
9 Conclusion

The visualization of vector fields is an established, however still ongoing field
of research. The goal of this thesis was to develop techniques that allow the
visualization and analysis of various kinds of vector fields that encode direc-
tional information, being it flow or another property. Depending on the na-
ture of particular fields, different technical or fundamental problems had to be
solved to achieve this goal.

For highly complex and memory-consuming vector fields, a cluster environ-
ment was employed to create an interactive visualization tool as detailed in
Chapter 2. With each compute node that is integrated into the cluster environ-
ment, the available memory increases directly, however, the expected speed-up
does only scale well for a small number of nodes, but with decreasing effective-
ness for a higher number of cluster nodes. More precisely, the performance
gain decreases with every added cluster node due to additional communi-
cation overhead. Further research is necessary to reduce the communication
overhead to allow many cluster nodes being involved in the visualization pro-
cess. Additionally, the parallel rendering method could be extended to the pro-
jection of the surface geometry instead of replicating the mesh on each node.
This would allow visualizing extremely large surface meshes.

For the analysis of vector fields, a visualization tool not only needs to be inter-
active, it also must be able to guide the user and the visualization metaphors
that are used must be helpful and efficient. For a vector field, not only the
direction of the flow is of interest, but also the magnitude which can be vi-
sualized with various visual cues, with animation being among them. In or-
der to employ results of cognitive psychology research, Chapter 3 presents a
technique that was developed to visualize vector fields in a dense way using
animation. In contrast to existing methods, this technique is able to tune its
pattern frequencies to achieve the optimum for the human visual system. Re-
cently, Yeh et al. published a technique to visualize stream lines using repeated
asymmetric patterns [YLL12] based on the same idea of using patterns that are
orthogonal to the stream lines that are visualized. Although these methods
do not lend themselves directly to an extension to true 3D fields, Schulze et
al. [SRGT12] present a solution based on “as-perpendicular-as-possible sur-
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faces”, which can be seen as the counterpart of ortho-vis in 3D. What remains
to be done is an extensive user study to confirm the usefulness and effective-
ness of the proposed method for 2D and 2.5D fields. Additionally, the focus
of ortho-vis lies on low-level, local motion perception. Therefore, the relation-
ship between global motion perception and the effectiveness of conveying flow
structures remains an open question. Further investigations are also needed to
make sure that the visual signatures introduced by the temporal filtering pro-
cess give the correct impression of the visualized vector field.

The second part of this thesis takes a different approach on the visualization of
vector fields, as features of interest are used to simplify the resulting images—
visual clutter and complexity is reduced by using a topological approach to
visualization. Such “simplification” methods are gaining importance more
and more, since data sets are challenging not only in terms of memory size,
but also with respect to complexity which manifests itself, e.g., in the form of
turbulence—a phenomenon which is extraordinarily hard to visualize in an
easily understandable way, and especially hard to find are cues that help the
user analyze the inner workings of turbulence. The technique described in
Chapter 4 combines existing techniques—LIC on curved surfaces (described
in Chapter 1.4.5), and previous work by Sadlo and Weiskopf [SW10]—to en-
hance the visualization of LCS. This combination of techniques gives simple
representations for data sets that are not very turbulent. Perception problems
can, however, arise for complicated flow fields with turbulent regions. The
structure of turbulent flows is highly complex by its nature, therefore, future
work could address techniques that reduce the complexity of the visualization
by finding ways to visualize only the essence of such complex data. Other fu-
ture work is the extension to 3D time-dependent vector fields, i.e., space-time
visualization in four dimensions which includes the intersection curves of LCS
and the surfaces they span over time.

Guiding the user with visualization metaphors that are designed to simplify
the analysis of vector fields was also the goal for the visualization of mag-
netic flux in magnetostatic fields presented in Chapter 5. Available techniques
from classical vector field topology had to be extended since they were not
directly applicable for this specialized scenario. Here, a topological construct,
the connectrix, was introduced that is designed to visualize regions that are
connected with each other with respect to magnetic flux—as opposed to clas-
sical topology which uses separatrices to visualize where regions of different
flow behavior are located. Relevant results for application domain collabora-
tors were obtained with this method. An open question left for future work
is the extension to three dimensions. The main challenge here will be that the
scalar-valued potential A will have to be extended to a 3-component vector
field potential.

The third and final part of this thesis introduces continuous scatterplots, a sta-
tistical visualization method that was created to analyze scientific data sets. As
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opposed to traditional scatterplots, this method allows one to work with data
defined on a continuous domain based on a generic mathematical model. This
mathematical model maps an arbitrary density value defined on an n-D input
data set to m-D scatterplots. Not only does this model provide a solid and re-
liable basis for many variants of frequency plots of continuous data, but it also
allows one to assess the errors introduced by previous discrete frequeny plots,
which can be viewed as examples of numerical approximation of continuous
scatterplots. Therefore, continuous scatterplots lead to the same basic visual
mapping as traditional histograms, scatterplots, or other frequency plots. In
this way, they add one missing piece to the general approach of applying sta-
tistical and information visualization methods to scientific data. Furthermore,
the generic model presented in this chapter has value of its own in any scien-
tific discipline that strives for unification and simplification.

