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Abstract

Many fields of applications for porous media flow include geometrically anisotropic
inclusions and strongly discontinuous material coefficients which differ in orders of
magnitude. If the extension of those heterogeneities is small in normal direction
compared to the tangential directions, e.g., long and thin, those features are called
fractures. Examples which include such fractured porous-media systems in earth
sciences include reservoir engineering, groundwater-resource management, carbon
capture and storage (CCS), radioactive-waste reposition, coal bed methane migration
in mines, geothermal engineering and hydraulic fracturing.

The analysis and prediction of flow in fractured porous-media systems is important
for all the aforementioned applications. Experiments are usually too expensive
and time consuming to satisfy the demand for fast but accurate decision making
information. Many different conceptual and numerical models to treat fractured
porous-media systems can be found in the literature. However, even in the time of
large supercomputers with massive parallel computing power, the computational
efficiency, and therefore the economic efficiency, plays a dominating role in the
evaluation of simulation software.

In this thesis an efficient method to simulate flow in fractured porous media systems
is presented. Darcy flow in fractures and matrix is assumed. The presented method
is suited best for flow regimes depending on both, the fractures and the surrounding
rock matrix and is able to account for highly conductive but also almost impermeable
fractures with respect to the surrounding matrix.

The newly developed method is based on a co-dimension one conceptual model
for the fracture network which is embedded in the surrounding matrix. The basis
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for this model reduction is given in Martin et al. (2005). Numerically the fracture
network is resolved by its own grid and coupled to the independent matrix grid. The
discretization on this matrix grid allows jumps in the solution across the geometrical
position of the fractures within elements by discontinuous basis functions. This
discretization method is known as eXtended Finite Element Method (XFEM). A
similar approach was simultaneously developed in D’Angelo and Scotti (2012).

The main novelty of this work is the extension of the aforementioned conceptual
model, which only accounts for a single fracture ending on the boundary of the
matrix domain, towards more complex fracture networks and suitable boundary
conditions. This work can be structured into the development and implementation
of three conceptual models (see 1–3 below) and their respective validation. It is
followed by an evaluation of quality and efficiency with respect to established models
(see 4 below). The implementation is carried out using DUNE, a toolbox for solving
partial differential equations.

1. The first extension is the treatment of fractures, which end inside the domain.
This includes the conceptual coupling at the fracture tips as well as the
numerical treatment within the XFEM of the matrix elements, in which the
fracture ends. The validation shows, that the proposed treatment is efficient
and for most validation cases produces the desired accuracy.

2. In the second part, a conceptual model for intersecting fractures is developed
and the implementation within the XFEM is presented. The validation shows
that the proposed model and implementation can capture the complex physics
of fracture crossings very accurately.

3. Of special interest are the boundary conditions for lower-dimensional fractures
intersecting the matrix boundary. The established models very often use
for simplicity constant values across lower-dimensional intersections. This is
physically not always correct, because in reality lower-dimensional objects do
not exist and if a gradient on the rock matrix boundary exists, there is also a
gradient on the fracture boundary. Therefore, a sophisticated interpolation
method is proposed. It is easy to apply because very often discrete measured

vi



data is given to the model as input anyway and the proposed interpolation of
values at the boundary is separated from the flow problem inside the domain.
The concepts and results of the crossing model (2) and the boundary-condition
interpolation (3) are published in Schwenck et al. (2014).

4. To show the performance of the newly developed model including the three
major aspects mentioned above, it is compared against several established
models and implementations within the simulation framework DuMux. The
results of this comparison are published in Schwenck et al. (2015).

The model presented here combines the advantages of lower-dimensional models and
non-matching grids while keeping the ability to represent the fracture geometry and
its influence on the matrix flow field exactly. Therefore, it is an efficient alternative
to established models.
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Kurzfassung

Beispiele für poröse Medien sind ein Schwamm, menschliches Gewebe oder der
Erdboden. Strömungen durch solche porösen Medien sind sehr stark beeinflusst
durch die räumliche Struktur des jeweiligen porösen Mediums. Parameter, die diese
Strukturen von einer volumengemittelten Perspektive aus beschreiben, können um
mehrere Größenordnungen verschieden sein. Ist solch eine Struktur besonders dünn
im Vergleich zu ihrer sonstigen Ausdehnung wird sie als Kluft bezeichnet. Anwen-
dungsbeispiele solch geklüftet-porösen Medien im Bereich der Geowissenschaften sind
Erdölförderung, Grundwassermanagement, CO2-Speicherung, Atommülllagerung,
Methanausbreitung in Kohleflözen, geothermische Energiegewinnung und Fracking.

Die Untersuchung von und die Vorhersage für Strömungen in porösen Medien ist
bedeutend für all die oben genannten Beispielanwendungen. Experimente durch die
vergleichbare Erkenntnisse gewonnen werden könnten sind in der Regel zu teuer
oder dauern zu lange, so dass sie nicht immer herangezogen werden können um
fundierte Entscheidungshilfen zu liefern. Es gibt viele verschiedene konzeptuelle
und numerische Modelle, die sich mit der Simulation von geklüftet-porösen Medien
beschäftigen. Obwohl die verfügbaren Computer immer effizienter werden und
bessere Rechenleistung zur Verfügung stellen, dominiert die Effizienz bezüglich der
Rechenzeit und damit die ökonomische Effizienz, die Entwicklung und den Einsatz
fast aller Simulationsmodelle.

In dieser Arbeit wird solch ein effizientes Simulationsmodell, spezialisiert auf ge-
klüftet-porösen Medien, vorgestellt. Vorausgesetzt wird Darcy-Strömung sowohl in
den Klüften als auch in der umgebenden Matrix. Die hier vorgestellte Methode
eignet sich am besten für Fälle, in denen das gesamte Strömungsbild weder von den
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Klüften noch der Matrix dominiert ist, sondern beide einen bedeutenden Einfluss
ausüben. Außerdem kann das hier vorgestellte Modell, im Gegensatz zu etablierten
Modellen, sowohl sehr durchlässige als auch sehr undurchlässige Klüfte simulieren.

Das in dieser Arbeit entwickelte konzeptuelle Modell ist ein Modell für Klüfte, die
eine Kodimension von eins zur sie umgebenden Matrix haben. Klüfte und Matrix
sind voll gekoppelt. Der Teil der Dimensionsreduktion der Klüfte basiert auf der
Arbeit von Martin et al. (2005). Das numerische Modell ist so ausgelegt, dass es
unabhängige Gitter für Kluftnetzwerk und Matrix erlaubt. Eine Besonderheit des
numerischen Modells für den Matrixanteil ist, dass es durch Einführen zusätzlicher
Freiheitsgrade und unstetiger Basisfunktionen, Unstetigkeiten in der Lösung an den
geometrischen Positionen von Klüften zulässt. Diese Methode wird eXtended Finite
Element Method (XFEM) genannt. Ein ähnlicher Ansatz wurde zeitgleich zu dieser
Arbeit in D’Angelo and Scotti (2012) entwickelt.

Der Hauptbeitrag dieser Arbeit ist die Erweiterung des oben genannten Modellkon-
zepts, welches nur am globalen Rand des Simulationsgebietes endende Einzelklüfte,
berücksichtigt. Die Erweiterung beinhaltet komplexere Kluftnetzwerke und passende
Randbedingungen. Sie lässt sich wie folgt gliedern: Entwicklung und Implementie-
rung von drei konzeptuellen Modellen (siehe unten 1–3) und ihre Validierung (siehe
unten 4), gefolgt von einer Bewertung der Qualität und Effizienz bezüglich vorhan-
dener Modelle. Die Implementierung wurde mit Hilfe von DUNE umgesetzt. DUNE
ist eine Programmierumgebung zum Lösen von partiellen Differentialgleichungen.

1. Die erste Erweiterung ist die Behandlung von Kluftenden. Sie beinhaltet die
numerische Behandlung im Rahmen der XFEM, aber auch die Entwicklung
eines konzeptuellen Models für die Strömung im Kluftende. Die Validierung
zeigt, dass das vorgestellte Modell effizient ist und für die meisten Fälle die
gewünschte Genauigkeit liefert.

2. Im zweiten Teil wird ein neues Modellkonzept für Kluftkreuzungen entwickelt
und eine passende XFEM Implementierung vorgestellt. Auch hier zeigt die
Validierung numerisch stabile Ergebnisse, die im niederdimensionalen Modell
trotzdem die komplexe, equidimensionale Physik wiedergeben.
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3. Ein weiterer Schwerpunkt liegt auf dem Umsetzen von physikalisch sinnvollen
Randbedingungen für niederdimensionale geklüftet-poröse Medien bei nur
wenig gegebenen Messwerten. Vorhandene Modelle benutzen sehr häufig am
Rand konstante Werte oder kontinuierliche, lineare Interpolationen über nie-
derdimensionale Klüfte hinweg. Dies ist physikalisch nicht immer korrekt,
denn wenn ein Gradient am Rand der Matrix vorliegt, wirkt sich dieser auch
am Rand der Kluft aus. In dieser Arbeit wird eine neue Möglichkeit zur
Interpolation von Druckwerten am Rand vorgestellt, welche die Physik von
Anwendungen besser wiederspiegelt. Außerdem ist diese Interpolation leicht
in bestehende Modelle zu integrieren, da das das Problem am Rand separat
vom Problem innerhalb des Gebietes gelöst werden kann. Die Konzepte und
Ergebnisse des Kreuzungsmodells (2) und der Randbedingungsinterpolation
(3) sind in Schwenck et al. (2014) veröffentlicht.

4. Um die gesamte Leistungsfähigkeit des neuen Modells mit seinen drei Teilen zu
ermitteln, wird es anhand von verschiedenen Beispielen mit vorhandenen und
etablierten Modellen aus dem Simulator DuMux verglichen. Diese Ergebnisse
sind in Schwenck et al. (2015) veröffentlicht.

Das hier vorgestellte Modell vereint die Vorteile von niederdimensionalen Kluftmo-
dellen mit den Vorteilen von Modellen, die auf unabhängigen Gittern basieren. Es
kann trotz der Modellreduktion den Einfluss komplizierte Kluftgeometrien auf die
Strömung exakt abbilden und ist deshalb eine effiziente Alternative zu vorhanden
Modellen.
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1 Introduction

Flow through a porous medium such as a sponge, a tissue or the subsurface, is highly
affected by the geometrical structure of the porous medium itself. The structural
parameters often vary by several orders of magnitude over small distances. The scale
of typical applications which are simulated is comparably large to the geometrical
structure of the porous medium. Thus, these aspects bear complex challenges in
developing efficient and consistent numerical models and simulation tools. Those
models and tools should provide two competing features. On the one hand, they
should capture important flow features which are influenced by the geometrical
micro structure of the porous medium. On the other hand, they should not only
be able to simulate large scale applications on high-end supercomputers but for
example also on desktop computers in an engineering consulting company. The goal
of this work is to develop such a simulation tool for single-phase flow in fractured
porous-media systems.

Fractures are special heterogeneities which can represent extreme cases of highly
varying structural parameters over a very short distance and are thus especially
hard to treat conceptually and numerically. Several examples are given below,
section 1.1. The first step to simulate real world problems is the development of a
conceptual model. Due to the nature of fractures, structural parameters vary over a
short distance, lower-dimensional models are often appropriate for their description.
In this work, a mixed lower-/full-dimensional model for fractured porous-media
systems is developed.

The second step towards a simulation tool, after a conceptual model was developed,
is to apply a numerical model to the conceptual model. Grid based methods usually
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1 Introduction

need to resolve the physical problem domain, i.e., the fractures, with the grid. This
is computationally costly and the goal of this work is to develop a numerical model,
which can be applied to the conceptual model, to simulate the physical problem
without resolving the fractures with a grid. The numerical method applied in this
work to achieve the grid independence is the eXtended Finite Element Method
(XFEM).

1.1 Application Examples and Resulting Challenges

While the conceptual models are usually developed on a coarse scale, the often
called Darcy-scale, cf. section 1.2, the scale of interest for the simulation engineer
can vary significantly between different applications. In the following, an overview
of applications which involve fractured porous media, is given.

Fractured porous-media systems appear in many fields of application in earth
science. Examples include groundwater-resource management (Qian et al. 2014),
radioactive-waste reposition (Rechard et al. 2014, Joyce et al. 2014), coal bed
methane migration in mines (Liu et al. 2011) or landslides (Dogan et al. 2009), and
geothermal engineering (Fox et al. 2013). The recent development of new production
techniques for oil leads to a combined application field in the context of reservoir
engineering, CO2-enhanced oil recovery (Torabi et al. 2012). Another example of
a combined application field can be found in the context of carbon capture and
storage (CCS), where CO2 is used to replace the brine in geothermal systems and
enhance the energy recovery, (Borgia et al. 2012). This approach, however, has not
yet been tested in the field.

The concept of fractured porous media can also be applied to biomedical-engineering
applications, e.g., flow and transport in the capillary bed (Erbertseder et al. 2012),
where capillaries can be treated as fractures in the matrix, the surrounding tissue.
Also technical applications are of interest, e.g., PEM fuel cells (Acosta et al. 2006),
where the gas channels can be treated as fractures in the surrounding porous gas
diffusion layers. In contrast to the aforementioned earth science applications where

2



1.2 Porous Media Flow

the fractures are co-dimension one objects, the fuel cell and capillary models in
most cases require co-dimension two approaches.

This work focuses on subsurface applications and the following parameter values are
always related to such applications. A more detailed description of fractured porous-
media systems in earth science can be found in (Dietrich et al. 2005, Berkowitz
2002, Bear et al. 1993). Typical field scales or simulation sizes of interest can range
from tenths of meters to kilometers. REVs can usually be found in the range of
centimeters to meters. In these cases fractures with a length shorter than one
meter and a corresponding aperture of micrometers to millimeters are upscaled and
fractures longer than one meter with an aperture of up to centimeters are treated
discretely. An overview of relevant and often occurring sets of fracture sizes and
matrix permeabilities is given for example in Belayneh et al. (2006).

Another key aspect for the transition from model concepts (fine and coarse-scale)
towards a scale for the size of actual problems (field scale) is that, in most cases, the
exact geometrical structure on a scale larger than the Darcy scale is unknown. It is
usually approximated by taking small samples of the subsurface structure at specific
probing sites. This can be done by analyzing cores or bore-hole images or by doing
seismic surveys over a larger scale and then estimating the geometrical field scale
structure. Because of the resulting uncertainty, stochastic modeling (Assteerawatt
2008), should be taken into account.

Altogether, the size of the problems and the uncertainty in parameters leads to
the necessity of efficient computational simulation tools to be able to understand
and possibly predict the solution of applications specific flow behavior in fractured
porous media systems.

1.2 Porous Media Flow

In this section, the fundamental definitions for porous media flows are presented.
A porous medium consists of a solid phase and arbitrarily distributed void space,
also called pore space. Flow can only occur in the pore space. In the following,
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1 Introduction

only stationary flow for incompressible Newtonian fluids without gravity effects is
considered. The solid phase is assumed to be rigid, i.e., it does not change over
time. Flow models on the pore scale usually use the Navier-Stokes equations as
basis. The scale of interest for the applications relevant to this work is that large,
that there exists not enough computational power to solve the pore-scale problem
directly. Moreover, the pore-scale geometry is usually unknown. To simplify the
pore scale models, the idea of volume averaging can be used to derive models on a
larger scale. This scale is based on Darcy’s law and is therefore called Darcy scale.
Darcy’s law is named after Henry Darcy who postulated it after experiments in
1856 (Darcy 1856). Its main assumptions are slow, or creeping, flow where inertial
forces can be neglected, and the existence of so-called representative elementary
volumes, REVs.

Formally, several requirements have to be met for Darcy’s law to be valid. A
detailed derivation and overview is given in (Hubbert 1957). For this work, the most
important requirement is the existence of a representative elementary volume (REV),
which is for example defined in (Bear 1988, Süß 2005). To find an REV, pore-scale
parameters are averaged over a volume, resulting in new, Darcy-scale parameters. If
the averaging volume size is changed and the Darcy-scale parameters stay constant,
the volume used for the averaging is called REV, figure 1.1. A property of the
Darcy-scale parameters is, that they can vary in space but are constant within an
REV. If an REV exists, the size of it is problem specific and bounded below and
above, but nevertheless, within the boundaries, arbitrary.

Another important aspect for the validity of Darcy’s law is the Reynolds number. The
Reynolds number for porous media problems, Re = uD d/ν, is typically calculated
with the grain size d as characteristic length, the Darcy velocity uD as characteristic
velocity and the characteristic kinematic viscosity ν. Darcy’s law is applicable if
the Reynolds number is well below one, e.g., (Nield and Bejan 2006).

Depending on the process, the fluid properties as well as the fluid velocity can
differ by orders of magnitude; Examples include CCS with super-critical CO2

or groundwater remediation with dense non-aqueous phase liquids (DNAPL). In
addition, the order of magnitude of the soil properties varies strongly depending
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1.2 Porous Media Flow
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Figure 1.1: REV consideration bounds, modified after Assteerawatt (2008), Süß (2005), Bear
(1988)

on the application. Examples of soil properties are grain size on the pore scale or
intrinsic permeability on the Darcy scale. Those different characteristic quantities
for different applications lead to the necessity to validate Darcy’s law for every
application and process.

Structural parameters do not only vary with respect to the problem, but can also
vary in space on each scale for a single application. A region with a significant change
of a parameter compared to its surroundings is called heterogeneity. Heterogeneities,
where the characteristic length is significantly smaller than the REV size, are
upscaled and averaged and thereby in the course of this work represented by the
porous-medium (Darcy-scale) parameters porosity and permeability. The special
case with the characteristic length of the heterogeneity in the order of the size of
the REV or larger, is discussed in the following section.
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1 Introduction

1.3 Porous-Media Flow with Fractures

This section extends the fundamental definitions given in the previous section towards
the special case of fractured porous media systems. Characteristic properties of
fractured porous-media systems are geometrical anisotropic inclusions and strongly
discontinuous material coefficients which can differ in orders of magnitude for the
fractures and the matrix at the scale of interest.

The definition of a fracture in the course of this work is: If the transversal extension of
a heterogeneity is very small in comparison to its lateral extension, this heterogeneity
is called a fracture. Areas which are not fractures are called rock matrix. This
simple geometrical definition leads to a new question: “What does small in one
direction for a heterogeneity mean?”. A threshold value, which determines whether
a heterogeneity has to be treated as a fracture, can be defined. The choice of this
threshold value is constrained, but within the constraints arbitrary. The constraint is,
it must be guaranteed that the solution is independent of the choice of the threshold
value. This is a decision for application specialists and one of the challenges in
simulating fractured porous media. In this work, there is no absolute rule presented
at what size a heterogeneity’s normal extension is small enough for it to be treated
as lower-dimensional fracture. However, in the presented examples the co-dimension
one model solutions are compared against equidimensional reference solutions. From
those examples, a rough estimate can be found to answer the initial question.

The definition for an REV is also affected if fractures can be found in the system.
Fractures limit the REV size (Assteerawatt 2008), and they can even make it
impossible to define REVs on specific scales. The existence of REVs must hold for
averaging approaches. If fractures exist and no REV for an averaging approach can
be found, a different concept is required. Averaging approaches do not only require
REVs existent in the different domains but also on a usually larger scale, here called
interaction scale. This scale considers for example fracture network geometry effects.
The REV on this scale can easily be too large so that no common REV size for
matrix, fracture and interaction and thus, the fractured porous medium, can be
found, cf. figure 1.1. Treating the fractures individually, though, with REVs existent
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1.3 Porous-Media Flow with Fractures

for matrix and fractures separately, is another viable option and is used for the
model presented here.

If a fracture has very different structural properties than its surroundings, especially
much less solid phase and thus higher porosity, permeability and fluid velocity, a
different conceptual model for the flow within the fracture should be chosen, e.g.,
solving a free flow problem based on (Navier-)Stokes equations. In most cases,
however, this is computationally too costly and for the fractures also a simplified
model is applied. One of those simplified and commonly used models is the Hele-
Shaw model. Hele-Shaw flow is a velocity solution of the Navier-Stokes equations for
laminar flow between parallel and (infinitely) close plates. To calculate the absolute
discharge Q, integration in thickness direction y for a depth of `z gives the “cubic
law” and can be used as an alternative to Darcy’s law for fracture flow. Basically, it
can be translated into a relation of the permeability, kx, to the fracture width, d. In
this work, Darcy’s law is used because of its greater flexibility, i.e., the permeability
can be chosen independently of the aperture.

Furthermore, in the course of this work, it is assumed that the geometrically
defined fractures can either have significantly larger tangential permeabilities than
the permeability of the matrix or can be almost impermeable, i.e., the matrix
permeability is significantly larger than the fracture permeability. This definition
differs from the geological definition of a fracture and is entirely based on the influence
of the heterogeneities on the flow behavior instead of the geological definition. The
geological definition is based on the strain effects where shear fractures are called
faults and extension fractures are called joints (Bourbiaux et al. 2002). In this work
such geo-mechanical rock history is not considered.

Depending on the fracture-matrix permeability ratios, fracture geometry, fracture
density and fracture connectivity, different flow regimes can be identified (Matthäi
and Belayneh 2004). Here, fracture density is a measure for the number of fractures
in the control region and fracture connectivity a measure of how well the fractures
are interconnected. The flow regime can be dominated by flow through fractures,
or by flow through the matrix or it can depend on both. In this work the focus
is on systems which are neither dominated by the fractures nor the matrix, but
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both regions show significant influence on the global and local flow regimes and the
fracture density is sparse such that averaging approaches are not possible.

