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Kurzfassung 

Die Materialkombination Metall/Keramik ist weithin bekannt und hat viele industrielle 

Anwendungen. Zum Beispiel wird Aluminiumoxid (α-Al2O3) in der elektronischen Industrie 

seit vielen Jahren als keramische Isolierung eingesetzt, während Niob, Aluminium und 

Kupfer als Elektrodenmaterialien verwendet werden, da sie eine gute Leitfähigkeit besitzen. 

Pulver und Fasern von Aluminiumoxid (α-Al2O3) werden auch zur Verstärkung. von 

Aluminiumlegierungen, eines der gebräuchlichsten Leichtmetalle für Bauteile in Fahrzeugen 

und anderen Transportsystemen angewendet. 

Metall/Keramik-Verbunde werden in der modernen Technologie immer wichtiger, weil sie 

die Eigenschaften der Metalle wie Duktilität, hohe elektrische und Wärmeleitfähigkeit und die 

Eigenschaften von Keramiken wie hohe Härte, Korrosionsbeständigkeit und Verschleißfestig-

keit kombinieren. Der Bruch an oder nahe solcher Grenzflächen begrenzt häufig die 

Zuverlässigkeit dieser Verbindungen. Die Kenntnis der Spannungs- und Deformationsfelder 

an der Risspitze an Metall/Keramik-Verbundgrenzflächen ist erforderlich, um ein grund-

legendes Verständnis dieses Bruchprozesses zu entwickeln. In vielen Situationen beginnen 

Risse an der Grenzfläche und verlaufen entlang der Grenzfläche, in Richtung der Grenzfläche 

oder von ihr weg. 

Diese Arbeit befasst sich mit einer Studie der Kristallplastizitätseffekte an der Grenzfläche 

von Metall/Keramik-Verbunden für das System Nb/Al2O3. Ein Verfahren wird beschrieben, 

um das Bruchverhalten des Systems Nb/Al2O3 realistisch zu simulieren. Die Kristall-

plastizitätstheorie [43] wurde verwendet, um den Einfluss der Kristallorientierung auf die 

plastische Deformation und schließlich auf die Bruchenergie des Systems Nb/Al2O3 zu 

berücksichtigen. Die Analyse der Rissausbreitung wird mit Hilfe eines Kohäsivzonenmodells 

[84, 85] durchgeführt. Das entscheidende Ziel dieser Untersuchung ist die theoretische 

Aufklärung des Zusammenhangs zwischen der lokalen Adhäsionskapazität und makrosko-

pischen Bruchenergie. 

Die Niobeinkristallmaterialien werden immer als kubisch-raumzentrierte Kristalle mit Hilfe 

der Kristallplastizitätstheorie behandelt. Die dreistufige Verfestigung der Niobeinkristalle 

während der Deformation wird mit dem Modell von Bassani und Wu modelliert. Für kubisch-

raumzentrierte Kristalle sind für das Modell von Bassani und Wu 20 Parameter zu bestimmen, 

d. h. 10 Parameter für jede Familie der Gleitsysteme. Ein Interface-Programm wurde 

entwickelt um die mit ABAQUS simulierte Spannungs-Dehnungs-Kurve zusammen mit den 

dazugehörigen kristallplastischen Verfestigungsparameter zu einem Optimierungsprogramm 
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zu übertragen. Das Optimierungsprogramm vergleicht die simulierte Spannungs-Dehnungs-

Kurve mit der experimentellen Kurve. Durch Anwendung der Methode der kleinsten 

Fehlerquadrate werden die neuen kristallplastischen Verfestigungsparameter bestimmt, die als 

Input für die FEM-Simulation dienen. Diese Prozedur wird wiederholt bis eine gute 

Übereinstimmung zwischen der experimentellen und der simulierten Spannungs-Dehnungs-

Kurve für beide Gleitsysteme erhalten wird. 

Für die Berechnung der Bruchenergie für zwei- und dreidimensionale Strukturen sind 

unterschiedliche Techniken, wie die globale Energiemethode, die virtuelle Rissschließungs- 

technik (VCCT) und die J-Integralmethode, verwendet worden.  

Weiterhin wurden Vier-Punkt-Biege-Versuche von Bikristallproben mit der Kristall-

plastizitätstheorie für den Niobeinkristall simuliert. Die Simulationsergebnisse der Vier-

Punkt-Biege-Versuche des Bikristalls zeigen im Falle einer stationären Rissspitze, dass es 

eine z.T. sehr starke Veränderung der Bruchenergie für unterschiedliche Kristall-

orientierungen gibt, und zwar mit denselben Trends wie sie auch in den Experimenten 

gemessen wurden.  

Dieses liegt an der plastischen Anisotropie der Niobeinkristalle, die nicht durch die 

kontinuumsmechanische Deformations-Plastizitätstheorie berücksichtigt wird, weil diese 

Theorie nur für isotrope Materialien verwendet werden kann. Der Unterschied in den 

Bruchenergien kann mit dem unterschiedlichen Beitrag der Dehnung jedes Gleitsystems bei 

der plastischen Gleitung für verschiedene Kristallorientierungen erklärt werden. Die 

Ergebnisse der Finite-Elemente-Analyse mit Hilfe der Kristallplastizitätstheorie zeigen für 

eine stationäre Rissspitze die gleiche Tendenz der berechneten und der experimentell 

bestimmten [20, 21] Bruchenergien.  

Der Effekt der thermischen Eigenspannungen, die in der Bikristallprobe während des 

Diffusionsschweißens entstehen, wenn ein Probe von der Schweißtemperatur 1400 °C auf 

Raumtemperatur abgekühlt wird, ist ebenfalls untersucht worden. Da die Fehlpassung in den 

Koeffizienten der thermischen Ausdehnung sehr klein ist, ergibt sich, dass die hierdurch 

verursachten thermischen Restspannungen ebenfalls klein sind. Folglich wurde kein 

bedeutender Effekt auf die Bruchenergien für das Nb/Al2O3-System gefunden. 

Der Grenzflächenbruch des Nb/Al2O3-Bikristall-Systems wird im Falle eines sich 

ausbreitenden Risses mit einem Kohäsivzonenmodell studiert. Dabei werden die 

Bruchenergien an das Experiment angepasst und es ergeben sich höhere Kohäsivfestigkeiten 

für höheren Bruchenergien (u.u.). Parameterstudien wurden durchgeführt, um die Auswirkung 

der unterschiedlichen Kohäsivgesetzparameter, wie die Bindungsstärke und die Adhä-
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sionsarbeit auf die Bruchenergie und den Rissfortschrittswiderstand zu untersuchen. Hierbei 

wurde gefunden, dass sich die maximale Kohäsivspannung auf die Bruchenergie nicht linear 

auswirkt und verglichen mit der Adhäsionsarbeit weitereichender ist. Weiterhin wurde 

gefunden, dass sich mit steigender Kohäsivspannung, auch die Bruchenergie wegen der 

höheren plastischen Energiedissipation erhöht. Zusätzlich hängt die Bruchenergie linear von 

der Adhäsionsarbeit für verschiedene Orientierungen des Niobeinkristalls in der Nb/Al2O3-

Bikristallprobe ab. Die Parameter des Kohäsivzonenmodells wurden für unterschiedliche 

Kombinationen für die maximale Kohäsivspannung und Adhäsionsarbeit bestimmt, indem ein 

skalenübergreifendes Verfahren angewendet wurde, wie die Abbildung zeigt:  

Meso-Skala
Plastic Strain

(SG) CP-FEM

Experimentelles makroskopisches
Verhalten

Nano-Skala

BCC

O
O

O O O

Nb
Nb Nb

Nb
Nb

Al Al Al Al

Kohäsivmodell

+

Alumini-
umoxid

Niobium

Plastische 
Dehnung

Makro-Skala 

WWadhadh WWadhadh, , σσcc

SkalenübergreifendesSkalenübergreifendes VerfahrenVerfahren

σc

δc

Wadh

AbstandAbstand

N
or

m
al

sp
an

nu
ng

N
or

m
al

sp
an

nu
ng

Ab-initio/MD

( ) ( )δσδσ fc= , P, Parameterarameter = = WWadhadh, , σσcc

σσc,ic,i

(i = 1,2,..)(i = 1,2,..)
JJcc

Vergleich Vergleich 
Konvergenz?Konvergenz?NeinNein

JJcc WW
ad

h
ad

h, , 
σσ

cc, , 
JJ cc

JaJa

Li
te

ra
tu

rw
er

te

Meso-Skala
Plastic Strain

(SG) CP-FEM

Experimentelles makroskopisches
Verhalten

Nano-Skala

BCC

O
O

O O O

Nb
Nb Nb

Nb
Nb

Al Al Al Al

Kohäsivmodell

+

Alumini-
umoxid

Niobium

Plastische 
Dehnung

Makro-Skala 

WWadhadh WWadhadh, , σσcc

SkalenübergreifendesSkalenübergreifendes VerfahrenVerfahren

σc

δc

Wadh

AbstandAbstand

σc

δc

Wadh

AbstandAbstand

N
or

m
al

sp
an

nu
ng

N
or

m
al

sp
an

nu
ng

Ab-initio/MD

( ) ( )δσδσ fc= , P, Parameterarameter = = WWadhadh, , σσcc

σσc,ic,i

(i = 1,2,..)(i = 1,2,..)
JJcc

Vergleich Vergleich 
Konvergenz?Konvergenz?NeinNein

JJcc WW
ad

h
ad

h, , 
σσ

cc, , 
JJ cc

JaJa

Li
te

ra
tu

rw
er

te

 
Abbildung: Skalenübergreifendes Verfahren für die Simulation des Metall/Keramik-Grenz-

flächenbruchs 

Dabei werden drei unterschiedliche Längenskalen verknüpft, wie in der Abbildung gezeigt 

und die Skalenüberbrückungsparameter sind die Adhäsionsarbeit (Wadh) und die maximale 

Kohäsivspannung (σc) für die Verbindung zwischen der atomistischen und der Mesoskala 

sowie die makroskopische Bruchenergie (Jc) zur Verknüpfung der Mesoskala mit der 

Makroskala. Für jeden Wert der Adhäsionsarbeit wird die maximale Kohäsivspannung (σc) 

variiert und dem Finite-Elemente-Modell für den Bikristall Niob/Aluminiumoxid als 

Eingangsparameter für die Adhäsionsarbeit (Wadh) übergeben. Hiermit wird dann der 

Grenzflächenbruch simuliert. Niobeinkristalle werden mittels der Kristallplastizitätstheorie in 
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der Nähe der Grenzfläche des Niob/Aluminiumoxid-Bikristalls modelliert. Das Resultat der 

Simulation, d.h. die Bruchenergie des Systems wird dann mit dem experimentellen 

Bruchenergiewert verglichen. Wenn Übereinstimmung erreicht wurde, dann wird der 

endgültige Satz der Grenzflächenbruchparameter (σc, Wadh) und die Bruchenergie (Jc) des 

Systems berechnet, andernfalls wird die Simulation mit einer neuen Annahme der 

Kohäsivspannung (σc) wiederholt. Dieses Verfahren wurde für jeden Wert der Adhä-

sionsarbeit (Wadh) wiederholt. 

Die Spannungen entlang der Rissfront vor der Rissspitze und die lokalen Belastungs-

Modenverhältnisse werden auch für die Fälle stationärer Rissspitzen und für wachsende Risse 

analysiert. Es wird gefunden, dass der Beitrag der Scherspannungen verglichen mit den 

Normalspannungen vor der Rissspitze vernachlässigt werden kann, weil die Fehlpassung in 

den elastischen Eigenschaften von Niob und Aluminiumoxid klein ist. Auf der Basis der 

Spannungen vor der Rissspitze wird das lokale Modenverhältnisse berechnet und gefunden, 

dass es im Bereich –7° bis -4° liegt. Dies zeigt, dass das lokales Modenverhältnis eine 

untergeordnete Rolle für Niob/Aluminiumoxid-Bikristallproben spielt. 

Der Einfluss der Dehnungsgradienten-Kristallplastizitätstheorie wird zusätzlich auch mit der 

mechanismenbasierten Kristallplastizitätstheorie studiert. Es wird gezeigt dass wegen der 

hohen Dehnungsgradienten in der Nähe der Rissspitze, d.h. im Bereich von 0,1 - 2 µm, die 

Spannungen für die mechanismenbasierte Dehnungsgradienten-Kristallplastizitätstheorie 

immer höher sind als für die herkömmliche Kristallplastizitätstheorie. Es wird auch gefunden, 

dass der Unterschied bezüglich der Spannungen von beiden Theorien nicht groß ist - dies liegt 

an dem niedrigen Verhältnis von Probengröße/Größe der plastischen Zone. Weiterhin wird 

auch gezeigt, dass beiden Theorien dieselbe Gesamtbruchenergie liefern. 

Im letzten Teil der Dissertation wird eine generalisierte Wechselbeziehung zwischen der 

Bruchenergie, der Kohäsivspannung, der Adhäsionsarbeit und der resultierenden Spannung an 

der Grenzfläche abgeleitet. Weiterhin wurden die Parameter für diese Wechselbeziehung für 

unterschiedliche Orientierungen der Niobeinkristalle in Niob/Aluminiumoxid-Bikristall-

proben bestimmt. 
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1.  Introduction 

The combination of metal and ceramic is well known and has many industrial applications. 

For instance, alumina has been used in electronic industry for many years as a ceramic 

insulator, whereas niobium, aluminium and copper are three of the best electrodes, having 

good conductivity. Powders and fibres of alumina are also used to reinforce aluminium alloys, 

one of the most common lightweight materials for components in automobile engines and 

other transportation systems. 

Metal/ceramic joints become more and more important in modern technology, because they 

combine the properties of metals like ductility, high electrical and thermal conductivity and 

the properties of ceramics like high hardness, corrosion resistance and capacity of resistance 

to wear. The fracture at or near such interfaces often limits the reliability of these joints. 

Knowledge of the stress and deformation fields at the crack tip at a metal/ceramic interface is 

needed in order to develop a fundamental understanding of this fracture process. In many 

situations, cracks initiate at interfaces and advance along, towards or away from the 

interfaces. 

The safety of such components inevitably requires a thorough understanding of their 

behaviour under load. Such studies to explain the metal/ceramic interfaces have not been 

performed in detail in the past. Therefore, an effort is put to devise a procedure which can 

simulate a realistic fracture behaviour of niobium/alumina bicrystal interfaces. Effects of 

crystal orientations of niobium single crystalline material on the fracture energy is studied 

using crystal plasticity theory. The ultimate goal of the investigation is to theoretically 

clearing-up the connection between local adhesion capacity and macroscopic fracture energy. 

All the work has been performed to study niobium/alumina bicrystal interfaces where 

niobium single crystalline material is bonded with alumina. The single crystalline niobium is 

always modelled using crystal plasticity theory in order to take into account crystal 

orientation effects which is different than polycrystalline material. The reason is that 

polycrystalline material is always modelled as an isotropic material while single crystalline 

materials always show plastic anisotropy if crystal orientation is changed. Therefore, plastic 

anisotropy of a single crystalline material can only be taken into account using crystal 

plasticity theory. 

The work is divided  into five parts. The introduction of metal/ceramic interfaces along with 

the literature review about the work that has been done until now in this field is presented in 

chapter 2. The goal of this work is also presented in chapter 2. 
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In chapter 3 the theoretical background of crystal plasticity theory is discussed. Furthermore, 

basics of interface fracture mechanics, different crack growth criteria and finite element 

method, are highlighted in chapter 3. 

In chapter 4 results of the finite element simulations of metal/ceramic interface fracture using 

crystal plasticity theory are presented and discussed. In section 4.1 an automatic identification 

procedure is presented to identify the hardening parameters of individual slip systems in 

single crystalline niobium. Hardening parameters are identified for three different orientations 

of single crystalline niobium.  

In section 4.2 four-point-bending test simulations are performed to study the crystal 

orientation effects of the metal on the crack initiation energies of a bicrystal niobium/alumina 

interface. The simulation results show that changing the crystal orientation has strong 

influence on crack initiation energies and the trends in crack initiation energy are the same as 

were found in the experiments. In section 4.3 the effect of thermal residual stresses is studied 

which are induced during the diffusion bonding of niobium/alumina interface. The results 

show the induced thermal residual stresses are very low due to the small mismatch in the 

thermal expansion coefficients of niobium and alumina. This shows that the effect of thermal 

residual stresses is almost negligible.  

Interface fracture analyses is performed using a cohesive modelling approach in section 4.4. 

The effect of different cohesive law parameters such as cohesive strength and work of 

adhesion is analyzed in detail. The results show that cohesive strength has stronger effects on 

macroscopic fracture energies, i.e., a nonlinear cubic relation while macroscopic energies are 

linearly dependent on the work of adhesion. Based on these results a correlation is derived for 

three different orientations of niobium/alumina bicrystal interfaces. Other factors such as 

stresses along the crack front ahead of the crack tip, local mode mixity and stress triaxiality at 

the crack tip are also studied and the results show that there is no significant effect of these 

parameters on fracture energies of bicrystalline niobium/alumina interfaces. The correlation 

derived in this work can bridge the gap between meso- and macroscopic length scales 

involved in the fracture of metal/ceramic interfaces. 

In chapter 5 the results obtained throughout this work are summarized and future outlook of 

the work is presented. 
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2.  Metal/Ceramic Interfaces 

Metal/ceramic interfaces play a vital role in modern materials technology, as evident by their 

use in a variety of applications (figure 1). For example, high-strength materials such as metal-

matrix composites consist of internal interfaces between ceramic (e.g. SiC or Al2O3) particles 

or filaments within a metallic host. Because of their high melting points, extreme hardness, 

and favourable corrosion resistance, ceramic coatings are often used to protect an underlying 

metallic component in environments subject to high temperatures and wear rates (i.e., cutting 

tools). In microelectronics packaging, interfaces between metallic (Cu and/or Al) inter-

connects and SiO2, carbide/nitride (TiCN) or oxide (Al2O3) ceramics  are commonplace, and 

impact the performance and longevity of solid state devices. 
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Ceramic
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Ceramic crown
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Ceramic

Metal

 
(a)       (b) 
Figure 1: Typical metal/ceramic systems; (a) metal/ceramic crown [1] and (b) pressure 

port of the crew returning vehicle X38, metal-inconel [2]. 

Despite their widespread use, a basic understanding of these interfaces has been elusive. For 

example, given a particular metal/ceramic interface, it is not yet possible to accurately predict 

such fundamental properties as its fracture energy. In most of the cases, improvements in 

interface properties proceed via a costly and time consuming trial-and-error process in which 

numerous materials are evaluated until suitable performance is obtained. 

Computational methods provide a wide range of possibilities to study the fracture behaviour 

of such metal/ceramic interfaces. Scientists and engineers have been studying different 

metal/ceramic interfaces for a long time, in order to create a better understanding of the 

factors that influence the fracture behaviour of the metal/ceramic interfaces, such as plasticity 

induced around the crack tip and interface strength. In what follows next, a brief review of 
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literature is presented describing the work that has already been conducted on different 

metal/ceramic systems, such as niobium/alumina and copper/alumina. 

2.1  Review of Literature 

2.1.1  Experimental Studies 

A fundamental quantity which influences the mechanical properties of an interface is the ideal 

work of adhesion, Wadh [3], which is defined as the energy required to break interfacial bonds 

and reversibly separate an interface into two free surfaces, neglecting diffusion, elastic and 

plastic deformation. When combined with the work of plastic deformation, Wplastic, and work 

of elastic deformation, Welastic, the work of adhesion determines the fracture energy of an 

interface, Γ separating material 1 and 2: 

adhplasticelastic WWW ++=Γ      (1) 

The work of adhesion is defined in terms of the surface and interfacial energies, which is 

given by: 

1221 γσσ −+= vvadhW      (2) 

Here σiv is the surface energy of material i=1, 2, γ12 is the interface energy. 

The most straightforward and common way to determine Wadh experimentally is through a 

sessile drop experiment [4 - 6]. In these works, interfacial energies for metal/Al2O3 systems 

were estimated. Metal used for these experiments were Ni, Cu, Al and Au on pure, 

polycrystalline alumina.  

The mechanical properties of single crystalline sapphire/Nb/sapphire joints were investigated 

in [7, 8] for different orientation relationships between metal and ceramic. The orientation of 

the single crystalline material was found to have significant effects on the fracture energies of 

the Nb/Al2O3 interface. 

The influence of chemical composition of a region at or close to an interface on the strength 

of a metal-ceramic interface was studied in [9]. It was found that the strength of a 

metal/ceramic interface depends upon the density of the metal-oxide bonds. Ni/Al2O3 and 

Cu/Al2O3 joints were studied in [10, 11, 12], it was found that higher strength results from 

adding reactive alloying elements. This addition of alloying elements raises the work of 

adhesion. 

Various groups [13 - 18] postulated that the fracture energy of interfaces depends not only on 

Wadh, but also on the amount of plasticity that occurs in the metal during the fracture process, 

on the interfacial flatness, and on their interrelation. Gibbesch et al. [19] found that the 
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fracture energy of Nb/sapphire and Cu/sapphire interfaces changes dramatically with the 

relative crystallographic orientation of the two constituents. Beltz [20, 21] and Korn et al. [22, 

23] observed that the amount of plasticity initiated in the metal during fracture of such 

interfaces is strongly influenced by both, the interface chemistry and the orientation of the slip 

system relative to the fracture plane. Kysar [24] studied the Cu/sapphire interface and the 

directional dependence of the crack for various orientations. Fuller et al. [51] and Chiao [52] 

observed dislocation emission from crack tips, and also proposed that brittleness or ductility 

of a crack tip can be characterized by its response to mechanical loading. Jameel et al. [53] 

studied the brittleness and ductility of cracks along the interface of copper bicrystals. The 

brittleness and ductility of the crack tip was explained in terms of angles that various slip 

systems make with the crack flanks. They found that these angles of slip planes plays a 

critical role in the process of deformation at the crack tip. 

2.1.2  Ab-Initio Studies 

Niobium and sapphire form stable interfaces which are of importance both practically and as 

model systems because there is almost no chemical reaction at the interface. Moreover, both 

niobium and sapphire single crystalline material possess similar coefficients of thermal 

expansion [22, 23], with a coefficient of thermal expansion of single crystalline niobium 

 and of single crystalline alumina  and 

.  

