
Institut für

Höchstleistungsrechnen

Stefan Wesner

INTEGRATED MANAGEMENT
FRAMEWORK FOR DYNAMIC
VIRTUAL ORGANISATIONS

 FORSCHUNGS -- UND ENTWICKLUNGSBERICHTE

ISSN 0941 - 4665 Dezember 2008 HLRS-06

INTEGRATED MANAGEMENT
FRAMEWORK FOR DYNAMIC
VIRTUAL ORGANISATIONS

Höchstleistungsrechenzentrum

Universität Stuttgart

Prof. Dr.-Ing. M. Resch

Nobelstrasse 19 - 70569 Stuttgart

Institut für Höchstleistungsrechnen

von der Fakultät Energie-, Verfahrens- und
Biotechnik der Universität Stuttgart
zur Erlangung der Würde eines Doktor-Ingenieurs
(Dr. - Ing.) genehmigte Abhandlung

vorgelegt von

Stefan Wesner
aus Leinfelden-Echterdingen

Hauptberichter: Prof. Dr.- Ing. Michael Resch
Mitberichter: Prof. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h.
 Dr. h.c. mult. Engelbert Westkämper
Tag der Einreichung: 14. April 2008
Tag der mündlichen Prüfung: 19. Dezember 2008

ISSN 0941 - 4665 Dezember 2008 HLRS-06

D93

Danksagung

Der erfolgreiche Abschluss dieser Arbeit wäre nicht ohne die tatkräftige Unterstützung vie-
ler Menschen möglich gewesen, denen ich hier meinen Dank aussprechen möchte. Die
grundlegende Idee zu dieser Arbeit ist im Rahmen der Forschungsprojekte GeneSyS und
GRASP entstanden. Diese konnte nur mit der Unterstützung von Partnern im Projekt durch-
gesetzt werden. Ich möchte mich daher bei all den Leuten bedanken die mit mir zusammen
für eine grundlegenden neuen Ansatz im Bereich des Grid Computing weg von proprie-
tären Lösungen hin zu einer Service Orientierten Architektur eingetreten sind. Dies sind
insbesondere Jean-Eric Bohdanowicz und Dr. Andrey Sadovykh mit denen ich im Projekt
GeneSyS gearbeitet habe und Dr. Theo Dimitrakos, Prof. Pierluigi Ritrovato und dem viel
zu früh verstorbenen Josep Vallés, meinen Partnern im Projekt GRASP. Ich möchte mich bei
Georgina Gallizo bedanken die in der Schlussphase der Arbeit einen großen Anteil meiner
Aufgaben als Koordinator des Forschungsprojektes Akogrimo übernommen hat.

Ich möchte meinen Kollegen Bassem Serhan, Bastian Koller und Lutz Schubert danken, de-
ren kritischen Fragen ich mich immer wieder stellen musste und die damit sehr zum Ge-
lingen dieser Arbeit beigetragen haben. Dr. Sabine Roller, Rainer Keller und Axel Tenschert
danke ich für das Lesen der Arbeit und den hilfreichen Kommentaren. Bei Freddie Klank
bedanke ich mich für die Unterstützung beim Druck dieser Arbeit und die seit vielen Jahren
so angenehme Zusammenarbeit. Ich möchte mich bei Paul Christ bedanken von dem ich,
neben dem Schreiben von erfolgreichen Projektanträgen, insbesondere gelernt habe den
Mut zu haben neue und auch kontroverse Ideen öffentlich zu vertreten, wenn man an sie
glaubt.

Ich möchte Herrn Prof. Resch danken, dass ich am HLRS eine einzigartige Arbeitsumge-
bung habe, für das mir seit Jahren entgegengebrachte Vertrauen und für seine Geduld bis
zur Abgabe dieser Arbeit. Herrn Prof. Westkämper möchte ich dafür danken, dass er als Mit-
berichter für diese Arbeit so kurzfristig zur Verfügung stand.

Mein besonderer Dank gilt jedoch meiner Familie. Meinen Eltern danke ich für die langjäh-
rige Unterstützung während meiner gesamten Ausbildungszeit. Bei meinen Kindern Ro-
man und Saskia bedanke ich mich für Ihr Verständnis für die unzähligen Arbeitswochenen-
den. Mein größter Dank gilt meiner lieben Frau Antje Wesner, die mich seit so vielen Jahren
bedingungslos unterstützt und deren besondere Rolle in meinem Leben ich mit nichts auf-
wiegen kann.

Leinfelden-Echterdingen, im Dezember 2008 Stefan Wesner

i

ii

Abstract

The trend towards Service Oriented Architecture (SOA) based distributed applications for
all kind of business applications lead to a corresponding change in the Grid community.
This move away from proprietary solutions and protocols for Grid applications utilizing
also Web Services specifications following the SOA paradigm requires also a change of the
underlying collaboration model. This model referred to as Virtual Organisation (VO) [1]was
originally an almost static collaboration of rather homogeneous resource providers (such
as High Performance Computing centres as realised in Uniform Access over the Internet
to Computing Resources (UNICORE) [2] or Distributed European Infrastructure for Super-
computer Applications (DEISA) [3]). About ten years earlier the concept of Virtual Enter-
prises, Collaboration Networks, Alliances, Networks,. . . emerged in the economics research
community [4, 5, 6, 7, 8, 9]. These concepts were not limited to the long term oriented goals
associated to Grid VOs such as the support of the Large Hadron Collider experiment but
targeted at a fast and efficient way to respond on market opportunities.

The starting point for this thesis was the development of a more dynamic and business ori-
ented model for IT oriented Virtual Organisations realised by extending the rather limited
understanding of Grid VOs with the dynamism of the economic models and introducing
the concept of potentially dynamically agreed Service Level Agreements defining the rela-
tionship across providers and between consumer and provider(s). Beside this new model
allows giving up the assumption that all VO participants agree on the overall goals of the
global VO. The SLA based model allows each provider to be driven by their own business
objectives and operate autonomously and independent from each other. It is also possible
to provide assets to several, potentially competing, VOs at the same time.

Using this SLA driven dynamic VO model several business Grid scenarios had been analysed
and classified. The classification of the scenarios led to the following abstractions:

• Core Service Provider: Potentially large number of providers offering quite raw ser-
vices very tightly coupled to a physical resource such as data storage or computation.
The offered services of the different providers can be easily compared as the number
of different services is very limited.

• Aggregated Service Provider: Compared to the Core Service Provider the provided ser-
vices are not tightly mapped on a particular physical resource but combine several
core and other aggregated services to a complex, aggregated service.

• Service Provider Collaboration: This scenario could be built from a combination of
core and aggregated service providers realising a collaboration across them e.g. with
specialised roles. So one provider could be specialised on data storage, another one
on providing computational services while others are realising an interface to a prod-
uct database.

iii

• Virtual Laboratory: This extension of the service provider collaboration scenario as-
sumes a shared knowledge space where application designers can prepare certain ap-
plications by defining workflows or semantic rules and application users can execute
them afterwards.

• Interactive Instrument Integration: If specific hardware such as interactive access to a
radio telescopes is necessary the treatment of replaceable providers (e.g. data storage
providers) and owners of unique resources need to be treated differently.

Review of existing tools and methods shows that most solutions available are pure monitor-
ing solutions very often targeting hardware monitoring. In most cases the management of
the assets is fully delegated to technical human operators fully decoupled from business ob-
jectives or potentially agreed SLAs. While Policy based Management (PBM) offers the right
framework to realise a management also driven by SLAs and business objectives available
implementations or frameworks are limited to the security domain.

Based on an analysis of the current methods and available solutions for the management of
distributed applications and Grid environments a management concept addressing the re-
quirements identified before is proposed. The management concept is organised in several
layers with the idea of having different management objectives associated with each layer,
use different technologies on the different layers and move from raw monitoring data more
and more to business relevant information.

Manageability

Local Management

Provider Internal Management

VO Wide Management

Monitoring
Data

Events,
Taken

decisions

SLA Violations

Influence
Infrastructure

Updated Objectives
(Rules/Policies/…),

Commands

Agreed SLAs,
Applied

Penalities

Each of the layers is supposed to be loosely controlled by the upper layer. The coupling is
not tight as each layer should be able to operate independently and react fast. So each layer
takes decisions but report them with the necessary context up the layer where decisions
can be overruled or the decision basis (e.g. the rule and policy database) is updated by the
higher layer.

The feasibility of the concept is demonstrated by detailing it for a service provider delivering
HPC services as utilities to a dynamic virtual organisation. The presented approach splits
the provider management into five management blocks. Three management blocks are per-
forming a purely technically oriented low level management very close to the physical re-

iv

sources and are supported by a service management layer supporting this with a complete
and integrated view. On top of this service management layer a business relation manage-
ment layer is mediating between business objectives, customer relations and the technical
infrastructure.

v

vi

Zusammenfassung

Die zunehmende Bedeutung von Service orientierten Architekturen für kommerziell aus-
gerichtete verteilte Anwendungen hat sich auch auf die Ansätze im Bereich des verteilten
Rechnens, dem Grid computing, ausgewirkt. Die ursprünglich ausschliefllich an den Be-
dürfnissen von Wissenschaftlern ausgerichteten Lösungen unter Nutzung proprietärer Pro-
tokolle und Werkzeuge sind in den letzten Jahren nach und nach unter Nutzung von Web
Services realisiert worden. Neben diesen Änderungen im technologischen Bereich hat sich
auch die organisatorische Struktur der Zusammenarbeit geändert. Zu Beginn wurden im
Grid Bereich die Virtuellen Organisationen (VO) [1] als ein statischer Verbund von relativ
ähnlichen Anbietern, z.B. von Höchstleistungsrechnern angesehen. Diese Art der VOs wur-
den unter anderem in den Projekten UNICORE [2] oder DEISA [3]) umgesetzt bis hin zum
produktiven Betrieb.

Etwa zehn Jahre vor der Definition von Virtuellen Organisationen im Grid Bereich wurde
bereits das Konzept von Virtuellen Firmen, Netzen oder Allianzen in der Forschung im Be-
reich der Betriebswirtschaft untersucht (unter anderem in [4, 5, 6, 7, 8, 9]). Diese Konzepte
waren nicht an statischen und langfristigen Strukturen ausgerichtet sondern zielten viel-
mehr auf die kurzfristig realisierbare Zusammenarbeit von Firmen ab um möglichst schnell
und effizient eine sich bietende Marktchance wahrnehmen zu können.

Der Startpunkt für die hier vorgestellte Arbeit war die Entwicklung eines dynamischeren
and mehr geschäftsorientierten Modells für Virtuelle Organisation für das Grid. Dies wur-
de durch die Erweiterung des statischen Modells der Grid Community mit Konzepten aus
den betriebswirtschaftlichen Modellen erreicht. Dieses erweiterte Modell basiert auf der
Annahme, dass der Zusammenschluss von Anbietern und Nutzern dieser Leistungen nicht
statisch ist und der Antrieb für das Bilden der VO nicht gemeinsame Ziele sind, sondern
ökonomischen Gesichtspunkte im Vordergrund stehen. Geht man nicht mehr von der ge-
teilten Vision aller Teilnehmer in einer VO aus ergibt sich die Notwendigkeit die Beziehun-
gen zwischen den einzelnen Teilnehmern durch entsprechende Verträge abzusichern. Das
vorgeschlagene Modell sieht vor diese Beziehungen, durch potentiell zur Laufzeit verein-
barte Dienstgütevereinbarungen, zu regulieren. Diesen Vereinbarungen legen nicht nur im
Sinne eines elektronischen Vertrags die Verpflichtungen aller Vertragspartner fest, sondern
enthalten ebenfalls die im Falle einer Nichterfüllung anwendbaren Maßnahmen.

Die Dokumentation der Beziehungen zwischen den einzelnen Teilnehmern einer VO durch
diese Dienstgütevereinbarungen ermöglicht auch dass Dienstleistungen gleichzeitig ver-
schiedenen VOs angeboten werden können. Dabei können die Ziele der jeweiligen VOs ein-
ander zuwiderlaufen und potentiell zu Konfliktsituationen führen bei denen ein Dienstan-
bieter im Falle von Engpässen bei den Ressourcen (z.B. hervorgerufen durch eine Überbu-
chung oder den Ausfall von Infrastruktur) nicht alle Vereinbarungen einhalten kann.

vii

Unter Nutzung dieses dynamischen VO Modells wurden mehr als zwanzig Grid Szenarien
aus verschiedenen europäischen Forschungsprojekten wie TrustCoM, GRASP, NextGrid und
BEinGRID hauptsächlich aus dem Bereich Grid computing untersucht. Da das Ziel dieser
Arbeit nicht ein Management Konzept für ein bestimmtes Szenario ist, sondern die Reali-
sierung eines allgemeinen Ansatzes, wurden die Szenarien mit dem Ziel analysiert typische
Muster von Grid Szenarien mit einem kommerziellen Hintergrund zu extrahieren. Dabei
wurden die folgenden Szenarien erarbeitet:

• Basisdienstanbieter: Unter diese Klasse fallen Anbieter die Dienstleistungen anbieten
die relativ stark mit der darunterliegenden Hardware verbunden sind. Ein typisches
Beispiel dazu wäre das Anbieten von Rechenleistung oder Speicherkapazität. Die Be-
sonderheit in diesem Fall ist, dass es zu erwarten ist, dass die verschiedenen Anbieter
relativ leicht zu vergleichen sind und die Dienste in sehr ähnlicher, im besten Fall so-
gar standardisiert anbieten können. Dieser Art von Anbietern fällt es sehr schwer sich
von anderen ähnlichen Anbietern abzugrenzen insbesondere weil das Know-how zur
Realisierung von komplexen Dienstleistungen auf Basis dieser Grunddienste beim
Anwender liegt.

• Anbieter zusammengesetzter Dienste: Im Vergleich zu den bereits besprochenen Basis-
dienstanbietern wird hier durch Kombination von Diensten ein komplexerer Dienst
zusammengesetzt. Diese Aggregation von Grunddiensten und potentiell auch ande-
ren zusammengesetzter Dienste ermöglicht eine deutlich bessere Abgrenzung zu kon-
kurrierenden Anbietern und die effektive und effiziente Zusammenstellung stellt ein
besondere Fähigkeit des Anbieters dar, die auch zu Abgrenzung zu konkurrierenden
Anbietern genutzt werden kann.

• Kollaboration: Diese Szenario kombiniert die Basisdienstanbieter mit den Anbietern
komplexer Dienste in einer Zusammenarbeitsstruktur. Eine solche Struktur bringt
verschiedene Anbieter zusammen, da verschiedene Dienstleistungen benötigt wer-
den um zu einer Lösung zu gelangen. Ein einfaches Beispiel wäre die Kollaboration
eines Basisdienstleisters für Rechenleistung und einem externen Lizenzgeber der die
notwendigen Lizenzen für die Nutzung einer Anwendungen bereitstellt.

• Virtuelles Labor: Virtuelle Labore sind eine Erweiterung des Kollaborationskonzeptes.
Zusätzlich wird nicht nur von einer Art Anwender ausgegangen sonder einer Rollen-
teilung eines Application Designers, welcher die Kollaboration aufsetzt und dem App-
lication User zum Beispiel vorgefertigte Arbeitsabläufe definiert welcher dieser dann
zu einem späteren Zeitpunkt ausführen kann.

• Interactive Instrument Integration: Eine weitere Besonderheit ist die Integration von
essentiellen Ressourcen die nur von einem bestimmten oder nur sehr wenigen An-
bietern bereitgestellt werden können. Sind manche Anbieter, wie zum Beispiel für
das Speichern von Daten, leicht austauschbar lassen sich andere Ansätze im Falle
schlechter Leistung verfolgen, als dies mit einem Anbieter einer essentiellen Ressour-
ce möglich ist.

Ein Vergleich der Anforderungen dieser Szenarien mit bestehenden Ansätzen zur Über-
wachung von verteilten Anwendungen oder Grids zeigt dass diese meist reine Lösung zur

viii

Sammlung von Daten sind. Darüber hinaus werden häufig reine Hardwaredaten gesam-
melt die nicht ohne weiteres auf das Einhalten von extern zugesagten Dienstgütevereinba-
rungen abgebildet werden können. Typischerweise wird die Überwachung von Ressourcen
nur an technischen Gesichtspunkten ausgerichtet. Eventuell definierte Ziele des Unterneh-
mens oder potentielle negative Auswirkungen durch das Verletzen von Dienstgütevereinba-
rungen werden nicht berücksichtigt. Diese Beobachtung ist nicht überraschend wenn man
berücksichtigt dass viele dieser Lösungen für eScience Infrastrukturen entworfen sind, in
denen kommerzielle Aspekte nicht relevant sind.

Basierend auf der Analyse bestehender Lösungen und den Anforderungen aus den unter-
suchten Szenarien wird ein hierarchisches Management Konzept vorgeschlagen. Jeder die-
ser Stufen operiert zu großen Teilen unabhängig und ist für die jeweilige Aufgabe spezia-
lisiert. Dabei erfolgt die Kopplung der verschiedenen Stufen über einen Nachrichtenaus-
tausch über getroffene Entscheidungen von unteren hin zu höheren Stufen und umgekehrt
können höhere Stufen an niedrigere Stufen Kommandos weiterleiten. Eine spezielle Mög-
lichkeit für ein Kommando ist die Aktualisierung der Wissensbasis. Durch eine Änderung
der Wissensbasis (zum Beispiel für reguläre Betriebszustände) kann das jeweilige Verhalten
verändert werden.

Zugriffsschicht auf Ressourcen

Lokales Management

Internes Management des Dienstanbieters

VO umfassendes Management

Ermittelte
Information über
die Infrastruktur

Ereignisse,
Getroffene

Entscheidungen

Dienstgüte-
verletzungen

Änderung des
Betriebs

Aktualisierte Ziele,
Regeln,

Rahmenbedingungen

Vereinbarte
Dienstgüten und

Konventionalstrafen

In der obigen Abbildung ist das Konzept dargestellt dass ausgehend von Informationen die
auf der Ebene der ausführenden Hardware und Softwareinfrastruktur gesammelt werden
die Information mehr und mehr auf die Ebene von Dienstgütevereinbarungen gebracht
werden. Auf der anderen Seite sieht das Konzept eine klare Entscheidungshierarchie vor bei
dem die Geschäftsziele ausgedrückt in den vereinbarten Dienstgüten die technischen Ma-
nagement Stufen steuern. Diese grundlegende Konzept wird weiter verfeinert und schlägt
eine Architektur zur Realisierung von Management Blöcken vor und wie diese miteinan-
der gekoppelt werden sollen. Ein besonderer Aspekt ist die Grenze des Anbieters an der ein
sogenannter Mediator vorgeschlagen wird, der zum Einen die notwendige Transformati-
on von Nachrichten im Anbieter internen Format mit denen im VO weiten Format leistet
und zum Anderen als Filter von Nachrichten dient da nicht alle Information allen externen
Entitäten zur Verfügung gestellt werden können.

ix

Die Anwendbarkeit dieses Konzeptes wird am Beispiel eines Anbieters von Rechenleistung
gezeigt in dem die allgemeinen Konzepte verfeinert werden und die jeweiligen Abläufe auf
den verschiedenen Stufen dargelegt werden. Der gewählte Ansatz für das Beispiel basiert
auf drei Stufen. Die unterste Stufe mit der Aufgabe ein Management der Hardware und
grundlegender Softwarekomponenten zu realisieren basiert auf einem regelbasiertem Ma-
nagement um schnelle Entscheidungen für Gegenmaßnahmen möglich zu machen. Die
nächste Stufen hat die Aufgabe die Gesamtheit aller Dienste zu überwachen und dient als
Bindeglied zwischen dem Hardware orientierten Management Layer und der obersten Ebe-
ne die sich um das Management der Geschäftsbeziehungen kümmert. Auf dieser obersten
Ebene werden die angebotenen Dienstgütevereinbarungen verwaltet und eine Priorisie-
rung der parallel aktiven Vereinbarungen durchgeführt. Die Priorisierung erfolgt auf der
Basis von Daten über die Kunden und dem sich aus dem Schaden bei Nichterfüllung erge-
benden Risiko.

x

Contents

Abbreviations xix

1 Introduction and Rationale 1
1.1 Objectives . 2
1.2 Chosen Approach . 3
1.3 Research Contribution . 5
1.4 Background . 5

2 A new Taxonomy for Virtual Organisations 7
2.1 Applications spanning across several Organisations . 7
2.2 Existing Virtual Organisation Models . 8
2.3 A proposed more sophisticated VO Model . 9

2.3.1 Structural and Organisational Properties of a Virtual Organisation 9
2.3.1.1 Topologies . 12

2.3.2 Role Model . 15
2.3.2.1 Dynamic Virtual Organisation Roles 17
2.3.2.2 Service Provider Domain . 17
2.3.2.3 User Domain . 19
2.3.2.4 Trusted Third Party . 20

2.3.3 Dynamic Viewpoint . 21
2.3.3.1 Identification . 22
2.3.3.2 Formation . 23
2.3.3.3 Operation . 23
2.3.3.4 Evolution . 24
2.3.3.5 Termination . 24

3 Classification of Scenarios and Derived Requirements 27
3.1 The Method for the Scenario Classification . 27
3.2 Core Service Provider Scenario . 28

3.2.1 Topological View . 29
3.2.2 Dynamic View . 29
3.2.3 Key Requirements summary . 30

3.3 Aggregated Service Provider Scenario . 32
3.3.1 Topological View . 32
3.3.2 Dynamic View . 32
3.3.3 Key Requirements summary . 33

3.4 Service Provider Collaboration . 35

xi

Contents

3.4.1 Topological View . 36
3.4.2 Dynamic View . 36
3.4.3 Key Requirements summary . 38

3.5 Virtual Laboratories . 40
3.5.1 Topological View . 40
3.5.2 Dynamic View . 41
3.5.3 Key Requirements summary . 42

3.6 Interactive Instrument or Simulator Integration . 42
3.6.1 Topological View . 42
3.6.2 Dynamic View . 42
3.6.3 Key Requirements summary . 43

3.7 Context dependent Applications . 44
3.7.1 Key Requirements summary . 45

3.8 Analysis Summary . 45

4 State of the Art and Relevant Standards 47
4.1 Core Technologies . 47

4.1.1 Service Oriented Architecture . 47
4.1.2 Grid computing . 49

4.1.2.1 UNICORE . 50
4.1.2.2 Globus Toolkit . 51
4.1.2.3 gLite . 52
4.1.2.4 Grid based Aggregated Service Provision 52
4.1.2.5 Grid for Industrial Applications . 53

4.2 Information Models and Management Protocols . 53
4.2.1 GLUE . 54
4.2.2 SNMP . 54
4.2.3 DMI . 55
4.2.4 CMIP . 55
4.2.5 CIM . 56
4.2.6 MIMO . 57
4.2.7 Grid Monitoring Architecture . 57

4.2.7.1 R-GMA . 57
4.2.7.2 Web Service Level Agreements . 58
4.2.7.3 Generic System Supervision . 59
4.2.7.4 Management using Web Services (MUWS) 60
4.2.7.5 Web Based Enterprise Management 61
4.2.7.6 Nagios . 61
4.2.7.7 Ganglia . 61
4.2.7.8 Lemon . 62
4.2.7.9 INCA . 63
4.2.7.10 GridICE . 63

4.2.8 Tivoli . 64
4.2.9 Unicenter (Computer Associates) . 64
4.2.10 Openview (HP) . 65

xii

Contents

4.2.11 Openmaster (Evidian-Bull) . 65
4.3 Existing Management Approaches . 65

4.3.1 Rule based Approaches . 65
4.3.2 Policy Based Management . 66

4.4 Summary and Conclusions . 67

5 Monitoring and Management Concepts 71
5.1 Concepts and Terminology . 71
5.2 Conceptual View . 73

5.2.1 Manageability Layer . 74
5.2.1.1 Integrated Sensor . 74
5.2.1.2 Indirect Sensor . 75
5.2.1.3 Aggregation and Integration . 75
5.2.1.4 Sensor Cache and History . 76
5.2.1.5 Command Enforcement . 77
5.2.1.6 Resource Delegate . 77

5.2.2 Provider Internal Management Layers . 77
5.2.2.1 Data/Event Receiver . 79
5.2.2.2 Enactor . 79
5.2.2.3 Command Sender . 80
5.2.2.4 Local Management Layer . 81
5.2.2.5 Provider Boundary Management Layer 81

5.2.3 VO Management layer . 81
5.3 Key Building Blocks . 83

6 Application of the Concept 91
6.1 HPC computing utility provider . 91

6.1.1 Realising the Manageability Layer . 94
6.1.2 Local Management . 95
6.1.3 Service Management . 97

6.1.3.1 Report Categorization and Evaluation 98
6.1.3.2 Decision Module . 99
6.1.3.3 Mapping Decisions to Commands . 101
6.1.3.4 Rule updates and Command Reception 103

6.1.4 Business Relations . 103
6.1.5 Mediation Component . 106

6.2 Operational Considerations . 106

7 Conclusion and Outlook 109
7.1 Future work . 110

7.1.1 Modelling Support to feed the various Knowledge Bases 110
7.1.2 Supporting coupled applications on hybrid computing systems 111
7.1.3 Standardisation of Incident Reports and Command formats 112
7.1.4 Cross-layer communication and self-organizing approaches 113

xiii

Contents

xiv

List of Figures

1.1 Approach in Event driven process chain notation as defined in [10] 4

2.1 High level view of a virtual organisation . 10
2.2 Topology for Hub-and-Spoke and Broker scenarios . 13
2.3 Topology for the peer to peer structure . 14
2.4 Sample topology for the chained structure . 14
2.5 Coarse grained view on the roles and their relations in the service provider

domain . 16
2.6 Coarse grained view in role interactions from the User Domain viewpoint 19
2.7 Conceptual model and design and implementation of virtual organisation ac-

cording to Katzy in [11] . 21
2.8 Proposed Lifecycle Model for Dynamic Virtual Organisations 24

3.1 Sample Building Blocks of the Core Service Provider Scenario 29
3.2 Topological View on the Core Service Provider Scenario 31
3.3 The Service Provider view of the Collaborative Engineering Scenario 35
3.4 Example setting of the space simulation scenario . 44

4.1 Basic concept of the Service Oriented Architecture . 48
4.2 UNICORE architecture . 51
4.3 GRIA fundamental architecture . 54
4.4 Sample schema for a Grid service from the CIM Schema 2.17.1 56
4.5 GMA compound producer and consumer concept . 58
4.6 GeneSyS conceptual architecture . 60
4.7 MUWS Architecture . 61
4.8 The Ganglia architecture [12] . 62
4.9 The Lemon and FDR concept [13] . 63
4.10 The GridICE layered architecture according to [14] . 64
4.11 Layered approach of policy based management . 66

5.1 Conceptual View of the Management Framework . 73
5.2 a simple monitoring scenario . 76
5.3 Simplified management flow for the web server farm scenario 78
5.4 message types on the different layers . 82
5.5 Concept for the realisation of all management blocks in the hierarchy 85
5.6 Chaining concept for the internal management . 87
5.7 boundary management . 88
5.8 VO Management block . 89

xv

List of Figures

6.1 Deployment view of the services for the HPC utility provider 92
6.2 Chosen layers and their relations . 93
6.3 Data collection for the System and Network Layer . 94
6.4 Activities for the Local System and Network Management 96
6.5 Update of the Rules Datastore . 97
6.6 DataReceiver component for the Service Management Layer 98
6.7 Activity flow for the decision process . 100
6.8 Activity flow for reliable command sending . 102
6.9 Activity flow triggered by the availability of a new SLA 105
6.10 Roles and Use Cases . 108

7.1 Knowledge Engineering Approach . 111

xvi

List of Tables

2.1 Structural properties of Virtual Organisations . 12
2.2 Lifecycle of a Virtual Organisation . 22

3.1 Dynamic View for the Core Service Provider Scenario 30
3.2 Dynamic View for the Aggregated Service Provider Scenarion 33
3.3 Dynamic View for the Multiple Service Provider Scenario 38
3.4 Dynamic View for the Virtual Laboratory Scenario . 41
3.5 Dynamic view for scenarios with special or unique resources 43

4.1 Requirements mapped on available standards and technologies 68

5.1 Definition of used terms . 72
5.2 Anticipated typical methods and corresponding decision times 84

6.1 SLAs for the HPC utility provider case . 105

xvii

List of Tables

xviii

Abbreviations
AgSP (Aggregated Service Provision) , p. 32.

AJO (Abstract Job Object) , p. 15.

Akogrimo (Access to Knowledge through the Grid in a Mobile World) , p. 6.

API (Application Programmer Interface) , p. 62.

ASP (Application Service Provision) , p. 2.

B2B (Business to Business) , p. 12.

BEinGRID (Business Experiments in Grids) , p. 6.

BES (Basic Execution Service) , p. 28.

BPEL (Business Process Execution Language) , p. 13.

BREIN (Business objective driven reliable and intelligent Grids for real business) , p. 113.

CAVE (Cave Automatic Virtual Environment) , p. 45.

CBD (Component Based Development) , p. 48.

CIM (Component Information Model) , p. 2.

CMIP (Common Management Information Protocol) , p. 55.

CMIPM (CMIP Machine) , p. 56.

CMOT (CMIP over TCP/IP) , p. 55.

CMS (Content Management System) , p. 28.

CORBA (Common Object Request Broker) , p. 47.

CRM (Customer Relationship Management) , p. 91.

DAG (Directed Acyclic Graph) , p. 13.

DCOM (Distributed Component Object Model) , p. 47.

DEISA (Distributed European Infrastructure for Supercomputer Applications) , p. iii.

DMI (Desktop Management Interface) , p. 55.

DMTF (Distributed Management Task Force) , p. 56.

EDI (Electronic Data Interchange) , p. 49.

EGEE (Enabling Grids for E-Science) , p. 1.

ELeGI (European Learning Grid Infrastructure) , p. 6.

EMS (Execution Management Service) , p. 28.

EN (Enterprise Network) , p. 21.

EPC (Event driven process chain) , p. xv.

FDR (Fault Detection and Recovery) , p. 62.

GeneSyS (Generic System Supervision) , p. 5.

xix

ABBREVIATIONS

Globus (Globus Toolkit) , p. 51.

GLUE (Grid Laboratory Uniform Environment) , p. 54.

GMA (Grid Monitoring Architecture) , p. 57.

GOC (Grid Operations Centre) , p. 63.

GRASP (Grid based Application Service Provision) , p. 6.

GRIA (Grid for Industrial Applications) , p. 53.

Grid computational infrastructure (Grid) , p. 2.

GridCC (Grid Enabled Remote Instrumentation with Distribtued Control and Computation) , p. 42.

HPC (High Performance Computing) , p. iii.

IDB (Incarnation Database) , p. 50.

IETF (Internet Engineering Task Force) , p. 54.

IP (Internet Protocol) , p. 77.

J2EE (Java 2 Enterprise Edition) , p. 49.

Java (The Java Toolkit) , p. 51.

JMX (Java Management Extensions) , p. 75.

JSDL (Job Service Description Language) , p. 28.

K-Wf Grid (Knowledge based Worflow Systems for Grid Applications) , p. 40.

KB (Knowledge Base) , p. 99.

MDS (Meta Directory Service) , p. 64.

MIB (Management Information Base) , p. 2.

MOM (Message Oriented Middleware) , p. 49.

MPI (Message Passing Interface) , p. 51.

MUWS (Management Using Web Services) , p. 58.

NextGrid (The Next Generation Grid) , p. 27.

NGG (Next Generation Grids) , p. 8.

NJS (Network Job Supervisor) , p. 50.

NRPE (Nagios Remote Plug-In Executor) , p. 61.

OASIS (Organization for the Advancement of Structured Information Standards) , p. 50.

OGSA (Open Grid Service Architecture) , p. 28.

OGSA-DAI (Open Grid Service Architecture-Data Access and Integration) , p. 52.

OGSI (Open Grid Service Infrastructure) , p. 49.

OLAP (On-Line Analytical Processing) , p. 64.

OO (Object Orientation) , p. 48.

Open Grid Forum (OGF) , p. 28.

OSI (Open Systems Interconnection) , p. 55.

OWL-S (Semantic Markup for Web Services) , p. 17.

P2P (Peer-to-Peer Computing) , p. 27.

PBM (Policy based Management) , p. iv.

xx

ABBREVIATIONS

PDP (Policy Decision Point) , p. 66.

PEP (Policy Enforcement Point) , p. 66.

PKI (Public Key Infrastructure) , p. 53.

QoS (Quality of Service) , p. 2.

R-GMA (Relational Grid Monitoring Architecture) , p. 57.

REST (Representational State Transfer) , p. 50.

RinGrid (Remote Instrumentation on Next Generation Grids) , p. 42.

RPC (Remote Procedure Call) , p. 47.

RTI (Run-Time-Infrastructure) , p. 42.

SAML (Security Asstertion Markup Language) , p. 51.

SBI (Service Based Infrastructures) , p. 2.

SIMDAT (Grids for Industrial Product Development) , p. 53.

SLA (Service Level Agreement) , p. 2.

SLO (Service Level Objectives) , p. 2.

SME (Small and Medium Enterprise) , p. 36.

SMS (Short Message Service) , p. 64.

SNMP (Simple Network Management Protocol) , p. 2.

SOA (Service Oriented Architecture) , p. iii.

