Elektrische und magnetische Eigenschaften metallreicher Seltenerdmetallhalogenide

MIKHAIL RYAZANOV

Max-Planck-Institut für Festkörperforschung, Stuttgart 2004

Elektrische und magnetische Eigenschaften metallreicher Seltenerdmetallhalogenide

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

> vorgelegt von MIKHAIL RYAZANOV aus Moskau

Hauptberichter:	Prof. Dr. A. Simon
Mitberichter:	Prof. Dr. Th. Schleid
Tag der Einreichung:	19.10.2004
Tag der mündlichen Prüfung:	09.12.2004

Max-Planck-Institut für Festkörperforschung, Stuttgart

2004

Meinen Eltern

Teile dieser Arbeit wurden veröffentlicht

"Untersuchungen im System LaI₂/H₂: Phasenverhältnisse und Fehlordnung"
 M. Ryazanov, A. Simon, Hj. Mattausch
 Z. Anorg. Allg. Chem. 630 (2004) 104.

"The structural change of lanthanum diiodide upon hydrogenation" M. Ryazanov, A. Simon, Hj. Mattausch, R.K. Kremer *J. Alloys and Compounds* **374** (2004) 142. Wissenschaftlicher Tätigkeitsbericht des Max-Planck-Instituts für Festkörperforschung, Stuttgart (2003)

"Preparation of lanthanum hydride diiodides towards superconductivity predicted from electronic structure calculations"
M. Ryazanov, A. Simon, Hj. Mattausch, R. K. Kremer
5th International Conference on f-Elements, Genf (2003) [Posterbeitrag]
XVI. Tage der Selten Erden, Berlin (2003) [Posterbeitrag]

"Large negative magnetoresistance in the system Gadolinium-Iodine-Hydrogen"
 M. Ryazanov, A. Simon, Hj. Mattausch, R. K. Kremer
 9th European Conference on Solid State Chemistry, Stuttgart (2003) [Posterbeitrag]
 XVI. Tage der Selten Erden, Berlin (2003) [Posterbeitrag]

"YIH_n: A new family of metal-rich hydride halides"M. Ryazanov, A. Simon, Hj. Mattausch*Z. Anorg. Allg. Chem.* 630 (2004) 1401.

Inhaltsverzeichnis

1 E	linleitu	ng	1
2 E	xperim	nentelle Grundlagen	4
2.1	Allgeme	eine Präparationsmethoden	4
	2.1.1	Handhabung der Substanzen	4
	2.1.2	Tantaltiegel	4
	2.1.3	Allgemeine Versuchsdurchführung	4
2.2	Vorbere	itung und Präparation der Ausgangssubstanzen	5
	2.2.1	Seltenerdmetalle	5
	2.2.2	Wasserstoff	5
	2.2.3	Seltenerdmetallhydride	5
	2.2.4	Seltenerdmetalltrihalogenide	5
	2.2.5	Weitere Edukte	6
2.3	Apparat	ur zur Hydrierung	7
2.4	Allgeme	eine Untersuchungsmethoden	8
	2.4.1	Chemische Analyse	8
		2.4.1.1 Quantitative Wasserstoffbestimmung	8
	2.4.2	Differentialthermoanalyse	9
	2.4.3	Röntgenografische Untersuchungen	9
	2.4.4	Elektronenmikroskopische Untersuchungen	10
	2.4.5	Magnetische Messungen	11
	2.4.6	Elektrische Widerstandsmessungen	13
	2.4.7	Wärmekapazitätsmessungen	14
• •			
3 L	anthan	h(hydrid) iodide Lal ₂ und Lal ₂ H _x	15
3.1	Allgeme	pines	15
3.2	Synthese	e von LaI ₂	16
3.3	Hydrien	ung von LaI ₂	17
3.4	Struktur	untersuchung an Pulvern	19
3.5	Zur Pha	senbreite von LaI ₂ H _x	24
3.6	Suszepti	bilitätsmessungen	

4 L	aI ₂ : Su	ubstitutions- und Interkalationsversuche	28
4.1	Versuch	e zum Kationenersatz La _{1-x} Ba _x I ₂	
4.2	Versuch	e zum Anionenersatz La $(I_{1-x}Te_x)_2$	
4.3	Interkala	ation von Alkalimetallen	
5 A	spekte	zum Magnetismus	34
5.1	Wechsel	lwirkungen zwischen den magnetischen Momenten	
	5.1.1	RKKY-Kopplung	
5.2	Verschie	edene Erscheinungsformen des Magnetismus	
6 G	adolin	ium(hydrid)iodide GdI ₂ und GdI ₂ H _x	40
6.1	Einleitu	ng	40
6.2	Problem	atik der Synthese von GdI ₂	
6.3	Darstellung von GdI ₂		
6.4	Bestimn	nung der Curie-Temperatur von GdI ₂	46
	6.4.1	Magnetisierungsmessung	47
	6.4.2	Modifizierte Arrotts Kurven	49
	5.4.3	ac-Suszeptibilitätsmessung	53
	6.4.4	Wärmekapazitätsmessung	55
6.5	Magnety	widerstandsmessung an GdI ₂	57
6.6	Die Pha	sen GdI_2H_x	59
	6.6.1	Darstellung	59
	6.6.2	Kristallografische Eigenschaften	
	6.6.3	Magnetische Eigenschaften	65
		6.6.3.1 Untersuchungen in <i>dc</i> -Feldern	65
		6.6.3.2 Untersuchungen in <i>ac</i> -Feldern	70
	6.6.4	Elektrische Eigenschaften	75
6.7	Diskussi	ion der physikalischen Eigenschaften	79
7 H	lydridh	alogenide LnIH _x von Y und Gd	85

7.1	Allgeme	ines	. 85
7.2	Die Phas	e YIH _x	. 87
	7.2.1	Darstellung	. 87

	7.2.2	Phasenbeziehungen zwischen YIH _x und YIH ₂	
	7.2.3	Strukturuntersuchung an Pulvern	90
	7.2.4	Physikalische Eigenschaften	94
7.3	Die Phas	en GdIH _x	
	7.3.1	Darstellung	
	7.3.2	Kristallografische Eigenschaften	
	7.3.3	Magnetische Eigenschaften	
		7.3.3.1 Untersuchungen in <i>dc</i> -Magnetfeldern	
		7.3.3.2 Untersuchungen in <i>ac</i> -Magnetfeldern	
		7.3.3.3 Wärmekapazitätsmessungen	
	7.3.4	Elektrische Eigenschaften	111
7.4	Bandstru	kturrechnungen	116
	7.4.1	Bandstruktur von YIH	116
7.5	Diskussi	on der physikalischen Eigenschaften	119

8 Weitere Systeme

V	Veitere	Systeme	123
8.1	Versuch	e zur Darstellung von YI ₂ (H) _x	
8.2	Iodidtell	uride Ln ₂ I ₂ Te von La und Gd	
	8.2.1	Synthese	
	8.2.2	Strukturuntersuchung an Pulvern	
	8.2.3	Physikalische Eigenschaften von La ₂ I ₂ Te	
	8.2.4	Physikalische Eigenschaften von Gd ₂ I ₂ Te	129
8.3	Untersuc	chungen an LaI	
	8.3.1	Darstellung	
	8.3.2	Thermische Untersuchungen	
	8.3.3	Röntgenografische Untersuchung	
	8.3.4	Elektronenmikroskopische Untersuchung	136
		8.3.4.1 EDX-Analysen	
		8.3.4.2 Elektronenbeugung	
		8.3.4.2 HRTEM-Untersuchung	140
	8.3.4	Physikalische Eigenschaften	142

9 Zusammenfassung

10 Summary	147
Literatur	152
A. Kristallografischer Anhang	159
Danksagung	167
Lebenslauf	169

Abbildungsverzeichnis

1.1	Elektrischer Widerstand von GdI2 als Funktion der Temperatur und des Magnetfeld	es.2
1.2	Bandstrukturen von Dihalogeniden LaI2 und GdI2	3
2.1	Aufbau der verwendeten Hydrierapparatur	7
2.2	Temperaturabhängigkeit des Wasserstoffdrucks für eine leere Apparatur	8
3.1	Phasendiagramm des Systems La/LaI3	15
3.2	Perspektivische Darstellung der Struktur von LaI2	16
3.3	Temperaturabhängigkeit des Wasserstoffdrucks für eine mit LaI ₂	10
	beschickte Apparatur	18
3.4	Röntgenpulverdiagramme für LaI ₂ und LaI ₂ H	19
3.5	Schematische Wiedergabe der Strukturtypen 2H-MoS2 und 2H-NbS2	20
3.6	Gegenüberstellung des von LaI2H gemessenen und der mit Multischicht-	
	$Stapelvarianten \ vom \ MoS_2\text{-/NbS}_2\text{-}Typ \ berechneten \ Röntgenpulverdiagramme \dots \dots \dots$	21
3.7	Gegenüberstellung experimenteller Röntgenpulverdiagramme von LaI2H	
	und der mit Stapelwahrscheinlichkeiten q für Domänen vom 2H-MoS ₂ -	
	und 2H-NbS ₂ -Typ berechneten	23
3.8	Gitterparameter von LaI ₂ H _x in Abhängigkeit vom H-Gehalt	25
3.9	Molsuszeptibilitäten von LaI2 und LaI2H0.95 als Funktion der Temperatur	26
4.1	Röntgenpulverdiagramme von "La _{1-x} Ba _x I ₂ "	29
4.2	Röntgenpulverdiagramme von "La $(I_{1-x}Te_x)_2$ "	31
5.1	RKKY-Wechselwirkung: Resultierende Spindichteverteilung	
	der Leitungselektronen in der Nähe eines lokalen Momentes	36
5.2	Schematische Spinverteilung in Spero-, Aspero- und Mictomagneten	37

40
54
57
58
01
63
H _{0.33} 64
66
67
69
70
71
/4
n 76
77

6.28	Abhängigkeit von $R(300 \text{ K})$ und M_{sat} bei 5 K für GdI_2H_x vom H-Gehalt; Magnetisches Phasendiagramm für GdI_2H_x	79
6.29	Schematische Darstellung der Perkolation im Gd(H)-Teilgitter von GdI ₂ H _x	80
6.30	Schematische Darstellung der Spinstruktur im trigonalen Netz mit konkurrierenden magnetischen Wechselwirkungen	83
7.1	Projektive Verteilung der Metall- bzw. Halogenatome in bekannten Stapelvarianten von LnIH _x	85
7.2	Temperaturabhängigkeit des Wasserstoffdrucks bei der Hydrierung von YIH	89
7.3	Gegenüberstellung der H-Druckänderung bei der Hydrierungsreaktion von YIH und der Dehydrierungsreaktion von YIH ₂	90
7.4	Ergebnis der Rietveld-Verfeinerung für YIH _{1.02}	91
7.5	Gitterparameter von YIH _x in Abhängigkeit vom H-Gehalt	91
7.6	Ergebnis der Rietveld-Verfeinerung für YIH ₂	93
7.7	Elektrischer Widerstand von YIH _x	95
7.8	Temperaturabhängigkeit der magnetischen Molsuszeptibilität von YIH _x	96
7.9	Temperaturunabhängige Molsuszeptibilität von YIH _x als Funktion der reziproken Feldstärke	97
7.10	Gegenüberstellung der Röntgenpulverdiagramme für verschiedene Strukturvarianten von GdIH _x	99
7.11	Abhängigkeit der Gitterparameter vom Wasserstoffgehalt in GdIH _x	100
7.12	Temperaturabhängigkeit der magnetischen Molsuszeptibilität von GdIH _{0.86}	101
7.13	Temperaturabhängigkeit der magnetischen Molsuszeptibilität von GdIH _{0.73}	102
7.14	Temperaturabhängigkeit der magnetischen Molsuszeptibilität von GdIH _{0.69}	103
7.15	Temperaturabhängigkeit der reziproken Molsuszeptibilität von GdIH _x	104
7.16	Feldabhängigkeit der Magnetisierung bei 5 K für GdIH _x	105
7.17	Sättigungsmagnetisierung als Funktion der Temperatur für GdIH _x	106
7.18	Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.86}	107
7.19		107
7 20	Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.86}	107
1.20	Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.86} Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.73}	107
7.20	Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.86} Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.73} Frequenzabhängigkeit von T_{f} für GdI ₂ H _{0.73}	107 108 108
7.20 7.21 7.22	Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.86} Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.73} Frequenzabhängigkeit von T_{f} für GdI ₂ H _{0.73} Spezifische Wärmekapazität von GdIH _x und YIH _{0.8}	107 108 108 110
7.207.217.227.23	Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.86} Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.73} Frequenzabhängigkeit von T_{f} für GdI ₂ H _{0.73} Spezifische Wärmekapazität von GdIH _x und YIH _{0.8} Magnetischer Beitrag C_{m} zur spezifischen Wärme von GdIH _x	107 108 108 110 110
7.207.217.227.237.24	Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.86} Temperaturverlauf von χ_{ac} bei verschiedenen Feldfrequenzen für GdIH _{0.73} Frequenzabhängigkeit von T_{f} für GdI ₂ H _{0.73} Spezifische Wärmekapazität von GdIH _x und YIH _{0.8} Magnetischer Beitrag C_{m} zur spezifischen Wärme von GdIH _x Temperaturverlauf des spezifischen elektrischen Widerstands für GdIH _x	107 108 108 110 110 112

7.26 Feldabhängigkeit des Widerstands von GdIH _{0.73} bei 2 K	114
7.27 Temperaturabhängigkeit des elektrischen Widerstands von GdIH _{0.86}	
bei $H = 0$ bzw. 90 kOe	115
7.28 Bandstruktur und Zustandsdichte für 1T-YIH	117
7.29 Y-Orbitalbeiträge zur Bandstruktur von 1T-YIH	118
7.30 Schematische Darstellung der Zustandsdichte $N(E)$	
im Anderson-Elektronensystem	120
8.1 Ergebnis der Rietveld-Verfeinerung für La ₂ I ₂ Te und LaTe	
8.2 Projektive Darstellung der Struktur von La ₂ I ₂ Te	125
8.3 Elektrischer Widerstand in Abhängigkeit von der Temperatur für La ₂ I ₂ Te	127
8.4 Temperaturabhängigkeit der magnetischen Molsuszeptibilität für Gd ₂ I ₂ Te	129
8.5 Feldabhängigkeit der Magnetisierung von Gd ₂ I ₂ Te bei 5 K	
8.6 Magnetische Wechselwirkungen innerhalb einer Gd-Doppelschicht	
in der Struktur von Gd ₂ I ₂ Te	131
8.7 Temperaturabhängigkeit des elektrischen Widerstands für Gd ₂ I ₂ Te	
8.8 Ergebnis der Rietveld-Verfeinerung für LaI	135
8.9 Gegenüberstellung von experimentellen und simulierten	
Feinbereichsbeugungsdiagrammen für LaI	138
8.10 Verkippungsexperiment zur Demonstration der dynamischen Anregung	
von Reflexen $00l, l \neq 2n$	139
8.11 HRTEM von LaI längs [001]	140
8.12 HRTEM von LaI längs [100]	141
8.13 Elektrischer Widerstand in Abhängigkeit von der Temperatur für LaI	
A.(6.6.2) 1 Guinier-Aufnahmen von $GdI_2H_{0.28}$, gemessen bei verschiedenen	
Temperaturen	159
A.(6.6.2) 2 Δ T-Guinier-Aufnahmen von GdI ₂ H _{0.56}	159
A.(6.6.2) 3 Δ T-Guinier-Aufnahmen von GdI ₂ H _{0.97}	160
A.(7.2.3) 4 Ergebnis der Rietveld-Verfeinerung für YIH _{0.61}	160
A.(7.2.3) 5 Röntgenpulverdiagramm der unbekannten Phase Q	163
A.(8.2.3) 6 Δ T-Guinier-Aufnahme von La ₂ I ₂ Te	166

Tabellenverzeichnis

2.1	Sublimationstemperaturen und Produktfarben von LnI3	6
3.1	Versuche zur Hydrierung von LaI ₂	17

3.2	Versuche zur Darstellung von LaI ₂ H _x	24
3.3	Gitterparameter von LaI ₂ H _x	25
4.1	Ergebnisse der Ionenersatzversuche an LaI ₂	30
6.1	Darstellung und Gitterparameter von GdI2	43
6.2	Charakteristische magnetische Temperaturen von GdI2	47
6.3	Theoretische Werte der kritischen Exponenten für 3D-magnetische Systeme	50
6.4	Kritische Exponenten für GdI2	51
6.5	Darstellung und Gitterparameter von GdI2Hx	60
6.6	Gitterparameter von GdI_2H_x bei verschiedenen Temperaturen	64
6.7	Charakteristische magnetische Temperaturen von GdI ₂ H _x	68
6.8	Vergleich der Verschiebungsgröße von $T_{\rm f}$ in verschiedenen Spinglas-Systemen	71
6.9	Vergleich der Magnetwiderstandswerte (MR) von GdI_2H_x mit denen	0.1
	bekannter CMR-Verbindungen	81
7.1	Darstellung von YIH _x	87
7.2	Hydrierungs-/Dehydrierungsreaktionen von YIH _x	88
7.3	Gitterparameter von YIH _x	90
7.4	Interatomare Abstände in YIH _x	92
7.5	Vergleich von gemessenen und berechneten Pauli-Suszeptibilitäten von YIH _x	97
7.6	Darstellung von GdIH _x	98
7.7	Gitterparameter von GdIH _x	99
7.8	Magnetische Parameter von GdIH _x	104
7.9	Ergebnisse der Leitfähigkeitsuntersuchungen an GdIH _x	111
8.1	Interatomare Abstände in La ₂ I ₂ Te	125
8.2	Thermische Effekte für eine LaI ₂ /Na-Probe	134
8.3	Quantifizierung von EDX-Punktanalysen an LaI	137
A.(7	.2.3) 1 Daten zur Rietveld-Verfeinerung für YIH _x	161
A.(7	.2.3) 2 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter in $YIH_{0.6}$	₅₁ . 162
A.(7	.2.3) 3 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter in $YIH_{1,0}$. 162
A.(7	.2.3) 4 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter in YIH_2 .	162
A.(7	.2.3) 5 <i>d</i> -Werte und Intensitäten der scharfen Reflexe im Röntgenpulverdiagramm unbekannten Phase Q	der 163
A.(8	.2.2) 6 Daten zur Rietveld-Verfeinerung für La ₂ I ₂ Te	164
A.(8	.2.2) 7 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter in La ₂ I ₂ T	Te 164
A.(8	.3.3) 8 Daten zur Rietveld-Verfeinerung für LaI	165
A.(8	.3.3) 9 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter in LaI	165

Häufig verwendete Abkürzungen und Symbole

DTA	Differentialthermoanalyse
EDX	energiedispersive Röntgenspektroskopie
HREM	Hochauflösungsabbildungen
Diglyme	Diethylenglykoldimethylether
R	universelle Gaskonstante
k _B	Boltzmann-Konstante
g	g-Faktor (Landé-Faktor)
С	Curie-Konstante
Н	Magnetfeldstärke
ω	Frequenz des oszillierenden magnetischen Feldes
S	Spinquantenzahl
J	Austauschparameter
М	Magnetisierung
$\mu_{ m eff}$	effektives magnetisches Moment
$J_{ m p}$	magnetische Polarisation
T _c	kritische Temperatur
$T_{\rm N}$	<i>Neel</i> -Temperatur
$T_{\rm C}$	Curie-Temperatur
$T_{\rm f}$	"spin freezing"-Temperatur
Θ	paramagnetische Curie-Temperatur
$\chi_{ m m}$	Molsuszeptibilität
χ_0	T-unabh. Suszeptibilität
XPauli	Pauli-Suszeptibilität
Xac	Realteil der ac-Molsuszeptibilität
" Xac	Imaginärteil der ac-Molsuszeptibilität
R	elektrischer Widerstand
ρ	spezifischer elektrischer Widerstand
MR	Magnetwiderstand

1 Einleitung

Die Chemie der Seltenerdmetalle war lange Zeit durch das Auftreten der Oxidationsstufe +3, in Ausnahmefällen +2 (insbesondere Eu²⁺ mit 4f⁷ und Yb²⁺ mit 4f¹⁴-Konfiguration) und +4 (Ce⁴⁺ mit 4f⁰-Konfiguration) in ionischen Verbindungen gekennzeichnet. Diese Chemie wurde in den letzten Jahrzehnten um eine Fülle von Verbindungen erweitert, in denen die Seltenerdmetalle reduziert mit einer fd-gemischten Konfiguration vorliegen, wobei die f-Elektronen an den Atomrümpfen lokalisiert sind und die d-Elektronen Metall-Metall-Bindungen eingehen [1-7]. Damit schließen sich diese Verbindungen eng an die Verbindungen der schweren d-Metalle in reduzierter Form an, deren Strukturen durch die Ausbildung von Clustern und unendlich ausgedehnten Bereichen mit M-M-Bindungen charakterisiert sind.

Die schichtartig kristallisierenden binären metallreichen Iodide der Seltenerdmetalle LnI_n (n < 3) und verwandten Verbindungen mit eingebauten Endrohedralatomen Ln_mI_nZ_x ($n/m \le 2$, $x \le 2$; Z ist z.B. H, B, C, N, Si, Übergangsmetall) sind strukturell und hinsichtlich ihrer physikalischen Eigenschaften vielfach interessant. So werden die elektrisch leitenden Carbidhalogenide der nichtmagnetischen Seltenerdmetalle Ln₂Hal₂C₂ (Ln = Y, La; Hal = Cl, Br, I) bis zu einer maximalen Sprungtemperatur $T_c = 11.6$ K supraleitend [8-10]. Im ferromagnetisch ordnenden GdI₂ (Gd 4f⁷d¹-Konfiguration) wird der elektrische Widerstand bei Raumtemperatur durch Anlegen eines äußeren Magnetfeldes stark variiert (Abb. 1.1), als Kolossal-Magnetwiderstandseffekt bekannt (<u>c</u>olossal <u>m</u>agneto<u>r</u>esistance, CMR) [11,12]. Ein ähnlicher Effekt, jedoch bei sehr tiefen Temperaturen, wurde für die antiferromagnetisch ordnenden Hydridhalogenide GdHalH_x (Hal = Br, I; $x \approx 0.67$) beobachtet [13].

Strukturell sind die vorliegenden Verbindungen nach einem allgemeinen Bauprinzip aufgebaut. Die in planaren Netzen angeordneten Metallatome sind von gleichartigen Netzen der Halogenatome umschlossen. In binären Seltenerdmetalldiiodiden LnI₂ sind diese bei tetragonaler bzw. trigonaler Symmetrie zu Schichtpaketen I-Ln-I gestapelt [14]. Die ternären Phasen Ln₂Hal₂Z_x bestehen aus Schichtpaketen Hal-Ln-Z_x-Ln-Hal, in denen dichtgepackte Metallatomdoppelschichten von Halogenatomschichten umgeben sind [4]. Die Interstitialatome Z besetzen die Oktaeder- bzw. Tetraederlücken der Metallatome in Ln₂Hal₂C_x (x = 1 oder 2) bzw. LnHalH_x (0.67 $\leq x \leq 1.0$). Zwischen benachbarten Schichtpaketen liegen van-der-Waals-Bindungen vor.

Abb. 1.1 Variation des elektrischen Widerstandes von GdI₂ als Funktion von Temperatur und äußerer Magnetfeldstärke [11].

Die unterschiedlichen physikalischen Eigenschaften dieser Verbindungen (Supraleitung und Kolossal-Magnetwiderstand) können auf einen ähnlichen Mechanismus zurückgeführt werden. paarweise Kopplung von Leitungselektronen (Cooper-Paare) bzw. Die Wechselwirkung zwischen itineranten und den an den Atomrümpfen lokalisierten Elektronen führt tendentiell zur Lokalisierung der Leitungselektronen. In der Bandstruktur sollte sich dies durch Bereiche von Bändern mit verschwindender Steigung an der Fermikante zeigen, die einer geringen FERMI-Geschwindigkeit der Elektronen und damit deren Lokalisierung entsprechen [14]. Tatsächlich wurde in Bandstrukturrechnungen sowohl von schichtartigen supraleitenden Oxocupraten [15] bzw. Niob- und Tantaldichalkogeniden [16] als auch von CMR-Oxomanganaten [17] gezeigt, dass in deren elektronischen Strukturen Sattelpunkte (van-Hove-Singularitäten [18]) in unmittelbarer Nähe des Ferminiveaus vorhanden sind. So lässt sich das Vorliegen von flachen Bandbereichen an der Fermienergie als Voraussetzung für Supraleitung bzw. den CMR-Effekt deuten.

Für die d¹-Metalle, LaI₂ und GdI₂, deuten Bandstrukturrechnungen [11, 19-20] ebenfalls auf van-Hove-Singularitäten hin, die aber unterhalb des Ferminiveaus liegen (Abb. 1.2). Für LaI₂ wurde daher bei geringer Erniedrigung der Elektronenkonzentration möglicherweise Supraleitung vorausgesagt. Auch könnte für das magnetische GdI₂ eine noch ausgeprägtere Widerstandsänderung bei angelegtem Magnetfeld erreicht werden.

Abb. 1.2 Bandstrukturen von metallischen d^1 -Dihalogeniden : LaI₂ (*links*) und GdI₂ (*rechts*).

Das Ziel der hier vorgestellten Arbeit war die Darstellung metallreicher Seltenerdmetalliodide mit den diamagnetischen La- bzw. Y- sowie magnetischen Gd-Ionen wechselnder Elektronenkonzentration und die Untersuchung ihrer elektrischen und magnetischen Eigenschaften. Es bieten sich grundsätzlich zwei Wege für eine Variation der Valenzelektronenkonzentration an:

- ✓ Einbau von Interstitialatomen in die Kristallstruktur. Die überschüssigen Elektronen in metallreichen Seltenerdhalogeniden können mit Wasserstoff "titriert" werden [21-23]. Zur Variation der Elektronenkonzentration wurden die folgenden Hydridhalogenide LaI₂H_x (Kapitel 3), GdI₂H_x (Kapitel 6), YIH_x und GdIH_x (Kapitel 7) dargestellt und untersucht.
- ✓ Partielle Substitution der Halogen- durch Chalkogenatome oder der Seltenerd- durch Erdalkalimetalle. Dieser Weg wurde bei den Versuchen mit Kationen- [La_{1-x}Ba_xI₂] bzw. Anionenersatz [La(I_{1-x}Te_x)₂] verfolgt (Kapitel 4).

Untersuchungsergebnisse an stöchiometrischen Verbindungen Ln_2I_2Te (Ln = La, Gd) und LaI sind in Kapitel 8 zusammengestellt.

In Kapitel 5 werden einige Aspekte zum Magnetismus referiert, sofern sie für die Beschreibung der experimentellen Ergebnisse notwenig waren.

2 Experimentelle Grundlagen

2.1 Allgemeine Präparationsmethoden

2.1.1 Handhabung der Substanzen

Die meisten in dieser Arbeit beschriebenen Ausgangssubstanzen und Reaktionsprodukte sind luft- und feuchtigkeitsempfindlich. Seltenerdmetalle und -hydride werden von Luftsauerstoff mit der Zeit oxidiert. Die wasserfreien Trihalogenide LnX₃ reagieren mit Sauerstoff zu den sehr stabilen Oxidhalogeniden LnOX. Daher werden alle Präparationsschritte und Handhabungen der Substanzen unter gereinigtem Schutzgas oder Hochvakuum durchgeführt. Hierzu diente eine Glasapparatur, die über Hähne und Ventile einen Zugang zu einer Hochvakuumpumpe (Turbomolekularpumpe, Öldiffusionspumpe) und zu strömendem Argon erlaubt. Das als Schutzgas verwendete Schweißargon (99.996 %, Fa. WESTFALEN) wurde zur zusätzlichen Reinigung von Sauerstoff und Stickstoff über eine auf 970 K erhitzte Strecke mit Titanschwamm geleitet. Die restlichen Spuren von Sauerstoff und Wasser wurden durch einen Oxisorb-Katalysator (auf Silicagel adsorbiertes Cr^{2+}) [24] beseitigt. Einige Arbeitsgänge wurden in einem Handschuhkasten (Fa. BRAUN) unter gereinigter Argonatmosphäre durchgeführt.

Die Substanzen wurden in Schlenk-Rohren unter Argon gelagert oder in Glasampullen eingeschmolzen.

2.1.2 Tantaltiegel

Bei hohen Temperaturen wird Quarzglas von den Seltenerdmetallen sowie von vielen ihrer Verbindungen angegriffen. Die Reaktionen wurden deshalb in verschweißten Tantaltiegeln durchgeführt. Die Tiegel wurden aus Tantalrohren (d = 6-10 mm, Fa. PLANSEE) hergestellt. Vor der Verwendung wurden sie mit einer Säuremischung (HNO₃ (65%) : HF(40%) \approx 3:1) gereinigt, und anschließend bei 1270 K im Hochvakuum (10⁻⁵ Torr) ausgeheizt.

Manche Versuche erfolgten in Molybdänkapseln oder -schiffchen (Fa. BALZERS). Diese wurden vorher mit HCl und Ethanol gereinigt und ausgeheizt.

2.1.3 Allgemeine Versuchsdurchführung

Die mit den Ausgangssubstanzen beschickten Tiegel wurden in einer Lichtbogenapparatur [25] unter Argon zugeschweißt und zum Schutz gegen Oxidation durch Luftsauerstoff in evakuierten Quarzglasampullen eingeschmolzen. Zum Erhitzen dienten Rohröfen, bei denen ein Keramikrohr mit Widerstandsheizdraht umwickelt war. Am Ort der Proben wurde die Temperatur mit PtRh-Pt- oder NiCr-Ni-Thermoelementen gemessen und über programmierbare Regler (Fa. NOVOCONTROL) konstant gehalten.

2.2 Vorbereitung und Präparation der Ausgangssubstanzen

2.2.1 Seltenerdmetalle

Seltenerdmetalle wurden in Form von Stäben (99.99 %, Fa. JOHNSON MATTHEY) gekauft und zur folgenden Anwendung zerkleinert. Feine Partikel von Gadolinium wurden sowohl durch einen Hydrierungs-Dehydrierungsvorgang als auch durch mechanische Behandlung hergestellt. Zur vollständigen Entfernung des Wasserstoffs wurden die gemörserten Seltenerdmetallhydride im Hochvakuum bei Temperaturen T > 1000 K getempert. Bei Seltenerdmetallen mit niedrigem Schmelzpunkt, wie z.B. La, ist diese Methode nicht geeignet. Im Falle von Lanthan bzw. Yttrium setzte man als Edukte Feilspäne ein, die durch Feilen der Metalle unter Schutzgas im Handschuhkasten erhalten wurden.

2.2.2 Wasserstoff

 H_2 (99.999 %) wurde von der Fa. WESTFALEN bezogen und ohne weitere Reinigung verwendet.

2.2.3 Seltenerdmetallhydride

Zur Darstellung von LnH₂ wurden Seltenerdmetallstücke in offenen Molybdänschiffchen unter 1 atm H₂ aufgeheizt. Gadoliniumdihydrid entstand durch langsames Erhitzen auf 920 K und nachfolgende Abkühlung unter strömendem Argon. Um YH₂ zu erhalten, wurde das Metall zuerst bei 670 K bis zu konstantem Wasserstoffdruck getempert. Danach wurde das Reaktionsrohr bei 620 K bis zu einem Restdruck von ca. $2 \cdot 10^{-3}$ Torr abgepumpt. Das entspricht bei festgelegter Temperatur dem H-Gleichgewichtsdruck über YH₂ [26].

2.2.4 Seltenerdmetalltrihalogenide

Nasse Variante

Gadoliniumtriiodid wurde nach einer modifizierten Variante der Ammoniumhalogenidmethode [27, 28] dargestellt. Hierfür wurde Gd₂O₃ (99.99 %, Fa. JOHNSON MATTHEY) in konzentrierter Iodwasserstoffsäure (Fa. MERCK) aufgelöst und mit der Ammoniumiodidlösung (p.a., Fa. MERCK) versetzt, wobei das Molverhältnis Gd:I \approx 1:6 betragen sollte, wie die folgende Reaktionsgleichung zeigt.

$$Gd_2O_3 + 6 HI + 6 NH_4I \rightarrow 2 (NH_4)_3GdI_6 + 3 H_2O$$

Das entstandene Produkt wurde am Rotationsverdampfer entwässert und im Vakuum durch langsames Erhitzen auf 700 K von überschüssigem Ammoniumtrihalogenid befreit.

Trockene Variante

Im Falle der Triiodide der leichten Seltenerdelemente führt die vorher beschriebene Ammoniumhalogenidmethode nur zu geringen Ausbeuten. Daher wurden Yttrium- und Lanthantriiodid in direkter Elementsynthese [29, 30] hergestellt. Ein Quarzglasrohr wurde mit stöchiometrischen Mengen von zerkleinerten Metallstückchen und Iodkristallen (p.a., Fa. MERCK) befüllt und unter Vakuum abgeschmolzen. Der mit dem Metall beschickte Teil wurde in einem Rohrofen auf 1220 K (15 Std) erhitzt, während das Iod enthaltende Ende mittels eines Föhns etwas erwärmt wurde, um den Transport des Iods zu fördern.

Zur Reinigung von unreagierten Ausgangsubstanzen, und besonders von Seltenerdmetalloxidhalogeniden, wurden die Rohprodukte in Tantaltiegeln im dynamischen Hochvakuum einer Öldiffusionspumpe bei 10⁻⁴ Torr zweimal sublimiert. Die Sublimationstemperatur (Tab. 2.1) wurde langsam bis auf einen in der Literatur empfohlenen Wert [29] erhöht, bei dem der Dampfdruck des Trihalogenids ca. 2 Torr beträgt.

Verbindung	T/K	Farbe
YI ₃	1180	cremefarbig
LaI ₃	1200	hellgelb
GdI ₃	1170	weiß (mit Gelbschattierung)

 Tabelle 2.1
 Sublimationstemperaturen und Produktfarben ausgewählter

 Seltenerdiodide LnI3
 Seltenerdiodide LnI3

2.2.5 Weitere Edukte

Wasserfreies BaI₂ (99.995 %, Fa. ALDRICH CHEMICALS, $H_2O < 100$ ppm) wurde ohne weitere Trocknung eingesetzt. Als weitere Ausgangsstoffe wurden vorher filtriertes Natrium und durch Sublimation hergestelltes Tellur (99.997%, Fa. PREUSSAG) verwendet.

2.3 Apparatur zur Hydrierung

Zur Hydrierung von Seltenerdmetallhalogeniden diente eine leicht modifizierte Apparatur (Abb. 2.1), die ursprünglich in der Arbeit [31] entwickelt worden war. Sie ermöglicht, den Verlauf der Wasserstoffaufnahme zu registrieren. In der Regel fanden die Reaktionen in einem abgeschlossenen System mit kalibriertem Volumen (370 cm³) statt. Über ein Nadelventil wurde ein gewünschter Wasserstoffdruck in der evakuierten (10⁻⁵ mbar) Apparatur eingestellt. Danach wurden die sich in Mo-Schiffchen befindenden Ausgangssubstanzen (0.25-1.0 g) mit einer kontrollierten Heizrate erhitzt. Die Druckänderung während der Reaktion wurde mit einer Genauigkeit von 1 mbar mit einem Membran-Vakuummeter (Membranovac DM 12/ DI 2000, Fa. LEYBOLD) registriert.

Abb. 2.1 Aufbau der verwendeten Hydrierapparatur; Messgerät/Messkopf : Membranovac DM 12/ DI 2000 (Fa. LEYBOLD).

Durch die Wasserstoffdruckänderung nach dem Ende der Reaktion ist es möglich, die absorbierte Gasmenge nach dem idealen Gasgesetz zu berechnen, unter Voraussetzung der Gasdichtheit der Apparatur während des Reaktionsverlaufs :

$$LnI_{2} + y/2 H_{2} \rightarrow LnI_{2}H_{y}$$
$$\Delta pV_{system} = n(H_{2})RT,$$
$$y = \frac{2n(H_{2})}{n(LnI_{2})} = \frac{2\Delta p \cdot V_{system}}{n(LnI_{2}) \cdot RT} (2.1)$$

Abb. 2.2 Temperaturabhängigkeit des Wasserstoffdrucks (Aufheizgeschwindigkeit : 5°C/min) für eine leere Apparatur.

Die Dichtheit der Apparatur wurde durch Messung des H₂-Druckes beim Aufheizen und nachfolgenden Abkühlen der lediglich mit H₂ (1 bar) gefüllten Apparatur überprüft. Die Temperatur/Druck-Kurven sind identisch (Abb. 2.2).

2.4 Allgemeine Untersuchungsmethoden

2.4.1 Chemische Analyse

Qualitative und halbquantitative Untersuchungen von Kristallen wurden durch EDX-Analysen an einem Rasterelektronenmikroskop (Fa. TESCAN) durchgeführt, der mit einem OXFORD EDX-Detektor ausgestattet war. Diese röntgenspektroskopische Methode erlaubt das Atomverhältnis von Elementen mit Kernladungen größer als 4 zu bewerten. Allerdings haben die Ergebnisse bei den leichten Atomen nur qualitativen Charakter.

Die Sauerstoffanalyse an einigen ausgewählten Proben erfolgte im MIKROANALYTISCHEN LABOR PASCHER.

2.4.1.1 Quantitative Wasserstoffbestimmung

Zur analytischen Bestimmung der H-Gehalte wurde eine Probe mit V₂O₅ als oxidierendem Zuschlag in einem Korundschiffchen im Sauerstoffstrom bei 1120 K verbrannt. Der Gasstrom passierte als Kontakte CuO (1120 K), Ag₃VO₄ (1120 K), Ag₂O·MnO₂ (770 K),

Ag-Wolle (770 K) zur vollständigen Oxidation und zur Entfernung von Verbrennungsprodukten [32].

Das entstandene Wasser wurde in der mit einer speziellen Lösung ("Hydranal", Fa. RIEDEL-DE HAEN) gefüllten Titrierzelle absorbiert und dann nach *Karl Fischer* [33] coulometrisch titriert (KF-Coulometer KF 653, Fa. METROHM). Das verbrauchte Iod wurde elektrolytisch nachgeliefert. Aus der dabei geflossenen Strommenge wurde die titrierte Wassermenge ermittelt. An Probenmengen von 25-75 mg wurden jeweils Doppelbestimmungen der H-Konzentration durchgeführt. Die bestimmten Messwerte wurden auf die von V₂O₅ (Zusatz) herrührenden Wassermengen korrigiert. Die maximale Streuung vom Mittelwert betrug $\Delta x =$ 0.03 für die Zusammensetzungen LnI₂H_x bzw. LnIH_x.

2.4.2 Differentialthermoanalyse

In kleinen Ta-Ampullen (Länge 25 mm, $\emptyset = 5$ mm) eingeschweißte Proben (ca. 100 mg) wurden unter 1atm Ar mit einer Heizrate von 3 bzw. 5 K/min auf 1200 K erhitzt und abgekühlt. Thermische Effekte wurden gegen Korund (γ -Al₂O₃) als Referenz detektiert und mit den Schmelzpunkten von NaCl (1074 K) und Silber (1234 K) als Eichsubstanzen korrigiert.

2.4.3 Röntgenografische Untersuchungen

<u>Pulverproben</u> : Alle Reaktionsprodukte wurden röntgenografisch auf einem Pulverdiffraktometer STADI P (Fa. STOE) mit MoK_{α}-Strahlung ($\lambda = 0.7093$ Å) untersucht. Dazu wurden die feingemörserten Proben, unter Zusatz von Si als internem Standard (a = 5.4304 Å [34]), unter Argon in Glaskapillaren mit 0.2 mm Durchmesser eingeschmolzen. Zur Vermeidung von Textureffekten und zur Verringerung der Absorption, die insbesondere bei CuK_{α 1}-Strahlung stark ist, wurden die Proben meist mit etwas Glaspulver verdünnt.

Die Gitterparameter wurden durch Indizierung der Röntgendiagramme mit dem Programmpaket Stoe WinXPOW [35] bestimmt. Die Zuordnung des Strukturtyps erfolgte durch Vergleich mit berechneten Diagrammen. Hierzu wurden die Programme WinXPOW und DIFFAX [36] verwendet.

Temperaturabhängige Röntgenaufnahmen wurden nach der modifizierten GUINIER-Technik (CuK_{α 1}-Strahlung, $\lambda = 1.54056$ Å, SiO₂-Monochromator) mit Temperaturregelung [37] gemessen.

<u>Einkristalle</u> : Das Auslesen von Einkristallen geschah in der Regel unter getrocknetem Petroleum sowie in einem Handschuhkasten. Die ausgesuchten Kristalle wurden unter Ar in Markröhrchen eingeschmolzen. Die Kristallqualität, ungefähren Gitterparameter und die Symmetrie wurden mit Hilfe von Filmaufnahmen nach der BUERGER-Präzessionstechnik (MoK $_{\alpha}$ -Strahlung) bestimmt [38].

Rietveld Verfeinerung

Die Rietveldverfeinerungen [39] wurden mit dem Programmpaket FullProf [40] durchgeführt. Dafür wurden die mit MoK_{α}-Strahlung aufgenommenen Pulverdiffraktogramme verwendet, da die Absorption mit MoK_{α}-Strahlung im Vergleich zu CuK_{α 1}-Strahlung wesentlich minimiert ist. Bei den mit MoK_{α}-Strahlung aufgenommenen Diagrammen stehen außerdem mehr Reflexe für die Verfeinerung zur Verfügung.

Der Untergrund wurde graphisch angepasst. Als Profilfunktion wurde eine Pseudo-Voigt-Funktion verwendet [41]. Reflexprofile wurden auch für Asymmetrie ($2\theta < 40^{\circ}$) und für Vorzugsorientierung nach der Methode von March und Dollase [42] korrigiert.

Die bei den Verfeinerungen aufgeführten Gütewerte (un- und gewichtete Profil-R-Werte, R_p und R_{wp}) sind wie folgt definiert

wobei y_i bzw. $y_{c,i}$ die gemessene bzw. berechnete Intensität eines Meßpunktes *i* bezeichnen. Der "Goodness of Fit" *G* ergibt ein Maß für die Annäherung an den aufgrund der Zählstatistik zu erwartenden R_{exp} -Wert (*N* Messpunkte, *P* Parameter) :

$$G = R_{wp}/R_{exp}$$
 mit $R_{exp} = \left[(N - P) / \sum_{i=1,N} wy_i^2 \right]^{1/2}$

In Analogie zu Einkristallanalysen wurde der sog. Bragg R-Wert R_B berechnet, der aus der Differenz der gemessenen ($I_{obs,i}$) und berechneten ($I_{calc,i}$) integrierten Reflexintensitäten bestimmt wird

$$R_{\rm B} = \sum_{i} \left| I_{obs,i} - I_{calc,i} \right| / \sum_{i} \left| I_{obs,i} \right|.$$

2.4.4 Elektronenmikroskopische Untersuchungen

Für die HRTEM-Untersuchungen wurde ein Elektronenmikroskop CM30 ST verwendet (Fa. PHILIPS, wichtige Charakteristika: LaB₆-Kathode, U = 300 kV, $C_s = 1.15$ mm), welches mit einer Multiscan-CCD Kamera (Fa. GATAN) ausgestattet ist. Ein analytischer Doppelkipphalter (Fa. GATAN, maximale Verkippung: $\pm 25^{\circ}$) erlaubt die systematische Verkippung der Proben.

Die gegenüber Luftfeuchtigkeit empfindlichen Kristalle wurden mittels einer speziellen Apparatur [43] unter Argon (Schlenktechnik) gehandhabt. Eine Modifizierung des Mikroskop-Goniometers ermöglicht das Einschleusen der Probe im Argon-Gegenstrom. Eine starke Hydrolyse der gemörserten Kristalle ist damit ausgeschlossen. Die Feinbereichsblende schränkt die Elektronenbeugung auf einen kreisförmigen Bereich (Durchmesser 250 nm) der Probe ein. Alle Fouriertransformierten der hochaufgelösten Abbildungen wurden mittels einer geeigneten Maske gefiltert (Software: Digital Micrograph 3.6.1, Fa. GATAN). Zur Simulation von Feinbereichsbeugungsdiagrammen und hochaufgelösten Abbildungen (multislice-Verfahren, Unschärfe des Defokus: 70 Å, Halbwinkel der Strahldivergenz 1.2 mrad) wurde EMS-Programmpaket verwendet [44]. EDX Analysen wurden an durch das Elektronenbeugung charakterisierten Kristallen im Transmissionselektronenmikroskop durchgeführt (Si-Li-Detektor, Voyager I -System, Fa. NORAN).