16103.7 −−= KxNbα 16
)0001( 108.5

32

−−= KxOAlα

16
)2011( 108.6

32

−−
− = KxOAlα

Different researchers have performed ab-initio calculations to understand the adhesion at a 

fundamental quantum-mechanical level [25 - 28]. Methfessel et al. [25] performed ab-initio 

calculations to compute the surface energies of 4d transition metals (Y, Zr, Nb, Mo, Tc, Ru, 

Rh, Pd, Ag). The surface energies of the fcc and bcc structures for (111), (100) and (110) 

surfaces were computed. They modelled niobium as both face-centered-cubic (fcc) and body-

centered-cubic (bcc), although niobium exists as bcc in nature. Results for the case of niobium 

are given below in Table I: 

Table  I: Surface energies of niobium 
 Crystal structure Surface Surface Energy [J/m2]

Niobium fcc (111) 2.20 

 fcc (110) 2.26 

 bcc (110) 2.36 

 bcc (100) 2.86 
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Finnis et al. [26] performed ab-initio calculations of metal/ceramic interfaces. These 

calculations not only predicted the electronic structure of the interface but also the ideal work 

of adhesion. The calculations were based on niobium(111)/α-alumina(0001) interfaces. The 

computed value of the adhesion energy of a niobium monolayer to the oxide surface amounts 

to 9.8 J/m2. Batirev et al. [27] also performed the ab-initio calculations. The work of adhesion 

for O- and Al-terminated niobium(111)/α-alumina(0001) interfaces was reported. The results 

are shown in Table II: 

Table  II: Wadh for niobium(111)/α-alumina(0001) interfaces [27] 
Interface type Location (/) of fracture plane Wadh [J/m2] 

Nbm/(Al2O3)O Nb/O-Al-Al… 10.8 

Nbb/(Al2O3)O …Nb-Nb-Nb/O-Al-Al-O… 9.8 

Nbb/(Al2O3)Al …Nb-Nb-Nb/Al-O-Al-Al… 2.8 

Nbb/Nbm-(Al2O3)O …Nb-Nb-Nb/Nb-O-Al-Al… 3.8 

 
Here (Al2O3)Al designates an Al-terminated α-alumina (0001) surface, and (Al2O3)O the O-

terminated α-alumina (0001) surface. The surface of niobium is denoted by Nbb, and a 

monolayer of niobium on (Al2O3)O is denoted by Nbm/(Al2O3)O. 

Smith et al. [28] examined the relative stability of both stoichiometric and non-stoichiometric 

niobium(111)/α-alumina(0001) interfaces. The work of adhesion was computed using two 

methods local-density approximation (LDA) [28] and generalized-gradient approximation 

(GGA) [28]. The work of adhesion computed was consistent with the results of Finnis [27]. 

Table III depicts the results achieved from their calculations: 

Table  III: Wadh for niobium(111)/α-alumina(0001) interfaces 
Interface type Ref. 28, LDA [J/m2] Ref. 28, GGA [J/m2] Ref. 25, [J/m2] 

Nb/(Al2O3)Al 3.3 2.6 2.8 

Nb/(Al2O3)O 12.3 10.6 9.8 

 

2.1.3  Continuum Studies 

Continuum mechanical studies have been done by many researchers to study and understand 

the fracture behaviour of metal/ceramic interfaces. Armstrong [48] and Kelly [49] proposed 

that distinction between the intrinsic brittleness and ductility can be considered as a 

competition between cleavage failure and plastic shear at the crack tip. 

McHugh [29,33] studied aluminium/rigid and copper/rigid material interfaces numerically. A 

rate dependent crystal plasticity theory was used [30 - 32]. A hybrid decohesion model based 
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on cohesive strength and work of adhesion, was proposed to describe the crack propagation 

along the interface. The model is discussed in section 3.3.3. 

Mason [48] and Rice [20] used the rate dependent crystal plasticity theory, whereas Asaro [30 

- 32] studied the crack tip behaviour of a copper/sapphire interface. Rice [20] interpreted the 

experimental results of Beltz [21] based on the dislocation nucleation. It was shown that 

brittle failure occurs when the energy required for dislocation nucleation is greater than the 

energy required for cleavage, while, the failure is ductile if the energy required for dislocation 

nucleation is less than the energy required for cleavage. 

Wang [43] performed a series of interfacial fracture experiments on specially oriented copper 

symmetric tilt bicrystals and reported a directional dependence of crack growth; that is, the 

interfacial crack oriented in one crystallographic direction propagates much more readily than 

the crack on the same interface but oriented to propagate in the opposite crystallographic 

direction. Wang [34] proposed a micromechanical model for interface cracking. Three 

different systems were studied, i.e., gold/sapphire, aluminium/sapphire and nickel/sapphire. 

The model proposed in this work, predicted the crack tip behaviour, i.e., ductility or 

brittleness of the crack tip, consistent with the experimental observations [21].  

In addition to the dislocation nucleation analyses, there have been other approaches to predict 

relative brittleness and ductility. Kysar [35 - 37] studied the directional dependence of crack 

growth along a copper/sapphire interface. Finite element analyses of copper/sapphire bicrystal 

speciement were performed using crystal plasticity theory. It was shown that relative 

ductility/brittleness can be explained on the basis of the normal opening stress.  

Nakatani [38] analyzed the small-scale yielding around a stationary crack along a ductile 

single crystal-rigid material interface. Both continuum slip and discrete dislocation plasticity 

theory were used with either two or three slip systems. Results obtained using both theories 

were found to be consistent. The discrete dislocation simulations provide a valuable window 

into the actual micromechanics of how near-tip plastic deformation develops, and what the 

actual underlying dislocation distribution is that corresponds to the macroscopic elastic-plastic 

deformation pattern. However limitations on how many dislocations can be handled and how 

many computer runs can be made, make it difficult to determine the near-tip stress and 

deformation fields that occur on a larger scale near such a crack tip. This information can be 

obtained from the continuum crystal plasticity solutions, which gave full-field results for the 

elastic-plastic continuum crystal plasticity solutions. It was also shown that both discrete 

dislocation simulations and continuum cystal plasticity theory accurately predict the crack tip 

opening behaviour, which is important in understanding the type of failure anticipated.  
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Kohnle [39, 40] analyzed polycrystalline niobium/sapphire interface. The influence of the 

plastic properties of the metal part on the interface strength and on the energy release rate is 

examined. It was shown that a low yield stress results in high plastic deformation in the metal 

part and consequently a higher energy is stored before the critical stress value for crack 

propagation is reached. As these studies were performed to study the polycrystalline 

niobium/sapphire interface, therefore, are not enough to explain the experiments performed on 

niobium/alumina bicrystal specimens where niobium single crystalline material is bonded 

with alumina. Also, these studies do not explain the effect of orientation of single crystalline 

niobium on fracture energies of bicrystal niobium/alumina specimens. 

2.2  What is still required? 

As discussed in the previous section, most of the work has been done to study the directional 

dependence of crack growth in metal/ceramic interfaces. Most of the attention is given to 

study the brittleness or ductility of the crack tip during crack propagation along 

copper/sapphire interfaces.  

The majority of researchers have studied fcc crystals and out of those researchers, only, Kysar 

[35, 36] has put some effort to find the hardening parameters involved in the crystal plasticity 

theory and compared it with experimental results of uniaxial tension tests for single 

crystalline copper. One reason is the availability of experimental results and another reason is 

to use the crystal plasticity theory for the case of bcc seems to be complicated because there 

are three families of slip systems present in bcc crystals as compared to fcc single crystals 

which have one family of slip systems.  

In reality, engineers are interested in validating the analysis results with experiments which 

has not been considered in the majority of these works as how these theories can be used to 

quantitatively validate the experimental results, such as, experimentally computed fracture 

energies, etc. 

Therefore, an effort is required to devise a procedure which can simulate the fracture 

behaviour of bcc metal/ceramic interfaces and quantitatively validate it with experiments. 

Also, theoretically clearing-up the connection between local adhesion capacity and 

macroscopic fracture energy  is still to be addressed.  

2.3  Goal of this work 

Korn et al. [22, 23] and Cannon [42] studied the influence of crystal orientation and 

impurities on the fracture behaviour of niobium/sapphire interfaces using notched bending 

specimen. They observed that the amount of plasticity initiated in the metal during fracture of 
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such interfaces is strongly influenced by both the inerface chemistry and the orientation of the 

slip systems relative to the fracture plane and direction. 

The fracture energy derived from the experiments for various interface orientations between 

niobium (Nb) and sapphire (Sp) at a bonding temperature of 1400 °C  are summarized in 

Table IV, respectively: 

Table  IV: Fracture energy and interface orientation of bicrystals consisting of sapphire and 
single crystalline niobium, bonded at 1400 °C 

Orientation relationship Symbol Jc [J/m2] 

Nb(100)[001]|Sp(11-20)[0001] Or I 115 

Nb(110)[001]|Sp(11-20)[0001] Or II 370 

Nb(111)[-1-12]|Sp(11-20)[0001] Or III 112 

 

They found that changing the orientation strongly influences the fracture energy. It was also 

found [22, 23] that specimens bonded at different temperatures give different fracture 

energies. It was found that specimens bonded at 1400 °C  had lower fracture energy than the 

specimens bonded at 1300 °C. The reason is, reducing the bonding temperature from 1400 °C  

to 1300 °C reduces the yield stress of niobium, at room temperature, from 74 MPa to 56 MPa 

[43, 44]. This change in yield stress of niobium is attributed to an increase in dissolved 

oxygen (0.055 % at 1300 °C and 0.099 % at 1400 °C) which results from dissolving alumina 

[43, 44]. The decrease in oxygen content reduces the yield stress of niobium [43, 44]. The 

reduction in yield stress of niobium by decreasing the bonding temperature from 1400 °C to 

1300 °C causes more macroscopic plasticity, in the bicrystal specimens leading to higher 

toughnesses when deformed at room temperature. 

The goal of this work is to study crystal plasticity effects in the fracture of metal/ceramic 

interfaces (Nb/Al2O3) when a single crystalline metal is used. An effort is being put to devise 

a procedure which can simulate the fracture behaviour of Nb/Al2O3-systems. The crystal 

plasticity theory [45] will be applied to take crystal orientation effects into account. Finite 

element analyses will be performed using crystal plasticity theory for various orientations of 

bicrystal specimens. A cohesive model [87, 88] is applied to perform crack propagation 

analyses. Parametric studies are performed to study the effect of different cohesive model 

parameters, such as interface strength and cohesive energy (work of adhesion) on the fracture 

energies of the niobium/alumina-interfaces. An attempt will be made to theoretically clear-up 

the connection between local adhesion capacity and macroscopic fracture energy. 
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3.  Theoretical Background 

In this chapter, a brief overview of crystal plasticity theory is summarized. Furthermore, some 

basic concepts of fracture mechanics will be discussed along with an overview of cohesive 

models used in crack propagation analyses. Lastly, after creating a basic understanding of the 

theory, finite element methods are briefly discussed, in which these theories have been 

implemented. 

3.1  Crystal Plasticity Theory 

3.1.1  Plastic Flow in Metals 

Based on Taylor’s finding [54], plastic deformation in metals starts when dislocations move 

along specific crystallographic planes in a specific crystallographic direction. Therefore, the 

fundamental deformation mechanism is a shearing action along a specific crystallographic 

direction. In figure 2, a picture of a deformed single crystalline niobium surface illustrates this 

feature. The sample has been loaded in uniaxial tension. As the specimens deforms, slip 

occurs on slip planes where the resolved shear stress is high. At larger deformations several 

slip systems can be activated, due to hardening on activated planes and lattice rotations.  

 
(a)             (b) 

Figure 2: (a) Single slip in single crystalline niobium, (b) Multiple slip in single crystalline 
niobium [88] 

As discussed above, the main physical mechanism of plastic deformation at ambient 

temperatures is the flow of dislocations along crystal slip systems. Slip systems are close 

packed atomic planes. This yields the smallest dislocation Burgers vector magnitude and 
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hence the most favourable direction for slip. Some basic crystal structures and major slip 

systems are (indicated by their Miller Indices) as follow: 

- fcc with a total number of twelve slip systems of (111)[110]-type 

- bcc with a total number of 48 slip systems, out of which, twelve slip systems are of 

(110)[111]-type, twelve of (112)[111]-type and twenty four of (123)[111]-type 

- hcp with slip systems of (0001)[1110]-type 

3.1.2  Kinematics of Crystal Plasticity 

In crystal plasticity theory, dislocation flow on a slip system is represented in a continuum 

sense as a plastic shear strain γ. Crystal plasticity is considered to be a physically based 

theory, since it is based on the microstructural behaviour of materials. To make the 

kinematical concept of shearing in slip directions useful, shear strains are related to a tensorial 

representation of deformation and/or strain. The precise mathematical theory was proposed by 

Hill [55], Rice [56], Hill and Rice [45] and Asaro [57]. The following is a basic summary of 

the theory. 

During loading of an elastic-plastic crystal, the total strain rate is the sum of elastic strain rate 

and plastic strain rate, given by: 

pl
ij

el
ijij εεε &&& +=        (3) 

The evolution of plastic strain rate is related to the slipping rate  of the α-th slip system by: αγ&

∑=
α

αααγε msp &&       (4) 

where the sum ranges over all activated slip systems, the unit vector sα is the vector tangent to 

the slip plane α, sα corresponds to the slip direction while, nα is the vector normal to the slip 

plane α. The dyadic product between sα and nα known as Schmidt factor is given by: 

( ))()()()()(

2
1 αααααµ ijjiij nsns +=      (5) 

The Schmidt factor is used to calculate the resolved shear stress, τ(α) on the α-th slip system, 

from the stress tensor σij as: 

)()( αα µστ ijij=        (6) 

3.1.3  Constitutive Law 

The stress rate ijσ& is related to the elastic strain rate as: 
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where Lijkl is the elastic moduli tensor. 

The plastic slip rate in a slip system α was presented by Hutchinson [58] and Peirce [57] 

which takes the form of a viscoplastic, power-law expression; it involves a reference strain 

rate  and a rate sensitivity exponent m, which are material properties. The viscoplastic 

power-law expression for the plastic strain rate  in a slip system α is given by: 

αγ o&

αγ&

m

o g ⎭
⎬
⎫

⎩
⎨
⎧

= )(

)(
)( )sgn( α

α
ααα ττγγ&      (8) 

where g(α) is the strength of each slip system and a functional of the past slip history, i.e., 

accumulated plastic strains during previous increments of loading. 

Equation (8) shows that the strain rate of each slip system α is a function of resolved shear 

stress  and the current slip system strain hardness (strength of slip system) g)(ατ (α). According 

to this law (equation (8)), the ratio 1/ )()( ≤αατ g  [58]. The reason is, the stress state of a 

deforming elastic-plastic material cannot exceed the yield limit, i.e. stresses will either be 

inside the yield surface or on the yield surface [58]. Then the rate independent limit 

( ).const=αγ&  is achieved as m gets larger (m = 100): This is because as m gets larger the 

plastic slip rate becomes constant (equal to ), as the ratio of resolved shear stress  to 

current strength g

αγ 0
)(ατ

(α) of the slip system α is equal to 1. For the cases when the value of this 

ratio is less than 1 the large value of exponent m reduces this ratio to a very small value 

making  infinitesimal, i.e. almost no slip in the slip system α. This is particularly useful in 

order to specify the constant slip rate for the case where the loading rate is constant during all 

the simulations. 

αγ&

3.1.4  Strain Hardening  

In equation (8), the strength of the slip system g(α) characterizes the strain hardening. The 

evolution of the strength g(α) is given by its rate representation: 

∑=
β

β
αβ

α γ )()( && hg       (9) 

where the matrix hαβ contains the hardening moduli as shown below; the functional form of 

hαβ is determined by the hardening model. Here hαα and hαβ (α≠β) are called self and latent 
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hardening moduli, respectively. In what follows next, a few of the most prominent hardening 

models are briefly discussed. 

Taylor [54] proposed an isotropic hardening modulus for single crystals given by: 

.consthh == αβ       (10) 

Since h is constant for all slip systems, Taylor’s model implies that all the slip systems harden 

equally. Therefore, the crystal hardens isotropically. 

There is little experimental evidence that supports Taylor’s model, because this model cannot 

describe the higher latent hardening effect observed experimentally. 

Nakad and Keh [59] proposed a two parameter model (a modification to Taylor’s model) to 

describe the experimentally observed higher latent hardening rate: 

∑∑ +=
m

m

l

l dHdHd γγτα 21     (11) 

with H1 and H2 being two material constants. H1 represents the hardening rate of the primary 

slip system, while H2 denotes the hardening rate of other slip systems due to slip in the 

primary system. This model describes the higher latent hardening rate. 

Havner and Shalaby [60] proposed that the higher latent hardening rate, or more generally, the 

anisotropic hardening of single crystalline deformation is caused by the relative rotation of the 

crystalline material with respect to the underlying lattice. Without this relative rotation, the 

hardening would be isotropic. That is, all slip systems will harden equally. 

Peirce, Asaro and Needleman [61] pointed out that Havner and Shalaby’s [60] simple theory 

of latent hardening of single crystals predicts very strong latent hardening. They suggested a 

modified model of latent hardening moduli which gives a less severe latent hardening effect 

that is more in accord with experimental results, while for self hardening they used the 

mathematical property of a hyperbolic secant function to reach a peak value of hardening and 

then saturate, i.e. self hardening starts with a higher initial hardening and vanishes after 

reaching a saturation resolved shear stress (figure 3). The hardening model is given by: 

os

o
o

hhhhh
ττ
γγαα −

== 2sec)(      (12) 

( )βα ≠)(γαβ qhh =

where, h0 is the initial hardening modulus, τ0 the initial yield stress, τs the saturation stress, γ 

the total shear strain in all slip systems, and q the latent to self hardening ratio. 
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Figure 3: Peirce, Asaro & Needleman (PAN) model [61] for self-hardening of a slip 

system in single crystalline materials (equation (12)). 
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Figure 4: Bassani & Wu (BW) model [62, 63] for self-hardening of a slip system in single 

crystalline materials (equation (13)). 
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Bassani & Wu (BW) [62, 63] used a different expression for the hardening modulus to 

describe the three stages of hardening of crystalline materials. This model is based upon the 

analytical characterization of hardening moduli at any stage during deformation (figure 4). 

The expression for self and latent hardening depends on the shear strain γα
 of all slip systems: 
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Here, h0 is the initial hardening modulus, τ0 the initial yield stress, τs the saturation stress, γ(α) 

the total shear strain in system α, hs the hardening modulus during stage I deformation, fαβ the 

interaction strength between slip system α and β, and γ(β) the total shear strain in slip 

system β. 

The hardening moduli (hαα) are described with an initial hardening modulus (h0) which 

saturates after reaching the resolved shear stress (τs). This is achieved by using a hyperbolic 

secant function which has the mathematical property that it starts to decrease as γ(α) increases 

and as the resolved shear stress reaches the value of τs the hyperbolic secant function 

diminishes. After the diminishing of the hyperbolic secant term, the saturation hardening (hs) 

specifies that each slip system possesses a finite hardening rate within the easy glide region of 

the primary slip system. The function G deals implicitly with cross-hardening that occurs 

between slip systems during stage II hardening. 

3.1.5  Dislocation Mechanics based Crystal Plasticity Models 

Dislocation mechanics has been used to generate other models, for example those proposed 

by Cuitino and Ortiz [64], Zikry [66], Ohashi [67], Harder [68], Acharya [70], and Arsenlis 

and Parks [69]. These models explicitly account for the quantification of dislocation density 

evolution and the kinetics of dislocation interaction. These types of models involve a large 

number of parameters and coefficients that must be derived from experiments. In the 

following, the above mentioned models are discussed briefly. 

Cuitino and Ortiz [64] proposed a viscoplastic dislocation mechanics based crystal plasticity 

model. The model is summarized in box 1.  

This model is a statistical mechanical model with a large number of parameters to be 

identified from experiments. The parameters to be identified for this model are initial strength 
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g0 of a slip system, a numerical coefficient η which is a measure for the strength of point 

obstacles and is constant for a material its value ranges from 0.3 – 0.5, length b of Burgers 

vector, initial dislocation density ρ0, a saturation shear strain γsat, a saturation dislocation 

density  ρsat at which the rate of annihilation balances the rate of dislocation production, and 

an interaction matrix aαβ which can be determined experimentally as shown by Franciosi [65]. 

Franciosi classifies the interactions according to whether the dislocations belong to the same 

system (interaction coefficient a0), fail to form junctions (interaction coefficient a1), form 

Hirth locks (interaction coefficient a2), co-planar junction (interaction coefficient a3), glissile 

junctions (interaction coefficient a4), or sessile Lomer-Cottrell locks (interaction coefficient 

a5). According to Franciosi, Hirth locks and Lomer-Cottrell locks are formed when a 

dislocation from one slip system interacts with the dislocation of another slip slip system at 

the intersection of the two slip systems. If the lock is formed between two dislocations from 

two different slip systems with the same Burgers vector magnitude then such a lock is termed 

as Lomer-Cotrell lock while if the Burgers vector magnitudes are different then the lock is 

known as Hirth locks. 

With this kind of model [64] one ends up with a total number of twelve parameters g0, η, b, 

γsat, ρ0, ρsat, a0 – a5 (aαβ) to be identified from experiments (see box 1). 

The crystal plasticity model proposed by Zikry [66] includes the mobile and immobile 

dislocation densities as internal variables in the constitutive formulation. They derived the 

relation for the evolution of mobile and immobile dislocation densities that correspond in an 

average sense to the generation, interaction, trapping, and recovery of dislocations. The 

evolution equation for mobile and immobile dislocations is given by 

( )immobmmimsourcem gHgbgf ,,,,,,, αααα ρργρ && =     (14) 

   ( )cov,,,,,, reimmobimmim gHgbgf ααα ργρ && =     (15) 

where, gsource is a coefficient related to an increase in the mobile dislocation density due to 

dislocation sources, gm is a coefficient related to the trapping of mobile dislocations due to 

dislocation interactions, grecov a coefficient related to the rearrangement and annihilation of 

immobile dislocations, gimmob a coefficient related to the immobilization of mobile 

dislocations,  the density of mobile dislocations,  the density of immobile dislocations 

and H is the enthalpy of the material at the given temperature. The densities of mobile ( ) 

and immobile ( ) dislocations are obtained from equation (14) and (15) by integration 

αρm
αρim

αρm

αρim
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while initial values of these densities are estimated from material charaterization data such as 

transmission electron microscopy. 

The strength gα of the slip system α is defined using a classical form that relates the strength 

of a slip system to a square-root dependence on the dislocation density. 

αααα ρµρµτ immy babag 21 ++=      (16) 

with, µ the shear modulus, the static yield shear stress of slip system α, and aατ y 1 and a2 the 

interaction coefficients. 

This model requires the identification of seven parameters gsource, gm, grecov, gimmob, a1, a2,  

for each slip system from uniaxial tension/compression experiments. 

ατ y

 

Box 1: Crystal plasticity model of Cuitino and Ortiz [64] 
Viscoplastic slip rate:   
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The density of point obstacles is given as: 
∑=

β

βαβα ρan  

where aαβ defined by six coefficients a0 – a5 is an interaction matrix obtained by comparing 

with experimental stress-strain-curves. 

The evolution of the dislocation density is given as: 
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where satρ  is the saturation density at which the rate of dislocation annihilation balances the 
rate of production, λ is mean free path between cross gliding and satγ  is saturated shear strain. 

If τα > gα; 

otherwise. 
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Ohashi [67] proposed a model in which the evolution of plastic slip was defined using models 

of dislocation movement for fcc crystals. The mean free path in this model is defined as a 

function of the densities of statistically stored as well as geometrically necessary dislocations. 

This model is scale dependent where the edge and screw components of the geometrically 

necessary dislocations are obtained from the strain gradients. This model requires eleven 

parameters to be identified for each slip system from experiments. 