The connection between the conceptual model and the simulation tool is the
numerical method or discretization. After fundamental definitions for porous media
flow in general and fractured porous media flow as a special case have been given,
it is obvious that the REV size affects the discretization or the grid. The cell or
element size should be chosen finer than the REV size, but the results are not to
be interpreted on this fine scale, especially not near the boundaries, (Roth 2007).
The fine grid scale can be used, though, to avoid numerical diffusion. Under the
assumption of structural parameters being the same for each cell and that they
vary over different REVs, the grid resolution should not be chosen larger than the
REV size to avoid loss of input information. “This issue is of course not limited to
the transition from the pore-scale to the continuum, but applies to all transitions
between scales that involve some kind of averaging and also to measuring processes,
where the measuring volume takes the role of the REV.” (Roth 2007). This leads
to different conceptual and numerical models for fractured porous media systems,
which are presented in the following section.
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1.4 Conceptual Fracture Models and Discretization

1.4 Conceptual Fracture Models and Discretization

Fractured porous-media systems are complex to simulate and have been of great
interest for modelers for a long time. Over the years, several different approaches
have been developed with different priorities, each with their specific advantages
and disadvantages. In the following, the three most important groups of conceptual
models for fractured porous media systems with their respective advantages and
disadvantages are presented. The numerical model has to be chosen appropriately
to solve the problem defined by the conceptual model.

Discrete fractures

In discrete fracture approaches (DFM), the geometrical structure of the fractures,
i.e., orientation and aperture, is discretely resolved within the conceptual model.
In classical DFM models, the numerical model is chosen such that the fractures
are also resolved by the grid. The fractures can be modeled with equidimensional
discretization techniques (Gebauer et al. 2002), which require a huge number of
degrees of freedom. Modeling the fractures as co-dimension one objects is an
alternative approach (Hægland et al. 2009, Neunhäuserer 2003), but even with the
reduction of degrees of freedom through lower-dimensional fractures, a very fine
resolution of the matrix perpendicular to the fractures is necessary to get good
solutions (Weatherill et al. 2008). This approach usually requires an expensive
mesh-generation process which still cannot avoid extremely badly-shaped elements,
thus, resulting in poor accuracy and possibly unphysical simulation results. In
ongoing research, the discrete fracture approach is improved, e.g., (Basquet et al.
2005, Sandve et al. 2012) and also numerical models with non-matching grids are
developed. The conceptual model in this thesis falls into the category of lower-
dimensional DFM. The numerical model, however, allows independent grids for
fractures and matrix.
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Upscaling and multi-continua

Upscaling in this context means that new effective macro-scale parameters are
determined. This macro scale is the scale of interest to the modeler. Those
macro-scale parameters can be estimated through an engineering guess or by solving,
sometimes simplified, fine-scale problems in subdomains. Those upscaling parameters
are usually only determined once to improve the efficiency of the model. The fine scale
solution is then averaged over the fracture-matrix system. The simplest approach
assumes one macro-scale continuum, but also two coupled continua can be used to
represent the different macro-scale parameters of fractures and matrix. Fractures
can still occur with different characteristic lengths (Barthélémy 2009), but in those
cases it is necessary to use multiple-interacting-continua models (MINC) (Pruess
1992, Karimi-Fard et al. 2006, Tatomir et al. 2011). For multiple-continua models,
transfer functions between the interacting continua have to be determined. In recent
research, general descriptions for such transfer functions were discovered (Schmid
and Geiger 2012). All of those approaches demand the existence of REVs on the
macro scale. Upscaling and multi-continua models are in most cases computationally
cheaper than DFM models at the cost of loosing information of the solution on the
fine scale. To represent the fine-scale properties best, the macro-scale parameters
are often more complex than the fine-scale properties, e.g., a full anisotropic tensor
permeability on the macro scale and a scalar permeability (varying in space) on the
fine scale. This can lead to the necessity of more sophisticated numerical schemes.
For example in the context of finite volume methods a TPFA method could be
accurate enough on the fine scale, whereas an MPFA method on the macro scale
would be appropriate.

Multi-scale

Although these methods are called multi-scale methods, most of them only use two
scales, a coarse and a sub-grid scale. They are similar to upscaling techniques. The
variational multi-scale method tries to capture small-scale effects on larger scales
accurately and efficiently without actually resolving all the sub-grid-scale features
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1.4 Conceptual Fracture Models and Discretization

in detail (Hou and Wu 1997). This is achieved by finding new basis functions for
the coarse scale through solving a sub-grid scale problem. In contrast to upscaling
techniques, the solution of the fine-scale and the coarse-scale problems is usually
carried out iteratively and repetitively over advancing simulation time. Therefore,
dynamic effects can be better resolved with the multi-scale method at the cost of a
higher computational effort. The theoretical framework of variational multi-scale
methods is described, e.g., in (Hughes et al. 1998, Nordbotten 2009), while a more
implementation-oriented discussion of a multi-scale finite-element method can be
found in (Hou and Wu 1997). The multi-scale idea is also used within finite-volume
approaches, e.g., (Jenny et al. 2005). Multi-scale finite-volume methods can also be
seen in disguise of domain-decomposition preconditioners (Nordbotten and Bjørstad
2008). Regarding the numerical method, similar methods as for upscaling techniques
are appropriate.

Summary of advantages and disadvantages

Discrete fracture models have the advantage of only requiring REVs for the fracture
and the matrix regions separately. They do not need one single REV covering
fractures and matrix. Therefore, DFMs can be used to create reference solutions.
Those reference solutions can be used to determine if REVs can be found on scales
which cover fracture and matrix regions. This information is important for different
upscaling and multi-scale approaches. The combination of discrete fractures and
a very fine mesh can in addition be used to produce reference solutions for other
model concepts and numerical schemes to measure their accuracy. However, the
computational costs are high due to meshing efforts and the large number of degrees
of freedom. Keep in mind that unphysical results can be produced, if the mesh is
not created carefully or the discretization method is chosen inappropriately.

Upscaling and multi-scale models require the existence of REVs on a coarser scale
than it is necessary for DFMs. They are computationally less costly than discrete
fracture models. Classical upscaling methods can be used if the fine-scale solution
is not specifically of interest but only its influence on the coarse-scale solution.
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1.5 Objectives of this Work

The exact geometrical structure of micro-scale fractures is often unknown. In
this work, these fractures are therefore averaged and the REV size is chosen large
enough in order to be incorporated into the coarse-scale porous medium parameters,
(Bourbiaux et al. 2002). However, the flow regime can be significantly influenced by
larger scale fractures which should be modeled and accounted for discretely, (Lee
et al. 2001). If an REV does not exist, it is questionable to apply the previously
discussed multi-scale and upscaling approaches. The discrete fracture models can be
used, but even with large supercomputers with massive parallel computing power
available, they are computationally, (Wu et al. 2002), and therefore economically
costly. This necessitates a model in between those two conventional methods.

Therefore, the conceptual and numerical model developed in this thesis is intended
to be used for fractured porous-media systems where the flow is neither dominated
by highly conductive fractures nor blocking fractures but the flow regime really
depends on the whole system and the fractures are significantly large such that
averaging approaches cannot be applied. The main focus is on applications in
earth science. In this work, only fractures of co-dimension one with respect to the
surrounding matrix are considered and classical Darcy flow in both the matrix and
the fractures is assumed.

The goal of this work is to develop a robust and flexible simulation tool for the
aforementioned fully coupled fracture-network rock-matrix systems. This new
approach does not require a matching of the matrix mesh with the discrete fracture
network of co-dimension one. Thus, it is quite attractive for the numerical simulation
of geometrically complex networks. The coupling of the matrix model and the
fracture model is based on XFEM techniques.

Concepts to increase computational efficiency include simplification approaches,
e.g., Vitel and Souche (2007), where a complex meshing is carried out and later
the degrees of freedom are reduced; Tunc et al. (2012), where a highly permeable
fracture is resolved as two interfaces, so that the neighboring matrices naturally
can have non-matching grids at the fault. In contrast to those aforementioned
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approaches, the approach presented in this thesis allows to handle an arbitrarily
permeable fracture-network grid and a matrix grid independently, i.e., it is possible
to use a finely resolved fracture network and a coarser discretized matrix or vice
versa.

This work focuses on two main aspects. The first aspect is the development of
the numerical method and the theoretical and mathematical analysis. The second
focus of this work deals with the efficient implementation of the newly developed
scheme. The implementation is based on the “Distributed and Unified Numerics
Environment” (DUNE), (Bastian et al. 2008a,b), and integrated into the open-source
porous-media simulator DuMux, (Flemisch et al. 2011).

The performance of a simulation tool has to be measured according to the envisioned
use of the model. As a starting point, it is assumed that the partial differential
equations being solved represent the physics correctly, i.e., the conceptual model is
without error. The simulation tool approximates this conceptual model with the
help of numerical methods. One measure of the simulation quality is therefore the
error of the discrete solution with respect to the weak solution. From the application-
oriented or engineering point of view, the main interest lies in the simulation of field
scale problems. The appropriate measure is here, how well the simulation represents
reality. In most earth-science applications, it is not easy and most often not even
possible to do field-scale experiments, but it is possible to conduct laboratory scale
experiments and use these results to validate the performance of the model. A third
possibility is to compare the simulation tool, which comprises always a conceptual
and a numerical model, against other well accepted conceptual and numerical models,
which already have been compared to laboratory-scale experiments and measure
the accuracy. Summarizing for all three measures, the performance of a simulation
tool is better, the faster the simulation runs with the same accuracy. In this thesis
the developed simulation tool is compared against well established conceptual and
numerical models.
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1.6 Structure of the Thesis

In chapter 2 of this thesis, the conceptual and numerical model for a single fracture
ending on the boundary of the matrix domain and its implementation are presented.
To begin with, the strong and the weak problem are shown. Then, the existence
of a unique solution is proven, the discretization technique is introduced and
implementation details are given. Finally, a dimensional analysis is presented.
By means of two examples, a validation approach of the model concept and its
implementation is carried out in chapter 3.

Chapters 4 to 6 present special cases of the simulation of lower-dimensional models:
Fractures ending in the domain are discussed in chapter 4, intersecting fractures
in chapter 5 and chapter 6 is about fractures intersecting the global boundaries.
Chapters 5 and 6 are based on Schwenck et al. (2014).

Chapter 7 compares four different fracture models and implementations by means
of several examples and discusses advantages and disadvantages of the individual
approaches. This chapter is based on Schwenck et al. (2015). Finally, the thesis
concludes with chapter 8: Summary, conclusion and outlook.
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2 Model Concept – Development of
a Reduced Model

The assumption of single-phase, incompressible flow in a porous medium leads to
a model which comprises the continuity equation and Darcy’s law on a bounded
open domain Ω ⊂ Rn; n = 2, 3 and suitable boundary conditions. In general the
presented model is valid for two and three dimensions. However, for the sake of
simplicity, the theoretical framework is presented only for two-dimensional systems.
Exceptions are specifically mentioned. In many cases the three-dimensional model
is much harder to implement. Throughout this manuscript, dimensionless variables
are used if not stated explicitly otherwise. A detailed dimensional analysis is given
in section 2.6. The strong form of the problem is given by

∇ · u = s in Ω, (2.1a)

u =−K∇ p in Ω. (2.1b)

The velocity vector is denoted by u and p is the pressure. The permeability tensor
K is assumed to be symmetric, positive definite. This leads to the elliptic pressure
equation

∇ · ( −K ∇ p ) =0 in Ω,

p =p̄D on ∂ΩD,

u · n =f̄ N on ∂ΩN.

(2.2)
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Figure 2.1: Equi and lower-dimensional pressure distribution in one dimension for different
permeabilities

The unit outward normal vector is n and ∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD ∩ ∂ΩN = ∅ is
the boundary of the domain where Dirichlet values or Neumann fluxes are prescribed,
respectively. The domain of interest contains heterogeneities, i.e., variations in the
permeability tensor K over space.

If the heterogeneities are small in one direction, i.e., in two dimensions the ratio of
normal extension to lateral extension tends to zero, they are called fractures and
the model presented here can be applied. Heterogeneities which are not small in
one direction are not excluded but are also not treated as fractures. Due to the
assumption of fractures being small in one direction, the model does not resolve the
fractures as equidimensional areas. Instead a limiting process is carried out, where
the thickness is driven to zero. Thus, fractures are treated as objects of co-dimension
one, γj ⊂ Rn−1, with respect to the surrounding matrix. Such a limiting process
and therefore the basis for the weak equations presented here is for example carried
out in Martin et al. (2005), Angot et al. (2009). For the special case of only highly
conductive fractures it is presented for example in Alboin et al. (1999, 2002) and
for Hele-Shaw flow in the fractures in Angot (2003).

Figure 2.1 shows as an example a one dimensional pressure distribution for an
equidimensional and a lower-dimensional approach. In general, there can be full
tensor permeabilities in the equidimensional model. In the lower-dimensional model,
however, the fracture permeability, for example for a one dimensional fracture, is
reduced to two scalar values, the normal permeability, kf,n , and the tangential
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process:
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coupling

Figure 2.2: The fractured porous media system is decoupled into two subsystems, a lower
dimensional fracture network and the remaining rock matrix.

permeability, kf,t . With the unit normal and tangential vectors, n, t, the fracture
permeabilities of the co-dimension one model can be expressed as tensor in a fracture
inherent coordinate system, namely,

K f =
kf,t 0

0 kf,n


f

so that K ft · t = kf,t , K fn · n = kf,n .

This, however, is a parameter constraint or can lead to a loss of information, cf.
appendix B.2.

After the limiting process has been carried out, the fracture network is not only
reduced by one dimension but also the complete system can be split into a part
which only contains the rock matrix domain and another part which accounts for the
fracture network, cf. figure 2.2. Both parts are coupled and the coupling conditions
are a direct result of the limiting process.

Areas which have the same dimension as the world they live in, i.e., co-dimension
zero, are always denoted with a capital Greek letter, co-dimension one areas are
denoted with a small Greek letter. In the model presented here, the matrix domains
are denoted by Ω for the equidimensional model and Ωm in the lower-dimensional
model, the fracture domain is denoted by Γ and γ, respectively.
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2.1 Weak Formulation – Splitting and Coupling

For the sake of simplicity, we look at one single fracture which does not intersect
itself and ends at the global boundary. In the equidimensional model the global
domain is composed of three parts Ω = Ω1 ∪ Ω2 ∪ Γ. For the lower-dimensional
model the fracture divides our domain Ω into exactly two sub-domains, Ωm,1 and
Ωm,2 such that Ω = Ωm,1 ∪ Ωm,2 and Ω̄m,1 ∩ Ω̄m,2 = γ, cf. figure 2.3.

Ω1

∂Γ

Ω2

Γ

d

a equidimensional model domain

Ωm,1

∂γ

Ωm,2

γ

b mixed-dimensional model domain which in-
cludes a lower dimensional fracture

Figure 2.3: Model domains with fracture

In general, the fracture width/aperture, d, can vary along the fracture. In the
model presented here, however, the aperture is assumed to be piecewise constant,
i.e., ∂d/∂t = 0. That is a justified simplification, because the model input is also
piecewise defined. Another option would be to interpolate the piecewise information
from the model input and derive a new conceptual model which can handle such
varying apertures.

The extension to multiple fractures is straightforward, as long as all fractures extend
to the boundary of the computational domain and do not intersect each other. The
special case of intersecting fractures is discussed in chapter 5 and fractures which
end within the domain are discussed in chapter 4.

Starting with (2.1a) and (2.1b) for the single fracture system and requiring pressure
and normal flux continuity at the equidimensional heterogeneity interfaces (Γ̄ ∩ Ω̄i)
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following Martin et al. (2005), Angot et al. (2009), the strong problem formulation
reads:

∇ · ( ui ) = sm,i in Ωm,i, i = 1, 2,

(2.3a)

ui = −Ki∇ pm,i in Ωm,i, i = 1, 2,
(2.3b)

pm,i = g on ∂Ωm,i\γ, i = 1, 2,
(2.3c)

−ζui · ni + 2kf,n

d
pm,i = 2kf,n

d
pf − (1− ζ)ui+1 · ni+1 on γ, i = 1, 2,

(2.3d)

∇t · ( uf,t ) = sf + (u1 · n1|γ + u2 · n2|γ) on γ, (2.3e)

uf,t = −kf,t d∇t pf on γ, (2.3f)

pf = g on ∂γ. (2.3g)

The index in (2.3d) is always in [1, 2], i.e., for i = 2 is ui+1 = u1. To close the system,
appropriate boundary conditions for the matrix have to be applied on ∂Ωm,i\γ and
for the fracture on ∂γ. Dirichlet boundary conditions, g, are exemplarily given in
(2.3c) and (2.3g), cf. section 2.2.

The standard continuity equations and Darcy relations are given in (2.3a) and (2.3b)
for the rock matrix and in (2.3e) and (2.3f) for the fracture. The continuity equation
for the fracture (2.3e) contains an additional source/sink term to account for the
exchange flow between matrix and fracture seen by the fracture.

In addition there are two coupling conditions, which can be seen as immersed
boundary conditions for the rock matrix on the fracture-matrix interface, (2.3d).
They give a relation between the fluxes normal to the fracture, the pressure gradient
across the fracture and the average pressure in the fracture.
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The algebraic identity together with the definition for a jump and an average is
defined as

a2b2 − a1b1 = [[ a ]]{{ b }}+ {{ a }}[[ b ]]

with [[ · ]] = ( · )2 − ( · )1

and {{ · }} = ( · )1 + ( · )2

2 .

Applying the jump and average definition together with n = n1 = −n2, i.e., the
jump of fluxes is [[u · n ]] = −u2 · n2|γ − u1 · n1|γ and the average of fluxes is
{{u ·n }} = 0.5(u1 ·n1|γ −u2 ·n2|γ), for the pressures respectively [[ p ]] = p2|γ − p1|γ
and {{ p }} = 0.5(p1|γ + p2|γ), (2.3d) gives:

(2ζ − 1)[[u · n ]] = 4kf,n

d
(pf − {{ p }}) , on γ, (2.4a)

{{u · n }} = −kf,n

d
[[ p ]], on γ. (2.4b)

Remark 1. Following Martin et al. (2005), two equations to relate the matrix
values to the fracture value are necessary (to close the system for each subdomain).
The first is always {{u · n }} = kf,n ∇ pm · n. The second depends on the physically
based parameter ζ which is bounded ζ ∈ (0.5, 1.0]. A ζ = 0.5 represents the classical
arithmetic mean, i.e., pf = 0.5(pm|γ1 + pm|γ2). The other extreme, ζ = 1.0, includes
the gradient between averaged fracture and averaged matrix pressures in the mean,
which is kf,n

pf−{{ pm }}
d/2 = {{u · n }}. The choice of ζ within its boundaries is arbitrary.

In this work it is always set to one, because example test cases showed no significant
differences, as long as you stay away from the lower limit 0.5. This is in contrast to
Angot et al. (2009), cf. section 3.1.
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2.1 Weak Formulation – Splitting and Coupling

By multiplying with the appropriate test function, cf. section 2.2, and integrating,
the weak form starting from (2.3a) and (2.3e) is derived:

2∑
i=1

∫
Ωm,i
∇ · ( ui ) qm,i dx

= − (u1, ∇ qm,1)Ωm,1
+ (u1 · n1, qm,1|γ)γ + (u1 · n1, qm,1)∂Ωm,1\γ

− (u2, ∇ qm,2)Ωm,2
+ (u2 · n2, qm,2|γ)γ + (u2 · n2, qm,2)∂Ωm,2\γ

= −
∑

(ui, ∇ qm,i)Ωm,i
+
∑

(ui · ni, qm,i)∂Ωm,i\γ︸ ︷︷ ︸
global Neumann matrix b.c.

−
(
([[u · n ]], {{ qm }})γ + ({{u · n }}, [[ qm ]])γ

)
︸ ︷︷ ︸

interface c.
(2.5a)

∫
γ

(
∇t · ( uf,t )− (u1 · n1|γ + u2 · n2|γ)

)
qf ds

=− (uf,t, ∇t qf)γ + ([[u · n ]], qf)γ︸ ︷︷ ︸
interface c.

+ (uf,t · t, qf)∂γ︸ ︷︷ ︸
global Neumann fracture b.c.

(2.5b)

Remark 2. An integration over ∂γ if Ω is 2d is not necessary, because that means
γ is only 1d and its boundary a single point. Following the fundamental theorem of
integral calculus, it is in this case sufficient to simply evaluate the integrand at that
point.

Using now relations (2.4a) and (2.4b) to solve only for the pressure, cf. (2.2), and
not aiming for a mixed finite element approach as in D’Angelo and Scotti (2012),
the weak formulation for a Dirichlet problem, with the definition for Qg from (2.7),
is stated as:
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d

Ωm,2

Ωm,1

γ pf
pm,2|γ

pm,1|γ

Figure 2.4: Domain decomposition with lower-dimensional fracture (dash-dotted line) and
three pressure values and an aperture associated to every point on the fracture

Find p = (pm,1, pm,2, pf) ∈ Qg such that

∑
i

(Km,i∇ pm,i, ∇ qm,i)Ωm,i
−
∑
i

(sm,i, qm,i)Ωm,i

+
(

4kf,n

d
{{ pm }}, {{ qm }}

)
γ

+
(
kf,n

d
[[ pm ]], [[ qm ]]

)
γ

=
(

4kf,n

d
pf , {{ qm }}

)
γ

(2.6a)

(kf,t d∇t pf , ∇t qf)γ − (sf , qf)γ +
(

4kf,n

d
pf , qf

)
γ

=
(

4kf,n

d
{{ pm }}, qf

)
γ

(2.6b)

for all test functions q ∈ Q0.

