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Chapter 1

Zusammenfassung

Über die letzten Jahrzehnte haben Raman Streuexperimente wertvolle Informatio-

nen über die Dynamik der Kerne und ihrer Wechselwirkungen mit dem elektronis-

chen Zustand geliefert.

In der Tat stellen sie (zusammen mit infrarot (IR) optischen Experimenten) eines

der wichtigsten experimentellen Instrumente der Festkörperforschung dar.

Viele Forschungsgruppen haben Zugang zu geeigneter experimenteller Ausstattung

und die theoretische Interpretation der Daten bereitet ausserdem keine größeren

Schwierigkeiten. Dies trifft insbesondere auf periodische Festkörper zu, in denen

nur sehr wenige Moden aufgrund von Symmetrie optisch aktiv sind.

In ungeordneten System oder Systemen, die durch starke anharmonische Effekte

gekennzeichnet sind, sind solcherlei theoretische Überlegungen nur bedingt anwend-

bar. Unordnung relaxiert die symmetrie bedingten Auswahlregeln und führt zu

breiten, komplizierten Spektren mit schwieriger Interpretation. Dies ist einer der

Gründe, weshalb IR und Raman Spektroskopie an ungeordneten Systemen bisher

noch nicht die Bedeutung erlangt hat, die sie für geordnete Kristalle haben.

Viele Versuche, diese Situation zu verbessern, sind bereits unternommen worden.

1



2 CHAPTER 1. ZUSAMMENFASSUNG

Die meisten basieren auf molekulardynamischen Simulationsmethoden (beschrieben

in Kapitel 3). Effektive Potentiale für die Beschreibung der Wechselwirkung zwis-

chen Teilchen ermöglichen es, die Zeitentwicklung des Systems in adäquater Weise

zu simulieren. Allerdings beruhen Eigenschaften wie IR und Raman Aktivität

sowohl auf der Ionenstruktur als auch auf elektronischen Eigenschaften wie elektron-

ischer Dipole und Polarisierbarkeit. Diese Eigenschaften sind nicht enthalten in den

standard molekulardynamischen Modellen; zusätzliche Parametrisierung ist daher

notwendig, um IR und Raman Aktivität zu beschreiben. Entsprechend kommt zu

der Unsicherheit bei der Beschreibung der interatomaren Kräfte die der Bewertung

der optischen Aktivität und der Anwendbarkeitsgrenzen dieses Ansatzes hinzu.

Die Einführung von ab-initio Molekulardynamik im Jahre 1985 [3] hat diese Situ-

ation grundlegend geändert (Sec.3.3.2). Im Rahmen eines solchen Schemas ist es

heute möglich, die Methoden der selbstkonsistenten Felder auf Systeme sich bewe-

gender Atome auszuweiten. In diesem Ansatz werden die interatomaren Kräfte mit

neuesten elektronischen Strukturrechnungen gewonnen, die aus der Dichtefunktion-

altheorie (DFT) abgeleitet werden (Sec.3.2.1): auf diese Weise sind sie parameter-

frei.

Dank dieser Innovation, die eine zunehmend wichtige Rolle in mehreren Studien ver-

schiedener Materialsysteme gespielt hat, steht jetzt ein Werkzeug zur Verfügung für

die Interpretation von Raman und IR Daten auch von flüssigen und ungeordneten

Systemen. Es liefert nicht nur eine sehr akkurate Beschreibung der interatomaren

Kräfte und mithin ein verlässliches Bild der Struktur von flüssigen und ungeordneten

Systemen, sondern es liefert auch alle notwendigen Informationen zum elektronis-

chen Zustand, um IR und Raman Aktivitäten zu interpretieren.

Dies führt zu einer einzigen, vollstndig konsistenten Prozedur, die keinerlei neue

Näherungen benötigt. Die einzigen notwendigen Näherungen betreffen die simulierte

Systemgröße, Zeitraum und die Qualität der elektronischen Strukturrechnungen.
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Allerdings – selbst wenn mit ab-initio Molekulardynamik eine Basis für die Simula-

tion von Raman Spektren von ungeordneten und anharmonischen Systemen geschaf-

fen wurde – sollten auch weiterhin die theoretischen Methoden verbessert werden,

um solche Rechnungen durchzuführen.

Insbesondere sind wir interessiert an der Beschreibung der Polarisierbarkeit, das

heißt, derjenigen Größe, die für die Ramanstreuung verantwortlich ist. Sie kann

als zweite Ableitung der Energie nach dem äusseren elektrischen Feld beschrieben

werden. Der einfachste Weg, solch eine Antwortfunktion auszuwerten, ist die Berech-

nung der Energie für verschiedene Werte des elektrischen Feldes, gefolgt von einer

numerischen Differenzierung. Diese Prozedur funktioniert leidlich gut, benötigt aber

mehrere Auswertungen der Gesamtenergie und die numerische Ableitung enthält

Fehler.

Ein befriedigenderer Ansatz, angewandt bei harmonischen Systemen, ist die direkte

Auswertung der Antwortfunktion mit Hilfe der Störungsrechnung. Dies führt im

statischen Falle zu einem bekannten Ausdruck für die Antwortfunktion in Form

einer Doppelsumme über die besetzten und unbesetzten elektronischen Zustände.

Dieser Ansatz wurde umformuliert im Kontext der DFT von Baroni et al.[4] und

erfolgreich in vielen Problemen angewandt. Essentiell für den Erfolg war dabei die

Sternheimer Methode [5], welche eine explizite Berechnung der nur langsam kon-

vergierenden Summe vermeidet und zusammen mit einem guten Präkonditionierer

einen effizienten Algorithmus darstellt.

Trotzdem ist auch diese Simulation sehr rechenintensiv und der Erfolg solch eines

Ansatzes ist in der Vereinfachung, die durch Symmetrieeigenschaften harmonischer

Kristalle gegeben ist (Sec.6.3).

In einem ungeordneten System, wo solche Eigenschaften fehlen, wird dieser Ansatz

zu rechenintensiv. Für eine erste-Prinzipien Simulation von Raman Spektren in
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ungeordneten und anharmonischen Systemen benutzt man daher besser eine andere

Beschreibung der Polarisierbarkeit.

Zwei wichtige Innovationen können gewinnbringend für unsere Aufgabe eingesetzt

werden: die von Gonze et al. [6] eingeführte “variational density functional per-

turbation theory” (beschrieben in Kap.5), und die “modern theory of polarization”

(beschrieben in Kap.4) [7–19].

Entsprechend der ersteren kann man einen Hamiltonian mit einem äusseren Feld

stören und die Störungsterme sämtlicher Ordnungen mit einem Variationsansatz

berechnen. Unter Benutzung des 2n+1 Theorems [20] kann dann die Änderung der

Energie und somit die Energieableitung berechnet werden. Zum Beispiel können

die zweiten Ableitungen der Energie berechnet werden, sobald die Störungstherme

erster Ordnung für die Kohn-Sham Orbitale bekannt sind.

Die zweite Idee löst das Problem einer angemessenen Beschreibung der Polarisation

(und demnach auch der Polarisierbarkeit) in einem periodischen System. Tatsächlich

ist eine Beschreibung im Sinne von Clausius-Mossotti, wie sie in Lehrbüchern [21–

23] zu finden ist, die auf einem Modell diskreter und gut separierter Dipole basiert,

unzureichend: die elektronische Verteilung ist in einem realen Dielektrikum kon-

tinuierlich und oft delokalisiert, wodurch das Dipolmoment einer Einheitszelle von

der Wahl der Zelle abhängt. Ausserdem ist der quantenmechanische Ortsoperator

für ein periodisches System nicht definiert.

Aus diesen Gründen war die Behandlung der makroskopischen Polarisation für viele

Jahre ein große Herausforderung. Im Jahre 1992 gelang dann der Durchbruch. Die

makroskopische Polarisation wurde nicht in Abhängigkeit von der Ladung, sondern

in Abhängigkeit von der Wellenfunktion definiert. Diese Definition hat einen ein-

deutigen thermodynamischen Grenzwert, so daß periodische Randbedingungen ver-

wendet werden können. In den folgenden Monaten wurde dank der Arbeit von R.

D. King-Smith und D. Vanderbilt [9] eine moderne Theorie der makroskopischen
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Polarisation in einem kristallinen Dielektrikum formuliert, die die Polarisation mit

Hilfe der Berry-Phase [24] definiert.

Die Kombination dieser beiden neuen Ansätze scheint ein guter Startpunkt für den

Aufbau einer neuen effizienten Methode zur Berechnung von ab-initio Ramanspek-

tren zu sein. Nichtsdestotrotz sind einige Probleme noch zu lösen. Der Ansatz von

Gonze basiert ebenso wie alle störungstheoretischen Ansätze auf einer geeigneten

Definition des Hamiltonoperators. Die Besonderheit der modernen Theorie der Po-

larisation ist aber, dass die Polarisation ein beobachtbarer Effekt von ganz anderer

Art ist als wir es sonst gewöhnt sind: eine Berry-Phase kann nicht in Abhängigkeit

von den Eigenwerten irgendeines Operators ausgedrückt werden, also auch nicht in

Abhängigkeit vom Hamiltonoperator.

Der Hauptzweck der vorliegenden Arbeit ist, den variationalen Ansatz von Gonze

für den Fall eines elektrischen Feldes, das mit der elektrischen Polarisation kop-

pelt, zu verallgemeinern, wenn die Störung nicht mit Hilfe des Hamiltonoperators

beschrieben werden kann. Die Verallgemeinerung der variationalen Dichtefunktion-

alstörungstheorie für ein solches Problem dient nicht nur dem Zweck Ramanspektren

von anharmonischen und ungeordneten Systemen zu berechnen, sondern hat auch

viele andere Vorteile. Während die konventionelle Dichtefunktionalstörungstheorie

in Abhängigkeit der Kohn-Sham-Eigenzustände formuliert werden muss, können in

der verallgemeinerten Version auch andere Orbitale verwendet werden. Ein Beispiel

hierfür ist die Berechnung von NMR-Verschiebungen [25,26], wofür die Verwendung

von maximal lokalisierten Orbitalen vorteilhaft ist.

Weiterhin ist die Ableitung in dieser Arbeit im Geist der DFT erfolgt und un-

serer Meinung nach etwas transparenter als die von Gonze[6]. Natürlich re-

duzieren sich unsere Ausdrücke für den Fall einer Störung des Hamiltonoperators

auf die Ausdrücke von Gonze. Nach der Durchführung einiger Tests (Schwingungs-

frequenzen, molekulare Polarisierbarkeiten, Raman-Intensitäten ) zeigt diese Ar-
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beit die Leistungfähigkeit der neuen Methode anhand eines interessanten Systems:

Hochdruck-Eis.

Der allgemeine Beweggrund zu solch einer Wahl ist die in einer der wichtig-

sten Abhängigkeit in der Natur nachzuforschende Möglichkeit, die Wasser-

stoffbrückenbindung. Das letzte ist verantwortlich von einigen Phänomenen, die

in vielen Bereichen der Wissenschaft interessant sind und reicht von der Biologie

bis zu planetarischer Physik. Insbesondere ist diese Bindung der Grund des sehr

schwierigen Zustandsdiagramms des Wassers, das das häufigsten Molekül auf der

Erdoberfläche ist und über 70% des menschlichen Körpers darstellt.

Gewöhnliches Eis (Eis Ih), das bei Atmosphärendruck stabil ist, ist nur eine der

vielen Phasen von Eis. Das Druck-Temperatur-Diagramm von Eis gliedert sich in

mindestens 14 unterschiedliche Bereiche mit entsprechend vielen Arten von Eis, die

sich alle bestimmten amorphen oder kristallinen Netzwerken von H2O-Molekülen

zuordnen lassen.

Die Hochdruckregion des Zustandsdiagramms ist für Festköperforshung, plane-

tarische Physik[27] und Biologie sehr wichtig. Tatsächlich werden die betroffenen

Phase übergänge durch die sehr interessanten Phänomene der Protonenübertragung

gekennzeichnet. Ähnliche Phänomene geschehen im Kern einiger Planeten, wie

Saturn-, Uranus- und Neptun[27]. Ausserdem ist die Studie des Eises eine drastische

Vereinfachung verglichen mit Körpern mit Wasserstoffbrückenbinden am umgeben-

den Druck, an den Systemen in den Gas- oder Flüssigkeitphasen oder sogar an

den ‘biomoleküle’. So ist Eis an der hohen Komprimierung ein ideale Substanz

zum Durchführen von Experimenten und von Simulationen, in denen das Proto-

nenübergangspotential als Funktion des angewandten externen Drucks justiert wer-

den kann, d.h. ohne den chemischen Aufbau des Körpers zu ändern. Die Studie

des Verhaltens dieses vereinfachten Systems darf in den ähnlichen Phänomenen, die

in den viel komplizierteren biologischen Systemen geschehen, wie zum Beispiel dem
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HIV-Enzym[28].

Insbesondere in den letzten 25 Jahren, wurden die Studien des Phase Überganges

von Eis VIII zum Eis X[29] stark forciert.

Jedoch erst seit kurzem hat die Entwicklung der neuen experimentellen Techniken,

die am Hochdruck arbeiten dürfen, und der leistungsfähigen Simulation Hilfsmittel

gegeben die Möglichkeit einer tiefen Untersuchung solcher phenomena.

Eis VIII hat die einfachste Struktur von allen Eisphasen. Sie besteht aus zwei

sich durchdringenden Schichten von H-verbrückten Wassermolekülen, die aber nicht

miteinander verbunden sind, wobei die Sauerstoffatome eine leicht tetragonal verzer-

rte kubisch innenzentrierte Struktur (tetragonale antiferroelektrische Phase) bilden

[30].

Wenn der Druck erhöht wird, entsteht eine neue Phase, Eis VII. Dieser Phasen-

übergang hat einen klaren experimentellen Fingerabdruck, das Verschwinden der

tetragonal Verzerrung. Es gibt Protonstörung und das Proton besetzt mit gleiche

symmetrischen Positionen der Wahrscheinlichkeit zwei entlang der O-O Bindung

und gibt eine abschließende Struktur, die ungeordnet und paraelektrisch ist [31,

32]. In der Unterdruckregion und bei hoher Temperaturen, wird die Störung

dieser Struktur angenommen, durch die Rotationen der Moleküle verursacht wer-

den, die Defekte Bejerrum erstellt, während unter Hochdruck, die dominierende Ein-

heit thermisches Hopfen und/oder Einen Tunneln des Protons entlang der Wasser-

stoffbrückenbindung ist.

Bei noch größeren Drücken wird über eine weitere Phase, Eis X, spekuliert,

deren molekulare Struktur völlig zusammengebrochen und in eine nicht molekulare

Struktur (Cuprit-Typ), verknüpft durch druckinduzierte, symmetrische Wassert-

stoffbrückenbindungen, übergegangen ist [33–36].

Die Phasengrenzen zwischen Eis VIII und VII sind genau bestimmt und durch den
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Verlust der tetragonalen Verzerrung in Phase VII gekennzeichnet. Hingegen sind die

Grenzregionen von Eis X nicht genau bekannt [37], da eine eindeutige Identifikation

der H-Brückenbindungssymmetrie strukturelle Hilfsmittel benötigt, die das Wasser-

stoffteilgitter auflösen können. Diese fehlen bis heute. Röntgenstreudaten wurden

bis zu 128 GPa erhalten, lieferten jedoch keine Informationen über das Protonen-

teilgitter, während Studien mit Hilfe von Neutronenbeugung, die in der Lage ist,

die Positionen der Protonen zu lokalisieren, nur bis zu 20 GPa durchgeführt wur-

den. Dies liegt daran, daß die Probengrößen, die bei höheren Drücken hergestellt

werden können, viel zu klein sind, um diese Technik anzuwenden. Experimente, ab

initio molekular dynamische Simulationen [44] und Berechnungen von Infrarotspek-

tren [43] zeigen, daß Eis VIII nicht direkt in Eis X übergeht, sondern daß sich der

Phasenübergang vielmehr zwischen Eis VII und Eis X ereignet. Die Grenzregionen

dieses Phasenübergangs sind immer noch nicht völlig aufgeklärt. Es wird vermutet

[37], daß bei steigendem Druck das rotationsgestörte Eis VII in das translations-

gestörte Eis VII übergeht. Diese Phase wandelt sich dann in protonenungeordnetes

Eis X um, welches bei weiterer Kompression in protonengeordnetes Eis X übergeht.

Die Experimente unter Hochdruck sind sehr schwierig. Die Einführung der

Diamantamboß-Zell Technike hat die Möglichkeit eröffnet, optische Messungen

durchzuführen. Die Resultate dieser Experimente sind umstritten, weil das durch

die Probe erhaltene Signal verglichen mit dem Signal der Diamantamboßzelle sehr

kleines ist und weil sogar die genaue Ermittlung des Druckes der Probe schwierig

ist. Außerdem wird Unsicherheit auch durch die Notwendigkeit verursacht, mit un-

terschiedlichen Spectrometern die unterschiedlichen Regionen des Frequenzgebietes

zu untersuchen.

Des weiteren erfordert die ungeordnete Natur von Eis VII die Verwendung von ab

initio Simulationen.

Nach Bestätigung der experimentellen IR-Spektren von A. F. Goncharov et al. [40,
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41] durch ab initio Simulationen von M. Bernasconi et al. [43] führte die gle-

iche experimentelle Gruppe ebenfalls Raman Messungen [42] durch. Letztere ver-

vollständigen das Bild, das sich aus den IR-Spektren ergibt und scheinen die Exis-

tenz von Eis X bei sehr hohen Drücken zu bestätigen. Die Messung dieser Spektren

gestaltet sich aufgrund des geringen Streuquerschnittes der Materialien bei diesen

Drücken als sehr schwierig. Um die Gültigkeit der experimentellen Daten zu zeigen

und diesen sehr bedeutenden Phasenübergang weiter zu erforschen, habe ich in der

vorliegenden Doktorarbeit eine Methode entwickelt, mit der wir ab initio Simulatio-

nen von Raman Spektren nichtgeordneter und anharmonischer Systeme durchführen

konnten.

Die simulierten Spektren stimmen gut mit den von A.F. Goncharov et al.

durchgeführten Experimenten überein, wie in den Abbildungen 7.7.6 und 7.7.7 zu

erkennen. Bei niedrigen Drücken ist das Spektrum des Eis VIII von den hochfre-

quenten O-H Valenzschwingungen dominiert: sie bilden ein Triplett (ein Dublett

und eine schmale Schulter), welches den Moden ν 1(A1g), ν 3(Eg), und ν 1(B1g) in der

Reihenfolge steigender Frequenz und niedrigen Druckes zugeordnet werden kann.

Das Hochfrequenzband ν 1(A1g) zeigt die größte Verschiebung bei Druckanwendung.

Während sich diese Mode zu niedrigeren Frequenzen verschiebt, vergrößern sich

die Intensitäten der anderen Banden nacheinander von der hohen zur niedrigen

Frequenz, um bedeutende Resonanzen zu erzeugen, die abhängig vom Druck er-

scheinen oder verschwinden. Bemerkenswert ist die Resonanz bei 38 GPa, die in

einem Bereich (1650 cm−1) liegt, in dem die experimentellen Ergebnisse aufgrund der

Anwesenheit des Signals der Diamantamboßzelle eine größere Unsicherheit haben.

In unseren Simulationen ist die ausgesprochene Resonanz nicht sichtbar, jedoch

einige kleinere Strukturen dieser Frequenzregion, die sich klar im experimentellen

Spektrum wiederfinden. Im niedrigen Frequenzbereich und bei tiefer Temperatur

ist das Spektrum von den scharfen Translationsbanden ν Tz(A1g) + ν Txy(Eg) und
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ν Tz(B1g)+ν Txy(Eg), die den Anregungen von Eis VIII bei 400 und 500 cm−1 zuzuord-

nen sind, dominiert. Sie zeigen nur eine geringfügige Verschiebung der Frequenz bei

45-60 GPa, die über 60 GPa vermindert und verbreitert ist und dann eine mit

dem Druck ansteigende Frequenz zeigt. Bei hoher Temperatur zeigt sich in unserer

Simulation nur eine breite Translationsbande ν Tz(B1g) + ν Txy(Eg), von der auch in

den Experimenten berichtet wurde [42]. Mit steigendem Druck erscheint eine neue

Bande, während alle anderen Anregungen sich nur schwach zeigen. Diese neue Bande

kann der T 2g O-O Schwingung zugeordnet werden, wie für die C2O Cuprit-Sruktur

zu erwarten.

Zusammenfassend läßt sich sagen, daß unsere ab initio Simulation der Raman

Spektren eine weitere Bestätigung für die nichtmolekulare Struktur von Eis unter

Hochdruck ist. Des weiteren bestätigt sie die experimentellen Daten, welche an-

dernfalls aufgrund der technischen Probleme, die mit diesen Messungen verbunden

sind, kontrovers wären. Mit großer Wahrscheinlichkeit besitzt diese nichtmoleku-

lare Hochdurckphase von Eis, Eis X, die Cupritstruktur. Eine Gewißheit über diese

Phase kann nur durch Neutronenstreuexperimente erhalten werden, die es vermögen,

die einzelnen Positionen der Protonen zu lokalisieren. Letztlich allerdings scheinen

dies alle IR-,Ramanexperimente und Simulationen zu bestätigen.



Chapter 2

Introduction

Over the years Raman scattering experiments have provided precious information

on the dynamics of nuclei and their interaction with the electronic state [1].

In fact, they are (together with infrared (IR) optical experiments) one of the main

experimental tools with which condensed matter properties are investigated.

Not only do many laboratories have access to the appropriate experimental facilities,

but also the theoretical interpretation of the experimental data is often straightfor-

ward. This is especially true in periodically ordered solids, where symmetry restricts

the number of optically active modes.

