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Zusammenfassung

Während der letzten Jahrzehnte sind Ab-initio-Elektronenstruktur-Rechnungen zu

einem wichtigen Werkzeug zur Untersuchung der strukturellen, dynamischen und

elektronischen Eigenschaften von komplexen Systemen auf atomarem Niveau gewor-

den. Vor allem der Einsatz moderner Computertechnologie ermöglicht heutzutage

die quantenmechanische Behandlung von Systemen, die mehrere hundert Atome

umfassen. Chemische Vorgänge können nun am Computer simuliert werden, ohne

ein Reagenzglas zu benötigen. Gewürdigt wurde diese Entwicklung nicht zuletzt

durch die Verleihung des Nobelpreises 1998 an John A. Pople und Walter Kohn für

ihre theoretischen Arbeiten im Bereich der Quantenchemie bzw. der Dichtefunk-

tionaltheorie.

Aufbauend auf der Arbeit von Kohn und Pople wurde eine kaum zu überschauende

Vielzahl von Algorithmen entwickelt, um die elektronische Struktur von wechselwir-

kenden Systemen wenigstens näherungsweise zu beschreiben. Eine grobe Einteilung

dieser Methoden wird im einleitenden Abschnitt gegeben.

Auf der einen Seite stehen die quantenchemischen Methoden, welche meist auf der

Hartree-Fock Näherung basieren [1]. Wichtige Beispiele sind die CI-Methode (,,Con-

figuration Interaction”) und störungstheoretische Ansätze. Nachteil der quanten-

chemischen Methoden ist, daß sie sehr empfindlich mit der Größe des untersuchten

Systems skalieren. Günstiger verhalten sich, in Bezug auf den Rechenaufwand, die

auf der Dichtefunktionaltheorie aufbauenden Methoden. Ihre theoretische Fundie-

rung erhielt die Dichtefunktionaltheorie durch die Sätze von Hohenberg und Kohn

[2], die bewiesen, daß die gesamte Information über ein System von Elektronen in

einem äußeren Potential aus der Kenntnis der Elektronendichte abgeleitet werden

kann.

Eine große Anzahl von Anwendungen der Dichtefunktionaltheorie, insbesondere im

Bereich der Car-Parrinello-Molekulardynamik [3], beruht auf dem Ebene-Wellen-

Ansatz für die Kohn-Sham-Orbitale und die Elektronendichte. Problematisch ist die
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enorme Zahl von ebenen Wellen, die für eine akkurate Beschreibung benötigt werden.

Ein weiterer Nachteil liegt in der nicht-lokalen Natur der ebenen Wellen. Dies führt

dazu, daß leere Raumbereiche mit der gleichen Genauigkeit beschrieben werden wie

mit Atomen besetzte Gebiete. Auf der anderen Seite vereinen ebene Wellen eine

ganze Reihe von Vorteilen. So haben sie eine einfache funktionale Form und bilden

eine orthonormale Basis, deren Vollständigkeit von nur einem Parameter abhängt.

Ebene Wellen sind unabhängig von den Atompositionen, was die Berechnung der

Hellmann-Feynman-Kräfte besonders einfach macht. Das Hartree-Potential ist im

reziproken Raum lokal und daher mit ebenen Wellen leicht zu behandeln. Nicht

zuletzt können viele algebraische Manipulationen durch den Gebrauch der Technik

der schnellen Fourier-Transformation erheblich vereinfacht werden.

Gewissermaßen komplementär dazu ist die Situation bei den quantenchemischen

Methoden, die die Kohn-Sham-Orbitale mit Basisfunktionen, die an den Atomen

lokalisiert und meist in Gauß-Funktionen entwickelt sind, beschreiben. Dieser Ansatz

kann die Lokalität der Gauß-Funktionen für die meisten Wechselwirkungen optimal

ausnutzen, hat aber seine Schwäche in der Berechnung der Coulomb-Energie, die in

den lokalen Basisfunktionen ausgedrückt eine nicht-lokale Kopplung darstellt.

Die Komplementarität der Vor- und Nachteile von Gauß-Funktionen und ebenen

Wellen war die Motivation dafür, einen Dichtefunktional-Ansatz zu entwickeln, der

sowohl Gauß-Funktionen als auch ebene Wellen verwendet, und dadurch möglichst

die Vorteile des jeweiligen Funktionstyps nutzt, ohne daß seine Nachteile zum Tra-

gen kommen. Als Resultat wurde von Lippert et al. die GAPW Methode (,,Gaus-

sian Augmented Plane Wave”) entwickelt [4-6]. Der Ansatz, der ihr zugrundeliegt,

beinhaltet die Verwendung von Gauß-Funktionen als Basisfunktionen für die Kohn-

Sham-Orbitale und von ebenen Wellen und Gauß-Funktionen als Auxiliarbasis für

die Darstellung der Elektronendichte. Auf der einen Seite kann mit diesem Ansatz

das gesamte Instrumentarium der Quantenchemie zur rekursiven analytischen In-

tegration von Matrixelementen zwischen Gauß-Funktionen genutzt, und auf der

anderen Seite die Erfahrung beim Umgang mit ebenen Wellen und der Fourier-

Transformation für die Berechnung des Hartree- und Austausch-Korrelations-Poten-
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tials in der Ebene-Wellen-Darstellung eingesetzt werden. Der GAPW Ansatz führt

dazu, daß alle Matrixelemente der Kohn-Sham-Matrix mit einem Rechenaufwand,

der wie O(N log(N)) mit der Systemgröße skaliert, berechnet werden können. Le-

diglich die Neuberechnung der Wellenfunktion aus der Kohn-Sham-Matrix im SCF-

Zyklus (,,Self Consistent Field”), die durch Diagonalisierung der Kohn-Sham-Matrix

realisiert ist, skaliert wie O(N3).

Die GAPW Methode wurde konzipiert, um die effiziente Simulation sehr großer

Systeme zu ermöglichen. Obwohl der Ansatz in einer ersten Anwendung bereits

seine Leistungsfähigkeit bewiesen hat [4], befindet sich das Projekt noch in der

Entwicklungsphase. Erhebliche algorithmische Anstrengungen sind erforderlich, um

mit über Jahre hinweg optimierten Programmpaketen, wie z.B. CPMD [7] oder

Gaussian 94 [8], zu konkurrieren. Hauptziel dieser Arbeit ist es, solche Algorithmen

zu entwickeln. Als Resultat entstanden vier, lose miteinander verbundene und in

unterschiedlichen Bereichen der Dichtefunktionaltheorie angesiedelte, methodische

Arbeiten, die jedoch alle dem gleichen Ziel dienen: Die Größenordnung der Systeme,

die der GAPWMethode zugänglich sind, weiter zu steigern und dennoch die gleichen

Maßstäbe an Zuverlässigkeit und Genauigkeit zu erfüllen wie etablierte Ab-initio-

Elektronenstruktur-Programme.

Nach diesen einleitenden Erläuterungen werden im folgenden alle wichtigen Ergeb-

nisse dieser Arbeit zusammengefaßt.

Im zweiten Kapitel führen wir eine Methode ein, welche die analytische Berech-

nung der Austausch-Korrelations-Wechselwirkung im Rahmen der Dichtefunktio-

naltheorie ermöglicht. Während viele Anteile des GAPW Energiefunktionals mit

Hilfe von rekursiver analytischer Integration berechnet werden können, wurde der

Austausch-Korrelations-Anteil bisher ausschließlich unter Verwendung numerischer

Verfahren integriert. Grund für diese Vorgehensweise ist die komplizierte algebra-

ische Form vor allem der gradientenkorrigierten Austausch-Korrelations-Funktionale.

Eine Alternative zu der numerischen Integration, basierend auf Ideen, die von Zheng

und Almlöf entwickelt wurden [9,10], gründet sich auf einer analytischen Berech-
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nung der Integrale durch die Anwendung matrixalgebraischer Verfahren. Die Vorge-

hensweise ist wie folgt. Zuerst wird eine Matrixdarstellung der Elektronendichte

in einer Hilfsbasis berechnet. Anschließend werden die Integrale mit Hilfe von

Basissatz-Vollständigkeitsrelationen und der spektralen Auflösung der Einheit als

Matrixgleichungen geschrieben. Hierdurch treten Matrixfunktionen an die Stelle

der Austausch-Korrelations-Funktionale.

Neuartig an unserem Ansatz ist die Verwendung von komplexen Kurvenintegralen

zur Definition der auftretenden Matrixfunktionen. Dadurch gelingt es, neben den

bereits von Zheng und Almlöf gefundenen Energieausdrücken, entsprechende ana-

lytische Formeln auch für das Austausch-Korrelations-Potential abzuleiten. Als

Resultat erhält man ein System von in sich konsistenten Gleichungen, welche im

Grenzfall einer vollständigen Basis exakt sind. Sowohl die Lokale-Dichte-Näherung

als auch gradientenkorrigierte Funktionale können verwendet werden.

Nicht nur methodische Gründe sprechen für solch einen Ansatz. Darüberhinaus

wird durch die analytische Berechnung der Austausch-Korrelations-Wechselwirkung

jegliches numerische Rauschen, welches bei den numerischen Methoden von den

verwendeten Integrationsgittern herrührt, vermieden. Das ist deshalb von Bedeu-

tung, da das numerische Rauschen die Konvergenz von Geometrie-Optimierungen

erschwert.

In der durchgeführten Implementierung erweist sich die Frage nach der Vollstän-

digkeit der verwendeten Hilfsbasis als kritischer Punkt. Während es im Fall der

Lokalen-Dichte-Näherung möglich ist, die zur Darstellung der Kohn-Sham-Orbitale

verwendeten Gauß-Basissätze auch als Hilfsbasis zu verwenden, muß im Fall der gra-

dientenkorrigierten Funktionale die Auxiliarbasis deutlich vergrößert werden, um die

Ergebnisse der numerischen Integration befriedigend zu reproduzieren. Obwohl die

erzielte Genauigkeit praktischen Zwecken genügt, wird dadurch doch der praktische

Nutzen der Methode gemindert.

Im dritten Kapitel erweitern wir die GAPW Methode auf nicht-periodische Systeme.

Gegenüber quantenchemischen Methoden mit ausschließlich lokalen Basisfunktionen
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zeichnet sich die GAPW Methode durch die effiziente Berechnung der Coulomb-

Wechselwirkung in der Ebene-Wellen-Darstellung im Impulsraum aus. Allerdings

gelten im Rahmen dieser Vorgehensweise immer periodische Randbedingungen, so

daß die Isolierung der periodischen Replica zur Simulation nicht-periodischer Sys-

teme bisweilen sehr große Simulationszellen erfordert. Bei geladenen isolierten Syste-

men ist dieses Verfahren überhaupt nicht anwendbar. Die Berechnung der Coulomb-

Wechselwirkung im Impulsraum generiert automatisch eine neutralisierende homo-

gene Hintergrundladung.

Eine Lösungsmöglichkeit, entwickelt von P. E. Blöchl in Referenz [11], gründet

sich auf der Tatsache, daß die Coulomb-Wechselwirkung zwischen räumlich ent-

fernten Ladungsdichten vollständig durch die elektrostatischen Multipolmomente

beschrieben werden kann. Durch Konstruktion von Punktladungen, welche die

Multipolmomente der Elektronendichte reproduzieren, gelingt es so, den ausschließ-

lich aus den periodischen Randbedingungen resultierenden Teil der Coulomb-Wech-

selwirkung zu substrahieren und dadurch die effiziente Berechnung der elektrosta-

tischen Wechselwirkung im Impulsraum beizubehalten.

Wichtiger Bestandteil der Methode ist die Konstruktion der Punktladungen. Die

Multipolmomente sind durch den Funktionswert und alle Ableitungen der Elek-

tronendichte am Ursprungs des reziproken Raumes vollständig bestimmt. Wegen

der Diskretisierung des reziproken Raumes sind Informationen über die Ableitun-

gen allerdings nur eingeschränkt zugänglich. Deshalb werden die Punktladungen

näherungsweise entsprechend einer Anpassung von Gauß-Funktionen an die Elek-

tronendichte nahe des Ursprungs des reziproken Raumes konstruiert.

Um obigen Ansatz für die GAPW Methode verwenden zu können, bedarf es einiger

Modifikationen. Diese sind hauptsächlich technischer Natur und werden in Ab-

schnitt 3.2.4 beschrieben.

Nachdem die GAPW Methode auf nicht-periodische Systeme erweitert wurde, sind

nun auch geladene isolierte Systeme zugänglich. Um dies zu demonstrieren, wer-

den Testrechnungen an einem H3O
+ Kation und einem NH−

2 Anion vorgestellt. In
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beiden Fällen ergibt sich quantitative Übereinstimmung mit den Rechnungen des

quantenchemischen Programms Gaussian 94 [8]. Allerdings werden dazu relativ

große Simulationszellen benötigt, was die Effizienz der Simulationen beeinträchtigt.

Eine Erklärung hierfür liefert der Vergleich zwischen den analytisch berechneten

Multipolmomenten und den Multipolmomenten der konstruierten Punktladungen.

Da höhere Multipolmomente von dem Punktladungsmodell nur unzureichend re-

produziert werden, muß die Simulationszelle groß genug sein, um die entsprechende

Wechselwirkungen vernachlässigen zu können.

Als Anwendung wenden wir uns der Untersuchung von Substituenteneffekten in

Ameisensäurederivaten zu. Hier lassen sich die berechneten Energiedifferenzen zwi-

schen der jeweiligen Säure und ihrer konjugierten Base vollständig mit den experi-

mentell bestimmten Säurestärken korrelieren.

Die Untersuchung komplexer Systeme mit Hilfe von Computersimulationen erfordert

nicht nur die Entwicklung geeigneter Simulationsalgorithmen. Zusätzlich bedarf es

auch Methoden zur Analyse der erhaltenen Resultate. In diesem Zusammenhang

haben Wannier-Funktionen [12] in jüngster Zeit erhebliche Bedeutung erlangt. Sie

ermöglichen es, die Sprache der Quantenmechanik in chemisch intuitive Bilder zu

übersetzen. Als Beispiele seien die Identifizierung freier Elektronenpaare oder die

Zuordnung von Valenzen genannt. Zusätzlich finden sie Anwendung in der Theorie

der elektronischen Polarisation und bei der Entwicklung von Algorithmen, welche

linear mit der Systemgröße skalieren.

Trotz des breiten Anwendungsspektrums fehlt es an effizienten und allgemein an-

wendbaren Algorithmen, um Wannier-Funktionen zu berechnen. Inhalt des vierten

Kapitels ist es, solche Algorithmen zu entwickeln.

Wannier-Funktionen können durch eine unitäre Transformation aus den Bloch-Orbi-

talen gewonnen werden. Die eigentliche Schwierigkeit besteht darin, die Transforma-

tion eindeutig zu definieren und anschließend effizient zu berechnen. Eine mögliche

Definition gründet sich auf Konzepte, die von Mazari und Vanderbilt in Referenz

[13] entwickelt wurden. Hier findet man die gesuchte Transformation mit Hilfe eines
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Lokalisierungsfunktionals, welches durch die aus der Transformation berechneten

Wannier-Funktionen maximiert wird.

Im Rahmen dieser Arbeit gelingt es, das von Mazari und Vanderbilt vorgeschla-

gene Lokalisierungsfunktional auf Simulationszellen beliebiger Symmetrie zu ver-

allgemeinern und einen Algorithmus abzuleiten, mit dessen Hilfe sich die gesuchte

Transformation, und daraus resultierend die Wannier-Funktionen, iterativ berech-

nen lassen. Vorteil unseres Algorithmus ist, daß er sich mit effizienten numerischen

Optimierungsmethoden, wie z.B. dem Verfahren der konjugierten Gradienten, kom-

binieren läßt, und sich dank seiner Allgemeinheit auch zur Berechnung lokalisierter

Molekülorbitale in der Quantenchemie eignet. Andererseits läßt sich die Stan-

dardmethode der Quantenchemie zur Berechnung lokalisierter Molekülorbitale, die

Methode der Orbitalrotationen, dahingehend verallgemeinern, daß sich damit auch

Wannier-Funktionen berechnen lassen.

Testrechnungen zeigen, daß Wannier-Funktionen nun in Simulationszellen beliebiger

Symmetrie zugänglich sind. Darüberhinaus wird ihre Berechnung durch die Anwen-

dung numerischer Optimierungsmethoden erheblich beschleunigt. Auch die Metho-

de der Orbitalrotationen erweist sich als überraschend effizient.

Als Anwendung werden die Wannier-Funktionen einer (10, 0) Zig-Zag Nanotube

berechnet. Hieraus erhält man ein intuitives Bild, wie die elektronischen Eigen-

schaften der Nanotube durch die Krümmung der Oberfläche, im Vergleich zu einer

Graphitschicht oder zu einem C60 Fulleren, drastisch beeinflußt werden.

Im letzten Kapitel wenden wir uns der Neuberechnung der Wellenfunktion im SCF-

Zyklus zu, die durch Diagonalisierung der Kohn-Sham-Matrix realisiert ist. Wie

oben bereits diskutiert, skaliert die Diagonalisierung wie O(N3), während die Ma-

trixelemente der Kohn-Sham-Matrix mit einem Rechenaufwand, der wieO(N log(N))

mit der Systemgröße skaliert, berechnet werden können. Obwohl das kubische Ver-

halten erst bei großen Systemen dominiert, ist es für die GAPW Methode von

entscheidender Bedeutung, hier alternative Verfahren anzuwenden. Der Grund ist,

daß die GAPW Methode gerade zur Simulation sehr großer Systeme ausgerichtet
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ist.

Zahlreiche Methoden, die sogenannten O(N) Methoden, wurden in diesem Zusam-

menhang in den letzten Jahren entwickelt [14]. Obwohl diese Verfahren bereits

in vielen Programmpaketen verwendet werden und ihre prinzipielle Anwendbarkeit

unumstritten ist, sind doch erhebliche Probleme bekannt und ungelöst. Besondere

Schwierigkeiten treten bei der Verwendung großer nicht-orthogonaler Basissätze auf.

Der Grund liegt darin, daß hier lineare Abhängigkeiten in der Überlapp-Matrix

auftreten und diese zu numerischen Instabilitäten und Konvergenzproblemen in den

O(N) Algorithmen führen. Da im Rahmen der GAPW Methode nicht-orthogonale

Gauß-Funktionen verwendet werden und große Basissätze unvermeidlich sind, um

Rechnungen hoher Qualität zu gewährleisten, ist die direkte Anwendung der O(N)

Methoden in unserem Fall problematisch.

Um O(N) Methoden dennoch mit unserer GAPW Implementierung kombinieren

zu können, verwenden wir ein Verfahren, welches auf Ideen von Lee und Head-

Gordon basiert [15]. Hier wird aus einem großen Satz von Basisfunktionen, genannt

die Sekundärbasis oder erweiterte Basis, eine Minimalbasis konstruiert, welche für

das zu untersuchende System optimal ist. Die Vorgehensweise ist wie folgt. Die

Minimalbasis ergibt sich aus einer linearen Transformation, angewendet auf die

Sekundärbasis. Die optimale Minimalbasis ist nun dadurch ausgezeichnet, daß

sie ein geeignetes Energiefunktional minimiert. Nach geschickter Parametrisierung

der Transformation ist es möglich, das vorliegende Optimierungsproblem iterativ

zu lösen. Lee und Head-Gordon verwenden hier Jacobi-Rotationen in Verbindung

mit einem quadratisch konvergenten Newton-Raphson Verfahren. Problematisch an

dieser Vorgehensweise ist, daß sie die Berechnung zweiter Ableitungen nach den zu

optimierenden Parametern erforderlich macht. Für große Systeme, an denen wir

vor allem interessiert sind, ist die Anzahl der zweiten Ableitungen entsprechend

groß und ihre Handhabung sehr aufwendig.

