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Abstract

In this thesis work, a new method for computing NMR chemical

shifts and magnetic susceptibilities in extended systems through an

ab-initio density functional perturbation theory approach is presented.

The method is applicable to crystalline and amorphous insulators un-

der periodic boundary conditions, as well as to isolated molecules.

The formalism exploits the exponentially decaying nature of lo-

calized Wannier orbitals, allowing a simple representation of the an-

gular momentum operator under periodic boundary conditions. The

method is implemented in the context of a density functional theory

pseudopotential approach with a basis set of plane waves.

The results are in good agreement with experiment and with cal-

culations that use other theoretical methods.
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8 1 ZUSAMMENFASSUNG

1 Zusammenfassung

In den letzten Jahren haben parameterfreie Rechnungen zur Bestimmung

der Elektronenstruktur (ab-initio) in der Festkörperphysik und -chemie zu-

nehmend an Bedeutung gewonnen. Die Untersuchung struktureller und dy-

namischer Größen von isolierten Molekülen in der Gasphase sowie von kon-

densierter Materie ist mittlerweile mit standardisierten Computerprogram-

men möglich, die aus diesem Forschungszweig entstanden sind. Mit diesen

Werkzeugen ist eine detaillierte Beschreibung der elektronischen Eigenschaf-

ten der untersuchten Systeme auf mikroskopischer Skala möglich.

Die Entwicklung von Berechnungsmethoden innerhalb dieser ab-initio

Theorien ist daher von besonderem wissenschaftlichen Interesse. Sowohl in

der experimentellen als auch in der theoretischen Physik und Chemie können

computergestützte Berechnungen das Verständnis vieler Prozesse verbessern,

die auf mikroskopischer Basis ablaufen und dennoch das makroskopische Ver-

halten der untersuchten Systeme bestimmen. In letzter Zeit hat besonders

die Analyse großer ungeordneter Systeme an Aufmerksamkeit gewonnen.

Die quantenmechanische Berechnung der zeitlichen Entwicklung solcher in

der Regel amorphen Festkörper oder Flüssigkeiten bei endlicher Temper-

atur gelangt immer mehr in den Bereich des Möglichen. Natürlich läßt

sich die Genauigkeit, die bei Voraussagen für kleine Moleküle inzwischen

üblich ist, nicht auf größere Systeme übertragen. Die mit hochgenauen Com-

putersimulationen verbundenen Resourcenkosten übersteigen ab einer gewis-

sen Komplexität der Systeme den Bereich des Angemessenen, insbesondere

wenn es um die Bestimmung der zeitlichen Entwicklung geht. In solchen

Fällen ist es erforderlich, durch die Anwendung von bestimmten kontrol-
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lierten Näherungen einen Kompromiß zwischen Genauigkeit und Effizienz zu

finden.

In diesem Geist hat sich in den letzten Jahren die von Hohenberg und

Kohn entwickelte Dichtefunktionaltheorie mehr und mehr durchgesetzt [1].

Insbesondere findet hierbei die Formulierung von Kohn und Sham [2] Anwen-

dung. Es handelt sich dabei um eine ab-initio Elektronenstrukturtheorie, die

alle physikalisch meßbaren Größen anhand der Elektronendichteverteilung

beschreiben kann. Die explizite Kenntnis der Vielteilchen-Wellenfunktion

wird hierbei nicht benötigt, was den rechentechnischen Aufwand enorm re-

duziert. Die Dichtefunktionaltheorie ist im Grunde exakt, jedoch können die

zu lösenden Gleichungen nicht vollständig analytisch formuliert werden. Die

genaue Form der kinetischen Energie und der Austausch- und Korrelations-

energien als Funktional der Elektronendichte ist nicht bekannt. An dieser

Stelle ist es erforderlich, näherungsweise Ausdrücke für diese Funktionale

einzuführen, um die Berechnungen auch tatsächlich ausführen zu können.

Die Kohn–Sham–Darstellung erlaubt überdies, die Dichte der Elektronen

aus einem System unabhängiger, nicht-wechselwirkender Teilchen zu bestim-

men. Dabei befinden sich diese unabhängigen Teilchen in einem Potential,

welches durch ihre eigene Dichteverteilung sowie die Atomkerne erzeugt wird.

Die Beschreibung erfolgt deshalb durch ein System unabhängiger Gleichun-

gen für die Elektronen, welches mittels iterativer Verfahren selbstkonsistent

gelöst werden muß. In diesen Gleichungen findet sich das oben erwähnte

Austausch-Korrelations-Potential wieder, für das geeignete Ausdrücke ge-

funden werden müssen. Es gibt mehrere Ansätze für dieses Problem, welches

aber noch immer ein aktives Forschungsgebiet ist. Mit den inzwischen verfüg-
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baren Varianten ist aber bereits eine sehr genaue Berechnung elektronischer

Eigenschaften des Grundzustandes möglich.

Oft ist die Kenntnis der zeitlichen Entwicklung eines Systems von großem

Interesse. Ein besonders effizientes Verfahren, die Bewegungsgleichungen der

Atome mit der Berechnung der Elektronenstruktur im Rahmen der Dichte-

funktionaltheorie zu verbinden, ist von Car und Parrinello entwickelt worden

[3]. Mit Hilfe dieser Technik können auch dynamische Vorgänge auf quan-

tenmechanischer Basis dargestellt und analysiert werden [4]. Zwar sind die

zugänglichen Zeitskalen aufgrund des Rechenaufwandes sehr klein, sie liegen

in der Größenordnung von Pikosekunden. Die Möglichkeit, viele wichtige

physikalische Prozesse wie beispielsweise Transportvorgänge, aber auch ganze

chemische Reaktionen, die auf gerade dieser Zeitskala stattfinden, in ihrem

Ablauf zu studieren, hat dieser Kombination zum Durchbruch verholfen.

Die Analyse experimenteller Meßdaten aus beispielsweise Röntgenbeu-

gung, Neutronen- und Ramanstreuung sowie die chemische Verschiebung, die

später noch genauer erklärt werden soll, können tiefe Einblicke in die Physik

und Chemie vieler Systeme liefern. Experimentelle Spektren sind jedoch

ab einer gewissen Komplexität schwierig zu interpretieren. Der Vergleich

mit simulierten Spektren kann hierbei eine sehr nützliche Verbindung zwi-

schen Theorie und Praxis darstellen, um die mikroskopischen Ursachen der

beobachteten Phänomene zu erklären.

In dieser Arbeit soll daher eine neue Methode vorgestellt werden, mit

deren Hilfe die Berechnung der magnetischen Suszeptibilitäten sowie der

chemischen Verschiebung in der Kernspinresonanz (nuclear magnetic reso-

nance, NMR) in Systemen unter periodischen Randbedingungen möglich ist.
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Die Messung der chemischen Verschiebung ist eines der aussagekräftigsten

Analyseverfahren in der strukturellen Chemie. Mit ihrer Hilfe kann die Elek-

tronenstruktur in der Umgebung eines Atomkerns mit sehr großer Genauigkeit

ermittelt werden. Koordinationszahlen, Bindungslängen und sogar Bindungs-

winkel sind aus geeigneten Resonanzspektren ablesbar. Es gibt hierzu eine

Reihe von empirischen Regeln, die oftmals sehr umfangreiche Informationen

über diese Größen liefern. Sobald aber die Geometrie des Systems zu komplex

wird, sind diese Regeln nicht mehr anwendbar.

Chemische Verschiebungen beschreiben die Wechselwirkung der Elektro-

nen eines Systems mit einem starken externen homogenen Magnetfeld. Hier-

bei verändert das äußere Feld die Wellenfunktion dieser Elektronen derart,

daß elektronische Ringströme induziert werden. Diese Ströme, die natürlich

stark von der elektronischen Struktur abhängen, erzeugen ein Zusatzfeld,

welches sich dem externen überlagert und das Gesamtmagnetfeld somit in-

homogen macht. Insbesondere sind die Feldwerte an den Positionen der

Atomkerne alle leicht gegeneinander verschoben, sofern die Kerne sich nicht

an strukturell äquivalenten Orten befinden. Ein nichtverschwindender Kern-

spin im magnetischen Feld besitzt Energiezustände, deren Abstand pro-

portional zur Stärke des Feldes ist. Damit bestimmt der Feldwert auch

die Resonanzfrequenz, die durch Absorptionsspektroskope bestimmbar ist.

Die gegenseitige Verschiebung der Resonanzfrequenzen wird chemischen Ver-

schiebung genannt. Mit ihr kann man zusammenfassend also die elektroni-

sche Struktur in der Umgebung eines Atomkerns direkt auf einen Meßwert

abbilden, der darüberhinaus mit sehr hoher Genauigkeit bestimmt werden

kann.
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Aufgrund dieser großen Präzision und der konzeptuellen Einfachheit des

Versuchsaufbaus ist die Kernspinresonanz im Laufe der Jahre zu einer Stan-

dard-Analysemethode in der gesamten Chemie geworden. Im Laufe der Zeit

sind die Meßverfahren laufend verfeinert worden, und neue Analysemetho-

den wurden entwickelt. Bei der einfachsten denkbaren Messung wird die

Frequenz eines eingestrahlten Wechselfeldes im Radiofrequenzbereich variiert

(continuous-wave-Messung), bis Absorption auftritt. Dieses Verfahren stellt

das grundlegende Experiment der Kernspinresonanzmessung dar, wird aber

heute kaum mehr verwendet. An seine Stelle ist die Fourierspektroskopie

getreten, mit der ein ganzer Frequenzbereich auf einmal gemessen wird.

Auf der theoretischen Seite steht dieser Evolution die Entwicklung im-

mer genauerer quantenchemischer Verfahren zur Bestimmung der chemi-

schen Verschiebung einzelner Atomkerne in genau definierten Umgebungen

gegenüber. Diese Verfahren sind in der Lage, die Resonanzlinien eines Atoms

mit beinahe experimenteller Genauigkeit vorauszusagen. Dabei ist allerdings

die insgesamt beschreibbare Systemgröße auf weniger als hundert isolierte

und statisch angeordnete Atome beschränkt.

Sehr viele physikalische und chemische Prozesse laufen jedoch in Lösung

oder in amorphen und kristallinen Phasen ab. Biologisch relevante Vorgänge

beruhen zum Beispiel nicht zuletzt auch auf der Präsenz von Wasser als

Lösungsmittel, und industrielle Prozesse werden in der Regel auch nicht in

der Gasphase durchgeführt. Die Kernspinresonanz wird in der Praxis je-

doch auch auf solche Systeme mit großem Erfolg angewendet. Eine Berech-

nung als isolierte Moleküle würde in diesen Fällen eine schwer zu rechtfer-

tigende Näherung darstellen. Weiterhin wird die dynamische Entwicklung
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eines isolierten Systems durch Oberflächeneffekte dominiert, da die hiermit

verbundenen Energien in der Regel deutlich größer sind als die im Innern

auftretenden. In kondensierten Phasen ist die Oberflächenenergie jedoch

nicht vorhanden, was zu einem vollständig anderen Verhalten führen kann.

Eine mit Erfolg praktizierte Methode zur Vermeidung dieser Probleme

bei Molekulardynamiksimulationen ist die Verwendung periodischer Randbe-

dingungen für kondensierte Systeme. Dabei nimmt man eine bestimmte

Periodizität des Systems an, so daß die vollständige Information über das

Gesamtsystem bereits in einem entsprechend geeignet dimensionierten, aber

beliebig angeordneten Ausschnitt, der sogenannten Einheitszelle, enthalten

ist. In der Computersimulation werden alle physikalischen Größen unter

der Annahme berechnet, daß sich diese Einheitszelle in alle Raumrichtun-

gen periodisch wiederholt, so daß das System insgesamt unendlich weit aus-

gedehnt ist. Die hierbei künstlich erzeugte Periodizität hat keinen nach-

haltigen Einfluß auf das Verhalten des Gesamtsystems, sofern die typischen

Korrelations-Längenskalen kleiner als die angenommene Periodizitätslänge

ist. Diese Eigenschaft kann überdies durch Vergrößerung der Einheitszelle

überprüft werden.

Die meisten der bereits angesprochenen physikalisch meßbaren Größen

können erfolgreich unter der Annahme periodischer Randbedingungen berech-

net werden. Im Gegensatz hierzu gestaltet sich die Berechnung der Elektro-

nenreaktion auf ein externes homogenes magnetisches Feld jedoch schwieriger.

Grundsätzlich besteht dabei das fundamentale Problem, daß der quanten-

mechanische Ortsoperator, der bei der Beschreibung des Magnetfeldes ex-

plizit auftritt, nicht wohldefiniert ist. Es gibt keine einfache Möglichkeit, ihn
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im Einklang mit der Periodizität des Systems zu bringen, sein Wert ist in

jeder Replika der Einheitszelle anders.

Erst vor kurzer Zeit wurde von Mauri et al. eine erste Methode vorgestellt,

die die Berechnung von NMR chemischen Verschiebungen und magnetischen

Suszeptibilitäten auch in Systemen unter periodischen Randbedingungen er-

laubt [5]. In diesem Verfahren wird das Problem des Ortsoperators umgan-

gen, indem zunächst angenommen wird, daß das externe Magnetfeld nicht

homogen, sondern in Feldrichtung sinusförmig moduliert ist. Dies ermöglicht

eine Beschreibung des Feldes mit einem periodisch definierten Vektorpoten-

tial einer bestimmten Wellenlänge. Die experimentelle Situation eines kon-

stanten Feldes wird über den Grenzwert unendlicher Modulationswellenlänge

erreicht.

Hierdurch konnte gezeigt werden, daß das zuvor geschilderte Problem

nicht ausweglos ist. Die Methode hat jedoch gewisse praktische Nachteile.

Zunächst ist natürlich die Wahl der Wellenlänge der Modulation nicht ein-

fach. Grundsätzlich müßte für jedes untersuchte System ein Konvergenztest

durchgeführt werden, um sicherzustellen, daß der oben genannte Grenzwert

unendlicher Modulationswellenlänge auch erreicht wird. Weiterhin ist die

minimal erforderlicher Wellenlänge typischerweise größer als die Dimension

einer Einheitszelle, so daß eine repräsentative Darstellung der Blochvek-

toren innerhalb der Brillouin-Zone für die Berechnung der Wellenfunktion

erforderlich wird. Die Beschränkung auf den Gamma-Punkt (k = 0) ist

in dieser Methode nicht ausreichend. Alle k-Vektoren außer k = 0 im-

plizieren jedoch komplexe Wellenfunktionen, wohingegen am Gamma-Punkt

eine relle Darstellung ausreicht. Des weiteren muß die Wellenfunktion für
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jeden k-Vektor einzeln betrachtet werden. All dies erhöht letztlich den

Rechenaufwand zur Bestimmung der magnetischen Reaktion beträchtlich im

Vergleich zur Berechnung des elektronischen Grundzustandes.

In der vorliegenden Dissertation ist deshalb eine weitere alternative Me-

thode entwickelt worden, in der die Probleme, die durch die verwendeten

periodischen Randbedingungen entstehen, auf eine andere Art und Weise

angegangen und gelöst werden.

Anstatt das externe Magnetfeld zu modulieren, wird der Ortsoperator

in einer periodischen Sägezahn-Form neu definiert. Um die aus der teil-

weise unphysikalischen Form des neuen Operators resultierenden Effekte zu

minimieren, ist die Darstellung der elektronischen Wellenfunktionen in Form

von maximal lokalisierten Wannier-Orbitalen erforderlich, die in der Quan-

tenchemie bereits seit längerem verwendet werden. Durch diese Darstellung

kann der Effekt des magnetischen Feldes auch innerhalb periodischer Randbe-

dingungen direkt beschrieben werden, ohne das Feld künstlich modulieren

zu müssen. Unter Zuhilfenahme einer bestimmten weiteren Näherung, die

im Hauptteil der Arbeit ausführlich besprochen wird, kann die Rechnung

mit diesem Ansatz gegenüber der Modulationsmethode deutlich effizienter

durchgeführt werden.

Diese neue Methode ist implementiert in einem Computerprogramm, das

auf der bereits vorgestellten parameterfreien ab-initio Berechnung der Elek-

tronenstruktur mit Hilfe der Dichtefunktionaltheorie basiert. Die elektro-

nische Reaktion in Form der oben diskutierten Ringströme wird dabei im

Rahmen der variationellen Dichtefunktional-Störungstheorie realisiert, die

die Störungsenergie zweiter Ordnung mittels des Verfahrens der konjugierten
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Gradienten minimiert. Aus den hierdurch erhaltenen elektronischen Strö-

me lassen sich die Werte des induzierten inhomogenen Magnetfeldes an den

Aufenthaltsorten der Kernspins errechnen. Diese Werte wiederum sind gleich-

zeitig die gesuchten chemischen Verschiebungen.

Zunächst werden im Hauptteil dieser Arbeit die chemischen Verschiebun-

gen für eine Reihe von repräsentativen kleinen organischen Molekülen vor-

gestellt, die hauptsächlich zum Test und Vergleich der Methode mit bereits

existierenden Verfahren gedacht sind. Weiterhin wird die Berechnung zweier

einfacher unendlicher Polymerketten und des Diamantkristalls vorgestellt,

die insbesondere als Testfälle für tatsächlich unendlich periodische Systeme

gedacht sind. Dabei wird gezeigt, welche Genauigkeit die beschriebene Imple-

mentierung erreichen kann und wo ihre Grenzen liegen. Auch wenn die hohe

Präzision von modernen quantenchemischen Rechnungen nicht erreicht wird,

so ist mit der hier vorgestellten Methode durchaus eine sinnvolle Vorher-

sage der Resonanzlinien möglich. Dabei sind Trends typischerweise deutlich

besser voraussagbar als absolute Werte.

Im weiteren wird die Methode auf mehrere große Systeme vorgestellt,

deren Analyse Gegenstand aktueller Forschung ist und die bislang nur un-

zureichend verstanden sind. Insbesondere ist dies die Bestimmung des Pro-

tonierungszustandes des aktiven Zentrums der HIV-1-Protease. In einem

funktionsfähigen AIDS-Virus arbeitet diese Protease als Schere für Polypep-

tid-Segmente und ist in dieser Funktion für den Metabolismus des Virus von

essentieller Bedeutung. Vor einigen Jahren wurde festgestellt, daß die An-

wesenheit eines Pepstatin-Moleküls die Funktionsfähigkeit der Protease be-

einträchtigt, so daß fortan nur noch unfertige HIV-Viren hergestellt werden,
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die nicht mehr infektiös sind.

Um aus dieser Erkenntnis eventuell vermehrungshemmende Medikamente

herstellen zu können, ist die Kenntnis der Funktion dieses Pepstatin-Inhibi-

tors an der Schneidstelle der Protease von fundamentaler Bedeutung. Auf-

grund des gemessenen 13C-NMR-Spektrums wurde vor kurzem eine bestimm-

te geometrische Anordnung für den Komplex vorgeschlagen, die sich jedoch

in der Computersimulation als instabil erweist. Sie entwickelt sich zu einer

Konfiguration, deren berechnete NMR-Linien nicht die experimentell gefun-

dene Charakteristik aufweisen. Stattdessen wird eine alternative Geometrie

vorgestellt, die zeitlich stabil ist und deren simulierte chemische Verschiebung

gut zum tatsächlichen Spektrum paßt. An diesem Beispiel wird gezeigt,

wie fruchtbar die Verbindung von numerischer Theorie und experimentellen

Meßverfahren durch die neu entwickelte Berechnungsmethode sein kann.

Schließlich wird noch ein weiteres System vorgestellt werden, daß durch

die Berechnung von chemischen Verschiebungen analysiert werden kann. Un-

ter Standardbedingungen liegt Wasser in der flüssigen Phase vor, und stellt

eines der wichtigsten – wenn nicht das wichtigste – polare Lösungsmittel in

Biologie und Chemie dar. Unter hohem Druck und hoher Temperatur, jen-

seits des kritischen Punktes, zeigt Wasser jedoch gänzlich neue Eigenschaften.

Insbesondere ist es in der Lage, organische Abfälle zu oxidieren. Diese und

andere Eigenschaften haben diese überkritische Phase zum Gegenstand ak-

tueller Forschung gemacht. Das besondere an Wasser ist sein ausgeprägtes

Netzwerk aus Wasserstoffbrückenbindungen. Diese Brücken beeinflussen die

chemische Verschiebung ganz wesentlich, weshalb sich hier die Untersuchung

mit der oben vorgestellten Methode anbietet. Im Ergebnis kann gezeigt wer-
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den, daß die Molekulardynamiksimulationen in Verbindung mit der Berech-

nung der chemischen Verschiebungen die experimentellen Spektren sehr gut

reproduzieren können und so ein tiefgreifendes Verständnis der Vorgänge in

überkritischem Wasser ermöglichen.

Zusammenfassend läßt sich sagen, daß mit Hilfe der vorliegenden Arbeit

eine effiziente Berechnung der magnetischen Suszeptibilität sowie der NMR

chemischen Verschiebungen von nichtmetallischen Systemen unter periodi-

schen Randbedingungen möglich ist. Die experimentellen Spektren werden

mit guter Genauigkeit reproduziert, was wesentlich zu deren Interpretation

beitragen kann.
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2 Introduction

In the past, the determination and prediction of the properties of matter by

means of parameter-free calculations of the electronic structure (ab initio) has

turned out to be a key tool of condensed matter science. The investigation

of structural and dynamical properties in physics and chemistry can now

be done with the help of various computer program packages which have

emerged from this domain. Isolated molecules in the gas phase as well as

extended solids can be described very accurately on a microscopic scale.

