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Zusammenfassung

In dieser Arbeit werden Korrelationseffekte in niedrigdimensionalen Elektronensystemen un-

tersucht, die unter anderem für die Physik in kupratbasierten Hochtemperatursupraleitern

(HTSL) eine wichtige Rolle spielen. Die theoretische Beschreibung von Systemen wechsel-

wirkender Elektronen erweist sich in diesem Zusammenhang als ausgesprochen schwierig.

In herkömmlichen metallischen Systemen kann der Wechselwirkung im Rahmen der Fer-

miflüssigkeitstheorie genüge getan werden, die eine stark vereinfachte aber dennoch quan-

titativ erstaunlich gute Beschreibung der niederenergetischen elektronischen Freiheitsgrade

liefert. In niedrigen Dimensionen sind Wechselwirkungs- und Korrelationseffekte allerdings

bedeutsamer. Es ist diese Niedrigdimensionalität, verbunden mit einer starken, kurzreich-

weitigen Wechselwirkung der Elektronen untereinander, die zu den reichhaltigen und kom-

plexen physikalischen Eigenschaften der HTSL führt.

Eines der Prototypmodelle im Kontext von HTSL ist das zweidimensionale Hubbard-Modell

(2D-HM), das die Dynamik von Elektronen auf einem zweidimensionalen Quadratgitter unter

dem Einfluß einer lokalen, abstoßenden Wechselwirkung beschreibt. Obgleich dieses Model

schon vor über 40 Jahren eingeführt wurde, und trotz seiner scheinbaren Einfachheit, ist

es bisher nicht gelungen, seine Eigenschaften zweifelsfrei zu bestimmen, geschweige denn

eine allgemeine exakte Lösung zu finden. Außerdem ist es umstritten, in wiefern es als theo-

retische Basis für HTSL geeignet bzw. hinreichend ist. Trotzdem, oder gerade deswegen, steht

das 2D-HM auch heute noch im Fokus der theoretischen Festkörperphysik. Es bedarf dabei

der Entwicklung neuer Methoden, um substantielle Fortschritte erreichen zu können. Dies ist

ein wesentliches Ziel dieser Arbeit, in der die sogenannte funktionale Renormierungsgruppe

(fRG) auf das 2D-HM angewendet wird. Die fRG erlaubt es, aufbauend auf einer exakten

funktionalen Beschreibung der elektronischen Freiheitsgrade eine Energieskalentrennung

vorzunehmen und auf kontrollierte Art und Weise eine Näherung für die effektive Nieder-

energiephysik zu bestimmen. Auf dem aktuellen Niveau ist diese Näherung perturbativ, das

bedeutet sie gilt nur im Bereich hinreichend schwacher Wechselwirkung. Allerdings stellt

sich heraus, daß im 2D-HM bereits in diesem Fall höchst nichttriviales Verhalten auftritt, das

sich mit einigen wichtigen Eigenschaften von HTSL deckt, obwohl in diesen Materialien die

Wechselwirkung in der Regel als deutlich stärker anzusetzen ist. Jedoch gibt es Hinweise,

daß in elektrondotierten HTSL die Kopplung schwächer ist als in den “traditionellen” lochdo-

tierten Kupraten, was der quantitativen Anwendung perturbativer Methoden entgegenkom-
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men könnte.

Diese Arbeit baut auf den Dissertationen von C. J. Halboth [1] und C. Honerkamp [2] auf,

in denen zwei verschiedene Versionen der fRG in unterschiedlichen Parameterbereichen auf

das 2D-HM angewandt wurden. Wir vergleichen die Resultate beider Schemata für iden-

tische Parameter und Randbedingungen, um etwas über die Zuverlässigkeit und Aussagekraft

der Ergebnisse zu erfahren. Desweiteren erweitern wir die bestehenden Rechnungen dahin-

gehend, daß wir spektrale Einteilcheneigenschaften im Niederenergiebereich mit Hilfe der

fRG untersuchen.

Kapitel 1

Im ersten Kapitel wird das zweidimensionale Hubbard-Modell eingeführt, und es wird ein

konzeptioneller Überblick über verschiedene Renormierungsgruppenschemata gegeben.

Schließlich werden die genäherten Versionen der Renormierungsgruppengleichung in der

Form, wie wir sie benutzen, vorgestellt.

Hubbard-Modell

Das Hubbard-Modell ist ein quantenmechanisches Model zur Beschreibung von wechsel-

wirkenden Elektronen auf einem Quadratgitter, die einer lokalen Wechselwirkung unterwor-

fen sind. Der zugehörige Hamiltonoperator H = H0 +HI setzt sich additiv zusammen aus

einem kinetischen Anteil H0 und einem Wechselwirkungsanteil HI .

Der freie Anteil H0 hat seinen Ursprung in der tight-binding Beschreibung für die Elektro-

nendynamik in Festkörpern und lautet in zweiter Quantisierung

H0 = − t
∑
〈i,j〉,σ

ψ†ri,σψrj ,σ − t′
∑

〈〈i,j〉〉,σ

ψ†ri,σψrj ,σ ,

wobei die Amplituden t und t′ das Hüpfen eines Elektrons zum nächsten bzw. übernächsten

Nachbargitterplatz parametrisieren. Der Operator ψ†ri,σ (ψri,σ ) erzeugt (vernichtet) ein Elek-

tron mit Spinprojektion σ am Gitterplatz ri . H0 ist diagonal im reziproken Raum:

H0 =
∑
k,σ

ε0k ψ
†
k,σψk,σ ,
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mit der freien Dispersion

ε0k = −2 t (cos kx + cos ky)− 4 t′ cos kx cos ky.

HI beschreibt die Abstoßung zwischen zwei Elektronen am gleichen Gitterplatz:

HI = U
∑
i

nri,↑ nri,↓

wobei nri,σ := ψ†ri,σψri,σ der Operator der Teilchendichte für Teilchen mit Spinprojektion σ

am Gitterplatz ri ist.

Die interessante Physik spielt sich in der Umgebung halber Füllung ab. Bei verschwinden-

dem t′ ist der Grundzustand des 2D-HM genau bei halber Füllung antiferromagnetisch. Bei

endlichem t′ und/oder Abweichung von halber Füllung gibt es einen Übergang zu einem

supraleitenden Grundzustand. Ab einer bestimmten Temperatur, die sowohl von t′ als auch

der Füllung abhängt, verschwindet die spontane Symmetriebrechung. Die Eigenschaften

in der normalen Phase in der Nähe dieser Übergangstemperatur werden jedoch von den in

diesem Parameterbereich auftretenden starken Korrelationen beeinflußt.

Renormierungsgruppenmethoden

Seit den Arbeiten von Wilson [3] sind Renormierungsgruppenmethoden ausgesprochen er-

folgreich in vielen Bereichen der theoretischen Physik angewendet worden. Ausgangspunkt

ist die Beschreibung der Eigenschaften eines physikalischen Modells durch seine Korrela-

tionsfunktionen. Von diesen gibt es verschiedene Arten, die sich alle ineinander überführen

lassen. Zu jeder lässt sich ein Funktional in Grassmannfeldern η und η̄ definieren gemäß

GX [η̄, η] =
∑
n

GX2n(α1, . . . , αn, βn, . . . , β1) η̄α1 . . . η̄αnηβn . . . ηβ1 ,

wobei die Indizes αi und βi alle Einteilchenquantenzahlen durchlaufen, und Summation

über doppelte Indizes impliziert ist. Das Label X definiert die Art der Korrelationsfunktio-

nen, z.B. zusammenhängende oder einteilchenirreduzible, und das Funktional wird in den

zugehörigen 2n-Punktfunktionen GX2n(α1, . . . , αn, βn, . . . , β1) entwickelt.

Die Kernidee der Renormierungsgruppe besteht nun darin, zunächst durch die Einführung

eines zusätzlichen Parameters eine Skalentrennung zu definieren, z.B. in einer Energie- oder
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Längenskala, um sich dann mittels einer schrittweisen Veränderung dieses Parameters dem

ursprünglichen physikalischen Problem zu nähern. In dieser Arbeit wird zunächst im rezipro-

ken Raum nach freien Energieskalen abwärts sortiert und alle Moden “ausgeschaltet”. Dann

werden die hochenergetischen Moden sukzessive “angeschaltet”. Ganz allgemein führt die

Einführung eines zusätzlichen Parameters Λ zur sogenannten Renormierungsgruppen-

gleichung (RGE) für die 2n-Punktfunktionen

∂ΛG
X
2n(Λ |α1, . . . , αn, βn, . . . , β1) = RX [GX2m(Λ |α1, . . . , αm, βm, . . . , β1);m = 1 . . .∞] .

Dies ist eine unendliche Hierarchie gekoppelter Integro-Differentialgleichungen, die in der

Praxis trunkiert werden muß, damit der Renormierungsgruppenfluß für das 2D-HM num-

erisch durchgeführt werden kann. Wir erreichen dies, indem wir die Sechspunktfunktion auf

Null setzen, was ihrem Anfangswert entspricht.

Kapitel 2

In Kapitel 2 werden die grundlegenden Näherungen sowie die technischen Schritte erläutert,

die für die oben angesprochene numerische Integration der RGE notwendig sind. Die Vier-

punktfunktion, auch effektive Wechselwirkung genannt, wird parametrisiert durch ihre sta-

tischen Komponenten auf der Fermifläche. Zusätzlich wird die tangentiale Impulsab-

hängigkeit diskretisiert. Diese relativ drastischen Näherungen sind zwingend notwendig, um

das Problem computerunterstützt behandeln zu können. Die Projektion im reziproken Raum

auf die Fermifläche wird im Detail definiert, und diverse Probeläufe motivieren die Wahl einer

bestimmten Diskretisierung der Brillouinzone, die in Abbildung 2.3 zu sehen ist.

Kapitel 3

In Kapitel 3 vergleichen wir im Detail die Ergebnisse des fRG-Flußes der effektiven Wechsel-

wirkung im sogenannten Wick-geordneten Schema mit den Ergebnissen im einteilchen-

irreduziblen (1-PI) Schema. In beiden Fällen fließt die effektive Wechselwirkung zu starker

Kopplung, und das Wechselspiel zwischen Teilchen-Loch Prozessen, die antiferromag-

netische Tendenzen begünstigen, und Teilchen-Teilchen Prozessen, die für Supraleitungsten-

denzen verantwortlich sind, wird qualitativ gleich beschrieben. Im quantitativen Be-

reich zeigen sich allerdings teilweise nicht unerhebliche Diskrepanzen, was wiederum nicht
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übermäßig verwundert, da nicht-universelle Größen betrachtet werden. Dies führt unter an-

derem dazu, daß die Temperaturskala, bei der starke Korrelationen einsetzen, als Funktion

des chemischen Potentials nur sehr grob bestimmt werden kann.

Der wichtigste Aspekt der detaillierten Analyse ist die Beobachtung, daß sogenannte Hot

Spots eine besondere Rolle spielen. Sie sind definiert als die Punkte, an denen die Fermifläche

die Umklappfläche, definiert durch |kx| + |ky| = π, schneidet. Sie sind deshalb ausgezeich-

nete Punkte, weil sie durch einen Impulsübertrag Q = (π, π) verbunden werden können, und

dadurch in Gittermodellen einen zusätzlichen niederenergetischen Streukanal öffnen.

Beide Näherungen sind ein-loop Gleichungen, die über konventionelle störungstheoretische

Resummationen wie T-Matrix oder Random Phase Approxiamtion (RPA) hinausgehen, da sie

die Kopplung zwischen Teilchen-Teilchen und Teilchen-Loch Beiträgen in führender Ord-

nung berücksichtigen. Allerdings sind diese ein-loop Näherungen nicht-selbstkonsistent,

das heißt, daß die Rückkopplung von Selbstenergieeffekten auf die rechte Seite der RGE ver-

nachlässigt wird.

Kapitel 4

In Kapitel 4 wird das Wick-geordnete fRG Schema angewendet, um den Einfluß der in Ka-

pitel 3 erörterten starken Korrelationen in der Nähe einer kritischen Temperaturskala auf

Einteilchenspektraleigenschaften im Niederenergiebereich zu untersuchen. Dazu wird par-

allel zur Renormierungsgruppengleichung für die effektive Wechselwirkung die RGE für die

Einteilchenselbstenergie numerisch integriert, um oberhalb einer kritischen Temperatur den

Imaginärteil der Selbstenergie zu bestimmen. Daraus läßt sich anschließend der Realteil

mittels einer Kramers-Kronig Beziehung bestimmen, und damit auch unmittelbar die Ein-

teilchenspektralfunktion.

Die Einkopplung der renormierten Wechselwirkung in den Fluß der Selbstenergie führt zu

teilweise drastischen Effekten im Einteilchenspektrum. Analog zu den Beobachtungen in

Kaptitel 3 spielen auch hier die Hot Spots eine besondere Rolle. In ihrer Umgebung entsteht

im Falle starker renormierter Kopplungen eine ausgeprägte negative Spitze im Imaginärteil

der Selbstenergie, was in der Spektralfunktion zu einer Mulde im sonst lorentzartigen Spek-

tralpeak führt. Dieses Phänomen wird als das Einsetzen eines Pseudogaps interpretiert, und

ist im Fall schwacher nackter Kopplung sowohl in seiner Impuls-, als auch seiner Tempera-

turabhängigkeit auf einen relativ kleinen Bereich beschränkt. Schwächere Korrelations-

effekte wie z.B. erhöhte Streuraten oder reduzierte Quasiteilchengewichte sind hingegen in
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einem breiteren Parameterbereich präsent.

Es zeigt sich weiterhin, daß in Abhängigkeit vom chemischen Potential unterschiedliche Ko-

rrelationen für diese Pseudogapphysik verantwortlich sind. Während bei und in der Nähe

von van Hove Füllung sowohl Q-transferierende Teilchen-Loch Prozesse, als auch Teilchen-

Teilchen Prozesse mit Gesamtimpuls Null (Cooperkanal) zum anomalen Verhalten des Ima-

ginärteils der Selbstenergie beitragen, so sind es mit wachsendem Abstand von der van Hove

Skala hin zu höheren Füllungen weniger Teilchen-Teilchen Korrelationen, sondern in erster

Linie Teilchen-Loch Beiträge.

Die Selbstenergie ist von Katanin und Kampf ebenfalls mittels fRG behandelt worden, aller-

dings im 1-PI Schema und auf technisch etwas andere Weise [4]. Auch dabei gilt das Inter-

esse dem Einfluß starker effektiver Wechselwirkungen auf Einteilcheneigenschaften, jedoch

vornehmlich in der Nähe von van Hove Füllung. Dabei zeigen sich Unterschiede im gener-

ischen Verhalten der Spektralfunktion im Vergleich zu den Resultaten in dieser Arbeit. Es

werden ebenfalls starke Signaturen im Niederenergieverhalten beobachtet, allerdings ent-

wickelt sich die Spektralfunktion qualitativ anders. Es entsteht zwar ebenfalls ein Pseudogap,

jedoch überlebt im generischen Fall ein schmaler Quasiteilchenpeak in der Mitte des Pseudo-

gaps. Dies ist ein gravierender qualitativer Unterschied. Aus technischer Sicht verstehen wir,

wie diese Unterschiede entstehen können. Welches Bild physikalisch realistischer ist, läßt

sich ohne weiteres dagegen nicht sagen. Dies ist eine der Fragen, die durch eine genauere

Analyse der verschiedenen Approximationen zu untersuchen ist. Dies betrifft vor allem die

Wahl des Flußparameters, das Niveau der Trunkierung, sowie die Parametrisierung der effek-

tiven Wechselwirkung.

Abschließende Bemerkungen

In dieser Arbeit haben wir funktionale Renormierungsgruppenmethoden auf das zweidimen-

sionale Hubbard-Modell (2D-HM) angewendet, indem approximative Renormierungsgrup-

pengleichungen mittels numerischer Integration gelöst wurden. Dies diente zum einen der

Methodenentwicklung, da der Anwendungsbereich von fRG Methoden erweitert wurde. Zum

anderen haben wir neue Einsichten in das Verhalten des 2D-HM gewonnen.

Abschließend sei erwähnt, daß fRG Methoden nicht auf das 2D-HM und verwandte Mod-

elle beschränkt, sondern sehr allgemein anwendbar sind. So wurden und werden sie unter

Anderem sehr erfolgreich bei eindimensionalen Problemen eingesetzt, siehe z.B. [5]. Des

Weiteren sind sie sehr flexibel bezüglich des oben angesprochenen Parameters, in dem der
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RG-Fluß aufgesetzt wird. Es muß keineswegs ein (künstlicher) Cutoff im Frequenz- und/oder

Impulsraum sein. So können auch echte physikalische Parameter wie die Temperatur [6, 7]

oder die nackte Wechselwirkung [8] als Flußparameter gewählt werden.