SSH (Secure Shell) , p. 91.

TCP (Transport Control Protocol) , p. 62.

TrustCoM (Trust and Contract Management Framework) , p. 6.

TSI (Target System Interface) , p. 50.

TTP (Trusted Third Party) , p. 17.

UDDI (Universal Directory and Discovery Interface) , p. 37.

UDP (User Datagram Protocol) , p. 62.

UML (Unified Modeling Language) , p. 56.

UMTS (Universal Mobile Communication System) , p. 44.

UNICORE (Uniform Access over the Internet to Computing Resources) , p. iii.

VBE (Virtual Breeding Environment) , p. 37.

VHE (Virtual Hosting Environment) , p. 53.

VIROLAB (A virtual laboratory for decision support in viral diseases treatment) , p. 40.

VL-E (Virtual Laboratory for eScience) , p. 40.

VO (Virtual Organisation) , p. iii.

WBEM (Web Based Enterprise Management) , p. 61.

WLAN (Wireless Local Area Access Network) , p. 35.

WMI (Windows Management Interface) , p. 2.

WS-CDL (Web Service Choreography Definition Language) , p. 13.

WS-RF (Web Service Resource Framework) , p. 50.

xxi

ABBREVIATIONS

WSDL (Web Service Description Language) , p. 17.

WSDM (Web Service Distributed Management) , p. 60.

WSLA (Web Service Level Agreement) , p. 58.

WSRF (Web Service Resource Framework) , p. 60.

XACML (eXtensible Access Control Modeling Language) , p. 67.

XML (eXtensible Meta Language) , p. 58.

xxii

Chapter 1

Introduction and Rationale

The availability of the Internet as a utility has lead to several emerging trends around the
general move from monolithic to distributed cross-organisational applications. The first
trend is to aim for a complete virtualisation of resources and hide heterogeneity of an IT in-
frastructure such as computational and data storage infrastructures. Recently this has been
further developed to a wider set of resource types ranging from physical resources such as
network, computation and data toward a more general understanding including applica-
tion, information and knowledge resources. Along with these developments the concept of
service provision of resources as an utility not only within one organisation but also across
organisational boundaries has emerged in several application domains. Based on these
fundamental trends toward virtualisation of resources and services the notion of composed
services that combine these utilities to complex services e.g. driven by a business process
description or pre-defined bundles lead to new kind of applications that are no longer built
as a monolithic block but are highly configurable and adaptable to changing conditions and
environments. Beside the composition on service level also organisational boundaries need
to be considered if the composed services are owned and controlled by different entities.
Collaboration across organisational boundaries, also known as a Virtual Organisation (VO)
[1] is one of the key concepts adopted by the Grid community. Initial models targeted at
VOs built from a very small number of organisations with a low number of different service
types such as compute services or data storage access. A typical example are the Virtual
Organisations of virtual computing centres realised in research projects such as Uniform
Access over the Internet to Computing Resources (UNICORE) [15], Distributed European In-
frastructure for Supercomputer Applications (DEISA) [3] and Enabling Grids for E-Science
(EGEE) [16]. More dynamic, business process driven Virtual Organisations are currently
under research in several European research projects in the domain of eBusiness and Next
Generation Grids such as TrustCoM1 [17, 18], NextGrid2 [19] and Akogrimo3 [20, 21, 22]. It
is important to outline that distributed applications of this type are in contrast to develop-
ments in the domain of metacomputing [23] not aiming to realise a rather tight coupling of
the resources and exchange of information messages with low latencies but following the
paradigm of a Service Oriented Architecture (SOA) where different services are expected
to be loosely coupled and exchangeable at runtime. Another important differentiator to

1http://www.eu-trustcom.com
2http://www.nextgrid.org
3http://www.mobilegrids.org

1

Chapter 1 Introduction and Rationale

tightly coupled systems driven mainly by performance is the role of economics as indicator
if and how a collaboration is established. This means that the selection of a collaboration
partner is not only based on the technical and functional properties offered by a service
provider but also on properties like reputation, price and guaranteed service levels. It is im-
portant to note that service levels are not necessarily limited to Quality of Service (QoS) but
a Service Level Agreement (SLA) is more seen as an electronic form of a contract between
service consumers and providers. Next Generation Grid Systems as defined in [24] or the
Web Services community is following this trend of Service Based Infrastructures (SBI).

The underpinning technologies of this organisational changes are the adoption of com-
ponent technology and the paradigm of SOA. The most successful realisation of the SOA
paradigm are Web Services [25] that will according to [26] play a major role in IT starting
from 2006 and are integral part of several standard application frameworks such as the .NET
framework or open source solutions such as the Axis Toolkit4. Additionally many commer-
cial products of all major IT vendors do exist.

However the problem of a successful supervision of the operation of these kind of distri-
buted applications is not solved. Distributed applications require the availability and re-
sponsiveness of resources across organizational and security domains. Many distributed
systems still run in ’best-effort’ mode without or sufficient monitoring mechanism on the
availability and quality of the resources involved in the distributed scenario. This operation
mode is not applicable for commercial settings where resources are either accounted or a
Service Level Agreement (SLA) toward the customer must be fulfilled. This is not only appli-
cable for e-commerce or Application Service Provision (ASP) solutions but especially in the
scientific and engineering domain where the requirements on Quality of Service on all lev-
els from hardware over network to application resources are high. In order to guarantee the
successful operation of distributed applications the status of resources must be analysed
before the application is started, during the operation phase and also after the application
is finished.

Another problem of traditional monitoring solutions is their focus on networking and to-
pologies that changes infrequently. With concepts like the Grid, especially with the intro-
duction of dynamic Virtual Organisation (VO) (as described above), new solutions that au-
tomates the deployment, control and execution of necessary operational boundaries and
policies for example Service Level Agreement and Service Level Objectives (SLO) must be
defined.

1.1 Objectives

The monitoring of resources such as network routers using e.g. Simple Network Manage-
ment Protocol (SNMP) and Management Information Base (MIB) or computers using tech-
nologies such as the Windows Management Interface (WMI) for the Windows Operating
System based on the Component Information Model (CIM) standard is easily possible and

4http://ws.apache.org/axis/

2

1.2 Chosen Approach

well understood. However the simple collection of the status of involved resources in a dis-
tributed system is not sufficient.

The objective of this thesis is to rely on the existing results in monitoring and well defined
information models to derive an integrated framework enabling the management of dy-
namic virtual organisations for a wide range of different scenarios. Starting from a new VO
model based on the model emerged within the Grid community amended with results from
the research activities in the field of economics the proposed model assumes that all rela-
tionships between providers and between consumer and provider is controlled by Service
Level Agreements. These SLAs are driving the management activities within the service pro-
vider and consumer domain but respect the fact that the owner of resources want to main-
tain the full control over their assets. This approach allows a decoupled management for
each provider/consumer independently from the goals or structure of the Virtual Organisa-
tion. As a second result this allows also the participation in several Virtual Organisations at
a time with the same set of resources.

1.2 Chosen Approach

The starting point for this thesis is the assumption that the existing VO models in the Grid
community with their centralized and static viewpoint are not suitable for an application in
commercial oriented scenarios. In this scenarios no centralized control but a more loosely
coupled collaboration of mostly independent and autonomous entities is assumed. Con-
sequently the existing tools for the control and management of Virtual Organisations are
insufficient.

The first step taken (as shown in figure 1.1) was to develop a new VO model by amend-
ing the existing VO models in Grids with research results from the field of economics. This
extended, Service Level Agreement (SLA) oriented model, is no longer based on static coali-
tions of rather homogeneous providers but assumes a loosely coupled and dynamic rela-
tionship among them.

The analysis of Grid use cases and other distributed applications from a couple of European
research projects utilizing this VO model lead to a classification of the scenarios as a set of
’typical cases’. For these cases the key requirements for a management solution have been
worked out.

The review of existing work and these key requirements has been used as input for a gap
analysis identifying missing functionality. The next step was to derive from the require-
ments, the gap analysis results and other related work a layered model and an overall man-
agement concept. The validation of the concept is realised by an instantiation in the do-
main of High Performance Computing (HPC).

The thesis is concluded with a summary of the results, potential applications of the frame-
work in other domains and proposed future research directions.

3

Chapter 1 Introduction and Rationale

Event/Result

Function/
Action

V

AND

Figure 1.1: Approach in Event driven process chain notation as defined in [10]

4

1.3 Research Contribution

1.3 Research Contribution

The research contribution of this work is a new taxonomy for Virtual Organisations amend-
ing the rather limited Grid VO model with results from the research community in eco-
nomics and using this taxonomy for a classification and requirements elicitation for busi-
ness grid scenarios. The author and others have published these concepts [27, 28, 18, 21,
29, 17] and variations and refinements of the presented model have emerged in the last
years and can be seen as widely accepted within the business oriented grid research com-
munity.

The major result is an integrated and layered management architecture for such Virtual Or-
ganisations. The model is assuming an Service Level Agreement (SLA) driven collaboration
across providers and between consumer and provider and is instantiated in the domain of
High Performance Computing (HPC). The concept is based on the work of the author as
lead architect of the GeneSyS project and has been published by the author and others in
[30, 31, 32, 33, 34].

In summary the major contributions of this thesis are as follows:

1. A new taxonomy for Virtual Organisation far beyond existing models in the Grid com-
munity integrating research results on Virtual Organisations from the field of eco-
nomics towards an Service Level Agreement (SLA) driven dynamic collaboration model.

2. An integrated management concept for such Virtual Organisations considering busi-
ness aspects as well as technical constraints and re-use of existing tools.

3. An instantiation of the framework for an HPC utility provider as a layers approach and
detailing the activity flow for each of them.

Beside these major results this work also contains an analysis of existing approaches for
monitoring of distributed applications and a comparison of passive monitoring approaches
where the management of the systems is done by a human operator and more automated
supervision or management systems and a gap analysis.

In general the results had been intentionally not tightly coupled with a programming lan-
guage, an operating system or even a specific realisation of the Service Oriented Architec-
ture paradigm. While as of now only Web Services seems to be a available as a decently
elaborated Service Oriented Architecture platform the presented framework only assumes
that the different organisations, or more precisely the services offered by them, are loosely
coupled and following open interfaces and protocols.

1.4 Background

The research performed by the author as lead architect of the research project Generic Sys-
tem Supervision (GeneSyS) built the basis for the more comprehensive management frame-
work approach presented here. As part of GeneSyS a Generic Supervision Architecture for
distributed systems has been developed. This architecture provide components for the col-
lection of performance data on different levels from hardware over network up to services,

5

Chapter 1 Introduction and Rationale

components and applications and has been validated in several application contexts such
as distributed training and web server monitoring. The solution realised for supporting hu-
man operators and did not contain any automation or dynamic settings. Furthermore the
assumption taken was that the different organisations involved in the distributed applica-
tion are connected by secure channels and participate only in one application at a time.

Within the research project Grid based Application Service Provision (GRASP) basic Service
Level Agreement (SLA) Monitoring services for Application Service Provision applications
utilizing Grid has been developed as part of the work of the author within the research
project and an initial integration of SLAs into Virtual Organisations has been considered.
The solution developed was limited to the quite simple provision of computing resources
for pre-defined application services.

Furthermore the requirements analysis for dynamic distributed applications conducted as
part of the work in the Integrated Projects Trust and Contract Management Framework
(TrustCoM), European Learning Grid Infrastructure (ELeGI), Business Experiments in Grids
(BEinGRID) and Access to Knowledge through the Grid in a Mobile World (Akogrimo) has
been exploited in particular in chapter 3.

6

Chapter 2

A new Taxonomy for Virtual
Organisations

This work targets scenarios where the application is built from several services delivered
by different organisations. While the framework can handle also simpler cases e.g. a simple
client server scenario the overhead of the management framework would not be justified.

This chapter is seen as the first step towards the definition of the framework and will be a key
element to motivate the chosen building blocks of the management framework described
in chapter 5.

Starting from a definition of cross organisational applications a definition of Virtual Orga-
nisation is developed from different viewpoints. The proposed new taxonomy combine
ideas from different domains most notably Grid Computing, Collaborative Working envi-
ronments and from the economic disciplines of Enterprise Networks, Outsourcing and Vir-
tual Enterprises. The description of conceptual roles expected in such a dynamic Virtual
Organisation are briefly outlined. The chapter is concluded by the dynamic viewpoint on
Virtual Organisations in the form of a lifecycle model. This model is used in the next chapter
to identify specific requirements for each of the phases for all scenarios.

2.1 Applications spanning across several
Organisations

The application scenarios described in chapter 3 are of very different nature and complex-
ity in order to deliver a broad range of requirements. However the clearly most challeng-
ing applications are built from services delivered by different organisational entities. This
can be different companies or units within a company that are managed independently.
In this thesis obviously not all aspects of cross organisational applications can be tackled.
As outlined in section 1.4 the presented work is aligned with ongoing European research
projects and will rely on their decisions and solutions not directly relevant for the man-
agement framework. For example the anticipated framework is not intended to propose
specific solutions for cross organisational identity management, dynamic security or repu-
tation management. This consequently requires that the scenarios will not be analysed in

7

Chapter 2 A new Taxonomy for Virtual Organisations

depth with respect to properties out of scope for the management. For example security
requirements will only analysed if relevant for the management framework.

A cross organisational distributed application for this work is defined as

. . . an application that is built from at least two services that need to exchange
messages potentially through an uncontrolled communication channel to de-
liver and are managed independently by different organisational entities. Such
applications might evolve over time and certain entities with their services might
be added or removed.

The most important aspect is that the different organisational entities are connected via
a communication channel controlled by one or more third parties (e.g. delivery guarantee,
certain service levels, ...) and both entities are operating independently. This does not mean
that they are not communicating to agree or negotiate behaviour or align their management
decisions but there is not necessarily a central entity that can impose a certain behaviour.

2.2 Existing Virtual Organisation Models

There is no universally accepted generic model for a Virtual Organisation (VO). In the late
90s the concept of Virtual Organisations or Corporations, also referred to as Networks [4,
7, 8, 9] or Alliances [5, 6] emerged in the domain of economics as an organisational man-
agement level model where several companies integrate business processes across organi-
sational boundaries. Additional to this structural view for an established Virtual Organisa-
tion a process oriented view discussing the dynamics for building and terminating a Virtual
Organisation have been considered for example in [7, 11, 35]. Beside in [36] a model inte-
grating this structural and process oriented view is presented.

Byrne defines in [4] a Virtual Organisation as follows:

. . . a virtual organization is a temporary co-operation of independent compa-
nies - suppliers, customers, even erstwhile rivals – linked by information tech-
nology to share skills, costs, and access to one another’s markets . . .

The Grid community defines a Virtual Organisation as a mechanism for controlled resource
sharing [1]. While adopting the Service Oriented Architecture (SOA) paradigm and the move
from computational and data grids towards the information and knowledge Grid, also la-
belled as Next Generation Grids (NGG), the understanding of Virtual Organisations devel-
oped in [37, 38] to this rather unspecific description:

. . . an abstraction for resource sharing and collaboration action across multiple
administrative domains . . .

As a result the Grid community has a rather well defined model for a Virtual Organisation
for first generation, infrastructure oriented grids such as implemented in UNICORE [15,
39, 2], DEISA [3] or EGEE [16] . These models are rather static in its nature and are not
created based on a business demand or opportunity but are intended to be established as
an infrastructure for a large scientific community.

8

2.3 A proposed more sophisticated VO Model

2.3 A proposed more sophisticated VO Model

Next Generation Grid research projects that are not targeting purely the eScience com-
munity but are also open to commercial application of Grid technology are demanding
more dynamic or agile Virtual Organisation Models as shown by the author and others in
[17, 18, 40, 41]. In [27] the author and others have presented a first definition of such Virtual
Organisations based on an earlier definition from the TrustCoM project [42] as follows:

A Virtual Organization (VO) is understood as a temporary or permanent coali-
tion of geographically dispersed individuals, groups, organizational units or en-
tire organizations that pool resources, capabilities and information to achieve
common objectives. Virtual Organizations can provide services and thus par-
ticipate as a single entity in the formation of further Virtual Organizations. This
enables the creation of recursive structures with multiple layers of virtual value-
added service providers.

The following subsections will further detail this definition of a Virtual Organisation from
different viewpoints. First the general principles of a Virtual Organisation are discussed
and different structures and organisational models are presented. The second viewpoint
discusses the Virtual Organisation by looking at actors and roles. The last part looks at
the dynamics involved with Virtual Organisations and the associated lifecycle and the spe-
cific tasks with a particular focus on the challenges for the management of distributed sys-
tems.

2.3.1 Structural and Organisational Properties of a Virtual
Organisation

A Virtual Organisation is built from at least two legal organisations that are acting as re-
source or service provider. Sharing a resource can only be done if a set of functionalities
are provided to use and operate them. In literature very often the term resource is used
as a reference to a service for a real physical resource whereas the term service is seen as a
more abstract concept composed via a combination of physical resources. In this document
the latter definition is used. The major pre-condition is that there must be an agreement
between these two companies to share resources under certain conditions (which do not
mean that these resources are provided free of charge). Furthermore these resources may
be provided at the same time to more than one Virtual Organisation (this basic principle
is shown in figure 2.1). The assumption that a resource is not provided exclusively to one
Virtual Organisation and that in consequence a resource owner must fulfil at the same time
several, potentially competing or even contradictory requirements leads to the following
fundamental implications:

• A Virtual Organisation needs to be managed. This cannot be done on global or VO
wide level, but must be done in a decentralised fashion (see also [43]).

• Some VO members may be replaceable, some others may provide a unique type of
service or resource.

9

Chapter 2 A new Taxonomy for Virtual Organisations

• The potentially conflicting interests of the resource owner and the other collaborators
in the Virtual Organisation must be managed and ensured by means e.g. of an elec-
tronic contract not only documenting the agreed service quality and conditions, but
also measures to be taken in case of violation of them.

• The organisational structure of the Virtual Organisation has significant impact on
how the potentially high number of organisations participating are configured, how
the contracts are established and negotiated and in which way the management of
the distributed system is divided between an entity on VO level and a management
system on service provider level.

• There might be only one partner in the VO that interacts with the customer and may
act as prime contractor or core partner.

Figure 2.1: High level view of a virtual organisation

It is important to mention that some of these assumptions are in contradiction to the VO
model applied in major Grid deployments such as Enabling Grids for E-Science (EGEE) [16]
or Distributed European Infrastructure for Supercomputer Applications (DEISA) [3]. The re-
spective management solutions are operating across organisations on a VO wide level and
do not consider actively competing interest for the resources provided to the VO. The as-
sumption mentioned above that the management can only be done by the resource own-
ers also include the potential risk that a resource owner is intentionally not providing the
resource according to the agreed contract. The resource owner may have based such a de-
cision on an internal prioritisation of several competing consumers of the resource. This
prioritisation could be based on importance of the service (e.g. an emergency service) or
economic considerations (industrial client or more expensive interactive service).

The properties of a Virtual Organisation are summarised in table 2.1. The structure of this
table is inspired by the table presented in [36] on page 6–7.

10

2.3 A proposed more sophisticated VO Model

Property Definition

Goal Specific The Virtual Organisation is built to achieve a specified goal. Each
participant is providing a contribution towards this goal

Formalised The co-operation among the participants is formulated in the form
of electronic contracts in which the behaviour and roles are explic-
itly formulated and defined.

Modular The Virtual Organisation is built from several organizations which
are offering a set of services or resources. These services are pro-
vided according to the agreed contracts to the Virtual Organisation,
but control and management is not delegated to a central instance.

Heterogeneous The resource and services by the different participants are not ho-
mogeneous. Each member has its strengths and distinct profile
and as outlined above may provide even a unique resource.

Dispersed The members of a VO may be located at different places and also
the duration of membership is determined and independent from
the membership of others.

Connected In order to enable a communication between services and re-
sources across organisational boundaries not only technological
but to the same extend also procedural or administrative barriers
need to be overcome. As simple examples the configuration of fire-
walls or the dynamic creation of user accounts can be mentioned.

Complex The management and organisation of services and resources
within an organization is already a complex and challenging task.
In the geographically and legally dispersed case the problems to
be solved are even more complex as a decentralized control is as-
sumed.

Unpredictable An inherent property of complex systems is the lack of predictabil-
ity. The relations between the different elements are not fixed and
even the VO members, the service providers, may change their
structure, resources and services landscape over time which makes
also the behaviour unpredictable. As a counter measure the del-
egation of the management problem to the resource owners and
the formal description of the relations between the providers in
the form of Service Level Agreement is reducing the probability of
unexpected behaviour but is not a guarantee. As described above
service provider might even decide to act unreliable in one Virtual
Organisation to safeguard a contract in another VO.

Interdependent A Virtual Organisation is not a linear system and the change of the
state and the behaviour might have impact on the state and be-
haviour of other members in the VO. This property is very closely
related to the one above.

11

Chapter 2 A new Taxonomy for Virtual Organisations

Property Definition

Bound As shown in figure 2.1 the boundary of a Virtual Organisation is
logically lying within an organisation. Furthermore the boundary
is different for different Virtual Organisations a service provider is
participating.

Table 2.1: Structural properties of Virtual Organisations

2.3.1.1 Topologies

The following sections will outline in more detail potential topologies for Virtual Organi-
sations. They are based on the classification developed by Lethbridge in [9]. Due to the
hierarchical nature of Virtual Organisations where a particular service provided to a VO A
can be either provided by any kind of legal organisation or another Virtual Organisation
B all presented topologies in the next sections can be combined and used together. For
example within a Virtual Organisation that is organised according to the Hub-and-Spoke
topology around a main contractor as it is typical for the design of complex products in the
automotive or aerospace domain some of the services could be provided instead of a legal
organisation by another Virtual Organisation that is organised in Peer-To-Peer topology as
shown in figure 2.3. While in the figures 2.2, 2.3, 2.4 a dedicated consumer as a specific role
is shown in an Business to Business (B2B) scenario this role would be covered by a service
provider.

Hub-and-Spoke (Main contractor) The topology of this model is grouped around a
core organisation or main contractor that acts as the interface towards the consumer. Sev-
eral other organisations contribute with services an resources to the objectives of the Vir-
tual Organisation. The Core Organisation is exchanging information with all the services of
these organisations. Furthermore the core organisation is expected to coordinate the infor-
mation flows between the members. Despite the management must suit each member in
the Virtual Organisation the overall management is under control of the core organisation.

Example 2.1 A plane manufacturer is outsourcing part of his business to external organisa-
tions such as optimisation of a turbine to a provider of high performance computing services.
The process stays under the control of the manufacturer which is also delivering the end prod-
uct to the consumer.

Broker This is a variation of the previous topology. In this setting again several organi-
sation are placed around a central interface towards the consumer. In contrast to the pre-
vious model this central organisation is not acting as the core organisation that cannot be
replaced but is simply acting as a central interface toward the customer but is not acting as

12

2.3 A proposed more sophisticated VO Model

Request Service

Aggregator

Consumer

Main Contractor

Aggregator

Main Contractor

Service I

Provider A Main Contractor

Service II

Provider B

Service III

Aggregator

Main Contractor

Service II

Provider C

Deliver Service I

 Deliver Services of type II and III

Del. also
service II

Figure 2.2: Topology for Hub-and-Spoke and Broker scenarios

a single responsible entity and is not controlling the other members in the Virtual Organi-
sation.

Flat Full Hierarchy (Peer to Peer) In this case independent organisations are grouped
together with no clear core member. The roles of the organisation can be different and
one role could be to build the interface to the consumer but no central controlling entity is
present.

Example 2.2 A possible scenario for this topology is the sharing of data storage capacity
across several participants within a Virtual Organisations similar to the widely used file shar-
ing applications.

Supply Chain (Process oriented) The supply chain or value alliance is structured that
each member is using the output of the previous member as input and produce a derived
output. The process is started with initial input from the consumer and is ended with the
delivery of the final outputs to the consumer. The process might be expressed by a Di-
rected Acyclic Graph (DAG). In this case rather simple process descriptions would be possi-
ble. However this topology covers also different kinds of workflow driven interactions using
one of the large number of different workflow or choreography languages such as Business
Process Execution Language (BPEL) [44], Web Service Choreography Definition Language
(WS-CDL) [45] to name a few. Recent developments introduce several layers of process def-
initions described in a more abstract fashion relying on semantic descriptions that can be
mapped to the above mentioned more infrastructure oriented workflow descriptions.

Example 2.3 A wide range of Grid solutions are organized according to this topology. Early
Grid solutions such as Uniform Access over the Internet to Computing Resources [2, 15, 39]

13

Chapter 2 A new Taxonomy for Virtual Organisations

Figure 2.3: Topology for the peer to peer structure

Service IV

Consumer

Provider DAggregator

Main Contractor

Service I

Provider A

Main Contractor

Service II

Provider B

Aggregator

Main Contractor

Service II

Provider C

Service V

Provider D
Aggregator

Main Contractor

Service VI

Provider C

Aggregator

Main Contractor

Service VII

Provider C

Start

Figure 2.4: Sample topology for the chained structure

14

2.3 A proposed more sophisticated VO Model

where the workflow was described as an acyclic graph called the Abstract Job Object (AJO)
built the starting point. Now complex solutions including semantic workflow descriptions
exist.

2.3.2 Role Model

Early definitions of Virtual Organisation assume either that the collaborators are of equal
nature (e.g. provider of computational services) or that the roles are limited to service pro-
vider and service consumer. Considering a more dynamic model as outlined above with
contributors from different companies with conflicting interests new roles that mediate be-
tween these stakeholders are needed. Additional supporting the lifecycle of VOs requires
new roles. Another aspect is that the number of provided services have been increased
from an originally low number (e.g. computing cycle and data storage provider) to more
complex service Grids.

In [35] roles in collaborating businesses are defined with a sole economic viewpoint. One
of the identified roles is the broker acting as the intermediary between the customer and
the provider of a service. Additional tasks associated with this role are ranging from mar-
keting up to acquisition and negotiation of new contracts. Beside there is also the role of
the competence manager delivering the engineering knowledge on available technologies
and competencies for the service provider. In this economic model it acts as a supporting
role for the broker. Another role is the project manager that supervises the Virtual Organi-
sation and is triggering potentially a re-engineering process e.g. by replacing partners that
do not perform satisfactorily. The role of the in and outsourcing manager is to develop
dedicated interfaces for each partner in the Virtual Organisation and offer the technolog-
ical know-how for the delivery of appropriate and effective services. Furthermore the role
of the auditor is defined acting as a neutral financial auditor for example in the role of a
clearing house. These roles also include the tasks of keeping track of all transactions taken
(a kind of provenance service). Aside of this enactment oriented roles Katzy defines also
the role of a network1-coach that acts as a kind of consultancy office for all members of the
collaboration. According to Katzy in [35]

...this coaching is necessary to create the indispensable co-operative culture of
the network and can be achieved by governance of the network, setting business
rules and routines for co-operation, providing technological infrastructures in
the network and managing relationships (and conflicts)...

The above mentioned roles are considered to be fulfilled by humans. For the long lived
Virtual Organisations considered in the above mentioned paper this is an appropriate solu-
tion. However this does not fit the model of the self-organizing Virtual Organisations where
for example the reaction time for replacing an underperforming partner might be too short
to base it on approval by a human person. This kind of decision must be delegated to a
VO management system that is entitled to trigger necessary actions for example based on
human defined policies or rules.

1In [35] network is used similarly to the term Virtual Organisation as used here

15

Chapter 2 A new Taxonomy for Virtual Organisations

class Serv iceProv ider

Offer Manager

Service
Advertiser

Service Enactor

Resources

Consumer/Customer

TrustedThirdParty

+ Auditing Agent
+ Membership and VO Manager
+ Notary
+ Registry and Discovery Services

(from VO Taxonomy)

Resource
Manager

Advertise capabilities

publish capabili ties

«flow»

Negotiate Conditions

Availabili ty of Resources

1

Manage and control

1..*

Notify about accepted offers

1..*

Manage Enactment

1..*

Figure 2.5: Coarse grained view on the roles and their relations in the service provider
domain

16

2.3 A proposed more sophisticated VO Model

2.3.2.1 Dynamic Virtual Organisation Roles

In this section the roles in and its interrelations from [35] had been adapted to a more dy-
namic model assuming the enactment of the roles to be driven by software components
only externally configured by humans but not performed by humans. As part of the adap-
tation, some of the roles had been mapped to several components as the tasks performed
by a specific role had been split across the three identified domains, the user domain, the
service provider domain and the trusted third party domain. The user domain summarizes
the roles and responsibilities performed by the user or more precisely a user agent which
is the representation of a user in the system that is configured by the user for example by
configuration files, policies or also a user profile that expresses preferences to certain pro-
viders which might be based on personal or contract based reasoning. The service provider
domain lists all the roles seen for service providers. Often the actors of service providers
may either interact directly with the user domain actors or the interaction is done via actors
from the trusted third party domain.

2.3.2.2 Service Provider Domain

The service provider domain is characterized best as the entity that has as major purpose
the delivery of one or more services to other service providers or the end user. The assump-
tion taken here is that the provision of these kind of services is not done in best effort but
requires a decent level of management of the service delivery towards the consumer and
that the service level has been agreed in the form of an bilateral Service Level Agreement
(SLA). This SLA does not only cover the agreed metrics that allow to measure the quality of
the provided services but also lists potential penalties that would be applied in the case of
failing to deliver.

Service Advertiser One essential element of a service provider is its capability to adver-
tise the offered services to potential customers. This can be seen as an adaptation of the
in/outsourcing manager roles outlined above. The key issue here is that the service must
be described detailed enough to allow an automated discovery and integration of the ser-
vice. In the area of Web Services several standards for this purpose do exist such as Web
Service Description Language (WSDL) [46] for describing the functional parameters. De-
velopments such as Semantic Markup for Web Services (OWL-S) [47] can be used to further
extend the description beyond functional parameters to a more semantically enriched de-
scription.

It is assumed that such descriptions are produced by a human. This person is acting similar
to the definition above as the in/outsourcing manager. In order to allow potential con-
sumers of services to query for the service it must be stored in some kind of registries. This
role need to be split between a Trusted Third Party (TTP) service that stores static or infor-
mation that is changing with a low frequency and a local service called Offer Manager that
is entitled to negotiate with potential consumers detailed parameters of the service that are
individual and/or of dynamic nature.

17

Chapter 2 A new Taxonomy for Virtual Organisations

So in summary the tasks of the Service Advertiser are to register, de-register and update
the static or semi-static information of a services offered by a service provider in Virtual
Organisation wide accessible registries.

Offer Manager The Offer Manager acts as the interface to the potential consumer of a
service. Upon discovery of a service provider that may offer a service such as delivery of
a computational service for a given commercial application with the required machine ar-
chitecture and type the consumer has decided to start the process of agreeing on a Service
Level with the provider in order to safely use the service. The Offer Manager needs to in-
teract with the Resource Manager to understand its current resource availability, with the
Service Enactor what other contract had been agreed.

Several kind of negotiation protocols between the consumer and the provider are under
research ranging from free negotiation to fixed offers. An intermediary solution is the so
called discrete offer protocol ([48]). The discrete offer protocol assumes that different con-
sumers do require different service levels (also driven by the assumption that better service
level are more expensive) but a free negotiation is not beneficial as this would make the of-
fers of different service providers not comparable and as also outlined in chapter 5 makes
the management a much too complex if not impossible problem. So potentially a service
provider might offer a gold, silver, bronze like pre-defined service level. However this offer
might not be possible to be enacted at all time so the task of the offer manager is to under-
stand if the current resource situation allows to offer a certain level such as the silver service
or in other words of the risk associated with the delivery of the service versus the potential
gain and penalty is balanced. Beside this rather fixed approach more flexible solutions are
currently under research as outlined in [49, 50, 51].

Service Enactor Upon acceptance of an offer from consumer and provider side the
agreed service need to be provided. The assumption is that it is not sufficient to simply
book an appropriate resource and that the enactment of the service does need further in-
teraction. So the first step on acceptance of the offer is to establish an initial set of resources
based on the analysis done in the negotiation or planning phase. This start configuration
covers all kind of resources ranging from hardware, such as a computational resource, net-
work and software resources to other resources such as licenses.

While this start configuration might be sufficient to guarantee the promised service level in
the beginning due to changing conditions e.g. in system or network load or other competing
services changes may be necessary. So a Service Enactor need to be able to monitor all
involved resources, consolidate them to an overall system status and derive the appropriate
measure to be applied in order to react on changing conditions. A typical approach would
be that the Service Enactor is driven by external rules or policies.

An important aspect here is that the reaction on changing conditions cannot be limited to
one single provided service but that a Service Enactor needs a global view on all currently
provided services and potentially needs to prioritise the measures also based on economic
considerations such as importance of the customer or associated risk with failure for exam-
ple based on the agreed critical penalty.

