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Introduction 

 
Space charge layer (SCL) effects are discussed in this chapter due to their importance 

in ionic and partly covalent materials. Unlike in materials where electrons are always 

available and fast, in ceramic systems there are typically two – oppositely charged – carriers 

the conductivity of which has to be taken into account [Duf86]. Because the individual defect 

formation energies differ, SCL arises and causes an electric potential difference between the 

surface, or GB, and the bulk interior [Leh53]. SCL affects considerably the properties of ionic 

materials and can in many cases be very significant [Mai95]. Despite this fact, conventional 

GB diffusion models typically neglect the space charge contribution. This seems to be due to 

two main reasons. First, the conventional models were applied historically to a large extent to 

metals, intermetallic compounds and alloys, in which the SCL does not exist. Preparation of 

ionic materials, like ceramic oxides, is much more complicated in comparison with metals 

and, that is why, diffusion data on these materials are still contradictory. However, nowadays 

one can find intensive literature on diffusion studies in oxides (for example, on diffusion in 

doped ZrO2: [Kil03a], [Kil03b], [Arg04], [Tay04], [Kil04], [Tay05], on diffusion in α-Al2O3: 
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[Pro96a], [Pro96b], [Gal96], on diffusion in MgO: [Lib94], [Yoo02]). Second, it has been 

believed for a long time that the space charge contribution is negligible [Mis01], even at low 

temperatures. Indeed, the penetration profiles are treated by using Le Claire’s relation for all 

the diffusion experiments based on penetration-depth profiles measurements without taking 

into account the SCLs at all. There are, however, intensive studies, e.g., in particular, on 

SrTiO3, that show the drastic relevance of them as regard, transport [Leo99], [Gou01a]. 

There are several theoretical studies on discussion of the role of SCLs in diffusion 

studies. Yan et al. [Yan77] analyzed slightly enhanced diffusion near the boundaries, i.e. in 

the SCL, in doped and undoped KCl. Despite the fact, that this paper was not directly 

concerned the diffusion profiles measured by one of the appropriate techniques, Yan could 

suggest a model for diffusion analysis in ionic materials. Because of the SCL, the GB is to be 

considered as an inhomogeneous region, consisting of the GB core and the adjacent SCL. 

Accordingly, three diffusivities are used in Yan’s model: in the bulk, SCL and GB core. The 

diffusivity within the SCL is suggested to be coordinate-dependent in Yan’s model. Recently, 

Jamnik and Maier [Jam95], [Jam97a], [Jam01a] considered a similar model of the GBs in 

ionic materials. For this reason we distinguish here between the GB core and SCL. In this 

sense the GB core is the region which was supposed in the preceding chapters. The 

dependence of SCL diffusivity (Dscl) on coordinate was also taken into account in the 

derivations of Chung et al. [Chu00] on the basis of Gouy-Chapman model [Boc77]. The role 

of this dependence is discussed in this chapter on the basis of simulations by FEM and the 

program FLUX-EXPERT.    

Contrary to the conclusion of Mishin and Gust on the importance of SCL [Mis01] 

(mostly based on the theoretical findings of Yan [Yan77]), Wang [WanR05] and De Souza 

[Sou05] took into account the SCL with the diffusivity different from that of the infinite bulk 

and surface, in order to analyze their experimental results properly. In both papers perovskite-

like ABO3 materials are concerned with SCL depleted of mobile charge carriers, viz. oxygen 

vacancies. Additionally, SrTiO3 is recognized as a model electroceramic material with very 

different properties depending on experimental conditions [Sou03], [Mai04]. It could also be 

shown that SCLs can even overlap in nanocrystalline SrTiO3 – the effect that we neglect in 

the following [Bal06]. Another important example of depleted SCL refers to ZrO2. Here it can 

be mentioned that not only depth-profile measurements but also conductivity measurements 

provide important information on transport properties of ionic materials [Hei03]. By means of 

impedance spectroscopy Gou et al. [Gou01b], [Gou02] demonstrated the GB resistivity which 

was two to three orders of magnitude higher than in the bulk in yttria-doped ZrO2 at low 
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temperatures. The effect was attributed to space charges and the results were successfully 

explained by the Mott-Schottky model [Mot39], [Scho39]. The blocking space charge effects 

were also observed in another fluorite structure material, namely doped nanocrystalline CeO2 

[Kim02]. The perpendicular GBs in this material lead to an additional semi-circle in the 

impedance spectra. The impact of those boundaries on impedance has already been discussed 

by Maier [Mai86]. Despite these facts, nobody has revealed the importance of SCLs adjacent 

to the GB cores studying oxygen in-diffusion in ZrO2. In the following papers [Bro99b], 

[Knö03] on oxygen diffusion in doped and undoped nanocrystalline ZrO2 the SCLs are 

completely ignored. Moreover, there are contradictions in the literature on the behavior of 

transport properties measured by impedance spectroscopy and depth-profiling methods 

[Man97], [Bro04]. Consequently, it is the purpose here to discuss the impact of SCL on 

diffusion in ionic materials in terms of conventional GB diffusion models. 

 As we are interested in fast GB transport we will focus on depletion layers between 

which the fast diffusing core is embedded. For simplicity’s sake we again ignore the profiles 

within the GB core and characterize the SCL by a laterally constant effective transport 

coefficient. Also effects caused by electrical fields as discussed by Jamnik and Maier 

[Jam97b], [Jam01b] and Schmalzried et al. [Schm98] are neglected.  
 