X



1

Introduction

Suppose you order a glass of Champagne and the waiter brings you a glass of mineral water. A

lawyer may call this fraud. A mathematician may call it an error. A physicist will probably call

it an approximation.

Superconductivity and magnetism are central phenomena in solid state physics. Both are

macroscopic features of quantum origin, and with the discovery of High-Tc cuprates by Bed-

norz and Müller in 1986 [9] their importance has grown even more. The High-Tc cuprates

are crystalline materials with a layered structure. The electronic movement in the z-direction

is strongly suppressed, and the dynamics of electrons is mainly restricted to copper-oxide

planes. Generically, these materials can exhibit antiferromagnetism and/or superconduc-

tivity, depending on the detailed chemical composition and external parameters. The big

puzzle are the high superconducting transition temperatures of up to 130 Kelvin in these

compounds. After more than 15 years of intense theoretical and experimental effort a co-

herent and conclusive description remains to be found. A promising and at the same time

controversial model in this context is the Hubbard model. Its three-dimensional version was

introduced by Anderson in 1959 to describe super exchange in transition metals [10]. In 1963,

Hubbard, Gutzwiller and Kanamori independently invoked it to study correlation effects in

the same materials, such as a possible metal-insulator transition and ferromagnetism [11–

13]. From its introduction till 1986 the interest in the model was considerable, but not enor-

mous. This changed shortly after the discovery of High–Tc superconductivity, when Anderson

proposed the two-dimensional Hubbard model (2D-HM), or rather its strong-coupling ver-

sion, the t-J model, as a potential minimum basis for the theoretical description and under-

standing of High-Tc compounds [14], a proposition he repeated recently rather strongly [15].

Since then the number of publications concerned with the Hubbard model has increased

dramatically. Though simple in its definition, it proves to be quite resistant when it comes to

extracting its physical behaviour. While there exists an exact solution for the one-dimensional

case [16], up to this day many aspects and features of the model in higher dimensions are ei-

ther unknown, or not rigorously proven and thus controversial. Many techniques have been

used to study the 2D-HM, some of them actually invented with the treatment of this model as

the main objective. As a consequence, many results are available, which are useful because

they can be compared amongst each other, and because they give us certain ideas about what

the physics of the model could be. There are also special sets of parameters for which the
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model is exactly solvable, or at least for which exact relations hold. It is then possible to try to

”expand” around these special parameters. However, a general exact solution is not available

to this day, and the effort to learn more about the 2D-HM continues. In this thesis some small

steps forward are made in this respect, which are hoped to help understanding the physics of

this quite reluctant model.

We will tackle the 2D-HM with a version of the functional renormalisation group (fRG), as

proposed by Salmhofer [17]. Starting from exact relations it provides the basis for an ap-

proximate treatment which goes beyond many other approaches. Yet, due to the limitations

of this approximation it still lacks the accuracy and reliability a physicist should ultimately

strive for. Furthermore, in the form we use it, it is restricted to the case of weak electron-

electron interaction, while in most real systems of interest this interaction is believed to be

larger. Nevertheless, the fRG enables us to make essential and promising steps forward to-

wards a deeper and more reliable understanding of the physics of the 2D-HM. In particular, it

opens the gate to systematic improvements of approximations within a rigorous framework,

and it has already proven to be very successful in this respect.

This work is closely related to the Ph.D. theses of C. J. Halboth [1] and C. Honerkamp [2],

who have applied two different fRG schemes to the 2D-HM. One objective in this thesis is

a comparison of these two schemes to estimate the reliability of the results. The main goal

is then to extend the calculations in [1] to obtain one-electron properties, namely the one-

particle self energy and spectral functions.

The thesis is organised as follows: The two-dimensional Hubbard model and renormalisation-

group methods are introduced in the first chapter. The second chapter is concerned with the

numerical treatment of the fRG equations and presents the chain of successive approxima-

tions which are necessary to conduct calculations on the computer. In the third chapter re-

sults for the renormalised two-particle interaction as obtained within the two fRG schemes

employed in [1,18] and [2,19] are compared. In the fourth chapter the self energy and spectral

functions are calculated in the scheme used in [1], and are contrasted to results obtained in

second-order perturbation theory. Finally, a discussion and conclusion is offered in the fifth

and last chapter.
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Chapter 1

Hubbard Model and RG Technique

In this chapter we introduce the two-dimensional Hubbard model and describe the tech-

nique of renormalisation-group methods for many-fermion systems, as we will apply them.

Our main intention here is to fix the notation and set up the frame within which our calcula-

tions are done. We will add comments concerning some of the details, but we shall not give a

self-contained introduction, neither to the discussion of the Hubbard model and its validity,

nor to renormalisation-group methods in general. This has been done in a very good manner

in some of the references which we provide when appropriate.

1.1 The two-dimensional Hubbard Model

The two-dimensional Hubbard model (2D-HM) [10–13] is a quantum-mechanical model for

interacting electrons on a two-dimensional square lattice subject to an on-site repulsion U ,

as illustrated in figure 1.1. The Hamiltonian is given by the sum of a kinetic part H0 and an

interaction part HI :

H = H0 +HI . (1.1)

H0 originates from a one-band tight-binding description and reads in second-quantised form

H0 = − t
∑
〈i,j〉,σ

ψ†ri,σψrj ,σ − t′
∑

〈〈i,j〉〉,σ

ψ†ri,σψrj ,σ , (1.2)

where t describes the hopping of electrons between nearest neighbour sites, and t′ the hop-

ping between next-nearest neighbour sites. The operator ψ†ri,σ (ψri,σ ) creates (annihilates)

an electron with spin projection σ at site ri.
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H0 is diagonal in momentum space:

H0 =
∑
k,σ

ε0k ψ
†
k,σψk,σ , (1.3)

with the free dispersion

ε0k = −2 t (cos kx + cos ky)− 4 t′ cos kx cos ky. (1.4)

HI describes the repulsion between two electrons located at the same site:

HI = U
∑
i

nri,↑ nri,↓ (1.5)

where nri,σ := ψ†ri,σψri,σ is the density operator for spin component σ at lattice site ri.

For any operator A the quantum-statistical average 〈A〉 is defined as

〈A〉 =
1
Z

tr
(
e−β(H−µN )A

)
(1.6)

with the partition function Z = tr e−β(H−µN ), β = 1
kB T and the number operator N =∑

i,σ nri,σ. The filling n is defined as the average number of particles per lattice site.

For vanishing next-nearest neighbour hopping t′ = 0 the ground state of the 2D-HM is an-

tiferromagnetic at half filling. It can be driven to a different state in several ways: When the

interaction is weak, a finite t′ can cause the system to change to a different type of symmetry

breaking, such as superconductivity, while keeping the filling fixed at n = 1. The same can

happen when changing the filling for fixed t′ = 0 [1, 18], while a sufficiently high temperature

can destroy symmetry breaking altogether [2].

While there is consensus that the phase diagram of the 2D-HM is rather rich, there is no

consensus on what it precisely looks like. The closeness of antiferromagnetism and d-wave

superconductivity near half filling is a feature most experts agree upon, which is particularly

nice, since this feature is inherent to the High-Tc cuprates. We shall not enter the discussion

on whether the 2D-HM is suitable for the description of High-Tc cuprates, but rather conduct

calculations to learn about its behaviour. A discussion concerning the range of applicability
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H = H0 +HI

H0 =
∑
k,σ

ε0k ψ
†
k,σψk,σ

HI = U
∑
i

n↑(ri)n↓(ri)

ε0k = −2 t (cos kx + cos ky)

− 4 t′ cos kx cos ky

t

t

U

t’

Figure 1.1: The two-dimensional Hubbard model.

of the one-band Hubbard model and its extensions to High-Tc cuprates can be found for ex-

ample in [20] and [21].

We will be interested in the behaviour of the model near half filling when instabilities are ap-

proached from within the normal, i.e. non-symmetry-broken state. The physical observables

we will calculate are in chapter 3 the leading correlations and in chapter 4 the influence of

these correlations on one-particle properties. We will use functional renormalisation-group

(fRG) methods, which are particularly powerful when an unbiased inclusion of several im-

portant perturbative contributions is needed, as is the case in the 2D-HM.

We use the common convention of choosing units such that ~ = c = kB = t = 1. An overview

of all relevant parameters is shown in table 1.1.
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Symbol Meaning

t Nearest neighbour hopping amplitude

t′ Next-nearest neighbour hopping amplitude

µ Chemical potential

U Bare on-site interaction

εvH := ε0(0,π) van Hove energy

δvH := µ− εvH Distance in energy between Fermi level and van Hove energy

Conventions ~ = c = kB = t = 1

Table 1.1: Parameters and conventions

1.2 Functional Description

In order to apply renormalisation-group methods to quantum many-particle systems it is

convenient to use functional methods, also known as the path-integral description. In the

following we give a short technical overview, mainly to fix the notation and define our terms.

A rather detailed introduction to the matter is given for example in [22].

Partition Function and Path Integral

Starting point is the Grassmann path-integral representation of the partition function of a

system of electrons subject to a two-particle bare interaction, in the presence of fermionic

external fields (η̄, η):

Z[η̄, η] =
∫
D(ψ̄ψ) eS0 + SI + Sg (1.7)

with
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∫
D(ψ̄ψ) =

∫ ∏
ζ

dψ̄ζdψζ ,

S0 =
∫
γ

∫
δ

Sγ,ν0 ψ̄γ ψν (Gaussian part) ,

SI =
∫
α

∫
β

∫
γ

∫
δ

Sα,β,γ,δI ψ̄α ψ̄β ψγ ψδ (Interacting part) ,

Sg =
∫
ν

η̄ν ψν − ψ̄ν ην (Generating part) ,

(1.8)

where the fields ψ̄ and ψ are Grassmann fields. By differentiating Z[η̄, η] with respect to η̄ν

and ην , setting (η̄, η) = 0 and then dividing by Z[0, 0], all correlation functions are generated

through Sg.1 In the case of the Hubbard model the Greek indices in momentum representa-

tion are given as ζ = (iωn,k, σ), where σ ∈ {↑, ↓} denotes the spin index, and we have

∫
D(ψ̄ψ) =

∫ ∏
iωn,k,σ

dψ̄(iωn,k,σ)dψ(iωn,k,σ)

S0 =
∫

(k,σ)

(iωn − ξ0k) ψ̄(iωn,k,σ)ψ(iωn,k,σ)

SI = −U
∫
p

∫
q

∫
r

∫
s

δp+q,r+s ψ̄p↑ ψ̄q↓ ψr↓ ψs↑ ,

(1.9)

where k = (iωn,k), ξ0k = ε0k − µ, and
∫

(k,σ)

is a short-hand notation for T
(2π)d

∑
iωn

∑
σ

∫
k

ddk . The

discrete set of Matsubara frequencies ωn = (2n+1)π T with n ∈ Z becomes dense in the limit

T → 0.

It is common to set up a perturbation theory around S0 in powers of the bare interaction U

with the free propagator C(iωn,k) := S−1
0 = (iωn − ξ0k)−1 as the building block, having the

1 Strictly speaking, in order to calculate the non-interacting partition function itself it is obligatory to go back to

the discrete form of S0 [22]. As far as correlation functions are concerned, we can use the “short-hand” notation

literally.
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well-known graphical representation in terms of Feynman graphs. However, several funda-

mental problems arise when proceeding in this way:

(1) At T = 0 the infrared divergence of C(iωn,k) in the limit ω → 0 , k → kF leads to diver-

gent contributions of individual Feynman graphs, thus yielding an expansion in which

some of the coefficients are divergent [23].

(2) A direct consequence of (1) is the necessity to take Fermi surface shifts into account at

zero temperature. The non-interacting system has a Fermi surface defined by ξ0k = 0,

which in general is not identical to the Fermi surface of the interacting system which is

defined by ξ0kF
+Σ(ω=0,kF ) = 0. In order to construct a well-defined perturbation theory,

this shift has to be included by expanding around a free system which already possesses

the correct Fermi surface [24]. This is equivalent to the requirement that the self energy

at zero frequency vanishes everywhere on the Fermi surface, given that the latter has

been correctly chosen.

(3) At small but finite temperature all individual Feynman diagrams give finite contribu-

tions, but summing certain infinite subsets, such as ladder or bubble diagrams, can

cause the expansion to diverge, provided that the interaction is strong enough. In the

case of the 2D-HM near half filling such singularities can appear in several different

“channels”, leading to a multiplicity of possible types of broken symmetry. It is one of

the main advantages of the fRG to treat all channels simultaneously on equal footing.

The last two problems arise because the attempt is made to set up a perturbation series with

the non-symmetry-broken state as the starting point, and the divergences reflect the fact that

the system tends to a state of broken symmetry. If we expand around a system which already

takes the correct broken symmetry into account, things will become (almost) regular.2 For in-

stance, in the superconducting phase the expectation value ∆ = 〈ψk,↑ ψ−k,↓〉 acquires a finite,

non-zero value, and in order to construct a well-defined perturbation theory it is necessary to

expand with respect to a quadratic action S∆
0 which already incorporates the superconduct-

ing state [25].

We note that in two dimensions a continuous symmetry cannot be broken at non-zero tem-

perature, as is known from the Mermin-Wagner theorem [26]. However, the inclusion of a

2 Except for possible Goldstone modes.
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small but finite hopping in the z direction suffices to allow for it. The calculations done in

this work, just like the ones in [1] and [2], do not account for this. Instead, they yield critical

temperatures of the mean-field type, which is one of the major drawbacks of the approxima-

tion. We shall keep this in mind when interpreting the results in chapters 3 and 4.

1.3 Renormalisation-Group Methods

Since Wilson’s work in the 1970s (see for example [3]) RG methods have extensively and suc-

cessfully been applied in many areas of theoretical physics, such as high-energy physics, criti-

cal phenomena and polymer systems. The RG concept has proven to be extremely useful, and

since its introduction it has continuously been improved and extended. Nowadays, there ex-

ist many versions and adaptations of this concept, one of which is the exact functional renor-

malisation group (fRG) [17,27], which we use. With respect to systems of interacting fermions

it provides a rigorous tool to connect the low-energy properties, essential for phenomenolog-

ical descriptions, to the underlying microscopic model. For instance, Feldman et al. used it

to construct a rigorous proof of the existence of a true Fermi liquid at T = 0 under certain

conditions [24].

The fRG enables us to investigate properties of interacting Fermi systems, in particular the

2D-HM, with a lack of bias as compared to other methods. It maps the original model, which

describes the interaction between all degrees of freedom, to one in which energy scales are

separated, and the influence of high-energy degrees of freedom on the low-energy degrees of

freedom, namely the states near the Fermi surface, is obtained in a continuous manner by

changing the separation scale. The way we shall apply the fRG it is a perturbative approach,

since it is implemented on an approximate level valid only in the weak-coupling limit.

The generic starting point in the derivation of fRG equations is the introduction of an ad-

ditional energy-scale parameter, which regularises the theory and provides us with a well-

defined starting point. By varying this parameter, the original model is approached in a way

which treats competing perturbative channels on equal footing. Finally, either the low-energy

properties of the system are obtained, or divergences appear at a finite energy scale. While

such divergences have the same interpretation as in perturbation theory – they signal the ap-

pearance of strong correlations and the potential onset of symmetry breaking and/or Fermi-

surface deformations – the information on the actual type of singularity can be expected to be

much less biased within the fRG, as compared to the direct application of perturbation theory.
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It is common to choose the scale parameter in a way which takes the separation of energy

scales literally. We do this by using a sharp cutoff Λ in momentum space as in [1] and define

CΛ(k) =
Θ(|ξ0k| − Λ)
iωn − ξ0k

= Θ(|ξ0k| − Λ)C(k) . (1.10)

The free propagator is the building block of all Feynman diagrams, and by removing its largest

contributions, the cutoff Λ provides a regular theory as the starting point. In the limit Λ → 0

we have CΛ → C, and we obtain the properties of the system of interest. More specific infor-

mation on the fRG machinery is given in the following sections.

Generating Functionals and fRG Schemes

The physics of many-particle systems is encoded in correlation functions, also known as

Green functions. There are different types of Green functions, each associated with a spe-

cific generating functional, as shown in figure 1.2. By introducing a cutoff, the generating

functionals and the corresponding Green functions become scale dependent. First, the cut-

off in equation 1.10 will be chosen such that all momenta are cut out, and the initial values of

all Green functions are known. Upon varying the cutoff continuously they evolve according

to a differential equation called renormalisation-group equation (RGE). The form of the RGE

depends on the functional we choose, but if it is solved exactly, we recover the same physics

in all cases. This is where the trouble starts: In practice it is not possible to solve any RGE

exactly. Approximations have to be made, and it is the properties of these approximations

which makes us choose a specific functional for practical purposes.

