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Introduction  
 

 A polycrystal consists of GBs differently oriented with respect to each other and the 

diffusion direction. Even though it is important to take these orientations into account, 

conventional GB diffusion models ignore this effect. In this chapter realistic microstructures 

are discussed, and the conventional analysis is applied to the diffusion profiles calculated in 

both the B-regime and the A-regime. The influence of the crystallographic misorientations of 

the grains is neglected [Lea57].  

 It is important to mention that the reliability of the model of isolated boundaries (fig. 

1.2) as a representation of a polycrystal is partly based on sufficiently small values of the 

parameter β (see discussion below and [Kau95]) and/or large grain sizes. In this case the grain 

shape and the GBs orientations do not play a significant role. On the other hand, as the 

diffusion time (t) shortens, the diffusion process in a polycrystal is mostly determined by the 

GB contribution. This is the typical situation in materials with small grain sizes. 



Chapter IV.                                                                                                                Realistic microstructures 
 

 76

Different theoretical methods were recently applied in order to analyze the diffusion 

behavior under realistic conditions. Attempts were undertaken to analyze GB diffusion in 

realistic microstructures by using Potts model [Swi97] and phase field approach [Zhu01]. 

Moreover, attempts were also undertaken to obtain some analytical solutions to describe 

diffusion in real polycrystals [Bed05]. However, the model of parallel boundaries (the same as 

the isolated boundary model in the B-regime) and the model of square grains are very often 

considered when simulating diffusion in polycrystalline materials by using the Monte-Carlo 

method [Bel03]. Also the model of spherical grains is convenient for analytical evaluations 

[Harr61] as well as for numerical considerations [Sak90]. The analysis of GB diffusion in 

realistic microstructures is mostly restricted to the extreme cases of the A- or C-regime. 

Consequently, both the model of parallel boundaries and the model of square grains are 

analyzed in the present study in the B- as well as A-regime but with an eye to more realistic 

(general) microstructures, developed here by using the finite element approach. Further 

literature and ideas on simulating diffusion in the realistic microstructures are discussed in the 

following sections.   

 

4.1 Finite Element Calculation. To get started 
 

As already mentioned the finite element method (FEM) is a very useful tool for 

studying different physical processes [Sim06]. Application of the FEM to problems of 

diffusion and heat conduction was discussed in the literature due to the importance of these 

processes and the possibility to model these by means of classical differential equations (for 

example, [Com94]). That is, a linear partial differential equation of the second order of 

parabolic type is treated in the case of mass transfer (heat conduction) [Wei65]. Moreover, a 

numerical study of such processes can serve as a model simulation of instationary problems 

for the finite element calculations. However, problems such as GB diffusion have never been 

studied intensively by FEM. The paper of Whipple [Whi54] was published in earlier 50‘s of 

the last century. Since that time, Whipple’s solution has been remaining the only exact 

solution of diffusion equations to the GB diffusion problem, and there was no need to solve 

the Fisher system by means of numerical methods. Only a single paper, by Z. Knesl et al. 

[Kne74], was dealing with FEM for interacting GBs in the model of square grains. Even 

though, numerical methods can help to obtain the concentration distribution for such 

geometrical situations. As a result of this simulation they simply compared the diffusion 

profiles obtained for the isolated boundary model to those for the square grains for the 
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interacting GBs. Despite this fact, it was a pioneering work as regards on the application of 

FEM to the problems of GB diffusion.  

There is always a numerical aspect relating to the integration of differential equations. 

The accuracy of integration defines the quality of simulating concentration profiles, which is 

reflected in the parameters obtained from simulated profiles. The integration can become very 

critical in the cases of extremely small diffusion lengths, because the diffusion process in the 

bulk (grain) is concentrated closely to the surface where the gradients are very high. This is 

specifically important for GB diffusion, because of two interrelated processes: the GB 

diffusion rates can be significantly different from the bulk diffusion rates. The GB 

contribution to the overall process is prolonged along the y-coordinate (fig. 1.2) at short t and 

is strongly concentrated around the GB. This implies that high densities of integration meshes 

are required in those regions in order to get accurate results. Otherwise, the simulated 

diffusion profiles could either be inaccurate or even physically inadequate by giving negative 

concentrations. It is the purpose here to show: 1) how the GB diffusion problem can be 

resolved by using FEM, 2) which problems arise when integrating Fisher’s system (Eq. 

(1.6a)) by FEM, 3) what conclusions can be drawn from numerical analysis.   

 

4.1.1 Main characteristics of the geometrical model of isolated boundary used 

in the finite element program 
 

The typical t used in the present work is 2000 s for ∆ = 2.2⋅104. In this case Lg ≈ 0.77 

nm, i.e. it is comparable with the interatomic spacing, whereas Lgb ≈ 64.61 nm. Let the whole 

length of geometrical model be 500 nm and the width 40 nm. The length of 500 nm is mostly 

used, if not stated otherwise. That is, the geometry is represented by a rectangle box with the 

diffusant applied at the free surface. The diffusant moves into the box under the concentration 

gradient until a whole space is filled up by the diffusant. This problem is again two-

dimensional with reflecting boundaries at all sides of the geometrical model, if a special 

property is not defined, for example, the GB or the free surface. The GB thickness (δ) is 

neglected as it is supposed by Fisher’s model. The latter means that the GB is represented by 

a line with neglecting the GB concentration within it. The relevant geometrical model is 

equivalent to that used to integrate Whipple’s solution. The only difference between the two 

solutions is the influence of reflecting boundaries in the FEM model. Consequently, Eq. (1.3a) 

should be added by the zero-flux condition at the bottom of geometry. However, our main 

analysis is related to the maximum of the derivative of lnCav = f(y6/5). If the maximum is not 



Chapter IV.                                                                                                                Realistic microstructures 
 

 78

affected by the boundary, the solution is valid for infinite systems as well. The role of this 

condition for simulation of diffusion in the A-regime is discussed in section 4.2.3.1.  

 

4.1.2 A comparison of Whipple’s solution and FLUX-EXPERT’s simulation 

results 
 

To compare Whipple’s solution with FLUX-EXPERT’s result, a consideration of 

single GB is necessary. The two results are shown in fig. 4.1. These coincide within an error 

of 1% until the influence of the zero-flux boundary condition becomes significant at larger 

coordinates (the derivative goes to zero). This demonstrates that the model applied in FLUX-

EXPERT (the geometrical model, mesh as well as the derived Eq. (2.8)) can be used to 

integrate the Fisher system. This is particularly important because diffusion is studied here 

under extreme conditions: short t and diffusion lengths, leading to high derivatives. In the 

next sections the results of the integration in FLUX-EXPERT for different geometrical 

models and parameters are discussed. All these results were obtained with a very high 

accuracy, what is, however, computationally costly. 
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Fig. 4.1 A comparison of the integration by FEM (FLUX-EXPERT) with 
Whipple’s solution (MATLAB). The ratio ∆ = 2.2⋅104 and t = 2000 s. 
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4.1.3 The accuracy of results obtained in FLUX-EXPERT 
 

4.1.3.1 The averaging of concentration Cg 

  

It is reasonable to discuss here how, using FLUX-EXPERT, the concentration Cg(x, y, 

t) is integrated along the direction perpendicular to the GB. The diffusion parameters are 

found from the profile of concentration Cg(x, y, t) averaged along the x-direction (fig. 1.2), 

which reveals the concentration Cav(y, t) as a function of coordinate y only. This is done in the 

same manner as in real diffusion experiments by using, for example, tracer measurements 

[Ask70]. FLUX-EXPERT gives the concentration distribution over all mesh points. One can 

also plot the concentration along different paths of the geometrical model [Flu92e]; however, 

the averaging is not realized in the program specifically. The special script was written by 

using the programming language Perl in order to obtain Cav.  
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Fig. 4.2 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated with 
different intervals ∆x and ∆y. 

