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Abstract

We study electron-phonon interaction in strongly correlated systems where the inter-

play with electron-electron interactions needs to be taken into account explicitly. We

specifically consider cuprate high-temperature superconductors but also investigate

in more general terms the influence of strong correlations.

We first develop a model framework by deriving an effective low-energy model

from a three-band model of the copper oxide planes in the cuprates allowing for the

modulation of its parameters by lattice distortions. The electron-phonon interaction

in the resulting t-J model with phonons is dominated by the on-site coupling due to

phonon-induced changes in the large energy gain of Zhang-Rice singlets.

Using exact diagonalization of finite clusters, we find that this model successfully

describes the anomalous softening upon doping of the oxygen half-breathing mode in

these compounds. Both the dependence on doping and the phonon wavevector are

in good agreement with experiment. A comparison with results from a Hartree-Fock

mean-field approximation of the three-band model shows the importance of treating

strong correlations directly.

After deriving the additional electron-phonon interaction that arises in undoped

cuprates from the modulation of the electrostatic potential, we conclude that the

coupling is strong enough to lead to the polaronic behavior seen in photoemission

from these systems. Based on an adiabatic approximation, we explain the dispersion

of the phonon side band according to predictions from purely electronic models and

develop an efficient method for calculating spectra. Applying it to our model yields

results that agree well with experiment.

Finally, we use sum rules for the phonon and the electron self-energy to show

generally that due to strong correlations the effect of electron-phonon interaction

can be at variance from what is expected for non-interacting electrons. Electronic

and phononic properties are affected differently leading to a mismatch of the respec-

tive apparent electron-phonon couplings. We also discuss the importance of vertex

corrections to the electron-phonon interaction in strongly correlated materials.

9





Introduction

In condensed matter, the electronic degrees of freedom are strongly influenced in

their properties by the presence of an array of ions. Many properties of solids can be

successfully understood by assuming the ionic lattice to be static. But there are also

collective vibrational modes, commonly referred to as phonons, which can influence

the electrons and vice versa. The resulting coupling between electronic and lattice

degrees of freedom, i.e., the electron-phonon interaction, is often studied in models

with no electron-electron interaction [1]. This approach of assuming (effectively) non-

interacting electrons leads to the successful description of a variety of phenomena.

A prominent example is superconductivity which can be understood in a lot of ma-

terials in terms of a phonon-mediated effective interaction between electrons using

the Bardeen-Cooper-Schrieffer (BCS) theory [2] or its strong-coupling version, the

Migdal-Eliashberg theory [3, 4, 5], which treat the electrons in a mean-field approxi-

mation.

In some systems, however, electrons are strongly correlated due to the Coulomb

repulsion between them, especially when their kinetic energy is comparatively small.

It is then not a good approximation to treat electrons as quasi-independent particles

that are only subjected to an average field created by the other electrons. Instead,

the description of such a strongly correlated system requires the solution of a true

many-body problem which takes into account the electron-electron interaction ex-

plicitly. This implies that also the electron-phonon interaction in strongly correlated

materials with strong electron-electron interaction cannot be discussed appropriately

in the theoretical framework developed for non-interacting electrons. Rather, both

interactions need to be treated on an equal footing to assess their interplay. For

example, in alkali-doped fullerides [6], there is strong Coulomb interaction between

electrons on the same molecule and at the same time the electrons couple strongly to

intra-molecular Jahn-Teller phonons. When both interactions are taken into account

directly, e.g. using dynamical mean-field theory [7], the superconductivity in these

compounds can be understood in terms of a local pairing [8] whereas the Migdal-

11
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Eliashberg theory fails to give a proper description.

Another important example for strongly correlated systems are the cuprate high-

temperature superconductors. Their discovery in 1986 by Bednorz and Müller [9]

and the rapid advance to transition temperatures well above the boiling point of

nitrogen [10] triggered enormous research activities that continue until today. High-

temperature superconductivity has been found in a variety of different compounds

which, however, all have in common that their structure is layered and consists of one

or more copper-oxygen planes per unit cell. The electronic structure at low energies

results mainly from the Cu-3dx2-y2 and O-2px/y orbitals in these planes with the elec-

trons being strongly correlated due to strong Coulomb interaction between two elec-

trons in the same Cu-d orbital. The strong correlations cause the undoped cuprates to

be antiferromagnetic Mott insulators. Superconductivity appears upon doping in the

range of about 5 to 25% doped charge carriers per Cu atom for hole-doped materials

like La2−xSrxCuO4 or YBa2Cu3O6+y with the highest transition temperature occur-

ing at the optimal doping of about 15%. Electron doping, e.g. in Nd2−xCexCuO4,

can also lead to superconductivity in a narrower range around approximately 15%

doping.

The closeness of superconducting and antiferromagnetic phases is often seen as

an indication that the pairing mechanism in the high-temperature superconductors

is mainly originating from the strong electronic correlations. The observed d-wave

symmetry of the superconducting gap can be understood quite naturally in such a

scenario whereas it is generally believed that a phonon-mediated mechanism is more

favorable to an s-wave symmetry. Among other things, also the fact that there

is only a rather small oxygen isotope effect on the transition temperature in opti-

mally doped samples [11] and the finding that the electron-phonon coupling from

density-functional linear-response calculations is not sufficiently strong [12] led to

the widespread view that electron-phonon interaction is not the main driving force

for the high-temperature superconductivity in the cuprates. Instead, most research

has focused on the electronic degrees of freedom alone, with the aim of understanding

within a purely electronic picture not only the pairing mechanism of high-temperature

superconductivity but also other peculiar features of the cuprates like e.g. the pseudo-

gap [13] or the linear temperature dependence of the resistivity over a wide temper-

ature range at optimal doping [14].

Nevertheless, there is considerable experimental evidence for strong electron-

phonon coupling in the cuprates which we summarize in the following, with more

details to some of the phenomena given later in the introductions to the individ-
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ual chapters. Neutron scattering experiments, for example, show an anomalously

strong softening of a phonon mode upon doping accompanied by a large line width

[15,16,17,18,19] signaling strong coupling of doped charge carriers to lattice degrees

of freedom. Phonon anomalies like e.g. superconductivity-induced softening and a

Fano line shape have also been observed in Raman spectroscopy [20, 21, 22]. Al-

though the oxygen isotope effect on the superconducting transition temperature is

small around optimal doping, it becomes significantly larger for lower dopings [23].

Quasi-particle dispersions deduced from angle-resolved photoemission spectroscopy

(ARPES) [24] show kink-like features that have been interpreted in terms of coupling

to phonon modes [25]. In undoped compounds, the spectra indicate polaronic be-

havior [26, 27] pointing to even stronger electron-phonon interaction which leads to

self-trapped polarons.

These findings suggest that the coupling to lattice degrees of freedom plays an im-

portant role in the cuprates, and they have recently attracted much interest. As the

cuprate high-temperature superconductors are strongly correlated materials, the ef-

fects of electron-phonon interaction should be studied using analytical and numerical

approaches that explicitly take into account the interplay between electron-phonon

and electron-electron interactions. In this thesis, we address several of the afore-

mentioned phenomena from this point of view. Although first of all we specifically

consider cuprates, we also expect some general insight into how strong correlations

affect the description of electron-phonon interaction developed for non-interacting

electrons. The following outline of the thesis gives more details on our agenda.

• In Chapter 1, we develop a model framework by incorporating electron-phonon

coupling into a three-band model that describes the electronic structure of the

copper oxide (CuO2) planes in the cuprates. Strong correlations are taken

into account via the inclusion of a Hubbard-like Coulomb repulsion on the Cu

sites. In order to obtain a simpler model which is more suitable for analytical

and numerical approaches to the problem, degrees of freedom with high energy

are projected out leaving an effective low-energy model. The resulting t-J

model with phonons includes electron-phonon interaction which derives from

physically reasonable mechanisms for the modulations of the parameters in the

three-band model by lattice distortions. It forms the basis for the calculations

and considerations in the following chapters.

• In Chapter 2, we study the softening of the planar oxygen half-breathing mode

in cuprates using the model derived in the previous chapter. After an introduc-
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tion to the main experimental results, we use exact diagonalization to calculate

the effects of the electron-phonon coupling on phonon properties. In such an

approach, both electron-electron and electron-phonon interactions are treated

in an essentially exact way except for finite-size effects. Besides the softening,

also the broadening of phonons can be calculated and compared to experiment.

For comparison, we consider in addition the three-band model in a Hartree-

Fock mean-field approximation. This allows us to draw conclusions about the

importance of including strong correlations explicitly like in the t-J model.

• In Chapter 3, we focus on undoped cuprates and the polaronic behavior ob-

served in these compounds with ARPES. We derive the additional electron-

phonon coupling in the undoped system which arises from the modulation of

the electrostatic potential due to a much weaker screening of the Coulomb in-

teraction. We address not only the question whether there is strong enough

coupling to lead to self-trapped polarons, but also the puzzling observation of

phonon-related features dispersing according to predictions of purely electronic

models. Using an adiabatic approximation, we develop a theory for ARPES

spectra which facilitates the qualitative understanding of many features. In ad-

dition, it leads to an efficient method for the quantitative calculation of spectra

from undoped systems that allows for the simultaneous consideration of many

phonon modes at finite temperatures. Based on this approach and employing

our calculated electron-phonon coupling, we compute realistic ARPES spectra

of undoped cuprates that can be directly compared with experimental results.

• In Chapter 4, the interplay between electron-phonon coupling and electron-

electron interaction in strongly correlated materials is discussed from a more

general point of view. Using sum rules for the phonon self-energy and the

electron-phonon contribution to the electron self-energy in the generic t-J model

with on-site electron-phonon coupling and comparing to results obtained as-

suming non-interacting electrons, we assess the effect of strong correlations on

phonon and electron properties. We focus on the resulting property depen-

dence of apparent coupling constants and support our findings with numerical

calculations. The sum rules are also useful to discuss the importance of ver-

tex corrections in a diagrammatic treatment of electron-phonon interactions in

strongly correlated systems.

Finally, we end by giving conclusions and append some supplementary material.

The publications based on this thesis are listed on page 171.



Chapter 1

Electron-phonon interaction

in the t-J model

1.1 Introduction

In order to study the interplay of strong electronic correlations and electron-phonon

coupling in the high-temperature superconductors, we need a model that describes

the relevant electronic and lattice degrees of freedom.

We take the widely accepted view that the two-dimensional CuO2 planes common

to all cuprate superconductors contain the essential physics of the electrons in these

materials. The three-band model [28] is used to describe the electronic structure

at low energies and includes the Cu-3dx2-y2 and O-2px/y orbitals which strongly hy-

bridize. Strong correlations are incorporated by a Hubbard term taking into account

the on-site Coulomb repulsion between two holes in the same d orbital.

Electron-phonon interaction can be introduced in a realistic way as the effect of

lattice distortions on parameters of the three-band model (like the hopping amplitudes

and the level energies) can be estimated or calculated quite directly.

The three-band model with electron-phonon interaction, however, is still a rela-

tively complex model which makes it hard to obtain analytical or numerical results.

Therefore, we derive an effective low-energy model where states with high energy are

projected out and only indirectly influence the remaining degrees of freedom. The

reduced size of the Hilbert space facilitates calculations and also allows for an easier

interpretation of the results.

This leads to the t-J model [29] which now includes electron-phonon interaction.

In this model, doped holes form so-called Zhang-Rice singlets which have binding

15



16 1. Electron-phonon interaction in the t-J model

energies of several eV that give uninteresting contributions to the total energy in case

of an undistorted lattice, but can lead to on-site electron-phonon coupling with large

prefactors when modulated by lattice distortions. Similar models have already been

derived before, see e.g. Refs. [30, 31, 32], but in a less general way and with differing

conclusions about the importance of different coupling mechanisms.

In the beginning of this chapter we introduce the three-band model in a form suit-

able for the subsequent considerations and describe the modulation of its parameters

due to lattice distortions. After presenting the general procedure for the derivation

of an effective low-energy model we first consider the undistorted lattice and obtain

the t-J model. Then, we generalize the derivation to include lattice distortions. This

finally leads to the electron-phonon interaction in the t-J model.

1.2 Three-band model

1.2.1 Definition

The three-band model has been proposed by Emery [28] for the description of the

relevant electronic degrees of freedom in the copper oxide planes of cuprates. It is

defined by the following Hamiltonian:

H =
∑

iσ

εd
i d

†
iσdiσ +

∑

iδσ

εp
iδp

†
iδσpiδσ + U

∑

i

d†i↑di↑d
†
i↓di↓ +Hhop, (1.1)

with

Hhop =
∑

iδσ

(

−tiδd†iσpiδσ + ti(−δ)d
†
iσp(i−2δ)δσ + H.c.

)

. (1.2)

The model describes a two-dimensional square lattice of N CuO2 unit cells with the

lattice constant a. There are N Cu-d orbitals labeled by i located on the nodes of

the lattice at Ri. Between each pair of neighboring Cu-d orbitals, there is one O-p

orbital in the middle of the corresponding bond labeled by iδ, where δ ∈ {x̂/2, ŷ/2}
indicates the offset to the Cu-d orbital at Ri (see also Fig. 1.1). The operators for

creating a hole with spin σ ∈ {↑, ↓} in these orbitals are d†iσ and p†iδσ, respectively.

The vacuum corresponds to all orbitals being completely filled, i.e., it contains no

holes. The level energies εd
i and εp

iδ are site-dependent to allow for a modulation due

to lattice distortions. A Hubbard term takes into account the Coulomb repulsion

U of two holes in the same Cu-d orbital. Hhop describes nearest-neighbor hopping

between Cu-d and O-p orbitals. The hopping amplitudes ti(±δ) can also be modulated

by lattice distortions. The signs reflect the symmetry of the orbitals (cf. Fig. 1.1). A
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Figure 1.1: Schematic view of the Cu-d (red) and O-p (green) orbitals in a CuO2

plane. The signs show the relative phases of the orbitals.

unit cell index like (i − 2δ) is to be understood as the index j of the unit cell with

the Cu-d orbital located at Rj = Ri − 2δ.

1.2.2 Transformation of O-p orbitals

We show in the following that, after choosing a new representation for the O-p or-

bitals, the three-band model can effectively be formulated using only half of the new

operators if we consider an undistorted lattice. In this case, both level energies and

hopping amplitudes are site-independent and εd
i , ε

p
iδ, and ti(±δ) can be replaced by

the unmodulated values εd, εp, and tpd. Introducing Fourier-transforms of the field

operators in site representation which are labeled by the wavevector k,

diσ =
1√
N

∑

k

dkσe
ik·Ri, (1.3)

piδσ =
1√
N

∑

k

pkδσe
ik·(Ri+δ), (1.4)
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the hopping part of the three-band model, Eq. (1.2), in the undistorted lattice takes

the form

H
(0)
hop = 2itpd

∑

kδσ

sin (k · δ)
(

p†kδσdkσ − d†kσpkδσ

)

. (1.5)

Eq. (1.5) shows that d states hybridize only with a certain linear combination of p

states with the same wavevector. This suggests to form new operators for k 6= (0, 0),

φkσ = −iβk

(

sin(kxa/2)p
k(x̂/2)σ + sin(kya/2)p

k(ŷ/2)σ

)

, (1.6)

φkσ = −iβk

(

− sin(kya/2)p
k(x̂/2)σ + sin(kxa/2)p

k(ŷ/2)σ

)

, (1.7)

with the normalization factor

βk =
(
[sin(kxa/2)]2 + [sin(kya/2)]2

)− 1
2 . (1.8)

The original operators piδσ fulfill standard fermionic anticommutation relations – all

anticommutators vanish except for [piδσ, p
†
jδ′σ′ ]+ = δijδδδ′δσσ′ . We use the notation

[A,B]+ = AB+BA for the anticommutator of two operators A and B. One finds that

the new operators fulfill analogous relations: [φkσ, φ
†
k′σ′ ]+ = δkk′δσσ′ , [φkσ, φ

†
k′σ′ ]+ =

δkk′δσσ′ , and all other anticommutators are zero. The hopping part of the Hamiltonian

in the undistorted system, Eq. (1.5), can now be rewritten as

H
(0)
hop = 2tpd

∑

k6=(0,0) σ

β−1
k

(

d†kσφkσ + φ†
kσdkσ

)

. (1.9)

We see from Eq. (1.9) that only hopping between φ and d orbitals is possible. The φ

orbitals do not hybridize with the d orbitals. Using

φiσ =
1√
N

∑

k

φkσe
ik·Ri, (1.10)

φiσ =
1√
N

∑

k

φkσe
ik·Ri, (1.11)

we return to a site representation. As we consider the limit of infinite system size

(N → ∞), the k = (0, 0) contribution in Eqs. (1.10) and (1.11) can be neglected.

The general three-band model, Eq. (1.1), can now be written as

H = H0 + V, (1.12)

where

H0 = εd
∑

iσ

d†iσdiσ + εp
∑

iσ

(

φ†
iσφiσ + φ

†
iσφiσ

)

+ U
∑

i

d†i↑di↑d
†
i↓di↓ (1.13)
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and

V = V (0) + V (t) + V (ε), (1.14)

with

V (0) = 2tpd

∑

ijσ

α(∆Rij)d
†
iσφjσ + H.c., (1.15)

V (t) =
1

2

∑

ijσδ

∑

s=±
∆ti(sδ) [γ(∆Rij) − γ(∆Rij + 2sδ)] d†iσφjσ (1.16)

+
1

2

∑

ijσδ

∑

s=±
f(δ)∆ti(sδ)s

[
γ
(
∆Rij + s(δ − δ)

)
− γ

(
∆Rij + s(δ + δ)

)]
d†iσφjσ

+H.c.,

and

V (ε) =
∑

iσ

∆εd
i d

†
iσdiσ (1.17)

+
∑

iδσjj′

∆εp
iδ

4

(

[γ(∆Rji)−γ(∆Rji−2δ)]φ†
jσ

+ f(δ)
[
γ(∆Rji+δ−δ)−γ(∆Rji−δ−δ)

]
φ
†
jσ

)

×
(

[γ(∆Rij′)−γ(∆Rij′+2δ)]φj′σ

+f(δ)
[
γ(∆Rij′+δ−δ)−γ(∆Rij′+δ+δ)

]
φj′σ

)

.

We have introduced the notation

εd
i = εd + ∆εd

i , (1.18)

εp
iδ = εp + ∆εp

iδ, (1.19)

ti(±δ) = tpd + ∆ti(±δ) (1.20)

to describe the modulation of level energies and hopping amplitudes in a distorted

lattice. H0 contains the unmodulated d, φ, and φ level energies as well as the Hubbard

term whereas the remaining part V describes the unmodulated hopping (V (0)), its

modulation by lattice distortions (V (t)), and the modulation of the level energies

(V (ε)). Furthermore, the following definitions are used.

∆Rij = Ri − Rj, (1.21)
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R 0 ±x̂,±ŷ ±(x̂ + ŷ),±(x̂ − ŷ) ±2x̂,±2x̂

α(R) λ = 0.958 -0.140 -0.024 -0.014

γ(R) γ0 = 1.286 γ1 = 0.328 γ11 = 0.210 γ2 = 0.165

Table 1.1: Numerical values of α(R) (Eq. (1.22)) and γ(R) (Eq. (1.23)) for N → ∞
together with the definition of abbreviations for often used values.

α(R) =
1

N

∑

k6=(0,0)

β−1
k eik·R, (1.22)

γ(R) =
1

N

∑

k6=(0,0)

βke
ik·R, (1.23)

f(δ) =

{

−1 if δ = x̂
2
,

+1 if δ = ŷ

2

, (1.24)

δ =

{
ŷ

2
if δ = x̂

2
,

x̂
2

if δ = ŷ

2

. (1.25)

In Tab. 1.1, some numerical values of α(R) and γ(R) are given for N → ∞.

In the undistorted lattice, the model defined in Eqs. (1.12)-(1.17) reduces to H =

H0 + V (0) and there is no interaction between the φ orbitals on the one hand and

the other orbitals on the other hand. For the description of the d and φ orbitals,

one could therefore omit the φ orbitals. Once we allow for site-dependent hopping

amplitudes and level energies, however, the model contains the additional terms V (t)

and V (ε). They lead to coupling between the φ orbitals and the other orbitals, and

all orbitals must be taken into account.

1.2.3 Modulation of parameters

We now discuss how the modulations of hopping and level energies are assumed to

depend on the displacements of the atoms from their equilibrium positions.

Band structure calculations within the local density approximation (LDA) for

La2CuO4 [33] show that, upon variation of the lattice constant a, the bandwidth

(splitting between bonding and anti-bonding dx2−y2 − px/y(σ) bands) is proportional

to a−n, with n between about 3.1 and 3.7. Therefore, for our calculations we assume

the following dependence of the hopping amplitude in the three-band model on the

actual distance r between two nearest-neighbor Cu and O atoms:

tpd(r) = tpd

(
a/2

r

)3.5

. (1.26)
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An r−3.5 dependence was also used in Refs. [30,34,35,36]. We denote the displacement

of a Cu atom from its equilibrium position at Ri by uCu,i = (u
x̂/2
Cu,i, u

ŷ/2
Cu,i). The

displacement of an O atom from its equilibrium position at Ri + δ is given by uO,iδ,

analogously. Working to linear order in the displacements, we then obtain

∆ti(±δ) ≈ ± dtpd

dr

∣
∣
∣
∣
0

(
uδ

O,i(±δ) − uδ

Cu,i

)
. (1.27)

|0 indicates that the expression to the left is to be evaluated for the undistorted lattice

where r = a/2.

The dependence of the level energies on the atomic displacements is obtained

by assuming that the energy of a hole in a certain orbital is also influenced by the

Coulomb interaction with the ionic charges in its surrounding which depends on the

distance between the ions. We further assume that because of screening only the

nearest-neighbor ions need to be taken into account. The effective level energies

entering the three-band model from Eq. (1.1) are then given by

εd
i = εd

bare + (−2)
∑

δ

∑

s=±
Upd(|sδ + uO,i(sδ) − uCu,i|) (1.28)

and

εp
iδ = εp

bare + 2 [Upd(|δ + uO,iδ − uCu,i|) + Upd(| − δ + uO,iδ − uCu,i+2δ|)] . (1.29)

The bare level energies εd
bare and εp

bare are modified by the screened Coulomb interac-

tion

Upd(r) = Upd
a/2

r
(1.30)

with the surrounding ions assuming a 1/r dependence on the interionic distance. We

use the nominal ionic charges from the undoped system of −2 and +2 for O and Cu

ions, respectively, neglecting any effect of charge fluctuations or doping. Expanding

to first order in the displacements, we find the following modulations of the level

energies:

∆εd
i ≈ −2

dUpd

dr

∣
∣
∣
∣
0

∑

δ

∑

s=±
s uδ

O,i(sδ), (1.31)

∆εp
iδ ≈ 2

dUpd

dr

∣
∣
∣
∣
0

(
uδ

Cu,i+2δ
− uδ

Cu,i

)
. (1.32)
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1.3 Effective low-energy model

In this section we derive an expression for an effective low-energy model of the three-

band model using degenerate perturbation theory derived with the help of Löwdin’s

partitioning technique [37].

Treating both hopping and the effect of lattice modulations as a perturbation, in

zeroth order the three-band model is given by H0 from Eq. (1.13). Undoped cuprates

have one hole per CuO2 unit cell. As for these materials U > εp − εd > 0, the ground

state of H0 of the undoped system has exactly one hole in each of the N d orbitals.

It has a degeneracy due to the equivalence of all spin configurations. If the system is

doped with Ñ additional holes, the set of degenerate ground states of H0 is given by

all states that have all N d orbitals singly occupied and Ñ holes in φ or φ orbitals.

We divide the Hilbert space for a given doping into two subsets by defining the

projection operator P that projects onto the subset of degenerate ground states of

H0 with the eigenenergy

E0 = PH0P = Nεd + Ñεp. (1.33)

All other states which are in the second subset projected onto by the orthogonal

operator Q = 1 − P have eigenenergies with respect to H0 that are higher than E0

by at least

∆pd = εp − εd. (1.34)

The resolvent operator (z−H)−1 has poles in the complex z-plane at the eigenen-

ergies of the full three-band model H from Eq. (1.12). It has the following block form

with respect to the two previously defined subspaces of the Hilbert space:

(z −H)−1 =

(

z − PHP PHQ

QHP z −QHQ

)−1

. (1.35)

Coupling between these two subspaces is only provided by the perturbation V from

Eq. (1.14), so we have PHQ = PV Q and QHP = QV P in the off-diagonal elements

in Eq. (1.35). We want to obtain an effective low-energy model where the higher-

energy states from the Q subspace are projected out. But their effect on the states in

the P subspace through V must still be taken into account. This can be achieved by

downfolding Eq. (1.35) to a resolvent operator confined to the P subspace that still

has the same poles as (z −H)−1:

P (z −H)−1P = P
(
z − PHP − PHQ(z −QHQ)−1QHP

)−1
P

= P (z − H̃(z))−1P. (1.36)
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This defines an energy-dependent Hamiltonian H̃(z) in the P subspace. We have

PH̃(E)P = PHP + PHT (E)HP (1.37)

= E0 + PV P + PV T (E)V P,

where

T (E) = Q(E −QHQ)−1Q. (1.38)

Introducing the abbreviations

R0 = Q(E0 −QH0Q)−1Q (1.39)

and

V ′(E) = QVQ + E0 − E (1.40)

and using the operator identity [37]

(A− B)−1 = A−1 + A−1B(A−B)−1, (1.41)

we can rewrite Eq. (1.38) as

T (E) = R0 +R0V
′(E)T (E). (1.42)

Solving for T (E) we obtain

T (E) = (1 − R0V
′(E))−1R0 (1.43)

= R0 +R0V
′(E)R0 +R0V

′(E)R0V
′(E)R0 + . . .

From Eqs. (1.14)-(1.17) and (1.27)-(1.32), it follows that V has terms proportional

to tpd (in V (0)), tpdu (in V (t)), and u (in V (ε)) where u stands for an atomic displace-

ment. If we want to obtain an effective Hamiltonian that is correct to order t2pdu, we

need to include in H̃(z) only terms up to third order in the perturbation V . It suffices

then to take into account just the first two terms in the second line of Eq. (1.43) when

substituting for T (E) in Eq. (1.37). An eigenstate |Φ〉 (from the P subspace) of the

resulting – still energy-dependent – Hamiltonian fulfills the eigenvalue equation

(E0 + PV P + PV R0V P + PV R0(V + E0 − E)R0V P )|Φ〉 = E|Φ〉. (1.44)

Transfering the E-dependent term in Eq. (1.44) to the right one obtains

(E0 +PV P +PV R0V P +PV R0(V +E0)R0V P )|Φ〉 = E(1+PVR2
0V P )|Φ〉. (1.45)
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Now, we introduce

|χ〉 = ξ−1|Φ〉 = (1 + PV R2
0V P )1/2|Φ〉, (1.46)

substitute in Eq. (1.45), left multiply by ξ, and then expand the square root to

obtain the desired accuracy up to order t2pdu. This leads to the Schrödinger equation

Heff |χ〉 = E|χ〉 with the energy-independent effective Hamiltonian

Heff = E0 +PV P +PV R0V P +PV R0V R0V P − 1

2
PV (PV R2

0 +R2
0V P )V P. (1.47)

For the special case of an undistorted lattice, we also give an effective Hamiltonian

Heff ,4 which is correct to order t4pd. Then, V = V (0) and terms containing an odd

number of V 0 operators vanish. With an analogous procedure like the one leading to

Eq. (1.47), one obtains

Heff,4 = E0 + PV (0)R0V
(0)P + PV (0)R0V

(0)R0V
(0)R0V

(0)P (1.48)

−1

2
PV R0(R0V PV + V PV R0)R0V P.

1.4 t-J model for the undistorted lattice

As was first shown by Zhang and Rice [29], the t-J model can be derived as an effective

low-energy model of the three-band model. In this section, we give a derivation for

the undistorted lattice using the effective Hamiltonian from Eq. (1.48).

1.4.1 Undoped system

In the undoped system, the P subspace is spanned by the eigenstates |n〉 of H0 with

exactly one hole per Cu-d orbital which we label by n to distinguish the different spin

configurations. They have the eigenenergy E0 = Nεd with respect to H0.

The matrix elements of the second term in Eq. (1.48) can be rewritten in the usual

second-order perturbation theory form

〈n|V (0)R0V
(0)|n′〉 =

∑

{w}

〈n|V (0)|w〉〈w|V (0)|n′〉
E0 − Ew

, (1.49)

where
∑

{w} denotes the sum over all eigenstates |w〉 of H0 in the Q subspace with

the eigenenergy Ew with respect to H0. Due to V (0), each Cu-d hole in the state |n〉
can virtually hop from its site i to a φ orbital on any site j, and back again. The
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corresponding intermediate states are higher in energy by Ew − E0 = ∆pd, and the

respective matrix elements are |〈w|V (0)|n〉|2 = 4t2pd|α(∆Rij)|2. There are no other

contributions to Eq. (1.49). Therefore, only the diagonal matrix elements are non-

zero:

〈n|V (0)R0V
(0)|n′〉 = −4t2pd

∆pd

∑

ij

|α(∆Rij)|2δn,n′ = −N 4t2pd

∆pd

δn,n′. (1.50)

Here, we use the sum rule

∑

j

|α(∆Rij)|2 =
1

N2

∑

j

∑

k,k′

β−1
k β−1

k′ e
i(k−k′)(Ri−Rj) (1.51)

=
1

N

∑

k

(
[sin(kxa/2)]2 + [sin(kya/2)]2

)

= 1.

In the first line of Eq. (1.51), the definitions (1.21) and (1.22) are used. Because of
∑

j e
i(k−k′)Rj = Nδk,k′ , we can simplify the expression as shown in the second line

where Eq. (1.8) has been inserted. Finally, it is easy to show that
∑

k[sin(kR)]2 =

N/2 for any R 6= 0, and we obtain the result in the last line. As the sum rule is

almost exhausted already by the local contribution for j = i (|α(0)|2 = λ2 ≈ 0.92 for

N → ∞, cf. Tab. 1.1), we only introduce a small error of order 1−λ2 if we neglect all

intermediate states where a Cu-d hole hops to any non-local φ orbital. Also, in the

following, we will always restrict ourselves to the leading contribution proportional

to a power of λ when calculating diagonal elements of the effective Hamiltonian.

〈n|V (0)R0V
(0)|n′〉 ≈ −N

4λ2t2pd

∆pd
δn,n′ = NECu-dδn,n′. (1.52)

The result is used to define the Cu-d self-energy

ECu-d = −
4λ2t2pd

∆pd
, (1.53)

the energy correction per one Cu-d hole.

Finally, we consider the remaining terms in Eq. (1.48) which are of order t4pd.

We neglect constant energy shifts and keep only the super-exchange interaction HJ

derived from these terms [38]:

HJ = J
∑

〈i,j〉

(

Si · Sj −
1

4
ninj

)

, (1.54)
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with

J = 4t4pd

(

1

∆2
pdU

+
1

∆3
pd

)

. (1.55)

This is a spin-1
2

Heisenberg model with antiferromagnetic coupling (J > 0). 〈i, j〉
denotes nearest-neighbor pairs of copper sites, and the spin operator Si refers to

the spin of a hole in the Cu-d orbital at site i. ni =
∑

σ d
†
iσdiσ measures the hole

occupancy on copper site i.

1.4.2 Doped system

We now turn to the doped system. We first consider the case of one additional hole

compared to the undoped system and later generalize to higher dopings. In the one-

hole sector, the P subspace is spanned by the eigenstates of H0 with all Cu-d orbitals

singly occupied and one hole in an oxygen orbital which have the lowest eigenenergy

E0 = Nεd + εp with respect to H0. Those states can be further distinguished as to

whether the additional hole occupies a φ or a φ orbital and whether its spin forms a

singlet or a triplet combination with the spin of the local Cu-d hole. We will see that

the second-order energy correction is largest for φ-d singlets which separates them

from the other combinations by an energy of the order of ∆pd. This will allow us to

consider only the φ-d singlets in the final effective low-energy model.

φ-d singlets

We begin by considering basis states with a local singlet formed by a Cu-d hole and

a φ hole on the same site. These states are denoted by

|i, α〉 = Ψ†
iR

†
iα|0〉, (1.56)

where

Ψi =
1√
2

(φi↑di↓ − φi↓di↑) (1.57)

and

Riα =
∏

j 6=i

djσ̃(i,α,j). (1.58)

|0〉 describes a system with no holes. Individual states are labeled by the site i where

the singlet is located and by the configuration α of the Cu-d holes on all other sites

which is fixed by the spin orientations σ̃(i, α, j). We tacitly assume the operators in

Eq. (1.58) to be in a defined order, e.g. based on a consecutive numbering of all sites.
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The diagonal elements of the second-order contribution to the effective Hamilto-

nian with respect to these basis states are

〈i, α|V (0)R0V
(0)|i, α〉 =

∑

{w}

|〈w|V (0)|i, α〉|2
E0 − Ew

. (1.59)

We use the same notation as in Eq. (1.49). The intermediate states |w〉 leading to

a non-vanishing contribution in Eq. (1.59) are listed in the following together with a

description of the corresponding virtual process, the energy difference to the ground-

state energy, and the required matrix element.

• A Cu-d hole from site j 6= i hops into the φ orbital at site l 6= i:

|w1jl〉 = φ†
lσ̃(i,α,j)djσ̃(i,α,j)|i, α〉 (1.60)

with Ew1jl
− E0 = ∆pd, |〈w1jl|V (0)|i, α〉|2 = 4t2pd|α(∆Rjl)|2. (1.61)

• A Cu-d hole from site j 6= i hops into the φ orbital at site i:

|w2j〉 = φ†
i↑φ

†
i↓d

†
iσ̃(i,α,j)djσ̃(i,α,j)R

†
iα|0〉, (1.62)

with Ew2j
− E0 = ∆pd, |〈w2j|V (0)|i, α〉|2 = 2t2pd|α(∆Rji)|2. (1.63)

• The Cu-d hole on site i hops into the local φ orbital:

|w3〉 = φ†
i↑φ

†
i↓R

†
iα|0〉, (1.64)

with Ew3 − E0 = ∆pd, |〈w3|V (0)|i, α〉|2 = 8t2pd|α(∆Rii)|2. (1.65)

• The Cu-d hole from site i hops into the φ orbital on site j 6= i:

|w4j〉 =
1√
2
(φ†

i↑φ
†
j↓ − φ†

i↓φ
†
j↑)R

†
iα|0〉, (1.66)

with Ew4j
− E0 = ∆pd, |〈w4j|V (0)|i, α〉|2 = 4t2pd|α(∆Rij)|2. (1.67)

• The φ hole on site i hops into the local Cu-d orbital:

|w5〉 = d†i↑d
†
i↓R

†
iα|0〉, (1.68)

with Ew5 − E0 = U − ∆pd, |〈w5|V (0)|i, α〉|2 = 8t2pd|α(∆Rii)|2. (1.69)
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• The φ hole on site i hops into the Cu-d orbital on site j 6= i:

|w6j〉 = d†iσ̃(i,α,j)d
†
j−σ̃(i,α,j)R

†
iα|0〉, (1.70)

with Ew6j
− E0 = U − ∆pd, |〈w6j|V (0)|i, α〉|2 = 2t2pd|α(∆Rij)|2. (1.71)

We use only the intermediate states |w1jj〉, |w3〉, and |w5〉 in Eq. (1.59) because they

give the leading contribution ∝ λ2. The corresponding virtual processes involve only

local hopping of a hole between orbitals on the same site.

〈i, α|V (0)R0V
(0)|i, α〉 ≈ −(N − 1)

4λ2t2pd

∆pd
−
(

8λ2t2pd

∆pd
+

8λ2t2pd

U − ∆pd

)

= (N − 1)ECu-d + Esinglet, (1.72)

where the singlet self-energy

Esinglet = −8λ2t2pd

(
1

∆pd
+

1

U − ∆pd

)

(1.73)

was defined by the remaining energy correction after subtracting N − 1 Cu-d self-

energies defined by Eq. (1.53).