However, in disordered systems or in systems where strong anharmonic effects are

present, these theoretical tools are of limited use: disorder relaxes all selection rules

leading to broad and complex spectra which are difficult to interpret. This is one of

the reasons why IR and Raman scattering have not had quite the same impact in

disordered systems as in ordered crystals.

Much effort [2] has been devoted to remedy this situation, mostly based on mole-

cular dynamics simulation methods ( described in Chap.3), a tool of choice when

dealing with disordered systems.

11
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Using effective potentials that are constructed to describe the interatomic interac-

tion between the particles, it is possible to simulate the time evolution of the system

and generate appropriate models for the disordered structures. However, properties

like IR and Raman activities depend on the ion structure and dynamics as well as

on electronic properties like the electronic dipole moment and polarizability. These

properties are not included in the standard molecular dynamics models and addi-

tional parametrisation is needed to describe the IR and Raman activity. Thus, the

uncertainty on the interatomic forces is compounded with that of the evaluation of

the optical activity and limits the usefulness of this approach.

The introduction in 1985 of ab initio molecular dynamics [3] has changed this situ-

ation substantially (Sec.3.3.2). Within such a scheme, it is now possible to apply ab

initio methods to systems of atoms in motion. In such an approach the interatomic

forces are evaluated using state-of-the art electronic structure calculations based on

density functional theory (DFT) (Sec.3.2.1): in this way they are parameter-free

and derived from first-principles, with no experimental input.

Thanks to this innovation, which has played an increasingly important role in several

kinds of studies of materials, there is now a tool available for interpreting Raman

and IR data in liquids and disordered systems. In fact, not only does this pro-

vide a rather accurate description of the interatomic forces and therefore a reliable

description of the structure of liquids and disordered systems, but it also provides

informations on the electronic structure. This information can be used in principle

to evaluate IR and Raman activities. In such a way one follows a fully consistent

procedure that does not involve any new approximations. The approximations only

are those contained in the ab initio molecular dynamics run and are related to the

system size, the time length of the simulation and the quality of the electronic struc-

ture theory used.

However, even if ab initio molecular dynamics constitutes the theoretical basis for
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the construction of first-principles simulations of Raman spectra of disordered and

anharmonic systems, still a lot of additional theoretical tools need to be developed

in order to perform such a calculation.

In particular, the Raman cross section, for the case in which the incident light

has a frequency much smaller than that of electronic excitations, can be related to

the polarizability-polarizability correlation function. For this reason, we shall first

address the issue of calculating the polarizability.

This can be expressed as the second derivative of the energy with respect to the

external electric field. The simplest way to evaluate such a response function is to

calculate the energy for various values of the applied field and numerically extract

the energy derivatives. This procedure can work reasonably well, but it requires sev-

eral evaluations of the total energy and the numerical derivative introduces errors.

A more satisfactory approach is to evaluate the response functions directly, making

use of perturbation theory. For the static response functions this leads to a familiar

expression of the response function in terms of a double sum over the occupied and

empty electronic states. This approach has been reformulated in the context of DFT

by Baroni et al.[4] and successfully applied to many problems. An essential ingre-

dient for the success of this approach has been the use of the Sternheimer method

[5] which avoids the explicit evaluation of the poorly convergent double sum and

together with a good preconditioner leads to an efficient algorithm.

However, the cost of the simulation is still very high and the success of such an

approach is based on the fact that symmetry properties of crystals, where the har-

monic approximation holds, reduce the complexity of the problem: in fact, in this

case it is possible to approximate the polarizability by its expansion up to first order

terms in normal modes, as we explain in detail in Sec.6.3; in this way, one should

evaluate only zero order coefficients and first order derivatives of the polarizability
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at the equilibrium and phonons.

In a disordered system, where one cannot use this approximation, this approach

becomes computationally too expensive. In order to achieve the goal of a first-

principles Raman spectrum simulation for disordered and anharmonic systems it is

better to use a different description of the polarizability.

Recently two important innovations were introduced, which will be useful to our

purpose: variational density functional perturbation theory (described in Chap.5),

introduced by Gonze et al. [6] and the modern theory of polarization (described in

Chap.4) [7–19].

The first has shown that if one perturbs the Hamiltonian with an external field, the

induced variation in the Kohn-Sham orbitals can be obtained to all perturbative

orders from a variational formulation. Use of the 2n+1 theorem[20] then allows the

calculation of the change in energy and the corresponding energy derivatives. For

instance the second order energy derivatives can be calculated once the first order

variation in the Kohn-Sham orbitals is known.

The second, finally, solves the problem of an appropriate definition of the macro-

scopic polarization (and consequently of the polarizability) in a periodic system. In

fact, a description, as is found in all textbooks [21–23], à la Clausius-Mossotti, i.e. in

terms of a model of discrete and well separated dipoles is inadequate: the electronic

distribution of a real dielectric is continuous and often delocalized and the resulting

dipole moment of a unit cell depends on the choice of the cell. Furthermore, the

quantum-mechanical position operator is ill-defined in a periodic system.

For these reasons, macroscopic polarization remained a major challenge for many

years. In 1992 there was a breakthrough. Macroscopic polarization was defined

in terms of the wavefunction phases, not of the charge. This definition has an

unambiguous thermodynamic limit, such that periodic boundary conditions can

be used. In the following years a modern theory of macroscopic polarization in
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crystalline dielectrics has been completely established, thanks to the work of R.D.

King-Smith and D. Vanderbilt [9], who expressed polarization in terms of a Berry

phase [24].

The combination of these two recent developments promises a good starting point

for constructing a new efficient method that allows the calculation of first-principles

Raman spectra. However, still more effort is required. In fact, Gonze’s approach

as well as the more standard perturbation theory is based on a Hamiltonian for-

mulation. Instead, a particular feature of the modern theory of polarization is that

the latter is an observable effect of a completely different nature from what we are

usually familiar with: a Berry phase is something that cannot be expressed in terms

of eigenvalues of any operator, in other words in terms of a Hamiltonian.

The main purpose of this thesis is to generalize the Gonze variational approach to

the case in which the perturbation cannot be expressed in a Hamiltonian form, in

order to be able to treat an electric field which couples with the electric polarization.

The effort to generalize variational density functional perturbation theory to such a

problem addresses not the only issue of calculating Raman spectra of anharmonic

and disordered systems, but also has other advantages. In fact, while conventional

perturbation theory must be formulated in terms of Kohn-Sham eigenstates, in this

generalized version one can work also with other orbitals. A case in point is for

instance the calculation of NMR chemical shifts which can profit from the use of

maximally localized orbitals[25,26].

Furthermore, the derivation of this thesis is very close to the spirit of DFT and in

our opinion slightly more transparent than that of Gonze[6]. Of course the formulae

reduce to those of Gonze in the case of Hamiltonian perturbations.

After preliminary tests (vibrational frequencies, polarizability of molecules, Raman

intensities), this thesis shows the power of the new method in the case of an inter-
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esting system: high pressure ice.

The principal motivation for such a choice is the possibility of investigating one of

the most important interactions in nature, the hydrogen bond. The latter is respon-

sible for several phenomena, which are of interest in many areas of science, ranging

from biology to planetary physics. In particular, this bond is the reason for the

very complicated phase diagram of water, which is the most common molecule on

the earth’s surface and constitutes about 70% of the human body. Ordinary ice (ice

Ih), which is stable at atmospheric pressure, is only one of many phases of ice: in

fact, at least 14 varieties of solid ice have been observed in various domains of the

pressure-temperature plane, which correspond to different amorphous or crystalline

networks of the H2O molecule.

The high pressure region of the phase diagram is very important for condensed mat-

ter, planetary physics [27] and biology. In fact, the phase transitions involved are

characterized by the very interesting phenomenon of proton transfer. Similar phe-

nomena happen in the heart of some planets, like Saturn, Uranus and Neptune [27].

Furthermore, the study of ice is much simpler than the study of hydrogen-bonded

solids at ambient pressure, systems in the gas or liquid phases, or even ‘biomole-

cules’. Thus, ice at high pressure is an ideal candidate for performing experiments

and simulations, in which the proton transfer potential can be tuned as a function of

the applied external pressure, i.e. without changing the chemical composition of the

solid. The study of the behavior of this simplified system allows us to investigate the

basis of a phenomenon, which is common in many biological systems, for example

the HIV protease [28], which is the enzyme responsible for this disease .

In particular, in the last 25 years, a lot of effort has been dedicated to the study

of the phase transition from ice VIII to ice X[29]. However, only very recently

has the development of new experimental techniques, which permit to work at very

high pressures, and of powerful simulation tools open up the possibility of a deeper
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investigation of such phenomena.

Ice VIII has one of the simplest structures of any of the phases of ice. It is composed

of two interpenetrating but not interconnected sublattices of hydrogen bonded water

molecules, where the oxygen atoms form a slightly tetragonally distorted body-

centered-cubic structure (tetragonal antiferroelectric phase) [30]. As the pressure

increases a new phase appears, ice VII. This phase transition has a clear experimental

fingerprint, the disappearance of the tetragonal distortion. Proton disorder sets in

and the proton occupies with equal probability two symmetric positions along the O-

O bond, giving a final structure which is disordered and paraelectric [31,32]. In the

low-pressure region and at high temperature, the disorder of this structure is believed

to be induced by the rotations of molecules, which creates Bejerrum defects, whereas

at high pressures, the dominant mechanism is thermal hopping and/or tunneling of

the proton along the hydrogen bond.

At even higher pressures it is speculated that another phase exists, ice X[33–36],

where the molecular-crystal structure breaks down completely and transforms into

a non-molecular structure (Cu2O type) connected by hydrogen bond symmetrization

induced by the pressure.

The boundaries between ice VIII and VII in the phase diagram are well defined and

identified by the loss in phase VII of the tetragonal distortion. However, the bound-

ary regions of ice X are still not well defined [37], because a definite identification of

the H-bond symmetrization requires structural tools able to probe the H sublattice.

These are still lacking. X-ray diffraction data were obtained up to 128 GPa [38]

but provided no information about the proton sublattice, while neutron diffraction

studies, which are able to locate the H positions, have been reported only up to 20

GPa [39], because the only samples which can be brought to higher pressure are too

small to apply this technique. The experimental information is somewhat indirect

and relies heavily on IR measurements [40,41] and, more recently, on Raman scat-
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tering[42]. For this reason, numerical simulations can be extremely useful in helping

to really understand the nature of the transition. So far only the IR spectrum

has been simulated [43]. This, together with first-principles path integral molecular

dynamics [44], has led to a scenario in which ice VIII does not transform directly

into ice X, but the phase transition happens between ice VII and X. However, the

boundaries of this phase transition are still not completely clear. It is supposed

[37] that, with increasing pressure, rotational-disordered ice VII, transforms into

translational-disordered ice VII. This phase then transforms into proton-disordered

ice X, which under further compression transforms into proton-ordered ice X.

The more recent Raman scattering experiments, performed by A.F. Goncharov et

al.[42], have, however, not been interpreted. This experiment is particularly difficult,

because the signal obtained by the sample is very small compared with the signal

of the diamond anvils cell and because even the exact determination of the pressure

of the sample is difficult. Furthermore, some uncertainty is also introduced by the

need to use different spectroscopes in different regions of the frequency domain.

Our calculations show good agreement between experiment and theory. This agree-

ment gives support both to theory and experiment. The analysis of the spectrum

based on the molecular dynamics trajectories allow us to attribute unambiguously

many of the relevant experimental peaks. Our results further strengthen our under-

stand of this important and complex phase transition.



Chapter 3

Ab initio theories

The exact quantum mechanical treatment of systems consisting of nuclei and elec-

trons is not possible at present. Fortunately physical and chemical intuition suggest

the use of several well obeyed approximations, which may render numerical calcu-

lations affordable.

The first approximation is the Born-Oppenheimer approximation, which allows the

separation of the nuclear degrees of freedom from the electronic ones. This sepa-

ration allows a transformation of a very complicated many-electron problem in a

set of single particle equations, using density functional theory. This single particle

transformation is probably the most critical approximation. Finally, the core states

are eliminated using the pseudopotential approximation.

The single particle transformation is probably the most critical one.

19
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3.1 The Born Oppenheimer approximation

The Schrödinger equation for a system containing n electrons and N nuclei is given

by

HΨ(r1, .., rn,R1, ..RN) = EΨ(r1, .., rn,R1, ..RN) , (3.1.1)

with

H =
∑
i

−1

2
∇2

i +
∑
I

− 1

2MI

∇2
I +

1

2

∑
i �=j

1

|ri − rj |
+

1

2

∑
I �=J

QIQJ

|RI −RJ |
−
∑
iI

QI

|ri −RI |
, (3.1.2)

where {r} are the electronic coordinates, {R} the ionic coordinates, MI and QI are

the masses and charges of the nuclei in atomic units. The Born Oppenheimer (BO)

[45] approximation is based on the fact the mass of the electrons is much smaller than

the mass of the ions. This implies that the typical electronic velocities are much

greater than the typical ionic velocities. So one assumes that because ions move

so slowly compared to the velocity scale of the electrons, that at any instant the

electrons will be in their ground state configuration for that particular instantaneous

configuration. This allows Eq.(3.1.1) to be decoupled into two separate equations,

the time-independent Schrödinger equation of the electrons moving in the field of

the nuclei fixed in the positions RI :[∑
i

−1

2
∇2

i +
1

2

∑
i �=j

1

|ri − rj|
−
∑
iI

QI

|ri −RI |

]
Ψel

R1,..RN
(r1, .., rn) (3.1.3)

= Eel
n (R1, ..RN)Ψel

R1,..RN
(r1, .., rn) ,

and the nuclear wave equation:

[∑
I

− 1

2MI
∇2

I +
1

2

∑
I �=J

QIQJ

|RI −RJ |
+ Eel

n (R1, ..RN)

]
Ψnc(R1, ..RN) = (3.1.4)

Enc
n (R1, ..RN) Ψnc(R1, ..RN) .
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The total wavefunction is then given by the product of the nuclear and electronic

part

Ψ(r1, .., rn,R1, ..RN) = Ψel
R1,..RN

(r1, .., rn)Ψ
nc(R1, ..RN) ,

and the total energy by

Etot
n (R1, ..RN) = Enc

n (R1, ..RN) .

Since the mass of the nuclei is very large, they behave nearly like classical particles.

The total energy for stationary atoms is given in this classical approximation by

Etot
n (R1, ..RN) = Eel

n (R1, ..RN) +
1

2

∑
I �=J

QIQJ

|RI −RJ |
. (3.1.5)

The function Etot
n (R1, ..RN) is called the Born Oppenheimer or potential energy

surface. There are several branches of this surface corresponding to different elec-

tronic eigenvalues. The equilibrium configuration of a system is given by the global

minimum of the lowest branch of this function (n = 0). In the following discussion,

we assume to be at the minimum and thus we can suppress the index n.

The same classical approximation can be applied for slowly moving atoms which

leads to the expression

Etot = Eel(R1, ...,RN) +
∑
I �=J

QIQJ

|RI −RJ |
+
∑
I

1

2MI

Ṙ2
I .

The above expression is the starting point for ab initio molecular dynamics simula-

tions.

3.2 Many-body electronic wave equation

After applying the BO approximation we are left with the many body electronic

equation:(
−1

2

∑
i

∇2
i + vext(ri) +

∑
i �=j

1

|ri − rj|

)
Ψ(r1, .., rn) = EelΨ(r1, .., rn) , (3.2.1)
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where vext(ri) contains the electron ion potential and possibly other external poten-

tials. Only for a few simple or simplified systems, an exact solution of Eq.(3.2.1)

can be obtained [46]: the long range Coulombic interaction of the electrons couples

all the degrees of freedom and it is hopeless any effort (not only analytic, but also

numeric) to obtain the exact many body wavefunction in all the space. In order

to overcome this difficulty, there are essentially three different approaches to the

many-body Schrödinger equation:

• Quantum Monte Carlo methods :

They all use the theory of the Monte Carlo integration [47] in order to calculate

multidimensional integrals with a computational effort independent from the

dimensionality.

This method is a statistical method: the accuracy of result is proportional to

1/
√
M , where M is the number of sampling points used in the calculation.

This means that, in principle, one can reduce the error on the calculation to

arbitrary precision, performing longer and longer runs.

Furthermore, they are true many-body approaches. In practice , these methods

suffer from four problems that make them still far away to be useful for the

study of realistic systems: i) they are very expensive because they require

an extensive sampling in order to achieve a reasonable accuracy, ii) atoms

with high nuclear charge Z critically slow down the calculation, iii) the sign

problem [48] for fermionic systems is still not solved, iv) and finally there is

not at present a sufficiently accurate way to calculate the electronic forces 1.

There are three mainstreams of Monte Carlo methods [50,51]: 1) the varia-

tional quantum Monte Carlo, which allows the calculation of the ground state

properties of a many body system, of which one has a trial wavefunction

1Only very recently a promising method for an accurate evaluation of the forces was proposed

by C. Filippi et al.[49]
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physically reasonable, flexible and too complicated to be able to estimate the

multidimensional integrals in a traditional way, 2) the diffusion and Green’s

function Monte Carlo [50,52,53], that map the Schrödinger equation onto a

diffusion equation, and 3) the Monte Carlo using the Hubbard Stratonovitch

transformation [54].

• Quantum chemistry methods such as Hartree-Fock, configuration interaction

[55], multi configuration Hartree-Fock [56], multi reference configuration inter-

action methods [57] and, coupled clusters [58] are based on the fact that any

antisymmetric many-electron wavefunction can be written as an infinite sum

over Slater determinants.

The Hartree-Fock theory is the oldest and best known mean field approxima-

tion. There the wavefunction is written as a single Slater determinant and the

one-particle orbitals are varied to minimize the total energy.

The configuration interaction method expands the wavefunction into many

Slater determinants and the coefficients multiplying each determinant are var-

ied to find the minimum of the total energy.

In the multi configuration Hartree-Fock method both the coefficients of the

determinants and the one-particle orbitals in each determinant are varied to

find the minimum.

The coupled cluster method improves the single Slater determinant approx-

imation using cluster functions and the exponential Ansatz. At the present

coupled cluster method is the most accurate method for the calculation of the

electronic properties. Similar to the configuration interaction methods, it re-

quires a high computational effort and can therefore only be applied to small

systems.

• Density functional theory (DFT): in this method the many-body problem is

substituted with a set of single-particle equations that are self-consistency con-
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strainted. This transformation introduced 1964 by Hohenberg and Kohn[59]

is in principle exact.

In the following we will describe the DFT, which is the electronic structure method

used in this thesis.

3.2.1 Density Functional Theory

As discussed in the previous section, in order to study some important properties

of the ground state of a many-electron system, it is possible to substitute Eq.(3.2.1)

with a system of one-particle equations with self-consistency constraints. These sin-

gle particle equations can be obtained through variational approximations, such as

Hartree-Fock, but they may also be derived without approximations, from the Den-

sity Functional Theory (DFT), introduced by Hohenberg and Kohn [59], through

their two theorems.

The first theorem of Hohenberg e Kohn legitimizes the use of the electron density

n(r) as basic variable. It states: “The external potential vext(r) is determinated,

within a trivial additive constant, by the electron density”. Since n(r) determines

the number of electrons, it follows that n(r) also determines the ground state wave-

function and all the other electronic properties. This means that the energy can

be written as a unique functional of the density. We note also that vext(r) is not

restricted to Coulomb potentials.

The proof of this theorem is disarmingly simple: all that is employed is the minimum-

energy principle for the ground state. Consider the electron density n(r) for the

nondegenerate ground state. If there were two external potentials vext and v ′
ext dif-

fering by more than a constant, each giving the same n(r) for its ground state, we

would have two Hamiltonian H and H′ whose ground-state densities were the same

although the normalized wavefunctions Ψ and Ψ′ would be different. Taking Ψ′ as
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a trial function for the H problem, we would then have:

E0 ≤ 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H′|Ψ′〉+ 〈Ψ′|H −H′|Ψ′〉

= E′
0 +

∫
d3r n(r)[vext(r)− v ′

ext(r)], (3.2.2)

where E0 and E′
0 are the ground state energies for H and H′ respectively. Similarly

taking Ψ as trial function for the H′ problem,

E′
0 ≤ 〈Ψ|H′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H′ −H|Ψ〉

= E0 +

∫
d3r n(r)[v ′

ext(r)− vext(r)]. (3.2.3)

Adding Eqs.(3.2.2) and (3.2.3), we would obtain

E0 + E′
0 ≤ E′

0 + E0,

a contradiction, and so there cannot be two different vext that give the same density

for their ground state.

Thus, the electron density determines the number of electrons N and the potential

vext and hence all the properties of the ground state, for example the kinetic energy

T [n], the potential energy V[n] and the total energy E [n]. We can write, making

explicit the dependence on vext

Ev[n] = 〈Ψ|T + V |Ψ〉

= F [n] +

∫
d3r vext(r)n(r), (3.2.4)

where in F there is no explicit dependence from the external potential vext.

This means that the total energy E [n] is a functional of the electron density only.

The second theorem of Hohenberg and Kohn provides the energy variational prin-

ciple. It reads: “For a trial density ñ(r) such that ñ(r) ≥ 0 and
∫
d3r ñ(r) = N,

E0 ≤ Ev[ñ], (3.2.5)
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where Ev[ñ] is the energy functional of Eq.(3.2.4)”. To prove this theorem, we note

that the previous theorem assures that ñ determines each own ṽext, Hamiltonian

H and wavefunction Ψ̃, which can be taken as a trial function for the problem of

interest having the external potential vext. Thus,

〈Ψ̃|H|Ψ̃〉 =
∫
d3r vext(r)ñ(r) + F [ñ] = Ev[ñ] ≥ Ev[n]. (3.2.6)

However, the explicit form of F [n] is not known.

