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Symbols and Abbreviations

Abbreviations

2DES two-dimensional electron system

AC alternating current

CIDNP current-induced dynamical nuclear polarization

CF composite fermion

CW continuous wave

DC direct current

DNP dynamical nuclear polarization

DOS density of states

EFG electric field gradient

FID free induction decay

FQH fractional quantum Hall

FQHE fractional quantum Hall effect

FT Fourier transformation

GHMFL Grenoble High Magnetic Field Laboratory

HLR huge longitudinal resistance

IQHE integer quantum Hall effect

LL Landau level

LLL lowest Landau level

MBE molecular beam epitaxy

MQW multiple quantum well

NMR nuclear magnetic resonance

ODNMR optically detected nuclear magnetic resonance

OPNMR optically pumped nuclear magnetic resonance

QH quantum Hall

QHE quantum Hall effect

QHF quantum Hall ferromagnet

QW quantum well
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RDNMR resistance detected nuclear magnetic resonance

RF, rf radio frequency

SAW surface acoustic waves

SdH Shubnikov-de Haas

SET single electron transistor

SLR small longitudinal resistance

Symbols

A vector potential

A area

AHF hyperfine coupling constant

Aeff effective hyperfine coupling constant

ai abundance of the nuclear isotopei

arb. units arbitrary units

α fine structure constant

B magnetic field

Bc critical magnetic field

Be electronic magnetic field

Beff ,B∗ effective magnetic field

Bext,B0 external magnetic field

BN nuclear hyperfine magnetic field

B⊥,Bperp perpendicular magnetic field

Btot total magnetic field

Bz magnetic field inz-direction

B1(t) alternating magnetic field⊥ toBz

C capacitance

D(ε) density of states

∆ activation gap

∆CF CF cyclotron energy

∆N nuclear Zeeman energy splitting

∆EQ quadrupole energy splitting

∆E electric field gradient

E energy

E electric field

Esubband subband energy

EC Coulomb energy
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Eexch exchange energy

EF Fermi energy

EZ Zeeman energy

e electron charge

e∗ fractional electron charge

εN energy eigenvalue of the Nth LL

ε dielectric constant of GaAs

ε0 dielectric constant in vacuum

f frequency

f0 reference frequency

Φ0, φ0 magnetic flux quantum

Φ magnetic flux

φ tipping angle

g, g∗ effective Land́e g-factor (≈ −0.44 in 2DES GaAs)

g0 g-factor for a15 nmQW (≈ −0.40)

g∗CF composite fermiong-factor

ge free electrong-factor

gN nuclearg-factor

gs spin degeneracy

γN nuclear gyromagnetic ratio

H Hamiltonian

HN Hyperfine Hamiltonian

HQ Quadrupole Hamiltonian

HN Hermite polynomials

h Planck’s constant

h̄ h/2π

η Zeeman to Coulomb ratio

ηc critical η

I current

I nuclear spin operator

I+ raising nuclear spin operator

I− lowering nuclear spin operator

j, j current density

Keff effective electromechanical coupling coefficient

KS Knight shift

Ks,max maximum Knight shift

kB Boltzmann constant
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k wavevector

kx, kx wavevector components in the plane of the 2DES

kF,CF wavevector of the CF Fermi surface

kS wavevector of the SAW

L length of the Hall bar

Li inductance

`B magnetic length

`effB effective magnetic length

λ FWHM of the wavefunction

λS wavelength of the SAW

M0 total magnetization

Mx x-magnetization

My y-magnetization

Mz z-magnetization

m odd integer number

m∗
CF composite fermion effective mass

ma
CF composite fermion activation mass

mp
CF composite fermion polarization mass

me free electron mass

m∗ effective electron mass in 2DES GaAs

µ, µe mobility

µ0 permeability constant

µB Bohr magneton

µI magnetic moment of a nucleus

µN nuclear magneton

N Landau level index

N+ spin-up LL

N− spin-down LL

Ne total number of electrons

N nuclear level index

n, ne electron density

nCF CF density

nL degree of degeneracy in each LL

ν, νe electron filling factor

νCF CF filling factor

νQ quadrupole frequency

νreset reset filling factor
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P polarization

p momentum

p, b integer number

QN nuclear quadrupole moment

θ tilt-angle

RK von Klitzing’s constant

Rxx longitudinal resistance

Rxy,RH transverse or Hall resistance

ρ̂ resistivity tensor

ρs spin stiffness

ρxx longitudinal resistivity

S electron spin operator

S+ raising electron spin operator

S− lowering electron spin operator

σ̂ conductivity tensor

σxx longitudinal conductivity

T temperature

T1 spin-lattice relaxation time

T−1
1 spin-lattice relaxation rate

T2, T ∗
2 spin-spin relaxation time

τ scattering time

τp pulse duration

Vxx longitudinal voltage

Vxy Hall voltage

vD drift velocity

v0 sound velocity in GaAs

W width of the Hall bar

w QW thickness

ωc cyclotron frequency

ω∗c , ωc,CF CF cyclotron frequency

ωL Larmor frequency

ωR resonance frequency of an LC-circuit

x, y, z space coordinates

zi position of electroni denoted as a complex number





Chapter 1

Introduction

In 1922, Stern and Gerlach [1, 2] conducted an experiment which revealed the importance of

quantum mechanics more than any other previous experiment. They discovered that silver

atoms possess an intrinsic angular momentum or spin [3] which could not be explained from

classical physics. Presently, it is well established that particles exhibit a spin which is restricted

to integer or half-integer values ofh/2π, whereh is the Planck’s fundamental natural con-

stant. These particles will obey different statistics depending on whether they have half-integer

(Fermi-Dirac statistics) or integer spins (Bose-Einstein statistics). The spin degree of freedom

was essential in understanding many properties of matter by including spin-orbit and spin-spin

interactions. This knowledge has led to an ample number of applications involving spin. For ex-

ample, the progress achieved in studies of ferromagnetism and in nuclear magnetic resonance

(NMR) has been essential to advances made in electronics and medicine. In semiconductor

physics, understanding spin phenomena is of particular importance when researching funda-

mental issues in physics. Furthermore, the prospect of processing quantum information has

recently led to an increased interest in investigating spin in semiconductor devices.

In this work, we investigate fundamental spin phenomena which occur in high quality GaAs

semiconductor structures when the electrons are confined to two dimensions. In particular, we

perform electrical transport and nuclear magnetic resonance experiments on such 2-dimensional

electron systems (2DES) under conditions where the quantum Hall effect exists; that is at high

magnetic fields and low temperatures.

In the integer quantum Hall effect (IQHE), electrons occupy an integral number of highly

degenerate energy levels which are separated by the cyclotron energy, referred to as Landau

levels (LLs). Each of these levels splits into two levels, separated by the Zeeman energy, due to

spin. If interactions are neglected, spin only plays a trivial role since the electron spin polariza-

tion,P, can be determined from

P =
(N↑ −N↓)

(N↑ +N↓)
, (1.1)
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whereN↑ (N↓) is the number of occupied spin up (spin down) LLs by electrons. From this

equation, we can infer that if an even number of levels are filled thenP = 0, while for an

odd number of filled LLsP = 1/ν whereν is the filling factor or number of filled levels. By

increasing the magnetic field, it is possible to also increase the degeneracy of each Landau level

to a degree where all of the electrons occupy only the lowest Landau level (LLL). The degen-

eracy of each LL per unit area per spin is simply given byeB/h, wheree is the charge of the

electron,B is the magnetic field andh is Planck’s constant. In the LLL, complete polarization

of the electrons is expected and thereby spin becomes irrelevant. In reality however, if electron-

electron interactions are considered spin is reestablished as a relevant degree of freedom and

fascinating phenomena emerge in the LLL. In the following, we list four examples:

• Spin phase transitions in the fractional quantum Hall effect: If electron-electron in-

teractions are considered in the LLL, new ground states appear when these particles are

occupying certain rational, fractions with odd denominators of the available states. In

this fractional quantum Hall effect (FQHE) regime, the formation of many-body ground

states is dependent on the spin polarization which is determined by the interplay between

the Coulomb and Zeeman energies. Transitions between ground states of different spin

polarization exist at several fractional filling factors. At some transitions, domains of

different polarization, similar to a ferromagnet, are believed to exist.

• Polarization of composite fermions:In the theory of the FHQE, the strongly correlated

electrons can be transformed into a system of weakly interacting particles referred to

as composite fermions (CF) which experience an effective magnetic field different from

the external field. These new quasiparticles will condense into many-body ground states

occupying integer values of new CF LLs similar to the IQHE regime of electrons. The

polarization of these entities can then be obtained from equation 1.1 where nown↑ (n↓)

is the number of occupied spin up (spin down) LLs by CFs. Spin phase transitions are

naturally understood in the CF model.

• Skyrmions and spin reversed excitations:Exactly at full electron occupation of the

LLL (filling factor ν = 1) the ground state is completely polarized even in the absence

of a Zeeman energy. The excitations of theν = 1 ground state are not single spin flips,

but rather involve several spins which gradually reverse over a certain spatial extent due

to the competion that exists between the Zeeman and exchange energies. Theν = 1

topological excitations with underlying spin-texture have been named skyrmions due to

their similarity with objects in the skyrme model of nuclear physics. Additionally, in

the FQHE, the fractionally charged Laughlin quasiparticle ground state excitations also

involve spin reversal.
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• Interactions between nuclear and electron spins:In GaAs, the spin of the electrons

can couple to the spin of the nuclei via the Fermi contact term of the hyperfine interac-

tion. Polarized nuclei will then affect the electron system by creating a local hyperfine

magnetic field which acts on the electron spins. Likewise, polarized electrons create a

local magnetic field acting on the nuclear spins.

In our work, we research various aspects of the above mentioned phenomena by means of

two experimental techniques: electrical transport and nuclear magnetic resonance. Our original

incentive, however, was to explore the anomaly found in the FQHE regime characterized by a

large peak in the longitudinal resistance at the minimum of filling factorν = 2/3, referred to as

the huge longitudinal resistance (HLR) peak. In previous works [4,5], long equilibration times

of the longitudinal resistance indicated that the nuclear system plays an essential role in the

existence of the HLR anomaly. Resistance detected (RD)NMR experiments were successful

in proving that this was in fact the case. In addition, it was experimentally determined that

a large current density was necessary to stimulate the appearance of the HLR. A model was

also presented associating the HLR and a transition between ground states of different spin

polarizations, where domains were believed to form. Nevertheless, many questions remained

unanswered. For example, the HLR exists at magnetic field values where a spin polarization

transition was not expected. Furthermore, the role of the current was not well understood, there

was a lack in evidence of domain existence and a four-fold anomalous splitting of the NMR

lines was observed, which could not be explained by conventional electron-nuclear interaction

mechanisms leading to the conjecture of a new type of interaction [6].

In this dissertation, in collaboration with the thesis work presented by S. Kraus in refer-

ence [7], a connection was established between the HLR and the spin phase transition at filling

factorν = 2/3. The link between them became clear after finite thickness and g-factor correc-

tions were included in the calculation of the Coulomb and Zeeman energies. Hence, some of

our studies are concerned with establishing similarities and differences between the2/3 transi-

tion and the HLR. This necessarily includes the study of the interaction between electrons and

nuclei since both effects are intrinsically related. Consequently, in addition to magnetotransport

experiments, we also perform NMR and resistance detected NMR measurements. One main ob-

jective is to clarify the reason behind the four-fold splitting of the RDNMR lines. Therefore, we

present a technique developed in this work which combines conventional NMR methods with

RDNMR, enabling us to directly measure the electron spin polarization of the system. Applied

to the2/3 transition, this proved to be very beneficial in understanding the nature of the HLR

peak and also to study properties of spin phase transitions in general. In this thesis, however,

we go beyond the study of transitions and apply our NMR technique to investigate other spin

phenomena occuring in the FQHE. This serves the purpose of both exploring the interactions

that exist between the electrons and nuclei and also to acquire a better understanding of the
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electron system in a 2DES by measuring the electron spin polarization via a shift in the NMR

spectra. Our work is presented in six chapters:

In chapter 2, we introduce the concepts necessary to understand the results presented in

this thesis. It is divided into four parts. In the first part, a review of two-dimensional elec-

tron systems and classical magnetotransport is presented. A quantum mechanical approach of

magnetotransport is also needed in order to understand the quantum Hall effect. The integer

quantum Hall effect (IQHE) is shortly discussed in the second part followed by a more exten-

sive description of the fractional quantum Hall effect (FQHE) in the third part of the chapter,

where we introduce Laughlin’s trial wavefunction and the composite fermion (CF) picture. In

the last section, we handle the spin degree of freedom in the FQHE in detail. Here, spin phase

transitions between electron ground states of different polarizations are particularly examined.

A brief excursion into the composite fermion picture allows us to naturally understand the na-

ture of these transitions. Especially the polarization for the half filled Landau level is important

as it will be needed in the interpretation of the spin polarization measurements presented in

chapter 5. In the same section, we differentiate between an activation and a polarization CF

mass. After a section on skyrmions and quasiparticle charged excitations, we explain the hy-

perfine interaction which is responsible for the correlation between electrons and nuclei. We

finish the chapter by dealing with the two experimental methods used in our thesis to study spin

phenomena in the QHE; transport and NMR (including resistance detected NMR). In the latter,

a spectrum of the anomalous four-fold splitting is shown.

Before presenting our transport results in chapter 4, we show the sample structures employed

in our experiments in chapter 3. The experimental setups needed for transport and NMR are

also introduced there.

Due to the different experimental techniques employed, we separate the results part of our

thesis into two chapters: The transport experiments are presented in chapter 4 while the results

from NMR measurements are treated in chapter 5.

In chapter 4, we concentrate exclusively on the unpolarized-polarized phase transition which

occurs at2/3 filling of the lowest Landau level. In transport, this transition is identified by a

peak in the longitudinal resistivity at the2/3 FQH ground state minimum. In the first section,

we show that a small peak in the longitudinal resistivity at low current densities develops into

the HLR anomaly by increasing the current. Therefore, it is necessary to distinguish between

the low current and the high current regimes when dealing with the2/3 transition. In both cases,

however, the transition occurs at a critical ratio of the Coulomb to Zeeman energies which can

be tuned by either tilting the sample with respect to the magnetic field direction or by varying

the density. Such measurements are presented in section 4.2, including a phase diagram of the

2/3 ground state polarization, where the phase transition boundary is indicated by the HLR

peak. Important differences between the low current and high current peak are also discussed
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in sections 4.3 and 4.4, leading to a model of the physics involved in both regimes (section

4.5). In the rest of the chapter, we analyze further properties of the2/3 transition as a function

of current intensity and frequency as well as time dependence and temperature. From these

measurements some new insights have been obtained, which have allowed us to build up on the

model of section 4.5. The results are analyzed in conjunction with the NMR measurements in

the last chapter of the thesis.

The main results of this contribution are presented in chapter 5. It deals with NMR studies

of various spin phenomena in the LLL. They can be generally summarized in four parts. Firstly,

we take advantage of the interaction that exists between the nuclear and the electron systems

in order to measure the electron spin polarization at several spin phase transitions. A method

developed in this work is presented here in which resistance detected (RD)NMR and conven-

tional NMR techniques were combined to measure the electron polarization. Besides probing

the polarizations expected from the CF theory at various fillings, we investigate the existence

of domains at the transitions. Secondly, we continue our research atν = 2/3, in addition to the

transport measurements, and establish important differences between the low and high current

regimes observed with NMR. Thirdly, we study samples under the influence of strain which

exhibit a quadrupole splitting of the NMR lines and in this way clarify the four-fold splitting

anomaly in the HLR regime. Finally, we exploit the excitations of several FQHE ground states

and of filling factorν = 1 in the LLL. We close the chapter by offering an outlook on possible

experiments in which measuring the electron spin polarization might assist in understanding

further phenomena occuring in the FQHE regime.

In the last chapter we summarize our results and discuss the conclusions obtained from

the vast number of experiments conducted at the2/3 spin phase transition and at other spin

phenomena.





Chapter 2

The Quantum Hall Effect

Some of the basic concepts of a two-dimensional electron system (2DES) [8] are introduced in

this chapter. The first section deals with the experimental realization of a 2DES. It is necessary

to review the classical and quantum-mechanical transport characteristics of electrons which are

electrostatically confined to two dimensions and subjected to a magnetic fieldB. This will help

us to introduce the basic concepts necessary to understand the quantum Hall effect. Section

1.2 presents a short description of the integer quantum Hall effect (IQHE) followed by the

fractional quantum Hall effect (FQHE) in section 3. The composite fermion (CF) picture has

been an elegant approach to explain the FQHE and will be briefly discussed in that section. The

last section of the chapter studies the spin degree of freedom in the FQHE. This includes the

existence of ground states with different spin configurations and transitions between these states,

spin in the CF picture, the polarization of the half-filled lowest Landau level, skyrmions and

quasiparticle excitations and electron-nuclear interactions. The section will end by presenting

some of the measuring techniques used to study these phenomena. All of the experimental

results presented in this thesis are concerned with spin in the FQHE.

2.1 The Classical Hall Effect

2.1.1 The Two-Dimensional Electron System

Several techniques have been implemented to construct a 2-dimensional electron system. The

Metall-Oxide-Semiconductor Field Effect Transistor (MOSFET) and semiconductor hetero-

junctions are two examples of 2DES where the QHE has been observed. The best quality

samples have been obtained with heterojunctions based on the semiconductor/semiconductor

interface GaAs/AlxGaxAs. These are usually grown by Molecular Beam Epitaxy (MBE)1,

1Molecular Beam Epitaxy (MBE) consists of an epitaxial growth of crystalline layers, which are evaporated at

a typical rate of 1 atomic layer per second on top of a crystalline substrate. Ultra high vacuum (UHV) conditions
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where one atomic layer can be grown at a time. This enables the realization of perfectly ordered

crystalline material. Furthermore, the AlGaAs/GaAs interface is nearly free of disorder because

the lattice constants of these materials are almost identical. Since AlGaAs has a larger band gap

than GaAs, the conduction and valence bands are bent and a triangular potential is formed at

the interface if the system is suitably doped. This is shown in the schematic illustration of Fig.

2.1(a).

Figure 2.1: The conduction band of an AlGaAs/GaAs heterostructure (a) and

quantum well (b) are schematically shown. A 2DES forms in the GaAs layer with

quantized energies in the z-direction. At low temperatures (kBT << ∆Esubband)

only the lowest subband is populated. The electrons, supplied from a Si-donor

layer, fill the 2DES up toEF.

The electrons are trapped in the potential and a 2DES forms in the GaAs layer since they

are only free to move in the xy-plane while their energies are quantized in the z-direction (per-

pendicular to the interface). The energy spectrum is given by:E = Ei
z + h̄2k2

x

2m∗ +
h̄2k2

y

2m∗ , where

m∗ is the effective mass of the electrons (m∗
GaAs ≈ 0.067me; me is the free electron mass) [10].

At sufficiently low temperatures, i.e. ifkBT << ∆E (subband energy spacing), and low densi-

ties, the electrons only occupy the lowest subband (kB is the Boltzmann constant). An ionized

Si-donor layer, which is placed away from the interface in order to minimize scattering (modu-

lation doping), provides the electrons of the 2DES [11]. The assumption of a parabolic energy

dispersion for the conduction band yields a constant density of states for the lowest subband:

D(ε) = dN(E)/dE =
gsm

∗

2πh̄2 , (2.1)

where thegs is the spin degeneracy. The Fermi energy is then proportional to the densityne of

the 2DES:

EF =
πh̄2

m∗ ne. (2.2)

are required in order to reduce the number of impurities in the crystal [9].
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Electrons can also be confined to a potential well, referred to as a quantum well (QW), if

AlGaAs/GaAs/AlGaAs is grown. In this case, the 2DES forms in the GaAs layer sandwiched

between the AlGaAs layers, as shown in Fig. 2.1(b).

2.1.2 Classical Magnetotransport

In this section, we review the classical description of electric magnetotransport of a 2DES. This

is important in order to introduce the concepts necessary to determine properties of the system,

such as mobility and density [12].

In a typical Hall bar geometry, illustrated in Fig. 2.2, a currentI is applied between the

source and drain of a 2DES sample of widthW and lengthL. In the presence of a magnetic

Figure 2.2: For magnetotransport measurements, a Hall bar-shaped sample of

width W and lengthL can be used. The current flows from source to drain and

the longitudinal voltageVxx, and transverse or Hall voltageVxy, are measured. A

magnetic field is usually applied in the z-direction, perpendicular to the 2DES.

fieldB, directed perpendicular to the 2DES, the electrons moving between the source and drain

will deflect sideways due to the Lorentz force. The accumulated carriers on the side create a

voltage, referred to as Hall voltageVH, transverse to the current direction2. The transverse or

Hall resistance valueRxy (or RH) is simply given by the relationRxy = Vxy/I. Likewise, the

longitudinal resistanceRxx = Vxx/I.

2The Hall effect was discovered in 1879 by Edwin Hall by running a current through a thin sheet of gold.
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The ability of the electrons to move through the crystal is affected by scattering processes

with phonons, impurities or with other electrons. The Drude-model includes the influence of

scattering by considering the electrons as classical particles bouncing off elastically with impu-

rities. This “friction” force imposed on the carriers impedes them from accelerating from source

to drain, leading to a stationary drift velocity,vD. In the absence of a magnetic field, this drift

velocity is given by:vD = −eτE/m∗, wheree is the electron charge,E the electric field and

τ the collision or scattering time. The mobility can now be defined as:µe = eτ/m∗. It renders

important information about the quality of the sample3. In the temperature regime where our

experiments have been performed (T < 4K) the mobility is only weakly temperature dependent

and mainly affected by random-impurity scattering.

Introducing the Lorentz force into the Drude model by turning on the magnetic field yields

the following equation of motion:

m
dvD

dt
= −eE− e

vD

c
×B−m

vD

τ
, (2.3)

wheremdvD

dt
= 0 for the stationary case. The drift velocity can also be expressed in terms of a

current densityj as follows:vD = j/ene. From the relationE = ρ̂j or equivalentlyj = σ̂E,

whereρ̂ is the resistivity tensor and̂σ the conductivity tensor, we obtain:

ρxx =
1

eneµe

and ρxy =
B

nee
. (2.4)

Here,ρxx is the longitudinal resistivity andρxy the transverse or Hall resisitivity. The resistances

(what is actually measured in an experiment) will be related to the resistivities in the following

way:Rxx = ρxx ·L/W andRxy = ρxy. These formulas were used to calculate the mobility and

density of the samples used in this thesis.

Furthermore, the conductivity can be obtained from the inverse of the resistivity tensor.

Assuming an isotropic system (Onsager relation), i. e.ρxx = ρyy andρyx = −ρxy, we can write:

σ̂ = ρ̂−1 =
1

ρ2
xx + ρ2

xy

(
ρxx

ρxy

−ρxy

ρxx

)
. (2.5)

It is interesting to notice that ifρxx → 0 thenσxx → 0 wheneverρxy 6= 0. This will be important

in explaining the integer quantum Hall effect.

2.2 The Integer Quantum Hall Effect

2.2.1 Landau Quantization

If an electron is able to complete a full cyclotron path without scattering, it will interefere with

itself and the classical Drude picture is no longer valid. This is the case for high mobility
3The best AlGaAs/GaAs 2DES heterostructures which have been grown exhibit mobilites of the order30 ·

106 cm2/Vs [13].
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samples in the presence of a sufficiently strong magnetic field at low temperatures. Therefore,

a quantum mechanical solution to the problem becomes unavoidable [14].

The Schrödinger equation for a free electron, i.e. ignoring all electron-electron interactions,

subjected to a magnetic field is given by the well known expression:

1

2m∗ (p + eA)2 ΨN(x, y) = ENΨN(x, y). (2.6)

Herem∗ is the effective mass of the electron and the vector potentialA is related to the magnetic

field asB = ∇×A. If the Landau gauge is chosen, i.e.A = xBŷ which obeys∇×A = Bẑ,

the eigenfunctions can be written as a product of a plane wave extending in the y-direction

and the eigenfunction of the time-independent Schrödinger equation:ΨN = eikyyφN(x). The

eigenfunctionsφN(x) are the solution of the quantum mechanical harmonic oscillator problem.

Hence, the total eigenfunctionsΨN are:

ΨN = eikyyexp[−(x− x0)
2

2`2B
]HN[

(x− x0)

`B
]. (2.7)

HN are the Hermite polynomials and`B is the magnetic length defined as`B =
√

h̄
eB

. From this

solution, it becomes clear that the wavefunctions are extended in y but localized in x, centered

around the coordinatex0 = −ky`
2
B. The cyclotron radius, which indicates the spread of the

electron wavefunction in the x-direction, is determined by the magnetic length. The energy

eigenvalues are a discrete set of ladder-levels referred to as Landau levels (LLs):

εN = h̄ωc

(
N +

1

2

)
, (2.8)

whereN = 0, 1, 2... is the Landau level index andωc = eB
m∗ is the cyclotron frequency. We can

include the spin degree of freedom by adding the Zeeman energy termEZ to equation 2.8:

EN = h̄ωc

(
N +

1

2

)
+ g∗µBBs. (2.9)

The reduced g-factor of GaAsg∗ ≈ −0.44, µB is the Bohr magneton,B the magnetic field and

s the spin quantum number= ±1/2. Figure 2.3 shows how the energy spectrum of a 2DES,

which forms a Fermi sea atB = 0 (a), splits into a series of discrete Landau levels, separated

by the energȳhωc (b), when subjected to a finite magnetic field. These levels split again due to

spin by the energyEZ (c). The energy eigenvalues are obtained regardless of the gauge chosen

for the vector potentialA. Also, the center coordinate of the wavefunctionsx0 is indepedent of

(x,y), which means that each electron will have the same energy and the degeneracy of a single

LL will depend on the number of states that can be packed into that level. The degeneracy per

unit area per spin isnL = eB/h. Thus, the stronger the magnetic field, the larger the degeneracy.

The filling factorν can be defined as the ratio between the total number of electrons,Ne, and

the degree of degeneracy in each LL,nL, for a sample of area A:

ν =
Ne

nLA
=
ne

nL

=
neh

eB
. (2.10)
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Figure 2.3: a) A 2DES forms a Fermi-sea filled up toEF at B = 0. b) In the

presence of aB-field, the 2DES splits into a series of Landau levels (LLs) with

discrete energy values. c) Each LL is further spin-split into 2 levels separated by

the Zeeman energy. In this exampleν = 6 since 6 levels are filled with electrons.

Alternatively, the magnetic field can be discretized in units of magnetic flux quantaΦ0. The

filling factor ν can then be described as the ratio of electrons and the total number of magnetic

flux quanta penetrating the sample of area A:ν = Ne

Φ/Φ0
= neh

eB
, sinceΦ = BA andΦ0 is the

ratio between the Planck’s constanth and the electron chargee.

Ideally, the density of states (DOS) of each level will be a singularδ-function similar to

the DOS of a quasi zero-dimensional system known as quantum dot:DE = δ(E − EN,s). In

reality, the delta-like LLs are broadened due to imperfections in the sample. This disorder-

induced broadening plays an essential role in the IQHE.

2.2.2 Quantum Mechanical Magnetotransport

The quantum mechanical properties of a 2DES in a magnetic field have an immense impact on

its transport behavior. It is most convenient to analyze these transport characteristics by using

our measurements presented in Fig. 2.4. In this graph, the longitudinal resistivityρxx (black

curve) and the Hall resistivityρxy (red curve) are plotted vs magnetic fieldB 4. At low fields

(B < 0.2 T), ρxy increases linearly withB while ρxx remains constant, as expected from the

classical magnetotransport theory of a 2DES. However at higher fields, a series of plateaus

4The sample was grown by M. Henini in Nottingham university. It has a mobility ofµ = 1.0 · 106 cm2/Vs at

a density ofn = 2.56× 1011cm−2.
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Figure 2.4: IQHE: At high magnetic fields the Hall resistanceRxy (red curve) is

characterized by plateaus quantized to(1/ν)h/e2 for integer filling valuesν, ac-

companied by a vanishing longitudinal resistanceRxx (black curve). The plateaus

at fractional values ofν are due to electron-electron interactions. The FQHE is

explained in section 2.3. Inset: SdH oscillations inRxx at low fields (Sample from

wafer NU1154).

in the Hall resistivity, accompanied by a vanishing longitudinal resistivity becomes the most

striking features in the curve. The resistivity value of these steps is given by:

ρxy =
(

1

ν

)
h

e2
(2.11)

for an integer filling factorν. This phenomenon, discovered by Klaus von Klitzing, is known

as the integer quantum Hall effect (IQHE) [15, 16]. The resistance value at filling factor 1 is

thus known as the von Klitzing constant (RK = 25, 812.807... Ω) and is used as the standard

unit of resistance since it can be measured to a precision of up to10−8 [17,18]. It is dependent

only on the natural constantse andh and is not affected by any sample parameters. The fine

structure constantα = 1
2
µ0c(RK)−1, which depends on the permeability constant in vacuum

µ0, the speed of lightc and theRK constant, can be determined by measuring the quantized

Hall resistance [19]. The oscillations inρxx at low fields where there are no plateaus, known

as Shubnikov-de Haas (SdH) oscillations, are periodic in1/B and inversely proportional to
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the density:∆(1/B) = gse/hne (gs is the spin degeneracy). The inset of 2.4 shows the SdH

oscillations at low magnetic fields (B < 1 T). The splitting of the lines which initiates at

B ≈ 0.5 T is due to spin.

Even though the IQHE was discovered almost 25 years ago, there are still many questions

which remain unanswered concerning its nature. Several successful approaches and formalisms,

however, have been put forward which accurately describe many of the observed phenomena

(for a review see [8, 10, 12, 20, 21]). In general, all of these approaches include Landau level

formation, low temperatures (kBT << h̄ωc) and the existence of localized states. In this work

we have chosen the percolation picture due to its intuitive nature [22, 23]. This picture will be

introduced in the remaining of the section.

So far, we have only considered the DOS of the LLs to beδ-like functions, see Fig. 2.5(a).

However in reality, the LLs will be broadened by disorder. The tails of the LLs now consist

of localized states (i.e. states in which electrons are confined to a small region in space and

do not carry current across the sample) and current-carrying or extended states at the center of

the levels [Fig. 2.5(b)]. In general, a quantized Hall plateau inρxy and a vanishingρxx occurs

Figure 2.5: Energy vs density of states (DOS) of a 2DES. (a) LLs represented by

δ-like functions. (b) The presence of disorder broadens the levels. Localized states

are found at the tails and extended states (blue) in the center of these broadened

LLs. Localization is essential for measuring the QHE.

whenever the Fermi energy lies at the cyclotron gap between LLs. The localized states pin

this energy at the gap, also referred to as the mobility gap, for a certain range of magnetic

field values and the plateaus acquire a finite width. Therefore, the existence of localized states

is essential in observing theρxy plateaus in the QHE. If the Fermi energy energy lies in the

extended states part of the LL, thenρxx will take on finite values andρxy deviates from the

quantized value. This is easily visualized in the percolation picture as follows: In the presence
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of a smoothly varying random disorder potential, i.e. when the magnetic length is much shorter

than the disorder lengthscale, the electron states will lie on contour lines of constant energy

present in the random potential landscape. This situation is shown schematically in Fig. 2.6,

where the left side shows the confining potential for a sample of widthW (shown for the Nth

LL) while the right side indicates a contour map of the potential landscape. As we increase

Figure 2.6: Left: Confinement potential for sample of widthW . Right: Contour

maps of the potential landscape. Red areas indicate filled states and white areas

empty states. (a) The Fermi energy,EF, is at the low-energy tail of the LL (lo-

calized states). Electrons occupy only deep valleys without backscattering (ρxy is

quantized,ρxx = 0). (b) EF is at the center of the LL (extended states). Electrons

backscatter from one edge to the other (ρxy is not quantized,ρxx 6= 0). (c) EF is

at the high-energy tail of the LL (localized states). Current flows on energy con-

tours of mountain tops and edge states without backscattering (ρxy is quantized,

ρxx = 0).

the magnetic field at constant density and occupy a single LL with electrons, the Fermi energy

moves across the broadened level. At the low-energy tail, electrons first start occupying the

deep valleys [Fig. 2.6(a)]; they are localized and do not contribute to transport. At this pointρxx

vanishes andρxy is quantized . As the magnetic field is further increased, the occupied valleys
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grow larger until their shorelines, where the electrons can move, percolate from one side of the

sample to the other, see Fig. 2.6(b). Electrons can now move across the sample and scatter back

to the source. This backscattering process impedes transmission of the electrons from source

to drain and thereby is responsible forρxx to take on finite values andρxy to deviate from the

quantized value. At this point, the Fermi energy lies in the extended states part of the LL. Note

that at the sample boundaries, the LL energy rises and intersects the Fermi energy. Electrons

can also circulate along those so-called edge states and the direction of flow is opposite at the

two sample edges [24]. By further increasing the field, the electrons will now occupy most of

the sample except for the top of the potential hills [Fig. 2.6(c)]. The shore lines are now either

encircling these tops or at the sample edges. In this case, backscattering is again suppressed and

ρxx vanishes whileρxy is quantized.