For this reason, the development of methods in the framework of ab initio

calculations is of great scientific interest. This interest comes both from

the theoretical and from the experimental side, since scientists from either

direction can improve their understanding of the processes that determine the

macroscopic behavior of matter. In particular, a lot of emphasis has been

attributed in the past to the development of methods that are suited to model

the dynamical evolution of large disordered systems at finite temperature,

such as liquids and amorphous solids. Unfortunately, the high numerical

precision that can be used for the analysis of small systems is unaffordable

and often impossible to achieve when it comes to the calculation of more

complex structures. In particular, the evaluation of statistical averages can

represent a prohibitive computational cost. Often, in order to treat such

systems, a compromise must be found between accuracy and efficiency of the

calculation. This can be done by means of approximate theories, which can

nevertheless be shown to produce reliable results.

In this context, density functional theory (DFT) as developed by Hohen-

berg and Kohn [1] in the formulation of Kohn and Sham [2] has become
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the state-of-the-art approach for extended systems. The key point of the

Hohenberg–Kohn theorem is that the electronic ground state of any sys-

tem can be represented by its electronic density alone. This provides a way

to calculate physical observables of a variety of systems without having to

construct the whole electronic many-body wavefunction, which is computa-

tionally a very expensive task. However, while this theory is in principle

exact, it is not possible to write down analytically the form of the equations

to be solved. The kinetic energy and the exchange and correlation functional

cannot be expressed directly as a functional of the density. Here, several

approximations must be made in order to obtain a practical scheme.

The Kohn–Sham formulation provides a way to map the system of in-

teracting particles to an ensemble of electrons which only interact through

their total density. The approach yields a system of equations describing

non-interacting particles within a potential created by the electronic density.

This system of equations must be solved self-consistently in order to obtain

the electronic density in the ground state. Again, in these equations, the

exchange and correlation term cannot be stated explicitly; it has to be ap-

proximated by appropriate expressions. In the last decades, there have been

several attempts to find an optimal functional in the framework of the gener-

alized gradient approximation, and this point is presently still an active field

of research. But already with the functionals developed up to now, many

ground state properties can be calculated to a very good accuracy with the

Kohn–Sham formulation of density functional theory.

The study of dynamically evolving systems which sample a large phase

space requires the combination of the electronic structure calculation with a
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scheme that provides the equations of motion of the nuclei in the field created

by all the other nuclei and the electrons. A particularly efficient approach to

combine the nuclear motion with the solution of the Kohn–Sham equations

has been developed by Car and Parrinello [3]. This method has proven to

be very successful for the investigation of many processes that happen on

the timescale of a few picoseconds, such as many transport phenomena and

also some chemical reactions. The possibility of simulating such processes

has been a breakthrough in computational physics and chemistry.

Examples of physically interesting quantities like X-ray diffraction, neu-

tron scattering, Raman scattering and chemical shifts can provide a deep

insight into the physics and the chemistry of the considered systems. How-

ever, the experimental results can be difficult to interpret if the systems are

very complex. In these cases, a comparison with computed values can help

in assigning experimental features and explaining their microscopic origin.

Hence, computational physics and chemistry can serve as a powerful bridge

between experiment and theory.

In this thesis, a new method shall be presented which allows the calcu-

lation of nuclear magnetic resonance (NMR) chemical shifts and magnetic

susceptibilities in periodic systems. Nuclear magnetic resonance is one of the

most powerful experimental methods in structural chemistry. The quantities

extracted from NMR spectra, in particular chemical shifts, are widely used

to characterize the chemical environment of individual atoms. Coordination

numbers, bond types and even bonding distances and angles can be obtained

by analyzing the resonance lines of the nuclear spins. Many empirical rules

exist to relate chemical shifts to these properties, and they often provide very



22 2 INTRODUCTION

useful information. However, when the geometric configuration becomes too

complicated, these rules are not applicable any more, and the only way to

unambiguously interpret experimental spectra are ab initio calculations.

The fundamental mechanism of nuclear magnetic resonance is the inter-

action of the electrons with an external strong magnetic field. The field

perturbs the electronic wavefunction in such a way that ring currents are

induced in the system. These currents produce an additional magnetic field,

which is superimposed to the external one. The induced field is much weaker,

but in contrast to the external one, it is spatially inhomogeneous. It depends

very sensitively on the electronic structure of the system. Therefore, the val-

ues of the total magnetic field at the positions of non-equivalent nuclei are

different.

A nucleus which has a non-zero spin has several energetically different

states in a magnetic field, depending on the spin quantum number Iz. The

energy difference between those levels is proportional to the strength of the

field at the position of the nucleus and can be measured by absorption spec-

troscopy of radio frequency pulses. Thus, by means of the induced currents

and the particular field they create, the electronic structure determines the

nuclear absorption frequency. This quantity is experimentally accessible with

a very high precision.

Due to this precision and the amount of information that can be extracted

from more sophisticated experimental setups, nuclear magnetic resonance

has become a very important standardized analysis tool in chemistry. In the

course of time, the experimental apparatus has been improved enormously

and new analysis tools have been developed. The simplest possible measure-
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ment, the continuous-wave technique, consists of varying the radio frequency

until resonance occurs. This method is nowadays replaced by Fourier spec-

troscopy, which probes a large range of resonance frequencies at once. Fur-

ther, there are techniques such as Magic-Angle Spinning which can partly

suppress direct dipolar interactions between nuclear spins, which give rise to

an undesired broadening of the NMR resonance lines. These techniques are

well-established and routinely used in structural chemistry.

On the theoretical side, various methods have been developed to predict

the NMR resonance lines of molecules by quantum chemical calculations with

a very high accuracy. Nowadays, there are several methods implemented in

various computer packages which are able to determine chemical shifts of

most nuclei in a well-defined environment of typically one hundred atoms at

maximum. In these programs, it is assumed that the system is in the gas

phase.

Many other physical processes and chemical reactions, however, take place

in condensed matter, such as solutions, polymers, and amorphous and crys-

talline phases. For instance, the properties of biologically relevant systems

and many industrially important processes crucially depend on the presence

of water as a solvent. Hence, it would be a non-realistic approximation to

calculate those systems statically and in vacuum, neglecting that they are

normally in a very complex environment. In an isolated cluster of atoms,

the energetics and hence the dynamical evolution is dominated by surface ef-

fects, which are absent in condensed matter. This can yield to a completely

different behavior.

In many of these cases, the alternative description of the system by means
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of periodic boundary conditions turns out to be more reliable. To this pur-

pose, the whole system is thought to have a certain periodicity in space. It

can then be described by the information contained in one elementary unit

cell only, supposing this cell has the appropriate dimensions. The unit cell

contains the minimum information necessary to reconstruct the whole system

and can be taken at an arbitrary position. In the computer simulation, all

electronic and atomic interactions and properties are then calculated under

the assumption that the unit cell is infinitely repeated in each direction of

space. In nature, such a periodicity never occurs. However, if the typical

correlation length of the particles is smaller than the size of the unit cell,

this artificial periodicity has only little impact on the physical behavior of

the system. In addition, this can easily be verified by increasing the cell size

and comparing whether the properties of the system change.

Many experimentally accessible quantities of condensed matter can be

calculated by adopting periodic boundary conditions. The calculation of or-

bital magnetic properties like magnetic susceptibilities and NMR chemical

shifts, however, turns out to be more difficult. The fundamental problem

is related to the position operator which appears explicitly in the quantum

formulation of the interaction of the magnetic field with the electrons. This

operator is not well-defined in an infinitely repeated periodic system, since

it is different in every image of the cell. During the last years, a solution

has been found for the problem of representing the expectation value of the

position operator in periodic systems in terms of the Berry phase [6]. Un-

fortunately, this theory cannot help to define the position operator properly,

but only its expectation value.
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However, it has been shown recently by Mauri and Louie [5] that it is ac-

tually possible to calculate electronic magnetic response in periodic systems.

In their approach, the problem of the application of the explicit position

operator is circumvented by assuming that the magnetic field is not homoge-

neous, as in reality, but modulated with a small but finite wavevector. This

transforms the explicit position operator into a periodic one with the wave-

length of this modulation, which can thus be treated properly. To return to

the experimental situation of a spatially constant field, the limit of infinite

modulation wavelength is evaluated.

This method has several drawbacks. The choice of the modulation vec-

tor, although being crucial for the success of the calculation, is not unique.

In principle, a convergence test would have to be done for each calculation

in order to ensure that the limit of infinite wavelength is actually reached.

Further, this modulation wavelength is typically different from the unit cell

size. Thus, to describe the electronic orbitals properly, an accurate sam-

pling of the Brillouin zone is required. The use of the Γ-point (k = 0) only

is not sufficient any more in this case. This sampling induces first an ad-

ditional computational overhead due to the additional k-points considered,

and secondly, a calculation at k �= 0 implies that the electronic wavefunctions

cannot be chosen as purely real any more. This again doubles the number of

operations.

In this thesis, an alternative method is developed and implemented in a

DFT-pseudopotential based plane-wave code, and finally applied to a variety

of systems.

The problems that arise from the position operator are solved by a differ-
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ent method: Instead of modulating the magnetic field, the position operator

is redefined in a periodic way. This induces a non-physical shape of the new

operator, and requires it to be applied to spatially confined electronic wave-

functions. The latter can be achieved by a well-established localization pro-

cedure. By means of this representation of the electronic structure, the effect

of an external magnetic field on the electronic wavefunctions within periodic

boundary conditions can be calculated directly, without the assumption of

a modulated field. By adopting an additional particular approximation, the

calculation becomes significantly more efficient than the previous method.

The new approach is realized in the framework of a variational density

functional perturbation scheme, implemented in a state-of-the-art DFT code.

The magnetic response is obtained by a computationally optimized mini-

mization procedure which is based on the variational principle for the second

order energy functional. The actual minimization uses the method of con-

jugate gradients to speed up its convergence and returns the wavefunction

correction in the presence of the magnetic field. After evaluation of the in-

duced electronic currents, their additional magnetic field is determined as

a periodic response to the external perturbative field, yielding directly the

chemical shift values for all nuclei in the system.

First test calculations on small organic molecules in the gas phase are

presented to validate both the approach and the implementation, and a sim-

ple infinite polymer chain serves to test the extension to a periodic system.

Various tests and convergence series are performed in order to investigate the

behavior of the code and to determine the accuracy in different regimes. It is

shown that the new method delivers reliable results, although the precision
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of quantum chemical calculations is evidently not reached. However, trends

and tendencies are reproduced with a good precision that enables the unique

distinction of individual atoms in many systems.

Further, the method is applied to a variety of systems of practical interest.

In particular, the protonation state of the cleavage site of the HIV-1 protease

in the presence of a pepstatin molecule, is determined by analyzing its NMR

chemical shift during an ab initio molecular dynamics simulation. This part

of the protease of the human immunodeficiency virus is responsible for cutting

polypeptide segments. It was discovered a few years ago that the inhibition of

this site by binding it to pepstatin leads to the production of immature, non-

infectious viral particles. For this reason, the analysis of this complex, and

in particular its protonation state, is important for the design of anti-AIDS

drugs. From the experimental NMR spectrum of the complex, a particular

configuration was proposed. Upon investigation of this suggestion and also

several alternative geometries in an aequous environment, it is shown that the

structure proposed experimentally is not stable and evolves towards another

one whose nuclear resonance lines disagree with experiment. Instead, an

alternative configuration turns out to be energetically stable and to reproduce

the experimental carbon NMR shifts.

Finally, the calculation of the time-averaged hydrogen chemical shift in

liquid water under normal and supercritical conditions is presented. A de-

tailed analysis of the change in the distributions of the individual instanta-

neous resonance lines provides a deep insight into the nature of the hydrogen

bond network of water under these conditions. In comparison to experiment,

it can also be used to show the validity of the simulated trajectories of the
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water systems and can thus help to improve the computational setup of the

simulation.

In conclusion, the results provided by the new approach agree well with

existing calculations and with experiment. Hence, the method presented in

this work can help to describe those systems with a good accuracy and a low

computational effort.
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3 Density functional theory

3.1 General

In the following sections, the general theory for the quantum mechanical

description of matter that is used in this work will be presented.

When it comes to the actual calculation of the properties of matter

through a numerical description of the atoms and electrons, a theoretical

framework is needed to represent them in a suitable way. In this work,

the density functional theory (DFT) approach in combination with gradient

corrected exchange correlation energy functionals is chosen [1, 2, 7, 8]. A

pseudopotential plane wave representation of the electronic structure is used

in the frozen core approximation. This allows the efficient calculation of large

systems and, in combination with molecular dynamics, good statistical sam-

pling. It constitutes the fundamental concept underlying all the calculations

done lateron, thus justifying that it be described in detail in this section.

The starting point is the basic equation of quantum theory, the Schrödinger

equation, which is then transformed to simplified formulations that can be

treated by computer programs. Then, several additional approximations are

introduced, which need to be used in order to lower the consumption of com-

putational resources. Finally, the details of the implementation that is used

for this work are explained.
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3.2 Born Oppenheimer approximation

The Schrödinger equation for a system containing n electrons and N nuclei

has the form of an eigenvalue problem:

HΨ(r1, .., rn,R1, ..RN) = EΨ(r1, .., rn,R1, ..RN), (1)

with the eigenvalue E of the many body Hamiltonian operator H, given in

atomic units by:

H =
∑
i

−1

2
∇2

i +
∑
I

− 1

2MI
∇2

I +
1

2

∑
i �=j

1

|ri − rj |
+

1

2

∑
I �=J

QIQJ

|RI −RJ |
−

∑
iI

QI

|ri −RI |
. (2)

Note that in this Hamiltonian, ri and RI designate the position operators

acting on the indicated electronic particles i and the nucleis I, respectively.

MI and QI are the masses and charges of the nuclei in atomic units. Elec-

tronic charge and mass as well as h̄ are all equal to one in this system of

units.

The Born Oppenheimer (BO) approximation [8, 9] is based on the fact

that the mass of the ions is much larger than the mass of the electrons. This

implies that the typical electronic velocities are much larger than the ionic

ones, and that by consequence, the dynamical evolution can be decoupled.

Energetically, the decoupling corresponds to a separation of the spectra in

such a way that the electrons are practically always in their instantaneous

ground state. The total wavefunction is therefore written as the product of

the nuclear and electronic parts:

Ψ(r1, . . . , rn,R1, . . . ,RN) = Ψel
R1,...,RN

(r1, . . . , rn)Ψi(R1, . . . ,RN) (3)
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where the electronic wavefunction Ψel
R1,...,RN

(r1, . . . , rn) parametrically de-

pends on the ionic position variables. In most cases, this approximation

turns out to be justified.

Formally, this adiabatic behaviour leads to separating the Schrödinger

Equation (1) into two decoupled equations: the time-independent Schrödinger

equation of the electrons in the constant field of the fixed nuclei, and the

time-dependent Newton-like equation of movement for the nuclei. A further

approximation is to treat the nuclei like classical particles, so that in the end,

the nuclear position operators can all be turned into position variables. The

quantum effects are then limited to the electronic wavefunctions, which obey

a simpler Schrödinger equation:

HelΨel
R1,...,RN

(r1, . . . , rn) = Eel
R1,...,RN

Ψel
R1,...,RN

(r1, . . . , rn) (4)

with

Hel =
∑
i

−1

2
∇2

i +
1

2

∑
i �=j

1

|ri − rj |
−
∑
iI

QI

|ri −RI |
. (5)

This also allows to replace the interaction between nuclei and electrons, the

last term in Eq. (5), by a generalized external potential vext(r):

Hel =
∑
i

−1

2
∇2

i +
1

2

∑
i �=j

1

|ri − rj|
+
∑
i

vext(ri). (6)

3.3 Many-body electronic wave function

The exact quantum mechanical treatment of systems consisting of nuclei and

electrons is not possible at present, even within the BO approximation, and

independently of the system size. A simple analysis of the complexity of the
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problem shows that its computational requirements are prohibitive. Also in

the foreseeable future, such calculations will very probably be impossible.

One of the simplest systems that one can assume to be a representative

example for a practical calculation is a single isolated atom, for instance the

neon atom. As a first simplification, only the electronic wavefunction shall

be described as a system of ten particles. The electronic wavefunction has

the form

Ψ(r1, r2, . . . , r10) (7)

where ri are the position variables of the electrons. For simplicity, this wave-

function shall be described on a real space grid of only ten points per axis,

and the values of Ψ on this mesh are assumed to be representable by numbers

requiring ten bytes of storage capacity. The various simplifications that can

be made thanks to the symmetry of this particular system shall not be taken

into account, as these symmetries can easily be broken.

The storage requirements of the wavefunction for this isolated system are

then

10
bytes

point
×
(

10
points

axis

)3axis×10particles
= 1031 bytes. (8)

This number of bytes needs to be stored in order to represent the wave-

function of the ten electrons. Assuming heuristically that a DVD disc has a

theoretical storage capacity of 10 Gigabytes = 1010 bytes, one needs a total

of 1021 DVD discs for the storage. With a weight of ten grams per DVD,

the total weight of those discs is 1016 tons. A heavy truck can carry less

than 100 tons of weight, so that more than 1014 trucks are needed to carry

the DVDs to the computer that is responsible for the calculation. If these
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trucks are ten meters long, the distance of 1015m or 1012km is equivalent to

ten thousand times the distance between the sun and the planet on which

this work has been done.

This little example makes evident that an exact solution of the quan-

tum many body problem is not feasible. Therefore, many concepts have

been developed to overcome the complexity of the problem and to introduce

physically reasonable simplifications.

Fortunately, it turns out that the use of several approximations still re-

produces the experimental results with a good accuracy. Only these ap-

proximations make numerical calculations affordable. In this chapter, one of

the currently most popular theories shall be described in detail. It basically

consists of taking the electronic density instead of the wavefunction as the

fundamental variable, thus reducing the degrees of freedom drastically.

The BO approximation provides a way to separate the ionic degrees of

freedom from the electronic ones. The additional simplifications and approxi-

mations are necessary to describe the electrons numerically therefore concern

the Schrödinger equation (1) only.

Several branches of approaches exist for the simplification of the Hamil-

tonian in Eq. (1).

Quantum chemistry methods are based on the fact that any antisymmet-

ric many-electron wavefunction can be written as a sum of Slater determi-

nants of atomic basis functions. The simplest method is just to take one

determinant, built from the occupied states of the atom. This is called the

Hartree-Fock wavefunction.

When not only considering occupied, but also unoccupied or virtual
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atomic orbitals, one can increase the accuracy of the method. The size of the

set of atomic orbitals used in the determinants characterizes the level of pre-

cision of these methods: configuration interaction [10], multi-configuration

Hartree-Fock [11], multi-reference configuration interaction [12] and the cou-

pled cluster methods [13, 14, 15] belong to this category and are nowadays

routinely used to calculate molecular properties. Their accuracy is very high,

and especially the coupled cluster approach can actually compete with ex-

periment.

In the configuration interaction method, the wavefunction is a linear com-

bination of Slater determinants constructed from occupied and virtual atomic

basis functions, and the linear coefficients are varied to find the minimum

of the total energy. In the limit of a complete atomic basis, the configu-

ration interaction approaches yield the correct solution of the Schrödinger

equation. In practice, the basis set is truncated after a few excited states. In

the multi configuration configuration interaction method, not only the linear

coefficients of the determinants, but also the orbital coefficients of the un-

derlying atomic basis orbitals within each determinant are varied to find the

minimum energy. This procedure basically speeds up the convergence with

respect to the simple configuration interaction scheme. Another approach

is the so-called Møller-Plesset perturbation theory (MP2), where the wave-

function contributions from excited states are taken into account through

a perturbation theory calculation, starting with the standard Hartree-Fock

determinants.

The disadvantage common to all these approaches is that they have a rel-

atively high computational cost and are therefore restricted to small systems.
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The definition of small changes in time, but the scaling of these methods with

the system size is such that at a reasonable expense, only systems with less

than roughly hundred atoms can be treated.

Density functional theory (DFT) is conceptually different from the previ-

ous approaches. In this method, the large-dimensional many body problem

of interacting electrons is transformed into a system of equations of indepen-

dent electrons. This method is described in detail in the following sections.

It shall be noted here that in the following, DFT will be used as a synonym

for ground state DFT. It has turned out that DFT is able to treat excited

states as well [8], even though its results need to be used with more care.

However, in this work, only the electronic ground state shall be considered.

3.4 Hohenberg Kohn theorems

Density functional theory is essentially based on two theorems by Hohenberg

and Kohn [1]. The first one states:

The all electron many body ground state wavefunction Ψ(r1, . . . , rn)

of a system of n interacting electrons is a unique functional of the

electronic density n(r).

Ψ(r1, . . . , rn) = Ψ[n(r)](r1, . . . , rn) (9)

n(r) = |Ψ(r, . . . , r)|2 (10)

The immediate consequence of this theorem is that all physically measurable

quantities based on the electronic structure are in fact unique functionals of

the electronic ground state density alone. Note that in general, there is no

closed expression for these functionals.
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The proof of this theorem is based on the variational Ritz principle: The

wavefunction which minimizes the energy functional, i.e. the expectation

value of the Hamiltonian, is the ground state solution of the Schrödinger

equation.

In Eq. (5), the electronic Hamiltonian is completely determined by the

Coulomb potential of the nuclei, which can be generalized to a universal

external potential v(r). The all electron wavefunction being well defined

through the variational principle from this fixed Hamiltonian, it follows that

this wavefunction is a functional of this external potential. Thus, the Hohen-

berg Kohn theorem as stated above is equivalent to saying that the ground

state electronic density determines the external potential. It shall be noted

here that this external potential has nothing to do with the Coulomb po-

tential the electronic density creates by itself, this interaction is taken into

account by the second term in Eq. (5).