Harder [68] proposed a crystallographic model for pure fcc metals in the low temperature 

range. Rate dependent constitutive equations are based on either isotropic as well as kinematic 

hardening, whereby the mutual interactions of dislocation processes on the different slip 

systems are taken into account. This model requires the identification of eleven parameters 

such as dislocation interactions a0 – a5, material constant K, yc the critical annihilation length, 

dislocation density at time t = 0 and c, d constants for kinematic hardening and was 

applied to fcc metals in the past [68]. 

r
0ρ

Arsenlis and Parks [69], and Acharya [70], proposed a continuum constitutive model based on 

internal variables characterizing crystallographic dislocation densities. The evolution of 

plastic strain is given by Orowan’s relation as a function of dislocation flux and average 

dislocation velocity. A large number of parameters are to be indentified in this model, approx. 

6-18, depending on dislocation interactions. These dislocation interactions can be in-plane 

interactions or out-of-plane interactions. In-plane interaction means the interaction of 

dislocations belonging to the slip system parallel to each other while out-of-plane dislocations 

mean the interaction of dislocations belonging to slip systems which are not parallel to each 

other. 

The above discussion about dislocation mechanics based models leads to the conclusion that 

these models explicitly account for such things as the quantification of dislocation density 

evolutions and kinetics of dislocation interactions. On the other hand, these types of crystal 

plasticity models involve many parameters and coefficients that have to be derived from 

experiments.  

Therefore, dislocation mechanics based crystal plasticity simulations provide a valuable 

window into the actual micromechanics of how the near-tip plastic deformation develops, and 

what the actual underlying dislocation distribution is, that corresponds to the macroscopic 

elastic-plastic deformation pattern. However, limitations on how many dislocations can be 

handled and how many computer runs can be made, make it difficult to determine the near-tip 

stress and deformation fields present on a larger scale near a crack tip. This information can 

be obtained from continuum slip crystal plasticity solutions [38], which give full-field results 
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for the elastic-plastic stress and deformation fields. Both numerical approaches also 

accurately show the crack tip opening behaviour, which is important in understanding the type 

of failure anticipated, see for example [38]. 

3.1.6  Numerical Implementation 

To solve problems with the theory presented in sections (3.1.1 - 3.1.4), the rate equations (4, 

7, 8, 9) must be integrated with respect to time, i.e., from stress and strain rates we must 

generate stresses and strains. As the governing rate equations are highly non-linear, 

integration is usually achieved incrementally, i.e., going from time t to time t+∆t. Usually, a 

large number of increments are required to achieve an accurate solution. Stress and other state 

variables, i.e., plastic slip in each slip system are updated during every increment. Different 

stress update algorithms are available, such as explicit and implicit stress update algorithms. 

Explicit algorithms use information at time t to get to time t+∆t directly. Perhaps the simplest 

explicit method is the Simple/Forward Euler method [86] which is based on a linearization of 

the constitutive law of crystal plasticity theory [57, 58] (for details see section 3.1.3) about 

time t. It is usually easy to implement but it is not very accurate unless very small time steps 

are used. Another explicit method is the Runge Kutta method [86, 90]. This is a multi-step 

explicit method based on subdivision of the time step in the form of small time increments.  

For an implicit integration algorithm, the state at time t+∆t is determined from information at 

time t and t+∆t. An example of a fully implicit method is the backward Euler method which is 

based on a linearization of the constitutive law about time t+∆t. Since the state at t+∆t is 

unknown, the method usually produces a system of coupled non-linear equations in the 

stress/state variables at time t+∆t that must be solved to perform the stress/state variable 

update. The resulting equations can usually be solved using a Newton Raphson iteration 

scheme. Newton Raphson iteration schemes are generally used to find a root of an equation 

f(x) = 0: A simple function f(x) can be described using Taylor’s expansion near x as: 

)()()()( 2hOxfhxfhxf +′+=+  

Starting with an initial guess of the root x, a better guess (x+h) can be obtained using the 

equation: 

)(
)(

xf
xfxhx

′
−=+   

Implicit algorithms usually allow larger time increments to be taken than explicit 

formulations, from the point of view of accuracy and stability, due to the iteration and the 

shooting for convergence at the end of the time step.  
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Crystal plasticity theory proposed by Hill [55], Rice [56] and Asaro [57] (for details see 

section 3.1.2) is implemented in an ABAQUS user subroutine by Huang [90]. This crystal 

plasticity theory implemented by Huang [90] is based on finite deformation framework. Also 

it can be used for bcc as well as for fcc materials. An outline of the formulation is given in the 

following. The governing rate equation written in tensor notation in terms of the Jaumann rate 

of Cauchy stress,  and deformation tensor, 
∇

σ D is available as a user subroutine (CPMAT) for 

ABAQUS.  

The Jaumann rate of Cauchy stress,  is the corotational stress rate on axes that rotate with 

the crystal lattice, is given by: 

∇

σ

∑−−=
∇

α
α

αγσσ YDIDC &):(:     (17) 

with C  representing elasticity tensor, I is the identity tensor, D is deformation tensor given 

by: 

)( 1−
⋅= FFsymD &&  

where F is the deformation gradient and is given by: 

   
x
xF
′∂

∂
=  

where x  are the coordinates of a material point in its deformed state and x′  are coordinates of 

a point in the undeformed state. 

The deformation gradient tensor F keeps information about the true deformation of the body 

and solid body rotation. 

While the Jaumann stress αY  is used in order to take into account finite rotations of the 

loading axes that rotates with the crystal lattice, the orientation tensor 
α

µ describes the 

orientation of a slip system α in the single crystalline material and the rotation tensor 

αω describes the rotation of a slip system α due to the rotation of the crystal lattice. Jaumann 

stress αY , orientation tensor 
α

µ  of a slip system α, and rotation tensor αω  of a slip system α 

are given by: 

αααα ωσσωµ ⋅−⋅+= :CY      (18) 

( )****

2
1

αααααµ smms +=      (19) 
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( )****

2
1

αααααω smms −=      (20) 

where  is the vector tangent to slip system α while  is the vector normal to the slip 

system α. 

*
αs *

αm

In the above equations DC :  represents the tensor scalar product (which in the index notation 

is given by Cijkl : Dkl) while αωσ⋅  is the tensor product (which in the index notation is given 

by jkikσω ). 

The rate tangent method (explicit method) [90] is employed to determine the increment of the 

plastic slip (strain) in slip system α. The rate tangent algorithm is based on estimating the 

change in shear strain rates during the time increment ∆t. The rate tangent algorithm assumes 

a linear relation among the increments of stresses, strains, resolved shear stress, shear strains 

and strengths in the slip systems. The increment of the plastic slip (strain) in slip system α is 

given as:  

( )[ ] tttt ∆Θ+Θ−=∆ ∆+
ααα γγγ &&1     (21) 

where is an integration constant ranging from 0 to 1 depending on the implicit or explicit 

method:  in equation (21) corresponds to forward Euler integration which is very 

simple to implement but is unstable for larger time increments. If  is used in 

equation (21) then it becomes a backward Euler integration scheme which is an implicit 

scheme. The backward Euler integration scheme is more expensive as compared to forward 

Euler integration scheme because of the iterative solution but has better stability than forward 

Euler scheme for larger time increments. 

Θ

0=Θ

10 ≤Θ<

The slipping rate αγ&  in general is a function of the resolved shear stress  and the current 

strength of slip system α, obtained from equation (9) by integration. The Taylor expansion 

of the slipping rate gives: 

ατ

αg

α
α
αα

α
α

αα
γ

τ
τ
γ

γγ g
g

ttt ∆
∂
∂

+∆
∂
∂

+=∆+ &&
&&     (22) 

where and  are the increments of resolved shear stress and current strength in slip 

system α within the time increment ∆t, respectively. 

ατ∆ αg∆

Substitution of equation (22) in equation (21) yields the following incremental relation for 

plastic strain in slip system α: 
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In order to implement the incremental theory, the increments of shear strain αγ∆ , resolved 

shear stress , and current strength  in all slip systems must be derived in terms of the 

strain increments 

ατ∆ αg∆

ijε∆  and the time increment ∆t. The so called corotational stress increments 

 should also be expressed in terms of strain increments tij ∆=∆
∇

σσ ijε∆  as the finite element 

program always calls the subroutine with an increment of strain ijε∆ . 

From the general hardening equation of crystalline slip, equation (9), the increments of the 

current hardening function  are given as: αg∆

∑ ∆=∆
β

βαβ
α γhg       (24) 

Similarly, the increments of resolved shear stress  are related to the strain increments ατ∆

ijε∆  through equation (4 - 7), and are given as: 

[ ] ⎥
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⎡
∆−∆++=∆ ∑

β

ββαααα γµεσωσωµτ ijijikjkjkikklijklL .    (25) 

The corotational stress increments  are given as [90]: tij ∆=∆
∇

σσ

[ ] α
α

ααα γσωσωµεσεσ ∆++−∆−∆=∆ ∑ ikjkjkikklijklkkijklijklij LL   (26) 

The incremental relations from equation (24) and (25) are substituted in equation (23) 

yielding the following linear algebraic equations: 
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&    (27) 

Once the incremental plastic strain αγ∆  in slip system α is known in terms of the strain 
increments ijε∆ , all other increments of resolved shear stresses, normal stresses and shear 
strains can be found through equations (25 - 27). 

3.2  Fracture Mechanics 

The field of fracture mechanics is concerned with the quantitative description of the 

mechanical state of a deformable body containing a crack or cracks, with a view toward 

characterizing and measuring the resistance of materials to crack growth [139]. The process of 
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describing the mechanical state of a particular material or a combination of different materials 

is to devise a mathematical model of it which can predict the deformation behaviour of the 

system until it fails. The mathematical model typically consists of an idealized description of 

the geometrical configuration of the deformable body such as using finite element 

discretization, an empirical relationship, such as Hooke’s law, between internal stress and 

strains in order to describe the deformation behaviour of the material, and the pertinent 

balance (equilibrium) laws of physics dealing with mechanical quantities such as stresses, 

strains and damage [139].  

Different criteria have been developed in the past to describe the crack propagation behaviour 

[29, 39, 71, 72, 101]. In general, they can be classified as stress based criteria [39, 40], energy 

based criteria [11, 101] and strain based criteria [71]. According to stress based criteria, a 

crack initiates when a certain stress component ahead of the crack tip reaches a critical value. 

In the case of energy based criteria, a crack initiates when the energy required to increase the 

crack length by unity reaches a critical value. One of these energy based criteria is termed as 

energy release rate and the criterion itself is called maximum energy release rate criterion. 

One of the most important strain based criteria is based on the crack opening displacement 

behind the crack tip. According to this criterion a crack initiates when the crack opening 

displacement at a specified distance behind the crack tip reaches a critical value. All these 

criteria are discussed in more detail in section 3.3. 

For all of these criteria, the fracture energy is an important factor to characterize the crack tip 

behaviour. In the following, different techniques to compute the fracture energy of a cracking 

sample are described and compared in the next section. For all the analyses J-integral will be 

finally used to compute the fracture energy. 

3.2.1  Global Energy Method 

This method is based on the finite crack extension method and follows the assumption that 

energy is released when a crack propagates [40]. Then a mathematical expression of the 

energy release rate is given as: 

⎟
⎠
⎞

⎜
⎝
⎛−=

dA
dUG        (28) 

where, U is the total energy of the specimens and A is the cracking area (area of the newly 

created cracked surface). The negative sign is to keep the energy release rate G to be always 

positive. 
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Let’s assume a cracked finite element model with a crack length of ak and after deformation 

the crack length is al (figure 5). 
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Figure 5: Finite elements with increasing crack length 

For this case, the total energy for the specimens with a crack length of ak is given by: 

∫ ∫= ijija dVdtE
k

εσ &       (29) 

From two calculations with a difference in crack length da = al - ak, we obtain the energy 

release rate as follows: 

( )kl

aa
c aaB

EE
G kl

−

−
=       (30) 

3.2.2  Virtual Crack Closure Technique 

The virtual crack closure technique (VCCT) is used for computing energy release rates based 

on results from two and three dimensional finite element analyses to supply the mode 

separation required when using the energy based mixed-mode fracture criterion [11, 101]. A 

simple example of such a kind of an energy based fracture criterion is given as (Wang and 

Suo, 1990; Hutchinson and Suo, 1992): 

1** =+
II

II

I

I

G
G

G
G

       (31) 

where GI
* and GII

* are the critical values of the two components of the energy release rates, 

while GI and GII are the total areas under the opening and shear traction-separation laws. The 

two separate components GI and GII can be calculated by integration of the mode-I and mode-

II traction-separation curves (figure 6): 
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Figure 6: Traction-separation curves for mode I and mode II loading 

where δn and δt denote the normal and tangential displacements. 

The method is based on two assumptions: 

• The energy released when the crack is extended is identical to the energy required to 

close the same crack. 

• A crack extension of ∆a from a+∆a to a+2∆a does not significantly alter the 

deformation state at the crack tip. 
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Figure 7: Virtual Crack Closure (VCC) technique 

29 



For a crack modelled with two dimensional, four noded elements, as shown in figure 7, the 

work ∆E required to close the crack along one element sided can be calculated as: 

[ lili wZuXE ∆⋅+∆⋅=∆
2
1 ]     (33) 

where Xi and Zi are the shear and opening forces at nodal point i, while ∆ul and ∆wl are the 

shear and opening displacements at node l as shown in figure 7. 

For twenty noded solid elements, the equations to calculate the strain energy release rate 

components at the element corner nodes (location Li) as shown in figure 8 are given below: 
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Figure 8: Virtual Crack Closure technique for 20-noded solid elements 

3.2.3  J-Integral Method 

The J-integral is widely accepted as a fracture mechanics parameter for both linear and 

nonlinear material response. Cherepanov [12] and Rice [13] introduced path-independent 
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integrals into fracture mechanics [17]. Rice also showed that this “J-integral” is identical with 

the energy release rate for a plane crack extension, ∆a:  

⎟
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⎞

⎜
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⎛

∂
∂

−==
a
UGJ      (35) 

The J-integral is defined in terms of the energy release rate, i.e., the energy which is released 

to create a unit area of crack surface, associated with a fictitious small crack advance, ∆a, 

figure 9: 
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    (36) 

where ∆xk is the shift of the crack front coordinates from the initial crack tip in x1 direction, 

∆a the corresponding increase in crack area and the integration domain βo is the grey area in 

figure 9. 
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Figure 9: Domain for J-Integral 

where i, j, k = 1, 2, 3, W is the external work, σij the stress tensor, uj,k the strain, δik the 

Kronecker delta (δik = 1 when i = k, and δik = 0 when i ≠ k),  βo is the integration domain. 
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3.3  Crack Growth Criterion 

If a critical initiation value of some fracture parameter is exceeded, a crack starts to grow. 

Crack growth can be simulated by,  

- node release techniques, controlled by any fracture mechanics parameter as J-integral, 

crack tip opening displacement, crack tip opening angle or maximum stress such as 

the maximum normal stress criterion [39, 40, 71],  

- constitutive equations based on damage mechanics concepts like the Gurson model 

[29, 33], or 

- cohesive elements are also being used to simulate the crack growth [72 - 85]. 

3.3.1  Characteristic Parameters of Node Release Techniques 

3.3.1.1  Maximum Stress Criterion 

This criteria was introduced by Erdogan [71] for elastic materials, states that the crack 

propagates in the direction for which the stress is maximum, i.e. when a critical stress 

criterion at a critical distance ahead of the crack tip is prescribed, then the crack tip nodes are 

released if the local stress across the interface at a specific distance ahead of the crack tip 

reaches a critical value [39, 40, 71]. 

This criterion is typically used for crack propagation in brittle materials [71]. The critical 

stress criterion is defined as  
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    (37) 

where nσ  is the normal component of stress carried across the interface at the distance 

specified; and τ1 and τ2 are the shear stress components in shear directions 1 and 2; and , 

and  are the normal and shear failure stresses. 

fσ
f

1τ f
2τ

As mentioned above this criterion is used for crack propagation in brittle materials, 

thereofore, it is not used for this study as there is always ductility present at the crack tip due 

to plastic deformation in the metal. 

3.3.1.2  Crack tip Opening Displacement Criterion 

This criterion is based on the crack opening displacement. The crack tip node is released 

when the crack tip opening displacement at a specified distance behind the crack tip reaches a 

critical value.  
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This criterion is typically used for crack propagation in ductile materials. The crack tip 

opening displacement criterion is defined as 

c

f
δ
δ

=        (38) 

where δ is the measured value of the crack tip opening displacement and δc is the critical 

value of the crack tip opening displacement. The crack tip node is released when the fracture 

criterion reaches the value 1.0. 

This criterion can be used in the present study but this does not give any control over the 

interface strength which is also an important parameter for fracture. It will be shown in this 

work that macroscopic fracture energy is strongly dependent on the interface strength 

(maximum stress (σc) at which interface fails. 

3.3.1.3  Maximum Energy Release Rate Criterion 

The strain energy release rate G represents the energy required to increase the crack length by 

unity. This criterion states that among all admissible crack length displacements, the real 

increase is the one which maximizes the strain energy release rate [11, 101]. 

Numerous numerical techniques can be used to compute G. The most commonly used 

methods are based on global energy release rates [39, 40] and path independent J-integral [12, 

13, 17] (see section 3.2.1 & 3.2.3). 

3.3.2  Damage Mechanics Approach 

Micromechanical modelling of damage and fracture have found increasing interest in order to 

study the damage in metal matrix composites [29, 33]. The general advantage, compared with 

classical fracture mechanics, is that, in principle, the parameters of the respective models 

depend only on the material. Also, it is not even necessary to consider specimens with an 

initial crack [29].  

For crack growth simulations using a damage mechanics approach, the constitutive equations 

introduce a damage parameter D as a function of stresses and strain. The failure initiates as 

soon as the damage parameter D becomes unity. Crack propagation is represented in terms of 

element softening or removal when the damage parameter reaches a critical value. 

3.3.3  The Cohesive Model 

Cohesive models have found increasing interest to simulate fracture in metallic, polymeric, 

and ceramic materials and their composites [72 – 85]. Using cohesive models, the fracture can 
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be simulated for any structure with or without a crack. The idea for the cohesive model is 

based on the consideration that the fracture mechanics analysis presupposes the existence of 

an infinitely sharp crack leading to singular crack tip fields. However, in real materials neither 

the sharpness of the crack nor the stress levels near the crack tip region can be infinite. 

Barenblatt [72, 73] and Dugdale [74] were the first ones to propose the concept of cohesive 

model to overcome these difficulties. 

Barenblatt [72, 73], who investigated the fracture of brittle materials, defined the traction 

along the crack path as a function of the crack tip distance along the crack front. The typical 

traction-crack tip distance is shown in figure 10(a). 

Dugdale [74] introduced the finite stress at the crack tip to be the yield stress, which is not 

true always as the crack-opening stress can be much higher than the yield stress. The typical 

curve is shown in figure 10(b). 

Needleman [75, 76] was the one of the first to use polynomial and exponential types of 

traction-separation equations to simulate the particle debonding in metal matrices. The 

exponential fit is used for normal traction while trigonometric fit for shear traction. The 

traction-separation curves are plotted in figure 10(c). Xu and Needleman [77, 78] further used 

the above models to study the void nucleation at the interface of particle and matrix metal. 

Tvergaard and Hutchinson [79] used a trapezoidal shape of the traction-separation model to 

calculated the crack growth resistance in elasto-plastic materials. The typical curve is shown  

in figure 10(d). Tvergaard [80] also extended the the Needleman [75] model of pure normal 

separation for mixed-mode loading. This is one of the most popular cohesive laws used by 

many authors (e.g., Chaboche [81]). The typical curve is shown in figure 10(d). 

Camacho and Ortiz [82] employed a linear cohesive fracture mode to propagate multiple 

cracks along arbitrary paths during impact damage in brittle materials. This model predicts 

failure by both shear and normal separation in tension and by shear separation in 

compression. The typical curve is plotted in figure 10(f). 

Geubelle [83] utilized a bilinear cohesive model to simulate spontaneous initiation and 

propagation of cracks in thin composite plates subjected to low-velocity impact. The traction 

separation curves for this model are shown in figure 10(g). 

A more versatile cohesive law is proposed in Scheider [84,85], which fulfils the following 

requirements: 

- The initial stiffness of the cohesive element can be varied; 

- A region can be defined, where the traction in the cohesive element is kept constant; 

- The curve must be continuously differentiable for numerical reasons. 

34 



This has been achieved by using two additional parameters δ1 and δ2 (figure 10(e)), leading to 

the following formulation for the function T(δ): 
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This law is similar to the multilinear cohesive law proposed by Tvergaard and Hutchinson 

[79], who also introduced two additional parameters, but without requirement that the curve is 

continuously differentiable. 
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Figure 10: Various cohesive laws proposed by different authors: (a) Barenblatt [72]; (b) 
Dugdale [74]; (c) Needleman [77]; (d) Tvergaard & Hutchinson [79]; (e) 
Scheider [84]; (f) Camacho & Ortiz [82]; (g) Geubelle [83] 
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In all the cohesive models (excluding Dugdale’s model and Camacho’s model), the traction-

separation relations for interfaces are such that with increasing interfacial separation, the 

traction across the interface reaches a maximum, then decreases and eventually vanishes, 

permitting complete decohesion. The main difference among all the cohesive models lies in 

the shape of the traction-separation response, and the constants that are used to describe this 

shape. The cohesive models can be described by two independent parameters. These 

parameters may be two of the three parameters, namely the cohesive energy also known as 

work of adhesion (Wadh), and either of the cohesive strength (σc) or the separation length (δc). 

Cohesive strength (σc) is the maximum stress (traction) value at which damage initiates while 

separation length  (δc) is the amount of separation at which the interface completely fails. 

Throughout this work δ1 and δ2 are chosen by comparing the initial and final slopes of the 

cohesive law curves of Xu and Needleman [77, 78], as shown in figure 11. This cohesive law 

curve has been used by Xu and Needleman [78] and Kysar [35, 36] for copper/alumina 

bicrystal interfaces. These values are found to be δ1 = 0.05δc and δ2 = 0.1δc. 
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Figure 11: Cohesive law curve of Xu and Needleman [77, 78] 

3.4  Finite Element Method (FEM) 

The finite element method (FEM) is a general numerical scheme for obtaining approximate 

solutions to boundary and initial value problems. The FEM is used when no analytical 

solution exists for a given problem, e.g. for complex geometries or boundary conditions. 

Therefore, the basic characteristic of the FEM is the spatial discretization of an arbitrary 

geometry into an assembly of simply shaped elements which are connected at their common 

37 



nodes and which do not overlap. These areas are referred to as finite elements or subdomains. 

The shape and size of the finite elements may depend on a number of factors, for instance on 

the geometry of the given sample. 

In the following, the finite element method (FEM) is outlined for the case when displacement 

fields are the primary (master) variables to compute strains and stresses. 

As discussed above the spatial domain β0 is decomposed in finite elements. 

In the description of the elements, a displacement field can be obtained using so called shape 

function N(x). 

The FE-Ansatz is: 

edxNxu )()( =       (40) 

Where d e represents the nodal displacements in the element e. The shape functions N(x) are 

related to the nodes and are 1 at the node location and 0 at all neighbouring nodes. Since the 

finite element method approximates the real course of the considered state variables in each 

element by a polynomial Ansatz the elements must thus be the smaller the simpler these 

functions are. The use of higher order polynomials usually allows the employment of larger 

finite elements. Thus, the element size depends also on the chosen polynomial Ansatz 

functions. Finally, the element size must be reduced in regions where strong gradients of the 

primary (master) variable are expected. 