18

2.3 A proposed more sophisticated VO Model

2.3.2.3 User Domain

Within the user domain a set of service supporting the consumer to use the provided facil-
ities either from the Service Provider domain or Trusted Third Party domain are necessary.
The listed roles below are the ones that are additionally necessary to integrate with a Vir-
tual Organisation and need to be integrated with other elements e.g. local policy provider or
identity and authorization provider. The functionality described here for the User Domain
must not necessarily be deployed on a computing system of the End-User but might be del-
egated to an User Agent acting on the users behalf for this task. In particular as in many
deployments the end-users are connected via specific application interfaces or portals the
delegation of these tasks is likely to be even the common case.

class UserDomain

Consumer
Serv ice Manager

Offer Requestor Serv ice
Discov ery Agent

TrustedThirdParty

+ Auditing Agent
+ Membership and VO Manager
+ Notary
+ Registry and Discovery Services

(from VO Taxonomy)

Serv iceProv ider

+ Offer Manager
+ Resource Manager
+ Resources
+ Service Advertiser
+ Service Enactor

(from VO Taxonomy)

Consumer/Customer

Consumer
Resources

Query Registries

«flow»

Store Agree Offers

«flow»Negotiate Offer

«flow»

1..*
Manage

1..*

Manage Offer Enactment

«flow»

Figure 2.6: Coarse grained view in role interactions from the User Domain viewpoint

Service Discovery Interface As outlined above the initial step for establishing an in-
teraction between a consumer and a service provider is the discovery of an appropriate
provider. A consumer side component that maps the potentially rather abstract require-
ments together with local policies is needed that communicate with service registries or
service marketplaces to find potential candidates and apply some local policy driven rank-
ing on them. Part of this component can also be interactions with other local services such
as authorization components if e.g. the requesting user is allowed to issue external provider
requests.

19

Chapter 2 A new Taxonomy for Virtual Organisations

Offer Requestor Based on a list of potential providers a concrete agreement needs to be
established with the provider. As the agreement to such an electronic contract requires a
defined protocol and content of the exchanged messages to ensure also the legal viability of
the agreed contract, a specific component communicating the service quality needs in the
required way is essential on the consumer side.

Consumer Service Manager The agreed contract might impose also restrictions on
the consumer side. As an example consider an Service Level Agreement (SLA) that guaran-
tees a maximum response time for a service in case less than 1000 requests per minute are
issued. A local management on the user side that makes sure that in case of an increas-
ing need of transactions beyond 1000 requests per minute a new contract is negotiated
or an additional service provider is added is necessary in order not to request more than
previously agreed. Of course the same applies for an decreasing demand including a full
dissolution of the relation.

2.3.2.4 Trusted Third Party

Beside roles that directly contribute to the goals of the Virtual Organisation additional func-
tionality that helps to build, maintain and operate the Virtual Organisation are necessary.
While these functions could be delivered in theory by each of the collaborators the estab-
lishement of a special role as an intermediary allows "anonymous" communication be-
tween Virtual Organisation members and ensure neutrality for services that are supposed
to supervise interaction and act as clearing house in case of conflicts. A similar concept has
been developed within the TrustCoM project [52] and limited to realising provenance in the
Provenance project [53].

Membership and VO Manager Under the assumption that the provided services can-
not be delivered by one single service provider but need to be composed from more basic
services delivered by different providers there is a need to locate the potential providers.
A selection procedure and the establishment of agreements need to be fostered and sup-
ported. This goes far beyond the broker role mentioned above as the interface is not only
to one single provider but to a set of orchestrated providers that jointly deliver a complex
product or service. An additional aspect is that decisions taken about the set of service
providers needs to be communicated or require certain actions such as the subscription to
certain event types.

Registry and Discovery Services The key element of every service oriented architec-
ture is the ability to discover and locate appropriate services. A wide range of approaches
do exist. A wide range of approaches exist from simple approaches based solely on func-
tional parameters up to semantic search facilities or market places considering more com-
plex matching scenarios. This service needs to be provided by a Trusted Third Party as
neutrality is needed not to give preference to certain providers compared to others in the
delivery of matching providers.

20

2.3 A proposed more sophisticated VO Model

Notary Agreements across organisational boundaries such as Service Level Agreements
or any other kind of action that might be a potential source of conflict should be stored in a
reliable way by a trusted party.

Auditing Beside the more passive storage and query capability of a notary and active
auditing of interactions is necessary. For example in [52] a component called SLAPerfor-
manceLog keeping track of the performance of consumer and provider related to an SLA is
foreseen. Similar mechanisms such as performance or responsiveness of partners might be
subject to auditing.

2.3.3 Dynamic Viewpoint

Network
Design

Restructuring CompetitionNetwork Virtual
Operation

Business
Opportunity
(Value)

12

3

4 5

Figure 2.7: Conceptual model and design and implementation of virtual organisation ac-
cording to Katzy in [11]

In [11] Katzy proposes a conceptual model for the design and implementation of virtual or-
ganisations and identifies 5 major change processes describing the evolution of it. The basic
assumptions are that the process is driven by a market demand or business opportunity2 to
create a Virtual Organisation and put into operation. Another fundamental assumption is
that the organisation is not built from scratch without considering existing business rela-
tionships but that the selection of candidates for designing and structuring the operational
Virtual Organisation is based on existing business relationships called Enterprise Network
(EN). Changes in this Enterprise Network (e.g. a business relationship is ended due to bad
performance) also lead to a restructuring process of the Virtual Organisation. Despite the
process is driven by an identified business opportunity he claims that the increased agility
to react and adopt will also open new markets and therefore create business opportunities.
The conceptual model of Katzy is visualized in figure 2.7.

Based on this high level model, Saabeel et. al. proposed in [36] an extension to this model.
From the ’universe of modules3’ that would constitute the indefinite set of potential ser-
vices and modules available the Enterprise Network is built as a small subset of this uni-
verse whereas a significantly reduced number of potential service and resource providers

2referred as "value" in the paper
3According to the definition provided in table 2.1 this would be services or resources

21

Chapter 2 A new Taxonomy for Virtual Organisations

are integrated. These providers have agreed on a common set of policies and metadata to
describe their services and how they are operated. Out of this Enterprise Network driven by
a market demand a Virtual Organisation is built as a combination of services and resources
provided by the Enterprise Network. The membership in the Enterprise Network and in the
Virtual Organisation are non permanent.

These models are complemented by a lifecycle model developed in the VOMap Roadmap
project [54] and in [7, 55]. According to this sources the life cycle of a Virtual Organisation is
defined by four phases namely identification, formation, operation and termination. Each
of the phases has its distinctive purpose and tasks which are summarised in table 2.2.

Phase Description

Identification In this phase the opportunity is discovered that a Virtual Organisa-
tion should be formed.

Formation In this phase the necessary partners are identified and selected. All
necessary information is distributed in order to allow all partners act
according to the foreseen role.

Operation In this phase the VO is operational and is aiming to achieve its ob-
jectives. During this phase according to the process model outlined
above changes to the membership might be necessary to adapt to
changing conditions and needs.

Termination In case the objectives of the VO have been reached the termination
phase ends. Typical tasks in this phase are accounting & billing or
asset dispersal.

Table 2.2: Lifecycle of a Virtual Organisation

Based on the models and concepts presented above a more sophisticated model for the dy-
namic viewpoint of Virtual Organisations is presented here. These presented model here is
based on the models defined in the frame of several European research projects and pub-
lished by the author and others in [18, 21, 28].

2.3.3.1 Identification

The identification phase is dealing with setting up the Virtual Organization – this includes
selection of potential business partners from the network of enterprises, by using search en-
gines or looking up registries. Generally, identification relevant information contain service
descriptions, security grades, trust & reputation ratings or similar information. Depending
on the resource types, the search process may consist in a simple matching (e.g. in the case
of computational resources, processor type, available memory and respective data may be
considered search parameters with clear cut matches) or in a more complex process, which
involves adaptive, context-sensitive parameters. For an example, the availability of a simu-
lation program may be restricted to specific user groups or only for certain data types, like

22

2.3 A proposed more sophisticated VO Model

less confidential data etc. The process may also involve metadata like security policies or
SLA templates with ranges of possible values and/or dependencies between them, such as
bandwidth depending on the applied encryption algorithm. The identification phase ends
with a list of candidates that potentially could perform the roles needed for the current
VO.

After this initial step from the potentially large list of candidates the most suitable ones are
selected and turned into VO members, depending on additional aspects that may further
reduce the set of candidates. Such additional aspects cover negotiation of actual Quality of
Service (QoS) parameters, availability of the service, willingness of the candidate to partic-
ipate etc. It should be noted that though an exhaustive list of candidates may have been
gathered during the identification phase, this does not necessarily mean that a VO can be
realized - consider the case where a service provider may not be able to keep the promised
SLA at a specific date due to other obligations.

In principle, the intended formation may fail due to at least two reasons: (a) no provider
(or not enough providers) is able to fulfil all given requirements comes to SLA, security etc.
or (b) providers are not (fully) available at the specified time. In order to circumvent these
problems, either the requirements may be reduced (’choose the best available’) or the actual
formation may be delayed to be re-launched at a more suitable time. Obviously there may
be the case, where a general restructuring of the requirements led to a repetition of the
identification phase.

2.3.3.2 Formation

At the end of the (successful) identification phase the initial set of candidates will have been
reduced to a set of VO members. In order to allow these members to perform in accordance
with their anticipated role in the VO they need to be configured appropriately. During the
formation phase a central component such as the VO Manager distributes the VO level con-
figuration information, such as policies, SLAs etc. to all identified members. These VO level
policies need to be mapped on local policies. This might include changes in the security set-
tings (e.g. open access through a firewall for certain IP addresses, create users on machines
on the fly etc.) to allow secure communication or simply translation of XML documents
expressing SLAs or Obligations to a product specific format used internally.

After the formation phase the VO can be considered to be ready to enter the operation
phase where the identified and properly configured VO members perform according to
their role.

2.3.3.3 Operation

The operational phase could be considered the main lifecycle phase of a Virtual Organiza-
tion. During this phase the identified services and resources contribute to the actual ex-
ecution of the VOs task(s) by executing pre-defined business processes (e.g. a workflow of
simulation processes and pre- and post-processing steps). A lot of additional issues re-
lated to management and supervision are involved in this phase in order to ensure smooth

23

Chapter 2 A new Taxonomy for Virtual Organisations

Identification

Formation Operation Termination

Evolution

Figure 2.8: Proposed Lifecycle Model for Dynamic Virtual Organisations

operation of the actual task(s). Such issues cover carrying out financial arrangements (ac-
counting, metering), recording of and reacting to participants’ performance, updating and
changing roles and therefore access rights of participants according to the current status of
the executed workflow etc. In certain environments persistent information of all operations
performed may be required to allow for later examination e.g. to identify fault-sources (for
example, related to the scenario provided below, in case of a plane crash).

2.3.3.4 Evolution

Evolution is actually part of the operational phase: as participants in every distributed ap-
plication may fail completely or behave inappropriately, the need arises to dynamically
change the VO structure and replace such partners. This involves identifying new, alterna-
tive business partner(s) and service(s), as well as re-negotiating terms and providing config-
uration information as during identification, respectively formation phase. Obviously one
of the main problems involved with evolution consists in re-configuring the existing VO
structure so as to seamlessly integrate the new partner, possibly even unnoticed by other
participants. Ideally, one would like the new service to take over the replaced partners task
at the point of its leaving without interruption and without having to reset the state of oper-
ation. There may other reasons for participants joining or leaving the VO, mostly related to
the overall business process, which might require specific services only for a limited period
of time - since it is not sensible to provide an unused, yet particularly configured service
to the VO for its whole lifetime, the partner may request to enter or leave the VO when not
needed.

2.3.3.5 Termination

During termination, the VO structure is dissolved and final operations are performed to
annul all contractual binding of the partners. This involves the billing process for used ser-

24

2.3 A proposed more sophisticated VO Model

vices and an assessment of the respective participants’ (or more specifically their resources)
performances, like amount of SLA violations and the like. The latter may be of particular in-
terest for further interactions respectively for other potential customers. Additionally it is
required to revoke all security tokens, access rights etc. in order to avoid that a participant
may (mis-)use its particular privileges. Generally the inverse actions of the formation phase
have to be performed during Termination. Obviously partial termination operations are
performed during evolution steps of the VO’s operation phase (cf. above).

25

Chapter 2 A new Taxonomy for Virtual Organisations

26

Chapter 3

Classification of Scenarios and
Derived Requirements

The requirements derived here are based on the abstraction of requirements from a wide
range of scenarios and research projects. The information basis analysed are the applica-
tion scenarios of the GeneSyS and GRASP projects and the Integrated Projects TrustCoM,
NextGrid, Akogrimo and the 18 application scenarios from the largest European research
project in the 6t h framework programme BEinGRID . These scenarios cover a very wide
range of different application sectors.

3.1 The Method for the Scenario Classification

The goal of the thesis to deliver a framework that goes beyond supporting a specific appli-
cation scenario and provide a more generic solution requires an intermediate step in the
requirements analysis. Instead of collecting the requirements for a concrete scenario di-
rectly an abstraction and classification process has been necessary to derive a set of typical
cases. These cases are then analysed in order to derive the requirements for the framework.
Consequently the cases do not represent a full scenario e.g. in its topology but represent a
key element that can be found in many of the analysed industrially relevant scenarios.

The pre-conditions for selecting a scenario to be included in the analysis had been that the
taxonomy for Virtual Organisations introduced in chapter 2 can be applied to the scenario
and that in particular the services are provided across organisational boundaries. As the VO
definition is not limited to Grid computational infrastructure scenarios also non-Grid dis-
tributed application has been included. Having a broader basis including also more Peer-
to-Peer Computing based applications broadens the scope as many Grid scenarios tend to
operate in a comparably controlled environment as shown by the author in [56]. Further-
more the classification criteria as defined by the author and others in [57] in particular for
conglomeration type, hierarchy and management structure had been very useful to per-
form the abstraction process.

The results of the analysis are documented following the structure below:

1. Short outline of the specific criteria of the scenario

27

Chapter 3 Classification of Scenarios and Derived Requirements

2. Description of the typical processes performed in the phases identification, forma-
tion, operation and termination according to the definition in section 2.3.3, in partic-
ular in table 2.2 on pages 21 – 22

3. Structure or Topology and communication model based on the definitions in the last
chapter in section 2.3.1.1

4. Organisational Structure with a specific focus on the management aspect

5. Identified challenges for the management of this scenario

6. List potential benefits for the scenario if a management framework would be in place
and list initial ideas on what kind of components could be useful

3.2 Core Service Provider Scenario

The simplest possible VO consists out of two participants. In this scenario type the ad-
ditional constraint is that only one participant acts in the provider role for one or more
consumers and that the provided service is a core service that directly maps to a physical
resource. If the provided service is the delivery of a document potentially generated from a
database or Content Management System (CMS) the scenario is a typical web application
provider case. But if the services provided are a job submission and monitoring interface to
a queuing system of a cluster or a store and retrieve services e.g. for parallel data streams it
goes far beyond the simple web application case.

The scenario is very much in line with the so called High Performance Computing (HPC) Ba-
sic Profile [58] currently defined within the Open Grid Service Architecture (OGSA) working
group of OGF (Open Grid Forum). In this scenario specific extensions to existing standards
such as the Job Service Description Language (JSDL) [59] have been defined and put in
combination with a simple Execution Management Service called OGSA-BES (Basic Execu-
tion Service) [60] . The profile foresees that a task expressed as a JSDL document is submit-
ted to the service provider. The JSDL document is analysed by the BES and transformed to
a job in a queuing system. The originator of the JSDL document receives as a reply a con-
firmation of the successful submission and a jobId to be used for further communication.
With this jobId the status of the job can be queried (e.g. queued, running, completed, . . .),
intermediate or final results can be queried or jobs can be cancelled.

As outlined in section 2.3.2 more services on the provider side and on the consumer side are
necessary. Additionally to the functionality defined in the HPC Profile before the job can be
submitted a Service Level Agreement (SLA) needs to be negotiated and agreed and beside a
basic resource scheduling as done by the BES service a more complex selection procedure
based beside pure functional also based on economic or organisational rules and policies
need to be followed. Additionally several decision points (e.g. security policy driven) are
in between the external submission interface and the virtualized resources. In figure 3.1
examples for the building blocks of a Core Service Provider are shown.

28

3.2 Core Service Provider Scenario

Local Policies and Local Knowledge Base (e.g. CRM data)

Gateway

Message Filter

Id
en

tit
y

R
ol

e

O
th

er
Message
Redirector

ResourcePool II

Supporting Services

ResourcePool I

Figure 3.1: Sample Building Blocks of the Core Service Provider Scenario

3.2.1 Topological View

Obviously the topology of the VO is very easy and consists out of one or more consumers
potentially from different institutions and one service provider that may have internally
a complex chain-oriented infrastructure to deliver the service. In figure 3.2 this topology
together with some sample service components is shown.

In figure 3.2 it is worth to note that components for the management (shown as ’service
components’) are not only located in the service provider but also on the user domain. Be-
side the indicated management of the resources and the service components the full range
from network, system, network up to the management are part of this topology.

3.2.2 Dynamic View

The following table analysis the specific tasks that might be subject to management along
the different lifecycle phases even if some of them are not relevant for this simple sce-
nario.

Phase Description

Identification In this scenario the whole service is provided by one single service
provider so no partner selection or discovery processes is performed.

29

Chapter 3 Classification of Scenarios and Derived Requirements

Phase Description

Formation As there is no Business to Business (B2B) collaboration between Ser-
vice Providers is foreseen no dynamic establishment of a business
relationship is performed. This also means that no configuration e.g.
of opening certain firewall ports to the other provider or set-up and
usage of users and groups for controlling access for the collaboration
partner is needed. The dynamic aspect is reduced to the consumer
part. Depending on the scenarios this might be also a static or semi-
static collaboration where a consumer must be pre-determined and
published to the provider (personal details, IP addresses of client
machines, certificates, ...) or as typical in a portal based approach
this process is moved out of the VO by assuming the portal to be the
VO participant acting as a User Agent.

Operation The Operation phase does not impose any specific challenges on the
VO level as outlined above no dynamic relationship is targeted. In
case of SLA violations or delivery failure no alternative providers are
available, so no actions but termination can be performed. Within
the service provider domain depending on the internal structure ap-
propriate management of all internal building blocks and the SLA
provision need to be enacted.

Termination Similar to the formation phase this phase is not relevant for this sim-
ple scenario.

Table 3.1: Dynamic View for the Core Service Provider Scenario

3.2.3 Key Requirements summary

Although this configuration is rather simple it already delivers an initial set of requirements
on a management infrastructure to support this setting.

Req. 1 Consider Dependencies between components One obvious requirement for a man-
agement solution that can be derived is the need for traceability and dependency infor-
mation between the components. For example if a job cannot successfully placed in the
queuing system this might have a wide range of different reasons. As an example the com-
munication between the server receiving the JSDL document and the server hosting the
BES service might be broken. Lots of potential sources for this problem can be easily listed.
From failure of physical hardware of the JSDL or BES server, the hosting application such
as Apache Tomcat, firewall settings, network connections. In order to trace problems down
to a root cause the management framework must have the possibility to go down a depen-
dency graph.

Req. 2 Need for a common information model As the resources involved in the delivery of
a service are of very different nature and monitored with tools from different vendors the

30

3.2 Core Service Provider Scenario

Request Service
Cluster

Storage Server

Request Service

Core Service
Provider

Internet

Service Component

Domain Boundary

Figure 3.2: Topological View on the Core Service Provider Scenario

data provided cannot be expected to be in a common format. In order to enable a manage-
ment on basis of the available information a common information model at least within the
service provider domain is essential.

Several formats do exist as of today that might be re-used such as Management Information
Base (MIB) used within the Simple Network Management Protocol (SNMP) environment or
the Component Information Model (CIM).

Req. 3 Monitor on all levels Consequently, the resources and components on different lev-
els need to be considered for a management solution. This means that first of all the mon-
itoring cannot be restricted on application level, but need to cover middleware, operating
system, network and all other layers involved in the delivery of a service. Most notably the
management must be integrated across all these layers and cannot be done independently
as the interdependencies as mentioned above could not be traced.

Req. 4 Definition of normal system conditions The global definition of a normal system op-
eration condition is impossible. It is only possible to identify for each of the individual com-
ponents some boundaries but the prediction and analysis of the overall system behaviour
is a non trivial task if not impossible. This constitutes the risk that the overall management
of the system is not stable and might collapse.

Req. 5 Consider organisational limits of self-management Even in this rather simplified
scenario it is already obvious that automated system management is in contradiction with
security constraints. Assume the case that a system administrator closes a port as she as-
sumes a security attack. A monitoring component of the firewall could detect this, analyse

31

Chapter 3 Classification of Scenarios and Derived Requirements

the problem and conclude that the firewall port is closed but should be open to ensure oper-
ation and automatically update the firewall setting to open the port again. As a result some
management tasks cannot be fully automated and might be escalated in the appropriate
way to a human operator for approval or even delegated completely. This requirements is
also related to requirement 1.

3.3 Aggregated Service Provider Scenario

Aggregated Service Provision (AgSP) differentiates from the Core Service Provision that the
provided service is more complex and is built from a combination of two or more services.
The combined services can be a core service (as defined above as a direct virtualization of
a physical resource) or another complex service. An example for a complex service could
be the provision of a parameter study service. The consumer would provide configuration
information such as application to be used, range of parameters, success or stop condi-
tions. The service provider would detect appropriate resources within the Service Provider
domain and would execute either consumer or provider defined workflows, execute several
application runs, store the intermediate results, run analysis applications on the results and
automatically re-run the next bunch of application runs until a success or stop criteria is
met. The major difference to the basic core service scenario is that the service offered is
of a different level of abstraction and involves several dependant execution steps and deci-
sion processes within the service provider domain. Furthermore the utilized core services
and with them the physical resources are changing over time and the monitoring must be
adapted in real-time with the changes in the execution of the service.

3.3.1 Topological View

From a topological viewpoint outside the service provider domain no difference to the pre-
vious scenario is necessary. However the internal structure of the service provider might be
much more complex. Beside the key building blocks of the core service scenario addition-
ally components that are able to locally enact workflow, discover and manage the available
resource and aim for an optimised usage of them are possible.

3.3.2 Dynamic View

For the Identification and Termination phase there is no difference to the Core Service Pro-
vider scenario above. For this reason they have been removed from the table below.

32

3.3 Aggregated Service Provider Scenario

Phase Description

Formation Additionally to the steps in the Core Service Provider scenario a set-
up of the complex service provisioning chain is needed. This in-
cludes the discovery and allocation of the appropriate core services,
establishment of a service enactor responsible for the operation and
the local management and optimisation of the allocated resources.

Operation The orchestration of the services to deliver the complex service to
the consumer need to be actively managed and is subject of con-
tinuous optimization. This includes the supervision of the progress
of the service provision and the interaction with management com-
ponents that provide alerts and events from the underlying infras-
tructure. Additionally a re-organisation of the full provisioning chain
might be necessary or advisable in order e.g. to reduce costs or main-
tain the externally agreed SLAs.

Table 3.2: Dynamic View for the Aggregated Service Provider Scenarion

3.3.3 Key Requirements summary

Requirements that have been already mentioned before are not listed again but only the
additionally needed capabilities are described. In order to refine existing requirements or
to refer to previously mentioned requirements the requirement number is used.

Req. 6 Integration with the Execution Management Building Block The provision of a core
service is of rather static nature. The steps needed are pre-defined, the involved resources
are fixed and the service is not evolving over time. An aggregated or complex service such
as the parameter study service given as example above involves more than one service and
is evolving over time. This means that that management needs to evolve in a similar way
and that communication between the management component and the execution environ-
ment is needed. The communication is necessary as in contrast to the core service scenario
in case of failure of one ore more elements that are orchestrated a recovery by replacing
resources is feasible.

Req. 7 Standardised Interfaces and Information Models In addition to the requirement 2
expressing the need for a standardised information model the identified need for commu-
nication in requirement 6 imposes the need for a standardized communication interface
between consumer and provider of management information. As discussed in chapter 4 no
such globally accepted standard exists as of now.

Req. 8 Management of Service Level Agreements The flexibility gained with the dynamic or-
chestration of the service also enables a more active management of the delivered service.
In particular if services are provided to more than one consumer and Service Level Agree-
ments have been agreed between provider and consumers the provision of them need to be

33

Chapter 3 Classification of Scenarios and Derived Requirements

actively managed. This requires a view across all currently active SLAs as the management
of the assets of the service provider by reconfiguring an aggregated service from resource A
to resource B does have potential impact on the provision of other concurrently provided
services.

As already expressed in requirement 1 it is important to understand the dependencies for
delivering a certain service. An additional problem introduced with SLAs is the need to
enable the consumer1 of a service to validate its correct enactment. This means that the
elements of such an SLA must be expressed in a way that is not tight to the providing infras-
tructure for three reasons:

1. a service provider would not like to expose how certain services are provided as the
provider wants to maintain the possibility to dynamically change and adapt its inter-
nal provisioning chain as needed.

2. a consumer is not interested about the internal and is not able to validate if certain
boundaries (e.g. bandwidth share of a provider internal connection) is really pro-
vided. The consumer needs measurable guarantees at the provider boundary. Related
to the bandwidth example this means a guaranteed transfer rate of a data stream be-
tween provider and consumer.

3. if SLAs contain internal infrastructure details they are either not comparable or re-
quire that all service providers must have the same infrastructure to deliver the ser-
vice. Both pre-conditions are clearly not realistic assumptions.

While expressing such requirements on a higher, non infrastructure oriented level, clearly
makes sense, it introduces a major challenge. A service provider must be able to map down
this abstract level agreements to its concrete infrastructure in order to manage its enact-
ment. Closing this gap for a generic environment is still an open research topic and far
from being solved. For this work the limitation of scope assumed is that the SLA negoti-
ation is not possible in a free way but that a limited set of pre-defined cases exist such as
gold, silver, bronze like quality bundles for typical cases that can be dynamically selected
and where this mapping has been done beforehand.

Req. 9 Consider non-technical parameters Related to the requirement 8 there is the need
to consider non-technical parameters in the re-configuration and management process. In
particular if the available resources and assets are reduced e.g. due to failures or overcom-
mitment a decision needs to be taken how to distribute the scarce resources. As in such a
situation it is likely that not all SLAs (in the worst case none) can be fulfilled a prioritisation
is needed to ensure that at least the most important ones are realised. The importance is
not defined by technical parameters but could be derived from status of the consumer, the
agreed penalty of violating the SLA, the performed task or expected income on successful
completion to name a few possibilities. For example if the consumer is an important cus-
tomer a violation of an SLA might have an impact on the future business relation due to
reduced reputation and must be avoided. More general non-technical parameters such as
consumer status, business relations, economic considerations but also importance of the

1or a third party performing this task on the behalf of the consumer

34

3.4 Service Provider Collaboration

executed tasks (e.g. supporting an emergency situation or a treatment of a patient) need to
be considered.

3.4 Service Provider Collaboration

The scenarios discussed so far in the previous sections had been limited to one single ser-
vice provider. The fundamental motivation behind a VO is the collaboration of Service Pro-
viders in a Business to Business (B2B) topology. Whereas the above mentioned scenarios
are organised merely in a client/server topology here a multi-provider scenario is described.
The Service Provider Collaboration case combines the above mentioned scenarios. The VO
in this scenario is built from several core and aggregated service providers that might in-
clude additionally2 one or more consumers.

Disk Array

Storage Provider
Service

Job Submission and
Monitoring Service

Plane Structures

PDD Access
Provider Service

Avionics Data

Plan Surface
Database

Analyst

1: retrieve design
2: store simulation input data

3: start simulation

4: Retrieve Data and
Store Results

Figure 3.3: The Service Provider view of the Collaborative Engineering Scenario

In figure 3.3 a sample setting for a multi-provider scenario from a collaborative engineer-
ing case abstracted from the demonstrator of the TrustCoM project is shown. In this ex-
ample scenario an engineer from an aerospace company wants to design an antenna for
the equipment of an airplane with Wireless Local Area Access Network (WLAN) function-
ality. Beside the access to product design databases that could contain data of the aircraft
surfaces, internal structures, avionics etc. the provision of storage services, an application
for calculating antenna characteristics and the necessary computational infrastructure is
needed. The basic configuration of the VO and a typical workflow is shown in figure 3.3.

2The consumer role is not essential as one or more providers can act as peers covering the provider and
consumer role

35

Chapter 3 Classification of Scenarios and Derived Requirements

3.4.1 Topological View

This scenario can be operated in a wide range of different topologies. The simplified view
expressed in figure 3.3 assumes an equal role between the three providers and does not
limit the communication between the nodes. However a more realistic assumption would
be that one of the service providers would act as the entry point for the customer/consumer
and potentially even hide that the service is provided relying on 3rd party services.

In many scenarios analysed a main contractor is delivering a complex service to the cus-
tomer. This service is build from internal and external services delivered by other providers.
But the control and management of the subordinary services is performed by this main
contractor leading to a hub-and-spoke like topology (refer to section 2.3.1.1 and the so-
phisticated taxonomy done by the authors and others in [57]). While this setting is the most
common one theoretically also a more Peer-to-Peer Computing like interaction model is
feasible and also in place in industrial cases. As an example for the more Peer-to-Peer Com-
puting oriented topology one can consider a joint bid of Small and Medium Enterprises in
competition with a bigger competitor or for projects with high risks such as the design of a
very large airplane.

As in this case in contrast to the single provider scenarios a specialisation of the services
provided is possible it is also typical that the different providers fulfil different roles. In the
sample scenario the different roles are defined by their contribution of data and resources
to the distributed application. Another possibility to split the responsibilities is to assign
certain infrastructure services to a dedicated provider such as resource discovery, notary or
other generic services. The pre-condition is that this provider is seen as trustworthy from all
other participants or is bound by binding contracts to deliver these services in a fair way.

3.4.2 Dynamic View

This case is difficult to generalise from a dynamic viewpoint as several common cases ex-
ist. One possible case is that a static collaboration exists between the service providers.
This means that a typically small group of providers have agreed to collaboration condi-
tions out of band documented in a paper contract and that the structure of the VO does
not change during the whole operation. Other options are Dynamic Collaboration Grids or
Ad-Hoc Collaboration Grids ([57]) where providers are dynamically selected from a pool of
pre-determined providers or are completely freely selected. The table below considers the
Static Collaboration and the Dynamic Collaboration Grids as they are the most commonly
deployed solutions and Ad-Hoc collaboration Grids are so far in an purely experimental
stage (see for example the analysis done by the author in [56]).

36

3.4 Service Provider Collaboration

Phase Description

Identification In the case of static collaboration this task is limited to a selection
from the available well known options. In the more generic dy-
namic multi service provider scenario the identification of the provi-
ders might be a complex and time consuming activity. A wide range
of discovery mechanism exist from simple functional matching e.g.
using the Universal Directory and Discovery Interface (UDDI) inter-
face up to semantic matching algorithms or virtual market places.
Important to note here is the assumed limitation on pre-known pro-
viders that are either static or limited from a pool of providers (e.g.
called BaseVO or Virtual Breeding Environment (VBE)). This limi-
tation simplifies the case as from all service providers a set of sup-
ported functionality (required and optional interfaces) and support
of data and policy formats can be assumed.

So the steps performed in the identification phase are to reduce the
potentially large list of candidates from the pool to a smaller can-
didate set that potentially join the VO. While for the management
aspects it is irrelevant how the providers are pre-selected it is impor-
tant to note that the membership within a VO must be considered as
dynamic with changing roles and responsibilities ranging from small
changes up to the extreme cases of withdrawal from a running VO or
joining into an existing, running VO.

Formation In order to establish the VO the concrete providers have to be se-
lected from the candidate set of the identification phase. In this
phase concrete negotiations with the providers further reduce the
candidate set to a list of ranked options and finally a decision on the
providers that join initially the VO is taken. For the selected provi-
ders a set of configuration information need to be exchanged before
the operation phase can start. Part of this process is also the estab-
lishment of the monitoring of the service and the local and VO wide
management processes.
In addition to this VO wide tasks as outlined before for the core and
aggregated service provider scenarios a set of provider internal steps
need to be performed that are not repeated here again.

Operation During the operation phase additional steps as outlined for the sin-
gle provider scenario are necessary. While so far the management
could be focused on provider internal activities for this case also a
VO wide management is needed.

37

Chapter 3 Classification of Scenarios and Derived Requirements

Phase Description

Evolution A major potential difference is that a service or whole provider might
be replaced during the operation phase moving from operation to
the evolution phase. In this phase a service A provided by provider
foo that is not operating properly (e.g. based on observations of the
management system and corresponding SLA violation notifications)
is replaced by another service. It could be replaced by service A of-
fered by another provider bar, or an internal re-allocation within foo
could be a solution.

This re-allocation might also involve additional recovery steps e.g.
moving back in the workflow to the last checkpoint position and cor-
responding penalty actions on the failing provider up to removing
the provider from the VO or reducing its role.

Termination In case the VO is terminated also all established management activ-
ities need to be stopped. Additionally the performance of the provi-
ders is analysed.

Table 3.3: Dynamic View for the Multiple Service Provider Scenario

3.4.3 Key Requirements summary

As the multi provider case is seen as a combination of the single provider cases all require-
ments listed so far do apply as well for this case. In particular requirement 7 is absolutely
essential as operating across organisational boundaries. Beside standards based access and
communication models also the semantics of the communicated data need to be aligned
and understandable to allow a direct comparison between the providers.

Req. 10 Management need to be hierarchical Following the line of the more general re-
quirement 9 operating in an environment involving more than one organisation consid-
ering economic and commercial boundary conditions the site autonomy needs to be re-
spected. This means that the management needs to be done on several levels. Beside one
potential VO wide management level each provider does have one or more management
levels within its domain.