In order to turn DFT into a practical tool for rigorous calculations, Kohn and

Sham [60] invented an ingenious indirect approach to the functional F [n].

They have introduced a fictitious, non physical, system of independent electrons in

an appropriated efficient potential V eff(r) chosen in a way that the density of such an

auxiliary system is equal to the density of the physical system. The non-interacting

system is described exactly from the one-particle spatial wavefunctions |ψi〉 and its

electron density is for construction equal to the interacting system electron density

and reads:

n(r) =
∑
i

fi|ψi(r)|2, (3.2.7)

where fi is the fermionic occupation number, varying between 0 and 2, in accordance

to the Pauli exclusion principle. Once this fictitious system is introduced, one can

subtract from F [n] other known functionals, like the classical coulombic energy of

the charge distribution n(r) (Hartree term):

EH [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| (3.2.8)

and the kinetic energy of the non-interacting electron gas:

Ts[n] = −1

2

∑
i

fi〈ψi|∇2|ψi〉. (3.2.9)

To show that Ts[n] is a unique functional of the only electron density is immediate:

it is a particular case ( V = vext) of the functional E [n].
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If we subtract from F [n] (3.2.4) the terms (3.2.8) and (3.2.9), we obtain a new

functional, where we have isolated all the many body quantum effects, which are

not included in the classical electrostatics and in the non-interacting gas kinetic

energy:

Exc[n] = F [n]− EH [n]− Ts[n]. (3.2.10)

This functional is called exchange and correlation functional in analogy with the

energetic terms that one obtains from the approximated Hartree-Fock theory. If

the explicit form of this functional were known, we can calculate the ground state

electron density for a fixed external potential minimizing the total energy (3.2.4)

with respect to the electron density n(r), with the constraint:

∫
d3r n(r) = N. (3.2.11)

This is equivalent to solve a set of single-particle differential equations for the |ψi〉

with the constraint of self-consistency:

(−1

2
∇2

i + V eff)|ψi〉 = ε i|ψi〉, (3.2.12)

with

V eff (r) = vext(r) + vH(r) + vxc(r), (3.2.13)

where

vH(r) =
δ EH[n]

δ n(r)
(3.2.14)

and

vxc(r) =
δ Exc[n]

δ n(r)
. (3.2.15)

These equations, called Kohn-Sham equations (KS), are high non-linear equations,

because the unknown quantities |ψi〉 appear also in the efficient potential, through

the density, and they are solved iteratively. Different from other approaches (only
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apparearing similar), they allow to reduce exactly a many-body problem to a one-

particle problem 2, once known the exchange and correlation functional. In fact,

apart from relativistic effects, the treatment followed up to now is in principle exact.

3.2.2 Local Density Approximation

Unfortunately, an explicit and general functional form for the exchange and correla-

tion functional (3.2.10) is still unknown. In order to use the formalism developed up

to now, one should formulate hypothesis and approximations on the term (3.2.10).

The simplest approximation used is the Local Density Approximation (LDA), which

describes adequately a large number of systems. The idea of LDA is to substitute the

density of exchange and correlation energy of the real system (non uniform) with the

one of an homogenous electron gas with the same density. In other words, we assume

that in small enough spatial regions the charge distribution of a non-homogenous

electron gas behaves like in the homogenous system:

Exc[n] =

∫
d3r εxc[n(r)]n(r) (3.2.16)

where εxc[n] is the exchange and correlation energy per particle of a homogenous

electron gas of density n. The more accurate estimation of εxc[n] was obtained

in 1980 through a Monte Carlo simulation by Ceperley and Alder [50] and then

interpolated by Perdew and Zunger [61].

The LDA is clearly exact in the case where the density is a constant and it should

2Even if the form of the energy functional and of the equations (3.2.12) suggests a natural

interpretation of one electron immerged in the field generated by all the other electrons, DFT is

not a mean-field treatment of a many-body problem, like Hartree-Fock, but an exact theory. |ψi〉

and εi have no physical meaning, if not the one of orbitals and energetic levels of a non-interacting

fictitious system. The only physical observable of the theory are the density and the ground state

energy.
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be adequate for slowly varying densities. As a matter of fact, LDA gives surpris-

ingly good results for real systems [62]. Especially the ground state geometries of

molecules and solids are very accurately predicted. M. Levy [63] explained this as a

particularity of the Coulomb potential.

3.2.3 Beyond LDA: Gradient Corrections

Despite the success of the LDA there are also some drawbacks which prevent the ex-

tension of many computations to certain systems. For instance, the cohesive energies

of solids are systematically overestimated, while lattice constants are systematically

underestimated. Errors in the structural properties are usually small for systems

with covalent or metallic bonds, but it is well known that the hydrogen bond cannot

be described accurately within LDA [64]. Various approximations have been intro-

duced in the course of the years to improve LDA.

Here we consider one of these possibilities, that is the inclusion of Gradient Cor-

rections (GC) in the exchange and correlation energy (3.2.16). In a GC scheme it

is assumed that the exchange-correlation functional depends locally on the density

and on the density gradient:

Exc[n,∇n] =

∫
d3r εxc[n(r),∇rn(r)]n(r) (3.2.17)

Whether such GC are definitely an improvement over LDA is still under debate.

In the past the years several GC functional were introduced and their properties

studied. In particular the description of the hydrogen bond, which plays a very

important role in the success of the calculation presented in this thesis, is well

achieved using the exchange functional of Becke [65] and the correlation functional

of Lee, Yang, and Parr [66] (BLYP), as discussed in Ref.[67].
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3.2.4 Pseudopotentials

We will expand the Kohn-Sham wavefunctions in plane waves. However, the de-

scription of a system can require a very high cutoff because of the presence of a

large variety of length scales. For this reason, we introduce here a further approx-

imation, the use of pseudopotentials instead of the real Coulomb potential, which

allows at the same time to reduce the number of degrees of freedom and the plane

waves cutoff.

The fundamental observation, that allows the development of pseudopotentials the-

ories is that the core electrons, strongly condensed around the nucleus, do not par-

ticipate directly in chemical bonding. The nature of the chemical bond, and conse-

quently many physical properties, are determined basically by the external part of

the atoms, where only the valence electrons contribute to the electron density. This

is confirmed from the fact that elements of the same group of the Periodic Table

(characterized by the same valence configuration) have several common properties,

even if they have different atomic numbers and different numbers of core electrons.

This observation justifies the idea of an atom model with only valence electrons,

that emulates the real atom.

The procedure, however, is not trivial: atoms of the same group of the Periodic

Table have similar properties, but not identical; differences essentially arise from

the core orbitals, which modify the structure of the valence. Core electrons, in fact,

partially screen the Coulombic potential of the nucleus and, because of the fermionic

nature of the electrons, push the valence charge outside the core region. Phillips and

Kleinman suggested long time ago [68] the idea that core electrons and Coulombic

divergence of the nuclear potential can be eliminated at the same time and their

total effect can be substituted with a weak efficient potential, that acts only on the

valence electrons.

The goal of the pseudopotential theory is to construct such a potential, without
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divergence and rapid spacial oscillations.

After the first empirical models, a significant progress was made with the introduc-

tion of first-principles pseudopotentials. This type of pseudopotentials substitutes

the true atom with a pseudo-atom, that reproduces well the behavior in a variety of

physical and chemical situations (molecule, solid, etc.). This important property is

called transferability and is a characteristic of the norm-conserving pseudopotentials

[69–71]: they are named in this way because the fundamental condition in order

to achieve the transferability is the conservation of the norm of the wavefunctions

going from the true atom to the pseudo-atom. These pseudopotentials are non-local

(i.e. they contain the projectors of the angular momentum). In spite of the com-

plications in their use caused from the non-locality and the fact that to eliminate

the core means inevitably to consider it frozen, i.e. to exclude any possible relax-

ation of it after the change of chemical environment (frozen core approximation),

these pseudopotentials, born at the end of the ‘70, are still one of the more efficient

way to solve electronic structure problems. After the seminal work of Bachelet et

al. [70], increasingly efficient and convenient norm-conserving pseudopotentials were

produced by several groups [72–75]. In this thesis, we use non-local potentials of

separable form [72], which are computationally very convenient. Their functional

form is:

v = vloc +

�max∑
�=1

|p�〉ω�〈p�|, (3.2.18)

where vloc is a local operator, p� the projector on the � angular momentum and the

ω� are appropriated weights.

3.3 Molecular Dynamics

In order to describe the dynamics of complex chemical systems, static electronic

structure calculations should be combined with molecular dynamics methods. In the
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last fifteen years molecular dynamics (MD) have played an increasingly important

role in the study of materials, thanks to the introduction of the Car-Parrinello

method [3]. Before the introduction of such an ab initio approach, MD simulations

were performed using a functional form for the interatomic forces assumed on the

basis of physical considerations. Potential parameters fitted to a given experimental

and/or theoretical data base[76]. The predictive power of such potentials is limited

when used in regions of configuration space included in the fitted data base. It is

therefore highly desiderable to have an approach in which the interatomic forces

are generated in a consistent and accurate way during the simulation. In the Car-

Parrinello approach the forces are calculated using the state-of-the-art electronic

structure calculations based on DFT: in this way the forces are parameter-free and

derived from first-principles, with no experimental input. In the following, we will

illustrate briefly the conventional idea of MD and then introduce the Car Parrinello

Molecular Dynamics method.

3.3.1 Conventional Molecular Dynamics technique

The starting point for the solution of the classical equation of motion for a sys-

tem of N particles interacting via a potential Φ is the Lagrangian equation of the

motion[77]:

d

dt

∂ L
∂ q̇k

− ∂ L
∂ qk

= 0, (k = 1, ..., 3N) (3.3.1)

where the Lagrangian L(q, q̇) is a function of the generalized coordinates qk and

their time derivatives q̇k. Such a Lagrangian is defined in terms of kinetic and

potential energies:

L = T − Φ. (3.3.2)
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If we consider now a system of atoms, with Cartesian coordinates RI and mass MI ,

then the kinetic energy reads:

T =

N∑
I=1

1

2
MI Ṙ2

I (3.3.3)

and the potential energy:

Φ = V (R1, ...,RN). (3.3.4)

Using these definitions, Eq.(3.3.1) becomes:

MI R̈I = FI , (3.3.5)

and

FI = −∇RI
V , (3.3.6)

is the force on the atom I.

The equation of motion (3.3.5) can be integrated numerically. The simpler method

of integration is the Verlet algorithm [78], which is a direct solution of Eq. (3.3.5).

Following this algorithm:

q (t + δ t) = 2q (t)− q (t − δ t) +
δ t2FI(t)

MI

. (3.3.7)

In this approach velocities do not appear at all. The velocities are not needed to

compute the trajectories, but they are useful for estimating the kinetic energy. They

may be obtained using finite differences:

q̇(t + δ t) =
q (t + δ t)− q (t − δ t)

2δ t
. (3.3.8)

Whereas Eq.(3.3.7) is correct to order δ t4 the velocities from Eq.(3.3.8) are subject to

errors of order δ t2. In order to solve this problem several algorithm were introduced.

The one used in the calculations presented in this thesis is called “velocity Verlet”

[79] and reads:

q (t + δ t) = q (t) + δ tq̇(t) +
δ t2FI(t)

MI
, (3.3.9)
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and

q̇(t + δ t) = q̇(t) +
1

2MI
δ t[FI(t) + FI(t + δ t)]. (3.3.10)

The explicit treatment of the velocities not only gives a more accurate integration

scheme, but also allows the integration time to be changed during the run and to

control the temperature by simple velocity scaling [3,80].

3.3.2 Car Parrinello Molecular Dynamics

We consider systems for which the BO approximation holds. If this last condition

is satisfied, the behavior of the coupled electron ion system can be regarded as

adiabatic. As we have seen in Sec.3.1, we can assume that the motion of the atoms

can be described by classical mechanics, which is justified under many circumstances.

The interaction potential among the ions is then given by:

Φ(R1, ...,RN) = 〈ψ0|H|ψ0〉 (3.3.11)

where H is the Hamiltonian of the system for fixed ionic positions RI and ψ0 the

corresponding ground state. In order to use Eq.(3.3.11) in a MD run, calculation of

ψ0 for a number of configuration of the order of 104 are needed. This is computa-

tionally very expensive.

In order to circumvent this problem, Car and Parrinello proposed a Lagrangian

based on the KS scheme: such a Lagrangian is written down in which the electrons,

represented by a set of orbitals {ψi(r)}, execute a fictitious dynamics which allows

them to follow the motion of the ions, represented by a set of positions {RI}, while

remaining on the instantaneous ground state BO surface. This is accomplished by

keeping the fictitious kinetic energy of the ions. The interatomic forces are computed

via the Hellmann-Feynman theorem from the instantaneous electronic structure cor-

responding to each ionic configuration.
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The equation of motion for the full dynamical system, i.e. fictitious electron dy-

namics plus real ionic dynamics, are derived from the Lagrangian:

L = 2

Nocc∑
i=1

µ

∫
d3r | ψ̇i (r, t) |2 +

N∑
I=1

1

2
MI Ṙ2

I − E [{ψi}, {RI}]

+2
∑
ij

Λij

[∫
d3r ψ∗i (r, t) ψj(r, t)− δ ij

]
(3.3.12)

where E [{ψi}, {RI}] is the KS functional and Λij is a set of Lagrange multipliers

which ensure that the orthonormality constraints∫
d3r ψ∗i (r)ψj(r) = δ ij (3.3.13)

are satisfied. MI are the physical ionic masses and µ is an arbitrary parameter of

appropriate units. Nocc is the number of occupied electronic states and we assume

that all of them are completely occupied (fi = 2 ,i= 1, Nocc). In Eq. (3.3.12) we have

two classical kinetic energy terms: Ke = 2
∑Nocc

i=1

∫
d3r µ | ψ̇i (r, t) |2, associated with

the electronic parameters ψand KI =
∑N

I=1
1
2
MI Ṙ2

I associated with the nuclear

coordinates. Ke and KI measure the rate of variation of the respective degrees of

freedom in the coupled electron-ion parameter space. The Car-Parrinello Lagrangian

generates a dynamics for the parameters ψi and RI through the equations of motion:

µψ̈i (r, t) = −1

2

δ E
δ ψ∗i (r, t)

+
∑
j

Λijψj(r, t) (3.3.14)

MIR̈I = − ∂ E
∂ RI(t)

. (3.3.15)

These equations allow the sampling of the complex parameter space of ψi and RI

with the MD techniques used in statistical mechanics simulations [76]. At the first

glance there is no relation between the ionic dynamics generated with Eq. (3.3.15)

and the correct classical dynamical equation for the nuclei given by

MIR̈I = − ∂ Φ

∂ RI (t)
(3.3.16)



36 CHAPTER 3. AB INITIO THEORIES

where

Φ({RI}) = min
ψ

E [{ψi}, {RI}] (3.3.17)

which implies:

δ E
δ ψ∗i (r, t)

∣∣∣∣
Eo

= 0 . (3.3.18)

Indeed, the nuclear trajectories generated by Eq. (3.3.15) and those obtained by

(3.3.16) generally do not coincide, unless E [{ψi}, {RI}] is at the instantaneous

minimum. However, the parameter µ and the initial conditions {ψi(t = 0)} and

{RI(t = 0)} can be chosen such that the time scale for the electronic degrees of

freedom is much shorter than that of the nuclei. In this case the nuclear trajecto-

ries, initially lying on the BO surface, will deviate from it only after times that are

significantly longer than the MD time step. In other words, the two sets of degrees of

freedom, ions and electrons, are only weakly coupled, the transfer of energy between

them is small enough to allow the electrons to follow adiabatically the ionic motion,

remaining close to their instantaneous BO surface.



Chapter 4

Modern theory of Polarization

Raman scattering in the zero frequency limit, i.e. in the case in which the incoming

radiation cannot induce a transition to excited electronic states, is related, as we

will discuss in detail in Sec. 6.2, to the fluctuation of the polarizability tensor.

The approach used in this thesis to calculate the polarizability tensor is perturbation

theory. In fact, the polarizability is simply related to the answer of the system to

an electric field which couples with the polarization. Therefore, in this chapter we

digress from our principal topic and discuss the modern theory of polarization.

4.1 Introduction

The dipole moment of any finite N-electron system in its ground state is a simple and

well defined quantity. Given the many-body wavefunction Ψ and the corresponding

single-particle electron density n(r) the electronic contribution to the dipole is[19]:

〈
N∑
i=1

ri〉 =
∫

d3r r n(r) = 〈Ψ|
N∑
i=1

ri|Ψ〉. (4.1.1)

This looks trivial, but we are implicitly using an essential fact: the ground state

wavefunction of any finite system is square-integrable and vanishes exponentially at

37
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infinity; the density decays exponentially as well.

However, the microscopic definition of this same quantity is surprisingly difficult

in the limit of an infinite system. In fact, in a macroscopic solid, the macroscopic

polarization is ideally defined as the dipole of the macroscopic sample divided by

its volume. The integral in Eq.(4.1.1) is then dominated by what happens at the

surface of the sample. One can imagine overcoming this problem by evaluating the

polarization for larger and larger volumes of the sample, until it converges to its

bulk value. However, in practice, the procedure is computationally impossible to

carry out.

The usual way to avoid these undesired surface effects is to adopt periodic boundary

conditions. Unfortunately, this does not solve the polarization problem. In fact, a

description, found in many textbooks [21–23], à la Clausius-Mossotti, in terms of

a model consisting of discrete and well separated dipoles is inadequate because the

electronic distribution of a real dielectric is continuous and often delocalized. So,

in this model the dipole moment of a unit cell depends on the choice of the cell.

Furthermore, the dipole of a periodic system cannot be evaluated via Eq.(4.1.1): the

integrals are ill-defined due to the unbounded nature of the quantum-mechanical

position operator.

For these reasons macroscopic polarization remained a major challenge for many

years. In 1992 there was a breakthrough. Macroscopic polarization was defined in

terms of wavefunction phases, instead of the charge. This definition has an unam-

biguous thermodynamic limit and therefore periodic boundary conditions can be

used. In the following years a modern theory of macroscopic polarization in crys-

talline dielectrics was completely established, thanks to the work of R.D. King-Smith

and D. Vanderbilt [9], who expressed polarization in terms of a Berry phase[24]. In

the following sections, we will introduce the concept of Berry phase and provide a
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short description of the modern theory of polarization.

4.2 Berry phase

The Berry phase is a very general concept, having observable manifestations in

several different areas of physics[24]. One starts with the most generic quantum

Hamiltonian having a parametric dependence:

H(ξ)|ψ(ξ)〉 = E(ξ)|ψ(ξ)〉 (4.2.1)

where ξ is defined in a suitable domain. In the original Berry paper [24] H(ξ) is the

electronic Hamiltonian of a molecule within the BO approximation and ξ is a nuclear

coordinate. However the theory is quite general and applies to the most disparate

parametric dependence. We assume that ψ(ξ) is the ground state, non-degenerate

for any ξ. The phase difference ∆φ 12 between the ground states at two different ξ

points is defined by:

e−i∆φ12 =
〈ψ(ξ1)|ψ(ξ2)〉
|〈ψ(ξ1)|ψ(ξ2)〉|

(4.2.2)

∆φ 12 = −Im log〈ψ(ξ1)|ψ(ξ2)〉 (4.2.3)

This phase should not have any physical meaning. In fact, any quantum mechanical

state vector is arbitrary by a constant phase factor (each phase defines a different

gauge). Despite this, when one considers the total phase difference γ along a closed

path:

γ = ∆φ 12 + ∆φ 23 + ∆φ 34 + ∆φ 41 =

−Im log〈ψ(ξ1)|ψ(ξ2)〉〈ψ(ξ2)|ψ(ξ3)〉〈ψ(ξ3)|ψ(ξ4)〉〈ψ(ξ4)|ψ(ξ1)〉 (4.2.4)

one immediately realizes that the phase difference is gauge invariant, since all the

gauge-arbitrary phases cancel in pairs. The above simple-minded algebra leads to
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a result of physical importance: in fact, a gauge-invariant quantity is potentially a

physical observable.

Traditionally, one is accustomed to regard any observable effect in quantum me-

chanics as the eigenvalue of some operator.

The main message of the paper of Berry [24] can be illustrated by saying that there

are also observable effects of a completely different nature: γ cannot be expressed in

term of the eigenvalues of any operator, i.e. in terms of a Hamiltonian. One of the

innovations in this thesis, as it is described in the next chapter, is the extention of

the variational perturbation theory, usually destinated to perturbations described in

a Hamiltonian form, to non-Hamiltonian perturbations in order to be able to treat

an electric field that couples with the polarization, expressed as a Berry phase.

4.3 One electron case

Now we can come back to the problem of the position operator by examining the one-

dimensional case. Adopting a given choice for the boundary conditions is equivalent

to defining the Hilbert space where our solutions of Schrödinger’s equation live. For

a single–particle wavefunction the periodic boundary condition reads ψ(x + L) =

ψ(x), where L is the imposed periodicity, chosen to be large with respect to atomic

dimensions. Notice that lattice periodicity is not assumed, and the theory applies

to disordered systems as well.

By definition, an operator maps any vector of the given Hilbert space into another

vector belonging to the same space. Therefore, the multiplicative position operator

x is not a legitimate operator when periodic boundary conditions are adopted for

the state vectors, since xψ(x) is not a periodic function whenever ψ(x) is. It is then

obvious why Eq.(4.1.1) cannot be used in condensed matter theory. Of course, any

periodic function of x is a legitimate multiplicative operator in the Hilbert space.
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0 Lx0

Figure 4.3.1: The distribution |ψ(x)|2 of a single–particle orbital within periodic Born-von-

Kàrmàn boundary conditions. This picture is taken from Ref.[16].