Hier unterscheidet sich unsere Vorgehensweise von der Methode von Lee und Head-

Gordon. Durch eine alternative Parametrisierung der linearen Transformation gelingt
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es, die iterative Berechnung der Minimalbasis mit dem Verfahren der konjugierten

Gradienten zu kombinieren und dadurch einen effizienten Algorithmus zu erhalten,

welcher ausschließlich die Berechnung der ersten Ableitungen erfordert.

Der Grund, weshalb die so konstruierte Minimalbasis im Zusammenhang mit O(N)

Methoden interessant ist, liegt darin, daß sich einerseits qualitativ hochwertige Rech-

nungen durch eine große Sekundärbasis verwirklichen lassen und andererseits nu-

merische Instabilitäten dadurch vermieden werden, daß man die O(N) Methoden

ausschließlich auf die Minimalbasis anwendet.

Durch Implementierung dreier unterschiedlicher O(N) Methoden, der Tschebyscheff-

Polynom-Entwicklung [16], der Dichtematrix-Minimierung [17] und der kanonischen

Dichtematrix-Purifikation [18], gelingt es, einen Gesamtalgorithmus zu entwickeln,

welcher vollständig linear mit der Systemgröße skaliert und darüberhinaus Rechnun-

gen mit beliebig großen nicht-orthogonalen Basissätzen erlaubt.

Um den Algorithmus zu testen wurden umfangreiche Rechnungen durchgeführt. Ins-

besondere beinhalten diese die Untersuchung der strukturellen Eigenschaften von

Chlorophyll A und eine Molekulardynamik-Simulation von Wasser. Die lineare

Skalierung der verschiedenen O(N) Methoden mit der Systemgröße wird schließlich

am Beispiel langkettiger, unverzweigter Alkane demonstriert. Hier erweist sich die

kanonische Dichtematrix-Purifikation als am effizientesten.
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1 Introduction

1.1 Simulation Methods

Present-day computer technology has changed quite profoundly the way in which

modern scientific research is conducted. This is due mainly to considerably progress

in the scale and scope of computer simulations playing an increasingly important

role in the study of complex systems.

In this respect a major role has been played by classical molecular dynamics (MD),

which provides a set of numerical tools to solve Newton’s equation of motion. Within

a conventional MD framework [1], a functional form for interatomic forces is assumed

on the basis of physical considerations, and potential parameters are fitted to re-

produce given experimental or theoretical results. This approach has proven its

usefulness for many cases but is not without drawbacks. One of the decisive ingre-

dients for the simulation of a real system is the quality of the potentials used. The

closer it is to reality, the more useful the simulation will be. Obviously, the predic-

tive power of fitted potentials is limited to regions in configuration space included

in the used data base. For instance, potentials fitted to describe liquid water can be

inadequate to describe the properties of ice. It is therefore highly desirable to have

alternative methods where potentials are generated in a consistent and accurate way.

In that context ab-initio electronic structure calculations provide a powerful solution,

interatomic potentials are parameter-free and derived from first principles. Starting

point of most ab-initio methods is the time-independent Schrödinger equation in the

nonrelativistic Born-Oppenheimer approximation,

HΨ = EΨ , (1.1)

where E is the electronic energy, Ψ is the wave function, and H is the electronic

Hamilton operator,

H = −
N∑
i=1

∆i

2
−

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
. (1.2)
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Here, riA = |ri − RA| and rij = |ri − rj| are the respective electron-nucleus and

electron-electron distances, N and M are the number of electrons and nuclei, ∆ is

the Laplace operator, and ZA denotes the charge of nucleus A. Atomic units are

employed here and in the sequel.

An approximate way to solve Eq. (1.2) is provided by the Hartree-Fock (HF) method.

Here, the wave function Ψ is written as a Slater determinant,

ΨHF =
1√
N !

det[ψ1 ψ2 . . . ψN ] , (1.3)

built from N occupied one-electron orbitals ψi. The variational principal states

that the best wave function of this functional form, is one which gives the lowest

possible energy, EHF = 〈ΨHF | H |ΨHF〉. By minimizing EHF with respect to the ψi,

one can derive an equation, called the HF equation, which determines the optimal

one-electron orbitals.

The difference between the exact eigenvalue of the Schrödinger equation and the

HF energy is termed the correlation energy. Thus, electron-correlation effects are

determined in post-HF methods [2]. Of all methods to obtain the correlation energy,

the method of configuration interaction (CI) is conceptually the simplest. The basic

idea is to represent the wave function as a linear combination of slater determinants,

typically built from occupied and virtual one-electron orbitals of a HF calculation.

A different systematic procedure for going beyond the HF approximation is pertur-

bation theory (Møller-Plesset Perturbation Theory). Here, the HF Hamiltonian is

treated as the zeroth-order Hamiltonian and the correlation energy is computed from

a perturbation expansion. Further widespread procedures are the coupled-cluster

approximation and Green’s function techniques. However, the major drawback of all

these methods is the unfavorable computational scaling with respect to the system

size.

Due to the limitations in the transferability of empirical MD potentials and the use

of time consuming post-HF methods, tight-binding (TB) [3,4] and semiempirical

(SE) [5,6] techniques have been developed to simulate extended systems with mod-

erate computational costs. SE approaches are normally formulated within the same
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conceptual framework as ab-initio methods, but they neglect many smaller integrals

to speed up the calculation. In order to compensate for the errors caused by these

approximations, empirical parameters are introduced into the remaining integrals

and calibrated against reliable experimental or theoretical reference data. The TB

methods works by writing the eigenstates of the Hamiltonian in an atomic-like basis

set, and replacing the exact many-body Hamiltonian operator with a parameterized

Hamilton matrix. Both methods can only be successful if the used model retains

the essential physics to describe the properties of interest. Provided this is the case,

the parameterization can account for the quantum mechanical effects in an average

way.

The position of density functional theory (DFT) [7] is somewhere between post-

HF and SE/TB methods. With the improvement of both the methodology and

the algorithms, DFT provides nowadays a way to incorporate electron correlation

effects while allowing for a very efficient treatment of large systems. Since DFT is

substantial in the following, the method is reviewed in more detail.

1.2 Density Functional Theory

DFT is based on two celebrated papers of Hohenberg and Kohn [8] and Kohn and

Sham [9]. In the first it has been shown that the ground state energy of a non-

uniform electron gas is a unique functional of the ground state density. This powerful

theorem has been turned into a practical calculation scheme by Kohn and Sham

who decomposed the electronic density n(r) into mutually orthogonal one-electron

orbitals, the so-called Kohn-Sham orbitals,

n(r) =
∑
i

fi|ψi(r)|2 , (1.4)

where fi is the occupation number of state i. The electronic energy density functional

can then be written as,

E[n] =
∑
i

fi〈ψi| − ∆

2
|ψi〉+

∫
drVext(r)n(r)
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+
1

2

∫ ∫
drdr′

n(r)n(r′)
|r− r′| + EXC[n] , (1.5)

where the various terms represent, in order, the quantum kinetic energy, the interac-

tion between electrons and the external potential Vext(r) generated by the nuclei, the

Coulomb repulsion, and the rest of the electron density functional which is referred

to as the exchange-correlation functional EXC[n].

Using the variational principle, with the orthonormality constraints,

∫
drψ∗

i (r)ψj(r) = δij , (1.6)

it is possible to derive a Schrödinger-like equation for the Kohn-Sham orbitals [7],

(
−∆

2
+ Vext(r) + VH(r) + VXC(r)

)
ψi = εi ψi . (1.7)

Here,

VH(r) =
1

2

∫
dr′

n(r′)
|r− r′| and VXC(r) =

δEXC[n]

δn(r)
, (1.8)

are the Hartree and the exchange-correlation potential, and εi denotes the Kohn-

Sham eigenvalue of electronic state i.

Eq. (1.7) is somewhat deceptive, in that it looks like a single particle Schrödinger

equation. However, two features bring out the full many-body character of the

problem. One is that Eq. (1.7) has to be solved self-consistently since both VH(r)

and the VXC(r) depend on the density n(r) which is a function of the orbitals ψi(r).

The other is the incomplete knowledge of EXC[n]. For many years the most widely

used scheme has been the so-called local density approximation (LDA),

EXC[n] =
∫
drn(r)εXC(n(r)) , (1.9)

where εXC(n(r)) is the exchange-correlation energy per electron at a point r in a

homogeneous electron gas, known with great accuracy from quantum Monte-Carlo

calculations [10]. This approximation is obviously valid in the limit of slowly varying

densities, but has proven its accuracy for a wide range of systems. More recently,

however, new approximations to EXC[n] have been developed. These are the so-

called gradient corrections (GC), which supplement the LDA term with one that
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depends explicitely on the gradients of the density [11–13],

EXC[n] =
∫
drn(r)εXC(n, (|∇n|)) . (1.10)

Although experience in GC is not as consolidated as that for LDA, the emerging

picture is that in general GC is an improvement over LDA, especially for bonding

energies [14] and the description of hydrogen bonds [15–17].

Having specified the theoretical framework, we turn now to the practical issue of

numerically solving Eq. (1.7). In this context the most popular choice has been

that based on the plane wave (PW) pseudopotential approach which was pioneered

successfully by Cohen and collaborators [18]. There is, however a large number of

reasons for wanting a different type of basis set. Some of the pitfalls of PW are

that they are extremely demanding in terms of memory, they are wasteful when it

comes to describe isolated molecular systems with large empty regions, and it is

difficult to implement linear scaling methods using a PW basis. In order to remedy

these deficiencies while at the same time preserving most of its advantages, Lippert

et al. have recently proposed a novel scheme based on the most conventional type

of quantum chemical basis functions, namely Gaussian functions. This scheme is

called Gaussian augmented plane wave (GAPW) method [19–21] and the following

section is devoted to its description.

1.3 The Gaussian Augmented Plane Wave Method

The GAPW method uses a Gaussian basis set to expand the Kohn-Sham orbitals,

whereas an augmented PW basis set is introduced as an auxiliary basis set to repre-

sent the electronic charge density. The Gaussian basis functions make it possible to

benefit from the efficient analytical integration schemes and screening algorithms of

quantum chemistry. At the same time the use of a PW basis for the electron density

permits efficient calculation of the Hartree energy using fast Fourier transform, thus

circumventing one of the major bottlenecks of standard Gaussian based calculations.

The basic idea is to divide the total density into a smooth extended part which is
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represented in PW and parts localized close to the nuclei which are expanded in

Gaussians. Using this representation of the charge, the localized and the extended

part can be teated separately, leading to a very efficient computational scheme.

1.3.1 The Electronic Density in the GAPW Formulation

The basic idea of the GAPW method is to write the electronic density n as a sum

of three contributions,

n = ñ− ñ1 + n1 , (1.11)

where ñ is smooth and distributed over all space, and,

n1 =
∑
A

n1
A and ñ1 =

∑
A

ñ1
A , (1.12)

are sums of the atom-centered contributions n1
A and ñ1

A which are hard and soft,

respectively. Moreover, it is assumed that the difference between n1
A and ñ1

A is zero

outside a spherical atomic region UA. The atomic regions UA of different atoms do

not overlap. Inside the atomic region UA the soft density ñ is equal to its atom-

centered contribution ñ1,

ñ(r) = ñ1(r) for r ∈ UA , (1.13)

and outside the atomic region, in the interstitial region I, ñ is equal to the total

density n,

ñ(r) = n(r) for r ∈ I . (1.14)

Therefore the following relations must be true based on the assumptions made,

n(r)− ñ(r) = 0 for r ∈ I , (1.15)

n1
A(r)− ñ1

A(r) = 0 for r ∈ I , (1.16)

ñ(r)− ñ1
A(r) = 0 for r ∈ UA , (1.17)

n(r)− n1
A(r) = 0 for r ∈ UA . (1.18)

Having divided the space into two parts, the atomic regions and the interstitial

region, different types of basis functions can be used which are adapted to the
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properties of the electronic density in the relevant region. In the atomic regions,

especially close to the nuclei, the electronic density shows a strong variation. There-

fore localized Gaussian functions are well suited to describe the density in these

regions, whereas in the interstitial region a relatively soft density resides which can

be easily expanded in a small number of PW.

Having established the basic notions of the GAPW method, we proceed with a

detailed description how to construct the different parts of the density according to

Eq. (1.11).

The total electronic density,

n(r) =
∑
µν

Pµνϕµ(r)ϕν(r) , (1.19)

is expanded in a set of contracted Gaussian functions,

ϕµ(r) =
∑
a

Caµga(r) , (1.20)

which are used as an atomic basis set to represent the Kohn-Sham orbitals. Pµν

is a density matrix element, ga is a primitive Gaussian function and Caµ is the

corresponding contraction coefficient. The strong variations of the electronic density

close to the nuclei can be easily described by such an expansion. The soft part of

the electronic density is represented by an auxiliary basis set of PW,

ñ(r) =
1

Ω

∑
|G|<GC

ñ(G)eiGr , (1.21)

where Ω is the volume of the periodic cell. The plane wave expansion is truncated

by the specification of a cutoff value for the kinetic energy,

EC =
1

2
G2

C , (1.22)

of the plane waves. The required cutoff value is relatively small, because only the

soft part of the electronic density has to be described by plane waves. The one-center

densities n1 and ñ1 are constructed using the primitive orbital basis functions ga of

the current atom A. For this purpose, the part contained in the atomic region UA
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has to be projected out of each orbital basis function ϕµ. Defining a new projector

basis set {pa}, the projection is performed by,

〈pb | ϕµ〉 =
∑
a

C ′
aµ〈pb | ga〉 . (1.23)

In analogy to the total electronic density the one-center density is written as,

n1
A =

∑
ab∈A

∑
µν

C ′
aµPµνC

′
bνgagb . (1.24)

Since the hard and soft basis functions coincide outside their atomic regions, the

one-center expansion of the hard basis functions can also be applied to the soft

one-center density,

ñ1
A =

∑
ab∈A

∑
µν

C̃ ′
aµPµνC̃

′
bνgagb . (1.25)

Now all density contributions are summed up and the total electronic density n in

the GAPW formulation reads,

n = ñ− ñ1 + n1

=
1

Ω

∑
|G|<GC

ñ(G)eiGr − ∑
ab∈A

∑
µν

{
C̃ ′

aµPµνC̃
′
bν + C ′

aµPµνC
′
bν

}
gagb , (1.26)

which is equivalent to the formulation as a linear combination of atomic orbitals

in Eq. (1.19) . Finally, it must be emphasized that the atomic regions UA do not

explicitly appear in the GAPW functional. They serve only as a conceptional tool

during the derivation of the GAPW functional.

1.3.2 The Electronic Energy Functional in the GAPW Formulation

Starting point to derive the GAPW energy functional is Eq. (1.5), where the elec-

tronic energy of a molecular or crystalline system was defined as,

E[n] = ET[n] + Eext[n] + EH[n] + EXC[n] . (1.27)

Blöchl [22] has shown that the Hartree and the exchange-correlation energy can

be separated into independent global and local contributions using the set of re-

lations introduced in Eq. (1.15). The described density partition can be applied
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straightforwardly to an exchange-correlation energy functional,

EXC[n] = EXC[ñ]−
∑
A

EXC[ñ
1
A] +

∑
A

EXC[n
1
A] , (1.28)

which is semi-local. By contrast, the non-local character of the Hartree energy

functional causes a more complicated calculation requiring the introduction of ap-

propriate localized screening densities expanded in a set of hard Gaussian functions

glmA (r),

n0 =
∑
A

n0
A =

∑
lm

Qlm
A glmA , (1.29)

and soft Gaussian functions g̃lmA ,

ñ0 =
∑
A

ñ0
A =

∑
lm

Qlm
A g̃lmA . (1.30)

The Qlm
A are defined as,

Qlm
A = Nqlm[n1

A − ñ1
A + nZ

A] , (1.31)

where qlmA [n] is the multipole moment operator. nZ
A is the charge density of the ionic

core at atom A and N is a normalization constant. These densities exactly cancel

the electrostatic multipole moments of the one-center densities and thus allow a

separation of the contributions to the Hartree energy. Finally, Eq. (1.27) can be

rewritten due to the density partition of Eq. (1.11) as,

E[n] = ET[n] + Eext[n] + EH[ñ + ñ0] +∑
A

{
EH[n

1
A + nZ

A]− EH[ñ
1
A + n0

A]
}
−

EH[ñ
0] + EH[n

0] +
∫
VH[n

0 − ñ0] ñ dr+

EXC[ñ] +
∑
A

{
EXC[n

1
A]− EXC[ñ

1
A]

}
. (1.32)

One comment is in order. In the first implementation of the GAPW method, the

interaction with the ionic cores Eext[n] was described by a pseudopotential operator

in order to integrate out the core electrons [19,20]. Recently, the GAPW method

was extended to all-electron calculations [21].



13

2 Grid-free DFT Implementation of Exchange-

Correlation Functionals

2.1 Introduction

The main result of section 1.2 can be stated as follows, we would be able to predict

the electronic properties of many-particle systems very accurately if the exchange-

correlation (XC) functional were in its exact form. However, the goal of obtaining

this exact functional has not been accomplished, and approximations continue to be

made. Beyond the simplest local density approximation (LDA, Eq. (1.9)), a vari-

ety of additional gradient corrections (GC, Eq. (1.10)) have been proposed [11–13].

However, one drawback of these methods is that they involve integration over com-

plicated algebraic expressions precluding an analytic evaluation. Therefore, a rather

different route has traditionally been chosen, involving numerical quadrature over

a grid, where the grid points must be chosen with great care and where numerical

noise due to limited accuracy is unfavorable.

An alternative to these traditional grid-based methods was proposed by Zheng and

Almlöf [23,24], who use matrix techniques to calculate the required integrals analyt-

ically. The suggested approach is based on a matrix representation of the density in

an auxiliary basis set. Within this representation, matrix elements of XC functionals

of the density are obtained by simply calculating matrix functions. The additional

use of basis set completeness relations and the spectral resolution of the identity

operator allows analytic expressions for the XC energy and potential to be derived.

The method is not limited to local XC functionals. Gradient corrected functionals

can be treated in a similar way, using a matrix representation of the absolute value

of the gradient.

It is important to stress that such an analytical approach is not only desirable

from an esthetic point of view, it also avoids the noise resulting from numerical

quadrature. Clearly, the use of a finite basis set introduces a new source of inaccuracy
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but the error due to basis set incompleteness is smooth, independent of the choice

of coordinate system and can be eliminated in a controlled way by increasing the

basis set.

The aim of this chapter is to derive all the expressions required to implement this

grid-free method, to present a number of test calculations, and to address the ap-

parent problems.

2.2 Method

The starting point for the grid-free method is a matrix representation of the density

computed from Eq. (1.4). If we expand the Kohn-Sham orbitals in a basis set

(Latin letters) and use an auxiliary basis to calculate the matrix representation of

the density (Greek letters) we obtain,

Mαβ[n] = 〈α|n|β〉 = ∑
i,j

Pij(ijαβ) . (2.1)

Here, (ijαβ) is a generalized one-electron overlap integral and Pij is an element of

the reduced, first order density matrix. In the framework of the GAPW method,

the element reads, Pij = CisPstCjt, according to Eq. (1.19) and Eq. (1.20). Other

representations of the density (e.g. in auxiliary basis set methods) require a straight-

forward change of Eq. (2.1).

To derive the required expressions for the XC energy and potential it is convenient

to first consider the local part.

