
Ellipsometry study of the c-axis pseudogap in high temperature
superconductors with Zn and Ni impurities

von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat)
genehmigte Abhandlung

vorgelegt von

Alexei Pimenov

aus Shelkovo (Russland)

Hauptberichter: 
Mitberichter: 

Tag der mündlichen Prüfung:

Prof. Dr. B. Keimer
Prof. Dr. C. Bechinger

24. August 2005

MAX-PLANK-INSTITUT FÜR FESTKORPERFORSHUNG 
STUTTGART

2005  



Zusammenfassung

Die Entdeckung der Hochtemperatur-Supraleitung in der Kupratverbindung La2−x

BaxCuO4 mit Tc = 35K durch Bednorz und Müller im Jahr 1986 war eine sehr

große Überraschung. Schon im darauf folgenden Jahr wurde ihnen hierfür der

Nobelpreis verliehen. In der Folge entwickelte sich eine enorme Forschungsak-

tivität mit dem Ziel, (i) neue Verbindungen mit noch höheren kritischen Temper-

aturen herzustellen, (ii) die Materialien hinsichtlich ihrer maximalen kritischen

Ströme zu optimieren, und (iii) den Paarungsmechanismus der Hochtemperatur-

Supraleitung zu identifizieren.

Innerhalb weniger Jahre wurde in der Tat eine groe Zahl neuer Verbindun-

gen der Kuprat-HTSL entdeckt. Der heutige Rekordwert der kritischen Temper-

atur wurde bereits im Jahr 1993 erreicht mit Tc = 135K in der Verbindung

HgBa2Cu3O10+δ. Mittlerweile gibt es auch groe Fortschritte in der Herstel-

lung von Kabeln, Bändern und Drähten, die auf den Kuprat-HTSL-Materialien

basieren. Hohe kritische Ströme können hier in relativ großen Magnetfeldern

sowie bei Kühlung mit flüssigem Stickstoff erreicht werden.

Trotz riesiger Anstrengungen und signifikanter Verbesserungen der theoretis-

chen und experimentellen Techniken gibt es bis zum heutigen Tag aber noch keine

Übereinstimmung bezüglich des mikroskopischen Modells zum Paarungsmech-

anismus im supraleitenden Zustand. Im Falle der konventionellen Supraleiter

wurde eine allgemein akzeptierte Theorie bereits im Jahre 1957 durch Bardeen,

Cooper und Schrieffer entwickelt, die sogenannte BCS-Theorie. Der supraleitende

Paarungsmechanismus basiert hier auf der Elektron-Phonon-Wechselwirkung, die

zur Bildung von sogenannten Cooper-Paaren führt, deren Spin und Impuls an-

tiparallel zueinander sind. Diese Elektronenpaare unterliegen der Bose-Statistik

und können folglich in einem gemeinsamen Grundzustand kondensieren, der lang-

reichweitige Kohärenz aufweisen kann. Im Falle der Kuprat-Hochtemperatur-

Supraleiter ist die Existenz solcher Cooper-Paare ebenfalls etabliert. Die Frage
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der Wechselwirkung, die der Paarbildung zugrunde liegt, bleibt aber weiterhin un-

beantwortet. Es wurde bereits eine Vielzahl verschiedener Szenarien vorgeschla-

gen, denen entweder die Wechselwirkung mit Phononen, antiferromagnetischen

Spinfluktuationen, Ladungsdichtefluktuationen oder anderen zum Teil recht exo-

tischen Anregungen komplexer Flussphasen oder von Zuständen mit resonieren-

den Valenzfluktuationen zugrund liegen.

In letzter Zeit hat sich die Erkenntnis durchgesetzt, dass das Problem sogar

noch komplizierter ist und einer Klärung der äußerst ungewöhnlichen elektron-

ischen Eigenschaften im Normalzustand bedarf, die nicht im Sinne einer Fermi-

Flüssigkeit schwach wechselwirkender elektronischer Quasiteilchen erklärt werden

können. Der herausragende Aspekt ist hier die sogenannte Pseudo-Energielücke,

die zu einer teilweisen Unterdrückung der niederenergetischen elektronischen und

magnetischen Anregungen bereits im Normalzustand, also weit oberhalb der

supraleitenden kritischen Temperatur führt. Wiederum wurde eine Vielzahl von

Modellen zur Erklärung der Pseudo-Energielücke vorgeschlagen. Einigkeit besteht

bislang aber nur im Hinblick auf die Erkenntnis, dass ein besseres Verständnis

der ungewöhnlichen Eigenschaften des Normalzustandes unerlässlich ist, um den

Ursprung der supraleitenden Paarwechselwirkung ergründen zu können.

Eine weitere entscheidende Frage steht in engem Zusammenhang mit der

Schichtstruktur der Kuprat-Hochtemperatursupraleiter, in der die kohärente Be-

wegung der Ladungsträger auf die quasi-zweidimensionalen CuO2-Ebenen beschränkt

ist. Der Ladungstransport entlang der c-Achsenrichtung (senkrecht zu den met-

allischen und supraleitenden CuO2-Ebenen) ist inkohärent und ähnelt eher dem

eines Isolators. Es gibt in der Tat zahlreiche Spekulationen, dass diesem inkohärenten

Ladungstransport entlang der c-Achsenrichtung eine entscheidende Rolle in Zusam-

menhang mit dem Paarungsmechanismus der Hochtemperatur-Supraleitung zukommt.

Die Infrarotspektroskopie hat wichtige Informationen über die ungewöhnlichen

elektronischen Eigenschaften der Kuprat-HTSL geliefert, insbesondere bezüglich

der Energieskala und der spektralen Form der supraleitenden Energielücke, dem

Absolutwert der Dichte des supraleitenden Kondensates und der Stärke der Kop-

plung der Ladungsträger zu den verschiedenen Arten von Anregungen wie Phononen,

antiferromagnetische Spinfluktuationen, etc. Weiterhin ermöglicht sie eine direkte

Beobachtung der infrarot-aktiven Phononen und liefert damit wichtige Informa-

tionen über die strukturellen und elektronischen Eigenschaften dieser Materialien,

insbesondere im Hinblick auf die lokale Variation der internen elektrischen Felder,
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die in diesen stark anisotropen Materialien eine wichtige Rolle spielen.

Gegenstand dieser Doktorarbeit ist die Infrarot-Ellipsometrie an den Kuprat-

Hochtemperatur-Supraleitern. Die Ellipsometrie ist eine moderne spektroskopis-

che Technik, die eine direkte und besonders genaue Bestimmung der komplexen

dielektrischen Funktion verschiedenster Materialien ermöglicht. Gemessen wird

die Änderung des Polarisationszustandes des Lichts aufgrund der Reflektion an

einer Probenoberfläche. Die signifikanten Vorteile im Vergleich mit der kon-

ventionellen Reflektionstechnik sind, dass (i) Real- und Imaginärteil der dielek-

trischen Funktion direkt gemessen werden, was eine Kramers-Kronig-Transforma-

tion erübrigt, und (ii) es eine selbstnormalisierende Technik ist, die keine Ref-

erenzmessungen erfordert.

In der vorliegenden Arbeit soll die c-Achsenleitfähigkeit der Kuprat-Hochtempe-

ratur-Supraleiter im Spektralbereich des fernen und des nahen Infrarot untersucht

werden. Die Themen sind (i) die Untersuchung der sogenannten Josephson-

Plasmonen in der Dreifach-Schichtverbindung d-oder Bi2Sr2CaCu3O10−d und

den damit verbundenen Phononenanomalien und (ii) der Einfluss der Substitution

von nicht-magnetischen Zn- und von magnetischen Ni- Fehlstellen im Hinblick auf

die Pseudoenergielücke im Normalzustand und zugrunde liegenden Korrelationen.

In Kapitel 1 werden die besonderen Aspekte und Anforderungen der Technik

der Ellipsometrie vorgestellt. Die experimentellen Aufbauten werden beschrieben,

insbesondere das neue Spektrometer am Infrarotstrahlrohr der ANKA-Strahlungs-

quelle. Die deutlich höhere Brillanz der Synchrotron-Strahlquelle ermöglicht die

Durchführung von sehr genauen ellipsometrischen Messungen an vergleichsweise

kleinen Proben selbst im langwelligen Spektralbereich des fernen Infrarot. Weit-

erhin werden auch besondere Aspekte des Laborellipsometers in Stuttgart disku-

tiert, das für Messungen im Spektralbereich des mittleren und nahen Infrarot

optimiert wurde. In der Folge werden mehrere kritische experimentelle Aspekte

und insbesondere Fehlerquellen diskutiert wie z.B. (i) Diffraktionseffekte für Mes-

sungen an kleinen Proben im fernen Infrarot, (ii) die Präparation von hochwer-

tigen Probenoberflächen und (iii) die Qualität der optischen Komponenten wie

Polarisatoren, Kompensator, Kryostatfenster oder Detektor. Kapitel 1 beinhal-

tet auch die wesentlichen Gleichungen, die die Beziehung zwischen den exper-

imentell gemessenen Größen und der dielektrischen Funktion der untersuchten

Materialien herstellen. Ebenfalls kurz dargestellt werden die Grundlagen der all-

gemeinen Theorie innerhalb des Matrixformalismus der sogenannten Jones- oder
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Müller-Matrizen (1.10). Am Ende wird der Einfluss von fehlerhaften optischen

Komponenten diskutiert (1.11).

Kapitel 2 gibt einen Überblick über die allgemeinen Eigenschaften der Kuprat-

Hochtemperatur-Supraleiter. Einer Beschreibung der strukturellen Eigenschaften

folgt eine Darstellung des Phasendiagramms der elektronischen und magnetis-

chen Eigenschaften als Funktion der Ladungs-trägerkonzentration der CuO2-

Ebenen. Insbesondere werden die optischen Eigenschaften dargestellt inklusive

der ungewöhnlichen c-Achsenleitfähigkeit und der Dotierungsabhängigkeit der

Pseudoenergielücke im Normalzustand (2.4). Es wird gezeigt, dass die Pseudo-

Energielücke im sogenannten unterdotierten Bereich des Phasendiagramms do-

miniert, während sie im Bereich optimaler Dotierung verschwindet und auch im

überdotierten Bereich eine spektrale Energielücke nur im supraleitenden Zustand

auftritt. In Bezug auf den supraleitenden Zustand konzentriert sich die Diskus-

sion auf die Josephsoneffekte und die zugehörigen Phononenanomalien, die im

Sinne einer starken Variation der lokalen elektrischen Felder verstanden werden

können.

Kapitel 3 fasst die Ergebnisse der verschiedenen experimentellen Techniken

zusammen, die direkte Informationen im Hinblick auf die Pseudo-Energielücke

liefern, wie ”angle resolved photoemission” (ARPES), ”tunnelling spectroscopy”,

nukleare magnetische Resonanz (NMR), spezifische Wärme und Ramanspek-

troskopie. Es liefert auch einen Überblick über die populärsten theoretischen

Modelle zur Erklärung der Pseudo-Energielücke, wie z.B. die sogenannte Streifen-

theorie [135, 136], antiferromagnetische Spinfluktuationen [63], Theorien eines

makroskopisch inkohärenten supraleitenden Zustandes [64], Spin-Ladungs-Separa-

tion und das Szenario eines quantenkritischen Punktes [67].

Kapitel 4 gibt eine kurze Einführung in die theoretischen Modelle zur Beschrei-

bung von Fehlstellen, wie die sogenannte ”effective mass”-Methode oder die allge-

meinere ”Greens function”-Methode, die eine Berechnung der durch die Fehlstellen

induzierten Veränderung der elektronischen Zustandsdichte erlaubt. Es folgt ein

Überblick über den Einfluss von magnetischen und nicht-magnetischen Fehlstellen

auf den supraleitenden Zustand, wie er in konventionellen Supraleitern sowie

in den Kuprat-Hochtemperatur-Supraleitern beobachtet wird. Besonderes Au-

genmerk gilt dem Einfluss der Fehlstellen auf die Pseudo-Energielücke und den
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Vorhersagen der relevanten theoretischen Modelle. Im Mittelpunkt steht der Ver-

gleich zwischen dem Verhalten der supraleitenden Energielücke und der Pseudo-

Energielücke in Bezug auf die Fehlstellensubstitution. Das besondere Interesse

resultiert aus der Fragestellung, ob die Pseudo-Energielücke im Normalzustand als

Vorläufer der supraleitenden Energielücke (in einem makroskopisch inkohärenten

Zustand) anzusehen ist oder ob ihr andere, möglicherweise sogar konkurrierende

Korrelationen zugrunde liegen.

In Kapitel 5 werden die experimentellen Daten dieser Arbeit vorgestellt. Der

erste Abschnitt befasst sich mit der Probenpräparation und Charakterisierung

durch SQUID-Magnetometrie zur Bestimmung der supraleitenden Übergangstem-

peratur, EDX-Analyse zur Messung der Konzentration von Defektatomen, der

thermoelektrischen Kraft zur Bestimmung der Ladungs-trägerkonzentration und

Messungen der Myon-Spin-Rotation, die Aufschluss über den Verlauf der mag-

netischen Korrelationen liefern. Der zweite Abschnitt enthält den Hauptteil der

ellipsometrischen Daten an den reinen Proben sowie an den Ni- und Zn- sub-

stituierten (Sm,Nd)(Zn,Ni)123-Kristallen. Zuerst wird der charakteristische Ver-

lauf der Pseudo-Energielücke in den fehlstellenfreien Proben untersucht. Hier

beobachtet man eine partielle Unterdrückung der c-Achsenleitfähigkeit unter-

halb einer Frequenz ωpg, welche die charakteristische Energieskala der Pseudo-

Energielücke markiert. Es wird auch gezeigt, dass die Pseudo-Energielücke durch

anderweitige Substitutionen außerhalb der CuO2-Ebenen wie z.B. Y für Nd oder

Sm kaum beeinflusst wird. In der Folge werden die ellipsometrischen Spektren der

unterdotierten Ni-substituierten Proben im Detail vorgestellt. Aus diesen Spek-

tren lässt sich eine starkes Anwachsen der Energieskala der Pseudo-Energielücke

als Funktion der Ni-Substitution ableiten. Diese führt zu dem überraschenden

Ergebnis, dass die magnetischen Ni-Fehlstellen eine komplette Unterdrückung

der supraleitenden Übergangstemperatur und damit auch der supraleitenden En-

ergielücke verursachen, während sie einen sehr positiven Einfluss auf die Pseudo-

Energielücke haben, d.h. deren Energieskala ist nahezu verdoppelt. Diese Beobach-

tung stellt in der Tat das wichtigste experimentelle Ergebnis dieser Arbeit dar.

In der Folge wird der Verlauf dieser Ni-induzierten Verstärkung der Pseudo-

Energielücke als Funktion der Ladungsträgerkonzentration in den CuO2-Ebenen

untersucht. Es wird gezeigt, dass sich durch Ni eine Pseudo-Energielücke selbst

in optimal dotierten Kristallen induzieren lässt, wo im reinen Fall (ohne Ni-

Fehlstellen) keine Energielücke im Normalzustand beobachtet wird. Bereits für
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eine leicht überdotierte Probe jedoch schwächt sich dieser Effekt der Ni-Fehlstellen

deutlich ab in dem Sinne, dass die Ni-induzierte Pseudo-Energielücke nicht mehr

komplett ist und ihre Energieskala steil abfällt. Das Phasendiagramm der Ni-

induzierten oder Ni-verstärkten Energieskala der Pseudo-Energielücke als Funk-

tion der Dotierung kann im Sinne des Szenarios eines quantenkritischen Punktes

verstanden werden. Dieser Punkt liegt im leicht überdotierten Bereich, also in-

nerhalb des Bereiches der supraleitenden Phase in den reinen Proben.

Ein grundlegend anderes Verhalten wird für die Kristalle beobachtet, bei de-

nen die Supraleitung durch nicht-magnetische Zn-Fehlstellen unterdrückt wird.

Offensichtlich sind die Zn-Fehlstellen nicht nur schädlich für die Supraleitung,

sondern auch für die Korrelationen, die der Pseudo-Energielücke zugrunde liegen.

Während die Energieskala der Pseudo-Energielücke bei sehr kleinen Zn-Konzentra-

tionen vielleicht sogar ein wenig anwächst, nimmt sie hin zu höheren Zn-Konzentra-

tionen (die die Supraleitung bereits völlig unterdrücken) ebenfalls merklich ab.

Zusätzlich wird ein Einfüllen der Energielücke beobachtet, das im Sinne einer

lokalen (also räumlich inhomogenen) Unterdrückung der Pseudo-Energielücke

im Bereich der Zn-Fehlstellen verstanden werden kann. Im letzten Abschnitt

wird die Bedeutung unserer experimentellen Daten im Zusammenhang mit den

verschiedenen Szenarien zur Erklärung der Pseudo-Energielücke diskutiert. Ins-

besondere die große Ni-induzierte Verstärkung der Energieskala bei gleichzeitiger

vollständiger Unterdrückung der Supraleitung ist nur schwer mit dem Szenario in

Einklang zu bringen, in dem die Pseudo-Energielücke als Vorläufer der supraleit-

enden Energielücke in einer makroskopisch inkohärenten Phase interpretiert wird.

Die magnetischen Ni-Fehlstellen wie auch die nicht magnetischen Zn-Fehlstellen

innerhalb der CuO2-Ebenen führen bekanntermaßen zu starker Potentialstreu-

ung. Aufgrund der d-Wellensymmetrie des supraleitenden Ordnungsparameters

führt diese Potentialstreuung zu destruktiven Interferenzeffekten, die zwangsläufig

eine Unterdrückung des Ordnungsparameters und damit auch der zugehörigen

Energielücke zur Folge haben. Die gleichen Argumente gelten auch im Falle

einiger der alternativen Modelle der Pseudo-Energielücke, bei denen der zugehörige

komplexe Ordnungsparameter stark anfällig für solche destruktiven Interferenz-

effekte wäre wie etwa die d-Dichtewelle oder chirale Phasen. Aus unseren Daten

lässt sich vielmehr ein deutlicher Hinweis darauf ableiten, dass kurz-reich-weitigen

antiferromagnetischen Korrelationen eine entscheidende Rolle im Zusammenhang

mit der Pseudo-Energielücke zukommt. Das wichtigste Argument betrifft den
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grundlegend verschiedenen Einfluss von magnetischen Ni- und nicht-magnetischen

Zn-Fehlstellen auf die Pseudo-Energielücke. Unterstützt wird diese Vermutung

durch die mit der Myon-Spin-Rotation beobachtete Verstärkung der kurz-reich-

weitigen statischen magnetischen Korrelationen in den Ni-substituierten Proben.

Zusammenfassend lässt sich sagen, dass die vorliegende experimentelle Arbeit

einen grundlegenden Unterschied zwischen der supraleitenden Energielücke und

der Pseudo-Energielücke aufgedeckt hat, der einen gemeinsamen Ursprung beider

Phänomene unwahrscheinlich macht. Die experimentellen Daten weisen vielmehr

auf eine bedeutsame Rolle der lokalen magnetischen Korrelationen als Ursache

der Pseudo-Energielücke hin. Die letztendliche Identifizierung und Spezifizierung

der zugrunde liegenden Korrelationen bleibt zukünftigen Untersuchungen vorbe-

halten. Die Hauptaussage, die als Motivation für zukünftige Experimente di-

enen sollte, ist, dass der Einbau von Ni-Fehlstellen es ermöglicht, den supralei-

tenden Zustand vollständig zu unterdrücken, während die Pseudo-Energielücke

gleichzeitig verstärkt wird (und sogar zu einer vollständigen Energielücke wird).

Zukünftige Untersuchungen an solchen Ni-substituierten Proben mittels Tech-

niken wie ARPES und STM, die räumlich aufgelöste bzw. k-Raum-aufgelöste

Informationen liefern, erscheinen besonders viel versprechend. Auch weitere op-

tische Untersuchungen an vergleichbaren Kristallen mit anderen magnetischen

Fehlstellen wie Co oder Fe könnten weitere interessante Aufschlüsse über die

Rolle der magnetischen Korrelationen liefern.



Summary

The discovery by Bednorz and Müller of high temperature superconductivity in

the cuprate compound La2−xBaxCuO4 with Tc = 35 K in 1986 came as a big

surprise and was awarded the Nobel prize already in the following year. This

discovery initiated a tremendous amount of activities towards the search for (i)

new compounds with even higher critical temperatures, (ii) technological aspects

and optimization of material aspects like critical currents, and (iii) the identifica-

tion of the underlying interaction that gives rise to the large pairing strength. In

the following years a large number of additional HTSC compounds was discov-

ered, and the record superconductive critical temperature was raised to today’s

record of 135 K in the HgBa2Cu3O10+δ compound already back in 1993. Also,

meanwhile there has been tremendous progress in the fabrication of HTSC based

cables, tapes and wires that can carry high critical currents in relatively large

magnetic fields by using liquid nitrogen as a coolant. Despite of the tremendous

efforts and improvement in theoretical and experimental techniques to date no

consensus has been reached as to origin of the superconductive pairing mecha-

nism in the HTSC cuprates. For the conventional superconductors there exists

a well accepted theory that was developed by Bardeen, Cooper and Schrieffer in

1957, the so-called BCS theory. The superconductive pairing mechanism is based

here on the electron-phonon interaction which gives rise to the formation of so-

called Cooper pairs that have antiparallel momentum and spin. These electron

pairs obey the Bose-statistics and thus can condense in a common ground state

that exhibits long range macroscopic coherence. In the case of the cuprate HTSC

the presence of Cooper-pairs is meanwhile well established. However, one of the

important remaining questions concerns the interaction which leads to the for-

mation and the condensation of these Cooper-pairs. A vast number of different

scenarios have been predicted which are based on phonons, anti-ferromagnetic

spin-fluctuations, charge density fluctuations, and even more exotic states like

8
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the resonance valence bond state or complex flux phases. Meanwhile it has been

realized that the problem is even more complicated and starts already with the

highly unusual normal state electronic properties that cannot be accounted for

in terms of a Fermi-liquid type theory of weakly interacting electronic quasi-

particles. The most prominent feature is the so-called pseudogap which gives rise

to an incomplete suppression of the low-energy charge and spin excitations that

occurs already in the normal state, i.e. well above the superconductive critical

temperature. While a vast number of models have been proposed in order to

account for this pseudogap phenomenon, it is still the subject of ongoing debate

and controversy. General agreement has only been reached in that the under-

standing of this phenomenon and thus of the unusual normal state electronic

properties may be a prerequisite for developing a successful theory of the super-

conductive pairing mechanism. Another important question concerns the unusual

layered structure of the cuprate HTSC where the charge carriers are confined to

the CuO2 layers. Despite the apparently metallic and superconductive transport

properties along these CuO2 layer, the charge transport in the perpendicular c-

axis direction is incoherent and resembles the one of an insulator. This has raised

the question about the role of charge confinement for the mechanism of HTSC in

the cuprates.

Among the experimental techniques, infrared spectroscopy has provided valu-

able information about the unusual electronic properties of the cuprate HTSC

superconductors. In particular, it has yielded detailed information about the en-

ergy scale and the spectral shape of the superconductive energy gap, about the

magnitude of the superconductive condensate density and about the coupling of

the charge carriers to defects or various kinds of excitations like phonons, spin-

fluctuations etc. In addition, it allows one to access the infrared-active phonon

modes which provide valuable information about the structural and electronic

properties of these materials and in particular about the local-electric field effects

which appear to be rather dominant in these highly anisotropic layered materials.

This thesis reports on infrared ellipsometric studies of the dielectric proper-

ties of cuprate high temperature superconductors. Ellipsometry is an advanced

spectroscopy technique that allows one to measure directly and with high preci-

sion the complex dielectric function of a given material by analyzing the change

of the polarization state of light upon reflection on the sample. It has signif-

icant advantages with respect to conventional reflection techniques in that no
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Kramers-Kronig transformation and related extrapolation of the experimental

data to zero and infinite frequency nor reference measurements are required. The

subject of the present work are studies of the c-axis dielectric response of the

cuprate high Tc superconductors in the far- and mid-infrared spectral ranges.

The main topics are (i) the investigation of the Josephson plasma resonances in

the so-called three-layer compound Bi2Sr2CaCu3O10−d and the related phonon

anomalies which can be described in term of local electric field effects and (ii)

the influence of the substitution of non-magnetic Zn and magnetic Ni-impurities

on the normal state pseudogap in order to obtain more information about the

underlying correlations.

Chapter 1 presents details of the ellipsometry technique. It provides a descrip-

tion of the experimental setups with special emphasis on the new spectrometer

that has been installed at the synchrotron light source at the ANKA Strahlquelle

at Forschungszentrum Karlsruhe and the laboratory-based setup that has been

optimized for measurements in the mid-infrared spectral range. The much higher

brilliance of the synchrotron source enables accurate ellipsometric experiments

even on very small samples. A discussion of several critical aspects is provided

that can give rise to severe experimental errors such as (i) diffraction effects for

small samples, (ii) the preparation of a high quality sample surface, and (iii) the

quality of the optical elements in the setup like polarizers, compensator, cryostat

windows, and detector. Chapter 1 also contains the basic equations which allow

one to extract the dielectric constants from the ellipsometric data. Aspects of

the more advanced, generalized theory are briefly presented in section 1.10. This

description includes two matrix formalisms operating with so-called Jones and

Müller matrices. Finally, the influence of non-perfect components is considered

in section 1.11.

Chapter 2 provides an overview of the generic features of the HTSC. Following

a description of the common structural properties the phase diagram of the HTSC

is presented in terms of the evolution of the electronic and magnetic properties

as a function of the hole doping of the CuO2 layers. Special emphasis is given

to the infrared optical properties. The fundamentally different behavior of the

electronic transport parallel and perpendicular to the metallic CuO2 layers is

discussed and special emphasis is given to the very unusual response along the

c-axis direction where a partial gap-like suppression of the conductivity occurs

already in the normal state, the so-called pseudogap phenomenon. The doping
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dependence of the c-axis conductivity is discussed in section 2.4. It is shown that

the pseudogap persists only in the underdoped regime, while in optimally doped

and overdoped samples a spectral gap develops only in the superconductive state.

Concerning the superconductive state the discussion is focused on the Josephson

effect and related phonon anomalies which can be accounted for in the context

of a local-field-effect model.

Chapter 3 provides a summary of the different experimental observations of

the pseudogap in HTSC by means of angle resolved photoemission (ARPES),

tunnelling spectroscopy, nuclear magnetic resonance (NMR), specific heat, and

Raman spectroscopy. It also gives an account of the basic concepts of the most

popular theoretical models that have been proposed to explain the pseudogap

phenomenon. These include the stripe theory [135, 136], anti-ferromagnetic spin

fluctuations [63], precursor superconductive pairing scenario [64], spin charge

separation scenario, and quantum critical point scenario [67].

Chapter 4 contains an outline of the general theoretical approaches for mod-

elling impurities, like the so-called effective mass method or the more generic

Green function method which allows to calculate the density of states in differ-

ent systems with impurities. Following an outline of the effect of magnetic and

non-magnetic impurities on the superconductive state in conventional supercon-

ductors and cuprate HTSC, the focus is put on the issue how the normal state

pseudogap is affected by the defects. In particular, the expected differences be-

tween the various theoretical proposals are discussed. The main issue is whether

the superconductive gap and the normal state pseudogap are affected in a similar

manner by the various kinds of impurities. A very important open question that

motivated part of the present thesis work is whether the pseudogap is related to

some kind of a precursor superconductive state or rather needs to be described

in terms of different kinds of correlations which may even be competing with the

superconductive state.

In chapter 5 the main experimental results are present. The first section is

dedicated to the sample preparation and characterization by means of SQUID

magnetometry to determine the superconductive transition temperatures, EDX

analysis to measure the impurity content, thermo-electric power measurements

to determine the hole doping state and muon-spin-rotation measurements that

provide information on the evolution of the magnetic correlations upon impurity

substitution. The following section contains the main part of the ellipsometric
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data on the pure, Ni and Zn substituted (Sm,Nd)(Zn,Ni)123 crystals. First, it is

shown that in pure samples the pseudogap corresponds to a partial suppression

of the c-axis conductivity below a frequency ωpg that marks the energy scale of

the gap. It is also demonstrated that the pseudogap is not strongly affected by

substitution of Y ion with rare earth Nd or Sm. Subsequently, the spectra of

underdoped NdNi123 samples are considered in detail. These spectra establish a

dramatic enhancement of the pseudogap energy scale upon substitution of mag-

netic Ni impurities which at the same time give rise to a complete suppression of

superconductivity. This Ni induced enhancement of the pseudogap energy scale

is the major result of the present thesis work. Following up on this dramatic

effect the evolution of the Ni-enhanced pseudogap is shown as a function of the

hole content. It is shown that the Ni substitution allows one to restore a normal

state pseudogap even in optimally doped samples where it is entirely absent for

the pure case. To the contrary for a slightly overdoped crystal we find only a very

weak Ni-induced enhancement of the pseudogap correlations. The observed phase

diagram as a function of doping is suggestive of a critical point that marks the

onset of the correlations that are responsible for the pseudogap effect. Interest-

ingly, this onset is located in the overdoped regime slightly past optimum doping,

i.e. within the region of the superconductive dome. An entirely different behavior

is observed for the corresponding crystals where superconductivity is suppressed

by means of non-magnetic Zn impurities (instead of the magnetic Ni impurities).