Assume there were two external potentials v and v ′ differing by more

than a constant and leading to the same ground state density n. This den-

sity would be obtained through the solutions Ψ and Ψ′ determined from the

variational principle of the corresponding Hamiltonians H and H′, respec-

tively. Then, the following inequalities hold:

E0 = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 (11)

E′
0 = 〈Ψ′|H′|Ψ′〉 < 〈Ψ|H′|Ψ〉 (12)
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Adding Eq. (11) to Eq. (12) yields

E0 + E′
0 < 〈Ψ′|H|Ψ′〉+ 〈Ψ|H′|Ψ〉

= 〈Ψ′|H′|Ψ′〉+ 〈Ψ′|H −H′|Ψ′〉

+〈Ψ|H|Ψ〉+ 〈Ψ|H′ −H|Ψ〉

0 < 〈Ψ′|H −H′|Ψ′〉+ 〈Ψ|H′ −H|Ψ〉. (13)

But since the difference of the two Hamiltonians in Eq. (13) is equal to the

difference of their external potentials, this becomes:

0 < 〈Ψ′|v − v ′|Ψ′〉+ 〈Ψ|v ′ − v |Ψ〉. (14)

This external potential, however, is a local operator, so that it can be ex-

pressed as a simple integral:

0 <

∫
d3r [v(r)− v ′(r)] |Ψ′|2(r) + [v ′(r)− v(r)] |Ψ|2(r). (15)

But since the two solutions Ψ and Ψ′ were supposed to give the same elec-

tronic density, |Ψ′|2(r) = |Ψ|2(r) and the right hand side of Eq. (15) vanishes

and the inequality results in a contradiction

0 < 0. (16)

Therefore, there cannot be two external potentials that yield the same elec-

tronic density. Or, in other words, a given electronic density can be uniquely

assigned to one external potential.

In this theorem, it is important to note that it can not be applied to

any arbitrary density. Only densities that result from the solution Ψ of

the true Schrödinger equation by Eq. 10) can be assigned to the originating
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external potential. If a density can be obtained this way, it is said to be

v -representable.

The second Hohenberg Kohn theorem is essentially a minimum principle

for the density. In contrast to the ordinary variational principle, which is

formulated only with respect to the wavefunctions in combination with the

energy functional, it states:

For all v -representable densities n, the one that minimizes the

energy functional with a given external potential is the ground

state density, i.e. the density which corresponds to the solution

of the Schrödinger equation.

The proof is a direct consequence of the first theorem and the ordinary varia-

tional principle: Given the external potential, the solution of the Schrödinger

equation is obtained from the minimization of the energy functional with re-

spect to the electronic wavefunction. All v -representable densities that differ

from the ground state one can be assigned an originating wavefunction that

differs from the variational one. Thus, the energy functional is not minimum

for all of them.

The important drawback of this theorem is that it is only valid for v -

representable densities. It is still a problem up to now that not every trial

density has this property, so that by simple minimization of the energy func-

tional, a non physical (not v -representable) density could be found.

Fortunately, it turns out that only a weaker condition needs to be imposed

on the density [8], assuring practical usefulness of the Hohenberg Kohn the-

orems. A detailed discussion of this theoretical aspect, however, is out of the

scope of this work.
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3.5 Kohn Sham equations

The Hohenberg Kohn theorems show that it is possible in principle to calcu-

late all quantities of physical interest from the electronic density alone. The

remaining problem, how to find this density in practice, is more involved

than it seems at first glance. In terms of wavefunctions, the total electronic

energy is given by the expectation value of the Hamiltonian, Eq. (5):

Eel = Etot[Ψ] =

〈
Ψ

∣∣∣∣∣
∑
i

−1

2
∇2

i +
1

2

∑
i �=j

1

|ri − rj|
+
∑
i

vext(ri)

∣∣∣∣∣Ψ
〉
.(17)

Here and in the following, calligraphic letters shall indicate a functional,

whereas arabic ones designate a scalar quantity. There are no closed expres-

sions to calculate the first two parts of the total energy directly from the

electronic density only. In order to turn DFT into a practical tool for real

calculations, Kohn and Sham [2] proposed an indirect approach to this func-

tional. They introduce a fictitious parallel system of independent electrons

that do not interact.

The idea is to define a new functional subtracting from Eq. (17) several

terms calculated from the wave function of a non interacting gas of electrons

with the same density as would have the exact solution of interacting parti-

cles. Let |ϕi〉 be the single particle wavefunctions of the independent electron

gas. Its kinetic energy and density are:

T [ϕ] = −1

2

∑
i

〈ϕi|∇2|ϕi〉 (18)

n(r) = |ϕi(r)|2. (19)

This density is by construction equal to the one created by the interacting

electrons. If this density was a classical charge distribution, its interaction
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energy would be:

EH[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| . (20)

EH [n] is called he Hartree energy of the system. Finally, the interaction with

the external potential remains:

Eext[n] =

∫
d3r vext(r)n(r) (21)

Thus, the Kohn Sham energy functional of the fictitious non interacting

system is:

EKS[n] = T [ϕ[n(r)]] + EH[n] + Eext[n]. (22)

When substituting T , EH and Eext in the energy functional of the interact-

ing system, an error is introduced, even when assuming identical electronic

densities. It contains all the many body effects, and it cannot be treated

in an exact way. This difference between the correct functional and the one

which can be computed, EKS, is known as the exchange-correlation functional

Exc of the system. Formally, it is given by the difference between Eq. (17)

and Eq. (22):

Exc[n] = Etot[n]− EKS[n]. (23)

If this functional was known, one would be able to compute the the ground

state density at fixed external potential by minimizing the total energy EKS+

Exc. Since this is not the case, approximations have to be adopted for Exc.

They are discussed in the next section.

The minimization of the functional must be done requiring the electronic

wavefunctions be orthonormal to each other:

〈ϕi|ϕj〉 = δ ij ∀i, j. (24)
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This is achieved by a Lagrange multiplier method [16] in combination with

the stationarity condition for the energy functional:

δ

δ ϕi(r)
(EKS + Exc) = 0. (25)

This technique yields the Kohn Sham equations, which read:[
−1

2
∇2 + vH(r) + vxc(r) + vext(r)

]
ϕi(r) = ε i ϕi(r). (26)

Here, ε i are the eigenvalues of the KS Hamiltonian and the potentials are

the derivatives of the corresponding energy functionals with respect to the

density:

vH(r) =
δ

δ n(r)
EH[n] =

∫
d3r′

n(r′)
|r− r′| (27)

vxc(r) =
δ

δ n(r)
Exc[n] (28)

vext(r) =
δ

δ n(r)
Eext[n] =

∑
I

QI

|r−RI |
(29)

Since these potentials still depend on the density, Eq. (26) has to be solved

self-consistently. For a density computed from a set of trial wavefunctions,

the potentials are calculated, and inserted in (26). Then, a better set of trial

wavefunctions is obtained and the procedure is repeated until no changes in

the orbitals and the density occur any more.

At first sight, this single particle formulation due to Kohn and Sham

has some similarity with a mean-field approach: the independent electrons

move in the electrostatic field created by themselves and by the nuclei. How-

ever, all the many body effects are taken into account through the exchange-

correlation functional, even if there is no straightforward way to write down

this functional. Hence, the notion of a mean-field theory in terms of neglect-

ing correlation and exchange effects is not correct.
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3.6 Local Density Approximation

As already mentioned, DFT is formally an exact theory, but the difficulties

related to the many body nature of the Schrödinger equation have only been

reformulated in the exchange-correlation energy functional. To proceed to a

practical calculation, an approximation has to be found for this expression.

Even if nowadays, there is a tendency towards more elaborated theories, the

most common one is the local density approximation (LDA) which yields

good results in a large number of systems and which is still used in ab initio

calculations [17, 7].

In this approximation, the exchange-correlation energy functional is cho-

sen to have the same formal expression as has the one of a uniform electron

gas with the same density:

ELDAxc =

∫
d3r εxc(n(r))n(r), (30)

where the function εxc(n(r)) depends locally on the density at the position

r. This function has been calculated through a Monte Carlo simulation [18],

providing the total energy of the ground state of a homogeneous interacting

electron gas. This data, which was obtained for several densities, has been

parametrized [19], yielding a function usuable in Eq. (30).

Considering the way this approximation has been obtained, it is obvious

that for a uniform system, it is exact. Further, it is expected to be still

valid for a slowly varying electronic density. In other cases, its behaviour

is not well controlled. It is used anyhow, mainly because of its ability to

reproduce experimental ground state properties of many systems. Although

there is no direct proof why it works correctly, it turns out that LDA can
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successfully deal with atoms, molecules, clusters, surfaces and interfaces.

Even for dynamical processes like the phonon dispersion, it has been shown

to yield good results [20, 21]. However, in the course of time, many systems

have been found that are incorrectly described by LDA. The most popular

examples of this class are dielectric constants and related quantities, as well

as weak bonds, in particular hydrogen bonds. In the field of metals, the

ground state structure of crystalline iron is predicted to be paramagnetic fcc

instead of ferromagnetic bcc [22].

3.7 Gradient Corrections

Various approximations have been introduced in the course of the years to

improve the local density approximation, but none of them has yet been

generally accepted as being “the best”. In this chapter, a class of gradient

corrected (GC) functionals shall be presented that can in many situations

significantly increase the accuracy of DFT calculations. These functionals

assume that the exchange correlation energy does not only depend on the

density, but also on its spatial derivative:

Exc[n,∇n] =

∫
d3r εxc[n(r),∇n(r)] n(r) (31)

Whether gradient corrections are an improvement over LDA or not is still

under debate. In the past the years several GC functional were introduced

and their properties were studied. In particular the description of the hydro-

gen bond, which plays a very important role in the systems investigated in

this work, is well achieved using the exchange functional of Becke [23] and

the correlation functional of Lee, Yang, and Parr [24] (BLYP), as discussed
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in ref. [25]. Their form of the exchange correlation function is:

εxc = εxc[n(r),∇n(r)]

= −
(
CX + β

x[n]2

1 + 6β sinh−1 x[n]

)
n1/3

−a
1 + b n−5/3

[
CF n

5/3 − 21
9
tW [n] + 1

18
∇2n

]
e−c n−1/3

1 + d n−1/3
(32)

x[n] =
|∇n|
n4/3

(33)

tW [n] =
1

8

|∇n|2
n

− 1

8
∇2n (34)

where for simplicity, an implicit dependence n ≡ n(r) is assumed. The

parameters CX , CF , β, a, b , c, d are chosen in such a way that to fit the known

exchange-correlation energy of selected atoms in their ground state.

3.8 Pseudopotential approximation

The Kohn Sham equations, Eq. (17), can be solved expanding the KS orb-

tials in a complete set of known basis functions. Among the various existing

possibilities, only the plane wave (PW) basis set shall be discussed in further

detail. When describing a periodic system, they have invaluable numerical

advantages, besides their conceptual simplicity. PWs allow a simple inte-

gration of the Poisson equation for the calculation of the Hartree potential,

Eq. (20), and for the calculation of the kinetic energy expression, Eq. (18).

Due to the large oscillations of the core orbitals in the neighborhood of

the atoms, plane waves cannot be used directly in the Kohn Sham formalism,

Eq. (26). These oscillations would require an enormous basis set size to be

described with acceptable resolution. However, the total energies associated

with the core orbitals are several orders of magnitude larger than those of
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the valence band wavefunctions. Further, chemical reactions involve exclu-

sively the valence electrons which are relatively far away from the nuclei. In

contrast to this, the core electrons remain almost unaffected by the chem-

ical bonding situation. They can be approximated to be “frozen” in their

core configurations. This approximation considerably simplifies the task of

solving the Kohn Sham equations, by eliminating all the degrees of freedom

related to the core orbitals.

This process of mapping the core electrons out of Eq. (26) is done by the

introduction of pseudopotentials. In the Hamiltonian, the nuclear potential

is replaced by a new one, whose lowest energies coincide with the energies

of the valence electrons in an all-electron calculation. In addition, this pseu-

dopotential is required to reproduce the shape of the valence wavefunctions

in regions sufficiently far from the nucleus. Close to the nucleus, the strong

oscillations of the valence orbitals due to orthogonality requirements in the

all-electron case are smoothed out.

In a typical pseudopotential, there is an attractive Coulomb term, whose

charge is given by the atomic valence, as well as a short-ranged term, which is

supposed to reproduce the effects of core-valence orthogonality, core-valence

Coulomb interaction, exchange and correlation between core and valence. In

a practical pseudopotential, these requirements are only partially satisfied.

Nevertheless, it turns out that pseudopotentials allow the description of the

valence properties up to a very good accuracy with a reasonable number of

plane waves.

Common pseudopotentials are mostly norm-conserving. This means that

in addition to reproducing the all-electron valence wavefunctions outside a
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certain core radius, the charge of the pseudo-wavefunction inside this core

region is required to be identical to the corresponding charge in an all-electron

calculation. This can be achieved through non-local pseudopotentials of the

form:

V I(r) = V loc
I (r) +

lmax∑
l=0

V nl
I,l(r) Pl (35)

where Pl is a projector on the angular momentum l:

Pl =
m=+l∑
m=−l

|l, m〉〈l, m| (36)

with the spherical harmonics |l, m〉, the eigenfunctions of the angular mo-

mentum operator (L2, L3). The functions V loc
I (r) and V nl

I,l(r) are the local

and nonlocal radial parts of the pseudopotential, respectively, and their con-

crete forms vary. These functions are optimized numerically in such a way

that the criteria mentioned above are best satisfied. Several expressions have

been proposed for V loc
I (r) and V nl

I,l(r) [26, 27, 28, 29, 30].

In general, it turns out that by means of pseudopotentials, the number

of plane waves necessary to obtain physically meaningful valence orbitals is

drastically reduced.

3.9 Plane wave representation

The electronic wavefunction can be represented in terms of basis functions.

There are basically three possibilities for this:

• Localized basis sets have a direct physical meaning, derived from the

atomic orbital picture. Often, radial Gaussians combined with spher-

ical harmonics are used to this purpose. They are commonly used in
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quantum chemistry program packages, since they can be used in all-

electron schemes to increase the overall accuracy.

• Plane waves are more suited for calculations of periodic solids, as they

naturally have the desired periodicity. They have a striking conceptual

simplicity, and the kinetic energy and Coulomb interaction expressions

between them are straightforward to implement. In addition, plane

waves are not attached to the ions, so that moving the latter during

a simulation does not give rise to any Pulay forces [31]. To obtain a

physical picture of the electronic state, they have to be transferred to

direct space or R-space. This can be done very efficiently by using the

Fast Fourier Transformations technique [32].

• Mixed schemes try to combine the advantages of localized basis func-

tions in the regions close to the nuclei with the computationally very

efficient description by plane waves in the interstitial space. Unfor-

tunately, this combination induces an important complication of the

formalism.

In the ab initio code underlying this work, plane waves are used as ba-

sis set. One of their drawbacks is that large oscillations in R-space cannot

be represented easily. Nevertheless, when adopting the pseudopotential ap-

proximation as described above, the description is sufficiently accurate and

provides an efficient method to analyze extended systems, in particular under

periodic boundary conditions.
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The electronic wavefunction in a periodic system can be written according

to Bloch’s theorem [9]:

ψn,k(r) = ϕn,k(r) exp[ik · r], (37)

with a wavevector k, a band index n and a function ϕn,k(r) which is periodic

in space, with the periodicity of the primitive cell:

ϕn,k(r+R) = ϕn,k(r) (38)

for any lattice vector R. In the plane wave representation, this periodic

function can therefore be expanded as:

ϕn,k(r) =
1√
Ω

∑
G

cn,k,G exp[iG · r], (39)

where Ω is the volume of the primitive cell and G are the reciprocal space

vectors. These vectors are characterized through

1

2π
|G ·R| ∈ IN (40)

with IN representing the set of integer numbers and R being any lattice

vector. Thus, Eq. (38) is automatically satisfied. In fact, Eq. (39) is a

discrete complex Fourier series development of the wavefunction ϕn,k. The

coefficients can be obtained by means of the inverse transformation:

cn,k,G =
1√
Ω

∫
Ω

d3r ϕn,k(r) exp[−iG · r]. (41)

In practice, the wavefunction ϕn,k(r) is not known for all points r in space,

but rather on a finite mesh. Thus, the integral in Eq. (41) must be trans-

formed into a discrete sum. This transformation is discussed in detail in

appendix A.
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In the reciprocal space representation, the kinetic energy of an orbital can

be simply written as

Tn = −1

2
〈ϕn,k| ∇2 |ϕn,k〉 (42)

=
1

2Ω

∑
G

|k+G|2 |cn,k|2. (43)

The accuracy of a calculation is determined by the number of plane waves in

the series (39). In practice, this is commonly controlled through a maximum

value for the contribution to the kinetic energy expression, Eq. (43), called

cut-off energy Ec. Only those vectors G are taken into account which satisfy

1

2
|k+G|2 ≤ Ec. (44)

For the calculation of large and disordered nonmetallic systems, it is often

sufficient to consider only one particular value for the wavevector, the Gamma

point k=0. This approximation shall be assumed in the following parts of

this work. Then, the orbitals are only labeled by their band index, n.

3.10 Density functional perturbation theory

The study of the ground state and its properties can provide a lot of in-

formation about the physics of the system. However, many experimentally

accessible quantities are related to second derivatives of the system’s total

ground state energy. As a simple example, vibrational modes in a crystal are

a product of the atomic movement in the harmonic potential of the crystal.

This potential is nothing but the second derivative of the total energy with

respect to the ionic positions.
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The calculation of such quantities is actually possible in the framework of

density functional perturbation theory (DFPT), presented in this chapter. In

standard perturbation theory, a small perturbation operator λH(1) is added

to the Hamiltonian H of a system and its action evaluated. In this work, a

slightly different approach will be presented, using the variational principle

at second order in the framework of DFT [33].

The starting point is the Kohn-Sham density functional, Eq. (22). It can

be rewritten in terms of the density matrix defined by:

ρ (r, r′) =
∑
i,j

= ϕi(r)S
−1
ij ϕj(r

′) (45)

where S−1
ij is the inverse of the overlap matrix Sij = 〈ϕi|ϕj〉. The functional

then reads:

EKS[ρ (r, r′)] =
1

2

∫
dr

∫
dr′δ (r− r′)∇2

rρ (r, r′) (46)

+
1

2

∫
dr
|ρ (r, r′)|2
|r− r′| + Exc[n] + E ext[n], (47)

where the density n is simply

n(r) = ρ (r, r). (48)

To take into account the external perturbation, a perturbation functional of

arbitrary form is added to EKS:

Etot [{|ϕi〉} ] = EKS [{|ϕi〉} ] + λEp [{|ϕi〉} ] . (49)

Here, λ is a small perturbative parameter and represents the strength of the

interaction with the static, but otherwise arbitrarily complex external field

Ep.
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The total functional Eq. (49) will have a minimum which is expanded

perturbatively in powers of λ:

E = E(0) + λE(1) + λ2E(2) + . . . (50)

Similarly, the KS orbitals that minimize Etot can be expanded in λ:

ϕi = ϕ
(0)
i + λϕ

(1)
i + λ2ϕ

(2)
i + ... (51)

To first order, the charge density reads:

n(r) = n(0)(r) + λn(1)(r) + . . . (52)

where

n(1)(r) =

N∑
i=1

ϕ
(0)
i (r)ϕ

(1)
i (r) + ϕ

(1)
i (r)ϕ

(0)
i (r). (53)

The second-order energy of the system which is variational in the first

order perturbation wavefunctions ϕ(1) can now be obtained by expanding

Eq. (49) up to the second power in λ. The calculation yields [33]:

E(2) =
∑
k

[
〈ϕ(1)k |

∂ Ep
[
|ϕ(0)〉

]
∂ 〈ϕk|

+
∂ Ep

[
|ϕ(0)〉

]
∂ |ϕk〉

|ϕ(1)k 〉
]

+
∑
kl

〈ϕ(1)k |H(0) δ kl − λkl|ϕ(1)l 〉

+
1

2

∫
d3r d3r′

δ 2EHxc[n(0)]
δ n(r)δ n(r′)

n(1)(r)n(1)(r′). (54)

The functional EHxc represents the sum of the Hartree and exchange-correlation

energy functionals. The Lagrange multipliers λkl are the matrix elements of

the KS-Hamiltonian H(0):

H(0) = HKS (55)

λkl = 〈ϕ(0)k |H(0)|ϕ(0)l 〉, (56)
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The orthonormality of the total wavefunctions, expanded to first order in

the perturbation, yields

〈ϕ(0)k |ϕ(1)k 〉+ 〈ϕ(1)k |ϕ(0)k 〉 = 0 ∀ k. (57)

This is achieved by imposing a general orthogonality condition on the first

order perturbation wavefunctions:

〈ϕ(0)k |ϕ(1)l 〉 = 0 ∀ k, l. (58)

This also automatically implies the conservation of the total charge of the

system, by enforcing the integrated perturbation charge q (1) to vanish:

q (1) =

∫
d3r n(1)(r) = 0. (59)

In many cases, the perturbation functional Ep can be written as the ex-

pectation value of a perturbation Hamiltonian H(1):

Ep[{|ϕi〉}] =
∑
k

〈ϕk| H(1) |ϕk〉. (60)

However, the formulation through an arbitrary functional also allows orbital

specific perturbations, i.e. a perturbation Hamiltonian that depends on k:

Ep[{|ϕi〉}] =
∑
k

〈ϕk| H(1)
k |ϕk〉. (61)

In conclusion, the second order energy, Eq. (54), is variational in the first

order perturbation wavefunctions, satisfying the stationarity condition:

δ E(2)

δ ϕ(1)
= 0 (62)

under the orthogonality constraint of Eq. (58).
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4 Construction of localized orbitals

4.1 General

The approach presented in this work is based on the localized nature of the

orbitals used in the calculation. Their exponential decay is vital for the

procedure described in the next chapters. In this chapter, the procedure

which is used to obtain localized orbitals shall be described in detail. These

localized orbitals are also called Wannier functions [34], and the procedure

to obtain them from canonical wavefunctions is closely related to the one

presented by Berghold et al. [35].