The finite element discretization transforms a continuous boundary value problem into an 

algebraic system of equations for the discrete nodal displacements of a given finite element 

mesh. 

The following four steps are gone through to transform a boundary value problem (BVP) into 

an algebraic system of equations: 

(i) Setup the boundary value problem in its strong form consisting of partial differential 

equation (PDEs) and boundary conditions (BCs). With the known prescribed 

displacements (dirichlet boundary condition) the strains that are induced in the structure 

are computed using kinematic relations given as: 

    u ′=ε         (41) 

These computed strains are then used to compute the stresses induced in the structure 

due to deformation by using material equations given as: 

     εσ :C=        (42) 

where C  is the elasticity tensor, and ε  are elastic strains. 
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These stresses σ , the density ρ  and the body forces b are then used to construct the 

equilibrium conditions using: 

    Ob =+′ ρσ        (43) 

(ii) The strong form of the boundary value problem in equation (43) is then used to 

construct the weak form of the problem by the Galerkin concept. This is done by 

introducing a field of test functions δu(x). A test function δu(x) is an arbitrary, vector 

valued function, and must be chosen in such a way that it obeys any prescribed 

kinematic constraints, such as displacement boundary conditions. This introduction of 

)(xuδ in the strong form of a partial differential equation (43), which describes the 

equilibrium condition of the structure, yields the Galerkin type weak form of the 

boundary value problem to simulate the deformation behaviour of the structure. 

( ) ∫∫∫
∂

−−=
tBBB

udAtudVbdVuuG δδρδεσδ,     (44) 

This expression is also called the principle of virtual work. The first term is the total 

internal energy of the system, the second term is the energy stored due to the body 

forces and the third term is the work done by the externally applied forces t , where σ 

is the stress tensor, ρ the density, b the body forces, δε the strains obtained from disp-

lacement test functions, and uδ are the displacement test functions. Also, B represents 

the domain of the continuum and tB∂ the traction boundary. 

(iii) Discretize the weak form based on FE-Ansatz. The weak form of equation (44) is 

discretized by inserting the FE-Ansatz: 

edxNxu )()( =      (45) 

into equation (44) where )(xN  is the FE-Ansatz, and ed  are the nodal displacements. 

The insertion of above in the weak form (44) gives for a boundary value problem: 
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where A denotes the finite element assembly operator. This assembly operator 

assembles the system of equations, i.e. equation (44) for each element and forms an 

equation as given in (46).  

The terms in equation (46) can be classified as internal and external forces. The first 

term consists of the forces due to the induced stresses σ and they are called internal 
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nodal forces (equation (47) while the forces due to the body forces ρ and traction 

(forces acting on the surface of the structure) boundary conditions t  are called 

external nodal forces (equation (48)): 

∫=
eB

Te dVBf σ
int

      (47) 

∫ ∫
∂

+=
e

tB B

TTe

ext
dAtNbdVNf ρ      (48) 

Using the above representation of internal and external nodal forces, equation (46) 

simplifies to: 

int
ff

ext
=        (49) 

For static problems, the algebraic finite element equations (47) and (48) provide an 

equilibrium between internal and external nodal forces (as shown in equation (49)). 

(iv) The algebraic system of equations obtained by the FE-method is solved by an iterative 

scheme, such as Newton’s method [86] already discussed in section 3.1.6. 

All simulations on niobium/alumina bicrystal specimens during this work are performed with 

the help of finite element software ABAQUS. 
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4.  Results 

4.1  Material Parameter Identification of Single Crystalline Niobium 

This section describes the material parameters identification procedure for single crystalline 

niobium using experimental stress-strain curves. The material parameters identified using 

crystal plasticity theory (as discussed in section 3.1), are hardening parameters of different 

slip systems activated during deformation. 

4.1.1  Introduction 

Due to high ductility, good formability, slow work hardening, and high electrical and thermal 

conductivity, niobium is frequently used in microelectronic devices, aerospace and 

automotive industry. Some specific uses are pressure ports in rocket boosters, lighting 

filaments in sodium vapour lamps and ceramic insulators, and metal wire interfaces in 

integrated circuits. In all these applications of metal/ceramic interfaces, the metal shows 

elastic-plastic behaviour due to mechanical or thermomechanical loading. Therefore, for all 

these applications the deformation behaviour of the metal (niobium) is always important for 

their performance. The crystallographic approach to study the deformation behaviour of 

single and polycrystalline materials provides an improved framework with respect to the 

classical macroscopic models to predict the stress-strain behaviour of crystalline material. 

Crystal plasticity models have been mostly used for face-centered-cubic (fcc) crystals [63, 91, 

94]. The reason behind it is the large number of slip systems. Body centered cubic (bcc) 

crystals possess 48 slip systems as compared to the 12 slip systems of fcc crystals. Therefore, 

interdependence of the crystal  parameters of each family of slip system for bcc crystal makes 

the identification of crystal parameters, such as yield stress and strain hardening moduli of 

slip systems, complicated. In what follows next, we describe a way to identify those 

parameters. 

Conventional crystal plasticity theory [55 - 57] (as discussed in section 3) has been used to 

study the deformation behaviour of single crystalline niobium. In order to validate the 

simulated stress-strain-curves and experimental stress-strain-curves of single crystalline 

niobium, two different hardening models of Peirce, Asaro and Needleman (PAN) [61] and 

Bassani & Wu (BW) [62 – 63] (as previously discussed in section 3.1.4) for slip system 

hardening have been used. It will be shown in section 4.1.5 that only the Bassani & Wu (BW) 

[62 - 63] model is able to simulate the three stage hardening during the deformation of 

niobium single crystalline material. 

41 



4.1.2  Strain Hardening Models 

Peirce, Asaro, and Needleman (PAN) [61], proposed a model that provides latent hardening - 

an effect that is more in accord with the experimental results, while for self hardening they 

used the mathematical property of the hyperbolic secant function to reach a peak value of 

hardening and then saturate, i.e. self hardening starts with a higher initial hardening and 

vanishes after reaching a saturation resolved shear stress (figure 12). The hardening model is 

given by the following expressions for self and latent hardening: 
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Figure 12: Peirce, Asaro & Needleman (PAN) model for self-hardening of a slip syst

single crystalline materials. 

Bassani & Wu (BW) [62 - 63] used different expressions for the hardening moduli to de

cha- 

the three stages of hardening of crystalline materials. This model is based upon the anal
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racterization of the hardening moduli at any stage (I, II and III) during deformation (figure 

13).  This hardening law can model all three stages of hardening during the deformation of a 

single crystalline material. 

                     

The expressions for self and latent hardening depend on the shear strains γα of all slip systems 

α: 
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Figure 13: Bassani & Wu (BW) model for self-hardening of a slip system in single cryst-

alline materials. 

The hardening moduli are described with an initial hardening (h0) which saturates after  

 

saturation ha  specifies that each slip system possesses a finite hardening rate 

reaching the resolved shear stress (τs). After the diminishing of the hyperbolic secant term, the 

rdening term (hs)
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equal to hs. The function G deals implicitly with cross-hardening that occurs between slip 

systems during stages II and III hardening. 

As mentioned in section 3.1.6, the crystal plasticity theory along with the two hardening laws 

by Peirce, Asaro and Needleman (PAN) [61] and Bassani & Wu (BW) [62 - 63], respectively 

has been implemented numerically within the UMAT written by Huang [90]. This UMAT 

14(a)). It is a well known fact that bcc crystals generally possess three families of slip 

e in which plastic slip can 

subroutine has been used with the finite element package ABAQUS [86] for the present work. 

4.1.3  Deformation Behaviour of Niobium Single Crystals 

Niobium in single crystalline form exists as a body-centered-cubic (bcc) crystal (see figure 

systems, i.e., (110)[111]-type, (112)[111]-type and (123)[111]-typ

occur during plastic flow. The slip systems are shown in figures 14 (b - d). 
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Figure 14: (a) Body centered cubic (bcc) crystal with (b - d) three types of glide planes and 

48 slip systems in total 

Experimental studies of the deformation behaviour of niobium single crystals have been 

performed by many researchers. Mitchell [92] showed that a niobium single crystal shows the 
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three stage hardening like face-centered-cubic (fcc) crystals. He studied the deformation 

behaviour of niobium single crystals for various orientations, as well as effects of impurities, 

temperature and strain rate. His results show that an increasing volume fraction of impurities 

increases the initial flow stress, a decreasing temperature increases the initial flow stress and 

an increasing strain rate increases the initial flow stress.  

Bowen [88], Duesbery and Foxall [89], Anglada and Guiu [87] also studied the deformation 

behaviour of niobium single crystals and concluded the same results. Moreover, in all cases 

studied plastic slip was observed in the (110)[111] and (112)[111] slip systems while slip in 

the (123)[111] system is only promoted in the case when substitutional impurities such as 

oxygen, aluminium, copper, etc were present. Resolved shear stress vs. shear strain curves 

[88] for (-101)[111] and (-211)[111] slip systems are plotted in figure 15 for two different 

tensile axis orientations. Figure 15 (a) shows the resolved shear stress vs. shear strain curve 

for tensile axis orientation BI (Or BI) for which the (-101)[111] slip system is the primary 

activated slip system. figure 15 (b) shows the plot of resolved shear stress vs. shear strain 

curve for tensile axis orientation BII (Or BII) for which the (-211)[111] slip system is the 

primary activated slip system. 

0

10

20

0 0,5 1 1,5

Shear Strain

Sh
ea

r S
t

30

40

50

60

re
ss

 (M
Pa

)

0
5

10
15
20
25

0 0,2 0,4 0,6

Shear Strain

Sh
ea

r S
tr

es
s 30

35
40
45
50

 (M
Pa

)

Experiment Or BI
Experiment Or BII

[-4 1.6 1.3]

Tensile Axis Orientation:
[-831] Tensile Axis Orientation :

0

10

20

0 0,5 1 1,5

Shear Strain

Sh
ea

r S
t

30

40

50

60

re
ss

 (M
Pa

)

0
5

10
15
20
25

0 0,2 0,4 0,6

Shear Strain

Sh
ea

r S
tr

es
s 30

35
40
45
50

 (M
Pa

)

Experiment Or BI
Experiment Or BII

[-4 1.6 1.3]

Tensile Axis Orientation:
[-831] Tensile Axis Orientation :

 
                                        (a)                     (b)    

Figure 15: Resolved shear stress vs. shear strain for (a) (-101)[111] and (b) (-211)[111] slip 
system 

4.1.4  Modelling 

 the c stal p sticity heory 55 - 5  in the finite 

t

constructing a finite element model of the specimens used in experimental studies with 2nd 

ration elements (C3D20R), which is available in ABAQUS [86] (figure 

All simulations are done using ry la  t  [ 7] implemented

element me hod (as discussed in section 3.4). Finite element simulations are performed by 

order, reduced integ

16). The crystal plasticity theory [55 - 57] as described in section 3.1 and implemented as user 

subroutine [90] in the finite element package ABAQUS [86] is used for all the simulations. 
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Tension tests are simulated using displacment controlled analysis with the same strain rate 

(1.3 x 10-3 sec-1) as used in experiments.  

For introducing the tensile loading boundary conditions, a constant displacement rate is 

specified in the axial direction for all nodes on one of the circular surfaces of the rod shaped 

specimens, e.g. on the right of the mesh (3-direction). At the left of the specimens mesh, the 

axial displacements are constrained to be zero. The lateral displacements on both left and right 

are not constrained (with the exception of one node on the left constrained to have zero lateral 

displacement in order to ensure uniqueness of the solution). 

The elastic properties of niobium single crystals are defined using bcc symmetry (Table V). 

 
Figure 16: Finite element mesh of a niobium specimens 

Table V: Elastic Properties of single crystalline niobium 
 C11 (MPa) C12 (MPa) C44 (MPa) 

Nb Single Crystal 245500 134000 28700 

4.1.5  Results and Discussion 

The identification of the hardening parameters of single crystalline niobium is based on the 

assumption that each family of slip systems possesses the same σ-ε-behaviour. For the Peirce, 

ardening model the material parameters involved are ho, τo, 

 is activated. The slip system is activated when the resolved shear stress 

Asaro and Needleman [61] type h

and τs for each family of slip systems and as for the case of niobium single crystals there will 

be two sets of parameters, i.e. one set of three prameters for the (110)[111] slip system and a 

second set of three parameters for the (112)[111] slip system. Therefore, altogether six 

parameters will be required for niobium single crystals. These six parameters can directly be 

read from the resolved shear stress vs. shear strain curves of each (110) and (112) type slip 

system, if available. 

The simulation results of the uniaxial tension test (described in section 4.1.4) using the Peirce, 

Asaro and Needleman (PAN) [61] model is shown in figure 17 for the orientation where the (-

101)[111] slip system

46 



in slip system (-101)[111] becomes 13.7 MPa. The set of parameters used for the two 

families, i.e. (110)[111] and (112)[111] is given in table VI: 

Table VI: Parameters used for the Peirce, Asaro and Needleman (PAN) [61] model 
 τo (MPa) τs (MPa) ho (MPa) 

(110)[111] 13.7 16.4 292.26 

(112)[111] 7.88 9.1 49.03 
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Figure 17: Hardening curves for the (-101)[111] slip system 

As discussed before and as it is also evident from the above result the resolved shear stress 

saturates after a specific value of plastic slip γ. Therefore, this hardening model can only be 

region, i.e. no secondary slip 

. In total, 20 parameters are identified for both (110) and (112) type slip 

used if the maximum deformation state is in a single glide 

system is activated. 

To simulate three stage hardening, the Bassani & Wu (BW) model is used (see section 3.1.4). 

There were 10 material parameters identified for each family of slip systems, i.e. ho, hs, τo, τs, 

γo, γoI, fαβ, fαβI, q, qI

systems. ho, hs, τo, τs (see figure 13) are identified directly from the single crystal stress strain 

curves in figure 15. The rest of the six parameters (γo, γoI, fαβ, fαβI, q, qI) include four 

interaction parameters (γo, γoI, fαβ, fαβI) of each family of slip systems when it interacts with a 

slip system of the same family (γo, fαβ)  or with a slip system of the other family (γoI, fαβI).  
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(b) 

Figure 18: Interdependency of parameters (a) fαβ = 0.4, fαβI = 0.0 (b) fαβ = 10.4, fαβI = 0.99 

The other two parameters are q and qI which are latent to self hardening ratio based on the 

 assumption that all the slip systems in one slip family behave similarly. Therefore, to find

these parameters, two simulations are run simultaneously; one with the crystal orientation wh 

en primary slip system activated is of the (110)-type and the second one with a crystal 
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orientation such that the primary slip system activated is of the (112)-type. The 

interdependency of hardening parameters of different families of slip systems is evident from 

figure 18. It can be seen that the interaction parameters (fαβ) of the (-101)[111] slip system 

effect the hardening of the (-211)[111] slip system. 
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Figure 19: Effect of interaction parameter fαβ
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Figure 20: Effect of self to latent hardening ratio (q) 
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It is also seen that q and qI have more severe effects than the other four terms (fαβ, fαβΙ, γ0,  γ0Ι) 

(Figs. 19, 20). As off diagonal terms of the hαβ matrix are more sensitive to the latent to self 

hardening ratio, this ultimately increases the current strength of the slip system g(α). 

Experimental results of Bowen [88] have been simulated to identify the hardening parameters. 

Simulation results are presented in figure 21 for two different crystal orientations. A 

compromised set of parameters is given in Table VII. It should be noted that here only 

diagonal hardening is considered by taking q = 0. There is no experimental proof of this 

assumption, but even with this assumption the three stage hardening curve is obtained and 

good agreement with experimental results (figure 21) are obtained for orientation BII (Or 

BII), when the (-211)[111] slip system is activated, but for the case of the (-101)[111] slip 

system the differences between the simulation result and experimental curves are high. 

Table VII: Hardening parameters identfied for the Bassani & Wu (BW) model for diagonal 
hardening 

 τo 

(MPa) 

τs 

(MPa) 

ho

(MPa) 

hs 

(MPa) 

γo γoI fαβ fαβI q qI

(110)[111] 13.7 16.4 292.262 1.4 0.25 0.25 10.0 9.9 0.0 0.0 

(112)[111] 13.07 16.344 49.03325 39.2266 0.1 0.1 0.34 0.3 0.0 0.0 
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single crystalline niobium 
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In what follows next, the crystal plasticity model has been interfaced with an optimization 

code (MINUIT)  to find the set of hardening parameters discussed before for each family of 

slip systems. This not only reduces the computation time but also it is never easy to find 20 

parameters manually. 

This method is generally composed of an optimisation tool, a material model and an interface 

between the optimisation tool and the material model. 

The problem is classically defined by a function which evaluates, for a given set of 

parameters, the discrepancy between the model prediction and the experimental data. The 

formal expression for the function is: 

( ) ( ) ( )∫ −= dtPRR
d

PLn εε
ε

,1 *     (52) 

where dε is the length of observation (strain increment), R*(ε) is the experimental data of 

uniaxial test (true stress), R(P, ε) is the simulation result of uniaxial test (true stress) and 

[R*(ε)-R(P,ε)] is the difference between experimental data and calculation result from a given 

set of model parameters. The procedure is described in figure 22. 

During the simulation, it has been seen that secondary slip systems activate before reaching  

the experimental stage-II deformation. Therefore, the simulation result gives higher hardening 

values during stage-I (figure 21) as compared to the experimental result. To avoid this higher 

hardening response during stage-I, interaction parameters are only activated at the end of the 

single slip region, i.e. stage-I. 

Using this technique the material parameters (ho, hs, τo, τs, γo, γoI, fαβ, fαβI, q, qI) for the two 

orientations Or BI and Or BII are identified. 10 parameters for each family of slip systems are 

identified using the optimization tool and the following set of parameters give good agree-

ment with the experimental results as shown in figure 23. 

Table VIII: Parameters identified for the Bassani & Wu (BW) model of uniaxial tension test 
Bowen [88]  

 τo 

(MPa) 

τs 

(MPa) 

ho

(MPa) 

hs 

(MPa) 

γo γoI fαβ fαβI q qI

(110)[111] 13.7 18.4 292.262 0.001 0.0075 0.4807 3.3 1.6623 0.2891 0.2315

(112)[111] 13.07 10.344 25.03325 24.2266 0.04 0.039 0.49 0.14 0.01 0.011 

 
As discussed previously the interdependency of interaction parameters of one family of slip 

systems significantly effects the hardening of the other family of slip systems. Therefore, the 
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identification of hardening parameters has been done by running both simulations 

simultaneously. 
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Figure 23: Hardening curves for Or BI (-101)[111] and Or BII (-211)[111] systems 

10

20

30

40

50

60

Ax
ia

l C
om

pr
es

si
ve

St
re

ss
 

(M
Pa

)

Compressive Strain

70

0
0 0.1 0.2

Experiment

Simulation

10

20

30

40

50

60

Ax
ia

l C
om

pr
es

si
ve

St
re

ss
 

(M
Pa

)

Compressive Strain

70

0
0 0.1 0.2

Simulation

Experiment

Figure 24: Comparison of stress vs. strain curve of com
ntation 

53 
0.30.3

 
pression test for the [214]-orie-



After the identification process, a compression test is simulated for a [214] loading axis 

orientation [101]. The experiments are performed at 20°C with a strain rate of 0.54 mm/min. 

Experimental and simulated results are in good agreement as shown in figure 24. 

The sets of identified parameters are given in table IX. The parameters found show that the 

interaction parameters (γo, γoI, fαβ, fαβI, q, qI) are more or less the same as found for previous 

simulations - only the initial resolved shear stress and the saturation stress are different. 

Possible reasons could be the amount of impurities (hydrogen, nitrogen, oxygen), slip systems 

behave differently during compression when compared with tension and a different strain rate 

as compared to the experimental results simulated previously in figure 23, which changes the 

initial yielding behaviour of niobium [88]. 

Table IX: Crystal plasticity hardening parameters identified for the Bassani & Wu (BW) 
model of uniaxial compression test [101] of single crystalline niobium 

 τo 

(MPa) 

τs 

(MPa) 

ho

(MPa) 

hs 

(MPa) 

γo γoI fαβ fαβI q qI

(110)[111] 6.99 8.4 292.262 0.001 0.0075 0.48 3.3 1.6 0.3 0.2 

(112)[111] 6.99 8.38 25.03325 24.2266 0.04 0.039 0.49 0.14 0.01 0.011 

 

4.1.6  Summary 

The presented results show that the Bassani & Wu (BW) model can be used to simulate the 

hardening of niobium single crystals. The results from different hardening models (Peirce, 

Asaro and Needleman (PAN) [61], and BW model [62, 63]) are discussed. Only the BW 

model provides a way to simulate   e the three stage hardening by taking into account the 

interaction of slip systems during the stages II and III of the deformation. It is also shown that 

interaction parameters of one slip system family influence the hardening of other systems. 

Therefore, in order to identify parameters for two families of slip systems, a compromise 

between the two parameter sets have to be found. Handling of identification of a larger 

number of parameters is a time consuming work. To resolve this problem an interface has 

been created between an optimization tool and ABAQUS to perform automatic identification 

of these parameters. By using this automatic identification procedure good agreement with 

experimental single crystalline uniaxial stress-strain curves of niobium is obtained. 
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4.2 Crystal Orientation Effects of the Metal on the Crack Initiation 
Energies of a Bimaterial Interface (Nb/Al2O3) 

 
This section presents the results obtained from crystal plasticity finite element simulations 

without crack propagation. The crystal orientation effects on the crack initiation energy of 

niobium/alumina joints are studied. Three different techniques namely, global energy method, 

J-integral method, and virtual crack closure technique have been applied to compute the 

energy release rate of the niobium/alumina joints. Simulations have been performed by using 

two different theories, i.e. deformation plasticity theory and crystal plasticity theory. The 

deformation plasticity theory is used to show the consistency of the energy release rates 

computed with above mentioned techniques. Crystal plasticity theory is used to examine 

orientation effects of the niobium single crystal on the energy release rate. Differences in the 

computed energy release rates are explained based on the plastic slip (strain) induced in 

different slip systems during deformation. A qualitative comparison of the crystal plasticity 

simulations with the experiments of [22, 23] is also been presented. 

4.2.1  Introduction 

Metal/ceramic bimaterials with a mismatch in mechanical properties are frequently 

encountered in engineering applications. In many of these situations, cracks initiate at 

interfaces and advance along or away from the interfaces. The safety of such components 

inevitably requires a thorough understanding of their behaviour under load. 

Three different methods will be used to find the energy release rate of the system: J-integral 

method [103, 107], global energy method [39, 113] and virtual crack extension technique 

[101]. 

The J-integral method is widely used in rate-independent quasi-static fracture analyses to 

characterize the energy release rate associated with crack growth [107].  The J-integral 

method was introduced by Rice [103] in 1968, since then J-based elastic plastic fracture 

mechanics became also an issue of numerical computations [112, 113]. In the beginning the 

user were left to their own codes, which gave rise to additional uncertainties and errors. 