It appears that the Zn impurities are deliterious not only for the superconductive

correlations but also for the pseudogap phenomenon, albeit superconductivity is

destroyed at a much faster rate. While the energy scale of the pseudogap ap-

pears to be slightly increased at first for samples with a very low Zn content, the

pseudogap energy scale decreases at higher Zn content. In addition, the gap ap-

parently fills in and becomes less pronounced in good agreement with a spatially

inhomogeneous scenario where the gap becomes fully suppressed in the vicinity

of the Zn impurities while it persists in the remote areas. In the last paragraph

the implications of the experimental data in the context of the various theoretical

concepts are discussed. In particular, it is outlined that the apparent Ni-induced

enhancement of the pseudogap energy scale, despite the strong suppression of su-

perconductivity cannot be reconciled with models where the pseudogap has the

same origin as the superconductive one. Within the various models of a precursor

superconductive state it is very difficult to understand that the pseudogap energy
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scale is strongly enhanced by Ni impurities which give rise to magnetic as well as

potential scattering. In particular, the d-wave nature of the SC order parameter

dictates that potential scattering gives rise to destructive interference effects and

thus to a suppression of the characteristic gap energy scale. The same arguments

apply to various alternative models that associate the pseudogap with some kind

of competing state that has a complex order parameter which is prone to destruc-

tive interference effects from potential scattering such as d-density-wave state or

chiral states. Finally, we discuss the evidence that short range AF correlations

may play an important role in the pseudogap phenomenon. The most important

argument in favor of this possibility are the drastically different response of the

normal state pseudogap to magnetic Ni and non-magnetic Zn impurities as well

as the enhancement of the short range AF correlations upon Ni substitution as

observed by muon spin rotation measurements.

In summary, the present work provides clear evidence that the pseudogap

state has a distinctively different origin than the superconductive one. Magnetic

correlations apparently are playing an important role. Nevertheless, the identifi-

cation of the underlying correlations has to await future experiments. The main

message and motivation for future experiments might be that Ni-substitution al-

lows one to fully suppress superconductivity while the pseudogap becomes even

enhanced or restored (it actually becomes a real gap). Hopefully this will moti-

vate future studies on heavily Ni doped samples by means of other spectroscopic

techniques like ARPES and STM that can provide real space and k-space re-

solved information. Furthermore, optical studies of samples with other kinds of

magnetic impurities like Co or Fe could be useful to learn more about the role of

magnetic correlations.
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Chapter 1

Ellipsometry

1.1 Basic ideas

Optical spectroscopy is a very useful and powerful method for studying electronic

and lattice vibrational properties of different kinds of materials, including crystals

and films of superconducting materials like the cuprate HTSC. One specification

of this class of techniques is ellipsometry which measures the change of the polar-

ization state of light upon grazing reflection. It overcomes two major problems

of conventional spectroscopy or reflectivity: the phase problem (in ellipsometry

the phase is measured and does not have to be calculated by Kramers-Kronig

transform) and the reference problem (ellipsometry requires relative, not abso-

lute, intensities). Paul Drude was the first to study optical properties using the

ellipsometry technique. He published the equation of ellipsometry in 1887 [1],

and his experimental results in 1888 [2]. Generally, after reflection on a sam-

ple the polarization state of the light is elliptical, fig. 1.1. The electrical field

components parallel and perpendicular (in German ”senkrecht”), Eip and Eis,

with respect to the plane of incidence change their amplitude and phases due to

reflection upon the sample. This reflection is described by two complex reflection

coefficients rp = |rp|eiδp and rs = |rs|eiδs . Ellipsometry operates with the ratio of

intensities of two electrical field components Eip/Eis = rp/rs = tan Ψei∆, where

the ellipsometric parameters Ψ and ∆ are tan Ψ = |rp|/|rs|, ∆ = δp − δs. On

the other hand, these parameters are functions of the dielectric constants of the

sample:

∆ = ∆(ε, σ, ω), (1.1)

18
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Figure 1.1: Light reflecting from a sample at angle Φ. The linearly polarized
incident light has two electric field components Eip and Eis in the directions
parallel and perpendicular to the propagation plane, respectively. The reflected
light has elliptical polarization.

Ψ = Ψ(ε, σ, ω), (1.2)

where ε is the real part of dielectric function, σ is the real part of conductivity,

and ω is the frequency.

There are two equivalent descriptions: the first one operates with real and

imaginary parts of the dielectric function ε1, ε2, the second one operates with the

real part of dielectric function and the real part of the conductivity. The ratio

between conductivity and dielectric function σ ∝ ıωε makes these descriptions

equivalent.

By solving equations 1.1, 1.2 one can obtain the values of ε and σ at a fre-

quency ω. The specific form of the equations 1.1, 1.2 depends on the sample type.

For the simplest case of an isotropic medium, the solution has the following form:

ε ∝ sin2 Φ



1 +
tan2 φ

(

cos2 2Ψ − sin2 2Ψ sin ∆
)

(1 + sin 2Ψ cos ∆)2



 , (1.3)

σ ∝ ω
sin2 φ tan2 φ sin 4Ψ sin ∆

(1 + sin 2Ψ cos ∆)2 , (1.4)

φ is the angle of incidence. The coefficients of proportionality depend on the unit



CHAPTER 1. ELLIPSOMETRY 20

system used.

1.2 Analysis of ellipsometric equations

According to equations 1.1, 1.2 the deduced values of the dielectric constants are

very sensitive to small errors in the angle of incidence. Therefore, the surface of

the sample should be rather well defined and flat, and one should use a collimated

incident beam. Significant errors in the angle of incidence ultimatively will lead

to corresponding distortions of the deduced dielectric function. The ellipsometric

parameters themselves depend on the angle of incidence φ (see fig. 1.2). In

the vicinity of the Brewster angle the ellipsometric parameters, especially ∆, are

changing most rapidly. For the ellipsometric measurements to be most sensitive

and accurate one thus needs to choose an angle of incidence that is rather close to

Brewster’s angle of the material. Brewster’s angle itself depends on the dielectric

properties of the material. For example, in the far infrared it is close to 74 degree

for Si and almost 90 degree for metallic or superconductive samples.

Figure 1.2: Ellipsometric parame-

ters versus the angle of incidence.

One can conveniently characterize the el-

liptically polarized light with the parameters

Ψ and ∆ (see fig. 1.3). Ψ is the azimuth angle

and | tan ∆| is the ratio of the ellipse axes. Ψ

varies from zero to π/4, but for ∆ there are

different conventions using either the range

−π/2 < ∆ < π/2 or else 0 < ∆ < π. Both

conventions are equivalent since ∆ is defined

as a phase difference and equations 1.3 and

1.4 only contain cos(∆). Originally Ψ and ∆

were chosen because they are the output of

the original null-ellipsometer. They also have

an important physical meaning. Ψ is sensi-

tive to the angle of incidence as compared to

Brewster’s angle (the angle of minimum in-

tensity of p polarized light), and is minimum

at this angle. Therefore, Ψ is equal to π/4 for

φ = π/2 and φ = 0. ∆ is related to absorbtion of the sample. So, for a transpar-

ent sample ∆ is either π (below Brewster angle) or 0 (above Brewster angle). In
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the case of absorbtion ∆ will be between these values and will tend to π/2 as the

absorbtion increases. The rapid decline in ∆ near the Brewster angle indicates

that the sample is not very absorptive, smoother decline corresponds to a higher

absorbtion.

Figure 1.3: Polarization ellipse of

the reflected light.

Formulas 1.1, 1.2 illustrate the simplest

way of evaluating the dielectric constants of a

sample. In general, one may have to take into

account the anisotropy of a material (as is the

case for HTSC), imperfections of optical ele-

ments in the experimental setup, diffraction

effects, depolarization of light, and nonlinear

effects. After all, one has to find a good com-

promise between the complicity of the formal-

ism, the accuracy of the measurement, and

the number of effects that need and can be

corrected for.

1.3 Basic setup for ellipsometry

The sketch of a simple ellipsometric setup is depicted in fig. 1.4. One needs to

measure the parameters Ψ and ∆ in order to calculate the dielectric constants

of a sample using the equations in 1.1, 1.2. There are several different kinds

of ellipsometric setups. The present experiments have been performed with a

so-called rotating analyzer ellipsometer where the sample is placed between two

polarizers one of which is rotated while the other one is kept fixed as sketched in

figure 1.4.

The components are a monochromatic light source, an ideal polarizer oriented

at the angle α1, the reflection at angle φ upon the ideal sample which is described

by the parameters Ψ and ∆, a second rotating ideal polarizer (the so-called ana-

lyzer) placed behind the sample, and an ideal detector that measures the intensity

depending on the analyzer angle. The detector sensitivity must be independent

from the polarization state of the incoming light. In this ideal case the relative

intensity will have the form:

J(α2)/J0 = 1 + A cos 2α2 +B sin 2α2, (1.5)
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Figure 1.4: Sketch of ellipsometric setup with rotating analyzer [8].

where A = (cos 2α1 − cos 2Ψ) / (1 − cos 2Ψ cos 2α1),

B = sin 2Ψ sin 2α1 cos ∆/ (cos 2α1 − cos 2Ψ). From the measured dependence

J(α2) the coefficients A and B can be obtained by performing a fit to the exper-

imental data in form of 1.5. Accordingly Ψ and ∆ are

tan Ψ = tanα1

√

1 − A

1 + A
, cos ∆ =

B√
1 − A2

(1.6)

Eventually, from Ψ and ∆ one obtains the dielectric constants by using equations

1.1, 1.2. The extension of ellipsometry to a wide spectral range requires either

the use of a monochromator (typically based on gratings) or a so-called Fourier-

transform interferometer. The former is most commonly used in the visible and

ultraviolet spectral range while the latter is more advantageous in the far-infrared

to mid-infrared spectral range. This thesis mostly contains the description of

infrared experiments, and, thus, the infrared ellipsometry will be described in

more detail.

To have the option to measure the temperature dependence of the dielectric

constants one also has to incorporate a cryostat into the ellipsometer. This re-

quires the use of optical windows that are located in between the polarizer and

analyzer. The properties of these windows are rather crucial since they can give

rise to rather large errors in the ellipsometric measurements.
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1.4 Requirements to an ellipsometer

1.4.1 Assumptions of ellipsometry theory

Most important are nearly perfect polarizers which allow one to apply the equa-

tions of ellipsometry. Furthermore, the infrared beam (which is invisible to the

human eye) must be well aligned so that the angle of incidence is well defined and

the beam passes through the center of both polarizers. Otherwise, the dependence

J(α2) will be different from 1.5. Namely, it will contain terms proportional to

sin 4α2, and cos 4α2 and to higher harmonics of the analyzer angle. The quality of

the alignment can be tested by studying the higher harmonics in 1.5 (see fig. 1.5).

For the case of a good alignment the average value of a4, and b4 must be zero and

frequency independent (except for the statistical noise). In the opposite case, the

fourth harmonic becomes finite which indicates that the conditions for the ap-

plication of 1.5 may not be fulfilled anymore. The second crucial assumption for

Figure 1.5: Fourier coefficients for second (a2, b2) and fourth (a4, b4
harmonics of analyzer angle α2.
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the ellipsometric equations is an ideal sample, which has a flat surface that does

not depolarize the light, and which does not give rise to diffraction effects (due

to its finite size). In a real experiment, the ”sample” actually is represented by a

combination of a compensator (phase retarder), the real sample (crystal), spatial

filters, and the cryostat windows. All these parts should not depolarize the light.

In the case of depolarization the amplitudes a2, b2 in the fit 1.5 will decrease, and

this consequently distorts the deduced dielectric constants of the sample. Third,

the formula for J(α2) does not take into account the polarization dependence of

the detector sensitivity. Therefore the detector must show the same intensity for

different polarizations of the incoming beam. Finally, all elements should have

close to linear infrared response, so that nonlinear effects can be neglected.

1.4.2 List of requirements

Summarizing these requirements one can make the following list:

1. Polarizers with extremely small imperfection

2. Non-depolarizing compensator with low absorption

3. Non-depolarizing cryostat windows

4. Polarization independent detector with linear response

5. The sample big enough to neglect the diffraction effects

6. The possibility to set the angle of incidence with good accuracy

7. The possibility to change the angle of incidence

Finally, it is necessary to remark that all items of the list should be fulfilled over

the whole frequency range used for a measurement.

1.5 Principles of Fourier-transform spectroscopy

(FTS)

As it was mentioned before, there are two possible realizations to measure fre-

quency dependence: the conventional way - monochromators, and the Fourier
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transform spectroscopy (FTS) method, which became available since the devel-

opment of computers. Before the computer age, calculation problems prevented

realization of the FTS. Nowadays, FTS is the most convenient way to quickly

measure dielectric constants over a broad frequency range. Commercial FTS se-

tups presently available from Bruker. The first Bruker setup was designed and

proposed by L. Genzel[3].

FTS is based on an interferometer with two arms, one of which is periodically

moving. A classical example is the Michelson interferometer with a moving mirror

in one of its arms (see fig. 1.6). If we introduce the coordinate of the moving

Figure 1.6: Michelson interferometer (a); basic elements of Bruker interferometer
(b). [3]

mirror z, and the intensity I(z), then the complex spectrum Fc(ω) will be given by

the Fourier transform: Fc(ω) ∝ ∫+∞
−∞ I(z) exp (−iωz) dz, where ω is the frequency

(ω = 2πν). For non-dispersive media inside interferometer, that is the general

assumption, the spectrum is a real quantity and can be given by the following

formula:

F (ω) ∝
∫ +∞

0
I(z) cos (ωz) dz. (1.7)

The realization of any interferometer does not allow to measure intensity I(z) in

infinite range. Therefore, the integral 1.7 is taken only up to final value of z. This

is the so called apodisation problem [3], which can be solved by a properly chosen

apodisation function S(z). Then the real observed spectrum is the following

integral Fobs(ω) ∝ ∫ zmax

0 Iobs(z) cos (ωz) dz, where Iobs(z) = I(z)S(z). Our Bruker

setup can be configured to use the following apodisation functions: Happ-Genzel,

Black-Harris, and Norton-Beer. The first two functions are plotted in fig 1.7 and



CHAPTER 1. ELLIPSOMETRY 26

Figure 1.7: Apodisation functions for FTS

the last one is described in detail in [4]. Classical apodisation functions are also

listed in [5].

As it was mentioned already, another problem coming from the equation 1.7

is the assumption of a non-dispersive media inside an interferometer. In practice,

the complex spectrum is not absolutely symmetric due to errors in the estimation

of the mirror position ∆z as well as due to dissipation effects, and some correction

has to be introduced before using of the equation 1.7. The complex spectrum can

be presented in the form: Fc(ω) = F (ω) exp (−iθ(ω)), where θ(ω) is the complex

phase. In this case of asymmetric interferogramm, Fc(ω) is multiplied by some

phase correction function, which makes the spectrum closer to symmetric. In a

Bruker interferometer two correction functions can be selected: Mertz correction

(multiplication to the phase with opposite sign) , and Power corrections (using

the ratio of actual real intensity and the calculated intensity).

A beam-splitter is one of the most important elements of a FTS spectrometer.

It should have very good quality and its working band should be as wide as

possible. The most widely used Bruker FTS spectrometer contains a set of several

beam-splitters each of which covers either mid-infrared or far-infrared spectral

range. The alignment of the interferometer is also a critical factor since even

small misalignment can introduce large phase errors in the interferogramm. All

these problems were mainly solved in the commercial Bruker setups, and this is

the main reason of popularity of these spectrometers.
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1.6 Ellipsometry with FTS
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Figure 1.8: Ellipsometer in Stuttgart.

An appealing idea is combining ellipsometry with FTS and thus to use the

advantages of both techniques at the same time. In practice, an ellipsometer is

attached to a FTS spectrometer, and the signal from the ellipsometer detector is

used as an input into the signal box of the FTS system. In this case the intensity

is a function of the analyzer angle and the mirror coordinate J = J(α2, z) of the

FTS. This dependence demands a high stability of the analyzer angle which is

very difficult to achieve in practice. Most of the infrared polarizers are based

on thin films which easily vibrate and thus introduce time dependent intensity

changes that affect the data analysis of the FTS system. If the vibration can not

be eliminated one can shift the vibrational noise by changing the velocity of the

moving mirror. The second problem of such setups is their complexity: the setup

contains lots of mirrors and other elements. In particular, the interferometer



CHAPTER 1. ELLIPSOMETRY 28

itself leads to a slow drift of parameters with time, which can not be neglected

in some cases. In the case of an ellipsometric measurement this puts a limit on

maximum amount of time that is available for taking a single spectrum. The

detector should be also fast enough for FTS. Normally, the amplitude of the

signal decreases as the moving mirror velocity increases. Eventually, all of these

problems can be resolved by tuning the setup and by proper selection of elements

for the ellipsometer.

1.7 Experimental setup in MPI Stuttgart

Our setup in Stuttgart consists of a Bruker-IFS113V FTS and a home-made el-

lipsometer [6]. The infrared ellipsometer including spectrometer is plotted in fig.

1.8 The ellipsometer covers the spectral range from 30 to 5000 cm−1 divided in

three bands: very far infrared (below 100 cm−1), far-infrared (100-700 cm−1) and

mid-infrared (700-5000cm−1). The Bruker contains three sources of radiation

(Q), far-infrared(mercury lamp), mid-infrared(globar), and not used near visi-

ble(tungsten). At the entry of the interferometer a variable aperture is placed to

regulate the size of the spot. The interferometer contains a rotating drum with a

set of beam-splitters (St). We use KBr beam-splitter in mid-infrared, and coated

mylar in far-infrared. The beam-splitters are made by Bruker. The ellipsometer

is attached to the Bruker by introducing several mirrors in the Bruker sample

chamber, and the light beam directly goes from the Bruker toward a polarizer.

We use FIR polarizers from Russia (General Physics Institute) and MIR polarizer

from Infraspecs [9]. These two sets of polarizers cover the spectral range from 20

to 5000 cm−1. The imperfections of the polarizers are less than 0.1% in the work-

ing frequency band. The polarizers are grid type and free-standing or evaporated

on a mylar film. The orientation of both polarizers is electronically controlled to

maintain a high angular accuracy. Our compensator units are based on Si prism

in the FIR, and SeZn ones in the MIR. Generally, a compensator (phase retarder)

enables accurate ellipsometric measurements of samples with high reflection co-

efficient, since an additional phase shift is introduced by the compensator, and,

consequently, the ellipsometric parameter ∆ is shifted away from 0. The com-

mercial cryostat from CryoVac allows to measure the temperature dependence

in the range of 4K to 450K. The cryostat windows are made of 3µm mylar for

FIR and KBr for MIR. We also use diamond windows, which are applicable in
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total spectral range but lead to significant reflection losses due to their relatively

high index of refraction. The detector is based on a standard Si bolometer from

Infrared Laboratories Inc. It is operated either at 4.5K or at 1.7K to obtain

higher sensitivity in the FIR range. The detector response needs to be polar-

ization independent. We therefore use a special detector window made either of

wedged CVD diamond (MIR) or polyethylene (FIR). The bolometer contains a

set of polyethylene(FIR) or germanium(MIR) cold filters. Some of them contain

diamond powder with different grain diameters. They are needed to prevent the

bolometer element from being heated up by unwanted infrared or visible radia-

tion. The focusing system of the bolometer is also a critical part. In the original

bolometer it is a cone that guides the light to the element. We introduced small

apertures in front of the window in order to define and reduce the beam size

so that there are no grazing-angle reflections inside the cone. Recently, we have

replaced the cone with a special focusing optics, which improved the sensitivity of

the detector and strongly reduces polarization effects. Briefly, the setup elements

are described in table 1.1.

Element Manufacturer Remarks
FT spectrometer IFS113v Bruker Optics

MIR Polarizers Infraspecs 700-5000cm−1

FIR Polarizers Gen.Phys.Inst. (Moscow) 20-700cm−1

Cryostat and temperature controller Cryovac Inc 4-450K

Bolometer Infrared Labs Inc.

Compensators MPI Stuttgart

Table 1.1: Elements of the ellipsometer in MPI Stuttgart

The setup is mostly automatic and controlled by a PC. First of all one makes

the alignment of the optics using the visible light coming from the mercury lamp,

and CaF beam-splitter which transmits in visible range and has the same optical

width as our IR beam-splitters, so that the beam goes almost the same way with

the CaF and the IR beam-splitters. Subsequently, a visible layer beam is used

for further alignment. The laser should be aligned collinear with the visible beam

from the mercury lamp. The angle of incidence can be set to 85, 80, and 75

degrees. After the sample has been mounted, one does two test measurements

with and without the cryostat lids (which also contain the windows). The coinci-

dence of the results of these two measurements means that the cryostat window

does not change the polarization state of the light and that additional or multiple
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reflection from parts of the cryostat (mostly the sample holder) have been suc-

cessfully avoided. If the window changes the polarization one can use the simple

correction which is based on the relation ρsample+window = ρwindowρsample, where

ρ = tan Ψ exp i∆. Then one has to wait until the cryostat is pumped to 10−6mbar

or 10−4Pa. This high vacuum is required to prevent formation of an ice on a sam-

ple at low temperature. Then the temperature dependence of dielectric constants

is measured. The experimental run at a fixed temperature goes automatically,

but the changing of temperatures is manual. After the temperature dependence

has been measured, one needs to do the ellipsometric calibration to determine the

exact zero positions of the analyzer and the polarizer. This calibration procedure

uses results measured at few (usually 2 or 3) polarizer angles and the fact that

the spectrum should be independent of the polarizer angle. This turns out as a

classical mathematical problem of function minimization. Eventually, one finds

corrections for the analyzer and polarizer angles. We have a special computer pro-

gramm to do all calculations related to the calibration procedure. Samples with

thickness down to 0.1mm can be measured using our setup. However, one needs

special diffraction correction procedures for such a small samples as described in

[131].

1.8 Setup in Karlsruhe. Ellipsometry with a

synchrotron source

Using a synchrotron as a source for FT ellipsometry gives a big advantage as com-

pared with conventional IR sources like a mercury lamp. The synchrotron beam is

about 100-1000 times more brilliant than the beam from conventional lamps. The

entire intensity is contained here in a nearly collimated beam which is perfectly

suited for ellipsometric measurements. Accordingly, the use of a synchrotron light

source provides significant advantages for ellipsometric measurements, in particu-

lar, towards the far-infrared spectral range and for the investigation of very small

samples. However, synchrotron radiation also has its specific features that one

has to take into account in doing ellipsometry. The most important feature is

that the radiation is polarized, see fig. 1.9. For instance, this affects the choice

of the proper polarizer angle. In this case, one has to find the compromise be-

tween the intensity and the average value of Ψ. With ordinary sources one only

needs to consider the second factor. Our second ellipsometric setup is located at
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the ANKA synchrotron at the Forschungszentrum Karsruhe. This synchrotron

has an energy 2.5GeV and the IR radiation is produced in the range from 4 to

10000cm−1. The setup consists of a Bruker IFS-66v spectrometer and a home-

built ellipsometer which is more advanced than the ellipsometer in Stuttgart [130].

This setup allows for an extended range of the angle of incidence varying from 65

to 90 degrees. The sample alignment procedure can be done here without using

a laser because the synchrotron intensity in the visible range is sufficiently high.

When measuring with a synchrotron, one has to take into account the decay of

the electron current with time which changes the beam intensity during the ex-

perimental run. We have implemented a system that monitors and reads to beam

current and thus allows for a correction of the ellipsometric spectra. In the par-

ticular case of the ANKA synchrotron the beam decays very slowly such that the

correction procedure is not required unless extremely long scans are performed.
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Figure 1.9: Polarization of synchrotron radiation at ANKA.

1.9 Sample preparation

A very important issue for accurate ellipsometric measurements concerns the

quality of the sample surface. The sample preparation is thus a very important

experimental aspect. Firstly, the size of the sample surface should be as large as
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possible. A large surface results in a higher signal and thus minimizes the ratio of

signal to noise. In addition, the large surface allows one to minimize diffraction

effects which can become rather severe at the relatively high angles of incidence

required in ellipsometry. Unfortunately, in case of the HTSC it is generally rather

difficult to obtain sufficiently large single crystals due to problems in the crystal

growth.

Given a sufficient size of the crystal the second important requirement con-

cerns the quality of the surface. It should be absolutely flat and clean in order

to apply the equations of ellipsometry. For a real crystal the surface usually is

polished by using special polishing oil with 1 µm grain size for IR ellipsometry

and 0.25 µm for visible range. The surface quality can in fact be inferred from the

ellipsometric spectra. For instance, the presence of a decomposed surface layer

is evident in most cases from the occurence of characteristic defect modes (see

discussion in chapter 2).

Finally, the correct mounting of the sample inside the cryostat is also an im-

portant issue. A good thermal contact to the sample holder is crucial for studying

reliably the temperature dependence of the optical response. The orientation of

the crystal axes of an anisotropic sample should also be in good coincidence with

the plane of incidence and the polarization state of the incoming light. No in-

tensity reflected from the sample holder should reach the detector. To solve this

problem special filters are applied. They are made from the material with high

absorption in the IR range.

1.10 Generalized ellipsometry

1.10.1 General description of dielectric constant extrac-

tion from ellipsometric parameters

There are two common ways to determine the influence of linear optical elements

on light. Using these methods one can find relations between ellipsometric param-

eters, detected intensity and parameters of a setup. These two methods are called

the Müller matrix formalism and the Jones matrix formalism. The advantage of

a matrix formalism is that each element of an ellipsometer can be considered

separately, then matrices multiplied to obtain the complete relationship between

the incoming light and the detected intensity for the cases of different samples
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and different ellipsometric configurations. The Jones matrix formalism uses 2×2

complex matrices and is the simplest of these two methods. The Müller matrix

formalism operates with 4× 4 matrices and is necessary to consider partially po-

larized light. More detailed description of the Jones and Müller formalisms can

be found in the works of Azzam and Bashara [7] and Röseler [8].

Brief Overview of Polarization States of Light

In this section, basic parameters of polarized light are considered. So, completely

polarized light can be represented as

~E = ℜ
[

~Eei~kL~r−iωt
]

(1.8)

where ~E is the complex amplitude of the light, ω is the angular frequency, ~kL is

the wave vector, t is time, and ~r is the position vector, ℜ is the real part function.

The equation (1.8) can be broken into two components as:

~E = ℜ










~Ep

~Es



 ei~kL~r−iωt







= ℜ










|~Ep|~epe
iδL

p

|~Es|~ese
iδL

s



 ei~kL~r−iωt







(1.9)

here Ep, Es, δ
L
p , δL

s are amplitudes and phases of the electric field components

that are parallel (p polarization) and perpendicular (s polarization) to the plane

of incidence, respectively. As a result, we have the electric field tracing out an

ellipse as a function of time. To connect it with ellipsometry one defines the

parameters ψ and ∆ as

tanψL =
|Ep|
|Es|

(1.10)

∆L = δL
p − δL

s (1.11)

ψL is related to the tilt of the ellipse, and ∆L is related to the eccentricity of

the ellipse, being 0 or π for circular polarization when Ep = Es. If a sample is

described in terms of ψ and ∆ defined through the reflective index then the light

reflected from the sample will have ψL = ψ and ∆L = ∆.
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Müller matrix formalism

The Müller matrix formalist is associated with the Stokes parameters of light.

For a completely polarized wave, these parameters are defined as:

s0 = |Ep|2 + |Es|2 (1.12)

s1 = |Ep|2 − |Es|2 (1.13)

s2 = 2|Ep||Es| cos ∆L (1.14)

s3 = 2|Ep||Es| sin ∆L. (1.15)

These quantities have the dimensions of intensity and represent the different

possible states of polarization of a quasi-monochromatic electromagnetic wave.

Partially polarized and unpolarized light is included by the use of Stokes pa-

rameters. The value s0 is proportional to the energy of a light wave, s1 adds

information about its polarization ellipse, while s2 and s3 contain information

about the eccentricity of the ellipse. Using Stokes parameters, we can obtain the

following relations for the ellipsometric angles:

s1/s0 = − cos 2ψL (1.16)

s2/s0 = sin 2ψL cos ∆L (1.17)

s3/s0 = sin 2ψL sin ∆L. (1.18)

Following from (1.16 - 1.18) the four Stokes parameters are not independent for

the case of completely polarized light since:

s2
0 = s2

1 + s2
2 + s2

3. (1.19)

In the opposite case of unpolarized light Ep = Es, and ∆L is a rapidly varying

random function (cos ∆L = sin ∆L = 0 on average), so that s0 > 0 and s1 =

s2 = s3 = 0. Partially polarized light can be presented as the sum of completely

polarized and unpolarized components, and we have another relation instead of

(1.19), namely:

s0 = s0u + s0p = s0u +
√

s2
1 + s2

2 + s2
3 (1.20)

where s0u, sop are the intensities of unpolarized and polarized parts of the light,

correspondingly. The degree of polarization is the ratio of the intensity of the
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polarized component to the one of the total wave:

P0l =
s0p

s0

=

√

s2
1 + s2

2 + s2
3

s0

≤ 1. (1.21)

This formula has a simple geometric interpretation. Since P0l = 0 is unpolarized

light, each point on the surface of the unit sphere, P0l = 1, represents a distinct

totally polarized state. Excluding the origin, a point inside the unit sphere,

0 < P0l < 1 represents a partially polarized wave. The equality holding for the

case of totally polarized light, where equations (1.16 - 1.18) are valid.

