affine microsphere model of Miehe et al. [158]. The stored free energy
due to the distorted polymer network in plastically deformed glassy polymers is assumed
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to be isotropic and formulated in terms of the principal strains. Therefore, we perform a
spectral decomposition εp =

∑3
A=1 ǫ

p
An

p
A⊗n

p
A where {np

A}A=1,2,3 are the plastic principal
directions and ǫpA are the principal stretches in the logarithmic strain space. For the eight
chain model of Arruda & Boyce [12], we define the network stretch λp from

(λp)2 =
1

3

3∑

A=1

exp[2ǫpA] . (8.18)

Here, the plastic stretch of a chain extending from the center of a plastically deformed
rectangular prism, having the edges oriented in the principal plastic directions n

p
A, is

assumed to be representative for the whole polymer network, see Figure 8.1a. A more
complicated relationship gives the microsphere model. We refer to the recent isothermal
approach to glassy polymers by Miehe et al. [159]. With the above network stretch at
hand, one expresses the energetic state of the full network by the energy of a fictitious
prototype chain. The limited extensibility range of a chain is controlled through the
relative plastic network stretch λpr := λp/

√
Np. Np stands for the number of segments in

the fictitious prototype chain. Using the typical Langevin function approach, we are able
to define the plastic part of the free energy to

ρ0Ψ̃
p(λr, θ) = µpNp

(
λprL−1(λpr) + ln

L−1(λpr)

sinhL−1(λpr)

)
. (8.19)

The plastic shear modulus µp depends on the temperature through the standard expression

µp(θ) = np(θ)kBθ (8.20)

of the entropic polymer network theory, see Treloar [216]. Here, np(θ) is the chain
density and kB the Boltzmann constant. However, experiments on glassy polymers show
that the strain hardening decreases with increasing temperature. Raha & Bowden [183]
and Arruda et al. [14] proposed the dependence

np(θ) = B −D exp[−Ea/Rθ ] (8.21)

of the chain density on the temperature, where B and D are material parameters. Ea

is the dissociation energy per mole and R the universal gas constant. Equation (8.21)
describes thermal dissociations of entanglements in the molecular network. Introducing
the constraint that the molecular network breaks down when the glass transition temper-
ature is reached, i.e. np(θg) = 0, one gets the relationship B/D = exp[−Ea/Rθg ] between
the two constants B and D as suggested in Basu & Van der Giessen [19]. A mass-
type balance assumes the number of molecular links to be constant, i.e. np(θ)Np(θ) =
np(θ0)Np(θ0) = const., see Arruda et al. [14] and references therein. This equation
determines the current number of chain segments in terms of the current chain density
(8.21) via

Np(θ) = Np(θ0) np(θ0)/np(θ) . (8.22)

The function L−1 in (8.19) denotes the inverse of the well-known Langevin function defined
by L(·) := coth(·)− 1/(·). It can be approximated by the Padè approximation L−1(λpr) ≈
λpr (3−λp2r )/(1−λp2r ) as proposed by Cohen [45]. The parameter Np controls the limited
extensibility range of chains through the relative plastic network stretch λpr := λp/

√
Np.
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The back stress in the logarithmic space defined in (8.6)2, is obtained by the chain rule
operation

sp := ∂λpρ0Ψ
p
0(λ

p) ∂εpλ
p(εp) . (8.23)

The first part is directly obtained from (8.19), the second part from (8.18), yielding

∂λpρ0Ψ
p = µpλ

p3− λp2r
1− λp2r

and ∂εpλ
p =

3∑

A=1

exp[2ǫpA]

3λp
n

p
A ⊗ n

p
A , (8.24)

where use was made of the result ∂εpǫ
p
A = n

p
A ⊗ n

p
A. Finally, insertion into (8.23) gives

the representation of the back stress tensor

sp :=
µp

3

3− λp2r
1− λp2r

3∑

A=1

exp[2ǫpA]n
p
A ⊗ n

p
A . (8.25)

8.3. Transition from Shear Yielding to Crazing

A variety of craze nucleation criteria exist, including some based on principal stresses
or principal strains. Alternative criteria base on linear elastic fracture mechanics, or the
lowering of the glass transition temperature due to local negative pressure at craze nucle-
ation sites. Sternstein & Myers [201], Sternstein & Ongchin [202] suggested a
principal stress based criterion. Therefore, they carried out combined torsion and tension
loading tests on various specimens, revealing four distinct regions of loading in the princi-
pal stress planes. They defined a stress bias between two in-plane stresses and suggested
a craze nucleation criterion

σb = |σ1 − σ2| ≥ A(θ) +
B(θ)

σvol
, (8.26)

based on two temperature dependent functions A(θ) and B(θ), the mean normal stress
3σvol = trσ and the principal stresses σ1 > σ2 > σ3. They stated that the stress bias
loosens the tight molecular structure, permitting the mean normal stress σvol to initiate a
craze in terms of plastic dilatation. A craze initiation criterion based on principal strains
was derived by Oxborough & Bowden [176]. They formulated an alternative criterion
for craze initiation in terms of principal strains

ǫc =
X ′

σvol
+ Y ′ , (8.27)

where ǫc is the critical strain for craze formation andX ′ and Y ′ are time- and temperature-
dependent parameters. Equation (8.27) can equivalently be obtained from a principal
stress criterion, based on two linear elastic constants. Further initiation criteria base on
linear elastic fracture mechanics (LEFM), see for example Andrews & Bevan [4] and
Bucknall [39], or on the lowering of the glass transition temperature due to local nega-
tive pressure at craze nucleation sites, see Gent [81]. The microscopic scenarios proposed
by Kramer [124] and Argon [8], Argon & Hannoosh [5] explain craze nucleation as
a cavitation, triggered by triaxial stresses. Without loss of generality, we adopt a simple
stress based approach for crack initiation. Regarding the difficulties associated with the
interpretation of the stress bias term (8.26) in a three-dimensional continuum, we use the
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slightly modified version of this criterion in the sense of Gearing & Anand [76]. We
consider the spectral decomposition

s =
3∑

A=1

sAnA ⊗ nA , (8.28)

with principal stresses {sA} and principal stress directions {nA} and identify the label of
maximum principal stress

M = {A| max
A∈(1,2,3)

{sA}} . (8.29)

The maximum principle stress is sM , the corresponding eigenvector is nM , which is kept
frozen upon craze initiation. We introduce a function describing a critical stress state2

fc(s) = sM − (c1 +
c2
p
+ c3svol) (8.30)

in terms of the mean normal stress svol = tr[s]/3. We assume that crazing initiates, when
the maximum principal stress, the mean normal stress and the stress state functional
(8.30) are positive

fc(s) :

{
≤ 0 or sM ≤ 0, or svol ≤ 0 shear yielding

> 0 and sM > 0, svol > 0 crazing .
(8.31)

The temperature dependence of the parameters c1 and c2 was proposed in Tijssens
et al. [211] as

c1,2(θ) = c1,2(0) exp[Q1,2/kBθ] . (8.32)

Here, kB is the Boltzmann constant, c1(0), c2(0), Q1 and Q2 must be determined from
experimental data.

