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Zusammenfassung

In der vorliegenden Arbeit werden Ergebnisse von Elektronenstrukturrechnungen zum

Thema Segregation an Korngrenzen in �Ubergangsmetallen vorgestellt. Die Rechnungen

wurden mit einer ab-initio Methode der Dichtefunktionaltheorie in lokaler N�aherung durch-

gef�uhrt. Das hierzu benutzte \mixed-basis Pseudopotentialprogramm" [81] verwendet

Pseudopotentiale zur Beschreibung der Wechselwirkung von Valenz- und Rumpfelektronen,

sowie eine gemischte Basis aus ebenen Wellen und lokalisierten Funktionen zur Darstellung

der Einelektron-Wellenfunktionen.

Die Arbeit l�asst sich thematisch in drei Teile gliedern. Neben der Segregation von lei-

chten interstitiellen Elementen (B, C, N, und O) an der �5 (310)[001] symmetrischen

Kippkorngrenze (eng.: symmetrical tilt grain boundary, STGB) in Mo und Nb (Kapitel 5)

besch�aftigt sie sich mit der Ausscheidung von nicht-st�ochiometrischem Molybd�ankarbid an

der �5STGB in Mo (Kapitel 6) und den Eigenschaften von einkristallinen Molybd�ankar-

biden bzw. -semikarbiden (Kapitel 7). Dabei werden die ab-initio Ergebnisse unter ver-

schiedenen Blickwinkeln diskutiert:

� Was lernen wir �uber die Materialeigenschaften, und lassen sich diese Erkenntnisse

anhand bekannter Modelle erkl�aren, oder k�onnen sie zur Modellbildung beitragen?

� Inwiefern legen die Erfahrungen bei der Durchf�uhrung der Rechnungen, oder die

Ergebnisse selbst die Anwendung eines weniger zeitaufw�andigen, semi-empirischen

Verfahrens nahe, und wenn ja, welches semi-empirische Modell scheint geeignet?

� Welche Informationen sind relevant f�ur die Anpassung der freien Parameter eines

solchen Modells und was w�are eine sinnvolle Fit-Strategie?

Die Resultate sollen im Folgenden zusammengefasst werden.
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Interstitielle Verunreinigungen

an der �5 STGB in Mo und Nb

In Kapitel 5 wird eine detaillierte Analyse des Einusses leichter interstitieller Fremdatome

(B, C, N und O) an der �5 STGB in Nb und Mo auf die atomare Struktur und die Koh�asion

der Grenz�ache durchgef�uhrt. Teilweise motiviert wurde diese Untersuchung durch kontro-

vers diskutierte Ergebnisse experimenteller sowie theoretischer Untersuchungen des mikro-

skopischen Translationszustands der reinen �5 (310)[001] STGB in verschiedenen kubisch

raumzentrierten (eng.: body-centred cubic, bcc) �Ubergangsmetallen.

Campbell et al. untersuchten diese Korngrenze mit Hilfe der hochau�osenden Transmissions-

Elektronenmikroskopie (eng. High Resolution Transmission Electron Microscopy, HRTEM)

und fanden einen spiegelsymmetrischen Translationszustand in Nb [14, 15] und eine Struk-

tur, in der diese Spiegelsymmetrie durch eine relative Verschiebung der K�orner entlang

der [001]-Richtung gebrochen ist, in Mo [12] und Ta [13]. K�urzlich durchgef�uhrte Unter-

suchungen von Sigle [108] weisen jedoch auf einen spiegelsymmetrischen Translationszus-

tand in Mo hin. Aus theoretischer Sicht war die Situation lange Zeit ebenfalls nicht ein-

deutig. Semi-empirische Rechnungen ([78](Mo), [14, 93](Nb)) f�uhrten zu unterschiedlichen

Ergebnissen in Abh�angigkeit davon, ob das verwendete Wechselwirkungspotential winke-

labh�angige Beitr�age enthielt, oder nicht. Dieser Punkt wurde von Ochs et al. aufgekl�art, die

ab initio Gesamtenergierechnungen zur �5 STGB in den bcc �Ubergangsmetallen Nb, Mo,

Ta und W durchf�uhrten. Die Ergebnisse zeigten einen interessanten, eindeutigen Trend:

der Translationszustand der Korngrenze wird vom F�ullungsgrad der Energieb�ander mit

d-Orbital Charakter bestimmt. Dies weist u.a. darauf hin, dass in der Tat nur Modelle,

die winkelabh�angige Vielteilchen-Wechselwirkungen enthalten, den korrekten Translation-

szustand in den bcc �Ubergangsmetallen vorhersagen k�onnen.

In dieser Arbeit verlassen wir nun die Annahme einer perfekten, reinen Korngrenze, um

die teilweise widerspr�uchlichen experimentellen Ergebnisse und die zum Teil nicht vorhan-

dene �Ubereinstimmung von Theorie und Experiment zu erkl�aren. In der Tat lassen sich

in einem realen System strukturelle Defekte wie z.B. Versetzungen oder Verunreinigungen

kaum vermeiden. Der Einuss von Verunreinigungen auf den Translationszustand stellt f�ur

ab-initio Rechnungen ein reizvolles Gebiet dar, da er relativ einfach zu untersuchen ist und

einen Weg darstellt, die Zahl der Valenzelektronen im System systematisch zu variieren.

Vorausgehende Untersuchungen der Segregation von C in Mo [65, 66] wiesen auch bereits

darauf hin, dass interstitielle Verunreinigungen an der �5 STGB den Translationszustand
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ver�andern k�onnen.

Es wurden nacheinander B, C, N und O als interstitielles Fremdatom an der �5 STGB in

Nb und Mo, sowohl in der spiegelsymmetrischen als auch in der nicht-spiegelsymmetrischen

Kon�guration untersucht. Dabei ergab sich auch in der vorliegenden Arbeit ein eindeutiger

Trend: W�ahrend mit B an der Korngrenze in Mo eindeutig die spiegelsymmetrische Kon-

�guration bevorzugt wird, nimmt dieser energetische Vorteil im Fall von C an der Grenz-

�ache ab, ist f�ur N als Verunreinigung praktisch Null und wechselt dann das Vorzeichen,

d.h. mit O an der Grenz�ache in Mo ist die nicht-spiegelsymmetrische Korngrenze ener-

getisch g�unstiger. Dass dieser Trend mit der Valenzkon�guration der betre�enden Elemente

zusammenh�angt, sieht man an der Tatsache, dass der beschriebene Vorzeichenwechsel f�ur

Nb als Wirtsmetall, das ein d-Elektron weniger als Mo hat, \ein Element sp�ater" auftritt,

also erst mit O an der Korngrenze.

Parallel zu diesem strukturellen Trend kann man einen Wandel der elektronischen Struktur

an der Korngrenze beobachten, welcher wiederum die verschiedenen Translationszust�ande

plausibel macht. Die platzprojizierten Zustandsdichten f�ur das jeweilige Metallatom an der

Korngrenze zeigen, dass zwischen den s- und p-Zust�anden des Bors mit den d-Zust�anden

des �Ubergangsmetalls eine starke Hybridisierung auftritt, die Bindungen mit stark kova-

lentem Charakter erwarten l�asst. Diese Hybridisierung wird von B �uber C und N zu O

an der Korngrenze hin kontinuierlich schw�acher. Bei O hat sich eine ausgepr�agte Pseu-

dol�ucke zwischen den p- und d-artigen B�andern entwickelt, ein Indiz f�ur eine stark polare

Bindung. Diese Ergebnisse lassen sich mit Hilfe von Abbildungen der Bindungselektro-

nendichte veranschaulichen. Letztere weisen auch darauf hin, dass die kovalent bindenden

Elemente Bindungen �uber die Korngrenze hinweg verst�arken und so die Koh�asion der

Grenz�ache erh�ohen, ein Punkt auf den wir gleich noch zu sprechen kommen werden. Der

genaue Mechanismus der Ausbildung von Bindungen an der Korngrenze l�asst sich aus den

Ergebnissen der integrierten Zustandsdichte sowie aus �Uberlapp-Populationen lokalisierter,

Atomorbital-�ahnlicher Wellenfunktionen ableiten. Dies wurde exemplarisch f�ur die Korn-

grenze in Mo durchgef�uhrt. Die Ergebnisse zeigen, dass ein Ladungs�ubertrag von den

Metallatomen, die die n�achsten Nachbarn des Fremdatoms an der Korngrenze darstellen,

zum Fremdatom hin statt�ndet. Dadurch wird die Metall-Metall Bindung �uber die Grenz-

�ache hinweg geschw�acht. Je nach St�arke der Hybridisierung wird die �ubertragene Ladung

zur Ausbildung kovalenter Bindungen benutzt, oder aber bleibt um das Fremdatom herum

lokalisiert, was zu einer stark polaren Ladungsverteilung f�uhrt. Dieser Vorgang ist derselbe

an beiden Kon�gurationen der Korngrenze, da er durch die relative Lage der elektronischen
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Zust�ande der beteiligten Elemente bestimmt wird, und nicht durch die genaue Geometrie

der Korngrenze.

Der Einuss der Fremdatome auf die Koh�asion der Korngrenze wurde einem Ansatz von

Geng et al. [39] folgend getestet, der auf der thermodynamischen Theorie der Korngren-

zenbr�uchigkeit von Rice und Wang [104] beruht. Demnach ist die Di�erenz der Bindungsen-

ergien des Fremdatoms an der Korngrenze und des Fremdatoms an der entsprechenden

freien Ober�ache ein Ma� f�ur die verspr�odende, bzw. die Koh�asion erh�ohende Wirkung

des jeweiligen Elements auf die Korngrenze. Diese Rechnungen, wiederum exemplarisch

f�ur Mo durchgef�uhrt, ergaben, dass B und C die Koh�asion der Korngrenze in Mo erh�ohen,

w�ahrend N und O sie schw�achen.

Insgesamt ergibt sich also folgendes Bild: Die eher kovalent bindenden Elemente B und

C bevorzugen den spiegelsymmetrischen Zustand der �5 STGB. Hier �nden sie eine eher

o�ene Struktur mit optimaler Anzahl an Bindungspartnern in nahezu gleichem Abstand

vor, zu denen sie kovalente Bindungen ausbilden. Diese Bindungen �uberkompensieren die

geschw�achten Metall-Metall Bindungen, so dass die Korngrenze insgesamt stabilisiert wird.

Die polar bindenden Elemente N und O bevorzugen die eher dichtgepackte Struktur der

Korngrenze, bei der die Spiegelsymmetrie gebrochen ist. Die polare Ladungsverteilung

tr�agt nicht zu einer Bindung �uber die Grenz�ache hinweg bei, so dass die Korngrenze ins-

gesamt geschw�acht wird.

Unsere Ergebnisse belegen in eindrucksvoller Weise die G�ultigkeit eines \universellen Mo-

dells" von Cottrell [19]. Cottrell entwickelte ausgehend von einfachen Elektronenstruktur-

Modellen eine Theorie, die den Einuss von Fremdatomen auf die Korngrenzenkoh�asion in

Metallen vorhersagen soll. Zusammengefasst besagt sie, dass, abh�angig von der relativen

Lage der Energieniveaus der beteiligten Elemente, Fremdatome an Korngrenzen in Metal-

len entweder kovalente oder polare Bindungen ausbilden, und dass erstere die Koh�asion

der Korngrenze erh�ohen, w�ahrend letztere sie reduzieren. Das Modell beruht auf einer

Reihe teilweise recht drastischer N�aherungen, so dass seine Rechtfertigung bislang noch

ausstand. Mit unseren ab-initio Ergebnissen konnten wir f�ur die Fremdatome in Nb und

Mo die G�ultigkeit von Cottrell's Modell best�atigen. Das Modell ist unabh�angig von der

Geometrie der Korngrenze. Auch das kann bis zu einem gewissen Grad best�atigt werden,

da auch die hier pr�asentierten Ergebnisse zeigen und erkl�aren, dass der Charakter der

Bindung zwischen Fremdatom und Metall nicht vom Translationszustand der Korngrenze

abh�angt. Es ist vielmehr so, das der Bindungscharakter, festgelegt durch die relative Lage

der Energieniveaus der beteiligten Elemente, den Translationszustand bestimmt! Man
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muss jedoch bei der Verallgemeinerung dieser Ergebnisse auf Korngrenzen mit v�ollig an-

derer Geometrie vorsichtig sein. Eine Aufspaltung der Bindungsenergie-Di�erenz nach

Geng et al. [39] in chemische und elastische Anteile hat gezeigt, dass der elastische Anteil

der Bindung, hervorgerufen durch Relaxation der atomaren Positionen beim Einbau des

Fremdatoms an der Korngrenze, einen zum Teil erheblichen Beitrag zu dieser Di�erenz

leistet. Dieser ist aber u.a. abh�angig von der Geometrie der Korngrenze.

Die Tatsache, dass die Anwesenheit leichter Fremdatome den Translationszustand einer

Korngrenze in den bcc �Ubergangsmetallen auf verschiedene Weise �andern kann, ist im

Hinblick auf experimentelle Untersuchungen der Korngrenzenstruktur in diesen Materialien

von gro�er Bedeutung. In den oben beschriebenen Studien wurde immer davon ausgegan-

gen, dass es sich um Korngrenzen in absolut reinen Materialproben handelt. Man muss je-

doch davon ausgehen, dass auch sehr kleine Konzentrationen von Fremdatomen zumindest

lokal den Translationszustand der Korngrenze ver�andern. Da man leichte Elemente, zu-

mindest in Form unregelm�a�ig an der Korngrenze verteilter Verunreinigungen, im HRTEM

Bild nicht sieht und, wie wir gezeigt haben, verschiedene Elemente gegens�atzliche E�ekte

hervorrufen k�onnen, die sich u.U. gegenseitig aufheben, ist die experimentelle Bestimmung

des intrinsischen Translationszustands einer Korngrenze eine sehr anspruchsvolle Aufgabe.

Wir ho�en daher, dass die vorliegende Arbeit experimentelle Untersuchungen von gezielt

mit bestimmten Elementen dotierten Korngrenzen stimuliert, um den Einuss einzelner

Elemente zu isolieren und zu bestimmen.

Ausscheidung von MoCx

an der �5 (310)[001] STGB in Mo

Kapitel 6 besch�aftigt sich mit der Ausscheidung von MoCx an der �5 (310)[001] STGB

in Mo. Dieser Teil der Rechnungen wurde motiviert durch die Arbeit von P�enisson et

al. [94], die HRTEM Untersuchungen an der �5 (310)[001] STGB in Mo, vor und nach

dem Anreichern mit C, durchf�uhrten. P�enisson et al. beobachteten die intergranulare Aus-

scheidung von tetragonal dichtgepacktem (eng.: body-centred tetragonal, bct) MoCx mit

x � 0:4 an der Korngrenze, die wir mit einfachen Modellen nachvollziehen wollten. Die

Rechnungen zeigen, dass eine tetragonale Ausscheidung in einer Orientierung w�achst, in

der ihre c-Achse unter einem Winkel von ca. 108Æ auf die Korngrenze tri�t. Im Vergleich

zu anderen, aufgrund der Geometrie denkbaren, Orientierungen f�uhrt dies zwar zu einer
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st�arkeren Aufweitung der Struktur senkrecht zur Grenz�ache, ist jedoch g�unstiger, da auf

diese Weise die Periodizit�at der Korngrenze erhalten bleibt.

Das so geartete Wachstum der Ausscheidung f�uhrt zu zwei neuen Mo-MoCx (mit x � 0:4)

Grenz�achen, die ebenfalls von P�enisson et al. [94] beobachtet wurden. Um diese mit

einer m�oglichst kleinen Superzelle zu modellieren, wurde eins der zwei bcc Mo-K�orner

in der Zelle durch ein Korn aus st�ochiometrischem, tetragonalen MoC ersetzt. Um die

Gitterfehlpassung zwischen den einkristallinen bcc Mo und bct MoC Phasen auszuglei-

chen, wurde das Volumen des MoC Gitters um 13% komprimiert. Bei der Berechnung

der Separationsenergie der neuen Grenz�achen musste der Einuss dieser Kompression,

sowie der der erh�ohten Kohlensto�konzentration im Vergleich zum experimentellen Be-

fund, ber�ucksichtigt werden. Dies wurde n�aherungsweise erreicht, indem die Kompres-

sionseigenschaften der Ausscheidung mit denen einer einkristallinen tetragonalen Mo2C

Phase verglichen wurden. Die so erhaltenen Separationsenergien liegen nur wenig unter

denen f�ur die reine �5 STGB in Mo, die Adh�asionseigenschaften dieser sonst sehr ver-

schiedenen Grenz�achen sind also energetisch �ahnlich. Die Ausscheidung erh�oht damit

nicht wesentlich die Korngrenzenspr�odigkeit in Mo.

Durch die Gitterfehlpassung wirkt die Mo-MoC Grenz�ache als Senke f�ur Versetzungen,

wie dies in der Tat auch von P�enisson et al. beobachtet wurde [94]. In Bezug auf die

makroskopischen Eigenschaften bedeutet das, dass eine solche tetragonale MoC Ausschei-

dung an der �5 STGB in Mo das Metall zu einem gewissen Grad versteift. Experimentelle

Beobachtungen zeigen jedoch auch, dass die tetragonale MoCx Ausscheidung nicht sta-

bil ist. Strukturelle Phasenumwandlungen von einem tetragonalen zu einem hexagonalen

Molybd�an Untergitter wurden sowohl von P�enisson et al. [94] als auch schon fr�uher von

Lepski et al. [73, 74] beobachtet.

Die HRTEM Aufnahmen in der Arbeit von P�enisson et al. [94] zeigen einen intergranu-

laren, tetragonalen MoC Film, dessen Grenz�achen zu den reinen bcc Mo K�ornern nicht

atomar scharf erscheinen. Die Erkl�arung f�ur diese Beobachtung kann nach der Analyse

der ab-initio Ergebnisse geliefert werden. An \Grenz�ache I", die im urspr�unglichen Mo-

dell atomar scharf aussieht, �ndet eine Verlagerung von Kohlensto� aus dem MoC Korn

�uber die Grenz�ache hinweg statt, was lokal zu einer Verzerrung des Mo Gitters f�uhrt.

An \Grenz�ache II" wird das Mo Untergitter unter einer nur kleinen Verkippung von 6Æ

fortgesetzt, und das Ausma� der tetragonalen Verzerrung steigt nicht sprunghaft, sondern

kontinuierlich an, wenn man sich von der Grenz�ache in das MoC Korn bewegt. Grenz-

�ache II wirkt daher auf den HRTEM-Bildern, auf denen man nur Mo, aber nicht C sieht,
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ebenfalls atomar unscharf.

Bei der Untersuchung des Ausscheidungsprozesses anhand ausgew�ahlter Modellsituatio-

nen mussten einige Abstriche gemacht werden, um die Superzelle f�ur die Rechnungen auf

eine mit ab-initio Methoden handhabbare Gr�o�e zu beschr�anken. Dies f�uhrt den Bedarf

eines guten semi-empirischen Modells f�ur die Mo-C Wechselwirkung vor Augen, mit dem

Rechnungen mit gro�en Superzellen und dynamische Simulationen m�oglich sind.

Molybd�ankarbide

Eigenschaften der Bulk-Phasen

Es wurden die Bildungsenergien von Molybd�ankarbiden und -semikarbiden in verschiede-

nen Kristallstrukturen berechnet. Die Ergebnisse werden in Kapitel 7 vorgestellt. F�ur die

Monokarbide stellte sich die hexagonal primitive (eng.: hexagonal primitive, hpr) \Wolf-

ramkarbid-Struktur" (WC) als die stabile heraus, f�ur die Semikarbide ist es die hexagonal

dichtgepackte (eng.: hexagonal close-packed, hcp). Diese Resultate decken sich mit expe-

rimentellen Ergebnissen [77, 112, 119].

Die Kompressionsmodule der verschiedenen Strukturen zeigen, dass sowohl f�ur die Monokar-

bide als auch f�ur die Semikarbide diejenigen Strukturen die g�unstigsten sind, die am wenig-

sten kompressibel sind.

Die Bindungsmechanismen zwischen Molybd�an und Kohlensto� wurden z.T. schon w�ahrend

der Untersuchung der Segregation von C an der �5 STGB in Mo klar, sie konnten an

dieser Stelle noch einmal best�atigt und pr�azisiert werden. Im Vergleich zu einem reinen

Mo Kristall werden beim Einbau von C in den Kristall Elektronen aus den Mo-Mo Bin-

dungen abgezogen und diese somit geschw�acht, bzw. teilweise durch Mo-C Bindungen er-

setzt. Die entstehenden Mo-C Bindungen sind jedoch so stark, dass sie diese Schw�achung

�uberkompensieren. Anhand der platzprojizierten Zustandsdichten l�asst sich erkennen, dass

die starke Hybridisierung zwischen den Kohlensto� s- und p-Zust�anden und den Molybd�an

d-Zust�anden und damit der kovalente Charakter der Bindung, nicht von der C Konzen-

tration abh�angt. Je h�oher jedoch die C Konzentration ist, desto vollst�andiger ist die

Hybridisierung und desto weniger Mo-d-Zust�ande bleiben f�ur die reinen Metall-Metall Bin-

dungen. Energieaufgel�oste Orbital-�Uberlapp-Populationen zeigen, dass die verbleibenden

Mo-Mo Bindungen zus�atzlich dadurch geschw�acht werden, dass nun, im MoC-Kristall,

auch antibindende Zust�ande besetzt werden, was im reinen Metall nicht der Fall ist. Daf�ur



viii

weisen jedoch die Mo-C Bindungen maximale St�arke auf, da bei ihnen die Energieniveaus

genau bis zum Umschlagspunkt von bindenden zu antibindenden Zust�anden gef�ullt sind.

Der Vergleich verschiedener Kristallstrukturen f�uhrt zu dem Ergebnis, dass die Struktur

die g�unstigste ist, in der am meisten Mo-d-Zust�ande f�ur reine Metall-Metall Bindungen

verbleiben, und bei der diese zudem im Vergleich mit anderen Strukturen energetisch am

tiefsten liegen.

Die Frage, was nun eine bestimmte Kristallstruktur gegen�uber einer anderen stabiler macht,

kann auch anschaulich mit Hilfe relativ simpler physikalischer Konzepte beantwortet wer-

den. Die Drehimpulse der im MoC Kristall vorhandenen Orbitale lassen prinzipiell d2sp3

oder d4sp Hybridisierung an einem an einer Mo-C Bindung beteiligten Atom zu. Dies f�uhrt

entweder zu oktaedrischer oder trigonal-prismatischer Koordinierung des Atoms, wenn

wir f�ur diese Betrachtung den Grenzfall rein kovalenter Bindungen annehmen. Die Ana-

lyse der Orbital-Populationen in MoC spricht f�ur eine d4sp Hybridisierung, also trigonal-

prismatische Koordinierung, was die Stabilit�at der WC Struktur erkl�art. Dies passt auch

in die Vorstellung, dass in einer Verbindung Bindungen verschiedener Art (in diesem Fall

Mo-Mo- und Mo-C-Bindungen), die vom selben Atom ausgehen, sich so gut wie m�oglich

ausweichen sollten [25]. In Molybd�an-Semikarbiden, in denen die reinen Metall-Metall

Bindungen eine dominierende Rolle spielen, konnten wir ableiten, dass die d2sp3 Hybri-

disierung mehr Elektronen f�ur die reinen Mo-Mo-Bindungen �ubrigl�asst, was die Stabilit�at

der hexagonal dichtgepackten Struktur plausibel macht.

Semi-Empirische Modelle - Ausblick

An vielen Stellen der vorliegenden Arbeit wird klar, dass es eine Reihe materialwissen-

schaftlicher Fragen gibt, auf die die Anwendung eines semi-empirischen Verfahrens sinn-

voller als eine ab-initio Rechnung ist. Die Methode, die in dieser Arbeit ausgew�ahlt

wurde, um in Zukunft z.B. kinetische Aspekte der Karbidausscheidung in Mo zu un-

tersuchen, beruht auf einem orthogonalen, zwei-Zentren tight-binding Modell mit umge-

bungsabh�angiger Parametrisierung [47, 48, 116]. F�ur dieses Modell gibt es bereits zwei

S�atze von Parametern, die angepasst und getestet wurden, um die reine Mo-Mo [47, 48]

und C-C [116] Wechselwirkung zu beschreiben. Um auch Mo-C Wechselwirkungen zu

beschreiben, musste das Modell an einigen Stellen erweitert werden. Das erweiterte Modell

wurde in einen Code f�ur ab-initio und semi-empirische Elektronenstruktur-Rechnungen von

Methfessel et al. implementiert (Einzelheiten der Implementierung sind im Anhang dieser

Arbeit beschrieben). Die in dieser Arbeit vorgestellten Daten zur elektronischen Struktur



ix

von Molybd�ankarbiden stellen eine umfassende Grundlage f�ur die Anpassung der freien

Parameter des Modells dar.

Zun�achst kann aus den ab-initio Daten \allgemeine", f�ur die Anpassung n�utzliche Infor-

mation extrahiert werden. Aus �Uberlapp-Populationen und kovalenten Bindungsenergien

f�ur die einzelnen Beitr�age zu einer Mo-C Bindung lassen sich die relativen Amplituden

der im tight-binding Modell auftretenden interatomaren Matrixelemente absch�atzen. Un-

tersuchungen der Abstandsabh�angigkeit derselben Gr�o�en erlauben die Absch�atzung von

cut-o� Radien und der Vergleich von n�achsten und �ubern�achsten Nachbarn demonstriert

den Einuss der Umgebungsabh�angigkeit.

Anstatt nun - unter den Randbedingungen, die durch oben beschriebene Erkenntnisse ent-

wickelt werden - die freien Parameter mehr oder weniger \willk�urlich" zu variieren, bis

das so angepasste Modell die wesentlichen Gr�o�en der Molybd�ankarbide reproduziert (z.B.

Bandstrukturen, Energie-Volumen Relationen), wird ein alternativer Ansatz vorgeschla-

gen. Obwohl die lokalen Matrixelemente, die im \mixed-basis" Programm berechnet wer-

den, in einer nicht-orthogonalen Basis dargestellt werden - im Gegensatz zur tight-binding

Implementierung, in der eine orthogonale Basis angenommen wird - scheint es ein vielver-

sprechender Ansatz zu sein, die freien Parameter der tight-binding \hopping"- Terme direkt

an die entsprechenden ab-initio Daten anzu�tten. In zwei-Zentren tight-binding Mod-

ellen werden im Allgemeinen die Hamilton Matrixelemente nach einem Ansatz von Slater

und Koster [109] als Linearkombinationen der sogenannten \fundamentalen hopping Inte-

grale" dargestellt. Damit bezeichnet man interatomare Matrixelemente, die in einer Basis

aus Orbitalen dargestellt werden, f�ur die die Quantenzahl m der Projektion des Drehim-

pulses l auf die Bindungsachse eines Atompaares ganzzahlige Werte annimmt. Mit diesen

fundamentalen Integralen kann man die Anzahl der unabh�angigen interatomaren Matrix-

elemente deutlich reduzieren, z.B. in einem spd tight - binding Modell wie es in dieser

Arbeit vorgestellt wird, auf zehn. Diese \hopping"-Terme kann man nun umgekehrt auch

als Linearkombination der Hamilton Matrixelemente darstellen, in dem man das lineare

Gleichungssystem nach Slater und Koster - das eigentlich dazu dient, die Hamilton Matrix-

elemente in Form der fundamentalen \hopping"-Terme auszudr�ucken - invertiert. Formal

kann man dasselbe Verfahren auch auf die (ab-initio) �Uberlapp-Matrixelemente anwenden.

Erste Tests dieses Verfahrens wurden durchgef�uhrt. Dabei wurde die Beziehung zwischen

Nicht-Orthogonalit�atse�ekten, wie dem Auftreten einer nichtdiagonalen �Uberlappmatrix in

der ab-initio Rechung, und der Umgebungsabh�angigkeit der Hamilton Matrixelemente un-

tersucht. Hier deutet sich die M�oglichkeit an, den rein abstandsabh�angigen Anteil und die



x

Abschirmfunktion in der umgebungsabh�angigen tight-binding Parametrisierung getrennt

aus den ab-initio Daten abzuleiten. Dieser Ansatz verspricht eine hohe �Ubertragbarkeit

der angepassten Parameter auf unterschiedliche Kristallstrukturen und relative Konzen-

trationen.
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Chapter 1

Introduction

\Though in 1974 only 4% of molybdenum world production were used in various branches

of technics, these applications are particularly important. This indispensability, and new

possibilities of applications which cannot be foreseen today, make the pure metal and its

alloys promising construction materials in the future"[2]. Today's uses of molybdenum,

the element which is the central topic of this study, indeed cover a wide range of high-

temperature applications. The earliest one is the use in incandescent lamps and electron

tubes, but Mo is a favoured element also in furnace construction used for di�erent met-

allurgical processes. A very promising �eld is the use in turbine blades. However, up to

today this is limited by the tendency of Mo to oxidise at high temperatures, and by the

intrinsic grain boundary embrittlement which is characteristic for the body-centred cubic

(bcc) transition metals.

In general the macroscopic properties of polycrystalline materials and hence their potential

technological applications are vitally inuenced by the behaviour of their microstructural

interfaces. The cohesion at these grain boundaries a�ects the hardness, deformability and

toughness of the material and it can be enhanced or decreased by segregated impurities. In

this context, it is essential to understand interfacial cohesion and impurity segregation in

detail, and it is vital to investigate the relationship between these microscopic features and

the macroscopic properties in order to �nd general rules describing the latter. Knowing

these rules will enable us not only to understand but also to some extent manipulate the

material properties.

What are the quantities that we have to know for �nding these rules? With or with-

out impurities, intergranular strength is closely related to the atomic structure of a grain

boundary and to the detailed atomistic nature [17], thus experimental and computational

1
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investigations on a nanometre scale are essential. Furthermore we want to know the qual-

itative and quantitative cohesive characteristics of the interface.

Experimentally, the atomic structure of a grain boundary can be determined, for instance,

by high resolution transmission electron microscopy (HRTEM) [11]. In order to investigate

the cohesive properties it is important to �nd an adhesion process having model-character.

Such a model would provide an appropriate starting point for calculations as well as an

ideal limit for experimental adhesion. This would enable comparison of experimental �nd-

ings with theoretical predictions. Contact experiments with metal tips of atomic force

microscopes on metal or ceramic surfaces, as described e.g. in [53, 91], can be used for

adhesive strength measurements. The surface energy of adhesion and its increase or de-

crease �E due to the presence of impurities can also be used then to characterise grain

boundaries [10].

Among existing computational approaches electronic structure calculations are a valuable

tool for the investigation of material properties. Ab-initio methods, e.g. based on the

density functional theory [59, 68], are parameter-free methods including only very few ap-

proximations. They allow accurate and quantitative predictions on the properties of a wide

range of materials. In addition to the atomic structure ab-initio methods provide detailed

information on the electronic structure, supporting the understanding of the microscopic

behaviour being responsible for the macroscopic properties. Ab-initio calculations suf-

fer, however, from their high computational cost, limiting the system size to the order of

100 atoms. Thus, for many problems semi-empirical methods are advantageous. Linear

combination of atomic orbitals (LCAO) methods, e.g. tight-binding methods [52], are still

based on quantum mechanical concepts, but include simpli�cations (explained in detail in

chapter 4.1) making them two or even three orders of magnitude faster than the ab-initio

methods. They represent a compromise between the highly accurate, but computationally

very expensive ab-initio methods and the fast but limited fully empirical methods, such as

molecular dynamics simulations with Lennard-Jones [72] or Terso� [117] potentials, used

in order to investigate dynamical properties of complex materials.

After having collected the characteristic data concerning an interface, we need on the one

hand a theory which relates the microscopic features to the macroscopic properties - in

this work the interfacial embrittlement and how it is changed by the presence of impurities

- and on the other hand some simple physical models that can explain these �ndings in a

descriptive way.

Smith and Cianciolo [110] as well as Rice and Wang [104] assume the di�erence in interfa-
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cial adhesive energies with and without impurities to be the dominant factor in controlling

the interfacial embrittlement and develop thermodynamical models to calculate it. The

authors show that the grain boundary adhesion is decreased if segregation of the impurities

to the surface is exothermic, and it it has a larger free energy gain than for grain boundary

segregation. Smith and Cianciolo describe the energy of adhesion by a universal binding

energy relation [34] which goes back to the universal binding curve [111]. It is interesting to

note that this universal binding curve also seems to hold for the adhesion of metal-ceramic

interfaces [61], indicating strong similarities to the underlying mechanisms.

Geng et al. [39] developed a phenomenological model based on the work of Rice and Wang

[104] and on an extensive ab-initio data set [40, 41, 120, 121, 124]. They de�ne the energy

of adhesion as the di�erence in binding energies of an impurity at the grain boundary and

at the corresponding free surface. Besides providing a way of quantifying the e�ect of

impurities on interfacial cohesion the authors suggest a way of splitting the di�erence in

binding energy in mechanical and chemical contributions. This is a useful approach, since

experiments investigating the embrittlement of iron [53], or metal-sapphire contacts [95], as

well as ab-initio calculations concerning impurities at an Mo-MoSi2 interface [60], showed

that the inuence of impurities can not always be explained by chemical interactions alone,

even if the bonding character plays a signi�cant role.

There are numerous publications on the bonding character between host metals and im-

purity elements explaining the experimental observations of di�erent impurities having

di�erent inuence on the grain boundary cohesion ([56, 122, 54, 79, 8]). In general they

agree in their conclusion that covalently bonding elements increase the interfacial cohesion

in the transition metals, while polarly bonding elements decrease it. In 1990 Cottrell pro-

posed a \uni�ed theory" in order to explain the e�ects of segregated interstitial impurities

on the grain boundary cohesion [19]. Starting from the assumptions of the electron theory

of chemisorption and looking at the example of light interstitial impurities, such as H, B,

C, N and O, in Fe, Cottrell demonstrated that it can be determined from the relative posi-

tion of the electronic states whether elements form covalent-like bonds with the host metal

or not. He also concluded that covalently bonding impurities always increase interfacial

cohesion in a metal, while all others decrease it. This was assumed to be generally true for

light elements in transition metals and independent of the grain boundary geometry.

