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Introduction  
 

As soon as diffusion along GBs is concerned, idealized GB models need to be 

introduced. This is done necessarily, because the real GB structure cannot be taken into 

account on a continuum level. Contrary to the atomistic description, the continuum approach 

deals with the averaged situation in which Dgb becomes the most important characteristic 

bearing information on the structure and interaction of atoms, including the interaction of 

diffusing atoms with the host atoms. In some cases, one may consider the diffusivity along a 

particular GB from the measurements on bicrystals, for example Σ11, when the GB structure 

is determined by one of the high resolution imaging techniques like HRTEM [Höc94], 

[Leo99] and apply the conventional models to find Dgb in this boundary [Lib94]. However, a 

polycrystalline material consists of GBs characterized by different misorientations between 

the grains and, as a consequence, different Dgb’s. Clearly, the measured Dgb in these materials 

represents some averaged value. There are also evidences that the structure of GBs in 

nanocrystalline materials is similar to that of coarse-grained materials [Gle89], [Wür03], 



Chapter I.                                            The classical grain boundary diffusion models 
 

 6

[Bar05]. Consequently, the conventional models used to find Dgb in coarse-grained materials 

may be applied to nanomaterials as well.   

 

1.1 Grain boundary model. Guggenheim or Fisher? 
 

There are different interface models in the literature used to analyze and describe 

various processes related to the interfaces, like diffusion or segregation. One of them was 

suggested by Gibbs [Def66]. It excludes the real GB thickness, and the concentration change 

at the interface in this model is step-like. Another model was proposed by Guggenheim 

[Gug40]. This model is more realistic in comparison with the Gibbs model, because the 

thickness of GB is taken into account. Fisher [Fis51] was the first who successfully used a 

similar model to describe diffusion along GBs by means of diffusion equations.  

 

Interface

Phase A

Phase B

Ci

x 
 

Fig. 1.1 Interfacial model according to Guggenheim [Gug40]. Adapted from [Cab91]. 

 

In fig. 1.1 the concentration Ci corresponds to a particular component (i) of a solid 

solution. The interface is thought to be embedded between two phases A and B. If phase A 

and phase B are chemically identical materials, the interface is termed a GB. Equilibrium 

concentration changes are supposed to occur only at the boundaries (interfaces) separating the 

interface and the adjacent phases, or in the case of a polycrystalline material, the GB and the 

grain. By supposing that the lateral change of the concentration within the GB (i.e. in the x-

direction) is negligible, Fisher could describe diffusion within the GB by one dimensional 
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Fick’s second law [Fis51]. He also supposed that concentrations at the boundaries separating 

the GB and grains are equal. In this way the segregation effects were excluded. All the 

approximations introduced by Fisher’s model are discussed in the next section on a 

mathematical level. One should pay attention to the fact that Fisher’s model refers to a quasi 

two dimensional (2D) representation of the GB.  

 

1.1.1 Isolated grain boundary model 
 

The model used by Fisher to describe diffusion along the GBs comprises the free 

surface carrying the diffusion source and the GB being perpendicular to that surface. The GB 

has a constant thickness δ (fig. 1.2), i.e. represents a slab, with the diffusion coefficient (Dgb) 

remaining constant along the GB. Therefore, the diffusion coefficients Dgb within the GB and 

Dg within the grain are not functions of concentration, time or positional coordinate. Fisher’s 

model, known also as the isolated boundary model, represents a typical 2D semi-infinite 

problem. The concentrations and fluxes coincide at the boundaries separating the GB and the 

grain, i.e. at x = ±δ/2, allowing the leakage of atoms that exists from the GB into the grain to 

be taken into account. Consequently, Fisher’s model is based on the assumption that Dgb >> 

Dg. One can see from fig. 1.2 that the concentration distribution in this model is symmetrical 

with respect to the point x = 0. The following assumptions are assumed by Fisher’s model: 

 

1) Fick’s laws are obeyed in both the crystal (grain) and the GB slab. 

2) The diffusion coefficients Dg and Dgb are isotropic and independent of concentration, 

position and time. 

3) The diffusant flow is continuous at the GB/grain interface (boundary). 

4) The width of the GB is so small that the concentration variation across it (i.e. in the x-

direction) is negligible. 