8.4. Viscoplastic Flow Rules for Shear Yielding and Crazing

We introduce two constitutive flow rules for the two internal variables εp and εc. The
material is initially viscoplastic where the crazing strains are frozen ε̇c = 0 . Once the
stress state of the material reaches the criterion stated in (8.31), crazing initiates and the
plastic strains due to shear yielding are frozen ε̇p = 0 .

8.4.1. Flow Rule for Shear Yielding. For the description of shear yielding, we
consider an isotropic, volume preserving, viscoplastic flow in the direction of the thermo-
dynamic driving force, in the sense of Boyce et al. [34]. This gives the structure

ε̇p =






0 if fc(s) > 0 and svol > 0 and sM > 0

γ̇p
dev[pp]

| dev[pp]| otherwise
, (8.33)

with pp = s − sp in terms of the scalar flow functions γ̇p for viscoplastic shear yielding.
In the present model, we use the flow rule

γ̇p := γ̇p0 exp

[
−As
θ

(
1−

{τ
ŝ

} 5
6

)]
(8.34)

2Since the kinematic structure of the whole model is constructed in the logarithmic strain space, the
craze initiation criterion is established in terms of the logarithmic stresses s for the sake of convenience.
It can equivalently be constructed in terms of the principal Cauchy stresses without loss of generality.
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in terms of the stress norm τ :=
√

dev[sp] : dev[sp]/2 and the material parameters γ̇p0
and A. It is derived from the double-kink theory of Argon [7], based on the wedge
disclinations. In (8.34), the athermal shear strength is taken to be different from s0 in the
original theory [7]. In order to account for the pressure dependency of yielding, as well
as the succeeding true stress softening, we replace the original athermal shear strength s0
with ŝ := s+αp, where α is a new material parameter controlling the pressure sensitivity
of the yield stress. Its value ranges from 0.1 to 0.2 for most glassy polymers, see e.g.
Rabinowitz et al. [182], Bowden & Jukes [32]. The stress softening is incorporated
by employing the phenomenological evolution rule for s, proposed by Boyce et al. [34]

ṡ = h (1− s/sss) γ̇p with s(0) = s0 , (8.35)

where h, s0 and sss denote the additional material parameters describing the slope of the
softening, initial and steady state values of the athermal shear strength s, respectively.
Inserting (8.34) into (8.33), the restriction dictated by the second law of thermodynamics
on shear yielding (4.16) finally reads

Dloc = | dev[pp]|γ̇p ≥ 0 . (8.36)

As a consequence, the model is said to be thermodynamically consistent for a positive
amount of viscoplastic flow γ̇p ≥ 0.

8.4.2. Flow Rule for Crazing. To model the plastic flow accounting for craz-
ing, we introduce a flow rule in the direction of the maximum principle tensile stress
as proposed in Gearing & Anand [76]. Reconsider the spectral decomposition (8.28)
pc = s =

∑3
A=1 sAnA ⊗ nA, the label M of maximum principle stress sM , see (8.29)

and the corresponding eigenvector nM , which is kept frozen upon craze initiation. The
phenomenological flow rule, which describes the inelastic flow due to crazing in the con-
tinuum, is defined as

ε̇c =

{
γ̇cnM ⊗ nM if fc(s) > 0 and svol > 0 and sM > 0
0 otherwise

(8.37)

in terms of the scalar flow function γ̇c in the direction of the maximum principal stress
nM . The amount of flow is determined from the constitutive function

γ̇c = γ̇c0

[
s̃M
scr

] 1
m

, (8.38)

with a reference craze strain rate γ̇c0, dependent on the amount of plastic strain at the
instant of crazing initiation. The driving stress is the effective stress s̃M = sM/(1 −
d)2, considering local increase in fibril stress when local failure occurs and d > 0. The
resistance to craze-flow is incorporated by the parameter scr, the strain rate sensitivity
by the parameter m. Inserting (8.38) into (8.37), the restriction dictated by the second
law of thermodynamics on crazing (4.16) finally reads

Dloc = sM γ̇
c ≥ 0 . (8.39)

As a consequence, the model is said to be thermodynamically consistent for a positive
amount of crazing flow γ̇c ≥ 0.
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8.4.3. Internal Variable Update. According to the numerical solution algorithm,
presented in Section 4.7, the plastic or crazing strains are updated by means of a deforma-
tion driven update algorithm. This algorithm computes the change of the internal vari-
ables within the time increment [ tn, tn+1 ], for a prescribed deformation.

Algorithm for Shear Yielding. Within the mechanical subproblem of Section 4.7,
we update the viscoplastic flow by means of a deformation-driven update algorithm.
This algorithm computes the change of the internal variables within the time increment
[ tn, tn+1 ], for a prescribed deformation. These updates follow from the coupled system
of local equations

r :=




∂εpΨ(ε, εp, εc, dn) + pp

εp − εpn −∆γp dev[pp]/| dev[pp]|

∆γp −∆tγ̇p0 exp
[
−As

θ

(
1− τ

s

) 5
6

]

s− sn + h∆γp(1− s
sss

)



= 0 . (8.40)

The first equation defines the driving force (8.7) at the current time. The sequent equation
states a fully implicit backward Euler-type integration of the flow rule (8.33). The third
equation contains the increment of the viscoplastic flow (8.34) in the time increment
[ tn, tn+1 ]. The following equation contains the implicit update of the athermal shear
strength. The system (8.40) determines the dissipative variables u at the current time
tn+1 for a deformation driven scenario, i.e. for prescribed total logarithmic strain ε,

u := { pp, εp,∆γp, s } . (8.41)