General fRG Setup

Each functional GX can be expressed in terms of the corresponding Green functions GX2n:

GX [η̄, η] =
∑
n

1
(n!)2

GX2n(α1, . . . , αn, βn, . . . , β1) η̄α1 . . . η̄αnηβn . . . ηβ1 (1.11)

where summation over the internal indices αi and βi is implied. Inversely, a 2n-point Green

function is obtained by differentiating the associated functional with respect to the source
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Functional Generated Green functions

Gc[η̄, η] = log
(
Z−1

0

∫
D(ψ̄, ψ) eS0 + SI + Sg

)
Connected Green functions

Gac[η̄, η] = log
(
Z−1

0

∫
D(ψ̄, ψ) eS0[ψ̄,ψ] eSI [ψ̄−η̄ , ψ+η]

)
C-amputated, connected Green

functions

Girr[χ̄, χ] = Gc[η̄, η]− (η̄ |χ) + (χ̄| η)

χ̄ = 〈ψ̄〉 = δGc

δη

χ = 〈ψ〉 = δGc

δη̄

One-particle irreducible vertex

functions

Table 1.2: Different types of generating functionals

fields and then setting the source fields to zero:

GX2n(α1, . . . , αn, βn, . . . , β1) := (−1)n
δ

δη̄α1

. . .
δ

δη̄αn

δ

δηβn

. . .
δ

δηβ1

GX [η̄, η]
∣∣∣∣
[η̄,η]=0

, (1.12)

with X ∈ {c, ac, irr} (cf. table 1.2). The factor (−1)n accounts for the n permutations which

are needed to put the fields in the correct order.

With the introduction of the cutoff Λ the functions GX2n become scale-dependent:

GX2n(α1, . . . , αn, βn, . . . , β1) → GX2n(Λ |α1, . . . , αn, βn, . . . , β1) . (1.13)

The RGE describes the evolution of these functions when Λ is continuously changed:

∂ΛG
X
2n(Λ |α1, . . . , αn, βn, . . . , β1) = RX [GX2m(Λ |α1, . . . , αm, βm, . . . , β1);m = 1 . . .∞] . (1.14)
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The right-hand side (RHS) is a functional of all 2m-point correlation functions, and the RGE

constitutes an infinite hierarchy of coupled, non-linear functional integro-differential equa-

tions. In practice, this hierarchy has to be truncated, and many further approximations have

to be made in order to prepare the RGE for numerical treatments.

In the following we give a brief overview of different fRG schemes, including references rele-

vant to the 2D-HM, and some short comments.

RGE for One-particle Irreducible Vertex Functions

The RGE for the one-particle irreducible (1-PI) vertex functions [28–30] has been used exten-

sively in the last years to investigate properties of low-dimensional Fermi systems [2, 19, 31–

38]. In this scheme the infinite hierarchy is usually truncated by setting the six-point func-

tion to zero and keeping two and four-point functions. It has the advantage that the flow of

all 2n-point functions is regular in the sense that no jumps or discontinuities appear. There-

fore, if the flow indicates a deviation from Fermi-liquid behaviour, it does this in a continuous

manner at all levels of approximation. However, it has drawbacks on the technical side when

applied to the 2D-HM, some of which will be discussed in chapter 3 where we compare results

obtained from the 1-PI scheme to results from the Wick-ordered scheme, which is introduced

below.

RGE for C-amputated, Connected Green Functions

Polchinski introduced the flow of GacΛ , the generating functional for the C-amputated, con-

nected Green functions, and applied it to the four-dimensional φ4 theory [39]. An appealing

feature of this fRG scheme is the fact that at each scale Λ the functional GacΛ not only gener-

ates the Green functions for the system with cutoff Λ, but at the same time constitutes the

effective action for the complementary degrees of freedom, i.e. the ones which have not been

“integrated out”.

In its functional form the Polchinski equation reads

∂Λ GacΛ = −∆ĊΛ
GacΛ −

(
δGacΛ

δη

∣∣∣∣ ĊΛ

∣∣∣∣ δGacΛ

δη̄

)
(1.15)

where Ċ := ∂ΛCΛ, and ∆X := (δη|X|δη̄) is the functional Laplacian with respect to X. In the

context of interacting electron systems it was employed by Zanchi and Schulz, who used it to



1.3: Renormalisation-Group Methods 13

investigate the 2D-HM [40–42]. In this scheme, the six-point function needs to be taken into

account already at one-loop order, and the hierarchy is truncated at the level of the eight-

point function. The Polchinski equation is somewhat difficult to handle, since the numerical

procedure to solve the RGE is non-local in Λ already at one-loop level. However, it has the

advantage that the calculated entity has a straightforward physical interpretation. The reader

may refer to [42] and further references therein for a more detailed discussion.

RGE for Wick-ordered C-amputated, Connected Green Functions

Starting from the Polchinski equation, Wieczerkowski formulated an RGE for Wick-ordered

C-amputated, connected Green functions [43]. This can be done by defining

DΛ = C − CΛ =
1−Θ(|ξ0k| − Λ)

iωn − ξ0k
=

Θ(Λ− |ξ0k|)
iωn − ξ0k

, (1.16)

and introducing a new functional GwΛ by

GwΛ := e−∆DΛ GacΛ . (1.17)

The RGE for this functional, which we will call Wieczerkowski equation, reads

∂Λ GwΛ = e−∆DΛ

(
δ (e∆DΛGwΛ )

δη

∣∣∣∣∣ ḊΛ

∣∣∣∣∣ δ (e∆DΛGwΛ )
δη̄

)
. (1.18)

Figure 1.2 shows the diagrammatic representation of the flow of the two- and four-point func-

tions, when the hierarchy of equations is truncated by setting the six-point function to zero.

This scheme has been used by Halboth and Metzner to tackle the 2D-HM [1, 18, 44], and

also by Chauve and Le Doussal in the context of classical systems with disorder [45]. Unlike

the Polchinski equation, the Wieczerkowski equation does not contain tadpoles on the right-

hand side, which is an advantage. However, it is also evident from figure 1.2 that the RHS

generally contains one-particle reducible terms, which are inconvenient for our purposes,

and some of which can be removed by switching to yet another set of 2n-point functions,

which leads to the scheme we will use.
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Figure 1.2: Graphical representation of the Wieczerkowski equation, truncated by setting the six-

point function to zero on the right-hand side. Normal internal lines correspond to DΛ,

slashed lines to ḊΛ.

RGE for Fully Amputated, Wick-ordered Connected Correlation Functions

We follow Salmhofer [17] who, starting from the truncated Wieczerkowski equation, intro-

duced new two-point and four-point functions defined as

GS2 (Λ) :=
GW2 (Λ)

1 + CΛGW2 (Λ)
(1.19)

and

GS4 (Λ|kf1 , k
f
2 ; ki2, k

i
1) := AΛ(kf1 )AΛ(kf2 )GW4 (Λ|kf1 , k

f
2 ; ki2, k

i
1)AΛ(ki2)AΛ(ki1) , (1.20)

with

AΛ :=
(
1− CΛG

S
2 (Λ)

)−1
. (1.21)

This leads to an RGE with a structure shown in figure 1.3. The flow equation for the two-point

function contains only one-particle irreducible contributions, and by construction smoothly
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Figure 1.3: Graphical representation of the Salmhofer equation for fully amputated, Wick-ordered

connected correlation functions.

approaches the (one-particle irreducible) self energy in the limit Λ → 0. We note that this

RGE is obtained by direct manipulation on the level of Green functions, and not by switching

to a new functional. We could, however, define a corresponding functional via equation 1.11,

but there is no need for that.

The initial condition of the two-point function can be set to zero by introducing appropriate

counter terms.3 To prepare for the application of numerical methods, the equation is fur-

ther approximated by expanding the RHS to second order in powers of the flowing four-point

function GS4 (Λ|α1, . . . , αn, βn, . . . , β1). This simplifies the structure of the Salmhofer equation

to the one shown in figure 1.4: It removes the one-particle reducible contribution in the flow

of the four-point function, and eliminates all feedback effects of the two-point function via

internal lines. Thereby, the numerical treatment is greatly simplified.

Due to rotation invariance in spin space and translation invariance in direct space we can

write

3 In the case of the Hubbard model this is simply the inclusion of the Hartree correction in the chemical potential.



16 CHAPTER 1. Hubbard Model and RG Technique

"#

"#

  G2

S

  G4

S

  D#   D#

=

=

= =

Figure 1.4: Graphical representation of the Salmhofer equation up to second order in the flowing

(renormalised) four-point function.

GS2 (Λ|α;β) = ΣΛ(kα) δσα,σβ
δkα,kβ

(1.22)

−GS4 (Λ|α, β; γ, δ) = ΓsΛ(kα, kβ; kγ , kδ) δkα+kβ−kγ ,kδ

(
δσα σδ

δσβ
δσγ − δσα σγδσβ σδ

)
+ ΓtΛ(kα, kβ; kγ , kδ) δkα+kβ−kγ ,kδ

(
δσα σδ

δσβ
δσγ + δσα σγδσβ σδ

)
(1.23)

where the minus sign is introduced for convenience, since it makes the initial condition for

Γ coincide with the bare Hubbard interaction U . This singlet-triplet representation, with a

slightly different choice of pre-factors, is also used in [1].4 We will use the Salmhofer equation

written in terms of ΣΛ and Γs,tΛ . At the level of approximation we use here, the flow of the

four-point function is identical to the flow in the Wieczerkowski scheme used in [1].

4 This is not the only possible way to separate spatial and spin parts. In [2] a different choice is made.
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The explicit expressions for the flow of ΣΛ, ΓsΛ and ΓsΛ are

∂

∂Λ
ΣΛ(k) =

∫
p1,p2

[
(ΓsΛ (p1, p2; p1 + p2 − k, k))2 + 3

(
ΓtΛ(p1, p2; p1 + p2 − k, k)

)2]
∂

∂Λ
(DΛ(p1)DΛ(p2)DΛ(p1 + p2 − k))

(1.24)

∂

∂Λ
ΓsΛ(ki1, k

i
2; k

f
2 , k

f
1 ) = PP sΛ(ki1, k

i
2; k

f
2 , k

f
1 ) + PHs

Λ(ki1, k
i
2; k

f
2 , k

f
1 ) + PHs

Λ(ki1, k
i
2; k

f
1 , k

f
2 )

∂

∂Λ
ΓtΛ(ki1, k

i
2; k

f
2 , k

f
1 ) = PP tΛ(ki1, k

i
2; k

f
2 , k

f
1 ) − PHt

Λ(ki1, k
i
2; k

f
2 , k

f
1 ) + PHt

Λ(ki1, k
i
2; k

f
1 , k

f
2 ) ,

(1.25)

where

PP s,t
Λ (ki1, k

i
2; k

f
2 , k

f
1 ) =

∑
i,j

Is,ti,j

∫
p
ΓiΛ(ki1, k

i
2; p, k

i
1 + ki2 − p) ΓjΛ(ki1 + ki2 − p, p; ki1 + ki2 − kf1 , k

f
1 )

∂

∂Λ

(
DΛ(p)DΛ(ki1 + ki2 − p)

)
, (1.26)

PH s,t
Λ (ki1, k

i
2; k

f
2 , k

f
1 ) =

∑
i,j

Js,ti,j

∫
p
ΓiΛ(ki1, p; k

i
1 + p− kf1 , k

f
1 ) ΓjΛ(ki2, k

i
1 + p− kf1 ; p, ki1 + ki2 − kf1 )

∂

∂Λ

(
DΛ(p)DΛ(ki1 + p− kf1 )

)
(1.27)

and

Isi,j = 2

(
1 0

0 0

)
Iti,j = 2

(
0 0

0 1

)

Jsi,j =
1
2

(
1 −3

−3 −3

)
J ti,j =

1
2

(
1 1

1 5

)
. (1.28)
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In the following chapters we will describe some important details concerning the numerical

treatment of these equations, compare some of the results to those obtained by the RGE for

1-PI vertex functions, and finally calculate self-energy effects and spectral functions from it.

The route from the Polchinski equation to the Wieczerkowski equation is straightforward. In

appendix A we outline this procedure and comment on essential steps. The transformations

needed to arrive at the final flow equations 1.24 and 1.25 are then purely algebraic and easily

obtained by simple substitutions.

It is interesting to note that the one-loop flow defined by equation 1.25 is identical to that

derived by Zanchi and Schulz starting from the field-theoretic RG [46].
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Chapter 2

Numerical Treatment

Our goal is to solve equations 1.24 and 1.25 numerically. In this chapter we present the ap-

proximations we make to bring the complexity of this task to a feasible level. We recall the

definition of the cutoff-dependent propagatorCΛ, and the form of the complementary prop-

agator DΛ:

CΛ(k) = Θ(|ξ0k| − Λ)C(k) =
Θ(|ξ0k| − Λ)
iωn − ξ0k

,

DΛ(k) = C − CΛ = Θ(Λ− |ξ0k|)C(k) =
Θ(Λ− |ξ0k|)
iωn − ξ0k

.

The simple choice of a sharp, frequency-independent cutoff will allow for substantial simpli-

fications of the RHS of equations 1.24 and 1.25.

2.1 Static Approximation

We adopt the common procedure to replace the four-point function Γ by its values at zero

frequencies, thus approximating it by its static components. This holds exactly at the be-

ginning of the flow, and is further motivated by the assumption that the frequency depen-

dence of the four-point function becomes irrelevant in the RG sense in the limit Λ → 0.

This is also supported by simple power counting arguments [23]. However, we will see that

the four-point function can develop singularities which invalidate this assumption at a cer-

tain stage. We will comment on this in chapter 3. With the static approximation we have

Γs,tΛ (kf1 , k
f
2 ; ki2, k

i
1) → Γs,tΛ (kf1 ,k

f
2 ;ki2,k

i
1), which simplifies the RHS of equation 1.25 substan-

tially.
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Writing q = (iνn,q) and p = (iωn,p) we have
∫
p =

∫
p T

∑
ωn

, and we can pull the four-point

function as well as the cutoff functions out of the frequency sum. Equations 1.26 and 1.27

then read

PP s,t
Λ (ki1,k

i
2;k

f
2 ,k

f
1) =

∑
i,j

Is,ti,j

∫
p

ΓiΛ(ki1,k
i
2;p,k

i
1 + ki2 − p) ΓjΛ(ki1 + ki2 − p,p;ki1 + ki2 − kf1 ,k

f
1)

∂

∂Λ

(
Θ(Λ− |ξ0p|) Θ(Λ− |ξ0ki

1+ki
2−p|)

)
T
∑
ωn

(
C(p)C(ki1 + ki2 − p)

)
(2.1)

and

PH s,t
Λ (ki1,k

i
2;k

f
2 ,k

f
1) =

∑
i,j

Js,ti,j

∫
p

ΓiΛ(ki1,p;ki1 + p− kf1 ,k
f
1) ΓjΛ(ki2,k

i
1 + p− kf1 ;p,ki1 + ki2 − kf1)

∂

∂Λ

(
Θ(Λ− |ξ0p|) Θ(Λ− |ξ0

ki
1+p−kf

1

|)
)
T
∑
ωn

(
C(p)C(ki1 + p− kf1 )

)
. (2.2)

The frequency sums can be carried out explicitely using the relations [47]

T
∑
ωn

C(iωn,p)C(iνn − iωn,q− p) =
f(ξ0p)− f(ξ0q−p)
iνn − ξ0p − ξ0q−p

(2.3)

T
∑
ωn

C(iωn,p)C(iνn + iωn,q + p) =
f(ξ0p)− f(ξ0q+p)
iνn + ξ0p − ξ0q+p

(2.4)

T
∑
ωn

C(iωn,p)C( iωn,p) = f ′(ξ0p) . (2.5)

The last equation is understood as the limit q → 0 after νn → 0 of the second equation and ap-

plies to the forward channel.1 The three-dimensional integration/summation over the inter-

nal variable p has been reduced to a two-dimensional one over p, and due to the sharp cutoff

1 In the case t′ = 0 and µ = 0 the third equation is also relevant for q = (π, π).
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it can be further simplified to a one-dimensional one due to the relation ∂ΛΘ(Λ−a) = δ(Λ−a).

Therefore, by switching from (px, py) to a new set of variables (ξ̃, λ̃) with an energy variable ξ̃

and an angular variable λ̃, the integration over ξ̃ can be carried out immediately, and we are

left with a one-dimensional integration over λ̃, which we choose to be py.

An analogous procedure to the one outlined here for the flow of the four-point function is

used in chapter 4 in the calculation of the two-point function.