2.4.5 Magnetische Messungen

Zur Untersuchung der magnetischen Eigenschaften wurden zu Pillen ($\emptyset = 3 \text{ mm}$) verpresste Proben in spezielle Ampullen aus SUPRASIL-Quarzglas unter He-Austauschgas eingeschmolzen. Die Messungen der Magnetisierung (*M*) wurden mit einem MPMS-SQUID-Magnetometer (Fa. QUANTUM DESIGN) zwischen 2 und 300 K (Heliumkryostat) mit konstanten (dc) äußeren Magnetfeldern (*H*) von 0.1 bis 50 kOe vorgenommen.

Die diamagnetischen Yttrium- und Lanthanverbindungen wurden jeweils auf möglicherweise vorliegende Supraleitung untersucht. Hierfür wurde deren Magnetisierung bei einem kleinen Feld von 10 G im Bereich 2 K $\leq T \leq 20$ K gemessen. Die experimentell bestimmten Werte wurden auf den magnetischen Beitrag einer Quarzglasampulle korrigiert¹.

Zur Auswertung wurden die korrigierten Magnetisierungen in statische Molsuszeptibilitäten $(\chi_m = M/H)$ umgerechnet und gegen die Temperatur aufgetragen. Es ist möglich, verschiedene Beiträge zum Magnetismus aus temperatur- und feldabhängigen Messungen der Suszeptibilität zu ermitteln. Dazu wird die Gesamtsuszeptibilität in drei Anteile zerlegt :

$$\chi_{\rm m} = \chi_0 + \frac{C}{T - \Theta} + F(T, H_{\rm ext})$$
(2.2)

Die erste Komponente, χ_0 , entspricht dem temperaturunabhängigen Teil, der für elektrisch leitende Verbindungen aus den von den Atomrümpfen herrührenden diamagnetischen und von den freien Elektronen stammenden magnetischen (*Pauli*-Paramagnetismus) Beiträgen besteht,

¹ Aufgrund des großen magnetischen Momentes konnte auf Behälter- und diamagnetische Korrekturen für die Gadoliniumverbindungen verzichtet werden.

 $\chi_0 = \chi_{dia} + \chi_{Pauli}$. Der temperaturabhängige Teil wird durch das CURIE-WEISS-Gesetz (zweiter Term) charakterisiert. Die letzte Funktion $F(T, H_{ext})$ beschreibt den Beitrag einer ferromagnetischen Verunreinigung, der mit dem *Honda-Owen* Verfahren [45, 46] eliminiert werden kann. Bei hohen externen Magnetfeldern geht die Magnetisierung eines Ferromagnets in eine Sättigung (M = konst. für $H_{ext} > 1$ kOe) über, so dass $F(T, H_{ext} \rightarrow \infty) \rightarrow 0$ steht. Durch die Auftragung χ_m über $1/H_{ext}$ konnte die Summe der ersten zwei Terme der Gleichung (2.1) aus der Extrapolation der Hochfeldwerte auf die Ordinate bestimmt werden. Eine lineare Regression der so gewonnenen Werte $\chi(1/T)$ ergibt χ_0 sowie die *Curie*-Konstante *C*. So wurde die *Pauli*-Suszeptibilität² χ_{Pauli} vom temperaturunabhängigen Teil der Suszeptibilität nach Abzug der diamagnetischen Inkremente (Y³⁺: -12·10⁻⁶ cm³/mol, La³⁺: -20·10⁻⁶ cm³/mol, Γ : - $52\cdot10^{-6}$ cm³/mol, H⁺: -3·10⁻⁶ cm³/mol [48]) bestimmt, während der Anteil der paramagnetischen Verunreinigungen aus der *Curie*-Konstante abgeschätzt wurde.

Für paramagnetische Seltenerdmetallverbindungen können die χ_0 Werte vernachlässigt werden. In der Auftragung von $1/\chi_m$ gegen *T* erhält man die *Curie*-Temperatur und das effektive magnetische Moment μ_{eff} (Gl. 2.3) aus der linearen Extrapolation des Hochtemperaturbereiches, in dem der Magnetismus der Verbindungen dem CURIE-WEISS-Gesetz folgt.

$$C = \frac{N_{\rm A} \,\mu_{\rm B}^2}{3k_{\rm B}} \mu_{\rm eff}^2$$

$$\mu_{\rm eff} / \mu_{\rm B} = \sqrt{\frac{8}{C}}$$
(2.3)

Messungen der ac-Suszeptibilität

Das Meßverfahren der sog. *ac*-Suszeptibilität ist eine wertvolle Methode zur Untersuchung magnetischer Phasenübergänge, insbesondere von Relaxationseffekten. Im Gegensatz zur vorher beschriebenen statischen *dc*-Suszeptibilität ($\chi = M/H$) wird die *ac*-Suszeptibilität bei äußeren oszillierenden Magnetfeldern mit einer Amplitude *h* und einer Frequenz ω gemessen

$$H = H_0 + h \cdot \exp(i\omega t), \qquad (2.4)$$

so dass die Suszeptibilität jetzt ein komplexer Wert ist :

$$\chi_{\rm ac} = dM/dH = \chi'(\omega) - i \cdot \chi''(\omega) \qquad (2.5)$$

$$\chi_{\text{Pauli}} \text{ [emu/mol]} = 2\mu_{\text{B}}^2 N_{\text{A}} N(E_{\text{F}}) = 64.5 \cdot 10^{-6} N(E_{\text{F}}) \text{ [spin}^{-1} \cdot \text{eV}^{-1} \cdot \text{F.E.}^{-1} \text{]}$$

² Für ein dreidimensionales freies Elektronengas ist χ_{Pauli} direkt proportional zur Zustandsdichte an der Fermikante $N(E_{\rm F})$ [47].

Der Realteil $\chi'(\omega)$ heißt Dispersion, während der Imaginärteil die in der Probe absorbierte Energie wiedergibt.

Da die Magnetfeldamplitude recht klein (etwa 1 Oe) angesetzt werden kann, ist es möglich, eine Übergangstemperatur zum ferromagnetischen Zustand mit hoher Genauigkeit zu bestimmen. Die Messung von χ als Funktion von ω ermöglicht auch einen Einblick in den Charakter der magnetischen Ordnung [49].

Messungen der *ac*-Suszeptibilität von Gadoliniumverbindungen erfolgten mit einem PPMS-Magnetometer (Fa. QUANTUM DESIGN) zwischen 2 und 300 K (Heliumkryostat) mit einer Amplitude *h* von 1 Oe im Frequenzbereich 10 Hz $\leq \omega \leq$ 10 kHz.

2.4.6 Elektrische Widerstandsmessungen

Der elektrische Widerstand wurde an zylinderförmigen, polykristallinen Proben mit einer Gleichstrom-Vierpunkt-Technik nach *van der Pauw* gemessen [50]. Dafür wurden die Proben nach zwei unterschiedlichen Methoden vorbereitet :

Pulverproben der Verbindungen LnIH_x wurden in einer isolierenden Saphirzelle auf vier quadratisch angeordnete Platinelektroden gedrückt und dadurch kontaktiert. Die so erhaltenen Pulverpresslinge hatten einen Durchmesser von 8 mm und eine Dicke von ca. 1 mm. Die Widerstandsmessung erfolgte in einem Kryostat des PPMS-Systems (Physical Properties Measurement System, Fa. QUANTUM DESIGN) zwischen 2 und 300 K im Nullfeld bzw. *H* = 90 kOe. Der spezifische Widerstandswert *R*(*T*) (in Ωcm) konnte aus der Probendicke *h_p* und dem gemessenen Absolutwiderstandswert *R*(*T*) (in Ω) gemäß Gleichung 2.6 berechnet werden [51].

$$\rho(T) = R(T) h_p \pi/(\ln 2)$$
 (2.6)

Zur Untersuchung des elektrischen Leitfähigkeitsverhaltens von GdI₂H_x wurden sowohl frischgepresste Pillen (Ø = 5 mm, h_p ≈ 1mm) als auch Sinterkörper verwendet. Diese wurden in einer isolierten Kupferzelle mit Goldelektroden kontaktiert und deren Widerstand im Temperaturbereich von 100 bis 350 K bei externen Magnetfeldern 0 ≤ H ≤ 70 kOe gemessen.

Der elektrische Magnetwiderstand (MR) wurde durch die normierte Differenz zwischen den bei einem äußeren Feld *H* bzw. im Nullfeld gemessenen Werten von $\rho(T)$ definiert

$$MR = \Delta \rho / \rho_0 = [(\rho(H,T) - \rho(0,T)] / \rho(0,T). \quad (2.7)$$

2.4.7 Wärmekapazitätsmessungen

Die Wärmekapazität $[C_p = (dQ/dT)_p]$ wurde nach einem thermischen Relaxationsverfahren in einer hochvakuumdichten Kalorimeterzelle im Kryostat des PPMS-Systems gemessen. Hierfür wurde ein Pulverpressling ($\emptyset = 5 \text{ mm}, m \approx 30 \text{ mg}$) auf eine Meßplattform mit einer dünnen Schicht von Apiezon-Fett befestigt, um den thermischen Kontakt zwischen Meßplattform und Probe herzustellen. Die Messungen erfolgten zwischen 2(100) K und 200(350) K unter Hochvakuum, damit möglichst adiabatische Bedingungen im Kalorimeter erreicht wurden (Reduktion des thermischen Kontaktes mit dem umgebenden Wärmebad).

Die Rohdaten der spezifischen Wärmekapazität C_p werden auf die Beiträge der Addenda (Probenhalter und Apiezon-Fett) C_{Add} korrigiert, die zuvor in separaten Messreihen bestimmt wurden. Die molare spezifische Wärme c_p ergibt sich schließlich aus

$$c_{\rm p} = (C_{\rm p} - C_{\rm Add})M/m,$$

wobei M hier die Molmasse und m die Probenmasse der gemessenen Verbindung bezeichnen.

3 Lanthan(hydrid)iodide LaI₂ und LaI₂H_x

3.1 Allgemeines

Dem Phasendiagramm des Systems La/LaI₃ (Abb. 3.1) zufolge schmilzt LaI₂ bei ca. 1100 K inkongruent, wobei die flüssige Phase nahezu identischer Zusammensetzung mit La-Metall im Gleichgewicht steht [52].

Lanthandiiodid kristallisiert in der tetragonalen Ti₂Cu-Struktur (Raumgruppe: *P4/mmm*) [53]. Planarquadratische 4⁴ Netze der La-Atome sind von gleichartigen Netzen der I-Atome eingeschlossen (Abb. 3.2), so dass jedes La-Atom von einem Würfel aus I-Atomen umgeben ist, der senkrecht zum Netz geringfügig gestaucht ist. Die für LaI₂ beobachtete metallische Leitfähigkeit [19, 52, 54] und das schwache paramagnetische Verhalten [19, 54] weisen darauf hin, dass La im bekannten dreiwertigen Valenzzustand vorliegt, wie es der Formulierung La³⁺(Γ)₂e⁻ entspricht. Das "überschüssige" Elektron am La-Atom ist durch die Ausbildung von Metall-Metall Bindungen über alle Nachbarn delokalisiert und führt zum Metallcharakter von LaI₂. Bandstrukturrechnungen nach der TB-LMTO-ASA Methode [19, 20] ergaben, dass das mit einem Elektron pro Formeleinheit LaI₂ besetzte Leitungsband nahezu vollständig aus La-5d-Bändern besteht. Der 4f⁰5d¹-Grundzustand der La-Atome wurde auch durch Messungen der Photoelektronenspektren an LaI₂ nachgewiesen [54].

Abb. 3.1 Phasendiagramm des Systems La/LaI₃ [52].

Abb. 3.2 Perspektivische Darstellung der Struktur von LaI₂ entlang der *b*-Achse (I, La sind mit abnehmender Größe gezeichnet).

Nach Untersuchungen von *Imoto* und *Corbett* [21] erfolgt die H-Aufnahme durch LaI₂ bis zur (erwarteten) Grenzzusammensetzung LaI₂H_{0.95}, einer salzartig als La³⁺ Γ_2 H⁻ beschreibbaren Verbindung. Allerdings ist die Änderung der Zusammensetzung nicht kontinuierlich, sondern es wurde für LaI₂H_x eine Mischungslücke bei 1170 K mit $0 \le x \le 0.5$ gefunden. Die für LaI₂H gemessenen Röntgenpulverdiagramme ließen vermuten [55], dass mit der H-Aufnahme eine Umwandlung der Schweratomstruktur von der Ti₂Cu- in die 2H-NbS₂-Anordnung erfolgt.

Im folgenden Kapitel wird über Untersuchungen im System LaI₂/H₂ mit dem für die physikalische Fragestellung bedeutsamen Ergebnis einer Umordnung der Schweratomstruktur berichtet.

3.2 Synthese von LaI₂

Lanthandiiodid wurde durch Erhitzen eines gepressten Gemenges von LaI_3 und La im molaren Verhältnis 1:1 bei a) 1020 K (1d) und dann 1120 K (5d) als violetter Kompaktstoff (LaI_2 (1)) mit Metallglanz und b) bei 1110 K (4 Stunden) und dann 1070 K (16 Stunden) als dunkel violett glänzendes Pulver (LaI_2 (2)) dargestellt. Die Synthesen wurden in unter 1 bar Ar zugeschweißten Tantal-Kapseln durchgeführt, die nach der Reaktion in Wasser abgeschreckt wurden. Die Gitterparameter beider Proben (a = 3.9198(2)/3.9205(3) Å, c = 13.966(1)/13.963(1) Å, jeweils für a) bzw. b) waren fast identisch und stimmten mit den Literaturwerten a = 3.922 Å und c = 13.97 Å [56] überein.

Erhitzen von stöchiometrischen LaI₃/La-Mengen führt sowohl bei Temperaturen ober-(Versuch a) als auch unterhalb (Versuch b) des Schmelzpunktes von LaI₂ (1103 K) zur Darstellung von Lanthandiiodid in quanitativer Ausbeute, wobei es in unterschiedlichem Habitus kristallisiert.

3.3 Hydrierung von LaI₂

Zur Hydrierung wurde typisch ca. 1 g LaI₂ in einem Mo-Schiffchen unter 1 bar H₂ in der bereits beschriebenen Apparatur (Abschn. 2.3) aufgeheizt. Langsames Erhitzen der Probe auf 920 K und nachfolgendes Tempern bei dieser Temperatur für 5 Stunden ergab hellgraues LaI₂H_{0.95(3)} (**3**). Die Reaktion bei 1000 K (1h) führte zu LaI₂H_{0.92(3)} (**4**). Details der Reaktionsbedingungen sind in Tabelle 3.1 zusammengefasst.

N	Ausgangssubstanz	Reaktionsbedingungen	Produkt
1	$LaI_{2}(1)$	820 K, 1 bar H ₂	LaI_2H_x , (LaI ₂)
		2-maliges Erhitzen ^a	
2	$LaI_2(1)$	920 K, 1 bar H ₂	LaI_2H_x , (LaI_2)
		2-maliges Erhitzen ^a	
3	$LaI_{2}\left(2\right)$	5 h, 920 K, 1 bar H ₂	$LaI_{2}H_{0.95(3)}(3)$
4	$LaI_{2}\left(2\right)$	1 h, 1000 K, 1 bar H_2	$LaI_{2}H_{0.92(3)}(4)$

Tabelle 3.1 Versuche zur Hydrierung von LaI2

Verfolgt man den Druckanstieg in der mit 1 bar H₂ gefüllten Hydrierapparatur bei steigender Temperatur (Abb. 3.3), so zeigt sich bereits wenig oberhalb 420 K ein Unterschied bei einer Beschickung mit LaI₂ gegenüber der leeren Apparatur. Trotz zunehmender Abweichung bis zur Endtemperatur von 920 K bleibt die H-Aufnahme jedoch unvollständig und das Reaktionsprodukt dunkel verfärbt und unter dem Mikroskop heterogen.

^a Die Probe wurde mit einer Heizrate von 5°/min auf die gegebene Temperatur erhitzt und dann unter Luft abgekühlt. Das entstandene Produkt wurde verrieben und bei gleichen Reaktionsbedingungen noch einmal erhitzt.

Abb. 3.3 Temperaturabhängigkeit des Wasserstoffdrucks (Aufheizgeschwindigkeit: 5°/min) für eine leere (●) und eine mit LaI₂ beschickte Apparatur (▲). Der Punkt (Δ) weist auf einen Druckabfall nach Tempern der Probe bei 920 K für 5 Stunden hin.

Erst fünfstündiges Belassen der Probe bei 920 K führt (bei weiterer Druckabnahme) zur Aufhellung der Probe, deren gefundene analytische Zusammensetzung, $LaI_2H_{0.95(3)}$, in Übereinstimmung mit der aus der H₂-Druckverminderung berechneten Zusammensetzung, $LaI_2H_{0.97}$, der angestrebten Grenzzusammensetzung LaI₂H entspricht.

Mit steigender Temperatur verläuft die H-Aufnahme schneller, was allerdings aus reaktionskinetischen Gründen erwartet werden kann. Außer den Reaktionsparametern (Temperatur, Zeit, Wasserstoffdruck) spielt der Habitus der Ausgangssubstanz eine große Rolle. Das aus Schmelzen erhaltene LaI₂ (1) kristallisiert in einer kompakten Form und lässt sich zu dünnen plastischen Plättchen mit großer Oberfläche zerstoßen. Diese können nicht unter den angegebenen Bedienungen vollständig hydriert werden, wie das Vorliegen der Röntgenreflexe des Ausgangsproduktes nach der Hydrierung belegt. Demgegenüber ist es gelungen, die Pulverprobe LaI₂ (2) restlos zu hydrieren.

3.4 Strukturuntersuchung an Pulvern

Die Röntgenpulverdiagramme der bei 650°C erhaltenen Probe LaI₂H (**3**) sowie des bei 730°C erhaltenen Produktes LaI₂H (**4**) sind in Abb. 3.4 dem Diagramm der Ausgangssubstanz LaI₂ (**2**) gegenüber gestellt. Beschränkt man sich auf die scharfen Reflexe in der Aufnahme von **3**, so lassen sich diese ebenso wie für **4** hexagonal als 00*l* und *hhl* indizieren. Der bei der Hydrierung erfolgte Strukturwechsel ist damit belegt, und unter Zugrundelegung einer Schweratomanordnung im 2H-NbS₂- bzw. 2H-MoS₂-Typ (Raumgruppe $P6_3/mmc$) erhält man die Gitterparameter a = 4.216 Å und c = 15.50 Å.

Abb. 3.4 Röntgenpulverdiagramme für LaI₂ und für die Hydridiodide, dargestellt bei 650°C (**3**) sowie bei 730°C (**4**).

Das Röntgendiagramm von LaI₂H (**3**) zeigt zwei Arten von Reflexen. Alle Reflexe mit h-k= $3n\pm1$ sind diffus, insbesondere sind die Reflexe bei $2\theta = 14^{\circ}$ und 17° stark verbreitert. Die Verbreiterung der Reflexe beruht auf Stapelfehlordnungen der Schichtkristalle in [001]-Richtung. Eine Modellierung des Röntgendiagramms gelingt über die Berechnung von geordneten Überstrukturen mit schrittweise zunehmender Identitätsperiode. Qualitativ werden die Peaklagen des Pulverdiagramms von LaI₂H (**3**) auf der Basis vom 2H-MoS₂-Typ gut beschrieben. Willkürliche Kombinationen von Schichtpaketen vom MoS₂/NbS₂-Typ mit zunehmender Periodizität in Stapelrichtung führen zu zusätzlichen Reflexen, die gehäuft um $2\theta = 14^{\circ}$, 23° , 31° auftreten, wie Simulationen von Röntgenpulverdiagrammen belegen. Ausgehend vom Typ 2H-MoS₂ mit der Stapelfolge A γ AC α C bzw. 2H-NbS₂ mit A β AC β C (vgl. Abb. 3.5a) als S2-Modell ist die Entwicklung bis zum 5-Schichtmodell (S5) in Abb. 3.6 dargestellt. Das experimentelle Röntgendiagramm von LaI₂H (3) kann als die Einhüllende einer durch viele Zusatzreflexe charakterisierten Überstruktur einer beliebigen Multischichtfolge der Typen MoS₂/NbS₂ in Fortführung der Konstruktion S2 bis S5 bis zu ca. S1000 beschrieben werden. Das Beugungsdiagramm dieser quasiunendlichen Abfolge ist in Abb. 3.6 als S_{inf}-Modell wiedergegeben.

Diese Berechnung des Pulverdiagramms von LaI₂H (**3**) wurde mit dem Programm DIFFAX [36] unter Berücksichtigung von Stapelwahrscheinlichkeiten, wie sie in Abb. 3.5b skizziert sind, durchgeführt. Ausgehend von der Sequenz *i*, A γ A (bzw. A β A), gibt es vier Möglichkeiten ein zweites Schichtpaket *j* auf *i*, gewichtet mit einem Wahrscheinlichkeitsfaktor *p_{ij}*, zu stapeln: B α B, B γ B, C α C, C β C.

Abb. 3.5 (a) Schematische Wiedergabe der Strukturtypen 2H-MoS₂ und 2H-NbS₂. (b) Beim Fehlordungsmodell folgen, ausgehend von Schichtpaketen 1(2) A $\gamma(\beta)$ A, mit einer Wahrscheinlichkeit p_{ij} die Schichten 3-6 usw.

 Abb. 3.6 Gegenüberstellung des von LaI₂H (3) gemessenen und der mit Multischicht-Stapelvarianten vom MoS₂-/NbS₂-Typ berechneten Röntgenpulverdiagramme. Die Stapelvarianten sind jeweils angegeben. Das Simulationsdiagramm S_{inf} wurde durch ein Fehlordnungsmodell nach Abb. 3.5b erhalten.

Für die darauf folgenden Sequenzen verfährt man in gleicher Weise. Legt man p_{ij} der Art fest, dass $\sum_{j} p_{ij} = 1$ ist, so lassen sich Pulverdiagramme von Schichtstrukturen unterschiedlicher Fehlordnung modellieren. Wie in Abb. 3.6 (S_{inf}-Modell) gezeigt, stimmt das nach diesem Bauprinzip mit statistisch äquivalent ($p_{ij} = 1/4$) fehlgeordneten Schichtpaketen **1-6** berechnete mit dem beobachteten Diagramm von LaI₂H (**3**) gut überein.

Lässt man die Ausbildung von Domänen zu (deren Ausdehnung noch unterhalb der Kohärenzlänge für Röntgenstrahlung liegt), so ist statt der statistisch äquivalenten Wahrscheinlichkeitsfaktoren ein Satz gewichteteter Faktoren $p_{15} = p_{23} = p_{32} = p_{46} = p_{51} = p_{64} =$ 1-*q* und $p_{14} = p_{26} = p_{35} = p_{41} = p_{53} = p_{62} = q$ (alle andere $p_{ij} = 0$) zu wählen, der eine Umwandlung der Schweratomanordnung vom 2H-MoS₂- zum 2H-NbS₂-Typ durch Deformationsfehler mit einer Wahrscheinlichkeit *q* berücksichtigt. Mit einem Wert *q* = 0.3, der einer Stapelvariante vom 2H-MoS₂- (70%) mit 2H-NbS₂-Typ (30%) entspricht, werden die Bereiche um $2\theta = 14^{\circ}$ und 17° besonders gut wiedergegeben, wie ein Vergleich von berechnetem und beobachtetem Röntgenpulverdiagramm belegt (Abb. 3.7a).

Die im Gegensatz zu LaI₂H (**3**) deutlich schärferen Reflexe in der Röntgenpulveraufnahme von LaI₂H (**4**) (Abb. 3.7b) lassen sich sämtlich in $P6_3/mmc$ mit a = 4.2167(7) Å und c = 15.488(3) Å indizieren. Eine befriedigende Übereinstimmung zwischen beobachtetem und berechnetem Diagramm ergibt die Intensitätsrechnung eines Fehlordnungsmodells mit q = 0.9, d.h. 90% 2H-NbS₂-Typ und 10% 2H-MoS₂-Typ, obwohl nicht alle Intensitäten wegen zusätzlicher Stapelfehler korrekt wiedergegeben werden.

Abb. 3.7 Gegenüberstellung experimenteller und unter Berücksichtigung von Stapelwahrscheinlichkeiten q für Domänen vom 2H-NbS₂- und 2H-MoS₂-Typ berechneter Röntgenpulverdiagramme für (**a**) LaI₂H (**3**) und (**b**) LaI₂H (**4**).
3.5 Zur Phasenbreite von LaI₂H_x

Zur Synthese von Proben mit geringerem Wasserstoffgehalt LaI_2H_x (Tab. 3.2) wurde ein Gemenge unterschiedlichen Gehaltes von LaI_2 und LaI_2H (ca. 0.5 g) zu Pillen gepresst, in Mo-Folie eingewickelt und unter 1 bar Ar in Quarzglasampullen eingeschmolzen.

Röntgenografische Untersuchungen an Proben LaI₂H_x mit variablem Wasserstoffgehalt (Tab. 3.3) bestätigen das Vorhandensein einer Mischungslücke, die zuvor über Dissoziationsdruckmessungen bei 1073 K bestimmt worden war [21]. Abbildung 3.8 gibt den Gang der Gitterparameter als Funktion des Wasserstoffgehaltes wieder, der für homogene Proben analytisch bestimmt wurde. Für kleine Wasserstoffgehalte, x = 0.1 bzw. 0.25, liegen Gemenge aus LaI₂ (im Rahmen der Messgenauigkeit identische Gitterparameter wie die des reinen LaI₂) und Hydridiodid vor. Unter der Annahme einer linearen Variation der Gitterparameter mit dem Wasserstoffgehalt liegt die Mischungslücke im Bereich $0 \le x \le 0.5$ (±0.05) in guter Übereinstimmung mit den früher ermittelten Werten.

N	Ausgangssubstanzen	Reaktionsbedingungen	Produkt
5	$LaI_{2}(1)/LaI_{2}H(0.9:0.1)$	1 d, 920 K, 1 bar Ar	LaI_2, LaI_2H_x
6	$LaI_{2}(1)/LaI_{2}H(0.75:0.25)$	1 d, 920 K, 1 bar Ar	LaI_2 , LaI_2H_x
7	$LaI_{2}(2)/LaI_{2}H(0.4:0.6)$	36 h, 1000 K, 1 bar Ar	$LaI_{2}H_{0.66(3)}$
8	$LaI_{2}(2)/LaI_{2}H(0.2:0.8)$		$LaI_{2}H_{0.68(3)}$
9	$LaI_{2}(1)/LaI_{2}H(0.25:0.75)$	1 d, 920 K, 1 bar Ar	$LaI_{2}H_{0.75}^{*}(LaI_{2})$

Tabelle 3.2 Versuche zur Darstellung von LaI_2H_x

* keine analytische Charakterisierung, aus dem Ausgangsgemenge erwartete Zusammensetzung

Abb. 3.8 Gitterparameter von LaI_2H_x in Abhängigkeit vom H-Gehalt. Der Beginn der Mischungslücke LaI_2H_x um $0.45 \le x \le 0.55$ ist gestrichelt dargestellt.

Produkt	a/Å	$c/{ m \AA}$	$V/\text{\AA}^3$
$LaI_{2}H_{0.95(3)}(3)$	4.2158(7)	15.508(3)	238.70(6)
$LaI_{2}H_{0.92(3)}(4)$	4.2167(7)	15.488(3)	238.57(7)
$LaI_{2}H_{0.75}(9)$	4.2353(6)	15.412(4)	239.37(5)
$LaI_{2}H_{0.66(3)}(7)$	4.2274(2)	15.418(2)	238.61(2)
$LaI_{2}H_{0.68(3)}(8)$	4.2271(2)	15.422(1)	238.64(2)
$LaI_{2}H_{x}(5)$	4.2356(9)	15.378(8)	238.9(1)
$LaI_{2}H_{x}(6)$	4.2360(5)	15.401(6)	239.39(6)

Tabelle 3.3 Gitterparameter von LaI_2H_x

3.6 Suszeptibilitätsmessungen

Abbildung 3.9 zeigt die Temperaturabhängigkeit der bei H = 10 kOe gemessenen Suszeptibilität von LaI₂ (**2**) und LaI₂H_{0.95} (**3**). Die Molsuszeptibilität χ_m von LaI₂ bzw. LaI₂H_{0.95} bei Raumtemperatur beträgt 109·10⁻⁶ bzw. 118·10⁻⁶ cm³/mol und steigt mit sinkender Temperatur an. Das beobachtete paramagnetische Verhalten ist in Übereinstimmung mit früher ermittelten Ergebnissen. Burrow et al. [19] bezog dies auf eine Verunreinigung der Probe mit LaI_{2.42}. Nach der Korrektur des paramagnetischen Anteils wurde die *Pauli*-Suszeptibilität $\chi_P \approx 100 \cdot 10^{-6}$ cm³/mol berechnet, die einen drei mal größeren als für d¹-Metall geschätzten Wert aufweist. Aus einer späteren Untersuchung wurde für LaI₂ ein effektives magnetisches Moment $\mu_{eff} = 0.5 \ \mu_B$ ermittelt, das mit einem Beitrag von 4f-Zuständen zum Valenzband in Zusammenhang gebracht wurde [54].

Der unterschiedliche und unreproduzierbare Anstieg von $\chi_m(T)$, der für verwandte LaI₂ bzw. LaI₂H_x Proben beobachtet wurde, lässt vermuten, dass der beobachtete schwache Paramagnetismus von Verunreinigungen stammt.

Abb. 3.9 Molsuszeptibilitäten von LaI₂ (2) und LaI₂H_{0.95} (3) bei einer Messfeldstärke von 10 kOe (zfc) als Funktion der Temperatur. *Inneres Bild* : Temperaturunbhängige Suszeptibilitäten von LaI₂ (2) und LaI₂H_{0.95} (3) als Funktion der reziproken Feldstärke.

Probe	$C / \mathrm{cm}^3 \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$	$y_{1/2}{}^a / \%$	y _{7/2} ^a / %
$LaI_{2}(1)$	0.002	0.6	0.03
$LaI_{2}\left(2\right)$	0.006	1.6	0.08
$LaI_{2}H_{0.75}$ (9)	0.014	4	0.2
$LaI_{2}H_{0.95}(3)$	0.011	3	0.15
$LaI_{2}H_{0.92}(4)$	0.008	2	0.1

Durch die Linearapproximation der Molsuszeptibilität χ_m gegen 1/T im Temperaturbereich von 200-350 K erhält man nach Gl. 2.3 folgende Werte :

Zudem ist χ_m von der angelegten Magnetfeldstärke abhängig, was auf die Anwesenheit von ferromagnetischen Verunreinigungen hinweist. Es wurde experimentell nachgewiesen, dass sie aus den als Ausgangssubstanz verwendeten Lanthanspänen herrühren. Wie bei den LaI₂und LaI₂H_x-Proben zeigte die Molsuszeptibilität einer La-Probe eine starke Abhängigkeit vom äußeren Magnetfeld. Nach der Korrektur der Rohdaten für paramagnetische sowie für ferromagnetische Beiträge wurden die folgenden temperatur-unabhängigen Suszeptibilitäten berechnet (Abb. 3.9, inneres Bild):

LaI₂ (2) : $\chi_0 (H_{\text{ext}} \to \infty) = 69(2) \cdot 10^{-6} \text{ cm}^3/\text{mol}$

LaI₂H_{0.95} (**3**) : $\chi_0 (H_{\text{ext}} \to \infty) = 26(2) \cdot 10^{-6} \text{ cm}^3/\text{mol}$

Bei der Annahme voller Lokalisierung von freien Elektronen in LaI₂H, lässt sich der *Pauli*-Paramagnetismus von LaI₂ als Differenz χ_{Pauli} (LaI₂) = χ_0 (LaI₂) – χ_0 (LaI₂H) = 43(2)·10⁻⁶ cm³/mol bestimmen. Dieser Wert stimmt gut mit $\chi_{Pauli}^{calc} = 2 N(E_F) \mu^2_B \approx 39\cdot10^{-6} \text{ cm}^3/\text{mol}$ überein, der mit einer aus der Bandstrukturrechnung [20] ermittelten Zustandsdichte $N(E_F)$ von 0.6 Zuständen/(Spin·eV·LaI₂) berechnet ist.

^a $y_{1/2}$ und $y_{7/2}$ entsprechen den Verunreinigungskonzentrationen in Atomprozent bezogen auf S = 1/2bzw. S = 7/2-System ($y_{\rm S} = \frac{8C}{g^2 S(S+1)}$).

4 LaI₂: Substitutions- und Interkalationsversuche

Durch Ionenersatz oder Interkalation können die elektronischen Eigenschaften von bereits bestehenden Verbindungen ohne Änderung der Wirtsstruktur modifiziert werden. Bei allen in diesem Kapitel beschriebenen Ersatz- und Interkalationsversuchen handelt es sich um topotaktische Reaktionen, d.h. die Substitution bzw. die Interkalation erfolgt in die bereits synthetisierte Wirtsverbindung.

4.1 Versuche zum Kationenersatz La_{1-x}Ba_xI₂

Die früheren orientierenden Versuche von *Bäcker* [57], bei denen formal dreiwertige Lanthanionen in LaI₂ partiell gegen zweiwertige Erdalkalimetallionen (M = Ca, Ba) durch eine Komproportionierung von LaI₃ mit (La, M) ausgetauscht werden sollten, waren nicht gelungen. Es wurden keine Hinweise auf Einbau der Erdalkalimetallatome in die Struktur gefunden.

Im Rahmen dieser Arbeit wurden die Versuche zum Kationenersatz $La_{1-x}Ba_xI_2$ ($0.1 \le x \le 0.2$) mit einem modifizierten Verfahren wiederaufgenommen (Tab. 4.1, S.30). Hierfür dienten LaI_2 und BaI_2 als Ausgangssubstanzen, die in gewünschter Stöchiometrie oberhalb des Schmelzpunktes von BaI_2 (1013 K) getempert wurden. Nach der Reaktion ergab sich keine signifikante Farbveränderung des Produktes, es sah nach dem Vermahlen heterogen aus. Röntgenografische Untersuchungen zeigten keine Verschiebung der Reflexlagen von LaI_2 , während einige neue Reflexe gefunden wurden (Abb. 4.1). Da die Intensität von zusätzlichen Linien fast linear vom Bariumanteil *x* abhängig ist, liegt es nahe, diese auf Bildung einer stöchiometrischen Phase zurückzuführen. Tatsächlich stimmen alle nicht mit Lanthandiiodid korrespondierenden Röntgenlinien mit den berechneten Reflexen der vor wenigen Jahren beobachteten ternären Phase LaBaI₄ [58] überein.

Im Gegensatz zum schichtartigen LaI₂ besteht die Struktur von LaBaI₄ aus LaI_{8/2}- bzw. BaI_{8/2}-Ketten von über gemeinsame Quadratflächen verknüpften quadratischen Antiprismen La(Ba)I₈. In ionischer Beschreibung sind La³⁺(Γ)₂(e^-) und La³⁺Ba²⁺(Γ)₄(e^-) isoelektronisch.

So führt eine direkte Reaktion zwischen Diiodiden zur Bildung von stöchiometrischem ternärem Iodid LaBaI₄ statt Mischphasen La_{1-x}Ba_xI₂ :

 $(1-x) \operatorname{LaI}_2 + x \operatorname{BaI}_2 \rightarrow (1-2x) \operatorname{LaI}_2 + x \operatorname{LaBaI}_4.$

Abb. 4.1 Röntgenpulverdiagramme von "La_{1-x}Ba_xI₂": x = 0.1 (*oben*) und x = 0.2 (*unten*). Die Strichdiagramme zeigen die für LaI₂ (*oben*) bzw. LaBaI₄ (*unten*) berechneten Diagramme.

Offensichtlich ist die kontinuierliche Substitution von La durch Ba in LaI₂ kompliziert wegen der La-La-Bindung. Der Einbau von Erdalkalimetallatomen ergibt eine Strukturänderung in LaBaI₄, so dass die Ln- und Erdalkalimetallatome sich in voneinander isolierten Bereichen befinden.

Die an den erhaltenen Proben durchgeführten Messungen der magnetischen Suszeptibilität wiesen auf Auftreten von Supraleitung bei einer Temperatur von ca. 5 K hin. Allerdings betrug der supraleitende (Shielding-) Anteil nur bis zu 0.5%, der offensichtlich auf Spuren von Lanthanmetall ($T_c = 4.8$ K (hex)) beruht [59].

4.2 Versuche zum Anionenersatz La(I_{1-x}Te_x)₂

Ein alternativer Weg zur Valenzelektronenänderung in LaI₂ besteht in partieller Substitution der einwertigen Halogen- durch zweiwertige Chalkogenatome. Dazu scheint Tellur besonders geeignet, weil es einen ähnlichen Radius (Te²⁻ : 2.21 Å) wie das I-Anion (I⁻ : 2.20 Å) besitzt.

Edukte	Reaktions-	Produkte	$T_{\rm c}$ / K	Gitterparameter / Å
	bedingungen		(SL-Anteil) ^a	
LaI ₂ /BaI ₂	1110 K, 2 Std	LoL LoDol	4.9	a = 3.9198(2)
(0.9:0.1)	1075 K, 4 d	Lal ₂ , LaDal ₄	(0.3)	$c = 13.966(1)$ (wie LaI_2)
LaI_2/BaI_2	1110 K, 2 Std	LaL LaDal	4.8	a = 3.9212(2)
(0.8:0.2)	1110 K, 4 d	Lal ₂ , LaDal ₄	(0.5)	$c = 13.968(1)$ (wie LaI_2)
				$La_2I_2Te: a = 4.5067(8)$
тати	1095 K, 5d	La ₂ I ₂ Te, La ₂ I ₅ (LaI ₂)	4.7	c = 32.59(1)
$Lal_2/Lale_2$			4./	La_2I_5 :
(0.9:0.1)			(1.1)	a = 8.616(5), b = 4.402(3),
				$c = 14.59(2), \beta = 90.2(1)^{\circ}$
TT/TT			4.5	<i>LaTe</i> : $a = 6.4291(3)$
$Lal_2/Lale_2$	1095 K, 5d	LaTe, LaI ₃	4.5	LaI_3 : $a = 13.94(1)$,
(0.8:0.2)			(1.2)	b = 10.03(1), c = 4.424(5)
				La_2Te_3 : $a = 9.6172(4)$
$Lal_2/LaTe_2$	1095 K. 5d	La ₂ Te ₃ , LaI ₃	4.8	LaI_3 : a = 13.946(6).
(0.5:0.5)		;, 	(0.1)	b = 10.013(6), c = 4.432(2)

 Tabelle 4.1
 Ergebnisse der Ionenersatzversuche an LaI2

Analog zum LaI₂ kristallisiert das Lanthanditellurid in einer schichtartigen Struktur, in der planar-quadratische (4⁴) Netze der La-Atome von quadratischen, jedoch zu [Te₂]-Dimeren deformierten Netzen der Te-Atome umgeben sind [60]. Wegen der Ähnlichkeit der Schichttopologien wurde versucht, Mischkristalle La(I_{1-x}Te_x)₂ im Bereich 0 < x < 0.5 durch eine Reaktion zwischen LaI₂ und LaTe₂ darzustellen. Dafür wurden Presslinge der Edukte unterschiedlicher Verhältnisse (etwa 0.5 g) in zugeschweißten Ta-Ampullen getempert. Lanthanditellurid (LaTe_{1.9}) als dunkelviolettes Pulver wurde aus den Elementen in einer unter Vakuum zugeschmolzenen Quarzglasampulle bei 1125 K (3d) dargestellt [61]. Die experimentellen Details sind in Tabelle 4.1 zusammengefasst.

Die erhaltenen Proben ließen sich optisch von den Edukten unterscheiden. In allen Fällen sahen die Reaktionsprodukte heterogen aus, wobei sich deren Farbe mit zunehmendem x von dunkelfarbig zu hellgrau veränderte. Die Röntgenpulverdiagramme (Abb. 4.2) und die an einigen ausgewählten Partikeln ausgeführte EDX-Analyse zeigten, dass die Reaktionsprodukte als Funktion des Anteils x unterschiedlich sind (Tab. 4.1).

In Versuchen zur Darstellung von La $(I_{1-x}Te_x)_2$ mit einem geringen Telluranteil x = 0.1 wurde eine neue schichtartige Verbindung La₂I₂Te (s. Abschn. 8.2) gefunden.

^a Der supraleitende Anteil bezogen auf das Probenvolumen wurde nach S_{SL} [%] = $4\pi \chi [cm^3/g] \cdot \rho [g/cm^3] \cdot 100$ berechnet.

Abb. 4.2 Röntgenpulverdiagramme von "La $(I_{1-x}Te_x)_2$ " : x = 0.1 (*oben*), x = 0.2 (*in der Mitte*), x = 0.5 (*unten*). Vergleich der Strichdiagramme für La₂I₂Te und einige binäre Phasen. Die Pfeile zeigen unidentifizierte Reflexe an.

Das Erhitzen von Gemengen LaI₂/LaTe₂ mit höherem *x* ergab die Bildung von binären Phasen LaI₃ und LaTe bzw. La₂Te₃, für x = 0.2 bzw. 0.5^{a} . Es ist auffallend, dass diese Substitionsreaktionen zu einem Redox-Prozess führen :

9/10 LaI₂ + 1/10 LaTe₂
$$\rightarrow$$
 1/5 La₂I₂Te + 3/10 La₂I₅
4/5 LaI₂ + 1/5 LaTe₂ \rightarrow 2/5 LaTe + 3/5 LaI₃
1/2 LaI₂ + 1/2 LaTe₂ \rightarrow 1/3 La₂Te₃ + 1/3 LaI₃

Für alle Proben wurde die magnetische Suszeptibilität in einem Temperaturbereich zwischen 2 und 300 K gemessen. Wie bereits bei "La_{1-x}Ba_xI₂"-Proben beobachtet wurde, zeigen die hier erhaltenen Proben einen Übergang in den supraleitenden Zustand bei etwa 4.7 K, der sich auf Verunreinigung mit La-Spuren (0.1-1.2%) zurückführen lässt (vgl. Tab. 4.1, S. 30).

4.3 Interkalation von Alkalimetallen

Die in Kapitel 3 beschriebenen Versuche zur Darstellung von Hydridiodiden LaI_2H_x , d.h. Einbau der Wasserstoffatome in Metallatomschichten, können als Interkalationsreaktionen von Elektronenakzeptoren in LaI_2 bezeichnet werden, da die Wasserstoffatome Elektronen aus der Wirtsstruktur abziehen $[La^{3+}(\Gamma)_2H_x(e^{-})_{1-x}]$. Eine andere Möglichkeit zur Variation des Fermi-Neveaus in schichtartigen Verbindungen bietet eine Interkalation von Elektronendonatoren bzw. neutralen organischen Molekülen (z.B. Amine, Phosphine, Isocyanate) in die van-der-Waals-Lücken. Im letzten Fall wird die Bandstruktur durch eine Veränderung der Gittermetrik in Stapelrichtung stark verändert.

Bekannte Beispiele für kationische Interkalationsverbindungen sind Metalldichalkogenide der 4.-6. Nebengruppe A_xMChal_2 (A = Elektronendonator, meist Alkalimetall) [62], in denen sich die eingebauten Kationen zwischen den Schichtpaketen in oktaedrischer (Li_xTiS₂), tetraedrischer (Ag_xTaS₂ [63]) oder trigonal prismatischer (K_xTiS₂) Anionenumgebung befinden können.

Hier wurde versucht, interkalierte Verbindungen Na_xLaI_2 durch eine topotaktische Reaktion in Na-Schmelzen darzustellen.

$$LaI_{2 f.} + x Na_{fl.} \rightarrow Na_{x}LaI_{2}$$

Hierfür wurden – entsprechend "Na_{0.5}LaI₂"– stöchiometrische Mengen von LaI₂ (485 mg) und Na (14.7 mg) 15 d bei 770 K in einem zugeschweißten Ta-Tiegel getempert. Das Produkt enthielt NaI, LaI und LaI₂.

^a Pulverdiffraktogramme der Produkte von La($I_{2-x}Te_x$)₂-Ansätzen (x = 0.2 und 0.5) enthielten allerdings einige unidentifizierbare Reflexe.

Diese topotaktische Festkörperreaktion ist für eine Interkalation nicht geeignet, da Natriummetall unter den angewandten Bedingungen als Reduktionsmittel unter Bildung strukturfremder Phasen fungiert. Die Reaktionen zwischen LaI₂ und Na-Schmelzen führten zur weiteren Reduktion des Lanthandiiodides unter Bildung von LaI [7], des einzigen bisher bekannten Monohalogenides der Seltenerdmetalle. Die im Zuge dieser Arbeit durchgeführten Untersuchungen an LaI werden in Kapitel 8.3 beschrieben.