The assumption of site autonomy is a clear requirement expressed in many business ori-
ented scenarios. Related to the need of a VO wide management additional to service pro-
vider internal management in [56] for the 18 scenarios in BEinGRID an analysis has been
performed by the author of this thesis with the result that 61% of the experiments expressed
their need in a central management component and that in particular if the type of collabo-
ration is dynamic the distributed management approach (39%) is prefered. The lack of any
kind of management on VO level was not part of the experiments (0%).

Req. 11 Pro-active and adaptive management approaches As outlined above the services
combined in a virtual organisation may change over time. While some changes have only

38

3.4 Service Provider Collaboration

local impact (e.g. internal re-organisation of service provision) some changes affect the
management on VO level and potentially other providers.

Based on this, two related requirements on the management can be derived:

• the provider internal management needs to be pro-active and needs to anticipate
problems in the service provision according to agreed boundaries before they actu-
ally happen as an internal re-allocation avoid the application of penalties with the
bad impact of decreased reputation and potential side affects on the other provided
services up to the exclusion from a VO.

• the management solution needs to be enable fast reaction and adaptation to chang-
ing conditions. An applied internal or external re-allocation need to be followed by a
corresponding change in the management configuration.

Req. 12 Defined escalation strategy Assuming a hierarchical management model also raises
the question when a detected problem should be solved within a certain level and when an
escalation of the problem is needed to resolve it.

As a refinement of requirement 10 above it is necessary to assign to each management level
objectives and boundaries for finding local solutions and to define a clear escalation strat-
egy. A typical provider internal policy would be to allow local problem solving but to notify
the next level in the hierarchy about the issue and chosen solution strategies. The higher
level could overrule and take measures on its level. While this strategy would be feasible
across organisational boundaries typically internal problems are not reported to the out-
side and either treated internally or the provider aims to find external help actively (e.g.
outsourcing of functionality to a 3rd party instead of asking a VO wide management body to
find a solution.

Req. 13 Mediated information flow In the ideal case all available information about the
distributed system is used to take the appropriate management decisions. But not all in-
formation is supposed to be available to all participants and additionally in larger systems
collecting all information available is clearly also a scalability issue. The need to filter or
translate information is consequently driven by technical and commercial requirements.

From a technical viewpoint the flood of information needs to be reduced and aggregated on
several levels from raw information to a more abstract event. This abstraction or translation
process also includes a mapping from a proprietary information format to a provider inter-
nal standard in order to allow comparability of the collected data. As this abstraction also
means the loss of information it might be necessary to query for more detailed information
on a case by case basis.

While the above mentioned reason would apply also for the delivery of fine grained infor-
mation across organisational boundaries, additionally site autonomy, confidentiality and
privacy do not allow the provision of all kind of information. So depending on the role and
the access rights associated with this role a subset of information is provided outside the
administrative boundaries of a provider.

In case an internal re-allocation of resources is necessary to meet an agreed service quality
by moving from a cheap to a more precious resource this is nothing a provider want to

39

Chapter 3 Classification of Scenarios and Derived Requirements

communicate outside of the provider domain. Another example is that a provider is willing
to guarantee a certain service quality to the consumer (including potentially a dynamically
negotiated price), but providing the information about a low load situation would be clearly
counter productive in particular if the prize for the service is not fixed. But also in the case
of a fixed price the provider would preferably communicate guaranteed start times for a
service rather than than low level internal information such as the current length of the
queues of a cluster system.

Consequently the information flow to external consumers needs to be mediated and con-
trolled.

3.5 Virtual Laboratories

The Virtual Laboratory is a special case of the multi provider case described in the previous
section. It summarises scenarios where there is a difference between the designer of the
distributed application and the actual user of the pre-configured distributed application.
The motivation to name this kind of setting a virtual laboratory is inspired by the projects
A virtual laboratory for decision support in viral diseases treatment (VIROLAB) [61] and Vir-
tual Laboratory for eScience (VL-E) [62] projects that introduced this name. But also in a
couple of other projects in particular in the domain of semantic Grids the concept of split-
ting the design and execution of a distributed application within a Virtual Organisation is
rather common. A sample of this type is the Knowledge based Worflow Systems for Grid
Applications (K-Wf Grid) project [63] .

The difference to the multi provider scenario is mostly in the dynamic view where the appli-
cation design (decoupling of design and execution) and also the knowledge conservation in
the termination phase is taken as an additional step beyond the already described wrap-up
tasks. From a topological viewpoint the difference is in the need of several user roles.

3.5.1 Topological View

As the Virtual Laboratory is essentially a multi provider scenario no significant difference in
the topology can be expected. As mentioned above the major difference lies in the introduc-
tion of several user roles. In VIROLAB [61, 64] these roles are named Experiment developer,
Experiment user and Clinical Virologist. The designer plans, designs and implements the
scientific experiments conducted on the Grid infrastructure. The experiment user benefit
from this pre-defined experiments by providing the necessary input data and parameters
to execute them and to achieve results. As VIROLAB targets for application in the medical
domain the data user is a Clinical Virologist.

So the difference is that several users potentially situated at different sites are using the
overall setting in different roles. The Application Designer performs steps to identify a use-
ful business process3 and need to attach appropriate meta-data to each individual step al-

3while in a scientific environment a better name would be experiment this term is assumed to be more
general

40

3.5 Virtual Laboratories

lowing an Application User to correctly parametrize the pre-defined process and start it.
Additionally there is the role of a data retriever that is working with the results produced be
one ore more executed processes.

3.5.2 Dynamic View

Phase Description

Identification The list of candidates is additionally reduced by constraints provided
by the application designer. The designer could for example limit a
certain step to a group of providers or even to a particular provider
(e.g. internal). While the data associated to each task is based on
concretely available services at design time typically no fixed provi-
der is determined in this phase but only a set of describing parame-
ters.

Based on this preparatory steps the Application User completes the
identification phase with starting the application execution process.
Upon identification and potential adaptation of the prepared appli-
cation the formation phase is entered.

Formation This phase is rather similar to the steps described in table 3.3. The
only difference is that potentially additional constraints in the se-
lection process determined by the Application Designer further de-
crease the list of candidates.

Operation Based on the assumed limitations based on the application design
not all potentially available solution strategies might be applicable
as they had not been e.g. foreseen for this user role. A typical case
is that the metadata for tasks in the process contain rules such as
’switch only between local services’ indicating the solution strategy
to relocate to a service only within the service provider domain. With
this pre-defined solution strategy the potential approach to relocate
the service to an external provider if no appropriate local provider
can be found cannot be selected.

Evolution As outlined above the evolution strategy might be also designed and
therefore limited in the way an evolution can be performed.

Termination An essential part of such environments is that the experience with
a designed application is stored. The experience can be collected
automatically (e.g. whether the designed problem solving strategies
did succeed or fail, time to implement such a change), but can also
collect the level of satisfaction of the application user.

Table 3.4: Dynamic View for the Virtual Laboratory Scenario

41

Chapter 3 Classification of Scenarios and Derived Requirements

3.5.3 Key Requirements summary

Req. 14 Support for externally defined solution strategies The major additional require-
ment of this scenario is the need to support externally defined management goals and so-
lution strategies. As part of the application design the Application Designer might define
already the appropriate measures to be taken in case of certain failures. This might affect
VO level policies which could be for example not to replace an underperforming service
provider but to pause or terminate the VO instead.

Additionally one could imagine also that the application design requires the need to com-
municate all internally used resources, their status and the application of recovery or other
management actions as the performed tasks is of high risk. Another (more likely) option
could be to limit possible solutions strategies e.g. preventing a service re-allocation to an-
other physical resource.

3.6 Interactive Instrument or Simulator Integration

Beside the issues addressed so far, some scenarios impose further requirements as they in-
tegrate large and unique physical equipments or physical simulators into a Virtual Organi-
sation. One example for this class of applications is an interactive simulation for astronauts
of the international space station [65] as shown in figure 3.4. How a management approach
based on human operators needs to be realised has been analysed by the authors and others
in [31, 32, 33, 34].

Another class of applications that are related are addressed in the research projects Grid
Enabled Remote Instrumentation with Distribtued Control and Computation (GridCC) [66]
and Remote Instrumentation on Next Generation Grids (RinGrid) [67] . Instead of a physical
simulator such as the automated transport module as in the previous example instruments
such as radio telescopes are virtualized and integrated. As these special resources are very
precious resources the flexibility is significantly reduced.

3.6.1 Topological View

From a topological viewpoint there are one or more services that are seen as wrappers to
a large external system or an external interactive simulation that is not following an SOA
paradigm and is for example based on the Run-Time-Infrastructure (RTI).

This means that in this scenario not the full topology is known or can be controlled and
that special management interfaces are necessary to be exposed directly from the resource
or the external distributed simulation.

3.6.2 Dynamic View

As the integration of such an equipment would be an add-on to all scenarios, in particu-
lar the virtual laboratory the table below focus on the specific issues around the virtualized

42

3.6 Interactive Instrument or Simulator Integration

equipment and does cover the steps needed to set-up the full VO including regular ser-
vices.

Phase Description

Identification As the special resources are either rare or unique no real identifica-
tion phase can be done for them as the goal to reduce the list of po-
tential candidates has achieved already beforehand.

Formation Instead of a negotiation with service provider about the quality of a
certain service level it is more the reservation of access. However,
based on the scheduled access time the supporting services need be
configured and negotiated to support the necessary quality level.

Operation During the operation phase, the whole management process aims
to provide an optimal usage of the precious resource. In case the
supporting services cannot fully provide the necessary service level
it might be necessary to pause the operation until all conditions are
met again and a resume of the application can be performed.

Table 3.5: Dynamic view for scenarios with special or unique resources

3.6.3 Key Requirements summary

In this section the additional requirements originating from this scenario are listed. Previ-
ously listed requirements remain also valid for this scenario.

Req. 15 Provide special attention to essential services While this requirement is pretty ob-
vious in this case, the assumption that some services are essential or of high priority and
need special attention from the management side is true for a more general set of scenar-
ios. It can be assumed that in all Virtual Organisations some services might be optional in
the sense that they have a negative impact on the VO results (e.g. delay) in case of underper-
formance, but do not lead to an overall failure. Essential services lead to a failure of delivery
of the VO in case of failure or critical underperformance.

Req. 16 Interaction with other management systems In the above mentioned case beside
the SOA based distributed application there is another distributed application, the interac-
tive simulation, executed in parallel. Such applications might have already a management
system that needs to be integrated.

So it is not enough to see all external entities as pure passive data providers but as poten-
tially active components that react themselves already on changing conditions.

43

Chapter 3 Classification of Scenarios and Derived Requirements

WAN

Astronaut
Training Centre

Space Station
Simulation

Simulation Control
Centre

Ground Control Centre

Figure 3.4: Example setting of the space simulation scenario

3.7 Context dependent Applications

Additional requirements originate from a special type of application scenarios as investi-
gated by the author of this thesis in [20]. The assumption taken so far is that the context
of the consumer or provider must not be considered. However if the context such as the
current network bandwidth or the device capabilities may change over time additional re-
quirements need to be considered such as different type of mobilities [68]:

• nomadic and mobile users/providers due to the change of location and consequently
the access network the available bandwidth is changing. Furthermore no continuous
connectivity can be assumed. This requires the support of an offline mode (a user
is temporarily disconnected while the rest of VO remains active) and adaptation to
changing network conditions. as an example a user might be connected using an
Universal Mobile Communication System (UMTS) connection participating with a
low profile. Changing to a Wireless Local Area Access Network (WLAN) Hotspot and
a consequently better connection the user can participate with the full profile. Other
context parameters might be if the user is in a secure or insecure area affecting the
delivery of confidential data.

• session mobility the change of a device influence the distributed application as it
requires also an adaptation. An example could be the submission of a simulation job
from a workstation and the a job monitoring client that provides intermediate results
in high quality. Then the user can move the job monitoring client to his mobile phone
with a reduced functionality such as a simple percentage of progress or number of

44

3.8 Analysis Summary

completed parameter studies or similar. Later on the job monitor might be moved
to a Cave Automatic Virtual Environment (CAVE) environment. Part of this session
would be that the identity of the user is maintained and the access modalities such as
to the data produced is kept unchanged.

3.7.1 Key Requirements summary

Req. 17 Limit impact of context changes on normal system conditions As outlined before
in requirement 4 the basis for an automated management is the definition of boundaries or
goals representing a normal system condition.

Assuming that the context of a consumer or provider can change over time in a similar way
the goals/boundaries of the management components need to be adapted. The require-
ments to adapt the management procedure to a changing context open a wide range of
problems. Some of them related to the management of SLAs are discussed by the author
and others in [49].

The problem raised in the above mentioned article is that context changes might be quite
similar to error conditions. So if a mobile service provider such as a virtualized temperature
or health frequency sensor is unavailable it might be that this indicates a problem but could
be simply a short disconnection. Such disconnection problems would be clearly and error
in the case of an all wired scenario but in this case must be seen as a regular situation.
This means that the management solution must be able to differentiate between mobile
providers and fixed providers and should adapt the management situation to the context of
the provider.

Additionally one could not assume an SLA to be fixed for the lifetime of the Virtual Organi-
sation as if an SLA for a high speed data delivery has been agreed in a high bandwidth con-
text the enactment of the SLA in a changed context of a low bandwidth connection makes
obviously no sense.

3.8 Analysis Summary

The presented typical application cases based on the wide range of Grid applications anal-
ysed for this thesis indicate that a generic management solution for the type of Virtual Or-
ganisations considered here that are spanning organisational boundaries is a distributed
solutions itself. One can say that this is not a surprising result but considering the cur-
rent practice, typically a centralized approach is used. This central management entity is
collecting all the data and performs a centralized management e.g. for the distribution of
computational tasks and relies on local management done by humans to make the under-
lying resources operational. There is no interlinking between this local management and
the Grid management layers. Additionally the connecting network is not part of the man-
agement solution.

The reason for the currently existing centralized solutions is clearly the reduced complex-
ity compared to a distributed solution. However the key differentiator in the considered

45

Chapter 3 Classification of Scenarios and Derived Requirements

scenarios in this chapter is that they are not addressing a pure eScience community, but
consider a more economically driven approach. If the decisions to provide a service are
driven from optimization goals such as maximise profit and not provide the best service
possible one needs to establish a kind of electronic contract, ensuring the collaboration of
the providers and one cannot rely anymore on the good will of all participants. So in all sce-
narios this lack of control is acknowledged and the relationship between providers and be-
tween consumer and provider are protected by dynamically or statically established Service
Level Agreements. This non-technical but structural constraint imposes a clear boundary
between the provider and user domains and the supporting services that enable the collab-
oration.

From a service provider perspective a couple of externally agreed SLAs for different cus-
tomers need to be fulfilled. It is irrelevant for the provider internal management for what
purpose the provided services are used by the consumers. So the focus of the management
approach can be fully on how to meet the Service Level Objectives (SLO) and perform a pro-
vider internal optimisation of the resources. This explicitly includes the case where an SLA
is intentionally not respected in order to make sure other agreements for a more important
customer or associated higher penalty in case of failure can be realised.

From the viewpoint of the management components on Virtual Organisation level they only
care about one particular VO and do not consider potentially other competing VOs on this
resource. They can rely on the agreed SLAs with the providers and monitor compliance with
them. If SLAs are not respected they can trigger the necessary actions on their level e.g.
to replace the provider or accept the underperformance and compensate with the agreed
penalty.

The approach in the user domain is quite similar to the service provider domain. The man-
agement of the consumer side duties must also be managed across several providers, but
potentially also across several VOs. An agreed SLA is not only imposing constraints on the
provider. For example if a certain number of licenses are granted simultaneously a con-
sumer must make sure that not more then the agreed number are requested. Requests
above the agreed threshold would be either rejected or provided at higher costs as they are
outside of the original contract.

With the notion of SLAs between the different roles in the Virtual Organisation the problem
of management of quite complex distributed application has been reduced significantly
and is brought much closer to current practice in business.

46

Chapter 4

State of the Art and Relevant
Standards

In chapter 2 a new model for Virtual Organizations has been described and how it has been
developed from the orthogonal baselines from the world of economics and Grid comput-
ing without touching the underlying technologies needed to realise this model. Driven by
the scope of the VO model a variety of different distributed application scenarios had been
analysed, classified and a set of key requirements has been listed in chapter 3.

In this chapter existing technology and architectures for the management of distributed ap-
plications are presented. As a technological baseline a short introduction into the concept
of Service Oriented Architecture (SOA) is given. The chapter is concluded with a gap anal-
ysis between the requirements identified in chapter 3 and the capabilities of the analysed
technologies and concepts in this chapter.

4.1 Core Technologies

One of the fundamental assumptions taken in this thesis to align the solution with the
paradigm of Service Oriented Architecture (SOA) based distributed systems as for example
defined in [69] and recently adopted also by the Grid community in [24]with the move from
proprietary protocols and solutions towards the Open Grid Service Architecture (OGSA).
Additionally this section covers existing Grid solutions and their properties and selected
Web Service specifications.

4.1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) frameworks are designed to support the dynamic and
flexible set-up of applications aggregated as needed from services potentially provided by
different providers from different administrative domains as needed. Service Oriented Ar-
chitecture is generally seen as the 3rd generation of distributed software component ar-
chitectures. After the basic Remote Procedure Call (RPC) mechanisms where functions or
procedures are made dynamically available and object oriented or object based architec-
tures such as Common Object Request Broker (CORBA) and Distributed Component Object

47

Chapter 4 State of the Art and Relevant Standards

Model (DCOM) now complete components are made available dynamically and the com-
ponents are only loosely coupled. The concept of Service Orientation is actually similar to
ideas found in Object Orientation (OO) and Component Based Development (CBD). Ser-
vices represents natural building blocks combining certain capabilities similar to classes in
Object Orientation or components and provide them via a clearly defined interface. The
grouping of information and the definition of an interface that hides the complexity and
elements inside the service are however chosen on a higher level of abstraction compared
to objects.

Requester Entity Provider Entity

Parties establish context

Input Metadata
of required service

Input Metadata of
provided service

Interaction

Figure 4.1: Basic concept of the Service Oriented Architecture

Additionally Service Oriented Architecture is targeting loosely coupled conglomerations of
service providers. All concepts are on a different level of granularity and whereas in Object
Orientation the information hiding is about an internal state or mechanism within the ob-
ject an external service hides company internal procedures, physical resources used to pro-
vide the service and represents a virtualization of a potentially highly complex process.

The fundamental characteristics of Service Oriented Architecture include:

• Service providers - publishing the availability of their services.

• Service brokers - registering and categorizing published services and providing search
services.

• Service requesters - using broker services to find a needed service and then employing
that service.

• Computer-accessible, hierarchical categories, or Ontologies - based upon what the
services in each category do and how they can be invoked. These taxonomies aim to
assist the dynamic automated discovery of appropriate services.

In order to enable the collaboration among entities within these main roles standardized
network protocols and service descriptions are needed. Service descriptions are key to all
three roles providing the information needed for an collaboration between the services.

48

4.1 Core Technologies

In a service-oriented view, the interoperability problem can be broken down into three sub
problems: (1) the definition of service interfaces, (2) the identification of the protocol(s) that
can be used to invoke a particular interface and (3) a mechanism to negotiate the means of
interaction.

Technologies for distributed applications do exist for many years and a partially widely used
in industry such as Client-Server [70] and Java 2 Enterprise Edition (J2EE). Other solutions
for a more loosely coupled, often asynchronous communication are available with Message
Oriented Middleware (MOM) or Peer-to-Peer Computing (P2P).

While Service Oriented Architecture is technology agnostic the most prominent realisation
is realised with Web Services [69]. It is globally accepted that Web Services play a key role in
the global IT industry (see for example [26, 71, 72]). Peer-to-Peer Computing is also widely
accepted especially for data sharing applications.

As the focus of the work is in Business to Business (B2B) interactions of loosely coupled pro-
viders the core technologies considered are in line with the Service Oriented Architecture
(SOA) paradigm and its Web Service based realisation.

Additionally to the above mentioned property of a different level of granularity in the de-
sign of the distributed applications compared to OO applications Web Services have been
designed to allow orthogonal and composable specifications. The wide variety of speci-
fications also often referred as WS-* can be combined in multiple ways. As an example
the WS-Addressing [73] specification can be used together with WS-Security [74] but WS-
Addressing can be also used together with other specifications.

Further information about Web Services and their application can be found in [75].

4.1.2 Grid computing

As in chapter 6 the application of the framework is evaluated in the context of a High Perfor-
mance Computing (HPC) service provider also Grid solutions focused to the HPC domain
are discussed here. However the description is not limited to purely HPC oriented Grids but
the more general model expressed in OGSA based grids [24, 1] are considered.

The Open Grid Service Architecture (OGSA) [24] leverage the existing Grid frameworks to
the level of Service Oriented Architecture (SOA). As outlined above Service Oriented Archi-
tecture (SOA) provide the shared organizing principles that underpin the collaborative op-
eration of services in open dynamic distributed systems. The focus is on how services are
described and organized to support their dynamic, automated discovery and use at run-
time and are not based on manually hard-wired interactions, such as those used in Elec-
tronic Data Interchange (EDI) systems.

Originally the OGSA vision was planned to be implemented using the Open Grid Service
Infrastructure (OGSI) framework [76]. The key differentiator between OGSI and vanilla Web
Services had been the support for stateful service interactions compared to the stateless na-
ture of Web Services. As in the Web Service community also the exposure of state and long
term transaction oriented interaction emerged a convergence between these two commu-
nities developed. As the OGSI approach would have required significant changes to already

49

Chapter 4 State of the Art and Relevant Standards

well established core web service specifications such as Web Service Description Language
(WSDL) [46] the realisation of state a new set of specifications, the Web Service Resource
Framework (WS-RF), emerged. These specifications has been standardised by Organiza-
tion for the Advancement of Structured Information Standards (OASIS). Further competing
approaches such as the Representational State Transfer (REST) [77, 78] approach or the less
complex related specifications WS-Transfer, WS-Enumeration and WS-Eventing [79] do ex-
ist1.

A large number of research work addresses additions or extensions of this base specifica-
tions or middleware solutions. For example the automation of resource discovery and se-
lection or workflow deployment from user level abstract descriptions to an executable en-
vironment. Examples include the K-Wf Grid project [63], the Fraunhofer Resource Grid [80]
or the ASKALON framework [81].

4.1.2.1 UNICORE

Within the research projects Uniform Access over the Internet to Computing Resources
(UNICORE) ([15, 39]) and UNICORE Plus ([2]) a service oriented middleware enabling seam-
less access to high performance computing resources has been developed. It is mostly a
4-tier architecture consisting of clients, gateway, servers and backend systems.

The jobs defined within Uniform Access over the Internet to Computing Resources are based
on a proprietary workflow description called Abstract Job Object (AJO) ([82]) containing not
only the involved applications and services of the workflow but also their interdependen-
cies and resources needed. The Uniform Access over the Internet to Computing Resources
system is dedicated to the access of High Performance Computing (HPC) resources but aims
at the full integration of these resources into a standard e-commerce infrastructure as out-
lined in [83]. As shown in figure 4.2 a job is passed via a gateway at the service provider to
an Network Job Supervisor and is then put further to the Target System Interface after the
Abstract Job Object had been mapped using the information in the Incarnation Database
to a format understood by the target compute system.

Based on this initial work a set of European and national research projects has further de-
veloped this infrastructure. Recently the proprietary communication protocols has been
replaced by projects like UniGrids [84] or OMII-Europe [85] with standards based commu-
nication protocols and interfaces. UNICORE is widely deployed and used in production for
example within the Distributed European Infrastructure for Supercomputer Applications
(DEISA) project [3].

As UNICORE is not limited only to a middleware but delivers components up to the applica-
tion support layer and for supporting the service provider management and configuration
also an operational model of the virtual organisation is anticipated. A typical UNICORE
Virtual Organisation consequently operates in an environment where UNICORE identities
are centrally managed but the process of mapping this global identity to a local user is fully
under control within each service provider. In general the autonomy of the providers is

1As of now a convergence between WS-RF and the WS-Transfer family of specifications is planned and an-
nounced for 2008

50

4.1 Core Technologies

Unicore Client Gateway

Network Job
Supervisor 1

Network Job
Supervisor 2

Target System
Interface

Computesystem 1

Target System
Interface

Computesystem 2

User
 Database

Incarnation
Database

Figure 4.2: UNICORE architecture

fully preserved. This rather static approach limits (intentionally) the level of dynamism of
the membership in particular for service providers. Currently more complex security mod-
els supporting Security Asstertion Markup Language (SAML) based authorization are under
research.

4.1.2.2 Globus Toolkit

The Globus Project is developing fundamental technologies needed to build computational
grids. The major working areas of Globus Toolkit include:

Resource Management Globus Toolkit is developing uniform and scalable mechanisms
for naming, locating, and allocating computational and communication resources in
distributed systems. Data Management and Access. They have launched a collabo-
rative effort to design and produce an infrastructure-level architecture for data man-
agement, which is called the data grid.

Application Development Environments The integration of Grid services into exist-
ing application development frameworks, environments, and languages (e.g., Com-
mon Object Request Broker, The Java Toolkit, Message Passing Interface).

Information Services Requirements, designs, and prototypes of a Grid information ser-
vice, an enabler for dynamic application configuration and adaptation is developed
in this area.

Security Security algorithms for secure group communications, management of trust re-
lationships, and developing new mechanisms for fine-grained access control are the
major topics in this working area.

Version two of the toolkit has been adopted and further developed by the EU DataGrid
project [86]. While the Globus Toolkit itself does not limit how virtual organizations can

51

Chapter 4 State of the Art and Relevant Standards

be constructed and how dynamically resources and users can be added such constraints
had been added by DataGrid in order to make a wide deployment and production oriented
usage feasible. The chosen VO model had been rather similar to the original UNICORE
model with a rather static collaboration of providers with a dynamic allocation of the con-
crete resources to be used for a job.

The intermediate version three of the toolkit has not been used widely as the underlying
Open Grid Service Infrastructure (OGSI) concept has been discontinued and replaced by
WS-RF. The WS-RF compliant version four is currently used by a wide range of research
projects for their prototypes but has not yet achieved a similarly wide deployment as pre-
vious versions. In particular the successors of the DataGrid project have chosen to move
their production environment towards gLite (see section 4.1.2.3) instead of the new Globus
Versions.

The most recent version is used as of now in a couple of research projects and investigated
in particular for its ability to support dynamic virtual organisations [19], the integration
with data management solutions such as Open Grid Service Architecture-Data Access and
Integration (OGSA-DAI) [87, 64].

4.1.2.3 gLite

Based on the work of the DataGrid project [86] adopting GT2 to their needs in the successor
projects Enabling Grids for E-Science (EGEE) and EGEE-II a new middleware, gLite [88, 89]
has been developed. The gLite middleware is web service driven and relies on a rather
limited profile of Web Service standards.

While gLite from a technological viewpoint does not limit the VO model that can be applied
the typical usage is also a static collaboration model whereas providers are pre-selected or
conditions are negotiated out of band. This gLite middleware is widely used in production
Grid environments and has achieved a high level of maturity. Additionally it supports the
operation of several VOs in parallel and the inclusion of resources in more than one VO at a
time.

4.1.2.4 Grid based Aggregated Service Provision

The EU Grid based Application Service Provision (GRASP) project [90, 29, 40, 41, 28, 91] has
been one of the pioneering projects experimenting with the use Grid computing in order
for the support and operation of the provision of ’software as a service’. The evaluation of
the sustainability of new models of Application Service Provision (ASP) towards a so called
Aggregated Service provision has been investigated.

In order to support the ASP models outlined above the GRASP infrastructure has introduced
additional services to the one proposed in the Open Grid Service Infrastructure [76] speci-
fication.

Orchestration One of the most important aspects of the new ASP models is that no longer
one single vendor controls the whole process. This means that a mechanism is needed

52

4.2 Information Models and Management Protocols

that orchestrate the services offered by different vendors and ensure a controlled col-
laboration. The GRASP orchestration service will be based on BPEL4WS and provide
the possibility for a hybrid orchestration for Grid Services but also for Web Services.

SLA Monitoring The Orchestrator can only fulfil its task in controlling the collaboration
between the different services if enough information for the decision process is avail-
able. The SLA monitoring services monitor, enforce and provide notifications in order
to assist the Orchestrator in this task.

Accounting & Billing Without Accounting & Billing no Application Service Provision can
be performed. As the services are no longer controlled by one single entity but from
many different service providers over time new ways on collecting provided services
must be introduced. Especially for the "many-to-many" model new solutions must
be identified.

Within the GRASP project the notion of the Virtual Hosting Environment (VHE) has been
introduced hiding internal management and re-scheduling activities from the consumer
while maintaining the validity of the external resource reference identifiers (called Service
Locators). This new concept combined with a model for the realisation of SLAs beyond
purely Quality of Service parameters has been used as starting point for the framework de-
scribed in chapter 5.

4.1.2.5 Grid for Industrial Applications

The Grid for Industrial Applications (GRIA) middleware originated from a European Re-
search project in the 5t h framework programme in parallel to the GRASP project described
in the previous section. The software has been further developed in several European re-
search projects such as Grids for Industrial Product Development (SIMDAT) and The Next
Generation Grid (NextGrid). The GRIA middleware is based on the SOA paradigm and is
assuming site-autonomy and is driven by commercial scenarios where the resource shar-
ing must be configurable in a rather fine grained way. The implementation has been done
based on Web Service technology and Public Key Infrastructure (PKI). Figure 4.3 shows the
fundamental architecture of the GRIA system.

The interaction between clients and providers is based on an Service Level Agreement (SLA)
that need to be managed on the server but also on the client side. The assumption is that
obligations in the SLA are also covering the client side as in an SLA where a certain response
time is guaranteed comes typically along with limit for the number of requests in a given
time period. Consequently the client would need to control that the number of requests
are not exceeded. The GRIA architecture as shown in figure 4.3 is designed to be open for
inclusions of custom applications on the server as on the client side.

4.2 Information Models and Management Protocols

The basis for an autonomous management solution is a well defined information model
that allows communicating and exchanging the status of a monitored entity between differ-

53

Chapter 4 State of the Art and Relevant Standards

Client
Management

GRIA ClientCustom Client

Server Provider
Management

Custom
Application

Services

Basic
Application

Services

OGSA-DAI
Application

Services

Service Level
Agreement

Usage
Constraints

Access
Constraints

Figure 4.3: GRIA fundamental architecture

ent management components. The following sections discuss existing standards or speci-
fications from other publications that exist.

4.2.1 GLUE

The GLUE2 Schema provides in [92, 93] an information model to provide the necessary in-
formation about the resources available in a Grid environment and supports the sharing of
resources across several Virtual Organisation (VO). The use cases [94] collected as driver for
the specification clearly indicate a focus of the specification for a VO that is built from a set
of rather homogeneous set of resources. Additionally it is also assumed that the focus is on
the sharing of resources and that the provision of internal status information is possible.

While the assumed collaboration model is in contradiction of the VO model proposed in
this thesis and is seen not in line with the SOA paradigm of virtualization of resources the
model is seen as quite complete and is clearly applicable for the service provider internal
resource description for HPC providers.

4.2.2 SNMP

The Simple Network Management Protocol (SNMP) protocol has been designed for the
monitoring and management of network components and originates from the Internet En-
gineering Task Force (IETF) standards body. SNMP is a quite simple protocol with only five
message directives. The SNMP architecture proposes Agents that maintain a set of manage-
ment information (name and type) following the specific format described in a Manage-
ment Information Base (MIB). The information is organised in a hierarchical manner with
unique identifiers. The defined message directives are

GetRequest is sent from the Manager to the Agent in order to request the values of one or
more status variables

2 The original meaning was Grid Laboratory Uniform Environment but it is no longer used

54

4.2 Information Models and Management Protocols

GetNextRequest is sent from the Manager to the Agent requesting the next value consid-
ering the enumeration of values as defined in the MIB

SetRequest is sent from the Manager to the Agent in order to set a value

GetResponse is sent from the Agent to the Manager as a response to one of the two pos-
sible GetRequests

Trap is used by the Agent in order to inform the Manager about exceptions. The message
is issued without a preceding request message from the Manager

SNMP is widely used in particular for the monitoring of network and low level system pa-
rameters and is widely supported by vendors. The communication is realised as a simple
connectionless protocol on the transport layer leading to a quite good performance in com-
parison to connection oriented protocols such as Common Management Information Pro-
tocol (CMIP) (see below). A major issue related to SNMP is the rather simple security model
and the performance degradations for very large MIBs.

4.2.3 DMI

The Desktop Management Interface (DMI) specification was targeting at a standard frame-
work for managing and tracking components in a desktop pc, notebook or server. The spec-
ification aimed to address the gap between management software and the system’s compo-
nents. The DMI has been designed to be:

• independent of a specific computer, operating system or management protocol

• easy for vendors to adopt

• usable locally and via the network using different kind of protocols

• integrated with other management protocols such as CMIP and SNMP

The DMI specification was discontinued in 2005 and has been integrated in the Component
Information Model (CIM) set of specifications (see section 4.2.5).

4.2.4 CMIP

The Common Management Information Protocol (CMIP) [95] is an Open Systems Intercon-
nection (OSI)-based network management protocol standard that supports information ex-
change between network management applications and management agents. Its design
is similar to the Simple Network Management Protocol (SNMP). A detailed comparison of
SNMP and CMIP is provided in [96].