In this work the focus is on special grain boundaries in bcc transition metals. They have

been the object of interest of many investigations during recent years, both experimen-

tally and theoretically. The grain boundary which was chosen for our case study of the
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inuence of impurities on the interface properties is the �5 (310) [001] symmetrical tilt

grain boundary (STGB)1. The intrinsic translation state of the pure grain boundary has

been the subject of various investigations. Campbell et al. performed HRTEM studies on

the �5 (310) [001] STGB and found a mirror-symmetric translation state in Nb [14, 15],

and a shifted structure in which the mirror symmetry is broken by a shift along the [001]

axis in Mo [12] and Ta [13]. Recent investigations by Sigle, however, indicate a mirror

symmetric structure of the Mo grain boundary [108]. From the theoretical point of view

the situation also was ambiguous for some time. Semi-empirical investigations ([78](Mo),

[14, 93](Nb)) showed di�erent results depending on whether the interaction potential used

included angle-dependent contributions or not. This point was clari�ed by ab-initio total-

energy calculations of the �5 STGB in the bcc transition metals Nb, Mo, Ta and W

[5, 31, 89, 90]. The results showed a clear trend: the translation state depends on the

degree of �lling of energy bands with d-orbital character. This also tells us that only mod-

els including angle-dependent many-body interactions can predict the correct translation

state in the bcc transition metals.

In this work, in order to explain the contradictive experimental �ndings we leave the

concept of a perfect grain boundary. So far the grain boundary was considered to be

absolutely pure. In a real system, however, one can never completely avoid structural

imperfections (e.g. point defects, dislocations) or impurities. The latter seem to be a

challenging and promising �eld for ab-initio investigations, because they are simpler to

treat as additional structural defects, and especially because they provide a way of varying

the number of valence electrons systematically in order to test the e�ect on the translation

state. Preceeding investigations concerning the segregation of C in Mo already indicated

that interstitial impurities at the �5 STGB can change the translation state [65, 66].

As mentioned above, impurities alter grain boundary properties, such as interfacial cohe-

sion. For instance, among the light elements O is known to have an embrittling inuence

on transition metal grain boundaries, whereas B often enhances cohesion. In this work

it is partly proceeded in the line of Geng et al. in order to validate Cottrell's theory,

and furthermore it is extended to the issue of interfacial structure. In this context, the

inuence of light elements (B, C, N, O) on the geometric translation state and on the

cohesion of symmetrical tilt grain boundaries in the body-centred cubic (bcc) transition

metals niobium and molybdenum is investigated. Through insertion of the light elements

at the interface the number of valence electrons is varied systematically. Their e�ect on the

1For details about the geometry and nomenclature of special grain boundaries see appendix A
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translation state and on the stability of the grain boundary against brittle fracture is ex-

amined by calculating total and bonding energies. An explanation is derived by analysing

electronic structures in terms of local densities of states, bonding electron densities, and

orbital overlap populations.

After varying the atomic species the next step to evaluate the inuence of impurities on

grain boundary properties is to vary the concentration of the impurity element. By means

of HRTEM P�enisson et al. [94] investigated the �5 STGB in Mo before and after car-

burisation heat treatment, and they observed segregation of C to the Mo grain boundary,

followed by intra- and intergranular precipitation of di�erent MoCx phases. In this work it

was tried to model some of these processes to see how they might change the macroscopic

properties of the material. In this context the possibilities of ab-initio calculations are

limited, because they are restricted to systems with rather high periodicity to keep the

computational e�ort reasonable. So \snapshots" of the dynamical processes of segregation

and precipitation were picked out, idealised situations where the symmetry is adequate. In

a previous study the segregation of a single C atom to and at the �5 STGB in Mo [65, 66]

has been investigated. In this study the concentration is increased atom by atom in order

to monitor the very beginning of the precipitation of MoCx at the boundary. Thereafter

a big jump of thought to the �nal stage is made, a precipitate of tetragonal MoC at the

interface, a carbide phase which P�enisson et al. [94] also observed. This case is modelled

by constructing a Mo-MoC heterophase interface, and the orientation relationship and the

translation state possessing the lowest energy are determined. At this point we are getting

close to the limits of the ab-initio electronic structure method. A signi�cant di�erence

between the grain boundaries in metals and the metal-carbide interface is that in the case

of the latter a lattice mis�t occurs, leading to residual elastic stresses. In order to solve the

problem with a suÆciently small supercell one has to make approximations. In this case

the mis�t is compensated by expanding the carbide lattice. It is then tried to �nd out more

about the properties of the new phase by comparing the results to those obtained from

calculations of the properties of MoCx bulk phases. Energies of formation and electronic

structures of di�erent MoCx crystal phases are analysed. The relative stabilities of the

di�erent phases are explained by looking for distinctive characteristics in their electronic

structures. Besides completing our picture of the MoC precipitates in Mo and getting an

estimation of the consequences of the approximations which were made, this investigation

of the molybdenum carbides provides further insight in the bonding mechanisms of Mo

and C.
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On the one hand we extend our understanding of the molybdenum carbides, which have

many attractive properties of their own, for example high hardness, high melting point

and high catalytic activity, making them an object of strong interest in materials sci-

ence. Therefore there are numerous examples of ab-initio investigations of molybdenum

and other transition metal carbides present in the literature (see e.g. [44, 45, 50, 77] and

references therein), where e�orts are made to derive a complete phase diagram on the basis

of ab-initio data.

On the other hand such a series of crystal structures for a binary compound generates

a broad data set for semi-empirical modelling of interatomic interactions, speci�cally by

tight-binding models for Mo-C interactions. On the basis of this data base the possibil-

ities of �tting the parameters of an environment-dependent tight-binding model will be

discussed, with the aim of applying the model then to simulate a larger range of complex

processes such as segregation and precipitation.
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Electron Theory of Solids
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Chapter 2

The Schr�odinger Equation

To calculate the total energy of a solid, taking into account the detailed electronic structure,

we have to solve the Schr�odinger equation for a many-particle system, consisting of NN

atomic nuclei and Ne electrons:

bHj	i = Ej	i; (2.1)

where

j	i = jfrig; fR�gi;

is the many-particle wave function1. The Hamiltonian bH consists of the following terms:

bH = bTN + bTe + bVN�N + bVN�e + bVe�e: (2.2)

bTN and bTe are the operators of the kinetic energy of atomic nuclei and electrons,

bTN =

NNX
�=1

bp2�
2M�

and bTe = NeX
i=1

bp2e
2me

:

1For clarity, all equations are written for a non-relativistic, spinless system, as this is a valid approxi-
mation for the systems considered here.

9



10 CHAPTER 2. THE SCHR �ODINGER EQUATION

bVN�N , bVe�e and bVN�e are the interaction energies,

bVe�e = 1

2

NeX
i6=j;i;j=1

e2

jri � rjj ; (2.3)

bVN�N =
1

2

NNX
�6=�;�;�=1

Z�Z�e
2

jR� �R�j ; (2.4)

and bVN�e = �
NNX
�=1

NeX
i=1

Z�e
2

jR� � rij : (2.5)

ri;R� are the positions of electrons and atomic nuclei, e is the electronic charge, me the

mass of an electron, M� is the nuclear mass of atom �, Z� the nuclear charge of atom �,

and bpi and bp� are the operators of the electron's respective nuclei's momentum.

An exact solution of equation (2.1) in this form is not possible. However, there are several

useful approaches to solve this problem on di�erent levels of accuracy and transferability.

The common �rst step is to treat the electrons and nuclei of a solid as decoupled, using the

Born-Oppenheimer approximation (BOA) [7]. It states that the movement of the electrons

is so much faster than the one of the atomic nuclei that the former are able to follow changes

in the arrangement of the latter instantaneously and thus are always found in their ground

state. This is called adiabatic approximation or Born-Oppenheimer approximation. Thus

we can set up a Schr�odinger equation for the electrons in which the coordinates fR�g of

the atoms only enter as a parameter:

fbTe + bVe�e + bVN�egj ii = Eel(fR�g)j ii : (2.6)

j ii is the wave function of the electrons. The atomic nuclei move in the adiabatic potential
of the electrons,

fbTN + bVN�N + Eel
0 (fR�g)gj��i = Etotj��i ; (2.7)

where Eel
0 is the ground state energy of the electron system and j��i is the wave function

of the atomic nuclei. With the ansatz

j	i = j��ij ii (2.8)
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for the total wave function we can solve equations (2.6) and (2.7). As the movement of the

atomic nuclei takes place so much slower than the one of the electrons, many problems can

be dealt with by assuming �xed atomic positions fR�g and setting bTN = 0 in (2.7). Then

the ground state of the complete system can be obtained by minimising the total energy,

the solution of (2.7), with respect to the parameter fR�g.
The next step thus is to solve the electronic Schr�odinger equation, (2.6). The trouble is that

it is a many-body problem. The potential in which the particles are moving depends on

the positions of the particles themselves. Thus we have to project the many-body problem

onto an e�ective one-particle problem and then solve (2.6), respectively the corresponding

one-particle equation, self-consistently.

There are di�erent physical models that build the descriptive background of todays com-

putational methods. A way to solve our problem \ab initio" (see chapter 3) is given

by the density functional theory (DFT), presented in section 3.1. Ab-initio methods are

\parameter-free" methods, where only very few approximations are made and nothing has

to be �tted to experimental data for speci�c materials. Thus they allow for quantitative

predictions of many properties. In the density functional theory the electronic ground

state energy is expressed as a functional of the electron density. This approach is based

on the nearly free electron (NFE) picture, in which the electrons can move freely inside

the crystal, the only inuence of the atomic lattice on the electrons are scattering e�ects.

Thus the electron density is spatially rather homogeneous and the wave function of an

electron in a crystal can be described as a plane wave, with a superposed modulation by a

function that has the periodicity of the crystal. Such a modulated wavefunction is known

as a Bloch function.

The other extreme case, known as the \tight binding" model, is composed of electrons be-

ing tightly bound to the atoms that build up the crystal lattice. Thus the Bloch function

of an electron in the crystal is a periodic repetition of atomic-like orbitals, i.e. a linear

combination of atomic orbitals (LCAO). This picture is the basis of the semi-empirical

tight-binding methods, described in more detail in section 4. They are still based on quan-

tum mechanical concepts, but self-consistency is neglected and the Hamiltonian matrix

elements are parametrised. The free parameters are �tted to experimental or ab-initio

data. The loss of reliability and transferability is compensated by the drastically reduced

computation time.
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Chapter 3

Ab-initio Methods

3.1 Density Functional Theory

A way to trace back the many electron problem to an e�ective one-electron problem -

the Schr�odinger equation of which can be solved - is to express the energy of the electron

system as a functional of the electron density:

E = E[n(r)]

Minimising the energy by means of a variational principle then leads to the solution of

equation 2.6. This procedure, which had already been used earlier by Thomas [118],

Fermi [33], and Dirac [28], has been justi�ed by two theorems, established and proven by

Hohenberg and Kohn in 1964.

3.1.1 The Theorems of Hohenberg and Kohn and the Equations

of Kohn and Sham

The theorems of Hohenberg and Kohn state [59]

1. The ground state properties of an electron system in an external potential vext are

unique functionals of the ground state electron density n0 (r). E.g. the ground state

total energy

Eel
0 (fR�g) = Eel [n0] : (3.1)

13
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2. For a given vext Eel [n] takes on a minimum if and only if n = n0 (r). Then Eel [n] =

Eel
0 .

Hohenberg and Kohn decomposed E[n] in the following way:

E [n] = F [n] +

Z
vext (r)n (r) d

3r; (3.2)

where F [n] = T [n] + EH [n] + Ex [n] + Ec [n]

is a universal functional, i.e. it is the same functional for all systems, independent of vext.

EH [n] is the Hartree energy. Ex [n] is the exchange energy, accommodating the fact that

electrons with a parallel orientation of their spins avoid each other and thus lower the

Coulomb energy. Ec [n] is the correlation energy, which occurs between electrons with

antiparallel orientation of their spins. Even though the Coulomb interaction leads to a

mutual repulsion of these electrons a correlated movement by pairing of spins leads to

a lower energy. T [n] is the kinetic energy which comprises classical terms (i.e. spin-

independent terms) as well as correlation e�ects. To be able to summarise all correlation

e�ects in one term, Kohn and Sham expressed T as

T = ~T +�T (3.3)

[68]. ~T corresponds to the kinetic energy of a system of non-interacting electrons with

the same (inhomogeneous) density n as the real system. �T is the di�erence between the

kinetic energy of a system of interacting electrons and that of non-interacting electrons.

Then the exchange-correlation energy Exc is de�ned as the collectivity of exchange and

correlation contributions

Exc = Ex + Ec +�T: (3.4)

The universal functional becomes

F [n] = ~T [n] + EH [n] + Exc [n] : (3.5)
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n is now the density of a system of non-interacting electrons with the same density as the

real system. Thus it can simply be expressed by one-electron wave functions:

n(r) =
NX
i=1

j�i(r)j2 (3.6)

In this way the many-electron problem is projected onto a one-electron problem with the

Schr�odinger equation �
�~

2�

2m
+ veff (r)

�
�i (r) = �i�i (r) ; (3.7)

with veff (r) = vH (r) + vxc (r) + vext(r): (3.8)

It describes the movement of an electron in the e�ective potential veff of all electrons and

the atomic nuclei. The Hartree potential vH (r) and the exchange-correlation potential

vxc (r) depend on the density n:

vH(r) =

Z
e2n(r0)

jr� r0jdr
0 (3.9)

vxc(r) =
ÆExc[n(r)]

Æn(r)
(3.10)

Equations (3.6) to (3.10) are called the Kohn-Sham equations. In practice they are solved

self-consistently, by assuming a starting electron density, calculating the e�ective potential,

solving the one-electron Schr�odinger equation, and calculating the new electron density and

the new input-potential. This cycle is repeated until the calculation is converged, i.e. until

the resulting electron density does not di�er from the preceeding density within a given

accuracy1. Then the electronic ground state energy, equation 3.2, can be calculated, using

~T =
NeX
i=1

h�ij � ~
2

2m
�j�ii

=
NeX
i=1

�i �
Z
n(r)veff(r)d

3r (3.11)

1In practice the output-potential is mixed with the output-potentials of earlier iteration steps before
using it as input-potential. This means a damping of the iteration process. Experience has shown that in
most cases this is the only way to achieve convergence.
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for the kinetic energy of non-interacting electrons, as

Eel
0 [n0] =

NeX
i=1

�i � EH [n0]�
Z
n0(r)vxc[n0(r)]d

3r+ Exc[n0]: (3.12)

What is still missing for that are expressions for vxc and Exc within the density functional

theory, a representation of vext and a basis set for the one electron wave functions j�ii.
These points shall be discussed in the following sections. There is of course more than one

possibility to represent these quantities. Here we will describe those that are used in the

ab-initio code used for this work, the \mixed-basis pseudopotential code" [32, 57, 80, 81]

(in the course of the following sections, this name will also become clear).

3.1.2 The Local Density Approximation

So far we do not have an analytic expression for vxc (r) and Exc[n]. Kohn and Sham

suggested to approximate the exchange-correlation energy by

Exc[n(r)] =

Z
n(r)�xc(n(r))d

3r: (3.13)

�xc(n) is the exchange-correlation energy per electron in an interacting electron gas of

uniform density n(r). Exc(r) at position r depends only on the local charge density n(r)

at the same point. This is known as the local density approximation (LDA)

For our calculations �xc(n) has been given by interpolation formulae of Perdew and Zunger

[96], which are based on the Quantum Monte Carlo calculations of Ceperley and Alder

[16]. With Quantum Monte Carlo methods the total energy of a homogeneous interacting

electron system can be calculated with arbitrarily high accuracy. By subtracting ~T [n] and

EH [n], �xc is received, containing exchange and correlation e�ects as well as �T . With the

LDA we get

vxc(r) =
d

dn
fn�xc(n)d3rg

����
n(r)

: (3.14)

The LDA works surprisingly well for most (non-magnetic) systems. Only in materials

like the 4f rare earths and the transition metal oxides where correlation e�ects of highly

localised orbitals become important the assumption of a locally homogeneous electron

density breaks down.
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3.2 The Pseudopotential Method

In a simple picture the external potential vext of the crystal can be imagined as a lattice of

atomic potentials. If free atoms are brought together to form such a crystal, their valence

orbitals overlap and the valence electrons redistribute to form chemical bonds between the

atoms. The electrons in inner shells remain almost una�ected by this redistribution as

they are localised in the core region and their wavefunctions hardly overlap with those of

electrons at neighbouring atoms. Even in the case of the valence electrons it is only the

part of the wavefunction remote from the core in the interatomic region which is important

for the bond. Thus it is suggestive to introduce simpli�cations which reduce the calcula-

tional complexity. The two measures that shall be taken here then lead to so-called ionic

pseudopotentials.

3.2.1 Ionic Pseudopotentials

In a �rst step the e�ect of the core electrons on the valence electrons is combined with

that of the nucleus Coulomb potential to an ionic core potential. This is called the frozen

core approximation which states that the core electrons are not involved in the bonding,

as mentioned above. Of course they are not strictly una�ected by changes in the valence

one-electron wavefunctions, as those always have to be orthogonal to the ones of the core

electrons, and vice versa. But the error in the ground state electron density only leads to

a very small error in the ground state energy and thus can mostly be neglected. The big

advantage of this approximation is that the number of electrons in the system is drastically

decreased. This does not only save computation time but also results in a much smaller

total energy. Thus very small energy di�erences can be resolved automatically, without

additional demands on the accuracy of the calculation of core states, as in an \all-electron"

method.

Because of the mutual orthogonality of valence and core electron wavefunctions, the valence

electron wavefunction has nodes in the ionic core region. To represent such functions e.g.

in a basis of plane waves a very large basis set is needed. But fortunately these oscillations

are spatially restricted and in the interatomic region the wavefunction is running smoothly

and nodeless. As only this is the region of interest for the bonding the shape of the

wavefunction in the core region is not important. Therefore we can replace the ionic core

potential by an ionic pseudopotential which is constructed such that the corresponding
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pseudowavefunctions are identical with the real valence one-electron wavefunctions outside

a sphere of radius rc, but do not have nodes and oscillations inside the sphere. Such nodeless

pseudowavefunctions can be represented with a suÆciently low number of basis functions.

In order to construct these pseudowavefunctions �psl associated to the pseudopotential vpsl
the following conditions have to be ful�lled:

� �psl shall be smooth and without nodes,

� �psl = �l for r � rc;l,

� �psl = �l,

�
rc;lR
0

j�psl (r)j2d3r =
rc;lR
0

j�l(r)j2d3r (normalisation condition).

The �rst requirement makes sure that the wave function can be described by a rather

small set of energy independent plane waves (or other basis functions). The second and

third demand ensure that the pseudopotential is identical with the real ionic potential in

the region r � rc and also displays the same scattering properties for the energy �l. The

normalisation condition guarantees the transferability of the scattering properties of the

pseudopotential, which is constructed for a �xed �l, to an energy interval [�l � Æ�]. The

conditions given above still leave degrees of freedom concerning the explicit analytical form

of the pseudopotential. Thus there are several construction schemes, the most popular of

which are described e.g. in the appendix of [80].

\Unscreening"

The so constructed pseudopotentials for each valence state of quantum number l are still

screened by the Hartree- and the exchange-correlation potentials vH [nc] and vxc[nc] origi-

nating from the core states and the Hartree and exchange-correlation contributions vH [nv]

and vxc[nv] from the valence density. To get an ionic pseudopotential which is independent

of the valence states the latter contributions have to be subtracted, i.e. the potential has

to be \unscreened". This is simple for the Hartree potential, which is a linear function of

the density:

vH [nc + nPSv ] = vH [nc] + vH [n
PS
v ]: (3.15)

vxc is not linear in n, therefore we substract vxc[nc+nPSv ] completely from vPSion and add nc

to nPSv later in the self-consistent calculation when vxc is calculated. With this procedure
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the core-electron density remains the same in di�erent environments, as it is assumed by

the frozen-core approximation.

Partial Cores

However, the problem with this way of calculating vxc is that due to the non-linear be-

haviour of vxc small errors in nv can become big in E0 by adding the big core density

nc. Furthermore the strongly oscillating nc can not be represented in Fourier space. Both

problems can be overcome by replacing the core density by a partial core density npc [75].

For this purpose the density in the core region is split into two parts. In an outer part,

where the electron density has the same order of magnitude as nv, and an inner part, where

nc is high, but the true form is not important for our calculations. In the outer region

of the core npc shall be equal to the true nc, but in the inner region we can replace it by

a smooth function which can be represented easily in Fourier space. In the inner region

nv � nc, thus errors in the linearisation can be neglected.

So �nally we end up with the ionic pseudopotential belonging to the valence state with

quantum number l

vPSion;l(r) = vPSeff;l(r)� vH [n
PS
v ]� vxc[npc + nPSv ] (3.16)

and the total ionic pseudopotential

v̂PSion =
X
l

vPSion;l bPl; (3.17)

where bPl is a projection operator that selects the contribution of the quantum state l out

of the wavefunction.

3.2.2 Crystal Pseudopotentials

Before now superposing the ionic pseudopotentials to a crystal potential it is useful to split

them in local and nonlocal contributions,

v̂PSion = vPS;locion (r) +

 X
l

vPSion;l(r)� vPS;locion

! bPl: (3.18)
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vPS;locion (r) can be chosen freely, e.g. to be the l = 0 component:

v̂PSion = vPS;locion (r) +
lmaxX
l=1

vPSion;l(r) bPl: (3.19)

As the contributions from the di�erent l fall o� like a Coulomb-Potential outside the

inner core region and as we assume this to be true also for the local part of the ionic

pseudopotential, we conclude that the nonlocal part only occurs inside the ionic core.

Finally the crystal pseudopotential can be written as

v̂PS = vPS;loc(r) + v̂PS;nl (3.20)

with vPS;loc(r) =
X
T;�

vPS;locion;� (jr�T�R�j) (3.21)

and v̂PS;nl =
X
T;�

lmaxX
l=1

vPS;nlion;�l(jr�T�R�j) bPl (3.22)

Still, this is not the end of the story. Our (arti�cial) division of the charge density -

vH is caused only by negative charges, the ionic pseudopotential only by positive ones -

leads to the problem that the individual sums over these potentials in an in�nite crystal

must diverge. In a real crystal the diverging terms are compensating each other. We

can imitate this by introducing homogeneous positive and negative background charge

densities, screening vH and vPSion;� respectively, so that their sums are converging. To

express the local part of the ionic pseudopotential we can use a simple representation in

Fourier space,

vPS;loc(r) =
X
G

vPS;loc(G)eiGr: (3.23)

Due to the background charge density the G=0 component has a �nite value. However, it

is not determined and can be chosen. It can be interpreted in real space as a shift of the

zero level of the energy eigenvalues. In our calculations we set vPS;loc(G = 0) = 0.

All terms in the expression for the total energy are discussed in detail for instance in [80].
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3.3 A Mixed Basis

Finally, to solve the Kohn-Sham equations, the one electron wave functions j�ii are ex-

panded in a basis of vectors jni,

j�ii =
X
n

ainjni: (3.24)

Inserting this representation into the Schr�odinger equation (3.7) leads to the eigenvalue

problem X
n

Hmna
i
n = �i

X
n

Smna
i
n ; (3.25)

with the elements of the Hamiltonian and the overlap matrix

Hmn = hmjHjni
Smn = hmjni:

The basis functions jni can be plane waves, Gaussian or Slater functions or other localised

or non-localised functions. Plane waves have the advantage that they are orthogonal and

the overlap matrix is a diagonal matrix. Furthermore it is simple to add additional func-

tions to systematically increase the accuracy with which the one electron wavefunctions

are described and thus test the criteria of convergence. The disadvantage is that many

plane waves are needed to describe strongly localised functions. Even with the use of

pseudopotentials there are valence functions, like the 3d-orbitals of transition metals and

the 2p-orbitals of main group elements treated in this study, which are nodeless pseudo-

valencefunctions localised in the core region. Such pseudowavefunctions can be described

very well in a localised basis with not too many functions. The disadvantages in this case

are that the inuence of the basis on the criteria of convergence can be less easily tested

and that multi-centre integrals appear in the Hamiltonian matrix elements that can be

solved only at high computational cost. However it is possible to combine both types of

functions, plane waves and a few localised functions to a \mixed basis" such that the ben-

e�ts of both remain but their disadvantages do not occur, as done by Louie et al. [76], Fu
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and Ho [38] and Els�asser et al. [32]. Then the wave functions of the crystal look like this:

j kji =
X
G

 kj
G
jk+Gi+

X
�lm

�kj�lmj�k�lmi; (3.26)

with the plane waves

hrjk+Gi = 1p


ei(k+G)r (3.27)

and the Bloch-transformed localised functions

hrj'k�lmi =
X
T

eik(T+R�)'�lm(r�T�R�): (3.28)

� is the index of the atoms in the unit cell and l and m are the quantum number of the

angular momentum and the magnetic quantum number, respectively. The functions ��lm

are localised at the atomic sites and have the form

'�lm(r
0) = f�l(r

0)ilKlm(r̂
0); r0 = r�T�R�: (3.29)

f�l is a radial atomic-like pseudowavefunction and Klm a cubic harmonic. f�l is chosen

such that functions localised at neighbouring atoms do not overlap. Thus multi-centre

integrals between the localised functions in the Hamiltonian matrix elements are avoided

and at the same time strongly localised orbitals can be described with a small number of

basis functions. The bonding in the interatomic region is still well described by the plane

waves, which are present everywhere in the unit cell.

3.4 The Total Energy and Atomic Forces

Within the LDA we can write the total energy of the system of Ne electrons and NN nuclei

as

Etot = Eel
0 [n0] + EN�N

=
NeX
i=1

�i � EH [n0]�
Z
n0(r)vxc[n0(r)]d

3r+ Exc + EN�N : (3.30)
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EN�N is the electrostatic interaction energy of the ionic cores. As explained in section

2 where we introduced the Born-Oppenheimer approximation, the kinetic energy of the

nuclei can omitted, as most problems can be treated by assuming �xed atomic positions.

They can be relaxed statically after calculating the forces

F� = �rR�E
tot
0 (fR�g): (3.31)

We use the Hellmann-Feynman theorem[35], which states that

F� = � @Etot

@R�

����
n0

: (3.32)

(3.32) brings about the big advantage that we do not have to determine the energy hy-

perface Eges
0 (fR�g) by shifting the atoms. Instead, the forces can directly be obtained as

derivatives of the energy functional with respect to the atomic positions. Problems may

occur if we use a set of basis functions that depend explicitly on the positions of the nu-

clei, e.g. localised atomic-like functions. The reason for this is that relation (3.32) is true

only for the real ground state density n0. Strictly speaking, as we will be working with a

limited set of basis functions, we will never be able to describe it exactly. This leads to

the necessity of a correction term, the so-called \incomplete basis set correction"2[80].

3.5 Analysing the Results

Once we have obtained the equilibrium structure of a certain material we also want to

understand why the structure looks like it does, i.e. what makes it so stable in contrast

to other possible geometries or internal coordinates. We will be looking for answers to

these kinds of questions in the electronic structure of our systems. Therefore we now

introduce some quantities that are useful for such an analysis and whose calculation means

are available within the \mixed-basis" code.

Valence electron density distributions give a picture of the arrangement of the bonding

charge in real space and provide at least qualitative insight into the nature of the bonds.

They will be briey described in section 3.5.1. Densities of states (DOS) represent the

energetic eigenvalue spectra of valence states. They are, e.g., useful to look for energy gaps

or to analyse the contributions of single angular momenta to the valence bands. How this

2It is interesting to see that the correction term is vanishing not only for the limit of a complete basis,
but also for a basis consisting only of plane waves (see e.g. [80])
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is done is explained in section 3.5.2. Finally, a projection of the crystal wave function onto

an atomic-like basis set enables us to analyse speci�c bonds between selected atoms, as

described in section 3.5.3. The contributions of these bonds to the bonding energy can be

evaluated with the help of covalent bond energies, presented in section 3.5.4.

3.5.1 Electron Density Distributions

To get an impression of the spatial distribution of the self-consistent valence electron

density one has to de�ne cuts through the crystal. Then the amplitude of the electron

density (or also of ionic, Hartree or exchange-correlation potentials) is represented in these

planes by two-dimensional plots of, e.g., contour lines.

3.5.2 Densities of States

If N(�) is the number of valence states per unit cell with energies up to �, then the density

of states D(�) is de�ned as the number dN of states per unit cell within the energy interval

(�; � + d�):

dN(�) = D(�)d� : (3.33)

After integrating over the �rst Brillouin-zone we know the number of states up to � and

their occupation weights fkj
3 at each k-point (j is the band index) and can calculate D(�):

D(�) =
2

nkpt

X
kj

@

@�
fkj(�) : (3.34)

To get information about the DOS at individual atomic sites and di�erent angular mo-

menta, we display the crystal wavefunction in terms of eigenfunctionsKlm(r̂
0) of the angular

momentum with respect to the site R�:

 kj(r) =
X
lm

Rkj
�lm(r

0)Klm(r̂
0); r0 = r�R� : (3.35)

3The states are �lled up to the Fermi level according to the Fermi-Dirac statistics and such thatP
kj fkj = Ne, with Ne being the total number of electrons in the unit cell.
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Then the probability that an electron is found at the atomic site R� in a state of angular

momentum l and with magnetic quantum number m is given by

pkj�lm =

rdos;�Z
0

jRkj
�lm(r

0)j2r02dr0d3r : (3.36)

rdos;� is the radius of a sphere around the atom with index �. Its choice is more or

less a matter of taste. One common way is to choose the radius of touching but non-

overlapping spheres in an equilibrium reference structure. The pkj�lm can be summed up to

the probability of �nding an electron within a sphere of radius rdos;� around the atom �,

pkj� =
X
lm

pkj�lm : (3.37)

With these probability factors the site- and angular-momentum projected DOS D�lm as

well as the \total" site-projected DOS D� can be calculated,

D�lm(�) =
2

nkpt

X
kj

@

@�
fkj(�)p

kj
�lm (3.38)

and D�(�) =
2

nkpt

X
kj

@

@�
fkj(�)p

kj
� : (3.39)

For details see e.g [80].

3.5.3 Orbital Overlap Populations

To analyse the chemical bond between two atoms it is useful to present the crystal wave-

function as a linear combination of atomic (atomic-like) orbitals (LCAO). So we choose a

LCAO basis fj'�lmig consisting of localised functions centred at the atomic site �, with

variable ranges of overlaps for di�erent atomic sites.

'�lm(r
0) = f�l(r

0)ilKlm(r̂
0); r0 = r�T�R� ; (3.40)

with l and m being again the angular momentum and the magnetic quantum number. The

Klm(r̂
0) are eigenfunctions of the angular momentum (cubic harmonics) and f�l(r

0)il is a
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radial function4. With these localised functions the Bloch functions

hrj'k�lmi =
X
T

eik(T+R�)'�lm(r�T�R�) (3.41)

are built. For this basis we get the overlap and Hamiltonian matrix

S�� = h'k�j'k�i ; (3.42)

H�� = h'k�j bHj'k� i ; (3.43)

where the indices � and � comprise the former �; l andm, and where bH is the self consistent

e�ective one-electron Hamiltonian of the Schr�odinger equation 3.7 in the LDA, and for

instance represented by the mixed basis.

As our localised basis functions are normalised but non-orthogonal, we have to de�ne the

dual basis
�j'k+� i	 by demanding

h'k+� j'k�i = Æ�� ; (3.44)

with

j'k+� i =
X
�

j'k� iS�1
�� (k) : (3.45)

Then we can construct the projection operator

bP (k) =X
�

j'k�ih'k+� j (3.46)

to project the crystal wave functions on the local basis. The projected wave function j�kji
is

j�kji = bP (k)j kji =X
�

ckj� j'k�i; (3.47)

with the coeÆcients

ckj� = h'k+� j kji: (3.48)

4In this work atomic pseudowavefunctions have been used for f�l(r
0)il, contracted with a factor ��l

and limited to a certain range by a cut-o� function.
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j�kji will never equal j kji perfectly. To test and to optimise the quality of our basis we

can use the spillage [105, 106]

S =
1

Ne

2

nkpt

X
kj

fkjh kjj(1� bP (k))j kji: (3.49)

It varies between 0 and 1 and tells which charge fraction per valence electron in the unit

cell is lost by projecting the crystal wavefunction onto the local basis set. As we said the

projected crystal wavefunctions j�kji are close to but not identical with the self-consistent

j kji, the same holds for their overlap matrix R,

Rij(k) = h�kij�kji =
X
��

ckj�� S��(k)c
kj
� : (3.50)

The Rjj will be � 1 and we can write

S =
1

Ne

2

nkpt

X
kj

fkj (1�Rjj(k)) : (3.51)

With this local basis set we can now calculate bonding charges, occupation numbers and

bonding energies for the crystal.

The charge accumulated in a bond through overlap of two orbitals characterised by � and

� is given by

q�� = 2
2

nkpt

X
kj

fkjRe
�
ckj+� S��(k)c

kj
�

�
;with � 6= � ; (3.52)

where ckj+� =
X
i

R�1
ij (k)c

kj�
� : (3.53)

The occupation number of orbital � is then given after Mulliken [86] just by dividing the

overlap population q�� by two after summing over all orbitals � with whom � overlaps:

q� =
2

nkpt

X
�

X
bfkj

fkjRe
�
ckj+� S��(k)c

kj
�

�
: (3.54)

With the energy dependent occupation weights fkj we can also receive the energy resolved
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bonding charge or overlap population

COOP��(�) = 2
2

nkpt

X
kj

@

@�
fkj(�)Re

�
ckj+� S��c

kj
�

�
: (3.55)

This expression was �rst de�ned by Ho�mann [58] as \crystal orbital overlap population"

(COOP) to analyse bonding in crystals. The corresponding energy resolved bonding energy,

the \crystal orbital Hamilton population" was introduced by Dronskowski [29]:

COHP��(�) = 2
2

nkpt

X
kj

@

@�
fkj(�)Re

�
ckj+� H��c

kj
�

�
: (3.56)

The bonding energy is given by

E�� = 2
2

nkpt

X
kj

fkjRe
�
ckj+� H��(k)c

kj
�

�
: (3.57)

The disadvantage of expressions (3.56) and (3.57) is their variability with respect to a shift

in the e�ective potential. As we have seen in section 3.2.2 the zero level of the e�ective

potential is a parameter that can be chosen freely in our ab-initio calculations. Therefore

a new energy partitioning scheme of the total energy has been introduced by Bester et

al. [6] which leads to the de�nition of a \covalent bond energy" which is independent of

any shift in the e�ective potential. Furthermore the partitioning allows a very descriptive

interpretation of the individual contributions to the band energy. It shall be described in

section 3.5.4.