5) The condition Dgb >> Dg is fulfilled with the consequence that the mass transport in 

the bulk is essentially preceded by GB transport (red arrows in fig. 1.2).  

 

All results discussed in the present work were obtained by using these approximations 

except a modification related to segregation effects. The latter requires supposing that the 

concentrations at the boundary between the grain and the GB are not equal; however, the 

continuity conditions are still valid as well all the other assumptions. The segregation effects 

have been addressed [Bok58], analyzing derivation of Dgb in the case of impurity diffusion. 
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Fig. 1.2 Isolated boundary model. 

 

1.1.2 Mathematical description of grain boundary diffusion in the isolated grain 
boundary model 
 

Fisher was the first who derived the set of two diffusion equations for the GB 

diffusion problem and solved them approximately, whereas Whipple [Whi54] gave a rigorous 

mathematical analysis, including the exact analytical solution to the diffusion equations. 

The first diffusion equation represents diffusion within the grain with the diffusion 

coefficient Dg, the second one diffusion within the GB with the diffusion coefficient Dgb (Eq. 

(1.1)): 
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gb gb gb

gb 2 2
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D , / 2

t x y

C C C
D , / 2

t x y

                         if x

                     if x
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δ
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where t is the diffusion time. Both Fick’s second laws [Fic55] are coupled by applying the 

boundary conditions of equal concentrations and fluxes at the grain/GB interface (Eq. (1.2)): 

 

g gb

g gb

C (x, y, t) C (x, y, t)
, / 2.

J (x, y, t) J (x, y, t)

      
    if x δ

=⎧⎪ =⎨ =⎪⎩
       (1.2) 

 

These two continuity conditions (Eq. (1.2)) correspond to the conservative property of 

diffusion [Ghe88] and presuppose the steady state and diffusional equilibrium between the 

GB and the grain. Obviously, additional boundary and initial conditions are related to the 

surface. There are two important boundary conditions referring to y = 0: constant source and 

instantaneous source. While Whipple solved the relevant mathematical problem for the case 

of constant source, Suzuoka [Suz61] found the corresponding solution for the instantaneous 

source. For both cases the initial and boundary conditions are presented in Eqs. (1.3a) and 

(1.3b). 

         

    

In Eq. (1.3b) δ(y) is the delta function and M is the amount of diffusant deposited per unit 

area of the surface, whereas in Eq. (1.3a) C0 is the constant concentration of diffusant at the 

surface. Correspondingly, the mathematical problem of diffusion when both bulk (grain) and 

GB contribute is to solve the system of differential equations (Eq. (1.2)) subject to the 

boundary and initial conditions given by Eqs. (1.2) and (1.3). 

 

1.1.3 Transformations made to obtain Fisher’s system 
 

In Fisher's model the concentration can be easily expanded into a Taylor series with 

respect to x = 0 [Kau95], [Whi54]. Particularly, the GB concentration can be expanded, since 

the GB can be considered as a very thin slab, and the concentration within it is 

Constant source: Instantaneous source: 

 

 

0C(x, y, t) C      at y 0
         C(x, y, t) 0        at t 0 

C(x, y, t) 0        at y

= =⎧
⎪ = =⎨
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(1.3a) 

 

y 0
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         C(x, y, t)  0                at y 
C(x, y, t) 0 

y

δ

=

= =⎧
⎪ = =⎪⎪

= → ∞⎨
⎪∂⎪ =

∂⎪⎩

    (1.3b)
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homogeneously distributed [Sut95]. However, this is not the case for the grain concentration. 

Consequently, 

 
22
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C (x, y, t) C (x, y, t)xC (x, y, t) C (x, y, t) x
x 2 x

C (x, y, t) C (x, y, t) C (x, y, t)x x x...
3! x 4! x n! x

= = =

= = =

∂ ∂
= + + +

∂ ∂
∂ ∂ ∂

+ + + +
∂ ∂ ∂

.        (1.4a) 

 

The first derivative of an even function gives an odd function which is zero at the point of 

symmetry x = 0. Hence, one can neglect all the “odd” derivatives: 
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Substituting Eq. (1.4b) into the diffusion equation for the GB (Eq. (1.1)), one obtains the 

following expression 
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.              (1.4c) 

 