Algorithm for Crazing. Within the mechanical subproblem of Section 4.7, we up-
date the crazing flow by means of a deformation-driven update algorithm. This algorithm
computes the change of the internal variables within the time increment [ tn, tn+1 ] un-
der consideration, for a prescribed deformation. These updates follow from the coupled
system of local equations

r :=




∂εcΨ(ε, εp, εc, dn) + pc

εc − εcn −∆γcnM ⊗ nM

∆γc −∆tγ̇c0

[
s̃M
scr

] 1
m


 = 0 . (8.42)

The first equation defines the driving force (8.7)2 at the current time. The second equation
states a fully implicit backward Euler-type integration of the flow rule (8.37). The third
equation contains the increment of the crazing flow (8.38) in the time increment [ tn, tn+1 ].
The system (8.42) determines the dissipative variables u at the current time tn+1, for a
deformation-driven scenario, i.e. for prescribed total logarithmic strain ε,

u := { pc, εc,∆γc } . (8.43)

The nonlinear systems (8.40,8.42) are linearized and solved by a local Newton algorithm

u⇐ u− [A(u)]−1r(u) with A := ∂ur(u) , (8.44)
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until convergence is achieved in the sense |r(u)| ≤ tol. For given dissipative variables, the
evaluation of the potential equation (8.12) gives the current stresses in the logarithmic
strain space

salgo = ∂ερ0Ψ(ε, εp, εc, θ, d) . (8.45)

The sensitivity of these stresses with respect to increments of the total logarithmic strains

∆salgo = E

algo
c : ∆ε , (8.46)

defines the tangent moduli, consistent with the algorithm (8.42) in the logarithmic space.
With the above outlined linearization of the constitutive algorithm at hand, this tangent
operator assumes the closed form representation

E

algo
c = ∂2εεΨ −



∂2εεcΨ
0

0



T

A−1



∂2εcεΨ
0

0


 . (8.47)

Details on a compact update scheme for the evolution of the shear yielding internal vari-
ables and for the consistent algorithmic tangent expressions can be found inMiehe et al.
[159]. In Appendix A, a compact update scheme for the evolution of the crazing inter-
nal variables and for the consistent algorithmic tangent expressions is introduced, as an
alternative to the representation introduced above.

8.5. Crazing Based Crack Driving Force

To give an introduction to the craze break down mechanisms, we comment on the
works of Kramer & Berger [125] and Yang et al. [231]. They performed experi-
ments to study breakdown statistics. After loading film specimen, the first event they
observed was craze initiation. Upon further loading, crazes grow both in width and length,
until somewhere within one craze the fibrils break down. This results in a void, which is
observed as a growing spot within the craze, see Figures 8.2a and 8.2c. The last event
monitored is catastrophic fracture, see Figure 8.2b. Due to imperfections in the mate-
rial, the three events appear at different stages of the overall loading. As depicted in
Figure 8.2d, craze initiation is a rather instantaneous process, whereas fibril break and
fracture deviate considerably, due to the unequal distribution of imperfections. In the dia-
gram, the fracture curve always follows the shape of the fibril break curve but is displaced
to higher strain levels. Conceptually in line with these observations, the fibril breakdown
process is incorporated in terms of cumulative crazing strain as a growth function for the
crack phase field. We define the accumulated viscoplastic flow due to crazing

ǫc(X, t) =
∫ t

0
γ̇c(X, τ)dτ . (8.48)

With this state variable, we define the crack driving state function (4.41), which drives
the phase field d as

D̃(X, t) := ζ〈ǫc − ǫ⋆c〉2 . (8.49)

Here, ǫ⋆c is the critical accumulated viscoplastic flow in the craze, representing the onset of
fibril breakdown, which initiates the crazing induced fracture. The critical flow ǫ⋆c is closely
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crazing

fibril break

fracture

a) b)

c) d)

Figure 8.2: Statistical analysis of around 40 squares of polymer sheets. a) Local fibril
break is observed as a spot under a light microscope. b) Catastrophic fracture. c) TEM
micrograph of fibril breakdown. d) Cumulative number fraction of film squares, where
crazing, fibril break down or fracture occurred. Pictures are taken from Yang et al. [231].

D̃ d

1

ǫc ǫcǫ⋆c ǫ⋆c

ζ

ζ

a) b)

Figure 8.3: a) effective crack driving force D̃ and b) local evolution of phase field d with
respect to the accumulated flow ǫ̂c for various values of ζ.

related to the ability of the bulk material, around each individual craze, to supply new
polymer chains into the craze, in order to elongate3 [58], [134]. ζ is a material parameter
associated with the growth process for the crack phase field. 〈·〉 = 1

2
( · + | · |) is the

ramp function, expressed by McAuley brackets. The growth function is plotted against
the accumulated crazing flow for different values of ζ in Figure 8.3a. The effective driving
force (8.49) is incorporated into the balance equation governing the nonlocal evolution
of crack phase field (4.35). For very small values of the length scale parameter l, the

3This parameter is closely related to accumulated plastic strain history ǫ⋆p := εp : nM ⊗ nM around
the craze. The smaller the accumulated plastic strain history in the craze direction, the higher is the
ability of the bulk material to supply material or transform into crazes. Hence, the parameter ǫ⋆c can be
physically considered as the degree of ductility of the craze. For the sake of simplicity, ǫ⋆c is kept constant
throughout the investigations carried out in this work.
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Box 1: Finite viscoplasticity in the logarithmic strain space.