Alternatively, Landau and Büttiker have developed a formalism in order to explain the IQHE

by only employing edge states [25]: One can imagine that the number of edge states in the

sample will depend on the number of Landau-levels intersecting the Fermi-energy. These states

will carry current, each contributing an amount ofe2/h to the total conductivity. For example

at filling factorν = 2, there will be two edge states present in the sample. If the Fermi energy is

situated in the mobility gap, then the sample bulk isincompressible, i.e. a region where adding

an extra electron costs a finite energy, and the current is carried between source and drain at the

edges without backscattering. As a consequenceρxx vanishes andρxy = h/ie2, wherei is the

number of edge states. If the Fermi energy is situated in the center of a LL (in the extended

states), the sample bulk becomescompressible(adding an extra electron only costs a very small

amount of energy) and backscattering occurs. Since the Landauer-Büttiker formalism is mostly

concerned with edge states, it considers the system to be quasi one-dimensional. This approach

has been very successful in describing numerous experiments [26,27,28].

Until now, we have neglected electron-electron interactions in explaining the IQHE. Even

though the non-interacting single-particle model is very powerful in describing many of the

observed phenomena, it is by no means complete. For example in the IQHE, screening of the

disorder potential caused by Coulomb interactions between the electrons is also important in

understanding the nature of the localized states as shown in several experimental and theoretical

works [29, 30, 31, 32]. In addition, the existence of fractional quantized values of the Hall

resistance is caused by strong electron correlations. The topic of the next section is the fractional

quantum Hall effect, which was discovered by Störmer and Tsui and explained by Laughlin.

2.3 The Fractional Quantum Hall Effect

Shortly after the discovery of the IQHE in a Si-MOSFET, the FQHE was first observed in an

AlGaAs/GaAs heterostructure by Störmer and Tsui [33,34,35]. Figure 2.7 shows a typical plot
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Figure 2.7: FQHE: In the lowest Landau level (LLL), a number of plateaus

at fractional values ofh/fe2 appear in the Hall resistance, accompanied by a

vanishing longitudinal resistivity. These fractional quantum Hall states are caused

by Coulomb interactions between the electrons in a strongly correlated system.

These measurements were performed by J.H. Smet and the sample grown by W.

Wegscheider.

of the longitudinal resistivity and the Hall resistance vs the magnetic field for a high-mobility

sample. This curve is characterized by plateaus inρxy quantized to values ofh/fe2, wheref is

an exact rational value with an odd denominator, accompanied by a vanishingρxx. In the LLL,

these fractions occur at certain sequences, which can be sumarized by the following equations:

f =
b

2pb± 1
(2.12)

and

f = 1− b

2pb± 1
, (2.13)

which are related by particle-hole symmetry. Here,p andb are both integer numbers. All of

these fractional states are characterized by having odd denominators, being symmetric around

ν = 1/2, having a larger gap for small denominators and occuring only in very high mobility

samples at low temperatures (few mK). The existence of fractional QH states was completely

unexpected, since in the single particle picture no gap should exist belowν = 1. However, the

FQHE can be understood if electron-electron interactions are taken into account. As a result,
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the Hamiltonian of equation 2.6 must now include electron correlations:

Ĥ =
1

2m∗ (−ih̄∇+ eA(rj))
2 +

e2

4πε0

∑
j<k

1

rj − rk

+
∑
j

U(rj) + gµBB · S. (2.14)

In the formula, we have added the Coulomb interaction energy (second term on the right side),

the positive background and disorder potential(third term) and the Zeeman energy(last term)

[21,36]. Laughlin’s trial wavefunction approach includes electron-electron interactions, though

neglecting disorder and the spin degree of freedom in the LLL. This is handled in the next

section.

2.3.1 Laughlin’s Trial Wavefunction

Several approaches were undertaken in order to understand the problem of interactions in the

LLL [37, 38, 39]. Laughlin’s proposal of a trial wavefunction proved to be very successful in

describing the strong electron correlations describing theν = 1/m QH ground states withm

being an odd integer [40,41]. This trial wavefunction is given by the following expression:

Ψ1/m =
∏
i<j

(zi − zj)
m exp

[
− 1

4`2B

∑
i

|zi|2
]
. (2.15)

In this formula,zi,j is the position of an electron denoted as a complex number andm = 2p+ 1

wherep is an integer. There are certain restrictions to the wavefunctions. For example,p must

be an integer in order for theΨ1/m to be analytic and hencem is necessarily an odd integer.

This forces the orbital part of the wavefunction to be antisymmetric and the spin part to be

symmetric. It was assumed that since the electrons are only occupying the lowest spin split LL,

the spin degree of freedom would be frozen, i.e. polarized. This consideration is important in

this thesis because, in the next section, it will become clear that this assumption only holds for

1/m QH ground states. However at other fractional filling factors, partial or zero polarization

ground states do exist. Transition between ground states of different spin polarization is a major

part of this work.

Returning to Laughlin’s wavefunction, we can analyze the equation 2.15 in two parts. The

second part of the equation is merely the Gaussian wavefunction of the problem without inter-

actions. More interesting is the first part of the equation, the so-called Jastrow-type term. This

term includes thee−-e− interactions and can be more easily explained by specifically consider-

ing the ground state at fillingν = 1/3. For this special case,m = 3 becausem = 1/ν. The

termzi − zj describes the interaction of electroni with all other electrons. Since at this filling

factor there are 3 flux quanta per electron, the wavefunction of electroni will have 3 zeros for

every other electronj it interacts with5. One zero (flux quantum) is located at the position of the

5The wavefunction will have 3 vortices, which in principle can be considered as zeros in the wavefunction. In

a simplified intuitive picture, a vortex can be modelled as a flux quantum.
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electronj due to Pauli’s exclusion principle. The other two zeros, however, can be located any-

where. Nevertheless, it is energetically most favorable for the other two zeros to also be at the

position of electronj. As Halperin stated, “the wavefunction does not waste any zeros” [42,43].

An electron will then see a 3-fold zero at the position of the other electrons and the only way

to minimize the Coulomb repulsion energy is to rearrange themselves in such a manner as to

be the furthest away from each other as possible. Figure 2.8 shows Monte-Carlo simulations

illustrating the arrangement of 1000 electrons for an uncorrelated distribution (a) and a strongly

correlated system (b). This arrangement of the particles is feasible since atν = 1/3 only 1/3 of

Figure 2.8: Monte-Carlo simulations of 1000 electrons for an uncorrelated dis-

tribution (a) and a strongly correlated system (Laughlin wavefunction form = 3),

where the Jastrow-type term has been included (b). This figure is adapted from

reference [22].

the LL is filled and the electrons have enough space to “redistribute” themselves. Another way

to understand this behavior is by looking at equation 2.15. If there are three zeros at the posi-

tion of electronj, the exponential of the Jastrow-term is also 3. The wavefunction will decay

extremely rapidly for any two particles approaching each other, thereby keeping the electrons

as far as possible. Laughlin’s trail wavefunction method was well corroborated by Monte-Carlo

and other numerical calculations and set the base for understanding the FQHE.

Laughlin’s fractionally charged quasiparticles

So far, we have presented the necessary wavefunction that explains the FQH ground states at

ν = 1/m. Since at these filling factorsρxx → 0, gapped elementary excitations should exist.

Here, the question arises, what these gapped excitations are. Laughlin showed that they are

fractionally charged quasiparticles [40, 41]. This can be understood by again consideringν =

1/3 as an example. If we move away from exactlyν = 1/3 by either slightly increasing (ν <
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1/3) or decreasing (ν > 1/3) the magnetic field (or changing the density), we can introduce or

remove a single quantum of magnetic flux, respectively. Since 3 flux quanta exist per electron

of chargee, it is then equivalent to say that an introduction or removal of a flux quantum means

adding either a quasihole or a quasielectron of fractional chargee∗ = e/3. The excitation

gap is then given by the necessary energy required to include the quasiparticle. In general,

quasiparticle excitations have chargee∗ = e/m and do not obey either Bose-Einstein nor Fermi-

Dirac statistics, but rather anyonic statistics. The quasihole wavefunction, for example, can be

written as:

Ψqh =
∏
i

(zi − z0)Ψ1/m (2.16)

in which a flux quantum is introduced atz0 [39]. Shot-noise and tunnel experiments, which have

satisfactorily proven the existence of fractional charged excitations, were essential in supporting

Laughlin’s theory [44, 45]. Quasiparticle excitations will be addressed in section 5.5 of this

thesis.

One major drawback of Laughlin’s approach is that it only accounts for the1/m FQH

ground states. The wavefunctions for the other fractions (see Fig. 2.7 and equations 2.12 and

2.13), such asν = 2/3, are not considered if Laughlin’s Ansatz is used. Many of the missing

fractions could be accounted for by the hierarchy approach, in which higher order FQHE states

are constructed with Laughlin’s quasiparticles instead of electrons [43, 46, 47]. Nonetheless,

this approach turned out to be incomplete in many ways. For example, it failed to describe

the experimental data, in which some states are more stable than others. A very elegant and

natural way of describing all of the FQHE states in the LLL is Jain’s composite fermion picture

described in the next section.

2.3.2 Composite Fermion (CF) Picture

The resemblance between the IQHE and the FQHE seen in experiment hinted to the idea that

many of the phenomena occuring in the FQHE could be explained by transforming the strongly

interacting system of electrons into a weakly interacting system of some new quasi-particles.

Jain’s success in identifyingcomposite fermionsquasi-particles as the real particles of the sys-

tem in the FQHE was a major achievement in this field [48]. In the following, we describe the

basic concepts of this model: If an even number (2p) of vortices of the many-body wavefunc-

tion are captured by an electron, a new quasiparticle, referred to as a composite fermion (CF) is

formed [36, 48, 49]6. In a simplified picture, we can say that2p point flux quanta are attached

to an electron. Atν = 1/2, p = 1 and for this special case each electron carries exactly 2 flux

quanta. In this section, we will mainly discuss this particular case. The electrons effectively

avoid each other by attaching to these flux quanta and the strongly correlated electron system

6If an odd number of vortices is captured by an electron, the resulting quasiparticle is a composite boson.
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changes to a weakly interacting CF-system. The composite particles experience an effective

magnetic field, which is given by:

Beff = Bext − 2neφ0. (2.17)

Here,Bext is the external magnetic field andne the electron density. Generally speaking, it is

possible to interpret the effective magnetic field as follows: An electron is attached to 2 “fic-

titious” flux quanta which are oriented opposite to the external magnetic field. These mostly

cancel the real magnetic field resulting inBeff . Alternatively, one can picture an electron “cap-

turing” two real flux quanta from the external magnetic field, thus reducing its value toBeff .

More accurately,Beff is obtained by determining the phase produced by a CF moving around

a closed loop of areaA: 2π
(

BextA
φ0

− 2Nenc

)
. The left term is the Aharonov-Bohm phase due

to the external magnetic field while the right term is the phase produced byNenc which is the

number of flux quanta of the other composite particles enclosed during the loop. In the mean-

field approximation, the flux quanta can be “spread” out so thatNenc = neA. Equating this

phase to a new Aharonov-Bohm phase produced by the effective magnetic field, i.e.2πBeffA
φ0

=

2π
(

BextA
φ0

− 2neA
)
, renders equation 2.17. Atν = 1/2, Beff = 0 and a CF Fermi sea forms.

The composite fermions fill the sea up to the Fermi-energy,EF. The Fermi wave vector is given

by the following relation:kF,CF = (4πne)
1/2 [50]. Beff deviates from 0 as one moves away

from ν = 1/2 and it is negative forν > 1/2 and positive forν < 1/2. Consequently, composite

fermions occupy CF-LL which are energetically separated byh̄ω∗c . The CF cyclotron frequency

is then:ω∗c = eBeff

m∗
CF

, wherem∗
CF is the CF-effective mass. Consequently, the CF-filling factor

can be obtained from the electron filling factor by using the following relation:

ν =
νCF

2νCF ± 1
. (2.18)

This is obtained by replacingB by Beff in equation 2.10. For example,ν = 2/3 andν = 2/5

becomeνCF = 2 for negative or positiveBeff , respectively. Likewiseν = 3/5, 3/7 turn into

νCF = 3 and4/7, 4/9 into 4 (see section 5.2.4).

The CF model explains the experimental results astonishingly well. All of the fractional

states can be well understood with this model. Even the recently discovered FQHE fractions

(for exampleν = 4/11 and ν = 5/13) could be explained as FQH states of CFs [51, 52].

Comparing again Fig. 2.7, we see thatρxx shows SdH oscillations which are symmetrical around

ν = 1/2. This resembles the case for electrons aroundB = 0. In general, the FQHE of

strongly-correlated electrons can be considered to be the IQHE of weakly interacting composite

fermions. The CF-model is schematically represented in Fig. 2.97.

7We have restricted our discussion to the LLL, however CFs also exist atν = 3/2. At ν = 5/2 and7/2, a

composite fermion pair forms at these states resulting in a minimum inρxx (see section 5.6). At higher LLs, e.g.

ν = 9/2, 11/2, ..., a charge density wave describes these ground states. In transport, they are characterized by

anisotropic peaks depending on the crystallographic direction [53,54].
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Figure 2.9: Composite Fermion (CF) model. If the LLL is only half filled

(ν = 1/2), the strongly correlated electronic system (a) can be transformed into a

weakly interacting system of CFs by attaching two flux quanta to an electron (b).

At this filling factor, the CFs experience a zero effective magnetic field and form

a CF Fermi sea. Deviating fromν = 1/2, Beff 6= 0 and CFs occupy CF-LLs sep-

arated bȳhω∗c (c). A CF filling factor can be obtained from the electronic filling

factor (e.g.ν = 2/3 and2/5 becomeνCF = 2) via equation 2.18.

2.4 The Spin Degree of Freedom in the Lowest Landau Level

If only the lowest spin-split LL is occupied by electrons, it is natural to assume that the spin

degree of freedom is effectively frozen out since the system is expected to be fully polarized.

Therefore, one of the requirements for Laughlin’s trial wavefunction is that its orbital part is an-

tisymmetric under particle exchange due to the symmetric nature of the spin part. As previously

mentioned, this assumption successfully describes theν = 1/m QH groundstates. For example

at ν = 1 andν = 1/3, the only possible groundstate has complete spin polarization. How-

ever, spin has proven to be responsible for a rich number of phenomena occurring in the LLL.

For instance at all fractional filling factors different fromν = 1/m, ground states of various

spin polarizations exist. Transitions between these states have been detected in numerous exper-

iments [5,55,56,57,58,59]. Also, the CF Fermi sea atν = 1/2 is no longer completely polarized

whenever the CF Fermi energy is greater than the Zeeman splitting [60,61,62]. Furthermore, the

lowest energy charged excitations of theν = 1 quantum Hall ferromagnetic state are charged

excitations with an underlying spin texture known as Skyrmions [22, 63, 64, 65, 66, 67]. These

topological objects were first measured by means of optical pumped nuclear magnetic resonance

(OPNMR) experiments (see section 2.4.4) [68]. Also, the quasiparticle-quasihole excitations of

several ground states in the FQH regime are spin-reversed [8, 69]. Finally, the electron spin
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may couple to the nuclear spin via the hyperfine interaction [70, 71]. This leads to unexpected

behavior of the electronic system measured in transport experiments [5, 58, 59, 72]. Moreover,

the electron spin polarization can be directly determined from NMR experiments [68,73].

In the next subsections we briefly deal with these spin-related phenomena individually. They

are necessary to understand the transport and NMR experiments carried out in this work. We

end the section by reviewing several experimental techniques and experiments used to study

spin in the LLL. We focus particularly on transport and NMR.

2.4.1 Spin Phase Transitions

The existence of ground states with partial or no spin polarization in the LLL was first pointed

out by B.I. Halperin soon after the discovery of the FQHE. He noted that since in GaAs the

electron reduced mass is much smaller than the free electron mass (m∗ = 0.067me) and the

effective g-factor isg∗ = 0.44 instead of2.03 (free electrons), then the Zeeman energyEZ is

about 60 times smaller than the cyclotron energy. Furthermore,EZ is similar to the quasiparticle

energies (≈ 5 K at 10 T) at several ground states of the FQHE, which depend on the exchange

part of the Coulomb energy, approximately given byEC[K] = 50K ·
√

B[T] [23]. The favorable

ground state polarization is thus dependent on the interplay between the Zeeman and Coulomb

energies and the assumption of only completely polarized groundstates is incorrect since partial

or unpolarized states exist in this regime.

Halperin constructed a trial wavefunction to include the spin degree of freedom [42]8: For

example atν = 2/3, this wavefunction is given by:

Ψ =
∏
i<j

(zi−zj)
3
∏

k<m

(z̃k−z̃m)3
∏
i,k

(zi−z̃k)
2 exp

[
− 1

4`2B

∑
i

|zi|2
]

exp

[
− 1

4`2B

∑
k

|z̃k|2
]
. (2.19)

The coordinatesz and z̃ represent spin down and spin up electrons, respectively. This for-

mula fulfills all the necessary requirements: the wavefunction is antisymmetry under particle

exchange, electrons of equal spin are kept further separated than electrons with opposite spin

(exponent of Jastrow terms) and all electrons are located in the LLL. Numerical calculations by

Chakrabortyet al. [8] indicated that unpolarized or partially polarized states are in some cases

energetically more favorable than fully polarized states. Their results forν = 2/5 and2/3 are

displayed in Fig. 2.10. Here, the excitation energies are plotted vs magnetic field. In both cases,

an unpolarized state is expected to be energetically favorable at sufficiently lowB-fields while

a polarized state should exist at higher fields. The transition from an spin unpolarized to a spin-

polarized state is significantly different, however, for both filling factors. Forν = 2/3, a gapless

region was calculated, and consequently a non-zeroRxx is expected at intermediate magnetic

8Such a wavefunction is also applied to CF-pairing atν = 5/2, 7/2 and in bilayer systems, in which the

coordinatez represents one layer andz̃ the other layer [21].
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Figure 2.10: Numerical calculations of the quasiparticle excitation energy vsB-

field at filling factors 2/5 (a) and 2/3 (b). For both cases, an unpolarized ground

state is expected for smallB and a polarized state for largeB. A gapless region

is calculated forν = 2/3 (hatched). The figure is adapted from reference [8].

fields, whereas atν = 2/5 a gap is always present. Eisensteinet al. first discovered such a spin

phase transition in the FQHE experimentally (Fig. 2.11). In their activation measurements at

ν = 8/5, which is the particle-hole conjugate ofν = 2/5, two different slopes of the excitation

energy are seen: the first slope is negative and occurs atB < 5.3 T and the second positive and

occurs atB > 5.3 T. The different slopes at the two magnetic field regions indicate different

quasiparticle Zeeman splittings and hence ground state polarizations [Fig. 2.11 (a)]. Figure 2.11

(b) shows a plot ofRxx vsB⊥ performed at filling factorν = 2/3. Here, the sample was tilted

with respect to the external magnetic field direction. In this way,B⊥ remains constant while

Btot increases. At this filling factor, a non-vanishingRxx at intermediate tilt-angles reveals

the spin unpolarized-polarized phase transition. The electron-nuclear hyperfine interaction also

plays a major role in theν = 2/3 transition [6] and will be extensively discussed in chapters 4

and 5.

It is important to note that since the favorable ground state depends on the interplay between

Zeeman and Coulomb energies, the parameter which determines the ground state is the ratio

between these energies defined asη = EZ

EC
. The transitions occur at a critical value of this

ratio, ηc
9. SinceEZ ∝ B andEC ∝

√
B, transitions between states can be tuned either by

introducing a parallelB-field through tilting of the sample (EZ ∝ Btot andEC ∝
√
B⊥) or

by varying the density (EZ is constant andEC ∝
√
n) through the use of a gate (see section

4.2). If a quantum well is used, in order to correctly determine the value ofη, it is necessary to

9This value varies slightly in different samples.
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Figure 2.11: Spin phase transitions in the FQHE. The left figure (a) shows ac-

tivation measurements of theν = 8/5 state, which is the particle-hole conjugate

of ν = 2/5. The different slopes give evidence for two different quasiparticle

excitation energies and hence two ground state polarizations. The right figure (b)

shows tiltedB-field experiments forν = 2/3. The disappearance and reentrant

behavior of theRxx minimum is consistent with an unpolarized-polarized phase

transition. Figures taken from references [74] and [75], respectively.

introduce finite thickness andg-factor corrections in the Coulomb energy and Zeeman energy

calculations, respectively. Theg-factor is given by:

g(B,N) = g0 − c(N +
1

2
)B, (2.20)

whereg0 = 0.4 andc = 0.0115 T−1 for a 15 nm QW,B is the magnetic field andN the Landau

level number [76]. These correction are due to the non-parabolicity of the band structure in

GaAs [77]. The Coulomb energy can be calculated according to:

EC =
e2

4πε`effB
. (2.21)

In this expression,̀effB =
√
`2B + λ2 is the effective magnetic length andλ is the FWHM of the

wavefunction which depends on the QW thickness [78,79].
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Even though the spin phase transitions can be satisfactorily understood by only considering

the strongly correlated electron system, the weakly interacting CF-picture provides a more ele-

gant, intuitive and accurate way of understanding this phenomenon. In this model, the expected

ground state polarizations are obtained naturally, as we will explain in the following.

2.4.2 Spin in the CF Picture

In Fig. 2.9, we schematically showed that ifν 6= 1/2, the CF Fermi sea develops into a discrete

series of LLs energetically separated byh̄ω∗c . If we introduce the spin degree of freedom, we

can further split these levels by the Zeeman energyg∗µBB as in the case of the IQHE. The latter

splitting, however, depends on the external magnetic field and not onBeff . Drawing again the

CF-LLs, this time as a function of density (or equivalentlyBtot at tilted fields), and including

the spin-splitting, the crossings between ground states become obvious. This is plotted in Fig.

Figure 2.12: Spin-split composite fermion Landau levels. Since the CF-cyclotron

energy increases as
√

n or
√

B and the Zeeman energy asn or B, crossings be-

tween ground states of different polarization exist. The blue-dotted line repre-

sents the Fermi level. For simplicity, we have connectedn1(B1) andn2(B2) with

straight lines. The polarization can be determined fromP = N↑−N↓
N↑+N↓

. At νCF = 2
(ν = 2/3), a transition occurs fromP = 0 to P = 1 at ∆CF = EZ. At νCF = 3
(ν = 3/5) andνCF = 4 (ν = 4/7) transitions occur fromP = 1/3 toP = 1 and

P = 0 toP = 1/2 toP = 1, respectively.

2.12 for the CF LLsN = 0, 1 and2. The spin up level is depicted black, the spin down is



2.4. THE SPIN DEGREE OF FREEDOM IN THE LOWEST LANDAU LEVEL 39

shown in red and the Fermi energy is blue. The splitting between two levels of same spin, for

exampleN = (0, ↑) andN = (1, ↑) is given by the CF cyclotron energȳhω∗c1 at the density

n1(or fieldB1). The splitting between levels of different spin, e.g.N = (0, ↑) andN = (0, ↓)
is the Zeeman energy (g∗µBB1 atn1). Considering the case of fixed filling factorνCF = 2 as an

example, we see that at low densities or fieldsh̄ω∗c1 > g∗µBB1. The two CF-LLs have different

spin orientation and the polarization is therefore zero. The polarization is given by the following

expression:

P =
N↑ −N↓

N↑ +N↓
. (2.22)

Increasing the density has a different effect on both energy scales. While the Zeeman splitting

increases linearly with the densityn, the CF cyclotron energy increases as
√
n (mCF ∝

√
n).

Therefore, at higher densities,h̄ω∗c2 < gµBB2 and the two occupied CF-LLs have the same spin

orientation, i.e. the system is polarized10. A transition betweenN = (0, ↓) andN = (1, ↑)
occurs whenever the CF cyclotron∆CF and the Zeeman energies are the same11:

∆CF =
h̄e

mp
CF

|Beff | = EZ = g∗CFµBBext. (2.23)

In this equation,mp
CF is the CF polarization mass, which will be introduced in section 2.4.3

andBeff is given by equation 2.17. The CFg-factor g∗CF has been measured to be largely

the g-factor of the electronsg∗, which means that CFs are only weakly interacting [81]. In

references [7], [82] and [83], it is shown that the critical value of spin transitions in the FQHE

is more accurately described by the CF picture than by the Coulomb to Zeeman energy ratio of

the electrons.

In the LLL, the CF filling factorνCF = 2 equals the electron filling factorν = 2/3 and

2/5 of electrons. In Fig. 2.12, we have also displayed examples forνCF = 1, 3 and4. These

relate to electron filling factorsν = 1/3, ν = 3/5 (also3/7) and forν = 4/7 (also4/9),

respectively. Filling factorνCF = 1 can only be spin polarized as expected from Laughlin’s

trial wavefunction,νCF = 2 has a transition fromP = 0 to P = 1, νCF = 3 from P = 1/3 to

P = 1 andνCF = 4 has two transitions:P = 0 to P = 1/2 andP = 1/2 to P = 1 at higher

fields. These spin transitions between CF groundstates of different polarizations were confirmed

by Kukushkinet al. by carrying out optical experiments. The electron spin polarization,P,

was obtained from luminescence experiments by measuring the degree of circularly polarized

light emitted from time resolved radiative recombination of 2D electrons with photoexcited

holes bound to acceptors [60]12. The samples used were high-quality single GaAs/AlGaAs

10Since the CF spin and the electron spin are the same, it is equivalent to refer to a CF or electron spin polariza-

tion [80].
11For simplicity, we have drawn straight lines fromB1 (n1) to B2 (n2). It is however important to remember

that the CF cyclotron energy increases as
√

B (
√

n).
12The experimental method is described in reference [84]. It is beyond the scope of this thesis to explain these

experiments in more detail.
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Figure 2.13: Spin phase transitions in the FQHE. The electron spin polarization

was measured by means of optical measurements. The transitions expected from

the composite fermion theory are observed in these experiments. Some small

polarization plateaus appear which are not explained by the simple CF model

(e.g.P = 1/2 atν = 2/3). The data was taken from reference [60].

heterojunctions. The small polarization plateau seen at unexpected values, such asP = 1/2 at

ν = 2/3 cannot be explained by the weakly interacting CF-model. CF interactions might play

a role in these cases [85].

2.4.3 Polarization atν = 1/2

At ν = 1/2, despite the fact thatBeff = 0, the spins of the CFs still experience a Zeeman energy

from the external magnetic field. Therefore, in the limit of vanishing temperature, theν = 1/2

CF Fermi sea is expected to be completely polarized when the Zeeman energyEZ > EF, where

EF is the CF Fermi energy (see also section 5.2.2). IfEZ < EF however, the CF Fermi sea is

only partially polarized. A smooth transition from a partially to a completely polarized system

takes place at a critical ratioη when the Zeeman and Fermi energies are equal. The polarization

at ν = 1/2 was measured by means of optical experiments by Kukushkinet al. [60] and NMR

experiments by Freytaget al. [62]. The most important results are presented in Figs. 2.14

(a) and 2.14 (b), respectively. In the top figure, the electron spin polarization,P, is plotted

vs magnetic field at fixed filling factorν = 1/2. These measurements were obtained with

the same optical technique described above. From the graph, it is evident that the electron

system is fully polarized at aB-fields larger than approximately9.3 ± 0.5 T. At lower fields

the system starts to depolarize. Likewise, in the NMR experiments presented in Fig. 2.14 (b),

the electron system is fully polarized (P = 1) at B > 10 T, while at lower fieldsP < 1.

This plot of polarization vs magnetic field was obtained by measuring the Knight shift from

NMR experiments carried out on multiple GaAs/AlGaAs quantum wells (see next section). The
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Figure 2.14: Spin polarization at filling factorν = 1/2. The CF sea at 1/2 is com-

pletely spin polarized ifEF > EZ. This happens at approximatelyB = 9.5 T. At

lower fields the polarization of the system is less than one. The polarization was

extracted from optical measurements (Figure (a) taken from reference [60]) and

from NMR experiments performed on a mutiple quantum wells sample (Figure

(b) adapted from reference [62])

transition should occur at̄h2k2
F,CF/2m

∗
CF = g∗CFµBBc, wherem∗

CF is the CF mass andkF,CF is

the CF wavevector a previously described. Assuming a parabolic dispersion law for composite

fermions, the CF mass was determined from these experiments. It is however necessary to

distinguish between the mass obtained from activation measurements (activation mass,ma
CF)

and polarization experiments (polarization mass,mp
CF)13.

Activation and polarization mass of CFs

A CF mass is in general dependent on the experiment performed. For example, the CF mass

determined from polarization measurements is much larger than the one determined from ac-

tivation experiments, and these two masses are different from a bare CF cyclotron mass. This

is however not surprising considering that the LLL Hamiltonian does not contain a mass (the

13The CF-polarization mass obtained from the experiments in reference [60] ismp
CF = 2.27me. This was

determined by assuming: 1)g∗CF = g∗e , 2) nCF = ne, 3) EZ is independent ofmp
CF and 4) a parabolic dispersion

law for CFs.
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kinetic energy is a constant in the LLL) and a CF mass is not a renormalized value but is ob-

tained entirely from interactions. Nevertheless, it is convenient to define an effective CF mass,

whenever the CF picture is used. One type of CF mass can be phenomenologically defined from

activation measurements and it is given by:

ma
CF

me

≈ 0.08
√
B(T). (2.24)

Instead, the mass obtained from polarization measurements can be determined from the follow-

ing expression:
mp

CF

me

≈ 0.60
√
B(T). (2.25)

These values are different because the activation energy used to calculate equation 2.24 includes

the bare cyclotron energy and the self interaction energies of the created CF particle-hole pair

[80]14. The polarization mass (eq. 2.25), on the other hand, was determined from the energy

splitting between two states of different polarization. Hence, this is the value which should be

used for experiments involving spin polarization. The electron spin polarization at filling factor

ν = 1/2 will be addressed again in section 5.2.2 of this work.

2.4.4 Skyrmions and Quasiparticle Excitations

Theν = 1 QH state remains spin polarized even in the absence of a Zeeman energy (g∗ → 0).

An energy gap between the states of different polarization remains due to the Coulomb ex-

change energy which tries to keep the electron spins oriented in the same direction. The system

is thus stabilized in a ferromagnetic state and the term Quantum Hall Ferromagnet (QHF) is ap-

propriately used to describe theν = 1 state. Electron-electron interactions play a major role in

this state. In the limit of vanishing Zeeman energy, the lowest-lying charged energy excitations

of the QHF state are topological objects with an underlying spin-texture. Such an excitation,

referred to as a skyrmion, is schematically drawn in Fig. 2.1515. Skyrmions are characterized

by having their spin turned downward at the center and gradually turning upward at a distance

far from the center. At intermediate distances, all the spins point in the xy-plane and exhibit

a vortex-like winding configuration. A skyrmion is energetically more favorable than a single

spin flip whenever the Coulomb exchange energy is large in comparison to the Zeeman energy

because it prefers locally aligned spins. The energy necessary to create an excitation is given

by the sum of the Zeeman and Coulomb exchange energies:

E = EZ + Eexch = g∗µBB + ρsECk
2. (2.26)

14The “bare” cyclotron mass has been determined from cyclotron resonance experiments [86].
15The concept of a skyrmion was borrowed from the skyrme crystal model of nuclear physics [87].
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Figure 2.15: The lowest-lying energy excitations of the QHF stateν = 1 at

vanishing Zeeman energy are topological objects with an underlying spin-texture

known as skyrmions. These structures are characterized by gradually flipping

numerous electron spins but yet carrying exactly one unit of charge. The spin

points downwards at the center and upwards at a distance far from the center. At

some intermediate distance the spin points in the xy-plane. The existence and size

of a skyrmion are determined by the interplay betweenEZ andEC.

Here,ρs is the “spin stiffness” andk the wavevector. The size of a skyrmion and the number

of spin reversals are then determined by the interplay between these two energies. AtEZ = 0,

the skyrmion should be infinite. Increasing the Zeeman energy shrinks the skyrmion in order to

balance the Zeeman and Coulomb energies. At largeEZ, the single particle model is restored

and the excitations are single spin flips. Skyrmions in a QHF carry a charge which is equal

to ±e at filling factor 1. Exactly at the filling factor, skyrmions freeze out at sufficiently low

temperatures. Deviating fromν = 1 creates a skyrmion forν > 1 or an antiskyrmion forν < 1.

The number of skyrmions/antiskyrmions equals the number of added/removed charges.

Experimentally, it makes sense to measure the electron spin polarization aroundν = 1 in

order to study skyrmionic excitations since these involve flipping of electron spins. Barrettet

al. were the first group to obtain direct experimental evidence for the existence of skyrmions

by performing optically pumped NMR (OPNMR) experiments. The most important results are

presented in Fig. 2.16 (a). In this graph, the Knight shift is plotted vs filling factor. In the next

section we will see that the Knight shift, which is the shift of the nuclear spin precession or

Larmor resonance frequency, is directly proportional to the electron spin polarizationP. At

exactlyν = 1, the Knight shift is maximum corresponding toP = 1. On both sides ofν = 1

the polarization decreases rapidly. This result agrees well with the theoretical prediction that
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Figure 2.16: The existence of skyrmions was first proved by means of optically

pumped NMR experiments [68]. Figure (a) shows that at exactlyν = 1, P = 1,

but it deviates from this value on both sides ofν = 1 as expected for skyrmions.

For a non-interacting system the expected polarization is shown by the solid line.