CMIP is based on the OSI protocol stack and is consequently a connection-oriented proto-
col. This restricts the usage of CMIP on components with the necessary resources to allow
a complete implementation of layer 1-3 of the OSI stack. Based on this high demand an al-
ternative implementation called CMIP over TCP/IP (CMOT) has been specified in [97]. This
enables the usage of CMIP also on TCP/IP based networks.

55

Chapter 4 State of the Art and Relevant Standards

The CMIP information model is object oriented and the CMIP Machine (CMIPM) is similar
to the Manager in the SNMP architecture and is sending requests to the Agents. While the
information model is quite complex and powerful the protocol had been kept relatively
simple very similar to the one discussed above for SNMP. CMIP is also used so far only quite
narrowly in the telecommunications sector.

4.2.5 CIM

the Component Information Model (CIM) is a specification of the Distributed Management
Task Force (DMTF). The purpose of the specification as outlined in [98] is to establish a
common conceptual framework that describes the managed environment. The model, ex-
pressed in the Unified Modeling Language (UML) is seen as a unification of existing models
realised with the Management Information Base (MIB) used in Simple Network Manage-
ment Protocol (SNMP) and the Desktop Management Interface (DMI) and Common Man-
agement Information Protocol (CMIP) models. The model is defined independently from
the way the information is retrieved or stored.

Association

Aggregation
Association with WEAK reference

Inheritance

Aggregation with WEAK reference

* Equivalent to: 0 .. n
Composition Aggregation

{E} Experimental Class or Property
{D} Deprecated Class or Property

(See Core Model (Logical Element))

BasicExecutionService {E}

CreateActivity (
[IN] Request : string
[OUT] Identifier : string
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

TerminateActivity (
[IN] Request[] : string
[OUT] Response[] : boolean
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

GetActivityStatus (
[IN] Request[] : string
[OUT] StatusResponse[] : string
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

GetActivityDocuments (
[IN] Request[] : string
[OUT] Response[] : string
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

GetAttributesDocument(
[OUT] AttrsDoc[] : string
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

Figure 4.4: Sample schema for a Grid service from the CIM Schema 2.17.1

The major advantage of CIM compared e.g. to the flat information model expressed in MIBs
is the possibility to express relations such as inheritance or other dependencies. The key
innovations of CIM compared to other information models are

• Reduced complexity of the models based on the performed abstraction and classifica-
tion of the problem domain defining high level and fundamental concepts, common
characteristics and their relationships as baseline for the specific objects

56

4.2 Information Models and Management Protocols

• Utilization of object oriented concepts such as object inheritance or the use of asso-
ciations to depict relationships between the objects

• Use of semantic annotations of the associations allowing to express common charac-
teristics and features

• Definition of abstract behaviour such as Reset or Reboot independent of the underly-
ing hardware

• Common model across the whole management environment covering System, De-
vice, Network, User, Application, and potentially custom defined other problem spaces

4.2.6 MIMO

In [99] a generic monitoring solution for middleware is described. This architecture has
proven its usability in different application scenarios (see for example [100]). The approach
is focused on monitoring and addresses already the need for monitoring on different levels
of a distributed application ranging from hardware, network, and middleware up to the ap-
plication level. However the approach is based on Common Object Request Broker which
limits the usability of the approach in commercial settings as firewalls makes the communi-
cation via CORBA difficult. The used platforms are very often not equipped with CORBA.

4.2.7 Grid Monitoring Architecture

The basic idea of the Grid Monitoring Architecture [101] specification was to address the
problem of a large number of non interoperable monitoring solutions for grids [102, 103,
104, 105]. The key difference to other monitoring specifications the need for operating
across organisational boundaries and the need for a high level of scalability was identified.
The Grid Monitoring Architecture (GMA) components identified are the event producer,
event consumer and so called intermediary components (as shown in figure 4.5).

This intermediary component allow the realisation of monitoring hierarchies moving from
the monitoring from raw monitored data such as cpu usage up to more higher level data
that allows the communication of data outside the organisation to the other collaborators
in a more coarse grained way.

4.2.7.1 R-GMA

The Relational Grid Monitoring Architecture (R-GMA) [106] architecture is based on the
GMA approach outlined in the previous section and is relying on relational databases to
store the data. R-GMA has been developed as part of the EGEE project and is widely used in
EGEE based Virtual Organisations.

The R-GMA approach is based on the simple model expressed in the GMA work but it
adds some more concrete roles for producer, consumers and intermediaries. This includes
archiving nodes that stores the monitored information in databases for later queries and is

57

Chapter 4 State of the Art and Relevant Standards

Monitoring Service X

Event

Event Event

Figure 4.5: GMA compound producer and consumer concept

relying on a hierarchical model having a data collection layer, a data archiving layer and a
external access layer.

The model is quite similar to the concepts expressed in the Management Using Web Ser-
vices (MUWS) specification (see below). However the implementation is done using pro-
prietary protocols and the query language is SQL.

4.2.7.2 Web Service Level Agreements

The Web Service Level Agreement (WSLA) specification [107] is not the result of a standard-
isation body but is a concept driven by IBM. The WSLA concept specifically addresses only
distributed applications that are built using Web Services technology. As a consequence the
subject of supervision is the relationship between a single service consumer and a service
provider environment. So before a service consumer consumes the service provided a Ser-
vice Level Agreement (SLA) needs to be negotiated between the two involved parties. The
Service Level Agreement is expressed in machine readable eXtensible Meta Language. It is
explicitly foreseen that a federated model where a service provider do not provide the full
service itself but uses further services provided from different service provider is supported.
In this scenario the service provider acts as a consumer of the services and service provider
at the same time. Furthermore a client server model is assumed as precondition where a
service provider environment is aware of all SLAs agreed to service consumers and is able
to do local optimisation (e.g. for not violating the SLA or intentionally violating an SLA in
order to fulfil another, from a business objectives point of view, more important SLA). The
SLA itself do not only contain the metrics that must be fulfilled but also specific actions to
be taken in case of violation and also supports the generation of events e.g. up to the work-
flow level in order to apply certain actions on SLA violation(s). The management of the
SLAs is done in a hierarchical manner. On the lowest level there are Measurement Services
maintaining information on the current system configuration and runtime configuration

58

4.2 Information Models and Management Protocols

on the low level metrics that are part of the SLA. This measurement can be either from
inside by retrieving the metrics directly for example retrieved via Simple Network Manage-
ment Protocol or Component Information Model (see above) or from outside by probing
or intercepting client transactions. The Condition Evaluation Services is responsible for
monitoring compliance of the SLA parameters and the metrics gained by the Measurement
Services. This evaluation is either on a regular time basis or on event basis. In case of vi-
olations of the SLA the kind of violation is transmitted to a Management Services in order
to start corrective actions. This provider oriented concept allows a harmonised reaction on
SLAs based on different business objectives. However the optimisation for the distributed
application is not possible in this way. So it is at the moment not foreseen that an agent
aiming at supervising a distributed simulation has to consider objectives of other parallel
distributed simulations utilising partly the same resources.

4.2.7.3 Generic System Supervision

Within the European research project GeneSyS a Web Service based solution had been re-
alised for the application domain of distributed interactive simulations. The simulation
based on Run-Time-Infrastructure (RTI) was amended by a control plane utilizing at this
time emerging Web Service technology. The basic architecture as shown in figure 4.6 and
as defined by the author with contribution from other project partners in [30] proposes a
framework based on several Communication Server CORE and different type of Agents con-
nected to the CORE via a specific GeneSyS Connector.

Beside the obvious Monitoring Agent realising an interface to the Monitored Entity for pro-
viding access to the status data and the operations to manipulate it several utility services
are necessary. The Directory Server is used in for the discovery of Monitoring Agents for a
specific Monitored Entity. The Repository stores the data of the sessions for a later analysis.
Other possible additional agents foreseen perform a filtering of the data (for example for
different roles of supervisors) and Summarizer address the need for reducing the load on
the network by providing not all data to external agents but only e.g. average values.

All these components are ultimately participating to allow supervisors using a Console Agent
to analyse the distributed simulation and to perform one or more of the available operations
on the Monitored Entity. Such operations might aim to solve certain problems without in-
terrupting the operation (for example reducing the resolution of the video stream in case of
bandwidth problems) or pause the distributed application until again a ’green’ system state
can be reached.

In order to ease the task of the supervisor the messages communicated via the Core are
already pre-processed and do not only contain the raw data itself but have been already
compared to given boundaries indicating the error status. Additionally the data must not
be provided in a continuous fashion but can be triggered to by only submitted on such a
threshold miss. This event based communication where in case of an error free operation
on messages are sent required the introduction of a self-monitoring mechanism that pro-
vided a regular heartbeat message in order to proof liveliness of the component.

59

Chapter 4 State of the Art and Relevant Standards

Figure 4.6: GeneSyS conceptual architecture

Further details on GeneSyS can be found in the following publications of the author and
others [31, 32, 33, 34].

4.2.7.4 Management using Web Services (MUWS)

The Management Using Web Services (MUWS) specification [108] is one of the results of the
OASIS working group on Web Service Distributed Management (WSDM). While the specifi-
cation has started using vanilla Web Services the final specifications had been aligned with
the results of the OASIS-WSRF group. Within this group the Web Service Resource Frame-
work (WSRF) have been defined. This clearly indicates that MUWS is targeting for Service
Oriented Grids.

As shown in [108, 109] the MUWS architecture is service oriented and solves the problem
of aligning functional and management elements of a service by introducing specific port-
Types for management additionally to the functional elements of the interface. The concept
foresees a Managed Resource that is exposed through a Manageability Provider (in figure 4.7
the triangle at the boundary of the dashed box). The properties of this Managed Resource
are consumed by Manageability Consumers. The consumer monitors and controls the Man-
aged Resources.

The realisation of a Managed Resource can be done either by a direct instrumentation real-
ising a directly Manageable Resource or via a Management Agent.

60

4.2 Information Models and Management Protocols

Data/Event Receiver

Resource
Management

Agent
(Runtime)

Manageable
Resource

Message Exchanges
Manageability

Consumer

Discovery

Requests,
Subscriptions, Control,
Information, Events, ...

Manageability Provider

Figure 4.7: MUWS Architecture

4.2.7.5 Web Based Enterprise Management

The Web Based Enterprise Management (WBEM) set of specifications cover the WS-Transfer,
WS-Enumeration and WS-Management specifications [79] as a transport mechanism using
Web Services based on the Component Information Model (CIM) information model. How-
ever the WBEM group is also working on a mapping on the MUWS specifications and as
mentioned before the convergence of WS-RF (used for MUWS) and the WS-Management,
WS-Enumeration and WS-Transfer specifications is already announced.

4.2.7.6 Nagios

Nagios [110] is a system and network monitoring application and allows the reporting of
errors for a wide range of system parameters. It comes with a large number of plug-ins but
is designed to be extensible. All plug-ins can deliver their values to a remote server using
the Nagios Remote Plug-In Executor (NRPE) concept.

The data collection is either triggered by the Nagios server system (e.g. every 5 minutes)
or is triggered by an external application that typically is installed on the monitored entity
pushing the info towards the Nagios server. The foreseen use of the collected information is
via a web interface indicating the status of the services using a kind of dashboard display.

4.2.7.7 Ganglia

Ganglia [12] is a scalable (so far up to 2000 compute nodes) distributed monitoring system
specifically designed for monitoring of cluster systems. It is designed to support multiple
clusters at a time. The communication between the Ganglia daemons (gmond) is realised
using a multicast based listen/announce protocol for the heartbeat messages across the
nodes and a tree based point-to-point connections amongst representative cluster nodes
for an aggregation of their state as shown in figure 4.8.

61

Chapter 4 State of the Art and Relevant Standards

Cluster 1

gmond

Node

gmond

Node

gmond

Node

Cluster 2

gmond

Node

gmond

Node

gmond

Node

gmetad

poll failover

gmetad

poll failover

gmetad

poll poll

client

connect data

Figure 4.8: The Ganglia architecture [12]

The data structure is not following any of the information model standards mentioned
above but defines a proprietary XML based data format with the goal of a low footprint
on the monitored nodes. Beside the built-in metrics also application defined metrics are
supported allowing an adaptation and extension of the monitored data set. The federation
of the data from individual clusters is done by the Ganglia Meta Daemon (gmetad).

4.2.7.8 Lemon

The Lemon and the Fault Detection and Recovery (FDR) concept presented in [13] propose
a mechanism for realising a monitoring and fabric management solution for computational
resources.

In contrast to the Ganglia the XML protocol is only used for the control channel messages
but not for the data exchange itself where a more efficient binary representation. Beside
Lemon does not foresee that all cluster nodes push the data to all other cluster nodes as
in Ganglia but use a local data store that forwards the data directly to a central data store
leading to a much higher efficiency in particular for larger clusters.

The monitored data can be either accessed directly via a pull or subscription model from
the local repository via a defined API expressed in the Web Service Description Language
(WSDL) format. The transport of monitoring data from the local entity to the central repos-
itory can also be customized. So far UDP and TCP implementations exist.

The Fault Detection and Recovery (FDR) approach is leveraging the monitoring concept
to a true management framework actively influencing the system state via Fault Tolerance
Actuators based on the Fault Tolerance Rules described in a proprietary XML format.

62

4.2 Information Models and Management Protocols

Node/Host

Actuators

Sensor 1

Fault Tolerance Correlation
Engine

Monitoring Sensor Agen

Sensor n

Actuators
Actuators

Store

Fetch
Fetch

Forward

Launch

Get
Data

Figure 4.9: The Lemon and FDR concept [13]

4.2.7.9 INCA

The INCA framework3 has been developed as part of the TeraGrid project and is realising
a monitoring framework for Grid end-users. The data collection on the computational re-
sources is done by realising Reporter scripts that for example reports the version of the intel
compiler installed or the version of a mathematical library. The concept assumes a central
repository for all reporters and their automated deployment on all INCA enabled resources.
The monitored results are made persistent in a so called Depot. The reports are either ac-
cessible via a Web portal or by special applications to every Grid End-User using its Grid
identity and credentials.

4.2.7.10 GridICE

The GridICE monitoring framework [14] is designed for large scale grid deployments and
widely used in eScience oriented infrastructure Grids. The architecture assume three major
use cases for the framework (1) the VO level providing a view about the accesible resources
and their configurations (e.g. software, compiler versions, etc.) (2) site level providing the
necessary information for different type of sites ranging from large centres operating in a
24/7 mode up to small centres (3) the operation domains realising the Grid Operations Cen-
tre (GOC) as an intermediary between site operators and the end-users.

The GridICE framework is realised on top of existing Grid monitoring frameworks such as
the Lemon Framework 4.2.7.8 but is also relying on non Grid solutions such as SNMP and
the Web Based Enterprise Management standards.

3http://inca.sdsc.edu

63

http://inca.sdsc.edu

Chapter 4 State of the Art and Relevant Standards

Measurement

Publisher

Data Collector
New Resources Detection + Scheduler + Persistent Storage

Detection/Notification Data Analyzer

Presentation

Figure 4.10: The GridICE layered architecture according to [14]

The chosen architecture is organised in several layers (see 4.10) starting from a Measure-
ment Service where the monitored entities are probed for their status. GridICE does not
prescribe any particular collection mechanism or information model and has been inte-
grated with several different toolkits and models including (SNMP, CIM, Lemon, GLUE and
LDAP). The Publisher Service realises the access interface for external users and is similar
to other frameworks as discussed above propose a common information model to be used
above this point. The chosen solution is to rely on the GLUE schema and to use the Globus
Meta Directory Service (MDS) version 2 as publication method. Additionally a Data Col-
lector Service storing the monitoring data for analysis of historical data is foreseen. On top
of this layer Detection/Notification and Data Analyser services are proposed that realises
a communication framework for detected errors e.g. using Short Message Service (SMS),
provide functionality assisting in the diagnosis of errors and providing performance analy-
sis and statistics from the collected data. For the data analysis part the usage of data mining
concepts using On-Line Analytical Processing (OLAP) have been investigated. The Presen-
tation Service realises a web-based graphical user interface to the data.

4.2.8 Tivoli

The Tivoli framework is designed for distributed system administration, software distribu-
tion, remote configuration, remote control, remote monitoring. Its design is proprietary,
thus it does not support standard protocols (like SNMP) but it can be interfaced with the
IBM’s network analysis product Netview in order to enhance the field of operations.

4.2.9 Unicenter (Computer Associates)

The Unicenter framework is based on a central object repository containing all devices
managed by the platform. Its implementation is more open than Tivoli’s as it admits the
use of various protocols and allows the definition of extension modules. However it is also
limited to human operator driven monitoring.

64

http://www.cai.com
http://www.tivoli.com

4.3 Existing Management Approaches

4.2.10 Openview (HP)

HP Openview is dedicated to network supervision, the Openview environment has been
augmented with many functionalities linked to systems and applications. Its implementa-
tion is based on SNMP.

4.2.11 Openmaster (Evidian-Bull)

Openmaster was designed like a universal platform supporting a large field of protocols and
information models (SNMP, CMIP, Network oriented. The product is focused on security
purposes.

4.3 Existing Management Approaches

Additional to concepts realised in toolkits such as discussed above, also different approaches
for resource, network and system management exist. As most of the toolkits are limited to
a pure monitoring most of them need to be extended significantly to move towards an au-
tonomous management system. In this section approaches for gaining knowledge from the
monitored data and how management solutions could be realised are discussed.

4.3.1 Rule based Approaches

One existing approach is outlined in [111] and [112] realised by storing specific symptom-
cause pairs in a database. If a monitored situation fits or is similar to a symptom stored
in the case database the solutions for such a case can be executed. The major problem to
solve in this kind of systems is defining the metrics evaluating the level of similarity for the
monitored symptoms and the one stored in the database. Another critical point is the size
and quality of the case database. Very often historical data for example from a trouble ticket
system are used to feed such databases (see for example [113]). This kind of approach is only
suitable for rather static settings and where the dependencies and interactions between the
different nodes in the distributed setting are rather well understood. Of course the quality
of these systems is heavily dependant on the quality of the case database and the stored
measures. Another problem of the cited systems is that they operate on the low level metrics
of the system which is leading to a high amount of traffic for the monitoring and also to
a complex mapping of many different cases to a the same measures (e.g. many different
parameters settings could indicate an overload situation that need to be addressed by the
measure add spare resources.

An alternative approach is exploiting the fact that a high level of interdependency between
the components from the different layers from network over system, middleware and appli-
cation exist. In order to define the right measures on how to detect and react on problems in
the operation of distributed applications knowledge on the topology and the dependencies
of the different components is necessary. In [114] an event correlator based on dependency

65

http://www.hp.com
http://www.evidian.com

Chapter 4 State of the Art and Relevant Standards

graphs is introduced. Using this dependency graph it is possible to identify which compo-
nents of a distributed system will be affected if an error occurs. The approach is also limited
to configuration where the interdependencies are well understood and rather static in order
to allow maintenance of the solution with a acceptable amount of human resources.

Other correlation approaches that aim to map automatically from low level metrics to higher
level error conditions are described in [115, 116] using a specific programming language or
the complete distributed system is modelled in its event behaviour in [117].

Another rule based approach has been already discussed in section 4.2.7.8 and is detailed
in [13]. This solution defines also a set of rules reacting on a well defined number of events
and applying appropriate counter measures e.g. restarting an sshd daemon.

4.3.2 Policy Based Management

Policy-based management approaches had been developed in order to achieve a more dy-
namic behaviour of the management systems. The underpinning consideration is that the
rule based approach used in isolation is too static for the dynamically changing environ-
ment where the IT infrastructure is continuously changed and updated. So more general
policy based management aim to move the fixed rule based approaches towards a more
objective and goal oriented approach. An example where policies are applied to address
management challenges is outlined in [118]with a focus on security policies.

Device configurations,
Tables,

Firewall rules,
Access Control Lists,

...

Low Level Policies / configurations

High-Level/ abstract/
Business Level policies

Specification Level Policies

Service Level Agreements,
Business Objectives

Policy specification language
Rule-based approaches

Formal logic-based
approaches

In
cr

ea
se

d
E

nf
or

ce
ab

ili
ty

Human controlled mapping

Automated mapping

Figure 4.11: Layered approach of policy based management

In [119] the core concepts of policy based management are defined. The basic concept is
that at a Policy Enforcement Point (PEP) the need for a decision is detected and that this
and potentially many other PEPs communicate this decision request to one Policy Decision

66

4.4 Summary and Conclusions

Point (PDP) in order to receive a decision. Of course additional elements for realising such
an infrastructure are necessary such as a policy repository where all the policies used for
the decision are stored.

The major difference to purely rule based approaches as discussed in the previous section
is the assumption that a hierarchy of policies exists as shown in figure 4.11 from human
readable high level and more abstract policies down to the level of machine readable and
understandable policies. The typical assumption taken is that the initial transformation
step is done using a human operator while further steps can be done automatically.

A wide range of policy languages and formal logic-based approaches do exist such as Pon-
der [120], Rei [121], ProPoliS [122]or eXtensible Access Control Modeling Language (XACML)
[123] to name a few. A full description of them is beyond of the scope of this thesis.

4.4 Summary and Conclusions

A wide range of monitoring solutions exist either for the network and system level or for
distributed application or Grids. Different information models exists partially standardized
and lots of them proprietary.

None of these tools have been designed to support the VO model presented in chapter 2 as
they are either limited to the system and hardware level or at best aim to realise a manage-
ment across the site. If the solution is realised for Grids the fact that most of the information
collected within a site cannot be provided to other sites or a centralized Grid Operations
Centre (GOC) in the cases where an industrial usage of the resources is foreseen disqualifies
all existing solutions.

None of the existing solutions is able to fulfil the requirements worked out in section 3 in
particular the anticipated site autonomy and the role of the SLAs at the provider boundary
as driving element for all management decisions within a site are not considered.

Requirements Reference
Numbers
from chap-
ter 3

Tools/Specifications/Standards
partially supporting these re-
quirements

Realisation of a complete sta-
tus picture based on information
coming from different information
sources and understand their in-
terdependencies

Req.1,
Req.3,
Req.10,
Req.16

GeneSyS

Common Information Model Req.2, Req.7 CIM, MIB, GLUE, ...

Active Management towards de-
fined desirable system conditions

Req.4,
Req.11

Policy Based Management (con-
ceptual only)

67

Chapter 4 State of the Art and Relevant Standards

Requirements Reference
Numbers
from chap-
ter 3

Tools/Specifications/Standards
partially supporting these re-
quirements

Appropriate inclusions of humans
in the management process and
well defined escalation strategy

Req.5,
Req.12

Typically either the management
is completely done by humans
and the system is reduced to a
pure monitoring system or a full
automation is targeted.

Support for lifecycle based man-
agement considering different
goals during the handling of a
complex tasks

Req.6,
Req.17

The priorities and the manage-
ment goals change over time de-
pending on the phase of the
task. Existing solutions assume
either static rules/policies or ac-
cept only changes in the busi-
ness objectives as driver for up-
dates.

Transformation from external
obligations to internal manage-
ment metrics and goals

Req.8 While this is part of the vision
of policy based management a
full automation is still under re-
search and is not even available
on a conceptual level.

Management driven by business
objectives rather then technical
parameters

Req.9 Not supported by existing tools.

Support for confidentiality of
monitoring information in par-
ticular across organisational
boundaries

Req. 13 Some support has been re-
alised in GridICE but cross-
organisational management is
anticipated as non-goal for most
other solutions.

Resolution of potential discrepan-
cies of external defined manage-
ment goals and site specific goals

Req.14 Not supported as if cross-
organisational monitoring or
management is considered
a collaborative mood of all
participants is anticipated

Differentiation between replace-
able and essential resources

Req.15 problem is solved by putting
such rules into SLA specifica-
tions

Table 4.1: Requirements mapped on available standards and technologies

68

4.4 Summary and Conclusions

In summary on can say that a rich set of tools and specifications are available for monitoring
the state of systems, networks, clusters or any other kind of hardware. Additionally differ-
ent approaches are available to instrument software services in order to make information
about their state available. While many tools are using non-standardized information mod-
els a transformation from this proprietary formats into the available ’common’ data formats
such as CIM or GLUE are feasible. The big gap identified in the table above between the
high level, more abstract, management goals and the available metrics from the software
and hardware is conceptually close by policy based management approaches proposing a
kind of ’magic’ mapping process from a Business Management Layer down to a Resource
Control Layer using the terminology introduced in [124].

69

Chapter 4 State of the Art and Relevant Standards

70

Chapter 5

Monitoring and Management
Concepts

In the previous chapter one of the key result of the state of the art analysis was that there
is a wide range of systems for monitoring the state of (distributed) systems. Additionally
existing monitoring solutions for Grid environments designed for large scale deployments
are already available but do not meet essential requirements identified in chapter 3. This
is related to the different viewpoint of these projects on the Virtual Organisation concept
as a mechanism for sharing resources for achieving a common purpose rather then the
economically driven viewpoint presented in chapter 2.

Additionally the view that all relations within the Virtual Organisation need to be docu-
mented and controlled by Service Level Agreements do not allow on one hand to have a
centralized approach for the monitoring but enable and require on the other hand the ac-
tive management of the resources in order to fulfil these SLAs. Consequently a different ap-
proach is needed for the realisation of an appropriate monitoring and management frame-
work.

In the first part of this chapter a set of terms are introduced that can be used further on as
they are used in slightly different meanings in different publications. Utilizing these defini-
tions a conceptual architecture is presented. The chapter is concluded with a discussion of
the applicability of existing management methods on the different layers in this concept.

5.1 Concepts and Terminology

A wide range of terms are used for describing monitoring and management solutions and
very often the meaning in literature is not consistent. The understanding within this thesis
is listed in the following table:

71

Chapter 5 Monitoring and Management Concepts

Term Description

Instrumentation In order to collect information from the resources different ap-
proaches might be necessary. For some resources no direct metering
of the values could be possible and the desired information must be
extracted from log files or by applying a patch to the software.
Similar for applying corrective measures on a resource an appropri-
ate interface must be realised. The enabling of resources to be man-
ageable is called Instrumentation.

Metering Based on the instrumentation mechanism one can measure the re-
source utilization. This data collection is called Metering

Monitoring Based on the collected raw data from the Metering components the
information is converted to a standard format or is aggregated from
several values (cpu usage, memory utilization, ..) in order to fill an
information record e.g. on system load.
The aggregation can be also a summary across several resources
such as the average number of requests for a web server farm in-
stead of individual load values or can be an integration across layers
combining information from network with system load.

Supervision Supervision is the usage of the monitoring information and po-
tentially a set of pre-defined or individual counter measures. This
counter measures are selected and triggered by a human operator.
This concept already needs the instrumentation part for influencing
a situation actively but no automated mechanisms are in place.

Management Management is understood as the mechanism of collecting informa-
tion from a potentially large number of monitoring resources and
their automated analysis. The analysis might find an appropriate
measure and apply this measure on the resources in order to over-
come the situation.
Management components can be hierarchical. This means that if a
local management component cannot find a solution for address-
ing the problem it can be escalated to a higher layer. Additionally
applied measures or detected critical situations are propagated to
higher layers that can potentially overrule local decisions.
Similar to the Supervision case the ultimate point of escalation might
be a human operator.

Table 5.1: Definition of used terms

Beyond the level of management as described in the table above there are ongoing research
work in the realisation of an organic computing1 or fully self-management capable systems
that are able to learn and adapt to fully unforeseen situations and ultimately render any

1http://www.organic-computing.de/spp

72

http://www.organic-computing.de/spp

5.2 Conceptual View

human intervention to be unnecessary. For this thesis this kind of management has been
considered not to be applicable (yet) for the requirements as discussed in chapter 3 and is
also not in line with the concept of hard guarantees expressed in the SLAs between provi-
ders and consumers.

5.2 Conceptual View

Using the definitions from table 5.1 an initial architecture and its key building blocks can be
provided. Figure 5.1 show these blocks of a management solution in line with the identified
requirements from chapter 3 and suitable for commercial oriented Virtual Organisations as
presented in chapter 2.

Resource Delegate Raw Data SensorInstrumentation &
Metering

Monitoring

Local
Management

Provider
Internal

Management

VO
Management

Command Sender Data Receiver

Enactor (Decision Point)

(Multiple) Management Block(s)
(Enactor, Command Sender, Event Receiver)

Mediator

(Multiple) Management Block(s)
(Enactor, Command Sender, Event Receiver)

Command Enforcement Aggregation & Integration

M
an

ag
ea

bi
lit

y
Pr

ov
id

er
 O

bj
ec

tiv
es

VO
 O

bj
ec

tiv
es

Figure 5.1: Conceptual View of the Management Framework

The management stack is divided into three major layers (indicated by the dashed line). The
lowest layer enables the manageability of the resource. This layer enables the management
by adding hooks for the information collection (called Raw Data Sensors) and for influenc-
ing the configuration (called Resource Delegate). On top of this instrumentation and me-
tering layer the monitoring layer acts as a an aggregator and integrator of the information.
Major role of the Aggregation & Integration component is the realisation of a common data
and communication format for the higher layers and to reduce the overall amount of infor-
mation that need to be exchanged. So consequently at the boundary of the manageability
layer a common information and data model can be assumed independently from the large

73

Chapter 5 Monitoring and Management Concepts

variety of different data collection methods and the used tools on the instrumentation and
metering layer.

The middle layer represents the provider internal management framework that might be
organised in a hierarchical manner as indicated in figure 5.1. So while only two layers are
shown there is no conceptual limitation implied. Between this middle layer and the VO
management wide management a mediator component is acting as a filter for the informa-
tion flow and external requests. Within this layer the assumption is that full control of the
underlying resources is given.

The VO Management layer is responsible for the cross-provider management. As outlined
above the communication between this layer and the potentially large number of providers
is mediated. An important consequence of this is the lack of control about the provided
services. Every provider remains completely autonomous. This is, as said before, in contra-
diction to current practice in many Grid infrastructures and is also the major reasons why
existing solutions cannot be re-used for a VO wide management.

5.2.1 Manageability Layer

This part is seen as a component very tightly integrated with the monitored resource and
is expected to show a quite minimalistic footprint. As discussed in chapter 4 a wide range
of solutions for this purpose exist such as Nagios [110, 125], Lemon [13] just to name a
few. Most of the tools analysed use a push communication model providing information on
the status of the monitored entity on a regular basis but also the pull model is commonly
available. The advantage of the pull model is that the time of the request can be aligned
with the main activities of the monitored entity. An example would be to query a compute
node of a cluster between two jobs and not during a compute intensive activity.

As outlined in chapter 4 many tools do not foresee the collected information to by automat-
ically processed but push the information to scripts hosted in a web server. These scripts
produce colourful reports or status dashboards as indicator of the system status for a hu-
man operator. Quite commonly the information shown just covers the overall situation
and allow in case of error conditions to query for details (moving from the push to the pull
model). A human operator can easily cope with a set of different tools and their quite het-
erogeneous and diverging way to display the monitored information. The goal of an au-
tomated management can only be realised if this information collection is mapped on a
common information model such as proposed by the Distributed Management Task Force
(DMTF) with the Component Information Model (CIM). The author and others have pro-
posed a simple information model for distributed applications in [30].

5.2.1.1 Integrated Sensor

The most efficient way to provide access to the externally relevant part of internal system
state is by adding a specific interface to the process, component or hardware. As outlined in
chapter 4 this could be the Simple Network Management Protocol (SNMP) with its GET, SET

74

5.2 Conceptual View

and TRAP commands, the Java Management Extensions (JMX) or proprietary hook mech-
anisms. Of course it is also possible to add any proprietary mechanism to query for the
necessary data. Many applications allow this approach by providing hooks into the pro-
cessing chain e.g. the filter mechanisms of many web servers.

5.2.1.2 Indirect Sensor

Unfortunately very often there is no direct access to the system state information. If the
monitored entity is a software process one might be able to parse log files or monitor the
process with operating system capabilities (e.g. memory consumption). In some cases
where no internal information is stored one can only perform a kind of ’black-box’ test-
ing. As an example a component could measure the average response time for a web page
of known size from web server in order to provide an indicator for the current load situa-
tion. This external detection method is very often the only possible solution for hardware
components. The realisation of such indirect sensors is commonly done using wrappers
that provide externally the same interface as realised for Integrated Sensors but instead of
having direct access to the internal state they perform an approach similar to the ones men-
tioned above. The indirect approach does not only have drawbacks. While the access to the
system state is more complicated the monitoring is not located on the same physical entity
and has less influence on the operation. So in case of failures of the monitored entity an in-
tegrated sensor might be affected at the same time. So in general it is advisable to combine
both approaches and have integrated and indirect sensors for a monitored entity.

5.2.1.3 Aggregation and Integration

Very often the individual data and state of a single resource is not relevant and it is sufficient
to communicate an average value. Very often such a value provide more information as a
snapshot at a certain point in time. So it is advisable to consolidate the information from the
continuous monitoring in order to minimize the information flood. The Aggregator com-
ponent is responsible for collecting the information and transforms it to a significantly re-
duced amount of information. A simple scenario demonstrating how sensor components
and an aggregator component work together is shown in figure 5.2. In this sample a server
farm of web services is monitored (e.g. by an integrated sensor implemented as a filter). The
sensor perform a local aggregation from values such as cpu usage, free disk space and other
parameters to an overall system status of ’green’, ’yellow’ or ’red’ and pushes this state to
the Aggregator component hosted on a separate server. The operator monitoring this farm
is in a different network (or even somewhere in the Internet) and does not want to have the
individual information in case of an overall ’green’ state. The simple Aggregator component
in this case indicates as overall situation of the system the worst individual system state. So
instead of five data packets on the individual state only one is sent.