 

The script runs the module XPLOIT [Flu92e], in which the concentration is calculated 

along the paths of constant y-coordinates in the automatic mode. The module allows one to 

calculate the integral itself; however the averaging is done by dividing that integral by (xmax – 

xmin), i.e. the width of the geometrical model used. Consequently, 
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The steps of integration are controlled in this script along both directions, but the interval 

along the x-direction (∆x) is, of course, an important parameter. In the present work the only 

intervals used to obtain Cav are ∆x = 0.20 and 0.25 nm. If the interval ∆x is decreased, say by 

a factor of 2, the derivative does not change and, in principle, the same result can be obtained 

(fig. 4.2, black line). The step along the y-direction can influence the result as well, leading to 

numerical instabilities similar to those observed by integrating Whipple’s solution (see section 

3.2). The instability is reflected in noise and spikes, for example at y6/5 ∼ 750 nm6/5 in fig. 4.2. 

Such spikes are enhanced when the interval ∆y decreases. 
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Fig. 4.3 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated with 
different steps ∆y in the GB part. 

 

Consequently, the following ∆y-intervals were tested in the GB part of the diffusion 

profiles (i.e. in the region 50 – 500 nm for ∆ = 2.2·104 at t = 2000 s): 0.25, 2.00, 5.00, and 

10.00 nm, while the interval in the bulk part of the profile was fixed to 0.25 nm. The 

derivatives of the corresponding diffusion profiles are presented in fig. 4.3. In this way one 
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can show that increasing the interval of integration (∆y) in the GB part leads to derivatives 

without instabilities. In order to get a similarly smooth profile of the derivative three steps 

were finally adapted according to three parts of the diffusion profile: bulk part, GB part and 

the reflecting boundary. The example of this profile is shown in fig. 4.1 obtained with the ∆y-

steps 0.25, 20.0, 5.0 in the bulk, GB and reflecting boundary parts, respectively. 

 

4.1.3.2 The effect of the finite element mesh 

 

Diffusion has a specific feature which should be taken into account for numerical 

integration of the diffusion equations by FEM. The diffusion gradients vary with time striving 

for zero until the equilibrium is achieved. On simulating diffusion in different kinetic regimes, 

the problem of the mesh becomes very important. One would thus presume different density 

meshes in different parts of geometry and/or at different t. This also complicates the 

numerical integration of diffusion equations. However, it would be useful to find a universal 

mesh for certain diffusion parameters, sufficiently dense to use it under different conditions. 

Moreover, there is always a trade-off between mesh density and time interval (∆t). Several 

calculations are typically needed to get a final diffusion profile, which depends on the 

parameters (diffusivities, t) used in the numerical experiment. Unfortunately, it is not possible 

to simply increase the density, because it would giantly increase the computational time. 

Moreover, the finite element program used has limits too. In particular, FLUX-EXPERT has a 

maximum number of elements of one million (!), at least for the version of the program used 

in the present work [Flu00]. One can imagine that this maximum number is fixed for the 

whole geometry, and once the geometry was defined, satisfying the accuracy, it is not possible 

to increase its length further. One should pay attention that these numerical problems become 

specifically important when simulating diffusion in nanocrystalline materials due to small 

diffusion lengths.    

The mesh density for the concentration profile plotted in fig. 4.1 is as follows: 0.25 nm 

along the x-direction and about 0.24 nm along the y-direction. Hereafter this mesh is called 

mesh 1. Such a mesh density implies the number of triangle elements to be 657729 for the 

geometry of 40 nm in width and 500 nm in length (40x500 nm2). The same density for the 

geometry of 25 nm in width gives 409940 triangle elements. This is the most dense mesh used 

in the present work (except the space charge layer problems discussed in the next chapter), for 

which the number of elements is already half of the program’s limit (see also other examples 

in table 4.1). The result obtained by using this mesh is consistent with that obtained by 
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integrating Whipple’s solution (fig. 4.1). This allows mesh 1 to be a model mesh and to skip a 

comparison of that with more dense meshes. In fig. 4.4a the profile for mesh 1 (red curve) is 

compared with that for smaller number of elements. The density was also decreased to 0.5 nm 

and about 0.48 along the x- and y-direction, respectively. This is a mesh, called mesh 2, with 

~164884 elements for the sample: 40x500 nm2. It is very important to note that for a mesh of 

smaller density the reflecting boundary leads to larger values of the concentration Cav(y, t), 

especially at deeper y-coordinates. In this case the derivative looks more like a straight line in 

the GB part artificially, but this is purely the effect of the mesh only (green and blue lines in 

fig. 4.4a). In the worst case, the decrease of the mesh density could lead to a vanishing of the 

GB part, affecting the maximum so strongly that the slope of the diffusion profile could not be 

obtained.  

The integration parameters (the interval ∆y, see discussion above) differ for both mesh 

1 and mesh 2. The interval ∆y = 10 nm and smaller along the GB part leads to the instabilities 

for mesh 2 (blue and green curves). In fig. 4.4b the comparison of mesh 1 is made with 

additional new meshes for the same geometry (40x500 nm2) at longer t in order to get a 

preliminary impression of the introduced errors. Additionally, decreasing mesh density does 

not really allow one to start the calculation with short time of 200 s, as it was done with mesh 

1. Consequently, the starting times are 200 s for mesh 3 and 7000 s for mesh 4 (table 4.1). In 

fig. 4.4b the noise (green curve) is related to a very small step integration ∆y of 0.25 nm. 

Obviously, such intervals together with small densities are not advisable. The results for mesh 

1 and mesh 3 coincide at t = 10700 s, demonstrating that one can use the meshes of smaller 

densities for simulating diffusion at higher t only. However, the main choice is made for mesh 

1 is preferred as satisfying the necessary accuracy at short t and allowing t to be increased as 

well as the ratio of diffusivities (∆).                         

 

Table 4.1 Parameters of different test meshes. 

Name Density along x/y direction Number of triangle 
elements (40x500 nm2) 

mesh 1 0.25/0.24 657729 
mesh 2 0.50/0.48 ~164864 
mesh 3 1.00/0.97 41391 
mesh 4 2.00/1.95 10445 

 

 

4.1.3.3 The effect of the time interval 
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Fig. 4.4 A comparison of different meshes at a) t = 2000 s and b) t = 10700 s. 
The steps ∆y1 and ∆y2 mean the intervals in the bulk part and GB part of the 
profile, respectively. 
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As we deal with transitory problems, the solution strongly depends on the time interval 

used. The smaller the interval ∆t the more accurate the solution. Because very small values ∆t 

leads to time-consuming calculations, an appropriate computational procedure should be 

found with respect to that parameter too. In order to check its effect, various ∆t were used, 

simulating the diffusion profile for conditions ∆ = 2.2⋅104 at t = 2000 s. The interval ∆t was 

varied from 600 s to 6.25 s, starting the calculation with t of 200 s. In all the calculations 

under conditions of the type-B kinetics (see section 1.2), this starting time was taken as 200 s, 

if not otherwise stated. Consequently, the largest ∆t suggests 3 computational steps, whereas 

the smallest one 288 steps.  

The profiles for various ∆t are presented in fig. 4.5. One can see that there is a very 

little difference in the derivatives calculated for ∆t = 6.25, 12.5 and 25 s. Finally, ∆t = 12.5 s 

was used in all the calculations up to 13200 s. It was observed, that after 13200 s ∆t can be 

increased and, consequently, in the A-regime the time interval of 20000 s was used.  

The starting time value can affect the accuracy of a particular result, especially at very 

short t. That is why, ∆t should be tuned every time, beginning a new calculation with a new 

geometry (or mesh) and parameters. In fig. 4.5 it is demonstrated that large ∆t = 600 s leads to 

the vanishing of the maximum. Fitting the corresponding profile by a straight line does not 

give a correct slope. 