Figure (b) schematically shows that if Coulomb exchange were neglected, one

would expect the system to unpolarize forν > 1, but should remain fully polar-

ized atν < 1 (adapted from [22])

finite-size skyrmions with a total spin of≈ 3.6 exist aroundν = 116. The solid line shows the

expected Knight shift for the non-interacting system, i.e. if Coulomb exchange were neglected

and the excitations were just a single spin flip. This can be easily understood by using Fig. 2.16

(b). For this case we would expect a fully polarized system forν < 1, since the introduction of

a hole would not change the polarization, whereas if an electron is introduced, the polarization

should decrease asP = (2− ν)/ν for 1 < ν < 2 until reaching 0 atν = 2. The measurements

shown in Fig. (a) were performed atB = 7.05 T. However skyrmions are not expected to occur

at thisB-field value since Kukushkinet al. ruled out the existence of skyrmions at fields greater

than4 T by determining the polarization with luminescence experiments [88]. This apparent

contradiction might be due to a shift in the electron Zeeman energy caused by an additional local

magnetic field created by dynamically polarized nuclei which act on the electron spin, known

as hyperfine field. The coupling of the electronic and nuclear system is the topic of the next

subsection. In principle, skyrmions should also exist around the QHF stateν = 1/3 [64]. Even

though there has been some indication that they exist in this regime [89], some experiments

have not revealed their existence [23,52]. This might be due to the much larger spin stiffness at

1/3.

Some of the quasiparticle excitations in the FQHE, for example atν = 2/3, might be spin

16Even though a skyrmion should be a spatially unbounded, infinite spin excitation, in the QHF one speaks of

skyrmions whenever the number of reversed spins per quasiparticle is greater than 1.
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reversed [see Fig. 2.10 (b)]. Here, the spin degree of freedom also plays an important role.

Skyrmionic and quasiparticle excitation measurements will be presented in section 5.5.

2.4.5 Interactions between Electrons and Nuclei

The electronic system alone cannot explain certain phenomena occuring in the LLL. The cou-

pling between electrons and nuclei should be taken into account. The importance of the nuclear

system in two-dimensional systems has been established in numerous experiments [5, 58, 73,

90, 91, 92, 93]. In general, electrons and nuclei couple via the hyperfine interaction. It is thus

important to understand the consequences of this interaction in more detail.

Hyperfine Interaction

If a nucleus has a spinI, then it can interact with an electron spinS, through the hyperfine

interaction written as:

H = AHFI · S (2.27)

The hyperfine constant has two contributions,AHF = As + Ap . The first contribution arises

from the electron wavefunction which has a non-zero probability of being located at the nuclear

site, usually from s-type wavefunctions. This term is known as the Fermi contact interaction:

As =
µ0

4π
· 8π

3
· (geµB) (gNµN) |ψ(0)|2 (2.28)

Here,ge, gN are the free electrong-factor and the nuclearg-factor respectively,µN the nuclear

magneton,µB the Bohr magneton,µ0 the permeability constant and|ψ(0)|2 the probability of

finding an electron at a nuclear site.

The second contribution comes from wavefunctions which have an angular momentum and

vanish at the nuclear site such as p-wavefunctions:

Ap =
µ0

4π
· 2

5
· (geµB) (gNµN) 〈 1

r3
〉〈3 cos2 θ − 1〉 (2.29)

whereθ is the angle between the magnetic field and the p-wavefunction lobe [94]. The term

〈 1
r3 〉 is an averaging over the electronic wave function and it vanishes atψ(0). Since in GaAs

the electrons contributing to transport are situated in the conduction band, they have s-type

wavefunctions. Therefore, only the Fermi contact term is relevant in this case (equation 2.28).

In principle, the hyperfine coupling between electrons and nuclei is important in two ways:

First, whenever the nuclei are polarized, they create a local magnetic field, referred to as the

nuclear hyperfine fieldBN, which acts exclusively on the electronic spin (i.e. not on the orbital

motion). The spin of an electron “feels” this internal magnetic field given by:

BN =
2µ0

3
· ge

g∗
h̄
∑

i

aiγNi Ii|Ψ(ri)|2 (2.30)
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summing over the nucleii at positionri [90]. This expression was obtained by averaging over

all nuclear isotopes with respect to their abundanceai. In GaAs, the abundances for the three

isotopes present are60.4% for 69Ga, 39.6% for 71Ga and100% for 75As. The equation also

containsg∗ which is the effectiveg-factor of the electrons in GaAs andγN = gNµN

h̄
referred to

as the gyromagnetic ratio. Alternatively,BN can be written in terms of the hyperfine constant

as: BN = AHF〈Iz〉
g∗µB

. As a result of the nuclear hyperfine field, the Zeeman energy changes

to g∗µB(Bext + BN). The change in the electron spin resonance (ESR) frequency due to the

nuclear hyperfine field is known as the Overhauser shift [95]. Since spin phenomena in the LLL,

such as spin phase transitions or Skyrmions depend on the ratioη, which contains the Zeeman

energy (see sections 2.4.1 and 2.4.4), they are strongly affected by the hyperfine coupling. The

nuclei can be polarized either thermally or through electron spin flip nuclear spin flop processes.

Usually the thermal polarization is negligible, but at the low temperatures and high magnetic

fields (atT ≈ 20 mK andB = 10 T) where some of our experiments were performed, about

15% of the nuclei are polarized. We will return to this point in chapter 5. Flip-flop processes

can be easier visualized by rewriting equation 2.27 into

H = AHF{
1

2
(I+ · S− + I− · S+) + Iz · Sz}. (2.31)

The last term is the effective Zeeman interaction between the electron and nuclear spins. In

the first two terms,I+(−) andS+(−) are the raising (lowering) operators for a nuclear and

electron spin, respectively. They represent simultaneous electron flip nuclear flop processes:

∆S = ±1 is accompanied by a∆I = ∓1. The nuclear system is thus driven out of thermal

equilibrium and the enhanced nuclear polarization or hyperpolarization via these processes is

called the Overhauser effect. Dynamical nuclear polarization (DNP) can be achieved by op-

tically exciting the electronic system with circularly polarized light (optical pumping) [96] or

by current-induced nuclear spin polarization ( [5, 91]) just to mention two techniques amongst

others reported in the literature ( [97,98]).

Besides the nuclear hyperfine field created by polarized nuclei, the polarized electrons also

create a local magnetic field acting on the nuclear spins. Summing over the electronsj, the field

acting upon theith nucleus is:

Be
i = −2µ0

3
· geµB

∑
j

Sj|Ψ(rj)|2. (2.32)

This is the second important effect of the hyperfine coupling. Due to the additional magnetic

field, the nuclear Zeeman splitting changes byh̄γNBe. This change causes a shift in the NMR

Larmor resonance frequency of the nuclei referred to as the Knight shiftKs in 2DES17. Since

17The Knight shift is usually defined as the frequency shift due toBe divided by the zero-shift reference fre-

quency given in% or ppm units. However in 2DES, it has become common practice to define the Knight shift as

the shifted frequency in terms of kHz.
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Ks is proportional to the electron polarizationP, NMR is a powerful technique to determine

this value (see section 5.2). In the next subsection we describe the two experimental techniques,

NMR and transport, used in this thesis to study the electron-nucleus coupling in the FQHE.

2.4.6 Measuring Techniques

Various techniques have been implemented to study the spin degree of freedom in the FQHE.

The optical measurements shown in Figs. 2.13 and 2.14(a), as well as heat capacity [99], mag-

netization [100,101], surface acoustic waves (see appendix A), transport [55], optically pumped

(OP)NMR [96], optically detected (OD)NMR [88, 102], multiple quantum well (MQW)NMR

[73] and resistance detected (RD)NMR [6, 58] measurements have all provided an insight into

spin phenomena in the LLL. In this section, we concentrate on transport and NMR.

Transport

From Fig. 2.11(b), we have seen that the importance of spin in the FQHE has been revealed

in transport by a non-vanishing longitudinal resistance atν = 2/3. Furthermore, the coupling

between electrons and nuclei has been determined by considering the large time constants in-

volved in the settling of the resistance. For example atν = 2/3, an anomalously large peak in

Rxx was measured by Kronmülleret al. (Fig. 2.17) [5].

In the figure, the longitudinal resistance is plotted vs magnetic field. The fractional filling

factorν = 2/3 appears aroundB = 8 T. By reducing the field sweep rate near filling factor

2/3, a large peak develops inRxx. This peak is referred to as the huge longitudinal resistance or

HLR peak. The inset on the left corner shows the time it takes the peak to settle to equilibrium

after theB-field has been stopped. It is on the order of several minutes or even hours which is

typical for effects involving nuclear magnetic moments. Further work on the HLR has revealed

that this peak indicates the transition between the spin-unpolarized and spin-polarized ground

states ofν = 2/3 [59]. Also the peak evolves from a small longitudinal resistance (SLR) to a

HLR peak by increasing the current. A model explaining these phenomena has been recently

established. Transport studies of theν = 2/3 transition peak is a major part of this thesis. Our

results are presented in chapter 4.

Since spin phase transitions depend on the critical ratioEZ/EC, a change in the Zeeman

energy due to a nuclear hyperfine fieldBN shifts these transitions to other values of the external

B-field. Recently, the shifting of theν = 2/3 transition has been used as a “detector” to

determineBN as a function of filling factor in the QHE [98].
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Figure 2.17: The large peak in the longitudinal resistance aroundν = 2/3 is

referred to as the huge longitudinal resistance (HLR) peak [5]. It appears if the

B-field sweep rate is drastically reduced. The inset shows that it takes several

minutes for the peak to saturate. This is caused by the interaction between the

nuclear and electronic systems via the hyperfine interaction.

NMR

Nuclear magnetic resonance is an important tool to study the electron spin polarizationP of a

2DES. This is mainly because the electron polarization is directly proportional to the Knight

shift which can be determined from the spectroscopical information (P ∝ Ks). However,

obtaining a signal from a single quantum well is a great experimental challenge. The sensitivity

of an NMR experiment depends on the product of the number of nuclei in the system and

on their average nuclear spin polarization. Unfortunately, there are very few nuclei located

in the quantum well compared to the number of nuclei in the rest of the sample, i.e. barriers

and substrate. Furthermore, the average polarization of the nuclear spins in the quantum well is

usually small. In order to overcome these problems, several techniques have been implemented.

For example, the average nuclear polarization can be increased by optically pumped (OP)NMR

in which electron-hole pairs are generated by near infrared laser irradiation [96]. In this way, a

non-equilibrium spin polarization of the electrons is created which in turn polarizes the nuclei

via the hyperfine interaction. The resulting dynamical nuclear polarization (DNP) enables one

to study the electron-nuclear coupling in a 2DES [96,103,104,105]. This technique was used in

the measurements shown in Fig. 2.16. However, it has the disadvantage of bringing the system
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out of equilibrium.

Furthermore, the number of nuclear spins has been increased by using multiple quantum

well (MQW) samples. Here, several GaAs quantum wells are stacked on top of each other.

MQW were used for example in the OPNMR experiments presented in Fig. 2.16, and by Freytag

et al. in polarization experiments performed in the LLL [see Fig. 2.14 (b)] [23]. This technique,

however, has the disadvantage that the charge carrier density is fixed and that growing many

identical layers is challenging. In chapter 5 we present a new method which we have developed,

where conventional NMR and resistance detected NMR (see next subsection) are measured, in

order to quantitatively determine the electron spin polarization in a single 2DES.

Resistance Detected (RD)NMR

Transport and NMR techniques can be combined in the so-called resistance detected (RD)NMR

[6]. This method has been used to establish the interaction between nuclei and electrons in the

Figure 2.18: RDNMR measurements on the HLR peak. The dips inRxx occur at

the Larmor resonance frequency of69Ga. These experiments proved the existence

of electron-nuclear spin interactions in the FQHE (adapted from [6]). Inset: NMR

coil (one loop) was wound around a Hall bar.

FQHE. It consists of irradiating the sample with a radio frequency (RF) tuned to the Larmor

frequency of the nuclei in question (69Ga,71Ga or75As, in GaAs) while monitoring the changes

in Rxx. Figure 2.18 shows RDNMR measurements on the HLR peak at three different magnetic

fields for three different carrier densities. The resonance frequency is tuned to the69Ga nuclei.

A single turn NMR coil was used in the experiments. The dip in theRxx value indicated that
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the nuclear system interacts with the electronic system in the HLR regime.

A closer look at the RDNMR spectra of the three nuclear isotopes revealed a four-fold

splitting of the lines, see Fig. 2.19. None of the established interaction mechanism, such as

Figure 2.19: An anomalous four-fold splitting of the RDNMR lines was mea-

sured by Kronmülleret al. in the HLR regime [6]. In section 5.4, we clarify the

reason for such a splitting.

quadrupole effects, dipolar coupling or hyperfine interactions, were able to explain such an

anomaly in the RDNMR experiments. It was therefore speculated that a new electron-nuclear

interaction could exist in the FQHE regime. In section 5.4, we study the four-fold splitting and

explain the reason for such an anomaly.

In the next chapter, we present the high mobility, narrow quantum wells which were used in

this thesis. Furthermore, we describe the experimental setup required for the experiments.



Chapter 3

Samples and Experimental Setup

3.1 The Samples

The samples used for the transport measurements consist of single, narrow (14 and 15 nm)

GaAs quantum wells sandwiched between AlxGa1−xAs layers. In all the samples used in this

work, the aluminium content was 33% (x = 0.33).

Figure 3.1: Schematical drawing of a type A sample (a) and a type B sample (b).

A photograph of a typical Hall bar used in our transport experiments (c).
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Type Wafer,d QW (nm) Density (×1011cm−2) mobility (×106cm2/Vs) Vgate (V)

A 100797.3 0.9 - 1.3 1.5 @ no gate

(15) illumination n = 1.3× 1011cm−2

A 052098.2 0.74-1.77 1.8@ no gate

(14) illumination n = 1.3× 1011cm−2

A 052098.4 1.5-2.0 2.1 @ no gate

(15) illumination n = 2.0× 1011cm−2

B 020502.1 0.8-2.1 1.6 @

(15) frontgate n = 1.5× 1011cm−2 (−0.6− 0)

— NU1154 (15) 2.56 1.0 @ no gate

(15) no illumin. n = 2.6× 1011cm−2 no gate

— 120700.1 0.5-2.2 1.3 @ see reference

(15/22/15) backgate n = 1.6× 1011cm−2 [7]

Table 3.1: Some of the wafers used in this thesis are listed here. Samples of type A correspond

to Fig. 3.1(a) and of type B correspond to Fig. (b).

Figures 3.1 (a) and (b) schematically show two characteristic samples used for our exper-

iments. Sample A is single-sided doped and contains no electrons without illumination. The

carriers can be introduced into the well by firstly illuminating the sample at4He temperature,

then heating it up until the thermal energy is high enough for the carriers to tunnel from the

doping layer into the well (> 15 mK) and electrons start populating the well, and finally cool-

ing it down to3He or dilution refrigerator temperatures (see next section). This sample shows

a typical mobility ofµ ≈ 1.8 · 106cm2/Vs at a density of1.3 × 1011cm−2(further details are

presented in Reference [4]). Sample B is symmetrically doped and has an intrinsic density of

n = 2.03× 1011cm−2 without illumination. A thick AlGaAs cap layer (250 nm) was grown in

order to evaporate a metallic gate without affecting the quality of the 2DES. The density can be

varied between2.03 × 1011cm−2 and0.8 × 1011cm−2 by means of a8.5 nm thin AuPd front

gate. This covered the whole density range of theν = 2/3 transition. Table 3.1 lists the most

important wafers used in this thesis. The type of sample correlates with the structures drawn in

Fig. 3.1.

An example of a typical Hall bar used in this work is shown in Fig. 3.1(c) (see also ref-

erence [7]). The current was applied between the source and drain and the longitudinal and

Hall voltages were measured. The length to width ratiosL/W of the Hall bars employed in

the measurements were 5, 6, 7, 8.5 and 9.5. The usual width of our Hall bars is100 µm, how-

ever, we also used other widths ranging from80 µm to 1.5 mm in various experiments. This

will be specified in the corresponding figures. The procedure for structuring the Hall bar and

evaporating the contacts and front gate for a sample of type B is described in appendix B. In
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Figure 3.2: Typicalρxx vsB-field plot atn = 1.3× 1011 cm−2 andT = 55 mK
in a B-type sample. Inset: SdH oscillations and spin splitting at lowerB-fields

(Sample from wafer020501.1).

Fig. 3.2, we present a plot of the longitudinal resistivity vsB-field using a sample of type B at

T = 55 mK. Several filling factors, such asν = 2/3, 2/5, 3/5, 3/7, 1/3 etc. can be observed.

The Shubnikov-de Haas maxima begin to spin-split atB ≈ 0.3 T (see inset). In this graph,

n = 1.3 × 1011cm−2 andµ = 1.5 · 106cm2/Vs. A significant part of our measurements were

performed at theν = 2/3 ground state highlighted in blue.

3.2 Experimental Setup

The experiments presented in this work were mostly performed on two types of cryogenic

system: A3He system and a dilution refrigerator.

3He system

We used two different3He inserts:

1) An Oxford Instruments HelioxVL insert in which the sample is mounted at the end of a cold

finger in vacuum. The3He liquid is pumped by an internal activated charcoal sorption pump in

order to reach base temperatures ofT ≈ 250 mK [106].
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2) Custom-built3He insert in which the sample is immersed in the liquid with a base temperature

of 350 mK.

Both inserts have a rotation mechanism useful for in-situ tiltedB-field experiments.

3He/4He dilution refrigerator

In general two types of dilution refrigerator inserts were employed:

1) An Oxford KelvinoxTLM dilution refrigerator with two different inserts: a standard Oxford

insert with base temperatures of≈ 20 mK ( [106]) and a low temperature insert designed by

J. Göres [54] capable of reaching temperatures below 15 mK used for the activation measure-

ments of section 4.7 .

2) An NMR dilution refrigerator constructed for a15/17 T, 52 mm bore superconducting mag-

net with a homogeneity of≈ 5 ppm per cm3 located at the High Magnetic Field Laboratory

in Grenoble (GHMFL) [23]. High stability (≈ 1 ppm) was achieved by using a Bruker 21/120

SC6 power supply. The lowest base temperature reached in the fridge wasT ≈ 35 mK. Most

of the NMR results presented in chapter 5 were obtained in this system.

3.2.1 Quasi-DC Transport

Except for the DC-current experiments shown section 4.6.2, we used a standard lock-in tech-

nique at low frequencies for the electrical transport measurements. Typical frequency values

used were between7 and23 Hz. A sinusoidal AC current, ranging from0.5 nA to 1.4 µA (de-

pending on the Hall bar width), was supplied by a Hewlett Packard 3325B or a Stanford DS345

synthesized function generator connected in series to a10 MΩ resistor. The longitudinal and

Hall voltages were measured simultaneously with two different lock-in devices, EG&G Prince-

ton 5210 and Stanford SR830, linked to digital multimeters (DMM) such as the Keithley 2000.

A standard four point configuration was used for the longitudinal resistance measurements by

having different voltage probe contacts than the source and drain [see Fig. 3.1(c)]. All of the in-

struments were separated from ground with the use of isolating transformers and optocouplers.

This enabled us to have a well-defined ground at the 2DES usually from a single device. The

gate voltages were applied by a D/A converter.

3.2.2 NMR

In order to measure the electron spin polarization of a single QW in the FQHE regime (see

section 5.2), several experimental requirements had to be fulfilled. It was necessary to simulta-

neously conduct electrical transport and NMR measurements at3He/4He dilution refrigerator

temperatures in homogeneous (< 105 ppm) and high (up to18 T) magnetic fields. Therefore,

we opted for carrying out part of our experiments at the NMR facility of the GHMFL.
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The scheme presented in Fig. 3.3 depicts the sample preparation needed for the experiments.

In general, the structured sample is bonded to a chip carrier (1) and then inserted into a copper

Figure 3.3: Schematical drawing of the sample preparation. The sample is firstly

bonded into chip carrier 1 and then inserted into an NMR coil which is glued to

chip carrier 2.

NMR coil which is glued to another chip carrier (2). Special care is taken to arrange the bond

wires parallel to the RF magnetic field lines. Both chip carriers are then connected together and

chip carrier 2 is plugged into the sample holder. A photograph of the sample is shown in Fig.

3.4. The bonded sample, the two chip carriers and the copper NMR coil (9 wounds) are clearly

seen. This setup enabled us to increase the RF magnetic field homogeneity across the sample

in comparison to a single turn NMR coil. RF field uniformity was particularly beneficial in

obtaining a reference signal from the substrate nuclei by means of pulsed NMR experiments

(see section 5.1). Additionally, heating effects were reduced by immersing the sample into the

mixture and keeping the amplitude of the RF signal below−16 dBm. The cooling power of the

fridge is≈ 120 µW atT = 100 mK. Furthermore, a plastic mixing chamber was used to avoid

eddy currents while sweeping the magnetic field or RF irradiation. By comparing transport

measurements without an RF-signal and with an on-resonance signal, we could establish an

increase in temperature of only10 mK.

In order for the system to effectively absorb the RF field produced by the NMR coil and

to detect the NMR signal originating from the substrate nuclei, it is important that the coil

resonates at the Larmor frequency,ωL, of the nuclei investigated. Usually a coil is formed

from capacitive and inductive elements and its resonant frequency is given byωR = 1/
√
LiC,
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Figure 3.4: Photograph of the NMR coil wound around the bonded sample. By

using this setup, a homogeneous RF magnetic field was accomplished across the

sample.

whereLi is the inductance andC the capacitance of the LC circuit. In addition to frequency

tuning, losses of the RF-power going into and out of the circuit can be reduced by matching the

impedance of the LC circuit to the typical50 Ω input and output impedance value of the RF

components and transmission lines.

However, for a simpler use with the dilution refrigerator, we employed the so-calledtop-

tuning technique in which all variable components are located outside the cryostat. The circuit

used in our experiments is shown in Fig. 3.5. It consists of one variable capacitor (between

C = 5 and600 pF) for impedance matching and variable length of the transmission line (blue,

dotted line) for frequency tuning. Since the line is part of the circuit, this technique presents

some loss of the signal to noise ratio. Nevertheless, it proved to be sufficient and more adequate

due to its simplicity for our experiments in which tuning was mainly necessary for the pulsed,

but not for the RDNMR experiments. We were able to detect the NMR signal from the substrate

nuclei even with a small rf power (< −16 dBm).
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Figure 3.5: An NMR coil wound around the contacted Hall bar structure was

tuned to the Larmor resonance frequency of the nuclei investigated. In thetop-

tuning technique, shown in the drawing, a variable capacitor located outside the

cryostat is used to match the impedance to50 Ω. The frequency is tuned by

varying the length of the transmission line. By using this setup, we were able to

conduct NMR and transport experiments simultaneously.

In the figure, we also show a top view of the Hall bar structured 2DES bonded to the chip

carrier and wound by a copper NMR coil. The coil was directly attached to low-loss coaxial

cables. Semi-rigid copper coaxes were used from300 K to 4 K, and cryogenic, silver-plated,

copper-beryllium coaxes (RDC < 50 Ω/m) from the4 K plate to the mixing chamber for a

better thermalization. In the continuous wave (CW) NMR experiments (see chapter 5), the

RF signal was supplied by a Hewlett-Packard 8657A signal generator while the pulsed signal

was provided from a custom-built spectrometer. This setup was necessary for some of the

measurements presented in chapter 5.





Chapter 4

Transport Studies of theν = 2/3 Spin

Phase Transition

This chapter deals with transport studies of spin phase transitions in the FQHE. Transitions

between ground states of different polarization are observed at filling factorsν = 2/3, 3/5

and4/7 (νCF = 2, 3 and4, respectively). In particular, we focus onν = 2/3 which shows

a transition from an unpolarized (P = 0) to a fully polarized (P = 1) state as schematically

drawn in Fig. 4.1.

Figure 4.1: CF Landau levels: The spin unpolarized-polarized transition atν =
2/3 is studied in this chapter by means of transport experiments.

In transport, the phase transition is observed by a resistance peak in the longitudinal resis-

tivity at theν = 2/3 minimum. At small currents, a small longitudinal resistance (SLR) peak
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appears in theρxx minimum while at high currents a huge longitudinal resistance (HLR) is mea-

sured. This situation is depicted in Fig. 4.2. In (a), the magnetic field was swept and plotted vs

Figure 4.2: (a) Plot of the longitudinal resistivity vsB-field for a sample from

wafer 020502.1 at a density ofn = 1.55 × 1011cm−2. TheB-field was swept

slowly (dB/dt = 0.02 T/min) at the fixed gate voltageVg = −0.3 V. (b) The

gate voltage was swept at constantB-field (9.25 T) andI = 75 nA. (c) A B-field

sweep is shown at low currents (I = 1 nA). The measurements were performed

in a 3He/4He dilution refrigerator atT = 50 mK.

ρxx by applying a large current (I = 75 nA). A large peak is observed at filling factorν = 2/3.

In Fig. (b), the gate voltage is swept at constantB-field (B = 9.25 T) and plotted vsρxx at the

same current value. The HLR is also present in this plot. At low currents on the other hand

(I = 1 nA), the transition peak is characterized by a small peak inρxx as seen in theB-field

sweep shown in Fig. (c). One objective of this chapter is to establish the connection between the

spin phase transition and the huge longitudinal resistance (HLR) anomaly peak. Therefore, it

is important to firstly present the similarities and differences between the low current (or SLR)
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and high current (or HLR) regime. The two experimental techniques employed to measure the

transition, i.e. tiltedB-field and density tuning experiments, are shown and discussed in section

4.2. By combining both of these methods, we could map a phase diagram of theν = 2/3

ground state as a function of Coulomb and Zeeman energies. The hysteresis and time depen-

dence are analyzed in section 4.3 and the Hall resistance is shortly discussed in section 4.4.

After explaining the model used to describe the phenomenon responsible for the existence of a

peak at the transition in section 4.5, in which both current regimes are discussed, we analyze

its dependence on various parameters such as time, frequency and current. Finally, temperature

measurements were necessary in order to understand the mechanism leading to dissipation in

more detail.

4.1 The Low and High Current Regimes

In transport experiments, the spin unpolarized-polarized phase transition at filling factorν =

2/3 is characterized by a peak in the longitudinal resistivity, where usually vanishing resistance

is measured instead. This has been reported in numerous works [5, 8, 55, 58, 59, 72]. At the

transition, density fluctuations caused by disorder are believed to induce domains of different

spin configuration. Scattering along domain walls across the sample is a possible cause for

extra dissipation observed in transport [5, 57, 58, 59, 107]. Surprisingly, the phase transition

peak changes drastically if the current is increased: the small resistance peak (SLR) inρxx

develops into a large and broad peak as illustrated in Fig. 4.3. From this graph, we can infer

that the huge longitudinal resistance peak, known as the HLR, always occurs at the spin phase

transition. Four traces of the longitudinal resistivity vs filling factorν in the vicinity of 2/3 are

shown. In all four curves, the magnetic field is kept constant (B = 8.1 T) while the gate voltage

is swept. A sample of type B, presented in Fig. 3.1, was used in these experiments. The black

solid line represents a sweep from higher to lower filling factor for a current ofI = 1 nA (small

current regime). The small peak indicates the unpolarized-polarized spin phase transition. The

dashed line shows the gate sweep in the opposite direction. A very small hysteresis is seen in the

curve. The red curves show the HLR peak at a current ofI = 40 nA in both sweep directions

in the large current regime. A pronounced hysteresis as well as saturation times of the order

of minutes characterize this large peak. It was thus necessary both to increase the current and

reduce the gate voltage sweep rate from0.6 V/s, used for the small current peak, to0.0024 V/s

in order to observe the high current peak.

More precisely, it is the current density rather than the current which is the critical parameter

to induce the HLR. Figure 4.4 shows the large current resistance peak measured by using a

1.5 mm wide hall bar. The HLR transition peak fully develops in such a structure only after

increasing the current to1.4 µA.
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Figure 4.3: Plot of ρxx vs filling factor aroundν = 2/3. The black traces

represent a sweep from higher to lower filling factor (solid line) and from lower

to higher filling factor (dashed line) atI = 1 nA while the red traces show a plot

at I = 40 nA (Sample from wafer020502.1).

Since the existing ground state depends primarily on the interplay between the Zeeman and

Coulomb energies, the transition will occur at a certain critical ratioηc of these energies. In

the next section, we present two experimental techniques in which the ratioη was varied in the

vicinity of the 2/3 phase transition.

4.2 Phase Diagram of theν = 2/3 Ground State

Experimentally, it is possible to choose the polarization of the ground state at filling factor

ν = 2/3 by tuning the ratioη = EZ/EC. At low B-fields, i.e. low vaues ofη, the unpolarized

ground state is favored, while at highB-fields (highη values) the polarized state is present.

Since the Zeeman energyEZ ∝ B and the Coulomb energyEC ∝
√
B, a transition between

states can be obtained either by tilting the direction of the sample with respect to the magnetic

field or by sweeping the electron density.
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Figure 4.4: A 1.5 mm Hall bar was used to measure the longitudinal resisitivity

as a function of magnetic fieldB. The graph shows a fast sweep of theB-field at

I = 1 µA (black curve) and a slow sweep atI = 1.4 µA (red curve). The current

density is the critical parameter to induce the HLR (Sample from052098.4).

4.2.1 TiltedB-field Experiments

If a sample at fixed density is tilted relative to the direction of the magnetic fieldBz by an angle

θ, a filling factor occurs at the sameB⊥ value at all angles, but at higherBtot since this value

increases according toBtot = B⊥/ cos θ. As a result, the Zeeman energy rises as a function of

the tilt-angle (Ez ∝ Btot) while the Coulomb energy remains constant (EC ∝
√
B⊥). Therefore

by tilting the sample it is possible to tune the ground state polarization of the filling factor

ν = 2/3 due to its dependence onη = EZ/EC. Figures 4.5(a) and (b) show plots ofρxx vsB⊥

zoomed on theν = 2/3 minimum. These measurements were performed atT = 250 mK and

a density ofn = 1.2 × 1011cm−2 using a14 nm QW of type A [Fig. 3.1(a)]. The four curves,

which are offset vertically for clarity, represent four different tilt-anglesθ. A schematic diagram

of the tilted sample is depicted at the top of Fig. 4.5(a). Plots (a) and (b) were measured in the

low and high current regimes, respectively. In Fig. (a), the vanishingρxx at θ = 0◦ is caused

by the gappedν = 2/3 ground state, which in this case is unpolarized (η < ηc). As the

sample is tilted,Btot increases whileB⊥ remains constant and a small peak appears in theρxx

minimum (see blue arrows) revealing the unpolarized-polarized transition atηc. This situation

occurs when both states are brought close to degeneracy. Theρxx minimum reenters at higher

tilt-angles (η > ηc) indicating a polarized ground state.
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Figure 4.5: The Zeeman to Coulomb ratioη can be tuned by means of tiltedB-

field experiments. The SLR at low currents [Fig. (a)] and the HLR at high currents

[Fig. (b)] are observed at different angles (Sample from 052098.2).

In the high current regime (100 nA), the transition peak develops into the huge longitudinal

resistance (HLR) peak [Fig. 4.5(b)]. The HLR appears at the sameηc value as the small current

peak, but extends over the whole range of the2/3 minimum. The height and width of the HLR

are caused by a current-induced nuclear spin polarization (see section 4.5). These measurements

were done using a so-called settling-time technique. This consists of sweeping theB-field in

steps of50 mT at a rate of0.5 T/min and then waiting a certain amount of time (settling time)

until the resistance value reaches equilibrium, i.e. until∆ρxx/∆t < 1 Ω/5 s. Subsequently, the

magnetic field can be swept to the next value. The value of∆ρxx/∆t is determined by the noise

in the system. This technique was used due to the long equilibration times involved in the HLR

regime. The time dependence, hysteresis, as well as a model for HLR are presented in section

4.3 and 4.5.

A complete range of angles is shown in Figs. 4.6(a) and (b). Here, the two color plots show

ρxx versusBperp andcos (Θ)1. For these measurements, a symmetrically doped 15 nm QW was

used (µ ≈ 1.3 · 106cm2/Vs at n = 1.6 × 1011cm−2). Details of this structure are published

1In the experiments shown in Figs. 4.6 and 4.8,Θ is defined as the angle between the direction parallel to the

2DES andBz.
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Figure 4.6: Color plot of theν = 2/3 transition at low currents (a) and high

currents (b) derived from tiltedB-field experiments. Figure adapted from Refer-

ence [59] (Sample from120700.1).

elsewhere [7, 59]. The curves used for the color plot 4.6(a) were measured in the low current

regime (1 nA). The thin blue line aroundB⊥ = 7.5 T is caused by the small longitudinal

resistance peak signalizing the spin unpolarized-polarized phase transition. In the high current

regime [Fig. 4.6(b)], i.e. atI = 25 nA, the SLR peak develops into the HLR, depicted as a

thick, red line.

4.2.2 Density Sweep

The spin polarization of the ground state can also be chosen by tuning the densityn of the

sample. In Figs. 4.7(a) and (b),ρxx is plotted versusν at four different values of the magnetic

field (B = 7.8, 8.0, 8.5 and9.0 T). The figures are again vertically offset for clarity. These

curves were measured by sweeping the gate voltage in order to go from a high to a low filling

factor atI = 5 nA [Fig. (a)] andI = 40 nA [Fig. (b)], respectively. In this case,η ∝ B√
ν

at

constant magnetic fieldB and a transition occurs from an unpolarized to a polarized state. The

small peak reveals this transition in the low current regime while the large HLR peak in the high

current regime. The green curve in Fig. (b) taken atB = 11 T does not show any peak since

the system is fully polarized.