If the overall system state is ’green’ the operator does not take any actions. If the Aggregator
indicates ’red’ or ’yellow’ the operator might query for detailed information (note that the
query would go to the Aggregator and not to the potentially already overloaded web server).

75

Chapter 5 Monitoring and Management Concepts

Figure 5.2: a simple monitoring scenario

In case the failure persists the necessary actions could be taken to overcome the situation
e.g. add additional spare resources to the server farm or remove the broken server from
the farm for a detailed inspection. The implementation of such a behaviour requires the
Resource Delegate explained below.

An important aspect as mentioned before for an automated management is the realisation
of a common information model. This does not need to be standardised but must be on
this level only common within the provider domain. Additionally the collected information
and data from different tools and from different levels (e.g. network, system, middleware,
applications, . . .) need to be integrated. So in contrast to the human operator (supervision)
scenario described in the previous section it is not feasible to directly consume the data in
tool specific formats but a transformation into a common format is done. This integration
is not yet driven by a semantic analysis but is limited to a grouping of single data chunks
representing a complete system state of the monitored entity.

5.2.1.4 Sensor Cache and History

If such additional requests for detailed information are common a cache for the received
individual sensor information data allows an efficient access to the data. Instead of blocking
a request until new data is pushed by the sensors a request can be served from the cached
values. If the cache is made persistent and for example a database is used also historical
data analysis or interfacing other parts of the infrastructure (e.g. an accounting system) is
possible.

The persistent storage of historical data is also essential for a proper analysis of a situation.
So the cache and history component is seen as an utility component for higher layers of the
management concept. For example if a significantly reduced response time is quite com-
mon between 11am and 1pm the monitoring of a such a situation is likely not to be reported

76

5.2 Conceptual View

as ’red’ but as ’yello’. If the same situation happens at 4am in the morning a different result
of the assessment can be expected. For such an assessment the historical load situation of
the last days, weeks and months builds the necessary basis.

5.2.1.5 Command Enforcement

In order to allow a management component of the higher layers to receive and analyse the
presented integrated information and take decisions based on them all necessary elements
are described in the previous parts of this section. But for implementing the commands
one need a component that is aware of the underlying resources and can translate the com-
mand in individual commands. Considering again the web server case the command ’put
server 4 on hold and perform an in-depth analysis’ would result in a couple of commands
removing server 4 from the pool, triggering the start and execution of an in-depth analysis,
collection of the result data and provision of the result data again to the management layer.
The coordinated implementation of a management command is the task of the Command
Enforcement Component.

5.2.1.6 Resource Delegate

The resource delegate is the component that is able to implement a set of commands for
a certain resource. The realisation of such a component is not possible for all monitored
entities and the possibility to realise it similarly as outlined above for the integrated sensor
with direct access to the system is rather uncommon. Additionally there must be no direct
relation between the monitored entity that indicated a problem and the place the command
aiming to fix the problem is applied. Using again the above mentioned example of the server
farm the reaction on the overload situation for the web servers could go to the web servers
instructing them to prioritise requests from certain IP Addresses solving the problem only
for this VIP address range. Another approach might be to activate more server instances for
serving web requests. In the latter case the command would not go to the web servers but
to a server management component.

5.2.2 Provider Internal Management Layers

Enabled by the manageability layer providing a well defined data format the information
about the system state the management layers can operate independent from the underly-
ing tools or sensors used to collect the information. Additionally the flood of information
available from the large number of different sources is already significantly reduced as not
all individual data but already derived information such as average values are communi-
cated. As described above dedicated resources are provided to perform this aggregation
& integration and also to realise a data cache for historical data and provide a persistence
layer for the monitored data in general.

The provider internal management layer contains one ore more management blocks con-
sisting out of a Data/Event Receiver, Command Sender and an Enactor component. The

77

Chapter 5 Monitoring and Management Concepts

Event Receiver consumes the information provided from lower management layers or if the
lowest layer is reached from the Manageability layer. The full chain is utilizing and rely-
ing on a standardized event format within the provider domain. The Enactor component
take decisions and communicate them using the Command Sender component to the lower
layer. All decisions taken are communicated in parallel up one layer. The highest internal
layer in the chain does not communicate directly to the VO Management layer as shown
in figure 5.1 but is supported by a Mediator component responsible for the external com-
munication. This management block is inspired by the the basic components of policy
based management approaches (more details can be found in [52, 126]) where the Policy
Decision Point (PDP) takes decisions based on received events and the Policy Enforcement
Point (PEP) where the events are received and enforced.

Manageability Management Management
Level II

Overload
Situation

Notify
Overload

Add Spare
Resource

Receive
Priorisation

List

Direct to
prioritize

VIPs

Command
Receiver

Communicate
Decision and
Remaining

Instances in Pool
[yes]

Figure 5.3: Simplified management flow for the web server farm scenario

The motivation for such a hierarchical approach having several management blocks is mainly
driven by scalability, resilience and robustness considerations. That such an approach de-
livers an increased resilience compared to a centralized solution is straight forward. Having
several autonomous components in the chain that act independent from each other enable
the operation of the overall system even if certain components fail. In such situations only
a reduced robustness of the system is experienced. However there is no guaranteed robust-
ness of the system in general. Each of the layers aim to realise with the issued commands
a compensating effect on the detected malfunctions and the hierarchical approach can be

78

5.2 Conceptual View

seen as an attempt to linearise the problem but brings at the same time the problem that
the local context of the Enactor components might lead to wrong decisions. This problem
is addressed by the communication protocol that all taken decisions are escalated (with the
ultimate escalation point of a human operator) but for scalability reasons decisions need
to be local. From a scalability viewpoint it is reasonable to increase also the complexity of
the decision processes within the Enactor component going up the hierarchy. While Lo-
cal Enactor components might be based on simple tables mapping an event with one or
more commands to be executed, higher layers could be realised with rule based solutions
up to flexible policy driven management approaches that potentially need a large number
of information sources (in particular non-technical information such as a customer profile
database). Together with this increased complexity comes a longer decision time. Table 5.2
lists a set of methods and corresponding decision times. In figure 5.3 a simple decision tree
for the web server farm scenario is shown covering a scenario where some management
decisions can be taken locally (activate additional server instances) up to the point where
no server instances are left. At this point the higher management layers are asked for a pri-
oritization list for the traffic that VIP customers originating from a specific IP address range
can be prioritized at the web server level.

5.2.2.1 Data/Event Receiver

The Data/Event Receiver processes the information in the tool and collection mechanism
independent format provided by the manageability layer. This component is responsible
for the assessment of the conceived status and aims to map it into a category of events
or errors. So additionally to the tasks already performed in the layer below a semantically
driven analysis is done that could, re-using the previous example, consider that a high load
situation at 4am in the morning is uncommon and indicates and error whereas the same
situation at 2pm is quite normal.

A plethora of methods for the assessment of such states do exist and could be as easy as
comparing the data with a set of pre-defined boundary conditions, over the detection of a
negative trend (e.g. continuously decreasing performance of the IO operations) or complex
algorithms e.g. self-learning approaches. There is no conceptual limitation foreseen how
the assessment has to be done. Based on the assessment the Data Receiver component for-
ward the assessment results to the Enactor for a decision. The right method for performing
the assessment also heavily depends on the position in the management hierarchy. The
closer this layer is to the monitored entity the more importance must be given to the speed
of the decision time.

5.2.2.2 Enactor

The Enactor is the recipient of the results of the Data/Event Receiver and must now take a
decision about the actions to be implemented. This logical block has been intentionally not
called Decision Point. While it has a lot of commonality with a Policy Decision Point there
are also some important differences:

79

Chapter 5 Monitoring and Management Concepts

1. The decision is based on an integrated view considering information from different
layers and sources. This means that the enforcement of the decision cannot be done
at one single point but need to be delegated to a range of enforcement points that
further delegate it to potentially several resources

2. The management model is hierarchical. This could be modelled with a hierarchy of
PDPs. However this model is not feasible as a long hierarchy might lead to long re-
sponse times and would be in contradiction with the goal to choose the optimal tech-
nology for a certain layer. The proposed alternative is that if local decisions can be
taken only the decisions are communicated to higher layers that might overrule or
refine them. In case a local management component cannot take a decision (or has
tried several solution procedures and failed) the problem is escalated similar to the
PDP chaining approach.

3. while an implementation of the decision point using policies is quite natural it is not
the only possibility and would therefore constitute a quite strong limitation not ap-
propriate for this generic level. In particular for the lower layers methods with short
decision times are preferable.

So from an abstract viewpoint the Enactor analyses the events received from the Data/Event
Receiver component and decides if the right measure is available to address the problem
and communicate this decision to the Command Sender component. In parallel the deci-
sion taken together with additional data that built the basis for it are communicated to a
higher management block in the form of an event message. In the Manageability layer the
communication between the sensors and the aggregator/integrator is assumed to be either
controlled by time intervals (e.g. every 30 seconds, every 5 minutes, ...) or by clearly identi-
fiable events such as after every job on a compute node. As outlined above this assumption
is not valid for the management layers. For an event driven communication paradigm the
advantage of a substantially reduced amount of information that is transmitted comes with
the drawback that a failure of a monitoring component cannot be differentiated anymore
from the lack of events (indicating a good system situation). In [30, 32] the author and others
proposed as solution specific heartbeat messages for all monitoring and management com-
ponents realising a self-monitoring infrastructure. Other possible solutions with a smaller
bandwidth footprint include the submission of events not only in case of failures but also
after a pre-defined intervals or the possibility for higher management layers to request reg-
ularly a full status report.

5.2.2.3 Command Sender

This component is seen as an utility component for the Enactor in order not to overload
this component with the task of a reliable communication to the Command Enforcement
part of the lower layer(s). The Enactor provides the Command Sender component with the
taken decision and a set of goals such as the aniticpated maximum time for a successful
implementation of this decision. If the measure cannot be applied in time or not at all a
corresponding event is fed back into the Enactor via the Data/Event Receiver.

80

5.2 Conceptual View

5.2.2.4 Local Management Layer

This layer is special in the hierarchy of management layers as it does not receive events
but only monitoring data. So the component called Data/Event Receiver is for this layer a
pure Data Receiver. But more important this layer is expected to operate as interface for all
management layers as interface to the monitored entities where ultimately all management
decisions are enacted. For this reason it is anticipated that this layer need to implemented
in a very efficient matter with extremely short decision times. In particular the implemen-
tation of commands from the higher layers (in the sample in figure 5.3 the prioritisation
request) need immediate actions.

5.2.2.5 Provider Boundary Management Layer

A specific additional component at the provider boundary is the Mediator component.
Based on the collected requirements the autonomy of a provider is one of the key elements
that need to be realised and is also a key differentiator to existing VO models and existing
monitoring approaches as shown in the previous chapter. The Mediator has some simi-
larities to the Aggregator & Integrator component of the manageability layer by translating
the provider internal formats into a data representation that is understood VO wide (and
similarly for the external commands) but it also serves as a filter component between ex-
ternal entities and the internal resources. The task is a bit more complex as for different
VOs different data formats and protocols must be supported. The fact that a provider is in-
volved in several, potentially competing, VOs at a time also opens challenges related to the
confidentiality of the data and requires a tight integration with the security components of
the provider. It must be ensured that only the subset of the data that is eligible for a par-
ticular VO is provided to the outside for the specific role of the requestor/subscriber for
this information set. Quite clear is that not all provider internal information is eligible for
external entities and the acceptance of external commands will be very limited if not com-
pletely neglected. So the Mediator is acting as an integration, transformation and filtering
component between the provider and the VO and must be tightly coupled with the security
components of the provider.

5.2.3 VO Management layer

A management approach for the VO layer must consider the assumed site autonomy to-
gether with the lifecycle of VOs as discussed in chapter 2 of this thesis. Such a setting can
only be operational if the conditions of the collaboration are clearly defined. These con-
ditions embrace the complete interface ranging from connectivity up to the application
service layer. Consequently it is necessary to agree on certain conditions for the provision
of a service and a proper documentation of them.

For this purpose several research projects have introduced the notion of a Service Level
Agreement (SLA) for services that can be negotiated and/or agreed on the fly constituting
the relationship between the providers and between consumer and providers. The common

81

Chapter 5 Monitoring and Management Concepts

understanding is that such SLAs are describing bi-partite relationships (as outlined by the
author and others in [91]) between two entities or combined with a general VO agreement
[52]. In [49] the author and others have shown the limitations of such approaches in highly
dynamic environments.

Manageability

Local Management

Provider Internal Management

VO Wide Management

Monitoring
Data

Events,
Taken

decisions

SLA Violations

Influence
Infrastructure

Updated Objectives
(Rules/Policies/…),

Commands

Agreed SLAs,
Applied

Penalities

Figure 5.4: message types on the different layers

The proposed SLA model for this work has been further extended to combine the flexibility
of the bi-partite approach, the consideration of legal constraints and risk mitigation from
the General VO agreement approach and the identified necessity of fast SLA negotiation
processes needed in highly dynamic environments. It is proposed to limit the number of
offered SLAs to a small number in order to make sure that a service provider management
becomes possible. As a completely static number of SLAs would be quite inflexible the se-
lection of possible SLAs is shifted to the preparatory phase of a Virtual Organisation. So
additional to the VO lifecycle phases for the dynamic set-up of an Virtual Organisation as
listed in chapter 2 some preparatory steps are necessary. Assuming that a free negotiation
of SLAs is not realistic as the negotiation would take quite long, the decision process is very
complex and the management of the resources to ensure the SLA cannot be based on ex-
periences or pre-defined rules but would need to be realised in a kind of start-up process
with ’learning’ algorithms a substantial reduction of the complexity can be achieved. In
particular in the considered cases where business scenarios are operated by the VO a free
negotiation leading to a kind of ’try-and-error’ management approaches would be too risky
as failure in providing an SLA is typically associated with a penalty.

So in advance of setting up a collaboration within a VO either offline (e.g. a paper based
contract) or in an electronic way the potential VO partners agree to a certain set of SLAs
and define their properties. Also services with a lifetime beyond the lifetime of a Virtual
Organisation such as service registries are filled with service descriptions including a subset
of the agreed SLAs that are supported for this specific service. In [126] the author and others
call this group of potential collaborators a BaseVO.

If a service of a provider has been discovered and is a potentially added to the Virtual Orga-

82

5.3 Key Building Blocks

nisation a negotiation if a certain SLA can be provided is performed. Different negotiation
protocols for this purpose do exist. Beside the proprietary approach described in [107] stan-
dardized protocols (WS-Agreement, WS-AgreementNotification) are currently in the stan-
dardization process at the OGF (Open Grid Forum). For this thesis it is sufficient to assume
that by any of these protocols an agreement could be reached and this SLA must now be pro-
vided to the external consumer. For the provider internal management layers this agreed
SLA need to be translated to objectives on the respective layers. The formulation of these
objectives depend on the technology used and might not go down to all layers. For example
the local management components that ensure the proper operation of resources on the
physical layer should not be affected of any agreed SLA as their goals do not change.

Considering this loosely coupled view of the service providers it is necessary to motivate
that similar to the previous management layers a VO management layer is needed at all. As
the agreed SLAs regulate the external quality of the services also no error messages/events
are communicated but SLA violations (either from the consumer or provider). The role of
the VO Management block is therefore to detect SLA violations and to take the appropriate
decisions based on these violations. These decisions need then to be communicated to rel-
evant members of the VO. Potential reactions on SLA violations include the communication
to the service provider responsible for accounting that a violation occurred and the agreed
price penalties should be applied or to replace a service provider with a new provider.

As outlined above it is assumed that a limited number of SLAs is provided within one Vir-
tual Organisation. Similarly the potential actions applied in case of violations should be
pre-determined and their number should be limited. Additionally many research projects
propose to add the potential applied penalties as part of the SLAs (see for example [107]).

5.3 Key Building Blocks

As shown in chapter 4 a wide range of monitoring solutions exists mostly limited to the
surveillance of low level hardware metrics or service availabilities and mostly relying on
humans to perform appropriate counter measures. Additionally the approaches for inte-
grating the information from different layers stop very often at the system layer. Clearly
no tool is considering the management of potentially conflicting obligations towards sev-
eral consumers for different Virtual Organisations. Additionally the integration of economic
considerations using not only technical parameters for the prioritisation of scarce resources
but associated risks (high penalty for violating an SLA, violation of an SLA for an important
customer, decrease of the reputation, . . .) are not part of any existing solution.

The proposed solution extends the supervision approach in GeneSyS by adding a hierarchy
of management layers inspired by Policy Based Management Approaches responsible for
the management of different aspects. The approach also go far beyond pure monitoring
solutions such as realised by INCA [127], GridICE [14] or MIMO [99]. The hierarchy has
been motivated by the fact that decisions based on SLAs or others economic parameters
are in the time frame from minutes to days and decisions close to the managed entities can
be taken independent from them most of the time and require significant faster decisions.

83

Chapter 5 Monitoring and Management Concepts

As indicated in table 5.2 different approaches for making decisions are proposed for the
different layers.

Management Layer Realisation Decision Time

Local Hardcoded, table based,
dependency driven

milliseconds to seconds

Provider Internal Rule based, policy driven seconds up to minutes

Provider Boundary Policy driven, Human in-
teraction

Minutes to days

VO wide Policy driven, Human in-
teraction

Minutes to years

Table 5.2: Anticipated typical methods and corresponding decision times

It is not possible to compare the complete proposed solution to existing approaches as only
partial solutions do exist. Instead in the following section the innovations per layer and
patterns for realising the functionality are discussed.

Manageability Layer In this layer the existing tools provide almost all necessary func-
tionality. In particular for the realisation of the Raw Data Sensor component a wide range of
possibilities exist. For the realisation of the Resource Delegate the choice of existing solution
is less extensive but available. Additional more or less all tools allow the realisation of exten-
sions (e.g. NAGIOS [110], Lemon [13], ...) that allow the addition of custom sensor types and
data providers. Within the GeneSyS project the author and others have realised Data Aggre-
gation & Integration and Command Enforcement components for different scenarios. This
implementations had been also submitted to the OASIS standardisation group working on
the Management Using Web Services (MUWS) specifications. Also the work of the Distribu-
ted Management Task Force (DMTF) with Web Based Enterprise Management (WBEM) and
the Component Information Model (CIM) information model is in line with the proposed
approach. Additionally further specialised information models such as the Grid Laboratory
Uniform Environment (GLUE) [93] schema for High Performance Computing scenarios ex-
ist.

Additionally to the widely used pattern to add different kind of sensors to the monitored
entities the innovation as presented by the author and others in [30, 32, 33, 34, 31] is to
add the concept of Resource Delegates and to introduce the notion of self-monitoring of
the system based on heartbeat messages. In [13] a similar approach using so called Fault
Tolerance Actuators launched on the monitored entity in case of failures for performing
counter measures is described.

Local Management Layer As most of the existing solutions are focused solely on the
monitoring aspect no direct corresponding functionality can be found. Only the Fault De-

84

5.3 Key Building Blocks

tection and Recovery (FDR) concept integrated with the Lemon framework [13] realises
something in this direction. The realised solution is called a fabric management framework
that is able to handle hardware failures autonomously based on pre-defined fixed rules.
However the proposed system does not consider a management hierarchy and no dynamic
update of the rule sets.

The three major elements of a management block have been already described above in
section 5.2.2. In this section the concept is further detailed. The first element is the Data
Receiver receiving the data from the lower layers and apply some initial categorization on
the data and evaluate the situation up the point where a decision is necessary. The Com-
mand Sender communicates the necessary commands in order to implement a decision.
The Enactor component taking the decisions and is relying on the categorization done by
the Data Receiver and utilizes the functionality for sending the decisions taken in a reli-
able way offered by the Command Sender. Figure 5.5 provide more details on a potential
realisation of such a management block considering also the requirement that is must be
’stackable’ and integrated into an overall management block hierarchy.

Management Block

Data/Event Receiver Command Sender
Rules, Policies, ...

Report Messages Report Messages

Message Cache

Decision Queue

Categorization and Evaluation

Decision Request

Decision Module (e.g. Policy based)
Rule, Policy

Maintenance
interface

Rule/Policy Update Command

Rule/Policy Update Decision

Command Receiver

Decision

Command
Message(s)

Rule/Policy
Update Command

Decisions

Map Decisions to
Commands

Reliable Command
Sender

Command
 Message(s)

Interaction with
Rule/Policy/… Repository

Component Message
Exchange

Report Decisions & Context Heartbeat

Command Cache

Command Re-Director

Decision
Request

Figure 5.5: Concept for the realisation of all management blocks in the hierarchy

In the figure two communication flows are shown. The communication (indicated with

85

Chapter 5 Monitoring and Management Concepts

the dotted and orange arrows) between different components and the potentially external
repository containing the rules, policies or other data building the basis for the categoriza-
tion and decisions. The solid and blue arrows show the communication within and outside
a management block. The arrows are not numbered as all these communications can hap-
pen in parallel. In the Data/Event Receiver component one can see the Message Cache as
the entry point for all information that is arriving from the manageability layer or lower
management blocks. The Categorization & Evaluation component is pulling one or more
messages at a time from the cache considering their priority and correlation. The messages
are analysed and an initial evaluation is done (e.g. compare the values to be in or outside
given boundaries). The evaluation result triggers a decision request towards the Enactor
components. Again to unblock the operation the communication is not directly or block-
ing but via another cache called Decision Queue. The decision request is pulled out by the
Decision module of the Enactor again using the information and knowledge stored in the
rules/policy repository. The decision is pushed back into the Decision Queue. The deci-
sion is pulled out from the Command Sender that need to map the decision into a set of
concrete commands. These commands need to be transmitted to the lower layers for their
implementation in a reliable way. If a measure cannot be applied in the given timeframe a
corresponding Report Message is generated and pushed into the Message Queue similar to
external messages.

Additionally to this main data flow also external commands can be received from a higher
layer management block (or a human operator). These commands are handled by the Com-
mand Receiver. This component either pushes the decision straight into the Decision Queue
or to the Decision Module if a mapping from the decision to a set of decisions is necessary.
Another possibility to influence the operation of the management block is via an update of
the rule/policy repository. This update is again either requested by a human operator or
other management blocks. It is quite obvious that the acceptance of commands for both
cases would need to by accompanied by the appropriate security credentials that authorize
the sender of the commands to perform these actions.

Intermediate Management Layer Some existing solutions consider already a hierar-
chy of management layers. For example the INCA [127] framework foresees a local manage-
ment and a central monitoring component. The approach to have a local layer combined
with a centralized component covering the complete VO is quite typical. The solution pro-
posed here consider a potentially unlimited number of management layers where a num-
ber of four to five layers is seen as sensible number (see also chapter 6 for an example). This
means that a management block needs to be ’stackable’. In figure 5.6 this interrelation is
shown exemplarily with two layers. In this figure also the two orthogonal approaches for
influencing the behaviour of lower management layers via commands is shown again. The
first possibility is to send an ’Command’ Message containing one ore more commands to be
implemented (as shown in the last section to the Command Receiver). This message could
be in response to a reported decision or could be driven by the policies/rules or the result
of an ’Command’ Message received from another layer above. The second approach pro-
posed is that higher layers can update and modify the underlying rule or policy base. For
example based on the good results with a low level of hardware degradation experienced

86

5.3 Key Building Blocks

with a certain type of hardware (analysed on a higher management layer) with a low num-
ber of reported errors the time interval for in-depth tests is increased. This change would
be implemented by changing the corresponding rule on the lower layer.

Monitored Entity

Sensor Sensor Delegate

Report Report Command

Delegate

Command

External Entity
With influence on
Monitored Entity

Rules, Policies, ...

Influence/Update
Control Report

Management Block

Influence/Update
Control Report

Policies, ...

Management Block

Heartbeat

Heartbeat

Figure 5.6: Chaining concept for the internal management

As discussed already above while the concept is hierarchical each of the layers are still acting
autonomously. So considering the case that the communication between the layers is bro-
ken the lower layer still is able to take management decision. Obviously no rule or policies
update can take place so the decision basis will not change and adapt and no commands
will arrive. If the communication is operational again depending on the time elapsed the
commands and updates will be transmitted with a delay utilizing the reliable sending me-
chanism. Additionally the management blocks will be aware of the problem due to their
self-monitoring capabilities as indicated by the heartbeat message exchange.

Provider Boundary Management Layer The assumption taken so far is that the mes-
sage flow between the different management blocks is only controlled by security policies
and the approach to data confidentiality is limited to a potential encryption of the commu-
nication channel. However as discussed already above in section 5.2.2 at the boundary of
the service provider a more complex control infrastructure is needed. The reason for this is
the assumed autonomous behaviour of the service providers. The autonomy in such a strict

87

Chapter 5 Monitoring and Management Concepts

sense as considered here where a provision of detailed information about the status towards
the VO is seen as clear non-goal and the relationship is fully based on external SLAs it is not
surprising that none of the existing deployments of computational Grids have something
similar in their architecture. A cross-provider scenario is not part of the specification of
scenarios anticipated for Web Based Enterprise Management (WBEM) and consequently
no considerations along this line has been influencing their architecture.

Figure 5.7: boundary management

Additionally the implementation of the Mediator component is quite dependant from the
concrete scenario. In figure 5.7 the specific nature of the filter components and the message
transformation has been simply indicated by the knowledge base underpinning them. This
knowledge base combining information on security (identity database), existing customer
data (e.g. how important is this customer?) with currently running SLAs und active VOs of
the provider.

VO Management Layer The role of the VO Management layer depends on the under-
lying organisational model. For this thesis as defined in chapter 2 the assumption is that
all relationships between the different providers are safeguarded by SLAs. This means that

88

5.3 Key Building Blocks

in the first place no VO wide management entity would be needed. If there is no domi-
nant partner within the virtual organisation as in the hub-and-spoke topology (see section
2.3.1.1) or one of the partner is accepted as a Trusted Third Party (TTP) there is a need for
an independent entity that is storing agreed SLAs, is monitoring the implementation of the
agreed SLAs and is potentially acting as a clearing house in case of violation and disagree-
ments.

Consumer (End-
User or Service

Provider
Provider

VO Management Block

Agree on SLA

SLA Notary

Monitor Service QualityNotification about Agreed SLA

ClearanceSLA Evaluator

Claim Violation

of Consumer

Obligations

Figure 5.8: VO Management block

As shown in figure 5.8 the VO management block is divided into three major blocks (1) the
SLA notary, (2) the SLA Evaluator and (3) the Clearance component. The role of the first
block is simply to store the mutually signed and agreed SLAs either negotiated on the fly
using an SLA negotiation protocol or agreed out of band. The second component requires
a mechanism allowing to measure if the obligations agreed within an SLA have been met.
This implies that the agreed SLAs can be either measured from the outside or both con-
sumer and provider agrees to an instrumentation by the TTP acting as the VO manager
allowing to measure within the domains. In case of a SLA violation and a disagreement be-
tween consumer and provider a notification about the conflict is issued towards the clear-
ance component. This component uses the stored SLAs and the collected information from
the SLA Evaluator in order to take a decision.

89

Chapter 5 Monitoring and Management Concepts

90

Chapter 6

Application of the Concept

The management concept presented in the last chapter needs further detailing before it
can be applied to a concrete case. The concept does neither imply a certain number of
layers nor does it detail the interaction process between the different components within
the management blocks.

In this chapter such a detailed design for the service provider management is done for an
HPC utility provider offering computational services via Grid middleware. It is assumed
that the services are offered based on Service Level Agreements.

6.1 HPC computing utility provider

This provider is specialised in the delivery of services closely related to the operation of
high end physical resources for computing and data storage. The following services are
supposed to be delivered via standardized interfaces and controlled by agreed Service Level
Agreements.

• Submission of jobs, monitoring of their progress and basic control over the job such
as cancel the operation

• Storage of input data, staging of data and storage of result data

• Remote access to intermediate and final result data

In order to have the possibility to discuss certain management policies or rules in the ne-
cessary detail it is further assumed that the provider is providing access to the systems via
Secure Shell (SSH) and using the Grid middleware Uniform Access over the Internet to Com-
puting Resources (UNICORE) (see section 4.1.2.1). A Unified Modeling Language deploy-
ment view of the considered case is shown in figure 6.1.

The management tasks for this provider are distributed across the following three layers (1)
Business Relation Management Layer, (2) Resource Management Layer and (3) tree type of
Local Management layers. The first layer is responsible to manage the business relations
expressed on one hand via agreed Service Level Agreements and on the other hand by exist-
ing customer relations expressed in Customer Relationship Management (CRM) databases,
Project, User & Accounting Databases or any other kind of system where an identity is

91

Chapter 6 Application of the Concept

TSI

SSHD

TSI

SSHD

NJS

«application»
TSI

«application»
SSH Daemon

«application»
TSI

«applicati...
SSH Daemon

«application»
NJS A

«application»
NJS B

GW

«application»
Gateway

«rule/policy»
Incarnation Database

«database»
Unicore User Database

«tcp/ip»

«tcp/ip»

«tcp/ip»
«tcp/ip»

Figure 6.1: Deployment view of the services for the HPC utility provider

mapped to the type of customer. This layer is motivated as a mapping from these exter-
nally agreed constraints has to be done in order to allow the more resource oriented layers
to perform appropriate. The customer information is in particular relevant as on one hand
the agreed SLAs might reference to existing non-electronic contracts that influence addi-
tionally the operation modalities. In particular in situations where the demand is higher
then the availability of resources and a prioritisation of the SLAs need to be done customer
relations need to be balanced against the associated risk violating a particular SLA. So it
might be better not to violate an SLA with a penalty of 1.000 e of an important customer
and to risk a penalty of 10.000 e associated with another SLA. This might be the right de-
cision as violating an SLA influence the reputation of a provider and going below a certain
threshold might have impact on expected future business relations.

The next layer between the local management layers and this economically oriented layer
is on one hand in charge of the mediation between these two extremes but is also necessary
to allow the local management layers to be really specialised and consequently fast. So the
integration task to deliver a complete viewpoint from all the different pieces necessary to
deliver a certain service is performed on this layer.

The lowest layers have been divided for the considered case into three categories. The first
layer is responsible for the management of the compute clusters and other server compo-
nents hosting e.g. the Grid middleware components. Additionally the network manage-
ment is allocated on this layer. The management of the core services for the remote access
such as SSH daemons or the regular execution of tools to detect the system health from a
software viewpoint are controlled by the core service management layer. The Grid compo-
nents (in this case UNICORE) such as the Network Job Supervisor (NJS) or Target System
Interface (TSI) are managed by the Grid services management layer. While at a first glance

92

6.1 HPC computing utility provider

Gr
id

 S
er

vic
e S

ta
tu

s

«f
lo

w»

Co
re

 S
er

vic
e

St
at

us

«f
lo

w»

Re
po

rt
Ha

rd
wa

re
Op

er
at

io
n S

ta
tu

s

«f
lo

w»

In
flu

en
ce

 G
rid

Se
rvi

ce
 O

pe
ra

tio
n

«f
lo

w»

Re
po

rt
Gr

id
Se

rvi
ce

s
St

at
us«f

lo
w»

Se
rvi

ce
Co

m
m

an
ds

«f
lo

w»

Re
po

rt
Se

rvi
ce

s
Av

ai
la

bi
lit

y

«f
lo

w»

Ap
pl

y H
ar

dw
ar

e
Re

la
te

d
Co

m
m

an
ds

«f
lo

w»

Pr
ov

id
e S

ys
te

m
 a

nd
Ne

tw
or

k S
ta

tu
s

In
fo

rm
at

io
n

«f
lo

w»

Re
po

rt
Ov

er
al

l
Se

rvi
ce

 O
pe

ra
tio

n
St

at
us

«f
lo

w»

Co
nt

ro
l T

ec
hn

ica
l

Op
er

at
io

n
ba

se
d

on
Bu

sin
es

s O
bj

ec
tiv

es

«f
lo

w»

Se
t P

rio
rit

ie
s a

nd
 R

ul
es

 fo
r

Ha
rd

wa
re

 M
an

ag
em

en
t

«f
lo

w»

Lo
ca

l
Re

st
ar

t
Cm

ds

«f
lo

w»

Co
nt

ro
l L

oc
al

 G
rid

Se
rvi

ce
 O

pe
ra

tio
n «f

lo
w»

Figure 6.2: Chosen layers and their relations

93

Chapter 6 Application of the Concept

this looks quite similar to the core services monitoring the major deviation is related to the
possibilities related to the active influencing of the operation of the services. An SSH dae-
mon allows only a kind of binary operation such as block access for a certain user or IP
address a Grid middleware system allow more fine grained, more complex possibilities to
influence the operation. For example the Incarnation Database (IDB) transformation rules
for a generic Abstract Job Object into site and machine specific values could be changed to
map high priority to different queues on the target system or where the externally usable
application foo is located.