The weak equation for the fracture network is already written in the lower dimen-
sional form, which is denoted by the subscript f, cf. appendix B, i.e., at each point
on the fracture γ there are three pressure values in the model, cf. figure 2.4. The
subscripts t, n denote the tangential and normal direction of the lower dimensional
fracture respectively.

Introducing the porosity φi, i = 1, 2, f which can be globally heterogeneous but
is assumed to be constant within each subdomain i, does not change the model
presented here because the porosity is already included in the Darcy velocity. If
an extension towards instationary flow is made the porosity appears in the storage
term which does not affect the conceptual model presented here.
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2.2 Existence of a Unique Solution: Boundedness and Coercivity

2.2 Existence of a Unique Solution: Boundedness
and Coercivity

For the sake of simplicity, we show the existence of a unique solution only for
the case of a single fracture which divides the domain in exactly two parts and
intersects with the global boundary at exactly two points. The second condition,
intersection with the global boundary, is only necessary because we want to look
at the fracture and the matrix parts separately. Therefore we need also boundary
conditions which are applied on the fracture domain. This proof can be easily
extended towards several not connected fractures. Fracture crossings and (partially)
immersed fractures however, have to be considered separately.

Following the Lax-Milgram theorem, we show boundedness and coercivity to proof
the existence of a unique solution. For the split matrix domain, we introduce the
Sobolev spaces as follows

H1
g;∂Ωm,i\γ(Ωm,i) ..=

{
vi ∈ H1(Ωm,i) : vi|∂Ωm,i\γ = g

}

so that we define the test functions qm in a product space of the test spaces on each
subdomain and the test functions qf for the fracture, and the obvious meaning for
H1
g(γ), as

qm ∈ Qg,m = H1
g;∂Ωm,1\γ(Ωm,1)×H1

g;∂Ωm,2\γ(Ωm,2) , qf ∈ Qg,f = H1
g(γ).

The complete space for a Dirichlet-problem then reads

q =(qm, qf) (2.7)

∈ Qg = {q = (qm,1, qm,2, qf) ∈ H1
g;∂Ωm,1\γ (Ωm,1)×H1

g;∂Ωm,2\γ (Ωm,2)×H1
g(γ)}.
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2 Model Concept – Development of a Reduced Model

It is equipped with a norm, which is for such a product space, as usual the square
root of the sum of the squared norms

‖·‖Q =
√
‖·‖2
Qm

+ ‖·‖2
Qf
. (2.8)

We assume for ease of notation homogeneous Dirichlet boundaries for all global
boundaries (i.e., on ∂Ω which includes ∂γ). The extension towards Dirichlet-
Neumann problems is straightforward if there exists at least a Dirichlet boundary
part, i.e., ∂ΩD 6= ∅, ∂γD 6= ∅, otherwise the coercivity cannot be shown easily with
the Poincaré-like inequality as in (2.17), cf. for example (Ern 2004, Evans 1998).

Inhomogeneous Dirichlet boundaries can be easily incorporated by reducing the
problem to a homogeneous problem, i.e., extending g into Ωm and γ, by substituting
p̆m,i = pm,i − g|∂ΩD

m,i
and p̆f = pf − g|∂γD , assuming that such functions exist in

H1 on their corresponding domain. That leads to changed source terms in (2.3a)
and (2.3e), s̆m,i = sm,i − am(g|∂ΩD

m,i
, qm,i) and s̆f = sf − af(g|∂γD , qf). This is a

widely used standard approach which can be found for example in Braess (2007).
For ease of notation we restrict the following section to homogeneous Dirichlet
boundary conditions and drop the subscript so that Q ≡ Q0. Our homogeneous
Dirichlet-problem bi-linear form a = am + af − bmf − bfm : Q×Q → R is given by:

am(pm, qm) =
∑
i

(Km,i∇ pm,i, ∇ qm,i)L2(Ωm,i)

+
(

4kf,n

d
{{ pm }}, {{ qm }}

)
L2(γ)

+
(
kf,n

d
[[ pm ]], [[ qm ]]

)
L2(γ)

,(2.9a)

af(pf , qf) = (kf,t d∇ pf , ∇ qf)L2(γ) +
(

4kf,n

d
pf , qf

)
L2(γ)

, (2.9b)

bmf(pm, qf) =
(

4kf,n

d
{{ pm }}, qf

)
L2(γ)

, (2.9c)

bmf(pf , qm) =
(

4kf,n

d
pf , {{ qm }},

)
L2(γ)

. (2.9d)

24



2.2 Existence of a Unique Solution: Boundedness and Coercivity

Boundedness There exists a constant dependent on problem specific physical
parameters cb(kf,t , kf,n , d,Km,Ωm,1,Ωm,2, γ) > 0 , so that

|a(p, q)| ≤ |am(pm, qm)|+ |af(pf , qf)|+ |bmf(pm, qf)|+ |bfm(pf , qm)|

≤ cb ‖p‖Q ‖q‖Q ∀p, q ∈ Q. (2.10)

First, we show the boundedness separately for the matrix and the fracture and the
coupling parts and then use the results in (2.10) to show the boundedness of the
coupled system.

The fracture parameters are properly defined on γ and it is assumed that kf,t , kf,n

and d are in L∞(γ), i.e., for example at least elementwise continuous. The matrix
permeability is assumed to be positive definite and also in L∞ on Ωm,i, so that

‖Km‖L∞(Ωm,i) ≥ c > 0, ∀ x ∈ Ω.

Before we look at the whole bilinear form of the matrix part (2.9), we find an
estimate for the additional terms existing on the fracture. Using the triangle
inequality and extending the estimate from the interface into the domains using the
trace theorem, we get for the L2-norms of the average with the average defined as
{{ pm }} = (tr pm,1 + tr pm,2) /2 using the fact that pm = 0 on ∂Ω (and analogue the
same for the jump):

‖{{ pm }}‖L2(γ)
t.i.
≤ c

(wwwpm|Ωm,1

www
L2(γ)

+
wwwpm|Ωm,2

www
L2(γ)

)
t.t.
≤ c

(
‖pm‖H1(Ωm,1) + ‖pm‖H1(Ωm,2)

)
≤ c ‖pm‖H1(Ωm,1∪Ωm,2) . (2.11)

so that we can estimate the matrix bilinear form by using the Cauchy-Schwarz
inequality as follows:
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2 Model Concept – Development of a Reduced Model

|am(pm, qm)|
C.-S.
≤

∑
i

c
(
‖Kmi‖L∞(Ωm,i) ‖∇ pmi‖L2(Ωm,i) ‖∇ qmi‖L2(Ωm,i)

)
+ c

wwwww4kf,n

d

wwwww
L∞(γ)

‖{{ pm }}‖L2(γ) ‖{{ qm }}‖L2(γ)

+ c
wwwwwkf,n

d

wwwww
L∞(γ)

‖[[ pm ]]‖L2(γ) ‖[[ qm ]]‖L2(γ)

t.t.
≤

∑
i

c
(
‖Km,i‖L∞(Ωm,i) ‖∇ pmi‖L2(Ωm,i) ‖∇ qmi‖L2(Ωm,i)

)
+ c

wwwww5kf,n

d

wwwww
L∞(γ)

‖pm‖H1(Ωm,1∪Ωm,2) ‖qm‖H1(Ωm,1∪Ωm,2) (2.12)

≤ c
wwwww‖Km‖L∞(Ωm) + 5k̃f,n

d̃

wwwww
L∞(Ω)

‖pm‖H1(Ωm,1∪Ωm,2) ‖qm‖H1(Ωm,1∪Ωm,2) .

For the sake of simplicity kf,n and d are extended in their definition into the whole
parted domain Ωm,i and marked with a superscript ·̃, so that the trace of the
expanded parameters gives exactly the original parameters on γ.

tr k̃f,n|Ωm,i(x) = kf,n (x), tr d̃|Ωm,i(x) = d(x) ∀x ∈ γ

The fracture part follows without any intermediate steps directly by using Cauchy-
Schwarz’s inequality again.

|af(pf , qf)|
C.-S.
≤ c ‖kf,t d‖L∞(γ) ‖∇ pf‖L2(γ) ‖∇ qf‖L2(γ)

+ c
wwwww4kf,n

d

wwwww
L∞(γ)

‖pf‖L2(γ) ‖qf‖L2(γ)

≤ c
wwwwwkf,t d+ 4kf,n

d

wwwww
L∞(γ)

‖pf‖H1(γ) ‖qf‖H1(γ) (2.13)

The coupling parts, analogously to the matrix part, can be estimated using the
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2.2 Existence of a Unique Solution: Boundedness and Coercivity

Cauchy-Schwarz inequality and then applying the triangle inequality and using the
trace theorem. With the definition of the norm, (2.8), it follows

|bmf(pm, qf)|+ |bfm(pf , qm)|
C.-S.
≤ c 4kf,n

d

(
‖{{ pm }}‖L2(γ) ‖qf‖L2(γ) + ‖pf‖L2(γ) ‖{{ qm }}‖L2(γ)

)
(2.11),(2.13)
≤ c 4kf,n

d

(
‖pm‖H1(Ωm,1∪Ωm,2) ‖qf‖H1(γ) + ‖pf‖H1(γ) ‖qm‖H1(Ωm,1∪Ωm,2)

)
(2.8)
≤ c ‖(pm, pf)‖Q ‖(qm, qf)‖Q . (2.14)

Coercivity There exists a constant dependent on problem-specific physical param-
eters
cc(kf,t , kf,n , d,Km,Ωm,1,Ωm,2, γ) > 0, so that

a(p, p) = am(pm, pm) + af(pf , pf)− 2b ≥ cc ‖p‖2
Q ∀p ∈ Q. (2.15)

For the coupling parts it is obvious that b = bmf(pm, pf) = bfm(pf , pm). Using Young’s
inequality this can be reformulated and then directly cancels out with one term in
the matrix part and fracture part, respectively.

− 2b
Y.i.
≥ −

(
4kf,n

d
{{ pm }}, {{ pm }}

)
L2(γ)

−
(

4kf,n

d
pf , pf

)
L2(γ)

(2.16)

For the matrix we look again at first at the additional terms living on the fracture.
They are always positive. For the lower estimate we can assume them to be zero if
the standard Darcy part is always larger than zero.

wwwww d

4kf,n

wwwww
L∞(γ)

‖{{ pm }}‖L2(γ) ≥ 0,
wwwww d

kf,n

wwwww
L∞(γ)

‖[[ pm ]]‖L2(γ) ≥ 0
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2 Model Concept – Development of a Reduced Model

We then only have the classical Darcy equation on Ω, similar to Laplace’s equation,
which is known to be elliptic in Qm (under the assumption of a positive definite
permeability). From Friedrich’s inequality we know it can be estimated by

am(pm, pm) ≥
∑
i

(wwwK−1
m,i

www
L∞(Ωm,i)

‖∇ pm,i‖2
L2(Ωm,i)

)
F.
≥ c

wwwK−1
m

www
L∞(Ωm,1∪Ωm,2)

‖pm‖2
H1(Ωm,1∪Ωm,2) . (2.17)

The fracture part follows analogously.

af(pf , pf) ≥ c
wwwww 1
kf,t d

wwwww
L∞(γ)

‖∇ pf‖2
L2(γ) ≥ c

wwwww 1
kf,t d

wwwww
L∞(γ)

‖pf‖2
H1(γ) (2.18)

2.3 Discretized Formulation – eXtended Finite
Element Method

To keep the computational costs as low as possible, ideally a structured, quadrilateral
grid is used for the matrix mesh. The standard Galerkin finite-element method,
however, cannot handle discontinuities in the solution except by resolving them
through the grid, i.e., the degrees of freedom at the discontinuities are doubled
and decoupled, e.g., in structural mechanics and with a Lagrangian approach, the
displacement degrees of freedom literally move away from each other. Coming from
the structural-mechanics problem of evolving cracks, which lead to discontinuities
in the solution (displacement, stress, strain), an extension to this standard finite-
element scheme was developed, (Dolbow 1999, Dolbow et al. 2000, Mohammadi
2008), and called “eXtended finite element method” (XFEM).

From the more theoretical point, Nitsche’s method, intentionally developed to
handle Dirichlet constraints, evolved to a new possibility to treat interface problems,
(Hansbo and Hansbo 2002, Hansbo 2005, Burman and Hansbo 2012). XFEM and
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2.3 Discretized Formulation – eXtended Finite Element Method

Nitsche’s method applied to interface problems are in this case essentially the same
approach. An overview of recent problems where XFEM methods are investigated is
given in Abdelaziz and Hamouine (2008). To be able to represent the discontinuities
in the solution, i.e., the jump and the average term, the extended finite element
method is used as it is described for example by Dolbow et al. (2000), Hansbo
and Hansbo (2004), Mohammadi (2008), and used in the fractured porous medium
context for example in D’Angelo and Scotti (2012), Fumagalli and Scotti (2012), for
lower dimensional fractures introducing a discontinuous solution in the matrix, for
lower dimensional fracture networks having different permeabilities in the network
and therefore also discontinuities, (Berrone et al. 2013), for thin heterogeneities
(equidimensional) which are not resolved directly with the grid but rather with the
XFEM, (Huang et al. 2011).

In the literature such techniques are very often referred to as “Partition of unity”
PUFEM and “generalized-finite element methods” GFEM. The difference here is
that those are usually on a global level where XFEM adopts the same techniques on
an element local formulation. The composite finite element method, first presented
in Hackbusch and Sauter (1997), is a special type of geometric multi-grid methods
and falls therefore in the context of this manuscript in the category of multi-scale
methods, cf. section 1.4.

In the classical Galerkin finite-element approach the discrete solution, ph(x), at
a global point x in space, which lies within an element E, is defined by the sum
over all shape functions associated to this element multiplied by the value of the
corresponding degree of freedom p̂i, cf. for example Braess (2007),

ph(x) =
|NE |∑
i=1

bi(ξ) p̂i. (2.19)

Here, bi denotes the shape function of the degree of freedom i, NE = {n1, . . . , nr}
denotes the set of standard degrees of freedom of the element E. The global
coordinate x has to be properly transformed into element local coordinates ξ to
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2 Model Concept – Development of a Reduced Model

evaluate the shape functions correctly. All matrix elements which are not cut by a
fracture are treated with such a standard finite element approach.

Remark 1. For the uncut elements standard order one elements Q1, bi-linear in
2d, are used. The implementation for the standard elements can be changed easily
to a higher order within the limits of the underlying DUNE functionality.

If an element k is cut by a fracture, additional degrees of freedom p̂ e
j are introduced.

Those elements which are cut by at least one fracture are called enriched elements.
The discrete solution on an enriched element k can be written as

ph(x) =
|NE|∑
i=1

bi(ξ)us
i(x) p̂i +

|Ne,E|∑
j=1

be
j(ξ)ue

j(x) p̂ e
j . (2.20)

Here, Ne,E is the set of enriched degrees of freedoms. To capture discontinuities in
the solution the basis functions are multiplied by discontinuous functions, where us

i

denotes the discontinuity functions for the standard degrees of freedom, while ue
j

denotes the discontinuity functions for the enriched degrees of freedom, respectively.
These functions will be defined below.

In the course of this work the standard basis at cut elements is chosen to be same
as for uncut elements, i.e., bi-linear and the additional shape-functions are chosen
to be of the same type as the standard shape-functions, i.e., also bi-linear, bi = be

j if
i and j refer to degrees of freedom located at the same position. Then, be

j denotes
the nodal shape function of an enriched node j. Furthermore, the XFEM concept is
here used in combination with the Ritz-Galerkin approach, i.e., the basis-function
space and the test-function space are equal.

Remark 2. In general it is also possible to choose different sets of basis functions
for the standard and the additional degrees of freedom. Also the XFEM concept can
be applied to mixed finite elements methods, such as a lowest-order Raviart-Thomas
(RT0,P0) combination for velocities and pressures, (D’Angelo and Scotti 2012).
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2.3 Discretized Formulation – eXtended Finite Element Method

The choice of the discontinuity functions is somehow arbitrary, as long as certain
conditions are fulfilled. The patch test, e.g., (Bathe 2006), gives an indication but
in general convergence must be proven for the newly created element (combination
of number of degrees of freedom, shape functions and discontinuity functions).

One commonly desired property for the choice of discontinuity functions is to choose
them such that the enriched basis functions are forced to be zero in all nodes. On the
one hand this leads to a propitious quality: The nodal interpolation is still guaranteed
by the solution in the standard nodes alone, (Mohammadi 2008). More importantly
this property yields to enriched basis functions which are completely local with
respect to the cut elements and every basis function has only one discontinuity
(within this element) for every set of additional degrees of freedom. This avoids
blending elements, (Fries 2008), which have to be introduced otherwise. This is
only valid for the special case of a single interface per element. The general, more
complex case of several (intersecting) interfaces is discussed from the point of view
of the implementation in section 2.4.

Remark 3. There are many other possible choices for the discontinuity functions
with different properties, e.g., they can be chosen such that the standard basis
remains unmodified and the discontinuity is only represented by the enriched basis
or such that the mean of the enriched basis functions is zero.

Remark 4. In structural mechanics very often not only strong/sharp discontinuity
functions but rather weak/smooth functions are used to capture the underlying
physical effects, represent the conceptual model discretely exact or enhance numerical
stability. In this work the physical and model discontinuities are sharp and numerical
instability due to the XFEM was not the case, so that such weak discontinuity
functions were not used.

Remark 5. Very often the position of the interface is described by a level set
method (LSM), so that the interface itself is at the zero level and on one side of the
fracture the level is larger and on the other side smaller than zero. This orientation
choice is also arbitrary. The LSM has its advantages mainly in the description of
moving interfaces. Because the fracture network in this work is not changing, the
LSM is not used.
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b2u
s
2 = b2

1
2 |sgn(x) + sgn(x2)|

ξ

b3u
s
3 = b3

1
2 |sgn(x) + sgn(x3)|

b5u
e
5 = b5

1
2 |sgn(x)− sgn(x5)|

b6u
e
6 = b6

1
2 |sgn(x)− sgn(x6)|

Figure 2.5: The zero dimensional fracture with local coordinate ξ divides the one dimensional
matrix element. Solid lines show the two modified basis functions associated to
node two (degrees of freedom two and five), dashed lines the modified basis of
degrees of freedom three and six at node three.

We present here the discontinuity functions as they are implemented in the code
related to this work. The sign function sgn is positive one on the side of the positive
normal direction and negative one on the other. With the help of this shifted
function the discontinuity functions are defined as

us
i(x) ..= 1

2 |sgn(x) + sgn(xi)| , ue
i (x) ..= 1

2 |sgn(x)− sgn(xi)| .

The second term, sgn(xi), associates a constant value to every node, so that the
discontinuity function for the original degrees of freedom is one if x and xi lie
on the same side of the interface and zero if they are on different sides. For the
additional degrees of freedom it is vice versa. The modified basis functions for
this kind of discontinuity functions are exemplarily shown for the one-dimensional
case in figure 2.5. For this approach, the orientation of the normal vector n of the
interface has to be chosen. This choice is arbitrary.

The domain Ω is shape regularly discretized by nEm quadrilateral elements Ei
m

into Th
m = {Ei

m}n
Em
i=1 independent of γ. Then γ is discretized with one-dimensional

elements, Th
f = {Ei

f}n
Ef
i=1 , independent of Th

m. We define all elements, Em ∈ Th
m,

which are totally in or partly belonging to Ωm,i as Em,i = Em ∩ Ωm,i. All elements
which are not fully included in one subdomain occur in both. The discrete space
can then be defined as
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2.3 Discretized Formulation – eXtended Finite Element Method

Qh
m,i = {qh

m,i ∈ L2(Ωm,i) : qh
m,i|Em∩Ωm,i ∈ Q1(Em,i), Em ∈ Th

m}.

The complete discrete space for the rock matrix domain is then just the product
space of the subdomain spaces Qh

m = Qh
m,1 × Qh

m,2, where the elements cut by a
fracture are contained twice but each with the cut basis. The discrete space for γ
reads

Qh
f = {qf

h ∈ L2(γ) : qf
h|Ef ∈ Q1(Ef), Ef ∈ Th

f }

so that the combined space is Qh = Qh
m×Qh

f and the discrete variational formulation
becomes: Find ph = (ph

m,1, p
h
m,2, p

h
f ) ∈ Qh

g such that

∑
i

(
Km,i∇ ph

m,i, ∇ qh
m,i

)
Ωm,i

+
(

4kf,n

d
{{ ph

m }}, {{ qh
m }}

)
γ

+
(
kf,n

d
[[ ph

m ]], [[ qh
m ]]
)
γ

=
(

4kf,n

d
ph

f , {{ qh
m }}

)
γ

(2.21a)

(kf,t d∇t pf , ∇t qf)γ +
(

4kf,n

d
pf , qf

)
γ

=
(

4kf,n

d
{{ pm }}, qf

)
γ

(2.21b)

for all test functions q ∈ Qh
0 with the obvious meaning for the spaces Qh

g that include
the Dirichlet boundary conditions.