Looking at off-diagonal elements of the second-order term in Heff , we focus on

those which correspond to an effective hopping of a singlet from site i to site j with

the simultaneous transfer of the Cu-d hole from site j to site i, i.e., at elements

between |i, α〉 and |j, α′〉 = Ψ†
jR

†
jα′|0〉 with

R†
jα′ = s(i, α, j)d†iσ̃(i,α,j)djσ̃(i,α,j)R

†
iα (1.74)

and s(i, α, j) being (−1) raised to the power of the number of occupied sites between

sites i and j in the state |i, α〉 for the chosen site order. In

〈j, α′|V (0)R0V
(0)|i, α〉 =

∑

{w̃}

〈j, α′|V (0)|w̃〉〈w̃|V (0)|i, α〉
E0 − Ew̃

(1.75)

we have non-vanishing contributions from the following intermediate states:

|w̃1〉 = d†iσ̃(i,α,j)d
†
j−σ̃(i,α,j)R

†
iα|0〉 with Ew̃1 − E0 = U − ∆pd, (1.76)

|w̃2〉 = d†i↑d
†
i↓R

†
iα|0〉 with Ew̃2 − E0 = U − ∆pd, (1.77)

|w̃3〉 = φ†
jσ̃(i,α,j)djσ̃(i,α,j)|i, α〉 with Ew̃3 − E0 = ∆pd, (1.78)

|w̃4〉 =
1√
2
(φ†

i↑φ
†
j↓ − φ†

i↓φ
†
j↑)R

†
iα|0〉 with Ew̃4 − E0 = ∆pd, (1.79)
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for l 6= i, j and σ̃(i, α, l) = σ̃(i, α, j)

|w̃5l〉 = d†iσ̃(i,α,l)d
†
l−σ̃(i,α,l)R

†
iα|0〉 with Ew̃5l

− E0 = U − ∆pd, (1.80)

and for l 6= i, j and σ̃(i, α, l) = −σ̃(i, α, j)

|w̃6l〉 = φ†
jσ̃(i,α,l)dlσ̃(i,α,l)|i, α〉 with Ew̃6l

− E0 = ∆pd. (1.81)

The corresponding matrix elements are

〈j, α′|V (0)|w̃1/2〉〈w̃1/2|V (0)|i, α〉 = −s(i, α, j)4t2pdλα(∆Rij), (1.82)

〈j, α′|V (0)|w̃3/4〉〈w̃3/4|V (0)|i, α〉 = −s(i, α, j)2t2pdλα(∆Rij), (1.83)

〈j, α′|V (0)|w̃5l/6l〉〈w̃5l/6l|V (0)|i, α〉 = −s(i, α, j)2t2pdα(∆Ril)α(∆Rlj). (1.84)

We neglect the contributions from the intermediate states |w̃5l〉 and |w̃6l〉 involving

third sites l 6= i, j and keep only the leading contribution that contains a factor of λ:

〈j, α′|V (0)R0V
(0)|i, α〉 ≈ s(i, α, j)4t2pdλα(∆Rij)

(
2

U − ∆pd
+

1

∆pd

)

. (1.85)

Other off-diagonal elements of PV (0)R0V
(0)P between singlet states in the P sub-

space, e.g. such that involve a spin flip in addition to the singlet hopping, are neglected

as their leading term is at most proportional to α(x̂) instead of λ.

φ-d triplets

Next, we consider analogously basis states in the P subspace with the φ hole forming

a triplet instead of a singlet with the local d hole. The calculation of the diagonal

elements of the second-order terms in the effective Hamiltonian is analogous to the one

presented for the singlets. But the matrix elements involving the intermediate states

|w3〉 (Eq. (1.64)) and |w5〉 (Eq. (1.68)) now vanish. There is only the contribution

(N − 1)ECu-d from the intermediate states |w1jl〉 (Eq. (1.60)) if we neglect again

terms of order 1 − λ2. We therefore find a vanishing triplet self-energy Etriplet = 0.

Off-diagonal elements of PV (0)R0V
(0)P between the φ-d triplet states are at most

comparable in size to those found for singlet states in Eq. (1.85).

φ holes

All remaining basis states in the P subspace have the additional hole in a φ or-

bital which does not couple to other orbitals. Therefore, the diagonal elements of

PV (0)R0V
(0)P between these states equal NECu-d as if the system was undoped. All

off-diagonal elements vanish.
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6
E0 + (N − 1)ECu-d

E0 + (N − 1)ECu-d + ECu-d

E0 + (N − 1)ECu-d + Esinglet

φ-d triplets

φ holes

φ-d singlets

?

6

?

6

≈ 1.8 eV

≈ 5.0 eV

Figure 1.2: Schematic comparison of the diagonal matrix elements of the effec-

tive Hamiltonian for different states. The energy separations are calculated using

tpd = 1.2 eV, U = 10 eV, ∆pd = 3 eV.

Discussion

The second-order energy correction is largest for the φ-d singlets as can be seen in

Fig. 1.2 where we compare the diagonal elements of the effective Hamiltonian for the

different states using typical parameters (tpd = 1.2 eV, U = 10 eV, ∆pd = 3 eV).

The singlet states are separated by at least |Esinglet −ECu-d| ≈ 3.3 eV from all other

states. This energy is comparable to ∆pd, the energy separation between the P and

Q subspaces. But as there is no coupling between singlets and φ holes, the relevant

energy difference |Esinglet| ≈ 5.0 eV between singlets and triplets is even larger. To-

gether with the fact that matrix elements between the two spin combinations are

small (second order in the perturbation), this allows us to neglect states with triplets

or φ holes and to consider only singlet states in the effective low-energy model.

The hopping of a singlet from site i to site j as described by Eq. (1.85) is always

accompanied by the simultaneous hopping of the Cu-d hole on site j to site i. This

allows us to formulate everything in terms of Cu-d holes only, with singlets corre-

sponding to empty sites, i.e., the states |i, α〉 are translated into R†
iα|0〉. With respect

to this new set of states the Hamiltonian

4t2pdλ

(
2

U − ∆pd

+
1

∆pd

)
∑

ijσ

α(∆Rij) c̃
†
iσ c̃jσ (1.86)

has off-diagonal matrix elements equivalent to those found for the effective model

in Eq. (1.85) within the old formulation. By using constrained fermion operators
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c̃†iσ = d†iσ(1− d†i−σdi−σ), we ensure that the Cu-d holes can only hop to empty sites as

the states R†
iα|0〉 do not contain doubly occupied sites. As |α(R)| decreases quickly

with increasing |R| (e.g. |α(x̂ + ŷ)/α(x̂)| = 0.17), it is a good approximation to

consider only terms in Eq. (1.86) that describe hopping between nearest-neighbor

sites. If we incorporate our other results for the effective Hamiltonian, we arrive at

the so-called t-J model [29]

Ht-J = −t
∑

〈i,j〉σ

(

c̃†iσ c̃jσ + c̃†jσc̃iσ

)

+ J
∑

〈i,j〉

(

Si · Sj −
1

4
ninj

)

(1.87)

+
∑

i

(
ECu-dni + Esinglet(1 − ni)

)
+ E0,

where

t = −4t2pdλα(x̂)

(
2

U − ∆pd
+

1

∆pd

)

. (1.88)

With our usual parameters, one finds t ≈ 0.5 eV. The smallness of the off-diagonal

elements in the effective Hamiltonian justifies that we only considered the diagonal

elements in discussing the energy separation of the singlet states from all other states.

The second term in Eq. (1.87) is the antiferromagnetic interaction between the spins

of the Cu-d holes from Eq. (1.54) that is obtained in fourth order perturbation theory.

In the second line of Eq. (1.87), the contributions to the total energy in zeroth and

second order in the perturbation are included. For a fixed number of holes, they

only give a constant energy shift and could also be left away. But when the on-site

energies of the order of several eV (cf. Fig. 1.2) are modulated by lattice distortions,

they can become an important source for electron-phonon coupling as we will see in

the following. The model in Eq. (1.87) is defined for an arbitrary number of doped

holes although the terms were derived explicitly only for the undoped system or the

system with one additional hole. So, possible interactions between doped charge

carriers are neglected.

1.5 t-J model with phonons

We now include the effects of lattice distortions into the effective low-energy model

of the three-band model. We work to linear order in the atomic displacements u and

up to second order in tpd, the parameter treated as a perturbation already in the case

of an undistorted lattice. Therefore, we derive an effective Hamiltonian in the form

of Eq. (1.47) which includes all terms up to order t2pdu.
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As before, we consider a system doped with one additional hole and later generalize

to arbitrary dopings. We restrict ourselves to states in the P subspace with a φ-d

singlet. It was shown in the previous section that these are the relevant low-energy

states in the undistorted lattice, and we assume that the effect of lattice distortions

does not lead to a qualitative change of this picture.1 In the following, we therefore

calculate the matrix elements of the different terms in Heff with respect to the states

|i, α〉 introduced in Eq. (1.56).

In the term in Eq. (1.47) which is linear in the perturbation V ,

PV P = PV (ε)P, (1.89)

only the modulation of the level energies V (ε) contributes as V (0) and V (t) do not

connect states within the P subspace. The diagonal elements of Eq. (1.89) are given

by

〈i, α|V (ε)|i, α〉 =
∑

j

∆εd
j +

∑

jδ

∆εp
jδ

4
|γ(∆Rij) − γ(∆Rij − 2δ)|2 (1.90)

when we use Eq. (1.17). The first term on the right hand side of Eq. (1.90) vanishes as

we assume that there is no (q = 0)-contribution to the modulation of the level energies

which would merely amount to a global renormalization of εd and εp. In the second

term, the modulations of the level energies of the four nearest-neighbor p orbitals with

respect to the Cu-d orbital at site i are multiplied by (γ0 − γ1)
2/4 = α(0)2/4 = λ2/4.

The importance of all remaining terms can be estimated as follows.

∑

jδ

′∆εp
jδ

4
|γ(∆Rij)−γ(∆Rij−2δ)|2 ≤ ∆εp

max

4

∑

jδ

′
|γ(∆Rij)−γ(∆Rij−2δ)|2

= ∆εp
max(1 − λ2). (1.91)

The prime on the summation symbol indicates that the four p orbitals which are

nearest neighbors to the Cu-d orbital at site i are not included in the sum. The indi-

vidual p level modulations are replaced by the maximum amplitude of the modulation,

∆εp
max. In the second line of Eq. (1.91) we used that

∑

jδ

|γ(∆Rij) − γ(∆Rij − 2δ)|2 (1.92)

=
1

N2

∑

jδ

∑

k6=0

∑

k′ 6=0

βkβk′ei(k−k′)(Ri−Rj)
(
1 − e−i2kδ

) (

1 − ei2k′δ

)

1Our later results for the electron-phonon coupling justify this assumption. One finds from a

simple estimate that the amplitude of the modulation of the effective level energies in the t-J model

is only about 10% of the singlet-triplet splitting when parameters typical for the cuprates are used.
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=
4

N

∑

δ

∑

k6=0

[sin(kδ)]2

[sin(kxa/2)]2 + [sin(kya/2)]2

= 4
N − 1

N
→ 4 for N → ∞.

According to Eq. (1.91), we only make an error of order 1 − λ2 by approximating

〈i, α|V (ε)|i, α〉 ≈ λ2

4

∑

δ

(

∆εp
iδ + ∆εp

(i−2δ)δ

)

. (1.93)

Non-vanishing off-diagonal elements of Eq. (1.89) are given by

〈j, α′|V (ε)|i, α〉 =
∑

lδσ

∆εp
lδ

4
〈j, α′|φ†

jσφiσ|i, α〉 × (1.94)

× (γ(∆Rjl)−γ(∆Rjl−2δ)) (γ(∆Rli)−γ(∆Rli+2δ)) .

As before, we consider only nearest-neighbor hopping (j = i± 2δ) where the singlet

and a Cu-d hole swap their sites. The state |j, α′〉 is defined as in Eq. (1.74), and

with

〈j, α′|
∑

σ

φ†
jσφiσ|i, α〉 = −s(i, α, j)1

2
(1.95)

one obtains for instance

〈i+ 2δ, α′|V (ε)|i, α〉 ≈ s(i, α, j)

8
λ [λ∆εp

iδ (1.96)

+(γ2 − γ1)(∆ε
p
(i−2δ)δ + ∆εp

(i+2δ)δ)

+(γ11 − γ1)(∆ε
p

iδ
+ ∆εp

(i−2δ)δ
+ ∆εp

(i+2δ)δ
+ ∆εp

(i+2δ−2δ)δ
)
]

.

We include only the leading term ∝ λ from the modulation of the seven p orbitals

which are nearest neighbors to the d orbitals at sites i and j.

Next, we consider terms in Heff which are of second order in V .

PV R0V P = P (V (0) + V (t))R0(V
(0) + V (t))P (1.97)

≈ PV (0)R0V
(0)P + PV (0)R0V

(t)P + PV (t)R0V
(0)P.

In the second line of Eq. (1.97), the term containing twice V (t) is neglected as we only

work up to linear order in the displacements. The first of the remaining three terms

was already discussed when the undistorted lattice was considered. Terms containing

φ in V (t) can be neglected since V (0) does not connect states from the P subspace to

intermediate states with holes in φ orbitals. Like V (0), the remaining part of V (t) is

proportional to d†iσφjσ + φ†
jσdiσ. Therefore, the two other terms in the second line of
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Eq. (1.97) can be evaluated using the same intermediate states that were considered

for PV (0)R0V
(0)P in the undistorted lattice, only the matrix elements differ. For the

diagonal elements, one finds as the leading contribution

〈i, α|V (0)R0V
(t) + V (t)R0V

(0)|i, α〉 (1.98)

≈
∑

j

[

−(1 − δj,i)
2λ2tpd

∆pd

− δj,i

(
4λ2tpd

∆pd

+
4λ2tpd

U − ∆pd

)]
∑

δ

∑

s=±
∆tj(sδ).

The corresponding result for the off-diagonal elements in case of nearest-neighbor

hopping is

〈i± 2δ, α′|V (0)R0V
(t) + V (t)R0V

(0)|i, α〉 (1.99)

≈ s(i, α, j)
λtpd

2

(
2

U − ∆pd

+
1

∆pd

)[

α(x̂)
∑

δ′

∑

s=±

(
∆ti(sδ′) + ∆tj(sδ′)

)

−λ(∆ti(±δ) + ∆tj(∓δ)) + (γ1 − γ2)(∆ti(∓δ) + ∆tj(±δ))

+(γ1 − γ11)(∆ti(+δ) + ∆ti(−δ) + ∆tj(+δ) + ∆tj(−δ))
]

which includes all leading terms proportional to λ.

Finally, we discuss contributions to the effective model which are of third order

in the perturbation:

PV R0V R0V P − 1

2
PV (PV R2

0 +R2
0V P )V P (1.100)

≈ PV (0)R0V
(ε)R0V

(0)P − 1

2
PV (ε)PV (0)R2

0V
(0)P − 1

2
PV (0)R2

0V
(0)PV (ε)P.

In the second line of Eq. (1.100), only terms are kept that are of first order in the

atomic displacements. Terms in V (ε) that contain φ do not contribute to them and can

be neglected. For the diagonal elements of Eq. (1.100), analogous to the treatment of

corresponding lower order terms, we only include intermediate states where holes hop

between orbitals localized on the same site. Therefore, only terms in V (ε) contribute

that are proportional to φ†
jσφjσ or d†jσdjσ. They do not alter states to which they

are applied to. For this reason, the same intermediate states can be used that were

considered already for the diagonal elements of the second-order terms in the effective

Hamiltonian, and we find as the leading contribution (proportional to powers of λ)

〈i, α|(V (0)R0V
(ε)R0V

(0) − 1

2
V (PV R2

0 +R2
0V P )V )|i, α〉 (1.101)

≈
∑

j

[

(1 − δj,i)
4λ2t2pd

∆2
pd

+ δj,i

(

8λ2t2pd

∆2
pd

− 8λ2t2pd

(U − ∆pd)2

)]

×

×
[

λ2

4

∑

δ

(∆εp
jδ + ∆εp

(j−2δ)δ) − ∆εd
j

]

.
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The off-diagonal elements for nearest-neighbor hopping are given by

〈i + 2δ, α′|(V (0)R0V
(ε)R0V

(0) − 1

2
V (PV R2

0 +R2
0V P )V )|i, α〉 (1.102)

≈ s(i, α, j)2λt2pd

(

2

(U − ∆pd)2
− 1

∆2
pd

)

×

×
{

α(x̂)

[

λ2

4

∑

δ

(∆εp
iδ − ∆εp

(i−2δ)δ + ∆εp
jδ − ∆εp

(j−2δ)δ) − ∆εd
i − ∆εd

i+2δ

]

−1

4

[

λ3∆εp
iδ + λ2(γ2 − γ1)(∆ε

p
(i−2δ)δ + ∆εp

(i+2δ)δ)

+λ2(γ11 − γ1)(∆ε
p

iδ
+ ∆εp

(i−2δ)δ
+ ∆εp

(i+2δ)δ
+ ∆εp

(i+2δ−2δ)δ
)
]}

.

The first term within the curly brackets in Eq. (1.102) is due to the site-diagonal terms

(proportional to φ†
iφi or d†idi ) in V (ε). As they do not change the states to which they

are applied to, we can use the same intermediate states that were employed for the

off-diagonal elements of the second-order contributions to Heff . The remaining part of

Eq. (1.102) is obtained from the site-off-diagonal terms in V (ε) proportional to φ†
iφj.

We only consider the modulation of the seven p orbitals which are nearest neighbors

to the d orbitals on sites i and j thereby keeping only the leading contributions which

contain at most one geometrical prefactor (like α(x̂) or combinations of γ(R)) other

than powers of λ.

So far, we considered the effect of static lattice distortions on the effective low-

energy model. We now assume that these distortions are caused by the vibrations of

the atoms around their equilibrium positions, i.e., by phonons. By adding

Hph =
∑

qν

~ωqνb
†
qνbqν (1.103)

to the effective low-energy Hamiltonian, their kinetic and potential energy is included

(except for the zero-point energy which we neglect as an unimportant constant energy

shift). The phonon operator b†qν creates a phonon from branch ν with wavevector q

and eigenfrequency ωqν. The atomic displacements are then given by

uCu,i =
1√
N

∑

qν

√

~

2ωqν
(bqν + b†−qν)

εCu(q, ν)√
MCu

eiq·Ri, (1.104)

uO,iδ =
1√
N

∑

qν

√

~

2ωqν
(bqν + b†−qν)

εOδ(q, ν)√
MO

eiq·(Ri+δ), (1.105)
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with the polarization vectors ε(i)(q, ν) = (ε
x̂/2
(i) , ε

ŷ/2
(i) ) for (i) ∈ {Cu,Ox̂/2,Oŷ/2} and

the atom masses MCu and MO. The matrix elements of the effective Hamiltonian

depend on the lattice distortions through ∆ti(±δ), ε
d
i , and εp

iδ. By expressing these

modulations first in terms of the atomic displacements as in Eqs. (1.27), (1.31), and

(1.32), we can then make the transition to second quantization using Eqs. (1.104)

and (1.105).

Considering again sites with singlets as empty sites, we arrive at the following t-J

model with electron-phonon interaction as an effective low-energy model:

H = Ht-J +Hph +Hep, (1.106)

where Ht-J is the effective Hamiltonian for the undistorted lattice from Eq. (1.87),

and Hph from Eq. (1.103) describes the non-interacting phonon modes in the system.

The interaction between electronic and lattice degrees of freedom is given by

Hep =
1√
N

∑

ijσ

c̃†iσ c̃jσ
∑

qν

gij(q, ν)(bqν + b†−qν) (1.107)

with the coupling constant

gij(q, ν) = i

√

~

2ωqν

eiq·(Ri+Rj)/2[A(q, ν)δi,j +
∑

δ

∑

s=±
Bδ(q, ν)δi,js2δ]. (1.108)

On the one hand, the phonons couple to the on-site energies in the t-J model with

the coefficient

A(q, ν) = A(t)(q, ν) + A(ε)(q, ν), (1.109)

where we further distinguish between contributions arising from the modulation of

the p-d hopping in the three-band model,

A(t)(q, ν) = 4λ2tpd
dtpd

dr

∣
∣
∣
∣
0

(
2

U − ∆pd
+

1

∆pd

)
∑

δ′

εδ
′

Oδ′√
MO

sδ′, (1.110)

and those due to the modulation of the level energies in the three-band model,

A(ε)(q, ν) = −2λ2 dUpd

dr

∣
∣
∣
∣
0

∑

δ′

εδ
′

Cu√
MCu

sδ′cδ′ + 8λ2t2pd

dUpd

dr

∣
∣
∣
∣
0

× (1.111)

×
(

2

(U − ∆pd)2
− 1

∆2
pd

)[

2
∑

δ′

εδ
′

Oδ′√
MO

sδ′ + λ2
∑

δ′

εδ
′

Cu√
MCu

sδ′cδ′

]

,

using the abbreviation sδ = sin(q · δ). A(t)(q, ν) is derived from the diagonal matrix

elements from Eq. (1.98) whereas A(ε)(q, ν) is obtained from those in Eqs. (1.93) and
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(1.98). In these matrix elements, terms proportional to 1 − δj,i describe modulation

of the Cu-d self-energy and therefore coupling to the d hole density ni. Those pro-

portional to δj,i and the contribution from Eq. (1.93) enter with the opposite sign as

they are due to the modulation of the singlet self-energy and couple to empty sites

measured by 1 − ni.

On the other hand, the phonons modulate also the effective hopping in the t-J

model with the coefficient

Bδ(q, ν) = Bδ,(t)(q, ν) +Bδ,(ε)(q, ν) (1.112)

which we split analogously into

Bδ,(t)(q, ν) = λtpd
dtpd

dr

∣
∣
∣
∣
0

(
2

U − ∆pd
+

1

∆pd

)

× (1.113)

×
[

2α(x̂)
∑

δ′

εδ
′

Oδ′√
MO

sδ′cδ − λ
εδCu√
MCu

sδ

+(γ1 − γ2)(2
εδOδ√
MO

cδ −
εδCu√
MCu

)sδ + 2(γ1 − γ11)
εδ
Oδ√
MO

s
δ
cδ

]

from Eq. (1.99) and

Bδ,(ε)(q, ν) = 8λα(x̂)t2pd

dUpd

dr

∣
∣
∣
∣
0

(

2

(U − ∆pd)2
− 1

∆2
pd

)

× (1.114)

×
(

2
∑

δ′

εδ
′

Oδ′√
MO

sδ′ + λ2
∑

δ′

εδ
′

Cu√
MCu

sδ′cδ′

)

cδ

+λ
dUpd

dr

∣
∣
∣
∣
0

[

1

2
− 2λ2t2pd

(

2

(U − ∆pd)2
− 1

∆2
pd

)]

×

×
(

λ
εδCu√
MCu

sδ + 2(γ2 − γ1)
εδCu√
MCu

(sδ − 2s3
δ) + 4(γ11 − γ1)

εδCu√
MCu

s
δ
c
δ
cδ

)

from Eqs. (1.96) and (1.102).

This coupling differs slightly from the one given in Ref. [39]. In the present deriva-

tion, contributions to the second-order Cu-d self-energy of order 1−λ2 were neglected

which were explicitly considered previously. In the treatment of the modulation of the

O-p level energies, the prefactor λ2 was approximated by 1 in Ref. [39] where also the

direct hopping between φ levels induced by this modulation was neglected. Finally,

in Eq. (6) in Ref. [39], there is a misprint. In the second-last term, sy (= sin(qya/2))

must be replaced by sin(qya).
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1.6 Summary

To summarize, with Eqs. (1.106)-(1.114) we have obtained an effective low-energy

model for the description of electron-phonon interaction in (doped) cuprates. In

order to achieve this, we started out from the three-band model for the CuO2 planes.

The effects of lattice distortions on its parameters can be quite directly estimated in

a physically reasonable way. We take into account not only the modulation of the p-d

hopping, but also the change in level energies due to the screened Coulomb interaction.

After changing to a suitable representation of the O-p orbitals, an effective low-energy

model can be derived by projecting out high-energy states. The general formalism

is first applied to the three-band model for the undistorted lattice. At low energies,

doped holes are found to lead to Zhang-Rice singlets whose hopping in a background

of antiferromagnetically interacting spins is described by the resulting effective model,

the t-J model. By generalizing the derivation to the distorted lattice, the interaction

with phonons is included into the effective low-energy model. Both the effective

hopping and the on-site energies in the t-J model are modulated by phonons.

The thus obtained model forms the basis for the discussion of the strong soften-

ing of certain phonon modes upon doping in the next chapter. In this context, we

will also discuss the importance of different coupling mechanisms and compare with

other approaches. In Chap. 3, we modify the coupling to allow for an appropriate

description of electron-phonon coupling in the undoped cuprates where the screening

of the Coulomb interaction is less effective. Finally, a generic form of the model is

used in Chap. 4 to discuss in general electron-phonon interaction in the presence of

strong electronic correlations.



Chapter 2

Anomalous softening of the

half-breathing phonon

2.1 Introduction

Phonons in the high-Tc cuprates have been studied extensively by neutron scattering.

See e.g. Refs. [17, 40] for reviews of the results. Experimental phonon dispersions

for La2−δSrδCuO4 (filled circles) as well as results from a shell model calculation [16]

(lines) are shown in Fig. 2.1 for the undoped and a 10% doped system (left and right

panel, respectively). The shell model describes almost all phonon branches rather

accurately in both the undoped and the doped compound.

The highest mode of ∆1 symmetry, however, shows an anomalously strong soften-

ing upon doping. This softening is anomalous in the sense that it is not captured by

the shell model. Whereas the phonon is quite well described in the undoped system,

the calculations do not reproduce the strong softening seen experimentally half way

along the (1,0,0) direction. This mode is the so-called oxygen half-breathing phonon

that describes an out-of-phase bond-stretching vibration of half of the oxygen atoms

in the CuO2 plane. The displacement pattern is shown schematically in the upper

right corner of Fig. 2.3. Anomalies of such bond-stretching phonons have been ob-

served not only in high-Tc cuprates [15, 41, 42, 18, 19, 43, 44, 45, 46] but also in other

compounds [47,48,49]. This phonon mode also shows a large broadening in the doped

system as illustrated in Fig. 2.2. The intrinsic broadening of the peak’s full width at

half maximum (FWHM) is about 1.2 THz or 5 meV for q = (π/a, 0, 0) in the 15%

doped system. Both the softening and the width indicate that the half-breathing

couples strongly to doped holes.

39
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Figure 2.1: Phonon dispersions for La2CuO4 (left panel) and La1.9Sr0.1CuO4 (right

panel) calculated in a shell model [16] (lines) together with experimental results from

neutron scattering (filled circles). The figure illustrates that the half-breathing mode

in the ∆1 symmetry at 20 THz and several apical oxygen modes in the Λ1 symmetry

at 12-16 THz are strongly softened upon doping.

Some phonons of Λ1 symmetry also show a strong softening upon doping. These

are modes which involve mainly the displacement of apical O atoms. One example

is the so-called OZ
Z mode with the reduced wavevector (0, 0, 1) that has an energy

of about 17 THz in the undoped system (see Fig. 2.1). In the 15% doped system it

softens by about 30% and has a large width of about 17 meV [17]. The softening

is, however, well described by the shell model that takes into account the effect of

doping only via the screening due to free carriers. In this sense, the softening of these

phonons is not anomalous. But still a strong coupling to doped holes is suggested,

and we will show in Chap. 3 that apical oxygen modes indeed couple strongly via the

modulation of the electrostatic potential in the undoped system.

In this chapter, we focus on exploring the anomalous softening of the half-breathing

mode within the effective low-energy model of the phonon-modulated CuO2 plane de-

rived in Chap. 1. First, we describe the numerical methods used to solve this model.

Then, we discuss the results for softening and broadening of the half-breathing mode

addressing also the dependences on the phonon wavevector and doping. We find a

rather good correspondence between our calculations and experimental results. In

order to judge the importance of strong correlations in this context, we also compare

to results obtained in the Hartree-Fock mean-field approximation of the three-band
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Figure 2.2: Width of the half-breathing phonon for La2−xSrxCuO4 as function of

the reduced wavevector (ξ, 0, 0) for the dopings x = 0 (left), x = 0.1 (middle),

and x = 0.15, 0.3 (right). The full line shows the experimental resolution including

focusing effects. The figure illustrates the large broadening for the doped system and

the very small intrinsic broadening for the undoped system (after Pintschovius [40]).

model. Finally, we discuss various other aspects like the role of different coupling

mechanisms, the importance of non-linear contributions to the electron-phonon in-

teraction, and the coupling to other modes.

2.2 Numerical results for t-J model with phonons

For the electron-phonon interaction in the t-J model that we derived in the previous

chapter, we want to evaluate the effect on phonon properties, especially the renor-

malization of the phonon frequencies.

We solve the t-J model with electron-phonon interaction from Eqs. (1.106)-(1.114)

on finite clusters using exact diagonalization. This method is described in App. A

and allows for an exact calculation of the ground state and dynamical correlation

functions at zero temperature.

If we consider a system with N sites and K phonon modes, its Hilbert space is

spanned by the basis {⊗N
i=1|µi〉 ⊗K

j=1 |νj〉}. There is an electronic degree of freedom

|µi〉 on each site i which can be a fermion with spin up or down or an empty site. The

total number of fermions with spin σ, Nσ, is conserved by our model. For fixed N↑

and N↓ corresponding to a doping δ = (N −∑σ Nσ)/N , it then suffices to consider

only the appropriate subset of all electronic configurations ⊗N
i=1|µi〉 which has the

dimension Del =
(

N
N↑+N↓

) (
N↑+N↓

N↑

)

. The phonon degrees of freedom |νj〉 give the

occupation number νj = 0, 1, . . . ,∞ of each phonon mode j. There is infinitely

many phonon configurations ⊗K
j=1|νj〉, but numerical calculations require a finite-

dimensional Hilbert space, and only a finite subset can be included in the basis.



42 2. Anomalous softening of the half-breathing phonon

We choose to allow only for states with at most P phonons excited, i.e.,
∑K

i=1 νi ≤
P . The dimension of the phonon Hilbert space is then given by Dph =

(
K+P

K

)

[50]. Thinking of the states ⊗K
j=1|νj〉 as eigenstates of the free phonon Hamiltonian

Hph =
∑

j ~ωjb
†
jbj, this corresponds to an energy cut-off if all modes have the same

frequency. We typically consider modes corresponding to different wavevectors of the

same optical phonon branch for which this is approximately true and the truncation

scheme therefore seems physically reasonable. The results of the calculation in general

depend on P , but converge to the results for the untruncated infinite Hilbert space for

large enough P . The total dimension of the truncated Hilbert space is D = DelDph.

We consider finite clusters that tile the infinite square lattice when translated by

integer multiples of the vectors Ra and Rb which span the cluster. If Ra = axx̂+ayŷ

and Rb = bxx̂ + byŷ with ax/y, bx/y being integers, the corresponding cluster has

N = |Ra × Rb| = |axby − aybx| sites. The choice bx = −ay and by = ax gives (tilted)

square clusters whereas for ay = bx = 0 one has rectangular clusters (later referred

to as ax × by clusters). For periodic boundary conditions, the allowed single-particle

momenta are k = (byn1 + ayn2)(2π/N)x̂ + (bxn1 + axn2)(2π/N)ŷ for n1, n2 being

integers which give N momenta in the first Brillouin zone. In general, we use twisted

boundary conditions [51,52] that amount to the conditions c̃(i+Ra/b)σ = eiφa/b c̃iσ with

arbitrary phases φa and φb. Periodic (anti-periodic) boundary conditions correspond

to φa = φb = 0 (π). Twisted boundary conditions can be imposed by replacing c̃†iσc̃jσ
by eiκ(Rj−Ri)c̃†iσ c̃jσ in the site-off-diagonal terms of the Hamiltonian from Eq. (1.106)

where κ is defined by φa/b = κ · Ra/b. The on-site terms as well as the exchange

interaction remain unchanged. The discrete single-particle momenta are shifted by

κ, but bosonic correlation functions like the phonon Green’s function are defined for

momenta corresponding to difference vectors q between these momenta. Therefore,

irrespective of the chosen boundary conditions, the allowed q values always equal

those of the single-particle momenta k for periodic boundary conditions.

We calculate the phonon spectral function

Bν(q, ω) = − 1

π
Im 〈〈Ô†; Ô〉〉retω (2.1)

with Ô = bqν + b†−qν using exact diagonalization as described in appendix A.2. For

the small finite clusters used in our calculations, we typically find spectra basically

consisting of a single δ-function at the renormalized phonon frequency. In some cases,

there is a split-up into a few peaks due to coupling to an electronic excitation with an

energy close to the phonon frequency. In order to quantify the phonon softening in

all cases, we use the center of gravity of the phonon spectrum for positive frequencies
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ω > 0 to define the renormalized phonon frequency:

ωqν =

∫∞
0
dω ωBν(q, ω)

∫∞
0
dω Bν(q, ω)

=
ωqν

〈0|Ô†Ô|0〉
. (2.2)

The last term in Eq. (2.2) was obtained using
∫ ∞

0

dω ωBν(q, ω) =
1

2

∫ ∞

−∞
dω ωBν(q, ω) =

1

2
〈[[Ô†, H]−, Ô]−〉 = ωqν. (2.3)

Therefore, the calculation of ωqν only requires the expectation value of the operator

Ô†Ô in the ground state but not the full phonon spectral function.

We use realistic estimates for the parameters in the three-band model that enter

the electron-phonon coupling in the effective low-energy model: a = 3.8 Å, tpd =

1.2 eV, ∆pd = 3 eV, U = 10 eV, and Upd = 1 eV [53,54,55,56,57,58]. The somewhat

small value for tpd partly compensates for the use of perturbation theory in obtaining

the electron-phonon interaction in the t-J model and leads to a reasonable [59] t =

0.47 eV from Eq. (1.88) which will be used in the following. The expression for J

from perturbation theory in Eq. (1.55) has an even smaller radius of convergence as

function of tpd [38]. We will therefore use the widely accepted value J/t = 0.3 instead

of evaluating Eq. (1.55) for our parameters.

In the undoped system, the electron-phonon coupling is zero and the bare phonon

frequencies ωqν are unrenormalized. Therefore, for our calculations, we determine the

ωqν from the phonon dispersions of undoped La2CuO4 obtained in neutron scattering

experiments [16, 15].

We fit a simple two-spring model of the CuO2 plane with two different spring

constants κCu-O and κO-O for springs between nearest-neighbor Cu-O and O-O pairs,

respectively, to the experimental dispersion of the (half-)breathing mode in undoped

La2CuO4 in order to obtain the phonon polarization vectors for this mode. We

used the values κCu-O = 7.86 eV/Å2 and κO-O = 3.815 eV/Å2. The thus obtained

polarization vectors are in good agreement with those found in a more realistic shell

model calculation [53].

Both for obtaining the ground state and the phonon spectra, we use 160 iterations

each in the Lanczos algorithm to ensure convergence of the exact diagonalization

calculations. We find that the calculation of the phonon spectral function Bν(q, ω)

can be done for our model with sufficient accuracy by only including the modes from

the ν-branch with wavevectors q and −q. Including more modes simultaneously only

leads to very small changes, typically of the order of 0.1 meV for the renormalized

phonon energies. All results in the following were obtained with only the pair of
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modes included for which the phonon spectrum is calculated. For zone boundary

modes like q = (π/a, π/a), only the single mode in question is considered. If there

are degenerate modes like e.g. ±(π/(2a), 0) and ±(0, π/(2a)) in the 4 × 4 cluster, all

of them are included. The calculations were always done using all basis states with

up to P = 5 excited phonons. This leads to converged results with an error of less

than 0.1 meV for ωqν.

The calculations are done for different twisted boundary conditions. Both φa and

φb are chosen out of the interval [0; π[. In order to reduce finite-size effects [52],

we average ωqν over the boundary conditions corresponding to this square in the

φa-φb plane. We find that already averaging over the four corners, i.e., periodic, anti-

periodic, and the two mixed boundary conditions (φa = 0 (π), φb = π (0)), results in

a value quite close to the one obtained from averaging over finer meshes. We therefore

use only these four boundary conditions in the following.

2.2.1 Half-breathing and breathing modes

As discussed in the introduction to this chapter, anomalously strong softening upon

doping is found in experiment for the optical phonon branch with the highest energy in

La2−δSrδCuO4 (LSCO). Figure 2.3 shows the experimental dispersion of this branch

for two different directions in the Brillouin zone (q = (ξ, ξ) and q = (ξ, 0), ξ ∈
[0; π/a]) and two different dopings (δ = 0 and δ = 0.15). The softening is largest

towards the zone boundaries ((π/a, π/a) and (π/a, 0), respectively), and the half-

breathing modes with q = (ξ, 0) are softened more strongly than the breathing modes

with q = (ξ, ξ).

We now compare with results for our model obtained on a 4×4 cluster doped with

2 holes (δ = 0.125, N↑ = N↓ = 7). The renormalized phonon frequencies for the five

available wavevectors along the two q directions are shown in Fig. 2.3. We average

over periodic, anti-periodic and the two mixed boundary conditions. The error bars

show the range of the results for the different boundary conditions. Despite the fairly

large sensitivity on boundary conditions, the trends are clear. As the electron-phonon

coupling in our model is zero for q = (0, 0), the frequency of this mode is unchanged

compared to the undoped system. For the other wavevectors, we find a softening of

the right order of magnitude when compared with experiment. We also reproduce

the stronger softening of the half-breathing modes in agreement with experimental

results.

We now specifically consider the half-breathing and the breathing mode at the
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Figure 2.3: Phonon dispersions in the (ξ, 0) and (ξ, ξ) directions. Experimental results

(dotted line) are shown for La2−δSrδCuO4 with δ = 0 and δ = 0.15 [18]. Theoretical

results (full line) for δ = 0.125 show the calculated softening from the experimental

δ = 0 results. The average over boundary conditions is shown, and the bars show

the spread due to different boundary conditions. There is a strong softening in the

(ξ, 0) direction, while the softening in the (ξ, ξ) direction is weaker. The insets show

schematically the movements of oxygen atoms (open circles) in the CuO2 plane in

relation to Cu atoms (filled circles) for the two q directions.

respective zone boundary. Figure 2.4 shows the corresponding phonon spectral

functions. To obtain smooth spectra, a Lorentzian broadening is used. It is basically

impossible to extract an intrinsic width of the phonon peak from the spectral function.

Whereas for q = (1, 1)π/a, the spectrum consists of virtually only a single pole,

there are a few separate contributions to the q = (1, 0)π/a spectrum as indicated by

the vertical lines. This might hint that the half-breathing mode is broadened more

strongly, but no reliable quantitative prediction can be made.