Below these three management layers for each local management system there is a man-
ageability layer that is providing in compliance with the model proposed in the previous
chapter independent from the underlying monitoring tool the monitoring information and
potential monitoring errors in an at least provider wide standardized format.

6.1.1 Realising the Manageability Layer

The realisation of the information gathering can rely on a wide range of existing tools. The
concrete selection of the tools is mostly dependent on the monitored resource. For smaller
cluster systems GANGLIA [12] or for large systems Lemon [13] or Nagios [110] might be
used. For network monitoring the Simple Network Management Protocol (SNMP) [128]
protocol or proprietary sensors are possible. There is no need to implement any additional
tool or protocol to realise the metering and instrumentation layer.

Cluster
Status

Network
Status

«datastore»

Complete
Operational
Status?

Send Error
Notification

Send
Monitoring

Record

«flow»

[Yes]

[No]

[Timeout]

Figure 6.3: Data collection for the System and Network Layer

However as discussed before the availability of all these individual data is not sufficient in
order to derive a complete picture of the overall system state. Additionally for the further

94

6.1 HPC computing utility provider

processing of the monitored data the steps of aggregation and integration need to be per-
formed and the data need to be transformed to a standardized format. These steps are
shown in the format of an UML Activity Diagram in figure 6.3 for the example of the hard-
ware and network monitoring. The data provided for example by the above mentioned
tools are shown as input events and received by a data collector aiming to consolidate all
this information to monitoring records summarizing a complete status. If a record can be
completed it is handed over to the transformation activity producing from the internal data
structure a message e.g. in XML format. If a record cannot be completed in a pre-defined
period in time a monitoring error message is produced.

While the process in the figure is focused on the system and management data monitoring
for the other two manageability layers the process is similar. In the implementation of this
approach in the Generic System Supervision (GeneSyS) project the components performing
this operations hadn’t been placed on the monitored entity or system but on a dedicated
resource within the same physical network.

6.1.2 Local Management

In section 5.2.2 and 5.3 a quite complex management block had been introduced realised
with decoupled components for receiving the data and events, taking decisions on what
to do with the data and a separate block for the reliable delivery of taken decisions and
corresponding commands. The overhead introduced by such a decoupled realisation must
not be in the same order of the requested decision times expected by the respective layer.
For the local management where decisions are taken in seconds such a complex realisation
is not the appropriate solution.

In figure 6.4, again for the system and network management domain, the necessary activity
flow is shown. All components of the management block are in this case realised without
any intermediate queues. The first step is to perform an assessment of the received mes-
sages and compare them against defined limits for operation. In case the retrieved message
is an error or has been assessed to be out of the given limits the defined counter measure is
retrieved from the rules datastore. The counter measure is applied in parallel to the incident
report created for the Resource Management Layer.

Similar to the manageability layer there is no significant difference between these system
and network case and the other domains core services and Grid components in this process.
The difference would be in the two datastores for the operational limits and the rules of the
counter measures. For the system monitoring messages like lack of free disk space or disk
failures would be reported leading to counter measures such as scheduling repair or in-
depth checks for the disks. For the core services the reported problems could be lack of
response from a daemon process (e.g. sshd) and the initiation of a restart attempt.

It is important to keep these rules simple in order to allow the anticipated fast response. The
more complex analysis of the problem situation is performed on the higher layers where
also the received errors are correlated. Another reason to keep these rules simple is that
complex rules increase the risk of unplanned interference of different measures. As the
quality of the management depends directly on the quality of the rules, it is expected that

95

Chapter 6 Application of the Concept

Error
Notification

Monitoring
Record

Already
categorized? «datastore»

Within Limits?

No management action required

«datastore»

Report Incident

Counter Measure Applied
An incident record consists out of the
decision taken and the information

basis for the decision

«datastore»

[Yes]

[No]

[Yes]

«flow»

«flow»[No]

«flow»

Figure 6.4: Activities for the Local System and Network Management

96

6.1 HPC computing utility provider

the rules are defined by system administrators with the appropriate knowledge how to cope
with certain situations. Additionally to this direct update from human operators the hierar-
chical management concepts foresees also the possibility that these rules are updated e.g.
in response to reported incidents.

«datastore»

Rule Update
Request

This can be
triggered by

reported incidents
or a human
operator
controlled update

Figure 6.5: Update of the Rules Datastore

The update procedure (see figure 6.5) is also started by an event that could be a message
retrieved by the management block. This message could be created from an end-user ap-
plication for system administrators supporting the rule definition or could be the activation
of a pre-defined rule based on the previously reported incidents. If several recovery mech-
anisms for the UNICORE Target System Interface (TSI) has been performed by applying
the rule Restart TSI without success some action is needed on the higher layers (e.g.
removing the system from the available Grid systems) but a new rule on the system level
saying that the node should be put into maintenance mode making an in-depth testing and
a complete system reboot instead of continue to try to restart the TSI is needed as well.
While in some cases a real update of the rule (e.g. by replacing the corresponding XML file)
is performed there is also the possibility to change the default rule activating a new mea-
sure. Such a rule change is clearly preferable from a security viewpoint as not the contents
of the rules can be changed but only if they are active or not.

6.1.3 Service Management

With the availability of the local management layers an optimised operation oriented on
technical parameters can be already realised in a quite efficient way. The structure of the
local management has been chosen to be specialised in order to realise a short response
time on failures and problems. This specialisation comes with the drawback that the ap-
plied measures are based on limited information within the associated monitoring domain
and no coordination of the layers exists. While in the example an integration of information
about the different parts of a cluster (CPU, Memory, Disk, Interconnect, temperature, ...) is
done having a complete status from the hardware viewpoint on the cluster system.

97

Chapter 6 Application of the Concept

The service management layer is addressing this problem by integrating these individual
views to a complete picture of all resources and core services needed in order to deliver
services to external consumers. The service management layer is implementing the full
management block components as shown in figure 5.5 in the previous chapter as the deci-
sion process is anticipated to be more complex and consequently slower. So the overhead
in time introduced with the decoupling is acceptable compared to the decision time.

6.1.3.1 Report Categorization and Evaluation

At this level in the hierarchy the information flood from the sensors at the various levels
have been already aggregated on the manageability layers. The local management layer
has further reduced the amount of information by performing a comparison with defined
normal operation conditions generating potentially Incident Reports. These reports are re-

Incident
report

«datastore»

Incident
Report

received

Report

Categorized?

An incident report
might be
potentially already
rated as 'critical'

or 'urgent'

«datastore»

«datastore»

Potentially
action needed?

No action
required

Decision
Request

«flow»

«flow»

[Message]
[Yes]

[Yes]

[No]

[No]

Figure 6.6: DataReceiver component for the Service Management Layer

ceived by the service management layer for further processing. Figure 6.6 shows the design
for the DataReceiver part of the overall management block. The received report is stored in

98

6.1 HPC computing utility provider

an incoming message queue. From this queue reports are pulled out regularly and if not al-
ready pre-assigned with a category indicating immediate decisions the report is categorized
and evaluated. The categorization is based on the information stored in the Knowledge Base
(KB). The knowledge base consists out of different type of information responsible for dif-
ferent parts of the categorization. For example the KB could contain simple rules assigning
an urgency category to different type of reports calculating the priority based on the type
of the report (failure, maintenance required, warning, regular status) increasing the priority
one level for each report of the same type received within a given time frame. Beside the
urgency other priorities such as importance or associated impact might be assigned based
on the information in the KB. As described in section 4.3 several approaches exists for per-
forming such a categorization. If infrastructure information is available several reports can
be related. For this correlation the information in the historical report datastore but also the
message queue with their pending reports is the information basis for detecting potentially
related reports. Based on this process the Report is amended with the retrieved knowledge
and stored in the Historical report database. In parallel a Decision Request is generated and
pushed towards the Decision queue.

For the case considered in this chapter many potential interdependencies across the man-
agement domains do exist. The core services depend on the proper operation of the un-
derlying hardware. A failure report for the sshd would be related to corresponding failure
reports from the hardware and network layer. The Grid middleware relies not only on the
hardware hosting the Grid services themselves but also on the core services (e.g. a function-
ing perl system for running the TSI script), the operation of the queuing system, etc. These
relations are assumed to be infrequently changing and therefore externally modelled (see
also section 6.2).

6.1.3.2 Decision Module

This module operates quite similar to the Policy Decision Point (PDP) of the Policy based
Management concept. Based on the prepared information of the DataReceiver component
now a decision about potential counter measures can be taken. The general activity flow
shown in figure 6.7 does not imply a certain method to derive the decision. As an depen-
dency analysis (based on external knowledge e.g. modelled by a human operator) has been
performed the initial step is now to aim to classify the incidents to be of ’primary’ or ’sec-
ondary’ nature. Secondary incidents will not appear again if the problems leading to one
or more primary incidents are resolved. Such a classification is not seen as essential for
making a decision but would increase the probability to find the best solution as the mea-
sures could concentrate on a lower number of incidents. If on this level no decision can be
taken how to solve the experienced problems it must be immediately escalated to a higher
management layer. If a decision could be taken it is stored in the Decision Queue for further
processing by the CommandSender component. Additionally the taken decision together
with the incidents is reported to the higher layer.

For the considered HPC utility provider scenario a complete system failure or the failure
of a critical resource without a replacement possibility would by the case for the escalation

99

Chapter 6 Application of the Concept

Decision
Request

«datastore»

Root Cause
Found?

«datastore»

«datastore»

«datastore»

Decision
taken?

Incident
Report

«datastore»

Processed
Incident
Report

Decision
Request

[Yes]

[No]

«flow»

«flow»

«flow»

Decision

[No]

Figure 6.7: Activity flow for the decision process

100

6.1 HPC computing utility provider

procedure to the higher layers as this would have clearly impact on the business layer (likely
leading to violation of SLAs).

This layer in between the business and resource oriented management layers is also re-
sponsible to realise the mapping between these two viewpoints. In this role the decision
knowledge base is assumed to contain the technical boundary conditions for the business
level SLAs from the higher layer. An incident report might indicate an error (as in the ex-
ample above of the underlying hardware system) but more frequently it is expected that
the incidents report an operation close to the given limits or outside the pre-defined lim-
its. So on this layer this is assessed based on the decision knowledge base if the parameter
boundaries for the whole system are still met or if additional resources are necessary. Such
additional resources could be granting more CPU and memory to a XEN instance hosting
an NJS but also assuming a dynamically partitioned cluster system on the computational
part. So if the current operational status (reported by the Local Management Layer via the
Incident reports) indicates a potential violation of the given technical boundaries stored in
the knowledge base of the overall system corrective measure would be taken. For example
if jobs submitted via the Grid middleware are supposed to be prioritized against jobs issued
via other means and the reported average waiting time for Grid jobs submitted are above
the threshold (an therefore triggered the creation of incident reports) a potential decision
taken on this level would be to implement a further prioritisation of the Grid submitted
jobs.

6.1.3.3 Mapping Decisions to Commands

The first step for solving a problem is to analyse it (DataReceiver component), the next step
is to take a decision and now the decision need to be translated into concrete actions to be
done. In the last example the decision was taken to prioritize Grid jobs against non-Grid
jobs. There is now a range of measures that could be applied to implement these decisions.
On the resource level one could solve it by dedicating compute nodes to Grid jobs, limit
the allowed job size for non-Grid jobs or change the mapping of the priorities expressed in
the Abstract Job Object to job queues by changing the entries in the Incarnation Database
of the UNICORE system. The activity flow proposed in 6.8 proposes to differentiate the
cases where a measure can be applied expecting a short term solution and where the im-
provement of the situation is not expected to realise shortly. In the latter case the rules
on the lower layers triggering the secondary incident reports are updated on one hand to
stop reporting the problem but at the same time a rule that is triggered if the effect of the
counter measure has been realised to restore the previous situation is added. A realisa-
tion of such behaviour could be realised by supporting a ’disable rule’ command for the
rule/policy databases and the corresponding ’enable rule’. Beside these secondary activi-
ties the commands necessary to implement the decision need to be derived and finally but
into the sending loop delivering the commands to the corresponding lower layers. If com-
mands need to be implemented in a certain order the Send Commands loop is considering
this order decided during the command preparation activities before.

101

Chapter 6 Application of the Concept

Implementation
Time?

«datastore»

Commands

Incident
Report

New Pending
Decisions

[Long]

[Short]

«flow»

[Send Failed]

Figure 6.8: Activity flow for reliable command sending

102

6.1 HPC computing utility provider

6.1.3.4 Rule updates and Command Reception

The management block concepts foresees two additional blocks. Both blocks are accepting
commands from a higher management layer. The first one accept commands leading to
an update of the Rule/Policy datastores and the other one receives commands to be imple-
mented by concrete set of actions (including rule/policy updates on lower layers).

On the Service management layer the commands will come from the business relations
layer and are supposed to influence the technical operations driven by business objectives.
So the rule/policy updates are based on newly agreed SLAs, change of priority of a cus-
tomer or other aspects covered on the business relations layer. Additionally other com-
mands might be send to this layer that need to be mapped to Decisions in order to push
them similar to locally taken Decisions in the Decision Queue for further processing. For
the considered HPC scenario this could be a command to prioritize a certain user group
(e.g. as they have an external demonstration) for a certain time period. This command
would need to be mapped as any internal decision down to a set of commands influencing
the mapping of priorities in the Grid middleware or opening access to certain job submis-
sion queues or similar. All these operations might trigger additional action on the service
management layer. For example an update of the knowledge base trigger also a notification
towards the Decisor as depending on the significance of the change further actions might
be necessary.

Additionally to this event driven actions a Decision Request can also be triggered by regular
messages that are put into the DecisionQueue if a certain time period has elapsed. An ex-
ample for the service management layer would be a regular maintenance procedure. This
procedure would lead to a notification to the higher layers reporting the decision that now
a certain group of resources will be put out of production for a maintenance cycle and to
commands on the lower layer to actually perform the maintenance activities such as the
launch of performance and degradation tests or reboot operations.

6.1.4 Business Relations

The management layer described in the previous section was still driven by technical con-
straints and did not interface with external information sources relevant for the operation of
the overall service provider infrastructure. On the business relation layer the non-technical
aspects are the pre-dominant factors. As this layer is on top of the management hierarchy
the understanding that business objectives are the driving and controlling aspects of the
overall management solutions are clearly expressed.

In this layer the currently active Service Level Agreements and also the information about
the customers associated with these SLAs are the major source of information for the man-
agement decisions based on the reported incidents about the infrastructure situation within
the service provider domain. A limitation already considered for the management concept
and similarly for the HPC scenario is that the number of provided SLAs must be small. This
means that still SLAs can be dynamically negotiated between service consumers and the
service providers, but not in a complete free way. The negiotiation would be then reduced

103

Chapter 6 Application of the Concept

to selecting an SLA out of the offered ones. This is necessary as the mapping from a busi-
ness level SLA to a technical level SLA expressed in concrete demands on the underlying
infrastructure can only be defined in advance.

In table 6.1 the considered SLAs for the HPC utility scenario are shown together with their
potential impact on the lower layers. The SLAs are described here in a quite informal way
to motivate them rather then in a formal description using for example the XML based Web
Service Level Agreement (WSLA) or WS-Agreement [129] formats.

Name Description Impact

Guaranteed
Environ-
ment

This SLA ensures the provision of
a certain environment for the end-
user. This covers all aspects from a
specific computer architecture, ver-
sions of specific applications and
tools, minimum disk space, environ-
ment variables etc.

The impact of this SLA is that while
SLAs of this type are active no
change in the underlying infrastruc-
ture can be made. Services bound
to this SLA cannot be easily moved
to other compute environments. An
easy way to guarantee such an envi-
ronment is using virtualization tech-
niques or if this is not possible to
offer only the pre-defined standard
configuration of a system.

Prioritized
Access

In Addition to the guaranteed envi-
ronment this SLA ensures a priori-
tized treatment. The prioritization
does not guarantee a certain time
when a job is started or a guaranteed
time for the completion. The priori-
tization is relative to other jobs only.
These kind of SLAs are often referred
as ’soft’ guarantees.

If no provider wide scheduling sys-
tem is in place the prioritization
can be done on the level of the
Grid middleware where priorities
are mapped on certain queues on
the local scheduling system and
by granting access to prioritized
queues only to certain users.

Timed
Access

As a further extension of the prior-
itized access only delivering a soft
guarantee this SLA would guarantee
a resource at a certain point in time
e.g. for realising interactive access or
application steering scenarios.

The support of SLAs of this type re-
quire a special support from the un-
derlying queuing system.

104

6.1 HPC computing utility provider

Name Description Impact

Exclusive
Access

This SLA guarantees not only a pre-
defined environment but ensures
that the whole compute system is
available for an exclusive utilization
and the access is granted with the
highest priority. This SLA is seen as
beneficial for users that cannot al-
low other jobs within the same com-
pute system for confidentiality rea-
sons.

The easiest way to support such an
SLA would be a resource that is fully
provided in an exclusive mode to a
specific customer. As this might lead
to quite long idle times of the re-
source an operation dropping im-
mediately running low priority jobs
if a job bound to this Exclusive Ac-
cess SLA is started.

Table 6.1: SLAs for the HPC utility provider case

Even if the SLAs in the table above would have been described in an XML based format their
realisation on the service management layer cannot be done by just applying an appropri-
ate transformation rule. The challenge is that multiple SLAs at once for different customers
and for different potentially competing VOs need to be implemented. For this reason a
more complex process for deriving the necessary updates of the rules on the service man-
agement layer is necessary. As the general structure of the DataReceiver, Decisor and Com-
mandSender blocks are similar to the one on the service management layer the flow shown
in figure 6.9 focuses on the logical flow and do not repeat again the queues and processes
for storing and pushing the different types of messages. The process shown in figure 6.9 is

New Agreed
SLA is
available

«datastore»

«datastore»
«datastore»

Put Decision in
Queue

«flow»

«flow»

«flow»

Figure 6.9: Activity flow triggered by the availability of a new SLA

105

Chapter 6 Application of the Concept

triggered by the availability of a newly agreed SLA. It does not matter if this agreement has
been reached using an electronic negotiation protocol or is based on a regular contract. The
contract indicates between whom the contract has been established, the agreed obligations
to be met (as shown in the table above) by consumer and provider and potentially also the
penalties applied in case of SLA violations. The process to decide on the priority of the SLA
compared to the other currently active SLAs is based on the type of the SLA and its asso-
ciated risk to implement it and depends for whom this SLA is offered. SLAs of important
customers might be treated with higher priority compared to others as the potential risk
cannot be limited to one single SLA but all SLAs of the same customer or anticipated future
collaborations need to be considered. If a decision about the priority of the SLA have been
reached combining both viewpoints the SLA need to be added at the corresponding place
in the list of currently active SLAs triggering a change in priority of all SLAs below the new
SLA.

Such a re-assessment would also be necessary if updates of the knowledge bases are hap-
pening based on an update of the customer properties or an updated view on the risk of
failure for an SLA. Additionally if an active SLA is terminated or the service management
layer reports failures and problems and potentially some active SLAs need to be completely
neglected in order to safeguard other SLAs. All these decisions to re-prioritize or even com-
pletely drop the operation for certain SLAs requires the communication of the decision in
the form of commands to the lower layers. Based on the assumption that the number of
SLAs is limited these mapping rules are assumed to be pre-defined for different priority
classes as discussed above defined by the SLA itself but also by the customer that have co-
signed the agreement.

6.1.5 Mediation Component

The management concept proposes at the boundary of a service provider a component
called Mediator. This component is intended to control the message flow between the pro-
vider and the outside world. For the HPC utility provider scenario no incoming message
flow from the management viewpoint is foreseen. So the incoming message filter as shown
in figure 5.7 would just block all incoming command messages. At the boundary of the ser-
vice provider potentially a component negotiating SLAs with other providers or consumers
is foreseen. This component delivers as incoming message the agreed SLAs to be imple-
mented by the chain of management layers. In a similar way the only messages that pass
the outgoing message filter and the transformation block translating the provider internal
messages to a possibly different format used within the VO are SLA violation notifications.

6.2 Operational Considerations

The operation of the different management layers rely heavily on the knowledge, policy or
rule bases driving the decisions. The maintenance of this datastores requires expert know-
ledge of the respective domain. So in order to set-up a management system based on the

106

6.2 Operational Considerations

three layers proposed for the HPC utility provider case different actors can be identified that
are necessary to operate the proposed system.

System Administrators are responsible for the instrumentation of the monitored resources,
maintain the system rule datastore and also define several regular operational condi-
tions. Additionally the System Administrator is contributing with knowledge about
the dependency of resources.

Technical Policy Designers also defines rules and policies about the dependencies in
order to feed the incidence knowledge base but additionally has to define the content
of the decision knowledge base for the technical layer. This datastore must contain
the policy obligations for reacting on the reported unresolved incidents from the local
management layers but also covers operations with an impact on the business as on
the local management layer such as regular maintenance procedures. The Technical
Policy Designer also contributes to the definition of the mapping from business level
SLAs to technical parameters.

Business Policy Managers are also contributing to the definition of the SLA mapping
rules but mostly deal with the design and maintenance of offered SLAs in order to
meet customer and market demands. As the customer relationships are also relevant
for the mapping and prioritization process the Business Policy Manager need to de-
fine the rules how certain parameters such as good customer are defined and how
they map to an increase in priority.

These roles together with the executed use cases as shown in figure 6.10 outline on a very
high level the necessary tasks to operate the management infrastructure.

It is quite obvious that the maintenance of such databases are vital for the successful op-
eration of the overall infrastructure and must be possible during the operation of the man-
agement framework. Beside these maintenance and knowledge engineering oriented tasks
the actors on the different layers must be enabled to perform at least the activities expected
to be covered in an automated way by the respective layers. So the System Administrator
should be able to access the monitoring data in order to see the overall status of the dif-
ferent hardware and software resources and should be able to trigger counter measures in
case the current situation is not covered by an existing rule and does not lead to an auto-
mated action by the Decisor component. The Technical Policy Designer should be similarly
enabled to see an overall status of all local management layers, a list of reported incidents
and the possible actions that can be taken ranging from response activities up to the regu-
lar maintenance activities out of the regular schedule. The Business Policy Manager should
be able to change priorities of certain SLAs and in general able to influence the processes
on the business relations layer. Of course the different roles can be performed by a single
human person which makes in particular sense for the System Administrator and Technical
Policy Designer roles.

107

Chapter 6 Application of the Concept

Business Relationship Management

Resource Management Layer

Local Management

«datastore»

«datastore»

«datastore»

«datastore»

«datastore»

«datastore»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

Figure 6.10: Roles and Use Cases

108

Chapter 7

Conclusion and Outlook

The current practice for controlling large scale distributed systems such as computational
Grids is based on rather simple monitoring approaches that are only operational with the
help of a comparably large number of human operators. Additionally the approach to ul-
timately collect the monitoring data at a central place often referred to as Grid Operations
Centre (GOC) is not in line with the demands of a large set of applications where the col-
laboration is not based on common interests or a shared research vision but driven by eco-
nomic factors. In such collaborations all relationships need to be safeguarded by Service
Level Agreements. With this new model for Virtual Organisation inspired by the research
results in the domain of Virtual Enterprises/Enterprise Networks also a new approach for
ensuring the operation of the distributed application is needed.

In this thesis the proposed approach is based on several almost independently operating
layers optimized for their domain exchanging in an asynchronous communication model
from lower layers to the higher layers the detected problems and the locally applied so-
lutions. The higher layers can potentially with their more global view come to a different
conclusion and can overrule such decisions. The command chain from higher layers to
lower layers can be either by direct commands to influence ultimately the underlying hard-
ware and software infrastructure or by changing the knowledge bases of the management
framework or the managed entities. This flow of reports and commands is mediated at the
service provider level as another important aspect not reflected in existing deployments is
the site autonomy in all internal management decisions. So at the boundary of the provi-
ders there is the need for controlling the information flow (e.g. about reported problems)
or the acceptance from external commands.

In this way the management solution splits into three major parts. The highest level, the VO
Management level, is dealing with the management of service providers applying penalties
on SLA violations such as reduced payments up to the complete replacement of a provider.
Within the service provider domain the management is typically realised using multiple lay-
ers. In the discussed example three layers had been proposed dealing with hardware and
low level services management, high level service management and the business manage-
ment layer aiming to map business objectives to technical metrics. Additionally it might
be necessary to have a light weighted consumer management. This assumption is driven
by the assumption that SLA based relationships are not only applied between Service Pro-
viders but also between the consumer and the providers. This demands also a controlled
behaviour on the client side.

109

Chapter 7 Conclusion and Outlook

The results of this work cannot be applied to existing eScience oriented infrastructures cur-
rently widely used by the particle physics community as the used VO model is conceptually
different from the SLA driven model presented here. The gap between the existing eScience
Grid deployments, the research work around SLA driven Virtual Organisations done within
the Next Generation Grids research community where also this thesis fits in are currently
only deployed with short duration within research project demonstrators or business ex-
periments. For this reason the management of such business and SLA driven settings has
been so far not addressed considering real production requirements but only on the level
of demonstrators.

The proposed framework in this thesis is aligned with the VO Model of Next Generation
Grids and is based on the requirements for management of more then 20 application sce-
narios of Business Oriented Grid applications and is prepared with its goal to automate the
management within service providers also for the increasing number of nodes for comput-
ing systems and the expected more complex hybrid computing systems in the next years.

Additionally the framework supports the necessary integration between the low level hard-
ware management driven by performance metrics and the business viewpoint where more
global goals and priorities are set that are supposed to be the ultimate drivers of the overall
operation of resources and services.

7.1 Future work

There are many areas where future work could be based on the results presented here. An
obvious domain for future work is to apply the presented management concept to different
domains outside the provision of HPC utility service providers.

7.1.1 Modelling Support to feed the various Knowledge Bases

The framework relies on each layer on existing knowledge bases or rules. There is no pre-
scribed format for these rules, policies or Ontologies as their concrete form is not relevant
for the overall concept. However in practice the definition of these rules would require on
one hand expert knowledge in the problem domain such as the administration of High-
End resources and on the same time in depth understanding of the specific format of the
knowledge base. The same problem applies to all levels in the management hierarchy.

Potential future work could aim to deliver a modelling tool supporting this knowledge engi-
neering process necessary. Such a tool could be based on a modelling framework allowing
the domain experts from the technical up to the business level to model their knowledge in
descriptive diagrams leading to a kind of semi-formal description of their knowledge that
could build the basis for the generation of formal Ontologies.

As such a supporting tool is dependent itself from an appropriate configuration in the trans-
lation process a feedback and validation process would be necessary to allow an evolution
of this mapping.

110

7.1 Future work

Business Expert Technical Expert

Knowledge about
Service Level
Agreements,

Customer Relations,
...

System Administrator

Mapping from
Business Level SLAs
to technical metrics,

Overall system
operation, ...

Operational
constraints for
hardware and

software services, ...

Expressed
in Models

Translate Models into rules, policies, Ontologies

OntologiesRulesPoliciesOntologies Formal
Description

Figure 7.1: Knowledge Engineering Approach

7.1.2 Supporting coupled applications on hybrid computing
systems

For the HPC utility provider scenario it has been assumed that the execution of the job
on the computational resources is not subject of control and management by the frame-
work but that the responsibilities are limited to ensure a proper execution environment for
them.

Considering the trend towards the virtualization of cluster systems allowing a dynamic par-
titioning of the resources and the movement away from computing systems realised using
one single type of processor towards hybrid systems one could imagine the application of
the local management concept of the framework for supporting the interaction of the ap-
plications with the underlying compute environment and to dynamically change and adapt
the coupled application configuration.

As significantly different timing constraints need to be considered the manageability layer
would not be based on XML based common information layers and also the management
modules would need to be realised not by exploiting external knowledge bases for their de-
cisions. A potential realisation of such a scenario could be to allow the applications to be
executed on the most appropriate architecture within the hybrid computing system and
communicating all necessary data exchanges with the other applications in the usual way
using for example Message Passing Interface (MPI). Additionally these applications would
need to communicate pre-defined events towards an application manager component that
is running within the hybrid computing system and that had been launched simultaneously
together with this group of coupled applications. This pre-defined events could indicate in-
creased or decreased demands on compute resources, disk resources, . . . requesting an
update of the configuration for example by increasing/decreasing the number of available
virtualized instances. Beyond this one could imagine an update of the configuration of the
locally distributed applications by launching another application covering other aspects of

111

Chapter 7 Conclusion and Outlook

the model necessary as some properties e.g. behaviour of material is changing dramati-
cally.

In order to integrate such an application manager within the overall management concept
first of all the application manager could communicate similarly to all other components
the taken decisions as incident reports and could also be instrumented to accept external
commands (e.g. cancel the application). In order not to loose the advantages of the ex-
ternal knowledge base updates one could split the preparation of the application manager
operation and the actual execution. In this sense the modelling of the different roles and
the interactions of the different applications would be done by the Coupled Applications
Designer. This model together with the current knowledge bases for the application man-
agement layer (e.g. indicating boundaries for increase/decrease requests, ...) would lead
to configuration files for the applications to support the anticipated events and commands
and would generate the configuration for the application manager.

7.1.3 Standardisation of Incident Reports and Command
formats

The disadvantage of a non-standardised format for the incident reports and commands
would be similar to the problems discussed along the need for a common monitoring for-
mat. While CIM or GLUE are quite straightforward candidates for the common monitoring
format there is no similar pre-dominating specification for the monitoring and command
messages. The competing specifications in the Web Service domain defined by the Distri-
buted Management Task Force (DMTF) in Web Based Enterprise Management (WBEM) and
by Organization for the Advancement of Structured Information Standards (OASIS) with
Management Using Web Services (MUWS) are both appropriate candidates but the lack of
agreement in this domain prevents a model where the management layers could be imple-
mented by different vendors. So in the case of the HPC Utility Provider one could imagine
that the Local Management and Manageability Layer for the compute nodes is delivered
together with the hardware system as an integral software part of the installation by the
hardware vendor. If several hardware systems are operated by the HPC provider and the
goal is to put similar to the considered scenario in the previous chapter on top of this local
management an technical integration level coordinating all these resources from different
vendors and similarly solutions for the access middleware a common message is clearly
necessary.

Furthermore the highest layer proposed in the HPC utility scenario is dealing with customer
relations, offering and maintaining Service Level Agreements and would not be within the
field of expertise of a single hardware vendor and would more likely fit into the portfolio of
large IT companies dealing with Customer Relationship Management (CRM) and/or Ser-
vice Oriented Architecture (SOA) based service provision frameworks.

Consequently a standardisation of the cross layer communication would be necessary if the
realisation of the different layers is expected to be provided by commercial vendors. With
such a solution the HPC utility provider could focus on the maintenance of the various

112

7.1 Future work

knowledge bases rather then on the development and integration of the different manage-
ment layers.

7.1.4 Cross-layer communication and self-organizing
approaches

The presented concept is strictly hierarchical and based on externally defined knowledge.
While this approach has the advantage of clearly defined responsibilities and chain-of-
command the danger of taking wrong decisions based on the local context is an obvious
drawback. While this problem is addressed by the reporting of incidents to the higher layers
with the possibility to overrule decisions comes together with a potentially longer decision
time.

Additionally the system does not foresee an update of the knowledge bases within a layer
but only driven by external commands coming from the outside, namely human opera-
tors or higher layers. It is not foreseen that the knowledge bases are updated automatically
based on the experiences of applying certain measures or by following an agent like ap-
proach discussing potential options with other entities on the same level.

A potential extension of the concept would be to allow at least to evolve the knowledge bases
autonomously within certain boundaries and to establish also communications across the
layers moving from the strict tree structure towards a mesh or Peer-To-Peer topology. This
would be particular interesting for the VO management part as the presence of a central VO
Management entity is not always necessary for achieving the VO goals. The merge of agent
based approaches, self-learning and self-adaptation mechanisms could improve the system
but would also introduce the risk that based on the lack of authority decisions might take
longer or in the extreme case cannot be taken at all. The above mentioned move towards
the use of agents have been already taken up in the running research project Business objec-
tive driven reliable and intelligent Grids for real business (BREIN)1 aiming to merge Agents,
Semantics and Grid technology and is technically coordinated by the author of this thesis.