A complete set of densities is presented in the color plots of Figs. 4.8(a) and (b). In these

experiments, the same sample was used as the one described in Fig. 4.6. Similar to the tilted field
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Figure 4.7: ρxx vsν at differentB-fields. The SLR (a) and HLR (b) can also be

induced by varyingη via density sweeps (Sample from020502.1).

Figure 4.8: Color plot of density sweeps in the low current (a) and high cur-

rent (b) transition regimes. Figure adapted from Reference [59] (Sample from

120700.1).
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experiments, the thin blue line indicates the transition at low currents (1 nA) which develops

into the HLR at high currents (40 nA). The two top insets depictρxx versusν andB for the

density value marked by a white dashed line in the color plots. These curves were measured by

sweeping the magnetic field around filling factorν = 2/3 at the desired density value, which

was varied by means of a gate. In the high current regime a hysteresis is observed between the

magnetic field up and down sweeps. This will be discussed in the next section.

4.2.3 Phase Diagram

A phase diagram of theν = 2/3 ground state is presented in Fig. 4.9. This plot has been

extracted from tilted magnetic field sweeps at various densities ranging betweenn = 0.74 ×
1011cm−2 andn = 1.77× 1011cm−2 using a sample of type A [3.1(a)]. The data points indicate

theBtot vsB⊥ values at which aρxx transition peak is measured in the HLR regime2. The color

scale on the top left indicates the value of the measured difference in longitudinal resistance

(∆Rxx) between a fast and a slow sweep. FromB⊥ andBtot, we calculatedEZeeman (right

axis) andECoulomb (top axis), respectively. The red curves (solid and dashed) show the lines of

constantη = EZ/EC = 0.019 ± 0.002 which were calculated to fit the experimental results.

These values were obtained after using equations (2.20) and (2.21), in which the Zeeman and

Coulomb energy were corrected for a 15 nm QW3. This regime depicts the boundary between

the unpolarized and the fully polarizedν = 2/3 ground state polarization for a 15 nm QW. For

comparison, we have plotted the sameη regime for a wide 30 nm QW, drawn as a black line,

and observe that in such a well the transition would be expected at a lower magnetic field value4.

From the diagram we can observe that most of the data points lie inside the calculated phase

transition boundary. Therefore, the assertion thatη is the critical parameter which determines

the ground state is in good agreement with the experimental results. Nevertheless, a better

description of the transition is given by using the CF model [7,82,83]. The orange dashed line

seen in Fig. 4.9 was calculated by equating the Zeeman energy and the CF cyclotron energy as

presented in equation 2.23. The CF polarization mass at a density ofn0 = 1.18× 1011cm−2 (at

which the HLR was strongest) was determined to bemp
CF(n0) = 1.65 me. The transition peak

develops atν = 2/3 at this density only after tilting the sample byθ = 28◦ (B⊥ = 7.4 T and

2There is no data available belowB⊥ = 4.6 T since the lowest achievable density in this sample isn =
0.74 × 1011cm−2. Moreover, due to the hysteresis and width of the HLR peak,Btot andB⊥ are average values

over the region where the HLR exists.
3For the FWHM value, we usedλ = 8.9 acquired from calculations presented in Reference [79].
4For a 30 nm QW, we usedλ = 16.2 · 10−9 m. We have opted for comparing with a 30 nm QW instead of a

heterostructure since in the latter case the FWHM depends on density and on sample specific parameters such as

doping concentration [79].
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Figure 4.9: Phase diagram of theν = 2/3 ground state. The dots indicate the

Btot vs B⊥ value where the maximum of the transition occurs. From the data

points, a critical valueν = 0.019 ± 0.002 for the ↓↑ − ↑↑ transition can be

determined (red lines). The black line shows the sameηc = 0.019 expected for a

35 nm QW. The yellow lines were extracted from Figs. 4.6 and 4.8. The dashed,

orange line was calculated via equation 2.23 using the CF model. (Sample from

052098.2)

Btot = 8.45 T). The mass was obtained from the following expression:

mp
CF =

h̄e|Beff |me

g∗µBBtotme

=
2|Beff |me

g∗Btot

, (4.1)

where|Beff | = |B⊥(ν) − B⊥(ν = 1/2)|. In our calculations, we have again corrected theg-

factor with equation 2.20. From eq. 2.25, we know thatmp
CF/me ∝

√
B, which usingmp

CF(n0)

yieldsmp
CF/me = 0.53Btot/

√
B⊥. Here, we have rewritten

√
B into Btot/

√
B⊥ since we are

conducting tiltedB-field experiments. The prefactor is slightly smaller, but in fair agreement,

with the theoretical expected value0.6 [80] (see also section 2.4.3). All of the measured data

points can be enclosed in an ellipse and from the diagram we can realize that the calculated

dashed line passes through the center of the ellipse. The CF picture offers an excellent descrip-
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tion of spin phase transitions in the FQHE regime as it has also been corroborated by the NMR

experiments presented in the next chapter.

4.3 Hysteresis and Time Dependence of the Transition

The transition resistances show clear differences in its hysteretic and time evolution behavior

depending on the current. In this section, we study these differences in both the low and high

current regimes.

Low Current Regime

Figures 4.10(a) and (b) show two gate sweeps around filling factorν = 2/3. In the solid

Figure 4.10: Density sweeps in the SLR regime. The small hysteresis observed

for a gate voltage sweep rate ofdV/dt = 0.6V/min (a) vanishes after reducing

dV/dt to 6 mV/min (b). The amplitude of the peak only increases very slightly

after reducing the sweep rate (Sample from020502.1).

curve, the gate voltage was swept in order to go from a high to a low filling factor and in

the dashed line it was swept in the opposite direction. The gate voltage sweep was reduced

from dV/dt = 0.6 V/min in Fig. 4.10(a) todV/dt = 6 mV/min in Fig. 4.10(b). The small

hysteresis observed in the first figure (∆ν = 0.00323) vanishes after the sweep rate is reduced5.

Furthermore the amplitude of the peak increases very slightly after reducing the sweep rate.

These measurements were done atT ≈ 70 mK. In reference [7] it was shown that a hysteresis

is observed in the low current regime only below this temperature. The hysteresis mentioned

5At the edges of the peak, the hysteresis is only due to the integration time of the Lock-ins and not from the

physical system.
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there is not caused by the nuclear system but rather by the exchange energy of the electrons (see

Fig. 4.25).

High Current Regime

The situation changes drastically at high currents. A long time dependence and a remarkable

hysteresis are present in this regime even aboveT = 70 mK. In order to study this situation

more carefully, we have used the time settling technique described in section 4.5 for both up-

ward and downward sweeps of the magnetic field. The three plots presented in Fig. 4.11 (a-c)

showρxx vsB-field atθ = 15◦, 30◦ and34◦, respectively, atT = 250 mK. The black curves

Figure 4.11: The HLR shows a pronounced hysteresis between the up sweeps

(black) and down sweeps (red). The hysteresis reverses as the angle is increased

in tilted B-field experiments (a→c). The samples are from052098.2.

were measured by sweeping the field upwards, while the red curves were taken during down-

ward sweeps. In all three plots, we can observe a pronounced hysteresis which is notoriously

different for the three angles. Atθ = 15◦, the up-sweep HLR curve is narrower than the down-

sweep curve. Atθ = 30◦, both the up and down sweep HLR curves are very similar and at

θ = 34◦ the up-sweep curve is broader than the down sweep curve. The different hysteresis

can be explained as follows: As seen in the black curves of Figs. 4.11 (a-c), the HLR starts to

develop at a certian value of the magnetic field. This value corresponds to the critical Zeeman

to Coulomb energy ratio (ηc) of the spin phase transition. The HLR then extends over the whole

width of the 2/3 minimum and finally disappears at the highB-field side of the minimum. The

peak which develops during the down sweep of theB-field (red curves) also sets in atηc and

also extends over the complete width of the2/3 minimum vanishing at the lowB-field side of

the minimum. The hysteresis reverses becauseηc shifts to a lower value ofB⊥ as the angle
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is increased. That is, atθ = 15◦ the HLR develops on the highB-field side of theν = 2/3

minimum, atθ = 30◦ it initiates near the center of the minimum and atθ = 34◦ it begins on the

low B-field side. Hence, the HLR switches from being narrow to being broad with increasing

tilt angle for the upward sweeps and viceversa for the downward sweeps6. The possible reason

for the peak broadness will be discussed in the next section (Model of the HLR). The dotted

lines seen at the bottom of Figs. (a-c) show the settling time needed for the curves to reach equi-

librium. The long time constants of the order minutes or even hours are due to the involvement

of the nuclear system in the HLR effect.

The time dependence can also be studied by recording the time it takes the HLR to relax

back after switching off the current, see Figs. 4.12(a) and (b). The experiments were performed

Figure 4.12: The time evolution of the HLR is studied by switching the cur-

rent off and on as plotted in Fig.4.10(a). The recovery of the HLR is plotted as

lnR/R0 vs t in Fig. 4.10(b).

as follows: The magnetic field was swept upwards untilηc was reached. It was then stopped

and a certain amount of time was allowed for the resistanceRxx to increase to its equilibrium

valueR0. Afterwards, the current was switched off and then turned back on after an arbitrary

waiting timet. The new resistance value was recorded immediately after switching the current

back on. Fig. 4.12(a) shows an example of such a measurement done atT ≈ 40 mK in a17 nm

QW of a type A sample. Here, the current was switched off for approximately100 s. The

HLR resistance was about90% of its original value after switching on the current again. This

6In reference [59], a different behavior of the HLR hysteresis was observed. During a down sweep, the resis-

tance did not extend to the end of the minimum, but only until the beginning of the transition. We do not know the

exact cause for these differences, but it might be that there is a stronger coupling between the electrons and nuclei

in our system.
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procedure was repeated for various waiting times and the logarithm of the ratioR/R0 is plotted

versus time in Fig. 4.12(b). The resistance relaxation times obtained range from≈ 10 minutes

to even hours. These are typical nuclear relaxation times in GaAs. The experiments shown here

are thus essential in determining the order of magnitude of the relaxation times present in the

system. However, they do not render the exactT1 spin-lattice relaxation time since its value

depends on other factors such as current and the magnetic field in which the experiments were

carried out.

4.4 Hall Resistance

So far we have only considered the longitudinal resistance while studying the spin phase tran-

sition atν = 2/3. In this section, we also investigate the Hall resistanceRxy during the phase

transition in both the low and high current regimes presented in Figs. 4.13 (a) and (b), respec-

tively. In the left figure,Rxy has been measured atI = 1 nA andT < 20 mK by sweeping the

Figure 4.13: Plots of the Hall resistance vs filling factor in the low current (a) and

high current (b) regimes. The deviation from exact quantization indicates dissipa-

tive transport which occurs during spin phase transitions (Sample from020502.1).

gate voltage at four different values of the magnetic field. For this purpose, we employed sam-

ples of type B [Fig. 3.1(b)]. The curves have been normalized to3RK/2 and offset vertically
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for clarity. The small deviation from exact quantization indicates dissipative transport at the

ν = 2/3 ground state. This occurs simultaneously with the small peak inρxx which character-

izes the spin phase transition. What is interesting here is the sign in the change of the resistance.

On the high filling factor side, that is atν > 2/3, Rxy decreases (blue and green curves) while

atν < 2/3 it increases (black curves) and atν = 2/3 it vanishes (red curves). This might imply

that the Hall resistance tries to reach its classical value as it departs from its quantization.

In the HLR regime atν = 2/3, Rxy deviates from exact quantization more strongly than in

the low current regime. Also, a marked hysteresis is present as seen in Fig. 4.13(b) in which

the black curve is a gate sweep from high to low filling factor and the red curve in the opposite

direction. A similar effect is seen at theν = 3/5 spin transition. The inset zooms in at filling

factor2/3. The Hall resistance in the high current regime has also been presented in reference

[108]. The information obtained from the experiments shown in sections 4.1-4.4, as well as

work performed on quantum Hall ferromagnets (QHF) has led us to present a model explaining

the dissipation mechanism at theν = 2/3 transition . This model is discussed in the following

section.

4.5 Model of the Transition

Resistance spikes have been observed at the transition between two crossing Landau levels

in several systems. In the IQHE, resistance peaks were measured in InGaAs/InP heterostruc-

tures [109], SiGe [110], AlAs [111, 112], wide GaAs QWs and in bilayer systems [79, 113],

while in the FQHE they were measured in single heterostructures and QW at several filling

factors such asν = 2/3, 2/5, 3/5, 4/7 etc. [5, 55, 56, 58, 59, 75]. In transport, hysteretic trans-

port of the resistance spikes have been addressed in terms of QH ferromagnetism of pseudospin

states [58, 114]. In general, only the two crossing levels, which can differ in Landau level or-

bital or spin indices, subband, or valleys, are taken into consideration. The two levels can then

be assigned pseudospin up and pseudospin down and the electron-electron interactions lead to

magnetic anisotropy. The system can show either easy-plane pseudospin anisotropy (the pseu-

dospin orientation magnetization is preferred in a plane of orientations) and resemble an XY

ferromagnet, easy-axis anisotropy (the pseudospin orientation can only take on discrete values

along a certain axis) such as an Ising ferromagnet or isotropic ferromagnet (all orientations

are possible). QHFs can be classified as follows: If the two pseudospin LLs only differ in

the real spin component, that is same subband and same LL orbital quantum number N, the

ferromagnetic state is isotropic. Theν = 1 single layer QHF presented in section 2.4.4 is

an example of such a system. If the pseudospin states of the crossing LLs differ in real spin

and orbital quantum number, but are from same subbands, the ferromagnet is characterized

by easy-axis anisotropy. Pseudospins from different subbands can have any of the three pseu-
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dospin anisotropies. A summary of possible QHFs is schematically displayed in figure 7 of

reference [115].

In this work, we are interested in the single layerν = 2/3 (νCF = 2) transition, where the

two levels involved are the spin up state of the lowest CF-LL and the spin down of the second

CF-LL. Therefore, easy-axis anisotropy characteristics have been identifed in transport where a

finite peak in theρxx resistance and hysteresis occur. In the following, we will present a model

of transport at this transition by considering some the concepts of easy-axis QHFs in combina-

tion with the results described in the first sections of this chapter: Usually, if the Fermi energy

lies in the localized states between LLs no backscattering is possible. The system is incom-

pressible in the bulk and the longitudinal resistivity goes to zero while the Hall resistivity is

quantized. At the crossing of two LLs, the gap should disappear, the Fermi energy would then

be in the extended states andρxx should be finite across the minimum. However, in experiment,

we do not observe a complete vanishing of theρxx minimum, but rather a sharp peak which does

not cover the whole extent of the minimum7. This unexpected behavior occurs because since

the intra-LL exchange energy is stronger than the inter-LL exchange energy, the system prefers

to stay in one of the two possible states (spin up or down) instead of in a linear superposition

of the states. Furthermore, the presence of disorder forces the system to break up into domains

of different polarizations. Hence, disorder plays a major role since there will be density fluctu-

ations and the parts of the sample with a lower density will be unpolarized while the parts with

higher density will be polarized. A schematic diagram of the domains is presented in Fig. 4.14.

The dissipation in transport happens due to reflections at the domain walls separating the re-

gions of both polarizations which cause backscattering. At low currents, i.e. in the SLR regime,

backscattering of current-carrying quasiparticles reflecting along the domain walls cause a peak

in ρxx. This situation changes if the current is increased. Electrons will acquire enough energy

to scatter between the domain walls and as a result spin-flips are necessary. In order to conserve

momentum, spin reversal processes can be mediated via spin-orbit coupling, phonon emission

or electron-nuclear hyperfine interaction. Experiments have revealed that the latter interaction

is dominant in the high current or HLR regime. Electron spin-flips are accompanied by nuclear

spin-flop processes which create an enhanced or dynamical nuclear spin polarization (DNP).

The DNP will take place underneath the domain walls and it will act back on the electronic

system changing its Zeeman energy. This will create an additional disorder of the electronic

system and the domain structure will change. Since the resistance increases substantially, it is

natural that either the amount of domain walls increases (smaller domains) or the walls become

larger and thus the amount of scattering excitations also increases. Flip-flop processes are usu-

ally not possible due to the much larger electron spin than nuclear spin splitting. However, at the

transition the electronic levels are almost degenerate and the electrons and nuclei can couple.

7This situation only applies for the low current regime.
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Figure 4.14: At the transition, domains of different spin polarization (P = 0 and

P = 1 atν = 2/3) are believed to form. Dissipation in the longitudinal resistivity

is probably due to backscattering of the charge-carrying quasiparticles reflecting

at the domain walls.

Another possibility is that not only a single spin flip but rather collective low-energy excitations

involving several spins, similar to skyrmions trapped at the domain walls, exist at the transition.

This issue is studied in more detail in section 4.7.2.

In addition to the increment in the amplitude of the HLR peak, its width also increases

drastically. From Fig. 4.3, we can see that theρxx peak extends over the whole range of the

ν = 2/3 minimum. The broadening may be caused by a shifting of the peak due to the hyperfine

field created by the current-induced dynamically polarized nuclei. Electrons crossing from

an unpolarized to a polarized domain flip their spin upward resulting in a downward flop of

the nuclear spin. Consequently, the nuclear hyperfine fieldBN is negative and the peak shifts

towards a higher magnetic field (i.e. lowerν if the B-field is held constant and the density is

changed). On the other hand, electrons crossing from a polarized to an unpolarized domain have

the opposite effect,BN is then negative and the peak shifts towards lower magnetic fields (higher

ν). The hysteresis of Fig. 4.11 indicates thatBN can be either positive or negative and this is

strongly dependent on the sweep direction, that is on the previous history of the system. It still

remains unclear why the amplitude of the HLR peak during aB-field down sweep (decreasingν

in a density sweep) is larger than the peak during theB-field up sweep (increasingν in a density

sweep), see Figs. 4.11 (a-c). This is the case for all tilt-angles if we consider the amplitude

of the peak to be∆ρxx, i.e. the difference inρxx before and after the peak has set in. Such a
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difference in amplitude between up and down sweeps has also been observed in hysteretic peaks

of level crossings in AlAs samples [111, 112]. It has been explained that the magnetization of

the electronic system takes on different values on both sides of the transition thereby leading to a

different domain structure and resistance values. Furthermore, the screening properties depend

on whether theN = 0 or N = 1 CF-LL is filled [107]. Unfortunately, the exact mechanism

which leads to such a huge peak has not been thoroughly understood.

The behavior of the transition peak also depends on other numerous factors which have

not been included in this model. For example,ρxx has a different time evolution depending on

whether an AC or DC current is applied to the system. Also, sample specific characteristics such

as disorder or strain could alter the absolute value of the resistance8. In the rest of the chapter,

we will present various experiments which have been useful in understanding the mechanism

leading to dissipation. These include current and frequency dependent measurements (AC and

DC) as well as the temperature behavior of the resistance near and at the transition. At the end

of section 4.7, we will discuss an improvement of the model.

4.6 Time, Frequency and Current Dependence at the Transi-

tion

All of the experiments presented so far were conducted using an AC current. In this section,

besides studying the AC dependence in more detail, we also compare results between AC, DC

and differential resistance (AC + DC) measurements in the SLR and HLR regimes. The samples

used for these studies are from wafer052098.2 [see Fig. 3.1(a)].

4.6.1 AC measurements: Time and Current Dependence

The time dependence of the SLR and HLR peak at several values of an AC current is shown

in Fig. 4.15. The three sets of data (blue dots, green squares and red triangles) were obtained

by following the three sequences depicted in Fig. 4.15(b)9. The blue dots were measured by

setting the AC current to a specific value for approximately10 s and then recording theρxx

value. The density and tilt-angle were chosen in order to have the HLR and SLR peaks at

the same B-field values near the center of theν = 2/3 minimum. After the10 s the current

was driven back to zero and left at this value for≈ 5 min. Then, the next current value was

set and againρxx recorded after10 s at the new current value. From graph 4.15(a) we can

8Samples under strain show a larger HLR peak (approximately2kΩ larger) than samples which are not sub-

jected to strain [see Fig. 5.19(d)].
9These measurements were performed in cooperation with S. Kraus and S. Lok and have also been published

in references [7] and [59].
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Figure 4.15: (a) Time and AC current dependence measurements at the low

current regime (blue), high current regime (red) and intermediate regime (green).

(b) I vs t sequence used to determine the data points in Fig. (a). The graphs are

also plotted in references [7] and [59].

infer thatρxx does not change substantially forI < 20 nA. For greater values, the resistivity

changes because the HLR sets in, even after this short time. Nevertheless, the blue curve proves

the linearity of the I-V characteristic in the SLR regime. The second experiment dealt with

studying the current threshold necessary for the HLR to develop. It consisted of stepping the

current value and recordingρxx after 45 minutes for each value. The green squares indicate

that after≈ 10 nA the resistance starts increasing and atI > 20 nA, it strongly increases until

reaching a maximum value atI > 40 nA10. The current dependence of the HLR is clearly

established here. In the third sequence of measurements, the I-V characteristic of the HLR

was analyzed in order to investigate if the large peak is caused by a non-linear behavior of the

system due to the high currents involved. The red triangles were plotted after turning on the

current to100 nA and letting the resistance saturate after 45 minutes. Ten second excursions

to various lower current values were undertaken in whichρxx was recorded. The current was

reset to100 nA for 1 minute after each point. An almost constant resistivity value is observed

for I < 30 nA. The decrease inρxx for higher values of the current is probably due to heating

effects. This experiment rules out non-linear effects as the cause for the HLR build up and

corroborate that the interplay between the electronic and nuclear system is mostly responsible

for the appearance of the large peak.

10A 80 µm Hall bar was used for these experiments.
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4.6.2 DC and Differential Resistance Measurements

The DC current behavior of the transition peak in both current regimes is investigated in this

section. The slowB-field sweeps shown in Fig. 4.16(a) in the SLR regime reveal that AC

(black curve) and DC (red curve) currents lead to the same resistance values and no hysteresis is

observed. While this is true for low currents, the situation drastically changes for high currents.

Figure 4.16: (a) AC (red) and DC (black) measurements in the SLR regime.

(b) AC measurements for an upwardB-field sweep (black) and downward sweep

(red). (c) Up (black) and down (red)B-field sweeps for a DC current in the HLR

regime and differential resistance measurements (dV/dI) forI = 50 nA DC +

1 nA AC currents (up sweep blue and down sweep green).

ρxx is plotted vsB for an AC current in Fig. 4.16(b) and for a DC current in Fig. 4.16(c),

both in the HLR regime. The black curves represent an upward sweep of theB-field and the

red curves a downward sweep. Even though a DC current also induces a huge peak inρxx if

the field is swept slowly, its amplitude and width are slightly smaller than for an AC current.

The DC-HLR is also not affected by changing the current direction from a negative DC [Fig.

4.17(a)] to a positive DC [Fig. 4.17(b)], for a wide Hall bar (400µm) in which we have used

the time settling technique described in section 4.2.1. Again, the bottom curves show the HLR

equilibration times. Returning to Figs. 4.16(b) and (c), we can observe that in both AC and DC

measurements, a marked hysteresis is present. In Fig. 4.16(c), the differential resistances dV/dI

were also plotted for an upward sweep (blue curve) and downward sweep (green curve) of the
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Figure 4.17:Magnetic field sweeps in the HLR regime for a negative (a) and a positive (b) DC current.

B-field. They were measured by superimposing a1 nA AC current to a50 nA DC current.

It is seen that the main features of the HLR, such as hysteresis, time dependence and huge

amplitude, remain the same in the differential resistance.

The time evolution of the HLR peak, on the other hand, shows significant differences de-

pending on the type of current involved. The temporal behavior of theρxx resistance is depicted

in Fig. 4.18. In this experiment, firstly theB-field was swept toB = 7.77 T, in order to be

at the center of the SLR peak, without an applied current. After a few seconds the current

was increased toI = 50 nA andρxx was monitored for several hours. The black curve in

4.18(a) shows the time development of the HLR by applying an AC current. The resistance

increases within minutes to≈ 4.9 kΩ and then saturates at this value. The top figure [4.18(b),

green curve] actually reveals that the resistance does not completely saturate but slightly rises

although very slowly. The jumps in the resistance might be caused by a rearrangement of do-

mains which lead to so-called “Barkhausen effects” reported in Reference [58]. On the other

hand, if a DC current is employed [Fig. 4.18(a), red curve] the longitudinal resistance rises

faster than the AC resistance, reaches a maximum after some minutes and decreases again to

its original value. The decrease is not monotonous but rather shows a logarithmic behavior. We

checked that the decrease ofρxx is not merely due to a slowly shifting of the peak to another

magnetic field value by reducing the current and quickly sweeping theB-field over theν = 2/3

transition. Thus, the unexpected time behavior for a DC current differs considerably from the

AC time evolution of the HLR. In order to study this situation more carefully, we have carried

out very low frequency measurements (mHz). That is, we induce the HLR with a positive DC
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Figure 4.18: (a) Time evolution of the HLR for an AC (black) and DC (red)

current. (b) Logarithmic time development of the AC-HLR.

current and monitor the resistance for several hours before reversing the polarity of the DC cur-

rent. Figure 4.19 illustrates that the DC resistance drops with time, but as soon as the current

is reversed, a sharp peak inρxx appears. Most likely, the domain structure is influenced by the

AC current differently than for the DC current11. Beside the DC and low frequency transport

measurements, we also carried out surface acoustic waves (SAW) experiments in order to study

the high frequency regime. We present preliminary results, which were obtained in cooperation

with the University of Nottingham, in Appendix A of this work.

4.6.3 Conclusions

There are two principal results which can be concluded from the experiments of this section.

Firstly, non-linear transport can be definitely ruled out at the transition in both the SLR and HLR

regimes. The anomalous huge resistance peak is mostly caused by the interaction between

electron and nuclear spins. Secondly, whereas theB-field sweeps do not differ considerably

between an AC, DC (independent of current direction) or differential resistance current, the

time evolution of the HLR peak is strongly dependent on the type of current used. The HLR

11Occasionally,ρxx suddenly jumps without reversing the polarity. Such a situation can be seen att ≈ 460 s.
These changes are much slower than the resistance spikes at the polarity reversal points and occur randomly due

to the dynamical nature of the domains. Similar jumps have been observed for a constant AC current (not shown).
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Figure 4.19: The DC polarity has been reversed after several hours and theρxx

monitored during this time. A spike appears in the resistivity every time the po-

larity is reversed.

reaches equilibrium and saturates after several minutes if an AC current is applied, while with a

DC current it reaches a maximum after several minutes and then collapses again. This situation

might indicate that the inhomogeneous hyperfine fieldBN created by the polarized nuclei and

needed for the existence of the HLR can only be stabilized with a changing current direction.

On the other hand, a current flowing in only one direction will create the inhomogeneousBN,

but will eventually disappear with time. Further experiments are needed in order to understand

this behavior.

4.7 Activation Measurements

An important issue concerning theν = 2/3 transition is to understand in more detail the mech-

anism which leads to dissipation in transport. For this reason, we decided to study the behavior

of the peak as a function of temperature. In order to avoid dynamical nuclear spin polarization

effects, we restrained our experiments to the SLR regime. (The sample used here is from wafer

020502.1).
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4.7.1 Temperature Dependence

The longitudinal resistivityρxx is plotted vs magnetic field at the constant filling factorν = 2/3

for several temperatures ranging from22 to 810 mK. It is important to note that we have used

Figure 4.20: Temperature dependent measurements of the SLR transition peak

ranging from22 mK to 810 mK. At the lowest temperatures the peak completely

vanishes.

a small AC current (I = 1 nA) in order to remain in the SLR regime. Since we are at constant

filling, it was necessary to sweep both the magnetic field and the gate voltage simultaneously.

Exploiting the linear relation between density and gate voltage, which was determined prior to

the experiments, we were able to use equation 2.10 in order to stay at constantν = 2/3. There-

fore each value of the magnetic field is at a different density. The solid curves were obtained by

using the low temperature insert described in Reference [54] and the high temperature curves

(dashed lines) were measured with a standard insert as described in section 3.2. After each

temperature was reached, we waited sufficiently long for the electronic system to be in thermal

equilibrium with the external bath.

In Fig. 4.20, we clearly see the transition peak appearing between≈ 7.5 and8.4 T. There

are two general behaviors which can be observed from the data: A shifting of the peak to lower

magnetic fields at increasing temperatures and a decrease of the peak’s amplitude at lower tem-

peratures until it completely vanishes atT ≈ 22 mK. The shifting of theρxx peak is merely due

to a change inEZ after the thermal nuclear polarization is randomized at higher temperatures:
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ηc ∝ Bext+BN√
Bext

andBN increases with temperature (Bthermal
N < 0) thusBext decreases.

The temperature dependence of the peak’s amplitude hints to activated transport and there-

fore a remaining gap at the transition. In the next section, we determine the value of the activa-

tion gap at and away from the transition atν = 2/3, followed by an analysis and discussion of

the data.

4.7.2 Activation Gap

The resistivity value at the maximum of the transition peak is plotted vs temperature in Fig.

4.21(a). The low temperature points (T < 100 mK) are shown in the inset. In Fig. 4.21(b),

Figure 4.21: (a) Plot of theρxx values vs temperature at the maximum of the

transition peaks. Inset: Low temperature points (T < 100 mK). (b) Arrhenius

plot (ln ρxx vs 1/T ) of the same data points. The linear fit reveals the smallest

activation gap energy value at the transition:∆ = 320 mK.

we plot the same points but asln ρxx (∝ ∆
2kBT

) vs 1/T (Arrhenius plot). From the linear fit,

we determined the value of the activation gap at the transition to be∆ = 320 mK. We should

mention that since the activation gap is dependent on the magnetic field and the peak shifts with

increasing temperature due to the nuclear hyperfine field, an inevitable error is introduced in the

gap calculation. The error is small however compared to the gap value.

The activation energy was also determined for several magnetic fields between6.5 T and

9.5 T. In order to calculate∆ for theB-field range where the transition occurs (7 T < B < 9 T),

we shifted the curves so that the peak maximum of every curve could be at the sameB-field

value (Fig. 4.22). Here,ρxx is plotted vsB∗, whereB∗ = 0 was taken to be atB = 8 T. In

Fig. 4.23 we plot two sets of data: the black dots indicate the gap after shifting the curves while

the red squares are the∆ values for curves which have not been shifted and are outside the
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Figure 4.22:The curves have been shifted so that all ρxx peak maxima appear at B = 8 T ≡ B∗ = 0.

transition region. By adjusting the red data, we conclude that we have committed about a 10%

error by shifting the curves. Here, we can clearly observe a strong decrease of the gap at the

transition. The smallest gap value is 320 mK as previously shown. In the following we will

analyze the origin of the activation gap.

Analysis and Discussion of the Activation Data

At the beginning of the chapter, we schematically showed the spin phase transition as a simple

crossing between two CF LLs. This would imply, however, that the energy gap completely van-

ishes at the transition. This is contrary to the results obtained from the activation measurements

presented above. Therefore, the level crossing could be redrawn as shown in Fig. 4.24. The gap

∆ is the energy separating the levels at the transition. Nonetheless such an anticrossing behavior

is not expected at theν = 2/3 transition due to the following reasons: An activation gap could

exist, for example, if spin-orbit interactions (generally believed to be irrelevant in GaAs [116])

would be important. This would imply, however, a suppression of electron-nuclear spin flip-flop

processes since the spin-orbit coupling would provide an alternative path for electron spins to

flip while still conserving angular momentum. This situation is not observed in our experiments

where nuclear effects play an essential role. Furthermore, spin-orbit interactions would mix

the two spin states and domains of two distinct electron spin polarizations would not be able



4.7. ACTIVATION MEASUREMENTS 85

Figure 4.23: Activation energy gap∆ vs B∗ at constant fillingν = 2/3. The

energy derived from the shifted curves (Fig. 4.22) are shown in black and from

non-shifted curves in red (Fig. 4.20).

Figure 4.24: Schematic diagram of the crossing between two CF LLs atνCF = 2
with an activation energy gap∆ remaining.

to form. As we will see in the next chapter, we have measured the existence of unpolarized

and polarized domains at the2/3 transition with nuclear magnetic resonance. Nevertheless, it

is possible that a gap exists if the exchange interaction between the electrons is considered, i.e.

if one deviates from the non-interaction picture. In a simplified diagram, we could again draw
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the level crossing, but this time the CF levels are shifted by the exchange energy∆Eexch, see

Fig. 4.25. The transition does not occur at the level coincidence but slightly away. This could

Figure 4.25: Schematic diagram of the CF LL crossing. Here, we have included

a shifting of the energy levels due to exchange energy. A gap and hysteresis are

measured in experiment.

lead to a measuring of an activation gap and to the hysteresis observed below70 mK (see ref-

erence [7]). The energy gap value measured in our experiments is in good agreement with the

one determined by Engel et al. [117] at the same transition (∆ = 250 mK). However, recent

experiments by Hashimotoet al. have shown an activation gap of only∆ ≈ 93 mK [118]. It is

still unclear whether the gap that we are measuring is only due to exchange interactions.

Another important observation in our measurements is the complete disappearance of the

resistance peak inρxx at the lowest temperatures of our measurements (T ≈ 22 mK). Even

though this behavior might be caused by the activation gap, it has been predicted that domains

could become smaller and more dilute with decreasing temperatures [107]. Below a certain

temperature, domain walls no longer overlapp therefore suppressing backscattering and, as a

result, dissipation.