The transformations of the Stokes parameters are carried out by the 4x4

Müller matrix. The processing of the light wave by the optical system is calculable

from the premultiplication of an incident Stokes vector by the system of Müller

matrix to produce the Stokes vector of the outgoing wave. Note that the elements

of the Müller matrix are real. So we have:

~Se = M~Si (1.22)

where M is the Müller matrix, and Se and Si are the Stokes vectors of the final

and initial polarization states, respectively. These vectors are of the form:

~S =

















s0

s1

s2

s3

















. (1.23)

The important property of the Müller matrix is that one can compute the matrix

of a cascaded optical system by multiplication

M = MNMN−1MN−2 . . .M1 =
N
∏

i=1

Mi. (1.24)

This allows one to calculate an intensity at a detector as the final result of all

multiplications of an initial Stokes vector to Müller matrices of each optical ele-

ment of the system. The necessary matrices are as follows: the Müller matrix for
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ideal polarizer with orientation α:

M =
1

2

















1 cos 2α sin 2α 0

cos 2α cos2 2α sin 2α cos 2α 0

sin 2α sin 2α cos 2α sin2 2α 0

0 0 0 0

















(1.25)

the retarder with retardation δ:

M =

















1 0 0 0

0 1 0 0

0 0 cos δ sin δ

0 0 − sin δ cos δ

















(1.26)

the reflecting surface with the ellipsometric parameters ψ, ∆ and the reflection

coefficients rx and ry:

M =
|rx|2 + |ry|2

2

















1 − cos 2ψ 0 0

− cos 2ψ 1 0 0

0 0 sin 2ψ cos ∆ sin 2ψ sin ∆

0 0 − sin 2ψ sin ∆ sin 2ψ cos ∆

















(1.27)

the partial linear polarizer with the maximum and minimum transmittances τM

and τm:

M =
1

2

















τM + τm τM − τm 0 0

τM − τm τM + τm 0 0

0 0 2
√
τMτm 0

0 0 0 2
√
τMτm

















. (1.28)

The matrix (1.28) is similar to (1.27) with ellipsometric parameters ψ = ∆ = 0.

Now we consider the transformations of Stokes vector and Müller matrix under

rotation of a Cartesian coordinate system. Let ~S ′ and M′ be the Stokes vector

and Müller matrix in the system having been rotated to the angle α, and ~S and

M represent these quantities in the original system. Then the transformation

laws from M to M′ and from ~S to ~S ′ are follows:

~S ′ = R(α)~S (1.29)

M′ = R(α)MR(−α) (1.30)
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where R is the rotator matrix given by

R(α) =

















1 0 0 0

0 cos 2α sin 2α 0

0 − sin 2α cos 2α 0

0 0 0 1

















(1.31)

Thus, using Müller matrices, one obtains the Stokes vector for the light passing

through a polarizer, bouncing off the sample, passing through an analyzer and

finally incidenting on the detector ~Sd as:

~Sd = MAMSMRMP

















I0

0

0

0

















(1.32)

here I0 is the intensity of the beam in front of a polarizer. The element Sd0 is

the intensity in front of the detector Id. Looking at the representations of Müller

matrices for the work elements of the device, one can conclude that the ratio

of intensities Id/I0 is a function of the analyzer angle, the polarizer angle, the

angle of incidence, and the ellipsometric parameters ψ and ∆ of a sample. These

conclusions are also valid for the remaining parameters of the Stokes vector s1,

s2, s3. Since characteristics of the analyzer and the polarizer are known, one

can obtain the values of ψ and ∆, and afterwards, the dielectric function of

the sample. The specific realization and accuracy depends on the approach and

Müller matrices used for the description of known elements of the optical system.

Jones matrix formalism

We consider the propagation of a uniform monochromatic plane wave ~E (x, y, z, t) =
~E (x, y, t) eikz. The electric field of this wave can be represented as a 2× 1 vector,

the so-called Jones vector:

~E =





Ex

Ey



 . (1.33)

For ellipsometry it is convenient to direct the axes x and y along p and s po-

larizations respectively, then Ex = Ep and Ey = Es. From this time dependent

2 × 1 Cartesian Jones vector the 2 × 2 coherency matrix can be constructed by
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the direct multiplication of ~E to its Hermitian adjoint1:

J = 〈~E(t) × ~E†(t)〉 =





〈ExE∗
x〉 〈ExE∗

y 〉
〈EyE∗

x〉 〈EyE∗
y 〉



 . (1.34)

The brackets 〈· · ·〉 denote the time averaging. Eventually, we have obtained

2× 2 time independent coherence matrix, which is also called Jones matrix. The

elements Jxx, Jyy present the intensities of the x and y wave components, and

total intensity can be calculated as the trace of this matrix. For a monochromatic

wave, products E∗ appear to be time independent, and the Jones matrix assumes

the form:

J =





a2
x axaye

i∆

ayaxe
−i∆ a2

y



 (1.35)

where ax = |Ex|, ay = |Ey| are the magnitudes of the wave components, ∆ = δx−δy
is the ellipsometric parameter of the wave. By virtue of the definition of Stokes

parameters (see formulae 1.12-1.12 on the page 34), they can be presented as

functions of Jones matrix elements and vice versa:

s0 = a2
x + a2

y = Jxx + Jyy (1.36)

s1 = a2
x − a2

y = Jxx − Jyy (1.37)

s2 = 2axay cos ∆ = Jxy + Jyx (1.38)

s3 = 2axay sin ∆ = −i (Jxy − Jyx) (1.39)

Jxx =
1

2
(s0 + s1) (1.40)

Jyy =
1

2
(s0 − s1) (1.41)

Jxy =
1

2
(s2 + is3) (1.42)

Jyx =
1

2
(s2 − is3) . (1.43)

1The Hermitian adjoint is defined as complex conjugate of transpose of the matrix.
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The relations between Stokes vector and Jones matrix elements can be rewritten

in the matrix form:

















s0

s1

s2

s3

















=

















1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0

































Jxx

Jxy

Jyx

Jyy

















. (1.44)

Coordinate transformations that transform Jones vector with the transforming

matrix R change the Jones matrix J according to the following law:

J′ = RJR†. (1.45)

Note, that under unitary transformations the determinant and the trace of a

Jones matrix remain invariant.

Let us assume that in front of a linear optical element, we have the Jones

vector ~E , and ~E ′ on the output of the element. Due to linearity, ~E ′ and ~E are

coupled by a linear transformation which is denoted as a matrix T. Then, by

virtue of (1.33), one has obtained the Jones matrix transformation caused by this

optical element:

J′ = TJT†. (1.46)

The matrix T is called the Jones matrix of the element, and can be applied for

both transformations: of Jones vectors and of Jones matrices. The relation (1.46)

can by easily extended to a cascade of consistent linear elements, and the resulting

Jones matrix will be the product of Jones matrices of all elements composing the

device. Jones matrices for devices used in the ellipsometry have been calculated

and are known. So, a linear polarizer oriented at the angle α has Jones matrix:

T(α) =





cos2 α sinα cosα

sinα cosα sin2 α



 . (1.47)

A retarder with the azimuth α and relative retardation δ:

T (α, δ) =





cos δ
2

+ i cos 2α sin δ
2

i sin 2α sin δ
2

i sin 2α sin δ
2

cos δ
2
− i cos 2α sin δ

2



 (1.48)

A reflecting surface with refraction coefficients rpe
iδp and rse

iδs (rp, rs, δp, δs ∈ ℜ
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to be responsible the amplitude and phase changes.):

T =





rpe
iδp 0

0 rse
iδs



 (1.49)

Now apply the Jones matrices formalism described above to the ellipsometry

device the scheme of which is depicted in Fig. 1.4 (see page 22). Let ~E be the

electric field of the wave in front of the polarizer. Further, the wave reflects on

the sample and comes through the analyzer, and the field ~E ′ in front of a detector

can be presented according to the relation (1.46) as

~E ′ = TATSTRTP
~E (1.50)

where TA, TS, TR, TP represent the Jones matrices of the analyzer, the reflecting

surface, the retarder, and the polarizer respectively. The relation (1.50) can be

also presented as the evolution of the Jones matrix:

J′ = TATSTRTPJT†
AT†

ST
†
RT†

P (1.51)

where J′ and J are the coherency matrices of the light on the detector and on the

polarizer correspondingly. To calculate the intensity on the detector, one should

take the trace of J ′ or calculate |E ′|2 using (1.50). As the result, we will have

an intensity depending on the analyzer angle that makes possible to calculate

reflective coefficients of the material the sample is made of, and afterwards the

dielectric function of this material at the frequency of the incident wave.

1.10.2 Conclusions and summary

As it is detailed above, to calculate a dielectric function of a material one should

perform the following steps:

1. To choose a mathematical model to describe wave propagation.

2. To choose proper models to describe a polarizer, an analyzer, a retarder, a

detector and, probably, other additional elements of ellipsometric device.

3. To choose a correct model to describe a sample structure and a reflection

process correctly.
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4. To make the choice between Jones and Müller matrices.

5. Using Jones or Müller matrix, to obtain the equations coupling the ellipso-

metric parameters of detected signal with dielectric constant of the sample.

6. Solving the equations, to obtain a desirable dielectric constant with error

bars.

To describe an electromagnetic wave, one can use the Jones vector, coherency

matrix, or Stokes parameters of the light. The Jones vector provides the basic

framework within which one can adequately describe the propagation of totally-

polarized quasi-monochromatic light through non-depolarizing optical systems.

However, with partially polarized light the statistical description is required, be-

cause of the stochastic nature of the time variation of the field components. In

this case, the Stokes vector and coherency matrix offer two equivalent alternative

representations, and the choice of specific model is the preference of an experi-

menter and often results from additional considerations. Note, that this choice

of light description also predetermines the formalism in the item 4.

The modern optical elements are close enough to ideal. Nevertheless, taking

into account their real properties can reduce the errors in final dielectric constant

if the main part of these errors is caused by an imperfection of some specific el-

ement. In the opposite case, if there is another source of most substantial errors

the application of special formalism dealing with imperfections is not necessary,

since it does not considerably improve the accuracy of an experiment. A conve-

nient way of handling a real component with a small imperfection is to replace it

by a combination of the two elements: its ideal counterpart and the imperfection

plate. Such considerations produce the Jones and Müller matrices for imperfect

elements, and further description is similar to the ideal case. The second im-

portant thing associated with optical elements is their linearity. They should be

very close to linear, because, overwise, the Matrix formalism becomes inapplica-

ble, and it makes the problem of dielectric constant determination very complex.

Nowadays, ellipsometry is exclusively based on linear formulae.

To select a correct model of the sample structure requires the additional con-

siderations that can be obtained by other techniques. So, for the newest materials

the structure of which is not studied very well, the selection of a correct model is a

very difficult task. In this case, one should assume some model based on personal

intuition and experience, that makes reliability of results sufficiently doubtful and
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questionable. These results and assumptions have to be confirmed. The conven-

tional models are the isotropic reflecting surface described by Fresnel formula,

an anisotropic reflection surface, a plane thin plate and others. In general, the

problem of reflection on a sample can be described in the frame of classical elec-

trodynamics on the base of Maxwell’s equations. This method allows to express

the ellipsometric parameters of the sample through its dielectric properties.

It was mentioned above, that Jones vectors completely describe totally po-

larized light. Therefore, the use of Jones matrices is more appropriate and rea-

sonable for this case since all calculations are presently performed by computers,

and 2× 2 matrices operations generate lesser rounding-off errors than 4× 4 ones.

Furthermore, only two parameters of Stokes vectors and coherency matrix appear

to be independent for totally polarized light that makes light description by them

oversaturated. If the description of partially polarized light is required, one can

use Müller matrices with Stokes vector, or Jones matrices with coherency matrix.

These methods are equivalent to each other, and the specific choice comes from

additional critera associated with the specific realization of an experiment.

The items (5), (6) summarize results achieved in previous items and present

themselves exclusively as the mathematical problem which can be sufficiently easy

solved by methods of linear algebra operates with Jones or Müller matrices. As

the result, the real and imaginary part of the dielectric constant of material will

be obtained at the frequency of incident light. Errors of this determination can be

distinguished to randomized statistical errors that can be reduced by increasing

the number of measurements, and model and systematical errors that can not be

reduced without a perfection of mathematical model or characteristic of optical

elements. The detailed analysis of errors depends on the specific situation and

will be considered below for some particular cases.

The last remark I want to mention here is about another condition under

which the matrix formalisms can be applied. The restrictions of these methods

coincides with limitations of geometry optics that are well known, namely: the

beam must be ideally collimated (the beam width much larger than the diffraction

length), and the sizes of optical elements must be also much larger than the

diffraction length. Furthermore, the media must be homogeneous without spatial

and frequency dispersions. If these conditions are not satisfied, one should solve

the wave equation for each particular case. For very small samples one should also

take into account diffraction coming from wave optics. Under small diffraction
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it is possible to introduce first order corrections to the Müller or Jones matrix

formalism.

1.11 Ellipsometry with imperfect components

1.12 Leak of polarizers and depolarization of com-

pensators

1.12.1 Polarizer imperfection

A non-ideal polarizer has non-zero transmissions in both straight and perpendic-

ular directions. This imperfection can be characterized by the ratio of minimum

and maximum transmissions:

χ =
Tmin

Tmax

(1.52)

Using χ coefficient in the matrix formalism is the first approximation on the

way to describe a real polarizer. It also possible to introduce the coefficient

that response for a phase shift between the two components passed through a

polarizer. One can also describe theoretically the heterogeneity of a polarizer

structure etc. However, in practice we have always a question how to measure

all this coefficients. This limits the number of coefficient that can be introduced.

Therefore, in most number of cases one has only one χ coefficient to describe

the unperfect polarizer. Sometimes, the phase shift coefficient is also applied.

This means that all other effect should be much less pronounced with respect to

polarizer leak, and this requires the polarizer must be close enough to ideal. For

modern polarizers this condition is generally satisfied.

1.12.2 Depolarization of compensator

Depolarization effect appears mostly due to light scattering and multiply re-

flections in an compensator and its heterogeneity. The first approximation in

description of these effects is the using the depolarization coefficient:

D = ∆P, (1.53)
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where ∆P is the change of the polarization degree produced by a compensator.

This coefficient can be measured quite easily, however it does not describe the de-

polarization process in details, therefore it can be used just for estimation of this

effect. General theory of depolarization is quite complex, and includes so-called

depolarization matrix. If the compensator is characterized this way, the complex

3 × 3 matrix must be introduced, and there are no easy ways to measure all

elements of this matrix, that limits its application in practice. If depolarization

is small that we can virtually broke the compensator to ideal compensator and

the virtual element that isotropically depolarizes the light. Then, the depolar-

ization can be described in terms of D coefficient. Even in this simple case we

have 2 compensator parameters D, and retardation δ. Fortunately, they can be

calculated with ellipsometry since it has eventually leads to two equations which

describes the change of polarization state. Note also, that depolarization can be

only described with Müller matrix formalism.

1.12.3 Müller matrix theory with imperfections

Definition of matrices

Consider the following system of optical elements: the incoming light with degree

of polarization Ps and its polarization state (ψs, δs); the polarizer with fixed angle

αp, transmissions Ap, ap and its imperfection χp = ap/Ap; the sample surface

with parameters Ψ and ∆ and reflectivity As; the compensator with retardation

δ, transmission Ac and depolarization D; and the analyzer with transmissions

Aa, aa imperfection χa = aa/Aa. Now, trace out the Müller matrices for these

elements. So, the Müller matrix for rotator to the angle α has the form:

Mrot =

















1 0 0 0

0 cos(2α) sin(2α) 0

0 − sin(2α) cos(2α) 0

0 0 0 1

















(1.54)
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The Müller matrix for partial polarizer with maximum and minimum transmis-

sions A and a, and oriented at the angle α:

Mpar =
1

2

















A+ a A− a 0 0

A− a A+ a 0 0

0 0 2
√
Aa 0

0 0 0 2
√
Aa

















(1.55)

Thus, the total matrix for polarizer is Mp = Mrot(αp)Mpar(ap, Ap)Mrot(−αp)

and the similar matrix for the analyzer, with substituted Ap ⇐⇒ Aa, ap ⇐⇒
aa, αp ⇐⇒ αa. The retarder unit is virtually broken to ideal retarder with

retardation δ and to depolarizing element with depolarization D. Denote the

degree of polarization after compensator as Pc = 1 − D. The matrix for ideal

retarder has a form:

Mret =

















1 0 0 0

0 1 0 0

0 0 cos δ sin δ

0 0 − sin δ cos δ

















, (1.56)

and the matrix of virtual depolarizing element:

MD =

















1 0 0 0

0 Pc 0 0

0 0 Pc 0

0 0 0 Pc

















. (1.57)

And the Müller matrix for the sample surface has the following form:

Msam =
1

2

(

r2
x + r2

y

)

















1 − cos(2Ψ) 0 0

− cos(2Ψ) 1 0 0

0 0 sin(2Ψ) cos ∆ sin(2Ψ) sin ∆

0 0 − sin(2Ψ) sin ∆ − sin(2Ψ) cos ∆

















(1.58)
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Evaluation of intensity on the detector

Consider the evolution of the Stokes vector using the Müller matrices (1.54, 1.55,

1.56, 1.57, 1.58). The incoming light is generally characterized by the following

Stokes vector:

~S0 = s0

















1 − Ps

0

0

0

















+ s0Ps

















1

− cos(2ψs)

sin(2ψs) cos ∆s

− sin(2ψs) cos ∆s

















(1.59)

Then after polarizer we will have the vector ~S1 = Mpola × ~S0, where Mpola =

Mrot(αp)Mpar(Ap, ap)Mrot(−α). Then, after retarder we have ~S2 = MD×Mret×
~S1. Then, after the light has reflected upon the sample, its Stokes vector assumes

the form ~S3 = Msam × ~S2. Further, multiplying to the analyzer matrix Mana =

Mrot(αa)×Mpar(Aa, aa)×Mrot(−αa), we obtain the Stokes vector characterizing

the light on the detector. The next step is to extract the intensity of the wave

as the first element of the Stokes vector. All these bulky calculations were done

with Mathematica 4.1 Software, and eventually the following expression for the

intensity has been obtained:

J = J0 (A+B cos(2αa) + C sin(2αa)) , (1.60)

where J0 = 1
4
ApolaAretAana

√

r2
x + r2

y is the general pre-factor depending on the

transmissions Apol, Aret, Aana, reflection of a sample Asam, and the incident light

intensity s0. Coefficient A, B, C are dependent on polarizer angle, imperfections

of polarizer and analyzer, depolarization and retardation of the compensator, and

Ψ and ∆ of the sample. Let us compare the expression (1.60) with the one for

ideal case (1.5). Generally, we have the same expression if we take out the factor

A from (1.60). The difference is that A, B and C are dependent on more number

of parameters, namely, there are three additional parameters χa, χp and D. Since

the values χa, χp and D supposed to be quite small, it was discussed above, we

can take into account only first order terms.
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The structure of the free term A parameter.

The A term can be presented as the following sum:

A = L(a0) + L(aP0)
√
χpPs + L(aD)D + L(aPa)χa + L(aPp)χp, (1.61)

where

L(a0) = 1 − cos(2Ψ) cos(2αp) + Ps

[

cos 2Ψ cos2(2αp) cos(2ψs)−
− cos ∆s sin(2αp) sin(2ψs) −
− cos(2αp) cos(2ψs) +

+ cos(2αp) cos(2Ψ) cos ∆s sin(2αp) sin(2ψs)] , (1.62)

L(aD) = cos(2Ψ) cos(2αp) [1 − (cos(2αp) cos(2ψs) + cos ∆s sin(2αp) sin(2ψs))Ps] ,

(1.63)

L(aPa) = 1 − cos(2Ψ) cos(2αp) (1.64)

L(aP0) = 2 cos(2Ψ) sin(2αp) (cos(2ψs) sin(2αp) − cos(2αp) cos ∆s sin(2ψs))(1.65)

L(aPp) = 1 + cos(2Ψ) cos(2αp) (1.66)

The structure of B cos term parameter

This coefficient can also be presented the same way:

B = L(b0) +DL(bD) + Ps

√
χpL(bP0) + χaL(bPa) + χpL(bPb). (1.67)

here

L(b0) = cos(2αp) − cos(2Ψ) + Ps [cos(2Ψ) cos(2αp) cos(2ψs)+

+ cos ∆s sin(2αp) sin(2ψs) cos(2Ψ) − cos2(2αp) cos(2ψs) − (1.68)

− cos(2αp) sin(2αp) cos ∆s sin(2ψs)] ,

L(bD) = cos(2αp) (−1 + Ps (cos(2αp) cos(2ψs) + cos ∆s sin(2αp) sin(2ψs))) ,

(1.69)

L(bP0) = 2 sin(2αp) (cos(2αp) cos ∆s sin(2ψs) − cos(2ψs) sin(2αp)) (1.70)

L(bPa) = cos(2Ψ) − cos(2αp) (1.71)
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L(bPp) = − (cos(2Ψ) − cos(2αp)) (1.72)

The structure of C sin term

General structure is the same:

C = L(c0) +DL(cD) + Ps

√
χpL(cP0) + L(cPa)χa + L(cPp)χp (1.73)

the structure of L coefficients is follows:

L(c0) = sin(2Ψ) sin(2αp) [cos δ cos ∆ − sin δ sin ∆−
−Ps cos δ cos ∆ (cos(2αp) cos(2ψs) + cos ∆s sin(2αp) sin(2ψs)) + (1.74)

+ Ps sin δ sin ∆ (cos(2αp) cos(2ψs) + cos ∆s sin(2αp) sin(2ψs))]

L(cD) = cos(δ + ∆) sin(2Ψ) sin(2αp) (−1 + Ps cos(2αp) cos(2ψs)+

+ Ps cos ∆s sin(2αp) sin(2ψs)) (1.75)

L(cP0) = 2 sin(2Ψ) cos ∆s sin(δ + ∆) sin(2ψs) + 2 sin(2Ψ) cos(δ + ∆) cos(2αp) ×
× (cos(2ψs) sin(2αp) − cos(2αp) cos(∆s) sin(2ψs)) (1.76)

L(cPa) = − cos(δ + ∆) sin(2Ψ) sin(2αp) (1.77)

L(cPp) = − cos(δ + ∆) sin(2Ψ) sin(2αp) (1.78)

Analysis of term structure

The A, B and C terms have the similar structures expressed by formulae (1.61),

(1.67), (1.73), i.e. there is a free term independent on an imperfection coefficient,

there is also the term proportional to the square root of polarizer imperfection χp

times to polarization degree of the source Ps , the next term is proportional to

depolarization of a compensator D, and the last two terms are proportional to po-

larizer and analyzer imperfections χp and χa correspondingly. If any term is much

less the other terms, it can be excluded from consideration. So if Ps
√
χp ≪ χp,

the term proportional to Ps
√
χp can be neglected, and we can exclude polarization

of the source in that way. The condition can be rewritten in the form:

Ps ≪
√
χp (1.79)

Thus, if the incoming light is depolarized enough to satisfy 1.79, one can leave

only terms proportional to χa, χp. In the other case, if the degree of polarization
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of incoming light is high, one can leave only the term proportional to
√
χp. Fur-

thermore, if the imperfections χp and χa are in the same order of magnitude, the

parameter χa is completely excluded from the consideration.

The second important conclusion, that follows from formulae (1.61), (1.67),

(1.73), is that the effects coming from depolarization can be considered indepen-

dently on the effects associated with polarizers, since the term with depolarization

D contains no polarizer leak parameters χa and χb.

1.12.4 Method to measure polarizer imperfections using

a totally depolarized source

Let a polarizer and an analyzer have approximately the same leak parameter χ.

Dispose these elements straight forward as shown in Fig. 1.12.4: Now, confront

Figure 1.10: Optical scheme to measure χ coefficient.

the polarizers to their Müller matrices according to 1.55, i.e the matrices will

have the form:

Mpar =
1

2
A

















1 + χ 1 − χ 0 0

1 − χ 1 + χ 0 0

0 0 2
√
χ 0

0 0 0 2
√
χ

















, (1.80)

where A is the transmission of polarizer. The Stokes vector on a detector is given

by the formula:

~S = Mrot(αp) × Mpar × Mrot(−αp) × Mrot(αa) × Mpar × Mrot(−αa) × ~S0,

where Mrot(α) is the Müller matrix for rotator given by 1.54, αp, αa are re-

spectively the angles of the polarizer and analyzer, and ~S0 = {J0, 0, 0, 0} is the

Stokes vector of the totally depolarized incoming light. If one has completed this
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calculation, the following formula for relative intensity is obtained:

J/J0 = 1 +
(χ− 1)2

(χ+ 1)2 cos {2 (αa − αp)} (1.81)

Note, that the power series of this formula is (χ−1)2

(χ+1)2
= 1 − 4χ + O[χ2]. It allows

to estimate the error due to linear approximations:

ǫ =
Anl − Aln

Anl

≃ 8χ2, (1.82)

where Anl = (χ−1)2

(χ+1)2
, and Aln = 1 − 4χ. So, if the value of χ is about 1%, that

formulae (1.61), (1.67), (1.73) contains the model error about 0.1%, for χ = 5% -

the error is 2%. It means that linear approximation works only for small χ. This

error is equal to χ at χ = 12.5%.

Estimation of minimal value is possible to measure with this method

Take the χ derivative of the (1.81):

d(J/J0)

dχ
=

4(χ− 1) cos [2 (αa − αp)]

(1 + χ)3 (1.83)

The absolute value of the derivative (1.83) is maximal at cos [2 (αa − αp)] = ±1.

Then the (1.81) assumes the form:

J/J0 = 1 +
(χ− 1)2

(χ+ 1)2 (1.84)

Now, make the Tailor expansion and take into account noise N :

J/J0 = 1 − 2χ+N +O
[

χ2
]

(1.85)

Looking at (1.85), the criteria for minimal χ can be obtained:

χ ≥ N/2 (1.86)
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1.12.5 Measurement of depolarization parameter

Formulation of the problem

Consider the set of optical elements schematically presented in Fig. 1.12.5. There

Figure 1.11: Optical scheme to measure depolarization of the compensator.

is a source (exactly the light before polarizer) characterized by its degree of polar-

ization Ps, and by Ψs, ∆s which characterize the polarization ellipse. Then, there

is a polarizer with the leak coefficient χp, oriented at the angle αp. Next element

is a compensator. Consider it more detail. In fact, the compensator represents

itself a prism plus some mirrors for alignment the beam. As generally known,

the reflection upon a mirror change the polarization state of light, therefore we

should introduce the Müller matrix to describe these features of our compensator

as well as the depolarization of the prism. One option to do it is to substitute

the compensator with mirrors to virtual sample. It extends the concept of com-

pensator. Now, the compensator is not only the prism, but also the mirrors.

To take into account the depolarization, one should mathematically multiply the

Müller matrix for a sample with parameters Ψcom and ∆ (see formula 1.58) to the

Müller matrix for depolarizing element see formula 1.57). Eventually, the matrix

for compensator Mcom has the following form:















1 − cos (2Ψcom) 0 0

− cos (2Ψcom) 1 − Dcom 0 0

0 0 (1 − Dcom) sin (2Ψcom) cos (∆com) sin (2Ψcom) sin (∆com)

0 0 − sin (2Ψcom) sin (∆com) (Dcom − 1) sin (2Ψcom) cos (∆com
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After the compensator, there is an unperfect analyzer characterized by the leak

χa, and the angle αa.

Detected intensity in general case

As usual, the relative intensity can be written as follows:

J/J0 = A+B cos (2αa) + C sin (2αa) , (1.87)

where all coefficients has the similar structure, namely:

A = A0 (Ψcom,∆com, Dcom, αp) + A1 (Ψcom,∆com, αp, Dcom, χa, χp) +

+PsA2 (Ψcom,∆com, αp, Dcom, χa, χp,Ψs,∆s) (1.88)

The case of depolarized incoming light

For depolarized source, the coefficients A, B, C assume the form:

A = (1 + χa) (1 − cos(2αp) cos(2Ψcom) + χp (1 + cos(2αp) cos(2Ψcom)))(1.89)

B = (χa − 1) (cos(2αp) − cos(2Ψcom)+

+ Dcom (χp − 1) cos(2αp) − χp (cos(2αp) + cos(2Ψcom))) (1.90)

C = (Dcom − 1) (χa − 1) (χp − 1) cos(∆com) sin(2αp) sin(2Ψcom) (1.91)

The case of ideal polarizers

In this case, the coefficients assume simplest form:

A = 1 − cos(2αp) cos(2Ψcom) (1.92)

B = (1 −Dcom) cos(2αp) − cos(2Ψcom) (1.93)

C = (Dcom − 1) cos ∆com sin(2αp) sin(2Ψcom) (1.94)

The important thing is to estimate the minimal possible value ofDcom which is

possible to detect. First, set approximate values of ∆com ≈ 0, and Ψcomp ≈ π/4.

These are the typical values for compensators used in our ellipsometry setup.

