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Abstract

This thesis reports a series of theoretical studies of electron paramagnetic
resonance (EPR) parameters for 3d transition metal complexes. The work focusses on
the validation of various approaches based on density functional theory (DFT), on the
interpretation of the EPR parameters in terms of electronic structure, and on the

understanding of the physical mechanisms underlying the EPR magnetic interactions.

The performance of several DFT approaches for the calculation of EPR hyperfine
coupling constants has been evaluated critically by comparison with experimental data
and coupled-cluster results for 21 first-row transition metal systems. Isotropic couplings
and coupling anisotropies for both metal and ligand nuclei have been calculated and
discussed. While both gradient-corrected and hybrid functionals allow the calculation of
isotropic metal hyperfine coupling constants to within ca. 10-15% for the less critical
cases, none of the functionals investigated performs well for all complexes. Gradient-
corrected functionals tend to underestimate the important core-shell spin polarization.
While this may be improved by exact-exchange mixing in some cases, the
accompanying spin contamination may even lead to a deterioration of the results for
other complexes. We also identify cases, where essentially none of the functionals
performs satisfactorily. In the absence of a "universal functional”, the functionals to be
applied to the calculation of hyperfine couplings in certain areas of transition metal
chemistry have to be carefully selected. Desirable, improved functionals should provide
sufficiently large spin polarization for core and valence shells without exaggerating it

for the latter.

To obtain an in-depth understanding of the challenging points in the DFT
description of the hyperfine interactions, a detailed quantum chemical analysis of the
underlying principles of hyperfine coupling in 3d transition metal complexes has been
carried out. The explicit evaluation of one- and two-electron integrals for some atomic
systems has been used to understand the spin polarization of the core shells. While spin
polarization enhances the exchange interaction of the 2s and 2p shells with the singly

occupied orbitals, the opposite spin polarization of the 3s and 3p shells arises from the



required orthogonality to the 2s and 2p shells, respectively. Core-shell spin-polarization
in molecules is found to be proportional to the spin population in the valence 3d orbitals
but to depend little on other details of bonding. In contrast, the spin polarization of the
valence shell depends crucially on the overlap between the singly occupied and certain
doubly occupied valence orbitals. Large overlap leads to pronounced spin polarization
of these orbitals and, among other things, likely to spin contamination when using UHF
wave functions or hybrid density functionals. The role of core- and valence-shell spin-
polarization for dipolar hyperfine couplings in transition metal complexes is discussed.
It is demonstrated that great care should be exercised in deriving spin populations or

even orbital compositions from dipolar couplings alone.

A new DFT implementation of electronic g-tensors within the deMon code
including all relevant perturbation operators has been validated in a further part of this
thesis. In contrast to the good performance for main-group species, the overall g-shifts
obtained for the 3d transition metal complexes are underestimated typically by ~40-50%
upon inclusion of both one-electron and two-electron spin-orbit operators. We attribute
this to a systematical underestimation of the paramagnetic contributions and expect that
the inclusion of Hartree-Fock exchange in the density functional should improve the

performance of the method.

In the last part of this work, DFT calculations of electronic g-tensors and metal
hyperfine coupling tensors have been carried out for a series of four vanadyl complexes
with structures ranging from nearly trigonal bipyramidal to nearly square pyramidal.
The EPR spectroscopic parameters have been rationalized in terms of electronic and
geometrical structures. Using all relevant perturbation operators together with local or
gradient-corrected density functionals, Ag-tensor components are underestimated
systematically by ca. 40%. Good agreement with experiment is obtained for hyperfine
tensor components calculated with hybrid functionals. The rhombicity of the hyperfine
tensor is reproduced well at all levels of theory applied. It is mainly determined by the
SOMO composition. The latter explains the increasing rhombicity of the 4-tensor with
increasing square-pyramidal-to-trigonal-bipyramidal distortion along the series of
complexes studied. The orientational dependence of the principal tensor components on
the local vanadium coordination is much more pronounced for the g-tensor than for the

A-tensor.
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CCSD with triple substitutions

contracted Gaussian type orbital
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density functional theory
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EPR electron paramagnetic resonance (spectroscopy)

GGA generalized gradient approximation
GIAO gauge-including atomic orbital

GTO Gaussian type orbital

HF Hartree-Fock (theory)

HFC(C) hyperfine coupling (constant)

HOMO highest occupied MO

IGLO individual gauge for localized orbitals (method)
KS Kohn-Sham (theory)

LCAO linear combination of atomic orbitals
L(S)DA local (spin) density approximation
LYP Lee-Yang-Parr (correlation functional)
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PT perturbation theory

PWOIl Perdew-Wang (correlation functional)

P86 Perdew 1986 (correlation functional)

QR quasi-relativistic (approach)
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R/U CCSD  restricted/unrestricted CCSD

SCF self consistent field

SO spin-orbit (integral, contribution, Hamiltonian)

SOMO singly-occupied MO

SOS-DFPT  sum-over-states density-functional perturbation theory

SQP-5 five-coordinate, square pyramidal (structure)

SO0 spin-other-orbit

SSO spin-same-orbit

STO Slater type orbital

SVWN exchange-correlation functional with Dirac exchange and VWN
correlation



TBP-5
TZ
UDFT
UHF/KS
VS
VWN
ZORA

five-coordinate, trigonal bipyramidal (structure)
triple-£ (basis)

uncoupled DFT

unrestricted HF/KS (method)

valence shell

Vosko-Wilk-Nusair (correlation functional)

Zero order regular approximation (for relativistic effects)
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1 Zusammenfassung

Quantenchemische Untersuchungen der EPR-Parameter von

Ubergangsmetallverbindungen

Elektronenspinresonanz (Electron Paramagnetic Resonance, EPR) ist im Laufe
der Jahre zu einer Standard-Methode zur Untersuchung von Systemen mit ungepaarten
Elektronen geworden. Die Messung der Hyperfeinkopplung sowie des g-Tensors ist
eines der aussagekriftigsten Analyseverfahren in der strukturellen Chemie
paramagnetischer Systeme. Mit ihrer Hilfe kann die Elektronenstruktur in der
Umgebung eines magnetischen Atomkerns mit sehr groBer Genauigkeit ermittelt
werden. Ein wichtiger Anwendungsbereich von EPR liegt in der Strukturaufklarung von
Ubergangsmetallverbindungen, mit vielen Fragestellungen z. B. aus dem Gebiet der
bioanorganischen Chemie und der Materialforschung. Im Gegensatz zu den zahlreichen
experimentellen ~ EPR-Daten  von  Ubergangsmetall-Komplexen  waren  die
quantenchemischen Berechnungen in letzten Jahren vor allem auf organische
Verbindungen bzw. einfache Hauptgruppensysteme konzentriert. Der Grund ist die
Komplexitidt der Elektronenkorrelation, die bei der quantitativen Berechnung von
Hyperfeinkopplungen von sehr groBer Bedeutung ist. Die Korrelations-Effekte sind bei
Verbindungen der Ubergangsmetalle besonders stark. Die sehr aufwendigen post-
Hartree-Fock ab initio Rechnungen sind jedoch wegen der grossen Zahl der Elektronen

bislang nicht auf Ubergangsmetall-Komplexe anwendbar.

Zur Berticksichtigung der Elektronenkorrelation finden neben den post-Hartree-
Fock Verfahren in den letzten Jahren zunehmend Niherungsmethoden der
Dichtefunktionaltheorie (DFT) Verwendung. Diese zeichnen sich durch giinstige
Skalierungseigenschaften mit der Gro3e des Systems aus, bei gleichzeitiger impliziter
Behandlung der Korrelation. In den letzten Jahren wurden zahlreiche DFT-
Berechnungen von Hyperfeinkopplungen an (meist kleinen) Ubergangsmetall-
Komplexen durchgefiihrt, unter Verwendung der lokalen Dichtendherung sowie einigen

gradientenkorrigierten Austausch-Korrelations-Funktionalen (siehe Literatur in 1). In
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diesen Arbeiten wurde jedoch nur eine kleine Zahl von Dichtefunktionalen und
Basissdtzen untersucht, und nur ein sehr begrenzter Satz von Bindungsverhéltnissen
wurde betrachtet. Weitere, systematische Validierungen sind deswegen erforderlich, um
auf die Eignungder Dichtefunktionalmethoden fiir die Berechnung von EPR-Parametern
schlieBen zu konnen. Eines der Ziele der vorliegenden Arbeit ist daher eine kritische
Untersuchung von  Dichtefunktionalmethoden zur Berechnung von EPR-

Hyperfeinkopplungskonstanten fiir Ubergangsmetallverbindungen (sieche Abschnitt 1.1).

Das Verstdandnis der Leistungsfidhigkeit der DFT-Methoden hédngt sehr eng mit
den Mechanismen der Hyperfeinkopplung zusammen. Die Hyperfeinkopplung entsteht
durch die Fermi-Kontakt Wechselwirkung zwischen einem ungepaarten Elektron und
einem magnetischen Kern, und ist proportional der Wahrscheinlichkeit, das ungepaarte
Elektron am Kernort zu finden. Das ungepaarte Elektron kann zur Spindichte am Kern
nur dann direkt beitragen, wenn das einzeln besetzte Molekiilorbital (MO) einen
nichtverschwindenden Metall-s-Charakter hat. Dies ist in Ubergangsmetall-Komplexen
oft nicht der Fall. Die Spindichte am Kern entsteht dann indirekt, durch die
Spinpolarisation der gepaarten Elektronen, in MOs mit einem Metall-s-Charakter. Die
Mechanismen der Spinpolarisation in Ubergangsmetallverbindungen wurden in dieser
Arbeit untersucht und in der Zusammenhang mit der Leistungsfihigkeit der DFT-
Methoden zur EPR-Berechnungen dargestellt (siche Abschnitt 1.2).

Im Kontrast zur theoretischen Behandlung der Hyperfeinkopplung, wo eine gute
Wissensbasis von ab initio Berechnungen vorhanden ist, sind quantitative
Berechnungen von EPR g-Tensoren erst seit kurzem moglich. In den letzten Jahren sind
einige Hartree-Fock-, post-Hartree-Fock-, sowie DFT- Implementierungen realisiert
worden (sieche Literatur in 5). Ein Teil der vorliegenden Arbeit ist eine
Validierungsuntersuchung einer neuen Implementierung der DFT-Berechnungen von

elektronischen g-Tensoren im Rahmen des deMon Programmes’ (siche Abschnitt 1.3).

Ein weiteres Vorhaben dieser Arbeit war die Anwendung von DFT-Berechnungen
von EPR-Parametern auf Fragen aus der bioanorganischen Chemie. Ein interessantes
Thema ist hier die biochemische Funktion von Vanadium, die mit der Fahigkeit des
Vanadates, eine vierfachkoordinierte, tetraedrische Geometrie, sowie eine
fiinffachkoordinierte, trigonal-bipyramidale (TBP-5) Geometrie einzunehmen, oft
verbunden ist. Die trigonal-bipyramidale Koordination scheint bei den Komplexen des

Vanadiums (IV) und Vanadiums (V) auf sterisch eingeschriankte Systeme begrenzt zu
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sein, da in der Abwesenheit von sehr sperrigen Liganden quadratisch-pyramidale (SQ-
5) oder verzerrte quadratisch-pyramidale Komplexe gebildet werden. Um diese
Einschrankungen zu untersuchen, haben Cornman et. al. kiirzlich einen Satz von
Vanadyl-Komplexen synthetisiert, in denen die Geometrie in der Umgebung
Vanadiums von annihernd SQ-5 zu annihernd TBP-5 umgestaltet wurde.> EPR-
Untersuchungen haben gezeigt, dal die Komponenten des Hyperfeinkopplungstensors
sehr empfindlich Anderungen in der Koordination des Vanadiums auf dem Weg von der
quadratisch-pyramidalen zur trigonal-bipyramidalen Struktur reagieren. In der
vorliegenden Arbeit wurde eine detaillierte DFT-Untersuchung der Hyperfeinkopplung
sowie der g-Tensoren fiir einige der vom Cornman et. al. studierten Komplexe®
durchgefiihrt (siche Abschnitt 1.4). Weitere Berechnungen wurden fiir einen anderen
Komplex von Oxovanadium mit Schiff-Base-Liganden, bis(2-methylquinoline-§-
olate)oxovanadium(I'V), gemacht. Fiir diesen Komplex konnte die relative Orientierung
der Hauptkomponenten der Hyperfein- (4-) und g-Tensoren experimentell bestimmt

worden® und erméglichte so eine weitere Validierung der Theorie.

1.1 Kiritische Untersuchung von Dichtefunktional- und coupled cluster
Methoden zur Berechnung von EPR-Hyperfein-

Kopplungskonstanten fiir Ubergangsmetallverbindungen'

Die Leistungsfihigkeit verschiedener Dichtefunktionalmethoden fiir die
Berechnung von EPR-Hyperfeinkopplungskonstanten wurde durch Vergleich mit
experimentellen Daten und coupled cluster Ergebnissen fiir einen représentativen Satz
von 21 Ubergangsmetallverbindungen untersucht. Die Isotropie sowie die Anisotropie

der Metall-Kopplung und die Ligand-Kopplungen wurden berechnet und interpretiert.

Sowohl  gradientenkorrigierte als auch  Hybrid-Austausch-Korrelations-
Funktionale ergeben fiir einfachere Systeme (z.B. ScO, TiN, TiO, VO, MnO, MnF) eine
gute Ubereinstimmung der berechneten isotropen Metall-Kopplungen mit dem
Experiment (bei typischen Abweichungen von etwa 10-15%); keines der verwendeten
Funktionale ist jedoch in der Lage, alle Verbindungen zu beschreiben.

Gradientenkorrigierte Funktionale unterschitzen die wichtige Spinpolarisation von
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Rumpforbitalen. Dies kann fiir manche Verbindungen korrigiert werden, indem man
sogennante HF/DFT-Hybrid-Funktionale verwendet, bei denen ein Teil des
Auschtauschpotentiales durch exakten Hartree-Fock-Austausch ersetzt wird. Allerdings
bereitet dieser Ansatz bei vielen Verbindungen Probleme, die mit der
Spinkontamination der Wellenfunktion verbunden sind, d.h. mit der Beimischung von
Zustidnden hoherer Spinmultiplizitit. In einigen besonders schwierigen Fillen (MnOs,
[Mn(CN)sNOJ*) liefert keines der untersuchten Funktionale eine verniinftige

Ubereinstimmung mit dem Experiment.

Das Hauptproblem der DFT-Beschreibung der Hyperfeinkopplung, die kleine
Spinpolarisation von Rumpforbitalen, ist in vielen Féllen der dominante Mechanismus,
der die Spindichte am Kernort bildet. Die Spinpolarisation entsteht vor allem durch die
Austausch-Wechselwirkungen zwischen dem einzeln besetzten Metall-3d-Orbital und
den doppelt besetzten Metall-3s und -2s Rumpforbitalen. Die Beschreibung der
Austausch-Wechselwirkungen unterscheidet sich natiirlich sehr von den Energiegréf3en,
die heutzutage zur Bestimmung der freien Parameter in Austausch-Korrelations-

Funktionalen benutzt werden.

Das andere Problem besteht in der Spinpolarisation von Valenzorbitalen, die viel
grofler als bei den Rumpforbitalen ist und zur Spinkontamination der Wellenfunktion
fiihren kann. In einigen Komplexen entstand die Spinkontamination, sobald ein Teil des
Austauschpotentials vy durch exakten Hartree-Fock-Austausch ersetzt wurde. Dies
reduzierte die Qualitdit der Resultate deutlich. In manchen Fillen, wo die
Spinpolarisation von Rumpforbitalen durch gradientenkorrigierte Funktionale
unterschitzt wird, und wo die Beimischnung des exakten Austausches erwiinscht wire,
um die Spinpolarisation zu vergroBBen, macht das dramatische Anwachsen von
Spinkontamination die Verbesserung der Ergebnisse durch die HF/DFT-Hybrid-
Funktionale unmoglich. In manchen Grenzfillen ist die Spinkontamination schon bei
reinen gradientenkorrigierten Funktionalen von Bedeutung. Die Spinkontamination bei
den HF/DFT-Hybrid-Funktionalen héngt mit der gut bekannten Begiinstigung hoherer
Spin-Multiplizitdten im Rahmen der Hartree-Fock-Methode zusammen. Offensichtlich
kann die Spinkontamination in Ubergangsmetall-Komplexen dank der Existenz

tiefliegender angeregten Zustinde ganz erheblich wachsen.

Keines der momentan zur Verfiigung stehenden Austausch-Korrelations-

Funktionale liefert iiber den gesamten Bereich eine hinreichende Spinpolarisation von
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Rumpforbitalen, ohne die Spinpolarisation der Valenzorbitalen zu iiberschitzen. In
dieser Hinsicht ist bei der Anwendung von Dichtefunktionalmethoden Vorsicht
angebracht, d.h. das anzuwendende Funktional muss derzeit der Stereochemie und der
Elektronenzahl des Komplexes entsprechend ausgewidhlt werden. Die Wahl
verschiedener Funktionale fiir verschiedene Bindungsverhéltnisse ist natiirlich aus
theoretischer Sicht nicht ganz zufriedenstellend, doch spiegelt dies in gewisser Weise
den derzeitigen Stand der Niherungen der Dichtefunktional-Methoden wider.
Verbesserte Austausch-Korrelations-Funktionale sollten eine zuverldssige Beschreibung
der Spinpolarisation von Rumpf- sowie Valenzorbitalen ergeben. Im allgemeinen 1463t
sich sagen, daB die Hyperfeinkopplung, vor allem fiir die Ubergangsmetall-Komplexe,
ein anspruchsvoller Test fiir die theoretische Methoden darstellt und zur Verbesserung

der Dichtefunktionalen sowie der Entwicklung alternativer Ansétze fithren kann.

Die sehr aufwendigen coupled-cluster (CCSD and CCSD(T)) Methoden, die an
einer kleineren Auswahl von Komplexen untersucht wurden, zeigen eine sehr gute
Leistungsfahigkeit, auch wenn die UHF Referenz-Wellenfunktion leicht
spinkontaminiert ist. Allerdings steigt der Aufwand dieser Methoden mit der Grof3e des
Systems sehr schnell an. Selbst fiir die di-, tri- und tetraatomaren Komplexe, die in
dieser Arbeit auf coupled-cluster Niveau studiert wurden, konnten aufgrund des hohen
Rechenaufwands keine CCSD-Berechnungen mit groBBeren Basissdtzen mehr
durchgefiihrt werden. Weniger aufwendige Ansétze sind erwiinscht, und verbesserte

Dichtefunktionale konnten hier eine sehr praktische Alternative bieten.

1.2 Mechanismen der EPR-Hyperfeinkopplung in

I"Jbergangsmetallverbindungen4

Es wurde eine detaillierte quantenchemische Analyse der Prinzipien durchgefiihrt,
die der Hyperfeinkopplung in 3d-Ubergangsmetallkomplexen zugrundeliegen. Fiir
ausgewdhlte atomare Systeme wurden die Ein- und Zweielektronen-Integrale fiir
optimierte ROHF- und UHF-Orbitale explizit berechnet, um die Spinpolarisation von
Rumpforbitalen zu verstehen. Die Spinpolarisation erhoht die Austausch-

Wechselwirkung zwischen den 2s- und 2p- Orbitalen und den einfach besetzten
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Orbitalen. Die gegensétzliche Spinpolarisation der 3s- und 3p-Orbitale entsteht wegen
der erforderlichen Orthogonalitdt der 3s- (3p-) Orbitale zu den 2s- (2p-) Orbitalen. Dies
hat die gegensitzliche Beitrdge der 3s- und 2s-Orbitale zur Isotropie sowie der 3p- und
2p-Orbitale zur Anisotropie der Metall-Kopplung zur Folge. Die Anderungen in dem
Verhiéltnis zwischen den Beitrdgen der 3s- und 2s-Orbitale (sowie der 3p- und 2p-
Orbitale) zur Spindichte in der ersten Ubergangsmetallreihe 146t sich auf die
Knotenstruktur der Orbitalen zuriickverfolgen. Analoge Regeln sind bei den Komplexen

der zweiten und dritten Ubergangsmetallreihen zu erwarten.

Die in dieser Arbeit durchgefiihrte Analyse ist teilweise mit den traditionellen
Erklarungen der Spinpolarisation konsistent, in denen z.B. die Spinpolarisation in
Hauptgruppensystemen entsteht durch die Austausch-Wechselwirkungen zwischen dem
einzeln besetzten Orbital und der a-Komponente der doppelt besetzten Orbitale. Um ein
volles Verstdndnis zu bekommen, mufl man jedoch auch die komplementdre
Spinpolarisationen von B-Komponenten, sowie die Anderungen in der Coulomb-
AbstoBung zwischen den FElektronen und der Elektron-Kern Wechselwirkung,

betrachten.

Die Spinpolarisation der Rumpforbitale in molekularen Systemen ist proportional
der Spin-Population der 3d-Valenzorbitale; ihre Abhéngigkeit von den anderen
Bindungs-Parametern ist jedoch sehr klein. Die Spinpolarisation von Valenzorbitalen
hiingt hingegen sehr stark von der Uberlappung zwischen einzeln und doppelt besetzten
Orbitalen ab. Eine grosse Uberlappung fiihrt zu starker Spinpolarisation und u. a. zur
Spinkontamination der Wellenfunktion. Dies passiert gerade fiir die Systeme, bei denen
die Verwendung von Hybrid-Dichtefunktionalen zum dramatischen Anwachsen von

Spinkontamination und zur erheblichem Verschlechterung der Resultate fiihrt.*

Die Bedeutung der Rumpf- und Valenz-Spinpolarisation fiir die Anisotropie des
Kopplungstensors in Ubergangsmetall-Komplexen wurde ebenfalls untersucht. Ganz im
Gegensatz zur impliziten Annahme in vielen qualitativen sowie quantitativen Schemas,
die von Experimentalisten hdufig benutzt werden, kénnen sowohl die Rumpforbitale als
auch die Valenzorbitale zur Anisotropie des Kopplungstensors erheblich beitragen. Dies
unterscheidet die Ubergangsmetall-Komplexe von den Hauptgruppensystemen, wo
meistens selbst die Betrachtung des einzeln besetzten Orbitals flir die Berechnungen der
Kopplungsanisotropie ausreichend ist. Die Bedeutung von Spinpolarisation fiir die

Ubergangsmetall-Kopplungsanisotropie entsteht dank den stark polarisierbaren ‘semi-
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core’ p-Orbitalen (hauptsichlich die 3p-Orbitalen fiir die erste Ubergangsmetallreihe),
die eine sehr dhnliche radiale Ausdehnung wie die Valenz-d-Schale aufweisen. Die
Spinpolarisation beeinflu3t nicht nur die doppelt besetzten Orbitale, sondern auch das
einzeln besetzte Orbital selbst. Fiir beispielsweise TiF; und MnO; hat die
Spinpolarisation eine interessante 3d/4s Rehybridisierung des einzeln besetzten Orbitals
zur Folge. Letzteres ist ein weiterer Grund, warum die Versuche, von der Anisotropie
des Kopplungstensors auf die Spinpopulation oder gar die Zusammensetzung der
Orbitale zu schlieBen, oft zu falschen Ergebnissen fiihren. Explizite quantenchemische

spin-polarisierte Berechnungen sollten hier bevorzugt werden.

Die Ergebnisse dieser Arbeit konnen auller zum Verstindnis der Mechanismen
der EPR-Hyperfeinkopplung in Ubergangsmetallverbindungen auch zur Identifizierung
von Fehlern in theoretischen Ansitzen dienen, und dariiberhinaus hoffentlich zur

Entwicklung verbesserter Methoden fiihren.

1.3 DFT-Berechnung elektronischer g-Tensoren in
Ubergangsmetallkomplexen mit Hilfe von Mean-Field Spin-Bahn-

Operatoren5

Eine neue storungstheoretische DFT-Methode zur Berechnung elektronischer g-
Tensoren im  Programm “deMon“ wurde fiir einen Satz von 14
Ubergangsmetallverbindungen validiert. Die atomare Natur der verwendeten Mean-
Field Spin-Bahn-Operatoren erlaubte eine weitergehende Analyse und Interpretation

atomarer Beitrdge zum beobachteten g-Tensor.

Im Gegensatz zu den guten Ergebnissen fiir Hauptgruppensysteme sind die
Abweichungen vom Experiment fiir die Ubergangsmetallkomplexe relativ groB. Die
Verwendung von Zweielektronen-Spin-Bahn-Operatoren verschlechtert ganz erheblich
die Ubereinstimmung mit dem Experiment. Die Zweielektronen-Operatoren reduzieren
die g-Verschiebungen um ~40-50%, so dass ein linearer Fit mit einer Richtwert von
0.59 erhalten wird wenn sowohl die die Einelektronenterme wie auch die
Zweielektronenterme  eingerechnet  werden. Diese  Beobachtung  enspricht

1.87

tiberraschenderweise den von Biihl at a berichteten Ergebnissen in einer

19



Validierungsuntersuchung von GGA-Dichtefunktionalmethoden fiir die Berechnung
von NMR chemischen Verschiebungen fiir 3d-Ubergangsmetallkernen. UDFT-GIAO-
Berechnungen mit Hilfe gradientenkorrigierter Funktionale haben ein Richtwert von
~0.6 im Vergleich mit dem Experiment ergeben. Letzteres 1468t sich auf die
systematische Unterschitzung der paramagnetischen Anteile von ungefihr 40%

zuriickverfolgen.

In Ubereinstimmung mit dem Vorschlag von Patchkowskii and Ziegler® wird dies
auf die Unfdhigkeit der lokalen/gradientenkorrigierten  Dichtefunktionalen
zuriickgefiihrt, die jeweiligen Storungsmatrixelemente sowie die Energienenner gut zu
beschreiben. Biihl berichtete eine Verbesserung der Richtwert bis beinahe 1.0 bei der
Anwendung von HF/DFT-Hybrid-Funktionalen (B3LYP bzw. B3PW91).” Vom
Gesichtspunkt der formalen Ahnlichkeit des Shieldingtensors und des g-Tensors ist eine
Verbesserung der Ergebnisse bei der Anwendung von HF-DFT-Hybridfunktionalen
auch fiir die g-Tensoren zu erwarten. Vorldufige Ergebnisse haben bestitigt, da3 die
Anwendung von HF/DFT-Hybrid-Funktionalen tatsdchlich zur Verbesserung der

Ergebnissen fiihren soll.”

1.4 DFT-Berechnung der EPR-Parameter fiir Vanadyl-Schiff-Base-

Komplexe10

DFT-Untersuchungen der EPR-Hyperfeinkopplungstensoren und g-Tensoren fiir
Vanadyl-Schiff-Base Komplexe wurden durchgefiihrt. Folgende Komplexe wurden
untersucht: [N,N’-ethylenbis(o-tert-butyl-p-methylsalicylaldiminato)]
oxovanadium(I'V), bis(N-methylsalicylaldiminato)] oxovanadium(IV), bis(N-methyl-o-
(tert-butyl-p-methylsalicylaldiminato) oxovanadium(IV), und bis(2-methylquinolin-§8-

olat) oxovanadium(IV).

Die Hauptkomponenten der A4- und g-Tensoren wurden berechnet und
interpretiert. Zusitzlich liefert die Rechnung die Orientierung der 4- und g-Tensoren
relativ zum Molekiilgeriist, die experimentell in diesen Fillen nicht zugénglich ist. Die
Orientierung des A-Tensors relativ zum g-Tensor ist experimentell einfacher zu erhalten

und konnte fiir bis(2-methylquinolin-8-olat) oxovanadium(IV) bestimmt werden.
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Wiéhrend in diesem Fall einige Unklarheiten beziiglich der Zuordnung der
Komponenten besteht, stimmen theoretische und experimentelle Resultate miteinander
tiberein. Beide ergeben eine ganz erhebliche Rotation zwischen den senkrechten

Komponenten beider Tensoren (Theorie: 41°, Experiment: 28°).

Die Orientierungs-Abhdngigkeit des 4-Tensors von der lokalen Oxovanadium-
Koordination ist relativ klein. Die Orientierung des g-Tensors hingt hingegen sehr stark
von Koordinationsgeometrie des Vanadyls ab. Dies 148t sich durch die verschiedene
Beitrdge angeregter Zustdnde zu den A- und g-Tensoren verstehen. Der 4-Tensor ist
hauptsdchlich eine Grundzustands-Eigenschaft, wahrend der g-Tensor eine Reaktion der
Wellenfunktion des Systems auf die Stérung durch das externe Magnetfeld beschreibt
und so den Effekt angeregter Zustidnde darstellt. Letzteres hat die Nichtkoinzidenz von
A- und g-Tensoren fiir die vorliegende Reihe von Komplexen zur Folge. Die
Orientierung der 4- und g-Tensoren relativ zum Molekiilgeriist bzw. die experimentell
einfacher zu erhaltende Orientierung des 4-Tensors relativ zum g-Tensor kann als ein
sehr empfindlicher Test der lokalen Koordination und Symmetrie des Oxovanadiums

dienen.

Der experimentell gefundene Zusammenhang zwischen der Anisotropie des 4-
Tensors und der lokalen Oxovanadium-Koordination wurde auf der DFT-Niveau
reproduziert, analysiert und mit Hilfe der V-3d,” Beitrige zum einzeln besetzten Orbital
(tiberwiegend V-3dxz_y2) interpretiert. Letztere Beitrdge sind dank der Verzerrung der
SQ-5 Koordination zur TBP-5 Koordination mdéglich. Fiir den bis(N-methyl-o-(zert-
butyl-p-methylsalicylaldiminato) oxovanadium(IV) Komplex, der iiberdies eine
erhebliche Verzerrung von der C,-Symmetrie aufweist, sind auch die voneinander
verschiedenen Metall-d.., Metall-d,. Beimischungen in das einzeln besetzte Orbital von
Bedeutung. Der Zusammenhang zwischen der Anisotropie des A-Tensors und der
lokalen = Metall-Koordination  sollte fiir die EPR-unterstiitzte strukturelle
Charakterisierung biochemisch relevanter Komplexe im Allgemeinen von Bedeutung

sein.

Die vorliegende Arbeit dient nicht nur zur Interpretation experimenteller Trends
in  magnetischen = Wechselwirkungen, sondern auch als eine  weitere
Validierungsuntersuchung von Dichtefunktionalmethoden zur Berechnung von EPR-
Parametern fiir Ubergangsmetallverbindungen. Die hier untersuchte Vanadyl-Komplexe

weisen ein einzeln besetzte Orbital auf, welches relativ wenig mit den doppelt besetzten
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Metall-Valenzorbitalen iiberlappt. In Ubereinstimmung mit den vorigen Ergebnissen' ist
die Spinkontamination bei den HF/DFT-Hybrid-Funktionalen kein grof3es Problem. Die
Hybrid-Austauschfunktionale fiihren zu besserer Ubereinstimmung der berechneten
Hyperfeinkopplung mit dem Experiment als die gradientenkorrigierten Funktionale,
dank einer verbesserten Behandlung von Spinpolarisation der Rumpforbitale. Alle hier
untersuchte  Dichtefunktionale,  inklusiv  die = BP86-Gradientenkorrigierung,
reproduzieren den experimentellen Trend in der Anisotropie des 4-Tensors unter der
SQ-5 — TBP-5 Verzerrung sehr gut. Dies 148t sich auf die Tatsache zurtickfiihren, dafl
die Anisotropie des A-Tensors hauptsdchlich durch das einzeln besetzte Orbital

bestimmt wird und relativ wenig von der Spinpolarisation abhéngt.

Wie bereits in unserer Validierungsuntersuchung der DFT-Methode zur
Berechnung elektronischer g-Tensoren gefunden,” unterschitzen die lokale
Dichtendherung sowie die gradientenkorrigierten Austausch-Korrelations-Funktionale
systematisch die paramagnetischen Anteile zu ungefihr 40%. Eine Verbesserung der

Ergebnisse ist jedoch bei Anwendung von HF-DFT-Hybridfunktionalen zu erwarten.’
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In the course of coming into contact with empirical material, physicists have
gradually learned how to pose a question properly. Now, proper questioning
often means that one is more than half the way towards solving the problem.

Werner Heisenberg (1901-1976)

2 Introduction

2.1 Background and Motivation

Electron paramagnetic resonance spectroscopy (EPR) is a branch of magnetic
resonance spectroscopy dealing with molecules in which the total spin quantum number
S is different from zero. In such molecules, the probability of finding at any point an

3

electron with spin “up“ minus the probability of finding there an electron with spin
“down”, the spin density, is generally nonzero. Associated with this net electronic spin
is a magnetic moment giving rise to two degenerate energy levels. In the presence of an
external magnetic field, this degeneracy is lifted due to the electronic Zeeman
interaction, and the levels are split by an amount proportional to the field strength. The
basic EPR experiment consists of observing a transition between these two energy
levels. Most of the EPR spectra, however, do not consist of a single line but do have a

hyperfine structure that arises due to interactions between the electronic spin density

and nuclear spins in the radical.

Most of the nondynamic information obtained from EPR is an information on the
spin density distribution. This in turn provides information on the structure of the
molecule observed. An important intermediate in the interpretation of the EPR spectra
is the spin Hamiltonian, a model that summarizes the experimental data in terms of
small number of parameters. Within the spin Hamiltonian concept, the electronic
Zeeman interaction between the net electronic spin and the external magnetic field is
parametrized by the electronic g-tensor; the hyperfine interaction between the electron

and nuclear spins is described by the hyperfine A-tensor.
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The hyperfine structure is often considered to be the most important part of
information obtained from an EPR spectrum, due to a very direct connection between
the spin density at (near the) nucleus and the isotropic (anisotropic) part of the hyperfine
tensor. Since the early days of EPR, the interpretation of hyperfine coupling has been an
example of a particularly fruitful interaction between theory and experiment. Substantial
qualitative understanding has been obtained for organic free radicals as well as for
transition metal complexes. Quantitative theoretical studies of the hyperfine coupling
have, however, concentrated largely on organic molecules or on other light main group
systems. This is understandable, as the accurate inclusion of electron-correlation effects
is mandatory for quantitative calculations of electron-nuclear hyperfine interactions. To
achieve this in traditional post-Hartree-Fock ab initio calculations is far from trivial, and
such treatments are not easily applicable to larger transition metal compounds. Yet,
recent interest in applications of EPR to transition metal complexes in catalysis,
bioinorganic chemistry, or materials research make the quantitative theoretical

treatment of such systems highly desirable.

An alternative theoretical approach has been provided by recent developments in
density functional theory (DFT) that includes electron correlation approximately, at
moderate computational cost. A number of Kohn-Sham DFT studies on transition metal
hyperfine coupling have appeared. However, only a limited number of density
functionals and basis sets have been employed, and only a relatively small set of
molecules and electronic-structure situations was covered. In order to be able to judge
in detail the ability of the available DFT approaches to describe the hyperfine coupling

for transition metal systems, further systematic studies were needed.

2.2 Objectives of the Study

The primary objective of the work reported in this thesis was to perform a
validation study of density functional approaches for the calculations of EPR hyperfine
coupling for a series of first-row transition metal complexes. The author‘s aim was to
compare the results obtained for a series of density functionals with experiment, to

identify functionals suitable for further application calculations, and to employ these
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calculations for the interpretation of spectra of chemically interesting systems.
Throughout the validation study, the author has learned much about the mechanisms of
transfer of the spin density from the valence shell to the transition metal nuclei. These
interpretational aspects became subjects of a separate study. The final objective was to
validate a new DFT implementation of electronic g-tensor calculations within the
deMon code for a series of 3d transition metal complexes, as well as to apply the new

methods.

The present thesis consists of an introductory part (Chapters 1 through 3), four
commented papers summarizing the author’s work in the field of theoretical studies of
EPR parameters (Chapters 4 through 7), and a conclusion part (Chapter 8). The topics
introduced in this chapter (Chapter 1) are dealt with in more detail in subsequent
chapters. Chapter 2 describes the theory of the spectral parameters of electron
paramagnetic resonance. The concept of the EPR spin Hamiltonian is introduced,
followed by a discussion of the perturbation theory approach to the calculation of two of
its parameters, g- and A-tensors. Chapter 3 is devoted to an overview of ab initio
computational methods employed in this thesis for obtaining the field-free description
of the molecular ground state. Chapter 4 reports the results of the extensive evaluation
of DFT methods for the prediction of hyperfine coupling constants for both metals and
ligands in 3d transition metal complexes. The results of the validation study of new
DFT methods for the calculation of electronic g-tensors for a set of 3d-transition metal
complexes are reported in Chapter 5. Chapter 6 describes the results of a detailed study
of the mechanisms of EPR hyperfine coupling in transition metal complexes. Finally, a
DFT application study of g- and 4-tensors for a series of vanadyl complexes is reported

in Chapter 7. A number of general conclusions are given in Chapter 8.

SI conventions are assumed throughout this thesis and recommended symbols are
employed, with three small exceptions. 47 (& being the permitivity of free space) is
often denoted by the single symbol xy; £ has been retained for the Bohr magneton
(recommended symbol ), and fy for the nuclear magneton (recommended symbol
uy). Instead of /47 (1o being the permeability of free space), we have used the

equivalent combination 1/x¢?, ¢ being the velocity of light.

Atomic units are employed throughout Chapter 3 of this thesis and the original

papers. We note that in atomic units, e, /2, m and xyp all take unit values and may thus be
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dropped from all equations provided the symbols occurring are reinterpreted as the

numerical (i.e. dimensionless) measures of the quantities they represent.
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The electron is not as simple as it looks.

William Lawrence Bragg (1890-1971)

3 Electron Paramagnetic Resonance Parameters

This chapter discusses the theory of the spectral parameters of electron
paramagnetic resonance. We introduce the concept of the EPR spin Hamiltonian and
explain the perturbation-theory (PT) approach to the calculation of two of its
parameters: the g- and A-tensors. Our approach is based on a PT treatment of the Breit-
Pauli Hamiltonian. The conceptual sequence from the relativistic Dirac Hamiltonian
through the Breit-Pauli Hamiltonian to the EPR spin Hamiltonian is sketched, following
refs 1, 2, 3, and 4. A unified theoretical treatment of g- and A-tensors is provided up to
second-order perturbation theory. Important links between the spin Hamiltonian
parameters and qualitative aspects of electronic structure are established, following the

discussion in refs 5 and 6.

3.1 Electron Spin: A Theoretical Rationale

The technique of electron paramagnetic resonance spectroscopy may be regarded
as a fascinating extension of the famed Stern-Gerlach experiment. In one of the most
fundamental experiments on the structure of matter, Stern and Gerlach in 1922 showed
that an electron magnetic moment in an atom can take only discrete orientations in a
magnetic field, despite the sphericity of the atom.” As a theoretical rationalization of
this striking observation that could not be explained along the lines of quantum
mechanics, Uhlenbeck and Goudsmith postulated in 1925 that electrons possessed an
intrinsic angular momentum — electron spin.® This would give rise to an intrinsic

magnetic momentum of the electron, independent of any translational motion.
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3.1.1 Pauli Spin Matrices

The concept of electron spin has been incorporated into quantum mechanics in
1927 by Pauli’ who postulated that a full characterization of electronic behavior
requires, in addition to a spatial function ¢(r), a parameter of electron spin . The

electron spin was suggested to be a combination of degenerate but orthogonal functions

SHRRY

It can be obtained as an expectation value of the operator 6=( o, G,, G.), where
0 1 0 —i 1 0
Gx = , 0o = . , 62 =
1 0 Ylio 0 0 -1

are the Pauli spin matrices.

(3.1)

(3.2)

3.1.2 The Dirac Equation

The Pauli treatment of spin inspired Dirac in his effort to develop a theory, in which
the electron spin and magnetic moment would arise naturally: “The question remains as
to why Nature should have chosen this particular model for the electron instead of
being satisfied with the point-charge. One would like to find some incompleteness in the
previous methods of applying quantum mechanics to the point-charge electron that,
when removed, the whole of the duplexity phenomena [spin effects] follow without

19 This goal has been achieved when Dirac rederived quantum

arbitrary assumptions.
mechanics within Einstein’s special relativity theory, providing thus a formalism in
which it was possible to explain all magnetic effects known at the time and predict

numerous additional phenomena.

Using Einstein’s relationship between total energy, momentum, and a rest mass

m of a free particle, a relativistic version of the free-particle Schrédinger equation
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_ho¥ = icx/—hzvz +m’c® ¥
i ot
(3.3)
can be obtained. It is, however, not clear how to interpret the square root in the

relativistic Hamiltonian. Dirac circumvented this problem by setting

—W’V? +m’c’ :E‘V‘a + B mc
i

(3.4)

where £ is some scalar and o=(a, @, o). Equation (3.4) can only be satisfied if

[a,.,aj]=0 , i#j 3 |a.p]=0 a’ =p>=1
(3.5)

In the simplest possible solution of the system (3.5), a; and fare (4x4) matrices, the
explicit form of which can be found elsewhere.” The important fact is that the (4x4)

nature of the operators implies a four-component relativistic wave function

¥, (r,1)
Y, (r,t
W(r.1) = 1(r,0)
Y, (r,1)
Y, (r,1)
(3.6)
The Dirac equation
—éa—T: (h—?v.a+ﬁmc2jT
i ot i
(3.7)

thus represents a set of four partial differential equations. Of its four solutions, only two
correspond to normal electronic behavior. They account for the existence of the & and £
spin states postulated by Pauli (see next section), and for a number of other relativistic
quantum effects. The two other solutions were found to describe a particle not known at
the moment of Dirac’s publication - with electronic properties except for an opposite
charge. Four years later, the discovery of the positron — a particle perfectly matching

this description — upholded the triumph of Dirac theory.
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3.1.3 Pauli Reduction of the Dirac Equation

The Dirac equation can be solved exactly only for the most simple systems. It is
thus desirable to generate approximations that are more easily solved but still contain
the essential features of the Dirac formalism. A common approach to such
approximations is looking for the relationships between the fully relativistic Dirac
theory of the electron and the nonrelativistic theory where spin is treated in the Pauli
sense. There are two categories of reasons for wishing to establish a connection between
these two theories. Firstly, understanding of a theory often depends to a large extent on
a model in terms of which the predictions of the theory can be interpreted. There is a
natural tendency to base new models on revisions of previous models, in this case to
relate relativistic quantum mechanics to nonrelativistic quantum mechanics (and in turn,
to classical mechanics). Secondly, in many cases relativistic effects are relatively small
compared to the total quantities involved; it is thus advantageous from the
computational point of view to treat them as perturbations with respect to the
nonrelativistic case. The reduction of the fully relativistic theory with four-component
wave functions to a non-relativistic theory with two-component wave functions is
traditionally done using either the Foldy-Wouthuysen transformation or the partitioning
approach.' To demonstrate how Dirac theory accounts for the electronic Zeeman effect,
we develop here the latter approach — the Pauli reduction of the Dirac equation, as

applied to a free electron in a magnetic field.

For the description of the effect of a uniform magnetic field B on an electron, we

will use field-dependent momentum and energy operators

p:—zv - HI—E.V-I-EA
i i c
ko ho
i ot io

(3.8)

Here ¢and A are the scalar and vector potentials, from which the electric field strength

E and magnetic flux density B, respectively, may be derived within classical
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electromagnetic theory. Consequently, one obtains the field dependent version of the

Dirac equation

h oW .
- 75 = (Cﬂ.(l + [imc - e¢)‘1’
(3.9)

Because one is generally interested in the two electronic solutions only, it is desirable
to reduce the (4x4) system of equations (2.9) to a (2x2) system by writing ¥ in terms of

two two-row spinors:

(3.10)

Partitioning o and 3 accordingly, one obtains

ERIR

Here 1 and 0 are (2x2) unity and zero matrices, respectively; and the components o, o;,

(3.11)

o, of the operator ¢ are the Pauli spin matrices (3.2).

Within this formalism, the Dirac equation can be written as

mc’¥Y, +con¥, =WY,
co.n¥, —mc’¥, =WY,
(3.12)

The total energy W can be separated into a sum of the rest mass mc’ and all

additional energy &; so that (3.12) becomes

con¥, =¢c¥,
(3.13)

co.n¥, = (&+2mc’)Y,
(3.14)

If we express '¥; in terms of W, using (3.14) and substitute it into (3.13), we obtain
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2 2
¢ (o.m) v _.y

u u

£+2mc?
(3.15)

In most conventional systems, the dominating term in the total energy is the rest

mass (W ~ mc? >> ¢). Therefore, we can make the approximation &+ 2mc? ~ 2mc?

(first Pauli limit), in which (3.15) becomes

%(c.n)z‘l’u =¥,
m

(3.16)
The latter expression can be rewritten as
2
L(G.n)z‘l‘u = L{nz +@6.B}I’u | iBeB¥, =c¥, |,
2m 2m c 2m
(3.17)

which is identical to Pauli’s empirical incorporation of electron spin into quantum

mechanics.

If we expand c and expect the magnetic field B to be oriented in the z-direction,

we obtain a system of equations

2
T

wmPE 0 mm
) -
0 n——ﬂeB ¥, ¥,
2m

(3.18)
with two nontrivial solutions
I’n?
¥, =0 ; W,c|nlm) ; £=2nB,B+ 5 —eg
m
(3.19)
I’h?
W oo |nlm) 5 W,=0 ; e=Q2n+2)BB+ > —eg
m
(3.20)

Thus, when subjected to a magnetic field B, two electronic states with identical
spatial distribution vary in energy by an amount of 24.B. Pauli’s approach, therefore,

very closely approximates the Zeeman resonance condition for a free electron
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hv=g fSB ,
(3.21)

where S is the electron spin angular momentum vector and g, is the spectroscopic
splitting factor. Dirac’s relativistic theory predicts g, to be equal to 2 for a free electron.
The discrepancy between this and the experimental value (2.002319304386) is

attributed primarily to quantum electrodynamic effects.

In the first Pauli limit, eq (3.15) adopts a form where the terms proportional to
1/c*™ disappear, cf. (3.16). A transformation of eq (3.15) that keeps the terms
proportional to 1/c¢* is called the second Pauli limit of the reduced Dirac equation. The
resulting expression, called the Breit-Pauli Hamiltonian, provides tremendous insight
into electromagnetic behavior of a free electron by accounting explicitly for the familiar
spin-orbit coupling, the Darwin term, and the relativistic correction to the kinetic

energy.

3.2 The Breit-Pauli Hamiltonian for Many-Particle Systems

The extension of the approach described above to many-particle systems is based
on, first, a generalization of the Dirac Hamiltonian to two particles, and then its
application to a many-particle system in which all pairwise interactions are taken as
additive. Here we present the terms of the Breit-Pauli Hamiltonian for a many-electron
molecule in the absence of any external electric charges. The fixed-nucleus

approximation is employed. We follow ref 2 in writing the Hamiltonian in the form

H=H,+H,+H,
(3.22)

The pure electronic term is then

12
m:ZH;,
m=1
(3.23)

where (using xpto denote 4 z&y)
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



2 2
e _ &P R 2
i T 2k,C ,z]: h [3(Sj (S 1) s, 's/] ’
(3.34)
4rglf) <
H,=——=<=% .8 0(r,-r,
12 3]('002 ; 1 J ( i J)
(3.35)
The pure nuclear term is
12
Hy=>H) |,
m=l1
(3.36)
where (within the fixed-nucleus approximation)
HIN :_eZZN¢N >
N
(3.37)
Hévz_ﬁNngIN'B )
N
(3.38)
HN: 62 Z' ZNZN'
3 5
260 v Ry
(3.39)
HY == L5 S g o RSB, Ry Iy Ry )= Ro Ly 1 ]
4 — = ZZ EnEn Ly ( N NN’)( N NN')_ NN AN LN
2K, N
(3.40)
Finally, the electron-nuclear term is
o N
HeN = ZH; >
m=1
(3.41)
where
H :_i Z_N
1 Ko in Ty
(3.42)
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HzeN :—ge’f‘?fjv Z gNrH:,S[3(S['rl-N)(IN 'riN)_rizzv si'IN] >

oC iN
(3.43)
87 g.B.B
HN == &l efN s -I,6(r -r ,
3 3 K()CZ i,zNgN Iy o(r -ry)
(3.44)
e. 213616 -
H4N = hK‘OC]zV ;gNrf; [IN "Ly Xni] )
(3.45)
2
Y =8P ST e ,
5 hKOCZ I’ZN: NTIiN [ i iN l]
(3.46)
2z,
H:N :—;ZZN o(r;-ry)
o€ N
(3.47)

In the above, s; is the spin angular momentum vector of electron i and I is the spin
angular momentum of nucleus N. ¢ is the external electric potential and E; is the

external electric field. The vectors

Iy =5 =Ty

(3.48)
Ip =T, I,

(3.49)
r, =T, T,

(3.50)

define the position of electron i with respect to the position of nucleus N (eq (3.48)), the
position of some arbitrarily chosen gauge origin O (eq (3.49)), and the other integration
variable r; (eq (3.50)), respectively. gy is the nuclear g-value (that must be found
experimentally) and Zy is the proton number of nucleus N. All signs are explicitly taken
care of in the formulae (3.23)-(3.47), so e and Zy should be regarded as positive

numbers.

The terms in the Breit-Pauli Hamiltonian can be interpreted as follows''":
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The pure electronic terms:
(3.24) The electron’s kinetic energy,

(3.25) the energy of the interaction between the electron and the external

electric field;

(3.26) the electron Zeeman interaction between s; and B;

(3.27) relativistic correction to the electron’s kinetic energy;
(3.28) the one-electron spin-orbit interaction;

(3.29) the Darwin correction to the electric field interaction;
(3.30) electron-electron Coulomb interaction (electron repulsion);
(3.31) two-electron Darwin operator;

(3.32) two-electron spin-orbit interaction

(3.33) the orbit-orbit interaction between electrons

(3.34) electron spin-spin dipolar interaction;

(3.35) electron spin-spin contact interaction.

The pure nuclear terms

(3.37) Energy of interaction between the nuclei and the external electric
field;

(3.38) nuclear Zeeman term;

(3.39) nuclear-nuclear Coulomb interaction;

(3.40) nuclear dipole-dipole interaction.

The electron-nuclear terms:
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(3.42) Electron-nuclear Coulomb interaction (Coulomb attraction);

(3.43) dipolar hyperfine interaction;

(3.44) Fermi contact hyperfine interaction;

(3.45) orbital hyperfine interaction;

(3.46) electron-electron spin-orbit hyperfine correction;
(3.47) electron-nuclear Darwin term.

3.3 The Spin Hamiltonian

3.3.1 The Concept of the Spin Hamiltonian

The form of the Breit-Pauli Hamiltonian suggests the possibility of constructing a
“phenomenological® Hamiltonian that contains only spin operators and applied fields,
together with numerical parameters that serve as ,,coupling constants®. Indeed, the
results of magnetic resonance experiments are most commonly interpreted in terms of a
spin Hamiltonian referring to a model spin system whose behavior may be determined

by solving

H,®=E®
(3.51)

in a basis of electron-nuclear spin functions, referring to spins of various nuclei Iy and
to the total electron spin S. With a proper choice of coupling constants, the eigenvalues
of (3.51) fit the observed energy levels. The spin Hamiltonian is conventionally written

in the form'
Hy=S-g-B+> S-A,-I,+S-D-S
N

+;1N . (I—GN)-B+MZ]:VIM (D, +K,) 1,

(3.52)
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The last two terms in expansion (3.52) correspond to the nuclear Zeeman and
nuclear spin-spin coupling terms, respectively. The following parameters are involved:

the nuclear magnetic shielding tensors on, which describe the magnetic shielding
effects of the electrons on the nuclei; the classical dipolar interaction tensors ﬁMN,

which describe the direct couplings of the nuclear magnetic dipole moments; and the
reduced indirect nuclear spin-spin coupling tensors Ky, which describe the indirect
coupling of the nuclear dipoles mediated by the surrounding electrons. These terms are

of importance in NMR but are not normally so in EPR."

The crucial parameters of electron paramagnetic resonance are introduced in the
first three terms of (3.52). The S-D-S term involves the zero field splitting tensor D
that describes the electron-spin-electron-spin dipolar interaction in systems with more
than one unpaired electron. Our interest in this thesis concentrates on the electron
Zeeman term, S-g-B, and the hyperfine interaction term, S- A, -1,, of (3.52). The
former term involves the electronic g-tensor g that parameterizes the interaction
between the total electron spin and the magnetic field; the latter term introduces the
hyperfine tensor Ay that parameterizes the interaction between the total electron spin

and the magnetic nucleus N.

The tensor components can be obtained as formal second derivatives of the total

energy:

The Cartesian uv-components of the g-tensor are given by

1 0E
guv = ;
B, 0B,OS, |, ¢,
(3.53)
the Cartesian uv-components of the 4-tensor are given by
2
4., =2E
ol oS, s
(3.54)

Before giving the explicit expressions for the g and A tensors (Section 2.4), we
will discuss the forms adopted by Hy in different media to obtain a feeling for the actual
parameters. The spectral observables obtained from the resonance experiment

correspond to the time average of the components of the second rank EPR tensors T= g,
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A, along the direction of the external magnetic field. The latter is chosen to be the z

axis of the laboratory coordinate system (x’, y', z').