The GB concentrations are equal at x = 0 and x = ±δ/2. This property allows one to transform 

the last expression into a much simpler form, considering the equation at x = ±δ/2 and, 

neglecting the higher order terms (i.e. of order δ2 and higher). Such a simplification is related 

to the fourth assumption supposed by Fisher’s model. This yields 

 

( )
2 2

gb gb gb x 0 gb2 2C (0, y, t) D C (x, y, t) C 0, y, t
t x y=

⎡ ⎤∂ ∂ ∂
= +⎢ ⎥∂ ∂ ∂⎣ ⎦

.               (1.4d) 
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The latter equation can be further simplified by substituting Eq. (1.4b) into the boundary 

conditions (Eq. (1.2)) and keeping in mind that   

 

( )gb
gb gbx x

2 2

C x, y, t
J D

xδ δ
= =

∂
= −

∂
.         (1.4e) 

 

In this way, the continuity conditions are rewritten neglecting the higher order terms as: 
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Finally, Eq. (1.5) allows one to write down the following equations for the GB diffusion  

 

( ) ( ) ( )

( ) ( ) ( )
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t x y
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                         if x
 

                             if x

δ

δ
δ

⎧ ⎛ ⎞∂ ∂ ∂
= + ≥⎪ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎝ ⎠⎨

∂ ∂ ∂⎪
= + =⎪ ∂ ∂ ∂⎩

.  (1.6a) 

 

All terms in the second equation are taken at x = ±δ/2, so it exactly represents the boundary 

condition. Eq. (1.6a) is known as the Fisher system. It is important to note, that the solution 

which can be obtained by solving Eq. (1.6a) reveals the concentration within the grain and 

neglects the concentration within the GB.  If one believes that the assumptions introduced by 

Fisher’s model (see page 3) are reasonable and really reflect the adequate physical situation, 

the only approximation is related to neglecting higher orders terms in the expansion of Cgb.  

If there is segregation, the first equation in Eq. (1.5) is replaced by [Her05]: 

 

gb gC (x, y, t) sC (x, y, t), / 2        if x δ= =                  (1.6b) 

  

where s is the equilibrium segregation coefficient or segregation factor. Eq. (1.6b) is known as 

Henry’s isotherm [Cab91], which is valid for dilute conditions. By using this boundary 

condition Eq. (1.6a) can be rewritten in the following form [Gib66] 
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( ) ( ) ( )

( ) ( ) ( )

2 2
g g g

g 2 2

2
g gb g g

gb 2

C x, y, t C x, y, t C x, y, t
D , / 2

t x y

C y, t C y, t D C y, t
D / 2

t y s / 2 x

                         if x
 

.                             if x

δ

δ
δ

⎧ ⎛ ⎞∂ ∂ ∂
= + ≥⎪ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎝ ⎠⎨

∂ ∂ ∂⎪
= + =⎪ ∂ ∂ ∂⎩

            (1.6c) 

 

1.1.4 An alternative derivation of Fisher’s system  
 

Shewmon [She63] published a more didactic approach to arrive at Fisher’s system. 

Interestingly, his derivation is more elegant in the sense that it allows the straightforward 

finding of the corresponding equations without rigorous mathematical transformations. Let us 

consider a 2D slab of the length dy and thickness δ (fig. 1.3). The slab is embedded into the 

system of two crystals (grains) from both sides, having a different diffusivity. If that slab is an 

element of a GB, two fluxes are possible from its GB/grain interfaces, i.e. from the GB into 

the grains, namely the fluxes Jx in fig. 1.3. There is also the flux coming from the top of the 

slab Jy and leaving some amount of material inside the slab. The amount of material is 

changed within the slab due to the non-zero difference of fluxes and is given by (∂Jy/∂y)dy, if 

dy is very small. The fluxes Jx and Jy are different, because these are determined by the 

diffusion coefficients Dg and Dgb, respectively. The volume of the element is 1dyδ, where the 

unity corresponds to the length along a z-direction. So the concentration changes with time. 

Accordingly, 

 

g y
x

C J
dy dy 2dyJ

t y
δ δ
∂ ∂

= − −
∂ ∂

,         (1.7) 

 

where the negative signs obviously correspond to out-diffusion. Introducing Fick’s first law, 

the following final equation for diffusion along the GB results: 
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gb 2 x
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t y x δδ =

∂ ∂ ∂
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.         (1.8) 
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Fig. 1.3 Schematic representation of the GB model for deducing Eq. (1.8). 
Adapted from [She63].  