5 Aspekte zum Magnetismus

Das Verhalten von Verbindungen im Magnetfeld hängt wesentlich davon ab, ob darin Zentren mit magnetischen Momenten, d.h. ungepaarten Elektronen vorhanden sind und ob es sich um einen metallischen Leiter oder einen Isolator handelt. Als Beispiele eines Systems mit permanenten magnetischen Momenten seien d- und f-Element-Verbindungen genannt, in denen die Metalle unvollständig gefüllte Unterschalen mit ungepaarten Elektronen haben.

5.1 Wechselwirkungen zwischen den magnetischen Momenten

Generell kann die Austauschenergie zwischen lokalisierten Spins S_i und S_j durch einen *Heisenberg*-Operator beschrieben werden

$$\hat{H}_{ex} = -2\sum_{ij} J_{ij} \hat{S}_i \bullet \hat{S}_j$$
, (5.1)

wobei das Vorzeichen des Austauschparameters, J_{ij} , mit dem Typ der Wechselwirkung zusammenhängt. Bei J > 0 ist eine parallele Spinrichtung bevorzugt und man spricht von ferromagnetischer Kopplung. Im Falle J < 0 handelt es sich um antiferromagnetische Kopplung (antiparallele Spinrichtung bevorzugt). Der Austauschparameter J_{ij} wird in energetischen Einheiten (cm⁻¹ oder K) ausgedrückt und gibt das Maß der Kopplungsstärke.

Schreibt man Gleichung (5.1) in die Form um

$$H_{ex} = -2\sum_{ij} J_{ij} \left[\alpha \ S_i^z S_j^z + \beta \ (S_i^x S_j^x + S_i^y S_j^y) \right], \ (5.2)$$

dann lassen sich drei Extremfälle unterscheiden, die mit der Dimensionalität der Spin-Spin-Kopplung zusammenhängen :

- o $\alpha = \beta = 1 Heisenberg$ -Modell : Isotrope Wechselwirkung, so dass die Energie nur von der relativen Orientierung der Momente aber nicht von der Ausrichtung bezüglich der Gitterachsen abhängt;
- $\alpha = 0, \beta = 1 XY$ -Modell : Hier sind alle Orientierungen des Gesamtspins der einzelnen Zentren senkrecht zur z-Richtung bevorzugt;

• $\alpha = 1, \beta = 0 - Ising$ -Modell : In diesem Fall sind die Spins in der z-Richtung orientiert.

Das *Heisenberg*-Modell ist demnach für die Beschreibung der isotropen Austauschwechselwirkungen geeignet. Zu den *Heisenberg*-Systemen gehören z.B. Verbindungen, die paramagnetische Ionen mit fehlendem Bahnmoment (Mn^{2+} , Fe^{3+} , Gd^{3+} , Eu²⁺) besitzen. Die letzten zwei Modelle werden für den Fall von stark anisotropen Wechselwirkungen betrachtet.

Bezüglich ihrer Mechanismen sind zwei Klassen von Austauschkopplungen zu unterscheiden, nämlich *direkter* und *indirekter* Austausch. Im ersten Fall kommt es zu einem *direkten* Überlappen der Elektronenwellenfunktionen benachbarter Ionen. Dies führt zu einer starken jedoch kurzreichweitigen Kopplung, deren Stärke mit steigendem Abstand zwischen den Zentren exponentiell reduziert wird. Demgegenüber können die magnetischen Momente über lange Entfernungen *indirekt* durch verbrückende diamagnetische Atome (Superaustausch) bzw. Leitungselektronen (sog. RKKY-Mechanismus) gekoppelt werden.

5.1.1 RKKY-Kopplung

Zwischen lokalisierten Momenten in einem Metall gibt es Wechselwirkungen, die durch *Leitungselektronen* vermittelt werden. Die Kopplung ist darauf zurückzuführen, dass lokalisierte magnetische Momente Spins der Leitungselektronen polarisieren können. Diese Polarisierung spüren die benachbarten Momente, woraus eine indirekte effektive Kopplung zwischen den lokalisierten Momenten entsteht. Dieser als RKKY bezeichnete Kopplungsmechanismus wurde von <u>R</u>uderman, <u>K</u>ittel [64], <u>K</u>asuya [65] und <u>Y</u>oshida [66] entwickelt.

Die Spinpolarisation der Leitungselektronen ist nicht auf die unmittelbare Nachbarschaft der lokalen Momente beschränkt, sondern ist von großer Reichweite und oszilliert. Aus der für ein Modell des freien Elektrons^a abgeleiteten RKKY-Theorie folgt, dass die Spin-Spin-Kopplung zwischen den magnetischen Zentren durch den effektiven *Heisenberg*-Operator (5.1) mit

$$J_{ij}^{RKKY} \sim F(x) = \frac{x \cos x - \sin x}{x^4}, \ x = 2k_F R_{ij}$$
(5.3)

beschrieben wird.

Aus Gleichung (5.3) ergeben sich zwei wichtige Resultate :

- Das Vorzeichen der indirekten RKKY-Wechselwirkung wird durch die oszillierende Funktion *F*(*x*) bestimmt (Abb. 5.1). In Abhängigkeit des Abstands (*R*_{ij}) zwischen *i* und *j* der magnetischen Zentren liegt eine ferromagnetische (+) oder antiferromagnetische (-) Wechselwirkung vor.
- 2. Die Stärke der Kopplung vom RKKY-Typ nimmt mit R_{ij}^{-3} ab.

^a Der Einfachheit halber wird das Elektronengas der Leitungselektronen als kugelförmiger Fermi-Körper betrachtet.

Abb. 5.1 RKKY-Wechselwirkung: Resultierende Spindichteverteilung der Leitungselektronen in der Nähe eines lokalen Momentes [67].

5.2 Verschiedene Erscheinungsformen des Magnetismus

Die magnetischen Wechselwirkungen von Verbindungen erfahren bei einer kritischen Temperatur T_c einen Übergang vom paramagnetischen in den magnetisch geordneten Zustand (langreichweitige Ordnung). Der Phasenwechsel äußert sich in Anomalien der spezifischen Wärmekapazität und des magnetischen Verhaltens, das für Systeme mit unterschiedlicher Spinverteilung charakteristisch ist.

Außer den klassischen Erscheinungsformen des Magnetismus, *Ferro-*, *Ferri-* und *Antiferro*magnetismus, gibt es noch weitere Formen, die als Varianten der klassischen Modelle angesehen werden können.

Speromagnetismus

In *Spero*magneten sind die Spins unterhalb einer Ordnungstemperatur $T_{\rm f}$ in willkürlichen Richtungen "eingefroren", weshalb keine spontane Magnetisierung auftritt (Abb. 5.2). Da die Spins eingefroren sind, kann sich ihre Orientierung im Gegensatz zu klassischen *Para*magneten als Funktion der Zeit nicht ändern. Die Spinverteilung ist nicht eindeutig, d.h. es gibt verschiedene Gleichgewichtszustände, welche durch die lokale Anisotropie *D* und die Austauschwechselwirkung J_{ij} an jedem einzelnen Ionenplatz bestimmt werden.

Asperomagnetismus

Unterhalb einer Ordnungstemperatur T_c zeigen die Spins zufällige Verteilung ihrer "leichten" Richtung, jedoch sind einige Richtungen im Gegensatz zu *Spero*magneten bevorzugt. Das Ergebnis ist die Existenz einer spontanen Magnetisierung unterhalb T_c .

Abb. 5.2 Schematische Spinverteilung (a) bei einem Spero-, (b) bei einem Asperomagnet, (c) bei einem superparamagnetischen Cluster, (d) bei einem Spinglas und (e) bei einem Mictomagnet.

Superparamagnetismus

Ein Ferromagnet besteht aus mehreren magnetischen Domänen, in denen alle Spins in gleiche Richtung orientiert sind. Für ein ferromagnetisches Partikel geringer Größe, dessen Volumen unterhalb eines kritischen Werts V_c liegt, ist die Multidomänenstruktur energetisch nicht mehr günstig. In diesen Partikeln tendieren alle Spins dazu, sich in einer einzelnen ferromagnetischen Domäne zu ordnen. Wie beim klassischen *Para*magneten kann die Magnetisierung solch kleiner Partikel zwischen verschiedenen Richtungen durch thermische Aktivierung fluktuieren. Diese Art des Magnetismus nennt man *Superpara*magnetismus. Im Gegensatz zum Paramagnetismus, wo die magnetischen Momente einzelner Atome fluktuieren, besteht das effektive magnetische Moment eines superparamagnetischen Partikels aus der Summe aller atomaren magnetischen Momente in einer Domäne.

Superparamagneten sind durch folgende Eigenschaften zu charakterisieren: sie zeigen kein Hystereseverhalten bei der Feldabhängigkeit der Magnetisierung M(H); zudem ist M eine universelle Funktion von H/T (Abb. 5.3)

Spinglas-Verhalten

Enthält eine Verbindungen paramagnetische Atome, so kann sich ab einer bestimmten atomaren Zusammensetzung unterhalb einer Ordnungstemperatur $T_{\rm f}$ ein speromagnetischer Zustand ausbilden. Ein solches Material wird als *Spinglas* bezeichnet, wenn ein "Einfrieren" der Spins aufgrund *konkurrierender* – ferro- (FM) und antiferromagnetischer (AFM) – Austauschwechselwirkungen zustande kommt. Typische Spingläser sind beispielsweise verdünnte metallische Legierungen aus Cu oder Au mit Übergangselementen Cu_{1-x}Mn_x bzw. Au_{1-x}Fe_x [68, 69], oder Mischkristalle Eu_xSr_{1-x}S [70].

Abb. 5.3 *links* : $\chi(T)$ für einen *Superpara*magneten bzw. ein *Spin(cluster)glas* als Funktion des Abkühlverfahrens (*zfc-* oder *fc-*Messung); in der *Mitte* und *rechts* : Magnetisierungskurven für einen *Superpara*magneten.

Ursache für das "Einfrieren" der Spins bzw. für *Spinglas*-Verhalten ist die zufällige Verteilung von Größe und Vorzeichen der Austauschkopplungen (positiv oder negativ), die z.B. durch eine willkürliche Verteilung der durch die RKKY-Wechselwirkungen gekoppelten magnetischen Ionen (keine Periodizität im Gitter der magnetischen Atome) oder in *frustrierten* magnetischen Systemen entsteht. Eine *frustrierte* Spinkonfiguration ist eine solche, bei der auf den Spin gleichzeitig positive (FM) und negative (AFM) Austauschwechselwirkungen wirken. Deshalb können verschiedene Spinkonfigurationen entstehen, die dadurch gekennzeichnet sind, dass ein Spin zwei Einstellungen bei gleicher Austauschenergie einnehmen kann (Abb 5.2).

Ein typisches Indiz für das Spinglas-Verhalten ist das Auftreten eines scharfen Maximums bei der Ordnungstemperatur T_f im Rahmen einer *ac*-Suszeptibilitätsmessung [71], das sich mit sinkender *H*-Frequenz zu tieferen Temperaturen verschiebt (Abb. 5.4). Eine weitere Besonderheit von Spingläsern ist das Temperaturverhalten der magnetischen Suszeptibilität χ unterhalb von T_f . Dieses Temperaturverhalten ist von der jeweiligen Vorgeschichte der Probe abhängig. Nach einer Abkühlung der Probe im Nullfeld unterhalb T_f und nachfolgendem Erhitzen bei einem kleinen äußeren Feld von wenigen *Oe* (sog. *zfc*-Messung) nimmt χ zuerst zu. Bei T_f erreicht die Suszeptibilität ihren maximalen Wert, und nimmt bei weiter steigender Temperatur ab. Wird die Probe in einem äußeren Feld abgekühlt (*fc*-Messung), so ergibt sich ein Verhalten ähnlich wie bei einem ferromagnetischen Material (Abb. 5.3).

Abb. 5.4 *zfc*-Suszeptibilität χ' des Spinglas-Systems Cu_{0.94}Mn_{0.06} als Funktion der Temperatur und der Feldfrequenz (inneres Bild) [69].

Mictomagnetismus (oder Spinclusterglas-Verhalten)

Bei den oben beschriebenen *idealen Spingläsern* ist die Konzentration der magnetischen Atome x so gering ($x \sim 0.1$ -1 at.-%), dass nur *langreichweitige* RKKY-Wechselwirkungen vorherrschen.

Mit einer wesentlichen Zunahme der magnetischen Atome ($x \sim 10$ at.-%) in Verbindungen bilden sich magnetische Cluster, in denen die Atome durch *kurzreichweitige* Wechselwirkungen gekoppelt sind. Zwischen den Clustern besteht eine indirekte RKKY-Kopplung. Sie werden *Mictomagnete* oder *Spinclustergläser* genannt. Wie bei idealen Spingläsern werden solche Cluster unterhalb einer Ordnungstemperatur $T_{\rm f}$ "eingefroren". Mictomagneten und Spingläser zeigen also ähnliche magnetische Eigenschaften.

Mit steigendem x nimmt die Größe der magnetischen Cluster zu, so dass ab einer kritischen Konzentration x_c typische kooperative und langreichweitige Ordnung auftritt.

6 Gadolinium(hydrid)iodide GdI₂ und GdI₂H_x

6.1 Einleitung

Von den "metallischen" Seltenerdmetalldiiodiden $\text{Ln}^{3+}(\Gamma)_2(e^-)$ (Ln = Sc, La - Nd und Gd) ist die Gd-Verbindung hinsichtlich ihrer strukturellen und physikalischen Eigenschaften besonders interessant. GdI₂ ist die einzige Verbindung in der Reihe von LnI₂, die wie PrI₂ [72] mit trigonal-prismatischer Anionenumgebung im 2H-MoS₂-Typ (Abb. 6.1) kristallisiert [73] und metallische Leitfähigkeit bei Raumtemperatur besitzt [12, 74]. PrI₂ kristallisiert in fünf Modifikationen [72]. Da diese jedoch nicht als einphasige Proben dargestellt werden können, sind die Ergebnisse der physikalischen Messungen im Gegensatz zu GdI₂ nicht eindeutig. Die magnetischen Gd³⁺-Momente ordnen ferromagnetisch mit einer *Curie*-Temperatur von $T_C \approx$ 275 - 313 K [12, 74].

Da GdI₂ strukturell und bezüglich seiner Valenzelektronenzahl (d¹) den supraleitenden Dichalkogeniden 2H-TaS₂ und 2H-NbSe₂ ähnelt, liegt es nahe, dass bei Gadoliniumdiiodid auffallende physikalische Effekte wie "Riesenmagnetwiderstand" (CMR) oder Spindichtewellen (<u>spin-density waves</u>, SDW) erwartet werden können.

Abb. 6.1 Perspektivische Darstellung der Struktur von GdI₂ entlang der *b*-Achse (I, Gd sind mit abnehmender Größe bezeichnet).

In der Tat ergaben die Messungen des Magnetwiderstandes von GdI_2 eine starke Absenkung des elektrischen Widerstandes mit angelegtem Magnetfeld [11, 12]. Bei Raumtemperatur und einer Magnetfeldstärke von H = 70 kOe betrug der nach der Gleichung

$$\Delta \rho / \rho_0 = [(\rho(H,T) - \rho(0,T)] / \rho(0,T)]$$

definierte Magnetwiderstand über 60 %. Er liegt damit in derselben Größenordnung wie bei den besten bislang bekannten CMR-Materialen (Tabelle 6.9, S. 81).

Spin-polarisierte LMTO Bandstrukturrechnungen weisen eine starke Polarisation der Gd 5d-Leitungselektronen auf. Dies führt wegen des induzierten Spin-Beitrages der Leitungselektronen zu einer zusätzlichen Erhöhung des magnetischen Moments in GdI₂ (berechnet 7.36µ_B statt $M = 7\mu_B$ für Gd³⁺: S = 7/2). Das die Fermienergie kreuzende Gd-d-Band (Abb. 1.2, S. 3) besitzt unterhalb der Fermikante Bereiche geringer Dispersion. Zwischen Γ und K ist bei -0.2 eV (bezogen auf $E_{\rm F}$) ein Sattelpunkt zu erkennen. Wir gingen von der These aus, dass der Magnetwiderstand durch partielle Entfernung von Valenzelektronen, gleichbedeutend mit einer Verschiebung der Fermikante in Richtung Sattelpunkt, weiter erhöht werden könnte [11]. Dafür erscheint die Lokalisierung der "überschüssigen" Elektronen unter H-Aufnahme am besten geeignet, zumal in früheren Untersuchungen von *Michaelis* die Bildung von GdI_2H_x (0.28 < x < 0.5) ohne Strukturänderung nachgewiesen worden war [31]. Die physikalischen Messungen zeigten, dass die elektrischen und magnetischen Eigenschaften von Hydridhalogeniden stark von der Wasserstoffkonzentration beeinflusst sind. Im Gegensatz zu GdI_2 sind die Phasen GdI_2H_x (0.28 < x < 0.34) Halbleiter. Unterdrückt man sukzessive die ferromagnetische Ordnung in GdI_2 durch den Einbau von Wasserstoff, wird T_C mit steigendem x zu tieferen Temperaturen verschoben.

In dieser Arbeit waren aufgrund der vorliegenden Ergebnisse folgende Fragen von besonderem Interesse :

- ✓ Kann man homogene Verbindungen GdI_2H_x im gesamten H-Bereich, 0 < x < 1, herstellen? Die früheren Versuche [31] zur Darstellung von GdI_2H_x durch Erhitzen von Gemengen GdI_3/GdH_2 ergaben eine Mischungslücke im Bereich um x = 0.5.
- ✓ Wie ändert sich der Magnetwiderstand in Verbindungen GdI_2H_x ? Nach Bandstrukturrechnungen ist der Bereich 0.1 < *x* < 0.3 besonders interessant.
- ✓ Temperaturabhängige Guinieraufnahmen von GdI₂H_{0.28} und GdI₂H_{0.97} zeigten, dass bei der Abkühlung der Proben auf 113 K zusätzliche Linien auftraten [31]. Diese wurden mit einer strukturellen Verzerrung (infolge Ladungs- bzw. Spindichtewellen) gedeutet,

wie häufig bei schichtartigen Übergangsmetalldichalkogeniden beobachtet [75]. Daraufhin wurden hier einige Proben GdI_2H_x unterschiedlichen H-Gehaltes bei tiefen Temperaturen röntgenografisch untersucht.

6.2 Problematik der Synthese von GdI₂

Ein als GdI_{2.11} beschriebenes Reaktionsprodukt wurde bereits 1965 von *Mee* und *Corbett* [1] durch Umsetzung von Gd-Metall mit GdI₃ synthetisiert. Das Produkt war allerdings nicht einphasig. Phasenrein dargestellt liegt GdI₂ vor, das bei 1104 K inkongruent schmilzt und damit LaI₂ ähnelt. Das eutektische Gemenge Gd-GdI₃ schmilzt bei 1098 K (Abb. 6.2). Die Bildung von GdI₂ durch Feststoffreaktion von Gd und GdI₃ erfolgt langsam und unvollständig. Die Gegenwart von metallreicher Schmelze ist daher günstig. Allerdings ist die Präparation damit auf den engen Temperaturbereich 1098 K < T < 1104 K beschränkt, da oberhalb 1104 K bereits der peritektische Zerfall von GdI₂ unter Bildung von Gd erfolgt. Eine Homogenisierung durch Abschrecken einer Schmelze von Gd und GdI₃ ist auch nicht möglich, weil einerseits der Schmelzpunkt von GdI₂ zu weit entfernt von der Binode der Mischungslücke ist und andererseits die Dichteunterschiede von Schmelze und Gd zur Segregation führen.

Zur Darstellung der Verbindung in befriedigender Ausbeute sind deswegen optimierte Reaktionstemperaturen und längere Reaktionszeit erforderlich.

Abb. 6.2 Phasendiagramm des Systems Gd/GdI₃ [1].

6.3 Darstellung von GdI₂

Zur Darstellung von GdI_2 wurden folgende Versuche unternommen, in Tabelle 6.1 zusammengestellt^a.

Versuch 1 : Ein Gemenge 2GdI₃/Gd (insgesamt 1g) wird bei 1100 K getempert. Zur Homogenisierung wurde die Probe zwischenzeitlich einmal unter Schutzgas in einem Mörser verrieben.

 Tabelle 6.1
 Darstellung und Gitterparameter von GdI2

N/Li	t Reaktionsbedingungen	Produkt	<i>a</i> / Å	<i>c</i> / Å
1	GdI ₃ /Gd, 20d, 1100 K	GdI ₂ , GdI ₃ , ZL	4.0747(9)	15.037(5)
2	GdI ₃ /Gd, 20d, 1100 K	GdI ₂ , ZL, GdI ₃	4.073(2)	15.065(10)
3	GdI ₃ /Gd, 9d, 1100 K	GdI ₂ , ZL, GdI ₃	4.0756(8)	15.043(4)
4	GdI ₃ /Gd, 9d, 1100 K	GdI_2H_x , ZL, GdI_3	4.0711(4)	15.087(2)
5	GdI ₃ /Gd, 27d, 1100 K	GdI ₂ , ZL, GdI ₃	4.0733(4)	15.060(3)
6	GdI ₃ /Gd, 27d, 1100 K	ZL, GdI ₂ , GdI ₃	4.08(2)	15.17(15)
7	GdI ₃ /Gd +1% GdI ₃ , 7d, 1095 K	GdI ₂ , ZL, GdI ₃	4.0734(8)	15.052(6)
8	GdI ₃ /Gd +1% GdI ₃ , 7d, 1090 K	GdI ₂ , ZL, GdI ₃	4.0748(6)	15.050(2)
9	GdI ₃ /Gd +3% Gd, 6+30d, 1090 K	GdI ₂ , ZL, GdI ₃	4.0746(6)	15.047(3)
10	GdI ₃ /Gd +1% GdI ₃ , 30+6d, 1095 K	GdI ₂ , ZL, GdI ₃	4.074(1)	15.056(5)
11	GdI ₃ /Gd, 6+7d, 1090 K	GdI ₂ , ZL, GdI ₃	4.0746(8)	15.049(5)
12	GdI ₃ /Gd, 10+22d, 1090 K	GdI ₂ , ZL, GdI ₃	4.0757(3)	15.049(3)
13	GdI ₃ /GdH ₂ , 4d, 1075 K, 10 ⁻⁵ torr	GdI_2H_x , GdI_3 , $GdIH_x$	4.0717(6)	15.100(3)
14	GdI ₃ /GdH ₂ , 4d, 1090 K, 10 ⁻³ torr	GdI_2H_x , GdI_3 , $GdIO$, $GdIH_x$	4.0697(5)	15.115(4)
[31]		GdI_2	4.0735(7)	15.045(3)
[31]		$GdI_2H_{0.08}$	4.0735(5)	15.132(2)
[76]		GdI_2	4.075(1)	15.060(5)
[11]		GdI ₂	4.0775(4)	15.041(1)

Das Röntgenpulverdiagramm des in Form von grüngolden glänzenden Plättchen erhaltenen Produktes (Abb. 6.3, S. 45) enthielt außer den Reflexen von GdI₂ auch die von GdI₃, was auf unvollständige Umsetzung der Edukte bzw. partiellen peritektischen Zerfall des Produkts hinweist. Daneben gibt es noch zwei zusätzliche Reflexe (ZL) mit d = 2.995 Å und 2.791 Å, die qualitativ GdIO zugeordnet werden konnten.

^a Die Ansätze wurden üblicherweise in evakuierte äußere Quarzglasampullen eingeschmolzen.

Um die Reaktionstemperatur besser zu kontrollieren, wurde ein "äußeres" Thermoelement eingesetzt. Es wurde direkt unter der Reaktionsampulle fixiert, die vom Boden des Ofens mit Keramik-Wolle isoliert war.

Versuche 2-7 : Gemenge von GdI₃ und fein gefeiltem Gd-Pulver (2:1; insgesamt 1-2g) wurden

7-27 Tage bei 1090-1100 K getempert. Zur mechanischen Aktivierung der Edukte wurde ein innerer Ta- bzw. Gd-Stab verwendet (siehe Skizze). Solche Ta-Tiegel wurden während der Synthese mehrmals geschüttelt, um die Oberfläche der reagierenden Partikel vom gebildeten Produkt zu befreien. Dieses Verfahren führte

zu erhöhter Ausbeute und besserer Kristallinität von GdI₂ (Abb. 6.3, S. 45).

In Röntgenpulverdiagrammen der erhaltenen Produkte waren allerdings auch die oben erwähnten zusätzlichen Linien (ZL) zu erkennen, deren d-Werte 2.994(2) bzw. 2.794(2) Å innerhalb des Meßfehlers für alle Proben 2-7 identisch waren. Die Peaklagen von ZL und GdIO sind sehr ähnlich (Abb. 6.4, S. 46), unterscheiden sich jedoch deutlich, wie ein Vergleich der *d*-Werte (Å) zeigt : 2.994(2)/2.794(2) (ZL) bzw. 3.008/2.811 (GdIO). Diese Zuordnung der Zusatzreflexe in Pulverdiagrammen entspräche nach Abschätzung der Intensitäten einer Verunreinigung der Proben mit ca. 20-30% GdIO. Jedoch zeigt die chemische Analyse nur eine geringe Verunreinigung der Proben 7-9 mit Sauerstoff von 0.33 -0.36 Gew.-%, entsprechend einem maximalen Gehalt von 5-7 Gew.-% GdIO. Es liegt daher nahe, dass die vorliegenden Reflexe zu einer anderen Fremdphase gehören, die vermutlich wie GdIO im PbFCl-Typ (Raumgruppe: P4/nmm) kristallisiert. Auffallend ist, dass diese Fremdlinien die stärkste Intensität in der Probe 6 besaßen (Abb. 6.4), die unter Verwendung eines Gd-Stabs hergestellt wurde. Das erhaltene Produkt war, im Unterschied zu anderen Proben, schwarz mit metallischem Glanz. Die starken Reflexe können sämtlich in P4/nmm indiziert werden. Aus dem Vergleich der ermittelten Gitterparameter mit denen von GdIO lassen sich die beiden Phasen eindeutig unterscheiden.

	<i>a /</i> Å	<i>c /</i> Å	Bemerkung
Probe 6	3.953(1)	9.180(7)	
GdIO	3.9718(4)	9.198(2)	diese Arbeit
GdIO	3.976	9.203	[77]

Versuche 8-12 : Die Synthese größerer Mengen von GdI_2 (4-5g) wurde in zwei Schritten durchgeführt. Zunächst wurde ein pulvriges Gemenge von GdI_3 und Gd bei 1090-1095 K erhitzt. Das erhaltene Produkt wurde dann verrieben und zu Tabletten gepresst, die 6-30 d weiter getempert wurden.

Versuche 13-14 : Gepresste Gemenge GdI_3 und GdH_2 im molaren Verhältnis 1:2 wurden in unter 1 atm Ar zugeschweißten Ta-Ampullen 4d bei 1073-1091 K im dynamischen Vakuum erhitzt. Die erhaltenen Produkte sahen heterogen aus und enthielten die Phasen GdI_2H_x , GdI_3 und $GdIH_x$.

Abb. 6.3 Röntgenpulverdiagramme des grüngoldenen Produktes, erhalten aus dem Versuch 1 (*oben*) bzw. Versuch 4 (*Mitte*). Fremdlinien (ZL) und Reflexe von GdI₃ sind mit Sternen bzw. Pfeilen markiert. Unten: Simulation für GdI₂. Die stärksten Reflexe sind indiziert.

Abb. 6.4 Gegenüberstellung des für die Probe 6 gemessenen Röntgendiagrammes mit denen von GdIO.

6.4 Bestimmung der *Curie*-Temperatur von GdI₂

 GdI_2 ordnet ferromagnetisch, jedoch variiert die ermittelte *Curie*-Temperatur T_C nach verschiedenen Autoren in einem großen Bereich, wie es in Tabelle 6.2 gezeigt wird. Im Zug dieser Arbeit wurden die charakteristischen magnetischen Temperaturen von GdI_2 , T_C und Θ , durch verschiedene Verfahren neu untersucht.

Verfahren	$T_{\rm C}/{\rm K}$	Θ/K	Lit
magnetische dc-Suszeptibilität	320-340		1
magnetische ac-Suszeptibilität	313.0(5)	>400	78
	278(1)		diese Arbeit
Magnetisierung	280		74
	290(5)		11
	280(2)	450(6)	diese Arbeit
	273(1)*		diese Arbeit
	$276(2)^{*}$		12
	286(2)*	412(3)	79
Wärmekapazität	275(1)		diese Arbeit

Tabelle 6.2 Charakteristische magnetische Temperaturen von GdI₂

 $T_{\rm C}$ wurde durch die Auftragung nach *Arrott* (Abschn. 6.4.2) bestimmt.

6.4.1 Magnetisierungsmessung

Eine einfache und oft verwendete Methode, die kritische Temperatur T_c einer ferromagnetischen Verbindung zu bestimmen, ist die sogenannte Knickpunktmessung. Hierzu wird die Magnetisierung *M* in Abhängigkeit von der Temperatur *T* bei einem konstanten äußeren Feld H_{ext} gemessen. Da die spontane Magnetisierung eines Ferromagneten bei $T = T_c$ verschwindet, entspricht der *Curie*-Temperatur derjenige Wert von *T*, bei dem die Magnetisierungs- bzw. die Suszeptibilitätskurve am steilsten abfällt (Wendepunkt, $\frac{\partial^2 \chi}{\partial T^2} = 0$). Demzufolge wird T_c aus dem Minimum in der Auftragung d χ/dT über *T* bestimmt.

Da die magnetische Ordnungstemperatur von der Stärke des angelegten Feldes beeinflusst wird, muss das äußere Feld klein ($H_{ext} < 1$ kOe) sein. Bei größeren Feldern bildet sich für Temperaturen etwas oberhalb T_{C} eine Spinordnung in Richtung des äußeren Feldes aus, was eine Unschärfe des Kurvenverlaufs bewirkt.

Abbildung 6.5 zeigt eine M(T)-Kurve von GdI₂. Aus der im inneren Bild dargestellten Abhängigkeit d $\chi/dT(T)$ wurde eine *Curie*-Temperatur von $T_{\rm C} = 280(2)$ K bestimmt, die für vier unabhängige Proben innerhalb des Fehlers identisch war.

Im paramagnetischen Bereich 300 K < T < 600 K zeigt GdI₂ kein exaktes CURIE-WEISS-Verhalten (Abb. 6.6). Erst bei höheren Temperaturen, im Bereich von 650 bis 750 K können die Daten mit einer linearen Funktion angepasst werden.

Abb. 6.5 Temperaturabhängigkeit der *fc*-Magnetisierung von GdI_2 (9). Die Auftragung $d\chi/dT$ gegen *T* ist im inneren Bild gezeigt.

Abb. 6.6 Temperaturabhängigkeit der reziproken Molsuszeptibilität von GdI₂ (12).

Aus der Auftragung von $1/\chi_m$ gegen *T* erhält man eine paramagnetische *Curie*-Temperatur von $\Theta = 450(6)$ K und ein effektives Moment von $\mu_{eff} = 8.41(4) \ \mu_B$. Das letztere ist etwas höher als das für Gd³⁺-Ionen (4f⁷-Konfiguration, ⁸S_{7/2}-Zustand) berechnete Moment von 7.94 μ_B .

Im Gegensatz zu klassischen dreidimensionalen ferromagnetischen *Heisenberg*-Systemen wie beispielsweise Gd mit T_C (295 K) $\approx \Theta$ (293 K) [78], ist in GdI₂ Θ = 450(6) K viel größer als T_C = 275(5) K. Dies deutet auf den niedrigdimensionalen Charakter der magnetischen Ordnung hin, d.h. die magnetischen Wechselwirkungskräfte in die drei Raumrichtungen sind nicht äquivalent, wie man es vom schichtartigen Aufbau der Kristallstruktur von GdI₂ erwartet. Die Spin-Spin-Kopplung zwischen den Gd-Atomen innerhalb einer Schicht, J_{ab} , erfolgt durch die an Metall-Metall-Bindungen beteiligten Elektronen (RKKY-Mechanismus), während die magnetischen Momente zwischen den Metallatomschichten durch die dazwischenliegenden diamagnetischen I-Atome Gd–I···I–Gd (Superaustausch, J_c) gekoppelt sind. Da keine starke Bindung zwischen Metallatomen benachbarter Schichten vorliegt, ist es verständlich, dass die Austauschwirkung in der *c*-Richtung, J_c , viel schwächer als die in der *ab*-Ebene, J_{ab} , ist.

Unter Berücksichtigung der *Heisenberg*schen ferromagnetischen Wechselwirkungen in einer trigonalen Schicht lassen sich J_{ab} und J_c aus den folgenden Beziehungen abschätzen [79]

$$\Theta = 2/3 S(S+1)\Sigma_{i}z_{i}J_{ab}$$
$$k_{B}T_{C} \approx \frac{16\sqrt{3}J_{ab}S^{2}}{\ln\frac{6\sqrt{3}J_{ab}S}{J_{c}}},$$

wobei z_i der das jeweilige Zentrum umgebenden Anzahl von nächsten Nachbarn entspricht. Setzt man Θ = 450 K und T_C = 275 K ein, folgt, dass die Spin-Spin-Kopplung J_{ab} etwa 150 mal stärker als J_c ist, 7 K bzw. 45 mK.

6.4.2 Modifizierte Arrotts Kurven

Das temperaturabhängige Verhalten der magnetischen Eigenschaften von *ferro*- bzw. *ferri*magnetischen Verbindungen wird im kritischen Bereich durch sogenannte kritische Exponenten beschrieben, welche durch folgende Gleichungen definiert sind [80] :

$$J_{s} \sim (T_{c} - T)^{\beta} \qquad (T \to T_{c}, T \le T_{c}, \mu_{o}H = 0);$$

$$\chi \sim (T_{c} - T)^{-\gamma} \qquad (T \to T_{c}, T \le T_{c}, \mu_{o}H = 0); \quad (6.1)$$

$$\chi \sim (T - T_{c})^{-\gamma'} \qquad (T \to T_{c}, T \ge T_{c}, \mu_{o}H = 0);$$

$$J_{p} \sim (\mu_{o}H)^{1/\delta} \qquad (T = T_{c});$$

mit J_s : spontane magnetische Polarisation,

 χ : Nullfeldsuszeptibilität,

 $\mu_{\rm o}H$: inneres Magnetfeld^a.

Die vorliegenden Exponenten sind nicht alle unabhängig. Sie lassen sich durch eine für die magnetische Phasenumwandlung wichtige Skalenrelation verbinden [81] :

$$\gamma = \gamma' = \beta(\delta - 1) \tag{6.2}$$

Es gibt also nur zwei unabhängige Exponenten.

Der Vergleich der experimentell bestimmten und für verschiedene theoretische Modelle der magnetischen Ordnung berechneten kritischen Exponenten (Tabelle 6.3) gibt eine Information über den Spin-Spin-Kopplungstyp bzw. die Spindimensionalität (s. Abschn. 5.1) des magnetisch geordneten Zustandes.

Tabelle 6.3 Theoretische Werte der kritischen Exponenten für 3D-magnetische Systeme

Modell	MFT [*]	3D-Heisenberg	3D-XY	3D-Ising
Exponent	[82]	[83]	[84]	[83]
β	0.5	0.365	0.345	0.325
$\gamma = \gamma'$	1.0	1.387	1.316	1.241
δ	3.0	4.80	4.810	4.82(2)

MFT : Molekularfeldtheorie

Eine Möglichkeit, die kritische Temperatur T_c und die Exponenten β bzw. γ zu bestimmen, liefert die sogenannte modifizierte ARROTT-Auftragung. Ausgangspunkt bei dieser Auftragung ist die von *Arrott* und *Noakes* eingeführte Zustandsgleichung [85]

$$\left(\frac{\mu_0 H}{J_p}\right)^{1/\gamma} = \frac{T - T_c}{T_1} + \left(\frac{J_p}{J_1}\right)^{1/\beta}, \quad (6.3)$$

wobei T_1 und J_1 Materialparameter sind.

In der modifizierten ARROTT-Auftragung werden die Exponenten β und γ solange variiert, bis sich entsprechend Gleichung (6.3) für die Isothermen nahe T_c ein linearer Zusammenhang ergibt. Die kritische Isotherme ($T = T_c$) geht dabei durch den Koordinatenursprung. Abbildung

$$\mu_{\rm o}H = \mu_{\rm o}H_{\rm ext} - NJ,$$

Zur Auftragung der modifizierten Arrott-Kurven wurden die Meßdaten in SI-Einheiten umgerechnet:

$$\mu_{o}H_{ext} [T] = \mu_{o}H_{ext} [Oe]$$
$$J_{p} [T] = \frac{4\pi 10^{-4} m[emu]}{V[cm^{3}]}$$

^a Das lokale innere Feld $\mu_0 H$ innerhalb der Probe bei einem äußeren Magnetfeld $\mu_0 H_{ext}$ wurde nach folgende Beziehung berechnet [49]

wobei N der Entmagnetisierungsfaktor ist. Er wurde experimentell aus der Abhängigkeit $J_p(\mu_0 H_{ext})$ bestimmt. Die Ausgleichsgerade im linearen Bereich der Kurve besitzt die Steigung 1/N.

6.7 zeigt eine modifizierte ARROTT-Auftragung für eine GdI₂-Probe^a. Bei Betrachtung der in Tabelle 6.3 vorliegenden Werte ergibt sich ein linearer Verlauf der Isothermen, so dass im Rahmen der Genauigkeit des Verfahrens kein Modell (3D-*Heisenberg* bzw. -*XY* bzw. -*Ising*) vor anderen eindeutig bevorzugt ist. Durch lineare Regression der Kurven wurde eine kritische Temperatur von $T_c = 273(1)$ K ermittelt. Die erhaltenen Werte der "kleinsten Quadrate" χ^2 nahmen allerdings mit sinkenden Werten von β und γ monoton ab (Tab. 6.4). Dies verweist auf die Tendenz, dass im Rahmen der Modelle mit niedriger werdender Spindimensionalität (*XY*- und *Ising*-) die Abweichung der Meßpunkte von der Linearität verkleinert wird.

Der kritische Exponent δ kann bei einer doppeltlogarithmischen Auftragung von ln(*J*) gegen ln($\mu_0 H$) bestimmt werden. Der Definitionsgleichung (Gl. 6.1) zufolge ergibt sich bei dieser Auftragung für die kritische Isotherme $T = T_c$ ein linearerer Zusammenhang. Die Isothermen für $T < T_c$ weisen eine positive und solche mit $T > T_c$ eine negative Krümmung auf, wie es in Abb. 6.7 gezeigt ist.

$\ln(J_p)$ vs. $\ln(\mu_0 H)$ Auftragung : $\delta = 4.831(5)$				
Modifizierte Arrott-Auftragung :				
β	$\gamma = \gamma'$	$\chi^2 (10^{-9})^*$	T_{c}	
0.365	1.398	9.1	273(1)	
0.345	1.322	6.8	273(1)	
0.325	1.245	4.9	273(1)	
${}^{*}\chi^{2} = \sum_{i} \left(\frac{y_{i}^{obs} - y_{i}^{calc}}{\sigma_{i}}\right)^{2}$				

Tabelle 6.4 Kritische Exponenten f ür Go
--

Für die kritische Isotherme T = 273 K wurde eine lineare Regression durchgeführt. Als Ergebnis erhält man aus der reziproken Steigung einen Wert von $\delta = 4.831(5)$, welcher mit dem des dreidimensionalen *Ising*-Modells übereinstimmt (vgl. Tabelle 6.3).

^a Zur Auswertung wurden die älteren Daten einer früher dargestellten Probe GdI₂ verwendet [11].

Abb. 6.7 *Oben*: Feldabhängigkeit der magnetischen Polarisation von GdI_2 ; die modifizierte ARROTT-Auftragung und die Auftragung von $\ln J_p$ über $\ln(\mu_0 H)$ für GdI_2 werden im *mittleren* bzw. *unteren* Bild dargestellt.

5.4.3 ac-Suszeptibilitätsmessung

Die beim oszillierenden Magnetfeld mit einer Amplitude von h = 1 Oe gemessene magnetische *ac*-Suszeptibilität χ_{ac} wird in Abb. 6.8 mit der aus der Magnetisierung abgeleiteten *dc*-Suszeptibilität verglichen. Beide Kurven zeigen ein ähnliches Verhalten im paramagnetischen Temperaturbereich. Aus der Auftragung von $d\chi_{ac}/dT$ gegen *T* erhält man $T_{\rm C} = 278(1)$ K. Im ferromagnetischen Bereich nimmt χ_{ac} im Unterschied zu χ_{dc} (*fc*-Messung), mit sinkender Temperatur ab.

In einer Darstellung des Imaginärteiles von χ_{ac} von GdI₂ sind einige Anomalien zu erkennen, welche stark von der Frequenz des Magnetfeldes ω abhängig sind (Abb. 6.9). Bevor χ_{ac} bei $T_{C} = 278$ K steil ansteigt, zeigt die Kurve bereits bei 320 K eine Unstetigkeit. Im ferromagnetischen Bereich von etwa 200 K bis 270 K ist χ_{ac} nahezu temperaturunabhängig, während bei tieferen Temperaturen einige Extrema in Erscheinung treten. Die Anzahl und Form der letzteren sind stark von der Frequenz abhängig.

Abb. 6.8 Gegenüberstellung der bei einem *dc*-Magnetfeld bzw. bei einem *ac*-Feld gemessenen molaren Suszeptibilitäten von GdI₂ (9).

Abb. 6.9 Temperaturverlauf von χ_{ac} ["] für GdI₂ (9) bei verschiedenen Frequenzen des oszillierenden Magnetfeldes.

Es ist bekannt, dass der Imaginärteil der ac-Suszeptibilität, mit den in einem System entstehenden Energieverlusten im Zusammenhang steht [49]. Bei harten Ferromagneten, die ein Hystereseverhalten der Feldabhängigkeit von der Magnetisierung M(H) zeigen, entstehen Energieverluste unterhalb T_C wegen der durch das angelegte ac-Magnetfeld induzierten Bewegung der magnetischen Domänenwände sowie der Drehbewegungen der gesamten Momente. Auftreten von bereits oberhalb magnetischen Das T_{C} im weichferromagnetischen GdI₂ ist auf die räumlich stark anisotrope magnetische Wechselwirkung zurückzuführen, wodurch sich magnetische Nahordnungseffekte wesentlich auf die magnetische Ordnung auswirken. Es scheint, dass die magnetischen Momente der Gd-Atome innerhalb einer Schicht bei ca. 320 K in zweidimensionale ferromagnetische Domänen durch RKKY-Kopplung angeordnet werden. Mit sinkender Temperatur findet Umorientierung der Spinverteilung in Domänen statt, so dass bei $T \approx 278$ K eine kooperative magnetische Ordnung auftritt. Das komplizierte Verhalten von χ_{ac} bei tieferen Temperaturen ist bis jetzt nicht eindeutig geklärt. Dies kann mit der durch ein ac-Magnetfeld induzierten Oszillation der magnetischen Momente in den Metallatomschichten zusammenhängen, zumal sich die Spins bei Gd(III)-Verbindungen wegen der geringen magnetischen Anisotropie leicht drehen lassen.

6.4.4 Wärmekapazitätsmessung

In Abbildung 6.10 ist die Temperaturabhängigkeit der spezifischen Wärmekapazität von GdI_2 dargestellt, die an zwei Proben von GdI_2 (**12**) gemessen wurde. Zwei reproduzierbare Anomalien sind im Hochtemperaturbereich zu erkennen. Eine tritt bei 275(1) K als unscharfes Maximum auf und entspricht dem ferromagnetischen Phasenübergang. Dieses verbreiterte Extremum, statt einer λ -förmigen Spitze, weist auf die niedrige (1D bzw. 2D) Gitterdimensionalität des kooperativen Effekts hin, wie man es auch nach Rechnungen erwartet [86].

Ein weiterer Effekt lässt sich in Form eines flachen Buckels von 300 bis 320 K erkennen, wobei sich ein kleines Maximum bei 303(1) K heraushebt. Interessant ist, dass diese Anomalie im selben Temperaturbereich liegt, in dem der Imaginärteil der magnetischen Suszeptibilität χ_{ac} auftritt. Es liegt nahe, diese Effekte auf magnetische Nahordnung innerhalb der Gd-Schichten zurückzuführen.

Abb. 6.10 Temperaturverlauf der spezifischen Wärmekapazität c_p von GdI₂ (**12**). Das innere Bild zeigt die $c_p(T)$ -Abhängigkeit von Probe 2 in vergrößertem Maßstab.

Die Bestimmung des magnetischen Beitrags $C_{\rm m}$ zur spezifischen Wärme $c_{\rm p}$

$$c_p = C_{\rm ph} + C_{\rm e} + C_{\rm m}$$

ist im Falle von GdI_2 erschwert, da die Beiträge C_{ph} des Gitters und C_e der Leitungselektronen durch den Vergleich der c_p -Werte für GdI_2 mit einer verwandten nichtmagnetischen Verbindung nicht eliminiert werden können. Das nichtmagnetische LaI₂ kristallisiert in einem anderen Strukturtyp und die Diiodide YI₂ bzw. LuI₂ sind bisher nicht bekannt.