Therefore, we calculate the phonon self-energy from the spectral function as de-

scribed in App. A.3. First, a Hilbert transform can be used to obtain the phonon

Green’s function D(q, ω) from the phonon spectral function B(q, ω). The phonon
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Figure 2.4: Phonon spectral functions for the half-breathing (full line) and the

breathing mode (dashed line) for a 4 × 4 cluster, δ = 0.125, and averaged over

boundary conditions. A Lorentzian broadening with FWHM=6 meV was used. The

arrows indicate the phonon softening (ωq → ωq). The vertical lines indicate energy

and weight of the poles in the spectral function for the half-breathing phonon.

self-energy Π(q, ω) is then calculated by inverting

D−1(q, ω) = D−1
0 (q, ω) − Π(q, ω), (2.4)

where D0(q, ω) is the non-interacting phonon Green’s function. The result is shown

in Fig. 2.5. Clearly, the self-energies for the half-breathing and the breathing mode

have very different ω dependences. For q = (1, 0)π/a, the spectral function of the

self-energy is non-zero over an energy range of several eV. As expected from phase

space arguments, it is linearly increasing with ω at low frequencies. Fitting α~ω

to ~ Im Π(q, ω) within the range [0; 0.5] eV gives α = 0.0107 (independent of the

broadening used). Then, for ωq = 68.5 meV one expects a phonon broadening with

FWHM=2αωq = 1.5 meV. Although this is smaller than the experimental value of

about 5 meV for 15% doped LSCO [18], we obtain the right order of magnitude. This

result could not have been obtained from the phonon spectral function directly. For

q = (1, 1)π/a on the other hand, the self-energy has only one dominant feature at

high energies of several eV. At low frequencies, the self-energy is virtually zero. One

expects therefore basically no contribution to the broadening of this mode from the

electron-phonon interaction considered here. Also experimentally, the broadening of

the breathing mode is found to be smaller than for the half-breathing mode [17].
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Figure 2.5: Imaginary part of the phonon self-energies for the half-breathing (full line)

the and breathing mode (dashed line) for a 4 × 4 cluster, δ = 0.125, and calculated

from phonon spectra averaged over boundary conditions. A Gaussian broadening

with FWHM=0.24 eV was used.

2.2.2 Doping dependence

We now study the doping dependence of the phonon softening in our model. First, we

consider the dispersion of the half-breathing mode for q along the (ξ, 0) direction. We

use all ax×by rectangular clusters with an even number of (up to 20) sites and ax, by >

2 that allow for q points along (0, 0) − (π/a, 0). These are the 4 × 4 square cluster

and three rectangular clusters (4 × 3, 6 × 3, and 5 × 4). All clusters are doped with

two holes keeping N↑ = N↓. Therefore, the doping δ varies between 0.1 and 0.167 for

the different cluster sizes. Figure 2.6 shows the corresponding renormalized phonon

frequencies averaged over our four standard boundary conditions. For comparison,

also the experimental dispersion for undoped La2CuO4 is shown which is used to

define the bare phonon frequencies in our model. The softening increases with doping

δ, e.g. at the zone boundary, the softening is 11% for δ = 0.1 and 21% for δ = 0.167.

This is also observed experimentally, e.g. for La2−δSrδCuO4, the softening is about

11% for δ = 0.10 [16, 15] and about 15.5% for δ = 0.15 [18]. As a trend, we find for

the few q points available that the softening increases with q approaching the zone

boundary with irregularities probably due to finite-size effects.

To compare the doping dependence of the half-breathing and the breathing mode,

we consider the respective zone boundary wavevector only. In addition to the pre-



48 2. Anomalous softening of the half-breathing phonon

 65

 70

 75

 80

 85

en
er

gy
 [m

eV
]

(0,0) q=(ξ,0) (π/a,0)

0.111

0.125

0.167

δ=0.0

0.1

exp. δ=0
5×4  δ=0.1
6×3  δ=0.111
4×4  δ=0.125
4×3  δ=0.167

Figure 2.6: Phonon dispersion of the half-breathing mode in the (ξ, 0) direction av-

eraged over boundary conditions for clusters of different sizes. The corresponding

doping δ is indicated. The figure shows that the softening increases with doping.

viously used clusters, we also use several tilted clusters that have been found [60]

to be particularly useful for calculating estimates of properties of the infinite square

lattice. We consider the bipartite clusters 10B, 12A/D, 14B, 16A, 4 × 4 (16B), 18A,

20A and the non-bipartite clusters 10A, 12B, 4× 3, 14A, 6× 3, 5× 4 (employing the

notation of Ref. [60] for the tilted clusters). The clusters are doped with two or (as

far as computationally feasible) four holes, thereby extending the doping range up

to δ = 0.333. The renormalized frequencies of the two phonon modes averaged over

boundary conditions and relative to the frequencies in the undoped system are shown

in the left panel of Fig. 2.7. These results together with details on the used clusters

are also listed in Tab. 2.1. One observes that also the softening of the breathing

mode increases upon doping in agreement with experiment. For example, we obtain

the relative phonon frequency 0.92 for δ = 0.125, compared with the experimental

results 0.97 (δ = 0.1) and 0.92 (δ = 0.15) [17]. In comparison with the half-breathing

mode, however, the softening is weaker except for very large dopings. Whereas the

softening of the breathing mode increases almost linearly with doping, one finds that

the renormalization of the half-breathing mode increases more slowly towards higher

doping. These trends agree with experimental results from neutron scattering [40]

(reproduced in the left panel of Fig. 2.7) and inelastic x-ray scattering [61] where data

for up to δ = 0.3 also indicates some saturation of the softening of the half-breathing
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Figure 2.7: In the left panel, numerical results for the doping dependence of the

softened phonon frequencies (relative to the frequencies in the undoped system) of

the half-breathing (q = (1, 0)π/a, full circles, smaller diameter for non-bipartite

clusters) and the breathing mode (q = (1, 1)π/a, empty circles) are shown. The

dotted lines are second-order polynomials fitted to the results for bipartite clusters

and serve to guide the eye. The right panel shows the corresponding experimental

results for LSCO [40].

mode in overdoped samples. A similar trend has also been predicted by Ref. [62]

using a slave-boson approach.

2.3 Three-band model in Hartree-Fock approxi-

mation

In this section, we study the three-band model with phonons in the Hartree-Fock (HF)

mean-field approximation in contrast to the explicit treatment of strong electronic

correlations in the derivation of an effective low-energy model in Chap. 1. We then

compare the effects of the electron-phonon interaction in the two approaches in order

to investigate the importance of strong correlations.

This is also motivated by extensive studies [63,12,64,65] of phonons and electron-

phonon interaction within the local density approximation (LDA) [66]. Bohnen et

al. [65] found phonon frequencies in good agreement with experiment for YBa2Cu3O7.

In particular, the frequency of the half-breathing mode along the (ξ, 0, 0) direction

was correctly found to be anomalously soft. Since the LDA does not describe antifer-
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cluster Ra,Rb [a] bipartite δ q [π/a] rel. frequency

10A (2, 3), (−2, 2) no 0.2 (1, 0) 0.728

10B (3, 1), (−1, 3) yes 0.2 (1, 1) 0.853

12A (2, 2), (−4, 2) yes 0.167 (1, 0) & (0, 1) 0.802

(1, 1) 0.879

0.333 (1, 0) & (0, 1) 0.739

(1, 1) 0.674

12B (2, 3), (−2, 3) no 0.167 (1, 0) 0.858

0.333 (1, 0) 0.830

12D (1, 3), (4, 0) yes 0.167 (1, 1) 0.878

0.333 (1, 1) 0.671

14A (3, 2), (−1, 4) no 0.143 (0, 1) 0.860

0.286 (0, 1) 0.794

14B (4, 2), (−1, 3) yes 0.143 (1, 1) 0.899

0.286 (1, 1) 0.733

16A (4, 2), (0, 4) yes 0.125 (1, 0) & (0, 1) 0.888

(1, 1) 0.912

0.25 (1, 0) & (0, 1) 0.764

(1, 1) 0.792

16B (4, 0), (0, 4) yes 0.125 (1, 0) & (0, 1) 0.860

(1, 1) 91.9

0.25 (1, 0) & (0, 1) 0.781

(1, 1) 0.797

18A (3, 3), (−3, 3) yes 0.111 (1, 1) 0.925

6 × 3 (6, 0), (0, 3) no 0.111 (1, 0) 0.897

0.222 (1, 0) 0.841

20A (4, 2), (−2, 4) yes 0.1 (1, 0) & (0, 1) 0.865

(1, 1) 0.931

5 × 4 (5, 0), (0, 4) no 0.1 (0, 1) 0.892

Table 2.1: This table lists more details to the results displayed in Fig. 2.7. For

each cluster used, it gives the basic translation vectors and shows whether the cluster

is bipartite. The dopings and phonon wavevectors which were considered are then

listed together with the corresponding softened frequency (averaged over boundary

conditions) relative to the frequency in the undoped system.
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romagnetism in the undoped system, however, it cannot properly describe phonons

in the undoped case. It is therefore not clear how much the phonon is softened upon

doping in the LDA. Furthermore, LDA calculations show a weak electron-phonon cou-

pling to the half-breathing phonon, with λ at the zone boundary being ≈ 0.01 [65].

This is in disagreement with the large width of the half-breathing phonon, which is

believed to be due to a rather strong electron-phonon coupling. The weak coupling

raises questions about the reasons for the low frequency of the half-breathing phonon

in the LDA calculation for the doped system.

The HF mean-field approximation of the three-band model may be expected to

simulate features of the LDA for the doped system. For instance, we find a similarly

small width of the half-breathing phonon like in LDA. In contrast to LDA, however,

this approximation gives an antiferromagnetic solution for the undoped system. We

can therefore obtain the softening upon doping within this framework. The softening

of the half-breathing phonon is indeed found to be of the same order of magnitude as

the experimental result, supporting the idea that the LDA can describe the softening.

We find that the HF solution of the three-band model and the t-J model give

a comparable softening of the half-breathing phonon. This happens, however, in a

very different way in the two approaches. Furthermore, we find that the dependence

on doping and phonon wavevector is rather different in the two approaches. In the

t-J model, the softening is ∝ δ for small δ, while the doping dependence is weaker

in the HF solution. The t-J model gives a smaller softening for the q = (1, 1)π/a

breathing mode than for the q = (1, 0)π/a half-breathing mode, while the opposite

is found in the HF approximation. In both cases, t-J results are in better agreement

with experiment.

2.3.1 Model

We consider the three-band model from Eq. (1.1) in the Hartree-Fock (HF) mean-field

approximation,

HHF =
∑

iσ

(εd + U〈nd
i−σ〉)nd

iσ + εp
∑

jσ

np
jσ − U

∑

i

〈nd
i↑〉〈nd

i↓〉 +
∑

〈i,j〉σ

[

tpd
ij d

†
iσpjσ + H.c.

]

,

(2.5)

where 〈nd
iσ〉 is the expectation value of nd

iσ. Compared to Eq. (1.1), p orbitals are

now simply labeled by j and the hopping amplitude tpd
ij includes the signs due to the

relative phases of the orbitals involved. We also introduce the effective level

εd,eff
iσ = εd + U〈nd

i−σ〉 (2.6)
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that includes screening effects. We assume that the hopping integrals depend on the

atomic separations as in Eq. (1.26). We neglect that the displacement of atoms also

leads to changes in the electrostatic potentials (Eqs. (1.28) and (1.29)) that are found

to be less important for the electron-phonon coupling in the t-J model (cf. Sec. 2.4.1).

A static distortion is built into the lattice, and the change of the total energy

is calculated. From this, the interaction with the electrons and the softening of the

phonon can be deduced. The displacements of the atoms (with masses Mi) in the

lattice (N unit cells) are denoted by {ui} with ui = u/
√
N Re[εi/

√
Mi exp(iq · Ri)]

for a phonon with wavevector q, polarization vector εi, and amplitude u. The energy

of the electronic system is then

E[{ui}] = Tr(H[{ui}]ρ[{ui}]), (2.7)

where ρ[{ui}] is the density matrix, in this case obtained in the HF approximation

by solving Eq. (2.5). Using the Hellmann-Feynman theorem, it follows that

∂2E

∂u2
= Tr

(
∂H

∂u

∂ρ

∂u

)

+ Tr

(
∂2H

∂u2
ρ

)

≡
(
∂2E

∂u2

)(1)

+

(
∂2E

∂u2

)(2)

. (2.8)

It is understood that the derivatives are evaluated in the undistorted lattice. The

electron-phonon coupling adds (∂2E/∂u2)u2/2 to the bare phonon potential energy

ω2
qu

2/2 where ωq is the bare phonon frequency. Writing the sum as ω2
qu

2/2 defines

the renormalized phonon frequency ωq. Therefore, Eq. (2.8) directly relates to the

phonon softening:
∂2E

∂u2
= ω2

q − ω2
q = 2ωqΠ(q), (2.9)

where in the last equality it was used that in the adiabatic limit considered here

∂2E/∂u2 can also be expressed in terms of the static phonon self-energy Π(q).

From total energy calculations for the undistorted and distorted lattice, ∂2E/∂u2

can be deduced. If, in the modulated hopping amplitudes, we take into account

only terms up to linear order in u, we obtain just the contribution (∂2E/∂u2)(1). It

describes how a first-order change in the external Hamiltonian leads to a first-order

change in the density matrix which acts back at the Hamiltonian. This contribution

can be calculated in linear response. Schematically, we write the three-band model

from Eq. (1.1) as

H =
∑

ijσ

Tijσc
†
iσcjσ +HU , (2.10)

where i and j run over both Cu-d and O-p orbitals and the c†iσ equal the correspond-

ing creation operators (d†iσ and p†iσ, respectively). Tijσ comprises level energies and
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hopping integrals whereas HU describes the Coulomb interaction between two holes

in the same d orbital. Then,

(
∂2E

∂u2

)(1)

= Tr

(
∂H

∂u

∂ρ

∂u

)

=
∑

ijσ

∂Tijσ

∂u
Tr

(

c†iσcjσ
∂ρ

∂u

)

=
∑

ijσ

∂Tijσ

∂u

∂

∂u
Tr
(

c†iσcjσρ
)

=
∑

ijσ

∂Tijσ

∂u

∂〈c†iσcjσ〉
∂u

=
∑

ijσ

∂Tijσ

∂u

∑

mnσ′

~
−1χ

(0)
ijσmnσ′

∂T eff
mnσ′

∂u

= 2ωqgqχ
(0)(q)geff

q /(~
2N) = 2ωqΠ

(1)(q), (2.11)

where in the second line we calculate the first-order change of the expectation value

〈c†iσcjσ〉 in linear response from the changes in the effective level energies and hopping

integrals in Eq. (2.5) when written as

HHF =
∑

ijσ

T eff
ijσc

†
iσcjσ − U

∑

i

〈nd
i↑〉〈nd

i↓〉 (2.12)

by using the static response function χ
(0)
ijσmnσ′ = 〈〈c†iσcjσ; c†mσ′cnσ′〉〉ω=0 for non-inter-

acting electrons. In the third line of Eq. (2.11), we express ∂Tijσ/∂u in terms of

the coupling constant gq by comparing the term in H which is linear in u with the

standard expression for the electron-phonon interaction,

Hep =
∂H

∂u
u =

∑

ijσ

∂Tijσ

∂u
u c†iσcjσ =

gq√
N

∑

ijσ

eiq·(Ri+Rj)/2

√

2ωq

~
u c†iσcjσ. (2.13)

Analogously, the screened coupling constant geff
q is calculated from ∂T eff

ijσ/∂u. To

quantify the screening, we introduce a dielectric function

ε(q) = gq/g
eff
q . (2.14)

Using the Fourier transform of the response function,

χ(0)(q) =
∑

ijσ

∑

mnσ′

χ
(0)
ijσmnσ′e

iq·(Ri+Rj−Rm−Rn), (2.15)

we are then led to the compact result in the third line of Eq. (2.11). This result

can also be obtained from a diagrammatic technique for Π(1). It is described by the

static contribution from a bubble diagram as shown in Fig. 2.8. This is the only

diagram which enters in the HF approximation. We observe that the screening of the

perturbation, described by geff
q , enters only at one of the vertices. Using geff

q at both

vertices would lead to double counting. By using the diagrammatic approach, we can
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eff
qq

Π =(1) Π =(2)

q
(2)

gg

g

Figure 2.8: Diagrams representing the phonon softening in the HF approximation.

Π(1) describes the linear response where gq and geff
q describe the bare and screened

perturbations due to a phonon. Π(2) gives the non-linear contribution.

obtain not only a contribution to the energy but also the width of the phonon as the

phonon self-energy can be calculated for finite frequencies.

The non-linear contribution to the phonon softening,

(
∂2E

∂u2

)(2)

= Tr

(
∂2H

∂u2
ρ

)

=
∑

ijσ

∂2Tijσ

∂u2
〈c†iσcjσ〉 = 2ωqΠ

(2)(q), (2.16)

is described by the static part of the diagram for Π(2) shown in Fig. 2.8. It corresponds

to a fermion line starting and ending at the vertex g
(2)
q ∝ ∂2Tijσ/∂u

2 which connects

two fermion and two phonon lines. This diagram does not obtain an imaginary part

even for finite frequencies and therefore makes no contribution to the width of the

phonon.

2.3.2 Results for phonon softening

Here we present results for the three-band model in the Hartree-Fock approximation,

using the parameters tpd = 1.6 eV and U = 8 eV. The lattice parameter is a = 3.8 Å.

We have adjusted εp so that the separation between the effective d levels and the p

levels

εp − εd,eff = εp − εd − U〈nd
σ〉 = 3 eV, (2.17)

where 〈nd
σ〉 is the average occupation of the d levels per spin. This is a typical LDA

estimate for εp − εd,eff in a three-band model [58]. We perform two calculations, one

for the undistorted lattice and one for a lattice where a phonon has been built in. This

gives the second derivative, ∂2E/∂u2. From this derivative, we obtain the softening

of the phonon due to the interaction with the electrons in the model, reducing the

frequency ωq to ωq. Here, ωq is assumed to be due to forces not included in the model

in Eq. (1.1), e.g. electrostatic forces and core-core overlap effects. The calculations
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Figure 2.9: Softening ~∆ωq for the zone boundary half-breathing phonon. Results

are given for the HF approximation (full line), the t-J model (full circles, dotted

line), and according to experiment (open circles, dashed line) as a function of the

hole doping δ. The lines serve to guide the eye between the few points in the t-J

model from bipartite clusters (cf. Tab. 2.1) and experimental data for LSCO [40].

The HF approximation refers to results for the shift in a paramagnetic calculation for

doping δ relative to an antiferromagnetic calculation for δ = 0. The dash-dotted part

of the HF line indicates schematically that the systems becomes antiferromagnetic

for small dopings.

were performed for a cluster of 32×32 CuO2 units and periodic boundary conditions.

The doping was chosen in such a way that degenerate levels were either completely

full or completely empty, i.e. all “shells” were either full or empty.

We first consider the half-breathing phonon for q = (1, 0)π/a. We perform a

calculation for the undoped system, having five electrons per unit cell and allow-

ing for spin-polarization. We adjust ωq so that the softened energy ~ωq equals the

experimental value 80 meV for the zone boundary half-breathing phonon.

The result as a function of the hole doping δ (δ < 0 means electron doping) is

shown in Fig. 2.9. The doping dependence is relatively weak. Since the undoped

system is antiferromagnetic, but the doped system is (assumed to be) paramagnetic,

as found experimentally, the softening is not necessarily small for small dopings. The

spin-polarized system has a large gap of about 4.6 eV. Due to this gap, the response

of the system to a phonon is substantially weaker than for the paramagnetic state.
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For instance, (∂2E/∂u2)(1) contributes a softening of only about 4 meV for the spin-

polarized system but 6 meV for a non-spin-polarized system with a similar number

of electrons. Similarly, the contributions of (∂2E/∂u2)(2) are about 8 and 13 meV,

respectively.

We find that screening reduces the quantity (∂2E/∂u2)(1) by about a factor of

two, i.e., ε(q) ≈ 2 in Eq. (2.14). By evaluating the diagram for Π(1) in Fig. 2.8, we

find that the zone boundary half-breathing phonon is broadened by about 0.4 meV

for δ = 0.16. This is similar to what Bohnen et al. [65] found in an LDA calculation.

It is interesting to compare the half-breathing phonon and the q = (1, 1)π/a

breathing phonon. In the model considered above, there is nesting for q = (1, 1)π/a

in case of δ = 0. As a result of this, there would be a very strong response for small

δ, making the calculation rather meaningless. To avoid this unrealistically strong

nesting, we change the Fermi surface by adding to the model hopping between O

atoms which are nearest neighbors of a particular Cu atom,

Hpp =
∑

〈j,j′〉σ

[

tpp
jj′p

†
jσpj′σ + H.c.

]

, (2.18)

where the sum is over all such pairs of oxygen sites j. The corresponding hopping

integrals tpp
jj′ have the absolute value tpp with the signs determined by the relative

orientations of the orbitals involved. We neglect the phonon modulation of tpp and

consider tpp = 1.1 eV [58]. In this case, we adjust ωq so that ~ωq = 90 meV in the

spin-polarized calculation for the undoped system, as found experimentally. For the

doping δ = 0.096, we find that the q = (1, 1)π/a breathing phonon is softened by

11 meV. This is a larger softening than what was found in Fig. 2.9 for this doping.

We have also performed a calculation for the q = (1, 0)π/a half-breathing phonon in

this model and for this doping. The softening is 7 meV which is again smaller than

for the breathing phonon. This is contrary to experiment where a larger softening

is found for the half-breathing phonon. Finally, we observe that the softening of

the half-breathing phonon is only changed from about 9 meV for tpp = 0 to 7 meV

for tpp = 1.1 eV. This justifies the neglect of tpp for the qualitative analysis of the

half-breathing phonon.

2.3.3 Comparison with results from t-J model

To make contact with the t-J model, we transform the non-interacting (U = 0)

three-band model to an effective one-band model. The effect of U is later included

by its screening effect derived in the HF approximation of the three-band model. We
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assume that the O-p levels are far above the Cu-d levels (in the hole picture). We can

then project out the O-p levels and obtain a model only with effective Cu-d levels.

This model can be compared with the t-J model since both models have one band.

Here, we focus on the linear-response term (∂2E/∂u2)(1) in Eq. (2.11) which is of the

same order of magnitude in the t-J model and in the HF approximation for a typical

δ ≈ 0.1.

We introduce a projection operator P , which projects onto the Cu-d levels, and

its complement Q = 1− P . We consider the resolvent operator in the P -subspace as

in Eq. (1.36) which defines the effective one-band Hamiltonian

PH̃(z)P = P (H +HQ
1

z −QHQ
QH)P, (2.19)

where z is some typical energy. We then obtain the effective one-band level energies

and hopping amplitudes

εd,One
iσ = εd +

∑

〈j〉

(tpd
ij )2

z − εp
, (2.20)

tOne
ii
′ =

tpd

ij
tpd

ji′

z − εp
, (2.21)

where the sum for εd,One
iσ runs over the nearest O neighbors of Cu and j for tOne

ii′
refers

to the common nearest-neighbor O atom of the Cu atoms i and i
′
. We first consider

the unperturbed (no phonon) system. We choose z to be in the middle of the band

and solve the self-consistent equations

εd,One = εd +
4(tpd)

2

εd,One − εp
, (2.22)

tOne
ii′

= − (tpd)
2

εd,One − εp
, (2.23)

where the factor 4 for εd,One comes from the four O neighbors of a Cu atom.

We then introduce a phonon in the system and ask for the linear response of the

electronic system. A perturbation term is introduced in the one-band Hamiltonian

δεd,One
iσ =

∑

〈j〉
2

tpd
ij δt

pd
ij

εd,One − εp
, (2.24)

where δtpd
ij are the changes in the Cu-O hopping integrals.

For a half-breathing phonon at the zone boundary, the on-site perturbation is

∂εd,One
iσ

∂u
u = ±4tpd

∂tpd

∂u

1

εd,One − εp
u, (2.25)
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source t-J HF ratio

coupling [(2 − 1)λ2/∆ + 2λ2/(U − ∆)]2 (1/∆)2 ≈ 3

sum rule ≈ 2δπN ≈ πN ≈ 2δ

screening 1 ≈ 0.5 ≈ 2

denominator ≈ 1

product 12δ

Table 2.2: Contributions to the phonon softening in the t-J model and in the HF

approximation. Here ∆ ≡ εp − εd,One = εp − εd.

where u is the absolute value of the phonon amplitude. The quantity ∂εd,One
iσ /∂u

enters as ∂Tiiσ/∂u in the calculation of (∂2E/∂u2)(1) in Eq. (2.11) which by analogy

can be used also for the effective one-band model. To linear order, there is no change

in tOne
ii′

and therefore ∂Tijσ/∂u = 0 for i 6= j.

In the t-J model, the corresponding on-site perturbation is

± 4λ2tpd
∂tpd

∂u

(
2 − 1

εp − εd
+

2

U − (εp − εd)

)

u, (2.26)

according to Eq. (1.110). The first term comes from the hopping of a d hole into

the O-p orbitals and the second term from the hopping of a O-p hole into the Cu-d

orbital. The second term has no correspondence in Eq. (2.25). Equation (2.26) has an

additional factor 2 coming from a phase coherence factor in the Zhang-Rice singlet.

This results from the singlet being explicitely written as a sum of two terms. Both

these effects are genuine many-body effects. The −1 in the first term in Eq. (2.26)

results from taking the difference in the energy gain of a Zhang-Rice singlet and a

single d hole. Also in the t-J model, the off-site coupling vanishes, cf. Eq. (1.113).

One can show that the phonon self-energy in the t-J model is approximately

proportional to the charge response function χt-J for not too strong coupling like for

the parameters used here (cf. Eq. (4.18)). This result can then be directly compared

with the result in Eq. (2.11) for Π(1) if applied to the one-band model. In both cases,

the response function is multiplied by the appropriate coupling constant squared,

given by Eq. (2.25) and Eq. (2.26), respectively.

The phonon softening from linear response for the HF approximation is

~∆ω(1)
q ≈ Re Π(1)(q) = − 1

π
P
∫

dω
gqg

eff
q /(~

2N)|Im χ(0)(q, ω)|
|ω|
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=
g2
q

~2N
︸︷︷︸

coupling

1

ε(q)
︸︷︷︸

screening

〈 P
|ω|

〉

|Im χ(0)(q,ω)|/π
︸ ︷︷ ︸

denominator

1

π

∫

dω |Im χ(0)(q, ω)|
︸ ︷︷ ︸

sum rule

. (2.27)

We assume that the phonon energy is small compared to electronic energies so that

the softening is approximately given by the real part of the static phonon self-energy

which we calculate using a Kramers-Kronig relation and obtaining the self-energy

from a bubble diagram (cf. left part of Fig. 2.8). With Eq. (2.14) and after some

rearranging of terms, it then follows that the softening on the one hand is proportional

to the squared coupling constant which due to screening is divided by the dielectric

constant. On the other hand, it depends on the average denominator with respect to

the spectral function of the response function and the total weight of this spectrum

(sum rule). We use the notation 〈f(ω)〉A(ω) =
∫
dω f(ω)A(ω)/[

∫
dω A(ω)].

To compare the t-J model with the one-band model, we consider for both models

the four contributions to the phonon softening in Eq. (2.27). We put εp − εd,One =

εp − εd ≡ ∆ = 3 eV and U = 8 eV and find that the square of Eq. (2.26) is about a

factor of three larger than the square of Eq. (2.25). This difference in the coupling

constants is shown in Tab. 2.2. The two approaches further differ by the screening

in the HF approach discussed in Eq. (2.14). This reduces the HF result by roughly a

factor of two.

The linear response of the one-band model is given by

χ(0)(q, z) = 2
∑

k

[1 − f(k + q)]f(k)

(
1

z − ω(k,q)
− 1

z + ω(k,q)

)

, (2.28)

where f(k) is the Fermi function for a state with wavevector k and energy ε(k) and

ω(k,q) = ~
−1(ε(k + q) − ε(k)). We have the sum-rule

1

N

∑

q6=0

∫ ∞

−∞
dω

∣
∣Im χ(0)(q, ω + i0+)

∣
∣ = 4πn(1 − n)N ≈ πN, (2.29)

where N is the number of sites and n is the fractional filling of the band. Typically,

we are interested in a system with n = (1 + δ)/2 ≈ 0.5 holes per site and spin which

leads to the right hand side of Eq. (2.29). For the t-J model, we ask for the charge

response function

χt-J(q, z) =
∑

ν

|〈ν|ρq|0〉|2
(

1

z − ων
− 1

z + ων

)

, (2.30)

where |ν〉 is an excited many-electron state with the excitation energy ~ων and ρq is
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the charge density operator defined by

ρq =
∑

i

ni e
−iq·Ri. (2.31)

One finds [34, 35, 36]

1

N

∑

q6=0

∫ ∞

−∞
dω

∣
∣Im χt-J(q, ω + i0+)

∣
∣ = 2πNδ(1 − δ). (2.32)

Eqs. (2.29) and (2.32) differ by approximately a factor of 2δ for small δ (see Tab. 2.2).

This strong reduction at low doping of the charge response in the t-J model com-

pared to that for effectively non-interacting electrons in the HF approximation is a

consequence of strong correlations and will be discussed in detail in Chap. 4.

Finally, we have to consider that typical energy denominators in Eq. (2.28) and

Eq. (2.30) could be different. Calculating the average denominator, we find compara-

ble results for the two models. As can be seen from Tab. 2.2, the difference between

the two approaches results in a ratio of about 12δ. For δ ≈ 0.1, the two results are

then similar. This indicates why the t-J model and the HF solution of the three-band

model can give similar softening of the half-breathing mode although the physics is

quite different.

We next consider the imaginary part of the (retarded) phonon self-energy Π which

determines the phonon width. As an orientation, we first consider a simple model.

Since Im χ(ω) ∝ ω for small ω, we assume

|Im Π(q, ω)| =

{
Aω, if |ω| ≤ W ,

0, otherwise,
(2.33)

where A is some constant. From the Kramers-Kronig relation, we can then derive

γ

−~∆ωq

= π
~ωq

W
, (2.34)

where γ = 2~ Im Π(q, ωq) is the full width at half maximum of the phonon and ∆ωq

is its shift.

Figure 2.10 compares Im Π(q, ω) for the half-breathing phonon in the one- and

three-band models and the breathing phonon in the three-band model. The one-

band model was constructed to describe what happens close to EF , and therefore the

one- and three-band models agree very well for small ω. For |ω| � 0, the one-band

model gives a larger |Im Π(q, ω)| than the three-band model, and |Re Π(q, ω)| is

overestimated correspondingly in the one-band model. Appropriate numbers for the
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Figure 2.10: Im Π(q, ω) for the q = (1, 0)π/a half-breathing mode in the three-band

model (full line) and the one-band model (dashed line) and for the q = (1, 1)π/a

breathing mode (dotted line). The doping is δ = 0.1.

the half-breathing phonon and the one-band model are W = 2 eV, ~ωq = 70 meV,

~∆ωq = −7 meV. Inserting this in Eq. (2.34) leads to γ = 0.8 meV. This is about

twice the width calculated directly from Im Π(q, ω). The reason for this overestimate

is that, for small ω, Im Π(q, ω) is actually smaller than assumed in Eq. (2.33).

Figure 2.10 also shows the HF result for the q = (1, 1)π/a breathing phonon.

These results were obtained for tpp = 1.1 eV. There is then no strong nesting of the

Fermi surface. The HF approximation, nevertheless, gives a larger broadening for the

q = (1, 1)π/a breathing phonon than for the q = (1, 0)π/a half-breathing phonon,

irrespective of whether the latter is calculated for tpp = 0 or tpp = 1.1 eV. As is

well-known [63], this is due to the fact that the wavevector q = (1, 1)π/a fits better

to the traces of nesting left over for tpp = 1.1 eV.

To study the phonon width in the t-J model, we calculate the phonon self-energy

as described in App. A.3. As pointed out earlier, this approach has important ad-

vantages for small systems. The phonon spectral function B(q, ω) has too few poles

to determine the phonon width. A broadened version of Π(q, ω), however, can give

such information [67]. Results for Π(q, ω) are shown in Fig. 2.11.

In the view of Eq. (2.34), one might have expected the width of the half-breathing

phonon to be similar in the HF approximation and the t-J model since the shifts are

similar. This is not true, however, since the frequency dependence differs strongly
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Figure 2.11: Im Π(q, ω) for the q = (1, 0)π/a half-breathing mode in the t-J model

for J/t = 0.3 (full line) and J/t = 0 (dashed line) and in the one-band model (dotted

line). The results for the t-J model were obtained for a 4 × 4 cluster. The doping is

δ = 0.125.

from the linear dependence assumed in Eq. (2.33). This is illustrated in Fig. 2.11.

The figure shows that for the t-J model with J = 0 some spectral weight has been

moved to small frequencies due to the hopping constraint which creates low-energy

excitations. This is even more true if J is finite (here, J/t = 0.3). The present clusters

are too small to give reliable results, in particular for the low-lying excitations, and

the results above should be considered as qualitative. They illustrate, however, the

general trend of transfering some spectral weight to small frequencies which tends to

lead to a substantially increased width of the half-breathing phonon.

To summarize, we have studied the properties of the (half-)breathing phonon in

the three-band model comparing results for the t-J model with phonons and the HF

approximation of the three-band model. Although the two approaches give similar

softenings at typical dopings, the underlying physics is quite different. The hopping

constraint in the t-J model, resulting from the strong Coulomb repulsion, leads to

a strong reduction of the response to a phonon. This reduction is, however, partly

compensated by several other effects. In particular, many-body effects in the energy

of the Zhang-Rice singlet tend to increase the coupling in the t-J model. We find that

the dependences on doping and phonon wavevector for the (half-)breathing mode are

quite different in the two approaches, with the t-J model giving better agreement

with experiment. The HF approximation also gives a too small width for the half-
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breathing phonon. We therefore conclude that many-body effects play an important

role for the interactions of the half-breathing phonon with the electrons.

2.4 Discussion

2.4.1 Relative importance of coupling mechanisms

The electron-phonon coupling in the t-J model derived in Chap. 1 describes the

modulation of both the effective on-site energies and the effective hopping amplitudes.

Besides this division into site-diagonal and site-off-diagonal coupling, one can also

distinguish between the contributions that are due to the modulation of the p-d

hopping amplitude in the three-band model and those arising from the modulation

of the level energies in the original model.

We start our discussion of the relative importance of the different coupling mech-

anisms by showing that the phonon induced modulation of a parameter in the t-J

model is basically proportional to the value of this parameter in the undistorted

system. First, we consider contributions to the site-diagonal coupling. In a system

without phonons, the on-site energy of sites without an extra doped hole is given

by the Cu-d self-energy (Eq. (1.53)). Defining the average modulations of hopping

amplitudes and p level energies around a Cu site,

∆ti =
1

4

∑

δ

∑

s=±
∆ti(sδ), (2.35)

∆εp
i =

1

4

∑

δ

(

∆εp
iδ + ∆εp

(i−2δ)δ

)

, (2.36)

it follows from Eqs. (1.98) and (1.101) that the modulation of ECu-d at site i can be

written as

∆ECu-d
i = ECu-d

[

2
∆ti
tpd

− λ2∆εp
i − ∆εd

i

∆pd

]

(2.37)

which is indeed proportional to ECu-d. An analogous result can be obtained for the on-

site energy of sites with a Zhang-Rice singlet which consists of two contributions. On

the one hand, it contains the singlet self-energy whose modulation can be expressed

as

∆Esinglet
i = Esinglet

[

2
∆ti
tpd

− (λ2∆εp
i − ∆εd

i )

(
1

∆pd

− 1

U − ∆pd

)]

. (2.38)

On the other hand, it is also increased by ∆pd compared to the Cu-d hole on-site

energy due to the fact that the extra hole basically goes into a p orbital. According
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to Eq. (1.93), the modulation of this contribution is

∆(∆pd)i = ∆pd
λ2∆εp

i

∆pd
. (2.39)

With these results, the site-diagonal contribution to the electron-phonon coupling in

the t-J model can be written as H
(diag)
ep =

∑

i(∆E
Cu-d
i − ∆Esinglet

i − ∆(∆pd)i)ni.