Scheider [103] explained the procedure to obtain reliable values of J-integral when used in 

ABAQUS. 

The global energy method was used in [39, 108] for bimaterial interfaces. It was also applied 

to separate the energy release rate in elastic and plastic parts. 

The virtual crack extension technique [101] is widely used to compute the energy release rates 

of delamination in composite structures. The main advantage of this technique is the mode 
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separation of energy release rates when using the mixed mode fracture criterion [101]. 

Ingraffea [114] and Krueger [101] described a procedure to compute energy release rates by 

using the virtual crack extension method from continuum (2D) and solid (3D) finite element 

analyses. 

All of these three methods, i.e., the global energy method, J-integral method and virtual crack 

closure technique are discussed in section 3.2. 

4.2.2  Finite Element Model 

The finite element model is based on the experiments performed in [22, 23], in which the 

influence of orientation and impurities on the fracture behaviour of Nb/sapphire interfaces 

were studied using notched bending tests. The specimens to perform four-point bending test 

experiments in [22, 23] were prepared by diffusion bonding single crystals of niobium and 

alumina in an ultra high vacuum furnace for different interface orientations. It was found that 

for undoped bicrystals bonded at 1400 °C, the computed interfacial fracture energy ranged 

from 77 to 2100 J/m2 depending on the interface planes of Nb and sapphire. For fracture 

evaluation, interfacially notched bending test specimens of dimensions 2 x 4 x 36 mm3 were 

prepared. The specimens is shown in figure 25. The notch length is 0.4 mm. The specimens is 

loaded to the fracture load Fc in a four-point bending tests device at a crosshead speed of 96.8 

µm/min. The load F and the crosshead deflection at the load points v are simultaneously 

recorded.  

Nb single crystal

Notch Polycrystalline Nb sheet

Alumina Shank

F F

60 µm

Alumina single crystal

Niobium Alumina

Crack Tip

Alumina Shank

Nb single crystal

Notch Polycrystalline Nb sheet

Alumina Shank

F F

60 µm60 µm

Alumina single crystal

Niobium Alumina

Crack Tip

Alumina Shank

 
Figure 25: Four point bending test specimens 

The finite element model is constructed based on the information provided in [22, 23]. As 

shown in figure 25, the finite element model of a niobium single crystal is bonded to alumina 

using bond option available in ABAQUS. Finite element models of alumina shanks and a 

polycrystalline niobium sheet were joined with the corresponding niobium single crystal finite 
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element model and alumina finite element model using tie constraints available in ABAQUS. 

The tie constraint is used because the studies reported in this chapter are performed for a 

stationary crack tip, i.e. no crack propagation is allowed. In this constraint, nodes of the two 

adjoining surfaces are fixed to each other to ensure that two surfaces are always bonded 

during the simulations. 

 
 4.2.3  Finite Element Analysis  

Finite element simulations were performed in a step by step fashion. Starting from a two 

dimensional analysis for a bimaterial interface, we move to three dimensional analyses for the 

same bimaterial interface to check the consistency of the methods used to compute the 

fracture energies of the interface including crystal plasticity effects. 

Two dimensional analyses are performed to check the consistency of the three methods 

(global energy method, J-integral method, and virtual crack closure technique) described 

above. Then more realistic three-dimensional analyses are used to study the effects of elastic 

anisotropy while crystal plasticity is included in the model in a subsequent step in order to 

take orientation dependent plasticity effects into account. 

The finite element mesh for the case of two-dimensional analyses consists of plane-strain 

eight-node quadratic reduced integration elements. The total number of elements is 12172. 

The mesh is shown in figure 26. 

For the case of the three-dimensional analyses, the finite element mesh consisted of twenty-

noded quadratic reduced integration elements. The total number of elements in the model is 

17208. The mesh is shown in figure 27. 

For all two- and three-dimensional simulations, both outer Alumina shanks (ceramic) and 

Alumina single crystal at the middle of the specimens were treated as purely elastic with a 

Young’s modulus of 390 GPa and a Poisson’s ratio of 0.27. The polycrystalline niobium sheet 

is always modelled with an elastic-plastic constitutive law. The Young’s modulus and the 

Poison’s ratio for polycrystalline niobium sheet were the same for all simulations (E = 104.9 

Gpa, ν = 0.397).  These elastic and plastic data are adjusted to alumina and niobium, 

respectively in [39, 108, 109]. The plastic behaviour of the stress-strain curve of the 

polycrystalline niobium sheet is approximated by a Ramberg-Osgood relation [110], which is 

described in the one-dimensional case by the following equation: 

σ
σ
σασε

1

0

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

n

cE       (53) 
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Here, n denotes the hardening exponent, α the yield offset and σ0 the yield stress. This 

material law is nonlinear from the beginning, but for commonly used hardening exponents (n 

≥ 5) the divergence from linearity is only slight for stresses below σ0. The chosen plasticity 

theory is the deformation plasticity theory (for details see [111] and references therein), which 

describes not a plastic material behaviour, but a nonlinear elastic material. This means, that no 

unloading criterion exists. The parameters of the above equation are adjusted to the niobium 

stress-strain curves in [40]. The parameters used are n = 6, σ0 = 180 MPa and α = 0.3.  

The single crystal niobium part is modelled as isotropic material, using the same mechanical 

properties as the polycrystalline niobium sheet for two- and three-dimensional isotropic 

simulations, using the same set of parameters as used above for the polycrystalline niobium 

sheet. 

 
Figure 26: Finite element mesh  of two-dimensional bimaterial specimens 

 

 
 
Figure 27: Finite element model of four point bending test specimens 

For the case of crystal plasticity the single crystal niobium is modelled using the hardening 

law of Bassani & Wu (BW) [63, 62]. The hardening parameters for each slip system are 

derived in [104] and have already been discussed in detail in section 4.1. The hardening 
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parameters used for each family of slip system, i.e., (110)[111] and (112)[111], are given 

below (Table X): 

Table X: Hardening parameters for Bassani & Wu (BW) hardening law 
 τo 

(MPa) 

τs 

(MPa) 

ho

(MPa) 

hs 

(MPa) 

γo γoI fαβ fαβI q qI

(110)[111] 13.7 8.4 292.26 0.001 0.0075 0.48 3.3 1.66 0.289 0.2315

(112)[111] 13.07 10.34 25.033 24.227 0.04 0.039 0.49 0.14 0.01 0.011 

 
A four point bending test has been modelled three-dimensionally and simulated with the 

boundary conditions as shown in figure 27. The displacement of 30 µm is applied stepwise 

(increasing linearly with time) at the loading points. 

180 µm180 µm

 
Figure 28: Three dimensional finite element mesh of bimaterial specimens 

4.2.4  Results and Discussion 

The energy release rates for two-dimensional analyses (without crystal plasticity) computed 

using three different techniques, i.e., the virtual crack closure technique, global energy 

method and J-integral method are shown in figure 29. All three approaches provide consistent 

results. The difference in the computed values of energy release rates are almost negligible. A 

comparison of the energy release rates of two- and three-dimensional simulations (without 

crystal plasticity) is shown in figure 30, values of the computed energy release rates are 

identical.  
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As mentioned in the previous section, the crystal plasticity theory is included by modelling 

the niobium as single crystals using the Bassani & Wu (BW) [62, 63] hardening law. The set 

of hardening parameters used is given in table VIII. A polycrystalline niobium sheet is 

modelled as isotropic elastic-plastic material using a Ramberg-Osgood hardening law [110], 

while Alumina shanks and Alumina single crystals are always modelled as isotropic elastic 

material.  

Five different orientations of niobium single crystals have been used for the simulation (see 

table XI). The orientations I, II and III are the same as were studied by Korn et al, [22, 23] 

where a strong orientation effect on the fracture energy was found by changing the orientation 

of single crystalline niobium. Orientations IV (see section 4.1.4, Or BI) and V (see section 

4.1.4, Or BII) are the ones for which the crystal plasticity hardening parameters have been 

identified using the single crystalline experimental results on niobium of Bowen [88] in order 

to study the effect of these orientations on the fracture energy, although no experimental 

comparison has been made for orientation IV and V, as experimental fracture energy data are 

not available for these two orientations. 

0
0 20 40 60 80 100

Load-Point Displacement (µm)

0,05

0,1

0,15

0,2

0,25

0,3

0,35

En
er

gy
 R

el
ea

se
 R

at
e 

(N
/m

m
) VCCT

J-Integral
Global Energy Method

 
Figure 29: Energy release rate comparison among different methods of two-dimensional 

analyses (plane strain) 

In the following, the results of the energy release rate, strain distribution around the stationary 

crack-tip along with the plastic slip (strain) near the stationary crack-tip are discussed for 

different orientations of the metal while the ceramic was kept identically oriented. 
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Figure 30: Comparison for energy release rates for 2D and 3D analyses 

 
Figure 31: Total energy release rate versus the strain at the crack tip for various orientations  

The energy release rates for the five different orientations I - V (Table XI) have been plotted 

against the strain at the stationary crack-tip in figure 31. The results depict that the change in 

crystal orientation significantly influences the energy release rates only after the plastic 

deformation in the metal part has started. The start of the plastic deformation is the point 
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where the resolved shear stress of the most favourably oriented slip system exceeds the initial 

yield stress τo, which can be monitored during the simulation run.  

Table XI: Orientations of niobium single crystals used for simulations 
Symbol  Orientation relationship 

Orientation I Nb(100)[001]|Sp(11-20)[0001] 

Orientation II Nb(110)[001]|Sp(11-20)[0001] 

Orientation III Nb(111)[-1-1-2]|Sp(11-20)[0001] 

Orientation IV (Or BI) Nb(-0.146 -0.94 0.3)[0.4 –0.33 -0.85]|Sp(11-20)[0001] 

Orientation V (Or BII) Nb(-0.23 -0.94 0.25)[0.6 –0.34 -0.7]|Sp(11-20)[0001] 
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Figure 32: Slip systems with highest Schmidt factors for orientation II 

The highest energy release rate is found for orientation II, which is a multiple slip orientation 

with (1-12)[-111], (-211)[111] and (211)[-111] systems playing a major role in the total 

plastic slip and eventually in the plastic strain (see figure 31). The reason is the highest 

Schmidt factor for these (1-12)[-111], (-211)[111] and (211)[-111] systems, i.e. ~ -0.4714, -

0.2357 and -0.408, respectively (as shown in figure 32), while other slip systems have smaller 

Schmidt factor ~ -0.2 or even less. Figure 33 shows the relative magnitudes of the slip 

activity, where the slip activity at a radius of 15 µm (it is a reasonable distance from the crack 

tip where influence of all the activated slip system was seen during the simulations; distances 

other than 15 µm give similar results, i.e. same slip systems contributing in total accumulated 

slip but only the magnitude of plastic strain changes) from the crack tip is plotted for each of 

the activated slip systems relative to the polar angle ϕ; 0° coincides with the prolongation of 

the crack and 180° coincides with the single crystal niobium crack flank. It can be easily 

identified which slip system is contributing the highest amount of plastic slip in different 

regions around the crack tip. Figure 33 shows that the maximum contribution of plastic slip 
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comes from the slip system (1-12)[-111] for the polar angle ϕ range of 0° - 60° while the 

contribution of slip systems (-211)[111] and (211)[-111] is maximum for the range of  60° - 

120°. 
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Figure 33: Plastic strain on slip systems at 15 µm radius from the tip of a stationary crack 

for orientation II 
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Figure 34: Plastic strain on various slip systems at the tip of a stationary crack for 

orientation II 
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Figure 35: Plastic strain on various slip systems at the tip of a stationary crack for 

orientation I 
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Figure 36: Plastic strain on slip systems at 15 µm radius from tip of a stationary crack  for 

orientation I 
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Figure 37: Plastic strain on slip systems at 15 µm radius from tip of a stationary crack  for 

orientation III 
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Figure 38: Plastic strain on various slip systems at the tip of a stationary crack for 
orientation III 
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Figure 39: Plastic strain on various slip systems at the tip of a stationary crack for 
orientation IV 
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Figure 40: Plastic strain on slip systems at 15 µm radius from tip of a stationary crack  for 

orientation IV 
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Figure 41: Plastic strain on slip systems at 15 µm radius from tip of a stationary crack  for 

orientation V 
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Figure 42: Plastic strain on various slip systems at the tip of a stationary crack for 
orientation V 
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Figure 43: Plastic cumulative slip (strain) on all slip systems at the tip of a stationary crack 

for various orientations 
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Figure 44: Comparison of energy release rates for three orientations I, II and III 
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Figure 45: Stress-strain curves for orientations I, II and III of uniaxial simulation for a 
stationary interface crack 

It can also be inferred from figure 34(a) that the plastic region developed due to plastic slip in 

the (1-12)[-111] system is the largest one and the plastic slip in this slip system dominates the 

total plastic slip (strain) region (figure 43(b)).  

The orientations I and III were found to have the lowest energy release rates (see figure 31). 

For orientation I, the major contribution to the total slip comes from (112)[11-1], (121)[1-11], 

(1-21)[111], (12-1)[-111], (-211)[111] and (21-1)[1-11] slip systems (see figure 35). Similar 

to the procedure discussed above for orientation II (figure 31), the contribution of different 

slip systems in various regions around the crack tip can be identified from figure 36 for 

orientation I. Figure 36 shows that the maximum contribution from the polar angle range ϕ of 

0° - 30° comes from the (1-21)[111] and (12-1)[-111] slip systems. For the polar angle range 

of 30° - 90° the major contribution to the plastic slip comes from (-211)[111] and (21-1)[1-

11] while the contribution to the plastic slip of slip systems (112)[11-1] and (121)[1-11] is 

maximum for the polar angle range of 90° - 180°. The contour plots of slip on these systems 

along with the total accumulated slip are plotted in figures 35(a - f), and 43(a) to indicate the 

71 



activated slip system. The results on angular variation of slip (figure 36) can be seen in figure 

35(a - f) for the individual slip systems, i.e. the variation of plastic slip is seen in detail for the 

above discussed six slip systems pointed out in figure 36. The plastic region developed due to 

the plastic slip in the (21-1)[1-11] system is the largest one (figure 35(f)) and the plastic slip 

in this slip system dominates the total plastic slip (strain) region (figure 43(a)). The large 

plastic slip in the (21-1)[1-11] system is due to its favourable orientation with respect to the 

crack front with the highest Schmidt factor of ~ -0.47 while other slip systems have smaller 

Schmidt factors ~ -0.408 and -0.237. 

For orientation III, the major contribution to total slip comes from the (1-21)[111], (12-1)[-

111], (-112)[1-11] and (-121)[11-1] slip systems (see figure 37). The major contribution of 

slip systems (1-21)[111] and (-112)[1-11] is in the range of 0° - 60°, while the major 

contribution of slip systems (-121)[11-1] and (12-1)[-111] starts from 30° and ends at 180°. 

The reason is the favourable orientation of the slip systems (1-21)[111] and (-112)[1-11] in 

the range of  of 0° - 60° with highest Schmidt factor of -0.47 in this region which changes 

relative to loading direction to 0.21 in the range of  30° - 180°. That is why the major 

contribution of the slip systems (1-21)[111] and (-112)[1-11] is larger in the polar angle range 

of 0° - 60°. The contour plots of the slip on the above four slip systems, as well as the total 

slip for orientation III are plotted in Figs. 37(a - d), and 43(c) to indicate the radial variation of 

slipping. The contour plots in figure 38(a - d) show the same angular dependence of the 

plastic slip region developed around the crack tip in the four slip systems as shown in figure 

37 at a radial distance of 15 µm.  

The orientations IV and V, which are originally single slip orientations always had one slip 

system activated at the start of plastic deformation. The orientation IV always had (011)[11-1] 

system as primary activated slip system while orientation V always had (-211)[111] system 

activated as primary slip system. Figure 40 shows the major contribution to the total slip 

coming from (011)[11-1], (10-1)[111], (112)[11-1] systems for orientation IV where (10-

1)[111] and (112)[11-1] are secondary slip systems which are activated in stage II of loading 

because of lower Schmidt factor ~ -0.44 as compared to the Schmidt factor of the primary 

system (011)[11-1] ~ -0.497. It is also prominent that the contribution of the primary slip 

system (011)[11-1] is the highest one. The energy release rate for orientation IV (see figure 

31) shows that the slope of the increase in the energy release rate as a function of applied 

strain is steeper as compared to orientations I, III and V. The energy release rate for 

orientation V (see figure 31) has almost the same trend as orientations I and III. Figure 42 

shows that the major contribution to the total slip comes from (011)[11-1], (101)[-111], (-
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121)[11-1] and (-211)[111] systems for orientation V and the contribution of the primary slip 

system (-211)[111] is the highest one. The contour plots of the slip on the different activated 

slip systems, as well as the total slip are plotted in figures 39(a - c), and 43(d) for orientation 

IV and figures 42(a-d), and 43(e) for orientation V. For orientation IV the major plastic zones 

are developed due to the plastic slip in the (011)[11-1] and (10-1)[111] systems (figures 39(a) 

and 39(b), respectively). The plastic slip in these two systems dominates the total plastic slip 

(strain) zone (figure 43(d)). For orientation V the major plastic slip zones are developed due 

to plastic slip in the (-121)[11-1] and (-211)[111] slip systems (figures 42(b) and 42(d), 

respectively). The plastic slip in these two systems plays a dominating role in the total plastic 

slip (strain) zone (figure 43(e)). 

In order to qualitatively compare the finite element results discussed above, with the 

experimental results of [22, 23], we consider the first three orientations, i.e. orientation I, II 

and III and compare the energy release rate trends with the experiments of [22, 23]. No 

experimental results are available for orientations IV and V, therefore, only orientations I, II 

and III are compared with experimental fracture energy values. The experimental results 

showed that the energy release rate of orientation II was always higher than that of the other 

two orientations I and III. The calculated energy release rate values for the three orientations 

I, II and III were found to be 115 J/m2, 370 J/m2 and 112 J/m2, respectively, at a bonding 

temperature of 1400 °C. The results obtained here can be extended to other bonding tempe-

ratures, such as for 1300 °C. This can be done by using the appropriate stress-strain-curves 

from experiments which will require the identification of the crystal plasticity hardening 

parameters for these cases (as discussed in section 4.1). The studies for 1300 °C are not done 

here due to unavailability of stress-strain curves for this bonding temperature. 

Figure 44 shows the same trend as experimentally found in [22, 23] with the highest energy 

release rate found for orientation II while orientations I and III were almost having the same 

energy release rate values during deformation. It has also been found that orientation I has 

slightly higher values of energy release rate than orientation III which again is in agreement 

with the experimental findings [22, 23].  

In order to understand the phenomena involved behind this difference in energy release rates 

for three orientations I, II, and III, uniaxial tension test simulations were performed. Based on 

crystal plasticity theory the stress-strain curves of the uniaxial tension test simulations for the 

three orientations I, II and III are plotted in figure 45 which shows that the orientation of 

niobium single crystals changes the stress-strain behaviour and one can eventually see that for 

a specific strain value, higher stresses are induced for the case of orientation II than 
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orientation I and III. These higher stresses cause the higher total energy of the niobium single 

crystals which is given by the area under the stress-strain curve. Similar results were obtained 

in [142, 143] where it was found that for different specimens of stainless steel the specimens 

with higher uniaxial stress-strain cuves give higher fracture energies for stationary and 

growing cracks. It is also found in the present work that the stresses induced around the crack 

tip for orientation II were higher than for orientations I and III. This ultimately ends up with a 

higher J-integral value as shown in figure 44. The high value of induced stress for orientation 

II is due to the low Schmidt factor of the slip systems activated during deformation, i.e., it 

requires higher stresses to activate a slip system with low Schmidt factor than the slip system 

with high Schmidt factor. It is also found that the total slip induced in the niobium single 

crystals for the three orientations depict that orientation I and III always had higher plastic 

slip (strain) than orientation II for the same loading conditions (figures 33, 36, 37). This in 

fact is due to the orientation of the slip systems as the slip systems for orientation I and III 

have higher Schmidt factors 0.47 and 0.447 (as discussed above) and, therefore, they tend to 

slip more easily than the orientation II with Schmidt factor 0.408. 

4.2.5  Summary 

Different techniques to compute the fracture energy of an interface crack in a bimaterial 

specimens have been applied. A comparison of fracture energies computed with three 

different methods, i.e., global energy method, J-integral method and virtual crack closure 

technique  has been made. The computed values showed the consistency in the results. 

Bimaterial specimens was also simulated using isotropic plasticity and crystal plasticity 

theory. The crystal plasticity results are compared with the experimental results and show that 

there is a variation in fracture energy for different orientations as measured in experiments. 

This is due to the plastic anisotropy of the single crystalline materials which cannot be 

captured by the continuum deformation plasticity theory. Based on the contribution of the 

plastic slip (strain) of the activated slip systems for various orientations the difference in the 

energy release rate has been explained.  The finite element analyses results show the same 

trend of computed fracture energy as found in the experiments [22, 23] for three different 

orientations. 
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4.3  Effect of Thermal Residual Stresses 

This section presents the results obtained from crystal plasticity finite element analyses 

including thermal residual stress effects. Thermal residual stresses which are induced during 

high temperature bonding can play a role during the fracture process as discussed below. In 

this section, the effect of thermal residual stresses is being studied. A comparison has been 

made between conventional simulations (without thermal residual stresses) and simulations 

with induced thermal residual stresses. 

4.3.1  Introduction 

By definition, the residual stress in a body is (normally) the stress remaining in that body 

when there are no external forces applied on the body.  

Significant differences in the thermal and mechanical properties of ceramics and metals make 

it extremely difficult to obtain ceramic-to-metal joints with adequate mechanical integrity 

[115]. 

The reason behind it is, the mismatch in thermal and mechanical properties, induces large 

tensile and shear residual stresses in the region around the edge and near the interface of metal 

and ceramic, when cooled from the joining temperature [116]. This sometimes causes the 

crack to propagate out from an interface and continue to travel parallel with the interface. As 

mentioned above, this may be due to elastic anisotropy mismatch, which directs a crack out 

from the interface by kinking or bending [117, 118], it is perhaps most often caused by 

thermal expansion mismatch, resulting in residual normal stresses in planes normal to the 

interface. 

In order to see the amount of thermal residual stresses induced in the bicrystal test specimens, 

coupled temperature-displacement analyses have been performed. 

4.3.2  Finite Element Model 

The finite element model is based on the experiments performed in [22, 23], as discussed in 

section 4.2.2. The specimens to perform four-point-bending test experiments in [22, 23] were 

prepared by diffusion bonding of single crystals of niobium and alumina in ultra high vacuum 

furnace.  

The finite element model is constructed based on the information provided in [22, 23] (as 

discussed in section 4.2.2), but without a notch. As shown in figure 46, the finite element 

model of a niobium single crystal is bonded to alumina (using the bond option available in 

ABAQUS). Finite element models of alumina shanks and a polycrystalline niobium sheet 
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were joined with the corresponding niobium single crystal finite element model and an 

alumina finite element model using the tie constraints option available in ABAQUS. 