Before switching to the polarization problem, it is useful to discuss an important

precursor study, apparently unrelated to the polarization problem, where however

the expectation value of the position operator plays a key role.

Some years ago, A. Selloni et al. [81] addressed the properties of electrons dissolved

in molten salts at high dilution. The physical problem was studied by means of a

mixed quantum–classical simulation, where a lone electron was adiabatically moving

in a molten salt at finite temperature. The simulation cell contained 32 cations, 31

anions, and a single electron. KCl was the original case study. The electronic

wavefunction was chosen to obey periodic boundary conditions over the simulation

cell, and therefore features periodic replicas as well. A plot of such an electronic

distribution, in a schematic one–dimensional analogue, is given in Fig.4.3.1.

One of the main properties investigated in Ref. [81] was the electronic diffusion.

In order to perform this study, one has to first identify where the “center” of the
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electronic distribution is. Intuitively, the distribution in Fig.4.3.1 appears to have a

“center”, which however is defined only modulo the replica periodicity, and further-

more cannot be evaluated simply as in Eq.(4.1.1),i.e. 〈x〉 =
∫
dxx|ψ(x)|2. Selloni

et al. solved the problem by means of a very elegant formula, presented below. In

fact according to Refs. [14,17,81,82], the key quantity for dealing with the position

operator within periodic boundary conditions is the dimensionless complex number

z, defined as:

z = 〈ψ|ei 2πL x|ψ〉 =
∫ L

0

dx ei
2π
L

x|ψ(x)|2, (4.3.1)

whose modulus is no larger than 1. The most general electron density, such as the

one depicted in Fig. 4.3.1, can always be written as a superposition of a function

nloc(x), normalized over (−∞,∞), and of its periodic replicas:

|ψ(x)|2 =

∞∑
m=−∞

nloc(x− x0 −mL). (4.3.2)

Both x0 and nloc(x) have a large arbitrariness: we restrict it imposing that x0 is the

center of the distribution, in the sense that
∫∞
−∞ dxxnloc(x) = 0. Using Eq. (4.3.2),

z can be expressed in terms of the Fourier transform of nloc as:

z = ei
2π
L

x0ñloc(−
2π

L
). (4.3.3)

If the electron is localized in a region of space much smaller than L, its Fourier trans-

form is smooth over reciprocal distances on the order of L−1 and can be expanded

as:

ñloc(−
2π

L
) = 1 − 1

2

(
2π

L

)2 ∫ ∞

−∞
dxx2nloc(x) + O(L−3). (4.3.4)

A very natural definition of the center of a localized periodic distribution |ψ(x)|2 is

therefore provided by the phase of z as:

〈x〉 = L

2π
Im log z =

L

2π
Im log 〈ψ|ei 2πL x|ψ〉, (4.3.5)

which is in fact the formula first proposed by Selloni et al. [81,82]. The expectation

value 〈x〉 is defined as modulo L, as expected since |ψ(x)|2 is periodic.
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The above expressions imply 〈x〉 � x0 mod L; in the special case where nloc(x) can

be taken as an even function, its Fourier transform is real and Eq.(4.3.3) indeed

yields 〈x〉 ≡ x0 mod L. In the case of extreme delocalization we have instead

|ψ(x)|2 = 1/ L and z = 0: hence the center of the distribution 〈x〉, according to

Eq.(4.3.5), is ill–defined. For a more general delocalized state, we expect that z goes

to zero at large L [17].

We have therefore arrived at a definition of 〈x〉 within periodic boundary conditions

which has many of the desirable features we were looking for: nonetheless, there is a

property that is even more important and which we are going to demonstrate now.

Suppose the potential which the electron moves in has a slow time dependence and

we wish to follow the adiabatic evolution of the electronic state |ψ〉. If we call |ψj〉

the instantaneous eigenstates at time t, the lowest order adiabatic evolution of the

ground–state density matrix is [83]:

|ψ〉〈ψ| � |ψ0〉〈ψ0|+ i
∑
j �=0

(
|ψj〉

〈ψj|ψ̇0 〉
ε j − ε 0

〈ψ0| −Hc

)
, (4.3.6)

where the phases have been chosen in order to make |ψ0〉 orthogonal to its time

derivative |ψ̇0 〉. The macroscopic electrical current flowing through the system at

time t is therefore:

〈j〉 = − 1

L
〈ψ|p|ψ〉 � − i

L

∑
j �=0

〈ψ0|p|ψj〉〈ψj|ψ̇0 〉
ε j − ε 0

+ cc. (4.3.7)

It is then rather straightforward to prove that 〈j〉 to lowest order in 1/ L equals

−(1/ L) d〈x〉/ dt, where 〈x〉 is evaluated using in Eq. (4.3.5) the instantaneous ground

eigenstate:

〈j〉 � − 1

2π
Im

d

dt
log〈ψ0|ei

2π
L

x|ψ0〉.(4.3.8)

This finding proves the value of Eqs. (4.3.1) and (4.3.5) in studying electron trans-

port [81,82].
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4.4 Many electrons case

The formulas presented in the previous chapter can be extended to the case of

N electrons in a segment of length L, where the thermodynamic limit is taken:

L → ∞, N → ∞, and N/ L = n0 constant. We assume that the ground state is

nondegenerate, and we deal with insulating systems only: this means that the gap

between the ground eigenvalue and the excited ones remains finite for L→ ∞.

We start defining the one–dimensional analogue of R̂, namely, the multiplicative

operator X̂ =
∑N

i=1 xi, and the complex number

zN = 〈Ψ|ei 2πL X̂ |Ψ〉. (4.4.1)

It is obvious that the operator X̂ is ill–defined in our Hilbert space, while its complex

exponential appearing in Eq. (4.4.1) is well defined. The main result of Ref. [14]

is that the ground–state expectation value of the position operator is given by the

analogue of Eq. (4.3.5), namely:

〈X〉 = L

2π
Im log zN , (4.4.2)

a quantity defined modulo L as above.

The right–hand side of Eq. (4.4.2) is not simply the expectation value of an operator:

the given form, as the imaginary part of a logarithm, is indeed essential. Further-

more, its main ingredient is the expectation value of the multiplicative operator

ei
2π
L

X̂ : it is important to realize that this is a genuine many–body operator.

We now focus on an uncorrelated system of independent electrons, whose N-electron

wavefunction |Ψ〉 is a Slater determinant. In this case the expectation value 〈X〉,

Eq. (4.4.2), is uniquely determined by the one-body density matrix. However, the

formulation is simpler when expressing 〈X〉 and the resulting polarization P directly

in terms of the orbitals. We define

|Ψ̃〉 = ei
2π
L

X̂ |Ψ〉 : (4.4.3)
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|Ψ̃〉 is indeed a Slater determinant, where each orbital ψi(x) of |Ψ〉 is multiplied by

the plane wave ei
2π
L

x. According to a well known theorem, the overlap amongst two

determinants is equal to the determinant of the overlap matrix amongst the orbitals.

We therefore define the matrix:

Sij = 〈ψi|ei
2π
L

x|ψj〉 =
∫ L

0

dxψ∗i (x)e
i 2π
L

xψj(x), (4.4.4)

in terms of which we easily get

X =
L

2π
Im log〈Ψ|Ψ̃〉 = L

π
Im log detS, (4.4.5)

where the factor of 2 accounts for double spin occupancy, and the expression becomes

accurate in the limit of a large system.

The expression of Eq. (4.4.5) is known as the “single–point Berry phase” and was

first proposed by R. Resta in a volume of lecture notes [18]. Since then, its three-

dimensional generalization has been used in a series of DFT calculations for non-

crystalline systems [85].

The case of a crystalline system of independent electrons is the problem which his-

torically has been solved first [7–9], though along a very different logical path [10–13]

than adopted here. The formalism adopted here leads to the same results.

4.5 Macroscopic polarization

We are now able to describe properly the electric polarization Pele = e〈r〉 in a

periodic system.

We can, in fact, generalize Eq.(4.4.2) to the three-dimensional case and define the

Berry phase γµ [8–10,14]:

γµ = Im log detQ(µ), (4.5.1)

where the matrix Q(µ) is defined as Q
(µ)
i,j =

〈
ψi
∣∣eiGµ·r∣∣ψj〉 , Gµ is the smallest vector
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in a periodically repeated cubic cell in the direction µ. Eq.(4.5.1) can be generalized

to cells of arbitrary shape, as is explained in Appendix A.

Eq.(4.5.1) is, in principle, valid in the limit of an infinite dimension of the cell, but

in a non conducting material this is a good approximation even with relatively small

supercells.

P ele
µ is then given by:

P ele
µ =

2 |e|
|Gµ|

γµ, (4.5.2)

which is defined modulo 2πGµ. We underline that Eq.(4.5.1), and consequently

Eq.(4.5.2), cannot be expressed in terms of a Hamiltonian1. In order to deal with

such an observable we will generalize variational density functional perturbation the-

ory, which was formulated [6] for Hamiltonian perturbations to the non-Hamiltonian

case.

1Only very recently J. Zak [84] has suggested that this property, which holds for the Berry

phase, not necessarily is applicable to the geometric phase in the band structure of solids. Following

Ref.[84] it seems that it is possible to cast 〈x〉 in the form of an expectation value of a well defined

Hermitian operator.



Chapter 5

Variational perturbation theory

In order to calculate the polarizability, which is the basic ingredient for the calcu-

lation of the Raman scattering intensities in the zero frequency limit, we need the

linear answer to a small applied electric field. For this reason, we introduce in this

Chapter the tools of variational density functional pertubation theory.

5.1 Generalized variational density functional

perturbation theory

The outcome of many experiments measures the way in which a physical system

reacts to the application of a small applied external field. If the external field is time

independent, one can relate the measured response to second order derivative of the

total energy relative to appropriate fields. This is the case for instance of the electric

polarizability or of the bulk modulus, which can be expressed as the second derivative

of the energy relative to the external electric field and the volume respectively. Given

the relevance of this class of properties, a large number of methods has been devised

to calculate static linear responses, and has been implemented in the context of

47
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many approximated electron structure theories like Hartree Fock, density functional

theory [86], Møller-Plesset perturbation theory[87] or coupled clusters[88]. Here we

shall focus on methods that can be applied within the density functional theory

(DFT)[89] and although our approach is fairly general, we shall present applications

based on the plane wave (PW) pseudopotential scheme.

The simplest way to evaluate the response functions is to calculate the energy for

various values of the applied field and extract numerically the energy derivatives.

This procedure can work reasonably well, but it requires several evaluations of the

total energy and the numerical derivative introduces errors. A more satisfactory

approach is to evaluate directly the response functions, making use of perturbation

theory. This leads for the static response functions to the familiar expression of the

response function in terms of a double sum over the occupied and empty electronic

states. This approach has been reformulated in the context of DFT by Baroni et

al.[4] and successfully applied to many problems. An essential ingredient for the

success of this approach has been the use of the Sternheimer method [5] which

avoids the explicit evaluation of the poorly convergent double sum and together

with a good preconditioner leads to an efficient algorithm.

More recently Gonze et al. [6] have shown that if one perturbs the Hamiltonian with

an external field, the induced variation in the Kohn-Sham orbitals can be obtained

to all perturbative orders from a variational formulation. Use of the 2n + 1 theo-

rem[20] allows then to calculate the change in energy and the corresponding energy

derivatives. For instance the second order energy derivatives can be calculated once

the first order variation in the Kohn-Sham orbitals are known. One advantage this

theory has in common with the Sternheimer approach is that it avoids the need to

perform explicitly the double summation. The efficiency of the variational density

functional perturbation approach is comparable to that of Baroni et al.[4].

Gonze approach as well as the more standard perturbation theory is based on a
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Hamiltonian formulation. The purpose of this thesis is to generalize the Gonze

variational approach to the case in which the perturbation cannot be expressed in

a Hamiltonian form. The need to treat such a term arises when for instance one

wants to evaluate the effect of an electric field that couples with the polarization

in a periodic system. As we have discuss in Chap.4, modern theories express the

polarization in terms of a Berry phase[9,10], which is not expressible in Hamiltonian

terms. Furthermore, while conventional perturbation theory must be formulated in

terms of Kohn-Sham eigenstates, there is some time we need to work with other

orbitals. A case in point is for istance the calculation of NMR chemical shifts which

can profit from the use of maximally localized orbitals[25,26].

The derivation of this thesis is very close to the spirit of DFT and in our opinion

slightly more transparent than that of Gonze[6]. Of course our formulae reduce to

those of Gonze in the case of Hamiltonian perturbations. In the following we will

introduce the new approach and we will also address some technical problems, like

the handling of the gradient corrections or the choice of appropriate preconditioners.

We will illustrate the performance of the method for the calculation of the vibrational

frequencies, polarizability, and Raman intensities.

5.2 Theory

In standard perturbation theory [6], a small perturbation operator λh is added to

the Hamiltonian H of a system and its action evaluated. We propose a conceptually

different approach, using the variational principle in the framework of DFT.

Let us consider the Kohn-Sham (KS) density functional E [{|ψi〉} ].

We work with the formulation of the Kohn-Sham functional in terms of nonorthog-

onal orbitals[90]. This can be realised by writing E in term of the density matrix
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ρ (r, r′) [90,91]:

E [ρ (r, r′)]= −1

2

∫
d3r

∫
d3r ′δ (r− r′)∇2

rρ (r, r′)

+
1

2

∫
d3r

∫
d3r ′ |ρ (r, r′)|2

|r− r′| + Exc[ρ ] + Eext[ρ ] (5.2.1)

and expressing

ρ (r, r′) =
∑
i,j

= ψ∗i (r)S
−1
ij ψj(r

′) (5.2.2)

where S−1
ij is the inverse of the overlap matrix Sij = 〈ψi|ψj〉. The minimum of this

functional is E (0)
[{

|ψ(0)i 〉
} ]

= E(0), where we assume that (at the minimum) the

orbitals are orthogonal, 〈ψ(0)i |ψ(0)j 〉 = δ i,j.

Starting from E [{|ψi〉} ] we add a perturbation functional of arbitrary form

Epert [{|ψi〉} ] multiplied by λ, a small perturbative parameter. This is meant to

represent the interaction with a static, but otherwise arbitrarily complex external

field.

The total functional E tot [{|ψi〉} ] = E (0) [{|ψi〉} ]+λEpert [{|ψi〉} ] will have a minimum

which we shall expand pertubatively

E = E(0) + λE(1) + λ2E(2)... (5.2.3)

Similarly the KS orbitals that minimise E tot can be expanded in λ:

ψi = ψ
(0)
i + λψ

(1)
i + λ2ψ

(2)
i + ... (5.2.4)

To the first order the charge density reads:

n(r) = n(0)(r) + λn(1)(r) + ... (5.2.5)

where

n(1) (r) =

N∑
i=1

(
ψ
(0)∗
i (r) ψ

(1)
i (r) + ψ

(1)∗
i (r) ψ

(0)
i (r)

)
(5.2.6)
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In order to find perturbatively the minimum of E tot

E tot = E (0)
KS

[{
|ψ(0)i 〉+ λ|ψ(1)i 〉+ ...

} ]
+ λEpert

[{
|ψ(0)i 〉+ λ|ψ(1)i 〉+ ...

} ]
(5.2.7)

we functionally expand E tot to the quadratic order:

E tot = E (0)
KS

[{
|ψ(0)i 〉

} ]
+ λEpert

[{
|ψ(0)i 〉

} ]

+
1

2
λ2

∑
i,j=1,N


〈ψ(1)i |〈ψ(1)j | δ 2E (0)

δ 〈ψ(0)i |δ 〈ψ(0)j |
+ 〈ψ(1)j | δ 2E (0)

δ 〈ψ(0)j |δ |ψ(0)i 〉
|ψ(1)i 〉

+ 〈ψ(1)i | δ 2E (0)

δ |ψ(0)j 〉δ 〈ψ(0)i |
|ψ(1)j 〉+ δ 2E (0)

δ |ψ(0)i 〉δ |ψ(0)j 〉
|ψ(1)i 〉|ψ(1)j 〉




+ λ2
∑
i=1,N

{
〈ψ(1)i |δ Epert

δ 〈ψ(0)i |
+

δ Epert

δ |ψ(0)i 〉
|ψ(1)i 〉

}
+ O(λ3), (5.2.8)

where we have used the fact that

δ E (0)

δ 〈ψ(0)i |
= 0 (5.2.9)

and a similar relation for the ket derivative. The evaluation of the sec-

ond order functional derivatives δ 2E (0)/ δ 〈ψ(0)i |δ 〈ψ(0)j |,δ 2E (0)/ δ 〈ψ(0)i |δ |ψ(0)j 〉 and

δ 2E (0)/ δ |ψ(0)i 〉δ |ψ(0)j 〉 produces a very complicated expression, that simplifies con-

siderably in the limit of orthogonal orbitals Sij = δ ij. This leads to the expression:

E (2) =
1

2

∫
d3r

∫
d3r ′n(1) (r)K(r, r′)n(1) (r′)

+
∑

i,j=1,N

〈ψ(1)i |
(
H(0)δ ij − 〈ψ(0)j |H(0)

KS|ψ
(0)
i 〉

)
|ψ(1)j 〉+

+
∑
i=1,N

〈ψ(1)i |δ Epert

δ 〈ψ(0)i |
+

δ Epert

δ |ψ(0)i 〉
|ψ(1)i 〉 (5.2.10)

where

H(0) = −1

2
∇2 + V ext (r) + V H (r) + V xc (r) (5.2.11)

and

K(r, r′) =
δ (V H (r) + V xc (r))

δ n (r′)
(5.2.12)
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supplemented by the orthogonality constraint which to first order on λ reads:

〈ψ(0)i |ψ(1)j 〉+ 〈ψ(1)i |ψ(0)j 〉 = 0 ∀i, j (5.2.13)

For canonical orbitals:

〈ψ(0)j |H(0)|ψ(0)i 〉 = ε
(0)
i δ ij (5.2.14)

and Eq.(5.2.10) further simplifies to:

E (2) =
1

2

∫
d3r

∫
d3r ′n(1) (r)K(r, r′)n(1) (r′) +

∑
i=1,N

〈ψ(1)i |
(
H(0) − ε

(0)
i

)
|ψ(1)i 〉+

+
∑
i=1,N

〈ψ(1)i |δ Epert

δ 〈ψ(0)i |
+

δ Epert

δ |ψ(0)i 〉
|ψ(1)i 〉 (5.2.15)

which reduces to the form proposed by Gonze[6] if

Epert =
∑
i

〈ψi|h|ψi〉. (5.2.16)

5.2.1 Minimization techniques

As discussed in Ref. [6] in an appropriated choice of the gauge, we can replace

Eq.(5.2.13) with the more stringent

〈ψ(0)j |ψ(1)i 〉 = 0 ∀i, j (5.2.17)

which implies orthogonalise the {ψ(1)} to the manifold of the {ψ(0)}. This constraint

can be imposed via a Lagrange multiplier: to this effect we introduce the following

Lagrangian

L(2) = E (2) −
∑
i,j

〈ψ(1)i |ψ(0)j 〉Λ(1)
ji , (5.2.18)

where Λ
(1)
ij is

Λ
(1)
ij = 〈ψ(1)i |(H(0) − ε

(0)
i )|ψ(0)j 〉+ 〈ψ(0)i |(H(0) − ε

(0)
j )|ψ(1)j 〉+

〈ψ(0)i |〈ψ(0)j |K|ψ(1)j 〉+ 〈ψ(1)j |K|ψ(0)j 〉|ψ(0)i 〉+

〈ψ(0)i |δ Epert

δ 〈ψ(0)j |
+

δ Epert

δ |ψ(0)i 〉
|ψ(0)j 〉. (5.2.19)
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The minimum condition yields than the inhomogeneous nonlinear system for the

{ψ(1)}:

−
(
H(0) − ε

(0)
i

)
|ψ(1)i 〉 = Pe

(∫
d3r ′K(r, r′)n(1)(r′)|ψ(0)i 〉+ δ Epert

δ 〈ψ(0)j |

)
,(5.2.20)

where

Pe = 1 −
∑
j

|ψ(0)j 〉〈ψ(0)j |. (5.2.21)

Note that the right hand side still depends on {ψ(1)i } via the perturbation density

n(1). The nonlinearity of Eq.(5.2.20) comes from the dependence of the right-hand

side on n(1), and becomes more transparent if we note that:∫
d3r ′K(r, r′)n(1)(r′) = V

(1)
H (r) + V (1)

xc (r) (5.2.22)

where V
(1)
H and V

(1)
xc are the variations of the Hartree and exchange-correlation po-

tentials induced by the change in the density. In term of this two contribution

Eq.(5.2.20) becomes

−
(
H(0) − ε

(0)
i

)
|ψ(1)i 〉 = Pe

(
V

(1)
H (r)|ψ(0)i 〉+ V (1)

xc (r)|ψ(0)i 〉+ δ Epert

δ 〈ψ(0)j |

)
.(5.2.23)

Equations (5.2.18) and (5.2.23) are valid for canonical orbitals {ψ(0)i }. In principle,

they are also valid for other orbitals, e.g. for localised orbitals (Wannier functions).

In that case, however, the full Hamiltonian matrix elements 〈ψ(0)j |H(0)|ψ(0)i 〉 must be

used instead of the KS-energies ε
(0)
i .