1. Kinematics ε := 1
2
lnC , q = {εp, εc} , εe = ε− εp − εc

2. Free energy Ψ = (1− d)2Ψ̃e(εe) + Ψ̃p(εp)

3. Stresses s := (1− d)2∂εeρ0Ψ̃e(εe) , sp = ∂εpρ0Ψ̃
p(εp)

4. Driving force pp = s− sp , pc = s

5. Transition {fc(s), sM , svol} =
{
< 0 Shear yielding
≥ 0 Crazing

6. Shear flow rule ε̇p =





γ̇p0 exp

[
− As

θ
(1−( τ

ŝ
)
5
6 )
] dev pp

| dev pp| if fc(s) < 0

0 otherwise

7. Crazing flow rule ε̇c =

{
γ̇c0 [s̃M/scr]

1
m nM ⊗ nM if fc(s) ≥ 0

0 otherwise

8. Crack driving force D̃ = ζ〈ǫc − ǫ⋆c〉2 with ǫc =
∫ t

0
|ε̇c|dτ

Laplacian term l2∆d can be omitted, and a closed form solution for the local evolution of
the phase field d = H/(1 +H) can be obtained, in terms of the maximum value of local

driving function H = maxs∈[0,t] D̃. In terms of the local driving function (8.49), we are
able to study the sensitivity of the closed form of the phase field evolution equation with
respect to the parameter ζ , see Figure 8.3b. The constitutive equations for the phase field
model of fracture in glassy polymers, showing transition from shear yielding to crazing is,
summarized in Box 1.

8.6. Numerical Examples

In this section, the proposed phase field model for crazing induced fracture will be
applied to two representative boundary value problems. At first, craze initiation, propa-
gation and crazing induced fracture of a square sheet with a circular hole are investigated.
The temperature dependent brittle to ductile transition is demonstrated through inhomo-
geneous tension tests of a dumbbell-shaped specimen, under isothermal conditions. We
start with the identification of the material parameters, which are depicted in Table 8.1.
The first parameters (1–9), governing the shear yielding, are obtained from the compres-
sion experiments of Arruda et al. [14] for PMMA, where crazing is suppressed. The
material parameters (10–14), governing the initiation of crazing and the crazing flow, are
taken identical to those identified by Gearing & Anand [76], except for the strain rate
sensitivity m, which is chosen rather viscous. The parameters (15–17) describe the growth
conditions of the crack phase field and the length scale parameter. By modification of
some material parameters, a second parameter set is obtained, in order to demonstrate a
hypothetical ductile response, see Table 8.1.

8.6.1. Tension of a Square Plate with a Circular Hole. A tension test is
performed on a micro-structure plate with a hole in the center, depicted in Figure 8.4a.
The radius of the hole is chosen as r = 0.5mm, with this the specimen has the width and
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Table 8.1: Material parameters for PMMA.

No.Par. Set 1 Set 2 Unit No. Par. Set 1 Set 2 Unit
1 κ 2500 2500 N/mm2 10 scr 200 310 N/mm2

2 µ 1005 1005 N/mm2 11 m 0.5 0.5 -
3 µp 15 15 N/mm2 12 c1 45.60 200 N/mm2

4 Np 2.7 2.7 - 13 c2 400 200 N2/mm4

5 γ̇p0 2.8×108 2.8×108 s−1 14 γ̇c0 10 3 s−1

6 A 100.6 100.6 N/(mmK) 15 l 0.01 0.01 mm

7 h 315 315 N/mm2 16 ǫ⋆c 0.01 0.01 -
8 s0 138 138 nmm 17 ζ 1× 108 1× 105 -
9 sss 114.45 114.45 N/mm2 18 θ 296 296 K

height of 4r = 2mm. The lower edge is fixed horizontally and vertically, while the upper
edge is fixed in the horizontal direction and the specimen is loaded monotonically in the
vertical direction.

Brittle Fracture. The load-displacement curve follows a linear path until the crack
is fully developed in the initial position. Subsequently, the load drops almost vertically to
zero, see the solid line in Figure 8.4b. Figure 8.5a depicts the contour plots of the effective
stresses sM within the crazes and the maximum principal stresses in the uncrazed bulk
material. Figure 8.5b depicts the crazing strain ǫc. Upon loading, the stresses develop
and concentrate at the midplane of the specimen, where the cross-section of the specimen
is thinnest. Once the stress threshold of the switching function is met, crazing initiates
as shown in Figure 8.5(i). Plastic strains due to crazing accumulate and as ǫc exceeds the
threshold ǫ⋆c , the crack phase field develops. The phase field increases until the fully broken
state in the material is reached. Figure 8.5(ii) shows the stress and crazing distribution
at the onset of the crack. As the crack propagates, stresses concentrate in the crack
front, driving the craze. Subsequently, the crack phase field develops as a result of the
accumulated plastic strain due to crazing, see Figure 8.5(iii). Finally, the specimen
fractures into two pieces in a stress free state, see Figure 8.5(iv). The pieces return to
their initial unloaded shape.
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Figure 8.4: a) Micro-structure specimen with r = 0.5mm. b) Load-displacement curves
resulting from the simulation, applying parameter set 1 of Table 8.1 with solid line. Usage of
the parameter values 2 result in ductile behavior until failure, see dashed curve. The circles
correspond to stages in Figure 8.6.



120 Crazing Induced Fracture in Glassy Polymers

a)

b)

(i) onset of crazing (ii) crack initiated (iii) crack growth (iv) fractured

Figure 8.5: Tension test on a micro-structure plate. Contour plots of a) actual driving
stress sM and b) amount of plastic crazing strain ǫc at (i) the onset of crazing, (ii) when
the crack is initiated, (iii) while the crack grows and (iv) when the specimen fractured into
two pieces.

Ductile Fracture. The tension test on the micro-structure plate is repeated with a
slightly different set of parameters, in order to show the capability of the model to capture
ductile failure, where crazing initiates after a considerable amount of plastic strains. To do
so, the parameters of the craze initiation criterion are raised and the crazing induced flow
parameters are adjusted, as shown in Table 8.1, parameter set 2. The load-displacement
curve resulting from the simulation is shown in Figure 8.4b by the dotted line. The curve
consists of a nearly linear path until the yield point, followed by a softening, along with
plastic deformations, due to shear yielding. Once the crack is fully developed, the load
drops gradually to zero, with further applied displacement until the specimen is fully
fractured. The path of unloading of this simulation is more gradual, in comparison to the
first example, with steep negative gradient of the load-displacement curve. The marks
(i) to (iv) in the load-displacement diagram in Figure 8.4b correspond to the contour
plots in Figure 8.6. The principal stresses sM , the amount of plastic shear yielding strains
|εp| and the amount of crazing strains ǫc, are depicted in 8.6a,b and c, respectively. The
considerable amount of plastic strains, which are not observable in the first example,
arises due to the slightly different parameters. As the specimen is deformed, the stresses
develop and concentrate at the midplane of the specimen, as is the case in the former
example. When the applied stresses reach the yield stress, plastic deformations due to
shear yielding accumulate. At the onset of crazing, a partially developed shear band can
be observed, which is terminated by the initiation of the craze, see Figure 8.6(i). Plastic
strains due to crazing accumulate and as ǫc exceeds the threshold ǫ⋆c the crack phase
field develops. The crack phase field fully develops at the intersection of the circular
hole with the mid-plane, leading to the first visible crack. Figure 8.6(ii) shows stresses,
plastic strains due to shear yielding and plastic strains due to crazing at the onset of
crack, respectively. Figure 8.6(iii) depicts the material state as the crack advances in the
horizontal direction. In Figure 8.6(iv), the fully fractured specimen is depicted. Due to
the excessive plastic deformations, the specimen cannot recover its initial unloaded shape.
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a)

b)

c)