5.1 Mathematical model to describe diffusion in a polycrystal 

including space charge layers 
 

Mathematically diffusion in polycrystalline materials can be described by means of 

differential equations, if both diffusion in the bulk and GBs obey Fick’s law as it was 

explained in chapter I. The assumptions of an infinitely thin GB and a steplike change of the 

diffusion coefficient can be used for the SCL problem as well, leading to a system of three 

differential equations. The diffusivities are taken as time and concentration independent.  The 

2D case of this model suggests the following equations with Cg, Cgb and Cscl being the grain, 

GB and SCL concentrations, respectively 
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As usual the relevant equation in the grain is Fick’s second law. The same is true for SCL as 

long as we ignore inhomogeneity effects and effects due to charge separation. For the GB we 

have to take the same form as in the Fisher system (Eq. (1.6a)). The main difference of this 

new model and the Fisher system is in fact, that the leakage of atoms exists from the GB to 

SCL. The term which controls this leakage is characterized by Dscl. Again, the problem is 

symmetrical with respect to x = 0. The relevant mathematical model corresponds to the 

geometrical model depicted in fig. 5.1. The thickness of SCL is denoted as δscl and is fixed to 

1 nm along the calculations. The effective thickness δscl was employed in many theoretical 

considerations on space charges, leading to an abrupt variation of diffusion coefficients. 

However, there are contradictions in the literature with respect to this property. For example, 

in ZrO2 δscl varies from 0.35 to 3 nm [Dij81], [Aok96]. Here the value was chosen as being 

the average of this range as well as from the point of view of numerical conveniences.  

As before, the boundary conditions at the surface reflect a constant source and 

sufficiently fast surface reaction with zero initial concentration at y > 0: 
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The continuity conditions and mass balance were used at interfaces: between GB and SCL, 

SCL and grain. Correspondingly, equal fluxes and concentrations were applied: 
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and                       
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Correspondingly, the equation describing diffusion along the GB core in Eq. (5.1) takes 

account of the relevant conditions at the interface between the GB and SCL (Eq. (5.2b)). The 

unity in Eq. (5.2a) means that the concentration is normalized with respect to the 

concentration at the surface. In the present study regarding the SCL problems the GB, or GB 

core is always assumed to represent a structurally disturbed region, i.e. we refer to the 

misorientation of grains. The question of the SCL to be the part of the GB or the bulk is not 

discussed here as it does not play a role given the above assumption. The system was 

numerically integrated with the flux boundary condition at the bottom of the sample used in 

the calculation is equal to zero (fig. 5.1). The role of this boundary condition was analyzed in 

the manner as discussed in chapter IV and estimated to be negligible, suggesting the obtained 

results correspond to the semi-infinite systems (see discussion below) and partly thin films in 

the sense that only the maximum of the derivative ∂lnCav/∂y6/5 determines Dgb. Importantly, 

all the conclusions made in chapter III are important for the SCL problems too.    

The system of equations (Eq. (5.1)) was solved using FEM (FLUX-EXPERT, 

Simulog, France) as described in chapter II. Different kinetic regimes for different ratios of 

diffusivities ∆ are covered, and different GB networks (parallel boundaries and square grains) 

are considered. In all the cases the calculated concentration distribution was numerically 

integrated parallel to the surface providing the average concentration (Cav). From the resulting 

concentration profiles Dgb values were deduced by using the conventional equations in order 

to compare them with the exact value (used in the simulation) and to estimate the error. In the 

calculations Dg and δ were fixed to 2.95⋅10-4 nm2/s (2.95·10-16 mm2/s) and 0.5 nm, 

respectively, whereas Dgb and Dscl were varied in order to have different ratios with respect to 

Dg. Accordingly, the ratio Λ = Dg/Dscl was introduced for convenience.  

 

5.2 Accuracy of the simulated diffusion profiles and effect of 

coordinate-dependent space charge layer diffusivity 
 

5.2.1 The finite element mesh and diffusion barrier at the bottom of the 

geometrical model 
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Fig. 5.1 Schematic representation of the geometrical model used for calculation 
including space charges. 

 

 

 The choice of an appropriate mesh for SCL diffusion problems is very critical due to 

the fact that Dscl differs from Dg. Different meshes (or, in other words, meshes of different 

densities) were tried, in order to find the most suitable one. Major emphasis was laid on 

optimizing the mesh in the SCL, because the problems of interest involve extremely small 

diffusivities in this region (blocking space charge effects). In fig. 5.2 a fragment of the mesh 

used for SCL diffusion is depicted. One can see a great difference between the densities of the 

mesh in the bulk and SCL. Such a mesh allows one to simulate diffusion in the type-B 

kinetics at very short t. The mesh in the SCL is homogenous as in the bulk, while close to the 

SCL the bulk mesh was inhomogeneous and adapted to the SCL-bulk transition. As a result, 

the number of triangle elements of the mesh in the SCL is about 87% of a whole number of 

the elements in the geometrical model (sample). However, the length of the sample was only 

100 nm for simulating diffusion in the B-regime. Further increasing the mesh density did not 

allow Dscl to be more decreased, because the finite element problem with the higher density 

could not be solved even if the length of the sample was decreased. Consequently, the 

smallest value of Dscl used in the present study was 2.95⋅10-7 nm2/s (2.95·10-19 mm2/s), and, 

for comparison, Dgb = 2.95⋅10-2 nm2/s (2.95·10-14 mm2/s). The interval between the nearest 

points of the mesh is about 0.03 nm and 0.5 nm in the SCL and bulk, respectively.  
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 The mesh was also optimized for studying diffusion in the A-regime. The 

corresponding analysis will be given below. 

 

SCLBulk

 
 

Fig. 5.2 A fragment of the mesh used to simulate diffusion in the B-regime (δscl 
= 1 nm). The red line represents the GB. 