5.2.2 Exchange-correlation functionals

The term V
(1)
xc is easily evaluated in the case of the LDA. However, its evaluation is

more complex for GC functionals, which can be written in the form:

Exc =

∫
d3r n(r)εxc (n(r),∇rn(r)) . (5.2.24)
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The calculus of variations yields the following expression in terms of first and second

derivatives of n(1)[99]:

V (1)
xc (r)=

∂ 2[nεxc (n,∇rn)]

∂ n2

∣∣∣∣∣∣
n=n(0)(r)

n(1)(r)

−
∑
α

∂

∂ rα


∂ 2[nεxc (n,∇rn)]

∂ n∂ (∂ αn)

∣∣∣∣∣∣
n=n(0)(r)


n(1)(r)

−
∑
α,β

∂

∂ rα


∂ 2[nεxc (n,∇rn)]

∂ (∂ αn)∂ (∂ βn)

∣∣∣∣∣∣
n=n(0)(r)


 ∂ n(1)(r)

∂ rβ

−
∑
α,β


∂ 2[nεxc (n,∇rn)]

∂ (∂ αn)∂ (∂ βn)

∣∣∣∣∣∣
n=n(0)(r)


 ∂ 2n(1)(r)

∂ rα∂ rβ
. (5.2.25)

The evaluation of these terms is rather cumbersome. In addition, the derivatives

lead to large inverse powers of the density. When the density becomes small these

terms are a source of numerical noise. One could ignore the contribution to EGC
xc for

densities smaller than a preassigned value as it is done in practice for the first order

derivative. However the large negative powers that appear in the second derivative

require to be cured with a much too high value of the cut-off density. This induces

inaccuracies and numerical noise. We resort instead to a finite difference technique.

To this effect we observe that:

1

2

∫
d3r

∫
d3r ′n(1) (r′)

δ 2Exc

δ n(0) (r′) δ n(0) (r)
n(1) (r) (5.2.26)

=
1

2
lim
ε→0

Exc

[
n(0) (r) + εn(1) (r)

]
+ Exc

[
n(0) (r) − εn(1) (r)

]
− 2Exc

[
n(0) (r)

]
ε2

.

and therefore

V (1)
xc = lim

ε→0

V xc

(
n(0)(r) + εn(1)(r)

)
− V xc

(
n(0)(r) − εn(1)(r)

)
2ε

(5.2.27)
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In Eq.(5.2.27), accuracy requires the use of a small ε, but on the other hand, nu-

merical stability favours a large ε. After some experimentation, we find that a good

compromise can be achieved with a value of ε ≈ 10−3.

Our numerical approach is more reliable and stable than the analytical expression.

In a PW approach, our way of proceeding is also computationally cheaper: in fact in

Eq.(5.2.25) one needs to evaluate ∂ n(1)/ ∂ rαand ∂ 2n(1)/ ∂ rα∂ rβ, which require a total

of 9 Fast Fourier Transforms to be compared with the 6 Fast Fourier Transforms

of Eq.(5.2.27), not to mention the cost of evaluating the very complex functions in

Eq.(5.2.25).

5.2.3 Preconditioning

In advanced optimization algorithms such as conjugate gradient minimization or

direct inversion of the iterative subspace (DIIS), a good preconditioning is a key

ingredient for optimal performance. The main objective is to reduce the condition

number of the problem. In terms of the energy functional (5.2.15) to be minimized,

this is equivalent to finding a good inverse of

H(0)δ ij − 〈ψ(0)i |H(0)|ψ(0)j 〉. (5.2.28)

In order to obtain a reasonably simple and numerically reliable expression, we first

replace the matrix elements 〈ψ(0)i |H(0)|ψ(0)j 〉 by the trace of the Hamiltonian,

〈ψ(0)i |H(0)|ψ(0)j 〉 �→ δ ij
1

N

∑
k

〈ψ(0)k |H(0)|ψ(0)k 〉,

such that our operator Eq.(5.2.28) becomes unique for all orbitals.

In addition, we note that, since our implementation uses plane waves, the dominant

contributions for high G come from the kinetic energy term, that in this represan-

tation is diagonal. We thus approximate (5.2.28) by its (G,G) – elements. The
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resulting expression is

1

2
|G|2 + V (G)− 1

N
T rH(0), (5.2.29)

which can easily be inverted to obtain the preconditioning matrix. However, (5.2.29)

can become very small and might almost vanish for certain G–vectors. To prevent

the preconditioner from being singular, we smoothly keep (5.2.29) above a certain

value η by transforming it to[(
1

2
|G|2 + V (G)− 1

N
T rH(0)

)2

+ η2

] 1
2

or optionally to an alternative variant,(
1
2
|G|2 + V (G)− 1

N
T rH(0)

)2
+ η2

1
2
|G|2 + V (G)− 1

N
T rH(0)

,

which preserves changes in the sign of (5.2.29).

In this way, our expression is never smaller that η and can safely be inverted. The

final preconditioner then yields[(
1

2
|G|2 + V (G)− 1

N
T rH(0)

)2

+ η2

]− 1
2

δ ij ,

or alternatively

1
2
|G|2 + V (G)− 1

N
T rH(0)(

1
2
|G|2 + V (G)− 1

N
T rH(0)

)2
+ η2

δ ij .

With these preconditioners and an appropriate value of η, the number of iterations

needed to minimize the second order energy functional is approximately three times

less than without preconditioning.

5.3 Vibrational modes

We now turn to some illustrative examples of the method. We start with the calcu-

lation of the vibrational modes. This can be achieved diagonalizing the dynamical
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matrix

Dαiβj =
1

√
mαmβ

(
∂ 2EI−I

∂ Rαi∂ Rβj
+

∂ 2EKS

∂ Rαi∂ Rβj

)
(5.3.1)

where we indicate the ions with Greek indexes α = 1, NI (NI is the number of ions)

and the Cartesian coordinates with Latin indexes i = 1, 2, 3. The first term in this

matrix can be calculated from the direct derivative of the ionic repulsion potential.

The second term comes from the interaction of the electrons with the nuclei and we

will shown in this section how it can be calculated using the methods presented in

the previous pages. In this case we consider 3NI perturbations, one for each small

displacement uαi of the atom α from its equilibrium position Rα in the direction i.

The perturbative functional is given by:

Epert[n] =

∫
d3r n(r)

∑
β=1,NI

∂ V I−e(r−Rβ)

∂ Rαi

δ αβ, (5.3.2)

where V I−e describes the ionic Coulomb potential. In the PW approach one uses

instead norm-conserving pseudopotentials [70]. Present day applications use mostly

nonlocal potentials of separable form [72], which are computationally very conve-

nient:

V I−e = vloc +
�max∑
�=1

|p�〉ω�〈p�|, (5.3.3)

where vloc is a local operator, p� the projector on the � angular moment and ω�

appropriated weights. Using (5.3.3) the perturbation functional reads:

Epert[n] =

∫
d3r n(r)

NI∑
β=1

∂ vloc(r−Rβ)

∂ Rαi
δ αβ +

�max∑
�=1

NI∑
β=1

∑
k


〈ψk|

∂ p�(r̂− Rβ )

∂ Rαi
〉ω�〈p�(r̂−Rβ )|ψk〉

+〈ψk|p�(r̂− Rβ )〉ω�〈
∂ p�(r̂−Rβ )

∂ Rαi
|ψk〉


δ αβ (5.3.4)
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and the perturbative term in Eq.(5.2.15) becomes∫
d3r n(1)(r)

NI∑
β=1

∂ vloc(r−Rβ)

∂ Rαi
δ αβ +

∑
�

∑
β

∑
k


〈ψ(1)k | ∂ p�

∂ Rαi
〉ω�〈p�|ψ(0)k 〉+ 〈ψ(0)k |p�〉ω�〈

∂ p�

∂ Rαi
|ψ(1)k 〉

〈ψ(0)k | ∂ p�

∂ Rαi

〉ω�〈p�|ψ(1)k 〉+ 〈ψ(1)k |p�〉ω�〈
∂ p�

∂ Rαi

|ψ(0)k 〉


δ αβ (5.3.5)

The electronic term can be calculated using the Hellmann-Feynman theorem gener-

alised to the nonlocal potential:

∂ EKS

∂ Rαi
=
∑
k

〈ψ(0)k |∂ V I−e

∂ Rαi
|ψ(0)k 〉 (5.3.6)

and taking the second derivative:

∂ 2EKS

∂ Rαi∂ Rβj
=
∑
k

〈ψ(0)k | ∂ 2V I−e

∂ Rαi∂ Rβj
|ψ(0)k 〉+

〈ψ(1)k,αi|
∂ V I−e

∂ Rβj

|ψ(0)k 〉+ 〈ψ(0)k |∂ V I−e

∂ Rβj

|ψ(1)k,αi〉

=
∑
k


〈ψ(0)k | ∂ 2vloc

∂ Rαi∂ Rβj
|ψ(0)k 〉+

∑
�

〈ψ(0)k | ∂ 2p�

∂ Rαi∂ Rβj
〉ω�〈p�|ψ(0)k 〉+

〈ψ(0)k |p�〉ω�〈
∂ 2p�

∂ Rαi∂ Rβj
|ψ(0)k 〉+ 2〈ψ(0)k | ∂ p�

∂ Rαi
〉ω�〈

∂ p�

∂ Rβj
|ψ(0)k 〉


δ αβ +

〈ψ(1)k,αi|
∂ vloc

∂ Rβj
|ψ(0)k 〉+ 〈ψ(0)k | ∂ vloc

∂ Rβj
|ψ(1)k,αi〉

+
∑
�

〈ψ(1)k,αi|
∂ p�

∂ Rβj
〉ω�〈p�|ψ(0)k 〉+ 〈ψ(1)k,αi|p�〉ω�〈

∂ p�

∂ Rβj
|ψ(0)k 〉+

〈ψ(0)k | ∂ p�

∂ Rβj

〉ω�〈p�|ψ(1)k,αi〉+ 〈ψ(0)k |p�〉ω�〈
∂ p�

∂ Rβj

|ψ(1)k,αi〉 (5.3.7)

We applied the method to isolated molecules. In particular, we report in Tables 5.3.1

and 5.3.2 the results for the molecules of Disilane (Si2H6) and Formaldeide (CH2O)

in LDA approximation. In the case of Disilane we used a cubic cell with reticular con-

stant of 22 a.u., Martins-Trouiller pseudopotentials [74] and a PW cutoff of 50 Ryd.
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PT FD 6 − 311G‡(3df, 3pd) experiment

Eu 2153 2153 2187 2177

A1g 2152.88 2152.88 2186 2163

A2u 2144 2144 2177 2154

2143 2143 2177

Eg 2132 2132 2166 2153

2128 2128 2162

Eu 897 897 902 946

896 896 902

Eg 883 883 889 929

883 883 889

A1g 846 846 850 910

A2u 775 775 781 843

Eg 595 595 595 625

593 593 594

A1g 428 428 433 434

Eu 337 337 338 379

334 334 338

A1u 134 134 143 180

Table 5.3.1: Vibrational modes of Disilane

Vibrational modes of Disilane: comparison between perturbation theory (PT), finited differences

(FD), Gaussian code (6−311G‡(3df, 3pd) basis set) and experiments [95]. For PT and FD we used

a cubic cell with reticular constant of 22 a.u., Martins-Trouiller pseudopotentials, LDA approxi-

mation and a PW cutoff of 50 Ryd. The frequencies are in cm−1.
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PT FD 6 − 311G‡(3df, 3pd) 6-311G experiment

b 2 2828 2828 2850 2898 2874

a1 2776 2776 2796 2832 2780

a1 1809 1809 1818 1720 1743.6

a1 1458 1458 1466 1516 1503

b 2 1214 1214 1217 1248 1280

b 1 1138 1138 1146 1177 1167

Table 5.3.2: Vibrational modes of Formaldeide

Vibrational modes of Formaldeide: comparison between perturbation theory (PT), finited differ-

ences (FD), Gaussian code (6− 311G‡(3df, 3pd) and 6-311G basis sets) and experiments [96]. For

PT and FD we used a cubic cell with reticular constant of 24 a.u., Martins-Trouiller pseudopoten-

tials, LDA approximation and a PW cutoff of 70 Ryd. The frequencies are in cm−1.

In the case of Formaldeide we used a cubic cell with reticular constant of 24 a.u.,

Martins-Trouiller pseudopotentials [74] and a PW cutoff of 70 Ryd. We performed

our calculations using CPMD (Car-Parrinello-Molecular-Dynamics) code[92], where

we have implemented the method here presented. We compare our results with

the ones obtained by finited differences using CPMD with the same cell, cutoff and

pseudopotentials and we find a very good agreement which validates our approach.

For comparison we report calculation made by using the GAUSSIAN program[93],

which is an all-electrons method and which expands the KS orbitals into Gaussians.

We also show as a reference the experimentally determined frequencies1 which are

in good agreement with all the theoretical results.

1The experimental frequencies reported are the observed fundamentals [94].



Chapter 6

Raman spectra: experiments and

theory

In the previous Chapters, we have introduced all the theoretical tools necessary to

build up an ab-initio Raman spectrum. In the following we will describe in detail the

techniques used in this thesis in order to perform such simulations. We start with

a reminder to basic concepts of Raman scattering experiments. Then we show how

Car-Parrinello molecular dynamics [3] is combined with the generalized variational

perturbation theory, introduced in Chap.5.2, in order to obtain Raman spectra for

disordered and anharmonic systems.

Finally, we validate the new theory by presenting some numerical tests.

6.1 Raman scattering experiments

Raman scattering is a spectroscopic technique that provides information about elec-

tronic, vibrational, and rotational energy levels.

When photons impinge on a system, they can impart energy to (or gain energy from)

61
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the translational, rotational, vibrational, and electronic degrees of freedom. They

thereby suffer frequency shifts. Thus, the frequency spectrum of the scattered light

will exhibit resonances at the frequencies corresponding to these transitions. Raman

scattering, therefore, provides information about the energy spectra. Advances in

the laser techniques have made possible the measurement of very small frequency

shifts in the light scattered from gases, liquids and solids.

A simplified scheme of such an experiment is the following: the light from a laser

passes through a polarizer to define the polarization of the incident beam and then

impinges on the scattering medium. The scattered light then passes through an an-

alyzer which selects a given polarization and finally enters a detector. The position

of the detector defines the scattering angle Θ as shown in Fig.6.1.1.

It is now convenient for the future applications to specify also the scattering geome-

tries. Essentially we will use two scattering geometries. The plane defined by the

initial and final wavevectors of the light is called scattering plane. It is necessary

to define the scattering geometry in relation to the scattering plane. Once one

has chosen the scattering plane, there are four different pairs of polarization direc-

tions commonly used, as shown in Fig.6.2.1. The subscripts V and H correspond

to directions that are vertical and horizontal with respect to the scattering plane.

IV V is called polarized component and IV H and IHV are usually called depolarized

components.

6.2 Raman intensity

We describe here a practical way of calculating Raman scattering.

We will work in the so called zero frequency limit, in which the incoming radiation

cannot induce transitions to the excited electronic states. This limit is discussed for

instance in the book of Berne and Pecora [108] and the Raman scattering is related
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Figure 6.1.1: Simplified scheme of a light scattering experiment: the light from a laser passes

through a polarizer to define the polarization of the incident beam and then impinges on the scatter-

ing medium. The scattered light then passes through an analyzer which selects a given polarization

and finally enters a detector. The position of the detector defines the scattering angle .
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to the time-dependent fluctuations of the polarizability tensor

α (t) =

∥∥∥∥−∂ Pµ

∂ Eν

∥∥∥∥ ≡
∥∥∥∥ ∂ 2E

∂ Eµ∂ Eν

∥∥∥∥ (6.2.1)

In this limit the polarization fluctuation are induced only by atomic motions. In an

isotropic system α (t) can be divided in an isotropic part α(t) and and anisotropic

component β(t) :

α (t) = α(t)I+ β(t), (6.2.2)

where α(t) = 1
3
Trα (t). Then one has for the two different polarization scattering

geometries:

IV V (ωf) = IISO (ωf) +
4

3
IV H (ωf) , (6.2.3)

where

IISO (ωf) =
N

2π

∫
dt e−iωf t〈α (0)α (t)〉, (6.2.4)

and

IV H (ωf ) =
N

2π

∫
dt e−iωf t

1

10
〈Tr(β (0) · β (t))〉 (6.2.5)

and ωf is the frequency of the scattered light.

The IV H Raman spectrum depends on both molecular vibration and rotation, while

IISO depends only on the vibrational motion.

6.3 Harmonic Raman spectra calculation

One possible approach to the calculation of the two components of the polarizability

tensor α and β is to approximate them with their expansion in the vibrational normal

coordinates of the system:

αI� α0I+
∑
i

∂ αI

∂ Qi
Qi (6.3.1)
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Figure 6.2.1: Polarization geometries in light scattering experiments. The plane defined by

the initial and final wavevectors of the light is called scattering plane. It is necessary to define

the scattering geometry in relation to the scattering plane. Once one has chosen the scattering

plane, there are four different pairs of polarization directions commonly used, VV,VH,HV, and

HH. The subscripts V and H correspond to directions that are vertical and horizontal with respect

to the scattering plane. IV V is called polarized component and IV H and IHV are usually called

depolarized component.
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β � β0 +
∑
i

∂ β

∂ Qi
Qi, (6.3.2)

where the derivatives are evaluated at the equilibrium geometry.

Not all the normal modes of the system will contribute to the sum in Eqs.(6.3.1) and

(6.3.2): a normal mode is “inactive” or “active” depending whether (∂ αI/ ∂ Qi) and

(∂ β/ ∂ Qi) are zero. The symmetry of the normal mode may be used to determines

which modes are active; if a mode has “gerade” symmetry, then it is Raman active;

if it is “ungerade”, it is Raman inactive and contributes only to the IR spectrum of

the system. This way of calculating the Raman spectrum gives accurate results for

system where the harmonic approximation is good, like perfect crystals or isolated

molecules. This limitation to harmonic effects can be overcome by evaluating the

polarizability as a function of the time during a molecular dynamics run, as we will

explain in the next section.

6.4 Anharmonic Raman spectra calculation

In order to obtain anharmonic effects, we evaluate α and β as a function of the time

during a molecular dynamics run and then apply directly Eqs. (6.2.4) and (6.2.5).

However, if one is not carefull, this method can become computationally too expen-

sive.

In fact, a single evaluation of α (t) in the standard approach is rather demanding,

since it involves the calculation of the excitation spectrum and cannot be computed

using only the ground state properties.

The textbook expression for the components of α (t) is:
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αµ,ν =
∑
c,υ

〈ψc|rµ|ψυ〉〈ψυ|rν|ψc〉
εc − ευ

(6.4.1)

The double sum in Eq.(6.4.1) over occupied valence states and empty conducting

states is notoriously difficult to carry out. One solution of this problem is to use

a Green’s function approach, based Sternheimer procedure[5], where the problem

of calculating the excited states and evaluating the double sum is turned into an

iterative scheme. However, as we have extensively discussed in Sec.4, in periodic

systems the position operator is ill defined. One possibility to solve this problem,

which is alternative to the modern theory of polarization, exposed in Sec.4, is the

use of the velocity operator v, which is well defined. We have:

〈ψc|r|ψυ〉 = −i
〈ψc|v|ψυ〉
ε c − ε υ

, (6.4.2)

where1

v = i [H, r] = p+ i[vext, r]. (6.4.3)

Using this expression for the position expectation value, one rewrites Eq.(6.4.1) as:

αµ,ν =
∑
c,υ

〈ψc|vµ|ψυ〉〈ψυ|vν |ψc〉
(ε c − ε υ)3

, (6.4.4)

which can be also recasted in a computationally more convenient form:

αµ,ν =
∑
c,υ

〈ψc|vµ|ψυ〉〈ψυ|
∂ V eff

∂ Eν

|ψc〉

(ε c − ε υ)2
. (6.4.5)

This formula alleviates but does not solve the problems associated with the slow

double sum convergence. The quantity 1/ (ε c − ε υ)
2goes rapidly to zero as the band

index c increases, but when c runs over the lowest conduction bands, small changes in

1Note that, when one uses nonlocal pseudopotentials, the commutator [vext, r] is different from

zero.
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the energy denominator causes large variations in the integrand, making numerical

integration instable.

Thus, one has to resort to the Sternheimer procedure.

In order to obtain a convienient form for practical purposes, one defines

|φ µ
υ〉 =

∑
c

|ψc〉
〈ψc|[H, rµ]|ψυ〉

ε c − ε υ

= PcG0(ε υ)Pc[H, rµ]|ψυ〉, (6.4.6)

where Pc is the projector over the conduction-state manifold, and G(ε ) = 1/ (ε −H) is

the one-electron Green’s function of the unperturbed system. If now one introduces

the following notation for the response of the wavefunction |ψυ〉 to an applied electric

field: ∣∣∣∂ ψυ
∂ Eν

〉 = PcG0(ε υ)Pc
∂ V eff

∂ Eν
|ψυ〉, (6.4.7)

the polarizability tensor reads:

αµ,ν =
∑
υ

〈φ µ
υ

∣∣∣∂ ψυ
∂ Eν

〉. (6.4.8)

However, due to the necessity to avoid the explicity evaluation of the Green’s func-

tion in Eqs.(6.4.6) and (6.4.7), the Sternheimer procedure has to be repeated twice.

The use of the variational perturbation theory, introduced in Chap.5, overcomes this

problem. As discussed before, in order to be able to treat the polarizability in such

a scheme, we have generalized the theory to non-hamiltonian perturbations.

The coupling of the electric field with the polarization induces a perturbation in the

KS functional of the type:

λEpert [{|ψi〉} ] = −E ·Pele = −
∑
ν

Eν
2 |e|
|Gν |

Im log det
〈
ψi
∣∣eiGν ·r∣∣ψj〉 . (6.4.9)

In this formula we have used the fact, extensively exposed in Chap.4, that the

polarization in the Γ only sampling of the Brillouin zone can be expressed in terms

of the Berry phase γµ, Eq.(4.5.1) [8–10,14]. In this approach,

P ele
µ =

2 |e|
|Gµ|

γµ =
2 |e|
|Gµ|

Im log detQ(µ),
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Figure 6.4.1: This scheme illustrate how one can calculate the Raman spectrum of a system,

using Car-Parrinello molecular dynamics and generalized variational perturbation theory.