 

4.2 Realistic polycrystalline microstructures 
 

In GB diffusion studies the isolated boundary model (fig. 1.2) has been serving as a 

good approximation of a real microcrystalline structure for many years. However, a real 

microcrystalline structure comprises many GBs differently oriented to each other and to the 

diffusion direction. Ignoring the GBs orientations seems justified by the fact that in coarse-

grained materials the influence of a GB orientation on a concentration profile is negligible, 

because of the possibility to study diffusion under conditions of high temperatures and/or long 

t. The type-B kinetics is considered for the coordinate developing process. In the case of 

coarse-grained materials Lgb is also less than d [Kau95], i.e. the condition given by Eq. (1.11a) 

is fulfilled. It is believed that the diffusion process changes with time and along a GB oriented 

perpendicularly to the surface. One would expect that the role of GBs, which are not parallel 

to the diffusion direction increases, if the β-parameter increases (Eq. (1.9d)), i.e. the larger 

ratio ∆ or significantly shorter t (and/or smaller d) are considered. The former would lead to 

the condition Lgb >> d, whereas the latter tends to the specific type-B kinetics in which all the 
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properties discussed so far are valid (chapter III) and the condition Lgb >> d can be recalled 

also. Interestingly, Lg can reach d earlier than Lgb, what would exactly mean that one faces the 

type-B4 kinetics (fig. 1.5a, imagine that d > 25 nm) but this is only possible for coarse-grained 

materials.  

There is another interesting finding of Mishin [Mis92b] that plotting the diffusion 

profile versus y6/5 or simply y gives, in principle, similar errors of determining Dgb in a 

coarse-grained polycrystal when only the orientation of a GB to the surface is taken into  
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Fig. 4.5 A comparison of the derivatives of concentration profiles calculated by 
the FEM with different time intervals (∆t) at t = 2000 s. 

 

account and analyzed. This is not true for a bicrystal, or an idealized system of parallel 

boundaries, because the profile is more nonlinear in this case according to Mishin. However, 

this opens the question about the validity of both methods (i.e., lnCav = f(y6/5) and lnCav = f(y)) 

for polycrystals, what is also mentioned in [Kau95]. The other possible situations for Lgb 

being larger than d are discussed in the present work (fine-grained or ultrafine-grained 

materials [Mis95]). Nanocrystalline materials, characterized by grains of ten-hundreds of 

nanometers, have Lg of several or tens nanometers, what gives rise to β-values of the order of 

several thousands. The problems discussed above concerning the application of Le Claire’s 
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relation (Eq. (1.16)) come into play together with the GBs orientations. The problems of GB 

orientations make the diffusion studies more complicated. In this sense the effects of small 

grain sizes are size effects – a term that arises particularly when discussing properties of 

nanocrystalline materials [Mai03], [Mai04a].          

Two important points are taken into account now. First, the orientation of a GB to the 

surface is not analyzed. According to [Kau95], after the pre-diffusion anneals the GBs will 

tend to maximize the inclination angles with the surface in a way that most of their values will 

be around 90º. Moreover, the diffusion profile for real polycrystalline specimen represents an 

averaged resultant of the influence of different GBs orientations.  

 

4.2.1 A comparison of the model of parallel boundaries with the model of 

square grains under conditions of type-B kinetics 
 

The model of square grains used to analyze the corresponding diffusion effects 

represents a 2D pattern with GBs being simple lines perpendicular or parallel to the diffusion 

direction. Consequently, the concentration within the GBs is neglected. Each GB forms a side 

of square (fig. 4.6). Also the zero flux condition is used at the sample’s bottom as a boundary 

condition. The typical grain sizes are 10, 25, 50 and 100 nm. Correspondingly, the grain size 

for the model of parallel boundaries simply means the distance between two neighboring 

GBs. The diffusion time was varied to cover different kinetic regimes, going from the B-

regime to the A-regime. This allows one to apply different procedures used to deduce Dgb. 

The typical ratio of diffusivities ∆ is 2.2⋅104, however in some cases smaller ratios are also 

used (it is indicated).  Such ratios fit very well to all important requirements needed to be 

taken into account for the accuracy and convergence when simulating diffusion by FEM.   

  

4.2.1.1 The model of parallel boundaries at short diffusion times 

  

It is reasonable to start the analysis of the B-regime at short t with the model of 

parallel boundaries. Let us consider the variation of the distance between the boundaries from 

10 nm to 100 nm. The diffusion process is analyzed at 2000 s. The values of diffusion 

parameters are the same as explained in chapter III. Under these conditions the contribution of 

GBs leads to the same slopes independently of d, whereas the bulk contribution (given by a 

complementary error-function) intermixed with the GB contribution changes. Because the 

average concentration (Cav) represents the grain concentration averaged along the direction 
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perpendicular to the GB, the GB part of the concentration is larger for smaller distances. This 

is confirmed by the result shown in fig. 4.8.  

 The GB part of the concentration reduces to a constant value when the distance 

is doubled (the results for d = 12.5, 25, 50 and 100 nm in fig. 4.7). Consequently, smaller 

deviations of the concentration Cav in the bulk part of the profile result for the larger 

distances. For larger d the bulk parts of the profiles are better determined by a complementary 

error-function solution (red curve in fig. 4.7). The strongest deviation appears, of course, for d 

= 10 nm, suggesting that this result will lead to serious errors in determining Dg from the 

corresponding profile. This is ascribed to an additional effect related to the small grain sizes. 

In order to emphasize the effect, the concentration profiles for the same parameters were 

calculated for the micrometer regime (fig. 4.7). 
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Fig. 4.6 Schematic representation of the square grain model. 
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Fig. 4.7 Variation of lnCav with y6/5 calculated for the model of parallel 
boundaries for different distances between the boundaries (d). 
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Fig. 4.8 Variation of lnCav with y6/5 calculated for ∆ = 2.2⋅104 at t = 2.04⋅109 s 
for the model of parallel boundaries. 

 

The diffusion length in the grain (Lg) at t = 2.04⋅109 s is about 0.78 µm for the profiles 

in fig. 4.8. This is exactly by three orders of magnitude higher than that at t = 2000 s. The 

deviations in the bulk parts for the profiles for different d are smaller in comparison with the 

nanometer regime. The GB part is affected in a way the two distinguishable parts of the 

profiles disappear with time (very small values of β arise). The profiles are less acute 

(between the two parts of the profiles) in fig. 4.8 in comparison with fig. 4.7. The slopes of 

the GB parts of the profiles shown in fig. 4.7 or in fig. 4.8 are the same for varying 

corresponding d. Clearly, the slope can then be changed only by varying t, if ∆ is fixed. Yet, 

the profile in a nanoregime is more sensitive to the distance d. The process in the grain has not 

enough time to adopt a complementary error-function at very short t. In fig. 4.9 the diffusion 

profiles as shown in fig. 4.7 and fig. 4.8 for d = 25 and 10 nm and d = 25 and 10 µm are 

presented again together with the corresponding complementary error-function solutions to 

analyze the transition from the bulk diffusion parts to the GB parts of the profiles on different 

scales. The deviation of the result for d = 10 nm from its bulk diffusion profile is larger than 

that for d = 10 µm. Interestingly, the profiles in fig. 4.9b correspond mostly to bulk diffusion 

and only partly to the intermixture of the bulk and the GB parts, whereas on the nanoscale the 

GB part is very distinguishable despite the reduced values of y.       
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 Understanding the diffusion process at different time scales allows one to analyze the 

role of GBs in the model of square grains or in one of the general representations of a 

polycrystal. The short times lead to an artificial prolongation of the process along GBs and, as 

a result, the GBs orientation can play a role. In these cases Lgb is typically much larger than d, 

and the kinetics are slightly different in comparison with the coarse-grained materials. 

 

4.2.1.2 The model of square grains at short diffusion times 

 

Let us first compare the profiles calculated for the square grains with the 

corresponding profiles for the parallel boundaries at fixed t. In fig. 4.10 the profiles are 

performed for these two models for ∆ = 2.2⋅104 at t = 2000 s and for d = 25 nm and 100 nm. 