Remark 6. The discrete lower dimensional gradient ∇t of a one-dimensional
fracture embedded in a two-dimensional matrix world is basically defined as the
difference between the downstream and the upstream value divided by the distance.

Now Nf = {nkf }
nn

f
k=1 is the set of nodes of Th

f and Nm = Nm,s ∪ Nm,e = {nkm}
nn

m,s
k=1 ∪

{nkm}
nn

m,e
k=1 is the combined set of standard and enriched nodes of Th

m, respectively
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2 Model Concept – Development of a Reduced Model

so that N = Nf ∪ Nm contains all nodal degrees of freedom. The subsets ND
f and

ND
m contain all nodes which belong to a Dirichlet boundary. Expanding (2.21) with

(2.20) and analogously for the fracture, (2.19), gives: Find all p̂m,j and p̂f,l such that
in rock matrix elements:

∑
nj∈Ω1

p̂m,j
(
Km,1∇ bm,j, ∇ bm,i

)
Ω1

+
∑

nj∈Ω2

p̂m,j
(
Km,2∇ bm,j, ∇ bm,i

)
Ω2

+
∑

nj∈Ω1∪Ω2

p̂m,j

(
4kf,n

d
{{ bm,j }}, {{ bm,i }}

)
γ

+
∑

nj∈Ω1∪Ω2

p̂m,j

(
kf,n

d
[[ bm,j ]], [[ bm,i ]]

)
γ

(2.22a)

=
∑
nl∈γ

p̂f,l

(
4kf,n

d
bf,l, {{ bm,i }}

)
γ

∀i : nim ∈ Nm\ND
m

in fracture network elements:

∑
nl∈γ

p̂f,l (kf,t d∇t bf,l, ∇t bf,z)γ +
∑
nl∈γ

p̂f,l

(
4kf,n

d
bf,l, bf,z

)
γ

(2.22b)

=
∑

nj∈Ω1∪Ω2

p̂m,j

(
4kf,n

d
{{ bm,j }}, bf,z

)
γ

∀z : nzf ∈ Nf\ND
f

and p̂m,i = g ∀i : nim ∈ ND
m,s and p̂f,z = g ∀z : nzf ∈ ND

f .

Remark 7. Equations (2.22a) and (2.22b) form now a linear system of equations
which can be solved either directly as a whole in a monolithic approach or iteratively
for the fracture and matrix part separately.

Because the Dirichlet boundary function g can be in general of higher order or
even discontinuous across ∂γ, the enriched nodal degrees of freedom on a Dirichlet
boundary have to be chosen such that g is approximated best with respect to the
order of the ansatzfunctions, in this case linearly, e.g., find the matrix element k
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which is cut by γ on the Dirichlet boundary and choose two xe close to ∂γ, each on
one side, and evaluate

ph
m =

∑
i

ni∈Nkm,s

bs
i(ξe)us

i(xe) p̂s
i +

∑
j

nj∈Nkm,e

be
j(ξ)ue

j(xe) p̂ e
j = g(xe)

for the unknowns p̂ e
m,j with given p̂s

m,i.

2.4 XFEM for Multiple Interfaces

The intersection or crossing of fractures is discussed in detail in chapter 5. This
section only presents the conceptual model for XFEM for multiple interfaces, i.e.,
the matrix part which contains more than one discontinuity interface in one element.

The XFEM concept can also handle multiple interfaces within one element. For
every new partition of the element, one set of additional degrees of freedom is needed,
i.e., for two not-crossing fractures the element is divided into three sub-element
regions so that two sets of additional unknowns are used. For two crossing fractures
the element is divided into four sub-element regions so that three sets of additional
unknowns are used, cf. figure 2.6. This is necessary to represent a solution which
has support in only one of the sub-element regions.

The discrete form looks similar to (2.20). However, two differences should be
noted. First, the set of enriched degrees of freedom has changed and its size is now∣∣∣Ne,k

∣∣∣ = 4(nkfb − 1) for nfb ≤ 2 for Q1 elements, where nkfb is the number of fracture
branches inside this element k. Second, the discontinuity functions are different.

The choice of discontinuity functions us
i, u

e
j, presented above, works fine for cases

where only one interface per element is allowed, e.g., structural mechanics with
non-intersecting cracks or direct simulation of two phase flow where the interface
separates the different phases, (Schott 2010), or the situation of a single fracture
per element presented here.
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2 Model Concept – Development of a Reduced Model

Figure 2.6: A structured matrix mesh and different fracture situations: White are standard
elements, colored are enriched (XFEM) elements. The first set of additional
degrees of freedom is marked yellow, the second green and the third blue.

For a matrix dimension larger than one and more than one single fracture per
element, e.g., one fracture splitting into two, the discontinuity functions, (2.23a),
can be chosen in a similar way as for a single fracture:

us
i(x) ..=

1 if x,xi in Ej, ∀j

0 else
for i = 1, . . . , 4, (2.23a)

ue
i,j(x) ..=

1 if x in Ei
j

0 else
for i = 5, . . . , (4nfb). (2.23b)

Every basis function has support only on one sub-element region, cf. figure 2.7, and
the sum over all basis functions is equal to one at every point in space. The local
finite element area of element E, ΩE is composed of the sub-elements, ΩE = ∪

j
Ej,

where Ej is the j-th sub-element area within nEfb sub-elements of the element E.

For the discontinuity function each nodal degree of freedom gets associated to a
sub-element. For the discontinuity function of the standard basis the associated
sub-element j is always the one which contains the node. To every enriched degree
of freedom also one sub-element gets associated. This sub-element is called Ei

j.

36



2.4 XFEM for Multiple Interfaces
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Figure 2.7: The first row shows the set of standard basis functions, the second and third row
show the first and second set of additional basis functions. The yellow dot/circle
marks the position of the corresponding nodal basis function. The red lines
symbolize a fracture which splits into two. The blue areas show the region of
support for each basis function.

This cannot be the sub-element which is associated to the standard nodal degree
of freedom. The choice between the remaining sub-elements is somehow arbitrary.
There are, however, restrictions which are more complex than for the single fracture
(two fracture branches) case, in other words, this choice is not anymore element
local but node-global, cf. figures 2.8 and 2.9.

Element 2 needs two additional sets of degrees of freedom. In the neighbouring
elements 1 and 3 only one additional set is necessary, respectively, cf. figure 2.8.
The basis functions associated to the central node, however, have to be continuous
across element edges and must only be discontinuous across the fractures. There
are three degrees of freedom at the marked, central node , and we name them
a,b,c. The standard basis function has support, if it is on the same side of the
fracture(s) as the nodal degree of freedom. The degree of freedom a does never
pose any problem to the association of areas of support to this degree of freedom.
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Figure 2.8: Node global problem of basis function support
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Figure 2.9: Area of support for the degrees of freedom a,b,c

The degrees of freedom b,c, however, have either no support in element 1 or 3 and
depending on this choice, the subregions in element 2 are associated to the degrees
of freedom, cf. figure 2.9.

38



2.5 Implementation and Employed Software Packages

2.5 Implementation and Employed Software
Packages

This section gives an overview of utilized software packages which provide a foun-
dation for the development of the simulation toolbox created in this project. Also,
the actual implementation and code specific details of the model concept and dis-
cretization technique presented in previous sections are presented. XFEM related
details and its employment are described in sections 2.5.1 to 2.5.3 whereas the
fracture network related details are presented in section 2.5.4. The model concept
and implementation for the XFEM for immersed interfaces, i.e., fractures which end
inside the domain are presented and discussed in chapter 4.

The implementation of the model concept is based on the free and open source
software package DUNE, “the Distributed and Unified Numerics Environment, a
modular toolbox for solving partial differential equations with grid-based methods”,
(Bastian et al. 2008a,b). The “Iterative Solvers Template Library (ISTL)”, (Blatt
and Bastian 2007), allows the usage of different solvers for the linear equation system
via so called adapters. In this work the direct solver SuperLU, (Li 2005, Li et al.
1999), is used if not explicitly stated otherwise.

For the rock matrix part the finite element toolbox UG, (Bastian et al. 1997),
is used as grid manager, because at the point in time of the implementation it
was the only DUNE compatible grid manager which could handle unstructured,
mixed simplex-quadrilateral grids. The fracture network part uses the finite element
toolbox ALBERTA, (Schmidt and Siebert 2005), as grid manager, because at the
point in time of the implementation it was the only publicly available and DUNE
compatible grid manager which provided co-dimension one functionality.

The domain decomposition into cut and uncut rock matrix elements is handled by
the DUNE module dune-multidomaingrid, (Müthing and Bastian 2012). The XFEM
implementation is based on the DUNE modules dune-PDELab, “an extensible
C++ template library for finite element methods based on DUNE” (Bastian et al.
2010b), and dune-multidomain which “. . . extends PDELab for solving heterogeneous
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2 Model Concept – Development of a Reduced Model

problems on spatial subdomains in an easy way. These subdomains are managed
using another DUNE module called dune-multidomaingrid” (Müthing 2014).

The coupling of two different grids is implemented manually. The module dune-
grid-glue (Bastian et al. 2010a), claims to be able to handle all such grid cases but
was at the time of the implementation not compatible with PDElab. To improve
the flexibility and reduce the maintenance effort for the implementation presented
here the possibility to include dune-grid-glue should be part of future work.

2.5.1 XFEM for Multiple Intersecting Interfaces

There are infinitely many cases in which the matrix elements can be intersected
by fractures. The model concept presented here is intended to be applied to large
scale fractures which show significant influence throughout the whole simulation
domain, cf. section 1.5. Therefore, it is assumed that it is sufficient for the XFEM
implementation in this work to handle up to four fracture branches per XFEM
element. Figure 2.10 shows all implemented cases for up to four fracture branches.
It only shows the intersection cases for a structured grid with quadratically shaped
elements. The extension towards any, not self-intersecting, two-dimensional, four
edged element is straightforward and does not introduce other cases. For cases a and
b it is also allowed that the fracture intersects the XFEM element at two neighboring
edges. There are also cases which are at the moment not implemented. Those are
depicted in figure 2.11. Case a also represents two not intersecting bending fractures.
If case a is not allowed this automatically leads to an exclusion of cases b–d, but
they require a different implementation on their own, too. A detailed discussion of
a–d is part of this section whereas case e is further discussed in chapter 4.

As presented in section 2.4 the definition of the discontinuity functions and therefore
the area of support for each nodal basis is not anymore an element local decision,
but node global. In the following a solution to this problem and its implementation
is presented. The idea is to transform the node-global problem of basis function
support into an element local problem so that the assembling can still be carried
out in element local operators, cf. section 2.5.5.
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a b c d e

Figure 2.10: XFEM interface cases which are implemented: a single straight fracture without
a node in the XFEM element, b single bending fracture, c Y-crossing, d X-
crossing, e ending fracture with the projected intersection on the edge opposite
of the real intersection

a b c d e

Figure 2.11: XFEM interface cases which do not require additional theory but a different
implementation: a two not-intersecting fractures, b–d single fracture, Y-crossing,
X-crossing with two intersections on one edge respectively, e ending fracture
with the projected intersection on an edge neighboring the real intersection
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Figure 2.12: Converting the node global problem of shapefunction support into an element
local one with the help of an edge coloring algorithm

The following describes the handling of Y -crossings and X -crossings. Bending
fractures do not need a special treatment. For every fracture branch an additional
set of degrees of freedom is used, i.e., a Y -crossing has three additional sets of
degrees of freedom and an X -crossing four. That leads to more degrees of freedom
than necessary and discussed in section 2.4. Such elements follow the idea of the so
called “blending elements” in structural mechanics. To overcome the problem of too
many degrees of freedoms, additional discontinuity functions are introduced which
simply are zero everywhere and rule out the influence of the superfluous degrees
of freedom. The correct association of the discontinuity function itself is a global
problem, but once carried out it gives the possibility to assemble the global system
via element local operators.

The global discontinuity function association problem is solved with an algorithm
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based on the edge-coloring problem. Vizing’s theorem, cf. theorem C.1, states that
at maximum one plus the maximal number of fracture branches in one crossing is
needed to color the graph with a minimum of different colors. In some cases only
the maximal number of fracture branches in one crossing is sufficient to color the
graph. To determine if the lower number is sufficient, however, is an np-complete
problem, (Leeuwen et al. 1990).

For the application in the case of the XFEM implementation with dune-multidomain,
it is not relevant if and how the problem can be solved exactly with the minimum
number of colors. In this case the computational time to solve the problem is more
relevant than the storage which is needed when simply more available colors are
allocated and distributed in an efficient way. There are algorithms available which
solve the problem with more colors than necessary, e.g., (Misra and Gries 1992).

For the implementation of a maximum of four fracture branches, theorem C.1 states
that at most five colors are needed. In the implementation six colors are available to
speed up the coloring algorithm. The simplest version of the implemented coloring
algorithm is shown in algorithm C.2. The implementation uses here a subdomain
from dune-multidomaingrid to store and distinguish the different colors.

An exemplary Y -crossing is shown in figure 2.12. The mandatory color choices for
all degrees of freedom are shown. After the mandatory choices the basis is not fully
complete, i.e., in this case the upper left and right degree of freedom lack support
in the lower right and left sub-element. The choice to which colored elements those
degrees of freedom are assigned with non-zero support, is arbitrary.

This algorithm is based on the initially given discrete fracture network before its
elements are created, i.e., it has only vertices where a fracture ends, bends or
intersects with other fractures, cf. section 2.5.4. The algorithm does not know the
XFEM grid and therefore cannot detect if two fractures are contained within one
XFEM grid cell and would need another color. An extension of the algorithm to
possibly handle such cases is given in algorithm C.3. Because of the additional
condition given by the grid, i.e., from outside the graph, the problem is not anymore
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comparable to a classical edge coloring problem and the proof and implementation
of an efficient algorithm remains future research.

2.5.2 Corner Cut and Touched Elements

To be able to simulate almost arbitrary fracture networks, i.e., situations of interfaces
cutting through matrix elements, in addition to the above presented interface cases,
two non-standard cases have to be implemented. On the one hand there is the case
of a fracture cutting directly through a corner, cf. section 2.5.2, and for bi-linear
finite elements through the position of the degree of freedom. On the other hand a
fracture can be aligned with an element edge, cf. figure 2.13b, and that means for
structured grids with all edges over the lateral extension of the fracture.

In general those cases are not related to the XFEM because they can be handled
by a standard finite element method, where the interface is resolved through the
grid, i.e., the the degrees of freedom are doubled at the interface and completely
decoupled at first and later coupling conditions such as for crack development in
structural mechanics can be applied. This behavior can be emulated by the XFEM.
The previously discussed discontinuity functions cannot be applied, because that
would mean the enriched degrees of freedom have simply no support at all.

To circumvent that problem the following scheme is suggested: At first, the fracture
normal direction is defined. The fracture is virtually moved a little away from the
intersection in normal direction, so that the cut/touched degrees of freedom lie on
the other side of the fracture than the rest. Now the support area is defined as the
whole element or no support. The element(s) on the negative normal fracture side
are also enriched. The fracture is again virtually moved away from the intersection
but this time in negative normal direction. The support area is defined again as the
full element or the empty space, but this time the enriched and standard degrees of
freedom switch their support area. That basically mimics the doubling and splitting
of the standard degrees of freedom for classical finite element methods.

44



2.5 Implementation and Employed Software Packages

a corner cutting fracture b edge aligned fracture

Figure 2.13: Special cases of fracture alignment

The choice of discontinuity functions is for the method presented above again not
element local, but must be carried out dependent on neighboring elements. Another
difficulty arises for the implementation of the coupling part, where the average and
jump of the matrix pressure is not anymore element local. That is the reason why
extensive testing of these two special intersection cases remains future research.
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2.5.3 XFEM and Numerical Integration

For the numerical integration of the matrix terms in the context of the XFEM, the
numerical integration has to be able to capture the discontinuity. This can exactly
be achieved by dividing the enriched element into sub-elements, cf. figure 2.14.
On each of those sub-elements a standard Gaussian integration rule with an order
corresponding to the order of the basis functions is used and gives the position and
weights for each integration point on each sub-element, i.e., there is no approximation
due to the numerical integration.

Tests have shown that it is also possible to avoid this sometimes complex geometrical
sub-element division and using instead a Gaussian integration rule of a very high
order (> 15) on the genuine element to approximate the integration of the discon-
tinuous basis functions. However, this high order cannot integrate the discontinuous
basis exactly and oscillation effects close to the interface occur. Because normally
an exact visualization of the discontinuity is desired and most visualization tools, in-
cluding the free post processing software tool Paraview which is used to visualize the
results in this work, cannot handle discontinuous basis functions, the visualization is
carried out on a new visualization grid which introduces additional nodes exactly at
each side of the discontinuities. Therefore a sub-triangulation has to be calculated
anyway. In the results presented in this work only the sub-triangulation integration
is used. This sub-triangulation works for single as well as multiple interfaces.

Figure 2.14: Sub-triangulation example of a cut element for numerical integration and similar
for visualization purposes.
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Another challenge arises for non-standard, i.e., rectangular, elements. This is due to
the fact that the assembling of the global stiffness matrix is carried out, as usually
the case for most finite element codes, locally on every element with its respective
contribution to the global system. For non-rectangular elements the global-local
transformation is possibly not affine, i.e., the globally straight line fractures can
become non-linear connections between vertices. Tests showed that the change in
curvature has no significant influence on the global solution. But the position of
the fracture has to be the same for all terms which include the fracture, i.e., the
XFEM matrix volume terms because of the cut support area as well as the coupling
terms itself which are evaluated on the fracture and include matrix pressures on
both sides of the interface. The current implementation transforms each integration
point on the fracture exactly into the element local coordinate system so that there
is no error for the terms evaluated on the fracture. The linear connection between
the transformed integration points gives the element local interface for the volume
terms of the cut matrix elements. That is not exact but it seems accurate enough
to make the implementation stable.

2.5.4 Fracture Network

The physical concept for flow in crossings is described in chapter 5. This section is
about the general implementation of the fracture network.

It is assumed that the fracture network is given discretely as a graph of vertices
and edges which form the fracture network γ = ∪jγj. Edges are always straight
lines between vertices in global coordinates. Such networks can be created for
example with the stochastical fracture generator Frac3d, (Silberhorn-Hemminger
2002). Every fracture has only two nodes except for the case that it is not straight,
where it has one additional node at every kink. Every crossing has exactly one node
at the intersection of the fractures. Overlapping fractures without a connection are
not allowed.

Inside DUNE the fracture network is handled with the grid manager ALBERTA,
(Schmidt and Siebert 2005). At the moment of the implementation, ALBERTA was
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not able to handle crossing one-dimensional elements, so that this functionality is
implemented manually when reading the fracture grid from the art format into a
DGF. The intersection vertex is doubled so that crossing fractures are virtually split
into overlapping fractures without a connection. The doubled vertices are stored.
In the assembled matrix the degrees of freedom associated with a doubled vertex
are set to be equal, i.e., the matrix rows are added onto one row and the other
row is replaced with an empty line except for the one on the main diagonal and
analogously for the right hand side.

2.5.5 PDELab and Local Operators

The basis for the implementation of the model concept is given by PDELab. It
assembles the global problem by traversing all elements, calculating the relevant
terms locally and then writing them into the global system matrix or vector. This is
a standard approach in finite element theory and codes. The element local function
for calculating the element matrix and right hand side is called “local operator”.

For the model presented here, there are four different local operators. The first is
the standard Darcy operator, which is used on all rock matrix elements without any
contact to a fracture. The second is the XFEM-Darcy operator which is used to treat
the rock matrix elements with a fracture. The third is the lower-dimensional fracture
Darcy operator and the fourth the coupling operator which contains unknowns from
the rock matrix and the fracture grid. This split into different local operators leads
to a very clear and structured code which is directly related to the weak formulation.
It also offers a great flexibility whenever only some parts of the model concept are
changed. Such partial changes can easily be incorporated into the code.

2.5.6 Local Mass Conservation

It is known that the standard finite element method without any additional concepts
is not necessarily locally conservative, e.g., chapter four in Flemisch (2013). Locally
conservative schemes have to fulfill two conditions. The first is seen locally from the
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element, where all fluxes over all edges have to be equal to the source term. This is
often called “What goes in, must go out”. The second is that the flux across one
edge between neighboring elements i and j has to be the same from element i to
j as the negative flux from j to i, or “What goes out (from element j across one
edge), must go in again (into element i over the shared edge)”.

The problem for standard finite element methods is to calculate the flux across
the edges, because of the discontinuity of the gradient of the shapefunctions at the
edges. For the XFEM approach presented here this is not a problem for the fluxes
between fracture and matrix. They are directly included in the conceptual model
and the discretization inside the cut elements has uniquely defined gradients at the
fracture-matrix interface. The problem still holds in areas without fractures, inside
the fractures itself and at the intersection between XFEM elements and standard
elements.

Since we do not use the fluxes for solving additional transport equations, the missing
local mass conservation poses no problem for this work. However, it becomes relevant
if the pressure flow model should be extended towards transport simulation.

2.6 Dimensional Analysis

In the context of this work dimensionless and scaled equations are used. To simulate
application oriented problems with physical fluid and soil properties and boundary
conditions this section gives the derivation for the dimensionless, scaled equations for
heterogeneous (fractured) porous medium problems starting from the dimensional
equations for homogeneous porous media flow. The dimensional quantities are
marked with a (̃·).