(i) onset of crazing (ii) crack initiated (iii) crack growth (iv) fractured

Figure 8.6: Tension test on a micro-structure plate where crazing initiates after a consid-
erable amount of plastic strain. Contour plots of a) effective driving stress sM , b) amount
of plastic shear yielding strain |εp| and c) crazing strain ǫc at (i) the onset of crazing, (ii)
when crack is initiated, (iii) while crack grows and (iv) when the specimen fractures into
two pieces. The specimen cannot recover its initial unloaded shape. The states (i) − (iv)
correspond to the points in the load-displacement curve in Figure 8.4.

8.6.2. Tension of a Dumbbell-Shaped Specimen. In this subsection, we analyze
the temperature dependent failure mode transition in inhomogeneous tension tests. Ex-
periments performed by Rehage & Goldbach [188] show the brittle failure mode at
low temperatures, a transition mode and ductile failure at high temperatures. In order to
show that the presented model captures this mode transition, a series of inhomogeneous
tension test simulations are performed on a two-dimensional dumbbell-shaped specimen.
The geometry and the boundary conditions are depicted in Figure 8.7a. One edge is fixed
in all directions, whereas the other edge is fixed in the transverse direction and axially
loaded by a prescribed deformation ū. A constant cross-head speed of ˙̄u = 3 mm/min
ensures isothermal conditions. Consequently, the temperature is assumed to be uniform
across the specimen and coupled thermomechanical effects are excluded from the defor-
mation process. The simulation is repeated for the prescribed temperatures θ = {0, 20,
40, 60, 80, 90}◦C, to analyze the brittle-ductile transition with increasing temperature.4

The following adjusted parameters l = 1.0 mm and γ̇c0 = 3.0 s−1 are used in addition to
parameter set 1 in Table 8.1. The load-displacement curves resulting from the simulations

4For a give temperature θ, the parameters µ, µp, Np, c1 and c2 are computed by exploiting the
equations (8.16), (8.20), (8.22) and (8.32) by substituting c0 = 0.0016, B = 4.08× 1018, D = 5.54× 1021,
Ea = 5600, c1(0) = 2.8808, Q1/kb = 268.40, c2(0) = 364.07 and Q2/kb = 309.40.
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Figure 8.7: a) Geometry of dumbbell-shaped specimen in [mm], discretized by 2462 four-
node elements. b) Load-displacemenmt curves resulting from simulations at various tem-
peratures. The transition of the failure mode from brittle at low temperatures, to ductile at
high temperatures, is demonstrated.
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Figure 8.8: Amount of maximum principal stress sM [N/mm2] and plastic shear yielding
strain |εp| [%] for θ = 0◦C. The contour plot shows the onset of crazing in a,d), the crack
growth in b,e) and the fully fractured state in c,f).

are shown in Figure 8.7. At 0◦C and 20◦C, the material shows a linear load-displacement
response before brittle failure, without plastic deformations due to shear yielding. For
θ = 40◦C, a yield point due to shear yielding is observed, which slightly precedes crazing
induced fracture. The material behavior converts from the brittle to the ductile regime
at this point. From this temperature onwards, the ductility of the specimen gradually
increases for increasing temperature. The distribution of stresses and plastic strains is
depicted for θ=0◦C in Figure 8.8. The stress distribution is homogeneous within the
gauge section at the onset of fracture, see 8.8a. The crazes and consequently cracks initi-
ate at the sides of the specimen and grow normal to the loading direction. During crack
growth, stresses concentrate at the crack front, see Fig. 8.8b. The crazes and cracks de-
velop without any plastic deformation throughout the specimen, as can be clearly seen
in Figure 8.8d-f. The cracks grow, until they meet at the midsection and the specimen
fractures into two parts. The two pieces of the specimen recover their initial unloaded
shape due to the absence of plastic deformations, see Fig. 8.8c,f. For θ=90◦C, the distri-
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|εp|sM 00 90 70
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Figure 8.9: Amount of maximum principal stress sM [N/mm2] and plastic shear yielding
strain |εp| [%] for θ = 90◦C. The contour plot shows the onset of crazing in a,d), the crack
growth in b,e) and the fully fractured state in c,f).

bution of stresses and plastic strains is depicted in Figure 8.9. Before craze initiation, a
significant plastic neck has evolved due to shear yielding, see Fig. 8.9d. Within the neck,
the stresses are locally concentrated, see Fig. 8.9a. Due to a high negative pressure within
the neck, the crazes initiate in the middle of the neck and grow in both directions normal
the loading direction. When the craze strains exceed the threshold ǫ⋆c , cracks start to
grow. During crack growth, stresses concentrate at the crack front, see Fig. 8.9b,e. Due
to the extensive plastic deformations prior to crazing, the fractured parts of the specimen
cannot recover their unloaded shape, see Figure 8.9c,f. The simulation results are in good
qualitative accordance with the experimental observations in e.g. Rehage & Goldbach
[188]. This approves the predictive capabilities of the continuum-based model of crazing
induced fracture.
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9. Conclusion

This thesis outlines a thermodynamically consistent phase field model of diffusive crack
propagation in thermo-viscoelastic solids at large strains. A mainly geometric approach
to the diffusive approximation of a sharp crack topology is introduced. It is governed
by the fracture phase field, which interpolates between the intact and the broken state.
The crack topology is approximated by the regularized crack surface functional, which is
defined in terms of a crack surface density function, per unit of the reference volume. A
balance equation for the crack surface is introduced. Therein, the rate of the crack surface
functional is balanced with a crack source and a crack resistance term. From the global
balance, a local evolution equation for the fracture phase field is derived. The model is
formulated for irreversible crack evolution, with a restriction on the phase field evolution
to ensure local crack growth. A modular concept for linking the diffusive crack model to
a complex multi-field material response of the bulk material is outlined, where focus is
placed on the model problem of finite thermo-viscoelasticity. A concept for brittle and
ductile crack initiation and propagation, as well as its regularization in space and time
is developed. A key aspect is the definition of crack initiation and crack growth criteria.
A staggered scheme is introduced for the numerical solution, which bases on a one-pass
operator split. The performance and the vast possibilities of the phase field fracture model
at large strains are demonstrated by means of complex numerical examples.