Yet, �rst we want to place another remark. So far we have looked at the overlap of Bloch

states which we constructed by performing a Bloch sum over atomic-like orbitals, as given

by (3.41). However, if we want to analyse the chemical bond between two atoms locally,

i.e. to receive information about the local overlap of two atomic-like orbitals and not of

the extended Bloch states, we have to invert the Bloch transformation:

S��(T) =
1

n2kpt

X
k

e�ik(T�R�+R�)S��(k) (3.58)

H��(T) =
1

n2kpt

X
k

e�ik(T�R�+R�)H��(k) (3.59)

S��(T) and H��(T) are the real space matrix elements between to orbitals localised at
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atoms being separated by a lattice vector T5 .

Then the bonding charge created by the overlap of orbitals � and � is

q��(T) = 2
2

nkpt

X
kj

fkjRe
�
eik(T+R��R�)ckj+� S��(T)c

kj
�

�
: (3.60)

The energy resolved crystal orbital overlap population in the real space formulation is

COOPT

��(�) = 2
2

nkpt

X
kj

@

@�
fkj(�)Re

�
eik(T+R��R�)ckj+� S��(T)c

kj
�

�
: (3.61)

Analogous equations can be derived for the occupation numbers (3.54) and the bonding

energies (3.57) and as well for the covalent bond energies that will be introduced in the

next section.

3.5.4 The Covalent Bond Energy

From equation (3.30) we can derive the following expression for the total energy:

Etot = Eband + EN�N +D (3.62)

=
X
kj

fkjh kjj bHj kji+ EN�N

�
Z
n0(r)veff(r)d

3r+ EH + Exc +

Z
n0(r)vext(r)d

3r| {z }
+D

: (3.63)

D is the so-called double-counting term. We see that the total energy is invariant with

respect to a shift in the e�ective potential, as such a shift is cancelled out by a shift of the

same amount but opposite sign in the band energy (compare e.g. (3.11)) and the remaining

terms are unambiguous (see e.g. [80]).

From the total energy we can derive the cohesive energy Ecoh by subtracting the energy of

5Another possibility would be to use a considerably larger supercell for the calculations, suÆciently
big that the Bloch states centred at atom � well inside the cell do not overlap with that of its image in
the adjacent cell. An alternative which is of course much more time-consuming and requires various test
calculations to ensure that the supercell is large enough.
However, also in the case of a \real-space formulation" test calculations are necessary to ensure the
convergence of the matrix elements with respect to the number of k-points. We have done this when
calculating the overlap populations in di�erent molybdenum carbides, as described in section 7.6
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the free atoms, Efree atom:

Ecoh = Etot � Efree atom (3.64)

The cohesive energy shall now be repartitioned into terms with an apparent physical mean-

ing. For this we express the crystal wave function in a basis of atomic-like functions, as in

section 3.5.3 and add and substract the terms

Re

 X
kj

X
��

h
fkjc

kj
�

�
ckj�
��
S�� �Nfree atom

� Æ��
i
H��

!
(3.65)

and

Re

 X
kj

X
��

fkjc
kj
�

�
ckj�
��
S��H��

!
(3.66)

in the expression for the band structure energy. For the remaining terms in (3.63) we

approximate n(r) by

n(r) =
X
�

nfree atom� (r�R�): (3.67)

Then D can be expressed as a sum of atomic contributions,
P

�D[n
free atom
� (r)], a pair-

potential contribution Epair and a small term Emb taking into account many-body interac-

tions. With this we get the energy of the free atoms

Efree atom =
X
�

Nfree atom
� Hfree atom

�� +
X
�

D[nfree atom� (r)] (3.68)

and can �nally rearrange the terms in equation 3.64 such that we get [6]

Ecoh = Eprom + Ecf + Epolar + Ecov + Epair + Emb : (3.69)

To explain the physical meaning of the di�erent contributions to the cohesive energy it is

useful to imagine the process of the bonding of atoms to a crystal step by step. First, the

valence electrons of the free atom are redistributed within its orbitals. The new orbital

population is given by (3.54). The energy needed for that is the promotion energy Eprom,

Eprom =
X
�

�
q� �Nfree atom

�

�
Hfree atom
�� : (3.70)
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As the atoms approach each other the electrons begin to feel the crystal potential which

leads, �rst, to a shift in the on-site energies, expressed by the crystal �eld energy Ecf :

Ecf =
X
�

q�
�
H�� �Hfree atom

��

�
: (3.71)

Afterwards the orbitals at one atomic site � hybridise, leading to the polar energy Epolar,

Epolar = Re

 X
kj� l l0

fkjc
kj
�l

�
ckj�l0
��

[H�l �l]

!
: (3.72)

And �nally the orbitals localised at di�erent atoms hybridise, gaining the covalent bond

energy Ecov for the whole bond:

Ecov =
X
�l�0l0

�6=�0

Ecov; �l �0l0 ; (3.73)

with

Ecov; �l �0l0 = Re

 X
kj

fkjc
kj
�l

�
ckj�0l0

��
[H�0l0�l � S�0l0 �l ��0l0 �l]

!
(3.74)

��0l0 �l =
1

2
(H�l �l +H�0l0 �0l0) : (3.75)

Ecov; �l �0l0 is the orbital resolved covalent bond energy. It can be shown that not only the

cohesive energy (3.64) but also all respective contributions, among them the covalent bond

energies (3.74, 3.73) are invariant with respect to any shift in the e�ective potential [6].
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Chapter 4

Semi Empirical Methods

With a semi-empirical method, in our case the tight-binding (TB) method, we make a

compromise between the highly accurate, but computationally very expensive ab-initio

methods introduced in the last chapter, and the fast but limited fully empirical meth-

ods, like molecular dynamics simulations with Lennard-Jones or Terso� potentials, used to

investigate dynamical properties of complex materials. Tight-binding calculations are typ-

ically two or even three orders of magnitudes faster than ab-initio calculations, depending

on the degree of approximations made for the Hamiltonian and overlap matrix elements

and on the complexity of the parametrisation. This gain in computational speed is mainly

due to the neglect of self-consistency and the use of a minimal basis set, as will be explained

below. On the other hand tight-binding methods su�er from a reduction in transferability,

due to the approximations made. Summarising, one can say that TB models are useful in

those situations (not too far away from the ones the model was �tted to) in which quantum

mechanical e�ects are signi�cant, but the system size makes ab-initio calculations imprac-

tical.

There are many di�erent approaches within TB theory. A recent overview over the existing

branches and methods is given e.g. in [42]. A summary of the basic concepts and their

application to transition metals and their alloys can be found e.g. in [100].

33
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4.1 Tight Binding Theory

In a TB-band model the total energy of the system is divided in a repulsive part Urep and

a bonding part coming from the band structure, Uband:

Utot = Urep + Uband: (4.1)

The repulsive part is represented as a sum over pairwise functions,

Urep =
X
i;j
i6=j

�(rij); (4.2)

where the sum is running over all pairs of atoms within a given range of interaction. The

band energy is the sum over all occupied one-particle eigenstates of the electron system,

Uband =
X
i

fi�i; (4.3)

with
X
i

fi = Ne:

fi are the occupation numbers, Ne the number of electrons. Equations (4.1) to (4.3)

originally have been established intuitively, but can be justi�ed by deriving them via the

Harris-Foulkes functional, as shown in sections 4.1.1 and 4.1.2. They build the basis of the

semi-empirical tight binding band methods 1

4.1.1 The Harris-Foulkes Functional

One of the reasons why a DFT calculation is computationally time consuming is the fact

that it is not a one-step calculation, but a self consistence cycle. So as a �rst step towards

a faster, even though approximate method one can ask, how accurate is the electronic

energy after just the �rst iteration step? Equation (3.12) gives for the total energy of the

1By subtracting the energy of free atoms in equation 4.1 and rearranging the terms Utot becomes Ubond,
the bonding energy. This kind of equation is the basis of the TB bond models.
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electronic system after one iteration step

Eel[n] =
NeX
i=1

�outi � e2
ZZ

nout(r)nin(r0)

jr� r0j drdr0 +
e2

2

ZZ
nout(r)nout(r0)

jr� r0j drdr0 (4.4)

�
Z
vxc[n

in]nout(r)dr+ Exc[n
out];

where nin and nout are the input and output electron densities, respectively. The error of

this functional in second order is

E[nout]� E[sc] = O([nout � nin][nout � nsc]) : (4.5)

Experience shows however, that nout tends to overcompensate the error in nin, thus E[nout]

might be a worse approximation than the initial guess, E[nin]. Consequently, Harris and

Foulkes introduced a new energy functional [37, 51]

E[n] =
NeX
i=1

�outi � e2

2

ZZ
nin(r)nin(r0)

jr� r0j drdr0 �
Z
vxc[n

in]nin(r)dr+ Exc[n
in] : (4.6)

For the self-consistent electron density nsc (4.6) equals (4.4), otherwise it is chosen arbitrar-

ily. It can not be varied anymore, but therefore has the advantage that it is not necessary

to calculate nout. The results for non-self-consistent calculations are often better than with

functional (4.4). The error which is now linear in nout can be approximated as

E[nout]� E[nsc] = O([nout � nin][nin � nsc]) : (4.7)

To reduce the computational e�ort even more, the integrals in equation (4.6) can be sim-

pli�ed by making a special ansatz for nin. This leads then to an expression for the total

energy which can be used as the basis of any tight-binding band model.

4.1.2 The Total Energy

In the local density functional theory we approximated the electron system by an electron

gas in which the electrons are more or less homogeneously distributed and move rather

freely between the ionic cores. In contrast to this approach in the tight binding theory

the electrons are imagined to be tightly bound to the atoms and a crystal is imagined to

consist of a lattice of rather isolated atoms which interact only weakly. Within this picture
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it is natural then to expand the one-electron wavefunctions in a basis set of atomic-like

orbitals. This will be done in section 4.1.3. For the charge density we assume for now a

superposition of atomic-like, spherically symmetric electron densities:

nin(r) =
X
�

n�(jr�R�j) : (4.8)

With this ansatz and the Harris-Foulkes functional (4.6) the total energy becomes

E0 =
X
i

fi�i

� e2

2

X
��

ZZ
n�(jr�R�j)n�(jr0 �R�j)

jr� r0j drdr0 +
e2

2

X
�; � 6=�

Z�Z�
jR� �R�j| {z }

E1[nin]

�
Z
vxc
�X

�

n�
�X

�

n�dr+ Exc

�X
�

n�
�

| {z }
E2[nin]

: (4.9)

E1[n
in] describes the Hartree energy of electrons and nuclei. The �rst term, the contri-

bution of the electrons, can be split in the interatomic and intraatomic Hartree energies.

The interatomic part is then summarised with the repulsive interaction of the nuclei to a

common pair potential �1. So �nally we can express E1[n
in] by

E1[n
in] =

X
�

EH [n�] +
X
�; � 6=�

�1(jR� �R�j) : (4.10)

As vxc and Exc do not depend linearly on n it is not possible to represent E2[n
in] in

a similarly exact way by pair potentials. However, we can expand E2[n
in] in terms of

many-body interactions and truncate the expansion after the two-body term. Then we

can eventually �nd an expression analogous to (4.10) for E2[n
in],

E2[n
in] =

X
�

E2[n�] +
X
�; � 6=�

�2(jR� �R�j) ; (4.11)

with a structure independent intraatomic term and the sum over pair potentials. If we

neglect now the structure-independent expressions in (4.10) and (4.11) and summarise �1

and �2 we end up with the expression for the total energy that is the basis of all TB-band
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models,

E0(R�) =
X
i

fi�i +
X
�; � 6=�

�(jR� �R�j) (4.12)

= Uband + Urep :

The band energy is the sum over one-particle energies that are solutions of the e�ective

one-particle Schroedinger equation. They are calculated in a non-self-consistent way that

shall be described in the next sections.

4.1.3 The Band Energy

To calculate Uband we have to solve the eigenvalue problem, (3.25). Therefore, the �rst step

is to choose a convenient basis set.

The Tight-Binding Basis

As mentioned above, the main assumption of all tight binding models is that the electrons

are tightly bound to the atoms and their wavefunctions keep their atomic-like character

when the atoms are brought together to form a crystal. Thus it is natural to choose a

basis of localised functions. This basis should be complete in the sense that all occupied

eigenstates (in the ground state) can be described, but at the same time as small as possible

to keep the computational complexity small, thus a so-called "minimal basis set" is used.

The one-electron wavefunctions become

j�ii =
X
�;l

ci�lj'�li; (4.13)

where the j'�li are localised at the atomic site R� and are a product of a radial function Rl

that only depends on the distance of the electron from the atom, and an angle dependent

function Yl (spherical or cubic harmonics):

j'�li = R`(jr�R�j)Yl(�; '): (4.14)

The index l comprises the quantum number of angular momentum, `, and the magnetic

quantum number m. With this set of basis functions the eigenvalue problem (eq. 3.25)
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becomes X
�;l

H�0l0;�lc
i
�l = �i

X
�;l

S�0l0;�lc
i
�l; (4.15)

with the matrix elements

H�0l0;�l = h'�0l0j bHj'�li (4.16)

and S�0l0;�l = h'�0l0j'�li (4.17)

We should keep in mind that to calculate the crystal wave function, we have to build Bloch

functions from the local functions (compare e.g. (3.28))

�kj = hrj'k�lmi (4.18)

=
X
T

eik(T+R�)'�lm(r�T�R�) ; (4.19)

Then the eigenvalue problem becomesX
�;l

Hk

�0l0;�lc
ki
�l = �ki

X
�;l

Sk�0l0;�lc
ki
�l ; (4.20)

with the matrix elements

Hk

�0l0;�l = h�k�0l0j bHj�k�li (4.21)

=
X
T

eik(R��R�0�T)h'�0l0(r�R� �T)j bHj'�l(r�R�)i (4.22)

and

Sk�0l0;�l = h�k�0l0j�k�li (4.23)

=
X
T

eik(R��R�0�T)h'�0l0(r�R� �T)j'�l(r�R�)i : (4.24)

Solving the eigenvalue problem provides the energy eigenvalues and thus the band energy

EB =
X
kj

fkj�kj : (4.25)

The sum over k runs over the �rst Brillouin zone and j is the band index.

In principle we could still calculate the matrix elements h'�0l0j bHj'�li and h'�0l0 j'�li self-
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consistently for any given arrangement of atoms. But instead we will approximate them

(and the repulsive potential) by an analytical expression which contains free parameters

to �t e.g. to ab-initio data. To keep the analytical form rather simple some assumptions

and approximations will be introduced in the following. Being as simple as possible the

approximate expressions still have to mirror the main dependencies of the matrix elements

between two orbitals, which are

� the interatomic distance jR� �R�0j,

� the direction cosines of the connecting vector R� �R�0,

� the angular momenta l and l' of the orbitals involved

� the atomic species of � and �0.

� the environment of the atoms � and �0

In many tight binding models the last point is neglected, however. The �rst approximation

we are going to make is the tight-binding approximation.

4.1.4 The Tight Binding Approximation

As mentioned repeatedly in this section the main assumption in the tight binding models is

that the electrons are well localised around the atomic sites. Among other things this means

the Hamilton and overlap integrals between them will decrease rapidly with increasing

interatomic distance. So it is legitimate to neglect them after a certain cut-o� radius rcut:

h'�0l0j bHj'�li
h'�0l0j'�li

)
= 0 for jR�0 �R�j > rcut : (4.26)

The choice of rcut depends on the system. In many cases, especially covalent materials,

simple models that include only nearest-neighbour interactions perform very well. The

bcc transition metals treated in this work, however do condense in close packed structures

where the nearest- and next-nearest-neighbour distances are very similar. So it is sensible

to include at least also the second-nearest-neighbours to prevent discontinuities.

4.1.5 Orthogonality

We want to assume that the atomic-like basis functions j'�li are orthogonal. This is a

momentous assumption leading to several simpli�cations. With an orthonormal basis set
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the overlap matrix equals the unity matrix:

S�0l0 �l = Æ��0Æll0 : (4.27)

With this the number of free parameters is considerably reduced. But most important the

eigenvalue problem simpli�es toX
�;l

H�0l0;�lc
i
�l = �ic

i
�0l0 : (4.28)

This orthogonal eigenvalue problem is computationally much less demanding and thus

saves a lot of calculation time.

Now how to justify the assumption of orthogonal basis states? One can argue that it

is always possible to perform a so-called L�owdin transformation which converts the non-

orthogonal j'�li into orthogonal L�owdin orbitals j'0
�li,

'0 = 'S�1

2 : (4.29)

From equation (4.29) we see the problem that arises from this transformation: the L�owdin

orbitals have parts which are localised at neighbouring atoms. Thus the Hamilton ma-

trix elements have a much more complicated environment dependency than in an non-

orthogonal basis set. This environment dependency is hard to capture with an as simple

as possible analytical expression and therefore will reduce the transferability of the free

parameters once they are �tted to a limited set of structures. We will come back to this

point when discussing the environment dependent parametrisation in chapter 4.2.

4.1.6 The Two Centre Approximation

When starting with the Harris-Foulkes functional, we expressed the input electron density

by a superposition of spherically symmetric (atomic) charge densities and neglected all

non-linearities in vxc to derive expression (4.12) for the TB total energy. With these

assumptions our Hamiltonian now looks like this:

H�0l0;�l = h'�0l0j � ~
2

2m
�+

X
�00

veff;�00(jr�R�j)j'�li : (4.30)

Three di�erent kinds of integrals occur:
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� one-centre terms: � = �0 = �00 ,

� two-centre terms: � 6= �0 = �00 ,

� three-centre terms: � 6= �0 6= �00 6= �.

The three-centre terms describe the overlap of two orbitals at di�erent sites with a poten-

tial at a third site. This overlap is small in comparison to the one- and two-centre terms

and shall be neglected. This is called the two centre approximation. It has extensive conse-

quences as it eventually enables the decomposition of the Hamiltonian matrix elements into

only a few fundamental integrals, as we will see below. Among the one- and two-centre

integrals we distinguish between \on-site" and \hopping" terms (intra- and interatomic

matrix elements), depending on whether the orbitals involved are localised at the same or

at di�erent atomic sites.

Intraatomic Matrix Elements

The intraatomic matrix elements describe the \on-site" energies, energies of orbitals lo-

calised at the same atom �, interacting with the potential at the same site (one-centre

terms) or at di�erent sites (two-centre terms). We neglect the interaction of orbitals with

di�erent angular momenta l. Then the intraatomic Hamiltonian elements are

H�l;�l = ��l = �0�l +
X
�00

h'�ljveff;�00j'�li ; (4.31)

with the one-centre term

�0�l = h'�lj � ~
2

2m
�+ veff;�j'�li : (4.32)

Interatomic Matrix Elements

The interatomic matrix elements describe the \hopping" energies, energies of orbitals lo-

calised at neighbouring atoms, interacting via the potentials at the two sites:

H�0l0;�l = h'�0l0j � ~
2

2m
�+ veff;� + veff;�0 j'�li : (4.33)

If we ignore the implicit environment dependency that is hidden in veff
2 the interatomic

matrix elements do not contain any environment dependency anymore. Thus they can be
2as actually it should be determined self-consistently
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described by an analytic function containing information only about absolute value and

direction of the connecting vector between the two sites and the angular character of the

orbitals. For this we decompose the orbitals j'�li in functions j'�lmi, where the quantum
number m mirrors the projection of the angular momentum l onto the connecting vector.

Thus a p-orbital can be decomposed in � and �-contributions and a d-orbital in �-, �- and

Æ- terms. The Greek letters �, � and Æ denote a state with quantum number m = 0,1 and

2, respectively. Of the Hamiltonian integrals

H�0l0m0;�lm = h'�0l0m0 j � ~
2

2m
�+ veff;� + veff;�0j'�lmi (4.34)

those with m 6= m0 vanish due to the orthogonality relations of the cubic harmonics j'�lmi.
In the end, if using a basis containing s-, p- and d-orbitals, we end up with only ten

independent interatomic matrix elements Vll0m, schematically shown in �gure 4.1. With

them integrals between orbitals of any orientation can be calculated in form of linear

combinations. The coeÆcients are composed of the direction cosines of the connecting

vector. These linear combinations were constructed and tabulated �rst by Slater and

Koster [109] for s-, p- and d-orbitals and extended to f - and g- orbitals by Sharma [107].

As an example see �gure 4.2, where a matrix element between two p-orbitals (e.g. two

px-orbitals) is decomposed in �- an �- contributions.

4.2 The Environment-Dependent Parametrisation

4.2.1 The Environment-Dependent Model for Carbon

The environment-dependent tight binding model that we are going to introduce in this

chapter has been developed by Tang et al. [116] to model a variety of carbon structures.

It is based on a previous TB model of Xu et al. [123], a traditional orthogonal, two centre

model. Tang et al. added two important features, environment dependency via a screening

function and bond length scaling, which signi�cantly improved the transferability of the

model and the predicted properties of the carbon structures, e.g. phonon frequencies and

elastic constants [116]. All pairwise functions are expressed as

h(r��0) = A1R
�A2

��0 exp
��A3R

A4

��0

�
(1� S��0) : (4.35)
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Figure 4.1: Independent interatomic matrix elements for an s- p- d- basis, constructed
after Slater and Koster.

Figure 4.2: Slater-Koster decomposition of an hpj bHjpi matrix element.
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Figure 4.3: For illustration of the screening e�ect of a third atom �00 in the vicinity of a
pair of interacting atoms, � and �0.

h(r��0) can be a hopping integral Vll0m or the repulsive potential �(r��0) between the atoms

� and �0. r��0 is the real distance and R��0 the scaled distance between the two atoms

(compare (4.38)). S��0 is a screening function, given by

S��0 =
e���0 � e����0

e���0 + e����0
= tanh(���0) ; (4.36)

with

���0 = B1

X
l

exp

"
�B2

�
r��0 + r�0 �00

r��00

�B3

#
: (4.37)

The parameters Ai and Bi are di�erent for di�erent hopping integrals and the repulsive

potential. The screening function S��0 varies between 0 and 1 and describes the inuence

of a third atom �00 on the bond between atoms � and �0. The contribution of �00 to ���0 is

largest if �00 is situated in the connecting line between � and �0. Then the screening of the

interaction takes on a maximum. For illustration see �gure 4.3. The scaled bond length

R��0 in equation (4.35) is given by

R��0 = r��0

�
1 +

Æ

2

��
g� � g0
g0

�
+

�
g�0 � g0
g0

���
; (4.38)

where g� (g�0) is the e�ective coordination number of atom � (�0) in a given atomic

arrangement and g0 is the reference coordination number of � in the equilibrium structure.

The bondlength scaling can be understood as a reection of the behaviour of over- and

undersaturated bonds. If the atom � is coordinated by more bonding partners than in
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the equilibrium structure, less electrons per bond will be available and the bonds will be

slightly weaker. In the TB calculation this weaker interaction is received by a larger (scaled)

bond length R��0 . The analogous argumentation holds for a smaller coordination number

than in the equilibrium structure. The coordination numbers are \e�ective" coordination

numbers as the coordination partners of atom � are screened:

g� =
X
�0

(1� S��0) : (4.39)

In the intraatomic matrix elements (4.40) the two-centre terms ��l(r��0) are also modelled

by expression (4.35), so the on-site energy for an orbital with angular momentum l is

�l;� = �l;0 +
X
�0

��l(r��0) ; (4.40)

with the one-centre terms �l;0. The repulsive energy is expressed as a fourth-order polyno-

mial the argument of which is the sum over all pairwise repulsive interactions �:

Erep =
X
�

f
�X

�0

�(r��0)
�

(4.41)

with (4.42)

f(x) =
n=4X
n=0

Cnx
n : (4.43)

With their parametrisation Tang et al. reintroduced to a certain extend the environment

dependency of the Hamiltonian elements that has been neglected by choosing an orthogonal

basis and the two-centre approximation. By this their model gained a very high transfer-

ability, from C as a linear chain (coordination number = 2), to C in the close-packed

structures (coordination number = 12). The price one has to pay is of course a higher

computational time, as additional loops over all pairs of atoms have to be performed to

calculate the screening function. However, this is still far easier than taking into account

explicitly three-centre matrix elements.

4.2.2 The Environment-Dependent Model for Molybdenum

In the case of Mo, extreme geometries like a linear chain do not play a role. This brings

about some simpli�cations. Haas et al. used Tang's model for a TB-description of Molyb-

denum including s-, p- and d-orbitals in the basis [47, 48]. They started with a simpli�ed
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version, neglecting the bond-length scaling [48], but introduced it later to improve the

transferability of the parameters to more crystal structures (e.g. A15) [47]. Still, the

model is a little less complex as they set the parameters A2 = 0 and A4 = 1. Then the

expression for all pairwise functions (4.35) becomes

h(r��0) = A1exp [�A3R��0 ] (1� S��0) : (4.44)

The intraatomic energies are given by

��;d = �0d +
X
�0

��d(R��0) (4.45)

��;s = ��d + �0s�d +
X
�0

��d(R��0) (4.46)

��;p = ��d + �0p�d +
X
�0

��d(R��0) (4.47)

(4.48)

where the ��l are also parametrised according to (4.44). To reduce the number of free

parameters, the canonical relationships [52] were used for the d-d and p-d matrix elements:

Vdd� : Vdd� : VddÆ = �6 : 4 : �1 (4.49)

Vpd� : Vpd� = �
p
3 : 1 : (4.50)

This means that in the �tting procedure the constants A1 of the Vddm and Vpdm were

determined unter the restrictions of relations (4.49) and (4.50) and the A1 and B1 to B3

of the Vddm and of the Vpdm were set equal, respectively:

C(Vdd�) = C(Vdd�) = C(VddÆ) (4.51)

and C(Vpd�) = C(Vpd�) ; (4.52)

where C is any of the constants mentioned above. Furthermore Vpp�, as being comparatively

small, has been neglected completely.

In contrast to the model of Tang et al. the repulsive energy is simply given by

Erep =
X
��0

�6=�0

�(r��0); (4.53)
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what corresponds to choosing C1 = 1 and setting all other Ci = 0 in expression (4.43).

Altogether this parametrisation contains 55 free parameters which had been �tted to re-

produce ab-initio data like bonding energies and energies of vacancy formation as well as

experimental data like phonon frequencies and the elastic constant C44 [46, 47, 48]. It

should be noted that the parameters B1 to B3 for the screening function which is used for

the bond length scaling are the same as those chosen by Tang et al. So the bond length

scaling can be understood as a material-independent, purely geometric e�ect.

4.2.3 Mo-C Interactions

So far the environment dependent parametrisation of Tang et al. [116] and Haas et al.

[47, 48] have been applied successfully to model the properties of pure Carbon and Molyb-

denum. In this work processes like segregation of C in Mo and the precipitation of MoCx

at a Molybdenum grain boundary shall be described. Therefore we need a parametrisation

of the Mo-C interaction. As the environment dependent descriptions of Mo and C are

based on the same analytical expressions it is tempting to adopt the same form for the

Mo-C matrix elements and the repulsive interaction. This means we will \simply" need

an extra set of parameters fAi; Bi and Cig. An extension which is necessary refers to the

bond length scaling. The scaled bond length is now calculated by

R��0 = r��0

�
1 +

Æ

2

��
g� � g0
g0

�
+

�
g�0 � g00
g00

���
; (4.54)

i.e. � and �0 can have di�erent reference coordination numbers if they belong to di�erent

atomic species. As said above the parameters of the screening function for the bond length

scaling are the same for C and Mo and we consider the bond length scaling as a purely

geometric e�ect. So it is plausible not to change them when calculating the rescaled bond

length of a Mo-C pair. It is a point of discussion however, how the parameters of the

screening function for the Hamiltonian matrix elements should dependend on the atomic

species. The parameters of the screening of a Vss� integral between a pair of C atoms by a

C atom are di�erent to those of the screening of a Vss� between Mo atoms by a Mo atom.

If we now have both atomic species in one system, how does the \screening-interaction"

look like? Using the nomenclature of �gure 4.3 we have to decide whether the choice

of parameters shall depend on � and �0 or on �00, or on all of them. A semi-physical

formulation of this question would be, does the disturbance of a bond between two atoms

by a third atom depend on the properties of the bond (i.e. is it a Mo-Mo, C-C or Mo-C
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bond screened by any atom X) or on the disturbing potential (i.e. do we look at any X-Y

bond screened by a either a Mo or a C atom) or on both quantitites (Mo-Mo, C-C or

Mo-C bond screened by either C or Mo). For the current implementation the �rst point of

view was chosen. Then again the screening is a geometric e�ect, but the magnitude of the

e�ect depends on the matrix element which is screened, so to say on the initial strength

of the unscreened interaction. However, taking into account also the atomic species of the

third atom, and thus increasing the number of parameters by a factor of two if needed is

a straight forward task.

4.2.4 Atomic Forces

Like the total energy in a tight binding band model the force on atom � can be split

in two contributions, one part derived from the band energy and one from the repulsive

interactions:

F� = F rep
� + F band

� : (4.55)

We have an analytic expression for both types of interactions. The calculation of the forces

originating from the repulsive interactions is straight forward:

F rep
� = �

X
�;�0 6=�

@

@R�

�(R�;R�0 ; fR�00g) : (4.56)

It is important to keep in mind however, that due to the environment-dependent parametri-

sation F is a many-body force. � can be of type �; �0; �00 or even �0003. This makes the

calculation as well as the implementation rather complex.

For the contribution of the band energy to the forces we use the Hellmann-Feynman the-

orem again (compare section 3.4) and write

F band
� = � @

@R�

X
kj

h kjj bHj kji
=

X
kj

fkj
X
�0l0;�l

ckj�0l0c
kj
�l

@

@R�

Hk

�0l0;�l (R�;R�0; fR�00g) : (4.57)

3�000 indicates an atom which is a nearest-neighbour of �0 but not of �. Atoms of these kind play a role
in the derivatives of the scaled bondlength, where they occur in the derivatives of the e�ective coordination
number of �0.
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This time we can forego any correction terms arising from the use of a basis set of localised

functions, as the Hamiltonian elements in a tight-binding model do not depend explicitely

on the basis functions.

4.2.5 Implementation of the Model and Fitting of the Parame-

ters

The environment dependent model of Tang et al. was implemented in a code for ab-initio

LMTO and semi-empirical TB-electronic structure calculations. The basic package of

routines was created by van Schilfgaarde, Paxton, Klepeis and Methfessel. The new imple-

mentation includes the necessary extensions to Tang's model to treat not only elemental

crystals but also compounds. A brief overview over the structure of the implementation

and a discussion of the problems is given in appendix C.

For the �tting of the parameters the initial choice is very important. A set of parameters

that leads to a good reproduction of the important crystal properties is never unique, so

we have to make sure that it describes the distance dependency of matrix elements and

repulsive interaction in a physically meaningful way. In chapter 7 we will therefore discuss

(among other things) a possible �tting strategy. The accomplishment of the �t and the

application of the model to our problems has become beyond the time frame of this work.
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Chapter 5

Segregation of Light Elements in

Niobium and Molybdenum

5.1 Introduction

In this chapter the inuence of segregated impurities on the atomic structure and the in-

terfacial cohesion of the �5 symmetrical tilt grain boundary in the bcc transition metals

Nb and Mo is investigated. For this interface energies and geometric translation states are

analysed and the observed trends are rationalised by studying the electronic structure at

the grain boundary. Calculated bonding energy di�erences will be presented as a measure

for the embrittling or cohesion enhancing inuence the impurities on the grain boundary

cohesion. The results will be compared to Cottrell's \uni�ed theory" of the e�ects of seg-

regated interstitials on grain boundary cohesion [19] to test the validity of this empirical

approach.

The chapter starts with an overview over Cottrell's theory in section 5.2. In sections

5.3 and 5.4 the model for the calculations will be introduced. Then the results will be

presented and compared to the predictions of this theory in section 5.5. The results of

previous investigations, theoretical and experimental, concerning the pure grain boundary

as well as theoretical predictions concerning C at the grain boundary in Mo that play a

role for the actual work will be briey summarised.

53
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5.2 Cottrell's Uni�ed Theory

With his \uni�ed theory" [19] Cottrell is uniting di�erent theoretical approaches that de-

scribe well di�erent behaviours of interstitial elements at grain boundaries, i.e. the e�ective

medium theory [27, 88] for polarly bonding impurities, and tight-binding or linear combi-

nation of atomic orbital schemes [52] for covalently bonding interstitials.

To predict the e�ects of interstitial elements on grain boundary cohesion in transition met-

als, Cottrell starts with the electron theory of chemisorption, describing the interactions

of single adsorbate atoms with a free metal surface. Starting point is a free atom far away

from the metal surface. The �rst ionisation level I is a characteristic electronic energy level

describing the highest �lled electron state in a neutral free atom. In the metal the highest

occupied level is given by the Fermi energy EF , which can be referred to the vacuum level

by the work function � of the metal. The valence band in the transition metals is a d-band,

that has a certain width Wd which can be approximated e.g. by the universal tight binding

scheme of Harrison [52]. The relationship between these quantities is shown in �gure 5.1.

The situations that can occur correspond to Pettifor's \common band" and \rigid band"

model [99], except that the second binding partner is an impurity atom with discrete

electronic levels instead of another metal. If, as in �gure 5.1 the valence level of the

impurity lies within the energy interval given by Wocc:
d , the occupied part of the transition

metal d-band, there is a dynamical equilibrium with an electron hopping from metal to

atom and back as the atom now approaches the surface, and

I + U(n) � � (5.1)

where U(n) is the electrostatic potential at the atom with the amount n of excess electrons

(0 � n � 1). The resulting electronic energy level of the atom

�a = I + U(n) (5.2)

is \oating" at the Fermi level and a strong hybridisation between the metal d-band and

the atomic level takes place, leading to covalent bonds between metal and adsorbate atom.

The other extreme cases are that the valence level of the impurity is lying far below the

lower edge of the d-band or far above EF . In the �rst case, charge ows from the metal

to the impurity until the energy level of the latter is �lled and sinks down further, while

the emptied metal bands rise in energy. In the second case charge is transferred from the
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Figure 5.1: Schematic drawing of the transition metal d-band and the highest occupied
valence state of a free atom. EF marks the Fermi level. Wd is the width of the metal
d-band and Wocc

d the occupied part of it. � is the work function of the metal. I is the �rst
ionisation energy of the free atom. The energy di�erence � indicates the relative position
of the electronic states, as explained in the text.
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EN [eV] � [eV] Wd [eV] W occ
d [eV]

Nb 1.2 3.991 9.7 3.88
Mo 1.3 4.132 10.0 5.00

Table 5.1: Electronegativity EN [4], work function �,1: for polycrystalline Nb [1], 2: for
the (310) surface of Mo [3], width Wd of the 4d-bands [52] and the occupied part of itW occ

d

for Nb and Mo.