2.2 Discretisation of the Brillouin Zone

In order to solve the simplified form of equations 2.1 and 2.2 numerically we have to reduce

the values which the arguments in the four-point function can take from un-countably many

to a finite number, an obvious necessity when using computational methods. Concerning

the momentum coordinates we use momentum conservation and discretise the Brillouin

zone (BZ) and with it the Fermi surface, thereby further reducing the four-point function

Γs,tΛ (kf1 ,k
f
2 ;ki2,k

i
1) to a function V s,t

Λ (i, j; l) defined on a discrete and finite set of patches, or, to

be more precise, on a finite set of patch points on the non-interacting Fermi surface. This pro-

cedure is not unique, and differences in the discretisation may influence the results. While

it is not possible to conduct a complete check with respect to this issue, it is imperative to

investigate it to at least some extent. We will do this in the last section of this chapter by con-

sidering two discretisations, depicted in figure 2.1. In both cases patch points are put on the

Fermi surface only. In one case (left picture) the BZ is patched along the axes as well as the di-

agonals, meaning that some of the patch points lie on these symmetry axes. In the other case

(right picture) the discretisation avoids patches on axes and diagonals, such that no patch

point is on a symmetry axis. To complete the definition of the discretisation, we have to spec-

ify the number of patches we use, as well as the size of their area, which in the following is

always chosen to be equal for all patches. The points on the Fermi surface are chosen such

that a straight line either from the origin or from (π, π) through the patch point to the Umk-

lapp surface defined by |ky| = π − |kx| splits the corresponding patch into two parts of equal

size, as illustrated in figure 2.1.
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Figure 2.1: The two patching schemes we consider - in the on-axes scheme (left) patch points are

allowed to sit on the axes and the diagonals, while in the off-axes scheme (right) no patch

points are located on axes and diagonals (right).

2.3 External vs Internal Projection

There exists an ambiguity when replacing Γ by V . We denote by P(p) = i(p) the mapping

of p to the number of the patch it is located in, with the corresponding patch momentum

pi on the Fermi surface. To understand how this enters in the RHS of equations 2.1 and 2.2,

consider as an example a contribution to PP sΛ on the RHS of equation 1.26 of the form

∫
p
ΓsΛ(ki,kj ;p,q− p) ΓsΛ(q− p,p;q− kl,kl) ḊΛ(p)DΛ(q − p) , (2.6)

where q := ki + kj . The differentiated propagator ḊΛ(p) is fixed at ξ0p = ±Λ due to the sharp

cutoff, and the external momenta ki,kj and kl are the patch momenta on the Fermi surface

associated with the patches i, j and l.

The four-point function Γs (Γt) is symmetric (antisymmetric) under the exchange of two in-

coming or outgoing momenta. Therefore we can replace ΓsΛ(q − p,p;q − kl,kl) by ΓsΛ(q −
p,p;kl,q− kl), and analogously ΓtΛ(q−p,p;q− kl,kl) by−ΓtΛ(q−p,p;kl,q− kl). To switch

from Γ to V in equation 2.6 we can then set
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∫
p
ΓsΛ(ki,kj ;p,q− p) ΓsΛ(q− p,p;kl,q− kl) ḊΛ(p)DΛ(q − p)

≈
∫
p
V s

Λ(i, j;P(p))V s
Λ(P(q− p),P(p); l) ḊΛ(p)DΛ(q − p) , (2.7)

meaning that p is projected in both ΓsΛ(ki,kj ;p,q − p) and ΓsΛ(q − p,p;kl,q − kl), while in

ΓsΛ(q− p,p;kl,q− kl) also the second internal loop variable q− p is projected. In the Wick-

ordered scheme this approximation is exact in the limit Λ → 0 and infinitely many patches,

due to the contraction of the support of the complementary propagatorDΛ around the Fermi

surface. We call it internal projection and will use it throughout the whole work.

Alternatively, instead of q − p we could in ΓsΛ(q − p,p;kl,q − kl) project the fourth external

variable q − kl. Using time-reversal and conjugation symmetry, which tells us that Γs,tΛ (q −
p,p;kl,q− kl) = Γs,tΛ (q− kl,kl;p,q− p) [1], we then have the replacement

∫
p
ΓsΛ(ki,kj ;p,q− p) ΓsΛ(q− p,p;kl,q− kl) ḊΛ(p)DΛ(q − p)

≈
∫
p
V s

Λ(i, j;P(p))V s
Λ(P(q− kl), l;P(p)) ḊΛ(p)DΛ(q − p) (2.8)

as done in [1].2 This external projection is less favourable in the Wick-ordered scheme, since

q − kl is not restricted to a small stripe around the Fermi surface when the cutoff becomes

small. Thus, this choice of projection does not become exact in the limit Λ → 0 and infinitely

many patches.

In the particle-hole channel the procedure is analogous. Consider, again as an example, a

contribution to PHs
Λ on the RHS of equation 1.27 of the form

∫
p
ΓsΛ(ki,p;p + q,kl) ΓsΛ(kj ,p + q;p,q + kj)ḊΛ(p)DΛ(p+ q) , (2.9)

2 C. J. Halboth, private communication - which type of projection is actually used is not explicitly stated in [1].
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where q := ki − kl. We again use the symmetry under exchange of two outgoing momenta to

replace ΓsΛ(ki,p;p+q,kl) by ΓsΛ(ki,p;kl,p+q), and then project p. In ΓsΛ(kj ,p+q;p,q+kj)

we project p as well as p + q and we have

∫
p
ΓsΛ(ki,p;kl,p + q) ΓsΛ(kj ,p + q;p,q + kj)ḊΛ(p)DΛ(p+ q)

≈
∫
p
V s

Λ(i,P(p); l)V s
Λ(j,P(p + q);P(p)) ḊΛ(p)DΛ(p+ q) .

We omit the expression for the case of external projection, since it is completely analogous to

the particle-particle case, and we will not need it in the following.

We shall mention here that we have made several checks regarding the impact of the projec-

tion scheme on the results. We did not observe substantial differences, thus the results in [1]

are by no means questioned here. However, in this work we stick to the internal projection

since it is favourable a priori.

2.4 Integrating the RGE

With these specifications we integrate the flow equation numerically using an implicit, adap-

tive Runge-Kutta method provided in [48], which we slightly adapted to our needs. We veri-

fied throughout the calculations that changes in our choice of parameters entering the Runge-

Kutta method do not lead to relevant quantitative changes in the results. An overview of the

steps that we make to treat the RGE numerically is shown in table 2.1.

2.5 How Many Patches Do We Need?

We can now turn to the question raised at the beginning of this chapter concerning the poten-

tial influence of different discretisation schemes on the results. While the two discretisation

procedures presented in the previous sections are equivalent in the limit of infinitely high

resolution, that is the limit of infinitely many patches, we have to restrict ourselves to a finite

number, and we want to find out which discretisation scheme requires the fewest patches.
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Numerical Solution of RGE - Overview

(1) Choose representation of spin structure of four-point function (here: singlet-triplet )

(2) Drop frequency dependence in four-point function

(3) Discretise and patch BZ (here: linear and off-axis )

(4) Choose internal or external projection (here: internal )

(5) Integrate RG equation specifying the method ( here: adaptive, implicit Runge-Kutta )

Table 2.1: The RG recipe

We do this by looking at the dependence of the flow of the four-point function on the number

of patches as well as on the discretisation scheme, i.e. on-axes or off-axes.

At small temperatures and in the parameter range of interest the four-point function diverges

when the cutoff approaches a certain value Λc, indicating that the true state of the system

may qualitatively differ from the non-symmetry-broken state we started from. The physical

implications of this behaviour will be discussed in more detail in the next chapter. Here, we

are interested only in the technical question concerning the patching procedure. We set the

temperature to T = 0.01, the next-nearest neighbour hopping to t′ = −0.1 and the bare inter-

action to U = 2.0. We calculate the flow for different values of δvH := εvH − µ, stopping the

flow when the largest value of the four-point function exceeds 100. We call the corresponding

cutoff scale Λ100. Figure 2.2 shows Λ100 as a function of δvH for different numbers of patches

N per octand in the two different types of discretisation mentioned above. We see that for

N = 6 on-axes and off-axes results agree reasonably well with each other. For smaller values

ofN the off-axes scheme is qualitatively stable in the sense that it always yields the maximum

value of Λ100 for the same value of δvH . In contrast, the on-axes scheme for N = 3 predicts

the largest value of Λ100 to be at van Hove filling. Only using more patches cures this artefact.

We use these results as a hint that the off-axes scheme is favourable since it is more stable

regarding the qualitative aspects. We always stick toN = 6, unless explicitly stated otherwise.

In figure 2.3 the numbering scheme of patches is shown as it will be used in the following

chapters. The numbering convention is somewhat counter-intuitive for technical reasons.
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Figure 2.2: Comparison between off-axis and on-axis schemes for different numbers of patches
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Figure 2.3: Discretisation of the Brillouin zone and the corresponding numbering scheme.
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Chapter 3

Critical Scales and

Dominant Correlations

In the first chapter we have mentioned that fRG methods are a powerful tool for treating cor-

related Fermi systems. We will now turn to concrete calculations which will show the type of

results that can be obtained within fRG schemes at the current level of approximation, and

in how far we can expect these results to be reliable. We extend the work presented in refer-

ences [1] and [2] by conducting calculations for the Wick-ordered as well as the 1-PI scheme,

for identical parameters. Comparison between the two sets of results yields valuable infor-

mation with respect to quantitative as well as qualitative aspects. In this chapter we focus on

correlations and restrict ourselves to the flow equation for the four-point function V .

Within the approximations we have discussed in the first and second chapter, the flow of

the four-point function diverges at a finite value Λc(T ) for T < Tc, where the value of Tc

depends on the bare interaction, the chemical potential and the hopping amplitudes. This

feature is generic for both, the Wick-ordered as well as the 1-PI scheme, and signals the onset

of strong correlations, which can lead to binding phenomena and eventually to symmetry

breaking if a small coupling, for example hopping, in the third dimension is added. It can

be viewed as a generalisation of the Thouless criterion, which relates the divergence in the

Cooper channel appearing in the particle-particle ladder to the onset of symmetry break-

ing [49]. We note that the temperature Tc is of mean-field type, which is an artefact of the ap-

proximation, which does not adequately describe order-parameter fluctuations. For a contin-

uous symmetry, these fluctuations rule out the breaking of a continuous symmetry in a two-

dimensional system at finite temperature, as known from the Mermin-Wagner theorem [26].

Also, Kosterlitz-Thouless physics, as relevant to a two-component superconducting order pa-

rameter in a two-dimensional system, is not captured. However, here we are not looking at

the symmetry-broken state, but are trying to extract normal-state properties near an instabil-

ity. Then, strong correlations do appear, and even if they cannot lead to true long-range order
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they contain information about the tendencies of the system and their mutual interplay.1

When comparing the results from the two different schemes, we will first look at the critical

scales, i.e. Λc(T ) and Tc, and their dependence on the chemical potential. We then turn to

important qualitative information about the interplay between leading correlations, as con-

tained in the functional behaviour of the four-point function when these critical scales are

approached. The chapter is organised as follows: First we choose the parameter range of in-

terest. This mainly concerns the chemical potential which is adjusted to look at the potential

relevance of so-called hot spots. Secondly, we outline the differences between the RGE for the

four-point function in the Wick-ordered and the 1-PI scheme. We then present results for the

critical scales and the leading correlations, and finally conclude with a detailed discussion,

mainly concerning the interpretation of the data.

3.1 Parameters

The physics of largest interest in the 2D-HM at weak coupling is found in the region between

van Hove filling, when µ = εvH , and half filling. In the case of vanishing next-nearest neigh-

bour hopping t′ these two cases coincide for µ = 0, leading to a perfectly nested Fermi sur-

face, i.e. the nesting condition εk = εk+Q with Q = (π, π) is fulfilled for all points on the Fermi

surface. In this case antiferromagnetic tendencies are known to be dominating, and no com-

petition between different types of instabilities occurs. We avoid this situation by introducing

a finite next-nearest neighbour hopping t′, which separates van Hove filling and half filling,

and destroys the possibility of perfect nesting [2]. To stay away from ferromagnetic tenden-

cies which can appear at van Hove filling, |t′| must not be too large [6]. We choose t′ = −0.1

to achieve this. Besides, if one is tempted to make contact with certain cuprates such as

La2CuO4-based compounds, this is not an unreasonable value. The bare coupling is always

fixed at U = 2.

We put special focus on the importance of so-called hot spots, defined as the points where

the Fermi surface intersects the Umklapp surface. The special property of these hot spots is

the fact that they can be connected by Q = (π, π) momentum transfers, which are the driving

correlations for alternating order, such as antiferromagnetism. We thus focus on values of the

chemical potential for which one of the patch points on the Fermi surface is a hot spot, and

1 In fact, a finite superconducting density can exist without true long-range order in the Kosterlitz-Thouless phase

[50].
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restrict ourselves to the three points on the Fermi surface which are closest to the Brillouin

zone boundary. We additionally present data for van Hove filling. The corresponding Fermi

surfaces illustrating the choice of parameters are shown in figure 3.1.
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Figure 3.1: The four cases for which calculations are done. The first case is van Hove filling, the other

three are defined by the condition that one of the three points near the zone boundary is

located on the Umklapp surface.

3.2 Wick-ordered vs 1-PI Scheme

We have discussed the flow equations in the Wick-ordered scheme in chapters 1 and 2. At

one-loop level and without self-energy feedback, the flow equation for the four-point func-
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Figure 3.2: One-loop RGEs for the four-point function without self energy feedback in the Wick-

ordered and the 1-PI scheme. While the diagrams are topologically identical, the crucial

difference is the region of support of internal propagators.

tion in the 1-PI scheme is quite similar. In fact, the corresponding diagrams are topologically

identical, as shown in figure 3.2, where both RGEs are depicted. However, while the inter-

nal lines in the Wick-ordered scheme are “D”-propagators, the ones in the 1-PI scheme are

“C”-propagators. Both are free propagators living on certain subsets in k-space, with a cru-

cial difference: DΛ is restricted to the region |ξ0k| < Λ, meaning its support shrinks during

the flow, until it vanishes completely in the limit Λ → 0. In contrast, CΛ is restricted to the

region |ξ0k| > Λ, meaning its support initially vanishes and becomes larger during the flow,

until it covers the whole BZ in the limit Λ → 0. The sharp border at scale Λ between support

and complementary part of the BZ is identical in both schemes. In certain limiting cases and

approximations only this border is relevant. In these situations both schemes yield identical

results [51], which is not so in general as we will see below.

3.3 Critical Scales

In chapter 2 we have introduced the quantity Λ100, which denotes the cutoff scale at which

the magnitude of the largest flowing coupling Vmax exceeds the value of 100. This scale is

temperature-dependent, and we shall thus refer to it as Λ100(T ). Accordingly, since there ex-

ists a critical temperature Tc above which the flow remains bounded in the limit Λ → 0, we

can also define a quantity T100 denoting the temperature below which the magnitude of the

largest flowing coupling exceeds the value of 100 in the limit Λ → 0.
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The introduction of these quantities is necessary for two reasons:

(1) It is rather inconvenient to look for the “real” critical values Tc and Λc(T ) at which the

largest coupling tends to infinity, since we have to determine everything numerically,

and infinity is a number which is not accessible to computer simulations.

(2) More importantly, we use an approximation which is not valid if the couplings become

too large. Clearly, there is no obvious criterion saying that a value of 100 in magnitude is

large or small, but we have to make a choice. The important thing here is that we make

the same choice for both schemes, of course. This should always be kept in mind when

results from different sources are compared.

Results

In figure 3.3 we present the scales T100 and Λ100(T = 0) as a function of δvH for the two differ-

ent schemes. For technical reasons we choose T = 0.001 to represent the zero-temperature

limit, and stop the flow at Λ = 0.0001 to obtain the T100 results.

There are several important aspects to the results shown in figure 3.3:

• In the 1-PI scheme, the values of T100 and Λ100 differ on average by a factor of approxi-

mately 3.5. In the Wick-ordered scheme they are much closer to each other.

• The 1-PI scheme predicts the largest value of T100 to be at δvH = 0.0586 and the largest

value of Λ100 to be at δvH = 0.0068. The Wick-ordered scheme yields exactly the opposite

situation.

• In the Wick-ordered scheme, the difference between T100 and Λ100 is largest in the vicin-

ity of van Hove filling.

• In all cases the largest scale is not at van Hove filling.

From these observations we find that the quantitative as well as the qualitative information

about the dependence of critical energy scales on the chemical potential is somewhat incon-

clusive. Qualitative agreement is found in the last point, i.e. the fact that the largest scale is

not at van Hove filling. This is different from the results reported in [18], the reasons being
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Figure 3.3: T100 and Λ100 for the Wick-ordered as well as the 1-PI scheme as a function of δvH .

most likely that in [18] a patching scheme of the “on-axis” type with a comparatively small

number of patches is used, the effect of which was discussed in chapter 2.