Finally, from Fig.4.23, we can observe a relatively abrupt decrease of the activation gap

at the transition. A similar behavior was reported in the IQHE when two pseudospin levels

coincide [119]. In those experiments, conducted by Murakiet al., they mention that at crossings

where easy-axis anisotropy is expected, a sharp peak inρxx, accompanied by an abrupt decrease

in the activation energy gap, should be observed. Moreover, they argue that a reduced gap at the

transition might provide an indication for low-lying energy excitations which could resemble a

skyrmion trapped at walls between domains of different polarization.

In analogy to this work, we perform a similar analysis of our data. Theν = 2/3 spin

phase transition can be modelled as a crossing between the spin-down state of the lowest CF
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LL with the spin-up of the second CF LL, so that the pseudospin is just the real spin of the

system. Level coincidence occurs when the Zeeman energy equals the CF cyclotron energy,

i.e. EZ = h̄ωc,CF. Since the former energy is proprotional to theB-field while the latter is

∝
√
B, a transition occurs by increasing the magnetic field (or density), see inset of Fig. 4.26.

In a first approximation, we can regard the CF cyclotron energy to be equivalent to the electron

Coulomb interaction energyEC. A transition will then occur atEZ = ηcEC, as previously

stated at the beginning of the chapter. For the measurements presented here,ηc was calculated

to be0.0188 after including finite- thickness andg-factor corrections. Away from the transition,

the coinciding levels split by the difference betweenEZ andEC, i.e.∆Esplit = gµBB− ηce2

4πε`effB
.

Figure 4.26: Activation energy gap∆ vs∆Esplit (energy separation of the cross-

ing levels) at constant fillingν = 2/3. The blue curves indicate the expected

slopes for a single spin flip while the red curve presents a larger slope (≈ 22)

implying that at the transition several spin flips might be involved.

In Fig. 4.26, we plotted the activation energy gap∆ vs the calculated energy level splitting

∆Esplit. In such a plot, a slope of one, depicted as a blue line in the figure, indicates the energy

required for a single spin flip [120]. This is in good agreement with the points away from

the transition. At the transition, on the other hand, the slope becomes much steeper (≈ 22),

implying that several spins per unit charge could be involved at the level coincidence.

From these measurements, we might conclude that low-lying energy excitations, resembling

skyrmions inside the domain walls, might exist at theν = 2/3 transition. Building up on the

model discussed in section 4.5, we could speculate that these excitations could then travel across
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the sample dissipating energy and thus contributing to the resistance peak inρxx. The nuclear

system would then become polarized due to spin flip-flop processes mediated by these excita-

tions. At low currents, the number of excitations could be small, leading to a small resistance

peak and a negligible induced nuclear spin polarization—only the thermal polarization would

then play a significant role in this regime. On the other hand, a large current would increase the

number of excitations, thus increasing the amount of flip-flop processes and as a consequence

also the induced nuclear spin polarization. The HLR could then be caused both by an increased

number of excitations and the inhomogeneous magnetic hyperfine field as discussed in section

4.5.

4.7.3 BN Determination

In the previous section we showed that by raising the temperature, the transition peak shifts to

a lower critical field magnetic fieldBc. This shift is depicted in Fig. 4.27(a) by plottingBc of

theν = 2/3 transition peak vs temperature. The nuclear hyperfine field can then be determined

Figure 4.27: (a) Critical magnetic fieldBc of the transition vs temperature. (b)

The nuclear hyperfine fieldBN was determined fromBc and plotted vsT . At the

lowest temperatures (T ≈ 22 mK) the thermalBN ≈ −0.5 T.

fromBc by making use of the following relations:

Bc +BN√
Bc

≈ ηc and lim
T→∞

BN = 0. (4.2)

The second term indicates the vanishing of the thermal nuclear polarization at high temperatures

(BN ≈ 0 atT ≥ 600 mK). Since we know that the critical ratioηc should be almost the same
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at these low temperatures, we can extractBN by using the formula:ηc(T → ∞) = ηc, which

yieldsBN =
√
Bc(T →∞)Bc −Bc.

We have plottedBN vs temperature in Fig. 4.27(b). The nuclear hyperfine field at the

lowest temperature where a peak still appeared in the resistance (T = 35 mK) is approxi-

mately−0.5 T. This is a substantial value since it is about6% of the external magnetic field

(Bext ≈ 8 T).

In reference [59], S. Kraus measured a nuclear hyperfine field of about−0.45 T at very

similar temperatures. S. Kraus also calculated the expected hyperfine field which would exist

due solely to the average thermal nuclear spin polarization. In this work, we have used Gibb’s

distribution, as described in reference [59], to determine the nuclear spin polarization12. The

calculated hyperfine field due to a thermal nuclear polarization is plotted vs temperature in Fig.

4.27(b) as a blue curve. We see a good agreement with the experimental data.

Summarizing this chapter, we have studied theν = 2/3 unpolarized-polarized phase tran-

sition characterized by a peak in the minimum of the longitudinal resistivity as a function of

density, tilt-angle, current, frequency, time and temperature. We have demonstrated that the

HLR peak can be considered as the high current regime of the transition. Some similarities but

also striking differences exist between a low current and the HLR regime. We have discussed

most of them in this chapter. We proposed a model to explain the mechanism leading to the

different results. In both regimes, the presence of polarization domains seem to be crucial for

dissipation. In the case of the HLR, a current-induced dynamic nuclear polarization (CIDNP)

influences the domain structure considerably, thus strongly enhancing dissipation. At low cur-

rents, the transition is only affected by the thermal polarization at the lowest temperatures.

Temperature activation measurements reveal that a gap remains at the transition and that

possibly low-energy excitations in which several spin flips are involved might be favored instead

of a single spin flip. In this chapter, we showed that the HLR evolves differently in time, if an

AC or DC current is used. Furthermore, we proved that the high current resistance peak is

not caused by non-linear effects, but it is the interplay between the electrons and the nuclei

which is responsible for such an effect. In the next chapter, we take advantage of the nuclear-

electron interaction in order to further study the electron spin polarization at the transition and

to corroborate some of our assertions by using NMR. Additionally, we also study theν = 3/5

and4/7 transitions as well as low energy excitations aroundν = 1 and1/3.

12The following information was needed for the calculations: Pagetet al. has listed the maximum hyperfine

field for each of the three nuclei in GaAs [121].B
69Ga
N = −1.365 T, B

71Ga
N = −1.17 T andB

75As
N = −2.76 T.

This is taking into consideration that all the spins are in the lowest level and the average spin polarization is〈I〉 =

3/2.





Chapter 5

NMR Studies of the Lowest Landau Level

In the previous chapter, we investigated spin phase transitions, particularly atν = 2/3, with

magnetotransport. An important distinction was made between the low current and high cur-

rent or HLR regimes where we discovered important differences. In both regimes, the nuclear

system takes on a crucial role since it strongly affects the transport characteristics of the sys-

tem. Electrons and nuclei communicate via the hyperfine interaction by coupling their spins.

In this chapter, we take advantage of this coupling in order to study more aspects of the spin

phase transition atν = 2/3 and other filling factors, as well as diverse spin-related phenomena

in the FQHE such as skyrmionic and spin-reversed quasiparticle excitations by using nuclear

magnetic resonance (NMR)1.

We opted for this technique because NMR spectroscopy is a powerful experimental tool

which exploits the interactions between electrons and nuclei in order to examine the electronic

and structural properties of a wide range of physical systems [70,71]. In a 2DES, however, the

sensitivity of the NMR signal amplitude, which is proportional to the product of the number

of nuclear spins and their average spin polarization, is greatly restricted. A technique known

as resistance detected (RD)NMR (see section 2.4.6) has been employed to qualitatively study

nuclear-electron interactions in a single 2DES in the FQHE [6, 58]. Recently, there have also

been major efforts to quantitatively study QH systems by measuring the electron spin po-

larization in multiple quantum wells (MQW) or optically pumping the nuclear system (OP-

NMR) [73, 96]. Thus the NMR signal to noise ratio improves considerably as the number of

nuclei and the average nuclear polarization are respectively increased.

In this work, we have developed a technique in which the electron spin polarization can be

quantitatively measured in asingle2DES by combing RDNMR and NMR. Measuring a single

layer enabled us to overcome the problems present in the MQW and OPNMR techniques, such

as a fixed density, identical growth of many layers and driving the system out of its equilibrium

1Samples from wafer020502.1 were used in all of the experiments presented in the chapter except for Figs.

5.20 and 5.23.
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state. Before presenting this technique in sections 5.2.1 and 5.2.2, we firstly introduce some of

the NMR basics (section 5.1) required to understand the experiments discussed in this chapter.

The rest of the chapter is generally outlined in five parts. Firstly, we present measurements of

the electron spin polarization at theν = 2/3, 3/5 and4/7 transitions in sections 5.2.3 and 5.2.4.

In section 5.3, we focus on theν = 2/3 transition and investigate important differences existing

between the low and high current regimes. A description of stressed samples which show a

quadrupole splitting is necessary and thus discussed in section 5.4. These results were useful

in solving the four-fold splitting anomaly in RDNMR experiments reported at theν = 2/3

transition in previous works [6]. Furthermore, we report on an anomalous line shape of the

RDNMR spectrum in the vicinity of filling factors1, 1/3 and2/3. We finally close the chapter

by presenting some recent progress and an outlook on possible future NMR experiments in the

FQHE regime.

5.1 NMR Basics

Nuclear magnetic resonance or NMR can be used to study any system which has a non-zero

nuclear spin. The total magnetic moment of a nucleusµI is given by:

µI = γNh̄I (5.1)

whereh̄ = h/2π is Planck’s constant,I is the nuclear spin operator andγN is the so-called

gyromagnetic ratio. The value ofγN is known for almost every non-zero spin nuclear system.

In GaAs there are the three nuclear isotopes:71Ga,69Ga and75As.

In the presence of a magnetic fieldB, the nuclear spin interacts with the field and the Hamil-

tonian is simply written as:

HN = −µI ·B = −γNh̄I ·B. (5.2)

Moreover, if the field points in the z-direction the Hamiltonian reduces to:

HN = −γNh̄IzBz. (5.3)

The eigenvalues ofHN are multiples of theIz eigenvaluesmz which may take any of the2I +1

valuesmz = I, I − 1, ..., I:

EN = −γNh̄mzBz. (5.4)

In other words by turning on a magnetic field in the z-direction, the system will split up in2I+1

energy levels separated by the nuclear Zeeman energy:

∆N = EN − EN+1 = h̄ωL = γNh̄Bz. (5.5)

In this equation,ωL = γNBz is called the Larmor resonance frequency and is equivalent to the

classical precession frequency of a nuclear magnetic moment subjected to a magnetic field.
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In Fig. 5.1(a), we have drawn the nuclear Zeeman energy splitting for the simplestI = 1/2

case. The nuclear spin up state is energetically more favorable to populate than the spin down

Figure 5.1: (a) Schematic diagram for the energy splitting∆N of a nucleus

with spin I = 1/2 in the presence of a magnetic fieldBz. (b) Applying an RF

signal tuned to the Larmor resonance frequencyωL induces transitions between

the levels. (c) In a continuous wave (CW) experiment, the magnetization in z-

direction,Mz, decreases as the Larmor frequency is reached.

state. The number of nuclei populating the levels| + 1/2〉 and | − 1/2〉, that isN+ andN−

respectively, is determined by the Boltzmann factor:

N−

N+

= exp
−∆N

kBT
= exp

−γNh̄Bz

kBT
(5.6)

in whichkB is the Boltzmann constant andT the temperature. At high temperatures (kBT >>

∆N) the ratioN−/N+ is approximately unity so both levels are nearly equally populated. At

low temperatures and high magnetic fields, on the other hand, the thermal nuclear polarization

becomes considerable (≈ 15% at T = 20 mK andB = 10 T). If we consider the whole

ensemble of spins, the excess of spin up nuclei will amount to a net magnetizationM0 pointing

in the same direction as the external magnetic fieldBz. The total magnetizationM0 is then

equal toMz and for a two level system is given by:

M0 =
1

2
(N− − N+) h̄γN =

1

2
h̄γNN tanh

h̄γNBz

2kBT
, (5.7)

whereN = N− + N+. The polarization is expressed in equation 2.22.
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NMR spectroscopy consists of irradiating the sample with a radio frequency tuned to the

Larmor frequency of the nuclei in question:

f = γNBz. (5.8)

If an alternating magnetic fieldB1(t) is perpendicular to the direction of the static magnetic

field Bz, transitions will occur between adjacent energy levels; transition rules only allow for

∆m = ±1. Since there is the same probability for nuclei to move from| + 1/2〉 to | − 1/2〉
as viceversa, the rf-radiation reduces the totalMz magnetization since both levels become more

equally populated, see Fig. 5.1(b).

In general, an NMR experiment can be performed with a continuous rf wave (CW) or a

pulsed rf signal. In a CW experiment either the magnetic field is swept at constant rf or the

frequency is swept at constantB-field. We have schematically plotted the magnetization in the

z-directionMz vs rf for a frequency sweep CW experiment in Fig. 5.1(c). It is expected that

Mz decreases as the Larmor frequency is reached. Experimentally, a change inMz is usually

detected by the loss of energy in the rf-coil due to the absorption. After the frequency is no

longer in resonance, the system reestablishes its equilibrium magnetization after a certain time

T1 known as the longitudinal or spin-lattice relaxation time. The equation which describes the

recovery ofMz is:

Mz = M0

(
1− exp

(
− t

T1

))
(5.9)

Characteristic times forT1 range from ms to even hours or days. These will strongly depend on

the interaction between the nuclear system and the “reservoir.” That is, it involves the transfer

of energy to the lattice via conduction electrons, phonons etc.

At the present time, it is common practice to perform pulsed rather than CW NMR exper-

iments. They consist of exposing the sample to an rf pulse of certain durationτp, tuned close

to the Larmor resonance frequency which creates an alternating magnetic fieldB1. The mag-

netization, originally pointing in the z-direction, will tip towards the xy-plane. An x and y

component of the magnetization (Mx,y) appears as depicted in Fig. 5.2(a). The tipping angleφ

depends on the duration and magnitude ofB1:

φ = 2πγτpB1 (5.10)

A π/2 pulse, for example, means that the magnetization is entirely tipped to the xy-plane and

Mz = 0.

If one detects either theMx or My as a function of time, a damped oscillation of the mag-

netization, known as free induction decay (FID) signal, is obtained [Fig. 5.2(b)]. The time it

takes for the FID signal to decay is called the transverse or spin-spin relaxation timeT2. It

is normally much shorter than theT1 time and typically ranges fromµs to ms. The equation
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Figure 5.2: (a) If an RF-pulse tuned toωL is applied perpendicular to the direc-

tion of the static magnetic fieldBz, theMz magnetization tips into the xy-plane

by an angleφ. An oscillating free induction decay (FID) signal of theMx or My

magnetization is observed in the NMR spectrum. (c) The Fourier transform of the

FID gives a peak at the resonance frequency.

which describes the transverse relaxation process, that is the time required forMx,y to return to

equilibrium, can be written as:

Mx,y = Mx0,y0 exp
(
− t

T2

)
(5.11)

TheMx,y decays rapidly because spins of different nuclei precess at slightly different frequen-

cies. This dephasing of the spin precession is basically due to two reasons: Firstly, inhomo-

geneities in the external magnetic fieldB0 causes each nucleus to experience a slightly different

magnetic field and secondly, spin-spin couplings, in which one nucleus produces a small local

magnetic field on the other nuclei (Bloc ∼ µI/r
3, dipole-dipole coupling), produces different

precession frequencies. AT ∗
2 relaxation time is obtained by adding these two processes2:

1

T ∗
2

=
1

T2

+
1

T2,inhom.

(5.12)

2Whenever the dephasing timeT2 is fast, it is preferred to perform a spin-echo experiment. This consists of

pulsing the magnetization by90◦ into the xy-plane, followed by a180◦ after a timeτ which tilts the magnetization

from the +y to the -y axis. The dephased spins will partially come back into phase after a time2τ thus producing

an echo signal [23,122]. This method was not employed in this thesis.
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The Fourier transform (FT) of the FID signal results in a resonance peak atωL as shown in Fig.

5.2(c). The Larmor frequency of the nuclei and the NMR line shapes can be strongly affected if

interactions of the nuclei with its surroundings are considered. These interactions could be nu-

clear spin-spin couplings (dipole-dipole interaction), spin-orbit interactions (chemical shift) and

electron spin-nuclear spin couplings (hyperfine interaction) [70, 71]. While dipole interactions

merely broaden the NMR signal, and the spin-orbit effects are usually tiny in 2DES systems,

the hyperfine interaction results in a shift of theωL (Knight shift) which is proportional to the

electron spin polarizationP. Therefore, NMR is an ideal technique to studyP in a 2DES. In the

following sections, we will present measurements of the electron spin polarization at various

filling factors in the FQH regime.

5.2 Measurements of the Electron Spin Polarization

In section 2.4.5 we explained that the hyperfine interaction is responsible for coupling the nu-

clear with the electronic system in a 2DES, see equation 2.27. In GaAs, the Fermi contact term

(eq. 2.28) is predominant and mostly responsible for the coupling of the systems. Considering

the local magnetic fieldBe which is created by polarized electrons acting on the nuclear spins

(eq. 2.32), we can rewrite equation 5.5 as follows:

h̄ωL = γNh̄ (Bz +Be) . (5.13)

As a result, the Larmor resonance frequency shifts byγNBe. The Knight shift,Ks, is usually

defined as the shift in Larmor frequency divided by the bare Larmor frequency (γNBz) and given

in ppm. In 2DES however, the Knight shift is defined only as the shift inωL given in kHz.

The electron spin polarizationP, which is proportional to the Knight shift, can then be

determined from NMR spectroscopy via the Knight shift via the following equation:

P(ν, T ) = Ks/Ks,max(P = 1). (5.14)

Here,Ks,max(P = 1) is the maximum Knight shift obtained from nuclei interacting with a fully

polarized electron system andP depends on filling factor and temperature3. Furthermore, the

Knight shift is proportional to the electron densityn and inversely proportional to the quantum

well thickness w:

Ks =
nPAeff

w
. (5.15)

Aeff is defined as an effective hyperfine coupling constant which can be calculated or ex-

perimentally determined as it has been done from OPNMR measurements in MQW struc-

tures [123, 124]. In the next two sections, we will show how we combined RDNMR with

NMR techniques and usedν = 1/2 to determineKs for any achievable electron density in our

single, narrow QW structure.
3At phase transitions, it is also dependent onη as we have previously remarked.
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5.2.1 The RDNMR/NMR Technique

In order to overcome the problem of having a very low sensitivity, which is the case when a

conventional NMR experiment is carried out on a single QW, we have developed a method of

combining resistance detected (RD)NMR with standard NMR techniques. In the following,

we describe this method in detail: The degree of electron spin polarization can be directly

determined by measuring the Knight shift of the Larmor resonance frequency caused by the

interaction between the nuclei and the conduction electrons in the GaAs QW. This shift can

be obtained by comparing the resonance signal of the nuclei interacting with electrons and the

unshifted resonance signal from nuclei which are not interacting with electrons. This technique

is illustrated in Fig. 5.3. Firstly, the magnetic field is swept until the filling factor of interest is

Figure 5.3: The black, solid line representsρxx vs RF-frequency atν = 1/2. The

red, dashed line shows the Fourier transform of the FID signal from the substrate.

Small tipping angles of the magnetization were used for the FID as schematically

shown. The experiments were performed atB = 9.25 T and T = 55 mK.

The density was held constant atn = 1.12 × 1011cm−2 during the RDNMR

measurements in order to be atν = 1/2.

reached. Keeping the magnetic field and the gate voltage constant at that filling, we monitor

the changes in the longitudinal resistivityρxx as a function of the frequency of incident RF

radiation. The radio frequency is swept through the Larmor frequency of the75As, 69Ga or71Ga
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nuclei with a much slower speed than the relaxation rate at the corresponding filling factor4.

Most of our NMR experiments were performed on75As nuclei since it is a pure isotope with

100% abundance while the Ga nuclei have two isotopes,69Ga and71Ga, with60.4% and39.6%

abundance, respectively [90]. It is important to maintain the amplitude of the RF-signal low

(≈ 20 dBm) to avoid heating effects (see section 3.2.2). In particular, the experiments shown

in Fig. 5.3 were conducted at constant filling factorν = 1/2. At a density ofn = 1.12 ×
1011 cm−2, ν = 1/2 occurs atB = 9.25 T. The temperature,T = 55 mK, was determined

by comparing transport experiments at this value without an RF-signal and atT = 50 mK

with an applied, on-resonance RF-signal. In the black solid curve of the figure, we plotted

ρxx vs RF-frequency and observe a single dip in the longitudinal resistivity as we approach

the Larmor frequency of the75As nuclei5. The change in resistivity is due to the Overhauser

shift, since the Zeeman energyEZ changes by depolarizing the nuclei as explained in section

2.4.56. RDNMR has been employed on a wide range of experiments in the QHE regime, where

the coupling between the nuclear and electronic system has been qualitatively shown [6, 58,

72, 90, 91, 92, 125]. Nevertheless, in order to know quantitatively the degree of electron spin

polarization, it is necessary to determine a zero-shift reference resonance frequency from nuclei

which are not interacting with electrons. For this purpose, we carried out a standard pulsed

NMR experiment on the sample to obtain the FID signal from the substrate. Since the nuclei

located in the substrate are not interacting with conduction electrons (the conduction band is

empty there) their NMR resonance signal serves as a zero Knight-shift reference. The red

dashed line in Fig. 5.3 shows the Fourier transformed signal of the FID. Note that in agreement

with previous studies, no quadrupole splitting of the GaAs substrate NMR line is observed (see

section 5.4) [96, 103]. To obtain the FID signal, small tipping angles (< 1%) were used in

order to avoid saturation, as depicted in the inset of the figure. This was done mainly because

the relaxation timeT1 of substrate nuclei at low temperatures is of the order of hours or even

days. The signal to noise ratio was increased by integrating up to 128 FID’s in the reference

spectra. From the figure, we see that the RDNMR resonance line is shifted by≈ 22.6 kHz with

respect to the reference line. The difference in the resonance frequency equals the Knight-shift

4At some filling factors, the equilibration times may be very long. For example at theν = 2/3 phase transition

in the HLR regime, a full sweep may take a few hours in order to maintain a quasi-static situation.
5Our results obtained for the69Ga and 71Ga exhibit qualitatively the same behavior. Quantitatively

the resonance frequency changes due to the different gyromagnetic ratios and the Knight shift scales by

γN

(
69Ga

)
/γN

(
75As

)
andγN

(
71Ga

)
/γN

(
75As

)
with respect toKS

(
75As

)
.

6The sign and shape of the RDNMR line is dependent on the filling factor. We will see in the following sections

that at spin phase transitions a change ofRxx is caused by a change in the value ofηc which involvesEZ. At other

filling factors, for example at odd IQH fillings, whereRxx ∝ exp− ∆
2kBT , a change inEZ causes a change in∆

and thus inRxx. At ν = 1/2 the situation is more complicated, but here too a change inEZ altersRxx. The sign

and amplitude of∆Rxx is not yet fully understood. However, this is of no immediate relevance to the experiments

presented here.
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of the RDNMR signal, coming from the nuclei in the QW, with respect to the zero-shift NMR

substrate reference signal. We can also infer from the graph that there is only a small error

bar for the determination of the Knight shift. Since the degree of electron polarization can be

obtained via equation 5.14, we can determineP(ν, T ) quantitatively if we know the maximum

Knight shift expected for a fully polarized system,Ks,max(P = 1). In the following, we will

describe how we used Knight shift measurements at filling factorν = 1/2 at various densities

to accomplish this task.

5.2.2 Calibration Curve at ν = 1/2

The maximum Knight shift due to a completely polarized electron system can be determined

by measuring the Knight shift for different densities at filling factorν = 1/2. Ideally, the

fractional quantum Hall ferromagnet stateν = 1/3 could be used for theP = 1 reference

for any density. However, since we are conducting an RDNMR experiment, we need a finite

value ofρxx. Therefore we opted for filling factorν = 1/2, where all the electrons should be

spin polarized above some critical magnetic fieldBc (see section 2.4.3). This situation occurs

Figure 5.4: Schematical diagram of the spin up and spin down energy bands at

ν = 1/2 for EZ < EF (a),EZ = EF (b) andEZ > EF (c).

because even though CFs experienceBeff = 0 at ν = 1/2 the Zeeman energy still acts on

their spin thereby shifting the energy bands for spin up and spin down. In other words,Beff

only affects the orbital part of the angular momentum and not the spin. The CFs will then be

expected to be fully polarized forEZ > EF, whereEF is the CF Fermi energy. The spin up

and spin down energy bands atν = 1/2 are schematically shown in Fig. 5.4 forEZ < EF (a),

EZ = EF (b) andEZ > EF (c). The blue color represents filled spin up states and the grey

color filled down states. In this discussion, it is important to note that electrons and CFs have

the same spin and therefore the CF or electron spin polarization is equivalent [80].

In Fig. 5.5, we show a plot of the Knight shift as a function of density at constant filling

factorν = 1/2. We achieved this by changing simultaneously gate voltage and magnetic field
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to maintain fixed fillingν = 1/2. The inset depicts a gate voltage sweep atB = 15 T in which

Figure 5.5: Knight shiftKs vs density for constant fillingν = 1/2. The straight

line in red indicates the expected Knight shift for a fully polarized electron system.

BelowBc ≈ 10 T, the system is no longer completely polarized. This “calibration

curve” was used to study the spin phase transition atν = 2/3, 3/5 and4/7. The

inset showsρxx vsν atB = 15 T.

fractional filling factorsν = 1/2, 3/7, 2/5 and1/3 are seen. In the main figure, the data points

which are aboveB ≈ 10 T fall on a straight line in agreement with equation 5.157. Below10 T

the data points deviate from a straight line indicating a depolarization of the electronic system

at low densities as expected8. An extrapolation of the linear region to lower fields allows us to

knowKs(P = 1) at any achievable density in our sample. Theν = 1/2 calibration curve was

very useful to determine the electron spin polarization at the phase transitions of fillings2/3,

3/5 and4/7.

7We should point out that there is an offset forKS,max(n) → 0, which results most probably from a change in

the electron probability density across the QW at very low densities. However, in the density regime that we are

interested in, this “calibration curve” holds very well.
8The ν = 1/2 state has two Fermi surfaces, for each spin orientation, if it is not completely polarized. The

difference between the areas of the spin up and the spin down Fermi disks render the spin polarization. [60,61,62,

126].
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Calculation of ηC andmp
CF

Apart from using the results presented in Fig.5.5 as a calibration curve forKs,max(P = 1), we

can also calculateηc = EZ/EC andmp
CF in order to compare it with previous results. In Figs.

2.14(a) and (b) [60,62] of section 2.4.3, we showed two experiments where the spin polarization

at ν = 1/2 was measured. In Fig.2.14(a) the polarization was obtained by optical experiments

while in 2.14(b) it was extracted by applying NMR in multiple quantum wells. In both cases, a

smooth transition from a partial to a complete polarization is observed at≈ 9.3 T and≈ 10 T,

respectively. In the latter experiments, a 35 nm QW was used and the sample was tilted with

respect toBz in order to measureP at various fields. Even though we also measureBc = 10 T,

a more accurate comparison can be made by calculatingηc and including finite thickness and

g-factor corrections. By using equations 2.20 and 2.21, we have computedηc = 0.021 which is

in very good agreement withηc = 0.022 extracted from Fig.2.14(a).

If the CF model is used, the system undergoes a transition when the CF Fermi energy equals

the Zeeman energy [see Fig. 5.4(b)], that is(h̄2k2)/(2mp
CF) = g∗µBB, where the wavevector

of a Fermi surface atν = 1/2 is given bykc,CF = (4πnCF)1/2 [126]. The polarization CF

mass, which differs from an activation CF mass (see section 2.4.3), can be calculated to be

mp
CF = 2.92me, where theg-factor has again be corrected. It is important to note that this value

applies only toν = 1/2 andB = 10 T. Assuming a
√
B dependence of the mass, we can

obtain mp
CF

me
≈ 0.92

√
B(T). This value is about1.5 times larger than the one obtained from the

calculations of Park and Jain [80] given in equation 2.25. The prefactor, however, is a sample

dependent parameter, which was affected by theg-factor corrections due to the narrow quantum

wells. Finally, we would like to reiterate that the CF mass extracted from these experiments is

a CF polarization mass which is about 10 times larger than the expected activation CF mass.

5.2.3 Study of the Electron Spin Polarization at theν = 2/3 Transition

We have studied the electron spin polarization at theν = 2/3 transition by using the RD-

NMR/NMR technique previously described. In this section, we present our main results which

apply to both the low and high current regimes. Additional results which establish important

differences between these regimes will be presented in section 5.3.

The solid black line of Fig. 5.6 shows an RDNMR plot of the longitudinal resistivityρxx

vs NMR frequency shift at a constant magnetic fieldB = 8.1 T and constant densityn =

1.35 × 1011cm−2 (Vgate = −0.417 V). These values were chosen in order to be at the top of

the unpolarized-polarized transition peak. The current was set atI = 40 nA so that the HLR

peak develops after several minutes. Furthermore, the gate was swept from a low to a high

filling factor as depicted by the red dashed curve in Fig. 4.3. The NMR substrate signal, which

represents the zero-shift reference, is also plotted in Fig. 5.6 (red dashed curve). The NMR
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Figure 5.6: RDNMR/NMR technique applied to the high current spin phase

transition atν = 2/3. The black, solid line showsρxx vs NMR frequency shift

(polarization) and the red, dashed line the substrate reference signal. In the solid

line, two resonances are observed atP = 0 andP = 1. These measurements were

carried out atB = 8.1 T, I = 40 nA, n = 1.35× 1011cm−2 andT = 55 mK.

frequency shift given in kHz is taken relative to the NMR substrate signalf0 (NMR frequency

shift [kHz] = f − f0). We have also used theν = 1/2 calibration curve of the previous

section (Fig. 5.5) to rescale the x-axis from frequency to polarization and included it in the

figure as the top blue axis. In the RDNMR curve, two well resolved resonance lines are seen.

The minima of these two lines are separated by31.6 kHz. The right line clearly appears at

the same resonance frequency as the substrate reference signal. By looking at the polarization

axis, it is evident that this separation agrees very well with the expected Knight shift for a fully

polarized electron system. This is an indication that the two contributions to the RDNMR signal

come from nuclei interacting with the two different types of electronic domains. The Larmor

frequency of the nuclei which interact with fully polarized electrons shifts byKs,max(P = 1),

whereas the frequency of nuclei which interact with unpolarized electrons remains at the same

position of the substrate reference signal. Hence, this plot shows directspectroscopic evidence

of an inhomogeneous state in a 2D electron system and of domain formation at theν = 2/3

transition.
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static or slowly fluctuating domains

A domain structure can only be revealed by a local probe like NMR. The local information

persists, even if fluctuations are considered, provided that the domains are static on the time

scale of the measurementst ≈ 1/Ks,max ≈ 20 µs (inverse linewidth). In the simplest case,

there are only two types of static domains with polarizationP = 0 andP = 1 and the nuclei

interacting with different domains will experience a different Knight shift,Ks(P = 0) = 0 and

Ks(P = 1) = Ks,max, leading to two distinct lines. This is schematically represented in Fig.

5.8(a). On the other hand, if the domains would fluctuate at a similar rate as the time scale of

Figure 5.7: (a) Static domains or very slowly fluctuating domains lead to dis-

tinct lines. (b) If theP = 0 andP = 1 domains at theν = 2/3 spin phase

transition would fluctuate at a similar rate as the time scale of the measure-

ments (inverse linewidth), the NMR line would broaden betweenKs (P = 0) and

Ks,max (P = 1) as schematically shown. (c) Faster fluctuations of the domains

than the NMR time scale leads to motional narrowing and an average polarization

aroundP = 1/2 (Schematic diagram).

the measurements, some nuclei would only experience domains of polarizationP = 0, some

onlyP = 1 domains and some would experience both domains, thus broadening the NMR line

and part of the information would be lost, see Fig. 5.8(b).

If the fluctuations were faster than the NMR time scales, all nuclei would experience an

average polarization〈P〉 = (A1P1 + A2P2) / (A1 + A2), whereAi is the area of domaini and

the NMR then turns into a global probe. This situation, referred to asmotional narrowing, leads

to a single NMR line centered atP = 1/2, schematically drawn in Fig. 5.8(c). In these experi-

ments, the two lines of theν = 2/3 are well resolved indicating a static domain structure or at

least domains fluctuating slowly [23,96,103,127]. In reality, a line corresponding to a nonzero

polarizationP1 is broadened between betweenP = 0 andP = P1 due to the density profile

of the electrons across the width of the quantum well. This situation has been calculated in

reference [128] and is depicted in Fig. 5.8. The electron density profile (a) has been computed
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Figure 5.8: The electron density profile (a) and the resulting nuclearz-

magnetization profile (b) were calculated for a quantum well of thicknessw. From

this information, an intrinsic NMR line shape was computed (black curve in c)

and convoluted by a Gaussian distribution (red curve in c). A broadening of the

nonzero polarization NMR lines is caused by the density profile across the width

of the QW.

for a quantum well of thicknessw by a self-consistent bandstructure calculation. The resulting

nuclear magnetization profile,Mn(z) is presented in (b). The black filled curve in Figure (c)

shows the intrinsic NMR line obtained from such an electron density and magnetization pro-

file. The NMR signal intensity at a certain frequency is proportional to the number of nuclei

resonating at that frequency and their population excess. Since the Knight shift is proportional

to the electron density, a maximum shift of the line is caused by the electrons in the center of

the quantum well (blue dashed line). Near the edges of the well, the electron density decreases

and so does the Knight shift (green dashed line). A convolution of the intrinsic line shape and

a Gaussian function, needed due to a broadening of the NMR lines caused by nuclear dipo-

lar interactions, is shown in Fig. (c) as a red curve. These calculations explain the broadened

spectrum of the nonzero lines observed in our experiments (see for example Fig. 5.3).