 

1.1.5 Whipple’s solution 
 

Whipple [Whi54] solved Fisher’s system (Eq. (1.6)) by means of the Fourier-Laplace 

transform [Bee03]. Properties of this solution will be discussed in chapter III. Here only the 

solution is presented, which reads  

 
2

0
g 0 1/ 2 3/ 2

1

C d 1 1 1C ( , , ) C erfc exp erfc
2 2 4 2

∆ηη σ η ∆ σ
η ξ β ξ

π σ σ ∆ σ β
⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= + − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

∫ .  (1.9a) 

 

The solution is of integral form with the integral being responsible for GB diffusion. The first 

term of the solution, obviously, represents diffusion within the grain. Different dimensionless 

quantities are used in the Whipple solution. The dimensionless quantities η and ξ are, in fact, 

dimensionless coordinates and given by 
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g

y
D t

η = ,                      (1.9b)  

 

g

x / 2 ,   if x / 2
D t
± δ

ξ = ≥ δ .                    (1.9c) 

 

Eq. (1.9a) differs from original expression by the modulus |ξ|. The latter is needed, if the 

solution is considered at x ≤ -δ/2 (see also Eq. (1.9c)). The meaning of the dimensionless 

parameter β is more complex. According to Kaur et al. [Kau95] it characterizes the diffusion 

process in the sense that a large β-value means that the diffusion along the GBs is greatly 

pronounced in comparison with bulk diffusion, i.e. the penetration depth along the GB is 

much larger. It is also related to the inclination angle between an isoconcentration line and the 

GB. Finally, it is not only high when ∆ is large, but also when t is short. The analytical form 

of β is 

 

 ( ) ( )
g

1
1

2 D t
∆ − δ

β = = ∆ − α .                   (1.9d) 

   

Here the quantity α shows how the diffusion length in the grain ( g gL D t= ) exceeds the GB 

thickness (δ).  

 

1.2 Diffusion kinetic regimes 
  

Diffusion in an isolated GB (fig. 1.2) can be analyzed or simulated on the basis of Eqs. 

(1.6c) and (1.9a). In particular, Le Claire [Cla63] could suggest a simple procedure for 

determining Dgb based on integration of Whipple’s solution. However, the procedure cannot 

be used for any experimental condition. It is a purpose of the present study to analyze such 

conditions when Le Claire's procedure is not valid. GB diffusion goes through different 

physical situations as the temperature and/or diffusion time increase. Accordingly, Harrison 

[Harr61] introduced three diffusion regimes and only in one of them the Whipple solution to 

Fisher’s system is valid. The application of Harrison’s classification is also discussed in 

excellent reviews on GB diffusion, for example [Mis97], [Mis99]. Additionally, a new 

classification introduced by Mishin [Mis95] is used and discussed here in more detail as being 
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applicable to a variety of materials ranging from coarse grained to nanocrystalline. It should 

be mentioned that there are also classifications that take into account GB motion [Güt93] or 

GB diffusion accompanied by diffusion along dislocations [Klin99]. These are not a subject 

of the present study.   

In the aforementioned classification it is supposed that penetration along GBs is 

deeper than in the remaining grains. As a consequence of the transport coefficient being larger 

along the GBs, diffusing atoms first move along these paths. For analyzing diffusion regimes 

surface diffusion is not considered as a rate-limiting process (recently, Preis and Sitte 

[Prei05], derived analytical solutions for the thin-film problem taking account of rate limiting 

surface exchange reactions).  

In the very beginning of the diffusion process the atoms (traces) move through the GB 

without a significant contribution to the bulk. It is expected that the overall process is 

determined by Dgb only; it can be described by a complementary error-function solution to the 

diffusion equation in the case of a constant source. Such a situation was called by Harrison the 

C-kinetics and later extended by Mishin to an additional C´-regime to take into account the 

situations when the grain size can be very small. So the conditions of the C and C´ – regime 

(in terms of Mishin’s classification) can be written as follows: 

 

Lg << sδ/2 << Lgb << d   (C-regime)                         (1.10a) 

 

and 

  

Lg << sδ/2 << d << Lgb   (C´-regime).               (1.10b) 

 