6.5 Magnetwiderstandsmessung an GdI₂

Abbildung 6.11 zeigt die bei verschiedenen äußeren magnetischen Feldern gemessene Temperaturabhängigkeit des elektrischen Widerstandes von GdI₂. Im Nullfeld durchläuft der Widerstand bei $T_C \approx 280$ K ein unscharfes Maximum. Dieser auch bei ferromagnetischen Metallen beobachtete Effekt [87, 88] ist darauf zurückzuführen, dass die Streuung der Elektronen an magnetischen Zentren nach Ausrichtung der Spins unterhalb T_C stark unterdrückt wird (*Spinkorrelationseffekt*). Bei Abkühlung in den ferromagnetischen Temperaturbereich nimmt *R* unterhalb ca. 250 K zu. Dieses Temperaturverhalten konnte mehrmals reproduziert werden und stimmt mit früheren Ergebnissen [74] überein. Es lässt sich auf die Lokalisierung der freien Elektronen bei tieferen Temperaturen zurückführen. Allerdings könnte der Anstieg des Widerstandes durch eine Verunreinigung verursacht sein, denn nach Untersuchungen von *Ahn* [12] wird im Bereich zwischen 100 K und 250 K ein nahezu temperaturunabhängiger Verlauf von *R* gefunden.

Abb 6.11 Temperaturabhängigkeit des elektrischen Widerstandes von GdI₂ (9) im Nullfeld bzw. mit angelegtem magnetischem Feld.

Abb. 6.12 Magnetwiderstand von GdI_2 (9) als Funktion der Temperatur.

In einem äußeren Magnetfeld ist das Maximum von R(T) abgeflacht und zu höheren Temperaturen verschoben, so dass es bei H = 30-70 kOe als Schulter zwischen 350 K und 370 K zu erkennen ist. Auch der Anstieg des Widerstandes wird mit zunehmender Magnetfeldstärke stetig unterdrückt. Dies ist ein Hinweis auf den magnetischen Ursprung der Anomalie.

Bei starken Magnetfeldern H = 50-70 kOe ist R unterhalb $T_{\rm C}$ nahezu temperaturunabhängig, was zu einem riesigen negativen Magnetwiderstand (MR) führt (Abb 6.12). Der Magnetwiderstand weist eine Anomalie bei $T_{\rm C}$ auf und nimmt mit sinkender Temperatur allmählich zu. Bei Raumtemperatur und H = 70 kOe beträgt MR ~ 67% – ein um eine Größenordnung größerer Wert verglichen mit klassischen ferromagnetischen Metallen, z.B. Gd [89].

6.6 Die Phasen GdI_2H_x

6.6.1 Darstellung

Zur Präparation der ternären Phasen GdI_2H_x wurden folgende Versuche unternommen. Die experimentellen Details sind in Tabelle 6.5 wiedergegeben.

Versuche A1-A3: Fein verriebene Gemenge von $Gd/GdH_2/GdI_3$ bzw. von GdH_2/GdI_3 (1:2) wurden 10 d bei 1080-1100 K getempert. Zur Homogenisierung wurden die Proben während des Erhitzens ein weiteres Mal unter Schutzgas in einem Mörser verrieben. Das erhaltene Produkt sah heterogen aus und enthielt GdI_2H_x , GdI_3 und $GdIH_x$.

Versuche B1-B7: GdI₂ (ca. 250 mg) wurde in H₂-Atmosphäre bei definiertem Wasserstoffdruck in der beschriebenen Apparatur (Abschn. 2.3) aufgeheizt. Nach der Reaktion wurden die Proben langsam durch Ausschalten des Ofens abgekühlt. Beim Erhitzen im Bereich von 570 K bis 800 K (Versuche B4-B6) ergibt sich ein dunkelgraues Produkt. Die Gitterparameter der erhaltenen Produkte bleiben ähnlich zu denen von GdI₂, obwohl für die Probe GdI₂H_x (B4) ein Wert von x = 0.21 analytisch bestimmt wurde. Diese Ergebnisse lassen sich so interpretieren, dass bei Reaktionstemperaturen bis 800 K partielle Hydrierung unter Bildung der Interkalationsverbindungen (GdI₂H)_{x'}(GdI₂)_{1-x} mit schichtweise absorbierten H-Atomen stattfindet. Erst dauerndes Tempern der Probe unter 1 bar H₂ bei 920 K führt zu einem nahezu vollhydrierten Produkt mit der analytisch bestimmten Zusammensetzung GdI₂H_{0.97(2)}. Die Reaktionen bei geringem H₂-Druck (Versuche B1-B2) führen zur partiellen Zersetzung der Ausgangssubstanz unter Bildung von gasförmigem GdI₃.

Versuche C1-C11: Das auf die gewünschte Zusammensetzung eingewogene Gemenge GdI_2/GdI_2H wurde zu Tabletten gepresst und in Mo-Kapseln bei 850-950 K erhitzt. Um das Entweichen von H_2 zu minimieren, wurden die Ampullevolumina maximal reduziert. Hierfür wurden die Mo-Kapseln in eng umgebende Doppelquarzglasampullen eingeschmolzen.

Nach dieser Methode sind GdI_2H_x in der ganzen Phasenbreite 0 < x < 1 darstellbar. Die erhaltenen Produkte geringen Wasserstoffgehaltes (x < 0.5) ähneln zunehmend grüngoldem metallisch glänzendem GdI₂. Mit zunehmendem H-Gehalt verschwindet der metallische Glanz, und die Färbung der Verbindungen wird dunkler (Abb. 6.13, S. 61). GdI₂H_{0.97} ist wie LaI₂H_{0.95} hellgrau und in dünnen Plättchen transparent.
Versuch	Edukt	Reaktionsbedingungen	Produkt
A1	Gd/GdH ₂ /GdI ₃	1100 K, 3d + 7d	$GdI_3, GdIH_x, GdI_2H_x$
	(5:1:4)		
A2	GdH ₂ /GdI ₃ (1:2)	1100 K, 3d + 8d	GdI_2H_x , GdI_3 , $GdIH_x$
A3	GdH ₂ /GdI ₃ (1:2)	1080 K, 6d + 4d	GdI_2H_x , GdI_3 , $GdIH_x$

Tabelle 6.5 Darstellung und Gitterparameter von GdI_2H_x

B) Edukt : GdI₂

Versuch	Reaktionsbedingungen	H-Gehalt [*]	Produkt
B1	7 mbar H ₂ , 920 K, 1 h		GdI_2H_x, GdI_3
B2	8 mbar H ₂ , 920 K, 15 h		GdI_3 , GdI_2H_x , $GdIO$
B3	110 mbar H ₂ , 920 K, 1 h		GdI ₂ H _x : $a = 4.0436(8)$ Å, c = 15.304(6) Å
B4	1060 mbar H ₂ , 570 K, 15 h	0.21(2)	GdI_2H_x : $a = 4.0728(2)$ Å, c = 15.07(1) Å
B5	1100 mbar H ₂ , 720 K, 15 h		GdI_2H_x : $a = 4.0730(3)$ Å, c = 15.077(2) Å
B6	1060 mbar H ₂ , 800 K, 15 h		GdI_2H_x : $a = 4.0712(8)$ Å, c = 15.071(7) Å
B7	1 bar H ₂ , 920 K, 2 + 15 h	0.97(2)	GdI_2H_x : $a = 4.0232(8)$ Å, c = 15.394(5) Å

C) Edukte : (1-x) GdI₂ + x GdI₂H

Versuch	x	Heizrate	H-Gehalt [*]	<i>a /</i> Å	<i>c</i> / Å	$V/\text{\AA}^3$
C1	0.1	3d, 950 K, LK	0.24(2)	4.0700(5)	15.105(3)	216.55(4)
C2	0.15	3d, 920 K	0.19(2)	4.0705(5)	15.100(3)	216.67(4)
C3	0.2	2d, 900 K	0.26(4)	4.0703(3)	15.118(3)	216.91(3)
C4	0.2	15 h, 920 K	0.28(2)	4.0670(7)	15.125(2)	216.81(4)
C5	0.25	1d, 920 K	_	4.0653(6)	15.140(4)	216.76(5)
C6	0.3	15 h, 920 K	0.34(2)	4.0643(1)	15.162(3)	216.95(6)
C7	0.35	2d, 920 K	0.42(2)	4.0596(8)	15.204(4)	217.00(6)
C8	0.45	3d, 920 K	_	4.0572(5)	15.210(3)	216.83(4)
C9	0.5	6d, 850 K	0.56(2)	4.0510(8)	15.254(5)	216.80(6)
C10	0.68	3d, 950 K, LK	_	4.0367(5)	15.326(3)	216.28(4)
C11	0.75	1d, 920 K	0.69(2)	4.0348(5)	15.324(3)	216.03(5)

LK: langsam abgekühlt; * analytisch bestimmter Wasserstoffgehalt

Abb. 6.13 Farbänderung der Proben GdI_2H_x mit wechselndem H-Gehalt: (a) x = 0.19; (b) x = 0.42; (c) x = 0.56; (d) x = 0.90.

6.6.2 Kristallografische Eigenschaften

Die Charakterisierung der Struktur von GdI_2H_x erfolgte mit Pulveraufnahmen. Eine Strukturbestimmung aus den Meßergebnissen an Einkristallen war nicht möglich wegen der unzureichenden Datenbasis zur Statistik in *c**-Richtung, ein oft vorkommendes Problem bei dünnen Plättchen.

Die Röntgenpulverdiagramme der erhaltenen Hydridiodide ähneln denen des zugrunde liegenden GdI₂. Bei der Hydrierung von GdI₂ bleibt die Schweratomstruktur (2H-MoS₂-Typ) im Unterschied zu LaI₂H_x unverändert. Interessant ist, dass die in Pulveraufnahmen der Ausgangssubstanz GdI₂ beobachteten Fremdreflexe (ZL) mit der H-Aufnahme diffus verbreitet werden (Abb. 6.14). Außerdem werden die beiden Linien zu höheren *d*-Werten verschoben.

Abb. 6.14 Gegenüberstellung der Röntgenpulverdiagramme für GdI_2 und GdI_2H_x im Bereich von $2\theta = 13-15$ °. Die Fremdlinien (ZL) sind mit Pfeilen markiert.

Diese Befunde stützen die Annahme, dass die ZL-Reflexe einer unbekannten metallreichen Phase angehören sollten. Ließen sich diese GdIO zuordnen, würde man keine Änderung des Röntgendiagrammes der mit H₂-behandelten Probe erwarten. Beim Erhitzen von GdIO in Wasserstoffatmosphäre auf 1000 K bleibt dieses unverändert.

Abb. 6.15 Gitterparameter von GdI_2H_x in Abhängigkeit vom H-Gehalt.

Die Abhängigkeit der Gitterparameter vom H-Gehalt weist dieselbe Tendenz wie bei LaI₂H_x auf (Abb. 6.15). Dies lässt sich im Rahmen eines elektrostatischen Modells [23] verstehen: zunehmende Besetzung der H-Positionen in $(Ln^{3+})_3$ -Dreiecken führt durch die Ln^{3+} -H⁻-Anziehung zur Verkleinerung des *a*-Gitterparameters, während der *c*-Gitterparameter durch die H⁻-I⁻-Abstoßung vergrößert wird. Auffallend ist aber die Abhängigkeit des Molvolumens (bezogen auf eine Formeleinheit) als Funktion des Wasserstoffgehaltes. Hier ist ein scharfes Maximum bei $x \approx 0.33$ zu erkennen.

Ausgehend davon, dass die Volumenänderung dV/dx in einer hexagonalen Elementarzelle mit der folgenden Formel beschrieben werden kann

$$dV/dx = \sqrt{3}/2 (2ac \cdot da/dx + a^2 \cdot dc/dx),$$

deutet die beobachtete Anomalie auf eine Änderung der Steigungen da/dx und dc/dx bei $x \approx$ 0.33 hin. Bei geringen H-Konzentrationen (x < 0.33) verändert sich die Länge der *c*-Achse schneller als die der *a*-Achse [$dV/dx > 0 : \Delta c/\Delta x > 2c/a \cdot (\Delta a/\Delta x)$], während bei weiter steigendem *x* die umgekehrte Tendenz zu beobachten ist.

Es ist interessant, dass für die Zusammensetzung $GdI_2H_{0.33}$ eine H-Ordnung^a möglich ist, bei der die H⁻-H⁻-Abstoßung minimiert ist (Abb. 6.16). In der dargestellten Überstruktur sind alle den Wasserstoffatomen nächstliegenden H-Positionen (erste Koordinationssphäre) unbesetzt.

Abb. 6.16 Schematische Darstellung einer H-Ordnung in der Kristallstruktur von GdI₂H_{0.33}
 (Zur Klarheit sind die I-Atome nicht gezeigt). Mit den ausgefühlten Kreisen sind die besetzten H-Positionen bezeichnet. Gestrichelt: Überstrukturzelle.

<u>Verhalten beim Abkühlen</u> : Zur Untersuchung der kristallografischen Eigenschaften bei tiefen Temperaturen wurden für die Proben GdI_2H_x mit x = 0.28, 0.56 und 0.98 kontinuierliche Guinier-Aufnahmen im Temperaturbereich von 300 bis 100 K angefertigt (s. kristallogr. Anhang, S. 159, 160). Bei Abkühlung nehmen die beiden Achslängen (Tab. 6.6), wie erwartet ab. Außerdem wurden keine sichtbaren Änderungen des Röntgendiagrammes bei Tieftemperaturaufnahmen beobachtet.

Tabelle 6.6 Gitterparameter von GdI_2H_x bei verschiedenen Temperaturen

Parameter	GdI ₂ H ₀	$_{0.28}$ (C4)	GdI ₂ H ₀	.56 (C9)	GdI ₂ H	_{0.97} (B7)
$T(\mathbf{K})$	240	295	100	280	100	295
a (Å)	4.082(4)	4.083(1)	4.059(1)	4.073(2)	4.023(1)	4.030(2)
c (Å)	15.103(8)	15.138(5)	15.165(5)	15.230(6)	15.336(6)	15.399(8)

^a Der Nachweis der H-Ordnung wird durch Diffraktionsmethoden erschwert, da die Simulation der Struktur mit geordneter H-Verteilung nur zu einem zusätzlichen Überstrukturreflex führen würde. Darüber hinaus ist die Ermittlung der H-Positionen im Rahmen von Neutronenstreumessungen an GdI_2D_x im Falle von Gd-Verbindungen wegen sehr starker Absorption nicht möglich.

6.6.3 Magnetische Eigenschaften

6.6.3.1 Untersuchungen in dc-Feldern

Die Temperaturabhängigkeit der magnetischen Molsuszeptibilitäten von GdI₂H_x werden mit der von GdI₂ in Abb. 6.17 verglichen. Der Einbau der Wasserstoffatome (x = 0.19-0.34) im Gd-Teilgitter führt zu einer erheblichen Absenkung der *Curie*-Temperatur, wobei der ferromagnetische Übergang sehr unscharf wird. Es resultieren keine eindeutig definierten Übergangstemperaturen, wie die diffusen Minima in der Auftragung d χ_m /dT gegen T belegen (Abb. 6.17, inneres Bild). Auch die Absolutwerte der Sättigungssuszeptibilität werden mit der H-Aufnahme wesentlich unterdrückt. Zusätzlich zeigt sich ein weiterer Effekt im thermischem Hystereseverhalten der Suszeptibilität, wie für die Probe GdI₂H_{0.24} exemplarisch dargestellt ist. Nach Abkühlung der Probe im Nullfeld (auf 2 K) und nachfolgendem Aufheizen bei einem angelegten Feld von H = 100 Oe (*zfc*-Messung) durchläuft χ ein flaches breites Maximum. Jedoch nimmt die Suszeptibilität monoton zu, wenn die Probe im äußeren Feld abgekühlt wurde (*fc*-Messung).

Für die Proben mit x = 0.42-0.97 wurde keine spontane Magnetisierung beobachtet. Sie weisen ein paramagnetisches Verhalten auf. Für x = 0.42-0.69 tritt ebenfalls eine charakteristische Aufspaltung zwischen fc- χ und zfc- χ unterhalb der kritischen Temperatur T_f ein, wie beispielsweise für x = 0.42 im inneren Bild 6.17 gezeigt ist. Im Temperaturverlauf der zfc-Suszeptibilität ist eine weitere Anomalie in Form eines Minimums bei 3 K zu erkennen.

Die Aufspaltung zwischen den im Nullfeld (*zfc*) und bei angelegtem Magnetfeld (*fc*) abgekühlten χ -Werten ist ein Kennzeichen eines magnetisch "eingefrorenen" Systems und wird häufig bei *Spin(cluster)gläsern* und *Superparamagneten* beobachtet (s. Kapitel 5.2).

Analog zu GdI₂ zeigen die Proben GdI₂H_x ($x \le 0.69$) im paramagnetischen Bereich von 300 bis 350 K kein exaktes CURIE-WEISS-Verhalten. Obwohl die Daten in der Auftragung $1/\chi_m$ gegen *T* in diesem Bereich mit einer linearen Funktion angepasst werden können, erhält man aus der Geradensteigung unsinnig hohe Werte des effektiven magnetischen Moments ($\mu_{eff} > 9 \ \mu_B$). Nur für die Proben mit x = 0.78 bzw. 0.97 wird ein Moment von $\mu_{eff} = 7.97 \ \mu_B$ bzw. 7.93 μ_B ermittelt, das sehr gut mit dem für Gd³⁺-Ionen berechneten Moment von 7.94 μ_B übereinstimmt.

Abb. 6.17 *Oben*: Temperaturabhängigkeit der *fc*-Suszeptibilität für GdI_2H_x ($H_{ext} = 100$ Oe). Die charakteristische Aufspaltung zwischen *zfc-* χ und *fc-* χ ist für x = 0.24 exemplarisch dargestellt. Das innere Bild zeigt den Temperaturverlauf von $d\chi_m/dT$. *Unten*: Temperaturabhängigkeit der *fc*-Suszeptibilität für die Proben großen H-Gehaltes. Im inneren Bild ist die Aufspaltung zwischen *zfc-* χ und *fc-* χ und *fc-* χ für GdI₂H_{0.42} gezeigt.

Abb. 6.18 Temperaturabhängigkeit der reziproken Molsuszeptibilität von GdI₂H_x.

Aus der Hochtemperaturmessung an GdI₂H_{0.24} wird klar (Abb. 6.18), dass im Temperaturbereich von 300 bis 600 K keine lineare $1/\chi(T)$ -Abhängigkeit vorliegt. Erst bei Temperaturen oberhalb 650 K folgen die Daten dem CURIE-WEISS-Gesetz. Als Ergebnis erhält man eine paramagnetische *Curie*-Temperatur von Θ = 380(5) K und ein Moment von μ_{eff} = 8.3 μ_{B} .

Die aus Tieftemperaturdaten (300-350 K) berechneten hohen μ_{eff} -Werte lassen sich jetzt verstehen, da die $1/\chi(T)$ -Kurven bei sinkender Temperatur mit *geringerer* Steigung gekrümmt sind. Aus den im Bereich 300-350 K angepassten paramagnetischen *Curie*-Temperaturen Θ kann man die Größenordnung der magnetischen Wechselwirkung abschätzen, wobei die genaueren Daten aus Hochtemperaturmessungen bestimmt werden sollten.

Die charakteristischen magnetischen Temperaturen für GdI_2H_x sind in Tabelle 6.7 zusammengestellt. Obwohl die langreichweitige magnetische Ordnung bei einem H-Gehalt $x \ge 0.42$ verschwindet, weisen die positiven Θ -Werte auf eine stark ferromagnetische

Kopplung in diesen Verbindungen hin. Deren Stärke wird allerdings mit sinkendem x wesentlich reduziert, beispielsweise Θ = ca. 180 K bzw. 27 K für x = 0.42 bzw. 0.97.

Diese Meßergebnisse können dahingehend interpretiert werden, dass mit zunehmendem H-Gehalt die dreidimensionale Periodizität der magnetischen Kopplung (kooperative Ordnung) unterbrochen wird. Dies führt zur Ausbildung *isolierter* ferromagnetischer Cluster, deren Größe durch Einbau von Wasserstoff allmählich vermindert wird.

Probe	<i>T</i> _C / K	$T_{\rm f}/{ m K}$	Θ/K
GdI ₂	280		450(6)
$GdI_2H_{0.19}$	210(10)	85(10)	$> 250^{a}$
$GdI_2H_{0.24}$	170(10)	65(10)	380(5)
$GdI_{2}H_{0.28}^{*}$	116(10)	40(5)	$> 250^{a}$
$GdI_{2}H_{0.34}^{*}$	88(10)	30(5)	$> 260^{a}$
$GdI_{2}H_{0.42}^{*}$		24(1)	$> 180^{a}$
$GdI_2H_{0.45}$		18(1)	$> 170^{a}$
$GdI_2H_{0.56}$		10(1)	$> 170^{a}$
$GdI_2H_{0.69}$		3.0(5)	$> 60^{a}$
$GdI_2H_{0.78}$	paramagnetisches		47(1)
$GdI_2H_{0.97}$	Verha	alten	27(1)

Tabelle 6.7 Charakteristische magnetische Temperaturen von GdI_2H_x

 $T_{\rm C} = (\mathrm{d}\chi_{\rm m}/\mathrm{d}T)_{\rm min}, T_{\rm f} = \chi_{\rm zfc}(T)_{\rm max}$

^{a)} Θ -Werte, erhalten aus der CURIE-WEISS-Anpassung

im Temperaturbereich 300 K< T < 350 K

^{*} Die Proben enthielten geringe Mengen von Gd-Metall (< 0.5 Mol.-%)

Solche Cluster treten bei Superparamagneten sowie bei Spinclustergläsern auf. Im letzten Fall ist die Koexistenz konkurrierender – ferromagnetischer und antiferromagnetischer – Austauschwechselwirkungen ein erforderliches Attribut [71].

Magnetisierungsmessungen als Funktion des angelegten Magnetfeldes deuten auf die Anwesenheit antiferromagnetischer Wechselwirkungen in GdI_2H_x hin, wie es aus dem Vergleich der bei T = 5 K gemessenen M(H)-Isothermen mit der berechneten Kurve für isolierte Gd^{3+} -Ionen folgt (Abb. 6.19). Für $x \le 0.34$ ist ein für Ferromagneten typischer steiler Anstieg von M bei kleinen Feldern zu erkennen, wobei mit zunehmender Feldstärke bis 50 kOe keine Sättigung der Magnetisierung eintritt. Bei den Proben größeren Wasserstoffgehaltes, $x \ge 0.42$, liegen die Magnetisierungskurven unterhalb der berechneten M(H)-Werte im ganzen Feldbereich bis max. 70 kOe. Diese experimentellen Befunde weisen darauf hin, dass mit steigendem H-Gehalt zunehmend antiferromagnetische Kopplung auftritt. Besonders auffallend ist, dass die Sättigungsmagnetisierung -M-Wert bei H = 70 kOe - für die Proben mit x = 0.42 - 0.97 fast identisch ist. Daraus kann geschlossen werden, dass in den Phasen GdI₂H_x, die keine kooperative ferromagnetische Ordnung aufweisen, eine ähnliche Spinverteilung bei starken äußeren Feldern vorliegt.

Einen weiteren Beleg für die Existenz einer antiferromagnetischen Kopplung liefern die M(H)-Messungen bei verschiedenen Temperaturen. In der Auftragung von M gegen H/T zeigen die Magnetisierungskurven für GdI₂H_{0.97} bei T = 2 K bzw. 5 K einen unterschiedlichen Verlauf. Für eine paramagnetische bzw. eine superparamagnetische Verbindung würde gleicher Verlauf erwartet.

Abb. 6.19 Feldabhängigkeit der Magnetisierung bei 5 K für GdI_2H_x . Die durchgezogene Kurve entspricht der berechneten M(H)-Abhängigkeit für ein System isolierter Gd^{3+} -Ionen (paramagnetisches Verhalten). Im unteren Bild sind die bei verschiedenen Temperaturen gemessenen Magnetisierungskurven von $GdI_2H_{0.97}$ als Funktion von M(H/T) aufgetragen.

In Abbildung 6.20 ist die Temperaturabhängigkeit der *ac*-Suszeptibilität für GdI₂H_{0.42} gezeigt. Im Temperaturverlauf des Realteils der Suszeptibilität χ_{ac} sind zwei Anomalien zu erkennen. Die erste tritt als breites Maximum bei $T_{f} \approx 24$ K auf. Mit zunehmender Feldfrequenz ω verschiebt es sich zu tieferen Temperaturen. Diese charakteristische Frequenzabhängigkeit weist auf Spinclusterglas-Verhalten hin. Die zweite Anomalie äußert sich in Form eines Minimums bei 5 K. In der Darstellung des Imaginärteils der Suszeptibilität gegen T ist ein Maximum nahe von T_{f} erkennbar (Abb. 6.21, inneres Bild). Das Auftreten von χ_{ac} deutet auf Energieverluste im System bei tiefen Temperaturen hin, die auf feldinduzierte Umordnung der Spinstruktur zurückzuführen sind.

Abb. 6.20 Temperaturabhängigkeit der *ac*-Suszeptibilität χ_{ac} bei verschiedenen Feldfrequenzen ω für GdI₂H_{0.42}. Inneres Bild : Temperaturverlauf von χ_{ac} .

Die Variation von T_f mit ω für GdI₂H_x (x = 0.42, 0.45) zeigt thermisch aktiviertes Verhalten, das in der halblogarithmischen Auftragung von lg(ω) gegen 1/ T_f dargestellt ist (Abb. 6.21). Die Anpassung der ARRHENIUS-Gleichung an die ω (T_f)-Daten führt allerdings zu

$$\omega = \omega_0 \exp(-\Delta \varepsilon / k_{\rm B} T)$$

unsinnig hohen Werten der Aktivierungsenergie ($\Delta \varepsilon$) und der Relaxationszeit ($\tau_0 = 1/\omega_0$). Dies ist auf die sehr geringe Änderung von T_f mit zunehmender Frequenz ω zurückzuführen.

Abb. 6.21 Frequenzabhängigkeit von T_f für GdI₂H_x, aufgetragen als Funktion von lg ω gegen $1/T_f$.

Ein gutes Kriterium zur Differenzierung zwischen Spingläsern, Spinclustergläsern und Superparamagneten ist die Verschiebungsgröße $\Delta T_f / [T_f \Delta(\lg \omega)]$, die aus der reziproken Geradensteigung in der Auftragung von $\lg(\omega)$ gegen $1/T_f$ bestimmt werden kann. Im allgemeinen nimmt dieser Parameter in der Reihe Spinglas – Spinclusterglas – Superparamagnet zu.

In Tabelle 6.8 werden die für GdI_2H_x berechneten Werte $\Delta T_f/[T_f\Delta(\lg \omega)]$ mit denen bekannter Spinglas- bzw. superparamagnetischer Systeme verglichen.

System	$\Delta T_{\rm f}/[T_{\rm f}\Delta(\lg\omega)]$	Bemerkung
CuMn	0.005	Spinglas
Culvin	0.005	(metallisch leitend)
NiMn	0.018	Spinglas
	0.010	(metallisch leitend)
$(LaGd)Al_2$	0.06	Spinglas
(FuSr)S	0.06	Spinglas
(Eu51)5	0.00	(Isolator)
$(FeMa)Cl_{a}$	0.08	Spinglas
(I'Civig)CI2	0.08	(Isolator)
$a-(Ho_2O_3)(B_2O_3)$	0.28	Superparamagnet
$GdI_2H_{0.42}$	0.04	halbleitend
GdI ₂ H _{0.45}	0.02	halbleitend

Tabelle 6.8 Vergleich der Verschiebungsgröße von $T_{\rm f}$ in
verschiedenen Spinglas-Systemen

 $T_{\rm f} = \chi_{\rm ac}'(T)_{\rm max}$

In Abbildung 6.22 ist die Temperaturabhängigkeit von χ_{ac} in einem Bereich von 10 K bis 150 K für GdI₂H_{0.24} dargestellt, die typisch für ferromagnetische Proben (0.19 $\leq x \leq$ 0.24) ist. Wie *zfc-* χ durchläuft die *ac*-Suszeptibilität χ_{ac} mit sinkender Temperatur ein sehr unscharfes Maximum. Mit zunehmender Feldfrequenz ergibt sich eine Aufspaltung der χ -Werte nahe von $T_{max} = 70 \pm 10$ K, wobei die Absolutwerte sukzessiv verringert werden. Darin ähnelt die beobachtete Frequenzabhängigkeit von χ_{ac} einem Spinclusterglas-Verhalten. Es liegt nahe, dass die Spinkonfiguration bei den ferromagnetischen Proben mit $x \leq 0.34$ teilweise frustriert ist. Wenn dies der Fall ist, erwartet man das Auftreten von Anomalien im Temperaturverlauf von χ_{ac} .

Abb. 6.22 Temperaturabhängigkeit der *ac*-Susceptibilität χ_{ac} bei verschiedenen Feldfrequenzen ω für GdI₂H_{0.24}.

Abbildung 6.23 zeigt den Imaginärteil der *ac*-Suszeptibilität von $\text{GdI}_2\text{H}_{0.24}$ als Funktion der Temperatur bei verschiedenen Feldfrequenzen ω . Ähnlich zu GdI_2 ist der χ_{ac} ["](*T*)-Verlauf stark frequenzabhängig. Bei niedrigen Frequenzen nimmt χ_{ac} ["] langsam im ferromagnetischen Temperaturbereich (*T* < 200 K) zu, während unterhalb ca. 100 K ein steiler Anstieg eintritt. Daneben sind zwei Maxima bei 20 K bzw. 60 K zu erkennen.

Abb. 6.23 Temperaturverlauf von $\chi_{ac}^{"}$ bei verschiedenen Feldfrequenzen für GdI₂H_{0.24}.

Besonders auffällig ist, dass nur bei $\omega = 215$ -1000 Hz Bereiche der negativen Suszeptibilität zwischen 100 K und 280 K induziert werden. Diese treten schon weit oberhalb von $T_{\rm C}$ ein. Mit zunehmender Frequenz werden die negativen Werte reduziert und zu höheren Temperaturen verschoben. Bei tiefen Temperaturen sind zwei bereits erwähnte Anomalien zu erkennen. Das Auftreten der negativen $\chi_{\rm ac}$ Werte, bei $\omega = 100$ -464 Hz, wurde auch für GdI₂H_{0.19} beobachtet. Demgegenüber ist keine ähnliche Anomalie für GdI₂ erkennbar (vgl. Abb. 6.9, S. 54). Es kann daraus geschlossen werden, dass die bei GdI₂H_x beobachteten Bereiche der positiven und negativen Suszeptibilität auf intrinsische Eigenschaften zurückzuführen sind.

Die negative χ_{ac} Suszeptibilität deutet auf Freisetzung der Energie während der Messung hin. Ein solcher Prozess ist aus physikalischer Sicht außergewöhnlich und wurde nur in wenigen ferromagnetischen Verbindungen beobachtet [90, 91]. Im Gleichgewichtzustand ist χ_{ac} immer positiv und hängt mit Energieverlusten zusammen. Die negativen χ_{ac} Werte können dadurch verursacht werden, dass ein Ungleichgewichtszustand durch ein magnetisches Feld induziert wird. In diesem Fall sind die Meßergebnisse so zu verstehen: Bei bestimmten Feldfrequenzen werden die Proben GdI_2H_x zunächst in einen instabilen Zustand angeregt, so dass bei nachfolgender Relaxation des Systems in den Grundzustand Energie frei wird.

Bei größeren Feldfrequenzen von 2 kHz bis 10 kHz ist χ_{ac} immer positiv. Mit steigendem ω tritt der magnetische Energieverlust bei höheren Temperaturen ein. Bei $\omega = 10$ kHz nimmt χ_{ac} schon bei Raumtemperatur zu. Dies weist auf eine lange Relaxationszeit der Magnetisierung $\tau \gg \omega^{-1} = 10^{-4}$ s hin. Das Auftreten von χ_{ac} weit oberhalb der *Curie*-Temperatur ist auf starke Nahordnungseffekte zurückzuführen, was auch aus den hohen Θ -Werten folgt.

6.6.4 Elektrische Eigenschaften

Widerstandsmessungen wurden an Pulverpresslingen verschiedenen H-Gehaltes in einem Temperaturbereich von 350-200 (100) K durchgeführt. In Abb. 6.24 ist die R(T)-Abhängigkeit in logarithmischer Darstellung für einige Proben GdI₂H_x gezeigt. Im Gegensatz zu GdI₂ sind die H-haltigen Proben ($x \ge 0.24$) Halbleiter und weisen keine ausgeprägte Widerstandsanomalie bei der magnetischen Übergangstemperatur auf. Ein unterschiedliches R(T)-Verhalten zeigt die Probe GdI₂H_{0.19}. Deren Widerstand ist nahezu temperaturunabhängig zwischen 350 und 225 K, während bei weiter sinkender Temperatur R steil zunimmt und unterhalb 80 K wieder absinkt. Es ist auffällig, dass diese Anomalien in demselben Temperaturbereich stattfinden, in dem die spontane Magnetisierung auftritt (vgl. Abb. 6.17, S. 66). Die beobachtete Variation des Widerstandes ist wie bei GdI₂ auf *Spinkorrelationseffekte* (Spin-Phonon-Streuung) zurückzuführen.

Abb. 6.24 Temperaturverlauf des elektrischen Widerstandes für GdI_2H_x .

Es ist bemerkenswert, dass im Bereich von 300 K die Widerstandswerte der ferromagnetischen Proben mit $x \le 0.28$ in derselben Größenordnung liegen, während bei weiter steigendem H-Gehalt ein steiler Widerstandsanstieg stattfindet :

H-Gehalt <i>x</i>	0	0.19	0.24	0.26	0.28	0.34	0.42	0.56	0.97
<i>R</i> (300 K) [Ω]	50	130	280	230	300	2000	10^{4}	10 ⁵	$8 \cdot 10^{6}$

Abb 6.25 Verlauf des elektrischen Widerstandes von GdI_2H_x (logarithmische Darstellung) als Funktion der reziproken Temperatur. Mit Pfeilen sind die der *Curie*-Temperatur entsprechenden 1000/*T*-Werte bezeichnet.

Die Auftragung von R (in logarithmischer Darstellung) gegen 1000/T für x = 0.34 bzw. 0.42 ergibt wie erwartet eine nahezu lineare Abhängigkeit (Abb. 6.25), so dass die Daten durch die ARRHENIUS-Gleichung mit einer Aktivierungsenergie E_a beschrieben werden können

$$R = R_{\rm o} \exp(E_a/k_{\rm B}T).$$

Es wurden die Werte $E_a = 90 \text{ meV} (x = 0.34)$ bzw. 185 meV (x = 0.42) berechnet. Dagegen zeigen die Proben geringeren Wasserstoffgehaltes kein lineares Verhalten. Die R(1/T)-Kurven sind derart gekrümmt, dass deren Steigung bei niedrigen Temperaturen abnimmt. Dies führt zu einer Reduzierung der Aktivierungsenergie bei tiefen Temperaturen. Ähnliche Anomalien wurden auch in früheren Untersuchungen von *Michaelis* [31] beobachtet.

Da die Krümmung der Kurven nur bei den ferromagnetischen Phasen GdI_2H_x (x < 0.34) beobachtet wird, lässt sich dieser Effekt auf Spinkorrelationseffekte zurückzuführen. Diese Annahme belegt auch die Tatsache, dass die Änderung der Steigung $d(\ln R)/d(1/T)$ vorwiegend im ferromagnetischen Bereich auftritt. Andererseits ist im paramagnetischen Bereich von 250-300 K die Aktivierungsenergie nahezu identisch für x = 0.24-0.34 ($E_a \approx 90-98$ meV).

Abb. 6.26 Änderung des elektrischen Widerstandes von GdI₂H_{0.24} bei angelegtem magnetischem Feld.

Abbildung 6.26 zeigt die Änderung des elektrischen Widerstandes^a von GdI₂H_{0.24} bei angelegtem Magnetfeld. Mit zunehmender Feldstärke werden die R(T)-Werte stetig unterdrückt. Es resultiert wie bei GdI₂ ein negativer Magnetwiderstand MR^b (Abb. 6.27). Mit sinkender Temperatur nimmt MR monoton zu bis zur Sättigung im ferromagnetischen Temperaturbereich (T < 180 K). Bei Raumtemperatur und H = 70 kOe beträgt MR ~ 50 %, während bei $T_C \approx 170$ K der Magnetwiderstand einen Wert von ca. 90 % erreicht.

Charakteristisch ist die Feldabhängigkeit von MR. Bei kleinen Feldern ($H \le 10$ kOe) können die $\Delta \rho / \rho_0(H)$ -Kurven mit einem Potenzgesetz $\Delta \rho / \rho_0 \propto H^{\alpha}$ beschrieben werden. Der Parameter α ist im Gegensatz zu den in CMR-Metallatomheterostrukturen temperaturabhängig (inneres Bild, Abb. 6.27). Im paramagnetischen Bereich von 300 K bis 270 K folgen die $\Delta \rho / \rho_0(H)$ - Daten einem parabelartigen Verhalten, während sich unterhalb $T_{\rm C}$ ein linearer Anstieg im $\Delta \rho / \rho_0(H)$ -Verlauf ergibt. Die Variation von α mit der Temperatur wurde auch in dünnen Schichten La_{1-x}Ca_xMnO₃ beobachtet [92, 93].

Für die Probe $GdI_2H_{0.26}$ wurde ein ähnlicher Verlauf des Magnetwiderstandes als Funktion der Temperatur bzw. des Magnetfeldes wie bei $GdI_2H_{0.24}$ beobachtet, wobei keine Sättigung des Magnetwiderstandes bei der Abkühlung bis zu 130 K eintritt. Bei niedrigeren Temperaturen war die Messung des Widerstandes nicht möglich, weil die Spannungsgrenze der verwendeten Stromquelle überschritten war.

^a Die Messung wurde an einer gesinterten Pille durchgeführt.

Abb. 6.27 Magnetwiderstand $\Delta \rho / \rho_0$ von $\text{GdI}_2\text{H}_{0.24}$ als Funktion der Temperatur (*oben*) bzw. des magnetischen Feldes (*unten*). Das innere Bild zeigt die Änderung des Exponenten $\alpha (\Delta \rho / \rho_0 \propto H^{\alpha})$ mit der Temperatur, wie im Text geschrieben.

6.7 Diskussion der physikalischen Eigenschaften

Die Messungen der Magnetisierung und des elektrischen Widerstandes von GdI_2H_x zeigen eine wesentliche Änderung der physikalischen Eigenschaften beim kritischen Wasserstoffgehalt $x \approx 0.34$, wie es graphisch in Abb. 6.28 wiedergegeben ist. So verschwindet bei x >0.34 die ferromagnetische Ordnung, stattdessen tritt Spinclusterglas-Verhalten auf. Daneben ergibt sich ein starker Widerstandsanstieg mit zunehmendem H-Gehalt. Diese Anomalien lassen sich aufgrund der strukturellen und elektronischen Korrelationen verstehen.

Abb. 6.28 *Oben*: Abhängigkeit des elektrischen Widerstandes bei 300 K und der Sättigungsmagnetisierung M_{sat} (H = 70 kOe) bei 5 K für GdI₂H_x vom H-Gehalt. *Unten*: Magnetisches Phasendiagramm für GdI₂H_x.

Die metallische Leitfähigkeit in GdI₂ ist auf die in Metall-Metall-Bindungen delokalisierten Gd 5d-Elektronen zurückzuführen. Der Einbau der H-Atome in die Struktur führt zur Lokalisierung der Leitungselektronen an H-Atomen unter Bildung von H-Ionen, die nach Neutronenstreuuntersuchungen an CeI₂D_{0.96} exakt in den Metallatomdreieckszentren liegen [55]. Eine solche Anordnung kann durch die Ausbildung von 2Elektronen-4Zentren Bindungen in Gd₃H-Clustern stabilisiert werden [94]. Diese strukturellen und elektronischen Charakteristika setzen einen Perkolationsmechanismus der Leitfähigkeit für GdI₂H_x voraus. Für $GdI_2H_x(e_{1-x})$ entspricht dieser der *Bond*-Perkolation im zweidimensionalen trigonalen Gd-Netz, d.h. nur die miteinander verknüpften Zentren sind "leitend". Es handelt sich um die minimale Anzahl der willkürlicherweise verteilten Bindungen zwischen den Zentren, sogenannte Perkolationsschwelle (n_c) , bei der die Ausbildung unendlich "leitender" Cluster auftritt. Für ein trigonales Gitter beträgt n_c ungefähr 0.35 [95]. Bei GdI₂H_x sind allerdings die Gd-Gd-Bindungen nicht willkürlich verteilt, da durch die Besetzung von H-Positionen zugleich drei Metall-Metall-Bindungen zwischen den umgebenden Gd-Atomen beeinflusst werden. Um die H-Fehlstellen können metallische Gd₃-Cluster durch die halb besetzte 2Elektronen-3Zentren-Bindung stabilisiert werden, wie schematisch in Abb. 6.29 gezeigt ist.

Abb. 6.29 Links: Schematische Darstellung der Perkolation im Gd(H)-Teilgitter von GdI_2H_x . Die besetzten H-Positionen sind mit den ausgefüllten kleinen Symbolen bezeichnet. Gestrichelt dargestellt sind die "leitenden" Gd_3 -Cluster, wie im Text geschrieben. *Rechts*: Perkolationswahrscheinlichkeit *P* in Abhängigkeit vom Anteil der "leitenden" Gd_3 -Cluster (*n*), berechnet für ein trigonales Gitter der Größe $m \times m$.

Zur Bestimmung der Perkolationsschwelle für GdI_2H_x wurde ein Programm geschrieben. In jedem Lauf des Programmes wird anstelle einzelner Bindungen eine statistische Verteilung der "leitenden" Gd_3 -Dreiecke mit Hilfe eines Pseudozufall-Generators simuliert. Schließlich wird überprüft, ob bei der eingegebenen Wahrscheinlichkeit der Bildung von M₃-Clustern (*n*) ein kontinuierlicher Pfad von einer Seite des Gitters zur andere möglich ist. Zur Verbesserung der Statistik wurden jeweils 1000 Läufe des Programms mit identischen Parametern durchgeführt. Aus der Auftragung der erhaltenen Perkolationswahrscheinlichkeit *P* gegen *n* kann für die Perkolationsschwelle $n_c \approx 0.5$ berechnet werden, vgl. Abb. 6.29. Interessant ist, dass dieser Wert mit dem für die *Site*-Perkolation im trigonalen Gitter übereinstimmt [95].

Aus dem Perkolationsmodell für GdI₂H_x erwartet man also eine drastische Änderung der elektrischen Eigenschaften bei $x \approx 0.5$. Die experimentellen Ergebnisse zeigen aber, dass der charakteristische Widerstandsanstieg schon bei geringerem H-Gehalt/größerer Elektronen-Konzentration eintritt. Dies ist auf die "zusätzliche" Lokalisierung der Leitungselektronen wegen der starken Spin-Spin-Kopplung zwischen den itineranten Gd 5d- und lokalisierten Gd 4f-Elektronen zurückzuführen. Ein Beleg dafür ist die starke Verringerung des Widerstandes bei angelegtem magnetischem Feld. Es resultiert ein riesiger negativer Magnetwiderstand. In Tabelle 6.9 werden die MR-Werte für GdI₂H_x mit denen bekannter CMR-Verbindungen verglichen. Auffälligerweise ist der Magnetwiderstand für GdI₂H_{0.24} unterhalb der *Curie*-Temperatur nahezu temperaturunabhängig, während für die meisten CMR-Verbindungen eine Abnahme der MR-Werte bei Abkühlung unterhalb des magnetisch geordneten Temperaturbereiches beobachtet wurde.