2.2.1 LDA

Inserting the expansion of the Kohn-Sham orbitals into Eq. (1.9) and applying the

spectral resolution of the identity operator with respect to the auxiliary basis, the

local part of the XC energy can be rewritten,

EXC[n] =
∑
i,j

Pij〈i|εXC(n)|j〉
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=
∑
i,j

∑
α,β

∑
µ,ν

Pij〈i|α〉S−1
αβ 〈β|εXC(n)|µ〉S−1

µν 〈ν|j〉

= Tr[PŜS−1M [εXC(n)]S
−1ŜT ] . (2.2)

Here, Tr denotes the trace of a matrix, S−1 is the inverse of the overlap matrix of

the auxiliary basis, and, Ŝiα = 〈i|α〉, is the overlap matrix between the basis set

used to expand the electron orbitals and the auxiliary basis. Due to the appearance

of the matrix, Mαβ [εXC(n)] = 〈α|εXC(n)|β〉, Eq. (2.2) is not yet suited for practical

use. The key to obtain a practical scheme, lies in the fact that we can obtain matrix

elements of any function of the density by transforming M [n] to an orthonormal

basis (= M̃ [n]), diagonalizing it, evaluating the functions of the eigenvalues, and

transforming back to the original basis. Thus, the final form of the energy expression

is given by,

EXC[n] = Tr[PŜXεXC(M̃ [n])XŜT ] , (2.3)

where, X = S− 1
2 , is the transformation matrix from M [n], in terms of the auxiliary

basis, to the orthonormal representation M̃ [n]. Since we are working with real basis

functions, the transformation matrix is symmetric, which means that Eq. (2.3) is

simplified using, X = XT .

Based on Eq. (2.3) it is easy to compute the XC energy by carrying out the following

steps:

1. Calculate the matrix representation of the density using Eq. (2.1).

2. Transform to an orthonormal basis,

M̃ [n] = XM [n]X . (2.4)

3. Calculate the matrix function by diagonalizing M̃ [n] and evaluate the function

of the eigenvalues,

εXC(M̃ [n]) = Y εXC(Λ)Y
T . (2.5)

Here, Y T is the eigenvector matrix of M̃ [n] with eigenvalues λk and, εXC(Λ)kl =

εXC(λk)δkl.

4. Calculate the energy using Eq. (2.3).
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In order to perform a DFT calculation we also need an expression for the XC po-

tential, which is defined as the functional derivative of the energy, VXC = δEXC[n]
δn

.

The corresponding equation in matrix form reads,

〈i|VXC|j〉 = ∂EXC[n]

∂Pij
= (ŜXεXC(M̃ [n])XŜT )ij +Tr[PŜX ∂εXC(M̃ [n])

∂Pij
XŜT ] . (2.6)

The first part of Eq. (2.6) is straightforward to calculate, but the second part must

be handled with care. The reason is that a derivation of the function which involves

a diagonalization of M̃ [n] is not possible because the needed unitary transformation

Y itself depends on P. However we can express the matrix function in an alternative

way using a complex contour integral [25],

∂εXC(M̃ [n])

∂Pij

=
1

2πi

∂

∂Pij

∮
εXC(z)(z1 − M̃ [n])−1dz (2.7)

=
1

2πi

∮
εXC(z)(z1 − M̃ [n])−1∂M̃ [n]

∂Pij

(z1 − M̃ [n])−1dz

= Y
1

2πi

∮
εXC(z)(z1 − Λ)−1Y T ∂M̃ [n]

∂Pij

Y (z1− Λ)−1dzY T .

Here, 1 is the identity matrix and, Λkl = λkδkl. Carrying out the integration over z

one obtains,

1

2πi

∮
εXC(z)

(z − λk)(z − λl)
dz =



µXC(λk), λk = λl ,

εXC(λk)−εXC(λl)
λk−λl

, λk �= λl ,
(2.8)

where µXC denotes the derivative of εXC(n(r)) with respect to n(r). Performing

some simple algebraic transformations, the second part of Eq. (2.6) becomes,

Tr[PŜX ∂εXC(M̃ [n])

∂Pij

XŜT ] = Tr[Y {A,B}Y T ∂M̃ [n]

∂Pij

] , (2.9)

where theBkl components are defined through Eq. (2.8), {A,B} denotes a component-

wise matrix multiplication and,

A = (ŜXY )TP(ŜXY ) ,
∂M̃ [n]

∂Pij
= X((αβij))X . (2.10)

For the special case when the auxiliary basis coincides with the original basis the

formulas can be simplified by using, ŜX = X−1 = S
1
2 .
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2.2.2 Gradient Corrections

The approach outlined earlier must be slightly modified for gradient corrected func-

tionals. Firstly all the non-local XC functionals that we have considered allow us to

rewrite Eq. (1.10) using a function f depending solely on n(r) and another function

g depending only on a variable s(r),

EXC[n] =
∫
drn(r)f(n(r))g(s(r)) with s(r) =

|∇n(r)|
n(r)

4
3

. (2.11)

In close analogy with Eq. (2.2) and Eq. (2.3), an energy expression in matrix form

can be derived,

EXC[n] = Tr[PŜXf(M̃ [n])g(M̃ [s])XŜT ] . (2.12)

However, what is needed is a scheme to calculate M̃ [s]. Such a scheme has already

been proposed by Zheng and Almlöf [24]. Here we obtain a matrix representation

of the x-component of the gradient through,

M̃ [(∇n)x] = M̃ [(∇)x]M̃ [n]− M̃ [n]M̃ [(∇)x] , (2.13)

where the tilde denotes that we are already using an orthonormal basis set. With

analogous equations for all components we derive first an expression for the absolute

value of the gradient,

M̃ [|∇n|] =
√
M̃ [(∇n)x]2 + M̃ [(∇n)y]2 + M̃ [(∇n)z]2 , (2.14)

and finally for the matrix representation of s(r),

M̃ [s] = M̃ [|∇n|](M̃ [n])−
4
3 . (2.15)

It is worth noting that working with Eq. (2.15) causes some problems. Firstly,

|∇n(r)| and n(r) interpreted as operators should commute because they are multi-

plicative. However, when we use a finite basis set this property is no longer true. To

overcome this deficiency, we replace Eq. (2.15) by the corresponding anticommuta-

tor relation. Secondly a product of two positive definite matrices is not necessarily

positive definite. This means that when we diagonalize the matrix representation
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of s(r) to calculate a matrix function, we cannot expect to obtain merely positive

eigenvalues. Unfortunately, as discussed in the next section, the use of large basis

sets appears inevitable to handle this problem.

Nevertheless, applying the matrix techniques introduced in the last section, also

the non-local XC energy can be computed analytically by the use of the equations

above.

To calculate now the potential we get an expression resembling Eq. (2.6) but with

a third part including the derivative ∂g(M̃ [s])
∂Pij

,

〈i|VXC|j〉 = (ŜXf(M̃ [n])g(M̃ [s])XŜT )ij + Tr[PŜX ∂f(M̃ [n])

∂Pij
g(M̃ [s])XŜT ]

+ Tr[PŜXf(M̃ [n])
∂g(M̃ [s])

∂Pij
XŜT ] . (2.16)

In agreement with Eqs. (2.7) to (2.9) we compute the third part through repeated

use of the chain rule according to the Eqs. (2.15), (2.14) and (2.13) until we obtain

nothing but terms containing the derivative ∂M̃ [n]
∂Pij

. Adding up all terms allows the

straightforward calculation of the potential in a recursive way.

It is important to notice that all derived equations are exact in the limit of a complete

basis set. In a practical implementation, however, we have to use a finite basis set

and the effect of this restriction is discussed in the next section.

2.3 Results and Discussion

The matrix approach has been implemented in the GAPW method (see section 1.3).

Following Eq. (1.28), the XC energy is divided into a smooth part EXC[ñ], which is

evaluated on a regular grid using plane waves, and two sums of one-center contribu-

tions EXC[ñ
1
A] and EXC[n

1
A] which are evaluated according to the grid-free approach.

The corresponding one-center densities are expanded, in agreement with Eq. (2.1), in

an uncontracted Gaussian type orbital (GTO) basis set. All calculations were done

using a s5p2 basis for hydrogen and a (sp)5d2 basis for the remainder. To obtain

satisfactory results, particularly when handling the gradient corrected functionals,
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LDA B+LYP B+P

Mol. Meth. EXC ETOT EXC ETOT EXC ETOT

ana. −0.6492 −1.1357 −0.6872 −1.1658 −0.6969 −1.1752
H2

num. −0.6492 −1.1357 −0.6908 −1.1683 −0.6993 −1.1768

ana. −4.1211 −17.1792 −4.2202 −17.2591 −4.2778 −17.3147
H2O

num. −4.1211 −17.1791 −4.2283 −17.2659 −4.2862 −17.3215

ana. −4.3733 −16.1653 −4.4440 −16.2172 −4.5304 −16.3003
HCN

num. −4.3733 −16.1653 −4.4513 −16.2238 −4.5384 −16.3073

ana. −4.7912 −19.8835 −4.8769 −19.9492 −4.9620 −20.0304
N2

num. −4.7912 −19.8835 −4.8850 −19.9564 −4.9708 −20.0382

ana. −3.5204 −11.6997 −3.5929 −11.7544 −3.6588 −11.8159
NH3

num. −3.5203 −11.6997 −3.6011 −11.7609 −3.6633 −11.8218

ana. −8.4701 −37.7316 −8.6273 −37.8521 −8.7583 −37.9798
CO2

num. −8.4700 −37.7316 −8.6394 −37.8625 −8.7731 −37.9924

ana. −3.0837 −8.0326 −3.1481 −8.0772 −3.2121 −8.1406
CH4

num. −3.0836 −8.0326 −3.1569 −8.0338 −3.2192 −8.1461

ana. −3.9874 −12.4557 −4.0417 −12.4930 −4.1309 −12.5791
C2H2

num. −3.9874 −12.4557 −4.0485 −12.4990 −4.1382 −12.5854

Table 2.1: Comparison of exchange-correlation and total energies of various

molecules ([EH ]) obtained from the grid-free approach (ana.) respectively obtained

from numerical quadrature over a grid (num.). The XC functionals considered are a

pure LDA functional, an exchange functional by Becke (B), a correlation functional

by Lee, Yang and Parr (LYP) and a correlation functional by Perdew (P).
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Mol. EXC ETOT Mol. EXC ETOT

H2 −0.6492 −1.1357 H2O −4.1218 −17.1796

HCN −4.3741 −16.1659 N2 −4.7921 −19.8842

NH3 −3.5208 −11.7000 CO2 −8.4714 −37.7327

CH4 −3.0839 −8.0328 C2H2 −3.9881 −12.4563

Table 2.2: Exchange-correlation and total energies of various molecules ([EH ]) ob-

tained from the grid-free approach using the XC functional LDA. In contrast to

table 2.1, the auxiliary basis coincides with the basis used to expand the one-center

density.

enlarged auxiliary basis sets to compute the matrix representations are needed. For

that, we employ an auxiliary basis of type (sp)7(pd)4 for hydrogen and of type

(spd)7(df)4 otherwise. The grid-based numerical calculations were performed using

a product grid consisting of 40 radial points and an angular part with 50 points

chosen according to the Lebedev method [26,27].

A comparison of the results obtained from our grid-free approach and the results

obtained from a grid-based numerical integration is shown in table 2.1. All calcula-

tions were done at fixed geometry and all energies are calculated from self-consistent

densities. The XC functionals considered are a pure LDA functional in a Pade ap-

proximation [28], an exchange functional by Becke (B) [11], a correlation functional

by Lee, Yang and Parr (LYP) [12] and a correlation functional by Perdew (P) [13].

It is evident that the results involving gradient corrected functionals are less sat-

isfactory than for the LDA case. Although the accuracy achieved is sufficient for

practical purposes, we cannot completely reproduce, even with that large auxiliary

basis, the results of the numerical integration. This is even more unfavorable if one

considers table 2.2. Here, we have revised the previous LDA calculations, but with

an auxiliary basis coinciding with the original basis. Obviously, for the LDA case,

a large auxiliary basis is not mandatory to reproduce the results of the numerical

integration.
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How can such a discrepancy be explained? Firstly, it appears that the gradient of

the density calculated via Eq. (2.13) is not well represented by small basis sets. The

next point is that the calculation of the matrix representation of s(r) (Eq. (2.15))

involves a matrix representation of n(r)−
4
3 . This expression becomes unbounded for

small densities and we have no appropriate representation in this region. A further

problem is that when we diagonalize the matrix representation of the variable s(r)

(Eq. (2.15)) in order to calculate a matrix function, using small basis sets, we obtain

negative eigenvalues which are not physically meaningful. This is because a product

of two positive definite matrices is not necessarily positive definite. However in our

experience, with the enlarged auxiliary basis introduced above, the appearance of

negative eigenvalues is avoided and all operators are reasonably represented.

The last statement is confirmed by a further investigation. Table 2.3 shows the struc-

tural parameters of various small molecules computed from optimized geometries.

Here, an excellent agreement between the grid-free and the numerical approach, for

local as well as for gradient corrected functionals, is evident. This suggests that the

size of the used auxiliary basis is large enough to give reliable relative energies, even

though the absolute energies differ from numerical integration.

2.4 Conclusions

We have derived all the expressions required to implement a grid-free method to

compute local and gradient corrected XC functionals. The approach is based on a

matrix representation of the density in an auxiliary basis set. The use of basis set

completeness relations and the spectral resolution of the identity operator allows

analytic expressions for the XC energy and potential to be derived. The key point

of our approach is the definition of a matrix function via a complex line integral,

allowing to generalize the analytic formulas of Zheng and Almlöf [23,24] for the XC

energy to the potential.

All derived equations are exact in the limit of a complete basis set. In a practical

implementation, however, a finite basis set has to be used and this restriction effects
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LDA B+LYP B+P

Mol. Par. ana. num. ana. num. ana. num.

H2 r(HH) 0.764 0.764 0.745 0.744 0.749 0.748

r(OH) 0.971 0.972 0.967 0.968 0.966 0.965
H2O � (HOH) 104.8 104.8 105.2 104.9 104.9 104.9

r(CH) 1.079 1.079 1.066 1.066 1.069 1.068
HCN

r(CN) 1.149 1.149 1.144 1.144 1.145 1.145

N2 r(NN) 1.095 1.095 1.092 1.092 1.092 1.092

r(NH) 1.022 1.022 1.015 1.016 1.015 1.015
NH3 � (HNH) 107.1 107.1 107.3 107.3 107.2 107.3

CO2 r(CO) 1.163 1.163 1.163 1.164 1.161 1.161

CH4 r(CH) 1.096 1.096 1.088 1.088 1.089 1.088

r(CC) 1.200 1.200 1.192 1.193 1.194 1.194
C2H2

r(CH) 1.100 1.100 1.091 1.090 1.092 1.091

Table 2.3: Comparison of structural parameters [rA,◦ ] of various molecules obtained

from the grid-free approach (ana.) respectively obtained from numerical quadrature

over a grid (num.). The XC functionals considered are a pure LDA functional, an

exchange functional by Becke (B), a correlation functional by Lee, Yang and Parr

(LYP) and a correlation functional by Perdew (P).
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the usefulness of our analytic approach. In the case of LDA, we can use the original

GTO basis set to compute the matrix representations and the overall performance

of the operator approach compares favorably with numerical integration. In the case

of gradient corrected functionals, even with a large auxiliary basis set, we cannot

completely reproduce the results from numerical integration. Although, the accuracy

achieved is sufficient for practical purposes and we obtain reliable relative energies,

the usefulness of such an implementation is questionable.
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3 Electrostatic Decoupling of Periodic Systems

3.1 Introduction

The major difficulty of applying plane wave based electronic structure methods, such

as the GAPW method (see section 1.3), to isolated molecules is that the periodic

images of the charge distribution are automatically generated due to the discrete

sampling of reciprocal space. The interaction energy between the periodic images,

however, is undesired. The interaction can be divided into two contributions, the

wave function overlap and the electrostatic interaction. Whereas wave function

overlap can be made negligible in a straightforward way by separating the images

by 5 − 7 rA, the long-range nature prohibits using such an approach to determine

the electrostatic interaction. Due to the importance of handling isolated systems,

many solutions to that problem have been found and applied successfully [29–31].

Recently a different approach was proposed by Bloechl [32] that is useful not only to

decouple the periodic images. It also provides a point charge model that can be used

to couple the isolated charge density of the quantum mechanical calculation to an

environment, e.g. in hybrid quantum mechanics/molecular mechanics approaches.

The guiding principle of the method is that the interaction energy between separated

densities is determined entirely through their electrostatic multipoles. The electro-

static multipole moments can be expressed in reciprocal space by the value and all

derivatives of the charge density at the origin. Unfortunately, the information on

the derivatives is lost if reciprocal space is discretized, as is usually done in plane

wave calculations. However, one can recover the information from an interpolation

near the origin.

For computational reasons it is advantageous to first expand the density into atom-

centered Gaussians and to construct the point charge model from the superimposed

Gaussians. As mentioned above, it is sufficient to chose the Gaussians such that

their superposition reproduces the density near the origin of reciprocal space and
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thus its multipole moments.

The chapter is organized as follows. First we explain how the charge densities can be

decoupled given a suitable model density in terms of superimposed Gaussians and

how to obtain such a model density. In addition the expressions for the correction

of the potential acting on the electrons and the forces acting on the nuclei are given.

Next, the modifications needed to implement the present scheme in the GAPW

method are described. Finally, applications to various systems are presented to

demonstrate the reliability of the method.

3.2 Method

3.2.1 Electrostatic Insulation of the Periodic Images

To evaluate the electrostatic self-energy of an isolated charge density, we start out

with a periodic array n(r) of separated charge densities nV (r), each member of which

is entirely localized within a unit cell V . The periodic array of unit cells should be

space filling, and each member of n(r) should be entirely localized within one of

these cells. The self-energy of an isolated density is then given by,

E =
1

2

∫
V

∫
V

drdr′
n(r)n(r′)
|r− r′| , (3.1)

where the double integration is performed over a single unit cell V .

Let us now introduce a model charge density n̂V (r), which is localized within the

same volume V and which reproduces the multipole moment Qlm of nV (r). The

model density is written as a sum of Gaussians centered at atomic site Ri,

n̂V (r) =
∑
i

qigi(r−Ri) , (3.2)

which are normalized such that they possess a charge of one,

gi(r) =
1

(
√
πrc,i)3

exp(−(
r

rc,i
)2) . (3.3)
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Every atomic site may be the center of various Gaussians with different decay length

rc,i, chosen such that the tails of the Gaussians do not spill over the boundaries of the

unit cell. Further details of the model density will be specified in the next section.

In addition to the model density, we construct a point charge model,

n̄(r) =
∑
i

qiδi(r−Ri) , (3.4)

such that each point charge equals the total charge of the Gaussians at that side. By

construction, the multipole moments of the model charge density agree with those

of the point charge model.

Using the point charge model, the self-energy of the isolated density can be written

as the sum of four terms,

E = E1 + E2 + E3 + E4 , (3.5)

where the individual terms are defined as follows,

E1 =
1

2

∑
V ′

∫
V

∫
V ′

drdr′
(n(r) + nC)(n(r

′) + nC)

|r− r′| ,

E2 = −1

2

∑
V ′

∫
V

∫
V ′

drdr′
(n̄(r) + nC)(n̄(r

′) + nC)

|r− r′| ,

E3 =
1

2

∫
V

∫
V

drdr′
n̄(r)n̄(r′)
|r− r′| ,

E4 = −1

2

∫
V

∫
V

drdr′
(n(r)− n̄(r)) nC

|r− r′| . (3.6)

The off-diagonal elements, V �= V ′, in E1 and E2 cancel because the electrostatic

interaction of separated charge distribution depends only on its multipole moments,

which by construction are identical between n(r) and n̄(r). The compensating con-

stant charge background, nC = 1
V

∫
V
drn(r), has been added, because otherwise E1

and E2, which are the self-energies of periodic densities, are individually infinite

when the system is charged.