Here Lg, Lgb are the grain and GB diffusion lengths, respectively, d is the average grain size 

and s the segregation factor. The segregation factor (s) is introduced for generality and is set 

to 1 for self-diffusion. In fig. 4a an example of the C´-regime is given obtained by simulating 

diffusion using the finite element method (FEM) (the numerically obtained figures serve here 

as explanation figures. The quantitative analysis will be given in chapter IV).  In this figure 

bright colors represent the enhanced concentration around the interfaces (see also color 

pattern in fig. 4a). However, the diffusion process is supposed to be confined within the GBs 

in the C (C´)-regime. The existence of the C (C´)-regime itself is still questionable, what was 

already mentioned in [Kau95] and is shortly discussed here. However, this is the only regime, 

in which Dgb (as it is believed) is directly obtained. This fact is used in many experiments to 
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find s [Her03]. It proceeds typically for a very short time which can be much shorter than in 

the case of type-B kinetics (fig. 5a, see also discussion below). That is why the C (C´)-regime 

is difficult to verify experimentally, because of short t and/or low temperatures, in which case 

very small GB concentrations result. Consequently, the usually studied regime is the B-

regime. Its evaluation is more reliable, especially for coarse-grained materials.    

 The exact solution found by Whipple (Eq. (1.9a)) corresponds to the B-regime. The 

range of validity of this regime is defined as follows: 

 

sδ/2 << Lg << Lgb << d (B-regime according to Harrison [Harr61] or B2-regime according to 

Mishin [Mis95])                           (1.11a) 

 

and 

 

sδ/2 << Lg << d << Lgb (B2´-regime according to Mishin [Mis95]).           (1.11b) 

 

For the main results in the present study the common term B - regime is used, because the 

Whipple solution is valid in both the B2- and B2´-regime. It seems to be that differentiation of 

the B-regime into the B2- and B2´-regime is interesting only from the point of view of 

understanding how the diffusion process proceeds. This is also interesting in order to 

distinguish different types of materials as was proposed by Mishin [Mis95].  

The diffusion lengths plotted on the logarithmic scale for different types of materials 

indicate that the B-regime is suppressed in materials with smaller grain sizes (fig. 5), while 

the A-regime becomes more prolonged. The plots shown in fig. 5 are very useful from the 

point of view of understanding diffusion in a polycrystal. These also allow to properly tune 

numerical experiment, because knowing penetrations is extremely important in order to avoid 

possible errors. Importantly, bold lines in fig. 5 correspond to the diffusion lengths 

responsible for the process in a particular regime. For instance, both Lg and Lgb can be 

obtained in the B-regime. All the plots were plotted for Dg = 2.95⋅10-4 nm2/s (2.95·10-16 

mm2/s) and d = 25 nm. Different ratios ∆ = Dgb/Dg were used in order to realize the different 

types of materials.  

 Two diffusion lengths (blue and red lines) shown in fig. 5 have the same slope on the 

logarithmic scale, as in such cases the same power law ~t1/2 is obeyed which is a typical 

diffusion dependence. In the B-regime, however, the diffusion length in the GB (green line) 

follows another law, viz. [Kau95] 
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= ,                  (1.12a) 

 

where s is again the segregation factor, t the diffusion anneal time and δ the GB thickness. 

The effects of segregation are excluded in fig. 1.5, i.e. those are plotted for s = 1 only. 

Moreover, not only Lgb, but also the parameter β depends on s as 

 

( )s 1β = ∆ − α .                    (1.12b) 
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b) 
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c) 
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Fig. 1.4 a) Concentration distribution in a square grain pattern under conditions of the 
C´ kinetics regime (d = 5 nm). b) A concentration distribution in a general polycrystal 
under conditions of type-B kinetics for ∆ = 102 (d = 25 nm) b’) the same for ∆ = 
2.2·104 (d = 25 nm) c) A concentration distribution in a general polycrystal for the 
type-A kinetics for ∆ = 102 (d = 25 nm). All white lines correspond to the GBs. Also 
shown are relevant color patterns, in which different colors correspond to certain 
isoconcentration line. Distributions in b) and c) were obtained by using general model 
3 used in the present study, for details see chapter IV. 