5.2.4 Study of the Transitions atν = 3/5 and 4/7

In this section, we apply the same RDNMR/NMR technique to study the spin phase transitions

at ν = 3/5 (νCF = 3) andν = 4/7 (νCF = 4). In Fig. 5.9, we plotρxx vs NMR frequency

shift at theν = 3/5 transition peak, depicted as a black line. The red dashed curve is again the
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Figure 5.9: The gate voltage sweep depicted in the top left panel and the RDNMR

measurement of the main graph were performed atB = 10 T. The spin transition

for theν = 3/5 state is observed in transport (top left panel). TheP = 1/3 to

P = 1 transition forν = 3/5 (νCF = 3), as expected from the CF picture (top

right panel), is measured by RDNMR(black, solid line)/NMR(red, dashed line).

substrate reference signal. The top left panel shows a gate voltage sweep at a fixed magnetic

field (B = 10 T) plotted asρxx vs filling factor at a current ofI = 50 nA. A large broad peak

characterizes the spin phase transition similar to the HLR transition atν = 2/3. The black

dot on the curve signalizes the position where we have stopped the gate sweep to carry out the

RDNMR experiment. From the main graph, we observe that two resonance lines are present,

both shifted from the zero-shift reference substrate signal. The left line is shifted by roughly

36.7 kHz and the right line by≈ 12.2 kHz. Using again the calibration curve in Fig. 5.5, we

can infer that the two shifts correspond to polarizationsP = 1 andP = 1/3, respectively, at a

density of approximatelyn = 1.5×1011 cm−2, as expected from the composite fermion model.

This can be easily understood by looking at the composite fermion-Landau level diagram in

the top right panel, where the green dashed line represents the Fermi energy atνCF = 3. The
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different strength of the absorption lines is strongly dependent on the position of the transition

peak where the RDNMR was carried out (see next section).

The top left panel of Fig. 5.10 shows a gate voltage sweep at a fixed magnetic fieldB =

12 T. The ν = 4/7 spin phase transition is also characterized by a large peak. The black

Figure 5.10: Gate voltage sweep (left, top panel) and RDNMR plot (main graph)

atB = 12 T. A spin transition atν = 4/7 is also evident from the transport data.

The CF picture predicts a transition fromP = 0 toP = 1/2 and fromP = 1/2 to

P = 1 at ν = 4/7 (νCF = 4) as seen in the right, top panel. The latter transition

is measured by the RDNMR(black, solid line)/NMR(red, dashed line) technique.

dot on the curve marks the position where the RDNMR measurement of the main figure was

taken. We observe again two minima but this time separated from the reference signal by≈ 41

and≈ 22 kHz, respectively. This corresponds to the polarizationsP = 1/2 andP = 1 for a

density ofn = 1.67 × 1011 cm−2. From the top right panel, it becomes obvious that in these

experiments we are measuring theP = 1/2 to P = 1 transition expected at highB-fields

for νCF = 4. These experiments elucidate the power of the developed technique. Apart from
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confirming the composite fermion spin polarization measurements of Kukushkinet al. [60], it

provides local information.

Here, it is important to mention that in our experiments we do not observe any features at

intermediate polarization values which have been measured in previous works. For example at

filling factor ν = 2/3, aP = 1/2 state has been revealed by optical experiments [60], (see

Fig. 2.13). Likewise an electron spin polarization state ofP = 3/4 has been reported at the

same filling factor from NMR experiments done on multiple quantum wells [73]. These states

of partial polarization at2/3 are not yet understood and cannot be explained by the simple non-

interacting CF model. We should note, however, that the samples and experimental methods

used in those works are different than the ones presented here. In the optical measurements

by Kukushkinet al., the authors used a single-sided heterostructure with a much lower density

in which the spin phase transitions occur at lower magnetic fields (B = 2.3 T at ν = 2/3).

Furthermore, they measure a signal which is proportional to
∑

iAiPi, whereAi is the area of

polarizationPi measured by the laser spot. In our experiments, on the other hand, we detect

changes of the longitudinal resistance and therefore do not measure a global polarization, but

rather a signal proportional to
∑

i aiPi, whereai are coefficients dependent on the scattering

mechanism leading to a resistance peak in transport. In the conventional NMR measurements

presented in reference [73] they used 100 multiple quantum wells (each30 nm) stacked on top

of each other in order to increase the number of nuclei contributing to the signal. The question

remains if all the layers are identical and therefore have the same polarization. These differences

might lead to the discrepancies obtained in the results.

5.2.5 Conclusions

The conclusions drawn from the experiments presented in this section can be summarized as

follows: We developed a technique in which the electron spin polarization,P, can be measured

in a single quantum well. So far, measurements ofP in two-dimensional systems had only been

conducted on multiple quantum wells or with techniques which involved the hyperpolarization

of the nuclei via optical methods. This technique was very useful in studying spin phase tran-

sitions in various FQH states. Measurements atν = 1/2 allowed us to both obtain a reference

curve for the maximum Knight shift as a function of density (expected from a fully polarized

system) as well as investigating the polarization of this state as a function of magnetic field.

From the latter information we could extract a value for the composite fermion polarization

mass.

The RDNMR/NMR technique discussed in this section was applied successfully to the spin

phase transition atν = 2/3. Two distinct lines in the RDNMR spectrum indicate that the nu-

clear system interacts with electron domains of polarization zero and one. This spectroscopic

evidence of domain formation at the transition is the most important result of the section. Mea-
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surements conducted at other filling factors, namelyν = 3/5 andν = 4/7, also reveal domain

formation, but more importantly confirm the expected polarization of composite fermions. In

our discussion of the NMR measurements at2/3, we have not differentiated between the high

and low current regimes as in the previous chapter. This is the topic of the next section.

5.3 The Low Current vs the High Current Regime atν = 2/3

Theν = 2/3 transition in the HLR and SLR regimes are studied separately in this section by

means of RDNMR. We also present measurements of the transition at a higher temperature and

finally, we investigate the time evolution of the transition peak at different currents by switching

the onresonance RF-signal on and off.

5.3.1 The High Current Regime

We performed RDNMR at different positions of the high current transition peak nearν = 2/3.

The results, plotted in Fig. 5.11, were obtained after sweeping the gate in order to go from a low

to a high filling factor [Fig. (a)], and from a high to a low filling factor [Fig. (b)], as indicated by

the arrows on the top panels. Qualitatively, the results are independent of the sweep direction.

The curves shown in the main figures are RDNMR frequency sweeps for different constant gate

voltages atB = 8.1 T. We have plottedρxx vs polarization and the curves are vertically offset

for clarity. The upper left panels of both figures show the gate voltage sweeps already plotted

in Fig. 4.3. The numbered colors on the graph correspond to the position on the transition peak

where we carried out the RDNMR experiments of the main plot.

There are several interesting phenomena which can be inferred from this picture. Firstly,

the two resonance lines atP = 0 andP = 1 indicate the presence of domains, as mentioned

above. Secondly, there is a remarkable change in amplitude between theP = 1 and theP = 0

resonances at different positions on the resistance peak. On the higher filling factor side, the

P = 1 resonance line is stronger than theP = 0 line (red curve 2 and green curve 3). As

we progress along theρxx curve and move to lower filling factors, theP = 1 line becomes

much weaker and eventually disappears, while theP = 0 line gains in strength [violet curve 4

and orange curve 5, and the magenta curve 6 in Fig. (b)]. This might seem counter-intutitive

at first because the transition occurs from a spin-unpolarized ground state at high filling factor

to a spin-polarized ground state at low filling factor (η ∝ B/
√
ν at constantB). Hence, the

P = 1 domains should be dominant on the low filling factor side and theP = 0 domains

on the high filling factor side of the transition peak. This situation is easier visualized with

the aid of Fig. 5.12. However, we should recall that the width of theρxx peak is caused by a

current-induced nuclear spin polarization, since the transition is Overhauser-shifted from the
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Figure 5.11: Study of the RDNMR resonance lines at different gate voltages

(B = 8.1 T, T = 55 mK andI = 40 nA). In (a) the gate voltage has been

swept from low to high filling factor and in (b) from high to low. The main figures

represent RDNMR measurements for several constant gate voltage values. The

upper left panels of both figures show the gate voltage sweeps also shown in Fig.

4.3. The colored numbers indicate the position on the peak, where the RDNMR

was carried out (main figure). The upper right panels compare theρxx values for

the on and off-resonance case.

original valueη0. That means that on the high filling factor side of the peak, theminority

phasedomains, in this case the polarized domains, will be stabilized by the non-equilibrium

current-induced nuclear spin polarization. By randomizing the nuclei with the RF-signal, we

shift the transition back toη0 and the minority phase domains vanish. As a result, the resistance

transition peak diminishes, leading to the resonance dip observed inρxx. Likewise, on the low

filling factor side, the unpolarized domains are the minority phase and the contribution of the

P = 0 line is strongest (curves 4 and 5). Thus, in our experiments, we are detecting the changes

in the minority phases rather than the changes in the majority phases. The same situation occurs

at theν = 3/5 transition in which the strongest dip originates from the minority phase domains,

see Fig. 5.9. It is therefore important to remark that by doing RDNMR experiments we are

not carrying out a thermodynamical measurement, as in a conventional NMR experiment. It
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Figure 5.12: (a) On the high filling factor side of the transition peak, the unpo-

larized region dominates and theP = 0 domains should be in the majority. (b)

In the center of the peak, both phases should be equal and in the low filling factor

side, theP = 1 domains are expected to be the majority.

is difficult to analyze the data in more detail since a theoretical description of the mechanism

responsible for the large resistance peak has not been presented to date.

The third interesting observation in this graph can be seen from the top right panels of

both figures. Here, we have plotted the value ofρxx off-resonance, i.e.ρxx at constantB-

field andVgate values with the RF-source on but away from the Larmor resonance frequency

(black squares), and theρxx on-resonance, i.e. whenever the RF-frequency equals the Larmor

frequency of the nuclei (red stars). Consequently, non-resonant heating effects could be ruled

out by comparing the on and off-resonance signals9. The data were obtained by performing

RDNMR measurements at different gate voltages, covering the whole width of the HLR peak.

Evidently,ρxx is smaller for the on-resonance signal than for the off-resonance signal. This sit-

uation is true for the whole extent of theρxx peak. Therefore, we can be certain that a mere shift

in the peak, due the Overhauser effect, cannot be the only reason for the resistance change in the

on-resonance condition. Otherwise, we would expectρxx to decrease on one side of the peak

and increase on the other (see section 5.3.2). This shows that the amplitude ofρxx is strongly

affected by randomizing the nuclei. The inhomogeneous nuclear spin polarization created by

the high driving current is thus destroyed and order is partially restored in the electronic system.

Finally, the anomalous, “dispersion-like” line shape of the black curve 1 in both main figures

cannot be understood in terms of two differently polarized domains. It occurs on the high

filling factor side whenever the peak develops only to a small value [Fig. 5.11(b)] or has not

yet completely vanished [5.11(a)]. Similar line shapes have also been observed around filling

factorsν = 1, 1/3, and2/5 as well as2/3, 3/5, and4/7 away from the spin transition. This will

be addressed section 5.5. In the following, we focus on the low current regime at theν = 2/3

9Even though there is an increase in the nuclear spin temperature whenever we change their magnetization, it

does not affect the electronic system since these two systems are very weakly coupled. Therefore, we can safely

say that the electronic system is being measured isothermally.
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transition.

5.3.2 The Low Current Regime

We have also studied the spin phase transition atν = 2/3 in the low current regime. Figure

5.13 is the analog to Fig. 5.11 but forI = 1 nA. In Figure 5.13(a) the gate has been swept

in order to go from low to high filling factor and in 5.13(b) from high to low filling factor, as

indicated by the arrows. The left top panels show gate voltage sweeps at a fixed magnetic field

Figure 5.13: RDNMR experiments at theν = 2/3 spin transition in the low

current regime for a gate sweep from low to high filling factor (a) and from high

to low (b). The top left panels of both figures show the gate voltage sweeps and

the right panels show the off- and on-resonance signals ofρxx (see also Fig. 5.11).

These measurements were performed atB = 8.1 T andT = 55 mK.

of 8.1 T. The small peak at theν = 2/3 minimum indicates the spin unpolarized-polarized

phase transition. The colored numbers show the position on the peak, where we stopped the

gate voltage and swept the RF-signal. Some similarities can be seen between the high and low

current regimes. For example, the two resonance lines atP = 0 andP = 1 in the RDNMR

spectrum prove the interaction of electrons and nuclei and the existence of domains with these
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two polarizations also in the low current regime10. However, some differences between both

current regimes are also apparent. The value ofρxx increases as we reach the Larmor frequency

of the nuclei if the gate is stopped on the high filling factor side of the peak. On the other hand,

if the gate is stopped on the low filling factor side,ρxx decreases. On the right top panels, we

again plot the value ofρxx off-resonance (black rectangles) and on-resonance (red stars). From

these graphs, it is obvious that the changes inρxx at a low current are due to an Overhauser

shifting of the peak resulting from a negative hyperfine field. This clearly distinguishes the low

from the high current regime, where this shift is masked by the global decrease of the resistance

(Fig. 5.11). We note that at low currents the amplitude of the peak remains the same for the off

and on-resonance case. This behavior strongly suggests a homogeneous nuclear polarization

across the sample according to the thermal Boltzmann distribution and that the on-resonance

applied RF-signal simply destroys part of the thermal nuclear spin polarization.

From the shifting of the peak, we can estimate the change in nuclear hyperfine magnetic

field,BN, due to the RF signal. By referring to equation 2.10, we obtain∆BN = nh
e

(
1
ν1
− 1

ν2

)
=

45 mT for the sweep presented in Fig. 5.13(a) and20 mT for the sweep shown in Fig. 5.13(b).

After consulting Fig. 4.27, we expect a thermalBN of about360 mT at T = 55 mK. Hence,

we depolarize12% (6% in the other sweep direction) of the nuclei with the RF-signal, which

results in a Zeeman energy change of approximately0.9 µeV ≡ 10.5 mK (0.42 µeV ≡ 4.9 mK

for the other sweep direction).

5.3.3 Temperature and Time Dependence of the SLR and HLR Transi-

tions

T = 250 mK

Since we presume that the SLR peak is only influenced by the thermal nuclear spin polarization,

we would not expect an NMR signal to be detected if the temperature is high enough for the

average thermal polarization to be insignificant. On the other hand, the HLR is influenced by

a current-induced nuclear spin polarization and a signal should be measured even at higher

temperatures. In order to verify this, we repeated the RDNMR experiments atT = 250 mK,

where the nuclear thermal polarization is very low. As expected, we could not measure a signal

at low currents at this temperature. At high currents, on the contrary, we obtained qualitatively

the same results as in the low temperature experiments shown in Fig. 5.11. An RDNMR plot at

T = 250 mK andI = 100 nA is presented in Fig. 5.14. Here, we see that the two resonance

lines are separated by≈ 29 kHz, which is expected forKs,max from the calibration curve of Fig.

5.5. The two distinct lines indicate that the domains are probably also static at this temperature.

The fact that atT = 250 mK we could only observe changes in the RDNMR spectrum in

10Here again, both sweep directions show qualitatively almost the same behavior [see Figs. 5.13(a) and 5.13(b)]
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Figure 5.14: RDNMR measurement on the HLR peak atT = 250 mK. At this

temperature no signal was observed in the SLR regime.

the high current regime but not at low currents reiterates our assertion that the HLR is mainly

caused by an induced nuclear spin polarization. The SLR, however, is only affected by a thermal

nuclear spin polarization which is only about1% at T = 250 mK andB = 10 T. Hence, no

effects are seen at this temperature in the low current regime.

Time evolution

Additional information about the electron-nuclear coupling can be obtained by studying the

time behavior of the transition peak at different currents. The relaxation times of the longitudi-

nal resistance peak at the transition are investigated for several currents between0.7 and42 nA

by using an RF signal. The experiments were performed as follows: At a specific current value,

the gate was swept toν = 2/3 at a constant magnetic field value, see Fig. 5.15(a). After reaching

2/3, the gate sweep was stopped and the longitudinal resistivity,ρxx, was monitored as a func-

tion of time. We chose the necessary density andB-field (n = 1.29× 1011 cm−2 andB = 8 T)

in order for both the SLR and HLR peaks to exist at exactlyν = 2/3. During this process, an

RF signal was irradiating the sample but at a frequency away from the Larmor frequency of the
75As nuclei at8 T (off-resonance). After the resistance reached equilibrium, we tuned the RF

signal on resonance for 33 minutes while recordingρxx and then tuned the frequency off reso-

nance again. This situation is depicted in Figs. 5.15(b) and (c) for two currents:I = 4.9 nA, in

which the transition peak is in the SLR regime (b) and forI = 42 nA in the HLR regime (c).
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Figure 5.15: (a) Gate voltage sweep atI = 10 nA andB = 8 T. The blue

curve is magnified 15 times andνreset ≈ 0.87. Time evolution of the SLR (b) and

HLR (c) peaks after setting the RF signal on-resonance (red curves) and again

off-resonance (green curves).

After the measurement of each current value, we swept the gate back toνreset ≈ 0.87, changed

the current, waited at that filling factor for 30 minutes in order to reset the system, and then

swept back toν = 2/3 [see Fig. (a)]. In both regimes, the resistance drops exponentially after

tuning the RF on resonance (red curves). At low currents, the SLR resistance peak decreases

due to a shifting of the transition peak, while at high currents, the HLR is partially destroyed

(see Figs.5.11 and 5.13). By fitting an exponential function to the decreasing, on-resonance

resistance, depicted in the insets of both figures, it is possible to determine the relaxation time

T1. The exponential fit, shown as a red curve in the insets, rendersT1 = 7.61 ± 0.5 min for

the low current regime [Fig.(a)] andT1 = 6.2 ± 0.3 min for the high current regime [Fig.(b)].

If we only consider the first 5 minutes after switching on the RF signal, however, we obtain a

faster time constant than if we also consider latter times. This situation is in good agreement

with the current switching experiments presented in the previous chapter (Fig. 4.12). The expo-
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nential fit of the first 5 minutes (blue curves of insets) yields:T1(SLR) = 1.35 ± 0.2 min and

T1(HLR) = 1.06±0.15 min. Surprisingly, the relaxation times obtained are very similar for all

studied currents in both regimes and hence noT1 current dependence can be clearly observed.

For that reason, we decided to study the time dependence of the resistance as a function

of current more carefully after setting the RF signal again off resonance [green curve in Figs.

5.15(b) and (c)] and analyzing the relaxation of the peak back to its original value. Once more,

the peak rises exponentially and for most current values, two different time constantsT1 were

determined again. In this case, however, we could distinguish between a short time constant

T1(short), which is independent of the current applied, and a longer constantT1(long) which

is current dependent. The time relaxation constant is plotted vs current in Fig.5.16 [T1(short)

in blue andT1(long) in red]. The inset shows a representativeρxx vs time plot (green) and the

fitted curve (black) after the RF has been set off resonance atI = 14.1 nA. The reason for

Figure 5.16: Time relaxation constantT1 vs current after the RF has been set

off resonance. The blue symbols are a shortT1 and the red symbols are a long

T1 obtained from a an exponential fit of the curves. Inset: Longitudinal resistivity

ρxx vs time atI = 14.1 nA (green curve). The black line is an exponential fit to

the data.

having at least two time constants in these experiments might be due to the fact that the change

in resistance is caused by several factors. In addition to the nuclear relaxation, switching the RF

signal on and off resonance might provoke small changes in the temperature, which would cause

the peak to shift (at low currents) or to alter its amplitude (at high currents). Furthermore, it has

been shown in section 4.6, figure 4.18 that the HLR resistance continues to rise even after many

hours, due the dynamic nature of the domain structure, which may lead to extremely long time



116 CHAPTER 5. NMR STUDIES OF THE LOWEST LANDAU LEVEL

constants. It could therefore be that the short relaxation time constant, which is independent

of the current, might not be connected with the nuclear system, whereas the long relaxation

time, which is current dependent, could actually be theT1 of the nuclei. The enhancement of

the relaxation rate (T−1
1 ) with increasing current shows once more that the nuclear and electron

spins are more strongly coupled at high currents. The dependence ofT1 on the current, which

seems to be exponential, might provide important information about the dissipation mechanism

of the transition peak.

5.3.4 Conclusions

In conclusion, the RDNMR results obtained in this section support some of the ideas developed

in the previous chapter concerning the low and high current regimes at2/3. For example, the

formation of domains could be proven in both current regimes. Also, the RDNMR experiments

taken at different positions of the transition peak proved that the HLR is caused by an inho-

mogeneous nuclear hyperfine field (the peak is always destroyed with RF-irradiation) while the

SLR peak is only affected by a homogeneous nuclear field (shifting of the peak with RF). Exper-

iments atT = 250 mK strengthened this conclusion. It was also observed from the amplitude

of the two resonance lines that the non-equilibrium nuclear spin polarization in the HLR regime

is stabilized by the minority phase domains. In the SLR, on the other hand, the amplitude of

the lines remains constant independent on whether RDNMR was performed on the high or low

filling factor side of the peak. From this information, we can infer that in the HLR regime a peak

in ρxx is formed, even if one domain is more abundant than the other,while the SLR is only seen

when both domains types are equally represented. The time relaxation measurements show a

current-independent and a current-dependent time constant. The latter might deliver interesting

information regarding the mechanism leading to dissipation.

5.4 Samples under Strain: Quadrupole Splitting

In section 2.4.6, we showed that Kronmülleret al. reported an anomalous four-fold splitting

of the RDNMR lines in the HLR regime (see reference [6]). So far, all the RDNMR curves

presented in this chapter have not revealed such an anomaly. In this section, we will clarify

the reason for the four-fold splitting. For that purpose, it is necessary to briefly introduce the

quadrupole interaction.

Besides the hyperfine interaction with electrons, nuclei can also interact with an electric field

gradient EFG if they posses a nuclear quadrupole momentQN. Nuclei with a spinI > 1/2,

such as69Ga,71Ga and75As with I = 3/2, have a non-spherical charge disribution and thus a

finiteQN. An EFG can exist due to intrinsic properties such as the surrounding electron charge
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distribution. The interaction between the nuclear quadrupole moment and the EFG,∆E, can be

expressed by the following Hamiltonian [70]:

HQ =
1

6

∑
i,j

Qi,j∆Ei,j. (5.16)

Here,∆Ei,j is a tensor quantity which can also be written as:

∆Ei,j =
∂2V

∂xi∂xj

, (5.17)

wherexi(i = 1, 2, 3) are the coordinatesx, y andz andV is the electrostatic potential. By

choosing an appropriate coordinate system, it is possible to represent the EFG by three pricipal

axes:Vxx, Vyy andVzz.

If the nucleus is at a site of cubic symmetry, which is usually the case in GaAs, thenVxx =

Vyy = Vzz, which in combination with the solution to the LaPlace equation (
∑

i Vii = 0) yields

zero for all three derivatives from equation 5.17. Therefore, the nucleus is not be affected by

quadrupole effects in this case. The allowed transitions∆mI = ±1 are all of the same energy

and only one line appears atγNBz (for zero Knight shift) in the NMR spectrum as illustrated in

Fig. 5.17(a) for a nucleus with spinI = 3/2.

Figure 5.17: Schematic energy diagram for a nucleus with spinI = 3/2. (a) If

the nucleus is located in a lattice of cubic-symmetry, the three∆mI = ±1 transi-

tions are identical and no quadrupole splitting is observed in the NMR spectrum.

(b) If the cubic symmetry is broken, two satellite peaks atωL ± νQ appear due to

the quadrupole interaction. AlsomI = ±2 transitions are allowed.
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On the other hand, if the cubic symmetry is broken, for example caused by a distortion of

the crystal lattice due to a strained sample, the EFG couples to the nuclear quadrupole moment

QN. In general, the energy splitting due to the quadrupole interaction is given by:

∆EQ =
hνQ

2

(
m2

I −
I

3
(I + 1)

)
, (5.18)

in whichνQ is the so-called “quadrupole frequency:”

νQ =
3eQNVzz

2I(2I − 1)h
. (5.19)

These formulas were derived for∆N >> ∆EQ in first order perturbation theory11. In particular,

for I = 3/2 the NMR lines split into three as shown in Fig. 5.17(b). The central transition (red),

i.e. |mI = 1/2〉 → |mI = −1/2〉 remains unaffected, but two satellite lines appear, shifted

from the central line by−νQ (blue) and+νQ (green) for the|mI = 3/2〉 → |mI = 1/2〉
and |mI = −1/2〉 → |mI = −3/2〉 transitions, respectively. Due to the coupling between

the quadrupole moment of the nuclei in the non-cubic lattice sites and the EFG, the transition

selection rules∆mI ± 1 are lifted, thus enabling∆mI ± 2 transitions. If an rf-signal is applied

at twice the Larmor frequency, resonance lines may be observed atf = 2ωL ± νQ.

In the measurements discussed so far, no quadrupole effects were observed. In this section,

we present results obtained from samples which are subjected to strain and therefore show a

quadrupole splitting of the NMR lines. In Fig. 5.18, we show two RDNMR spectra atν = 1/2

for two different samples of the same wafer [see Fig. 3.1(b)]. In (a) we replot the same curve

presented in Fig. 5.3 where only one NMR line, Knight shifted from the substrate reference

signal, is observed. In Figure (b) we perform again the same RDNMR experiment at similar

B-field and density values (B ≈ 9.2 T andn = 1.11× 1011 cm−2), but with a sample mounted

differently to the chip carrier than one used for the spectrum in figure (a). Three resonance lines

are observed in the RDNMR spectrum (blue curve) as opposed to the one resonance line previ-

ously measured. The central line in spectrum (b) is shifted from the substrate reference signal

(red curve) by approximately the same amount as in figure (a) and the two additional resonances

are equally separated (≈ 17 kHz) from the central line. From this information, we can conclude

that the three-fold splitting of the lines can be attributed to the nuclear quadrupole interaction,

which is most likely caused by an external strain due to the mounting of the sample12.

After conducting the measurements atν = 1/2, we changed the density ton = 1.49 ×
1011 cm−2, at constantB-field (9.2 T) in order to go to filling factorν = 2/3. At this density,

the unpolarized-polarized transition is present in our sample. In Fig. 5.19(b), we show RDNMR

11This formula is obtained by assuming axial symmetry so thatVxx = Vyy which is the case even for strained

GaAs. The reader may consult the following references for a complete derivation of equation 5.18: [70,71,129].
12The strained samples were mounted to the chip carrier by using a rubber-based glue (“Fixogum”), while the

non-strained samples were attached to the carrier with polymethyl methacrylate (PMMA).
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Figure 5.18: (a) In a sample without strain, the RDNMR spectrum atν = 1/2
(black line) only shows one resonance line (same spectrum showed in Fig. 5.3).

(b) On the other hand, in a sample under strain, three resonance lines appear in

the spectrum due to the quadrupole interaction. Both samples are from the same

wafer (020502.1), but mounted differently on the chip carrier.

spectra obtained at theν = 2/3 spin transition peak in the high current regime. In Figure

5.19(c), we have replotted the measurement atν = 1/2 for comparison. The black curve in (b)

reveals five features instead of the usual two lines as seen in Fig. 5.6. The substrate reference

signal (red curve in Fig.(a) with maximum atf0 = 67.340 MHz) coincides with one of the

resonance lines of the black curve, Fig. 5.19(b), which can now be identified as the zero-shift

resonance. All lines are equidistant and separated by≈ 17 kHz. Experiments at2f0 show

two weak resonance lines, which are separated by≈ 34 kHz and lie at exactly2f0 ± 17 kHz

[yellow curve in Fig.5.19(a)]. This spectrum can be interpreted as follows: Each of the two

resonance lines obtained from nuclei interacting with electrons inP = 0 andP = 1 domains,

as presented in Fig. 5.6, split into three lines by virtue of the quadrupole interaction. TheP = 1

line is Knight shifted from theP = 0 line by≈ 34 kHz as expected from the calibration curve of

Fig. 5.5 for a density ofn = 1.49× 1011 cm−2. The quadrupole splitting is∆EQ ≈ 17 kHz for

this sample and therefore two of the lines coincide, resulting in five instead of six lines. The first

three features at lower frequency are much weaker than the last two resonance lines since the

measurements were conducted on a position of the transition peak where theP = 0 resonance

is better developed than theP = 1 as in curve 5 of Figs. 5.11(a) and (b). The experiment at

filling factor ν = 1/2 [blue curve in Fig. 5.19(c)] shows that while the quadrupole splitting is

independent of the density (∆EQ is still 17 kHz), the Knight shift is now≈ 23 kHz as expected

for n = 1.11×1011 cm−2. The results atν = 1/2 corroborate the interpretation of the spectrum

at theν = 2/3 transition.
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Figure 5.19: RDNMR measurements on the HLR peak around the resonance

frequencyf (b) of the75Ga nuclei and twice the frequency2f (a) atB ≈ 9.2 T
andn = 1.49×1011 cm−2 for a strained sample. RDNMR atν = 1/2 [blue curve

in (c)] atn = 1.11× 1011 cm−2 and NMR signal (red curve) of the substrate. (d)

ρxx vs B-field in the HLR regime. (e) RDNMR on the HLR atB = 8 T and

n = 1.3× 1011 cm−2. All measurements were performed atT = 55 mK.

A sample under the influence of strain also affects the transport features of the high current

ν = 2/3 transition peak. In Fig. 5.19(d), we see thatρxx increases to more than6 kΩ while

for a sample without strain,ρxx is considerably smaller (only≈ 4 kΩ as observed in Fig. 4.3).

Finally, we repeated the RDNMR experiment for a smaller density (n = 1.3× 1011 cm−2) and

magnetic field (B = 8 T) for a situation in which theP = 0 andP = 1 are similarly strong

[Fig. 5.19(e)]. While the Knight shift decreased to≈ 30 kHz, in agreement with the calibration

curve 5.5 for this density,∆EQ remained at17 kHz. The spectrum shows four clear resonance

lines and a very weak feature at−17 kHz.

If the strain on the sample increases, then the quadrupole splitting also increases [105]. Fur-

thermore, if the splitting is comparable to the Knight shift, a situation can occur in which several

resonance lines overlap yielding four lines in the spectrum. This is indeed the case for the curi-
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ous four-fold splitting reported earlier in the HLR regime. In Fig. 5.20, we plot RDNMR mea-

surements performed on the high current transition peak atB ≈ 8.1 T andn = 1.3×1011 cm−2

in which an original type A sample was employed [Fig. 3.1(a)]. Plot 5.20(b) clearly shows four

Figure 5.20: RDNMR on the HLR peak atf (b,e) and2f (a,d) of a (15,14) nm

QW using two samples type A sample under strain. [For Figs. (a-c), a sample

from 100797.3 was used and for (d-e) a sample from052098.2.] (c) RDNMR

performed on theν = 3/5 spin phase transition peak.

resonance lines, where the last three lines are nicely developed. The double resonance, 2f , mea-

surements indicate that the lines are quadrupole split by≈ 26 kHz13. Moreover, the expected

Knight shift for theP = 1 line is≈ 28 kHz. There are two overlapping features, marked by the

arrows in the figure, so that instead of six lines, four lines are present. The RDNMR spectrum

at theν = 3/5 transition (B = 9 T) shows a three-fold splitting of theP = 1/3 resonance line.

The splitting∆EQ = 26 kHz is independent of the magnetic field as expected.

In some samples, the∆mI = ±2 lines at2f0 ± νQ are strongly developed. In Figs. 5.20(d)

and (e), we show the 2f andf RDNMR measurements, respectively, for a14 nm QW of type

A at constant fieldB = 7.8 T. The expectedKs,max = 27 kHz at n = 1.25 × 1011 cm−2 and

a quadrupole splitting∆EQ ≈ 24 kHz are both observed. Hence, four lines become visible in

the RDNMR spectrum. These experiments show that the quadrupole interaction, due to strain

13The density is similar to the one used in the experiments reported in reference [6].
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caused by the mounting of the sample, is the origin of the four-fold splitting previously reported

in the HLR regime [6].

tilted B-field

Another way to verify that the splitting of the lines is due to the quadrupole interaction is by

carrying out tiltedB-field RDNMR experiments. Equation 5.18 can be generalized for this

situation by considering a magnetic field in thez-direction which differs from the direction of

the principal axis of the electric field gradient tensorz′ by the tilt-angleθ [70]:

∆EQ =
hνQ

2

(
3 cos2 θ − 1

2

)(
m2

I −
I

3
(I + 1)

)
. (5.20)

What is important in this equation is the3 cos2 θ−1
2

dependence. The quadrupole splitting∆EQ

decreases with the angle until it completely vanishes atθ = 54.7◦. At higher angles the splitting

should increase again until reaching±νQ

2
. Also, the NMR resonance line broadens since all

possible orientations of the nuclear spins relative to the externalB-field may exist between0 and

θ. These experimental findings have been corroborated by simulations presented in reference

[23]. In the RDNMR experiments at tiltedB-field depicted in Fig. 5.21, we observe that the

four-fold splitting at0◦[Fig.(a)], also shown in Fig. 5.20(e), slightly reduces at11◦[Fig.(b)],

finally becoming one broad line at20◦[Fig.(c)] with a FWHM≈ 40 kHz. The measurements

were obtained by using the time-settling technique described in section 4.2.1. In figures (d)-

(e), the same results were obtained in a15 nm type A sample, but using an800 µm wide Hall

bar for the measurements. The four-fold splitting is clearly seen in this case. The measured

Knight shift is≈ 31 kHz (as expected forn = 1.35 × 1011cm−2) while ∆EQ ≈ 27 kHz [Fig.