Then Dcom derivative of (1.87) assumes the following form:

d(J/J0)

dDcom

= − cos [2 (αa + αp)] (1.95)
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It has maximum absolute value 1. Then, at αa = αp = 0 (1.87) has the form:

J/J0 = 1 − 1

2
Dcom +N, (1.96)

where N is the noise term. And the criteria for Dcom is follows:

Dcom ≥ 2N (1.97)

1.13 Analysis of ellipsometric data

1.13.1 Anisotropy correction

High temperature superconductors (HTSC) are anisotropic materials where opti-

cal conductivity in CuO planes is much higher than along c-axis perpendicular to

the planes. In this case the dielectric constants given by 1.4 are, so called, pseudo-

dielectric constants and to obtain the real constants one has to apply so-called

anisotropy correction. In the case of anisotropic media the complex refractive

indexes are given by the formulas:

rpi =

√
εkεi cos Φ −

√

εk − sin2 φ
√
εkεi cos Φ +

√

εk − sin2 φ
, (1.98)

rsi =
cos Φ −

√

εj − sin2 φ

cos Φ +
√

εj − sin2 φ
, (1.99)

where i, j, k = abc index the axes of a crystal. In the case of uniaxial crystals two

axes are equal, for biaxial crystals all three axes are different. On the other hand

the ellipsometry measures the complex ratio of rp/rs for different crystal orien-

tation. After that one can make a fit of ellipsometric data with 1.99 and obtain

the real dielectric constants for anisotropic material. This fit is very complex,

can not be analytically solved, and has multiply solutions. The choice of real

solution is often made by the intuition of an experimentalist. In the figure 1.12

the corrected and uncorrected spectra are presented. For most of HTSC their

c-axis spectrum is not changed to much by the correction procedure. However,

changes of in-plane spectra are significant, and the correction must be obligato-

rily applied. The reason for that is that the in plane conductivity is many times

larger than the c-axis one.
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Figure 1.12: Effect of anisotropy correction on the b-axis (fig a) and c-axis (fig
b) spectrum of a Bi2Sr2CaCu2O8+δ single crystal.[10]

1.13.2 Diffraction correction

Diffraction effects become important if the wavelength is comparable with the

cross-section of a sample. If one measures a sample about 0.1mm size at an angle

of incidence of 85 degrees the diffraction has to be taken into account below 100

cm−1. To correct our data we use the correction based on the classical problem

of reflection from a half-plane. The contributions from the front sample side and

from the flanks are taken into account. As was shown in [11] the classical problem

of the diffraction on the half-plane has the approximate solution, which can be

represented by the Hankel functions, and close to numerical solution of Maxwell’s

equations for this case. The contribution of the diffraction from the sample

surface to s and p-polarized field components is plotted in fig. 1.13 for the angle

of incidence 85 degrees. It is necessary to note that these calculations were made

for the a case of perfect conductor. The correction we use is still quite approximate

and needs to be improved in future. It does not take into account the contribution

from the flank sides of the sample properly. So far it is done phenomenologically

and the results has to be checked after applying the correction. The program

algorithm is follows: first the ratio of an effective sample size to the wavelength is

calculated. Then, the program reads numerical solution for the diffraction upon

the half-plane at the angle of incidence 85 degrees. After that, this solution is
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Figure 1.13: Effect of anisotropy correction on the b-axis (fig a) and c-axis (fig
b) spectrum of a Bi2Sr2CaCu2O8+δ single crystal.[10]

corrected for another angle of incidence using phenomenological formula. Finally,

the ellipsometric parameters Ψ and ∆ are corrected.

1.13.3 Properties of optical conductivity

Consider the complex conductivity σ(ω) = σ1 + iσ2. First, the conductivity is a

response function, therefore:

σ(−ω) = σ∗(ω). (1.100)

Second, from the causality principle we have the Kramers-Kronig (KK) relations:

σ1(ω) =
2

π
P
∫ ∞

0

ω′σ2(ω
′)

ω′2 − ω2
dω′ σ2(ω) = −2ω

π
P
∫ ∞

0

σ1(ω
′)

ω′2 − ω2
dω′ (1.101)

The combination of KK relations with physical arguments about the behavior of

optical conductivity conducts us to the sum-rule expression. Although the sum

rule expression is general, the most widely used form of it is based on the Drude

model and can be written in the form:

∫ ∞

0
σ1(ω)dw =

πNe2

2m
=
ω2

p

8
, (1.102)
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where N is the number of electrons per unit volume, e and m are the charge and

the mass of electron, ωp is the plasma frequency of the Drude model. Normally

the integration is taken to a final frequency and we can introduce the quantity:

Neff (ω) = 2mV
πe2

∫ ω
0 σ1(ω)dw. The upper integration limit is usually taken between

the plasma frequency and the inter-band transition frequencies. At the end, note

the basic properties of real conductivity, which come from its definition:

σ1(ω) > 0, lim
ω→0

σ1(ω) = σDC . (1.103)

1.13.4 Drude-Lorentz model of optical conductivity

In Drude-Lorentz model it is assumed that an electron bound with the nucleus as a

harmonic oscillator. The equation of motion ism~̈r+mΓ~̇r+mω0~r = −e ~E. Starting

from here one can derive the following formulae for the optical conductivity:

σ(ω) =
ω2

p

4π

ω

i (ω2
0 − ω2) + Γω

(1.104)

For free electrons w0 = 0 since they are not bound. For fitting of complex

dielectric function the following expression is normally used:

ε(ω) = ε∞ − ω2
p

ω (ω + iΓ)
+
∑

j

ω2
p,j

(

ω2
0,j − ω2

)

− iωΓj

, (1.105)

where ε∞ is the value of the dielectric function at ω → ∞. In two particular

cases the Drude contribution can be asymptotically simplified: if ω ≪ Γ then σ1 ≃
ω2

p/4πΓ, ε1 → −∞; if Γ ≪ ω ≪ ωp then σ1 ≃ ω2
pΓ/4πω

2, ε1 ≃ −ω2
p/ω

2. For many

practical cases the Drude-Lorentz model is not good enough to fit experimental

data. Therefore, several extensions of this model have been introduced. The first

of them was proposed by D. van der Marel [12]:

σ(ω) =
ω2

p

4π

i

(ω + iγ)1−2ν(w + iΓ)2ν (1.106)

The second possible extension of Drude model is the introduction of a frequency

dependent scattering rate Γ(ω) in ordinary Drude-Lorenz formula 1.105. To fit

asymmetric phonon modes one uses a modified Lorentzian, which is a mixture of
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the real and the imaginary parts of the ordinary Lorentzian:

ε(ω) = S
ω2

0 + iΓQ

(ω2
0 − ω2) − iωΓ

, (1.107)

where Q is the, so-called, asymmetry factor.

All of these formulas, which are used for fitting raw experimental data, should

satisfy the KK relations in order to represent the dielectric constants. With

ellipsometry data one can use both the real and imaginary parts of dielectric

constant as the input data for a fit procedure. Results of the fit are strongly

dependent on the seed value selected for the fit algorithm. The proper choice of

the seed can be taken mostly intuitively after several attempts. The criteria of

correct choice is, for example, the fact that asymmetry factor should be small

enough, because a large factor has no physical meaning. The second problem

with fitting is that for some materials it is difficult to describe the electronic

background with a formula, and the data include this background. This fact

introduces some uncertainties in separating phonons from the background.

1.14 Summary

In conclusion, ellipsometry has an advantage in the accuracy of the measured di-

electric constant, compared with conventional spectroscopy. However, it requires

additional complexity of the setup and requires more perfect optical elements

than ordinary spectroscopy. Therefore, both techniques have their own areas of

application. Ellipsometry is needed for high accuracy measurements, and the

ordinary spectroscopy is better to solve problems, which do not require such a

high accuracy.



Chapter 2

Infrared properties of HTSC

2.1 Introduction

Infrared spectroscopy has provided valuable information about the electronic

properties of conventional superconductors, which are described by the BCS the-

ory [13]. It is known that a superconductor behaves like a perfect conductor (and

thus reflector) at frequencies below about twice the superconductive energy gap,

∆. At higher frequencies the reflectivity closely resembles the one in the normal

metallic state. Infrared and microwave spectroscopy thus allow one to identify

the energy scale of the superconductive gap[14]. The second very successful ap-

plication of infrared spectroscopy for the case of conventional superconductors

concerns the study of the Gamma-point phonon modes which reveal information

about the lattice vibrations and their coupling to the electrons which mediates

the pairing in these conventional superconductors [120, 121].

The high temperature superconductors (HTSC) exhibit a number of properties

that make them rather different from the conventional superconductors. One

characteristic feature is their pronounced structural anisotropy which is reflected

in a corresponding anisotropy of most of their physical properties. For instance

the conductivity along the metallic quasi-two-dimensional CuO2 layers can be

orders of magnitude higher (depending on the particular compound) than the

one in the perpendicular direction (the c-axis).

The in-plane resistivity of HTSC is linear over a large temperature interval.

The linearity is often taken as a measure of good sample quality. The out-of

plane resistivity is also linear at high temperature while towards low temperature

it often exhibits a steep upturn and thus has a tendency toward semiconducting

58
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like behavior. In YBCO the T-dependence of the c-axis conductivity strongly

varies as a function of the oxygen concentration. The c-axis resistivity is very high

and semiconductor like in deoxygenated samples while it decreases and acquires a

metallic T-dependence in fully oxygenated ones. The order of magnitude of the c-

axis resistivity strongly varies from compound to compound which indicates that

it strongly depends on the properties of the insulating blocking layer. In contrast,

the magnitude and the metallic T-dependence of the in-plane resistivity compare

rather well for the various HTSC compounds. This has led to the suggestion that

they are governed by the metallic CuO2 planes which are the common structural

element of all the cuprate HTSC compounds.

Infrared spectroscopy once more has proven to be a suitable technique that

yields information about the charge dynamics in the cuprate HTSC. The experi-

mental spectra contain clear signatures of spectral gap features in the supercon-

ductive as well as in the normal state. The latter is commonly associated with

the so called pseudo-gap (PG) effect that is discussed in more detail later on.

The infrared studies also have provided clear evidence for pronounced phonon

anomalies in the vicinity of the SC transition. Furthermore, the infrared spec-

tra contain sharp features which can be associated with the onset of Josephson

currents between the weakly coupled superconductive CuO2 layers. As discussed

in detail in section 2.4 these effects are particularly pronounced in compounds

that contain more than one CuO2 layer per unit cell. Finally, by combining

IR spectroscopy with optical spectroscopy in the visible range one can obtain

valuable information about the T-dependence of the free carrier spectral weight

and thus on the variation of the quasi-particle kinetic energy using the ratio:

SW = πe2a2 〈−K〉 /2h̄2Va, where SW is the spectral weight, Va is the unit cell

volume, a is the lattice constant, K is the kinetic energy.

2.2 Structure and phase diagram of HTSC

A characteristic feature of the cuprate HTSC is their pronounced structural

anisotropy. Their layered structure is comprised of quasi-two dimensional CuO2

layers that are separated by various kinds of mostly insulating metal-oxide layers.

All cuprate HTSC compounds contain at least one CuO2 plane per unit cell. Ac-

cording to the number of closely spaced CuO2 layers per unit cell they are termed
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as single, double, triple, layer compounds, etc. The metallic CuO2 layers are of-

ten called conduction layers whereas the blocks in between them mostly act like

insulating spacer layers and charge reservoirs. In fact, a suitable charge transfer

from the charge reservoir layer to the CuO2 planes is required for high Tc super-

conductivity to occur in these cuprate compounds (see phase diagram in fig. 2.2).

Figure 2.1: Structure of Sm123.

The 123 compounds as shown in

fig. 2.1 exhibits an additional structural

feature which is the so-called Cu − O

chains that extend along the b-axis di-

rection. These CuO chains not only

lead to an in-plane orthorhombic struc-

tural distortion but also give rise to a

pronounced electronic and magnetic in-

plane anisotropy. The CuO2 planes con-

sist of CuO5 pyramids whose bases are

connected via their corner oxygens to

form the CuO2 planes. Via the so-called

apical oxygens, they are connected with

the CuO chains that extend along the

b-axis direction. Our flux-grown crys-

tals [51] exhibit in the as-grown state

extensive twin domains where the direc-

tion of the elongated b-axis rotates by

90 degree in the domain walls. It means

that a and b directions are not ordered

in the whole crystal and one measures

an average response from the ab plane.

To measure the individual response of the a or b axes the crystal, therefore, must

be de-twined. De-twinning can be achieved by simultaneous application of heat

and uniaxial stress [15].

In the course of this thesis we will present experimental data on various modifi-

cations of the 123 compounds where particular cations have been fully or partially

replaced by others. For instance, the Y123, Sm123, and Nd123 compounds differ

only concerning the RE-ions at the Y-site which is located in between the two
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closely spaced CuO2 layers (see fig. 2.1). The slightly different ionic radius of the

rare earth, RE+3 ions gives rise to slight differences in the spacing between the

CuO2 layers as well as in the charge transfer between the CuO chains and CuO2

planes. Thus a somewhat higher oxygen content in the CuO chains is required for

Nd-123 as compared to Y123 in order to obtain the same hole doping state within

the CuO2 planes. While these variations are rather small and hardly influence the

characteristic electronic properties that will be reported in this thesis, there are

two major effects that turn out to be relevant. Firstly, the larger RE ions like Nd

and Sm slightly expand the CuO2 planes and thus enable the incorporation of a

much higher concentration of substitutional impurities into the CuO2 planes like

Zn and Ni. This effect turns out to be very important in the context of the present

work. The second important feature concerns the value of the Josephson-plasma

frequency corresponding to the closely spaced CuO2 layers which is considerably

lower (at a corresponding doping state) for Nd-123 and Sm-123.

The hole concentration of the CuO2 planes can be altered by various means.

For instance, by annealing a crystal in a defined oxygen atmosphere and temper-

ature (with subsequent rapid quenching) one can vary the oxygen content in the

chains over the range of δ from 0 to 1. Such a change in the oxygen content leads

to a corresponding change of the hole content in CuO2 plane. A second possibility

to change the hole content is the partial substitution of Y 3+ with Ca2+ which will

increase the hole content in CuO planes. Extensive studies of the variation of the

electronic properties have resulted in an empiric formula that connects the hole

content with the value of Tc in the framework of a parabolic law [122, 124, 123].

The phase diagram as a function of the hole content of the CuO2 planes is

sketched in fig. 2.2. In the non-doped state, e.g. in Y Ba2Cu3O6, the material

is a Mott-insulator with an anti-ferromagnetic ground state. The Néel temper-

ature is in excess of 300K. Already a hole content of around 2-3% is sufficient

to break the long-range anti-ferromagnetic order, and a transition to a so-called

spin glass state occurs. This can be interpreted in terms of a quantum phase

transition[18]. Above a hole concentration of about 6% superconductivity first

appears. The critical temperature first increases with hole content in the un-

derdoped regime before it saturates at the maximum transition temperature Tc

at optimum doping of around 15 − 20%. Towards even higher hole content the

critical temperature decreases again. Accordingly, this is called the overdoped
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region of the phase diagram. While the SC dome appears to be rather sym-

metric with respect to optimum doping, the normal state electronic properties

differ dramatically between the underdoped and the overdoped side of the phase

diagram. The normal state properties above Tc in the under-doped compounds

are dominated by the so called pseudo-gap (PG) phenomenon whose origin is

presently unknown and the subject of intense studies. The PG transition mani-

fests itself as a gradual suppression of the low energy spin and charge excitation

spectrum. The (usually rather ill-defined) onset temperature is denoted as T ∗.

Figure 2.2: Phase diagram of Y123[10].

The presence of a phase transi-

tion at T ∗ is still under controver-

sial discussion. To the contrary,

on the overdoped side of the phase

diagram, the normal state proper-

ties can be rather well described

in the framework of a Fermi liq-

uid model. The crossover occurs

near optimum doping where the

linear T dependency of the resis-

tivity is observed that extends over

an extremely wide T-range. Var-

ious theoretical models have been

proposed in order to account for

this transition from a Fermi-liquid

like state on the overdoped side, to the underdoped state with a normal state

pseudogap. The scenario of a quantum critical point, probably corresponding to

a superconductor to metal phase transition, was proposed to explain the rather

rapid and unusual changes near optimum doping [18]. Others have proposed a

so-called stripe phase model, where the mobile charge carriers segregate forming

quasi-one dimensional hole rich stripes that are separated by hole poor regions

where AF correlations are restored. The characteristic size of these regions is a

few lattice constants [20]. Amongst many other discussed issues are the existence

of charge- or spin density wave phases (CDW an SDW) [21, 22]. Most of the

properties in the superconductive state can be understood in the framework of

the BCS theory with singlet pairing and with a dx2−y2 symmetry of the order
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parameter and thus of the energy gap[19] in k-space. However, the mechanism

mediating the pairing is still not established. Due to the d-wave symmetry where

the order parameters changes its sign in k-space at the so-called nodes, the SC

state is rather sensitive to structural defects that give rise to potential scatter-

ing. The subsequent mixing of states in k-space leads to destructive interference

effects in the vicinity of the gap nodes which correspondingly give rise to strong

pair-breaking effects even in the presence of non-magnetic impurities. Additional

dramatic effects thus occur when the Cu2+ ions are partially substituted by dif-

ferent kind of impurities Ni, Zn, or Co. These impurities within the CuO2 planes

give rise to strong potential scattering of the charge carriers and a subsequent

strong suppression of superconductivity. The effect of these impurities on the

superconductive properties is the subject of intensive studies and also the main

subject of the present thesis.

2.3 In-plane infrared properties

The in-plane dielectric constants of a slightly overdoped (Tc = 91K) de-twinned

Y123 crystal are plotted in fig 2.3.

Figure 2.3: In-plane dielectric constants of detwinned Y Ba2Cu3O6.95 (close to
optimally doped Tc = 91.5K); a-axis (fig. a, b), b-axis (fig. c, d).[10]
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Figure 2.4: Optical inplane conductivity

of five twinned Y Ba2Cu307−δ crystals mea-

sured by reflectivity [23]. δ varies from 0.8

for the lowest curve to 0 for the highest.

First, we consider the spectrum

of the a-axis conductivity which

contains several characteristic fea-

tures. In the normal state, there

is a pronounced Drude peak near

the origin which evolves continu-

ously into a broad so-called MIR

band that extends to much higher

energy as high as 1 eV. Both of

these features have been seen with

conventional reflectivity technique

as well [23, 24], and several models

have been proposed [25] which can

be divided into two classes: in the

context of the so called one compo-

nent approach it is assumed that

both the Drude peak and the MIR band arise from the same kind of excitation

due to charge carriers that experience strong inelastic scattering due to the in-

teraction with some other kind of excitations like magnons or phonons. The two

component approach assumes that the Drude-peak and the MIR band arise from

different kinds of excitations of the charge carriers. The MIR band for example

has been assigned to polaronic effects. For more details we refer to [10, 25, 26].

The ellipsometric spectra also reveal several weak phonon features in the normal

state that are nevertheless well resolved in the real and imaginary parts of the

dielectric function. In the superconductive state the spectra exhibit a number of

characteristic changes. The most pronounced one in the a-axis spectrum is the

broad dip with a minimum in the conductivity around 350cm−1. When first ob-

served, this dip feature was associated with the superconductive energy gap, i.e.

it was interpreted in the framework of the so-called dirty limit for Γ ≫ 2∆, where

Γ is the scattering rate of the free carriers, and ∆ is the superconductive gap.

However, later on it was realized that the in-plane response of the HTSC corre-

sponds to the opposite case of the so-called clean limit [27], i.e. the SC coherence

length of about about 25Å is significantly shorter than the mean free path of the

carriers of about 100Å as deduced from the dc conductivity above Tc. Since then,

two other interpretations have been suggested. Within two component model it
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was suggested that the dip feature is not related to the superconductivity directly.

Simply, the onset of the MIR band becomes visible when the Drude-peak collapses

below Tc its SW being transferred to the delta function at the origin. Within the

one component approach the dip feature has been interpreted in terms of inelastic

scattering on some kind of bosonic mode like for instance the spin fluctuations

[28].

The main electronic features in the b-axis spectra for the IR range are similar

to the a-axis ones except for the absolute value of the conductivity which is about

two times higher, and the broad electronic mode around 260cm−1 which has a

very large spectral weight. The origin of this broad mode is not established yet.

Some interpretation of this mode can be found in [29]. It was claimed that this

mode is resulting from some kind of bridging effect either between planes and

chains or between chains [29]. Meanwhile, a similar feature around 270cm−1

has been observed also in the Bi2Sr2CaCu2O8+δ compound, which contains no

CuO chains [10]. In addition to the broad electronic features, the ellipsometric

b-axis spectra also contain a surprisingly large number of narrow peaks, which

correspond to IR-active phonon modes. Note that these modes are very difficult

to detect in conventional reflectivity measurements, since the reflectivity is close

to unity.

The doping dependence of the b-axis conductivity is summarized in figures 2.5,

2.4. At very low doping, i.e. in the insulating phase, the electronic conductivity

is very small and the FIR range is dominated by narrow features corresponding

to IR active phonon modes. The electronic conductivity rapidly increases with

hole doping. Already for the strongly underdoped samples the above described

features become apparent such as the SC-indued dip feature in the a-axis re-

sponse. Also the broad electronic mode in the b-axis response is very pronounced

and located around 260cm−1. With increasing doping the conductivity increases,

and the specific features mentioned above are resolved even in the strongly over-

doped samples although they become much weaker and thus hard to detect. For

instance, the weak contribution from the 260cm−1 mode is still resolved in the

b-axis conductivity of the over-doped sample in Fig. 2.5 e and f.

One of the most important applications of the IR data is the study of the

superconductive condensation process. According to BCS theory the spectral

weight is transferred from the Drude peak to the delta function at the origin.

In classical BCS superconductors the signatures of the superconductive gap are
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Figure 2.5: Doping dependence of the b axis real part of the conductivity
and dielectric function for de-twinned Y Ba2Cu307−δ crystals as measured by
ellipsometry[10]: fig. a, b correspond to δ = 0.2; c,d - δ = 0.05; e,f is strongly
over-doped Y0.8Ca0.2Ba2Cu3O6.9. Insets shows the result of a Lorenzian fit (green
line) for the 10K spectra (blue line).

clearly resolved in the conductivity spectra. As was mentioned already, in the

clean limit the normal state Drude peak is narrower than the superconductive

gap, while in the dirty limit it is much wider than the gap (see fig. 2.6). In high

Figure 2.6: Conductivity of a classical BCS superconductor in dirty (a) and clean
(b) limits [25].

temperature superconductors it has been concluded that the SC-induced spectral

feature can not be directly associated with the superconductive gap. The debate

about the correct interpretation is ongoing. Nevertheless, the fact that there is

a delta function at zero frequency is established also for the HTSC. Therefore,

one can apply similar so-called sum-rule arguments as was successfully done in
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the case of the conventional superconductors. The spectral weight (SW) sum rule

states that the integrated conductivity remains unaffected by the superconductive

transition. This can be expressed as:

∫ ∞

0
(σ1n(ω) − σ1s(ω)) dω = 0, (2.1)

where σ1n is the normal state conductivity, and σ1s is the conductivity in the

superconductive state. If the upper integration limit is set to 6∆, formula gives

the Ferrel-Glover-Tinkham sum rule, which claims that the normal state spectral

weight from the region below 6∆ goes into delta function in the superconductive

state. The delta function can not be measured directly by spectroscopic tech-

niques which are limited to the finite frequency range. Nevertheless, it can be

derived from the inductive response which is contained in the real part of the

dielectric function. Generally, the complex conductivity due to the superfluid is:

σ(ω) =
ω2

p

8
δ(ω) + i

ω2
p

4πω
, (2.2)

where ωp is the plasma frequency of the Drude model. This formula was derived

from the Drude formalism with the assumption that Γ ≪ ω ≪ ωp. For conven-

tional superconductors the plasma frequency can be calculated using the relation

ε1(ω) = 1 − ω2
p/ω

2, which follows from 2.2. The experimental data demonstrate

that ε1 closely follows a ω−2 dependence. Furthermore, for conventional supercon-

ductors the slope of ε1 determines the London penetration depth λL. The sum

rule also provides access to the quasi-particle kinetic energy as was mentioned

already in the introduction. However, it is necessary to note that this relation

between the spectral weight and the kinetic energy is strictly valid only for model

Hamiltonians whose single particle part is of the nearest neighbor tight binding

form[34]. The application of this spectral weight formalism to HTSC differs a bit

from the case of conventional superconductors. One of the problems is the precise

determination of the frequency, which corresponds to the upper integration limit

in 2.3. Ellipsometry provides direct information about ε1, and thus the plasma

frequency can be determined more accurately than from reflectivity data, where

it is calculated indirectly using model assumptions. In ellipsometry the plasma

frequency is a function of both real and imaginary parts of dielectric function,

and it is frequency dependent because there is no assumption of ω−2 dependence
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2.2:

ωp(ω) = ω

√

√

√

√

ε2(ω) + (ε∞ − ε1(ω))2

ε∞ − ε1(ω)
(2.3)

In the latest investigation made by our group[30], it is found that the SC-induced

spectral changes extend to a very high energy scale of the order of 2 eV. Therefore,

it is incorrect to say that all spectral weight from the Drude peak goes into the

delta function like it is for the case of conventional superconductors. Already in

the normal state there is a characteristic redistribution of the spectral weight from

very high to low-energy which is well accounted for by a so-called extended Drude-

like model that includes inelastic scattering of the charge carriers. The observed

SW redistribution thus corresponds to a decrease in the inelastic scattering rate

that is further enhanced in the SC state. A detailed analysis of the related

SC-induced changes in the free carrier kinetic energy are not in contradiction

with the predictions of the BCS model and thus give no direct evidence that an

unconventional pairing mechanism is at work in the cuprate HTSC. [10].

2.4 C-axis infrared properties

The c axis response of the HTSC exhibits a very strong and characteristic vari-

ation as a function of carrier doping. Once more, the phase diagram falls into

three regions corresponding to the underdoped, optimally doped and the over-

doped regimes. A representative example for the c-axis response of an underdoped

Y123 crystal is shown in fig. 2.7 The spectrum consists of a very broad electronic

background on which seven phonon modes at 155, 190, 285, 320, 570, 620, 630

cm−1, plus a broad peak below Tc around 500cm−1 are superimposed. In the

context of this thesis we are mainly concerned with the electronic background

which is shown in Fig. 2.7 after subtraction of the phonons. The electronic

background can be seen to undergo characteristic changes as the temperature

is successively lowered starting from room temperature. Most importantly, the

signatures of a gap-like suppression of the low frequency electronic conductivity

with an onset around 750cm−1 occurs already well within the normal sate, i.e.

around T ∗ = 150 ≫ Tc = 80K. It is this partial normal state gap like feature

in the c-axis conductivity spectra that has previously been associated with the

pseudo-gap phenomenon which is also seen by a number of other spectroscopic

techniques such as tunnelling, ARPES, and Raman.
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Figure 2.7: C axis conductivity of under-doped Y Ba2Cu3O6.8 crystal with Tc =
80K (a); the conductivity after substraction of the phonon contributions and the
Josephson plasmon mode (b) [10].

We start the discussion by first considering the assignment of the phonon

modes. Group theory predicts 7 IR-active c-axis phonon modes (see fig. 2.8). The

mode at 570cm−1 is associated with the vibration of the apical oxygens against

the copper in the filled Cu-O chains. In oxygen deficient samples there are two

additional modes at 620 and 530 cm-1 that arise from apical oxygens adjacent to

half empty chain fragments. The weight ratio of the higher to the lower apical

modes in return can be used to obtain an estimate of the oxygen content of the

CuO chains in these 123 compounds. The next lowest mode it the so-called bond-

bending mode at 320cm−1 which involves the in-phase vibrations of the in-plane O

against the Y ions. The mode at 285cm−1 corresponds to the vibrations of Cu ions

against oxygen in the chains, and thus is often called the chain mode. The mode

at 190cm−1 corresponds to vibration of the Y ions against Cu in the chains. At

last the 150cm−1 mode involves vibrations of the heavy Ba ions against Cu in the

chains.

Figure 2.8: Eigenvectors of c-axis phonons of Y123. Filled circles-O; open circles-
Cu; hatched circles-Ba; dotted circles-Y.
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Figure 2.9: Spectra of c-axis conductivity of

underdoped Y123 with Tc = 53K The sym-

bols (A) (B) (C) indicate most pronounced

anomalies. It is modified figure from [31].

Some of the phonon modes exhibit

a very anomalous T-dependence in

the vicinity of the SC transition

that is their frequencies increase

with increasing temperature. It

contradicts the simple theory that

with increasing temperature the

phonon modes become softer since

the average distances between ions

in the lattice increases. The most

pronounced anomalies involve the

bond bending mode at 320cm−1.

In some underdoped Y123 crys-

tals (with Tc around 50 to 60

K), this bond-bending mode loses

most of its spectral weight and its

center frequency is red-shifted by

about 20cm−1 below Tc. The spec-

tral weight of the 570cm−1 mode

also decreases below Tc. At the

same time, the additional broad

electronic peak appears below Tc.

This additional mode has been associated with a so-called transverse Josephson

plasma mode. This model was first introduced by van der Marel and Tsvetkov[32].

It approximates the 123 structure in terms of a stack of two kinds of Josephson-

junctions, the so-called intra-bilayer one involving tunnelling currents across the

Y-layer, and the inter-bilayer one due to the blocking layer consisting of BaO and

CuO chain layers. These two kinds of Josephson-junctions exhibits rather differ-

ent Josephson-plasma frequencies. The broad mode forming below Tc arises here

from the out-of-phase oscillation of the Josephson-currents in the two kinds of

junctions in response to an electric field whose frequency is in between the eigen-

frequencies of the respective Josephson junctions. These two kinds of Josephson

junctions have their own plasma frequencies ωpbl and ωpint assigned to them. Af-

ter that, from the boundary conditions of the Maxwell’s equations one can obtain
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the dielectric function ε(ω):

ε(ω) =
(dbl + dint) εbl(ω)εint(ω)

dblεint(ω) + dintεbl(ω)
(2.4)

which has a pole at ωjp corresponding the Josephson plasmon in IR spectrum:

ω2
jp =

dblω
2
pint + dintω

2
pbl

(dbl + dint) ε∞
, (2.5)

where dbl is the distance between CuO2 planes in a bilayer, dint is the distance

between bilayers, εbl = ε∞ − ω2
pbl/ω

2, εint = ε∞ − ω2
pbl/ω

2. This theoretically

calculated plasma frequency coincides pretty well with the measured one in the

IR spectra (see fig. 2.11). For the results of the calculations as plotted in fig.

2.11 the following parameters have been assumed: 2dbl = dint = 10Å, ε∞ = 5.