A first application of the proposed general framework for phase field fracture at large
strains is discussed in the context of rate-independent crack propagation in elastic rubbery
polymers. The approach accounts for micro-mechanically based features of both the elastic
bulk response, as well as the crack toughness of idealized polymer networks and can be
related to classical statistical network theories of polymers. Starting with a review on the
statistically based fracture toughness of polymer networks, an energetically based crack
driving force is derived. The crack driving state function is expressed in terms of the
micro-mechanically based critical energy release rate. The predictive capability of the
diffusive fracture model for rubbery polymers is demonstrated by numerical benchmarks.
The simulations successfully capture the results observed in experiments.

A further application of the general framework covers fully coupled thermo-mechanical
problems at large strains. An important aspect is the constitutive modeling of degrading
heat fluxes across cracks, including the generation of convective heat exchanges based
on additional constitutive functions defined at the crack faces. This is achieved by ap-
proximating surface loads of the sharp crack by distinct volume integrals. A stress-based
crack initiation criterion is introduced, which realizes a maximum principal stress criterion
with a critical fracture stress threshold. This makes the differentiation between tensile
and compression regions simple and is open towards extensions with regard to complex
anisotropies in the constitutive modeling. The performance of the fracture phase field
model is demonstrated by means of conceptual numerical examples, which illustrate the
coupling in the multi-field context.

Another application of the framework is concerned with the rate- and temperature
dependent failure of viscoelastic rubbery polymers. The viscoelasticity in rubbery poly-
mers is modeled on a micromechanical basis, where a hierarchy of superimposed networks,
related to the ground-state network by entanglement mechanisms, is associated with the
modeling of the over-stress response. The rate- and temperature-dependent crack growth
is considered by viscous damping in the fracture phase field evolution equation and by a



126 Conclusion

temperature-dependent, stress-based fracture criterion. A variety of simulations demon-
strate the predictive capability of the modular concept applied to rate- and temperature-
dependent failure in viscoelastic rubbery polymers.

Additionally, the framework is specified for the description of crazing induced fracture
in amorphous glassy polymers. A thermodynamically consistent continuum model for
concurrent shear yielding and crazing, coupled with fracture and details of its numer-
ical implementation, are outlined. The proposed formulation in the logarithmic strain
space uses an additive split of Lagrangian Hencky-type strains into elastic, plastic shear
and plastic crazing parts. A continuum model of visco-plasticity for glassy polymers is
enhanced towards the description of dilatational plasticity for crazing, by introducing
a nonlinear viscous flow rule. The competition between shear yielding and crazing is
controlled by a stress based switch function. The model is constructed such that frac-
ture develops solely under craze flow. The performance of the proposed formulation is
demonstrated by means of representative boundary value problems.

The weakness of the phase field model is the enormous number of finite elements
which are needed to approximate the sharp crack topology with very small length scale
parameters. Hence, continuing research on the computational simulation must account for
adaptive remeshing concepts. Apart from this drawback, the model is extremely robust,
easy to implement and ideally suited for engineering problems. The approach overcomes
difficulties associated with the computational realization of sharp crack discontinuities,
in particular when it comes to complex crack topologies. Furthermore, it successfully
captures a broad range of specific fracture phenomena, such as crack initiation and crack
growth. A vast number of numerical examples demonstrates the predictive quality of the
model for rate independent and rate dependent fracture of rubbery polymers, as well as the
crazing induced ductile and brittle failure in amorphous glassy polymers. The constitutive
formulation is related to the three-dimensional bulk response, which makes it flexible
with respect to the constitutive formulation of the crack initiation and crack growth
criteria. This feature has already been exploited by considering coupled thermomechanical
problems, as well as coupled electro-mechanical problems. It is believed that the model
can be further extended to characteristic multi-field fracture problems, induced by chemo-
mechanical or solid-fluid interaction. In conclusion, the thermodynamically consistent
phase field model for fracture is ideally suited for the modeling of crack propagation
in thermo-viscoelastic solids at large strains and has an enormous potential for further
research.
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A. Compact Implicit Update for Crazing

A compact update scheme is presented for the evolution of the internal variables
outlined in Section 8.4.3, by introducing a single residual expression in terms of crazing
strains εc. A non-linear residual function r of the plastic strain tensor for a frozen
deformation state ε is introduced at time tn+1

r(εc) := εc − εcn −∆t γ̇c nM ⊗ nM = 0 . (A.1)

At the onset of crazing, the eigenvector nM , corresponding to the maximum principal
stress sM is frozen and the craze fibrils align in the direction nM . In the following, the
stresses along the fiber direction are defined as sM = nM · s · nM and the crazing strains
are redefined as εc := ǫcnM ⊗ nM . Making use of the coaxiality of the residual term r

and εc, the residual expression (A.1) can be simplified to

r = ǫc − ǫcn −∆tγ̇c = 0 . (A.2)

The linearization of the residuum r is carried out at kth Newton iteration about ǫck

Lin r(ǫc)|ǫc
k
= r(ǫck) + ak ·∆ǫc = 0 with ak :=

∂r(ǫc)

∂ǫc

∣∣∣∣
ǫc
k

(A.3)

the local tangent of the Newton iteration. The update equation for ǫc at the kth step is
then obtained by solving (A.3) for ∆ǫc

ǫc ← ǫck +∆ǫc with ∆ǫc := −a−1 · r(ǫck) . (A.4)

The local tangent a is computed from (A.2) as a = 1 + ∆t γ̇c′M withγ̇c′ = ∂sM γ̇
c =