5.21(f)]. At 15◦, ∆EQ reduces to21 kHz and the four lines seem to develop into five lines

although they are difficult to resolve, see Fig. 5.21(e). At higher tilt-angles [32◦, Fig. 5.21(d)]

only one broad resonance line appears with a FWHM≈ 30 kHz. This behavior is expected if

the quadrupole interaction is responsible for the splitting of the lines and therefore strengthens

our interpretation that∆EQ is responsible for the anomalous four lines previously observed.

5.5 Anomalous NMR Line Shape aroundν = 1, 1/3 and2/3

Spin phase transitions are not the only example where the spin degree of freedom is important

in the FQH regime. Theoretical and experimental works have shown that at sufficiently low

Zeeman energy, the lowest lying energy excitations around the QH ferromagnetic stateν = 1 are

topological excitations referred to as skyrmions. In RDNMR experiments, skyrmions have been

speculated to be responsible for an anomalous line shape observed aroundν = 1 [93]. Even

though the CF skyrmion analog should exist aroundν = 1/3 at vanishing Zeeman energy [89],
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Figure 5.21: Tilted B-field RDNMR measurements on the HLR peak of a

strained sample at0◦ (a), 11◦ (b) and20◦ (c) for a 14 nm QW using an80µm

wide Hall bar. A 15 nm QW was employed for the experiments shown in figures

(d)-(f), but an800 µm wide Hall bar was used instead.

their existence was not revealed in various experiments [23,130]. With this in mind, we carried

out RDNMR measurements at filling factors close toν = 1 andν = 1/3. Figures 5.22(a) and

5.22(d) display a gate sweep atB = 8 T andB = 15 T, respectively. In the first figure, theρxx

minimum forν = 1, 2/3 and3/5 are visible. In the second figure, filling factorsν = 3/7, 2/5

and1/3 are clearly identified. Figure 5.22(c) shows RDNMR measurements taken at filling

factorsν = 0.76, 0.78, 0.8, 0.83, i.e. in the vicinity ofν = 1 as indicated by the color dots on

the transport curve [5.22(a)]. The four curves, which colors correspond to the dot’s colors, have

been offset for clarity. The magnetic field was kept constant atB = 6.75 T for all four rf-sweeps.

Interesting in this plot is the development of an anomalous line shape. Initiallyρxx decreases,

then increases and finally returns to its original value. Also, a third line, indicated by arrows,

appears as we approachν = 1. It is shifted towards negative polarizations (dashed line indicates

the position ofP = 0). This “dispersion-like” line shape is very different to the data of the

ν = 2/3, 3/5 and4/7 spin phase transitions as well as near filling factorν = 1/2 [Fig. 5.22(f)].
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Figure 5.22: Gate voltage sweeps atB = 8 T (a) andB = 15 T (d), respectively.

The black dots indicate the position where RDNMR experiments were performed.

An anomalous line shape was observed in the RDNMR experiments at the high

filling factor side ofν = 2/3 [at ν = 0.69, Fig.(b)], at the high filling factor side

of ν = 1/3 [at ν = 0.355, plotted as a dashed curve in Fig.(e)], and at the low

filling factor side ofν = 1 [(Fig.(c)]. A conventional line shape is seen at the low

filling factor side ofν = 1/3 [at ν = 0.323, plotted as a solid line in Fig.(e)], and

of ν = 2/3 (not shown), at the spin-phase transitions and at other filling factors,

e.g.ν = 0.5 and0.54 [Fig.(f)].
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Such anomalous line shapes are similar to the ones reported in the literature [93]. In order to

clarify the question whether these lines may provide evidence for the existence of a skyrme

crystal, we also carried out RDNMR experiments near filling factorν = 1/3 [at ν = 0.323 and

0.355 shown in Fig. 5.22(e)]. On the high filling factor side ofν = 1/3, a similar, anomalous

resonance line is present [black, dashed curve in Fig. 5.22(e)]. This curve was measured at

B = 15 T andν = 0.355. However, it is highly unlikely that this line shape indicates the

existence of skyrmions aroundν = 1/3 due to several reasons: Firstly, if we compare it to

the one observed atν = 0.323 [blue, solid line in Fig. 5.22(e)], i.e. for the case of quasi-hole

excitations (ν < 1/3), we do not observe the anomalous line shape but rather a conventional

one. If skyrmions would exist in this region, the “unconventional” line should be present on

either side ofν = 1/3. Secondly, the ratio between the Zeeman to Coulomb energies (η =

0.027) is excessively large compared to the low spin-stiffness at this filling factor14. Optical

experiments have shown that even atν = 1, where the spin stiffness is about thirty times

larger [64, 131], skyrmions only exist below a criticalηc = 0.011 [88]. Moreover, theη values

for the RDNMR measurements close toν = 1 atB = 6.75 T (η = 0.017) and aroundν = 2/3

atB = 8 T (η = 0.019) exceedηc. Thirdly, RDNMR experiments near filling factorν = 2/3

[Fig. 5.22(b)] also display an anomalous line shape. This measurement was performed on the

high filling factor side ofν = 2/3 [the gate voltage and magnetic field were stopped atν = 0.69;

the green dot in Fig. 5.22(a)] and at a constant field ofB = 8 T. Since at this field, the QH

ground state is unpolarized, the existence of skyrmions can be ruled out. The same situation

also exists aroundν = 2/5, 3/5, and4/7 (not shown here). Figure 5.22(f) shows RDNMR lines

for the filling factorsν = 0.5 (red, solid line) and0.54 (blue, dashed line)15. An increase in

ρxx for the latter case and a decrease for the former case are seen. Important to notice here is

the normal line shape obtained. This plot indicates that the details of the change in resistance

depend sensitively on the particular choice of filling factor. The change in Zeeman energy due

to rf-irradiation may increase as well as decrease the resistance. This may be the cause for the

“strange” line shape nearν = 1, 2/3 and1/3, since unpolarized and polarized regions may

cause a different response on the resistance (for example decreasing for polarized regions and

increasing for unpolarized ones).

From our data, we can infer that skyrmions are not likely to be the origin of the anoma-

lous “dispersion-like” line shape. Instead, it seems that a coupling of the nuclear system with

quasi-particle excitations (spin-aligned or spin-reversed), which exist around all filling factors

investigated, might be responsible. It is probable that the line shape arises from a non-uniform

response of the system to changes inEZ. It remains unclear why, in contrast toν = 1, for

fractional filling factors the anomalous line shape occurs only at the high filling factor flank

14The values ofη have been corrected for finite thickness effects by using equations 2.20 and 2.21.
15Previous measurements done aroundν = 1/2 show that the NMR behavior atν > 1/2 andν < 1/2 is quite

complex. It depends on parameters such as temperature, tilt-angle, magnetic field, etc. [62].
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(quasi-electron excitations) and not at the opposite flank (quasi-hole excitations).

5.6 Outlook

The RDNMR/NMR technique introduced in this chapter can be extended to study additional

spin phenomena present in the QHE. Until now, we have restricted our technique to spin tran-

sitions and low-energy collective excitations occuring in the lowest Landau level. In the higher

Landau levels, a different situation prevails as new QH states appear, see Fig. 5.23. For example

Figure 5.23: The FQHE at higher LLs. The even-denominator FQHE states

at N = 1 (ν = 5/2 and ν = 7/2) are believed to be caused by pairing of

CFs. The polarization and as a result the nature of the wavefunction remains an

enigma. Sample from a heterostructure with a mobility ofµ ≈ 9.0 · 106cm2/Vs
atn = 2.7× 1011cm−2(Wafer496 from Umansky).

forN ≥ 2, collective anisotropic ground states, in which the competition between the Coulomb

and exchange energies forces electrons to cluster in “stripe” and “bubble” patterns, have been

measured near even denominator filling factors (e.g.ν = 9/2 and11/2) [53, 54, 132]. In the

first excited LL,N = 1, FQHE states with even denominator were discovered atν = 5/2
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and7/2, differing from theν = 1/2 andν = 3/2 metallic states in the LLL (see inset of Fig.

5.23) [133,134]. A spin-singlet wavefunction was proposed [135] based on the idea of electron-

pairing [42]. This unpolarized wavefunction seemed to be supported by the rapid collapse of

the state at tiltedB-fields [136]. However, subsequent numerical calculations indicated that a

spin-polarized paired-wavefunction might be energetically more favorable than the spin-singlet

state [137]. Even though recent work suggests that phase transitions might occur between a

CF-pairing state to an anisotropic phase, similar to theN ≥ 2 LLs states ( [138, 139]), the po-

larization of the state remains an enigma. The technique developed in this work could be used

to measure the Knight shift atν = 5/2 and7/2 (or near the fillings if the resistance vanishes)

in order to determine the electron spin polarization and hence the nature of these QH states.

More recently, possible evidence for excitonic condensation has been observed in electron-

electron bilayer systems at certain ratios of the QW center-to-center separation and magnetic

length (d/`B), when each of the two layers are at half filling [140, 141]. As we have seen in

this chapter, the electron spin polarization plays an important role at filling factorν = 1/2.

However, in a closely spaced bilayer system, where the total filling factorνT = 1, one would

expect the system to be fully polarized. It has been suggested in reference [142], that studying

the electron spin polarization might render important information concerning this condensate

state. A possible application of the technique developed in this work could be to measureP in

this regime.





Chapter 6

Conclusions and Summary

The objective of this thesis is to study spin phenomena occuring in the lowest Landau level

(LLL) of the quantum Hall effect. In principle, one would expect all of the electrons in the LLL

to be fully polarized thus freezing out the spin degree of freedom. However, due to the strong

correlation which exists between the electrons at filling factorsν ≤ 1, new incompressible

quantum Hall states with vanishing longitudinal and quantized Hall resistances appear at certain

fractions of the available states. In this fractional quantum Hall effect (FQHE), the many-body

wavefunction of the ground states and their excitations will depend on the spin polarization of

the system. Hence, spin is reestablished as an important degree of freedom in the LLL. Spin

phenomena in this regime include spin phase transitions of several FQHE ground states, spin-

reversed and topological excitations with an underlying spin-texture referred to as skyrmions,

polarization of composite fermions (CFs) and interactions between nuclear and electron spins.

In our work, we employed two different experimental techniques: magnetotransport and nu-

clear magnetic resonance (NMR) to investigate these phenomena. The latter technique proved

to be particularly useful in studying interactions between electrons and nuclei. In fact, NMR is

an important tool to study spin phenomena because the electron spin polarization (P) can be di-

rectly measured from the spectroscopic information—a shift in the Larmor resonance, known as

Knight shift, is propotional toP. Unfortunately, the sensitivity of an NMR experiment of a sin-

gle 2-dimensional electron system (2DES) is very poor. The signal is proportional to the number

of nuclei and their average spin polarization. Consequently, in order to measure an NMR sig-

nal from a 2DES, mutiple quantum well samples and optical pumping techniques were used in

previous works to overcome these difficulties. In chapter 5, we presented a method developed

in this thesis where the electron spin polarization was measured in asingle2DES. It consisted

of performing a resistance detected (RD)NMR experiment, i.e. monitoring the changes of the

longitudinal resistance during RF-irradiation of the nuclear spins, and comparing the signal to

a conventional NMR signal from the substrate nuclei. The differences in the signal fequencies

rendered the Knight shift and as a result the electron spin polarization. In addition to the elec-
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trical transport measurements, we applied this technique to study various aspects of the spin

phenomena mentioned above. In the following, we summarize the main results of the thesis.

• The spin phase transition atν = 2/3 in the low and high current regime

The initial purpose of this work was to understand the origin of the anomalous resistance peak

reported in the FQHE at filling factorν = 2/3 [5]. By driving a sufficiently large current

through a 15 nm GaAs QW, Kronmülleret al. found that a large peak in the longitudinal resis-

tance, named huge longitudinal resistance (HLR), developed within minutes at fillingν = 2/3.

The long saturation time of the peak provided an indication for the involvement of the nuclear

system in the effect. In fact, this assertion was proved shortly after by the same authors after

conducting RDNMR experiments [6]. However, many questions remained unanswered. For

example, a four-fold splitting was observed in the RDNMR lines which could not be explained

by any of the known electron-nuclear interactions thus raising speculation of a new type of

interaction. Furthermore, even though it was suggested that the HLR could be linked to the

unpolarized-polarized phase transition at2/3, this seemed unlikely because the HLR appeared

at much higher magnetic field values than the ones observed for the transition by Eisensteinet

al [55].

Properties of the transition: In the course of this thesis, in collaboration with the work by

S. Kraus [7], we could establish a connection between the HLR and the spin phase transition

at 2/3. A main goal of the present work was to clarify differences and similarities which exist

between the HLR and the transition by means of electrical transport and NMR experiments.

Additionally, we were able to explain the four-fold splitting anomaly in the RDNMR lines. Our

findings could be summarized as follows: The transition at2/3 between a spin unpolarized

and a spin polarized state is characterized in transport by a peak in the longitudinal resistivity,

ρxx, at temperatures below≈ 600 mK. The size and characteristics of the peak are strongly

dependent on the current density used in the experiments. If a small current density is used, the

transition will become apparent by a small longitudinal resistance (SLR) peak which decreases

in size with decreasing temperature. In fact it completely disappears atT ≤ 22 mK. On the

other hand, an increment in the current density results in the development of a large peak in

ρxx known as the huge longitudinal resistance. We proved that this peak is not the result of

non-linear effects but is solely caused by the hyperfine interaction between electron and nuclear

spins. The HLR peak develops at the same position of the small current transition peak and

therefore both effects are intrinsically related. But the question remained, why the transition, or

equivalently the HLR, developed at much higher magnetic field values than the ones measured

in previous experiments. The answer lies in the thickness of the QW structures which were

used in our studies. Since the QWs are only 15 nm thin, finite corrections of the Coulomb
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energy and theg-factor are not negligible. The transition depends on the interplay between

the Coulomb and Zeeman energies and therefore their ratio, defined asη, and not the magnetic

field alone determines the polarization of the favorable ground state. In such narrow QWs, the

critical ratio where the transition occurs is shifted towards higherB-field values. The ground

state polarization can be chosen by tuning this ratio which can be achieved either by tilting the

sample with respect to the externalB-field or varying the carrier density. This is mainly due

to the
√
B⊥ dependence of the Coulomb energy in comparison to theBtot dependence of the

Zeeman energy. It was thereby necessary to design a sample where the density could be varied in

a range large enough for the 2/3 ground state to transit from an unpolarized to a polarized phase.

The samples were grown at theWalter Schottky Institutein Munich. In this work, we performed

density-sweeps and tiltedB-field experiments and observed how the ground state polarization

changes from unpolarized to fully polarized. We conducted the experiments in the SLR and

HLR regimes and noticed that they both appear at the sameηc value. Nevertheless, striking

differences were also measured in both regimes. For example the HLR, besides being much

larger in amplitude, is also much broader than the SLR peak. In fact, the HLR always extends

from the position at the2/3 minimum inρxx where it initiates up to the end of the minimum.

Furthermore, a hysteresis, measured fromB-field and gate voltage sweeps, is present at the

transition. At temperatures higher than70 mK, however, the hysteresis only prevails in the

HLR regime. The time dependence of the equilibration time is also markedly different in both

regimes. Whereas the SLR takes seconds to almost reach its saturation value, the HLR needs

several minutes to do so.

Model of the transition: From these experiments, we proposed a model explaining the mech-

anism which leads to dissipation as indicated by the SLR and HLR peaks. In the small current

regime, similar works carried out at the2/3 transition suggested that the transition could be

explained in terms of 2D Ising ferromagnetism, where domain formation with different polar-

ization (in the case of2/3, unpolarized and polarized) should occur [58]. For that purpose,

the composite fermion model was used in which the transition at electron filling factor 2/3

becomes a crossing of the spin-down state of the lowest CF-LL and the spin up state of the

second CF-LL. The formation of domains can be caused by potential fluctuations in the 2DES,

due to disorder, which would create a spatial variation of the density. Therefore, part of the

sample could favorize an unpolarized state while others a fully polarized state. Around the

same time, theoretical works suggested that resistance spikes in Ising quantum Hall ferromag-

nets could be caused by backscattering of electrons moving from one side of the sample to

the otheralongdomain walls [107]. Based on this idea, we proposed that in the HLR regime,

which is induced by increasing the current, electrons scatterbetweendomain walls. Since the

domains have different spin polarization, electron spin flips must be accompanied by another
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mechanism in order to conserve angular momentum. A possible candidate for such a mecha-

nism could be electron-nuclear spin flip-flop process via the hyperfine interaction. An enhanced

current-induced nuclear spin polarization would then build up at the domain boundaries and a

local hyperfine field would act back on the electron spins changing their Zeeman energy1. As a

result, additional disorder will be created in the electronic system leading to a changing of the

domain structure—probably more and larger domain walls—and thus increasing dissipation.

The broadening of the HLR peak is likewise a result of a shifting of the peak to either higher

or lower magnetic field values, depending on the sign of the hyperfine fieldBN. The width of

the peak delivers information on the value ofBN. The small current peak, on the other hand, is

affected by the nuclei only at low enough temperatures for these to be sufficiently polarized. At

the lowest temperatures of our experimentsT ≈ 20 mK, about 15% of the nuclei are thermally

polarized. The hyperfine field created by these nuclei is homogeneously distributed across the

sample and therefore merely shifts the spin phase transition. The shifting of the peak as a

function of temperature has been presented in section 4.7. Furthermore, in resistance detected

(RD)NMR measurements atT = 250 K, a signal has been obtained at high currents, but not at

low currents.

Spectroscopic evidence of domain formation:By conducting NMR experiments, in addition

to transport, we were able to study the spin phase transition in the low current and HLR regimes

more thoroughly and prove some of the assumptions of our model. Also, one main objective

was to reproduce and futher investigate the four-fold splitting of the RDNMR lines observed in

reference [6] by applying the NMR technique presented in section 5.2.1. We chose the sample

with a front gate in order to tune the density to an adequate value for the transition to exist at

the2/3 minimum. However, to our surprise, two lines rather than four were measured in our

RDNMR experiments. The frequency of one of the lines coincided exactly with the substrate

of the zero-shift line. The frequency difference of the lines indicated the Knight shift of the

second resonance. We also determined the maximum Knight shift as a function of density by

applying the same technique to a fully polarized state. The state at filling factorν = 1/2 at

B-fields higher than 10 T was an appropriate candidate to obtain aKs,max(P = 1) vs density

calibration curve. From this information, the electron spin polarization was determined via the

equationP = Ks/Ks,max. By replotting the RDNMR spectra as a function of polarization, we

could identify one resonance line as a change in the resistance due to nuclei interacting with

unpolarized electrons and the second line as a line caused by nuclei interacting with polarized

electrons. With these experiments, we were able tospectroscopically prove the existence of

1Even though the spin-orbit interaction is an alternative mechanism which would allow electrons to flip their

spins while conserving angular momentum, it is believed to be irrelevant in our system [116]. Recent experiments,

however, indicate that spin-orbit interactions might suppress the electron-nuclear spin coupling if the QW potential

asymmetry is increased [118]. In our system, the electron-nuclear interaction plays the dominant role.
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P = 0 andP = 1 electron domains at theν = 2/3 transition in the high current regime.

These domains seem to be static in the time scale of the measurements (≈ 20 µs). To our

knowledge, the presence of domains at level crossings had not been previously measured by

a local probe like NMR. Nevertheless, these measurements could not explain the discrepancy

between the two-fold and the four-fold splitting observed in other samples. In this thesis, we

recognized that the reason for the four lines is an additional interaction of the nuclei: Besides

the hyperfine interaction with electrons, nuclei with a non-spherical charge distribution can also

interact with an electric field gradient. Furthermore, if these nuclei are not located at sites of

cubic symmetry, which is the case for stressed GaAs samples, a three-fold quadrupole splitting

of each resonance line should occur. In our experiments, we showed that samples without stress

show two resonance lines while samples with stress can show a multiple of lines. The number

of lines depends on the Knight shift and on the quadrupole splitting, which in our samples, are

of the same order of magnitude. The four-fold splitting is a consequence of the Knight shift

and the quadrupole splitting being almost the same, causing an overlapping of the lines into

four. RDNMR experiments at twice the Larmor frequency and at tilted B-fields confirmed this

interpretation.

NMR studies of the SLR and HLR: The low current regime of the transition was also investi-

gated by NMR atT = 55 mK. Here, two distinct lines in the spectrum indicate the existence of

P = 0 andP = 1 domains also in this regime. However, important differences were observed

between the HLR and the low current peak. By measuring RDNMR spectra at various positions

of the transition peaks, we noticed that whereas the HLR peak decreases in all spectra, the SLR

peak decreases if RDNMR is performed on one side of the peak, but increases if it is done on

the other side. This proves our assertion that the HLR is caused by an additional disorder of

the electron system due to an inhomogeneous nuclear spin polarization thus destroying the peak

with RF-irradiation. The SLR, on the other hand, is affected by a homogeneous thermal polar-

ization and the RF-signal merely shifts the peak. Another interesting difference is the weighting

of the two resonance lines. In the HLR, we showed that the RDNMR signal is stronger for the

minority rather than the majority domains. At low currents, the weighting between the lines

seem to remain constant for all RDNMR spectra. This could indicate that the HLR appears

even if one domain type is more abundant than the other, while the SLR occurs only when both

domain types are equally represented.

Time and temperature dependence:Some questions still remained unanswered concerning

the small current and large current transition peaks. For example, the HLR is usually measured

with an AC current. A DC current also induces the HLR peak, as showed in section 4.6.2,

independent of the current direction. Nevertheless, the time dependence differs greatly between

AC and DC current. The HLR peak seems to decay with time if a DC current is applied while
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it remains constant with AC. This points to the presumption that the nuclear hyperfine field is

being kept inhomogeneous by an AC current, but becomes homogeneous (or disappears at high

temperatures), possibly due to spin diffusion, if DC is used. Preliminary surface acoustic wave

experiments in the MHz regime, presented in appendix A, do not show the HLR anomaly. This

behavior is still not well understood and is the material of future work.

Furthermore, it was necessary to clarify the issue regarding the mechanism leading to dissi-

pation at the transition in more depth. Even though we showed a simple model describing the

scattering processes present at low and at high currents, a more detailed, theoretical description

should be addressed. We tried to confront this matter by measuring the low current transition

resistance peak as a function of temperature (shown in section 4.7.1). The calculation of an ac-

tivation energy, extracted from the measurements, revealed that a gap of about320 mK remains

at the transition. This situation contradicts the idea that a simple crossing of levels describes

the transition. A gap could exist, for example, if spin-orbit interactions were non-negligible.

However, if this were the case, a mixing of the different spin states would be expected thus

contradicting our NMR experiments where domain formation was proven. Likewise, spin-orbit

interaction would strongly affect the electron-nuclear spin interaction, since it would provide

for an alternate path for electron flips; a situation which is not observed in our experiments. The

gap could be probably explained by deviating from the single particle model and including ex-

change interaction. The position of the transition would no longer be exactly at the crossing, but

rather slightly away from it where a gap is still present. Another issue which can be extracted

from the measurements is that at and near the level crossing, the slope of the activation gap

becomes steeper than the one expected for a single spin flip. Similar behavior has been previ-

ously reported in the IQHE for a pseudospin easy-axis ferromagnet at the crossing between two

levels [119]. In that contribution, it was speculated that such a behavior may arise due to a col-

lective topological excitation resembling a skyrmion inside a domain wall. In fact, it could be

possible that such excitations moving across the sample dissipate energy and contribute to the

resistance. One could imagine that in the low current regime only a few excitations exist lead-

ing to a small resistance and few flip-flop processes so that the thermal nuclear spin polarization

dominates. On the other hand, a large current increases the number of excitations, thus leading

to more spin-flips, and as a result higher nuclear spin polarization. The large resistance could

be caused by both an increased number of excitations and an inhomogeneous hyperfine field.

We also mentioned in that section, that the resistance peakcompletelyvanishes at temperatures

belowT ≈ 22 mK. This in accordance with the expectation from reference [107] that domain

walls decrease in size with decreasing temperatures, until the domains cease to overlap thus

suppressing backscattering (see also [79]). In the future, this issue could be further investigated

by measuring samples with artificial inhomogeneities.
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• The spin phase transitions at other filling factors

In addition to the experiments at filling factorν = 2/3, we also measured spin phase transitions

occuring atν = 3/5 and4/7. From those measurements, several conclusions were drawn about

spin transitions in general occuring in the LLL. At the other filling factors, a large resistance

peak with long time constants also characterize the transition in transport at high currents. The

critical parameter which determines the ground state polarization at all filling factors is the

ratio between the Zeeman and Coulomb energies. However, a better description is given by

the composite fermion (CF) model in which a transition occurs when the CF cyclotron energy

equals the Zeeman energy. This has been demonstrated in section 4.2. Futhermore, domain

formation has been observed in all transitions.

• Spin polarization of composite fermions

At ν = 1/2, CFs experience a zero effective magnetic field and thereby form a CF Fermi sea.

The external magnetic field, however, still acts on the spin of the electron (EZ 6= 0), so that CF

will be completely polarized if the Zeeman energy is larger than the CF Fermi energy. From

previous experiments, this was expected to occur nearB = 10 T [60, 62]. By means of our

NMR technique, we could measure the Knight shift with respect to a substrate signal at various

fields at constant fillingν = 1/2. We observed that for magnetic fields above 10 T, the measured

Knight shift, which varies linearly with density, falls on a straight line. Below 10 T, the Knight

shift does not longer follow this behavior indicating a depolarization of the CFs at 1/2. Apart

from using this curve as a calibration for a maximum Knight shift, we were also able to extract

the CF polarization mass from the results, which compared well with previous experiments.

Deviating fromν = 1/2, CFs experience a finite effective magnetic field and CF LLs form.

The fractional filling factors of electrons can be mapped to an integral filling factor of CFs. The

CF polarization is then given by the difference between occupied spin up and spin down CF LL

divided by the total number of levels. The expected polarization at fillings2/3, 3/5 and4/7

could be proven by our experiments.

• Skyrmions and spin-reversed quasiparticle excitations

Skyrmions are low-lying energy excitations which are believed to occur in the vicinity of filling

factor ν = 1. They have a certain spatial extent and involve flipping several spins while ac-

commodating only one unit of extra charge. Recently, an anomalous line shape in the RDNMR

spectra [93] taken around filling factorν = 1 were interpreted as evidence for skyrmions. For

that purpose, we performed experiments aroundν = 1, but also aroundν = 1/3, ν = 2/3 and

other filling factors where skyrmions are not expected to exist. The same anomalous line shape

was also seen in some cases, which led us to believe that not skyrmions, but rather a coupling
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between nuclei and spin-reversed quasiparticle excitations, which exist around all filling factors

investigated, is responsible for such a line shape. It still remains unclear why such an anomalous

line shape occurs for quasi-electrons and not for quasi-hole excitations.

• Outlook

Even though we have clarified many aspects of theν = 2/3 transition, some issues remain to be

understood. For example, the mechanism leading to dissipation could be further investigated by

creating artificial inhomogeneities in the sample while monitoring the behavior of the longitudi-

nal resistance as a function of time, frequency and current. Up to now, it is still unclear why the

resistance develops to such a high value. Furthermore, we could acquire a better understanding

of the domain structure which forms at the transition by measuring with another local probe—in

addition to NMR—such as a single electron transitor (SET). Surface acoustic waves could also

deliver interesting information about phase transitions. Moreover, it would be of great benefit

to go beyond the RDNMR/NMR technique developed in this work by performing a direct NMR

experiment on a single 2DES.

In section 5.6 we proposed applying the RDNMR/NMR technique to study other spin phe-

nomena (other than the transition at2/3) occuring in the QHE. For example, the ground states

at filling factors5/2 and7/2 are believed to exist due to a pairing of CFs. The polarization of

these states, which could be measured with our method, would provide an insight into the na-

ture of the wavefunction. We also mentioned that it could be of interest to measure the electron

spin polarization at the exciton condensate state ofνT = 1 which occurs in a bilayer system, as

suggested in reference [142].

In conclusion, we would like to remark that the ability to grow very high mobility samples,

combined with the opportunity to measure at lower temperatures has led to the continuous

discovery of a wide range of rich physical phenomena occuring in the QHE. Studying the spin

degree of freedom has delivered and will persist to render essential information about these

phenomena.
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Zusammenfassung

Im Rahmen dieser Arbeit werden Spin-Phänomene untersucht, die in dem tiefsten Landau

Niveau (LL) des Quanten-Hall-Effekts auftreten. Dazu werden Magnetotansport und Kern-

spinresonanz (NMR) Experimente an 2-dimensionalen Elektronensystemen (2DES) durchge-

führt, die sich unter dem Einfluß eines senkrechten magnetischen Feldes (bis 18 T) und tiefen

Temperaturen (20 mK) befinden. Unter diesen Bedingungen, besetzen die Elektronen eine

ganzzahlige Anzahl von hoch entarteten Energieniveaus, die durch die Zyklotronenergie ge-

trennt sind. Berücksichtigt man den Spin der Elektronen, so werden diese Niveaus aufgrund

der Zeemanenergie weiter in zwei Niveaus aufgespalten. Wenn die Elektronen nur das tief-

ste LL besetzen, erwartet man, dass die Spins aller Elektronen gleich ausgerichtet sind, was

zu einer vollständigen Spinpolarisation des 2DES führen würde. Demzufolge würde dann

der Spinfreiheitsgrad keine wesentliche Rolle spielen. Man hat allerdings in dieser Über-

legung die Wechselwirkung der Elektronen vernachlässigt. Dennoch weisen die Elektronen tat-

sächlich eine starke Korrelation wegen der Coulombenergie auf. Im Magnetotransport zeigen

sich neue inkompressible QH Zustände bei bestimmten gebrochenzahligen Füllfaktoren [(s.

Gl.(2.10)], die nur unter der Berücksichtigung der Elektron-Elektron Wechselwirkung erklärt

werden können. Da die Elektronenpolarisation der Grund- und Anregungszustände im Bereich

des gebrochenzahligen Quanten-Hall-Effekts (FQHE) vom Verhältnis zwischen Zeeman und

Coulomb Energien abhängt, wird der Spin im tiefsten LL wieder zu einer wichtigen Größe.

Das führt zu Phasenübergängen zwischen Zuständen verschiedener Polarisationen und zu an-

dere Spin-Phänomenen wie Quasiteilchen-Anregungen mit verschiedener Spin-Orientierungen

und topologischen Anregungen mit einer ausgedehnten Spin-Struktur, genannt Skyrmionen, die

Polarisation von Composite Fermions (CFs) und die Kopplung zwischen Elektronen- und Kern-

spins.

Außer Magnetotransport Experimente sind NMR Methoden besonders geeignet zur Unter-

suchung des Spin-Freiheitsgrades. Damit erhält man nicht nur ein besseres Verständnis der

Kopplung zwischen Kernen und Elektronen, sondern man kann auch die Elektronenspinpolari-
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sation mittels einer Verschiebung der NMR Resonanzfrequenz (Knight Verschiebung) messen.

Da das NMR Signal proportional zur Anzahl der Kerne im System und dessen durchschnit-

tlicher Polarisation ist, kann man die Empfindlichkeit des Experiments durch die Verwendung

von mehreren aufeinander gestapelten Quantumwells (QWs) und/oder durch optisches Pumpen

erhöhen. Diese Techniken zeigen erhebliche Nachteile. In einem mehrlagigem System beispiel-

weise verursachen Inhomogenitäten in den verschiedenen Schichten nicht-identische Bedingun-

gen für die QWs. Außerdem ist es nicht möglich die Dichte aller Schichten mittels eines Gates

zu variieren, und durch optisches Pumpen wird das System aus dem Gleichgewicht gebracht.

In Kapitel 5 wird eine im Rahmen dieser Arbeit entwickelte Methode gezeigt, um die Elektro-

nenspinpolarisation eines 2DES messen zu können. Dazu ist es erforderlich ein widerstands-

detektiertes (RD)NMR-Experiment durchzuführen, bei dem die Änderung des spezifischen

Längswiderstandes verfolgt wird, während auf das System mit einem Radiofrequenz-Signal

(das mit der Resonanz- oder Larmorfrequenz der Kerne (ωL) abgestimmt wurde) eingestrahlt

wird. Das erhaltene Signal wird dann mit einem Referenzsignal der Substratkerne verglichen,

um die durch die QW-Leitungselektronen verursachte Knight-Verschiebung zu ermitteln. In

unseren Untersuchungen haben wir diese Methode verwendet, um diverse Aspekte von Spin-

Phänomenen in den tiefsten LL zu studieren. Die wichtigsten Ergebnisse der Arbeit werden im

Folgenden zusammengefaßt.