  

In order to prove that the obtained mesh is suitable for a diffusion study with various 

Dscl, the diffusion profile was calculated for the test case Dscl = Dg. This should give the same 

profile as obtained with mesh 1 described in chapter IV. The gradients of the corresponding 

profiles are compared in fig. 5.3. Obviously, there is a discrepancy between these profiles 

which increases along the depth indicating that the mesh density is not optimal, especially in 

the GB part. However, the gradients coincide at the maximum where the main interest of the 

present analysis lies.  

Furthermore, it has to be noticed again that we are interested in small Dscl-values. The 

mesh shown in fig. 5.2 was also examined with respect to such small values. The diffusion 

profile was calculated for the sample comprised the SCL only in order to check the quality of 

the mesh. This means the bulk diffusion was simulated with the smallest Dscl. The 

corresponding diffusion profile is shown in fig. 5.4 and compared with the complementary 

error-function solution to diffusion equation. These profiles mostly coincide. This allowed us 
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to conclude that the relevant SCL mesh suffices for our purposes despite the deviations 

observed in fig. 5.3.          
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Fig. 5.3 A comparison of the mesh used for taking into account space charge 
effects with the mesh without the SCL having the same mesh density as for 
mesh 1 described in chapter IV. The profiles were calculated for the length of 
100 nm at t = 4700 s. Also the lnCav = f(y6/5) dependence is shown in inset. 

 
Contrary to all the diffusion problems discussed so far, the meshes used for the SCL 

problems for simulation in the diffusion regimes of type-A and -B are very different.  This is 

caused by extremely small diffusion lengths in the SCL under conditions of type-B kinetics. 

Two meshes were used to simulate the diffusion profiles in the A-regime. One mesh 

corresponds to simulations with Dscl = 2.95⋅10-7 nm2/s and another one to values Dscl = 

2.95⋅10-5 nm2/s or larger. These meshes will also be analyzed with respect to the accuracy of 

the obtained results. In fig. 5.5 the diffusion profiles for the two values of Dscl are compared 

with the corresponding complementary error-function solutions. These calculations refer to 

SCL diffusion only as in fig. 5.3. The accuracy of the profile calculations is obvious, 

suggesting that these meshes can be used for simulating diffusion at long t. Interestingly, the 

density of the mesh in the SCL is 0.0625 and 0.125 for smaller and larger diffusivity, 

respectively. It is only double as large in the one case and four times larger in the other case  
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Fig. 5.4 A comparison of the bulk diffusion profiles obtained for Dbulk = 
2.95⋅10-7 nm2/s, representing Dscl, with the exact analytical solution to diffusion 
equation given by a complementary error-function (Erfc). 
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Fig. 5.5 A comparison of the two meshes (for different Dbulk, representing Dscl, 
see the text) used to simulate diffusion in the A-regime with the corresponding 
complementary error-function solutions (Erfc) at t = 3·106 s. 
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as for the mesh used for the B-regime. The density of the mesh in the bulk part of the 

geometrical model remains unchanged and is the same as used in all the calculations in the A-

regime in the present study.   

One can expect that the profiles calculated for the finite element model used are 

affected by the boundary condition at the bottom of the sample (geometrical model). This 

indeed plays an important role when simulating diffusion along the GBs accompanied by 

diffusion in the SCL with very small Dscl. Accordingly, one can plot the derivative of the 

profile calculated for the smallest Dscl. In fig. 5.6 such a derivative is shown (solid curve). As 

it was explained in chapter IV, the strong effect of the boundary condition is reflected in the 

extreme case that the maximum of the profile disappears, because the gradient goes to zero. 

This refers to the question of validity of the solutions for semi-infinite systems for the 

problem discussed here. As it is seen in fig. 5.6 the maximum is very well distinguishable and 

can be very easily estimated. The rest of the profile is affected by different factors, including 

the zero flux condition at the bottom. This also indicates that a sample length of 100 nm can 

be used to simulate diffusion in the B-regime.      

 

5.2.2 The reason of using constant space charge diffusivity 
 

 First, it should be again noted that the main interest is related to the maximum of the 

derivative of the diffusion profile. This maximum gives the proper value of Dgb when deduced 

by using the conventional Le Claire relation. The constant Dscl used in the present simulation 

is questionable, since the concentration of defects varies with the distance perpendicular to the 

GB. That is why, for example, Chung et al. [Chu00] proposed the model of diffusion along 

the GBs with the adjacent SCLs based on the Gouy-Chapman model, in which Dscl is 

coordinate dependent. In order to check the effect of the coordinate dependent Dscl, the SCL 

thickness (δscl) was drastically reduced and a new model was developed.  

Decreasing δscl from 1 nm to 0.03 nm, the SCL thickness was reduced to an 

unrealistically and infinitely thin region. However, the effect of blocking SCL is so strong, 

that the position of the maximum of the derivative is very similar to that for δscl = 1 nm as fig. 

5.6 shows. The values of the derivatives are also very close, suggesting that the maximum is 

determined by what happens in the first atomic layers close the GB core independent of 

thickness of the SCL and dependence of the diffusivity on coordinate. This means, that the 

maximum reflects directly the movement of the atoms from the GB core into the SCL. It is 

the same as the B-regime starts immediately when the leakage of diffusing atoms starts from 
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the GB into the grain. The beginning of this process determines the position of the maximum 

and its magnitude. To investigate further the insensitivity of the maximum on the coordinate 

dependence of Dscl, an additional calculation was performed. In the new calculation δscl was 

increased to 3 nm, and the SCL itself was divided into three regions with the thickness of 1 

nm each. The diffusivities were different in all the three regions and varied from 2.95·10-7 

nm2/s in the first region directly adjacent to the GB core to 2.95·10-5 nm2/s in the third region 

followed by the bulk (fig. 5.8). The concentration is enhanced in the first region due to the 

leakage from the GB core. This region is mostly filled by the diffusant at sufficiently long t 

such that it can lead to the flux of atoms to the second region. Interestingly, there is no 

leakage from the third region to the second one. The diffusion profiles calculated in this 

model are compared with those with the constant Dscl (δscl = 1 nm) at different t in fig. 5.7. 