Correspondingly, the site-off-diagonal coupling is determined by the modulation

of the effective hopping in the t-J model (Eq. (1.88)). In order to obtain a relatively

simple expression, we now specifically consider the half-breathing mode at the zone

boundary and assume U−∆pd � ∆pd. Then, the modulation of the effective nearest-

neighbor hopping perpendicular to the direction of q is given by

∆t⊥q
ij = −t1

2

[(

1 +
γ1 − γ11

α(x̂)

)
∆ti + ∆tj

tpd
+

∆εd
i + ∆εd

j

∆pd

]

(2.40)

using Eqs. (1.96), (1.99), and (1.102). It is proportional to t as expected. The hopping

parallel to q is not modulated by the half-breathing mode.1

Based on these results, we expect the site-diagonal coupling to dominate over the

site-off-diagonal one because it has a much larger prefactor. For our usual parameters

for the three-band model (tpd = 1.2 eV, ∆pd = 3 eV, U = 10 eV) and considering

the half-breathing mode at the zone boundary, the modulation of the on-site energy

is proportional to |Esinglet − ECu-d| ≈ 3.3 eV whereas the prefactor t ≈ 0.5 eV in the

modulation of the effective hopping is almost an order of magnitude smaller. This is

confirmed by the numerical values of the coupling constants obtained from evaluating

1This can be understood as follows. When the O atom inbetween sites i and j moves towards

one of the sites, the hopping amplitude from the O atom to the nearer Cu atom is increased while

that to the more distant site is decreased. To linear order in the displacements, these two effects

cancel out in the effective hopping between the two sites which is proportional to the product of

these two amplitudes when derived from a perturbation theory in tpd. For the effective hopping

perpendicular to q, one would also expect no effect from the modulation of tpd as the intermediate

O atom does not move. Because of the non-local components in our Wannier-like p orbitals, however,

there is a small contribution (proportional to 1 + (γ1 − γ11)/α(x̂) ≈ 0.16) in Eq. (2.40). The half-

breathing mode also leads to an increase of the d level energies at half of all sites and a decrease

at the other half. This modulates the effective hopping via the change of energy denominators in

the corresponding expression from perturbation theory. For hopping along the direction of q, the

d level energies of the sites involved change in the opposite way leading to a cancelation to linear

order in the displacements. In the perpendicular direction, the two changes work together causing

the modulation described by the second term in Eq. (2.40).
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Eqs. (1.109)-(1.114) for ~ωqν = 80 meV. One finds

√

~

2ωqν

A(t) = −0.24 eV ,

√

~

2ωqν

Bŷ/2,(t) = 0.0028 eV (2.41)

due to the modulation of tpd and

√

~

2ωqν
A(ε) = 0.032 eV ,

√

~

2ωqν
Bŷ/2,(ε) = −0.0046 eV (2.42)

due to the modulation of εd and εp. Bx̂/2,(t) = Bx̂/2,(ε) = 0 because the effective

hopping in the t-J model is only modulated perpendicular to q. As expected, the

site-diagonal coupling (∝ A) is much stronger than the site-off-diagonal one (∝ B).

Furthermore, the strong on-site coupling is mainly due to the modulation of the hop-

ping in the three-band model whereas the modulation of the level energies gives only

a minor contribution. The greater importance of the coupling from the modulation of

tpd mainly originates in the different power laws of the r dependence of tpd (∝ r−3.5)

and Upd (∝ r−1), cf. Sec. 1.2.3. The respective powers enter the coupling as pro-

portionality factors via (dtpd/dr)|0 and (dUpd/dr)|0. In addition, in the coupling due

to the modulation of εd and εp there is a partial cancelation of terms proportional

to 1/(U − ∆pd) and 1/∆pd. In order to check the sensitivity of the strength of the

different coupling mechanisms on the choice of parameters, we show in Fig. 2.12 the

dependence on ∆pd keeping all other parametes fixed to their usual values. One finds

that our choice of ∆pd = 3 eV does not constitute a fine tuning to a peculiar coupling.

Rather, irrespective of the exact value of ∆pd, the relative importance of the different

couplings remains unchanged and also their absolute magnitude does not depend very

strongly on ∆pd in the range of physically reasonable values.

It is interesting to reconsider our results for the softening of the half-breathing

and full-breathing modes shown in Fig. 2.3 in terms of our finding that the site-

diagonal terms (Eq. (1.109)) dominate the electron-phonon coupling. For the half-

breathing modes, they are mainly proportional to sin(qxa/2), suggesting a softening

∝ sin2(qxa/2). This behavior is essentially found in our calculations, although the

softening for qx = π/(2a) is stronger than expected from this argument. The prefac-

tor, however, is a factor
√

2 larger for the breathing mode (q = (π/a, π/a)) than for

the half-breathing mode (q = (π/a, 0)), suggesting twice as large a softening for the

breathing mode. But the softening is actually stronger for the half-breathing mode.

This can be understood by an analysis of the contributions to the softening similar

to that given in Eq. (2.27) which can be used also for the t-J model if the screening
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Figure 2.12: Dependence of different contributions to the electron-phonon coupling

of the half-breathing mode at the zone boundary (~ωqν = 80 meV, q = (π/a, 0)) on

the charge transfer energy ∆pd. All other parameters are fixed to their usual values

(tpd = 1.2 eV, U = 10 eV). We distinguish between site-diagonal (A) and site-off-

diagonal (B, multiplied by a factor 10) coupling and between coupling from hopping

((t)) and level energies ((ε)) in the three-band model. We use the definition c =
√

~

2ωqν
.

factor is put equal to one and the coupling is not too strong. Then, the imaginary

part of the phonon self-energies for the half-breathing and breathing mode shown in

Fig. 2.5 is approximately proportional to g2
qIm χt-J(q, ω) from which we can deduce

that with the coupling being twice as strong for the breathing mode the sum rule

factor in Eq. (2.27) is similar for the two modes. But the self-energy for the half-

breathing mode has much more spectral weight at lower energies. The contribution

from the average energy denominator in Eq. (2.27) therefore is much larger for this

mode compared to the breathing mode. This overcompensates the stronger coupling

found for the latter one and explains why the softening is larger for the half-breathing

mode. We explicitly discussed the modes at the zone boundary but a similar analysis

applies for modes with q within the Brillouin zone. One consistently finds that the

modes along the (ξ, 0) direction couple to excitations lower in energy than those along

the (ξ, ξ) direction.
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2.4.2 Comparison with other approaches

Electron-phonon interaction in the t-J model has been derived from the three-band

model with phonons also by other authors. They come, however, to different conclu-

sions on which coupling mechanism is most important. In this section, we discuss the

different approaches in the light of our results.

In their derivation of a t-J model with electron-phonon coupling, von Szczepanski

and Becker [30] take into account only the modulation of the p-d hopping amplitude in

the original three-band model. An exact derivation is given only for the q = (1, 1)π/a

oxygen breathing mode. The coupling for other phonon wavevectors is estimated

from a linear interpolation between this result and the vanishing coupling for q =

(0, 0). They consider solely coupling to the on-site energies in the t-J model whereas

coupling to the effective hopping and to the exchange interaction is neglected. Their

coupling mechanism (on-site coupling from modulation of tpd) therefore effectively

agrees with the one we found in Sec. 2.4.1 to be most important. To investigate the

effect on phonons, the phonon self-energy is calculated in second-order perturbation

theory using exact diagonalization of systems without phonons. The softening and

broadening for a few q points is shown but no systematic discussion of the dependence

on wavevector and doping is given.

Horsch and Khaliullin [34, 35, 62] study the density response of the t-J model

without phonons using a slave-boson approach. They then also consider only on-site

electron-phonon coupling which they roughly estimate from the change of the Zhang-

Rice singlet energy due to the modulation of tpd in the three-band model. This is done

for the (half-)breathing mode with the simplifying assumption that for any q only

O atoms move. Working to lowest order in the coupling, they relate the softening

and broadening of the breathing mode to the density response. In their analysis, the

increase of the softening upon doping is due to the scaling of the density response

proportional to the doping δ. A low-energy (spin-)polaron peak which is only present

for the q = (ξ, 0) direction gives rise to an extra contribution to the softening of

the half-breathing mode when its energy is close to the phonon frequency around

optimal doping. They use these results to explain differences of the half-breathing

and breathing mode in softening and broadening. Similar studies have also been

made using the complementary slave-fermion method [36].

In their derivation of electron-phonon coupling in the t-J model, Ishihara and

Nagaosa [31] include also the modulation of the level energies in the three-band model

in addition to the modulation of the hopping amplitudes. They argue that vertex
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corrections would suppress site-diagonal coupling in the resulting low-energy model

at large phonon momenta relevant for the (half-)breathing mode and concentrate

entirely on the effect of the site-off-diagonal coupling. Our results do not support

this view. As discussed in Sec. 2.4.1, it follows from our more detailed derivation that

already the bare site-off-diagonal coupling is about an order of magnitude smaller

than the site-diagonal one. Our calculations using exact diagonalization of finite

clusters which fully include the effect of vertex corrections show that there is no

suppression of the on-site coupling which basically determines the phonon softening

and broadening. Switching on or off the site-off-diagonal coupling leads only to small

changes.

Ishihara and Nagaosa also argue that the electron-phonon interaction arising from

the modulation of the super-exchange interaction by the phonons would give an im-

portant contribution to the site-off-diagonal coupling. Ohkawa [32] even takes the

view that this coupling mechanism is the most relevant one. In contrast, by working

only up to order t2pdu in deriving the electron-phonon interaction we have neglected

the coupling via the modulation of J in the Heisenberg term (Eq. (1.54)). The follow-

ing arguments, however, show that this was justified. As can be seen from Eq. (1.55),

the modulation of J is caused by its dependence on the phonon-modulated parame-

ters tpd and ∆pd. Redoing the derivation leading to Eq. (1.55) for a distorted lattice

gives the following variation of J [32]:

∆Jij = 2J(∆ti[ij] +∆tj[ij])/tpd +
2t4pd

∆2
pd

(
3

∆pd
+

2

U

)

︸ ︷︷ ︸

<3/2J

(∆εd
i +∆εd

j − 2∆εp
[ij])/∆pd. (2.43)

Here, i and j are nearest-neighbor Cu sites, [ij] denotes the O site in-between. Equa-

tion (2.43) shows that the corresponding electron-phonon coupling has a prefactor of

order J in agreement with our finding in Sec. 2.4.1 that the modulation of a param-

eter is roughly proportional to its unperturbed value. But as J is small compared

to t or the singlet-triplet splitting, the coupling derived from its modulation can be

neglected compared to the other coupling mechanisms. In addition, one finds [30]

that the contribution to Eq. (2.43) from the modulation of tpd is only proportional to

displacements of Cu atoms. This is also true for the contribution from the modulation

of εp. Only the modulation of εd leads to a coupling proportional to the displace-

ments of O atoms. This should be the dominant term because of the much smaller

mass of the O atoms compared to the Cu atoms. But the q dependence is such that

e.g. the half-breathing mode does not couple at all via J at the zone boundary as
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∆εd
i = −∆εd

j in that case.

2.4.3 Non-linear contributions to electron-phonon coupling

The electron-phonon interaction in the t-J model has been derived in Chap. 1 up to

linear order in the atomic displacements. In this section, we estimate the importance

of the neglected non-linear contributions to the electron-phonon coupling. The results

in Sec. 2.3 obtained for the HF solution of the three-band model, where second-order

terms were included by the term (∂2E/∂u2)(2) in Eq. (2.8), indicate that they might

lead to non-negligible effects.

Instead of starting out from the three-band model (1.1) of the CuO2 plane, we

first consider an isolated CuO4 plaquette consisting of only one Cu-d orbital and the

four nearest-neighbor O-p orbitals. If we assume that distortions of the plaquette only

lead to modulation of the p-d hopping amplitudes, it is described by the Hamiltonian

Hplaqu. = εdnd + εp

4∑

j=1

np
j + Und

↑n
d
↓ +

∑

σ=↑,↓

4∑

j=1

[
(−1)jtjd

†
σpjσ + H.c.

]
. (2.44)

We treat the hopping amplitudes tj between the d orbital and the four p orbitals

(labeled by j) as a perturbation and calculate the ground-state energy of the plaquette

with either one or two holes in second-order perturbation theory.

To zeroth order in the hopping, a single hole occupies the d orbital and lowers its

energy by virtually hopping in and out of the p orbitals:

ECu-d
plaqu. = εd − 1

∆pd

4∑

j=1

t2j . (2.45)

In case of two holes in the plaquette, the second hole will go into the p orbitals in the

atomic limit. The operator

φ̃†
σ =

∑4
j=1(−1)jtjp

†
jσ

√
∑4

j=1 t
2
j

(2.46)

creates a hole in a linear combination of the p orbitals that maximizes the transition

amplitude to the d orbital, 〈φ̃σ|Hplaqu.|dσ〉 =
√
∑4

j=1 t
2
j . One finds that the energy

gain in second-order perturbation theory is largest for a singlet combination of a d

hole and a φ̃ hole leading to the following ground-state energy of plaquette with two

holes:

Esinglet
plaqu. = εd + εd − 2

(
1

∆pd

+
1

U − ∆pd

) 4∑

j=1

t2j . (2.47)
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We expand the sum of the squared hopping amplitudes that occurs in Eqs. (2.45)

and (2.47) up to second order in the atomic displacements assuming that tpd depends

only on the interatomic distance r:

4∑

j=1

t2j = 4t2pd − 2tpd
dtpd

dr

∣
∣
∣
∣
0

4∑

j=1

(−1)juj +

[(
dtpd

dr

∣
∣
∣
∣
0

)2

+ tpd
d2tpd

dr2

∣
∣
∣
∣
0

]
4∑

j=1

u2
j + O(u3),

(2.48)

where uj denotes the displacement of the jth O atom and the Cu atom is assumed

to remain at its equilibrium position.

If we think of the CuO2 plane as being composed of individual plaquettes and

neglect any effects arising from the fact that each plaquette actually couples to the

four neighboring ones via the shared p orbitals, we can make the following low-energy

(rather ground-state) approximation of the three-band model:

Happrox. =
∑

i

(

ECu-d
plaqu.ni + Esinglet

plaqu. (1 − ni)
)

. (2.49)

Like in the t-J model, a singlet is interpreted as the absence of a Cu-d hole and ni mea-

sures the corresponding occupancy on the plaquette labeled by i. Using Eqs. (2.45),

(2.47), and (2.48) we obtain the dependence of Happrox. on the atomic displacements

up to order u2. If we compare with the results of Chap. 1 for the on-site energies (sec-

ond line of Eq. (1.87)) and the linear on-site electron-phonon interaction (Eq. (1.110))

in the t-J model due to to the modulation of the tpd, we find that they are already

obtained from Happrox. except for a factor λ2. This difference is due to neglecting

intermediate states from hopping into orbitals on other sites in the derivation of the

effective model for the lattice using perturbation theory.

By considering the terms in Happrox. which are quadratic in the displacements,

we can then estimate the effect of the non-linear electron-phonon interaction. As an

example, we consider the O half-breathing phonon (q = (1, 0)π/a) with amplitude

u. One finds the following doping-dependent energy shift per site proportional to u2

when the system is doped with δN holes:

∆E(2) = −
(

1

∆pd
+

2

U − ∆pd

)[(
dtpd

dr

∣
∣
∣
∣
0

)2

+ tpd
d2tpd

dr2

∣
∣
∣
∣
0

]

2u2δ. (2.50)

This directly adds to the bare phonon potential energy per site 2 ·MOω
2
bareu

2/2 and

leads to the following estimate for the softening of the half-breathing mode due to

the quadratic electron-phonon coupling:

~∆ω(2) ≈ ~

2MOωbare

∆E(2)

u2
≈ −0.044 eV δ. (2.51)
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The numerical value has been calculated for ~ωbare = 80 meV using our standard

parameters for the three-band model and Eq. (1.26) for the distance dependence of tpd.

For a doping δ = 0.1, one therefore expects roughly 4 meV softening compared to the

undoped system. If Happrox. is rederived taking into account also non-linear coupling

from the modulation of the level energies using Eqs. (1.28-1.30), one finds a reduction

of the softening effect by about 5%. As we have calculated a softening of about 10 meV

for this doping from the linear electron-phonon interaction (cf. Tab. 2.1), the non-

linear coupling could contribute with up to 30% to the total softening. Although we

can expect only a crude estimate from the plaquette calculation, this result indicates

the possible importance of non-linear contributions to the electron-phonon coupling.

It is very difficult to consistently derive it for an effective model on the lattice as

many approximations that could be made in Chap. 1 lead to errors of the order

u2 and therefore are no longer possible in this context. For this reason, we have

explicitly derived only the linear electron-phonon interaction and neglected non-linear

contributions in all related calculations as is customary in the field. Our estimate

in this section, however, shows that non-linear electron-phonon coupling does not

necessarily need to give negligibly small effects and should not be discarded from the

start.

2.4.4 Coupling to other phonon modes

In this section, we consider the electron-phonon coupling to phonons other than the

(half-)breathing mode. We found in Sec. 2.4.1 that the main contribution to the

coupling derived in Chap. 1 comes from the modulation of the on-site energies in the

t-J model due to the modulation of the p-d hopping in the three-band model. The

corresponding coupling is proportional to the expression in Eq. (1.110) which shows

that strong coupling requires the oxygen atoms in the CuO2 plane to be displaced

along the bond directions. This is true for the (half-)breathing mode which at the zone

boundary involves only oxygen displacements along the bonds with an optimal relative

phase shift. Towards the zone center, however, there is an increasing displacement

of Cu atoms, too. Normalization of the phonon polarization vectors then leads to

a reduction of the O polarization vectors. Completeness requires that the missing

O weight is transfered to other modes. In a two-spring model, the weight goes to

an acoustic mode for which the electron-phonon coupling therefore becomes non-

negligible away from the zone boundary. Because of its small frequency, this mode is

then softened far more (almost 50% for q = (π/(2a), 0)) than observed experimentally.



72 2. Anomalous softening of the half-breathing phonon

80

60

40

20

en
er

gy
 [m

eV
]

(0,0,0) q=(ξ,0,0) (π/a,0,0)

Figure 2.13: Phonon dispersion in the (ξ, 0, 0) direction for a shell model. The dashed

curves show results with the extra O-O spring describing the O atoms’ coupling to the

Zhang-Rice singlets. The arrows indicate the strong softening of the half-breathing

mode, while other modes are not changed very much.

To address this, we have used a more realistic shell model [16, 15] for obtaining

polarization vectors. This model gives almost exactly the same eigenvectors for the

half-breathing mode as our two-spring model. The missing O weight towards the zone

center, however, is now distributed over several modes, and the softening of a given

mode is weaker. For instance, the longitudinal acoustic q = (π/(2a), 0) phonon is

softened by about 25%. Although smaller than in the two-spring model, the softening

is still too large. It is, however, further reduced by the repulsion from lower-lying

modes of the same symmetry.

To study this, we have modified the shell model to take the electron-phonon

interaction into account. The movement of two O atoms towards a Cu atom leads to

a lowering of the Zhang-Rice singlet energy. The system can take advantage of this

by transfering a singlet to such a site. This is approximately described by introducing

a spring with a negative spring constant, κ = −3 eV/Å2, between two O atoms on

opposite sides of a Cu atom. A similar term was used to describe La2−δSrδNiO4

[47,68]. The present work gives justification for such a spring. Figure 2.13 compares

results of the shell model with and without the additional spring. Apart from the

half-breathing mode, no mode is strongly softened by the new spring.2 Our t-J model

with phonons thus correctly softens the half-breathing mode without introducing
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unphysical softening of other modes.

Finally, we comment on the coupling of the so-called B1g buckling mode within our

model for the electron-phonon interaction in cuprates. This optical phonon describes

out-of-phase displacements of the in-plane O atoms perpendicular to the CuO2 planes

and has an energy of about 40 meV. The energy and the broadening of this phonon

change upon cooling when superconductivity sets in [69,70,20], and a Fano line shape

is observed in Raman scattering [70, 20]. Both observations suggest an electron-

phonon coupling. Also photoemission experiments have been interpreted by some

authors in terms of coupling to this mode [71, 72]. In our model based on a single

flat CuO2 plane, the electron-phonon interaction for the B1g mode is zero to first

order in the displacements for symmetry reasons. In many cuprates, however, the

environment of a CuO2 plane is asymmetric. YBa2Cu3O7−δ, for instance, has Ba2+

ions on one side and Y3+ ions on the other side [73]. The resulting electric field

perpendicular to the CuO2 plane leads to a coupling of doped holes in planar O-p

orbitals to the B1g phonon [73].

As the analysis in this section has shown, only the (half-)breathing modes couple

strongly in the present t-J model with electron-phonon interaction which was derived

using screened Coulomb interactions assumed to be appropriate for moderately doped

cuprates. We will see in the next chapter, however, that the modulation of the

electrostatic potential in the much more weakly screened undoped system leads to

additional coupling of other modes.

2.5 Summary

We have solved the t-J model with electron-phonon interaction derived in Chap. 1

using exact diagonalization of small clusters to specifically study the effects of this

coupling on the (half-)breathing modes in cuprates.

We find that the experimentally observed anomalously strong softening of the

half-breathing mode upon doping is successfully described. Not only the doping

dependence but also the q dependence agrees well with experiment, with the half-

breathing mode being softened more strongly than the breathing mode. By studying

the phonon self-energy, we can also assess the broadening of the phonon spectral func-

2This spring model appropriately softens the breathing mode but softens a mode with ε
x̂/2

Ox̂/2
=

−ε
ŷ/2

Oŷ/2
= 1/

√
2 and q = π/a(1, 1) too strongly. However, such a mode does not couple strongly in

our t-J model with phonons.
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tions and find qualitative agreement of our calculated widths with the experimental

results.

In order to investigate the importance of strong correlations for these results, we

have also considered the Hartree-Fock mean-field approximation of the three-band

model. A comparison with results from the t-J model shows that in this approach

both the softening and the broadening of the phonons have quite different depen-

dences on doping and phonon wavevector which are in worse agreement with experi-

mental findings. This indicates that the explicit treatment of strong correlations and

many-body effects is essential for a successful description of the phonon anomalies in

cuprates.

An analysis of the different coupling mechanisms shows that the on-site coupling

due to the modulation of the p-d hopping dominates. In view of this result, other

approaches to the problem are critically discussed. We also investigate the importance

of non-linear contributions to the electron-phonon interaction. Calculations for a

simple plaquette model indicate that they should not be neglected a priori but are

difficult to treat consistently in a full lattice model.

We find that our model does not lead to strong coupling to phonon modes other

than the (half-)breathing modes. In this context, it is interesting to discuss whether

the latter could be relevant for superconductivity in the high-Tc cuprates. Roughly

speaking, the coupling to the (half-)breathing modes becomes stronger with increasing

|q|. Such a q dependence, however, has been found to be unfavorable for d-wave

superconductivity in Eliashberg-like theories [74].



Chapter 3

Polaronic effects in undoped

cuprates

3.1 Introduction

Angle-resolved photoemission spectroscopy (ARPES) experiments have found evi-

dence for strong electron-phonon interaction and polaron physics in many materials

like quasi-one-dimensional conductors [75, 76], the manganites [77], or the undoped

high-Tc cuprates [26, 27] which we focus on in this work.

Figure 3.1a shows the ARPES spectrum of undoped Ca2CuO2Cl2 at the top of

the band (k = (π/(2a), π/(2a))). The spectrum has a broad feature centered at

A with the onset at B. The dispersions of A and B are shown in Fig. 3.1b. The

dispersion of A agrees well with that of the quasi-particle in the extended t-J model

[78]. Therefore, feature A has often been identified as the quasi-particle peak which

is strongly broadened by some unknown mechanism as the t-J model predicts a much

smaller width.

Shen et al. [26] pointed out, however, that the peak does not have a Lorentzian

line shape as expected for a life-time broadening but is rather Gaussian (cf. Fig. 3.1a).

Also, one would expect a very small width for the quasi-particle at the top of the

valence band of an insulator as there is no phase space for decay by creating electron-

hole pairs. As shown in Fig. 3.1b, the value of the chemical potential varies in this

insulator from sample to sample probably due to different pinning by impurities. But

the fact that it always is at least about 0.45 eV above feature A led to the interpre-

tation of the spectra in terms of self-trapping of polarons due to strong coupling to

bosons [26]. In this picture, with increasing strength of the electron-boson coupling a

75
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Figure 3.1: a) ARPES spectrum of undoped Ca2CuO2Cl2 for k = (π/(2a), π/(2a))

together with fits to a Gaussian (solid red curve) and a Lorentzian (dashed blue

curve). The maximum of the broad feature is denoted by A and its onset by B.

b) Dispersion of A and B along the nodal direction as well as the different values of

the chemical potential for a large number of samples (after Shen et al. [26]).

crossover occurs from quasi-particles which are weakly coupled to bosons to polarons

which are trapped due to strong interaction with the bosons. The weight and dis-

persion of the corresponding quasi-particle peak in ARPES spectra become strongly

suppressed. This points to feature B representing the true quasi-particle peak which

explains why the chemical potential is never found below B as this marks the top of

the band in the new interpretation. Feature A instead is then seen as an incoherent

boson side band which is expected to have a Gaussian-like shape. Furthermore, the

width of the broad peak is found to have an appreciable temperature dependence

providing further support to the interpretation in terms of coupling to bosons [27].

Similar ARPES spectra have been measured also for undoped La2CuO4 [79]. Fig-

ure 3.2 shows data taken at 20 K along the nodal direction. Again, a broad side band

at a binding energy of about 0.5 eV shows up.

Some approaches to purely electronic models like the t-J model and the Hubbard

model predict the quasi-particle weight Z to be zero in the undoped system [80,

81], possibly allowing for the interpretation of the broad peak seen in experimental

ARPES spectra of undoped cuprates in terms of an incoherent contribution to the

spectrum due to electron-electron interaction. Whereas a vanishing Z is also found

in the paramagnetic phase of the dynamical mean-field approximation [7] of the half-

filled Hubbard model in the limit of large on-site Coulomb repulsion, a finite quasi-

particle weight is obtained in the more appropriate antiferromagnetic phase [82].
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Figure 3.2: a) ARPES spectra of La2CuO4 along the (0,0)-(π/a,π/a) nodal direc-

tion. The corresponding momentum runs from (0.32,0.32)π/a to (0.76,0.76)π/a, as

indicated by the arrow. b) To highlight the momentum dependence, a ”background”

given by a spectrum near (π/a,π/a) was subtracted from the spectra. The bold curves

correspond to a momentum near (π/(2a),π/(2a)) (after Ref. [79]).

Exact diagonalization of t-J clusters with up to 32 sites [83,84] and quantum Monte

Carlo simulations of systems with up to 32×32 sites [85,86] also give a finite Z which

does not appear to vanish with increasing cluster size. These essentially exact findings

suggest that the experimental results for undoped cuprates which indicate Z ≈ 0 are

inconsistent with a purely electronic model and that coupling to bosons is needed to

obtain basically zero quasi-particle weight. This raises the question whether these

bosons can be identified with phonons.

As already mentioned, the dispersion of the broad feature matches the quasi-

particle dispersion calculated in purely electronic models. This seems surprising since

the side band is thought to originate from a strong electron-boson coupling. Simi-

lar observations in the manganites [77] and quasi-one-dimensional conductors [75,76]

have been interpreted in analogy with a single electron coupled to harmonic oscil-

lators [87] and a related sum rule for the first spectral moment. With respect to

the manganites, also the picture of the photohole seeing a frozen lattice has been

used [88]. Numerical calculations [89] of the ARPES spectra for an undoped t-J

model with coupling of doped holes to optical phonons indeed showed broad features

tracing the dispersion of the quasi-particles in the original t-J model.

In this chapter, we want to investigate whether the polaronic behavior observed
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in undoped cuprates can be explained in terms of strong electron-phonon coupling.

First, we calculate the electron-phonon coupling for undoped La2CuO4 using a shell

model. We find that the coupling is sufficiently strong to give self-trapped polarons.

Next, we consider the theory for ARPES spectra in an adiabatic approximation.

It explains why for undoped systems the electron-phonon interaction just leads to

a broadening of spectra calculated without electron-phonon coupling and does not

change the dispersion. In addition, it allows for the development of an efficient method

for calculating ARPES spectra from undoped systems with many phonon modes and

at finite temperature. Calculations with the coupling derived for La2CuO4 give side

band widths which are in good agreement with experiment. The dependence of the

width on the binding energy and on the temperature is analyzed.

3.2 Electron-phonon coupling in undoped cuprates

In this section, we calculate the electron-phonon coupling to a single hole added

to an undoped system, e.g. in a photoemission experiment. The electron-phonon

interaction derived in Chap. 1 takes into account that lattice vibrations modulate both

the p-d hopping amplitude and the level energies in the three-band model of a CuO2

plane. It is assumed, however, that due to screening of the Coulomb interaction only

the displacements of the nearest-neighbor ions influence the energy of the orbitals.

This may be appropriate for the doping ranges considered in the discussion of the

anomalous softening of the half-breathing mode in Chap. 2. But as screening is much

less effective in the insulating undoped cuprates, the coupling due to the modulation

of the electrostatic potential must be reconsidered for these systems.

Because of the long-range nature of the Coulomb interaction, we cannot restrict

the calculations to a CuO2 plane but contributions from all ions in the full lattice

have to be included. We therefore use a shell model [16,15] that successfully describes

phonon dispersions in several cuprates. In this model, each atom is represented by a

core and a shell coupled by a spring. The charges on the cores and shells of all atoms

interact via the long-range Coulomb interaction. Screening is only provided by the

ionic polarizations when the shells are displaced against the atomic cores. In addition,

there are short-range interactions acting only between shells which are described by

Born-Mayer and van der Waals potentials.

Within the shell model, the electrostatic potential at r is given by

V (r) =
e

4πε0

∑

ikα

Qkα

|Rikα − r| , (3.1)
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where ε0 is the vacuum permittivity. The sum runs over all unit cells labeled by i, the

atoms in each unit cell labeled by k, and core and shell of each atom labeled by α =

c, s, respectively. Cores and shells with charges Qkα (in units of the elementary charge

e > 0) are located at Rikα = Ri + rk + uikα where rk gives the equilibrium position

within the unit cell at Ri and uikα is the displacement due to lattice vibrations. In

the undistorted lattice, the centers of the core and the shell of an atom are located

at the same position but a lattice vibration can displace them differently.

Adding a hole to the shell of the atom k in the unit cell i then increases the

Coulomb energy by

∆Eik = e V (Ri + rk) =
e2

4πε0

∑

i′k′α

′ Qk′α

|Ri′ − Ri + rk′ − rk + ui′k′α − uiks|
, (3.2)

where the prime on the summation symbol indicates that the divergent contribution

for (i′k′α) = (iks) is not included in the sum. If we expand ∆Eik in the displacements,

the contribution linear in uikα is given by

∆E
(1)
ik = − e2

4πε0

∑

jk′α

′ Qk′α

|Rj + rk′ − rk|3
(Rj + rk′ − rk) · (ujkα − uiks), (3.3)

where we changed to summing over Rj = Ri′ +Ri with the prime on the summation

symbol now indicating that terms with (jk′) = (0k) are excluded (for R0 = 0).

In terms of phonon creation and annihilation operators, the displacements are

given by

uikα =
∑

qν

√

~

2N ′ωqν
E(kα)

qν (bqν + b†qν)e
iq·(Ri+rk), (3.4)

where the core polarization vectors E
(kc)
qν in the shell model for a phonon mode of

branch ν with wavevector q and frequency ωqν are obtained from solving

ω2
qνME(kc)

qν =
[
(R + ZCZ) − (T + ZCY )(S + Y CY )−1(T T + Y CZ)

]
E(kc)

qν . (3.5)

M,Z, Y, C,R, S, T are matrices describing the atomic masses, the charges of ions and

shells, the Coulomb interaction, and the short-range interactions, see e.g. Ref. [90]

for more details. The shell polarization vectors are then determined by

E(ks)
qν =

[
1 − (S + Y CY )−1(T T + Y CZ)

]
E(kc)

qν . (3.6)

Using Eqs. (3.3) and (3.4), we arrive at the following linear electron-phonon cou-

pling due to the modulation of the electrostatic potential in the shell model:

Hep =
∑

ik

∆E
(1)
ik n

h
ik =

1√
N ′

∑

ik

∑

qν

g(k)
qν n

h
ik(bqν + b†qν)e

iq·(Ri+rk), (3.7)
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with

g(k)
qν = −

√

~

2ωqν

e2

4πε0

∑

jk′α

′ Qk′α

|Rj + rk′ − rk|3
(Rj+rk′−rk)·(E(k′α)

qν eiq·Rj−E(ks)
qν e

iq·(rk′−rk)).

(3.8)

The primed summation does not include terms with (jk′) = (ik). nh
ik measures doped

holes in the shell of atom k in the unit cell i. N ′ is the total number of unit cells in

the three-dimensional lattice.

We use the t-J model to describe the electronic degrees of freedom in the CuO2

planes, i.e., we assume that doped holes form Zhang-Rice singlets with the spins of Cu-

d holes. In a first approximation, the additional charge is distributed symmetrically

on the four neighboring O-p orbitals [29]. If we write the electron-phonon interaction

in the t-J model as

Hep =
1√
N ′

∑

qνi

gqν(1 − ni)(bqν + b†qν)e
iq·Ri , (3.9)

we therefore assume that the contribution g̃qνto the coupling constant gqν from the

modulation of the electrostatic potential is given by the average over the couplings

g
(k)
qν at the four O sites surrounding a Cu atom,

g̃qν =
1

2

(
g(Ox)
qν cos(qxa/2) + g(Oy)

qν cos(qya/2)
)
. (3.10)

Equation (3.9) is an on-site coupling to empty sites representing singlets in the t-J

model with Ri refering to plaquette sites in a CuO2 plane. Ox and Oy in Eq. (3.10)

refer to the two O atoms in the unit cell that are part of the CuO2 plane.

The remaining contribution to the coupling (gqν − g̃qν) is calculated from the

modulation of the on-site energy corrections for Cu-d holes and singlets in the t-J

model as obtained from the three-band model with phonon-modulated p-d hopping

and charge-transfer energy. The smaller off-site-diagonal coupling is neglected (cf.

the discussion in Sec. 2.4.1). Using Eqs. (1.108)-(1.111) derived in Chap. 1, we have

gqν − g̃qν =

[

−i
√

~

2ωqν
4λ2t2pd

dtpd

dr

∣
∣
∣
∣
0

(
2

U − ∆pd
+

1

∆pd

)
∑

δ=x,y

(E(Oδc)
qν · δ̂) sin(qδa/2)

+4λ2t2pd

(

1

∆2
pd

− 2

(U − ∆pd)2

)

(g̃qν − g(Cu)
qν )

]

, (3.11)

where the coupling constants g̃qν and g
(Cu)
qν appear in the second line because we

use the modulated electrostatic potential obtained from the shell model instead of
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Figure 3.3: Crystal structure of La2−δSrδCuO4 (body-centered tetragonal phase).

the screened level modulations ∆εd
i and ∆εp

iδ from Eqs. (1.31) and (1.32) in the

contribution corresponding to A(ε)(q, ν) (Eq. (1.111)). The first term in A(ε)(q, ν) is

not included because the direct coupling from the modulation of the level energies is

already taken into account by Eq. (3.10).

We have implemented the shell model of Chaplot et al. [16, 15] for undoped

La2CuO4 and use it to obtain the frequencies and polarization vectors of the phonon

modes in this material. These are needed to calculate the electron-phonon coupling

using Eqs. (3.8), (3.10), and (3.11). The phonon frequencies are in very good agree-

ment with experimental results and, since the shell model describes neutron scattering

intensities well, the eigenvectors are also believed to be accurate [17]. The summation

in Eq. (3.8) is performed using the Ewald technique [91,92] that is also needed for the

Coulomb sums in the shell model, Eq. (3.6). The shell model calculations are done

on a (30)3 mesh in q space using the high-temperature tetragonal structure from

Ref. [16, 15] (cf. Fig. 3.3) but similar results are obtained for the low-temperature

orthorhombic structure.

Introducing the dimensionless coupling constant λ ≡ 2
∑

qν |gqν|2/(8t~ωqνN
′), we

obtain λ = 1.21 for t = 0.4 eV. The criterion for the crossover to self-trapped polarons

in the Holstein-t-J model is λ > λc = 0.4 [89]. If the next-nearest-neighbor hopping

integral t′ is taken into account, λc should increase. The coupling derived for undoped

1The finite number of mesh points leads to an underestimate of λ by about 3% for a (30)3 mesh.
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Figure 3.4: Spectral distribution of the coupling to singlets (full line) and to holes in

non-bonding O-p orbitals (dashed line). A Gaussian broadening (FWHM=3 meV)

was used.

La2CuO4 should, nevertheless, be strong enough to lead to self-trapped polarons in

terms of which the experimental observations can be interpreted.

Figure 3.4 shows the spectral distribution γ(ω)≡∑qν |gqν|2/(~ωqνN
′)δ(~ω−~ωqν)

of our coupling (full line). An analysis of the polarization vectors of the coupling

phonon modes shows that the peak around 20 meV can be attributed to modes

involving mainly La whereas the spectral weight at 60-70 meV is mostly due to

vibrations of the apical O. The peak around 85 meV is caused by the planar O

(half-)breathing mode. The latter couples predominantly via the modulation of the

on-site energy corrections in the t-J model. We find that the main contribution

to the corresponding coupling in Eq. (3.11) still comes from the modulation of tpd

as discussed in Sec. 2.4.1 for the doped system. The coupling to the other modes,

however, basically originates from the modulation of the electrostatic potential.