Niobium Single Crystal Alumina Single Crystal

Niobium

Alumina Shanks Alumina Shanks

2 mm

Niobium Single Crystal Alumina Single Crystal

Niobium

Alumina Shanks Alumina Shanks

2 mm  
Figure 46: Four point bending test specimens without a notch during bonding 

4.3.3  Finite Element Analysis 

Finite element analyses were performed in two steps based upon the procedure involved in 

bonding of four-point bending test specimens for experimental studies. 

Niobium Single Crystal Alumina Single Crystal

Niobium

Alumina Shanks Alumina Shanks
0.5 MPa

0.5 MPa

Niobium Single Crystal Alumina Single Crystal

Niobium

Alumina Shanks Alumina Shanks
0.5 MPa

0.5 MPa

 
Figure 47: Four point bending test specimens without a notch stacked in the press anvil 

The experimental specimens in [22, 23] were produced by diffusion bonding of single crystals 

of niobium and alumina in ultra high vacuum furnace. As shown in figure 47, single crystal 

niobium, single crystal alumina and shanks of polycrystalline alumina were stacked with an 

initial uniaxial pressure of 0.5 MPa. The whole stack is then placed into the ultra high vacuum 

furnace where the temperature was maintained up to 1400 °C. The pressure at the bonding 

temperature is 10 MPa. 

A similar procedure has been used in finite element simulations in two steps. The first step 

consisted of thermo-mechanical analyses, in which the specimens is heated to a temperature 

of 1400 °C, simultaneously a pressure (as shown in figure 47) is applied which increased 

linearly from 0.5 MPa – 10 MPa with time and is controlled in such a manner that at 1400 °C 

the pressure was 10 MPa, as was the same as during bonding of the real structure [22, 23]. 
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A second step consisted of thermo-mechanical analyses in which the specimens is cooled 

down to room temperature keeping the pressure to be 10 MPa [22, 23]. 

The thermo-mechanical analysis is used to compute the thermal and mechanical stresses. 

Thermal stresses are computed using the following relation equation (54) [98]: 

TEth ∆−= ασ      (54) 

where E is Young’s modulus, α is the thermal expansion coefficient and ∆T is the change in 

temperature ( ) with Tpreviouscurrent TTT −=∆

storedconductedplied QQQ

current is the temperature at the current time 

increment while Tprevious is the temperature at the previous time increment. 

The temperature at the current time increment  Tcurrent is obtained from the energy balance, 

given by equation (55): 

     (55) +=sup

where Qsupplied is the heat energy supplied to the material while Qconducted is the heat energy 

conducted through the material (
x
TAconducted ∆

∆
−= ϖQ ) with ϖ  is thermal conductivity, A the 

surface area of the material, ∆T the change in temperature, and x is the position in the 

material. Qstored is the heat energy stored in the material (Q TVstored ∆= ζρ ) with ρ the density 

of the material, ζ the specific heat and V is the volume of the material. 

Material properties used for the thermo-mechanical analysis are the same as described in 

section 4.2.3. Thermal properties for niobium are the coefficient of thermal expansion 

, thermal conductivity , density 

 and specific heat , while, thermal properties of 

alumina are, coefficient of thermal expansion K

16103.7 −−= KxNbα 117.53 −− ⋅⋅= KmWNbϖ

3/57.8 cmgNb =ρ 11268 −− ⋅⋅= KkgJNbζ

6
)0001( 108.5

32

−= xOAlα

11.35
32

−− ⋅⋅= KmWOAlϖ 3/985.3
32

cmgOAl =ρ

11750
32

−− ⋅⋅= KkgJOAlζ

-1, thermal conductivity 

, density  and specific heat 

. The thermal properties are needed in equations (54 – 55), i.e. 

thermal conductivity ϖ  is needed to compute Qconducted, thermal expansion coefficient α is 

required to compute thermal stresses while density ρ, and specific heat ζ, is needed to 

compute Qstored. 

Due to the anisotropy in the coefficients of thermal expansion of alumina, two different 

thermal expansion coefficients have been used. The first one is for the (0001) orientation and 

the second one is for the (11-20) orientation. The thermal expansion coefficients are 

 and . 16
)0001( 108.5

32

−−= KxOAlα 16
)2011( 108.6

32

−−
− = KxOAlα
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At the end of the second step, residual stresses were obtained from the above analysis using 

the URDFIL subroutine available in ABAQUS. These stresses were then prescribed as the 

initial stress in the four point bend test specimens with a notch. After the inclusion of the 

induced thermal residual stresses a final deformation step was performed in which the finite 

element model with induced thermal residual stresses is deformed with an applied bending 

loading of 100 MPa (as shown in figure 27). 

4.3.4  Results and Discussion 

Usually, the niobium-sapphire interface serves as a model system as the thermal expansion 

coefficients of niobium and sapphire are nearly the same. In order to see the effect of thermal 

residual stress, the current analyses were done as discussed in the sections 4.3.1 - 4.3.3. 

Figure 48, shows the J-integral versus applied load curve and as can be seen that there is a 

small variation in the values of J-integral through out the deformation process for the three 

cases, i.e., without thermal residual stress, with thermal residual stress for alumina (0001) 

orientation and with thermal residual stress for alumina (11-20). 

If  the two cases of alumina (0001) and alumina (11-20) are compared, the J-integral value is 

always larger at every point of the deformation for alumina (11-20) than alumina (0001). But 

as mentioned above the difference is really small. 
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Figure 48: Effect of thermal residual stresses on J-integral value 
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As mentioned above the difference in thermal expansion coefficients is not so high for the 

niobium/alumina system up to the temperatures used for diffusion bonding, i.e. αNb = 7.3 x 

10-6 K-1 while for two different orientations of alumina  and 

. The ratio of α

16
)0001( 108.5

32

−−= KxOAlα

16
)2011( 108.6

32

−−
− = KxOAlα 16

)2011( 108.6
32

−−
− = KxOAlα

16
)2011( 108.6

32

−−
− = KxOAlα

16
)0001( 108.5

32

−−= KxOAlα

Nb = 7.3 x 10-6 K-1 to  is 

small ~ 1.073. Also, the anisotropy of the thermal expansion coefficient α of sapphire does 

not play a significant role in the present analyses as the ratio of   to 

 is small ~1.17. Due to such small mismatch in thermal expansion 

coefficients (as discussed above) no significant effect of thermal residual stresses on the J-

integral value is found for the niobium/alumina system. 

4.3.5  Summary 

The effect of thermal residual stress on J-integral has been studied in this section. As the 

mismatch in the thermal expansion coefficients is very small, therefore, heating of the 

specimens from room temperature to 1400 °C and then cooling back to room temperature did 

not induce high thermal residual stresses. Therefore, no significant effect on the J-integral 

value was found for the niobium/alumina system. It is also found that anisotropy of the 

thermal expansion coefficient of sapphire does not effect the J-integral values because of 

small differences in thermal expansion coefficients of the two different orientations. 

However, for the metal/ceramic joints where this mismatch in the thermal expansion coeff-

icients is high, e.g., in copper/alumina (ratio ) or aluminum/alumina (ratio 9.2/
32

≅OAlCu αα

1.4/
32

≅OAlAl αα ) thermal residual stress effects should be taken into account using the 

procedure described above.  

79 



4.4  Interface Fracture Analyses Using a Cohesive Modelling Approach 

This section presents the results of interface fracture of a bicrystal specimens obtained from 

the crystal plasticity theory based finite element simulations using a cohesive modelling 

approach. The effect of different cohesive law parameters, such as, cohesive strength and 

work of adhesion will be studied. The section also discusses the influence on fracture energy 

of local mode mixity, T-stresses and stress triaxiality at the interface of the bicrystal 

specimens. A relation will be derived to interlink the local adhesion capacity and macroscopic 

fracture energies. 

4.4.1  Finite Element Model 

The finite element model applied in the present study is based on the experiments performed 

in [22, 23], as already discussed in section 4.2.2. The finite element mesh consisted of 39508 

plane strain four-noded quadrilateral elements. The crack propagation along the interface has 

been modelled by four-noded rectangular cohesive elements with zero thickness in the 

direction normal to the direction of crack propagation. The cohesive law used for this study is 

proposed by Scheider [84, 85] as already discussed in section 3.3.3. 

For all simulations, both outer alumina shanks (ceramic) and the alumina single crystal at the 

middle of the specimens were treated as purely elastic with a Young’s modulus of 390 GPa 

and a Poisson’s Ratio of 0.27. The polycrystalline niobium sheet is always modelled with an 

elastic-plastic constitutive law. Young’s modulus and the Poisson’s Ratio for the 

polycrystalline niobium sheet were the same for all simulations (E = 104.9 Gpa, ν = 0.397).  

These elastic and plastic data are adjusted to alumina and niobium, respectively in [18, 19, 

20]. The plastic behaviour of the stress-strain curve of the polycrystalline niobium sheet is 

approximated by a Ramberg-Osgood relation [21], which is described in the one-dimensional 

case by the following equation (57): 
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Here, n denotes the hardening exponent, α the yield offset and σ0 the yield stress. This 

material law is nonlinear from the beginning, but for commonly used hardening exponents (n 

≥ 5) the divergence from linearity is only slight for stresses below σ0. The chosen plasticity 

theory is the deformation plasticity theory (for details see [22] and references therein), which 

describes not a plastic material behaviour, but a nonlinear elastic material. This means, that no 

unloading criterion exists which limits this theory only for monotonic loading cases. Selection 
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of this theory is not crucial in the current study as during all the presented simulations the 

niobium polycrystalline sheet is found to behave elastically (which was also the case during 

the experiments [22, 23]). The parameters of the above equation are adjusted to the niobium 

stress-strain curves in [23]. The parameters used are n = 6, σ0 = 180 MPa and α = 0.3.  

For the case of crystal plasticity, single crystalline niobium is modelled using the hardening 

law of Bassani & Wu (BW) [62, 63]. The hardening parameters for each slip system are 

derived in [14] and have already been discussed in detail in section 4.1. The hardening 

parameters used for each family of slip systems, i.e. (110)[111] and (112)[111], are given 

below.  

Table XII: Hardening parameters for the Bassani & Wu (BW) hardening law 
 τo 

(MPa) 

τs 

(MPa) 

ho

(MPa) 

hs 

(MPa) 

γo γoI fαβ fαβI q qI

(110)[111] 13.7 8.4 292.26 0.001 0.0075 0.48 3.3 1.66 0.289 0.2315

(112)[111] 13.07 10.34 25.033 24.227 0.04 0.039 0.49 0.14 0.01 0.011 

 
Finite element analyses of crack growth have been performed for three different cases, i.e. 

when niobium (110)[001] is bonded with alumina (11-20)[0001], niobium (100)[001] is 

bonded with alumina (11-20)[0001], and niobium (111)[-1-12] is bonded with alumina (11-

20)[0001]. Parameteric studies have been performed to study the effect of cohesive law 

parameters, such as, cohesive strength and cohesive energy (also known as work of adhesion). 

4.4.2  Results and Discussion 

4.4.2.1  Effect of Cohesive Law Parameters on Fracture Energy 

Cohesive law parameters are selected based on the reported values in [26, 27, 28, 42, 119, 

120] for the niobium/alumina system. An approximated work of adhesion value of 1 J/m2 was 

reported in [119] while a value ranging from 1 - 4 J/m2 was reported in [42, 120]. Ab-initio 

calculations performed on Nb(111)/Alumina(0001) in [26 - 28] reported the value of work of 

adhesion to be 9.8 J/m2. This shows that a variety of values of work of adhesions have been 

reported by different researchers. Therefore, it is necessary to perform parameter studies in 

order to see the influence of the different reported values of work of adhesion in the range of 

1 – 10 J/m2. 

In the following, crack growth analyses are performed with different sets of values of 

cohesive law parameters, such as, cohesive strength and work of adhesion. We firstly study 

the effect of cohesive strength on the J-resistance curves of niobium (110)[001]/alumina (11-
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20)[0001] bicrystal specimens. Later we also compare the results for the case when the 

cohesive strength is kept constant while the cohesive energy is varied. The ultimate goal of 

this parametric study is to find a correlation between the local adhesion capacity and the 

macroscopic fracture energy for the metal/ceramic orientations analyzed. 

Three different values of cohesive energy (work of adhesion) reported in [26, 27, 28, 42, 118, 

120] have been used, i.e., 1 J/m2, 4 J/m2, and 9.8 J/m2. 
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Figure 49: Cohesive law curve of various values of cohesive strength for constant work of 

adhesion (Γ0 = 1 J/m2) 

The effect of cohesive strength on fracture energy has been studied by keeping the work of 

adhesion constant. The cohesive law curves for various values of cohesive strength at a 

constant work of adhesion are plotted in figure 49. The J-resistance curves for the work of 

adhesion of 1 J/m2 are shown in figure 50. The results clearly show that by increasing the 

cohesive strength value while keeping the cohesive energy constant, the fracture resistance 

increases. This is due to the higher plastic energy dissipation around the crack tip. It is also 

found that the amount of crack length to reach the steady state crack growth increases with 

increasing cohesive strength. This behaviour can also be explained in terms of the stress level 

or traction (normal force per unit surface area acting between the niobium and alumina 

surfaces) ahead of the crack tip, i.e., for higher cohesive strength values, the traction (normal 

stress) required at the crack front to advance the crack is higher, and hence a larger applied 

load is required. On the other hand, a lower cohesive strength corresponds to a smaller 

applied load required to advance the crack. 
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The plastic dissipation rate as a function of normalized crack length for various cohesive 

strength values is plotted in figure 51. For all positions of crack tip the plastic dissipation rate 

is computed by the following equation (57) [39]: 

( )
Bda

EE
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pl
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pl
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pl
lk

−
=

plE pl
al

E

      (57) 

where Gpl is the plastic dissipation rate,  and  are the plastic energies at crack lengths 
a

ak

k and al while Bda is the crack front area. 

The plastic dissipation rate increases as the cohesive strength increases. It is also shown in 

figure 51, that the plastic dissipation rate is initially high and decreases as the steady state 

crack growth is reached. This decrease in plastic energy dissipation increases as the cohesive 

strength increases. This is due to the fact that during the initial stage of crack growth when the 

crack tip is sharp, a higher amount of plastic dissipation is present which decreases eventually 

as the crack tip starts to blunt. Also, in terms of stress level, the higher the cohesive strength 

(peak of the cohesive law curve, as shown in figure 49) meaning higher normal stress (the 

stress at any point of the cohesive law curve) at the crack tip causing higher plastic energy 

dissipation rates during the initial stages of crack growth. 
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Figure 50: J-resistance curves for different values of cohesive strength (Γ0 = 4 J/m2) 

As shown in figure 50, the experimental fracture energy value of 370 J/m2 is reached when 

the cohesive strength was assumed to be 258 MPa for the work of adhesion value of 4 J/m2. 
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Similar studies are done for the work of adhesion value of 1 J/m2 and 9.8 J/m2. The cohesive 

law parameters identified for the three different values of work of adhesion are given in Table 

XIII: 

Table XIII: Cohesive model parameters for Nb(110)[001]|Al2O3(11-20)[0001] 
Work of adhesion  

[J/m2] 
Cohesive strength  

[MPa] 
Steady state fracture energy, Jc 

[J/m2] 
1 283 370.6 
4 258 371 

9.8 225 372 
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Figure 51: Plastic dissipation rate vs. normalized crack length (Γ0 = 4 J/m2) 

Fracture energies as a function of cohesive strength to yield stress ratio (σc/σy) have been 

plotted in figure 52 for three different work of adhesion values at steady state crack growth. 

These curves show that as the cohesive strength to yield stress ratio (σc/σy) increases the 

fracture energy at the steady state crack growth also increases. This increase is gradual until 

the cohesive strength to yield stress ratio (σc/σy) is approx. 4.4. As soon as this value is 

reached the slope of the fracture energy curve increases which is due to the high plastic 

energy dissipation according to the higher number of activated slip systems. As discussed in 

section 4.2.4, the reason for the higher number of activated slip systems is that, as the 

cohesive strength is increased the resolved shear stress of the slip systems with lower Schmidt 

factor also increases until it reaches the yield stress of such slip system. As soon as the 

resolved shear stress becomes equal to the yield stress, the slip systems with lower Schmidt 

factor are activated. This can also be seen in figure 32, where slip systems with the highest 

Schmidt factor (1-12)[-111], (-211)[111] and (211)[-111] systems with Schmidt factors  ~ 
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-0.4714, -0.2357 and -0.408, respectively, are shown. Due to the highest Schmidt factor ~ 

-0.4714 of (1-12)[-111] system, it is the first slip system which is activated. As the 

deformation process still continues, stresses around the crack tip also increase, causing other 

slip systems to activate, e.g. (-211)[111] and (211)[-111] slip systems. This activation of slip 

Figure 52: Fracture energy vs. cohesive strength (σ
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reach up to

different cohesive strength to yield stress ratios (σc/σy). The values of cohesive strength to 

yield stress ratio (σc/σy) were found for three different work of adhesion values, 1 J/m2, 4 

J/m2, and 9.8 J/m2 to be 5.59, 5.095, and 4.443, respectively.  In a similar fashion the fracture 

energy is plotted as a function of the work of adhesion for different values of cohesive 

strength at steady state crack growth, as shown in figure 53. It shows that a linear relation 

exists between fracture energy and work of adhesion. These results show that fracture energy 

depends more strongly on the cohesive strength than on work of adhesion. 

Similar studies have been done for the other two orientations, i.e., when n

is bonded with alumina (11-20)[0001] and niobium (111)[-1-12] is bonded with alumina (1-

20)[0001]. Figures 54 and 56 show the plots of the fracture energies as a function of cohesive 

strength for three different values of work of adhesion at steady state crack growth. Figure 54 

shows the fracture energy results for a niobium (100)[001]|alumina (11-20)[0001] interface 

and figure 56 for the niobium (111)[-1-12]|alumina (11-20)[0001] interface. The plot in figure 
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54 shows that as the cohesive strength increases the fracture energies are almost linear and 

when the value of the cohesive strength reaches the range of 200 - 210 MPa (i.e., σc/σy ≅ 5) 

the slopes of the fracture energy curves increase. As discussed before, the reason is higher 

plastic energy dissipation due to the higher number of slip systems being activated. The 

similar (as seen in figure 52) trend is depicted from figure 56 for niobium (111)[-1-12]|alu-

mina (11-20)[0001] interfaces and the change in the slope of the fracture energy curve is 

again due to the higher number of slip systems being activated. As discussed before, the 

reason for the higher number of activated slip systems is that, as the cohesive strength is 

increased the resolved shear stress of the slip systems with lower Schmidt factor also 

increases until it reaches the yield stress of such slip systems.  
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Figure 53: Fracture energy vs. work of adhesion at steady state crack growth for t e 

The fracture hesion for different values of 

 to the 

h
Nb(110)[001]|Al2O3(11-20)[0001] interface crack 

 energy is replotted as a function of the work of ad

cohesive strength at steady state crack growth in figure 55 for niobium (100)[001]| Al2O3 (11-

20)[0001] interface and in figure 57 for niobium (111)[-1-12]| Al2O3 (11-20)[0001] interface. 

As the work of adhesion increases, the fracture energy also increases but the change is gradual 

when compared to the increase in fracture energy due to a change in cohesive strength. 

These results show that the fracture energy is more sensitive to cohesive strength than

work of adhesion. It is also found that as the cohesive strength increases the fracture energy 

increases. It is also seen during the simulations that the slope of the fracture energy curve 

increases when the number of activated slip systems increases. The reason for the higher 

number of activated slip systems is that, as the cohesive strength is increased the resolved 
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shear stress of the slip systems with lower Schmidt factor (e.g., ~ -0.2) also increases until it 

reaches the yield stress of the slip system. Therefore, as soon as the resolved shear stress 

becomes equal to the yield stress, the slip systems are activated. And as explained before, this 

activation of slip systems continues as the stresses around the crack tip increase. 
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Figure 54: Fracture energy vs. cohesive strength (σc) to yield stress (σy) ratio at steady state 

crack growth for different values of work of adhesion, Wadh for the 
Nb(100)[001]|Al2O3(11-20)[0001] interface crack 
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Figure 55: Fracture energy vs. work of adhesion at steady state crack growth 

(Nb(100)[001]|Al2O3(11-20)[0001]) 

σc/σy
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Figure 56: Fracture energy vs. cohesive strength (σc) to yield stress (σy)  ratio at steady state 

crack growth for different values of work of adhesion, Wadh for the Nb(111)[-1-
12]|Al O (11-20)[0001] interface crack 

The cohesive

given in Ta (11-20)[0001] interfaces [see captions 

2 3

ork of adhesion  Cohesive strength  Steady state fracture energy Jc 
2

2 3

 law parameters identified for the three different values of work of adhesion are 

ble XIV for niobium (100)[001]|Al2O3

below]. 

Table XIV: Cohesive model parameters for the system Nb(100)[001]|Al O (11-20)[0001] 
W

(J/m2) (MPa) (J/m ) 
1 250 116 
4 215 115.8 

114.8 9.8 190 
 

The results in Table XIV show that as the w n increases the cohesive strength 

quired to reach the experimental fracture energy value decreases. The values of cohesive 

2 3

(J/m2) 
Cohesive strength  

(MPa) 
Steady state fracture energy Jc 

(J/m2) 

ork of adhesio

re

strength for the niobium (100)[001]|Al2O3(11-20)[0001] interface crack are found to be 250 

MPa, 215 MPa, and 190 MPa for three different work of adhesion values of 1 J/m2, 4 J/m2 

and 9.8 J/m2, respectively. 

Table XV: Cohesive model parameters for Nb(111)[-1- 12]|Al O (11-20)[0001] system 
Work of adhesion  

1 214 112 
4 198 111.8 

113 9.8 193 
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The cohesive law parameters identified for the three different values of work of adhesion are 

given in Table XV for the niobium (111)[-1-12]|alumina (11-20)[0001] interface. 

In this section the effect of cohesive law parameters, such as cohesive strength and work of 

adhesion on fracture energy is presented. The results show a stronger influence of the 

cohesive strength on fracture energy as compared to work of adhesion. It is also seen in the 

simulations that the slope of fracture energy increases as the number of activated slip systems 

increases (see figure 52) causing higher plastic energy dissipation. The results presented in 

this section provide insight in the role of cohesive strength and work of adhesion with respect 

to the fracture energy which will help experimentalists in order to design improved bimaterial 

interfaces by varying cohesive strength and work of adhesion. One example of such studies 

has been presented in the experimental work [136] where the influence of impurities on the 

fracture energies of the niobium/alumina interface was studied: The work of adhesion was 

varied by doping elements, such as silver, at the interface. It was found that as the fraction of 

doped silver increases at the interface, the work of adhesion decreases causing the fracture 

energy to decrease also. 
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Figure 57: Fracture energy vs. work of adhesion at steady state crack growth along a 

Nb(111)[-1-12]|Al2O3(11-20)[0001] interface 

, adh

separation (δc) at complete failure in the range of 6.625 – 83 nm for three different orien-

160

In this work  the effect of different cohesive law parameters, such as work of adhesion (W ) 

and cohesive strength (σc) on fracture energy is studied. As discussed before, the work of 

adhesion (Wadh) values were varied in the range of 1 - 9.8 J/m2 while cohesive strength (σc) 

values were found to be in the range of 190 – 283 MPa with corresponding critical normal 
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tations of the niobium/alumina single crystalline interfaces. Xu & Needlemann [38, 78] and 

Kysar [35, 36] have performed studies on copper/alumina bicrystal interfaces fracture and 

have used similar cohesive law parameters. The parameters used were, work of adhesion 

(Wadh) equals to 1.0 while cohesive strength (σc) was in the range of 122 – 250 MPa with 

corresponding normal separation (δc) at complete failure being in the range of 15 – 76.2 nm. 