∂%̃

∂t̃
+ ∇̃ · ( %̃ũ ) = s̃ (2.24a)

− 1
µ̃
K̃ ∇̃ p̃ = ũ (2.24b)
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The flow field is assumed to be stationary, i.e., ∂%̃/∂t̃ = 0. Darcy’s law, (2.24b) can
be integrated into the mass continuity equation, (2.24a), and with the kinematic
viscosity ν̃ = µ̃/%̃ that leads to the dimensional pressure equation (2.25).

∇̃ ·
(
−1
ν̃
K̃ ∇̃ p̃

)
= s̃ (2.25)

For an incompressible fluid with constant dynamic viscosity, i.e., ν̃ = constant, the
mass flux per volume and time and thus the Darcy velocity depend only on the
intrinsic permeability and the pressure gradient locally and the fluid properties
globally. For heterogeneous problems with fractures the permeability can be split
into fracture domain and matrix domain permeabilities and additionally the fracture
aperture, also dependent on the position, appears.

Expressing the vectorial and tensorial quantities as scalar with (double) index
defining the direction of it, table 2.1 shows all relevant parameters for the dimensional
analysis. The Buckingham-Π theorem states that for nine physical parameters and
a three dimensional physical quantity space, exactly six dimensionless relations can
be found to describe the system.

Table 2.1: Dimensional analysis variables

pressure difference ∆p̃(x) kg/m·s2

permeability k̃(x)ij m2

fluid dynamic viscosity µ̃ kg/m·s

pressure p̃(x) kg/m·s2

velocity ũi m/s

fluid density ρ̃ kg/m3

position x̃ m

fracture aperture d̃(x) m

characteristic domain length D̃ m
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Starting from (2.25) the pressure difference ∆p̃, matrix permeability k̃m and fluid vis-
cosity µ̃ are chosen as physical parameters. That leads directly to three dimensionless
products:

Π1 = p̃

∆p̃ =.. p (2.26a)

Π2 = µ̃ ũi

k̃
1/2
m ∆p̃

(2.26b)

Π3 = k̃m ∆p̃ %̃
µ̃2 . (2.26c)

For fractured porous media the fourth relation is obvious.

Π4 = k̃ij

k̃m
=..


kf,n if x in γ in normal direction

kf,t if x in γ in tangential direction

km if x in Ωm

An order-of-magnitude analysis for typical porous media applications leads to the
result that for most applications k̃m is small (e.g., < 10−8 m2) and the domain
size is large (e.g., O(km) for groundwater flow). Thus additionally the domain
length is fixed and one dimensionless product is eliminated, i.e., the dimensional
relation Π = k̃m/D̃

2 is explicitly decoupled. The remaining two products are the
dimensionless fracture aperture and the position within the domain.

Π5 = x̃

D̃
=.. x Π6 = ã

D̃
=.. a

The dimensionless pressure equation is now given by

∇ · ( −K∇ p ) = s (2.27)

where the dimensionless source term is scaled, s = s̃ (ν̃/∆p̃), i.e., as long as there is
no source term in dimensional form given the scaling does not affect the similitude.
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Table 2.2: Typical numbers for fluid and soil properties in groundwater applications (Bear
1988, Belayneh et al. 2006), i.e., viscosity, density and velocity are given for water.

K̃ ≈ 10−8 ∼ 10−19 · I m2

µ̃ (10◦C) ≈ 1.308 · 10−3 kg/(m·s)

%̃ ≈ 1000 kg/m3

ũD ≈ 7 · 10−5 m/s

To introduce a Reynolds number related to the flow problem the square root of the
permeability is used as characteristic length. The flow velocity in the problem setup
is seen as the result of a pressure gradient and thus, leads to Reynolds and Euler
numbers which cannot be chosen a priori but are part of the result. A rearrangement
of (2.26b) and (2.26c) leads to the Reynolds number Re and the Euler number Eu:

Rek = ũ %̃ k̃1/2
m

µ̃
= Π2 · Π3, (2.28a)

Eu = ∆p̃
%̃ ũ2 = 1/(Π2

2 · Π3). (2.28b)

For the similitude of two flow fields except for the directly appearing parameters
p, d, km, kf,n , kf,t furthermore the Rek and Eu similarity has to be fulfilled.

In many cases, the reformulation of physical equations into a dimensionless form
and an additional scaling of the important parameters, can influence the stability of
implementations of numerical schemes especially if the input parameters vary in
orders of magnitude, as they do for example in groundwater flow, table 2.2.
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and Implementation

In this chapter a validation approach for the implemented model is presented. First,
in section 3.1, the negligible influence of the averaging parameter is shown for a
representative example. In section 3.2, the model applied to a single horizontal
fracture is compared against an analytical solution.

3.1 Influence of the Averaging Parameter

In section 2.1, the averaging parameter ζ ∈ (0.5, 1.0] was presented. In Martin
et al. (2005) the theoretical influence of ζ on the stability of the mixed formulation
(saddle-point problem) was shown. In contrast, this section shows the negligible
influence in the primal formulation by means of two examples. The first example
is a one-dimensional domain with a zero-dimensional discontinuity, i.e., only flow
normal to the fracture is assumed.

The boundary conditions are given as Dirichlet values on both ends, and the single
fracture value is explicitly set by means of a Dirichlet value. Three different matrix
pressure distributions are shown in figure 3.1 for a fixed aperture and a almost
impermeable fracture. It is obvious that the influence of ζ on the matrix pressure
distribution can be neglected. For higher permeable fractures this influence becomes
even less significant (not shown here).
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Figure 3.1: 1d pressure distribution for d = kf,n = 10−4, km = 1.0 and three different values
for the averaging parameter ζ ∈ {1.0, 0.75, 0.50001}

The second example, figure 3.2, is a two-dimensional matrix domain with a single
inclined fracture. The boundary conditions are Dirichlet on the bottom and top
boundary with a gradient from bottom to top. The left and right hand side have
Neumann boundary conditions, for the matrix no flow and for the fracture inflow
on the left and outflow on the right. The fracture is almost impermeable in normal
direction and, to show the influence of two-dimensional problem, highly conductive
in tangential direction. The cases of a highly permeable or almost impermeable
fracture in tangential and normal direction show similar results with even less visible
influence of the averaging parameter. The results of a negligible influence of the
averaging parameter in an asymptotic model is in contrast to Angot et al. (2009).

For more complex fracture network cases, it can be observed that the value of
ζ = 1.0 leads to the most stable results. That is probably due to the implementation
and possible numerical rounding errors if ζ → 0.5. Thus, in the course of this work
and the presented results the averaging parameter is always chosen to be ζ = 1.0.
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Figure 3.2: Influence of the averaging parameter in 2d for d = kf,n = 10−4, kf,t = 104, km =
1.0, with ζ ∈ {1.0, 0.75, 0.50001}

3.2 Comparison with an Analytical Solution

An analytical solution for a single fracture case was presented in Hægland et al. (2009)
and corrected and extended in Sandve et al. (2012). It solves the equidimensional
heterogeneity problem

∇ · ( −K(x, y)∇ p(x, y) ) = s(x, y) (3.1)

with the additional requirements of pressure and flux continuity at the heterogeneity
interface. The permeability tensors are given by

K(x, y) =

Km (x, y) ∈ Ωm

K f (x, y) ∈ Γ
, Km(x, y) =

ca 0
0 1

 , K f(x, y) = k ·Km,

so that ca is the anisotropy ratio in fracture and matrix and k is the heterogeneity
ratio between the fracture and matrix. The source term is given by

s(x, y) =

(1− k) cos(x) cosh(d√ca/2) (x, y) ∈ Ωm,

0 (x, y) ∈ Γ.
(3.2)

55



3 Validation of the Model Concept and Implementation
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Figure 3.3: Continuous (left) and discrete (right) simulation domains

All boundary conditions are set to Dirichlet and are given by the analytical solution
directly.

p(x, y) =

k cos(x) cosh(y√ca) + (1− k) cos(x) cosh(d√ca/2) (x, y) ∈ Ωm,

cos(x) cosh(y√ca) (x, y) ∈ Γ.
(3.3)

The computational domain is chosen to be Ω = (−1, 1)× (−0.1, 0.1). Looking only
at the fracture domain, the correct solution can only be reproduced if the fracture
gets the correct input from the matrix and thus, the matrix boundary. Therefore,
in contrast to earlier comparisons, e.g., (Hægland et al. 2009, Sandve et al. 2012),
the global domain is chosen much smaller in y-direction to exclude numerical errors
coming purely from the matrix domain. The focus of this comparison lies on the
coupling of fracture and matrix.

The fracture lies horizontally at y = 0 so that Γ = (−1, 1)× (−d/2, d/2) and the
matrix domain follows ∪

i
Ωi = Ω\Γ̄, figure 3.3.

To show grid convergence and determine the accuracy order of the employed
numerical scheme, traditionally global errors are calculated by means of area weighted
L2-norms.
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3.2 Comparison with an Analytical Solution

e =

wwwph − p
www
L2

‖p‖L2
≈

√√√√√√
∑
i
am,i(ph

m,i − pm,i)2 +∑
j
af,j(ph

f,j − pf,j)2

∑
i
am,i p

2
m,i +∑

j
af,j p

2
f,j

The global error e consists of contributions from the fracture and the matrix. Every
evaluation point i is associated to a surrounding area, e.g., if the area is evaluated
at every node i, this area is defined by the connection of the midpoints of all edges
connected to this node and the area barycenter of the elements sharing node i. If the
node is part of ∂Ω the node itself is to be included in the connection of midpoints
and barycenters.

In previous comparisons of fracture models such an error was used, but for the case
of highly permeable fractures, which leads to a very large permeability ratio, the
global error is totally dominated by the matrix contributions and the fracture part,
which is where most of the flow happens, is almost canceled out because of the small
area weighting. We can calculate the areas and estimate the pressures:

am,i = h2
i , af,j = hjdj, p2

m,i = O(k)2, p2
f,j = O(1)

and under the assumptions of similar element lengths for fracture and matrix
elements, i.e., O(hm) = O(hf) and approximately the same size for all elements,
then the error reads:

e ≈

√√√√√√√√
∑
i

(ph
m,i − pm,i)2 + d

h

∑
j

(ph
f,j − pf,j)2

∑
i
p2

m,i︸︷︷︸
O(k)2

+ d
h

∑
j
p2

f,j︸︷︷︸
O(1)

.

Normally, lower-dimensional models are only used in situations when d is very small
and we still have a grid where O(h) > O(d). The fracture error now has to be
(h/d)-times larger than the matrix error to show a significant contribution to the
global error.
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3 Validation of the Model Concept and Implementation

Table 3.1: Order of global error, eg, convergence between level ` and level `− 1, element size
is given by hf = 2.0/2` ≈ hm, aperture is fixed at d = 10−6

` \ k 104 101 100 10−1 10−4

6 1.13 2.66 2.87 3.60 1.98
7 1.21 3.09 3.82 3.31 1.99
8 2.25 3.86 3.84 2.38 1.99
9 2.64 3.36 3.05 2.04 1.98
10 3.37 2.46 2.15 1.93 1.93

We therefore look at the matrix and the fracture error separately and define the
global error as the sum of the individually weighted and normalized errors.

eg = em + ef , em =

wwwph
m − pm

www
L2

‖pm‖L2
, ef =

wwwph
f − pf

www
L2

‖pf‖L2

In the following calculations the anisotropy is set to one, ca = 1. For a fixed aperture
d = 10−6 and varying k, figures 3.4a and 3.4b show the fracture and matrix error.
For this case almost optimal order of convergence is shown in table 3.1. The matrix
element size is not exactly but only approximately the same as the fracture element
size so that always a non-conforming situation occurs.

Remark 1. To also capture the quality of our implemented version of the XFEM,
the errors are not only evaluated at the nodes but at all points of a high order
Gauss integration rule.

Remark 2. In our method the fracture domain is discretized with lower dimensional
elements, Γh. The discretized matrix domain covers the same global area Ω, but
because of the line elements for the fracture γ in the global space, cf. figure 3.3, the
discretized matrix domain is larger than the continuous (equidimensional) matrix
domain given by the problem definition, |Ωm,h| > |∪iΩi|. This introduces an error
which corresponds to the artificial additional area in the discretized matrix domain
with the size of |Γ|. The source term is not evaluated in this region of the matrix
elements and the error is also not calculated in this region.
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Figure 3.4: Error plots for global refinement, fixed aperture d = 10−6 and matrix permeability
Km = I (no anisotropy), varying fracture permeabilities k
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Figure 3.5: Fracture error ef for global refinement, fixed aperture d = 10−4 and matrix
permeability Km = I (no anisotropy), varying fracture permeabilities k

Increasing the fracture aperture, the error seems to stagnate at a level too high to be
caused by machine precision errors and the error does not show optimal convergence
for highly permeable fractures. For an aperture of d = 10−4 this can be seen for
the fracture error in figure 3.5. The matrix error shows similar behavior, (Oueslati
2013). An aperture of d = 10−5 does not show this stagnation effect but rather
optimal convergence in the same range of hf as for an aperture of d = 10−6.

This is probably an effect of the ratio of matrix element size to virtual fracture area
inside one matrix element. For the aperture of d = 10−4 the optimal convergence is
lost at approximately hm ≈ 0.004 which means ≈ 2.5% of a matrix element would
actually be covered by the fracture.

To absolutely exclude errors caused by machine precision, simulations were carried
out with quadruple precision. Figure 3.6 shows that the increased quadruple precision
produces the same error as for standard (double) precision. For this tests, iterative
solvers were used. They showed the same results as the double precision direct solver
so that a quadruple precision direct solver did not had to be tested. A BiCGStab
(bi-conjugate gradient stabilized method) solver with ILU0 (zero fill in incomplete
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Figure 3.6: d = 10−4, fracture error ef , double (direct) vs. quad precision (iterative)

Cholesky factorization) and SSOR (Symmetric Successive Over-Relaxation) pre-
conditioners and a MinRes (minimum residual) solver preconditioned with SSOR,
were tested, all with the same result. For a fine grid they do not converge anymore.

To check the influence of the source term on the coupling and convergence behavior
an alternative analytical solution was tested, (3.4), with a source term which is zero
in the matrix domain and not-zero in the fracture domain, (3.5).

p =

cos(x) cosh(y) (x, y) ∈ Ωm

1
k

cos(x) cosh(y) + (1− 1
k
) cos(x) cosh(d2) (x, y) ∈ Γ

(3.4)

s(x, y) =

0 (x, y) ∈ Ωm

(1− 1
k
) cos(x) cosh(d2) (x, y) ∈ Γ

(3.5)

This alternative analytical solution shows a very similar convergence behavior so
that an error in the source term can be ruled out.
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3 Validation of the Model Concept and Implementation

3.3 Summary and Outlook

The influence of the averaging parameter was tested and the results show that its
influence is negligible, but for reasons of stability and robustness it should be chosen
not close to its lower limit.

The XFEM implementation for a single horizontal fracture is compared against
an analytical solution for different apertures and permeability ratios. Optimal
convergence is shown for all permeability ratios if the fracture domain covers
less than ≈ 2.5% of the area of the matrix elements in which the fracture is
embedded. Sequential solvers in the current implementation do not converge for
highly conductive fractures on a fine grid. There exists potential for improvement.
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4 Ending Fractures

In this chapter two major aspects are discussed. The first is about the XFEM for
ending fractures and the second about the coupling concept at the tip of a fracture.

4.1 XFEM for Ending Fractures

If a fracture ends within a matrix element, the fracture is virtually extended in
tangential direction until an edge of this element is reached. This is called “projected
intersection”. As presented in section 2.5.1 and shown in figures 2.10 and 2.11 e,
there exist two cases for the implementation of ending fractures in the XFEM; in
relation to the cut edge, the projected intersection of the fracture with the matrix
element is on the opposite or on a neighboring matrix element edge.

The XFEM implementation for the case of a projected intersection on an opposite
edge than the cut edge is straightforward. The degrees of freedom on the cut edge
are enriched and the previously introduced discontinuity functions are used for
standard and enriched degrees of freedom. The other two degrees of freedom, on
the edge cut by the virtually extended fracture, are not enriched and therefore no
discontinuity functions are used on the standard basis. That leads to a continuous
solution at the projected intersection point and a possible bi-linear increase of the
solution jump towards the entry point. If there is a jump at the real intersection,
there will be also a jump across the virtual fracture part. This cannot be avoided
in the current implementation and the error made because of this implementation
enters the total error seen in the examples.
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4 Ending Fractures

The coupling conditions are only evaluated across the real part of the fracture. The
fracture length and position inside the matrix element have a significant influence
on the total system which is not neglected, i.e., the coupling across the fracture is
carried out exactly.

If the projected intersection is on a neighboring edge to the cut edge, the jump
is in general not only on the virtual path of the fracture not zero, but also not
zero on the virtually intersected edge. In the simulations carried out in the context
of this project the same treatment is applied independent whether the projected
intersection lies on a neighboring or opposite edge with respect to the cut edge.
This did not lead to stability problems or obvious, visibly wrong solutions and is
thus assumed to be negligible.

4.2 Fracture Tip – Rock Matrix Coupling

The fracture tip is hard to simulate efficiently even for equidimensional models.
There are several approaches to handle fracture tips from the conceptual point of
view as well as the numerical point of view. The tip treatment for several numerical
methods is discussed for example in Neunhäuserer (2003), but there, the fracture is
resolved with only one element in its normal direction.

Because for lower dimensional models the thickness is already assumed to be very
small in comparison to the lateral extension of the fracture, Angot et al. (2009)
assumed that there is no relevant flow contribution in lateral fracture direction
across the, in the limit, zero thickness fracture tip.

In contrast to the no-flow assumption of Angot et al. (2009), the XFEM model
assumes that there is a non-zero flux across the fracture tip. For the coupling of
that flow across the fracture tip, the discrete node at the tip is treated as an internal
node with an occurring, but unknown, Neumann flow. This flow is used as a source
term in the matrix element which includes the tip,
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4.3 Example 1: Single Fracture Tip

uf,td|xtip = sm,tip. (4.1)

The XFEM implementation of the lower-dimensional model presented here is com-
pared against two models presented in Angot et al. (2009), a two-point flux cell
centered finite volume method (CCFV) and a mimetic finite difference method
(MFD) which is assumed to give a reference solution. Both, CCVF and MFD, are
used as they are implemented in DuMux.

It is a well-known fact that the two-point flux model is in general only able to simulate
flow on k-orthogonal grids correctly. This was also the case in the examples presented
here. The influence of the error through the grid was significant and dominated the
total solution. Thus, the CCFV with two-point flux is not used as reference but
only the MFD results on structured quadrilateral as well as unstructured simplex
grids.

4.3 Example 1: Single Fracture Tip

This example is taken from Angot et al. (2009) where it is the third test in section 5.2.
It was also simulated in Meyer (2014). It contains a single fracture with an aperture
of d = 0.01. The matrix permeability is the unit tensor Km = I. The fracture
is permeable in tangential and normal direction kf,t = kf,n = 102. The boundary
conditions are Neumann no-flow on bottom and top except for the fracture, where
a Dirichlet pressure of p̄D = 2 is given. On the matrix a global pressure gradient is
imposed by applying Dirichlet pressure on the left p̄D = 1 and on the right p̄D = 2,
cf. figure 4.1.

The XFEM implementation is compared against a fine grid solution obtained from
an equidimensional model discretized with MFD. This is assumed to be the correct
solution and used as reference. In Angot et al. (2009) two models were proposed and
simulated. There is no visual difference between the solutions of those two models.
The asymptotic model uses 16364 control volumes, the assumed to be converged
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4 Ending Fractures

solution of XFEM use 2833 degrees of freedom. Already a XFEM solution on a grid
with 525 degrees of freedom shows a sufficiently good approximation of the matrix
pressure and the pressure inside the fracture. However, to capture the fracture tip
pressure sufficiently, the aforementioned finer grid is needed.

x

y
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f̄N = 0 f̄N = 0

f̄N = 0

p̄D
=

2

p̄D
f = 2

p̄D
=

2

0
0

1

1

Figure 4.1: Single fracture tip domain and boundary conditions

The pressure contour distribution is shown in figure 4.2 for the reference MFD
solution with the grid and for the XFEM implementation including pressure iso-lines.
Pressure plots along two different cut-lines for the MFD and the XFEM models
and the models from Angot et al. (2009), figure 4.3, also do not show any obvious
differences.
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Figure 4.2: Single fracture tip: Pressure distribution
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Figure 4.3: Single fracture tip: Pressure along cut-lines; red-dotted Angot et al. (2009),
black-solid equidimensional MFD, blue-dashed XFEM
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4 Ending Fractures

4.4 Example 2: Multiple Fracture Tips

This example is taken from Angot et al. (2009) where it is the third test in section
5.4. It was also simulated in Meyer (2014). It contains four fractures with an
aperture of d = 0.01. The two fractures entering the domain from the left are almost
impermeable in tangential and normal direction kf,t = kf,n = 10−2. The other
two fractures, entering the domain from the right, are almost impermeable only on
normal direction kf,n = 10−2, but conductive in tangential direction kf,t = 10. The
matrix permeability is the unit tensor Km = I.