EN [eV] I [eV] �Nb �Mo

H 2.2 13.598 -5.73 -4.47
B 2.0 8.298 -0.43 0.83
C 2.5 11.260 -3.39 -2.13
N 3.1 14.534 -6.66 -5.40
O 3.5 13.618 -5.75 -4.49

Table 5.2: Electronegativity EN [4] and �rst ionisation energy I [4] for the impurity atoms,
and the parameter � according to equation (5.3). The smaller the value of � the stronger
is the hybridisation we expect.

adsorbate to the metal, the energy levels of the atom are emptied and raised further. In

both cases the resulting charge distribution is ionic.

At this point we look at the elements that will play a role in our investigation later. Table

5.1 lists the work function � as well as the width of the 4d-band for the transition metals Nb

and Mo. Note that in the strict sense Cottrell's model is not completely independent of the

grain boundary geometry, as the work function of the metal depends on the crystallographic

surface orientation. However, compared to other assumptions made in the model, the

energy di�erences between di�erent � due to di�erent surface orientations are small and

do not change the general trend, which is all we want to derive here. For precise numbers

the ab-initio method described in section 3 will be applied later on. Table 5.2 shows the

�rst ionisation energies of the light interstitials H,B,C,N, and O that will be treateed and

the energy di�erence

� = � +W occ
d � I (5.3)

which is an indication of the relative position of the valence level of the impurity and the

transition metal d-band, as shown in �gure 5.1.

In case that � is between zero and a positive value � W occ
d the highest occupied level of

the free atom lies within the transition metal d-band, like in the \common band model",
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and we expect covalent bonds. If � is negative with a big absolute value, the valence state

of the free atom is lying well below the lower edge of the transition metal d-band, as in the

\rigid band model", and we expect charge transfer from the metal host to the impurity

atom, and resulting an ionic charge distribution. Hence, from table 5.2 we expect that

B is very likely a candidate to form covalent bonds with Nb as well as Mo, where O and

H surely are not, they should form ionic bonds. C and N are somewhere in between. Of

course this is just a �rst estimate, since so far all e�ects of electronic interaction between

metal and adsorbate atom were neglected.

For comparison the electronegativities of the di�erent atomic species are also given in tables

5.1 and 5.2. They are de�ned as \the power of an atom in a molecule to attract electrons

to itself"[92]. To simplify the argumentation even more one could also use their di�erence

to estimate the ionicity of the bonds. This concept was developed by Pauling (see e.g. [92])

on a fully empirical basis to predict reasonably well the extent of ionicity of the chemical

bonds in molecules. In our case, however, as the electronegativity of H is in between those

of B and C this would predict a di�erent trend - a wrong one, as will be seen later - in the

bonding behaviour at the grain boundary than the calculated values for �. This shows

that for solids an approach based on the electronic states and bands is indeed necessary,

even if it may be as elementary as the ansatz of Cottrell.

Now, what does the bonding behaviour at the surface mean for the situation at an internal

interface? Cottrell argues that in the case of a covalently bonding impurity the largest part

of the bonding energy EB is the hybridisation energy Ehyb, and thus EB �
p
z, where z is

the coordination number of the impurity. This relationship is resulting when the bonding

energy is described in terms of pair potentials based on the second-moment approximation

of the band structure [26]. Thus a covalently bonding interstitial impurity always favours

the surrounding of a grain boundary over that of a free surface, because of the twofold

larger coordination number z. Such an impurity increases grain boundary cohesion. For a

polarly bonding impurity on the other hand, the contribution of Ehyb to EB is small, EB

is dominated by a spatially homogeneous contribution Ehom that can be derived from the

e�ective medium theory [88]. At the same time a considerable amount of energy has to

be invested for shifting levels, thus the impurity favours the free surface which provides a

smaller coordination number z. Such an impurity promotes grain boundary brittleness.

Further in his paper [19] Cottrell is developing a comparatively simple but still extensive

scheme of deriving an e�ective potential (including screening e�ects) for the adsorbate

atom at the metal surface, as well as Ehyb and Ehom. His approach shall not be followed



58 CHAPTER 5. LIGHT ELEMENTS IN NB AND MO

further here, but instead the energies and electronic structures of di�erent grain boundaries

with light interstitial impurities are calculated by means of the density functional theory.

The results are compared to the predictions of the \uni�ed theory".

5.3 Structures and Energies of the Pure �5 STGB in

bcc Transition Metals - Theory and Experiment

5.3.1 The Model Supercell

For the study of the pure STGB in the bcc metals a supercell containing 20 atoms as

shown in �gure 5.2a) was used and validated in [31, 90, 89] as a model for the �5(310)[001]

STGB. The base-centred orthorhombic supercell contains for instance the big grey atoms.

The small grey atoms mark the translational repetition of the supercell to build up the

bcc structure. Another, more schematic representation of the supercell is shown in �gure

5.3 to visualise the inuence of the periodic boundary conditions in combination with the

special choice of supercell unit vectors. Here only the atoms at the grain boundary have

been indicated. In addition to positions of the metal atoms, depicted as big and small

grey circles, the positions of the impurity atoms which will be inserted into the supercell

later on, are indicated as big and small black circles. The supercell consists of the (001)

plane containing the big impurity atoms. The small circles are the periodic images of the

respective atoms along the a and b directions. This model can be used without restric-

tions to calculate properties of the pure grain boundaries, because it allows full relaxation

of the atomic positions. However, it should be noted already here that it is imposing some

constraints on calculations with point defects (interstitial impurities): local relaxations

parallel to the [001] direction are not possible with such a \one-layer" model. How far this

a�ects the results will be discussed in due course.

5.3.2 Translation States of the Pure �5 STGB

An issue which has been widely investigated during the last years, both experimentally and

theoretically, is that of the intrinsic geometric translation state of the �5 STGB in various

bcc transition metals. Figure 5.4 shows a high-resolution TEM image of the �5 (310)[001]

STGB in Mo recorded by W. Sigle [108]. The view is along the [001] direction. The mirror
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Figure 5.2: a) Supercell model for the �5 (310)[001] STGB. The base-centred orthorhombic
supercell (cf. refs [31, 90, 89]) contains the large grey atoms. The small grey atoms mark
the translational repetition of the supercell to build up the bcc structure. The grey triangle
indicates the projection of the trigonal prism, the preferred segregation site for impurities
(see section 5.4), into the (001) plane. b) Two lateral translation states: mirror-symmetric
con�guration I and non-mirror-symmetric con�guration II.

symmetry of the structure with respect to the grain boundary plane is visible. Figure 5.5

shows the view along [�130]. There is no relative shift of the grains along [001] and thus the

grain boundary is hardly visible. In �gure 5.6, which shows another view along [�130] at

a di�erent location of the TEM sample, we see regions where the translation state along

[001] is a di�erent one. There is a relative shift of grains parallel to the interface, breaking

the mirror symmetry. However, due to the dislocations present in this area we can not

conclude that this is the intrinsic translation state of the �5 grain boundary in Mo. In

the contrary, the rather large undistorted area in �gure 5.5 indicates a perfectly mirror

symmetric structure.

These observations are contradictory to what Campbell et al. found earlier by performing

HRTEM on the same grain boundary in Mo, i.e. a structure in which the mirror symmetry

is broken by a shift along [001] [12]. Furthermore Campbell et al. investigated the �5

STGB in Nb and Ta and found a mirror symmetric structure in the former [15, 14] and a
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Figure 5.3: Schematic, three dimensional representation of the supercell. The metal atoms
at the grain boundary are indicated as big and small grey circles. The positions of the
impurity atoms are depicted as big and small black atoms. The supercell consists of the
(001) plane containing the big circles. The small circles are periodic images of the respective
atoms along the a and b directions.

symmetry-broken one in the latter [13].

In the diploma thesis of Beck and the doctoral thesis of Ochs the question of the translation

state was investigated by means of ab-initio electronic structure calculations to determine

the factors which lead to the preference of the one or the other translation state [5, 89].

The model supercell used is the one shown in �gure 5.2. By purely geometric construction,

e.g. by means of the coincidence-site lattice (CSL) model, this supercell of the �5(310)

[001] STGB also shows mirror symmetry with respect to the grain boundary plane. By

performing rigid grain shifts in all three spatial directions, as indicated in �gure 5.7, fol-

lowed by relaxation of the atomic positions for each shift, the stability of this con�guration

was probed ([5, 31, 90, 89]) for di�erent bcc transition metals (Nb, Mo, Ta, W). As it was

due, all grain boundaries show an expansion perpendicular to the grain boundary plane,

parallel to the [310]-direction, arising from the unphysically small distance of the metal

atoms at the grain boundary in the CSL supercell. This expansion does not a�ect the mir-

ror symmetry and leads to what in the following is called con�guration I. However, it was

also demonstrated that by variation of the �lling of the d-bands a di�erent translation state

can be stabilised which has this mirror symmetry broken (con�guration II). The grains are

shifted relative to each other along the [001] direction. This is shown schematically in �gure

5.2b). The amount of the shift as well as the energy di�erence between con�gurations I
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Figure 5.4: HRTEM image of the �5 (310)[001] STGB inMo, view along the [001]-direction.
Courtesy of W. Sigle
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Figure 5.5: HRTEM image of the �5 (310)[001] STGB inMo, view along the [�130]-direction.
Courtesy of W. Sigle
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Figure 5.6: HRTEM image of the �5 (310)[001] STGB inMo, view along the [�130]-direction.
Courtesy of W. Sigle
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Figure 5.7: Rigid grain shifts of the �5 (310)[001] STGB performed in [31, 90] to �nd
the stable translation state, a) conserving the mirror symmetry, b),c) breaking the mirror
symmetry
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atomic expansion
valence con�g. along[310] �� [mJ

m2 ] �t [%a0]

Ta 5d36s2 5 (?) 0

Nb 4d45s1 5 8 8

W 5d56s1 8 100 18

Mo 4d55s1 6 108 20

Table 5.3: The translation states of the �5(310)[001] grain boundary in four bcc transition
metals [5, 31, 90, 89]. Listed are the atomic valence con�guration, the expansion at the
grain boundary along [310] (con�guration I) in percent of the cubic lattice parameter a0,
the energy di�erence between con�gurations I and II (cf. �g. 5.2b)) �� = EI �EII in

mJ
m2 ,

and the relative shift �t of grains along the [001] direction in con�guration II, again in
percent of the cubic lattice parameter a0. (?) marks that only the mirror-symmetric case
I was found stable.

and II increases with increasing number of d-electrons. No stable or metastable translation

states along [�130] were found. The results of [5, 31, 90, 89] for energies and translations

are summarised in table 5.3.

Paxton [93] proposed the explanation and the authors of [5, 31, 90, 89] supported it by

quantitative calculations that the observed structural trend originates from a competition

between the tendency of the bcc transition metals to form close packed structures and

the angular-dependent bonds arising from the presence of partially �lled d-states. These

angular dependent bonds stabilise the mirror-symmetric, more open structure I of the

�5(310) [001] STGB in Ta, Nb, W and Mo. However, in W and Mo the half-�lled d-

states show again spherical symmetry and the more close packed non-mirror-symmetric

con�guration II becomes more favourable. For Nb the situation is more subtle. The relative

shift of grains is rather small (8% a0) and there is only a slight energy di�erence between

con�gurations I and II of 8 mJ
m2 , so that the two translation states can be called energetically

degenerate.

In the following the number of valence electrons at the grain boundary is varied by putting

light interstitial impurities, H, B, C, N and O, at the interface. As model system the

�5(310) [001] STGB in Nb and Mo is chosen.
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5.4 Segregation of Carbon in Molybdenum

The case of C in Mo has already been studied in detail in a previous work [65, 66]. Survey

calculations have been performed to investigate the segregation of C at the �5 STGB in

Mo. Starting from con�gurations I and II described above for the STGB in Mo, C was put

at di�erent octahedral sites of the bcc lattice, starting in the bulk and approaching the

interface layer by layer. The respective positions of C have been relaxed, but the metal

lattice has been kept �xed in the respective fully relaxed con�guration of the pure grain

boundary. Two main results are important for the present work:

First, the preferred segregation site is the centre of a trigonal prism built by the small

grey Mo atoms in �gure 5.2a) above and below the paper plane. Its projection is indicated

by the grey triangle. The tip of this triangle corresponds to the periodic images of metal

atoms 1+ and 1- therein, which are depicted in �gure 5.3 as small grey circles. In the case

of the non-mirror symmetric grain boundary this prism is sheared along its trigonal axis,

i.e. along [001]. A schematic drawing of di�erent projections of this prism are shown in

�gure 5.8. This segregation site is not surprising, as this position provides most space for

the impurity and we expect this to be valid after a relaxation of the host lattice as well.

In the following this is assumed to be the segregation site for all kinds of small interstitial

atoms, H, B, C, N and O.

Second, with carbon at the grain boundary the mirror-symmetric con�guration I is lower in

energy than the non-mirror-symmetric con�guration II, in contrast to the pure case. This

means that indeed an interstitial impurity can alter the intrinsic translation state of the

�5 (310)[001] STGB in Mo. We will investigate in how far we can generalise this result in

the following sections.

5.5 H, B, C, N and O in Nb and Mo

5.5.1 Total Energies

Interstitial impurities were inserted at the grain boundary in con�gurations I and II de-

scribed in section 5.3 for the pure metal. For the Brillouin zone integrations a k-point

mesh with 64 k-points that was constructed following the scheme of Moreno and Soler [84]

was applied. The cut-o� energy for the plane waves in the basis set was Epw=16 Rydberg.

The local functions, �ve per atom with d symmetry for Nb and Mo and three per impurity

atom with p symmetry, were con�ned to spheres centred at host-metal lattice sites (rMo
loc
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Figure 5.8: Di�erent projections of the environment of the impurity at the grain boundary.
The periodic images of Mo1� and Mo0 in �gure 5.2 form the corners of a trigonal prism.
They are indicated as small black and grey atoms. The impurity is located in the centre
of the prism. In case of con�guration II the prism is sheared along [001].

= 2.25 Bohr, rNb
loc = 2.00 Bohr) and at impurity sites (rXloc = 1.80 Bohr for all considered

impurities X).

In a �rst step the position of the impurity was relaxed while keeping the metal lattice �xed

in the relaxed state of the pure grain boundary, as done previously for C in Mo [65, 66]. As

reported above, the preferred position of the impurity atom is in the centre of a trigonal

prism of metal atoms at the grain boundary. For the example of the mirror symmetric grain

boundary in Mo the distances between the respective impurity and its nearest-neighbour

atoms are given in table 5.4. At the grain boundary in the mirror-symmetric con�guration

C is located perfectly in the middle of the trigonal prism, in the sense that all neighbours

are at equal distance. The other impurities are slightly shifted o� centre. For both con�g-

urations we observe a trend from B via C and N to O: the distance between the impurity

and the Mo atom \0" decreases while the distance to Mo atoms \1+/1�" increases. Later
in this work, after having examined the electronic structures at the grain boundary, this

will become rationalised.
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Con�guration I Con�guration II

X B C N O B C N O

dMo1��X 4.389 4.417 4.483 4.724 4.040 4.094 4.151 4.245
dMo1+�X 4.389 4.417 4.483 4.724 4.998 5.026 5.072 5.149
dMo0�X 4.457 4.417 4.326 4.029 4.213 4.175 4.112 4.014

Table 5.4: Distance (in Bohr units) between the impurity atom X and its nearest-neighbour
Mo atoms in the mirror-symmetric con�guration I and the non-mirror-symmetric con�gu-
ration II . The position of the impurity has been relaxed, the metal lattice has been kept
�xed in the fully relaxed grain boundary con�guration of the pure metal. For the labelling
of the metal atoms see also �g. 5.2a). Due to the periodic boundary conditions \metal1�"
and \metal0" also equal the small grey atoms forming the trigonal prism.

In the case of the non-mirror symmetric con�guration II the prism is sheared along its

c-axis, i.e. along [001] (cf. 5.8). The di�erence in energies of the two con�gurations I

and II, �� = EI � EII , is shown in �gure 5.9 for the di�erent impurities, which are

ordered according to their atomic number. Again, we observe a clear trend: starting from

Boron, for which the mirror-symmetric con�guration I is more favourable, this energetic

advantage decreases with increasing number of valence electrons. Notice that this e�ect is

indeed depending on the valence electrons by looking at the change of sign in �� which

occurs in Nb at the next heavier impurity element than in Mo. In Nb the described trend

is the same as but less pronounced than in Mo, since already for pure Nb the di�erence

between con�gurations I and II is very small. The di�erence in the local environment of

the impurity with or without a relative shift of grains of 8%a0 does have much less e�ect

than the one of 20% a0 in Mo.

In the following we analyse the electronic structure at the interface in order to work out

correlations of its changes with the energetic trends.

5.5.2 Electronic Structure at the Grain Boundary

Densities of States

Figures 5.10 to 5.13 show the site projected densities of states (DOS) for the Mo or Nb

atom at the grain boundary in con�gurations I and II, respectively. The respective top

panel shows the pure case, and the lower panels the DOS of a metal atom at the impure

grain boundaries. For comparison the density of states of the metal atom at the pure

interface is displayed in these panels as well. Additionally to B, C, N and O we include the
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Figure 5.9: Di�erence of interface energies, E(I) - E(II), with impurities at the grain bound-
ary. Energies below zero mean that the mirror-symmetric con�guration I is favoured, while
energies above zero indicate that the non-mirror-symmetric con�guration II is preferred.

DOS for the case of H at the grain boundary, as an example of a strongly polarly bonding

impurity [19, 40, 63, 64] that enhances grain boundary embrittlement of various transition

metals [115, 67].

First, we want to discuss the mirror-symmetric con�guration of the �5 STGB in Mo, �gure

5.10. Comparing the DOS at the pure interface with the DOS at the impure interfaces,

\split-o� bands" appear which arise from the hybridisation of the transition metal d-states

with the impurity s- and p-states. With increasing valence of the impurity these bands

move to lower energies, further away from the Fermi level, and the hybridisation becomes

weaker. Here the \p-like" bands are of particular interest: in the case of B at the grain

boundary these states are part of the valence band, but going via C to N they separate

from the valence band and become more narrow. Finally, with O at the interface, there is

a bandgap that shows the same width as the p-like band itself, a situation corresponding

to that in the case of the \s-like" band for H at the grain boundary. This illustrates a

transition from bonds with a dominantly covalent character (B) to bonds with a dominantly

polar character (O). When we compare �gure 5.10 with �gure 5.11, which shows the DOS

at the non-mirror-symmetric con�guration II, we see that the translation state doesn't

have any inuence on the described features in the DOS, only very subtle di�erences in

the respective plots can be noticed which do not change the general trend. So far the

results presented here are in perfect agreement with the predictions of Cottrell and our

�rst estimates. Not only the bonding character depends on the relative position of the
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Figure 5.10: Site projected densities of states at the Mo grain boundary in the mirror-
symmetric con�guration (I). In the top panel the DOS of a Mo atom at the pure STGB
is displayed. In the lower �ve panels this plot is repeated (thin line) for better comparison
with the DOS of the Mo atom next to the impurity atom (thick line) in the case of the
impure grain boundary.
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Figure 5.11: Site projected densities of states at theMo grain boundary the non-mirror-
symmetric con�guration (II). In the top panel the DOS of a Mo atom at the pure
STGB is displayed. In the lower �ve panels this plot is repeated (thin line) for better
comparison with the DOS of the Mo atom next to the impurity atom (thick line) in the
case of the impure grain boundary.
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Figure 5.12: Site projected densities of states at the Nb grain boundary in the mirror-
symmetric con�guration (I). In the top panel the DOS of a Nb atom at the pure STGB
is displayed. In the lower �ve panels this plot is repeated (thin line) for better comparison
with the DOS of the Nb atom next to the impurity atom (thick line) in the case of the
impure grain boundary.
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Figure 5.13: Site projected densities of states at the Nb grain boundary in the non-
mirror-symmetric con�guration (II). In the top panel the DOS of a Nb atom at the
pure STGB is displayed. In the lower �ve panels this plot is repeated (thin line) for better
comparison with the DOS of the Nb atom next to the impurity atom (thick line) in the
case of the impure grain boundary.
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electronic states involved, but also this is independent of the geometry, because, as can be

seen by comparing �gures 5.10 and 5.11, these results are equally true for the con�gurations

I and II of the Mo grain boundary.

If we now look at the DOS at the Nb grain boundary, �gure 5.12 and 5.13 we observe a very

similar behaviour. When going from B via C and N to O at the interface, the hybridisation

becomes weaker and the bonding character changes from covalent to polar. This is equally

true for both translation states. As the relative shift of grains in the non-mirror symmetric

con�guration is only 8%a0 hardly any di�erences can be spotted between the DOS for

this translation state, �gure 5.13 and the mirror-symmetric one, �gure 5.12. However,

we notice subtle di�erences when comparing the DOS-plots for the non-mirror symmetric

con�gurations of the interface in Mo and Nb, �gures 5.11 and 5.13. The site-projected

states in Nb are slightly higher in energy than in Mo (compare table 5.1), so the strength

of hybridisation between Nb states and impurity states are a little bit weaker. This can

be seen e.g. from the gap in the DOS for the case of O at the interface. In Nb this gap

between the O-p-states and the Mo-d-valence band is larger, as it was predicted by the

larger value of � in table 5.1. This again con�rms the predictions of Cottrell's model.

In the following the above drawn conclusions are quanti�ed. First we integrate the site

projected DOS up to the Fermi energy. Thus we get a value for the total number of va-

lence electrons that we can attribute to a speci�c atom. By comparing it to the respective

values in the pure supercell we can identify the changes introduced by the presence of the

impurity. This allows conclusions concerning charge transfer between metal and impurity

atoms and thus the polarity of the interatomic bonding. The strength of the bonds will

be rendered more precisely in the next section by means of calculated local crystal orbital-

resolved overlap populations.

The integrated site projected DOS is presented exemplarily for the Mo grain boundary.

The DOS was integrated around the site of a Mo atom over a sphere of radius rMo = 2.560

Bohr, which is half the nearest-neighbour distance in bcc Mo, and around an impurity's site

over a sphere of radius rX = 2.114 Bohr, which is half the nearest-neighbour bond length in

the diamond structure of C. In order to get a consistent spatial partitioning of electrons for

the four impurity elements this radius of C was used for all of them. By using these radii at

the grain boundary the projection spheres are spatially overlapping to some extent, as can

be seen e.g. from the nearest-neighbour distances in table 5.4. The distance between the

metal atoms facing each other at the grain boundary, Mo1� and Mo1+ is 4.665 Bohr in
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pure GB with B with C with N with O
Mo5� 4.626 4.606 4.625 4.603 4.625
Mo4� 4.606 4.606 4.607 4.603 4.609
Mo3� 4.634 4.640 4.642 4.641 4.638
Mo2� 4.590 4.696 4.679 4.665 4.674
Mo1� 4.651 4.783 4.736 4.687 4.692
�1�5 +0.025 +0.177 +0.111 +0.084 +0.067
Mo0 4.450 4.553 4.529 4.521 4.586
�0�5 -0.176 -0.053 -0.096 -0.082 -0.039
XGB - 2.940 4.143 5.387 6.549
Xfree - 3.000 4.000 5.000 6.000
�X - -0.060 +0.143 +0.387 +0.549

Table 5.5: Integrated density of states for di�erent sites in the mirror-symmetric supercell
(con�guration I) for molybdenum (numbers are electrons per projection sphere volume).
\Mo5�" is the Mo atom in the centre of the grain, \Mo0" the Mo atom at the grain
boundary. With \Mo4�" to \Mo1�" we are approaching the interface layer by layer
(compare �g. 5.2a)). \X" stands for the impurity atom.

the mirror-symmetric con�guration and 4.699 in the non-mirror-symmetric con�guration.

Thus here as well we count some electrons twice. The results of the integration are given in

tables 5.5 and 5.6 for the mirror-symmetric con�guration I and the non-mirror-symmetric

con�guration II, respectively.

\Mo5�" stands for the big grey Mo atom in the centre of the grain (compare �g. 5.2a)).

It can be considered as a Mo atom in the bulk interior. With \Mo4�" to \Mo3�" the

grain boundary is approached layer by layer. The very small variations in the number

of electrons in case of the mirror-symmetric con�guration (cf. table 5.5) indicate that the

inuence of the interface is hardly \felt" by the charge distribution before atom number

2� is reached in the case of an impurity being present at the grain boundary, or even atom

number 1� for the pure STGB. In the non-mirror-symmetric con�guration (cf. table 5.6)

the more close packed structure at the grain boundary makes the electronic structure at

the interface even more bulk-like. In case of the pure grain boundary this leads to a rather

homogeneous charge distribution throughout the whole supercell. An impurity at the grain

boundary leads to a localised increase of charge at the interface. Hence, in all cases the

interfacial metal-metal and the metal-impurity interaction are both well localised.

The Mo atoms 1� and 0 are most interesting for our study. Their periodic images are the

corners of the trigonal prism and thus the nearest-neighbours of the impurity. Furthermore

\Mo1�" and \Mo1+" are the nearest metal-metal neighbours across the boundary. In all
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pure GB with B with C with N with O
Mo5� 4.632 4.619 4.618 4.613 4.613
M04� 4.608 4.606 4.605 4.602 4.600
Mo3� 4.631 4.629 4.629 4.625 4.618
Mo2� 4.612 4.707 4.694 4.677 4.668
Mo1� 4.627 4.774 4.736 4.699 4.685
�1�5 -0.005 +0.155 +0.118 +0.086 +0.072
Mo0 4.612 4.687 4.663 4.630 4.630
�0�5 -0.020 +0.068 +0.045 +0.017 +0.017
XGB - 3.048 4.248 5.472 6.575
Xfree - 3.000 4.000 5.000 6.000
�X - +0.048 +0.248 +0.427 +0.575

Table 5.6: Integrated density of states for di�erent sites in the non-mirror-symmetric su-
percell (con�guration II) for molybdenum (numbers are electrons per projection sphere
volume). \Mo5�" is the Mo atom in the centre of the grain, \Mo0" the Mo atom at the
grain boundary. With \Mo4�" to \Mo1�" we are approaching the interface layer by layer
(compare �g. 5.2a)). \X" stands for the impurity atom.

cases of \X" at the grain boundary we see that in the sphere around \Mo1�" more charge
is accumulated than around atoms in the bulk interior (\Mo5�"), and also more than

around \Mo1�" at the pure interface. As the metal lattice has been kept �xed this altered

amount of charge around the molybdenum atom can not be due to a change in bonding

distances but has to be an inuence of the impurities. This additional amount of charge

is larger with B and C at the interface than with N and O. However, in case of the non-

mirror-symmetric con�guration II (cf. table 5.6) these numbers represent an average value

of e.g. the sphere around the Mo1+ atom being closer to the impurity and the Mo1+ atom

being further away (cf. �gure 5.8) and thus are of little signi�cance.

With each \X" at the mirror-symmetric grain boundary (cf. table 5.5) less electrons are

accumulated around Mo0 at than around a bulk Mo atom, but still more than around Mo0

at the pure interface. Here the variations between the di�erent cases of \X" are too small

to derive a signi�cant trend. With each \X" at the non-mirror-symmetric grain boundary

(cf. table 5.6) more electrons are accumulated around \Mo0" than around a bulk Mo atom

and also more than around \Mo0" at the pure interface. This increase in the number of

electrons becomes smaller when going from B via C and N to O at the grain boundary.

In the sphere around the impurity itself we �nd a small fraction of electrons less around

B at the mirror-symmetric grain boundary (cf. table 5.5) than we would expect from the

valence con�guration of the free atom. In the case of the other impurities it is more,
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with increasing tendency. At the non-mirror-symmetric grain boundary more charge is

accumulated around the impurity than we would expect from the respective free atom,

with increasing tendency when going from B via C and N to O. This �ts well with the

values of � given in table 5.2 that can be understood as a measure for the charge transfer

between impurity and metal.

Cautiously we give a preliminary interpretation of these �ndings, taking into account that

there are three interacting e�ects when going from B via C and N to O:

� The total amount of electrons at the grain boundary increases.

� The bond length between impurity and \Mo1�" increases, that between impurity

and \Mo0" decreases.

� The polarity of the bond between metal and impurity increases.

Finally, it has to be remembered that we count some electrons twice due to the slight

overlap of the projection spheres. So far we can identify three processes. Compared to the

bulk con�guration charge is transferred away from \Mo0", partly

� into the \Mo-X" bond, where \X" is the impurity.

� onto the impurities' site.

� into the metal-metal bond between \Mo1+" and \Mo1�" across the grain boundary.
This can be con�rmed at least for the mirror-symmetric case, con�guration I.

The strength of the interfacial metal-metal bond and the degree of covalency of the \Mo-

X" bond is decreasing when going from B via C and N to O at the interface. The charge

transfer to the impurity and thus the polarity of the bond is increasing at the same time.

Overlap Populations

By calculating local orbital-resolved overlap populations according to equation (3.60) the

bond order at and across the grain boundary shall be analysed. For the radial parts of the

local atomic-like basis functions (3.40) atomic pseudo wavefunctions were used, limited by

a cut-o� radius of 6.0 Bohr for Mo and 4.0 Bohr for the impurities. This basis set has

been obtained by optimising the set of Mo pseudo wavefunctions separately for bcc Mo

(resulting in a spillge of 0.0007) and then introducing C as an interstitital element and
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Con�guration I Con�guration II

B C N O B C N O

Mo1� { X 0.1430 0.1426 0.1156 0.0425 0.2029 0.2109 0.1841 0.1099
Mo1+ {X 0.1430 0.1426 0.1156 0.0425 0.0630 0.0501 0.0293 0.0034
Mo0 {X 0.1441 0.1491 0.1420 0.1249 0.1796 0.1920 0.1799 0.1308
� Mo{X 0.4301 0.4343 0.3732 0.2099 0.4455 0.4530 0.3933 0.2441
Mo1� { Mo1+ 0.2462 0.2390 0.2344 0.2651 0.2383 0.2297 0.2255 0.2333

Table 5.7: Local orbital overlap populations at the �5 grain boundary in molybdenum
between impurity atoms and their nearest-neighbour Mo atoms and between molybdenum
atoms (1�) facing each other at the interface. At the pure interface the overlap population
\Mo1� { Mo1+" building this metal-metal bond across the grain boundary is 0.2753 in
con�guration I and 0.2568 in con�guration II.

optimising the complete set of functions for fcc MoC (resulting in a spillage of 0.0011)1 .

Again, in order to make the projection best consistent, the local basis for carbon was used

for all other impurities as well. With the combination of the two basis sets the spillage

(3.49) in the grain boundary calculations varied between 7 � 10�4 and 1:3 � 10�3

In the previous section the analysis of the integrated site projected DOS showed that the

inuence of the interface on the electronic structure is well localised. Thus it is mainly

the bond between the metal atoms \Mo1�" and \Mo1+" which is responsible for the

interfacial cohesion in the pure supercell. In the impure case also the bonds between the

impurity at the grain boundary and its nearest-neighbours are of interest, and the inuence

of the impurity on the metal-metal bonds, as already indicated in the last section. Table

5.7 shows the overlap populations at the grain boundary in Mo for both, the mirror-

symmetric con�guration I and the non-mirror symmetric con�guration II. Listed are the

values for the overlap between the orbitals located at impurity X's site and the sites of

its nearest-neighbours \Mo1�", \Mo1+" and \Mo0", and the overlap population of the

metal-metal bond, between \Mo1�" and \Mo1+" for the case of di�erent impurities being

present at the grain boundary. In the pure supercell these are 0.2753 in con�guration I

and 0.2568 in con�guration II. Looking �rst at the mirror-symmetric case we see that the

bonds between boron and its nearest-neighbours are almost equivalent, but the bond with

\Mo0" in the interface plane is slightly stronger than with \Mo1�" out of it. This is

also true for carbon. Here the e�ect is even a little bit stronger, although C is perfectly

1Using the so obtained C atomic pseudo wavefunctions for pure C in the diamond structure results in
a comparatively high spillage of 0.011. For an optimisation of this structure a larger cut-o� radius should
be chosen.
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centred in the trigonal prism formed by the periodic images of \Mo0" and \Mo1�" (cf.

table 5.4). Obviously the \in-plane" bonding at the interface is generally stronger than

the \out-of-plane" bonding. This e�ect is very pronounced in the case of nitrogen and

oxygen at the grain boundary. The total amount of overlap population between metal

and impurity is clearly decreasing when going from B via C and N to O. The metal-metal

bonds are weaker than at the pure grain boundary as they have partly been replaced by

the Mo-X bonds. The strength of the metal-metal bonds is �rst decreasing when going

from B via C to N as the charge transfer from metal to impurity is increasing, as could

be seen from the integrated site projected DOS (and estimated from the relative positions

of energy levels). However, from N to O the distance between impurity and \Mo1�"
is drastically increasing compared to the distance to \Mo0", so the charge transfer from

metal to impurity mainly takes place from \Mo0" to X in the case of X=O. Thus the bond

strength between \Mo1+" and \Mo1�" is increasing again, but is still weaker than at

the pure interface. The \Mo1�-X" bonds also have a component across the interface. To
evaluate the contribution of this perpendicular component to the overall bonding across

the grain boundary is diÆcult. But just by looking at the numbers we can already clearly

say that in the case of B it will be so large that the total overlap population leading to

bonds across the grain boundary is bigger than at the pure grain boundary, whereas in

the case of O it is smaller. Hence, B will enhance the grain boundary cohesion, while O

will decrease it. A quanti�cation of this statement will be given in section 5.5.4, by the

calculated bonding energy di�erences.

Before we continue we will briey compare the situation at the mirror-symmetric and the

non-mirror symmetric grain boundary. Due to the shearing of the prism along its trigonal

axis ([001]) two of the four corners marked by the periodic images of \Mo1�" get closer to
the impurity, two get further away, as shown schematically in �gure 5.8. The distances are

given in table 5.4. In table 5.7 \Mo1�" is the Mo atom closer to the impurity, \Mo1+"

the one further away. It can be seen how the altered environment changes the overlap

populations: the bonding charge in the now shorter bond increases with respect to the

symmetric case for all types of impurities at the interface, while the charge in the now

longer bond becomes less. In the shorter bond we �nd even more charge accumulated

than in the \in-plane" bond for the cases of B, C and O. For the total amount of charge

localised in the metal-X bonds we still observe the same trend, i.e. that it is decreasing

when going from B via C and N to O at the grain boundary. The metal-metal bonds across

the interface are again weaker than in the pure case.
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After having examined the overlap populations we have to re�ne our interpretation of the

integrated site-projected DOS: Charge is transferred from \Mo0" only to the impurity's

site, not into the metal-metal bond across the grain boundary. Although the charge in the

sphere around \Mo1�" is increasing with an impurity being present at the interface, the

metal-metal bond between \Mo1�" and \Mo1+" is weaker than in the pure case. The

additional charge is transferred into the Mo-X bonds which are partly replacing the metal-

metal bonds and also have a component across the interface. Nevertheless, the general

statement remains: bonding across the grain boundary is increased with boron at the

interface and decreased by oxygen.