The Kohn-Sham wavefunctions returned by a standard energy minimiza-

tion (see section 3.1) are Bloch states that extend over the whole crystal

and do never vanish. Thus, an additional treatment is neccessary to trans-

form them in order to obtain orbitals with the desired spatial localization

properties. In a periodic system, there is a fundamental problem when char-

acterizing the degree to which a wavefunction is localized. The localization

is usually quantified through a spread functional, commonly the second mo-

ment of the wavefunction:

∆
(2)
k = 〈ϕk |r2|ϕk 〉 − 〈ϕk |r|ϕk 〉2. (63)

Basically, the localization procedure corresponds to a minimization of this

spread functional by applying a unitary rotation to the manifold of occupied

states. Such a rotation leaves the electronic density invariant, so that the

new ensemble of states still represents the electronic ground state.

In a periodic system, these expectation values of the position operator

inside a Bloch state are not well defined a priori. However, it has been
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shown [36, 37, 38, 39] that the spread as such described by Eq. (63) can be

quantified in a physically reasonable way, even in a periodic system.

4.2 Definition of localized orbitals

Wannier functions (WF) are defined in terms of a unitary transformation

performed on the occupied Bloch orbitals (BO) [34]. One major problem

in a practical calculation is their non-uniqueness. This is a result of the

indeterminacy of the BOs, which are, in the case of a single band, only

determined up to a phase factor, in the multi-band case, up to an arbitrary

unitary transformation among all occupied orbitals at every point in the

Brillouin zone. As proposed recently by Marzari and Vanderbilt [36], one

can resolve this non-uniqueness by requiring that the total spread of the

localized function be minimal. This criterion is in close analogy with the

Boys-Foster method [40] for finite systems, here one uses the spread defined

through the conventional position operator. The new technique has been

successfully applied to crystal systems and to small molecules within a general

k-point scheme [36]. An extension to disordered systems within the Γ-point

approximation was recently performed [37]. This is of particular interest

when one would like a localized orbital picture within the framework of Car-

Parrinello molecular dynamics (CPMD).

Here, the subject of investigation is the problem focusing on the Γ-point

approximation only. For this case, Silvestrelli [41] has derived a formula for

the spread in three dimensions for a molecular dynamics cell of arbitrary

shape. The formula is based on the formulation of Marzari and Vanderbilt.

Recently Resta has proposed a formula for the spread in one dimension which



4.3 Derivation of the functional 55

reduces to that of Marzari and Vanderbilt in the limit of large cell size [39].

Resta’s formulation can be generalized to three dimensions and arbitrary

molecular dynamics cells.

Upon minimization of the spread functional, the appropriate unitary

transformation to the localized orbitals can be calculated. With explicit

knowledge of the spread functional, one can derive the complete expressions

required to implement the iterative minimization procedure beyond a steep-

est descent scheme. The steepest descent method, used in [36, 41], performs

reasonably well for simple molecular systems, but it is known to have con-

vergence problems when more complicated systems are analyzed. This can

only be remedied by calculating the required gradient of the spread func-

tional without any simplification, thus allowing the iterative calculation of

maximally-localized orbitals with very efficient optimization schemes.

4.3 Derivation of the functional

First, the work of Resta [38] shall be reviewed. In his treatment, the funda-

mental object for studying localization of an electronic state within Born–

von Karman boundary conditions is the dimensionless complex number z:

z =

∫
L

dx exp(i2πx/ L) |ϕ(x)|2 . (64)

Here, L is the linear dimension, and ϕ(x) denotes the wavefunction. By

considering the definition of the spread of the wavefunction to be ∆(2) =

〈x2〉 − 〈x〉2, where 〈· · · 〉 denotes an expectation value, Resta has shown that

up to order O(1/ L2), the functional for the spread in one-dimension can be
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taken as:

∆(2) =
1

(2π)2
ln |z|2. (65)

One goal of this section is to generalize Eq. (64) to three dimensions and

thus to obtain the appropriate generalization of Eq. (65). To this effect, the

following dimensionless complex number is used within Born–von Karman

boundary conditions:

zI =

∫
V

d3r exp(iGI · r) |ϕ(r)|2. (66)

Here, I represents a general reciprocal lattice vector, GI = lIb1+mIb2+nIb3,

where bα are the primitive reciprocal lattice vectors, the integers l, m, and

n are the Miller indices, V is the volume of the supercell, and ϕ(r) denotes

the wavefunction.

First, an appropriate function must be found that gives the three dimen-

sional spread in the case of an arbitrary simulation cell in function of these

numbers zI .

It shall be assumed that in a molecular dynamics simulation the cell pa-

rameters (primitive lattice vectors) to describe systems of general symmetry

are given by a1, a2 and a3. It is convenient to form a matrix of these cell

parameters:

←→
h = (a1, a2, a3) (67)

where the volume V of the simulation cell is given by the determinant of
←→
h .

It is also very useful to define scaled coordinates,

s =
←→
h −1 · r (68)
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that lie in the unit cube.

In molecular dynamics simulations, this simplifies the work with periodic

boundary conditions for systems with general symmetry, by means of first

transforming to the unit cube, assuming standard cubic periodic boundary

conditions, and transforming back to the general cell through the action of
←→
h [42].

One can also compute the reciprocal space vectors for systems of gen-

eral symmetry with knowledge of the matrix of cell parameters. The I-th

reciprocal lattice vector is given by:

GI = 2π
(←→
h −1

)T
· ĝI . (69)

Here, the superscript T denotes transposition, and ĝI = (lI , mI , nI) is the

I-th Miller index. This expression is substituted into Eq. (66), and with the

definition of r, one obtains:

zI = det
←→
h

∫ 1

0

d3s exp
(
i2πĝTI · s

)
|ϕ(←→h · s)|2. (70)

The exponential in Eq. (70) is independent of any coordinate system. Follow-

ing Resta [38], one can write the electron density in terms of a superposition

of localized density nloc(r) and its periodic images:

∣∣∣ϕ(←→h · s)
∣∣∣ 2

=

∞∑
m̂=−∞

nloc

(←→
h · (s− s0 − m̂)

)
. (71)

Here, m̂ is a vector of integers and
←→
h · s0 is the center of the distribution

such that ∫ ∞

−∞
d3s

←→
h · (s− s0) nloc

(←→
h · (s− s0)

)
= 0. (72)
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Using the Poisson summation formula [43], Eq. (70) can be rewritten as:

zI = exp
(
i2πĝTI · s0

)
n̂loc

(
−2πĝTI ·

←→
h −1

)
, (73)

where n̂loc denotes the Fourier transform of nloc. Furthermore, since nloc is

considered to be localized, its Fourier transform is smooth over reciprocal

distances and it can be assured that it is well represented about ĝI = 0.

Expanding n̂loc(−2πĝTI ·
←→
h −1) to second order, one obtains:

n̂loc

(
−2πĝTI ·

←→
h −1

)
= 1 +

∑
α

ĝα,I
∂ n̂loc
∂ ĝα,I

∣∣∣∣
ĝI=0

+
1

2

∑
α,β

ĝα,Iĝβ,I
∂ 2n̂loc

∂ ĝα,I∂ ĝβ,I

∣∣∣∣
ĝI=0

+ . . . . (74)

The second term in Eq. (74) is zero because of
〈←→
h · s

〉
= 0. Thus:

n̂loc

(
−2πĝTI ·

←→
h −1

)
=

1− (2π)2

2
V

∑
α,β

ĝα,Iĝβ,I

∫ ∞

−∞
d3s sαsβ nloc

(←→
h · s

)
. (75)

Combining Eq. (75) and Eq. (73), it follows that:

1− |zI | = V
(2π)2

2

∑
α,β

ĝα,Iĝβ,I

∫ ∞

−∞
d3s sαsβ nloc

(←→
h · s

)
. (76)

Keeping in mind that

∫ ∞

−∞
d3s

←→
h · s nloc

(←→
h · s

)
= 0, (77)

one can define the spread of the electronic distribution for the case of a
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general box through:

〈r2〉 − 〈r〉2 =

〈(←→
h · s

)2〉

=
∑
α,β

gαβ V

∫ ∞

−∞
d3s sαsβ nloc

(←→
h · s

)
. (78)

Here, gαβ =
∑

µ

←→
h T

αµ

←→
h µβ can be thought of as a metric tensor to describe

the corresponding distances in the unit cube. Eq. (78) shows exactly how the

length scales are built into the spread through the metric tensor. From direct

comparison of Eq. (76) and Eq. (78) it follows that for supercells of general

symmetry, linear combinations of ĝα,Iĝβ,I need to be chosen that reproduce

the metric tensor, gαβ. However, as stated earlier, ĝα,I are dimensionless

numbers. Thus, an appropriate generalization takes the form of a sum rule,

gαβ =
∑
I

ωI ĝα,I ĝβ,I. (79)

Here, ωI are the “weights” with appropriate dimensions that have to be

determined [35].

Thus, it is also clear that gαβ will have at most six independent entries

(for triclinic symmetry), and thus that a maximum of six weights are needed.

It is interesting to note that by multiplying Eq. (79) on the left and right

hand sides by
←→
h −1 and using the definition of GI , one will recover the rule

used by Silvestrelli [41] and by Marzari and Vanderbilt [36].

Finally, the generalization to more than one state, |ϕ〉 → |ϕn〉 yields for
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the desired spread expression ∆(2) in a supercell of general symmetry:

∆(2) =
2

(2π)2

Nstates∑
n

∑
I

ωI (1− |zI,n|)

+O
(

2πĝTI ·
←→
h −1

)2

(80)

zI,n =

∫
V

d3r exp(iGI · r) |ϕn(r)|2, (81)

where Eq. (79) determines the GI .

At this point, it is useful to make contact with other spread formulae that

are present in the current literature. Following Resta’s derivation [39], one

finds the following formula:

∆(2) = − 1

(2π)2

Nstates∑
n

∑
I

ωI log |zI,n|2 , (82)

with zI,n defined as above. Eq. (82) is obtained by inserting Eq. (75) into

Eq. (73), taking the logarithm of the absolute value and expanding to con-

sistent order.

Silvestrelli [41] on the other hand uses:

∆(2) =
1

(2π)2

Nstates∑
n

∑
I

ωI
(
1− |zI,n|2

)
, (83)

with a similar defininition for zI,n. Obviously Eq. (83) is obtained from

Eq. (82) by an expansion of the logarithm.

At first glance, it seems confusing that there are different definitions for

the spread. Admittedly, one has to keep in mind that all formulae are only

valid up to the order given in Eq. (80). Thus, although different, they are

consistent and there is no fundamental reason to choose one definition of

the spread over another. In [35], the spreads of various model systems using
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all different definitions are compared to each other. It turns out that for

the calculation of magnetic response properties, the choice of the spread

functional is of minor importance.

One can also derive a general expression for the expectation value of the

periodic position operator for computing the center of the localized function.

Recall, that for a cubic simulation supercell, the expectation value of the

position operator is given as:

rα,n = − L

2π
� log zα,n

zα,n =

∫
V

d3r exp(igα · r) |ϕn(r)|2, (84)

where ĝ1 = (1, 0, 0), ĝ2 = (0, 1, 0), and ĝ3 = (0, 0, 1), and � denotes the

imaginary part. Again, the salient feature of Eq. (84) is that the expectation

value of the exponential is invariant with respect to the choice of the cell.

Thus, a general equation for the expectation value of the position operator

in supercells of arbitrary symmetry is:

rα,n = − 1

2π

∑
β

←→
h αβ � log zα,n. (85)

It is important to note that Eq. (85) gives a suitable definition only for the

expectation value of the position operator, and not for the operator itself.

Regardless of the choice of the actual spread functional, the definition is

always based on the translation operator and its matrix elements, zα,n. The

fundamental aspect that underlies this concept is the intrinsic translational

invariance of a system described through periodic boundary conditions.

In contrast to this, rotational invariance is impossible to achieve within

the periodic description. As will be shown lateron (section 5), the formalism
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which describes the effect of a magnetic field is based on the application of

the generator of the rotation operator, which is the angular momentum L, in

periodic boundary conditions. So far, there is no theory that allows a proper

re-definition of the expectation value and related quantities in periodically

repeated systems. Therefore, the approach of this chapter cannot be general-

ized directly to incorporate magnetic response. It is only useful to transform

the extended Bloch states, resulting from a total energy minimization, to

localized orbitals which are spatially confined. While in principle, the energy

is invariant under this kind of operations, the idea presented in the following

sections is based on this peculiar property.

4.4 Localization procedure

Having established the definition of the spread formulae in the context of the

wavefunctions, one can proceed to a description of their computation.

The mathematical problem which defines the localization procedure is to

find the unitary transformation, U on the orbitals,

|ϕ̃n 〉 =
∑
i

U in|ϕi〉, (86)

that minimizes the spread functional, ∆(2). To present a general formulation,

it is convenient to work with a generalized form,

∆(2) = −
∑
n

∑
I

f
(
|zI,n|2

)
(87)

zI,n = 〈ϕn|OI |ϕn〉, (88)

where f and OI denote an appropriate function and operator.
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Neglecting the weights and constants in favour of simplicity, the different

spread functionals of the last section are obtained, defined through Eq. (80),

(82) and (83) by setting:

OI = exp(iGI · r) (89)

f1
(
|zI,n|2

)
=

√
|zI,n|2 = |zI,n| (90)

f2
(
|zI,n|2

)
= log

(
|zI,n|2

)
(91)

f3
(
|zI,n|2

)
= |zI,n|2. (92)

The values of index, I will range at most from one to six.

The actual calculation of maximally localized WFs or maximally localized

MOs within the localization procedure is relatively simple. The starting

point is always the output of a conventional electronic structure calculation,

(BOs in the periodic, MOs in the finite case), and a given choice for the

spread functional. Then, the unitary transformation U has to be calculated,

producing the orbitals that minimize Eq. (87). As stated earlier, there are

two choices for the spread functional for finite systems and three choices for

periodic systems.

A maximally localized function is characterized through the stationary

condition of the spread functional:

∂ ∆(2)

∂ U ij

= 0, (93)

where U is taken to be real within the Γ-point approximation. There are two

principal alternatives for parametrizing the unitary transformation, U , first

as a direct product of elementary plane rotations, and second as the exponen-

tial of an antisymmetric matrix. The first parametrization scheme, discussed
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in the next subsection, amounts to the well known Jacobi optimization proce-

dure for finding eigenvalues of general matrices. The second parametrization

choice of U , is based on the exponential alternative as investigated in [35].

4.5 Orbital rotations

The traditional method in quantum chemistry for computing localized MOs

is the method of two-by-two orbital rotations first introduced by Edmiston

and Ruedenberg [44]. The basic idea of the method is to tackle the problem

of finding U by performing a sequence of consecutive two-by-two rotations

among all pairs of orbitals. The elementary step consists of a plane rotation

where two orbitals i and j are rotated through an angle, φ . To proceed

an optimal angle must be selected to ensure that the spread functional, as

defined in Eq. (87), is iteratively minimized. The transformed expectation

values are denoted with z̃I,i/j and are obtained through the standard two

dimensional rotation with an angle φ :

z̃I,i = cos(φ )zI,i + sin(φ )zI,j

z̃I,j = − sin(φ )zI,i + cos(φ )zI,j. (94)

Thus, by combining Eq. (94) with Eq. (87), it is straightforward to calculate

the change in the functional value, δ ∆(2) as a function of φ . The most

natural way to obtain the optimal angle which maximizes the change in the

functional value is to compute the stationary point of ∆(2) with respect to

φ , thus solving

∂ δ ∆
(2)
ij

∂ φ
= 0. (95)



4.5 Orbital rotations 65

The explicit calculation yields:

tan(4φ ) = −a
b

(96)

with

a = �
[
Mij

(
M̄ii − M̄jj

)]
(97)

b = |Mij |2 −
1

4
|Mii −Mjj |2 (98)

Mij =
∑
I

zI,ij (99)

where � denotes the real part. The solutions of Eq. (96) corresponding to

maxima and minima are given by:

φ + nπ/ 4, n ∈ ZZ, (100)

For the desired minimum, the condition

∂ 2δ ∆(2)

∂ φ 2
= 16 b cos(4φ )− 16 a sin(4φ ) (101)

< 0 (102)

has to be fulfilled.

Unfortunately, one severe restriction applies to the derivation presented

above. Eq. (96) is only valid for the choice f3 of the function, Eq. (92),

corresponding to the Silvestrelli-Marzari-Vanderbilt, the Boys and the Pipek-

Mezey functional. In the other cases, f1(x) =
√
x and f2(x) = log(x),

Eqs. (90) and (91), no analogous formula is derivable. The reason is that the

explicit solution of Eq. (95) with respect to φ seems not analytically tractable.

Nevertheless, one can still implement the method of orbital rotations in the

above cases by a numerical maximization of δ ∆(2) as a function of φ using

derivative information. A detailed description of the implementation of this

scheme is contained in [35].
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5 Chemical shifts and susceptibilities

5.1 General

When a magnetic field is applied to a medium, it interacts with the electrons

contained in this medium and modies their ground state. The electrons react

by creating a current distribution which itself induces an additional magnetic

field. In contrast to the external one, the latter is not constant in space, so

that the sum of both fields is inhomogeneous as well. Its spatial distribu-

tion depends very sensitively on the electronic structure in the system. In

particular, its values at the positions of non-equivalent nuclei are different.

As already mentioned in the introduction, section 2, the strength of the to-

tal magnetic field at an atomic position determines the resonance frequency

of the nuclear spin. By means of the resonance spectrum of a system, the

electronic structure of a system can thus be analyzed in great detail.

The simplest experimental arrangement to measure such a spectrum con-

sists of irradiating with a varying radio frequency until resonance occurs.

This setup is called sweeping or continuous-wave-technique. It is nowadays

only used in tutorials, but it nevertheless represents the fundamental res-

onance experiment. State-of-the-art apparatus measure with the Fourier

spectroscopy technique, where the sample is submitted to a pulse of large

frequency bandwidth. This pulse turns the nuclear spins into a plane or-

thogonal to the homogeneous external field, inducing a subsequent preces-

sion movement. Since the angular velocity of this precession depends on the

strength of the local magnetic field, which is inhomogeneous, the individual

spins have different precession frequencies. This effect makes the net spin
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relax, still being confined in the plane orthogonal to the external field. This

relaxation can be measured, and through an inverse Fourier transform, the

normal absorption spectrum can be obtained.

Further, the spins also relax back to their original orientation, which is

parallel to the external field. This second relaxation is induced by thermal

transitions as well as by dipolar coupling between the spins. It represents a

second quantity that is experimentally accessible.

In normal experiments, dipolar coupling represents a perturbation of the

actual measurement, since the dipolar field may have a strength comparable

to the electronically induced one. In the usual case of a non-regular arrange-

ment of the atoms, the dipolar field has a random pattern and leads thus

to a broadening of the resonance lines. The information contained in the

spectrum can be significantly reduced by this effect. In the liquid and gas

phases, the fast particle movement averages out these perturbing dipolar in-

teractions, since the timescale of the brownian movement is smaller than the

time window of the experiment. However, in solids, these interactions are

a serious problem, because the atoms are quasistatic during the NMR mea-

surement. To compensate this problem, a special technique exists. When

the sample is spinned about its own axis under a particular angle of 54.2◦

relative to the external magnetic field, the average internuclear vector be-

tween spins will form that same angle with the external field, making the

dipole-dipol interactions vanish. The higher the rotation frequency is, the

thinner the dipolar broadening becomes. The upper limit of this frequency

is determined by the mechanical properties of the sample and the sample

holder, which usually allow a spinning up to a few 10 kHz. This method of
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rotating the sample is called Magic Angle Spinning, after the “magic” angle

of 54.2◦.

Both relaxation times provide a lot of information about the structure

of the investigated system. However, because of the long timescale of the

involved relaxation processes, they can not be calculated directly by ab-

initio approaches. Only their interaction parameters can be determined. In

particular, the calculation of the chemical shift, which represents the strength

of the field induced by the electronic currents, will be the subject of this

section.

5.2 Hamiltonian formalism

The standard procedure to obtain the orbital electronic current density j is

perturbation theory. The starting point is the electron in its ground state

without any external field, the so-called unperturbed system. Its Hamiltonian

shall be denoted H(0), it is given by

H(0) =
1

2m
p2 + V(r). (103)

All quantities appearing in Eq. (103) are related to the electron: p is the

momentum operator, m the electronic mass and V(r) the potential from

the ions and the other electrons acting on the electron under consideration.

The solution of Eq. (103) is the unperturbed electronic wavefunction. This

ground state wavefunction shall be denoted as ϕ(0) and is constructed through

a variational principle: It is that wavefunction which minimizes the total

energy of the system, expressed as the expectation value of the Hamiltonian:

E [ϕ] = 〈ϕ(0)| H |ϕ(0)〉. (104)
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The minimization is done in the framework of density functional theory

(DFT). A description of this theory can be found in section 3.1.

According to Maxwell’s equation, a magnetic field B is divergence-free,

∇ · B = 0. Therefore, a given field which is applied to this system can be

represented by a vector potential A satisfying

B = ∇×A(r). (105)

This vector potential is only an auxiliary quantity, it has no direct physical

meaning. For a given magnetic field, there is no unique vector potential,

any field which fulfills Eq. (105) can be used and will give the same physical

results. In particular, any good field A can be transformed to a new one

through

A �→ A′ = A+∇Φg(r) (106)

where Φg(r) is an arbitrary scalar function. It is called the gauge of the

magnetic field, and the fact that its choice is arbitrary and does not affect

any physical results is called gauge invariance. In this respect, it is similar

to the phase factor of an electronic wavefunction, which also represents a

degree of freedom that does not influence any measurements. If the gauge is

changed, the magnetic field remains the same, because it is given by the curl

of A, Eq. (105). However, the actual calculation can change a lot, because

it depends numerically on the explicite value of the vector potential.