1http://www.eu-brein.com/

113

http://www.eu-brein.com/

Chapter 7 Conclusion and Outlook

114

Bibliography

[1] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the Grid: Enabling scalable
virtual organizations,” Lecture Notes in Computer Science, vol. 2150, 2001. (docu-
ment), 1, 2.2, 4.1.2

[2] D. Erwin, H.-C. Hoppe, S. Wesner, M. Romberg, P. Weber, E. Krenzien, P. Lindner,
A. Streit, H. Richter, H. Stüben, V. Huber, S. Haubold, and E. Gabriel, “Unicore plus
final report,” tech. rep., UNICORE Consortium, 2003. (document), 2.2, 2.3, 4.1.2.1

[3] “Deisa primer.” http://www.deisa.org/files/DEISAPrimer-V1-1.
pdf, 2005. (document), 1, 2.2, 2.3.1, 4.1.2.1

[4] J. Byrne, “The virtual corporation,” Business Week, pp. 36–41, 1993. (document), 2.2

[5] R. Grenier and G. Metes, Going virtual: Moving your organization into the 21st cen-
truy. Prentice Hall, 1995. (document), 2.2

[6] L. Wildeman, “Alliances and networks: the next generation,” Internation Journal of
Technology Management, vol. 15, pp. 96–108, 1998. (document), 2.2

[7] T. Strader, F. Lin, and M. Shaw, “Information structure for electronic virtual organiza-
tion management,” Decision Support Systems, vol. 23, pp. 75–94, 1998. (document),
2.2, 2.3.3

[8] J. van Aken, L. Hop, and G. Post, Managing Strategically in an Interconnected World,
ch. The Virtual Organization: A Special Mode of Strong Interorganizational Coopera-
tion. John Wiley & Sons, 1998. (document), 2.2

[9] N. Lethbridge, “An i-based taxonomy of virtual organisations and the implications for
effective management,” Informing Science, vol. 4, no. 1, pp. 17–24, 2001. (document),
2.2, 2.3.1.1

[10] G. Keller, M. Nüttgens, and A.-W. Scheer, “Semantische prozeflmodellierung auf
der grundlage "ereignisgesteuerter prozeflketten (epk)",” tech. rep., Institut f̧ r
Wirtschaftsinformatik, 1992. (document), 1.1

[11] B. Katzy, “Design and implementation of virtual organisations,” working paper series,
University BW Munich, 1998. (document), 2.2, 2.7, 2.3.3

[12] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: Design, implementation, and experience.” http:
//ganglia.sourceforge.net/talks/parallel_computing/
ganglia-twocol.pdf. (document), 4.2.7.7, 4.8, 6.1.1

[13] T. Röblitz et al., “Autonomic management of large clusters and their integration into
the grid,” Journal of Grid computing, vol. 2, pp. 247 – 260, September 2004. (docu-
ment), 4.2.7.8, 4.9, 4.3.1, 5.2.1, 5.3, 5.3, 6.1.1

115

http://www.deisa.org/files/DEISAPrimer-V1-1.pdf
http://www.deisa.org/files/DEISAPrimer-V1-1.pdf
http://ganglia.sourceforge.net/talks/parallel_computing/ganglia-twocol.pdf
http://ganglia.sourceforge.net/talks/parallel_computing/ganglia-twocol.pdf
http://ganglia.sourceforge.net/talks/parallel_computing/ganglia-twocol.pdf

Bibliography

[14] S. Andreozzi, N. D. Bortoli, S. Fantinel, A. Ghiselli, G. L. Rubini, G. Tortone, and M. C.
Vistoli, “Gridice: a monitoring service for grid systems.,” Future Generation Comp.
Syst., vol. 21, no. 4, pp. 559–571, 2005. (document), 4.2.7.10, 4.10, 5.3

[15] “Unicore (uniform access over to internet to computing resources).”http://www.
unicore.de. see also http://www.unicore.org. 1, 2.2, 2.3, 4.1.2.1

[16] “Sg voms guide.” EGEE Deliverable. 1, 2.2, 2.3.1

[17] A. E. Arenas, I. Djordjevic, T. Dimitrakos, L. Titkov, J. Claessens, C. Geuer-Pollmann,
E. C. Lupu, N. Tuptuk, S. Wesner, and L. Schubert, “Trust and security in virtual or-
ganisations,” in PRO-VE 2005, 2005. 1, 1.3, 2.3

[18] L. Schubert, S. Wesner, and T. Dimitrakos, “Secure and dynamic virtual organiza-
tions for business,” in Innovation and the Knowledge Economy: Issues, Applications,
Case Studies (P. Cunningham and M. Cunningham, eds.), IOS Press Amsterdam, 2005.
ISBN: 1-58603-563-0. 1, 1.3, 2.3, 2.3.3

[19] M. S. (Editor), “Nextgrid workpackage progress report,” tech. rep., NextGrid Consor-
tium, 2005. 1, 4.1.2.2

[20] S. Wesner, “Towards a mobile grid architecture,” IT Information Technology, 2005. 1,
3.7

[21] C. Loos, S. Wesner, and J. M. Jähnert, “Specific challenges of mobile dynamic virtual
organizations,” in Innovation and the Knowledge Economy: Issues, Applications, Case
Studies (P. Cunningham and M. Cunningham, eds.), IOS Press Amsterdam, 2005. 1,
1.3, 2.3.3

[22] S. Wesner, T. Dimitrakos, and K. Jefferey, “Akogrimo - the grid goes mobile,” Tech.
Rep. 59, ERCIM News No. 59, October 2004. 1

[23] C. Catlett and L. Smarr, “Metacomputing,” Communications ACM, vol. 35, pp. 44–52,
June 1992. 1

[24] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the grid: An open
grid services architecture for distributed systems integration,” tech. rep., Global Grid
Forum. 1, 4.1, 4.1.2

[25] W3C, “Web services architecture,” w3c working group note, W3C, February 2004. 1

[26] W. Andrews, R. Valdes, G. Phifer, R. Wagner, C. Abrams, D. M. Smith, M. Cantara,
B. Pring, B. M. Caldwell, C. Haight, L. F. Kenney, and J. Duggan, “Predicts 2005: The
impact of web services still grows,” 2004. 1, 4.1.1

[27] S. Wesner, L. Schubert, and T. Dimitrakos, “Dynamic virtual organisations in engi-
neering,” 2005. 1.3, 2.3

[28] J. Vallés, T. Dimitrakos, S. Wesner, B. Serhan, and P. Ritrovato, “The grid for e-
collaboration and virtual organisations,” in Building the Knowledge Economy: Issues,
Applications, Case Studies (P. Cunningham, M. Cunningham, and P. Fatelnig, eds.),
IOS Press Amsterdam ISBN: 1-58603-379-4, 2003. 1.3, 2.3.3, 4.1.2.4

[29] T. Dimitrakos, G. Laria, I. Djordjevic, N. Romano, F. D’Andria, V. Trpkovski, P. Kearney,
M. Gaeta, P. Ritrovato, L. Schubert, B. Serhan, L. Titkov, and S. Wesner, “Towards a grid

116

http://www.unicore.de
http://www.unicore.de
http://www.unicore.org

Bibliography

platform enabling dynamic virtual organisations for business applications,” in iTrust
(P. Herrmann, V. Issarny, and S. Shiu, eds.), vol. 3477 of Lecture Notes in Computer
Science, pp. 406–410, Springer, 2005. 1.3, 4.1.2.4

[30] S. Wesner, I. Müller, Y. Salop, and P. Douriaguine, “Genesys architecture,” tech. rep.,
GeneSyS IST-2201-34162, 2003. 1.3, 4.2.7.3, 5.2.1, 5.2.2.2, 5.3

[31] B. P. abd A[ndrey] Sadovykh and S. Wesner, “Genesys: Innovative framework for com-
prehensive supervision in multiple domains,” in ICWI 2004, pp. 596–603, 2004. 1.3,
3.6, 4.2.7.3, 5.3

[32] A. Sadovykh, S. Wesner, and J.-E. Bohdanowicz, “Genesys: A generic architecture for
super-vision of distributed applications,” in Euroweb 2002, December 2002. 1.3, 3.6,
4.2.7.3, 5.2.2.2, 5.3

[33] J.-E. Bohdanowicz, L. Kovacs, B. P. abd Andrey Sadovykh, and S. Wesner, “On distri-
buted system supervision - a modern approach: Genesys,” in Network Control and
Engineering for QoS, Security and Mobility, IFIP TC6 Conference, 2004. Palma de Mal-
lorca, Spain - November, 2004. 1.3, 3.6, 4.2.7.3, 5.3

[34] J.-E. Bohdanowicz, S. Wesner, L. Kovacs, H. Heimer, and A. Sadovykh, “The prob-
lematic of distributed systems supervision - an example: Genesys,” in IFIP Congress
Tutorials 2004, pp. 115–150, 2004. 1.3, 3.6, 4.2.7.3, 5.3

[35] B. Katzy and M. Dissel, “A toolset for building the virtual enterprise,” Journal of Intel-
ligent Manufacturing, vol. 12, no. 2, pp. 121–131, 2001. 2.2, 2.3.2, 1, 2.3.2.1

[36] W. Saabeel, T. Verduijn, L. Hagdorn, and K. Kumar, “A model for virtual organisation:
A structure and process perspective,” eJov, vol. 4, pp. 1–16, 2002. 2.2, 2.3.1, 2.3.3

[37] K. Jefferey and D. Snelling, “Next generation grids 2,” tech. rep., European Commis-
sion, 2004. 2.2

[38] R. T. (Editor), “Next generation grids,” tech. rep., European Commission, 2003. 2.2

[39] M. Romberg, “The UNICORE architecture seamless access to distributed resources,”
in High Performance Distributed Computing, Aug. 1999. 2.2, 2.3, 4.1.2.1

[40] T. Dimitrakos, D. M. Randal, F. Yuan, M. Gaeta, G. Laria, P. Ritrovato, B. Serhan, S. Wes-
ner, and K. Wulf, “An emerging architecture enabling grid based applicati-on service
provision,” in 7th IEEE International Enterprise Distributed Object Computing Con-
ference EDOC 2003, September 2003. Brisbane Australia, September 16-19 2003. 2.3,
4.1.2.4

[41] M. Gaeta, G. Laria, P. Ritrovato, N. Romano, B. Serhan, S. Wesner, T. Dimitrakos, and
D. M. Randal, “Trust, security, and contract management challenges for grid-based
application service provision,” in iTrust, pp. 362–368, 2004. 2.3, 4.1.2.4

[42] T. Dimitrakos, D. Golby, and P. Kearney, “Towards a trust and contract management
framework for dynamic virtual organisations,” in eAdoption and the Knowledge Econ-
omy: eChallenges 2004, IOS Press, 2004. 2.3

[43] R. Wigand, A. Picot, and R. Reichwald, Information, organisation and management:
Expanding markets and corporate boundaries. John Wiley & Sons, 1997. 2.3.1

117

Bibliography

[44] D. Jordan and J. Evdemon, “Web services business process execution language ver-
sion 2.0,” tech. rep., OASIS, 2006. 2.3.1.1

[45] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto, “Web ser-
vices choreography description language version 1.0,” tech. rep., W3C, 2005. 2.3.1.1

[46] W3C, “Web services description language (wsdl) 1.1,” tech. rep., W3C Working Draft.
2.3.2.2, 4.1.2

[47] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara, “Owl-s: Seman-
tic markup for web services,” tech. rep., W3C, 2004. 2.3.2.2

[48] P. Masche, P. Mckee, and B. Mitchell, “The increasing role of service level agreements
in b2b systems.,” in WEBIST (2) (J. A. M. Cordeiro, V. Pedrosa, B. Encarnação, and
J. Filipe, eds.), pp. 123–126, INSTICC Press, 2006. 2.3.2.2

[49] F. D’Andria, J. Martrat, G. Laria, P. Ritrovato, and S. Wesner, “An enhanced strategy for
sla management in the business context of new mobile dynamic vo,” in Exploiting the
Knowledge Economy: Issues, Applications, Case Studies (P. Cunningham and M. Cun-
ningham, eds.), eChallenges 2006, IOS Press Amsterdam, 2006. 2.3.2.2, 17, 5.2.3

[50] B. Koller and L. Schubert, “Towards autonomous sla management using a proxy-like
approach.,” in NODe/GSEM (R. Hirschfeld, R. Kowalczyk, A. Polze, and M. Weske,
eds.), vol. 69 of LNI, pp. 259–275, GI, 2005. 2.3.2.2

[51] P. Hasselmeyer, B. Koller, L. Schubert, and P. Wieder, “Towards sla-supported resource
management.,” in HPCC (M. Gerndt and D. Kranzlmüller, eds.), vol. 4208 of Lecture
Notes in Computer Science, pp. 743–752, Springer, 2006. 2.3.2.2

[52] M. D. Wilson, A. Arenas, and L. Schubert, “Trustcom framework v4,” tech. rep., Trust-
CoM Project, 2007. 2.3.2.4, 2.3.2.4, 5.2.2, 5.2.3

[53] L. Chen, V. Tan, F. Xu, A. Biller, P. Groth, S. Miles, J. Ibbotson, M. Luck, and L. Moreau,
“A proof of concept: Provenance in a service oriented architecture,” in 4th UK eScience
All Hands Meeting, 2005. 2.3.2.4

[54] L. Camarinha-Matos and H. Afsarmanesh, “A roadmap for strategic research on vir-
tual organizations,” 2003. 2.3.3

[55] K. Petropoulos et al., “D1.3 conceptual model of the laura prototype - definition of
functionalities,” tech. rep., LAURA IST Project, 2003. 2.3.3

[56] S. Wesner and A. Kipp, “Report on be classification and recommendations for archi-
tecture and interoperability,” tech. rep., BEinGRID, 2007. 3.1, 3.4.2, 10

[57] A. Kipp, S. Wesner, H. Schwichtenberg, C. Thomson, and K. Dolkas, “Report on clas-
sification of grid solutions,” tech. rep., BEinGRID, 2006. 3.1, 3.4.1, 3.4.2

[58] B. Dillaway, M. Humphrey, C. Smith, M. Theimer, and G. Wasson, “Hpc basic profile,
version 1.0,” tech. rep., OGF, 2007. 3.2

[59] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher,
and A. Savva, “Job submission description language (jsdl) specification, version 1.0,”
tech. rep., OGF, 2006. 3.2

118

Bibliography

[60] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pul-
sipher, C. Smith, and M. Theimer, “Ogsa basic execution service version 1.0,” tech.
rep., OGF, 2007. 3.2

[61] P. M. A. Sloot, C. A. Boucher, M. T. Bubak, A. G. Hoekstra, P. Plaszczak, A. Posthumus,
D. van de Vijver, S. Wesner, and A. Tirado-Ramos, “VIROLAB - A virtual laboratory for
decision support in viral diseases treatment,” in Cracow Grid Workshop 2005, (Cra-
cow, Poland), Nov. 2005. in press, best poster award. 3.5, 3.5.1

[62] E. C. Kaletas, H. Afsarmanesh, and L. O. Hertzberger, “A methodology for integrat-
ing new scientific domains and applications in a virtual laboratory environment.,” in
ICEIS (3), pp. 265–272, 2004. 3.5

[63] B. Kryza, R. Slota, M. Majewska, J. Pieczykolan, and J. Kitowski, “Grid organizational
memory-provision of a high-level grid abstraction layer supported by ontology align-
ment,” Future Gener. Comput. Syst., vol. 23, no. 3, pp. 348–358, 2007. 3.5, 4.1.2

[64] P. N. (Editor), “D3.2 design of the virtual laboratory,” tech. rep., Virolab Consortium,
2007. 3.5.1, 4.1.2.2

[65] D. Michel, H. Zunker, and R. Stoy, “Distributed interactive simulations on atm net-
works for space systems validation,” in Data Systems in Aerospace-DASIA Athens, 25.-
28.Mai 1998, pp. 1 – 8, 1998. LIDO-Berichtsjahr=1999,;. 3.6

[66] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato,
and S. Traldi, “Instrument element: A new grid component that enables the control
of remote instrumentation.,” in CCGRID, p. 52, IEEE Computer Society, 2006. 3.6

[67] M. Okon, D. Kaliszan, M. Lawenda, D. Stoklosa, T. Rajtar, N. Meyer, and M. Stroinski,
“Virtual laboratory as a remote and interactive access to the scientific instrumenta-
tion embedded in grid environment,” e-science, vol. 0, p. 124, 2006. 3.6

[68] J. Wedwik, B. Viken, S. Wesner, R. Piotter, I. Müller, T. Dimitrakos, G. Laria, C. Morariu,
N. Inacio, P. Mandic, R. del Campo, and S. F. Gonzales, “The state of the art of mobile
grids,” tech. rep., Akogrimo consortium, 2005. 3.7

[69] H. Kreger, “Web services conceptual architecture,” tech. rep., IBM, 2001. 4.1, 4.1.1

[70] “Anatomy of the client/server model.” http://edocs.bea.com/tuxedo/
tux71/html/intbas3.htm. 4.1.1

[71] C. Longbottom, “Soa: Substance or hype?.” http://www.quocirca.com/
pages/analysis/reports/view/dl/store250/item1542/, 2006.
4.1.1

[72] D. Szubert and C. Longbottom, “Information and soa.” http://www.
quocirca.com/pages/analysis/reports/view/dl/store250/
item3749/, 2007. 4.1.1

[73] “Web services addressing (ws-addressing),” tech. rep., W3C, 2004. 4.1.1

[74] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo, “Web services security: Soap
message security 1.0,” tech. rep., OASIS, 2004. 4.1.1

119

http://edocs.bea.com/tuxedo/tux71/html/intbas3.htm
http://edocs.bea.com/tuxedo/tux71/html/intbas3.htm
http://www.quocirca.com/pages/analysis/reports/view/dl/store250/item1542/
http://www.quocirca.com/pages/analysis/reports/view/dl/store250/item1542/
http://www.quocirca.com/pages/analysis/reports/view/dl/store250/item3749/
http://www.quocirca.com/pages/analysis/reports/view/dl/store250/item3749/
http://www.quocirca.com/pages/analysis/reports/view/dl/store250/item3749/

Bibliography

[75] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson, Web Ser-
vices Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, March 2005. 4.1.1

[76] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman, “Grid service
specification,” tech. rep., Open Grid Service Infrastructure WG, Global Grid Forum.
4.1.2, 4.1.2.4

[77] R. T. Fielding, Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, 2000. 4.1.2

[78] R. Khare and R. N. Taylor, “Extending the representational state transfer (rest) archi-
tectural style for decentralized systems,” in ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering, (Washington, DC, USA), pp. 428–437,
IEEE Computer Society, 2004. 4.1.2

[79] W. working group, “Web services for management (ws-management),” tech. rep.,
DMTF, 2006. 4.1.2, 4.2.7.5

[80] A. Hoheisel and U. Der, “An xml-based framework for loosely coupled applications on
grid environments,” in International Conference on Computational Science (P. M. A.
Sloot, D. Abramson, A. V. Bogdanov, J. Dongarra, A. Y. Zomaya, and Y. E. Gorbachev,
eds.), vol. 2657 of Lecture Notes in Computer Science, pp. 245–254, Springer, 2003. 4.1.2

[81] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Junior, and H.-L. Truong,
“ASKALON: A Tool Set for Cluster and Grid Computing,” Concurrency and Compu-
tation: Practice and Experience, vol. 17, no. 2-4, 2005. http://dps.uibk.ac.
at/askalon/. 4.1.2

[82] D. Snelling, “The abstract job object: An open framework for seamless computing.”
http://www.fz-juelich.de/unicoreplus/. 4.1.2.1

[83] J. Almond and D. Snelling, “Unicore: uniform access to supercomputing as an ele-
ment of electronic commerce,” in FGCS Volume 15 (1999), Numbers 5-6, vol. 15 of
FGCS, pp. 539–548, 1999. 4.1.2.1

[84] D. Erwin, “Uniform interface to grid services.” ftp://ftp.cordis.europa.
eu/pub/ist/docs/grids/unigrids-interim-sheet_en.pdf.
4.1.2.1

[85] A. Dunlop, “Omii europe - an overview.” http://152.78.70.96/
OMII-Europe/News/OMII-Europe-Narr.pdf, 2005. 4.1.2.1

[86] F. Gagliardi, B. Jones, and E. Laure, “The EU DataGrid Project: Building and Operat-
ing a large scale Grid Infrastructure,” in Engineering the Grid: Status and Perspective
(B. Di Martino, J. Dongarra, A. Hoisie, L. Yang, and H. Zima, eds.), American Scientific
Publishers, January 2006. 4.1.2.2, 4.1.2.3

[87] M. Assel, B. Krammer, and A. Loehden, “Management and access of biomedical data
in a grid environment,” in Proceedings of the 6th Cracow Grid Workshop 2006, Oct. 15-
18, 2006, Krakow, Poland (M. Bubak, M. Turala, and K. Wiatr, eds.), pp. 263–270, ACC
Cyfronet AGH, 2007. 4.1.2.2

120

http://dps.uibk.ac.at/askalon/
http://dps.uibk.ac.at/askalon/
http://www.fz-juelich.de/unicoreplus/
ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/unigrids-interim-sheet_en.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/unigrids-interim-sheet_en.pdf
http://152.78.70.96/OMII-Europe/News/OMII-Europe-Narr.pdf
http://152.78.70.96/OMII-Europe/News/OMII-Europe-Narr.pdf

Bibliography

[88] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso, P. Buncic,
P. Z. Kunszt, A. Di Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini, M. Sgaravatto, and
O. Mulmo, “Middleware for the next generation grid infrastructure,” no. EGEE-PUB-
2004-002, p. 4 p, 2004. 4.1.2.3

[89] E. Laure, S. M. Fisher, A. Frohner, C. Grandi, P. Z. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. Di Meglio, and
A. Edlund, “Programming the grid with glite,” Tech. Rep. EGEE-TR-2006-001, CERN,
Geneva, Mar 2006. 4.1.2.3

[90] S. Wesner, B. Serhan, T. Dimitrakos, D. M. Randal, P. Ritrovato, and G. Laria, “Overview
of an architecture enabling grid based application service provision,” in European
Across Grids Conference, pp. 113–118, 2004. 4.1.2.4

[91] S. Wesner, L. Schubert, T. Dimitrakos, D. M. Randal, M. Gaeta, P. Ritrovato, and
G. Laria, “Towards a platform enabling grid based application service provision,” in
eAdoption and the Knowledge Economy: Issues, Applications, Case Studies (P. Cun-
ningham and M. Cunningham, eds.), IOS Press Amsterdam, 2004. ISBN: 1-58603-
470-7. 4.1.2.4, 5.2.3

[92] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya, M. Mambelli, J. M. Schopf,
M. Viljoen, and A. Wilson, “Glue schema specification version 1.2,” 2005. 4.2.1

[93] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya, M. Litmaath, P. Millar, and
J. Navarro, “Glue specification v. 2.0 (draft),” tech. rep., OGF, GLUE WG, 2008. 4.2.1,
5.3

[94] L. Field, “Use cases for glue 2.0,” tech. rep., GLUE-WG, OGF, 2008. 4.2.1

[95] “Itu-t recommendation x.711,” tech. rep., ITU, 1997. 4.2.4

[96] M. Gering, “Comparison of snmp and cmip management architectures,” pp. 197–216,
1994. 4.2.4

[97] U. S. Warrier, L. Besaw, L. LaBarre, and B. D. Handspicker, “RFC 1189: Common Man-
agement Information Services and Protocols for the Internet (CMOT and CMIP),” Oct.
1990. Obsoletes RFC1095 [130]. Status: HISTORIC. 4.2.4

[98] “Cim concepts white paper,” tech. rep., DMTF, 2003. 4.2.5

[99] G. Rackl, Monitoring and Managing Heterogenous Middleware. PhD thesis, Institut f̧ r
Informatik, Lehrstuhl f̧ r Rechnertechnik und Rechnerorganisation, 2001. 4.2.6, 5.3

[100] P. Drum and G. Rackl, “Applying and monitoring latency-based metacomputing in-
frastructures,” in Proceedings of the 2000 International Workshops on Parallel Pro-
cessing, IEEE, 2000. 4.2.6

[101] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, and R. W. an M. Swany, “A grid
monitoring architecture,” 2002. 4.2.7

[102] R. L. Ribler, H. Simitci, and D. A. Reed, “The autopilot performance-directed adaptive
control system,” 1997. 4.2.7

[103] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, and M. Thompson, “A monitor-
ing sensor management system for grid environments,” in HPDC ’00: Proceedings of

121

Bibliography

the 9th IEEE International Symposium on High Performance Distributed Computing,
(Washington, DC, USA), p. 97, IEEE Computer Society, 2000. 4.2.7

[104] A. Waheed, W. Smith, J. George, and J. C. Yan, “An infrastructure for monitoring and
management in computational grids,” in LCR ’00: Selected Papers from the 5th In-
ternational Workshop on Languages, Compilers, and Run-Time Systems for Scalable
Computers, (London, UK), pp. 235–245, Springer-Verlag, 2000. 4.2.7

[105] R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service: A Distributed Re-
source Performance Forecasting Service for Metacomputing,” Journal of Future Gen-
eration Computing Systems, vol. 15, pp. 757–768, 1999. 4.2.7

[106] A. Cooke, A. Gray, W. Nutt, J. Magowan, M. Oevers, P. Taylor, R. Cordenonsi, R. Byrom,
L. Cornwall, A. Djaoui, L. Field, S. Fisher, S. Hicks, J. Leake, R. Middleton, A. Wilson,
X. Zhu, N. Podhorszki, B. Coghlan, S. Kenny, D. O’Callaghan, and J. Ryan, “The rela-
tional grid monitoring architecture: Mediating information about the grid.” 4.2.7.1

[107] A. Keller and H. Ludwig, “Defining and monitoring service level agreements for dy-
namic e-business,” 2002. 4.2.7.2, 5.2.3

[108] H. Kreger, V. Bullard, and W. Vambenepe, “Web services distributed management:
Management using web services (muws 1.1),” tech. rep., OASIS, 2006. 4.2.7.4

[109] B. Murray, K. Wilson, and M. Ellison, “Web services distributed management: Muws
primer,” tech. rep., OASIS, 2006. 4.2.7.4

[110] S. Velt, “Neues vom schutzheiligen: Nagios in version 3.0 freigegeben,” tech. rep., IX,
2008. 4.2.7.6, 5.2.1, 5.3, 6.1.1

[111] K. Hätinen, M. Klemettinen, and M. H., “Knowledge discovery from telecommuni-
cation network alarm databases,” in International Conference on Data Engineering
(ICDE’96), pp. 115–122, 1996. 4.3.1

[112] L. Lewis, “A case-based reasoning approach to the resolution of faults in communica-
tion networks,” in Integrated Network Management III, pp. 671–682, 1993. 4.3.1

[113] G. D. Rodosek, A Framework for Supporting Fault Diagnosis in Integrated Network
and Systems Management: Methodologies for the Correlation of Trouble Tickets and
Access to Problem-Solving Expertise. PhD thesis, Ludwig-Maximilians-Universit‰t
M¸nchen, 1995. 4.3.1

[114] B. Gruschke, “Integrated event management: Event correlation using dependency
graphs,” in Network Operations and Management Symposium DSOM1998, 1998. 4.3.1

[115] R. Gardner and D. Harle, “Pattern discovery and specfication translation for alarm
correlation,” in Netowrk Operations and Management Symposium (NOMS1998),
pp. 713–722, 1998. 4.3.1

[116] P. Wu, R. Bhatnagar, L. Epshtein, et al., “Alarm correlation engine (ace),” in Network
Operations and Management Symposium (NOMS1998), pp. 733–742, 1998. 4.3.1

[117] D. Ohsie, A. Mayer, S. Kliger, et al., “Event modeling with the model language,” in
Integrated Network Management V (IM97) (R. S. A. Lazar and R. Stadler, eds.), pp. 625–
637, 1997. 4.3.1

122

Bibliography

[118] N. C. Damianou, A Policy Framework for Management of Distributed Systems. PhD
thesis, Imperial College of Science, Technology and Medicine University of London
Department of Computing, 2002. 4.3.2

[119] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core information
model.” available at: http://www.faqs.org/rfcs/rfc3060.html, Feb 2001. 4.3.2

[120] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy specification
language,” Lecture Notes in Computer Science, vol. 1995, pp. 18–??, 2001. 4.3.2

[121] L. Kagal, T. Finin, and A. Joshi, “A Policy Language for A Pervasive Computing Envi-
ronment,” in 4th International Workshop on Policies for Distributed Systems and Net-
works, IEEE, June 2003. 4.3.2

[122] V. Danciu, Application of policy-based techniques to process-oriented IT service man-
agement. PhD thesis, Fakult®at f®ur Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universit®at M®unchen, 2007. 4.3.2

[123] T. Moses, “extensible access control markup language (xacml) version 2.0,” tech. rep.,
OASIS Standard, 2005. 4.3.2

[124] I. Aib, M. Sallé, C. Bartolini, A. Boulmakoul, R. Boutaba, and G. Pujolle, “Business
aware policy based management,” tech. rep., HP, 2005. 4.4

[125] E. Imamagic and D. Dobrenic, “Grid infrastructure monitoring system based on na-
gios,” in GMW ’07: Proceedings of the 2007 workshop on Grid monitoring, (New York,
NY, USA), pp. 23–28, ACM, 2007. 5.2.1

[126] J. M. Jähnert, S. Wesner, and V. A. Villagrá, “The akogrimo mobile grid reference ar-
chitecture - overview,” tech. rep., Akogrimo, 2007. 5.2.2, 5.2.3

[127] S. Smallen, C. Olschanowsky, K. Ericson, P. Beckman, and J. M. Schopf, “The inca test
harness and reporting framework,” in Supercomputing Conference, 2004. 5.3, 5.3

[128] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple network management proto-
col,” tech. rep., IETF, 1990. 6.1.1

[129] A. Andrieux et al., “Web services agreement specification,” tech. rep., OASIS, 2005.
6.1.4

[130] U. S. Warrier and L. Besaw, “Common management information services and proto-
col over tcp/ip (cmot),” 1989. 97

123

Bibliography

124

Index

Business Relation Management, 91, 103

CIM, 56
CMIP, 55

DMI, 55

GANGLIA, 94
Ganglia, 61
GeneSyS, 27, 42, 59
GLUE, 54
GMA, 57
Grid

Akogrimo, 27, 44
BEinGRID, 27
DataGrid, 52
DEISA, 8
EGEE, 8
gLite, 52
Globus, 51
GRASP, 27, 52
GRIA, 53
GridCC, 42
K-WF Grid, 40
NextGrid, 27
RinGrid, 42
UNICORE, 8, 50, 91
VIROLAB, 40

Grid Computing, 49
GridICE, 63

INCA, 63

JSDL, 28

Lemon, 62, 94
Local Management, 91, 95

manageability, 94
Mediator, 106
MIMO, 57
MUWS, 60

Nagios, 61, 94
Network Management, 92

OGSA, 49

Policy Based Management, 66

Resource Management, 91

Service Broker, 48
Service Level Agreement, 3, 33, 46, 53, 58, 71, 91,

103, 105
Service Management, 97
Service Oriented Architecture, 47
Service Provider, 48

GRASP, 32
Core Service Provider, 28

Simple Network Management Protocol, 54
SNMP, 94
SOA, 47
standard

HPC Basic Profile, 28
JSDL, 28
OGSA-BES, 28

TrustCoM, 9, 27

UNICORE, 97

Virtual Organisation, 7, 9
lifecycle, 22, 29
role model, 15
structure, 12
topology, 12, 89

WSDL, 62
WSLA, 58

125

	Abbreviations
	Introduction and Rationale
	Objectives
	Chosen Approach
	Research Contribution
	Background

	A new Taxonomy for Virtual Organisations
	Applications spanning across several Organisations
	Existing Virtual Organisation Models
	A proposed more sophisticated VO Model
	Structural and Organisational Properties of a Virtual Organisation
	Topologies

	Role Model
	Dynamic Virtual Organisation Roles
	Service Provider Domain
	User Domain
	Trusted Third Party

	Dynamic Viewpoint
	Identification
	Formation
	Operation
	Evolution
	Termination

	Classification of Scenarios and Derived Requirements
	The Method for the Scenario Classification
	Core Service Provider Scenario
	Topological View
	Dynamic View
	Key Requirements summary

	Aggregated Service Provider Scenario
	Topological View
	Dynamic View
	Key Requirements summary

	Service Provider Collaboration
	Topological View
	Dynamic View
	Key Requirements summary

	Virtual Laboratories
	Topological View
	Dynamic View
	Key Requirements summary

	Interactive Instrument or Simulator Integration
	Topological View
	Dynamic View
	Key Requirements summary

	Context dependent Applications
	Key Requirements summary

	Analysis Summary

	State of the Art and Relevant Standards
	Core Technologies
	Service Oriented Architecture
	Grid computing
	UNICORE
	Globus Toolkit
	gLite
	Grid based Aggregated Service Provision
	Grid for Industrial Applications

	Information Models and Management Protocols
	GLUE
	SNMP
	DMI
	CMIP
	CIM
	MIMO
	Grid Monitoring Architecture
	R-GMA
	Web Service Level Agreements
	Generic System Supervision
	Management using Web Services (MUWS)
	Web Based Enterprise Management
	Nagios
	Ganglia
	Lemon
	INCA
	GridICE

	Tivoli
	Unicenter (Computer Associates)
	Openview (HP)
	Openmaster (Evidian-Bull)

	Existing Management Approaches
	Rule based Approaches
	Policy Based Management

	Summary and Conclusions

	Monitoring and Management Concepts
	Concepts and Terminology
	Conceptual View
	Manageability Layer
	Integrated Sensor
	Indirect Sensor
	Aggregation and Integration
	Sensor Cache and History
	Command Enforcement
	Resource Delegate

	Provider Internal Management Layers
	Data/Event Receiver
	Enactor
	Command Sender
	Local Management Layer
	Provider Boundary Management Layer

	VO Management layer

	Key Building Blocks

	Application of the Concept
	HPC computing utility provider
	Realising the Manageability Layer
	Local Management
	Service Management
	Report Categorization and Evaluation
	Decision Module
	Mapping Decisions to Commands
	Rule updates and Command Reception

	Business Relations
	Mediation Component

	Operational Considerations

	Conclusion and Outlook
	Future work
	Modelling Support to feed the various Knowledge Bases
	Supporting coupled applications on hybrid computing systems
	Standardisation of Incident Reports and Command formats
	Cross-layer communication and self-organizing approaches