The plasma frequencies ωpbl, ωpint are apparent in the figure as the zero crossing

points.
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Figure 2.10: Doping dependence of pseudogap [10].
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Figure 2.11: Dielectric function in the

Josephson super-lattice model [33].

D. Munzar has extended this

Josephson plasmon model to ex-

plain the phonon anomalies and

the transverse plasmon in trilayer

compounds[35]. He has shown

that the phonon anomalies can in-

deed be related to the change of

the local electrical field inside the

bilayer or trilayer regions. The

local field is a sum of the exter-

nal field (due to the IR radiation)

and the internal field from charges

on the CuO2 plane. This internal

field is largely affected by the Josephson currents which lead to an inequivalent

charging of the CuO2 planes. Particulary, the spectral weight loss of the bond

bending mode in Y123 can be related to the fact that with decreasing temper-

ature the local field acting on the in-plane oxygens decreases. As discussed in

detail in the next paragraph, the phonon anomalies of Bi2223 trilayer compound

can be explained in a similar manner. Meanwhile, all these explanations of the

phonon anomalies still remain on a phenomenological level.

Another important issue for the analysis of the c-axis spectra is the calcu-

lation of the spectral weight and the corresponding implications of the spectral

weight sum rule. One very important question is where the missing spectral

weight due to the pseudo-gap formation in the FIR range region is transferred

to. Detailed ellipsometric studies were performed in our group [36] in order to

address this question. It was found that there is a redistribution of the spectral

weight between the pseudo-gap, phonons, Josephson plasmon, broad MIR peak,

the origin of which is not established yet, and the peaks in the visible frequency

range connected with inter-band transitions. In the superconductive state some

spectral weight also goes to the delta function at zero frequency.

Now we turn to the doping dependence of the c-axis conductivity spectrum.

With increasing doping the pseudo-gap becomes less pronounced and disappears

right at optimum doping. The Josephson plasmon and phonon anomalies are

also less pronounced in the optimally doped and overdoped samples than in the

underdoped ones. Spectra of slightly under-doped and optimally doped samples
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Figure 2.12: Spectrum of c-axis conductivity of slightly under-doped
Y0.86Ca0.14Ba2Cu3O6.6 crystal (a), and optimally doped Y0.86Ca0.14Ba2Cu3O6.7

(b). [10].

Figure 2.13: C axis conductivity of over-doped Y Ba2Cu3O7 (a,c) and strongly
over-doped Y0.86Ca0.14Ba2Cu3O6.95 (b,d) [10].
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Figure 2.14: Spectrum of the c-axis conductivity of a slightly under-doped
Y0.86Ca0.14Ba2Cu3O6.6 crystal (a), and optimally doped Y0.86Ca0.14Ba2Cu3O6.7

(b). [10].

Figure 2.15: C axis conductivity of over-doped Y Ba2Cu3O7 (a,c) and strongly
over-doped Y0.86Ca0.14Ba2Cu3O6.95 (b,d) [10].
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are plotted in fig. 2.14. Near optimal doping the conductivity remains almost

temperature independent in the normal state for the interval from 100 to 300K.

The pseudo-gap phenomenon thus is entirely absent in optimally doped and over-

doped samples (see fig. 2.10). The spectra of over-doped crystals are shown

in fig. 2.15. It can be seen that in the overdoped region the c-axis normal

state conductivity finally begins to exhibit the signatures of a Fermi liquid like

behavior in a sense that the conductivity increases with decreasing temperature

and frequency. The spectra of the optimally and over-doped samples also contain

clear signatures of a gap formation. However, in contrast to the underdoped

samples, the spectral gap begins to develop now right below the SC transition,

i.e. only for T < Tc. Once more we note that the magnitude of the spectral

gap and its doping dependence agree rather well with the values that have been

deduced from angle resolved photoemission spectroscopy[37], fig. 2.10.

2.5 Josephson resonance and phonon anomalies

in Bi2Sr2Ca2Cu3O10

2.5.1 Introduction

In this section, we focus on the ellipsometry data on the trilayer Bi2223 com-

pound. In particular, the c-axis Josephson plasmon, the phonon anomalies, and

the spectral weight transfer will be discussed. All these results were published in

[102]. Related issues for the case of the Y123 compound were discussed in section

2.4.

2.5.2 C-axis spectra of Bi2223

A Bi2223 crystal of high quality and size of approx. 6x4x0.5mm3, was grown by

the floating zone technique. Crystal growth method and annealing procedure are

described in [108]. The obtained c-axis spectra of this crystal for three different

doping levels are shown in fig. 2.16. These spectra were obtained with the tech-

nique of ellipsometry using the synchrotron source at ANKA at FZ Karlsruhe.

The spectra contain a sizeable number of narrow phonon modes and in addition a

broader absorption peak around 500cm−1 that appears only in the superconduc-

tive state. As was discussed in the previous chapter, this peak corresponds to the
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Figure 2.16: Optical conductivity of three Bi2223 crystals with different doping
levels ranging from underdoped to nearly optimally doped
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so-called transverse Josephson plasmon mode as originally proposed by van der

Marel and Tsvetkov [32]. Meanwhile, there have been proposals for an alternative

interpretation in terms of spin-fluctuation mediated c-axis hopping conductivity

by Timusk and Homes [103]. However, the proposed scenario is rather vague and

lacks a detailed microscopic justification. The subject of the present chapter is

the explanation of this absorption peak in framework of the model by Marel and

Tsvetkov, which was extended by Munzar et al to include the local electric field

effect on the phonon modes.

Trilayer

region

intd

Figure 2.17: Model of trilayer Bi2223: the josephon currents in intratrilayer
regions produce a plasmon feature in the infrared spectrum around 500 cm−1

The phonon modes are centered at 97, 128, 170, 211, 305, 360, 400, and 582

cm−1. There are also two additional rather weak phonon modes at 276, and 471

cm−1 that are most likely caused by the incommensurate modulation of the BiO

and SrO layers[104]. As compared to Bi2212 the present c-axis spectra for Bi2223

contain two additional phonon modes at 128 and 400 cm−1. The frequencies of

all the other phonon modes are rather similar to the ones in Bi2212. A complete

assignment of the phonon modes in the case of Bi2212 can be found in [105]. We

have also performed our own shell model calculations for the case of Bi2223. We

find that the modes at 97, 128, 170, 211 cm−1 correspond to the vibrations of
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heavy Bi and Sr ions. The 305cm−1 mode involves the vibrations of Bi plane

oxygen against Ca. The main subject of the present study is the explanation of

the anomalous behavior of the modes at 360, 400, and 582 cm−1 in the SC state.

Their assignment will be discussed in more detail in the following paragraph.

The third issue is the spectral weight redistribution in the superconductive

state. We find that for the Bi2223 compound one can not apply the Ferrel-Glover-

Tinkham (FGT) sum rule in the same way as for conventional superconductors

[106]. This sum rule states that the spectral weight of the delta function in the

superconductive state is accumulated from a limited frequency range of ω < 6∆.

As we will show, in the c-axis response of Bi2223 the energy scale of the spectral

weight transfer is significantly wider.

2.5.3 Josephson superlattice model and transverse plas-

mon

Figure 2.18: Frequency dependent variation of the local field due to Josephson
currents. E∗

int is local field between trilayers, E∗
in is local field at inner layer of a

trilayer, E∗
out is local field at outer layer of a trilayer. Local field at the sites of

particular ions related to 360, 400, and 582cm−1 phonons are denoted by A, B,
C correspondingly. Point A corresponds to 360cm−1.

The Bi2223 compound contains three closely placed CuO layers, the so-called

trilayer. The distances between the layers are about dbl = 3.4Å. The space
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between these trilayers is called the intertrilayer region. The width of this region

is about dint = 12Å. The structure of the Bi2223 compound is displayed in fig.

2.17.

Figure 2.19: Local fields in the

Josephson superlattice model

In the case of the Bi2223 compound with

its extremely wide and thus very poorly con-

ducting intertrilayer junction the contribution

of the intertrilayer current can be safely ig-

nored, i.e. jint = 0. Each CuO2 plane has its

own local charge density, and if these planes

are close enough to each other, Josephson cur-

rent can appear. In the Josephson super-

lattice model (JSM) for trilayer compounds,

the outer planes of a trilayer have opposite

charge densities k,−k. The inner plane does

not become charged (the charge density is

zero). The Cooper pairs can hop from the

outer plane to the inner plane first, produc-

ing the current j1. Then they hop from the

inner plane to second outer plane producing

the current j2.

Since the inner plane is not charged, we

can apply the JSM for bilayer compounds sub-

stituting dbl in formulae 2.5 with dtr = 6.8Å.

Finally, we obtain the following formulae for

the plasma frequency in the case of a trilayer compound:

ω2
jp =

dintω
2
pbl

(dtl + dint) ε∞
, (2.6)

where ε∞ = 4 is local dielectric constant unaffected by Josephson current. ωpbl =

1250cm−1 is the plasma frequency in inratrilayer region (see fig. 2.11). For the

given values of the parameters the plasma frequency is about 500cm−1.

Based on the JSM we can now determine the local internal field inside the

material [107]. Let Eout be the local field inside an outer CuO layer (in trilayer),

Ein is the local field inside an inner CuO layer, and Eint is local field in intertrilayer

regions. This notation is illustrated in fig. 2.19. Then according to the Munzar
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model, these fields can be expressed with the following formula

E∗
int =

Eint

< E >
=

(dtl + dint) εtl

(dtlεint + dintεtl)
(2.7)

E∗
in =

Ein

< E >
=

(dtl + dint) εint

(dtlεint + dintεtl)
(2.8)

E∗
out =

(E∗
int + E∗

in)

2
(2.9)

here < E > denotes the average field. It is these local fields that are acting

on the ions that participate in lattice vibrations (phonons). Accordingly, we can

account for the anomalous SC-induced changes of the phonon modes in terms of

the changes of the local field caused by the Josephson currents. The frequency

dependencies of the local fields are shown in fig. 2.18. Points A, B, C denote the

frequencies of the phonons at 360, 400, and 582cm−1.

2.5.4 Phonon anomalies

Figure 2.20: Vibrations of ions involved in 360, 400, 582cm−1 modes.
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360cm−1 in phase mode of planar oxygens

This phonon corresponds to point A in fig. 2.18. The important quantities are

the the local field E∗
in and E∗

out. Below Tc the value of E∗
out decreases due to the

Josephson current. But it remains positive. Ein acquires a larger negative value.

Directions of the local fields are not in agreement with the phonon eigenvector.

Therefore, the strength of this mode decreases below Tc.

Figure 2.21: Spectral weight transfer in ordinary superconductors

400cm−1 out of phase mode of planar oxygens

In this case, the same local fields, E∗
in and E∗

out act on the ions connecting with the

phonon mode. However, the eigenvector pattern is in coincidence with directions

of local fields below Tc. Therefore, this mode becomes stronger below Tc.

582cm−1 Apical oxygens and oxygen in Bi plane

For this mode, the value of E∗
int is important. It corresponds to point C in fig.

2.18. It is the local field between trilayers. Below Tc, the value of local field
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decreases with respect to normal state. Therefore, the strength of this mode

decreases.

2.5.5 Spectral weight transfer and sum rule

For the case of conventional superconductors the Ferrell Glover Tinkham sum

rule states that:

∆S =
∫ 6∆

0

[

σN
1 (ω, T = Tc) − σSC

1 (ω, T ≪ Tc)
]

=
c2

8λ2
L

(2.10)

here, ∆ is the frequency of the superconductive gap, λL is the penetration depth,

σN
1 , σSC

1 are conductivities in normal and superconductive state correspondingly.

In other words, the FGT sum rule means that all spectral weight from the region

ω < 6∆ goes to the delta function at zero frequency. The conductivity in the

range ω > 6∆ is almost the same for the normal and superconductive states

(see fig. 2.21), and it can be expressed by the formula (α is a small parameter):

Figure 2.22: Spectral weight transfer in

Bi2223. Phonon anomalies denoted by A, B,

C.

σSC
1 = σN

1

(

1 − α
∆2

ω2

)

(2.11)

In the Bi2223 compound the

absorption peak at 500cm−1 ap-

pears only below Tc. In the con-

text of the JSM model, the spec-

tral weight of this peak is in fact

part of the superconductive con-

densate.

It is the presence of this ad-

ditional spectral weight due to

the transverse Josephson-plasma

mode which leads to the apparent

failure of the FGT sum rule for the

case of Bi2223. Fig. 2.22 displays

the changes of the optical conductivity between the superconductive and the

normal states, ∆σ1 = σ1(10K) − σ1(100K). ∆SW (ω) is the integral in 2.10
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taken from 0 to ω. The inset of fig. 2.22 shows the frequency dependence of

(Nn − Ns)/ω
2
ps, which is proportional to the ratio of the left and right parts of

equation 2.21. Namely, the ratio is 8∆SW (ω)λ2
L/c

2. Physically, it is the ratio

of spectral weight changes between normal and superconductive state to spectral

weight of delta function. The spectral weight of the delta function was estimated

from the imaginary part of the conductivity. According to the FGT sum rule this

ratio should approach the value of 1 for ω ≪ ∆. In clear contradiction, the inset

of fig. 2.22 shows that this ratio acquires a large negative value of about -30 thus

testifying for a striking violation of the FGT sum rule.

2.5.6 Summary

In the summary, we have found firstly that the JSM interprets the c-axis infrared

response of HTSC rather good. However, the model is still on the phenomeno-

logical level. Secondly, the spectral weight transfer in Bi2223 compound does not

obey the FGT sum rule which is valid for the case of ordinary superconductors.



Chapter 3

Pseudogap

3.1 Introduction

The superconductive energy gap is one of the most important properties of con-

ventional superconductors. In the infrared range it manifests itself as a suppres-

sion of the conductivity below a certain frequency. From the experimental data

one can thus determine the magnitude of energy gap. In the c axis spectra of the

high temperature superconductors only a gradual and partial suppression of the

conductivity is observed, which furthermore sets already in the normal state at

temperatures well above Tc. This partial suppression of the c-axis conductivity

is interpreted in terms of the so-called pseudo-gap (PG) phenomenon which has

been observed by a number of other spectroscopic techniques and thus seems to

be a generic feature of the charge dynamics of underdoped HTSC. From trans-

port theory it is known that the c-axis conductivity is related to the density of

excitations (in the incoherent limit). This allows to define the PG as the in-

complete depression of the excitations below the energy 2∆ corresponding to the

frequency below which the conductivity is partially suppressed. The pseudo-gap

can be measured by different techniques from which one can deduce the density

of excitation states. So, the PG has been also observed by specific heat [38, 39],

angle resolved photoemossion[37], and tunnelling spectroscopy[40]. All these dif-

ferent techniques yield a similar energy scale of the gap 2∆. Therefore, one can

conclude that the same PG phenomenon is probed by these different techniques.

However, one should also mention that in some theoretical papers the authors

adopted the point of view that the PG measured by other techniques is different

from the c-axis PG in conductivity[41].

84
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The origin of the PG is not established yet. Several controversial models have

been proposed. One group of models assumes the existence of preformed Cooper

pairs in the normal state, and explains the PG in terms of a precursor super-

conductive state that is lacking macroscopic phase coherence. A second class

of models assumes that the PG is unrelated to superconductivity. For exam-

ple, the idea of spin-charge separation (which was proved only for 1D systems)

speculatively extends to quasi-2D systems. In this case, there are two kinds of

quasi-particles: charged holons with zero spin and spinons which have zero charge

and spin 1/2. Spinons pair to form a gap which is called spin gap or PG. The

other proposals suggest metallic stripes as a quasi 1D system approximately de-

scribed by a 1D electron gas model with spin charge separation. These stripes

presumably can exist above Tc, and this is the reason of the PG. An extension of

this model suggests that the PG results from the anti-ferromagnetic correlations

in the stripes. These AF correlations appear only below the PG temperature T ∗

while the charge stripes appear at higher temperature. The argument against this

model is that the stripes are not pure 1D system since the interactions between

the charges in different stripes plays some role. This makes a model based on

independent 1D stripes rather unrealistic. Concerning the preformed pair model,

the most significant counter argument is related to the very high values of the PG

temperature T ∗ which for strongly under-doped Y123 even exceeds room temper-

ature. It is difficult to believe that Cooper pairs exist at such high temperature.

The second argument, which will be considered in this thesis is related to the

effect of magnetic impurities like Ni on the PG. Below, it is shown that by intro-

ducing Ni impurities the superconductivity can be completely suppressed, and,

at the same time, the PG energy scale becomes strongly enhanced.

In the following chapter, a number of spectroscopic techniques (other than IR

spectroscopy) are introduced, and it is discussed what information they provide

about the normal state pseudogap.

3.2 Angle resolved photoemission

Angle resolved photoemission (ARPES) is a powerful technique to probe the

superconductive gap. This technique is based on the photoelectric effect. High

energy photons with an energy of about 20eV are selected by a monochromator

and illuminate the surface of a HTSC crystal in high vacuum. Behind the sample
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a photoelectron detector is placed that can be set to different angles relative to

the crystallographic axes of the crystal. Eventually, one measures the dependence

of the intensity on the energy of incident photons and the angle. For materials

with a 2D electronic structure, the angular dependence can be converted to the

dependence on an electron momentum ~k parallel to the surface.

Figure 3.1: Idea of the ARPES measurement of the superconductive gap.[42].

To measure the superconductive gap by ARPES one uses a reference metal,

which has electric contact with the superconductive crystal (see fig. 3.1). The

reference metal and the superconductor thus have the same Fermi level, and

the difference in photoelectron energies of two electrons emitted from the super-

conductor and the metal is equal to ∆ characterizing the superconductive gap.

Therefore, the ARPES can probe the energy and momentum of the electrons in

filled states below the Fermi level. The complete theory is given in [43]. The

intensity on the detector depends on the electron energy ek measured from Fermi

level, and the momentum component parallel to the surface k:

I(~k, ω) = I0(~k)f(ω)A(~k, ω), (3.1)

where A(~k, ω) is the spectral function, ω characterizes the photoelectron energy

relative to the Fermi level. In the rough approach of non-interacting fermi-liquid

the line width is neglected A(~k, ω) = δ(ω−ek). For real materials, more elaborate
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models have to be applied to calculate A(~k, ω) [43] and the line has a certain

width.

Figure 3.2: Fermi surface of Y Ba2Cu3O6.9 mapped by ARPES[44]. On the left
side the intensity corresponding to point (1) is plotted. On the right plot, filled
circles indicates points which band crosses Fermi level; open circles are the points
where Fermi level crossing is not detected. The dashed lines indicate theoretical
prediction of Fermi surface[45].

Since HTSC are quasi 2D materials, they are ideal for ARPES investiga-

tions. The whole Fermi surface can be mapped using ARPES. Fermi surface of

Y Ba2Cu3O6.9 crystal[44] is plotted in fig 3.2. The Fermi surface corresponds to

the transverse momentum where quasi-particle peak disappears as it moves to

zero frequency. The pseudo-gap and the superconductive gap can be determined

by monitoring the evolution of intensity peak at the (π, 0) point. The study of

the PG are mostly done on the Bi2212 compound, which has two Cu-O layers

as Y123, but does not contain the chains. The PG manifests itself as a quasi-

particle (QP) peak at the k vector (π, 0) or (0, π) (see fig. 3.3. The peak position

and the peak leading edge does not change in the temperature range below T ∗

which corresponds to the PG temperature. Below Tc the sharp peak starts to

develop and its position does not change as well. The sharp peak is associated

with the superconductive gap. Meanwhile, the SC gap and the PG can not be

distinguished from each other. Generally, there are two possibilities to identify

the gap: using the peak position, and using the leading edge. Therefore, one can

define a low energy PG (leading edge) and a high energy PG (peak position). The

PG has d-wave k-dependence plotted in fig. 3.3(b). Interesting, that the peak
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Figure 3.3: ARPES study of the PG in Bi2212 and Dy-Bi2212: (a) Temperature
dependence of photoemission spectra at k = (π, 0) point[42]. Sharp peak grows
below Tc = 79K. Its energy does not change with temperature, suggesting that
the gap does not close at Tc. Inset shows the Fermi surface.; (b) k dependence of
the pseudo gap (peak position) [46] for different doping. It shows d-wave nature
of the gap; (c) the quasi-particle peak corresponding to the PG for the crystals
with different doping [46].

position in insulating Ca2CuO2Cl2 compound also shows the angular dependence

so that the total gap is the sum of the Mott gap and the d-wave gap. The doping

dependence of the PG is shown in 3.3(c). With increasing doping the QP peak

becomes sharper and the peak position shifts toward low energies. It is similar

to dependence of T ∗ on the doping. The amplitude of d-wave gap also decreases

with increasing doping according to fig. 3.3(c), since the line becomes less tilted

at high doping. Interesting result on optimally doped Bi2212 has been published

in [47]. The sample has been measured with ARPES and AIPES(angle integrated

photoemission), and the behavior of QP peak which is related to the PG has been

observed. It was found that in ARPES the peak disappears at the temperature

T ∗, which is a bit higher than Tc. At the same time, in AIPES the peak exists up

to temperature about 200K. The AIPES measures the intensity integrated over

all possible k, and therefore it measures some kind of an averaged d-wave gap over

the Brillouin zone. The authors of that paper speculate about existence of two
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pseudo-gaps, the first large one being associated with the temperature 200K, and

the second small one with T ∗. So, there are many controversial interpretations

of the ARPES data. The latest ideas can be found in [48]. Two facts concerning

ARPES data are presently more or less established: the gap does not vanish at

Tc, and the gap has a momentum dependence assembling d-wave symmetry.

3.3 Scanning tunnelling spectroscopy and mi-

croscopy

The PG in HTSC can be also measured by tunnelling spectroscopy. Tunnelling

spectroscopy measures the density of states near the Fermi level (see fig 3.4).

Figure 3.4: Tunnelling spectroscopy: at zero voltage no current flows between
normal metal and superconductor fig. (a); if V < −∆ electrons from the filled
states in superconductor flow into empty states of the metal above Fermi level,
and the current is proportional to the difference V and ∆. [42].

Usually, a sample consist of two layers: an insulating layer grown on the

superconductor and a normal metal layer or superconductor on top. If no voltage

is applied to the metal and the two systems are in equilibrium, then their Fermi

levels are equal. If an external voltage is applied to the metal so that it exceeds

∆/e, the electrons tunnel from the metal through the insulator to the unoccupied

states in the superconductive layer. A peak in the density of states was observed

just above the gap edges for the case of ordinary superconductors. This means

that the peak in the tunnelling conductance can be observed near the voltage

eV = ∆ (see fig 3.5). If one changes the polarity of the voltage then the electrons
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Figure 3.5: Pseudogap in tunnelling conductance: a feature at zero bias which
vanishes well-above Tc is interpreted as the PG[42].

tunnel in the opposite direction: from the superconductor to the metal, and there

will be a gap in the conductance with the width 2∆ centered on the Fermi level

at zero bias.

A similar technique is tunnelling microscopy (STM). It allows to obtain the

atomic scale images of the crystal surface. The principle of STM is as follows:

a very sharp needle (so that only single atom projects from its end) is moved

in a controlled fashion close to the surface of the crystal. Under small external

voltage the tunnelling current appears as the needle approaches the surface. There

is quite a strong interaction between the atom at the end of the needle and the

electron cloud of the surface atoms. By scanning the whole crystal surface one

can obtain an image in atomic resolution. With STM one can measure the PG

locally on specific points of the surface, while ordinary tunnelling spectroscopy

only provides the information about integrated current over the entire active

surface area. In HTSC, because of the short coherence length, the tunnelling

probes the density of states only within a few atomic layers near the surface.

Therefore, these measurements require an extremely high quality of the surface.

The most reliable results are obtained from experiments where the tunnelling

barrier has been prepared by vacuum cleaving.
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Most of the tunnelling experiments were performed on Bi2212 crystals. This

allows comparing the results with ARPES data. So, recent STM measurements

[49] reveal that the electronic states at low energies within the PG exhibit spatial

modulations having an energy independent incommensurate periodicity. The re-

Figure 3.6: STM measurements of density of states (DOS) for Bi2212. Spatial
dependence at 100K is shown. The measurements were taken using a standard
ac lock-in technique with initial tunnelling current IT , initial sample bias VS, and
bias modulation 4mV rms. (A) typical conductance spectrum (IT = 100pA and
VS = −150mv) shows the PG at Fermi energy; (B) A typical STM topograph
taken at constant IT = 40pA, VS = −150mv over 450Åby 195Åfield of view
shows atomic corrugations and the incommensurate modulation along the b axis;
(C,D,E,F) real space conductance maps recorded simultaneously at 41mV(C),
24mv(D), 12mV(E), and 6mV(E) show appearance and evolution of DOS mod-
ulation along the Cu-O bond direction. Also evident from these maps is the
presence of electronic variations associated with defects (Zn and other) and the
dopant inhomogeneity of the material system [49].

lation between the spatial modulation and the PG can be found if one calculates

the 2D Fourier transform to obtain the dependence of the Fourier amplitude on

the in-plane wave vector. One can distinguish three kinds of peaks on the Fourier

transform diagram: peaks corresponding to atomic sites, secondary peaks cor-

responding to the b axis incommensurate structural modulation, and the peaks

along the (π, 0), (0, π) directions. The last group of peaks is related to the PG.

These peaks can be detected only if eV energy is less than ∆ps, and they increase

in intensity with reduced energy. In real space the characteristic length of this
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modulation associated with the PG is about 4.5a0, where a0 is the Cu-Cu dis-

tance. The characteristic period of this modulations is energy independent in the

PG regime (but the intensity of the peaks depends on the energy), while in the

superconductive state the length scale depends on the energy. This is supposed to

be an important difference between the PG and the SC gap related modulations

[49]. Interestingly, similar modulations have also been observed at low tempera-

ture inside vortex cores that are induced by an external magnetic field[70]. This

observation suggests that the suppression of the SC state inside the vortex cores

leads to the formation of the pseudogap state.

Doping dependence of the tunnelling spectrum is plotted in fig. 3.7. The

gap is identified as the distance between two peaks. The temperature, at which

spectrum was measured, is 4.2K (superconductive state).

Figure 3.7: Doping dependence of tunnelling

spectra of Bi2212 measured at 4.2K[42].

If we compare these data with

ARPES results the same tendency

is observed: with increasing dop-

ing the magnitude of the gap pro-

portional to the distance between

two peaks. However, the energy

scale of the gap corresponds to

the leading edge gap in ARPES,

not to the peak positions (see fig.

3.3). The distance between peaks

does not change with tempera-

ture in the superconductive state.

This is also in agreement with the

ARPES and optical conductivity

data. The second possible deter-

mination of the pseudogap energy

from the tunnelling spectrum is

the half-width of the dip. It is about two times less than the distance between

peaks, and can not be compared even with the leading edge gap. Note, that these

two peaks also exist above in optimally doped and overdoped samples where they

disappear right at Tc. This means that it is impossible to distinguish the pseu-

dogap from the superconductive gap in the tunnelling data.

In conclusion, the STM data provide important information about the spatial
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modulation related to the pseudogap as well as about its energy scale and dop-

ing dependence. The tunnelling data are quite consistent with the results from

ARPES and optical conductivity measurements.

3.4 Nuclear magnetic resonance NMR

Figure 3.8: Top diagramm shows

planar Cu site spin-lattice relaxation

rate in optimally doped Y Ba2Cu3O6.95

(squares) with Tc = 95K, and under-

doped Y Ba2Cu3O6.64 (circles). Bottom

diagram shows Cu Knight shift for the

same samples.

Nuclear magnetic resonance spectroscopy

is a powerful technique to study mag-

netic properties of solid state materials,

which are related to the spin. The sim-

plest, so called continuous wave NMR

technique, corresponds to a radio fre-

quency spectroscopy experiment in a

magnetic field. In the framework of a

quantum mechanical description the lo-

cal magnetic field at the nuclear site

leads to a Zeeman-splitting of the nu-

clear states according to different quan-

tized values of the z-component of the

nuclear magnetic moment. The energy

is highest for those states where the

magnetic moment of the nuclei opposes

the magnetic field. The absorption of

photons from the radio-frequency field

is possible only if their energy corre-

sponds to the Zeeman-splitting between

these discrete nuclear levels. The ab-

sorption frequency is thus determined

by the type of nucleus and the ampli-

tude of the magnetic field at the nuclear

site. In a continuous wave NMR exper-

iment one measures this resonance fre-

quency, either by scanning the frequency

or by varying the magnetic field.

The local magnetic field at the nuclear site is determined by the sum of the
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external field plus the field which arises from the environment in which the nu-

cleus is embedded, for instance, in a metal the hyperfine interaction between the

conductive electrons and the nuclei. This so-called Knight shift due to the polar-

ization of the charge carriers was first observed by D. Knight [54]. In non-metallic

materials the magnetic field from core electrons plays a similarly important role.

This so called chemical shift is typically an order of magnitude smaller than the

Knight shift in good metals.

If we consider the NMR signal on a macroscopic level we have to introduce

the the net magnetization vector, which is proportional to the sum of the mag-

netization of all the nuclei in the sample. In a constant magnetic field this net

magnetization has a large z-component which is parallel to the applied magnetic

field while the transverse component is close to zero. In the so-called pulsed

technique one applies a short pulse (the duration is inversely proportional to the

Larmor frequency) of high intensity at the Larmor frequency such that the net

magnetization is rotated into the x-y plane. After this pulse the net magneti-

zation will exhibit a free precession in the constant magnetic field. Dissipative

processes will lead to a relaxation of net magnetization back to the ground-state

with the magnetization parallel to the z-axis. The time scale for the recovery of

the z component of net magnetization vector is called the spin lattice relaxation

rate, 1/T1. The relaxation time of the transverse component contains contribu-

tions from the dynamics processes, i.e. from T1, as well as from the de-phasing

effects of the individually precessing moments due to a static variation of the

local magnetic fields at the different nuclear sites which is usually described in

terms of the spin-spin relaxation rate, 1/T2.