However, we should not be too surprised about the deviations. The critical scales are non-

universal, unlike critical exponents. They are more difficult to calculate and are very sensitive

to differences in the approximation. This can be understood already on the level of the sim-

ple BCS case, where roughly speaking the critical temperature depends exponentially on the

inverse of the effective coupling, and thus small differences in the flow can lead to large dif-

ferences in the critical scales. The message here is that we must not take the values for T100

and Λ100 literally, but we should not worry too much about it, either.

We shall instead turn to a more important question about another qualitative aspect, namely

the behaviour of correlations when a critical scale is approached. This is at the heart of the

fRG, since we are only able to extract such information by renormalising a function instead of

a few coupling constants.

It is instructive to look at the actual flow of some of the largest couplings to see how the critical

scales are actually approached. In figure 3.4 we show the flow of the combined Cooper/Q-
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transfer component V s(1, 29, 13) for the case δvH = 0.0068 at T = 0.001. In addition to the

two flows obtained from the Wick-ordered and the 1-PI scheme, we show the flows in either

scheme when the four-point function on the RHS of the RGE is replaced by the bare coupling.

In the limit Λ → 0 this reproduces the results in second-order perturbation theory (SOPT).

We see that for Λ > 1 not much happens and the feedback of the four-point function on the

RHS of the RGE is not of crucial importance. For Λ < 1 this feedback start to play a more

and more important role, and the fact that the value of V s(1, 29, 13) is slightly higher in the

Wick-ordered scheme at Λ = 1 leads to a substantially quicker increase in the low-energy re-

gion. We also note that the results in SOPT agree in both schemes in the limit Λ → 0, while

the paths taken by the four-point functions are slightly different.

In figure 3.5 we plot the flow of the combined Cooper/Q-transfer component V s(1, 29, 13) as

well as the Umklapp component V s(1, 1, 41) from both schemes at T100 (c.f. figure 2.3). Note

that in the 1-PI scheme V s(1, 1, 41) is always larger than V s(1, 29, 13). In the Wick-ordered

scheme the flow of V s(1, 1, 41) is cut off for small Λ due to the shrinking phase space, and

consequently V s(1, 29, 13) is the largest coupling in the limit Λ → 0. Figure 3.5 also illustrates

the relevance of our choice to stop the flow at Vmax = 100. Had we chosen Vmax = 10 the

qualitative picture would be the same as in the 1-PI scheme, with V s(1, 29, 13) smaller than

V s(1, 1, 41). However, the numerical values in the different schemes still differ by a factor of

about two.

3.4 Dominant Correlations

We now analyse the dominant correlations for the three cases when the patch points near

the zone boundary are hot spots. We omit the case of van Hove filling since it does not differ

significantly from the case δvH = 0.0068, i.e. the case when the first patch point is a hot spot.

Results

In tables 3.1 to 3.3 the six strongest coupling components are listed, for T100 and Λ100 in either

scheme. The parametrisation of the vertex function is to be inter-linked with figure 2.3 for

identification.

An inherent feature of all results is the competition between Cooper couplings and Q-transfer

couplings, which is consistent with previous calculations [1, 2, 41]. The term ‘competition’
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Figure 3.4: Flow of the combined Cooper/Q-transfer component V s
Λ(1, 29, 13) for the case δvH =

0.0068 at T = 0.001.

should be used with caution, though. Strong correlations in the Cooper channel at small en-

ergy scales, which signal the onset of strong superconducting fluctuations, cannot appear

without the influence of particle-hole contributions at high and intermediate energy scales

during the flow. The Q-transferring couplings are among the strongest of these contributions,

meaning that at higher energy scales we do not find competition, but rather favourable influ-

ence of the particle-hole channel on the particle-particle channel, in which the Cooper di-

vergence eventually appears. On the other hand, once substantial correlations are generated

in the particle-particle channel, they feed back onto the particle-hole channel. At sufficiently

small but still finite energy scales and T = 0 a divergence will always show up in the Cooper

channel, provided that no other divergence sets in before. This is a general feature in interact-

ing Fermi systems, known as the Kohn-Luttinger effect [52]. However, if another divergence

does appear before the Cooper divergence sets in, we end up with a different situation. In the

cases we are looking at this other divergence appears in the Q-transferring ‘subspace’ of the

particle-hole channel and reflects antiferromagnetic tendencies in the system.2

2 We note that it is also possible to find the leading correlations in a non-commensurate channel [53], but that is

not observed here.
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Figure 3.5: Flow of the combined Cooper/Q-transfer component V s
Λ(1, 29, 13) and the Umklapp cou-

pling V s
Λ(1, 1, 41) for the case δvH = 0.0068 and Vmax = 100.

A closer look at the data in tables 3.1 to 3.3 shows that the two schemes agree in certain cases,

while in others they do not. Also, the same scheme can yield a slightly different picture at T100

in comparison to the zero-temperature results for Λ → Λ100.

For δvH = 0.0068 both schemes show excellent agreement in the results for Λ → Λ100. In

both cases the Q-transferring Umklapp coupling V S(1, 1, 41) with both incoming momenta

at the first patch point is the leading coupling, followed by the Q-transferring Cooper cou-

pling V S(1, 29, 13) with one incoming momentum at the first patch point. In the 1-PI scheme

the sub-leading correlations are predominantly of Q-transferring type, while in the Wick-

ordered scheme also the Cooper coupling V S(1, 29, 15) is rather large. This tendency carries

over to the results at T100 where it is more evident: Compared to the zero-temperature results

V S(1, 29, 13) is enhanced and V S(1, 1, 41) suppressed in the Wick-ordered scheme, while in

the 1-PI scheme the Cooper couplings are suppressed and the Umklapp coupling remains

strongest, closely followed by other Q-transferring couplings.

For δvH = 0.0586 the second patch point is a hot spot, and in both schemes the results for
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Λ → Λ100 agree reasonably well. The Q-transferring Umklapp coupling V S(2, 2, 40) with both

incoming momenta on the second patch point is dominating, and we have a first indication

towards the relevance of hot spots. We note that the 1-PI scheme shows slightly stronger cor-

relations in the Cooper channel than the Wick-ordered scheme, but they agree in showing

that it now is the Q-transferring Cooper coupling V S(2, 30, 12) with one incoming momen-

tum at the second patch which is largest within the Cooper subset – a further hint towards

the importance of the hot spots.

The results at T100 behave similarly as for δvH = 0.0068. In the Wick-ordered scheme the

results shift towards stronger Cooper correlations, while in the 1-PI scheme Q-transferring

couplings take over. Furthermore, in the Wick-ordered scheme the strongest Cooper cou-

pling is not V S(2, 30, 12), but V S(1, 29, 13). We assign this to the higher density of states in the

first patch near van Hove filling. This effect is absent in the zero-temperature results since

the cutoff does not cross the van-Hove scale. At T100 the cutoff does cross this scale and the

effect of the high density of states at the van-Hove scale shows up.

For δvH = 0.1482 already the results for Λ → Λ100 differ in the sense that the Wick-ordered

scheme favours Cooper correlations not located on the hot spot, while in the 1-PI scheme

the Q-transferring Umklapp coupling V S(3, 3, 39) with both incoming momenta on the third

patch point is strongest. In the results at T100 we observe that in the Wick-ordered scheme

V S(2, 2, 40) becomes larger, and the strongest coupling changes to be the Q-transferring

Cooper coupling V S(3, 31, 11) with one incoming momentum at the third patch. In the 1-

PI scheme V S(3, 3, 39) remains strongest, and Cooper correlations are again suppressed with

respect to the results for Λ → Λ100. We note that δvH = 0.1482 corresponds to half filling,

which is however not a special situation here since we are in the weak-coupling region and

away from particle-hole symmetry due to a finite t′ = −0.1.
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Wick Λ100 = 0.0614

Coupling Value Type

V s(1, 1, 41) 100.6 Q-transfer

V s(1, 29, 13) 88.5 Cooper , Q-transfer

V s(1, 55, 15) 84.4 Q-transfer

V s(1, 27, 41) 80.5 Q-transfer

V s(1, 29, 15) 76.5 Cooper

V s(1, 1, 15) 50.5

1-PI Λ100 = 0.0308

Coupling Value Type

V s(1, 1, 41) 101.5 Q-transfer

V s(1, 29, 13) 69.1 Cooper , Q-transfer

V s(1, 55, 15) 62.1 Q-transfer

V s(1, 27, 41) 62.0 Q-transfer

V s(1, 13, 29) 47.2 Q-transfer

V s(1, 15, 55) 45.0 Q-transfer

Wick T100 = 0.0783

Coupling Value Type

V s(1, 29, 13) 99.7 Cooper , Q-transfer

V s(1, 29, 15) 87.4 Cooper

V s(1, 1, 41) 72.5 Q-transfer

V s(1, 29, 27) −69.9 Cooper

V s(1, 29, 1) −68.3 Cooper , Forward

V s(1, 55, 15) 55.1 Q-transfer

1-PI T100 = 0.085

Coupling Value Type

V s(1, 1, 41) 98.4 Q-transfer

V s(1, 27, 41) 95.9 Q-transfer

V s(1, 55, 15) 95.8 Q-transfer

V s(1, 1, 15) 88.2

V s(1, 1, 43) 87.1

V s(1, 29, 15) 81.4 Cooper

Table 3.1: Strongest couplings, hot spot in first patch (δvH = 0.0068)
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Wick Λ100 = 0.0726

Coupling Value Type

V s(2, 2, 40) 100.2 Q-transfer

V s(1, 2, 40) 61.4 Q-transfer

V s(1, 54, 16) 56.8 Q-transfer

V s(1, 30, 12) 56.6 Q-transfer

V s(2, 30, 12) 55.8 Cooper , Q-transfer

V s(1, 26, 44) 55.6 Q-transfer

1-PI Λ100 = 0.0276

Coupling Value Type

V s(2, 2, 40) 102.0 Q-transfer

V s(2, 30, 12) 72.4 Cooper , Q-transfer

V s(1, 2, 40) 64.7 Q-transfer

V s(1, 29, 13) 59.0 Cooper

V s(1, 54, 16) 57.6 Q-transfer

V s(1, 30, 12) 56.5 Q-transfer

Wick T100 = 0.0743

Coupling Value Type

V s(1, 29, 13) 99.3 Cooper

V s(2, 2, 40) 89.8 Q-transfer

V s(1, 29, 15) 82.4 Cooper

V s(2, 30, 12) 81.1 Cooper Q-transfer

V s(1, 29, 1) −73.7 Cooper , Forward

V s(1, 29, 27) −71.9 Cooper

1-PI T100 = 0.0928

Coupling Value Type

V s(2, 2, 40) 98.5 Q-transfer

V s(1, 2, 40) 73.3 Q-transfer

V s(1, 1, 41) 72.3

V s(3, 3, 39) 64.0 Q-transfer

V s(1, 54, 16) 62.0 Q-transfer

V s(1, 26, 44) 58.8 Q-transfer

Table 3.2: Strongest couplings, hot spot in second patch (δvH = 0.0586)
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Wick Λ100 = 0.0187

Coupling Value Type

V s(2, 30, 12) 106.8 Cooper

V s(3, 31, 11) 93.5 Cooper , Q-transfer

V s(1, 29, 12) 90.0 Cooper

V s(1, 29, 13) 89.8 Cooper

V s(2, 30, 2) −89.4 Cooper , Forward

V s(2, 30, 16) 88.2 Cooper

1-PI Λ100 = 0.0103

Coupling Value Type

V s(3, 3, 39) 100.7 Q-transfer

V s(3, 31, 11) 72.4 Cooper , Q-transfer

V s(4, 4, 38) 65.1

V s(2, 2, 40) 61.4

V s(2, 3, 39) 58.9 Q-transfer

V s(2, 30, 12) 56.8 Cooper

Wick T100 = 0.0264

Coupling Value Type

V s(3, 31, 11) 99.2 Cooper , Q-transfer

V s(3, 3, 39) 92.2 Q-transfer

V s(2, 30, 12) 84.0 Cooper

V s(3, 31, 3) −73.5 Cooper , Forward

V s(2, 30, 2) −64.3 Cooper , Forward

V s(2, 30, 11) 62.6 Cooper

1-PI T100 = 0.084

Coupling Value Type

V s(3, 3, 39) 98.0 Q-transfer

V s(4, 4, 38) 69.4

V s(2, 2, 40) 63.7

V s(2, 3, 39) 62.1 Q-transfer

V s(3, 4, 39) 57.0 Q-transfer

V s(5, 5, 37) 53.7

Table 3.3: Strongest couplings, hot spot in third patch (δvH = 0.1482)
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3.5 Discussion

We have seen that the Wick-ordered and the 1-PI fRG schemes agree with respect to certain

aspects and disagree with respect to others. The two main reasons which have to be consid-

ered to explain the discrepancies are the following:

(1) As mentioned before, the two flow equations for the four-point function are quite dif-

ferent from a technical point of view. The flow of the 1-PI scheme starts much slower

due to the restricted phase space at the beginning of the flow, while in the Wick-ordered

scheme the contributing phase space shrinks towards the end of the flow. Since the

divergences appearing in both schemes are due to feedback effects of the flowing four-

point functions during the flow, the different initial behaviour leads to sometimes con-

siderable differences in the results. This can be seen in figures 3.4 and 3.5.

(2) In the 1-PI scheme the projection of momenta appearing as arguments in the four-

point function on internal lines onto the Fermi surface is not well-controlled in the limit

Λ → 0, since the internal momenta are not restricted to a small shell around the Fermi

surface, but rather lie outside this shell. In this respect the Wick-ordered scheme can be

expected to be more reliable.

The different behaviour of results in the two schemes is also present and in fact even more

obvious when response functions are calculated. For example, in the Wick-ordered scheme

the flow of certain susceptibilities in the particle-hole channel, such as e.g. those relevant for

antiferromagnetic tendencies, is cut off due to the shrinking phase space for small values of

Λ [1, 18], while this is not the case in the 1-PI scheme [2, 32].

Despite the disagreement which undoubtedly exists for certain cases, we note the common

success shared by fRG methods in general, and the Wick-ordered and 1-PI scheme in partic-

ular. We recall that the driving force behind most of the recent work on the 2D-HM is the

issue of the mechanisms leading to superconductivity in High-Tc cuprates. In this respect

both schemes, and we can say all fRG schemes, offer the same natural mechanism for the ap-

pearance of superconducting correlations in the weak-coupling limit, in particular explaining

the d-wave symmetry of the order parameter. This mechanism is understood on the basis of

perturbation theory as a consequence of the interplay between particle-hole and particle-

particle contributions. Certain infinite summations in perturbation theory, such as ladder
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approximations or FLEX, demonstrate similar effects, but they cannot treat the mutual inter-

play on equal footing. Moreover, the fRG results obtained so far are only the first step of suc-

cessive improvements of approximations on the basis of a rigorous and exact starting point.

With respect to real materials it is necessary to carry the calculations over to higher values of

the bare interaction. Also, new materials which can be mapped to the Hubbard model and in

which the repulsion is weak would be helpful since they could be directly compared to weak-

coupling calculations.

We have stated at the beginning of chapter 2 that the static approximation for the four-point

function may become unreliable when the couplings become large. However, looking at par-

ticular restrictions of the RGE we see that this is not necessarily the case. For instance, if we

reduce the RHS of the RGE for the four-point function to the particle-particle channel, we

recover the effective interaction as known from the non-selfconsistent T-matrix approxima-

tion. This includes the frequency dependence, albeit a very simple one since in this case the

effective interaction depends only on total incoming momentum and frequency. Thus, we

can evaluate the one-loop diagram on the RHS, since the total incoming frequency can be

taken out of the sum over the internal frequency and momentum variable. Similarly, restrict-

ing ourselves to the direct particle-hole channel we recover the familiar non-selfconsistent

RPA. In both approximations the effective interaction diverges first at zero total frequency,

and zero frequency transfer respectively. Thus, since the frequency channels are decoupled

we can in these cases restrict the flow to the zero-frequency component to determine critical

scales without including the frequency dependence of the four-point function on the RHS.

The hope is that this carries over in some approximate way to the case when the coupling

between all three channels is included. However, this leads to a more complex frequency de-

pendence, with the four-point function truly depending on three momenta and frequencies,

also on the internal frequency over which is summed. Then, when the couplings become

large we do not know in how far the replacement of the four-point function by its static com-

ponents is reasonable, and the approximation may break down.
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Chapter 4

Self Energy and Spectral Function

In the previous chapter we have seen that the fRG yields valuable information on strong cor-

relations which appear in the vicinity of critical scales in the 2D-HM. In this chapter we turn

to the question in how far these strong correlations affect single-particle properties. We em-

ploy the Wick-ordered fRG scheme to calculate the one-particle irreducible self energy, again

focusing on the relevance of hot spots.