The profile for the square grains comprises two types of diffusion paths, namely parallel and 

perpendicular ones. The perpendicular GBs lead to spikes clearly seen in fig. 4.10. The 

number of these perpendicular paths is 19 for d = 25 nm and 4 for d = 100 nm for the fixed 

total length of the sample (geometry) of 500 nm. Each of them contributes to the profile 

changing the slope of it. It is seen that the discrepancy between the two models is more 

pronounced for smaller d. Moreover, one can recall here the effect of nonlinearity discussed 

in chapter III. When increasing the volume fraction of GBs (g) or decreasing d, the effect of 

nonlinearity is further induced, especially at very deep parts of the profiles (figs. 4.10b and 

4.11).   

When, second, analyzing the effect of g, one should be especially careful with the 

slope of the profile. The slope increases with decreasing d (fig. 4.11). The atoms move 

through the perpendicular and parallel boundaries in the model of square grains, and their 

concentration should be decreased in comparison with the motion of those along the parallel 

paths only. Surely, if the number of perpendicular GBs is higher, the concentration reduces. 

Consequently, two effects characterize the diffusion profile. One is related to 

increasing/decreasing d and leads to larger concentrations for smaller distances d, especially 

at coordinates close to the surface (fig. 4.11). Another one also depends on d and with 

decreasing d leads to smaller concentrations in comparison with the parallel boundaries. If the 

distance d is 25 or 10 nm, there is a convex curvature of the profile, because the perpendicular 

boundaries do not allow the number of atoms to be increased. This is in contrast to d = 50 or 

100 nm, when the concentration increases at the deeper parts of the profile for the fixed length 

of the sample. If one believes that the model of square grains indeed represents a general 

polycrystal, then the GBs orientations can change the values of Dgb,app applying Le Claire’s  
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Fig. 4.9 A comparison of the diffusion profiles calculated at t = 2000 s a) and t 
= 2.04⋅109 s b) for different distances between the parallel boundaries (the 
same profiles as performed in figs. 4.7 and 4.8, but for another scale of y6/5). 
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relation (Eq. (1.16)). The larger the slope the smaller the value of Dgb,app. Such an 

underestimation of Dgb is very typical for short t in the model of square grains in the type-B 

kinetics. The slope of the profile varies with t as well as with d. In order to estimate possible 

errors all the profiles presented in fig. 4.11 were fitted by straight lines. Accordingly, table 4.2 

contains information on varying Dgb,app determined by applying Le Claire’s relation. Also the 

results of fitting the profiles calculated for the parallel boundaries are presented. As it is 

expected, all the slopes for the square grains are larger than for the parallel boundaries. It is 

important to notice that the slopes presented in table. 4.2 may only be compared with the 

slope of –0.00675, giving Dgb,app = 4.22 nm2/s which itself is erroneous (Dgb,true = 6.42 nm2/s). 

The latter value includes the corrected Le Claire’s constant, but is affected by the effect of 

nonlinearity. Consequently, Dgb,app can be three times smaller than the true value applying the 

conventional analysis when the effects of GBs orientations are not taken into account. The 

underestimation can be even larger, if the profile is measured (or calculated) for deeper 

coordinates influenced by larger number of perpendicular GBs.        

Analyzing the derivatives of the profiles in the grain closest to the surface (fig. 4.12) 

reveals that the maximum is not reached even for d = 100 nm due to the perpendicular 

boundaries, since the position of maximum 6/5
maxy ≈ 300 nm6/5 at t = 2000 s for ∆ = 2.2·104. The 

positions of perpendicular GBs are 15.85, 47.59, 251.19 nm6/5 for d = 10, 25, 100 nm, 

respectively. Moreover, the effect of perpendicular GBs is reflected in the increasing 

derivative in fig. 4.12. The peaks (spikes) in the diffusion profiles are broadened (red curve in 

fig. 4.12), i.e. their contribution can be characterized by certain widths.  

 

Table 4.2 The slopes and values of Dgb,app calculated by fitting the diffusion profiles by  
straight lines for different d. The values of Dgb,app should be compared with the value 
of 4.22 nm2/s. 

 
Square grains Parallel boundaries d, nm -slope Dgb,app, nm2/s -slope Dgb,app, nm2/s 

10 0.0113 1.79 0.00713 3.85 
25 0.01095 1.88 0.00714 3.84 
50 0.0101 2.15 0.00715 3.83 
100 0.00892 2.65 0.00716 3.82 
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Fig. 4.10 Variation of lnCav with y6/5 calculated for two models with d = 100 
nm a) and d = 25 nm b). 

 



Chapter IV.                                                                                                                Realistic microstructures 
 

 93

0 300 600 900 1200 1500 1800
-21

-18

-15

-12

-9

-6

-3

0

ln
C

av

y6/5, nm6/5

 d = 10 nm
 d = 25 nm
 d = 50 nm
 d = 100 nm

 
Fig. 4.11 A comparison of the diffusion profiles calculated for the model of 
square grains with different volume fractions of GBs. 
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Fig. 4.12 A comparison of the derivatives ∂lnCav/∂y6/5 calculated for the model 
of square grains (only the first grain is taken into consideration) with d = 10, 25 
and 100 nm. 
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A logical question arises when the model of square grains is used to simulate the 

diffusion profiles in a real microstructure, namely the question concerning different spatial 

orientation of GBs. The disadvantage of the model of square grains is that it comprises only 

perpendicular or parallel GBs. Can this model represent a realistic situation? In order to 

answer this question new models were proposed consisting of differently oriented GBs, i.e. 

GBs being not necessarily perpendicular to the diffusion direction. The models represent 

specific cases and may not exactly correspond to real polycrystals. However, the results 

obtained for these models give an important hint on the behavior of the diffusion process in 

realistic situations. 

    

4.2.2 General geometrical models 
 

4.2.2.1 Main characteristics of general geometrical models 

 

Let us define the fist general model (denoted here as general geometry 1) comprising a 

unit with 17 GBs (6 parallel boundaries and 11 all others) of different orientations and 

lengths. The length (depth) of that unit is 250 nm, while the width is 40 nm.  The unit was 

reflected once with respect to y = 250 nm for simulating diffusion at different time scales. 

Finally, the geometry used to simulate diffusion was 40 nm in width and 500 nm in depth. 

The unit is presented in fig. 4.13a, where also the length of all GBs are shown which vary 

from 20.6 to 70 nm (= the longest parallel boundary). All parallel boundaries in this geometry 

are situated at x = 0 only. In this way the half of the real grains was realized, because the 

number of triangle elements in the mesh used is already about 710000. When creating the 

mesh, some grains were divided into rectangular and triangular parts (see a snapshot in 

window in fig. 4.13a) in order to have a mesh of high quality. The former always gives a 

mesh of the high quality, while the latter suffices from sharp angles between the boundaries. 

One can estimate that d = 30.5 nm in this geometry by summing the lengths of all boundaries 

and dividing the sum by the number of boundaries (see discussion below). The lengths of GBs 

being closer to the surface are about 25 nm. Diffusion was simulated at rather short t, not 

exceeding 13200 s for ∆ = 2.2⋅104, and the results obtained can be compared to a real 

polycrystal having d = 25 nm, or a little bit larger. The angles between the GBs and the 

diffusion direction vary from 14º to 78.7º in the general geometry 1 except for the parallel 

boundaries having 0º. Varying GBs lengths and angles in a wide range allows the general 

geometry 1 to be adapted to a quite generalized situation. 
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Fig. 4.13 Concentration distribution in the general geometry 1 (a) and general 
geometry 2 (b) at t = 8200 s for ∆ = 2.2⋅104. The distribution is shown in 
colors, see explanation on the color pattern. White lines are GBs. In the 
window the fragment of the geometry drawn in the program SIMAIL [Sim95] 
is presented (red and green lines are GBs, white lines are additional lines used 
to make the quality of the mesh higher, i.e. the corresponding triangle and 
rectangular parts). Also the lengths of GBs in nm and their angles in degrees 
with respect to the diffusion direction are shown. An artifact means that in fact 
there is no GB at this place. 
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Fig. 4.14 Concentration distribution in the general geometry 3 at t = 8200 s for 
∆ = 2.2⋅104. The distribution is shown in colors, see explanation on the color 
pattern. White lines are GBs. The lengths of GBs are also shown. Only some 
angles with respect to the diffusion direction are indicated. 
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The general geometry 2 presented in fig. 4.13b is used for the same objective of 

analyzing the profile affected by different orientations of GBs. The unit is reflected at y = 260  

nm. However, in this case d = 64 nm. The geometry is characterized by 4 parallel boundaries 

and 3 boundaries having the angles 42º and 36º to the diffusion direction. 