The transformation equation for a general second rank tensor between any two

Cartesian coordinate systems (a,/f,7) and (a,b,c) is given by

T, = Zcos@w cosby, T,

off
(3.55)
where 6, is the angle between the « and a axes. From this follows that
T, = Z cos@,. cost,. T,
af
(3.56)
and, for the time average,
1 2
<Tz'z'>:7—;'su+Tanisu :§z<Taa>+§Zﬂ:Saﬂ<Taﬁ> >
(3.57)

where o and £ denote any of the molecule-fixed coordinates (x, y, z). The symmetric,

traceless matrix U represents the orientation tensor with respect to the magnetic field

Uz :%<3cos 0,. cos0,. —5aﬁ> ,
(3.58)

that carries the information on the probability distribution of molecular orientation with
respect to B. Equation (3.57) defines the decomposition of the EPR tensors in their

isotropic and anisotropic parts,

1
T =3 T =T +{7, ) +(1.)
(3.59)
and
Tpiso = %U <T> 5
(3.60)
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respectively. The angle brackets in the formulas given above indicating the time

averaging will be dropped throughout the following discussion.

3.3.2 Spin Hamiltonian Parameters from Condensed-Phase EPR

In liguids with low viscosity, the orientation of the molecules is not ordered and
the tumbling of the molecules is isotropic. The spectral observables are reduced to their

isotropic parts: the g tensor to the g-factor'* (g-value'?)

1
=—Tr ,
g 3 g
(3.61)
the A tensor to the isotropic hyperfine coupling constant (HFCC)
1
4, ==-TrA
3
(3.62)

Much more information on the spin Hamiltonian parameters can be obtained from
solid-state EPR spectroscopy. In the ideal case, the measurement is being performed for
a single crystal sample where the orientation of the molecules with respect to the
applied magnetic field is well defined. It is often difficult to make single crystals large
enough; a powder sample must be used then, for which the orientation of the molecules

with respect to the magnetic field is not known.

For single crystal samples, the elements of the matrix (g-g"), (A-A") can be
obtained by the successive rotations of the sample with respect to the magnetic field.
Any of the (g-g"), (A-A") matrices can be transformed to diagonal form by moving from
the laboratory coordinate system to a principal-axes system. Once the diagonal elements
of the (g-g"), (A-A") tensors in the principal-axes system, the principal values, are
found, one wishes to obtain the matrices g, A themselves. Two kinds of problems are
encountered here: of matrix antisymmetry and of signs. If g is an antisymmetric matrix,
then its principal axes system is not an orthogonal one. Such a “true” g tensor is
obtainable from theory only and is not directly comparable to the symmetric tensor

derived from the experimental (g-g") matrix. EPR experiments on powder samples or
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polycrystalline substances provide information on the isotropic and anisotropic
components of the A and g tensors in the principal axes system as well. However, the
orientation of the principal axes system with respect to the molecular framework can be

obtained from single-crystal EPR experiments only.

Symmetry concepts are extensively applied in the interpretation of solid-state EPR
spectra. From the point of view of local symmetry, three categories are used for the

specification:
(1) Cubic: Anisotropy of EPR properties is absent.

(2) Uniaxial (often shortened as ‘““axial”): linear rotational symmetry about a unique
axis is contained; anisotropy is observable except with the field B in the plane
perpendicular to the unique axis. Two principal values of the g and 4- tensors are
equal but differ from the third one, they are conventionally labeled as (g1, g1, g));
(AL, AL, Ay

(3) Rhombic. Three unequal principal values are contained in each parameter matrix.

The solid-state measurements provide the most complete information about the
spin Hamiltonian parameters. However, the environmental effects can influence the
values of the parameters due to both structural and electronical effects. This complicates
the comparison of our calculated data with experiment. In general, we cannot aim at a
better agreement between our calculation on isolated species with condensed-phase
experiment that 10-15%. This comparison is further complicated by the fact that neither
solid nor liquid-state EPR measurements provide the signs of the spin Hamiltonian

parameters.

3.3.3 Spin Hamiltonian Parameters from Gas-Phase Spectroscopy

By definition, atoms and molecules in the gas-phase differ from those in the
condensed phase in that they are almost perfectly free to perform translational and
rotational motion. Literally free molecular rotation does allow observation of the
quantized rotational energy levels. The ensuing rotation-magnetic interactions
significantly influence the spectra so that more information on spin Hamiltonian

parameters can be obtained than in liquids. On the other hand, due to the complexity of
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the rotational-magnetic patterns, gas-phase microwave spectra have been resolved for

monoatomic, diatomic, and very simple polyatomic species only.

Most of the experimental data for the diatomics we refer to in this thesis have
been obtained using the gas-phase spectroscopy. The hyperfine parameters have been
determined from the analysis of the rotational level splittings. The relative positions of
the energy levels were obtained either directly by monitoring the absorption/emission
(“pure” microwave rotational spectroscopy) or indirectly (through fluorescence or laser
beam deflection).'* The accuracy of such measurements is usually very high, e.g. in the
kHz range (~1 ppm) for the hyperfine parameters when using microwave optical double
resonance.”” Unlike the situation in liquids, the spin Hamiltonian parameters are not
averaged by the molecular tumbling, so that, e.g., for diatomics all of the gj, g, A, A,
parameters can be determined. The set of total angular-momentum vectors F of
molecules can be thought of as randomly oriented, but each is fixed in its direction until
disturbed by a collision, which is a relatively rare event on the EPR time scale in most
studies. In molecular beam studies such interactions between molecules are completely
absent. The quantum number My thus remains constant and can be measured after an
external magnetic field is applied, i.e., once the quantization direction is specified.'
Missing or weak intermolecular perturbations, together with the great accuracy of the
measurement, make gas-phase data the most reliable for comparison with our computed
data on isolated molecules. Moreover, unlike in the condensed phase, the sign of the

hyperfine coupling constants is obtainable from the gas-phase experiments.

3.4 Perturbation Expressions for the Electron Zeeman and Hyperfine

Interaction Terms

In the preceding two sections, we have shown that it is possible, from a relativistic
theory, to derive operators necessary for a complete description of the electronic
Zeeman and hyperfine effects, and that these effects enter the concept of the spin
Hamiltonian as the g and A tensors. The next step to be taken is to discuss which of the
many terms of the Breit-Pauli Hamiltonian are needed for a treatment of the g and A

tensors, and to give the explicit expressions for these parameters. Conceptually, the
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simplest approach would be to determine the eigenvalues of the Schrodinger equation
involving all the necessary terms of the Breit-Pauli Hamiltonian (3.22), and to calculate
the g and A tensors using relations (3.53), (3.54). Unfortunately, even the regular time-
independent Schrodinger equation without any magnetic operators can be solved
exactly only for some one-electron systems. Variational approaches that are
conventionally applied to find solutions for problems not involving the effects of the
magnetic field® prove prohibitively difficult when many magnetic operators are

required.

Since the magnetic effects are generally very small compared to the total
molecular energy, it is very convenient to adopt a different, perturbational treatment.
The philosophy of perturbation theory (PT) approaches is the partitioning of the total
molecular Hamiltonian into a zeroth-order part (Hy), which has known eigenfunctions
and eigenvalues, and a remaining part — the perturbation (V). The exact energy is then
expressed as a sum of contributions of increasing complexity, and converges quickly if
the partitioning of the Hamiltonian leaves the perturbation V' small. In our case, the
natural choice for Hj is the magnetic-field-free part of the total Hamiltonian, leaving the
field-dependent parts to represent the perturbation V. The perturbation approach breaks
the problem down into two separate tasks. The first step (that we will deal with in
Chapter 3) involves a description of the field-free problem. Here we concentrate on the
second step - quantifying the changes (perturbations) in the description that are induced
by a magnetic field, and that enter the A and g tensors. We start with recapitulating the
basic features of the PT approach.

3.4.1 Rayleigh-Schrodinger Perturbation Theory

The general problem is to solve the eigenvalue equation

H|®)=H"+V)|®)=E |®,) ,
(3.63)

supposing that we have solved the electronic Schrédinger equation
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HO ‘\Pi(0)> =E' ‘\P;(O)>
(3.64)

for a set of eigenfunctions “Pi(o)> (below denoted as |i)) and eigenvalues E”. The

exact eigenfunctions and eigenvalues of the perturbed system with Hamiltonian H can

be written in terms of a Taylor series in the ordering parameter A:

E =E9 + JEV + PE® +...
(3.65)

[, )= W)+ 4w 0) 2[4
(3.66)

If we choose the eigenfunctions of H” to be normalized and the wave function

@, to be intermediately normalized (<i|CDi> =0), we obtain by multiplication of eq
(3.66) by |i)
(i|@,) = (i) + A% w) + 2 (i[ 2 ) + ... =1
(3.67)

As (3.67) holds for all values of 4, one sees that

(i[g")=0  n=123,.
(3.68)
Thus, substituting eqgs (3.65), (3.66) into eq 0 and equating the coefficients of 1"

gives

E” =(ilH"]i)

(3.69)
ED =(i)i) ,
(3.70)
EP =(iy|w")
(3.71)
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The zeroth- and first-order energies are thus defined in terms of the zeroth-order wave

function. Expanding “Pi(l)> in terms of eigenfunctions of H‘”, we obtain a similar

expression for the second-order energy:

iVinyn\Vii
Ei(Z) — n%i < |E(|0) >_<E|,(0)| >
(3.72)

The details of the derivation of these and higher-order contributions can be found

1
elsewhere.'®

In section 2.3, the spin Hamiltonian parameters have been defined as energy
derivatives. In non-degenerate perturbation theory, the first- and second-order energy
derivatives with respect to a perturbation x, known as the first- and second-order

molecular properties, are given by

OE(x) :<O|6H|O>

ox,
(3.73)
oH oH
(01— ~{n)n| = ~0)
2 2
8E(X)=<O| 0°H |0>+2Z X xj
Ox,0x Ox,0x oy E,-E,
(3.74)

where the derivatives are taken at x=0 (e.g., zero field and zero magnetic moments).
The first derivative of a first-order property eq (3.73) is thus simply the expectation

value of the first-order Hamiltonian (this is a consequence of the Hellmann-Feynman
theorem) and requires only a knowledge of the unperturbed state |0> The second
derivative of the second order property eq (3.74) contains an expectation-value term
analogous to the first-order properties but also a sum-over-states contribution from each
excited state |n> of energy FE,. For magnetic properties, the expectation-value
contribution to the second-order property is known as the diamagnetic part, the sum-
over-states contribution is referred to as the paramagnetic part.'” To arrive at the

explicit expressions for 4 and g-tensors, we must consider the relevant terms of the

Breit-Pauli Hamiltonian, as we do in the next section.
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3.4.2 Operators Relevant for the Electron Zeeman Effect and for the Hyperfine

Interaction

In order to establish a connection between the terms of the Breit-Pauli
Hamiltonian (3.22) and the parameters of the spin Hamiltonian (3.52), the form of the
latter operator should be discussed briefly. We first note that (3.52) contains only terms
bilinear in the magnetic operators B, I, and S. No terms linear in (only one of the) B, 1,
or Sare involved, as any of the corresponding operators is pure imaginary and is
characteristic of the spatial components of time-odd interactions. The requirement of
time-reversal invariance of the nonvanishing energy terms thus enforces the absence of
terms linear in B, I, or S from the spin Hamiltonian. The exclusion of terms involving
powers higher than second of B, I, and S or their combination from the spin
Hamiltonian is not rigorous, but is a convenient and usually good approximation.' Such
terms would clearly arise if we went higher than to second order in perturbation theory.
In order to retain gauge invariance of the results for both the g and the A tensor, it is
necessary to include all relevant contributions to these tensors up to a certain order of
the fine-structure constant o. Below, we give the operators of the Breit-Pauli
Hamiltonian relevant for the 2™-order perturbation theory expressions up to O(a?) for

both the g- and the 4-tensor, including also the spin-orbit terms (~ O(o*)) for the latter.

The main contribution to the g-tensor up to O(a?) involves the electron Zeeman
interaction H;, given by (3.25). The part of H; that depends on s, and B(i) only

(corresponding to the term “1” in the brackets following the summation)

Hg, = geﬂezsi ‘B
(3.75)

is usually referred to as the spin-Zeeman operator. The part corresponding to the field-

independent part of ;

g.p.
Hpyeosz =— Y Zpizsi ‘B
e™0 i

(3.76)
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is called the spin-Zeeman relativistic mass correction operator, where pi* = p;p; is the
square of linear momentum operator for electron i. Both Hsz and Hgyc.sz give first-order
contributions to the electronic g-tensor. Hsy results in the free-electron g-tensor (g.1),

whereas Hgyc.sz contributes in first order to the Ag tensor that is defined as

Ag=g-g.1
(3.77)

The main second-order contributions to both the g- and A-tensors (and the
dominant contributions to the components Ag, the g-shifts) arise from the one-electron
spin-orbit interaction term (H{") of the Breit-Pauli Hamiltonian. H¢" involves the
field-dependent momentum mw;, and, for the purposes of practical calculations, it is
necessary to expand it into field-dependent and field-independent parts. By retaining

only the field-independent part of 7;, H" reduces to

2geﬂez s, -1,
Ho1e) = PR ZZNZ i o
0 N i iN

(3.78)

Hgp . thus describes the interaction between the spin g fB,s;, and orbital A1,

magnetic moments of the electron. The angular momentum operators Ly, Lo, and 1;
employed here and below for the sake of shortening the expressions are defined in the

following fashion:

Ly =1y xp,

(3.79)

and correspond to the different vectors defined in eqs (3.48)-(3.50). It is the term (3.78),
rather than eq (3.28), which is normally equated with the concept of the one-electron

spin-orbit coupling, and we will retain such a naming throughout this thesis.

The other part of H", involving the field-dependent part of 7;, is given by

2

g.B e [s, B(r, ‘r,,)—S, 1, (r, -B)]

H =_08elfe ~ N7 i i i il i
GC-50(le) 2 hlc002 §N N E,— 7”,-13\/

(3.80)
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Due to its origin in H", the Hg._gy,, term may be regarded as the portion of the spin-

orbit coupling which is dependent on the external field B, and is called the one-electron
spin-orbit gauge correction."® Gauge correction refers to the dependence of this term on

the origin O of the computational coordinate system. H ;. ., contributes in the first

order PT to the electronic g-tensor.

From equation (3.32), it is possible to derive the two-electron analogues of

Hsogie and H g0, - the two-electron spin-orbit coupling term

g IH (s, +2s; ) l
HSO(Ze) = Z 5

lj
(3.81)

and the two-electron spin-orbit gauge correction term

H _8pe 3 '[(s;+2s,)-BI(r, -r,0)—=[(s, +25,)-1,](r,, - B)]
GC-S0(2e) — ZhK‘O - r;

(3.82)

These terms may be regarded as conceptually identical to their one-electron
analogues (3.78), (3.80). In this case, however, the magnetic interactions take place
under an electric field arising from electron-electron Coulomb repulsion, rather than
electron-nuclear attraction. The corresponding one- and two-electron terms thus have
opposite signs. Hgo.) - analogously to Hsoe) - gives second-order contributions to both

the g- and A4-tensors; H ;- g0 - like H o ., - contributes to the g-tensor in the first

order.

The second-order contributions to the g-tensor involving Hsore) and Hso 2. arise

as cross terms between any of the spin-orbit operators and the orbital Zeeman operator

e e
HOZ:_m ZA(rl‘)'pi:_ﬂh BZIiO
(3.83)

Hpz is obtained from the operator H, upon the expansion of the field-dependent

momentum 7 (cf. (3.8)). It reflects the interaction between the external field B and the

orbital magnetic moment p, = 5, 1.
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The dominant, first-order contributions to the A-tensor are the Fermi-contact

operator corresponding to nucleus N (from H{", (3.44))

87
H) = MZé‘(rw)s ,

3 K,C
(3.84)
and the spin-dipolar operator (from HS", (3.43))
3r,,r. r
H%_ggNﬁ IBNZ iINYIN T lN_IN )
KoC T
(3.85)

If second-order contributions to the A-tensor are to be considered, then for
consistency certain additional but small first-order contributions should be included.
These are analogous to the “gauge correction” terms contributing to Ag but with the
vector potential due to the nuclear moment replacing that due to the uniform external

field. The vector potential due to the magnetic nucleus N is given by

A ( )_gNﬂNI Xr

3
Ky¢ 0 riN

(3.86)

From the 1-electron part of the spin-orbit (SO) Hamiltonian H¢", cf. eq (3.46),

we obtain the one-electron spin-orbit hyperfine correction term

HIJ-IVC—SO(le) =5 gegNlB ﬂN Z z

27’”@ i N,N'

X[(r,N zN')(si 'IN)_(si 'riN')(IN Ty )]
(3.87)

[ N

From the spin-spin and the spin-other-orbit parts of the 2-electron SO
Hamiltonian H;, cf. eq (3.32), arise the spin-spin-orbit hyperfine correction term

Hiesio =5 S T Tl )5 1= 6w

e KO ¢ N ry Fin
(3.88)

and the spin-other-orbit hyperfine correction term
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His = g S S S el 1,008, 1) (1,00 5)

me KO ljrlN

(3.89)

The latter two terms are usually treated together as the two-electron hyperfine

correction term

N N
HHC SO(2e) — HH(, SO0 + HHC SO0

(3.90)

Second-order contributions to the hyperfine tensor arise as cross-terms between any
of the spin-orbit operators (3.78), (3.81), and the paramagnetic nuclear spin - electron

orbit operator

H;\;O:igNIBNZ iN

m, K,C i I"lN

(3.91)

H)., is obtained by expanding the kinetic-energy term H/, cf. eq (3.24),

considering the contribution given by the magnetic dipole of the nucleus N to the field-

dependent momentum 7.

To summarize, the second-order expressions for the g-tensor up to O(a’) involve the
following 7 operators:'” the spin-Zeeman operator Hsy, the spin-Zeeman relativistic
mass correction operator Hgruc.sz, the one-electron and the two-electron gauge

correction terms H ;. so10)> Hee soe) » the one-electron and the two-electron spin-orbit

coupling operators Hsoe), Hsore), and the orbital Zeeman operator Hpz. First-order
pling op (le) (2e) p

contributions are given by Hsz Hrucsz Hge son@0d  Hge go00)» S€cond-order

contributions arise from cross-terms between Hoz and any of the Hso1e), Hsorze) terms.

The second-order expressions for the A-tensor up to O(a”) including the spin-orbit

terms up to O(a) involve the Fermi-contact operator H ~, the spin-dipolar operator
H{,, the one-electron and the two-electron spin-orbit hyperfine correction terms

H e soney and Hpye so0n., ., the one-electron and the two-electron spin-orbit coupling
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operators H gy, , Hgp s, and the paramagnetic nuclear spin - electron orbit operator

HN

PSO*

3.4.3 Perturbation-Theory Expressions for the Electronic g-Tensor

As discussed above, the perturbation V is in the case of g-tensor calculations given
by

V= HSZ + HRMC—SZ + HGC—SO(le) + HGC—SO(Ze) + HSO(le) + HSO(Ze) + Hoz .
(3.92)

The perturbation treatment can be simplified as follows:

(1) The 0™ order contribution Ei(o) does not contribute to the Zeeman splitting and can
thus be ignored.

(2) It can be shown that the operators Hsorie), Hsope), and Hoz do not contribute to

E" '3 The first-order perturbation can thus be written as

VO =Hg, +H s, + Hoe-sone) t Heesone) -
(3.93)

(3) Recall that we look for contributions to the Zeeman splitting bilinear in the magnetic
field B and effective electronic spin S. We can therefore exclude from the 2"-order

contributions operators Hsz, Hpycsz, H GC-s0(1e) and H GO-50(2¢) * which have
quadratic dependence on S or B. Thus,
@ _
V= HSO(le) + HS()(Z@) + Hoz .
(3.94)

The requirement of the bilinearity in B and S further restricts the 2™-order contributions

to two cross terms: between Hso(s) and Hoz, and between Hsoe) and Hoyz,

The second-order expressions up to O(a’) for the g-tensor components can be
obtained using the expression (3.74) for second-order molecular properties. We recall

that the spin-Zeeman operator Hs; results in the free-electron g-tensor (g.1) and does
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not contribute to the g-shifts. The Cartesian uv-components of the Ag tensor involve

contributions from the spin-Zeeman relativistic mass correction operator H,,,. s,

Ag;;lt)/[C—SZ,uv = 2}7’1 K'O <O|Z( >
(3.95)
the one-electron gauge correction term H ;.. o,
e 1 ra0, —(ry) ()
Ag(l) o —_ geﬂe Z 0 iN uv iN/u iN vS,z 0 ,
GC-SO(le), 2hik,c <SZ>Z N< |Z4 > >
(3.96)
the two-electron gauge correction term H ;. gy,
g ,B e 1 lJ (2r ri)é‘uv —(er _ri)u(rgj)v
Ag(clé S0Q2e)uv — ——— < |Z iz 0>9
2hyc” (S;) ry
(3.97)

the cross terms between the one-electron spin-orbit coupling operator Hso) and the

orbital Zeeman operator Hpz

O <), |mnE0,0).10)

2¢.8.° 1 ry -
2) — 1 iN J
AgSO/OZ(le),uv _—h oy —< > EN Z, E Eéo) 0 +c.c.p,

(3.98)

and the cross terms between the two-electron spin-orbit coupling operator Hso) and

the orbital Zeeman operator Hp,

28,8, 1
Ag§20)/02(2e),uv = PR <S_>
0

(O %0, ~29 s, 09,0,
.;ZNZ”: v 50 _ED d +c.c.p,

(3.99)

where “+ c.c.” indicates addition of the complex conjugate of the preceding term.
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The total result for Ag,, up to O(c?) is the sum of contributions

_ (1)
Ag,, = AgRMC—SZ,uv + Ach so(erw AgGC soeyw T AgSO/OZ(le) w T AgSO/OZ(Ze) uv

(3.100)

In the application calculations reported in this thesis, all contributions given in

(3.100) except for Aggé_SO(MW have been included. The latter term has been neglected

due to its general smallness (see refs 3 and 19) and the lack of computationally efficient

approximations thereto.

3.4.4 Perturbation-Theory Expressions for the 4-Tensor

The perturbation V' is in the case of A-tensor calculations given by

N N N N N
V= HFC + HSD + HHC—SO(le) + HHC—SO(Ze) + HSO(le) + HSO(Ze) + HPSO .
(3.101)

Along similar lines as for the g-tensor, the first- and second-order contributions to

the A-tensor up to O(c”) including the spin-orbit terms up to O(o*) can be obtained.

The contribution from the Fermi-contact hyperfine operator H . is given by

0).

N(D) _SlgegNﬂeﬁN 1
Arcw = 3 Kocz <SZ><O|Z5(FI~N)S,-Z

(3.102)
The contribution of the spin-dipolar hyperfine operator H}, is equal to
AévD(U — 8. gNﬁ :BN 1 <O|Z (er ) 3( N) ( N) 0>.
’ Koc < > er v
(3.103)

The one-electron spin-orbit hyperfine correction term H . ¢, contributes as

0)-

(3.104)

Al]fvél)SO(k)uv = ° gegNﬁ ﬂN < 1 ><0|Z Z 3 3 X[(er iN' )5uv ( N) (er) ]Slz

2m Ko ct i N'G=N) vt

e
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The two-electron spin-orbit hyperfine correction term H ,’;’Cfso(ze) (cf. eq (3.90))

contributes as

4NO e g.gvB.By 1

HC-SO(2e)uv — 2
M om, ket (S,)

e

vl
<O|Z 3,3 x[r, - (2r,y =1y )8, —(2r, —1ry), (ry),(r;),1s .
ij T TiN

0).
(3.105)

Finally, two second-order contributions to the A-tensor are obtained as cross terms

between any of the spin-orbit operators Hy,,,, H ., and the paramagnetic nuclear

spin - electron orbit operator H

e 2g,8\B. By 1
m, hl{'026‘4 <SZ>

1 1
<O|ZZZN' FT(ltN')u oy ”> <”|ZFT(11N)v
i N iN' J TN
Eéo) _E(O)

N(2) _
ASO(Ie)/PSO,uv =

0)

+c.C.p,

‘M

(3.106)

e _izgegNﬂezﬁN 1
SO(2e)/ PSOuv — m hic 2C4 <S >
e 0 Z

'l
<0|Z Sl @V, =V )l %,
i, ij

Z (0) (0)
EO - En

n

A (L 0 o)

+cC.C.p.

(3.107)

The total result for 4" up to O(0?) including the spin-orbit terms up to O(a*) is the

sum of contributions

N _ N(1) N(1) N(1) N(1) N(2) N(2)
Auv - AFC,uv + ASD,uv + AHC—SO(le),uv + AHC—SO(Ze),uv + ASO(]e)/PSO,uv + ASO(Ze)/PSO,uv .

(3.108)

The density-functional calculations of the A-tensor reported in this thesis are

nonrelativistic. Only the Fermi-contact contribution A}VC(BV and the spin-dipolar
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contribution A", have thus been included. Rough semiempirical estimates of spin-

orbit contributions to the HFCCs has been obtained along the perturbation theoretical

approach of Abragam and Pryce.”

3.5 Qualitative and Semi-Quantitative Relationships between the Spin

Hamiltonian Parameters and Electronic Structure

The phenomenon of hyperfine coupling is often considered to be the most
important interaction in EPR spectroscopy. This is mainly due to a very simple
qualitative connection between the hyperfine tensor components and the electronic and
geometrical structure of the paramagnetic species. First-order contributions to the
hyperfine tensor directly reflect the spin density at the point of the magnetic nucleus
(isotropic part) and the anisotropy of the spin density distribution in the proximity of the
magnetic nucleus (anisotropic part). The spin density distribution throughout the
molecule is dominated by the direct contribution of the singly-occupied molecular
orbital(s) (SOMO). For many transition-metal complexes, the SOMOs are mainly — if
not for symmetry reasons purely — metal d orbitals. As a result, the direct contribution to
the 4is, given by the SOMOs is negligible, and negative spin density arises at the
nucleus due to the spin polarization of the doubly occupied molecular orbitals. When
significant admixture of the outer s orbital into the SOMO occurs, the spin density at the
nucleus may become positive. Simple semi-quantitative estimates of the s character of
the SOMO from the Ajs, are often employed that are based on known values of spin-
polarization and direct contributions to the hyperfine coupling for unit occupations of
metal d and s orbitals, respectively.”' Estimates of the d character of the SOMO are
being obtained from the anisotropic hyperfine tensor components, completely
neglecting the spin polarization contributions to the hyperfine coupling
anisotropy.”'*** Such estimates are very useful for establishing simple qualitative
bonding schemes from the spin Hamiltonian parameters, or vice versa. As we discuss in
Chapter 7, any quantitative usage of such orbital composition estimates should be used

with great care.

The interpretation of electronic g-tensor components is more complex. The

dominant contributions to g-shifts are given by the SO coupling. >** Thus, not only the
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composition of the singly-occupied orbital, but also compositions and relative energies
of the virtual and doubly-occupied orbitals determine the g-tensor. The definitive work
in understanding spin Hamiltonian parameters of transition metal complexes on the
basis of the crystal-field theory has been done by Abragam and Pryce®” and by Abragam
and Bleaney.’ This approach is very informative and useful when very ionic complexes,
especially in sites of very high symmetry, are involved. The interest of the author in
Chapter 8 was rather in understanding g- and 4-tensor components for less symmetrical
complexes, where both ¢ and © bonding plays an important role. The most suitable way
to obtain such understanding, and to relate it to the results of quantum chemical
calculations, is the molecular orbital approach discussed in great detail by Mabbs and
Collison® that is introduced briefly in Chapter 8. This approach also enables us to make
a rough semiempirical estimate of SO to the hyperfine coupling that are not accounted

for yet in our present DFT calculations of HFCCs.
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1t seems that if one is working from the point of view of getting beauty in one’s
equations, and if one has really a sound insight, one is on a sure line of progress.

Paul Adrien Maurice Dirac (1902-84)

4 Computational Methods

In the previous Chapter, the electronic g-tensor and the hyperfine A-tensor have been

related to the field-free description of the system’s electronic structure. In this respect, a

crucial role is played by the molecular ground state |0> that is needed for determining

both the first-order, diamagnetic contributions and, as a reference state, also the second-
order, paramagnetic contributions to the spin-Hamiltonian parameters. This chapter
provides an overview of ab initio computational methods used in this thesis for
obtaining the field-free description of the molecular ground state. First, the Hartree-
Fock approach is introduced as a basic one-electron approximation and discussed in
both its spin-restricted and spin-unrestricted forms for open-shell systems. Then, the
philosophy of the post-Hartree-Fock approaches is discussed for the cases of the
Configuration Interaction (CI) and the Coupled Cluster (CC) methods. The crucial
concept of spin polarization is introduced at two levels: at the spin-unrestricted one-
electron (unrestricted Hartree-Fock) level, and at the spin-restricted correlated level (CI
based on a spin-restricted reference wave function). Next, the theorems of the density-
functional theory and the Kohn-Sham approach are presented, followed by a discussion
of the wvarious exchange-correlation functionals. Finally, basis sets and the
pseudopotential approximation used in the present applications are described. The
discussion of the wave function approaches in this Chapter is based on refs 1,2 and >,

that of the density functional approaches on refs 4 and 5.
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4.1 Approximations to the Solution of the Schrodinger Equation

The starting point for a nonrelativistic quantum mechanical description of

stationary molecular properties is the time-independent Schrédinger equation

HY (r,R\)=E¥(r,Ry),
(4.1)

where the Hamiltonian operator for a system of electrons and nuclei described by

position vectors r; and Ry, respectively, is

) TR AP ID ) It I I

i j>i ,j N M>N

4.2)

The exact solution of the Schrodinger equation requires a complete description of the
interparticle interactions and is impossible for systems with more than two particles.
The central issue of quantum chemistry is thus an approximation of the many particle
problem by a set of single-particle problems, often followed by a subsequent inclusion
of many-particle interactions using variational or perturbational techniques. The first
common step in such reduction is the Born-Oppenheimer approximation, which
separates the fast electronic movements from the slow nuclear movements by supposing
that one can consider the electrons to be moving in the field of fixed nuclei. The true

molecular wave function is then approximated as

wigsay)=w.(a:qy)wylay).
(4.3)

where ¢; and gy stand for the electronic and nuclear coordinates, respectively, and ., is

the eigenstate of the electronic Hamiltonian

Hy, = Z Vi- ZZ—+ZZ—
ioj>i 1]

(4.4)

This leaves us with an electronic Schrédinger equation
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HOwy

elec ~ elec (ri b RN ) = E lPelec (ri b RN )’

elec

(4.5)

(0)

elec

where the Hamiltonian H;,’ has only a parametric dependence on the nuclear positions.

4.2 The Hartree-Fock Approximation

4.2.1 The Hartree Approximation

The electronic Schrodinger equation (4.5) for many-electron atoms and molecules
cannot be solved analytically. The mathematical difficulties are brought about by the
last term in the Hamiltonian (4.4) that describes the instantaneous Coulomb repulsion of
every pair of electrons. A fundamental approximation of quantum chemistry is to
replace any of these interactions with a repulsion which the particular electron would
feel when moving in a time-averaged field of the other electron. This approach has been
introduced by Hartree, who assumed that each electron in a multielectron system is
described by its own wave function and is thus subject to the Coulomb potential due to

the remaining electrons:

1 2
I/i,cou/ (rl ) = Z J‘er _‘l//j (r2 )‘ .
J#i hy
(4.6)
It is convenient to define a Coulomb operator

2 4

Ji(r) = [dr)y, () 1
4.7)

that represents the average potential at r; arising from the charge distribution due to the

i-th electron.

The one-electron wave functions for a many-electron system are then obtained by

solving a system of equations of the form
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J#i

|:h(1) + Z']i (rl)j| y,(r)=¢vy(r) ,
(4.8)

where

H(1)=-1v° —ZZ—N

2 N Ny
4.9)
is the operator of kinetic energy and potential energy for the attraction to the nuclei,
corresponding to a single electron chosen to be the first electron. This is must be done
iteratively, since the orbitals y; that solve the problem appear in the operator J.
Consequently, the Hartree method is a nonlinear “self-consistent-field” method. One
begins with a guessed set of orbitals y;, constructs the set of operators J; as given by
(4.7), then finds new set of orbitals from (4.8), constructs a new set of operator J;, etc.
The total Hartree wave function is given by a simple product of the one-electron wave
functions. The correlations between the movements of different electrons are thus
completely neglected. In addition, such wave function does not fulfill the Pauli’s

requirement of antisymmetry with respect to an exchange of two particles.

4.2.2 The Hartree-Fock Approximation

The symmetry requirements have been included in the Hartree method in a
generalization due to Fock and Slater. Within this so-called Hartree-Fock theory, the

Hartree product is substituted by a determinantal wave function (Slater determinant) of

the form
X)) 1, (x) o i (x)
‘PHF(xl,xz,...,xN)=ﬁZa‘(.%z) Zb.(f‘Z) Zk.(‘%z) :
ZoXy) 2, (X)) o x(xy)
(4.10)
where
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X; =(r;,6,)
(4.11)

and the one-electron wave functions

Zi(xj) = l//[(rj)a)[(cj)
(4.12)

depend on both spatial r; and spin c; coordinates.

It is useful to introduce a shorthand notation, which includes the normalization

constant and only shows the diagonal elements of the determinant,

Wi (X,X,,.,X ) = ‘Zi(xl);(j(xz)...zk(xN)>

(4.13)
Provided that we always choose the electron labels to be in the order x;, X, ... , Xy, €q
(4.13) can be further shortened to
W (X, X550, X ) = ‘Zi)(j~-~)(k>
(4.14)

The energy of the Slater determinant can be minimized using the variational condition

(W [H

W) =0,

elec

(4.15)

(H,, referstoeq(4.4)), and we require that all orbitals are normalized. Using the rules

elec
for matrix elements between determinantal wave functions, condition (4.15) results in

the Hartree-Fock (HF) equations:
1 2
h()+ 3 [de, |y () } v, (r)
J 12

1

_Zé‘(msi’msj)|:.|.dr2 %‘/’;(rz)‘% (r,) lr//j(rl) =& y,(r)
(4.16)

The term &(m;,;,mgy) results from an integration over the spin coordinates and indicates

that the corresponding summation runs only over electrons with the same spin as that of
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the electron i. The eigenvalue ¢ appears here as the Lagrange multiplier ensuring the

normalization of the orbitals.

The Hartree-Fock equation (4.16) can be written as an eigenvalue equation

|:h(l)+Z‘]j(rl)_Zg(msi’msj)Kj(rl) v (r)=¢ vy, () ,
4.17)

if we define an exchange operator K(ry) by its effect when operating on an orbital

wi(r1),

K, (r)y, (r,)= Udrz W: (ry) r1>21 y, (1, )J v, (r)
(4.18)

The solution of the Hartree-Fock equations proceeds is found using the self-consistent-

field approach.

The Hartree-Fock equation (4.17) differs from the Hartree equation (4.8) by the
fact that the summation of the Coulomb operators runs over all values of j (including
j=i), and by the presence of the exchange operators. These are nonlocal operators and
arise from the determinantal form of the wave function. Had we used a product trial
wave function this term would be missing and we would have obtained Hartree’s
equation. The presence of the nonlocal term ensures that the Hartree-Fock equation
represents an eigenvalue problem for a Hermitian operator, and the eigenfunctions
corresponding to different eigenvalues are thus orthogonal. On the contrary, the Hartree
equation does not correspond to a single eigenvalue problem, as the potential (4.6) is
different for different one-electron wave functions, and the orthogonality of the orbitals

is thus not enforced.

The nonclassical exchange term incorporates in the HF theory not only the
antisymmetry properties, but also a correlation of electrons with the same spin. The
probability of finding two electrons with the same spin simultaneously at the same place
is zero. A Fermi hole is said to exist around each electron, which keeps electrons of the

same spin separated.
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Up to now, we have discussed the HF method independently of the particular spin
state of the atom or molecule. A closed-shell system with N electrons can be described

by two sets of spin-orbitals:

l/ll (l‘)a, l//z(l')a,..., l//ﬁ (r)a >

2

v (0 B, 9, (0) By (0) B
2 (4.19)

If we denote a spin-orbital by its spatial part only, using a bar or lack of a bar to
indicate whether it has the Sor aspin function, we can write a singlet closed-shell

Slater determinant as

Wi (X1, X500 X3) = (W WY, 172---1//ﬁ l/71v>
2 2

(4.20)

In this work, however, we will be handling exclusively open-shell systems with
N*electrons of a spin and N”electrons of Sspin, N> N’. For this purpose, two
modifications of the HF method are used: the unrestricted HF method and the restricted-

open-shell HF method.

4.2.3 The Unrestricted Hartree-Fock Method

The Hartree-Fock equation (4.17) has the form of a Schrédinger equation for a
particle moving in a nonlocal potential. For an open-shell system, the presence of the
exchange term in (4.17) makes the potential depend on the spin of the particular

electron i. Consequently, one has to solve two sets of equations

fe)yl =gty
4.21)

fﬂ(rl) Wlﬂ = gzﬂl//zﬁ s
(4.22)

where the Fock operators 1*(ry), f%(r;) are given by
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SO0y =h)+ 3 5 () =K m)]+ 2,77 ()
j j (4.23)

fﬂ(rl) = h(l)"‘Z[Jjﬁ(rl)_Kjﬂ(r1)]+zj;z(rl)
: : (4.24)

The unrestricted Coulomb and exchange operators are defined in analogy to our

previous definitions (4.7) and (4.18) of the restricted Coulomb and exchange operators:

T = [dr, wi @) i)
(4.25)

K ) = [dny o) nlwi )|y o)
(4.26)

The definitions of Jjﬂ and Kjﬁ are strictly analogous to the above. Equations (4.23)
and (4.24) are coupled through the Coulomb operators and must thus be solved by a
simultaneously. The exchange interactions of the a-spin electrons are different from
those of their f~counterparts. As a result, even within an electron “pair”, both the spatial
parts y“(r), w/” (r) and the energies of the optimized spin-orbitals v (r)a, w? (r)f
are slightly different. Thus, an unrestricted Hartree-Fock (UHF) wave function for an

open-shell system can be written as

P (X)X s X ) :‘l//fl vy v W 1/7155 W;ﬂ+l---§”;a>
(4.27)

The total energy corresponding to an UHF wave function may be written as

EUHF:zhiz;r+Zhi{?’_,_%ZZ(J;;&_Kga)+%ZZ(Jfﬁ_K§ﬁ)+ZZJ;ﬁ,
i i i Lo t

(4.28)

with « and f denoting spin, where h’, h’, J*, J%P J¥ K

i > iy oY oS o By o

K ;/3 are matrix
elements of the corresponding operators involving the spatial orbitals

we (), w!(r), w (r),and t//f (r). The expectation values of the one-electron operator /
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by =(ws

h‘ w! > and h’ = <‘//,-ﬁ ‘h‘ v’ >
(4.29)

represent the average kinetic and nuclear-attraction energy of the unrestricted orbitals

w® and y/ , respectively.

Matrix elements

T =y Ve i) =(wl slw?) = (wiv! wiv?)
(4.30)
T =i Vslwe) =(ws belws) = (wivewivs)
(4.31)
and
92 ={o? Vel )= il =t ot
(4.32)

2
express the classical Coulomb repulsion between the charge clouds ‘!//l- (rl)‘ and

‘y/ (1 )‘2 for electrons of different or the same spin and are referred to as the Coulomb

integrals.

Finally, matrix elements

K =(yr

K

wi)=(v;

K¢

o) =(wiy|wive)

(4.33)

and
K =l 7)o ) <o )
(4.34)

the so-called exchange integrals, represent the exchange interaction energy of the two
electrons with parallel spins. There is no exchange interaction between electrons of

opposite spin.

The summations in eq (4.28) are not restricted to pairs of different spin orbitals.

Therefore, the (unphysical) electrostatic interaction of an electron with itself is
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accounted for in the Coulomb part and again subtracted in the exchange part. This
allows a unique orbital decomposition of the total electron repulsion energy into
exchange and Coulomb parts.* The Coulomb part may be interpreted as the classical
electrostatical energy of a charge cloud of density p(r), whereas the exchange part

includes all nonclassical effects, (see ref 4, pp 34,39).

The total spin density corresponding to an UHF wave function is given by:

0= 3 el + X (iwf pref)

i=N"+1

(4.35)

The first sum represents the direct contribution from the unpaired electrons, the second
sum is the spin polarization contribution from the remaining “paired” electrons. The
inclusion of the spin polarization is a crucial property of the UHF method. As will be
shown below, it provides a one-electron-level understanding of the spin-density transfer
from the valence space to the nucleus. At the same time, the spin polarization leads to a
serious drawback of the UHF method, namely that the UHF wave functions do not
correspond to pure spin states. A nominal doublet state, e.g., contains small amounts of
quartet, sextet and higher spin states. Before evaluating spin properties from an UHF
wave function, the spin contaminants are often eliminated using spin-projection
techniques. However, the justification for doing so is doubtful. A strong argument
against using the spin projection is that the UHF method yields the correct diagrams in a
perturbation theory development of the exact wave function, whereas the spin-projected

UHF does not do so.°

* When self interaction is not accounted for, the decomposition of the electron repulsion energy
into Coulomb and exchange parts may be arbitrary. E.g., for a p-shell fully occupied with six
electrons, both the total Coulomb and the total exchange energy depends on the orbital basis

(angular momentum eigenfunctions or real functions). The reason is that

(pepy|Popy)=(popi|pop.) = (pyp2|Pyp.)

=(p12o| P10} = (Ppo| Papo) # (Poapi | o)) -
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4.2.4 The Restricted Open-Shell Hartree-Fock Method

The spin-contamination problem in the HF description of open-shell systems can be

avoided using a more complicated restricted open-shell Hartree-Fock (ROHF) method.

Whereas at the UHF level of theory, MOs w?(r) and w/(r) are allowed to differ,

within the ROHF method they are required to be identical for every i< N”. We are

thus looking for a Slater determinant of the form

\P ROHF

(XI’XZ""’XN):‘V/I l/71 WZ l/72 "'I//NB WNﬁwNﬁ+1"'l//Nd>
(4.36)

which minimizes the total electronic energy.

To achieve this, the N? electron pairs (i.e. the closed shell) are treated separately
from the N* —N” unpaired (open-shell) electrons and the virtual orbitals. This approach

results in two sets of equations:

)y =gy,

(4.37)
[yl =gly?
(4.38)
The Fock operators f°(r1), f°(ry) are defined as
FE@) = D)+ 220, (1) = K (1) 5 L) (1) - A M (1)
: (4.39)
Sor) =h()+ Z[Jj (r)—-K,(r)]
S [ea,@y- 2k, @)l S lers @y -amim)]
- (4.40)

where
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L (r) :V2_|Wm><Wm|Jj(rl) )

meo

(4.41)
M) =v) v, )\, K@)
o (4.42)
L) = |lw, v, |/,@x) .
. (4.43)
M) =2 v, )w.|K,x)
. (4.44)

are necessary in order to preserve the orthogonality of the ROHF solutions. The
quantities «, x’, 4, A" and v are dependent on the particular spin state and are described
elsewhere. In ROHF theory, the treatment yields a single-determinant expression that

satisfies all spin and symmetry requirements.’

The total energy corresponding to an ROHF wave function is given by:

N/i N® N® N,/)’

EM™ =23 b+ Yo, +ZZ(2J,; —K,.j.)+% NZ NZ:(sz _Kii) :
i=1 i=NP 41 i=1 j=1 i=N+1 j=N’+

(4.45)

The spin density in this model is the sum of probability distributions of the open-shell

orbitals

0" (r) = 2 v, o]

(4.46)
The closed-shell (doubly-occupied) orbitals do not contribute to QO(r), as the
contributions of the a spin-orbitals are always exactly cancelled by the contributions of

the [ spin-orbitals. Spin-polarization contributions can be included in the ROHF wave

function using the configuration interaction approach.
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4.3 The Configuration Interaction Method

The Hartree-Fock method is a one-electron approximation. As such it describes
the electron-repulsion interactions in an averaged way and does not include important
electron-correlation effects. The exact wave function for the ground as well as the
excited states of the system can be written as a linear combination of all possible N-

electron Slater determinants formed from a complete set of spin-orbitals. Since any

determinant can be described in reference to the HF determinant |HF>, we can write

(within the second quantization formalism):

D= (1+Zcf’a2a, + ZC;va:aIaiaJ +) |HF> ,
i

i, jv

(4.47)

where the creation and annihilation operators a and a; create a particle in the virtual

orbital # and annihilate a particle in the occupied orbital i, respectively. The summations
over ij.. and u,v,... run over all occupied spin-orbitals and virtual spin-orbitals,

respectively. The lowest eigenvalue of the Hamiltonian matrix with elements

<‘Pk |H|‘P1> formed from the complete set {|‘Pk> }: {|HF>, aTai|HF>, aZaja,.aj|HF>, }

u

is the exact nonrelativistic ground state energy of the system within the Born-

Oppenheimer approximation.

In practical calculations, various approximations to the full wave function of eq
(4.47) are obtained by working with a finite (rather than complete) set of spin-orbitals

and truncating the expansion at some excitation level. The values of the

uv...z

coefficients ¢ are optimized using the variational principle, as the resulting total

energy is always an upper bound to the exact energy. This is the so-called configuration
interaction (CI) method. A serious drawback of truncated CI methods is that they are
not size consistent: the total energy of a system composed of non-interacting molecules

does not scale linearly with the number of the molecules.

The CI formalism improves the HF description of the spin density distribution by
including the electron-correlation effects. Particularly, it augments the ROHF spin
density with the spin-polarization contributions. As the spin density is a one-electron

property, for a CI wave function it can be written as a sum over matrix elements
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between configurations belonging to the same excitation class or differing in one
excitation®

0% (1) = X ey (io(x -1 u)+ X el Y (als(x-r)a) + > ci'e] (u|s(x-r)|v)

+ Zc?c?<i|5(x-r)|j>+ Zcfc;v<j|5(x-r)|v>+... .
i<ju i< <y @45
The first term in eq (4.48) represents the contribution arising from matrix
elements between the ROHF determinant and singly excited determinants. The second
term gives the contributions of diagonal matrix elements, the third and fourth terms
provide contributions of nondiagonal matrix elements between singly-excited

determinants. The sum over a in the second term runs over all occupied orbitals in the

wave function azal.|ROHF>. The last term gives the single-double contributions.

Further contributions arise from double-double, double-triple excitations, etc. The most
important contributions come from the singly and doubly excited determinants. To
obtain accurate isotropic HFCCs, however, one has to take into account also higher than
double excitations. As the higher excitations contribute mainly indirectly, by
influencing the coefficients of the lower excitations, it is sufficient to include their

effect perturbatively.®

4.4 The Coupled-Cluster Method

In the coupled-cluster method, the trial many-electron wave function is written as

Deen =exp (T, +7T, +..) [HF) |
(4.49)

where
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(4.50)

The total energy EC is found by projecting the Schrédinger equation
(e "He" — E)HF) =0 to the HF reference state (|HF))" as

E =(HF|He" |HF) ,
(4.51)

and the cluster amplitudes ¢ are found similarly by projecting to states of the

corresponding excitation level, e.g., for the single particle-hole pair amplitudes c;

(HF| ala,e"He" |HF)=0
(4.52)

This process leads to a non-linear system of equations to be solved iteratively.

In practical calculations, the CC wave functions are truncated at certain excitation
level, and the cluster expansion (4.49) ensures that — unlike for the CI methods — the
size consistence is retained. The present work uses the CCSD truncation that includes
the singles and doubles operators Ty, T in e’, and the CCSD(T) truncation which is an
approximate form of the CC method including the singles, doubles, and triples
operators 7Ty, T», and T in e’.” The price paid for the size consistency is that truncated

CC methods are not variational.

The expressions for the total energy and the spin density within the CC method

. 1,1
are given elswhere."'’
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4.5 Density Functional Theory

4.5.1 The Hohenberg-Kohn Theorems

The quantum chemistry methods discussed above use the many-electron wave
function, and consequently the external potential v(r) and the number of electrons N,
which specify the electronic Hamiltonian, as the source for the determination of all
electronic properties. The basic theorem of the density functional theory states that the
electron density p(r) can be used as the basic variable instead. The external potential
v(r) is determined, within a trivial additive constant, by the electron density p(r) (the

first Hohenberg-Kohn theorem). Obviously, p(r) determines also N.

The total electronic energy can thus be written as

Elpl=TIp1+V, [p1+V.[p]= [p(x) v(r) dr + Fy[p]
(4.53)

where T[p] represents the kinetic energy, V,.[po] and V,.[p] the potential energy due to

the nuclei and the electrons, respectively, and

Fulpl=Tlpl+V,.[p]
(4.54)

is a universal functional of the electronic density, which does not depend on the

particular system.

The electron-electron repulsion term V,.[p] can be partitioned as

V. [p]l=J[p]+nonclassical term ,
(4.55)

where

Jlp] %ﬁ%pm)p(m dr, d,
(4.56)
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is the classical self-repulsion energy of a distribution p(r), i.e. the Coulomb energy

defined above, cf. eqgs (4.25), (4.28).

The second Hohenberg-Kohn theorem represents the energy variational principle.

For a trial density p(r) such that p(r) >0 and

[prydr=N .
(4.57)
the energy E [p(r)] is always an upper bound to the exact energy Ej:
E, <E[p(r)]
(4.58)
The latter requires that the ground-state density satisfies the stationary principle
S{ELp1-u|[p(r)dr - N |}=0
(4.59)
which gives the Euler-Lagrange equation
oE oF
=21y o)
5p(r) 5p(r)
(4.60)

The Lagrange multiplier u is the chemical potential and has been introduced in order to
constrain the minimization (4.58) by the normalization condition (4.57). If we knew the

exact Fy, [p], (4.58) would be an exact equation for the ground-state electron density.

4.5.2 The Kohn-Sham Method

Due to the unfortunate (but challenging) fact that the functional F,, [p] is hard to
come by in explicit form, accurate calculational implementations of the density-
functional theory are far from easy to achieve. Approximate forms of F,, [p] are
required and can be constituted using a direct approach, whereby one constructs explicit
approximate forms for 7 [p] and V.[p]. Unfortunately, there are seemingly

insurmountable difficulties in going beyond the crude level of approximation of 7' [p].
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An ingenious indirect approach to the kinetic energy functional has been
developed within the Kohn-Sham (KS) method. It introduces a (hypothetical) non-
interacting reference system with exactly the same electron density as that of the real
system.'' The exact wave function of the noninteracting system is a Slater determinant
formed from N spin-orbitals (Kohn-Sham orbitals) y; (x). The exact kinetic energy for

the reference system

N
T= 2|2 V7w

4.61)

can be — by virtue of the first Hohenberg-Kohn theorem — considered a functional of the

charge density

pm =Yy .
(4.62)

The quantity Ts[o] is of course not equal to the true kinetic energy of the interacting
system T [p]. The very clever idea of Kohn and Sham is to set up a problem of interest

in such a way that Tg[p] is its kinetic-energy component, exactly.

To produce the desired separation out of 7s[p] as the kinetic energy component, we

rewrite (4.54) as

Fulpl=T[pl+Jpl+E, [p]
(4.63)

where

E pl=Tlpl]l-Tpl+V . [p]l-Jlp]
(4.64)

The defined quantity E [p] is called the exchange-correlation energy; it contains the

difference between T and Ts (presumably fairly small), and the nonclassical part of
Veel 0]

The Euler equation (4.60) now becomes
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ols[p]

1=V (r)+
T ap(r)
(4.65)
where the Kohn-Sham (KS) effective potential is defined by
oJ OFE_ r
v (1) = v(r) + 2721 “mhwm+ﬁﬁﬁwﬁmﬂg
op(r))  p(r)) Mo
(4.66)
with the exchange-correlation potential
OF,
ch (rl ) = " [p]
op(r,)
(4.67)

The Kohn-Sham treatment runs as follows. Equation (4.65) represents a
conventional DFT approach when applied to a system of noninteracting electrons

moving in the external potential v, (r). Therefore, for a given v, (r), one obtains the

p(r) that satisfies (4.65) simply by solving the N one-electron equations

I:_%Vz +Veﬁ’(r)} VvV, =& VY,
(4.68)

and setting

pI) =D y,(x)
l (4.69)

Here, v, (r) depends on p(r) through (4.67); hence, (4.66), (4.68), and (4.69) must be
solved self-consistently.
The total Kohn-Sham energy is given by
i 1 r,)p(r
E= b, - L [[PEPE) e, v £ o] - [, ) ptr ),
i 2 "
(4.70)

where
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Dby =D~V vy O)]w) = TLR1+ iy () )

1

4.71)

The KS equations are formally very similar to the HF equations. Nevertheless, in
HF theory, electron correlation effects are by definition neglected and can be accounted
for only using multi-determinantal trial wave functions. On the contrary, the more
general local potential v,. in the KS equations ensures that the Kohn-Sham theory is in
principle exact, as it fully incorporates the exchange-correlation effects. Kohn-Sham
equations can be improved by improving approximations to E,.[p]. In this sense, Kohn
Sham theory represents the best one-electron approach. A crucial advantage is that KS
theory is typically computationally much less expensive than the correlated methods

based on HF, and enables thus the treatment of larger systems.