Single-particle properties of a many-body system are encoded in the retarded Green function

G(ω + i0+,k), which is related to the one-particle self energy via the Dyson equation

G−1(ω + i0+,k) = ω − (ε0k − µ)−<Σ(ω + i0+,k)− i=Σ(ω + i0+,k). (4.1)

To compute the self energy, we calculate the imaginary part =Σ(ω + i0+,k) for momenta on

the (non-interacting) Fermi surface from the flow of the two-point function as given in equa-

tion 1.24, and from this determine the real part<Σ(ω+ i0+,k) via a Kramers-Kronig relation.

Since we work directly on the real axis, the determination of the single-particle spectral func-

tion A(ω,k) is straightforward. In equation 1.24 we can only identify the two-point function

ΣΛ with the “true” self energy Σ in the limit Λ → 0, which means we have to integrate the

flow down to zero. We shall mostly be interested in temperatures slightly above Tc, where the

renormalised couplings are strongest, and are thus expected to be most relevant. In phys-

ical terms this means we probe the system in the non-symmetry-broken phase close to a

temperature at which binding phenomena begin to have noticeable effects on one-particle

properties.

4.1 Spectral Function and Quasi-Particle Peak

The way in which the Green function contains information on single-particle properties is

readily seen by looking at the spectral functionA(ω,k). The spectral function is given, follow-
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ing the convention used by Mahan [54], as

A(ω,k) = −2=G(ω + i0+,k)

=
−2=Σ(ω + i0+,k)[

ω − (ε0k − µ)−<Σ(ω + i0+,k)
]2 + [=Σ(ω + i0+,k)]2

(4.2)

The term quasi particle is introduced after realising that under certain conditions the spec-

tral function possesses a single, well-defined peak located at a certain energy εk. The spectral

function then has a functional form closely related to a Lorentzian, and the so-called renor-

malised dispersion εk is generally given by the condition

εk − (ε0k − µ)−<Σ(εk,k) = 0, (4.3)

provided the solution of this equation is unique. The relation of the spectral function to a

Lorentzian becomes obvious when the self energy is expanded in a Taylor series around εk:

<Σ(ω,k) ≈ <Σ(εk,k) + (ω − εk)
∂<Σ(ω′,k)

∂ω′

∣∣∣∣
ω′=εk

+
1
2
(ω − εk)2

∂2<Σ(ω′,k)
∂ω′2

∣∣∣∣
ω′=εk

(4.4)

=Σ(ω,k) ≈ =Σ(εk,k) + (ω − εk)
∂=Σ(ω′,k)

∂ω′

∣∣∣∣
ω′=εk

+
1
2
(ω − εk)2

∂2=Σ(ω′,k)
∂ω′2

∣∣∣∣
ω′=εk

(4.5)

If the corrections are small enough to justify these approximations, one typically uses <Σ in

first order and =Σ in zeroth order in (ω − εk) to obtain

G−1(ω + i0+,k) ≈ (ω − εk)

(
1− ∂<Σ(ω′,k)

∂ω′

∣∣∣∣
ω′=εk

)
− i=Σ(εk,k) (4.6)

and

A(ω,k) ≈ AQP (ω,k) = Zk
−2Zk=Σ(εk,k)

(ω − εk)2 + (Zk=Σ(εk,k))2
, (4.7)

with the field renormalisation factor

Zk :=

(
1− ∂<Σ(ω′,k)

∂ω′

∣∣∣∣
ω′=εk

)−1

.
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In this approximation the spectral function is thus approximated by a quasi-particle Lorentzian

AQP (ω,k), multiplied by a weight factor Zk. The retarded Green function has a single pole at

ω = εk + iZk=Σ(εk,k). From this a quasi-particle life time can be defined and calculated [55],

and the inverse life time (scattering rate) is given as

γk =
1
τk

≈ |Zk=Σ(εk,k)| . (4.8)

εk < 0 corresponds to a mainly hole-like excitation, εk > 0 a mainly particle-like one. The

quasi-particle dispersion can be used to define a Fermi surface for an interacting system at

finite temperature via the condition εkF
= 0, i.e.

(ε0k − µ) + <Σ(0,k) = 0 for k ∈ {kF } (4.9)

We will see that in certain cases =Σ shows a dip at ω = 0 for momenta on the Fermi sur-

face. This dip becomes more pronounced when the critical temperature is approached from

above. The approximation in 4.4 and 4.5 is then no longer justified, and the quasi-particle

picture becomes inappropriate.

We note that equation 4.6 connects the microscopic description of single-particle properties

in a many-fermion system with the elementary excitations upon which the phenomenologi-

cal Landau-Fermi-liquid theory [55] is based. In the following, if 4.6 is no longer valid we shall

speak of “non-Fermi-liquid behaviour”, or equivalently of a breakdown of the Landau-Fermi-

liquid picture.

4.2 Adjustment of the Fermi Surface

In standard perturbation theory the self energy is calculated first, and then the density is de-

termined from the resulting interacting Green function. Alternatively, the chemical potential

can be readjusted to keep the density fixed. In self-consistent treatments this happens intrin-

sically, while in non-self-consistent calculations there remains the problem of Fermi-surface

shifts mentioned in the first chapter. We avoid this problem by forcing the Fermi surface to

remain at its non-interacting location by making the shift

Σ(ω,k) 7→ Σ(ω,k)−<Σ(0,kF (k)) (4.10)
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before inserting it into equation 4.2. kF (k) is a suitable projection of k onto the Fermi surface

of the non-interacting system. Equation 4.10 can be viewed as a correction to the disper-

sion relation. This artificial constraint is only sensible as long the corrections due to <Σ are

sufficiently small. We checked that this is indeed the case for the calculations presented here.

4.3 Calculating the Self Energy at Real Frequencies

The steps which are required to calculate the self energy are analogous to the ones made for

the flow of the four-point function in chapter 2. Since we drop the frequency dependence in

the four-point function, use a momentum cutoff and neglect self energy correction on inter-

nal propagators, we can carry out internal frequency sums analytically and do a straightfor-

ward analytical continuation via k = (iωn,k) → (ω+ i0+,k) in equation 1.24. This is outlined

in more detail in appendix B. For technical reasons we split the RHS of equation 1.24 into

two contributions, which we call PPḢ and PHṖ , according to their topology as shown in

Fig. 4.1. In diagram PPḢ a “hole-like” propagator is differentiated with respect to Λ, whereas

in diagram PHṖ a “particle-like” propagator is differentiated.1

We only need to calculate the flow of the imaginary part =Σ, since we can obtain the real

part <Σ via Kramers-Kronig relations. This leads to a substantial simplification, since we can

make use of the relation = 1
x+i0+ = −π δ(x) in the integration kernel, and thus the integration

over initially four variables is reduced to a two-dimensional one. We shall mention here that

the numerical effort to solve the final flow equation is still very high, and one run takes about

a week, using a parallel algorithm on a 20-cpu Linux cluster running on AMD Athlon 2200+

cpus. This limits the amount of data we are able to obtain within a reasonable time frame,

with the required numerical accuracy.

The two diagrams lead to a RHS of the flow equation for ΣΛ given by

∂ΛΣΛ = PPḢ + 2PHṖ (4.11)

where

1 The terms “hole-like” and “particle-like” are used to account for the “directional character” of the internal lines

and are not to be taken literally. In fact, each internal line includes the description of both, the propagation of a

hole as well as that of a particle.
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Figure 4.1: The two contributions PPḢ and PHṖ to the flow of the two-point function.

=(PPḢ) =

π

(2π)4
∑
s=±1

∫
dλ̃ J(sΛ, λ̃)∫
d2qF (k,q,p)

[
ΓsΛ(k,p;q,k + p− q)2 + 3 ΓtΛ(k,p;q,k + p− q)2

]
Θ(Λ− |ξ0k+p−q|) Θ(Λ− |ξ0q|) δ(ω − ξ0q + ξ0p − ξ0k+p−q)

∣∣∣∣
p=p(sΛ,λ̃)

(4.12)

=(PHṖ ) =

π

(2π)4
∑
s=±1

∫
dλ̃ J(sΛ, λ̃)∫
d2qF (k,p,q)

[
ΓsΛ(k,q;p,k + q− p)2 + 3 ΓtΛ(k,q;p,k + q− p)2

]
Θ(Λ− |ξ0k+q−p|) Θ(Λ− |ξ0q|) δ(ω − ξ0p + ξ0q − ξ0k+q−p)

∣∣∣∣
p=p(sΛ,λ̃)

(4.13)

Here, λ̃ is the angular variable over which remains to be integrated after the delta function

due to ḊΛ(p) is evaluated. J(sΛ, λ̃) is the Jacobian of the transformation (px, py) → (ξ̃, λ̃), and

F (k,p,q) = (f(ξ0q) − f(ξ0k−p+q))(f(ξ0p) + b(ξ0q − ξ0k−p+q)), where f(x) = (e
x
T + 1)−1 and

b = (e
x
T − 1)−1 are Fermi and Bose functions, respectively. The function F (k,p,q) is symmet-

ric in p and q, in contrast to its appearance. The mapping of Γ onto V is done by projecting
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the external momentum k and the two internal momenta q and p onto the Fermi surface.

This procedure is again exact in the limit Λ → 0 and for infinitely many patches, since then

the internal momenta are restricted to a small stripe around the Fermi surface, and we take

the external momentum to be directly on the Fermi surface.

Once we have calculated the imaginary part of the self energy on the entire real axis, we ob-

tain the real part, up to a frequency-independent real constant Σ̃(k), using a Kramers–Kronig

relation [56]. We then have

<Σ(ω + i0+,k) = P

∫
dω′

π

=Σ(ω′ + i0+,k)
ω′ − ω

+ Σ̃(k), (4.14)

where P denotes the Cauchy principal value. We implicitly fix Σ̃(kF ) to keep the Fermi sur-

face fixed, instead of determining it self-consistently. In a more sophisticated, self-consistent

treatment the condition Σ̃(kF ) = 0 determines the shape of the Fermi surface [25].

4.4 Parameters

We use similar parameters as in the previous chapter and again restrict ourselves to the case

when one of the first three patch points near the zone boundary is a hot spot. The results for

van Hove filling are essentially identical to the results for δvH = 0.0068.

Here, we fix the temperature instead of the bare coupling in order to minimise and control

the influence of thermal effects. We use T = 0.05, and for each of the three cases we do three

distinct calculations:

• One without a flow in the coupling function, meaning we replace the four-point func-

tion on the RHS of equation 1.24 by U . This yields the results in second-order perturba-

tion theory in the bare coupling.

• One in which the bare coupling is adjusted such that the magnitude of the largest cou-

pling Vmax in the limit Λ → 0 is approximately 15.

• One in which the bare coupling is adjusted such that the magnitude of the largest cou-

pling Vmax in the limit Λ → 0 is approximately 150.

These choices are made to determine how large the correlations have to be to have a substan-

tial influence on one-particle properties. The values of the bare interaction are listed in table

4.1.
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δvH U (Vmax = 15) U (Vmax = 150)

0.0068 1.685 1.815

0.0586 1.68 1.8625

0.1482 1.80 2.06

Table 4.1: Values of the bare interaction U

4.5 Results

We begin with results for δvH = 0.0068 and δvH = 0.1482. We show in figure 4.2 the full fre-

quency dependence of the imaginary part of the self energy at the respective hot spots. We

have plotted the data for Vmax = 150, as well as the results in second-order perturbation the-

ory (SOPT). We observe a narrow negative peak at zero frequency in the data for Vmax = 150,

while the low-energy behaviour in SOPT is essentially Fermi-liquid-like. We note that the

negative peak in =Σ at zero frequency is much more pronounced for δvH = 0.0068, while for

δvH = 0.1482 it is smaller by a factor of about five. At higher energies the RG results merge

into the SOPT results, and we find that the strong correlations, which develop towards the

end of the flow at low energy scales, affect the one-particle spectral properties only at small

frequencies. This can be understood from a technical point of view by analysing equations

4.12 and 4.13: Due to the restricted phase space of the infrared propagators DΛ the RHS only

gives non-zero contributions for |ω| . 3Λ. At the same time, the flow of the four-point func-

tions starts to grow strongly only at cutoff values of about Λ ≈ 0.7, as was shown in figure 3.4

for T = 0.001. We thus expect sizeable deviations between SOPT and RG flow for |ω| . 2.1, in

agreement with the curves in figure 4.2. We note that smaller differences between the SOPT

and the RG flow are found already at higher energies, but they are not relevant for the low-

energy physics.

We now focus on the low-frequency region, which determines whether the system shows

Fermi-liquid behaviour or not. In figures 4.3, 4.4 and 4.5 we show the results for the three dif-

ferent situations mentioned above. The SOPT results are shown as dash-dotted, black lines,

those for Vmax = 15 as dashed, red lines, and the ones for Vmax = 150 as solid, blue lines.

Plotted are, from top to bottom, the imaginary part of the self energy, the real part of the

self energy and the resulting spectral functions, for each of the six patch points on the Fermi

surface.
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Figure 4.2: Hot spot in first patch (top) and hot spot in third patch (bottom): Imaginary part of the

self energy at the respective hot spot for Vmax = 150 (blue, solid line) and in second-order

perturbation theory (black, dashed line)
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Hot spot in first patch:

We first look at the results presented in figure 4.3, when the first patch point is a hot spot:

In second order perturbation theory the self energy shows the usual Fermi-liquid-like be-

haviour, and the spectral functions have well-defined peaks at ω = 0. The width of the spec-

tral functions is largest at the hot spot and decreases slightly towards the zone diagonal.

For Vmax = 15, a small negative hump appears at zero frequency in =Σ at the hot spot. At all

other patch points the behaviour is different from the SOPT result with respect to the width

of the quasi-particle peaks. This width is larger for points closer to the hot spot and leads

to a substantial angular dependence of quasi-particle life times, which are smaller when the

peaks are wider.

For Vmax = 150, the small hump at the hot spot has evolved into a pronounced negative peak,

while at the second patch point a small negative hump appears. On all other patch points we

observe that the quasi-particle peaks prevail, but are again wider than for Vmax = 15, leading

to even shorter life times.

When it is sufficiently strong, the peak in =Σ leads to a break-down of the Fermi-liquid pic-

ture: the real part of the self energy acquires a positive slope near ω = 0, and the formal

definition 4.8 of the quasi-particle weight yields Z > 1. Thus, the mere concept of a quasi-

particle becomes invalid. The spectral function is no longer peaked at ω = 0, but instead

shows two rather broad peaks, with a substantial dip between them, a structure reminiscent

of a pseudogap. As noted in the preceding section, equation 4.6, which is the basis for the

Fermi-liquid picture, is not valid in general, but only under certain conditions, namely if the

self energy can be expanded in a Taylor series in a large enough region around ω = 0. Clearly,

this is not the case when the above mentioned peak is present in =Σ. We will come back to

this in more detail later in this chapter.

Hot spot in second patch:

In figure 4.4 the results are shown when the second patch is a hot spot. We again observe a

negative peak in the imaginary part of the self energy at the hot spot for Vmax = 150, which

is now less pronounced, but shows up at the first as well as the second patch. Some rem-

nants of it are seen at the third patch. The resulting spectral functions on the first two patch

points do not show a distinct pseudogap feature, but rather a double-hump shape. At all
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other patch points the ordinary single-peak behaviour is seen, again with the effect of wider

quasi-particle peaks and thus shorter life times as compared to SOPT.

In light of our interest in the importance of hot spots we note that the negative peak in =Σ

is stronger on the first patch point, while the second patch point is the actual hot spot. We

interpret this as a competition between Q-transferring correlations, which have the strongest

effect on the second patch point, and a high density of states near the first patch point due to

the closeness to the van Hove point (0, π).

Hot spot in third patch:

When the chemical potential is further increased such that the third patch point becomes a

hot spot, anomalous properties in =Σ arise only for Vmax = 150, as we can see in figure 4.5.

However, we now clearly observe that the hot spot is a special point, since we find a negative

peak in =Σ only at the third patch point, leading to the double-hump spectral function. Fur-

thermore, the width of the quasi-particle peak is larger for patch points closer to the hot spot.

This feature evolves when we look at the three sets of results: In SOPT the quasi-particle peaks

are rather sharp and the angular dependence of the width is weak, with the widest peak at the

patch closest to the van Hove point (π, 0). For Vmax = 15 the situation changes. The width

of the peaks is larger in the first four patches, and the peak in the second patch is already

slightly wider than the one in the first patch. The relevance of self-energy effects due to the

flowing four-point function is thus shifted towards the hot spot with increasing renormalised

interactions.