A typical choice for A in the case of a given homogeneous magnetic field

B is

A(r) = −1

2
r×B. (107)
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It obviously satisfies Eq. (105). A special set of gauges for this vector field

is defined by the functions

Φg(r) =
1

2
r ·Rg ×B (108)

with a particular position in space denoted by Rg. When the original vector

field (107) is transformed according to Eq. (106), the new potential becomes

A′(r) = −1

2
(r−Rg)×B. (109)

This transformation only changes the origin of the coordinate system seen

by the vector potential to Rg. For this reason, the position Rg is called the

gauge origin of the new vector potential (109). It is a cyclic variable, because

it does not change the physics of the system, but it modifies the values of

the actual operators. The importance of this gauge origin will be illustrated

later on, it is the subject of section 6.

5.3 Magnetic DFPT

The incorporation of the magnetic field into the system’s Hamiltonian is done

by replacing the standard momentum operator by its generalized expression

in the presence of a magnetic field [45]:

p �→ πππ = p− eA. (110)

In combination with the Hamiltonian of Eq. (103), the total Hamiltonian of

the system in the presence of the magnetic field can be written as

H =
1

2m
(p− eA)2 + V(r), (111)



5.3 Magnetic DFPT 71

where m and e are the mass and charge of the electron, respectively. The

separation in unperturbed and perturbation terms is straightforward, because

A is linear in B. There are contributions of first and second order in the

perturbation:

H(1) =
e

2m
(p ·A(r) +A(r) · p) (112)

H(2) =
e2

2m
A(r) ·A(r), (113)

In the case of a magnetic field as the perturbation, the second order

energy functional in the framework of density functional perturbation theory

(DFPT) simplifies considerably because the first order density analytically

vanishes everywhere. The reason is that the perturbation Hamiltonian and

the first order wavefunctions are purely imaginary, and thus, the two terms

in Eq. (53) cancel each other out. The matrix element of the magnetic

perturbation Hamiltonian (112) in the position representation is given by:

〈r|H(1)|r′〉 = i
h̄e

2m
δ 3(r− r′) (r−R)×B · ∇. (114)

It is purely imaginary, so that with real wavefunctions and a neccessarily real

energy (54), the first order orbitals ϕ
(1)
k must be purely imaginary, too:

� ϕ
(1)
k = 0. (115)

Hence, the first order density (53) vanishes analytically for magnetic pertur-

bations, and the energy functional (54) simplifies to:

E(2) =
∑
kl

〈ϕ(1)k |H(0) δ kl − λkl|ϕ(1)l 〉

+
∑
k

[
〈ϕ(1)k |H(1)|ϕ(0)k 〉+ 〈ϕ(0)k |H(1)|ϕ(1)k 〉

]
. (116)
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The stationarity condition on the energy, Eq. (62), can be written as an

inhomogeneous system of coupled equations for the ϕ
(1)
k :

∑
l

(
H(0) δ kl − λkl

)
|ϕ(1)l 〉 = −H(1)|ϕ(0)k 〉. (117)

This equation could be formally inverted using Green’s function (136). In

the implementation, however, Eq. (117) is solved directly using a conjugate-

gradient minimization algorithm [33]. Its computational cost is comparable

to that of a total energy calculation. No wavefunctions of unoccupied states

are required, in contrast to sum-over-states techniques.

5.4 Electronic current density

In general, the current can be obtained as the expectation value of the current

operator,

jr′ =
e

2m

[
πππ|r′〉〈r′|+ |r′〉〈r′|πππ

]
, (118)

taken in the complete electronic state, i.e. using the total wavefunction:

j(r′) =
e

2m
〈ϕ|
[
πππ|r′〉〈r′|+ |r′〉〈r′|πππ

]
|ϕ〉. (119)

The generalized momentum operator πππ in Eqs. (118) and (119) is given by

the derivative of the Hamiltonian with respect to the velocity, yielding

πππ = p− eA. (120)
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Expanding the current in powers of the magnetic field, one finds that in the

unperturbed state, the current density is zero:

j(0)(r′) =
e

2m
〈ϕ(0) |

[
p|r′〉〈r′|+ |r′〉〈r′|p

]
|ϕ(0) 〉 (121)

=
e

2m

[ {
īh∇ϕ(0)(r′)

}
ϕ(0)(r′)

+ϕ(0)(r′)
{
−īh∇ϕ(0)(r′)

} ]
(122)

= 0. (123)

This property essentially relies on the possiblity to choose the wavefunction

ϕ(0) real (the bar ϕ indicates the complex conjugate of ϕ). Only then, the

sum in Eq. (122) vanishes.

It will be shown lateron that the first order perturbation wavefunction is

purely imaginary1 when ϕ(0) is real. Thus, the previous argument does not

hold any more and the current density which depends on ϕ(1), and which

is therefore linear in the field, is nonzero. By expanding Eq. (119) to first

order, one obtains:

j(r′) =
e2

m
A(r′) |ϕ(0)|2

+īh
e

2m

[
∇ϕ(0)ϕ(1) − ϕ(0) ∇ϕ(1)

+∇ϕ(1)ϕ(0) − ϕ(1) ∇ϕ(0)
]
. (124)

For simplicity, the position arguments (r′) have been omitted in Eq. (124),

and the gradient operators are supposed to act only on the function which

follows immediately. Under the assumption of a real ϕ(0) and an imaginary

1in particular, see Eq. (115). This is true only for a magnetic field perturbation, not

in general.
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ϕ(1), the current further simplifies to:

j(r′) =
e2

m
A(r′) |ϕ(0)|2 + īh

e

m

[
ϕ(1) ∇ϕ(0) − ϕ(0) ∇ϕ(1)

]
. (125)

5.5 Derived quantities: induced field, susceptibility

and shielding

The chemical shielding tensor, whose calculation represents one of the main

goals of this work, is defined as the proportionality factor between the induced

and the externally applied magnetic field at the positions of the nuclei:

σ (R) =
∂ Bind(R)

∂ Bext
. (126)

The induced magnetic field is determined by the total electronic current j(r)

through

Bind(r) =
µ0
4π

∫
d3r′

r′ − r
|r′ − r|3 × j(r

′), (127)

with the permeability of the vacuum µ0. Since the system is treated under

periodic boundary conditions, the current density will be periodic, and can

be represented in reciprocal space. The induced magnetic field, Bind(r), can

also be written in reciprocal space, and the integral in Eq. (127) turns into

as simple equation, as described in detail in section B. It reads:

Bind(G �= 0) = µ0 i
G

|G|2 × j(G). (128)

The general definitions of the Fourier transformation between direct and

reciprocal space are presented is appendix A.

The G = 0 component of the field depends on the bulk magnetic suscep-

tibility tensor, χ , and the shape of the sample. In general, it is expressed
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as:

Bind
0 = κ χ Bext (129)

with the macroscopic bulk susceptibility χ and a prefactor which describes

the dependence on the macroscopic geometry of the system. The bulk sus-

ceptibility χ can be expressed as a function of the orbital electronic current.

The mathematical derivation is presented in appendix C. The result is:

χ =
µ0
2Ω

∂

∂ Bext

∫
Ω

d3r r× j(r), (130)

where the integral is done over one unit cell of volume Ω. In the case of a

spherical system, κ is given by κ = 2/ 3, cf. Eq. (207). The molar suscepti-

bility is related to χ through χm = ΩNLχ .
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6 The gauge origin problem

6.1 General

The ab-initio calculation of chemical shifts has become more and more po-

pular, and over the years, many methods have been developed in the quan-

tum chemistry community to perform such computations. One major prob-

lem that appears in these calculations is the choice of the gauge function,

Eq. (108), or the the gauge origin Rg, respectively.

While being in principle a cyclic variable, this gauge can significantly

affect the results in an actual calculation. To minimize this effect, several so-

lutions have been proposed: in the GIAO method (Gauge Including Atomic

Orbitals, [46]), one transforms the gauge of the basis set functions to the

position of their nuclei, whereas in the IGLO method (Individual Gauges

for Localized Orbitals, [47]), the gauges of the final wavefunctions are trans-

formed to their centers of charge. The CSGT method (Continuous Set of

Gauge Transformations, [48]) finally defines a gauge which depends on the

position where the induced current is to be calculated. This approach is

used in the method presented here, and it shall be described in detail in this

section.

The current density (125), written in terms of the orbital contributions,

can be separated into the dia– and paramagnetic terms:

j(r′) =
∑
k

jk(r′) =
∑
k

jdk(r′) + jpk(r′)

jdk(r′) =
e2

m
A(r′) |ϕ(0)k (r′)|2

jpk(r′) =
e

m
〈ϕ(0)k |

[
p|r′〉〈r′|+ |r′〉〈r′|p

]
|ϕ(1)k 〉 (131)
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Both contributions individually depend on the gauge, whereas the total cur-

rent j is gauge-independent. However, the two contributions are large num-

bers and have opposite signs. For the choice of the vector potential adopted

here, Eq. (107), A(r) is linear in the gauge origin Rg. Therefore, the dia-

magnetic current jdk grows linearly in Rg, and jpk must compensate for this in

order to fulfill the invariance of the total current.

Thus, for large distances |r − Rg|, the current density j results from

the cancellation of two large terms, making the actual calculation rather

challenging. In a computer simulation using a finite basis set, the gauge

invariance of j is no longer numerically verified.

6.2 Continuous set of gauge transformations

Several techniques have been developed to minimize this problem for small

molecules [46, 47, 48]. The goal is to calculate magnetic properties in a

periodic system. In this context, the probably most natural approach is the

so-called “Rg = r” – variant of the CSGT method [48]. For each point r′ in

space, the current density is calculated with the gauge origin Rg being set

equal to r′. This method makes the diamagnetic part vanish analytically:

jdk(r′) = 0, (132)

such that cancellations of large numbers no longer occur.

In practice, the current is computed as

jk(r′) =
e

m
〈ϕ(0)k |

(
p|r′〉〈r′|+ |r′〉〈r′|p

)
[
|ϕ(r×p)
k 〉 − r′ × |ϕ(p)k 〉

]
·B. (133)
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Here, |ϕ(r×p)
k 〉 and |ϕ(p)k 〉 are the first order perturbation wavefunctions for

the special perturbation Hamiltonians:

|ϕ(r×p)
k 〉 �→ H(1) = r× p (134)

|ϕ(p)k 〉 �→ H(1) = p. (135)

This formulation avoids actually calculating distinct wavefunctions ϕ(1) for

each point r′ in space.

6.3 Individual origin translations

It can be formally shown that within this gauge, the current is invariant

under a translation of the origin in Eq. (133) for an individual orbital. This

is done by using a special formulation which is no more used in the rest of

this work, but which is well adapted for this particular purpose. Denoting

the perturbation theory Green’s function (see also section 3.10 for details):

Glk = −
(
H(0) δ kl − 〈ϕ(0)k |H(0)|ϕ(0)l 〉

) −1
, (136)

the first order perturbation wavefunctions for an arbitrary perturbation Hamil-

tonian O can be expressed as:

|ϕ(O)
k 〉 =

∑
l

Gkl O |ϕ(0)l 〉. (137)

This Green’s function formulation is not used in the actual calculation; in-

stead, a variational energy minimization (see section 3.10) is performed.

Eq. (137) serves only as a compact notation to obtain a closed expression

for the current density.
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In Eq. (137), O is either p or r× p, so that the special first order wave-

functions of Eqs. (134) and (135) can be expressed as:

|ϕ(r×p)
k 〉 =

∑
l

Gkl r× p |ϕ(0)l 〉 (138)

|ϕ(p)k 〉 =
∑
l

Gkl p |ϕ(0)l 〉. (139)

By expanding Eq. (137) in the basis of the unperturbed unoccupied

orbitals, one obtains the well-known sum-over-states expression for the first

order perturbation wavefunction for arbitrary perturbation operators. The

current as a special case follows by combining Eqs. (133), (138) and (139):

jk(r′) =
e

m

∑
l

〈ϕ(0)k |
(
p|r′〉〈r′|+ |r′〉〈r′|p

)
[
Gkl r× p |ϕ(0)l 〉 − Gkl r

′ × p |ϕ(0)l 〉
]

·B (140)

In this formulation, it becomes apparent that any simultaneous translation

of the relative origin for the operator r and the gauge Rg = r′ automatically

cancel each other out. In particular, the current is invariant under arbitrary

orbital-specific translations dl:

jk(r′) =
e

m

∑
l

〈ϕ(0)k |
(
p|r′〉〈r′|+ |r′〉〈r′|p

)
[
Gkl (r− dl)× p |ϕ(0)l 〉 − Gkl (r′ − dl)× p |ϕ(0)l 〉

]
·B. (141)

Note that in this equation, p and r as well as Gkl are operators, whereas r′

and dl are position variables.

This formulation, Eq. (141), looks somewhat similar to the well-known

IGLO gauge transformation (individual gauges for localized orbitals, [47]),

but it is not the same. The physical gauge in this work is always the Rg = r′

version of the CSGT method.
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However, this gauge still leaves the freedom to translate the coordinate

system individually for each orbital, according to Eq. (141). This will turn

out to be useful in the following.

A straightforward application of Eq. (141) would be too expensive. In

fact, it would require one inversion of the Hamiltonian per real space mesh

point r′. Such an operation has approximately the cost of a total energy

calculation, which leads to a prohibitive computational effort.

However, the the second term of jk can be rewritten as

e

m

∑
l

〈ϕ(0)k |
(
p|r′〉〈r′|+ |r′〉〈r′|p

)
Gkl (r′ − dl)× p |ϕ(0)l 〉 ·B

=
e

m

∑
l

〈ϕ(0)k |
(
p|r′〉〈r′|+ |r′〉〈r′|p

)
(r′ − dk)× Gkl p |ϕ(0)l 〉 ·B

+∆jk(r′) (142)

where

∆jk(r′) =
e

m

∑
l

〈ϕ(0)k |
(
p|r′〉〈r′|+ |r′〉〈r′|p

)
Gkl (dk − dl)× p |ϕ(0)l 〉 ·B. (143)

The evaluation the first term of Eq. (142) can be done at the computational

cost of one total energy calculation, while ∆jk requires one such calculation

per electronic state k.

At first sight, the sum ∆j =
∑

k ∆jk seems to be equal to zero, because the

inner operator is antisymmetric in k, l. But since the momentum operators

in Eq. (143) do not commute with the Green’s function, ∆j does not vanish

unless all dl are equal. However, it will be shown in the following that in

most circumstances, ∆j can be neglected.

However, some care is needed concerning the definition of (dk − dl) in
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Eq. (143). In a periodic system, this quantity is only defined modulo a lattice

vector RL. The most natural way is to use a nearest image convention,

where this lattice vector is chosen such that the distance |dk − dl +RL| is

minimum.

This also makes sense when looking at Eq. (143) as a matrix element of

an operator Jr′, given by

Jr′ =
(
p|r′〉〈r′|+ |r′〉〈r′|p

)
Gkl (dk − dl)× p ·B. (144)

This operator has a localized character in direct space, since the momentum

operators p are quasilocal, and the Green’s function, which is the inverse of

the ground state Hamiltonian, connects only points in space that are close

to each other. This can be seen be realizing that Gkl describes the reaction

of the state k of the system to a perturbation of state l, and it is natural

that if these two states are far away, one will not feel that the other has been

perturbed.

Thus, the neglected current, Eq. (143), is the expectation value of a nearly

local operator Jr′ between two localized states k and l, with the translation

vector (dk−dl) linking their centers of charge. Consequently, it is only non-

zero for two orbitals that have a non-vanishing mutual overlap. Therefore,

any definition for (dk−dl) other than the minimum image convention would

automatically lead to a zero expectation value, because the orbitals from

more distant image cells will certainly not have the necessary overlap.
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7 The position operator problem

7.1 General

The formalism described so far is straightforward to use in isolated systems,

and many quantum chemical program packages exist in which magnetic re-

sponse calculations are implemented.

However, none of these methods can be applied to extended systems. The

reason for this restriction is that the Hamiltonian representing the magnetic

field, Eq. (112), contains the position operator. In a system under periodic

boundary conditions, this operator is ill-defined.

Recently, a new formalism has been presented which allows the calcula-

tion of chemical shifts and other magnetic properties in extended systems

using periodic boundary conditions [49, 5]. This formulation is based on a

magnetic field which is modulated in space. To return to the experimental

situation of an homogeneous field, the limit of infinite modulation wavelength

is evaluated numerically. In this work, an alternative method for extended

systems in periodic boundary conditions is presented. It takes advantage of

the exponential decay properties of localized Wannier orbitals [34, 50] and

treat these localized orbitals as virtually isolated. This procedure is explained

in detail in this section.

A first solution to this problem has been proposed and applied by Mauri

et al. [49, 5, 51, 52, 53, 54] (MPL). They replace the homogeneous magnetic

field B by a modulated one, B(r) = B0 cosq · r, with a finite wavevector

q. Consequently, also the perturbation Hamiltonian becomes q-periodic and

therefore well-defined for an extended system. The physically relevant case
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B(r) = B0 is obtained by extrapolating numerically the results for q → 0.

This is computationally relatively demanding since the same calculation

has to be done several times, for several values of q. In addition, this method

always requires many k-points apart from Γ to be included, because |q|−1

typically far exceeds the unit cell dimensions. However, their work showed

that it is feasible to compute NMR chemical shifts of periodic and amorphous

systems with good accuracy using a pseudopotential plane-wave approach.

7.2 Virtual cells

Here, a conceptually different method shall be presented. Instead of trans-

forming the homogeneous magnetic field to a periodic one, a new periodic

position operator is defined. First, the wavefunctions are localized by means

of a unitary rotation in the occupied subspace, as described in detail in sec-

tion 4. This is a technique well-known in quantum chemistry, where it is used

to determine the location and the nature of chemical bonds. The rotation

is chosen such that the spatial extension of the wavefunctions is minimal,

yielding maximally localized Wannier functions [34]. The extension is char-

acterized by the second moment ∆2 of the orbitals:

∆2 =
∑
k

〈ϕk |r2|ϕk 〉 − 〈ϕk |r|ϕk 〉2. (145)

In a periodic system, special care is required to define the position operator

properly. A solution to this problem in terms of a Berry phase approach [38]

has been given by Vanderbilt et al. [36]. A practical scheme to calculate max-

imally localized Wannier orbitals has recently been presented by Berghold et

al. [35]. The actual procedure used to transform the Bloch wavefunctions of
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a total energy minimization is described in detail in section 4.

It can be shown that in an insulator, the resulting localized wavefunctions

decay exponentially [50]. If the unit cell is chosen such that the lattice

parameter is larger than the decay length, the orbital is significantly different

from zero only within a limited region of the cell, and it practically vanishes

everywhere else.

The next step is to assign individual virtual cells to these Wannier or-

bitals. The virtual cells are chosen such that for the corresponding wave-

function, the cell walls are located in that region of space where the orbital

density is close to zero over a certain range. Then, the position operator is

defined normally running from −L/ 2 to +L/ 2 inside the virtual cell. At the

walls, it makes a smooth transition back from +L/ 2 to −L/ 2, yielding a saw-

tooth shape (see fig. 1). This jump is not sharp in order to avoid components

of very high frequency in the operator. As a consequence of this definition,

the position operator now matches the periodic boundary conditions, since

it is identical in every virtual cell and all its replica.

7.3 Discussion

Again, it must be stressed that the orbital’s gauge is not transformed. In this

case, one would have found additional terms in the perturbation Hamiltonian

and the wavefunction orthonormality relations, as in the IGLO method. The

crucial difference is that there are not individual orbital gauge origins; the

gauge is always “R = r′”. Instead, an individual reference system is defined

for both r and R simultaneously, as described by the relative origins dk in

Eq. (141).
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Figure 1: Two localized orbitals Ψa(x),Ψb(x) with specific position operators

ra(x), rb(x).

The problem that arises for this construction is that the new operator

has a completely unphysical shape around the borders of the virtual cell,

where it makes its jump (at x = nL). But by choosing the virtuall cells

as described above, the unphysical transitions lie in those regions of space

where the wavefunction vanishes. As a consequence, the problematic part of

the operator is only applied where it has no effect anyway.

Hence, the saw-tooth shape of the position operator as indicated by fig.

1 is a reasonable approximation as long as the wavefunctions are sufficiently

localized.

However, this represents a certain restriction for this method. We require

that the decay length be significantly smaller than the lattice constant of the

simulation box, as mentioned above. Only in such a case can the virtual cell

be chosen with its borders in a region of vanishing density. It follows that

for a system with truly delocalized orbitals, like a metal, this approach is

not applicable. In such a system, the decay of the Wannier orbitals is only
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algebraic, and the necessary cell size would far exceed the computationally

tractable volume and one would have to resort to the MPL approach, using

a k-point sampling of the Brillouin zone.
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8 Pseudopotential correction

The electrons of an atom can be classified by the energy eigenvalue of wave-

function in the Schrödinger equation or its simplified equivalents. Typically,

the distinction made there is to separate those electrons of very low lying

energy from those which have a higher energy value and to call them core

and valence electrons, respectively.

The core electrons, having very negative energies, are tightly bound to

the corresponding atom and feel almost exclusively the Coulomb interaction

with other core electrons and the nucleus. Their wavefunction is practically

invariant under changes in the chemical environment of the atom, i.e. they

do not feel whether the atom is isolated in the vacuum or chemically bound

within a molecule. In addition, they are spatially localized, i.e. their wave-

function is confined within the close surroundings of the nucleus, called the

core region.

The other group of electrons, belonging to the valence band, have an en-

ergy which is much closer to the Fermi level. They are located relatively far

away from the nucleus, and its Coulomb potential is strongly screened by

the core electrons. The wavefunction of these valence wavefunctions is sub-

ject to strong changes upon modification of the chemical bonding situation

of the atom. Thus, only the valence electrons make and break a chemical

bond. In contrast to core electrons, their wavefunction is less localized and

much smoother, except for the core region. There, in order to maintain the

orthogonality to the other wavefunctions necessary to satisfy the Pauli ex-

clusion principle, they oscillate strongly. However, these oscillations do not

determine the chemical properties of the atom, they are only necessary for
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reasons of orthogonality.