There is no significant difference between the two models, indicating the overall result is 

determined by the region adjacent to the GB core even at long t. At shorter t the rest of the 

diffusion profiles becomes much more different depending on δscl and coordinate dependent 

Dscl (not shown here). Importantly, the maximum is not affected remaining the same under 

these quite different conditions. The fact that the diffusion profiles have two distinguishable 

parts at t = 3·106 s will be discussed in the coming section.           

 
Fig. 5.6 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated for two 
different SCL thicknesses for ∆ = 102. 
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Fig. 5.7 Variation of lnCav with y6/5 calculated for the cases of constant and 
coordinate dependent Dscl for ∆ = 102. 

 

 

5.3 How diffusion proceeds in the models of parallel boundaries and 

square grains 
 

Two models were used to study diffusion in ionic materials, namely the model of 

parallel boundaries (or, isolated GB model, if Lg < d/2) and of square grains. As it was 

explained in chapter IV, these are the most important models, allowing diffusion to be 

characterized even in realistic polycrystalline microstructures. As usual, t and d were taken 

quite small, in order to reproduce situations in nanocrystalline materials. Emphasis is laid on 

the blocking effect recently observed in variety of ionic materials [see, for example, [Gou02]]. 

Consequently, the SCL diffusivities (Dscl) are supposed to be smaller than the grain 

diffusivities (Dg), whereas the GB diffusivity (Dgb) exceeds both. However, the situations 

when Dscl > Dg are also discussed in order to analyze the whole trend of the ratio 

Dgb,app/Dgb,true (here Dgb,app is, as usual, an apparent GB diffusivity found by applying 

conventional models, and Dgb,true is a true GB diffusivity used to simulate the diffusion 

profiles) as a function of Λ = Dg/Dscl. The latter is a new parameter which makes the analysis 

simpler. For both models and different diffusion regimes a recipe is given how to properly  
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Fig. 5.8 Concentration distribution in the model of parallel boundaries with the 
SCL of the thickness 3 nm, comprising three parts with different diffusivities. 
The free surface is at y = 0 nm, whereas two neighboring parallel boundaries 
are at x = 0 and 25 nm, respectively. The result was obtained under conditions 
of the conventional A-regime, i.e. Lg is larger than the distance between the 
parallel boundaries. White lines show the borders of corresponding regions of 
different diffusivities. There is no a special physical property along white lines. 
Each color corresponds to certain value of the concentration, what is explained 
on a color pattern.  
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find Dgb. The suggestions which can be found in this chapter supplement the observations of 

the preceding chapters. Consequently, the problems of Le Claire’s constant and the 

nonlinearity are also relevant here.  

 

5.3.1 The model of parallel boundaries under conditions of type-B kinetics 
 

 It is important to note once more that both the model of parallel boundaries and the 

isolated GB model lead to the same results until Lg > d/2, where d is the average grain size or 

the distance between two neighboring parallel boundaries. In the present study for ionic 

materials the isolated GB model was used (what is caused by a very dense mesh used in the 

SCL) at extremely short t. Thus, only diffusion in the B-regime occurs. Consequently, the 

obtained results are valid for parallel boundaries as well. Trying various values for Dscl the 

diffusion profiles were calculated for fixed Dg (= 2.95·10-4 nm2/s) and Dgb (= 2.95·10-2 nm2/s). 

In fig. 5.9 the profiles are presented, with Λ (= Dg/Dscl) varying from 10-1 to 103. According to 

the conventional procedure, the profiles represent dependences in the form lnCav = f(y6/5). The 

smallest value of Dscl is 2.95·10-7 nm2/s, which corresponds to the diffusion length in the SCL 

3.73·10-2 nm at t = 4700 s. Such a value scales with the density of mesh used to simulate 

diffusion in the SCL, what also confirms the quality of obtained result. Additionally, a very 

small value of Dscl would mean a very small contribution of diffusion in the SCL. However, 

the slopes of diffusion profiles vary with Λ (fig. 5.9) which is usually unknown in the 

experiments. This is why, it became particularly important to estimate the errors of 

determining Dgb introduced by the SCL using the conventional procedures.  

 As one can see in fig. 5.9, the slope decreases as Λ increases, or as Dscl becomes 

smaller. The profile for Λ = 1 is also shown in fig. 5.9 and, it is possible, at least qualitatively, 

to state that Dgb found from such profiles by applying the Le Claire relation is overestimated, 

if Λ > 1. On the other hand, the slopes of the profiles calculated for Λ < 1 increase, what leads 

to opposite trend in the Dgb,app behavior. Because of these two trends, one has to distinguish 

diffusion under different conditions: Λ < 1 or Λ > 1. The purpose of this distinction is to 

emphasize different physical situations, but the procedure to deduce Dgb is the same. The 

difference between the two situations is demonstrated in fig. 5.10. In this figure fragments of 

the concentration fields are shown at t = 4700 s. If Λ > 1, diffusion is prolonged in the bulk 

and along the GB core, and one can immediately see, that there are fluxes from the GB core to 

the SCL and from the grain (bulk) to the SCL. The concentration field around the GB core is 

exactly what is expected for the non-overlapping fluxes from the neighboring parallel 
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diffusion paths. Such a contribution of the SCL is also similar to the situation, when diffusing 

atoms cannot move inside the material from the source due to the surface reaction, but 

because of the fast surface diffusion the atoms move along the surface (or along the GB core, 

if it is concerned). The blocking effect is reflected by the drastically reduced concentration 