In theory, the Knight shift is proportional to the real part of spin magnetic

susceptibility and indicates the spatially uniform polarization of the electrons in

a magnetic field. The spin-spin relaxation rate is related to the spatial variation

of the real part of the spin susceptibility. The spin lattice relaxation rate is

related to the imaginary part of electronic spin susceptibility and thus provides

valuable information about the spin fluctuations. The k-space dependence of

the contributions of the susceptibility of both relaxation rates depends on the

particular nuclear site as well as on the structure of the magnetically ordered

state or the magnetic correlations.

The signatures of the pseudogap have been observed in the Knight shift as

well as in the spin-lattice relaxation rate. In figure 3.8 these two quantities are
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displayed for optimally doped and underdoped YBCO crystals. The Knight shift

of the underdoped sample evidently decreases with reduced temperature in the

normal state signalling a corresponding decrease in the low-energy spin-excitation

spectrum. In contrast for the optimally doped sample the Knight shift is nearly T-

independent in the normal state in good agreement with the Fermi-liquid models.

Figure 3.9: Knight shift for underdoped, op-

timally doped, and overdoped Bi2212[61]

The spin lattice relaxation rate

(1/T1T ) also exhibits a character-

istic T-dependence. In the opti-

mally doped sample it exhibits a

continuous increase with decreas-

ing temperature in the normal

state before it sharply decreases

below Tc. The increase in the nor-

mal state has been attributed to

magnetic fluctuations, which are

enhanced with decreasing temper-

ature but suddenly become sup-

pressed with the onset of the su-

perconductive energy gap. For the

underdoped sample it is clearly

seen that the maximum in the relaxation rate is shifted towards high temper-

ature, i.e. well above Tc. Both features, the T-dependence of the normal state

Knight shift and the shift in the maximum of the 1/T1T relaxation rate have

been interpreted in the framework of the pseudogap phenomenon. The Knight

shift data are commonly interpreted in terms of the suppression of the low-energy

density of electronic states due to the formation of the pseudogap. The deduced

trends indeed seem to agree reasonably well with the ones obtained from other

spectroscopic techniques. Concerning the interpretation of the spin-lattice re-

laxation rate the situation clearly is more difficult and subject of controversial

discussion.

Further NMR investigations have found the pseudogap is also present if one

looks on the spectra of Y and O nuclei in the YBCO compound [58, 59, 60].

These authors claim that the Cu 3d states and O 2p states form a unique spin

system while the Y nuclear spins are most strongly coupled with the spin density
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of the O 2p states. The doping dependence of the NMR Knight shift and the

Figure 3.10: In-plane Cu Knight shift for different directions of the magnetic
field and for different doping - figure (a). Kc is for underdoped Y Ba2Cu3O6.63

and field is along c-axis. Kab is the same underdoped compound, the field is
in ab plane. Solid line is the Kab for overdoped Y Ba2Cu3O7. Figure (b): spin
lattice relaxation time for underdoped (open circles) and overdoped (filled circles)
compounds. Results are taken from [60]

relaxation rate are shown in fig. 3.10. In the underdoped regime the pseudogap

is seen only if the magnetic field is parallel to the ab plane. The c-axis Knight

shift is almost temperature independent in YBCO. In the Bi2212 compound the

Knight shift Kc behaves similarly to Kab [61] (see fig. 3.9). A pseudogap in

Knight shift also exists only in underdoped samples. The spin lattice relaxation

time is nearly temperature independent in the overdoped regime, while in the

underdoped regime it exhibits an increase below the pseudogap temperature T ∗.

This doping dependence of the relaxation time indicates that anti ferromagnetic

spin fluctuations weaken as a function of the hole doping of the samples.

3.5 Raman scattering

Raman scattering is an inelastic light scattering technique. One distinguishes two

kind of processes: in the so-called Stokes scattering an incoming photon is ab-

sorbed by the material, a phonon or another kind of internal excitation is created

and finally a photon with lower energy is emitted. In the Anti-Stokes scattering

the energy of the emitted photon is higher than the one of the incident photon. In

this case an internal excitation is absorbed yielding the additional energy of the
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emitted photon. This kind of second-order inelastic light scattering effect has been

observed for the first time by C.V. Raman [69]. Its intensity is orders of magnitude

weaker than the first order Rayleigh scattering which contributes to the optical

conductivity.

Figure 3.11: Electronic conituum measure by

Raman scattering for underdoped Tc = 65K

Bi2212 as a function of temperature[68]

The Raman spectrum of HTSC

consists of several phonon modes

and a continuum that arises from

the electronic excitations. The

pseudogap shows up in terms of a

suppression of the electronic exci-

tations below T ∗. It shows up in

the electronic background in simi-

lar fashion as in the infrared con-

ductivity in the form of a sup-

pression of the electronic Raman

response below the characteristic

pseudogap energy scale (see fig.

3.11).

The PG phenomenon in Ra-

man scattering has also been as-

sociated with the anomalous T-dependence of a broad peak around 600cm−1

which most likely cannot be associated with a phonon mode but rather must be

assigned to excitations of electronic and/or magnetic origin. This peak hardly

depends on the energy of incident photon, but rather on the polarization state

of the incident and scattered light. With decreasing temperature the amplitude

of the peak increases, and it becomes sharper. At the transition temperature Tc

the integrated intensity of this peak exhibits a further sudden enhancement.

3.6 Specific heat measurements

Specific heat measurements are usually carried out using calorimeters, which

are thermo-isolated systems where one can determine the temperature transfer

between two substances without energy leak. If the specific heat and mass of

a reference material, the initial temperature difference, and mass of a sample
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are known, the specific heat coefficient can be calculated using the first law of

thermodynamics.

Figure 3.12: Specific heat coefficient of

Y0.8Ca0.2Ba2Cu3O7−δ. Figure (a) corre-

sponds to overdoped side δ < 0.29, figure

(b) is underdoped side δ > 0.29[42]

To observe the pseudogap one

needs to separate the electronic

part of the specific heat from the

total specific heat, which is dom-

inated by the phonon contribu-

tion especially at higher temper-

ature. This separation poses a se-

vere experimental problem to the

reliable determination of the T-

dependent changes of the elec-

tronic part of the specific heat.

To overcome this problem several

groups have performed difference

measurements with respect to a

non-doped system, i.e. the in-

sulating Y Ba2Cu3O6 in case of

the Y123, where the free carrier

concentration is absent. The ob-

tained temperature dependence of

specific heat coefficient of several

YCa123 poly-crystalline samples

is displayed in fig. 3.12 for differ-

ent doping levels. The weight of

the peak at Tc can be directly related to the gain in condensation energy in the

SC state. In the normal state, within a Fermi-liquid approach, the electronic

specific heat, γ should remain temperature independent representing the density

of electronic states at the Fermi-level. Such a trend is indeed observed on the

overdoped side as shown in Fig. 3.14a. In clear contrast on the underdoped side

γ can be seen to exhibit a pronounced T-dependence already well above Tc. This

decrease is associated with the pseudogap and interpreted as a partial suppression

of electronic excitations. It starts at T ∗ and has a similar doping dependence like

the normal state pseudogap as seen by other spectroscopic techniques.
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3.7 Other techniques

Finally we mention some further techniques which have been applied to study

the energy scale and the evolution of the normal state pseudogap.

3.7.1 Andreev reflection spectroscopy

An electron can travel through a metal superconductor interface only under the

condition that it combines with another electron of opposite spin on the normal

metal side to form a Cooper pair. It will thus leave behind a hole of opposite

spin in the normal metal. This Andreev reflection happens only if the supercon-

ductive condensate is formed, and it will enhance the conductance of the metal-

superconductor contact. G. Deutcher et al [57] compared tunnelling spectroscopy

Figure 3.13: Andreev spectroscopy data and tunnelling spectroscopy data for
optimally doped YBCO (a), and for underdoped YBCO (b). Modified picture
from [57].

results with Andreev spectroscopy and found that in the pseudogap regime the

energy scales of the two spectroscopic techniques did not agree (see figure. 3.13).

He interpreted this difference in energy scales in the following way. In tunnelling

spectroscopy one measure the energy required to break up a Cooper pair into

independent quasi-particles, whereas in Andreev spectroscopy the relevant en-

ergy scale is given by the coherency energy, i.e. the energy required to break

the macroscopic coherence between the Cooper pairs. Their observation implies

that in underdoped samples these two energies are not identical. With decreasing
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doping the difference between these two energies increases. In the spirit of their

interpretation the pseudogap would be interpreted in terms of preformed Cooper

pairs which cannot maintain phase coherence above Tc.

Figure 3.14: Pseudogap in dc resistivity (a), and doping dependence of dc resis-
tivity (b) [42].

3.7.2 DC resistivity

The signatures of the pseudogap have also been identified in dc resistivity mea-

surements based on anomalous changes in the temperature dependence. For in-

stance, in the in-plane resistivity of underdoped samples frequently a small kink

is observed at T ∗ (see fig. 3.14). The doping dependence of T ∗ deduced from

the resistivity kink is consistent with T ∗ measured by infrared ellipsometry (see

chapter 2) and with the phase diagram of YBCO.

3.8 Interpretations of pseudogap

Stripes

Within the stripe theory the pseudogap is the result of strong spin and charge

fluctuations in the underdoped regime. It assumes that the charge carriers seg-

regate forming quasi one-dimensional regions with high hole concentration and

others with low hole concentrations. The driving force is the avoided frustra-

tion of the AF-exchange coupling in the hole poor regions. Counteracting are

the Coulomb force as well as the reduced kinetic energy of the charge carriers.

The pseudogap in this scenario can be explained in terms of a two liquid model
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where there are superconductive stripes and non-superconductive stripes. With

decreasing temperature the number of superconductive ones increases. There

are also arguments against this model. First, no correlations between pseudogap

characteristics (energy, temperature) and observation of stripes have been found.

Secondly, stripes do not produce the same angular dependence as the pseudogap

in ARPES data. Third, there are difficulties to explain the high energy of the

pseudogap using the stripe scenario.

Anti-ferromagnetic fluctuations

A complete description of this theory can be found in [63]. The basic idea is that

short range anti ferromagnetic fluctuations play an important role in the under-

doped and optimally doped regime. With increasing doping these fluctuations

become weaker and begin to ease on the overdoped side. It is possible to explain

the existence of the pseudogap using the anti-ferromagnetic Fermi liquid model,

which operates with two kinds of quasi particles: so-called hot quasi-particles and

cold quasi-particles [63]. Only the hot quasi particles are strongly coupled to spin

fluctuations. The difference between optimally doped and underdoped regimes is

explained in terms of the reduction of the number of hot quasi-particles in the

underdoped regime. The pseudogap is thus a consequence of the increasing of

spin fluctuations in underdoped regime. According to this model the pseudogap

is unrelated to superconductivity. Arguments against this model are, in principle,

similar to the ones against the stripe idea.

Superconductive fluctuations and preformed Cooper pairs

This theory tries to link the pseudogap with the superconductive gap since both

of them have a similar energy scale and the same d-wave like k-space dependence.

The pseudogap is thought of as some kind of incomplete or partial superconduc-

tive gap. Cooper pairs are formed here well above Tc, but a macroscopically

phase coherent SC state appears only below Tc. Responsible for the suppres-

sion of phase coherence are thermal phase fluctuations which can become very

strong if the amplitude of the SC order parameter is fairly small or spatially

strongly inhomogeneous, accordingly the transition temperature reduces from T ∗

to Tc [64]. However, GHz conductivity measurements [65] have shown that such

a large phase incoherence can be reached only well above T ∗, and this is the most

important experimental argument against this theory. The second theoretical
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idea was that the coherence length or the size of a Cooper pair is too small so

that the superconductivity appears only at Tc when the temperature fluctuations

are small enough. However, this contradicts the measurements of the coherence

length [118].

Spin charge separation scenario

In 1D systems one can consider independently spin and charge parts of the Hamil-

tonian. This is called spin charge separation scenario. One introduces the quasi-

particles, which have a spin but no charge, and others, which have a charge, but

no spin. There are claims that such a scenario might be valid even in 2D systems.

However, a mathematical proof does not exist so far. In this case, the charged

particles (holons) are free to move, and the spin particles (spinons) are coupled

into singlets. The pseudogap really is a spin gap here: it corresponds to the

energy required to spilt the spin singlets. Indeed, the calculated energy of the

spin gap is similar to the one of the pseudogap, ie. it is about 100meV . Within

this model it is more difficult to explain why the pseudogap manifests itself not

only in spin channel but also in the charge channel. Evidently, one has to assume

some kind of coupling between the spin and charge degrees of freedom. Details

of such a coupling have not been demonstrated yet.

Quantum critical point

This group of theories suggests that there is a quantum phase transition at the

point on the phase diagram where a transition temperature goes to zero as a

function of some order parameter. The transition should be between a phase

with a certain kind of order or symmetry and a phase without it. To explain

the pseudogap a quantum critical point near optimally doping state has been

proposed. However, no order parameter has been found so far. Furthermore, it is

not established what kind of symmetry is broken during this proposed quantum

phase transition, and no singularities in thermodynamic properties have been ob-

served around this point. An exotic idea[67] suggests that time reversal and four

fold rotational symmetries are broken at the quantum critical point due to local

ring currents between copper and oxygen ions, but the product of these two sym-

metries is preserved (see [67] for details). So far, no experimental confirmations

of this idea have been found.
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Impurities

4.1 Introduction

Generally, impurities are some ”foreign” ions, which are incorporated into the

crystal in a controlled manner in order to change some of its properties. One

should distinguish them from defects and imperfections of the crystal which are

inherent to the crystal growth process and thus cannot be avoided or handled in

a controlled manner. A classical example is the partial substitution of impurities

with higher (lower) valency in semiconductors which thus act as electronic donors

or acceptors and enable one to vary in a controlled way the number of electrons

(holes) in the conduction (valence) band. A similar doping effect can be achieved

in the superconductive YBCO compound if one substitutes Y 3+ with Ca2+. In

combination with the oxygenation process this is a convenient way to adjust and

control the hole content in this superconductor. Such impurities whose main

effect is to change the hole content are usually called dopants.

In the case of the cuprate HTSC there is a second kind of impurities which have

a profound effect on the normal state electronic and superconductive properties

even though they hardly modify the hole doping state of the CuO2 planes. These

are impurities like Zn, Ni that replace Cu ions within the CuO2 planes. It is

meanwhile well established that these impurities hardly affect the hole doping,

i.e. they maintain a similar 2+ valency like Cu. Unlike the cationic impurities

which reside outside the CuO2 planes, these impurities lead to strong potential

scattering of the charge carriers. This potential scattering introduces a k-space

mixing of the electronic states and thus leads to severe destructive interference

effects in the presence of a SC order parameter with a d-wave symmetry, i.e. for

103
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the case of HTSC. It is indeed observed that only a few percent of non-magnetic

Zn impurities are sufficient to fully suppress SC in the cuprate HTSC. The Tc

suppression even seems to be more rapid for non-magnetic Zn-impurities than for

the case of magnetic Ni-impurities. It has been argued that this difference arises

from the tendency of Ni impurities in the 123 compound to partially occupy both

the in-plane Cu(2) as well as the Cu(1) chain sites. To the contrary, Zn impurities

have been shown to exclusively occupy the in-plane Cu(2) site in Y123 at least at

small concentrations. The lower rate of Tc suppression in Ni-impurity substituted

samples thus has been explained in terms of a much weaker pair-breaking effect

from Ni-impurities on the Cu(1) chains site.

While the influence of these Zn and Ni impurities on the superconductive

state has been studied in very much detail, the present work is mostly concerned

with the corresponding impurity related effects on the pseudogap phenomenon.

In particular, we have concentrated on the ground state properties once supercon-

ductivity is fully suppressed by introducing a sufficiently large amount of these

pair-breaking impurities.

4.2 Theoretical background

There are two generic theoretical approaches to describe impurities: the effective

mass method and the Greens function formalism. The effective mass theory

reduces the problem to solving a Schrödinger equation with an effective potential,

that accounts for the difference between the actual potential and the pure lattice

potential. In this approximation, the complexity of the perfect lattice potential

is represented by an effective mass and dielectric constant. The problem is thus

reduced from a (N+1) body problem to an effective one body problem. This

theory describes very well the case of donors and acceptors in semiconductors.

The second method is the so-called Greens function method, and it is more

precise than effective mass approach. In this theory the impure system is de-

scribed by the Greens function of the Schrödinger equation, in which one in-

cludes a local perturbation potential describing an impurity. In this approach

one can consider magnetic and non magnetic impurities in magnetically ordered

(ferromagnetic or anti-ferromagnetic) materials.
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4.2.1 Effective mass method

The complete evaluation of the effective mass equation can be found in the lit-

erature [71]. Here we only specify the approximations involved in this method.

The initial single particle Schrödinger equation to solve is

(H0 + U)Ψ = EΨ, (4.1)

where H0 is Hamiltonian in the case of a perfect crystal, U is the perturbation

potential due to the impurity. One can write the wave function Ψ(r) in the basis

of the functions of the impurity free crystal like:

Ψ(r) =
∑

n′

∫

d3k′Φn′(k′)ψn′(k′, r), (4.2)

where Φn(k) are the amplitude functions. The perturbation potential can be also

presented by its Fourier transform:

U(r) =
(

1

2π

)3 ∫

d3U(k) exp ikr (4.3)

The electron wave function in the impurity-free lattice can be expressed through

the Bloch functions ψn(k, r) = un(r) exp ikr. Substituting Ψ and U in 4.1 we can

deduce the following equation:

(En(k) − E) Φn(k) +
∑

n′

∫

d3k′Φn′(k′)
∑

m

ann′

m U(k − k′ + km) = 0, (4.4)

where km are the reciprocal lattice vectors of the impurity-free lattice. At this

point the following two approximations are made. First, the Fourier components

of the potential outside the first Brillouin zone are neglected so that
∑

m a
nn′

m U(k−
k′ + km) = ann′

0 U(k − k′). Second, we can eliminate interband terms n 6= n′ so

that ann′

0 = (1/2π)3δnn′ . In this approximation 4.4 can be written in the form

(En(k) − E) Φn(k) +
1

(2π)3

∫

d3k′Φn(k′)U(k − k′) = 0 (4.5)

If one introduces the envelope function

Fn(r) =
∫

d3kΦn(k) exp ikr, (4.6)
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equation 4.5 can be simplified to:

En(−i∇)Fn(r) + U(r)Fn(r) = EFn(r) (4.7)

Finally, if we substitute En = −h̄2/(2m∗) (m∗ is the effective mass) we obtain

the effective mass equation for the envelope function F(r):

(

− h̄2

2m∗
∆ + U(r)

)

F (r) = EF (r) (4.8)

This substitution is only possible if the band is isotropic, parabolic, and non-

degenerate. If these conditions are not fulfilled one has to use equation 4.7 di-

rectly. It can not be solved easily.

The potential U(r) can be taken in the form

U(r) =
e

4πεr
(4.9)

if the electron cloud is much larger than the lattice constant. In this case, the

equation 4.8 transforms to the equation of the Bohr hydrogen atom:

− h̄2

2m∗
∆F (r) + (

e

4πεr
− E)F (r) = 0. (4.10)

The corresponding energy levels are En = e4m∗/(32π2ε2n2h̄2).

We once more list the approximations of this method. Firstly, the interband

term is excluded. That means the k vector is close to the minimum k0 and

varies in a narrow range so that (h̄∆k)2/2m∗ ≪ Eg (Eg is the band energy

gap). Secondly, the impurity potential U(r) varies slowly so that only its Fourier

components in the first Brillouin zone need to be considered. Third, the band

is isotropic, parabolic, and non-degenerate. Forth, we have hydrogenic type of

impurity.

In practice, this theory works quite well for donor impurities in semiconduc-

tors. For most acceptors the valance band is degenerate and one can not use this

simple equation. In this case, the more complex equation 4.7 has to be solved.
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4.2.2 Green function method

The Greens function method is coming from the theory of linear response. Briefly,

one considers the Hamiltonian H = H0 +V , where V is small and can be treated

as a perturbation. In this case, the expectation value of an observable quantity

Q(t) in the ground state |G > of H in the presence of the perturbation will be

modified according to the ratio:

< G|Q(t)|G >→< G|U−1(t)Q(t)U(t)|G >, (4.11)

where U is the evolution operator

U ∝ exp(− i

h̄

∫ t

−∞
V (t′)dt′) (4.12)

If one keeps only the linear terms in the Taylor expansion of the exponent the

effect of perturbation to Q(t) simplifies to

δ < G|Q(t)|G >=
i

h̄

∫ t

−∞
dt′ < G|Q(t), V (t′)|G > . (4.13)

Afterwards, one can introduce the ”force” f(t) so that V (t) = f(t)Q(t). Then,

4.13 assumes the form

δ < G|Q(t)|G >=
i

h̄

∫ t

−∞
dt′f(t′) < G|Q(t), Q(t′)|G >=

∫ t

−∞
dt′f(t′)χ(t− t′),

(4.14)

where χ(t) is the generalized susceptibility, a coefficient between the change of

expectation value and the force. It should be a response function because of

causality, i.e χ(t < 0) = 0. The quantity < G|Q(t), Q(t′)|G > is the density

matrix ρ(r(t), r′(t′)) evaluated in the state |G >. Single particle Green function

is

G(r, t; r′, t′) = −iρ(r, t; r′, t′), t > t′ (4.15)

The Greens function is also proportional to the susceptibility G(t−t′) ∝ χ(t−t′).
The Green’s function can be presented as the matrix Gmn(E) if one uses the

eigenfunctions of the stationary Schrödinger equation HΨ = EΨ as a basis.

Then

G(r, r′, E) =
∑

mn

Gmn(E)Ψm(r)Ψ∗
n(r′) (4.16)
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From 4.15 and 4.16 one can deduce the density of states g(E):

g(E) = − 1

π
ImTrG(E), (4.17)

Substituting 4.16 to the definition of Green function (H−E)G(r, r′) = −δ(r−r′)
one can find that

Gmn =
δmn

E − Em

(4.18)

This ratio can be written in operator form if one introduces the Green function

operator

G(E) =
1

E −H + iδ
, (4.19)

here iδ is the small imaginary part, which is added because of the causality

principle. The Fourier transform of the Green function should not have poles in

the upper half-plane since G(t) = 0 for t < 0.

If we consider the Hamiltonian H = H0 + V , where V is due to impurities,

the perturbation theory gives the following transformation of the Green’s function

operator G(E):

G(E) = G0(E) +G0(E)V G(E), Gnm(E) = G0
nm(E) +

∑

pl

G0
np(E)VplGlm(E),

(4.20)

where G0 is the Green’s function of the unperturbed equation. Using 4.17 and

4.20 one can obtain the density of states g(E). This is the basic idea of the

Green’s function method.

4.2.3 Some theoretical results

Next we consider some theoretical conclusions, which arise from the application

of the Green’s function method to different types of perturbation potentials and

the initial unperturbed Hamiltonian H0. The complete evaluation will not be

presented here since the theory is quite complex and it is not the main purpose

of this thesis. The complete evaluations can be found in [72].

First we consider the effect of a single impurity atom with Vnm = u0δn0δ0m.

Such an impurity results in a density of states corresponding to a single impurity

level, or virtual resonance level which depends on 1/u0, the density of states in the

impurity-free crystal g0(E) and the Green’s function of the impurity-free crystal

G0(E). This is illustrated in figure 4.1. Figure (a) shows 1/u0, ReG0(E), and
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Figure 4.1: Density of states in a crystal containing a single impurity atom. From
ref. [72]

g0(E). If the 1/u0 is large as illustrated in case 1 the line does not cross the one

of ReG0(E) and the density of states is not strongly modified by the impurity

(case 1 in fig. 4.1 (a)). For scenario 2, we have two crossing points within the

band E ′
0, E

(V )
0 so the impurity produces a virtual resonance level that lies within

the band corresponding to the peak at E
(V )
0 . E ′

0. Finally, for case 3 where the

crossing points is outside the band one obtains a localized impurity level at E
(L)
0 .

If one considers a single magnetic impurity atom in a ferromagnetic or an

anti-ferromagnetic crystal, the spin exchange interaction and the impurity spin

vector have to be taken into account. The important parameters are the ratio

of spins S ′/S, the ratio of the exchange integrals I ′/I and the direction of the

impurity spin. The prime denotes the impurity here. The symmetry of the crystal

structure is also important, since it determines the number of atoms neighboring

the impurity. These atoms play a major role in the interaction with the impurity.

Although, the theory becomes more complex the results are, in principle, similar

to the case of a non-magnetic perturbation: depending on the parameters S ′/S

and I ′/I one gets either localized impurity levels or a virtual impurity resonance

within the band.

If the concentration of impurities is high enough, the interactions between the

impurity atoms has to be taken into account. It produces impurity bands instead

of impurity levels.

4.3 Impurities in ordinary superconductors
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Figure 4.2: Tc versus Gd concentration in

La1−xGdx superconductor[75].

The key issue in ordinary super-

conductors related to impurities

was the explanation of supercon-

ductivity in type II superconduc-

tors (Nb3Sn, Nb3Al) which con-

tain impurities. This problem

was independently solved by A.A.

Abrikosov, L.P Gor’kov [74], and

P.W. Anderson [73]. Presently,

it is known as Anderson theorem.

It states that non-magnetic im-

purities do not give rise to pair-

breaking effects, at least not as

long as the concentration of im-

purities is low. At high con-

centrations, when the interaction

between impurities becomes size-

able, superconductivity can be de-

stroyed when the vibrations of the phonons exhibit large changes within the area

of a coherence length. Magnetic impurities are active pair breakers and, therefore,

even low concentrations of magnetic impurities rapidly destroy superconductiv-

ity (see fig. 4.2). At high concentration of paramagnetic impurities long range

ferromagnetic order was observed [75].

Non-magnetic impurities play a fundamentally important role in the conven-

tional superconductors only in terms of their influence on the vortex dynamics.

Various kinds of impurities have indeed been investigated in terms of their ability

to provide pinning centers which reduce the electromagnetic losses from vortex

flow. These kinds of impurity induced effects on the vortex dynamics are also of

great interest in the case of HTSC, but they will not be further discussed in this

thesis.
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4.4 Magnetic and non-magnetic impurities in

HTSC

The effect of impurities in high temperature superconductors is presently not

completely understood, in spite of the intensive theoretical and experimental ef-

forts in this area. So far, three facts are more or less established. Firstly, non

magnetic impurities suppress Tc at least as fast as magnetic impurities. This

highlights that potential scattering in the presence of an unconventional d-wave

symmetry order parameters and subsequent destructive interference effects play

the major role in the Tc suppression. Secondly, non-magnetic Zn impurities are

exclusively incorporated on Cu(2) sites within the CuO2 planes, while the mag-

netic Ni also partially occupy the Cu(1) chain site of the 123 structure. Third,

both Zn and Ni impurities do not significantly modify the hole content.

In this section we summarize the experimental STM and NMR results. A

detailed discussion of the neutron scattering data is not included here. It should

be only briefly mentioned, that it was found that Ni and Zn have a rather different

influence on the magnetic resonance peak as measured by neutron scattering. The

addition of Zn strongly broadenes and increases the intensity of the resonance

mode. The resonance mode furthermore does not sharply vanish any more at

Tc but persists to elevated temperature T ≪ Tc even in optimally and slightly

overdoped samples. To the contrary, the Ni-impurities mostly lead to a red-shift

of the resonance mode. The broadening and the weight gain of the mode is far

less pronounced. The reason for this behavior is presently unknown [137].

4.4.1 Reduction of Tc

In high temperature superconductors the effect of magnetic and non-magnetic

impurities is different than in ordinary superconductors. Obviously Anderson’s

theorem does not apply anymore: non-magnetic impurities like Zn are at least

as effective in suppressing superconductivity as magnetic ones. The evolution of

the superconductive transition temperature versus Ni and Zn impurity content

is plotted in fig. 4.3. Two curves correspond to each compound. Evidently,

Ni decreases Tc at a slower rate than Zn. Consequently, the lower curve always

corresponds to the case of Zn. As discussed above, in YBCO there are two

different Cu sites, Cu(2) on the planes and Cu(1) on the chains, which can be

occupied by the impurities. Meanwhile it has been established that Zn goes



CHAPTER 4. IMPURITIES 112

Figure 4.3: Superconducting transition temperature versus Zn and Ni concen-
tration [50].

exclusively on the planes, while Ni tends to partially occupy both sites. The

relative occupation of the chain and plane sites by Ni can in fact be modified

during a high temperature annealing treatment in oxygen rich (Ni prefers the

chain site) or oxygen poor (Ni prefers the plane site) environment. The reduction

rate of Tc upon Ni substitution thus becomes dependent on the thermal history

of the sample. This is nicely demonstrated in the right panel of fig. 4.3.

These results highlight that the main pair-breaking effect comes from impu-

rities which give rise to strong potential scattering of the charge carriers within

the CuO2 planes. This is closely related to the d-wave symmetry of the un-

conventional order parameter which changes sign in k-space. In the vicinity of

the nodes (where the order parameter disappears and changes sign) the k-space

mixing associated with the potential scattering thus can give rise to strongly

destructive interference effects which lead to a very rapid suppression of super-

conductivity. From the experimental data it appears that the magnetic moment

of the Ni-impurities plays a minor role in the Tc-suppression if any at all.