As an example, we discuss the modes involving displacements of apical oxygens

perpendicular to the CuO2 planes in a simple model framework. They give the main

contribution to γ(ω) in the 60-70 meV energy range. If we assume that q‖ = |(qx, qy)|
is small, it is a good approximation to replace the individual ionic charges (which

we do not separate into core and shell charges in this context) by homogeneously

charged planes perpendicular to the c axis. From the apical oxygens with charge QO,

we obtain two planes per unit cell with the charge density σ = QO/a
2 at the positions

zns = nc/2 + sz0 where n labels CuO2 planes and s = ± indicates whether we refer
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to oxygen ions above or below a CuO2 plane (cf. Fig. 3.3). They give rise to the

following electrostatic potential in the CuO2 plane at z = 0:

V (z=0) =
2πσ

4πε0

1

q‖

∞∑

n=−∞

∑

s=±
e−q‖|zns|. (3.12)

If we assume that only the apical oxygens move along the z direction with amplitude

u, we can derive from Eq. (3.12) that the corresponding coupling is proportional to

∂Vin/out

∂u
(z=0)

∣
∣
∣
∣
u=0

=
2πσ

4πε0

[
e−q‖z0 ± eq‖z0e(iqz−q‖)c/2

1 − e(iqz−q‖)c/2
+

∓e−q‖z0 − eq‖z0e−(iqz+q‖)c/2

1 − e−(iqz+q‖)c/2

]

≈ 2πσ

4πε0
×
{

8i
c

1
qz

in-phase

2 out-of-phase
for q‖ = 0, qz → 0. (3.13)

Here, we distinguish between two possible displacement patterns of the apical oxygens

moving either in or out of phase within the same unit cell. The phase shift between

adjacent unit cells along the z direction is determined by qz. In the second line of

Eq. (3.13), we consider the special case of q‖ = 0 and small qz. We find that the in-

phase mode has a 1/qz divergence which can be attributed to the long-range nature

of the unscreened Coulomb interaction in the undoped system. This divergence is

integrable in three-dimensional q space as it becomes suppressed for non-zero q‖.

The energy dependence of the coupling shown in Fig. 3.4 agrees qualitatively with

the observation of fine structures in the electron self-energy of La2-δSrδCuO4 [93]

except for the calculation not giving appreciable coupling around 40 meV. This could

be due to surface effects or distortions due to doping [94, 95, 96]. Such effects would

be missing in our calculation which is performed for an ideal La2CuO4 structure. For

comparison, the dashed line in Fig. 3.4 shows the spectral distribution of the coupling

to holes in individual non-bonding O-p orbitals where we assume that the coupling

constant is given directly by g
(Ox)
qν or g

(Oy)
qν .

To discuss the q dependence of the coupling, we sum |gqν|2 over all modes and

the phonon momentum qz perpendicular to the CuO2 planes. Generally speaking,

the coupling increases with decreasing |(qx, qy)|. As exemplified by our simplified

discussion of the apical oxygen modes, the modulation of the electrostatic potential

can give rise to large couplings for small momenta. Some individual modes show

different behavior, e.g. the coupling to the O (half-)breathing mode peaks around

(π/a, π/a).



84 3. Polaronic effects in undoped cuprates

3.3 Adiabatic approximation

We now introduce an adiabatic approximation for calculating (inverse) photoemission

spectra which forms the basis for the work presented in the rest of this chapter. We

consider a system that is modeled by the following Hamiltonian:

H = Hel +Hph +Hep. (3.14)

Hel (Hph) describes the purely electronic (phononic) part of the model whereas the

interaction between electrons and phonons is given by Hep.

The phonons are assumed to be harmonic in the absence of electron-phonon in-

teraction, and the system is taken to be translationally invariant, so that we can

write:

Hph =
∑

qν

1

2

(
ΠqνΠ−qν + ω2

qνQqνQ−qν

)
. (3.15)

Here, an individual phonon mode with frequency ωqν has wavevector q and belongs

to branch ν. Its generalized coordinate and momentum are denoted by Qqν and Πqν .

The electron-phonon interaction couples electronic degrees of freedom to the

phonon coordinates Qqν =
√

~/(2ωqν)(bqν + b†−qν). We assume that this interac-

tion vanishes for a certain electronic filling of the system which we will refer to as

undoped in the following. The completely empty or completely filled Holstein or

Holstein-t-J model are examples for such undoped systems, see sections B.3 and B.4.

In addition, we assume that the phonon frequencies are small compared to the

electronic energy scales defined by Hel. This justifies an adiabatic approximation [97],

and we can first consider only Hel+Hep treating the phonon coordinates Qqν in Hep as

c-numbers, i.e., as instantaneous parameters for the electronic problem. We denote

the corresponding eigenstates and eigenvalues by |ENe
m (Q)〉 and ENe

m (Q) which are

labeled by the number of electrons Ne and other quantum numbers m. We use Q as

a shorthand notation for the set of phonon coordinates. The phonon eigenfunctions

are then obtained by solving

(
∑

qν

1

2
ΠqνΠ−qν + V Ne

m (Q)

)

φNe
mn(Q) = εNe

mnφ
Ne
mn(Q), (3.16)

a Schrödinger equation with the effective potential

V Ne
m (Q) = ENe

m (Q) +
∑

qν

1

2
ω2

qνQqνQ−qν. (3.17)
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The eigenenergies are εNe
mn where n stands for suitable phonon quantum numbers.

The eigenstates of H are 〈Q|εNe
mn〉 = φNe

mn(Q)|ENe
m (Q)〉 in our approximation, i.e., we

assume that the electronic states |ENe
m (Q)〉 do not mix.

The ground state in a system with Ne electrons is then given by 〈Q|εNe
00 〉 =

φNe
00 (Q)|ENe

0 (Q)〉 with eigenenergy εNe
00 . In case of an undoped system with N 0

e elec-

trons, there is no electron-phonon interaction; the product ansatz for 〈Q|εNe
00 〉 becomes

exact, and the phonon wavefunction just corresponds to the ground state of Hph:

φ
N0

e
00 (Q) =

∏

qν

(ωqν

~π

)1/4

exp

(

−ωqνQ
2
qν

2~

)

. (3.18)

The electronic ground state and its eigenenergy are then independent of Q, and

ε
N0

e
00 = E

N0
e

0 +
∑

qν ~ωqν/2.

We now do (inverse) photoemission at zero temperature by destroying (creating)

an electron with momentum k and spin σ in the ground state of a system with Ne

electrons. Within the adiabatic approximation, this can be described by considering

the following Green’s function:

GNe,∓
kσ (z) = 〈εNe

00 |ψ† 1

z − ~−1(H − εNe
00 )

ψ|εNe
00 〉 (3.19)

=

∫

dQ

∫

dQ′ φNe∗
00 (Q)〈ENe

0 (Q)|ψ†〈Q| 1

z − ~−1(H − εNe
00 )

|Q′〉ψ|ENe
0 (Q′)〉φNe

00 (Q′),

where ψ = c
(†)
kσ and

∫
dQ =

∏

qν

∫
dQqν.

We proceed in analogy to Ref. [98] and neglect the kinetic energy of the phonons

in H in the resolvent in Eq. (3.19). The remaining H(Q) is diagonal in the phonon

coordinates Q, and one half of the integrations in Eq. (3.19) can be eliminated. This

leads to the following approximation for the Green’s function [98]:

G̃Ne,∓
kσ (z) =

∫

dQ |φNe
00 (Q)|2gNe,∓

kσ (z̃Q(z),Q), (3.20)

where

gNe,∓
kσ (z̃Q(z),Q) = 〈ENe

0 (Q)|ψ† 1

z̃Q(z) − ~−1(H(Q) − εNe
00 )

ψ|ENe
0 (Q)〉 (3.21)

and

z̃Q(z) = z + ~
−1(V Ne

0 (Q) − εNe
00 ). (3.22)

Finally, the corresponding spectral function is given by

ÃNe,∓
kσ (ω) = − 1

π
Im G̃Ne,∓

kσ (ω+i0+) =

∫

dQ |φNe
00 (Q)|2ρNe,∓

kσ (ω,Q), (3.23)
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where

ρNe,∓
kσ (ω,Q) =

∑

m

|〈ENe∓1
m (Q)|ψ|ENe

0 (Q)〉|2δ(ω − ~
−1(V Ne∓1

m (Q) − V Ne
0 (Q)) (3.24)

after expanding ψ|ENe
0 (Q)〉 in the adiabatic electronic basis states |ENe∓1

m (Q)〉. We

used that 〈ENe∓1
m (Q)|H(Q)|ENe∓1

m (Q)〉 = V Ne∓1
m (Q). The replacement of the en-

ergy of the initial state εNe
00 by the corresponding effective potential V Ne

0 (Q) in the

denominator of the ARPES Green’s function according to Eq. (3.22) results in our

approximation becoming exact in the limit of vanishing electron-phonon coupling.

Furthermore, we find numerically that it also leads to spectra which have the same

first moment as the exact solution.

A slightly more refined version of the adiabatic approximation for (inverse) photoe-

mission spectra which can be directly related to the Franck-Condon principle known

from molecular physics is given in App. B together with some instructive examples

and a comparison to the diagrammatic Monte Carlo method used in Ref. [89].

In the following, we focus on using the present version of the adiabatic approxi-

mation to explain the dispersion of incoherent spectral features in ARPES spectra of

undoped cuprates and to develop an efficient numerical method for calculating these

spectra.

3.3.1 Dispersion of incoherent spectral features

Equations (3.23) and (3.24) turn out to be the key formula for interpreting ARPES

spectra of undoped systems. To see this, we observe that ρNe,∓
kσ (ω,Q) is the spec-

tral function of the system without electron-phonon interaction for a given lattice

distortion Q. If we assume that V Ne
0 (Q) has a non-degenerate absolute minimum at

Qmin, the corresponding ground-state phonon wavefunction will be localized around

this point in coordinate space. If we approximate |φNe
00 (Q)|2 ≈ δ(Q − Qmin), we find

that the spectrum corresponds to the spectrum one obtains for the system with a

frozen distortion Qmin in which there is no electron-phonon interaction. Analogously,

in case of more than one (quasi-)degenerate minima of V Ne
0 (Q), we have to use the

(weighted) superposition of the spectra corresponding to the respective distortions.

If we take into account the finite width of |φNe
00 (Q)|2, it follows from Eq. (3.23) that

the spectral features are broadened due to the Q dependence of V Ne∓1
m (Q)−V Ne

0 (Q).

This analysis leads to an important conclusion for ARPES spectra of undoped

materials. As there is no electron-phonon interaction in the initial state for these

systems, we have Qmin = 0 and |φNe
00 (Q)|2 is a Gaussian centered around Qmin (cf.
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Eq. (3.18)). Consequently, the spectrum is just the broadened spectrum of the same

system without electron-phonon interaction (Hep = 0). If we take into account only

the leading linear Q dependence of V Ne∓1
m (Q) − V Ne

0 (Q), the broadening is exactly

Gaussian. The broadened peak in the low-binding-energy part of the spectrum for the

system with electron-phonon interaction is located at the position of the (Hep = 0)-

quasi-particle peak, and its k dependence therefore exactly traces the quasi-particle

dispersion of the purely electronic model. This explains the findings mentioned at the

beginning of this chapter. Even in a system with strong electron-phonon interaction,

ARPES spectra can show an incoherent broad peak that has the same dispersion as

the quasi-particle in the (Hep = 0)-system if there is no electron-phonon interaction in

the initial state as for photoemission from undoped systems. This allows statements

about the spectrum for Hep 6= 0 from the knowledge of the (Hep = 0)-spectrum.

For the doped system, Qmin is typically non-zero if the electron-phonon interaction

is strong. The spectrum ρNe,∓
kσ (ω,Qmin) can then be very different from the spectrum

for Q = 0. Therefore, even if the (Hep = 0)-spectrum is known, in general no infor-

mation about the spectrum of the system with electron-phonon interaction can be

deduced. In this context, we note that there may be several degenerate minima at

Qmin 6= 0 such that the ground state has an undistorted lattice in the sense of a van-

ishing expectation value of Q. The spectrum for Hep 6= 0, nevertheless, corresponds

to a superposition of the spectra for Q-values around the minima Qmin 6= 0.

It is interesting to compare to a discussion of the problem in terms of a sum rule

concerning the first moment (center of gravity) of the spectrum. For the undoped

system with N 0
e electrons that has no phonons excited in the initial state, one easily

shows that the first moment of the (inverse) photoemission spectrum does not depend

on the (linear) electron-phonon interaction. Therefore, the center of gravity of the

spectrum does not change when the electron-phonon coupling is turned on. If in

the absence of electron-phonon interaction A
N0

e ,∓
kσ (ω) has only one peak for a given

k, e.g. if there is only one band and no electron-electron interaction, the center of

gravity equals the position of the quasi-particle peak. Because of the sum rule, we

then expect just a broadening but no shift of the quasi-particle peak upon switching

on the electron-phonon interaction. In case of electrons interacting with each other,

however, already for systems without electron-phonon interaction A
N0

e ,∓
kσ (ω) usually

has several peaks for a given k and the first moment does not correspond to the quasi-

particle energy. Then, the sum rule is not able to tell us how the individual peaks

are influenced by the electron-phonon interaction and cannot be used to argue for

prominent features in the spectrum dispersing approximately like the quasi-particles
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in the system without phonons.

3.3.2 Extension to finite temperatures

The adiabatic approximation for the (inverse) photoemission spectrum at zero tem-

perature, Eqs. (3.23) and (3.24), can be extended to finite temperatures T for undoped

systems (Ne = N0
e ). Instead of calculating the expectation value with respect to the

ground state in the expression for the Green’s function, Eq. (3.19), we now have to

take an ensemble average:

G
N0

e ,∓
kσ (z, T ) =

1

Z

∑

mn

e−βε
N0

e
mn〈εN0

e
mn|ψ† 1

z − ~−1(H − ε
N0

e
mn)

ψ|εN0
e

mn〉

≈ 1

Z ′

∑

n

e−βε
N0

e
0n 〈εN0

e
0n |ψ† 1

z − ~−1(H − ε
N0

e
0n )

ψ|εN0
e

0n 〉, (3.25)

where β = (kBT )−1, Z =
∑

mn e
−βε

N0
e

mn , and Z ′ =
∑

n e
−βε

N0
e

0n . In the second line of

Eq. (3.25), we assume that both the phonon frequencies and the temperature are small

compared to typical electronic energies. Then we can neglect electronic excitations

and consider only all possible phonon excitations in the electronic ground state. In

analogy to Eq. (3.23), the spectral function of G
N0

e ,∓
kσ (z, T ) is then given by

Ã
N0

e ,∓
kσ (ω, T ) =

∫

dQ
∑

n

Pn|φN0
e

0n (Q)|2ρN0
e ,∓

kσ (ω,Q), (3.26)

where ρ
N0

e ,∓
kσ (ω,Q) is again defined by Eq. (3.24). The squared modulus of the ground-

state phonon wavefunction is replaced by a weighted average of the squared modulus

of the phonon wavefunctions for the effective potential corresponding to the electronic

ground state but with arbitrary phonon occupation numbers n = {nqν},

|φN0
e

0n (Q)|2 =
∏

qν

√
ωqν

~π

1

nqν! 2nqν
exp

(

−ωqνQ
2
qν

~

)[

Hnqν

(√

ωqν/~Qqν

)]2

. (3.27)

As there is no electron-phonon interaction in the undoped system, these are simply

free phonon wavefunctions [99]. The respective eigenenergies are given by

ε
N0

e
0n = E

N0
e

0 +
∑

qν

~ωqν

(

nqν +
1

2

)

, (3.28)

and the weighting factor is

Pn =
1

Z ′ e
−βεNe

0n =
∏

qν

(
1 − e−β~ωqν

)
e−βnqν~ωqν . (3.29)
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Using the integral representation [99] of the Hermite polynomials in Eq. (3.27),

Hn(x) =
2n

π

∫ ∞

−∞
dy (x + iy)ne−y2

, (3.30)

one finds

∑

n

Pn|φN0
e

0n (Q)|2 =
∏

qν

(
1 − e−β~ωqν

)
√

ωqν

~π3/2

∫ ∞

−∞
dy

∫ ∞

−∞
dy′ × (3.31)

× exp

[

−ωqνQ
2
qν

~
− 2e−β~ωqν

(√
ωqν

~
Qqν + iy

)(√
ωqν

~
Qqν + iy′

)

− y2 − y′
2

]

=
∏

qν

√
ωqν

~π(2nB
qν(T ) + 1)

exp

(

− ωqνQ
2
qν

~(2nB
qν(T ) + 1)

)

.

First, after inserting Eqs. (3.27), (3.29), and (3.30) the summations
∑

n =
∏

qν

∑∞
nqν=0

can be done. Then, by twice completing the square in the exponential, the definite

integrals can be performed leading to the final result in terms of the Bose-Einstein

distribution nB
qν(T ) = (exp(~ωqν/(kBT )) − 1)−1. A comparison of Eq. (3.31) with

the squared modulus of the ground-state phonon wavefunction from Eq. (3.18) shows

that also at finite temperatures the spectrum in the adiabatic approximation is ob-

tained from averaging electronic spectra for distorted lattices with a Gaussian weight-

ing function. The temperature dependence is solely via the temperature-dependent

width of the Gaussian.

3.3.3 Calculational method

The adiabatic approximation for (inverse) photoemission spectra in undoped systems

is not only the key for the understanding of the dispersion of incoherent spectral

features as discussed in Sec. 3.3.1. It also forms the basis for a method to efficiently

calculate such spectra. A Monte Carlo approach is used to perform the integral

over the space of phonon coordinates in Eq. (3.26). The factor
∑

n Pn|φN0
e

0n (Q)|2
(Eq. (3.31)) in the integrand is a Gaussian function with respect to Q and serves

as a weighting function. In practice, one therefore samples the remaining factor

ρ
N0

e ,∓
kσ (ω,Q) in the integrand by picking random phonon coordinates with a Gaussian

distribution corresponding to
∑

n Pn|φN0
e

0n (Q)|2.2 The final spectrum is then obtained

from an arithmetic average of a large number of thus sampled spectra.

2This can be implemented e.g. using the Box-Muller method [100] that only requires a standard

random number generator with uniform distribution on a finite interval.
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The main advantage of this method is that its applicability does not depend on the

strength of the electron-phonon coupling. Each sampled ρ
N0

e ,∓
kσ (ω,Q) only requires the

calculation of a purely electronic problem. Its parameters are adiabatically modulated

by the electron-phonon interaction depending on the respective lattice distortion but

no dynamic phonons are included. If we use exact diagonalization to solve a given

model, the explicit inclusion of phonons would require in practice a truncation of the

Hilbert space as discussed in Sec. 2.2. The stronger the electron-phonon coupling,

the more phonons would have to be included to achieve converged results. Due to

the limited memory available, this usually prevents calculations for strong coupling.

Instead, our method only requires enough resources to repeatedly solve the electronic

part of the problem irrespective of the electron-phonon coupling strength.

Also, with our method a large number of phonon modes can be included in the

calculation. This only increases the dimension of the space of phonon coordinates

but brings about no essential complication as we use Monte Carlo sampling for the

integration. If the modes are treated dynamically, however, the size of the Hilbert

space grows with their number which is therefore quite restricted due to memory

limitations.

As discussed in App. B, the spectra obtained within the adiabatic approximation

do not show the fine structure from individual phonon satellites but rather give an

envelope of the exact spectra. In many cases, however, this constitutes no serious

limitation of the method since the fine structure is often not resolved in experiment

due to limited resolution and because modes with different frequencies are involved

leading to the overlap of fine structures with different spacings between peaks.

Calculation of the binding energy

So far, we have measured the energy of spectral features relative to the energy of the

initial state. Experimental spectra, however, are usually plotted against the energy

difference with respect to the chemical potential (or the band edge in insulators), the

so-called binding energy. In our calculations, we can define a corresponding binding

energy by measuring energies relative to the energy of the final state lowest in energy,

i.e., the minimum of the effective potential V Ne∓1
0 (Q).

We use two methods to find this minimum.

• We search for it in Q space using simulated annealing based on the Metropolis

algorithm [101].
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• We use an iterative method [102]. The minimum of V Ne∓1
0 (Q) corresponds

to the ground-state energy E0 in the (Ne ∓ 1 electron)-sector of the adiabatic

Hamiltonian H(Q) which differs from H by the neglect of the kinetic energy of

the phonons. Therefore, using the Hellmann-Feynman theorem one has

∂E0

∂Qqν

∣
∣
∣
∣
Qmin

=
∂〈E0|H(Q)|E0〉

∂Qqν

∣
∣
∣
∣
Qmin

= 〈E0|
∂H(Q)

∂Qqν

∣
∣
∣
∣
Qmin

|E0〉 = 0 ∀ q, ν.

(3.32)

From this, an expression for the phonon coordinates Qmin at the minimum in

terms of ground-state expectation values can be obtained which can be used

for an iterative procedure. First, one calculates the electronic ground state

for a given distortion. Then, using the expression derived from Eq. (3.32), new

phonon coordinates are obtained. This is iterated until convergence is achieved.

Both methods require the repeated solution of the electronic problem for fixed phonon

coordinates. The iterative method works faster than the simulated annealing algo-

rithm. But Eq. (3.32) can be fulfilled also by meta-stable states different from the

ground state. By comparing with results from simulated annealing and varying the

initial lattice distortion which starts the iteration, we can, however, cross-check that

we have found the true ground-state energy.

We note that the ARPES spectra calculated using the adiabatic approximation

from Eqs. (3.23) and (3.24) are not bound on the low-energy side. This is a conse-

quence of replacing the reference energy in the denominator of the ARPES Green’s

function according to Eq. (3.22). But in order to be able to define the position of

the true quasi-particle that marks the band edge needed to define a binding energy,

a lower bound is necessary. This could be naturally achieved by skipping the redef-

inition of z in Eq. (3.22). Although the spectra then would have an incorrect first

moment, the position of the true quasi-particle would now be defined in a physical

way by the minimum of the effective potential V Ne∓1
0 (Q) of the final state lowest in

energy that we used above to introduce a binding energy.

3.4 ARPES spectra for undoped La2CuO4

In this section, we use the method described in the previous section to calculate

ARPES spectra for undoped La2CuO4 taking into account the electron-phonon in-

teraction derived in Sec. 3.2.

The electronic system is described by the two-dimensional t-J model, Eq. (1.87),

which was derived in Sec. 1.4 as an effective low-energy model for the electronic
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Figure 3.5: ARPES spectra for the undoped system at T = 0 for different k nor-

malized to the height of the phonon side band. The lower abscissa shows binding

energies (BE) and the upper abscissa the energies of the final states corresponding

to the spectral features. The inset shows the dependence of the width of the phonon

side band on its binding energy. The width of the (0, 0) spectrum is poorly defined

and not shown.

degrees of freedom in the cuprates. We choose typical parameters t = 0.4 eV and

J = 0.3 t. This is complemented by the electron-phonon interaction Eq. (3.9) de-

rived in Sec. 3.2 that modifies the on-site energies and hoppings depending on the

actual lattice distortion Q. As the electronic model is purely two-dimensional, the

dependence of the coupling on the z-component qz of the phonon wavevector is unim-

portant. For given qx, qy, ν, we therefore use a single mode with effective coupling

geff =
√∑

qz
|gqz |2 and frequency ωeff = g2

eff/
∑

qz
(|gqz |2/ωqz). This reduces the num-

ber of phonon momenta from N ′ = (30)3 to (30)2. Each sampled ρk(Q, ω) is cal-

culated by solving Ht-J + Hep on a 4×4 cluster with periodic boundary conditions

using exact diagonalization. The couplings for the N = 16 available momenta in this

two-dimensional problem are obtained from coarse-graining those calculated on the

30 × 30 mesh.

We calculate Ak(ω, T = 0) for different values of k as shown in the main part

of Fig. 3.5. For each spectrum, 5 · 104 samples are used. The poles in the sampled

spectra are broadened by Gaussians with a FWHM of 33 meV. The spectra show

a broad phonon side band which disperses like the quasi-particle in the t-J model
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Figure 3.6: Width and position of the phonon side band and the position of the quasi-

particle peak as a function of the relative coupling strength Λ for k = (π/(2a), π/(2a)).

without phonons, as was found in Ref. [89]. As shown in Sec. 3.3.1, this can be

understood easily within our adiabatic approximation. The true quasi-particle peak

is almost completely suppressed in weight and dispersion and determines the energy

zero on the lower abscissa in Fig. 3.5. The half-width at half maximum (HWHM) of

the side band is determined on the low-binding-energy side. We obtain a width of

2×HWHM=0.5 eV for k = (π/(2a), π/(2a)), in good agreement with the correspond-

ing experimental result 0.48 eV (cf. bold curves in Fig. 3.2).

Width and position of the phonon side band as well as the position of the quasi-

particle peak are shown in Fig. 3.6 as a function of the relative coupling strength

Λ (substituting Λgqν for gqν in Eq. (3.9)) for k = (π/(2a), π/(2a)) at T = 0. For

small Λ, the position of the quasi-particle peak starts out at the energy obtained

in the t-J model without phonons and approaches asymptotically the curve given

by −∑qν Λ2|gqν|2/(~ωqνN
′) + const. for stronger couplings. A fully localized hole

obtains this energy gain from the interaction with phonons (the additional constant

depends on the definition of the energy offset). The position of the phonon side band

shows only a weak linear dependence on Λ. The energy difference to the position of

the true quasi-particle peak determines the binding energy. The value of almost 1.2 eV

at full coupling is larger than the experimental value of about 0.5 eV (cf. Fig. 3.2).

Since the binding energy depends strongly on doping, a possible explanation for this

discrepancy could be that the experimental samples were actually lightly doped. Our
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Figure 3.7: Contributions to the spectra with k = (π/(2a), π/(2a)) and k =

(0, π/(2a)) at T = 0 for varying R. Higher spectral weight is represented by darker

shading. The abscissa shows binding energies (BE). Coupling to q = (0, 0) modes is

not included.

shell model calculation could also overestimate the coupling strength. As seen in

Fig. 3.6, the binding energy of the side band has a much stronger dependence on

Λ than the width. For Λ = 0.8, e.g., one would find a width of about 0.4 eV and

a binding energy of about 0.6 eV, both quantities being in reasonable agreement

with experimental values. As λ ∝ Λ2, this would reduce the dimensionless coupling

constant to λ = 0.75. Such a reduction could be due to a slight underestimate of the

screening in the shell model or an overestimate of the coupling to breathing phonons.

Still, the coupling constant would remain considerably larger than the critical value

λc = 0.4 [89] for the crossover to self-trapped polarons in the Holstein-t-J model.

The inset in Fig. 3.5 shows that the width of the phonon side band increases

roughly linearly with its binding energy. This trend has also been found experi-

mentally for weakly doped Ca2-δNaδCuO2Cl2 [26]. To understand this, we introduce

rescaled phonon coordinates Rqν =
√

ωqν/(~(2nqν(T ) + 1))Qqν . The weighting func-

tion in Eq. (3.31) then becomes invariant under rotations in R space, and Eq. (3.26)

can be expressed as a sampling over directions for fixed R = |R| followed by an
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Figure 3.8: Temperature dependence of the width of the phonon side band in the k =

(π/(2a), π/(2a)) ARPES spectrum for the undoped system. The width is determined

as the FWHM of a Gaussian fitted to the low binding energy side of the peak. The

curve shown is an interpolation between the calculated data points.

integration over R. If the R space has dimension d, the R-integral contains a fac-

tor Rd−1e−R2
which peaks strongly at R̃ ≡

√

(d− 1)/2. Figure 3.7 shows how the

contributions to the spectrum evolve with increasing R up to R̃. Poles in the sam-

pled spectra were broadened by Gaussians with a FWHM of 11 meV. In the figure,

the coupling to the q = (0, 0) modes is not included since it contributes the same

broadening for all k. We focus on peaks to the right, at the lowest binding energies.

For R = 0, which corresponds to zero electron-phonon coupling, the spectrum for

k = (π/(2a), π/(2a)) has a peak at smaller binding energy than for k = (0, π/(2a)).

As R increases and the electron-phonon coupling is switched on, both peaks are

broadened. This is due to the repulsion from higher states, which increases with R,

but is different for different directions of R. For the peak with the lowest binding

energy, this broadening is largest since all the other states repel the corresponding

state in the same direction. Figure 3.5 shows, however, the opposite trend for the

width of the phonon side band in the final spectra due to the following opposing effect

which dominates. For R 6= 0, spectral weight also appears at energies with no peaks

in the R = 0 spectra; the system is distorted and the electronic momentum k is not

conserved. For instance, in case of k = (0, π/(2a)), a peak of increasing width and

weight appears at the energy of the main peak in the k = (π/(2a), π/(2a)) spectrum.
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At R = R̃, these side bands have more or less merged with the main peak and effec-

tively add to its width. For k = (π/(2a), π/(2a)), there is no such extra contribution

for lower binding energies whereas for k = (0, π/(2a)) the width is increased by one

side band. There are more and more side bands on the low binding energy side of

the main peak as the binding energy of the main peak increases which increases the

width of the resulting broad peak on the low binding energy side.

Finally, we have studied the temperature dependence of the width of the phonon

side band. From Eq. (3.31), it follows that the T dependence is determined by Bose

factors. The phonon frequencies then set the temperature scale for strong variations

in the width. For k = (π/(2a), π/(2a)), it increases from 515 meV FWHM3 at T = 0

to 560 meV at T = 200 K and 680 meV at T = 400 K for our model of La2CuO4.

Such a T dependence is in qualitative agreement with the experimental results of

Shen et al. [27] for Ca2CuO2Cl2, supporting the interpretation that the side band

broadening originates from electron-phonon coupling.

3.5 Summary and discussion

To summarize, we have shown that the polaronic features in ARPES spectra of

La2CuO4 and other undoped cuprates can be attributed to strong coupling between

the photo hole and phonons. This electron-phonon coupling is due to the modulation

of the electrostatic potential and of the Zhang-Rice singlet energy and was found to

be strong enough to induce self-trapped polarons. Based on an adiabatic approx-

imation, we have developed a description of (inverse) photoemission spectra which

explains why the dispersion of the phonon side band in undoped systems matches

that of purely electronic calculations. In addition, it leads to an efficient method for

obtaining ARPES spectra in undoped compounds. We have used it to show that with

the derived coupling there is good agreement with experimental results. The depen-

dence of the width of the broad phonon side band on binding energy and temperature

has also been discussed. Our results show the importance of electron-phonon coupling

for the physics of undoped cuprates.

Despite the successful description of the undoped system, there are several open

questions concerning what happens upon doping which we discuss in the following.

The doping dependence of ARPES spectra has been investigated e.g. in Ref. [103] for

3Here we use the FWHM of a Gaussian fitted to the low binding energy side of the peak which

leads to a slight difference compared to the T = 0 width obtained earlier from twice the HWHM

taken directly from the spectrum.
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La2−δSrδCuO4 over a large range of dopings δ. Along the nodal direction, a broad

side band and no quasi-particle peak is seen in the undoped system like in Fig. 3.2.

But already for dopings as small as δ = 0.03, a quasi-particle peak can be discerned.

As one expects a strong suppression of the quasi-particle weight in a system of self-

trapped polarons, this indicates that polaronic behavior in this sense is quickly lost

upon doping. In general, we expect the electron-phonon coupling to become weaker

upon doping as the doped charge carriers lead to a stronger screening of the interac-

tion from the modulation of the electrostatic potential. We found in Sec. 3.2 that the

coupling in the undoped system is considerably stronger than what is required for

the crossover to self-trapped polarons. But it is conceivable that also this criterion

changes upon doping. An increase seems likely as antiferromagnetic correlations be-

come weaker which appear to help the formation of polarons [89,104,105,106]. At low

doping, the quasi-particle weight is small and there is still much weight in the energy

range of the side band suggesting that electron-phonon interaction remains impor-

tant also in the doped system. Similar results are obtained for Ca2−δNaδCuO2Cl2 [26]

although the quasi-particle peak is less clearly visible for small dopings.

In this context, it is interesting that for finite doping the nodal quasi-particle

dispersion in Ca2−δNaδCuO2Cl2 is found [26] to be relatively large, although it is still

about a factor of two smaller than expected from band structure calculations [107,58]

assuming a simple emptying of the band. Furthermore, the position of the broad side

band remains almost unchanged upon doping suggesting only a small variation of

the binding energy. Usually, one assumes that a small value of Z leads to a very

small dispersion as observed in the undoped system (cf. the dispersion of feature B

in Fig. 3.1b). A large dispersion could result, however, if the electron self-energy has

a strong k dependence. It remains unclear why the binding energy of the side band

shows only little change upon doping as if the electron-phonon interaction would not

become weaker.





Chapter 4

Property-dependent apparent

electron-phonon interaction

4.1 Introduction

The quasi-particle dispersions derived from ARPES experiments on cuprates quite

universally show a kink feature at an energy of about 70 meV when the electronic

wavevector is chosen along the nodal direction (k ∝ (ξ, ξ)). Typical examples taken

from Lanzara et al. [25] are shown in Fig. 4.1. These results can be interpreted

assuming that the electronic quasi-particles couple to a bosonic mode with an energy

corresponding to the kink energy. In Ref. [25], the oxygen half-breathing mode has

been proposed as a likely candidate for the coupling boson, and a coupling constant

λ ≈ 1 was derived from the change of the slope. The half-breathing phonon has the

appropriate energy, and its anomalously strong softening and broadening upon doping

which was discussed extensively in Chap. 2 further support this interpretation. Using

measured values of the (half-)breathing phonon width [18] and a calculated density

of states [107] in a formula by Allen [108, 109] (Eq. (4.47)), one derives a coupling

constant λ ≈ 0.1 − 0.3 for optimally doped cuprates.

The coupling constants derived from electronic and phonon properties differ by

almost an order of magnitude. This seems to indicate a problem in the interpretation

of the experiments in terms of electron-phonon coupling to the half-breathing mode.

These estimates of λ, however, are based on theories which assume non-interacting

electrons. It is not clear how the meaning of these apparent coupling constants could

change for strongly correlated materials like the cuprates. We therefore study the

effect of the electron-phonon interaction on the electronic and phonon properties in

99
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Figure 4.1: ARPES dispersions of La2−δSrδCuO4 (LSCO), Bi2Sr2CuO6+δ (Bi2201)

and Bi2Sr2CaCu2O8+δ (Bi2212) in the nodal direction (k ∝ (ξ, ξ)) for different dop-

ings δ and temperatures T . The results in (a) and (b) were obtained for T = 20 K

and in (c) for T = 30 K. The red arrow shows the energy of the q = (π/a, 0) half-

breathing phonon and the black arrows indicate the kink energies. Panel (f) shows

the change 1 + λ′ of the slope at the kink (after Lanzara et al. [25]).

such systems. Using sum rules that we derive for both the electron and phonon self-

energy, we show that for a strongly correlated system the apparent λ deduced from

theories for non-interacting electrons can depend strongly on the property studied.

Already Kulić and Zeyher [110] found that strong correlations greatly reduce the

electron-phonon coupling in transport quantities but lead to a much smaller change

in the Eliashberg function α2F (ω). Here, we demonstrate that in such systems the

effects of the coupling also show up differently in electron and phonon self-energies.

We consider a doped Mott (charge transfer) insulator which has a fraction δ

carriers (where δ typically is small). We find that the influence of the electron-

phonon interaction on the phonon self-energy, determining its width and softening, is

reduced by a factor of the order of δ compared to a system without electron-electron

interaction. For the electron self-energy, determining the photoemission spectrum,

there is no comparable reduction. This could explain why the λ deduced from the

phonon self-energy appears to be smaller than the one deduced from photoemission,

and it supports the scenario that phonons give a large contribution to structures

in ARPES spectra. For similar reasons, one can speculate that there should be no

reduction ∝ δ in the phonon induced carrier-carrier interaction.

After defining the models used in this chapter, we start by deriving the sum rules
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for the electron and phonon self-energy. In both cases, this is done for interacting

and non-interacting electrons. A comparison of the different results then allows us to

assess the effect of strong electronic correlations on the apparent coupling constants

derived from different properties assuming non-interacting electrons. We exemplify

these findings using numerical calculations. Finally, the sum rules are used to study

the effect of vertex corrections in a diagrammatic treatment of electron-phonon in-

teractions in strongly correlated systems.

4.2 Definition of models

We consider the following t-J model with phonons:

H = Ht-J +Hep +Hph, (4.1)

where Ht-J was defined in Eq. (1.87). The electron-phonon coupling is a q-dependent

on-site coupling,

Hep =
1√
N

∑

q

∑

i

gq(ni − 1)(bq + b†−q)e
iq·Ri, (4.2)

of doped holes to dispersive phonons described by

Hph =
∑

q

~ωqb
†
qbq. (4.3)

We have found in Chap. 1 that such a model can be derived as a low-energy model

for a three-band model of the phonon-modulated CuO2 planes in cuprates. For the

considerations in this chapter, we neglect site-off-diagonal coupling which we found

to be less important and restrict ourselves to one phonon branch. For later use, we

note that as usual ω−q = ωq and g∗−q = gq is assumed.

For comparison, we also consider a similar model with electrons that do not in-

teract with each other:

Hnon-int = Hel +Hep +Hph. (4.4)

Whereas the electronic part was described in Eq. (4.1) by the strongly correlated t-J

model, we now assume non-interacting electrons with the dispersion εk and

Hel =
∑

kσ

εkc
†
kσckσ. (4.5)
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Hep and Hph are defined like in Eqs. (4.2) and (4.3). For later use, we also give Hep

in a pure wavevector representation:

Hep =
1√
N

∑

kσ

∑

q

gqc
†
k+qσckσ(bq + b†−q) −

√
Ng(0,0)(b(0,0) + b†(0,0)). (4.6)

Electron and phonon self-energies describe the effects of the interactions on elec-

trons and phonons, respectively. We now derive sum rules for their imaginary parts

that allow for a discussion of the interplay between electron-electron and electron-

phonon interaction.