The boundary conditions are Dirichlet everywhere, constant on left and right
boundary, p̄D = 1 and p̄D = 2 respectively and quadratic on top and bottom
p̄D = (2x− 1)(3x− 1), cf. figure 4.4.
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Figure 4.4: Multiple fracture tips domain and boundary conditions

Remark 1. Keep in mind that the boundary conditions presented here might not
reflect a physical situation because the used pressure scaling, cf. section 2.6, does
not involve a shift with respect to a reference pressure, i.e., negative pressure would
not exist. Nevertheless this example shows the robustness of the implementation
and allows a comparison against literature results.
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Four different models are compared. The reference solution is given on a structured
quadrilateral grid, refined in the fractures and fracture tips with 136881 control
volumes and computed with an MFD method. The literature reference is taken from
an equidimensional, so called “global Darcy”, model with 201704 control volumes
and a lower-dimensional, “asymptotic”, model with 25600 control volumes from
Angot et al. (2009). The fourth model is the XFEM model which has 236 degrees
of freedom. The MFD and the XFEM models were also simulated with finer grids
and the coarsest grid with an assumed to be converged solution are picked for the
visualization and comparison.

The pressure contour distribution is shown in figure 4.5 for the reference MFD
solution with the grid and for the XFEM implementation including pressure iso-lines.

Pressure plots along two different cut-lines for MFD, XFEM and Angot et al. (2009),
do not show any obvious differences for the pressure in the matrix, cf. figure 4.6a.
The results from Angot et al. (2009) cannot be used as comparison because obviously
the results are wrong – they do not match the Dirichlet boundary conditions.

The fracture pressures match nicely for the MFD and XFEM models for the fractures
entering the domain from the left, which are in tangential and normal directions
almost impermeable, figure 4.6b. The asymptotic (lower-dimensional) model and
the global Darcy model (equidimensional) from Angot et al. (2009) match each
other but are visually different to the MFD reference solution.

The fracture pressures for the fractures entering the domain from the right, which are
only in normal direction almost impermeable but in tangential direction permeable,
do not match, figure 4.7. As already discussed in Angot et al. (2009), their asymptotic
model fails to capture the boundary correctly and also shows significant differences
to their global Darcy model along the fracture, except for the fracture tip, where
the pressures match. Nevertheless there exists a significant difference to the MFD
reference solution for the XFEM model, too. The Angot et al. (2009) models seem
to underestimate the pressure where the XFEM model overestimates it.

The error made with the XFEM model seem to have no visible effect on the matrix
solution. In total the XFEM model needs a lot less computational time to create the
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p
−0.042 1 2

a MFD with grid b XFEM with pressure iso-lines

Figure 4.5: Multiple fracture tips: Pressure distribution

grid and to solve the problem with at some points better agreement to the reference
than the Angot et al. (2009) model and at other points an error in the same order
of magnitude as the asymptotic literature reference model.
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Figure 4.6: multiple fracture tips: Pressure along cut-lines; red-dotted asymptotic model
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Figure 4.7: pressure along the fractures from the right, y = 0.2 and y = 0.6, multiple
fracture tips: Pressure along cut-lines; red-dotted asymptotic model from Angot
et al. (2009), green-dash-dotted equidimensional model from Angot et al. (2009),
black-solid equidimensional MFD, blue-dashed XFEM
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4.5 Summary and Outlook

The XFEM model is able to reproduce the reference solution. The grid creation is
carried out with almost no computational efforts. This is an efficiency advantage
which strongly depends on the complexity of the fracture network. For the academic
examples presented above, however, it is not measurable. Furthermore a reduction
in degrees of freedom between a factor of ≈ 5 for the single fracture model to ≈ 100
for the multiple fracture model was possible to receive visually the same results.

The case of fractures permeable in tangential and almost impermeable in normal
direction shows significant differences between all the compared models and thus,
there is space for improvement also in the tip treatment of the XFEM model.

The case of a projected intersection edge neighboring a real intersection edge and the
corresponding implementation can be investigated further and the error quantified.
A possible enrichment alternative might be to enrich only the node which lies on
the real intersection edge but not on the projected intersection edge.

Another coupling concept for the fracture tip could be a coupling of pressures
directly, a Dirichlet-Dirichlet coupling, where the pressure at the fracture tip is set
to be equal to the average pressure of the matrix,

pf(xtip) = {{ pm(xtip) }}. (4.2)

An ad-hoc implementation of this alternative coupling concept does not produce
reasonable results and thus, it remains future work.

Remark 1. In isotropic structural mechanics problems the XFEM is used for
fracture tip treatment. The enriched basis is here not simply a standard basis with
a discontinuity function but instead a radial basis is used. It has to be shown that
this is also a valid approach for flow problems and an extension to orthotropic or
even anisotropic problems has to be made.
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Bibliographic Note: This chapter is based on: Schwenck, N., Flemisch, B.,
Helmig, R., and Wohlmuth, B. I. (2014). Dimensionally reduced flow models in
fractured porous media: Crossings and boundaries. Submitted and NUPUS preprint
2014/5.

From the applicational point of view, a crossing is assumed to be a heterogeneity of
several (≥ 2) fracture branches, with possibly different permeabilities, intersecting.
In general, there exist several possibilities to model such fracture crossing areas.
Classical approaches for heterogeneity interfaces are usually based on averaging
schemes. Looking at an equidimensional crossing with, for example, four fracture
branches with arbitrary permeability each, the average permeability for the crossing
would depend on four different, possibly full tensor, permeabilities. To find an
average permeability for this situation which captures the important flow features,
is not easy. In general, the problem for tensorial permeabilities is, the absolute
mean permeability should be dominated by the lowest permeability but the mean
direction should be dominated by the highest permeability, so that harmonic mean
approaches for a permeability tensor, defined as the harmonic mean of the entries,
can give wrong flow directions. It is, however, still possible to define an averaged
permeability tensor by solving some kind of upscaling equations, cf. e.g., (Wen et al.
2003, Wolff 2013).

For lower dimensional fractures, the pressure is usually defined as the average
pressure in normal direction for every point in the tangential direction of the
fracture. The fracture local coordinates ξ, η, define the tangential and normal
direction of the fracture, (5.1). Every fracture is thus defined by a center line with a
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5 Fracture Crossings

(possibly varying) thickness and associated properties such as normal and tangential
permeabilities. Such fractures of co-dimension one, γj ⊂ Rn−1, define a network of
fractures as a set of discrete lines γ = ∪jγj.

pf i(ξ) = 1
di(ξ)

+di/2∫
−di/2

pi(ξ, η) dη (5.1)

In a crossing, however, the different properties of every fracture branch can overlap
and a unique association of properties is not always possible, so that, in general,
new properties have to be defined especially for the crossing area. This is in
fact also a requirement from the physical point of view. If there is a crossing
of fractures with very different permeabilities, one fracture always dominates a
crossing from a geological point of view. For example, if there exists a highly
permeable fracture which becomes intersected over time by an almost impermeable
fracture, the crossing’s permeability is more likely to be almost impermeable than
highly conductive or averaged. It is then neither a good idea to always average the
permeabilities in a crossing nor to neglect the connection between different fractures.

In contrast to an averaging approach, in the model presented here the permeability
for the crossing region is assumed to be given as input parameter for this area which
might differ from the surrounding fractures. This is a reasonable assumption since
permeabilities, thickness and position of the fractures are also given.

The flow through such a crossing of fractures, with possibly very different physical
parameters in a global coordinate system, is not at all trivial and classical models are
not always able to capture the important flow features correctly or lack numerical
stability, e.g., the standard model in Formaggia et al. (2012) or Section 6.2 in
Neunhäuserer (2003).

In Formaggia et al. (2012), a model for two straight intersecting fractures is in-
troduced. This section proposes an alternative, new methods to handle arbitrary
numbers (≥ 2) of fracture branches which end in the same point. Starting at an
equidimensional crossing with the equidimensional fracture branches Γi, pressure
relations in the lower-dimensional model are derived for all fracture branches γi
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5.1 Conceptual Model

and the crossing, Υ. The presentation of the method is here limited to the two-
dimensional case. The extension to three dimensions for co-dimension one fractures
might not be straightforward.

In the equidimensional model a crossing can have almost arbitrary shapes. One
approach to handle such a crossing in an equidimensional sense is to introduce a
virtual finite element with a complex shape and therefore basis. Another approach
is to derive an algebraic expression which gives a relation between the adjacent
fracture pressures. Such algebraic expressions are presented in the following.

5.1 Conceptual Model

An example of a crossing is shown in figure 5.1. The equidimensional model domain

Θ

pυp1

p2

p3

p4

∂Γ2\∂Ωi

Υd1

d2

d4

y

x

t3

n3

Figure 5.1: Example 4-crossing with intersection geometries and location of pressure unknowns
in the equidimensional model

can now be decomposed into three different domain types: Matrix, fracture and
crossing, Ω =

(
∪
i

Ωi

)
∪
(
∪
i

Γi
)
∪Υ. We define the crossing area Υ with boundaries to

the fractures (∂Υ)f,i ..= ∂Γi ∩ ∂Υ (solid red lines) and boundaries to the rock matrix
(∂Υ)m ..= ∂Υ\(∪

i
∂Γi) (dashed red lines). The intersection of the fracture center
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5 Fracture Crossings

lines is denoted by υ. Capital Greek letters indicate areas in the equidimensional
model, small Greek letters indicate dimensionally reduced areas.

With the crossing area defined, figure 5.1, we introduce an additional degree of
freedom, the pressure at the intersection of the fracture center lines, pυ. Introducing

pυ

p2

p3

Υ

d∗2

t∗3
∂Γ∗2

`∗2

Figure 5.2: Example 4-crossing with definition of geometrical parameters inside the crossing
area

the green boundaries in figure 5.2, we get a closed control area for which we can
write down the mass conservation equation which gives a relation between the
crossing area pressure and the adjacent fracture pressures pi.

The superscript (·)∗ denotes values which are inside Υ, i.e., d∗i is the length of the
interface between fracture i and Υ, t∗i is the unit inward normal vector of fracture i
on ∂Γ∗i . The distance between the crossing point υ and the center of ∂Γi for every
fracture is denoted by `∗i . The classical mass conservation without sources or sinks
for a steady-state situation for the crossing area

∫
∂Υ u · n ds = 0 can be written as

the sum of the normal fluxes across each fracture boundary to the inner crossing
area, ∑nf

i=1 f
∗
i = 0. Here, nf is the number of fracture branches connected to this

crossing. The normal flux is defined as f ∗i =
∫
∂Γi u

∗
i,Υt

∗
i,Υ ds for every fracture i.

Using the Darcy closure, u∗i = −KΥ(∇ pi)Υ, to eliminate the velocities leads to

∑
i

[(−KΥ(∇ pi)Υ) t∗i ] d∗i = 0 . (5.2)

To incorporate this continuous mass conservation equation into our flow fracture
model, we need to discretize it. Because we want to get an explicit expression for
the pressures, we need to approximate the gradient.
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5.1 Conceptual Model

The rotation matrix R(θ) =
cos(θ) − sin(θ)

sin(θ) cos(θ)

 is defined as the transformation

(rotation) from local fracture coordinates into the reference coordinate system where
the tangential vector is the first axis (x) and points towards the crossings center.
The pressure gradient in the fracture, however, is in our lower dimensional model
defined as the finite difference along the tangential fracture direction, because we
only know one average pressure and not a variation of pressure in fracture normal
direction. That means

(∇ pi)Υ = R(θi) [(∇ pi)Υ]f,i = R(θi)
pυ−pi

`∗i

0


f,i

(5.3)

approximates the gradient in global coordinates dependent on the local fracture
gradient and the orientation θ of the fracture. We can now write the compatibility
equation as

∑
i


−KΥ

R(θi)
pυ−pi

`∗i

0


f,i


 t∗i

 d∗i = 0 . (5.4)

This approximation of the pressure gradient is exact (in the context of the fracture
normal averaged pressure) inside the respective fracture branch. Inside Υ the
global pressure gradient possibly varies in space and is dependent on all adjacent
averaged fracture pressures. Thus, our approach is an approximation of this complex
dependency.

Remark 1. In the case of four fractures with the same aperture intersecting at 90
degrees, figure 5.3 left, the red and green lines fall together. This does not pose any
problem for this approach.

Remark 2. The case of two parallel fractures with different aperture intersecting,
figure 5.3 right, cannot be handled with this approach because the crossing area Υ
shrinks to a line and all three pressures p1, p2, pυ are located at the same geometrical
position in the equidimensional domain.
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5 Fracture Crossings

d1

d2

d1 d2

Figure 5.3: Two special crossing cases. Left: Four fractures intersecting 90 degrees, which
is not a problem for the proposed method. Right: Two parallel fractures with
changing aperture, which cannot be handled by the proposed method.

5.2 Validation Approach: Comparison Against
Equidimensional Reference

In this section a simple crossing of four fracture branches, two straight horizontal
and two straight vertical, crossing in the middle of the domain, is analyzed and
compared against an equidimensional solution obtained with an MPFA-O CCFV
method which was computed with DuMux. The domain is the unit square with
Dirichlet boundary conditions on the left and right and between 0.3 ≤ x ≤ 0.7 on top
and bottom. The rest is closed with Neumann no flow conditions, figure 5.4a. The
matrix permeability is the unit tensor Km = I, the horizontal fracture is conductive
kf,n = kf,t = 100, where the vertical fracture is almost impermeable in normal
direction kf,n = 10−4, but even higher permeable than the horizontal fracture in
tangential direction kf,t = 104. The fracture crossing has the same permeabilities as
the horizontal fracture, kx = ky = 100.

The XFEM solution is obtained from a grid with 750 degrees of freedom whereas
the reference solution is computed on a very fine grid which resolves each fracture
in normal direction with 39 control volumes and contains in total 23409 control
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5.2 Validation Approach: Comparison Against Equidimensional Reference
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0.3 0.7

f̄N = 0 f̄N = 0p̄D = 2.0
0.3 0.7

a domain and boundary conditions

p
1 21.5

b XFEM pressure solution

Figure 5.4: Simple crossing

volumes. The pressure distribution in the whole domain obtained with the XFEM
implementation is shown in figure 5.4b.

Pressure plots along cut-lines are shown in figures 5.5a, 5.5b, 5.6a and 5.6b for
y = 0.5 and x = 0.5, i.e., along the fractures, and y = 0.25 and x = 0.25, i.e.,
through the matrix, respectively. For all cases the XFEM solution matches the
assumed reference MPFA solution quite well.

Two important flow field features are also well captured by the reduced model. The
pressure along the horizontal cut-line at y = 0.25, figure 5.5a, is non monotone
because of the heterogeneity (the fracture). This is the expected, physical flow
behavior, because the main flow occurs in fracture direction. The XFEM solution
with its solution on two different grids can reproduce this behavior. It underestimates
the fracture pressure a little. The second, important flow feature is the continuity
of pressure in equidimensional models, which leads to pressure discontinuities in
lower-dimensional models. A zoom in the crossing region of the fracture pressure
plot figure 5.6a is shown in figure 5.7. That zoomed plot shows the pressure
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5 Fracture Crossings
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b vertical line x = 0.25

Figure 5.5: Simple crossing: Pressure plots along cut-lines; black-solid line: Reference MPFA
solution, blue-dashed line: Reduced XFEM model, red: Reduced model fracture
solution

jump in the lower dimensional model and compares it to the virtual pressure jump
of the equidimensional model across the heterogeneity. The jump is a little bit
overestimated by the reduced model.
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Figure 5.6: Simple crossing: Pressure plots along fractures; black-solid line: Reference MPFA
solution, red-dashed line: Reduced model solution
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Figure 5.7: Simple crossing: Zoom on the crossing region of the pressure plot along the horizon-
tal fracture; black-solid line: Reference MPFA solution, red-dashed line: Reduced
model solution; grey background: Actual fracture domain in the equidimensional
domain
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5 Fracture Crossings

5.3 Example 3: Different Crossing Area
Permeabilities

This example shows a small fracture network consisting of three fractures as shown
in figure 5.8a. It includes an X -crossingand a Y -crossing, highly conductive and
almost impermeable fractures. The matrix permeability is the unit tensor Km = I.
All fractures have the same aperture d = 10−4. The horizontal fracture is highly
conductive kf,n = kf,t = 104, whereas the vertical fractures are almost impermeable
kf,t = kf,n = 10−4. The permeabilities in the crossings are: KΥ = 10−4I. All given
values here are normalized.

The same type of boundary condition is applied on each side, i.e., for fracture and
matrix. Dirichlet boundary conditions are set on the left and right boundary with a
pressure gradient from left to right. The bottom boundary is closed (Neumann no
flow) and an injection (Neumann inflow) is applied on the top boundary.

Grid convergence is shown by plotting the matrix pressure over a line. Figure 5.8b
shows the pressure distribution in the domain for the coarse grid solution, the
fractures and the location of the line plot (from [-0.2,-1.0] to [1.0,0.9]). The solution
for three different refinement levels plotted over this line is shown in figure 5.9a and
a zoom is shown in figure 5.9b. Convergence can easily be seen.

Furthermore the influence of different permeabilities in the crossing regions is
considered. A second simulation is carried out with a different set of permeabilities
in the two crossing regions. The X -crossing is highly permeable, KΥ = 1.04I, and

the Y -crossinghas a mixed permeability, KΥ =
10−4 0

0 104

.
The horizontal fractures, which are almost impermeable, lead to a pressure jump. In
the crossing areas, this discontinuity depends on the corresponding permeabilities.
In figure 5.10 the crossing area has almost the same permeability as the fractures
itself, so that the discontinuity persists over the whole vertical fracture distance.
The second case, figure 5.11, has two different permeabilities for the two crossing
regions. The X -crossing is highly conductive in x- and y-direction and therefore
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Figure 5.8: Example 4: Simulation domain and pressure solution
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three refinement levels along a line.
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the line show grid convergence.
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5 Fracture Crossings

forces also the matrix pressure to be almost continuous. The Y -crossing however,
is highly conductive in y-direction and almost impermeable in x-direction. The
discontinuity across the fracture is preserved and the permeability change along this
fracture across the crossing region has almost no influence.

p

1

4.3

4

3

2

Figure 5.10: Pressure distribution in the matrix with the same permeability in both crossings:
KΥ = 10−4I.
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Figure 5.11: Pressure distribution in the matrix with a highly permeable crossing area in
the X -crossing: KΥ = 1.04I, and a mixed permeability in the Y -crossing:

KΥ =
(

10−4 0
0 104

)
.
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5 Fracture Crossings

5.4 Example 4: Hydrocoin Benchmark

Within the international Hydrocoin project, (Swedish Nuclear Power Inspectorate
(SKI) 1987), a benchmark for heterogeneous groundwater flow problems was pre-
sented. The domain setup is shown in figure 5.12 with the exact coordinates given
in table 5.1.

The boundary conditions are Dirichlet piezometric head on the top boundary and
Neumann no flow on the other three boundaries. The hydraulic conductivity in
the fracture zones is 10−6 m/s and in the rock matrix 10−8 m/s, respectively. The
inclination of the fracture zones has no influence on the permeability tensor and in
lower dimensional models, the normal and tangential permeabilities are exactly the
same scalars.

The original benchmark shows the piezometric head distribution along five horizontal
lines through the modelled domain. Here only the plot at a depth of −800 m is shown
and compared to the range of results from the Hydrocoin summary report, (Swedish
Nuclear Power Inspectorate (SKI) 1987), in figure 5.13. The dashed-dotted line
shows the pressure head for a relatively coarse grid (303 unknowns, 17×13 standard
and 82 enriched dofs) and the solid line for a uniformly refined grid (979 unknowns,
33× 25 standard and 154 enriched dofs). The fracture element size is chosen in the
same order of magnitude as the matrix element size and therefore also uniformly
refined for the second case (38 and 70 dofs respectively). It is clearly visible that
the solution is already very good close to the fractures (and the crossing) on the
coarse grid and a significant error can only be seen in an area where no fractures
are present, i.e., the fracture solution is very accurate and couples significantly back
to the matrix. A finer grid is only necessary in areas where the (non-linear) solution
is not captured well enough with the bi-linear standard finite elements.
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Figure 5.12: Geometry of the modelled domain of the Hydrocoin test case 2, (Swedish Nuclear
Power Inspectorate (SKI) 1987). Boundary conditions are hydraulic head on
top and Neumann no-flow on the other three sides of the domain.

Table 5.1: Coordinates of the numbered points in the modelled region of the problem depicted
in figure 5.12,(Swedish Nuclear Power Inspectorate (SKI) 1987)

point x (m) z (m) point x (m) z (m)

1 0 150 11 1505 -1000
2 10 150 12 1495 -1000
3 395 100 13 1007.5 -1000
4 405 100 14 992.5 -1000
5 800 150 15 0 -1000
6 1192.5 100 16 1071.35 -566.35
7 1207.5 100 17 1084.04 -579.04
8 1590 150 18 1082.5 -587.5
9 1600 150 19 1069.81 -574.81
10 1600 -1000
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x(km)

h(m)

0 0.4 0.8 1.2 1.6
108
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114

Figure 5.13: Hydraulic head for constant y=−800 m, the grey shaded area marks the range
of different simulator results from the Hydrocoin summary report (Swedish
Nuclear Power Inspectorate (SKI) 1987), the dashed-dotted line and the dashed
line show the XFEM solution for a coarse (341 unknowns) and a refined grid
(1049 unknowns), the solid line represents an equidimensional reference solution
computed on a very fine grid with an MFD
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Figure 5.14: Hydraulic head contour plot for the XFEM solution on a fine grid (1049 un-
knowns)
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5 Fracture Crossings

5.5 Summary

In this chapter a novel approach to simulate co-dimension one fracture crossings of
arbitrary number and intersection angles for arbitrary permeabilities is presented. It
is easy to implement and integrate in existing (XFEM) codes and models and shows
robust behavior for the presented implementation. A validation approach through
comparison against an equidimensional model which is very finely resolved with
a CCFV method with an MPFA-O method for the flux calculation, is conducted.
Examples for highly conductive as well as almost impermeable fractures show
numerical convergence and physical flow behavior. Moreover, the novel model is
evaluated on a classical groundwater flow benchmark. This emphasizes the efficiency
as well as accuracy of the presented model.
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6 Boundary Conditions

Bibliographic Note: This chapter is based on: Schwenck, N., Flemisch, B.,
Helmig, R., and Wohlmuth, B. I. (2014). Dimensionally reduced flow models in
fractured porous media: Crossings and boundaries. Submitted and NUPUS preprint
2014/5.