within the SCL, and the question arises how this can affect the diffusion profile. Contrary, 

there is a flux from the SCL into the grain, if Λ < 1 (fig. 5.10b). Here the question about the 

overlapping within the SCL is not relevant, and the SCL can be filled by the diffusant in a 

very short time. It looks like the GB has increased its thickness due to the SCL, especially at 

higher diffusion times. However, it is also a matter of parameters, like the thickness δscl and 

diffusivity Dgb. It can be mentioned, that the overall process is not prolonged under conditions 

of Λ < 1. This is clear, as prolongation is only caused by great difference in the diffusivities in 

the two adjacent regions. Such a prolongation is more typical for diffusion for Λ > 1. One can 

see that the isoconcentration lines in fig. 5.10a are almost parallel to the GB core, i.e. the 

angle between them is very small – a situation typical for large values β and short t.                 
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Fig. 5.9 Variation of lnCav with y6/5 calculated at t = 4700 s for ∆ = 102 and 
various Λ. 
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Fig. 5.10 A fragment of the concentration distribution in the model of isolated 
GB (the GB core is sitting exactly at x = 0 nm) with the adjacent SCL of the 
thickness 1 nm. As usual, a free surface is situated at y = 0 nm. Parameters: a) 
Λ = 103, ∆ = 102, t = 4700 s and b) Λ = 10-1, ∆ = 102, t = 4700 s. The color 
patterns have their usual meaning. 
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The errors of using Le Claire’s relation are demonstrated in fig. 5.11. Three curves are shown 

corresponding to three different procedures of deducing Dgb. First, Dgb,app was calculated by 

using the standard Le Claire relation with a constant of 1.322 (Eq. (1.16)). The corresponding 

errors are shown as circles in fig. 5.11. This means that fitting the calculated diffusion profiles 

to the straight line was applied. In this case Dgb,app is larger than the true one by a factor of 

about 3 at Λ = 103. Then the maximum of the derivative ∂lnCav/∂y6/5 was taken and used in Le 

Claire’s relation (squares in fig. 5.11). In chapter III it was shown that this maximum gives 

the more accurate value for Dgb when Le Claire’s relation is used. Taking the maximum leads 

to even larger errors in comparison with the errors of the standard fit, and Dgb is overestimated 

by a factor of 4 at Λ = 103. Moreover, the ratio Dgb,app/Dgb,true is not unity at Λ = 1 in both 

cases. Obviously, this is related to the constant of 1.322. According to the findings of chapter 

III, the derivative ∂lnCav/∂w6/5 should be calculated properly depending on the parameter α 

(= g/ 2Lδ ). Finally, the improved derivative ∂lnCav/∂w6/5 was calculated by using Eq. (2.1) 

and put into the original Le Claire relation (Eq. (1.14)) instead of the constant 1.322. The 

latter is caused by very short t involved in the simulation, and all the discussions of chapter III 

are relevant here too. The parameter α is about 0.21 at t = 4700 s for Dg = 2.95·10-4 nm2/s. 

Following this improved procedure, the ratio Dgb,app/Dgb,true was recalculated and finally 

achieved unity at Λ = 1 (triangles in fig. 5.11). But, the errors in finding Dgb increase further 

even after applying the improved procedures, giving Dgb overestimated by a factor of about 6 

at Λ = 103. Interestingly, the attempts to reduce the errors by using the improved procedures 

make the discrepancy between the apparent and true diffusivities larger. This is related to the 

fact that the equations used for calculating Dgb completely ignore the third diffusivity 

involved in the process, namely Dscl. One has to pay attention that the flux of atoms moving 

from the GB core into the SCL is determined by Dscl and, therefore, the maximum of the 

derivative as being determined by this motion, should reveal something close to the ratio of 

diffusivities Dgb/Dscl. This ratio is obviously larger than ∆ and Λ for the blocking SCL, 

because Dg > Dscl. However, this expectation should be clarified.  
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Fig. 5.11 Errors in calculating Dgb by using the conventional Le Claire equation 
and the improved procedures discussed in chapter III. The calculated profiles 
correspond to ∆ = 102 and t = 4700 s. Errors were estimated according to 

( )gb,app gb,true gb,trueD D / D 100%− ⋅ . 

  

The blocking SCLs are accompanied by two processes. One is related to diffusion 

from the GB core into the SCL and another one is related to diffusion from the grain into the 

SCL. These processes are taken into account by the continuity conditions at the corresponding 

interfaces (Eq. (5.2a) and (5.2b)).  In order to clarify, which process really determines the 

maximum of the derivatives, the plots ∂lnCav/∂y6/5 = f(y6/5) were analyzed and the equations 

derived in chapter III applied. The corresponding maxima for the SCL problem are rather 

small (fig. 5.12) and comparable to those in figs. 3.8a or 3.8b, i.e. for non-space-charge 

problems with ∆ = 102 or 103. However, the calculations differ by values of the diffusivities in 

the region adjacent to the GB core (i.e., Dg for the results in fig. 3.8 and Dscl in fig. 5.12). For 

Λ = 103 and Dscl = 2.95·10-7 nm2/s the ratio Dgb/Dscl equals 105. The same ratio was realized in 

chapter III with Dg = 2.95·10-4 nm2/s and Dgb = 2.95·101 nm2/s. However, the values of the 

corresponding maxima differ by two orders of magnitude. Generally, increasing ∆ with fixed 

Dg leads to smaller values of the maxima. But, increasing ∆ (=Dgb/Dscl for the SCL problem) 

with fixed Dgb leads to much smaller deviations in the derivatives for different ratios in 
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comparison with the results in fig. 3.8, from -0.12 for Λ = 100 (Dgb/Dscl = 102) to -0.04 for Λ = 

103 (Dgb/Dscl = 105). Probably, the latter effect depends on the absolute value of Dscl. It is 

difficult to expect the ratio between the diffusivities knowing only the absolute value of the 

derivative at the maximum. A new procedure should be used in order to extract this ratio. 