The first term E1 is the self-energy of the periodic array of isolated charge densities
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and is evaluated in reciprocal space to be,

E1 =
2π

V

∑
G �=0

n(G) n∗(G)

G2
. (3.7)

The next term E2 subtracts the self-energy of the periodic point charge model and

is evaluated using standard Ewald summation techniques [1]. The self-energy of the

isolated point charge model E3 is a simple double sum over the charges from a single

unit cell,

E3 =
1

2

∑
(Ri �=Rj)∈V

qiqj
|Ri −Rj| . (3.8)

The evaluation of E4 is more subtle. However, exploiting the properties of the point

charge model one obtains [32],

E4 = − π

2V

∑
i,j;Ri,Rj∈V

qi(r
2
c,i + r2c,j)qj . (3.9)

Using the formulas above, one can finally write the correction to the electrostatic

energy, ∆E = E2 + E3 + E4, relative to that of the periodic system as a quadratic

form,

∆E =
∑
i,j

qiMijqj . (3.10)

3.2.2 Construction of the Model Charge Density

The model density is obtained from a fit to the original charge density, which is

biased by a weight function such that the original density is retrieved near the origin

of reciprocal space and thus the multipole moments are reproduced. A reasonable

choice for the weight function is,

w(G) =




4π (G2−G2
c)

G2G2
c
, |G| < Gc ,

0, |G| ≥ Gc ,
(3.11)

enhancing the importance of the low-G components, while ignoring any high-G

components of the density. Because the weight function diverges at the origin, the

G = 0 term is treated separately as a constraint using the method of Lagrangian
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multipliers. Consequently, the parameters of the model density qi are obtained by

minimizing,

F (qi, λ) =
1

2

∑
G �=0

w(G)|n(G)−∑
i

qigi(G)|2

− λ(n(G = 0)−∑
i

qigi(G = 0)) , (3.12)

with respect to the coefficients qi and the Lagrangian multiplier λ. A straightforward

computation leads to,

qi =
∑
j

A−1
ij (bj −

∑
k,lA

−1
kl bl∑

k,lA
−1
kl

) , (3.13)

with,

Aij =
∑
G �=0

w(G)g∗i (G)gj(G) ,

bi =
∑
G �=0

w(G)Re[gi(G)n∗(G)] . (3.14)

3.2.3 Electron Potential and Atomic Forces

The correction to the electron potential is determined as the derivative of ∆E with

respect to the charge density,

∆v(G) =
∂∆E

∂n∗(G)
=

∑
i

∂∆E

∂qi

∂qi
∂n∗(G)

. (3.15)

Using Eq. (3.10) the potential acting on the charges of the Gaussians reads,

∂∆E

∂qi
= ui = 2

∑
j

Mijqj . (3.16)

The correction to the electron potential is then obtained by combining Eq. (3.16)

with ∂qi
∂n∗(G)

computed from Eqs. (3.13) and (3.14),

∆v(G) =




∑
i,j

A−1
ij uj∑

i,j
A−1

ij

, G = 0 .

∑
i,j w(G)gi(G)A−1

ij (uj −
∑

k,l
A−1

kl
ul∑

k,l
A−1

kl

), G �= 0 .
(3.17)

The correction to the atomic forces is determined as the derivative of ∆E with

respect to the atomic position Rk,

Fk = −d∆E
dRk

= −∑
i,j

qi
dMij

dRk

qj −
∑
i

dqi
dRk

ui . (3.18)
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The first term is due to the electrostatic field of the periodic images and its evaluation

is straightforward. The second term is analogous to the Pulay forces of electronic

structure methods [33]. It vanishes if the Gaussians form a complete basis. Other-

wise they describe the sensitivity of the results on the positions of the centers of the

Gaussians.

The dependency of the charges on the atomic position is evaluated in two steps.

The first neglects the constraint of charge conservation and the second applies the

constraint,

dq
(0)
i

dRk
=

∑
j

A−1
ij (

dbj
dRk

−∑
l

dAjl

dRk
ql) ,

dqi
dRk

=
dq

(0)
i

dRk
−∑

j

A−1
ij

∑
m

dq
(0)
m

dRk∑
mnA

−1
mn

. (3.19)

3.2.4 Implementation in the GAPW Method

The present approach has been implemented in the GAPW method. Here some

slight modifications to the original decoupling method are required. Following

Eq. (1.32), the long-range part of the GAPW electrostatic energy is provided by

EH[ñ+ ñ0]. Consequently, the correction to the electrostatic energy ∆E, relative to

that of the periodic system, is merely applied to the term above.

As the spherical parts of the compensation density ñ0 are themselves represented

as spherical, atom-centered Gaussians, they are not included in the fit, but rather

added directly to the model density fitted to the soft part of the electronic density ñ

alone. In the present implementation we have ignored the usually small, nonspherical

contributions of the compensation density.

3.3 Results and Discussion

In order to test the reliability of the present decoupling method we report the re-

sults of a series of all-electron calculations for two charged molecules, namely the
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Figure 3.1: Convergence of the total energy [Hartrees] of the hydronium ion H3O
+

with respect to the box length [rA]. All-electron calculations using the exchange-

correlation functional BLYP are shown. As a comparison the total energy of an

isolated hydronium ion is computed with Gaussian 94.
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Figure 3.2: Convergence of the total energy [Hartrees] of the NH−
2 anion with respect

to the box length [rA]. All-electron calculations using the exchange-correlation

functional BLYP are shown. As a comparison the total energy of an isolated NH−
2

anion is computed with Gaussian 94.
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Dipole Moments [Debye]

X Y Z

0.0 (0.0) 0.0 (0.0) 1.72 (1.75)

Quadrupole Moments [rA Debye]

XX XY YY

−2.49 (3.24) 0.0 (0.0) −2.50 (3.23)

XZ YZ ZZ

0.0 (0.0) 0.0 (0.0) −6.13 (0.37)

Octapole moments [rA2 Debye]

XXX XXY XYY

1.71 (1.54) −0.02 (−0.02) −1.71 (−1.54)

YYY XXZ XYZ

0.02 (0.02) 0.84 (0.74) 0.0 (0.0)

YYZ XZZ/YZZ ZZZ

0.84 (0.74) 0.0 (0.0) 0.21 (0.09)

Table 3.1: Electrostatic multipole moments of the hydronium ion H3O
+ computed

from an all-electron calculation using the exchange-correlation functional BLYP.

The moments computed from the point charge model are given in parentheses.

hydronium ion H3O
+ and the NH−

2 anion. The results from the calculation of the

corresponding isolated systems with the Gaussian 94 program [34] serve as a refer-

ence. All computations were done using the 6-31G* basis set, which is one of the

well-known standard basis sets of Gaussian 94, and the gradient-corrected exchange-

correlation functional of Becke [11] and Lee, Yang and Parr [12] (BLYP). Figure 3.1

and 3.2 show the convergence of the total energy of the H3O
+ cation and the NH−

2

anion with respect to the box length of the cubic simulation cell. It is obvious

that the converged total energies show excellent agreement with the results of the

corresponding isolated systems, although large box lengths are needed to achieve

convergence.
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Dipole Moments [Debye]

CO HF H2O H2S H2O2

0.23 (0.22) 1.86 (1.86) 2.05 (2.04) 1.46 (1.36) 1.94 (2.01)

HCN NH3 CH3F CH3Cl CHONH2

3.01 (2.99) 1.99 (1.98) 1.93 (1.96) 2.01 (2.01) 3.99 (3.97)

Table 3.2: Molecular dipole moments of various small molecules. The dipole mo-

ments computed from the point charge model are given in parentheses. All calcu-

lations were done using pseudopotentials and the exchange-correlation functional

BLYP.

The requirement of employing such large simulation cells to converge the total energy

is certainly a drawback. An explanation can be drawn from table 3.1. Here we

have computed the electrostatic multipole moments of the hydronium ion to be

compared with the moments calculated from the point charge model. Although the

dipole moments are reproduced quantitatively and the octapole moments at least

qualitatively, the point charge model fails to reproduce the quadrupole moments.

Consequently, the simulation cell has to be large enough to make the interaction

energy of the quadrupole moments negligible. These findings are confirmed by

further calculations. We find the dipole moments always in good agreement with

those computed from the point charge model (see table 3.2), but the higher multipole

moments are often poorly reproduced. Thus, the use of large simulation cells appears

inevitable to obtain accurate total energies.

As an application of the decoupling method we have investigated the substituent

effects of various formic acid derivatives on the acid strength. For that we have

computed in table 3.3 the total energy difference between the acid and its conjugate

base using pseudopotentials and the exchange-correlation functional BLYP. A cubic

cell of box length 15 rA is employed. From Figure 3.1 and 3.2 we can expect to

produce results which are in milihartree agreement in total energy from converged

calculation. The chloro and the nitro group possess a dipole directed away from car-
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Acid/Acid− ∆E [Hartrees] pKa

CCl3COOH/CCl3COO− −0.519 0.89

CH2NO2COOH/CH2NO2COO− −0.525 1.32

CHCl2COOH/CHCl2COO− −0.530 1.30

CH2ClCOOH/CH2ClCOO− −0.544 2.81

HCOOH/HCOO− −0.558 3.77

CH3COOH/CH3COO− −0.571 4.76

Table 3.3: Comparison of the total energy difference ∆E between an acid and its

conjugate base and the negative logarithm of the acidity constant pKa for various

formic acid derivatives. Data have been computed using a cubic cell of box length

15 rA. Pseudopotentials and the exchange-correlation functional BLYP were em-

ployed.

bon and placing partial positive character on the carbon. By electrostatic attraction

this tends to stabilize the conjugate base. On the other hand the dipoles introduced

also destabilize the acid since the carboxyl group has a dipole also. Since the two

are bound together with their positive dipole ends adjacent, they repel each other

electrostatically. Both effects lead to an acid-strengthening in perfect agreement

with a lowering of the measured pKa values [35]. The range of these dipole effects

can be seen in the acidity of trichloroacetic acid (pKa = 0.89), about 104 times more

acidic than formic acid (pKa = 3.77) which corresponds to a stabilization energy of

39 milihartrees.

The opposite is true for the small electron-donating effect of the methyl group.

Here, the conjugate base is destabilized while the acid is stabilized. Both effects

lead to an acid-weakening having the consequence that formic acid is about 10

times more acidic than acetic acid. The corresponding stabilization energy amounts

to 13 milihartrees.
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3.4 Conclusions

A method to subtract the electrostatic interaction between periodic images of the

densities of isolated molecules represented in a plane wave expansion has been pre-

sented. The subtraction scheme is carried out by the use of a point charge model

reproducing the multipole moments of the system. The basic steps are to first ex-

pand the density into atom-centered Gaussians and to construct the point charge

model from the superimposed Gaussians.

To implement the present approach into the GAPW method slight modifications are

required. Here, one has to consider the splitting of the GAPW density in a smooth

extended part and parts localized close to the nuclei. While the smooth extended

part can be treated straightforwardly, the localized parts require special care.

The present approach has proven accurate in a comparison of the total energies of

charged isolated systems with the results of the Gaussian 94 program. The require-

ment of employing large simulation cells is certainly a drawback. An explanation

can be drawn from the failure of the point charge model to reproduce the higher

multipole moments of the system. Consequently, the simulation cell has to be large

enough to make corresponding interaction energy negligible.

As an application we have investigated the substituent effects of various formic acid

derivatives on the acid strength. By comparing the total energy difference between

the respective acid and its conjugate base we are able to reproduce the experimental

acid strength qualitatively.
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4 General and Efficient Algorithms for Obtaining

Maximally-Localized Wannier Functions

4.1 Introduction

Computer simulations have enjoyed great success in recent years, with applications

that range from materials science to chemistry and biochemistry. This is due mainly

to considerably algorithmic progress, leading to fast and reliable programs. Con-

sequently, the development of new simulation methods has played a central role in

the previous sections. In the present section, however, we address to a further re-

quirement modern computer technology has to fulfill. Namely, to provide analysis

tools helping to understand the accomplished simulations. In that context Wannier

functions [36] play an important role, thus, they are in the focus of what follows.

The representation of the electronic ground state in terms of localized Wannier

orbitals provides a powerful tool in the study of periodic solids. Recent advances in

the formulation of a theory of electronic polarization [37,38] and the development

of linear-scaling methods [39] have rejuvenated the use of Wannier functions as an

analysis tool. Namely, Wannier functions afford an insightful picture to the nature

of chemical bonding and aid in the understanding of classical chemical concepts (e.g.

non-bonding electron pairs or valency) in terms of quantum mechanics.

In spite of this wide field of applications, a lack of a practical, general, and efficient

method to calculate Wannier functions is evident. This is in contrast to finite

systems, where many different criteria for producing localized orbitals have been

developed[40–43].

Wannier functions (WF) are defined in terms of a unitary transformation performed

on the occupied Bloch orbitals (BO) [36]. One major problem in a practical calcula-

tion is their non-uniqueness. This is a result of the indeterminacy of the BO’s, which

are, in the case of a single band, only determined up to a phase factor, in the multi-

band case, up to an arbitrary unitary transformation among all occupied orbitals at
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every point in the Brillouin zone. As proposed recently by Marzari and Vanderbilt

[44], one can resolve this non-uniqueness by requiring that the total spread of the

localized function be minimal. This criterion is in close analogy with the Boys-

Foster method [40] for finite systems, here one uses the spread defined through the

conventional position operator. The new technique has been successfully applied

to crystal systems and to small molecules within a general k-point scheme[44,45].

An extension to disordered systems within the Γ-point approximation was recently

performed[46]. This is of particular interest when one would like a localized orbital

picture within the framework of Car-Parrinello molecular dynamics (CPMD).

Here we reexamine the problem focusing on the Γ-point approximation only. For this

case, Silvestrelli [47] has derived a formula for the spread in three dimensions for a

molecular dynamics cell of arbitrary shape. The formula is based on the formulation

of Marzari and Vanderbilt. Recently Resta has proposed a formula for the spread

in one dimension which reduces to that of Marzari and Vanderbilt in the limit of

large cell size [48,49]. We generalize Resta’s formulation to three dimensions and

arbitrary molecular dynamics cells. In addition we derive a novel formula for the

spread and examine the convergence properties of these three different formulations.

Upon minimization of the spread functional the appropriate unitary transforma-

tion to the localized orbitals can be calculated. With explicit knowledge of the

spread functional we can derive the complete expressions required to implement the

iterative minimization procedure beyond a steepest descent scheme. The steepest

descents method, used in [44,46,47], performs reasonably for simple molecular sys-

tems, but it is known to have convergence problems when more complicated systems

are analyzed. This can only be remedied by calculating the required gradient of the

spread functional without any simplification, thus allowing the iterative calculation

of maximally-localized orbitals with very efficient optimization schemes (e.g. con-

jugate gradient [50] and the direct inversion in the iterative subspace [51] method).

Comparisons of the efficiency of the aforementioned optimization schemes to the

well known Jacobi optimization procedure is made.
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The present methodology can be straightforwardly generalized to finite (non-periodic)

systems, thus providing a tool for Boys-Foster localization [40]. Furthermore we ap-

ply our optimization scheme also to the Pipek-Mezey localization [41] which is based

on Mulliken population analysis.

4.2 Derivation of the Functional

We begin by reviewing the work of Resta [49]. In his treatment, the fundamen-

tal object for studying localization of an electronic state within Born-Von Karman

boundary conditions is the dimensionless complex number,

z =
∫
L
dx exp(i2πx/L) |ψ(x)|2 . (4.1)

Here, L is the linear dimension, and ψ(x) denotes the wavefunction. By considering

the definition of the spread of the wavefunction to be Ω = 〈x2〉 − 〈x〉2, where 〈· · ·〉
denotes an expectation value, Resta has shown that to O(1/L2) the functional for

the spread in one-dimension to be,

Ω =
1

(2π)2
ln |z|2. (4.2)

One goal of this study is to generalize Eq. (4.1) to three-dimensions and obtain

the appropriate generalization of Eq. (4.2). Thus, we choose to study the following

dimensionless complex number within Born-Von Karman boundary conditions,

zI =
∫
V
dr exp(iGI · r) |ψ(r)|2 . (4.3)

Here, I labels a general reciprocal lattice vector, GI = lIb1 +mIb2 + nIb3, where

bα are the primitive reciprocal lattice vectors, the integers l, m, and n are the

Miller indices, V is the volume of the supercell, and ψ(r) denotes the wavefunction.

We must find an appropriate function of the zI ’s that gives the three dimensional

spread in the case of an arbitrary simulation cell. We proceed by noting that in

a molecular dynamics simulation the cell parameters (primitive lattice vectors) to

describe systems of general symmetry are given by a1, a2 and a3. It is convenient
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to form a matrix of these cell parameters,
↔
h= (a1, a2, a3) where the volume V of

the simulation cell is given by the determinant of
↔
h. It is also very useful to define

scaled coordinates, s =
↔
h
−1 · r that lie in the unit cube. In molecular dynamics

simulations, this allows one to perform periodic boundary conditions for systems

with general symmetry by first transforming to the unit cube, performing cubic

periodic boundary conditions, and transforming back to the general cell with the

action of
↔
h [52]. One can also compute the reciprocal space vectors for systems of

general symmetry with knowledge of the matrix of cell parameters. Thus, the I-th

reciprocal lattice vector,

GI = 2π
(↔
h
−1

)T

· ĝI . (4.4)

Here, the superscript T denotes transposition, and ĝI = (lI , mI , nI) is the I-th Miller

index. We then substitute this expression into Eq. (4.3) and use the definition of r

to obtain,

zI = det
↔
h

∫ 1

0
ds exp

(
i2πĝT

I · s
)
|ψ(↔h · s)|2 . (4.5)

Note that the exponential in Eq. (4.5) is independent of any coordinate system.

Following Resta [49] we can write the electron density in terms of a superposition of

localized density and its periodic images, |ψ(↔h · s)|2 = ∞∑
m̂=−∞

nloc(
↔
h · s− ↔

h · s0−
↔
h

· m̂). Here m̂ is a vector of integers and
↔
h · s0 is the center of the distribution such

that
∫∞
−∞ ds

↔
h · s nloc(

↔
h · s) = 0. Using the Poisson summation formula [53], we

rewrite Eq. (4.5),

zI = exp
(
i2πĝT

I · s0
)
n̂loc(−2πĝT

I ·
↔
h
−1
) , (4.6)

where n̂loc denotes the Fourier transform of nloc. Furthermore, since we are con-

sidering nloc to be localized, its Fourier transform is smooth over reciprocal dis-

tances and we can be assured that it is well represented about ĝI = 0. We expand

n̂loc(−2πĝT
I ·

↔
h
−1
) to second order, obtaining,

n̂loc(−2πĝT
I ·

↔
h
−1
) = 1+

∑
α

ĝα,I
∂n̂loc

∂ĝα,I
|ĝI=0+

1

2

∑
α,β

ĝα,I ĝβ,I
∂2n̂loc

∂ĝα,I∂ĝβ,I
|ĝI=0+. . . . (4.7)
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The second term in Eq.(4.7) is zero given our imposed condition 〈↔h · s〉 = 0. Thus,

we are left with,

n̂loc(−2πĝT
I ·

↔
h
−1
) = 1− (2π)2

2
V

∑
α,β

ĝα,I ĝβ,I

∫ ∞

−∞
ds sαsβ nloc(

↔
h · s) . (4.8)

Combining Eq. (4.8) and Eq. (4.6), we obtain,

1− |zI | = V
(2π)2

2

∑
α,β

ĝα,I ĝβ,I

∫ ∞

−∞
ds sαsβ nloc(

↔
h · s) . (4.9)

Keeping in mind that
∫∞
−∞ ds

↔
h · s nloc(

↔
h · s) = 0, one can define the spread of the

electronic distribution for the case of a general box through,

〈r2〉 − 〈r〉2 = 〈
(↔
h · s

)2

〉 = ∑
α,β

gαβ V
∫ ∞

−∞
ds sαsβ nloc(

↔
h · s) . (4.10)

Here, gαβ =
∑

µ

↔
h
T

αµ

↔
hµβ can be thought of as a metric tensor to describe the

corresponding distances in the unit cube. Eq. (4.10) shows us exactly how the length

scales are built into the spread through the metric tensor. From direct comparison

of Eq. (4.9) and Eq. (4.10) we see that for supercells of general symmetry we need

to choose linear combinations of ĝα,I ĝβ,I that reproduce the metric tensor, gαβ.