Obviously the process of bonding by redistribution of electrons is complex. Thus it is very

helpful to have a descriptive quantity like the bonding electron densities presented in the

following section.

Bonding Electron Densities

The weaker hybridisation of electronic states that we observed in the DOS is matched by

less overlap of orbitals in real space, as we have seen in the calculated local orbital overlap

populations. Furthermore changes in the local bonding can be visually described by plots

of bonding electron densities. They have the additional advantage of demonstrating very

clearly also the change from covalent to polar bonding. This is shown exemplarily again

for the Mo grain boundary. The bonding electron density is the full electron density of

the grain boundary with impurity minus the electron densities of the respective individual

metal and impurity sub-lattices. It is shown for the grain boundary plane in �gures 5.14

and 5.15 for B, C, N, O and H (from top to bottom) at the mirror-symmetric and the non-

mirror-symmetric grain boundary in Mo. One sees that both cases look very similar, the

relative shift of grains doesn't a�ect very much the distribution of the bonding electron

density in the grain boundary plane. If we look at B at the grain boundary, either in

con�guration I or II, we see bonding electron density stretching out from B to the metal

atoms. Charge is located between the atoms, as in a covalent bond. Compared to that the

bonding electron density retreats towards the impurity in the case of C at the interface,

but there is still a considerable amount of it located between the atoms. N is already

more isolated and the bonding electron density is becoming more spatially homogenous.

Oxygen �nally exhibits an \ion-like" charge distribution, comparable to that around H in

the respective lowest panel.

Figures 5.16 and 5.17 show the bonding electron densities in a plane parallel to the (001)
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Figure 5.14: Bonding electron densities in [electron/Bohr3] in the grain boundary plane for
the mirror-symmetric con�guration (I) with the impurities B, C, N, O, and H (from top to
bottom). Grey and black circles represent Mo atoms (corresponding to the grey and black
Mo atoms in �g 5.2), white circles represent the impurity atom.
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Figure 5.15: Bonding electron densities in [electron/Bohr3] in the grain boundary plane for
the non-mirror-symmetric con�guration (II) with the impurities B, C, N, O, and H (from
top to bottom). Grey and black circles represent Mo atoms (compare �gure 5.2), white
circles represent the impurity atom



5.5. H, B, C, N AND O IN NB AND MO 83

0.01
0.008
0.006
0.004
0.002
0

-0.002
-0.004
-0.006
-0.008
-0.01

B

[-130] N

C

[310]

O

Figure 5.16: Bonding electron densities in [electron/Bohr3] in a plane k (001) of the mirror-
symmetric con�guration (I) with the impurities B, C, N and O. The cut is taken half way
in between the impurity and its nearest-neighbour atoms, as indicated by the dashed line
in �gure 5.14a). Grey and black circles represent Mo atoms (compare �gure 5.2), white
circles represent the impurity atom. The black dashed line in the �rst panel indicates the
grain boundary (and the cut shown in �gure 5.14).

plane, perpendicular to the grain boundary. There is no plane parallel to the (001) plane

in which both, the impurity as well as its nearest host-metal neighbours (the corners of

the trigonal prism) are situated. Therefore the cut was taken between the Molybdenum

and the impurity atom as indicated by the black dashed line in �gures 5.14a) and 5.15a).

This plane shows all important features of the bond between metal and impurity. The

small black atoms indicate the projection of the positions of the Mo atoms that build the

upper side of the trigonal prism around the impurity. The large grey atoms are the next-

nearest-neighbours of the impurity, corresponding to the grey atoms in �gure 5.2. The

white circles mark the projected position of the respective impurity.

In the case of the mirror-symmetric con�guration I (�gure 5.16) we observe the same be-

haviour as described above for the cut in the grain boundary plane: When going from B

via C and N to O, the bonding electron density between the atoms decreases and is accu-

mulated at the impurity's site. But in addition this cut also provides information about

bonds across the interface: in the case of B at the grain boundary, the electron density

between the two Mo atoms facing each other at the interface, \Mo1�" and \Mo1+" in-
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Figure 5.17: Bonding electron densities in [electron/Bohr3] in a plane k (001) of the non-
mirror-symmetric con�guration (II) with the impurities B, C, N and O. The cut is taken
half way in between the impurity and its nearest-neighbour atom at the grain boundary,
as indicated by the dashed line in �gure 5.15a). Black and patterned circles represent Mo
atoms, corresponding to the black and grey atoms in �gure 5.2, white circles represent the
impurity atom. Compared to �gure 5.16 the atoms in the left grain are shifted down along
[001], the ones in the right grain are shifted up. Thus the big patterned Mo atom on the
right side of the grain boundary is getting closer to the impurity than the small black atom
that marks one corner of the sheared trigonal prism. The black dashed line in the �rst
panel indicates the grain boundary (and therefore the cut shown in �gure 5.15).

creases. The same is true for C, but in the case of N and O a depletion occurs. From the

results for the overlap populations we know that this density can not positively be assigned

to the metal-metal bond, but it is a combination of the former and contributions of the

out-of-plane metal-impurity bonds. The conclusion remains that the covalently bonding

impurities also increase the overall bonding across the interface, while the polarly bonding

impurities decrease it.

Figure 5.17 demonstrates very nicely again the inuence of the di�erent translation state

in the non-mirror-symmetric con�guration II. Compared to �gure 5.16 the atoms in the

left grain are now shifted down, those in the right grain are shifted up. Thus the big grey

atom on the right side is closer to the impurity than the small black one which has been

shifted upwards. The bonding electron density adjusts itself to the new nearest-neighbour

distances. The overall trend however, remains the same. The charge distribution changes
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from covalent to ionic when going from B via C and N to O. At the same time a depletion

of electron density between the metal atoms across the interface occurs.

These results together with the grain boundary energies in �gure 5.9 lead to the conclusion

that covalently bonding impurities like B and C prefer the mirror symmetric, more open

structure of con�guration I of the �5 grain boundary, while for polarly bonding impurities

like N and O the more densely packed con�guration II is more suitable. This �ts well into

the picture that was gained in [31, 90] for the pure grain boundaries in the bcc transi-

tion metals, where the angular dependent bonds arising from the partially �lled d-states

stabilise the mirror-symmetric structure. Furthermore, we expect that covalently bonding

impurities strengthen the grain boundary cohesion, as they increase the bonding electron

density between Mo atoms across the interface, while polarly bonding interstitials promote

embrittlement, as predicted by Cottrell.

In the next paragraph we will analyse the bonding energies to quantify the energetic e�ect

of the interstitial impurities on the the cohesion at the grain boundary.

5.5.3 Relaxation of the Metal Lattice

When relaxing all atomic positions for B and C only the mirror symmetric con�guration

was found stable, while with N and O a shift of 26 and 19% a0 respectively, is energetically

favourable. For B and O at the grain boundary also the expansion perpendicular to the

interface plane was calculated by performing rigid grain shifts followed by relaxation of

the atomic positions after each step. For O this expansion amounts 12% a0, for B 13% a0.

The expansion for C and N at the grain boundary then was estimated by interpolating to

be 13% a0 and 12% a0, respectively. The translation states of the Mo grain boundary with

di�erent impurities are summarised in table 5.8.

5.5.4 Bonding Energies

A computational approach to determine the e�ects of segregated impurities, interstitial

or substitutional ones, on grain boundary cohesion was promoted by Geng et al. who

developed a phenomenological model [39] based on an extensive set of ab-initio data [120,

121, 124, 40, 41] and a thermodynamic theory of fracture by Rice andWang[104]. According

to this theory the potency of a segregated impurity to enhance or increase interfacial
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Figure 5.18: Total energy vs. expansion along [310] for the Mo grain boundary in the mirror-
symmetric con�guration I with B at the interface. At each point all atomic positions are
relaxed. (Zero expansion corresponds to the ideal, unrelaxed CSL supercell volume of 2106
Bohr3.)

cohesion is a linear function of the di�erence in binding energies for that impurity located

either at the grain boundary or at the corresponding free surface. Geng et al. successfully

applied this theory to explain the inuence of the impurity elements H, B and P on grain

boundary cohesion in fcc Ni [40]. We will now partly follow their approach to investigate

the inuence of B, C, N and O on the interfacial cohesion in Mo.

As said above, according to Rice and Wang [104], the di�erence �EB of bonding energies

of an impurity at a grain boundary and at the corresponding free surface is a measure for

the enhancement of embrittlement or of cohesion that this impurity causes at the interface.

The bonding energy is calculated by means of equation (5.4). \S" denotes either the free

surface or the grain boundary. ES is the total energy of a supercell with all atomic positions

relaxed to zero forces, containing the pure free surface (grain boundary), EA@S is that of a

supercell containing the free surface (grain boundary) with an impurity atom A (A: B, C,

N, O), and EA is the energy of a free impurity atom.

ES
B = ES + EA � EA@S (5.4)
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Figure 5.19: Total energy vs. expansion along [310] for the Mo grain boundary in the
non-mirror-symmetric con�guration II with O at the interface. At each point all atomic
positions are relaxed. (Zero expansion corresponds to the ideal, unrelaxed CSL supercell
volume of 2106 Bohr3.)

For EGB we used the energy of the respective more favourable con�guration. For N, after

complete relaxation this was con�guration II (cf �g.5.9, where only the positions of the

impurity atom had been relaxed).

The bonding energies of B, C, N and O at the free (310) surface, at the �5 grain boundary,

and their di�erences �EB = EKG
B � EOF

B are listed in table 5.9. N and O have negative

�EB, which means that they enhance embrittlement, while B and C enhance cohesion

according to their positive �EB. Recalling the �ndings of section 5.5.1 we conclude that

polarly bonding impurities decrease and covalently bonding impurities increase the interfa-

cial cohesion at the grain boundary in Mo. This is consistent with the fact that H decreases

the grain boundary cohesion in Mo.

For further interpretation of the bonding energy it is useful to split it, according to ref.

[40], in two parts, a chemical contribution Ec
B, which describes the interaction of the im-

purity with the host atom and is generally assumed to increase the bonding energy, and a

mechanical contribution Em
B , which is accommodating the relaxation of the metal lattice

around the impurity and in general makes a negative contribution to the bonding energy.

Ec
B is the di�erence between the energy of the relaxed structure including the impurity and
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expansion
along [310][%a0] �t [%a0]

B 13 (?)

C 13 (?)

N 12 26

O 12 19

Table 5.8: Translation and expansion of the �5 grain boundary in Mo with di�erent
interstitial impurities at the interface. Listed are the relative shift �t of grains along the
[001] direction and the expansion along [310], perpendicular to the grain boundary plane in
percent of the cubic lattice parameter a0. (?) only the mirror-symmetric case I was found
stable.

that of the structure where the impurity has been removed without subsequently relaxing

the host lattice again, plus the energy of the impurity itself:

Ec;S
B = E�@S + EA � EA@S (5.5)

Again, S labels either the grain boundary or the free surface, and � symbolises the vacant

interstitial site that is created when the impurity is removed. The mechanical contribution

then is

Em;S
B = ES

B � Ec;S
B (5.6)

The results are also listed in table 5.9. The elastic contribution Em
B of the bonding energy

is very small in all cases, with relative values between 2 and 7% of EB. As the impurities

are very small interstitial atoms this is expected. Geng et al. found similar results for H,

B and P at a �5 grain boundary in fcc Ni [40].

However, for the di�erences of bonding energies the elastic part becomes more important.

Here chemical and mechanical contributions are in direct competition. Only in the case

of the strongly covalently bonding B both terms contribute positively to �EB. For C the

bonding at the grain boundary, although still partly covalent, is weaker than at the free

surface and �Ec
B becomes negative. But the elastic contribution Em

B at the surface is so

large that altogether the grain boundary remains the more favourable surrounding. Not

so for N and O that do not develop covalent bonds and for which both terms contribute

to the embrittling inuence on the grain boundary.
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Free Surface (FS) Grain Boundary (GB) GB - FS

B C N O B C N O B C N O

EB 7.58 10.30 10.90 8.76 8.66 10.61 10.09 7.30 1.08 0.31 �0. 81 �1.46

Em
B �0.49 �0.70 �0.64 �0.43 �0.12 �0.22 �0.29 �0.25 0.37 0.48 0.36 0.18

Ec
B 8.07 11.00 11.54 9.19 8.78 10.83 10.38 7.55 0.71 �0.17 �1.16 � 1.64

Table 5.9: Bonding energies EB in
�
J
m2

�
, split in mechanical contribution Em

B and chemical
contribution Ec

B, for di�erent impurities at the �5 STGB in Mo, at the corresponding free
(310) surface, and their di�erences.

5.6 Summary

In this chapter we performed a detailed analysis of the e�ects of segregated interstitial

impurities on the atomic structure and the cohesion of the �5 STGB in Mo and Nb.

Consistent with the interpretation of Cottrell [19] derived from a simple electronic-structure

model, the investigation presented here shows that the bonding character of light elements

in bcc Mo and Nb depends on the strength of hybridisation due to the relative position of

bands and thus on the valence con�guration of the elements. Consequently a systematic

trend emerges along one row in the periodic table. A simple comparison between the �rst

ionisation energy I of the impurity atom and the work function � of the metal, together

with the bandwidth of the metal valence band can already show the direction of this trend.

To a certain extent this picture is independent of the grain boundary geometry so that our

�ndings can be cautiously generalised to other grain boundaries as well.

As Geng et al. [40] did for H, B and P in fcc Ni, we found for the two bcc metals Nb

and Mo from the di�erence in binding energies that covalently bonding impurities enhance

the cohesion, while polarly bonding impurities reduce it. The underlying mechanism is

rather complex. However, by an extensive analysis of the electronic structure at the grain

boundary, i.e. by looking at local densities of states, local orbital overlap populations and

bonding electron densities it was possible to identify it as the partial replacement of metal-

metal bonds across the interface by metal-impurity bonds. In the case of stronger and

covalent bonds the reduction of pure metal-metal bonding across the grain boundary is

more than compensated and the grain boundary cohesion is increased. In the case of

weak and very polar bonds the overall bonding across the interface is weakened and grain

boundary embrittlement is promoted.

So far this work supports the validity of Cottrell's \uni�ed theory". It should be noted
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however, that for the di�erences in bonding energies at the grain boundary and at the free

surface in the bcc metals the mechanical part of the energy plays a signi�cant role as well,

even for these small elements. That means that despite the general ansatz of Cottrell one

has to be careful when treating very di�erent environments of the impurity.

Concomitant with the trend in bonding energies one observes a structural one. The bonding

character of impurities with the host metal does not depend on the geometry, but it is

decisive for the issue of which microscopic translation state of a grain boundary is more

favourable. In the bcc transition metals covalently bonding impurities prefer the mirror-

symmetric con�guration I of the �5 STGB, where they can �nd equal bond lengths to

an adequate number of �rst nearest-neighbours. Polarly bonding impurities favour the

rather close-packed non-mirror-symmetric con�guration II. This is in good agreement with

the interpretation of previous results concerning the translation state of the pure grain

boundaries [5, 31, 90, 89].



Chapter 6

Precipitation

of Molybdenum Carbide

at the �5 Grain Boundary in Mo

To understand the inuence of segregated impurities on grain boundary cohesion it is

advantageous to investigate grain boundaries in materials containing only one impurity

element. In this manner interference of di�erent e�ects can be avoided (compare chapter

5). P�enisson and co-workers have also taken this point of view and chose the �5 (310)

[001] STGB in Mo with segregated carbon impurities for a case study [94]. The choice

of carbon is standing to reason as its presence in the real material is hardly avoidable.

Thus P�enisson et al. performed HRTEM on the �5 STGB in a Mo bicrystal before and

after carburisation heat treatments. By choosing di�erent carburisation conditions they

obtained samples with di�erent C contents. They observed di�erent intra- and intergran-

ular MoCx phases which will be described below. Of particular interest is a tetragonal

substoichiometric phase occurring both as inter- and intragranular precipitate. Inspired

by this work in this chapter the microscopic processes leading to MoCx precipitates at the

�5 STGB in Mo are investigated. The new Mo-MoCx interfaces and their e�ect on the

material properties are examined. In general, secondary phase precipitates, such as MoCx

in Mo, are responsible for hardening of the matrix material as they represent obstacles for

dislocation movement [49, 62]. How easily the dislocations can overcome these obstacles

is determined by composition, crystal structure, shape and size of the particles, as well as

by the orientation relationship between matrix and precipitate lattice [49, 62, 43].

In the following the experimental procedure and the results of P�enisson et al. are described

91
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in more detail in section 6.1, then we look at the very beginning of the precipitation, mod-

elled by calculations with two or three C atoms in the supercell, in section 6.2, and �nally

the atomic structure of a tetragonal MoC �lm at the �5 grain boundary is investigated in

section 6.3.

6.1 Experimental Findings

6.1.1 Experimental Procedure

To produce a Mo bicrystal with a �5 (310)[001] STGB, P�enisson et al. cut and oriented

single-crystal rods in the respective orientations and welded them by an electron beam

under vacuum conditions [94]. Afterwards the bicrystal was annealed at about 2400 K for

4h in an oxygen atmosphere to eliminate carbon already being present in the bicrystal.

Finally the bicrystal was puri�ed by holding it at the same temperature for 14h under high

vacuum conditions (10�6 Pa) to remove oxygen. To achieve carburisation several puri�ed

samples were annealed for 6h at temperatures between 1700 and 2400 K under a CH4

atmosphere (2�10�7 - 2�10�6 Pa partial pressure). Thus carbon concentrations of 150 - 600

at. ppm in the bulk volume of the bicrystals were obtained. Finally, the samples were

quenched at a cooling rate of about 150 K
s
.

6.1.2 Results

According to the carburisation conditions, two di�erent carbide morphologies were found at

the grain boundary. At very high temperatures and CH4 partial pressures the carbon con-

centration reached the solubility limit during carburisation. In this case isolated particles

of hexagonal Mo2C occur at the interface. This hexagonal Mo2C corresponds to the stable

carbide phase of bulk molybdenum [119] and has been reported before [70, 71]. It �ts well

with the surrounding bcc Mo lattice, as the (310) plane in Mo is very similar to the (0001)

habit plane of the hexagonal carbide. At lower temperatures, however, the precipitation

took place below the temperature of carburisation, during the quenching. In this case

P�enisson et al. observed both, a thin and continuous �lm of tetragonal, non-stoichiometric

MoCx covering the interface and intragranular precipitates of the same structure. In the

latter the lattice parameters were measured to be a = 0.305 nm (=5.77 Bohr) and c =

0.406 nm (=7.67 Bohr). This corresponds to a c=a = 1.33. Assuming a linear dependence

of the c=a ratio on the carbon content and by taking c=a = 1 for bcc Mo (x = 0) and
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c=a =
p
2 for fcc Mo2C (x = 0:5) as limits, P�enisson et al. derived a C concentration of

x � 0:4.

This kind of precipitate has already been observed by Lepski et al. [73, 74]. After rapid

quenching (2 � 104 K
s
) of C doped Mo crystals they received disc shaped particles with a

diameter up to 5nm. These turned out to consist of fcc MoCx with 0:40 � x � 0:43. This

phase was identi�ed to be a metastable intermediate phase. It originates in a body-centred

tetragonal structure from a tetragonal distortion of the bcc Mo lattice, in which C occu-

pies octahedral sites. It can convert by a martensitic transformation1[43] into a hexagonal

close-packed lattice by shearing of the close-packed (111)-planes.

A HRTEM picture of the situation at the grain boundary is shown in �gure 6.1. The �lm

has a thickness of about 1 nm. P�enisson et al. note that the interfaces between this second

phase and the molybdenum crystals were not well de�ned. The arrows mark stacking faults

which occur in a regular arrangement along the interface, indicating a small lattice mis�t

between the two phases. The orientation relationship between the tetragonal MoCx and

the bcc Mo is of the kind2

[001]Mo jj [010]MoCx

(310)Mo jj (103)MoCx

)
(6.1)

An enlargement of �gure 6.1 is shown in �gure 6.2 which clearly illustrates this relationship.

Here the crystal planes are indicated as white lines and the unit cells of the di�erent phases

are also plotted. We can identify the two new interfaces, (6.1) on the left side of the MoCx

�lm and

[001]Mo jj [010]MoCx

(�3�10)Mo jj (103)MoCx

)
(6.2)

on the right side. At the left interface, in the following called \Interface I", the tilt angle

is approximately 40Æ and thus close to that of the original �5 STGB (36.89Æ). At the

right interface, in the following called \Interface II", the crystallographic planes in MoCx

continue under a only very small deviation of approximately 6Æ into the Mo grain.

After interpretation of their results P�enisson et al. concluded with an imagination of the

process of segregation of C and precipitation of MoCx at the �5 STGB in Mo which is

1i.e. without change of C concentration
2Actually, P�enisson et al. by mistake report the respective crystallographic plane in MoC to be (301)

instead of (103). However, relations (6.1) can be justi�ed from �gure 6.2, or from the schematic picture of
the model structure presented later on in this chapter, �gure 6.8.
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Figure 6.1: High-resolution image of the tetragonal carbide layer covering the �5 STGB
in Mo [94]. The arrows mark interface dislocations which can be found along the interface
in a periodic arrangement.

Figure 6.2: Enlargement of �gure 6.1 [94]. The white lines mark the crystal planes in both
phases. The unit cells of the di�erent structures are also outlined.
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consistent with the results of Lepski et al. for the precipitation of MoCx particles in a Mo

matrix. C is segregating via interstitial positions, occupying octahedral sites in the bcc Mo

crystal, and causing a tetragonal distortion. The magnitude of the distortion depends on

the carbon concentration, the maximum is c=a =
p
2, i.e. a fcc \rocksalt" structure of the

carbide. Under the chosen carburisation conditions a C concentration of x � 0:4 was at-

tained leading to a non-stoichiometric phase with c=a = 1:33. The presence of dislocations

at the interface indicates that this tetragonal carbide phase is not in equilibrium at the

grain boundary but experiences internal incoherency strains due to a small lattice mis�t.

The stacking faults can be considered as embryos of the hexagonal phase, into which the

tetragonal phase is transforming, leading to stable Mo2C particles at the grain boundary.

Modelling such structural phase transformations is out of the scope of the ab-initio study,

in the framework of which only static relaxations of atomic positions are performed. How-

ever, in the following sections di�erent stages of the process of C segregation and MoCx

precipitation at the �5 grain boundary are modelled. The initial growth of the precipitate

is investigated in the following section, afterwards we turn towards the properties of the

two interfaces observed by P�enisson et al. in their HRTEM bicrystal study.

6.2 \Nucleation" and \Growth" of the Precipitate

Starting with the mirror-symmetric con�guration of the �5 STGB in Mo with one seg-

regated C atom per interfacial unit cell, the concentration of C at the grain boundary is

increased atom by atom. Due to the periodicity of the grain boundary and the size of the

supercell the number of interstitial sites to which C can segregate is limited. As discussed

in chapter 5 the �rst C atom at the interface already occupies the only reasonable site

directly at the grain boundary. Thus the next C atom inserted at the grain boundary

occupies an interstitial site in the Mo layer next to the interface. As we are not going to

model the dynamical process of the segregation at this point we will simply probe di�erent

sites. Two positions are available for the second atom: in one case C will occupy an octa-

hedral site in the Mo lattice between two Mo atoms in the crystal plane meeting the grain

boundary at an angle of 18Æ, as shown in �gure 6.3a). In the other case C is positioned in a

corresponding site in the crystal plane meeting the interface at an angle of 108Æ, cf. 6.4a).

By continuing to �ll the grain with more C atoms following this scheme both cases lead to

a tetragonal distortion of the bcc Mo lattice and �nally to a precipitate of tetragonal MoC

with c/a > 1. In the �rst case, 6.3a), the tetragonal c-axis would be oriented such that the
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[001] direction of the precipitate meets the grain boundary at an angle of 18Æ, in the other

case, 6.4a) the angle is 108Æ. The �rst case leads to an expansion of the structure mainly

along the interface, the second mainly perpendicular to it.

As this calculation is meant only to get a rough estimate into which direction the precipitate

is growing a complete relaxation of the structures of �gures 6.3 and 6.4 was not performed.

This would include rigid grain shifts parallel to and volume expansion perpendicular to

the interface. We argue that in this �rst step the C concentration is still low enough

to cause only local distortions and no overall changes in the structure. Thus only the

atomic positions were relaxed until the forces on the atoms were negligible. Figures 6.3b)

and 6.4b) show the relaxed supercells. In both cases the C atom indeed causes rather

localised lattice distortions. It pushes apart the two neighbouring Mo atoms along the c

axis marked in �gures 6.3a) and 6.4a). The pure Mo grain on the other side of the interface

remains una�ected. The total energies of the supercells are -682.895 Ryd in the �rst case

and -683.126 Ryd in the second. This means the latter con�guration is favoured and the

precipitate will grow with its c-axis oriented at approximately 108Æ with respect to the

grain boundary. This probably is accompanied by a considerable expansion of the grain

perpendicular to the grain boundary. However, obviously a change in the periodicity of

the grain boundary, which would come along with the precipitate growing in the other

orientation, is more unfavourable than a larger expansion perpendicular to the interface.

Continuing with this con�guration the third C atom is put close to the interface. Again

there are two possibilities: the third C atom can be positioned opposite to the second, on

the other side of the grain boundary as in �gure 6.5 or next to it, inside the same grain as

in �gure 6.6. In both �gures the atomic coordinates are already relaxed. In the �rst case,

6.5, we observe that both grains want to expand along the [310] direction. As this is not

possible they get sheared parallel to the interface. In the second case, �g. 6.6, the left grain

containing all the carbon atoms is expanding and the right, pure Mo grain is compressed.

By this it is also sheared parallel to the interface, as we can see from the deviation of the

bond angles from 90Æ. However, these latter results should not be over-interpreted, as in

this case we are running into problems with the supercell size. The third C atom and its

periodic image in [310] direction are in the same grain and are getting so close that the

centre of the grain can no longer be assumed to be purely Mo bulk-like.

The total energies of the supercells are -705.656 Ryd for the symmetric growth and

-705.559 Ryd for the asymmetric one. This means the former con�guration (�g. 6.5) is



6.2. \NUCLEATION" AND \GROWTH" OF THE PRECIPITATE 97

Figure 6.3: Possibility I of putting an additional C atom at the Mo �5 STGB with a
segregated C impurity. a) unrelaxed supercell b) after relaxation of all atomic positions.
The large atoms are positioned in the paper plane, the small atoms are the next layer in
[001] direction. Mo atoms are gray, C atoms black.
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Figure 6.4: Possibility II of putting an additional C atom at the Mo �5 STGB with a
segregated C impurity. a) unrelaxed supercell b) after relaxation of all atomic positions.
The large atoms are positioned in the paper plane, the small atoms are the next layer in
[001] direction. Mo atoms are gray, C atoms black.
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Figure 6.5: Symmetrical growth of the MoC precipitate at the Mo �5 STGB, supercell
after relaxation of all atomic positions. The large atoms are positioned in the paper plane,
the small atoms are the next layer in [001] direction. Mo atoms are gray, C atoms black.

Figure 6.6: Asymmetrical growth of the MoC precipitate at the Mo �5 STGB, supercell
after relaxation of all atomic positions. The large atoms are positioned in the paper plane,
the small atoms are the next layer in [001] direction. Mo atoms are gray, C atoms black.
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Figure 6.7: Asymmetrical growth of the MoC precipitate at the Mo �5 STGB, supercell
after relaxation of all atomic positions. The large atoms are positioned in the paper plane,
the small atoms are the next layer in [001] direction. Mo atoms are gray, C atoms black.In
contrast to the supercell shown in �gure 6.6 the inversion symmetry is abandoned, but
therefore the precipitates don't grow towards each other.

lower in energy. The reason is the existence of more free space in the �rst Mo layer next

to the grain boundary than further inside the grain. However, from this it is not justi�ed

to draw the conclusion that the precipitate would grow in a symmetric fashion, because

of the discussed situation of the precipitates getting so close to each other in the asym-

metric case. A supercell in which the increasing size of the precipitate is less problematic

is shown in �gure 6.7. Here the inversion symmetry with respect to the centre of the cell

was abandoned (increasing the computational cost) by letting the precipitates grow into

di�erent grains. Now there are seven layers of Mo atoms between the carbide precipitates

instead of �ve. Thus the precipitates interact considerably less as in the case of �gure 6.5.

The change in the total energy of the supercell is dramatic: from -705.559 Ryd for the

case shown in 6.5 it is lowered to -705.611 in for the new con�guration and thus becomes

almost equal to that of the supercell for the symmetrical growth (-705.656 Ryd). This

means that at this point we really can not decide whether the precipitate would grow in a

symmetrical or asymmetrical fashion. The remaining energy di�erence is suÆciently small

that a complete relaxation of the structures could easily lead to a compensation or even a

reversal. The supercell size could be increased to perform further ab-initio calculations and
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also allow for volume expansions to clarify this point. However, the additional computa-

tional cost would be disproportionate to the amount of further insight into the segregation

process that could be gained. It is more meaningful to leave this to a calculation with

semi-empirical interatomic potentials. Thus, instead we are going straight away to the end

of the process of segregation and precipitation and look at the \�nished" precipitate.

6.3 The MoC Precipitate: Two New Interfaces

Based on the observations of P�enisson et al. [94] two supercells were constructed to model

the two interfaces between the bcc Mo and the body-centred tetragonal (bct) carbide �lm

at the grain boundary. The idea was to take the supercell of the �5 STGB in Mo (see

�gure 5.2) and simply replace one grain of Mo by the tetragonal carbide. Two arising

problems had to be dealt with, the lattice mismatch between Mo and MoCx and the non-

stoichiometry of the carbide phase. A random occupation of the octahedral sites to achieve

a C concentration of x = 0:4, as reported by P�enisson et al. [94] would again have required a

larger supercell. Starting with the supercell of the �5 STGB in Mo which contains only one

layer of Mo atoms in [001] direction, removing an atom means taking out the whole column

of corresponding atoms along [001] in the crystal. Instead of constructing a larger supercell,

a stoichiometric tetragonal MoC precipitate was assumed. This choice can be justi�ed not

only by practical arguments. P�enisson et al. never determined the C concentration directly

(e.g. by spatially resolved energy dispersive X-ray di�raction, or by quantitative electron

energy loss spectroscopy [103, 30]). Only the c=a ratio of the precipitate is indicating

x = 0:4. However, a c=a ratio of
p
2, one of the benchmarks for the derivation of x, is

also found in stoichiometric fcc MoC [119]. Fcc MoC is a high-temperature carbide phase

which has been reported already by Clougherty et al. [18]. It was synthesised by heating

up a mixture of Mo2C and C at a pressure from four to seven GPa and temperatures

between 2000 and 2700 K, and could also be retained at atmospheric pressure. Hence,

by assuming a stoichiometric tetragonal MoC precipitate an existing structure is modelled

and the geometry of the precipitate is unchanged. The inuence of the higher C content

however will have to be discussed.

Previous ab-initio calculations concerning the properties of molybdenum carbides of

di�erent crystal structures and stoichiometries [65, 66] included bct MoC and yielded an

equilibrium volume of 282.93 Bohr3, with a c=a ratio of 1.39 (c = 8:17 and a = 5:88) [65],

i.e. a structure very close to fcc MoC. To cope with the lattice mismatch without altering
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Figure 6.8: Model interface for the precipitation of bct MoC at the �5 STGB of bcc Mo,
\Interface I". The large atoms are positioned in the paper plane, the small atoms are the
next layer in [001] direction. Mo atoms are gray, C atoms black.
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Figure 6.9: Model interface for the precipitation of bct MoC at the �5 STGB of bcc Mo,
\Interface II". The large atoms are positioned in the paper plane, the small atoms are the
next layer in [001] direction. Mo atoms are gray, C atoms black.
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the periodicity of the �5 STGB the carbide phase was compressed while keeping the c=a

ratio �xed. This leads to an ~a = 0:956 a0 corresponding to a compression of the tetragonal

unit cell by 13% to a volume of 245.95 Bohr3. The e�ect that this compression has on

the interface energy will be discussed later. With this procedure the two model interfaces

shown in �gures 6.8 and 6.9 were received. So far these are pure geometric constructions,

which means the models have atomically abrupt interfaces, despite the report of P�enisson

et al. about the interfaces between precipitate and metal lattice being not well de�ned.

Therefore the �rst step to investigate the properties of a realistic interface model is to

probe the microscopic translation state of the phase boundary, including relaxation of all

atomic positions. The results of this procedure will be described separately for \Interface

I" and \Interface II" in sections 6.3.2 and 6.3.3. As it is reasonable to discuss the energies of

possible translation states with respect to the energies of the free surfaces, the possibilities

of \cutting" the supercell containing the Mo-MoC-interface into two slabs will be discussed

�rst in the following section.

6.3.1 Free Surfaces

The model interfaces I and II of �gures 6.8 and 6.9 have a Mo coincidence site belonging

to the Mo grain as well as to the MoC precipitate. When breaking the interface apart,

however, this Mo atom can only belong to one of the grains. Thus we have either a Mo

grain consisting of 9 Mo layers and a MoC grain in which the Mo sublattice has 11 layers or,

vice versa a Mo grain containing 11 Mo layers and a MoC grain in which the Mo sublattice

has 9 layers. For the precipitate this means that its surface is either Mo terminated (in

the �rst case) or C terminated (in the second case). The total energies of these possible

combinations are given in table 6.1. In these calculations all atomic positions have been

relaxed. These total energies indicate that the Mo-MoC boundary is more stable against

cleavage with a Mo terminated surface of the MoC precipitate than with a C terminated

one. Thus the energies of the supercells containing the Mo-MoC-interfaces will be given in

the following sections with respect to case A in table 6.1.

6.3.2 Interface I: Atomic Structure

To get from the geometric construction to a structurally optimised model of the interface,

the microscopic translation state of the grains was probed in all three spatial directions.