The methods for the treatment of the open-shell systems within the KS theory -
the unrestricted Kohn-Sham (UKS) and the restricted open-shell Kohn-Sham (ROKS)
methods - are analogous the the HF-based approaches introduced in sections 4.2.3 and
4.2.4. The expressions for the UKS and ROKS spin densities are identical to those given
by (4.35) and (4.46), respectively, where the optimized Kohn-Sham orbitals are

considered instead of the optimized Hartree-Hock orbitals.

4.5.3 Exchange-Correlation Functionals

The explicit form of the exchange-correlation functional E,.[p] that specifies the
Kohn-Sham potential (4.66) is not known and represents the greatest challenge in DFT.
Various approximations have been suggested for E,.[p], the simplest one being the local

density approximation (LDA)

EX[pl= [p(r)e, (p)dr
(4.72)

where &.(p) is the exchange and correlation energy per particle in a uniform electron
gas of density o(r). Thus, we associate with the density p(r) the exchange and

correlation energies and potentials that a homogenous electron gas of equal, but
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constant density would have, and assume that the exchange-correlation functionals

depend only on the local value of p(r).

The exchange part of the LDA functional is

/3
E™'[p]= }@ [p* (yar .
(4.73)

E'™" can not be written in a such an explicit form, but highly accurate numerical values
are available for this property on the basis of Monte Carlo calculations of the
homogeneous electron gas.'”> On the basis of these results, various authors have

presented analytical expressions of E*” based on sophisticated interpolation schemes.

The most widely used representation of E'” is due to Vosko, Wilk, and Nusair

(VWN)." The exchange (4.73) together with the VWN correlation functional forms the

so-called SVWN functional, used in our deMon calculations.

The local density approximation provides, however, only moderate accuracy and
is thus insufficient for most applications in chemistry. The logical first step in the going
beyond LDA is to consider functionals that are functions of both the local density, p(r),
and the gradient of the density, Vpo(r). Functionals that include the gradients of the
charge density are collectively known as generalized gradient approximations (GGA).
These functionals are the workhorses of current density functional theory (they have

been extensively applied throughout this thesis) and can generally be written as

ESpyspp)= [1(Pur P, VP, Voy)dr
(4.74)
Finally, there is a great interest recently in applications of exchange-correlation
functionals that include some exact, nonlocal exchange. Such hybrid functionals have
also been used for the calculations employed in this thesis. These, as well as the

generalized gradient approximations, are discussed in detail elsewhere.
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4.6 Basis Sets and Pseudopotentials

Practical electronic structure calculations of polyatomic molecules typically use the

linear-combination-of-atomic-orbitals (LCAO) approximation

|Wk>zzc//i‘lﬂ> >
u

(4.75)

where {y,} is the basis set of atomic orbitals.

The most common LCAO basis functions employed presently in quantum
chemistry are Gaussian type orbitals (GTOs) centered on atomic nuclei. In spherical

coordinates, their form is

2,.0.0)=Y,,0.0)r" &7,

(4.76)
where Y}, are the spherical harmonics; ¢ is the so-called exponent of the GTO. Due to
their convenient mathematical properties, GTOs are more popular than the physically
more correct Slater type orbitals (STO). The better physical behavior of STOs at r=0
and at large r is simulated by working with fixed linear combinations of primitive
gaussian functions y,. These linear combinations lead to contracted Gaussian functions
(CGTOs); each of them being specified by a set of exponents and another set of
contraction coefficients which are not allowed to change during the calculation.
Depending on the number of CGTOs used per atomic shell, basis sets are referred to as
single-¢ (1 CGTO), double-¢ (DZ, 2 CGTOs), triple-¢ (TZ, 3 CGTOs), etc. The
flexibility of a basis set is improved by adding functions of higher angular momentum
than corresponds to occupied orbitals in the ground state of the particular atom. These
are called the polarization functions and are p-type functions for H and He, d-type
functions for the first-row atoms Li-F, etc. Diffuse functions are those with very small

exponents and allow the charge distribution to be spread widely in the space.
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For the purposes of this work, we have constructed a (15s11p6d)/[9s7p4d]® basis
as a standard medium-size basis set for the 3d transition metal atoms. Our starting point
was the DZ basis of Schifer et al.,'* to which we added the most diffuse functions (a
1s2pld set) from the ECP valence basis of Dolg et al.'” IGLO-III basis sets'® were used

for the main group atoms.

Hyperfine properties reflect the spatial coincidence of the spin density and the
magnetic nuclei; proper treatment of the core electrons is thus necessary. In structure
optimizations, however, the role of the core electrons is negligible in comparison to the
valence electrons. Instead of the explicit treatment of the core electrons, their influence
on the valence electrons can be simulated by using an effective core potential (ECP)."’
The properties of the valence pseudo-orbitals obtained in an ECP calculation are at the
same time required to be the same as those obtained in an all-electron treatment. Our
structure optimizations employed small-core ECPs and (8s7p6d)/[6s5p3d] GTO valence
basis sets of the Stuttgart group for the transition metals."® For the first-row ligand
atoms, ECPs with (4s4p1d)/[2s2pld] basis sets have been used."” For hydrogen, a
(4s1p)/[2s1p] basis™ has been employed.

® The notation (15s11p6d)/[9s7p4d] indicates a contraction of the basis set and has the following
meaning: The numbers in parentheses are the total numbers of primitive gaussian functions, the
numbers in square brackets are those of CGTOs.
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1 think that there is a moral to this story, namely that it is more important to have
beauty in one’s equations than to have them fit experiment .... If there is not
complete agreement between the results of one’s work and experiment, one

should not allow oneself to be too discouraged, because the discrepancy may
well be due to minor features that are not properly taken into account and that
will get cleared up with further developments of the theory.

Paul Adrien Maurice Dirac (1902-84)

5 A Critical Validation of Density Functional and Coupled-Cluster
Approaches for the Calculation of EPR Hyperfine Coupling

Constants in Transition Metal Complexes

Introduction

Hyperfine coupling constants (tensors) are considered to be the most important
part of the information obtained from an EPR spectrum, due to a very direct connection
between the magnitude of the hyperfine coupling and the electronic structure of the
paramagnetic species. In spite of the richness of experimental data on the hyperfine
coupling in transition metal complexes, previous theoretical studies of HFCCs
concentrated largely on light main group systems for which the post-Hartree-Fock ab
initio treatment of electron correlation is still applicable. Recent developments in
density functional theory provided an alternative by including electron correlation
approximately, at moderate computational cost, and enabled thus calculations on
systems of larger size and/or including heavier elements like transition metals. The
following paper represents the first extensive evaluation of DFT methods for the
prediction of hyperfine coupling constants for both metals and ligands in 3d transition
metal complexes. Results obtained for a series of 21 complexes using eight different
density functionals have been compared with reliable experimental data and results
from elaborate coupled cluster calculations. The author of this thesis performed all of
the calculations included in the study and contributed significantly to the preparation of

the manuscript.
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Results

In the present study, no generally valid hierarchy of the tested functionals for
the calculation of hyperfine coupling constants of transition-metal complexes could be
established, since the performance of a given functional varies significantly for different
classes of complexes. The subtleties of the electronic structures, the degree of spin
contamination as well as other factors seem to be responsible for these variations. On
the other hand, for a significant number of complexes a ca. 10-15% agreement with
experiment has been achieved with essentially all of the functionals. In other subsets of
molecules, the analysis of the electronic structure suggests the range of functionals that

might be most appropriate.

Conclusions and outlook

The present study has shown that the functionals to be applied to the calculation
of hyperfine couplings in certain areas of transition metal chemistry have to be carefully
selected. Desirable, improved functionals should provide sufficiently large spin
polarization for core and valence shells without exaggerating it for the latter, and thus
introducing spin contamination. Generally, hyperfine coupling constants, in particular
for transition metal systems, may turn out to be a particularly fruitful testing ground for
new DFT (or alternative) approaches. As noted in a very recent study by Neese', the
relatively poor performance of DFT for some of the hyperfine couplings might be
connected to the wrong behavior of the state-of-the-art exchange-correlation potentials
close to the nucleus where they show an unphysical divergence.” The connection
between the performance of DFT and the relative size of spin polarization contributions
to the HFCCs established became a motivation for a detailed analysis of mechanisms of

EPR hyperfine coupling in 3d metal complexes (Chapter 7).

The study reported in here does not include scalar relativistic and spin-orbit
effects, except for a rough semi-empirical estimate of SO contributions to HFCCs for
some of the complexes. Recently, the zero order regular approximation for relativistic

effects (ZORA) has been employed for the calculation of EPR parameters for Ni
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complexes by Stein et al.” The authors discuss in detail the relation between their results
for [Ni(CO);H] and the nonrelativistic results obtained for this complex in the following
paper. A detailed evaluation of the density functional approach in the ZORA formalism
has been reported recently by Belanzoni et al.* In the spin-orbit coupled equations, only
spin-restricted density functionals have been applied as the current implementation of
the ZORA approach does not yet allow the simultaneous inclusion of spin-orbit and
spin-polarization effects.* An approach that would allow such simultaneous inclusion is

currently being developed in our group.
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The performance of various density functional approaches for the calculation of electron paramagnetic resonance
(EPR) hyperfine coupling constants in transition metal complexes has been evaluated critically by comparison
with experimental data and high-level coupled-cluster results for 21 systems, representing a large variety of
different electronic situations. While both gradient-corrected and hybrid functionals allow the calculation of
isotropic metal hyperfine coupling constants to within ca-18% for the less critical cases (e.g., ScO, TiN,

TiO, VO, MnO, MnF), none of the functionals investigated performs well for all complexes. Gradient-corrected
functionals tend to underestimate the important eateell spin polarization. While this may be improved by
exact-exchange mixing in some cases, the accompanying spin contamination may even lead to a deterioration
of the results for other complexes. We also identify cases, where essentially none of the functionals performs
satisfactorily. In the absence of a "universal functional”, the functionals to be applied to the calculation of
hyperfine couplings in certain areas of transition metal chemistry have to be carefully selected. Desirable,
improved functionals should provide sufficiently large spin polarization for core and valence shells without
exaggerating it for the latter (and thus introducing spin contamination). Coupling anisotropies and coupling
constants for ligand nuclei are also discussed. The computationally much more demanding coupled cluster
(CCSD and CCSD(T)) methods, which have been applied to a subset of complexes, show good performance,
even when a UHF reference wave function is moderately spin-contaminated.

Belanzoni et al”18and by van Lenthe et al%,and for a series
of molybdenum(V) oxyhalide anions by Swann and Westmore-
land2® During the course of the present study, Knight et al.

1. Introduction

Electron paramagnetic resonance (EPR) spectroscopy repre

sents one of the most powerful experimental tools for studyin
P P ying reported DFT results on MO (M= Sc, Y, La)?t A number of

the molecular and electronic structure of compounds containin - .
P 9 carlier calculations employed the, Xnethod?2-24 Reasonable

unpaired electrons. Since the early days of this technique, a large b - d th for the i .
number of EPR spectra for transition metal complexes have beepfdreéement between experiment and theory for the isotropic
HFCCs has been found when significant metal s-character in

measured. A wealth of experimental data on electronic g-tensorsth il ied lecul bitals (SOMOS) leads t
and hyperfine coupling constants (HFCCs) is thus avail&ifle. € singly occupied molecular orbiais ( : S) eads to a
Quantitative theoretical studies of HFCCs have, however, dominance of d|rec_t c_:ont_nbutlons to the spin d(_ansny at the
concentrated largely on organic molecules or on other light main nucleus. The description is expected to be considerably more

group systems. This is understandable, as the accurate inclusior‘f,omp.l'cateGI when spin-polarization effe?t.s become large, a
of electron-correlation effects is mandatory for quantitative situation that should apply for many transition metal systéms.

calculations of electronnuclear hyperfine interactions. To In the studies mentioned, only a limited number of exchange
achieve this in traditional post-HartreEock ab initio calcula-  correlation functionals and basis sets have been employed, and
tions is far from trivial, and such treatments are not easily only a relatively small set of molecules and electronic structure
applicable to larger tran’sition metal complexes. GARCF and situations was encompassed. Further systematic studies are thus

MR—SDCI calculations have been done on ScO. TiN. and VN Needed, if one wants to be able to judge in detail the ability of
by Mattar et al9-11 as well as on VQ(x = 1, 2, 3) ’by K’night the available DFT approaches to describe HFCCs for transition

et all2 To our knowledge, no other transition metal systems Metal systems. Here we present a critical validation study,
have been treated at comparable levels. including twenty-one first-row transition metal complexes and

Recent developments in density functional theory (DFT) do
in principle provide an alternative, as DFT includes electron
correlation approximately,
number of Kohn-Sham DFT studies on transition metal HFCCs

eight different state-of-the-art exchangerrelation potentials
vxe. Throughout this work, we have learned much about the

at moderate computational cost. A mechanisms of spin polarization and related phenomena for

HFCCs in transition metal complexes. These interpretational

have appeared, using local-spin-density approximations (LSDA), @SPects will be covered in more detail elsewRe(@cluding
generalized-gradient approximations (GGA), as well as hybrid numerical results), but will be touched.upon briefly in this work
functionals including exact exchange. Hyperfine parameters have'Whenever needed for an understanding of the performance of
been computed for VN by Mattar and Dolem&rfor TiN and different functionals. o _

TiO by Engels et alt3 for CuGH, and Cu(CO) by Barone et After outlining roughly the nonrelativistic theoretical formal-

al. 14.35for a ruthenium complex by Aarnts et &f.for TiF3 by ism of hyperfine couplings in section 2 (mainly to connect to
the rather different types of experimental information available),

we will discuss problems connected with the selection of

* Corresponding author e-mail: kaupp@vsibm1.mpi-stuttgart.mpg.de

10.1021/jp992303p CCC: $18.00 © 1999 American Chemical Society
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experimental data (section 3). Information on molecular struc- unpaired spin density is mainly localized on the metal). See
tures, basis sets, and theoretical approaches used is given isection 4 for comments on spiorbit corrections to the
section 4. After a description of coupled cluster results for a hyperfine couplings.

subset of the complexes (section 5), which we employ as
reference data, basis set effects are examined in section 6. The
the performance of different exchargeorrelation functionals

is compared systematically for the metal HFCCs (section 7),
followed by a brief discussion of ligand HFCCs (section 8). A
number of general conclusions are provided in section 9.

3. selection of Experimental Data

The selection of the molecules used in this study was deter-
mined mainly by the availability of experimental data on small
systems having a well-resolved hyperfine structure for the metal
and, if possible, also for the ligands. We have included examples
for all first-row transition metals. Some pairs of isoelectronic

The theory of EPR hyperfine couplings is covered in detail molecules have been selected to compare different transition
in text books!*-826and we summarize only those points which metals in similar electronic surroundings. In the following we
are important for the comparison between computed and exper-will comment on the interpretation of the measured data and
imental quantities. The hyperfine coupling parameters describe on the expected accuracy of different experimental techniques.
the interactions of unpaired electrons with various magnetic =~ Gas-Phase DataFor all diatomic oxides and nitrides, and
nuclei. The 3x 3 hyperfine interaction tensércan be separated  for MnH, literature hyperfine parameters from high-resolution

2. Theoretical Formalism

into its isotropic and anisotropic (dipolar) componéhts.the gas-phase molecular spectroscopy have been used. The relative
first-order approximation (neglecting spiorbit effects; cf. positions of the energy levels were obtained either directly by
discussion in section 4), isotropic hyperfine splittings(N) monitoring of the absorption/emission ("pure” microwave
are equal to the Fermi contact tednc and they are related to  rotational spectroscopy) or indirectly (through fluorescence or
the spin densitiep® #(Ry) at the corresponding nuclei by molecular beam deflectiody. The hyperfine parameters have
been determined from the analysis of the level splittings. The
A N)=A,= %ﬂegNgegN[szglea—ﬁ (1) accuracy of such measurements is usually very high, sometimes

in the kHz range for microwave optical double resonatce’

In most of the gas-phase investigations, the interactions
between molecules represent relatively small perturbations which
usually affect only the widths of the spectral lines; in molecular
beam studies such interactions are completely al38ertis
makes the gas-phase data most reliable for comparison with
our computed data on isolated molecules. Moreover, in these
gas-phase experiments, the sign of the HFCCs is known.

Condensed-Phase EPR Datdror the remaining systems,

@) the hyperfine parameters had to be taken from condensed-phase
EPR spectroscopy. Different trapping sites (mostly inert-gas
matrices, but also host crystals and frozen solutions) are thus

whereP“;ﬁ is the spin density matrix. We will in the following involved. Obvi_ously, the environ_ment can influence th_e valut_as

abbrevi’gtquu_ﬂ by pn. of the hyperfine parameters, in particular of the isotropic
coupling constantd, due to both structural and electronical

The componentSy of the anisotropic tensor are in the first- ) i X
order approximation given By effects. This complicates the comparison of our calculated data
with experiment.

wheref. is the Bohr magnetorfjy the nuclear magnetorm,

the free electron g-value (2.002 319 31). The g-value of the
nucleus N is given bgn = un/In (un is the nuclear magnetic
moment of nucleus N in units ¢y, andly is the total nuclear
spin for that nucleus)[E[is the expectation value of the
z-component of the total electronic spin. The spin density”?

at the position of nucleus NR{) can be expressed as:

o= S P I0RYI8,0

1 N o p In those few cases where EPR results are available on the
Ti(N) = —BeAngeIn LB, ZPW x same complex from both gas- and condensed-phase measure-
2 uv ments, the HFCCs differ typically by a few percent, up to ca.
Ejbﬂ|r§5(rﬁ,6k| — 3ryn)le,0(3) 10% in extreme cases. Thus, e.g., the gas-to-matrix shift for

Aiso(V) of VO is less than 3% of the absolute value (data

wherery = r — Ry. T is always traceless and may be brought available are 798 MHz in Ne matri€,796 MHz in Ar matrix32
to diagonal form. For magnetic nuclei with an electronic and 778 MHz in the gas phaSg The situation is similar for
environment of axial symmetry (i.e., those located on an at leastScO (cf. matrix values of 20052018 MHZA4?1 vs gas-phase
3-fold symmetry axis), it has the form-@dip, —Adip, 2Adip), value of 1947 MHZ2® for As«(Sc)). Larger gas-to-matrix shifts
whereAyg, is the so-called dipolar coupling constant. From the have been found for MnO (7%; cf. 448 MHz in maffixs
experimental tensor components( A, Ay)), Aiso andAgip may 480 MHz in the gas pha®® and MnH (11%, see ref 37). For
then be extracted Vikiso = (A + 2A0)/3, Agip = (A — Ag)/3. charged species, counterion effects may be considerable and
Another terminology is used in gas-phase spectroscopy stifdies. have to be kept in mind as a potential source of errors.
The high-resolution spectra of linear molecules can be described In view of these environmental effects, we cannot aim at a
in terms of five parameters(b, c, d, ¢ of whichb andc are better agreement with condensed-phase experiments than ca.
related toAiso and Agip asAiso = (b + ¢/3) andAgi, = ¢/3. 10—15%. Furthermore, the theoretical values should best be

All transition metal nuclei in the present study are at sites of compared with the whole range of accurate experimental data
axial symmetry. Although this is not the case for all ligands, available. This is most important for complexes with very small
experimentalists in the field prefer to use th#;,” terminology, isotropic coupling constants, since these are particularly sensitive
even if it is not justified by symmetry. This is often due to the to the influence of the surroundings. We note also that the
fact that the dipolar ligand splittings are small, and two different computed structures do not include any rovibrational corrections.
“perpendicular” components are not observed in the spectra (atOn the other hand, the experimental structures also have to be
least for complexes such as those considered here, where th@iewed with some error bars. Structural aspects contribute thus
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TABLE 1: Structures Used in the HFCC Calculations?

molecule metatligand (intraligand) bond lengths and angles source
ScO Ceor 1.667 opt
TiN Cor 1.567 opt
TiO Cor 1.623 c
VN Cor 1.567 d
VO Cor 1.589 e
MnH Cor 1.731 f
MnO Ceor 1.648 g
MnF Cor 1.839 opt
CuO Coy 1.729 h
MnF; Deh 1.811 i
TiF3 Dan 1.780 Opt
MnO3 Dan 1.579 opt
[Cu(CO)] Dan 1.796 (1.151) opt. MP2
[Cr(CO)]*" Ta 2.190 (1.122) opt
[Mn(CN)4]?~ Ta 2.158 (1.133) k
[Ni(CO)sH] Cs, d(Ni—H) = 1.512, d(Ni~-C) = 1.851, d(C-O) = 1.135, opt
O(H—Ni—C) = 90.87,0(Ni—C—0) = 171.29
[Co(CO)] Cs, d(Co—Cy) = 1.875, d(Co-Ceq) = 1.847, d(C-O)ax= 1.137, d(C-O)eq= 1.139 opt
0(Cax—C0—Ceg = 99.2,0(Co—C—-0) = 179.2
[Mn(CN)4N]~ Cu d(Mn—N) = 1.504, d(Mn-C) = 1.967, d(C-N) = 1.165, opt
O(N—Co—C) =103.97,0(Mn—C—N) = 180.00
[Mn(CN)sNOJ?~ Cu d(Mn—Cy) = 2.009, d(Mnr—Ceg) = 2.025, d(C-N)ax= 1.167, opt

d(C—N)eg= 1.168, d(Mn-Niiro9 = 1.722, d(N-O)niros= 1.169,
0(Cax—Mn—Ceq) = 86.81,0(Mn—C—N) = 180.00

[MN(CO)s] Ca d(Mn—C,) = 1.845, d(Mn-Ceq) = 1.875, d(G-O)a= 1.143, d(C-O)eq= 1.141, opt
0(Cax—Mn—Ceq) = 97.01,0(Mn—Ceq—Ocg = 179.95
[Fe(COY* Ca d(Fe-Ca) = 1.969, d(Fe-Ceq) = 1.906, d(C-O)m= 1.125, d(C-O)eq= 1.125, opt

0(Cax—Fe—Ceq) = 96.11,0(Fe—Ceq—Oeq) = 179.94

aDistances in A, angles in degre@Dpt = optimized in this work, otherwise the corresponding experimental reference is gidenking, H.;
Gerry, M. C.; Merrer, A. JCan. J. Phys1979 57, 54.9Balfour, J.; Merer, A. J.; Niki, H.; Simard, B.; Hackett, P. A.Chem. Phys1993 99,
3288.¢ Reference 12\ Herzberg, H.Spectra of Diatomic Molecule¥an Nostrand: Princeton, New Jersey, 195Gordon, R. M.; Merer, A. J.
Can. J. Phys198Q 58, 642." Merer, A. J.Ann. Re. Phys. Chem1989 40, 407.' Landolt-Banstein Numerical Data and Functional Relationships
in Science and Technology, New Series, Group I, ValMddelung, O., Ed.; Springer: Berlin, 1992; p 7&ee text. At the DFT level, we obtain
d(Cu—C) = 1.880 A; d(C-0) = 1.140 A.%Reference 53.

also to the uncertainties in the comparison between calculation4. Computational Details

and experiment. Molecular structures used for the hyperfine structure calcula-
From the solid-state EPR spectrum, only absolute values of tions were taken from experiment where available or have
the hyperfine tensor components (e.gfy| and |Ag| for an otherwise been optimized in unrestricted Ket8ham calcula-

axially symmetric center) can be determined. Additional infor- tions with the B3LYP functional (using thé&aussian 94
mation can be obtained, e.g., from the signs of the componentsprograni®). The optimizations employed small-core effective-
of the nuclear quadrupolar tensor, so that the sigh,cdnd/or core potentials (ECPs) and (8s7p6d)/[6s5p3d] GTO valence

Ag may be deduce# Another possibility is to comparg| basis sets for the metdl$,and ECPs with (4s4p1d)/[2s2pld]
and|Ag| from the solid-state measurement with tiAg,| result basis setd for the ligand atoms (a (4s1p)/[2s1p] hydrogen
obtained via EPR in a solution. Unfortunately, such information basig? was used for MnH and [Ni(C@M]). The resulting
is usually not available, and four combinations@f, andAgip structure parameters are summarized in Table 1. [CW]d©)

are possible. To decide which of them is the correct one, a weakly bonded complex with significant dispersion contribu-
theoretical arguments have to be considered. For example, thaions to the bonding. Here the DFT optimizations are known to
sign of Agp may be estimated from the type of the singly overestimate the CuC distance, and we have therefore resorted
occupied molecular orbital (SOMO) present. Chemically similar to an MP2 optimization with one f-functio(= 3.52539) added
complexes may be expected to have the same sigAs ahd to the metal basis set.
Ap, etc. The following symmetry restrictions have been used in the

In this study, those signs & andAg are given in the tables  optimizations: Dg, symmetry was used for Tiand MnQ; and
(if not known experimentally), for which the resulting value of  for [Cu(CO)]. The trigonal planar structures are consistent with
Agip is as close as possible to our theoretical value. This choice hyperfine daté—47 and IR spectrd®4° Dz, symmetry has also
is a natural one, since the calculation of the anisotropic coupling been established theoretically for Fify Belanzoni et al’ [Co-
parameters is much less sensitive to the theoretical approach(CO),] and [Ni(COXxH] have Cs, symmetry2951 Tqy symmetry
and thus reasonable agreement with experiment is usuallywas used for [Cr(CQ)™ and [Mn(CN)]2~, again in agreement
found?® In the majority of cases, the resulting sign turned out with experimental evidenc@:53C,, symmetry has been imposed
to be consistent with that adopted in the experimental papers.for [Mn(CO)s] and [Fe(COj]*, consistent with the EPR
For several particular cases, the choice of sign is further spectra455 DFT optimizations performed by Rosa et>affor
discussed in the footnotes to the tables. [Mn(CO)s] and by Ricca et at” for [Fe(CO)}]* have provided

All values of the hyperfine parameters are given in MHz. In structural parameters close to ours. Our optimizations for
those cases where the experimental data have been reported ifMn(CN)4N]~, starting from the experiment&l,, structure of
Gauss, they have been converted to MHz by multiplying with [Mn(CN)4N]2~,%8 converged to a regular square pyrant@,j,
a factor of 2.80238f/ge).2 in agreement with the observed hyperfine struckfiéhe struc-
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ture of [Mn(CNyNO]?~ was optimized irC,, Symmetry, start- TABLE 2: Available Experimental g-Tensor Componentst

ing from experimental structure of Pink and BillifgIn dis- molecule 9 a9
2l rfer 0 he conventional orientation for 2 given point roup. 520 20018(3) 20018(3)
) TiFs 1.8808 1.9902
The all-electron DFT calculations (cf. below for the basis VO°© 1.980 2.002
sets) of the hyperfine structure were done with @Gaussian [Cr(CON* 1.9986 1.9986
94 programz® Unless noted otherwise, unrestricted Ket8ham MnH_ 2.001 2.0023
calculations were carried out. We have compared eight different m& %'ggg 4 %‘38%2
combinations of exchange and correlation potentiglgp] and MnE 1.999 2.009
vp], respectively), abbreviated as BLYP, BP86, BPW91, MnF, 1.999 2.002
B3LYP, B3PW91, BHLYP, BHP86, and BHPW91. The first [MN(CN)4]% 2.003 2.003
three combine Becke’s GGA functional for exchaty®) with [Mn(CO)s] 2.043 2.004
three different GGAs for correlation (LY®, P86%2 and [Fe(CON* %8?33 2.008
PW919). The fourth and fifth combinations use instead for [Mn(CN)sNOJ2- 20311 1.9922
exchange Becke's three-parameter hybrid functional (B3; this [MN(CN).N]~ 2.0045 1.999
includes ca. 20% exact exchang¢Finally, for the last three [Co(CO)] 2.1299 2.0059
functionals we have used the “half-and-half” hybrid (BH), [Ni(CO)sH] 2.0674 2.0042
incorporating as much as 50% exact excha¥gguch func- [Cu(COX] 2.0002 2.0008

tionals are somewhat less popular but have been reported to 2 See footnotes to Tables 8 and 10 for references. The g-values were
perform particularly well for certain classes of open-shell main usually estimated from the spectra without considering second-order
groug® or transition met&f compounds. All functionals were ~ €ffects. The g-value of the free electron is 2.002Beference 21.
used in theitGaussian 94mplementatior?® To obtain further ¢ Reference 12¢ Assumed in the experimental workReference 35.

high-level ab initio data to compare with, we have carried out inq1ar couplings is expected to be somewhat less pronounced.
coupled cluster [CCSD and CCSD(T)] calculations for a subset g jicit scalar relativistic DFT calculations on T enhanced

of mqlecules, using unrestricted_ Hartrefeock reference wave n(Ti) by ca. 2% and decreasedi(Ti) by a similar amount.
functions (unless noted otherwise) and the ACHScode™ Ipnterestingly, these calculations indicated scalar relativistic
As a medium-size metal basis set for use in larger systems, effects for the (small}% HFCCs on the order of ca. 2@20%.
we have constructed a (15s11p6d)/[9s7p4d] basis. Our startingThis has to be kept in mind when discussing the ligand HFCCs
point was the DZ basis of Stfea et al.?® to which we added  (section 8).
the most diffuse functions (a 1s2pld set) from the ECP valence = gpin—orbit effects may manifest themselves in a second-order
baS.iS Of Dolg et a10 IGLO_“I baSiS Setéo were Used f0r the “pseudocontact” Contribution tAjSO (APC)v and in a Second_
main group atoms. order contribution t@dip (Adgip2).>&1":">When the g-tensor of a
Basis-set convergence was tested for several of the smallersystem is known, a rough semiempirical estimate of-spitbit
complexes. To this end, we used a larger (21s15p10d3f)/ contributions to the HFCCs may be obtained along the lines of
[13s10p6d2f] metal basis, constructed from the atomic natural the classical perturbation theoretical approach of Abragam and
orbital (ANO) basis sets of Roos et‘dlas follows: the 1s-,  Pryce® (more details for specific d-orbital occupations and coor-
2p-, 3p-, and 3d-ANO coefficients were used to contract dination arrangements are given in ref 8). For example, for a
s-functions +12, p-functions +10, p-functions 512, and d'-system in a trigonally distorted octahedral field*(donfig-
d-functions 110, respectively. To this we added, in an uration), we may use equations (9.2649.209) in ref 8 to get
uncontracted fashion, s-functions-1P1, p-functions 815, and 4 1
d-functions 6-10. Finally, the 3f set of Bauschlicher et7al. _ 402 1
has been added in a 21 contraction. For both the smaller and A= Aect P’7(S 7AgD]
larger metal basis sets, more flexible contractions have further- 2, 15
more been tested (section 5). Ag= A+ Pl—75 + ﬁAgD
As a somewhat larger basis for the first-row main group
atoms, we have constructed a (14s8p3d1f)/[8s6p3d1f] set, startwhere P = (uo/4r)2us@3]) O is d2-orbital coefficient in the
ing from the cc-pV5Z basi& To the contracted sets of s-func-  SOMO, andAgr = ge — g Now, setting (2/7)2P = Agip, We
tions 1-11 and p-functions 48, s-functions 814 and p-func- get
tions 4-8 have been added in an uncontracted way, as well as
three d-functions and one f-function from the cc-pVQZ basis. . _ Agp
The results we give have been obtained with the default A=A~ Are = Aupl 2~ 252
integration grids (int= finegrid optior?9) of the Gaussian 94

(4)

i 15A

ggogram. For va.rlous.complexes we have also tested larger A=A~ Ae=Ag| 1+ 9 )
gular and radial grids (results not shown). The effect of P 452

different grids was generally below 1% of the computed HFCCs,

even with the largest, uncontracted basis sets. SinceA's = — Adip — Adip2 + Apc andApc = Y3(A) + 2A'D),
The present calculations do not include relativistic corrections. we get

Scalar relativistic effects on the isotropic metal HFCCs may be

estimated roughly from hydrogen-like multiplicative correction _ 7A9Ap _ _17A9up ©6)

factors to magnetic s-type hyperfine integrdisSThese range Apc= 3 2 212 2

from 1.036 for Sc to 1.072 for Cu. This suggests that the neglect
of scalar relativistic effects may lead maximally to an under-  Using our DFT results foAq, (we chose the BPW91 data),
estimate ofpy by ca. 4-7% within the first transition metal  together with experimental values of the g-tensor components
row (in the case of a pure s-type SOMO). The influence on (Table 2), we may thus approximately estimate the -spirbit
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TABLE 3: Coupled-Cluster Results (in MHz)

Munzarovaand Kaupp

9s7p4d 15s10p6d2f

molecule RCCSD uUccsD UCCSD(T) UCCSD uUCcSsD(T) &xp
Aiso(M)

2ScO 1823.1 1819.2 1837.3 1837.1 1947.339(2)

4/0 676.6 730.4 702.1 740.8 778(2)

SMnO 416.6 441.6 435.2 467.6 460.6 479.9

SMNF, 64.4 63.0 77.3 104(B)

‘MnH 217.0 216.7 242.2 243.4 279.4

2TiF, —170.9 —~170.5 —177.1(4%

2MnOs 1492.0 1511.3 1613(6)

2Cu0O —498.9 —515.0 —538.4 —552.1 —483.6(94)
Adip(M)

2ScO 23.1 23.9 23.7 24.3 24.8

VO —46.5 —46.3 —47.6 —46.5 —41.2

SMnO -16.0 —16.7 —-17.3 —16.9 —-17.8 -16.1

SMnF, 4.2 4.1 35 10(6)

MnH 12.0 12.0 12.6 12.6 12.0(8)

2TiF, -75 -75 —6.6(4f

2MnOs 94.7 1015 81(3)

2Cu0O 344 34.9 44.6 46.2 24.1
Aiso(X)

2Sc0 —~17.4 —23.9 -17.3 —-23.7 —20.3(3Y

/O 3.8 3.8 4.2 3.4 0(4)

SMnO —-5.1 —-7.0 —-6.9 —8.2 —-7.9

SMnF, 9.9 9.9 9.5

MnH 13.6 13.8 15.3 17.1 20.7(39)

2TiF, -33.3 -35.1 8.3(4F

’MnO3 4.9 7.8

2CuO —42.7 —40.9 —43.6 —41.6
Adip(X)

2ScO 0.4 —-0.1 0.7 —-0.1 0.4(2Y

WO 2.2 -3.2 1.4 —2.7 0(3)

SMnO 9.2 111 8.6 11.5 8.7

SMnF, —10.3 —10.2 —10.6

‘MnH 11.8 11.8 11.9 11.8 8.4(33)

2TiF 18.0,6.1,-24.0 18.7,5.9;-24.6 e

2MnOs? —22.6,—7.7,30.3 —27.0,—35.8,62.8

2Cu0O 57.6 55.9 57.6 55.8

<S>/ <S>y nominal ($0

2ScO 0.751/0.756 0.750/0.756 0.751/0.755 0.750/0.755 0.750
VO 3.779/4.229 3.741/4.229 3.782/4.238 3.739/4.238 3.750
5MnO 8.838/8.750 8.828/9.534 8.727/9.534 8.859/9.532 8.722/9.532 8.750
SMnF, 8.752/8.750 8.762/8.752 8.750/8.762 8.750
MnH 12.000/12.005 12.000/12.005 12.001/12.005 12.000/12.005 12.000
°TiFs3 0.750/0.750 0.750/0.753 0.750
°MnO; 0.771/0.750 1.068/2.601 0.750
2Cuo 0.754/0.772 0.750/0.772 0.754/0.772 0.750/0.772 0.750

a Cf. footnotes to Tables 8 and 10 for sources of experimental Blta.matrix result. Tables-811 also include the Ar matrix resultsReference
44, cf. reference 18 for a revisiofiNonaxial tensor. Th&; components are given in order: (1) along the meligiand bond, (2) normal to the
metak-ligand bond, in the molecular plane, (3) along the molecziaxis. ¢ Anisotropy experimentally not well defined, cf. discussion in reference

18.

contributions to the hyperfine parameters from eq 6. The values 5. Coupled-Cluster Results
of 6 were obtained from the Mulliken population analysis of

The CCSD and CCSD(T) calculations carried out on a subset

the SOMO composition. The formulas given here may be used of complexes (ScO, VO, MnO, MnFMnH, TiFs, MnQs, and
for any axially symmetric system with the SOMO dominated CuO) should provide benchmark data for the validation of the

by the metal ¢ orbital. This approach is used for BiF
[MNn(CO)s], [Fe(CO)]™, [Ni(CO)zH], and [Co(CO)]. We use
related formulae to estimate the spiorbit contributions for
[MNn(CN)sNOJ?~, where the SOMO is a metalydorbital. In

more economical DFT approaches. The results are summarized
in Table 3. Both the standard 9s7p4d and the more flexible
15s10p6d2f metal basis sets were used for the diatomics (see
also section 6), together with the IGEII basis for the ligand

essentially all other cases, deviations of the g-tensors from theatoms. With the available computational resources we could
free-electron g-value are sufficiently small to expect negligible not use the larger basis set for MnHiFs, or MnO; (for the
spin—orbit effects on the HFCCs (no experimental g-tensor is latter two complexes, even the CCSD(T) calculations with the
available for CuO; for this complex we expect significant SO smaller basis exceeded our available resources). While the larger
effects, cf. section 7). We should also note that the assumptionbasis should be essentially saturated in the important range of

of the d? orbital dominating the SOMO is not entirely
appropriate for [Mn(CQ) and [Ni(COXH] (significant 4p

the outermost core shells (cf. section 6), it is probably still
incomplete with respect to higher angular-momentum func-

character has to be considered), which may lead to a significanttions necessary for the explicit description of electron correla-
error in the estimate (see section 7).

tion.
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Disregarding CuO for the moment, the results of the largest TABLE 4: Basis-Set Dependence of the HFCC (MHz) in
CCSD(T)/15s10p6d2f calculations for the isotropic metal Mn*?

coupling constants are only ca—8% below experiment. For basis Aiso(Mn)
the §maller absolutg value in MnH, the deviat'iorj is ca. 13% (15511p6d)/[9s7pAatl] 759 2
(again the computational result is too low). A similar underes- 9s7padt 1s 757.0
timation of the experimental metal HFCCs was also found in 9s7p4dt 28 744.8
the few available previous post-Hartreock studie$12 These 9s7padt 3¢ 729.5
results suggest that the coupled-cluster calculations underesti- 15s11p6d uncontt. 728.4
mate electron correlation, mainly because of basis-set incom- (21s15p10d3f)/[13s10p6d2f] 841.9
pleteness, and therefore may overestimate spin polarization to gz%gp?ggggagl??gb““222:{3 gié-g
some extent. Of course we have to remember that scalar 1351036(1% (1§ U ) 8110
relativistic effects and rovibrational corrections have not been 13s10p6d2f 2 802.6
considered (cf. section 4). CuO differs from the other cases, as 13s10p6d2f- 3¢ 798.5
both basis-set extension and inclusion of triple excitations leads 13s10p6d2ft- 4 798.3
to more negative\so(Cu) and thus to inferior agreement with 13s10p6d2ft- 5¢° 797.6
experiment (although still better than with DFT methods, see giigg?gggﬁki’gmz uncontr.) 79;?47 8

below). The discrepancy is probably related to the neglect of
spin—orbit corrections (see discussion in section 7). exp
Comparison of CCSD(T) and CCSD results indicates that the fu:c?iiﬁs\,l\gjh gg?#';ﬁ S;igg?r;dctgéw;; St;aesz%lt@m?gn t‘igf:{e 3'

?Oerr}\l/ljmzatglr? dlr:/c(I)usmr? of ttrr']ple ex_(i_ltatlto_n? IS part;c_lélatrly n[()) t_a ble ¢ All s-functions uncontracted. Kasai, P. Hcc. Chem. Red.97], 4,

2 » where the positive triples contribulion brings 359 A matrix isolation! Reference 45 reports a value of 771(14) MHz.
the results closer to experiment (note that for VO the triples
contribution is less pronounced with the larger basis set). In all 6. Basis-Set Study
other cases, the influence of triple excitations is small. We note
that the inclusion of triple excitations brings our CCSD(T) data
for VO into better agreement with experiment than the SDCI
and MRCI results of Knight et al. (ca. 68592 MHz with
different basis sets, which are comparable to the ones use

here)12 : .
ere) ) . _several small systems, we have therefore studied the GTO basis-
Use of the smaller 9s7p4d metal basis leads to a reductiongg; convergence at the DFT level.

of Ais(M) by ca. 9% for MnH, by ca. 5% for MnO, by ca. 3% Table 4 examines the B3PW91 results fay, in the ‘Mn™
for CuO, and by only ca. 1% for VO and ScO. While this is in  4tion using a variety of basis sets. For this high-spin cation
part due to some error compensation, it indicates already that,yit 5st configuration, the large positive direct contribution

the 9s7p4d basis provides a good compromise between oMy, the HECC due to the single s-type SOMO should be partially
putational effort and accuracy. This is confirmed in the DFT ' ompensated by negative contributions from spin polarization
calculations (see below). We expect that a larger basis shouldt the core shells, due to the five d-type SOMO®A better
bring the result for Mnk closer to the Ne matrix value. The  gescription of this spin polarization should thus reduce the
CCSD results for Tifand MnQ with the 9s7p4d metal basis  yrcc. From tests with still larger basis sets, we expect the
are already in good agreement with experiment (cf. Table 3). 1y uncontracted 21s15p10d3f basis to be converged to within
Even for the latter system, the coupled cluster wave function peatter than ca. 10 MHz. Comparison of the resulting 797 MHz
corrects quite efficiently the signific_ant spin contgminatio_n of {5 the 980 MHz obtained at the restricted B3PW91 level (with
the UHF reference (cf<S?> values in Table 3; this behavior 1o same basis) suggests a total spin-polarization contribution
of the CC approach was discussed befof8. Despite the 4 ¢4 —183 MHz. Remaining differences to experiment (note
remaining contamination, the RCCSD and UCCSD results for e two different experimental values available in the literature;
Aiso(Mn) are already quite close. Differences are still apparent fqotnotes e, f to Table 4) are expected to be largely the result of
for Adip(Mn) and for the ligand HFCCs. Spin contamination of  geficiencies in the exchangeorrelation potentiak,.. Contrac-
the UHF reference wave function for MnO and Mri& lower, tion of the basis to 13s10p6d2f increases the HFCC by ca. 43
and thus the agreement between RCCSD and UCCSD resultyz. Starting from this contraction, we may now examine the
is even closer. This indicates the relative stability of the CC jnfiuence of partial decontraction. Changes in the p- and d-basis
approach with respect to the quality of the reference wave pgye negligible effects. However, if we add s-function9=
function’7.78 A more detailed analysis of different reference 316.3768) in an uncontracted fashion, 30 MHz of the 43 MHz
wave functions is beyond the scope of the present study. contraction error have been eliminated. Adding s-exponents 8
The small dipolar coupling constants for the metals are (o = 727.3039) and 7o = 1755.212) reduces the HFCC by
reproduced rather accurately for most systems. The less favor-another 8 and 4 MHz, respectively, giving 798.5 MHz for the
able agreement for MnFmight be due to matrix effects (cf.  resulting 15s10p6d2f basis, i.e., almost the value obtained with
Table 8), whereas the description of CuO is generally more the fully uncontracted basis (further addition of uncontracted
complicated, probably due to sptorbit effects (cf. above and  tighter s-functions has thus very little effect). Our MO analyses
section 7). Except for the latter complex, the dependence of indicate that this is mainly due to a decrease in the direct SOMO
Agip(M) on triple excitations and basis set is only moderate, as contribution, possibly due to a better description of the nodal
one might expect. Agreement of the CC results with available structure of the 4s-orbital.
experimental ligand isotropic and anisotropic HFCCs may also  We may also analyze the results obtained with our smaller
be considered reasonable in most cases, in view of their small-9s7p4d standard basis constructed for use in larger systems.
ness in absolute terms (note the significant error bar on the Employing this basis fully uncontracted to 15s11p6d, the
experimental result for VO). expected basis-set limit HFCC (for the B3PW9L1 functional used)
98

While the basis-set dependence of the hyperfine parameters
for light main group atoms and molecules has already been
investigated in detafl31579.80systematic basis-set studies are
a]acking for transition metal systems, except for a comparison
of different STO basis-sets for Tifby Belanzoni et al? For
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TABLE 5: Basis-Set Dependence of Hyperfine Parameters (in MHz) in Mn®

Munzarovaand Kaupp

basis set BP86 B3LYP B3PW91

Mn ¢} Aisol(Mn)  Agip(Mn) - Asg(O)  Adip(O)  Aiso(MN)  Agip(Mn) - Aiso(O)  Adin(O)  Aiso(MN) - Agip(Mn) - Aiso(O) - Adip(O)
9s7p4d IGLO-IlIl  526.8 —244 54 8.1 521.8 —20.7 —8.0 9.9 5075 —-20.2 -—7.3 10.1
9s7p4dt+3s IGLO—IlIl  507.3 —245 54 8.1 5025 —20.7 -8.0 9.9 4859 —-20.3 -—7.6 9.9
15s11p6d IGLO—IlI 507.1 -249 53 8.1 5019 -—-211 -79 9.9 488.2 —-206 7.2 10.1
(uncontrd) (uncontrd)
13s10p6d2f 8s6p3dlf 5625 —242 55 8.3 557.7 —-204 8.0 10.0 543.3 —20.0 -7.8 10.3
13s10p6d2f-2¢ 8s6p3dif 539.9 —242 —54 8.3 5348 —-204 7.7 10.2 518.2 —-20.0 -74 10.3
13s10p6d2f-2¢ IGLO—III  534.5 —242 53 8.3 5329 —-204 75 10.2 516.3 —20.0 —7.2 10.3
21s15p10d3f 8s6p3dif 5315 —-246 54 8.4 5275 —-205 —-8.0 10.0 513.7 —-20.1 -—7.3 10.3
(uncontrd) (uncontrd)

2 Experimental dataAsf(Mn) = 479.861(100) MHzAgi,(Mn) = —16.066(59) MHz (gas-phase measurement, ref 3@)5s11p6d)/[9s7p4d].
¢ Three outermost core s-functions added, see féxtilly uncontracteds (21s15p10d3f)/[13s10p6d2f]Larger ligand basis, see Computational
Methods.9 Two outermost core s-functions added, see text.

TABLE 6: Dependence of Metal HFCCs (in MHz) on the Metal Basis-Set for Selected Systefs

BP86 B3LYP B3PW91
molecule 9s7p4d  12s7p#d 15s10p6dZ 9s7p4d 12s7p&d 15s10p6d2f 9s7p4d 12s7pdd 15s10p6dZf exp!
2ScO0  Aso  1979.6 1898.4 1932.0 2032.3 1948.2 1995.6 1930.2 1849.9 1878.6 1947.339(2)
Adip 17.5 17.5 18.8 18.7 18.7 20.1 18.7 18.7 20.1 24.8053(7)
2TiN Aso —569.0 —547.3 —561.8 —584.3 —559.7 —578.1 —554.2 —-534.1 —548.1 —558.8(11)
Adip —4.3 —4.3 —4.7 —4.4 —4.5 —-4.9 —4.7 —4.6 -5.1 —5(2)
O Aiso 821.0 789.8 815.4 829.5 796.5 825.5 795.2 763.0 788.8 778(2)
Adip —48.1 —48.0 —48.1 —49.9 —49.8 —50.0 —48.2 —48.2 —48.1 —41.3(8)
5MnO  Aso 526.8 507.3 534.5 521.8 502.5 532.9 507.5 485.9 516.3 479.861(100)
Adip —24.4 —24.5 —24.2 —20.7 —20.7 —20.4 —20.2 —20.3 —20.0 —16.066(59)
MnH  Aso 380.0 366.7 398.1 331.8 322.1 349.0 329.6 322.3 351.7 279.4(12)
Adip 8.4 8.3 9.0 9.8 9.7 10.4 10.1 10.1 10.9 12.0(8)

aThe IGLO-III basis was used for the ligandsThree outermost core functions added to standard 9s7p4d basis, séd textoutermost core
functions added to 13s10p6d2f basis, see t€8ee footnotes to Tables 8 and 10 for the sources of experimental data.

is underestimated by ca. 70 MHz (Table 4). This is most JABLE 7: Nuclear g-Values®

probably related to the lack of very large ceighell s-exponents isotope g-value
to describe accurately the spin density near the nucleus. Upon 455 1.35883
contraction, the discrepancy with respect to the 21s15p10d3f 4TTi —0.31538
basis result decreases, again due to an increased SOMO sV 1.47100
contribution. The medium-size 9s7p4d basis simulates the largest oCr —0.31567
basis sets quite well, due to error compensation. We find this 57:\:/'8” %‘_%%%a
compensation to be systematic rather than accidental (see below) 59C0 1.31886
and take it as a support for the usefulness of this smaller metal 6INj —0.49987
basis for applications to larger systems. %Cu 1.48187

Table 5 shows basis-set tests for both metal and ligand 1"' 5.58556
isotropic and dipolar HFCCs in MnO, using three different 1‘3‘(N: é'igggg
functionals. First of all, we note that the anisotropies show 170 —0.75748
relatively little basis-set dependence. Examination of the effect 19F 5.25760

of the ligand basis set on the isotropic HFCCs indicates that

the IGLO-IIl basis is already rather well converged relative to

the larger 8s6p3d1f basis. The effect of the metal basis is very

similar to the above results for Mn Decontraction of the

aIn nuclear magnetons. Taken from Fuller, G. H.Chem. Phys.
ef. Datal976 5, 835.