Moreover, in the SCL problems a third diffusivity is involved (Dscl) which is also unknown. 

However, this diffusivity determines the value of the maximum.  
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Fig. 5.12 Variation of the derivative at t = 4700 s for ∆ = 102. 

 

In fig. 5.13 the derivatives are compared with the results of Whipple’s solution 

integration (Eq. (1.9a)) which were obtained by fixing Dgb and varying Dg and Dscl, 

respectively. In the integration the same ratios of diffusivities were used as for the SCL 

problem, i.e. ∆ in the integration equals Dgb/Dscl in the simulation (∆ in fig. 5.13 indicates the 

ratio used in the simulation). One can easily see that the derivatives simulated for the SCL 

problem are very close to those obtained by the integration, despite the fact that there is a flux 

of atoms from the grain into the SCL. This confirms that the maximum of the derivative is 

determined mostly by what happens between the GB core and the SCL. In fig. 5.13 the 

positions of maxima of the SCL problem slightly differ in comparison with Whipple’s 

solution integration. The maximum is shifted to larger values of y6/5 in the case of the SCL 

problem (red curves), especially for larger Λ.        
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Fig. 5.13 A comparison of Whipple’s solution and the simulation result of the 
SCL problem at t = 4700 s. The black curves correspond to Whipple’s solution, 
whereas the red curves are responsible for the simulation. 

 

 Interestingly, the contribution of bulk diffusion can be observed at very short t. In fig. 

5.14 different profiles simulated for the SCL problem are compared, and the complementary 

error-function solution is shown for Dg. The bulk diffusion is responsible for the process in 

the near-surface part of the profile for the smaller Dscl. However, this contribution becomes 

less pronounced, if Λ decreases. It means that, in principle, Dg can be still extracted even for 

blocking SCL, how it is done in the experiments [Sou05]. The bulk diffusion part is quite 

short and is followed by the part determined by the ratio Dgb/Dscl. Since Dg is smaller than 

Dgb, the process along the GB in the blocking SCL problem is characterized by even smaller 

slopes that one could expect to give a larger diffusivity. It should also be noticed that the 

profiles in fig. 5.14 are intersecting at y6/5 ≈ 30 nm6/5. For y6/5 < 30 nm6/5 the area under these 

curves or the total amount of material entering the sample is larger for the smallest ratio Λ = 

0.1. For y6/5 > 30 nm6/5 the opposite situation is observed. Nevertheless, it was found out that 

in the whole range of y6/5 the total area is increased for Λ = 0.1. Consequently, the blocking 

SCLs decrease the total amount of material in the sample, at least at short t. 

   In order to improve the determination of Dgb, the new equation, discussed in chapter 

III (Eq. (3.7)), was used instead of Le Claire’s relation. This equation relates the maximum of 
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the derivative ∂lnCav/∂y6/5 and the ratio ∆, or specifically for the SCL problem, the ratio 

Dgb/Dscl. Thus, Eq. (3.7) can be rewritten in the following form 

 

 
F

gb Bav
6/5

sclmax

Dln C C t
y D

⎛ ⎞∂
= ⋅ ⋅⎜ ⎟∂ ⎝ ⎠

.         (5.3) 

 

One of the ideas which can automatically arise is the fitting experimental data to Eq. (5.3). 

However, this equation cannot be used for real fitting, since consisting of two multiplied 

unknown parameters, i.e. C and ∆F (here ∆ means the ratio Dgb/Dscl as well). By using the 

fitting one can only find the prefactor to tB, i.e. the whole term C(Dgb/Dscl)F. So the application 

of this equation requires knowledge of the unknowns C, F and B. As it was mentioned in 

chapter III the unknown parameter C is dependent on Dg and can strongly vary. Because of 

the problem of fitting, these parameters were estimated by integrating Whipple’s solution for 

the diffusivities used to simulate diffusion for the SCL problem. The results are summarized 

in table 5.1.  The integration was performed fixing Dscl and varying Dgb, i.e. to guarantee 

Dgb/Dscl to be 102 and 105 in order to have extremely different ratios. For each ratio Dgb/Dscl 

two very different t were realized, namely 2·103 s and 106 s, providing the quantities B, C and 

F. Consequently, this procedure was applied for each Dscl and Λ used. The absolute value of B 

slightly decreases with increasing Λ, C varies significantly with Λ, whereas F remains 

constant. The apparent GB diffusivity (Dgb,app) was calculated according to 

 

( )
10/310/3

av av
gb,app 6/5 6 /52

gb scl

ln C ln C4D
w yD / D tδ

−
⎛ ⎞∂ ∂⎛ ⎞= − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

,      (5.4) 

 

where the ratio Dgb/Dscl is known from Eq. (5.3) and the derivative ∂lnCav/∂w6/5 is found 

according to the improved procedure . The errors in finding Dgb were decreased by applying 

Eqs. (5.3) and (5.4) in comparison with Le Claire’s relation (table 5.1). Still remaining errors 

can be attributed to deviations of the corresponding maxima from the result of integration of 

Whipple’s solution (fig. 5.13). Consequently, Eq. (5.4) may be used to find Dgb,app. The 

disadvantage of this relation is in fact that it requires knowledge of all the parameters 

involved: C, B, F. Here a hint can be given for future research. It is particularly important to 

find a procedure to deduce Dgb in ionic materials. Eq. (5.3) seems to be a suitable candidate to 

improve the determination of Dgb. Further evaluations using Whipple’s solution could help to 

correlate the maxima and ratios and all the other parameters.          
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Fig. 5.14 A comparison of the profiles for different Λ and a complementary 
error function solution (Erfc-solution) in the region of very small depths. 