In the following, a correlation among cohesive strength (σc), work of adhesion (Wadh) and 

yield stress (σy) has been obtained by using least square surface fitting technique (available in 

MATLAB [141]) to estimate the cohesive strength (σc) for three differently oriented 

niobium/alumina interfaces. A surface has been plotted in figure 58 using cohesive strength 

(σc) and work of adhesion (Wadh) given in tables XIII, XIV and XV, and yield stress (σy) for 

each orientation, i.e. 40 MPa for Nb(100)[001]|Al2O3(11-20)[0001], 50.98 for 

Nb(110)[001]|Al2O3(11-20)[0001], and 29,6 for Nb(111)[-1-12]|Al2O3(11-20)[0001]-

interfaces.  

 
Figure 58: Surface plot of fracture energy vs. work of adhesion and cohesive strength for 

three different orientations of niobium/alumina-interfaces 

range 190 – . the case when yield 

In figure 58 it can be seen that there exists a saddle point when cohesive strength is in the 

200 MPa. This is due to the fact that for orientation II, i.e

stress (σy) is 50.98 MPa, the cohesive strength values were always found to be higher than 

225 MPa for different values of work of adhesion (see table XIII) . Therefore, the surface plot 

90 



in figure 58 shows such a saddle point, this is due to the extrapolation of cohesive strength for 

orientation II below 225 MPa. This saddle point neither has any significance in reality nor any 

effect on current calculations during the present study. 

This correlation has been derived for three different orientations of niobium/alumina 

interfaces, i.e. Nb(110)[001]|Al2O3(11-20)[0001], Nb(100)[001]|Al2O3(11-20)[0001], and 

Nb(111)[-1-12]|Al2O3(11-20)[0001], using least square surface fitting technique in MATLAB 

[141] and the correlation is given as: 

y
adh

i W
σα ⋅⎟⎟

⎠
⎜⎜
⎝

⋅
0

112.
    

(58) 

where W0 is the reference work of adhesion taken to be 1 J/m2 for this study while αi i

parameter depending on the orientation of niobium/alumina bic  of 

ina 

ront ahead of the Crack Tip 

In this section the stresses ahead of stationary and growing interface cracks in the 

f stationary and growing 

ntations I and III. This was also found during the 

c
W

σ
⎞⎛

=
− 0919,0

6

s the 

rystal specimens. The value

αi is found to be 1.0 for Nb(100)[001]|Al2O3(11-20)[0001], 1.35 for Nb(110)[001]|Al2O3(11-

20)[0001], and 0.853 for Nb(111)[-1-12]|Al2O3(11-20)[0001]-interfaces. 

This correlation can be used to estimate the cohesive strength (σc) for a given work of 

adhesion (Wadh) and yield stress (σy) for any of the three orientations of niobium/alum

interfaces. 

4.4.2.2  Stresses along the Crack F

niobium/alumina system are examined. The stress state ahead o

interface cracks is an important factor which controls the local mode mixity at and ahead of 

the crack tip. The local mode mixity strongly influences the fracture energy of bimaterial 

interfaces (as will be discussed later in section 4.4.4). First the case of a stationary crack tip is 

considered. The normal opening stress σ11 and the shear stress σ12 are plotted as a function of 

distance ahead of the crack tip in figure 59. 

Figure 59 shows that the normal opening stress along the crack front of the stationary crack 

tip of orientation II is higher than that of orie

uniaxial tension test simulations without crack propagation as discussed in section 4.2.4. The 

shear stresses along the crack front of the stationary crack tip σ12 are essentially the same for 

all three orientations I, II and III and are almost negligible as compared to the normal opening 

stresses σ11. The results show that normal opening stresses (σ11) provide a major contribution 

to the stress state ahead of the stationary crack tip as compared to the shear stresses (σ12) 

leading to a low local mode mixity ratio at the crack tip of niobium/alumina specimens 

(discussed in detail in section 4.4.4). 
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Figure 59: Stresses ahead of the tip for the case of a stationary interface crack of various 

Nb|Al2O3-orientations 
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Figure 60: Stress ahead of the crack tip of the growing crack after 10.3 µm growth for the 
Nb(110)[001]|Al2O3(11-20)[0001]-interface (orientation II) 

20)[0001] sy  simulated using the 

Finally, the stress state for the case of a growing interface crack of the Nb(110)|Al2O3(11-

stem is plotted in figure 60. The growing interface crack is

cohesive model (as discussed in section 4.4.2) for the Nb(110)|Al2O3(11-20)[0001] system 

with work of adhesion = 4 J/m2, and cohesive strength = 160 MPa. The stress state ahead of 
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the crack tip is plotted for the growing crack after 10.3 µm growth of an initially 0.4 mm long 

crack in figure 60.  

Figure 60 shows that the shear stress along the crack front is almost negligible as compared to 

the normal opening stress. Therefore, mode II crack loading is small compared to mode I 

The local mode mixity at the crack tip is defined by the local phase angle 

crack tip loading. 

4.4.2.3  Local Mode Mixity at the Crack Tip 

ψ ′ . The variation in 

the local phase angle ψ ′may change the response of the crack tip upon loading on a bonded 

interface in metal/ceramic bimaterial systems. The local phase angle ψ ′ scribes the mode 

mixity at the crack tip d is not necessarily equal to the external loading phase angle and this 

difference comes from the mismatch in elastic and thermal proper es of the materials 

involved.  

According to Wang [140] the local phase angle 

de

an

ti

ψ ′depends on some characteristic length L, 

the distance from the crack tip r, and the bimaterial parameter ε, where ε is given by:  

⎟⎟
⎠

⎜⎜
⎝ +

=
βπ

ε
1

ln
2

      
⎞⎛ − β11 (59) 

and β is Dundurs second parameter:  

( )
( ) )1(1

)21(211

1221

1221

υµυµ
υµυµ

−−−
−−−

    (60) 

with µ1 and µ2 being the shear modulus of material 1 and 2  w

Ratios of material 1 and 2, respectively. 

2
β =

hile  ν1 and ν2 being Poisson’s 

The geometry of the specimens also influences the local phase angle ψ ′and is taken into 

account via some characteristic length, L such as the crack length a. 

The local phase angle ψ ′  at a distance r from the crack tip is given by: 

⎟
⎠
⎞

⎜
⎝
⎛−=′

r
lnεψψ     

L
  (61) 

where ψ is the loading phase angle given by, ( )ε2tan 1−= . The value of r in atomic scale ψ

sense is taken to be of the order b, the Burgers vector. 

This local phase angle ψ ′and the energy release rate Gc(ψ ′ ) when plotted, give the failure 

locus as shown below in figure 61, Cao & Evans [122]. 
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The criterion for interface crack growth is given in terms of cal phase angle  lo ψ ′  as: 

( ) ( )ψψ ′=′ GG       c (62) 

where Gc(ψ ′ ) is the energy release rate at fracture while G(ψ ′ ) is the actual energy release 

rate of the bimaterial system. Therefore, according to the above criterion a bimaterial system 

will fail if ( ) ( )ψψ ′=′ cG . This criterion defines a failure locus, which is a property of the 

interface, called the interface toughness curve. 

Cao & Eva ed the fracture resistance for a range of phase angles of a model 

bimaterial interface (glass/aluminum) bonded 

G

ns [122] ur

using epoxy

meas

 as bonding agent. Their experi-

mental studies revealed that the critical strain energy release rate increases with increase in 

phase angle, as shown in figure 61. 
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Figure 61: Fracture toughness curve for a bimaterial interface (glass/epoxy) [122] 

O’Dowd et al. [121] and O’Dowd [123] discussed the effect of local mode mixity on the 

ehaviour 

25c

L = 1 µm

fracture energies of a niobium/alumina bimaterial specimens. They found the same b

as Wang[140] between the local phase angle and the stress intensity factors as shown in figure 

62. 

Shih & Asaro [124] showed that the local phase angle ψ ′ for the case of elastic plastic 

interface fracture can be computed via the following relation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

xxσ
σ

ψ arctan    xy    (63) 
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where σxy denotes the shear stress at the crack tip along the crack fron σ  is the 

normal opening stress at the crack tance of L = r along the crack propagation 

t, while xx

 tip at a dis

direction. 

Using the relation of equation (63) the local phase angle ψ ′  has been computed for the case 

of a stationary crack tip and for growing cracks. 
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Figure 62: Fracture toughness curve for a bimaterial interface (niobium/alumina) [123] 

The local phase angle 

4

4,5

ψ ′  for the case of a stationary crack tip in a bimaterial niobi-

r ss um/alumina system for three different orientations is given in table XVI. As the shear st e

values along the interface at the stationary crack tip are small compared to the normal opening 

stress, the local phase angle ψ ′  is in the range of – 4.0° to – 0.3°. This range of local phase 

angles ψ ′  shows that the effect of local mode mixity is almost negligible. This can also be 

seen from figure 62 which shows for this range of local phase angles ψ ′  the Kc/KIc ratio is 

approxi tely equal to 1. 

Table XVI: Local phase angle 

ma

ψ ′  for various orientations of a stationary crack tip in 
niobium/alumina systems 

Orientation 11σ  [MPa] 12σ  [MPa]  

Nb(100)[001 53.1 -4.08 -4.394° 

⎟⎞⎜⎛=′ − 121tan σψ
⎠⎝ 11σ

]|Al2O3(11-20)[0001] 

Nb(110)[001 )[0001] -5.278 -5.28° 

] 

]|Al2O3(11-20 57.1 

Nb(111)[-1- 12]|Al2O3(11-20)[0001 55.7 -3.07 -3.155° 

 

95 



Similarly, local phase angles ψ ′  have a een comp or growing c ing a 

ohesive modelling approach. Two different cases have been considered. The first one is 

lso b uted f racks us

c

when both, the normal cohesive strength (σn) and the shear cohesive strength (σt) values are 

selected to be equal, i.e., σn = σt (this has been the case for all the simulations performed in 

section 4.4.2). The normal cohesive strength (σn) is the maximum normal stress required for 

damage initiation and the shear cohesive strength (σt) is the maximum shear stress required 

for damage initiation. The second one is when the shear cohesive strength is selected as half 

of the normal cohesive strength, i.e., σn = 2 x σt. 

The local phase angle ψ ′  for the case when σn = σt at different crack tip positions during 

crack growth is given in table XVII. All these results are for orientation II. The values of the 

local phase angle ψ ′  for the case of σn = σt are found to be in the range of – 6.5° to – 4°.  

Table XVII: Local phase angle ψ ′ for the case of a growing crack (σn = σt) for a Nb(110)-
[001]|Al2O3(11-20)[0001] interface 

Crack length (∆a), mm 11σ  [MPa] 12σ  [MPa]  

0.0 146.9 -11.23 -4.4° 

0.00165 1 -14.46 

0. 8 

26.5 -6.52° 

0063 121.93 -11.6 -5.44° 

0.0103 120.0 -12.3 -5.86° 

 
The loca ngle l phase a ψ ′  for the hen σn = 2 x σt erent crack tip p g 

rack growth is gi ain, the value of the local phase angle 

 case w  at diff ositions durin

c ven in table XVIII. Ag ψ ′ ranges in 

 –the narrow regime from 7.0° to – 4.7°. 

Table XVIII: Local phase angle ψ ′  for the case of growing crack (σn = 2 x σt) for a Nb(110)-
[001]|Al2O3(11-20)[0001] interface 

Crack length (∆a), mm 11σ  [MPa] 12σ  [MPa]  

0.0 146.0 -11.9 -4.66° 

0.00165 1 -14.8 -6.71° 

0.00638 119.68 

25.64 

-11.6 -5.54° 

0.0103 118.9 -14.6 -7.0° 

 

⎟
⎠

⎜
⎝

=′
11

12tan σψ ⎞⎛−1 σ

⎟
⎠
⎞⎜

⎝
⎛=′ −

11

121tan σψ σ
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The results of the local phase angle ψ ′  for the case of a stationary crack tip and for growing 

cracks show that the effect of local mode mixity is almost negligible for the case of 

niobium/alumina bicrystal specimens.  

4.4.2.4  Stress Triaxiality at the Crack Tip along the Interface 

The locus of failure and the crack propagation behaviour are significant aspects in evaluating 

the mechanical properties of bonded joints. Dillard [125] showed that the crack path locus is 

closely related to material properties such as strength, interface quality and fracture toughness 

of the bonds along with the stress state at the crack tip. 

Cao [126] and Akisanya [127] showed that the locus of failure and the crack propagation 

behaviour are dependent on the mode mixity of external loads. 

Material # 1

Material # 2

Material # 1

θr
Material # 1

Material # 2

Material # 1

θr

 
Figure 63: A crack in an adhesive bond, the model used by Fleck [128] and Akisanya [129] 

Fleck [128] and Akisanya [127,129] investigated the directional stability issue in adhesive 

bonds. The geometry shown in figure 63, was assumed to be semi-infinite, the adhesive was 

assumed to be linear elastic, and a semi infinite straight crack was present within the adhesive 

layer. According to the coordinate system in figure 63, the stress state at the crack tip can be 

expressed in the asymptotic form [66] as: 
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where r and θ are polar coordinates, and KI and KII are the stress intensity factors at the crack 

tip. The third term in equation (64) with stress Txx =σ  is given as: 

T
r

K
r
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where T is non-singular and acts in the direction parallel to the crack plane. By convention, 

this term is referred as the T-stress. 

Rice [130] showed that the T-stress plays an important role in the directional stability of crack 

propagation. The crack is directionally stable if the T-stress is negative, whereas it is 

directionally unstable if the T-stress is positive. The reason for the directional instability is the 

positive T-stress, as the higher the positive T-stress is the higher will be the stress triaxiality, 

therefore, the crack will kink towards a direction where the T-stress becomes negative [125, 

130] (a negative T-stress means compressive stress which does not allow the crack to kink 

while the positive T-stress means tensile stress which makes a crack to kink away from a 

direction where the T-stress is compressive). Rice [130] showed this crack kinking behaviour 

analytically (see [130] for details), it was shown that the crack kinks towards a direction 

where the T-stress becomes negative which is also the same direction where KII = 0 [130]. 

Fleck [128] and Akisanya [127, 129] also concluded that under predominantly mode I 

loading, the crack propagation in an adhesive bond is directionally stable if the T-stress is 

negative and is directionally unstable if the T-stress is positive.  

This criterion, although developed primarily for cracks in homogeneous materials, can be 

readily extended to interfaces in bimaterial systems such as bonded joints according to 

Hutchinson [105]. 

The study of Zhu and Chao [131] provides further insights about the effect of the T-stress on 

the crack propagation behaviour in homogeneous media. Not only the directional stability of 

cracks, but also the direction of crack propagation will be affected by the T-stress. Zhu and 

Chao [131] clarified that although the criteria for the cracking direction and directional 

stability of cracks are developed under the assumptions of linear elastic fracture mechanics, 

they are still applicable for ductile materials in most cases. 

According to equation (64), the T-stress can be calculated by substituting the stress σxx, σyy 

and the stress intensity factors obtained from finite element analyses into equation (64). 

When the fracture arises under pure mode I, i.e., KII = 0 in equation (64), then the T-stress 

along the crack plane (θ = 0 and ±π) can be obtained from equation (64) as:  

       (65) σσ −=
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if the fracture is in mixed mode, i.e., KII ≠ 0. Then, the T-stress behind the crack tip (θ = ±π) 

[125] is obtained by substituting θ = ±π in equation (64) and is given by: 

r
KT IIxx π

σ 2
+=       (66) 

where σxx is obtained from the finite element analysis, and KII can be obtained from the finite 

element analysis, as: 

( )
0

2
=

=
θ

πσ rK xyII

xx

      (67) 

The relations for T-stress discussed above are used to compute the T-stress values at various 

crack tip positions during crack growth for two different combinations of normal cohesive 

strength and shear cohesive strength, i.e., when σn = σt and σn = 2 x σt. 

The computed values of T-stress for various crack lengths is given in table XIX for σn = σt 

and in table XX for the case when σn = 2 x σt. 

Table XIX: T-stress at various positions of the crack tip during crack growth (σn = σt) 

yyσCrack length (∆a), mm σ  [MPa]  [MPa] T-stress [MPa] 

0.0 82.03 146.9 -64.87 

0.00165 89.4 126.5 -37.1 

0.00638 66.36 121.93 -55.57 

0.0103 63.67 120.0 -56.33 

 

Table XX: T-stress at moving crack tip during different stages of crack growth (σn = 2 x σt) 

yyσ [MPa] xxσCrack length (∆a), mm  [MPa] T-stress [MPa] 

0.0 82.32 146.0 -63.68 

0.00165 87.43 125.64 -38.21 

0.00638 61.19 119.68 -58.49 

0.0103 57.46 118.9 -61.44 

 

The results shown in table XIX and XX demonstrate that the T-stress is always found to be 

negative, therefore, the crack propagation direction is always stable according to the above 

criteria, i.e., along the interface during all the simulations. 
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4.4.2.5  Influence of Strain Gradient Crystal Plasticity  

Steep strain gradients in the vicinity of the crack tip produce locally high levels of strain 

hardening due to a high density of geometrically necessary dislocations which ultimately end 

up with higher levels of stresses around the crack tip. The effect has been observed at the 

micron scale in indentation tests, in torsion of wires, bending of thin films [134] and 

metal/ceramic interfaces [140]. In some cases (see [134] and [140]), stress levels from strain 

gradient theories have been observed to be two to three times the stresses in the absence of 

strain gradients. Such high stress levels from strain gradient effects are expected to have a 

profound influence on interface separation. For the cases when the length of the separation 

zone is less than a micron, the separation zone will be surrounded by plastically deformed 

material which has undergone gradient hardening. In this section the stress elevations due to 

strain gradient effects are explored using mechanism based strain gradient (MSG) crystal 

plasticity theory [132, 133]. 

The mechanism based strain gradient theory (MSG) which is being used here is developed in 

[132, 133]. It is a generalization of conventional crystal plasticity theory [55 - 57]. The 

mechanism based strain gradient crystal plasticity theory reduces to conventional crystal 

plasticity theory when strain gradients vanish or when the scale of the nonuniform 

deformation is larger than the intrinsic length scale l. This will be shown in the following. 

The intrinsic length scale of a material which is a function of an empirical constant α in the 

order of 0.3 - 0.5, shear modulus µ, the magnitude of the Burgers vector b as well as the 

reference slip resistance g0, and is given by [132, 133]: 

( )2
0

22

g
bµα

α
Sg

αηG

l =        (68) 

where α is an empirical coefficient ranging from 0.3 – 0.5, µ is the shear modulus, b the 

magnitude of the Burgers vector while g0 denotes a reference slip resistance which is taken to 

be µ/100 [132]. 

In mechanism based strain gradient crystal plasticity theory [132, 133], the effective slip 

resistance is the resultant of the slip resistance due to strain hardening which is caused by 

statistically stored dislocations  for slip system α and the slip resistance due to the 

effective density of geometrically necessary dislocations : 

( ) 22 )( ααα
GST ggg +=       (69) 
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The slip resistance due to strain hardening which is caused by statistically stored dislocations 

 is computed using equation (9), given as: α
Sg

∑=
β

β
αβ

α γ )()( && hg

α
Tg

αηG

α
Gg

 

The intrinsic length scale l enters into the effective slip resistance  through the slip 

resistance contribution by the effective density of geometrically necessary dislocations . 

The slip resistance due to the effective density of geometrically necessary dislocations  is 

given by 

αα ηGG lg =        (70) 

while the effective density of geometrically necessary dislocations is given by 

∑ ×∇×=
β

ββαβαα γη msmG      (71) 

where mα is the slip plane normal while with sα being the slip direction. βααβ sss ⋅=

The modified effective slip resistance is, therefore, given by 

( ) ααα ηGST lgg +=
2

( )

     (72) 

Using the above equation of effective slip resistance, the plastic slip rate in equation (8) is 

then modified to 

m

T
o g ⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

= α

α
αα ττγ

)(
)( )sgn(&αγ&     (73) 

In the following, the above discussed relations for mechanism based strain gradient crystal 

plasticity theory have been used to study the strain gradient effect on the stresses around the 

crack tip along with the J-integral values. 

The UMAT subroutine (MSGMAT) consisting of conventional crystal plasticity theory [86] 

has been modified and above discussed relations of mechanism based crystal plasticity theory 

(equation (67) – (72)) have been implemented in the UMAT subroutine in order to study the 

effect of strain gradient theory on the stresses around the crack tip and fracture energies. 
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Figure 64: Normal stress distribution along the crack front for the case of conventional 

crystal plasticity and msg - crystal plasticity 

The finite element model used for this study is the same as explained in section 4.4.1. The 

value of the intrinsic material length for single crystalline niobium (with b = 0.25 nm, α = 0.5, 

and g0 = 1.725 GPa) is found to be, l = 0.625 µm. All the simulations have been performed 

for the niobium (110)[001]|alumina (11-20)[0001] interface based on the fact that the intrinsic 

material length is almost the same for all orientations and the size of the plastic zone is always 

in the range of 30 – 61 µm. 

The distribution of normal stress along the bicrystal niobium/alumina interface ahead of the 

crack tip is plotted in figure 64. The plot shows the results of both, conventional crystal 

plasticity and mechanism based strain gradient crystal plasticity theory. 

Both, conventional crystal plasticity theory and the here implemented mechanism based strain 

gradient crystal plasticity theory give the same stress distribution at a distance of greater than 

2.28 µm from the crack tip. For the distance less than 2.28 µm from the crack tip, mechanism 

based strain gradient crystal plasticity theory gives higher normal stress than conventional 

crystal plasticity theory: This is due to the strain gradient effect at the metal/ceramic interface. 

If we compare the ratio of the normal stress at the crack tip to the yield stress of single 

crystalline niobium (σ/σy) then for conventional crystal plasticity theory this ratio is 5.0953 

while for mechanism based strain gradient crystal plasticity theory this ratio is increased to 

5.7075 (with σy = 50.63 MPa for niobium (110)[001]). 
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Figure 65: The influence of strain gradient plasticity on (Jc/Wadh) [134] (for details see text) 

This suggests that a strain gradient does increase the normal stress near the crack tip 

significantly, and the difference in stress apart from the crack tip and below 2.28 µm is of the 

factor greater than 1.5. This difference (factor of >1.5) in stress can be explained on the basis 

of results obtained in [134] where the effect of J2 strain gradient plasticity theory on the 

fracture energy of the bimaterial interface is discussed. The effect of intrinsic material length 

(l) on the fracture energy (Jc) and cohesive strength (σc) of the bimaterial interface is also 

studied in [134]. It is shown that as the intrinsic material length (l) increases, the cohesive 

strength required to reach a specific fracture energy (Jc) value also increases.  