7. Performance of Different Exchange-Correlation

outermost coreshell s-functions decrease&isg(Mn). The Functionals for Metal HECCs

smaller 9s7p4d basis compares again well with the fully
uncontracted 21s15p10d3f basis (for all functionals), due to error
compensation. trends before going into more detailed analyses for specific
Table 6 shows results f@¥s(M) and Agip(M) of a somewhat groups of complexes. Table 8 gives isotropic metal HFCCs,
larger subset of molecules with three different basis sets (9s7p4d,Table 9 the dipolar couplings for all 21 molecules and for the
9s7p4d-3s, 13s10p6d2f2s), and again with three functionals.  eight functionals of this study, in comparison with experiment.
As in the two previous cases, a more flexible description of the The dipolar couplings give us further insight, as they depend
outermost s-core shell regions (2s, 3s) reduces the absolute valuéess on subtle details of spin polarization but more on the overall
of Aso(M) (TiN has a negative HFCC due to the negatiye quality of our wave functions. Additional insight on spin
(Ti); cf. Table 7). Notably, the contracted 9s7p4d basis gives contamination is provided by the &> expectation values,
results that deviate only by ca—P% from the values obtained ~ which are also included in Table®.
with the flexible 15s10p6d2f basis. Only for MnH, the deviation Figures -7 show graphically for groups of related complexes
is ca. 5%. This gives further justification to our use of the 9s7p4d the spin-density at the metal nuclei, and for all functionals,
basis as the standard metal basis set for the remainder of thimormalized to the number of unpaired electrons. Two general
study. trends hold with very few exceptions: (i) For a given exchange

General Trends. We will start by discussing some general
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TABLE 8: Dependence of Isotropic Metal HFCCs on the Exchange Correlation Functional (in MHz)

BLYP  BP86 BPW91 B3LYP B3PW91 BHLYP BHPS86 BHPWO1 éxp
2ScO 20435  1979.6 19335 20323  1930.2  1904.7  1983.1  1847.7  1947°339(2)
2TiN -587.0 -569.0 —556.6 —584.3 —5542 —569.6 —540.7 —528.0 —558.8(11)¢
3TiO 2575 —251.0 —246.3 —252.8 —2424 —2419 —2332 —227.0 —241.0 (60)¢
VN 1432.6 13935  1357.8 13889 13154 11689 11246  1081.7  1311.8
“/0 847.8  821.0 811.9 829.5 795.2 795.0 763.3 753.4 778(2)

SMnO 543.1 526.8 524.0 521.8 507.5 528.5 509.8 504.7 479.861@00)
SMnF, 313.0  294.2 283.9 240.7 214.1 144.9 1185 109.0 104(6), 134(6)
MnF 501.9  480.6 473.9 470.5 443.6 422.3 397.4 391.5 442(6), 443(6)
"MnH 380.0  380.0 385.0 331.8 329.6 277.1 271.8 276.3 279.2(12)
7TiF, —218.0 -216.6 —211.6 -1922 —186.1 —157.8 —151.9 —149.4  —184.8(4)—177.1(4}*
2MnO; 2042.4  2009.3  1987.2 17355 16759  1187.6 11415 11117  1643(6)
SMN(CN)4> -90.8 -99.8 -104.8 -1166 —1320 —1550 —169.3 —176.0 —199(3)"
§[Cr(COY)* 21.9 23.8 25.2 26.9 30.8 345 38.4 40.4 425
2MNn(CO)s] 6.7 2.8 08 —25  —121 —214  -320  —37.6 —2.8,0.6,5.6
2[Fe(COY)* 1.1 0.0 -0.6 -3.2 -5.3 -93  -117  -123 2.2
JIMn(CN)sNOJ>~  —134.3 —1458 —153.8 —223.6 —259.2 —3045 —351.7 —364.1 —219.5
2MN(CN).N]~ -160.1 -170.4 —-176.0 —250.1 —2750 —506.7 —5485 —558.5 —276

2[Ni(CO)aH] 24.4 22.3 235 33.3 33.9 51.3 54.8 56.0 9.0(2)
2[Co(COY -6.4 -11.3 157 —61.4  —754 —1754 —2100 —219.7  —47.8,—52(1y
2Cu0 -651.8 —640.0 —678.1 —755.2 —776.4 7324 —676.4 —717.3  —483.6(94)”
2[Cu(COY ~19.2 -7.3 -7.1 47 13.0 45.0 68.8 67.9 7v.2

2The numbers in parentheses represent standard devidtiGas-phase measuremenReference 28 Reference 29. For the TiO molecule,
parameter ¢” determining the dipolar contribution has not been resolved. Our B3PW91/9s7p4d resAliy(er c/3) has been used to derive
Aiso(= b + ¢/3) from the reported surh + ¢ = —231.6(60) MHz.¢ Balfour, J.; Merer, A. J.; Niki, H.; Simard, B.; Hackett, P. A. Chem. Phys.
1993 99, 3288. Our B3PW91/9s7p4d result fAgi(= c/3) has been used to derivg,(=b + c/3) from the reported surh + ¢ = 1264.2 MHz.
fReference 339 Reference 36. See also references given theb&RR in Ne and Ar matrix, respectivelyDeVore, C.; Van Zee, J. R.; Weltner,
W. Jr.J. Chem. Physl978 68, 3522.i Reference 37% Reference 44.Reference 457 EPR in solution, ref 537 EPR in Kr matrix.° Reference
52.P (1)EPR in Ar matrix, ref 54. (2) Solid-state EPR: Ozin, G. A., personal communication cited by Huffadine, A. S.; Peake, B. M.; Robinson
B. M.; Simpson, J; Davson, P. Al. Organomet. Chenl976 121, 391. (3) EPR in @Ds matrix: Howard, J. A.; Morton, J. R.; Preston, K, F.
Chem. Phys. Letl982 83, 1226.9 EPR in Cr(COg host crystal, ref 55" Single-crystal EPR in a host lattice of Mrae(CN}NO-2H,O: Manoharan,
T.; Gray, H. B.Inorg. Chem1966 5, 823.SEPR in CHCN at 300 and 10 K, cf. ref 58. Relative signs are knotReference 51. The sign of the
A (+) has been determined from the sign of the nuclear quadrupolar coupling tensor compé&irtin solid Kr, ref 50; EPR in CO matrix, cf.
ref 88b.” Steimle, T.; Namiki, K.; Saito, SJ. Chem. Phys1997 107, 6109." EPR in Ar matrix, refs 46 and 47.
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2004 ScO calc. ’:,\ Ll e ]
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1.754 [ S Py ~
@ Jol
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5, [ e *----- L o e .
Q 125 VN calc
N N " VN exp. 0,407 MnO exp.
R S S S
TiO cale. R TiO exp. 0.30 T T T T T T T T 1
07 I BLYP BP86 BPW9! B3LYP B3PW9! BHLYP BHP86 BHPW9I
o T T T T T T T T
BLYP BP8 BPW9!1 B3LYP B3PW9! BHLYP BHP86 BHPW91 Functional
Functional Figure 2. Spin densityon®* at the metal nuclei ifvVO and®MnO,
Figure 1. Spin densityon®# at the metal nuclei i8ScO,3TiO, 2TiN, normalized to the number of unpaired electrons. Dependenag.on
and3VN, normalized to the number of unpaired electrons. Dependence
oN Vyc. of exact exchange intay[p] is expected to increase spin
polarization and thus to decreagge(M).
functional v[p], the computed spin densityy at the metal The relative sensitivity of the results ta[p] and v{p]
nucleus depends on the correlation functiong] as pn(LYP) depends strongly on the particular system. For ScO, TiN, or

> pn(P86)= pn(PW9L). (ii) For a given correlation functional,  TiO, a change in; (e.g. BLYP— BP86— BPW91) influences
pn decreases such ag(B) = pn(B3) = pn(BH), i.e., the spin the results considerably more than the change,dfom B to
density is reduced with increasing admixture of exact exchange.B3 (Figure 1). For Tik, MnH or MnF, and for several other

The latter trend is consistent with the expectation that the “pure” complexes, the behavior is just the opposite, i.e., the dependence
GGA functionals underestimate spin polarizatiéa®8384As on v, dominates (e.g., Figures 3 and 4). In other cases, the
the core-shell contributions to this spin polarization dominate dependence on, andv. is of comparable magnitude (see, e.g.,
typically in transition metals and contribute overall negatively Figure 2). Except for cases with strong spin contamination (cf.
to pn (see above), the metal HFCCs tend to be overestimatedbelow), the effects of, andv. appear to be roughly additive.

at the GGA level. It is well known that unrestricted Hartree The overall range of variation of the HFCCs for different
Fock wave functions tend to overestimate spin polarization functionals is also rather diverse in different systems. Thus, for
(accompanied by spin contamination). Therefore, the inclusion some systems the range of results encompasses only some
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Munzarovaand Kaupp

TABLE 9: Dependence of Dipolar Metal HFCCs on the Exchange-Correlation Functional (in MHz)

expé
molecule BLYP BP86 BPW91 B3LYP B3PW91 BHLYP BHP86 BHPW91 nominall($0
2ScO Adip 17.1 17.5 17.3 18.7 18.7 21.1 21.2 21.0 24.8053(7)
<S> 0.751 0.752 0.752 0.751 0.752 0.751 0.752 0.753 0.750
2TiN Adip —4.1 —4.3 —4.3 —4.4 —4.7 -5.0 -5.2 —5.3 —5(2)
<S> 0.752 0.754 0.756 0.753 0.759 0.757 0.768 0.769 0.750
TiO Adip —5.0 —4.7 —4.7 —5.0 —4.7 —5.1 —4.9 —4.9
<S> 2.009 2.011 2.014 2.012 2.017 2.016 2.020 2.024 2.000
SVN Adip —29.7 —28.0 —26.6 —26.3 —23.8 —16.0 —14.8 —14.0
<S> 2.034 2.040 2.047 2.076 2.119 2.424 2.442 2.505 2.000
VO Adip —49.8 —48.1 —47.7 —49.9 —48.2  —50.9 —49.9 —48.9 —41.3(8)
<S> 3.784 3.791 3.798 3.799 3.815 3.817 3.817 3.841 3.750
SMnO Adip —24.9 —24.4 —24.3 —20.7 —202 —16.2 —16.2 —16.0 —16.066(59)
<S> 8.783 8.788 8.794 8.827 8.848 9.034 9.059 9.078 8.750
SMnF, Adip —7.8 —6.4 —6.4 —3.6 —2.2 0.8 2.0 2.2 10(6) or 6(B)
<S> 8.758 8.760 8.761 8.760 8.762 8.760 8.761 8.762 8.750
MnF Adip 5.6 6.2 6.2 7.0 7.6 8.4 8.7 8.7 24(6), 16(6)
<S> 12.002 12.003 12.003 12.003 12.003  12.003 12.003 12.003 12.000
MnH Adip 7.8 8.4 8.4 9.8 10.1 10.9 11.2 11.2 12.0(8)
<S> 12.003 12.004 12.004 12.003 12.004  12.002 12.003 12.004 12.000
TiF3 Adip —9.9 —9.2 —9.1 —10.1 —9.5 —-9.9 —9.5 —9.3 —6.6(4),—8.1(4y
<S> 0.752 0.752 0.753 0.752 0.753 0.752 0.752 0.753 0.750
2MnOs Adip 95.9 95.1 95.5 1245 125.9 178.0 174.2 171.4 81(3)
<S> 0.765 0.768 0.770 0.880 0.914 2.0025 1.994 2.054 0.750
SIMN(CN)4)%>~ Adip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 c0
<S> 8.762 8.764 8.765 8.762 8.766 8.763 8.765 8.766 8.750
§[Cr(CO)* Adip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<S> 8.757 8.761 8.762 8.759 8.764 8.761 8.765 8.765 8.750
2IMn(CO)s] Adip 97.0 96.1 96.2 96.5 95.8 88.6 88.4 89.0 90(8y2(6Y
<S> 0.753 0.753 0.754 0.758 0.759 0.773 0.773 0.776 0.750
[Fe(CO}* Adip 18.5 18.3 18.2 19.3 19.0 19.7 19.5 19.6 15.4
<S> 0.757 0.757 0.756 0.763 0.764 0.770 0.770 0.771 0.750
IMNn(CN)sNOJ>  Adgip —97.3 —98.2 —96.2 —58.1 —56.0 —30.3 —30.2 —29.0 —115.2
<S> 0.868 0.850 0.866 1.440 1.464 2.091 2.077 2.086 0.750
2IMNn(CN)sN]~ Adip —-116.2 —-115.2 —-1151 -117.2 —1156 —885 —88.7 —89.2 —122.4
<S> 0.774 0.773 0.775 0.882 0.896 1.763 1.784 1.796 0.750
2[Ni(CO)3H] Adip —49.8 —49.6 —49.6 —56.9 —56.5 —67.8 —67.2 —66.8 —44.0(2)
<S> 0.752 0.752 0.752 0.757 0.756 0.793 0.791 0.793 0.750
I[Co(CO)] Adip 153.6 152.4 151.8 147.4 146.2 101.2 93.6 84.5 110.0
<S> 0.762 0.761 0.763 0.788 0.789 0.930 0.957 1.005 0.750
2Cu0O Adip 42.7 41.6 41.8 33.7 33.4 22.8 20.8 21.6 24.1
<S> 0.762 0.761 0.762 0.767 0.768 0.768 0.765 0.767 0.750
[Cu(CO}] Adip 65.2 65.7 64.8 65.9 65.4 58.4 58.8 58.3 8l
<S> 0.751 0.752 0.752 0.753 0.754 0.756 0.757 0.758 0.750

a See corresponding footnotes to Table 8 for the sources of the experiment@lERR.in Ne and Ar matrix, respectivelyNot observed (zero

due to symmetry)¢ EPR using different solid matrices.
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will discuss in more detail below. In comparison with experi-

percent of the value of the HFCC (e.g., for ScO, TiN, TiO, or ment (Table 8), or with the coupled-cluster results (Table 3),
VO; note that previous studies have concentrated on suchunfortunately we cannot single out any functional which would
species), whereas for others this range may be on the order otbe superior to the others. The performance of a given functional
the HFCC itself. This relative variation depends of course on is very different for different classes of complexes. Thus, while
the absolute value of the HFCC but also on other features wethe B3LYP functional has been particularly popular for HFCCs
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of organic molecule®’ no “universal functional” appears to be

available yet for the present transition metal syst&fiEhe
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lems of spin contamination. Let us therefore discuss the results
in more detail, and relate them to the electronic structure of the
molecules in question.

ScO, TiN, TiO, VN, and VO. This first group of systems
exhibits large positive spin density at the metal nucleus, resulting
from the dominant participation of the metal 4s orbital in the
SOMO, or in one of the SOMO3ScO and’TiN are the simplest
representatives. Here thetype SOMO has predominantly metal
4s charactet;}22% with some 3¢f and 4p admixture (it is
polarized away from the ligandjTiO and3VN have in addition
one 3@-type SOMO,*VO two 3ds-type SOMOs. The domi-
nance of the direct SOMO contribution to the HFCCs explains
the relatively low dependence on (Figures 1, 2, Table 8).
The treatment of dynamical correlation vig appears to
influence the HFCCs mainly via the shape of the SOMO. We
find the SOMO to become more diffuse along the series LYP
< P86 < PW91 (valence-shell spin polarization is also affected
somewhat by). Addition of exact exchange also renders the
SOMO somewhat more diffuse and reduces the HFCC slightly
(the spin-polarization contributions are also affected but are not
very pronounced).

VN is exceptional within this group, due to the significant
onset of spin contamination upon inclusion of exact exchange
(in contrast to the isoelectronic TiO!). This leads to a much
larger dependence of the HFCC on the exchange functional,
and finally to a significant deterioration of the results with BH-
type hybrid functionals. This is confirmed by the results for
Adgip(M) (Table 9). The relatively low coupling anisotropy is
mainly due to the 3@-type SOMO and depends relatively little
on vy for ScO, TiN, TiO, and VO. In contrast, for VN the
admixture of exact exchange reduces the absolute valdgyof
(M) significantly, in parallel with the drastic increase #&>
(Table 9). Unfortunately, no experimeni&li,(M) is available
for this system.

3TiO and?TiN have been studied recently by Engels etal.,
using the PWP86 functional and medium-sized basis sets. For
TiN, their results differ only by ca. 1% from our BP86 value,
despite their ca. 0.03 A larger FN distance. Our own test
calculations for TiN at the structure used by Engels et al. indicate
very small changes<{1 MHz), i.e., a small dependence of the
isotropic metal HFCC on bond length. Recently, B3LYP
calculations for ScO have been performed by Knight &t al.
Their value given forAiso(Sc) was 1877.5 MHz, ca. 8% lower
than the value in Table 8, ca. 6% lower than our result with the
larger 15s10p6d2f basis (cf. Table 6), but in excellent agreement
with our B3PW91 results. Indeed, we have meanwhile been
informed that Knight et al. erroneously reported their B3PW91
data as B3LYP resulf§.

Except for VN, the dipolar coupling constants (Table 9) are
small and increase slightly in absolute value with increasing
exact-exchange mixing in the functional. While this trend is
partly related to an increasing participation of the metal 4p

variations in the electronic structure appear to be too large. For orbital in the SOMO, spin polarization should not be disregarded
the "easier” systems mentioned (ScO, TiN, TiO, and VO), any completely. Thus, e.g., a restricted B3PW91 calculation on ScO

of the GGA or hybrid functionals gives results within ca- 8%

of the experimental values. In some cases (e.g., VN, MnO
[MNn(CN)4N]~, [Ni(CO)3H], [Co(CO)y)), the spin contamination
(cf. <> in Table 9) for the BH-type hybrid functionals is

gives Agip(Sc) = +12.8 MHz, quite different from the unre-

stricted result of+20.0 MHz. This should be compared to the
RB3PW91 and UB3PW91 results for the isotropic HFCC of
+1910.6 MHz and+1948.8 MHz, respectively. Thus, on a

unacceptably large and leads to a deterioration of the results.relative basis, spin polarization in ScO is more important for

In other cases (e.g., [Mn(CBNOJ?7), spin contamination is
even significant with pure GGA functionals. However, interest-
ingly there is also a significant group of complexes (e.g., MnH,
MnF,, [MNn(CN)42-, [Cr(CO)]"), where the half-and-half
hybrids perform particularly well, without any apparent prob-
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Agip(Sc) than forAis«(Sc)!

MnO, MnF ,, MnF, MnH. In going to higher spin multiplici-
ties, we may comparéMnO to V0. MnO has two additional
SOMOs, antibonding orbitals with metal-3end 4p, as well
as ligand 2p character. Due to the large number of d-type
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SOMGOs, spin-polarization effects via the core shells are more population ratio of 0.18/0.76 for Tgand of 0.13/0.67 for

pronounced. At first sight surprisingly, the BHLYP hybrid
functional gives a somewhat larger spin density than B3LYP.
This is most likely connected to the significant spin contamina-
tion upon exact-exchange mixing (cf. Table 9). The net
dependence ony. may still be considered moderate, with an
overall range of less than 10% of the absolute HFCC. The
somewhat larger dependenceigrand the spin contamination
are also apparent from the somewhat larger variatiorg;j

(M) compared to the above species (Table 9).

As related high-spin systems, but with lower pgt we may
compare’MnF, "MnH, and ®MnF, (cf. Figure 3, Table 8).
5MnF, differs from the related®™nO by the symmetrical
arrangement of two ligands in this linear two-coordinate
complex. As a result, the single-type SOMO (which is
accompanied by two 3dand two 3d-type SOMOSs) has larger
3d2 and less 4s character than for MnO and is significantly
Mn—F antibonding. The isotropic HFCC is therefore lower, and
its significantly larger dependence an is mainly due to
valence-shell spin polarization. The overall rangeAaf(M)
values is thus larger than the relatively low HFCC itself.
Comparison with experiment suggests the BH-type hybrid
functionals to provide the best description (Table 8). Spin
contamination is generally low. The absolute valueAg§(M)
is very small and thus difficult to describe accurately. Moreover,
it changes significantly from Ne to Ar matrix (Table 9).
Remember that this system was also one of the more difficult

MnQg). The largerpy of MNOs is thus due to the much larger
effective charge on the metal. The sensitivityitois already
significant for Tik, but all functionals do still give results within
ca. 15% of the experimental value. DFT calculations of
Belanzoni et al’ (with the BP86 functional and STO basis sets)
gave—233.9 MHz forAiso(Ti), somewhat larger than our216.6
MHz with the same functional. This difference arises mainly
from their shorter LSDA T+F bond length (1.756 A vs our
1.780 A). Using their shorter distance, we obtain31.0 MHz,
i.e., closer agreement with their value (note the negatgive
(Ti), Table 7). This indicates a much larger structural depen-
dence ofAiso(Ti) compared to our above discussion for TiN,
probably due to presence of cershell spin-polarization
contributions.

In view of the significant deviations of the g-tensor from the
free-electron value (Table 2), Tiks one of the cases where
spin—orbit effects have to be considered. Indeed, here we are
in the fortunate situation that explicit DFT calculations of these
spin—orbit contributions are available, both within a perturba-
tion—theoretical approach,and using the explicitly relativistic
two-component zero-order-regular-approximation (ZORA)
schemé? Using the BP86 functional, both approaches gave very
small positive spir-orbit (pseudocontact) contributionsAQ-

(Ti) (ca. 3-6 MHz), whereas the spirorbit contributions to
Adip(Ti) are negative (between2.3 MHz and—2.8 MHz) and
significant relative to the small dipolar coupling. Our own simple

examples in the coupled cluster calculations (section 5, Table semiempirical estimate of the spiorbit corrections (section

3).

MnF and’MnH differ from SMnO and®vInF, mainly by
having two rather than one singly occupiedype orbitals. The
metal 4s orbital contributes in an Mn-X bonding way to one of

4, eq 6) givest3.4 MHz for the pseudocontact term an@.1
MHz for Agip, in good agreement with the explicit calculations.
The addition of the latter value to the compui&g, does not
improve the agreement with experiment, but it has to be noted

these SOMOs, in an antibonding fashion to the other one (both that the matrix does affect the results nonnegligibly (cf. Table

orbitals are again dominated by the/3drbital). As for Mnk,
inclusion of exact exchange influences mainly the SOMO and
valence-shell spin-polarization contributions in both systems,
while the total core polarizations are almost unaffected. The
overall dependence ory is quite large for MnH (but not as
large as for Mnk), somewhat lower for MnF (cf. Figure 3).
The choice ofv. influences both core and valence shell

9).

For MnG;, the v, dependence ofs, is particularly pro-
nounced (Table 8 and Figure 4), and is complicated by
significant spin contamination (cf$?Cland the large dependence
of Agip(Mn) on vy, Table 9). The results for MngZexemplify a
dilemma that arises also in other cases (see below): While some
admixture of exact exchange increases spin polarization and thus

contributions. For MnH these changes cancel each other so thainay improve the agreement with experiment relative to the

the overall dependence an is low, similar to MnFk but in

"pure” GGA results, it may lead at the same time to considerable

contrast to MnF. The comparison with experiment would suggest spin contamination (we note that the spin contamination is

BH-type functionals to perform best for MnH. On the other
hand, all functionals give results within ca. 13% from experiment
for MnF. Spin contamination does not seem to be a problem
for MnF,, MnF, or MnH, in contrast to the BH-type results for
MnO (Table 9).

For these four manganese systefg(M) is very small and
caused mainly by the 3¢ 3d,,, 3dy, and 3¢y character of
the - andd-type SOMOs. It is notable that the effect of spin
polarization is again not negligible (cf. above). For example,
the dipolar coupling of-15.7 MHz for MnO at the unrestricted
BHPW91 level is changed t620.2 MHz at the restricted level.
Similarly, we obtain+2.4 MHz for Agip(Mn) in MnF; at the
unrestricted—5.9 MHz at the restricted BHPW91 level.

TiF3 and MnO3. Two related molecules with relatively large
positive spin densities at the nuclei, but with a significant
dependence ony are TiFz and MnQ (cf. Figure 4, Table 8).
For both systems, the SOMO is dominated by the met@ 3d
orbital, interacting with the ligand hybrid orbitals in an

antibonding way. Some 4s character is mixed in. The composi-

tion of the SOMO is similar for both complexes (Mulliken
population analyses, using the BLYP functional, give a 48/3d
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connected to valence-shell spin polarization.). Thus, despite the

superficial similarity with the isoelectronic TiFthe demands

on the functional are much higher for the more covalent, highly

oxidized MnQ; (cf. also the VN vs TiO comparison above).

One could argue that the B3-type functionals do still provide a

reasonable description of the wave function for Mn@ith

moderate but nonnegligible spin contamination). However, the

unusually large variations iAgip(M) (Table 9) speak against

this. Note that the coupled cluster results #Ag%(M) (Table 3)

agree well with experiment (they are slightly too negative).
[Mn(CN)4]?>~ and [Cr(CO)4*. As two further high-spin

systems, we may examine the two isoelectronic, tetrahedral ions

6[Mn(CN)4]?~ and8[Cr(CO),]*. The five SOMOs correspond

to all five metal d orbitals, corresponding to thg and e

irreducible representations iy symmetry. Due to the absence

of any direct s-type SOMO contributiopy is entirely caused

by spin polarization and is negative for both systems (see Figure

5; the positiveAiso(Cr) is due to the negativgy(Cr), cf. Table

7). Spin polarization of the core shells by the d-type SOMOs

dominates (and provides negatjug@ and is partly compensated

by valence-shell spin polarization. Therefore, the dependence
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on vy is particularly large, and it is rather similar for these ficients) was difficult with several of the functionals, in particular
isoelectronic systems (Figure 5). Even with BH-type hybrid for [Mn(CN)4N]~. It appears that low-lying local minima exist.
functionals, which provide the best agreement with experi- We have therefore used tighter convergence criteria on the
ment, the spin polarization apparently is still underestimated density matrix for these systems than tBaussian 94efault
slightly. The coupling anisotropy is zero, due to symmetry, and values (i.e., 108 au instead of 10* au root-mean-square
spin contamination is relatively small for all functionals (Table deviation).

9). The pure GGA functionals give three positive occupied orbital
[Mn(CO) 5] and [Fe(CO)s] ™. Let us now turn to low-spin energies for [Mn(CNINOJ>~ (no positive eigenvalues are
complexes. For the isoelectronic low-spif domplexes obtained with the BH-type hybrids), indicating that the isolated
2[Mn(CO)s] and Fe(CO)]", the SOMO exhibits metal 38 dianion might not be stable with respect to electron loss (this

and 4p character and is-antibonding with respect to the axial  holds also for the [Mn(CNJ?~ dianion discussed above).
M-CO bond in these square pyramid&ls) complexes. The  However, we believe that, in connection with the finite basis
metal 4s contribution to the SOMO is small. As the small set, this affects the HFCC results negligibly compared to the
positive direct SOMO contribution téiss(M) (ca. +60 MHz more serious problem of spin contamination.

and ca+14 MHz for M = Mn, Fe, respectively) is furthermore Due to the significant deviations of the g-tensor components
canceled partly by negative corshell spin-polarization con-  from the free-electron value (Table 2) in [Mn(GN)O]2~, we
tributions, very small isotropic HFCCs result for these low- have considered spirorbit corrections. Our simple estimate
spin systems. As a consequence, the description is difficult andgives a pseudocontact term of ee6.4 MHz and a spirorbit

the dependence an. (particularly orwy) is large on a relative  contribution to Agp of —2.8 MHz. Spin-orbit effects are
scale (Figure 6). This holds in particular for the iron complex. estimated to be small for [Mn(CY]~ (cf. g-tensor in Table

In other words, a larger effective charge at the metal appears to2).

increase the sensitivity to the functional (as found above for  [Nj(CO)sH] and [Co(CO)4. The SOMO of these two
other isoelectronic pairs, e.g., VN vs TiO or Ma@s TiF). trigonal pyramidal Cs,) d° complexe& is of a; symmetry and
Based on the comparison to experiment, it is difficult to select composed of metal 3tiand 4p contributions, with overall axial
any particular functional that would be preferable over the others metal-ligand o-antibonding character. In both cases, the SOMO
(the BH-type hybrids might seem to be less preferable, although has very little metal 4s character and thus gives only small direct
spin contamination is not very pronounced). We estimate-spin  contributions tqy. These are furthermore compensated partially
orbit corrections (cf. section 4) of c&:21.2 MHz for Aiso(Mn) by the negative coreshell spin polarization. As a result, the
and of ca.—12.8 MHz for Agip(Mn) in [Mn(CO)s], as well as  jsotropic HFCCs are low. Possibly due to the partial, 4p
ca. +5.3 MHz for Aso(Fe) and ca.—3.0 MHz for Agip(Fe) in character of the SOMO, the dipolar couplings are relatively large

[FE(CO)]*. The correction for the manganese complex may (in analogy to the low-spin dcomplexes [Mn(CQJ and
be overestimated, as the coefficient of the?3atbital in the [Fe(CO)]* discussed above).

SOMO is small §* = 0.43, cf. eq 6) and the neglected A first sight, Agip(M) in [Co(CO)] would seem significantly
contribution from the 4porbital may be large. too large with GGA (and B3-type) functionals (Table 9), despite
[Mn(CN)sNOJ#~ and [Mn(CN)4N]~. The two Cs, sym- the relatively small spin contamination. However, in view of
metrical system3Mn(CN)sNOJ?~ and4Mn(CN),N]~ (a low- the very large g-shifts (Table 2), spiwrbit corrections are
spin ¢ and a d complex, respectively) both have a single metal expected to be particularly significant for this complex. Indeed,
3dy-type SOMO. They also share the unfortunate problem of our simple estimate (eq 6, section 4) provides a large correction
significant spin contamination, in particular with hybrid func-  of —42.2 MHz to Aip(Co). This would bring both the GGA
tionals (Table 9). Significant coreshell spin polarization  results and the B3-type hybrid results into good agreement with
dominates the observed negative isotropic HFCCs. This is experiment, whereas the BH-type hybrid results would then be
augmented by valence-shell spin polarization, mainly involving too low. The reduction of the dipolar couplings by inclusion of
metal 4, and g, orbitals. These d-orbitals contribute to the exact exchange is again accompanied by signifcant spin
m-components of the MaN triple bond in the ésystem, and  contamination, and we do not expect these BH-type functionals
to both Mn—N z-bonding andr-antibonding MOs in the d to provide a reliable description for this system. In view of its
complex. Low-lying excited states involving theseandz*- smallness, the isotropic HFCC (Table 8) is difficult to describe.
type orbitals are mainly responsible for the spin contamination Considering also the estimated spiorbit correction toAsq-
(i.e., the spin contamination is connected to significant valence- (Co) of +69.5 MHz may suggest that even the B3-type hybrid
shell spin polarization, as found above for M)O results are still insufficiently negative. On the other hand, the
Spin contamination is already nonnegligible for the GGA BH-type hybrid results clearly overshoot the negative spin-
functionals, increases for the B3-type hybrids, and becomes polarization contributions dramatically.
dramatic for the BH-type hybrids. As a consequence, the Both spin contamination and the dependencégf(M) on
computedAqi, values appear to be still reasonable for the GGAs v, are less pronounced for [Ni(C&j]. The GGA results would
but deteriorate significantly for the hybrid functionals (with the seem to agree best with experiment fa,(Ni), whereas the
exception of the B3-type hybrid results for [Mn(CNJ] 7). The BH-type hybrid results are clearly too negative (and are accom-
isotropic HFCCs are not sufficiently negative with the GGAs, panied by spin-contamination, Table 9). Our estimated-spin
are in closer agreement with experiment for the B3-type hybrids, orbit correction of+16.4 MHz to Agipg(Ni) would change this
but become much too negative with the BH-type hybrids (Figure picture but may be too large, as the metal dibital contributes
7). We have to conclude that the reasonahig results with significantly to the SOMO (the 38icontribution to the SOMO
the B3-type hybrids are at least in part fortuitous, due to spin is particularly low for this complex, witld? = 0.28, cf. eq 6).
contamination. None of the functionals investigated here is thus The estimated spinorbit correction toAis(Ni) (pseudocontact
really adequate to describe all features of the hyperfine coupling term) of —26.8 MHz may thus also be too large. In view of
in these two complexes. We also note that SCF convergence tathese uncertainties about the magnitude of the -spihbit
a global minimum in parameter space (i.e., in the MO coef- corrections, either GGA or B3-type hybrid functionals might
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be closest to the experimental isotropic HFCC (Table 8), Bond Length Errors.The isotropic HFCC is extremely
whereas the BH-type hybrids give in any case too large values.dependent on the CtO bond length. Shortening the bond by

CuO. The & complex2CuO differs from the previous cases ©nly 0.005 A (from 1.729 to 1.724 A) changég(Cu) from
by exhibiting a hole in a degenerate-type) MO. In other ~ —776 MHz to —747 MHz, i.e., by ca. 4% (B3PW9L1 result).
words, the one-particle description of thé[Xground state of ~ Together with the above results for TiN and Jikhis suggests
CuO assigns three electrons to theMO (the two components  that the dependence of the isotropic HFCCs on bond length
are built from the O 2p Cu 3d, Cu 4p, and from the O 2p increases Wlth.an increasing importance of spin polarization (a
Cu 34, and Cu 4p orbitals, respectivelyd? It is thus clear more systematic study of the interdependence between structural
that a cylindrically symmetrical wave function in a single- changes and HFCCs in transition metal complexes is beyond
determinant framework may be obtained only by using fractional the scope of the present study but should be pursued in the
occupations (i.e., 0.5 electrons in each of the two MOs). The future). On the other hand, the experimental bond distance of
integer occupation of one of the two degeneraté#Ds would, 1.729 A appears to be reliable and has been confirmed
e.g., not provide an axially symmetrical hyperfine tensor. On experimentally* and theoretically
the other hand, one may average calculations with different Relatwistic Effects.Scalar relativistic effects should lead to
integer occupations (similar considerations pertain to kehn @ larger (negative) spin density at the nucleus and would thus
Sham calculations on certain degenerate states of open-shelP€ expected to lead tmorenegative values fohso(Cu). Spin-
atomg9. The results forAgi(Cu) obtained by this averaging  orbit effects are difficult to judge, as unfortunately no experi-
procedure are given in Table 9 (the coupled cluster results in mental g-tensor information is available. Our preliminary
Table 3 were obtained in the same manner). As we were not perturbatior-theoretical calculations of the g-tensor indicate a
able to enforce appropriate fractional occupations within the large positiveAgp. Thus, we may expect significant spiorbit
Gaussian 94program, we resorted to calculations using the contributions to the HFCCs, and we believe that this is the most
BP86 functional and the deMon cddé®to compare integer  likely reason for the discrepancies between calculation and
and fractional occupations (using the same basis set but inexperiment.
addition auxiliary basis sets to fit charge density and exchange ~ [Cu(CO)g]. Finally, we look at a very different bonding
correlation potentidh®9. Indeed, the dipolar couplings obtained situation. The wave function in [Cu(Cg))is derived from the
with fractional occupations differed by less than 6 MHz from 3d'%4p! configuration of C6, and the SOMO is composed of
averaged results with integer occupations (the isotropic cou- the Cu 4porbital andz-type ligand orbitals. The isotropic metal
plings also changed by less than 5 MHz). This seems to justify HFCC is thus exclusively due to spin polarization. Interestingly,
the averaging procedure. on(Cu) is positive, whereas we have seen above that—core

Due to the absence of metal 4s orbital contributions to the SNell Spin polarization due to 3d-type SOMOs always contributes
SOMO, the isotropic metal HFCC arises exclusively from spin Negatively topn(M). Thus, the situation resembles more that
polarization. Interestingly, the, dependence for a given is known for main-groupr-type radicals, with the (slight) differ-
on(B) > pn(BH) > pn(B3). On the other hand, we find a ence that we have a very polarizable M-shell below the 4p
significant decrease @¥;,(Cu) from B to B3 to BH functionals. ~ YP& SOMO. The description for [Cu(Cg)is thus consider-
The latter trend is due to the shift of single-electron density aPly more difficult than for Cu(gHz) or Cu(CO) studied
from Cu to O with admixture of exact exchange. For the Previously with DFT methods by Barone et &#:°where large

isotropic HFCCs, stronger corshell spin polarization accounts ~ POSitive direct contributions from a metal 4s-type SOMO
for the more negative value with B3-type relative to B-type dominate. . '
functionals. Further dramatic decrease of the spin density on SPin contamination is minor, and the dipolar couplings depend

BH-type functionals. give ca. 6-7 MHz lower values, cf. Table 9). The experimental

Agip(Cu) is underestimated. It is possible that this is due to an
overestimate of the CuC bond length even by the MP2
optimizations used (cf. Table 1). This would be consistent with
our finding that test calculations at the larger DFT optimized
bond length (also Table 1), give ca. 8 MHz lower dipolar
couplings. In other words, structural errors are more likely for
this weakly bound complex than for the other systems.
Looking at the isotropic metal HFCC (Table 8), we see that

The Aiso(Cu) results are too negative for all functionals,
whereas the variation between the functionals is smaller than
the discrepancy with respect to experiment. Note that even the
coupled cluster calculations give too negatieg,(Cu) when
considering the trend upon enlarging the basis set (Table 3).
Moreover, spin contamination seems to be small. The difference
with respect to experiment is thus probably not mainly a problem

of describing the spin polarization well. There are three other . ! N L -
possible reasons which might account for the too negative we obviously underestimate cefrshell spin polarization with

isotropic HFCCs, of which we suspect the latter to be decisive: EH? pure GGA fun_c:]ionals._Even _th_e sign ofdthe HFCE is vyrhog%.
multireference character of the wave function, errors in the bond ' "® agreement with experiment Is improved somewhat wit i
length, relativistic effects. type hybrids, and even more significantly with the BH-type

i ) hybrids, without t spi taminati blem. Th
Multireference Character of the Wa Function.Our coupled YLICs, WIthou? any apparent Spin contarnination probiem. The

lust functi . | fficients f p situation may thus be comparable to that fotype organic
cluster wave functions give no large Coetlicients for contigura- ., 44415 \We also see a surprisingly large difference between

tions othgr than the given reference gonfigu_ration. We note alsothe BHLYP functional and the BHP86 and BHPW91 functionals
that the single-reference coupled-pair-functional (CPF) calcula- (likely due to the description of the SOMO)

tions by Langhoff and Bauschlicher appear to describe the

ground state of CuO adequately (whereas CISD calculations .

without corrections for higher order excitations perform pody). 8. Ligand HFCCs

Thus, CuO is probably not a priori a multireference case. As this work concentrates on complexes with the SOMO

Moreover, spin contamination is small. This speaks against mainly localized on the metal, the spin densities at the ligand
significant problems of describing the wave function with the nuclei are about%2 orders of magnitude smaller than those at

current approaches. the metal nuclei. This places of course considerable demand
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TABLE 10: Isotropic Ligand HFCCs (in MHz)

J. Phys. Chem. A, Vol. 103, No. 48, 1998979

isotope  BLYP BPS86 BPW91 B3LYP B3PW91 BHLYP BHP86 BHPWO1 ®Xp
2ScO 0 -228 —213 -198 -199 -17.0 -165 -133 -11.6 —20.3(3)or—18.9(4p¢
2TiN 1N 19.8 184  17.3 17.1 14.4 12.8 10.1 9.5 18.478(1)
3TiO (o) -82 —82 -73 —49 4.3 -0.2 0.6 1.6
VN 1N 6.0 6.2 5.8 3.2 32 -93  —6.0 -7.2
/O k(o) —27 -31 -24 1.1 1.5 6.7 7.3 8.0 0@)
SMnO k(o) -66 -54 53 —80 -7.3 -9.0  -9.1 -8.8
SMnF, 19F 204 161 154 22.6 185 27.9 20.4 20.8
"MnF 19F 785 694  67.2 79.2 72.9 82.9 79.5 77.9 68(6) or 75(6)
"MnH 1H 356 258 @ 221 28.0 19.0 23.0 14.0 10.1 20.7(39)
2TiF, 19F 8.7 5.0 1.7 -56 -129  —148 —235 -243 8.3(4) or 8.0(4y
2MnOs 70 -51 —41 -35 2.6 2.6 26.2 19.1 19.0
SMNn(CN)4]2- 13 35 -01 —08 05 -30 -12  —47 -5.1
N 1.1 0.8 0.7 1.0 0.8 1.1 0.8 0.8
S[Cr(CON* 13 -50 -92 -115 -84 -134  —104 -146 -154 —135
70 -16 -12 -11  -18 1.4 21 —17 -1.6
2Mn(CO)] 13C, 07 -19 -34 344 370 727 -729 —73.0
13Ceq -151 -183 -19.7 -21.7 -260  -27.9 —312 —322
10, -88 —-82 —-80 -82 -7.6 -6.4  —6.1 -5.8
04q -29 -20 —20 36 2.7 -43  -36 -3.2
2[Fe(CO)* 13C, 69.7 656  65.0 39.0 37.0 20.5 18.8 20.2 535
13Ceq -185 -203 -—21.3 -251 —269 -252 —27.0 —269 —23.0
70, -96 -92 -91  -99 -9.6 -93  —92 -9.0
0%q -19 -14 -14  -17 -1.3 -12  —-1.0 -0.8
MN(CN)sNOJZ~  13C,y 444 —413 —439 -833 880 —1366 -1332 —130.7
13Ceq 416 -401 —42.9 -804 —854 —1332 -1321 —1282
UN(NO)  —123  —9.7 —106 —296 —275  —557 —50.0 —49.9 —10.64
UN(CN,) 0.5 0.4 0.4 0.7 0.6 0.9 0.4 0.6
UN(CNeg) 1.0 0.5 0.5 1.0 0.7 1.2 0.7 0.6
k(o) 7.8 40 43 33.2 27.6 82.0 70.5 69.7
IMn(CN).N]-  1C -289 —287 -301 -530 -554 —1351 -134.1 —136.2
N -31 -15 -14  -82 -50  -31.3 213 194
UNeq 1.4 0.7 0.7 1.8 1.3 3.6 2.7 2.8
2[Ni(CO)sH] 1H 3482 308.7 311.8 2080  189.3 —116.2 -1055 —1100 293
13C 173 124 119 5.1 48 -83 —10.7 —10.2
70 -30 -—22 -22 -37 3.1 -41  —36 -35
2[Co(CO)] 13C,, 105.8 101.0  100.4 57.3 55.6 29.7 32.8 37.7 67.2
13Ce, 6.2 3.2 3.1 3.0 1.5 15.6 18.8 24.7
170, -137 -131 -129 -127 -121 -9.0 -88 -8.3
1044 -29 —24 24 29 —2.7 -12  —-1.3 -0.7
2Cuo k(o) -204 -67 52 -320 —18.7 -557 —392  —37.9
2[Cu(COY] 13 -6.3 —146 -175 -123 —205  —19.1 —304 —32.3 —187
(o) —4.4 —27 27  —69 -53  -107 -11.3 -9.0 11.2

aUnless stated otherwise, the experimental values are from the sources cited

in the corresponding footnotes té IMakke @&. Ar matrix,

respectively ¢ Cf. ref 10.9In Ne matrix, ref 12¢ Reference 44, cf. ref 18 for a revision.

on the computational approach to describe the subtle delocal-

ization of spin density to the ligands, as well as spin-polarization
effects. We should also mention again that relativistic effects,
which are not considered here, may have a nonnegligible
influence on the small ligand HFCCs (cf. section 4). The metal
HFCCs are our main interest in this work, but we may

relative sensitivity of the results tg vs v is of course different
than it was for the metal HFCCs, as the relevant spin-
polarization effects are now those around the ligand nuclei.
As for the isotropic metal HFCCs, the isotropic ligand HFCCs
are made up of direct SOMO and indirect spin-polarization
contributions. The latter are missing for MnH, where the single

nevertheless note some trends in the computed ligand HFCCshydrogen 1s-AQ is directly involved in two of the SOMOs (cf.

Table 10 summarizes the isotropic ligand HFCCs, Table 11
the dipolar couplings. Concerning the dependence of the
isotropic HFCCs orvyc, we note trends very similar to above
for the metal HFCCs. Thus, the spin densitigsat the ligand
nuclei (when including their signs) exhibit often the
dependencen(LYP) = pn(P86) = pn(PWI1L) for a giverwy,
and typically thevy dependencen(B) = pn(B3) = pn(BH) for
a givenv. (the negative g(O) needs to be kept in mind, cf.
Table 7). A notable exception to this trend is provided by the
inverse dependence og, i.e., pn(BH) = pn(B3) = pn(B) in
the high-spin complexes MnO, MgFand MnF or in the case
of O splitting in CuO and Cu(CQ) Exceptions to the

section 7). TheAiso(H) in MnH is thus a relatively simple
measure of the localization of the twetype SOMOs at the H
nucleus. Interestingly, the dependence of fig(H) on vy in
MnH is similar to that of the metal HFCCs in ScO and TiN,
which are also dominated by direct SOMO contributions (but
with much larger overalpy; cf. section 7). The significant
difference between LYP and the two other correlation func-
tionals is particularly notable foAiss(H) in MnH. This may
suggest that the description of dynamical correlation is critical
for the charge distribution within the twe-type SOMOs.

A similar dependence on is apparent for thé3C HFCCs
in [MNn(CN)4]4~ and [Cr(CO)] ™, but for a different reason: The

abovementioned trends are also notable when significant spinSOMO contributions are affected very little, and it is valence-

contamination is connected to orbitals with large contributions
on the given ligand (see, e.g., results for VN, Mn[@o(CO))),
and for the axial nitrogen in [Mn(CNIN]~ (cf. Table 10). The
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TABLE 11: Dipolar Ligand HFCCs (in MHz) 2

isotope  BLYP BPS6 BPWO1 B3LYP B3PWO1 BHLYP BHP86 BHPWO1 fexp
2S¢0 170 0.2 -0.2 0.2 0.6 0.2 1.4 0.7 0.7 0.4(2), 0.7¢3)
2TiN 14N 0.6 0.5 0.4 0.4 0.3 0.0 -0.1 -0.3 0.055(2)
3TiO 170 1.1 -15 -16 -0.6 -1.0 0.7 0.4 0.3
3VN 14N 1.7 1.7 1.7 2.1 2.2 3.6 3.9 3.9
/0 170 2.2 2.8 -3.1 1.7 2.5 0.0 -0.3 -1.1 0(3)
2TiF, 19Fd 20.9,-0.2,-20.7 26.9,5.0-31.9 29.7,6.4-358 19.4-0.4,-19.0 252,4.8-30.0 157,2.2-13.4  19.6,2.0-21.6  216,2.8-244 e
2MnOs 170d -23.9,3.0,209 —24.220,222 -247,15,232 —34.7,—-14.9,49.6-553,18.1,37.2 —61.7,~57.2, 118.9-61.5,~57.8, 119.3—-62.1,—57.9, 120.0
§MN(CN)2~ 13 2.1 2.0 2.0 2.0 2.0 2.1 2.0 2.0
14N -0.1 -0.1 0.1 0.1 -0.1 0.1 -0.1 -0.1
§Cr(Co* 13C 1.1 1.1 0.8 1.4 1.1 1.4 1.4 1.4 1.0
170 1.0 0.8 1.0 0.9 0.9 0.8 0.8 0.8
SMnO 170 8.3 8.1 8.3 9.9 10.1 15.4 15.5 15.7
SMNF; 19F -19.3 -18.9 -18.3 -15.7 -15.3 -11.8 -11.7 -116
MnF 19F 12.9 13.4 13.7 13.4 13.4 12.9 12.6 12.6 8(6), 10(6)
MnH H 10.9 10.9 10.9 11.2 11.2 11.8 11.8 11.8 8.4(33)
2Mn(CO)s] 13C,, 1.6 1.2 1.6 1.1 1.1 0.7 0.7 0.8
13C,f -08,-58,67 —08,-56,65 -08-57,66 -05-5661 —02-5658 —03,-54,56 —03-54,56 —0.3,-555.7
170, -2.0 -2.0 2.1 1.7 -1.8 1.7 1.7 -1.9
170, 7.0,8.6-156  6.9,83-152  6.8,83-151 6.7,89-156  6.3,88-151 55 10.6-16.1  54,10.2-156  5.1,10.3-15.4
2[Fe(CO)* 13C,, 2.8 2.8 2.8 2.0 2.0 1.4 1.4 1.4 2.8
13CG{  50,-3.6,-14 49-35-13 50-36,-14 54-31,-22 53-31-22 58-31,-27 57-31,-27  58-30,-28  44-22,-22
170, -3.0 -3.0 -3.0 2.6 —2.7 —2.7 -5.0 2.8
170,  3.2,5.1,-83 3.2,5.0-8.2 3.2,4.9-8.1 2.2,4.8-7.0 2.1,4.7-6.9 0.9,4.9-5.8 1.0,4.8-5.8 0.9,4.8-5.6
MN(CN)sNOJ2~ 13C,, 1.1 1.1 1.1 2.2 2.2 3.0 2.9 3.0
13C,d 51,-31,-20 50-3.1,-19 51-32,-19 63-42-21 63-42-21 67-50,-17 66-50,—-17  6.7,-5.0,-17
UN(NO) 7.9 7.1 7.7 17.7 17.7 23.9 23.1 235 2.7
1N,(CN) —0.6 -0.6 -0.6 -1.2 -1.3 -1.8 -1.8 -1.7
UNe(CNY —2.9,46-17 -2.9,47-1.8 —30,47-17 -3.2,41-09 —34,42-08 -3.9,44-05 —39,44-05 —39,44-05
-15.0 -13.6 —14.6 -38.2 -38.3 —55.0 —54.3 —54.2
2MN(CN)sN] - 13cf 5.0,-2.7,-2.3 50,-2.7,-23, 51-28,-23 6.4,-44,-20 65-45-20 87-37,-31  86-50,-36  89-52-37
14N 5y 2.4 2.4 2.5 6.6 6.9 16.9 16.9 16.6
UN(CN) -35,58-23 -3558-22 —3.658-22 —3848-10 —39,48-09 -44,59-15 —-44,60-16 —6.2,7.9-17
2INi(CO)sH] H 2.9 2.7 2.7 6.3 6.2 17.1 16.9 17.1 5.5
13 -2.6,-57,83 —27,-56,83 -28-57,85 -32-5587 —33-5588 —33,-53,85 -32-5285 —33-54,87
170f —-6.2,—8.4,146 —6.3,-82,144 -62,-82 144 -53-87,140 -53,-86,13.9 -30,-10.1,13.1 -3.1,-9.8,129 —2.9,-10.0,12.9
2[Co(COY] 13C,, 42 40 3.9 3.4 3.3 3.8 3.9 43 3.6
13C, 8.3,-6.6,-1.7 81-64,-17 83-66,-17 97-7.7,-1.9 09.7-7.7,-20 12.8-11.8,-1.0 12.7-11.9,-0.8 14.0-13.6,—0.4
170, 4.1 4.1 4.2 4.0 4.1 -55 -5.8 6.4
170, 2.2,-10.2,80  24-101,7.7 22-100,78  03-10.0,96  0.3-10.1,9.8 58-23.7,17.9  6.2-250,18.8  6.9-38.0,31.1
2Cu0 170 -112.1 -111.9 -112.6 —121.2 —121.2 -126.1 -125.8 ~126.2
2Cu(CO) 13¢d —11.8,-13.8, 25.6—11.9,-13.3, 25.2—12.2,~13.4, 25.7-10.5,-12.5, 23.1-11.0,-12.3, 23.3-8.2,-10.5,18.7 —8.3,-9.6,17.9 —8.9,-9.8,18.8 —12.3,-12.3,—24.6
170d 16.2,15.9-32.2 15.8,155-31.3 158,155-31.3 16.5 16.1-32.6 16.0,15.8-31.8 15.9,14.029.9 15.7,614.3-30.0 15.7,14.2-30.0

666T ‘87 'ON '€0T '[OA 'V "WdYyD 'shud ' 0866

a|ndividual T; components are given for nonaxial tensdrExperimental values are taken from the sources cited in the footnotes to Tables 8 &ha N6.or Ar matrix, respectively? Hyperfine tensor
components are given in order: (1) along the meligland bond, (2) normal to the metdigand bond, in the molecular plane, and (3) along the moleastads. ¢ Anisotropy experimentally not well
defined, cf. discussion in ref 18Hyperfine tensor components are given in order: (1) along the mlgaind bond, (2) normal to the metadigand bond and paralel to the plane, and (3) perpendicular
to directions 1 and 2.
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agreement with experiment than pure GGAs. A relatively large
dependence on, is also apparent for MnF and MaF

A large dependence on is seen for the isotropit®C HFCCs
of the axial ligands inMn(CO)s] and 4Fe(CO)]*. The
exchange-correlation potential affects mainly the valence-shell
spin polarization, and the direct SOMO contribution. The
(smaller) dependencies op andv. for VO, TiN, and Tik; are
also due to the valence-shell polarization and to SOMO
contributions. Particularly large dependencevgnis found in
all cases with significant spin contamination problems, e.g., for
MnOs. Thus, the very large dependencef@f(O) in MnOs; on
vy is probably an artifact of the large spin contamination with
BH-type hybrid functionals (cf. section 7 and Table 9). Other
examples aré®C and nitrosyN HFCCs in [Mn(CN}NOJ]?",
13C and nitride'*N HFCCs in [Mn(CN)N]~, and!C HFCCs
in [Co(CO)] (Table 10).

J. Phys. Chem. A, Vol. 103, No. 48, 1998981

7, spin contamination is already significant with pure GGA-
type functionals. The spin contamination for the hybrid func-
tionals is closely related to the well-known bias of unrestricted
Hartree-Fock wave functions for higher spin multiplicities.
Obviously, the spin contamination may be very pronounced for
transition metal complexes (particularly so for 3d-metals!) due
to the presence of low-lying excited states.

It is not clear how the magnitude of the spin polarization
could be increased while avoiding significant spin contamina-
tion.%> However, one may speculate that improved functionals
might give increased coteshell spin polarization without
exceedingly large valence-shell spin polarization (and thus spin
contamination). Obviously, the description of valence spin
polarization is also not trivial, even in cases with low spin
contamination (cf. section 7). It seems likely that the desired
functional would have to incorporate significantly less than 50%

For most of the present systems, the theoretical values forexact exchange. Generally, hyperfine coupling constants, in

Agip of the ligands are very small, and often results with different

particular for transition metal systems, may turn out to be a

functionals differ by less than 1 MHz. Agreement with the sparse particularly fruitful testing ground for new DFT (or alternative)
experimental data appears reasonable in these cases. A largeipproaches. In addition to the appreciable literature on organic

dependence ony is seen for Tilg, MnO, and Mnk; (and also

molecules?1531the hyperfine coupling constants of the 21

for cases with large spin contamination, cf. above). Thus, the complexes studied in the present work should be useful as a

ligand dipolar couplings ifMnO and®MnF; increase when
adding exact exchange.

9. Conclusions

benchmark set against which to calibrate new methods.

On the other hand, we should not judge even the present
situation too pessimistically. For a significant number of
complexes, the ca. Hl5% agreement with experimental

The present study shows that the quantitative calculation of iSOtropic metal HFCCs we were aiming for has been achieved

hyperfine coupling constants for transition metal systems is still

with essentially all of the functionals (e.g., for ScO, TiN, TiO,

a challenge to quantum chemistry, more so than for organic YO: MnO, or MnF). In other subsets of molecules, the analysis
radicals. None of the density functionals investigated here may ©f the electronic structure suggests the range of functionals
be considered to provide acceptable results for the whole range(GGAS, B3-type, or BH-type hybrids) that might be most
of transition metal species studied. For a number of particularly @PPropriate (as shown by the various examples discussed in this
difficult systems, essentially none of the functionals provides WOrk). Careful selection of functionals is thus still expected to

satisfactory results.