4.4.2 Tunnelling spectroscopy results

As it was discussed in Chapter 3, tunnelling spectroscopy provides direct infor-

mation about the density of states near the Fermi level. Tunnelling microscopy

STM can produce atomic scale images of the crystal surface, measuring the tun-

nelling current at different points. Therefore, this technique is useful not only to

study the pseudogap in pure samples, but to investigate the effect of impurities.

It should be mentioned that most of STM experiments have been performed on
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BSCCO single crystals.

First of all, it is necessary to mention that in real crystals there are also some

natural defects, like missing Cu or O atom etc. Therefore, one investigates three

things: magnetic Ni impurities, non-magnetic Zn impurities, and natural defects.

The first feature being seen in STM is that there are regions with smaller and

larger values of the local gap ∆. If one puts impurities in the system the size of

the area with a smaller value of the gap is increasing as shown in fig. 4.4. The

STM image of the pure underdoped crystal is on the left side, and the image of

the Ni impurity is on the right. One can see that the red area corresponding to

the smaller value of the gap is much larger in the crystal with impurities. The

typical size of this areas is about 2-3 nm. Variations of the local gap as large

100% are apparent.

STM can also resolve a single impurity atom in the crystal. STM images

of BSCOO are shown in fig. 4.5. Zn and Ni impurities have characteristically

different patterns in the STM image and different resonance levels in the density

of states. The pattern near the Ni impurity looks similar to the pattern of a

natural defect. Ni introduces two energy levels which are shifted from the center

of the gap and are seen only at positive bias of the single atom site, and only

at negative bias close to the nearest neighbor sites. This can be explained in

terms of an electron hopping to the impurity site. It creates holes on the nearest

neighbor atom. Due to the spin of the Ni we have two levels. Zn introduces one

level, which lies almost at the center of the gap (at -1.5meV). Natural defects

manifest themselves as a resonance level at the center of the gap.

Many theoretical investigations have been reported to explain the tunnelling

and STM results as shown above. The resonance levels in the density of states

can be explained using classical BCS theory with the assumption that the super-

conductive gap has d-wave symmetry in k-space[79, 80, 81]. The starting point

of the model is a square lattice with one electron per site corresponding to the

CuO plane in the underdoped compounds. The electron spins (S=1/2) are anti-

ferromagnetically correlated. The doping of the system with holes corresponds

now to the creation of empty sites. Above a certain hole concentration the elec-

trons will be able to hop from one site to another. In the vicinity of an impurity

atom substituting for Cu, the interaction between impurity spin and the spin of

electrons has to be taken into account. In addition, the potential scattering due
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Figure 4.4: STM image of a pure underdoped BSCOO crystal (a), and an ”as-
grown” slightly overdoped crystal with 0.5% Ni (b). Figure from [77].

Figure 4.5: Local density of states map and tunnelling current near Ni(a), Zn(b),
and natural defect (c). The size is 50x50Å. Ni shows two resonances at +9 and
+18meV; Zn has resonance peak at -1.5meV; Natural defects correspond to the
peak at 0eV. Slightly overdoped BSCCO crystals. Tc is about 85K. Black curve
corresponds to the tunnelling current at the point far from an impurity. The
impurity content is about 0.6% Zn, and 0.2% Ni. Figure from [77].
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Figure 4.6: Local density of states map for Ni impurities (a, b), and Zn impurities
(d) in BSCOO; T = 4.2K; bias voltage is +9mV(a), -9mV(b), 0V (d). (c) is the
constant current topograph of the same Zn doped crystal. The current is 100pA.
Modified figure from [76]
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to the different Coulomb interaction with the impurity has to be take into ac-

count. Using the Green’s function method and BCS theory one can thus calculate

the density of states, and its spatial modulation. The result is shown in fig. 4.7.

The frequency Ω of the additional impurity levels depends on the magnitude of

the superconductive gap ∆0, the density of states at the Fermi level per site NF ,

the Coulomb energy of an electron orbiting the impurity ion U , and the energy

of the magnetic spin exchange interaction between the electron and the impurity

W . The approximate equation can be written as

Ω = − ∆0

2NF (U ±W ) ln [8NF (U ±W )]
(4.21)

Figure 4.8: Y NMR spectra of Y123:Zn

crytals[82]

Accordingly, non-magnetic im-

purities with W = 0 create one ad-

ditional level, while magnetic im-

purities withW 6= 0 create at least

two levels. In figure 4.7 the case of

a non-magnetic impurity is shown.

For Zn impurities, this model gives

good results that are comparable

with the experiment [78]. The spa-

tial modulation of the local density

of states should be symmetric rel-

ative to the nodes of superconduc-

tive gap as is shown in fig. 4.7b.

This theoretically predicted mod-

ulation is not accurate enough for

the case of Zn impurities, but for Ni impurities it more or less coincides with the

experimental results as plotted in fig. 4.6.

4.4.3 NMR results

Nuclear magnetic resonance spectroscopy is a well suited technique for the study

of magnetic effects caused by impurity atoms. The spin lattice relaxation time

usually gives information about different kinds of magnetic correlations around
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impurities. The amount of information may even be a bit too large and com-

plex since a unique model that explains all the aspects of the NMR experiments

in high temperature superconductors with impurities does not exist at present.

Therefore, there are only several phenomenological interpretations of the exper-

imental results. The situation is worse than with STM data where the effect of

impurities can be approximately understood within d-wave BCS theory.

Figure 4.9: Knight shift of main Y line (Y

nucleus far form impurity) in underdoped

YZn123 sample.[82]

Mahajan[82] performed an ex-

tensive Y-NMR study of Y Ba2

(Cux, Zn1−x)3O7−δ. They mea-

sured underdoped Y Ba2Cu3O6.64 :

Zn and overdoped Y Ba2Cu3O7 :

Zn. The Zn concentration was

varied up to 4%. The NMR spec-

tra of these samples are shown in

fig. 4.8.

The NMR line shape is strongly

dependent of the oxygen content.

For underdoped samples it can be

fitted with three Gaussians. For

overdoped samples one peak domi-

nates the spectrum. First, we con-

centrate on the underdoped sam-

ple. It is shown that the three

Gaussian lines arise from Y nuclei

with a different local environment. For example, the outermost line, which is

most effected by Zn, corresponds to nuclei neighboring a Zn impurity. The mid-

dle line accounts for the response from 2nd and 3rd nearest neighbors of the

impurity. The most intense line comes from the nuclei, which are located further

away from the impurity. The temperature dependence above 90K of these two

impurity related peaks follows a Curie law with a negative hyperfine coupling

constant. This is a common feature of local magnetic moments and implies that

the magnetic Cu moments are enhanced in the vicinity of the Zn impurity. In-

terestingly, the Knight shift of the main Y line is almost unaffected by the Zn

impurities (see fig. 4.9). Only at the highest doping level of 4% Zn can a slight

offset be seen. Overall, this main line behaves rather similar as in the case of a



CHAPTER 4. IMPURITIES 118

pure sample without Zn. For the case of the overdoped sample the Knight shift

of the single Y line also does not strongly depend on the Zn concentration.

Figure 4.11: Cu relaxation rate of pure Y123

sample and for YZn123 sample. For the

pure sample the absolute value of relaxation

rate does not correspond to the Y axis but

temperature dependence is reflected on the

plot[83].

The conclusion one can make from

this is that the pseudogap deter-

mined from the Y Knight shift

is not affected by the Zn impuri-

ties at concentrations below 4%.

With increasing oxygen content

the outer impurity peak merges

with the middle line, and for an

oxygen content close to optimum

doping (6.92) the outer line fully

disappears. There are two impor-

tant conclusions. Firstly, the Zn

impurities enhance the magnetic

moments of the nearest neighbor

Cu atoms. Secondly, Zn impuri-

ties tend to weaken the spin fluctu-

ations. Third, Zn goes exclusively

in CuO planes. Fourth, the hole doping is not affected by Zn impurities, at least

not in the dilute limit.

Similar conclusions can be made from the analysis of Cu NMR line in under-

doped Y123 or Y124 (see fig. 4.10). The broadening of the Cu line is interpreted

in terms of the presence of local moments near the Zn impurity [83]. The spin

lattice relaxation rate increases with Zn substitution, its T-dependence becoming

rather different from the one in the pure underdoped compounds. This makes an

assignment of the pseudogap temperature T ∗ based on the relaxation rates rather

difficult (see fig. 4.11). The evolution of the pseudogap with impurity substitu-

tion can in fact more safely be determined from the Y Knight shift. The same

conclusions hold concerning the evolution of the pseudogap upon Ni substitution.

Gaps determined from Knight shift and spin lattice relaxation time have different

dependencies on the impurity concentration.

Next we consider in more detail the NMR investigations of Ni impurities.

In contrast with Zn, Ni does not create any spin vacancies. Accordingly, the

spin fluctuations are not suppressed by Ni impurities. NMR data have also been
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interpreted in terms of an enhancement of the anti-ferromagnetic fluctuations

near Ni impurities[84, 85]. However, there is no consensus about whether this

enhancement is larger than in the case of Zn. The reason for this is washing out

of the Y and O NMR line due to the Ni magnetic moments[100]. The second

feature of Ni is that it goes also in the chains in Y123 crystals, while Zn goes

exclusively in the planes.

A very interesting NMR study of Zn and Ni impurities in the Y124 system

was reported by Itoh[86]. In this system the Knight shift of the Y main line

does not significantly change its temperature dependence upon Ni substitution.

The relaxation rate however changes from from pseudogap like in pure samples

to Curie like in impurity substituted samples. The pseudogap temperature vs

impurity content is plotted in fig. 4.12.

The first line Tg in fig. 4.12 corresponds to the pseudogap determined from the

Knight shift. The second line Ts is the pseudogap determined from the spin-

lattice relaxation rate. For the details of this determination see chapter 3. The

behavior of the pseudogap versus impurity concentration thus strongly depends

on the way the pseudogap is observed. If one looks on the relaxation rate, the

gap is suppressed in both cases of Zn and Ni impurities. It corresponds to the

change in the behavior of relaxation rate from pseudogap like to Curie law like

dependence. From the Knight shift, one concludes that Zn suppresses the PG

much faster than Ni. From our infrared measurement, we conclude that the

pseudogap increases with increasing of Ni concentration and is locally suppressed

by Zn. This discrepancy can be related to the complex nature of the pseudogap,

as well as to the difference in its experimental observations by different techniques.

For example, reflectivity and NMR have different time scales. The time scale is

orders of magnitude shorter in the optical data.

In conclusion, MNR experiments are interpreted in terms of the creation of

local moments near impurities. However, this is still under discussion [87]. Ni

is less effective in changing the low-energy spin fluctuations spectrum, while Zn

leads to a strong suppression of these fluctuations. Both Ni and Zn do not so

much affect the Knight shift of main Y line, while they strongly modify the T-

dependence of the relaxation rate from pseudogap like to a Curie law.
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Figure 4.7: Tunnelling conductance (a) and spatial modulation of local density
of states (b) obtained theoretically within BCS theory with d-wave gap in case
of impurities. [76]

Figure 4.10: Localized moments near Zn impurity (a); Cu NMR line in
Y Ba2Cu4O8 with 1%Zn (b)
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Figure 4.12: Pseudogap determined from Knight shift Tg and spin-lattice relax-
ation Ts rate depending on the impurity content in Y124 compound. [86].



Chapter 5

Influence of impurities on the

pseudogap

5.1 Introduction

The influence of Zn and Ni impurities on the pseudogap has been previously inves-

tigated by a number of techniques like tunnelling spectroscopy [77], NMR [86], or

Raman spectroscopy [99]. All these experiments have been performed on samples

with concentration of impurities that are insufficient to suppress superconductiv-

ity completely. The persistent response of the superconductive condensate at low

temperature therefore made it very difficult to differentiate whether the pseudo-

gap is related to superconductivity or whether it is caused by another kind of

mechanism. A definite answer can be expected only from measurements on en-

tirely non-superconductive samples with high impurity concentrations. A second

way to suppress superconductivity is by applying of a very large magnetic field.

However, in the case of HTSC one finds that the upper critical field Hc2 is of the

order of 100 Tesla. The magnetic field approach therefore cannot be readily com-

bined with spectroscopic techniques that probe the spectral shape of the energy

gaps.

The second issue related to impurities, concerns their influence on the hole

concentration. The variation of the hole content has been estimated from the

thermoelectric power coefficient[95] as well as from the NMR Knight shift [82].

In specific case of Zn and Ni impurities, it was found that they do not change the

hole content, at least not at small concentrations.

The present work was motivated by the recent discovery of Thomas Wolf that

122
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large single crystalline samples of the 123 compound with very high impurity

concentrations can be grown if instead of the Y ion one incorporates a larger rare

earth elements like Nd or Sm. Using this approach it was possible to incorporate

up to 9% of Zn and 17% of Ni impurities in the 123 structure. Even more

importantly, it was found that the larger rare earth also assists the incorporation

of a larger relative fraction of Ni on the Cu(2) site within the CuO2 planes.

This enabled us to prepare a series of underdoped to overdoped crystals where

Tc could be completely suppressed either by Zn or Ni substitution. Subsequently,

we preformed optical studies of the evolution of the spectral gap in the c-axis

response in order to investigate and possibly clarify the relationship between the

normal state pseudogap and superconductivity.

5.2 Sample characterization by SQUID and EDX

0 20 40 60 80 100
-2.0

-1.5

-1.0

-0.5

0.0

Nd,Ni-123 underdoped
 pure
 3%  Ni
 6% Ni
 0.8% Zn

V

T [K]

Figure 5.1: SQUID data for pure underdoped

Nd123 sampled used in our ellipsometry ex-

periments.

In the following paragraph we dis-

cuss the SQUID magnetometry

and the EDX results on our Ni and

Zn substituted (Sm,Nd)1−x

CaxBa2Cu3−x(Ni, Zn)xO7−δ sin-

gle crystals. While SQUID mag-

netometry provides information

about the superconductive transi-

tion temperature Tc and the super-

conductive volume fractions, the

EDX data give information about

the stoichiometry and the impu-

rity concentration of the crystals.

5.2.1 Tc measurements

by SQUID

A superconductive quantum interface device (SQUID) magnetometer is the most

sensitive instrument to measure the magnetization of a given material [90]. Its

sensitivity is about about an order of magnitude higher than the one of conven-

tional magnetometers. This is achieved by using superconductive wires in the
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coil that picks up the change in magnetic flux due to a magnetized samples that

is moved in and out of the coil. For our purpose, SQUID magnetometry is simply

an accurate technique to measure the superconductive transition temperature Tc

of our crystals and furthermore to determine the volume fraction that is shielded

by the superconductive currents. All of our Ni and Zn substituted samples have

been characterized by this technique. Representative data of the volume suscep-

tibility are shown in fig. 5.1 for underdoped NdBa2Cu3−x(Ni, Zn)xO6.8 with Ni

content of x = 0, 0.03 and 0.06 and Zn content of x = 0.01.
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Figure 5.2: Tc versus Zn and Ni con-

centration for our series of underdoped

Nd(Zn,Ni)123 crystals.

The data were taken with an ex-

ternal field of 10 Oersted using

the so-called zero-field-cooled (zfc)

mode where the sample is first

cooled to the lowest temperature

in zero-field before the magnetic

field is applied. This probes how

the shielding currents hinder the

magnetic flux from entering the

sample. Note that this is not the

so-called Meissner-effect which is

probed in the field-cooled mode

when the supper-currents have to

expel the magnetic flux that has

already penetrated the sample vol-

ume in the normal state above Tc.

Due to reasons related to vortex pinning but also to possible inhomogneity within

the sample, the former (zfc) signal is more sizeable. Thus it provides a more sen-

sitive test for any remnants of superconductivity that may remain in the heavily

Ni and Zn-substituted crystals. Figure 5.2. demonstrates that this is not the case

since any diamagnetic signal is absent already for the crystal with 6% Ni. Only a

paramagnetic upturn in the magnetic susceptibility is observed here which arise

predominantly from the magnetic Nd-moments but also from the Cu moments

which tend to slow down and freeze in at temperature below 15 K depending on

the Ni content (see µSR). For the samples with lower impurity concentration
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we used the diamagnetic signal to determine the superconductive transition tem-

perature and its width. Quoted are the temperature with half the diamagnetic

signal as Tc and the 10 to 90% variation as the width, ∆Tc.

The Tc dependence on the concentration of impurities for Nd(Ni,Zn)123 is

shown in fig. 5.2. In agreement with previous reports it can be seen that Ni

suppresses superconductivity at a slower rate than for the Zn impurities. About

1.5% of Zn and 4% of Ni impurities are required to suppress superconductivity

completely for this specific oxygen content.

5.2.2 Measurements of impurity content by EDX

The EDX (energy dispersive X ray) analysis technique has been used to measure

the impurity concentrations in our samples. EDX is usually a part of a scanning

electron microscope. A sample is placed in the electron beam of the microscope.

The electrons interact with the core electrons of the various ions inside the sample

and induce excitation to higher levels. Subsequently, electrons from higher levels

make a transition into this lower one. Thereby they reduce their energy by

emitting an X-ray photon. The energy of this x-ray photon is characteristic of

the element that is involved. The emission spectrum of these x-ray photons is

recorded. It contains specific maxima that are thus characteristic of the particular

ions that are incorporated in the crystal. Furthermore, the relative intensities of

these peaks can be used to determine the stoichiometry of a given sample. More

details about the EDX technique can be found in the literature [91]. The EDX

spectrum of a (Sm, Y, Ca)Ba2(Cu,Ni)3O7 crystal is shown in fig. 5.3. It contains

several lines per element corresponding to the different possible transitions of the

core electrons, i.e. the transition from the L-shell to the K-shell is denoted K-

Alpha peak, the one from the M-shell to the K-shell as K-Beta, etc. In order

to study the homogeneity of our crystal, the EDX measurements were typically

preformed on several regions of the sample surface. We typically probed five to

six points and found no significant variation in the stoichiometry of our samples.

This technique also allows one to search for possible minority phases which can

be incorporated within the regions of growth defects or simply embedded in the

volume of the crystal. We did not obtain any evidence for the presence of such

minority phases.

All our crystals have been investigated with this EDX technique. Based on

these EDX results are the Zn, Ni and Ca concentrations that are quoted in this
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Figure 5.3: EDX spectrum of an overdoped (Sm, Y, Ca)Ba2(Cu,Ni)3O7 sample

thesis.

5.3 Thermoelectric power measurements

The thermoelectric power coefficient S is determined by the voltage dV which

appears when a temperature gradient dT is applied to a sample:

dV = SdT. (5.1)

Generally, this coefficient is temperature dependent, and it is assumed that the

temperature gradient is small enough to use the theory of linear response. In the-

ory, the thermoelectric power coefficient depends on the energy derivative of the

mean free path of the carriers, and their charge, concentration and mobility[92].

For example, from the sign of the thermoelectric power coefficient one can usually

determine the type of charge carriers, i.e. whether they are electrons or holes.

The thermoelectric power coefficient are typically measured by attaching a
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small heater to one side of the sample plus an electrical circuit to measure the

voltage between the two sides. The voltage is measured after a small heat pulse

is applied to one side of the sample. In principle, it is possible to measure the

temperature dependence of the thermoelectric power coefficient, and to combine

this measurement with resistivity measurements. Details of the experimental

technique are described in [93].
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Figure 5.4: Thermoelectric power coefficient versus Zn, Ni content for
NdBa2Cu3−x(Zn,Ni)xO7−δ samples.

In case of the curpate HTSC it has been established empirically that the

thermoelectric power coefficient allows for a rather accurate and reproducible es-

timate of the hole concentration [95]. A common scaling relationship has been

established for various compounds of the cuprate HTSC. Concerning our sam-

ples, which are hole doped high temperature superconductors with Zn and Ni

impurities, the dependence of thermoelectric power coefficient on the impurity

concentration contains information about the changes of hole concentration with

impurity content. Based on our thermoelectric power measurements we could

confirm that the Zn and Ni impurities do not significantly change the hole con-

centration of our samples.

The thermoelectric power coefficients of our series of underdoped Ni and Zn
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substituted Nd123 crystals are shown in fig. 5.4. The small variation in the room

TEP coefficient translates into a corresponding variation of the hole doping state

of about 0.01. So, 26 µV/K corresponds to hole content 0.0995, and 12 µV/K

corresponds to hole 0.112 [125]. The TEP data thus put a rather small upper

limit on the possible variation of the hole concentration upon Ni and Zn impurity

substitution.

5.4 µSR measurements

5.4.1 Introduction to µSR

Figure 5.5: Scheme of a typical time differ-

ential µSR experiment [96].

The technique of µSR is especially

well suited to investigate weak

and short range magnetic correla-

tions and to determine their vol-

ume fractions. Similar like the

nuclear magnetic resonance tech-

nique, in muon spin rotation ex-

periments one determines the dis-

tribution and the dynamics of the

local magnetic fields at the muon

sites. The main difference lies in

the production of a spin-polarized

state and in its detection. Muons are short lifted particles (lifetime of about 2.2

microseconds, spin 1/2 and charge +e for positive muons) that are produced at a

proton accelerator. Under appropriate conditions a beam of fully spin- polarized

muons can be produced with their spin antiparallel to their momentum. The

muons can be stopped inside a sample without any significant loss in their initial

spin polarization. They are situated at particular lattice sites within a unit-cell

but are randomly distributed throughout a range of several hundred micrometers

thus sampling a representative part of the sample volume. Just like in an NMR

experiments the muons experience the local magnetic field from the host lattice

and thus exhibit a spin-precession. The detection of the final spin state makes

use of the decay of the muons which is mediated by the weak interaction that

violates parity. The decay products, i.e. a positron, electronic neutrino and a
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muon antineutrino, are thus emitted in preferential directions as determined by

the muon spin direction at the instant of decay. In the µSR experiment only

the emission of the positions is detected with scintillator detectors that are ar-

ranged in pairs located at 180 degree with respect to each other. This allows

one to monitor the asymmetry of the position emission rate in a time depen-

dent mode. The measured time dependence of this asymmetry can be directly

translated into the time dependence of the ensemble of muons (see fig. 5.5).
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Figure 5.6: ZF spectra of slightly overdoped

Eu0.85Ca0.15Ba2Cu2.86Ni0.24O6.8. Fig. (a) shows

spectra above and below 3K, fig. (b) shows the

evolution of the transverse and longitudinal relax-

ation rates.

The specific form of the

muon polarization function

P (t) depends on the mag-

netic properties of the sam-

ple. If we consider only a

single muon site in a poly-

crystalline sample and a so-

called zero-field (ZF) con-

dition without an external

field, then the powder aver-

age yields that 1/3 of the am-

plitude of the muon spin po-

larization function remains

constant whereas 2/3 of the

amplitude exhibit a time de-

pendence that reflects the in-

ternal field distribution. An

oscillatory behavior of this

2/3 component will be a

clear signature that the dif-

ferent muons experience a

well defined local magnetic

field. The signature of

strongly disordered static lo-

cal magnetic fields is a rapid depolarization of the muon spin polarization func-

tion. The signature of the formation of such a strongly disordered magnetic state

is indeed evident from our ZF µSR experiments on the Ni-substituted samples

as shown in the next paragraph.
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5.4.2 µSR measurements on Eu0.85Ca0.15Ba2Cu3−y(Zn,Ni)yO7−δ
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Figure 5.7: (a) Doping dependence of the

spin freezing temperature Tg and the temper-

ature below which spin fluctuations appear

in the µSR time window Tfl; (b) doping de-

pendence of the transverse relaxation rate for

Eu0.85Ca0.15Ba2Cu2.86(Ni, Zn)0.24O6.8

Heavily Zn, and Ni substituted

poly-crystalline EuCa(Zn,Ni)123

samples have been measured by

µSR. The ZF spectra for a slightly

overdoped Ni doped sample are

shown in fig. 5.6. From the

rapid onset of a strong depolariza-

tion one can deduce that a spin-

glass transition is taking place in

this sample around 3K. The spec-

trum at 5 K exhibits a moder-

ate relaxation which is character-

istic of the local magnetic fields

that arise from the nuclear spins

of Cu. The much more rapid de-

polarization as shown at 1.6K is

caused by the strongly disordered

magnetic field due to electronic

magnetic moments. The circum-

stance that the related asymme-

try accounts for the entire sample

volume suggests that these elec-

tronic moments must exist even

in the regions that are far away

from the magnetic Ni impurities.

The present µSR data therefore

suggests that the Ni impurities in-

duce a spin-polarization that per-

sists through the entire sample vol-

ume. The related spin-freezing transition and its evolution as a function of doping

is summarized in Fig. 5.7. It is clearly seen that this spin-freezing transition tem-

perature is strongly enhanced upon Ni substitution whereas it is much lower in

the Zn substituted samples. Note that a similar spin-freezing transition of the

electronic Cu moments has previously been observed in the pure samples but only
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in the strongly underdoped regime of the phase diagram Ref. [126]. Our present

µSR data suggest that the Ni impurities largely enhance the tendency for this

spin-freezing transition thereby extending the related spin glass regime even into

the overdoped regime (see fig. 5.7. This effect is clearly absent for the case of the

non-magnetic Zn-impurities.

5.5 Pure samples

5.5.1 Identification of pseudogap in c-axis optical conduc-

tivity

Figure 5.8: Pseudogap in underdoped Y Ba2Cu3O6.8

.

In conventional superconductors the optical conductivity becomes zero below

the frequency 2∆ at T = 0K as given by the superconductive energy gap. The

typical behavior of the optical conductivity was discussed already in chapter 2,

2.21 on page 81 in the context of the discussion of the optical sum rule. The theory

of the optical conductivity in BCS superconductors is given in [109]. Physically,

zero conductivity below twice the gap energy means that the material is a perfect

reflector that does not absorb photons with energy less than 2∆, because all the

carriers are condensed in Cooper pairs with binding energy 2∆. An energy higher

than 2∆ is required to break up the Cooper pairs.
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Figure 5.8 shows representative c axis spectra of the Y123 HTSC Y Ba2Cu3O6.8

with Tc about 80 K. Apart from the narrow peaks which correspond to infrared

active phonon modes, the broad electronic background exhibits characteristic

spectral changes that set in already in the normal state well above Tc. A partial

gap-like suppression of the c-axis conductivity with decreasing temperature grad-

ually sets in below a characteristic frequency of about 850cm−1, which is denoted

as the pseudogap frequency ωpg. This decrease first occurs around 150 K, i.e.

well above Tc = 80K. A similar behavior has been observed for many HTSC

compounds. It was found that the partial suppression of conductivity starts from

T ∗, which is the pseudogap temperature.

Similar results were previously obtained based on normal-incidence reflectivity

measurements [101]. Furthermore, the doping dependence of the temperature

and energy scales of this feature is similar to the one observed for the pseudogap

by other technique like STM or ARPES (see Chapter 3 for details). Therefore,

this feature was termed as c-axis pseudogap and it is commonly assumed that

it corresponds to the same PG as probed by STM and ARPES. However, the

opposite point of view has also been expressed by some authors claiming that

c-axis pseudogap as measured by optical conductivity has a different origin than

the pseudogap observed by photoemission [41]. The predictions of these models in

terms of the sensitivity of the pseudogap to the particular properties of the spacing

layers separating the CuO2 planes have been contradicted by the measurements

showing that the c-axis PG systematically depends on the hole doping state of the

CuO2 planes while it hardly depends on the number of defects or the dielectric

properties of the spacing layers. For this reasons, in the following we assume that

the pseudogap in the optical c-axis conductivity is of the same origin as the one

observed by the other techniques.

In contrast with the superconductive gap in conventional superconductors,

the pseudogap is not a real gap in a sense that the optical conductivity goes

to zero at T = 0K below 2∆. The c axis conductivity of high temperature

superconductors remains non-zero at all frequencies below ωpg even at the lowest

experimentally available temperatures of about 4K (see fig 2.7 on the page 69).

For this reason this gap was called ”pseudo”. Non-zero optical conductivity is

a sign of anisotropy of an order parameter in k-space, or an indication of the

presence of some unpaired carriers at low temperature. Concerning the SC gap it

is meanwhile well established that the d-wave symmetry of the order parameter
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and the subsequent gap nodes are a reason for the finite conductivity within the

energy gap region. Concerning the pseudogap phase very little is known at the

present stage.

5.5.2 Effect of substitution on the rare earth site: differ-

ences between Y123 and Nd123

As it was discussed in introduction, one can not incorporate larger amounts of

Zn and Ni impurities in the 123 type compounds when Y is replaced by a larger

rare earth like Nd or Sm. For this reason we have studied Nd(Ni, Zn)123 and

Sm(Ni, Zn)123 crystals. In the following interpretation of our data we would

like to make contact with the results concerning the doping dependence of the

spectral gap in the c-axis conductivity which was mainly performed on Y123 type

single crystals. Therefore, we first need to consider whether the substitution of Y

versus Nd and Sm on the rare earth site of the 123 structure has any significant

effect on the pseudogap energy scale.

Figure 5.9 shows spectra of the c-axis conductivity for three kinds of crystals

which exhibit a similarly underdoped state. It should be noted that the doping

state is similar but not quite identical. Shown are spectra for (a) Y0.7Pr0.3Ba2Cu3O7

with Tc = 61K, (b) Y Ba2Cu3O6.6 with Tc = 65K, and (c) NdBa2Cu3O6.8 with

Tc = 65K. For each sample the pseudogap onset is indicated by an arrow. Irre-

spective of the ion on the rare earth site, the pseudogap energy scales obviously

are fairly similar for all three samples. The dependence on the hole doping state

of the spectral gap in the c-axis conductivity is furthermore illustrated in the

figure 5.9. In fig. 5.9, the solid green data points account for data that have

been obtained for Y123 while the solid pink and black squares mark data points

obtained for Nd123 or Sm123 samples. Blue points correspond to the gap in

optimally doped and overdoped state. The doping state was determined here

based on the measured Tc and Tcmax, max values of the compounds or from the

measured value of the thermo-electric power.