4.3 Sum rule for phonon self-energy

We first consider the phonon self-energy. Using the notation of App. C and setting

A† = B = bq + b†−q and ε = −1, we define the phonon Green’s function by

Dα(q, ω) = 〈〈b†q + b−q; bq + b†−q〉〉αω, (4.7)

where α ∈ {ret, adv, c}. The phonon self-energy Πα(q, ω) is defined by Dyson’s

equation,

[Dα(q, ω)]−1 = [Dα
0 (q, ω)]−1 − Πα(q, ω), (4.8)

with the free phonon Green’s function

Dα
0 (q, ω) =

2ωq

ω2 − ω2
q + i0+fα(ω)

, where fα(ω) =

{

±ω for α = ret/adv,

1 for α = c.

(4.9)

Dα
0 (q, ω) is easily obtained as the phonon Green’s function for Hep = 0 from its

equation of motion in Eq. (C.5).

Using the equation of motion for the full phonon Green’s function, we can derive

a useful expression for the phonon self-energy. From the first line in Eq. (C.5), one

obtains:

ωDα(q, ω) = ωq〈〈b−q − b†q; bq + b†−q〉〉αω. (4.10)

Analogously, the equation of motion for the Green’s function on the right hand side

of Eq. (4.10) gives:

ω〈〈b−q − b†q; bq + b†−q〉〉αω = 2 + ωqD
α(q, ω) +

2gq

~
√
N
〈〈ρ−q; bq + b†−q〉〉αω, (4.11)
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with the charge density operator ρq defined by Eq. (2.31). It is convenient to use the

second line in Eq. (C.5) to obtain the equation of motion for the Green’s function in

the last term of Eq. (4.11):

ω〈〈ρ−q; bq + b†−q〉〉αω = −ωq〈〈ρ−q; bq − b†−q〉〉αω. (4.12)

Similarly,

ω〈〈ρ−q; bq − b†−q〉〉αω = −ωq〈〈ρ−q; bq + b†−q〉〉αω − 2g−q

~
√
N
〈〈ρ−q; ρq〉〉αω. (4.13)

From Eqs. (4.10) and (4.11), one has

ω2Dα(q, ω) = ωq

(

2 + ωqD
α(q, ω) +

2gq

~
√
N
〈〈ρ−q; bq + b†−q〉〉αω

)

, (4.14)

and Eqs. (4.12) and (4.13) give

ω2〈〈ρ−q; bq + b†−q〉〉αω = −ωq

(

−ωq〈〈ρ−q; bq + b†−q〉〉αω − 2g−q

~
√
N
〈〈ρ−q; ρq〉〉αω

)

. (4.15)

Combining these two equations, we obtain

Dα(q, ω) = Dα
0 (q, ω) +

|gq|2
~2N

Dα
0 (q, ω)χα(q, ω)Dα

0 (q, ω), (4.16)

where we defined the charge response function

χα(q, ω) = 〈〈ρ−q; ρq〉〉αω. (4.17)

Inserting into Eq. (4.16) Dyson’s equation from Eq. 4.8, we arrive at the final result:

Πα(q, ω) =
|gq|2/(~2N)χα(q, ω)

1 + |gq|2/(~2N)χα(q, ω)Dα
0 (q, ω)

. (4.18)

Integrating the modulus of the imaginary part of the charge response function

over all frequencies and summing over all wavevectors except for q=(0, 0), one finds

using Eqs. (C.7) and (C.8):

∑

q6=(0,0)

∫ ∞

−∞
dω |Im χα(q, ω)| = 2π

∑

q6=(0,0)

〈0|ρ−qρq|0〉 (4.19)

= 2π
∑

q6=(0,0)

∑

ij

eiq·(Ri−Rj)〈0|ninj|0〉

= 2π
∑

q

∑

ij

eiq·(Ri−Rj)〈0|ninj|0〉 − 2π
∑

ij

〈0|ninj|0〉

= 2πN〈0|
∑

i

n2
i |0〉 − 2π〈0|(

∑

i

ni)
2|0〉.
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4.3.1 Interacting electrons

If we describe the electrons by the strongly correlated model of Eq. (4.1), the con-

straint that sites cannot be doubly occupied (implying n2
i = ni) allows for the follow-

ing evaluation of the last line in Eq. (4.19):

∑

q6=(0,0)

∫ ∞

−∞
dω |Im χα(q, ω)| = 2πN〈0|

∑

i

ni|0〉 − 2π〈0|(
∑

i

ni)
2|0〉 = 2πδ(1 − δ)N 2,

(4.20)

where δ is the doping defined as the number of doped holes per site. We have arrived

at a sum rule for the charge response function that was already pointed out by

Khaliullin and Horsch [34]:

1

πN

∑

q6=(0,0)

∫ ∞

−∞
dω |Im χα(q, ω)| = 2δ(1 − δ)N. (4.21)

According to Eq. (4.21), χα(q, ω) becomes small for small doping which we are inter-

ested in. Therefore, the denominator in Eq. (4.18) is not very different from 1 and we

can approximate Πα(q, ω) ≈ |gq|2/(~2N)χα(q, ω). From Eq. (4.21), we then obtain

the following approximate sum rule for the phonon self-energy:

1

πN

∑

q6=(0,0)

~
2

|gq|2
∫ ∞

−∞
dω |Im Πα(q, ω)| ≈ 2δ(1 − δ). (4.22)

4.3.2 Non-interacting electrons

If we consider non-interacting electrons described by Hnon-int from Eq. (4.4) and

assume a system without spin polarization, the last line in Eq. (4.19) can be evaluated

as follows:

∑

q6=(0,0)

∫ ∞

−∞
dω |Im χα(q, ω)| = (4.23)

= 2πN〈0|
∑

i

(ni + 2ni↑ni↓)|0〉 − 2π〈0|(
∑

i

ni)
2|0〉

= 2πN
(
2nN + 2n2N

)
− (2nN)2 = 4πN2n(1 − n),

where n is the number of electrons per site and spin. If we assume not too strong

couplings |gq|2 such that the denominator in Eq. (4.18) can be approximated by 1, the

sum rule for the modulus of the imaginary part of the phonon self-energy analogous
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to Eq. (4.22) is given by

1

πN

∑

q6=(0,0)

~
2

|gq|2
∫ ∞

−∞
dω |Im Πα(q, ω)| ≈ 4n(1 − n) (4.24)

≈ 1 for n ≈ 1

2
.

In the second line, we assumed an approximately half-filled band which should be

compared to the weakly doped t-J model.

4.3.3 Discussion

Comparing the sum rules for interacting and non-interacting electrons, Eqs. (4.22)

and (4.24), shows that in the interacting case the phonon self-energy is suppressed

by a factor 2δ(1 − δ) compared to the result for non-interacting electrons. The

electron-electron interaction therefore strongly reduces the effects of the electron-

phonon interaction on phonons at low doping. The electron density is rearranged

in response to the excitation of a phonon, and this rearrangement acts back on the

phonon, contributing to the width and energy shift of the phonon. The system can

respond to the perturbation of a phonon by transfering doped holes (Zhang-Rice

singlets) to sites with a low on-site energy for singlets in the distorted lattice in order

to lower its total energy. If there are few singlets, i.e., δ is small, the response of

the system is weak and the phonon self-energy is small. Since typically δ ≈ 0.1, this

drastically reduces the phonon softening and width due to the creation of electron-

hole pairs. This is a direct effect of the strong correlation which allows us to neglect

double occupancy of sites in case of interacting electrons.

4.4 Sum rule for electron self-energy

4.4.1 Interacting electrons

We now derive a sum rule for the electron self-energy and start again with the

case of electrons interacting with each other. The one-electron Green’s function

Gσ(k, z) = 〈〈c̃kσ; c̃†kσ〉〉z in the undoped t-J model is given in terms of its spectral

density Aσ(k, ω)=−Im Gσ(k, ω+i0+)/π by

Gσ(k, z) =

∫ ∞

−∞
dω

Aσ(k, ω)

z − ω
. (4.25)
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Figure 4.2: Contour in the upper half-plane of complex frequencies z for the integral

over Σσ(k, z) in Eq. (4.32). It is a closed semicircle with radius R, positions on the

arc are characterized by the angle ϕ measured against the positive real axis.

Expanding the denominator of Eq. (4.25) in powers of 1/z, one obtains

Gσ(k, z) =
∞∑

m=0

M
(m)
kσ

zm+1
, (4.26)

where the moments of the spectral density are defined by

M
(m)
kσ =

∫ ∞

−∞
dω ωmAσ(k, ω). (4.27)

On the other hand, in terms of the electron self-energy Σσ(k, z), we have

Gσ(k, z) =
akσ

z − ~−1εkσ − Σσ(k, z)
, (4.28)

where akσ is a weight factor. We assume that any constant energy shift is absorbed

in the bare dispersion εkσ such that the self-energy has a 1/z expansion of the form

Σσ(k, z) =
bkσ

z
+ O(z−2). (4.29)

As we have Aσ(k, ω) ≥ 0 for the real spectral density, it follows from Eq. (4.25) that

Gσ(k, z) can be zero only for z on the real axis. Therefore, according to Eq. (4.28),

Σσ(k, z) has no poles in both the upper and the lower half-plane away from the real

axis and the integral along the contour in Fig. 4.2 vanishes. Then, using Eq. (4.29),

∫ R

−R

dω Σσ(k, ω + i0+) +

∫ π

0

iReiϕdϕ
bkσ

Reiϕ
+ O(R−1) = 0, (4.30)

and for R → ∞
bkσ = − 1

π

∫ ∞

−∞
dω Im Σσ(k, ω + i0+). (4.31)
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If we compare the 1/z expansion of Eq. (4.28),

Gσ(k, z) =
akσ

z
+
akσ~

−1εkσ

z2
+
akσ(~−2ε2

kσ + bkσ)

z3
+ O(z−4), (4.32)

with Eq. (4.26), we find

bkσ =
M

(2)
kσ

M
(0)
kσ

−
(

M
(1)
kσ

M
(0)
kσ

)2

. (4.33)

Let |Φ〉 be the ground state of the undoped t-J model with phonons. Because of

the constraint forbidding double occupancy of sites, only photoemission is possible.

Therefore, the spectral density can be written as

Aσ(k, ω) =
∑

n

|〈n|c̃kσ|Φ〉|2 δ(ω + ~
−1En) (4.34)

summing over all eigenstates |n〉 of H in the one-hole sector (their eigenenergies

being En). Here, we measure energies such that E0 = 〈Φ|H|Φ〉 = 0. From Eq. (4.34),

one derives the following formula for the moments of the spectral density defined in

Eq. (4.27):

~
mM

(m)
kσ =

∑

n

Em
n |〈n|c̃kσ|Φ〉|2 = 〈Φ|c̃†kσH

mc̃kσ|Φ〉. (4.35)

We now evaluate Eq. (4.35) for m = 0, 1, 2. First,

M
(0)
kσ = 〈Φ|c̃†kσ c̃kσ|Φ〉 =

1

N

∑

ij

eik·(Ri−Rj)〈Φ|c̃†jσc̃iσ|Φ〉 (4.36)

=
1

N

∑

i

〈Φ|c̃†iσ c̃iσ|Φ〉 =
Nσ

N
.

In the second line, we used the fact that we must have j = i as |Φ〉 describes the

undoped system. Nσ gives the number of electrons with spin σ in the undoped

system. Next,

~M
(1)
kσ = 〈Φ|c̃†kσHc̃kσ|Φ〉 = 〈Φ|c̃†kσHt-J c̃kσ|Φ〉. (4.37)

It was used that 〈Φ|c̃†kσHepc̃kσ|Φ〉 = 0 and Hphc̃kσ|Φ〉 = 0 as there are no phonons in

the ground state of the undoped system. Similarly, 〈Φ|c̃†kσHt-JHepc̃kσ|Φ〉 = 0, and

~
2M

(2)
kσ = 〈Φ|c̃†kσH

2c̃kσ|Φ〉 = 〈Φ|c̃†kσ(H
2
t-J +H2

ep)c̃kσ|Φ〉. (4.38)

One finds

〈Φ|c̃†kσH
2
epc̃kσ|Φ〉 =

1

N2

∑

ij

ek·(Ri−Rj)〈Φ|c̃†jσ
∑

q

∑

q′

∑

l,l′

gqgq′(nl − 1) (4.39)

×(nl′ − 1)(bq + b†−q)(bq′ + b†−q′)e
i(q·Rl+q′·Rl′)c̃iσ|Φ〉
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=
1

N2

∑

ij

eik·(Ri−Rj)〈Φ|c̃†jσ
∑

q

gqg−qc̃iσ|Φ〉

=
Nσ

N2

∑

q

|gq|2.

First, it was used that there are no phonons in |Φ〉 which requires q′ = −q and that

(nl − 1)(nl′ − 1)c̃iσ|Φ〉 = δilδil′ c̃iσ|Φ〉. In the last step, we proceeded like in Eq. (4.36).

Inserting these results into Eq. (4.33), we have

~
2bkσ =

N

Nσ
〈Φ|c̃†kσH

2
t-J c̃kσ|Φ〉 −

(
N

Nσ
〈Φ|c̃†kσHt-J c̃kσ|Φ〉

)2

+
1

N

∑

q

|gq|2. (4.40)

If we had considered the same system without electron-phonon interaction, i.e., Hep ≡
0, the result would have differed only by the disappearance of the third term in

Eq. (4.40). So, if we define Σep
σ (k, z) as the difference between the self-energies for

the system with and without electron-phonon interaction, we arrive at the following

sum rule for its spectral density:

− ~
2

π

∫ 0

−∞
dω Im Σep

σ (k, ω + i0+) =
1

N

∑

q

|gq|2 ≡ g2. (4.41)

The integration can be limited to negative energies as only photoemission is possible

from the undoped system. It is interesting to note that the result depends neither on

the wavevector k nor the spin σ of the hole created in the photoemission process. It

is also independent of the electronic parameters t and J .

4.4.2 Non-interacting electrons

Next, we consider the electron self-energy for non-interacting electrons. To lowest

order in the electron-phonon coupling, the (causal) electron self-energy is given by

(iΣc(k, ω)) =
∑

q

|gq|2
~2N

1

2π

∫ ∞

−∞
dω′ (iDc

0(q, ω
′))(iGc

0(k + q, ω + ω′)), (4.42)

with the free phonon Green’s function from Eq. (4.9) and the free electron Green’s

function

Gc
0(k, ω) =

1

ω − ~−1εk + i0k

, (4.43)

where

0k =

{

0+ if |k| > kF ,

−0+ if |k| < kF .
(4.44)
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The integrand in Eq. (4.42) has four terms of which two vanish after the integration

as both poles are in one half-plane and the contour can be closed in the other one.

The remaining two contributions are easily evaluated and lead to [111]

Σc(k, ω)=
∑

q

|gq|2
~2N

{
Θ(|k + q| − kF )

ω − ~−1εk+q − ωq + i0+
+

Θ(kF − |k + q|)
ω − ~−1εk+q + ωq − i0+

}

. (4.45)

Therefore,

~
2

π

∫ ∞

−∞
dω |Im Σc(k, ω)| =

∑

q

|gq|2
N

(Θ(|k + q| − kF ) + Θ(kF − |k + q|))

=
1

N

∑

q

|gq|2 = g2. (4.46)

4.4.3 Discussion

A comparison of the lowest order result for non-interacting electrons, Eq. (4.46), with

Eq. (4.41) shows that the electron-phonon contribution to the electron self-energy in

the undoped t-J model has a similar sum rule. In contrast to the phonon self-energy,

there is no strong reduction at low doping in the strongly correlated system.

This result can be understood if we notice that a singlet with the wavevector k,

created in a photoemission experiment, can easily be scattered by phonons to other

states k + q since only a fraction (1− δ) of these are occupied by other singlets. We

therefore expect a strong effect of the electron-phonon interaction on photoemission

spectra also for a finite but small δ.

Whereas the sum rule for non-interacting electrons was derived only to lowest or-

der in the coupling g2 and higher order corrections are expected to become important

for stronger coupling, the result for interacting electrons is valid for arbitrary coupling

strengths. Interestingly, the right hand side of Eq. (4.41) remains proportional to g2

even for large g.

From the arguments above, it follows that the phonon-induced attractive carrier-

carrier interaction should also be effective at low doping since for small δ the carriers

(singlets) can scatter each other via phonons with few restrictions. This may be

helpful for superconductivity. In particular, it should be possible to have a strong

phonon-induced carrier-carrier interaction without the corresponding phonon going

soft.
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4.5 Apparent coupling strengths

The dimensionless electron-phonon coupling constant λ is often calculated from pho-

non and electron properties using standard expressions derived in the framework of

theories for non-interacting electrons. A formula by Allen [108, 109] relates the line

width γ = 2~ Im Π(q, ωph) of a phonon with frequency ωph to the coupling constant,

λΠ =
γ

2π~2ω2
phN(0)

, (4.47)

where N(0) is the electron density of states per spin and we label λ by Π to emphasize

that it is calculated from a phonon property determined by the phonon self-energy.

Assuming a constant electronic density of states, a phonon energy which is small

compared to the electronic band width, and not too strong coupling, one easily finds

from a Kramers-Kronig relation that Eq. (4.47) can also be expressed in terms of the

phonon softening ∆ωph = Re Π(q, ωph),

λΠ = −α∆ωph

ω0
ph

, (4.48)

with the prefactor α being of order 1 and ω0
ph denoting the bare phonon frequency.

On the other hand, a standard definition of the coupling constant is based on the

electron self-energy,

λΣ = − dRe Σep(ω + i0+)

dω

∣
∣
∣
∣
ω=0

= − 1

π
P
∫ ∞

−∞
dω

Im Σep(ω + i0+)

ω2
, (4.49)

where now λ is labeled by Σ to show that it is deduced from electronic properties.

The definitions in Eqs. (4.47), (4.48), and (4.49) are chosen such that they all give

the same value for the coupling constant in a system of non-interacting electrons. If

instead we consider a strongly correlated system with interacting electrons, we have

to take into account the results of Secs. 4.3 and 4.4. We found from sum rules that

at low doping the integrated spectral weight of the phonon self-energy is reduced ∝ δ

due to strong correlations. As there is no such reduction in the corresponding sum

rule for the electron self-energy, the calculation of apparent coupling constants using

Eqs. (4.47), (4.48), and (4.49) in a system of interacting electrons in general leads to

different results depending on whether one considers phonon or electron properties.

From the sum rules, one expects λΠ/λΣ = cδ where c ≈ 2− 4 depends on the precise

frequency dependence of the self-energies.

In this context, we remark on a notable aspect concerning the experimental ex-

traction of λΣ. While originally the apparent coupling for the electron self-energy
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λΣ ≈ 1 was estimated from photoemission experiments, later work assigned a sub-

stantial part of this coupling to lower-lying phonons [93] bringing λΣ and λΠ for the

(half-)breathing phonon into better agreement. The observed kink in the photoemis-

sion spectrum can, however, substantially underestimate λΣ in Eq. (4.49). Let the

electron self-energy Σ(ω) = −(λel +λΣ)ω for small |ω| and Σ(ω) = −λelω for large |ω|
where λΣ is due to the phonon of interest and λel is due to other effects. Then, the

observed change of the slope at the kink is determined by 1 + λΣ/(1 + λel) < 1 + λΣ

where (1 +λΣ +λel) = Z−1, the inverse quasi-particle weight, can be a large number.

This suggests that λΣ is substantially larger than λΠ.

4.6 Numerical results

To illustrate the results of the previous sections, we study the t-J model with phonons

from Eq. (4.1) and solve it numerically using exact diagonalization. We consider a

finite cluster with 4×3 sites and periodic boundary conditions. We use the parameters

t = 0.47 eV and J/t = 0.3. The entire (half-)breathing phonon branch is included.

The electron-phonon interaction is given by the on-site coupling derived in Chap. 1.

The Hilbert space is limited by only allowing for states which have a maximum of

P phonons, where typically P = 7. The calculational details have already been

described in Sec. 2.2.

Ideally, one would like to calculate λΣ as in experiment from the change of the

slope in the quasi-particle dispersions around the kink which one expects to see at

energies of the order of the phonon energies. For the small clusters which can be

studied in exact diagonalization, however, this approach is not possible due to the

few available k-points for which photoemission spectra can be calculated. Instead,

we focus directly on the electron self-energy. As detailed in App. A, the spectral

function A(k, ω) is calculated using exact diagonalization. The Green’s function is

then obtained from a Kramers-Kronig transformation. Finally, Σ(k, ω) is obtained

by inverting Eq. (4.28). From that, λΣ can be calculated using Eq. (4.49).

In a similar way, we determine the phonon self-energy Π(q, ω) from the phonon

spectral function. Then, λΠ can be obtained using Eq. (4.47) or Eq. (4.48). As already

discussed in Sec. 2.2.1, the width of the phonon peak can be extracted more reliably

from the imaginary part of the phonon self-energy than from the phonon spectral

function directly. But because of the small size of the cluster, there are few many-

electron states with energies of the order of the phonon energies. This complicates

the extraction of phonon widths even in the approach which uses the phonon self-
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Figure 4.3: Frequency integrals over the imaginary parts of the phonon self-energy for

q = (π/a, 0) and the electron-phonon contribution to the k-averaged (local) electron

self-energy. The results are divided by the coupling constants and were obtained for

a 4 × 3 cluster with periodic boundary conditions. Π was calculated for δ = 1/12

and Σep
loc. for δ = 0. The self-energies were given a 0.2 eV (FWHM) Lorentzian

broadening. The figure illustrates how these quantities converge to approximately

2δ ≈ 0.17 (Eq. (4.22)) and unity (Eq. (4.41)) for the phonon and electron self-energy,

respectively.

energy because there are only a few peaks contributing to its spectral density. To

extenuate this problem, we use a phonon energy larger than the experimental values

for our numerical example. We increase the bare phonon energy to ~ω0
ph = 0.5 eV.

This requires a corresponding increase in the coupling constants. We have chosen a

multiplying factor of 3.4 which leads to an apparent electron-phonon coupling strength

of the order seen experimentally.1

Figure 4.3 shows the frequency integrals of the imaginary parts of the phonon

self-energy for the system with one doped hole and the electron-phonon contribution

to the electron self-energy for the undoped system as a function of the upper limit

ω. The limit ω → ∞ corresponds to the sum rules from Eqs. (4.22) and (4.41). To

obtain dimensionless quantities, the coupling constants have been divided out. In

this example, the phonon self-energy is calculated for q = (π/a, 0) and the electron-

1We expect that keeping g2
q
/ωph fixed when changing ωph leads to an unchanged λ. We have

multiplied the gq rescaled in this way by an additional factor of
√

2. Deducing λ from the phonon

width then gives a value comparable to what is obtained from experiment.
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Figure 4.4: Im Π(q, ω) of the 4 × 3 cluster for q = (π/a, 0) and δ = 1/12. The

self-energy has been given a Lorentzian broadening of 0.4 eV.

phonon contribution to the electron self-energy has been averaged over all electronic

wavevectors but similar results are obtained for other choices. The figure illustrates

the large ratio, ≈ 2δ, of the sum rules. The sum rule in Eq. (4.21) applies to an

average over q 6= 0 of χ, but we found that it is also rather accurate for Π/g2
q for an

individual value of q, as is illustrated in Fig. 4.3. The reason is that the denominator

in Eq. (4.18) is not very important for the coupling strengths used here and that the

sum rule for an individual q is not very different from the average over q.

Figure 4.4 shows the broadened Im Π(q, ω) for q = (π/a, 0). The broadening

(0.4 eV FWHM) was chosen in such a way that the fine structures due to the finite

cluster size were removed and the expected behavior Im Π(q, ω) ∝ ω for small ω

was obtained. The phonon is softened to ~ωph = 0.4 eV due to the electron-phonon

interaction. For this frequency, we obtain the FWHM of the phonon as γ = 0.08 eV.

This result depends on the broadening of Im Π(q, ω) and values differing by ±30%

could be obtained for other reasonable broadenings. Based on the width of Im Π(q, ω),

we estimate an electronic density of states N(0) ≈ 0.5 states per eV and spin and

calculate an apparent electron-phonon coupling constant λΠ = 0.2 from Eq. (4.47).

From the phonon softening ∆ωph/ω
0
ph = 0.2, we obtain a similar result for λΠ using

Eq. (4.48).

We emphasize again as in Sec. 2.2.1 the difference between this approach which

uses the broadened imaginary part of the phonon self-energy and an approach where
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the phonon spectral function is broadened until a smooth spectrum is obtained. The

latter method leads to an additional width of the peaks. For the present system, such

a large broadening would be required that no meaningful results could be extracted.

The broadening of Im Π(q, ω), on the other hand, does not generally add to the width

of the phonon spectral function since it essentially only distributes the contributions

to Im Π(q, ω) more uniformly along the energy axis.

We can also extract an apparent electron-phonon coupling constant from the elec-

tron self-energy using Eq. (4.49). This leads to λΣ = 0.6. As can be seen from

Fig. 4.3, the imaginary part of the electron-phonon contribution to the electron self-

energy is small for |~ω| < ~ωph = 0.4 eV. For this frequency range, we find that

Re Σ(k, ω) ≈ λΣω. Although calculated for a small cluster, the electron self-energy

therefore shows the characteristic features of a self-energy due to electron-phonon

interaction. λΣ is about a factor of 1/(cδ) larger than λΠ with c = 4. Therefore, our

numerical example confirms the expectation in Sec. 4.5 that the different effect of

strong correlations on the phonon and electron self-energy seen in the sum rules also

manifests itself in the apparent coupling constants which are more directly linked to

experimental observables like the phonon width and softening or the change of the

slope around the kink in ARPES quasi-particle dispersions.

4.7 Effect of vertex corrections

The sum rules for the phonon and electron self-energies derived in this chapter can also

be used to judge the importance of vertex corrections in a diagrammatic treatment

of electron-phonon interactions in strongly correlated systems. In this context, the

electronic degrees of freedom are often described by the two-dimensional Hubbard

model:

HH = εH

∑

iσ

niσ + tH
∑

〈ij〉σ

(

c†iσcjσ + H.c.
)

+ UH

∑

i

ni↑ni↓. (4.50)

Here, c†iσ creates an electron with spin σ on site i of a square lattice and niσ = c†iσciσ.

εH is the level energy, tH is the hopping amplitude between nearest-neighbor sites

〈ij〉, and UH is the Coulomb repulsion between two electrons on the same site. In the

limit of large UH, states with doubly occupied states can be projected out. If certain

terms are neglected [112], the resulting effective low-energy model takes the form of

the t-J model (Eq. (1.87)).

It is then interesting to ask how electron-phonon interactions are influenced by the

Coulomb interaction UH. Using the language of diagrammatic perturbation theory,



4.7. Effect of vertex corrections 115

this can happen via dressing of Green’s functions [106] or corrections to the vertex

functions [113, 114]. Huang et al. [113] as well as Koch and Zeyher [114] studied the

effect of UH on an effective vertex function in the static limit and found a suppression.

According to Ref. [113], this suppression is, however, reduced for large UH and small

phonon wavevectors q. Also the electron and phonon self-energies depend on vertex

functions appearing in integrals over internal momenta and frequencies. With exact

sum rules for these self-energies at hand, we can extract information about the effect

of vertex corrections on the electron-phonon interaction which in the following we

assume to be of the form defined in Eq. (4.2).

4.7.1 Electron self-energy

We first discuss how the electron self-energy of the undoped t-J model can be re-

lated to that of the half-filled Hubbard model in the limit of large UH. We start by

noting that the spectral function At-J(k, ω) of the one-electron Green’s function in

the undoped t-J model is zero on the inverse photoemissions side (ω > 0) because

of suppressed double occupancy. Assuming that the Hubbard model has an identical

photoemission spectrum (apart from a trivial energy shift of the order of UH/2), the

spectral function in the electron-hole symmetric model (εH = −UH/2) is given by

AH(k, ω) ≈ At-J(k, ~−1UH/2 + ω) + At-J(−k, ~−1UH/2 − ω), (4.51)

where the energy shift UH/2 can have errors of the order of tH. In both models, the

one-electron Green’s function G(k, z) can be defined in terms of either the spectral

function A(k, ω) or the electron self-energy Σ(k, ω):

G(k, z) =

∫ ∞

−∞
dω

A(k, ω)

z − ω
=

a

z − Σ(k, z)
. (4.52)

Here, z is a complex frequency and the weight a equals 1 and 1/2 for the Hubbard

model and the t-J model, respectively. Using Eqs. (4.51) and (4.52), the self-energy

ΣH(k, z) of the Hubbard model and that of the t-J model, Σt-J(k, z), can be directly

related, and we find for large UH and ~z ≈ UH/2:

ΣH(k, z) ≈ 2Σt-J(k, ~−1UH/2 + z) +
U2

H

4~2z
. (4.53)

Again, we allow for errors of the order of tH in the energy argument of Σt-J(k, ~−1UH/2+

z) and the position of the pole at z = 0. This can lead to errors of the same order

in Re ΣH(k, z) around ~z ≈ −UH/2. But apart from such small relative shifts, the
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Figure 4.5: Weights obtained by integrating −~Im Σep(k, ω + i0+)/π over different

energy ranges indicated by the arrows for the half-filled Hubbard model and the

undoped t-J model, the latter shifted by −UH/2. Also shown are the results for

the Hubbard model without vertex corrections (”no vert.”) and for non-interacting

electrons (”non-int.”, the k-averaged photoemission and inverse photoemission spectra

are shifted by −UH/2 and UH/2, respectively).

imaginary parts of the self-energies are related very accurately by a factor of two in

this energy range. The pole strengths are the same in both models since

1 − dΣH(k, z)

dz

∣
∣
∣
∣
z≈−~−1UH/2

≈ 2

[

1 − dΣt-J(k, ~−1UH/2 + z)

dz

∣
∣
∣
∣
z≈−~−1UH/2

]

(4.54)

which compensates for the different values of a in the definition of the Green’s func-

tion, Eq. (4.52).

Using Eq. (4.53), the sum rule in Eq. (4.41) for the difference between the self-

energies with and without electron-phonon interaction in the undoped t-J model

can be rewritten as a corresponding sum rule for the self-energies in the half-filled

Hubbard model with large UH:

− ~
2

π

∫ −~
−1UH/4

−∞
dω Im Σep

H (k, ω + i0+) = 2g2. (4.55)

We integrate up to −~
−1UH/4 to include the full photoemission spectrum which is

located at energies of the order of −UH/2 (we assume g2/|tH| � UH). It follows from

particle-hole symmetry that the same contribution is obtained by integrating from

~
−1UH/4 to infinity. In addition, by considering moments of the spectral density, a

sum rule for integrating over all frequencies can be derived in complete analogy to

Sec. 4.4.1:

− ~
2

π

∫ ∞

−∞
dω Im Σep

H (k, ω + i0+) = g2. (4.56)
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Figure 4.6: Lowest-order (in g2
q) diagrams for a) the electron-phonon contribution to

the electron self-energy and b) the phonon self-energy. Full and dashed lines represent

dressed electron and phonon Green’s functions, respectively, and circles symbolize

vertex functions times the electron-phonon coupling gq. For the electron-phonon

contribution to the electron self-energy, there are also other diagrams ∝ g2
q.

This implies that Σep
H (k, z) has a contribution −3g2 to its spectral weight close to ω =

0. The negative value results because the electron-phonon coupling slightly reduces

the pole strength of a pole in this energy range which has a large weight (≈ (UH/2)2)

already for g = 0. The different sum rule results are summarized schematically in

Fig. 4.5. We also include the result for non-interacting electrons (U = 0) where

we consider the lowest order diagram like in Sec. 4.4.2. After averaging over k, we

obtain separate sum rules for photoemission and inverse photoemission parts where

the contribution in the energy range for photoemission (g2/2) is a factor four smaller

than in the Hubbard model with large UH.

We now study the electron-phonon contribution to the electron self-energy in a

diagrammatic approach. An important contribution to lowest order in the electron-

phonon coupling comes from the diagram in Fig. 4.6a:

(iΣc
H(k, ω)) =

∑

q

|gq|2
~2N

1

2π

∫ ∞

−∞
dω′ Γ(k, q)(iGc

H(k + q))(iDc(q))Γ(k + q,−q). (4.57)

On the right hand side, k and q stand for (k, ω) and (q, ω′), respectively. Gc
H and

Dc are (causal) electron and phonon Green’s functions, respectively, dressed by the

Coulomb interaction. The vertex function Γ(k, q) corresponds to the sum of all irre-

ducible vertex contributions (neglecting vertex corrections due to the electron-phonon

interaction). k (q) stands for the incoming electron (phonon) momentum and fre-

quency. We now evaluate Eq. (4.57) neglecting vertex corrections, i.e., replacing

gqΓ(k, q) by gq, to investigate their importance. As will be discussed in more detail

in the next section, in the limit of large UH the phonon Green’s function remains
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undressed in the half-filled Hubbard model and we can use the free phonon Green’s

function from Eq. (4.9). The electron Green’s function, however, is assumed to be

fully dressed. Expressing it in terms of its spectral function, we arrive at the following

result analogous to Eq. (4.45):

Σc
H,no vert.(k, ω) =

∑

q

|gq|2
~2N

{∫ 0

−∞
dω′′ AH(k + q, ω′′)

ω−ω′′+ωq−i0+
+

∫ ∞

0

dω′′ AH(k + q, ω′′)

ω−ω′′−ωq+i0+

}

.

(4.58)

It allows us to easily obtain a sum rule over the photoemission energy range:

− ~
2

π

∫ −~−1UH/4

−∞
dω Im Σc

H,no vert.(k, ω+i0+) =
1

N

∑

q

|gq|2
∫ −~−1UH/4

−∞
dω AH(k+q, ω)

=
1

2
g2. (4.59)

Here, we used that in the half-filled Hubbard model with large UH integrating the

spectral function for a given spin over the lower Hubbard band gives one half. Com-

paring to Eq. (4.55), we find that the use of Eq. (4.57) and the neglect of vertex

corrections underestimates the exact sum rule by a factor of four.

4.7.2 Phonon self-energy and charge response function

We now study the charge response function χ(q, ω) defined in Eq. (4.17) because,

according to Eq. (4.18), the phonon self-energy is proportional to it to lowest order in

the electron-phonon coupling. In the Hubbard model and for q 6=(0, 0), it is described

entirely by the diagram in Fig. 4.6b:

(iχc
H(q, ω)) = −2

∑

k

1

2π

∫ ∞

−∞
dω′(iGc

H(k + q))(iGc
H(k))Γ(k + q,−q). (4.60)

We consider a system doped (with respect to the half-filled system) with a fraction δ

holes per site in the limit of large UH. The k-averaged photoemission spectrum for a

given spin integrates to (1−δ)/2. As before, we assume that this spectrum agrees with

that of the t-J model. It extends over an energy range which is equal to or smaller than

the width of the lower Hubbard band, W = O(tH) � UH. The probability in inverse

photoemission of adding an electron to an unoccupied site is δ. With a probability

of (1 − δ)/2, an electron with given spin can be added to a site already occupied by

another electron, but this contributes to the inverse photoemission spectrum at an

energy which is about UH higher (assuming that UH is so large that any transfer of
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spectral weight between the two contributions can be neglected). When we evaluate

Eq. (4.60) neglecting vertex corrections (Γ(k+ q,−q) → 1) and integrate the spectral

function of the q-averaged χc
H(q, ω) over the energy range |~ω| ≤ W that includes

all excitations within the lower Hubbard band but excludes those between upper and

lower Hubbard band, one easily finds using the above considerations that

1

πN

∑

q

∫
~−1W

−~−1W

dω |Im χc
H,no vert.(q, ω)| = 2δ(1 − δ)N. (4.61)

Although vertex corrections have been neglected, this agrees with the sum rule in

Eq. (4.21) which was derived for the t-J model. It is, however, important to use

dressed Green’s functions in the calculation of χc
H(q, ω). Otherwise, on the right

hand side of Eq. (4.61), δ would have been replaced by (1 + δ)/2 leading to a strong

disagreement with Eq. (4.21). Using exact diagonalization of finite clusters and, since

we assume UH to be large, considering the t-J model, we have found numerically that

already for individual phonon wavevectors q the integrated spectral weight of the

charge response function defined in Eq. (4.60) depends only weakly (typically less

than 10%) on whether vertex corrections are included or not, as long as fully dressed

Green’s functions are used.

For the half-filled Hubbard model, there are no contributions to Im χc
H,no vert.(q, ω)

for |~ω| � UH. In order to investigate the importance of vertex corrections, we there-

fore focus on contributions for |~ω| ≈ UH. If |Im χc
H,no vert.(q, ω)|/(πN) is integrated

over all frequencies, we obtain unity. Alternatively, we can consider the exact result

by using Eq. (2.30) which equally applies to the Hubbard model. For UH � |tH|, the

ground state of the half-filled system has exactly one electron per site to lowest order

in tH/UH. Therefore, applying the charge density operator ρq (with q 6= (0, 0)) to

the ground state |0〉, one obtains zero to this order. It then follows from Eq. (2.30)

that the sum rule for |Im χ(q, ω)| (integrating over all frequencies) is also zero to

lowest order in tH/UH. The result without vertex corrections, unity, is in strong dis-

agreement with this exact result and demonstrates the importance of including vertex

corrections in this case.