There are various reasons why the HFCCs of transition metal

systems present such difficulties. One of them is the very
delicate core-shell spin polarization, which is in many cases

the dominant pathway to create spin density at the metal nucleus

Even for an isolated transition metal atom (considerNm
section 5), we may understand why this type of spin polarization
is so difficult to describe by present-day functionals. The spin

allow useful chemical applications in many areas, even though

|such an approach is obviously not completely satisfactory from

a theoretical point of view. We expect that spin contamination
is less pronounced for 4d or 5d transition metal complexes, and

thus the choice of functional may also be somewhat less critical

(on the other hand, relativistic effects will definitely have to be
considered for heavy-atom systems, and we are presently
developing approaches to do so).

polarization is mainly due to exchange interactions between The coupled cluster calculations we carried out for a subset
singly occupied metal 3d orbitals and the outermost doubly Of systems appear to be less influenced by such problems. Even
occupied 3s- and 2s-type core shells. It is clear that thesein cases of Significant spin contamination the results appeared
exchange interactions are strongly nonlocal (specific examp|est0 remain relatively stable. On the other hand, the computational
will be discussed elsewhéfg and thus difficult to account for  effort involved presently makes such coupled-cluster approaches
with approaches derived from the local density approximétion.  prohibitive for larger systems. Even for those di-, tri-, and
It is also clear that the description of such subtle spin- tetraatomic complexes studied here, the large demand on the
polarization effects is very different from the energy quantities computational resources has not allowed us to truly saturate
that are currently used to fit the free parameters in the the basis sets with regard to higher angular momentum functions.
exchange-correlation functionals. The description of spin polar- There remains thus an urgent need for more economical
ization is already nontrivial for organig-radicals!31583The approaches, and more accurate density functionals might offer
spin polarization mechanisms in transition metal complexes arethe most practical route for improvement.
even more variable, and they involve not only the valence shell The present calculations also show conclusively that spin-
but also to a large extent the outermost core shells of the metal.polarization effects are nonnegligible for the metal dipolar
A second difficulty is connected to spin contamination. In couplings. This contrasts to the situation for main group
several of the examples studied here, spin contamination becameompounds, where it is usually sufficient to take account of
significant when exact exchange was mixed imtoThis led to the direct SOMO spin densities to obtain good results for dipolar
a significant deterioration of the results. In some cases where couplings!® The importance of spin polarization for transition
spin polarization was underestimated at the GGA level, and metal dipolar hyperfine couplings arises from the presence of
where exact-exchange mixing would thus have been desirablestrongly polarizable semicore p-type orbitals (mainly the 3p
to increase it, the dramatic onset of spin contamination made it orbitals for first-row transition metals), which have a very similar
impossible to improve the results with hybrid functionals. In radial extent as the valence d-type SOMO orbitals. The
some of the “limiting cases” discussed toward the end of section importance of spin polarization for dipolar coupling constants
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of the metal had already been noted by Belanzoni et al., in their

careful study of Tig'” In view of the importance of spin

polarization, the widely used simplified models that derive the
d or s character of the SOMO directly from the dipolar coupling
constants should be viewed with caution in transition metal

systems. More detailed analyses of spin-polarization mechanismsE

for transition metal hyperfine coupling constants will be given
elsewheres?
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The only justification for our concepts is that they serve to represent the complex
of our experience, beyond this they have no legitimacy.

Albert Einstein (1879-1955)

6 Density Functional Calculations of Electronic g-Tensors for

Transition Metal Complexes: A Validation Study

Introduction

The electronic g-tensor is a characteristic part of any EPR spectrum and can
provide information on the identity, as well as electronic and molecular structure of the
paramagnetic species present. The fundamental physical laws that determine the g-
tensor are well understood. However, serious computational difficulties had largely
prevented a rigorous first-principles prediction of this quantity. Thus, in contrast to the
treatment of EPR hyperfine coupling constants that already do have an appreciable
history of first principles theoretical treatments, quantitative calculations of electronic g-
tensors by nonempirical quantum chemistry have become possible only very recently.
The first accurate calculations at the HF and multireference configuration interaction
(MRCI) levels of theory are due to Lushington et al. > Vahtras and coworkers® have
employed HF and multiconfigurational self-consistent-field (MCSCF) linear response
functions. Recently, two different DFT implementations of g-tensor calculations within
the Amsterdam density-functional code have been reported by Schreckenbach and

Ziegler® and by van Lenthe et al.’

The following paper reports an alternative DFT implementation of electronic g-
tensors within the deMon code including all relevant perturbation operators. A main
feature of the new approach is the use of two types of accurate yet efficient
approximations to the full one- and two-electron molecular spin-orbit operators. The
new method has been validated on a number of species, including a detailed analysis of
different contributions to g-shifts. The author of this thesis contributed to the paper by

performing validation calculations on a set of 3d-transition metal complexes. The
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corresponding results are summarized in Table 10, Figure 2, and the relevant discussion
in Part 6 (“Further Validation Calculations®) of the paper. The two sections given

below, Results and Conclusions, refer to the work done by the author of this thesis.

Results

Table 10 in the following paper gives results obtained with the VWN functional,
and, in addition to the accurate atomic mean-field treatment of the Agsoozie) and
Agsoioz2e) terms, contains also results that neglect the Agsoize) terms altogether.
Additional results obtained by the author that have not been included in the paper are
presented in Table 5.1. The latter table contains information on the effect of the density
functional (VWN/BP86) and inclusion of the “SOS-DFPT” correction on the g-tensor

components.

In contrast to the good performance for main-group species (cf. Figure 1 of the
paper), the results obtained for 3d transition metal complexes are less satisfactory. The
graphical comparison of the theoretical and experimental results in Figure 2 indicates
that the proper inclusion of the two-electron SO terms deteriorates the agreement with
experiment significantly. The two-electron terms reduce the overall g-shifts by ~40-
50%, so that a linear fit with slope 0.59 is obtained when including both the one-
electron and the two-electron terms in the calculation. This observation corresponds
strikingly to observations obtained recently by Biihl et al.,’ when testing GGA-DFT
approaches in calculations of nuclear shieldings of 3d transition metal nuclei. UDFT-
GIAO calculations with GGA functionals gave slopes of ~0.6 in comparison with
experiment. This corresponds to a significant underestimate of the paramagnetic
contributions to shielding. Biihl found that the slope could be improved to almost 1.0 by
using hybrid functionals (B3LYP or B3PW91).” In view of the close similarity of
nuclear shielding tensor and electronic g-tensor, we expect that the origin of the failure
of the GGA functionals in both cases is related, and that the inclusion of Hartree-Fock

exchange should improve the performance also for the g-tensor.
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Table 5.1 Comparison of Computed and Experimental Ag-Tensor Components (ppt) for
a Series of 3d Transition Metal Complexes®

complex VWN, VWN, VWN, VWN, BP86, BP&6, Exp.°
com UDFT, SOS - UDFT, SOS- UDFT, SOS-
p. DFPT", DFPT", DFPT",
with with without without without without
Agso/0z(2e) Agso/0z2e)  Agsoioze) Agsoioze) AZsoozey Agso/0z(e)

TiF; Ag, -28.3 -23.2 -79.4 -61.8 -62.1 -50.7 -111.3
-121.5
-123.7
Mn(CN);NO™  Ag; -1.9 14 12 0.3 52 42 -10.1
TiF; Ag| -1.2 -1.2 -1.8 -1.8 -1.8 -1.9 -11.1
-11.1
-3.7
Mn(CO)s Ag -0.9 -1.0 -1.2 -1.3 -1.6 -1.7 -1.7
2.3
[Fe(CO)]™  Ag 0.9 0.9 0.6 0.6 1.0 -1.0 15
-1.4
ScO Ag, 0.0 0.0 -0.9 -0.8 -1.2 -1.2 -0.5(3)
22.8(5)
ScO Ag -0.1 -0.1 -0.2 0.2 0.2 0.2 -0.5(3)
-0.8(7)
MnO; Ag 4.3 4.2 6.3 6.9 1.9 1.3 1.3
Ni(CO);H Ag 1.3 1.2 2.7 2.5 2.0 1.8 1.9
Co(CO)4 Ag 33 3.1 7.1 6.8 8.1 7.4 3.6
5.0
MnO; Ag, 1.9 2.4 4.2 5.8 9.4 9.2 6.1
Mn(CN)sNO*  Ag, 17.9 15.4 36.3 31.5 27.8 24.7 28.8
Mn(CO); Agy 22.6 20.4 42.6 38.4 38.0 34.8 40.7
35.7
Cu(acac), Ag,. 30.6 28.4 50.1 452 50.1 46.5 48.7
49.6
Cu(NO3), A 28.2 26.3 45.1 42.2 473 44.2 49.9(5)
Cu(NO3), Agy, 31.0 28.9 493 46.0 50.8 474 49.9(5)
Cu(acac), Ag,, 34.7 31.5 554 49.9 554 50.4 48.7
52.8
Ni(CO);H Ag, 39.8 36.5 65.0 59.7 67.1 61.6 65.1
[Fe(CO)s]" Ag, 48.7 43.0 89.3 78.8 77.9 70.2 81.0,77.4
78.8,76.6
Co(CO)4 Ag, 79.3 68.3 137.5 118.7 120.7 106.5 127.6
126.0
Cu(NO;),  Ag. 116.3 105.1 183.0 165.5 183.6 1662 246.6(3)
Cu(acac), Ag.. 115.5 105.8 180.2 165.5 180.2 165.8 285.2
263.8

"UDFT-IGLO / SOS-DFPT-IGLO with AMFI approximation for Agso/ozae), 957p4d metal basis, BIII
basis on ligands, BII on remote atoms in Cu(acac),. *Including the correction term in the Loc.1
approximation. ‘For references to the literature, see last column of Table 10 of the paper.
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Conclusions and outlook

In contrast to the good performance of our DFT approach for main-group species,
the present results for a rather diverse set of 3d transition metal complexes indicate that
the paramagnetic contributions are underestimated significantly. We expect that the use
of exchange-correlation functionals that include some exact exchange will enable more
accurate calculations. The present version of our code does not allow the inclusion of
the Hartree-Fock exchange. However, hybrid functionals have recently been
implemented in a new code of our group. Initial test calculations indicate improved
performance for the calculation of g-tensors of the same series of 3d transition metal

8
complexes.
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Abstract: Modern density-functional methods for the calculation of electrgriensors have been implemented
within the framework of the deMon code. All relevant perturbation operators are included. Particular emphasis
has been placed on accurate yet efficient treatment of the two-electronmpihterms. At an all-electron

level, the computationally inexpensive atomic mean-field approximation is shown to provideospin
contributions in excellent agreement with the results obtained using explicit one- and two-electroorbjiin
integrals. Spir-other—orbit contributions account for up to 280% of the two-electron terms and may thus

be non-negligible. For systems containing heavy atoms we use a pseudopotential treatment, where
quasirelativistic pseudopotentials are included in the KeBham calculation whereas appropriate sqrbit
pseudopotentials are used in the perturbational treatment oftéresors. This approach is shown to provide
results in good agreement with the all-electron treatment, at moderate computational cost. Due to the atomic
nature of both mean-field all-electron and pseudopotentiat-smibit operators used, the two approaches may
even be combined in one calculation. The atomic character of the-efiit operators may also be used to
analyze the contributions of certain atoms to the paramagnetic terms gftéimsors. The new methods have

been applied to a wide variety of species, including small main group systems, aromatic radicals, as well as
transition metal complexes.

1. Introduction principles theoretical treatmerftgjuantitative calculations of
eelectroniog-tensors by the machinery of nonempirical quantum
chemistry have become possible only very recently (for
semiempirical calculations, cf. refs 3 and 4; see also ref 5).
d The first accurate calculations at the Hartré@ck (HF) and
multireference configuration interaction (MRCI) levels of theory

Electron paramagnetic resonance (EPR) spectroscopy is on
of the most important experimental techniques of studying
compounds containing unpaired electrons. Typical applications
encompass biological systems, paramagnetic defects in extende
solids, transition metal complexes, or simple organic radicals 8
(e.q., in zeolites). The recent development of high-field EPR &€ due to Lushington et &F Vahtras and co-worketshave
spectroscopy (at frequencies of 95 GHz or higher) has signifi- €MPloyed HF and multiconfiguration self-consistent-field
cantly widened the scope of the method and of the information (MCSCF) linear response functions. These ab initio implemen-
that may be extracted. In particular, in modern solid-state EPR (1) see, for example: (a) Mius, K. InBiological Magnetic Resonange
experiments the components of the electrogitensor may Berliner, L. J., Reuben, J., Eds.; Plenum Press: New York, 1993; Vol. 13,
frequently be resolvellinterpretation of these experiments by E%s%iegn%;g\'/;r%npr\l/?/nee dT_- Aiéé'ﬁn?ﬁ:agfgzs!”hl'\gsvggg?; ?337-0\%&32'0
quantum chemical calculations has thus become highly desirable ;545 599, B ' ' T
However, in contrast to the treatment of EPR hyperfine coupling = (2) Engels, B.; Eriksson, L. A.; Lunell, $dv. Quantum Cheml996

constants that already do have an appreciable history of first27, 297. _
(3) See, for example: Angstl, Rhem. Phys1989 132, 435. Plakhutin,
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tations include essentially all perturbation operateas the 2. Methods
Breit—Pauli level of treating spinorbit coupling—which are
thought to be relevant for the electromg¢ensor. Thus, at least
for systems containing only light elements, it is in principle g=09.1+ Ag Q)
possible to converge to the experimental results, by using larger
and larger basis sets and by improving the treatment of electron@nd focus ong-shifts (Ag components) relative to the free electron
correlation. However, obviously such calculations are at present & value. Throughout this worlg-shifts are given in ppm for main group
largely restricted to relatively small systems, as the accurate radicals and in ppt (parts-per-thousand) for most transition metal systems
inclusion of electron correlation becomes very demanding with (more significant digits are typically not available from experiment
; L anyway).
increasing size of the system. The second-order theory for calculating within a one-component

In case of the NMR nuclear shielding tensor, which is approach has been presented in several recent reports of modern
conceptually related to the electrorgetensor, it has recently ~ quantum chemical implementatiohis:*#2°Hence, we limit ourselves
been shown that density-functional theory (DFT) provides a to recgpﬂulatmg only the relevant points and g|ye the.flnal expressmps
valuable alternative to post-HF treatment, by approximately used in our present DFT calculations. Here we investigate rac_ll_cals Wlth
. . . . doublet electronic ground states only. We look for terms bilinear in
including electron correlation at Iowet computathnal cost. the magnetic fieldBq and effective electronic spisin the molecular
Indeed, a recent state-of-the-art DFT implementatiog-einsor energy expressiok; hence, the Cartesian-component ofAg is
calculations, reported by Schreckenbach and Ziegler ¥8#xs
based on their previous NMR chemical shift implementation 1 %E
(using gauge-including atomic orbitals, GIAOs) in the Amster- G " g 9By 05, | g—eo
dam density-functional (ADF) program. A different DFT-GIAO
implementation (but also in the ADF code), using the two- We shall employ atomic units based on the SI system, where the Bohr
component zero-order regular approximation (ZGRAto magnetorug = . o _
account for spirorbit (SO) coupling and scalar relativity, has N main contributions to thag tensor up tdo(a?) (a is the fine-
been reported by van Lenthe et'4lA two-component UHF structure constant) arise from the SO coupling Hamiltonian
approach has been implemented by Jayatilaka.

0.2

Here we report an alternative DFT implementation of Hso=—"0c ;Zmz
electronicg-tensors within the deMdfi” code. Our method 4 '
differs from SZ mainly in the way we deal with spitorbit
couplln_g. SZ used an effective Kokisham p_otentlal to model (i — Rw) x [=iVi + Ag(r)] the angular momentum of electromith
apptOX|mater the two-electrort SO terﬁ?s‘l?hlg treatment does respect to the position of nucled(Ry), andl; = (i — 1) x [—iV; +
not include the spirother—orbit terms, and it also involves & ()] the corresponding angular momentum with respect to the position
number of other approximations. We have recently shown for of electronj(r;). Here,Aq(ri) = ¥,B, x (r; — O) is the vector potential
calculations of SO corrections to NMR chemical shifts that (1) atr; corresponding to the external magnetic field. We note that at the
a mean-field one-center approximation to the full two-electron present level of accuracy of both the theory and experiment, it is not
SO integrals gives results in excellent agreement with an exactnecessary to distinguish betwegnand theg-factor associated with
treatment, at a small fraction of the computational effd(2) the SO interactiof**! The field-independent part éfso (arising from
spin—orbit pseudopotentials (spirorbit effective-core poten- mz ;;z;;?rzngserl:aﬁq(g)z)c%liglrzsc,ﬂgnndouble perturbation theory, with
tials, SO-ECPs) do also provide a good approximation to the
full SO operator, in a valence-only treatment, and they allow 1
easily the simultaneous treatment of SO and scalar relativistic Hoz =2 > lo'Bo 4)
effects!® Our newg-tensor code is based on these efficient and '
accurate “atomic” treatments of SO coupling. This leads t0 a o the sum-over-states density-functional perturbation theory (SOS-
number of advantages in the calculations, as well as in the DFPTY2 expression for the paramagnetic part/af
subsequent interpretation of the results, as we will demonstrate.

We define theg-tensor as

)

I, (s + 2s)I;
S _ oGt
riat\ll [] rﬁ

whereZye is the charge of nucleud, s the spin of electron, liy =

(12 occ() virt(a)Dy}El Hsop|wgnﬂy)g“o,u|wﬁm
(9) Kaupp, M.; Malkina, O. L.; Malkin, V. G. InEncyclopedia of AGsor0z10 = 0 Z z -
Computational Chemistnyschleyer, P. v. R., Ed.; Wiley-Interscience: New 2 =

o o XC
€ — €, — AF

York, 1998. , ; k/ja 5 5
(10) Bihl, M.; Kaupp, M.; Malkin, V. G.; Malkina, O. L.J. Compui. oce®) vitA) g |Hgo, |9 M5 o | ¥
Chem.1999 20, 91.
(11) Schreckenbach, G.; Ziegler, Theor. Chem. Accl998 2, 71. = &L — F — AE*
(12) Schreckenbach, G.; Ziegler, T.Phys. Chem. A997, 101, 3388. ko "a k—a
13) van Lenthe, E.; Baerends, E. J.; Snijders, J.@hem. Physl99 . .
99,(45)97. ) ysl993 Here, p# and y™? are unperturbed occupied and virtug)y MOs,
(14) van Lenthe, E.; Wormer, P. E. S.; van der Avoird, JA.Chem. respectivelyey ande, are the corresponding KohiSham eigenvalues,
Phys.1997 107, 2488. andAES., is the “SOS-DFPT correction” (Loc.1 in the present paper)

(15) Jayatilaka, DJ. Chem. Phys1998 108 7587. imposed on the energy denominatbr&We refer to the original papers

16) (a) Salahub, D. R.; Fournier, R.; Mlynarski, P.; Papai, I.; St-Amant, . .
A.;(Us)hgo,).]. InDensity Functional Methodsyin Chemistt.)altjlanowski, J. for details. Leaving thé\E,"., term out corresponds to the uncoupled

Andzelm, J., Eds.; Springer: New York, 1991. (b) St-Amant, A.; Salahub, DFT (UDFT) approximationHso, denotes the-component of the
D. R.Chem. Phys. Lett199Q 169 387. spatial part of the field-free SO Hamiltonian (the prefactwtge/4 of

(17) Malkin, V. G.; Malking, O. L.; Eriksson, L. A.; Salahub, D. R. In Hgo of eq 3 have been absorbed in the prefactor of eq 5). While the
Modern Density Functional Theory: A Tool for Chemist8eminario, J.

M., Politzer, P., Eds.; Elsevier: Amsterdam, 1995; Vol. 2. (20) Schreckenbach, G. Ph.D. Thesis, The University of Calgary, Canada,
(18) Malkina, O. L.; Schimmelpfennig, B.; Kaupp, M.; Hess, B. A,;  1996.
Chandra, P.; Wahlgren, U.; Malkin, V. @hem. Phys. Lettl998 296, (21) Harriman, J. ETheoretical Foundations of Electron Spin Resonance
93. Academic Press: New York, 1978.
(19) Vaara, J.; Malkina, O. L.; Stoll, H.; Malkin, V. G.; Kaupp, M. (22) Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R.
Submitted. Am. Chem. Socd994 116, 5898.
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present formulae are written in terms of a common gauge origin, the two-electron contributiomgeczeydue to its general smallness (see refs
choice of individual-gauges-for-localized-orbitals (IGt3D can be 7 and 12) and the lack of a computationally efficient approximation
trivially read from the nuclear shielding formulae of ref 22. thereto.

As mentioned above, an accurate treatment of-spibit coupling
is particularly critical for quantitativg-tensor calculation® We base
our implementation on our latest version of the deMon-NMR module
for calculating the SO contribution to the nuclear shielding tefisor 3.1. Structures.For small main group radicals, we used for
and use three different types of SO integrals in the present calculation: petter comparison with the results of Schreckenbach and Ziegler
(1) from th_e full microscopic one- and two-electro_n SO Hamiltonian (SZ) their DFT-optimized structuréd Similarly, we employed
of eq 3 using the EAGLE COdié'(Z). from the effective one-electron o "Her (VWN)-optimized structures of Patchkowski and
one-center mean-field approximation for both one- and two-electron _. — ..

Ziegler (PZy8 for a set of MXY]" transition metal complexes.

SO integral® as implemented in the AMFI softwaféand (3) from '
spin—orbit pseudopotentials of the Pitzer-Winter foffiThe second ~ Most of the structures of 3d complexes are those reported in a

alternative is a very accurate approximation of the first (as shown recent study of hyperfine couplings for these systéfraostly
below), and allows calculations of much larger molecular systems due DFT-optimized, in a few cases experimental). Additional 3d
to eliminating the need to compute and store a large number of two- complexes are the three vanadyl complex¢dN-ethylenebis-
electron integrals. Sinagis largely a valence property, SO-ECPs can  (o-tertbutyl- p-methylsalicylaldiminato)]oxovanadium(IV), bis-
be used to reduce the computational effort further by removing the (N-isopropyl-o-methylsalicylaldiminato)oxovanadium(lV), and
core electrons and to take into account scalar relativistic effects when bis(N-methyl-o-tertbutyl-salicylaldiminato)oxovanadium(IV),

used in connection with KohnSham valence pseudo-orbitals optimized .\ hich experimental structuréswere used. Structures of
in the presence of corresponding quasirelativistic ECPs. Furthermore,

3. Computational Details

the implementation allows mixed usage of AMFI and SO-ECP integrals
on different atomic centers of the molecule. Hence, it is possible to
perform an atomic break-down of the calculategko,oz contributions.

To obtain a consistent account for all the important terms up to
O(0?), one has to additionally consider the bilinear terms of the Breit
Pauli HamiltoniaAt

1
Hrme = — Zazge IZF’iZS'Bo (6)

the so-called kinetic energy correction to the spfieeman interaction
(taken up tdD(By), with p = —iV), and the part of the SO Hamiltonian
arising from the magnetic field dependence of the SO Hamiltonian (the
Ao-dependent terms in eq 3). After taking the appropriate expectation
values, the former leads to a diagonal (isotropic) contribution

1 _
Agrvcu = = 5000y, y Pry” Ipful] )
2 &
where
occ() occ(B)
P’ = ®

uv

v* u v*
Zcﬁck - ZCka

is the spin density matrix in the atomic orbitad, (/) basis anct are

Cu(acac) and Cu(NQ),, and of phenoxyl radicals have been
fully optimized with the Gaussian98 codeat the gradient-
corrected, unrestricted DFT level (BP86 functighah). Quasi-
relativistic small-core pseudopotentials and (8s7p6d)/[6s5p3d]
valence basis sets of the Stuttgart group were employed for the
transition metal$33*ECP$® with DZP valence basis séts3”
for main group atoms. A DZV basfwas used for hydrogen.
The newly optimized structures are reported as Supporting
Information.

3.2.g-Tensor Calculations. The Kohn—Sham calculations
were performed in an unrestricted manner (UKS), using the
deMon codé$ with either local density (VWHKP) or gradient-
corrected (GGA) functionals. We mainly used BF862 but
PP8624! and PW9%? functionals were also tested. In most
calculations, in particular in our comparison with the results of

(28) Patchkovskii, S.; Ziegler . Chem. Phys1999 111, 5730.

(29) Cornman, C. R.; Geiser-Bush, K. M., Rowley, S. P., Boyle, P. D.
Inorg. Chem.1997, 36, 6401.

(30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.,;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,

the MO coefficients. The latter term causes diamagnetic gauge M. Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.;

correction contributions, whose one-electron term reads

H‘ OulTmTo) = rrv|,u"o,uZ
M
Z '

MD 9)

1 _
AgGC(le)uv = Zazgez P/TV /

o

Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, JGAussian
98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

(31) Becke, A. D.Phys. Re. A 1988 38, 3098.

(32) Perdew, J. PPhys. Re. B 1986 33, 8822.

(33) Andrae, D.; Hegermann, U.; Dolg, M.; Stoll, H.; Preuss, fheor.
Chim. Actal99Q 77, 123.

(34) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Chem. Phys1987,
86, 866.

In the present calculations we neglect the corresponding and analogous (35) Nicklg, A.; Dolg, M.; Stoll, H.; Preuss, HJ. Chem. Phys1995

(23) A consistent and complete incorporation of spinbit coupling into
a Kohn-Sham framework is far from trivial. Thus, for example, spin
other—orbit terms arise strictly only from relativistic contributions to the
electron-electron interaction. Rather than resorting to relativistic exchange-
correlation potentials, we have in this work preferred to incorporate-spin
orbit coupling explicitly via suitably chosen and well-established perturbation
operators (see text).

(24) EAGLE is a code for the calculation of integrals of the Breit
Pauli SO Hamiltonian over molecular Cartesian Gaussian functions, written
by P. Chandra and B. A. Hess.

(25) Hess, B. A.; Marian, C. M.; Wahigren, U.; Gropen,&nhem. Phys.
Lett. 1996 251, 365.

(26) Schimmelpfennig, BAtomic Spir-Orbit Mean-Field Integral
Program Stockholms Universitet, Sweden, 1996.

(27) Pitzer, R. M.; Winter, N. WJ. Phys. Chem1988 92, 3061.
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102 8942. Bergner, A.; Dolg, M.; Kehle, W.; Stoll, H.; Preuss HViol.
Phys.1993 80, 1431. Dolg, M. Ph.D. Dissertation, Univergitgtuttgart,
Germany, 1989.

(36) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss,JHAm. Chem.
Soc.1991, 113 6012.

(37) d-Type polarization functions have been taken fr@daussian Basis
Sets for Molecular CalculationdHuzinaga, S., Ed.; Elsevier: New York,
1984.

(38) Godbout, N.; Salahub, D. R.; Andzelm J.; WimmerC&n. J. Chem.
1992 70, 560.

(39) MunzarovaM.; Kaupp, M.J. Phys. Chem. A999 103 9966.

(40) Vosko, S. H.; Wilk, L.; Nusair, MCan. J. Chem198Q 58, 1200.

(41) Perdew, J. P.; Wang, Yhys. Re. B 1986 33, 8800.

(42) Perdew, J. PPhysica B1992 172 1. Perdew, J. P. lE&lectronic
Structure of Solids '91Ziesche, P., Eschring, H., Eds.; Akademie Verlag:
Berlin, 1991. Perdew, J. P.; Wang, Phys. Re. B 1992 45, 13244.
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Calculations of Electronic g-Tensors J. Am. Chem. Soc., Vol. 122, No. 38, ZZI®

SZ for simple main-group radicals and with those of PZ for Table 1. Analysis of Different Contributions tg-Shifts (ppm) in
some d transition metal systems, we will concentrate on the CO"*®

BP86 results. The calculations were performed in two separate exact atomic

steps, (1) the KohaSham SCF calculation, and (2) the SO treatmerit mean-field appf. Sz

computationally inexpensive perturbation calculation, based on contribution Ag,  Agn  Agy Adn Ag  Ago

the Kohn-Sham qrbltals of the previous step. This two-step Adecqs 85 71 85 71 81 119

procedure makes it easy to alter the parameters of the perturbapgeq,, - - . _ —34 —61

tion calculation only, for example, to test different options to  Agguc —-180 —180 —180 —180 -181 -—181

treat the gauge problem, different SO operators, or for analysis Agsoioz(ie) 0 —3668 0 —3660 0 —3678

purposes. Agso/oz(ze) 0 1271 0 1312 0 684
As we employ exchange-correlation functionals that do not (SSG, SOC) (975, 337)

depend on the current density, the resulting perturbation totap —95 —2507 —95 —2458 —135 —3117

calculat!ons are ur_lcoupled (UDFT). In NMR Chemlcal S.hlft aUDFT results with BP86 functional. Our results with basis BllI
CalCUIat_'ons on main group compounds V\_”th low-lying _excned and IGLO gauge. Results of SZ with STO basis and GIAO gauge.
states, it was found previously, that the simple correction term b Exact calculation of all SO integrals with the EAGLE codétomic
AES., in eq 5 may be used to reduce the paramagnetic mean-field approximatiorf. Approximate treatment of two-electron SO
contributions to the shielding tensors, thereby improving in most tefmsz ° Spin—same-orbit contribution. Spin-other-orbit contribu-
cases the agreement with experim&#2 In the case of the tion. ¢ Gas-phase experiments give2400 ppm forAge.
electronicg-tensor, we find that the accuracy of the experimental
data available does typically not allow us to judge whether this
SOS-DFPT correction term is beneficial to the agreement
between theory and experiment. We will thus concentrate on
the UDFT results and give SOS-DFPT results for comparison
only in a few examples.

Unless noted otherwise, results are reported with the I8LO
choice of gauge. Orbitals were typically localized with the Boys
proceduret* For the heavier main-group compounds and the
square pyramidal’dcomplexes, the Pipek-Mezey localizattén
converged better and was used instead. dlaeds MOs were

the halogens) employed the same quasirelativistic ECPs as the
optimizations, together with SO-ECP5&The valence basis sets
were decontracted and extended toF2P quality. The fitting
procedure of the SO-ECPs used differs slightly from that of
the quasirelativistic ECPs, as they were obtained by a single-
electron fit rather than by a multielectron ##t3>Moreover, the
SO-ECPs used in the present work have been fitted to two-
component Wood-Boring or averaged four-component Dirac
Fock energies that do not include the Breit interaction. Thus,
they do not cover the spirother—orbit term. Development of

. : . improved two-component multielectron-fit ECPs and SO-ECPs
localized separately. For analyses in terms of canonical MOs,

L Oadjusted to multiconfiguration Dirag-ock—Breit energies is
a common gauge origin at the center of mass has been employe sresently carried out by Stoll et 48.and we plan to use these
g—Tensor calculations are knofWr¥1214to be less gauge- P y y . P

dependent than, for example, NMR chemical shift computations, gwa%r:Sa\(/:vc;u;all;% pl?sr:énﬁfgfellgt?\z;tﬁztgggzﬂvaﬁ;k'&?g:qe
Sgdn\gf J:fr;grﬂr]r?aé?f IGLO and common gauge results typically step for interp_retation purposes. Gauge factors arising fror_n the
All-electron basis sets used for the 3d metals were (15511p6d)/ufsszfn,l[E \?vsfwg” the IGLO treatment have been neglected in the
[9s7p4d] sets designed previously for hyperfine calculatins. P '
Basis sets for Mo and Zr were constr_ucted from the prjmitive 4. All-Electron Calculations: The Importance of the
set of the well-tempered series of Huzinaga €f aly removing
the tightest three s-, two p- and four d-functions and adding
the two most diffuse p-functions from the ECP basis®3a@he For two systems, namely for CGand for HO*, SZ reported
resulting 24s19p13d sets were used fully uncontracted. Testindividual contributions to the\g components from their DFT
calculations show that this allows a valid comparison with ECP calculations? This allows us detailed comparison, in particular
results. The basis sets Bll and Blll (also termed IGLO-Il and regarding the different treatment of the two-electron SO terms
IGLO-III) of Kutzelnigg et al*3 (based on the earlier work of ~ (Adsoiozze)terms). Table 1 gives the results for COrable 2
Huzinagd?) were used for main group atoms. In some cases, for H:O*. We give results with either (1) the exact (EAGLE)
smaller DZVP basis seéfswere also studied (either with or  treatment of all one- and two-electron SO integrals, (2) the one-
without p-polarization functions on hydrogen). center and mean-field approximation (AMFI) to these integrals,
Energy-adjusted ECPs and valence basis sets for 4d and 5d&nd (3) the results of SZ, using their approximate treatment of
transition metals were the same as those used in the structuréhe two-electron SO terms via an effective Ketfsham
optimizations® augmented by appropriate spiarbit pseudo- potential. In our mean-field SO calculations, we are furth_ermore
potentiald® in the perturbation step of the calculation. Similarly, able to separate the two-electron SO terms into contributions

an ECP treatment of main group atoms (mainly of Kr, Xe, and from spin-same-orbit (SSO) and spinother-orbit (SOO)
terms. This allows us to estimate the importance of the SOO

Two-Electron SO Terms

Cipggg)aﬁlétfrlgg%gégi;e;leLfChFelLvCE-JESCgStdh'grﬂ M "22”53(;%""5&" ngjné- terms, which were neglected in the approach of SZ. Note that,
Springer-Verlag: Heidelberg, 1990; Vol. 23, pp 165ff. rr T like SZ, we use the BP86 functional, that is, our calculations
(44) Edmiston, C.; Ruedenberg, Rev. Mod. Phys.1963 35, 457. differ essentially only in the basis sets used (extended STO basis

Edmiston, C.; Ruedenberg, B.Chem. Physl965 43, 597. See also: Boys, sets of SZ, extended GTO basis sets in our case), and in the

S. F. InQuantum Theory of Atoms, Molecules and the Solid St#iedin, _
P.-O., Ed.; Academic Press: New York, 1966; p 253. This prodecure is treatment of the two-electron SO terms. The fact that we use

often incorrectly attributed to Foster, S.; Boys, SRev. Mod. Phys1963 IGLO rather than GIAO should not be relevant as we obtain
35, 457. essentially the same results with other choices of gauge origin.

(45) Pipek, J.; Mezey, P. G. Chem. Phys1989 90, 4916.

(46) Huzinaga, S.; Miguel, BChem. Phys. Lett199Q 175 289. (48) Metz, B.; Schweizer, M.; Stoll, H.; Dolg, M.; Liu, WLheor. Chem.
Huzinaga, S., Klobukowski, MChem. Phys. Lettl993 212 260. Acc.200Q 104 22.

(47) Huzinaga, SApproximate Atomic Functiongniversity of Alberta, (49) For a justification, see: Kaupp, M.; Malkin, V. G.; Malkina, O. L.;
Canada, 1971. Salahub, D. RChem. Phys. Lettl995 235 382.
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Table 2. Analysis of Different Contributions tg-Shifts (ppm) in HO" @

atomic mean-field apgr¢ sz
contribution Agn Ag2 Agss Agu1 Ag2 Ags3
Alcc(ie) 138 172 183 147 254 216
AJaecze) - - - —54 —109 —-92
AQrmc —312 —312 —312 —310 —310 —310
Agsoroz(ie) 28 5946 15993 0 6153 16808
AgSO/OZ(Ze) 5 —2104 —5658 9 —1188 —3165
(SSG, SO0) (10¢, —5) (—1599, —505) (—4300, —1358)
total —142 3702 10205 —209 4800 13457

aUDFT results with BP86 functional. Our results with basis Blll and IGLO gauge. Results of SZ with STO basis and GIACPdaege-field
and one-center approximatiohThe exact treatment of the two-electron SO integrals with the EAGLE code gives the following reSglis=
—142 ppm,Agz, = 3855 ppmAgss = 10422 ppm£ Reference 12¢ Spin—same-orbit contribution.f Spin—other—orbit contribution.? Gas-phase
experiments give\gis = 200 ppm,Agz2 = 4800 ppm,Agsz = 18800 ppm.

We first note that the agreement between the exact (EAGLE) Table 3. g-Tensor Components (ppm) for Some Light Main Group
- . . Radicals
treatment and the one-center mean-field approximation (AMFI)

is excellent, both for thé\gso/ozaeyterms (which include the ) " Lushlngtg)n .
one-center approximation in AMFI but not in EAGLE), and thisworle Sz (MRCI®  exp:
for the Agsoroz(e)terms. Differences are below 7% (typically H:O" Agn ~ —142 103 —292 200 gas phase
below 5%) in the two-electron terms, that is, much less for the Age 3702 5126 4217 4800

. . . AQs3 10205 13824 16019 18800
overa_lllg-shlfts._ This confirms t_he e_xcellent perfor_mance ofthe -+ Agy  —2458 —3129 —2674 —2400 gas phase
atomic mean-field SO approximation, as found in many other Ag —93 —~138 —~178 -
types of application&®2550For systems with heavier atoms, the HCO Agy —224 =270 0 matrix
mean-field approximation is expected to be even more accurate. Agz2 2275 2749 1500
The computational effort for the atomic mean-field approxima- 2933 —7_4g56 _?ffg _7508 .
tion is not much more than for the one-electron SO integrals ~°° Agn 197 660 a00
alone. Therefore, this approach removes effectively any SO- Agz 603 769 800
integral bottleneck from our calculations with very little sacrifice  NO, Agy; —688 —760 —235 —300 gas phase
in the accuracy, and it enables us to treat large systems. Agz2 3400 4158 3806 3900

As shown already by other workers (see, e.g., refs 6 and 7), Ags  —11229 —13717 —10322 —11300 _

the g-shift tensors are usuatyexcept for very light systems or ~ NP2 2911 ;gys _4763788 _;ggo matrix
for very small componentsdominated by the s_econd-_order Agii 6288 7619 6200
(paramagneticAgsoiozael@NdAgsoiozeterms, while the first-  mMgF Agn  —1869 —2178  —1092  —1300 matrix
order (diamagnetic) contribution&@rmc and Agec(ie) terms) Agy 14 —60 —59 —300
are small. In both CO and HO", our Agrwc terms agree 2 UDFT-BP86 results? Basis Blll, UDFT-IGLO, AMFI approxima-
quantitatively with the results of SZ. Similarly, th&grmc tion. ¢ UDFT-GIAO.22 @ Multireference configuration interaction re-
contributions for these two radicals, as well as for N&hd sults? ©Experimental data as quoted in refs. 7,12.

MgF, agree excellently with the MRCI results of Lushington.
The Agec(e) corrections are not directly comparable, due to
the different choice of gauge origin. Nevertheless, they are close
to the results of SZ and agree also with those of Lushington
(we find an even better agreement when using a common gaug
origin at the center of mass). We neglect &g c2e)corrections.
They have been found to be smaller and of the opposite sign to
the Agscaeterms, that is, small compared to the paramagnetic
terms?12 This is expected to cause slight errors for very small
components, where the spiorbit terms are small, but it will
not influence much the comparison with experiment.
Interestingly, even thégsosozie)contributions to the larger
components agree with the results of SZ to within better than
5%. Thus, any significant deviation between the overall results
must stem from the treatment of tA@so/0ze)terms. Indeed,
in both systems the two-electron SO contributions recovered

by SZ account for only~50% of our results. As a consequence, : .

the overallg-shifts of SZ are generally somewhat larger than ﬁigﬁe?)f Eizateafio%ngggherrae ;?falfxgi:'nd%néil_gg&e dlgta

ours, as the partial compensation of the one-electron SO termst? i ht‘ ngin- [OUD S F;temsgto gx eri%ent The plot includes

by the two-electron terms is underestimated. We have tried to the gata fromg TagleyB and thosg for the. lar e? substituted

ZPedct(r):; :gmvzgf esxéeirsudtS: tiongﬂhmep:?ﬁ tLengZelrgc?L]}Tﬁ et\évgo aromatic radicals discussed in section 6. Thg agreement is
y 9 reasonable. A notable exceptionAsgjzs of H,O". The MRCI

(50) See, for example: Ruud, K.; Schimmelpfennig, Byrén, H.Chem. results of Lushington are in much better agreement with

Phys. Lett.1999 310, 215. Maron, L.; Leininger, T.; Schimmelpfennig, ; + i i i
B.; Vallet, V.; Heully, J.-L.; Teichteil, Ch.; Gropen, O.; Wahlgren,Chem. experiment. The pD™ radical cation may be a particularly

Phys. Lett1999 244, 195. Fagerli, H.; Schimmelpfennig, B.; Gropen, 0.;  difficult case for a Kohr-Sham approach, due to the near-
Wahlgren, UTHEOCHEM1998§ 451, 227. degeneracy between HOMO and SOMO.
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terms or (2) to the approximations involved in the effective
Kohn—Sham potential used. Tables 1 and 2 show that in both
systems, the SOO term accounts for25% of the total
Osoiozeeyterms. Thus, about half of the errors of SZ in the
wo-electron terms is due to the neglect of the SOO term, the
other half must be due to the other approximations mentioned.
Table 3 compares our overall calculaig@ghift components
for some small, light main-group compounds to the DFT results
of SZ, the Cl data of Lushington et al., and experiment (either
in the gas phase or in matrix). As expected from the above
discussion, oumg-shift components are generally of smaller
absolute value than those of SZ, due to the more complete
treatment of the two-electron SO terms. As SZ's results often
overestimate the absolute values of the experimempsthift
components, in the majority of cases our data are overall in
somewhat closer agreement with experiment (exceptions are
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Table 4. Analysis of Different Contributions tg-Shifts (ppm) in
CRX~ (X =CI, Br, I)2
15000 - L

. CRCI- Agu AgD

o~ 10000 1 . all-el2 Abscae 130 96
S o / Adrwc 315 315
>:<§ 5000 a ‘,:/ H,0* AgSO/OZ(le) —482 17891
2 N A Agsojozze) 134 3474

D; 01 < (SS@, SO0) (92,419  (—2768, —707)
< o total all-el2 ~532 14198
-3000 4 ECP-QR(CHY -390 12961
e SZ NRef —609 14573
-10000 .- SZ QR —610 15112
T T T T T T exph _200 4700
-10000 -5000 0 5000 10000 15000 —

Ag,y, (X109 CRBr A0 Ad

. . . . all-el2 Ach(le) 167 401
Figure 1. Comparison of calculated and experimergashift tensor AGrmc —313 —313
components (ppm) for first-row compounds (cf. Tables 3, 9; Only AJsoioz(ie) —475 57833
components witHAg| > 1000 ppm have been included). Agsorozze) 151 _5663

Obviously, the importance of errors in the two-electron SO (SSO,S00)  (117,34)  (~4583, ~1080)

terms for the overaly-shifts depends on the relative importance ~ total all-el —470 52258
of the Agsojozee) contributions. In CO and HO*, the two- ggi—%ﬁ(Brﬁ :ggg g?ggg
electron terms amount to35% of the absolute magnitude of 57 Qres —637 70229
the Agsoiozaeyterms (with opposite sign). We find this to be  exph —1300 18900
the general behavior for compounds containing atoms from at CRiI- Ag Ago
most the second period. Our results for other systems containing
heavier main group atoms indicate that the importance of the "€\ ﬁch(le’ _%gg __?)gg
two-electron terms decreases+@0%, 10%, 7% for the third, Agzﬁf,f)m 152 137144
fourth and fifth period, respectively (see, e.g., results fopCF
X = ClI, Br, |, in Table 4). The same percentages were found AGsoozze) 112 s
. . J (SSC, SOO) (7%, 36°)  (—7832, — 1622)

previously in both DFT® and MCSCF calculatioi$ of SO

. . . total all-el2 —447 127330
corrections to NMR chemical shifts. Thus, the accurate treatment ECP-QR(IY —291 138056
of the two-electron terms becomes somewhat less important for gz NRef 581 146759
compounds of heavier main group elements. For light main Sz QRes —571 161466
group, for example, organic radicals, the two-electron SO terms exp! —2100 46000
are particularly critical. The SOO term accounts #20% of aUDFT-IGLO results with BP86 functional and AMFI approxima-
the two-electron SO terms also for the heavier main group tion. All-electron results with basis BIP. Spin—same-orbit terms only.
compounds (cf. Table 4). ¢ Spin—other-orbit terms only ¢ Quasirelativistic ECP/SO-ECP and

The relative importance of the different terms changes when TZ+2P valence basis on all halogen atoms, Bll orf DFT-GIAO,

.. . P ref 12.f Without scalar relativistic effect§.With scalar relativistic
transition metals are involved. This is demonstrated for the effects included" In tetramethylsilane matrix (Hasegawa, A.; Williams,

simple 3d and_ 4d corr_lple_xes 'E_iEnd ZrH§ in Table 5. In both F. Chem. Phys. Lett1977 46, 66). These anions are expected to
cases, the spin density is mainly localized on the metal, and experience increasing interactions with the environment from &I
the SO coupling at the metal dominates theensor. For the through X= I. Therefore, the experimental data are probably not well-
titanium complex, thé\gso/ozecontributions amount te-47% suited to be compared with calculations on the isolated anions.

and ~559% of the magnitude of th&dsorozae terms forAg, hand, their restricted KohnSham (ROKS) calculations (both

and Agp, respectively. For the ZriH4d model complex the . .
fractions are~34% and~31%, respectively. In both cases, the perturbational and two-compo'nent tr(.eatmen'g) give much larger
' ! Agp than the UKS treatment, i.e., spin polarization does seem

two-electron contributions are thus of considerably larger relative . .
importance than with main group elements of the same row to be important. Here the ROKS Qata are clos_er to experiment,
probably due to error compensation, cf. section 6.

(cf. ~13% for Br,~7% for 1). This is probably related to the ! ' . .
The previous examples were relatively simple, as the-spin

more pronoun netration of the valen -orbitals of th . . - )
ore pronounced penetration of the valence d-orbitals of t € orbit coupling arose mainly from one (the heaviest) atom, and

transition metals into the cofé. from only a few molecular orbitals. Obviously, things may be
Another difference compared to the main group case is seen y ) . ; Y, gs may
much more complicated, if several heavy atoms are involved,

with the SOO term, which for both T#and ZrH; accounts for . . . .
oy 20" 1290 ez comrouton, rt, s nly 210 Severel 08 may conibute 2san usaton, Tabe &
about half as important as in the main group cases we haveCrOE_ and CrOCLly‘ In the case oqurOFp)':hin S are sti?l
looked at above. Good agreement with the perturbational UKS iy - : ’ 9

relatively straightforward. ThAgso/ozpeeterms amount to about

results (obtained with the SZ code) of van Lenthe €t dbr
: . : N half of the Agsojozeterms (~51% for Ag, ~45% for Agp),
TiFs may be obtained by reducing oAQso/oz@ecONtributions and the SOO term to about 314% of the Agsoior@e)

by ~50%. This suggests that the main difference is in their S .
: ) contribution. However, in the case of CrQCl Ags behaves
incomplete treatment of the two-electron terms. On the other “normally” ( ~45% magnitude of the two-electron termsL0%

h(51) Vaara, J.; Ruud, K.; Vahtras, O.gfen, H.; Jokisaari, J. Chem. fraction of SOO terms), bukg is atypical. Here thé\gso/oz(ze)
Phys.1998 109, 1212. %: with ~359 ibuti

(52) The fact that the 3d shell is the first shell with= 2 and thus  ©/'s a@re very small £29%; with ~35% SOO contribution).
particularly compact, may be responsible for the particularly lageyoz(ze An MO analysis (section 7) indicates that at least two occupied

contributions for 3d systems (similar arguments apply to the 2p shell).  MOs contribute significantly ta\g,, with opposite signs. The
121
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Table 5. Analysis of Different Contributions tg-Shifts (ppm) in Tik and ZrH?

T|F3 ZI'H3
contribution Ag Agn Agy Agn

AQcc(ie) +203 +371 +227 +484
AOrmc —320 —320 —255 —255
AGsoioz(1e) —1924 —58669 —6007 —250046
AJsoi0z(2e) +907 +32043 +2037 +77658
(SSO, SOO0) (+783, +124) (+28199, +3844) (+1833, +204) (+69864, +7795)
total all-el. —1124 —26577 —3998 —172160
ECP-NR(ZrY —3377 —160070
ECP-QR(Zr} —2673 —146534
van Lenthe UKS —1700 —42800
van Lenthe ROK$ +100 —73300
van Lenthe 2-comp. —1000 —79700
exp. —11100 —111900

—3700 —123700

a Present all-electron calculations at UDFT-IGLO level. The AMFI approximation, 9s7p4d basis on Ti, 24s19p13d basis on Zr, and BIl on H,
Blll on F. ® Spin—same-orbit contributiorf. Spin—other-orbit contributiond Nonrelativistic ECP in the KS calculatioAQuasirelativistic ECP in
the KS calculationf Reference 14. With the perturbational approach of SZ, unrestricted KS wave furidieference 14. With the perturbational
approach of SZ, restricted KS wave functidrReference 14. Two-component ZORA calculation, spin-restri¢taderage of two sites in Ne
matrix 82 | Ar matrix results?

Table 6. Analysis of Different Contributions tg-Shifts (ppm) in CrOF and CrOCJ~ @

CrOR~ CrOCl~
contribution Agy Agn Agy Agn
AJacc(ie) +549 +472 +505 +482
Agrmc —-701 —-701 —657 —657
AJsoioz(1e) —27513 —39331 +20900 —32848
Adsoioz(ze) +14073 +17741 —407 +14955
(SS@, SO0) (+12472, +1602) (+15216, +2525) (—266, —141) (+13399, +1556)
total —13592 —21811 +20341 —18067
pzd —19000 —29000 +18000 —21000
expe —43000 —34000 —10000 —25000

aUDFT-IGLO results with BP86 functional. AMFI approximation, 9s7p4d basis on Cr, Bll on all other atd®asne-orbit contributiorf. Other-
orbit contribution.d UDFT-GIAO results, ref 28. Data given only in ppt accuratfxperimental references as compiled in ref 28.