γ̇c
0

mscr
|sM |

1
m
−1 andM = ∂ǫcsM = κ+ 4

3
µ . The sensitivity of εc with respect to ε is derived

from the total derivative of the residuum with respect to the total strain

dεr = ∂ǫr|ǫc + ∂εcr|ε : ∂εε
c = 0 . (A.5)

The desired derivative ∂εε
c can then be obtained from the condition (A.5) as

∂εε
c = −a−1nM ⊗ nM : ∂εr|εc . (A.6)

Recalling the definition of the residuum (A.2), the derivative ∂εr|εc can be expressed as

∂εr|εc = −∆t γ̇c′ m : Ee (A.7)

in terms of Ee = −∂εcs := 2µP + κ1 ⊗ 1 and m = nM ⊗ nM . Finally, the insertion of
(A.7) into (A.6) leads to the desired sensitivity

∂εε
c = H = a

−1∆t γ̇c′m⊗Ee : m . (A.8)

The consistent algorithmic tangent moduli for crazing can be written as

E

algo
c = dεs = E

e −Ee : ∂εε
c . (A.9)

Incorporation of the sensitivity ∂εε
c derived in (A.8) into (A.9) yields

E

algo
c = E

e −Ee : H . (A.10)
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B. Two-Point Q1-P0-Brick Element Formulation

This chapter presents a mixed Q1P0-element for nearly incompressible materials. This
approach was first introduced by Simo et al. [199], influenced by the ideas of Nagte-
gaal et al. [168]. A summary can be also found in Wriggers [225]. The starting
point of such a mixed finite element formulation is the Hu-Washizu variational princi-
ple. We deal with nearly incompressible solids, where the volumetric deformation of the
body has the constraint J = 1. The Hu-Washizu three-field functional is formulated in
terms of the deformation map ϕ, the pressure p, acting as a penalty parameter, as well
as the volume dilatation Θ, satisfying the constraint J = Θ. The considered free energy
function is divided into volumetric and isochoric parts, where the unimodular part of the
deformation gradient F̄ = J−1/3F determines the volume preserving deformation. The
well-known formulation is specified for the coupling with phase field fracture, where a
degradation of free energy is considered, as described in Chapter 7. The phase field d
is considered as a geometric constraint and according to the staggered solution scheme
presented in Chapter 4, is considered constant in the following derivation. A decoupling
from temperature evolution is obtained by the explicit update of the temperature field.

The decoupled Hu-Washizu potential functional for nearly incompressible materials in
the two point setting can be given in a decomposed manner as

π(ϕ, p,Θ) =

∫

B
g(d)Ψ̃vol(Θ, d) + g(d)Ψ̃iso(F̄ , d) + p(J −Θ) dV −

∫

∂Bt

ϕT̄ dA . (B.1)

Here, Θ is a kinematic variable which will be enforced to be the Jacobian by the Euler-
Lagrange equations. The first variation of the three field potential (B.1) results in the
three Euler-Lagrange equations

δϕπ =

∫

B
(g(d)∂F Ψ̃iso + pJF−T ) : δF dV −

∫

∂Bt

δϕT̄ dA = 0

δpπ =

∫

B
(J −Θ)δp dV = 0

δΘπ =

∫

B
(g(d)∂ΘΨ̃vol − p)δΘ dV = 0

(B.2)

where we used the derivative ∂F J = JF−T and identify the isochoric first Piola-Kirchhoff

stress P iso = g(d)∂F Ψ̃iso. The linearization of the mixed setting can be derived by

∆(δϕπ) =

∫

B
δF : (g(d)∂2FF Ψ̃iso + pJF−T ⊗ F−T − pJF−T ⊙ F−T ) : ∆F dV

+

∫

B
δF : F −TJ∆p dV

∆(δpπ) =

∫

B
δp(JF−T : ∆F −∆Θ) dV

∆(δΘπ) =

∫

B
δΘ(g(d)∂2ΘΘΨ̃vol∆Θ−∆p) dV

(B.3)

with the operations in index notation F−T ⊗F−T = F−1
ji F

−1
lk and F−T ⊙F−T = F−1

jk F
−1
li .

The two additional Euler-Lagrange equations (B.2)2,3 need to be satisfied locally within
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a finite element due to the discontinuous, constant pressure p and the volume dilatation
Θ. We solve these equations directly on the element level with |Be| =

∫
Be dV

e obtaining

Θ =
1

|Be|

∫

Be

J dV e =
|Se|
|Be| and p =

1

|Be|

∫

Be

g(d)∂ΘΨ̃vol(Θ, d) dV
e . (B.4)

Note again that both Θ and p are assumed to be constant within an element. For the
specific choice of Ψ̃vol(Θ, d) = g(d)κ

2
(Θ− 1)2, the expression for p reads

p =
1

|Be|

∫

Be

g(d)κ(Θ− 1) dV e = κ̄(Θ− 1) with κ̄ =
1

|Be|

∫

Be

g(d)κ dV e . (B.5)

Considering the linearization (B.3)2 we obtain the expression for the increment of the
volume dilatation ∆Θ, i.e.

∆Θ =
1

|Be|

∫

Be

JF−T : ∆F dV e . (B.6)

Performing some algebraic manipulations we obtain

F−T : ∆F = F−1
ji ∆Fij =

∂Xj

∂xi

∂∆ui
∂Xj

=
∂∆ui
∂xi

= div(∆u) . (B.7)

In complete analogy we obtain the expression δF : F−T = div(δu). With (B.7), the
increment of the volume dilatation reads

∆Θ =
1

|Be|

∫

Be

J div(∆u) dV e . (B.8)

From (B.3)3, for ∆Θ = const. and ∆p = const., the increment of the pressure is

∆p =
1

|Be|

∫

Be

g(d)∂2ΘΘΨ̃vol dV
e ·∆Θ = κ̄∆Θ , (B.9)

with κ̄ defined in (B.5) for the specific choice ∂2ΘΘΨ̃vol = g(d)κ. In the finite element
context, we proceed with the assembly of all nele elements in the domain. In addition, we
substitute the increment of the pressure ∆p in the linearization (B.3)1, by using ∆p =
const. and equations (B.8) and (B.9), resulting in

∆(δϕπ) =
nele

A
e=1

{ ∫

Be

δF : A : ∆F dV e

+
1

|Be|

∫

Be

J div(δu) dV e(|Be|κ̄) 1

|Be|

∫

Be

J div(∆u) dV e

} (B.10)

in terms of the moduli tensor A = g(d)∂2FF Ψ̃iso + pJ(F−T ⊗ F−T − F−T ⊙ F−T ).