4.7.3 Example: two-site Hubbard model

To demonstrate our results on the importance of vertex corrections with an explicit

example, we consider the half-filled two-site Hubbard model:

HH = −UH

2

∑

σ

(n1σ + n2σ) + tH
∑

σ

(

c†1σc2σ + H.c.
)

+ UH(n1↑n1↓ + n2↑n2↓). (4.62)
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Figure 4.7: Diagrammatic representation of GA(iωn,±; νm) (Eq. (4.64)) within linear

response to the external perturbation denoted by the dashed line proportional to the

phonon amplitude u. The solid lines represent one-electron Green’s functions dressed

by the Coulomb interaction. The q = π phonon induces transitions between bonding

and anti-bonding electronic states.

We add an electron-phonon coupling of the form of Eq. (4.2). We only keep the q = π

phonon that couples bonding and antibonding states. With c±σ = (c1σ ± c2σ)/
√

2 we

then have

Hep = g
∑

σ

(c†+σc−σ + c†−σc+σ)(b+ b†). (4.63)

The discarded q = 0 phonon couples to the total number of electrons and does not

lead to excitations of the electronic system (cf. Sec. B.3 for a discussion of its rather

trivial effects in the context of the two-site Holstein model).

Following Ref. [113], we calculate the vertex function using a linear-response tech-

nique which includes all vertex corrections due to the Coulomb interaction. We em-

ploy the Matsubara finite-temperature formalism and replace the electron-phonon

interaction in Eq. (4.63) by the external perturbation H ′
ep, where b + b† has been

substituted by the (imaginary) time-dependent phonon amplitude ue−iνmτ . In its

presence, one evaluates an anomalous one-electron Green’s function defined by

GA(iωn,±; iνm) = −
∫

~β

0

dτ ei(ωn+νm)τ 〈Tτc∓σ(τ)c
†
±σ(0)〉H+H′

ep
. (4.64)

Here, the temperature T enters via β = (kBT )−1 and ωn = (2πn + 1)/β and νm =

2πm/β are fermionic and bosonic Matsubara frequencies, respectively. 〈. . .〉 denotes

an average over the grand canonical ensemble and Tτ is a time ordering operator,

both defined in a standard way. GA(iωn,±; νm) can be represented by the diagram

in Fig. 4.7 from which it follows that the vertex function can be expressed as

g Γ(iωn,±; iνm) = lim
u→0

1

u

GA(iωn,±; νm)

G(i(ωn + νm),∓)G(iωn,±)
, (4.65)



4.7. Effect of vertex corrections 121

where G(iωn,±) is the one-electron Green’s function fully dressed by the Coulomb

interaction. As only the linear-response contribution from the perturbation by the

phonon field is considered, the vertex function comprises only all contributions due

to the Coulomb interaction. After a straightforward calculation which can be found

in App. D, we obtain the following result for the vertex function in the limit of large

UH/tH and zero temperature (β → ∞):

Γ(ω,+;ω′) = Γ(ω + ω′,−;−ω′) =
~ω(~ω + ~ω′) + ~ω′tH + (UH/2)2

(~ω + tH)(~ω + ~ω′ − tH)
, (4.66)

where various terms of higher order in tH/UH have been neglected and frequencies

are real after analytic continuation from the imaginary axis. Here, Γ(ω,+;ω ′) is the

vertex function for an incoming electron in the bonding orbital (+) with the frequency

ω scattered by a q = π phonon with frequency ω′ into the antibonding orbital (−)

with the frequency ω + ω′.

Using this result for the vertex function, we can calculate the diagram in Fig. 4.6a

according to Eq. (4.57). In the limit of large UH, we find poles with weight 2g2 both

at ~ω ≈ −UH/2 and at ~ω ≈ UH/2. Therefore, the sum rule for integrating over the

photoemission energy range in Eq. (4.55) and the corresponding one for the inverse

photoemission part are exactly fulfilled. Without vertex corrections, these sum rules

are underestimated by a factor of four, cf. Eq. (4.59). This can be understood by

noting that for electronic energies in the range of the lower and upper Hubbard band,

|~ω| ≈ UH/2, it follows from Eq. (4.66) that

Γ(|ω| ≈ ~
−1UH/2,+;ωph) ≈ 2 (4.67)

when the phonon energy ~ωph is assumed to be small compared to UH. Therefore, in-

cluding vertex corrections effectively increases the weight of poles around |~ω| ≈ UH/2

by a factor Γ2 = 4. In addition, the self-energy calculated using vertex corrections

also has poles at ~ω = tH − ~ωph and ~ω = −tH, the latter being a double pole.

Except for a different sign, to leading order in UH they give the same contribution,

∓g2(UH/2)2/(2tH−~ωph)
2, to the integral over the spectral function of the self-energy.

The sum of the two contributions, however, is not zero, but one finds that it equals

−3g2 taking into account also terms which involve lower powers of UH. Therefore,

also the sum rule over all frequencies in Eq. (4.56) is fulfilled.

We also study the charge response function in the two-site Hubbard model with

electron-phonon interaction. Because of the small system size, it is uninteresting to

study the sum rule in Eq. (4.61) at finite doping. Already after doping one hole with



122 4. Property-dependent apparent electron-phonon interaction

respect to the half-filled system, the remaining single electron is no longer subjected

to the Coulomb interaction. But we consider the effect of vertex corrections in the

half-filled two-site model in the limit of large UH. In agreement with our general

conclusions at the end of Sec. 4.7.2, we find that the charge response function has poles

at ~ω ≈ ±UH with weight 1/2, respectively, if the diagram in Fig. 4.6b is calculated

neglecting vertex corrections. Only when the vertex function from Eq. (4.66) is used

in Eq. (4.60), χH(q, ω) vanishes to lowest order in tH/UH. This is the correct result

as can be easily argued using Eq. (2.30).

4.7.4 Discussion

We find that in strongly correlated systems it is crucial to include vertex corrections

in the calculation of the electron-phonon contribution to the electron self-energy in

order to fulfill the sum rule over the photoemission energy range. Without vertex

corrections, this sum rule is violated by a factor of four. On the other hand, the

sum rule for the charge response function, closely related to the phonon self-energy,

can be obtained correctly even when vertex corrections are neglected, as long as

properly dressed Green’s functions are used. This does not rule out, however, that

the energy dependence of the phonon self-energy could be substantially influenced by

vertex corrections. Interestingly, vertex corrections are again essential in the undoped

half-filled system where they result in a strong suppression of the phonon self-energy

needed to fulfill a sum rule over the full frequency range. Also the study of vertex

corrections shows that in strongly correlated systems the effect of electron-phonon

interaction can be very different depending on which property is affected.

4.8 Summary

To summarize, we find that in strongly correlated systems the apparent strength λ

of the electron-phonon coupling crucially depends on the property of interest. For

the t-J model with phonons and a fraction δ carriers, sum rules for the imaginary

parts of the electron and phonon self-energies show a reduction proportional to δ for

the phonon but not the electron case. This suggests that the apparent λ deduced

from phonon widths and softenings is reduced by such a factor while there is no

reduction in the electron self-energy. These conclusions are confirmed by a numerical

example. Our results provide support for phonons being essential for kinks seen

in photoemission. Similar arguments suggest that the phonon induced interaction
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between the carriers is not reduced by a factor of δ which may be of importance

for superconductivity. The sum rules can also be used to study the effect of vertex

corrections in the context of a diagrammatic approach to the Hubbard model which

can be related to the t-J model in the limit of large Coulomb interaction. We find

also in this context that it depends on the property studied whether it is crucial to

include them in order to obtain correct results in the sense of fulfilling sum rules.





Conclusions

In this thesis, we have studied electron-phonon coupling in strongly correlated ma-

terials. While we have focused specifically on the cuprate high-temperature super-

conductors, we have also identified general effects arising from the interplay between

electron-phonon and electron-electron interactions. Emphasis has been put on treat-

ing both on an equal footing by explicitly including strong correlations in our calcu-

lations and considerations.

In the first chapter, the t-J model with electron-phonon interaction has been de-

rived as an effective low-energy model for the description of electronic and lattice

degrees of freedom in the CuO2 planes common to all cuprates. For an undistorted

lattice, the t-J model is obtained from the initial three-band model by projecting out

states with high energy within the framework of degenerate perturbation theory. In

order to include the effects of lattice vibrations, we have discussed how they modulate

the on-site level energies of Cu-d and O-p orbitals as well as the hopping amplitude

between them. By suitably generalizing the procedure to the distorted lattice, we

have obtained an effective model which contains electron-phonon interaction. The

phonons couple to both the effective on-site energies and the effective hoppings in

the t-J model. As we can use physical arguments to estimate the modulation of the

parameters in the three-band model, we arrive at realistic coefficients for the site-

diagonal and the site-off-diagonal coupling in the effective model and do not have to

make ad hoc assumptions about which coupling mechanism dominates. The large

energy gain of the Zhang-Rice singlets formed by doped holes gives just an uninter-

esting energy shift in the undistorted lattice, but when it is modulated by phonons

it leads to a large coupling constant for the on-site electron-phonon interaction.

On the basis of this effective model, we then discussed in the second chapter

how the electron-phonon coupling affects the phonon modes in their properties. We

focused on the planar oxygen half-breathing mode which in experiment shows an

anomalously strong softening upon doping. Our calculations were performed using

exact diagonalization of small clusters leading to unbiased results except for finite-
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size effects. We have found that the softening increases upon doping and for phonon

wavevectors closer to the zone boundary in agreement with experiment. Also the

weaker softening of the breathing mode at not too large dopings is described correctly.

We have used Dyson’s equation to study the phonon self-energy directly. This allows

for a more reliable assessment of the line broadening due to electron-phonon coupling

than from the phonon spectral function itself. The calculated widths were found in

qualitative agreement with experimental values.

For comparison, we have also considered the Hartree-Fock mean-field approxima-

tion of the three-band model which does not explicitly include strong correlations.

Despite the softening of the half-breathing mode being similar to the one obtained

from exact diagonalization of the t-J model with phonons in a certain small doping

range, we have found a much weaker doping dependence which is in disagreement

with experimental findings. The same is true for the breathing mode being more

strongly softened than the half-breathing mode in the Hartree-Fock approximation

as well as for the considerably smaller estimates of the phonon widths. We can there-

fore conclude that a correct description of these phonon anomalies requires us to take

into account strong electronic correlations explicitly. On the one hand, associated

many-body effects give rise to a large energy gain of the Zhang-Rice singlets which

enters the electron-phonon coupling. On the other hand, they cause a strong sup-

pression of the charge response at low dopings that leads to the pronounced doping

dependence. This effect of strong correlations was discussed from a more general

point of view also in the last chapter.

Furthermore, we have analyzed the importance of different coupling mechanisms

and found that the modulation of the effective on-site energies gives the largest con-

tribution due to the energy gain of the Zhang-Rice singlets being the largest energy

scale in the problem. Both t and J are rather small in this respect which results in a

much weaker site-off-diagonal coupling via charge and spin degrees of freedom. The

electron-phonon interaction predominantly originates from the modulation of the p-d

hopping amplitude, but because of interference effects it is important to take into

account also the coupling arising from the screened Coulomb interaction. Within our

model, there is only strong coupling to the (half-)breathing mode. A rough estimate

of non-linear contributions to the electron-phonon coupling showed that in principle

they should not be discarded from the start like it is usually the case. Their contri-

bution is not necessarily very small but difficult to incorporate consistently into the

model.

In the subsequent third chapter, we turned to the polaronic behavior observed in
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photoemission spectra of undoped cuprates. Again, the model derived in the begin-

ning of the thesis served as a starting point for the description of these compounds.

But because of much weaker screening, the electron-phonon coupling induced by the

modulation of the level energies of Cu-d and O-p orbitals in the three-band model

needed to be reconsidered. Using an established shell model for the description of

the phonon modes in undoped La2CuO4, we have calculated the modulation of the

electrostatic potential at individual sites from which the electron-phonon interaction

can be derived. This gives a considerable contribution to the total coupling in ad-

dition to that of the (half-)breathing mode arising from the modulation of the p-d

hopping. In this context, modes involving apical oxygens that move perpendicular

to the CuO2 planes play an important role. The overall coupling was found to be

clearly strong enough to induce the formation of self-trapped polarons in the undoped

cuprates which supports the interpretation of the experimental observations in terms

of electron-phonon interaction. Strong correlations are crucial for lowering the critical

coupling strength needed for the crossover into this regime.

We have developed a theoretical description of (inverse) photoemission spectra

that is based on an adiabatic approximation. It allowed us to understand why the

phonon side band in undoped systems disperses according to predictions made by

purely electronic models. We found this to be basically due to the absence of electron-

phonon coupling in the initial state. Our adiabatic approximation proved to be also

very suitable for use as an efficient calculational method. Lattice degrees of freedom

need not be dynamically included, rather a Monte Carlo integration over phonon co-

ordinates is performed which parameterize electronic problems in distorted lattices.

Together with the fact that also the temperature dependence is easily implemented,

this leads to a powerful method. We employed it to calculate angle-resolved photoe-

mission spectra of undoped La2CuO4 using our calculated coupling and taking into

account all 21 phonon modes. Strong correlations are included explicitly as the elec-

tronic problem is solved by exact diagonalization. The obtained width and binding

energy of the phonon side band are in good agreement with experimental results.

We have found only a moderate temperature dependence and a systematic increase

of the width with increasing binding energy which again can be understood in the

framework of our adiabatic approximation.

In the final chapter, we have investigated more generally how the effects of electron-

phonon interaction can be modified by the presence of strong electronic correlations.

We have derived sum rules for the phonon self-energy and the electron-phonon con-

tribution to the electron self-energy, both for the strongly correlated t-J model with
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on-site coupling to phonons and for non-interacting electrons in an approximately

half-filled band. For the phonon self-energy, a strong suppression due to strong cor-

relations has been found at low doping which is related to the lack of doped charge

carriers available to the system for a response to perturbations by lattice distor-

tions. In contrast, the total spectral weight of the part of the electron self-energy

which is due to the electron-phonon interaction remains basically unaltered when

we change from non-interacting to interacting electrons. Roughly speaking, already

a single doped charge carrier can be effectively scattered by phonons. The coupling

constants deduced from electronic and phononic properties of strongly correlated sys-

tems then differ in a similar way if one relies on the theoretical framework developed

for non-interacting electrons. As confirmed by a numerical example, the apparent

coupling constants in strongly correlated systems can therefore depend crucially on

which property one is actually studying.

We have used these sum rules also to investigate the importance of vertex correc-

tions to the electron-phonon interaction in a diagrammatic study of strongly corre-

lated systems with phonons. We specifically considered the Hubbard model in the

limit of large on-site Coulomb interaction for which it becomes closely related to the

t-J model. We have found that it is essential to include vertex corrections in the

calculation of the electron-phonon contribution to the electron self-energy in order

to obtain a correct sum rule over the photoemission energy range. The suppression

of the phonon self-energy at low dopings, however, can be obtained correctly also if

vertex corrections are neglected although they are again needed to arrive at a proper

sum rule in the undoped system when integrating over all frequencies. These re-

sults which demonstrate once more peculiarities of the electron-phonon interaction in

strongly correlated systems were illustrated using a two-site model for which analyt-

ical results can be obtained.

The work presented in this thesis shows that electron-phonon interaction in strongly

correlated materials like the cuprates can lead to substantially different effects than

expected from the study of non-interacting electrons. If the interplay between dif-

ferent interactions is properly taken into account, a variety of phenomena caused by

the electron-phonon coupling in high-temperature superconductors, like the anoma-

lous softening of the half-breathing mode or polaronic features in the photoemission

spectra of undoped compounds, can be successfully understood within the model

framework developed in this work.



Zusammenfassung

In der vorliegenden Arbeit wird die Wechselwirkung zwischen Elektronen und Phono-

nen in stark korrelierten Systemen untersucht. Es werden im Speziellen die Hochtem-

peratur-Supraleiter aus der Familie der Kuprate betrachtet. Darüber hinaus gelan-

gen wir zu allgemeineren Schlussfolgerungen über das Zusammenspiel von Elektron-

Phonon- und Elektron-Elektron-Wechselwirkungen. Indem starke Korrelationen ex-

plizit in unsere Berechnungen und Überlegungen miteinbezogen werden, wird eine

gleichberechtigte Behandlung beider Wechselwirkungen sichergestellt.

Im ersten Kapitel wird das t-J-Modell mit Elektron-Phonon-Wechselwirkung her-

geleitet, das bei niedrigen Energien ein effektives Modell zur Beschreibung der elektro-

nischen und Gitter-Freiheitsgrade in den allen Kupraten gemeinsamen CuO2-Ebenen

darstellt. Im Falle eines statischen Gitters, in dem alle Ionen ihre Gleichgewichtspo-

sitionen einnehmen, ergibt sich das t-J-Modell aus dem umfassenderen Dreibandmo-

dell, indem Zustände mit hoher Energie im Rahmen einer Störungstheorie für ent-

artete Zustände herausprojiziert werden. Gitterschwingungen werden durch ihre Mo-

dulation der Parameter im Dreibandmodell, d.h. der lokalen Energien von Cu-d- und

O-p-Orbitalen und der Hüpfamplitude zwischen diesen, miteinbezogen. Durch Ver-

allgemeinerung der zuvor benutzten Methode auf ein Gitter mit schwingenden Ionen

erhalten wir ein effektives Modell, welches Elektron-Phonon-Wechselwirkung beinhal-

tet. Die Phononen koppeln im t-J-Modell sowohl an die effektiven lokalen Energien als

auch an die effektiven Hüpfterme. Da physikalische Argumente verwendet werden kön-

nen, um die Modulation der Parameter im Dreibandmodell abzuschätzen, führt dies

zu realistischen Koeffizienten für die ortsdiagonale und die ortsnebendiagonale Kopp-

lung im effektiven Modell, und es müssen keine Ad-hoc-Annahmen darüber gemacht

werden, welcher Kopplungsmechanismus dominiert. Der große Energiegewinn der von

dotierten Löchern gebildeten Zhang-Rice-Singletts gibt für ein statisches Gitter nur

eine uninteressante Energieverschiebung. Aber bei Modulation durch Phononen kann

er eine große Kopplungskonstante für die lokale Elektron-Phonon-Wechselwirkung

bewirken.
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Auf der Basis dieses effektiven Modells wird im zweiten Kapitel diskutiert, wie

die Elektron-Phonon-Kopplung die Schwingungsmoden in ihren Eigenschaften beein-

flusst. Wir konzentrieren uns auf die Sauerstoff-Halbatmungsmode, die im Experiment

eine anomal starke Erweichung bei Dotierung zeigt. Die Berechnungen werden mittels

exakter Diagonalisierung von kleinen Clustern durchgeführt, was zu unvoreingenom-

menen Ergebnissen führt, wenn man von Effekten absieht, die von der endlichen

Größe der Systeme herrühren. Es zeigt sich in Übereinstimmung mit den Experi-

menten, dass die Erweichung mit der Dotierung und für Phonon-Wellenvektoren, die

näher an der Zonengrenze liegen, zunimmt. Auch die schwächere Erweichung der

Atmungsmode bei nicht zu starker Dotierung wird korrekt beschrieben. Mittels der

Dyson-Gleichung wird die Phonon-Selbstenergie direkt untersucht. Dies erlaubt eine

verlässlichere Abschätzung der Linienverbreiterung aufgrund von Elektron-Phonon-

Kopplung, als wenn man von der Phonon-Spektralfunktion selbst ausgeht. Die er-

haltenen Verbreiterungen stimmen qualitativ mit experimentell gefundenen Werten

überein.

Zum Vergleich betrachten wir auch die Hartree-Fock-Molekularfeldnäherung des

Dreibandmodells, die starke Korrelationen nicht explizit berücksichtigt. Obwohl die

Erweichung der Halbatmungsmode in einem kleinen Dotierungsbereich derjenigen äh-

nelt, die durch exakte Diagonalisierung des t-J-Modells mit Phononen erhalten wird,

zeigt sich eine viel schwächere Dotierungsabängigkeit, die nicht mit den experimentel-

len Befunden übereinstimmt. Dasselbe gilt für die Atmungsmode, die in der Hartree-

Fock-Näherung stärker als die Halbatmungsmode erweicht wird, sowie die beträchtlich

kleineren Schätzwerte für die Linienverbreiterungen. Dies führt zu der Schlussfolge-

rung, dass eine korrekte Beschreibung dieser Phonon-Anomalien eine ausdrückliche

Berücksichtigung der starken elektronischen Korrelationen erfordert. Einerseits füh-

ren Vielteilcheneffekte zu einem großen Energiegewinn der Zhang-Rice-Singletts, der

in die Elektron-Phonon-Kopplung eingeht. Andererseits verursachen sie bei niedrigen

Dotierungen eine starke Unterdrückung der Ladungsdichte-Suszeptibilität, die zu der

ausgeprägten Dotierungsabängigkeit führt. Das letzte Kapitel geht allgemeiner auf

diese Auswirkung von starken Korrelationen ein.

Darüber hinaus wird die Bedeutung verschiedener Kopplungsmechanismen ana-

lysiert. Es zeigt sich, dass die Modulation der effektiven lokalen Energien den größ-

ten Beitrag liefert, da der Energiegewinn der Zhang-Rice-Singletts die größte Ener-

gieskala in dem Problem darstellt. Sowohl t als auch J sind in dieser Hinsicht eher

klein, was zu einer viel schwächeren ortsnebendiagonalen Kopplung über Ladungs-

und Spinfreiheitsgrade führt. Die Elektron-Phonon-Wechselwirkung rührt im We-
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sentlichen von der Modulation der p-d-Hüpfamplitude her, aber aufgrund von In-

terferenzeffekten sollte auch die Kopplung berücksichtigt werden, die durch die ab-

geschirmte Coulomb-Wechselwirkung entsteht. In unserem Modell koppelt nur die

(Halb-)Atmungsmode stark. Eine grobe Abschätzung der nichtlinearen Beiträge zur

Elektron-Phonon-Kopplung zeigt, dass diese im Prinzip nicht von vornherein vernach-

lässigt werden sollten, wie dies üblicherweise geschieht. Ihr Beitrag ist nicht notwen-

digerweise sehr klein, aber es ist schwierig, ihn konsistent in das Modell aufzunehmen.

Das dritte Kapitel wendet sich dem polaronischen Verhalten zu, das in den Pho-

toemissionsspektren undotierter Kuprate beobachtet wird. Wieder dient das anfangs

abgeleitete Modell als Ausgangspunkt für die Beschreibung dieser Systeme. Aber we-

gen viel schwächerer Abschirmung muss die Elektron-Phonon-Kopplung, die durch

die Modulation der lokalen Energien von Cu-d- und O-p-Orbitalen im Dreibandmo-

dell hervorgerufen wird, neu untersucht werden. Mittels eines etablierten Schalen-

modells zur Beschreibung der Schwingungsmoden in undotiertem La2CuO4 wird die

Modulation des elekrostatischen Potentials berechnet. Diese liefert einen beträchtli-

chen Beitrag zur Elektron-Phonon-Kopplung zusätzlich zur Kopplung der (Halb-)-

Atmungsmode über die Modulation der p-d-Hüpfamplitude. In diesem Zusammen-

hang spielen Moden mit sich senkrecht zu den CuO2-Ebenen bewegenden apikalen

Sauerstoffionen eine wichtige Rolle. Insgesamt zeigt sich, dass die Kopplung eindeu-

tig stark genug ist, um zur Bildung von Polaronen in den undotierten Kupraten zu

führen. Dies unterstützt die Interpretation der experimentellen Beobachtungen durch

die Elektron-Phonon-Wechselwirkung. Starke Korrelationen sind entscheidend, um

die kritische Kopplungsstärke für den Übergang in dieses Regime herabzusetzen.

Wir entwickeln eine theoretische Beschreibung von (inversen) Photoemissionspek-

tren, die auf einer adiabatischen Näherung basiert. Sie hilft zu verstehen, warum das

Phonon-Seitenband in undotierten Systemen eine Dispersion zeigt, die Vorhersagen

von rein elektronischen Modellen entspricht. Es zeigt sich, dass dies im Wesentlichen

auf das Fehlen von Elektron-Phonon-Wechselwirkung im Anfangszustand zurück-

zuführen ist. Unsere adiabatische Näherung erweist sich gleichzeitig als geeigneter

Ausgangspunkt für eine effiziente Rechenmethode. Gitterfreiheitsgrade müssen nicht

dynamisch miteinbezogen werden, vielmehr wird eine Monte-Carlo-Integration über

Phonon-Koordinaten durchgeführt, die elektronische Probleme in verzerrten Gittern

parametrisieren. Zusammen mit der Tatsache, dass auch die Temperaturabhängigkeit

leicht erhalten werden kann, führt dies zu einer leistungsstarken Methode. Sie wird

verwendet, um winkelaufgelöste Photoemissionsspektren von undotiertem La2CuO4

für die errechnete Kopplung zu berechnen, wobei alle 21 Schwingungsmoden berück-
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sichtigt werden. Starke Korrelationen werden explizit berücksichtigt, da das elektro-

nische Problem durch exakte Diagonalisierung gelöst wird. Die erhaltene Breite und

Bindungsenergie des Phonon-Seitenbands stimmen gut mit experimentellen Ergebnis-

sen überein. Die Temperaturabhängigkeit ist moderat. Die Breite wächst systematisch

mit zunehmender Bindungsenergie, was erneut im Rahmen unserer adiabatischen Nä-

herung verstanden werden kann.

Im letzten Kapitel wird untersucht, wie allgemein Auswirkungen der Elektron-

Phonon-Wechselwirkung durch das Vorhandensein starker elektronischer Korrelatio-

nen verändert werden können. Wir leiten Summenregeln für die Phonon-Selbstener-

gie und den Elektron-Phonon-Beitrag zur Elektron-Selbstenergie ab, sowohl für das

stark korrelierte t-J-Modell mit lokaler Kopplung an Phononen als auch für nicht

wechselwirkende Elektronen in einem ungefähr halbgefüllten Band. Bei der Phonon-

Selbstenergie findet sich bei niedriger Dotierung eine starke Unterdrückung, da dem

System nur wenige dotierte Ladungsträger zur Verfügung stehen, um auf Störungen

durch Gitterverzerrungen zu reagieren. Im Gegensatz dazu bleibt das Gesamtspek-

tralgewicht des von der Elektron-Phonon-Wechselwirkung herrührenden Anteils der

Elektron-Selbstenergie praktisch unverändert, wenn wir von nicht wechselwirkenden

zu wechselwirkenden Elektronen übergehen. Denn bereits ein einzelner dotierter La-

dungsträger kann effektiv durch Phononen gestreut werden. Die Kopplungskonstan-

ten, die von elektronischen und phononischen Eigenschaften stark korrelierter Systeme

abgeleitet werden, unterscheiden sich daher in ähnlicher Weise, wenn Theorien be-

nutzt werden, die für nicht wechselwirkende Elektronen entwickelt wurden. Wie durch

ein numerisches Beispiel bestätigt wird, können die scheinbaren Kopplungskonstan-

ten in stark korrelierten Systemen deshalb sehr davon abhängen, welche Eigenschaft

im Einzelnen betrachtet wird.

Diese Summenregeln werden auch benutzt, um bei einer Untersuchung von stark

korrelierten Systemen mit Phononen anhand von Diagrammen die Bedeutung von

Vertexkorrekturen zur Elektron-Phonon-Wechselwirkung zu erforschen. Wir betrach-

ten das Hubbard-Modell im Grenzfall großer lokaler Coulomb-Wechselwirkung, für

den es in engem Zusammenhang mit dem t-J-Modell steht. Es zeigt sich, dass Vertex-

korrekturen bei der Berechnung des Elektron-Phonon-Beitrags zur Elektron-Selbst-

energie unverzichtbar sind, um eine korrekte Summenregel im Bereich der Photoemis-

sionsenergien zu erhalten. Die Unterdrückung der Phonon-Selbstenergie bei niedrigen

Dotierungen ergibt sich jedoch auch bei Vernachlässigung der Vertexkorrekturen in

korrekter Weise. Allerdings werden sie benötigt, um zu einer richtigen Summenregel

im undotierten System zu gelangen, wenn über alle Frequenzen integriert wird. Die
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Ergebnisse, die erneut Besonderheiten der Elektron-Phonon-Wechselwirkung in stark

korrelierten Systemen aufzeigen, werden anhand eines einfachen Modells veranschau-

licht, das analytisch behandelt werden kann.

Die in dieser Arbeit vorgestellten Ergebnisse zeigen, dass die Elektron-Phonon-

Wechselwirkung in stark korrelierten Systemen wie den Kupraten zu Effekten führen

kann, die sich deutlich von denen unterscheiden, die man für nicht wechselwirkende

Elektronen erwarten würde. Falls das Zusammenspiel der verschiedenen Wechselwir-

kungen korrekt berücksichsichtigt wird, kann eine Vielzahl von Erscheinungen wie

die anomale Erweichung der Halbatmungsmode oder die polaronischen Merkmale

in den Photoemissionsspektren undotierter Systeme, die durch die Elektron-Phonon-

Kopplung in Hochtemperatur-Supraleitern hervorgerufen werden, erfolgreich im Rah-

men der hier entwickelten Modelle verstanden werden.





Appendix A

Exact diagonalization

A.1 Calculation of ground state

The exact diagonalization or Lanczos method can be used to calculate the ground

state and dynamical properties of a given Hamiltonian. A new basis is constructed

iteratively with respect to which the Hamiltonian becomes a tridiagonal matrix.

To obtain the ground state, one starts out with an almost arbitrary state |v0〉 in

the Hilbert space of the problem. The only requirement is that there is finite overlap

of this state with the ground state |E0〉. Therefore, the initial state |v0〉 is usually

chosen randomly. By applying the Hamiltonian on it and subtracting the projection

over |v0〉, we define a new state

|v1〉 = H|v0〉 −
〈v0|H|v0〉
〈v0|v0〉

|v0〉 (A.1)

which is orthogonal to the initial state. Similarly, we construct another state

|v2〉 = H|v1〉 −
〈v1|H|v1〉
〈v1|v1〉

|v1〉 −
〈v1|v1〉
〈v0|v〉

|v0〉 (A.2)

that is orthogonal to both |v0〉 and |v1〉. Generalizing, a new orthogonal basis is

defined recursively by

|vn+1〉 = H|vn〉 − an|v1〉 − b2n|vn−1〉, (A.3)

where

an =
〈vn|H|vn〉
〈vn|vn〉

, b2n =
〈vn|vn〉

〈vn−1|vn−1〉
, (A.4)
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n = 0, 1, 2, . . ., and b0 = 0, |v−1〉 = 0. The Hamiltonian matrix in this basis is

tridiagonal, its non-zero elements are given by

〈vn|H|vn〉 = an, 〈vn|H|vn−1〉 = 〈vn−1|H|vn〉 = bn. (A.5)

It is easily diagonalized using standard numerical routines. Because of numerical

rounding errors, the set {|vn〉}N
n=0 becomes linearly dependent already after a rela-

tively small number N of iterations. But the method still gives accurate results for

the ground state and its eigenenergy.

A.2 Calculation of spectral functions

The Lanczos method can also be used to calculate dynamical properties of a Hamil-

tonian, specifically the spectral functions at zero temperature of correlation functions

of the form

IÔ(ω) = − 1

π
Im 〈E0|Ô† 1

ω − ~−1(H − E0) + i0+
Ô|E0〉. (A.6)

It can be shown [83] that by choosing

|v0〉 =
Ô|E0〉

√

〈E0|Ô†Ô|E0〉
(A.7)

instead of a random state as the starting state in the iterative construction of the

basis {|vn〉} defined in Eq. (A.3) that leads to a tridiagonal Hamiltonian matrix, one

obtains the spectral function of Eq. (A.6) in the following form after diagonalizing

the tridiagonal Hamiltonian matrix:

IÔ(ω) = 〈E0|Ô†Ô|E0〉
∑

n

|c0n|2δ(ω − ~
−1(En − E0)). (A.8)

It consists of a sum of δ-functions whose position is determined by the eigenvalues

En and whose weight is proportional to the squared modulus of the first component

of the corresponding eigenvector, |c0n|2.
For example, the one-electron Green’s function G(z) = 〈〈c ; c†〉〉z has the spectral

function

A(ω) = Scc†(ω) = Ic(ω) + Ic(−ω). (A.9)

Here, c† creates an electron (with certain quantum numbers not shown here) and we

use the notation of App. C.
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A.3 Calculation of self-energies

As described in the previous section, the spectral function of an one-electron Green’s

function can be obtained using exact diagonalization as a sum of weighted δ-functions,

A(ω) =
∑

n

pnδ(ω − ωn). (A.10)

Both pn and ωn are real and pn > 0. The corresponding Green’s function

G(z) =
∑

n

pn

z − ωn

(A.11)

is a rational function with simple poles at ωn. One easily sees that G(z) has simple

zeros at ω̃m, each located between a pair of neighboring poles, and dG(z)/dz|ω̃m < 0.

G(z) can also be written in terms of the self-energy Σ(z),

G(z) =
a

z − ~−1ε− Σ(z)
, (A.12)

where a =
∑

n pn and ε = ~
∑

n pnωn/a if we assume that Σ(z) = b/z + O(z−2).

Therefore,

Σ(z) = z − ~
−1ε− a

G(z)
, (A.13)

and it follows that Σ(z) has simple poles at the zeros ofG(z) allowing for an expansion

into partial fractions,

Σ(z) =
∑

m

Rm

z − ω̃m
. (A.14)

The weights are given by the residues at the poles of Σ(z),

Rm = lim
z→ω̃m

(z − ω̃m)Σ(z) = lim
z→ω̃m

−a
(G(z) −G(ω̃m))/(z − ω̃m)

= −a
[
dG(z)

dz

∣
∣
∣
∣
ω̃m

]−1

. (A.15)

This leads to the final result

Σ(z) = −
∑

m

[
dG(z)

dz

∣
∣
∣
∣
ω̃m

]−1
a

z − ω̃m

. (A.16)

In case of a phonon Green’s function we have

D(z) =
∑

n

pn

(
1

z − ωn
− 1

z + ωn

)

(A.17)

=
2Ω

z2 − Ω2 − 2ΩΠ(z)
,
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where both pn and ωn are real and larger than zero. Ω =
∑

n pnωn is the bare phonon

frequency if the phonon self-energy Π(z) = c/z+O(z−2). Analogously to Eq. (A.13),

one has

Π(z) =
z2 − Ω2

2Ω
− 1

D(z)
. (A.18)

So,

Π(z) = −
∑

m

[
dD(z)

dz

∣
∣
∣
∣
ω̃m

]−1(
1

z − ω̃m
− 1

z + ω̃m

)

, (A.19)

where the real frequencies ω̃m > 0 correspond to the zeros of D(z) on the positive

real axis.



Appendix B

Adiabatic approximation revisited

In this appendix, we discuss in more detail the adiabatic approximation for (inverse)

photoemission spectra introduced in Chap. 3. We first present a slightly more refined

version. Then, we consider several basic examples that illustrate the virtues and lim-

itations of the method. Finally, we compare with a different approach for calculating

spectra which is based on a diagrammatic Monte Carlo method.

B.1 Improved version

An improvement over the approximation made in Sec. 3.3 can be achieved by also

including the kinetic energy of the phonons in the Hamiltonian appearing in the

resolvent in Eq. (3.19). Then, ψ|ENe
0 (Q)〉 must be expanded with respect to both

electronic and phononic basis functions in the adiabatic approximation. From this,

one obtains the following expression for the spectral function:

ANe,∓
kσ (ω)=

∑

m,n

δ(ω − ~
−1(εNe∓1

mn − εNe
00 )) × (B.1)

×
∣
∣
∣
∣

∫

dQ 〈ENe∓1
m (Q)|ψ|ENe

0 (Q)〉 φNe∓1
mn (Q)φNe

00 (Q)

∣
∣
∣
∣

2

.

This version requires the solution of Eq. (3.16) to obtain the phonon eigenfunctions

and eigenenergies. Compared to the result from Eqs. (3.23) and (3.24), it is therefore

much less suited for the development of an efficient calculational method. Neverthe-

less, as Eq. (B.1) leads to spectra with individual phonon satellites that are bound

from the low-energy side, it can be used to judge from a basic example like in Sec. B.3

the quality of the simpler version which gives only an unbound envelope function. It

also allows for a better discussion of the underlying physical mechanisms.

139
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We start the analysis of Eq. (B.1) by noting that each eigenstate of H in the

(Ne ∓ 1)-electron sector represents a possible final state. It contributes to the spec-

trum at its eigenenergy (shifted by the ground-state energy of the system with Ne

electrons). The intensity is proportional to the squared overlap of the final and the

initial state (the ground state of the system with Ne electrons plus an additional hole

or electron). Two conditions must be fulfilled for this overlap to be large.1

• As the initial phonon wavefunction φNe
00 (Q) is localized around the minimum

Qmin of V Ne
0 (Q) and has no nodes, the final phonon wavefunction φNe∓1

mn (Q) must

have a large and slowly varying amplitude in this region, too. This is the case

for final states with energies εNe∓1
mn ≈ V Ne∓1

m (Qmin). For smaller energies, the

region around Qmin is classically forbidden and the amplitude of the final pho-

non wavefunction becomes exponentially suppressed whereas for larger energies

the kinetic energy increases and the wavefunction oscillates faster. In both

cases, the integrated overlap of initial and final phonon wavefunction becomes

smaller again.

• The electronic matrix element 〈ENe∓1
m (Q)|ψ|ENe

0 (Q)〉 must be large around

Qmin. It is sufficient to consider its value only in this region as the initial

phonon wavefunction is small elsewhere.