70 CHAPTER 6. RAMAN SPECTRA: EXPERIMENTS AND THEORY

where the matrix Q(µ) is defined as Q
(µ)
i,j =

〈
ψi
∣∣eiGµ·r∣∣ψj〉 , and Gµ is the smallest

vector in a periodically repeated cubic cell in the direction µ. This expression can

be generalized to cells of arbitrary shape, as explained in appendix A.

This formula is in principle valid in the limit of a cell of infinite dimension,

but is a good approximation in a non conducting material, even with relatively

small supercells. In this particular case the perturbative parameter is Eν and

|ψi〉 � |ψ(0)i 〉 − Eν |ψν(1)i 〉.

The derivative δ Epert/ δ 〈ψ(0)i | and its ket conjugate, necessary to calculate the func-

tional of Eq.(5.2.10), can be evaluated using the formula for the derivative of a

matrix A with respect to a generic variable x:

d

dx
ln detA =

dAij

dx
A−1

ji . (6.4.10)

The perturbative term in Eq.(5.2.10) becomes:

2 |e|
|Gν |

Im

[∑
i,j

(〈
ψν

(1)
i

∣∣eiGν ·r∣∣ψ(0)j

〉
+
〈
ψ
(0)
i

∣∣eiGν ·r∣∣ψν(1)j

〉 )
Q

(ν)−1
j,i

]
. (6.4.11)

Using this perturbative term in Eq.(5.2.10) we can calculate, solving the nonlinear

system of equations (5.2.23), the first order correction to the wavefunctions {ψ(1)i }.

This allows us to evaluate the induced dipole moment in the µ direction to linear

terms:

δ P ele
µ =

2 |e|
|Gµ|

δ γµ (6.4.12)

= −
∑
ν

2 |e|
|Gν |

Im

[∑
i,j

(〈
ψν

(1)
i

∣∣eiGµ·r∣∣ψ(0)j

〉
+
〈
ψ
(0)
i

∣∣eiGµ·r∣∣ψν(1)j

〉 )
Q

(ν)−1
j,i

]
Eν

and the polarizability αµ,ν = −∂ Pµ/ ∂ Eν:

αµ,ν = (6.4.13)

2 |e|
|Gν |

Im


∑

i,j

(〈
ψν

(1)
i

∣∣eiGµ·r∣∣ψ(0)j

〉
+
〈
ψ
(0)
i

∣∣eiGµ·r∣∣ψν(1)j

〉 )
Q

(ν)−1
j,i


.
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L(a.u.) α1 α2 α3

A3

15 1.46 1.36 1.27

25 1.57 1.51 1.47

35 1.61 1.57 1.53

45 1.63 1.59 1.57

ref[97] 1.62 1.60 1.59

Table 6.4.1: Polarizability of a molecule of water

Polarizability of a molecule of water as a function of the length L of the cubic cell. We used

Martins-Trouiller pseudopotentials, BLYP gradient corrections functional and a PW cutoff of 70

Ryd.

In order to find the minimum of (5.2.15) we use a preconditioned conjugated gradient

approach (see Sec.5.2.3).

6.5 Test of the method

We tested the new method in several different situations. We first checked the

accuracy of the evaluation of the polarizability in the case of isolated molecules,

then we applied the method to a periodic system.

6.5.1 Calculation of the polarizability of molecules

We tested the validity of this approach performing a set of calculations on isolated

molecules which we treat within the supercell scheme. In order to evaluate the

effect of the finite dimension of the cell, we performed several calculations with

different sizes of the cell and we extrapolated the value of the polarizability for
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N 8 64 216 Ref.[99]

ε ∞ 6.6 8.58 9.81 12.9

Table 6.5.1: Dielectric constant of Silicon

Dielectric constant of Silicon: we performed several calculations of ε∞ as a function of the number

of atoms in the cell. We used PW, Car-von Barth pseudopotential and LDA approximation.The

cutoff was of 14 Ryd.

an infinite cell. We report this study in the case of a molecule of water in Table

6.4.1. We have compared our results with standard quantum chemical calculations.

The agreement was excellent expecially considering the difference between the two

calculations (different basis set, use of the pseudopotential in our case, etc. etc.).

6.5.2 Calculation of the dielectric constant

We applied the present scheme to a truly periodic systems, where the use of the

Berry phase approach is mandatory. Here the comparison is less straightforward

since one needs to perform adequate sampling over the Brillouin Zone(BZ). The

present implementation is restricted to the Γ point only of the BZ and therefore BZ

sampling convergence studies have to be replaced with calculations on larger and

larger supercells. In particular we treat the case of silicon and we compare with the

results of Baroni and Resta [98]. First we evaluated the dielectric constant ε ∞:

ε ∞ = 1 + 4π
∂ P

∂ E
(6.5.1)

and we compared our results with the results of Dal Corso et al. [99]. As one can

see from Table 6.5.1 the convergence of such a quantity with the number of atoms

in the cell is quite slow.

Because we are interested in Raman spectrum calculations, we performed a more
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N 8 64 Ref[98] experiment

γ(u)/ u 6 6 7.15 6.2± 1

Table 6.5.2: Raman activity of Silicon

γ(u)/u for Silicon: comparison with the previous results of Baroni and Resta[98]. We present the

data for u = 0.0001.

stringent test evaluating by a finite difference method the derivative of the polar-

izability with respect to the atomic displacements from the equilibrium γ , which is

the quantities that really determine the Raman activity.

The latter converge much faster. In fact we calculate the value of the derivatives

of the polarizability in the direction (1, 1, 1) for different values of a dimensionless

amplitude u moving the atomic positions of ±ua(1, 1, 1) where a is the lattice con-

stant. The results for γ(u)/ u, reported in Table 6.5.2 are in good agreement with

[98] and show that these derivatives converge to a limit value independently from

the size of the cell.

6.6 Technical details

In the following, we describe the practical procedure which should be followed in

order to calculate and analyze a Raman spectrum.

6.6.1 Ab initio simulation

As discussed in the previous pages, in order to simulate first-principles Raman spec-

tra for disordered and anharmonic systems one should combine Car-Parrinello mole-

cular dynamics with the evaluation of the polarizability (see Eq.(6.4.14)) through
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the modern theory of polarization and generalized variational perturbation theory.

However, it is important to notice that the latter holds only if the ground state wave-

functions are exactly on the BO surface: simple algebra shows that if the {ψ(0)} are

not exactly on the BO surface, the 2n+1 theorem does not hold any more. This im-

plies that is not possible to use directly the Car-Parrinello wavefunctions to calculate

the polarizability following Eq.(6.4.14).

It is therefore necessary to calculate the exact ground state wavefunctions min-

imizing the ground state energy, even if the wavefunctions obtained through Car-

Parrinello molecular dynamics are not so different from the exact ones (see Sec.3.3.2).

A scheme of such a procedure is shown in Fig.6.4.1.

6.6.2 Smoothing a spectrum: maximum entropy method

Once one has a set of polarizability {α(t)} as a function of the time, one calculates

the autocorrelation function C(t) = 〈α(0)α(t)〉 and obtains the spectrum transform-

ing C(t) in the frequency domain, through Eq.(6.2.3). There are several method to

do such a transformation.

The truncation of C(t) after a finite time, and the presence of random statistical

errors, makes the evaluation of the Fourier transform difficult [77]. Spurious feature

in Crun(ω), produced by transforming a truncated Crun(t), can obscure the features

present in the complete spectrum C(ω). In particular, the truncation causes spectral

leakage, which often results in rapidly varying side-lobes around a peak, and loss of

resolution.

The maximum entropy method is a technique for computing the most uniform spec-

trum consistent with a set of data. In practice the method works as follows.

We make the assumption that every discrete point Crun(τ ) in the correlation func-
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tion has a Gaussian error associated with it which is described by the variance σ 2(τ ).

The quantity that we shall be varying is a trial fit spectrum Cfit(ν ) evaluated at a

large number of discrete frequencies ν . We can easily transform Cfit(ν ) to obtain

the trial correlation function Cfit(τ ), and the measure of a good fit is the quantity:

χ 2 =

τmax∑
τ=1

|Cfit(τ )− Crun(τ )|2
σ 2(τ )

(6.6.1)

In fact, a reasonable fit (one within the statistical errors) would have χ 2 = τmax and

the technique will aim to fix χ 2 at this value. The most probable fit subject to this

constraint is obtained by maximizing

−
∑
ν

Cfit(ν ) logCfit(ν ) +
λ

2

τmax∑
τ=1

|Cfit(τ )− Crun(τ )|2
σ 2(τ )

. (6.6.2)

λ is a Lagrange multiplier which constraints χ 2 to be a constant. The first term in

Eq.(6.6.2) is the information-theoretical entropy of the spectrum. By differentiation

we obtain

Cfit(ν ) = exp

{
−1 + λ

[
1

τmax

τmax∑
τ=1

(Cfit(τ )− Crun(τ ))

σ 2(τ )
exp(2πiν τ / τmax)

]}
,

(6.6.3)

which can be solved iteratively. For a particular λ, we begin with a uniform Cfit(ν )

to produce by transformation Cfit(τ ). This is used to recalculate Cfit(ν ), and the

process repeated to convergence. The whole procedure is carried out for a number

of λ value until we obtain a consistent Cfit(ν ) which has χ 2 = τmax.

6.6.3 Normal modes and velocity-velocity spectrum

One of possible method of assignments of the peaks in a spectrum is the analysis

of the normal modes Qi (i = 1, 3NI) of the system. In Sec.5.3 we have described

how it is possible to obtain them from the variational perturbation theory. Given a

particular normal mode Qi, it is possible to identify the corresponding peak of the
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spectrum (IR or Raman, following the symmetry of the mode, as we have explained

in Sec.6.3), projecting the mode on the velocities vα (α = 1, NI)

ṽi(t) =

NI∑
α=1

3∑
j=1

1

Mα
Qiαjvαj(t) (6.6.4)

The spectrum obtained from the autocorrelation function 〈ṽi(0)ṽi(t)〉 is character-

ized by a single peak (and its overtones) which corresponds to the particular mode Qi

used in the projection. Obviously, such a method to identify peaks works properly

only for harmonic systems.

6.7 Raman spectrum of a single water molecule

Finally, we tested the procedure to calculate the Raman spectrum on a very simple

and harmonic system, an isolated water molecule. In order to do this, we follow the

procedure illustrated in Fig.6.4.1 for the case of a single water molecule in a cubic

box of 10 a.u., which is big enough to consider the molecule isolated. The simu-

lation was done using Martin-Trouillers [74] pseudopotentials and BLYP exchange

and correlations potential, which is at present one of the best ways to describe the

hydrogen bond in DFT [67].

Once one has excluded molecular rotations and translations, there are three normal

modes for the water molecule: symmetric stretching ν 1, antisymmetric stretching ν 3,

and bending ν 2. A schematic plot is shown in Fig.6.7.1. Only one of these modes, ν 1,

is Raman active. The observed frequency (fondamental) of this mode is 3657 cm−1,

the harmonic corrected frequency is of 3832 cm−1 [94]. Several calculations of such a

frequency through DFT, but using different basis sets and exchange-correlation po-

tentials, range from 3400 to 3600 cm−1. Our simulated Raman spectrum show a well

defined peak at ∼ 3330cm−1, in good agreement with experimental and theoretical

data, as can be observed in Fig.6.7.2.
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Figure 6.7.1: Normal modes of a water molecule. Left panel: symmetric stretching ν1; Center

panel: bending ν2; Right panel: antisymmetric stretching ν3.
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Figure 6.7.2: Raman spectrum of a single water molecule: only the symmetric stretching ν1 is

Raman active. The peak we obtain is in good agreement with the calculated frequency for this mode

within DFT [94].



Chapter 7

High pressure ice

7.1 Introduction

The hydrogen bond is one of the most important interactions in nature. It is respon-

sible for several phenomena which are of interest in many areas of science, ranging

from biology to planetary physics [27].

In particular, this bond is the reason for the very complicated and interesting phase

diagrams of water, which is the most common molecule on the earth’s surface and

constitutes about 70% of the human body. A schematic picture of such a phase

diagram is shown in Fig.7.1.1.

The high pressure region of the phase diagram of ice is very important for condensed

matter, planetary physics [27] and biology. In the last 25 years, a lot of effort has

been dedicated to the study of the phase transition from ice VIII to ice X[29]. How-

ever, only very recently has the development of new experimental techniques, which

permit to work at very high pressures, and of powerful simulation tools open up the

possibility of a deeper investigation of such a phenomenon.

This phase transition, which will be described later, is very interesting because it

79
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Figure 7.1.1: At least 14 varieties of solid ice have been observed in various domains of the

pressure-temperature (p, T ) plane, which correspond to different amorphous or crystalline networks

of the H2O molecule.

involves the phenomenon of proton transfer. This behavior of ice is a good prototype

of similar phenomena in much more complex biological systems, for example in the

HIV enzyme [28].

Furthermore, the study of high pressure ice is important in planetary physics, be-

cause H2O is a major component of Saturn, Uranus, and Neptune.

A slightly different phenomenon happens in hydrogen-bonded ferroelectrics or anti-

ferroelectrics such as KH2PO4, NH4H2PO4, and H2C4O4 under pressure. Usually,
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a disordered crystal progressively orders under pressure, but these compounds do

not. In this class of crystals, the temperature T c of the order-disordered transition is

known to decrease with increasing pressure in more than 30 H-bonded compounds,

and often tend to 0 K at a critical pressure pc. In other words, at pressures above pc

the system is disordered even at very low temperature. In the paraelectric phase of

these systems, the proton positions are disordered along the H-bonds whereas they

are ordered in the ferroelectric (or antiferroelectric) phase. The behavior of these

systems is somehow similar to the one of ice, as we will see in detail in the following

section. However, in these other systems, the type of disorder, which is very likely at

the origin of the pressure dependence of T c, is not rotational but only translational.

As will be explained in this Chapter, Raman spectroscopy is a very useful tool to

investigate this problem. Various theoretical and experimental results reported sofar

and their validation by our computer simulation of the Raman spectrum have been

discussed.

7.2 Structures of ice VIII, VII and X

Ordinary ice (ice Ih), which is stable at atmospheric pressure, is only one of the many

phases of ice. Depending on the temperature and on the pressure several different

phases exist: at least 14 varieties of solid ice have been observed in various domains

of the pressure-temperature (p, T ) plane, which correspond to different amorphous

or crystalline networks of the H2O molecule.

For reasons described below, we are interested in three of these phases, ice VIII, VII

and X.

Ice VIII has one of the simplest structures compared to other phases of ice. It is

composed of two interpenetrating but not interconnected sublattices of hydrogen

bonded water molecules, where the oxygen atoms form a slightly tetragonally dis-
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torted body-centered-cubic structure [30].

The space group is I41/ amd(D19
4h) and the primitive cell, shown in Fig.7.2.1, includes

8 molecules.

Neutron diffraction studies have shown the structure to be both fully proton and

oxygen ordered [31]. The structure can be viewed as being built up from two in-

terprenetrating ice Ic lattices, where the direction of the dipole moments of water

molecules in one lattice is opposite to the direction in the other lattice; the final sys-

tem is antiferroelectric. The two lattices are not perfectly centered with respect to

each other. If they were, the oxygen atoms would lie in a body-centered arrangement.

As a result of this displacement, each water molecule will have two non-hydrogen

bonded neighbors that are closer than the four hydrogen bonded neighbors.

As the pressure increases a new phase, ice VII, appears. This phase transition has a

clear experimental fingerprint, the disappearance of the tetragonal distortion. Pro-

ton disorder set in and the proton occupies with equal probability two symmetric

positions along the O-O bond [31,32]. This structure, shown in the left panel of

Fig.7.2.2, is disordered and paraelectric. The symmetry is cubic, the space group

Pn3̄m with 2 molecules per unit cell. In the low-pressure region and at high tem-

perature, the disorder of this structure is believed to be induced by the rotations of

molecules, which creates Bejerrum defects, whereas at high pressures, the dominant

mechanism is thermal hopping and/or tunneling of the proton along the hydrogen

bond.

At even higher pressures it is speculated that there exists another phase, ice X[33–

36], where the molecular-crystal structure breaks down completely and transforms

into a non-molecular structure (Cu2O type) connected by hydrogen bond sym-

metrization induced by the pressure, as can be seen in Fig.7.2.2. The overall symme-

try of this structure is increased and the hydrogen atoms are tetrahedally arranged

in the cubic sublattice. The resulting space group is Pn3m (O4
h).
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Figure 7.2.1: Snapshot of the crystal structure of ice VIII. One of the two interprenetrating

lattices has been shadowed. (Picture from Ref.[30])
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Figure 7.2.2: Left panel: snapshot of the crystal structure of orientationally-disordered ice VII.

Right panel: snapshot of the crystal structure of ice X.

The boundaries between ice VIII and VII in the phase diagram are well defined

and identified by the loss in phase VII of the tetragonal distortion. However, the

boundary regions of ice X are still not well defined [37], because a definite identifi-

cation of the H-bond symmetrization requires structural tools able to probe the H

sublattice. These are still lacking. X-ray diffraction data were obtained up to 128

GPa [38] but provided no information about the proton sublattice, while neutron

diffraction studies, which are able to locate the H positions, have been reported

only up to 20 GPa [39]. Neutron diffraction experiments at higher pressures are

at present no possible, because the only samples, which can be brought at so high

pressure, are too small to apply this technique. Experiments, first-principles molec-

ular dynamics simulations and infrared calculations [43] suggest that ice VIII does

not transform directly into ice X, but the phase transition happens between ice VII

and X. However, the boundaries of this phase transition are still not completely
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clear. It is supposed [37] that, with increasing pressure, rotational-disordered ice

VII, present around 2.5 GPa, transforms into translational-disordered ice VII. This

seems to be indicated from the change of slope of the transition temperature T c vs

pressure curve (Fig.7.2.3), observed around 12-18 GPa. Furthermore, above 15 GPa

a regular decrease of T c with pressure, similar to what is encountered in other H-

bonded compounds, characterized only by translational disorder, is observed. This

phase transforms then into proton-disordered ice X, which under further compres-

sion transforms into proton-ordered ice X. A scheme of this particular region of the

diagram of phase is shown in Fig.7.2.3 [37].

It is important to mention that it is experimentally very difficult to identify the posi-

tion of the hydrogen at so high pressures. Furthermore, the description of low energy

Bejerrum defects through ab initio simulations is practically impossible, because it

requires the use of very big simulation cells and very long simulation times.

7.3 Group theory

Using symmetry properties, one can identify the fingerprints of phase VIII and phase

X, which should be present in IR and Raman spectra. An inspection of such symme-

try coordinates shows that with the phase transition, almost all the Raman active

modes of ice VIII become optically inactive zone boundary modes, only the ν TzB1g

and ν TxyEg lattice modes would develop into a triply degenerate, Raman active T2g

mode, totally decoupled from the hydrogen motions. This result comes directly from

the analysis of the correlation tables in group theory.

In fact, the crystalline structure of ice VIII is represented by the group D4h, which

is a subgroup of Oh, to which the structure of ice X belongs. In the correlation table

of Oh is shown that the representation of lower symmetry B1g + Eg of its subgroup

D4h goes into the representation of full symmetry T2g[112]. The complete result of
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Figure 7.2.3: Phase transition from ice VIII to ice X. ice VII-VIII transition line pressure p

(GPa) as a function of temperature (K). Hollow and filled squares: experimental points for H2O

and D2O, respectively. Solid and dotted lines: fit of the data for H2O and D2O, respectively.

Hatched zones: expected transition lines from rotational disorder (1) to quasistatic disorder (2)

and from quasistatic disorder (2) to translational disorder (3) named disordered ice X. This latter

line is not shown for deuterated ice. ∗ : from X-ray data. (Picture from Ref.[37])
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the vibrational analysis is illustrated schematically in Fig.7.3.1 including the assign-

ments for the zone center modes. Part of the stretching, bending, and rotational

modes of ice X are identical to those of a tetrahedron, while the new decoupled mode

of oxygen with T2g symmetry is identical to the same mode of carbon in diamond.

As indicated in Fig.7.3.1, one expects that the two IR active ν 1A2u and ν 3Eu stretch-

ing modes and the two ν 2A2u and ν RxyEu bending rotational modes of ice VIII remain

IR active in ice X as triply degenerated T1u modes. All selection rules instead break

down in the case of ice VII.

This behavior was claimed to be observed by Hirsch et al.[33] in 1986 in Raman

experiments; however, at that time there were still not avaliable tools to really

perform experiments at very high pressure (the highest pressure possible was of the

order of 50 Gpa) and the results remained controversial.

7.4 Proton transfer

The phase transition of ice, described in the previous pages, has a link with the

proton transfer phenomena. It has been known for more than half a century

that the potential acting on a proton, which moves along a hydrogen bond be-

tween two heavy atoms, depends crucially on the distance between donor and ac-

ceptor, i.e. on the length of the hydrogen bond. In ice, both donor and accep-

tor are oxygen atoms and the basic proton transfer situation may be sketched as

O −−H · · ·O �O · · · H −−O , neglecting any charges or residual atoms. The cru-

cial point is that the one-dimensional adiabatic electronic potential acting on the

shared proton, that is transferred from one oxygen atom to the other one, changes

qualitatively as a function of the OO separation: in Fig. 7.4.1 the solid line de-

scribes the case of four representative distances between the two oxygen atoms. For

large separations (a), the proton is preferentially covalently bound to one of the
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Figure 7.3.1: Correspondences between the zone center modes of ice VIII (D19
4h) and the zone

center and X-point boundary modes of ice X (O4
h). The symmetry assignments given in parentheses

at the X point indicate the mode symmetry at the zone center of the phonon branches. (Picture

from Ref.[33]).
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water molecules. Keeping this OO distance fixed and forcing the proton to move

to the other oxygen atom, it has to overcome an energy barrier with a maximum

at the centro-symmetric configuration, which leads to a double-well potential with

a high barrier. This barrier to proton transfer, however, decreases with decreasing

OO separation, as it is shown in (b) and (c). In the limit of very short OO separa-

tions, the proton resides preferentially midway between the two water molecules (d),

leading to a single-well potential [101]. Thus, this centro-symmetric configuration

(d) is an energy minimum for short OO separations, and a transition state for large

separations. This correlation was also found experimentally.