Agsojozeecontributions from these two MOs compensate each We will thus only compare the different theoretical approaches.
other to a large extent. Thus, obviously the importance of the For easier comparison, the ECP calculations use ECPs and SO-
two-electron terms, as well as the relative contributions from ECPs only for the heaviest atoms, whereas the all-electron AMFI
the SSO and SOO terms to them may differ significantly from treatment is kept for the lighter atoms (as discussed in section
system to system, and for different tensor components within 2, this combination of methods is allowed, due to the atomic
one system. It is therefore not justified to use a simple scaling nature of the SO operators involved).
procedure to correct for a neglect of certain two-electron SO As the SO-ECPs used here have been adjusted to atomic
terms. calculations that did not include the Breit interaction, they do
We may again ask to what extent the differences of our results not cover the SOO term. The ECP results might therefore be
relative to those of Ziegler et al. are due to their incomplete expected to slightly overestimate thegso/oz contributions,
treatment of the\gsojozzeterms. If we simply reduce our two-  typically by ~10—15% for NF, by less than half of this for
electron terms by half, we obtain roughty20000 ppm and  the heavier main group and transition metal species (cf. section
—30000 ppm forAg, andAgp, respectively, in CrOF, in much 4). On the other hand, the direct comparison between all-electron
better agreement with the results of Patchkovski and Zié§ler. and ECP-NR results has to be viewed with some caution, as
The same procedure applied to Cr@Qbroduces more negative  the use of nonrelativistic ECPs with the relativistically adjusted
Agn ( ~—25000 ppm), whereaAg is not affected much, due  SO-ECPs is not completely consistent.
to the smallness of the two-electron terms in this case. Inspecting the data of Tables 5 and 7, the EGIR results
are found to be both high or low relative to the all-electron
data. However, agreement is found generally within a few
percent. The differences are significantly smaller than, for
Table 7 compares all-electron (AE) and pseudopotential (ECP/example, differences between local or gradient-corrected density
SO-ECP) treatments dfg components for NE KrF, XeF, and functionals, and also smaller than differences relative to the
MoOF,. Table 3 includes the same comparison fopXCF (X approximate treatment of the SO integrals by SZ. This indicates
= Cl, Br, 1), and Table 5 for Zrigd The results of Ziegler et al., that the combination of ECPs in the Koh8ham step with SO-
with an approximate treatment of th®gsojozie)terms, are  ECPs in the perturbation treatment provides a useful valence-
included in Tables 4 and 7 as well, and experimental data areonly approximation to the all-electron calculations. In all cases,
given for completeness. However, at least the data for KrF, XeF, our g-shifts are lower than those of SZ.
and particularly those for the anions £F, are probably Comparison of the ECPNR and ECP-QR results for KrF
influenced significantly by environmental effects (cf. below). and XeF (Table 7) suggests an increase\gf; due to scalar
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Table 7. Comparison of All-Electron and ECP/SO-ECP Results Table 8. Comparison of First-Order Corrections (ppm) from

for g-Shift Components (pprf) All-Electron and ECP/SO-ECP Calculatidns
Agn Ag2 Agss Adrmc Adccaef
NF, all-el? —617 3928 6288 NF, all-el. NR —314 126,232,225
ECP-QR(F —774 3980 6699 ECP-QR(F) —316 127,233,226
sz —738 4678 7619 KrF all-el. NR —429 179,491
exps —100 2800 6200 ECP-NR(Kr) —351 170,472
ECP-QR(Kr —349 170,473
Ag Ady XeF ol R —414 228,598
KrF all-el? —246 49494 ECP-NR(Xe) —303 211,567
ECP-NR(KTr}) —166 48303 ECP-QR(Xe) —304 209,569
ECP-QR(Kr) —164 50857 CRCI- all-el. NR —315 144,82
SZ NRd9 —335 60578 ECP-QR(CI) —244 135,59
SZ QRih —345 61851 CRBr- all-el. NR —313 181,200
expse —2000 66000 ECP-QR(Br) —229 170,179
XeF all-el® —184 127288 CRl™ all-el. NR —303 212,293
ECP-NR(Xe) -91 130003 ECP-QR(l) —209 195,270
ECP-QR(Xe) —93 134302 ZrH3 all-el. NR —247 251,455
SZ NRY9 —340 151518 ECP-NR(Zr) —118 220,421
SZ QRN —346 158083 ECP-QR(Zr) -117 219,419
expe —28000 124000 MoOF,~ all-el. NR —555 797,531
MoOF,~ all-el? —51855 —46733 ECP-NR(Mo) —283 715,472
ECP-NR(Mo}) —48633 —47293 ECP-QR(Mo) —278 708,470
ECP-QR(Mo) —50557 —47646 - -
PZ QR —62000 —57000 2 UDFT-BP86 results. Basis sets and ECPs as in Tables 3, 5, and 7.
exp! —167000 —76000 Adascaeyterms with common gauge at center of masAgus, Agzz, and

Agss for NF,, Ag, and Agg for the other compounds.
a UDFT-IGLO results with BP86 functional and AMFI approxima-

tion. ® All-electron basis sets 24s19p13d for Mo, Blll basis for F in  the more complicated 4d complex Mo@RTable 7), the scalar
. ,
NF,, KrF, XeF, Bl for all other atoms: ECP and TZ-2P valence relativistic effects appear to be modest.

basis on F, BIl on N9Reference 12¢As cited in ref 12fNon- e . .

relativistic and quasi-relativistic ECP, respectively, on the heavy atom, ~1able 8 compareg\gruc contributions obtained with all-

with all-electron treatment for the light atorsNon-relativistic." With electron and ECP approaches. While the agreement is excellent

scalar relativistic effects includetdReference 28.Sunil, K. K.; Rogers, for the light NF, molecule, the ECP results increasingly

M. T. Inorg. Chem.1981, 20, 3283. underestimate the all-electron results for increasingly heavy

L .. atoms. It appears that the ECP calculations miss some-core

relativistic effects (more so for XeF than for KrF). This iS  ghall contributions to this term. However, in view of the

consistent with the increase of tlgeshifts upon inclusion of dominance of SO terms, errors in thermc term will typically

scalar relativistic effects by SZ (at the first-order Breit-Pauli jniroduce only negligible errors in the overall computgshifts.

level). Moreover, the relative increase is of comparable mag- The Agec e contributions are more difficult to compare directly,

nitude, suggesting that the comparison of NR-ECP and QR- gye to their gauge dependence. Table 8 includes results with a

scalar relativistic effects. ECP calculations underestimate these terms moderately for the
In the case of the anions @ (X = ClI, Br, |; Table 4), the heavier systems, whereas the core contribution from the fluorine

ECP calculations use quasirelativistic ECPs and SO-ECPs forls-orbitals in Ni; apparently is negligible.

X (no appropriate nonrelativistic ECPs have been available for

comparison). The QR-ECP results fvg- in CFCI~ are~9% 6. Further Validation Calculations

lower than the all-electron results. In contrast, the QR-ECP | this section, we validate the performance of the present
calculations give~3% and~8% larger values for GfBr~ and DFT approach for a somewhat larger set of species, including
CHRl™, respectively, probably in part due to the inclusion of a|so larger main group and transition metal systems. Table 9
scalar relativistic effects in the ECP calculations (cf. comparison gives g-shift tensors for some phenoxyl radicals (see Scheme
between nonrelativistic and relativistic results of SZ). Again, 1), which have received appreciable attention due to the
our Agn components are somewhat smaller than those of SZ. paramount importance of the tyrosyl radical in biological
The experimental data were obtained in a solid matrix of system$2In addition to the free, unsubstituted phenoxyl radical,
tetramethylsilane and are probably not strictly comparable to for which no experimental data appear to be available, we have
the free-anion calculations. The increasing discrepancy from X also studied the substituted 2,4,6-tti€Bu-Cs H, O radical, as

= Cl through X= | may be due either (1) to potential problems well as the tyrosyl radical itself. Thg-tensor of the tyrosyl
with the perturbation treatment of SO coupling for the heavier radical has been studied by semiempirical calculatfdms, to
halogens, as suggested by SZ, or (2) to an increasingly diffuseour knowledge not by first-principles methods. We have used
nature of the SOMO (which corresponds te’a(C—X) MO the neutral rather than the zwitter-ionic form of the amino acid
and does exhibit small positive energies in our Keldham residue.

calculations) and thus increasing interactions with the environ-  We take the parent phenoxyl radical as an example to test
ment. The second possibility, which we find more likely, could the basis set dependence of the DFT results, and to compare
be tested by calculations that simulate the matrix environment. different exchange-correlation functionals (Table 9). N,

This is beyond the scope of the present study. (53) See, for example: (a) lvancich, A.; Mattioli, T. A.; Un, .Am.
ECP and all-electron results for the 4d model systemzZrH Chem. Soc1999 121, 5743. (b) Allard, P.; Barra, A. L.; Andersson, K.
; ; ; K.; Schmidt, P. P.; Atta, M.; Gslund, A.J. Am. Chem. S0d.996 118
mag/ be Comp"?‘f‘*d in Table |5 Thle E€RR cilfculatlons give 895. (c) van Dam, P. J.; Willems, J.-P.; Schmidt, P. Ptsétg S.; Barra,
~7% too positiveAgp. Scalar relativistic effects appear to 5 - Hagen, W. R.; Hoffman, B. M.; Andersson, K. K.: Giand, A.J.

reduce further significantly the absolute value. In contrast, for Am. Chem. Socdl99§ 120, 5080.
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Table 9. Effects of Basis Sets and Functionals on Compw€hift Components (ppm) for Phenoxyl Radicals

basis AGiso Agu Ag2 Ags3
phenoxyl
VWN, UDFT DZVDP 3156 —139 363 9243
VWN, UDFT DzVvP 4429 —150 2145 11292
VWN, UDFT Bl 4505 -85 2249 11351
VWN, UDFT Blll 4543 —83 2292 11419
PP86, UDFT BII 3388 -91 2125 8130
PW91, UDFT Bll 3548 —89 2117 8617
BP86, UDFT DzvD 2333 —146 319 6825
BP86, UDFT DzvP 3355 —160 2031 8194
BP86, UDFT Bl 3405 -91 2117 8188
BP86, UDFT Bl 3461 -85 2170 8299
BP86, SOS-DFPT Bl 2980 -85 2133 6891
ROHH cc-pvDZ 24200 100 5200 67400
MCSCH cc-pvDZ 2500 200 2400 5000
t-Bu-substituted phenox§/l
VWN, UDFT DzZVP 2721 42 1834 6285
BP86, UDFT DzVP 2314 —4 1734 5213
BP86, SOS-DFPT DzZVP 2093 -7 1721 4565
exp. 2297 70 1960 4860
tyrosyl

VWN, UDFT DzVP 4263 —167 2177 10480
BP86, UDFT DzVvP 3264 —181 2064 7908
BP86, SOS-DFPT DzVP 2827 —195 2037 6639
exp. E. coliRNRY 2670 —300 1900 6400
exp. . typhRNRY 2848 70) —200 2000 6600
exp. N—Ac-L-TyrO)" 3200 @-200) 7000 £200)

aDFT results with IGLO gauge and AMFI approximatidhwithout polarization functions on hydrogehlncluding correction term in Loc.1
approximationd Results with common gauge at center of m#&s3nly a limited number of digits were givefResults for 2,4,6-trig-Bu-CsH,0.
Experimental data in frozen toluene solution (145 K) from Bresgunov, A. Y.; Dubinsky, A. A.; Poluektov, O. G.; Lebedev, Y. S.; Prokov'ev, A.
I. Mol. Phys.1992 75, 1123.f Experimental data for the tyrosyl radical ih coli RNR. (Hoganson, C. W.; Sahlin, M.; Sjerg, B.-M.; Babcock,
G. T.J. Am. Chem. S0d996 118, 4672; see also ref 4).Experimental data for the tyrosyl radical $1 typhimuriunRNR (ref 53 b)." Irradiated
crystal of N-acetyl+-tyrosine (Mezzetti, A.; Maniero, A. L.; Brustolon, M.; Giacometti, G.; Brunel, L.JCPhys. Chem. A999 103 9636).

Scheme 1. Three Phenoxyl Radicals Studied that electron correlation is extremely important for the descrip-
o tion of theg-tensor of the phenoxyl radical. This may be seen
from the dramatically overestimated,, and Agss components
at the ROHF level (Table 9). Much lowgrshifts were obtained
at the MCSCEF level (Table 9). Our DFT results (e.g., UDFT-
IGLO with BP86 functional and Blll basis) are much closer to
the MCSCF than to the ROHF data but giv€5% largerAgss
cu2 than the former.
The good agreement with the experimental result for the 2,4,6-
tris- t-Bu-CsH20 radical has been taken as evidence for the
Sou good quality of the CASSCF wave function for the phenoxyl
phenoxyl 2,4,6-tris--Bu-phenoxyl tyrosyl radical>* While the substituted radical was too large to be
studied at the MCSCF level, our DFT approach is easily
and Agss components change relatively little in going from applicable also to the larger system. Interestingly, the computed
DZVP to the larger Bll and Blll basis sets (this holds for both g-shifts are considerably reduced by the substitution (Table 9).
VWN and BP86 functionals). Only the DZVD basis, that is, In particular, Agss is much lower. On the other hand, our
omission of polarization p-functions on hydrogen, leads to a computed results for the tyrosyl radical are much closer to those
rather dramatic deterioration of the results, mainly Aay,,. for the unsubstituted phenoxyl radicétrt-Butyl substituents
Closer inspection indicates that without the polarization func- in ortho position have obviously a rather significant effect on
tions, too much spin density is accumulated on the hydrogenthe spin density within the system (in particular on that for
atoms and withdrawn from the heavy atoms. In going from the oxygen, which dominates thgetensor; cf. below), but the amino
local VWN to the gradient-corrected BP86 functional, the acid moiety in para position of the tyrosyl radical oxygen atom
g-shifts decrease moderately but nonnegligibly. On the other affects the spin density distribution much less. Thus, while the
hand, differences between different GGA functionals (BP86, free phenoxyl radical is not a very good model to study
PP86, PW91) are small. This is our general experience and thequantitatively theg-tensor of the 2,4,6-trisBu-CsH,0 radical,
reason for concentrating mostly on one functional (BP86) it serves as a very good model for the biologically relevant
throughout this work. An only modest dependence on the tyrosyl system (as previously concluded from spin-density
functional was also noted by Ziegler and co-worker® and calculation&®). Notably, the present DFT approach reproduces
similar conclusions pertain to NMR chemical shift calculations rather accurately the experimental differences between the two
on main-group nucléei? substituted radicals. This suggests that substituent influences
We may compare our results for the phenoxyl radical to the on theg-tensor in aromatic radicals may now be studied with
ROHF and MCSCEF calculations of Engsti@t al>* They found good accuracy. We note in passing that, in contrast to the ring

(54) Engstion, M.; Vahtras, O.;n@ren, H.Chem. Phys1999 243 263.
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protons, the neglect of polarization p-functions on thmutyl of 57Fe, but similar observations apply®Co>%. UDFT-GIAO
hydrogen atoms in the 2,4,6-trisBu-CsH,O radical has a calculations with GGA functionals gave slopes 0.6 in
negligible effect on the computegshifts. comparison with experiment, with one extreme outlier (ferro-

In addition to our UDET-IGLO results with various func- cene)’ This corresponds to a significant underestimate of the
tionals and basis sets, Table 9 also includes SOS-DFPT resultg?aramagnetic contributions to shielding:tBound that the
with the BP86 functional. As is well-known from NMR slope could be improved to almost 1.0 by using hybrid
chemical shift calculations, the SOS-DFPT correction term functionals (B3LYP or B3PWOI} In view of the close
reduces to some extent the paramagnetic contributions and thugimilarity of nuclear shielding and electrorgdensor, we expect
the overall shift componenig:2256No experimental data are  that the origin of the failure of the “pure” GGA functionals in
available to judge the performance of the different approachesthe two cases is related (most likely, the usual functionals do

for the free phenoxy! radical. For the 2,4,6-trisBu-CgH20 not describe accurately local excitations at the ni@taTlhus,
radical, the UDFT and SOS-DFPT results with the BP86 the inclusion of HartreeFock exchange (and of the resulting
functional bracket the experimental value fgss, whereas\gy, coupling terms) should improve the performance also for the

is underestimated slightly in both calculations. The latter point g-tensor. In the present version of our code we cannot include
is probably a basis set effect, cf. the basis set study for the freeHartree-Fock exchange. However, we are presently implement-
phenoxy! radical in Table 9. For the tyrosyl radical, the lower inganew program which will allow this to be done. Then more
SOS-DFPT values appear to be somewhat closer to the availabléccurate calculations gftensors should also become possible
experimental data (we have chosen experimental numbers forfor transition metal compounds.Until then, a simple multi-
tyrosyl radicals where hydrogen bonding to the phenoxyl oxygen plicative scal_mg of the SO cor_1tr|but|ons may be considered as
is thought to be absent). From the present data it is difficult to @ Short-term improvement. This result contrasts somewhat with
decide whether the SOS-DFPT correction terms improve the the conclusions of PZ, based on a less diverse set of complexes.
results significantly for main group radicals. We have therefore PZ argued that a simple, additive constant shift (different for
concentrated on UDFT-BP86 results throughout this study. In 3d; 4d, and 5d systems) might be used to correct the computed
any case, the results in Table 9 indicate that DFT approaches@sults?® We expect less problems for complexes where the spin
are significantly superior to Hartredock calculations for ~ density is largely concentrated on the ligands. In fact, GGA
phenoxyl radicals, comparable in quality to the (modest) functlonals perfqrm excellently for nuclear shieldings of ligand
MCSCF wave functions of ref 54. The advantage of DFT is &toms in transition metal systerh&**

the relatively low computational effort, and thus the possibility ~ Finally, Table 11 compares our results and those of PZ for a
to treat large systems. Indeed, we are presently studyingnumber of 4d and 5d complexes. The agreement of our
g-tensors for much larger radicals. This requires also a very calculations with experiment is again not satisfactory, actually

efficient treatment of the spirorbit operators, such as dem- @ven somewhat worse than for those of PZ. This is probably
onstrated in this work. due to some error compensation in the results of PZ, related to

the incomplete treatment of the SO operators. The paramagnetic
contributions to the nuclear shielding of 4d transition metal
nuclei are known to be underestimated less dramatically by GGA
functionals than in the case of 3d metals (e.qg., the slope for Rh
shieldings at the GIAGBPWO91 level was found to be
~0.87:59, One might thus expect 4d systems to be less critical
also forg-tensor calculations. This is not borne out by the limited
set of data given in Table 11. More calculations on a larger set
of more diverse 4d complexes will be needed to settle this
équestion.

Less favorable performance of DFT was noted by PZ for
g-tensors of transition metal complexes (a number of square
pyramidal ¢ complexes were studied, see below) compared to
main-group radical2 This has been attributed to deficiencies
of the currently used exchange-correlation functionals. Table
10 gives our results for a more diverse set of 3d complexes. In
addition to the accurate atomic mean-field treatment of the
Adgsoioze@ndAgsoiozeeterms, we have also included results
which neglect the\gso/ozeicontributions altogether. Figure 2
compares the results graphically to experiment. Some care ha
to be exercised in this comparison, due to the varying quality
and nature of the experimental data. Nevertheless, the graphica
comparison indicates that, rather disappointingly, the proper  As already mentioned, our use of a superposition of effective
inclusion of the two-electron SO terms deteriorates the agree- atomic spin-orbit operators does also offer advantages in terms
ment with experiment significantly. Neglecting the three extreme of analyses ofy-tensors. In this way we obtain a particularly
outliers Ag,,of Cu(NGs). and of Cu(acag) andAgp of TiFs), straightforward separation of thegso/ozterms into atomic SO
we arrive at a linear fit with slope 0.59 afitl= 0.99378. The  contributions. This is shown as an example for the phenoxyl
complete neglect of the two-electron SO terms improves the radical in Table 12. We first note that the relative weights of
Slope to lOGR = 099381) This is not surprising, as the two- AgSO/OZ(le)and AgSO/OZ(Ze)terms’ as well as of SOO and SSO

/- Separation ofg-Tensors into Atomic Contributions

electron terms reduce the overahshifts by ~40-50% (cf. contributions to the latter, are essentially just as discussed above
section 4). Neglect of the two-electron terms does in this case for CO* and HO".

correspond to a scaling by a factor-efL.8. The three outliers The atomic analysis is performed by carrying out a number
mentioned are at particularly large (negative or positixe) of separate calculations (which employ the same KeBham
values. wave function and thus do not require much extra computational

The slope 0f~0.59 we find upon exact treatment of the SO  effort), in which atomic mean-field SO operators are only used

operators corresponds strikingly to observations made recently. 59 - o |

i 57,58 i i i 59) See, for example: Chan, C. C. J.;-A¥eung, S. C. F.; Wilson, P.

b]%/ Bun‘l et aL. | \.Nhen ';estlng DFT approalchesl Ir.l C.alcmaitlolns J.; Webb, G. AJ. Mol. Struct.1996 365, 125. Godbout, N.; Oldfield, E.
of nuclear shieldings of 3d transition metal nuclei (in particular 3" am chem. Sod997 119 8065.

(60) Schreckenbach, @. Chem. Phys1999 110, 11936.

(56) Olsson, L.; Cremer, Q1. Chem. Phys1996 105 8995. (61) Alternative functionals may also be envisioned, in which exact

(57) Bihl, M.; Malkina, O. L.; Malkin, V. G.Helv. Chim. Actal996 exchange is simulated rather than treated explicitly (see, e.g.: Becke, A.
79, 742. D. J. Chem. Phys200Q 112 4020).

(58) Bihl, M. Chem. Phys. Lettl997, 267, 251. (62) DeVore, C.; Weltner, W., Jd. Am. Chem. Sod.977, 99, 4700.
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Table 10. Comparison of Computed and Experimergebhift Tensor Components (ppt) for a Series of 3d Transition Metal Comglexes

complex component withoutgsoioz(ze) with Agso/oz(ze) exp. lit (exp.)
TiFs Ago -79.4 —-28.3 -111.3 b(1)
—121.5 b(2)
-123.7 b(3)
VO(L3)* Az, —55.6 —25.7 —55.3 c
VO(L?),* Ay, —48.8 —24.6 —51.3 c
VO(LY)° Agy; —58.2 —28.6 —49.3 c
VO(L3),* Agyy —31.5 —15.4 —23.3 c
VO(L?)* Agyy —29.1 —14.5 -21.3 c
VO(LY)£ AQyy —24.1 -12.2 -21.3 c
VO(L3),* A —-17.4 -8.8 —18.3 c
VO(L?),* AQx —20.2 —10.3 —19.3 c
VO(LY)C AGux —-19.1 -9.7 —19.3 c
Mn(CN)sNO?~ Agy -1.2 -1.9 -10.1 d
TiF3 Ag -1.8 -1.2 —-11.1 b(1)
—11.1 b(2)
-3.7 b(3)
Mn(CN),N~ Agy 9.8 3.9 -3.3 e
Mn(CO) Ag -1.2 -0.9 -1.7 (1)
-2.3 f(2)
Fe(CO}* Agy -0.6 -0.9 -15 g(1)
-1.4 g(2)
ScO Agn -0.9 0.0 -0.5(3) h(1)
—2.8(5) h(2)
ScO Agi —0.2 —0.1 —0.5(3) h(1)
—0.8(7) h(2)
MnOs Agy 6.3 4.3 13 i
Ni(CO)sH Ag 2.7 1.3 1.9 i
Mn(CN)N- Agp 4.7 21 2.2 e
Co(CO), Ag 7.1 3.3 3.6 k(1)
5.0 k(2)
MnOs Agn 4.2 1.9 6.1 i
Mn(CN)sNO?~ Agn 36.3 17.9 28.8 d
Mn(CO) Agn 42.6 22.6 40.7 (1)
35.7 f(2)
Cu(acac) AGxx 50.1 30.6 48.7 1(1)
49.6 1(2)
Cu(NGs), A 45.1 28.2 49.9(5) m
Cu(NG;), Agyy 49.3 31.0 49.9(5) m
Cu(acac) Agyy 55.4 34.7 48.7 1(1)
Ni(CO)s:H Agn 65.0 39.8 65.1 i
Fe(CO}* Agn 89.3 48.7 81.0,77.4 g(1)
78.8,76.6 g(2)
Co(CO), Agn 137.5 79.3 127.6 k(1)
126.0 k(2)
Cu(NGs), AQz, 183.0 116.3 246.6(3) m
Cu(acac) AQz; 180.2 1155 285.2 1(1)
263.8 1(2)

a UDFT-IGLO with AMFI approximation forAgsojozeey 957p4d metal basis, Blll on ligands (DZVD basis on remote atoms in Y@ (@Il on
remote atoms in Cu(acaf)® Reference 62: (1) Neon, site a; (2) Neon, site b; (3) Argon. Estimated ermvg.af0.2 ppt.© The complexes are:
VO(LY), = [N,N'-ethylenebisg-tert-butyl-p-methylsalicylaldiminato)]oxovanadium(IV); VO, = bis(N-methylsalicylaldiminato)oxovanadium(IV);
VO(L3), = bis(N-methyl-o-tert-butyl-p-methylsalicylaldiminato)oxovanadium(lV). Experimental data from ref 29. Estimated errog:of:1 ppt.
EPR on polycrystalline substanceManoharan, T.; Gray, H. Binorg. Chem.1966 5, 823; single-crystal EPR in a host lattice of Née(CN)
NO-2H,0. ¢ Bendix, J.; Meyer, K.; Weyheritler, T.; Bill, E.; Metzler-Nolte, N.; Wieghart, Klnorg. Chem.1998 37, 1767; EPR in frozen
CHCN. f (1) Symons, M. C. ROrganometallics1982 1, 834; EPR in Ar matrix. Estimated error dfg: £10 ppt. (2) EPR in gDs matrix:
Howard, J. A.; Morton, J. R.; Preston, K. Ehem. Phys. Lettl982 83, 1226. Estimated error okg: +3 ppt.9 EPR in Cr(COj host crystal,
Lionel, T.; Morton, J. R.; Preston, K. B. Chem. Physl982 76, 234. (1) site a, (2) site b. For the perpendicular components, experintepial
Agyy are given"Knight, L. B.; Kaup, J. G.; Petzoldt, B.; Ayyad, R.; Ghanty, T. K.; Davidson, EJRChem. Phys1999 110, 5658; (1) EPR in
Ne matrix, (2) EPR in Ar matrix. Ferrante, F.; Wilkerson, J. L.; Graham, W. R. M.; Weltner, W. JJiIChem. Physl977 67, 5906. EPR in Ne
matrix. Estimated error af: £0.8 ppt.) Morton, J. R.; Preston, K. B. Chem. Phys1984 81, 5775. EPR in Kr matrix. Estimated error gf 0.2
ppt. ¥ (1) EPR in solid Kr; Fairhust, S. A.; Morton, J. R.; Preston, KJFMagn. Reson1983 55, 453.; (2) EPR in CO matrix, Hanlan, L. A.,
Huber, H.; Kindig, E. P.; McGarvey, B. R.; Ozin, G. Al. Am. Chem. Sod.975 97, 7054. Estimated error okg: +10 ppt.' (1) Wilson, R.;
Kivelson, D.J. Chem. Physl966 44, 4445. Radicals trapped in chloroform glass. (2) Maki, A. H.; McGarvey, Bl. Rhem. Physl958 29, 31,
35. EPR in host crystal of Pd[(GBO),CH],. MKasai, P. H.; Whipple, E. B.; Weltner, W., Jr. Chem. Physl966 44, 2581. EPR in Ne matrix.

on specific atoms or sets of atoms. The sums of these Ag,,, We may go one step further and decompose also
contributions do in all cases studied correspond closely to the individual molecular orbital contributions into their atomic SO
overall Agsosoz results, as they should. The analysis for the constituents. Table 12 shows this as an example for the in-plane
phenoxyl radical shows, as expected in this Gisbat SO by HOMO. The coupling of thgg-part of this MO (cf. Figure
coupling at the oxygen atom dominates thegy, and Agss 3a) with the unoccupied -part of the out-of-plane b, SOMO
components. The other atomic contributions are much smaller (Figure 3b) is knowpf to dominateAgss (contributions from

but not always negligible. Thus, for example, contributions from several occupied MOs with(C—0O) bonding character dominate
SO coupling at the ortho carbon atoms rediggs but enhance AQy). This is confirmed by the entry in Table 12. The further
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Calculations of Electronic g-Tensors
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Figure 2. Comparison of calculated and experimergadhift tensor
components (ppt) for 3d transition metal complexes (cf. Table 10).

Table 11. g-Shift Tensor Results (ppt) for Some Square Pyramidal

4dt and 5d Complexes
ECP-SC&* P2 exp’
Ag Agp Ag Agn Agy Ago

MoOF,~ —59 —51 —62 -57 -—107 —76
MoOCl,~ +12 —38 +6 —43 —37 —55
MoOBr,~ +119 —29 +142 —-31

MoNCI*~ -35 -6 —47 -9 —96 —18
WOCI,~ —-31 -—120 —68 —139

TcNFR,~ —43 —15 —-41 -16 —107 —12
TcNCl,~ +47 +8 +43 +6 +6 -2
TcNBrg~ +187 +64 4212 +75 +145 +32
ReOR —-123 —-156 —-132 177

ReOC}, +106 —117 +80 —141 —28 —294
ReOB +253 -84 +257 —117 +168 —237
ReNR~ —189 —-57 -—187 —70 —353

ReNCL~ +46 -7 +9 —17 —88 —57
ReNBr,~ +185 +40 +174 +33 +67 —-29

aThis work, UDFT-IGLO, BP86. Quasirelativistic ECP/SO-ECP
calculations? UDFT-GIAO, BP86, ref. 28¢Experimental data as
compiled in ref 28.

atomic decomposition of the HOMO contribution shows again
clearly the dominance of oxygen SO coupling, but also the
negative contributions from the ortho carbon atoms, which
reduce theAgss component.

While the dominance of oxygen SO coupling has been

J. Am. Chem. Soc., Vol. 122, No. 38, Zx(¥

Table 12. Break-Down ofg-Shift Tensor (ppm) for the Phenoxyl
Radicat

AQ11 A2 AGss3
Adcc(ie) 188 268 186
AgRMC —198 —198 —198
AgSOIOZ(le) —-95 3574 13110
AJso/0z(2e) 97 —1410 —4729
(SSC, SO0) 97, 09 (—108%, —323) (—3638, —109F)
total -8 2234 8369

break-down into atomic contributiohs
(@] 3 1734 8685
Cipso 0 48 -4
Corthd2X) 0 283 —358
Crmetd 2X) 4 —42 -92
Cpara -3 141 150
H (5x) 0 0 0
> 2 2164 8381
total Agsoioz 2 2164 8381
HOMO contribution 40 -8 7748
atomic break-down of the HOMO contributibn

(e} 41 -1 8178
Cipso 0 -1 123
Corthd(2X) 4 -5 —620
Crmetd 2X) -5 -5 —-24
Choara 0 -1 94
H (5x) 0 -1 1
) 40 —-14 7752

aUDFT-BP86 calculations with common gauge at center of mass,
BlIl basis, and AMFI approximatior?. Spin—same-orbit contribution.
¢ Spin—other-orbit contributiond Atomic mean-field SO operators were
employed only on the specified atoms in each case (see text).

a)
N\ <
bame W b, HOMO (B)
b) p
‘“;,_4_._.-\. b, SOMO (B)
—=

obvious in the previous example, Table 13 shows two examples, Figure 3. Display of Kohn-Sham orbitals for the phenoxyl radical

CrOF,~ and CrOC}~, in which several atoms contribute
nonnegligibly. We may first examine the atomic break-down
of the totalg-shift components. In both cases, SO coupling from
the metal dominates the negatixgp. In contrast, halogen SO
coupling contributes positively tag,. While the negative metal
contribution is larger and dominates in CrFthe halogen
contribution in CrOCJ~ dominates, and a relatively small,
positiveAg results (experimentally, this component is also small
but negative, cf. Table 6).

MO analyses of theg-tensors for these types of4£
symmetrical d complexes have already been discussed in
detail?® and we refer the reader to that work for the MO

as isosurface#0.1 au). (a)3-component of HOMO (. (b) 5-com-
ponent of SOMO (§).

illustrative examples of the additional insight that is provided
by the use of SO operators which are accurate and yet atomic
in nature. Analyses of this type should become useful for a large
variety of questions related to the interpretation of electronic
g-tensors.

8. Conclusions

We have implemented and validated DFT calculations of the
electronic g-tensor of EPR spectroscopy including all the

notation. In Table 13, we go a step further and decompose therelevant perturbation operators and IGLO gauge origins. The

most important MO contributions into their atomic constituents.

main advantage of the present approach lies in the treatment of

The above-mentioned compensation between metal and halogespin—orbit coupling. To our knowledge, both the all-electron

SO coupling forAgj arises in an interesting manner. Metal SO
coupling contributes negatively via the SOMO but positively
via the h MO, and in the case of CrO£l also via the e MOs.
Halogen SO coupling contributes positively through all three
MOs. In contrast, metal SO coupling dominai®g; mainly

atomic mean-field approximation to the complete Bré&tauli
SO operators and the combination of quasirelativistic ECPs with
SO-ECPs have been used here for the first timg-tensor
calculations. Both approximations provide an inexpensive but
accurate way to include SO coupling. Agreement of the mean-

via the negative SOMO contribution. These results are just field SO treatment with the full-blown explicit treatment of all
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Table 13. Break-Down ofg-Shift Tensor (ppt) for CrOX (X = In contrast to the good performance for main-group species,
F, Clp the results obtained for transition metal complexes are much
CrOF,~ CrOCl~ less satisfactory. We agree with Patchkowski and Ziéglar
Ag Ags Ag Agn attributing this less favorable performance for transition metal
break-down into atomic contributiohs systems to deficiencies in the gradient-corrected functionals. The
Cr —25 —21 ~11 18 present results for a rather diverse set of 3d transition metal
X 10 0 30 1 complexes indicate that the paramagnetiggo/oz) contributions
o 0 -1 0 -1 are underestimated systematically. A simple multiplicative
= —-15 -22 19 —-18 scaling of these terms improves the overall agreement with
total Agsoroz —-15 —22 19 —18 experiment but is certainly not satisfactory from a theoretical
atomic break-down of dominant MO contributiéns point of view. We have also pointed out that similar problems
(S:?MO (R, “dyy” a4 00 g 16 have been observed by Blet al. for NMR chemical shifts of
X 7 et 19 0 transition-metal nucléi’*® In the latter case, the use of
0 0 0 0 0 exchange-correlation functionals that include some exact, non-
s 97 o1 -9 —16 local exchange, enabled much more accurate calculations. We
expect this to be the case also fgttensor calculations on
0-MO (by) : ) ; g : :
Cr 12 0 10 1 systems in which the spin density is mainly localized on a
X 5 0 5 3 transition metal. We are thus presently implementing a code
o) 0 0 0 0 which will allow such hybrid functionals to be used also for
b 17 0 15 4 the calculation ofy-tensors.
(Cr—0) MOs (e) A further potential source of errors stems from the first-order
Cr -3 0 6 -2 perturbation theoretical treatment of SO coupling. This may
é % % 18 _20 affect the results for systems with very heavy atoms. Therefore,
s 3 0 16 ) our ongoing work involves also a two-component relativistic

approach that covers SO coupling variationally. Despite the
aUDFT-BP86 results with Bll basis, AMFI approximation, and obvious need for further methodological improvements, the

common gauge at the center of mass. Cf. Table 6 for the IGLO results hresent approach should provide a verv powerful tool to stud
(and for a decomposition into first- and second-order terf&jomic P bp P yp y

mean-field SO operators were employed only on the specified atoms €/€Cronicg-tensors in a large variety of areas ranging from
in each case (see text)Cf. ref 28 for a more detailed discussion of ~Mmaterials research to biochemistry.
the MO contributions.

one- and two-electron SO integrals is essentially quantitative Acknqwk_adgment. We thank D_rs._H. Stoll (Stut_tgart),_H.-J.
at a small fraction of the computational cost of the latter, as Flad (Léipzig), and P. Pyykk(Helsinki) for helpful discussions.
found previously in other applications of this approach. In turn, V-G-M. and O.L.M. gratefully acknowledge financial support
SO-ECPs approximate well the mean-field all-electron approach, from the Slovak Grant Agency VEGA (Grant No. 2/7203/00)
with the additional advantage of a very efficient simultaneous and from the COST chemistry program (Project D9/0002/97),
inclusion of scalar relativistic effects. The pseudopotential and they thank the Computing Center of the Slovak Academy
approximation is particularly fruitful for a property like the of Sciences for computational resources. J.V. is on leave from
g-tensor, which is to a large extent a property of the valence the University of Oulu, Department of Physical Sciences, Oulu,
electrons. Due to the atomic nature of both all-electron mean- Finland, and has been supported by the Marie Curie program
field operators and SO-ECPs, the two approaches may further-(Contract No. ERBFMBICT982911) of the European Commis-
more be combined in one calculation. In addition to a significant sion. Further support has been provided within the Graduierten-
improvement in computational efficiency, this fact simplifies kolleg “Moderne Methoden der magnetischen Resonanz” in
the analysis ofi-tensors by allowing a separation into atomic =~ Stuttgart (scholarship to B.S. and travel costs), by Deutsche
SO contributions. Forschungsgemeinschaft (Heisenberg scholarship to M.K. and
Having been able to include SO coupling accurately for larger Schwerpunktprogramm “Relativistische Effekte in der Chemie

systems, we could evaluate the performance of DFT approachegnd physik schwerer Elemente”), and by the Fonds der
for the calculation of-tensors without significant errors to be  chemischen Industrie.

expected from approximate SO operators. We find that gradient-
corrected exchange-correlation functionals perform very well
for main-group species. This opens the way to quantitative
calculations ofg-tensors in a wide variety of applications, for
example, for phenoxyl or semiquinone radicals or for other spin
labels in biological systems. Larger discrepancies found for some
compounds of heavier atoms (e.g., for the aniongXCf-see
Table 4) may partly be due to the neglect of environmental
effects. JA000984S

Supporting Information Available: Tables S-S5 give
optimized Cartesian coordinates for the phenoxyl, 2,4,6ttris-
Bu-CsH2O and tyrosyl radicals, as well as for Cu(acaahd
Cu(NGs), (PDF). This material is available free of charge via
the Internet at http:pubs.acs.org.
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... Why they are as they are, and not otherwise

Johannes Kepler (1571-1630)

7 Mechanisms of EPR Hyperfine Coupling in Transition Metal

Complexes

Introduction

The density-functional and coupled-cluster study of EPR hyperfine coupling in 21
transition metal complexes (Chapter 5) has not only validated the existing
computational methods but also aroused the curiosity of the author to understand the
underlying mechanisms of the hyperfine interactions. The problematic performance of
DFT for some of the HFCCs has lead us to an analysis of orbital contributions to the
hyperfine coupling. Both the striking order observed in the -core-polarization
contributions and the large variability in the valence-shell polarization became a
motivation for a detailed study of mechanisms of EPR hyperfine coupling that is

presented in the following paper.

The latter work concentrates on the qualitative aspects of hyperfine coupling in
transition metal compounds and attempts to provide a detailed understanding of the
different spin polarization mechanisms. The interpretations are based on the molecular
DFT calculations of Chapter 5 but are augmented by detailed UHF and ROHF analyses
of the relevant exchange, Coulomb, and one-electron integrals for some atomic systems.
The author of this thesis performed all of the calculations included in the study, most of
the interpretational work, and contributed significantly to the preparation of the

manuscript.

Results
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The detailed analysis of the spin polarization in atomic systems has shown that the
contributions from the metal 2s and 3s orbitals to 45, and from the metal 2p and 3p
orbitals to A4, have opposite signs due to the orthogonality requirement between
orbitals of the same angular momentum. While spin polarization enhances the exchange
interaction of the 2s and 2p shells with the singly occupied orbitals, the 3s and 3p
orbitals are forced to loose some of their exchange to stay orthogonal to their respective
penultimate shell. The core-shell spin-polarization contributions to the isotropic
hyperfine couplings have been found to be proportional to the spin population in the
metal 3d orbitals and relatively independent of other details of the bonding. The
valence-shell spin-polarization, however, depends strongly on the electronic structure of
the system. Particularly large valence-shell spin-polarization contributions to both
isotropic and dipolar coupling constants are found for systems in which the SOMO
overlaps significantly with certain high-lying doubly occupied valence orbitals. These
are the same cases in which our previous study found dramatic spin contamination
effects to plague unrestricted Kohn-Sham calculations with hybrid functionals. In
contrast to the assumptions implicit in many qualitative and quantitative schemes in
current use by experimentalists, both core- and valence-shell spin polarization may

significantly contribute to transition-metal dipolar coupling constants.
Conclusions and outlook

The present work provides basic insight into the mechanisms of spin polarization
in 3d transition metal systems. The results obtained may also be used to pinpoint the
weaknesses of certain theoretical approaches for the calculation of HFCCs and
hopefully also to develop improved methods. It is the wish of the author to extend the
study undertaken in this paper to 4d and 5d systems, including a detailed analysis of
valence-shell spin polarization, and of the mechanisms that transfer the spin density to
the ligands. In the author’s opinion, this study illustrates that the combination of the
DFT approach and qualitative molecular-orbital thinking is a very powerful analytical
tool that once again emphasises the great potential of one-electron approximations for

understanding chemistry.
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Abstract: A detailed quantum chemical analysis of the underlying principles of hyperfine coupling in 3d
transition metal complexes has been carried out. The explicit evaluation of one- and two-electron integrals for
some atomic systems has been used to understand the spin polarization of the core shells. While spin polarization
enhances the exchange interaction of the 2s and 2p shells with the singly occupied orbitals, the opposite spin
polarization of the 3s and 3p shells arises from the required orthogonality to the 2s and 2p shells, respectively.
Core-shell spin polarization in molecules is found to be proportional to the spin population in the valence 3d
orbitals but to depend little on other details of bonding. In contrast, the spin polarization of the valence shell
depends crucially on the overlap between the singly occupied and certain doubly occupied valence orbitals.
Large overlap leads to pronounced spin polarization of these orbitals and, among other things, likely to spin
contamination when using UHF wave functions or hybrid density functionals. The role of core- and valence-
shell spin polarization for dipolar hyperfine couplings in transition metal complexes is discussed. It is
demonstrated that great care should be exercised in deriving spin populations or even orbital compositions
from dipolar couplings alone.

1. Introduction tensors for a representative set of 21 3d transition metal
complexes. Complexes with significant metal 4s orbital con-
to the study of transition metal complexes. Already during t”bUtLonf to tth(;a s(ljngly OtC|CUp|$g molectL.JIalllr Orb'tal]fstL (S?I\:IO) f
the 1950s, the concept of spin polarization was used in the may be frealed adequately with essentially any of the state-of-
the-art density functionals. In contrast, it is much more difficult

discussion of the hyperfine coupling constants (HFCCs) to ; d ; wallv derived HEC t . :
transition metal nuclei (cf. section 2). Transition metal systems 1o réproduce experimentally derive Ensors In systems

have thus been adequately represented in early qualitativeIn Wh.iCh .the spin glensity at the metal.arises largely from spin
theoretical studies of EPR hyperfine couplings Irll contrast polarization. Gradient-corrected functionals tend to underesti-
modern applications of quantum chemical methods to calculate mit_f Ithev\}mrortgnt_ ?pln pfolanze;tlon r?f the _25“hanbd_d3? core
hyperfine couplings more quantitatively have largely concen- or |a§. lie admixture of €xact exchange in nybrid Tunc-

trated on organic radicafsl due to the various practical tionals” helps to enhance the core-shell spin polarization in some

difficulties presented by the more complicated transition metal cases, the rela_ted Spin contaml_nat|on may deteriorate signifi-
systems! cantly the quality of the results in other systems. Overall, no

We recently reported a systematic stdéijn which various functional was found to perform satisfactorily for all systems,

density functional theory (DFT) and coupled cluster approaches and fc;r tngn'I?h systems,l nonet-toft.the tfugctl?r:;isc ftUd'ed ]:Nas
were critically compared in calculations of hyperfine coupling acceptable. 1he general quantitative study o ensors for
transition metal systems remains thus a challenge to quantum

chemistry.

The early history of EPR spectroscopy is closely connected
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T Masaryk University.

* Universitda Wirzburg.
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involved, and both core and valence shells of the transition metal 1.
may be polarized significantly. The present work concentrates

on these more qualitative aspects of hyperfine coupling in
transition metal compounds and attempts to provide a detailed 3
understanding of the different spin polarization mechanisms. 4
Our interpretations are based on the molecular DFT calculations =, o. g
of ref 11 but will be augmented by detailed UHF and ROHF  ~
analyses of the relevant exchange, Coulomb, and one-electron o
integrals for some atomic systems. The geometrical and VEO"”
electronic structures of the molecular complexes studied, as well %=
as the relevant available experimental data, have already been g 4
discussed! Therefore, with the exception of few systems that

will be discussed in more detail, the reader is referred to ref 11

for further information. 0.9

1ii1s

2. The Spin Polarization Model: Previous Work

2
r(a.u.)

Figure 1. ROHF radial distribution functionsR(r)]r? for Mn?*.

The general theoretical background of EPR hyperfine cou-
pling is documented in many textbook® The isotropic
hyperfine coupling is directly proportional to the spin density
at the point of the corresponding nuclegg®(?, in the following . . .
abbreviated agy). In traditional interpretationgy is frequently to get cIo;er. This would correspond to an “effective attractlon”
approximated by the density of the singly occupied orbital(s). ©f like-spin electrons. However, what happens with the 3s
However, for the majority of systems studied by EPR spec- orbital? All of its radial maximums are _also located _closer to
troscopy, this simple approach is not sufficient. The unpaired the nucleus than the 3d radial maximum (cf. Figure 1).
electron, by virtue of its different interactions with electrons of Nevertheless, the 3s shell is polarized in the direction opposite
different spin, spin-polarizes the electron distribution in the fromthe 1sand 2s orbitals, as if the*3sbital were “repelled”
closed shells. This process can add significant spin density atTom the 3d-type SOMO. Watson and Freeman interpreted this
the position of the nuclei. The inadequacy of the spin-restricted 28 @ result of the large overlap between 3s and 3d shells, leading
theory of the hyperfine interaction has been noted since 193310 “competing tendencies” in the spin polarizatisnVe will
for various main-group atonid13 In the 1950s, the spin show below that the requ_lrement of orthogon_allty between _25
polarization model turned out to be very important for the early @nd 3s shells is responsible for these seemingly paradoxical
qualitative interpretation of EPR spectra for the transition metal OPservations.
ions. In many of these, the unpaired electrons occupy metal [N main-group chemistry, spin polarization dominates the
d-type orbitals. Although these orbitals have a node at the hyperfine couplings for some 2p atoms and ions, for some small
nucleus, substantial isotropic hyperfine splittings from metal 7-radicals (e.g., NO, CQ H,0"), and for the larger class of
nuclei were observed. Abragam etl&lsuggested that the organic planarr-radicals. In these cases, the spin polarization
isotropic hyperfine splitting in M#" resulted from the spin  ©Of the 1s and 2s orbitals is known to transfer spin density to
polarization of the outermost occupied core shell (3s in the casethe nuclei. Just as for transition metal ions, spin polarization of
of 3d metal ions). the valence orbitals contributes with a positive sigpgospin

Later, Watson and Freemirshowed by UHF calculations ~ Polarization of the core (1s) orbitals with a negative sith
for several 3d ions that the polarized 2s shell contributes even Unlike for transition metals, the positive outer-shell contributions
more to the hyperfine coupling than the outermost 3s shell, but dominate, providing an overall positivey.** The traditional
with the opposite (negative) sighPolarization of the 1s orbital ~ interpretation of these observations is analogous to the model
provided also a negative, albeit very small, spin density at the Of Watson and Freeman. Tlecomponent of the 1s orbital is
nucleus. It was concluded that in the 1s and 2s shells, which aftracted outward, leaving negative spin density at the nucleus.
exhibit radial density maximums at much smaller radii than the The 2§ orbital, which has its outermost maximum at slightly
3d orbital (cf. Figure 1), thex-spin electrons are “attracted” larger radius than 2p (Figure 2), is attracted inward and thus
outward, leaving a region of negative spin density near the Provides morex-spin density at the nucleus. This “exchange
nucleus” (similar arguments have been used to describe the attraction” of electrons with the same spin is often viewed as a
core polarization in 4d metal complex8s The usual argument ~ Manifestation of Hund's rule of maximum muiltiplicity:
given is that exchange reduces the electron repulsion between In the past, the concept of spin polarization has been used

2<¢ and the 38 SOMO and thus allows these electrons €Xxclusively to rationalize isotropic hyperfine couplings. How-
ever, recent theoretical work shows that dipolar hyperfine

19%2)82':972”& E.; SegreéE. Rend. Accad. Nazl. Lincéb33 4, 18;Z. Phys. coupling in transition metal systems may also be influenced
(13) Sternheimer, R. MPhys. Re. 1952 86, 316. significantly by spin polarizatioh22 In 3d complexes, large
(14) Abragam, A.; Horowitz, M.; Pryce, M. H. [Proc. R. Soc. A955 contributions to the metal dipolar coupling may come from the
230, 169.
(15) Watson, R. E.; Freeman, A.Bhys. Re. 1961, 123 2027. (19) See, for example: (a) Karplus, M.; Fraenkel, GJKChem. Phys

(16) Negative contributions ten of metal 2s orbitals and positive 1961, 35, 1312. (b) Chang, S. Y.; Davidson, E. R.; Vincow, &.Chem.
contributions of metal 3s orbitals have been reported also: (a) Case, D. A.; Phys.197Q 52, 1741. (c) Chipman, D. MJ. Chem. Phys1983 78, 3112.
Karplus, M.J. Am. Chem. S0d977 99, 6182. (b) Weber, J.; Goursot, A.; (d) Ishii, N.; Shimizu, T.Phys. Re. A 1993 48, 1691. (e) Engels, B.;

Penigault, E.; Ammeter, J. H.; Bachmann,JJJAm. Chem. Sod982 104, Peyerimhoff, S. DMol. Phys.1989 67, 583.
1491. (20) Chipman, D. M.Theor. Chim. Actal992 82, 93.

(17) Freeman, A. J.; Watson, R. E. Magnetism Rado, G. T., Suhl, (21) In contrast, the spin density at the hydrogen nuclei in planar
H., Eds.; Academic Press: NewYork, 1965; Vol. IIA, p 167. radicals is negativé?

(18) Watson, R. E.; Freeman, A. J. Hyperfine InteractionsFreeman, (22) Belanzoni, P.; Baerends, E. J.; van Asselt, S.; Langewen, P. B.
A. J., Frankel, R. B., Eds.; Academic Press: NewYork, 1967; p 53. Phys. Chem1995 99, 13094.
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0.010 contamination is typically very small Calculations and
analyses of isotropic hyperfine coupling constants (at the
Hartree-Fock and DFT level) were done with the Gaussian94
progran?* Applying the CUBE program option, the values of
the individual orbitals at the transition metal nuclei have been
determined and they were used for the analysis of the contribu-
tions topn. DFT calculations of the dipolar hyperfine coupling
constants have additionally been carried out with a modified
version of the deMon-EPR cod&?>where a routine for the
analysis of the orbital contributions g, has been imple-

0.008 -

\ \[1sUﬁ OP 2 - (1501 2 mented. ' . '
-0.002+ The medium-sized (15s11p6d)/[9s7p4d] metal basis sets
(15,201 2 - [1s5 01 12 constructed in ref 11 (based on the work of Sehaet al?f)
-0.004+ were used together with basis sets BllIl of Kutzelnigg et al. (also
known as IGLO-IIF?) for main-group atoms. In the Gaussian94
=05 1o 15 2o 35 30 35 40 DFT calculations, the default integration grids (itfinegrid
r(a.u.) optior??) of the program have been used. In deMon calculations,
additional auxiliary basis sets (5,5;5,5) for the metal and (5,2;5,2)
0.010 for the ligand have been used to fit the density and the exchange-
[2s)F b correlation potential (in this case, an extra iteration without fit
0.0081 of the potential and with extended grid was carried out after
0,006 e~ [2pg®1 2 SCF convergence). For the numerical integrat.ion i'n deMon, we
: , N\ have employed a nonrandom FINE angular grid with 128 radial
0,004 / N\ shells10.28
V. Hartree—Fock Analysis of One- and Two-Electron Inte-
7 0,002 S grals: The total energy corresponding to a Hartré®ck wave
5 A/ |/ function may be written &8
70,0004
Ne N v ANe N - -
0,002 4 , =3yh'+ -+ = Ji— K +
0002 \\\ /! (25,212 2 - 25012 1 S .z ! .Z ! ZIZJZ( ! ! )
-0.004 | _\ 1NN " Ne N y
00 | | [ZSUﬁfrnzrz-'[2sR(r)]2'r2 | | Z.Z,z( P K+ ZIZJU 1)
00 05 10 15 20 25 30 35 40
r(a.u.)

with oe and 8 denoting spin.

Figure 2. ROHF radial distribution functiong3(r)]?r?, and differences The one-electron term

between UHF and ROHF radial distributions'i. (a) 1s (ROHF radial

distribution scaled by/s). (b) 2s (ROHF radial distribution scaled by 1 Z,

g). For comparison, t_he ROHF radial dist_ributio_n fu_nction _of the 2p h, = fdr 1’/):(r1) _ _Vi - Y —|pi(ry) 2)
SOMOs (scaled by/s) is also plotted (cf. discussion in section 5). 2 M

spin-polarized 2p and 3p orbitals. This viewpoint will be represents the average kinetic and nuclear-attraction energy of
strengthened and extended to valence-shell contributions by thean electron described by the orbitgl(ry); the two-electron
present work. Note that, for magnetic nuclei in an electronic Coulomb integral

environment of axial symmetry (i.e., those located on an at least

3-fold symmetry axis), as is the case for all transition metal 3 =T0ilic= (dr. dralw-(r 2w )2 3

nuclei studied here, the dipolar coupling tensor may be brought = WIE= fdr drly(r) o Twy(ro) ®)

to the form (—Adip, —Adip, 2Adip), WhereAdyp is the so-called  expresses the classical Coulomb repulsion between the charge
dipolar hyperfine coupling constant.

(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.

3. Computational and Methodological Details A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
. . V. G.; Ortiz, J. V.; Foresman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Calculations and MO Analyses of HFCCsIn the following Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;

discussion, we will neglect (spirorbit or scalar) relativistic Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-

; ; : ; Gordon, M.; Gonzalez, C.; Pople, J. Baussian 94revision E.2); Gaussian,
corrections to the HFCCs (which have been estimated in ref Inc.: Pittsburgh, PA. 1995,

11). The selection of experimental data for most of the systems  (25) a) Salahub, D. R.; Fournier, R.; Miynarski, P.; Papai, |.; St-Amant,
used here, and the conversion between different representations.; Ushio, J. InDensity Functional Methods in Chemisttyabanowski, J.,

; ; ; Andzelm, J., Eds.; Springer: New York, 1991. (b) St-Amant, A.; Salahub,
of HFCCZ, ha(;/e beer_l sumrrllanzled |? our previous ngshe | D. R, Chem. Phys. Letd990 169 387
Compute an expel’lmenta molecular structures used are also (26) Scliger, A.: Horn, H.; Ahlrichs, RJ. Chem. Phy4992 97, 2571.

those described in ref 11. We will concentrate on all-electron  (27) Kutzelnigg, W.; Fleischer, U.; Schindler, M. INMR—Basic

unrestricted KohaSham calculations, mainly on results ob- ;’gnd%%; and Progress/ol. 23, Springer-Verlag: Heidelberg, 1990; Vol.
. : - - o , p 165.
tained with the gradient-corrected BP8functional. This “pure (28) Daul, C. A.: Goursot, A.: Salahub, D. R.RATO ARW Proceedings

generalized gradient approximation has the advantage that spirbn Grid Methods in Atomic and Molecular Quantum Calculatigol. C412,
Cerjan, C., Ed.; Kluwer: Dordrecht, 1993; Vol. C412.