With respect to the Mo grain these are the [001], [�130] and [310] directions. While rigid
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A B
Mo: 9 layers Mo: 11 layers

MoC Mo terminated MoC C terminated

Etot
FS;Mo [Ryd] -285.424 -348.985

Etot
FS;MoC [Ryd] -461.006 -397.339

Etot
FS;Mo + Etot

FS;MoC [Ryd] -746.430 -746.324

Table 6.1: Total energies of supercells containing Mo and MoC free surfaces. The surface
orientations correspond to the phase boundary plane of the interface models, 6.8 and 6.9.
There are two possibilities, A and B, of assigning the coincidence-site Mo atom to one of
the grains. All atomic positions are relaxed. From the total energies it becomes apparent
that the phase boundary is more stable against cleavage with a Mo terminated precipitate
is more than with a C terminated one.

grain shifts along [001] and [�130] change the symmetry of the interface, a shift along [310]

results in a volume expansion at the interface. Shifts along this axis have been performed

in steps of one or two percent of the Mo bcc lattice parameter a0, always starting from

the geometrically constructed supercell. At each step all atomic positions in the supercell

were fully relaxed, leading to the energy vs. volume curve shown in �gure 6.10a). The total

energy of the supercell is given with respect to the energies of the respective free surfaces.

The minimum is located approximately at a total volume of 2470 Bohr3, corresponding

to an expansion of 17% of a0 perpendicular to the interface. The structure is shown in

�gure 6.11. Compared to the geometric model, in the optimised model the C atoms of

the �rst layer inside the MoC grain relaxed into the grain boundary layer where they have

more space. Here they are sitting again in the centre of the trigonal prism. Starting now

from this con�guration, rigid grain shifts were performed along [�130] and [001] to check

the structural stability. The respective energies are shown in �gure 6.10b). We see a steep

energy rise from the minimum con�guration. When relaxations of the atomic positions

are allowed at the points marking the shift along [�130], the structure relaxes back to the

common minimum of the curves. This means that the Mo-MoC-interface as constructed

in �gure 6.8 is indeed stable against a relative shift of grains along [�130].

After shifting the grains along [001] by 10% or 20% of a0 the atoms relax back to the initial

con�guration as well. However, for very large shifts, in this case 40% of a0, by relaxation

of the atomic positions the relative shift of the grains increases even further, up to nearly

50%. To see what has happened the relaxed structure is shown in �gure 6.12. Due to

the shift of approximately half a lattice constant, atoms that have been marked by big
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Figure 6.10: Interface I: Optimisation of the structure. Shown is the energy di�erence
between the interface and the corresponding free surfaces a) for volume expansion along
[310] with relaxation of the atomic positions, b) for rigid grain shifts along [001] and [-130]
(directions refer to the Mo grain).
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Figure 6.11: Interface I after volume expansion and relaxation of all atomic positions. The
large atoms are positioned in the paper plane, the small atoms are the next layer in [001]
direction. Mo atoms are gray, C atoms black. Compared to the geometric construction
the supercell is expanded by 17% of a0 perpendicular to the interface and the C atoms of
the �rst layer next to the grain boundary relaxed into the interface layer.
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circles in the MoC grain are now denoted by small circles and vice versa. The surprising

observation is that the Mo-MoC-interface moved by one atomic layer into the Mo grain.

At the same time a grain boundary inside MoC evolved. Comparing this situation with

the symmetrical variant of the initial growth, �gure 6.5, it becomes comprehensive: by

displacing the grains C was pushed across the grain boundary into the Mo grain. Thus

the phase boundary between the two compositions and the grain boundary between the

two crystal orientations are no longer the same. This is favourable because now more C

atoms occupy interstitial sites close to the grain boundary, where they have more space.

This process is a possible explanation of the experimental �nding of a not well de�ned

interface: even if the precipitate grows asymmetrically into one grain and is thus clearly

limited by the former �5 grain boundary, displacements of small amounts of carbon across

the interface could soften this sharp boundary.

6.3.3 Interface II: Atomic Structure

In the case of Interface II (cf. 6.8) the supercell in the beginning was optimised in the

same way as for Interface I. First, rigid grain shifts perpendicular to the interface were

performed, always starting from the geometric construction and followed by structural re-

laxation of all atomic positions at each step. Surprisingly the corresponding energies did

not lie on one continuous energy-volume curve, but alternated between an \upper" and

\lower" curve shown in �gure 6.13a). The curves were completed by taking the atomic

positions corresponding to one point in the curve as starting con�guration for optimising

the coordinates of the neighbouring point3.

It is possible to proceed continuously from a point in the upper graph to the corresponding

point in the lower graph by setting up supercells in which the atomic positions are got

by linear combinations of the two cases and by increasing the weight of the coordinates

corresponding to the lower curve continuously from zero to one. This is demonstrated in

�gure 6.13b) for the volume corresponding to the minimum of the upper curve. The at

slope at the start of the \mixing" curve shows that the upper graph is indeed a metastable

state in which the structure by chance got trapped.

3In detail, the procedure is the following: Usually, always to start with a well-de�ned structure for each
point of curves like those shown in �gure 6.13a), the geometrically constructed supercell is cut into two
halves at the grain boundary and the two grains are rigidly pulled apart (while the grain boundary stays
in place), as indicated in �gure 5.7. Then the atomic positions are relaxed. In this special case however,
to complete the curves in �gure 6.13a) the fully relaxed supercell of a given point was taken, cut into two
halves and expanded to the volume of the neighbouring point. Then the atomic positions were relaxed
again.
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Figure 6.12: Interface I after relaxing the atomic positions at point � in �gure 6.10. The
large atoms are positioned in the paper plane, the small atoms are the next layer in [001]
direction. Mo atoms are gray, C atoms black. The Mo-MoC interface moved into the Mo
grain. Therefore a new grain boundary occurs inside the MoC grain.
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Figure 6.13: Interface II: Optimising the structure. Shown is the energy di�erence between
the interface and the corresponding free surfaces a) for volume expansion along [310] with
relaxation of the atomic positions, b) for the transition between the two con�gurations of
a) the grains.

Figure 6.14 shows the relaxed structure at the minimum of the \lower" curve in 6.13a) laid

over the atomic positions of the corresponding point of the \upper" curve. The arrows

indicate the shifts leading from one con�guration to the other. Due to the symmetry

imposed by the periodic boundary conditions the atoms marked with \X" are �xed in

their positions. It becomes visible that the Mo layer next to the respective interface is

shifted towards it, parallel to the MoC c-axis at both sides of the precipitate. By the

choice of the precipitate thickness as it was made, these Mo atoms on the left and on

the right side of the MoC grain do not belong to the same [001]-column of atoms with

respect to the MoC lattice, but to alternating ones. Thus the structure gets sheared in an

alternating fashion parallel to the MoC c-axis. As the atoms in the central layer of the
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Figure 6.14: Interface II: Overlay of the atomic coordinates of the \upper" and \lower"
energy curve in 6.13a) at the volume corresponding to the minimum of the lower curve.
The grey and black atoms mark the Mo respective C coordinates in the more favourable
con�guration. They are laid over those of the less favourable con�guration, marked by
white and dark grey circles respectively. The large atoms are positioned in the paper plane,
the small atoms are the next layer in [001] direction (with respect to the Mo lattice). The
arrows indicate the shifts leading from one con�guration to the other. Due to the symmetry
imposed by the periodic boundary conditions the atoms marked with \X" are �xed in their
positions. There is no shift of atoms along the [001]-direction.
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precipitate are �xed in their positions, the relative shift of the [001] atomic columns locally

is leading to a rotation of the structure around the immobile atoms.

In cases of a precipitate thinner or thicker by two atomic layers these shifts probably had

lead to a simple expansion of the MoC grain parallel to [001], as the carbide had been

terminated such that the Mo atoms forming the metal layer close to the interface would

have been \on top" of each other, i.e. belonging to the same [001]-column of atoms. It is

very likely that for such a supercell no comparable metastable con�guration exists, as there

is no reason why the atoms should not relax homogeneously to their equilibrium distances

after pulling the grains apart in a rigid way. This is a point which should be considered in

future supercell constructions.

It is interesting to note that the Mo grain remained completely una�ected. As we can

see from �gure 6.14 the positions corresponding to the upper respective lower curve in

�gure 6.13a) are exactly the same. This is something we already observed when studying

the initial growth of the precipitate: As long as the Mo grain does not contain carbon it

behaves extremely sti�.

The procedure of probing the possible translation states of the interface was continued.

Rigid grain shifts along the [001] and the [�130] directions of the bcc Mo were performed

starting from the con�guration corresponding to the minimum in the lower curve of �gure

6.13a). The resulting energy vs. volume curves are shown in �gure 6.15, where again the

total energy of the supercell is given with respect to that of the corresponding free surfaces.

The atomic positions were relaxed after shifting the grains by 10% respective 40% of a0

along [001] and in both cases the initial structure was obtained again. In contrast to the

situation at Interface I, displacements of the grains along [001] do not push C atoms across

the grain boundary. This supports our interpretation of what we found at Interface I,

because with the relative orientations of Mo and MoC in the con�guration of Interface II

C atoms wouldn't �nd more free space in the Mo grain and thus have no motivation to

move across the interface.

Relaxation of the atomic positions also has been allowed after shifting the grains by 0.1a0

along [�130], resulting again in the initial structure. Hence it was con�rmed again that

the structure is not trapped in any con�guration sheared or rotated relatively to the most

favourable one. The favoured structure of Interface II therefore is the one shown in �gure

6.14 (by the light grey Mo and black C atoms).
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Figure 6.15: Interface II: Optimising the structure. Shown is the energy di�erence between
the interface and the corresponding free surfaces for rigid grain shifts along [001] and [-130]
(directions refer to the Mo grain).

6.3.4 Work of Separation

To have an estimation of the cohesive properties of the precipitate the work of separation

Wsep is calculated for the two interfaces. The work of separation is de�ned as the energy

di�erence per interface area between the supercell of the interface and the two correspond-

ing ones of the free surfaces, with all atomic positions being relaxed, but the cell parameters

kept �xed [36]. In case of the MoC surface a full relaxation would include a relaxation

of the volume to the equilibrium value of 282.93 Bohr3 per body-centred tetragonal MoC

unit cell. This part of the elastic contribution �Eel to Wsep is estimated by calculating

the energy di�erence between the equilibrium volume and the compressed volume per unit

cell and multiplying it with the number of unit cells in the carbide �lm. The energy vs.

volume of tetragonal MoC, as calculated in [65], is shown in �gure 6.16. The point corre-
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Figure 6.16: Total energy vs. volume of the body centred tetragonal MoC unit cell at a
c/a ratio of 1.389. The cell is contains two Mo and C atoms respectively. The dashed
lines indicate the energy di�erence of 0.076 Ryd between the equilibrium volume of 282.93
Bohr3 and the compressed volume of the intergranular precipitate, 245.95 Bohr3.

sponding to the volume of one unit cell in the intergranular �lm, 245.95 Bohr3 was added

supplementary. The energy di�erence between the two volumina is 0.076 Ryd, this makes

�Eel;MoC = 5�0.076 Ryd = 0.380 Ryd for the supercell.

For Interface I the (local) minimum in �gure 6.10b) is assumed to represent the equilibrium

structure. The energy of the structure after relaxation from point � is of course lower, but
in this case the Mo-MoC interface is not well de�ned and the total energy of the supercell

contains contributions from two kinds of interfaces, the Mo-MoC phase boundary and the

MoC grain boundary. These contributions cannot be sorted out easily.

For Interface II the minimum of the curves in �gure 6.15 represents the equilibrium con�g-

uration. The work of separation has been calculated after

Wsep;X =
Etot
interfaceX ��Etot

el;MoC � (Etot
FS;Mo + Etot

FS;MoC)

2A
(6.3)

with the energies Etot
FS;MoC and Etot

FS;Mo given in table 6.1 for case A and the energies of

the supercells containing Interface I and II , Etot
interfaceI =-751.059 Ryd and Etot

interfaceII =

-751.037 Ryd, respectively. Using the data calculated for the bonding energy di�erences

in chapter 5.5.4 we can also give the work of separation for the pure �5 STGB in its two
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MojMo I MojMo II MojMoC I MojMoC II MojMoxC I MojMoxC II

Wsep

�
J
m2

�
5.788 5.893 2.852 2.698 5.474 5.320

Table 6.2: Work of separation for the pure �5 STGB in Mo in con�gurations I and II
(MojMo I, MojMo II), for the two model Mo-MoC interfaces without taking into account
any corrections (MojMoC I, MojMoC II) and for the two model Mo-MoC interfaces after
taking into account corrections due to the compression of the MoC cell as well as the higher
C content compared to the experimental observations (MojMoxC I, MojMoxC)

translation states, con�guration I and II. The results are given in table 6.2 According to

the work of separation Interface I is more favourable than Interface II. The reason is again

the gain in elastic energy for C at the grain boundary. In both cases the work of separation

is reduced by approximately a factor of two when comparing it to the work of separation

of the pure Mo grain boundary, no matter whether the mirror-symmetric con�guration I

or the non-mirror-symmetric con�guration II is taken as a reference.

Not discussed so far is the inuence of the high C content in the model on the interpretation

of the results. We do not expect a change in the order of the two interfaces with respect

to their energies, as the larger amount of free space at Interface I will remain attractive

to C in a Mo2C phase as well. How the mechanical properties of the precipitate changes

however, we do not know so far. In the next chapter, which is dealing with the properties

of molybdenum carbides of di�erent symmetry and stoichiometry, we will see that the

bulk modulus of molybdenum carbides is increasing with increasing carbon content. This

means that by choosing MoC instead of MoCx with x � 0:4 the elastic contribution in

the work of separation was overestimated considerably. This approximation can be re�ned

by calculating the energy di�erence between the equilibrium volume of fcc Mo2C and the

volume of a unit cell in the carbide grain. This energy di�erence is smaller not only due

to the smaller bulk modulus, but also because the equilibrium volume of fcc Mo2C is only

255.92 Bohr3 compared to 282.93 Bohr3 of tetragonal (fcc) MoC (see chapter 7), so the

compression only amounts to 4%. Thus, with a Mo2C grain one would get an energy

di�erence for the supercell of about 0.020 Ryd instead of 0.379 Ryd for the MoC grain,

i.e. one order of magnitude less. With this new �Eel the work of separation for the two

interfaces become

Wsep;I = 5:474
J

m2

and

Wsep;II = 5:320
J

m2
:
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These values are comparable to the work of separation of the pure molybdenum grain

boundary given in table 6.2 for con�gurations I and II.

6.3.5 Summary

Inspired by the investigations of P�enisson et al. [94] the growth of a MoCx precipitate at

the �5 STGB in Mo was modelled by starting with one monolayer of C atoms segregated at

the interface and subsequently adding one and two more layers respectively. Relaxing the

atomic positions showed that a tetragonal MoCx precipitate grows with its c-axis meeting

the grain boundary at an angle of about 108Æ. Thus the periodicity of the grain boundary

is conserved. One layer of C at each side of the interface turned out to be slightly more

favourable than two layers in the same grain, as C �nds more free space close to the grain

boundary. This doesn't mean however, that the precipitate would grow symmetrically with

respect to the grain boundary. With the small model the direction of the growth couldn't

be determined, this is a task for future semi-empirical model investigations. However, the

HRTEM pictures of P�enisson et al. [94] indicate an asymmetrical growth into one grain.

This growth of the precipitate leads to two new Mo-MoCx interfaces. These were modelled

by replacing one of the Mo grains in the supercell by a grain of stoichiometric bct MoC.

To cope with the lattice mismatch the MoC was compressed by 13% with respect to its

equilibrium volume. This leads to a reduction of the work of separation of the Mo-MoC

interfaces. Interface I, the interface where the crystal planes of the Mo sublattice meet

at an angle of about 135Æ, is more favourable by an amount of 154 mJ
m2 than Interface II,

where the Mo sublattice continues under only a small deviation of 6Æ. The reason is that

at Interface I C atoms have more free space to relax. This is also true for the �rst layer of

MoC next to Interface I, making a displacement of C across the boundary from MoC into

Mo favourable. This process is a possible explanation for the apparently not very sharp

interfaces P�enisson et al. observed by HRTEM. At Interface II a continuous increase of the

tetragonal distortion of the bcc Mo lattice was found. Thus, on a HRTEM picture where

only Mo but not C is visible this interface is not atomically abrupt as well.

Because of the lattice mismatch, the Mo-MoC interfaces act as traps for mis�t-dislocations,

as indeed observed by P�enisson et al. . With respect to the macroscopic properties this

means that a tetragonal MoC precipitate at the �5 STGB in Mo, with the orientation

relationships as modelled, will to a certain extend lead to a sti�ening of the metal. However,

the MoC phase itself can be deformed rather easily, as was seen (accidentally) for the case

of Interface II. Indeed structural phase transformations from a tetragonal to a hexagonal
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Mo sublattice have been reported by P�enisson et al. [94] as well as Lepski et al. [73, 74].

Furthermore, by choosing the stoichiometry MoC instead of MoCx with x � 0:4 the bulk

modulus of the precipitate was still overestimated, as will be seen in chapter 7. As in all

the calculations grains of pure Mo behaved extremely sti�, this leads to the interesting

conclusion that small amounts of C lead to MoCx phases which are more easily deformable

than the pure host lattice, but increasing the C content increases again the sti�ness of the

material.

To complete this study we investigate the unit cells of the corresponding bulk phases, which

is done in the next chapter.
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Chapter 7

Molybdenum Carbides

7.1 Introduction

In this chapter the results of ab-initio calculations for molybdenum carbides of di�erent

stoichiometry and crystal structures will be presented. Besides the calculation of energies

of formations and covalent bond energies, a wide range of electronic structure data such

as densities of states, overlap populations and valence electron densities were investigated.

The collected data set will serve several purposes: First of all we want to understand the

material properties of the molybdenum carbides. This is not only for completeness of our

investigations of the precipitation of MoCx at the �5 STGB in Mo presented in chapter

6, but also because the bulk phases have many attractive material properties of their own.

Among those are high hardness, high melting point and high catalytic activity, combined

with comparatively simple crystal structures, making molybdenum carbides an object of

strong interest in materials science. From a physicist's point of view it is important to

investigate the relationship between electronic structure and crystal symmetry to identify

the principles that determine the relative stabilities of the di�erent crystalline phases. Here

simple physical models are useful to accomplish our understanding of bonding in crystals.

Vice versa, a comparison of our ab-initio data to the results of semi-empirical models serves

to evaluate the predictive power of di�erent approaches for this material system. Further-

more the ab-initio data serve as a reference for semi-empirical modelling of interatomic

interactions, speci�cally for tight-binding models of Mo-C interactions. Thus, on the basis

of the ab-initio data, the possibilities of �tting the parameters of the environment depen-

dent tight-binding model [116, 48, 47] introduced in chapter 4.2 are going to be discussed,

with the aim of using it in the future to simulate a large variety of complex processes like

119
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segregation and precipitation at grain boundaries.

The characteristic features of molybdenum carbides and semi-carbides with simple cubic

(sc), body-centred cubic (bcc), face-centred cubic (fcc), hexagonal primitive (hpr) and

hexagonal close-packed (hcp) molybdenum sublattices were studied. The di�erent struc-

tures are shown in �gure 7.1, labelled according to the Mo sublattice. The names in

brackets are the conventional names of the structures of MoC. From these we get the

Mo2C structures simply by occupying only half of the C sites such that the symmetry is

conserved. Tables 7.1a) and b) list the names and the geometric characteristics of the

di�erent structures. The fcc MoC structure with C occupying octahedral sites of the Mo

lattice (NaCl) is obtained from the MoC bcc structure by expanding the c/a ratio of the

cell from 1 to
p
2. This will play a role later on. The \AsNi" structure corresponds to

the \NiAs" structure with the positions of the elements Mo and C interchanged, i.e., C

occupying the sites of a hcp sublattice inside hpr Mo.

a)

MoC Mo C interstitial site interstitial site nn
structure sublattice sublattice of C in Mo of Mo in C coord.

bcc bcc bcc octahedral octahedral 2+4
CsCl sc sc cubic cubic 8
ZnS fcc fcc tetrahedral tetrahedral 4
NaCl fcc fcc octahedral octahedral 6
AsNi hpr hcp trigonal prismatic octahedral 6
NiAs hcp hpr octahedral trigonal prismatic 6
WC hpr hpr trigonal prismatic trigonal prismatic 6

b)

Mo2C Mo C interstitial site coordination number
structure sublattice sublattice of C in Mo of C

bcc bcc sc octahedral 2+4
fcct fcc bcc tetrahedral 4
sc sc bcc cubic 8
hpr hpr hpr trigonal prismatic 6
fcco fcc st octahedral 6
hcp hcp hpr octahedral 6

Table 7.1: Structure and geometry of the di�erent a) mono-carbides and b) semi-carbides.
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Figure 7.1: Di�erent MoC structures labelled according to the Mo sublattice. The Mo
atoms are represented by the big grey balls, the C atoms by the black ones. The names in
brackets give the conventional name of the compound. The Mo2C structures are received
by systematically occupying only half of the C sites.
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7.2 Energies of Formation

As a �rst step the energies of formation of the structures listed in tables 7.1a) and b) were

calculated as a function of the unit cell volumes. For this 8x8x8 Monkhorst-Pack k-point

meshes were used for the Brillouin zone integration. As in the grain-boundary calcula-

tions, the electron wave functions and the electron density were represented in the mixed

basis, consisting of plane waves up to an energy cuto� of 16 Ryd, and local orbitals with d

symmetry con�ned to Mo sites (RMo
loc =2.0 Bohr) and with p symmetry for C sites (rCloc=1.8

Bohr).

As mentioned above, the NaCl structure can be derived from the bcc structure by vary-

ing the c=a ratio. In the calculations the minimum energy occurred at c=a = 1.39 [65],

which is not equal to
p
2 but close to, so in the following the structure is called \fcc"

nevertheless. The energy-volume curves for MoC and Mo2C are shown in �gures 7.2a)

and b) respectively. The stable carbide phase is hpr MoC which has the tungsten-carbide

structure, a hpr Mo lattice with the C atoms occupying the centre of trigonal Mo prisms

and forming a hpr sublattice themselves. The most favourable semi-carbide is hcp Mo2C,

where a hpr C lattice is embedded in a hcp Mo lattice, such that C is octahedrally coordi-

nated by Mo. These results are in agreement with experimental observations [77, 119, 112].

7.3 Bulk Moduli

From the curvature at the minimum of the energy-volume curves in �gures 7.2a) and b)

the bulk moduli B0 of the di�erent structures were determined,

B0 = V0
@2E

@V 2

����
V0

; (7.1)

with V0 being the equilibrium volume. This was done by assuming the universal bind-

ing curve [111] as an equation of state. Table 7.2 lists the results for the most stable

molybdenum carbides and semi-carbides.

The experimental values for hpr molybdenum carbide and tungsten carbide (WC) at room

temperature, BMoC
0 = 385 GPa [82] and BWC

0 = 331 GPa [9], show that the calculated

values lie in the correct region. Although various measurements of the elastic properties

of transition metal carbides have been made during the last decades (for a review see
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Figure 7.2: Energy of formation vs. volume for di�erent structures of a) MoC b) Mo2C.
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hpr hcp fcc
MoC 374 369 359
Mo2C 290 335 310

Table 7.2: Bulk moduli in GPa of di�erent molybdenum carbide and semi-carbide phases.
The structures are named according to their Mo sublattices. For the carbides as well as
the semi-carbides the most favourable structure has the highest bulk modulus (bold).

e.g. ref. [69]), the collected data set is still hardly complete. One reason is the diÆculty

to prepare single-crystal bulk samples. Therefore, electronic structure calculations are a

valuable alternative, even if the calculated values in the strict sense are valid for T = 0 K

only.

Interestingly the bulk moduli are highest for the respective most favourable structures hpr

MoC and hcp Mo2C and decrease with increasing energy of formation. While in MoC this

leads to the order hpr - hcp - fcc of the molybdenum sublattices, in Mo2C it is hcp - fcc

- hpr. In these series the interstitial sites of carbon are trigonal prismatic - octahedral -

trigonal prismatic sites in MoC and octahedral - octahedral - trigonal prismatic sites in

Mo2C. Obviously there is no direct connection between the geometry of the metal sublattice

or the interstitial sites occupied by carbon and the bulk modulus. So for the moment we

can only say that the most favourable structures are also the most incompressible ones.

Furthermore when comparing equivalent lattices with di�erent carbon contents it also

becomes obvious that carbon considerably increases the bulk modulus of the material.

In the following a detailed analysis of the electronic structure of the di�erent carbide phases

shall be performed to clarify the relationships between crystal structure and electronic

structure.

7.4 Densities of States

7.4.1 Ab-initio DOS

Figure 7.3 shows the site and angular momentum projected DOS for MoC in the stable

WC structure. We can see strong hybridisation between the carbon s- and p- and the

molybdenum d-states, which indicates covalent bonds. The overlap between carbon and

molybdenum states is so large that only a very small number of states close to the Fermi

level (where the site projected DOS for carbon is more or less zero) are left for the pure

Mo-Mo interaction. So compared to a pure metal sublattice the presence of C in the Mo
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Figure 7.3: Site projected and angular momentum resolved DOS for MoC in the WC
structure (hpr).
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Figure 7.4: Site projected and angular momentum resolved DOS for hcp Mo2C.
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lattice weakens the Mo-Mo bonds. They are partly replaced by Mo-C bonds, thus MoC in

the WC structure is stable, because the strong covalent-like Mo-C bonds overcompensate

the degradation of the metal-metal bonds.

In �gure 7.4 we see the site and angular momentum projected DOS for the most favourable

semi-carbide, hcp Mo2C. Again we observe hybridisation of C-s- and C-p- with Mo-d-states,

but this time the carbon states are lying at the lower edge of the Mo-d-band. This situa-

tion is comparable to the case of C as an interstitial impurity at the Mo grain boundary,

described in chapter 5. So we see how the relative positions of the bands depend on the C

concentration: the less C is present the stronger are the Mo-Mo bonds, the hybridisation of

states is weaker and the shift of the C states smaller. In Mo2C the metal-metal bonds are

also weakened in comparison to a pure hcp Mo lattice, but they still represent a signi�cant

part of the overall bonding in the crystal.

These bonding mechanisms in molybdenum carbides have already been explored in [65].

They also occur in such a manner in the transition metal mono-borides, as shown by Mohn

and Pettifor by means of ab-initio calculations [83]. A more quantitative evaluation of

Mo-C and Mo-Mo bonds will be given in section 7.6, where the results of calculations of

orbital and bond populations are presented.

Figure 7.5 shows the ab-initio calculated DOS for all the di�erent MoC structures we inves-

tigated, ordered by their energies of formation, starting on top with the least favourable.

We do not expect to see a trend in the total DOS \from bcc to hpr" that follows the one

in the energies of formation, as the shape of the DOS will depend on the crystal structure.

However, if we focus on the close packed structures NaCl, AsNi, NiAs and WC, where

in all cases the nearest-neighbour coordination number is 6, we observe the following: a

pseudo-gap in the region of the Mo-d and C-p states which basically marks the upper limit

of the occupied C band is present in all structures. From fcc MoC (NaCl) to hpr MoC

(WC) it is becoming more narrow and shifting closer to EF . The part of the DOS that

can be assigned to Mo-Mo d-d interaction only is decreasing towards the Fermi level in

the three hexagonal structures, while it is increasing in fcco MoC. Thus in the hexagonal

structures the metal-metal bonds are slightly lower in energy than in the cubic structure.

It is also interesting to note the similarities between the DOS of the WC and of the

CsCl structure. Although the coordination numbers are di�erent combining two rather

open primitive lattices together is leading to the same main features in the DOS. Only

that in the case of the CsCl structure more Mo-d electrons are needed for Mo-C bonds,
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leaving hardly anything for pure metal-metal bonds. This obviously makes the structure

unfavourable.

We can record so far that compared to the pure metal in the molybdenum carbides the

Mo-Mo bonds are to a large extend replaced by covalent-like Mo-C bonds. These strong

bonds overcompensate the degradation of the metal-metal bonds, however it is favourable

with respect to the energy if some states are left for Mo-Mo bonds only. The lower these

states are lying in energy and the more clearly they are separated from the hybridised

states, the more stable is the compound. The structure that ful�lls these criteria best is

the tungsten carbide structure, WC-MoC.

Figure 7.6 shows the site projected DOS for the semi-carbides, again ordered according to

their energies of formation. As we already observed with hcp Mo2C in �gure 7.4, compared

to the mono-carbides more states are left for pure metal-metal bonding. But otherwise the

conclusions drawn above also hold for the semi-carbides: the most favoured structure is

the one in which the Mo-d-states involved in the Mo-Mo-bonding are well separated by the

ones strongly hybridised with the C-p-states by a pseudo-gap. Furthermore the Mo DOS

is decreasing towards a minimum when approaching the Fermi level, thus the Mo-Mo d-d

bonds have a lower energy than in the other structures.

7.4.2 Tight-Binding DOS

In terms of a tight binding model the angular momentum projected DOS suggest a split-

ting of the band energy in C-s{Mo-d, C-p{Mo-d and Mo-d{Mo-d contributions. Pettifor

and Podloucky used a pd-tight-binding model to predict and explain the structural sta-

bilities of di�erent pd-bonded AB compounds [102, 101, 98]. Their canonical TB model

consists of p-orbitals at the atomic sites A and d-orbitals at the sites of species B. The

volume of the di�erent compounds is prepared such that the repulsive energy of all tested

structures is equal. Then the structural energy di�erence is given solely by the band en-

ergy (structural energy di�erence theorem [98]). These band energies were calculated by

Pettifor and Podloucky using the recursion method [55] up to the 20th moment. With

this strategy they are able to reproduce structural trends in AB-structure maps [98, 97]

and to explain them with arguments of atomic size (range of the p- and d-orbitals), energy

level di�erences �pd = Ep� Ed and band �lling degrees. In our case those arguments are

not useful to explain trends in the energies of formation, because the named quantities

are constant. Nevertheless we will have a look at the tight-binding DOS that Pettifor and

Podloucky calculated for di�erent structures and compare them to our ab-initio DOS of
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Figure 7.6: Site projected DOS for the di�erent Mo2C structures.
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Figure 7.7: Tight-binding p, d and total density of states for di�erent crystal structures,
for �pd = 0 eV (taken from [102]).
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Figure 7.8: Tight-binding total density of states for di�erent crystal structures, for �pd =
-5 and +5 eV (taken from [102]).
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the di�erent molybdenum carbides. As such a comparatively simple TB model is able

to distinguish between rather similar crystal structures, similarities in the ab-initio and

TB-DOS, at least in the signi�cant features, would be rather encouraging for our goal to

describe the molybdenum-carbon interaction with a TB model and to get a set of reliable

and transferable TB parameters.

Figures 7.7 and 7.8 show the TB-DOS calculated by Pettifor and Podloucky for �pd = 0

and �pd = -5 and +5 eV respectively. They have chosen the structures NaCl, CsCl, NiAs,

MnP, FeSi and CrB.

The atomic energy level separation �pd for Molybdenum and Carbon can be estimated from

their �rst ionisation energies1, which are 7.099 eV for Mo and 11.260 eV for C. So �MoC
pd =

4.161 eV and we expect similarities between the upper band (E � -7 eV) in the ab-initio

DOS of MoC in �gure 7.5 and the TB-DOS for �pd = -5 eV in �gure 7.8 in the upper

panel. The common structures are the NaCl, CsCl and NiAs structure. The TB pd-bands

are broader than those calculated ab-initio, because to get the correct cohesive energies

they have to cover also those energy regions where also C-s{ an Mo-s{ and p{states are

present in the ab-initio calculation. But apart from that we notice some common features

of ab-initio and TB-DOS, if we ignore subtle details in the former. The similarities are

most striking for the NaCl structure. Its DOS shows the characteristic broad minimum

around -2.5 eV bordered by two large peaks at � -5.5 (-7.5) and +4 eV (+4 eV) in the

ab-initio (TB) DOS. In the ab-initio DOS the upper peak is splitted into two peaks.

The ab-initio DOS for the NiAs structure displays qualitatively the same shape in the

region 0 eV � E-EF �-7.5 eV as the TB-DOS between +5 � E- EF � -11 eV. The same

is true for the ab-initio AsNi-DOS. Hence, it doesn't seem to be important which species

occupies the hpr and which the hcp lattice. A comparison between the ab-initio DOS of

the WC structure and the NiAs- and AsNi-DOS also con�rms that the relevant features

in the DOS are determined by the crystal symmetry, the former displays the same minima

and peaks as the latter ones, only more pronounced.

In the case of CsCl the common features are more diÆcult to detect. A likely reason is the

coordination number of 8 in the cubic lattice, which is rather high for a covalent system.

This is diÆcult to reproduce with only p and d orbitals [113], therefore in this case the

TB-model is less successful in reproducing the ab-initio DOS.

The comparisons undertaken above show that a simple semi-empirical model can reproduce

1As we have a relative concentration for Mo:C of 1:1 here it is sensible to use the �rst ionisation energies
of the free atoms for both elements, instead of choosing the work function of Mo as a reference, as in chapter
5
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some of the essential features in the electronic structure. One has to cut back with the

description of highly-coordinated crystals and the di�erentiation of very alike structures as

e.g. NiAs and AsNi. However, as our TB model is intended to include also C-s-, Mo-s-, and

Mo-p orbitals and the parametrisation will be environment-dependent, we are optimistic

to overcome most of these de�ciencies.

7.5 Electron Densities

Figures 7.9 to 7.11 show the valence electron densities in the WC, NiAs and NaCl structures

of MoC for di�erent energy ranges between certain features or peaks in the DOS. They

give an illustration of the inuence of the crystal symmetry on the electron distribution in

real space. In the hexagonal carbides (�gs. 7.9 and 7.10) the hexagonal c-axis leads to a

splitting of the p electron density in one contribution parallel to the basal plane and one

perpendicular to it. In contrast to this the electron distribution around the C atom has

nearly spherical symmetry throughout all energy ranges in the NaCl structure (�g. 7.11),

even in those ranges corresponding to the p-states (-8 to -3 and -3 to 0 eV).

Figure 7.12 shows the bonding electron densities for the three most stable mono-carbides.