In a plane-wave representation, the computational cost required to de-

scribe a wavefunction directly depends on the magnitude of these oscilla-

tions. The smoother the orbital is, the fewer plane waves are needed to

construct the wavefunction up to a given accuracy. Therefore, one seeks to

make approximations concerning the shape of the orbitals in order to reduce

the number of Fourier coefficients. The solution is to use pseudopotentials

as presented in section 3.8. A pseudopotential exploits the fact that the

core electrons are not of big interest concerning the reactivity of an atom.

Thus, the nucleus and its core orbitals are taken as frozen and replaced by

a fake potential. The requirement such a fake potential has to verify is that

it should reproduce the valence wavefunctions exactly as in the presence of

core orbitals. Only in the core region, the shape of the valence orbitals is

not so important; they are allowed to differ in order to reduce the necessary

number of plane waves.

The calculations which have been done in the context of this work are

based on a plane-wave pseudopotential implementation. Therefore, in the

whole calculation, no core orbitals are taken into account, and the valence

wavefunctions have an incorrect shape in the core region. In the analysis of

chemical bonding, this frozen core approximation has been shown to work

reliably, since only changes in the valence region are of interest.

The chemical shift, however, is extremely sensitive to the core region,

because the interaction between nuclear spin and electronic current is pro-

portional to 1/ r2. Thus, it is not clear a priori whether a pseudopotential
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implementation can give meaningful results at all. This problem has already

been investigated for a lot of molecules and atoms [55]. It turns out that

often, the contribution of the core orbitals to the chemical shift is almost

constant with respect to the chemical environment of the atom. In [55], an

analysis of the orbital contributions is done for many atoms and molecules

for the IGLO method.

It has been shown elsewhere [56], that the frozen-core approximation can

successfully be used for calculations of orbital magnetic response properties.

A simple additive constant is sufficient to reproduce the all-electron shield-

ings satisfactorily in many cases. This constant must take into account the

direct contributions from the core orbitals as well as the error made due to

the physically incorrect shape of the valence wavefunctions inside the core

region. Since this shape depends on the type and the parameters of the

pseudopotential used, the constant by which the approximation is corrected

cannot be given by a unique number. In order to avoid the need of always

specifying the pseudopotential parameters and the correction constant, a

convention that is also used in experiments shall be adopted in this work:

The cited shieldings are obtained from the difference between the

calculated valence-electron shieldings and the calculated shield-

ings for a commonly used reference molecule.

This convention is also used in most other pseudopotential calculations.

However, now the reference molecule must always be specified. For hy-

drogen and carbon atoms, another convention for the choice of this refer-

ence molecule exists, which is also adopted here. Usually, tetramethylsilane

Si(CH3)4 (TMS) is used because of its chemical stability.
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9 Application to isolated molecules

9.1 Convergence of the chemical shift

The approach has been implemented in CPMD [57], a DFT pseudopotential

suite of programs based on a plane-wave (PW) representation. These meth-

ods are described in detail in the first part of this work, sections 3.1 and

3.8. Using a supercell technique, the method has been applied to isolated

molecules in order to validate the approach and the implementation.

For all molecules, the experimental geometries have been used [58]. As

discussed in section 8, the carbon shifts need to be corrected for the core con-

tribution through a semi-empirical additive constant. Pseudopotentials were

taken from Goedecker et al. [29] with a BLYP gradient corrected functional

[23, 24], and a unit cell of size (20 a.u.)3.

As a first test, an investigation of the convergence properties of the results

with the plane wave cutoff Ec have been performed. This cutoff determines

the size of the basis set, which is mathematically complete at Ec �→ ∞.

At standard values of 50-70 Ry, this limit is not reached, even within the

frozen core approximation. However, the electronic structure is usually well

reproduced by that point. The convergence of the chemical shifts with the

wavefunction cutoff is shown in fig. 2 and 3 for a representative set of small

organic molecules in the gas phase.

The extrapolation of the chemical shift of the isolated molecules to infinite

cutoff (E−1
c → 0) shows that a good convergence is already reached at a

typical value of 70-90 Ry. The convergence error is in the range of about

0.3 ppm for hydrogen and a few ppm for carbon.
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Figure 2: Convergence of 1H shielding with cutoff.

Another approximation is the finite size of the unit cell in the calculation.

To check the influence of the interaction between a molecule and its periodic

replica, also the convergence with the cell volume has been studied with a PW

cutoff fixed at Ec=70Ry (fig. 4). Obviously, the standard cell size of (20 a.u.)3

mentioned above is enough to eliminate the influence of neighboring cells.
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Figure 3: Convergence of 13C shielding with cutoff.

9.2 Comparison with experiment and other theoretical

methods

The extrapolated results for a representative set of small organic molecules

with the values calculated with the Gaussian 94 package [59], with the MPL

results [5] and with experiment are presented in fig. 5 and 6). In [51], only

carbon shifts relative to TMS are given. They were converted to an absolute

scale using the experimental value for TMS σ C
TMS=188.1ppm. Experimental

shieldings have been taken from [60]. The Gaussian calculation was done in

DFT using the CSGT method [48], the BLYP exchange-correlation functional
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Figure 4: Convergence of 1H shielding with cell volume.

[23, 24] and a 6-311G(3df,3pd) basis set.

In the case of an isolated system, we can perform the calculation imposing

that the virtual cells are all equal (dk = dl ∀k, l), which makes ∆jk = 0

in Eq. (143). In fig. 5 and 6, this exact calculation is compared with the

approximation ∆jk = 0 in the case of different virtual cells, where dk �= dl.

In both cases, the results are extrapolated to infinite cutoff, as described in

the previous section.

For the 1H shifts, the agreement of the values with both Gaussian and

experiment is in general very good. The numbers essentially coincide with

the experimental ones up to a maximum difference of about 0.6 ppm which
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is comparable to the error of Gaussian and that of the MPL approach. The

difference between the full and the approximate calculation is negligible ex-

cept in the presence of strongly overlapping delocalized orbitals, as in C6H6.

Thus, for a system containing π-electrons, it is a good practice to choose the

same virtual cells for all π-orbitals.

The differences compared to Gaussian are relatively small, except for

C6H6 and C2H2. Considering the use of different basis sets and the different

methodology of the calculation, overall agreement is satisfactory.

The differences with respect to the MPL method are mostly due to dif-

ferent computational approximations. Using the same cutoff (70Ry) and the

same level of theory (LDA) as Mauri, the results agree up to 0.3 ppm.

Concerning the 13C–atoms, the agreement with other theories and with

experiment is still good but less satisfactory. Here, the limits of the approach

become apparent, in particular of the frozen core approximation. The rigid

additive correction for the pseudopotential is not able to reproduce the differ-

ent hybridization states quantitatively. A change in the coordination induces

an error of about 20ppm. The approximation of neglecting ∆j in the current

density accounts for an error of typically less than 15 ppm. However, the

shifts still compare well to experiment, especially between similar chemical

environments. There, the relative error is only a few ppm. Again, the method

has an accuracy comparable to the other ones.

Concerning the 13C–atoms, the agreement is still good but less satisfac-

tory. Here, the limits of the approach become apparent, in particular of the

frozen core approximation. The rigid additive correction for the pseudopoten-

tial is not able to reproduce the different hybridization states quantitatively.
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Figure 5: 1H NMR chemical shifts

A change in the coordination induces an error of about 20ppm. However,

the shifts still compare well to experiment, especially between similar chem-

ical environments. There, the relative error is only a few ppm. Again, the

method presented in this work has an accuracy comparable to the other ones.

9.3 Magnetic susceptibilities

The magnetic susceptibility, Eq. (130), is a by-product of the calculation and

can be obtained almost for free. The isotropic molar susceptibilities of the

test molecules are presented in fig. 7. They have also been extrapolated to

infinite cutoff. Experimental values are taken from [61].
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Figure 6: 13C NMR chemical shifts

As in the case of the chemical shifts, there is a good agreement with

existing theoretical methods and experiment.

The calculation of χ also suffers from the use of pseudopotentials. The

contribution of the core electrons to the magnetic bulk susceptibility is not

considered. This approximation is valid for light elements, but would fail for

nuclei with spatially extended core electrons [49].

The comparison between the full and approximate calculations show that

for the magnetic susceptibility, neglecting ∆j has a maximum effect of 2cm3/mol,

which can safely be ignored. Again, the exception is benzene, where the con-

tribution of Eq. (143) accounts for a deviation of 10cm3/mol.
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9.4 Electronic current densities

The current which is induced by the electrons as a reaction to the external

magnetic field, Eq. (125), provides an intuitive picture of the processes that

happen in a molecule. In figures 8 and 9, the current density distribution

|j(r)| of two organic molecules is plotted in a plane z =constant.

The first one, tetramethylsilane Si (CH3)4, is the standard reference

molecule for H-, C-, and Si-chemical shifts. The current plot is done at

1Å below the place defined by three carbon atoms.

The second one, triphenylene, is a planar aromatic molecule, where the
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Figure 8: Electronic current density |j(r)| in tetramethylsilane, Si (CH3)4.

ring currents around the outer carbon rings due to the delocalized π-orbitals

come out nicely. The plot is taken at z=0.5Å above the molecular plane, so

that currents from σ -bonds are not visible any more. They can be seen when

looking at the z=0 plane of the molecule.
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Figure 9: Electronic current density |j(r)| in triphenylene, (C6H4)3.
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10 Periodic systems

10.1 Current distribution of ice Ih

As an example for a truly periodic system, the current density distribution

in ice Ih is shown in figure 10.

X

Z

Y

3: jBz.dens

Figure 10: Electronic current density |j(r)| in ice Ih.

The plot is taken at a plane right below the positions of the oxygens. It

can be seen that close to the oxygen atoms, the current density vanishes; this

is due to the use of pseudopotentials which replace the core electrons. In an

all-electron calculation, the currents close to the nuclei would not disappear.
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10.2 Simple polymers

The most simple system that can be considered to be truly periodic is an

infinite polymer chain. While being rather simple from the chemical point

of view, it is very interesting for the study of the properties of the NMR

calculation method. To this purpose, two polymer chains with different hy-

bridizations, (CH2)n and (CH–CH–O)n, are investigated in this section. The

computational setup is similar to that used for the isolated molecules: For

(CH2)n, the unit cell of 19 a.u. size accomodates eight monomers at a cut-

off of 50 Ry, and for (CH–CH–O)n, it is 25 a.u. large and contains four

monomers (CH)2O at a cutoff of 70 Ry. These cell dimensions are sufficient

to assure that the localized Wannier wavefunctions do not extend over more

than half of the cell width. Hence, the saw-tooth position operator can safely

be applied.

In particular, the influence of the neglected current ∆j on the 1H shift in

the case of a periodically repeated system shall be investigated. The number

of particles in these systems is sufficiently small so that a direct calculation

of ∆jk can be done for each orbital. Further, the unit cell is large enough to

allow a proper definition of the displacement vectors (dk − dl) in Eq. (143),

according to the minimum image convention as described in section 6.3.

The dependence of the orbital corrections ∆σ H
k on the distance of the

orbital’s center of charge to the proton is shown in fig. 11. Only the nearest

orbitals have a significant contribution, and there is a partial cancellation.

When summing over ∆σ H
k , the total error is about -0.5ppm for (CH2)n

and -1.0ppm for (CH–CH–O)n. This is about the same as for the isolated

molecules (see fig. 5), and stays within the global accuracy of the calculation.
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Figure 11: Contribution to the 1H shift due to the (normally neglected)

orbital currents ∆jk in infinite linear polymers as a function of the distance

between the orbital’s center of charge and the proton.

10.3 Diamond under pressure

In a previous study [51], Mauri et al. have calculated the carbon chemical

shifts of diamond in function of pressure. Translating this pressure to molar

volumes, they find that the carbon shielding is linear in the volume per atom,

with a proportionality factor of 3.44 ppm/a.u.3.

To check the reliability of the new method quantitatively in a true crystal,

this calculation is repeated using a cubic supercell of 64 carbon atoms. The

results are shown in fig. 12. The dependence of σ C on the atomic volume

yields 3.4 ppm/a.u.3, which is very close to the value found by Mauri.

In the diamond system, the calculation of the neglected current yields
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Figure 12: Dependence of δ C
TMS on the volume per atom.

a total error of 28ppm for the carbon shielding, due to the proximity and

the mutual overlap of the orbitals. The correction due to ∆j is found to be

almost constant with respect to the cell volume, its maximum variation is

±1.5ppm. This is another case in which relative shieldings are more accurate

than absolute ones.
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11 Pepstatin A / HIV-1 protease complex

11.1 Introduction

The protease from the human immunodeficiency virus (HIV-1 PR) is a ho-

modimeric proteolytic enzyme essential for the virus metabolism [62, 63].

HIV-1 PR cleaves polypeptide segments at specific locations, which sub-

sequently fold to form structural proteins and enzymes, among which the

protease itself [63, 64, 65, 66]. Since the discovery that inhibition with

pepstatin A - the defining inhibitor of aspartic proteinases - leads to pro-

duction of immature, non-infectious viral particles [64, 67, 68, 69], HIV-1

PR has become a fundamental target for design of anti-AIDS therapeutics

[70, 71, 72, 73, 74, 75, 76]. In developing new and powerful HIV-1 PR in-

hibitors, it soon became clear that enzyme/inhibitor interactions depend

dramatically on the ionization states of the catalytically essential aspartyl

dyad [70, 77, 78, 79, 80, 81]. Thus, defining the protonation state is critical

for computer-aided design of novel drugs based on crystal structure determi-

nation. Furthermore, it is required for elucidating the enzymatic mechanism

[82, 83, 84].

The method of choice for determining the exact charge state of the HIV-

1 PR active site is 13C NMR spectroscopy. Measures of chemical shifts on

13C-enriched protease have provided information of the chemical microen-

vironment of the catalytic apparatus for the free enzyme [85] and for in-

hibitor/enzyme complexes [85, 86, 87, 88, 89, 90, 91, 92, 93]. However, signal

assignment can be very difficult because of the complexity of the chemi-

cal/physical molecular interactions at the active site. NMR measurements
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ad different pH values show that, upon inhibitor binding, the catalytic as-

partates do not titrate in the pH range 3-7 and that their ionization state is

inhibitor-dependent [89, 91].

An exemplar case in this respect is the adduct with the transition-state

analog pepstatin A. Figure 13 displays the 3D structure of the complex with

the chemically similar acetyl pepstatin [85]. The complex exhibits two dis-

tinct signals at 172.4 and 178.8 ppm in the pH range of 2.5 to 6.5. The

low-field peak, which undergoes an isotopic shift, was attributed to a proto-

nated group; in contrast, the other signal (which is unaltered in D2O) was

assigned to an ionized aspartate. As stated by the authors themselves, the

assignment is rather surprising as the chemical shifts of ionized and neutral

Asp groups are reversed both in aqueous solution [94] and in the adduct with

the chemically similar, transition-state analog KNI-27228. The proposed H-

bond pattern A1 (Fig. 14), constructed by examining the X-ray structure of

the complex with acetyl pepstatin [95], accounts for the inequivalence of the

two carboxylates.

In this section, the ab-initio analysis of the stability, conformational flexi-

bility and NMR properties of the Asp dyad in the pepstatin/HIV-1 PR com-

plex as published recently by Piana et al. [96] will be presented. Calculations

are carried out on structural models of the enzyme’s cleavage site (Fig. 14).

Anticipating the results, the postulated H-bond pattern A1 is not stable and

evolves to a different rearrangement (A2 in Fig. 14) characterized by two

almost equivalent 13C chemical shifts. In contrast, the calculations point

to stability and experimentally-observed chemical inequivalence of the Asp

dyad in the doubly protonated state B (Fig. 14) which has been suggested
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for other protease-inhibitor complexes [78, 80, 91].

Asp25’

Asp25

Gly27’

Thr26’

Gly27

Thr26

Pepstatin

Oh

Oδ2

Oδ2

Oδ1

Oδ1

Cγ
Cγ

a

b

Figure 13: Acetyl pepstatin/HIV-1 PR complex [95]. (a) The entire adduct

and (b) a close up on the cleavage site region (b). Note that the asymmetric

inhibitor pepstatin A contains a central hydroxyl group (mimicking the diol

catalytic intermediate) tightly bound to the catalytic Asp dyad that imposes

a strong asymmetry in the two groups.
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11.2 Methods

11.2.1 Structural models

The enzymatic system. The structure of pepstatin A/HIV-1 PR complex

has not been solved yet. The structure of the complex with acetyl pepstatin is

instead known at 2.0Å resolution [95] (5HVP entry in the PDB database [97]).

Acetyl pepstatin is chemically and structurally very similar to pepstatin A,

and its portion that binds to the active site is identical to that of pepstatin

A. Initial structural models of pepstatin/HIV-1 PR are therefore built from

this X-ray structure.

The model complexes include the side-chains of Asp 25/Asp 25’ (modeled

as acetic acid and acetate, respectively) and groups interacting with them: i)

Thr 26(26’)-Gly 27(27’) peptide bonds (modeled as N-methyl formamide); ii)

the alcoholic moiety of acetyl pepstatin (modeled as isopropanole). A model

at a similar level of sophistication has been shown to describe accurately the

conformational flexibility and the electronic properties of the catalytic dyad

in the free enzyme [98].

Two protonation states are considered: in A (Fig. 14), one of the two

Asp side chain is protonated (overall net charge -1); in B, both Asp are

protonated. Configuration A represents the protonation pattern of HIV-1

PR/pepstatin A proposed on the basis of 13C NMR measurements [85]. The

alternative pattern B is chosen in analogy to other protease-inhibitor com-

plexes binding to the catalytic Asp dyad with the same alcoholic functional

group [78] to account for the observed abnormal isotope shift. The fully

deprotonated state is not considered, as it has not been observed so far in
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HIV-1 PR-transition state analog complexes binding at the aspartates with

an hydroxyl group.

Asp25
Asp25’

pepstatinB1

Oδ2
Oδ2

Oδ1
Oδ1

Hδ1

HoOh

Hδ2

Asp25’

pepstatin

Oδ2 Oδ2

Oδ1
Oδ1

Hδ1

HoOh

Hδ2

Asp25

B2

Asp25 Asp25
Asp25’ Asp25’

pepstatin pepstatinA1 A2

Oδ2
Oδ2 Oδ2

Oδ2

Oδ1Oδ1

Oδ1

Oδ1

Hδ2
Hδ2

Ho

Ho

Oh Oh

Figure 14: Quantum mechanical models representing possible H-bond pat-

terns and protonation states of the Acetyl pepstatin-HIV-1 PR complex.

A1: postulated pattern (monoprotonated form) based on NMR data [85].

A2: pattern obtained after 2.5 ps of ab initio MD simulation. B: Diproto-

nated form at the beginning (left) and after 5.0 ps (right) of ab initio MD

simulation.
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Formic Acid/water complexes. Formic acid (0) and its conjugated

base (0-) are constructed assuming standard bond lengths and bond angles

(Fig. 15; complexes are named according to the number of water models

included). Water/formic acid complexes I-IV are built adding an increasing

number of water molecules to 0. IIa (IIc) is the same as III except that

WATA(WATB) is removed; IIb is the same as IV except that WATB and

WATC are removed.

11.2.2 Quantum-mechanical calculations

The quantum problem is solved within the density functional theory frame-

work, as described in section 3.1. Exchange and correlation functionals are

those of Becke [23] and Lee, Yang, Parr [24], respectively. The Kohn-Sham

orbitals are expanded in plane waves up to a cutoff energy of 70 Ry. Martin

Troullier [28] pseudopotentials were used to describe the interactions between

the ionic cores and the valence electrons. The systems were treated as iso-

lated as in ref [99].

Geometry optimizations were carried out using the direct inversion in the

iterative subspace method [100]. DFT-based molecular dynamics simulations

were performed according to the Car Parrinello scheme [3] for complexes A

and B. A time step of 0.1 fs and a fictitious electron mass of 400 au were

used. Constant temperature was achieved by coupling the systems to Nosé

thermostats of 500 cm−1 frequency. A simulation time of 2.3 ps and 5.2 ps

of molecular dynamics is performed for model A and B, respectively. In a

well-established procedure [98, 101], the positions of terminal atoms are kept

fixed during the MD simulations in order to mimic the rigid protein frame
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Figure 15: Hydrated complexes of formic acid considered in the calculations.

Carboxyl oxygen atoms and water molecules are labeled by 0- and 0. The

hydrogen bonding distances are also indicated.
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[95]. This modeling has already proven to be able to reproduce the structural

properties of the active site of the free enzyme [98].

11.2.3 Calculated Properties

Sampling for a relatively large number of configurations is necessary to pro-

vide reliable estimations of chemical shift, as the latter experience significant

fluctuations during the dynamics. Chemical shifts are calculated every 800

steps of MD, corresponding to 80 fs of dynamics. A1 is unstable and evolves

to a different pattern (A2) after a few hundreds femtoseconds.Thus, 13C

chemical shifts are calculated for 20 configurations of A2, (Fig. 16a). an 55

configurations of B are considered. (Fig. 16b).

To investigate the dependence of the results on the choice of pseudopoten-

tials and basis set, test calculations are carried out also on 10 configurations

taken from B with Goedecker pseudopotentials [29] at a cutoff of 100 Ry. It

turns out that the relative shifts change by as little as 0.1 ppm.



112 11 PEPSTATIN A / HIV-1 PROTEASE COMPLEX

 

(a) 
 

 
 
 
 

(b) 

-150

-140

-130

-120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (ps)

C
h

em
ic

al
 S

h
if

t 
(p

p
m

)

 
 

 
 

  

-150

-140

-130

-120

0,8 1,3 1,8 2,3

Time (ps)

C
h

em
ic

al
 S

h
if

t 
(p

p
m

)

Figure 16: Calculated chemical shifts (ppm) of Cγ Asp25 (diamonds) and Cγ

Asp25’ (squares) during the ab initio molecular dynamics simulation. The

configurations are A2 in (a) and B in (b).
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11.3 Results

Monoprotonated form. The H-bond pattern proposed based on 13C NMR

data [85] (A1 in Fig. 14) is unstable already on the sub-picosecond time scale.