 

Table 5.1 The parameters obtained to evaluate Eq. (5.3) and apparent GB diffusivities found 
by using Eq. (5.4) for t = 4700 s.  As usual the errors were found due to 

( )gb,app gb,true gb,trueD D / D 100%− ⋅ .  

 
Λ B C F Dgb,app, nm2/s Error in % 

103 -0.47 2540 -0.61 9.11·10-4 97 
102 -0.43 562.65 -0.60 4.03·10-3 86 
101 -0.38 134 -0.60 1.09·10-2 63 

 
 
 
5.3.2 The model of square grains under conditions of type-B kinetics 
 

 The model of square grains was used here to analyze the effect of blocking GBs under 

realistic conditions. The results obtained for this model with space charge effects included 

were compared with those obtained for the model of parallel boundaries and the model of 

square grains without SCLs. The importance of blocking SCLs lies in the channeling of 

transport. In other words, the reduced diffusivities in the regions adjacent to the GBs suggest 

an enhanced β-parameter (Eq. (1.9d)) and, as a result of this, increased penetrations. Indeed, 

the increased ratios between the diffusivities lead to smaller slopes, as it was shown in the 
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preceding section (fig. 5.12). If the perpendicular GB comes into play, the slope is changed 

the more strongly, the shorter diffusion time or the larger ratio between the diffusivities. The 

profile calculated for Λ = 102 and ∆ = 102 for the model of square grains is compared with 

that for the model of parallel boundaries and square grain without the SCL (fig. 5.15a). 

Because the ratio of diffusivities ∆ is small, there are no corresponding contributions of 

perpendicular GBs in the model of square grains without SCL (see, for example, fig. 4.9). 

This makes the profile for the square grains without the SCL very comparable to the profile 

for the parallel boundaries without SCLs. Despite such a role of perpendicular GBs for the 

small ratio ∆, the slopes of the profiles for the square grains with the SCL are very different in 

comparison with the slopes of those profiles obtained without the SCL. Consequently, the role 

of GBs surrounded by the blocking SCLs is very specific and important. Moreover, the slope 

of the profile with the SCL decreases with Λ. It can make Dgb,app larger applying the 

conventional equations, whereas the slope is increased in the problems without the SCL (fig. 

4.9). This, obviously, yields one more specific role of the blocking SCL. Some diffusion 

profiles were also calculated for larger ∆. According to fig. 5.15b the contribution of 

perpendicular GBs is reflected in the larger slope in comparison with the situation when only 

parallel boundaries contribute. It is very clearly seen in fig. 5.15b that the slope of the profile 

is decreased by the influence of the blocking SCLs. Because the effects in the problems with 

and without the SCLs have opposite trends in the slope behavior, the question is only which 

of them dominates. In the case of the SCL problems, the contribution is directly determined 

by the ratio Λ. Obviously, the larger Λ, the smaller the slope. Since the results in figs. 5.15a 

and 5.15b have the same Λ, these are also comparable. The profile for larger ∆ is 

characterized by typical spikes which are very tiny in comparison with the profiles without 

the SCLs. Surely, this is due to diffusion confined within the GBs in the SCL problem, i.e. 

there is no significant diffusion from the GBs to the adjacent SCLs.             

 

5.3.3 The model of parallel boundaries and the model of square grains under 

conditions of type-A kinetics 
         

According to fig. 1.5 the increase of t should finally lead to the A-regime. As far as the 

overall process is determined to a great extent by the ratio of the GB and SCL diffusivities, 

the A-regime is met when the diffusion length in the SCL is comparable to that in the grain 

and GB. It can be understood in the way that three different processes should have similar 

diffusion lengths, leading to a homogeneous situation. If this is not the case, and the processes 
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are still separable, the homogeneous solutions, such as Hart’ equation (Eq. (1.17a)) lead to 

significant errors. The diffusion time needed to reach the homogenous situation can be 

extremely long, giving unrealistic values of several tens of millions seconds. In order to 

emphasize these points, the concentration distribution is shown in the model of parallel 

boundaries in fig. 5.16 at t = 3·106 s for Λ = 103. At such a high t nominally the A-regime is 

valid, as being determined by the condition Lg > d (Lg ≈ 30 nm, d = 25 nm). In the region of 

SCL the concentration differs from that in the bulk. The contribution from GBs enhances the 

concentration within the SCL at high t despite a very small diffusivity Dscl. The role of SCLs 

is not the same as it was at short t. The contribution to the grain comes partly from the 

combined SCL-GB system. In this sense both the regions, the SCL and GB, represent one part 

of the sample. This is similar to what was discussed in section 5.2.2. Because of the blocking 

effect, first, some time is needed to fill the SCL by the diffusant, and then the contribution 

would continue from the SCL-GB into the grain. As a result, the diffusion profiles obtained 

under the nominal A-regime conditions comprise two distinguishable parts. In fig. 5.17 the 

diffusion profile calculated for the model of parallel boundaries with the SCL at high t is 

compared with that without SCL. Two interesting cases are also compared in fig. 5.17, 

namely Λ = 10 and Λ = 103. If the ratio Λ is small enough, the corresponding profile strongly 

differs from that for larger Λ and is close to the profile without the SCL, also shown fig. 5.17. 