 

The main difference between the results in figs. 1.4b and 1.4b’ does not only lie in the 

different ratios ∆, but also in the behavior of concentration around the GBs. The inclination 

angle between a particular isoconcentration line (defined by a line of a particular color) and a 

GB is larger for smaller ratio ∆. Qualitatively speaking; the result in fig. 1.4b represents a 
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classical solution (distribution) in the type-B kinetics, corresponding to the B2 – regime 

according to the classification of Mishin [Mis95]. Contrary to this, the inclination angle in the 

distribution in fig. 1.4b’ is much smaller, indicating a typical situation for ultrafine-grained 

(nanocrystalline) materials. Because of this, the diffusion length in the GB (Lgb, green line in 

fig. 1.5) never reaches d for ∆ = 102, and the A-regime always starts before the diffusion 

length in the grain (Lg, red line in fig. 1.5) reaches that in the GB for ∆ = 2.2·104, if d is 25 nm 

(fig. 1.5c). 

The A-regime starts when the red and green lines in fig. 1.5 are crossed, or when Lg 

equals d. In fact, the diffusion length in the A-regime represents some effective diffusion 

length (not shown in fig. 1.5), which is a combination of Dg and Dgb. In this regime the 

distribution is homogeneous, what allows different theories valid for homogeneous systems to 

be applicable in the A-regime. High temperatures and/or long diffusion times are needed to 

observe the A-regime in coarse-grained materials. Contrary, it is suggested that the A-regime 

is important for ultrafine-grained materials (nanomaterials) due the suppression of B-regime 

[Bek04] (the condition discussed in reference is too rigorous and the existence of the B-

regime is not questionable even for nanomaterials, what is proved in the present study). The 

effect is just related to the small grain sizes. The conditions for the A-regime are the 

following: 

 

d << Lg  ≈  Lgb.                    (1.13)      

 

That is, the main condition for the A-regime is Lg >> d. This starts at the point of equal Lg and 

Lgb (fig. 1.5). However, there is a situation when Lg reaching d is still smaller than Lgb. In this 

case the A´ - regime arises. One additional regime is the so called B4-regime, in which Lg ≈ 

Lgb << d. This corresponds to the situation that the diffusion fronts from the GB into the grain 

are not distinguishable anymore and are not overlapping. The inclination angle between the 

isoconcentration line and the GB is simply 90º in this case. Another possibility is shown in 

fig. 1.5a, in which Lg reaches d at the same point, where this equals Lgb. That is why it can be 

attributed to both A and B4 regimes. In the distribution in fig. 1.4c the classical situation is 

shown, the homogeneous distribution is seen up to a very low level of the concentration. As 

far as the diffusion process in all of the type A regimes (B4, A, A´) is obviously described by 

the solution to diffusion equation in homogeneous media without any exceptions. 

Accordingly, only one definition is used in the present work, namely the A-regime.     
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1.3 Deducing the grain boundary diffusivity from the diffusion profile 
 

It is to be mentioned, that the diffusion profile is understood as the dependence Cav = 

f(y) or lnCav = f(y6/5) (see discussion below), where Cav is an average concentration being a 

function of time t and penetration depth y. Such a concentration can be found by integrating 

Cg(x, y, t) along x for the whole range of y, what, in a sense, is a theoretical definition. 

Experimentally the same quantity can be found, when the sample is cut in slices, and the 

concentration in each slice is determined, what exactly is the case of tracer measurements 

[Ask70], [Meh05]. As sectioning methods, including SIMS technique in a depth profiling 

mode, obtain the average concentration (Cav) as a function of y and t, there should be a 

procedure which allows the grain boundary diffusivity (Dgb) to be found. Moreover, since 

diffusion in a polycrystalline sample passes different kinetic regimes, depending on t or 

temperature, at least three equations are needed to perform the diffusion profile measurements 

safely. In fact, such equations exist and intensive literature can be found on applying all the 

three equations. Nevertheless, these equations are still debated owing due to 1) simplifications 

made in the models [Chu96a], [Bel01], [Bel03] to find this or that equation and 2) special 

conditions [Bek04] for studying the GB diffusion and new types of materials [Mis95]. Here 

we essentially discuss application of two equations due to 1) obvious solution given by the 

complementary error-function in the type-C kinetics, which need not be explained in detail, 

and 2) importance of the B-regime and especially A-regime for nanocrystalline materials.  