Based on these data we conclude that the pseudogap is evident in all under-

doped RE123 crystals (RE is an rare earth element). The energy scale further-

more, is determined mainly by the hole doping state of the CuO2 plane. The RE-

substitution has hardly a direct effect on the PG energy scale.

Next we consider the IR-active phonons in the spectra of Y123, YPr123,
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Sm123, and Nd123. The most obvious changes concern the phonon mode near

190cm−1 which exhibits a clear red-shift for the compounds with heavier rare

earth like Nd and Sm. This agrees with the previous assignment of this mode to

vibrations of (Y, Nd) ions against Cu in the chains (so-called rare earth mode).

The observed shift is well explained by the difference in the masses of Y, Pr,

Nd and Sm. Further differences in the oscillator strengths of the modes at 570,

620, 630 cm−1 are related to the different oxygen content which the CuO chains

have in these samples. Meanwhile it is well established that the ordering of

oxygen vacancies and the subsequent charge transfer from the chains to the CuO2

planes is dependent on the kind of ion on the rare earth site. As a result a

somewhat higher oxygen content is required in Nd123 than in Y123 in order to

achieve the same doping level of the CuO2 planes [110]. As discussed in previous

chapters, the hole doping state can be affected and manipulated by different

cationic substitutions. For instance, the partial substitution of Y by Ca (Pr)

will lead to an increase (decrease) of the hole doping state. A corresponding

hole doping state as for a Ca(Pr)-free sample thus requires a significantly lower

(higher) oxygenation of the CuO chains. Apart from the conditions under which

the sample has been annealed, an estimate of this difference in the oxygen content

of the CuO chains can be obtained directly from the c-axis optical spectra in terms

of the relative spectral weight of the modes at 570 to the ones at 620 and 630

cm-1. The so-called apical mode at 570 cm-1 corresponds to the vibration of

apical oxygen with respect to Cu(1) in the chains with two neighboring oxygen

ions. The ones at 620 and 630 cm-1 are the corresponding apical modes where

one or two oxygen ions in the neighborhood of the Cu(1) are missing.

Another interesting difference is apparent in the superconductive state, where

the position of the so-called transverse Josephson plasma mode clearly varies be-

tween the different RE123 compounds, i.e. it is shifted to lower frequency in

case of the large RE ions like Nd and Sm. This difference can be well accounted

for in terms of the Josephson super-lattice model that was introduced in a pre-

vious chapter and discussed in detail in the context of our data on the Bi2223

compound. Within this theory the position of the transverse mode depends on

the Josephson-plasma frequency of the intra-bilayer region which is exponentially

related to the bilayer spacing. The main effect thus can be explained in terms of

the larger ionic radius of the Nd3+ and Sm3+ ions.
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Figure 5.9: Pseudogap in three underdoped samples: on top is Y0.7Pr0.3Ba2Cu3O7

(Tc = 61K), in the middle is NdBa2Cu3O6.8 with (Tc = 65K), and on bottom
is Y Ba2Cu3O6.6 with (Tc = 65K). Hole contents in YPr123 and Nd123 samples
a close to each other. Sm123 has higher hole content. The graph in right lower
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corresponding to our Nd123 and Sm123 sample.
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5.6 Pseudogap in Ni doped (Sm,Nd)Ba2Cu3−yNiyO7−δ

samples

5.6.1 Introduction

This section presents our ellipsometry data as obtained on the series of under-

doped NdBa2Cu3−xNixO6.8 single crystals. The Ni content was varied over a

very wide range from 0 to 17%. The most important result concerns the doping

dependence of the pseudogap energy scale as deduced from our c-axis optical

spectra which increases very strongly with the Ni-content. At the same time the

in-plane conductivity remains metallic even for the sample with the highest Ni

concentration of 17%. In the following we also present the doping dependence of

the pseudogap energy scale as observed for heavily Ni substituted crystals where

superconductivity is fully suppressed at all doping levels.

5.6.2 Dependence of pseudogap frequency on Ni content

Ellipsometry results on the series of underdoped Ni substituted samples are pre-

sented in fig 5.10. Spectra of pure, 6%, and 12% Ni samples are shown. The

dependence of Tc and pseudogap frequency on the Ni content is plotted in the

bottom right corner in fig 5.10. It contains two additional points corresponding

to 3% and 17% Ni. As was previously shown by SQUID, about 4% Ni is sufficient

to suppress superconductivity completely. Accordingly, already the sample with

6% Ni impurities is not superconductive anymore.

The samples were simultaneously annealed together in the same furnaces to

ensure that they have the same oxygen content. The thermoelectric power mea-

surements as presented above on page 127 furthermore reveal that the hole doping

state of the CuO2 planes does not exhibit a sizeable variation as a function Ni

content.

The observed dramatic increase in the pseudogap frequency scale ωpg can thus

not be ascribed to a Ni induced change in the hole content which according to

Fig. 5.13. would need to be extremely large. In the pure sample ωpg is about

1250cm−1, while in the sample with 12% Ni ωpg it is already about 2000cm−1.

This huge Ni impurity induced increase of the pseudogap energy scale is a very

interesting result that has not been anticipated. It represents one of the major
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Figure 5.10: C-axis optical conductivity spectra of three under-doped
NdBa2Cu3−xNixO6.8 single crystals with 0, 6, and 12% Ni content. The bot-
tom right panel presents the dependence of the PG energy and Tc on the Ni
concentration.
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achievements of the present thesis work. The ability of the magnetic Ni impu-

rities to enhance the pseudogap contradicts with many existing theories of the

pseudogap phenomenon. Most obviously, it challenges the theory interpreting the

pseudogap in terms of precursor superconductive fluctuations. As Ni impurities

apparently fully suppress superconductivity, within this theory accordingly they

should tend to reduce the energy scale of the order parameter and thus of the

spectral gap. Certainly, it is not be expected that the gap energy scale is doubled

while superconductivity is fully suppressed.

5.6.3 In-plane conductivity of Ni-doped samples

The present study was focused on the evolution of the c-axis conductivity where

the signature of the pseudogap is strongest. This is related to the k-space

anisotropy of the c-axis hopping parameter which is large at the so-called hot-

spot regions near the X-point of the Brillouin-zone where the signature of the

correlations underlying the PG are strongest The signature of the pseudogap ef-

fect can also be seen in the in-plane response where it is superimposed, however,

by a much larger contribution due to the quasi-particle in the vicinity of the so-

called cold-spots near the diagonal of the BZ [42, 10]. For the sample with the

highest Ni content of 17% we have also performed corresponding measurements

of the in-plane response. The real parts of the in-plane conductivity σ1 and the

dielectric function ε1 are shown in fig. 5.11. Apparently, the in-plane response

in this most highly Ni substituted sample maintains a metallic frequency and

temperature dependence. By metallic we mean that the conductivity remains

quite high, and the dielectric function becomes negative towards low frequency.

In agreement with previous reports, we observe a significant broadening of the

Drude-like response which we attribute to a corresponding increase of the scatter-

ing rate of the quasi-particles in the cold-spot regions of the BZ. In clear contrast

to the c-axis spectra there is no direct evidence for the formation of an energy

gap. This confirms our point of view that the pseudogap is limited to the so-called

hot-spots in agreement with the direct observation by ARPES measurements on

pure crystals. It also supports our point of view that the Ni-enhanced or induced

PG in the c-axis conductivity spectra is not related to the development of an

overall insulating electronic state in these heavily Ni-impurities substituted and

thus disordered crystals.
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5.6.4 Pseudogap in optimally doped and overdoped Ni

substituted samples

Figure 5.13: Pseudogap on the phase dia-

gram for pure crystals and for Ni doped crys-

tals

Next consider how the PG in heav-

ily Ni substituted crystals evolves

as a function of hole doping in the

optimally doped and over-doped

regions. As was shown in chap-

ter two, the conductivity does not

exhibit the pseudogap effect for

the case of pure samples in the

optimally doped and overdoped

regimes. Note that in the pure

samples there is no evidence for

a pseudogap in optimally doped

and overdoped samples. It is al-

ways observed that the spectral

gap forms here right below the su-

perconductive transition tempera-

ture Tc [10]. The normal state con-

ductivity spectra are nearly fea-

tureless and temperature independent in optimally doped samples while they

gradually acquire a metallic like frequency and temperature dependence towards

the overdoped side of the phase diagram. The spectra of the optimally doped

SmBa2Cu2.86Ni0.14O7 and the over doped Sm0.86Ca0.14Ba2Cu2.88Ni0.12O7 are

plotted in figure 5.12. The optimally doped sample is non-superconductive, the

overdoped one has a Tc of 25K. It is evident from this figure that a sizeable pseu-

dogap is induced upon Ni-substitution in the optimally doped sample. Note that

this sample is not superconductive and that it would not exhibit a pseudogap if it

did not contain the Ni impurities. This Ni-induced restoration of the PG in the c-

axis optical response of this optimally doped sample is a clear manifestation that

the pseudogap and the superconductive gap must have different origins. In fact,

for the present sample the suppression of the electronic conductivity is almost

complete below 300 cm−1, the gap restored by the Ni-impurities thus has the

signatures of a real gap rather than of a spatially inhomogeneous feature which

thus remains incomplete.
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A really drastic change is apparent for the overdoped sample where despite

the high Ni concentration there is only a faint signature of a spectral gap. Fur-

thermore, the gap energy as indicated by the solid arrow in fig. 5.12 is strongly

reduced from more than 2000 cm−1 for the optimally doped sample to about 750

cm−1. This highlights a second important result concerning the doping depen-

dence of the Ni-induced or enhanced PG which is summarized in Fig. 5.12. which

shows the doping dependence of the spectral gaps in pure and in heavily Ni sub-

stituted samples. The green points and line correspond to the pseudogap in pure

under-doped samples whereas the blue symbols give the spectral gap which devel-

ops right below Tc in pure optimally doped and over-doped samples. The purple

symbols indicate the maximum value of the pseudogap as observed in heavily Ni

substituted samples. The doping state has been deduced for the Ni-substituted

samples from the measured TEP at room temperature. Evidently, the Ni-induced

PG has a very large energy scale for underdoped and optimally doped samples

while it falls off very steeply shortly past optimum doping towards the overdoped

side. In contrast the spectral gap in the pure and thus superconductive samples

persists to a significantly higher doping level. The Ni-enhanced PG disappears

rather sharply towards a doping state of about 0.2. Interestingly, anomalously

rapid changes of the normal state and SC properties of pure samples have been

reported to occur around this doping state. This behavior is suggestive of a

phase transition around this critical doping point. Extensive evidence in favor

of such a critical point in the phase diagram situated slightly on the overdoped

side has been summarized in Ref. [129]. In pure samples, the drastic changes of

the ground state properties cannot be accessed since they are superimposed by

the response of the SC phase which forms at elevated temperatures. In our Ni-

substituted samples however where SC is absent, this transition becomes evident

from the sudden onset of the energy gap in the c- axis conductivity. Clearly, our

results should motivate further investigations of heavily Ni-impurity substituted

samples by means of other spectroscopic techniques which can provide more di-

rect information on the k-space and real-space variation of their electronic and

magnetic properties.
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5.7 IR spectra of Zn substituted samples for dif-

ferent hole doping

The drastic enhancement of the PG upon Ni impurity substitution as described in

the previous section raises the question whether this phenomenon is related to the

potential scattering or rather due to the magnetic properties of the Ni impurities

with a magnetic moment of S = 1. In order to address this important issue

we have performed corresponding ellipsometric measurements on Zn substituted

(Nd, Sm)Ba2Cu3−yZnyO7−d single crystals. The Zn2+ ions themselves are non-

magnetic impurities (S = 0). Their most prominent effect is the strong potential

scattering in the unitary limit (large phase shift upon scattering). Nevertheless,

the Zn impurities also affect the magnetic correlations of the host CuO2 planes.

At low concentrations they even induce static local moments on the nearest and

next nearest neighbor Cu sites. However, this effect apparently is limited to low

Zn content. It is maximum around 2% of Zn impurities, falls off very rapidly

towards higher Zn content and finally is fully absent for Zn concentrations in

excess of 5% [127].

In short, both Ni and Zn impurities when incorporated within the CuO2 planes

give rise to strong potential scattering. The non-magnetic Zn impurities locally

restore static magnetic correlations of the neighboring Cu moments at very low

concentrations [82] while at concentration higher than 2% they strongly suppress

AF correlations of the host CuO2 planes [127]. To the contrary, the magnetic Ni-

impurities tend to restore magnetic correlations of the host CuO2 planes.

This was demonstrated in the section 5.4.1 were we discussed the µSR mea-

surements which establish that the Ni impurities enhance the low-energy spin-

correlations. The spin-freezing temperature as seen by µSR is found to increase

continuously as function of Ni substitution with no sign of saturation up to the

highest available concentrations.

In the following we present our ellipsometric data of the c-axis conductivity of

the Zn substituted samples which highlight that the non-magnetic Zn impurities

have an entirely different impact on the optical pseudogap than the magnetic Ni

impurities. Figure 5.14 shows the conductivity spectra as a function of tempera-

ture for underdoped (NdSm)Ba2Cu3−yZnyO6.8 crystals with Zn concentrations

of 0, 1, 6 and 9%. This series of samples was prepared under identical con-

ditions as the underdoped Ni-substituted series. In fact, the data on the pure
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sample with Tc=65K are the same as for the Ni series in Fig. 5.10. The sample

with 1% Zn has a Tc of 20 K whereas the samples with 6 and 9% are entirely

non-superconductive.

The most important result that is very obvious from Fig. 5.14 is that the

non-magnetic Zn impurities do not lead to a similar strong enhancement of the

pseudogap energy scale as it was observed in the case of the magnetic Ni impuri-

ties. To the contrary, the Zn impurities rather tend to fill in the pseudogap while

they slightly reduce its characteristic energy scale. Only at the comparably small

Zn concentration of 1% it appears that a slight increase of the pseudogap energy

scale may occur. The onset frequency of the gap like suppression of the optical

conductivity indeed increases from about 1250 cm−1 in the pure sample to nearly

1300cm−1 at 1% of Zn content before it decreases again at higher Zn content

to about 1100 cm−1 at 9% of Zn impurities. The second important feature in-

duced by the Zn impurities is the apparent filling in of the pseudogap. The gap

like suppression of the conductivity becomes very weak especially at the high-

est Zn content of 9% where the signatures of the pseudogap become very faint.

Figure 5.15: Infrared c-axis conduc-

tivity spectra of slightly overdoped

Sm1−xCaxBa2Cu3−yZnyO7−δ with 8.5% Zn

The above described observa-

tions concerning the behavior of

the pseudogap upon Zn substitu-

tion are consistent with the previ-

ously expressed point of view that

the Zn impurities have a rather

local effect, i.e. only the regions

in the vicinity of the Zn impurity

are affected. This effect was previ-

ously seen by NMR and especially

by means of STM measurements

which highlight that the spectral

gap becomes locally suppressed in

the vicinity of the Zn impurities.

The apparent filling in of the pseu-

dogap that is evident in our spectra can be simply explained within such an in-

homogeneous scenario. The growing number of Zn impurities gives rise to an
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increasing volume fraction where the optical response is gapless and thus main-

tains a finite conductivity. It should be noted however, that STM experiments

have been performed on samples with comparatively much lower Zn content.

Future NMR and STM experiments on samples with similarly high Zn content

would be desirable in order to confirm our interpretation. Another interesting

feature is the initial moderate increase of the PG energy scale as observed for the

small Zn content of about 1% which compares rather well with the previously

reported Zn impurity-induced increase of the local AF correlations for z < 0.02.

In agreement with the observed Ni-induced enhancement of the PG energy scale,

this observation suggests that the strengthening of the AF correlations of the Cu

spins of the host lattice is intimately related to the energy scale of the pseudo-

gap phenomenon. Leaving aside any details, this observation suggests that short

range AF spin fluctuations (which may be best described in terms of the tendency

for local singlet formation) or are playing a vital role in the correlations that are

underlying the pseudogap phenomenon and the related anomalous normal state

properties of the underdoped cuprate HTSC.

Next we consider how the Zn-induced changes of the c-axis optical conductiv-

ity evolve as a function of hole doping. In clear contrast with the Ni substituted

samples, the Zn-impurities do not induce or restore a pseudogap in optimally or

slightly overdoped crystals. This is evident in Figure 5.15 which shows the c-axis

conductivity of a slightly overdoped SmZn123 sample which highly Zn substituted

and thus non-superconductive. Unlike for the correspondingly doped heavily Ni

substituted sample in Fig. 5.12, there is no trace of a pseudogap in the c-axis

conductivity. To the contrary, the conductivity exhibits a metallic-like increase

towards low temperature and frequency. Also the overall value of the c-axis con-

ductivity is considerably higher than in the corresponding Ni substituted sample.

Apart from the fact that the present sample is not superconductive and thus

does not exhibit any signature of a spectral gap at finite temperature, the c-axis

spectra compare rather well to those of a correspondingly overdoped pure crystal

as shown in reference [128]
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5.8 Discussion

5.8.1 Discussion and Conclusions

Our ellipsometric spectra of the c-axis conductivity in impurity substituted 123

type cuprate HTSC can be used to discriminate amongst various theoretical mod-

els that have been proposed to explain the pseudogap. Our data highlight that

magnetic Ni and non-magnetic Zn impurities whereas they both strongly sup-

press superconductivity, have an entirely different impact on the PG correlations.

Magnetic Ni impurities are highly beneficial and strongly enhance the pseudogap

energy scale. With Ni substitution one can even restore a pseudogap in optimally

and slightly overdoped samples, where it is fully absent for pure samples. To the

contrary, the substitution with non-magnetic Zn-impurities is detrimental for the

pseudogap correlations, at least at higher Zn content in excess of 3%.

This result raises serious questions about the validity of several of the proposed

theoretical models. In the following we provide a more detailed discussion for

some of the most prominent models.

5.8.2 Precursor superconductive fluctuations and preformed

Cooper pairs

This class of theories interprets the pseudogap in terms of a precursor super-

conductive state which occurs at elevated temperatures where thermally induced

phase fluctuations suppress a long-range coherent state. These models are moti-

vated by the observation that the pseudogap exhibits a similar k-space asymmetry

as the d-wave type superconductive order parameter below Tc. The second argu-

ment concerns the similar energy scales of the pseudogap and the superconductive

gap.

Our new data are in contradiction to this class of theories. Within the the-

ory of a precursor SC state it is difficult to explain the circumstance that the

Ni-impurities give rise to a complete suppression of the macroscopically coherent

superconductive state while at the same time they dramatically increase the en-

ergy scale of the gap. Within a strong coupling scenario one may explain that the

suppression of the order parameters is fairly weak such that a sizeable spectral

gap survives even in the absence of a macroscopically coherent state [135, 136].

Our results on the non-magnetic Zn impurities would indeed be consistent with
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these predictions. The observed two-fold increase of the pseudogap energy scale

upon Ni substitution, however, is extremely difficult to explain in the context of

these theories. The main difficulty lies in the unconventional d-wave symmetry

of the SC order parameter. Strong potential scattering from any kind of mag-

netic or non magnetic impurity gives rise to a mixing in k-space and thus leads

to destructive interference effects for the states that are located in the vicinity

of the gap nodes where the order parameters exhibits a sign change. The effect

of potential scattering thus necessarily is deliterious in the presence of an order

parameter that has an unconventional symmetry in real or in k-space.

5.8.3 Exotic Flux-phase or density wave theories

Similar arguments as outlined above in the context of scenario of a precursor SC

state apply for other kinds of models which explain the pseudogap in terms of dis-

tinct kinds of correlations that are based on an order parameter with an unusual

k-space or real space symmetry such as flux phases or an unconventional d-density

wave state [132, 133, 134]. The k-state mixing due to potential scattering and

subsequent destructive interference effects will also be deleterious. Within these

models it is thus to be expected that the substitution with any kind of impuri-

ties which act as potential scatterers will lead to a weakening of the pseudogap

correlations.

Our experimental data thus seriously contradict several of the most influential

models for the pseudogap. On the other hand, the fundamental difference between

the effect of non-magnetic Zn and magnetic Ni impurities points towards an

important role of short range AF correlations. In the following we thus discuss

some of the models which are based on short range AF correlations or spin-singlet

formation.

5.8.4 Anti-ferromagnetic fluctuations

The fully deoxygenated compounds Y Ba2Cu3O6, REBa2Cu3O6 are anti-ferromagnetic

insulators. Upon hole substitution long range AF order is rapidly suppressed,

but short range AF order persists to rather high hole content well into the un-

derdoped regime where it coexists with superconductivity [87]. Pronounced AF

spin fluctuations where observed even in optimally doped and slightly overdoped
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samples by inelastic neutron scattering. Accordingly, it was proposed theoreti-

cally that the pseudogap results from anti-ferromagnetic fluctuations[65]. Within

this theory, the underdoped regime is described as a fermi-liquid with two kinds

of quasi-particles. The so-called hot quasi-particles reside in the flat part of the

Fermi-surface near the X-point of the BZ. The hot quasi-particles are strongly

coupled to anti-ferromagnetic fluctuations which give rise to the pseudogap phe-

nomenon. The second kind are the so-called cold quasi-particles which reside

near the diagonals of the BZ, i.e. in the vicinity of the gap nodes. The quasi-

particles are only weakly interacting with the AF fluctuations and thus are well

described by a Fermi-liquid theory. With increasing doping the number of hot

quasi-particles decreases whereas the number of the cold ones increases, the pseu-

dogap thus eventually disappears upon doping. Within this theory the pseudogap

is unrelated to superconductivity. The pseudogap can be related here to the for-

mation of a partial spin-density wave which introduces a gap on parts of the

Fermi-surface, i.e. near the hot spots.

Our present results may well be compatible with this kind of theory. The

magnetic Ni impurities strengthen the AF correlations and thus increase the

relevant energy scale as well as increasing the number of hot quasi-particles.

This may explain that the pseudogap is seen in optimally doped samples, and is

enhanced in underdoped samples.

5.8.5 Stripe theory of pseudogap

The stripe scenario is based on the idea that the hole carriers frustrate the AF

exchange interaction of the Cu spins. The competition between AF exchange

energy, the kinetic energy of the holes and their Coloumb repulsion thus has

been proposed to lead to the formation of nearly one-dimenisional regions that

are either hole poor or hole rich, i.e. the so-called stripes. Experimental evi-

dence in favor of such hole poor and hole rich stripes has indeed been observed

in some of the HTSC compounds in the underdoped regime. [113, 114, 115]. To

be more specific, they were observed in compounds that are hardly superconduc-

tive anymore, whereas they have not been identified in the samples with a high

critical temperature. It has thus been questioned whether the stripe formation

is a common property of the HTSC and if so, whether it is involved in the SC

pairing mechanism or rather a competitive instability. More recently, it is mostly

assumed that the stripes are strongly fluctuating in real HTSC compounds. The
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pseudogap phenomenon in the normal state arises here due to the energy barrier

against the motion of the quasi-particles through the hole poor regions. The up-

per limit for the energy scale of the pseudogap is thus given by the AF exchange

coupling energy. The stripe fluctuations will decrease the PG energy scale. How-

ever, no systematic correlations between the observation of stripes and either the

characteristic pseudogap temperature, T ∗, or the pseudogap energy, 2∆, have

been found. Furthermore, the stripes produce the angular dependence which is

different from that of the pseudogap as seen using ARPES [116]. Therefore, there

are arguments against an interpretation of the pseudogap in terms of stripes.

On the other hand, it is well possible that magnetic and non-magnetic im-

purities can have an entirely different impact on the stripes and, in particular,

on their fluctuation rate. Magnetic Ni-impurities will not disturb the AF cor-

relations whereas they may tend to slow down the charge carrier dynamics and

thus the also the stripe fluctuations. This would restore the PG energy towards

the upper limit as given by the exchange coupling energy. To the contrary, non-

magnetic Zn impurities will break up the AF network and thus eventually will

lead to break-down of the stripe scenario. Only at low concentrations they may

act as pinning centers for stripes and thus lead to an initial increase of the PG

energy scale.

5.8.6 Spin charge separation scenario

In this theory the spin and charge degrees of the quasi-particles are decoupled

into spinons with no charge and holons with no spin. Superconductivity requires

here the condensation of both holons and the formation of spin-singlets by the

spinons. The resulting phase diagram is characterized by a spin singlet phase

whose transition temperature decreases with doping, and a holon condensate

whose transition temperature exhibits a corresponding increase. Optimum doping

corresponds to the point where both transition temperatures coincide. Within

this theory the pseudogap phase corresponds to the range where the spin-singlet

state if formed, while the holons are not yet condensed. The pseudogap energy

is an equivalent to the energy that is required to break up the spin singlet pairs.

From an experimental and also from a theoretical point of view this theory is far

from being established in the quasi-2d cuprate HTSC. In particular, this theory

has difficulties in explaining that the pseudogap effect is observed in the charge

channel as well as in the spin channel [119]. In the context of this theory it is not
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obvious what the role of magnetic and non-magnetic impurities should be. We

hope that our work may stimulate future theoretical work along this line.

5.8.7 Quantum critical point scenario

Apart from the question of identifying a theoretical model for the pseudogap

phenomenon, it is also an utmost important question whether the pseudogap

state is related to a real phase transition or whether it is merely a crossover

phenomenon related to disorder or strong fluctuations of some kind. Based on

the former assumption it has been proposed that a quantum critical point exists

in the hole doping phase diagram such that the phase transition occurs at lower

doping whereas it is absent at higher doping. Such a quantum critical point

has not been unambiguously identified so far. One possible reason is that it is

obscured by the superconductive state which coexists one both the underdoped

and the overdoped sides. In this context our new data provide new insight since

they were performed on samples where superconductivity is fully absent. In

particular the phase diagram for the evolution of the pseudogap energy scale

as a function of doping for the highly Ni impurity substituted samples provide

evidence in favor of such a scenario (fig. 5.13). In particular, the step drop

of the pseudogap energy scale around p=0.2, i.e. well within the region where

pure samples remain superconductive, agrees very well with the predictions of

the theory of a quantum critical point.

5.8.8 Ideas for future projects

First of all, corresponding ARPES experiments on highly Ni substituted would be

required to obtain further information on the symmetry of the gap. It could also

verify that the Ni induced enhancement of the pseudogap is the property of the in-

plane charge dynamics and not an exclusive feature of the c-axis dynamics that

is specific to the spacing layer properties. Further ellipsometric measurements

of the in-plane response by means of ellipsometry could also be performed and

analyzed in terms of the optical scattering rate to obtain further information on

the pseudogap behavior that must be unrelated to the properties of the spacing

layers.

It is also interesting to investigate the effect of other kinds of magnetic impu-

rities like Fe, Co. Some of these magnetic impurities exclusively occupy the Cu
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chain sites and thus do not affect Tc significantly. It would be interesting to see

what happens to the pseudogap in samples with this sort of impurities.

Figure 5.16: Conductivity spectra of

La1.67Sr0.33NiO4 in the ab plane [52]. In-

set shows the temperature dependence of the

gap energy

Another interesting question

concerns samples with even higher

Ni content above 17%. Unfor-

tunately, it is so far not possi-

ble to incorporate more Ni into

the RE123 structure. This situa-

tion can be circumvented by us-

ing other compounds like LSCO

and LSNO. The first one is a

high temperature cuprate super-

conductor while the second one

is a non-superconductive insulator

that exhibits anti-ferromagnetic

order. The ab plane conductiv-

ity spectra of LSNO are shown in

fig. 5.16. It is insulating and ex-

hibits a spectral gap even for the

in-plane response. The gap energy

is about 0.4eV as determined from

the crossing point of the x axis and

the linear extrapolation of conductivity as it is shown in the figure. The tem-

perature dependence of this crossing point is shown on the insert. The reason

of this gap in LSNO is the charge ordering within the stripes as it was observed

by electron diffraction measurements[53]. In our NdNi123 samples no direct ev-

idence for charge ordering has been observed. It would thus be very interesting

to study how the spectral gap and the evidence for charge ordering evolve as Cu

becomes partially substituted into the LS(C,N)O system.
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Figure 5.12: Conductivity of optimally doped non-superconductive
SmBa2Cu2.86Ni0.14O7 crystal, and slightly over-doped
SmCa0.14Ba2Cu2.88Ni0.1207 crystal with Tc = 25K
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[135] U. Löw et. al., Phys. Rev. Lett. 72, 1918 (1994).

[136] V.J. Emery, S.A. Kievelson, O. Zachar, Phys. Rev. B 56, 6120 (1997).

[137] H.F. Fong et.al., Phys. Rev. Lett. 82, 1939 (1999).



Acknowledgements

I am very grateful to...

...Privatdozent Dr. Christian Bernhard, for transferring me his knowledge

and expertise in ellipsometry, for his contribution in the work presented in this

thesis, for careful reading of the thesis, for discussions and for answering all my

questions.

...Dr. Alexander Boris, for his contribution in the work presented in the thesis,

for his help in resolving many technical problems during experiments, for useful

discussions of different aspects of optical spectroscopy, and for close collaboration.

...Prof. Dr. Bernhard Keimer, for letting me join his department, for super-

vising me during my work, and for careful reading the thesis.

...Prof. Dr. D. Munzar, for discussions of different aspects of his model.

...Dr. Thomas Wolf for growing crystals which were measured during my

experiments.

...Prof. Dr. Clemens Bechinger, for accepting the task reviewing the thesis.

...Yu Li for his help and collaboration in the experiments.

160
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