Classical boundary conditions are first (Dirichlet), second (Neumann) and third
(Robin) kind. Other options are for example to eliminate parts of the boundary
by demanding periodicity or symmetry or prescribing higher order derivatives, e.g.,
free outflow. In single phase subsurface systems very often Dirichlet and Neumann
boundary conditions are used because they represent pressure and mass flux which
also can be easily measured and directly links to physical concrete quantities. First
type boundary conditions very often lead to a more stable numerical system.

This section deals with a way of prescribing Dirichlet boundary conditions to a
fractured porous medium. Boundary conditions for fractured porous media systems
with explicitly modelled fractures are not easy to define. The simplest choice is
to prescribe a constant pressure along a domain boundary or a linear change for
example for the case of a hydrostatic pressure distribution.

Applying constant or linear pressure over a larger part of a domain boundary often
does not reflect the highly heterogeneous structure in the case of fractured porous
media systems. That again leads to a strong influence of the boundary conditions
on the solution if the domain is not chosen large enough. For field scale simulations,
one usually obtains pointwise pressure information from which the best boundary
conditions are to be picked. We present a possibility to interpolate pointwise pressure
data along a given boundary including the information of the geometrical position
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6 Boundary Conditions

and geological parameters (aperture, permeability) of the fractures intersecting with
this boundary.

In this section, we look only at the boundary of the problem domain, to be more
precise a segment of arbitrary (non-zero) length of that boundary, figure 6.1. We
define this segment as ω having local coordinates from zero to one χ ∈ [0, 1]. There
are nf fractures intersecting with this boundary segment so that we get nf + 1
parts of the domain Ωm,i adjacent to the boundary ω = ∪

i
ωi. The position of the

fractures, χi, i = 1, . . . , nf , intersecting with the boundary segment are given in
boundary local coordinates. Additionally we define χ0 = 0, χnf+1 = 1 as the ends of
the boundary segment we are looking at,

∂Ωm,i

ωiω1 . . .
χ = 0 χ1

ω0 ωnω−1 ωnω
χ = 1χj χnf. . .

∂Ωm,1 . . .∂Ωm,0 ∂Ωm,nω∂Ωm,nω−1

Figure 6.1: Partitioning of the boundary according to intersecting fractures.

∂Ωm,i = [χi, χi+1] =.. ωi, |ωi| = χi+1 − χi.

We want to find an interpolation method to interpolate between χ0 and χn+1, i.e.,
we set the pressure at χ = 0 and χ = 1. In our implementation for the complete 2d
domain we use (bi-)linear finite elements, therefore we assume it to be sufficient if
the interpolation on the boundary is piece-wise linear with respect to the intervals
ωi. The pressure can then be written for every boundary section as

pb(χ) = miχ+ bi so that ∇ pb = mi on ωi, (6.1)

with the two unknowns mi, bi. We admit a jump in the pressure across the fracture-
boundary intersections. In particular, the jump at intersection j is given by the left
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and right pressure limit, namely,

[[ pb ]]j = lim
χ↘χj

pb(χj)− lim
χ↗χj

pb(χj)

=mjχj + bj −mj−1χj − bj−1, (6.2)

and it is positive in the normal direction from ωi−1 towards ωi.

For the new problem we want to solve on ω, we introduce the test functions which
are in H1(ωi) and zero on the global boundary.

qb,i =

n
ωχ− i onωi

0 else
(6.3)

This particular choice of testfunctions allows us to use

∇ qb,i = nω on ωi, i = 0, . . . , nω,

[[ qb ]]j = −1, j = 1, . . . , nf ,

[[ qb,i ]]j = nωχj − i,

[[ qb,i ]]j+1 = −nωχj+1 + i.

To close the system there are two obvious choices. First the pressure in the fracture
can be set equal to the average of the adjacent matrix pressures. This has the
advantage that the modeler does not need any extra information, i.e., does not have
to know the pressure in the fractures at the boundary. However, this is a strong
assumption which is not necessarily physically correct within the domain. The other
possible choice, which can be required by the application setup, is to set the pressure
in the fractures additionally to the two matrix pressures at χ = 0 and χ = 1.
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6 Boundary Conditions

6.1 Fracture Pressure as Output

Assuming the average of the pressure left and right of the fracture to be equal to
the pressure in the fracture leads to the following boundary functions for single and
multiple fractures. We use the weak formulation for the matrix (2.6a), but now only
on the boundary with zero dimensional fractures and the assumption pf = {{ pm }},
i.e., we do not need (2.6b), and obtain

2∑
i=1

((Kis · s)∇ pb, ∇ qb)ωi + kf,n

d
[[ pb ]][[ qb ]]

∣∣∣∣∣
ω1∩ω2

= 0. (6.4)

Here, s is a vector which is oriented along the boundary of ∂Ωm,i, so that we can
define the effective permeability of the boundary section ωi to be Kis · s =.. kb,i.
Extending (6.4) to multiple fractures gives

j∑
i=j−1

∫
ωi

kb,i ∇ pb · ∇ qb ds

= − kf,n

d

∣∣∣∣∣
j

[[ pb ]]j[[ qb ]]j for j = 1, . . . , nf (6.5)

With the given boundary conditions that we want to interpolate, namely, pb(0) = pleft

and pb(1) = pright, and the additional constraint assumption, pf,i = {{ pb }}i, we get
a general solution for the linear pressure parts on the boundary,

mi = pright − pleft

k̃i
, (6.6)
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with

k̃i =kb,iωi
q0 0

q−1 0

i∏
`=0

q(`−1)`

q``

·


nf∑
j=1

q(j−1)j

j∏
k=1

qkk
q(k−1)k

 d

kf,n

∣∣∣∣∣
j

(
1

q(j−1)j
+ 1
qjj

)

+χj
(

1
kb,jωj

1
q(j−1)j

− 1
kb,j−1ωj−1

1
qjj

)]

+ 1
kb,nωωnω

nf∏
`=1

q``
q(`−1)`

 for i = 0, . . . , nω, (6.7)

where qij ..= [[ qb,i ]]j, q0 0 and q−1 0 are only introduced for ease of notation, are not
assigned any value and always cancel out. Moreover, the coefficients bi are given as

bi =
i∑

`=1

χ` (m`−1 −m`)

+ d

kf,n

∣∣∣∣∣
`

 ∑̀
k=`−1

kb,kmkωk

+ b0 (6.8)

For the reformulations above, we require the fracture positions to be different than
the roots of the jump terms of the test functions to avoid division by zero.

For one single fracture, nf = 1, this yields

m0 = pright − pleft
kb,0
kf,n

d+ ω1 + ω0
kb,0
kb,1

+ (kb,0
kb,1
− 1)

, (6.9)

m1 = pright − pleft
kb,1
kf,n

d+ ω0 + ω1
kb,1
kb,0

+ (1− kb,1
kb,0

)
. (6.10)
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Figure 6.2: Boundary interpolation for variations of aperture and matrix-fracture permeability
ratio. pleft = 1.0, pright = 2.0

As an example, we look at the symmetric case of one fracture intersecting a
homogeneous rock matrix boundary, k = kb,0 = kb,1, ω0 = ω1 = χ1 = 0.5. Then

m0 = m1 = pright − pleft

1 + k
kf,n

d
, (6.11)

[[ p ]] = pright − pleft

1 + kf,n
k

1
d

. (6.12)

From (6.11) and (6.12), we can see, cf. figure 6.2, for the different limit cases that

• for a really small fracture width, lim
d→0

, the pressure gradient is the same as
without a fracture and the pressure jump is zero,

• for a highly conductive fracture, lim
k/kf,n→0

, there is almost no effect on the
pressure gradient and the jump is zero,

• and for a totally impermeable fracture, lim
kf,n /k→0

, the pressure gradient is zero

and therefore [[ p ]] = pright − pleft.
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6.1 Fracture Pressure as Output

A detailed derivation of the general solution for multiple fractures and the
fracture pressure as output: Keep in mind that the test function qb is actually
not zero in one of the adjacent areas, [[ qb,i ]]i 6= [[ qb ]]i. In (6.5) already the sum
over the two equations in the two sub-domains was evaluated, so that always both
volume parts are non-zero and the jump is actually dependent on both sides. If only
the test function for one area is used, (6.3), for example qbi, (6.5) can be rewritten
into

∫
ωi

kb,i∇ pb∇ qb,i + kf,n

d

∣∣∣∣∣
i

[[ pb ]]i[[ qb,i ]]i = 0 for i = 1, . . . , nf

so that
kb,iωimi

qii
= kb,i−1ωi−1mi−1

q(i−1)i
for i = 1, . . . , nf . (6.13)

Combining (6.13) for all i and reformulating it for every mi gives (6.14).

mi = kb,0ω0

kb,iωi

i∏
k=1

qkk
q(k−1)k

m0 for i = 1, . . . , nf . (6.14)

With the original (6.5) and thus [[ qb ]]i = −1 for all i, we obtain

kb,iωimi + kb,i−1ωi−1mi−1

− kf,n

d

∣∣∣∣∣
i

(
miχi + bi −m(i−1)χi − b(i−1)

)
= 0 for i = 1, . . . , nf ,

which can be used together with (6.14) to derive (6.7).

The boundary conditions

b0 = pl, mn + bn = pr

close the system.
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6.2 Fracture Pressure as Input

Following the same steps as in section 6.1, but allowing pf 6= {{ pm }}, the full equation
on the boundary becomes

j∑
i=j−1

∫
ωi

kb,i ∇ pb · ∇ qb ds

+ kf,n

d

∣∣∣∣∣
j

[[ pb ]]j[[ qb ]]j

+ 4kf,n

d

∣∣∣∣∣
j

(
{{ pb }}j − pf j

)
{{ qb }}j

= 0 for j = 1, . . . , nf . (6.15)

This equation includes the fracture pressure at every fracture intersecting the
boundary and therefore needs this as input information, i.e., as a first step the PDE
(6.15) is solved and used to define the boundary conditions for (2.6a).

6.3 Example 5: Solving the Complete System on the
Boundary

In this example, the assumption that the average matrix pressure equals the fracture
pressure is not made but instead the fracture pressure is an additional parameter
which has to be set by the modeler. This example shows a single fracture system
with different boundary values on the top and on the bottom of the domain. The left
and right hand side of the domain get homogeneous Neumann boundary conditions.
The left pressure is set to pb,left = 1.0, the right pressure to pb,right = 2.0 and the
pressure in the fracture to pf = 0.5 at the bottom and to pf = 1.8 at the top.

The values for the Dirichlet boundaries are plotted in figure 6.3. There are three
different cases, a constant value left and right of the fracture respectively, a linear
interpolation from the left and right matrix pressure value to the fracture pressure

98



6.3 Example 5: Solving the Complete System on the Boundary

2.0

1.0

0.5

1.5

-1.0 -0.5 0.0 0.5 1.0

p

x

fracture pressure

a bottom

2.0

1.0

0.5

1.5
p

-1.0 -0.5 0.0 0.5 1.0x

fracture pressure

lin. interpol. incl. jump
lin. interpol. w/o jump
const. interpol.

b top

Figure 6.3: Pressure boundary condition on the bottom and on the top of the domain for
three interpolation methods.

value without a jump and the linear interpolation which includes a pressure jump
across the fracture as a solution of (6.15) on the boundary. Keep in mind that for
that case the pressure in the fracture not necessarily is equal to the average pressure,
this can clearly be seen at the bottom boundary.

The choice of the boundary values affects the solution in the matrix as well as in
the fracture significantly. The pressure in the fracture for all three cases is plotted
in figure 6.4. The piecewise constant pressure leads to a significantly different flow
behavior in the fracture, very steep gradients close to the boundary and a pressure
gradient in the domain which has the opposite direction than for the other cases.
The linear interpolated pressure with and without a jump across the fracture show
a similar behavior. The constant pressure on the boundary which does not account
for the fracture pressure influence on the matrix, represents a physically totally
different setup and is therefore neglected in the following discussion.

The pressure contour in the matrix for the linear interpolation without a jump and
allowing a jump are shown in figure 6.5. The matrix pressure inside the domain looks
similar, i.e., if the domain is large enough the influence of the different interpolation
methods is negligible. However, there is a clearly visible jump across the fracture
within the domain. The jump inside the domain can easily be seen in figure 6.6,
where the jump is plotted along the fracture and in figure 6.7 where the matrix
pressure is plotted for constant y = 0.9 (close to the boundary). The pressure
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Figure 6.4: Pressure in the fracture for three different boundary conditions on the rock matrix
boundaries

pressure
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0.5
0.8
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Figure 6.5: Contour plot: Linear interpolation on the boundary without a jump (left) and
allowing a jump (right)

continuity at the boundary forces the pressure jump inside the domain to be smaller.
Unless there is a physical reason to prohibit this jump at the boundary, allowing it
certainly appears to be more justified.
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Figure 6.6: Matrix pressure jump plotted along the fracture for the boundary conditions
allowing a jump and linear interpolation without a jump
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Figure 6.7: Matrix pressure vs. x-distance at constant y=0.9 for the boundary with and
without a jump
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6 Boundary Conditions

6.4 Summary and Outlook

This chapter presents a novel method to interpolate pressure distributions on
boundaries with fractures which then can be used as Dirichlet boundary condition
values. Depending on the problem to simulate and the given data the interpolation
can calculate the fracture pressures or take them as additional input to give an even
better approximation of the pressure distribution on the boundaries. The presented
example shows the influence of the boundary conditions and the advantage of the
novel approach.

A validation against experimental data still has to show how much better the newly
presented approach is and in which situations or problem setups the fracture pressure
should better be chosen as input and in which as output.
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7 Comparison of Lower- and
Equidimensional, Discrete and
Embedded Models

This section shows advantages and disadvantages of the model and implementation
presented in this thesis and compares it against other model concepts including
model specific implementations by means of different examples.

The reference solutions are computed on very fine grids with equidimensional
models which use either a cell-centered finite volume method with a multipoint flux
approximation (O-method) or a mimetic finite difference method. Both models are
used as they are implemented in DuMux 2.6.

The lower-dimensional XFEM model competes against a classical, lower-dimensional
(mixed-dimensional) discrete fracture-matrix model (DFM), which assumes that
the flow occurs both in the fracture network and the surrounding rock matrix, e.g.,
(Helmig 1997, Monteagudo and Firoozabadi 2004, Reichenberger et al. 2006). The
spatial discretization is performed with the box method (Helmig 1997) which com-
bines the advantages of finite element and finite volume grids, allowing unstructured
gridding and being locally conservative.

In the Master’s thesis Köppel (2013), a novel co-dimension one approach was
developed. It can handle non-conforming fracture and matrix grids. The coupling
between fracture and matrix grids is carried out with a Lagrangian multiplier
technique, similar to Mortar techniques. This approach (henceforth, LM) is used in
addition to the aforementioned models for comparisons.
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The first example shows a highly conductive regular fracture network. It is followed
by an example which uses the same domain and boundary conditions, but the
fractures are now less conductive than the matrix. As a third example a literature
benchmark setup is used. The last example is a small, but complex fracture network
with highly conductive and lower permeable fractures.
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7.1 Example 6: Highly Conductive Regular Fracture
Network

This test case is based on an article presenting a new dual continuum model, (Geiger
et al. 2011), with slightly modified boundary conditions and soil properties. The
results of the three different discrete models can be used as reference for future
evaluation of multi continuum models. The domain of simulation is shown in
figure 7.1a.

f̄N = 0

f̄N = 0

f̄N = −1 p̄D = 1

x

y

0
0 1

1

(0.5,0.5)

(0.75,0.75)
(0.625,0.625)

a Km = I, kf,n = kf,t = 104, d = 10−4
1.0

1.2

1.4

p

b pressure reference solution

Figure 7.1: Example 6: Domain and boundary conditions and pressure reference solution

The reference solution is computed on a grid which resolves every fracture with 19
elements in normal direction and becomes coarser away from the fractures. It has a
total of 1,354,896 control volumes.

The pressure distribution of the reference solution is shown in figure 7.1b. For
comparison of the different models, figures 7.2a and 7.2b show the pressure in the
matrix along a horizontal line at constant y = 0.7 and in a vertical fracture along a
line at constant x = 0.5, respectively. The DFMmodel matches the reference solution
best. The LM model seems to be incapable to capture the pressure accurately. The
conform case performs a little better than the non-conform situation. The XFEM
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Table 7.1: Example 6: Global and fracture error

# DOFs e ef

·10−3 ·10−3

DFM 524 1.41 0.26

XFEM 536 8.11 6.09
5072 1.75 1.02

LM conform 413 70.54 69.58
LM non-conform 484 935.24 122.57

model matches the matrix pressure quite well. The fracture pressure representation,
however, is not accurate enough.

The advantage of independent grids and thus, independent refinement, is shown by
means of an example in figure 7.3. The pressure of the vertical fracture at x = 0.5
is plotted for the reference solution and various refinement levels of the fracture grid
in the XFEM reduced model. Convergence can easily be observed.

The pressure solution along a vertical line at constant x = 0.7 shows non-monotone
behavior. A zoom is shown in figure 7.4. The LM model overestimates the pressure
significantly. The lower-dimensional DFMmodel which resolves the fractures through
the grid captures the non-monotone behavior more efficiently than the XFEM model.
The XFEM model can capture the non-linear, non-monotone pressure solution only
with a finer matrix grid (away from the fracture). A refinement of only the fracture
grid leads to a significantly better approximation but the accuracy of the DFM
model can only be reached if the matrix grid is also refined.

The global and the fracture error, in this case the difference between the reduced
model and the reference solution in the L2 norm, for the different models is shown
in table 7.1.
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Figure 7.2: Example 6: Pressure in the matrix along a horizontal line at a constant y = 0.7
and in a vertical fracture along a line at a constant x = 0.5; black solid: Reference
MPFA CCVF, dashed blue: XFEM, dash-dotted green: DFM, red dotted: Non-
conform LM, dash-dotted red: Conform LM
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Figure 7.3: Pressure along vertical fracture x = 0.5; black solid: Reference MPFA CCVF,
dashed yellow to brown: Reduced model fracture pressure for various refinement
levels of only the fracture grid
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Figure 7.4: Example 6: Pressure in the matrix along a vertical line at a constant x = 0.7;
black solid: Reference MPFA CCVF, dashed blue: XFEM with coarse and fine
fracture grid, dash-dotted green: DFM, red dotted: Non-conform LM, dash-dotted
red: Conform LM
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7.2 Example 7: Impermeable Regular Fracture Network

7.2 Example 7: Impermeable Regular Fracture
Network

The domain and the boundary conditions of this example are identical to the previous
example, 7.1a, with only the fracture permeability changed to kf,n = kf,t = 10−4, so
that the fractures now act as barriers for the flow.

The XFEM pressure field on the matrix grid is shown in figure 7.5a. The DFM
model is theoretically not able to represent this flow field correctly because the
model averages the pressures at the heterogeneity interfaces and does not allow
discontinuities. A plot along a diagonal line throughout the whole domain from
(0.0, 0.1)−(0.9, 1.0) shows the almost exact fit of the XFEM model and the reference
solution and the inability of the DFM model to match the reference solution.

The performance of the LM is not shown in this example because it is in theory not
able to handle almost impermeable fractures.

1 2 3p

a XFEM contour plot with matrix grid
and fractures
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b plot along segment (0.0,0.1)–(0.9,1.0); black-solid:
reference solution, blue-dashed and red-crossed:
XFEM matrix and fracture pressures, green dash-
dotted: DFM

Figure 7.5: Example 7: Pressure solution
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7.3 Example 8: Hydrocoin Benchmark

This example is based on the international Hydrocoin project, (Swedish Nuclear
Power Inspectorate (SKI) 1987), a benchmark for heterogeneous groundwater flow
problems. The benchmark with domain, boundary conditions and soil properties is
presented in section 5.4, figure 5.12. In this section the XFEM model is compared
against two equidimensional models, one is calculated with a cell centered finite
volume method with two-point flux approximation, the other with a mimetic finite
difference approach. Also a co-dimension one solution of a DFM model based on a
Box discretization is shown.

The two-point flux model, although equidimensional and on a very fine grid, is not
able to capture the datum correctly but overestimates the pressure, figure 7.6. The
DFM model and the XFEM model with roughly the same number of degrees of
freedom match the reference solution quite well. The XFEM model underestimates
the pressure in the right half slightly more than the DFM.