One more general model (general geometry 3) was used with a larger number of 

grains and GBs in comparison with general geometries 1 and 2. The unit of this geometry is 

shown in fig. 4.14.  The geometry consists of 57 GBs, including 21 parallel GBs. The lengths 

of GBs vary from 8 to 50 nm. The average grain size (d) was estimated to be 29.1 nm. So the 

results obtained for such a geometry should be comparable with those for d = 25 – 30 nm. As 

one can see, the geometry is twice as wide as for the general geometries 1 and 2. The 

problems of creating the mesh for this geometry become more serious than for the general 

geometries 1 and 2. Consequently, the number of triangle elements for this geometry is 

355537 for the unit in fig. 4.14 and 710722 for the final geometry of the length 500 nm and of 

the width 160 nm. Using the general geometry 3, one should clarify the error introduced by 

the mesh of the smaller density. Advantage of this geometry is that the angles are very 

different, suggesting the contributions of very different boundaries. Additionally, some grains 

are very small, and these would be filled by diffusant in a very short t. This is a particular 

property of general geometry 3, which is important. 

 

4.2.2.2 Simulation results obtained in the general geometrical models 

 

All the geometrical models described so far were used to analyze the effects of GBs 

orientations. The lengths of the samples (geometrical models) were fixed to about 500 nm 

depending on the geometry, and the diffusion profiles were calculated at t = 8200 s for ∆ = 

2.2·104. The corresponding model of square grains exhibits 8 perpendicular GBs for d = 60 

nm, if the GB at y = 540 nm (the length of the sample) is modeled as a reflecting boundary 

with the flux of atoms at this boundary being zero. As it was explained, the perpendicular 

boundaries lead to steeper diffusion profiles having spikes. That is why Cav was decreased in 

comparison with the model of parallel boundaries. However, the spikes themselves reflect 

increased concentrations around the perpendicular GBs. This effect is also confirmed in fig. 

4.15, plotting the profile for square grains with d = 60 nm together with the profile calculated 

for the general geometry 2. The profile for the general geometry 2 has also the spikes slightly 

prolonged along the depth and, in principle; the profile is very close to that calculated for 

square grains. One GB in this model is oriented like having the angle with the parallel 
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boundary larger than 90º (the boundary of 68 nm in fig. 4.13b). It should be noted that the 

boundary gives a contribution to the profile with the angle 36º, because the concentration Cg 

is integrated along the x-direction varying y-coordinates from y = 0 nm to 520 nm. The 

difference of that boundary is reflected in the increasing concentration along the depth until 

its end is reached. The general geometry 1 has also several boundaries with the same effect. If 

the number of GBs is increased, this leads to further reduction of Cav, what increases the slope 

of the profile (black line in fig. 4.15, general geometry 1). Consequently, different slopes for 

general geometries 1 and 2 were observed despite the fixed t of 8200 s.  

The profile calculated for the general geometry 1 could also be compared with that 

calculated for the square grains with d = 30 nm, because of similar grain size (d = 30.5 nm). 

The latter point is particularly important. As it is immediately seen in fig. 4.16, the profile for 

the general geometry 1 is characterized by the concentrations which are smaller than those for 

the square grains. This is related to the fact that the geometry under consideration has larger 

grain areas, which suggests reduced concentrations in the parts of the profiles close to the 

surface. Nevertheless, the slope of the profile for the general geometry 1 is slightly increased 

in comparison with the square grains of 30 nm. On the one hand, an increase of the slope is 

only possible, if the number of perpendicular GBs is larger. On the other hand, for the general 

geometry 1 the increase is related to the fact that the number of parallel boundaries in this 

geometry is smaller than the number of the others. The contribution of parallel boundaries 

exists but is not significant enough, i.e. mostly the other orientations affect the profile. Such 

situations are very difficult to predict, because the orientations can be different. Moreover, it 

is difficult to estimate d in such situations. Interestingly, d can also be estimated by taking the 

square root of the average grain area. According to this procedure, d was found to be about 40 

nm for the general geometry 1. However, the larger grain size (in comparison with the square 

grains) would lead to a decrease of the slope.  

Consequently, the slope of the concentration profile increases, if the number of 

parallel boundaries is smaller than all the others comparing these profiles with those for the 

square grains or when similar numbers of the two types of boundaries (parallel and 

perpendicular) comprise the geometry. Additionally, the profile for the general geometry 2 is 

not very much different from that for the square grains (fig. 4.15). In order to check this point 

further, the profile calculated for the general geometry 3 was analyzed, because this geometry 

comprises a large number of different GBs. In fig. 4.17 three profiles are compared, namely 

the profile for general geometry 1, the square grains with d = 25 nm and the general geometry 

3. In the latter the number of GBs is by about a factor of 3 larger than in the general geometry 
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1. The number of parallel boundaries is extremely smaller than that of the others (there is no 

contribution of parallel diffusion paths at all). It is very significant, because the concentration 

once increased cannot be decreased sufficiently. This distinguishes the geometry from the 

general geometry 1. Additionally, some grains in the geometry are very small. These two facts 

cause some nonlinearity of the profile. Interestingly, the profile for the general geometry 3 is 

close to the profile for the model of square grains (both the profiles have d around 25 nm) and 

the slopes of those are believed to be similar. The decrease of the concentration at the 

coordinates close to the surface is similar in the two models. Because the model of square 

grains comprises the two extreme orientations, namely 0º and 90º with respect to the diffusion 

direction, it is supposed that the model of square grains is a good averaged representation of 

the real microcrystalline structure. 
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Fig. 4.15 A comparison of the diffusion profile of general geometry 2 with the 
profile of the model of square grains and general geometry 1. All the three 
profiles were calculated at t = 8200 s for ∆ = 2.2·104. 

 

The role of perpendicular boundaries is not the same at different t. It is, of course, 

related to the decreasing value of the parameter β (Eq. (1.9d)) with t. Thus, the parameter β 

yields information on the role of GBs orientations in the case of Lgb >> d. Of course, small 

values of β allow the contributions of perpendicular boundaries to be excluded (see discussion  
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Fig. 4.16 A comparison of the diffusion profile of general geometry 1 with the profile 
of the model of square grains with d = 30 nm. All the profiles were calculated at t = 
8200 s for ∆ = 2.2·104. 
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Fig. 4.17 A comparison of the diffusion profile of general geometry 3 with the 
profiles of the model of square grains with d = 25 nm and general geometry 1. 
All the three profiles were calculated at t = 8200 s for ∆ = 2.2·104. 
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above). However, the A-regime starts when Lg is comparable with d, and in nanomaterials β 

remains high even when Lg ≈ d. Nonetheless, the condition for starting the A-regime in 

nanomaterials is the same, and the contribution of perpendicular boundaries is negligible 

when Lg ≈ d. This is confirmed by the result in fig. 4.18. The parameter β is around 182 at t = 

3⋅106 s and, for comparison, 3488 at t = 8200 s for ∆ = 2.2·104. It is seen the two profiles for 

parallel boundaries and square grains coincide at long t. Below is given further analysis on the 

role of perpendicular boundaries.  
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Fig. 4.18 A comparison of two profiles obtained for the model of square grains 
and the model of parallel boundaries at t = 3·106 s for ∆ = 2.2·104 (d = 25 nm, 
Lg ≈ 30 nm). Parameters: β = 182, α = 0.17.  