In figure 65 [134] the ratio of fracture energy to work of adhesion (Jc/Wadh) is shown as a 

function of cohesive strength to yield stress ratio (σc/σy) for various values of l/R0 for a 

homogeneous material, where R0 is the size of the plastic zone. It can be seen that at a given 

(Jc/Wadh) value, (σc/σy) increases as l/R0 increases and that at a given σc/σy ratio Jc/Wadh 

increases as l/R0 decreases. These results show that l/R0 has a strong influence on the level of 

stress that will be achieved around the crack tip due to strain gradient effects, i.e., the larger 

the l/R0 value the higher will be the stresses around the crack tip. More importantly: for a 

given Jc/Wadh ratio and a given l value the size of the plastic zone increases with increasing 

σc/σy ratio. This means that for a given material with intrinsic material length (l) the l/R0 ratio 

will depend on the size of the plastic zone (R0), which means that the smaller the plastic zone 

size the lower will be the plastic dissipation. This lower plastic dissipation means that such an 
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interface is relatively more brittle, which ultimately requires higher stresses to achieve a given 

(Jc/Wadh) value. 

If we now look into the current niobium/alumina bicrystal interface the value of intrinsic 

material length is l = 0.625 µm as computed above. Also, the size of the plastic zone is always 

found to be in the range of 30 – 61 µm (figure 43). This gives a value of l/R0 = 0.01 - 0.021 in 

which the region where (σc/σy) is less sensitive to the l/R0 value due to the reason that the 

scale of plastic deformation is larger than the intrinsic material length l. Therefore, 

mechanism based strain gradient crystal plasticity theory has only a small influence on the 

(σc/σy) ratio for all interfaces analyzed in the case of niobium/alumina bicrystals. 

The fracture energies computed for the case of mechanism based strain gradient crystal 

plasticity theory and conventional crystal plasticity theory were found to be identical in case 

of stationary cracks, as shown in figure 66. This is due to the small region (0.1 – 2 µm) where 

stresses were found to be higher for the case of mechanism based strain gradient crystal 

plasticity theory. 
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Figure 66: J–integral vs. loading point displacement for conventional crystal plasticity and 

MSG-crystal plasticity theory for a stationary crack of a Nb(110)[001]|Al2O3(11-
20)[0001] interface 

4.4.3  Correlation between Local Adhesion Capacity and Macroscopic Fracture 
Energy 

 
In section 4.4.2 the influence on the fracture energies of different cohesive model parameters, 

such as, cohesive strength and work of adhesion on the fracture energy was presented. This 

section is devoted to find a correlation between the local adhesion capacity and macroscopic 
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fracture energy for three different orientations of niobium single crystals in niobium/alumina 

bicrystal specimens. The correlation found for the three different orientations can be extended 

to other orientations, if experimental data, such as stress-strain-curves and fracture energies 

are available for other orientations. 

Different experimental investigators have put ample effort to correlate the local adhesion 

capacity and macroscopic fracture energy for different metal/ceramic interfaces. For example, 

a gold/alumina interface was studied experimentally in [135]. They found out that crack 

extension occurs by a combination of plastic void growth and interface debonding. It was also 

shown that the fracture energies are much larger than the work of adhesion and the fracture 

energy is dominated by plastic dissipation, which increases as the metal layer thickness 

increases. Different metal layer thicknesses ranging from 10 - 100 µm were investigated. The 

correlation was derived for initiation fracture energy as a function of work of adhesion, yield 

stress and thickness of metal layer as shown in figure 67. The relation between Jc and Wadh for 

gold/alumina interfaces is given in equation (73): 

2/1

01 ⎥
⎦

⎤
⎢
⎣

⎡
+=

adh
adhc W

hWJ σ
     (74) 

30

40

50

60

70

80

0 20 40 60 80 100 120

thicknes

fr
ac

tu
re

 e
ne

rg
y

40

Fr
ac

tu
re

 E
ne

rg
y

(J
/m

2 )

30
0 20 40 60 80

Metal thickness, h (µm)

100 120

50

60

70

80

Au/Al2O3 interfaces

30

40

50

60

70

80

0 20 40 60 80 100 120

thicknes

fr
ac

tu
re

 e
ne

rg
y

40

Fr
ac

tu
re

 E
ne

rg
y

(J
/m

2 )

30
0 20 40 60 80

Metal thickness, h (µm)

100 120

50

60

70

80

30

40

50

60

70

80

0 20 40 60 80 100 120

thicknes

fr
ac

tu
re

 e
ne

rg
y

40

Fr
ac

tu
re

 E
ne

rg
y

(J
/m

2 )

30
0 20 40 60 80

Metal thickness, h (µm)

100 120

50

60

70

80

Au/Al2O3 interfaces

 
Figure 67: Fracture energy as function of metal layer thickness [135] for Au|Al2O3 

interfaces 

A correlation between work of adhesion and fracture energy for niobium/alumina interfaces 

was derived in [136]. For the derivation the value of work of adhesion value for a pure 
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niobium/alumina interface was assumed to be 800 mJ/m2. The work of adhesion was varied 

from 0 to 800 mJ/m2 by doping silver at the interface. It was found that the interface fracture 

energy increases linearly up to a critical value of the work of adhesion W . Above this value 

a strong exponential increase in fracture energy occurs which is due to extensive plastic 

deformation of the metal regions adjacent to the crack. The relation was derived for the above 

discussed two regions, i.e., linear and exponential regions and is given below: 
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(75)
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As compared to the above discussed relations where the fracture energy was defined as a 

function of work of adhesion and yield stresses, this section describes the correlation among 

cohesive strength, work of adhesion, yield stress and fracture energy as given below: 
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The influence of cohesive strength (σc) to yield stress (σy) on fracture energy for three 

different values of work of adhesion (Wadh) was plotted in figure 52 for the 

niobium(110)[001]|alumina(11-20)[0001] interface. The plot shows that a cubic relation 

exists between the cohesive strength (σc) to yield stress (σy) ratio and the fracture energy. In 

the same manner the influence of work of adhesion (Wadh) on fracture energy was plotted in 

figure 53, which showed a linear relation between work of adhesion (Wadh) and fracture 

energy (Jc). 

Based on the above conclusions the following relation has been used to described the 

correlation between the local adhesion capacity and the macroscopic fracture energy: 
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   (77) 

In order to identify the coefficients a, b, c, and d in equation (76) a surface has been plotted 

using fracture energies (Jc), work of adhesion (Wadh) and cohesive strength (σc) to yield stress 

(σy) ratio, as shown in figure 68. 

The coefficients a, b, c, and d in equation (76) are identified by least square surface fitting 

technique with MATLAB [141]. The identified coefficients are given in table XXI. 
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Table XXI: Coefficients in equation (76) identified for the niobium(110)[001)|alumina(11-
20)[0001] interface 

a b c d 

13.04076 -127.85 412.5 -417.074 

 

Similarly, fracture energies (Jc), the work of adhesion (Wadh) and cohesive strength (σc) to 

yield stress (σy) ratio for niobium(100)[001]|alumina(11-20)[0001] interface has been plotted 

in figure 69. Using the same least square surface fitting technique the parameters a, b, c, and d 

in equation (76) are identified and are given in table XXII. 

Table XXII: Coefficients in equation (76) identified for the niobium(100)[001)|alumina(11-
20)[0001] interface 

a b c d 

2.983804 -34.801 135.24 -164.89 

 

Using the same approach the parameters a, b, c, and d in equation (76) are identified and are 

given in table XXIII while fracture energies (Jc), work of adhesion (Wadh) and cohesive 

strength (σc) to yield stress (σy) ratio for the niobium(111)[-1-12]|alumina(11-20)[0001] 

interface has been plotted in figure 70. 

Table XXIII: Coefficients in equation (76) identified for the niobium(111)[-1-12)|alumina(11-
20)[0001] interface 

a b c d 

2.431 -32.523 136.0034 -164.7 
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Figure 68: Surface plot of fracture energy vs. work of adhesion and cohesive strength for 

the niobium(110)[001]|alumina(11-20)[0001] interface 

 
Figure 69: Surface plot of fracture energy vs. work of adhesion and cohesive strength for 

the niobium(100)[001]|alumina(11-20)[0001] interface 
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Figure 70: Surface plot of fracture energy vs. work of adhesion and cohesive strength for 

the niobium(111)[-1-12]|alumina(11-20)[0001] interface 

In order to generalize the results obtained for the above discussed three orientations of 

niobium/alumina bicrystal specimens, a generalized relation has been deduced which can be 

used for any of the above three orientations of niobium/alumina bicrystal specimens. This has 

been done by introducing an additional parameter αi which depends on the orientation of the 

bicrystal specimens. The generalized relation is given by: 
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Using the same least square surface fitting technique available in MATLAB [141], the 

orientation coefficients αi have been identified for the three different orientations of 

niobium/alumina bicrystal interfaces which are given in table XXIV for three different 

orientations of niobium/alumina bicrystal interfaces. 

A generalized correlation among cohesive strength, work of adhesion, yield stress and 

fracture energy for the three different orientations is thus deduced in this section with 

orientation parameters αi ≅ 0.8 – 1.35 for the orientations studied. In the above correlation the 

cohesive strength (σc) can be estimated using the correlation derived in section 4.4.2.1 and is 

given by: 

109 



y
adh

ic W
W

σασ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

− 0919,0

0

112.6
   

(79) 

Table XXIV: Orientation parameter (αi) for three orientations of bicrystal niobium/alumina  
interfaces 
Orientation Orientation parameter αi

Nb(100)[001]|Al2O3(11-20)[0001] 1.0 

Nb(110)[001]|Al2O3(11-20)[0001] 1.35 

Nb(111)[-1-12]|Al2O3(11-20)[0001] 0.853 

 

The relation found in equation (78) can be used to predict the fracture energy of single 

crystalline niobium/alumina bimaterial systems, if the rest of the material parameters are 

available. The relation not only takes into account the dependence of the fracture energy on 

cohesive model parameters, such as, cohesive strength and work of adhesion, but also 

material properties, such as the yield stress which is strongly dependent on the crystal 

orientation [137, 138]. 

4.4.4  Summary 

Interface fracture analyses of bicrystal niobium/alumina specimens were presented in this 

section using a cohesive modelling approach. In the first part, the influence of cohesive law 

parameters, such as, cohesive strength and work of adhesion were studied for different 

orientations of niobium single crystalline materials in the niobium/alumina bicystal 

specimens.  

It was shown that cohesive strength has a strong influence on the fracture energy of the 

bicystal niobium/alumina interface for the different niobium orientations studied. It was found 

that as the cohesive strength increases the fracture energy also increases. This is due to the 

higher plastic energy dissipation. The relation between the cohesive strength and the fracture 

energy is found to be non-linear cubic.  

It was also shown that the work of adhesion has also influence on the fracture energy, i.e., as 

the work of adhesion increases the fracture energy also increases. The relation for various 

orientations of niobium single crystalline material in the niobium/alumina bicrystal specimens 

is found to be almost linear. 

Stresses along the crack front ahead of the crack tip were also analyzed for the cases of a 

stationary crack tip and for growing cracks. It is found that the shear stress contribution is 

almost negligible as compared to the normal stresses ahead of the crack tip. 
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Based on the stresses ahead of the crack tip the local mode mixity was studied by computing 

the local phase angle and it was found that for short cracks the local phase angle is always in 

the range of -7° to -4°, which - when plotted on the fracture toughness curve of niobium/alu-

mina curve - shows that the influence of local mode mixity for the case of niobium/alumina 

bicrystal specimens is almost negligible. 

Local mode mixity was found to not play any significant role in the case of niobium/alumina 

bicrystal specimens. The effect of stress triaxiality was also studied to find the directional 

stability of the growing cracks. T-stresses were computed and are always found to be negative 

in the range of –65 to –35 MPa resulting in a directionally stable crack growth, namely along 

the interface of niobium/alumina bicrystal specimens because of low stress triaxiality at the 

interface crack tip of the niobium/alumina bicrystal interface. The physical reason as 

explained in section 4.4.2.4 is negative T-stress means compressive stress acting parallel to 

the interface causing the crack to propagate in the direction along the interface while a 

positive T-stress means tensile stresses acting parallel to the interface causing an interface 

crack to kink into the direction where the stress parallel to the crack face becomes 

compressive. 

The influence of strain gradient crystal plasticity theory was also studied using a mechanism 

based crystal plasticity theory. It was found that due to the strain gradient in the vicinity of the 

crack tip, i.e., in the range of 0.1 – 2 µm the stresses for the case of mechanism based strain 

gradient crystal plasticity theory were always found to be higher than the conventional crystal 

plasticity theory. It was also found that the difference in the stresses from both theories is not 

large. Also the overall fracture energies computed from the mechanism based strain gradient 

crystal plasticity theory and conventional crystal plasticity theory were found to be identical 

except for a very small region at the crack tip where normal stresses are significantly higher 

for the case of mechanism based crystal plasticity theory. The shear stress distribution along 

the crack front was found to be negligible as compared to the normal stress. This was also the 

case for the stresses obtained from conventional crystal plasticity theory. 

In the last part of this section a generalized correlation was derived among the fracture 

energy, cohesive strength, work of adhesion and yield stress. Orientation parameters for this 

correlation were identified for three different orientations of niobium single crystalline 

materials in the bicrystal niobium/alumina specimens. 
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5.  Summary and Conclusion 

This work is focused on the study of crystal plasticity effects in the fracture of metal/ceramic 

interfaces for the system Nb/Al2O3. A procedure has been described to realistically simulate 

the fracture behaviour of the Nb/Al2O3 system. Crystal plasticity theory [45] has been used to 

take into account crystal orientation effects on the plastic deformation and ultimately on the 

fracture energy of the Nb/Al2O3 system. The crack propagation analysis has been performed 

with a cohesive modelling approach using a cohesive model [84, 85]. The ultimate goal of the 

investigation is to theoretically clearing-up the connection between local adhesion capacity 

and macroscopic fracture energy. 

The niobium single crystalline material  is always modelled as body-centered-cubic crystals 

using crystal plasticity theory. The three stage hardening of niobium single crystalline 

material during deformation has been modelled using the Bassani & Wu (BW) model. For the 

case of body-centered-cubic crystals the parameters which are to be identified for the Bassani 

& Wu (BW) model are twenty, i.e., ten parameters for each family of slip systems. Therefore, 

an automatic identification procedures has been applied to identify these parameters by 

creating an interface between an optimisation tool and ABAQUS. This procedure 

automatically identifies the hardening parameters for each family of slip systems. 

Different techniques, such as the global energy method, the virtual crack closure technique 

and the J-integral method have been presented to compute the fracture energy of the bicrystal 

specimens both for two and three dimensional structures. The fracture energies computed 

using the above three methods have been compared which showed the consistency in the 

results. 

Four-point-bending-testing of the bicrystal specimens has also been simulated using crystal 

plasticity theory for the niobium single crystalline material. All the simulations are done for a 

stationary crack tip. The results obtained from these simulations are compared with the 

experimental results which show that there is a variation in fracture energy for different 

orientations as was measured in experiments. This is due to the plastic anisotropy of the single 

crystalline niobium material which cannot be captured by the continuum deformation 

plasticity theory because continuum deformation plasticity theory can only be used for 

isotropic materials. The difference in the fracture energies has been explained based on the 

contribution of the plastic slip (strain) of each activated slip system for various orientations. 

The finite element analyses results using crystal plasticity theory for the case of a stationary 
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crack tip show the same trend of computed fracture energy as was found in the experiments 

[22, 23]. 

The effect of thermal residual stress induced in the bicrystal specimens during diffusion 

bonding when a specimens is cooled down from the bonding temperature of 1400 °C, has 

been studied. As the mismatch in the thermal expansion coefficients is very small, therefore, 

it is found that the induced thermal residual stresses are small. Therefore, no significant effect 

on the fracture energies was found for the niobium/alumina system. 
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Figure 71: Scale bridging procedure for metal/ceramic interface fracture 

The interface fracture of the bicrystal Nb/Al2O3 system is studied using a cohesive modelling 

approach. Parameter studies were performed in order to study the effect of different cohesive 

law parameters, such as, cohesive strength and work of adhesion on fracture energies and 

crack growth resistance. It has been found that the effect of cohesive strength on fracture 

energies is non-linear and more profound as compared to the work of adhesion. It was found 

that as the cohesive strength increases the fracture energy also increases due to the higher 

plastic dissipation.  In addition, the fracture energies depend linearly on the work of adhesion 

for various orientations of the niobium single crystalline material in the niobium/alumina 

bicrystal specimens. Cohesive model parameters are identified for different combinations of 

cohesive strength and work of adhesion by applying a scale bridging procedure as shown in 

figure 71. For each value of work of adhesion [26, 27, 28, 42, 119, 120] (experimental 
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estimate 1 J/m2 [42, 119], ab-initio [26, 27, 28] 9.8 J/m2, and molecular dynamics [120] 4 

J/m2), the cohesive strength (σc) is varied and transferred to the bicrystal niobium/alumina 

finite element model as input parameters for the cohesive law to simulate the interface 

fracture. Niobium single crystals are modelled using crystal plasticity theory in bicrystal 

niobium/alumina interfaces. The result of the simulation, i.e. the computed fracture energy of 

the system is compared with the experimental fracture energy value. When convergence is 

reached then the final set of local interface fracture parameters (σc, Wadh) and global fracture 

energy (Jc) of the system is obtained, otherwise the simulation is rerun with the new guess of 

cohesive strength (σc). The new guess of cohesive strength (σc) is based on the comparison of 

global fracture energy (Jc) obtained from the simulation and the experimental fracture energy. 

If the simulated global fracture energy (Jc) is lower than the experimental fracture energy then 

the value of cohesive strength (σc) is increased otherwise decreased. The amount of the ∆σc 

value selected depends on the difference between simulated and experimental fracture ener-

gies and was chosed in the range of 1 - 40 MPa. The procedure has been repeated for each 

value of work of adhesion (Wadh). 

Stresses along the crack front ahead of the crack tip and local mode mixity are also analysed 

for the cases of stationary crack tips and for growing cracks. It is found that the shear stress 

contribution is almost negligible as compared to the normal stresses at the crack tip because 

the mismatch in the elastic properties of niobium and alumina is small with elastic mismatch 

parameter 06.0<ε  [23]. The elastic mismatch parameter ε is defined in [144]. It is 

computed using the elastic properties of the two materials and its magnitude describes how 

high is the elastic mismatch. Based on the stresses ahead of the crack tip the local mode 

mixity according to the applied tensile stresses is computed and it was found to be in the 

range of -7° to -4°. This shows that local mode mixity does not play any significant role for 

the case of niobium/alumina bicrystal specimens because the local mode mixity angle is less 

than 10° (as shown in figure 62 for local mode mixity value less than 10° the overall stress 

intensity factor is mode I dominated). 

The effect of stress triaxiality was also studied to find the directional stability of the growing 

cracks. T-stresses were computed and are always found to be negative in the range of –65 to –

35 MPa resulting in a directionally stable crack growth, namely along the interface of 

niobium/alumina bicrystal specimens because of a low stress triaxiality at the interface crack 

tip of niobium/alumina bicrystal interfaces. 

The influence of strain gradient crystal plasticity theory is also studied using mechanism 

based crystal plasticity theory. It is found that due to the high strain gradient in the vicinity of 
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the crack tip, i.e., in the range of 0.1 – 2 µm the stresses for the case of mechanism based 

strain gradient crystal plasticity theory were always found to be higher than for the 

conventional crystal plasticity theory. It is also found that the difference in the stresses from 

both theories is not large - this is due to the low intrinsic material length to size of plastic zone 

ratio. It is also found that overall fracture energies are the same from both theories. 

In the last part a correlation is derived among the fracture energy, cohesive strength, work of 

adhesion and yield stress. And parameters for this correlations were identified for different 

orientations of niobium single crystalline material in the bicrystal niobium/alumina 

specimens. 

The work presented in this thesis is focused on the modelling of interface fracture of 

niobium/alumina bicrystal specimens for various orientations of niobium single crystalline 

material. Conventional crystal plasticity theory and mechanism based strain gradient crystal 

plasticity theory have been used throughout the work to model the niobium single crystalline 

material. The interface fracture is modelled using a cohesive modelling approach. 
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Figure 72: Length scales in the fracture of metal/ceramic interfaces 

The outlook of the metal/ceramic interface fracture can be explained on the basis of different 

length scales involved in the fracture of metal/ceramic interfaces. As shown in figure 72  

classical plasticity theory can be suitable above a length scale of ~ 0.1 mm because such 

theories are formulated for macroscopic elastic-plastic problems and below 0.1 mm 

deformation in each grain, grain size and grain boundary effects become more important, 
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therefore, it can only be used to study the macroscopic plastic zone developed around the 

crack tip for isotropic materials. Conventional crystal plasticity theory can be suitable above a 

length scale range of 1 - 2 µm while strain gradient crystal plasticity theory can be used above 

a length scale of 0.1 µm because these theories can be used to model the deformation 

behaviour of single and polycrystalline materials by taking into account the discrete slip 

system activities into the overall plastic strain. These two theories not only give macroscopic 

plastic zones developed around the crack tip but also give the plastic strain contribution 

coming from individual slip systems. These theories can also be used to study the plastic 

anisotropy of single crystalline materials due to the change in orientations, as is shown in this 

thesis. 

Below 0.1 µm discrete dislocation events become more important and discrete dislocation 

models are suitable not only to study the discrete dislocation behaviour during crack 

propagation but also to quantify the stress level achieved around the crack tip. Below 100 nm 

molecular dynamics calculations can be used to derive the decohesion curves (traction-

separation law) while ab-initio simulation results can be applied to derive the work of 

adhesion (Wadh) for metal/ceramic interface failure. 

As discussed above this work concentrated upon linking three different length scales, i.e., 

macroscopic fracture behaviour, crystal plasticity theory (> 0.1 µm) and atomistic work of 

adhesion of metal/ceramic interfaces (< 0.1 µm). Future wok can be done by using discrete 

dislocation models in the range of 10 nm – 100 nm. This will further quantify the crack tip 

stress level reached during deformation in order to validate the cohesive law parameters 

identified during this work using crystal plasticity theory. Although this will not effect the 

results of macroscopic fracture energies computed in this work for various orientations due to 

the very small region, i.e., 10 -100 nm, but will provide qualitative comparison of the stress 

level around the crack tip computed from strain gradient theory and discrete dislocation 

models. Another important point could be the quantification of critical normal separation (δc) 

which is the normal separation value at complete failure. In this work these values are found 

to be in the range of 6 nm – 60 nm. These values can be quantified using either ab-initio or 

molecular dynamics simulations. Until now all ab-initio computations have been done using 

ideal conditions, i.e. ideally clean and perfect interface. That is why, the value of normal 

separation is always found to be relatively low (< 1 nm). One research direction could be to 

study such interfaces using either molecular dynamics or ab-initio simulations and study the 

dependence of cohesive law on interface properties, such as effect of small poorly bonded 

regions, surface roughness, lattice mismatch and surface impurities (not ideally clean surface). 
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From the above discussion it can be concluded with this remark that metal/ceramic interface 

fracture is an ideal problem to be addressed with a mixed atomistic-continuum mechanics 

simulation including discrete dislocation theory. The study of metal/ceramic interface fracture 

using a multiscale modelling approach is planned at the institute in the next stage. 
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