The advantage of two independent grids of the XFEM for this example is shown
in figure 7.7, where the XFEM solution on a coarse grid, a fine grid and a coarse
matrix grid with a fine fracture grid is plotted. By only refining the fracture grid,
the increase in the total number of degrees of freedom is minimal but the solution
improves significantly and almost matches the fine grid solution.
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Figure 7.6: Pressure at constant depth −800 m; black solid: Reference MFD, dashed blue:
XFEM with 373 degrees of freedom, green dash-dotted: DFM with 441 degrees of
freedom, dotted red: Equidimensional Box model with TPFA on the same grid
as reference solution (≈ 1.5 · 106 dofs)
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Figure 7.7: Pressure at constant depth −800 m; black solid: Reference MFD, blue dash-
dotted: Coarse grid XFEM solution with 341 dofs, blue dotted, refined grid
XFEM solution with 1049 dofs, blue dashed: Coarse matrix grid and refined
fracture grid XFEM solution with 373 dofs

111



7 Comparison of Lower- and Equidimensional, Discrete and Embedded Models

7.4 Example 9: Complex Fracture Network

This section concludes with a small, but complex fracture network example. The
fracture network is chosen such that it includes all the important aspects for
which conceptual models and implementations were developed in this thesis. The
domain and boundary conditions are shown in figure 7.8. The exact coordinates
for the fracture positions are listed in table 7.3. The fracture network contains a
single, straight fracture ending inside the domain, which is almost impermeable,
kf,n = kf,t = 10−4. Furthermore, it contains a separated fracture network consisting
of four fracture branches which share one crossing and end all within the domain.
Those fractures are permeable, kf,n = kf,t = 104. Finally, there is a non-straight
fracture connecting the upper and lower boundary, which has fracture branches
ending inside the domain connected to it. This part of the fracture network has a
Y -crossing and an X -crossing and is also permeable, kf,n = kf,t = 104. All fractures
have the same aperture d = 10−4.

The DFM model is not able to capture the influence of the almost impermeable
fracture on the flow field correctly and also cannot compute the fracture pressure
within the almost impermeable fracture correctly, figure 7.10. The reference solution
is computed, due to the complexity of the fracture network, on an unstructured
simplex grid. The cell-centered solution plot along a line shows thus oscillations
which depend on the grid. To be able to better compare the reference solution to
the solution of other models, also an interpolated (cubic spline) solution is plotted
in figure 7.10b. The XFEM model, with only 899 degrees of freedom, matches the
reference solution quite well, including the pressure jump across the fracture and
the pressure within the fracture.
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Figure 7.8: Example 9: Domain and boundary conditions

Table 7.3: Example 9: Domain coordinates

node 0 1 2 3 4 5 6

x 0.100 0.300 0.005 0.400 0.100 0.200 0.550
y 1.000 0.695 0.400 0.750 0.000 0.310 0.210

node 7 8 9 10 11 12 13

x 0.800 0.450 0.500 0.950 0.750 0.750 0.600
y 0.300 0.950 0.050 0.300 0.100 0.225 0.400
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Figure 7.9: Example 9: XFEM pressure solutions, matrix and fractures
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Figure 7.10: Example 9: Pressure in the matrix along a diagonal line (0, 0)–(1, 1) and in
the upper right fracture (0.45, 0.95)–(0.8, 0.3); black solid: Reference MFD
interpolated, gray dotted: Cell centered MFD, dashed blue: XFEM, dash-dotted
green: DFM
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7.5 Summary

7.5 Summary

Several examples are presented and corresponding solutions of different models and
numerical methods are compared. For highly conductive fractures and simple to grid
fracture networks the DFM model shows its strengths. The XFEM model can match
the reference solution, but in some cases it needs more degrees of freedom than
the DFM to achieve comparable results. The advantage of independent fracture
and matrix grids is clearly visible and leads in most cases to a huge advantage over
a uniform refinement. The LM model does not show competitive results for the
examples presented here. For fractures with a lower permeability than the matrix,
the DFM model is not able to capture the flow field correctly and the XFEM model
shows very accurate results on relatively coarse grids.
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8 Final Remarks

In this work, a lower-dimensional model concept for porous media fractures embedded
in a surrounding matrix is presented. It is implemented based on the XFEM which
makes it possible to have grid-independent discontinuous solutions in the matrix
and therefore, to have completely independent grids for fracture network and rock
matrix. For three special cases, the standard model based on Martin et al. (2005),
is extended.

Ending Fractures A coupling concept at the fracture tip and the XFEM implemen-
tation is presented. In a validation test case the XFEM model is able to reproduce
the reference solution. It is computationally more effective than the established
model, because the grid creation is carried out with almost no computational efforts
and furthermore, a significant reduction in degrees of freedom is possible leading to
visually the same results.

Fracture Crossings The conceptual model is extended to handle fracture crossings
of arbitrary number, intersection angles, and arbitrary permeabilities. It shows
robust behavior for the presented implementation. Different examples for highly
conductive as well as almost impermeable fractures show numerical convergence and
physical flow behavior. A comparison to a classical groundwater flow benchmark is
conducted and shows the efficiency as well as accuracy of the presented conceptual
model and its implementation.

117



8 Final Remarks

Boundary Conditions Furthermore, a new method to interpolate pressure dis-
tributions on boundaries with fractures is presented. Those interpolated pressure
distributions can be used as Dirichlet boundary condition values. Depending on the
problem to simulate and the given data, the interpolation can calculate the fracture
pressures or take them as additional input to give an even better approximation
of the pressure distribution on the boundaries. The presented example shows the
influence of the boundary conditions and the advantage of the novel approach.

The model developed in this work, combines the advantages of lower-dimensional
models and non-matching grids while keeping the ability to represent the fracture
geometry and its influence on the matrix flow field exactly. Therefore, it is an
efficient alternative to established models for the simulation of fractured porous-
media systems with complex fracture network geometries which require the explicit
treatment of the fractures and the matrix flow.

Outlook

In general, the presented model shows a great potential for the simulation of
complex fractured porous media systems. However, to become applicable to industry
simulation problems, a lot more special cases of fractures intersecting matrix-grid
elements and an extension to 3d has to be implemented. Based on the tests and
validation approaches for the three aforementioned model extension, the following
future work is possible.

So far, the system was always solved directly. For larger applications, however,
iterative solvers become more efficient and thus interesting. In the current imple-
mentation they do not converge for all permeability ratios. There exists potential
for improvement.

For fractures ending inside the domain, the case of fractures permeable in tangential
and almost impermeable in normal direction shows significant differences between
all the compared models and thus, there is space for improvement possibly in the
conceptual but also in the tip treatment of the numerical (XFEM) model. The
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case of a projected intersection edge neighboring a real intersection edge and the
corresponding implementation can be investigated further and the error quantified.
A possible enrichment alternative and coupling concept for the fracture tip is
suggested but the implementation and validation remains future work.

For the validation of the boundary-condition interpolation method a comparison
against experimental data is highly recommended.

Transport Simulations

In the presented work, the elliptic pressure equation is solved for heterogeneous,
fractured porous media systems. For most applications, a transport simulation is
of interest. To be able to conduct a meaningful transport simulation, e.g., of a
conservative tracer, the fluxes and velocities have to be calculated. The implemented
finite element approach does not give face velocities directly, because of the chosen
bi-linear Lagrangian basis.

The easiest way to use the advantages of the newly developed pressure solver for
transport simulations, is to apply it in the context of a decoupled, IMPET (implicit
pressure explicit transport) method. The first idea is, to use the simulation toolbox
DuMux to handle the velocity calculation and transport simulation. To couple the
XFEM pressure solution to DuMux, a grid has to be defined which DuMux can use.
This is of course not optimal, because the advantage of independent fracture and
matrix grids and simulations for the pressure field is lost for the transport simulation.
An ad-hoc implementation of this idea did not lead to success, because of the very
small fracture elements which lead to a significant restriction of the time step size
through the CFL criterion. An IMPSAT-based approach might be appropriate. The
remaining restriction is then the restriction of decoupling the pressure and transport
equation itself. A good overview of IMPSAT and IMPET is for example given in
Haukås (2006). Another alternative to the DuMux compatible grid creation is the
implementation of an extended Finite Volume Method, (Fumagalli and Scotti 2013).
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Alternatively, the pressure field can be used to reconstruct a velocity field, which
is locally mass conservative, e.g., (Cockburn et al. 2008). The difficulty lies here
mainly in the matrix elements which are not cut by a fracture and the regular edges
of cut elements. The fluxes and velocities between the fracture and matrix domain
are implicitly given and the gradients of the basis is in general well defined at the
interface of fracture and matrix. The reconstructed velocity field could then be used
to apply an efficient grid independent transport solver, e.g., a Lagrangian based
particle tracking algorithm.

Forchheimer Flow in the Fractures

If the fractures are highly conductive, the flow might not be considered anymore
as Darcy flow, i.e., inertia effects are not to be neglected. This can occur in many
applications in earth sciences. In most cases, the main interest still does not lie on
a scale where (Navier-) Stokes equations are applicable. Because of computational
efficiency, the standard way to simulate inertia effects on the Darcy scale, is the
extension of Darcy’s law which is called Forchheimer equation. Due to the high
modularity and grid independence of the model presented here it is relatively easy
to include Forchheimer’s equation into the current implementation. The theoretical
change in the coupling conditions was carried out in Crawford-Jones (2013).

Iterative Coupling of Fracture and Rock Matrix Flow

The separation of the fracture problem matrix problem suggests to solve the global
problem not monolithically but iteratively instead. A first step towards iterative
coupling was carried out in Oueslati (2013). Unfortunately, at the time of that
thesis, the main implementation was not correct and the results found, should be
re-evaluated. The decoupled problem might lead to interesting preconditioners for
large scale applications.
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A Equations

A.1 Navier-Stokes Equations

− 1
µ
∇p = 1

ν
u · ∇u−∇ · ( ∇u )

A.2 Hele-Shaw Flow

uHS
x = − 1

8µ(d2 − 4y2)∇ p

Q = −`z
d3

12µ ∇ p so that kx = d2

12
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B Lower Dimensional Operators and
Equations

B.1 Tangential Operators

The tangential Laplacian on any rational function f ∈ R can be evaluated as:

∆t f = ∇t · ( ∇t f ) =∇t · ( ∇ f − (∇ f · n)n )

=∇t · ( ∇ f )−∇t · ( (∇ f · n)n )

=∇ · ( ∇ f )− [[∇⊗ ( ∇ f )]J · n] · n︸ ︷︷ ︸
2

−∇ · ( (∇ f · n)n )︸ ︷︷ ︸
3

+ [[∇⊗ ( (∇ f · n)n )]J · n] · n︸ ︷︷ ︸
4

,

where [∇⊗ ( · )]J symbolizes the result of the operation inside is a matrix which
results from a Dyadic product. Term 4 can be rewritten:

[[∇⊗ ( (∇ f · n)n )]J · n] · n = ∇ · ( ((n⊗ n)(n · n))∇ f ) ,

so that follows terms two, three and four are equal, because n is the unit normal
vector, so that always n · n = 1.

In summary, that leads to

∆t f = ∆ f −∇ · ( (∇ f · n)n ) .
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B Lower Dimensional Operators and Equations

B.2 Rotated Permeabilities

The rotation matrix is given as:

R =
cos θ − sin θ

sin θ cos θ

 , R−1 =
 cos θ sin θ
− sin θ cos θ

 ,

with 0 < θ < 2π.

The general permeability matrix is given as:

K =
k11 k12

k21 k22

 .

Darcy’s law and the continuity equation for incompressible flow leads to

∇ ·
(
R(θ)KR−1(θ)∇ p

)
= 0.

This can requires the rotated permeability matrix, which can be written as:

R(θ)KR−1(θ) =k11 cos2 +k22 sin2−(k12 + k21) sin cos (k11 − k22) cos sin +k12 cos2−k21 sin2

(k11 − k22) cos sin−k12 sin2 +k21 cos2 k11 sin2 +k22 cos2 +(k12 + k21) sin cos

 ,

or for the inverse rotation operation:

R−1(θ)KR(θ) = k11 cos2+k22 sin2+(k12 + k21) sin cos −(k11 − k22) cos sin +k12 cos2−k21 sin2

−(k11 − k22) cos sin−k12 sin2+k21 cos2 k11 sin2+k22 cos2−(k12 + k21) sin cos

 .

Assuming a symmetric matrix k12 = k21 that reduces to:
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B.2 Rotated Permeabilities

R(θ)KR−1(θ) = k11 cos2 +k22 sin2−2k12 sin cos (k11 − k22) cos sin +k12(cos2− sin2)
(k11 − k22) cos sin +k12(cos2− sin2) k11 sin2 +k22 cos2 +2k12 sin cos

 ,
and for the inverse rotation operation:

R−1(θ)KR(θ) = k11 cos2 +k22 sin2 +2k12 sin cos −(k11 − k22) cos sin +k12(cos2− sin2)
−(k11 − k22) cos sin +k12(cos2− sin2) k11 sin2 +k22 cos2−2k12 sin cos

 .

Further assuming a diagonal matrix, k12 = k21 = 0, this leads to:

R(θ)KR−1(θ) =
k11 cos2 θ + k22 sin2 θ (k11 − k22) cos θ sin θ

(k11 − k22) cos θ sin θ k11 sin2 θ + k22 cos2 θ

 ,
and for the inverse rotation operation:

R−1(θ)KR(θ) =
 k11 cos2 θ + k22 sin2 θ −(k11 − k22) cos θ sin θ
−(k11 − k22) cos θ sin θ k11 sin2 θ + k22 cos2 θ

 .

For an isotropic permeability, k11 = k22 = k, this condenses to:

R(θ)KR−1(θ) = R−1(θ)KR(θ) = k · I,

so that p and u are not dependent on the rotation of the permeability matrix.
However, for a diagonal, but anisotropic permeability, k11 6= k22, this shows that
the velocities

ux = −(k11 cos2 θ + k22 sin2 θ)∂p
∂x
− (k11 cos θ sin θ − k22 cos θ sin θ)∂p

∂y
,
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B Lower Dimensional Operators and Equations

uy = −(k11 cos θ sin θ − k22 cos θ sin θ)∂p
∂x
− (k11 sin2 θ + k22 cos2 θ)∂p

∂y
,

as well as the pressure depends on the inclination θ

−(k11 cos2 θ + k22 sin2 θ)∂
2p

∂x2 − 2(k11 cos θ sin θ − k22 cos θ sin θ) ∂
2p

∂x∂y

−(k11 sin2 θ + k22 cos2 θ)∂
2p

∂y2 = 0.
(B.1)

For the case of θ = 0 this condenses to the well known potential flow situation
for incompressible flow in the plane, where the pressure is the potential, with the
permeabilities as additional factors:

ux = −k11
∂p

∂x
,

uy = −k22
∂p

∂y
,

and:
k11

∂2p

∂x2 + k22
∂2p

∂y2 = 0.

B.3 Absolute Velocity

The absolute velocity in a rotated setting is given as:
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B.4 Rotation of the Flow

‖u ‖2 = u2
x + u2

y = ∂p

∂x

∂p

∂y
2 cos θ sin θ(k2

11 − k2
22)

+
(
∂p

∂x

)2

(k2
11 cos2 θ + k2

22 sin2 θ)

+
(
∂p

∂y

)2

(k2
11 sin2 θ + k2

22 cos2 θ).

The case of θ = 0 leads to

‖u ‖ =

√√√√(k11
∂p

∂x

)2

+
(
k22

∂p

∂y

)2

.

B.4 Rotation of the Flow

A solution for (B.1) is

p = eαx+βy with

α2(k11 cos2 θ+ k22 sin2 θ) + β2(k11 sin2 θ+ k22 cos2 θ) + 2αβ cos θ sin θ(k11 − k22) = 0
(B.2)

The assumption of an irrotational flow ∇× u = ∂uy
∂x
− ∂ux

∂y

!= 0 gives

(
(k11 − k22) cos2 θ − (k11 − k22) sin2 θ

) ∂2p

∂x∂y

− (k11 − k22) cos θ sin θ
(
∂2p

∂x2 −
∂2p

∂y2

)
?= 0,

which is of course true for every θ if k11 = k22.
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B Lower Dimensional Operators and Equations

For k11 6= k22

(cos2 θ − sin2 θ) ∂
2p

∂x∂y
− cos θ sin θ

(
∂2p

∂x2 −
∂2p

∂y2

)
!= 0,

with
∂2p

∂x2 = α2eαx+βy,
∂2p

∂y2 = β2eαx+βy,
∂2p

∂x∂y
= αβeαx+βy,

that leads to:
αβ(cos2 θ − sin2 θ)− cos θ sin θ

(
α2 − β2

) != 0.

So that α = cos θ and β = sin θ. But inserting this into (B.2) leads to:

k11 cos4 θ+k22 sin2 θ cos2 θ+k11 sin4 θ+k22 sin2 θ cos2 θ+2 cos2 θ sin2 θ(k11−k22) != 0,

and
k11(cos4 θ + sin4 θ) + 2k11 cos2 θ sin2 θ = 1 6= 0.

This shows, that for an anisotropic diagonal permeability tensor the rotation is
always not zero independent of theta.

For θ = 0 this leads to:

p = eαx+βy with k11α
2 + k22β

2 = 0,

so that
−k22

∂2p

∂x∂y
+ k11

∂2p

∂x∂y
= (−k22 + k11)αβeαx+βy != 0,

with α 6= 0 and β 6= 0 this is only true for k11 = k22.
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C Theorems and Algorithms

C.1 Theorems

Theorem C.1 (Vizing’s). Let G be a simple graph, then

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

where χ′(G) is the edge cromatic number, which is the smallest number of different
colors which are needed to colorize the edges in a way that only different colored
edges share the same vertex. The maximum degree of all vertices in the graph is
denoted by ∆G.

The problem to determine when ∆(G) colors are sufficient is not yet solved, (Ag-
narsson 2007).
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C.2 Algorithms
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C.2 Algorithms

function EdgeColoring(V,E,C) // V: set of vertices, E: set of edges, C: set
of colors

for all vi ∈ V do
exclude every vi with ∆(vi) ≤ 2 from V // ∆(vi): degree of vi
and combine the ej adjacent to this vi

end for
sort V by ∆(vi) descending
for all vi ∈ V do

Ci ← C // Ci: set of colors available at vi
for all adjacent ej do

get cj and remove it from Ci
end for
for all adjacent ej do

if ej has no cj then
Cij ← Ci // Cij: set of colors available at vi for ej
get vj,op // vj,op: second vertex associated to ej other than vi
for all ek adjacent to vj,op do

remove its ck from Cij
end for
set one cj to ej from available colors in Cij
remove cj from Ci

end if
end for

end for
end function

Algorithm C.2: edge coloring algorithm
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function EdgeColoringGrid(V,E,C,Qh
m) // Qh

m: XFEM grid
for all vi ∈ V do

exclude every vi with ∆(vi) ≤ 2 from V
and combine the ej adjacent to this vi

end for
sort V by ∆(vi) descending
for all vi ∈ V do

Ci ← C
for all adjacent ej do

get cj and remove it from Ci
end for
for all adjacent ej do

if ej has no cj then
Cij ← Ci
get vj,op

for all ek adjacent to vj,op do
remove its ck from Cij

end for
for all Qh

m,k containing ej do
if another el is contained then

remove its cl from Cij
end if

end for
set one cj to ej from available colors in Cij
remove cj from Ci

end if
end for

end for
end function

Algorithm C.3: grid dependent edge coloring algorithm
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D Code Documentation

D.1 XFEM

For the modification of the matrix XFEM basis functions a map is stored which
associates the matrix element id with geometrical information of the fractures
cutting through that element. There are six different cases, cf. figure D.1. Case a
and b are treated in the same way by adding a geometrical midpoint node for case
a, so that one entry and one exit point and the midpoint is stored. In case c the
ending point and the entry point is stored. For case d two entry and two exit points
are stored. Cases e and f store one midpoint and three respectively four entry/exit
points.
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Figure D.1: Different intersection cases. The blue dots are not fracture grid nodes, but
fracture nodes from the ART file. Except in the cases i, iii and v. In case i the
entry in the position four, in case iii the entry in position five and in case v both
entries in position four and five come from virtually added nodes, which are only
there for an easier subtriangulation for the numerical integration. The roman
numbers indicate the different cases (as in table D.1).
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D.2 Repository and Used DUNE Versions

Table D.1: Zero to five indicate the index in intersectionPoints vector, roman one to six
denote the different intersection cases as shown in figure D.1. The numbers in the
table show at which iteration over the that matrix element the respective entry is
written into the intersectionPoints vector.

0 1 2 3 4 5

i 0 0 0

ii 0 1 0

iii 0 0 e

iv 0 1 2 0

v 0 0 1 1 0 1

vi 0 1 or 2 or 3 1 or 2 2 or 3 0 1 or 2

vii 0 1 2 3 0

D.2 Repository and Used DUNE Versions

The model concept code and all examples are publicly available (under a GPL
license) in dumux-pub/Schwenck2015a, revision 14380.
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Table D.2: Repository and used DUNE versions

module revision

dune-common 073167e61070a5e952c738c02d85c3f946717e40

dune-geometry f4a7f1d0f1ff8b3ed24af4e6366ca59216f158ae

dune-grid 995998a4e09c390ed32eb321685fc588be33e683

dune-istl 6c1bb5f7d89b555cab846305f784ee2a1b324eb6

dune-localfunctions 0f7ddb5b4955eefd346766de99f7779aa6801ecc

dune-multidomain 58257c38bb21046188aa8f2ca5b5578d8d568a92

dune-multidomaingrid 2cbed41f213ec52c666a569b18f0b057262ece00

dune-pdelab 23ba0444da18f048e7fc841516133a54917fec34

dune-typetree 9c2e89d9039bb6fb78b87805d98e3e9585b97509

dumux-devel 13665
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