• Spin-Phasenübergang beiν = 2/3: kleiner und großer Strombereich

Im Bereich des FQHE entdeckten Kronmülleret al., dass bei ausreichend hohen Stromdichten

und sehr langsamen Magnetfeldraten ein großes Maximum im Längswiderstand beiν = 2/3

auftritt. Die ursprüngliche Motivation dieser Arbeit war, Klarheit über die physikalische Prozesse,

die in dieser Anomalie involviert sind, zu schaffen. Es war bekannt, dass das Maximum,

genannt “huge longitudinal resistance” oder HLR, mehrere Minuten brauchte um sich voll-

ständig zu entfalten. Die langen Zeitkonstanten deuteten darauf hin, dass das Kernsystem eine

wesentliche Bedeutung in dem HLR haben könnte. Diese Vermutung wurde auch bei Kron-

müller et al. mittels RDNMR Experimenten bestätigt. Es wurde ein Modell präsentiert, bei

dem der HLR als Phasenübergang zwischen dem spin-unpolarisierten (P = 0) zu dem spin-

polarisierten (P = 1) Zustand beiν = 2/3 dargestellt wurde. Es wurde auch vorgeschlagen,

dass am HLR sich Domänen unterschiedlicher Polarisation bilden könnten. Trotzdem blieben

viele offene Fragen bezüglich des Ursprungs des HLR-Maximums. Zum Beispiel war es rätsel-

haft, warum der HLR bei Magnetfeldern von etwa10 T existiert, obwohl der spin unpolarisierte-

polarisierte Übergang bei viel niedrigerem Magnetfeld erwartet wurde. Außerdem wurde im

Spektrum des RDNMRs eine vierfache Aufspaltung der Resonanzlinien gemessen, die nicht

mit den konventionellen Elektron-Kern-Wechselwirkungen erklärt werden konnten, was zu der

Vermutung einer neuen Art von Wechselwirkung führte.
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Eigenschaften des Spinübergangs:Im Verlauf dieser Dissertation ist es gelungen die Verbindung

zwischen dem Phasenübergang und dem HLR herauszufinden. Durch unsere Messungen kon-

nten wir zahlreiche Ähnlichkeiten und Unterschiede dieser beiden Effekte feststellen. Dazu

konnten wir die Ursache der anomalen vierfachen Aufspaltung des NMR Spektrums erklären.

Diese Resultate werden im Folgenden beschrieben: Der Übergang von einem unpolarisierten

zu einem polarisierten Zustand beiν = 2/3 wird durch einen endlichen Wert des spezifischen

Längswiderstands (ρxx) in dem FQH-Minimum gekennzeichnet, der nur bei Temperaturen unter

≈ 600 mK erscheint. Die Größe und andere Eigenschaften des Widerstandsmaximums sind

stark von der Stromdichte abhängig. Bei Verwendung einer kleinen Stromdichte beobachtet

man nur ein kleines Maximum im Widerstand (SLR), das mit absteigender Temperatur auch ab-

nimmt. Unter22 mK ist das Widerstandsmaximum nicht mehr zu sehen. Erhöht man anderseits

die Stromdichte und reduziert die Änderungsrate des Magnetfeldes, so tritt das große Maximum

in dem Längswiderstand auf, bekannt als HLR. Anhand von Strom- und Zeitabhängigkeitsmes-

sungen konnten wir beweisen, dass nichtlineare Effekte für das Auftreten des HLR-Maximum

nicht verantwortlich sind. Da der HLR und der Spinübergang sich an der gleichen Stelle en-

twickeln, konnte man zeigen, dass diese Effekte tatsächlich zusammenhängen. Allerdings,

konnte man noch nicht verstehen warum der Spinübergang bzw. das HLR-Maximum bei viel

höheren Magnetfeldern als in früheren Untersuchungen des 2/3 Übergangs stattfand. Entschei-

dend ist die Dicke (15 nm) der in unsere Arbeit verwendeten QWs. Durch die endliche Aus-

dehnung der Wellenfunktion im QW ist es erforderlich die magnetische Länge und deng-Faktor

zu korrigieren, die wiederum die Coulomb- und Zeemanenergie verändern. Da die Grundzus-

tandspolarisation vom Verhältnis zwischen Zeeman- und Coulombenergieη = EZ/EC abhängt,

wird der Übergang in schmalen QWs aufgrund dieser Korrekturen zu höheren Magnetfeldern

verschoben. Die Polarisation des Grundzustands kann durch Variation des kritischen Param-

etersη gewählt werden. Dies geschieht entweder durch Messungen bei gekippten Magnet-

feldern, bei dem eine zusätzliche parallele Komponente des Feldes existiert, oder durch die

Änderung der Ladungsträgerdichte mit einem Gate (EZ ∝ Btot undEC ∝
√
B⊥). Für die

zweite Methode wurde eine Probe amWalter-Schottky-Institutin München gewachsen, bei der

die Dichte zwischen2.03 × 1011cm−2 and0.8 × 1011cm−2 variiert werden kann, nachdem ein

8.5 nm AuPd-Frontgate aufgedampft wurde. Die beide Polarisationszustände (P = 0 und

P = 1) und der ganze Bereich des Übergangs können damit erreicht werden. In dieser Ar-

beit zeigen wir Experimente sowohl bei gekipptemB-feld als auch mit Dichteänderungen im

Bereich des Phasenübergangs. Obwohl SLR und HLR am gleichen kritischenηc existieren,

können wir auch beachtliche Unterschiede feststellen. Außer dem Größenunterschied der Max-

ima wurde beispielweise auch beobachtet, dass der HLR viel breiter als der SLR ist. Die Breite

ist eigentlich immer gegeben durch den Anfang des Widerstandsmaximums bis zum Ende des

2/3 Minimums. Zudem ist das HLR-Maximum durch eine markante Hysterese geprägt (auch



140 CHAPTER 7. ZUSAMMENFASSUNG

bei T = 350 mK), während der SLR nur eine kleine Hysterese aufweist, die beiT > 70 mK

verschwindet. Die Zeitabhängigkeit hat auch ein völlig anderes Verhalten in beiden Strombere-

ichen. Das SLR-Maximum erreicht nur nach wenigen Sekunden das Gleichgewicht, das HLR

aber braucht Minuten bis zu Stunden, um ins Gleichgewicht zu kommen.

Modell des Spin-Phasenübergangs:Mit Hilfe der oben genannten Messungen konnte ein

Modell erarbeitet werden, das die Ursache der SLR- und HLR-Maxima erklärt. In der Literatur

wird vorgeschlagen, den Spinübergang als eine Kreuzung von zwei energetisch gleichen CF-LL

zu interpretieren [58]. Im CF-Modell, überkreuzt der tiefste CF-LL mit der Spin-Orientierung

nach unten den zweiten CF-LL mit der Spin-Orientierung nach oben (s. Abbildung 4.1). An

der Koinzidenz der zwei Niveaus kann das System als ein 2D-Ising Ferromagnet beschrieben

werden, bei dem Domänen mitP = 0 undP = 1 existieren. Dies geschieht wegen Poten-

zialfluktuationen, die durch Unordnungen des 2DES zustande kommen. Die Dissipation im

System würde bei kleinen Strömen wegen der Rückstreuung der Elektronen entlang der Domä-

nenwände stattfinden. Anderseits könnten bei hohen Strömen die Elektronen die Domänen-

wände überwinden, wobei ein Elektron seine Spin-Orientierung ändern müsste. Dieser Prozess

ist aber nur möglich, wenn ein anderer Mechanismus vorhanden ist, der es erlaubt den Drehim-

puls zu erhalten. Die Spin-Bahn Kopplung wäre so ein Mechanismus. Allerdings könnte

dann das Kernsystem keine wesentliche Rolle beim HLR spielen, was unseren Beobachtun-

gen widersprechen würde. Deswegen ist es wahrscheinlicher, dass der Drehimpuls durch einen

Flip-Flop Prozess der Elektronen und Kernspins erhalten bleibt. Eine erhöhte strombedingte

Kernspinpolarisation könnte sich dann an den Domänengrenzen aufbauen. Das würde die Zee-

manenergie der Elektronen lokal beeinflussen, was zu einer zusätzlichen Unordnung im System

führen würde. Die Domänenstruktur wäre durch diese Extra-Unordnung zwangsläufig beein-

flusst und mehr, oder größere, Domänenwände könnten sich entwickeln. Die Dissipation wäre

dann erhöht und so könnte sich das HLR-Maximum entwickeln. Die Breite des Maximums

kann man als eine Verschiebung des Übergangs zu niedrigeren oder zu höheren Magnetfeldern

betrachten, die wegen der inhomogenen Hyperfeld (BN) verursacht wird. Bei kleinen Strömen

ist die Situation anders. Das Kernsystem würde dann nur eine Rolle spielen, wenn die thermis-

che Kernpolarisation nicht vernachlässigbar klein ist, d.h. nur bei den tiefsten Temperaturen.

Beispielsweise können wir ausrechnen, dass die thermische Kernpolarisation beiT = 20 mK

etwa15% beträgt, während beiT = 250 mK die thermische Polarisation unter 1% liegt. Auf-

grund des durch die Polarisation erzeugten homogenen hyperfine Feldes,BN, wird das Wider-

standsmaximum lediglich verschoben, aber nicht erhöht. Die Größe desBN Wertes, bzw. die

Verschiebung des Maximums als Funktion der Temperatur wurde in Abschnitt 4.7 dargestellt.

RDNMR Experimente haben diese Aussage bekräftigt, weil bei Temperaturen über 250 mK nur

ein Signal im HLR- aber nicht im SLR-Bereich gemessen werden konnte.
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Spektroskopischer Beweis der Domänenstruktur:Anhand von NMR Experimenten konnten

wir den Spinübergang beiν = 2/3 genauer untersuchen und auf diese Art und Weise einige

unserer Annahmen des Modells beweisen. Zudem haben wir auch die vierfache Aufspaltung

der NMR-Linien am HLR reproduziert und mit Hilfe der in Abschnitt 5.2.1 beschriebenen

Technik weiter studiert. Für diese Messungen war es vorteilhaft, die Probe mit dem Front-

gate zu verwenden, um die Dichte über dem ganzen Bereich des Spinübergangs variieren zu

können. Erstaunlicherweise konnten wir nur zwei Resonanzlinien im RDNMR beobachten

und nicht vier, wie es in vorherigen Experimenten gemessen worden war. Mit Hilfe der Sub-

stratreferenzmessungen mit konventioneller NMR konnten wir feststellen, dass die Frequenz

einer der Resonanzlinien des RDNMR-Spektrums mit der Null-Verschiebungs-Referenzlinie

übereinstimmte. Die zweite Linie war wegen der Knight-Verschiebung um einige kHz von der

ersten Linie verschoben. Anhand einer “Kalibrierungsmessung” eines vollpolarisierten Zus-

tands, in diesem Fallν = 1/2 beiB-Felder höher als10 T, konnten wir die erwartete max-

imale Knight-VerschiebungKs,max(P = 1) als Funktion der Dichte ermitteln. Die Elektro-

nenspinpolarisation wurde dann nach der GleichungP = Ks/Ks,max bestimmt. Diese Infor-

mation lieferte einen Beweis dafür, dass die zweite Resonanzlinie durch die Wechselwirkung

der Kerne mit vollpolarisierten Elektronen verursacht wird. Diese Experimente habenspek-

troskopisch bewiesen, dass tatsächlich eine Domänenstruktur amν = 2/3 Übergangsmaximum

vorhanden ist, und dass diese Domänen statisch sein müssten, zumindest in der Zeitskala der

Experimente (≈ 20 µs). Unseres Wissens wurde vor diesen Messungen noch keine Domänen-

struktur an Spin-Übergängen mittels einer lokalen Meßmethode wie NMR nachgewiesen. Es

blieb aber noch zu klären, warum in vorherigen Experimenten vier Resonanzlinien beobachtet

wurden. Weitere Untersuchungen ergaben, dass einige Proben, die sich unter Verspannung ger-

ingfügig verformten, eine zusätzliche Quadrupol-Aufspaltung zeigten. Dies geschieht aufgrund

der Wechselwirkung zwischen Kernen ohne einer sphärischen Ladungsverteilung (I > 3/2)

und einem elektrischen Feld Gradient. Durch die Verspannung ist die kubische Symmetrie

von GaAs aufgehoben und jede NMR Resonanzlinien spaltet in drei Linien auf. Unsere Ex-

perimente haben gezeigt, dass Proben ohne Verspannung in zwei Linien aufspalten, während

verspannte Proben mehrere Resonanzlinien aufweisen. Die Anzahl der Linien hängt hauptsäch-

lich von der Größe der Knight-Verschiebung und der Quadrupol-Aufspaltung ab. In einigen

unserer Proben sind beide Effekte gleich groß, so dass mehrere Linien überlappen und nur vier

Resonanzen im Spektrum auftreten. Diese Interpretation wurde mit Hilfe von Doppelfrequenz

und gekipptemB-Felder RDNMR-Experimente bestätigt.

NMR Untersuchungen an SLR- und HLR-Maxima: Das SLR-Übergangsmaximum wurde

auch mit NMR untersucht. Allerdings waren diese Messungen nur bei Temperaturen tiefer als

100 mK möglich (T = 55 mK in unserem Fall). Zwei deutliche Linien im Spekrum zeigen,
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dass auch in diesem Strombereich Domänen mit PolarisationP = 0 undP = 1 existieren.

Jedoch wurden auch wichtige Unterschiede zwischen beiden Zuständen festgestellt. Die RD-

NMR Messungen an verschiedenen Stellen des HLR-Maximums verursachten immer eine Ab-

senkung des Widerstands. Anderseits haben die gleichen Messungen am SLR-Maximum eine

Absenkung oder Erhöhung des Widerstandes hervorgerufen in Abhängigkeit davon, an welcher

Stelle des Maximums das RDNMR Experiment durchgeführt wurde. Dies bekräftigte unsere

Behauptung, dass das HLR wegen einer durch die Kerne verursachte zusätzliche Unordnung im

Elektronensystem induziert wird, während das SLR-Maximum nur durch eine homogene ther-

mische Kernspinpolarisation beeinflußt wird. Eine weitere Erkenntnis der Messungen war die

unterschiedlichen Gewichtungen derP = 0 undP = 1 Resonanzlinien in beiden Srombere-

ichen. Im HLR Fall ist die Amplitude der Resonanzlinie stärker, wenn die Kerne mit Elek-

tronen in den Minoritätsdomänen und nicht in den Majoritätsdomänen eine Wechselwirkung

aufzeigen. Anderseits bleibt am SLR die Gewichtung der beiden Resonanzlinien immer gleich.

Man kann daraus schließen, dass das HLR existiert, auch wenn nur eine Domänenart überwiegt,

aber das SLR kann nur existieren, wenn beide Domänenarten gleich vertreten sind.

Zeit- und Temperaturabhängigkeit: Einige Fragen bezüglich der SLR- und HLR-Maxima

bleiben weiterhin noch ungeklärt: Verwendet man anstatt eines AC-Stroms einen DC-Stroms,

so tritt auch das HLR-Maximum unabhängig von der Stromrichtung auf. Dennoch unterscheidet

sich das Zeitverhalten der beiden Ströme deutlich. Mit einem AC-Strom bleibt der Widerstand

vom HLR auch nach längerer Zeit konstant, während mit einem DC-Strom der Widerstand ein

Maximum erreicht, dann aber wieder bis zum ursprünglichen Wert wieder abfällt. Aufgrund

dieser Tatsache liegt die Vermutung nahe, dass das inhomogeneB-Feld durch den AC-Strom

erhalten wird. Der DC-Strom anderseits erzeugt auch ein inhomogenes Feld, das aber nach

einer gewissen Zeit, vielleicht wegen einer Spin-Diffusion, entweicht. Vorläufige Experimente

mit akustischen Oberfächenwellen (SAW) im Megahertz Bereich zeigten keine HLR-Anomalie

(siehe Anhang A). Dieses Verhalten ist noch nicht in ausreichendem Maß untersucht worden

und sollte noch weiter studiert werden.

Weiterhin ist es noch erforderlich, den Dissipationsmechanismus am Spin-Übergang besser

zu verstehen. Eine Erweiterung des Modells zum Streuungsprozess des Widerstandsmaximums

wurde durch temperaturabhängige Messungen am SLR erarbeitet. Aus den Aktivierungsmes-

sungen konnten wir eine Energielücke von≈ 320 mK am Übergang ermitteln. Dennoch

ist die Existenz von einer Energielücke mit der Vorstellung einer einfachen Kreuzung von

zwei Niveaus nicht zu vereinbaren. Eine Lücke könnte wegen der Spin-Bahn-Wechselwirkung

existieren. Das ist aber nicht sehr wahrscheinlich, weil dann eine Mischung verschiedener

Spinzustände erwartet würde, was die Formation von Domänen verhindern könnte. Gleichzeitig

wäre dann die Hyperfine-Kopplung zwischen Elektronen und Kernen unterdrückt, da die Elek-
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tronen eine Alternative hätten, ihren Spin zu flippen. In unseren Experimente haben wir sowohl

eine Domänenstruktur als auch eine starke Hyperfine-Kopplung gemessen. Die Energielücke

könnte beispielsweise auch erklärt werden, wenn wir aus dem Einteilchen-Modell abweichen

und die Austauschenergie berücksichtigen würden. Der Übergang wäre dann nicht mehr am

Kreuzungspunkt, sondern an der Stelle, wo noch eine Lücke vorhanden ist. Außerdem kon-

nte man einen steilen Abfall der Aktivierungsenergie in unmittelbarer Nähe der Kreuzung

beobachten. Ein solches Verhalten hat man in einem Pseudospin “easy-axis” Ferromagnet

im ganzzahligen Quanten-Hall-Effekt auch gemessen [119], wobei spekuliert wurde, dass am

Übergang kollektive topologische Anregungen—ähnlich wie ein Skyrmion im Innern einer

Domänenwand—existieren können. Diese Anregungen könnten sich dann über die Probe bewe-

gen und zurückstreuen. Die Folge wäre dann Energieverbrauch und ein resultierendes Wider-

standsmaximum im Transport. Man könnte sich vorstellen, dass bei kleinen Strömen nur

wenige Anregungen existieren und deswegen nur ein kleines Maximum und wenige flip-flop

Prozesse auftreten. Auf der anderen Seite, gäbe es bei großem Strom mehrere dieser Anre-

gungen und deshalb auch mehr flip-flop Prozesse. Der große Widerstand käme dann durch

eine erhöhte Anzahl von Anregungen und aufgrund eines inhomogenenB-Feldes zustande.

Wir zeigten auch, dass unterT ≈ 22 mK das Widerstandsmaximum vollständig verschwindet.

Das stimmt mit den Erwartungen überein, dass die Domänengröße mit absinkender Temperatur

ebenfalls abnimmt. Bei ausreichend tiefen Temperaturen würden die Domänenwände nicht

mehr überlappen und die Rückstreuung wäre dann unterbrochen [107]. Diese Situation sollte

in der Zukunft mit Proben, in welchen künstliche Inhomogenitäten aufgebracht worden sind,

untersucht werden.

• Spin-Phasenübergang bei anderen Füllfaktoren

Zusätzlich zu den Experimenten beiν = 2/3, haben wir auch Spinphasenübergänge beiν =

3/5 und4/7 untersucht, von denen man einige allgemeine Schlussfolgerungen ziehen konnte.

Auch bei anderen Füllfaktoren führt die Verwendung eines großen Stroms zu einem anomal

großen Widerstandsmaximum mit einer langen Zeitkonstante. Der kritische Parameter, der

die Polarisation der Grundzustände bei aller Füllfaktoren bestimmt, ist das Verhältnis zwis-

chen der Zeeman- und Coulombenergie. Dennoch konnten wir im Abschnitt 4.2 zeigen, dass

eine genauere Beschreibung eines Phasenübergangs mit Hilfe des CF Models erreicht werden

kann. In diesem Modell findet ein Phasenübergang zwischen zwei Polarisationen statt, wenn

die Zeemanenergie der CF-Zyklotronenergie entspricht. Außerdem konnten wir auch bei allen

untersuchten Füllfaktoren eine Domänenstruktur am Übergang beobachten.
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• Spin Polarisation von Composite Fermions

Die Spinpolarisation von gebrochenzahligen QHE-Zuständen sind anhand des Modells von CF

klarer zu verstehen. Bei halb gefüllten tiefsten LL werden Elektronen mit zwei magnetischen

Flussquanten verbunden, so dass die neu geformten Teilchen ein effektivesB-feld (Beff) un-

terschiedlich vom externen Magnetfeld (Bext) spüren. Bei diesem Füllfaktor (ν = 1/2) ist

Beff = 0 und die CFs bilden einen Fermi-See. Dennoch wirkt das externeB-Feld auf den

Spin Freiheitsgrad des CFs. Deshalb kann die Polarisation vom CF-Fermi-See vollständig sein,

wenn die Zeemanenergie kleiner als die CF Fermienergie ist. In der Literatur wurde eine voll-

ständige CF Fermi-See Polarisation für Magnetfelder grösser als 10 T beobachtet [60,62]. Mit

der vorher beschriebenen NMR-Methode konnten wir die Knight-Verschiebung bezüglich des

Substratreferenzsignals beiν = 1/2 als Funktion desB-Feldes bestimmen. FürB > 10 T kon-

nten wir feststellen, dass das System völlig polarisiert ist. Unter 10 T beginnt das System sich

zu depolarisieren. Diese Messungen dienten sowohl als “Kalibrierungskurve” zur Bestimmung

der maximalen Knight-Verschiebung als auch zur Untersuchung der CF Spin Polarisation bei

ν = 1/2 und zum Vergleich mit anderen Experimenten.

Wenn man vonν = 1/2 abweicht, ist das effektiveB-Feld, das auf das CF wirkt nicht mehr

gleich null. Es bilden sich CF-LLs und der FQHE von Elektronen wird zu den IQHE von CFs.

Man kann dann die elektronische Füllfaktoren in CF-Füllfaktoren umrechnen. Die CF Spin Po-

larisation ist durch die Differenz von CF LLs mit Spin nach oben und Spin nach unten dividiert

durch die Anzahl der besetzten Niveaus gegeben (siehe Gleichung 1.1). Die erwartete Polarisa-

tion von den Füllfaktoren2/3, 3/5 und4/7 konnten mit unseren Experimenten nachgewiesen

werden.

• Skyrmionen und Quasiteilchen Anregungen

Skyrmionen sind die niedrigste energetische Anregungen vom Ferromagnetischen Grundzus-

tand ν = 1. Aufgrund des Wechselspiels zwischen der Zeeman und die Austauschenergie

ist eine ausgedehnte Spinstruktur-Anregung eher als ein einzelner Spin-Flip bevorzugt. Vor

kurzem wurden in NMR Experimenten eine Anomalie in der Resonanzlinien der Spektren

beobachtet [93]. Dieses Verhalten wurde als Andeutung für die Existenz von Skyrmionen in

der Nähe vonν = 1 interpretiert. Aus diesem Grund haben wir NMR Experimente umν = 1

aber auch umν = 1/3, 2/3 und andere Füllfaktoren durchgeführt, wo normalerweise keine

Skyrmionen vorhanden sein sollten. Die gleiche Anomalie wird bei allen untersuchten Füllfak-

toren beobachtet. Daraus könnten wir schließen, dass wahrscheinlich nicht Skymionen sonder

eher Quasiteilchen-Anregungen dieser ungewöhnliche NMR-Linienform verursachen. Es ist

noch zu klären, warum diese Anomalie für Quasielektronen aber nicht für Quasilöcher existiert.
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• Ausblick

In dieser Arbeit konnten wir viele Aspekte des Spinübergangs beiν = 2/3 aufklären. Trotz-

dem bleiben weiterhin viele offene Fragen: Der Streuungsmechanismus sollte anhand von kün-

stlichen inhomogenen Proben als Funktion der Zeit, Frequenz und Strom weiter untersucht wer-

den. Außerdem wäre es möglich die Domänenstruktur mittels eine lokale Meßprobe, wie ein

Einzelelektrontransistor (SET), zu untersuchen. Akustische Oberflächenwellen könnten auch

wichtige Informationen bezüglich Phasenübergange im allgemeinen liefern. Zusätzlich sollte

man versuchen an einem einzelnen QW ein standard NMR Experiment durchzuführen.

Im Abschnitt 5.6 haben wir vorgeschlagen, die in dieser Arbeit entwickelten RDNMR/NMR

Meßmethode an weitere QHE-Spinphänomene zu verwenden: Ein Beispiel dafür wäre die Un-

tersuchung von den Grundzuständen bei der Füllfaktoren5/2 und 7/2. Diese Zustände ex-

istieren aufgrund der Paarung von zwei CFs. Die Bestimmung der Elektronspinpolarisation

dieser Zuständen würde wichtige Aufschlüsse über die Natur der Wellenfunktion geben. Zudem

konnte man auch die Elektronenspinpolarisation der stark korreliertenνT = 1 Exzitonischen-

Zustand messen, wie es im Referenz [142] vorgeschlagen wurde.

Zum Schluß möchten wir erwähnen, dass das Wachstum von Proben mit sehr hohen Mo-

bilitäten und die Fähigkeit bei extrem tiefe Temperaturen messen zu können, hat die stetige

Entdeckung von faszinierenden Phänomenen im QHE ermöglicht. Die Untersuchung des Spin-

freiheitsgrades liefert immer wieder wesentliche Informationen über die Natur dieser Phänome-

nen.





Appendix A

Surface Acoustic Waves: High Frequency

Regime

The experiments presented in this appendix were conducted in cooperation with C. Mellor and

G. Dunford from the University of Nottingham. They consist of surface acoustic waves (SAW)

performed at theν = 2/3 transition peak in the high current regime and are part of the frequency

dependent measurements of section 4.6. In the following, we summarize the main aspects of

SAWs applied to a GaAs crystal needed for the interpretation of our results. A more general

description is given in reference [143].

Surface acoustic waves are modes of elastic energy which propagate along the surface of

an elastic body. The amplitude of the wave decays exponentially into the bulk so that most

of the energy density is contained within a depth of one wavelengthλS. In a piezoelectric

material, a mechanical deformation produces an electric field and inversely an applied electric

field produces a mechanical deformation of the material. Hence, the propagation of a SAW

in GaAs is accompanied by an electric field which is responsible for the interaction that exists

between a 2DES and the SAW. The coupling of the wave to the mobile carriers of the material

causes power to be transferred from the SAW to the 2DES. This leads to induced currents and

ohmic losses which result in attenuation,Γ, and velocity changes,∆v/v0, of the wave. Since

the time it takes the perturbed electron system to relax back to equilibrium is dependent on the

conductivityσ, the degree of attentuation and velocity shift will also depend onσ. These are

given by the following equations:

Γ = kS
K2

eff

2

σxx/σM

1 + (σxx/σM)2 (A.1)

and
∆v

v0

=
K2

eff

2

1

1 + (σxx/σM)2 (A.2)

Here,v0 is the sound velocity in GaAs (≈ 2700 m/s), kS is the wave vector of the SAW
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given bykS = 2π/λS, Keff is the effective electromechanical coupling coefficient,σxx is the

diagonal tensor component of the conductivity andσM is the conductivity at which the maxi-

mum interaction occurs. In the particular case of a (100) GaAs surface with a SAW propagating

in the [011] direction,Keff = 6.4 × 10−4 andσM ≈ 3.3 × 10−7 Ω−1 [50, 143]. Since the

conductivity of a 2DES is of similar order of magnitude as the latter value, SAW presents an

effective method to study the QHE. They can be regarded as intermediate experiments between

quasistatic transport (DC and low frequency AC) and microwave radiation measurements. For

example, SAW has been used in the FQHE in order to demonstrate the existence of a Fermi

surface atν = 1/2 [50]. In this section, we apply SAW to theν = 2/3 transition in the high

current regime in order to investigate the HLR anomaly1.

A schematically picture of the sample layout used in the SAW experiments is shown in Fig.

A.1. The Hall bar, processed on a sample from wafer052098.4, is 2400 µm long and150 µm

Figure A.1: Schematical picture of the Hall bar and interdigital transducers (IDT)

used in the SAW experiments.

wide. A transmitting and a receiving interdigital transducer (IDT) are also shown. The SAW

is sent from one of the transducers at a frequency given byf = v0/λS, where the wavelength

λS is determined by the distance between the fingers of the transducer. In our case, we used a

frequency of108 MHz, which corresponds to a wavelength of≈ 25 µm. A shift in the frequency

of the wave, which in turn relates to the shift of the SAW velocity, is detected by the second

transducer. A detailed description of the experimental setup including the homodyne system for

SAW detection is presented in reference [144].

Here, we study the HLR by carrying out transport and SAW measurements simultane-

ously. In Fig. A.2(a), we plot the longitudinal resistivityρxx vs magnetic field at a density

of n = 1.7 × 1011cm−2, a temperature ofT = 340 mK and a current ofI = 400 nA. A large

current value is used due to the150µm wide Hall bar. The expected HLR peak is observed in

1The acoustoelectric-effect can also provide additional information of a 2DES. This consists of measuring the

voltages and currents induced by the transfer of momentum from the SAW to the mobile carriers of the 2DES. In

this work, however, we only study the velocity shift of the SAW.
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Figure A.2: (a) Transport measurement in the high current regime (I = 400 nA)

for a fast (black curve) and a slow (red curve) sweep of theB-field. (B) Measure-

ment of the SAW velocity shift at fast and slowB- field sweeps and the predicted

values calculated by using equation A.2.
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this transport experiment. A fast sweep of theB-field (black curve) does not show any anoma-

lous behavior while the slow sweep shows a well developed HLR peak at both filling factors

ν = 2/3 andν = 3/5 2. The SAW measurements, on the other hand, do not reveal the HLR

anomaly, even during a slowB-field sweep, as can be extracted from Fig. A.2(b). Here, we

plot the velocity shift in ppm vs the magnetic field for a fast (black, solid curve) and a slow

(red, solid curve)B-field sweeps. We can infer that a minimum inρxx in transport is usually

accompanied by a peak of the SAW velocity shift∆v/v0 as can be seen at various filling factors

(ν = 2, 4/3, 1, 2/3 and others). The behavior of the shift can be calculated by using equa-

tion A.2, whereσxx was extracted from the measuredρxx by using equation 2.5. The predicted

curves are shown by the dotted lines in the same figure. We can see that the position of the

predicted peaks are in good agreement with the position of the measured peaks except for the

slow sweep curve at the field where the HLR appears in transport. A clear deviation from the

predicted value is observed both at2/3 (B ≈ 10.3 T) and at3/5 (B ≈ 11.5 T). At these

fillings, the predicted velocity shift of the SAW diminishes (red dotted curve), corresponding

to the increase inρxx in transport. In the measurements, however, we observe an increase of

the shift as if no HLR anomaly were present. This surprising behavior might be caused by the

following reasons: Firstly, as it was discussed throughout this thesis, it is likely that the scatter-

ing mechanism leading to the dissipation observed at the transition occurs due to reflections at

the walls of domains with different spin polarization which cause backscattering. Since the size

of the domain wall is most likely only a small fraction of the whole domain size, the carriers

contributing to transport are also much less than the whole number of carriers. The domain wall

carriers would then only minimally affect the shift in SAW velocity and as a result it could not

be observed in the experiment. A second possibility could be that the size of the domains is

bigger than the wavelength of the acoustic wave. In this case it would mean the domain size

>> 25 µm. Even though this would imply that only a few domain walls could exist in our

sample, this situation cannot be ruled out. Thirdly, if the electrons which backscatter across the

sample and contribute to transport are pinned or trapped at the domain walls, they would only

be slightly affected by the SAW propagating along the sample. This would result in a small

damping of the wave and therefore no shift in the velocity would be seen. These measurements

might provide some insight into the nature of the domain structure which forms at the transi-

tion. However, they were only performed on one sample and therefore remain inconclusive.

This topic will continue to be investigated by D. Dini in the future [145]. Furthermore, it should

be supplemented by frequency dependent measurements over a wide range of frequencies.

2TheB-field sweep rates are comparable to the ones stated in section 4.2
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Structuring Procedure for Sample B

(020502)

Mesa etching:

Due to the thick cap layer, we etched the sample by420 nm using a so-called “deep-etching

solution,” which consists of:

• Water: 400 ml

• H2O2: 8 ml

• H2SO4: 1 ml

This solution led to the followingetching rates:

• GaAs:100 nm/min

• AlGaAs: 150 nm/min

Contact etching:

Prior to the contact evaporation, it was necessary to first etch away230 nm at the position of

the contacts followed by immediate cleaning with HCl and semicoclean. This extra step was

done to assure diffusion of enough contact material down to the QW due to the thick cap layer

(250 nm).

Au/Ge/Ni contact evaporation:

The Au/Ge/Ni contacts were evaporated onto the Hall bar in the following order:

• Au: 321.6 nm, Rate:0.3− 0.35 nm/min

• Ge:158.4 nm, Rate:0.3− 0.4 nm/min

• Ni: 80.0− 90.0 nm, Rate:0.2 nm/min
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The saw-tooth shape contacts [see Fig. 3.1(c)] increase the area connecting the 2DES with the

contacts and allows for an even distribution in both crystallographic directions ([011] and per-

pendicular to it). The contacts were alloyed atT = 440◦C.

Front gate and metallization:

• A thin 8.5 nm AuPd gate was evaporated at a rate of0.1nm/s.

• 15.0 nm Ti and 150.0 nm Au were used for the metallization process needed to bond the

samples to a chip carrier.
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