The spatial domain B and the displacement field u = x −X, as difference between
spatial and material points, will be discretized by isoparametric shape functions such that

u = N(ξ)d ⇔ ui = N Id3(I−1)+i

X = N(ξ)X̂ ⇔ Xi = N IX̂3(I−1)+i

x = N(ξ)x̂ ⇔ xi = N I x̂3(I−1)+i

(B.11)
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where capital letters {I, J} indicate the element node and d, X̂, x̂ are the vectors con-
taining the nodal displacements on the element level, the Lagrangian and the Eulerian
coordinates. The local coordinates in the parameter space are denoted by ξ = [ξ, η, ζ ].
The shape functions for an eight-node brick element are given by N I(ξ, η, ζ) = 1

8
(1 +

ξξI)(1 + ηηI)(1 + ζζI). For the computation of the spatial gradients with respect to La-
grangian and Eulerian coordinates, we define the shape functions by application of the
chain rule

N ,X = N ,ξ · ξ,X and N ,x = N ,X · F−1 . (B.12)

The discrete form of the increment of the volume dilatation (B.8) is

∆θ =
1

|Be|

∫

Be

J div(∆u) dV e = ∆d
1

|Be|

∫

Be

JN ,x dV
e = ∆dN̄ ,x (B.13)

with the average shape functions

N̄ ,x =
1

|Be|

∫

Be

N ,xJ dV
e . (B.14)

Insertion of the finite element approximations δF = N ,Xδd yields

∆(δϕπ) =
nele

A
e=1

{
δdT

[∫

Be

NT
,X : A : N ,X dV e + N̄

T
,x(|Be|∂2θθψvol)N̄ ,x

]
∆d

}

=
nele

A
e=1

{
δdT [Ke

mat +Ke
vol] ∆d

} (B.15)

for the increment of the Euler-Lagrange equation of deformation map (B.10). The discrete
expression for the Euler-Lagrange equations reads

δϕπ
h =

nele

A
e=1

{
δdT

[∫

B
NT

,X : P ] dV e

]}
−

nsurf

A
s=1

{
δdT

∫

∂Bt

N sT
ϕ T̄ dA

}
= 0

=
nele

A
e=1

{
δdTRe

}
−

nsurf

A
s=1

{
δdTRs

}
= 0 .

(B.16)

The assembly of the element residual and stiffness matrices yields the global residual and
tangent matrices

Kglob =
nele

A
e=1

[Ke
mat +Ke

vol] and Rglob =
nele

A
e=1

Re −
nsurf

A
s=1

Rs . (B.17)

With these, the linear Euler-Lagrange equation reads

δϕπ
lin = δDT{Kglob∆D +Rglob} = 0 (B.18)

which must hold for all variations δD. We obtain the update of the global displacement
vector

D ←D −K−1
globRglo (B.19)

until convergence is achieved in the sense ||R|| < tol.
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Figure C.1: Bulk modulus in a) and Poisson’s ratio in b) decrease with damage d. Sensi-
tivity of the functions with respect to the parameter f∞.

C. Degradation of the Incompressibility Constraint with Damage

The phase field modeling of crack growth and opening, induces a considerable amount
of volume increase in the crack state of the continuum. Isotropic degradation of shear
modulus µ = (1 − d)2µ̃ and bulk modulus κ = (1 − d)2κ̃ yields a soft, however still in-
compressible response. To avoid this, a damage dependent release of the incompressibility
constraint is proposed, together with isotropic degradation of shear modulus µ = (1−d)2µ̃.
Void growth in incompressible solids yields a macroscopically compressible response.
Based on [165], we introduce a constitutive function for the bulk modulus

κ(d) =

{
µ(1/f0 + f∞) if d < f0
µ(1/d+ f∞) otherwise .

(C.1)

This function tends to infinity κ → ∞ for the intact solid phase d → 0 with parameter
f0 ≪ 1. On the other hand, for the cracked state of the material, for d = 1, the ultimate
value is κ/µ = 1− f∞. Insertion of (C.1) into the equation of poisson’s ratio ν = 3κ−2µ

2(3κ+µ)

yields the dimensionless representation

ν(d) =
3(1/d+ f∞)− 2

2(3(1/d+ f∞) + 1)
. (C.2)

Ideal material without imperfections is incompressible, with ν = 0.5. Fully damaged
material, with d = 1, shows little or no lateral contraction. The functions for the bulk
modulus and Poisson’s ratio over the void fraction are plotted in Figure C.1. Rubber
materials are nearly incompressible. A limit value of f0 = 0.02 yields a Poisson’s ratio
ν = 0.49 and a ratio of bulk to shear modulus κ/µ ≈ 50, adequate for the modeling of
the intact solid material.
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[50] Dal Maso, G.; Toader, R. [2002]: A model for the quasistatic growth of brittle

fractures: Existence and approximation results. Archive for Rational Mechanics and
Analysis, 162: 101–135.

[51] D’Amico, F.; Carbone, G.; Foglia, M.; Galietti, U. [2013]: Moving cracks
in viscoelastic materials: Temperature and energy-release-rate measurements. Engi-
neering Fracture Mechanics, 98: 315–325.

[52] Davidge, R.; Green, T. [1968]: The strength of two-phase ceramic/glass mate-
rials. Journal of Materials Science, 3(6): 629–634.

[53] Gennes, P. G. de [1971]: Reptation of a polymer chain in the presence of fixed
obstacles. The Journal of Chemical Physics, 55: 572–579.

[54] de Gennes, P. G. [1996]: Soft adhesives. Langmuir, 12(19): 4497–4500.
[55] Deam, R. T.; Edwards, S. F. [1976]: The theory of rubber elasticity. Philosoph-

ical Transactions of the Royal Society London A, 280: 317–353.
[56] Doi, M.; Edwards, S. F. [1986]: The Theory of Polymer Dynamics. Clarendon

Press.
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[199] Simo, J.; Taylor, R.; Pister, K. [1985]: Variational and projection methods for
the volume constraint in finite deformation elasto-plasticity. Computer methods in
applied mechanics and engineering, 51: 177–208.
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