Verbindung	MR	T/H	Verbindung	MR	T/H
verbindung	%	K / kOe	verbilldulig	%	K / kOe
Fe/Cr-Mehrlagenschichten	21	300/20	MnAu ₂	10	300/70
$La_{0.7}Ca_{0.3}MnO_3$	70	240/60	FeCr ₂ S ₄	20	180/60
$La_{0.67}Ca_{0.33}MnO_z$	99	140/70	GdI ₂	65	300/70
TI Mn O	10	300/70	CAL H	50	300/70
11210111207	90	150/70	Gu12H0.24	90	180/70

Tabelle 6.9 Vergleich der Magnetwiderstandswerte (MR) von GdI_2H_x mit denen
bekannter CMR-Verbindungen

MR : $\Delta \rho / \rho_0 = [(\rho(H,T) - \rho(0,T)] / \rho(0,T)]$

Die scharfe Änderung sowohl des Molvolumens als auch der Leitfähigkeit und der Magnetisierung beim Wasserstoffgehalt $x \approx 0.34$ deutet auf einen Phasenübergang hin. Auffallend ist, dass dieser Wert dem maximalen H-Gehalt entspricht, bei dem die H⁻-Ionen in eine Überstruktur minimierter elektrostatischer H⁻-H⁻-Abstoßung geordnet werden können (Abb. 6.16, S. 64). Die Gittermetrik der Überstrukturzelle bleibt unverändert, wobei die neuen und die alten Gitterparameter im folgenden Zusammenhang stehen : $a' = \sqrt{3} a$ bzw. c' = c. Es liegt nahe, die beobachteten Anomalien auf die H-Ordnung bei x = 0.33 zurückzuführen. Die Zunahme des elektrischen Widerstandes kann so gut verstanden werden. Diese Annahme stützen Widerstandsmessungen an den verwandten Verbindungen CeI₂H_x, bei denen ein noch stärkerer Widerstandsabfall nahe der unteren Phasengrenze $x \approx 0.34$ beobachtet wurde [74]. Zur Bestätigung der H-Ordnung müßten noch weitere Untersuchungen durchgeführt werden.

Die Magnetisierungsmessungen weisen auf die Koexistenz von ferromagnetischen und antiferromagnetischen Wechselwirkungen in GdI_2H_x hin, wobei die letztere mit zunehmendem *x* verstärkt wird. Diese Tendenz ist aufgrund der elektronischen Korrelationen zu verstehen. In GdI_2 sind die Gd-Atome ferromagnetisch (F) durch den RKKY-Mechanismus gekoppelt. Mit dem Einbau der H-Atome werden die Leitungselektronen sukzessiv lokalisiert, so dass die Spin-Spin-Kopplung zwischen den Gd-Atomen in "gefüllten" M₃H-Clustern durch direkte f-f-Kopplung bzw. durch den Gd^{3+} -H⁻- Gd^{3+} -Superaustausch vermittelt wird. Den GOODENOUGH-KANAMORI-Regeln zufolge [96, 97] sollten die beiden Mechanismen eine antiferromagnetische (AF) Kopplung zwischen den benachbarten *nicht orthogonalen* und *halb besetzen* Orbitalen (Gd^{3+} : 4f⁷-Konfiguration) hervorrufen. Das Auftreten der antiferromagnetischen Cluster im ferromagnetischen Wirtsgitter ergibt lokale Frustration der Spinverteilung. Die AF-Wechselwirkung einer trigonalen Spinmatrix führt andererseits zu einer frustrierten Spinkonfiguration – das bekannteste Beispiel der geometrischen Frustration [98]. Als Folge beobachtet man keinen scharf definierten ferromagnetischen Phasenübergang, wobei bei tiefen Temperaturen ein Spinclusterglas-ähnliches Verhalten auftritt.

Mit zunehmendem H-Gehalt wird die ferromagnetische Ordnung zerstört, die Phasen GdI_2H_x mit x = 0.42-0.69 weisen Spinclusterglas-Verhalten auf. Interessant ist, dass im Gegensatz zu konventionellen Spin(cluster)glas-Systemen, bei denen die Spinfrustration von der statistischen Verteilung der magnetischen Atome herrührt, das Gd-Teilgitter in den Verbindungen GdI_2H_x *strukturell* geordnet ist.

Abb. 6.30 *Links*: Verteilung der positiven (F) und negativen (AF) Austauschkopplungen zwischen benachbarten Gd-Ionen in GdI₂H_{0.33}, ausgehend von einer H-geordneten Struktur. *Rechts*: Schematische Darstellung der Spinstruktur im trigonalen Netz mit konkurrierenden magnetischen Wechselwirkungen.

Der magnetische Übergang bei $x \approx 1/3$ ist unter Annahme der H-Ordnung in GdI₂H_{0.33} zu verstehen. Die Anordnung der H-Atome führt zu periodischer Verteilung der antiferromagnetischen Gd₃H-Cluster, wie in Abb. 6.30 gezeigt ist. Es resultiert eine vollständig frustrierte Spinkonfiguration, da auf jeden Spin die konkurrierenden Austauschkopplungen (F und AF) wirken. Bemerkenswert ist, dass die Gd-Atome in jedem Δ -artigen Dreieck durch zwei F- und eine AF-Austauschwechselwirkung gekoppelt sind. Dies ergibt eine Abweichung der Spins von der ursprünglichen ferromagnetischen Orientierung. Geht man davon aus, dass die Spins in den Ebenen der Metallatome liegen^a, kann die folgende Formel für das gesamte magnetische Moment berechnet werden

$$M_{\rm s} = \frac{1 + \sqrt{2(1 + \cos(\alpha + \beta))}}{3} M({\rm Gd}^{3+}), \ (6.4)$$

wobei die Winkel α und β den Auslenkungsgrad von der ferromagnetischen Spinausrichtung bezeichnen.

Aus dem Vergleich des berechneten und des experimentell ermittelten Magnetisierungswertes für x = 0.34 ($M_{sat} = 5.4 \mu_B$) erhält man einen Winkel von $\alpha + \beta \approx 98^{\circ}$. Es ist bemerkenswert, dass die beobachteten Magnetisierungswerte für x > 0.34 bei starkem Magnetfeld (H = 70kOe) der nahezu *orthogonalen* ("canted") Orientierung der antiferromagnetisch gekoppelten Spins entsprechen, wobei die AF-Austauschwechselwirkung minimiert ist.

So wird verständlich, dass bei $x \ge 0.34$ die M_{sat} -Werte identisch sind (vgl. Abb. 6.28, S. 79). Mit zunehmendem H-Gehalt wird der Anteil der AF-Austauschkopplung vergrößert. Daher erwartet man eine Verringerung der dM/dH-Steigung in den Magnetisierungskurven. Bei starken äußeren Feldern wird die AF-Kopplung erheblich unterdrückt. Die Spins tendieren

^a Diese Annahme beruht auf Mößbauer-spektroskopischen Untersuchungen an GdI_2 [99]. Es wurde festgestellt, dass die magnetischen Hyperfeinfelder senkrecht zur *c*-Achse einwirken.

sich in Feldrichtung auszurichten, so dass die orthogonale Spinverteilung energetisch günstig ist. Für eine solche Spinkonfiguration ($\alpha + \beta = \pi/2$) im trigonalen Netz berechnet man aus Gl. 6.4 ein Moment *M* von 5.6 μ_B . Diese Vorstellung ist in sehr guter Übereinstimmung mit den experimentellen Ergebnissen (vgl. Abb. 6.19, S. 69).

7 Hydridhalogenide LnIH_x von Y und Gd

7.1 Allgemeines

Die Hydridhalogenide der dreiwertigen Seltenerdmetalle LnHalH_x (Hal = Cl, Br, I; $2/3 \le x \le 1$) bilden eine Reihe von metallreichen Verbindungen [100-107], in denen die Lanthanoidatome im Vergleich zu den Dihalogeniden LnI₂ weiter "reduziert" sind. Diese metallischen Verbindungen kristallisieren in einer Schichtstruktur, in der die Schweratome wie in den Kristallstrukturen von ZrCl [108, 109] bzw. ZrBr [110] oder im 2s-Typ [25] angeordnet sind. In Abb. 7.1 sind die bislang bekannten Strukturvarianten von LnHalH_x wiedergegeben, die eine Stapelung von in sich dichtgepackten Schichtpaketen Halogen-Metall-Metall-Halogen darstellen. Die Wasserstoffatome befinden sich in Tetraederlücken zwischen den Metallatomschichten dass die Besetzung aller Tetraederlücken [102], so der Grenzzusammensetzung LnHalH entspricht.

Beim Erhitzen in Wasserstoffatmosphäre auf 700-800 K nehmen die Phasen LnHalH_x ($x \le 1$) weiteren Wasserstoff auf. Dies führt zur Bildung der salzartigen Verbindungen LnHalH₂, in denen die Wasserstoffatome zusätzlich alle trigonal antiprismatischen Lücken zweifach – jedes Atom in den Dreieckflächen der Metallatomantiprismen – besetzen [103]. Zwischen LnHalH und LnHalH₂ besteht eine Mischungslücke [22, 100].

Alle bekannten Verbindungen $LnClH_2$ (Ln = Y, Ce, Pr, Gd, Tb, Lu), $LnBrH_2$ (Ln = Ce-Nd, Gd, Tb) und GdID₂ sind isostrukturell [101, 105] und besitzen die gleiche Stapelfolge von drei Hal-Ln-Ln-Hal Schichtpaketen wie in der Hochtemperatur-Modifikation von Ta₂S₂C [111].

Abb. 7.1 Projektive Verteilung der Metall- bzw. Halogenatome in bislang bekannten Stapelvarianten von LnIH_x: (a) ZrCl-Typ, (b) ZrBr-Typ, (c) 2s-Typ, (d) LnHalH₂-Typ. Die Stapelfolge von dichtgepackten Schichten ist in der üblichen ABC-Notation wiedergegeben. Es stehen A, B, C für Hal- und α , β , γ für Ln-Schichten.

Bei der Bildung von LnHalH₂ aus LnHalH_x ergibt sich jedoch eine wesentliche Änderung der Wirtsstruktur: die Halogenatome innerhalb eines Hal-Ln-Ln-Hal Schichtpakets werden von trigonal prismatischer (Abfolge: A $\beta\gamma$ A) zu trigonal antiprismatischer (A $\beta\alpha$ B) Anordnung verschoben [103].

Aus früheren Untersuchungen [4, 13, 107, 112] ist bekannt, dass die Variation der H-Konzentration in LnHalH_x deren physikalische Eigenschaften erheblich beeinflusst und zum Teil zu neuen und unerwarteten physikalischen Effekten führt. So verschwindet z.B. im System TbBrD_x (0.7 < x < 1) mit Abnahme des Deuteriumgehalts die langreichweitige antiferromagnetische Ordnung, und es tritt Spinglasverhalten auf [112]. Für die Verbindungen GdHalD_x (Hal = Br, I; 0.7 < x < 1) beobachtet man bei tiefen Temperaturen einen Metall-Halbleiter-Übergang, der mit hohen Magnetfeldern unterdrückt werden kann [13, 107].

Während eine große Zahl von Chlorid- und Bromidhydriden $LnClH_x$ (Ln = Sc, Y, La - Pr, Gd, Tb) und LnBrH_x (Y, La - Nd, Gd, Tb) bisher vielseitig untersucht wurde, gibt es viel weniger Information über die verwandten $LnIH_x$ -Verbindungen. Im Rahmen dieser Arbeit wurden die Hydridiodide $LnIH_x$ von einem diamagnetischen und einem magnetischen Seltenerdmetall untersucht. Im folgenden Kapitel wird über die Phasenverhältnisse, strukturelle, elektrische und magnetische Eigenschaften von LnIH_x (Ln = Y, Gd) berichtet.

7.2 Die Phase YIH_x

7.2.1 Darstellung

Die ternären Phasen YIH_x ($0.6 \le x \le 1$) sind über zwei unterschiedliche Wege hergestellt worden (Tabelle 7.1) :

• Die Hydridiodide mit einem größeren H-Gehalt YIH_x ($0.8 \le x \le 1$) wurden in Form von graphitfarbenen Plättchen durch Erhitzen von in Ta-Tiegeln eingeschweißten Gemengen YI₃/YH₂ (Molverhältnis 1:2) bzw. Y/YI₃/YH₂ erhalten. Diese Kapseln wurden in evakuierte Quarzglasampullen eingeschmolzen und 4-6 Tage bei 1170 K getempert. Der Wasserstoffgehalt *x* konnte entweder beim Einwägen der stöchiometrischen Mengen der Ausgangssubstanzen und Tempern im geschlossenen System gemäß

$$1/3 \text{ YI}_3 + x/2 \text{ YH}_2 + (4-3x)/6 \text{ Y} \rightarrow \text{YIH}_{x_2}$$

oder nach der Reaktionsgleichung

$$YI_3 + 2 YH_2 \rightarrow 3 YIH_x + (4-3x)/2 H_2 \uparrow$$

im offenen System variiert werden. Im letzten Fall beruht die Variation der Zusammensetzung des Produktes auf der Tatsache, dass der Wasserstoff durch die Ta-Ampulle diffundieren kann. Man erhält dann die dem H₂-Gleichgewichtsdruck entsprechende Zusammensetzung. Der H-Gehalt des Produktes ist um so geringer, je höher die Reaktionstemperatur und je länger die Temperzeit ist [25, 101].

Beide Methoden liefern röntgenografisch phasenreine Proben, wie es auch für andere Phasen LnHalH_x (Ln = Sc, Y, La-Nd, Gd, Tb, Er, Lu; Hal = Cl, Br, I) berichtet wurde [22, 25, 101-107].

• Zur Bestimmung der unteren Grenze des Homogenitätsgebiets von YIH_x und der Temperaturstabilität der Grenzphase wurden die bereits synthetisierten Verbindungen YIH_x in dynamischem Vakuum getempert.

Ν	Edukte	Reaktionsbedingungen	Produkt [*]
1	YI ₃ /YH ₂ (1:2)	4d, 1170 K	$YIH_{1.02}$
2	$YI_{3}/YH_{2}(1:2)$	6d, 1170 K	YIH _{0.98}
3	Y/YI ₃ /YH ₂ (19:20:21)	6d, 1170 K	YIH _{0.81}
4	YIH _{0.98}	20 Std, 1000 K, 10 ⁻⁵ torr	YIH _{0.79}
5	YIH _{0.81}	10 Std, 1000 K, 10 ⁻⁵ torr	$YIH_{0.61}$
6	YIH _{0.81}	10 Std, 1070 K, 10 ⁻⁵ torr	YIH _{0.59}
7	YIH _{0.61}	10 Std, 1170 K, 10 ⁻⁵ torr	YI ₃ , Y

Tabelle 7.1 Darstellung von YIH_x

^{*} Der Wasserstoffgehalt in den erhaltenen Proben wurde jeweils analytisch bestimmt.

Die Proben 4-7 wurden in einem "offenen" System – in einseitig zugeschweißten Ta-Ampullen – solange getempert, bis der im System entstandene Gasdruck von ca. 10^{-3} Torr auf seinen Ausgangswert (~ 10^{-5} Torr) gefallen war. Beim Erhitzen auf 1000-1070 K ergaben sich die Proben mit dem niedrigsten H-Gehalt x = 0.61(3). Weitere Steigung der Temperatur führte zur Zersetzung der Probe unter Bildung von Y und gasförmigem YI₃.

7.2.2 Phasenbeziehungen zwischen YIH_x und YIH₂

Beim Aufheizen unter 1 bar H₂ nehmen die Phasen YIH_x ($x \le 1$), analog zu anderen Lanthanoidhydridhalogeniden, weiteren Wasserstoff auf. Die H₂-Druckverminderung nach der Hydrierungsreaktion entspricht der Bildung von YIH₂. Im Unterschied zum metallglänzenden Edukt ist das entstandene Produkt hellgrün und durchsichtig. In Tabelle 7.2 sind Details der durchgeführten Hydrierungsversuche zusammengestellt.

Tabelle 7.2 Hydrierungs-/Dehydrierungsreaktionen von YIH_x (x = 1, 2)

N	Edukt	Aufheizbedingungen	Produkt
8	YIH	770 K, 2K/min, 1bar H ₂	YIH _{2.0}
9	YIH	820 K, 2K/min, 1bar H ₂	YIH _{2.0}
10	YIH	1020 K, 3K/min, 1bar H ₂	YI_3 , $YH_2 + Q$
11	YIH ₂	1020 K, 2K/min, 960 mbar H ₂	YI_3 , $YH_2 + Q$
12	YIH ₂	970 K, 1K/min, 10 ⁻⁵ torr*	YIH _x

^{*} dynamisches Vakuum; Q – unbekannte Phase.

Verfolgt man den Druckanstieg in einer mit YIH_x beschickten Hydrierapparatur bei steigender Temperatur (Abb. 7.2 links), so lässt sich der Anfang der H-Aufnahme aus einer charakteristischen Druckabnahme bei 600 K erkennen, die bei etwa 750 K vollständig ist. Wie zu erwarten ist, tritt die Wasserstoffaufnahme mit geringerer Aufheizgeschwindigkeit bei tieferen Temperaturen auf.

Sukzessives Erhitzen von YIH_x bzw. YIH₂ in einer Wasserstoffatmosphäre führt oberhalb 970 K zur Zersetzung der Probe unter Bildung einer unbekannten schwarzen Substanz (Q), die in Gleichgewicht mit YI₂ und gasförmigem YI₃ steht. Dieser Prozess ist von Wasserstoffentwicklung begleitet, wie man aus der Druckänderung im System oberhalb 970 K schließen kann (Abb. 7.2 rechts). Die H-Druckdifferenz nach der Reaktion entspricht der nominellen Zusammensetzung "YIH_{1.33}". Ergebnisse der an einigen Kristallen durchgeführten EDX-Analysen zeigen, dass das Verhältnis I/Y in einem Bereich von 0.95 bis 1.25 variiert.

Abb. 7.2 Links: Temperaturabhängigkeit des Wasserstoffdrucks bei der Hydrierung von YIH mit einer Aufheizgeschwindigkeit von 3°C/min (□) bzw. 2°C/min (○). Die Punkte (▲) entsprechen der Druckänderung für eine leere Apparatur (Aufheizgeschwindigkeit: 3°C/min). *Rechts*: Temperaturabhängigkeit von p(H₂) (Aufheizgeschwindigkeit: 2°C/min) für eine leere (▲) und eine mit YIH₂ beschickte Apparatur (○).

Diese Werte stimmen mit den Zusammensetzungen mehrerer metallreicher Ln-Clusterverbindungen überein [4].

Das Röntgendiagramm des erhaltenen Produktes unterscheidet sich deutlich von denen für YIH_x ($0.6 \le x \le 1$) bzw. YIH_2 . Es zeigt zwei Arten von Reflexen, scharfe und charakteristisch verbreiterte Linien. Die beobachteten *d*-Werte der scharfen Reflexe sind im kristallografischen Anhang zusammengefasst (S. 163).

Die Abspaltung der H-Atome aus YIH₂ bis zu den ursprünglichen Zusammensetzungen YIH_x ($x \le 1$) ist durch Erhitzen im dynamischen Vakuum leicht möglich. Die Hydrierungs-/Dehydrierungsreaktionen laufen im gleichen Temperaturbereich ab, wie in Abb. 7.3 gezeigt ist. Da der Einbau von H in YIH_x bis zur Grenzzusammensetzung YIH₂ eine wesentliche Änderung der Wirtsstruktur ergibt, kann die Hydrierung von YIH_x als eine *reversible topochemische* Reaktion bezeichnet werden.

Abb. 7.3 Gegenüberstellung der H-Druckänderung bei der Hydrierungsreaktion (○) von YIH (Aufheizgeschwindigkeit: 2°C/min) und der Dehydrierungsreaktion (+) von YIH₂ (Aufheizgeschwindigkeit: 1°C/min).

7.2.3 Strukturuntersuchung an Pulvern

Da durch Röntgenuntersuchungen die Positionen der H-Atome nicht erkennbar sind, können auf diesem Weg nur die Ortslagen der Y- und I-Atome bestimmt werden.

YIH_x: Röntgenpulverdiagramme von YIH_x ($0.6 \le x \le 1$) zeigen, dass diese Phasen im ganzen Homogenitätsgebiet im ZrBr-Typ (Raumgruppe: $R\overline{3}m$) kristallisieren. Ein typisches Röntgendiagramm für YIH_x ist in Abb. 7.4 dargestellt. In Tabelle 7.3 sind die durch Indizierung der starken Reflexe bestimmten Gitterparameter von YIH_x zusammengestellt.

N	Probe	$a/ m \AA$	c/Å	$V/\text{\AA}^3$	Strukturtyp
1	YIH _{1.02}	3.9349(3)	31.033(1)	416.23(6)	ZrBr
2	YIH _{0.98}	3.9337(7)	31.047(6)	416.1(1)	ZrBr
3	$\mathrm{YIH}_{0.81}$	3.9334(2)	31.096(2)	416.58(3)	ZrBr
4	$\mathrm{YIH}_{0.79}$	3.9340(7)	31.102(6)	416.85(9)	ZrBr
5	YIH _{0.61}	3.9326(3)	31.162(3)	417.36(5)	ZrBr
6	$\mathrm{YIH}_{0.59}$	3.9324(2)	31.158(2)	417.27(3)	ZrBr
12	YIH _x	3.9328(6)	31.094(5)	416.50(6)	ZrBr
8	YIH ₂	3.8579(3)	10.997(1)	141.74(4)	1T
9	YIH ₂	3.8560(6)	11.001(6)	141.64(7)	1T

Tabelle 7.3 Gitterparameter von YIH_x

Abb. 7.4 Ergebnis der Rietveld-Verfeinerung für YIH_{1.02}. Bragg-Reflexe für YIH_{1.02} (ZrBr-Typ) sowie für Si als Referenz sind mit senkrechten Strichen markiert.

In einer Darstellung der Gitterparameter über x (Abb. 7.5) ist ein linearer Zusammenhang zu erkennen. Mit steigendem Wasserstoffgehalt steht einer Abnahme der Länge der *c*-Achse eine geringfügige Zunahme der *a*-Achse gegenüber. Es resultiert eine geringe Abnahme des Volumens pro Formeleinheit von etwa 0.2 Å³ auf dem Weg von YIH_{0.61} bis YIH_{1.02}.

Abb 7.5 Gitterparameter von YIH_x in Abhängigkeit vom H-Gehalt.

Die Variation der Gitterparameter mit dem H-Gehalt lässt sich auf der Basis eines elektrostatischen Modells [23] erklären unter der Annahme, dass die *freien* Elektronen an den eingebauten Wasserstoffatomen unter Bildung von H⁻-Ionen lokalisiert werden. Zunehmende Besetzung der H-Positionen in Metallatomdoppelschichten (Tetraederlücken) führt durch die Y³⁺–H⁻–Anziehung zur Verkleinerung des *c*-Gitterparameters, während der *a*-Gitterparameter durch die H⁻-H⁻–Abstoßung vergrößert wird.

Für die Proben mit den analytischen Zusammensetzungen YIH_{0.61} bzw. YIH_{1.02} wurde die Schweratomstruktur durch Rietveld-Verfeinerung (s. kristallog. Anhang, S. 160-162) bestimmt. Die kürzesten Abstände zwischen den Metall- und Halogenatomen sind in Tabelle 7.4 zusammengefasst. Wie im ZrBr sind die Abstände der Metallatome zwischen benachbarten Ln-Schichten kürzer als die innerhalb der Schichten. Diese Abstandsdifferenzierung um 0.4 Å weist auf starke Y–Y-Bindung zwischen den benachbarten Metallatomschichten hin, während die schwächere Bindung zwischen den Y-Atomen innerhalb einer Schicht wesentlich vom I–I-Abstand in den dichtgepackten Halogenatomschichten beeinflusst ist.

Verbindung	Y - Y	Y – I	I – I *
YIH _{0.61}	3.933(1)	3.071(6)	4.188(7)
	3.553(8) ^{a)}		
$YIH_{1.02}$	3.935(1)	3.082(4)	4.186(4)
	3.499(5) ^{a)}		
YIH _{2.0}	3.858(1)	3.095(4)	4.198(6)
	$3.851(6)^{a}$		

Tabelle 7.4 Interatomare Abstände (Å) in YIH_x (Standardabweichungen in Klammern)

* Zwischenschichtabstände

Der Y–I-Abstand (3.08 Å) entspricht der Summe der Ionenradien für die Koordinationszahl 6 ($r(Y^{3+}) = 0.90$ und $r(\Gamma) = 2.20$ Å) [113], wobei die geringfügige Differenz (0.02 Å) auf *Polarisationseffekte* zurückzuführen ist. Der I–I-Abstand zwischen benachbarten Schichten beträgt 4.19 Å. Er ist damit um 0.16 Å kürzer als der I–I-Abstand von 4.35 Å zwischen den Schichten des elementaren Jods [114]. Die vollständige Besetzung aller Tetraederlücken zwischen den Metallatomen mit Wasserstoffatomen (YIH) führt zu einer Verringerung der Y–Y-Zwischenschichtabstände um 0.05 Å, während die anderen Abstände nahezu unverändert bleiben.

*YIH*₂: Die Proben YIH₂ zeigen überraschend ein Röntgendiffraktogramm (Abb. 6.6), das sich von denen der verwandten Verbindungen LnHalH₂ (Hal = Cl, Br) unterscheidet. Die starken Reflexe werden sämtlich in einer trigonalen primitiven Elementarzelle mit a = 3.8579(3) Å und c = 10.997(1) Å indiziiert. Aus dem Vergleich der Gitterparameter für YIH₂ und YClH₂, insbesondere der Länge der *c*-Achse (10.997 bzw. 29.346 Å), kann man vermuten, dass anstelle der 3 Schichtpakete Hal-Ln-(H)₄-Ln-Hal nur 1 Schichtpaket pro Translationsperiode in YIH₂ angeordnet ist.

Die Anordnung der Schweratome in YIH₂ wurde auf Basis eines Strukturmodells mit der Stapelfolge der I- bzw. Y-Schichten A $\beta\alpha$ B (Raumgruppe: $P\bar{3}m1$) durch Rietveld-Verfeinerung der Röntgenpulverdaten bestimmt. Die untersuchte Probe enthielt nach der Profilanalyse der Reflexe ca. 2 Gew.-% YH₂ als Minoritätsphase. Das Ergebnis der Verfeinerung ist in Abb. 7.6 dargestellt. Die Gütewerte betrugen $R_p = 2.01\%$, $R_{wp} = 3.21\%$, $R_{exp} = 1.62\%$; die Güte der Anpassung G = 1.97. Nähere Angaben sind im kristallografischen Anhang (S. 161, 162) zusammengefasst.

Abb. 7.6 Ergebnis der Rietveld-Verfeinerung von YIH₂ mit Indizierung der starken Reflexe. Bragg-Reflexe für 1T-YIH₂ (oben) sowie für YH₂ (unten) sind mit senkrechten Strichen markiert.

Obwohl die für die Pulveraufnahme verwendete Probe mit Glaspulver verrieben wurde, weisen bestimmte Gruppen von Reflexen eine große Abweichung zwischen gemessener (I_{obs}) und berechneter (I_{calc}) Intensität auf. Für die Reflexe 00*l*, *hhl* und 100 sind I_{obs} größer als I_{calc} , während für $10l \ (l = 2n)$ eine umgekehrte Abhängigkeit vorliegt. Dies ist auf Textureffekte und/oder auf Stapelfehlordnung längs [001]-Richtung zurückzuführen. Beide Effekte wurden häufig bei Schichtkristallen beobachtet. Das mit modifizierter GUINIER-Technik [37] mit weit geöffneter Blende aufgenommene GUINIER-Diagramm zeigt in der Tat eine unregelmäßige Verteilung der Intensität entlang der DEBYE-Ringe, was ein Fingerabdruck für texturierte Proben ist.

Die Struktur von YIH₂ besitzt dieselbe Schweratomanordnung wie in der Struktur von TbBrD₂ [103]. Im Gegensatz zu allen bekannten Phasen LnHalH(D)₂ entspricht die Translationsperiode in YIH₂ nur einem Viererpaket Hal-Ln-Ln-Hal mit der zentrosymmetrischen Stapelfolge A $\beta\alpha$ B (1T-Typ), die charakteristisch für ZrHalH (Hal = Cl, Br) [115] und ternäre Carbidhalogenide 1T-Ln₂Hal₂C [106, 116-117] ist.

Der Einbau der Wasserstoffatome bis zur Grenzzusammensetzung YIH₂ führt zu erheblichen Änderungen der Metall-Metall-Abstände. Die in YIH_x ($0.6 \le x \le 1$) vorhandene Differenzierung der Metall-Metall-Abstände geht bei YIH₂ verloren. Die Y-Y-Abstände zwischen benachbarten Schichten und die innerhalb der Schichten betragen 3.85 bzw. 3.86 Å. Der Y-I-Abstand, 3.095 Å, stimmt sehr gut mit der Summe der Ionenradien (3.10 Å) überein. Die Lokalisierung aller freien Elektronen in der salzartigen Verbindung Y³⁺I⁻(H⁻)₂ führt also zur Isometrisierung der Struktur (vgl. Tab. 7.4).

7.2.4 Physikalische Eigenschaften

In Abb. 7.7 ist die Temperaturabhängigkeit des spezifischen elektrischen Widerstandes von YIH_x ($0.6 \le x \le 1$) dargestellt. Bei hohen Temperaturen zeigen alle Proben metallisches Verhalten mit positiver Steigung von $d\rho/dT$. Mit sinkender Temperatur findet jedoch ein unscharfer Metall-Halbleiter-Übergang statt, was man aus dem Anstieg des Widerstandes bei tieferen Temperaturen schließen kann. Auffallend ist die Abhängigkeit der Leitfähigkeit vom H-Gehalt. Wasserstoffabnahme bis zur niedrigsten Phasengrenze x = 0.6 führt zur merklichen Erhöhung der ρ -Absolutwerte und zur Verschiebung des Minimums zu höheren Temperaturen von 35 K für x = 1.02 bis auf ca. 110 K.

Das unscharfe Minimum in der $\rho(T)$ -Abhängigkeit anstelle einer scharfen Anomalie (Charakteristikum des Phasenübergangs 1. Ordnung) deutet auf die Koexistenz einer elektrisch *leitenden* Phase und einer Phase mit *lokalisierten* Elektronen hin. Die letztere wird vorwiegend mit sinkender Temperatur und bei niedrigen H-Konzentrationen gebildet.

Abb. 7.7 Elektrischer Widerstand von YIH_x ($0.6 \le x \le 1$).

Der Temperaturverlauf des Widerstandes gibt eine Information über den elektronischen Zustand. Bei klassischen Metallen – *freies* Elektronengas – zeigt ρ eine lineare *T*-Abhängigkeit in einem weiten Temperaturbereich. In *stark korrelierten* Elektronensystemen, die sich einem Metall-Halbleiter-Übergang nähern, wurde eine Abweichung des Widerstandes vom linearen Verlauf beobachtet [118-121]. *Rivadulla et al.* zeigten, dass in mehreren *stark korrelierten* Elektronensystemen $\rho(T)$ einem $T^{3/2}$ -Gesetz folgt [119]

$$\rho = \rho_0 + a T^{3/2}$$
. (7.1)

Tatsächlich kann der Widerstand für YIH_{1.02} im metallisch leitenden Bereich 50 K $\leq T \leq$ 250 K mit Gl. (7.1) angepasst werden.
Abbildung 7.8 zeigt die Temperaturabhängigkeit der magnetischen Molsuszeptibilitäten von YIH_x ($0.6 \le x \le 2$) bei einer Feldstärke von 50 kOe. Für die Proben YIH_{0.79} (**4**), YIH_{1.02} (**1**) und YIH₂ (**9**) ist $\chi_m(T)$ nahezu temperaturunabhängig, wie es für diamagnetische Verbindungen gefordert wird. Demgegenüber zeigen die Proben mit dem niedrigen H-Gehalt, YIH_{0.81} (**3**) und YIH_{0.61} (**5**), paramagnetisches Verhalten. Überraschend zeigen Proben ähnlicher Zusammensetzung (**3** und **4**), jedoch dargestellt aus verschiedenen Ausgangssubstanzen, ein unterschiedliches magnetisches Verhalten. Es liegt daher nahe, dass der beobachtete Paramagnetismus von magnetischen Verunreinigungen verursacht ist. Aus der Steigung der Geraden in der $\chi_m(1/T)$ -Auftragung (Abb. 6.8, inneres Bild) ergibt sich eine *Curie*-Konstante von 0.03-0.04 [cm³·K⁻¹·mol⁻¹], die etwa 5-10 bzw. 0.4-0.5 Mol.-% paramagnetischer Verunreinigungen (bezogen auf *S* = 1/2 bzw. *S* = 7/2) entspricht.

Für die Proben 1, 3 und 5 ist die Suszeptibilität auch feldabhängig, was auf die Anwesenheit von Spuren ferromagnetischer Verunreinigung hindeutet.

Abb. 7.8 Temperaturabhängigkeit der magnetischen Molsuszeptibilität von YIH_x bei einem angelegten Feld von H = 50 kOe. Die Auftragung von χ_m über 1/T ist im inneren Bild gezeigt.

Abb. 7.9 Temperaturunabhängige Molsuszeptibilität (χ_0) von YIH_x als Funktion der reziproken Feldstärke.

Zur Bestimmung der *Pauli*-Suszeptibilität mussten die Meßwerte daher nach dem Verfahren von *Owen* und *Honda* (s. Kap. 2.5.4) korrigiert werden (Abb. 7.9). Die nach der Extrapolation $\chi_m(T \to \infty, H_{ext} \to \infty)$ erhaltenen Werte χ_o und χ_{Pauli} werden in Tabelle 7.5 mit den aus der LMTO-Bandstruktur (s. Kapitel 7.3) berechneten Werten verglichen.

Tabelle 7.5 Vergleich von gemessenen und berechneten Pauli-Suszeptibilitäten von YIH_x

Probe	Xo	Xdia	XPauli ^{a)}	$(\chi_{Pauli})_{LMTO}^{*}$		
		$(10^{-6} \text{ cm}^3 \text{ mol}^{-1})$				
YIH _{0.61}	-10(2)	-66	46	110		
YIH _{0.79}	0(1)	-66	66	45		
$YIH_{0.81}$	6(1)	-66	60	45		
$YIH_{1.02}$	-20(3)	-67	37	35		
YIH ₂	-51(1)	-70				
a)						

^{a)} $\chi_{\text{Pauli}} = \chi_0 - \chi_{\text{dia}}$ * $(\chi_{\text{Pauli}})_{\text{LMTO}} = 64.5 \cdot 10^{-6} N(E_{\text{F}}) [\text{eV}^{-1} \cdot \text{Spin}^{-1} \cdot \text{F.E.}^{-1}]$

Während sich die experimentellen und berechneten *Pauli*-Suszeptibilitäten für YIH_x (x < 1) deutlich unterscheiden, ist χ_{Pauli} für die Grenzphase YIH in sehr guter Übereinstimmung mit dem berechneten Wert.

Auffallend ergibt sich eine nichtmonotone Änderung des *Pauli*-Paramagnetismus mit sinkendem Wasserstoffgehalt. Für die Probe YIH_{0.61} ist χ_{Pauli} kleiner als für YIH_{0.79}. Da die *Pauli*-Suszeptibilität proportional der Zustandsdichte $N(E_F)$ ist, weist die Abnahme von χ_{Pauli} auf die Lokalisierung der freien Elektronen bei Annäherung an die niedrige Phasengrenze hin.

7.3 Die Phasen GdIH_x

7.3.1 Darstellung

Die Hydridiodide GdIH_x wurden auf die gleiche Weise wie YIH_x hergestellt (Tabelle 7.6). Für die Versuche **1-3** wurden Ta-Ampullen mit den Ausgangsverbindungen in zugeschweißten Stahlampullen getempert. Durch diese Verfahren erhält man Proben mit niedrigerem Wasserstoffgehalt im Vergleich zu den Proben, die in Quarzglasampullen als Schutzmantel erhitzt wurden (vgl. Versuche **3** und **5**). Dies ist auf den unterschiedlichen H₂-Gleichgewichtsdruck im System zurückzuführen. Im ersten Fall kann H₂ sowohl durch die Ta-Ampulle als auch durch die Stahlampulle diffundieren [101], während das Entweichen des Wasserstoffs durch die Quarzglasampulle verhindert wird. Die erhaltenen Produkte sind graphitfarben mit grünlichem Glanz.

Versuch	Edukte	Reaktionsbedingungen	Produkt	Strukturtyp
1	GdI ₃ /Gd/GdH ₂ (5:4:6)	3d, 1220 K	GdIH _{0.71(3)}	ZrBr
2	GdI ₃ /Gd/GdH ₂ (20:19:21)	3d, 1220 K	GdIH _{0.73(2)}	ZrBr
3	GdI_{3}/GdH_{2} (1:2)	3d, 1220 K	GdIH _{0.73(2)}	2s
4	$GdIH_{0.73}(3)$	5 Std, 970 K, 10 ⁻⁵ mbar	GdIH _{0.70(2)}	2s
5	GdI_{3}/GdH_{2} (1:2)	3d, 1220 K	GdIH _{0.86(2)}	2s
6	$GdIH_{0.86}(5)$	10 Std, 1020 K, 10 ⁻⁵ mbar	GdIH _{0.75(2)}	2s
7	$GdIH_{0.86}(5)$	15 Std, 1120 K	GdIH _{0.78(2)}	2s
8	$GdIH_{0.75}(6)$	7 Std, 970 K, 10 ⁻⁵ mbar	GdIH _{0.69(2)}	2s
9	$GdIH_{0.86}(5)$	730 K, 2K/min, 1 bar H ₂	GdIH ₂	1T

Tabelle 7.6 Darstellung von GdIH_x

7.3.2 Kristallografische Eigenschaften

Auffälligerweise zeigen die Proben ähnlicher Zusammensetzung, jedoch dargestellt aus verschiedenen Ausgangsgemengen, deutlich unterschiedliche Röntgenpulverdiagramme (Abb. 7.10). Wie YIH_x kristallisieren die aus den drei Komponenten Gd/GdH₂/GdI₃ erhaltenen Proben GdIH_x (1 bzw. 2) in der Struktur des ZrBr-Typs. In Röntgendiagrammen der Proben, die aus dem Ausgangsgemenge GdH₂/GdI₃ (2:1) hergestellt wurden, sind scharfe und diffuse Reflexe zu erkennen. Die scharfen Reflexe lassen sich sämtlich unter Zugrundelegung einer Schweratomanordnung wie im 2s-Typ indizieren. Alle *hkl*-Reflexe mit $h - k \neq 3n$ sind diffus.

Wie bei LaI₂H weist die Verbreiterung dieser Reflexe auf Stapelfehlordnung der Schichtpakete in [001]-Richtung hin. Die Gitterparameter beider polymorphen Modifikationen von GdIH_x sind in Tabelle 7.7 zusammengefasst.

Abb. 7.10 Gegenüberstellung der Röntgenpulverdiagramme für die verschiedenen Strukturvarianten von $GdIH_x$. Die mit Pfeilen markierten Reflexe kommen vom internen Si-Standard.

N	Probe	Raumgruppe	<i>a</i> / Å	<i>c</i> / Å	$V/\text{\AA}^3$	$V_{\rm mol}^{*}$ / Å ³
1	GdIH _{0.71(3)}	$R\bar{3}m$	3.9804(2)	31.315(3)	429.68(4)	143.22(4)
2	$GdIH_{0.73(2)}$	$R\overline{3}m$	3.9803(9)	31.313(3)	429.62(4)	143.21(4)
3	GdIH _{0.73(2)}	$P6_3mc$	3.9814(6)	20.832(3)	285.99(5)	142.99(5)
4	GdIH _{0.70(2)}	$P6_3mc$	3.9800(4)	20.834(3)	285.81(5)	142.90(5)
5	GdIH _{0.86(2)}	$P6_3mc$	3.9839(6)	20.791(5)	285.77(7)	142.88(7)
6	GdIH _{0.75(2)}	$P6_3mc$	3.9816(4)	20.833(3)	286.02(5)	143.01(5)
7	GdIH _{0.78(2)}	$P6_3mc$	3.9808(5)	20.821(3)	285.74(4)	142.87(4)
8	GdIH _{0.69(2)}	$P6_3mc$	3.9802(5)	20.846(3)	286.06(4)	143.03(4)
9	GdIH ₂	$P\overline{3}m1$	3.903(1)	11.071(8)	146.1(1)	146.1(1)

Tabelle 7.7 Gitterparameter von $GdIH_x$

*Molvolumen (auf eine Formeleinheit Gd₂I₂H_{2x} bezogen)

Das Auftreten der verschiedenen polytypen Modifikationen ZrBr- bzw. 2s-GdIH_x in Abhängigkeit vom Ausgangsgemenge (Gd/GdH₂/GdI₃ bzw. GdH₂/GdI₃) hängt offensichtlich mit unterschiedlichen Reaktionsmechanismen zusammen. Im ersten Fall kann die Synthese von GdIH_x unter Bildung eines Zwischenproduktes, z.B. GdI₂(H_x) verlaufen. Auch der entstehende H-Gleichgewichtsdruck bei Verwendung eines Gd/GdH₂-haltigen Gemenges scheint geringer zu sein, denn bei hohen Temperaturen existieren nichtstöchiometrische Hydride GdH_{2-y} in einem breiten Bereich (y = 0.6 bei 1170 K [122]).

Um die Gittermetrik verschiedener Stapelvarianten von $GdIH_x$ zu vergleichen, wurden die Gitterparameter auf die einem Schichtpaket entsprechenden Werte normiert. Abbildung 7.11 zeigt den Gang der Gitterparameter als Funktion des Wasserstoffgehaltes. Ähnlich zu anderen Hydridhalogeniden steht für die Phasen $GdIH_x$ bei steigendem x einer Abnahme des Gitterparameters in c-Richtung eine Zunahme in a-Richtung gegenüber. Bei der gleichen Länge der a-Achse ist die c-Achse der im ZrBr-Typ kristallisierenden Proben geringfügig vergrößert, um etwa 0.04 Å im Vergleich zu 2s-GdIH_x. Dies führt zu einer geringen Zunahme des Molvolumens (Tabelle 7.7).

Die nach der Hydrierungsreaktion (Versuch 9) erhaltene hellgrüne Verbindung $GdIH_2$ kristallisiert wie YIH₂ im 1T-Typ. Der zusätzliche Einbau der Wasserstoffatome in die trigonal antiprismatischen Lücken bedingt die erwartete Zunahme des Molvolumens (vgl. Tabelle 7.7).

Abb. 7.11 Abhängigkeit der Gitterparameter vom Wasserstoffgehalt in $GdIH_x$: ZrBr-Typ (\bullet , \blacksquare) und 2s-Typ (\circ , \Box).

Interessant ist, dass in früheren röntgenografischen Untersuchungen an $GdID_2$ [105] eine Strukturvariante mit der Stapelung von drei Schichtpaketen I-Gd-(D)₄-Gd-I gefunden wurde. Offensichtlich existieren für GdIH₂ zwei Strukturpolymorphe.

7.3.3 Magnetische Eigenschaften

7.3.3.1 Untersuchungen in dc-Magnetfeldern

Die Verbindungen GdIH_x ($x \le 1$) weisen eine starke Abhängigkeit der magnetischen Eigenschaften vom Wasserstoffgehalt auf. Je nach der H-Konzentration x lassen sich drei verschiedene Typen von $\chi(T)$ -Kurven unterscheiden.

In Abb. 7.12 sind die *zfc*- und *fc*-Molsuszeptibilitäten von GdIH_{0.86} dargestellt. Bei kleinem äußerem Feld von H = 100 Oe unterscheiden sich *zfc-* χ und *fc-* χ unterhalb 50 K, während diese Werte bei größeren Feldern über den ganzen Temperaturbereich identisch sind. Im Temperaturverlauf der *zfc*-Suszeptibilität (H = 100 Oe) ist bei etwa 25 K ein Buckel zu erkennen. Die bei H = 1 bzw. 10 kOe gemessene Suszeptibilität geht durch ein unscharfes kleines Maximum bei $T \approx 50$ K und nimmt bei niedrigeren Temperaturen wieder zu.

Abb. 7.12 Temperaturabhängigkeit der magnetischen Suszeptibilität bei verschiedenen Feldstärken für GdIH_{0.86} (5). Die Messungen wurden nach Abkühlung der Probe im Nullfeld (zfc) sowie bei 350 K (fc) angelegten Feldern durchgeführt. Im inneren Bild ist die Feldabhängigkeit der Magnetisierung bei 5 K dargestellt.

Analog zu GdI_2H_x ist die Aufspaltung zwischen den im Nullfeld (zfc) und bei einem konstanten Magnetfeld (fc) abgekühlten χ -Werten auf Spinclusterglas-Verhalten zurückzuführen. Allerdings deutet eine charakteristische lineare Feldabhängigkeit der Magnetisierung (Abb. 7.12, inneres Bild) auf eine antiferromagnetische Natur des magnetischen Grundzustands. Es liegt daher nahe, dass bei GdIH_{0.86} beide Effekte langreichweitige antiferromagnetische Anordung und Spinclusterglas-Verhalten nebeneinander bestehen. Ähnliche magnetische Effekte wurden verdünnten in antiferromagnetischen Systemen Fe_{1-x}Mg_xCl₂ [123] und Fe_xMn_{1-x}TiO₃ [124] beobachtet.