(23) Perdew, J. P.; Wang, WYhys. Re. B 1986 33, 8822. Perdew, J. (29) Szabo, A.; Ostlund, Neil 3Modern Quantum ChemistnDover:
P.; Wang, Y.Phys. Re. B 1986 34, 7406. New York, 1996.
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Table 1. Spin Densities at the Metal Nuclei (au) for a Series of Manganese Complexes

contribution8

core

molecule 1s 2s 3s VS SOMO total éxp 3s/2s
2[Mn(CO)s] 0.00 —0.18 0.09 0.04 0.06 0.00 0.00...0.01 —0.50
2MnO3 0.01 -0.33 0.18 —0.58 2.54 1.82 1.46 —0.55
2IMNn(CN)sN]~ 0.00 —0.39 0.20 0.04 0.00 —0.15 —0.25 —0.51
2[Mn(CN)sNOJ?~ —0.01 —0.50 0.24 0.13 0.00 —0.13 -0.20 —0.48
MnO 0.01 —1.40 0.64 —0.43 3.56 2.39 2.17 —0.46
S[Mn(CN)4]>~ —0.03 —1.60 0.71 0.46 0.00 —0.45 —0.60 —0.44
SMnF, 0.00 —1.62 0.72 -0.22 2.45 1.33 0.47...0.61 —0.44
‘MnH 0.01 —1.69 0.72 -0.84 3.86 2.07 1.52 —0.43
"MnF 0.01 —1.70 0.74 -0.12 3.68 2.61 2.40 —0.44
5Mn -0.01 —1.78 0.78 0.93 0.00 —0.07 -0.39 —0.44
Mn* 0.04 -1.79 0.76 0.00 5.30 4.31 4.12 —0.43
SMn2* —0.01 —1.85 0.79 0.00 0.00 —1.07 —-0.76..-1.2# —0.43

a DFT results with the BP86 functiondl. Contributions from the core-shell spin polarization (1s,2s,3s), valence-shell spin polarization (VS),
and singly occupied orbital(s) (SOMO)From ref 11, unless stated otherwigdasai, P. HAcc. Chem. Red971, 4, 329. Ar-matrix isolation.
¢Values obtained in different host crystals; see ref 1.

Table 2. Spin Densities at the Metal Nuclei (au) for a Series of First-Row Transition Metal Complexes

contribution8

core

molecule 1s 2s 3s VS SOMO total éxp 3s/2s
STiO 0.03 —-0.24 0.02 -0.12 2.31 1.99 1.91 —0.08
2TiF3 0.01 -0.17 0.03 —0.09 1.07 0.86 0.70...0.73 —0.18
SVN 0.03 —-0.34 0.07 -0.27 2.87 2.37 2.23 —-0.21
VO 0.02 —0.58 0.17 -0.25 2.74 2.09 1.98 -0.29
6Crt 0.00 —1.38 0.42 0.00 0.00 —-0.97 —0.30
S[Cr(CO)* —0.01 -1.20 0.39 0.35 0.00 —0.47 —0.82 -0.33
SFet —0.03 —2.30 1.19 0.00 0.00 -1.14 —-0.81..-1.08 —0.52
[Fe(CO)* —0.01 -0.33 0.19 0.05 0.10 0.00 —0.02 —0.58
J[Co(CO)] 0.00 —0.38 0.23 0.05 0.10 0.00 —0.05 —0.61
2INi(CO)3H] —0.02 —0.18 0.12 0.00 0.01 —0.06 —0.02 —0.67

a DFT results with the BP86 functiondl. Contributions from the core-shell spin polarization (1s,2s,3s), valence-shell spin polarization (VS),
and singly occupied orbital(s) (SOMO)From ref 11, unless stated otherwig€&/alues obtained in different host crystals; see ref 1.

clouds|yi(r1)|2 and|yj(r2)|% the two-electron exchange integral Below we refer to the sum of all Coulomb integrals from eq
1 as the total Coulomb energ¥d{) and to the sum of all
K; = 0[jiC= fdrldrzwi*(rl)w,- )y )y (@) exchange integrals from eq 1 as the total (negative) exchange
energy Ex). Note that the summations in eq 1 are not restricted
represents the exchange correlation of the two electrons ( to pairs of different spirrorbitals. Therefore, the (unphysical)
denotes the coordinates of electrigri® electrostatic interaction of an electron with itself is accounted
At the unrestricted HartreeFock (UHF) level of theory, the  for in the Coulomb part and again subtracted in the exchange
spatial parts of they® and ¢/ orbitals are allowed to differ, ~ part (ref 32 p 180). This allows a unique orbital breakdown of

while at the restricted-open-shell Hartreeock (ROHF) level  the total electron repulsion energy into exchange and Coulomb
they are required to be identical for every< NA. In the parts®®* The Coulomb part may be interpreted as a classical
following, we will discuss also the overlap integral electrostatical energy of a charge cloud of dengfty, whereas
the exchange part includes all nonclassical effects, (ref 32, pp
: * 34 and 39).
§ = Wic= [dry; (w0 (5) )

UHF and ROHF wave functions have been compared in terms 4. Analysis of Contributions to pn

of energies and spin density distributions for a number of  Table 1 gives a breakdown of the DFT results for the spin
spherical 38 cations (Cr, Mn?*, F€*), and for the nitrogen  density at the metal nucleus into MO contributions in a series
atom, using the Gaussian94 code, and basis sets as describegi manganese complexes (and in three atomic systems). Table
above. Using the CUBE option, the radial wave functions have
been extracted. Applying standard methods of two-electron _ (30) In this work, the notation for one- and two-electron integrals pertains
. . . to integration over the spatial parts of the corresponding-spihitals only.
integral calculations for atomic systerfithe values of Coulomb (31) Weissbluth, MAtoms and Molecules\cademic Press: New York,
and exchange integrals, nuclear attraction integrals, and overlap1980.

between radial wave functions (cf. below) have been determined. (32) Parr, R. G.; Yang, WDensity-functional theory of atoms and

: : D molecules Oxford University Press: New York, 1989.
For the numerical calculation of the Sl ondon parameters, (33) When self-interaction is not accounted for, the decomposition of

a radial grid of 102 au has been employed over a radius of 10 electron repulsion energy into Coulomb and exchange parts may be arbitrary.
au from the nucleus. Summation over all electrons and pairs of For example, foa p shell fully occupied with six electrons, both the total

electrons gives the total nuclear attraction energy and electronCoulomb and the total exchange energy depend on the orbital basis (angular
momentum eigenfunctions or real functions). The reason is{hay pxpyC

repulsion energy (cf. eq 1). The total kinetic energy has been — (P2l PP2= [ByPelPyP- = [P1Polp1Pol= [P 1PolP-1Pol5 (P 1p|p-1paL]
extracted from the Gaussian94 output. An analogous relation holds for the corresponding exchange integrals.
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Figure 3. Correlation between Mulliken gross d-orbital spin popula-

tions and core-shell spin polarization for a series of manganese

complexes. BP86 results.

2 provides the same analysis for other 3d complexes. In addition

Munzaret al.

following refer to the radial wave functions only (hence, the
scalar argument is used, rather than the vectoy. A given
pair of spin-polarized orbitals gsand 2§, contributes topy

like (2€5(0))2 — (2¢(0))% The function (2§(r))> — (2/(r))2
may be divided into two parts corresponding to (i) the
polarization of the 25 orbital and (ii) the polarization of the
24 orbital, relative to the corresponding orbitals in the restricted
(Hartree-Fock or Kohn-Sham) calculation. We may thus
expand the function as

@O — LN =1251))* — 2s:))] +
[(25:())* — (1) = [2si(r) + 25:(N)][2s5(r) —
25(N] + [25x(1) + 2 (N][2sx(r) — 2€(1)] (6)

If we denote [2§(r) — 2x(r)] asA2s* and [2€(r) —2%(r)] as
A2¢, eq 6 may be rewritten as

to the 1s, 2s, and 3s core contributions (i.e., contributions from (2{;(r))2 - (Z{J(r))2 = [2(254(1)) + A28X(r)]A2S(r) —

MOs with predominantly metal core character), we summarize

under “valence” contributions arising from the spin polarization
of the doubly occupied valence MOs. The direct contribution-

(s) from the SOMO(s) is(are) also given (for cases such as MnH

[2(254()) + A2¢(1)]A29'(r) = 2(25,(r))(A25(r) —
A29(N) + (A254(r)* — (A2€(r))? (7)

or MnF», where more than one SOMO possesses s-character, B0th A2s(r) andAZsG(g) are ”}‘UCE smaller than @6). The
their contributions have been summed up). Spin densities derivegduadratic terms A2sX(r))?, (A29(r))? may therefore be ne-

from experimental hyperfine coupling constd#isre included
for comparison.
While contributions from valence-shell spin polarization vary

in both their signs and magnitudes, the core contributions depend
much less on the detailed bonding situation (compare, e.g.

[Mn(CN)4]>~ and MnR).3* The negative 2s contributions

dominate, whereas the 3s contributions are smaller and positive.
The 1s contributions are very small. Both 2s and 3s contributions

increase with increasing spin multiplicity of the system.

However, the ratio between 3s and 2s (3s/2s ratio in Tables 1

and 2) remains close t60.5 for all Mn complexes (Table 1).

A more detailed analysis indicates that both the 2s and 3s

contributions exhibit a remarkable proportionality to the total
3d spin population (Figure 3). Neither the specific bonding
situation nor the spin population of the metal 4s orbitals

influence the 2s and 3s contributions appreciably. For example,

we may compare the 2s and 3s contributiongxdor the ®Mn
atom (-1.78 and 0.78 au), th&In™ cation -1.79 and 0.76
au), and théMn2* cation (~1.85 and 0.79 au).

glected. Furthermore, to a large exteN®X(r))? is compensated
by —(A2(r))? (cf. section 5). The left side of eq 7 may thus
be approximated as

(2N’ — M) ~ 2Q2%N)(A28(r) — A28() (8)

Analogously we obtain for the contribution from the 3s
orbitals

(BN’ — BLHM)* ~ 2@xN)(A3S () — A3E() (9)

The ratio between the 3s and 2s orbital contributions is thus
to a good approximation

(B)° ~ BLM)* _ 3(r) A3(r) — A3Y(r)
LM — LM 2%(r) A28 (r) — A24(r)

(10)

Each of the orbital contributions tp®#(r) is therefore
roughly proportional to the difference between the restricted

Interestingly, the 3s/2s ratio is influenced more by nuclear and unrestricted orbitals, but also to the absolute value of the
charge than by anything else (Tables 1 and 2). It becomes morerestricted orbital. As a consequence, the much larger value of

negative when moving toward the right end of the 3d series.

the 2s orbital at the nucleus results in the larger 2s orbital

This is seen best when comparing the isoelectronic high-spin contribution to p®#(0), although A3s%(0) — A3¢(0) >

d® ions 8Cr*, 8Mn2+, and8Fe**, for which the 3s/2s ratio is
computed to be—0.30, —0.43, and —0.52, respectively.
Intuitively, it is not clear whether this is just a consequence of

A2g(0) — A2¢5(0). The ratio 3g(0)/2%(0) changes only slightly
throughout the 3d series: for GrMn2*, and Fé*, we obtain
the ratios—0.373, —0.377, and—0.383, respectively (BP86

a change in the relative magnitudes of the (spin-averaged) 3sresults). In contrastA3s*(0) — A3g(0)/A2s*(0) — A29(0)
and 2s orbitals at the nucleus or of an increasing spin changes from—0.821 for Ct# through —1.138 for Mr¥*, to

polarization of the 3s orbital with increasing nuclear charge.
As will be shown below, the latter interpretation is to be
preferred. In the following, the spatial parts of the spambitals
¥5dNa(0), Yodr)B(o), ¥3dra(o), and yi(ra(o) will be
abbreviated as 2¢), 29(r), 3s4(r), and 24(r), respectively
(subscripts U and R will indicate unrestricted or restricted
orbitals). For s-type orbitals, the angular part of the wave
function is constant and equal to 1. Therefore, we will in the

(34) The low sensitivity of spin polarization contributionseiein organic

radicals on the particular bonding situation has been discussed. The

proportionality between the 1s and 2s contributions for; @ker a wide
range of conditions (out-of-plane bending) has also been reported.

135

—1.348 for F&" (extracted from ROBP86 and UBP86 results).
An interpretation of this trend is given in section 5.

While the valence-shell spin polarization contributiongo
appear to be irregular at first sight, we find a relation between
their sign and the character of the SOMO: The valence
contribution topy is positive only when there is no metal 4s
admixture into the SOMO (e.g., ifMn° S[Mn(CN)42-,
6[Cr(CO)]™) or when the admixture is very smad[Mn(CO)g],
2[Fe(CO)]M).2%In the presence of significant metal 4s contribu-

(35) For main-group systems with 2p-type SOMOs, that for symmetry
reasons may not mix with the bonding MOs, valence-shell spin polarization
always contributes positively toy (at the given main-group centéf).
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Table 3. Spin Densities at the Metal Nuclei (au) for a Series of the associated differences between the UHF and ROHF distribu-

Atomic Systems with Five Singly Occupied 3d Orbitals tions. The area confined betweep f(r)]2r2 — [yg(r)]?r2 and
contributior? the x axis may be interpreted as a measure of spin-density
core redistribution within a given spinorbital, due to spin polariza-
atomfion 1s 2 3s VS SOMO total &p  3si2s tion. We find that (a) in areas where the spin polarization

increases the magnitude of thespin—orbital, the magnitude

Crt —0.04 -2.11 051 0.00 0.00 -1.64 —0.24 of the corresponding spin—orbital is decreased and vice versa;
6Mn  —0.04 —2.71 1.31 1.08 0.00 —0.36 —0.33 —0.48 b) cl © th | ithin0 3 th in density of
SMn2* —0.08 —2.82 1.34 0.00 0.00 —1.57 —1.24.-0.76 —0.48 (D) close to the nucleus (withir0.3 au), the spin density o
6Fe®t  —0.12 —3.56 2.21 0.00 0.00 —1.48 —0.81..—1.05 —0.62 the 2¢ orbital decreases whereas that of the @bital increases

a UHF results.? Contributions from the core-shell spin polarization (see Figure 4a,c). The same holds for the relation between the
(1s,2s,3s), valence-shell spin polarization (VS), and singly occupied 2¢’ and 3§ curves. Furthermore, the 2@nd 3§ curves, as
orbital(s) (SOMO).cCf. Tables 1 and 2 for references. well as the 2f and 3p curves, exhibit the same kind of

complementarity in the core region (cf. Figure 4b,d). This
tions to the SOMO (and thus of large direct, positive SOMO suggests that the relation between the 2s and 3s contributions
contributions topy), the spin polarization of the valence shell 10 pn, in particular their opposite sign (as well as the relation
always contributes negatively tay (cf. MnH, MnO, MnG;, between 2p and 3p contributions to the dipolar coupling, cf.
and TiRs in Tables 1 and 2). section 7), is due to the orthogonality required between the

The signs of the individual MO contributions in Tables 1 orbitals of the M and L shells.
and 2 remain the same with the other gradient-corrected and To gain deeper insight into this relation, we examine in Table
hybrid functionals compared in ref 11, or even at the UHF level. 4 the influence of spin polarization on the values of two-electron
From a quantitative point of view, the contributions change only integrals between the SOMO(s) and the (spin-polarized) doubly
relatively little for different correlation functionals tested but occupied orbitals. We discuss first the exchange integrals. Each
change significantly upon inclusion of HartreEock exchange  of them has been calculated (a) for both electrons occupying
into the exchange functional. This is easily understandable, asROHF orbitals, (b) for the unpaired electron in a ROHF orbital
UHF calculations overestimate spin polarization considerably and the “paired” electron in a UHF orbital, and (c) for both
and thus lead to much larger negative core-shell contributions electrons in spin-relaxed (unrestricted) orbitals. This allows us
to pn. In contrast, gradient-corrected functionals tend to to compare the energy gain/loss due to the spin polarization of
underestimate the core-shell spin polarizafibAdmixture of the doubly occupied orbital and the effect of the relaxation
(the right amount of) HartreeFock exchange frequently brings  (contraction) of the SOMO. The spin polarization of the 2s and
the results into better agreement with experiment. Negative 2p orbitals increases their exchange interaction with the SOMO,
contributions from valence-shell spin polarization are also often and the SOMO relaxation enhances this interaction further, so
overestimated at the UHF level. In all cases studied, the UHF that the exchange stabilization may be understood as a driving
spin densities at the metal are lower than the DFT results (dueforce of 2s and 2p spin polarization. Exchange stabilization
to the core-shell contributions) and too low compared to correlates with an increase in the overlap of the radial wave
experiment (cf. ref 11). functions (Table 4, Figure 4a,b). In the following, we will refer

As an example, UHF results for a series of atomic high-spin to this type of overlap integral aadial overlap, as opposed to
d® systems are shown in Table 3. All qualitative aspects (sign the more common overlap integral defined in eq 5. The
and relative magnitude of the orbital contributions) are the same exchange of the 3s or 3p orbitals with the 3d SOMO is de-
for UHF as for DFT (BP86, cf. Tables 1 and 2). We note that creased by core-shell spin polarization and is accompanied by
the increase in the 3s/2s ratio along the 3d series (cf. discussiora decrease in the radial overlap (Table 4). Relaxation of the
above) is also present, albeit somewhat overestimated, at theSOMO recovers only part of the radial overlap and of the
UHF level. Referring to eq 10, ) /2%(0) changes from exchange interaction. Obviously, the redistribution of spin

—0.362 for Cr through—0.367 for M#* to —0.373 for F&, density does not enhance the exchange interaction with the
and A3s4(0) — A3g(0) /A2s(0) — A2¢(0) changes from  SOMO for all orbitals.
—0.667 for Cr, through—1.290 for Mrf*, to —1.348 for Fé* This may be not too surprising, as not only exchange with

(ROHF and UHF results, respectively). The qualitative similarity the SOMO but also Coulomb repulsion with the SOMO,
of the DFT and HF results justifies our use, in the following - exchange and Coulomb repulsion with the other electrons, and
section 5, of HF wave functions in the detailed analysis of spin g|ectron-nuclear attraction and kinetic energy change upon
polarization in atoms. We note that spin contamination is going from the ROHF to the UHF wave function. Indeed, the
negligible for the high-spin atomic systems studied, even with 5p50)ute value of the exchange energy is roughly 1 order of
UHF wave functions. magnitude smaller than these other terms. Note, also, that
changes in the exchange and Coulomb interactions foothe
spin—orbital are partly compensated by the corresponding,
We will start our discussion with a comparison of spin- complementary changes in tiflecomponent (Table 4). Spin
restricted and spin-polarized orbitals for kn In its 6Mn2+ polarizations of individual orbitals are obviously not independent
ground state, the cation has five unpaired electrons, all of themProcesses.
occupying metal 3d orbitals. The maximum of the 3d radial =~ What is the driving force for the spin polarization of the 3s
distribution is located at only slightly larger radius than the (and 3p) orbitals? To understand this we have to be aware that
outermost maximums of the doubly occupied 3s and 3p semicorethe optimized orbitals for an atom have to be orthogonal. This
orbitals (Figure 1). The 2s and 2p orbitals are much more may be realized (a) by the spin parts, (b) by the angular parts,
contracted and well separated from the M shell. or (c) by the radial parts of the wave functions. For two s-type
Spin Polarization of 2s vs 3s and 2p vs 3p Core Shells. o spin—orbitals, condition ¢ applies; i.e., the radial functions
Panels ad of Figure 4 show radial distributions of the 2s, 2p, have to be orthogonal, both for the ROHF and UHF wave
3s, and 3p ROHF orbitals dMn2*, respectively, as well as  functions. In other words, the area between the functien
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5. Analysis of Spin Polarization in Atomic Systems
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Figure 4. ROHF radial distribution functions{,(r)]42 (scaled by"1sq), and difference between UHF and ROHF radial distributions fof'\Ma)
2s, (b) 2p, (c) 3s, (d) 3p. For comparison, the ROHF radial distribution function of the singly occupied 3d orbitals (sc¢&lgdsbglso shown.
See text also.

2s()3s() r? and thex axis in regions wheréis positive has to SOMO, the reduced exchange interaction between 2s and the
be equal to the area in regions whdrés negative. This is SOMO would overcompensate the gain. This is best illustrated
demonstrated in Figure 5 for the spin-restricted case. If we now, in Figure 4. 28 is well separated from 3d and clearly enhances
for example, allow the 2sorbital to be polarized (decontracted its interaction with the SOMO upon radial expansion (Figure
to largerr, cf. Figure 4a), the negative area unflelecreases,  4a). In contrast, spin polarization of8s much less effective,
whereas the positive area increases. The orthonormality betweeras areas with increased and reduced overlap will partly
2s* and 3¢ has been lost. To recover it, the polarization of the compensate each other (Figure 4c). The same arguments may
3s* orbital must again enhance the negative area and reducebe applied to the spin polarization of the 2p and 3p orbitals
the positive area; i.e., it has to contract. Changes of thars (Figure 4b,d). The polarization of 2s3s*, and 3¢ orbitals is
3¢ spin—orbitals behave analogously, with opposite directions. of course not an isolated process but is accompanied by the
The same conditions apply to the“2@p* and 2p/3p° pairs; polarization of all other orbitals of either spin. Besides the
i.e., their radial functions must also remain orthogonal. Thus, exchange interaction, Coulomb repulsion and electrurcleus
orthogonality requires complementary polarizations of the L and attraction also come into play. This will be discussed in more
M shells. This orthogonality does not hold strictly for molecular detail below.
systems. However, as the nature of the core orbitals does not The requirement of orthogonality between the 3s and 2s
change much in molecules, we expect that the same mechanismsrbitals helps us also to understand better the dependence of
apply (see further below). their contributions tqy on nuclear charge. From the orthogo-
From this we conclude that the 2s orbital is spin-polarized nality of 2g(r) and 3§(r) follows:
to enhance the exchange interaction with the SOMO. The 3s
orbital has to stay orthogonal on 2s, even if this means a reduced
exchange interaction with the SOMO. Why does the spin 2LNIBHNT= R&KNR2%(NDT RK(NIASS T
polarization of the 2s orbital dominate? The reason is that the [A28(r)[3s:(r) O+ [A28'(r)|A3S'(r) =0 (11)
energy gain in the exchange interaction between the 2s and the
3d SOMO is much larger than the energy loss due to the The first term in the middle of (11) vanishes, since the ROHF
exchange interaction between the 3s and the 3d SOMO (Table2s and 3s orbitals are also orthogonal. The fourth term is negli-
4). If we were to optimize the exchange between 3s and the gible with respect to the second and third terms, siti2e*(r)
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Table 4. Exchange, Coulomb, and Radial Overlap Integrals between the SOMO and the Doubly Occupied Orlfikaig faauy

exchange integrals 1s 2s >2p 3s >3p
@r3ck|3cky RO 0.000 278 0.026 949 0.079 875 0.081 590 0.298 482
[ %3ck|3dkyd 0l 0.000 278 0.027 109 0.080 715 0.081 478 0.298 100
@pa3d| 3yl 0 0.000 278 0.027 172 0.080 900 0.081 553 0.298 340
Y313yl O [@pr30k|3ckyrl] 0.000 000 0.000 223 0.001 025 —0.000 037 —0.000 142
5 3, —[@ 833yl — Hr3cki3ckysl] = — 0.005 345
Coulomb integrals 1s 2s >2p 3s >3p
[@r30k|yr3dr0] 1.181 876 1.163 092 3.503 115 0.926 861 2.714 807
[%30k] Y 30ck0 1.181 876 1.162 929 3.502 484 0.927 437 2.720 802
%3y 33d0 1.182 956 1.163 962 3.505 616 0.927 996 2.722 392
@3 yl3diD 1.182 956 1.164 224 3.506 621 0.926 797 2.709 494
radial overlap integrals 1s 2s 2p 3s 3p
@RI 3k 0.001 854 0.028 223 0.025 459 0.069 239 0.072 500
@%|3dg8 0.001 855 0.028 413 0.025 748 0.069 099 0.072 259
@%|3diP 0.001 857 0.028 444 0.025 776 0.069 116 0.072 272
nuclear attraction integrals 1s 2s 2p 3s 3p
Wr|Z/r|yrO 612.889 503 131.448 180 129.454 856 40.539 902 37.291 698
1zl ly0 612.885 311 131.191 339 129.169 607 40.713 359 37.617 042
|z w0 612.892 007 131.627 837 129.643 564 40.433 853 37.032 423
3d
@r|Z/r RO 29.548 909
s (2Zir)ypl0 29.575 906

a Comparison of ROHF and UHF data. All radial wave functions have been normalized49 @079 577 4; see ref 30. @|pl= [y (r)*¢(r)
r2 dr, wherey(r) and ¢(r) are radial parts of the orbitalg(r,0)and ¢(r,0), respectively.
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Figure 5. Orthogonality of 2s and 3s orbitals in Min(ROHF result).

The function f= 2s()3s)r? integrates to zero. For comparison, the
functions 2s()r?2 and 3sf)r? are also shown. For 2s, the phase
convention differs from that used elsewhéfe.

<< 2%(r) and A3s*(r) << 3s(r) . Hence,

2sx(r)|A3S(r) H [A28(r)|3sx(r) [~ 0

Analogously, it may be shown that

[25,(r)|A3(r) H [A2€'(r)|35(r) I~ 0

(12)

(13)

Figure 6 illustrates eq 12 for Mn. The function
A3(r)2s:(r)r? is positive at most values, as 2€r) andA3s*
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Figure 6. Consequences of the orthogonality between 2s and 3s orbitals
in Mn2*. The functionA2sX(r)3s:(r)r2 + A3sX(r)2s(r)r? integrates to
zero; see text.

have equal sign where they overlap significantly. The function
A2s4(r)r? is negative everywhere, as regions of negative
A25(r) always match those of positivergs), and vice versd®

The total area undex2s(r)3x(r)r? and undeA3s(r)2s:(r)r?

is calculated to bet0.000 238 and-0.000 238, respectively.
The approximation in deriving eq 12 from eq 11 appears thus
to be well-justified. The spin polarization contributions

(36) Molecular or atomic orbitals are unique except for a phase factor.
Unless noted otherwise, in this work all s-type orbitals are defined as to be
positive at the nucleus. The choice of phase does not alter the physical
mechanism.
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0.4 Table 5. Analysis of ROHF and UHF Total Energies &in%"
and“N (au)
VN2t EN
Etot,RoHF —1148.793 015 —54.398 026
Etot,un® —1148.795 003 —54.401 648
Etot,unr — EtotroHF —0.001 988 —0.003 622
ExinroHF’ 1148.959 337 54.397 176
Exin,une® 1148.962 479 54.401 243
EkianHF_ Ekin’RoHF 0003 142 0004 067
Epot,roHE —2297.752 352 —108.795 202
Epot,une® —2297.757 482 —108.802 891
Epot,uHF — Epot,RoHF —0.005 130 —0.007 689
Ene RoHE —2717.979 039 —128.343 514
Ene.uHe —2718.011 143 —128.353 641
Ene,unF — Ene,RroHF —0.032 104 —0.010 127
Eee,ROHE 420.226 687 19.548 312
Eee,un® 420.253 661 19.550 750
Ece,unr— Ece,roHF 0.0269 74 0.0024 38
) Ec rond 511.200 248 31.975 583
Figure 7. Effect of nuclear charge on the 2s and 3s orbitals. Com- EC’U”Ff_ 511.230 621 31.987 506
: Ec,unr— Ec,ronE 0.030 373 0.011 923
parison of [2s(]?r? and [3sf) 142 for Cr™ and F&" (ROHF results). Ey rone® —90.973 561 —12.427 271
Ex,unrF? —90.976 960 —12.436 756
010 Ex.urir — Exromr —0.003 399 —0.009 485
0.08 aTotal (kinetic + potential) energy of the systefnTotal kinetic
\ energy.c Total potential energyHuot = Ene + Eed. @ Total energy of
0.064: A3s(r), Fet the electrons due to nuclear attractiéotal electror-electron repul-
’ ‘/ s, Fe sion energy Eee = Ec + Ex). ' The sum of all Coulomb integrals,
! including self-interactions? The sum of all exchange integrals, includ-
0043\ A3s%), Cr* ing self-interactions.
= 0021 ‘\'\‘ and 3). Previously the minimization of the electrostatic repulsion
: 0l NeEEm—— - with the unpaired electrons had been considered to be the major
T NIooE driving force of the 1s spin polarizatidit” According to our
0.02 1 calculation, 1s spin polarization does not lead to any significant
1 s, Crt difference between the. and 8 components with respect to
-0.04-.-"\\ . . exchange and Coulomb interaction with the SOMO, cf. Table
A25%(e), Fe 437 From this, and from the small 1s contributions of either
-0.06 ' y y y sign topy in different systems (Tables-13), we conclude that
0 0.2 04 0.6 0.8 1 . - s
r(a.u.) the 1s orbital reacts to the spin polarizations of the other doubly
Figure 8. Core-shell spin polarization in Grand F&": A2s(r), occupied orbitals rather than minimizing its rt_epu!smn with the
A3(r). SOMO. Note, for example, that the 1s contributionotpand

the sum of the valence-shell contributions always have opposite

A3s4(r) and A2s4(r) have to match the restricted orbital Signs (cf. also Tables 1 and 2).
distributions 2g(r)r2 and 3g(r)r?, to fulfill eq 12. Spin Polarization and Energy Gain The gain in exchange

Figure 7 examines the changes in the ROHF 2s and 3s radial€nergy, due to spin polarization, between the five SOMOs and
distributions upon increasing the nuclear charge by two (fhe d the doubly occupied orbitals in Mh (—0.005 345 au; see Table
ions 6Cr+ and 6Fe*+ are compared). Both 2s and 3s contract 4) corresponds to 104% of the difference between the total UHF
and increase their overlap with3s* and A2s%, respectively.  and ROHF potential energies (Table 5). For theatom, the
The redistribution of the electron density is more pronounced corresponding gain in exchange energy represents 105% of the
for the more polarizable 3s orbital. This is seen most clearly total reduction in potential energyE(y, Table 5). This is
when comparing the area confined between the curves33(Fe consistent with the usual interpretation of spin polarization as
and 3s(Ct) with the area confined between the curves 2&(Fe  being due to improved exchange interactions between the
and 2s(Ct). The contraction of 3s and 2s will thus enhance SOMO(s) and the doubly occupied orbital(s) in the UHF wave
[A2%(r)|3s:(r)Omore thanA3s%(r)|2s:(r)l] To retain orthogo-  function.

nality in the spin-polarized casA3s(r) has to increase relative Additionally, the spin polarization creates a new equilibrium
to A2s%(r). This is supported by Figure 8: While the absolute between electronelectron repulsion and electrenuclear
value of A2s(r) increases only slightly from Crto Feé*, attraction. The crucial role of electremuclear attraction energy

A3syr) is significantly enhanced. Consequently, the ratio (Ene) is demonstrated in Table 5. It provides the main energy
A3s4(0)/A2s%(0) is larger for F&". Analogously, A3(0)/ gain upon going from ROHF to UHF wave functions. This may
A2¢(0) is enhanced. As a result, the magnitude of the 3s/2s be rational_ized as follows: As the ROHF wave function is not
ratio of core-shell spin polarization contributionssipincreases ~ relaxed with respect to exchange interactions between the
with increasing nuclear charge (cf. Tables 2 and 3), due to the SOMO and the othex spin—orbitals, the density is too diffuse.
requirement of orthogonality between 2s and 3s shells. Spin polarization helps to contract the metat 38p*, and 38

Spin Polarization of the 1sOrbital. The direction of 1s spin or_b|tals and thqs _enhances electronuclear attraction. Part of
polarization in Mi* is the same as for the 2s orbital: the this energy gain is compensated by the decontraction of the

component expands, Whereas }fheompomnt contracts. Both (37) The strongly localized 1s shell experieneesorders of magnitude
processes produce a negative contributiopndcf. Tables 1 less exchange interactions with 3d than 2s does.
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charge density in s 2, 2p*, as well as in 35and 3§ (1¢, Table 6. Exchange, Coulomb, and Radial Overlap Integrals
24, 2[13 contract and thus loweEye). Tables 4 and 5 show that between the SOMO and the Doubly Occupied Orbitals*foau}t
the spin polarization improves exchangg) but increases the exchange integrals 1s 2s
total Ece This is also a consequence of an overall more r2pRI2pcyrl] 0.028 820 0.137 305
contracted charge density. Nevertheldsg, decreases, due to " w

the large contribution fronne. The total kinetic energyHin) [u2pei2pry gD 0.029190 0138789

increases, in agreement with the virial theor&m. 32p| 25y 0 0.029 505 0.139 322
Table 4 also shows that, due to formal similarity, the exchange 2Pl 25y 0 Br2pri2pryrl] 0.000 685 0.002 017

integrals and their changes upon spin polarization are closely o

connected with the radial overlap of the corresponding orbi- 3% — [@y2p)l 2Py Bpr2pri2pryr]) = —0.008 106

tals. (a) The exchange interaction increases in the series cqyiomp integrals 1s 25

(3d,1s), (3d,2s) and (3d,3s) and so does the radial overlap; (b)

the spin polarization increases the exchange integral with the Wr2pelyr2pR 0.947 366 0.668 210
SOMO when the radial overlap with the SOMO increases and W32pRly2pR0 0.947 209 0.677 922
vice versa”.9 In contrast, the Coulomb interaction increases along @o2pk pi2pi0 0.951 949 0.680 044
the series (3d,3s), (3d,2s), and (3d,1s), even though the 2s and 266y 2p 0 0.952 208 0.655 545

particularly the 1s maximums are far from the 3d maximum.
This implies that1/r1,00may actually increase with increasing radial overlap integrals 1s 25
distance between the radial maximums and vice versa. Com-

pared to the 1s wave function, the 3s wave function occupies a Wri2pe 0.020 783 0.076279
larger angular space. Thus, the electrons in 3s and 3d orbitals [@y12p:0 0.021107 0.075 845
are on average further apart (despite the large overlap of the @2 2p% 0 0.021 217 0.075 882
corresponding radial wave functions).

Coming back to the historical interpretations of spin polariza- __nuclear attraction integrals 1s 2s
tion in transition metal systems (sectioh!d, we conclude that | ZIr|yprO 46.584 427 7.532 656
the expansion of the 2®rbital reduces its electrostatic repulsion @pg|Ziryo 46.467 873 7.803 738
with the SOMO, both by reduced Coulomb interaction (angular p p
correlation) and by improved exchange (radial correlation). This GpolZiry0 46.669 016 7.201 735
would correspond to the usual “effective attraction” of like- 2p
spin electrons on a radial scale. On the other hand, the boundary WrlZIv|yrO 6.703 116
condition of orthogonality to 2s forces the 3s spin polarization %|Z/r|y%0 6.737 093
Eg)s(ﬁﬁinrzop?arzgl?n:r%r;tﬁgtsl?n of 3§, irrespective of the Ta; IFéO4HF and UHF result¥See also corresponding footnote to

Comparison to the Main-Group Case ¢N). The quartet
ground state of the nitrogen atom is a good main-group example Coulomb repulsion is compensated by reducé®ps repulsion
to be compared with, as it exhibits a spherical distribution of and increased nucleaelectron attraction (Table 6).
the three unpaired electrons in the 2p orbitals. The positive 2s  Valence-Shell Spin Polarization in MrP. As a first step
contribution topy (0.91 au, UHF result) overcompensates the toward a better understanding of valence-shell spin polariza-
negative 1s contribution«0.74 au), giving an overall positive  tion in transition metal systems, we examine the spin polariza-
on (cf. ref 19e). The spin polarization of the nitrogen 1s and 2s tion of the 4s orbital in théMn° atom, comparing ROHF and
orbitals (Figure 2a,b) may be compared to the polarization of UHF wave functions and energies. The spin polarization is
the 2s and 3s orbitals in Mh (Figure 4a,c). For nitrogen, the  qualitatively the same as discussed above for the 2s orbital in
1<+ and 28 orbitals expand, whereas thefland 2¢ orbitals nitrogen: Thex-component contracts, whereas theomponent
contract. Note that, in contrast to the situation for the 3s and expands (Figure 9). The exchange interaction between 3d and
3d orbitals in M@+ (see above), the second maximum of the 4s (0.006 581 au at the ROHF level) is overall less pronounced
2s distribution is located at slightly larger radius than the 2p than between 2s and 3d in ®th(0.026 949 au; cf. Table 4),
maximum. but the energy gain upon spin polarization is still significant

The opposite direction of the polarization of the* asd 2& (+0.000 872 au). This is due to the large polarizability of the
orbitals is again required by their mutual orthogonality. How- 4s shell, which also leads to a significant redistribution of spin
ever, in contrast to the M case, in this case, the spin polari- density (Figure 9) and to a larger spin polarization contribution
zation enhances the exchange interaction with the 2p SOMOto pn from 4s compared to 3s (Table 1). We may also view
for both s orbitals, despite the slight decrease of radial overlap this, within a configuratiorrinteraction framework? as a
between 2sand 2p (Table 6). This appears to be due to the consequence of the lower excitation energies of the 4s valence
dominant role of the second maximum of*2Spin polarization compared to the 3s core orbital (for the same reason, spin
brings the latter closer to the 2maximum and thus enhances contamination is largely connected to valence-shell spin polar-
29/2p* exchange. The acccompanying increase /28 ization; see below). The same argument holds of course for the
comparison between valence-shell 2s vs core-shell 1s spin
polarization in nitrogen (see above).

(38) Levin, I. N.Quantum ChemistpAllyn and Bacon: Boston, 1975;
p 363.

(39) Exchange interactions are more short-ranged than Coulomb repulsion . .
and thus parallel more closely the radial overlap (see, e.g., Bethe, H. A.; 6. Valence-Shell Spin Polarization in Molecules
Jackiw, R.Intermediate Quantum Mechanjc8V. A. Benjamin, Inc.: . . .
Reading, MA, 1974). In contrast, Coulomb repulsion may also be large for AS discussed above, the spin polarization of the core shells
two nonoverlapping pointlike charge distributions, provided their distance does not depend much on the particular bonding situation. It is

is not too large. Of course, even the exchange interactions may deviate similar for molecules and for atomic systems (cf. Tables 1 and
from the behavior of the radial overlap integrals, due to the influence of

the "Izl factor in the integrand of eq 4 (cf. also discussion 4. (40) Melchior, M. T.,J. Chem. Phys1969 50, 511.
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by an interaction of the metal 3dand 34, orbitals with the
appropriate linear combination of ligand 2pbitals (1€). The
third linear combination of ligand 2prbitals is nonbonding
(3a&'"). [Mn(CO)s] and [Mn(CNYN]~ adopt square-pyramidal
structures €4, symmetry). [Mn(COj] is a low-spin d complex.
Its SOMO is composed of metal 3cand 4p orbitals (12y).
The 4p admixture reduces the-antibonding interaction with
the axial ligand by polarizing the SOMO toward the opposite
side. The metal 4s contribution to the SOMO is small, giving
a small, positive direct SOMO contribution . [Mn(CN)sN]~
is a d complex with a single metal 3dtype SOMO (2h). In
both square-pyramidal complexes, twwbonds in the equatorial
plane are formed by an interaction between a metal 4s/3d
hybrid, the metal 3d_,? orbital, and the corresponding ligand
o-bonding hybrids (aand i MOs). Theo bond to the axial
ligand involves mainly the metal Fdorbital. The metal 3¢
orbital (by) is partiallyz bonding to the equatorial ligands, the
3dy,, 3d,, orbitals (e) interact also with the axial ligand. The
antibonding counterparts of the latter three orbitals (which may
be derived from the well-knowtyg set in octahedral symmetry)
correspond to the six nonbonding d electrons of [Mn(£§O)
The valence-shell spin polarization concentratesspin
density at the metal (cf. discussion above for the’ldtom and
ref 18). An excess of spin density is left at the ligands. In

0.020
Bdg@P 2
!

0.0151

0.010+1

(a.u.

0.0051

0.000

s, X0 2 - s 2
2.0 40

s MO 2 - [dsp 0P P
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0.0

60 80 r(a.u.lg'O
Figure 9. ROHF radial distribution functionR(r)]r? (scaled by4/,.)

and difference between ROHF and UHF radial distributions for the 4s
orbital in MrP. For comparison, the radial distribution function of the

3d SOMOs (scaled b¥,.) is also plotted.

Table 7. Orbital Contributions tdAq, for TiF; and MnQ (auy
contribution

MO character Tik MnOs IMN(CNYN] - th ) larization i the atomi )
; n 4N]~, the spin polarization increases the atomic spin
a (mgit%;d;;ﬁ%ied MO) 0-441 0.640 population of Mn from 0.51 (SOMO contribution) to 1.18 (total
33"  (ligand 2p) 0.012 0.052 spin populatiof!). Thea spin density is withdrawn mainly from
1€’ (metal 3d, 3d,; 0.005 0.147 the axial ligand and added mainly to d-type orbitals of Mn (0.25,
, ligand 2p) 0.10, 0.10, 0.07, and 0.06 electrons g, d;, dy, d?—? and
6a (mﬁtae“'n‘és'zs % ) 0.013 0.206 d22, respectively). This likely enhances the overall negative core-
5d (megt]al 3dy,péoL2p,/y?; —0.014 —0.113 shgll spin pqlarization contri_buti_ons oy (cf. sectic_)n 5). The
ligand 2, 2p) spin population of the 4s orbital increases also slightly (several
4¢ (ligand 2s) 0.051 0.008 metal-ligand bonding orbitals are involved), resulting in a small
28 (metal 3p) —0.086 —0.018 contribution topy of +0.04 au (Table 1). This is much less
ii,, gmg:g: gg) 3p) :8:323 :8:123 than the valence-shell contribution in Mr-Q.93 au), where
2¢/1€  (metal 2p, 2p) 0.048 0.108 the spin polarization of the fully occupied 4s orbital contributes
(note also that [Mn(CNN]~ has only one unpaired electron
total 0.305 0.746 whereas Mn has five).
exp 0.22(1)...0.0.27(1)  0.62(2p e _ o ) )
<> 0.7526 0.7875 Similarly, spin polarization increases the spin population at

the metal in Mn(CQ) from 0.58 (SOMO contribution) to 0.82.
The increase concentrates mostly in orbitals of e symmetry (the
metal 3d, 3d,, 4p, and 4p orbitals, total gain~0.13). The
spin population in orbitals ofigymmetry increases only slighly,
2). In contrast, the spin polarization of the valence shells is by 0.04 for 3¢? and by 0.03 for 4s. The increase is only 0.03
characteristic of the specific chemical environment and bonding. and 0.01 for 3¢, and 3d%-,? respectively (with significant
We have selected the four examples, sJiINOs, [MN(CO)], consequences fdakqip, cf. below).
and [Mn(CN)N] -, to discuss valence-shell spin polarization Negative valence-shell contributions gq are found for the
contributions topn. DFT results obtained with the BP86 isoelectronic Tik and MnQ, due to an interesting rehybrid-
functional will be examined (Tables 1 and 2). ization mechanism: The spin polarization, mainly of the metal
These complexes represent a variety of different bonding ligand o-bonding 6@ MO, shifts a density from the ligands
situations (cf. Tables 7 and 8 for a characterization of the MOs). toward the metal. Therefore, the spin population at the metal is
TiFs?2 and MnQ are isoelectronic, trigonal planar £ d* enhanced from 0.93 (SOMO contribution) to 1.04 in Ji&nd
complexes. Their SOMO (74 is metat-ligand o antibonding from 0.64 to 1.19 in Mn@(the larger effect for the manganese
and is dominated by the metal Bdorbital, with some 4s complex is a consequence of the larger covalence ofothe
character mixed in. While the SOMO in Tiks localized to bonds). However, at the same time, the metal contribution to
94% at the metal (with 76% 3% and 18% 4s charact8), in this bonding MO loses 4s character and gains 3d character.
MnOQs; it is more delocalized (with 49% 3 15% 4s, and 36%  Therefore, the overall valence-shell spin polarization contribu-
ligand character). Thregbonding orbitals (5¢6a') are formed tion to pn and thus tAs, is negative (and that tgp positive,
by the interaction of metal 3gland 3d2_,2 orbitals €), a metal cf. below), in particular for the very covalent MgONe also
3d/? orbital with 4s admixture (&), and the appropriate ligand  note that, in Til, the excess. spin density is distributed almost
orbital combinations. In addition, two partialbonds are formed  equally over all five metal d orbitals. In contrast, the excess
spin population in Mn@pertains mostly to the.?, dx, and g,

a DFT(BP86) results. All values have been divided by the nuclear
g value. Contributions, which were for both molecules smaller than
0.01 au, have been omittetl.Reference 11.

(41) The orbital compositions and spin populations reported here have

been obtained using a Mulliken population analysis of the BP86 Kohn
Sham wave function.
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orbitals (+0.17,+0.13, and+0.13, respectively) and less to
the dy and d?,? orbitals (eacht0.05).


Annette
141



EPR Hyperfine Coupling in Transition Metal Complexes J. Am. Chem. Soc., Vol. 122, No. 48,1210

Table 8. Orbital Contributions tdAg, for [Mn(CO)s] and [Mn(CN)N]~ (auy

contribution

MO in [Mn(CN)sN]~/[Mn(CO)s] character [Mn(CNYN]~ [Mn(CO)s]
—/17a (Mn 3d2, 4p,, 4s, SOMO in [Mn(COJ]) 0.763
—/11e (Mn 3d, 3d,; eq ligands 2p 0.032
2by/2by (Mn 3d,y, eq lig 2p, 2p,, SOMO in [Mn(CN)N]") —0.669 —0.040
13a/l4a (eq ligands sp sp, hybrids Mn 4s) —0.030 0.002
5hy/5b, (eq ligands sp sp, hybrids Mn 3d2_?) -0.015 0.000
1b/1by (Mn 3d,, eq ligands 2p 2p)) —-0.273 —0.003
6e/10e (Mn 34, 3d,; eq ligands 2p 2p)) 0.110 0.021
4D,/6b, (Mn 3d2-, eq ligands 2$2p+2p,) —0.069 —0.013
1la/l12a (Mn 4s+3d2, eq ligands 2$2p+2p,) 0.018 —0.002
8a/9% (Mn 3p) 0.076 0.057
4elde (Mn 3R 3p) -0.121 —0.044
3a/3a (Mn 2p,) -0.077 —0.094
le/le (Mn 2p 2p) 0.163 0.048
total —0.882 0.727
exp —0.929 0.68(6)? 0.70(5¥
<S> 0.7729 0.7544

aDFT(BP86) results. See also footnote to Tablé Reference 11.

In both [MN(CN)N]~ and MnQ, the largest valence-shell  butionsdue to the spin polarization of the doubly occupied
spin polarization is experienced by doubly occupied orbitals orbitals are clearly nonnegligible. We may discriminate again
which are the bonding counterparts of the partly antibonding between core- and valence-shell spin polarization.

SOMO (this holds at the BP86 level but is altered upon adding  Core-Shell Spin Polarization.A common feature of all four

Hartree-Fock exchange; see section 8). In [Mn(GN)™, this  systems are the significant contributions Ag, from metal
is the 1h orbital which represents bonding between the metal  p-type core orbitals. The metal 2pontributions are always
and the equatorial ligands. In MaQt is the o-bonding 6a negative; the 2pand 2 contributions are always positive. This

orbital. This observation may again be rationalized by a tendency s consistent with the discussion in section 5: Spin polarization
to maximize the exchange interaction with the SOMO; i.e., the expands the Zporbitals and contracts the 2prbitals. Thus,

o component of the doubly occupied MO is polarized toward the positive contribution from 2pto Agi, becomes smaller than
the metal (where the SOMO s largely localized), tie  the negative one from 2h and the negative contributions from
Component toward the Iigands. Due to the Iarge overlap with Zp)((l, 2p/(1 become smaller than the positive ones frornﬁZp
the SOMO, the spin polarization is particularly effective in these 2p/. In a system of cubic or higher symmetry, these contribu-
MOs. The abovementioned rehybridization in theand 3 tions would cancel exactly. In less symmetric systems, the
components of the-bonding 6a& MO of MnO3; and Tiks may anisotropy of the 2p spin polarization disturbs the balance
be understood analogously: The SOMO has moré tBdn 4s between the two contributions. For our four systems, the effect
character, and thus an increase of the relative d character in thas clearly nonnegligible, correspondingt&—10% of the total

o component of the bonding MO improves the exchange Ay, The 2p orbital dominates the 2p shell contributions in FiF
interaction with the SOMO. In Tifand Mn(CO3, the bonding MnOs, and [Mn(CO}] (the 3d2-type SOMO affects particularly
counterparts of the (antibonding) SOMO are not polarized the 2p* component), whereas spin polarization contributions
significantly. In TiR, this is due to the ionic character of the = from 2p, and 2p orbitals are larger in [Mn(CNN]~ (the 3dy-
bonds. In Mn(CO, the SOMO is polarized away from the  type SOMO affects mostly 2p and 25%.

ligands (by 4padmixture) and thus has also little overlap with The requirement of orthogonality between the 3p and 2p

the doubly occupied valence MOs. shells for atoms, as stated in section 5, does not hold strictly
for molecules. Nevertheless, the,3mnd 3 contributions to
Adgip generally have the opposite sign of the,2qnd 2p
contributions. The 2pand 3p contributions are also of opposite
While spin polarization is usually not considered for the sign for [Mn(CO}] and [Mn(CN)N]"~. Therefore, the positive
dipolar hyperfine coupling (cf. Introduction), two recent com- 3P and the negative @nd 3 contributions partially cancel,
putational studies have shown that in transition metal systems!eading to a relatively low overall 3p contribution. In Fi&nd
spin polarization may have a significant influeé82The most ~ MnOs;, the presence of thi*-type SOMO forces both 2pand
important MO contributions to the metal dipolar couplings of 3p:* orbitals to expand. Therefore, 3gnd 3p/3p, contributions
our four examp|e Systems are summarized in Tables 7 and 8d0 not Compensate but enhance each other. Therefore, the Spin
(again, DFT results with the BP86 functional are compared). Polarization contributions from the 3p shell in Fi&nd MnQ
As expected, the largest contribution in all cases is the direct are particularly large and amount te23% of the totalAq, in
one from the SOMO. This is positive for THFMnOs, and MnOs and even to~64% in TiR! 1122
[Mn(CO)s] but negative for [Mn(CNjN]~.42 However, contri- Valence-Shell Spin Polarization.In the relatively ionic
12 The dinolar Fvnerfine neracion : po— g complex Tiks, valence-shell spin polarization contributions to
o O i F i cfert 27 2921 Ay, are small, with the largest individual MO contrbuton
orbital, the By,AyAz) vector is of the form {B,—B,+2B). For the other arising from a nonbonding fluorine 2s orbital combination of
d orbitals, the signs are reversed. F@-&f (AwAyyAz) ~ (B, B,~2B), for 4¢ symmetry (this and other results of our analysis forsTiF
the (F)Axg'r'gﬁiftv;?‘éf) = r(BE; (;iiys?&zgng ?S;rléiaz'gf‘;‘éf &0?::32532(:;5% hold are consistent with earlier results by Belanzoni et3alWe
(+2B,—B,—B), and for § (AwAyAz) ~ (—B,2B—B). See, e.g., ref 2 for  find larger valence-shell contributions for MeQrable 7). The
a detailed discussion. covalency of the MrR-O ¢ andsr bonds enables a significant
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shift of o spin density toward the metal (cf. above). Large are also affected significantly by the spin contamination: As

positive contributions td\gjp arise from the 6aand 1¢ MOs the spin population of metal d-type orbitals is exaggerated, the
(involving the metal ¢ and dJd,, orbitals, respectively), spin polarization of the 3s and 2s core shells becomes too large.
whereas th&e MO (involving the metal ¢, and d?_,? orbitals) Thus, for example, the core-shell spin polarization contribution

contributes negatively. Thus, while the overall negative spin to py in [MN(CN)4N]~ increases from-0.192 au with the BP86
polarization contributions t8yi, in TiF3 involve mainly the core functional up to—0.566 au with the BHP86 functional (with
shells (in particular 3p), additional significant, overall positive very small changes in the valence-shell contributions). Conse-
valence-shell contributions dominate for the more covalent quently, the BHP86 result fés, (—558.5 MHz) is considerably
MnOs. This has consequences for the sensitivity to spin more negative than the experimental valt@19.5 MHz). Note,
contamination (see below). in contrast, that for Tif or [Mn(CQO)] no significant spin
Valence-shell spin polarization contributionsAg, in [Mn- contamination was fount, consistent with the small valence-
(CO)g] are relatively small and partially compensate each other shell spin polarization (due to the small overlap between SOMO
(Table 8). This appears to be a direct consequence of theand doubly occupied valence MOs; see above).
character of the SOMO, which overlaps very little with the other
valence MOs. In contrast, valence-shell contributions in 9. Conclusions
[Mn(CN)4N]~ are significant. The largest contribution arises
from the energetically high-lying, doubly occupied counterpart
(1by) of the 2k SOMO. If it were not for its very large, negative
contribution, the remaining valence-shell spin polarization
contributions would almost cancel each other: A significant
positive contribution from the bonding 6e MO is compensated
by negative contributions from equatorialbybonding MOs.
The significant valence-shell spin polarization contribution to
Adip (29% of the total value) in [Mn(CNN]~ is thus at least in
part due to the presence of a doubly occupied MO that has
particularly large overlap with the SOMO.