Several ways for the implementation of continuous scatterplots are explored
that either broaden the possibilities in terms of interpolation or reconstruction
methods that can be used to compute a continuous scatterplot, or decrease the
computational cost to create such a plot. To achieve the latter, speeding up
the computation of continuous scatterplots is attained with several different
computation schemes that employ user-controlled approximation methods to
reduce the time to compute a continuous scatterplot. Finally, hardware ac-
celeration is used to reach the same goal utilizing the parallel architecture of
GPUs. Remaining future work is the extension to higher-dimensional spatial
domains, such as time-dependent 3D data sets.

The mathematical model of continuous scatterplots provided new possibilities
for follow-up research in this direction, leading to a several related papers, e.g.,
“Continuous Parallel Coordinates” by Heinrich and Weiskopf [HW09], and
“Discontinuities in Continuous Scatterplots” by Lehmann and Theisel [LT10].
These examples originate from the visualization community, however, re-
searchers of other communities work on related topics. To name an example
from computer vision, Dowson et al. [DKB08] construct a continuous model
to obtain the joint distribution of image pairs. Related to this work is the paper
by Kadir and Brady [KB05] that addresses the problem of estimating statistics
in regions of interest by applying continuous density estimates.

The implementations of continuous scatterplots presented in the third part of
this thesis are not the only possible approaches—due to the generic mathe-
matical basis, the technique presented in Chapter 6 is not only unrestricted
with respect to the dimensionality of the data that it handles, it is also open
to various implementation approaches. Although several methods have been
developed to compute continuous scatterplots, e.g., as presented in Chapters 7
and 8, improvements with respect to computational performance or integra-
tion quality are still possible. Therefore, it becomes clear that the true value
of this approach is not technology-based or hardware-based—something that
may be outclassed sooner or later by future technology—the main contribu-
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tions are found in the theoretical foundation presented in this thesis.

During the course of my thesis, I have encountered problems that are related
mostly, but not only to flow visualization. It became clear that even soft-
ware that is written to create a proof-of-concept application needs a profound
software engineering approach to avoid problems that are related to organi-
cally grown software. However, extensive application of software engineering
principles prolong the development process of proof-of-concept software too
much—a good balance between the extremes is necessary to produce software
of as-high-as-possible quality without losing too much time. For this reason,
the visualization techniques described in Chapter 6 and 8 were implemented
using the MegaMol framework developed by Sebastian Grottel. This frame-
work encourages and supports high code reusability as well as a modularized
approach to software engineering.

For the remaining visualization techniques of this thesis, individual tools were
developed using the most up-to-date software and hardware technologies that
were deemed best suitable to solve the technical problems related to the respec-
tive research project at this time. Although these tools are technically differ-
ent, they allow the interactive analysis of vector fields from different points of
view—perception-oriented with the methods presented in Part I, feature-based
analysis with techniques of Part II, and, lastly, focusing on multi-attribute,
data-based analysis in Part III.

Despite their technical differences, these proof-of-concept tools can be seen as
modules that could be integrated in a larger visualization system. Depend-
ing on user requirements, this would allow, e.g., to visualize large, complex
vector fields using the cluster environment described in Part I, and combine it
with topological methods presented in Part II to handle occlusion and ease the
analysis of such a vector field.

Closing the link to Section 1.1, the contributions to the challenges mentioned
there are critically evaluated. Every method presented in this thesis adds some
details to the overall picture. Some techniques are more generally applica-
ble, whereas others are more application specific. A critical sum-up based on
the remarks of this section is given in Figure 9.1, which is adopted from Sec-
tion 1.8 and modified to reflect the additional aspect of generality and applica-
tion specificity.

On a final note, and as mentioned in the beginning of this chapter, the vi-
sualization and analysis of vector fields is a still ongoing field of research.
However, the visualization community loses interest in techniques that con-
centrate merely on directly visualizing vector fields, as it is the case for the
ones presented in Part I. What are the reasons for this development? Possi-
bly, this is due to the high saturation of well working visualization methods.
These methods have arrived at a very high level, leaving not much room for
improvements. Because of this, and because of the need for methods that are
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Figure 9.1: Visualization of the techniques presented in this thesis with respect
to level of abstraction and, as a second aspect, their generality or application
specificity.
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able to handle even more complex data sets, the attention turns to techniques
that emphasize features, like, e.g., the ones presented in Part II of this thesis.
The importance of models for such techniques, as well as corresponding algo-
rithms to compute visual representations, is expected to rise even more in the
future.
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