Because the electrons have a much smaller mass than the nuclei, the electronic

states vary much more slowly as a function of Q than the phonon wavefunctions.

Using the mean value theorem, we can therefore approximate Eq. (B.1) by

ANe,∓
kσ (ω)≈

∑

m,n

δ(ω − ~
−1(εNe∓1

mn − εNe
00 )) × (B.2)

×
∣
∣〈ENe∓1

m (Qmin)|ψ|ENe
0 (Qmin)〉

∣
∣
2 ×

∣
∣
∣
∣

∫

dQ φNe∓1
mn (Q)φNe

00 (Q)

∣
∣
∣
∣

2

.

The last factor in Eq. (B.2) also appears in the discussion of the Franck-Condon

principle in molecular physics (cf. Ref. [115]) for radiative transitions from vibrational

levels of one electronic state to vibrational levels of another electronic state. It states

that the intensity of a transition depends not only on the electronic matrix element

at the equilibrium position of the nuclei in the initial state but also on the overlap

integral of the vibrational wavefunctions.

1In the following discussion, we assume a non-degenerate minimum of V Ne

0 (Q) for simplicity.

The arguments can be easily generalized to the case of (quasi-)degenerate minima.
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Altogether, this leads to the following picture: For a system without electron-

phonon interaction but with a given lattice distortion Qmin, the spectrum consists

of δ-functions at the energies ENe∓1
m (Qmin). If the electron-phonon interaction is

switched on, spectral features with large intensities appear at similar energies and

with similar relative weight but they are broadened by phonon sidebands. The dis-

persion and weight of the true quasi-particle, however, can be strongly altered by

the electron-phonon interaction. In general, the effective phonon potential V Ne∓1
0 (Q)

corresponding to the electronic ground state in the system with Ne ∓ 1 electrons has

minima at Q 6= Qmin. The ground-state phonon wavefunction φNe∓1
00 (Q) is localized

around these minima. Consequently, there is only little overlap with the phonon

wavefunction in the initial state which peaks around Qmin, and in the spectrum the

peak lowest in binding energy has only very small weight.

B.2 Core hole problem

The model of a single electronic level (core level) coupled to a phonon mode serves as

our most elementary example. Choosing the level energy as energy zero and neglecting

the phonon zero-point energy, it is described by the Hamiltonian

H = ~ωphb
†b + g(1 − n)(b+ b†). (B.3)

The phonons of energy ~ωph are created by b† and couple to the core hole with

the coupling strength g. If the level, whose occupancy is measured by n = c†c,

is filled with an electron, there is no electron-phonon interaction. We choose this

state, |Φ〉 = c†|0〉, as the initial state for photoemission. The possible final states are

described by

Hfinal = ~ωphb
†b+ g(b+ b†). (B.4)

Equation B.4 can be diagonalized by the unitary Lang-Firsov transformation [116]

which in our case corresponds to introducing shifted phonon operators

b̃ = b +
g

~ωph
. (B.5)

The transformed Hamiltonian for the final states

H̃final = ~ωphb̃
†b̃− g2

~ωph

(B.6)

has the eigenstates

|m̃〉 =
1√
m!

(b̃†)m|0̃〉 (B.7)
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with eigenenergies

Em = m~ωph −
g2

~ωph
. (B.8)

One therefore obtains the following photoemission spectrum:

A−(ω) =

∞∑

m=0

|〈m̃|c|Φ〉|2δ(ω −mωph + g2/(~2ωph)). (B.9)

Using

〈m̃|c|Φ〉 =
1√
m!

〈0̃|(b + g/(~ωph))
m|0〉 =

1√
m!

(
g

~ωph

)m

〈0̃|0〉, (B.10)

we find

A−(ω) = |〈0̃|0〉|2
∞∑

m=0

1

m!

(
g

~ωph

)2m

δ(ω −mωph + g2/(~2ωph))

= e−(g/(~ωph))2
∞∑

m=0

1

m!

(
g

~ωph

)2m

δ(ω −mωph + g2/(~2ωph)). (B.11)

The last line follows from the normalization of A−(ω). The spectrum consists of a

quasi-particle peak at ω = −g2/(~2ωph) with phonon side peaks and weights given

by a Poisson distribution which in the limit of large (g/(~ωph))
2 becomes Gaussian

with a width proportional to g:

A−(ω) → ~

g
√

2π
e−~2ω2/(2g2) for (g/(~ωph))

2 → ∞. (B.12)

Furthermore, one easily finds that the first moment of A−(ω) is always zero.

We now compare the exact result to the adiabatic approximation introduced in

Eqs. (3.20)-(3.24) where we neglect the kinetic energy of the phonons in the Hamil-

tonian appearing in the denominator of the photoemission Green’s function:

H ≈ −ωph

2
+

1

2
ω2

phQ
2 + g

√

2ωph

~
Q(1 − n) ≡ H(Q). (B.13)

The energy of the initial state that serves as reference energy in this denominator is

replaced by the effective potential for the initial state which equals the free phonon

potential ω2
phQ

2/2. We arrive at the following approximation for the spectral function:

Ã−(ω) =

√
ωph

~π

∫

dQ e−ωphQ2/~ δ(ω − ~
−3/2g

√

2ωphQ) =
~

g
√

2π
e−~

2ω2/(2g2). (B.14)
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Figure B.1: Photoemission spectra A−(ω) for removing the electron of an iso-

lated level coupled to phonons for small (left panel) and large coupling (right

panel). The solid lines give the exact result (including a Lorentzian broadening with

FWHM=0.1~ωph) and the dashed lines show the (rescaled) adiabatic approximation.

This is the Gaussian envelope function which the exact result converges to in the

strong coupling limit, see Eq. (B.12). Like the exact spectrum, it has a vanishing

first spectral moment.

In Fig. B.1, we compare the exact result, Eq. (B.11), with the adiabatic approx-

imation from Eq. (B.14) for two different coupling strengths. For weak electron-

phonon coupling like in the left panel with (g/(~ωph))
2 = 0.05, one obtains a leading

low-energy (quasi-particle) peak with a few phonon satellites in the exact spectrum.

In case of strong coupling, the weight of the quasi-particle peak becomes very small

and the spectrum is dominated by the satellites (cf. right panel of Fig. B.1 where

(g/(~ωph))
2 = 4). The spectra calculated within the adiabatic approximation corre-

spond to approximate envelope functions and do not resolve the fine structure of the

individual phonon satellites. In contrast to the exact spectra, there is no lower bound

to the spectral weight in our approximation. Therefore, spectral weight can be found

also below the exact quasi-particle energy. The discrepancies becomes less important

for larger couplings when the quasi-particle weight diminishes and the approximate

spectrum converges to the exact envelope function as expected from Eq. (B.12).

B.3 Holstein model

As a second example, we consider the two-site Holstein model [117] for which the

electronic part of the Hamiltonian just contains hopping between the two sites with
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amplitude t:

Hel = −t
∑

σ

(c†1σc2σ + c†2σc1σ), (B.15)

where c†iσ creates an electron with spin σ on site i. The electrons are coupled to local

phonons with frequency ωph as described by

Hep = g
∑

iσ

√

2ωph

~
Qic

†
iσciσ (B.16)

with the generalized phonon coordinates Qi and the coupling constant g. Switching

to symmetric (+) and antisymmetric (-) combinations of the electron and phonon

operators,

c±σ =
1√
2
(c1σ ± c2σ), (B.17)

Q± =
1√
2
(Q1 ±Q2), (B.18)

we have

Hel =
∑

σ

(−tc†+σc+σ + tc†−σc−σ) (B.19)

and

Hep = g

√
ωph

~

∑

σ

[Q+(c†+σc+σ + c†−σc−σ) +Q−(c†+σc−σ + c†−σc+σ)]. (B.20)

The symmetric phonon mode couples to the total number of electrons, Ne. We can

therefore write H = H1 +H2, where

H1 = Ne
g

2

√

2ωph

~
Q+ +

1

2

(
Π2

+ + ω2
phQ

2
+

)
(B.21)

can be solved exactly analogously to the core hole problem in the previous section.

The spectral function A
Ne,∓(2)
kσ (ω) (here k ∈ {+,−}) that one obtains for H2 needs to

be convoluted simply by the known result for H1,

ANe,∓(1)(ω) = e−α

∞∑

l=0

αl

l!
δ(ω + (1 ∓ 2Ne)αωph − lωph), (B.22)

where α = (g/(~ωph))
2/2, in order to get ANe,∓

kσ (ω) as defined in Eq. (B.1). We

will therefore restrict our discussion to A
Ne,∓(2)
kσ (ω) in the following. We calculate the

inverse photoemission spectrum for creating an electron in both the empty (undoped)
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Figure B.2: Effective potentials V 1
m(Q−)/t in the two-site Holstein model with one

electron as functions of the phonon coordinate Q−
√
t/~ for ~ωph/t = 0.1, g/t =

0.6. Some selected phonon wavefunctions (no scale shown for amplitude, offset by

eigenenergies) are also shown, see text.

system and the system that already contains an electron of opposite spin. There is

then only one phonon coordinate Q− in H2 which we treat as a parameter in solving

the part of H2 originating from Hel +Hep. In the one-electron sector, one obtains the

two eigenenergies

ENe=1
0/1 = ∓

√

t2 + ~−1ωphg2Q2
− (B.23)

whereas there are four eigenenergies in case of two electrons with opposite spin:

ENe=2
0/3 = ∓2

√

t2 + ~−1ωphg2Q2
−, ENe=2

1/2 = 0. (B.24)

For numerical calculations, we choose ~ωph/t = 0.1 and g/t = 0.6. As ~ωph/t is

small, our adiabatic approximation is justified. The effective potentials one obtains

by adding the harmonic potential ω2
phQ

2
−/2 to the eigenenergies in Eq. (B.23) are

shown in Fig. B.2.

We first consider the approximation when the kinetic energy of the phonons is

neglected in the resolvent of the Hamiltonian and for which the spectral function is

given by Eq. (3.23). The neglected terms are proportional to ωph so we cannot expect

to resolve fine structure in the spectra on that order. But the approximation still

describes the overall broadening correctly on a larger scale proportional to
√
ωph [98].

The phonon wavefunction in the initial state is known exactly for the undoped system,
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see Eq. (3.18). Here

φ
N0

e =0
00 (Q−) =

(ωph

~π

)1/4

exp

(−ωphQ
2
−

2~

)

. (B.25)

In the system with one electron, the lowest effective potential V Ne=1
0 (Q−) has two

minima at Qa/b around which we can treat it as a harmonic potential with the renor-

malized phonon frequency ω =
√

(∂2V Ne=1
0 /∂Q2

−)|Qa/b
. This leads to the approxima-

tion

φNe=1
00 (Q−) ≈ 1√

2

∑

l=a,b

(
ω

~π

)1/4

exp

(

−ω(Q− −Ql)
2

2~

)

. (B.26)

Following Ref. [98], we can expand the argument of the δ-functions in Eq. (3.23) up

to first order in Q− around Qa/b. If we further assume that the electronic matrix

elements vary only weakly around Qa/b, the integration over Q− in Eq. (3.23) can be

eliminated and we obtain the following result:

Ã
Ne=1,+(2)
kσ (ω)≈

∑

m

|〈E2
m|c†kσ|E1

0〉|2
∣
∣
∣
Qa/b

√

~ω

πb2m
e
− ω

~b2m
(~ω−am)2

, (B.27)

where am = V 2
m|Qa/b

− V 1
0 |Qa/b

and bm = (∂V 2
m/∂Q−)|Qa/b

. This approximation is

shown in Fig. B.3 for k = 0 together with the spectrum obtained from exact diago-

nalization. The agreement with the Gaussian line shape predicted by Eq. (B.27) is

very good. Only to resolve the fine structure on a scale given by the phonon frequency

ωph, one has to go beyond the present approximation. As indicated schematically by

the arrows in Fig. B.4, the spectrum can indeed be understood as the spectrum

of electrons in a system without electron-phonon interaction but a given distortion

Qa/b. The broadening is due to the finite width of the phonon wavefunction in the

initial state. There is no structure in the spectrum arising from the highest effective

potential as the corresponding electronic matrix element is negligibly small.

In the case of inverse photoemission from the empty system, the phonon wave-

function in the initial state is localized around Q− = 0. The slope of both effec-

tive potentials V Ne=1
m=0,1(Q−) vanishes at this point. An approximation analogous to

Eq. (B.27) would therefore result in Ã
N0

e =0,+(2)
kσ (ω) = ρ

N0
e =0,+

kσ (ω,Q− = 0), i.e., the un-

broadened spectrum of the undistorted system without electron-phonon interaction.

If we evaluate Eq. (3.23) without any further approximation, we obtain the spectra

shown in Fig. B.5. The comparison with results from exact diagonalization shows

that this approximation cannot reproduce the fine structure and for k = + does not
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Figure B.3: Spectrum for adding an electron to a two-site Holstein model with

one electron of opposite spin (~ωph/t = 0.1, g/t = 0.6). The approximation

Ã
Ne=1,+(2)
(k=0)σ (ω)t/~ (Eq. (B.27)) is shown as dashed line together with the spectrum

obtained from exact diagonalization (full line). Both spectra have been convoluted

with a Lorentzian (FWHM=0.1 t).

give spectral weight above ~ω/t = −1 (except from broadening), but it still gives the

right order of magnitude for the broadening of the peaks.

In order to understand also details of the spectra, we have to use the improved

version of our adiabatic approximation from Eq. (B.1). One has to solve Eq. (3.16)

for each effective potential to obtain the phonon eigenfunctions needed in Eq. (B.1).

The resulting inverse photoemission spectra for creating an electron with momentum

k = + or k = − in the empty system are shown in Fig. B.6. They are practically

indistinguishable from those we obtained using exact diagonalization. This shows

that the adiabatic approximation works very well for the chosen parameters. For

the electronic matrix element in Eq. (B.1), one needs the Q−-dependent electronic

eigenstates corresponding to the eigenenergies in Eq. (B.23):

|ENe=1
0/1 〉=N0/1

((

t±
√

t2 + ~−1ωphg2Q2
π

)

|+〉−
√

~−1ωphgQπ|−〉
)

(B.28)

with

Nm =
(sign(Qπ))m

√
(
t+ (−1)m

√
t2 + ~−1ωphg2Q2

π

)2
+ ~−1ωphg2Q2

π

, (B.29)

where |+〉 and |−〉 denote the k = + and k = − one-electron states and m = 0, 1.
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Figure B.4: Left panel: Effective potentials (V 2
m(Q−)−V 1

0 (Q−)+V 1
0 (Q−)|Qa/b

)/t for

the two-site Holstein model with two electrons with opposite spin as functions of the

phonon coordinate Q−
√
t/~ for ~ωph/t = 0.1, g/t = 0.6 and phonon wavefunction

φNe=1
00 (dashed line, no scale shown for amplitude). Right panel: A

Ne=1,+(2)
(k=0)σ (ω)t/~

rotated by 90◦.

Let us consider e.g. the case where we create an electron with momentum k = +

in the empty system. The initial electronic state is then |+〉. The initial state’s

phonon wavefunction φ
N0

e =0

00 (dashed line in Fig. B.2) is a bell-shaped Gaussian cen-

tered around Q− = 0. This effectively limits the integration over Q− in Eq. (B.1) to

a small region around the origin. Here, |ENe=1
0 〉 ≈ |+〉 and |ENe=1

1 〉 ≈ |−〉. There-

fore, the relevant electronic matrix element in this example is 〈ENe=1
0 |+〉. It has

even parity with respect to Q−. So, according to Eq. (B.1), final states with the

electronic configuration |ENe=1
0 〉 and a corresponding even-parity phonon wavefunc-

tion φNe=1
0n that strongly overlaps with φ

N0
e =0

00 give rise to large spectral intensity. We

show in Fig. B.2 the even-parity phonon wavefunction φNe=1
0n′ with the largest over-

lap offset along the ordinate by its eigenenergy. It has a sizable and slowly varying

amplitude around Q− = 0 because its eigenenergy is close to the local value of the

effective potential which at Q− = 0 equals the (k = +)-eigenenergy −t of the sys-

tem without electron-phonon interaction. Therefore, the peak with largest weight

appears around this energy in the spectrum (solid line in Fig. B.6). The side peaks

arise from final states with even-parity phonon wavefunctions with lower or higher

eigenenergies whose overlap with φ
N0

e =0
00 decreases. Figure B.2 also shows the even
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Figure B.5: Spectra for adding an electron to an empty two-site Holstein model

(~ωph/t = 0.1, g/t = 0.6). The approximation Ã
N0

e =0,+(2)
kσ (ω)t/~ (Eq. (3.23), thin

lines) and results from exact diagonalization (bold lines) are shown for both k = +

(solid lines) and k = − (dashed lines). All spectra include a Lorentzian broadening

(FWHM=0.06 t).

parity ground-state phonon wavefunction φNe=1
00 in the double-well potential. Clearly,

its overlap with φ
N0

e =0
00 is very small leading to a strongly suppressed quasi-particle

peak in A
N0

e =0,+(2)
(k=+)σ .

If, on the other hand, an electron with momentum k = − is created in the

empty state, one finds using similar arguments as before that final states leading

to a large spectral intensity must have the electronic configuration |ENe=1
1 〉. Their

phonon wavefunction φNe=1
1n must strongly overlap with φ

N0
e =0

00 and be of even-parity.

In this case, the lowest-energy phonon wavefunction φNe=1
10 in the upper effective

potential (shown in Fig. B.2) has the largest overlap because its eigenenergy is closest

to ENe=1
1 (Q− = 0) = +t. Therefore, A

N0
e =0,+(2)

k=+,σ (ω) (dashed line in Fig. B.6) shows a

prominent peak at ~ω ≈ +t.

As 〈ENe=1
1 |+〉 (〈ENe=1

0 |−〉) only vanishes completely at Q− = 0, the spectrum

for k = + (k = −) also shows weak structures around ~ω = +t (~ω = −t) where

the coupling is now to phonon wavefunctions of odd parity. The density of coupling

phonon states is different around ~ω = −t and ~ω = +t. For example, the fact that

the upper effective potential has a minimum around Q− = 0 results in an asymmetric

shape of A
N0

e ,+(2)
kσ (ω) around ~ω = +t as no phonon eigenstates in this effective



150 B. Adiabatic approximation revisited

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

h̄ ω/t

Figure B.6: Spectra A
N0

e =0,+(2)
kσ (ω)t/~ for adding an electron to an empty two-site

Holstein model (~ωph/t = 0.1, g/t = 0.6) as given by Eq. (B.1). The spectra for both

k = + (solid line) and k = − (dashed line) are shown with a Lorentzian broadening

(FWHM=0.01 t). Observe the logarithmic intensity scale.

potential can have eigenenergies below +t.

B.4 t-J model with phonons

As another example, we study the one-dimensional N -site Holstein-t-J model with

lattice constant a and periodic boundary conditions. This model also includes electron-

electron interactions. The electronic part of H is given by the usual t-J Hamiltonian

defined in Eq. (1.87). As in the Holstein model, we consider an interaction with

dispersionless phonons where the coupling is now to empty sites (holes) labeled by j:

Hep =
g√
N

∑

qj

√

2ωph

~
Qq(1 − nj)e

iqja. (B.30)

We use generalized phonon coordinates Qq which are labeled by the phonon wavevec-

tor q. The system with one electron per site corresponds to the undoped case where

the electron-phonon interaction vanishes. Again, the (q = 0)-phonon mode can be

treated separately, the only difference being that the coupling is now proportional to

the total number of empty sites Nh, not to the total number of electrons Ne.

For numerical calculations, we consider a 4-site system with J/t = 0.3, ~ωph/t =

0.1, and g/t = 0.8. The photoemission spectra for destroying an electron with mo-
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Figure B.7: Spectral functions A
N0

h=0,−
kσ (ω)t/~ for creating a hole in the undoped 4-

site Holstein-t-J model (J/t = 0.3, ~ωph/t = 0.1, g/t = 0.8). k = 0: solid line, k =

±π/(2a): dashed line, k = π/a: dotted line (Lorentzian broadening: FWHM=0.01t).

Arrows show positions and weights of corresponding peaks for g = 0.

mentum k and spin σ were obtained using exact diagonalization with up to 200

phonons per basis state for solving the problem without the (q = 0)-mode and sub-

sequent convolution with AN0
h=0,−(1)(ω) (Eq. (B.22) with Nh = 0 instead of Ne). The

results are displayed in Fig. B.7 together with arrows indicating the peaks in the

corresponding spectra for g = 0. Without electron-phonon interaction, there is only

one peak both for k = 0 (at −0.55) as well as for k = π/a (at 1.45). For k = ±π/(2a),
the spectrum has two peaks at −1.139 and 2.339 as a result of the electron-electron

interaction.

Again, the dispersion found in the system without electron-phonon interaction is

traced quite accurately by a broad peak in the case of strong electron-phonon cou-

pling. The spectrum for k = ±π/(2a) also illustrates our comments at the end of

Sec. 3.3.1 on the sum rule concerning the first spectral moment. Since the spec-

trum has two peaks for k = ±π/(2a), the sum rule cannot tell us how the peaks

are broadened. Many other spectra would also have been consistent with the sum

rule, e.g. spectra where the peaks are shifted. The arguments based on the adiabatic

approximation, however, show that both peaks should be broadened with their indi-

vidual center of gravity remaining roughly unchanged in agreement with the exact

calculations.
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Figure B.8: Photoemission spectra (k = (3, 1)π/(5a)) for the 10-site t-J model with

one interacting phonon mode (J/t = 0.4, ~ωph/t = 0.1, g(π/a,π/a)/t = 1.6): (a) from

the undoped system, (b) from the 10%-doped system. The corresponding spectra for

systems without electron-phonon interaction are shown by dashed lines with their

amplitude flipped for clarity. A Lorentzian broadening of FWHM=0.04 t has been

applied.

Next, we consider the t-J model in two dimensions on a tilted 10-site square

cluster with periodic boundary conditions. To simplify calculations, we assume that

the electron-phonon interaction is described by Eq. (B.30) but with a q-dependent

coupling constant gq. In the following, we choose g(π/a,π/a)/t = 1.6 and gq = 0

for all other q 6= (π/a, π/a) so that effectively there is only one phonon mode that

interacts with the electrons. The other parameters are J/t = 0.4, and ~ωph/t =

0.1. Figure B.8 shows the photoemission spectra for k = (3, 1)π/(5a) from both

the undoped (Fig. B.8(a)) and the 10%-doped system (Fig. B.8(b)). The electron-

phonon interaction has been switched on and off (solid line vs. dashed line with flipped

amplitude).

The spectra from the undoped system confirm again our conclusions from Sec. 3.3.1.

The electron-phonon interaction basically broadens the structures in the original spec-

trum. This includes the quasi-particle peak at low binding energies. In contrast, the

spectrum from the doped system changes quite differently when the electron-phonon

interaction is switched on. Although the spectrum again develops several broad fea-

tures, they cannot be related anymore in a simple way to the structures in the spec-

trum found without electron-phonon interaction. We have also varied k and found

that the dispersion of the broad features is different from the quasi-particle disper-

sion in the system without electron-phonon interaction. According to Eq. (3.23), the

spectra rather correspond to broadened versions of spectra one would obtain in a
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Figure B.9: Photoemission spectrum (k = (3, 1)π/(5a)) for the undoped Holstein-t-

J model on the 10-site tilted square cluster with periodic boundary conditions and

J/t = 0.4, ~ωph/t = 0.1, g/t =
√

0.05 following Ref. [118]. The full line is obtained

from exact diagonalization, the dotted line using the adiabatic approximation (104

samples). In both cases, a Gaussian broadening (FWHM=0.6~ωph) has been applied.

purely electronic but distorted system.

Finally, we consider photoemission from the undoped Holstein-t-J model on the

10-site tilted square cluster with periodic boundary conditions. The parameters

(k = (3, 1)π/(5a), J/t = 0.4, ~ωph/t = 0.1, g/t =
√

0.05) are chosen such that

we can compare with results in Fig. 1 of Ref. [118] where this problem was studied

using exact diagonalization. The corresponding spectrum is shown in Fig. B.9 to-

gether with our adiabatic approximation (Eqs. (3.23) and (3.24)). Also for this more

complex problem, the approximate spectrum is in good agreement with the exact

result. Except for the fine structure of individual phonon satellites, the distribution

of spectral weight is reproduced quite well.

B.5 Comparison with diagrammatic Monte Carlo

method

ARPES spectra for the undoped two-dimensional Holstein-t-J model have also been

calculated in Ref. [89] for a system in the thermodynamic limit using a diagrammatic

Monte Carlo (DMC) method. The standard spin-wave approximation is introduced
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Figure B.10: Ground-state energy of the Holstein-t-J model with one hole as function

of the coupling constant λ using the adiabatic approximation (solid line) and the DMC

method (dashed line, after Fig. 2 in Ref. [89]). The parameters used are given in the

main text.

and diagrams with a magnon propagator being crossed by magnon or phonon lines

are neglected. In this section, we compare a few of the thus obtained results with

corresponding calculations based on exact diagonalization of finite clusters and our

adiabatic approximation.

The dashed line in Fig. B.10 shows the ground-state energy of the Holstein-t-J

model (J/t = 0.3, ~ωph/t = 0.1) with one hole as a function of the dimensionless

coupling constant λ = 2g2/(8t~ωph) as obtained with the DMC method in Ref. [89].

The energy is measured with respect to the ground-state energy of the system with

one hole for t = 0 and λ = 0. One finds an approximately linear dependence on λ

for both small and large coupling with a change of slope around the critical coupling

λc ≈ 0.38 above which the polarons become self-trapped. The solid line in Fig. B.10

shows the corresponding result obtained within the adiabatic approximation using

the iterative method described in Sec. 3.3.3 on a 4 × 4 square cluster with periodic

boundary conditions. Comparing with the DMC result, we find that the adiabatic

approximation gives slightly lower ground-state energies. The approximately linear

behavior for small and large λ is reproduced with very similar slopes. Despite a

more washed-out transition, linear fits to the curve for small and large coupling still

cross at λ ≈ 0.4, i.e., also in the adiabatic approximation the crossover to self-

trapped polarons occurs around a critical coupling similar to that found with the
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Figure B.11: Comparison of the k = (π/a, 0) ARPES spectra from the undoped

Holstein-t-J model obtained using the adiabatic approximation (upper panel) and

DMC (lower panel, extracted from Fig. 3 in Ref. [89] where ~, a, and t have been set

to unity). See main text for parameters used.

DMC method. Furthermore, as detailed in Sec. 3.3.3 the ground-state energy of the

system with one hole also defines the position of the quasi-particle peak in ARPES

spectra from the undoped system needed to measure binding energies.

In Fig. B.11, we compare the k = (π/a, 0) ARPES spectra from the undoped

Holstein-t-J model obtained using the two methods. The chosen coupling λ = 0.46

(g/t = 0.43) is large enough to cause self-trapping of the polaronic quasi-particles.

The DMC result from Ref. [89] reproduced in the lower panel of Fig. B.11 shows

a broad phonon side band in the lower energy part whereas the quasi-particle peak

whose position is indicated by the arrow is strongly suppressed in weight. The upper

panel shows the corresponding spectrum obtained using our adiabatic approximation

on a 20-site tilted square cluster (448 samples, each broadened by a Gaussian with a

FWHM of 0.6~ωph). The two results agree quite well. We obtain similar widths of the

phonon side band (one finds a FWHM of 0.33 t in the adiabatic approximation and

0.29 t using the DMC method). In the adiabatic approximation, some spectral weight

is spread below the actual quasi-particle energy because there is no lower bound to
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the spectrum in this approximation (cf. Sec. 3.3.3).

Summarizing, we find that our method of calculating (binding) energies and

ARPES spectra in the adiabatic approximation using finite clusters gives results

which are in good agreement with those from the DMC method which makes no

adiabatic approximation and works in the thermodynamic limit.



Appendix C

Green’s function formalism

Following Ref. [111], we define double-time Green’s functions at zero temperature

assuming that the Hamiltonian does not depend explicitly on time (∂H/∂t = 0).

Retarded Green’s function:

Gret
AB(t− t′) ≡ 〈〈A(t);B(t′)〉〉ret = −iΘ(t− t′)〈0|[A(t), B(t′)]−ε|0〉. (C.1)

Advanced Green’s function:

Gadv
AB(t− t′) ≡ 〈〈A(t);B(t′)〉〉adv = iΘ(t′ − t)〈0|[A(t), B(t′)]−ε|0〉. (C.2)

Causal Green’s function:

Gc
AB(t− t′) ≡ 〈〈A(t);B(t′)〉〉c (C.3)

= −i (Θ(t− t′)〈0|A(t)B(t′)|0〉 + εΘ(t′ − t)〈0|B(t′)A(t)|0〉) .

Here, [A,B]ε = AB−εBA, and we use ε = −1 (+1) if A and B are fermionic (bosonic)

operators. The Heisenberg representation is used for the operators in the definitions

of the Green’s functions. The ground state of the system is denoted by |0〉.
The energy-dependent Green’s functions are defined using a Fourier transforma-

tion:

Gα
AB(ω) ≡ 〈〈A;B〉〉αω =

1

2π

∫ ∞

−∞
dω Gα

AB(t− t′) eiω(t−t′), (C.4)

where α ∈ {ret, adv, c}. All three Green’s functions have the same equation of motion,

ωGα
AB(ω) = 〈[A,B]−ε〉 + ~

−1〈〈[A,H]−;B〉〉αω (C.5)

= 〈[A,B]−ε〉 − ~
−1〈〈A; [B,H]−〉〉αω,
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but different boundary conditions must be met by the individual time-dependent

Green’s functions which reflect themselves in different analytical behavior of Gα
AB(ω)

in the complex ω plane.

Defining the spectral density

SAB(t, t′) ≡ 1

2π
〈[A(t), B(t′)]−ε〉, (C.6)

both the retarded and the advanced Green’s function can be written in terms of its

Fourier transform:

G
ret/adv
AB (ω) =

∫

dω′ SAB(ω′)

ω − ω′ ± i0+
(C.7)

=
∑

m

( 〈0|A|m〉〈m|B|0〉
ω − ~−1(Em − E0) ± i0+

− ε
〈0|B|m〉〈m|A|0〉

ω + ~−1(Em − E0) ± i0+

)

.

In the second line, an explicit expression is given using a complete set of eigenstates

|m〉 of the Hamiltonian with eigenenergies Em. E0 is the ground-state energy. The

corresponding expression for the causal Green’s function is

Gc
AB(ω) =

∑

m

( 〈0|A|m〉〈m|B|0〉
ω − ~−1(Em − E0) + i0+

− ε
〈0|B|m〉〈m|A|0〉

ω + ~−1(Em − E0) − i0+

)

. (C.8)

The retarded (advanced) Green’s function can be analytically continued into the

upper (lower) half-plane of complex energies. We can view them as two branches of

a Green’s function in the complex z plane which has a cut along the real axis:

GAB(z) ≡ 〈〈A;B〉〉z =

∫

dω
SAB(ω)

z − ω
=

{

Gret
AB(z) if Im z > 0,

Gadv
AB(z) if Im z < 0.

(C.9)

Finally, it follows from Eq. (C.7) that

SAB(ω) = ∓ 1

π
Im G

ret/adv
AB (ω) (C.10)

=
∑

m

(
〈0|A|m〉〈m|B|0〉δ(ω−~

−1(Em−E0))

−ε〈0|B|m〉〈m|A|0〉δ(ω+~
−1(Em−E0))

)
.



Appendix D

Vertex function in the two-site

Hubbard model with phonons

In order to derive the vertex function in the two-site Hubbard model with phonons

(Eqs. (4.62) and (4.63)) according to Eq. (4.65), we first calculate the one-electron

Green’s function

G(iωn,±) = −Z−1

∫
~β

0

dτ eiωnτ
∑

m

e−βEm〈m|c±σ(τ)c†±σ|m〉 (D.1)

in the half-filled system, i.e., the chemical potential is set to zero for our electron-hole

symmetric model. Z=
∑

m e
−βEm is the partition function, c±σ(τ)=eHHτ/~c±σe

−HHτ/~,

and we sum over all eigenstates |m〉 of HH which are listed in Tab. D.1 together with

their eigenenergies Em and the required matrix elements. We assume UH to be large

and neglect contributions to the eigenstates of order tH/UH. Also the eigenenergies

are evaluated in the limit of large UH. We are interested in the limit of zero temper-

ature. For β → ∞, Z → exp(−βE2a) and only the matrix elements from |2a〉 and

|1+;−σ〉 contribute:

G(iωn,±) → 1

2

[
~

~iωn − UH/2 ± t− 4t2H/UH

+
~

~iωn + UH/2 ± t+ 4t2H/UH

]

. (D.2)

Next, we calculate the anomalous one-electron Green’s function GA defined in

Eq. (4.64). For our purposes, it is sufficient to calculate only the leading linear

response of GA to H ′
ep:

GA(iωn,+; iνm) =

∫
~β

0

dτ ei(ωn+νm)

∫
~β

0

dτ ′ e−iνmτ ′
∑

m

〈m|TτH
′
ep(τ

′)c−σ(τ)c†+σ|m〉,

(D.3)
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eigenstate |m〉 eigenenergy Em 〈m|c+σ(τ)c
†
+σ|m〉

|0〉 E0 = 0 exp((E0−E1+)τ)

|1+; σ′〉 = c†+σ′ |0〉 E1+ = −UH/2+tH
δσ,−σ′ [exp((E1+−E2a)τ)

+exp((E1+−E2f )τ)]/2

|1−; σ〉 = c†−σ|0〉 E1− = −UH/2−tH exp((E1− − E2c)τ)

|1−;−σ〉 = c†−(−σ)|0〉 E1− = −UH/2−tH
1
2
[exp((E1−−E2b)τ)

+exp((E1−−E2e)τ)]

|2a〉 ≈ 1√
2
(c†+↑c

†
+↓−c†−↑c

†
−↓)|0〉 E2a ≈ −UH−4t2H/UH

1
2
exp((E2a−E3+)τ)

|2b〉 = 1√
2
(c†+↑c

†
−↓−c†−↑c

†
+↓)|0〉 E2b = −UH

1
2
exp((E2b−E3−)τ)

|2c〉 = c†+↑c
†
−↑|0〉 E2c = −UH δσ,↓ exp((E2c − E3+)τ)

|2d〉 = c†+↓c
†
−↓|0〉 E2d = −UH δσ,↑ exp((E2d − E3−)τ)

|2e〉 = 1√
2
(c†+↑c

†
−↓+c

†
−↑c

†
+↓)|0〉 E2e = 0 1

2
exp((E2e−E3−)τ)

|2f〉 ≈ 1√
2
(c†+↑c

†
+↓+c

†
−↑c

†
−↓)|0〉 E2f ≈ 4t2H/UH

1
2
exp((E2f−E3+)τ)

|3+; σ′〉 = c†+σ′c
†
−↑c

†
−↓|0〉 E3+ = −UH/2−tH δσ,−σ′ exp((E3+−E4)τ)

|3−; σ′〉 = c†−σ′c
†
+↑c

†
+↓|0〉 E3− = −UH/2+tH 0

|4〉 = c†+↑c
†
+↓c

†
−↑c

†
−↓|0〉 E4 = 0 0

Table D.1: Eigenstates and eigenenergies of the two-site Hubbard model together

with the matrix elements needed for the calculation of the one-electron Green’s func-

tion G(iωn,+) in the limit of large UH.

where

〈m|TτH
′
ep(τ

′)c−σ(τ)c†+σ|m〉 = gu
∑

s=±

∑

σ′

〈m|Tτc
†
(−s)σ′(τ

′ + 0+)csσ′(τ
′)c−σ(τ)c†+σ|m〉.

(D.4)

Analogous to the one-electron Green’s function, one finds that in the limit β → ∞
only |2a〉 and |1+;−σ〉 give non-vanishing contributions. The respective matrix ele-

ments are

〈2a|TτH
′
ep(τ

′)c−σ(τ)c†+σ|2a〉 = Θ(τ − τ ′)
gu

2
exp(τ(E2a − E3−)) exp(τ ′(E3− − E3+)),

(D.5)

〈1+;−σ|TτH
′
ep(τ

′)c−σ(τ)c†+σ|1+;−σ〉 (D.6)

= Θ(τ ′ − τ)
gu

2
exp(τE1−)[exp(−τE2d) − exp(−τE2a)] exp(τ ′(E1+ − E1−)).
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Using these results in Eq. (D.3), we obtain

GA(iωn,±; iνm) → gu

2

[
~

(~iωn+UH/2±t+4t2H/UH)(~i(ωn+νm)+UH/2∓t+4t2H/UH)

+
~

(~iωn−UH/2±t−4t2H/UH)(~i(ωn+νm)−UH/2∓t−4t2H/UH)

]

. (D.7)

The vertex function is finally obtained by inserting the results in Eqs. (D.2) and

(D.7) into Eq. (4.65):

Γ(iωn,±; iνm) → ~
2iωni(ωn + νm) ± ~iνmtH + (UH/2)2 + 4t2H − t2H + (4t2H/UH)2

(~iωn ± tH)(~i(ωn + νm) ∓ tH)
.

(D.8)

This leads to the expression in Eq. (4.66) after analytic continuation (iωn → ω,

iνm → ω′) and the neglect of terms of higher order in tH/UH.
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