However, as stated earlier, ĝα,I are dimensionless numbers. Thus, an appropriate

generalization takes the form of a sum rule,

gαβ =
∑
I

ωI ĝα,I ĝβ,I . (4.11)

Here, ωI are the “weights” with the appropriate dimensions to be determined in ap-

pendix 4.6.1. Thus, it should also be clear that gαβ will have at most six independent

entries (for triclinic symmetry) and thus a maximum of six weights are needed. It is

interesting to note that by multiplying Eq. (4.11) on the left and right hand sides by
↔
h

−1

and using the definition of GI , one will recover the rule used by Silvestrelli [47]

and by Marzari and Vanderbilt [44]. Finally, we generalize to more than one state,

|ψ〉 → |ψn〉 and the desired expression for the spread, Ω in a supercell of general

symmetry is,

Ω =
2

(2π)2

Nstates∑
n

∑
I

ωI(1− |zI,n|) +O(2πĝT
I ·

↔
h

−1
)2
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zI,n =
∫
V
dr exp(iGI · r) |ψn(r)|2 , (4.12)

where Eq. (4.11) determine the GI .

At this point it is useful to make contact with other spread formulas that are present

in the current literature. Following Resta’s derivation one finds the formula [49],

that in our notation reads,

Ω = − 1

(2π)2

Nstates∑
n

∑
I

ωI log |zI,n|2 , (4.13)

with zI,n defined as above. Eq. (4.13) is obtained by inserting Eq. (4.8) into Eq. (4.6),

taking the log of the absolute value and expanding to consistent order.

Silvestrelli[47] on the other hand uses (again, in our notation),

Ω =
1

(2π)2

Nstates∑
n

∑
I

ωI(1− |zI,n|2) , (4.14)

with a similar definition for zI,n. Obviously Eq. (4.14) is obtained from Eq. (4.13)

by an expansion of the log.

At first glance, it seems confusing that there are different definitions for the spread.

Admittedly, one has to keep in mind that all formulae are only valid up to the or-

der given in Eq. (4.12). Thus, although different, they are consistent and there is

no fundamental reason to choose one definition of the spread over another. Con-

sequently, we compare in sec. 4.4 the spreads of various model systems using all

different definitions.

One can also derive a general expression for the expectation value of the periodic

position operator for computing the center of the localized function. Recall, that for

a cubic simulation supercell the expectation value of the position operator is given

as,

rα,n = − L

2π
Im log zα,n

zα,n =
∫
V
dr exp(igα · r) |ψn(r)|2 , (4.15)
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where ĝ1 = (1, 0, 0), ĝ2 = (0, 1, 0), and ĝ3 = (0, 0, 1), and Im denotes the imaginary

part. Again, the salient feature of Eq.(4.15) is that the expectation value of the

exponential is invariant with respect to the choice of cell. Thus, a general equation

for the expectation value of the position operator in supercells of arbitrary symmetry

is,

rα,n = −∑
β

↔
hαβ

2π
Im log zα,n . (4.16)

Having established the definition of the spread formulae in the context of WF’s we

proceed with a detailed description of their computation.

4.3 A Generalized Localization Procedure

The mathematical problem which defines the localization procedure is to find the

unitary transformation, U on the orbitals,

|ψ̃n〉 =
∑
i

Uin|ψi〉, (4.17)

that simultaneously minimizes the spread functional, Ω. To present a general for-

mulation it is convenient to work with a generalized form,

Ω =
∑
n

∑
I

f(|zI,n|2)

zI,n = 〈ψn|OI |ψn〉 , (4.18)

where f and OI denote an appropriate function and operator.

If we neglect the weights and constants in favor of simplicity, we obtain the different

spread functionals of the last section, defined through Eq. (4.12), Eq. (4.13) and

Eq. (4.14) by setting,

OI = exp(iGI · r)

f1(|zI,n|2) =
√
|zI,n|2 = |zI,n| ,

f2(|zI,n|2) = log(|zI,n|2) ,
f3(|zI,n|2) = |zI,n|2 . (4.19)
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The values of Index, I will range at most from one to six. It is important to notice

that maximizing Eq. (4.18) is equivalent to minimizing the spread functional.

At this point it is useful to make the connection with methods used in traditional

applications of quantum chemistry. Due to its general form, Eq. (4.18) is also suited

for finite systems. The Boys-Foster and the Pipek-Mezey method [40,41], which are

widely used to obtain localized molecular orbitals (MO) in quantum chemistry, can

both be formulated by working with f3. Using MO’s instead of BO’s we define the

operator, OI in Eq. (4.19) for the Boys-Foster and Pipek-Mezey scheme respectively

as,

OI = rI or OI =
∑
µ∈I

1

2
{|µ̃〉〈µ|+ |µ〉〈µ̃|} . (4.20)

Here, rI denotes the conventional position operator, I runs from one to the number

of atoms, {|µ〉, µ ∈ I} denotes the atomic basis set of atom I, and |µ̃〉 = ∑
ν
S−1
νµ |ν〉,

where S is the overlap matrix of the atomic basis set.

While the Boys-Foster method minimizes the total spread, Ω = 〈r2〉n − 〈r〉2n (and

hence maximizes 〈r〉2n [40]), the Pipek-Mezey method is different and warrants some

explanation. The projection operator in Eq. (4.20) used by Pipek and Mezey (PM)

is closely related to the Mulliken population analysis [41]. In fact, maximizing the

PM functional corresponds to a minimization of the number of atoms over which

an orbital is spread. The popularity of the PM functional originates from two

sources. First, it’s very easy to implement and leads to a fast algorithm when

combined with the linear combination of atomic orbitals method. Second, the PM

functional, unlike the Boys-Foster method, preserves the σ - π separation of double

bonds. This picture of double bonds is in chemistry usually preferred over the τ

(banana) bond picture generated by the Boys-Foster localization procedure. As an

illustration we have computed in figure 4.1 and 4.2 the maximally-localized orbitals

of an ethene molecule generated by the Pipek-Mezey and the Boys-Foster localization

procedure. Here, the different symmetry properties of the localization functionals

lead to different types of localized orbitals.

The actual calculation of maximally localized WF’s or maximally localized MO’s
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PM: TYPE 2 PM: TYPE 3

PM: TYPE 1

Figure 4.1: Maximally-localized orbitals of an ethene molecule generated by the

Pipek-Mezey (PM) localization procedure. The PM functional preserves the σ - π

separation of double bonds leading to three different types of localized orbitals.
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B: TYPE 1 B: TYPE 1

B: TYPE 2 B: TYPE 2

Figure 4.2: Maximally-localized orbitals of an ethene molecule generated by the

Boys-Foster (BF) localization procedure. The BF functional results in a τ (banana)

bond picture leading to two different types of localized orbitals.
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within our localization procedure is relatively simple. First, we take the output of

a conventional electronic structure calculation, (BO’s in the periodic, MO’s in the

finite case) choose a spread functional and solve for the unitary transformation pro-

ducing the orbitals that maximize Eq. (4.18). As stated earlier, we have two choices

for spread functionals for finite systems and three choices of spread functionals for

periodic systems. The details of the calculation are described in the following.

One must now focus on the computation of U . To ensure a maximally localized

function, we would like to find an efficient solution to,

∂Ω

∂Uij
= 0, (4.21)

where U is considered to be real since we are working within the Γ-point approxi-

mation. There are two principal alternatives for parameterizing the unitary trans-

formation, U , first as a direct product of elementary plane rotations, and second

as the exponential of an antisymmetric matrix. The first parameterization scheme,

discussed in the next subsection, amounts to the well known Jacobi optimization

procedure for finding eigenvalues of general matrices. The second parameteriza-

tion choice of U , used in our method, is based on the exponential alternative as

investigated in sec. 4.3.2.

4.3.1 Orbital Rotations

The traditional method in quantum chemistry for computing localized MO’s is the

method of two-by-two orbital rotations first introduced by Edmiston and Rueden-

berg [42]. The basic idea of the method is to tackle the problem of finding U by

performing a sequence of consecutive two-by-two rotations among all pairs of or-

bitals. The elementary step consists of a plane rotation where two orbitals i and j

are rotated through an angle, φ. To proceed we select an optimal angle to ensure

that our spread functional, as defined in Eq. (4.18), is iteratively maximized. The

transformed expectation values are denoted with z̃I,i/j and are obtained as,

z̃I,i = cos(φ)zI,i + sin(φ)zI,j , z̃I,j = − sin(φ)zI,i + cos(φ)zI,j . (4.22)
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Thus, combining Eq. (4.22) with Eq. (4.18) it is straightforward to calculate the

change in the functional value, ∆Ω as a function of φ. The most natural way to

obtain the optimal angle which maximizes the change in the functional value is to

compute the derivative of ∆Ω with respect to φ, set it to zero and solve for φ. This

is precisely the way the method of orbital rotations is implemented and an explicit

calculation yields,

tan(4φ) = −a
b
, (4.23)

a = Re[Mij(M̄ii − M̄jj)] , b = |Mij|2 − 1

4
|Mii −Mjj|2 ,

where Mij =
∑

I zI,ij and Re denotes the real part. φ + nπ/4, n ∈ ZZ, are the

solutions of Eq. (4.23) corresponding to maxima and minima. For a maximum the

condition, ∂2∆Ω/∂φ2 = 16 b cos(4φ)− 16 a sin(4φ) < 0 has to be fulfilled.

Unfortunately there is one severe restriction. Eq. (4.23) is only valid in the case,

f3(x) = x, namely in connection with the Silvestrelli-Marzari-Vanderbilt, the Boys-

Forster and the Pipek-Mezey functional (see sec. 4.3.2). In the other cases, f1(x) =
√
x (functional of the present work) and f2(x) = log(x) (Resta), no analogous for-

mula is derivable. The reason is that the explicit solution of ∂∆Ω/∂φ = 0 with

respect to φ seems not analytically tractable. Nevertheless, one can still implement

the method of orbital rotations in the above cases by a numerical maximization of

∆Ω as a function of φ using derivative information.

4.3.2 Exponential Representation

The ansatz, |ψ̃n〉 = ∑
i
Uin|ψi〉, where U is an unitary matrix, leads to the transformed

expectation value,

z̃I,n =
∑
ij

U †
inUjnzI,ij , (4.24)

with zI,ij = 〈ψi|OI |ψj〉. As discussed above, we parameterize U = exp(A) as the

exponential of an antisymmetric matrix and calculate the gradient with respect to
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A. Using the chain rule the gradient splits into two pieces,

∂Ω

∂Aij
=

∑
st

∂Ω

∂Ust

∂Ust

∂Aij
=

∑
I,n

∑
st

∂f(|zI,n|2)
∂Ust

∂Ust

∂Aij
. (4.25)

It is worth while to note that only the first piece depends on the type of spread

functional and its evaluation is straightforward,

∂f(|zI,n|2)
∂Ust

= f ′(|zI,n|2) ∂|zI,n|
2

∂Ust

= 2 f ′(|zI,n|2)


∑

i

UinδtnzI,is




∑

kl

UknUlnz̄I,kl


+ c.c. , (4.26)

where z̄ denotes the complex conjugate (c.c.) of z and f ′ is the derivative of f .

Combining Eq. (4.25) and Eq. (4.26) a general form for the gradient is obtained as,

∂Ω

∂Aij

=
∑
st

Mst
∂Ust

∂Aij

=

[
MT ∂Ust

∂Aij

]
, (4.27)

where M is defined via Eq. (4.26). However, the Pipek-Mezey functional has to

be treated with special care. Since the summation index, I runs from one to the

number of atoms of the system, one has to use the separability of the corresponding

operator, OI to calculate M in an efficient way.

The calculation of ∂Ust/∂Aij is more subtle. We have to calculate the derivative of a

matrix function, here the exponential function, U = exp(A) with respect to A. This

can be done by writing the matrix function in an alternative way using a complex

contour integral [25],

∂U

∂Aij
=
∂ exp(A)

∂Aij

=
1

2πi

∂

∂Aij

∮
exp(z)(z1 −A)−1dz

=
1

2πi

∮
exp(z)(z1 −A)−1 (1ij − 1ji) (z1 −A)−1dz

= R† 1

2πi

∮
exp(z)(z1 − Λ)−1R(1ij − 1ji)R†(z1 − Λ)−1dz R . (4.28)

1 denotes the identity matrix, (1ij)kl = δkiδlj , R is the eigenvector matrix of A with

eigenvalues λk and Λkl = λkδkl. Carrying out the integration over z, one obtains,

1

2πi

∮
exp(z)

(z − λk)(z − λl)
dz =



eλk , λk = λl ,

eλk−eλl
λk−λl

, λk �= λl ,
(4.29)
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Performing some simple algebraic transformations, Eq. (4.27) becomes,

∂Ω

∂Aij

= Tr
[
MTR†{C ij , B}R

]

= (R†{RMTR†, B}R)ji − (R†{RMTR†, B}R)ij , (4.30)

where theBkl components are defined through Eq. (4.29), {C ij , B} denotes a component-

wise matrix multiplication and C ij = R(1ij − 1ji)R† . The final transformation in

Eq. (4.30) is verified by inserting the explicit definition of the matrix 1ij.

Using the results above we have now a very useful scheme to optimize Ω by iterating

the following steps:

• Start with an arbitrary matrix, e.g. A = 0.

• Diagonalize A to obtain the eigenvector matrix R and the diagonal matrix Λ

with the eigenvalues as diagonal elements.

• Calculate the unitary matrix via U = exp(A) = R†eΛR.

• Compute M and B defined in Eq. (4.27) respectively (4.29).

• Calculate the gradient according to Eq. (4.30).

• Update A and repeat process.

Within the above scheme the desired gradient is obtained analytically and we are

able to combine our iterative localization procedure with gradient methods devel-

oped to accelerate convergence.

In addition we have calculated a simplified expression for the second derivative to

be used as a preconditioner for a further speed up of the iterative localization (see

Appendix 4.6.2). There we also compute the gradient at A = 0 which is equivalent

to the gradient used by Sivestrelli et al. [46,47]. Sec. 4.4 is devoted to a detailed

comparison of the methods presented in this section.
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Symmetry Functional dC1 ΩC1 dC2 ΩC2 dL1 ΩL1 dL2 ΩL2

PW 0.53 0.72 0.53 0.72 0.30 0.75 0.30 0.75

R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.76simple cubic

SMV 0.53 0.71 0.53 0.71 0.30 0.75 0.30 0.75

PW 0.53 0.72 0.53 0.72 0.30 0.75 0.30 0.75

R 0.53 0.72 0.53 0.72 0.31 0.76 0.30 0.76orthorhombic

SMV 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.75

PW 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.74

R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.75fcc

SMV 0.54 0.70 0.54 0.70 0.30 0.74 0.30 0.73

PW 0.53 0.73 0.53 0.72 0.31 0.77 0.30 0.76

R 0.53 0.73 0.53 0.72 0.30 0.78 0.30 0.76bcc

SMV 0.53 0.73 0.53 0.72 0.30 0.77 0.29 0.76

PW 0.53 0.74 0.53 0.72 0.31 0.78 0.30 0.77

R 0.53 0.73 0.53 0.72 0.30 0.78 0.30 0.76hexagonal

SMV 0.54 0.74 0.53 0.72 0.31 0.78 0.30 0.77

PW 0.53 0.71 0.53 0.71 0.31 0.75 0.30 0.75

R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.76triclinic

SMV 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.75

Table 4.1: Distances , with respect to the position of the oxygen ion, and spreads

of the two covalent orbital WF’s (dC1/2 and ΩC1/2 in rA)) and the two lone-pair

WF’s (dL1/2 and ΩL1/2 in rA) of the isolated water molecule . Data have been

computed for different supercell symmetries, using the functional of present work

(PW,Eq. (4.12)), the Resta functional (R,Eq. (4.13)) and the Silvestrelli-Marzari-

Vanderbilt functional (SMV,Eq. (4.14)). For details see text.
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4.4 Results and Discussion

The iterative localization algorithm, presented in this work, has been implemented

in the GAPW method (see section 1.3) and in the CPMD code [54] which is based

on a plane wave expansion. Both programs are suited for periodic and for finite

systems (see section 3).

One of the goals of our work is to make a comparison of the different spread function-

als proposed in the literature, including the one derived in this work for supercells of

general symmetry. In order to perform a comparison, we have chosen a simple sys-

tem which has been previously studied using different spread functionals. Thus, we

consider the case of one isolated water molecule periodically replicated in different

supercell symmetries (simple cubic, orthorhombic, hexagonal, fcc, bcc, hexagonal

and triclinic) where the same cell volume is maintained [55]. It is clear that the

centroid of the localized functions (Eq. (4.16)) should remain in the same positions

relative to the atoms for all supercells considered (ignoring the negligible effects of

distortion from the periodic images for the cell parameters chosen). Following the

work of Ref. [47] we use the general form of the functional (Eq. (4.18)), and specifi-

cally the spread functionals given by Eqs. (4.12), (4.13) and (4.14) for the iterative

maximization.

Table 4.1 reports our results for the distances between the oxygen atom and the

centroids of the four different WF’s (calculated using Eq. (4.16)), and the spreads

for the different supercell symmetries. No systematic differences in the distances

are recognizable. Besides numerical noise, all considered spread functionals lead,

independent from the choice of the supercell, to the same position of the centroids

relative to the oxygen atom. This fact is in contrast to the calculated spread,

here the distinct definitions result in slightly different values, even though one finds

qualitative agreement.

After having compared our functional to previous work in literature, we examine

possible ways to improve the iterative localization beyond a simple steepest descent

scheme. To achieve a faster convergence the following optimization methods, in
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Fun. SD CG CG+PR DIIS OR

Formamide (9)

BF 394 62 52 48 19

PM 187 39 36 30 24

Pentane (16)

BF 57 26 25 24 34

PM 26 18 15 16 30

Naphtalene (24)

BF 614 104 76 75 62

PM 172 47 39 31 58

Histidine (30)

BF 2036 182 156 117 77

PM 365 90 70 66 66

Testosterone (58)

BF 1444 236 202 122 152

PM 567 77 73 54 160

Table 4.2: Number of iteration steps to reach convergence for different optimization

methods. Convergence is assumed if the relative value of the spread functional is

decreasing by less than 10−8 for successive iteration steps. The considered methods

are a steepest descent (SD) with line search procedure , the Polak-Ribière conju-

gate gradient method (CG), the Polak-Ribière conjugate gradient method with a

preconditioner (CG+PR) the direct inversion in iterative subspace method (DIIS)

with a preconditioner and the orbital rotation method (OR). One step of OR is

about three times more expensive in CPU time compared to the other methods. BF

denotes the Boys-Forster, PM the Pipek-Mezey functional. The number of double

occupied orbitals of the respective system is added in parenthesis.
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Fun. SD CG CG+PR DIIS OR

Si8 (16)

PW 28 19 19 19 25

R 29 19 19 19 37

SMV 28 19 18 18 32

(H2O)8 (32)

PW 323 60 44 42 67

R 740 89 72 61 92

SMV 248 71 61 53 87

C32 (64)

PW 216 52 38 32 109

R 301 73 66 52 141

SMV 197 57 39 35 184

(SiO2)16 (128)

PW 5199 479 253 178 261

R 8634 2932 478 394 307

SMV 3348 415 210 172 375

Table 4.3: Number of iteration steps to reach convergence for different optimization

methods. Convergence is assumed if the relative value of the localization functional

is decreasing by less than 10−8 for successive iteration steps. The considered methods

are a steepest descent (SD) with line search procedure, the Polak-Ribière conjugate

gradient method (CG), the Polak-Ribière conjugate gradient method with a precon-

ditioner (CG+PR), the direct inversion in iterative subspace method (DIIS) with a

preconditioner and the method of orbital rotations (OR). One step of OR is about

three times more expensive in CPU time compared to the other methods. PW de-

notes the functional of present work (Eq. (4.12)), R the Resta functional (Eq. (4.13))

and SMV the Silvestrelli-Marzari-Vanderbilt functional (Eq. (4.14)). The number

of double occupied orbitals of the respective system is added in parenthesis.
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connection with the scheme described in sec. 4.3 are implemented:

• A steepest descent (SD) with line search procedure performed in the following

way. After bracketing the maximum, a parabolic fit through three points is

carried out. The SD serves as a benchmark, since one can combine the method

also with the approximate gradient (Eq. (4.33)).