 

4.2.3 A comparison of the model of parallel boundaries with the model of 

square grains under conditions of type-A kinetics 
 

As the model of square grains is a good representation of a realistic microstructure, the 

results for this model can be compared to those obtained for the model of parallel boundaries 

in the A-regime. Such a comparison would allow one to better understand the role of different 

evaluation equations in terms of extracting Dgb from the diffusion profiles measured in the A-

regime. The A-regime is particularly important for nanocrystalline materials due to small 

grain sizes. One may simply define the A-regime to be observed, if Lg exceeds d (no matter to 
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which extent), while Lgb can be larger (nanomaterials) or smaller than d (coarse-grained 

materials). According to Monte-Carlo simulations of Belova and Murch [Bel01], the A-

regime is observed when ( )gd / 2L  ≤ 0.4. The role of GBs orientations is not sufficient in the 

A-regime due to the result in fig. 4.18. In order to better clarify this point the diffusion 

profiles were calculated for both the model of parallel boundaries and square grains at high t. 

The different equations (Eqs. (1.17)-(1.18)) were used in order to compare Dgb,app with the 

true one. On the one hand, analysis of the equations has been started recently by Belova and 

Murch [Bel03], [Bel04]. Also a very interesting mathematical analysis was performed by 

Mishin [Mis92c] in order to suggest the expression for the effective diffusivity (Deff) in 

heterogeneous media. On the other hand, the problem of Deff has a very strong analogy with 

those problems dealing with conductivity in heterogeneous media which are discussed, for 

example, in [Lan78], [Gar95], [Harte04], [Kab05]. Most of these contributions concern 

Maxwell’s (Maxwell-Garnett’s) equation (Eq. (1.18)). However, Hart’s equation (or Hart-

Mortlock’s equation for studying diffusion with segregation) is still remaining the only 

equation used for determining Dgb in the A-regime. Up to now one cannot find any 

experimental paper on Dgb measurement where Maxwell’s or similar equation is used. It 

should also be noted, that Kalnin et al. [Kal02] modified Maxwell-Garnett’s equation for the 

problems of segregation. Consequently, there is the purpose here to compare all these 

equations. Segregation is also studied varying the segregation coefficient (s) from very small 

to very large values. This implies the possibility to analyze Deff under these different 

conditions, i.e. different values of s and geometries.  

 

4.2.3.1 Analyzing the boundary condition at the bottom 

  

 The problem of the reflecting boundary becomes particularly important when 

simulating diffusion by FEM in the A-regime for a semi-infinite sample. However, for finite 

systems, for example, thin films, the reflecting boundary is a necessary condition [Gil76]. It is 

reasonable to analyze the boundary effect in order to estimate possible errors in determining 

Dgb. The increased diffusion lengths, especially Lgb, lead to the increase of concentration at 

the bottom of the sample and, thus, the concentration profiles affected by the reflecting 

boundary.  

 In fig. 4.19 the derivatives are performed for different lengths of the sample (the 

model of parallel boundaries) at t = 7·105 s. The result corresponds to the B-regime, because 
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of ( )gd / 2L  ≈ 0.87 at that time for ∆ = 2.2⋅104. As one can see, the length of 500 nm may not 

be used for the analysis in the B-regime at so a high t, because the effect of the reflecting 

boundary becomes very strong – the maximum of the derivative is suppressed by this 

influence. The maximum appears, if the length is increased to 3200 nm. Interestingly, 

Shewmon [She63] explained that for an accurate experimental determination of the diffusivity 

(D) the concentration should decrease at least by an order of magnitude, what means a 

minimum penetration Dt3  y ≈  (D is the diffusivity of a solute and t has its usual meaning). 

The diffusion length Lgb of 279.46 nm for ∆ = 2.2⋅104 at t = 7·105 s is only about twice as 

small as the length 500 nm. One needs to increase the length of the sample to guarantee 

several diffusion lengths and to calculate the diffusion profiles at appropriate times by using 

the FEM. The concentration profiles were also calculated in the A-regime for different lengths 

of the sample (fig. 4.20). It could be expected, that the boundary effect, arising in the B-

regime, can alter the profile sufficiently in the A-regime too. For the length 1000 nm (fig. 

4.20) Cav is about 0.70 at the bottom of the sample, while it is about zero at y = 3200 nm. 

Table 4.3 comprises the calculated diffusion lengths in the A-regime (Leff) and the values of 

Cav at the bottom of the sample of different lengths for ratios ∆ from 102 to 105 at t = 5⋅106 s. 

The value of Cav at the bottom reflects the minimum concentration in the sample (Cav,min) 

except the point at the GB. The diffusion length Leff was calculated according to effD t , 

where Deff was found by using Hart’s equation (Eq. (1.17a)). The following three lengths of 

the sample are compared in table 4.3: 500 nm, 1000 nm and 3200 nm. Depending on the ratio 

∆, the length can be chosen very long to exclude the boundary effect, keeping in mind the cost 

issue of computational time. In order to find the most suitable length for a particular case of ∆ 

= 2.2⋅104, the values of Dgb,app were calculated. According to table 4.3, the concentrations of 

about 0.90, 0.70 or even 0.30 (the corresponding Dgb,app is not shown in the table) at the 

bottom may not be used, leading to significant errors. For instance, Dgb is overestimated by a 

factor of 26 for the length 1000 nm, because Leff is larger than 1000 nm for ∆ = 2.2⋅104 at t = 

5ּ106 s. The length of the model should be 3-4 times larger to obtain a reasonable result. If the 

ratio ∆ is small (= 102), the length may be surely 500 nm to find Dgb accurately. The value of 

Cav,min for ∆ = 102 and the length of 500 nm is so small, that Dgb is very accurate (not shown 

in the table), providing an error less than 1%. In a sense, this analysis confirmed suggestions 

of Shewmon for the experiment. If the profile is affected by the boundary in the B-regime, 

what is very possible with Lgb being only twice smaller that the length of the sample, Dgb,app 

can be extremely large. In the present study, t was increased up to 50ּ106 s! 
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Fig. 4.19 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated at t = 
7·105 s for ∆ = 2.2⋅104 for the model of parallel boundaries of two lengths: a) 
500 nm, b) 3200 nm. 
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Fig. 4.20 Variation of Cav with y calculated at t = 5⋅106 s for ∆ = 2.2⋅104 for the 
model of square grains of two lengths: a) 1000 nm, b) 3200 nm. 
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For such high t much longer samples (geometries) are needed. Finally, the model of the length 

of 13000 nm was chosen as an appropriate one for different ratios ∆ and t except ∆ = 102 for 

which the length was 1000 nm and 2000 nm for studying segregation effects (see discussion 

below). 

 

Table 4.3 The minimum values of the average concentration (Cav,min) and diffusion lengths Leff 
(Hart’s equation, Eq. (1.17a)) calculated for different ratios of the diffusivities (∆) and lengths 
of the sample (the model of square grains) at t = 5⋅106 s. The average grain size (d) is assumed 
to be 25 nm. Also are presented the values of Dgb,app calculated for ∆ = 2.2⋅104 by using Hart’s 
equation, i.e. these values should be compared with the true one of 6.42 nm2/s*. 
 

Cav, min ∆ Leff, nm 500 nm 1000 nm 3200 nm Type of material 

102 84 4.68ּ10-7 - - Coarse-grained 
103 240 8.05ּ10-2 1.81·10-4 2.45·10-26 Fine-grained 

2.2⋅104 1.11⋅103 9.94ּ10-1 7.20ּ10-1 8.91ּ10-3 Ultrafine-grained 
105 2370 - - 3.47·10-1 Ultrafine-grained 

Dgb,app, nm2/s  2.26·104 2.61·101 6.31  
 

*The values of Dgb,app were calculated by using an improved procedure, see discussion below. 