The bonding electron density is the di�erence between the complete valence electron density

in the MoC compound and that of the respective carbon and molybdenum sublattices. In

all three cases we see a density distribution that shows the characteristics of a covalent bond

between carbon and molybdenum: the electrons are accumulated between two neighbouring

atoms. But we also see indications of charge transfer from Mo to C, as the electron density

at the Mo site decreased and that at the C site increased. Thus the major part of the

bonding electron density is coming from molybdenum. This was already expected after

the considerations of section 7.4. There we observed that the valence states of the C atom

are lower in energy than the Mo d-band. Figure 7.13 shows the bonding electron densities

for the three most stable semi-carbides. The bonding characteristics between Mo and C are

the same as in MoC. In addition we see a slight increase of the bonding electron density in

the vacant interstitial region between the molybdenum atoms. Thus the bonding between

these atoms is enhanced. At �rst glance this seems to be a contradiction to what we found

in section 7.4. There we stated that C weakens the metal-metal bonds. After looking

at the bonding electron densities we can be more precise: If carbon is put at interstitial

sites in a Mo lattice, it weakens the bond between the atoms surrounding this site or even

replaces it by Mo-C bonds. However, at the same time bonding charge is transferred to
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Figure 7.9: Valence electron density in [electron/Bohr3] in MoC hpr corresponding to
di�erent energy levels: a)-12 to -9 eV, b)-6 to -2.8 eV, c)-2.8 to -1.5 eV, and d) -1.5 to 0
eV with respect to EF .

vacant interstitial sites in the Mo lattice, which strengthens the Mo-Mo bonds around or

across this site.
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Figure 7.10: Valence electron density in [electron/Bohr3] in MoC hcp corresponding to
di�erent energy levels: a)-13 to -10 eV, b)-7.5 to -5.2 eV, c)-5.2 to -2.2 eV, and d) -2.2 to
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7.6 Population Analysis

To evaluate quantitatively which orbitals and bonds are playing the most dominant role in

the bonding in molybdenum carbides, we Mulliken populations of crystal orbitals (equa-

tion 3.54), local orbital-resolved overlap populations (3.60) and covalent bond energies

(3.73,3.74) were calculated according to the energy-partitioning scheme of Bester et al.

(see section 3.5.4). As for the calculations described in section 5.5.2 atomic pseudo wave-

functions were used for the radial parts of the local atomic-like basis functions (3.40),

limited by a cut-o� radius of 6.0 Bohr for Mo and 4.0 Bohr for C2 With the combination of

these two basis sets the maximum spillage (3.49) that occurred in the molybdenum-carbide

calculations was 1 � 10�3.

7.6.1 On-site Populations

Table 7.3 shows the Mulliken population of the crystal orbitals in MoC, centred at Mo

and C respectively. For comparison, the occupation numbers of the atomic orbitals are

also given. They are received by simply �lling the orbitals of the free atoms according to

Hund's rules (cf. e.g. [85]). We see that for all cases the major part of electrons at the

Mo atom is located in d-orbitals. In contrast to the free atom, also p electrons appear,

and the number of s electrons is reduced. In the case of C there is a slight increase in the

number of p electrons, while the number of s electrons decreased. Summing up over all

crystal orbitals at one site we end up with more than 6 electrons at the Mo atom and less

than 4 at the C site, as if a charge transfer from C to Mo had taken place when building

a crystal from the free atoms. However, we know from the relative position of bands (cf.

7.5) and from the plots of the bonding electron densities (cf. 7.12) that if a charge transfer

took place then only in the other direction, from Mo to C. The results for qtot in table 7.3

therefore are an artefact of the calculations. On the one hand, in the Mulliken partitioning

scheme the non-diagonal elements of the overlap matrix S are simply divided by two and

the result added to the respective orbital populations. On the other hand some of the local

atomic-like basis functions extend further than to the next-nearest-neighbours. Thus e.g.

a Mo orbital can represent some of the electrons centred at a C atom. Therefore assigning

the orbital populations to speci�c sites is diÆcult. Nevertheless, we can see from table 7.3

that the distribution of charge into s, p, and d states does not depend signi�cantly on the

2How this basis set was optimised is described in detail in section 5.5.2
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MoC qsMo qpMo qdMo qtotMo qsC qpC qtotC

bcc 0.581 1.066 4.879 6.526 1.179 2.295 3.474
CsCl (sc) 0.513 1.089 4.863 6.465 1.216 2.319 3.535
ZnS (fcct) 0.682 1.065 4.788 6.535 1.100 2.364 3.464
NaCl (fcco) 0.600 1.094 4.831 6.525 1.147 2.328 3.475
AsNi (hpr) 0.586 1.107 4.832 6.525 1.157 2.316 3.473
NiAs (hcp) 0.600 1.074 4.845 6.519 1.108 2.373 3.481
WC (hpr) 0.583 1.109 4.825 6.517 1.125 2.357 3.482
free atoms 1.000 0.000 5.000 6.000 2.000 2.000 4.000

Table 7.3: Mulliken Population of local orbitals for di�erent MoC compounds and occupa-
tion numbers of orbitals of the free atoms. The numbers represent electrons per orbital.

MoC qsMo + qsC qpMo + qpC qdMo

bcc 1.760 3.361 4.879
CsCl (sc) 1.729 3.408 4.863
ZnS (fcct) 1.782 3.429 4.788
NaCl (fcct) 1.747 3.422 4.831
AsNi (hpr) 1.743 3.423 4.832
NiAs (hcp) 1.708 3.447 4.845
WC (hpr) 1.708 3.466 4.825

Table 7.4: Mulliken Population of local s, p and d orbitals in di�erent MoCs. The num-
bers represent number of electrons in one angular-momentum type of orbital and are the
respective sums of the contributions of orbitals at Mo and C sites given in table 7.3.

crystal symmetry.

In table 7.4 the crystal orbital populations of table 7.3 were summed up for the di�erent

angular momenta. In this way one gets the \total" s-, p- and d-populations in the MoC

system. Looking at the relative distribution we speculate about which kind of hybrids can

result from these orbitals, and thus to which crystal symmetry this would lead. The main

types of s� p � d hybridisation, and the coordination numbers and geometries that they

lead to, are summarised e.g. in the book of Sutton [113] and repeated in table 7.5. Strictly

speaking the predicted geometries only apply to perfectly covalent systems, but since the

Mo-C bonds have covalent character, and it was illustrated in the preceeding sections

that they play the major role in the bonding, the data of table 7.5 least help for a good

guess. Rounding the values in table 7.4 to integer numbers we have two s, three p and �ve d

electrons for the hybrids bonding to the nearest-neighbours at the Mo or C site respectively.
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We know from section 7.2 that a coordination number of 6 is most favourable. If we assume

that all valence electrons are involved in the bonding, then we can easily understand this,

as with a lower coordination number more electrons are left over. They could be used

of course for next-nearest-neighbour bonding, but from the bonding electron densities we

have seen that for this far less electrons are needed. Most electrons are located in the close

vicinity of the respective central atom. Thus, assuming a coordination number of six, we

have the choice between an octahedral and a trigonal prismatic interstitial site, as can be

seen from table 7.5. The latter seems more preferable, as it \consumes" two more of the

localised d electrons. In table 7.1a) the interstitial sites for C in Mo, and vice versa are

given. All the sixfold coordinated structures are a combination of octahedral and trigonal

prismatic interstitial sites. Assuming that the trigonal prismatic one is the most favourable

indeed, we understand that \two times trigonal prismatic", which is the WC structure, is

the most stable con�guration.

Cottrell developed a semi-empirical model which describes rather satisfactorily the relative

stabilities of most transition metal carbides [20, 21, 22, 23, 24]. (For some reason he did not

include Mo.) He gives a nice descriptive interpretation of the fact that the WC structure

is the most favourable for the tungsten carbides, which agrees well with our results for the

molybdenum carbides: Assuming that the d-d bonds between metal atoms are mainly of

� character and thus directed along the lines between Mo-Mo atom pairs around the C

atom, the trigonal prismatic cell has the advantage over the octahedral one in enabling

the electrons of the d-d bonds to avoid better the electronegative regions near the carbon

atoms. Thus the WC structure satis�es best the principle that di�erent bonds from an

atom - in this case the Mo-C and the Mo-Mo bonds from a given Mo atom - should point

in well-separated directions [25].

Table 7.6 shows the Mulliken population of the crystal orbitals in Mo2C. The calculated

values do not di�er much from those for the corresponding MoC structures, so we can use

the same arguments as before. In the semi-carbides we have Mo-C and Mo-Mo nearest-

neighbour bonds. Now the octahedral coordination of C with Mo is preferred, because it

leaves more d electrons to be used for the Mo-Mo bonds.

7.6.2 Orbital Overlap Populations

Figure 7.14 shows the energy resolved local crystal-orbital overlap populations (3.61) for

various bonds in the three MoC structures fcc, hcp and hpr. We see that in the d-d bonds of

Mo a small number of anti-bonding states (negative COOP) becomes occupied, in contrast
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coordination atomic resulting
number orbitals hybrids

sp linear
2 dp linear

sd bent
sp2 trigonal plane
dp2 trigonal plane

3 d2s trigonal plane
d2p trigonal pyramid
sp3 tetrahedral

4 d3s tetrahedral
dsp2 tetragonal plane
dsp3 trigonal bipyramid

5 d3sp trigonal bipyramid
d4s tetragonal pyramid
d2sp3 octahedral

6 d4sp trigonal prism

Table 7.5: Coordination numbers and bonding geometries for the main types of s-p-d
hybridisation [113]

to what is known of bcc Mo, where the Fermi level is exactly at the point at which the

change of sign from positive to negative COOP occurs, the maximum number of bonding

states being �lled. Thus, compared to pure Mo, the Mo-Mo bonds are weakened a bit in

MoC. However the maximum �lling of bonding states now occurs in the Mo-d - C-p bonds.

The increasing peak size and width in the COOP below the Fermi level indicates that the

weight of these bonds relative to the Mo-Mo bonds is increasing when going from fcc to

hpr. The overlap of Mo-d with C-s orbitals leads to bonding states far below the Fermi

energy, also stabilising the structure.

For Mo2C (�g. 7.15) the COOP results are similar, but in the fcc and hcp structures no

anti-bonding Mo-d-Mo-d states are occupied. Furthermore the Mo-Mo and Mo-C bonds

are of equal importance.

From the analysis of the crystal orbital populations we derived some qualitative arguments,

why MoC tends to crystallise in the hexagonal primitive WC structure, and Mo2C in the

hexagonal close-packed one. However, we still do not have any quantitative values that

reproduce the trend given by the energies of compound formation (see e.g. �gures 7.2a)

and b)). The next feature we therefore examine are the integrated overlap populations of

orbitals, i.e. bonding charges. A simple way to calculate the number of electrons that is
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Mo2C qsMo qpMo qdMo qtotMo qsC qpC qtotC

bcc 0.609 0.961 6.242 4.672 1.129 2.344 3.473
0.627 0.849 4.809 6.258

fcct
0.634 0.876 6.242 4.732 1.114 2.400 3.522
0.634 0.876 4.732 6.242

sc 0.464 0.822 6.239 4.953 1.155 2.367 3.522
0.464 0.822 4.953 6.239

hpr 0.576 0.868 6.257 4.813 1.131 2.358 3.489
0.576 0.868 4.813 6.257

fcco
0.597 0.975 6.368 4.796 1.133 2.400 3.533
0.590 0.784 4.726 6.100

hcp 0.604 0.875 6.247 4.768 1.139 2.366 3.505
0.604 0.875 4.768 6.247

Table 7.6: Mulliken Population of orbitals for di�erent Mo2Cs. The values denote electrons
per orbital. In the bcc and the fcco structure the Mo sites are not equal. In the octahedron
surrounding the C site there are two bonds of length a0/2 towards the \�rst-" nearest-
neighbour Mo atom, and four bonds of length

p
2a0/2 towards the \second-" nearest-

neighbours (compare e.g. �gure 7.1). The populations given in the respective upper line
belong to the �rst neighbour, the numbers in the respective lower line to the second.
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Figure 7.14: Crystal orbital overlap populations (COOP) for fcc (NaCl), hcp (NiAs) and
hpr (WC) MoC (from top to bottom).
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Figure 7.15: Crystal orbital overlap populations (COOP) for hpr, fcc and hcp Mo2C (from
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MoC qMo qC qtot

bcc 4.705 2.358 7.063
CsCl (sc) 4.484 2.442 6.926
ZnS (fcct) 4.562 2.214 6.776
NaCl (fcco) 4.527 2.252 6.779
AsNi (hpr) 4.388 2.266 6.654
NiAs (hcp) 4.464 2.236 6.700
WC (hpr) 4.340 2.257 6.597

Table 7.7: On-site populations [number of electrons] in MoC.

accumulated in all bonds in the system is to calculate the on-site populations and subtract

them from the total number of electrons. Table 7.7 shows the on-site populations for MoC.

On an average the total on-site charge qtot is decreasing when going from the least stable

bcc MoC to the most stable WC structure. This means that the total overlap population

(per formula unit) is increasing. The same observation holds for the semi-carbides. The

on-site populations for the semi-carbides are given in table 7.8. The total sum is decreasing

when going from the least stable bcc to the most favourable hcp Mo2C. Obviously maxi-

mum stability is coming along with maximum overlap of orbitals.

The covalent bond energy (3.73) connected with the overlap of orbitals is not directly pro-

portional to the total overlap populations discussed here, as bonds coming from di�erent

types of orbitals make a di�erent contribution. To analyse these contributions we sepa-

rate the nearest-neighbour-bonds according to the angular momentum of the overlapping

orbitals. This is done in the next section.

7.7 Covalent Bond Energies

The covalent bond energy is de�ned according to the energy partitioning scheme intro-

duced by Bester et al. [6], which was described in chapter 3.5.4. To distinguish it from

a metallic bond which could also be described with a (large) set of atomic-like orbitals,

a covalent bond is imagined as a bond which is dominated by the hybridisation of those

orbitals on the various atoms being already occupied in the respective free atom. So it

may also contain \metallic" i.e. spatially homogeneous contributions. To account for those

electrons which have been redistributed when building a crystal out of the free atoms the

promotion energy (3.70) was calculated as well. It is listed for the di�erent MoC and Mo2C

structures in tables 7.9 and 7.10. The values of each atomic species are very similar for the
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Mo2C qMo qC qtot

bcc 4.525 2.289 11.204
4.390

fcct
4.385 2.256 11.026
4.385

sc 4.438 2.300 11.176
4.438

hpr 4.332 2.253 10.917
4.332

fcco
4.278 2.257 10.758
4.223

hcp 4.257 2.231 10.745
4.257

Table 7.8: On-site populations [number of electrons] in Mo2C.

di�erent geometries. This was expected, as the promotion energy primarily depends on

the relative position of the electronic states between which electrons are exchanged, which

is not much a�ected by the crystal structure. The fact that the promotion energy for C

is one order of magnitude higher than the one of Mo can be understood with the same

argument.

Table 7.11 shows the covalent bond energies for nearest-neighbour Mo-C bonds in the

di�erent carbides, split into the contributions of the constituent orbitals. The dominant

contribution is the Mo-d{C-p bond (dMo � pC values in table 7.11). It is very similar for

the sixfold coordinated structures NaCl, AsNi, NiAs and WC but it distinguishes between

the close-packed (fcc, hcp) and the simple (hpr) Mo sublattice. While the population of

orbitals depends on the relative position of bands, their overlap and thus the population

and energy of bonds depends on the crystal structure. To compare structures with di�erent

coordination numbers, however, does not make sense at this point, because the strength

of a single bond depends among other things on the number of nearest-neighbours as can

be demonstrated, e.g., by comparing the CsCl and the ZnS structure.

For this reason the di�erent types of bonds have been summed up to the total covalent

bond energy per bond and multiplied with the coordination number. The results are given

in table 7.12 for the mono-carbides. We see that the nearest-neighbour Mo-C bond is in-

deed playing the major role. The next-nearest-neighbour bonds are Mo-Mo and C-C bonds
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MoC EMo
prom EC

prom Etot
prom

bcc 0.072 0.703 0.775
CsCl (sc) 0.099 0.653 0.752
ZnS (fcct) 0.069 0.756 0.825
NaCl (fcco) 0.078 0.723 0.801
AsNi (hpr) 0.080 0.719 0.799
NiAs (hcp) 0.075 0.745 0.820
WC (hpr) 0.084 0.734 0.818

Table 7.9: Promotion energies per atom and per formula unit in di�erent MoC compounds.

respectively. Here the contribution of the C-C bond is anti-bonding, but the absolute value

is so small that it is negligible. Summing up nearest- and next-nearest-neighbour contri-

butions gives the \total" covalent bond energy Etot
cov. No obvious trend emerges for these

\total" covalent bond energies which correlates to the one in the energies of formation.

However, the most stable WC structure also has the lowest covalent bond energy. Adding

the promotion energy doesn't change the situation qualitatively.

In Mo2C (see table 7.13) the Mo-C bond still represents the major contribution to the

bonding energy. But here, due to the stoichiometry the Mo-Mo have similar values as

the Mo-C bonds. The C-C bonds, which are next-nearest-neighbour bonds, are again

anti-bonding. In some structures their absolute values are considerably higher than in

the corresponding mono-carbide. This is most striking for the fcct structure, where C is

tetrahedrally coordinated with Mo atoms. For the \total" covalent bond energies we see

a surprising scheme: the values are higher for the more favourable structures, hcp, fcco

and hpr, where C is sixfold coordinated with Mo, than for all others. For those structures

we obtain a reversed trend: the total covalent bond energy is increasing with decreasing

energy of formation.

Finally, starting from a central unit cell and increasing the number of neighbour shells

step by step, all contributions to overlap populations and covalent bond energies have

been summed up until the further contributions vanished to zero. On average (depending

on the individual bond lengths) this was the case after the �fth-nearest-neighbour shell,

when we do not distinguish between Mo and C shells. The total overlap populations

obtained in this way di�er slightly from the di�erence between total number of valence

electrons and the total on-site populations given in tables 7.7 and 7.8, but the trend remains
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Mo2C EMo
prom EC

prom Etot
prom

bcc 0.135 0.736 1.200
0.097

fcct
0.116 0.729 0.961
0.116

sc 0.104 0.700 0.908
0.104

hpr 0.110 0.728 0.948
0.110

fcco
0.099 0.710 0.948
0.139

hcp 0.114 0.717 0.945
0.114

Table 7.10: Promotion energies per atom and per formula unit in di�erent Mo2C com-
pounds.

MoC sMo � sC sMo � pC pMo � sC pMo � pC dMo � sC dMo � pC

bcc -0.025 -0.024 -0.053 -0.049 -0.067 -0.337
-0.011 -0.027 -0.024 -0.049 -0.010 -0.054

CsCl (sc) -0.005 -0.022 -0.025 -0.042 -0.030 -0.098
ZnS (fcct) -0.031 -0.042 -0.038 -0.062 -0.061 -0.245
NaCl (fcco) -0.015 -0.029 -0.033 -0.048 -0.036 -0.142
AsNi (hpr) -0.014 -0.029 -0.033 -0.047 -0.046 -0.151
NiAs (hcp) -0.015 -0.030 -0.028 -0.044 -0.038 -0.146
WC (hpr) -0.013 -0.028 -0.032 -0.046 -0.041 -0.151

Table 7.11: Covalent bond energy per bond in di�erent MoC compounds. In bcc MoC not
all Mo atoms are equivalent. In the octahedron surrounding the C site there are two bonds
of length a0/2 towards the \�rst" nearest-neighbour Mo atom, and four bonds of lengthp
2a0/2 towards the \second" nearest-neighbours. The energies given in the upper line for

the bcc structure belong to the �rst neighbour, the numbers in the respective lower line to
the second.
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MoC EMo�Mo
cov;NNN EC�C

cov;NNN EMo�C
cov;NN Etot

cov Etot
cov + Etot

prom

bcc -0.310 -0.002 -1.813 -2.121 -1.346
CsCl (sc) -0.480 +0.051 -1.764 -2.193 -1.441
ZnS (fcct) -0.270 +0.004 -1.916 -2.182 -1.357
NaCl (fcco) -0.312 +0.006 -1.826 -2.132 -1.331
AsNi (hpr) -0.427 +0.008 -1.845 -2.280 -1.481
NiAs (hcp) -0.313 +0.008 -1.880 -2.185 -1.365
WC (hpr) -0.456 +0.010 -1.874 -2.321 -1.503

Table 7.12: Covalent bond energy of nearest-neighbour (NN) and next-nearest-neighbour
(NNN) bonds in MoC. The total covalent bond energy per bond (sum over all orbitals in
table 7.11) has been multiplied with the respective coordination numbers (table 7.1). The
last column presents the sum of covalent bond energy and promotion energy (table 7.9).

Mo2C EMo�Mo
cov;NN EC�C

cov;NNN EMo�C
cov;NN Etot

cov;NN Etot
cov;NN + Etot

prom

bcc -2.154 + 0.000 -1.947 -4.001 -3.033
fcct -1.804 + 0.109 -2.314 -4.009 -3.048
sc -1.456 + 0.001 -2.538 -3.993 -3.085
hpr -1.728 + 0.008 -2.006 -3.726 -2.778
fcco -1.124 + 0.058 -2.587 -3.653 -2.705
hcp -1.508 + 0.002 -2.078 -3.604 -2.659

Table 7.13: Covalent bond energy of nearest-neighbour (NN) and next-nearest-neighbour
(NNN) bonds in Mo2C. The values represent the sum over all orbitals times the respective
coordination numbers. The last column shows the sum of NN-covalent bond energy and
promotion energy (cf. table 7.10).
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unchanged3. They are displayed graphically, together with the energies of formation and

the total covalent bond energies in �gure 7.16. The labels of the upper x-axis refer to the

semi-carbides, those of the lower x-axis to the carbides. The left y-axis gives the total

overlap population (bonding charge) per unit cell, the right gives energies of formation

and covalent bond energies, respectively. The structures are ordered according to their

energies of formation, which is decreasing continuously from the left to the right. At the

same time the overlap populations increase monotonously. Thus, as concluded already in

section 7.6.2, increasing stability of a structure comes along with increasing overlap. For

the covalent bond energies we still do not see such a consistent trend, even after summing

up all distant contributions.

7.8 Distance Dependencies

To go on and discuss the matrix elements occurring in the molybdenum carbide would

be the next step. However, for the moment we pass on it as there are still some incon-

sistencies in the ab-initio data. For example the values calculated for the 3rd nearest

neighbour ddÆ hopping terms in �gure 7.20 have the wrong sign and the absolute values

are far too big. The reason for this has to be clari�ed �rst. After analysing the physical

relationships between electronic and crystal structures it is discussed now how useful the

presented quantities can be for the �tting of the free parameters in a tight-binding model.

Therefore we want to investigate the distance dependencies, i.e. the decay behaviour, of

overlap populations and covalent bond energies, which are characteristic for the interaction

of pairs of atoms. We will especially bear in mind the special features of the environment

dependent parametrisation of Tang et al. [116, 48, 47] introduced in chapter 4.2. This

section describes ongoing work, thus some of the considerations presented here are still in

their initial stage. At some points this causes the presentation to be little appealing, which

the reader is kindly asked to excuse.

Even if the covalent bond energies do not reproduce the trend in the energies of formation

they can be compared as a �rst approximation to the band energy part of the total tight-

binding energy (4.1). So �rst of all we look at them to estimate the range of interaction

3To put it in other words: if we sum up the on-site populations given in tables 7.7 and 7.8 and the
overlap populations displayed in �gure 7.16 we obtain a number that slightly di�ers from the total number
of electrons in the unit cell. This di�erence is of the order of magnitude of \number of electrons times
spillage" and illustrates the incompleteness of the local basis set.
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Figure 7.16: Comparison of bond charge Q per unit cell, covalent bond energy Ecov and
energy of formation Ef for Mo2C (see upper x-axis) and MoC (see lower x-axis). Structures
are ordered corresponding to Ef . Ef (right y-axis) goes down with increasing bond charge
Q (left y-axis). Ecov doesn't show such a systematic behaviour.
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Figure 7.17: Local overlap populations q and covalent bond energies \ECOV", both per
bond, in bcc Mo (open symbols) and CsCl (sc) MoC (full symbols). The interatomic
distances correspond to the equilibrium volume of bcc Mo. The values for sc MoC were
obtained by assuming the same volume and replacing one Mo in the cubic unit cell by a
C atom. The central atom is always a Mo atom. In sc MoC the �rst- and fourth-nearest-
neighbours thus are C atoms, the second, third, and �fth neighbours are Mo atoms.
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Figure 7.18: Overlap populations q and corresponding covalent bond energies \ECOV" in
hpr MoC (WC structure). The interatomic distances correspond to the equilibrium volume
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are carbon atoms, the second, third and �fth Mo.
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between atomic orbitals in molybdenum and the molybdenum carbides. Figure 7.17 shows

the total overlap population per bond and the correlated covalent bond energy for the �rst,

second, third, fourth, and �fth-nearest-neighbours in bcc Mo (open symbols) and sc (CsCl)

MoC (full symbols). The distances are the interatomic distances in the equilibrium volume

of bcc Mo. The open symbols show that in bcc Mo the overlap of neighbouring orbitals

and, correspondingly, the covalent bond energy, are close enough to zero to be negligible

for and beyond the third-nearest-neighbours. To test the inuence of the atomic species,

one Mo atom in the cubic unit cell was replaced by carbon, thus getting sc MoC (the CsCl

structure) at the equilibrium volume of bcc Mo. The corresponding overlap populations

and covalent bond energies are shown in �gure 7.17 as full symbols. Starting from a Mo

atom as central atom the �rst-nearest-neighbour atoms are now carbon atoms. We see

that the overlap between Mo and C is approximately half the amount of that between Mo

and Mo at the same distance. The corresponding covalent bond energy, however, is nearly

the same. Thus in MoC a Mo-C bond is considerably stronger than a Mo-Mo bond of the

same length.

The overlap population of a Mo-Mo bond in sc MoC in which the Mo atoms are second-

nearest-neighbours is approximately twice the amount of the corresponding bond in bcc

Mo. Obviously the bonding charge which is not contained in the Mo-C nearest-neighbour

bond is shifted to the Mo-Mo second-nearest-neighbour bonds. The overlap with orbitals

of the third-nearest-neighbours is again almost zero.

Figure 7.18 shows the overlap populations and covalent bond energies of MoC in the hpr

\WC" structure at its equilibrium volume. Here we see that the low absolute value of the

Mo-C overlap population in �gure 7.17 was an e�ect of the large volume. For MoC at the

equilibrium volume the overlap of �rst-nearest-neighbour orbitals is the strongest, and it

decreases to zero for the fourth-nearest-neighbours. The covalent bond energies show the

same trend. The fact that the interaction between two atoms is extended to the third-

nearest-neighbours in hpr MoC in contrast to sc MoC has two di�erent origins. Firstly, the

bond lengths in hpr MoC are much smaller than in sc MoC, as the latter has been calculated

at the equilibrium volume of bcc Mo. Secondly, the environment has changed, leading to

a di�erent screening of the interatomic interactions. In the environment-dependent tight-

binding model we can describe these two e�ects separately, by the distance-dependent part

of the hopping integrals, equation (4.35), and by the screening function, equation (4.36).

The question is whether these two e�ects can be extracted from the ab-initio data as well.
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Figure 7.19: Local dd overlap populations and corresponding covalent bond energies in

bcc Mo for di�erent unit cell volumes. The open symbols show the distance dependency

of the �rst-nearest-neighbour interactions, the full symbols those of the second-nearest-

neighbours.

Figure 7.19 shows the dd-overlap population and the corresponding covalent bond energy

for nearest-neighbour and next-nearest-neighbour bonds in bcc molybdenum for di�erent

volumes of the unit cell. This gives an impression of the distance dependence of the dd-

hopping terms. With the given symmetry of the crystal, the �rst-nearest-neighbours in

bcc Mo are expected 157 to interact rather \unscreened", while the screening for the next-

nearest-neighbours is considerable. This can be seen in �gure 7.19 by the big reduction
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of overlap and covalent bond energies when going from the �rst to the second-nearest-

neighbours at equal distances. Thus, in principle the information about the screening

behaviour of the interaction via di�erent orbitals can be gained from the ab-initio data!

When thinking of how to relate the ab-initio data with the quantities in the tight binding

model we are facing the problem that the ab-initio data for single bonds between two

atoms was received by representing the crystal wavefunction in a non-orthogonal LCAO

basis. Thus, Hamiltonian as well as non-diagonal overlap matrix elements (3.58, 3.59)

occur. The latter do not exist in an orthogonal tight-binding model. Calculating the in-

teraction between two atoms ab-initio we can distinguish between \direct" interaction via

overlap of orbitals and the interaction via potentials. In a tight-binding model the overlap

is neglected, or, by formally converting the non-orthogonal basis into an orthogonal one by

a L�owdin transformation (4.29), the non-orthogonality e�ects are included in the Hamilto-

nian matrix elements. As discussed in chapter 4.1.5 this leads to an implicit environment

dependency of the Hamiltonian matrix elements.

The covalent bond energies (3.74) include contributions from Hamiltonian as well as over-

lap matrix elements. Thus, ignoring at �rst that this implicit environment dependency has

a di�erent origin than that of the tight-binding Hamiltonian elements, the free parameters

of the hopping terms could be �tted to reproduce the covalent bond energies. However,

the transferability of the parameters we expect from this procedure is low, precisely be-

cause of the implicit environment dependency. Instead, as suggested above, the explicit

environment-dependent contribution shall be extracted from the ab-initio data.

Nguyen Manh et al. derived an analytic expression for environment-dependent tight-binding

bond integrals by transforming the non-orthogonal secular equation into an orthogonal one

[87]. In this special case surprisingly an expression for the inverse non-orthogonality matrix

was obtained which showed striking similarities with the empirically constructed screening

function of the environment-dependent tight-binding model of Tang et al. [116], indicating

a close relationship between these two quantities. Thus, what will be tried is to relate

the screening function (4.36) in the tight-binding hopping terms (4.35) to the ab-initio

overlap matrix elements in the local basis (3.58), and the hopping terms themselves to the

local Hamiltonian elements (3.59). This procedure has the further advantage of comparing

the matrix elements before the Brillouin zone integration is performed. Hence, no phase

information of the crystal structure is included in the calculated numbers.

By means of the Slater-Koster rules [109] mentioned in chapter 4.1.6 the Hamiltonian
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matrix elements in a two-centre tight-binding model can be expressed in terms of linear

combinations of so-called \fundamental hopping terms" (for illustration see �gures 4.1 and

4.2):

H�lx;�0l0x0 =
X
m

cmVll0m : (7.2)

Here x and x0 stand for the x, y, respective z-component in a Cartesian coordinate system.

The index m denotes the �, �, or Æ character of the hopping term and the coeÆcient cm

represents a combination of direction cosines. By inverting the set of linear equations (7.2)

we can get the hopping terms expressed in terms of linear combinations of the Hamiltonian

matrix elements,

Vll0m =
X
x;x0

~cxx0H�lx;�0l0x0 : (7.3)

The same procedure applies for the overlap matrix. Figures 7.20 and 7.21 show the hop-

ping and overlap terms of type \�", \�" and \Æ", calculated according to equation (7.3),

using the ab-initio Hamiltonian and overlap matrix elements represented in a LCAO basis

(3.59,3.58). All types of matrix elements in �gure 7.20 show discontinuities when going

from the �rst to the second- and third-nearest-neighbours. Even if we focus only on dis-

tances close to the respective distances at the equilibrium volume (cf. �gure 7.22a)) we

can not draw one continuous plot through all points. This illustrates again the environ-

ment dependency of the matrix elements. A comparison with the distance dependence

of the dd� tight-binding matrix elements for molybdenum in the orthogonal environment

dependent parametrisation shows that the values of the ab-initio calculated terms are very

close to the tight binding terms for the �rst and second-nearest-neighbours, but should be

almost zero for the third (compare e.g. [46], page 86). Furthermore the comparison shows

that the discontinuities between the di�erent nearest-neighbours are by far overestimated.

The overlap (cf. �gure 7.21), however, smoothly decreases to zero from the �rst to the

third-nearest-neighbours. If we assume as a �rst approximation that the overlap indeed

behaves as the inverse screening, multiplying the hopping terms with the overlap terms

could model the product

vll0m = f(r)(1� S)

in the orthogonal tight-binding description of the hopping terms. This has been done in

�gure 7.22b). It results in a smoothened distance dependency which gets much closer to



160 CHAPTER 7. MOLYBDENUM CARBIDES

the tight-binding description [46], especially the third-nearest-neighbour interactions now

decrease in the same way. This is only restricted by the fact that the absolute values are

now one order of magnitude too small. Of course the relationship between the overlap in an

non-orthogonal basis and the screening in an orthogonal environment-dependent model is

not that simple, but the above described tests show that a direct �t of the model's param-

eters to the ab-initio local matrix elements, even if they are presented in a non-orthogonal

basis, is a promising approach.
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Figure 7.20: Linear combination (7.3) of local ab-initio dd-Hamiltonian matrix elements,

i.e. hopping terms, of type \�", \�" and \Æ", for the �rst-, second- and third-nearest-

neighbours in bcc Mo for di�erent volumina. The dashed lines mark the respective distances

in the equilibrium volume.
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Figure 7.21: Linear combination (7.3) of local ab-initio dd-overlap matrix elements, i.e.

overlap terms of type \�", \�" and \Æ", for the �rst-, second- and third-nearest-neighbours

in bcc Mo for di�erent volumina.
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Figure 7.22: Distance dependencies of the dd� terms for distances close to the equilibrium

values, calculated as linear combinations of the local ab-initio matrix elements. a) Hopping

terms calculated from the Hamiltonian matrix elements b) Product of hopping terms and

overlap terms.
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7.9 Summary

7.9.1 Bonding in MoC

The energies of formation of molybdenum mono- and semi-carbides of di�erent crystal

structures have been calculated. For the mono-carbides the hexagonal primitive \tungsten-

carbide" (WC) structure is most stable and for the semi-carbides the hexagonal close-

packed structure is the most favoured one. These results are in agreement with experi-

mental evidence [77, 119, 112].

The bulk moduli of the di�erent structures show that for both, the semi-carbides and the

mono-carbides, the most favourable structure is also the most incompressible one.

The bonding mechanism in the molybdenum carbides has already been investigated in

chapter 5. The picture gained there could be con�rmed and speci�ed:

The site projected densities of states show that the relative positions of the energy levels

in molybdenum and carbon are close enough to lead to a strong hybridisation between

the molybdenum s- and d- states and the carbon s- and p-states. This is independent of

the carbon content in the crystal. However, the higher the C concentration is, the more

complete is the hybridisation and the less Mo-d-states are left for pure metal-metal bonds.

Thus, compared to a pure Mo crystal, the metal-metal bonds are partly replaced by Mo-C

bonds with strong covalent character. Furthermore, the energy-resolved crystal orbital

overlap populations indicate that the remaining Mo-Mo bonds are slightly weakened be-

cause in the Mo-C crystal also anti-bonding Mo-Mo states become occupied, which is not

the case in the pure metal. Therefore the Mo-C bonds show maximum strength. The

comparison of di�erent crystal structures leads to the conclusion that that structure is the

most stable in which the most Mo-d states are left for metal-metal bonds and where these

bonds are lowest in energy.

The covalent character of the Mo-C bonds was illustrated by plots of the bonding electron

density. These plots also indicate charge transfer from the metal to carbon, which can be

expected from the relative positions of the bands. For Mo2C these plots show an additional

e�ect of C occupying some of the interstitial sites in Mo. Bonding charge is transferred

to vacant interstitial sites in the Mo lattice, strengthening the metal-metal bonds around

these sites.