Many essentials of proton transfer and conduction can be traced back to the partic-

ular regime in the sequence (a)-(d) of Fig.7.4.1 as governed by the OO separation.

However, it is experimentally difficult to study in a controlled way the properties of

hydrogen-bonded systems as a function of the OO separation. High-pressure ice is a

system that is experimentally accessible under controlled conditions by present-day

diamond anvil cell techniques. In addition, the three ice modifications VII, VIII,

and X have essentially the same structure of the oxygen sublattice (bcc or close to

bcc in the case of ice VIII), but they show a very different behavior concerning the

proton positions, as already discussed. Applying hydrostatic pressure at constant

temperature allows one to vary continuously the OO distance while simultaneously

measuring properties.

This is a dramatic simplification as compared to hydrogen-bonded solids at ambient

pressure, systems in the gas or liquid phases, or even ‘biomolecules’. Thus, ice at

high compression is an ideal candidate for performing experiments where the proton

transfer potential can be tuned as a function of the applied external pressure, i.e.

without changing the chemical composition of the solid. In particular, the phases

(b) and (c) are very interesting; this regime is called “low-barrier H-bond” [102] and

plays a very important role in very complex biological substances, for example in
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d)

a) b)

c)

Figure 7.4.1: Schematic schetch of the adiabatic electronic potential energy profile (solid lines)

and the corresponding proton densities (dashed lines) for proton transfer. (Picture from Ref.[101])
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the HIV enzyme [28].

7.5 Path Integral Molecular Dynamics

The picture of the proton transfer, described in the previous section, has recently

been confirmed by ab initio path integral molecular dynamics simulations [44] where

the proton is treated as a quantum particle.

In this approach, the symmetrization of the hydrogen bond is followed in Fig.7.5.1 by

monitoring the evolution of the quantum-statistical average of the shortest oxygen-

hydrogen bond length ROH as a function of the nearest-neighbor oxygen- oxygen

distance ROO (which in turn is a function of the pressure), the signature of the

symmetric ice simply being ROH = ROO/ 2 (solid line). In Ref.[44] the authors

find that this relation is approximatively linear in the low pressure regime, which

has been also found by neutron scattering up to 20 GPa [39]. On compression,

however, the lengthening of the ROH bond becomes much more pronounced as a

function of decreasing ROO. The quantum system (filled circles) finally undergoes

a symmetrization transition at ∼ 72 GPa, whereas in the corresponding classical

system (open circles) a much higher pressure of ∼ 102 GPa is needed to observe

the transition. Ice VIII does not transform directly into symmetric ice: in the

quantum simulation there is clear evidence that proton-disordered molecular ice

VII exists between proton-ordered ice VIII at lower pressures and symmetric non-

molecular ice X at higher pressures. In fact, it is possible to analyze the average

proton distribution P (δ , ROaOb
) as a function of the proton position relative to the

bond midpoint δ = ROaH − RObH and the corresponding oxygen-oxygen separation

ROaOb
, which is shown in Fig.7.5.2. The quantum simulations (a),(b) and (c)+(d)

clearly correspond to ice VIII, VII and X, respectively. In ice VIII (a) the quantum

fluctuations only induce a zero-point motional broadening of the distribution relative
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Figure 7.5.1: Filled circles: quantum nuclei at 100 K; open squares: classical nuclei at 300 K;

open diamond: experimental (ROO, ROH) data about 240 K (Ref.[39]);solid line: “symmetrization

line” ROH = ROO/2, indicating ice X. (Picture from Ref.[44])

to the classical case (e) without effecting its shape. Dramatic are the quantum effects

in ice VII (b), where the proton tunneling along the hydrogen bonds is totally

absent in the classical case (f), that leads to proton disorder and thus to a bimodal

distribution. Finally in ice X (c) the distribution is broad and flat, but unimodal

and centered at δ = 0 that sharpens considerably upon further compression (d).

In contrast the classical calculation (g) is characterized by a bimodal distribution

reflecting an underlying double-well proton transfer effective potential. Taking into

account that the thermal fluctuations correspond to the same temperature in (c)

and (g), it is a zero-point motion effect which shifts the lowest vibrational level of

the proton wavefunction above the double-well barrier. This form of ice (c) could be

dubbed “proton-disordered symmetric ice” with delocalized protons since the proton

distribution is very broad, cover both potential wells, but nevertheless peaks at the

bond midpoint δ = 0. Only at higher compression exceeding about 102 GPa there

is a single well (h) with the potential minimum right at the center position δ = 0,

which in turn could be called “proton-ordered symmetric ice” (d) with localized

protons at the bond midpoints. We finally note that the classical treatment of the
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Figure 7.5.2: Contour plots of the average proton distribution function P (δ, ROaOb
) as a function

of the proton position relative to the bond midpoint δ = ROaH − RObH and the corresponding

oxygen-oxygen separation ROaOb
for quantum (left panels) and classical (right panels) simulations

at several representative volumes and 100 K; note that δ = 0 corresponds to the proton being located

midway between its neighboring oxygen atoms Oa and Ob irrespective of the actual ROaOb
distance

(Picture from Ref.[44])



94 CHAPTER 7. HIGH PRESSURE ICE

proton reproduces the qualitative features of the phase transition, the main effect of

quantum fluctuations and tunneling being a shift to lower pressures of the VIII-VII

and VII-X phase boundaries.

7.6 Infrared absorption

In the following section recent results obtained by IR experiments and simulations

will be discussed.

7.6.1 Infrared experiments

The development of new spectroscopic techniques based on the use of synthetic di-

amond anvils, shown in Fig.7.6.1, have made possible to investigate spectroscopic

properties of materials at high pressure.

The experiments reported in this thesis were performed in the Geophysical Labora-

tory and Center for High Pressure Research in Washington DC by A.F. Goncharov,

V.V. Struzhkin, H. Mao, and R.J. Hemley. The new techniques developed in this

group allows to study materials under very high pressures in the range also of 100

GPa.

In fact, there are two main difficulties. First, the O-H stretching modes are so

intense that the absorbance maxima typically saturate for sample thickness ap-

propriate for measurement of bulk absorption properties. Second the transmission

through the diamond anvils is 0.05% in the region of second-order diamond ab-

sorption (1900− 2100 cm−1), precluding measurements in a crucial spectral region.

These difficulties were resolved by measuring both reflectivity and absorption with

an intense syncroton infrared source, combined with the use of thin anvils allow-

ing 3% transmission in the diamond second order absorption region. Reflectivity
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Figure 7.6.1: Diamond anvil cell. The high pressure chamber usually consists of a 30 to 300 µm

hole drilled in the metal gasket (schematically depicted in orange). Small chips of ruby are placed in

the chamber for in situ pressure determinations. Samples are loaded with a transmitting medium,

consisting of a condensed gas or fluid. Rare gas such as argon and neon have been shown to produce

quasi-hydrostatic conditions to pressures above 80 GPa and are particularly useful because these

materials lack a first order Raman spectrum in the solid state and hence do not contribute to the

background signal. The scattered light is observed through a small hole at the top and the bottom

of the cell using a microscope.
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measurements were used in order to identify strong feature, while absorption mea-

surements are ideal for weaker features.

These recent infrared measurements, published in Ref.[40,41] and shown in Fig.7.6.2

and 7.6.3, have provided evidence for the phase transition from ice VII to ice X

beginning at 60 GPa and stable to at least 210 Gpa. Such infrared reflectivity mea-

surements demonstrate that the softening of the O-H stretching modes, previously

documented at lower pressure [33,35], is profound in this pressure range.

The frequencies of the IR modes decrease from 3150-3220 cm−1 (ice I at zero pres-

sure) to ∼ 150 cm−1 at 60 GPa (in ice VII) followed by a hardening of the stretching

mode at higher pressure.

This result provided evidence for the transition to the nonmolecular phase with

symmetric hydrogen bonds. However, there is still a lot of incertitude in the deter-

mination of the boundaries between ice VII and the nonmolecular phase, supposed

to be ice X. It is only sure that such a phase exists at very high pressures.

Furthermore, there is no way to obtain the IR spectra in the region of absorbance of

the diamond anvil cell (dot-line in Fig.7.6.4) and the window of frequencies accessible

with these experiments do not include the low frequency range.

It is also important to mention that the broad peaks present at high pressure force

the harmonical analysis to be only a qualitative tool for the interpretation of the

data. For all these reasons, in order to validate the data and perform an accurate

analysis one should take recourse to ab initio simulations.

7.6.2 Ab initio simulations

In order to validate the experimental data, ab initio calculations of the infrared

spectrum were done by M. Bernasconi et al. [43].

The simulations were performed using ab initio molecular dynamics, where the pro-
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Figure 7.6.2: Syncroton infrared spectra of H2O at 3-55 GPa and 300 K. (a) Reflectivity spectra.

Solid lines are oscillator fits; dashed line are zero lines for the corresponding reflectivity spectra.

(b) Absorbance spectra. The oscillation at high frequency are interference fringes created by the

diamond cell. Dashed lines with arrows are guides to the eye. (Picture from Ref.[41])
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Figure 7.6.3: Vibrational frequencies for H2O up to 210 GPa. Closed circles, absorption spectra.

Solid lines are fits to the multiple Fermi resonance model, and the dot lines are bare frequencies.

Inset: Closed circles show the variation of the highest LO frequency with pressure; solid and dashed

lines correspond to the bare TO frequency. (Picture from Ref.[41])
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tons are treated classically. Also the imaginary part of the dielectric function ε 2(ω)

was calculated in the classical limit from the formula [103]

ε 2(ω) =
2πω

3V kBT

∫ ∞

−∞
dt e−iωt 〈M(t) ·M(0)〉 (7.6.1)

where V is the volume, kB the Boltzmann constant, T the temperature, M the

total dipole moment of the sample and the angular brackets indicate the statistical

average. The correlation function 〈M(t) ·M(0)〉 was computed directly in the MD

simulation. The electronic contribution to M is computed by using the Berry phase

scheme.

As already discussed, a classical treatment of the protons reproduces the qualitative

features of the phase transitions, the main effect of the quantum fluctuation and

tunneling being a shift to lower pressures of the VIII-VII and VII-X phase bound-

aries. Bernasconi et al. [43] have checked the validity of their approximation looking

at the classical distribution function of the proton position along the O−−H · · ·O

bond in the VIII, VII and X phases, illustrated in the left-hand panels of Fig.7.6.4.

The ab initio MD simulations [92] were performed at constant volume in a super-

cell containing 16 water molecules initially arranged in the ice VIII geometry. The

small tetragonal distortion of ice VIII [39] has been neglected. Furthermore, the

relaxation times for rotational disorder are rather large; in addition, as we have al-

ready discussed in Sec.7.2, the simulation cell used is too small to allow the creation

of low-energy Bejerrum defects. This prevents Bernasconi et al. from observing a

rotationally disordered ice VII and we can go directly only from ice VIII to trans-

lationally disordered ice VII at 300 K [43]. The authors of Ref.[43] used a gradient

correction to the local-density approximation for the exchange energy part only in

the form proposed by Becke [65]. This choice has been shown to describe well the

hydrogen bonding in water [67]. The conversion of the simulation cell volume to the

pressure is based on the experimental equation of state [38]. As we have discussed
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above, in order to take account of the classical treatment of the proton the results

at such pressures should be compared with experimental data at lower pressures.

7.6.3 Analysis of the IR spectrum

The main features of the experimental spectra and their evolution with pressure are

well reproduced by the calculations of Ref.[43], as can be seen in Fig.7.6.4.

By increasing pressure the intramolecular stretching modes ν 3 and ν 1 shift to lower

frequency and merge with the librational mode ν R. The resulting peak sharpens up

at higher pressure and above 80 GPa a new peak appears at the lower boundary

of the frequency window accessible experimentally. At pressure above 98 GPa the

spectrum is characterized by two peaks ten times larger in intensity than the IR

peaks at low pressure (13.7 GPa). The theoretical spectra reproduce well all these

features and in addition fill the experimental gap in the IR spectra in the range

1800-2400 cm−1 and below 500 cm−1, where a new strong peak is revealed by the

simulation in the region of stability of ice VII.

At low pressure in ice VIII (below 50 GPa in the calculated spectra) the system is

mainly harmonic and the attribution of the IR peaks to lattice modes is relatively

simple. The spectrum at high frequency is characterized by three intramolecular vi-

brations: the symmetric (ν 1), and antisymmetric (ν 3) OH bond stretchings, and the

OH bond bending (ν 2). In addition a librational mode (ν R) and a lattice translational

mode (ν T ) are IR active. The ν T mode is an antisymmetric stretching of the two

hydrogen bonds connecting a water molecule with two neighboring molecules. Its

IR activity is due to the charge transfer associated with the antisymmetric H-bond

stretching. A mode of similar origin has been identified in water at 165 cm−1[111].

In the pressure range 70-80 GPa which corresponds to the region of stability of ice

VII, the protons jump between the two sites of the double well potential. The sys-
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Figure 7.6.4: Left panels: Contour plots of the average proton distribution function as a function

of the proton position relative to the bond midpoint δ = ROaH − RObH and the corresponding

oxygen-oxygen separation dOaOb
for the simulation at the three representative pressures and room

temperature. Center panels: Theoretical IR spectra of H2O computed at room temperature, but for

the spectrum at 160 GPa which is computed at 400 K (see Ref. [43]) The vertical line represents

the lowest frequency reported in the experimental data.

Right panels: experimental [40] IR spectra of H2O at several pressures. The data at 13.7 and

30.4 GPa are recorded at 295 K, all others at 85 K. In the range of strong diamond absorption

(1800 − 2400 cm−1) there are no experimental data. In this range the dashed lines are the result

of a fit [40]. Since quantum tunneling of the protons, neglected in this simulation, is expected to

reduce the transition pressures by 30 GPa, [44] the experimental data should be compared to the

theoretical spectra at higher pressures. (Picture from Ref.[43])
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tem is strongly anharmonic and the attribution of the peaks in terms of the lattice

dynamics is more difficult. The spectrum at 70 GPa in Fig.7.6.4 displays two broad

peaks at 1450 cm−1 and 1750 cm−1 and a new strong peak around 250 cm−1, outside

the frequency window experimentally accessible, but which can possibly be seen as a

very strong rise in intensity at the lowest accessible frequencies in the experiments.

A calculation based on the harmonic approximation for the phonons and on the

use of effective charges to evaluate the IR activity fails completely to reproduce

such a spectrum. Anharmonicities are essential and can be due to anharmonicity

in the lattice dynamics and/or in the effective charges. The effect of the former

was evaluated in Ref.[43]: it gives two bands at ∼ 1400 cm−1 and ∼ 1700 cm−1 in

reasonable agreement with the position of the two higher peaks, which are therefore

proton disordered broadened harmonic modes. The nature of the peak at 250 cm−1

is different. A clue as to the nature of this peak is provided by the isotope effect. In

fact in the calculated IR spectrum of D2O at 80 GPa the 250 cm−1 peak does not

show isotope shift. This implies that the peak is mostly due to lattice modes of the

oxygen atoms. In ice VII at 70-80 GPa the modes which modulate the O-O distance

are strongly coupled to the proton jumps between the two sites of the double well

potential. Selection rules for IR activity break down due to proton disorder and the

anharmonicity of the effective charges enhances the IR intensity of these particular

lattice modes.

Above 98 GPa the spectra reproduce the sharpening of the highest frequency peak

(ν S) and the appearance of a new stronger low frequency peak around 800 cm−1

(ν D). The magnification by a factor of ten of the peak intensity at high pressure

is also well reproduced. The intensity of the peaks are very sensitive to quantum

effects of the protons and the introduction of quantum corrections [110] change peak

intensities by up to a factor of two.

The ν D mode does not evolve into the 250 cm−1 mode characteristic of ice VII. In



7.7. RAMAN SCATTERING 103

fact at 98 GPa both the ν D and the 250 cm−1 modes coexist. In this pressure range

the system is ice X. Ref.[43] therefore confirms that the presence of the two strong

IR peaks is a signature of the symmetric H-bond as suggested by K. Aoki et al.

in Ref. [100] and by A.F. Goncharov et al. in Ref.[40]. The experimental spectra

show an intensity exchange between the two peaks above 117 GPa. This feature has

been attributed to a Fermi resonance due to anharmonic coupling between the two

modes.

In the simulated spectra at 220 K this intensity exchange has not been observed,

probably because of the underestimation of the anharmonicity due to the neglect of

quantum fluctuations. If, as a way of increasing the anharmonic interaction, the IR

spectrum is calculated at 400 K, it reproduces the observed intensity exchange. Due

to the limited frequency resolution the authors of Ref.[43] were not able to identify

the cascade of Fermi resonances discussed in Ref. [41].

In conclusion, IR experiments and ab initio simulations allow to identify the finger-

prints of the VIII → VII and VII → X transformations in ice at high pressure.The

two-peak spectrum at high pressure is characteristic of ice X. Moreover, the simu-

lations predict that a strong IR peak at 250 cm−1 should be the signature of the

transition to ice VII. Since molecular ice VIII is first transformed into disordered ice

VII via proton jumps and tunneling, the symmetrization transition is mainly order-

disorder in character. This feature explains the large damping of the soft mode close

to the transition reported experimentally [40,41].

7.7 Raman scattering

The analysis of the IR spectra, presented in the previous pages, indicates the pres-

ence at very high pressure of a nonmolecular phase, which is supposed to be ice X.

In order to complete this analysis, Raman spectroscopy is a very useful tool and
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in the following we will present the experiments and the first application of the ab

initio method developed in this thesis.

7.7.1 Raman experiments

High pressure Raman spectra experiments are still more difficult than the IR exper-

iments described in the previous pages. Only very recently [104], in the Geophysical

Laboratory and Center for High Pressure Research in Washington DC, A.F. Gon-

charov, V.V. Struzhkin, H. Mao, and R.J. Hemley proposed a new experimental

setup, which allows to obtain, also for Raman scattering, data at very high pres-

sure, of the order of 100 GPa.

In fact, the principal difficulty in the high pressure Raman studies of ice is the pres-

ence of background luminescence and Raman scattering from the diamond anvils,

which is normally much stronger than the weak Raman signal from the sample. Be-

cause of such very low scattering cross sections of the materials at these pressures,

the results of Raman spectra obtained in the past were controversial [109]. This

problem was overcome by use of high-purity synthetic diamond anvils in an optical

configuration that substantially suppresses the luminescence and spurious Raman

signals as well as effects of pressure gradients on the spectra.

However, all these techniques require the use of several different spectrometers in

different regions of frequencies. Furthermore, the subtraction of the diamond anvil

signal induces strong errors and results in the regions of frequency which correspond

to the excitations of the diamond anvils are not accurate.

In Fig.7.7.1 we have reported a scheme of the experimental setup used for Raman

experiments.

In 1999, thanks to the introduction of these new spectroscopic techniques, A.F.

Goncharov et al. [42] performed Raman experiments on ice in the range of pressures
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Figure 7.7.1: Experimental setup for high pressure Raman scattering at the Geophysical Labora-

tory and Center for High Pressure Research in Washington.
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20-128 GPa. The spectra obtained are reported in Fig.7.7.2 and 7.7.3. In order to

interpretet these data, the experimentalists used a multiple coupled oscillator model

to the observed Raman modes. This kind of approach was introduced in 1971 by

R.S. Katiyar [107]; in the following we give a short summary of it.

7.7.2 Coupled modes model

The spectra can be determined from the imaginary part of the complex susceptibility

for the coupled modes in terms of the corresponding Green’s function G and mode

strengths (plasma frequencies) ωp. The inverse of the frequency-dependent Green’s

function of a single oscillator is G−1
ii (ω) = Ω2

i −ω2− iωγi (where Ωi is i’th oscillator

frequency and γi its damping constant); the inverse Green’s function of the system

of coupled oscillators is given by:

G−1(ω) = ||G−1
ii (ω)||+ ||∆2

ij||, (7.7.1)

where ||G−1
ii || is a matrix having single oscillator inverse Green’s function on the

diagonal and non-diagonal terms equal to zero, and ||∆2
ij|| is a non-diagonal matrix

with coupling strengths between the oscillators i and j and diagonal element equal

to zero. The response of the system of such a coupled oscillators in terms of G(ω)

is given by

I(ω) = Im(
∑
ij

ωipGij(ω)ω
j
p). (7.7.2)

The observed spectra were fitted in this scheme by a superposition of the soft mode

and a number of oscillators that are either coupled or uncoupled to it. These bands

include deformational (ν 2), translational and rotational modes, and their combina-

tions. Fits of the frequency shifts of the modes at lower pressure were used to probe

the coupling with the soft mode at higher pressures. The parameters of the model

were determined by fitting the model to the measured spectra. This procedure gave
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Figure 7.7.2: Representative Raman spectra at 22-65 GPa and 20 K. The points are experimental

data. First and second order Raman signals from the diamond anvils are subtracted. The lines

represent the results from the coupled oscillator model. The data in the 1700 − 2200 cm−1 range

were measured with higher resolution and hence have a lower signal/noise ratio. (Picture from

Ref.[42])
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Figure 7.7.3: Raman spectra of ice at 70-128 GPa and room temperature. The line is a

phenomenological fit.(Picture from Ref.[42])
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the pressure dependence of mode parameters. The assignment of the peaks obtained

is reported in Fig.7.7.4 and discussed in more details in Sec.7.7.3.