 

4.2.3.2 Analyzing Hart’s equation and Maxwell-Garnett’s equation 

 

 The A-regime is characterized by the fact that both the Hart equation and the 

Maxwell-Garnett equation suppose the steady-state condition of diffusion to be fulfilled. The 

area under the diffusion profiles calculated by FEM varies as t increases (fig. 4.21). This 

would imply slightly different diffusivities, found by Hart’s or Maxwell’s (Maxwell-Garnett) 

equation. As it will be shown below the latter discrepancy is insufficient. Moreover, as t is 

50ּ106 s, the variation becomes extremely slow. In the present study the concentration profiles 

were calculated at very long t for the model of square grains and parallel boundaries leading 

to the conditions very close to the steady-state. The overall process is called here a quasi-

steady-state diffusion.  

The diffusion time was varied from 2ּ106 s to 50ּ106 s. However, the value of 50ּ106 s 

corresponds to 19 months and would unlikely be realized experimentally. Clearly, large 

absolute values of t are related to the temperature, since the diffusivities used in the 

simulation were quite small as being taken at 500ºC according to the Arrhenius dependences 

found in [Bro99a] for undoped ZrO2. Increasing the temperature would allow one to decrease 

t. Anyway, as the A-regime is concerned one can think of the interacting GBs in the sense that 
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the atoms move between different boundaries, and one can apply the corresponding equations 

for Deff.  

Calculating the values of Deff as a function of t for different ∆, different kinetic 

regimes were covered as proposed by Mishin [Mis95], namely the A- and A´-regimes. Since 

the GB and grain contributions are not separated in the A-regime, and the overall diffusion 

process is described by single diffusion equation with Deff, the diffusivity Deff was found by 

fitting the concentration profiles with a complementary error-function solution to diffusion 

equation using the program MATLAB. In this program a special toolbox was used for the 

fitting, namely the Optimization toolbox [Mat03], [Mat06]. The default values of optimization 

parameters of the standard function of the Optimization toolbox “lsqcurvefit” based on the 

nonlinear least-squares method [Ger03] were used for fitting. For instance, the total number of 

iterations was 400, whereas the absolute and relative errors were fixed to 10-6.  

The models of square grains and parallel boundaries are compared in fig. 4.22 for 

different ∆, t = 10·106 – 50·106 s, fixed area fraction (2D geometry) of GBs (g) and fixed Dg. 

The larger ratio ∆ yields increased values of Deff. This can be understood by the fact, that Deff 

is more determined by Dgb which is increased along the simulation for larger ∆. Moreover, 

increasing g (decreasing d) makes Deff determined by Dgb only, as it is discussed in [Kau95]. 

In other words, the increase of Dgb leads to the same effects as the increase of g. The value of 

g was calculated as Sgb/Stotal, where Sgb and Stotal are the area given by GBs and the total area 

of 2D geometry (sample), respectively. Consequently, g for the model of square grains is 

twice as large as that for the model of parallel boundaries, if d is the same in both cases. For d 

= 25 nm g is about 1.96·10-2 for the parallel boundaries and 3.84·10-2 for the squares, if the 

length of the sample is 13000 nm. One has also to pay attention to the fact that Deff is the 

same in the two models (fig. 4.22). It is related to the finding in fig. 4.18. According to these 

results, the role of perpendicular boundaries is negligible, if diffusion is studied in the type-A 

kinetics. Then it is interesting to compare the corresponding concentration distributions in 

order to clarify the latter point.  

In fig. 4.23 a fragment of the concentration distribution in the model of parallel 

boundaries as well as in the model of square grains at t = 3·106 s for ∆ = 2.2·104 is shown in 

color. The concentration variation from 0.6 to 0.3 corresponds to a depth range from 475 nm 

to 800 nm. Because the difference between the two models increases along the depth y (the 

diffusion regimes change with the depth), this range of the concentration was chosen as the 

most interesting one for the analysis of the role of perpendicular boundaries. The distributions 

for the two models completely coincide at higher concentrations. Similar values of 
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concentration were obtained in both models at the same depths. This confirms the idea about 

the negligibility of perpendicular GBs in the A-regime. The distributions are only slightly 

different at the points of the concentration level change. For instance, the concentration 0.375 

arises at y ≈ 730 nm in the model of parallel boundaries, whereas it arises at y ≈ 755 nm in the 

model of square grains. What one is eventually interested in is the value of a calculated 

apparent GB diffusivity (Dgb,app).  
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Fig. 4.21 Variation of Cav with y calculated at different t for ∆ = 2.2⋅104 for the 
model of square grains. 

 

Moreover, very recently Belova and Murch [Bel04] posed the question about the transition 

from the type-B kinetics to the type-A kinetics for the model of square grains. The answer to 

this question is given here due to the results in figs. 4.22 and 4.23: the condition for the 

transition in both the model of square grains and the model of parallel boundaries is the same 

(the condition ( )gd / 2L  ≤ 0.4 was suggested by Belova and Murch for the model of parallel 

boundaries [Bel01]), since the role of perpendicular boundaries vanishes at high t. However, 

segregation of impurity atoms leads to another effect. In order to make a comparison of Dgb,app 

with the true value, used in the simulation, for GB diffusion accompanied by segregation, two 

equations will be used: Hart’s equation and Maxwell-Garnett’s equation. 
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Fig. 4.22 Time evolution of Deff for different ratios ∆: a) square grains, b) 
parallel boundaries. 
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Fig. 4.23 A fragment of the concentration distribution at t = 3·106 s: a) parallel 
boundaries, b) square grains. White lines represent to the perpendicular GBs 
with respect to the diffusion direction. The parallel boundaries in both 
distributions are at x = 0.0 and 25.0 nm. The corresponding color pattern is also 
shown.  
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4.2.3.3 Segregation effects under conditions of type-A kinetics 

 

 The Hart equation and its extended version for diffusion of impurities, known as Hart-

Mortock’s equation (Eq. (1.17b)), is widely used to deduce Dgb, if the diffusion profile is 

measured under conditions of the kinetics of type-A. As Belova and Murch [Bel03] showed, 

the Hart-Mortlock equation leads to errors of deducing Dgb, when simulating diffusion in the 

model of square grains varying g and fixing the segregation factor (s). In the present work 

another important point is addressed, namely the influence of segregation. Very often s is 

obtained by measuring the triple product sδDgb in the B-regime, if Dgb is known from the 

measurements in the C-regime [Her03]. However, the measurements in the C-regime are not 

always possible. Then one could combine the measurements in the B- and A-regime. When 

knowing the product sDgb from the measurements in the B-regime, the only unknown 

parameter in the Hart-Mortlock equation or the Maxwell-Garnett equation is s. Can the Hart-

Mortlock equation provide reasonable values for s? It is supposed that s can be used as the 

ratio of the corresponding concentrations in the GB and in the grain (Eq. (1.6b), very dilute 

conditions). The question of the validity of Hart-Mortlock’s equation with respect to 

segregation has not been analyzed yet. Contrary, the Maxwell-Garnett equation was recently 

analyzed theoretically, extended to the problems of segregation and chemical diffusion 

[Kal02], [Jam06]. In the study of Belova and Murch [Bel03], it was proved that the Maxwell-

Garnett equation gives smaller errors than Hart-Mortlock’s equation varying g. Nevertheless, 

segregation imposes new conditions, i.e. suppresses the type-B kinetics. This is why it can be 

particularly interesting to analyze the equations under the conditions induced by the 

segregation.    

 Diffusion profiles were simulated in the model of parallel boundaries and in the model 

of square grains by using the modified Fisher system (Eq. (1.6c)). The average grain size (d) 

used in the simulation was fixed to 10 nm, whereas s was varied from 5 to 640. The value of s 

= 640 can be considered as a kind of maximum, because a further increase of s did not give a 

significant difference. However, larger values of s are also possible in different materials 

depending on temperature [Div01]. In fig. 4.24 the diffusion profiles calculated for varying s 

are depicted for fixed ratio ∆ = 102 and time t = 106 s. The length of the sample (geometry) 

was fixed to 2000 nm. The following property is reflected in fig. 4.24, the diffusion process 

with segregation is a nonlinear process going to some saturation, but never reaches it. In this 

sense, the situation is similar to the variation of t (fig. 4.21), i.e. the area under the curves 

varies with s.  
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Fig. 4.24 Variation of Cav with y calculated for different segregation 
coefficients (s) for the model of square grains. The average grain size is 10 nm 
and t = 106 s. 