Die Proben GdIH_x (0.71 $\leq x \leq 0.78$) zeigen in sich ähnliche $\chi(T)$ -Kurven mit einem für Antiferromagneten charakteristischen Maximum. In Abb. 7.13 ist eine $\chi(T)$ -Kurve für x =0.73 exemplarisch dargestellt. Im Gegensatz zu typischen Antiferromagneten nimmt die Suszeptibilität bei Abkühlung unterhalb der *Neel*-Temperatur (T_N) weiter zu. Zusätzlich ist der Übergang stark feldabhängig. Bei angelegten Magnetfeldern H > 10 kOe wird das Maximum stark unterdrückt und zu höheren Temperaturen verschoben, so dass es sich in Form einer Schulter äußert. Ein weiterer Effekt besteht in einer charakteristischen Aufspaltung zwischen den *zfc*- und *fc*-Suszeptibilitäten bei niedrigen Temperaturen (Abb. 7.13, inneres Bild). Wie bei GdIH_{0.86} ist diese Abweichung nur bei kleinen Magnetfeldern erkennbar. Aus diesen Besonderheiten kann man vermuten, dass bei den Phasen x = 0.71-0.78 neben *antiferro*magnetischen auch *ferro*magnetische Zustand führt.

Abb. 7.13 Temperaturabhängigkeit der Suszeptibilität bei verschiedenen Feldstärken für GdIH_{0.73} (**3**). Die Aufspaltung zwischen $zfc-\chi$ und $fc-\chi$ ist im inneren Bild gezeigt.

Die Proben geringer Wasserstoffgehalte $GdIH(D)_x$ (x < 0.71) zeigen im magnetischen Verhalten spontane Magnetisierung bei niedrigen Temperaturen. Im Temperaturverlauf der *fc*-Suszeptibilität für $GdID_{0.69}^{a}$ (Abb. 7.14) ist unterhalb der Sättigung der χ -Werte ein Knick bei etwa 30 K zu erkennen. Aus dem Minimum in der Auftragung von $d\chi/dT$ über *T* wurde eine *Curie*-Temperatur von 28(1) K bestimmt. Wie bei anderen Proben wird unterhalb $T_f = 13$ K eine Aufspaltung zwischen *zfc-\chi* und *fc-\chi* beobachtet. Auffällig bleibt diese Anomalie bei größeren Felder, die allerdings zu tieferen Temperaturen verschoben wird.

Abb. 7.14 Temperaturabhängigkeit der Suszeptibilität bei verschiedenen Feldstärken für GdID_{0.69}. Das innere Bild zeigt die Auftragung von $d\chi_m/dT$ gegen *T*.

Die stöchiometrische Verbindung GdIH₂ weist ein typisches paramagnetisches Verhalten mit antiferromagnetischer Ordnung bei $T_N = 2.5$ K auf.

Im Temperaturbereich von 100 K bis 350 K folgt die $\chi(T)$ -Abhängigkeit für alle Proben dem CURIE-WEISS-Gesetz (Abb. 7.15). Für geringe Wasserstoffgehalte x = 0.69-0.75 wird aber eine Stufe bei 280-300 K im linearen Temperaturverlauf der reziproken Suszeptibilität beobachtet. Deren Ursache liegt an geringen Spuren von Gd-Metall ($T_{\rm C} = 293-295$ K) in der untersuchten Probe. Den Beitrag ferromagnetischer Verunreinigung zur Suszeptibilität konnte man durch eine Messung beim äußeren Feld von 50 kOe beseitigen. In Tabelle 7.8 sind die kritischen magnetischen Temperaturen und die aus den linearen Anpassungen an die $\chi^{-1}(T)$ -Daten ermittelten Werte der magnetischen Momente ($\mu_{\rm eff}$) und paramagnetischen *Curie*-Temperaturen (Θ) für GdIH_x zusammengestellt.

^a Magnetische Messungen wurden an einer früher dargestellten Probe durchgeführt [125].

Abb. 7.15 Temperaturabhängigkeit der reziproken Molsuszeptibilität von GdIH_x.

Während die magnetischen Übergangstemperaturen sich mit Variation des Wasserstoffgehalts (*x*) allmählich ändern, nehmen die absoluten Werte der paramagnetischen *Curie*-Temperatur Θ mit sinkendem *x* steil ab; von -124 K für *x* = 0.86 auf 25 K für *x* = 0.69. Darüber hinaus wechselt das Vorzeichen von Θ , was auf vorwiegend ferromagnetische Kopplung bei geringeren H-Konzentrationen hinweist. Diese Ergebnisse sind in guter Übereinstimmung mit der Annahme, dass bei GdIH_{*x*} (*x* ≤ 1) konkurrierende magnetische Wechselwirkungen vorhanden sind, wie sie in gleicher Form auch für die entsprechenden Tb-Verbindungen gefunden wurden [107, 112].

Probe	<i>T</i> _c / K	$T_{\rm f}^{*}/{ m K}$	$\mu_{ m eff}$ / $\mu_{ m B}$	Θ/K	Bemerkung
GdID _{0.69} [125]	29	13	8.03(4)	25(3)	Spuren von
$GdIH_{0.71}$ (1)	30	7	_	_	Gd-Metall
GdIH _{0.73} (3)	31	6	8.12(2)	-27(1)	(< 3 Mol%)
$GdIH_{0.75}$ (6)	32	5	8.6	-35(1)	
GdIH _{0.78} (7)	38	2.5	7.6	-98(2)	
$GdIH_{0.86}(5)$	48	48	7.96(1)	-124(2)	
$GdIH_2$ (9)	2.5		7.96(1)	-8.5	

Tabelle 7.8 Magnetische Parameter von GdIH_x

* Mit $T_{\rm f}$ wird die Temperatur bezeichnet, bei der die Aufspaltung zwischen *zfc*- und *fc-* χ -Werten eintritt.

Abb. 7.16 Feldabhängigkeit der Magnetisierung (bezogen auf eine Formeleinheit) bei 5 K für GdIH_x. Die durchgezogenen Kurven entsprechen der besten Anpassung mit der Funktion (7.2). Gestrichelt bzw. punktiert dargestellt sind Beiträge ferromagnetischer und antiferromagnetischer Komponenten.

Einen weiteren Beleg für die Koexistenz der ferromagnetischen und antiferromagnetischen Wechselwirkungen liefern die Messungen der Feldabhängigkeit der Magnetisierung bei 5 K (Abb. 7.16). Unterhalb von T_N zeigen die Proben mit x = 0.71-0.78 kein exaktes lineares M(H)-Verhalten, wie es als typisch für antiferromagnetische Verbindungen erwartet wird. Auch die Probe GdID_{0.69} weist keine Sättigung bei hohen Feldern bis max. 70 kOe auf. Stattdessen lassen sich die Magnetisierungskurven als Superposition einer linearen antiferromagnetischen Komponente und einer ferromagnetischen Komponente beschreiben. Die M(H)-Kurven können mit der folgenden Funktion angepasst werden (Abb. 7.16),

$$M(H) = M_{\rm s} \cdot \mathbf{B}(S, T, H) + \alpha \cdot H, \qquad (7.2)$$
$$\mathbf{B}(S, T, H) = (S+1/2) \coth[(S+1/2)\frac{g\mu_{\rm B}H}{k_{\rm B}T}] - 1/2 \coth(\frac{g\mu_{\rm B}H}{2k_{\rm B}T}),$$

wobei der erste Anteil einem ferromagnetischen Beitrag mit dem Sättigungsmoment M_s entspricht.

Der ferromagnetische Beitrag zur Magnetisierung kann allerdings durch Spuren von Gd-Metall verursacht sein. In diesem Fall erwartet man keine Temperaturabhängigkeit von M_s bei Temperaturen weit unterhalb von $T_C(Gd) \approx 293$ K. In Abb. 7.17 ist der Temperaturverlauf des aus der Anpassung berechneten Sättigungsmoments für einige Proben dargestellt. In allen Fällen wird M_s mit sinkender Temperatur größer, wobei bei der magnetischen Übergangstemperatur eine Anomalie zu erkennen ist. Auffallend ist aber, dass die Zunahme von M_s schon bei höheren Temperaturen auftritt.

Abb. 7.17 Sättigungsmagnetisierung als Funktion der Temperatur für GdIH_x.

Die nahezu temperaturunabhängigen Werte im paramagnetischen Bereich entsprechen dem Beitrag von ferromagnetischen Verunreinigungen zur Magnetisierung. Daraus kann man schließen, dass die beobachtete Sättigung der Magnetisierung bei kleinen Feldern grundsätzlich auf einen *intrinsischen* Effekt zurückzuführen ist.

7.3.3.2 Untersuchungen in ac-Magnetfeldern

Abbildung 7.18 zeigt den Temperaturverlauf des Realteils der *ac*-Suszeptibilität χ_{ac} für GdIH_{0.86} (5), die beim oszillierenden Feld mit einer Amplitude von h = 1 Oe gemessen wurde. Bei $T \approx 60$ K weist χ_{ac} ein Maximum auf, welches sich mit zunehmender Feldfrequenz ω zu niedrigeren Temperaturen (auf 50 K) verschiebt. Im Gegensatz zum charakteristischen Spinclusterglas-Verhalten ist dieser Effekt nur auf kleine Frequenzen $\omega = 20-200$ Hz beschränkt. Bei höheren Frequenzen bis max. 100 kHz ergibt sich keine Verschiebung der Anomalie mit der Temperatur. Daneben ist ein zweites Maximum bei 36 K zu erkennen. Es tritt aber nur bei einer Frequenz von 21 Hz auf und scheint damit ein Artefakt zu sein. Ein weiterer auffallender Effekt besteht in einem induzierten Minimum bei ca. 100 K, das nur in einem Frequenz-bereich von 46-215 Hz erkennbar ist.

Der Imaginärteil der Suszeptibilität χ_{ac} ["] zeigt eine oszillierende Temperaturabhängigkeit mit wechselnden Bereichen der positiven und negativen Suszeptibilität (Abb. 7.19). Dieses ungewöhnliche Verhalten könnte von der Messung herrühren, denn ein ähnlicher χ_{ac} ["](*T*)-Verlauf wurde für die paramagnetische und nichtleitende Probe GdIH₂ beobachtet. Aus dem Vergleich der χ_{ac} ["](*T*)-Daten für GdIH_{0.86} und GdIH₂ ist eine Anomalie für GdIH_{0.86} bei

106

Abb. 7.18 Temperaturabhängigkeit der *ac*-Suszeptibilität χ_{ac} bei verschiedenen Feldfrequenzen ω für GdIH_{0.86}.

niedrigen Feldfrequenzen (20-215 Hz) um 100 K zu erkennen. Dies weist auf einen Verlauf der Relaxationsprozesse hin, welche analog zu Spingläsern durch frustrierte Spinverteilung verursacht werden können. Besonders auffallend ist, dass dieser Effekt oberhalb von $T_N = 48$ K beobachtet wird. Es liegt daher nahe, dass die Spinfluktuationen bei bestimmten Magnetfeldfrequenzen schon im paramagnetischen Bereich induziert werden.

Abb. 7.19 Temperaturverlauf von $\chi_{ac}^{"}$ für GdIH_{0.86} bei niedrigen Feldfrequenzen (offene Symbole) in Gegenüberstellung mit dem für GdIH₂ (ausgefüllte Symbole).

107

Abb. 7.20 Temperaturabhängigkeit der *ac*-Suszeptibilität χ_{ac} bei verschiedenen Feldfrequenzen ω für GdIH_{0.73} (**3**). Im inneren Bild ist der $\chi(T)$ -Verlauf im paramagnetischen Bereich von 50 K bis 150 K gezeigt.

In einer Darstellung von χ_{ac} gegen *T* für GdIH_{0.73} (**3**) sind zwei Maxima bei 32 und 5 K zu erkennen (Abb. 7.20). Das erste entspricht der antiferromagnetischen Ordnung. Das zweite Maximum liegt in demselben Temperaturbereich, in dem die Aufspaltung zwischen *zfc-* χ und *fc-* χ auftritt und weist eine für *Spinclustergläser* charakteristische Frequenzabhängigkeit auf: Es verschiebt sich mit zunehmendem ω zu höheren Temperaturen, z.B. $T_f = 7$ K bei $\omega = 10$ kHz. Die Änderung von T_f mit ω (Abb. 7.21) folgt der ARRHENIUS-Gleichung

$$\omega = \omega_0 \exp(-\Delta \varepsilon / \mathbf{k}_{\rm B} T),$$

wobei $\tau_0 = 1/\omega_0$ und $\Delta \varepsilon$ der Relaxationszeit bzw. der Aktivierungsenergie entsprechen. Aus der linearen Anpassung an die Daten $\ln \omega (1/T_f)$ erhält man $\tau_0 \approx 10^{-12}$ s und $\Delta \varepsilon = 12$ meV.

Abb. 7.21 Frequenzabhängigkeit von $T_{\rm f}$ in der Auftragung von $\ln \omega$ gegen $1/T_{\rm f}$ für GdIH_{0.73} (**3**).

108

Der charakteristische Parameter $\Delta T_f / [T_f \Delta(\lg \omega)]$ beträgt 0.02, ein typischer Wert für *Spingläser* (vgl. Tab. 6.8, S. 71).

Analog zu GdIH_{0.86} (**5**) zeigt χ_{ac} von GdIH_{0.73} (**3**) eine Anomalie bei niedrigen Feldfrequenzen (20-200 Hz) im Temperaturbereich 80-100 K. Allerdings ist dieser Effekt für **3** viel weniger ausgeprägt. Der Imaginärteil χ_{ac} von **3** weist den gleichen Temperaturverlauf wie **5** auf, bis auf einen zusätzlichen Anstieg in χ_{ac} (*T*) bei T_{f} verglichen zum ersten Fall.

7.3.3.3 Wärmekapazitätsmessungen

In Abbildung 7.22 ist die spezifische Wärmekapazität c_p von GdIH_x (x = 0.75-0.86) der einer nicht magnetischen Probe YIH_{0.80} gegenübergestellt. Für die Proben GdIH_{0.86} und GdIH_{0.75} ist ein Phasenübergang bei 47 bzw. 38 K als eine scharfe λ -förmige Anomalie zu erkennen. Für die Proben mit x = 0.69-0.75 wird im Kurvenverlauf nur ein Knickpunkt bei 30(1) K beobachtet, wie exemplarisch für GdIH_{0.75} gezeigt wird (Abb. 7.22, inneres Bild). Die Unschärfe der Anomalie deutet auf eine Erniedrigung der Periodizität der magnetischen Ordnung hin. Diese Ergebnisse stützen die Vorstellung, dass die Spinverteilung mit sinkendem Wasserstoffgehalt frustriert ist.

Nimmt man an, dass die Beiträge des Gitters (C_{ph}) und der Leitungselektronen (C_e) zur spezifischen Wärme für die strukturell gleich aufgebauten Verbindungen GdIH_x und YIH_x identisch sind¹, kann der magnetische Beitrag C_m durch die Differenz

$$C_{\rm m}({\rm GdIH}_x) = c_p({\rm GdIH}_x) - c_p({\rm YIH}_{0.8})$$

bestimmt werden. Die so gewonnenen Werte sind in der Auftragung von C_m/T gegen T in Abb. 7.23 dargestellt. Außer Maxima bei den Phasenübergängen ist für x = 0.66 bzw. 0.75 ein zweites Maximum bei 12.0(3) bzw. 11.3(3) K zu erkennen. Dieser Effekt lässt sich dem bei niedrigen Temperaturen beobachteten Spinclusterglas-Verhalten zuschreiben.

¹ Generell ist die Annahme der Gleichheit von C_{ph} für die Y- und Gd-Verbindungen nicht ganz korrekt wegen deren unterschiedlichen Molmassen. Zur Bewertung des phononischen Beitrages zur spezifischen Wärme für die Gd-Verbindung sollten die C_{ph} -Werte von Y-Verbindung derart normiert werden, dass die Debye-Temperaturen $\theta_D(T)$ bei hohen Temperaturen für beide Verbindungen gleich werden ($\Delta c_p \rightarrow 0$). Dieses Verfahren wurde im vorliegenden Fall vernachlässigt, da die experimentellen c_p -Werte im Hochtemperaturbereich (130-180 K) für YIH_{0.8} und GdIH_x nahezu identisch waren.

Abb. 7.22 Spezifische Wärmekapazität von $GdIH_x$ in Gegenüberstellung mit der von YIH_{0.8}. Im inneren Bild ist der Verlauf $c_p(T)$ von $GdIH_{0.75}$ in vergrößertem Maßstab gezeigt.

Abb. 7.23 Magnetischer Beitrag C_m zur spezifischen Wärme von GdIH_x in der Auftragung C_m/T gegen T.

7.3.4 Elektrische Eigenschaften

Widerstandsmessungen an GdIH_x-Pulverpresslingen ergaben, dass im Unterschied zu YIH_x bei der Variation des H-Gehalts eine Widerstandsänderung im Bereich von mehreren Größenordnungen auftritt (Abb. 7.24). Die Probe GdIH_{0.86} weist einen für Metalle typischen $\rho(T)$ -Verlauf mit einem Widerstandsabfall bei der *Neel*-Temperatur, während mit weiter sinkender Temperatur eine Zunahme von ρ eintritt. Eine ähnliche Anomalie wurde für GdIH_{0.78} beobachtet. Die Proben geringer Wasserstoffgehalte mit x = 0.66-0.75 sind Halbleiter. Die 1/*T*-Abhängigkeit von ρ (in logarithmischer Aufzeichnung) ist zwischen 10 und 200 K nahezu linear und lässt sich durch die ARRHENIUS-Gleichung mit einer Aktivierungsenergie E_a beschreiben. Auffällig ist, dass sich unterhalb der magnetischen Ordnungstemperatur eine geringfügige Änderung der Steigung ergibt. Damit ist die aus der Steigung ermittelte Aktivierungsenergie im magnetisch geordneten Zustand etwas kleiner (Tabelle 7.9). Eine umgekehrte Tendenz wurde jedoch für die Probe GdID_{0.66} beobachtet.

Mit zunehmendem H-Gehalt x nimmt die Aktivierungsenergie E_a steil ab (Abb. 7.24, inneres Bild). Aus der Extrapolation der $E_a(x)$ -Daten auf die Abszisse ($E_a = 0$) lässt sich eine kritische H-Konzentration $x_c = 0.80(2)$ bestimmen, bei der ein Metall-Halbleiter-Übergang stattfindet.

Probe	E_a / 1	$ ho_{ m o}/ ho_{ m H}^{*}$	
11000	$10-T_{c}(K)$	$T_{\rm c}$ -200 (K)	2 K
GdID _{0.66}	3.59(4)	3.28(2)	
$\mathrm{GdIH}_{0.71}\left(1\right)$	2.64(1)	3.30(1)	~1000
$GdIH_{0.73}(2)$	2.19(3)	2.77(6)	~1000
$GdIH_{0.73}(3)$	2.11(2)	1.57(1)	
$GdIH_{0.75}(6)$	1.97(1)	2.15(1)	~100
$\mathrm{GdIH}_{0.78}\left(7\right)$	~0.1	0.77(1)	
$\mathrm{GdIH}_{0.86}\left(5\right)$		metallisch	~1.25

Tabelle 7.9 Ergebnisse der Leitfähigkeitsuntersuchungen an GdIH_x

^{*} Das Verhältnis $\rho_0/\rho_{\rm H}$ entspricht der Widerstandsänderung bei 2 K mit einem angelegten Feld von H = 90 kOe.

Abb. 7.24 *Oben*: Temperaturverlauf des spezifischen elektrischen Widerstandes für $GdIH_x$. *Unten*: Elektrischer Widerstand von $GdIH_x$ (in logarithmischer Aufzeichnung) als Funktion der reziproken Temperatur. Das innere Bild zeigt die Abhängigkeit der Aktivierungsenergie vom Wasserstoffgehalt im paramagnetischen Temperaturbereich.

Die elektrischen Eigenschaften werden vom angelegten Magnetfeld stark beeinflusst. Bei starkem Feld ergibt sich für die halbleitenden Proben eine erhebliche Widerstandsabnahme unterhalb der *Neel*-Temperatur, wie für GdIH_{0.73} (**3**) in Abb. 7.25 exemplarisch gezeigt wird. Dies führt zu einem riesigen negativen Magnetwiderstand MR^a: Bei 2 K und H = 90 kOe betragen die MR-Werte 99.9%, für x = 0.71 bzw. 0.73. Auffallend nimmt der Magnetwiderstand von GdIH_x (x < 0.8) mit sinkender Temperatur stetig zu. Im Gegensatz zu vielen bekannten CMR-Verbindungen wird jedoch keine Anomalie in der Nähe der magnetischen Ordnungstemperatur beobachtet. Ein weiterer Effekt besteht in einem feldinduzierten Vorzeichenwechsel der d ρ/dT -Steigung oberhalb $T \approx 150-250$ K. Diese Meßergebnisse zeigen, dass die thermisch aktivierte Leitfähigkeit für die Proben GdIH_x (x < 0.8) im wesentlichen auf einen magnetischen Ursprung zurückzuführen ist.

In Abb. 7.26 ist die MR- und Widerstandsänderung von $GdIH_{0.73}$ (3) als Funktion zunehmender Magnetfeldstärke bei einigen Temperaturen unterhalb von T_N aufgetragen. Bei 2 K weist MR einen steilen Anstieg mit Sättigung bei H = 40 kOe auf, während bei höheren Temperaturen (10 und 15 K) keine Sättigung bis zu H = 80 kOe beobachtet wird. Interessant ist, dass die Feldabhängigkeit des Widerstandes bei niedrigen Temperaturen $T \ll T_N$ sich mit der folgenden exponentiellen Funktion beschreiben lässt

$$\rho(H) = \rho_0 \exp[-(M(H)/M_0)^2],$$
 (7.3)

wobei M(H) einem experimentellen Magnetisierungsverlauf entspricht. Die beste Anpassung von Gl. (7.3) an die bei 2 K gemessenen $\rho(H)$ -Daten ist in Abb. 7.26 dargestellt. Es resultiert $\rho_0 = 880(20) \ \Omega$ cm und $M_0 = 0.62(2) \ \mu_B$. Der angepasste Wert M_0 stimmt mit dem aus den Magnetisierungsmessungen ermittelten Sättigungsmoment $M_s = 0.5 \ \mu_B$ gut überein. Es liegt daher nahe, die beobachtete Widerstandsänderung auf die sich bei niedrigen Temperaturen entwickelnden ferromagnetischen Spinfluktuationen zurückzuführen. Dafür spricht auch die Tatsache, dass der Magnetwiderstand eine starke Temperaturabhängigkeit im antiferromagnetischen Bereich zeigt.

^a $\Delta \rho / \rho_{o} = [(\rho(H,T) - \rho(0,T)] / \rho(0,T)]$

Abb. 7.25 Änderung des elektrischen Widerstandes von GdIH_{0.73} (2) bei einem angelegten Feld von H = 90 kOe. Das innere Bild zeigt die Temperaturabhängigkeit des Magnetwiderstandes, $\Delta \rho / \rho_0 = [(\rho(90 \text{ kOe}, T) - \rho(0, T)] / \rho(0, T).$

Abb. 7.26 Feldabhängigkeit des Widerstandes von $GdIH_{0.73}$ (2) bei 2 K. Die gestrichelte Linie entspricht der besten Anpassung von Gl. (7.3) an die Meßdaten. *Inneres Bild*: Magnetwiderstand als Funktion zunehmender Feldstärke bei verschiedenen Temperaturen $T < T_N$.

Abb. 7.27 Temperaturabhängigkeit des elektrischen Widerstandes von GdIH_{0.86} im Nullfeld bzw. bei H = 90 kOe. Die Magnetwiderstandswerte $\Delta \rho / \rho_0$ sind im inneren Bild dargestellt.

In Abb. 7.27 ist die Widerstandsänderung mit einem angelegten Feld von H = 90 kOe für leitende Probe GdIH_{0.86} dargestellt. die metallisch Der Widerstand wird im antiferromagnetischen Temperaturbereich (weit unterhalb von T_N) unterdrückt, MR beträgt ca. (-)25 % bei 2 K. Auffallend ist aber, dass bei Temperaturen um $T_{\rm N}$ die feldinduzierten Werte ρ (H) größer als $\rho(0)$ sind. Dies ergibt einen kleinen positiven Magnetwiderstand zwischen 40 K und 90 K mit einer Anomalie bei $T_{\rm N}$. Dieser Effekt ist qualitativ in guter Übereinstimmung mit dem Modell der Elektron-Spin-Streuung, da im Rahmen dieses Modells eine Erhöhnung der Widerstandswerte mit angelegtem Feld für ein antiferromagnetisches Metall vorausgesagt wurde [126].

7.4 Bandstrukturrechnungen

Um eine Vorstellung über die Ursache der überraschenden elektrischen Eigenschaften der Phasen $LnIH_x$ zu erhalten, wurden *ab initio* Bandstrukturrechnungen nach der TB-LMTO-ASA-Methode (TB = tight-binding, LMTO = linear-muffin-tin-orbital, ASA = atomic-sphere-approximation) durchgeführt. Hierzu wurden die von *Andersen et al.* [127, 128] entwickelten Programme verwendet.

Eine ausführliche Beschreibung der TB-LMTO-ASA-Methode und ihrer Näherungen findet sich in der Literatur [129]. Hier sollen nur einige der bei den Rechnungen verwendeten Näherungen erwähnt werden. Die Dichte der Valenzelektronen wird im Rahmen der lokalen Dichtefunktional-Theorie (LDA) selbstkonsistent berechnet. Da für das Muffin-Tin-Potential eine sphärische Symmetrie (Atomic-Sphere-Approximation) angenommen wird, müssen für Verbindungen mit weniger dichtgepackten Kristallstrukturen (z.B. Schichtstrukturen mit vander-Waals-Lücken) die interatomaren Zwischenräume zum Teil mit Leerkugeln aufgefüllt werden.

Die im folgenden diskutierten Bandstrukturen werden in der "fat-band"-Darstellung wiedergeben, in der die vertikalen Striche die Anteile der jeweiligen LMTO-Basisorbitale zu den verschiedenen Bändern angeben.

7.4.1 Bandstruktur von YIH

Die Bandstruktur für 1T-YIH^a wurde für k-Werte entlang Γ (0,0,0)-A (0, 0, π/c), -K ($2\pi/3a$, $2\pi/3b$,0) und -M (π/a ,0,0) der hexagonalen Brillouinzone berechnet. In Abbildung 7.28 ist die Bandstruktur in einem Energiebereich von –8 eV bis 3 eV um die Fermienergie $E_F = 0$ eV mit der zugehörigen Zustandsdichte dargestellt. In der Bandstruktur ist der quasizweidimensionale Charakter der Kristallstruktur zu erkennen. So verlaufen die Bänder entlang Γ -A mit geringer Dispersion, während sie in der $k_x k_y$ -Ebene vergleichsweise steil verlaufen. Die I-p-Orbitale bilden das Valenzband im Bereich von –5 eV bis –3 eV aus. Zudem enthält es geringe Anteile von Y-(s,p)-Orbitalen, da diese Energiebänder Y-I-bindenden Charakter besitzen. Die zwei H-s-Bänder liegen unterhalb des Valenzbands um –7 eV, was auf stark heteropolaren Charakter der Y-H-Bindung hinweist. Die 5d-Orbitale von Y tragen hauptsächlich zu den Bändern um E_F bei.

^a Zur Bandstrukturberechnung wurden die verfeinerten Atomkoordinaten aus den Röntgendaten verwendet. Die Wasserstoffatome wurden in die Mittelpunkte der Metalltetraederlücken eingesetzt.

Abb. 7.28 Bandstruktur und Zustandsdichte für 1T-YIH im Energiebereich von -8 eV bis 6 eV um die Fermienergie ($E_F = 0 \text{ eV}$).

Die Beiträge der verschiedenen Orbitale werden in der "fat-band"-Darstellung präsentiert (Abb. 7.29). Das direkt unterhalb des Ferminiveaus verlaufende Band mit geringer Dispersion entlang K-M enthält Anteile von Y-sp_z- und Y-d-Orbitalen, deren Überlappungen der Metall-Metall-Bindung *in* einer Metallatomschicht entspricht. Einen wesentlichen Beitrag zum Band zwischen den Symmetriepunkten K und M leisten die Y-d_{yz}-, Y-d_{xz}-, Y-d_{xy}- und die hybridisierten Y-sp_z-Orbitale. In Richtung Γ wird der Anteil des Y-d_{xy}-Orbitals vorherrschend. In unmittelbarer Nähe der Fermikante findet sich ein breites Leitungsband mit geringer Dispersion bei Γ und M. Das den Metall-Metall-bindenden Zuständen entsprechende voll besetzte Band und das Leitungsband berühren sich am Γ -Punkt, da hier das Y-d_{xy}-Orbital und die zum Leitungsband beitragenden Y-d_{x2-y2}- und Y-d_{xz}-Orbitale degeneriert sind. Diesbezüglich ähnelt die Bandstruktur von YIH der Bandstruktur von Graphit, in der die Valenz- und Leitungsbänder sich an der Fermikante kreuzen [130]. Die Verbindung YIH lässt sich also als *Halbmetall* beschreiben.

Die berechnete Zustandsdichte für 1T-YIH hat bei der Fermienergie einen Wert von $N(E_{\rm F}) = 0.55 \text{ eV}^{-1} \cdot \text{Spin}^{-1} \cdot \text{F.E.}^{-1}$. Unterhalb von $E_{\rm F} = 0 \text{ eV}$ zeigt die Zustandsdichte N(E) einen monotonen Verlauf mit einer Spitze um E = -2 eV. Unter der Annahme, dass die Bandstruktur bei den nichtstöchiometrischen Proben YIH_x (x < 1) im wesentlichen unverändert bleibt, lassen sich für x = 0.8 bzw. 0.6 die folgenden Werte $N(E_{\rm F}) = 0.7$ bzw. 1.7 eV⁻¹·Spin⁻¹·FE⁻¹ berechnen.

Abb. 7.29 Y-Orbitalbeiträge zur Bandstruktur von 1T-YIH in "fat-band"-Darstellung.

7.5 Diskussion der physikalischen Eigenschaften

Den Bandstrukturrechnungen zufolge erwartet man für LnIH_x metallisches Verhalten mit zunehmender Leitfähigkeit (proportional zur Zustandsdichte $N(E_F)$), wenn der H-Gehalt zur niedrigsten Grenzzusammensetzung $x \approx 2/3$ reduziert wird. Demgegenüber zeigen die Widerstandsmessungen an YIH_x, dass die Absolutwerte von ρ mit sinkendem Wasserstoffgehalt erhöht sind. Darüber hinaus weisen die Proben einen diffusen Metall-Halbleiter-Übergang bei niedrigen Temperaturen auf. Auch die aus den magnetischen Messungen abgeleitete *Pauli*-Suszeptibilität von YIH_x wird mit sinkendem x verringert, was auf die Lokalisierung der Leitungselektronen hindeutet. Aus diesen Befunden kann geschlossen werden, dass die interstitiellen Wasserstoffatome sich stark auf die Elektronen-zustandsdichte N(E) nahe E_F auswirken.

Die experimentellen Ergebnisse sind in folgender Weise zu verstehen:

In der Probe YIH besetzen die Wasserstoffatome alle Tetraederlücken. So kann die Verknüpfung der Metallatomnetze durch Ausbildung von 2Elektronen-5Zentren- oder kurz 2e5c-Bindungen in "gefüllten" M₄H-Tetraedern stabilisiert werden. Durch eine partielle H-Reduktion wird die starke M-H-Bindung durch vergleichsweise schwache M-M-Bindungen in den "leeren" M₄-Tetraedern ersetzt und die Bindung in diesen bezüglich der umgebenden M₄H-Polyeder energetisch destabilisiert, zumal die darin bindenden 2e4c-Orbitale nur halb besetzt sind. Zum Ausgleich des Elektronenmangels liegt es nahe, dass ein Anteil der innerhalb einer Metallatomschicht delokalisierten Elektronen in die "leeren" M₄-Tetraeder abfließt und lokalisiert wird. Dies führt zur Verringerung der Ladungsträgerkonzentration in den Proben YIH_x mit sinkendem H-Gehalt.

Andererseits ergibt sich mit der Wegnahme der Wasserstoffatome eine lokale Verzerrung der trigonalen Symmetrie im H-Teilgitter. Dies führt zur Störung des periodischen elektrischen Potentials, so dass die Leitungsbänder zum Teil unterhalb einer Energiekante in mehrere lokalisierte Zustände aufgespalten werden (Abb. 7.30), und dies entspricht der sogenannten Anderson-Lokalisierung [131, 132]. Das Energieniveau, unter dem die lokalisierten Bänder vorliegen, wird als "mobility edge" E_c bezeichnet. Der Leitungsmechanismus ist also von der Position der Fermienergie $E_F(x,T)$ in Bezug auf E_c abhängig. Falls E_F oberhalb von E_c liegt, wird ein metallisches Leitfähigkeitsverhalten beobachtet. In der umgekehrten Situation sind halbleitende Eigenschaften mit einer Aktivierungsenergie $E_a = (E_c - E_F)$ zu erwarten.

Abb. 7.30 *Links* : Schematische Darstellung der Zustandsdichte N(E) in einem Anderson-Elektronensystem. Der gestrichelte Bereich entspricht lokalisierten Zuständen. Mit E_c wird die "mobility edge"-Energie bezeichnet. *Rechts* : Schematischer Temperaturverlauf des elektrischen Widerstandes für (a) $E_F = E_a$, (b) $E_F = E_b$.

Der beobachtete Widerstandsanstieg bei niedrigen Temperaturen für YIH_x lässt sich darauf zurückzuführen, dass sich mit sinkendem H-Gehalt die Fermienergie unter die "mobility edge" verschiebt. Aus dem Minimum in der $\rho(T)$ -Kurve bei ca. 110 K kann für YIH_{0.61} eine Energiedifferenz E_c - $E_F \approx kT$ von ca. 10 meV berechnet werden.

Im Vergleich mit YIH_x wurden für die Hydridiodide mit magnetischen Gd-Ionen in GdIH_x erheblich unterschiedliche elektrische Eigenschaften beobachtet. Die Proben x = 0.66-0.75weisen thermisch aktivierte Leitung im ganzen Temperaturbereich zwischen 300 K und 2 K auf. Außerdem ist der Temperaturverlauf des Widerstandes sehr stark vom äußeren Magnetfeld beeinflusst. Bei einem angelegten Magnetfeld von H = 90 kOe wird der Widerstandsanstieg im magnetischen Temperaturbereich wesentlich unterdrückt, so dass ein riesiger negativer Magnetwiderstand $\Delta \rho / \rho_0$ von über 99 % bei 2 K für x = 0.71 resultiert.

Es gibt zwei grundsätzliche Mechanismen, wie sich Magnetismus auf die elektrischen Eigenschaften auswirkt: Spin-Elektron-Streuung und Lokalisierung der Leitungselektronen unter Bildung ferromagnetischer Cluster, sog. magnetischer Polaronen. Auf den ersten Effekt ist die Widerstandsänderung mit angelegtem Magnetfeld für die metallisch leitende Probe GdIH_{0.86} zurückzuführen. Indiz für die Spin-Elektron-Streuung ist das Auftreten einer Anomalie bei der magnetischen Übergangstemperatur T_c im Temperaturverlauf des Magnetwiderstandes $\Delta \rho / \rho_0$ [133-135].

Die ungewöhnlichen elektrischen und magnetischen Eigenschaften für die Proben $GdIH_x$ (x < 0.8) lassen sich im Rahmen des "magnetischen Polaron"-Modells beschreiben [136, 137]. Die Austauschwechselwirkungen zwischen den Spins der Leitungselektronen und den lokalen magnetischen Momenten führen zur Bildung von magnetischen Polaronen – Cluster von ferromagnetisch gekoppelten Gd-Atome um die "aufgefangenen" Ladungsträger – in einem paramagnetischen bzw. antiferromagnetischen System. Es resultiert eine zusätzliche Lokalisierung der Leitungselektronen, so dass sich die "mobility edge" zu höherer Energie verschiebt. Einen direkten Beweis für die Existenz der ferromagnetischen Phase bei den Proben $GdIH_x$ (x < 0.8) liefern die Magnetisierungsmessungen (Abb. 7.17, S. 106).

Im Vergleich mit YIH_x kann die Aktivierungsenergie für die magnetischen Proben $GdIH_x$ in der folgenden Form beschrieben werden

$$E_{\rm a} = E_{\rm c} + E_{\rm p} - E_{\rm F}$$

wobei die Bindungsenergie des Polarons E_p dem magnetischen Beitrag zur "mobility edge"-Energie entspricht. Der Parameter E_p charakterisiert die Energiedifferenz zwischen dem parabzw. antiferromagnetischen Zustand der Wirtsgitter und dem ferromagnetischen Zustand des Polarons.

Mit angelegtem Magnetfeld tendieren alle magnetische Momente dazu, sich entlang der Feldrichtung auszurichten, so dass E_p bei starken Feldern wesentlich unterdrückt wird. Der Leitungsmechanismus wird dann analog zu YIH_x von der Differenz (E_c - E_F) beeinflusst. Daher erwartet man, dass die Aktivierungsenergie E_a für GdIH_x nicht nur eine Funktion des Wasserstoffgehaltes bzw. der Temperatur sondern auch des Magnetfeldes (Magnetisierung) ist. Tatsächlich lässt sich die $\rho(H)$ -Abhängigkeit für GdIH_{0.73} (vgl. Abb. 7.26, S. 114) mit einer charakteristischen Funktion $\rho(H) \propto \exp(-m) [m = (M(H)/M_0)^2]$ beschreiben. Dies erinnert an eine aktivierte Anregung der Ladungsträger mit äußerem Magnetfeld. Der Referenzparameter M_o scheint in diesem Fall mit dem Sättigungsmoment des magnetischen Polarons verknüpft zu sein. Auffällig stimmt der angepasste Wert $M_0 = 0.6 \ \mu_B$ mit dem aus den Magnetisierungs-messungen ermittelten Sättigungsmoment $M_{\rm s} = 0.5 \ \mu_{\rm B}$ überein. Auch die charakteristische Feldstärke, um den Widerstand im wesentlichen zu unterdrücken, gibt Information über den Leitungsmechanismus. Für die Probe GdIH_{0.73} beträgt H_{eff} bei 2 K ca. 20 kOe, so dass die entsprechende effektive Aktivierungsenergie $E_{\rm eff} \approx 110 \ \mu eV$ etwa 25 mal kleiner als die magnetische Energie $k_{\rm B}T_{\rm N} \approx 2.7$ meV ist. Es liegt daher nahe, den beobachteten Wert E_{eff} auf die Bindungsenergie E_{p} zurückzuführen.

Die Magnetisierungsmessungen M(T,H) an GdIH_x weisen auf Koexistenz der konkurrierenden ferromagnetischen (F) und antiferromagnetischen (AF) Wechselwirkungen hin. Als Folge beobachtet man bei tiefen Temperaturen das für magnetisch frustrierte Systeme charakteristische Spinclusterglas-Verhalten. Die Korrelation zwischen F- und AF-Wechselwirkungen steht offensichtlich mit strukturellen und elektronischen Eigenschaften in Zusammenhang. Aus dem zweidimensionalen Charakter der Struktur kann geschlossen werden, dass die Austauschwechselwirkungen zwischen den Gd-Atomen in der *xy*-Ebene und in der *z*-Richtung sehr verschieden sind. Die Kopplung zwischen benachbarten Metallatomdoppelschichten erfolgt durch Dipol-Dipol-Wechselwirkungen bzw. Superaustausch über die Halogenatome. Diese Kopplungsmechanismen sind für die magnetische Ordnung in isolierenden Trihalogeniden LnHal₃ verantwortlich und führen zu niedrigen Übergangstemperaturen T_c , typischerweise unterhalb 5 K. Auf die gleichen Mechanismen lässt sich die bei 2.5 K beobachtete antiferromagnetische Ordnung in der salzartigen Verbindung GdIH₂ zurückführen.

Für die metallischen Leiter GdIH_x (x > 0.8) wird die magnetische Kopplung zwischen den Gd-Atomen in einer Metallatomdoppelschicht durch Leitungselektronen (RKKY-Austausch) vermittelt. Interessant ist, dass die Atomanordnung in Gd₂H_{2x}-Doppelschichten bei den Grenzzusammensetzungen der von Ausschnitten der Strukturen von Gd (x = 0) bzw. GdH₂ (x = 1) entspricht. Gd-Metall ordnet ferromagnetisch bei einer *Curie*-Temperatur T_C von 292 K [78], während GdD₂ antiferromagnetische Ordnung mit einer spiralförmigen Spinverteilung bei $T_N = 15.5$ K [138] aufweist. Dies zeigt, dass die Besetzung der Gd-Tetraederlücken mit H(D)-Atomen starke interplanare antiferromagnetische Austauschwechselwirkungen verursacht.

Die RKKY-Kopplung kann allerdings nicht für die magnetischen Eigenschaften von *halbleitenden* Proben $GdIH_x$ (x < 0.8) verantwortlich sein. Die magnetische Kopplung in diesen Verbindungen ist vermutlich von den gleichen Mechanismen beeinflusst, die zum thermisch aktivierten Leitfähigkeitverhalten führen, nämlich der Bildung ferromagnetischer Cluster (magnetische Polaronen) in einer antiferromagnetischen Matrix. Die lokale Spin-Spin-Kopplung zwischen einem lokalisierten Gd-5d-Leitungselektron und 4f-Elektronen der umgebenden Gd-Atome ergibt eine indirekte f-f-Kopplung. Aus der Zunahme der Aktivierungsenergie E_a für GdIH_x mit sinkendem x, die proportional zur d-f-Kopplungsstärke ist, kann man eine Verstärkung der ferromagnetischen Wechselwirkungen bei geringem Wasserstoffgehalt erwarten. Tatsächlich wird mit dem Vorzeichenwechsel der paramagnetischen Curie-Temperatur Θ eine solche Tendenz beobachtet (vgl. Tabelle 7.8, S. 104).

8 Weitere Systeme

8.1 Versuche zur Darstellung von $YI_2(H)_x$

Nach *Khoroshenkov et al.* ist die Darstellung von $YI_{1.86}$ durch eine Hochtemperaturreaktion eines Überschusses von Y-Metall mit Iod möglich [139].

Im Rahmen dieser Arbeit wurde versucht, die Verbindung YI_2 analog zu den Verbindungen von La und Gd durch Reduktion von YI_3 mit Y-Metall herzustellen. Hierfür wurden Gemenge YI_3/Y (2:1) 7d bei den Temperaturen T = 1120, 1170 und 1270 K getempert. Die erhaltenen Produkte sahen in allen Fällen unverändert aus, und die Pulveraufnahmen zeigten keine Veränderung gegenüber den Ausgangsstoffen.

Die Differentialthermoanalyse an einer ungetemperten Probe $(Y + 2YI_3)$ ergibt einen endothermen Effekt in der Aufheizkurve bei 1215 K. Beim Abkühlen tritt ein exothermer Peak bei derselben Temperatur auf. Diese Effekte entsprechen eindeutig dem Schmelzpunkt des Eutektikums (1220 K) im System Y-YI₃ [140].

Es wurde auch versucht, ternäre Phasen YI_2H_x durch Reaktion von YI_3 mit YH_2 darzustellen. Beim Erhitzen von $YH_2 + 2YI_3$ findet bei 1090 K nach 5d keine Reaktion statt, während eine Erhöhung der Reaktionstemperatur auf 1170 K zur Bildung von YIH_x führt.

8.2 Iodidtelluride Ln₂I₂Te von La und Gd

8.2.1 Synthese

Nach Auffinden einer neuen ternären Phase La₂I₂Te durch Anionenersatzversuche an LaI₂ (Kapitel 4.2) wurde versucht, die Verbindungen La₂I₂Te und Gd₂I₂Te durch eine Synproportionierungsreaktion darzustellen. Hierfür wurden Gemenge 4Ln + 2LnI₃ + 3Te (insgesamt 1g) 6d bei 1100 K getempert. Röntgenpulverdiagrammen zufolge bestanden die Produkte größtenteils aus Ln₂I₂Te und enthielten einen kleinen Anteil an LnTe (\approx 15-20%) und etwas LnI₃. Die Zusammensetzungen der Hauptprodukte wurde mittels EDX-Analysen bestätigt.

La₂I₂Te ist in kompakter Form kupferfarben, einzelne Kristalle sind als goldglänzende Plättchen im Mikroskop erkennbar. Die Gd-Verbindung wurde in Form eines dunkelbronze gefärbten kristallinen Produktes erhalten.