The question, what makes a speci�c crystal structure favourable with respect to another

can be answered by means of rather simple physical pictures. The types of orbitals present

in the MoC crystal in principle allow for d2sp3 or d4sp hybridisation at a central atom.
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These lead either to octahedral or trigonal prismatic coordination, if we assume purely co-

valent bonds. The analysis of orbital populations showed that in MoC the trigonal prism is

favoured, thus explaining the stability of the WC structure. This is also in agreement with

the imagination that in a compound di�erent bonds originating at the same atom should

avoid each other as much as possible [25]. In Mo2C, where the metal-metal bonds play

a major role, we derived that the d2sp3 hybridisation leaves more d-electrons for Mo-Mo

bonds.

The population of the orbitals does not depend signi�cantly on the crystal structure, nei-

ther does the promotion energy. These two quantities are determined by the relative

positions of the electron states. However, the extent of overlap of orbitals at neighbouring

atoms does depend on the crystal structure. The analysis of local orbital overlap popula-

tion shows indeed, that the trend in the energies of formation is reproduced by the total

overlap population per formula unit. Thus, maximum stability comes along with maximum

overlap. The extension to the corresponding energy contribution to the bonding energy,

the covalent bond energy, is not straightforward however. The analysis of the covalent

bond energy for nearest-neighbour bonds shows that this quantity indeed distinguishes be-

tween the di�erent types of coordination. However, the trend in the energies of formation

is again not reproduced, even if all contributions are summed up to a total covalent bond

energy.

7.9.2 Semi-Empirical Modelling

A comparison of ab-initio calculated DOS and the DOS derived from a simple pd-tight

binding model showed, that such a simpli�ed model can indeed reproduce most signi�cant

features in the electronic structure. This is encouraging for our intention to describe the

Mo-C interaction by an environment-dependent tight-binding model, for which the previ-

ously determined and validated parameters describing the Mo-Mo [48, 47] and C-C [116]

interactions, respectively, shall be kept �xed. The de�ciencies of the pd-model should be

overcome by a more complex parametrisation.

From the extensive set of ab-initio data it was tried to extract valuable information for

�tting the free parameters of the environment-dependent tight-binding model introduced

in chapter 4.2. From overlap populations and covalent bond energies of the di�erent con-

tributions to a Mo-C bond, as given in table 7.11, the relative amplitudes of the hopping

terms arising from orbitals with di�erent angular momenta were estimated. Distance de-

pendencies of the same quantities allow for a prediction of the cut-o� radii and show the
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inuence of the environment when comparing �rst and second-nearest-neighbour interac-

tions.

Instead of varying somehow arbitrarily the free parameters of the model until the important

features of the molybdenum carbides, e.g. the band structures and the total-energy-volume

relations, are reproduced correctly, an alternative approach is suggested. Although the lo-

cal matrix elements calculated in the ab-initio program are represented in a non-orthogonal

basis - in contrast to the orthogonal basis which is assumed in the tight-binding model -

it seems a promising approach to �t the parameters of the tight-binding hopping terms

directly to the corresponding ab-initio data. The hopping and overlap terms can be cal-

culated by inverting the Slater-Koster rules as linear combination of the ab-initio matrix

elements, cf. equation (7.3). Furthermore the investigation of the relationship between non-

orthogonality and environment-dependency, although being rather preliminary, indicates

the possibility to derive separately the distance-dependent part and the screening in the

environment-dependent parametrisation from the ab-initio data. This approach promises

a high transferability of the �tted parameters.



Chapter 8

Summary and Conclusions

In the work in hand the results of ab-initio investigations for grain and phase boundaries

were presented. The calculations were based on the local density functional theory and

were carried out using the mixed-basis pseudopotential method [81]. The three central

topics of the study were

� the segregation of interstitial impurities at the �5 STGB in the transition metals Nb

and Mo,

� the precipitation of molybdenum carbide at the �5 STGB in Mo, and

� the properties of di�erent MoCx bulk phases.

The results of this research shall be summarised by considering, where applicable, these

di�erent aspects of the investigation:

� Microscopic insights into the material properties,

� comparison to simple physical, or chemical models, respectively,

� methodological insights from ab-initio analysis, and

� semi-empirical modelling of interatomic molybdenum-carbon interactions.

167
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8.1 Light Elements at the �5 STGB in Nb and Mo

8.1.1 Inuence on the Material Properties

The inuence of the light interstitial impurity elements B, C, N, and O on the atomic and

electronic structures of the �5 STGB in Nb and Mo was investigated. Bonding energy dif-

ferences were calculated to deduce the cohesion-enhancing respective interface-embrittling

inuences of the impurities.

The results are summarised in the following table:

B C N O

interatomic

bonding character covalent covalent polar polar

grain boundary

translation state I I II II

inuence cohesion cohesion interface interface
of impurity enhancing enhancing embrittling embrittling

The following trend emerged: when going from B via C and N to O, the bonding character

between the impurity and the host metal changes from dominantly covalent to dominantly

polar. Through the di�erent bonding character the impurities have di�erent inuences

on the microscopic translation state of the grain boundaries. With B at the interface the

mirror-symmetric con�guration I of the �5 STGB in Nb and Mo is favoured. The en-

ergy di�erence between this con�guration and the non-mirror-symmetric one, II, becomes

smaller, changes sign and increases in the other direction when going via C and N to O

(cf. �gure 5.9). With O at the grain boundary the non-mirror-symmetric con�guration II

of the grain boundary is favoured. At the same time the e�ect that the impurity has on

the cohesive properties changes from cohesion-enhancing to interface-embrittling (cf. table

5.9). The underlying mechanism was identi�ed to be the partial replacement of metal-

metal bonds across the interface by metal-impurity bonds. In the case of stronger and

covalent bonds, the reduction of the pure metal-metal bonding across the grain boundary

is more than compensated and the grain boundary cohesion is increased. In the case of

weak and very polar bonds the overall bonding across the interface is weakened and grain

boundary embrittlement is promoted.
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The observations that the presence of light impurities can alter the translation state of a

grain boundary, and that di�erent elements have opposite e�ects, are of considerable impact

for experimental studies of grain boundary structures. As described in the introduction and

in chapter 5, numerous e�orts have been taken on to determine the microscopic translation

state of symmetrical tilt grain boundaries by means of high resolution transmission electron

microscopy (HRTEM). Except for the case of Nb [15], the bicrystal specimen of the di�erent

transition metals were anticipated to be absolutely pure or the inuence of impurities was

not discussed at all. However, it has to be faced that even very low impurity contents can

alter the translation state of a grain boundary, at least locally. Together with the fact that

di�erent impurities can have opposite e�ects which may compensate each other, this makes

the determination of the intrinsic translation state of a pure grain boundary an extremely

diÆcult task. Thus, this work hopefully inspires further experimental investigations of

grain boundaries explicitely doped with di�erent impurity elements, to isolate and evaluate

the respective e�ects on the microscopic translation state.

8.1.2 Interpretation by Simple Models

By means of Cottrell's uni�ed theory [19] we are able to explain the �ndings on the basis

of comparatively simple physical and chemical models.

One statement of Cottrell's model is that the bonding character between an impurity and

the host metal depends on the relative positions of the electronic states. An ample overlap

of states leads to a strong hybridisation and to a sharing of the electrons populating these

states, and thus to covalent bonds. In case that the valence state of the impurity is lying

far below the metal valence band, however, charge is transferred from the metal to the

impurity, leading to a further increase of the gap and to ionic (better: polar) bonding

behaviour. This explains the change from dominantly covalent to dominantly polar metal-

impurity bonds when going from B via C and N to O at the grain boundaries in Nb or Mo,

because in this series the �rst ionisation energies increase on the average with increasing

atomic number (see table 5.2). This indicates an increasing gap between the valence states

of the metal and the impurity.

According to Cottrell, covalently bonding impurities generally strengthen the interfacial

cohesion, whereas polarly bonding impurities decrease it. This is in agreement with the

presented results. Cottrell argues that the covalently bonding impurities prefer the envi-

ronment of the grain boundary over that of the free surface, since for them the bonding

energy dominated by the hybridisation energy, which is proportional to
p
z, with z being
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the coordination number. As the grain boundary is providing the higher coordination num-

ber, the bonding energy is also higher in this environment. For polarly bonding impurities

homogeneous contributions (derived e.g. from the e�ective-medium theory) to the bonding

energy are dominating. For them the hybridisation energy is a negative contribution to

the bonding energy, what makes the grain boundary less favourable than the free surface.

This is in agreement with the calculated bonding energy di�erences and also partly ex-

plains the structural trend we observed: Covalently bonding impurities prefer the more

open structure of the mirror-symmetric grain boundary, as it provides the maximum num-

ber of bonding partners at more or less equal distances, whereas polarly bonding impurities

prefer the more close-packed structure of the non-mirror-symmetric grain boundary, which

provides a more spatially homogeneous environment.

8.1.3 Insights from Ab-initio Analysis

Cottrell's uni�ed theory gives a descriptive explanation of the ab-initio results presented

in this work. It is helpful for interpreting the ab-initio electronic structure data, which is

available in large amounts. For instance we have seen that the ab-initio calculated densities

of states indicate the relative positions of the electronic states and thus are valuable to

estimate the strength of hybridisation and the bonding character (�gures 5.10 to 5.13).

The strength of the bonds can be evaluated by calculating orbital overlap populations (cf.

table 5.7), and their spatial distribution can be visualised e.g. by two dimensional plots of

the bonding electron density (see �gures 5.14 to 5.17). The discussion of these di�erent

quantities in chapter 5 has shown that it is essential to combine several of the named tools,

as e.g. the interpretation of the integrated DOS or the bonding electron density alone would

have been misleading. At this point it is important to have simple, descriptive models to

develop an imagination of the physical process behind the data. A disagreement between

the ab-initio results and the model then either tells us to take into account further data -

or to check the assumptions of the model.

Indeed Cottrell's model is based on many, partly radical assumptions, thus its legitimation

has been questionable. However, with the ab-initio calculations of electronic structures

and bonding energy di�erences we were able to justify the basis of Cottrell's model to

a large extent. Still, one has to be careful when transferring it to other systems. For

instance the model is completely independent of the grain boundary geometry. To some

extent this could be con�rmed, as e.g. the type of bonds between impurity and host metal

atom does not depend on the translation state of the grain boundary. However, as became
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visible with the analysis of the bonding energy di�erences in terms of chemical and elastic

contributions, the elastic part of the bonding energy, due to relaxations of the atomic

positions in di�erent environments, does play a role even for small interstitial elements.

8.2 Precipitation of Molybdenum Carbide

8.2.1 Inuence on the Material Properties

Inspired by the investigations of P�enisson et al. [94] the growth of a MoCx precipitate at

the �5 STGB in Mo was modelled. It was found that a tetragonal precipitate grows with

its c-axis meeting the grain boundary at an angle of about 108Æ. Although this leads to a

larger expansion of the Mo lattice perpendicular to the interface than with other geomet-

rically possible orientations, it is more favourable, because in this way the periodicity of

the grain boundary is conserved.

This growth of the precipitate leads to two new Mo-MoCx interfaces, with x � 0:4, also

observed by P�enisson et al. [94]. To model these with a small supercell one of the two bcc

Mo grains in the supercell was replaced by a grain of stoichiometric bct MoC. To cope with

the lattice mis�t between the bcc Mo and the bct MoC bulk phases the MoC lattice was

compressed by 13%. To take into account the elastic e�ects due to this compression, as

well as the inuence of the higher C concentration with respect to the experimental obser-

vation [94], we the compressibility of the precipitate was compared to that of a tetragonal

Mo2C bulk phase. Thus the following values for the work of separation, Wsep, were received:

MojMo I MojMo II MojMoCx I MojMoCx II

Wsep

�
J
m2

�
5.788 5.893 5.474 5.320

The comparison with the values for the pure �5 STGB in Mo in the mirror-symmetric

con�guration I, as well as the non-mirror-symmetric con�guration II (MojMo I, respective

MojMo II) shows that the adhesive properties of the Mo-Mo interfaces and the Mo-MoCx

are similar. Thus, the precipitate does not promote interfacial embrittlement in the mate-

rial.

Interface I (cf. �g. 6.8), where the crystal planes of the Mo sublattice meet at an angle

of about 135Æ, is more favourable by an amount of 154 mJ
m2 than interface II (cf. �g. 6.9),
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where the Mo sublattice continues under only a small deviation of 6Æ. The reason is that at

interface I the C atoms have more free space to relax. This is also true for the �rst layer of

MoC next to interface I, making a displacement of C across the boundary from MoC into

Mo favourable. This process is a possible explanation for the apparently not very sharp

interfaces P�enisson et al. [94] observed by HRTEM. At interface II a continuous increase

of the tetragonal distortion of the bcc Mo lattice was found. Thus, on a HRTEM picture,

where only Mo but not C is visible, this interface is not atomically abrupt as well.

Because of the lattice mismatch, the Mo-MoC interfaces act as traps for mis�t-dislocations,

as indeed observed by P�enisson et al. [94]. With respect to the macroscopic properties this

means that such a tetragonal MoC precipitate at the �5 STGB in Mo will lead to a sti�en-

ing of the metalto a certain extent. However, we know from experiment that the tetragonal

MoCx phase is not stable. Structural phase transformations from a tetragonal to a hexag-

onal Mo sublattice have been reported by P�enisson et al. [94] as well as earlier by Lepski

et al. [73, 74].

8.2.2 Insights from Ab-initio Analysis

During the investigation of the precipitation process a lot of experience was gained con-

cerning the choice of the supercell used for the calculations. To investigate the nucleation

and growth of the precipitate it was started with the supercell of the pure �5 STGB (cf.

�gure 5.2) with one monolayer of C atoms segregated at the interface and subsequently

one and two more layers were added, respectively. As mentioned above, by this procedure

we the probable crystal structure as well as the orientation relationship of the growing

precipitate were determined, but not the direction of the growth. For this the supercell

was already too small.

Another problem arose when investigating the two new Mo-MoC interfaces which emerge

due to the precipitate. The special choice of the precipitates' thickness lead to an atomic

structure, which, after expanding the cell and relaxing the atomic positions, got trapped

in a metastable con�guration. This con�guration was slightly rotated with respect to the

stable one (cf. �gure 6.14). This curio could have been avoided with two layers of MoC

more or less in the supercell. This is an aspect of the supercell construction which one

should be aware of in future investigations.



8.3. MOLYBDENUM CARBIDE BULK PHASES 173

More than any other part of this work, the investigation of the precipitation of MoCx at

the �5 STGB in Mo demonstrated the need of a good semi-empirical Mo-C model for

calculations with larger supercells as well as for dynamical simulations.

8.3 Molybdenum Carbide Bulk Phases

8.3.1 Material Properties

The energies of formation of molybdenum mono- and semi-carbides of di�erent crystal

structures were calculated and the electronic structures investigated. The bonding between

molybdenum and carbon turned out to be dominantly covalent, independent of the carbon

content in the crystal. For the mono-carbides the hexagonal primitive \tungsten-carbide"

(WC) structure is most stable, and for the semi-carbides the hexagonal close-packed struc-

ture is the most favoured one. These results are in agreement with experimental observa-

tions [77, 112, 119].

The bulk moduli of the di�erent structures (table 7.2) show that for both, the semi-carbides

and the mono-carbides, the most favourable structure is also the most incompressible one.

8.3.2 Insights from Ab-initio Analysis

In the course of chapter 7 it again became apparent that it is essential to analyse several

representations of the electronic structures in the crystal, in order to arrive at a consistent

interpretation of the data.

The bonding mechanism in the molybdenum carbides was already investigated in chap-

ter 5, and was identi�ed there as the partial replacement of pure metal-metal bonds by

covalent-like metal-carbon bonds. This picture could be further speci�ed:

The site-projected densities of states of the stable carbide (cf. �gure 7.3) and semi-carbide

(cf. �gure 7.4) show that with higher C concentration the hybridisation between the molyb-

denum s- and d- states and the carbon s- and p-states is more complete, and fewer Mo-

d-states are left for pure metal-metal bonds. The energy-resolved crystal-orbital overlap

populations (�gures 7.14 and 7.15) indicate that the remaining Mo-Mo bonds are slightly

weakened because in the Mo-C crystal also anti-bonding Mo-Mo states become occupied,

which is not the case in the pure metal. Therefore the Mo-C bonds show maximum

strength. The comparison of di�erent crystal structures leads to the conclusion of that
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structure being the most stable in which the most Mo-d states are left for metal-metal

bonds and where these bonds are lowest in energy.

The covalent character of the Mo-C bonds was illustrated by plots of the bonding electron

density (�gures 7.12 and 7.13). These plots also indicate charge transfer from the metal to

carbon, which can be expected from the relative positions of the bands. For Mo2C these

plots show an additional e�ect of C occupying only parts of the interstitial sites in Mo.

Bonding charge is transferred to vacant interstitial sites in the Mo lattice and strengthens

the metal-metal bonds around these sites.

8.3.3 Comparison to Simple Models

One aim of chapter 7 was to �nd out what makes a speci�c crystal structure favourable

with respect to another. As it turned out, this question can be answered best by means

of rather simple physical pictures. The types of orbitals present in the MoC crystal in

principle allow for d2sp3 or d4sp hybridisation between the orbitals of neighbouring Mo-

C atom pairs. These lead either to octahedral or trigonal prismatic coordination, if we

assume purely covalent bonds. The analysis of orbital populations showed that in MoC

the trigonal prism is favoured, thus explaining the stability of the WC structure. This is

also in agreement with the imagination that in a compound di�erent bonds originating

at the same atom should avoid each other as much as possible [25]. In Mo2C, where the

metal-metal bonds play a major role, we derived that the d2sp3 hybridisation leaves more

d-electrons for Mo-Mo bonds.

8.3.4 Semi-Empirical Modelling - The Future

In many parts of this work the need for a semi-empirical model became apparent, e.g. to

test easily the relationship between the interface geometry of grain boundaries in Mo and

the inuence of C on the grain boundary cohesion, to be able to vary generously the C

concentration at justi�able computational cost, and to treat complex dynamical or kineti-

cal problems as segregation and precipitation.

The thorough investigation of the electronic structures of the di�erent molybdenum car-

bides and semi-carbides generated a broad ab-initio data set which can be used now to �t

the parameters of a suitable semi-empirical tight-binding model.
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The �rst question is, how complex does the model have to be, to provide high transferabil-

ity of the parameters and thus high reliability, i.e. the power to predict the properties of

molybdenum carbides with a wide range of crystal structures and carbon concentrations.

At the same time the e�ort of �tting the parameters shall be kept as small as possible.

A comparison of ab-initio calculated DOS and the DOS derived from a simple pd-tight

binding model showed, that such a simpli�ed model can indeed reproduce most signi�cant

features in the electronic structure, but has some de�ciencies. The presented study gives

con�dence that one should be able to overcome these de�ciencies by the more complex

parametrisation of the environment-dependent tight-binding model introduced in chapter

4.2. It is intended to use the previously determined and validated parameters describing

the Mo-Mo [47, 48] and C-C [116] interactions. One can be optimistic that these previously

determined parameters can be kept �xed, and �t only the Mo-C interactions. Thus it shall

be achieved that the model will be applicable to a wide range of concentrations and at the

same time the complexity of the �t shall be kept as low as possible.

The next task is to choose a �t strategy. First general information is extracted from the

ab-initio data for �tting the free parameters of the environment-dependent tight-binding

model: From overlap populations and covalent bond energies of the di�erent contributions

to a Mo-C bond (cf. table 7.11) the relative amplitudes of the hopping terms arising from

orbitals with di�erent angular momenta are estimated. Distance dependencies of the same

quantities allow for a prediction of the cut-o� radii and show the inuence of the environ-

ment when comparing �rst- and second-nearest-neighbour interactions.

Next, instead of varying somehow arbitrarily the free parameters of the model until the

important features of the molybdenum carbides, e.g. the band structures and the total-

energy-volume relations, are reproduced with suÆcient accuracy, an alternative approach

is suggested. It seems promising to �t the parameters of the tight-binding hopping terms

directly to the corresponding local matrix elements calculated in the ab-initio program.

The hopping and overlap terms can be calculated by inverting the Slater-Koster rules as

linear combinations of the local matrix elements (cf. equation (7.3)). Furthermore the in-

vestigation of the relationship between non-orthogonality and environment-dependency, al-

though being rather preliminary, indicates the possibility to derive separately the distance-

dependent part and the screening in our parametrisation from the ab-initio data. This new

approach promises a high transferability of the �tted parameters to many crystal structures

and compositions.
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Appendix A

Geometry and Nomenclature

of Grain Boundaries

A.1 Macroscopic and Microscopic Degrees

of Freedom

The minimum number of geometric variables required to characterise an interface com-

pletely is called the number of geometrical degrees of freedom (DOF) [114]. We distinguish

between the macroscopic and microscopic degrees of freedom. The macroscopic DOF are

the misorientation relation between the crystals and the inclination of the interface normal.

If we imagine the creation of an interface as geometrical construction we can describe it

as two crystal surfaces with normal vectors n1 and n2 being brought together and after-

wards being rotated relatively to each other. The orientation relationship between the two

normals can be characterised by the tilt axis n = n1 � n2 and the tilt angle �tilt by which

we have to rotate e.g. n1 around n to orient it parallel to n2. This consumes four degrees

of freedom. The �fth is the twist angle �twist by which one crystal is rotated with respect

to the other around the interface normal (n1jjn2). In a non-centrosymmetric crystal the

chirality is the sixth degree of freedom.

The microscopic degrees of freedom are determined by atomic relaxation at the interface,

i.e. they adjust themselves to the macroscopic degrees of freedom such that the energy of

the system is minimised. They are the translation vector t describing the relative shift of

grains and, in a crystal with an atomic basis containing more than one atom, the termi-

nation of the interface.

177
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Thus, in the most general case there are four microscopic and six macroscopic, i.e. ten,

degrees of freedom. In the following we will restrict ourselves to the discussion of cen-

trosymmetric crystals, limiting the number of macroscopic DOF to �ve.

A.2 Tilt and Twist Components

As described above, we can construct the rotation relating the two crystals forming a grain

boundary by a rotation around an axis in the interface plane (tilt) and a rotation around

the interface normal (twist). If one of the two rotation angles �tilt or �twist is zero we speak

of a pure twist or pure tilt grain boundary, respectively. In the case of a pure tilt grain

boundary it is further distinguished between symmetric and asymmetric tilt boundaries.

In the case of a symmetric tilt grain boundary (STGB), the bisecting line of the tilt angle

is contained in the interface plane. For special microscopic translations t, the relationship

between the crystals in a symmetric tilt grain boundary can be described as a mirror

reection in the boundary plane. STGBs have the same Miller index form in either crystal

and only two macroscopic degrees of freedom. At an asymmetric tilt grain boundary two

crystals meet with di�erent Miller index forms. They have four macroscopic DOF.

A.3 Coincidence Site Lattices

In case of a homophase interface, i.e. when the two crystals share the same structure, a

superlattice may arise relating the two component crystals. Such a coincidence site lattice

(CSL) is often used to characterise the geometry of a grain boundary. The density of the

CSL points is given by

� =

CSL


0
(A.1)

where 
CSL and 
0 are the volume of the CSL and the crystal unit cell respectively.

A.4 Nomenclature of Grain Boundaries

With the de�nitions introduced in the last sections we can understand the nomenclature of

grain boundaries as it is used in this work: the �5 (310) [001] 36.87Æ STGB is a symmetric

tilt grain boundary with the (310) plane being the grain boundary plane and the [001]



A.4. NOMENCLATURE OF GRAIN BOUNDARIES 179

direction being the tilt axis. The latter is lying in the interface plane. The tilt angle is

36.87Æ. The volume of the CSL unit cell is �ve times that of the original bcc unit cell.
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Appendix B

Conversion of Units

In this work di�erent units of energy and length have been used. They shall be briey

summarised.

In electron theory it is common to use \atomic units" to reduce the number of constants

in the physical formulae. The unit of length is the �rst Bohr radius in the hydrogen atom,

also called \atomic unit" (a.u.):

1 Bohr = 1 a.u. = 0.529 �A.

The unit of energy is the �rst ionisation energy of hydrogen, one Rydberg.

1 Rydberg = 13.606 eV.

The relations to SI units are

1 Bohr = 0.0529 nm

1 Rydberg = 2.179 � 10�18 J
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Appendix C

Comments About

the Tight Binding Implementation

In this section the main aspects of the implementation of the environment dependent tight

binding model into the code of Schilfgaarde et al. is outlined. The implementation was

performed under the demand of touching the existing routines as little as possible and of

adjusting the new implementation to the given structure. At some points this leads to a

reduction of the performance which shall be discussed.

Table C.1 gives a schematic outline of the structure of the tight binding code of Schilfgaarde

et al. for ordinary two-centre tight- binding models, as implemented by Paxton. The

bold letters mark the di�erent routines. After reading in the crystal structure, atomic

coordinates and the TB model parameters (A) the nearest-neighbour list for all atoms

is created in the next routine, resulting in a list of n pairs1 (B). Then the Hamiltonian

matrix elements are set up for all the n pairs and saved in n nl�nl submatrices, where nl
is the number of orbitals at the respective atoms of pair n (C). The matrix elements are

constructed out of Slater-Koster hopping integrals which are parametrised according to the

chosen model. If not only the energy but also the atomic forces shall be calculated, the

derivatives of all matrix elements are calculated too, and saved in separate matrices. The

matrices are passed over to the next routine (D), where a loop runs over all k-points to

calculate the eigenvalues and to accumulate them to the band energy Eband. If the forces

are required the band structure contribution is calculated in parallel. An additional option

is to calculate the density of states, which is done separately after the k-point loop.

The next step (E) is to set up the repulsive interaction for all n pairs (and its derivatives

1where (�1; �2) and the inverse (�2; �1) count as two pairs
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with respect to the atomic positions) and to sum up the contributions to the repulsive

energy Erep (ant the repulsive part of the forces, F
rep). At the same time the total energy

Etot = Eband + Erep is calculated (as well as the total forces, F = Fband + Frep). In a

last step (F) the atoms can be displaced and the new atomic coordinates are determined

according to the acting forces (relaxation) or to Newton's equations (molecular dynamics)..

sequence of subroutines options

A read crystal structure,
type of tb model
and parameters

B make neighbour list

C set up Hamiltonian
matrix elements calculate derivatives
for all n pairs of all matrix elements

D k-point loop:
calculate eigenvalues,

Eband calculate Fband

calculate DOS

E set up repulsive inter-
action for all n pairs calculate derivatives
calculate Erep and calculate Frep and
Etot = Eband + Erep F = Fband + Frep

F relax forces
(static or MD)

Table C.1: Schematic outline of the sequence of tight-binding subroutines in the code of
Schilfgaarde et al.

In the following the additions that were implemented will be introduced, �rst for the band

structure energy (parts C,D) and then for the part in which repulsive and total energy are

calculated (E).
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C.1 The Band Structure Part

Figure C.1 shows a schematic diagram of the implementation in the band structure part.

The boxes drawn by solid lines with the respective loops around them mark the parts of

Paxton's original program. The dashed boxes together with the respective loops mark the

subroutines which were newly implemented, as was as well the additional loop \over m"

plotted as a thin solid line in routine D. The loop variables are the pairs of atoms n, the

k-points k, and the \type" of atom m (�, �0, �00 or �000).

Let us discuss the calculation of the energy �rst. After the nearest neighbour list is created

in part B, in case of the environment-dependent parametrisation a part B2 is inserted in

which extra loops are run over all pairs n to calculate the screening functions and the

e�ective coordination numbers. For each pair n (�; �0) a second loop over the nearest-

neigbours n' of the respective central atom � is run, to identify the common nearest-

neighbours �00 of � and �0 and to calculate the screening functions (4.36) of hopping and

on-site matrix elements (4.35) and of the e�ective coordination numbers (4.39), as well as

the coordination numbers themselves. Then these quantities are passed over to the next

subroutine, in which the Hamiltonian matrix elements for all n pairs are set up according

to (4.35) as a new option. The matrix is diagonalised for each k-point in the next routine,

C, where also the band energy is calculated.

If the forces are also required the derivatives of the screening functions and the e�ective

coordination numbers are calculated in routineB2 in parallel to the integrated values. Here

the derivatives with respect to the coordinates of basis atom � are of three di�erent kinds,

� �: � is equal to the central atom,

� �0: � is equal to the second atom of the pair,

� f�00g: � is a common neighbour of both, � and �0.

Due to the periodic boundary conditions �0 and �00 can be the periodic images of �, so all

three cases can be true at the same time. Thereby the number of elements passed on to

the next routine is rather large. In the next step, when the derivatives of the Hamiltonian

matrix elements are calculated, the number of derivatives increases once more, as in this

case there is the fourth possibility, �000, i.e., that � is a nearest neighbour of �0, but not

of �. This case plays a role in the derivatives of the scaled bond lengths (4.38) via the

derivative of the e�ective coordination number of �0, g�0 . To get the contributions from

atoms of type �00 and �000 two additional loops are passed over all n' neighbours of � and all
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Figure C.1: Schematic diagram of the implementation of the environment dependent tight-
bindin model into the band structure part of the code of Schilfgaarde et al. . The boxes
drawn by solid lines with the respective loops around them mark the tight-binding parts
of Paxton's original program. The dashed boxes together with the respective loops are
subroutines which were newly implemented, as was as well the additional loop \over m"
plotted as a thin solid line in routine D. The loop variables are the pairs of atoms n, the
k-points k, and the \type" of atom m (�, �0, �00 or �000).
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n" neighbours of �0. All these derivatives are passed on to routine D where the integration

over the �rst Brillouin zone takes place. In practice this requires a very large work space,

which drastically limits the possible number of atoms in the basis at the time being. A

way to avoid this, which has already been tested, is not to keep the Hamiltonian matrix in

the workspace but to write the data on the hard disk. However, the time which is needed

for that almost compensates the gain in computational speed by using a semi-empirical

method. A second alternative which has not been considered in the current �rst version

but is planned for a revised and optimised version of the code, is to calculate the derivatives

of the screening function and the matrix elements one by one just at the point where they

are needed inside the k-point loop in routine D, without saving the whole matrix. This

procedure, which indeed was already employed by Haas, is similar to the way in which the

derivatives of the repulsive contributions are calculated, as will be described in the following

section. The additional loops over all pairs needed in this case are minor disadvantages.

However, for practical reasons of the implementation that shall not be given here it will

no longer be possible to keep to the given structure of Paxton's original code. Instead, the

subroutine of D calculating the forces fF bandg will have to be replaced completely. In the

current version, the only addition in routine D is an additional loop over the type of atom,

m, to collect the di�erent contributions for each basis atom.

Nevertheless, at least for the extension of the environment-dependent tight-binding model

to systems with more than one elemental component, the current code is applicable and

suÆcient, since only small unit cells are needed for the �tting of the additional tight-binding

parameters for the Mo-C interaction.

C.2 The Repulsive Part

Diagram C.2 schematically shows how the repulsive energy and the corresponding forces

are calculated, in general or when using the environment dependent model. Again, boxes

drawn by thick solid lines as well as the corresponding loop mark the original parts of

the routine while the dashed box has been added. In Paxton's original version a loop is

passed over all n pairs, the repulsive interaction ���0 is calculated for this pair and added

to the total repulsive energy Erep. If the forces are required, the derivative of the pairwise

function is calculated in the same step as the function itself. It is added to the forces acting

on basis atom �.

If the environment dependent parametrisation is used, an additional loop over the n' neigh-
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Figure C.2: Schematic diagram of the implementation of the environment dependent
parametrisation for the repulsive energy Erep into Paxton's tight binding part of the code
of Schilfgaarde et al. . The boxes drawn by thick solid lines, as well as the corresponding
loop over all pairs n mark the original part of the program. The dashed box with its loop
over n' represents the subroutine which has been added to calculate the repulsive energy
within the environment dependent model. S���0 is the screening function for the pairwise
repulsive interaction ���0 . To calculate it an additional loop over the n' neighbours of the
central atom � is run. If the forces are required, in case of the environment dependent
model the original parts calculating the derivatives and the forces are ignored. Instead a
routine E2 is used, which is described schematically in �gure C.3.
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bours of � is passed to calculate the screening function S���0 of the pairwise repulsive in-

teraction before ���0 for the respective pair of atoms is set up. If the forces are required,

the original parts calculating thederivatives @
@r
���0 and the forces fF rep(�)g are ignored.

Instead, after the pairwise term ���0 was calculated, a subroutine E2 is passed, which is

shown schematically in �gure C.3. Then the scheme of the original program is followed

again and the contribution of the respective pair of atoms is added to the repulsive energy.

In E2, which is run for each pair (�; �0), within an additional loop over all n' neighbours

of � the derivatives @
@r�

of the screening function for pairwise repulsive interactions, S���0 ,

are calculated. Here � equals succesively �, �0, and the f�00g. Subsequently the deriva-

tives of the repulsive interactions are calculated. As in the case of the Hamiltonian matrix

elements, there are four types of derivatives. Besides the cases named above, � can be

�000, a neighbour of �0, but not of �, which enters via the derivatives of the scaled bond

length (the derivatives of the screening function are zero for this case). To get all contri-

butions of type �00 and �000 loops over all n' neighbours of � and all n" neighbours of �0

are run. In contrast to the way the forces are calculated in the original code, the di�erent

derivatives do not only contribute to the force acting on the central atom �, but also to

the forces acting on the basis atoms of which �0, the f�00g and the f�000g are periodic images.

For the repulsive interactions it was rather simple to replace the original routine calculating

the forces by a separate one for the environment-dependent model. The described scheme

saves a loop over all atoms and many lines of code in contrast to what would have been

necessary to stick to the given structure. In the case of the band structure part it is the

opposite, as using the given structure enables us to use all the subroutines needed for the

Brillouin zone integration without any alterations. However, as explained above this leads

to a rather bad performance, making the e�ort attractive to write an independent routine

following the scheme used for the repulsive interactions.
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Figure C.3: Schematic diagram of routine E2 which is part of the environment-dependent
parametrisation of the repulsive energy and forces (c.f. C.2). For each pair (�; �0) the
derivatives of the screening function S���0 with respect to the coordinates of � are calculated,
where � is the central atom �, the neighbour �0 and the common neigbours �00 in succession.
Then the contributions of the derivatives of the pairwise repulsive interactions ���0 to the
forces acting on the corresponding basis atoms are calculated. To get the contributions of
type �00 and �000 (a neighbour of �0 but not of �) loops over the neighbours n' of � and n"
of �0 are run.
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