These results agree only partially with those obtained very recently by Katanin and Kampf [4],

who computed the full frequency dependence of the self energy from the one-particle irre-

ducible version of the fRG [30], with a truncation of the exact hierarchy of flow equations at

the same order as in our calculation. For a Fermi momentum very close to a van Hove point,

they obtained a single peak in=Σ resulting in a double peak in the spectral function, in agree-

ment with our calculation. However, for Fermi momenta at some moderate distance from the

van Hove point they found a double peak in=Σ leading to a three-peak structure in the spec-

tral function, which we do not observe in our results. In both approaches, Wick-ordered as

well as one-particle irreducible fRG, the peaks in =Σ are generated by strongly enhanced ef-

fective interactions, and are thus most pronounced at temperatures close to the instability

scale Tc. The different structure of=Σ obtained from the two fRG versions can be traced back

to a different division of momentum integrals in high- and low-energy modes. In both cases
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the energy variableω is related to the excitation energies on internal lines: ω = ξ0q−ξ0p+ξ0k+p−q

in equation 4.12, and analogously ω = ξ0p− ξ0q + ξ0k+q−p in equation 4.13. In the Wick-ordered

scheme all excitation energies are at or below the cutoff, that is |ξ| ≤ Λ. As a consequence, the

flow for =ΣΛ(k, ω) with ω 6= 0 stops completely for Λ < |ω|/3. In a situation where the vertex

ΓΛ grows strongly at very small scales, Λ → 0, the imaginary part of the self energy therefore

receives the corresponding large contributions only for small frequencies, which leads nec-

essarily to a single peak with maximal height at ω = 0. By contrast, in the two-loop diagram

generating the flow of =ΣΛ in the one-particle irreducible scheme one excitation energy is at

scale Λ, the second at a scale Λ′ > Λ, and the third one above the scale Λ′, where Λ′ is the

scale of the vertex ΓΛ′
in the diagram. Note that the two-loop diagram for the self energy in

the one-particle irreducible fRG is non-local in the cutoff. The crucial point is that not all

excitation energies are bounded by the cutoff. Therefore, the flow of =ΣΛ(k, ω) does not stop

for Λ � |ω|, and the strong enhancement of ΓΛ′
for Λ′ → 0 does not necessarily enhance

=ΣΛ(k, ω) most strongly for the smallest energies. However, to obtain a double peak in =Σ

with maxima at finite frequencies, say ω±, the contribution with at least one excitation en-

ergy of order ω± must be particularly large. This is possible only if the vertex is not enhanced

most strongly for cases with all ingoing and outgoing momenta on the Fermi surface, but

rather for some interaction processes with at least one momentum away from the Fermi sur-

face. One should also keep in mind that contributions from momenta away from the Fermi

surface might be overestimated in the one-particle irreducible fRG with a momentum dis-

cretization by patches, since the dependence of the vertex ΓΛ normal to the Fermi surface is

weak only within a shell |ξ0k| < Λ in momentum space.
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Figure 4.3: Hot spot in first patch: Self energy and spectral function on different patches along the

Fermi surface for Vmax = 150 (solid, blue line) , Vmax = 15 (dashed, red line) and in second

order perturbation theory (dash-dotted, black line).
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Figure 4.4: Hot spot in second patch: Self energy and spectral function on different patches along

the Fermi surface for Vmax = 150 (solid, blue line) , Vmax = 15 (dashed, red line) and in

second order perturbation theory (dash-dotted, black line)
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Figure 4.5: Hot spot in third patch: Self energy and spectral function on different patches along the

Fermi surface for Vmax = 150 (solid, blue line) , Vmax = 15 (dashed, red line) and in second

order perturbation theory (dash-dotted, black line)
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In the following we will look in more detail at the character and evolution of non-Fermi-

liquid-like behaviour, our definition of which was the non-validity of equations 4.4 and 4.5,

and which is caused here by the appearance of a sharp peak in the imaginary part of the

self energy at zero frequency. This in turn leads to an unusual slope of the real part of the

self energy around zero frequency, which makes the notion of a quasi-particle, and thus

also the definition of a quasi-particle weight, inappropriate. To analyse this effect quanti-

tatively we look at the frequency derivative ∂ω<Σ(0,kHS) := ∂
∂ω<Σ(ω,kHS)|ω=0 as well as

=Σ(0,kHS) for δvH = 0.0586, when the hot spot momentum kHS is in the second patch. When

∂ω<Σ(0,kHS) > 0 the formal definition of the quasi-particle weight yields Z > 1, already in-

dicating the failure of the quasi-particle concept. For ∂ω<Σ(0,kHS) > 1 we obtain additional

solutions for equation 4.3 at small finite frequencies slightly above and below ω = 0, and the

pseudogap feature appears. The evolution of this scenario is illustrated in figure 4.6, where

the low-energy part of <Σ(0,kHS) is shown for different temperatures, along with the corre-

sponding spectral functions, at the hot-spot momentum kHS .
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Figure 4.6: Low-frequency plots of the real part of the self energy (left) and the corresponding spec-

tral functions (right) at the hot-spot momentum kHS for increasing temperature. (δvH =

0.0586, U = 1.8625, hot spot in second patch)

While the pseudogap is only present for temperatures in the vicinity of Tc, we note that the

condition ∂ω<Σ(0,kHS) > 0 extends to much higher temperatures. Figure 4.7 shows how

∂ω<Σ(0,kHS) and =Σ(0,kHS) at the hot spot behave as functions of temperature, along with

the results in SOPT. The sign change in ∂ω<Σ(0,kHS), and thus the change from Z > 1 to

Z < 1, occurs around T = 0.075, and for T = 0.1 the RG data starts to approach the SOPT
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value. Similarly, =Σ(0,kHS) decreases with increasing temperature, yet remains significantly

larger than the SOPT value, for instance at T = 0.1 by a factor of about two.

0.06 0.08 0.1
T

-0.5

0

0.5

1

1.5

∂ ω
ℜ

Σ(
ω

,k
H

S)| ω
=0

Quasi-particle peak

Z > 1

Pseudogap

0.06 0.08 0.1
T

0

0.02

0.04

0.06

0.08

0.1

-ℑ
Σ(

0,
k H

S)

Figure 4.7: Temperature dependence of the slope of<Σ(ω,kHS) at ω = 0 (left) and=Σ(0,kHS) (right)

at the hot-spot momentum kHS . Red, solid lines RG - black, dashed lines SOPT. (δvH =

0.0586, U = 1.8625, hot spot in second patch)

Concerning the angular dependence of ∂ω<Σ(0,kHS) which is shown in figure 4.8 we observe

that for δvH = 0.0586, U = 1.8625 and T = 0.05 there is not only the observed pseudogap

structure in the first and second patch, but we also have Z > 1 in the third patch. The above-

defined deviation from the quasi-particle picture thus extends over a significant region along

the Fermi surface. It is interesting to note that the slope of <Σ(ω,kHS) at ω = 0 has its maxi-

mum at the hot spot, while =Σ(0,kHS) is actually largest in the first patch, which is closest to

the van Hove point (π, 0) due to a larger background contribution. Had we focussed merely on

the imaginary part of the self energy, as was done in [2], the hot spot would not have emerged

as a special point.

Next we look at the evolution of the non-Fermi-liquid-like features as the interaction is var-

ied at fixed temperature, thus equalising thermal effects. In figure 4.9 we see a qualitatively

similar behaviour as in figure 4.7. For smaller values of the bare interaction, and thus smaller

renormalised couplings, ∂ω<Σ(0,kHS) approaches the SOPT curve already for U ≤ 1.6, while

=Σ(0,kHS) is more sensitive to correlations in that for U = 1.6 it remains larger by a factor of

two as compared to the SOPT result.
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Figure 4.8: Tangential dependence of the slope of <Σ(ω,k) at ω = 0 (left) and =Σ(0,kHS) (right)

along the Fermi surface. Red, solid lines RG - black, dashed lines SOPT. (δvH = 0.0586,

U = 1.8625, hot spot in second patch)
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Figure 4.9: Dependence of the slope of <Σ(ω,kHS) at ω = 0 (left) and =Σ(0,kHS) (right) at the hot-

spot momentum kHS on the bare interaction U . Red, solid lines RG - black, dashed lines

SOPT. (δvH = 0.0586, T = 0.05, hot spot in second patch)

So far we have seen that the quasi-particle picture is invalid if the condition Z < 1 is not sat-

isfied. It turns out that also for Z < 1, when the derivative ∂ω<Σ(0,k) is negative, we may still

observe deviations from the usual behaviour of the self energy. This is illustrated in figure

4.10, where we plot spectral data for δvH = 0.0586, T = 0.05 and U = 1.75 at the hot-spot
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momentum. The inset shows the low-frequency part of <Σ(0,k), which is linear in the in-

terval ω ∈ (−0.1, 0.1), yielding a value of ∂ω<Σ(0,k) ≈ 0.0622 at ω = 0. However, outside

this interval we find a different, also linear behaviour in a range |ω| ∈ (0.1, 0.2). Taking the

derivative of the real part not at ω = 0 but at ω = −0.15 yields ∂ω<Σ(−0.15,k) ≈ 0.1175. The

functions y = −0.0622ω and y = −0.1175ω can both serve as more or less reasonable approx-

imations in the low-energy region, as is seen in the inset in figure 4.10. Plugging either one

into equation 4.7 we obtain two different quasi-particle Lorentzians AQP (ω,k). Both agree

well with the central peak of the spectral function, which is not too surprising, since the value

of both functions AQP at zero frequency is identical by means of equation 4.7, and the val-

ues for the quasi-particle weights are reasonably close to each other. We plot the differences

A(ω,k)−AQP (ω,k) for both cases to extract the incoherent part of the spectral function, and

find that both are small in the low-frequency region. It is interesting to see that in the case

when the approximation<Σ(ω,k) ≈ −0.1175ω is used, the incoherent part actually exhibits a

structure very similar to the pseudogap feature discussed before, and does not appear to be

“truly incoherent” after all.
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Figure 4.10: Spectral function and two tentative quasi-particle Lorentzians, together with the respec-

tive incoherent parts A(ω,k) − AQP (ω,k), as obtained from the low-energy behaviour

of the real part of the self energy shown in the inset, at the hot-spot momentum kHS .

(δvH = 0.0586, T = 0.05, U = 1.75, hot spot in second patch)
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Origin of the Pseudogap

The dip in the spectral function, observed predominantly at and near the hot spots, is clearly

due to the strong correlations which develop when a critical temperature is approached, and

can be interpreted as the onset of pseudogap behaviour in the spectral function. We have

seen in chapter 3 that in general two types of correlations become strong near a critical scale,

namely superconducting as well as antiferromagnetic correlations, and we may ask which of

the two, if not both, are responsible for the spectral anomalies.

To answer this question we use a simple trick: We can focus on the importance of either

contribution, Cooper couplings or Q-transfer couplings, by neglecting the contribution of

the other one on the RHS of the flow equation for the two-point function. In practice this

means we conduct two additional calculations for each of the three values for δvH and the

case Vmax = 150(Λ → 0): One in which V s,t
Λ (i, j, k) is set to the bare interaction in the two-loop

diagram for the self energy, except when it is a Cooper coupling, and one in which V s,t
Λ (i, j, k)

is set to the bare interaction in the two-loop diagram for the self energy, except when it is a

Q-transfer coupling. To be precise, in the latter we include couplings where the patches j and

k can be transformed into each other by a shift of Q. This means all scattering processes with

momentum transfer parallel to Q are included, some of which have a momentum transfer

close to but not exactly Q. However, the Q-transfer couplings are largest within this set of

couplings. We can then analyse the effect of the respective correlations on the imaginary part

of the self energy in the limit Λ → 0.2

The outcome of this procedure is shown in figure 4.11, where the low-energy behaviour of the

imaginary part of the self energy is shown for δvH = 0.0068, δvH = 0.0586 and δvH = 0.1482,

for momenta located at the respective hot spots. Plotted are the results for the case when only

the flow of Cooper couplings feeds into the flow of the self energy, as well as for the case when

only the flow of Q-transfer couplings feeds into the flow of the self energy, and also the “full”

result.

For δvH = 0.0068, when the first patch point is a hot spot, we see that both channels cause

a negative peak in =Σ. We recall from the previous section that there always is an overlap

between the Cooper channel and the Q-transfer channel. The coupling V S(1, 29, 13) belongs

2 We note that this strategy is somewhat ambiguous since it depends on the size, and thus the number, of patches,

i.e. the level of discretisation. In the limit of infinitely many patches the channels we select are of measure

zero and would thus not yield any contribution at all. We would then need to select a certain finite region

in momentum space centred around these special subsets. In order to obtain a consistent and meaningful

comparison, the size of these regions would then, roughly speaking, be chosen as the size of the patches as

given in the discretisation used here.
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to this class and is one of the strongest in this parameter range. Therefore, it does not make

much sense to ask whether superconducting correlations or antiferromagnetic correlations

are responsible for the dip in the spectral function – it is actually both.

For δvH = 0.0586 the Fermi surface moves away from the van Hove scale, and we see that the

contribution of Cooper couplings to the negative peak in =Σ is reduced, while the contribu-

tion of Q-transfer couplings accounts for most of the anomalous low-energy features.

This tendency continues when looking at the case δvH = 0.1482. There, the contribution due

to Cooper couplings only causes a faint hump in=Σ, while Q-transfer couplings have a much

greater impact on the self energy, albeit less pronounced than for δvH = 0.0068.

We can relate these findings to existing theories of the pseudogap. The idea that antiferro-

magnetic correlations can cause a pseudogap in the one-particle spectral function was sub-

stantiated by Kampf and Schrieffer in 1990 in the so-called spin-bag picture [57]. Within the

subsequently developed nearly-antiferromagnetic Fermi-liquid (NAFL) concept put forward

by Monthoux, Pines, Schmalian et al. [58–66] the pseudogap behaviour is explained on the

basis of a phenomenological description of strong antiferromagnetic correlations, and the

potential importance of hot and cold parts on the Fermi surface is recognised.

Other studies have aimed at calculating one-particle spectral properties starting from more

microscopic descriptions. Early fluctuation-exchange (FLEX) calculations by Dahm et al. do

not find a pseudogap in the one-particle spectral function, but only in the density of states

[67, 68]. Later, they found traces of a pseudogap behaviour in refined FLEX calculations,

which they attribute to superconducting pair fluctuations [69]. An excellent detailed descrip-

tion of this type of approach is given in [70].

Also, in a type of RG-accelerated self-consistent FLEX scheme no signs of non-Fermi-liquid

behaviour are seen [71]. In contrast, Yanase employed a similar scheme and found clear pseu-

dogap behaviour, the details of which depend on the details of the approximation [72,73]. He

also finds that it is the superconducting fluctuations that generate the pseudogap behaviour.

It is interesting to note that there one finds a pseudogap in a non-selfconsistent treatment, or

a pseudogap plus a narrow single-particle peak at ω = 0 for a self-consistent calculation, as

seen in [4].

The pseudogap phenomenon is also found within the two-particle self-consistent (TPSC) ap-

proach, a non-perturbative method developed and extensively employed by Vilk, Tremblay

et al. [74–82]. From these results it is inferred that strong antiferromagnetic correlations are

responsible for the pseudogap. Simultaneously, Sénéchal and Tremblay observe the pseudo-

gap in cluster perturbation theory at intermediate and strong coupling [83]. There, at weaker
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bare interaction the pseudogap appears first at the hot spots, while for larger interaction a

whole region of the Fermi surface around the zone diagonal is affected.

Saikawa and Ferraz have found a single-particle pseudogap for t′ = 0 at different fillings

within the paramagnon theory [84,85], which is based on a non-selfconsistent random-phase

approximation, and have compared the results to those obtained in TPSC [85]. The param-

agnon theory is closely related to the NAFL scenario in the sense that it specifies the mi-

croscopic origin of the interaction due to strong antiferromagnetic correlations. However, it

completely neglects vertex corrections, which are included implicitly in the TPSC method.

The paramagnon theory, just like the RG calulation presented in this work, neglects order-

parameter fluctuations, and thus yields a finite transition temperature in two dimensions, in-

consistent with the Mermin-Wagner theorem. The TPSC always forces Tc to zero, which is in

accordance with Mermin-Wagner. However, the finite critical Kosterlitz-Thouless behaviour,

namely an infinite correlation length below a finite critical temperature, is not found either.

In fact, the TPSC shows the same critical behaviour as an O(N) model for N → ∞, which

explains the too-strong suppression of the transition temperature in two dimensions [76].