The B-regime has been remaining the most reliable regime for many years, since the 

grain size of tens of micrometers in the coarse grained materials determines the overall 

behavior. A procedure to extract Dgb from the measured diffusion profile was proposed by Le 

Claire [Cla63]. The advantage of the diffusion profile measured in the B-regime is in fact, that 

the bulk and GB diffusion are separable. Following mathematical intuition and knowing that 

the diffusion profiles are linear functions of y6/5 [Lev60], Le Claire came up with the 

following expression 

 
5/35/3

g av av
gb 6/5 6/5

D ln C ln CD 2
t w y

δ
−

⎛ ⎞∂ ∂⎛ ⎞= − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 ,                 (1.14) 

 

where w is the dimensionless coordinate, having a very important property of making the 

diffusion profile plotted as a function of w independent of ∆. This is based on the following 
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a) 

 
b) 
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c) 

 
d) 

 
 

Fig. 1.5 How diffusion lengths along the GBs (Lgb) and grains (Lg) vary with the 
diffusion time (t) for a) ∆ = 102 (coarse-grained material), b) ∆ = 103 (fine-grained 
material), c) ∆ = 2.2·104 (ultrafine-grained material), d) ∆ = 105 (ultrafine-grained 
material). The dependences are plotted on the logarithmic scale. In the case of green 
line Lgb is given by Eq. (1.12a).  
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expression for w: 

 
1/ 4

g

g gb

4Dy yw
tD t D

η
β β δ

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
,                 (1.15) 

 

where η is the dimensionless coordinate weighted to the diffusion length in grain (bulk) and 

used in the original Whipple solution [Whi54]. While the second derivative in Eq. (1.14) 

represents an experimentally measurable gradient, the derivative with respect to w can not be 

obtained without knowing Dgb. Le Claire suggested that it can be replaced by a constant value, 

if β >> 10 (Eq. (1.9d)) and w >> 2. Both the quantities are ∆-dependent; therefore these are 

also unknown for the once measured diffusion profile. However, it is believed that in most 

cases the conditions are satisfied. If it is really the case, the derivative is replaced by a 

constant value of –0.78 according to Le Claire [Cla63], giving rise to 

 
5/3

g av
gb 6/5

D ln CD 1.322
t y

δ
−

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

.                  (1.16) 

 

The latter expression is known as Le Claire’s relation, which is the only expression used, 

when the gradient is measured under conditions of type-B kinetics. Eq. (1.16) is modified, if 

the segregation of impurities is concerned. The triple product sδDgb [Bok58] comes into play 

in this case. The role of segregation effects in the type-B kinetics is not discussed in the 

present study. Recently, Chung and Wuensch [Chu96a] observed that the conditions of 

validity of Eq. (1.16) were not fulfilled in the case of very shallow diffusion gradients. Such 

situations are discussed in the present study. 

 Hart’s equation is widely used [Hart57], if the diffusion profile was measured at very 

long t and/or high temperatures. The equation represents a linear combination of diffusivities 

Dg and Dgb weighted to the volume fraction of GBs (g):  

 

( )eff gb gD gD 1 g D= + − .                 (1.17a) 

 

His equation was modified to take into account segregation by Mortlock [Mor60] and reads:  

 

( )eff gb gD sgD 1 sg D= + − .                 (1.17b) 
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The latter expression is known as the Hart-Mortlock equation in which includes the 

equilibrium segregation factor s is given by Eq. (1.6b). Since this equation is valid only for 

the model of parallel boundaries, another expression was also suggested to deduce Dgb 

[Kal01]: 

 

( )
gb g gb

eff
gb g

sD (2 g)D sgD
D

1 g sg sD (2 g) gD

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− + − +⎣ ⎦

.                 (1.18) 

 

This is a modified Maxwell-Garnett, or Maxwell equation [MaxG04], [Max54] which is 

believed to be valid for realistic polycrystalline microstructures. 

 All these equations are currently used to deduce Dgb from the measured diffusion 

profiles except Eq. (1.18). Up to now there are no publications demonstrating the use of Eq. 

(1.18) in diffusion experiments. As these equations do not take into account the conditions of 

small grain sizes, it is the aim here to check the validity of those theories under conditions of 

short t. In the next chapters the discussion of such specific conditions will be continued on the 

basis of numerical evaluations of Whipple’s solution as well as numerical integrations of the 

Fisher system.  

 

 

 

 

 

 

 

 