• The Polak-Ribière conjugate gradient method (CG) [50].

• The Polak-Ribière conjugate gradient method in combination with a precon-

ditioner (CG+PR). Close to the maximum we replace the pure gradient g

by H−1g where H−1 denotes the inverse of the approximate diagonal Hessian

matrix calculated via Eq. (4.33).

• The direct inversion in the iterative subspace method (DIIS) [51] in com-

bination with a preconditioner. In addition the diagonal approximation of

the Hessian matrix is improved by making use of the information gained by

calculating exact first derivatives at a series of iteration points. In our imple-

mentation the Limited Memory - BFGS method [56] is used which directly

updates the inverse of the Hessian matrix.

• Method of orbital rotations (OR) as discussed in sec. 4.3.1.

To study the effect of the different optimization methods on the convergence of our

scheme we consider four periodic systems, using the functional proposed in this work

(PW,Eq. (4.12)), the Resta functional (R,Eq. (4.13)) and the Silvestrelli-Marzari-

Vanderbilt functional (SMV,Eq. (4.14)) and five finite systems using the Pipek-

Mezey (PM) and the Boys-Foster (BF) functional. As finite systems we have cho-

sen the formaldehyde derivate formamide CHONH2 (9), the alkane pentane C5H12

(16), the aromate naphthalene C10H8 (24), the amino acid histidine C6H9N3O2 (30)

and the steroid testosterone C19H28O2 (58). As periodic benchmark systems serve

bulk silicon Si8 (16), bulk water (H2O)8 (32), diamond C32 (64) and β-Cristobalite

(SiO2)16 (128). The number of doubly occupied orbitals is added in parenthesis.
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The criterion used to classify the properties of a given method is as follows, we have

always maintain the same accuracy in convergence and only evaluate the number of

steps required to reach this.

The results of our calculation are summarized in table 4.2 for the finite and in table

4.3 for the periodic systems. Obviously there is a wide range in convergence behavior

depending on the system size but also on the specific chemical properties. Small,

fully saturated systems are easy to localize (Si8,C5H12) and in those cases a steepest

descent scheme is sufficient. However, this is no longer true if one switches to more

complicated systems including electron lone pairs, double bonds or aromatic rings

in connection with an increasing number of orbitals. In these cases, a considerable

gain is obtained using high level optimization methods (CG, CG+PR, DIIS). For

the biggest system we have studied, more than an order of magnitude increase

in convergence speed is observed compared to the steepest descent with line search

procedure. On the other hand the OR scheme, in spite of its simplicity, is remarkably

efficient [57].

It is not surprising that the more sophisticated iterative schemes are more efficient

than the steepest descent procedure. However, for cases where one would like the

WF’s not only for the final configuration, but for evenly sampled times along the

trajectory, an efficient scheme is imperative.

One comment is in order. We find the best convergence using the preconditioned

DIIS scheme. Unfortunately, the method converges to the ’closest’ stationary point

which in many cases is not the global maxima. Thus, it seems more advantageous

to work in a practical implementation with the CG+PR method.

Having finished the methodical part, we look at some applications. The present

methodology has already been employed in different areas of electronic structure

calculations, e.g. in the context of linear scaling methods [58], in a new ab-initio

approach for NMR chemical shifts in periodic systems [59] and as an analysis tool

to study microsolvation and chemical reactivity of sodium and water clusters [60] or

bond breaking by mechanical stress [61]. As a further example how WF’s can serve
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Molecule Type Spread Type Spread Type Spread

Graphite GT 1 0.77 GT 2 1.14 — —

NT 1A 0.80
Nanotube

NT 1B 0.75
— — NT 3 1.65

FT 2A 1.29
Fullerene FT 1 0.82

FT 2B 1.05
— —

Table 4.4: Spreads (in rA) of the different types of maximally-localized Wannier

Functions in graphite, in a (10, 0) zig-zag nanotube and in fullerene C60. Data have

been computed using the Silvestrelli-Marzari-Vanderbilt functional. For details see

text.

to analyze chemical bonding, we turn to the field of carbon nanotubes.

Carbon nanotubes have excited a considerable interest in the condensed-matter and

materials research communities in the last few years, and much experimental and

theoretical work has been devoted to them as prototype of one-dimensional ordered

systems with promising technological applications [62–64]. Classifications of the

tubes as metals or semiconductors were given on the basis of how the underlying

graphite band structure is folded [65,66]. Recently, nanotubes with very small radii

were theoretically studied and it was found that the electronic properties of small

tubes are significantly altered from those obtained by purely folding a graphite sheet

[67]. This is a consequence of strong σ∗-π∗ hybridization due to the effect of the

large curvature. To confirm, at least qualitatively, the aforementioned curvature

effect on nanotubes with small radii, we have depicted in figure 4.3 and 4.4 the

WF’s in graphite and in a (10, 0) zig-zag nanotube. The WF’s are taken from

pseudopotential LDA calculations using the GAPW method.

In graphite, two different types of localized orbitals were found, a σ-type orbital

(GT 1) and a τ -type orbital (GT 2). This banana bond picture generated by the

Silvestrelli-Marzari-Vanderbilt functional corresponds to the more familiar double
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Figure 4.3: Maximally-localized Wannier Functions in graphite. Two different types

of localized orbitals were found: A σ-type orbital (GT 1) and a τ -type (banana-type)

orbital (GT 2). The spreads are given in table 4.4
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Figure 4.4: Maximally-localized Wannier Functions in a (10, 0) zig-zag nanotube.

Three different types of localized orbitals were found: A non-coaxial σ-type orbital

(upper left panel, NT 1A), a coaxial σ-type orbital (lower left panel, NT 1B) and a

third type significantly altered from the τ -type (banana-type) orbital found in figure

4.3 (lower right panel, NT 3). The spreads are given in table 4.4



59

Figure 4.5: Centroids of the maximally-localized Wannier Functions depicted in

figure 4.4. Grey denotes carbon, yellow denotes centroids of type NT 1A, orange

denotes centroids of type ZT 1B and red denotes centroids of type NT 3. From the

red centroids one can see that the localized orbitals of type NT 3 are preferably

located inside the tube.
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bond picture of graphite (compare figure 4.1 and 4.2). Namely, a degenerated σ-

system with conjugated double bonds.

Let us now assume that the (10, 0) zig-zag nanotube is generated simply by rolling

the graphite sheet segment. From the symmetry of the tube, four different types

of localized orbitals are expected. A non-coaxial σ-type orbital, a coaxial σ-type

orbital, a τ -type orbital preferably located inside the tube and a τ -type orbital

preferably located outside the tube. If we compare our expectation with figure 4.4,

we can actually identify a non-coaxial (NT 1A) and a coaxial (NT 1B) σ-type orbital

having different spreads (table 4.4). Obviously, the curvature corresponding to the

non-coaxial direction leads to a delocalization of the NT 1A orbital. Nevertheless,

since NT 1A, NT 1B and GT 1 have comparable spreads and shapes, the curvature

only weakly affects the σ-type orbitals. Contrary to what we expected, figure 4.4

shows no τ -type orbitals, but rather a third type (NT 3) significantly altered from

the GT 2 τ -type orbital found in figure 4.3. Two main features are apparent. Most

of the NT 3 orbital is located inside the tube (figure 4.5) and the orbital is much

more delocalized than a GT 2 τ -type orbital (table 4.4). Thus, by plotting the

WF’s we are able to visualize how the electronic properties of a small nanotube are

modified from those generated simply by folding a graphite sheet. A careful analysis

shows that these modifications are mainly due to a strong, curvature-induced σ∗-π∗

hybridization [67].

In addition we have computed the WF’s in fullerene C60 (figure 4.6). Three different

types of localized orbitals were found. A σ-type orbital (FT 1), and two τ -type

orbital preferably located inside (FT 2A) respectively outside (FT 2B) the fullerene.

Although the curvature leads to a slight delocalization of the FT 1 orbital and to a

splitting of the τ -type orbital into a less localized endohedral FT 2A orbital and a

more localized exohedral FT 2B orbital (table 4.4), the WF’s compare favorably with

those found in graphite. The result suggests that the chemical behavior of fullerene

C60 resembles graphite, but with the peculiarity that the spherical structure allows

exohedral and endohedral chemistries to be distinguished.
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Figure 4.6: Maximally-localized Wannier Functions in fullerene C60. Three different

types of localized orbitals were found: A σ-type orbital (upper left panel, FT 1),

a τ -type (banana-type) orbital preferably located inside the fullerene (FT 2A) and

a τ -type orbital preferably located outside the fullerene (FT 2B). The spreads are

given in table 4.4
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4.5 Conclusions

We have generalized the work of Resta to three dimensions to derive a spread func-

tional as a starting point to calculate maximally-localized Wannier functions in

simulation cells of general symmetry suitable for periodic systems in the Γ-point

approximation. Thus, one can easily perform a calculation in a supercell with arbi-

trary symmetry with knowledge of only the cell parameters.

The functional turns out to be equivalent to others discussed in the literature, it

differs, besides its more general form, only in the higher-order terms from either the

Silvestrelli-Marzari-Vanderbilt or Resta proposals.

In addition, we have derived an iterative scheme to obtain maximally-localized or-

bitals. The method is also suited for finite systems and combination with very

efficient optimization procedures is possible.

To compare the efficiency of our approach with the standard method in quantum

chemistry proposed by Edmiston and Ruedenberg [42], we generalize the method of

orbital rotations to a wider class of spread functionals.

Test calculation show that with increasing system size and chemical complexity the

use of high level optimization methods lead to a considerably faster convergence,

for the biggest systems the performance is improved by more than a factor of ten.

On the other hand, the simple orbital rotation scheme is surprisingly efficient. With

respect to an practical implementation both methods have advantages, the orbital

rotation method is easier to implement, nevertheless the efficiency is fairly good,

our method is more general by being, at least for larger systems, clearly faster.

As an application we have computed the maximally-localized Wannier functions of

the (10, 0) zig-zag nanotube. By comparing the results with the Wannier functions

of graphite and of the fullerene C60, we are able to provide an intuitive picture how

the electronic properties of nanotubes with very small radii are significantly altered

from a graphite sheet by curvature effects.
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4.6 Appendix

4.6.1 Determination of the Weights

In this appendix we determine the weights, ωI as defined in the sum rule Eq. (4.11)

for supercells of general symmetry. Recall that the metric,
↔
g will contain at most

six independent entries as defined by the case of least symmetry, triclinic. Thus,

Eq. (4.11) is a linear set of six equations with six unknowns. We have freedom to

choose the six Miller indices, ĝI of which we are to take the linear combinations of.

For computational convenience of computing zi we choose the first six indices that

take you from one to the next point in the Brillouin zone. Namely, ĝ1 = (1, 0, 0),

ĝ2 = (0, 1, 0), ĝ3 = (0, 0, 1), ĝ4 = (1, 1, 0), ĝ5 = (1, 0, 1), ĝ6 = (0, 1, 1). With this

choice of ĝi the explicit system of equations based on Eq. (4.11) takes the following

simple form, 


1 0 0 1 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 1 0 1

0 0 0 0 0 1

0 0 1 0 1 1







ω1

ω2

ω3

ω4

ω5

ω6




=




g11

g12

g13

g22

g23

g33




(4.31)

Thus, the solution to Eq. (4.31) yields the following set of general weights,

ω1 = g11 − g12 − g13

ω2 = g22 − g12 − g23

ω3 = g33 − g13 − g23

ω4 = g12

ω5 = g13

ω6 = g23 (4.32)

Eq. (4.32) indeed reduces to the specific cases computed in Ref.[47]. However, here,

the case for triclinic symmetry is also included. Thus, with knowledge of the cell
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parameters, in conjunction with Eq. (4.12) allows one to compute the maximally

localized WF.

4.6.2 Approximate Expressions for the Gradient and the Second Deriva-

tive

We can also calculate the second derivative analytically by the same methods as

described in sec. 4.3. However, for our purposes an approximate solution is sufficient.

The simplest approximation is to neglect all off-diagonal elements, thus allowing for

an easy matrix inversion as needed in optimization schemes. This approximation is

justified near the maximum where the Hessian matrix is diagonal dominant.

Further we can calculate the diagonal elements in an approximate way too. Using a

power series expansion of the exponential function and exchanging limit and sum-

mation, it is easy to show that lim
A→0

exp(±A) = 1, lim
A→0

∂ exp(±A)/∂Aij = ±(1ij−1ji)

and lim
A→0

∂2 exp(±A)/∂A2
ij = (1ij − 1ji)2 = −(1ii + 1jj). With this we get,

lim
A→0

∂2Ω

∂A2
ij

=− 4
∑
I

(
|zI,i|2f ′(|zI,i|2) + |zI,j|2f ′(|zI,j|2)

)

+ 16
∑
I

(
Re[zI,ij z̄I,j]

2f ′′(|zI,j|2) + Re[zI,ij z̄I,i]
2f ′′(|zI,i|2

)
,(4.33)

ending up with an expression for the second derivative in the limiting case, A→ 0. In

order to use Eq. (4.33), we first perform an optimization until close to the maximum,

then we update the expectation values via Eq. (4.24) and restart the iteration with

A = 0. At that point Eq. (4.33) is a reasonable estimate of the diagonal elements of

the second derivative and we can use the inverse of the approximate diagonal matrix

as a preconditioner.

We can also calculate the gradient in the same limit,

lim
A→0

∂Ω

∂Aij
= 4

∑
I

(
Re[zI,ij z̄I,j]f

′(|zI,j|2)− Re[zI,ij z̄I,i]f
′(|zI,i|2

)
. (4.34)

Eq. (4.34) amounts to the gradient used by Sivestrelli et al. [46,47] for general func-

tionals. In each iteration step one has to update the expectation values via Eq. (4.24)
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and to restart with A = 0. This amounts to a redefinition of the optimization pa-

rameters, making the use of global schemes impossible. In addition, to update the

expectation values means to diagonalize A in order to obtain the unitary matrix,

U = exp(A). Since the diagonalization is also the most time consuming step in the

calculation of the full gradient, the use of Eq. (4.30) is in any case advantageous.



66

5 Polarized Atomic Orbitals for Linear Scaling

Methods

5.1 Introduction

The GAPW method has been introduced in detail in section 1.3. The essential fea-

ture was to achieve a computational cost for the calculation of the Kohn-Sham

matrix that scales with the system size N as O(N log N). Therefore, the rate-

determining step for GAPW calculations in the large molecule limit is the density

update procedure, which is conventionally done as a diagonalization. Although the

diagonalization step has a very small prefactor, the procedure dominates the overall

time scaling for large systems due to its cubic dependence on system size. Therefore,

interest in the search for more efficient update methods has been strongly increasing.

Recently, Lee and Head-Gordon introduced the polarized atomic orbital (PAO)

method [70] to construct minimal basis sets optimized in the molecular environ-

ment. A flexible PAO basis set with a dimension typically equal to the size of a

minimal basis, is formed from atom-centered linear combinations of a larger set of

atomic orbitals. While atom-optimized minimal basis sets, e.g. of the STO-nG

type, are often performing poorly in practical calculations, the PAO’s derive their

flexibility from the fact that they can adapt to the molecular environment by the

admixture of higher angular momentum functions.

From a computational point of view, PAO’s have the attractive feature of greatly

reducing the number of independent variables to be determined during a density up-

date. This offers the possibility for studying large systems currently intractable with

larger than minimal basis sets, while retaining a considerable amount of flexibility

in the basis set.

Besides, being considerably less memory and CPU intensive, the PAO method is

also potentially useful in combination with linear scaling density update methods.

These O(N) methods, are based either on localized orbitals [71,72], or a sparse
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density matrix without any explicit construction of orbitals [73–75]. Although many

algorithms have been proposed, the use of linear scaling density update methods

within HF or DFT is not yet widespread. One of the major drawbacks of linear

scaling approaches are numerical instabilities resulting from ill-conditioned overlap

matrices encountered when large nonorthogonal basis sets are used. PAO’s provides

a possible solution to this problem. We find that the condition number of the PAO

overlap matrix is independent from the condition number of the underlying extended

basis set and consequently no numerical instabilities are encountered.

The outline of the remainder of this paper is as follows. In the first section we propose

a modified version of the PAO method of Lee and Head-Gordon. After deriving

all expressions required to implement this approach, we compare its accuracy and

performance with extended basis set calculations. Next, the condition number of the

PAO overlap matrix is examined to validate the usefulness of a combined PAO-O(N)

method for large nonorthogonal basis sets. Finally, we use the Chebyshev polynomial

expansion method [73], the conjugate gradient density matrix search [74] and the

canonical purification of the density matrix [75] to implement the combined method

and a series of benchmark calculations is presented.

5.2 Polarized Atomic Orbital Method

Polarized atomic orbitals (PAO’s) are a small set of basis functions variationally

optimized during an iterative SCF calculation. The PAO basis is defined as a linear

transformation of an underlying extended basis set. The transformation is strictly

limited to atom-centered linear combinations of basis functions. In other words,

only basis functions from the same atom are allowed to mix,

|φ̃i〉 =
∑
j

Bji|φj〉 , (5.1)

where i and j belong to the same atom. Here, |φ〉 denotes an atomic orbital basis

functions, B is the transformation from the extended to the PAO basis set and

the tilde distinguishes throughout this paper quantities related to the PAO basis



68

set. As mentioned above, B is a strictly atom-centered block diagonal matrix. The

complement of the PAO basis set within the extended basis set will be called the

excluded functions.

Using Eq. (5.1), it is straightforward to compute the one-particle density matrix in

the extended basis as a function of the PAO density matrix and the transformation

matrix B,

P = BP̃BT . (5.2)

We proceed by writing the transformation matrix as a product of an atom-centered

orthogonalization term and an atom-centered unitary transformation,

Bij =
∑
k

NikUkj =
∑
k

T
− 1

2
ik Ukj , (5.3)

where T is the atom-centered overlap matrix of the atomic orbitals.

Up to now we have just established the fundamental definitions of the PAO method

given by Lee and and Head-Gordon [70]. Next, to motivate our modified approach,

we briefly review their scheme to solve for the PAO’s.

The unitary matrix U is parameterized as the product of a series of two-by-two

rotation matrices, each of which is characterized by a single rotation angle that

mixes a PAO with an excluded function centered at the same atom. An energy

functional is chosen,

Ω = Tr [(3PSP − 2PSPSP )H ] , (5.4)

identical to that used in the conjugate gradient density matrix search for non-

orthogonal basis sets [76]. H is the Hamiltonian matrix and S is the overlap matrix.

Inserting Eq. (5.2) into Eq. (5.4) the energy functional becomes a matrix function

of the PAO density matrix and the transformation matrix, i.e. Ω = f(B, P̃ ). Mini-

mizing Ω has to be done with respect to the degrees of freedom that define P̃ and

B, namely the matrix elements P̃ij and the rotation angles of the two-by-two ro-

tation matrices. During the minimization process a Newton-Raphson quadratically

convergent scheme is used. The basics of this scheme are:
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• The PAO density matrix and the transformation matrix are updated simulta-

neously by minimizing an unconstraint energy functional.