8.2.2 Strukturuntersuchung an Pulvern

Beide Verbindungen zeigen ein ähnliches Röntgendiagramm, wie exemplarisch für La₂I₂Te in Abb. 8.1 dargestellt ist. Alle bis auf die Fremdphasen zuzuordnenden Reflexe lassen sich mit hexagonaler/trigonaler Gittermetrik indizieren. Unter Zugrundelegung einer Schichtstruktur wie in verwandten Verbindungen Ln₂Hal₂C [4] erhält man die folgenden Gitterparameter (Raumgruppe: $R\bar{3}m$):

La₂I₂Te
$$a = 4.5096(2)$$
 Å $c = 32.526(2)$ Å
Gd₂I₂Te $a = 4.3240(8)$ Å $c = 31.739(7)$ Å

Die Iodidtelluride Ln_2I_2Te gehören zur Familie der schichtartig aufgebauten Verbindungen 3R-L n_2Hal_2Z (Z = C [106, 117]; Ge [141]), die aus dichtgepackten Hal-Ln-Z-Ln-Hal-Paketen (drei pro Elementarzelle) aufgebaut sind (Abb. 8.2, S. 125). Die Interstitialatome Z besetzen die von Metallatomen gebildeten Oktaederlücken.

Die Atompositionen in der Struktur von La₂I₂Te wurden durch Rietveld-Verfeinerung der Röntgenpulverdaten mit der Schichtabfolge AβcαB CαbγA BγaβC bestimmt (s. Anhang, S. 164). Nach der Profilanalyse der Reflexe enthielt die Probe ca. 15 Gew.-% LaTe. Das Ergebnis der Verfeinerung ist graphisch in Abb. 8.1 dargestellt. Die Gütewerte betragen $R_p =$ 4.27%, $R_{wp} = 5.44\%$, $R_{exp} = 4.78\%$; die Güte der Anpassung G = 1.14.

Abb. 8.1 Ergebnis der Rietveld-Verfeinerung für La₂I₂Te und LaTe. Bragg-Reflexe für La₂I₂Te (*oben*) sowie für die Fremdphase LaTe (*unten*) sind mit senkrechten Strichen markiert.

Abb. 8.2 Projektive Darstellung der Struktur von La₂I₂Te entlang [110]. Die Stapelfolge dichtgepackter Schichten ist in der üblichen ABC-Notation wiedergegeben. Es stehen A, B, C für I-; a, b, c für Te- und α , β , γ für La-Schichten.

Bezüglich ihrer Schweratomgerüste ähneln die Verbindungen Ln_2I_2Te (Ln = La, Gd) den vorig besprochenen Lanthanoidhydridiodiden $LnIH_x$ bis auf die *oktaedrische* Anordnung der I-Atome (statt trigonal prismatischer Anordnung wie im ZrBr- bzw. ZrCl-Typ) innerhalb der einzelnen Schichtpakete im ersten Fall. Die unterschiedliche Anordnung der I-Atome ist zwanglos mit der Besetzung der Tetraederlücken einerseits und der Oktaederlücken andererseits zu erklären.

In Tabelle 8.1 sind die kürzesten interatomaren Abstände zusammengestellt. Wie in 3R-La₂I₂Ge findet man die kürzeren La-La-Abstände zwischen benachbarten Metallatomschichten (La₂I₂Te : 4.41 Å, La₂I₂Ge : 4.25 Å) verglichen mit den Abständen innerhalb der La-Schichten (La₂I₂Te : 4.51 Å, La₂I₂Ge : 4.465 Å). Auffälligerweise wird diese Abstandsdifferenzierung bei La₂I₂Te im Vergleich mit La₂I₂Ge (0.1 Å bzw. 0.2 Å) merklich reduziert, während die La-La-Abstände innerhalb einer Metallatomschicht nahezu identisch für beide Verbindungen sind. Die letzteren sind äquivalent zu den Translationsperioden der Struktur und werden damit im wesentlichen von der Größe der Halogenmatrix bestimmt.

Tabelle 8.1 Interatomare Abstände (Å) in La₂I₂Te (Standardabweichungen in Klammern)

La-La	4.5096(2)	ТТ	4.5096(2)
	4.408(4)*	1-1	4.193(4)*
La-I	3.283(3)	Te-Te	4.5096(2)
La-Te	3.153(2)	I-Te	4.588(3)*

^{*} Zwischenschichtabstände

Der Abstand zwischen den La- und Te-Atomen (3.15 Å) liegt zwischen den berechneten Werten für eine kovalente (3.06 Å) und für eine ionische (3.24 Å) Bindung. Umgekehrt ist der

gefundene La-I-Abstand (3.28 Å) etwas größer als die Summe der Ionenradien für die Koordinationszahl 6 ($r(\text{La}^{3+}) = 1.03$ Å, $r(\Gamma) = 2.20$ Å). Eine einfache Erklärung für diese Abstandsverhältnisse ergibt sich aus der erhöhten elektrostatischen Anziehung der Kationen durch die hochgeladenen Te²⁻-Anionen der zentralen Schicht.

Der I-I-Abstand zwischen benachbarten Schichtpaketen beträgt 4.19 Å; er ist um 0.21 Å kürzer als aus der van-der-Waals-Bindungslänge (4.40 Å) berechnet. Die gleiche Tendenz wurde auch in den verwandten Verbindungen YIH_x beobachtet.

Die Bindungsverhältnisse in La₂I₂Te werden durch die ionische Formulierung $Ln^{3+}_{2}\Gamma_{2}Te^{2-}(e^{-})_{2}$ plausibel, wobei die überschüssigen Elektronen für Metall-Metall-Bindung zur Verfügung stehen.

Bei Vernachlässigung der Differenzierung zwischen Γ - und Te²⁻-Anionen^a, die die gleichen Ionenradien (2.20 Å bzw. 2.21 Å) besitzen, entspricht die Anordnung der Atome im I-La-Te-La-I-Schichtpaket der A-Form der Seltenerdsesquioxide Ln₂O₃ (Stapelabfolge: A β C α B) [142]. Die Struktur von La₂I₂Te kann so als kubisch-dichteste Packung von La₂X₃-Einheiten des A-La₂O₃-Typs beschrieben werden.

^a Da die I⁻ und Te²⁻-Anionen isoelektronisch und isometrisch sind, können die Positionen der I- und der Te-Atome röntgenografisch nicht eindeutig unterschieden werden.

8.2.3 Physikalische Eigenschaften von La₂I₂Te

Die magnetischen und elektrischen Messungen wurden an den unter einem Mikroskop ausgewählten und zu Tabletten gepressten Pulvern von Ln₂I₂Te durchgeführt.

Die Probe La₂I₂Te zeigt metallische Leitfähigkeit mit einem nahezu linearen Widerstandsabfall bei sinkender Temperatur (Abb. 8.3). Die Widerstandswerte nehmen von 9 m Ω bei 300 K bis auf 6.7 m Ω bei 10 K ab.

Abb. 8.3 Elektrischer Widerstand in Abhängigkeit von der Temperatur für La₂I₂Te ("°" - beim Abkühlen, "+" – beim Aufheizen).

Im Tieftemperaturbereich (80 K < T < 140 K) ist eine Anomalie der R(T)-Abhängigkeit zu erkennen. Diese äußert sich in Form eines Maximums bei 120 K, das in den Abkühl- und Aufheizkurven reproduzierbar ist. Dieser Effekt scheint intrinsisch für La₂I₂Te zu sein. Eine mögliche Verunreinigung der Probe mit LaTe würde keine Anomalie der Leitfähigkeit hervorrufen, da LaTe einen linearen Widerstandsanstieg im Bereich von 80 K bis 460 K aufweist [143].

Magnetisierungsmessungen^a an La₂I₂Te weisen auf schwach paramagnetisches Verhalten der Probe hin. Die Suszeptibilität ist nahezu temperaturunabhängig im Bereich von 350 bis 100 K (χ_m (300 K) = 40·10⁻⁶ cm³/mol) und steigt stetig bei weiter sinkender Temperatur bis zu einem Wert von 0.004 cm³/mol bei 5 K an.

^a Die Messungen wurden bei einem äußeren Feld von H = 10 kOe durchgeführt.

Aus der CURIE-WEISS-Anpassung (Gl. 2.2) an die Daten in der Auftragung von χ_m gegen 1/T erhält man folgende Werte des magnetischen Momentes und der temperaturunabhängigen Suszeptibilität: $\mu_{eff} = 0.49 \ \mu_B$ bzw. $\chi_0 = -60(5) \cdot 10^{-6} \text{ cm}^3/\text{mol.}$

Der beobachtete schwache Paramagnetismus wird offensichtlich von Spuren magnetischer Verunreinigungen verursacht. Der gefundene Wert μ_{eff} entspricht dann ca. 8 At.-% einer S = 1/2-Verunreinigung. Diese Konzentration ist viel größer als bei den Hydridhalogeniden LaIH_x (0.6-4 %). Im Gegensatz zu LaIH_x wurde keine Feldabhängigkeit der Suszeptibilität bei La₂I₂Te beobachtet, so dass die Probe mit Sicherheit keine ferromagnetische Verrunreinigung enthielt.

Nimmt man an, dass die diamagnetischen PASCAL-Inkremente^a für I⁻ und Te²⁻-Ionen wegen ihrer isoelektronischen Konfiguration identisch sind, kann der *Pauli*-Paramagnetismus für La₂I₂Te $\chi_{Pauli} = \chi_0 - \chi_{dia} = 135(5) \cdot 10^{-6} \text{ cm}^3/\text{mol berechnet werden.}$

Bezüglich der beobachteten Anomalie im Temperaturverlauf des Widerstandes in La₂I₂Te gibt es einige in der Literatur diskutierte Parallelen. Ähnliche Anomalien wurden in den schichtartig aufgebauten Übergangsmetalldichalkogeniden der 5. Nebengruppe [144] sowie in Molybdän- bzw. Wolframbronzen, z.B. KMo₆O₁₇ [145] und (PO₂)₄(WO₃)_{2m} [146] beobachtet. Die ungewöhnlichen physikalischen Eigenschaften in diesen Verbindungen sind auf die bei tiefen Temperaturen einsetzende *zweidimensionale* PEIERLS-Verzerrung (das Festkörperanalogon zum Jahn-Teller-Effekt) zurückzuführen [147]. Der Widerstandsanstieg unterhalb der Übergangstemperatur *T*_P beruht auf der Abnahme der Ladungsträgerkonzentration aufgrund einer induzierten Bandlücke an der Fermikante. Durch die Verzerrung wird die Dichte der Leitungselektronen moduliert, der resultierende Grundzustand wird als Ladungsdichtewelle CDW (charge density waves) bezeichnet. Als Ergebnis davon ergibt sich eine strukturelle Verzerrung, da die Metallatome durch das modulierte Feld aus ihren Idealpositionen ausgelenkt werden. Die Auslenkung ist meist gering (~ 1Å).

Temperaturabhängige Guinieraufnahmen für La₂I₂Te zeigen keine deutliche Änderung des Röntgendiagrammes bei Abkühlung der Probe auf 90 K (s. Anhang). Die Frage, ob die beobachtete elektrische Anomalie durch CDW-Verzerrungen verursacht ist, muss noch in weiteren Untersuchungen geklärt werden.

^a Nach der Summierung der diamagnetischen Ioneninkremente [cm³/mol] (La³⁺ : -20·10⁻⁶; I⁻ :-52·10⁻⁶) erhält man einen diamagnetischem Beitrag zur Suszeptibilität von $\chi_{dia} = -196 \cdot 10^{-6}$ cm³/mol.

8.2.4 Physikalische Eigenschaften von Gd₂I₂Te

In Abbildung 8.4 ist die Temperaturabhängigkeit der Molsuszeptibilität für Gd₂I₂Te bei einer Feldstärke von 100 Oe (*fc*-Messung) dargestellt. In der χ (*T*)-Kurve sind drei Anomalien bei 280 K, 200 K und 15 K zu erkennen. Die Stufe bei 280 K ist auf geringste Spuren von GdI₂ (*T*_C = 280 K) zurückzuführen. Ein steiler Anstieg der Suszeptibilität unterhalb 200 K mit nachfolgender Sättigung bei tieferen Temperaturen spricht für eine langreichweitige ferromagnetische Ordnung der Probe. Aus dem Minimum in der Auftragung von d χ_m/dT gegen *T* (inneres Bild) erhält man eine *Curie*-Temperatur von *T*_C = 160(2) K.

Abb. 8.4 *Oben*: Temperaturabhängigkeit der magnetischen Molsuszeptibilität für Gd₂I₂Te, Feldstärke H = 100 Oe. Im inneren Bild ist die Funktion $d\chi_m/dT(T)$ aufgetragen. *Unten*: Temperaturabhängigkeit der reziproken Suszeptibilität bei H = 10 kOe.

Auffälligerweise zeigen die χ_m -Werte keine Sättigung bei niedrigen Temperaturen (T < 15 K). Sie steigen sukzessive beim Abkühlen bis zu 2 K.

Im paramagnetischen Temperaturbereich zeigt die Probe CURIE-WEISS'sches Verhalten (Abb. 8.4, unten). Aus den Hochtemperaturdaten (300-400 K) erhält man $\mu_{eff} = 7.27 \ \mu_B$ und $\Theta = 58(1)$ K. Das experimentell ermittelte magnetische Moment ist stark reduziert im Vergleich zum Erwartungswert für freie Gd³⁺-Ionen (7.94 μ_B). Darüber hinaus ist die paramagnetische *Curie*-Temperatur überraschenderweise viel kleiner als die magnetische Ordnungstemperatur, $\Theta \approx 1/3 T_C$. Diese Befunde können so interpretiert werden, dass hier neben ferromagnetischen auch *antiferromagnetische* Wechselwirkungen vorhanden sind. Eine Bestätigung dafür liefern Magnetisierungsmessungen als Funktion eines zunehmenden Magnetfeldes.

Abb. 8.5 Feldabhängigkeit der Magnetisierung von Gd₂I₂Te bei 5 K.

Abbildung 8.5 zeigt eine M(H)-Isotherme, aufgenommen im magnetisch geordneten Bereich (T = 5 K). Mit zunehmender Feldstärke steigt die Magnetisierung allmählich an und erreicht einen Wert von 2.47 $\mu_{\rm B}$ bei $H_{\rm max} = 70$ kOe. Die Sättigungsmagnetisierung liegt also weit unterhalb des erwarteten Wertes $M_{\rm sat} = 7 \mu_{\rm B}$ für die freien bzw. ferromagnetisch gekoppelten Gd³⁺-Ionen (S = 7/2). Daraus kann geschlossen werden, dass bei $T_{\rm c} = 160$ K *ferrimagnetische* Ordnung auftritt. Auffälligerweise beträgt der experimentell erhaltene M_{sat} -Wert (2.47 μ_{B}) etwa ein Drittel vom erwarteten Sättigungsmoment für Gd³⁺-Ionen (7 μ_{B}). Dies ist sehr gut unter der Annahme zu verstehen, dass die magnetischen Momente in jedem der Metallatomdreiecke an zwei Zentren parallel und am dritten antiparallel orientiert sind (Abb. 8.6). Es resultiert ferrimagnetische Ordnung mit einem Gesamtsättigungsmoment $M_{\text{sat}} = 1/3 M(\text{Gd}^{3+}) \approx 2.33 \mu_{\text{B}}$.

Abb. 8.6 *Links*: Magnetische Wechselwirkungen innerhalb einer Gd-Doppelschicht in der Struktur von Gd_2I_2Te . *Rechts*: Schematische Darstellung der Spinverteilung in einer dichtgepackten trigonalen Metallatomdoppelschicht unter Annahme ferromagnetischer Wechselwirkungen übernächster Nachbarn (J_1). Die punktierten Kreise stellen die Positionen der Te-Atomen dar. Gestrichelt: magnetische Überstrukturzelle.

Eine solche Spinkonfiguration setzt vorwiegend antiferromagnetische Kopplung benachbarter Momente (J_0) in Gd-Schichten voraus. Jedoch deutet der positive Θ -Wert auf die Dominanz von ferromagnetischen Wechselwirkungen hin. Dieser Befund lässt sich im Rahmen desselben Modells erklären, wenn man ferromagnetische Spin-Spin-Kopplung zwischen *übernächsten* Zentren (J_1) in Betracht zieht. Die resultierende Spinstruktur ist schematisch in Abb. 8.6 (rechts) dargestellt. Die magnetische Überstrukturzelle enthält 4 Gd-Atome mit paralleler Spinkonfiguration und 2 Gd-Atome mit antiparalleler Spinkonfiguration, so dass die ferromagnetischen Wechselwirkungen überwiegen [($J_0(F) + J_1(F) > J_0(AF)$].

Im paramagnetischen Temperaturbereich zeigt Gd_2I_2Te eine metallische Widerstandscharakteristik mit positiver dR/dT-Steigung (Abb. 8.7). Bei Abkühlung unter den ferrimagnetischen Bereich nimmt jedoch der Widerstand steil zu. Die Auftragung von *R* gegen 1000/*T* ergibt keine Gerade, wie für einen intrinsischen Halbleiter erwartet wird, sondern führt zur Sättigung bei fallender Temperatur.

Abb. 8.7 *Links*: Temperaturabhängigkeit des elektrischen Widerstandes für Gd_2I_2Te im Nullfeld (\Box) bzw. bei H = 70 kOe (\circ). Im inneren Bild ist der R(T)-Verlauf nahe der magnetischen Übergangstemperatur in vergrößertem Maßstab dargestellt. *Rechts*: Elektrischer Widerstand (logarithmisch) als Funktion der reziproken Temperatur.

Eine ähnliche Krümmung der $\lg R(1/T)$ -Kurven wurde bei den CMR-Verbindungen $\operatorname{GdI}_2\operatorname{H}_x$ (x < 0.33) beobachtet. Im Falle von $\operatorname{Gd}_2\operatorname{I}_2\operatorname{Te}$ wird der elektrische Widerstand allerdings kaum vom äußeren Magnetfeld beeinflusst. Die Messung beim angelegten Feld von H = 70 kOe ergibt eine äußerst geringe Verminderung der Widerstandswerte bei tiefen Temperaturen (5-20 K).

Die beobachtete Übereinstimmung der magnetischen und elektrischen Effekte von Gd₂I₂Te lässt sich analog zum homologen La₂I₂Te mit der elektronischen Verzerrung bei $T_c \approx 160$ K deuten. Hieraus resultiert eine kooperative oszillierende Spinpolarisierung der Leitungselektronen. Die lokale ferromagnetische Spin-Spin-Kopplung zwischen den Gd-5d-Leitungselektronen und den paramagnetischen Gd-4f-Elektronen ergibt eine indirekte f-f-Kopplung, die wegen der langreichweitigen Modulation der Elektronendichte zur dreidimensionalen magnetischen Ordnung führt. Ein solcher elektronischer Grundzustand wird in der Festkörperphysik als Spindichtewelle SDW (spin density wave) bezeichnet [148]. Das Auftreten von SDW beobachtet man in verschiedenen metallischen Systemen, z.B. in metallischem Cr [148] bzw. in den Legierungen CuMn und YGd [149].

8.3 Untersuchungen an LaI

8.3.1 Darstellung

Nach *Martin* und *Corbett* ist es möglich, das Seltenerdmetallmonohalogenid LaI durch Reduktion von LaI₃ mit La-Metall (in einfachem Überschuß) bei 1020 K über mehrere Wochen (70 d) herzustellen [7]. Die Reaktion läuft allerdings nicht vollständig ab, so dass nach einem Zitat aus der Originalarbeit "die Mengen an einphasigem LaI nicht für verläßliche physikalische Messungen ausreichten".

Im Verlauf von Versuchen zur Darstellung von Interkalationsverbindungen Na_xLaI_2 durch Erhitzen von LaI₂ in Na-Schmelzen wurde eine neue Synthesemethode von LaI gefunden. Statt der Interkalation von Alkalimetallen in die Struktur von LaI₂ führt diese Festkörperreaktion zur weiteren Reduktion von LaI₂.

Die Reduktionsfähigkeit der Alkalimetalle ist wohlbekannt. Bereits 1937 berichteten *Klemm* und *Bommer* über die Reduktion von Seltenerdmetalltrihalogeniden mit Alkalimetallen zu Ln-Metallen [150]. Auf gleichem Weg erhielten *Meyer* und *Schleid* eine Reihe von binären bzw. ternären Halogeniden der zweiwertigen Ln-Ionen [151]. Nach *Beck* [152] gelingt es, die metallreichen Verbindungen Ln_2Br_3 (Ln = Gd, Tb) durch Umsetzung von LnBr₃ mit Na darzustellen.

Zur Darstellung von LaI wurden die Reduktionsreaktionen sowohl von LaI₂ als auch von LaI₃ mit Natrium durchgeführt.

Ein Gemenge von LaI₂ und Na im Molverhältnis 1:1 (insgesamt 0.5 g) wurde 3d bei 770 K getempert und durch Eintauchen der Ampulle in Wasser abgeschreckt. Das Produkt sah heterogen aus. Zwischen dunkelgrauem Pulver konnte man charakteristische metallglänzende violette Kristallite von LaI₂ erkennen. Die röntgenografische Untersuchung einer Pulverprobe zeigt das Vorliegen von LaI₂, LaI und NaI.

Umsetzung von LaI₂ mit Na-Metall läuft auch wie die Reaktion von LaI₃ mit La-Metall nicht vollständig ab. Ein Grund für die unvollständige Reaktion liegt vielleicht in zu kurzen Reaktionszeiten oder in der nicht vollständigen Vermischung von LaI₂ mit Na-Schmelze. Dennoch erlaubt die Reduktion von LaI₂ mit Natrium, die für physikalische Messungen hinreichende Menge von einphasigem LaI bei milderen Reaktionsbedingungen (niedrige Temperatur, kurze Heizzeiten) zu erhalten.

Bei der Umsetzung von LaI₃ mit Na im Molverhältnis 1:2.2 bei 820 K erhält man nach 3 d ein Gemenge von NaI, LaI und La, dessen Linien deutlich in Pulverdiffraktogrammen beobachtbar sind.

Zur Entfernung von NaI wurden die Proben in einem Schlenk-Rohr unter Argon zweimal mit wasserfreiem Diglyme^a (99.5%, Fa. ALDRICH) ausgewaschen. Nach der Extraktion wurde das Monohalogenid im Vakuum (~ 10^{-3} mbar) bei Raumtemperatur von Spuren Diglyme befreit.

Das reine LaI sieht metallisch aus, mit hellgoldener Schattierung. Vom unreagierten LaI₂, das nach der Extraktion schwarz erscheint, kann das Monoiodid leicht unter dem Mikroskop separiert werden.

Auffälligerweise hatten manche Partikel oberflächlich einen grüngoldenen Schimmer. Auch die zweite Fraktion mit Diglyme war gelbgrün^b verfärbt. Es kann daher nicht ausgeschlossen werden, dass LaI teilweise in Diglyme unter Bildung eines metallorganischen Komplexes reagiert.

8.3.2 Thermische Untersuchungen

Zur Bestimmung der Temperaturbereiche der Bildung bzw. der Zersetzung von LaI wurden DTA-Untersuchungen an einem Gemenge LaI₂/Na (1:1) in Ta-Ampullen durchgeführt. Hierfür wurde die Probe (100 mg) in einer DTA-Apparatur bis maximal 1300 K erhitzt (die Probe durchlief jeweils zwei Aufheiz- bzw. Abkühlzyklen). Die Ergebnisse sind in Tab. 8.2 zusammengefasst.

Aufheizen (400-1300 K)		Abkühlen (1270-450 K)		
1 Zyklus	2 Zyklus	1 Zyklus	2 Zyklus	
370				
620	615	620	615	
745	740	750	740	
770-810*				
855				
890				
960-1015				
1095-1150	1085-1115	1110-1160	1085-1110	
1185	1185	1190	1185	

Tabelle 8.2 Thermische Effekte [K] für eine LaI₂/Na-Probe

Exothermer Effekt. Beim Aufheizen sind alle anderen Effekte endotherm, beim Abkühlen exotherm.

^a Diethylenglykol-dimethylether;

^b Bei Extraktion von NaI mit Diglyme wird die Lösung gelb bzw. bei Sättigung orange gefärbt.

In der ersten DTA-Aufheizkurve sind mehrere endotherme Effekte zu erkennen. Der erste Effekt entspricht dem Schmelzen von Na. Die thermischen Effekte im Intervall von 770 bis 890 K sind nur auf der 1. Aufheizkurve beobachtbar. Dies deutet auf einen *peritektischen* Zerfall der Probe hin. Das verbreiterte exotherme Minimum bei 770-810 K kann auf die Bildung von LaI zurückgeführt werden, während der ebenso verbreiterte endotherme Effekt im Bereich von 960-1015 K der Zersetzung des Monoiodides zugeordnet wird.

Die Anomalien bei hohen Temperaturen entsprechen dem Schmelzvorgang von LaI₂ (1110 K) bzw. von La-Metall (1190 K). Der stark ausgeprägte Effekt bei 740-750 K hängt offensichtlich mit dem vollständigen Erstarren der Probe zusammen. Auffälligerweise stimmt diese Temperatur gut mit dem Schmelzpunkt des Eutektikums im System LaI₃-NaI (730 K) überein [153].

Die thermischen Effekte bei 620 K, 855 K und 890 K können nicht eindeutig zugeordnet werden.

8.3.3 Röntgenografische Untersuchung

Lanthanmonoiodid kristallisiert im NiAs-Strukturtyp [7]. Die Metallatome besetzen alle Oktaederlücken zwischen den hexagonal dichtgepackten Iodidschichten.

In Abbildung 8.8 ist das Röntgenpulverdiagramm einer ausgewählten LaI-Probe im Vergleich zum berechneten Diagramm dargestellt.

Abb. 8.8 Ergebnis der Rietveld-Verfeinerung für LaI. Bragg-Reflexe für LaI sind durch senkrechte Striche markiert.

Da die Atome in einer NiAs-Struktur nur spezielle Positionen besetzen (Raumgruppe: $P6_3/mmc$; La in 2*a*: 0, 0, 0; I in 2*c*: 1/3, 2/3, 1/4), können nur die Gitterparameter bzw. atomaren Auslenkungsparameter variiert werden. Nach der Rietveld-Verfeinerung erhält man die Gitterparameter *a* = 3.9292(1) Å und *c* = 9.712(1) Å, die in guter Übereinstimmung mit den vorherig bestimmten Werten (3.9297(4)/9.710(1) Å) sind [7]. Die Gütewerte der Verfeinerung betragen $R_p = 8.5\%$, $R_{wp} = 11.1\%$, $R_{exp} = 10.1\%$; die Güte der Anpassung *G* = 1.20. Nähere Angaben sind im kristallografischen Anhang (S. 165) zusammengestellt.

Da die Bindungsverhältnisse in der Struktur von LaI in [7] ausführlich beschrieben wurden, sollen diese hier nicht wiedergegeben werden.

Es ist interessant, die Metall-Metall-Bindung in den nach der ionischen Formulierung isoelektronischen Verbindungen $La^{3+}\Gamma(e^{-})_2$ und $La^{3+}_2\Gamma_2Te^{2-}(e^{-})_2$ zu vergleichen, zumal sich die La-Atome in beiden Strukturen in oktaedrischer Anionenumgebung befinden. Im Gegensatz zu La₂I₂Te sind bei LaI die La-La-Abstände [Å] innerhalb einer Metallatomschicht und zwischen benachbarten Schichten sehr verschieden: 3.93/4.86 gegen 4.51/4.41 für La₂I₂Te. Ein weiterer Unterschied besteht darin, dass die La-La-Wechselwirkung bei LaI in der *ab*-Ebene stärker ist als die in der *c*-Richtung. In der ternären Phase beobachtet man gegensätzliche Tendenz.

8.3.4 Elektronenmikroskopische Untersuchung

8.3.4.1 EDX-Analysen: Zusammensetzung der Kristallite

Das Verhältnis La : I aller untersuchten Kristallite ist nahe 1 (vgl. Tabelle 8.3 für elf Meßpunkte an verschiedenen Kristalliten). Die sorgfältige Analyse der Punktspektren auf weitere nachweisbare Komponenten deutet auf kleinste Spuren Natrium und einen signifikanten Gehalt von Sauerstoff. Dieser ist für stark feuchtigkeitsempfindliche Proben mit geringfügiger Sauerstoff-Kontamination an der Kristallitoberfläche typisch und spricht nicht zwingend für einen definierten Einbau von Sauerstoff in die Kristallstruktur. Die Hydrolyseprodukte aggregieren in derartigen Fällen in einer amorphen Deckschicht der Kristalle.

Spektrum Nr.	I / At%	La / At%
1	50.02	49.98
2	51.27	48.73
3	49.85	50.15
4	50.49	49.51
5	51.17	48.83
6	50.87	49.13
7	50.89	49.11
8	49.95	50.05
9	50.83	49.17
10	49.39	50.61
11	51.50	48.50
Mittelwert	50.57	49.43
Standardabweichung	0.57	0.57

Tabelle 8.3Quantifizierung von EDX-Punktanalysen* an LaI.

^{*} Die Auswertung erfolgte jeweils anhand der L-Linien von Lanthan und Iod.

8.3.4.2 Elektronenbeugung

Die experimentell ermittelten und die berechneten *d*-Werte sind im Rahmen der üblichen Fehlergrenze der Feinbereichsbeugung (ca. 0.05 Å) identisch (Beispiele mit berechneten *d*-Werten in Klammern: $d(100)_{exp.} = 3.41$ Å (3.40 Å), $d(001)_{exp.} = 9.71$ Å (9.71 Å)). Die Intensitätsabfolge in den Feinbereichsbeugungsdiagrammen von dünnen Kristallbereichen kann anhand berechneter Intensitäten wiedergegeben werden. Die Simulationen erfolgten in kinematischer Näherung auf der Basis des aus den Röntgendaten ermittelten Strukturmodells von LaI, vgl. Abb. 8.9.

Abb. 8.9 Gegenüberstellung von experimentellen (*links*) und simulierten Feinbereichsbeugungsdiagrammen (*rechts*) für die angegebenen Zonenachsen.

In der Orientierung [100] wird die serielle Auslöschungsbedingung in der Raumgruppe $P6_3/mmc$ (00*l*, $l \neq 2n$) durchbrochen. Um eine Symmetrieerniedrigung auszuschließen und um den Einfluß der dynamischen Anregung auf die Intensitäten 00*l* zu demonstrieren, wurde ein Kristall ausgehend von der exakten Zonenachsenorientierung [100] um die Achse [001] stark verkippt (ca. 20°), vgl. Abb. 8.10. Bei der Verkippung nimmt die Intensität der kinematisch verbotenen Reflexen 00*l*, $l \neq 2n$ stark ab, bis diese schließlich nicht mehr signifikant sind. Dies kann als Hinweis auf eine dynamische Anregung gedeutet werden. Für die Reflexe 00*l*, $l = 2n \neq 4n$ zeigt sich allerdings ein Mißverhältnis zwischen den berechneten und experimentell ermittelten Intensitäten.

Abb. 8.10 Verkippungsexperiment zur Demonstration der dynamischen Anregung von Reflexen 00l, $l \neq 2n$. Oben: Exakte Zonenachsenorientierung (Experiment: *links*, Simulation: *rechts*). *Unten*: 00l-Reflexe in stark verkippter Orientierung.

8.3.4.2 HRTEM-Untersuchung

Die Proben sind in unterschiedlichen Kristalliten homogen, und es können auch keinerlei Domänen innerhalb eines Kristallites nachgewiesen werden. Alle untersuchten Kristalle zeigen keine systematischen Kristalldefekte, wie z.B. Antiphasen- oder Zwillingsgrenzflächen.

Hochaufgelöste Abbildungen wurden für die Orientierungen [001] und [100] aufgenommen. In der Zonenachsenorientierung [001] bilden die Kontraste unabhängig vom Fokus ein hexagonales Muster mit der Symmetrie 6*mm*. Eine Gegenüberstellung von experimentellen hochaufgelösten Kontrasten und Simulationen (NiAs-Typ-Struktur) ist in Abb. 8.11 wiedergegeben. Die schwarzen und weißen Punkte korrelieren aufgrund der starken Defokussierung zwar nicht direkt mit Atomsäulen; trotzdem spricht die gute Übereinstimmung zwischen Simulation und Experiment für das aus Röntgendaten ermittelte Strukturmodell.

Abb. 8.11 HRTEM längs [001] für die angegebenen Defokuswerte, mit eingefügten Simulationen (multislice-Verfahren mit drei slices, simuliert für eine Dicke von 1.9 nm).

Die hochaufgelösten Abbildungen für die Zonenachse [100] sind in Abb. 8.12 dargestellt. Die Abbildung für $\Delta f = 0$ nm kann strukturell interpretiert werden. Ein Vergleich mit einer Strukturprojektion (bzw. mit dem projizierten Kristallpotential) zeigt, dass die weißen Punkte in erster Näherung mit Atomsäulen korrespondieren. Die experimentell beobachtete Anordnung der Atomsäulen ist konsistent mit der sich bei den Röntgenuntersuchungen ergebenden NiAs-Typ-Struktur, vgl. auch die Übereinstimmung mit den in die experimentellen Abbildungen eingefügten Simulationen.

Abb. 8.12 HRTEM längs [100] für die angegebenen Defokuswerte, mit eingefügten Simulationen (multislice-Verfahren mit drei slices, simuliert für eine Dicke von 3.9 nm).

8.3.4 Physikalische Eigenschaften

Wie von der ionischen Formulierung La³⁺I⁻(e⁻)₂ zu erwarten, zeigt LaI metallisches Verhalten (Abb. 8.13). Der elektrische Widerstand nimmt mit sinkender Temperatur langsam ab. In der Abkühlkurve ist eine Anomalie als schwaches Maximum bei $T_{max} = 67$ K zu erkennen. In zwei unabhängigen Messungen wird dieses Maximum reproduziert. Es verschwindet jedoch beim Aufheizen der Probe. Oberhalb T_{max} beobachtet man eine Aufspaltung zwischen den Abkühl- bzw. Aufheizkurven R(T), während bei tieferen Temperaturen die R-Werte identisch sind. Darüber hinaus kommt es zu einer krasseren Änderung des Widerstandes bei $T < T_{max}$, wie aus der größeren Steigung dR/dT deutlich wird. Dieser Effekt ist bisher nicht geklärt.

Abb. 8.13 Elektrischer Widerstand in Abhängigkeit von der Temperatur für LaI. Die Messungen wurden an zwei unabhängigen Proben durchgeführt. Die Abkühlbzw. Aufheizkurven sind mit den entsprechenden Pfeilen bezeichnet.

Messungen der magnetischen Suszeptibilität an einer röntgenografisch einphasigen Probe weisen auf *Pauli*-Paramagnetismus hin. Die Suszeptibilität^a ist im Bereich T = 350-50 K nahezu temperatur- bzw. feldunabhängig und beträgt $\chi_0 = -65(5)\cdot10^{-6}$ cm³/mol. Nach Abzug diamagnetischer Inkremente ($\chi_{dia} = -72\cdot10^{-6}$ cm³/mol) erhält man die *Pauli*-Suszeptibilität von χ_{Pauli} (LaI) = 10(5)·10⁻⁶ cm³/mol.

^a Die Daten wurden auf den magnetischen Beitrag des Behälters korrigiert.

Diese ist viel kleiner verglichen mit dem in früheren Untersuchungen bestimmten Wert von $200 \cdot 10^{-6} \text{ cm}^3/\text{mol}$ [7].

Bei Abkühlung unter ca. 5.5 K zeigt die Probe einen Übergang in den supraleitenden Zustand, jedoch beträgt der supraleitende Anteil nur etwa 0.5%. Es liegt daher nahe, diesen Effekt auf geringe Verunreinigung der Probe mit La zurückzuführen.

9 Zusammenfassung

Ziel dieser Arbeit war die phasenreine Darstellung von Verbindungen mit der Zusammensetzung LnHal_n Z_x ($n \le 2$, $0 \le x \le 1$) und unterschiedlicher Valenzelektronenkonzentration und die Untersuchung der physikalischen Eigenschaften. Dafür wurde sowohl der Weg des Einbaus von Interstitialwasserstoffatomen in die Kristallstruktur als auch die Möglichkeit der Kationen- bzw. Anionensubstitution beschritten. Die schichtartigen Verbindungen LaI₂, LaI₂H_x, GdI₂, GdI₂H_x, GdIH_x und LaI wurden synthetisiert und charakterisiert. Neben diesen bereits bekannten Phasen wurden auch die neuen metallreichen Verbindungen YIH_x und Ln₂I₂Te (Ln = La, Gd) dargestellt.

Die vollhydrierten Phasen LnI₂H erhält man durch Erhitzen der binären Verbindungen LnI₂ in Wasserstoffatmosphäre (1 atm) bei 920 K. Die nichtstöchiometrischen Phasen LnI₂H_x (x < 1) werden durch Tempern von LnI₂/LnI₂H-Gemengen dargestellt.

Bei der Hydrierung von LaI₂ erfolgt eine Umordnung der Schweratomstruktur von quadratischen zu trigonalen Netzen. Röntgenografische Untersuchungen an bei 920 K erhaltenen Pulvern von LaI₂H_{0.95} weisen auf eine Stapelfehlordnung in der Struktur hin, die einer polytypen Verwachsung vom 2H-MoS₂- und 2H-NbS₂-Strukturtyp entspricht. Erhöhung der Reaktionstemperatur auf 1000 K führt zu schärferen Pulverdiagrammen, die im wesentlichen im 2H-NbS₂-Typ beschreibbar sind. Versuche zur Darstellung von Proben mit geringerem Wasserstoffgehalt LaI₂H_x belegen das Vorliegen einer Mischungslücke zwischen LaI₂ und LaI₂H_x ($0.5 \le x \le 1$) in guter Übereinstimmung mit früher ermittelten Werten.

Im Gegensatz zu den La-Verbindungen ist es möglich, isostrukturelle Hydridhalogenide GdI_2H_x (2H-MoS₂-Typ) im gesamten H-Bereich, $0 \le x \le 1$, zu erhalten. Nach elektrischen und magnetischen Messungen erfolgt eine erhebliche Änderung der physikalischen Eigenschaften in Abhängigkeit vom Wasserstoffgehalt, besonders bei der Zusammensetzung $x \approx 1/3$. GdI₂ ordnet ferromagnetisch bei $T_C = 278 \pm 5$ K. Mit zunehmendem x nimmt die *Curie*-Temperatur stark ab. Der magnetische Übergang wird hierbei unscharf. Die Magnetisierungskurven sowie die Messungen der magnetischen Suszeptibilität in *ac*-Magnetfeldern deuten auf Koexistenz ferromagnetischer und antiferromagnetischer Wechselwirkungen hin. Dies führt zu einer frustrierten Spinkonfiguration, so dass bei $x \approx 0.34$ die dreidimensionale ferromagnetische Dirdnung verschwunden ist. Im Bereich $0.42 \le x \le 0.69$ tritt Spinclusterglas-Verhalten bei $T_f = 24$ K bzw. 3K auf. Die Phasen größeren Wasserstoffgehaltes GdI₂H_x (x = 0.78-0.97) sind oberhalb 2 K paramagnetische.

Alle beobachteten Effekte in der elektrischen Leitfähigkeit sind mit den magnetischen Übergängen verknüpft. Die H-haltigen Verbindungen GdI_2H_x (x > 0.2) sind Halbleiter. Für die ferromagnetischen Phasen wird der Widerstandsanstieg unterhalb der Übergangstemperatur durch ein angelegtes Magnetfeld stark reduziert. Es resultiert ein riesiger negativer Magnetwiderstand (MR = 90 % bei 170 K und H = 70 kOe für x = 0.24). Damit können diese Hydridhalogenide mit den besten, bisher bekannten CMR-Verbindungen verglichen werden.

In Analogie zu den bekannten Hydridhalogeniden $GdIH_x$ ($\approx 0.67 \le x \le 1.0$) werden die Verbindungen YIH_x aus YH₂/YI₃- bzw. Y/YH₂/YI₃-Gemengen hergestellt. Diese Substanzen kristallisieren in der Schweratomstruktur vom ZrBr-Typ, in der dichtgepackte Ln-Doppelschichten beidseitig von gleichartigen Netzen aus I-Atomen umgeben sind. Die H-Atome besetzen partiell bzw. völlig (x = 1) die Tetraederlücken innerhalb der Metallatom-doppelschichten.

Die nichtmagnetischen Phasen YIH_x sind bei 300 K metallisch. Mit sinkendem Wasserstoffgehalt wird eine Tendenz zur Lokalisierung der Leitungselektronen (Zunahme der Widerstandswerte, Absenkung der *Pauli*-Suszeptibilität) beobachtet. Bei tiefen Temperaturen tritt zudem ein diffuser Metall-Halbleiter-Übergang ein, der bei Annäherung an die untere Phasengrenze YIH_{0.61} zu höheren Temperaturen verschoben ist.

Anwesenheit magnetischer Atome führt zur wesentlichen Änderung der elektrischen Eigenschaften. Im System GdIH_x wird ein Metall-Halbleiter-Übergang bei $x \approx 0.80$ beobachtet. Ähnlich wie für GdI₂H_x, allerdings bei tieferen Temperaturen (T < 50 K), kann der elektrische Widerstand von GdIH_x (x < 0.80) durch ein angelegtes Magnetfeld drastisch unterdrückt werden. Für GdIH_{0.71} beträgt der negative Magnetwiderstandswert bei 2 K und H = 70 kOe über 99%.

Die Hydridiodide $GdIH_x$ weisen ein kompliziertes magnetisches Verhalten auf. Den spezifischen Wärmekapazitäts- und Suszeptibilitätsmessungen zufolge ordnen die Phasen $GdIH_x$ (0.71 $\leq x \leq 0.86$) antiferromagnetisch im Bereich von 30 K bis 50 K. Die Verbindungen mit "lokalisierten" Valenzelektronen ($x \leq 0.78$) zeigen zusätzlich Spinclusterglas-Verhalten bei tieferen Temperaturen.

Die ungewöhnlichen physikalischen Eigenschaften von $GdIH_x$ lassen sich im Rahmen des "magnetischen Polaron"-Modells (Bildung ferromagnetischer Cluster in einer antiferromagnetischen Matrix) beschreiben. Das Auftreten der ferromagnetischen Phase mit sinkender Temperatur wurde experimentell durch Magnetisierungsmessungen bestätigt. Durch Wasserstoffaufnahme entstehen aus $LnIH_x$ die salzartigen Verbindungen mit der Zusammensetzung $LnIH_2$. Für YIH₂ wurde die Anordnung der Schweratome aus Pulverdaten bestimmt. Die Struktur ist analog zu TbBrD₂ aufgebaut. Sie besteht aus IYYI-Schichtpaketen mit der zentrosymmetrischen Stapelfolge A $\beta\alpha$ B. Im Gegensatz zu allen bisher bekannten Verbindungen LnHalH₂, in deren Elementarzellen 3 Schichtpakete HalLnLnHal entlang *c* gestapelt sind, entspricht die Translationsperiode in YIH₂ nur einem Schichtpaket (1T-Typ). Die gleiche Stapelvariante wurde auch für GdIH₂ gefunden.

Versuche zum partiellen Ionenersatz La_{1-x}Ba_xI₂ bzw. La(I_{1-x}Te_x)₂ durch Umsetzung von LaI₂ mit BaI₂ bzw. mit LaTe₂ ergaben keine Mischkristalle. Sie führen zu Redoxreaktionen unter Bildung stöchiometrischer Verbindungen. In Erweiterung der Untersuchungen wurden die neuen ternären Phasen Ln₂I₂Te (Ln = La, Gd) erhalten.

Die Struktur von La₂I₂Te wurde aus Pulverdaten bestimmt. Die Verbindungen La₂I₂Te und Gd₂I₂Te kristallisieren im 3R-Lu₂Cl₂C-Typ. Die Metall- und Halogenatome sind wie in den beschriebenen Hydridhalogeniden LnIH₂ mit 3 Schichtpaketen HalLnLnHal pro Translationsperiode angeordnet. Allerdings besetzen die Te-Atome alle Oktaederlücken in der Metallatompackung.

Im Gegensatz zu den antiferromagnetischen Phasen GdIH_x (0.71 $\leq x \leq$ 0.86), bei denen die Tetraederlücken der Metallatomdoppelschichten von Wasserstoffatomen besetzt sind, führt die Besetzung der Oktaederlücken in $\text{Gd}_2\text{I}_2\text{Te}$ zu ferrimagnetischer Ordnung mit $T_c \approx 160$ K. Die Verbindung La₂I₂Te zeigt *Pauli*-Paramagnetismus ($\chi_P = 135(5) \cdot 10^{-6}$ cm³/mol).

Bei Raumtemperatur zeigen beide Substanzen metallisches Verhalten. Mit sinkender Temperatur ist im Leitfähigkeitsverhalten von La₂I₂Te eine Anomalie bei 120 K erkennbar. Für Gd₂I₂Te tritt ein Widerstandsanstieg im magnetisch geordneten Zustand ein.