The latter difference arises at very low concentrations due to the changed kinetics. However, 

if the larger Λ occurs, the two parts of the profile arise. Consequently, it would be necessary 

to apply the conventional procedure used for the B-regime. On the other hand, the A-regime is 

relevant. The problem, of course, deals with the conditions (Eqs. (1.9), (1.10), (1.11)) which 

do not take into account the third diffusivity involved in the process. The Hart equation, being 

the equation for the A-regime, was used to find Dgb,app, and the errors were indeed observed 

(fig. 5.18). The errors in finding Dgb are high, suggesting that it is underestimated, if the 

conventional equation is used. The error increases with Λ, reaching 88% at Λ = 103. The 

shorter t the larger the error (in the A-regime). For Λ = 102, t = 50·106 s is sufficient to reach 

the ratio Dgb,app/Dgb,true ≈ 1. On the other hand, applying Le Claire’s relation gives even larger 

error. Because the profile with the two distinguishable parts is observed for large Λ, the 

procedure discussed in the preceding section can be applied, if one believes that the slope of 

the profile reflects the process between the GB and the SCL at t = 3·106 s. Accordingly, the 

quantities B, C and F were taken from table 5.1 for Λ = 103 and Eqs. (5.3) and (5.4) were used  
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Fig. 5.15 Variation of lnCav with y6/5 calculated for the model of square grains 
with the GBs surrounded by the blocking SCLs compared with those for the 
square grains and parallel boundaries without SCLs for Λ = 102 and a) ∆ = 102, 
b) ∆ = 2.2⋅ 104 at t = 8200 s.   
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to find Dgb,app. The error in finding Dgb was reduced to 44%, indicating the importance and 

validity of Eq. (5.3) for SCL problems.               

 The perpendicular GBs surrounded by the SCLs play a crucial role as it was also 

discussed in the preceding section. These lead to opposite trends when using the conventional 

models for the SCL problems and the non-space-charge problems in the B-regime. The 

concentration distribution is shown in fig. 5.19 for the model of square grains at long t. It is 

clearly seen that the role of the first grain is very specific. This grain is filled completely by 

the diffusant, whereas other grains are characterized by much smaller concentrations. The 

concentration is also enhanced within the GBs. One can expect that the effect of perpendicular 

GBs with the SCLs is to increase the concentration along the depth, in comparison with the 

model of parallel boundaries, which is due to deep penetrations. Consequently, the sample can 

be filled by the diffusant at long t, if each separate grain is filled. However, the perpendicular 

GBs with the SCLs do not allow the diffusant to proceed further into the next grain. The 

concentration is drastically reduced due to these GBs (fig. 5.20). An abrupt change of the 

kinetic regimes occurs along the depth. Again the effect is more pronounced for increasing Λ. 

Very similar effects due to the blocking SCLs were observed experimentally on different 

systems [Leo99], [Sou05], and [WanR05]. However, while studying diffusion in 

polycrystalline materials, it is very difficult to exclude such effects.  

At longer t the concentration within the grains increases, and the step between the 

concentrations in two nearest grains vanishes. It is very well seen in figs. 5.21 and 5.22 for Λ 

= 102. Nevertheless, the effect of perpendicular GBs is so strong that resolving the problem of 

SCL by varying t is impossible. In a bicrystal one can estimate at least the role of SCL by 

plotting lnCav = f(y6/5) even under conditions of the A-regime. In this case the use of Eq. (5.2) 

is very important, since both the Hart equation and Le Claire’s relation yield significant 

errors.  In polycrystals, either high temperature is needed to completely exclude the role of 

SCL or high gradients are needed to restrict analysis to the process close to the surface, in 

order to apply the improved procedure for the B-regime discussed in the present study.       
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Fig. 5.16 Concentration distribution in the model of parallel boundaries at t = 
3·106 s. The GBs are used at x = 0.0 and 25.0 nm, whereas white lines 
correspond to the SCL/grain interface. 
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Fig. 5.17 Variation of lnCav with y6/5 calculated for Λ = 103 and Λ = 10. The 
diffusion profiles are compared with that without SCL at t = 3·106 s. The ratio 
∆ is 102. 
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Fig. 5.18 Errors in determining Dgb by using conventional Hart’s equation. 
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Fig. 5.19 A fragment of the concentration distribution in the model of square 
grains at t = 3·106 s. The parameters used are the same as in fig. 5.16. The GBs 
are situated at x = 0.0 and 25.0 nm, y = 25, 50, 75 and 100 nm.  
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Fig. 5.20 Variation of Cav with y calculated at t = 3·106 s for different Λ. 
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Fig. 5.21 Variation of the diffusion profiles with y calculated for Λ = 102 and ∆ 
= 102 at t = 3·106 s are compared with the model without the SCL. 
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Fig. 5.22 Variation of Cav with y calculated for Λ = 103 and Λ = 10 in the 
model of square grains. The profiles are compared with that for the model of 
square grains without SCL for ∆ = 102 at t = 50·106 s. 
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Summary 
 

The effects of blocking SCLs were analyzed by simulating the diffusion profiles by 

means of the finite element approach. The kinetic regimes of type-A and -B were considered 

and the models of square grains and parallel boundaries applied. A very strong contribution of 

blocking effects was observed in both the kinetic regimes. This means that space charge 

effects should definitely be taken into account when deducing Dgb from the diffusion profiles 

measured in ionic materials. In the B-regime Dgb is overestimated, and the error increases 

with the ratio Λ = Dg/Dscl. Importantly, a relation is suggested to find the ratio Dgb/Dscl from 

the slopes measured in the B-regime on the basis of equations derived in chapter III. It is 

proposed how to find Dgb by using these new relations. In the A-regime Dgb is typically 

underestimated, and the errors increase with decreasing diffusion time. Again the use of a 

newly proposed procedure reduced the errors. This confirms the importance of those 

equations.  

Strong concentration drops were observed in microstructure, what is also consistent 

with the experimental findings. In these cases the main suggestion is to analyze the diffusion 

profiles close to the surface.    
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