Indeed, after about 0.5 ps, Hδ 2 (Asp25’) is transferred to Oh (pepstatin A),

and simultaneously, Ho (pepstatin A) is transferred to Oδ 2 (Asp25). In the

new structure (A2 in Fig. 14), which is stable up to the end of the simulation,

both aspartyl groups interact strongly with the pepstatin hydroxyl group, one

as H-bond acceptor (Asp25’) and one as H-bond donor (Asp25). The calcu-

lated 13C chemical shifts of the carboxyl carbon atoms (Fig. 15a) are almost

the same (128.4ppm and 128.7ppm for Cγ (Asp25) and Cγ (Asp25’), respec-

tively, with standard deviations of 1.1ppm and 1.0ppm.). Thus, the pattern

of type A2 does not exhibit the experimentally measured, well-separated 13C

chemical shifts [85].

The discrepancy from experiment could arise in principle from the rel-

atively small size of the model and short time-scale. However, calculated

chemical shifts are well converged in the timescale considered (as shown by

their small standard deviation). Furthermore, the complex appears to cap-

ture the relevant chemical interactions at the active site, since: i) it includes

all the groups interacting with the Asp dyad; ii) the cleavage site is buried

inside a hydrophobic region which is unlikely to affect the cleavage site with

large electrostatic interactions; iii) the electronic structure in the presence of

the protein external electrostatic field exhibits small differences with that in

vacuum. It is therefore plausible that the chemical inequivalence of the two

Asp groups is due to a state other than the monoprotonated.

There are both theoretical [102] and experimental [103, 104, 105] evi-
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dences that the magnitude of the observed isotope effect on the 13C chemical

shift is directly related to the strength of the hydrogen bond made by the

deuterated proton. The signal that remains unaltered upon changing the

solvent from H2O to D2O, in the 13C NMR spectra of the enriched pep-

statin/protease complex [85], resonates at an extremely low resonance fre-

quency (172.4 ppm compared to 176 ppm for a protonated and 180 ppm for

a deprotonated aspartic acid). As stated by the authors themselves, this

could be an indication that the group is in a low polar medium making only

a few, weak hydrogen bonds with the surrounding residues [85]. On these

basis, it appears possible that both aspartic side chains are protonated in

the pepstatin/HIV-1 PR complex, but, due to the asymmetric nature of the

inhibitor, one of the two aspartates has much weaker H-bonding interactions

with the surrounding. This would lead to an uncommon shielding of the 13C

signal and a very small isotopic shift upon deuteration.

This hypothesis can be tested against a new calculation, on pattern B,

whose protonation state is already known for other HIV-1 PR/transition

state analog complexes [78, 80, 91].

Diprotonated form. The system is stable during the entire simulation

time (5.2 ps). The asymmetric inhibitor carbon points its hydroxyl group

towards the Asp 25 carboxyl group forming a very strong (dOH=1.65(0.2)Å

and Θ=158◦(11◦)) H-bond with Asp25 and weaker interactions with Asp25’

(dOH = 2.07(0.2)Å and Θ=146◦(15◦)). Furthermore, during the simulation,

each Asp is stabilized by two additional hydrogen bonds: one coming from

the other Asp group (Oδ 1-H···O δ 1) and another coming from the interaction

with the Thr26(26’)-Gly27(27’) peptide bond (N-H· · · O δ 1).
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The calculated chemical shifts of the carboxyl carbons differ by 4 ppm: Cγ

(Asp25) Cγ (Asp25’) resonate at 129.2(0.4) and 132.9(0.6) ppm, respectively

(Fig. 15b). Thus, this pattern exhibits 13C NMR peaks in much better

agreement than those of A pointing to the strong inequivalence of the two

groups in the doubly protonated form.

11.4 Discussion

Interpretation of 13C NMR data at the cleavage site of HIV-1 PR is highly

nontrivial as the effect of local chemical and physical interactions are very

difficult to estimate.

Within the limitation of the timescale investigated and the relatively small

size of the model complex used, the calculations suggest that the protonation

state proposed for HIV-1 PR-pepstatin complex on the basis of 13C NMR

data (A1 in Fig. 14) is unstable. Through a double proton transfer process,

the complex evolves in the sub-picosecond time scale to a different protona-

tion pattern (A2 in Fig. 14). A2 is stable for the rest of the dynamics and

exhibits almost equivalent chemical shifts of the carboxyl carbons, in contra-

diction to experiment [85]. The chemical equivalence of the Asp groups is

explainable in terms of similar H-bond stabilization of the two Asp groups,

leading to a similar amount of deshielding.

The calculations indicate the presence of a diprotonated, neutral form

of the Asp dyad in the HIV-1 PR-pepstatin complex. Indeed, pattern B

(Fig. 14) is stable in the timescale investigated (5.2 ps) and the two 13C

resonances are calculated at markedly different frequencies, in qualitative

agreement with experiment. The inequivalence is explainable in terms of a
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deep modification of the chemical environment of the two Asp groups due

to the hydroxyl group of the inhibitor. The difference in calculated chemi-

cal shifts is slightly smaller than the experimental one (6.4 ppm), possibly

because of the relatively small size of the model used (for instance usage of

acetic acid for the Asp groups) and of the short time-scale. Further, this dif-

ference represents the limit of the overall accuracy of the NMR calculation.

However, the model complex captures the difference in the chemical shift of

two identical groups in an anisotropic chemical environment.

One remaining question is whether the neutral state can be consistent

with isotopic shift measurements. Experimentally, it is found that only one of

the carboxylic groups undergoes an isotopic shift [85], apparently suggesting

that only one aspartyl is protonated. However, the absolute magnitude of

the isotope effect on the 13C chemical shift is very small (about 0.1-0.2ppm)

and proportional to the strength of the hydrogen bond formed by the Asp

proton with the surrounding residues [102, 103, 104]. In the MD simulation

of model B, the carboxylic proton of Asp 25’ forms much weaker hydrogen

bonds than those of Asp 25. This can lead to an isotopic shift being within

the experimental error. Thus, it appears that the absence of an isotopic shift

in a carboxylic acid upon solvent substitution from H2O to D2O cannot be

taken as an absolute indication of deprotonation of the acid.

In conclusion, the calculations show that different ionization states of the

aspartyl dyad in pepstatin/HIV-1 PR complex turn out to be almost chem-

ically equivalent, whereas the two doubly protonated Asp groups may be

inequivalent because of the strong interactions with non symmetric neigh-

boring groups.
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This type of calculations is expected to be used increasingly to interpret

NMR signals in this and other proteins.
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12 Liquid water

12.1 Water under normal and supercritical conditions

NMR chemical shifts are often used as a measure of the hydrogen bond

strength. In liquids, however, the NMR line results from an ensemble aver-

age. The atoms and molecules move so quickly that during the irradiation

of the NMR pulse into the sample, they visit an large part of the available

phase space. Thus, the resonance frequency measures only the ensemble

average of the theoretical instantaneous chemical shift. A calculation from

first principles can provide a bridge between the single number returned by

experiment and the underlying water structure. The microscopic configura-

tions give rise to a very broad distribution of individual shieldings, due to the

strong conformational fluctuations, which the experiment can not resolve.

The calculation must be done for a certain number of configurations in

order to sample a sufficient part of the phase space of the system. This is done

by combining the NMR calculation with a Car-Parrinello ab-initio molecular

dynamics simuation [3] that offers a description of the ionic trajectories from

first principles. After computing the average of the NMR shieldings over the

simulation, this combination thus gives a quantum mechanical description of

the NMR experiment.

In molecular dynamics simulations of bulk water, periodic boundary con-

ditions are commonly used in order to minimize finite size errors and to elim-

inate any surface effects. A certain number of water molecules in a large unit

cell is periodically repeated in space. The artificial periodicity induced by

this arrangement represents an approximation of the true disordered struc-



12.1 Water under normal and supercritical conditions 119

ture of a liquid. However, by choosing the unit cell large enough, the error

due to this periodicity can be minimized. By analyzing the pair correlation

functions, it can be verified that the local water structure corresponds well

to the situation in reality [106, 107].

Concerning the theoretical NMR resonance lines of such a periodic sys-

tem, there are no quantum chemical calculations, because the conventional

IGLO and CSGT implementations can only be applied to isolated systems

in the vacuum. A comparison is only possible with experiment and with the

recently developed MPL method. The performance of the method presented

in this work shall be demonstrated by this comparison on different water

systems. For water under standard ambient conditions, such a calculation

has already been performed by Pfrommer et al. [54]. Their calculation will

be repeated in order to check the new method. Further, the study

Supercritical water is a system that has recently gained a lot of inter-

est. It is generally defined as water at temperatures above the critical point,

T c=647K, ρ c=0.32g/cm3. Under these conditions, it significantly changes its

solvation properties [108, 109, 110]. In particular, it can promote chemical

reactions such as the oxidation of organic wastes [111, 112] and the geological

formation of hydrocarbons like methane [113, 114, 115, 116]. These proper-

ties, which are not observed in normal liquid water under ambient conditions,

are probably to be associated with the different structure of the hydrogen

bond network.

The computational setup is equivalent to that used for the standard liquid

water, section 12. To elimitate surface and finite size effects, the liquid is

considered as a unit cell containing 32 water molecules taken under periodic
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boundary conditions. The unit cell dimensions are adapted to the desired

environmental conditions.

In particular, the comparison between normal and supercritical water

will allow a better understanding of how the NMR signal is affected by the

modifications in the H-bond network that are observed in the supercritical

state.

The results are in good agreement with recently performed NMR experi-

ments [117, 118, 119], thus providing significant support also for the ab-initio

model used to obtain the ionic trajectory. The trajectories used in the cal-

culation were generated by M. Boero et al. [107].

12.1.1 Molecular dynamics

The systems under investigation are trajectories of 32 water molecules ob-

tained under different environmental conditions:

• normal state at standard density and ambient temperature: T =300K,

ρ=1.0g/cm3 [106]

• supercritical state at high density: T =653K, ρ=0.73g/cm3 [107]

• supercritical state at low density: T =647K, ρ=0.32g/cm3 [107]

These trajectories have been obtained via a Car-Parrinello molecular dy-

namics [3] using the CPMD program package [57]. The calculations are per-

formed in the framework of density functional theory using the gradient cor-

rected functionals proposed by Becke [23] and Lee, Yang, Parr [24] (BLYP).

Plane waves are used as basis set, together with pseudopotentials of Martins-

Troullier type [28], and a plane wave cutoff of 70Ry. Further details can be
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found in ref. [107]. The shielding calculation is always done at the same

level of theory as used for the generation of the trajectory in order to pro-

vide a consistent description of the system. For the reference gas phase water

molecule, the experimental geometry [120] is used. The shielding is decreased

by about 0.3ppm when the BLYP-relaxed geometry at 0K is taken instead.

The quantum mechanical zero point motion of the hydrogen atoms are not

considered the calculations. Vaara et al. [121] have computed its influence

on the shielding to be about half a ppm. However, one can assume that this

effect has a similar magnitude in the gas, liquid and supercritical phases, so

that it cancels out in the calculation of the relative shift δ .

Experiments measure the trace of the tensor δ (R), averaged over all hy-

drogen nuclei R and over a time in the range of about a microsecond. How-

ever, it can be expected that within a time span of 9ps, which is the duration

of a typical ab initio simulation, all relevant relaxation processes have taken

place and the averages are accurate. In order to verify this, the results for

the fifth and nineth picosecond of the simulations are compared, considering

the first few picoseconds as an equilibration period. In practice, twenty in-

stantaneous atomic configurations are extracted from each of the trajectories

at 5ps and at 9ps. It turns out that the chemical shift spectra at 5ps and at

9ps differ by less than 0.15ppm, which indicates a sufficient equilibration of

the system.

12.1.2 Magnetic susceptibilities

In order to evaluate the chemical shieldings, Eq. (130), a spherical shape

is assumed for the sample. If the experimental conditions are different, for
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instance in the case of a cylindrical sample geometry (which is the case for

a reaction tube), it is customary to convert the measured shieldings to a

spherical geometry. For this, one needs the magnetic bulk susceptibility χ

or the molar susceptibility χm of the system, which is usually assumed to

be constant regardless of the thermodynamical conditions. However, for the

available experiments concerning liquid water under nonstandard conditions,

this assumption, which leads to a linear dependence of the bulk susceptibility

on the water density, has never been measured or theoretically confirmed.

Therefore, it is interesting to investigate the magnetic susceptibility per

unit volume for these systems with the ab initio method described in this

work.

The results are plotted in fig. 17. They are directly expressed in units

of the susceptibility correction, i.e. multiplied with the geometrical factor

8π/ 3 from Eq. (130). It is found that within the theoretical approxima-

tions, the magnetic susceptibility depends linearly on the water density and

is almost insensitive to the temperature. Thus the assumptions made in

experiment [118, 119] can be confirmed.

The molar susceptibility χm has been measured for water at room tem-

perature in the liquid phase [122, 123]. Its value, −12.96 ppm cm3/mol,

differs slightly from the one calculated here (−13.4 ppm cm3/mol) and from

that found by Pfrommer et al. (−13.2 ppm cm3/mol) [54].

For water in the gas phase, there is no experimental susceptibility value.

The present implementation yields a χm of −13.3 ppm cm3/mol for the ex-

perimental and −13.5 ppm cm3/mol for the BLYP-relaxed geometry of the

water molecule. Pfrommer et al. [54] report a calculated value of −14.6 ppm
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Figure 17: Volumetric susceptibility of water

cm3/mol in DFT/LDA, whereas a calculation with Gaussian [59] yields−13.8 ppm

cm3/mol in DFT/BLYP, −13.9 ppm cm3/mol in DFT/LDA and −13.56 ppm

cm3/mol in MP2 (6-311G basis set).

Thus, within the typical numerical accuracy of these calculations, all

values are comparable and in agreement with the experimental susceptibility

of the liquid. This agreement is reassuring and the errors made are not such

as to influence the estimation for the chemical shifts δ .
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Figure 18: Direct comparison MPL method – this work

12.2 Liquid water under ambient conditions

In fig. 18, a direct comparison is presented for a given system. It is a snapshot

taken from an ab-initio trajectory of liquid water at room temperature and

consists of 32 water molecules within periodic boundary conditions.

The correlation with the shieldings obtained through the MPL approach

shows a satisfactory overall agreement. The distribution of the shift values

is very similar, although some of the individual shieldings differ significantly.

The maximum discrepancy is about 2ppm, which can be explained through

the different approximations assumed in the two methods.

The gas-to-liquid shift of water resulting from a statistical analysis of
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a longer trajectory (9ps) [106] of liquid water is shown in table 1. The

experimental values are taken from [121].

δ liq(
1H) [ppm] δ liq(

17O) [ppm]

This work 4.1 30

MPL method 5.8 37

Experiment 4.3 36.1

Table 1: 1H and 17O gas to liquid shifts.

As in the recently published calculation by Pfrommer et al. [54], the gas

to liquid shifts δ (1H) and δ (17O) of water (table 1) are well reproduced. The

hydrogen shift turns out to be closer to experiment than that of oxygen. This

is not surprising, because in the frozen core approximation, the pseudopo-

tentials cannot take into account the changes of the electronic structure in

the core region. In addition, the error induced by neglecting the terms of

Eq. (143) are stronger for heavier nuclei.

12.3 Water under supercritical conditions

In the experiment, the measured shift is an average over all microscopic con-

figurations and over time. One can analyze the individual shift values of

the supercritical systems. Their distribution changes significantly when go-

ing from the standard to supercritical state. Accumulated histograms are

provided in fig. 19 and 20, fitted to Gaussian distributions. The lower the

density, the narrower become the distributions. Since the susceptibility cor-

rection is not yet added, these graphs measure directly the hydrogen bond
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Figure 19: Distribution of the relative shifts for normal conditions. ∆σ is

the spread of the fitted Gaussian.

strength.

It is important to note that although broad, these three distributions

are clearly separated and the average values can be discriminated. There is

an interesting trend in the width of the distributions which decreases as a

function of the density.

In fig. 21 these data are put in line with experimentally measured shifts.

Both in theory and in experiment, there is a large jump in the shifts

between the supercritical and normal water phases. In terms of hydrogen

bonding, this indicates a significantly weaker interaction through the hy-

drogen bond network in the supercritical state, as expected. Nevertheless,

hydrogen bonding is still present, even at very low density.
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Figure 21: NMR chemical shifts of liquid water relative to the gas phase.

Experimental values are taken from [118, 119, 124].
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12.3.1 Anomalous hydrogen bond configurations

It has been shown [107] that there are several atypical hydrogen bond (HB)

configurations in supercritical water, which are absent in normal liquid water.

Their geometries are depicted in fig. 22. Since hydrogen bonds have a very

strong effect on the chemical shielding, the question arises to which extent

these anomalous arrangements are responsible for the total NMR chemical

shift.

In this section, the chemical shifts of these configurations are analyzed.

It turns out that their typical shielding is basically the same as for normal H-

bonded protons. In addition, the average number of these geometries is very

small [107]. On the average, only less than five percent of the water molecules

are H-bonded in such an anomalous way. In contrast to that, normal linear

HBs are formed by almost every second molecule. The average percentage

of H-bonded protons in the simulations is shown in table 2. The definition

of a hydrogen bridge is that the next oxygen atom is closer than a certain

distance dmax
OH , which is varied between 2.0Å and 2.45Å.

In conclusion, the total chemical shift of the supercritical systems is not

determined or even significantly influenced by the anomalous H-bond ar-

dmax
OH ρ=0.32g/cm3 ρ=0.73g/cm3 ρ=1.0g/cm3

2.0Å 3.7% 15% 63%

2.3Å 11% 39% 87%

2.45Å 16% 53% 93%

Table 2: Average percentage of protons that form a HB.
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Figure 22: Possible types of hydrogen bond (HB) configurations which exist

in supercritical water. From upper left: standard linear HB, bifurcated HB,

cyclic HB and twofold HB. Only linear HBs are present in normal liquid

water.



12.3 Water under supercritical conditions 131

rangements. Instead, the very different coordination numbers of the hy-

drogens due to the H-bond network are responsible for the variation of the

shieldings.

12.3.2 Validity of empirical functions for the shift

The ab initio calculation of the NMR chemical shifts of a given configuration

has a computational cost comparable to a total energy calculation. Although

on modern computers, this is not a tremendous task, it is still expensive to

sample a representative statistics of configurations. On the other hand, a

large number of empirical formulae and rules of thumb are commonly used in

chemistry to predict the NMR line of an atom in a molecule in function of its

coordination number and other simple parameters. Since these rules have a

surprising accuracy, it is tempting to try to establish such rules for extended

systems like liquid water, in order to avoid the fully quantum mechanical

calculation. In this chapter, is shall be investigated which range of validity

such a formula can have.

Mauri et al. [54] have published an empirical formula that yields the chem-

ical shift of a proton in function of the local geometry of the corresponding

water molecule and its neighbors. In particular, this formula takes into ac-

count the length d1 of the closest OH–bridge as well as the distance d3, d4 of

the two nearest neighboring molecules:

δ empirical
i = A0 + A1dc +

A2

d13
+ A3

(
1

d33
+

1

d43

)
+ A4α. (146)

Here, dc and α are the proton’s covalent bond length and the molecular angle,

respectively. The parameters A0 through A4 are determined by a least square

fitting procedure.
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Such an empirical formula can be of great use since it significantly reduces

the computational cost for the analysis of the trajectory. The only question

is whether such a formula can be valid for other environmental conditions

than those its parameters have been fitted for. Therefore, the formula will be

verified on the normal liquid water system and then applied to the supercrit-

ical state. Further, a correlation will be presented between the shift values

returned by the empirical function and those obtained from first principles.

The results are shown in figures 23 for the ρ = 1.0g/cm3, ρ = 0.73g/cm3 and

ρ = 0.32g/cm3 systems, respectively.

The results are reasonably well for the normal conditions (fig. 23, top),

although the ab-initio shifts are not always exactly reproduced. The reason

for this can be found in the different approximations of the two ab initio

methods, as well as the different trajectory the formula has been optimized

for.

The shapes of the correlation graphs for the supercritical states (fig. 23,

bottom) are still acceptable. Since the overall variations of the shift are

smaller, however, the deviations of the empirical formula induce a large rela-

tive error. One can compute the standard deviation of the empirical formula

for several configurations. Labeling the ab initio shifts by δ theo
i , the standard

deviation for a given number N of protons is defined by:

∆(2) =
1

N

∑
i

[(
δ theo

i − δ empirical
i

)2]1/2
. (147)

The results are shown in table 3. Comparing these standard deviations with

those found for the system which the formula parameters have been fitted

for, one can get an idea about the transferability of the empirical approach.
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Figure 23: Correlation of the empirical formula with the ab-initio calculation

for normal water (top) and supercritical water with ρ = 0.73g/cm3 (left) and

ρ = 0.32g/cm3 (right)
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Since the total chemical shift of the supercritical water is only about around

1 ppm, a standard deviation of the same magnitude seems somwehat too

large. However, if the parameters are adapted to the chemical situation, the

empirical approach can save computer time, and allows for a considerably

better statistics.

The problem of the description through the empirical function is that its

parameters implicitly include information about the system as a whole. As

an example, one can consider the influence of the hydrogen bridge of the

proton. In the formula (146) by Mauri et al., its effect is described through

the parameter A2, which is found to be:

A2

d13
=

(
3.17Å

d1

)3

. (148)

When considering a single isolated water dimer forming such a hydrogen

bridge, the shift of the proton actually decays in 1/d1
3, as shown in fig. 24.