Recently, a strong negative peak in =Σ(0,kF ) and the resulting pseudogap was also found

within the dynamical cluster approximation (DCA) by Hushcroft et al. [86] at as well as slightly

away from half filling. At half filling the pseudogap is attributed to short-range antiferro-

magnetic correlations, while away from half filling also superconducting correlations in the

d-wave channel appear, and the cause of the pseudogap is not clear. These results are ob-

tained using values for the bare interaction of U = 5.2 and U = 6. Pseudogap behaviour has

also been observed in a strongly frustrated system treated by Parcollet et al. within a cluster

extension of dynamical mean-field theory (CDMFT) for U ≥ 8 [87]. There, the pseudogap

appears near a Mott transition, and it is not clear whether it can be attributed to any specific

kind of strong correlations, or if it is a more general property of a system near a Mott transi-

tion. These results are consistent with the work by Sénéchal and Tremblay, where the Mott

physics is attributed to short-range correlations [83]. In addition, the pseudogap also appears

within purely numerical methods. Preuss et al. found it in quantum Monte-Carlo calculations

on a finite 8× 8 system for U = 8 away from half filling, and attribute it to antiferromagnetic

correlations [88]. Despite the fact that the interactions used in these calculations may lie well

outside the range of weak interaction, they are nevertheless consistent with our findings.

In light of the above discussion there seems to be no consensus concerning the origin of the

pseudogap. At weak coupling, antiferromagnetic and superconducting fluctuations are valid

candidates, which we can confirm from our results. However, we stress that while we see a
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pseudogap in a sizeable region of parameter space, its origins need not be identical at differ-

ent points within that region. To be specific, near van Hove filling the correlations are peaked

around a point of degeneracy of Cooper and Q-transfer couplings, and we thus cannot sep-

arate their respective importance. The further we move away from van Hove filling towards

larger densities, the less influential are the correlations in the Cooper channel concerning the

spectral properties at the hot spots, while correlations in the Q-transfer channel, in particu-

lar umklapp components, remain active with respect to their influence on the one-particle

spectral properties.

4.6 Discussion

The results presented in this chapter show how strong correlations which develop close to a

critical energy scale can severely affect single-particle properties. At so-called hot spots, that

is points where the Fermi surface intersects the umklapp surface, large renormalised cou-

plings lead to the emergence of a sharp negative peak in the imaginary part of the self energy

at low frequencies, and consequently to a pseudogap feature in the single-particle spectral

function. In this case, the quasi-particle picture becomes invalid. Previous fRG calculations

focussing on the flow of the quasi-particle weight Z [19, 37, 89] did not resolve this feature,

which is not too surprising since the mere concept of defining a quasi-particle weight is in-

valid in the region of interest.

The first results for the full frequency dependence of the self energy using fRG were obtained

very recently by Katanin and Kampf, who also find a pseudogap structure due to strong corre-

lations, but for certain momenta on the Fermi surface they find a narrow quasi-particle peak

in the middle of the pseudogap, which we do not see in our calculation [4]. While we have an

understanding of this discrepancy on a technical level, there remains uncertainty concerning

the true physical behaviour.

One of the major objectives of a theory is of course to explain experimental facts. While it is

common to compare theoretical results for the 2D-HM with data for High-Tc cuprates, there

are a number of difficulties involved. Concerning one-particle spectral properties, it is tempt-

ing to compare the spectral functions we have obtained to experimentally measured angle-

resolved photoemission spectra. Doing this, we find that some data obtained by Armitage

et al. indeed shows that a pseudogap feature develops near points where the Fermi surface

intersects the Umklapp surface [90, 91]. However, this is not observed generically, but only

in a certain parameter regime. Furthermore, recent data published by Claesson et al. does
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not confirm this [92]. Unfortunately, there are substantial difficulties involved also on the ex-

perimental side, and what are claimed by some to be experimental “facts”, are argued to be

“artefacts” by others. Just as in chapter 1 it is not our goal to enter the discussion about such

issues. Rather, we recognise it as a matter of trial and error filtering out the wrong theories,

in order to eventually arrive at the “truth” – a prescription strongly recommended by P. W.

Anderson [93].

What we have presented in this chapter concerning spectral properties of a certain type of

strongly correlated system is one piece in a big puzzle, and will hopefully help understand

the physics of correlated electron systems. To what extent it describes the physics correctly

remains to be seen, but it offers a plausible physical picture which either needs to be con-

firmed or ruled out. In particular, the discrepancy between our results and the findings by

Katanin and Kampf [4] is an issue which has to resolved, since we have two distinct physical

scenarios, which are both plausible but contradict each other; even more so since they are

both obtained by fRG methods.
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Figure 4.11: Contributions of different correlations to=Σ at the respective hot spots for δvH = 0.0068,

δvH = 0.0586 and δvH = 0.1482.
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Chapter 5

Discussion and Conclusion

In this thesis we have applied the functional renormalisation group (fRG) to the two-

dimensional Hubbard model (2D-HM). We have done this by solving approximate renormal-

isation group equations for the self energy and the two-particle interaction numerically. The

purpose of these calculations was two-fold in the sense that we wanted to learn about the

reliability of the method on the one hand, and about the physics of the 2D-HM on the other.

We found that different fRG schemes agree in describing the mutual interplay and the re-

sulting competition between different correlations, but also that the results sometimes differ

quantitatively. This sharpens our perception when it comes to interpreting fRG results, and

tells us that we have to separate the indicative character from the quantitative aspects of the

results. The main line of arguments presented in previous fRG studies is confirmed, that in

the weak-coupling region particle-hole correlations feed back into the particle-particle chan-

nel, triggering strong superconducting correlations in a non-zero parameter range.

Concerning the physics of the 2D-HM we have shown new results for the single-particle spec-

tral functions for the case of a Fermi surface which is not perfectly nested and intersects the

Umklapp surface at so-called hot spots. These results were obtained from the Wick-ordered

fRG scheme, and the calculations were done directly on the real frequency axis. We found

that close to a critical temperature Tc where correlations become strong, a dip appears in

the single-particle spectral functions for momenta close to and at the hot spots, a behaviour

summarised in figures 4.3 – 4.5. Away from the van Hove scale, this is traced back to strong

correlations in the particle-hole channel and attributed to antiferromagnetic fluctuations, in

agreement with numerous previous studies. For a Fermi surface at or very close to the van

Hove scale, there exists a degeneracy in the sense that the strongest correlations are found

around a point in coupling space which is relevant for both superconductivity and antiferro-

magnetism, and we can thus not distinguish between the importance of the respective fluc-

tuations.
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In addition, we have outlined in detail the approximations which are made to be able to put

the fRG equations on the computer and solve them in a reasonable amount of time. Some

of these approximations have brute-force character, and we emphasise here that it remains

to be investigated how big the deviations from the ”true” answers actually are. The validity

is restricted to the weak-coupling regime, yet we integrate to couplings which may well lie

outside this limit. It is therefore desirable to improve on each step in the approximation to

learn more about the inner workings of numerical solutions of fRG equations. Extending the

fRG calculations presented here to higher loops, and/or incorporating the feedback of the

two-point function on the RHS of the RGE is expected to improve quality and accuracy of the

results. This can be done systematically and would at least in part account for fluctuations

which are particularly important in two dimensions. However, this is a formidable task, since

a number of rather high obstacles have to be overcome to implement these extensions in a

numerical calculation. We are confident that with the continuous development of computa-

tional resources and ongoing progress of numerical implementations of the fRG this will be

within reach in the near future.

Finally, we remark that fRG methods are not restricted to the Hubbard model or closely re-

lated problems, but are rather general concerning their applicability. For example, they have

been applied very successfully to spinless fermions in one dimension (see for example [5]

and references therein). Furthermore, they are very flexible with respect to the choice of

the parameter controlling the flow. It does not need to be a cutoff in energy or momentum

space, but may also be chosen for example as the temperature [6] or even the interaction

strength [8].
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Appendix A

Polchinski and Wieczerkowski

Equations

Here we outline the derivation of the Polchinski equation and the subsequent transformation

to the Wieczerkowski equation. We start from the generating functional for connected, C-

amputated Green functions,

Gac [η̄, η] = log
∫
dµC

[
ψ̄, ψ

]
eSI [ψ̄−η̄ , ψ+η], (A.1)

where

dµC := detC D(ψ̄, ψ) e(ψ̄|C−1|ψ). (A.2)

Note that the partition function of the non-interacting system is contained in this relation via

Z−1
0 = detC. Introducing a continuous parameter Λ such that C → CΛ we have Gac [η̄, η] →

Gac [Λ; η̄, η]:

Gac [Λ; η̄, η] = log
∫
dµCΛ

[
ψ̄, ψ

]
eSI [ψ̄−η̄ , ψ+η] (A.3)

We can eliminate the integral on the RHS using the relation [1]

∫
dµCΛ

[
ψ̄, ψ

]
eSI [ψ̄−η̄ , ψ+η] = e−(δη |CΛ|δη̄) eSI [−δζ ,δζ̄ ] e(ζ̄|η)−(η̄|ζ)

∣∣∣
ζ=ζ̄=0

= e−(δη |CΛ|δη̄) eSI [−η̄,η] (A.4)

Differentiation with respect to Λ then yields the Polchinski equation:
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∂ΛGac [Λ; η̄, η] = − (δη| ĊΛ |δη̄)Gac [Λ; η̄, η]−
(
δGac [Λ; η̄, η]

δη

∣∣∣∣ ĊΛ

∣∣∣∣δGac [Λ; η̄, η]
δη̄

)
(A.5)

Note that the initial condition reads Gac
[
Λ0; η̄, η

]
= SI [−η̄, η]. Due to the first term on the

RHS the Polchinski equation contains tadpole diagrams, which are inconvenient as stated in

chapter 1. To eliminate these tadpoles and arrive at the Wieczerkowski equation we introduce

a new functional GwΛ defined as

Gw [Λ; η̄, η] := e−(δη |DΛ|δη̄) Gac [Λ; η̄, η] (A.6)

Substituting this into equation A.5 yields the RGE for GwΛ :

∂ΛGw [Λ; η̄, η] = e−(δη |DΛ|δη̄)

(
δ
(
e(δη |DΛ|δη̄)Gw [Λ; η̄, η]

)
δη

∣∣∣∣∣ ḊΛ

∣∣∣∣∣δ
(
e(δη |DΛ|δη̄)Gw [Λ; η̄, η]

)
δη̄

)
(A.7)

In this form it is hard to see why this equation should be more convenient than the Polchinski

equation. To make the advantage explicit and to prepare for the derivation of the component

form of the RGE, we first note that the differential operators e(δη |DΛ|δη̄) act separately on each

functional Gw in the bilinear term. We make this more explicit by introducing labels 1 and 2

to the fields in each expression and write

(
δ
(
e(δη |DΛ|δη̄)Gw [Λ; η̄, η]

)
δη

∣∣∣∣∣ ḊΛ

∣∣∣∣∣δ
(
e(δη |DΛ|δη̄)Gw [Λ; η̄, η]

)
δη̄

)

=

δ
(
e(δη1 |DΛ|δη̄1)Gw [Λ; η̄1, η1]

)
δη1

∣∣∣∣∣∣ ḊΛ

∣∣∣∣∣∣
δ
(
e(δη2 |DΛ|δη̄2)Gw [Λ; η̄2, η2]

)
δη̄2

∣∣∣∣∣∣
η1=η2=η,η̄1=η̄2=η̄

(A.8)
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Next, we use the general relation
(
d
dx

)n
f(x)g(x) =

(
d
dx1

+ d
dx2

)n
f(x1)g(x2) at x1 = x2 = x to

write the differential operator e−(δη |DΛ|δη̄) in front of the bilinear term as

e−(δη |DΛ|δη̄) = e−(δη1+δη2 |DΛ|δη̄1+δη̄2) (A.9)

Inserting this into equation A.7 we get

∂ΛGw [Λ; η̄, η] =

e−(δη1 |DΛ|δη̄2)e−(δη2 |DΛ|δη̄1)
(
δGw [Λ; η̄1, η1]

δη1

∣∣∣∣ ḊΛ

∣∣∣∣δGw [Λ; η̄2, η2]
δη̄2

)∣∣∣∣
η1=η2=η,η̄1=η̄2=η̄

(A.10)

From this expression we can infer that no tadpoles appear on the RHS of the RGE, since the

differential operators (δη1 |DΛ| δη̄2) and (δη2 |DΛ| δη̄1) connect the two contributions coming

from Gw [Λ; η̄1, η1] and Gw [Λ; η̄2, η2]. This leads to the diagrammatic representation shown in

figure 1.2.

The RGE at the level of the actual Green functions is obtained by expanding Gw [Λ; η̄, η] as in

equation 1.11 on either side of equation A.10 and comparing the coefficients.
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Appendix B

Evaluation of RHS for the Two-point

Function

Here we comment on two essential steps in the evaluation of the two-loop contribution to the

flow of the two-point function, namely the spin sum and the explicit evaluation of internal

frequency sums together with the continuation to real frequencies.

"# +   2
  1   2

  3

  4

  1   2

  3

  4

  G2

S

  G4

S

  G4

S

  G4

S

  G4

S

Figure B.1: The two contributions PPḢ and PHṖ to the flow of the two-point function.

To evaluate the two-loop diagram shown in figure B.1 we start from the following representa-

tion of the four-point function, as presented in chapter 1:

−GS4 (Λ|α, β; γ, δ) = ΓsΛ(kα, kβ ; kγ , kδ) δkα+kβ−kγ−kδ

(
δσα σδ

δσβ ,σγ − δσα σγδσβ σδ

)
+ ΓtΛ(kα, kβ ; kγ , kδ) δkα+kβ−kγ−kδ

(
δσα σδ

δσβ ,σγ + δσα σγδσβ σδ

)
(B.1)

The bilinear term consists of products of the type Γs,tΛ (k1, k2; k3, k4) Γs,tΛ (k4, k3; k2, k1). Due to

time-reversal and conjugation symmetries, at zero frequencies the four-point function is real

and symmetric under exchange of incoming and outgoing momenta [1]. Within the static ap-
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proximation we thus have Γs,tΛ (k1,k2;k3,k4) = Γs,tΛ (k4,k3;k2,k1), and we can replace prod-

ucts of the type Γs,tΛ (k1,k2;k3,k4) Γs,tΛ (k4,k3;k2,k1) by Γs,tΛ (k1,k2;k3,k4) Γs,tΛ (k1,k2;k3,k4) =

Γs,tΛ (k1,k2;k3) Γs,tΛ (k1,k2;k3), where we have omitted the ”dependence” on the fourth mo-

mentum. Carrying out the sum over internal spin indices with the incoming/outgoing spin

projection σ1 held fixed, we find that cross terms of the type ΓsΛΓtΛ cancel, and only contribu-

tions of the type
(
Γs,tΛ

)2
appear. Elementary algebra finally yields

∑
σ2,σ3,σ4

[
ΓsΛ (δσ1,σ4δσ2,σ3 − δσ1,σ3δσ2,σ4) + ΓtΛ (δσ1,σ4δσ2,σ3 + δσ1,σ3δσ2,σ4)

]2
= 2 (ΓsΛ)2 + 6

(
ΓtΛ
)2
, (B.2)

where we have suppressed the momentum dependence in ΓsΛ and ΓtΛ. Next we evaluate

the frequency sums over the Matsubara frequencies ω2 and ω3 explicitly, with the incom-

ing/outgoing Matsubara frequency iω1 and momentum p1 held fixed and ω4 as well as p4

given by energy/momentum conservation. For the first term on the RHS in figure B.1 we get

∑
ω2,ω3

C(iω2,p2)C(iω3,p3)C(iω1 + iω2 − iω3,p1 + p2 − p3)

=
∑
ω3

1
iω3 − ξ0p3

∑
ω2

1
iω2 − ξ0p2

1
i(ω1 + ω2 − ω3)− ξ0p1+p2−p3

=
(
f
(
ξ0p2

)
− f

(
ξ0p1+p2−p3

)) ∑
ω3

1
iω3 − ξ0p3

1
i(ω1 − ω3) + ξ0p2

− ξ0p1+p2−p3

=

(
f
(
ξ0p2

)
− f

(
ξ0p1+p2−p3

)) (
f
(
ξ0p3

)
+ b

(
p2 − ξ0p1+p2−p3

))
iω1 + ξ0p2

− ξ0p3
− ξ0p1+p2−p3

, (B.3)

where we have used the standard techniques of evaluating frequency sums to obtain the

Fermi function f(x) =
(
e

x
T + 1

)−1
and the Bose function b(x) =

(
e

x
T − 1

)−1
[47]. The second

term in figure B.1 is evaluated analogously. The continuation to real frequencies can now be

done straightforwardly by setting iω1 → ω+ i0+. Subsequently the relation= 1
x+i0+ = −π δ(x)

is used to obtain equations 4.12 and 4.13, with the combinatorial prefactors found as de-

scribed in appendix A.
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78 BIBLIOGRAPHY

[66] J. Schmalian, D. Pines, and B. Stojković, Phys. Rev. B 60, 667 (1999).
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