7.7.3 Experimental data

As already observed in the previous pages, the behavior of ice VIII is mainly har-

monic and the attribution of the peaks is relatively simple and was done [42] through

the multiple coupled oscillator model, described before (see also Fig.7.7.4).

At low pressure the spectrum of ice VIII is dominated, like the IR spectrum, by

the high-frequency O-H stretching vibrations: they form a triplet (a doublet and

a small shoulder), which has been assigned to ν 1(A1g), ν 3(Eg), and ν 1(B1g) modes

in order of increasing frequency. These modes soften with pressure. Despite the

merging with the second order band from the diamond anvils at 22 GPa, the ex-

perimentalists were able to track the behavior of these bands by subtracting the

signal from the diamond taken as a reference at 17GPa. The high-frequency ν 1(A1g)

band has the largest pressure shift. As this mode decreases in frequency, the inten-

sities of the other bands are enhanced sequentially from higher to lower frequency

to produce prominent resonances, which appear and disappear as the pressure in-

creases. The most notable is the resonance at 38 GPa in the region (1650 cm−1)

where the results of the experiments are more uncertain because of the presence of

the signal of the diamond-anvil cell. In the low frequency range and at low temper-

ature the spectrum is dominated by the sharp translational bands assigned to the

ν Tz(A1g) + ν Txy(Eg) and ν Tz(B1g) + ν Txy(Eg) excitations at 400 and 500 cm−1; they

exhibit only minor frequency shifts at 45-60 GPa, soften and broaden just above

60 GPa and then increase in frequency with pressure. Changes are also observed

near 60 GPa in a broad band at 700 cm−1, which appears only at high pressure. At

T ≥ 100 K the broad translational band of ice VII at 500 cm−1, which correlates

with the ν Tz(B1g) + ν Txy(Eg) band of ice VIII, evolves into a doublet. The changes
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Figure 7.7.4: Raman frequencies of H2O to 128 GPa. Changes in intensities and pressure

dependences of the lower frequency modes are observed at 60 GPa and ∼ 80 GPa, as described

in Ref.[42]. The open squares are measured frequencies at 20 K; black circles correspond to room

temperature. The observed frequency shifts are indicated by the solid lines. The low-pressure data

(≤ 30 GPa) agree with the previous measurements (Refs.[33]). The ambient pressure data (dotted

open squares) are from Ref.[105]; the high pressure IR data (dot-dash lines) are from Ref.[40]. The

dotted lines are the bare frequencies obtained from the coupled oscillator model for ice VIII. Details

of the model are presented in Ref.[42]. The assignment of combination of bands is tentative. Inset:

Pressure dependence of the square of the soft mode frequency and intensity of the single peak in the

high-pressure phase (points and solid line). The dashed line is the extrapolation of the soft mode

based on lower pressure measurement. (Picture from Ref.[42]).
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near 60 GPa becomes less pronounced as the temperature increases: the linewidth

of the lowest frequency band of the doublet increases with the temperature, and

both lower band tend to increase in frequency (Fig.7.7.4) and become an unresolved

doublet at room temperature. The intensity of the rotational band gradually de-

creases and disappears in approximately the same pressure range. Further increase

in pressure produces a major alteration in the spectrum. At 80-90 GPa, a new

narrow band (Fig.7.7.3) appears, while all the other excitations appear to weaken.

The frequency of this new excitation increases with pressure, with little qualitative

change in the spectrum between 100 and 128 GPa. This new band is identified as

the T 2g O-O vibration, as expected for the Cu2O structure.

7.7.4 Ab initio simulations

In order to be able to reproduce the experimental spectra of strongly anharmonic

systems, we have used the method illustrated in Chap.6 (see Fig.6.4.1).

We performed MD simulations [92] of 16 water molecules initially arranged in the

ice VIII supercell geometry. As we have already mentioned in Sec.7.2, the small

tetragonal distortion of ice VIII [39] can be neglected1. Furthermore, the relaxation

times for rotational disorder are rather large; in addition, our simulation cell is too

small to allow the creation of low-energy Bejerrum defects. This prevents also in

the case of Raman simulations from observing a rotationally disordered ice VII and

we can go directly only from ice VIII to translationally disordered ice VII at 300 K.

We used BLYP gradient correction [65,66] to the local density approximation which

describe well the hydrogen bond in water[67]. We have used Martins-Trouillers

norm conserving pseudopotentials [74] and an integration time step of 0.12 fs. The

1Our resulting system is cubic and consequently has more symmetries than the real one. How-

ever, in the following for the description of the normal modes, we will continue to use the nomen-

clature relative to the tetragonally distorted system.
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Figure 7.7.5: Raman spectra of high pressure ice by ab initio simulations. At low pressure the

spectrum of ice VIII is dominated, like the IR spectrum, from the high-frequency O-H stretching

vibrations: they form a triplet (a doublet and a small shoulder), which has been assigned to ν1(A1g),

ν3(Eg), and ν1(B1g) modes in order of increasing frequency and soften with pressure. In the low

frequency region, then appears only a broad translational band νTz(B1g)+νTxy (Eg), as also reported

in the experiments [42]. The spectrum in the range of pressure of 70-100 GPa is broad and no

particular mode can be distinguished: the system is completely disordered and its Raman spectrum

gives a confirmation of this effect. With increasing pressure a new band appears, while all the other

excitations appear to weaken. This new band is identified as the T2g O-O vibration, as expected for

the Cu2O structure.
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electronic wavefunctions {ψ(0)} and their linear order response to the perturbation

{ψ(1)} were expanded in plane waves up to a cutoff of 70 Ryd. The Brillouin zone

sampling was restricted to the Γ point. We performed constant volume simulations

at different densities corresponding to pressures from 20 to 125 GPa. The conversion

of the simulation cell volume to the pressure is based on the experimental equation of

state [38]. Microcanonical runs up to 7 ps long were performed at the average ionic

temperature of ∼ 300 K. The correlation function 〈α (0)α (t)〉 is computed classi-

cally and quantum effect corrections are taken in account multiplying Eq.(6.2.3) by

the factor [1− exp(−�ω/ KBT )]/ 2 [110].

7.7.5 Analysis of the Raman spectra

The simulated spectra are in good agreement with the experiments performed by

A.F. Goncharov et al.[42], as can be seen in Fig.7.7.6 and 7.7.7.

As already observed in the previous pages, the behavior of ice VIII is mainly har-

monic and the attribution of the peaks, reported in Fig.7.7.8, is relatively simple

and confirms the assignment made by A.F. Goncharov et al.[42] (see also Fig.7.7.4).

The low pressure region is dominated by the high frequency O-H stretching vibra-

tions: they form a triplet which has been assigned to ν 1(A1g), ν 3(Eg), and ν 1(B1g)

modes in order of increasing frequency. These modes soften with pressure.

The ν 1(A1g) mode has the largest pressure shift and can be considered the order

parameter of the phase transition. The experiments claim that, with the decrement

in frequency of this mode, the intensities of other bands are enhanced sequentially

from higher to lower frequency to produce prominent resonances, which appear and

disappear as the pressure increases. The most notable is the resonance at 38 GPa
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Figure 7.7.6: Comparison with the experiments. Left panel: experimental data [42]. Right panel:

simulated data. At low pressure the spectrum of ice VIII is dominated, from the high-frequency

O-H stretching vibrations: they form a triplet (a doublet and a small shoulder), which has been

assigned to ν1(A1g), ν3(Eg), and ν1(B1g) modes in order of increasing frequency and soften with

pressure. The high-frequency ν1(A1g) band has the largest pressure shift. As this mode decreases

in frequency, the intensities of the other bands are enhanced sequentially from higher to lower

frequency to produce prominent resonances, which appear and disappear as the pressure increases.

The most notable is the resonance at 38 GPa in the region (1650 cm−1) where the results of the

experiments are more uncertain because of the presence of the signal of the diamond-anvil cell. In

our simulation such a pronounced resonance is not visible; however, some of the smaller structures

of that frequency region, present also in the experiments, are evident. In the low frequency range

and at low temperature the spectrum is dominated by the sharp translational bands assigned to the

νTz (A1g) + νTxy (Eg) and νTz (B1g) + νTxy (Eg) excitations of ice VIII at 400 and 500 cm−1; they

exhibit only minor frequency shifts at 45-60 GPa, soften and broaden just above 60 GPa and then

increase in frequency with the pressure. At higher temperature, like in our simulation, appears only

a broad translational band νTz(B1g) + νTxy (Eg), as also reported in the experiments [42].
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Figure 7.7.7: Comparison with the experiments. Left panel: experimental data [42]. Right panel:

simulated data. With increasing pressure a new band appears, while all the other excitations appear

weaken. This new band is identified as the T2g O-O vibration, as expected for the Cu2O structure.
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Figure 7.7.8: Simulated Raman spectrum of ice VIII at 25 GPa and 300 K. At low pressure

the spectrum is dominated, like the IR spectrum, by the high-frequency O-H stretching vibrations:

they form a triplet, which has been assigned to ν1(A1g), ν3(Eg), and ν1(B1g) modes in order of

increasing frequency and soften with pressure. In the low frequency range the spectrum is dominated

by the translational bands assigned to the νTz (A1g)+νTxy (Eg) and νTz (B1g)+νTxy (Eg) excitations,

which are unresolved at room temperature.
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around 1650 cm−1, which belongs to a frequency region, where the results of the

experiments are more uncertain because of the presence of the signal of the diamond-

anvil cell. In our simulation such a pronounced resonance is not visible; however,

some of the smaller structures of that frequency region, present also in the experi-

ments, are evident, as can be observed in Fig.7.7.6.

These three modes are typical intramolecular vibrations. In fact, the ν 1(A1g) mode,

which is double degenerate in the tetragonal distorted system, consists of a linear

combination of symmetric stretching of each water molecule, as shown in Fig.7.7.9.

The following mode ν 3(Eg) is a linear combination of antisymmetric stretching of

each water molecule, as can be seen in Fig.7.7.10. Finally, the highest frequency

mode, ν 1(B1g) is a linear combination of anti-phase symmetric stretching of each

water molecule, as shown in Fig.7.7.11.

In order to follow their evolution with increasing pressure, we constructed the

velocity-velocity spectrum of the mode, following the procedure described in

Sec.6.6.3, and compared it with the Raman spectrum. The result of such an analy-

sis is reported in Figs.7.7.12, 7.7.13 and 7.7.14. As expected, in ice VIII one can

observe a clear line, which allows the assignment of the peak to the corresponding

mode, while in ice VIII the velocity-velocity spectrum reveals the absence of these

normal modes. It is also clear that ice VII is characterized by a very strong disorder.

Another measure of the same phenomena, is the observation of the velocity-velocity

autocorrelation function in time space, as is reported in Fig.7.7.15 in the case of the

soft mode ν 1(A1g). In the case of ice VIII, which is mostly harmonic, the autocor-

relation function has a oscillatory behavior,in agreement with the strong presence

of the mode in the spectrum. In contrast, in the ice VII phase the mode is highly

dampened, due to proton transfer processes along the H-bond. Its Raman cross sec-

tion is very much reduced and consequently the autocorrelation function is strongly

dampened. In ice X, as can be observed in Fig.7.3.1, this mode, together with
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Figure 7.7.9: Snapshot of the normal mode ν1(A1g) in ice VIII. This mode is double degenerate

in the tetragonal distorted system and consists of a linear combination of in-phase symmetric

stretchings of the water molecules.
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Figure 7.7.10: Snapshot of the normal mode ν3(Eg) in ice VIII. This mode consists of a linear

combination of the antisymmetric stretching of each water molecule.

the other intramolecular modes ν 3(Eg) and ν 1(B1g), is not observable because it

transforms in a mode active only at X point.

In the low frequency range, the spectrum is dominated by the translational bands

assigned to the ν Tz(A1g) + ν Txy(Eg) and ν Tz(B1g) + ν Txy(Eg) excitations, which at

the temperature of the simulation are unresolved.

Further increase in pressure produces a major alteration in the spectrum. At 70-100
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Figure 7.7.11: Snapshot of the normal mode ν1(B1g) in ice VIII. This mode is double degener-

ated in the tetragonal distorted system and consists of a linear combination of anti-phase symmetric

stretchings of the water molecules.
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Figure 7.7.12: Evolution with increasing pressure of the ν1(A1g) band. Solid line: velocity-

velocity spectra; dashed line: Raman spectra.
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Figure 7.7.13: Evolution with increasing pressure of the ν3(Eg) band. Solid line: velocity-

velocity spectra; dashed line: Raman spectra.
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Figure 7.7.14: Evolution with increasing pressure of the ν1(B1g) band. Solid line: velocity-

velocity spectra; dashed line: Raman spectra.
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Figure 7.7.15: Evolution with increasing pressure of the velocity-velocity autocorrelation function

in time space for the ν1(A1g) mode.
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Figure 7.7.16: Left panel: one of the three modes νT(T2g) in ice X. Right panel: one of the

modes of the band νTz (B1g) + νTxy (Eg) in ice VIII.

GPa the spectra seem indicate a strongly disordered structure. At pressure higher

than 100 GPa, finally, a new narrow band (Fig.7.7.5) appears, while all the other

excitations appear to weaken. The frequency of this new excitation increases with

pressure.

We identified this band as the T 2g O-O vibration, as expected for the Cu2O structure.

This normal mode, which is triply degenerate, is an anti-phase vibration of the two

oxygen body-centered cubic sublattices, as shown in the right panel of Fig.7.7.16. As

we have already discussed in Sec.7.3, the translational band ν Tz(B1g)+ν Txy(Eg) of ice

VIII, shown in the left panel of Fig.7.7.16, evolves with increasing symmetry into the

translational band T 2g. All the molecular modes present at lower pressure disappear,

as expected from group theory and discussed by Hirsch et al.[33] (see Fig.7.3.1). In

order to validate this idea, we performed also in this case the vibrational analysis

for two modes.
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The result is shown in Fig.7.7.17: at low pressure in ice VIII a translational mode

ν Tz(B1g) + ν Txy(Eg) of the O-O lattice is clearly present. This mode evolves at high

pressure in the T 2g band that identifies the cuprite structure, confirming the pre-

diction of Ref.[33]. However, it is important to observe that in ice X the effects of

anharmonicities are very important. In fact, in contrast with the case of ice VIII,

in ice X the vibrational peak is shifted with respect to the Raman spectrum. This

is reflected also in the real space representation, where the velocity-velocity auto-

correlation function for this translational modes is slightly damped due to proton

disorder, as can be observed in Fig.7.7.18. As a consequence, only a small and

shifted signal is observed.

7.7.6 Isotropic and anisotropic part of the Raman spectra

In order to add further information to the experiments, we look in detail to the two

contributions to the Raman spectrum, the isotropic and the anisotropic part. As

we have seen in Sec.6.2, the two different contributions are responsible for the two

different geometric contributions to the total intensity and they are related also to

the nature of the modes responsible of the peaks:

IV V (ωf) = IISO (ωf) +
4

3
IV H (ωf)

where

IISO (ωf) =
N

2π

∫
dt e−iωf t〈α (0)α (t)〉

and

IV H (ωf ) =
N

2π

∫
dt e−iωf t

1

10
〈Tr(β (0) · β (t))〉

The IV H Raman spectrum depends on both molecular vibration and rotation, while

IISO depends only on the vibrational motion.

In Fig.7.7.19 we report the isotropic and the anisotropic spectra for ice VIII and ice
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Figure 7.7.17: Comparison between the Raman spectrum and the velocity-velocity spectrum of

the mode νT . Solid line: velocity-velocity spectrum; dashed line: Raman spectrum. At low pressure

in ice VIII a translational mode of the O-O lattice is clearly present. This mode evolves at high

pressure in the T2g band that identifies the cuprite structure. This is predicted by the group theory

through the correlation table of the group Oh.
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Figure 7.7.18: Evolution with increasing pressure of the velocity-velocity autocorrelation function

in time space for the translational bands in ice VIII and ice X.
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X. In ice VIII the stretching and bending molecular modes of water are given for

the most part by the isotropic part of the intensity IISO, as expected for molecular

vibrations. The peaks at low frequencies, which are mostly translational bands,

are instead related to the anisotropic part IV H and their nature does not change

through the transition, that implies only the transformation from the less symmetric

translational modes of ice VIII to the high symmetric T2g mode predicted for the

classical cuprite-type structure of H2O.

In this way the high pressure Raman spectrum is mostly only composed of the

anisotropic part. Progress in experimental techniques at high pressure might allow

to resolve IV V and IV H , thus allowing a precise determination of the nonmolecular

phase.

7.8 Conclusion

In conclusion, our ab initio simulation of the Raman spectra gives a further foun-

dation to the idea of a nonmolecular structure in the high pressure phase diagram

of ice. Furthermore it validates the experimental data, which otherwise can be con-

troversial because of the technical difficulties involved in these measurements. Most

probably this high pressure nonmolecular phase of ice is the cuprite structure, called

ice X. The certitude about this phase will be obtained only if it will be possible to

perform neutron scattering measurements, which are able to indentify the proton

positions, which is at present rather challenging at these high pressure. However, all

IR and Raman experiments and simulations seem to indicate that this is the case.
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Figure 7.7.19: Isotropic and anisotropic contribution to the Raman spectra in ice VIII (bottom)

and in ice X (top). The anisotropic Raman spectrum depends on both molecular vibration and

rotation, while isotropic Raman spectrum depends only on the vibrational motion.

In ice VIII the stretching and bending molecular modes of water are given for the most part by

the isotropic part of the intensity IISO . The peaks at low frequencies are instead related to the

anisotropic part IVH and their nature does not change through the transition, that implied only the

transformation from the less symmetric T modes to the high symmetric T2g mode predicted for the

classical cuprite-type structure of H2O.



Chapter 8

Conclusion

In this thesis we have presented a new method, which allows to calculate ab initio

Raman spectra of anharmonic and disordered systems. In order to lift the restriction

of ab initio Raman spectra calculations to harmonic systems, we have combined

molecular dynamics with the generalization of variational perturbation theory to

non-hamiltonian perturbations [106]. This generalization is not only finalized to the

construction of a method to simulate Raman spectra for anharmonic and disordered

systems, but is also a derivation of variational density functional perturbation theory

more transparent than the previous approach of Gonze [6] in the restricted case of

Hamiltonian perturbations. Such a new approach to the variational perturbation

theory was tested on different kinds of perturbations (vibrational modes, NMR

chemical shifts, etc) and then applied to the specific case of Raman, i.e. the coupling

of an electric field with the polarization in a periodic system, described in our

approach with a Berry phase using the modern theory of polarization. Finally,

we tested our method to calculate Raman spectra of anharmonic and disordered

systems on an interesting and discussed phase transition of Ice from phase VIII to

phase X. This transition is of relevance in condensed matter, biology and planetary

physics. The simulated spectra are in good agreement with the experiments. The
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insight gained strengthens the interpretation of the experiments. In combination

with the CPMD code, generalized variational perturbation theory will provide a

useful and versatile tool to investigate the properties described above as well as

other important quantities like chemical hardness, elastic constants, NMR chemical

shifts, etc, in disordered and anharmonic systems.



Appendix A

Polarizability: non cubic cells case

As we have seen in Sec.6.4, the polarizability tensor αµν can be expressed in terms

of Berry phase:

αµ,ν =
2 |e|
|Gν |

Im

[∑
i,j

(〈
ψν

(1)
i

∣∣eiGµ·r∣∣ψ(0)j

〉
+
〈
ψ
(0)
i

∣∣eiGµ·r∣∣ψν(1)j

〉 )
Q

(ν)−1
j,i

]
,

where the matrix Q(µ) is defined as Q
(µ)
i,j =

〈
ψi
∣∣eiGµ·r∣∣ψj〉 , and Gµ is the smallest

vector in a periodically repeated cubic cell in the direction µ.

Now, in the case of non-cubic simulation cell, in principle should be possible to

calculate the polarizability tensor in a very easy way, through simple geometry ob-

servations. We can, in fact, think to calculate the tensor in the system of coordinates

defined by the smallest vector of the reciprocal cell. If we call this new matrix α̃,

then the canonical matrix α can be easily calculated by means of a change of system

of coordinates. If U is the unitary matrix of the change of coordinates from the

distorted system to the canonical one, then:

α = U −1α̃U (A.0.1)

However, this expression result to be numerically inaccurate. In order to understand

the reason of this instability, we focus now the attention on the case of a single
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electron. Then, we note that in this case our expression for the 〈r〉 coincide with

the first term of its expansion in cumulants. In fact:

−iG · 〈r〉 = log exp(−iG · 〈r〉)

= log〈exp(−iG · r)〉 − exp


 ∞∑

i=2

∑
{m}

ui(r)
ξm1
1 ξm2

2 ξm3
3

m1!m2!m3!




≈ log〈exp(−iG · r)〉, (A.0.2)

where {m} indicates
∑3

k=1mk = i, ξi = −iGi and u(r) are the coefficients of the

cumulants expansion. Simple algebra shows now that if we are using a cubic cell the

term in the sum corrisponding to i = 2 is null, for other cell it is not. This means

that for a cubic cell our approximated formula is more accurate.

For this reason, any time we want to use a non-cubic cell, is better use directly

Eq.(6.4.14), where we take G to be a linear combination of reciprocal space vector

which gives exactly the {x, y, z} directions. This procedure is, for the reason exposed

above, more accurated than the rotation of the tensor through a change of system

of coordinates.
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