However, the characteristic length of the effect comes out differently. Instead

of 3.17Å, the decay length is found to be of 2.36Å.

For this calculation, the optimized dimer geometry is taken and the two

molecules are displaced along the OH-bond axis. The δ = 0 limit corre-

sponds to the isolated water molecule. Even if this procedure is only a raw

approximation of the situation in the true liquid, it indicates the limit of any

system ρ=0.32g/cm3 ρ=0.73g/cm3 ρ=1.0g/cm3 MPL method [54]

∆(2) 1.16 ppm 1.91 ppm 0.99 ppm 0.43 ppm

Table 3: Standard deviation of the empirical formula for the chemical shifts.
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empirical fit formula.

12.4 Discussion

The results of the ab-initio analysis of the magnetic susceptibilities and the

proton NMR chemical shifts of liquid water under normal and supercritical

conditions agree well with experiment and confirm the existence of hydrogen

bonding in supercritical water even at low density. The calculations also

validate the assumption that the magnetic susceptibility is linear in the water

density, regardless of the thermodynamical conditions.
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The calculations presented in this section give further support to the

accuracy of the BLYP functional in water calculations, since one can repro-

duce quantitatively the drop in the hydrogen bond strength from normal to

supercritical water, as measured by the NMR chemical shift.

The ab initio analysis of the magnetic susceptibilities and the proton

NMR chemical shifts of water supercritical conditions presented in this sec-

tion can provide an important contribution to the validation of ab initio

generated trajectories. The results agree well with experiment and confirm

the existence of hydrogen bonding in supercritical water even at low density.

The calculations also validate the assumption that the magnetic suscep-

tibility is linear in the water density, regardless of the thermodynamical con-

ditions.

The calculations give further support to the accuracy of the BLYP func-

tional in water calculations, since the drop in the hydrogen bond strength

from normal to supercritical water, as measured by the NMR chemical shift,

can be reproduced quantitatively.

The validity of empirically fitted formula to predict the NMR lines based

on a few variables is shown to be valid as far as the average shift position

is concerned, whereas the individual shieldings are only reproduced up to a

relatively large error.
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13 Conclusion

In this thesis, a new ab initio method is presented which allows the efficient

calculation of magnetic susceptibilities and NMR chemical shielding tensors

from first principles. It is formulated in the context of variational density

functional perturbation theory and implemented in a pseudopotential plane-

wave computer program package.

The approach is based on the localized nature of the electronic wave-

functions in the Wannier orbital representation. When considering periodic

systems with extended electronic wavefunctions, this representation can be

obtained by a unitary rotation of the occupied subspace of these electrons.

There is evidence [50] that in insulators, there is always such a representation

of the electronic structure. In particular, the individual electronic orbitals

can be shown to have an exponentially decaying amplitude. This formula-

tion allows a relatively straightforward solution of the fundamental problem

of magnetic orbital responses in periodic systems, the application of the po-

sition operator. It shall be noted here, that there is no simple extension of

the Berry phase approach, which can tackle the problem of the expectation

value of the position operator in a periodic system.

To recapitulate the approach presented in the preceding sections, the per-

turbation Hamiltonian which represents the action of the external homoge-

neous magnetic field, Eq. (112), is applied to the localized orbitals. A virtual

cell (VC) is placed around each of these orbitals, such that the electron is

entirely contained inside this VC. The magnetic perturbation Hamiltonian

contains a new orbital-specific position operator (fig. 1), individually defined

for each virtual cell. The first order perturbation wavefunctions ϕ(1) are then
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obtained variationally through the minimization of the second order energy

functional, Eq. (116), in the framework of density functional perturbation

theory.

The total electronic current density is computed as the periodically re-

peated sum of all orbital currents obtained from the first order perturbation

wavefunctions by Eq. (133). To make this formula computationally efficient,

the approximation of neglecting the term of Eq. (143) is adopted. The va-

lidity of the approximation in different chemical situations is checked by an

exact calculation for isolated molecules. It is shown that the error induced

by the approximation is comparable to the overall accuracy of the implemen-

tation.

The current leads to the chemical shieldings over the periodic part of the

induced magnetic perturbation field through Eq. (126), and to the magnetic

susceptibility over the spatially constant part of the induced field through

Eq. (130).

The results presented in the previous sections show that the technique

presented in this work can be used for amorphous as well as periodic systems

with good accuracy.

The calculations can give further support to the accuracy of the tra-

jectories of condensed phases generated by density functional theory. In

particular, the systems investigated in this thesis, in particular water in the

liquid state, require special care due to the complex hydrogen bond network.

Since this network has a large effect on NMR parameters, their calculation

can help to estimate the quality of the trajectory. Here, the description of

H-bonds through the BLYP exchange correlation functional in water calcu-
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lations could be validated, since the decrease in the hydrogen bond strength

from normal to supercritical water, as measured by the NMR chemical shift,

can be reproduced quantitatively.

The practical advantage of the method presented here compared to the

existing formulation for periodic systems by Mauri et al. [5] is the compu-

tational effort, which can be significantly smaller. For systems that can be

described through a very small primitive cell, like defect-free crystals, one

would have to use a supercell technique to obtain sufficiently localized Wan-

nier functions in the method presented here. The MPL approach works with

the primitive cell only, making it much more efficient in such a case.

However, for systems that require a large unit cell, the computational

effort is considerably smaller in the new approach. The computer time needed

to calculate a system of 32 water molecules in the liquid state at ρ=1g/cm3 is

about six times smaller compared to the MPL approach [125]. This becomes

especially important in the combination with molecular dynamics. In such a

case, in order to obtain a good statistical average, the NMR chemical shift

has to be calculated for a large number of atomic configurations (snapshots)

out of the trajectory.

The method presented in this thesis is currently being applied to a va-

riety of systems, including biologically important molecules, and provides a

powerful tool to interpret experimental results.
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Appendix

A Discrete Fourier transformations

In general, a Fourier transformation switches the representation of a func-

tion ϕbetween two conjugate spaces. In the present case, they are the di-

rect and reciprocal space, being the representations of the function in three-

dimensional cartesian position coordinates ϕ(r) and in plane waves ϕ(G),

respectively. The textbook Fourier transformation consists of two integrals

converting between continuous direct and continuous reciprocal space:

ϕ(G) =

∫
d3r e−iG·r ϕ(r) (149)

ϕ(r) =
1

(2π)3

∫
d3G eiG·r ϕ(G). (150)

In principle, this formula is only valid for L2-functions, where the convergence

of Eq. (149) is assured. Through these definitions, it is automatically assured

that Eq. (150) is actually the inverse transformation of (149):

ϕ(r) =
1

(2π)3

∫
d3G eiG·r

∫
d3r ′ e−iG·r′ ϕ(r′)

=
1

(2π)3

∫
d3r ′ ϕ(r′)

∫
d3G eiG·(r−r′)

=
1

(2π)3

∫
d3r ′ ϕ(r′) (2π)3 δ 3(r− r′)

= ϕ(r). (151)

The simulation program package underlying this work uses periodic bound-

ary conditions, so that every function is supposed to have the periodicity of

the calculation cell. This can be achieved by restricting the G-vectors to a
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discrete set, in such a way that the associated plane waves obey that pe-

riodicity. Then, every function represented in terms of these plane waves

automatically satisfies the periodic boundary conditions.

However, the integral representation, Eq. (149) and (150), cannot hold

any more. TheG-integral becomes a discrete sum over the allowedG-vectors.

In addition, the representation in real space cannot be done in a continuous

way either. In a computer code, the values of the function are stored on a

finite grid. Thus, also the integral over the direct space, Eq. (149), becomes

a sum over the points of that grid. Of course, the normalization changes as

well, since the Riemann sum is only done over one simulation cell. The new

definition reads:

ϕ(G) =
∑
r

e−iG·r ϕ(r) (152)

ϕ(r) =
1

NG

∑
G

eiG·r ϕ(G) (153)

where NG is the number of G-vectors in the discrete back-transformation

(153). One now imposes that the number of grid points be identical on the

real space grid and on the reciprocal space grid. It will be shown that this is

neccessary to assure that these two transformations are actually the inverse

of each other. A forth and back transformed wavefunction can be written:

ϕ(r) =
1

NG

∑
G

eiG·r ∑
r′

e−iG·r′ ϕ(r′)

=
1

NG

∑
r′
ϕ(r′)

∑
G

eiG·(r−r′) (154)

The last sum in Eq. (154) is nontrivial. One can first investigate the case

where G · (r − r′) is zero or a multiple of 2π. This happens only when
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r = r′ under periodic boundary conditions. Then, the sum simply yields the

total number of G-vectors, NG, which directly cancels with the normalization

prefactor 1/ NG of Eq. (153).

For all other positions, r �= r′, the situation is more involved. It can be

shown that for this case, the sum vanishes:∑
G

eiG·r = 0 ∀r �= 0. (155)

The G-vectors represented in the sum are taken from the cell’s reciprocal

lattice,

Gi = kib1 + lib2 +mib3, (156)

and they verify the energy cutoff criterion:

〈G|T |G〉 =
1

2
G2 ≤ Ec (157)

with a certain cutoff-energy Ec. The vectors b1,b2,b3 are the basis vectors

of the reciprocal lattice and (ki, li, mi) designate the Miller indices of the

G-vector Gi. Eq. (157) describes a sphere where all the considered vectors

are inside.

Unfortunately, the sum in Eq. (155) is rather tricky to calculate with

a spherical cutoff for the G-vectors as defined by Eq. (157). Therefore, a

different condition is adopted in practice, which makes the calculus straight-

forward: we use a cubic cutoff instead of the sphere. The Miller indices

(ki, li, mi) are allowed to vary independently in a symmetric interval:

−K ≤ ki ≤ +K (158)

−L ≤ li ≤ +L (159)

−M ≤ mi ≤ +M. (160)
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Now, the sum in Eq. (154) can be done analytically:

∑
G

eiG·r =
K∑

k=−K

L∑
l=−L

M∑
m=−M

ei kb1·r ei lb2·r eimb3·r (161)

=
sin

((
K + 1

2

)
b1 · r

)
sin

(
1
2
b1 · r

) sin
((
L+ 1

2

)
b2 · r

)
sin

(
1
2
b2 · r

) (162)

sin
((
M + 1

2

)
b3 · r

)
sin

(
1
2
b3 · r

) (163)

under the condition that b1 · r, b2 · r and b3 · r are not multiples of 2π, such

that the denominators in Eq. (163) do not vanish. If one or two of them are,

the corresponding fractions must be replaced by 2K + 1, 2L+ 1 or 2M + 1,

respectively. But at least one of the factors remains.

Any position vector can be written as

r =
j1
N1

a1 +
j2
N2

a2 +
j3
N3

a3 (164)

with the basis vectors of the direct lattice, a, integers numbers j and the

corresponding number of grid points N. One now uses the fact that the

dimension of the real space grid has been chosen to be identical to that of

the reciprocal space. This means that N1 = 2K + 1, N2 = 2L + 1 and

N3 = 2M + 1, and thus for any position vector r,(
K +

1

2

)
b1 · r =

1

2
N1 b1 ·

(
j1
N1
a1 +

j2
N2
a2 +

j3
N3
a3

)
(165)

=
1

2
j1 2π (166)

= j1 π, (167)

since bi · aj = δ ij . The sine of a multiple of π being zero, Eq. (163) vanishes

and Eq. (155) is fulfilled.
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In other words, the identity of the number of mesh points on the direct

and reciprocal space grids assures that the discrete transformations given by

Eqs. (152) and (153) are actually the exact inverse of each other.
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B A particular Fourier transformation

In this appendix a particular expression shall be evaluated, which will be

needed in section 5.5 (Eq. (128)). The starting point is the electronic cur-

rent density j(r), given in the unit cell, which is assumed to be periodically

repeated throughout space. The goal is to compute the induced magnetic

field at a given location r inside the unit cell. In direct space, this field can

be expressed (cf. Eq. (127)) as:

Bind(r) =
µ0
4π

∫
d3r′

r′ − r
|r′ − r|3 × j(r

′) (168)

=
µ0
4π

∫
d3r′

(
∂

∂ r

1

|r′ − r|

)
× j(r′) (169)

=
µ0
4π

εαβγ eα
∂

∂ rβ

∫
d3r′

1

|r′ − r| jγ(r′), (170)

where the integral is understood to go over all space, not only the unit cell.

The vector product has been written with the help of the totally antisym-

metric tensor εαβγ , the Levi-Cività-symbol. The vector eα denotes the unit

vector in the cartesian direction α, and the indices α, β, γ are subject to Ein-

stein summation. The current is periodically repeated, whereas the function

r′−r
|r′−r|3 resp. 1

|r′−r| is not.

Mathematically, the integral in Eq. (170) is somewhat dangerous, since

the integration of a function decaying like 1/ r normally does not converge.

But the current, although it is periodically repeated and therefore not van-

ishing at r′ �→ ∞, is an alternating function. This is clear because the net

current of every cell must be zero:

∫
d3r j(r) = 0. (171)
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Thus, the integral is constituted of an algebraically decaying term times an

alternating expression, which makes it convergent.

For simplicity, only the expression

Iγ(r) =

∫
d3r′

1

|r′ − r| jγ(r′) (172)

shall be treated, taking only one cartesian component of the current density

j(r) as a scalar function. The property Eq. (171) applies to each of these

components, and when expressed in reciprocal space, it is therefore equivalent

to

jγ(G = 0) = 0. (173)

This will make Eq. (172) somewhat easier to handle. Using the representation

in G-space according to Eq. (153):

Iγ(r) =

∫
d3r′

1

|r′ − r|
1

NG

∑
G �=0

eiG·r′jγ(G) (174)

=
1

NG

∑
G �=0

jγ(G)eiG·r
∫

d3r′
1

|r′ − r| eiG·(r′−r) (175)

=
1

NG

∑
G �=0

jγ(G) eiG·r
∫

d3τ
1

τ
eiG·τττ , (176)

where τττ = r′ − r has been substituted. Clearly, the integral in Eq. (176)

would diverge for G = 0. The usual trick to calculate it for G �= 0 is to

replace it by the expression

lim
a
→0

∫
d3τ

1

τ
e−aτ eiG·τττ , (177)

which is easily evaluated to be∫
d3τ

1

τ
e−aτ eiG·τττ =

∫
dϕτ d(cos θτ ) dτ τ 2

1

τ
e−aτ eiGτ cos θτ (178)

=
4π

a2 +G2
. (179)



147

The limit a �→ 0 yields for Eq. (176)

Iγ(r) =
1

NG

∑
G �=0

jγ(G) eiG·r 4π

G2
, (180)

which is nothing else but the discrete Fourier back-transform (cf. Eq. (153))

of the periodic function

4π

G2
jγ(G) = Iγ(G). (181)

Finally, the induced magnetic field can be written, using this result in Eq. (170),

as:

Bind(r) =
µ0
4π

εαβγ eα
∂

∂ rβ
Iγ(r) (182)

=
µ0
4π

εαβγ eα
∂

∂ rβ

1

NG

∑
G �=0

eiG·r Iγ(G) (183)

=
1

NG

∑
G �=0

eiG·r iGβ Iγ(G)
[µ0

4π
εαβγ eα

]
(184)

=
1

NG

∑
G �=0

eiG·r
[
iµ0 εαβγ eα

Gβ

G2
jγ(G)

]
. (185)

Thus, there is a very simple representation of the magnetic field in reciprocal

space:

Bind(G) = iµ0 εαβγ eα
Gβ

G2
jγ(G) (186)

=
iµ0
G2

G × j(G). (187)

One finds the expression as presented in Eq. (128). As already mentioned

there, the G = 0 component needs a special treatment, because it determines

the homogeneous field, spread over the whole system. It depends on the

macroscopic shape of the sample and cannot be calculated under periodic

boundary conditions. A calculation for a typical experimental geometry (a

spherical sample) is presented in section C.
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C Macroscopic susceptibility

C.1 General

In this section, the G = 0 component of the induced magnetic field is com-

puted and it is shown how it affects the shieldings of a system.

The formula to calculate the induced field from the current density,

Eq. (127), remains unchanged. Only when transforming it into reciprocal

space, the integration for G = 0 needs special care. The Integral representa-

tion is used instead of the discrete sum, because the latter is only an auxiliary

mean to actually perform the calculations on a computer. The physical def-

inition instead is always based on the integral representation, Eq. (149). It

reads:

Bind(G = 0) =

∫
S

d3r Bind(r), (188)

where the integral includes the whole space, i.e. the complete macroscopic

sample, designated by S. Like in the case G �= 0, the induced field can be

calculated from the induced orbital current (cf. Eq. (127)) by:

Bind(r) =
µ0
4π

∫
S

d3r′
r′ − r
|r′ − r|3 × j(r

′). (189)

Together with Eq. (188), this becomes:

Bind(G = 0) =
µ0
4π

∫
S

d3r d3r′
r′ − r
|r′ − r|3 × j(r

′) (190)

=
µ0
4π

∫
S

d3r d3r′ j(r′)× ∂

∂ r′
1

|r′ − r| (191)

=
µ0
4π

∫
S

d3r′ j(r′)× ∂

∂ r′

∫
S

d3r
1

|r′ − r| . (192)
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Both integrals can only be done if the macroscopic geometry of the system,

S, is known. However, a general statement about the form of the resulting

expression can already be made using dimensional arguments. The last inte-

gral, over r, will have the dimension of a surface. After taking the gradient,

a position vector will remain. Since the integral only depends on the position

r′ within the sample S, one would expect to find an expression of the type

∂

∂ r′

∫
S

d3r
1

|r′ − r| = −(r′ −Rc) f(r
′) (193)

with the center of mass of the sample, Rc, and f(r′) a dimensionless function,

varying slowly with r′. Lateron in this section, this function will be calculated

for a particular geometry. Thus, the field becomes:

Bind(G = 0) = −µ0
4π

∑
s∈S

∫
Ωs

d3r′ j(r′)×
[
(r′ −Rc) f(r

′)
]
, (194)

where the integral over the total system has been split up into the sum over

its constituting unit cells. The cells are indicated by s, their volume being

Ωs.

Considering the very large number of unit cells that form a macroscopic

sample, it is certainly a reasonable approximation to assume that f(r′) actu-

ally only depends on the location of the unit cell, i.e. on the index s resp. on

the vector Rs pointing to that cell, and not on the position inside it. Then,
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Eq. (194) simplifies considerably and finally metamorphoses to Eq. (129):

Bind(G = 0) ≈ −µ0
4π

∑
s∈S

∫
Ωs

d3r′ j(r′)×
[
(r′ −Rc) f(Rs)

]
(195)

= −µ0
4π

∑
s∈S

f(Rs)

∫
Ωs

d3r′ j(r′)× r′ (196)

= ΩS
Ω1

2π ΩS

∑
s∈S

f(Rs)
µ0

2Ω1

∫
Ω1

d3r′ r′ × j(r′) (197)

= ΩS κ χ Bext (198)

with the definitions

ΩS = system volume, (199)

Ω1 = one particular (but arbitrary) unit cell, (200)

κ =
Ω1

2π ΩS

∑
s∈S

f(Rs), (201)

χ =
µ0

2Ω1

∂

∂ Bext

∫
Ω1

d3r′ r′ × j(r′). (202)

Several details of this last calculation are worthwhile being explained in

more detail. First, Eq. (171) is used to eliminate the center of gravity Rc of

the system from Eq. (195). For the same reason (assuming in addition that

the current density is fully periodic), the integrals are equal for all unit cells:

∫
Ωs

d3r′ j(r′)× (r′ −Rc) =

∫
Ωs

d3r′ j(r′)× r′ (203)

=

∫
Ω1

d3r′ j(r′)× (r′ +Rs) =

∫
Ω1

d3r′ j(r′)× r′, (204)

so that a particular, but arbitrary one can be chosen to obtain the magnetic

bulk susceptibility χ . The derivative with respect to the external field shall

only clarify the tensor nature of the susceptibility as well as the assumption
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that the current density is purely linear in the external field:

χ ·Bext =

[
∂

∂ Bext

∫
Ω1

d3r′ r′ × j(r′)
]
·Bext (205)

=

∫
Ω1

d3r′ r′ × j(r′). (206)

Finally, one more operation is neccessary to obtain the actual contribution

of Bind(G = 0) to the total magnetic field in the cell, the back transformation

to direct space. The forth transformation of a constant field B(r) = B0 to

reciprocal space through Eq. (149) gives a G = 0 value of ΩSB0, so that the

inverse transformation consists just of dividing by the total system volume.

That means for the total induced magnetic field in direct space:

Bind
0 = κ χ Bext (207)

with the defining relations Eq. (201) and (202) for χ and κ.

C.2 Special case: spherical geometry

In this part, the value of κ shall be determined for the most commonly used

system, a spherical sample. In this case, one starts from the exact expression

Eq. (192), which can be calculated analytically. When evaluating it, it is

found that the function f (cf. Eq. (193)) is actually constant number. The

integration is done in polar coordinates, and it is assumed that the sphere
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has a radius RS :

∫
S

d3r
1

|r′ − r| =

RS∫
0

dr r2
+1∫

−1

du

2π∫
0

dϕ
1

(r2 + r′2 − 2rr′u)1/2
(208)

= 2π

∫ RS

0

dr r2
1

rr′

[
|r+ r′| − |r− r′|

]
(209)

= 2π

(
R2

S −
1

3
r′2

)
, (210)

where r′ <RS has been used. The gradient with respect to r′ is then simply

∂

∂ r′

∫
S

d3r
1

|r′ − r| = −4π

3
r′ (211)

so that the function f is identically equal to 4π/ 3. That makes the calculation

of κ through Eq. (201) trivial. The sum over a constant term just corresponds

to the number of elements in the sum, which is right the number of unit cells

in the sample, ΩS/ Ω1:

κ =
Ω1

2π ΩS

∑
s∈S

f(Rs) (212)

=
2

3
. (213)
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