• All equations are defined and manipulated using a non-orthogonal basis. There-

fore, the authors employ tensor methods for dealing with minimization prob-

lems involving non-orthogonal basis sets.

• The use of a Newton-Raphson quadratically convergent scheme requires the

calculation of the second derivative matrix with respect to the degrees of free-

dom.

In the following we propose an alternative to this scheme that builds on existing

methods for solving the Hartree–Fock or Kohn–Sham equations.

• We split the optimization process into two parts. Optimization of the transfor-

mation matrix is, at each step, accompanied by an optimization of the density

matrix (DM) in the current PAO basis. The calculation of the density ma-

trix is performed in the PAO basis and can be done either by conventional

methods (e.g. diagonalization) or linear scaling methods methods mentioned

in section 4.1. Thus, this scheme allows for great flexibility and requires only

minor changes in existing implementations.

• We avoid a minimization process involving non-orthogonal basis sets by the

following procedure. During the MO/DM update we transform both the

MO’s/DM and the Hamiltonian matrix into an orthonormal basis. Conse-

quently, no tensor manipulation is employed throughout the paper.

• The transformation matrix is updated by minimizing a constraint energy func-

tional. The use of a conjugate gradient scheme avoids the cumbersome ma-

nipulation of second derivative informations as needed in a Newton-Raphson

scheme.

Having established our modifications we proceed with a detailed description of the

computation based on Eqs. (5.1-5.3). Starting point is a parameterization of the
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block diagonals of the unitary matrix, UI = exp(AI), as the exponential of an

antisymmetric matrix. There is no loss in generality in parameterizing AI as done

in Eq. (5.5),

AI =


 0 XI

−XT
I 0


 , (5.5)

where XI is an nI × (mI − nI) matrix. Here nI denotes the number of PAO basis

functions and (mI−nI) is the number of excluded basis functions centered at atom I.

The special form of AI ensures that the energy functional defined in Eq. (5.6) is

invariant with respect to unitary rotations within the PAO and the excluded basis

set.

The density matrix in the PAO basis is calculated by minimizing the energy func-

tional Ω given in matrix representation

Ω = Tr[P̃BTHB] + Tr[Λ̃(P̃ − P̃BTSBP̃ )] , (5.6)

where Λ̃ is the Lagrangian multiplier matrix corresponding to the idem-potency

constraint.

Prior to an PAO calculation, an initial guess for the transformation matrix has

to be made. If no information from prior calculations is available, we obtain a

transformation matrix by diagonalizing the atom-centered block-diagonals of H .

Given a transformation matrix B, the next step is to compute a variational density

matrix, either from converged MO’s or by solving directly for the PAO density matrix

without any explicit construction of orbitals. If we transform the Hamiltonian matrix

and the overlap matrix into the PAO basis, H̃ = BTHB and S̃ = BTSB, Eq. (5.6)

can be rewritten and we have to minimize,

Ω = Tr[P̃ H̃ ] + Tr[Λ̃(P̃ − P̃ S̃P̃ )] , (5.7)

which leads to a generalized eigenvalue problem, H̃C̃ = S̃C̃Λ̃. The alternative

way, to solve directly for the PAO density matrix using linear scaling methods, is

discussed in section 5.3. It is important to notice that both procedures are only in

the minimal basis.
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In the optimization cycle for the PAO basis the derivative of Ω, as defined in

Eq. (5.6), with respect to the degrees of freedom of B, namely the non–zero matrix

elements of AI,ij are needed. In the following we drop the additional atom index I.

Using the chain rule the gradient splits into two pieces,

∂Ω

∂Aij

=
∑
st

∂Ω

∂Ust

∂Ust

∂Aij

. (5.8)

Inserting B = NU into Eq. (5.6), the evaluation of the first part leads to,

∂Ω

∂Ust
= 2 [ (NTHBP̃ )st − (NTSBP̃ H̃P̃ )st ] , (5.9)

where the Lagrangian multiplier matrix has been eliminated from Eq. (5.9) by us-

ing the convergence of the PAO density matrix and the idem-potency constraint.

The convergence of the PAO density matrix ∂Ω
∂P̃

= 0 eliminates terms from the un-

known implicit dependence of the PAO density matrix with respect to the unitary

transformation, which would otherwise enter Eq. (5.9) through ∂Ω
∂P̃

∂P̃
∂U

.

The calculation of ∂Ust/∂Aij is less straightforward. We have to calculate the deriva-

tive of a matrix function U = exp(A) with respect to A. This can be done by writing

the matrix function using a complex contour integral [25],

∂U

∂Aij
=
∂ exp(A)

∂Aij

=
1

2πi

∂

∂Aij

∮
exp(z)(z1 −A)−1dz

=
1

2πi

∮
exp(z)(z1 −A)−1 (1ij − 1ji) (z1 −A)−1dz

= R† 1

2πi

∮
exp(z)(z1 − Λ)−1R(1ij − 1ji)R†(z1 − Λ)−1dz R . (5.10)

1 denotes the identity matrix, (1ij)kl = δkiδlj , R is the eigenvector matrix of A with

eigenvalues λk and Λkl = λkδkl. Carrying out the integration over z, one obtains,

1

2πi

∮
exp(z)

(z − λk)(z − λl)
dz =



eλk , λk = λl .

eλk−eλl
λk−λl

, λk �= λl .
(5.11)

Combining Eqs. (5.9-5.11) and performing some algebraic transformations, Eq. (5.8)

becomes,
∂Ω

∂Aij
= (R†{RMTR†, D}R)ji − (R†{RMTR†, D}R)ij . (5.12)
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where Dkl is the matrix defined by Eq. (5.11), M = ∂Ω/∂U is computed from

Eq. (5.9) and {X, Y } denotes a component-wise matrix multiplication between X

and Y.

Using the results above we have now a scheme to solve for the PAO’s by iterating

the following steps:

1. Choose an initial guess for B.

2. Compute the Hamiltonian matrix and the overlap matrix in the minimal basis,

H̃ = BTHB and S̃ = BTSB.

3. Determine a variational density matrix, i.e. ∂Ω
∂P̃

= 0, by minimizing Eq. (5.7)

by either one of the following methods

(a) Solve H̃C̃ = S̃C̃Λ̃ and compute P̃ = C̃C̃T .

(b) Use a linear scaling density update method as described in section 5.3.

4. Calculate the gradient, ∂Ω
∂AI

, according to Eq. 5.12.

5. Update AI , by e.g. a conjugate gradient method, and compute the transfor-

mation matrix via, BI = NIUI = NI exp(AI).

6. If convergence is achieved compute the density matrix in the extended basis,

P = BP̃BT , otherwise continue with step 2.

The scheme described above contains the solution of a Roothaan-type equation in

step 3. However, this has to be done only in the PAO basis, reducing the work con-

siderably both in a diagonalization based method as also in linear scaling methods.

As an example we have plotted in figure 5.1 the PAO’s of water centered at the

oxygen atom. While the p-type PAO basis functions appear rather unaltered, the

s-type PAO basis function is strongly polarized towards the hydrogen atoms.
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Figure 5.1: Polarized atomic orbitals of water.

5.3 Combination with Linear Scaling Methods

5.3.1 Sparsity of the Density Matrix

O(N) algorithms used in this study are all based on the density matrix. The methods

alone do not yield linear scaling. However, in large molecules we can take advantage

of matrix sparsity, i.e., the fact that many elements of a matrix are zero or below

a certain threshold. For sparse systems, where the number of significant elements

scales linearly with the size of the system, the cost of all sparse matrix operations

will scale linearly with the size of the system.

The sparsity of the density matrix, depends on several factors. We can write the

density matrix as,

Pij =
∑
kl

S−1
ik QklS

−1
lj , (5.13)

Qkl =
∫ ∫

drdr′ φk(r)P (r, r
′)φl(r

′) , Sij =
∫
dr φi(r)φj(r) ,
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where P (r, r′) denotes the one-particle density operator and Qkl is its matrix repre-

sentation with respect to the atomic basis functions. The appearance of the inverse

of the overlap matrix in Eq. (5.13) is due to the fact that we use nonorthogonal

basis sets. From Eq. (5.13) it is clear that the sparsity of P depends on the decay

properties of P (r, r′) as well as on the sparsity of S−1.

Theoretical models of periodic solids suggest that the locality of P (r, r′) is related

to the band gap ∆ε. For the case of an insulator, the one-particle density operator

decays asymptotically as an exponential [77–79],

P (r, r′) ≈ exp
(
−
√
∆ε|r − r′|

)
. (5.14)

While the decay behavior of P (r, r′) is a fundamental property of the respective

quantum mechanical system, this is certainly not true for the sparsity of S−1. The

determining quantities are kind and size of the basis set we have chosen for our

calculation. In the following we will concentrate on Gaussian-type basis functions,

since they are almost exclusively used in ab-initio quantum chemistry.

Extended basis sets are often needed in DFT calculations to achieve converged re-

sults. These extended basis sets, expecially if they include diffuse functions may

often lead to near linear dependencies. Procedures used to eliminate the depen-

dencies can not be applied in the linear scaling context as they destroy the local

character of the basis. For a more systematic treatment of the consequences of ex-

tended basis sets, it is useful to consider the following definition. A well conditioned

overlap matrix is one containing no linear or near linear dependencies. Its condition

number, the ratio of its largest and smallest eigenvalue, is small. Using this defi-

nition, it can be shown [80], that a localized and well conditioned overlap matrix

leads to a similarly localized inverse and finally via Eq. (5.13) to a localized density

matrix. Unfortunately the reverse conclusion is also true, ill conditioned overlap

matrices caused by large nonorthogonal basis sets destroy the sparsity of the den-

sity matrix. Since this is the crucial point determining whether a O(N) method is

faster than traditional electronic structure calculations, linear scaling methods are

not used when large nonorthogonal basis sets are required.
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It is for this type of calculations that the PAO method provides a possible solution.

Recall from the last section, that the density update procedure is in terms of the

PAO minimal basis. Since the size of the PAO basis is fixed, independent from

the size of the underlying extended basis set, we may hope that the corresponding

PAO overlap matrix is stable with respect to an increase of the extended basis set

size. To investigate this supposition we have set up four test systems, the poly-

glycine chain 10-glycine, the water cluster (H2O)30, the fullerene C60 and the steroid

testosterone C19H28O2. Gaussian-type valence basis sets are applied and increased

in size from a minimal basis (MIN), to a double-zeta basis (DZ), a double-zeta basis

with one set of polarization function (DZSP) and a triple-zeta basis with two sets of

polarization functions (TZDP). All calculations were performed with a DFT program

using pseudopotentials to eliminate the core electrons from the calculation. More

computational details can be found in section 5.4. Table 5.1 shows the logarithm of

the condition number of the PAO overlap matrix as a function of the basis set size.

As a reference, we have also computed the quantities from the overlap matrices of

the complete basis. For all molecules and basis sets tested the condition number of

the PAO overlap matrix is almost independent from the size of the extended basis

set. This is in contrast to the findings from the reference condition numbers, where

an increase of several orders of magnitude is found.

To confirm the above mentioned connection between the condition number and the

decay behavior of the density matrix we perform an additional investigation for

the 10-glycine chain. We computed for each C-atom the density matrix element

having the largest absolute value with respect to the central C-atom. In figure 5.2

a logarithmic plot for the minimal and the TZDP basis sets are shown to be in

agreement with the findings of Table 5.1. The smallest condition number of the

TZDP-PAO systems corresponds to the fastest decrease of the PAO density matrix

and vice versa.

Having motivated the usefulness of a combined PAO-O(N) method we proceed with

a detailed description of its implementation.
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Basis MIN DZ DZSP TZDP

10-glycine

SCF 2.83 9.39 9.60 10.87

PAO-SCF — 2.08 2.15 2.12

(H2O)30

SCF 2.26 6.18 6.63 9.01

PAO-SCF — 1.70 1.87 1.85

C60

SCF 3.37 13.25 13.40 14.56

PAO-SCF — 2.49 2.49 2.41

C19H28O2

SCF 3.24 10.58 10.90 12.71

PAO-SCF — 2.38 2.46 2.48

Table 5.1: Logarithm of the condition number of the overlap matrix for different

basis sets computed from full SCF and PAO-SCF calculations.
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Figure 5.2: Logarithmic decay of the density matrix for the 10-glycine chain. Only

matrix elements corresponding to C-atoms are considered. The results are taken

from a full SCF calculation with a MIN/TZDP basis and from a PAO-SCF calcula-

tion with a TZDP basis.
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5.3.2 Implementation of a Combined PAO-O(N) Method

The O(N) methods we have implemented, namely the Chebyshev polynomial ex-

pansion method (CPE) [73], the conjugate gradient density matrix search (DMS)

[74] and the canonical purification of the density matrix (CP) [75], were developed

originally for tight-binding models which usually assume an orthogonal basis. To

handle nonorthogonal basis sets modifications are required. Two main approaches

may be used for this purpose. The first is to solve for the density matrix directly

in terms of the nonorthogonal basis. These procedures has been described in the

literature [39,82,83,75] and are not investigated here. The approach used in our

work is to transform the Hamiltonian matrix into an orthonormal basis, solving for

the density matrix and back transforming to the original basis. The small condition

number of the PAO overlap matrix makes this procedure especially attractive.

A number of choices for transformations to an orthonormal basis are possible. We

obtain the transformation matrix from the Cholesky decomposition of the overlap

matrix [50]. For symmetric positive definite matrices, such as the overlap matrix,

the decomposition and the required transformations can be expressed as,

S = UTU ,

Hortho = U−TH U−1 , P = U−1Portho U
−T , (5.15)

where U is an upper triangular matrix. The computational cost of the Cholesky

decomposition scales linearly with system size in the large molecule limit [84]. The

inverse of U is never explicitly computed, we solve Eqs. (5.15) with respect to H

and Portho and treat the corresponding set of triangular equations. This can be done

in linear scaling time using sparse matrix techniques.

Having transformed the density update problem first to a PAO basis (see sec. 5.2)

and finally to an orthonormal basis we can apply the O(N) methods mentioned

above. Since technical details can be found in the literature [73–75,39,85], we restrict

ourselves to a brief description of the algorithms.

The DMS scheme used in this work is based on minimizing the following functional
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with respect to the density matrix [84],

Ω = Tr[(3P 2 − 2P 3)H ] + µ(Tr[P ]− nel) . (5.16)

Here, µ is a Lagrangian multiplier introduced to enforce the correct number of elec-

trons nel. The idem-potency constraint on the density matrix is implicitly imposed

by the use of the McWeeny purification transformation: 3P 2 − 2P 3. It is straight-

forward to compute the gradient,

∂Ω

∂P
= 3PH + 3HP − 2P 2H − 2PHP − 2HP 2 + µ1 . (5.17)

µ is calculated at every step from the condition, Tr[ ∂Ω
∂P

] = 0. Since the gradient

and hence the search direction is traceless, any finite step preserves the number of

electrons.

CP is an iterative scheme to compute the density matrix involving an initial guess,

a purification formula and an energy expression. The initial guess density matrix is

obtained from,

P0 =
λ

2
(µ1−H) +

1

2
1 , (5.18)

µ =
Tr[H ]

n
, λ = min(

nel

Hmax − µ
,
n− nel

µ−Hmin
) ,

where n denotes the number of basis functions. Hmax/min are upper and lower

bounds on the spectrum of H . We find these values using a linear scaling Lanczos

algorithm.

The purification formula is as follows,

Pn+1 =




((1− 2cn)Pn + (1 + cn)P
2
n − P 3

n)/(1− cn), cn ≤ 1
2
,

((1 + cn)P
2
n − P 3

n)/cn, cn >
1
2
,

(5.19)

cn =
Tr[P 2

n − P 3
n ]

Tr[Pn − P 2
n ]
.

The purification transformation is repeated until the energy expression, En = Tr[PnH ],

is minimized. It can be shown, that the purification algorithm converges monotoni-

cally and quadratically to the correct density matrix [75].
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Whereas DMS and CP require an iterative process, CPE calculates the density

matrix directly using its representation as a matrix functional of the Hamiltonian

matrix,

P = f(H) , (5.20)

f(ε) =
1

1 + exp(β(ε− µ))
.

f is the Fermi distribution and β denotes the inverse of the (fictitious) temperature.

The matrix functional is expanded in terms of Chebyshev polynomials [50],

P = f(H) =
np∑
i=0

ciTi(H) , (5.21)

where np is the order of the expansion. The polynomials Ti(H) satisfy the recursion

relations,

Ti+1(H) = 2HTi(H)− Ti−1(H) , (5.22)

with T0(H) = 1 and T1(H) = H . The expansion coefficients ci of the Chebyshev

expansion can easily be determined [50]. Since Chebyshev polynomials require a

domain between minus one and one, H has to be scaled such that its eigenvalues

are between these values. The extreme eigenvalues needed to scale H are found

using a linear scaling Lanczos algorithm. From Eq. (5.20) it is clear, that we have to

compute in addition the chemical potential in order to locate the decay region. This

is done in the following way. The Chebyshev polynomials are calculated without

any reference to the chemical potential. Thus, they can be used with different

expansion coefficients depending on µ. Using a bisection scheme, we chose µ such

that the correct number of electrons is enforced. For computational convenience

it is advantageous to take the complementary error function instead of the Fermi

distribution since it decays faster to zero away from the chemical potential µ. [39]

We finish the section with a brief description of the storage format we have chosen

to manipulate the sparse matrices. We use the variable block row (VBR) format

which is a generalization of the compressed sparse row (CSR) format [86]. The

VBR format takes into consideration that the matrices we have to manipulate are

blocked with different block sizes. To maintain a desired level of accuracy during
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Figure 5.3: Absolute SCF energies [Hartrees] of DFT and PAO-DFT theory for

various basis sets. All-electron calculations of C3H7F using the exchange-correlation

functional BLYP are shown. The following basis sets are applied (from left to right):

STO-6G, 6-31G, 6-31G*, 6-31G** and 6-31++G**.

the calculation, the VBR matrices are allowed to grow or shrink and every matrix is

allowed to have its own form. Thus, before performing an algebraic matrix operation,

we determine the form of the resulting matrix. Consequently, periodic screening of

matrix elements is required to avoid excessive growth of the number of nonzero

matrix elements. Using a thresholding criterion, the additional small elements can

be eliminated.
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Figure 5.4: Absolute SCF energies [Hartrees] of DFT and PAO-DFT theory for vari-

ous basis sets. Pseudopotential calculations of C3H7F using the exchange-correlation

functional BLYP are shown. The following basis sets are applied (from left to right):

MIN, DZ, DZSP, TZSP and TZDP.
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5.4 Results and Discussion

The PAO method has been implemented in the GAPW method, which allows pseu-

dopotential and all-electron calculations to be performed (see section 1.3).The pro-

gram is suited for periodic and for finite systems (see section 3).

First, to demonstrate the concerted acting of the optimized minimal PAO basis and

the larger set of atomic orbitals it is formed from, we look at the convergence of the

PAO’s in terms of the absolute energy as the extended basis set size is increased. For

that, we performed a series of pseudopotential and all-electron DFT calculations on

the molecule 1-fluoropropane (C3H7F). From figure 5.3 and 5.4, one can see that,

although the PAO’s are still a minimal basis, the PAO energy is much improved in

energy with respect to the conventional minimal basis set energy (STO-6G/MIN). In

fact, the PAO energy of the largest extended basis set used, namely the 6-31++G**

and the TZDP basis, is almost as low in energy as the double zeta basis sets with one

set of polarization functions (6-31G*/DZSP). Furthermore, the PAO energies nearly

parallel the full SCF energy as basis set size is increased from double zeta onwards,

suggesting that the relative error in energy may be even lower. It is not surprising,

that the same trends obtained with DFT calculations, apply also to Hartree-Fock

calculations. [70].