Bei den Versuchen zur Darstellung von Interkalationsverbindungen Na_xLaI₂ durch Erhitzen von LaI₂ in Na-Schmelzen wurde eine neue Synthesemethode für das Lanthanmonoiodid LaI gefunden. Der wesentliche Aspekt dieser Synthesemethode ist neben der Erniedrigung der Reaktionstemperatur die Verkürzung der Reaktionszeit bei befriedigender Ausbeute von LaI. Die Messungen des elektrischen Widerstandes an Pulverproben zeigen, dass die Verbindung metallisch ist. Aus der *Pauli*-Suszeptibilität wurde in der freien Elektrongas-Näherung die Zustandsdichte bei der Fermienergie $N(E_{\rm F}) \approx 0.3 \text{ eV}^{-1} \cdot \text{F.E.}^{-1}$ berechnet.

10 Summary

Electrical and magnetic properties of the rare earth metal-rich halides

General Aspects

The chemistry of the rare earth elements has been restricted for a long time to ionic trivalent lanthanide compounds with the exception of some divalent (Eu^{2+} , Yb^{2+}) and tetravalent (Ce^{4+}) compounds, whose existence has been associated with the special stability of $4f^0$, $4f^7$ and $4f^{14}$ electronic configurations. However, during the past few decades there has been a great progress in the preparation of metal-rich halides of the rare earth metals with a halogen-to-metal ratio Hal/Ln < 3. Compared with normal valence ionic compounds, the metal-rich lanthanide halides have extra electrons, which are not localized in the 4f orbitals and involved in metal-metal bonding. Coexistence of well localized magnetic moments and itinerant electrons make these compounds attractive objects to possess interesting physical properties such as colossal negative magnetoresistance (CMR) associated with a field-induced decrease of the electrical resistivity.

Layered reduced iodides LnI_2 and related ternary compounds $LnIH_x$ are of particular interest. GdI₂ was found to be a colossal magnetoresistive material at room temperature (MR $\approx 60\%^*$). The results of band structure calculations suggested that an even more dramatic CMR effect might be achieved via *hole doping* of GdI₂, while in the case of LaI₂ it could result in superconductivity. The hydride halides GdBr(I)H_x also show a colossal change in the lowtemperature resistivity by applying a strong magnetic field, when *x* approaches its lower limit of about 0.67.

The purpose of this work was hence the preparation of single phase compounds LnI_nZ_x ($n \le 2$, $0 \le x \le 1$, Ln = Y, La and Gd, Z = H, Te) with a variable valence electron concentration and the study of their physical properties. From a chemist's view, hole doping can be achieved by substitution of Ln^{3+} by Ba^{2+} or by substitution of Γ by Te^{2-} , as well as by localization of conduction electrons via hydrogen insertion into the structure.

^{*} The magnetoresistance ratio (MR) is defined as $\Delta \rho / \rho_0 = \{ [(\rho(H,T) - \rho(0,T)] / \rho(0,T) \} 100 \%$

Hydride Halides LnI_2H_x (Ln = La, Gd)

Heating of LaI₂ under 1 bar hydrogen pressure to 650°C leads to light gray LaI₂H_{0.95(3)}, accompanied by a structural rearrangement from square planar nets of La, I atoms to trigonal layers. Sharp reflections in the XRD pattern can be indexed in $P6_3/mmc$ with a = 4.2158(7) Å and c = 15.508(3) Å, however, diffuse reflections indicate the presence of stacking faults in the structure, which correspond to a polytypic intergrowth of MoS₂- and NbS₂-type structural fragments. Increasing the reaction temperature to 730°C results in a better defined diffraction pattern with the peak positions close to those of the 2H-NbS₂ structure type. Detailed studies of the pattern profile revealed a statistical intergrowth of 70% MoS₂- and 30% NbS₂-type structural fragments for the sample prepared at 650°C, whereas samples prepared at 730-800°C are composed of 10% MoS₂- and 90% NbS₂-type stacking.

An X-ray powder study of the samples LaI_2H_x proved a miscibility gap between LaI_2 and LaI_2H_x ($0.5 \le x \le 1$) in good agreement with previous results. With decreasing H-content of the homogeneous phase the lattice parameters change in opposite direction, *a* increasing to 4.236(1) Å and *c* decreasing to 15.39(2) Å for the lower limit.

In contrast to the lanthanum phases, the homologous hydride halides GdI_2H_x can be prepared in the whole H-range, $0 \le x \le 1$. These phases crystallize with the 2H-MoS₂-type structure of the heavy atoms. The hydrogen variation is accompanied by a monotonic change in the lattice parameters, *a* decreases from 4.074(1) to 4.023(1) Å and *c* increases from 15.050(5) to 15.394(5) Å for x = 0 to 0.97. However, the molar volume as a function of the H-content passes through a maximum at $x \approx 0.35$, suggesting an ordering of the hydrogen atoms for x =1/3.

Magnetization and resistivity measurements indicate a substantial change of the physical properties in GdI₂H_x as a function of the hydrogen content, particularly as *x* approaches a critical value of 1/3. GdI₂ orders *ferromagnetically* at $T_{\rm C} = 278 \pm 5$ K. With increasing *x* the Curie temperature is rapidly decreased, while the magnetic transition becomes indistinct. In addition, the magnetization curves as well as measurements of the magnetic ac-susceptibility indicate the coexistence of *ferromagnetic* and *antiferromagnetic* exchange interactions. This leads to a frustrated spin configuration, so that the long-range magnetic ordering disappears for x > 0.34. The phases GdI₂H_x ($0.42 \le x \le 0.69$) exhibit *spincluster-glass* behavior below the

magnetic freezing temperature $T_f = 24$ K and 3K, respectively for x = 0.42 and 0.69. For the samples with higher hydrogen content no magnetic anomalies have been observed above 2 K.

The hydride halides GdI_2H_x (x > 0.19) show thermally activated conduction with increasing electrical resistivity upon cooling. For the ferromagnetic compounds, the resistivity increase is also accompanied by a change of the activation energy at the magnetic transition. In a strong magnetic field (*H*) the resistivity drastically decreases below T_C resulting in an enormous negative magnetoresistance (MR) as large as 90(50) % for x = 0.24 at 170(300) K and H = 70 kOe. The gadolinium hydride halides GdI_2H_x (x < 0.33) could thus be compared with the best known CMR materials.

Hydride Halides $LnIH_x$ (Ln = Y, Gd)

The graphite-like yttrium hydride halides, YIH_x ($0.8 \le x \le 1.0$), have been prepared in quantitative yields by heating either YI₃/YH₂ (1:2) or stoichiometric YI₃/YH₂/Y mixtures in sealed Ta ampoules at 900°C. A lower limit of the homogeneity range, $x \approx 2/3$, has been determined from dehydrogenation experiments. All YIH_x phases adopt the ZrBr-type heavy-atom structure. The hydrogen variation is accompanied by a change in the *c* lattice constant from 31.162(3) to 31.033(1) Å for x = 0.61(3) to 1.02(3). It is striking that the GdIH_x phases synthesized under similar conditions crystallize in two polymophs, depending on the composition of the starting mixtures. Samples obtained from GdI₃/GdH₂/Gd reagents have the ZrBr-type structure, while those obtained from GdI₃/GdH₂ (1:2) adopt the "2s"-type structure.

The YIH_x phases reversibly react with hydrogen at 400-600°C to form the light green salt-like compound YIH₂. However, increasing the reaction temperature above 700°C causes decomposition to an unidentified phase being in equilibrium with YH₂ and YI₃. The structure of YIH₂ (space group $P\bar{3}m1$; a = 3.8579(3) Å, c = 10.997(1) Å) has the same heavy atom arrangement as in related TbBrD₂, as was found by x-ray powder diffraction data refinement with the Rietveld method. It consists of close-packed bilayers of metal atoms enclosed within two close-packed halide sheets. However, in contrast to all so far known LnHalH₂ phases, the translation period of YIH₂ corresponds to one slab I-Y-Y-I with the centrosymmetric stacking sequence AbaB (1T form), which is the characteristic sequence for ZrHalH (Hal = Cl, Br). The same stacking sequence (1T form) has also been found for GdIH₂.

Nonmagnetic samples YIH_x ($x \le 1.0$) show metallic conductivity at room temperature, which changes into semiconducting behavior with decreasing temperature as x approaches its lower value $\approx 2/3$. The reduction of the hydrogen content results in a decrease of the charge carrier concentration as evidenced by (a) an appreciable increase of the electrical resistivity; (b) a shift of the minimum in $\rho(T)$ towards higher temperatures, from ca. 35 K for x = 1.02 to about 110 K for x = 0.61; (c) a decrease of the Pauli susceptibilities from 66 cm³/mol for x = 0.79 to 46 cm³/mol for x = 0.61.

The presence of magnetic Gd ions leads to significant changes in the electrical transport properties and anomalous magnetic behavior. By reducing the hydrogen content in GdIH_x $(0.69 \le x \le 0.86)$ a metal-insulator(MI) transition occurs at the critical concentration $x \approx 0.80$. For the semiconducting samples (x < 0.80), a colossal negative magnetoresistance as large as 3 orders of magnitude (MR > 99 %) has been observed for $x \approx 0.7$ at 2 K and H = 70 kOe. On the other hand, the metallic GdIH_{0.86} phase exhibits a complex magnetoresistance which is positive around the Néel temperature and becomes negative at temperatures well below $T_{\rm N}$.

The magnetic studies have revealed the presence of competing *antiferromagnetic* and *ferromagnetic* interactions in GdIH_x with predominance of the latter at low temperatures when x approaches its lower limit. These yield unusual antiferromagnetic ordering below T_N , varying from 50 K for x = 0.86 to 30 K for x = 0.71. The sample GdID_{0.69} shows, in contrast to the other hydride iodides, a spontaneous magnetization below 30 K. Besides cooperative magnetic effects, a spincluster-glass behavior for the GdIH_x compounds on the localized electronic side of the MI transition ($x \le 0.78$) has been observed at low temperatures.

The metal-insulator transition in $GdIH_x$ is mainly attributed to strong interaction between itinerant (Gd 5d) electrons and localized (Gd 4f) spins. The negative magnetoresistance and magnetic correlations in the layered hydride halides $GdIH_x$ can be described in terms of a mobility edge concept and formation of bound magnetic polarons, clusters of ferromagnetically coupled Gd spins around the trapped electron in an antiferromagnetic host.

Substitution Reactions towards $La_{1-x}Ba_xI_2$ or $La(I_{1-x}Te_x)_2$

Attempts to substitute La by Ba as well as I by Te via solid state reactions of LaI₂ with BaI₂ or with LaTe₂ have resulted in no mixed La_{1-x}Ba_xI₂ or La(I_{1-x}Te_x)₂ phases, respectively. Heating

of $xBaI_2/(1-x)LaI_2$ mixtures (x = 0.1, 0.2) at 800-835°C gave LaBaI₄ and LaI₂. The reactions between LaI₂ and LaTe₂ at 820°C are accompanied by redox processes with the formation of La₂I₂Te/La₂I₅ (x = 0.1), LaI₃/LaTe (x = 0.2) or LaI₃/La₂Te₃ (x = 0.5).

In further experiments, the new ternary compounds Ln_2I_2Te (Ln = La, Gd) have been synthesized by heating stoichiometric LnI₃/Ln/Te mixtures at 825°C. Both compounds crystallize with the 3R-Lu₂Cl₂C-type structure. For La₂I₂Te, the arrangement of atoms has been refined with the Rietveld method from X-ray powder data (space group: $R\bar{3}m$; a =4.5096(2) Å, c = 32.526(2) Å). As in LnIH₂, close-packed bilayers of the metal atoms are sandwiched between layers of the iodide atoms to form three I-Ln-Ln-I slabs in the hexagonal unit cell. The tellurium atoms occupy all octahedral voids in the metal atom bilayers.

In contrast to the antiferromagnetic phases GdIH_x (0.71 $\leq x \leq 0.86$) in which tetrahedral voids in the metal atom substructure are occupied by H atoms, the occupation of octahedral voids in $\text{Gd}_2\text{I}_2\text{Te}$ leads to a *ferrimagnetic* transition at $T_c \approx 160$ K. Polycrystalline samples of La₂I₂Te show a weak paramagnetic behavior which is attributed to a small contamination of samples with a paramagnetic impurity. After corrections for the magnetic impurities the *Pauli* paramagnetism for La₂I₂Te, $\chi_{\text{Pauli}} = 135(5) \cdot 10^{-6}$ cm³/mol, has been determined.

 La_2I_2Te und Gd_2I_2Te are metallic at room temperature. With decreasing temperature, the electrical resistivity of La_2I_2Te passes over a characteristic maximum at 120 K, while in Gd_2I_2Te it rapidly increases upon cooling the sample below the magnetic transition temperature.

During attempts to intercalate LaI₂ with Na by heating the lanthanum diiodide in Na-melt a new synthetic route for the lanthanum monoiodide LaI has been found. The main advantage of this method with respect to a synproportionation reaction of LaI₃ with La consists in a decrease of the reaction temperature as well as in a considerable reduction of the reaction time, whereas LaI can be obtained in good yields. Measurements of the electrical resistivity on polycrystalline samples revealed metallic behavior for LaI in the range 10-300 K. Upon cooling, a small maximum in the resistivity has been observed at 67 K. This anomaly disappeared upon heating a sample, however yielding a hysteresis in $\rho(T)$ above 70 K. From the *Pauli* susceptibility an electron density of states at the Fermi level of about 0.3 eV⁻¹·f.u.⁻¹ has been evaluated.

Literatur

- [1] J.E. Mee, J.D. Corbett, *Inorg. Chem.* **4** (1965), 88.
- [2] J.D. Corbett, R.A. Sallach, D.A. Lokken, Adv. Chem. Ser. 71 (1967), 56.
- [3] A. Simon, N. Holzer, Hj. Mattausch, Z. Anorg. Allg. Chem. 456 (1979), 207.
- [4] A. Simon, Hj. Mattausch, G.J. Miller, W. Bauhofer, R.K. Kremer, in: *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 15, ed. K.A. Gschneidner Jr., L. Eyring, North-Holland Publisher, Amsterdam-London-New York-Tokyo 1991, p. 191.
- [5] J.D. Corbett, J. Chem. Soc. Dalton Trans. (1996), 575.
- [6] G. Meyer, *Chem. Rev.* **88** (1988), 93.
- [7] J.D. Martin, J.D. Corbett, Angew. Chem. 107 (1995), 234.
- [8] A. Simon, Hj. Mattausch, R. Eger, R.K. Kremer, *Angew. Chem.* **103** (1991), 1209.
- [9] A. Simon, A. Yoshiasa, M. Bäcker, R.W. Henn, C. Felser, R.K. Kremer, Hj. Mattausch, Z. Anorg. Allg. Chem. 622 (1996), 123.
- [10] R.W. Henn, W. Schnelle, R.K. Kremer, A. Simon, *Phys. Rev. Lett.* 77 (1996), 374.
- [11] C. Felser, K. Ahn, R.K. Kremer, R. Sheshadri, A. Simon, J. Solid State Chem. 147 (1999), 19.
- [12] K. Ahn, C. Felser, R. Sheshadri, R.K. Kremer, A. Simon, J. Alloys Comp. 303-304 (2000), 252
- [13] W. Bauhofer, W. Joss, R.K. Kremer, Hj. Mattausch, A. Simon, *J. Magn. Magn. Mater.* 104-107 (1992), 1243.
- [14] A. Simon, Angew. Chem. 109 (1997), 1872.
- [15] O.K. Andersen, O. Jepsen, A.I. Liechtenstein, I.I. Mazin, *Phys. Rev. B* **49** (1994), 4145.
- [16] L.N. Bulaevskii, Sov. Phys. Usp. Engl. Transl. 18 (1976), 574.
- [17] C. Felser, R. Sheshadri, A. Leist, W. Tremel, J. Mater. Chem. 8 (1998), 787
- [18] L. van Hove, *Phys. Rev.* **89** (1953), 1189.
- [19] J.H. Burrow, C.H. Maule, P. Strange, J.N. Tothill, J.A. Wilson, J. Phys. C: Solid State Phys. 20 (1987), 4115.
- [20] O. Jepsen, O.K. Andersen, Z. Phys. B 97 (1995), 35.

- [21] H. Imoto, J.D. Corbett, *Inorg. Chem.* **20** (1981), 630.
- [22] A. Simon, Hj. Mattausch, R. Eger, Z. Anorg. Allg. Chem. 550 (1987), 50.
- [23] C. Michaelis, Hj. Mattausch, A. Simon, Z. Anorg. Allg. Chem. 610 (1992), 23.
- [24] H.L. Krauss, H. Stach, Z. Anorg. Allg. Chem. 366 (1969), 34.
- [25] Hj. Mattausch, W. Schramm, R. Eger, A. Simon, Z. Anorg. Allg. Chem. 530 (1985),
 43.
- [26] H.E. Flotow, D.W. Osborne, K. Otto, J. Chem. Phys. 36 (1962), 866.
- [27] M.D. Taylor, C.P. Carter, J. Inorg. Nucl. Chem. 24 (1962), 387.
- [28] J. Kutscher, A. Schneider, Inorg. Nucl. Chem. Lett. 7 (1971), 815.
- [29] G. Brauer [Hrsg.], *"Handbuch der Präparativen Anorganischen Chemie"*, Ferdinand Enke Verlag, Stuttgart, 3. Aufl. 1981.
- [30] A.A. Yarovoi, G.E. Revzin, L.M. Petrova, Neorg. Mat. (Russ.) 7 (1971), 437.
- [31] C. Michaelis, *Dissertation*, Universität Stuttgart 1991.
- [32] R. Eger, Hj. Mattausch, A. Simon, Z. Naturforsch. B 48 (1993), 48.
- [33] E. Scholz, "Karl Fischer Titration", Springer Verlag, Berlin 1958.
- [34] B.N. Dutta, *Phys. Status Solidi* **2** (1962), 984. (Si : PDF Nr. 27-1402).
- [35] WinXPOW Software, Stoe & Cie. GmbH, Darmstadt 1998.
- [36] M.M.J. Treacy, J.M. Newsam, M.W. Deem, Proc. R. Soc. Lond. A 433 (1991), 499.
- [37] A. Simon, J. Appl. Crystallogr. 4 (1971), 138.
- [38] M.J. Buerger, "*The precession method in X-ray crystallography*", John Wiley and Sons, New York, 1. Aufl. 1964.
- [39] H.M. Rietveld, J. Appl. Crystallogr. 2 (1969), 65.
- [40] J. Rodriguez-Carvajal, FullProf 2000, Program for the structure refinement with Rietveld analysis, LLB CEA-CNRS 2001.
- [41] R.A. Young, "The Rietveld Method", Oxford University Press, New York 1995.
- [42] W.A. Dollase, J. Appl. Crystallogr. 19 (1986), 267.
- [43] P.O. Jeitschko, A. Simon, R. Ramlau, Hj. Mattausch, Eur. Microsc. Anal. 2 (1997), 21
- [44] P.A. Stadelman, *Ultramicroscopy* **21** (1987), 131

- [45] K. Honda, Ann. Phys. **32** (1910), 1027.
- [46] M. Owen, Ann. Phys. **37** (1910), 657.
- [47] N.W. Ashcroft, N.D. Mermin, "Solid State Physics", Saunders College Publishing, Philadelphia 1976, 663.
- [48] P.W. Selwood, "Magnetochemistry", Interscience, New York, 2. Aufl. 1956.
- [49] R.L. Carlin, "Magnetochemistry", Springer Verlag, Berlin Heidelberg 1986.
- [50] L.J. van der Pauw, *Philips Res. Rep.* **13** (1958), 1.
- [51] F. Kohlrausch, "*Praktische Physik 2*", B.G. Teubner Verlag, Stuttgart, 22 Aufl. 1968, 304.
- [52] J.D. Corbett, L.F. Druding, W.J. Burkhard, C.B. Lindahl, *Discuss. Farad. Soc.* **32** (1962), 79.
- [53] E. Warkentin, H. Bärnighausen, *Proc. 3rd European Crystallographic Meeting*, Zürich 1976, 354.
- [54] K. Stöwe, S. Tratzky, H.P. Beck, A. Jungmann, R. Claessen, R. Zimmermann, G. Meng, P. Steiner, S. Hüfner, J. Alloys Comp. 246 (1997), 101.
- [55] C. Michaelis, Hj. Mattausch, H. Borrmann, A. Simon, J.K. Cockcroft, Z. Anorg. Allg. Chem. 607 (1992), 29.
- [56] E. Warkentin, H. Bärnighausen, Z. Anorg. Allg. Chem. 459 (1979), 187.
- [57] M. Bäcker, *Dissertation*, Universität Stuttgart 1997.
- [58] N. Gerlitzki, G. Meyer, Z. Anorg. Allg. Chem. 628 (2002), 915.
- [59] W. Buckel, "*Supraleitung, Grundlagen und Anwendungen*", VCH Verlagsgesellschaft, Weinheim 1994.
- [60] K. Stöwe, J. Solid State Chem. 149 (2000), 155.
- [61] E.I. Yarembash, E.S. Vigileva, A.A. Eliseev, *Neorg. Mater. (Russ.)* 1 (1965), 149.
- [62] W. Bronger, in: *Crystallography and Crystal Chemistry of Materials with Layered Structures*, ed. F. Lévy, D. Reidel Publishing Company, Dordrecht 1976.
- [63] J. Mahy, G.A. Wiegers, F. Vanbolhuis, A. Diedering, R.J. Haange, *Phys. stat. sol.* (a) 107 (1988), 873.
- [64] M.A. Ruderman, C. Kittel, *Phys. Rev.* **96** (1954), 99.
- [65] T. Kasuya, *Prog. Theor. Phys.* **16** (1956), 45.
- [66] K. Yoshida, *Phys. Rev.* **106** (1957), 893.

- [67] H. Lueken, "Magnetochemie", B.G. Teubner Verlag, Stuttgart, Leipzig 1999.
- [68] V. Canella, J.A. Mydosh, *Phys. Rev. B* 6 (1972), 4220.
- [69] C.A.M. Mulder, A.J. van Duyneveldt, J.A. Mydosh, *Phys. Rev. B* 23 (1981), 1384.
- [70] J. Ferré, J. Rajchenbach, H. Maletta, J. Appl. Phys. 52 (1981), 1697.
- [71] J.A. Mydosh, "Spin Glasses: An Experimental Introduction", Taylor and Francis, London 1993.
- [72] E. Warkentin, *Dissertation*, Universität Karlsruhe 1977.
- [73] E. Gladrow, *Diplomarbeit*, Universität Karlsruhe 1977.
- [74] C. Michaelis, W. Bauhofer, H. Buchkremer-Hermanns, R.K. Kremer, A. Simon, G.J. Miller, Z. Anorg. Allg. Chem. 618 (1992), 98.
- [75] J.A. Wilson, F.J. Di Salvo, S. Mahajan, Adv. Phys. 24 (1975), 117.
- [76] H. Bärnighausen, private Mitteilung.
- [77] S. Putilin, E. Antipov, ICDD Grant in Aid, 1995 (GdIO: PDF Datenbank, N 47-1671).
- [78] A. Kasten, P.H. Mueller, M. Schienle, *Solid State Commun.* 51 (1985), 919.
- [79] I. Eremin, P. Thalmeier, P. Fulde, R.K. Kremer, K. Ahn, A. Simon, *Phys. Rev. B* 64 (2001), 064425
- [80] H.E. Stanlay, "Introduction to phase transitions and critical phenomena", Oxford University Press, New York, Oxford 1987.
- [81] B. Widom, J. Chem. Phys. 43 (1965), 3892.
- [82] V.L. Ginzburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20 (1950), 1064.
- [83] J.C. Le Guillou, J. Zinn-Justin, *Phys. Rev. Lett.* **39** (1977), 95.
- [84] R. Reisser, R.K. Kremer, A. Simon, *Phys. Rev. B* 52 (1995), 3546.
- [85] A. Arrott, J.E. Noakes, *Phys. Rev. Lett.* **19** (1967), 786.
- [86] L.J. de Jongh, A.R. Miedema, *Adv. Phys.* 23 (1974), 1.
- [87] T. Kasuya, Prog. Theor. Phys. 22 (1959), 227.
- [88] K.A. McEwen, in: *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 1, ed.
 K.A. Gschneidner Jr., North-Holland Publisher, Amsterdam, London, New York 1978,
 S. 411.
- [89] K. McEwen, G.D. Webber, L.W. Roeland, *Physica B* 86-88 (1977), 531.

- [90] E.M. Levin, V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. B 62 (2000), R14625.
- [91] E.M. Levin, V.K. Pecharsky, K.A. Gschneidner Jr., J. Appl. Phys. 90 (2001), 6255.
- [92] M.F. Hundley, M. Hawley, R.H. Heffner, Q.X. Jia, J.J. Neumeier, J. Tesmer, J.D. Thompson, X.D. Wu, *Appl. Phys. Lett.* **67** (1995), 860.
- [93] K. Li, L. Liu, J. Sun, X.J. Xu, J. Fang, X.W. Cao, J.S. Zhu, Y.H. Zhang, J. Phys. D: Appl. Phys. 39 (1996), 14.
- [94] Y. Tian, T. Hughbanks, *Inorg. Chem.* **32** (1993), 400.
- [95] D. Stauffer, A. Aharony, "Introduction to Percolation Theory", Taylor and Francis, London 1992.
- [96] J.B. Goodenough, *Phys. Rev.* **100** (1955), 654.
- [97] J. Kanamori, J. Phys. Chem. Solids 10 (1959), 87.
- [98] A.P. Ramirez, Annu. Rev. Mater. Sci. 24 (1994), 453.
- [99] G. Czjzek, V. Oestereich, H. Schmidt, D. Weschenfelder, *unveröffentlichte Ergebnisse*, zitiert in [78].
- [100] G. Meyer, S.-J. Hwu, S. Wijeyesekera, J.D. Corbett, *Inorg. Chem.* 25 (1986), 4811.
- [101] Hj. Mattausch, R. Eger, J.D. Corbett, A. Simon, Z. Anorg. Allg. Chem. 616 (1992), 157.
- [102] F. Ueno, K. Ziebeck, Hj. Mattausch, A. Simon, Rev. Chim. Miner. 21 (1984), 804.
- [103] Hj. Mattausch, A. Simon, K. Ziebeck, J. Less-Common Met. 113 (1985), 149.
- [104] C. Michaelis, *Diplomarbeit*, Universität Stuttgart 1986.
- [105] R. Müller-Käfer, *Dissertation*, Universität Stuttgart 1988.
- [106] Th. Schleid, G. Meyer, Z. Anorg. Allg. Chem. 552 (1987), 90.
- [107] J.K. Cockcroft, W. Bauhofer, Hj. Mattausch, A. Simon, J. Less-Common Met. 152 (1989), 227.
- [108] A.S. Izmailovich, S.I. Troyanov, V.I. Tsirelnikov, Russ. J. Inorg. Chem. 19 (1974), 1597.
- [109] D.G. Adolphson, J.D. Corbett, Inorg. Chem. 15 (1976), 1820.
- [110] R.L. Daake, J.D. Corbett, Inorg. Chem. 16 (1977), 2029.
- [111] O. Beckmann, H. Boller, H. Nowotny, *Monatsh. Chem.* **101** (1970), 945.

- [112] R.K. Kremer, W. Bauhofer, Hj. Mattausch, W. Brill, A. Simon, *Solid State Commun.* 73 (1990), 281.
- [113] R.D. Shannon, Acta Crystallogr. A 32 (1976), 751.
- [114] H. Krebs, "Grundzüge der Anorganischen Kristallchemie", F. Enke Verlag, Stuttgart 1968.
- [115] H.S. Marek, J.D. Corbett, R.L. Daake, J. Less-Common Met. 89 (1983), 243.
- [116] U. Schwanitz-Schüller, A. Simon, Z. Naturforsch. B 40 (1985), 710.
- [117] S.-J. Hwu, R.P. Ziebarth, J.V. Winbush, J.E. Ford, J.D. Corbett, *Inorg. Chem.* 25 (1986), 283.
- [118] J.-S. Zhou, W.J. Zhu, J.B. Goodenough, Phys. Rev. B 64 (2001), 140101.
- [119] J.-S. Zhou, J.B. Goodenough, B. Dabrowski, P.W. Klamut, Z. Bukowski, *Phys. Rev. B* 61 (2000), 4401.
- [120] F. Rivadulla, J.-S. Zhou, J.B. Goodenough, Phys. Rev. B 67 (2003), 165110.
- [121] M. Imada, A. Fujimori, Y. Tokura, *Rev. Mod. Phys.* 70 (1998), 1039.
- [122] G.G. Libowitz, J.G. Pack, J. Phys. Chem. 73 (1969), 2352.
- [123] D. Bertrand, A.R. Fert, M.C. Schmidt, F. Bensamka, S. Lagrand, J. Phys. C 15 (1982), L883.
- [124] H. Yoshizawa, S. Mitsuda, H. Aruga, A. Ito, Phys. Rev. Lett. 59 (1987), 2364.
- [125] Hj. Mattausch, R.K. Kremer, A. Simon, unveröffentlicht.
- [126] H. Yamada, S. Takada, J. Phys. Soc. Jpn. 34 (1973), 51.
- [127] O.K. Andersen, Phys. Rev. B 12 (1975), 3060.
- [128] O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53 (1984), 2571.
- [129] O.K. Andersen, O. Jepsen, D.Glötzel, in: *Highlights of Condensed-Matter Theory*, eds.F. Bassami, F. Fumi and M.P. Tosi, North-Holland, New York 1985.
- [130] M.-H. Whangbo, R. Hoffmann, R.B. Woodward, *Proc. R. Soc. Lond. A* **366** (1979), 23.
- [131] M. Cutler, N.F. Mott, *Phys. Rev.* 181 (1969), 1336.
- [132] N.F. Mott, "Metal-Insulator Transitions", Taylor and Francis, London 1974.
- [133] P.G. de Gennes, J. Friedel, J. Phys. Chem. Solids 4 (1958), 71.

- [134] C. Haas, *Phys. Rev.* **168** (1968), 531.
- [135] C.N.R. Rao, A.K. Raychaudhuri, in: Colossal magnetoresistance, Charge ordering and related properties of Manganese Oxides, eds. C.N.R. Rao, B. Raveau, World Scientific, Singapore 1998.
- [136] T. Kasuya, Solid State Commun. 8 (1970), 1635.
- [137] E.L. Nagaev, J. Magn. Magn. Mater. 110 (1992), 39.
- [138] R.R. Arons, J. Schweizer, J. Appl. Phys. 53 (1982), 2645.
- [139] G.V. Khoroshenkov, T.V. Petrovskaya, I.L. Fedushkin, M.N. Bochkarev, Z. Anorg. Allg. Chem. 628 (2002), 699.
- [140] J.D. Corbett, D.L. Pollard, J.E. Mee, *Inorg. Chem.* 5 (1966), 761.
- [141] Hj. Mattausch, Ch. Cheng, M. Ryazanov, A. Simon, Z. Anorg. Allg. Chem., im Druck.
- [142] A. Aldebert, J.P. Traverse, *Mater. Res. Bull.* 14 (1979), 303.
- [143] V.V. Gorbachev, V.A. Linskii, S.P. Ionov, O.A. Sadovskaya, A.Y. Aleksandrov, Neorg. Mater. (Russ.) 13 (1977), 188.
- [144] J.A. Wilson, F.J. Di Salvo, S. Mahajan, Adv. Phys. 24 (1975), 117.
- [145] C. Schlenker, J. Dumas, Escribe-Filippini, H. Guyot, in: Low dimensional properties of molybdenum bronzes and oxides, ed. C. Schlenker, Kluwer Acad. Publishers, Dordrecht, New York 1989, S. 15.
- [146] E. Wang, M. Greenblatt, I.E.I. Rachidi, M.-H. Whangbo, *Phys. Rev. B* **39** (1989), 12969.
- [147] C. Schlenker, in: *Physics and Chemistry of Low-Dimensional Inorganic Conductors*, eds. C. Schlenker, J. Dumas, M. Greenblatt and S. van Smaalen, NATO ASI Series, Plenum Press, New York, London 1996, S. 115.
- [148] A.W. Overhauser, Phys. Rev. 128 (1962), 1437.
- [149] J.A. Mydosh, J. Appl. Phys. 63 (1988), 5415.
- [150] W. Klemm, H. Bommer, Z. Anorg. Allg. Chem. 231 (1937), 138
- [151] G. Meyer, Th. Schleid, *Inorg. Chem.* **26** (1987), 217.
- [152] U. Beck, Dissertation, Universität Stuttgart 1995.
- [153] J. Kutscher, A. Schneider, Z. Anorg. Allg. Chem. 386 (1971), 38.

A. Kristallografischer Anhang

Abb. A(6.6.2) 1Guinier-Aufnahmen von GdI2H0.28 (C4), gemessen bei verschiedenen
Temperaturen (Standard: Si).

Abb. A(6.6.2) 2 Δ T-Guinier-Aufnahmen von GdI2H0.56 (C9).
(Aufheizrate: 3 K/h, Abkühlrate: -2 K/h)

Abb. A(6.6.2) 3 Δ T-Guinier-Aufnahmen von GdI2H0.97 (B7). (Aufheizrate: 3 K/h,
Abkühlrate: -2 K/h). In der oben gezeigten Aufnahme tritt kurzzeitig
das Diagramm von durch Verwirbelung entstandenem Eis auf.

Abb. A(7.2.3) 4Ergebnis der Rietveld-Verfeinerung von YIH_{0.61}. Bragg-Reflexe für
YIH_{0.61} (ZrBr-Typ) sowie für Si als Referenz sind mit den senkrechten
Strichen markiert.

Formel (Fremdphase) :	YIH _{0.61} (Si)	YIH _{1.02} (Si)	YIH _{2.0} (YH ₂)
Raumgruppe :	$R\overline{3}m$	$R\overline{3}m$	$P\overline{3}m1$
Gitterparameter (Å) :	a = 3.9326(3),	a = 3.9349(3),	a = 3.8579(3),
	c = 31.162(3)	c = 31.029(3)	c = 10.997(1)
Volumen (Å ³), Formeleinheiten :	417.36(5), 6	416.23(6), 6	141.74(4), 2
Berechnete Dichte (g/cm ³) :	5.20	5.22	5.10
Wellenlänge (Å) :	ΜοΚ _α , 0.7093	ΜοΚ _α , 0.7093	ΜοΚ _α , 0.7093
Detektor :	PSD	PSD	PSD
Meßbereich (°2 θ) :	2-65	2-56.3	2-65
Schrittweite (°20) :	0.01	0.01	0.01
Meßgeschwindigkeit pro Schritt (s):	100	100	200
Datenpunkte (N) :	6300	5430	6300
Anzahl der Reflexe :	236	167	246
Anzahl der Parameter (P) :	15	18	20
Profilfunktion :	Pseudo-Voigt	Pseudo-Voigt	Pseudo-Voigt
Mischungsparameter :	1.12(5)	0.93(2)	1.06(1)
Halbwertsparameter (u, v, w) :	0.3(1),	0.22(4),	0.078(4),
	-0.18(6),	-0.12(2),	-0.05(2),
	0.039(6)	0.024(2)	0.031(2)
Asymmetrie-Parameter :	0.084(7)	0.104(4)	0.044(3)
Bevorzugte Orientierung :	1.05(1)	1.062(6)	1.055(5)
<i>R</i> _p :	0.0257	0.0421	0.0201
$R_{ m wp}$:	0.0346	0.0535	0.0321
R_{\exp} :	0.0246	0.0513	0.0162
<i>R</i> _B :	0.132	0.132	0.104
G (Güte der Anpassung) :	1.41	1.04	1.97

Tabelle A(7.2.3) 1Daten zur Rietveld-Verfeinerung für YIH_x

Der in den Tabellen angegebene äquivalente isotrope Auslenkungsparameter B_{iso} ist definiert als ein Drittel der Spur des orthogonalisierten B_{ij} -Tensors. B_{iso} bezieht sich auf einen Temperaturfaktor der Form $T = \exp\left(-B_{iso} \frac{\sin^2 \theta}{\lambda^2}\right)$.

Tabelle A(7.2.3) 2Atomkoordinaten und äquivalente isotropeAuslenkungsparameter $[Å^2]$ in YIH_{0.61}

Atom	x/a	y/b	z/c	$B_{\rm iso}$
Y	0	0	0.2119(3)	1.36 ^a
Ι	0	0	0.3903(2)	1.75 ^a
3 0				

^a fixiert

Tabelle A(7.2.3) 3Atomkoordinaten und äquivalente isotropeAuslenkungsparameter $[Å^2]$ in YIH1.02

Atom	x/a	y/b	z/c	$B_{\rm iso}$
Y	0	0	0.2095(2)	1.4(1)
Ι	0	0	0.3900(1)	1.22(8)

Tabelle A(7.2.3) 4Atomkoordinaten und äquivalente isotropeAuslenkungsparameter $[Å^2]$ in YIH2

Atom	x/a	y/b	z/c	B _{iso}
Y	2/3	1/3	0.3572(4)	0.7(1)
Ι	1/3	2/3	0.1618(3)	1.8(1)

Abb. A(7.2.3) 5 Röntgenpulverdiagramm der unbekannten Phase Q, erhalten beim Aufheizen von YIH in Wasserstoffatmosphäre auf 1020 K (Versuch 10, siehe S. 88). Die Reflexe von YH₂ sind mit Pfeilen markiert.

Tabelle A(7.2.3) 5*d*-Werte und Intensitäten der scharfen Reflexe im
Röntgenpulverdiagramm der unbekannten Phase Q

<i>d</i> / Å	I / %	<i>d</i> / Å	I / %
7.676	30	1.9224	30
3.842	60	1.7702	20
3.441	90	1.7230	20
2.5625	30	1.3834	40
1.9925	100		

Formel (Fremdphase) :	La ₂ I ₂ Te (LaTe)
Raumgruppe :	$R\bar{3}m$
Gitterparameter (Å) :	a = 4.5096(2), c = 32.526(2)
Volumen (Å ³), Formeleinheiten :	572.84(9), 3
Berechnete Dichte (g/cm ³):	5.73
Wellenlänge (Å) :	Μο Κ _α , 0.7093
Detektor :	PSD
Meßbereich ($^{\circ}2\theta$) :	2-50
Schrittweite (°20) :	0.01
Meßgeschwindigkeit pro Schritt (s) :	100
Datenpunkte (N) :	4800
Anzahl der Reflexe :	164
Anzahl der Parameter (P) :	15
Profilfunktion :	Pseudo-Voigt
Mischungsparameter :	0.53(1)
Halbwertsparameter (u, v, w) :	0.21(2), -0.048(7), 0.0117(5)
Asymmetrie-Parameter :	0.04(1)
Bevorzugte Orientierung :	
<i>R</i> _p :	0.0424
$R_{ m wp}$:	0.0542
R_{\exp} :	0.0473
<i>R</i> _B :	0.0931
<i>G</i> (Güte der Anpassung) :	1.31

Tabelle A(8.2.2) 6Daten zur Rietveld-Verfeinerung für La2I2Te

Tabelle A(8.2.2) 7Atomkoordinaten und äquivalente isotrope
Auslenkungsparameter $[Å^2]$ in La2I2Te

Atom	x/a	y/b	z/c	B _{iso}
La	0	0	0.1120(1)	2.3(1)
Ι	0	0	0.2828(1)	2.1(1)
Te	0	0	1/2	3.0(2)

Formel	LaI
Raumgruppe :	<i>P</i> 6 ₃ / <i>mmc</i>
Gitterparameter (Å) :	a = 3.9292(1), c = 9.712(1)
Volumen (Å ³), Formeleinheiten :	129.85(2), 2
Berechnete Dichte (g/cm ³):	6.80
Wellenlänge (Å) :	Μο Κ _α , 0.7093
Detektor :	PSD
Meßbereich ($^{\circ}2\theta$) :	2-62
Schrittweite (°20) :	0.01
Meßgeschwindigkeit pro Schritt (s) :	100
Datenpunkte (N) :	6000
Anzahl der Reflexe :	102
Anzahl der Parameter (P) :	10
Profilfunktion :	Pseudo-Voigt
Mischungsparameter :	0.59(1)
Halbwertsparameter (u, v, w) :	0.04(1), -0.024(6), 0.0144(5)
Asymmetrie-Parameter :	0.057(2)
Bevorzugte Orientierung :	1.025(3)
<i>R</i> _p :	0.0848
$R_{ m wp}$:	0.1110
R _{exp} :	0.1011
<i>R</i> _B :	0.0655
G (Güte der Anpassung) :	1.20

Tabelle A(8.3.3) 8Daten zur Rietveld-Verfeinerung für LaI

Tabelle A(8.3.3) 9Atomkoordinaten und äquivalente isotrope
Auslenkungsparameter $[Å^2]$ in LaI

Atom	x/a	y/b	z/c	B _{iso}
La	0	0	0	1.03(3)
Ι	1/3	2/3	1/4	1.24(4)

Abb. A(8.2.3) 6 Δ T-Guinier-Aufnahme von La₂I₂Te (Aufheizrate: 3 K/h).

Danksagung

Meinem Doktorvater, Herrn Prof. Dr. Arndt Simon, danke ich für die interessante und vielseitige Themenstellung, und sein stetes Interesse am Fortgang der Arbeit. Besonders möchte ich mich für anregende Diskussionen und seine ständige Unterstützung bedanken.

Herrn Prof. Dr. Thomas Schleid danke ich für die Übernahme des Mitberichts.

Mein besonderer Dank gilt auch Herrn Dr. Hansjürgen Mattausch für freundschaftliche Unterstützung, viele wertvolle Ratschläge und sein Interesse an meiner Arbeit. Ihm danke ich auch für die kritische Durchsicht des Manuskripts.

Herrn Dr. Reinhard Kremer danke ich für die Unterstützung bei den physikalischen Fragestellungen.

Bei Herrn Prof. Chong Zheng (*Northern Illinois University*, USA) und Herrn Dr. Ole Jepsen möchte ich mich für die Einführung in die Rechenmethoden von Bandstrukturen und ihre Hilfe bei den Rechnungen bedanken.

Herrn Priv.-Doz. Dr. Lorenz Kienle bin ich für die Auswertung der HRTEM-Experimente und für die anschließende Diskussion dankbar.

Für die Durchführung spezieller Messungen danke ich herzlich allen beteiligten Mitarbeitern, inbesondere

- Frau Eva Brücher für die zahlreichen magnetischen Messungen am SQUID, sowie für die Messungen des Magnetwiderstandes;
- Frau Gisela Siegle möchte ich für Messungen der elektrischen Leitfähigkeit, der spezifischen Wärmekapazität und der magnetischen Suszeptibilität in *ac*-Feldern danken;
- Frau Viola Duppel für ihre Arbeit am Transmissionselektronenmikroskop;
- Frau Claudia Kamella für die EDX-Analysen;
- Herrn Roland Eger f
 ür die DTA-Messungen. Außerdem war die harmonische Laborgemeinschaft mit Frau C. Kamella und Herrn R. Eger sowie ihre stete Hilfsbereitschaft eine wichtige Voraussetzung f
 ür das Gelingen dieser Arbeit;
- Herrn Willi Röthenbach für die Aufnahme der temperaturabhängigen Guinier-Filme;
- Herrn Hartmut Gärttling und Herrn Dr. Hiroki Okudera für Messungen am Vierkreisdiffraktometer.

Schließlich möchte ich allen nicht namentlich genannten Mitarbeitern des Arbeitskreises für ihre Hilfsbereitschaft und das angenehme Arbeitsklima danken.

Der Max-Planck-Gesellschaft zur Förderung der Wissenschaften danke ich für die Gewährung eines Stipendiums.

Lebenslauf

Persönliches

Name, Vorname :	Ryazanov, Mikhail
Geboren :	30.01.1979 in Moskau, Russland
Eltern :	Nadezhda Ryazanova, geb. Yurchenko
	Wladimir Ryazanov

Ausbildung

09.1986-06.1989	Besuch der Grundschule N 12 in Moskau
09.1989-06.1992	Besuch des Gymnasiums N 67 in Moskau
09.1992-05.1996	Besuch des Gymnasiums N 2 in Moskau
06.1996	Reifeprüfung
09.1996-01.2002	Materialwissenschaftsstudium an der Lomonosow Universität, Moskau
09.2001-01.2002	Diplomarbeit bei PrivDoz. Dr. N.P. Kuzmina : "Suche nach neuen molekularen magnetischen Materialien zwischen Koordinations- verbindungen der Seltenerdelemente, Mn(II) und Cu(II) mit organischen Liganden"
seit 02.2002	Arbeit an der Dissertation im Arbeitskreis von Prof. Dr. A. Simon am
	Max-Planck Institut für Festkörperforschung, Stuttgart

Hiermit erkläre ich, dass ich diese Dissertation unter Verwendung der angegebenen Hilfsmittel selbständig angefertigt und bisher noch keinen Promotionsversuch unternommen habe.

Stuttgart, den 8.10.2004