The present study has shed light from various directions on
hyperfine coupling in 3d transition metal complexes. From the
detailed analysis of the spin polarization of the metal core shells
in atomic systems, we have learned that the opposite contribu-
tions from the metal 2s and 3s shells to the spin density at the
metal nucleuspn, and of the 2p and 3p shells to the dipolar
coupling constantshgip, is @ consequence of the orthogonality
requirement between orbitals of the same angular momentum.
While the 2s and 2p orbitals maximize their exchange interaction
with the SOMO, the 3s and 3p orbitals are forced to lose some
of their exchange to stay orthogonal to their respective penul-

. . between 2p and 3p) contributionsdg along the 3d series may

The above discussion shows clearly that the two complexes e ynderstood from the nodal structure of the orbitals. We expect
MnO; and [Mn(CN)N] ™ exhibit particularly pronounced valence-  hat similar considerations apply to 4d and 5d systems.
shell spin polarization, due to the presence of high-lying doubly Parts of this analysis are consistent with traditional views of

%:]CUp'?d bond;ng MOs thalt ovz\rllap fs:;ongly vtvlth_tt_heISOMO._ spin polarization, e.g., in main-group compounds, as being due
ese wo systems were also two ol the most critical Cases Ny, - appanced exchange between thecomponent of the

our systematic validation of different density functionals for the respective doubly occupied orbitals and the SOMO. A complete
calculation of hyperfine coupling constaritdn particular, spin view, however, has to include the complementary polarization

c_ontelxmlnatlon tu(rjnelgl ou't/lto ge a_problef,:m V\éhehn hyr?”d fync- of the 3 spin—orbitals, as well as changes in Coulomb repulsion
tionals were used. For [Mn(Ch)I]~, we found that the spin and nucleatelectron attraction.

contamination was related to a mixing in of low-lying excited While the core-shell spin polarization contributions to the

states that involver-type orbitals. Upon going from a pure isotropic hyperfine couplings have been found to be proportional

gradl_ent-co_rrected (.GGA) functional ‘like BP86 to hybrid to the spin population in the metal 3d orbitals, they are relatively
functionals incorporating exact exchange, the population of each.

) : ) independent of other details of the bonding. In contrast, the
of the metal ¢; and d, orbitals increased dramatically, e.g., valence-shell spin polarization depends strongly on the electronic
from 0.08 for BP86 to 0.62 for the “half-and-half” BHP86 pin p X gy

functional. At the same time, th& expectation value of the structure of the system. Particu_larly Ia_rge valt_ence-shell _spin
Kohn—Shém wave functiold i’ndicated a significant increase polarization contributions to both isotropic and dipolar coupling

in spin contamination (BP86x$> = 0.773; BHP86: <> g?r;lsi';iigt:tlar\?viftﬂugéjrtgrrlStilisfrln?nln &hdgr tggcioigﬂdovg\l/:rzlc?eps
= 1.784). Similar effects were noted with Ma@ Obviously, ar y gn-lying o pied 1
oo . . orbitals. These are the same cases in which our previoust$tudy
the exact-exchange contribution to the hybrid functionals favors . ; o -
. - ; L found dramatic spin contamination effects to plague unrestricted
excited states of higher spin multipicity to the extent that the - . : . "
. Kohn—Sham calculations with hybrid functionals. In addition
UKS wave functions for the ground state of these types of - Lo . . .
A . . to providing some basic insight into the mechanisms of spin
systems become significantly spin-contaminated. olarization in transition metal systems, the results of the present
In both systems, the description A, deteriorated signifi- p Y ' P

. . 8 ; - work may also be used to pinpoint the weaknesses of certain
cantly with hybrid functionals, becoming too positive for MO theoretical approaches for the calculation of hyperfine couplings
and insufficiently negative for [Mn(CNN]~. Our present PP yp pling

S . C and thus hopefully also to develop improved methods.
analysis indicates that the spin contamination produces too large . Lo o
In contrast to the assumptions implicit in many qualitetive

spin populations ing and dtype orbitals and thus too large N . : .
bin pop 4 dztyp 9 and quantitativé4>schemes in current use by experimentalists,

positive contributions tAgjp from these orbitals. For similar both dval hell spi larizati ianificantl
reasons, hybrid functionals underestimateg in the related oth core- and valence-shetl Spin poarization may significantly
contribute to transition metal dipolar coupling constants.

complex [Mn(CN}NO]?~.11 At the same time, the isotropic : . e . :
. - . : . Moreover, for Tiik and MnQ, we have identified an interesting
coupling constants, i.e., the spin density at the metal nuclei, T . - >
uping I P hd ucel 3d/4s rehybridization of the SOMO upon including spin

(43) These<S*> values pertain to the noninteracting reference system
rather than to the real system. Such data are nevertheless expected to give (44) Varberg, T. D., Field, R. W., Merer, A. J. Chem. Physl991, 95,
a reasonable and useful representation for the real system as well (seel563.

e.g.. Baker, J.; Scheiner, A.; Andzelm,Qhem. Phys. Lettl993 216, (45) Balfour, W. J., Merer, A. J., Niki, HJ. Chem. Phys1993 99,
380). 3288.
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polarization. These features complicate the extraction of spin Industrie. Part of this work benefitted also from the graduate

densities and orbital character from experime@} values. college "Moderne Methoden der magnetischen Resonanz in der
Explicit quantum chemical analyses are thus to be preferred Materialforschung” at UniversitsStuttgart. We are grateful to
instead. Drs. Dominik Munzar (Brno), Bernd Schimmelpfennig (Stock-
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Concepts without factual content are empty, sense data without concepts are
blind... . The understanding cannot see. The senses cannot think. By their union
only can knowledge be produced.

Immanuel Kant (1724-1804)

8 A Density Functional Study of EPR-Parameters for Vanadyl
Complexes Containing Schiff Base Ligands'

Introduction

The coordination chemistry of vanadium has recently received increased attention
due to the reported biochemical activity of vanadyl complexes. The latter is being
related to the interplay between four-coordinate, tetrahedral structures of vanadates(V)
and five-coordinate, trigonal bipyramidal structures of vanadyl(IV) or vanadyl(V)
complexes. Structural distortions have been found to be reflected characteristically in
the EPR spectra of vanadyl(IV) complexes.” The following paper reports density
functional calculations of electronic g-tensors and metal hyperfine coupling tensors for
a series of four of these vanadyl complexes with structures ranging from nearly trigonal
bipyramidal (TBP-5) to nearly square pyramidal (SQP-5). The EPR spectroscopic
parameters have been rationalized in terms of electronic and geometrical structures. The
author of this thesis performed all of the calculations included in the study, most of the

interpretational work, and contributed significantly to the preparation of the manuscript.
Results

The Ag-tensor components are underestimated systematically by ca. 40%. Good
agreement with experiment is obtained for hyperfine tensor components calculated with
hybrid functionals that account better for the spin polarization of the core orbitals than
GGA functionals. The rhombicity of the hyperfine tensor is reproduced well at all levels
of theory applied. It is mainly determined by the SOMO composition. The latter

explains the increasing rhombicity of the A-tensor with increasing distortion of the
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SQP-5 structures along the series of complexes studied. The orientational dependence
of the principal tensor components on the local vanadium coordination is much more

pronounced for the g-tensor than for the 4-tensor.

Conclusions and outlook

The paper provides interpretations of the observed trends in the spin Hamiltonian
parameters in terms of the SOMO compositions and of spin-orbit coupling. In addition
to the magnitudes of the principal components of both tensors, the calculations provide
also their orientations relative to each other, and relative to the molecular framework.
Such information is more difficult to obtain experimentally. The orientation of A- and
particularly g-tensors with respect to the molecular framework, or the experimentally
more accessible relative orientations of g- and A4- tensors appears to be very sensitive

probes of the local symmetry and coordination of the oxovanadium group.

Apart from interpretational purposes, the present study has also served as a further
validation of DFT approaches for the calculation of EPR-parameters in transition metal
complexes. Hybrid functionals provide better agreement with experimental hyperfine
tensors than gradient-corrected functionals. Preliminary tests suggest that hybrid
functionals may provide better accuracy also for Ag-tensor components that are

underestimated systematically within the LDA and GGA approaches.’
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Abstract. Deviations of the coordination arrangement of vanadyl complexes from a
regular square pyramid are thought to influence, among other things, their biological
function. Such structural distortions have been found to be reflected characteristically in
EPR spectra (Cornman et al. /norg. Chem. 1997, 36, 6401). In this work, density
functional calculations of electronic g-tensors and metal hyperfine coupling tensors
have been carried out for a series of four of these vanadyl complexes with structures
ranging from nearly trigonal bipyramidal (TBP-5) to nearly square pyramidal (SQP-5).
The EPR spectroscopic parameters have been rationalized in terms of electronic and
geometrical structures. Using all relevant perturbation operators together with local or
gradient-corrected density functionals, Ag-tensor components are underestimated
systematically by ca. 40%. Good agreement with experiment is obtained for hyperfine
tensor components calculated with hybrid functionals (B3PW91, BHPWO91), which
account better for the spin polarization of the core orbitals than GGA functionals like
BP86. The rhombicity of the hyperfine tensor is reproduced well at all levels of theory
applied. It is mainly determined by the SOMO composition. The latter explains the
increasing rthombicity of the A-tensor with increasing distortion of the SQP-5 structures
along the series of complexes studied. The orientational dependence of the principal
tensor components on the local vanadium coordination is much more pronounced for
the g-tensor than for the A-tensor. The principal axes of the g- and 4- tensors are found

to be rotated with respect to each other by as much as 41°.

Keywords. Bioinorganic chemistry, density functional theory, EPR hyperfine coupling

tensors, g-tensors, vanadyl complexes.
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1. Introduction

The coordination chemistry of vanadium has recently received increased attention,
due to the discovery of enzymes requiring vanadium for activity,' and due to the
insulin-like effects elicited by vanadium complexes in diabetic animals.” The
biochemical activity of vanadium is often related to the interplay between four-
coordinate, tetrahedral structures of vanadates(V) and five-coordinate, trigonal
bipyramidal (TBP-5) structures of vanadyl(IV) or vanadyl(V) complexes.3 The TBP-5
coordination appears to the consequence of significant steric constraints, as square
pyramidal (SQP-5) or distorted SQP-5 complexes are formed in the absence of bulky
ligands.* To probe these constraints, Cornman et. al. have recently prepared a series of
vanadyl complexes, in which the coordination arrangement varied from approximately
SQP-5 to approximately TBP-5." An angular structural parameter 7 (ranging from z=0
for purely SQP-5 coordination to z=1 for purely TBP-5 coordination) has been
introduced to quantitatively compare the coordination sphere of the metal. The value of
rvaried from 0.26 to 0.70 for the complexes studied in ref 5. EPR and pulsed ENDOR
studies showed that both hyperfine coupling (HFC) tensor components and nuclear
quadrupole coupling constant P|| provide a sensitive measure of changes in the
arrangement of the ligands.”® In particular, it was noted’ that the EPR spectra of all

complexes are rhombic, and that the rhombicity increases with z.

Our previous systematic applications of density functional theory (DFT) to the
calculation of hyperfine tensors in a series of 3d transition metal complexes have taught
us, that explicit quantum chemical studies may provide considerably refined
interpretations of the observed spectroscopic parameters.™” A recently developed DET
approach'” for the calculation of electronic g-tensors allows us furthermore to extend
our computational investigations also to this property. Here we report a detailed DFT
study of hyperfine coupling and g-tensors for some of the complexes studied by
Cornman et al.,” and for bis(2-methylquinoline-8-olate)oxovanadium(IV). For the latter
complex, single-crystal EPR studies have provided magnitudes, as well as absolute and
relative orientations, of the hyperfine and g-tensors.'" We will relate the experimental
and computational findings to the distribution of spin density within the complexes
studied and will provide an interpretation of the correlation between the rhombicity of

the tensors and 7.
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2. Theoretical Formalism and Computational Details

g-Tensor calculations. The theoretical background of EPR parameters is covered

. o 12,13,14,15,16,17
in detail in text books. @ >

Hence we summarize only the most relevant points
and the expressions used in our calculations. The g-tensor is calculated as correction to

the free electron value (given in ppm), i.e.

g:g€1+Aga (1)

with g, = 2.002322. Up to the level of second-order perturbation theory, the g-shift Ag

consists of the relevant Breit-Pauli terms

Ag = Agso/0z + Agruc T Agcc , (2)

of which the ,paramagnetic second-order spin-orbit/orbital Zeeman cross term,
Agso0z, dominates (except for extremely small Ag-values; we also include Aggyc and
the Agoc(lel) in the calculations'®). Within the present uncoupled DFT (UDFT)

approach, its cartesian components u,v are computed as'*'®

. ; . ; i B B B
A o | (i |Ho lwi v [lo.|wi) g (wl | Ho w2 )W o |w)
Esor0zay = 5 8 -
S &l —& kK a gkﬁ _guﬂ

3)

We calculate the spin-orbit (SO) operator Hso in the atomic mean-field

1929 This approach has been shown'® to give results to within

approximation (AMFI).
better than a few percent of the exact Breit-Pauli one- and two-electron SO-
Hamiltonian, at a small fraction of the computational effort required for the latter. For
comparison, we also report results in which the two-electron spin-orbit contributions
have been neglected, and only the one-electron part due to the nuclear charges has been
retained. We employed a common gauge at the transition metal nucleus. Unrestricted
Kohn-Sham calculations were performed within the local density approximation (VWN
functional).”' Gradient corrected functionals do not improve the results in the case of g-
tensors of transition metal complexes.'” The (15s11p6d)/[9s7p4d] metal basis set
employed in our previous studies®”'® has been used. DZVP basis sets** were used for

the main group atoms. Polarization p-functions have been omitted for hydrogens of the

methyl- and #-butyl substituents.

Hyperfine Tensor Calculations. The hyperfine coupling parameters describe the

interactions of unpaired electrons with various magnetic nuclei. The 3x3 hyperfine
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interaction tensor 4 can be separated into its isotropic and anisotropic (dipolar)
components. The isotropic part reflects the spin density at the point of the magnetic
nucleus. The anisotropic part yields additional information about the local environment
of a paramagnetic center. In the first-order approximation (neglecting spin-orbit effects;
cf. below), isotropic hyperfine splittings A;so(N) correspond to the Fermi-contact term
Afc:

4 )
Ay (N) = Apc = ?nﬂeﬂNgegN<SZ> 1ZRLi;ﬂ<(Pp|§(RN X(Pv>

v

4

Here /. is the Bohr magneton, Sy the nuclear magneton, gy is the g-value of the nucleus

N, {Sz) is the expectation value of the z-component of the total electronic spin, P*” is

7R
the spin density matrix, and the summation runs over all occupied molecular orbitals. In

the first-order approximation, the components 77 of the anisotropic tensor are given by:

T, (N) = %ﬁelBNgegN <Sz >71 ZP:,;ﬂ <(Pp‘r1;5 (71551'/‘ - 3rN,irN,j 1“Pv>a

av

)

where ry = r — Ry (Ry is the position vector of nucleus N). In the following, we will

generally refer to the metal hyperfine interaction and argument N will be omitted.

All-electron unrestricted Kohn-Sham calculations of hyperfine structure were
done with the Gaussian98 program.”> We have used three different combinations of
exchange and correlation potentials (vx[p] and v.[p], respectively), abbreviated as
BP86, B3PW91, and BHPWO91. The BP86 functional combines Becke’s generalized-
gradient-correction (GGA) functional for exchange** (B) with Perdew’s 1986 GGA™
(P86) for correlation. B3PW91 contains Becke’s three-parameter hybrid functional for
exchange (B3, including ca. 20% Hartree-Fock exchange),” while the last combination
employs the "half-and-half” hybrid exchange functional (BH), incorporating as much as
50% Hartree-Fock exchange.”” The latter two exchange functionals have been combined
with the GGA for correlation of Perdew and Wang (PW91).®® Additional BP86
calculations of the dipolar hyperfine coupling constants have been carried out with a
modified version of the deMon-EPR code,*””" in which we have implemented a routine

for the analysis of orbital contributions to Agip.

The same vanadium orbital basis set has been used as in the g-tensor calculations

(see above), in combination with the 6-31G(d) basis set for the ligands. The default
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integration grids (int=finegrid option™) of the Gaussian98 program and tight SCF
convergence criteria (10”7 in RMS DM, 10 in MAX DM) have been applied.

Relationship between Spin-Hamiltonian Parameters and Electronic
Structure. One of the aims of this study is to relate the spin Hamiltonian parameters
obtained from theory/experiment to the electronic and molecular structure of a given
paramagnetic center. This can be done along the lines of the classical second-order
perturbation theory (PT) approach of Abragam and Pryce,31 as further discussed by
McGarvey'®, Abragam and Bleaney'?, and by Mabbs and Collison.'® This approach also
enables us to provide a rough semiempirical estimate of spin-orbit (SO) contributions to
the hyperfine coupling which are not explicitly accounted for in our present DFT

calculations of hyperfine tensors.

Within the approach of Mabbs and Collison, the components of the Ag-tensor and

of the metal hyperfine tensor are given by

AgU: _2§n,1A

(6)

A, = Pl-x8, —3¢l, -2¢,, A, +3¢&,, A, |

J

(7

-3
r

Here P=gegNﬁe,6’N<(po (p0> (¢, 1s the singly occupied molecular orbital -
SOMO),”*  ¢=2/[(2I-)(21+3)] (/21  for a d  electron),  and

L1411,

1 .
I, = <(p0 (p0>—;l(l+1)§[j . The —«d,; term accounts for the Fermi contact
contribution to the isotropic part of the tensor, whereas the—3c P /; term represents the
first-order (SOMO) contribution to the anisotropic part of the tensor. §,, is the spin-

orbit coupling constant. The terms A and A'l.j are defined as

@oltcpm P 3 P,
= eliloaltealife.)

(8)
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In the latter expression, &y is 1 (-1) if (,4,7) is an even (odd) permutation of (x,),z) and 0
otherwise. The summation over m runs over all virtual d-type orbitals (cf. below). In the

expression (11) for the Ag-tensor, A approximates the paramagnetic part of Ag, given
by eq. 5. In the A-tensor expression (12), the A, elements account for the cross-terms

between orbital Zeeman and spin dipolar operator;> the elements A'l,j represent second-

order spin-dipolar contributions. One third of the trace of T}, gives the second-order

“pseudocontact” contribution (4pc) to the isotropic coupling.™

Equations 6 and 7 are often used either to determine MO compositions from the

known spin Hamiltonian parameters or vice versa. The elements /;, A, and A',.j are

expressed in terms of compositions and relative energies of the SOMO, ¢,, and of those
virtual MOs, ¢,,, which are dominated by metal d-orbital contributions (cf. ref 16,

Chapter 9). The values of ¢, —&, and of &,, are usually estimated experimentally.

Beyond interpretation purposes, this approach will in the following be used to estimate
SO effects on the hyperfine tensor for the VO(L?), complex. The latter system is a d'
complex possessing C, symmetry. The detailed expressions for the spin Hamiltonian
parameters in this point group can be found on pages 384-386 of ref 16 (the reference
appears to contain two typing errors >°). The coefficients of the metal d-orbitals in MOs
PoP1... Os5 3% have been determined from a restricted open-shell BP86 calculation. Each
coefficient has been taken as the square root of the Mulliken gross orbital population
summed over all basis functions of a given symmetry.’’ The value of the parameter P
has been determined from the same calculation, using the fact that, within the first-order
approximation, 7, =—3c P /_,. The relative energies, as well the g-tensor components -
cf. equations (9.248)-(9.252) in ref 16 - have been taken from experiment (ref 5). The

value of the SO coupling constant (148.4 cm’') has been taken from ref 11.

Structures. Figure 1 shows the complexes studied: [N,N’-ethylenebis(o-tert-
butyl-p-methylsalicylaldiminato)Joxovanadium(IV) = VOL' (1=0.26), bis(]N-
methylsalicylaldiminato)Joxovanadium(IV) = VO(L?), (t=0.55), bis(N-methyl-o-(tert-
butyl-p-methylsalicylaldiminato)oxovanadium(IV) = VO(L?), (t=0.70), and bis(2-
methylquinoline-8-olate)oxovanadium(IV) = VO(L*),.
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For VOL'!, VO(L?),, and VO(L?),, structural data from X-ray diffraction have
been used.” Of these complexes, only VO(L?), has crystallographically imposed
symmetry (C,). No experimental structural data have been available for VO(L*),. We
have therefore optimized the structure in unrestricted Kohn-Sham calculations with the
B3LYP functional (using the Gaussian98 program®). The optimization employed a
small-core effective-core potential (ECPs) and (8s7p6d)/[6s5p3d] GTO valence basis
set for the metal,*® ECPs with (4s4pld)/[2s2p1d] basis sets®® o the ligand atoms g o
(4s1p)/[2s1p] hydrogen basis.* The optimization has been performed within the C,
symmetry indicated by experiment.'' The resulting structure parameters are reported as
supporting information. The optimized [VOayia| bond length for VO(LY), (1.59 A) is
(within 0.01 A) the same as found experimentally for VOL', VO(L?),, VO(L?),. The
optimized [VOpy| bond length for VO(L*Y), (1.94 A) lies also within the range of bond
lengths found for the other complexes (1.89-1.94 A). The optimized |[VN| bond length
for VO(L*), (2.16 A) is somewhat longer than in the other complexes (2.06-2.10 A).
The distortion parameter 7 for optimized VO(L"), structure, 0.55, is the same as for
VO(L?),.

Orientation. All g- and A-tensor calculations have been performed for the

R
following standard cartesian coordinate system: The VO, vector defines the positive

L d
z direction. For VOL', the y axis lies in the VO,;,10,n, plane, perpendicular to the z-
axis.”! For VO(L?),, VO(L?),, and VO(L"),, the y axis is defined in the same way but is

N
additionally rotated by +45° around the VO, vector. This choice of the coordinate

system, shown in Figures 2 and 3, is the same as used by Mabbs and Collison'® for d'

complexes possessing genuine or approximate C; or Cs symmetries.

3. Results and Discussion

Each of the complexes studied here contains one unpaired electron and may be
regarded as a d' system. The SOMO is generally dominated by a metal dxz_yz-type
orbital (ca. 80%), and the largest ligand contribution corresponds to phenolate oxygen p
orbitals (ca. 10%). The total spin population at vanadium reaches 1.10 due to the spin
polarization of the V=0O,, bond; a negative spin population of ca. —0.10 is left at the
axial oxygen (all numbers refer to Mulliken population analyses of UBP86 results for

the four complexes).
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3.1. g-Tensor Calculations. Computed Ag components with respect to standard and
principal axes are given in Tables 1 and 2, respectively. Both tables refer to the accurate
atomic mean-field treatment of the Agso/oz(1e) and Agso/oze terms. In Table 2 we have
also included results obtained if the Agsooz(e) contributions are neglected. As found
previously for a series of 3d complexes,”” the latter results are in apparently better
agreement with experiment than the former, obviously due to a compensation of errors
due to the neglect of the Agso/oz2e) terms and errors in the DFT treatment. The proper
inclusion of both one- and two-electron SO terms leads to a systematical underestimate
of all components by ca. 40%. Gradient-corrected functionals also underestimate
paramagnetic contributions to >'Fe or *’Co NMR chemical shifts by roughly the same
relative amount, whereas hybrid functionals perform significantly better.*” We are
therefore presently implementing the calculation of g-tensors with hybrid functionals.

Preliminary tests suggest that this approach may indeed provide improved accuracy.*

After completion of this work, Carl et al. reported on their DFT calculations of A-
and g-tensors of some vanadyl(IV) model complexes, with the aim of interpreting EPR
spectra of VO** exchanged zeolites.** For their g-tensor calculations, they used the two-
component ZORA approach of van Lenthe et al.,** with the BP86 GGA functional. Carl
et al. report significantly larger g-shifts than in the present study and conclude that the
DFT approach used provides excellent agreement with experiment. Unfortunately, this
good performance is fortuitous and is probably due to cancellation of DFT errors with
errors resulting from the neglect of spin polarization (and partly from the incomplete

treatment of the Agso/oz(2e) termslo) in the two-component ZORA approach used.

The orientations of the g-tensors are displayed in Figures 2-5. Table 3 includes the
angles between the principal axes of the g-tensor and the standard axes. The full
specification of principal relative to the standard axes is provided as supporting
information. Table 3 shows that for complexes with a trans-arrangement of the
phenolate oxygen atoms, the g; principial axis is either parallel or almost parallel to the
z axis, whereas g, and g3 are rotated with respect to y and x, on average by 30°. For
VOL', g, is almost parallel to the y axis whereas g; and g; are rotated with respect to
zand x by 12° and 10°, respectively (note that neglect of the Agso/oz2e) terms affects the
tensor orientation negligibly). For these three systems, there is no experimental
information to be compared with regarding the orientation of the g-tensor with respect
to the molecular framework. We focus therefore on the interpretation of the
computational results. We will base our discussion on the perturbational approach

discussed in section 2.

We are dealing here with d' complexes possessing genuine C, symmetry

(VO(L?),, VO(LY),), approximate C, symmetry (VO(L?),), or approximate C; symmetry
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(VOL"). As a consequence, for VO(L?), and VO(L*), one of the principal axes (g;) must
coincide with the two-fold axis (z) for symmetry reasons.'* In a hypothetical VOL'
molecule possessing genuine Cs symmetry, one of the principal axes would have to be
perpendicular to the xz symmetry plane and thus coincident with the y axis. The actual
deviation of g, from y (6°, cf. Table 3) may thus be considered to be a measure of the
distortion from Cy symmetry. For VO(L?),, by analogy, the deviation of g; from z (7°)

corresponds to the distortion from C; symmetry.

The extent of the rotation of the principal axes relative to the standard axes
depends upon the values of the off-diagonal tensor elements,'® but also on the relative
sizes of the principal components. For genuinely C, symmetrical complexes, it can be
shown that the angle ¢ between g» and y and between g3 and x is related to the off-

diagonal matrix g, element and the principal g,> and g33 components via

2gxy = (8 - 833)8in2¢

(10)
The g, component is of the same size (cf. Table 1) for VO(L?), and VO(L),, but

the value of | 222-233 | is smaller for the former complex (cf. Table 2). Consequently, g»

and g; deviate more from the y and x directions, respectively, for VO(L?), than for
VO(L*); (cf. Table 3).

According to Mabbs and Collison,'® the rotation of g» and g; relative to y and x is
dominated by the magnitude of the dxz_y2—> dy,, dxz_y2—> dy, contributions (cf. eqs 9.233 -
9.237 in ref 16), which determine the magnitudes of the gy, gy, and g, elements. By
analogy, the rotation of g; and g3 with respect to z and x for VOL' is determined mainly
by the di’\*— dyy, di’*—> d,, contributions (cf. eqs 9.243 and 9.247 in ref 16).*® An
analysis of different contributions to the calculated g-shifts shows that the paramagnetic
(1-electron and 2-electron SO) contributions represent 99% of the g-tensor components
given in Tables 1 and 2. An analysis of the orbital contributions to g-tensor elements
further reveals that the SO terms corresponding to the excitations from the SOMO
greatly dominate the g-tensor elements. Thus, our results show that the approach of
Mabbs and Collison, which emphasizes the SOMO contributions, provides a reasonable

insight into the origin of the g-tensor.

3.2. A-Tensor Calculations. Our density-functional results for the hyperfine tensor of
vanadium with respect to standard and principal axes are given in Tables 4 and 5,
respectively. Part of the information in Table 5 is graphically displayed in Figures 6-
8.* The SOMO provides a small direct contribution to the isotropic hyperfine coupling
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constants (HFCCs), due to a slight mixing-in of the metal 4s orbital. Nevertheless,
overall Ajs, is dominated by spin polarization and is thus negative. The anisotropic
tensor reflects the composition of the SOMO, having one negative component along the
z axis and two positive components within the xy plane,* pointing between the V-N and
V-Ophenolate bonds. Like the g-tensor, the A-tensor deviates from axial symmetry.49 The
smaller of the positive components points into the direction of the chelate ligands, and

the larger one points out of the complex.

At the nonrelativistic (first-order) level of theory, the BHPWO1 functional
provides the best agreement with experiment for both the isotropic and the anisotropic
parts of the hyperfine tensor. As has been stressed in our recent study,® GGA
functionals typically underestimate the spin polarization of s-type metal core orbitals.
The latter is enhanced by exact-exchange mixing into v,, frequently leading to improved
agreement with experimental Aj, data with hybrid functionals (provided that spin
contamination remains low). Figure 6 illustrates the enhancement of spin polarization
by inclusion of exact exchange for three of the vanadyl complexes. It also shows that,
for systems with related electronic structures, the deficiencies of the state-of-the-art
density functionals are systematic. An underestimate of core-shell spin polarization
with the BP86 GGA functional is also apparent from the results of the very recent 4-

tensor calculations of Carl et al.** for a series of vanadyl model complexes.

Similarly, adequate spin polarization of metal p-type core orbitals is required to
reproduce the hyperfine tensor anisotropy.®”>° The absolute values of the dipolar tensor
components are quantitatively reproduced only with the BHPW91 functional (cf. Table
5 and Figure 7). B3PWO9I1, and particularly BP86, underestimate all anisotropic
components. On the other hand, all unrestricted DFT approaches applied describe the
rhombicity of the hyperfine tensor well. The (733 - T2,) difference does not suffer from
the systematic underestimate of spin polarization, as it is determined mainly by the
composition of the singly occupied molecular orbital. The relative magnitudes of spin
polarization of the metal 2p,, 3px and 2p,, 3p, orbitals correspond to the rhombicity of
the SOMO contribution to the anisotropic HFC tensor. Thus, while the absolute values
of the T2, 733 components are significantly affected by the spin-polarization
contributions, the asymmetry of the tensor (733 - T»;) is reduced only slightly by core-

shell spin polarization.

The present DFT calculations do not include relativistic corrections, which may
be quite important for systems with significant g-tensor anisotropy. To obtain a simple
semiempirical estimate of SO corrections, as well as an improved interpretation of the
HFC anisotropy, we have used the PT approach described in section 2 to express the 4-
tensor of VO(L?),. The first-order (SOMO) contributions to the anisotropic part of the
A-tensor have been estimated as —192.8 (77,), 80.3 (Tx), 112.5 (Tyy), and 1.4 (Ty= Tyx)
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MHz. The second-order A elements provide additional —17.9 (77,), —6.7 (Tx), and —

7.4 (Tyy) MHz.>' F inally, the A'l.i elements have been estimated as —3.4 (7,,), —0.6 (Tx),
—-1.0 (Tyy), —0.1 (Tyy), and 0.2 (Tyx) MHz. After summing these contributions and

transforming the resulting tensor to its principal axes, we obtain the following
components: —214.1 (71,), 75.1 (T»2), and 102.1 (7533) MHz. This tensor has a nonzero
trace that, multiplied by a factor of 1/3, gives the pseudocontact contribution to the
isotropic HFCC (-12.3 MHz). Subtracting the pseudocontact term from the T}
components, we obtain a traceless anisotropic HFC tensor in the 2"-order
approximation. The components of this tensor are —201.8 MHz, 8§7.4 MHz, and 114.4
MHz, of which the 2" order contributions represent —9.0, 4.6, and 4.4 MHz,
respectively. After subtraction of these contributions from the experimental HFC tensor,
the B3PW91 and BHPW91 functionals would appear to describe the 1¥-order hyperfine
coupling about equally well. The former underestimates and the latter overestimates Ais,

and all 7;; components.

Besides an estimate of the SO contributions, the perturbation theoretical approach
qualitatively reproduces and rationalizes the rhombicity of the A-tensor. As discussed
above, the difference 75,-T5; arises mainly from the 1*order (SOMO) contribution. The
only 1*-order term which can account for this is a very small (0.2%) symmetry-allowed
mixing of the metal d,” orbital into the SOMO, cf. egs (9.239)-(9.242) in ref 16.>* This
mixing hybridizes the unpaired electron density outside of the chelate rings (i.e. in the x
direction, cf. Figures 2, 3), so that 7%, < T33. This approximate treatment cannot aim at
quantitative agreement with experiment. The rhombicity of the tensor (7%;-733) is
overestimated. This is understandable, as explicit restricted (ROBP86) Kohn-Sham
calculations, using formula (3), also overestimate 7}; (71,=—192.8 MHz, 7,,=80.3 MHz,
and 733=112.5 MHz). The influence of the second-order contributions on the asymmetry

of the hyperfine tensor is only minor (733 —7»2 is decreased by 0.2 MHz), as both Ay,

and the A'l.f contributions to 733 and 7»; have identical sign and similar magnitudes. The

rhombicity of the HEC tensor in VO(L*), can be understood along the same lines as for
VO(L?),. The situation is more complicated for VO(L") and VO(L?),, due to the lack of

symmetry.

An interesting observation has been made by Cornman et al. on the correlation of
Azz - Ay (in their notation A4y-A4,,) and the distortion parameter z for VO(LI), VO(L2)2,
and VO(L?),.> While one of the components was found to be relatively stable with
respect to the distortion, the other experienced significant enhancement (cf. Figure 8).
Our calculations allow an unambiguous breakdown of the experimental tensor into its
isotropic and dipolar parts. While 733 and A4;s, increase with increasing 7 (4js, becomes

less negative; cf. Figure 6), 75, decreases by approximately the same magnitude (cf.
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Figure 7). Due to the combination of these effects, 4», remains constant, whereas 433
changes significantly along the SQP-5— TBP-5 distortion coordinate (Figure 8). Thus,
in contrast to the interpretation in ref 5, increasing r affects both in-plane dipolar
contributions to a similar extent. The increased difference between 7>, and 733 from
VO(L?), to VO(L?), may be understood in terms of SOMO composition: i) The metal
dy, and dy, orbitals mix into the SOMO with different coefficients for VO(L?), but not
for VO(L?),, where this is prohibited by symmetry. ii) The vanadium d,” orbital mixes
into the SOMO more for VO(L?), than for VO(L?),. Both contributions hybridise the
spin density further out of the chelate rings in VO(L?),. In VO(L"),, the metal dy, and
dy, orbitals mix less into the SOMO than in VO(L%),, and their contribution to the
anisotropy in T», and T3 is compensated by reduced d,’ mixing, resulting in a total

anisotropy that is similar as in VO(L").

A comparison of the A-tensor results for VO(L?), and VO(L*), (cf. Table 5)
reveals that the anisotropic HFC tensor components of both complexes are very close,
in agreement with identical distortion parameters t (0.55) and similar dyy, dxz_yz, d?
contributions to the SOMO. Due to a higher 4s orbital contribution to the SOMO for
VO(L%),, the isotropic HECC is less negative than for VO(L?),.

The orientations of the 4-tensors are shown in Figures 2-5, together with those of
the g-tensors. Table 3 includes the angles between the principal axes of the A- and g-
tensors, and the standard axes. The full specification of the principal axes of the A-
tensor with respect to the standard axes is given as supporting information. Table 3
shows that a; is oriented either parallel or close to parallel to the z axis (rotated from z
by maximally 6°). The axes of a, and a; are rotated with respect to y and x by
maximally 12°. This is much less than for the g-tensor axes, due to the fact that the off-
diagonal elements of the A-tensor are much smaller with respect to the asymmetry in the
principal components than for the g-tensor (cf. eq. 13; Tables 4 and 1). Generally, the
hyperfine tensor is controlled by the nature of the ground state wave function. In
contrast, the g-tensor reflects also energies and character of the excited states.'® These
appear to be particularly sensitive to the local metal coordination. For the same reason,
the SQP-5—TBP-5 distortion influences the A-tensor orientation relatively little,

whereas the g-tensor is reoriented significantly .

Only for VO(L%), experimental information is available on the relative
orientation of g- and A- tensors.'' Single-crystal data indicate that the g-tensor
component with the smallest g-shift (in our notation gs3) is rotated by 27.5° relative to
the A-tensor component with the smallest magnitude of the dipolar interaction (in our
notation Ap): Z(azgs;)= 27.5°. Our computational results suggest that the A

orientation is closer to the gy, orientation than to the gs; orientation: £(az,g2)= 35.7°,
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Z(az,gs3)= 54.3° (cf. Table 3). It is possible that deficiencies in our DFT treatment are
responsible for the different rotation angles. However, the angle is neither affected
significantly by the inclusion or neglect of the Agso/oz(2¢) Operators nor by the use of
local or gradient-corrected density functionals. At the moment we can only state that
theory agrees with experiment on a ca. 30° relative rotation of the “perpendicular”
principal components of g- and A-tensors. Further theoretical and/or experimental work
is needed to decide which g- and A-tensor components (a,, asz, g2, g3) have the most

similar orientations.

4. Conclusions

The increasing rhombicity of both 4- and g-tensors with increasing deviations of
the structures of vanadyl(IV) complexes from a regular square-pyramidal (SQP-5)
coordination arrangement is reproduced by our density functional calculations. We
could therefore provide improved interpretations of the observed trends in terms of the
SOMO compositions and of spin-orbit coupling. In addition to the magnitudes of the
principal components of both tensors, the calculations provide also their orientations
relative to each other, and relative to the molecular framework. Such information is
more difficult to obtain experimentally. In the present series of system, the necessary
single-crystal experiments were only available for one of the systems, VO(L"),. While
some discrepancies remain in the designation of the components in this case, all
calculations indicate clearly that the g-tensor is affected more by the structural
distortions of the SQP-5 arrangement than the metal A-tensor. This may be rationalized
by the fact that the hyperfine tensor depends only on the spin-density distribution of the
ground state, whereas the g-tensor is a response property and thus also reflects the
compositions of excited states. As a consequence, the 4- and g-tensors are non-coaxial
in all of the systems studied here. The orientation of A- and particularly g-tensors with
respect to the molecular framework, or the experimentally more accessible relative
orientations of g- and A-tensors, may be very sensitive probes of the local symmetry and
coordination of the oxovanadium group. In the case of the A-tensor, the increasing
rhombicity with increasing SQP-5 — TBP-5 distortion arises due to the mixing of metal
d, orbitals (made possible by the transformation from SQP-5 towards TBP-5
coordination), but also of metal dy,, dy, orbitals (allowed by the deviation from C,

symmetry), into the d;*.,’-type SOMO.

Apart from interpretational purposes, the present study has also served as a further
validation of DFT approaches for the calculation of EPR-parameters in transition metal

complexes. The vanadyl complexes studied here exhibit a SOMO with relatively little
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overlap to doubly occupied metal valence orbitals. In agreement with our previous
considerations,™ spin contamination with increasing exact-exchange mixing is
therefore not a serious problem. Hybrid functionals (B3PW91, BHPWO91) provide better
agreement with experimental isotropic HFCCs than a GGA functional (BP86), due to an
improved description of the spin polarization of metal s-type core shells.® All
functionals, including the BP86 GGA, reproduce well the experimentally observed
trends in the anisotropy of the A-tensor with increasing structural distortion (which is

dominated by the SOMO composition; cf. above).

As found already in the previous, extensive validation of our DFT approach for
the calculation of electronic g-tensors,'” LDA or GGA functionals underestimate the
paramagnetic (Agso/oz) contributions systematically by ca. 40% for 3d transition metal
complexes (whereas a slight overestimate by ca. 10% is typical for main group
radicals). In agreement with the suggestions of Patchkowskii and Ziegler,” we attribute
this to deficiencies of the GGA/LDA functionals in describing both energy
denominators and matrix elements in the second-order perturbation theory expressions
(cf. eq 3). While a partial or complete neglect of the Agsoz(2€) terms improves the
agreement with experiment in the 3d complexes, this is certainly no satisfactory
approach from a theoretical point of view. Preliminary tests suggest that hybrid

functionals may provide better accuracy (cf. section 3.1%).
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Table 1. Ag- Tensors in Standard Axes System (in ppt). *”

Agxx Agyy Agy, Agxy =Agyx  Agy =AZx  Agy, =Ag,y
voL' -10.3 -12.4 -27.9 0.3 3.2 1.7
VO(L?), -11.9 -13.0 -24.6 2.1 0.0 0.0
VO(L?), -10.1 -14.2 -25.6 2.7 0.7 -1.0
VO(LY, -10.0 -13.2 -29.8 2.0 0.0 0.0

“ UDFT-VWN results with AMFI approximation for Agso/oz(e). b The actually computed g-
matrices are slightly asymmetric. This information is not obtainable from the experiment. It
means that the principal-axes system is not strictly an orthogonal one."* The values reported
here and the principal values reported in Table 2 have been determined using the
symmetrization procedure described in ref 14, p. 91 (see also ref 17).

Table 2. Principal Ag-Tensor Components (in ppt).

with AgSO/OZ(le) only with AgSO/OZ(le) + experiment

Ags0/07(2¢)

Agiso  Agii Agrn  Agsz | Agiso At Agxn  Agss | Agise  Agii Ago Ags3

VOL' |-33.8 -582 -24.1 -19.1|-16.8 -28.6 -122 -9.7 | -30  -49" 21> -19°
VO(L?), | -32.7 -48.8 -29.1 -202|-16.5 -24.6 -145 -10.3| -30 -51° 21°  -19°
VO(L?), | -34.8 -55.6 -31.5 -17.4|-16.6 -25.7 -154 -88 | -32 -55" 23° .18’
VO(LY), | -35.2 -59.7 -28.3 -17.5|-17.7 -29.8 -142 -9.0 | -29  -53°  -19°  -14°

30 -55(2)7 -212)7 -15(2)°
“ UDFT-VWN results. See also footnote b to Table 1. ° Ref 5, estimated error of Ag: + 1 ppt,
EPR on polycrystalline substance. © EPR on [VO(mquin),] in a dilute crystal of
[GaCl(mquin);] (cf. ref 11). 4 Values obtained in pure crystal (cf. ref 11).
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Table 3. Rotation Angles (in deg) between Principal Axes of g- and A- Tensors and the

Standard Axes®

complex | A(g2) ALaz) Zgnan| Agy)  Lawy) Lga)| Agx)  Layx)  L(gsas)
vOL' 11.6 4.7 6.9 6.1 11.5 11.1 10.0 12.4 12.0
VO(L2)2 0.0 0.0 0.0 37.7 11.3 49.0 37.7 11.3 49.0
VO(L3)2 6.6 0.8 6.2 26.9 5.1 31.9 26.2 5.2 31.4
VO(L4)2 0.0 0.0 0.0 25.8 10.0 35.7 25.8 10.0 35.7

* UDFT-VWN results with AMFI approximation for Agso/07(2¢) (g-tensor) and UBHPW91
results (A-tensor). See also footnotes to Table 1.

Table 4. A-Tensors in the Standard Axes (in MHz). “

A Ay Ay, Av=Aw  AFAL  AyFA,
VOL' 107.6 98.0 -205.6 -1.7 -24.8 -1.7
VO(L?), 112.4 93.5 -205.9 3.9 0.0 -3.9
VO(LY), 119.3 83.7 -202.9 3.2 1.8 3.2
VO(LY), 114.7 90.9 -205.6 -4.3 0.0 -4.3

“UBHPWOI1 results.
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Table 5. Principal A-Tensor Components (in MHz)"

BP86 B3PW91 BHPW91 Exp./
nominal <S>
VvoL'
Aiso -183.0 2317 -299.6 274.3
Ty, T, Ts| -177.9,79.0,98.9  -193.9,89.5,104.4 -207.8,97.8,110.0 -209.3,96.8, 112.4
<§>P 0.7566 0.7618 0.7754 0.7500
VO(L?),
Aiso -179.0 -230.1 -297.8 -273.9
Ty, To, T | -182.2,79.6,102.7 -194.3,86.5,107.8  -205.9,92.7,113.2  -208.8,94.0, 114.7
<§>P 0.7578 0.7661 0.7856 0.7500
VO(L?),
Aiso -157.6 217.0 -290.4 -264.3
Ti, T, Tss | -172.9,63.8,109.1  -189.5,74.1, 115.4  -203.0, 83.4, 119.6 -207.3,86.2, 121.0
<§»>P 0.7586 0.7655 0.7838 0.7500
VO(LY,
Aiso -164.3 -216.8 -295.8 -262.9
Tii, T, Tss | -183.0,76.7,106.3 -194.3,82.7, 111.7  -205.6,90.2, 115.5 -208.7,93.2, 115.4
<§»>P 0.7580 0.7645 0.7834 0.7500

* Unrestricted Kohn-Sham calculations with specified exchange-correlation functionals.

® These <S*> values pertain to the Kohn-Sham wavefunction, i.e. to the non-interacting

reference system rather than to the real system. Such data are nevertheless expected to give a

reasonable and useful representation for the real system as well (see, e.g.: Baker, J.; Scheiner,

A.; Andzelm, J. Chem. Phys. Lett. 1993, 216, 380).
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Figure Captions.

Figure 1. The vanadyl complexes studied. (a) VOL'. (b) VO(L?), (R=H, R’=H) and
VO(L*), (R=t-Bu, R’=Me). (c) VO(L").

Figure 2. The standard orientation of the coordinate system, and the calculated g- and

A-tensor for VOL.

Figure 3. The standard orientation of the coordinate system, and the calculated g- and

A-tensor for VO(L?),.

Figure 4. Orientation of the calculated g- and A-tensor for VO(L?),.

Figure 5. Orientation of the calculated g- and A-tensor for VO(L"),.

Figure 6. Dependence of the isotropic hyperfine coupling constants on the distortion
parameter 7. BP86, B3PW91, BHPW91, and experimental results are compared for

VOL', VO(L?),, and VO(L?),.

Figure 7. Dependence of the anisotropic hyperfine tensor components on the distortion

parameter 7. BP86, B3PW91, BHPW91, and experimental results are compared.

Figure 8. Dependence of the total (isotropic+anisotropic) hyperfine tensor components

on the distortion parameter 7. BHPWO91 and experimental results are compared.
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complex VO_L!

171



Figure 1b
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Supporting Information

S1. Optimized Structure of Bis(2-methylquinoline-8-olate)oxovanadium(IV)™"

Atom X y z

\% 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.591662
O 1.713629 0.000000 -0.897952

N 0.225038 -2.104342 -0.413117
C 2.207334 -1.166282 -1.292552
C 1.416075 -2.330223 -1.046147
C -0.579510 -3.123049 -0.115497
C -0.209548 -4.445380 -0.472209
C 0.981137 -4.692685 -1.120524
C 1.855563 -3.623887 -1.433295
C 3.109215 -3.750888 -2.087330
C 3.864950 -2.618814 -2.322834
C 3.429683 -1.330781 -1.932242
C -1.862106 -2.836929 0.611598
H -0.886826 -5.266190 -0.221466
H 1.260256 -5.716132 -1.394031
H 3.460791 -4.740312 -2.394039
H 4.833192 -2.713176 -2.826086
H 4.046529 -0.449280 -2.128719
H -2.456575 -2.092443 0.057032
H -2.452362 -3.757213 0.746648
H -1.646410 -2.401091 1.603172

“B3LYP/ECP optimized structure. °Cartesian coordinates in A. The first two atoms lie on the
C, symmetry axis (z) which for each of the following atoms defines a symmetry-related

counterpart. The latter atoms are omitted from this table.
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S2. Principal Axes of the g-Tensor Relative to the Standard Orientation®

complex Zix b gy gz 22x oy g2 g3x g3y g3z

voL' 0.1708 -0.1052 0.9797| 0.0284 0.9944 0.1018| 0.9849 -0.0104 -0.1728
VO(L?), | 0.0000 0.0000 1.0000|-0.6112 0.7915 0.0000| 0.7915 0.6112 0.0000
VO(L?), [-0.0599 0.0969 0.9934|-0.4380 0.8918 0.1134| 0.8969 0.4419 0.0110
VO(LY, | 0.0000 0.0000 1.0000|-0.4347 0.9006 0.0000| 0.9006 0.4347 0.0000

*Both Agso/oz(1eyand Agsojoze) operators have been included. b g1, & and g3 are the axes
corresponding to the g;;, g2, and g33 principal values.

S3. Principal Axes of the Hyperfine Tensor Relative to the Standard Orientation

complex

a
aix

Aly aiz Aax Aoy A2z A3x A3y a3z
VOL' 0.0781 -0.0285 0.9967| 0.1998 0.9798 0.0123| 0.9767 -0.1981 -0.0822
VO(L?*; | 0.0000 0.0000 1.0000| 0.1965 0.9805 0.0000| 0.9805 -0.1965 0.0000
VO(L?), [-0.0016 0.0016 0.9999| 0.0903 0.9960 -0.0006| 0.9959 -0.0902 0.0127
VO(L*, | 0.0000 0.0000 1.0000| 0.1735 0.9849 0.0000| 0.9849 -0.1735 0.0000

“ ay, ap and a; are the axes corresponding to the A1, A2, and 433 principal values.
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I have only knocked on the door of chemistry and I see how much remains to be
said.

Johannes Kepler (1571-1630)

9 Conclusions

The field of applied quantum chemistry has undergone a major development
during the last four decades. The first applications of quantum mechanical methods in
inorganic chemistry, introduced in the 1960s mainly by the school of Roald Hoffmann,
were based on very simple semi-empirical models. The concepts that arose from these
approaches have significantly shaped the ways of understanding the electronic structure
and reactivity throughout the whole of chemistry. Over the years, a number of ab initio
quantum chemistry methods have been developed that enable much higher accuracy
than the more qualitative semi-empirical approaches. Nowadays, applications of
sophisticated ab initio computational methods certainly dominate applied quantum
chemistry. Unfortunately, the better agreement with experiment given by these methods
is very often being obtained at the cost of reduced understanding of the results.
Quantitative calculations easily move one’s attention away from the chemical and
physical understanding to applied mathematics. However, questions posed at chemical
level of complexity should be answered at the same level of complexity.' Thus there is a
great need for an interplay between the computational and interpretational aspects of
applied quantum chemistry. One way of combining these aspects is to derive the general
frameworks of understanding on a qualitative level and study the quantitative aspects at
a higher level of theory. Two joint works of the author and Roald Hoffmann are an

example of this type of approach.

In the author’s opinion, the most general outcome of the work reported in this
thesis is the illustration of the importance of the opposite approach that starts with
performing quantitative calculations and looking for the interpretation of the observed
trends. The first step has been undertaken in a critical validation study of density

functional approaches for the quantitative calculation of hyperfine tensors for transition
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metal complexes (Chapter 5). The second step, the qualitative understanding of the
observed trends, is given in the study of mechanisms of EPR hyperfine coupling in
transition metal complexes (Chapter 7). The approach adopted in the latter paper is very
closely connected to the concept of orbital interactions. It has proven to be particularly
fruitful for understanding the physical mechanisms of transfer of spin density within the

molecule.

A further important aspect of the studies reported in Chapters 5 and 7 is the
identification of density functionals that are appropriate for reproducing and
understanding EPR spectra in particular bonding situations. This has been illustrated in
the application study reported in Chapter 8. It provides both the reproduction of
experimental A-tensors for systems of chemical (and biological) interest but also

interprets the observed trends in terms of spin Hamiltonian parameters.

Finally, the results of the validation studies for both 4- and g-tensor calculations
(Chapters 5 and 7), as well as the interpretational study are important from the point of
view of development of density functional approaches. The studies have shown that the
desirable, improved functionals should provide sufficiently large spin polarization for
core and valence shells without exaggerating it for the latter, and thus introducing spin
contamination. Generally, hyperfine coupling constants, in particular for transition
metal systems, may turn out to be a particularly fruitful testing ground for new DFT (or
alternative) approaches. Another important issue is the account of relativistic effects on
the spin Hamiltonian parameters. In the present thesis, this aspect has been touched in
some detail for the electronic g-tensors but only at the semi-empirical level for the
hyperfine tensors. The theoretical results for electronic g-tensors suggest the direction in
that further development of density functionals is needed. Furthermore, they illustrate
once again the particularly fruitful interaction between experiment and theory that is so

characteristic for the field of electron paramagnetic resonance.
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