Next, we performed geometry optimizations on a variety of different systems. Ta-

bles 5.2 and 5.3 show a comparison of structural parameters of small molecules ob-

tained from full DFT and PAO-DFT calculations. Pseudopotential and all-electron

calculations using the exchange-correlation functional BLYP are shown. The com-

putations were done with a double zeta basis with one set of polarization functions

(6-31G*/DZSP). In addition, a minimal basis (STO-6G/MIN) was used for compar-

ison. The root-mean-square (RMS) error of the PAO bond distances relative to the

full SCF distances is 0.015 rA using pseudopotentials and 0.010 rA in the case of

all-electron calculations. This deviation is a substantial improvement over the cor-

responding RMS difference for the minimal basis, which is in both cases 0.074 rA.

The RMS error of bond angles is 0.60◦ and 1.02◦, compared to considerably larger
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Pseudopotential Calculation All-Electron Calculation

Molecule Parameter DZSP PAO-DZSP MIN 6-31G* PAO-6-31G* STO-6G

H2 r(HH) 0.755 0.755 0.697 0.748 0.748 0.733

CH4 r(CH) 1.103 1.102 1.103 1.101 1.100 1.101

C2H2 r(CC) 1.222 1.224 1.258 1.215 1.215 1.211

r(CH) 1.076 1.079 1.094 1.073 1.073 1.086

C2H4 r(CC) 1.346 1.351 1.394 1.341 1.347 1.343

r(CH) 1.097 1.097 1.101 1.095 1.094 1.102

� (CCH) 121.6 121.5 121.7 121.9 121.6 122.0

� (HCH) 116.7 117.0 116.6 116.2 116.7 116.0

C2H6 r(CC) 1.537 1.559 1.613 1.542 1.563 1.559

r(CH) 1.105 1.104 1.103 1.104 1.102 1.105

� (CCH) 111.4 111.4 110.6 111.4 111.1 110.7

� (HCH) 107.5 107.5 108.3 107.5 107.8 108.2

SiH4 r(SiH) 1.478 1.481 1.443 1.496 1.496 1.449

H2O r(OH) 0.979 0.975 1.033 0.980 0.978 1.044

� (HOH) 103.7 105.1 104.9 102.9 104.8 96.02

Table 5.2: Structural parameters [rA,◦ ] of small molecules obtained from full SCF

and PAO-SCF calculations. Pseudopotential and all-electron calculations using the

exchange-correlation functional BLYP are shown.
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Pseudopotential Calculation All-Electron Calculation

Molecule Parameter DZSP PAO-DZSP MIN 6-31G* PAO-6-31G* STO-6G

H2S r(SH) 1.354 1.359 1.371 1.361 1.361 1.367

� (HSH) 91.85 92.40 93.79 92.35 91.92 90.77

HCN r(CH) 1.082 1.083 1.112 1.078 1.077 1.096

r(CN) 1.169 1.169 1.267 1.169 1.169 1.209

NH3 r(NH) 1.029 1.025 1.041 1.030 1.024 1.076

� (HNH) 106.5 107.3 120.0 104.9 107.1 99.42

PH3 r(PH) 1.426 1.430 1.411 1.437 1.436 1.418

� (HPH) 93.13 93.56 95.94 92.77 92.72 91.16

N2 r(NN) 1.122 1.120 1.295 1.118 1.117 1.205

CO r(CO) 1.147 1.146 1.299 1.150 1.149 1.206

CO2 r(CO) 1.181 1.183 1.321 1.184 1.187 1.243

SF6 r(SF) 1.624 1.686 - 1.628 1.667 -

B2H6 r(BB) 1.788 1.802 1.864 1.783 1.785 1.824

r1(BH) 1.193 1.194 1.165 1.197 1.196 1.173

r2(BH) 1.329 1.335 1.370 1.324 1.325 1.348

� (HBH) 122.2 122.4 120.4 122.3 122.0 122.6

� (BHB) 84.60 84.85 85.77 84.64 84.72 85.14

Table 5.3: Continuation of table 5.2. Structural parameters [rA,◦ ] of small molecules

obtained from full DFT and PAO-DFT calculations. Pseudopotential and all-

electron calculations using the exchange-correlation functional BLYP are shown.

In the case of SF6, the sulfur minimal basis consists of six basis functions.
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Bond PAO-DZSP DZSP Reference Bond PAO-DZSP DZSP Reference

1 1.361 1.353 1.359 2 1.463 1.448 1.457

3 1.399 1.392 1.400 4 1.510 1.485 1.499

5 1.441 1.440 1.456 6 1.382 1.365 1.373

7 1.402 1.380 1.381 8 1.461 1.455 1.470

9 1.420 1.408 1.421 10 1.395 1.390 1.399

11 1.517 1.511 1.531 12 1.548 1.525 1.541

13 1.550 1.532 1.555 14 1.507 1.497 1.526

15 1.391 1.372 1.379 16 1.377 1.358 1.365

17 1.387 1.382 1.395 18 1.536 1.505 1.535

19 1.508 1.500 1.528 20 1.599 1.583 1.594

21 1.227 1.225 1.222 22 1.465 1.453 1.468

23 1.423 1.419 1.430 24 1.413 1.407 1.419

25 1.409 1.396 1.402 26 1.503 1.484 1.499

27 1.446 1.443 1.462 28 1.413 1.389 1.396

29 1.353 1.399 1.343 30 1.407 1.400 1.410

31 1.411 1.402 1.414 32 1.448 1.447 1.463

33 1.507 1.489 1.507 34 1.545 1.524 1.544

35 1.390 1.382 1.390 36 1.509 1.487 1.502

Table 5.4: Bond lengths [rA] of chlorophyll a (see figure 5.5) obtained from full SCF

and PAO-SCF calculations. Pseudopotential calculations using LDA are shown. The

reference bond lengths are taken from all-electron calculations using the exchange-

correlation functional BP [87].
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Bond PAO-DZSP DZSP Reference Bond PAO-DZSP DZSP Reference

37 1.448 1.446 1.461 38 1.386 1.368 1.373

39 1.397 1.377 1.382 40 1.418 1.407 1.417

41 1.402 1.395 1.406 42 2.018 2.016 2.046

43 2.045 2.051 2.082 44 2.010 2.003 2.031

45 2.123 2.134 2.165 46 1.547 1.527 1.550

47 1.543 1.523 1.544 48 1.508 1.500 1.522

49 1.229 1.227 1.219 50 1.364 1.345 1.357

51 1.487 1.459 1.463 52 1.498 1.482 1.500

53 1.357 1.355 1.358 54 1.520 1.500 1.512

55 1.518 1.503 1.519 56 1.551 1.532 1.547

57 1.540 1.521 1.539 58 1.546 1.531 1.551

59 1.542 1.523 1.540 60 1.537 1.524 1.548

61 1.535 1.518 1.543 62 1.545 1.525 1.539

63 1.542 1.527 1.551 64 1.548 1.528 1.540

65 1.547 1.532 1.547 66 1.539 1.520 1.543

67 1.537 1.519 1.540 68 1.539 1.525 1.551

69 1.539 1.520 1.540 70 1.544 1.524 1.540

Table 5.5: Continuation of table 5.4. Bond lengths [rA] of chlorophyll a (see figure

5.5) obtained from full DFT and PAO-DFT calculations. Pseudopotential calcula-

tions using LDA are shown. The reference bond lengths are taken from all-electron

calculations using the exchange-correlation functional BP [87].
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Figure 5.5: Chlorophyll a

DZSP PAO-DZSP MIN

Crystal a [rA] E [Hartrees] a [rA] E [Hartrees] a [rA] E [Hartrees]

C (D) 3.56 -366.896 3.58 -366.328 3.64 -365.259

Si (D) 5.44 -254.572 5.54 -253.979 5.63 -253.040

BN (ZB) 3.61 -414.768 3.62 -414.153 3.70 -413.285

SiC (ZB) 4.35 -311.366 4.42 -310.019 4.48 -309.242

NaCl (SC) 5.68 -2021.25 5.58 -2020.54 5.43 -2017.65

Table 5.6: Lattice constants and absolute SCF energies of various crystals. Full

SCF and PAO-SCF calculations using pseudopotentials and the exchange-correlation

functional BP are shown. The lattice type is added in parenthesis: D denotes

diamond, ZB zincblende, and SC sodium chloride.
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deviations of 4.67◦ and 3.06◦.

As a more ambitious example we have studied the molecular structure of chlorophyll

a (MgC55H72N4O5; see figure 5.5) playing a central role in many biological system.

Tables 5.4 and 5.5 reports our results for the bond distances obtained from pseu-

dopotential calculations using LDA with a DZSP basis. The RMS error of the PAO

bond distances relative to the full SCF distances is 0.017 rA. To stress the very

high quality of the result, we have added in tables 5.4 and 5.5 the bond distances

from a DFT all-electron calculation using the exchange-correlation functional BP

[87]. Here, the RMS error of the bond distances relative to the full SCF distances

is 0.018 rA.

There are also cases where the PAO method is not performing that well. In ta-

ble 5.6, we have summarized the lattice constants of various crystals obtained from

pseudopotential calculations with a DZSP basis using the exchange-correlation func-

tional BP. Here the RMS error is 0.08 rA. Although the deviation is an improvement

over the corresponding RMS difference for the minimal basis (0.18 rA), the result

is not satisfactory. This is even more astonishing, since the absolute energies seem

to be reasonably converged. This certainly needs further investigations.
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Figure 5.6: Time evolution of the total energy Etot (upper curve), the temperature

T (middle curve) and the Kohn-Sham energy EKS (lower curve) of 32 H2O molecules

during the MD simulation. All-electron calculations with a TZDP basis set using

the exchange-correlation functional BLYP are shown.



91

1 2 3 4 5

r

0

1

2

g H
H
(r

)

PAO
Quickstep
CPMD
Experiment

Figure 5.7: H-H pair correlation function of 32 water molecules obtained from our

PAO-MD (blue line) compared to the full MD simulation using the same program

from ref. [21] (red line), to a Car-Parrinello MD from ref. [88] (black line) and to

the experimental neutron scattering from ref. [89] (green line).

As a final test of the applicability of the PAO method to different fields of electronic

structure calculations, we present an ab-initio all-electron PAO-MD run for liquid

water. A system of 32 H2O molecules contained in a simple box of length 9.87 rA

was simulated imposing periodic boundary conditions. This model system was also

employed by earlier full SCF-MD studies using the same program [21], and a Car-

Parrinello molecular dynamics (CPMD) simulation of liquid heavy water (D2O) [88].

All simulations were done with the exchange-correlation functional BLYP. In con-

trast to the work of Ref. [21], where a DZ basis and a DZSP basis set is used for the

hydrogen and the oxygen atom respectively, we added a p-type polarization function

to the hydrogen basis set (DZSP) and a triple-zeta basis with d-type polarization
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Figure 5.8: O-H pair correlation function of 32 water molecules obtained from our

PAO-MD (blue line) compared to the full MD simulation using the same program

from ref. [21] (red line), to a Car-Parrinello MD from ref. [88] (black line) and to

the experimental neutron scattering from ref. [89] (green line).
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Figure 5.9: O-O pair correlation function of 32 water molecules obtained from our

PAO-MD (blue line) compared to the full MD simulation using the same program

from ref. [21] (red line), to a Car-Parrinello MD from ref. [88] (black line) and to

the experimental neutron scattering from ref. [89] (green line).
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functions (TZSP) was applied for oxygen.

The time evolution of the total energy, the Kohn-Sham energy and the temperature

of the 32 H2O molecules are plotted in figure 5.6. The average temperature of the

sample was 328.8 K. The total energy shows a slight drift, but this deficiency can

be removed by converging the PAO’s to a higher accuracy. In figure 5.6, PAO con-

vergence is assumed if the relative value of the energy functional, defined in Eq. 5.6,

is decreasing by less than 10−12. The latter might already seem an extraordinarily

small convergence threshold. However, experience shows that extremely accurate

converged PAO’s are required to perfectly conserve the total energy.

Radial distribution functions gHH(r), gOH(r) and gOO(r) are shown in Figs. 5.7,

5.8 and 5.9, respectively. The maxima and the minima of the gij(r) are properly

reproduced compared to the experimental results from neutron scattering [89], but

all the simulated distribution functions appear to be overstructured relative to the

experimental result. It is important to notice that the distribution functions of our

PAO-MD simulation with the enlarged basis set is much closer to the experimental

results compared to the original full SCF-MD run with the smaller basis set.

Finally, we have implemented a combined PAO-O(N) scheme as described in section

5.3. The linear scaling methods we use are the Chebyshev polynomial expansion

method (CPE) [73], the conjugate gradient density matrix search (DMS) [74], and

the canonical purification of the density matrix (CP) [75].

If we keep all the matrix elements during a PAO-O(N) calculation, all O(N) methods

above have to reproduce the results of diagonalization exactly. Consequently, Table

5.7 reports the forces, acting on a randomly chosen atom, and the absolute SCF en-

ergies of a Benzene and a NH3 molecule with a neglect threshold equals zero.Besides

numerical noise all results are equal, confirming a correct implementation.

Benchmark calculations on the unbranched alkane molecules n-C30H62, n-C60H122

and n-C90H182 were carried out using pseudopotentials, a DZSP basis and LDA. All

timings reported are for a standard single processor workstation (IBM 397). The

thresholding criterion for neglecting matrix elements is chosen such that the absolute
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Benzene

Forces in [a.u.] acting on C-Atom one
Method Energy in [a.u.]

Fx Fy Fz

D −37.31225 −0.02591 0.03405 −0.00012

CPE −37.31224 −0.02591 0.03405 −0.00012

CP −37.31225 −0.02591 0.03405 −0.00012

DMM −37.31225 −0.02591 0.03405 −0.00012

NH3

Forces in [a.u.] acting on H-Atom three
Method Energy in [a.u.]

Fx Fy Fz

D −11.67487 0.00741 0.00427 0.00000

CPE −11.67481 0.00742 0.00428 0.00002

CP −11.67487 0.00741 0.00427 0.00000

DMM −11.67487 0.00739 0.00426 −0.00001

Table 5.7: Forces, acting on a randomly chosen atom, and absolute SCF energies

of Benzene and NH3. The results are obtained from PAO-DFT calculations using

diagonalization (D), Chebyshev polynomial expansion (CPE), canonical purification

of the density matrix (CP) and conjugate gradient density matrix search (DMS).
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CPU time Energy Forces [a.u.]: C-Atom ten
Method

in [s] in [a.u.] Fx Fy Fz

C30H62

D 0.38 −206.6892 0.0014 0.0364 0.0003

CPE 5.72 −206.6892 0.0013 0.0364 0.0003

CP 2.72 −206.6891 0.0014 0.0364 0.0003

DMS 5.36 −206.6892 0.0014 0.0365 0.0003

C60H122

D 2.66 −412.2175 0.0006 0.0367 −0.0060

CPE 11.58 −412.2176 0.0006 0.0364 −0.0060

CP 6.32 −412.2174 0.0006 0.0366 −0.0060

DMS 13.58 −412.2174 0.0006 0.0368 −0.0060

C90H182

D 30.87 −617.7448 0.0003 0.0297 −0.0205

CPE 17.91 −617.7444 0.0003 0.0297 −0.0205

CP 9.77 −617.7438 0.0002 0.0297 −0.0204

DMS 21.84 −617.7445 0.0003 0.0298 −0.0206

Table 5.8: Forces, acting on a randomly chosen atom, and absolute SCF energies

of linear alkane chains. In addition the CPU time requirements of a density matrix

update step are given (see figure 5.10). The results are obtained from PAO-DFT

calculations using diagonalization (D), Chebyshev polynomial expansion (CPE),

canonical purification of the density matrix (CP) and conjugate gradient density

matrix search (DMS).
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Figure 5.10: CPU time requirements [s] of a density matrix update step for the linear

alkane chains C30H62, C60H122 and C90H182 using diagonalization (D), Chebyshev

polynomial expansion (CPE), canonical purification of the density matrix (CP) and

conjugate gradient density matrix search (DMS). All density update procedures are

in terms of the PAO minimal basis.

SCF energies yield microhartree accuracy relative to the results of diagonalization

(D). The appropriate choice of the neglect threshold is confirmed by the results given

in table 5.8. Here, the forces, acting on a randomly chosen atom, and the absolute

SCF energies of the linear alkane chains are reported. In addition the CPU time

requirements of a density matrix update step in terms of the PAO minimal basis are

given. The CPU times are plotted in figure 5.10. Linear scaling is achieved using

each of these O(N) methods. In the present implementation, the fastest method

for replacing diagonalization in large scale calculations is CP. Here, the crossover

in CPU time compared to diagonalization occurs at roughly 70 C-atoms. It should

be noted at this point, that the sparse matrix routines used are not optimized

with respect to computational efficiency and use of machine architecture whereas

standard diagonalization are well optimized. Removing this deficiency should move

the crossover with diagonalization to smaller systems than presented here. However,

to apply the PAO-O(N) method to study extended systems currently intractable
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with large nonorthogonal basis sets, a parallelized implementation of the program

is required. We proceed in this direction, encouraged by the present results.

5.5 Conclusions

We have presented the theoretical and algorithmic principles to construct minimal

basis sets optimized in the molecular environment. These so-called polarized atomic

orbitals (PAO’s) permit the density matrix update procedure of self-consistent field

theory to be performed in a small basis, while retaining a considerable amount

of the flexibility of larger basis sets. Our test calculations show, that electronic

structure calculation at the PAO level greatly improve all investigated properties

ranging from absolute energies, to bond distances and bond angles relative to a rigid

conventional minimal basis set. The simulation of the liquid water system shows

that an all-electron ab-initio MD is feasible using the PAO method. A comparison

of the measured radial distribution functions gives good agreement with the results

of earlier MD studies. However, the PAO’s have to be converged to extremely high

accuracy to conserve the total energy during a MD run.

A detailed study of the condition number of the PAO overlap matrix and the decay

properties of the PAO density matrix show the potential of the PAO method com-

bined with linear scaling algorithms. We find that a combined PAO-O(N) method

results in a numerical stable procedure, even if large nonorthogonal basis sets are

applied. With implementations of the Chebyshev polynomial expansion method,

the conjugate gradient density matrix search, and the canonical purification of the

density matrix, linear scaling was demonstrated for unbranched alkane chains. In

the present implementation canonical purification is found to be most efficient.
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List of abbreviations

BLYP: Becke-Lee-Yang-Parr

BF: Boys-Forster

BO: Bloch orbitals

BP: Becke-Perdew

CG: conjugate gradient

CI: configuration interaction

CP: canonical purification

CPE: Chebyshev polynomial expansion

CPMD: Car-Parrinello molecular dynamics

CSR: compressed sparse row

DIIS: direct inversion in the iterative subspace

DFT: density functional theory

DM: density matrix

DMS: density matrix search

DZ: double-zeta

DZSP: double-zeta with one set of polarization function

GAPW: Gaussian augmented plane wave

GC: gradient correction

GTO: Gaussian type orbital

HF: Hartree-Fock

KS: Kohn-Sham

LDA: local density approximation

MD: molecular dynamics



MIN: minimal basis

MO: molecular orbitals

OR: orbital rotations

PAO: polarized atomic orbitals

PM: Pipek-Mezey

PR: preconditioner

PW: plane wave

R: Resta

RMS: root-mean-square

SCF: self consistent field

SD: steepest descent

SE: semiempirical

SMV: Silvestrelli-Mazari-Vanderbilt

TB: tight-binding

TZDP: triple-zeta with two sets of polarization functions

VBR: variable block row

WF: Wannier function

XC: exchange-correlation
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