 

 Importantly, segregation suppresses the B-regime (Eqs. (1.10)-(1.11)) and gives larger 

values of Lgb (Eq. (1.12a)). Although, the rates of diffusion in the bulk are the same as in the 

case of diffusion without segregation. Segregation leads to larger values of β (Eq. (1.12b)) at 

the moment when the A-regime comes into play. This situation is similar to that for 

decreasing d. In both cases β can be very large even if Lg ≥ d. It can be understood by the fact 

that segregation leads to an enhanced concentration within the GBs, because it restricts the 

contribution of GBs into the bulk (grain).  

 Following the procedure discussed in the preceding section, the diffusion profiles were 

fitted by a complementary error-function with the resulting Deff being valid for a constant 

surface source as used in the simulation. Along with the fitting, the values of Deff were 

estimated by using Hart-Mortlock’s equation and Maxwell-Garnett’s equation for each value 

of s. In fig. 4.25 the results of fitting are compared with those calculated by using the Hart-

Mortlock and Maxwell-Garnett equations for the model of parallel boundaries as well as for 

the model of square grains. One can see the discrepancy that exists between the Hart-

Mortlock equation and the simulation. The discrepancy increases with s, because the 

dependence of Deff on s is linear in one case and nonlinear in another one. Contrary, Maxwell-

Garnett’s equation gives much more reasonable values for Deff. This suggests that the linear 
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dependence supposed by the Hart-Mortlock equation is not valid even for the model of 

parallel boundaries when the Hart type equations are expected to be valid similarly to mixture 

rules [Nie78]. In fig. 4.26 the Maxwell-Garnett equation is compared separately with the 

simulation result. Interestingly, the deviation of Maxwell-Garnett’s equation from the 

simulation is larger for the model of parallel boundaries. To estimate these deviations Dgb,app 

was calculated by fitting the diffusion profiles by the complementary error-function with the 

Hart-Mortlock or Maxwell-Garnett type equations instead of a single Deff, i.e. the fitting with 

respect to Dgb was done because all other parameters in the equations are known. The errors 

of determining Dgb were found from the fitting results and are summarized in table 4.4. The 

values of Dgb,app are typically smaller than the true one (Dgb,true = 2.95·10-2 nm2/s or 2.95·10-14 

mm2/s). Moreover, the errors vary with s in most cases. Very large errors were observed by 

using the Hart-Mortlock equation for the model of square grains, and smaller errors of 

applying this equation to the model of parallel boundaries were found for s = 5-20. However, 

the error increases up to ~100% for both the models applying the Hart-Mortlock equation, if s 

= 640. The Maxwell-Garnett type equation gives very small errors for the model of square 

grains. An error of 5% observed when this equation is applied to the model of square grains 

can have a numerical origin. Nevertheless, an error of 95% was observed for the model of 

parallel boundaries when using the Maxwell-Garnett type equation. Moreover, the Maxwell-

Garnett type equation overestimates Dgb by a factor of 2, if applied to the model of parallel 

boundaries. By putting into Maxwell-Garnett’s equation the value of g corresponding to the 

square grains and applying it again to the model of parallel boundaries, the error (improved 

Dgb,app and error in table 4.4) was decreased to about 58% for s = 40. This was done according 

to the finding in the present work, that the diffusion profiles calculated for the model of 

parallel boundaries and the model of square grains are very similar at high t, i.e. in the A-

regime in the case of self-diffusion (figs. 4.18 and 4.22). The decrease of the error indicates 

that the use of this equation requires g to be calculated for the model of square grains even if 

applied to the model of parallel boundaries. Similarly, the Hart type equation is supposed to 

be valid for the model of square grains if g is calculated as for the model of parallel 

boundaries. But this is valid only with s = 1. Segregation implies that the coincidence of the 

diffusion profiles for s = 1 does not longer exist in the case of s > 1. Accordingly, a significant 

error still remained for larger s even after using an appropriate g applying Maxwell-Garnett 

equation to the model of parallel boundaries. Additionally, there is a possible saturation of 

Deff as a function of s. Therefore, at very large s the s-variation is close to steady-state with 

respect to that parameter.  
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Fig. 4.25 Effective diffusivities obtained by fitting the simulated diffusion 
profiles to a complementary error-function for the model of parallel boundaries 
a) and the model of square grains b). 
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Fig. 4.26 A comparison of the simulation results with the Maxwell-Garnett 
type equation for the model of parallel boundaries a) and square grains b). 

 

 



Chapter IV.                                                                                                                Realistic microstructures 
 

 115

Table 4.4 The values of Dgb,app and the errors of finding Dgb found from the simulated 
diffusion profiles by using the Maxwell-Garnett equation and the Hart-Mortlock equation  for 
the model of parallel boundaries a) and the model of square grains b). Dgb,true = 2.95⋅10-2 
nm2/s. 
 

a) 

 

s 

Dgb,app due 
to Hart-

Mortlock’s 
eq., 

nm2/s 

Error in % 
due to Hart-
Mortlock’s 

eq. 

Dgb,app due to 
Maxwell-

Garnett’s eq., 
nm2/s 

Error in % 
due to 

Maxwell-
Garnett’s eq. 

Improved 
Dgb,app due to 

Maxwell-
Garnett’s eq., 

nm2/s 

Error in % 
due to 

improved 
Maxwell-
Garnett’s 

eq. 
5 2.48·10-2 16 5.74·10-2 94 3.33·10-2 13 
10 2.07·10-2 30 5.75·10-2 94 3.72·10-2 26 
20 1.56·10-2 47 5.75·10-2 94 4.20·10-2 42 
40 1.05·10-2 64 5.75·10-2 95 4.67·10-2 58 
80 6.42·10-3 78 5.75·10-2 95 5.05·10-2 71 
160 3.70·10-3 87 5.76·10-2 95 5.31·10-2 80 
320 2.10·10-3 93 5.76·10-2 95 5.46·10-2 85 
640 1.23·10-3 96 5.76·10-2 95 5.54·10-2 88 

 

b) 

 

s 

Dgb,app due 
to Hart-

Mortlock’s 
eq., 

nm2/s 

Error in % 
due to Hart-
Mortlock’s 

eq. 

Dgb,app due to 
Maxwell-

Garnett’s eq., 
nm2/s 

Error in % 
due to 

Maxwell-
Garnett’s eq. 

5 1.12·10-2 62 2.90·10-2 2 
10 8.39·10-3 72 2.88·10-2 2 
20 5.49·10-3 81 2.79·10-2 5 
40 3.41·10-3 88 2.80·10-2 5 
80 2.03·10-3 93 2.81·10-2 5 
160 1.21·10-3 96 2.81·10-2 5 
320 7.68·10-4 97 2.81·10-2 5 
640 5.35·10-4 98 2.81·10-2 5 
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Summary  
 

The slope of the concentration profile (lnCav = f(y6/5)) increases as the average grain 

size decreases, and the grain boundaries orientations become important. Specifically, the ratio 

between the number of parallel and other diffusion paths is also very important in that sense. 

Accordingly, the slope also increases if the potion of parallel GBs is smaller than others. The 

increase of the slope suggests that Dgb can be underestimated when applying the conventional 

procedure, i.e. Le Claire’s relation. Errors of the order of 50% are very possible (pure 

microstructure effect). The model of square grains, widely used in the literature, can represent 

an average microcrystalline structure, if the numbers of parallel and perpendicular diffusion 

paths are comparable. As the diffusion time grows, the role of perpendicular GBs vanishes, 

suggesting that the same criterion can be used for the transition from the B-regime to the A-

regime for the models of square grains and parallel boundaries (for example, [Bel01]). In this 

case, the Hart-Mortlock equation is valid even for the model of square grains if the volume 

(area) fraction of GBs is calculated as for the model of parallel boundaries. However, 

segregation dictates new conditions for diffusion in polycrystalline materials. The diffusion 

profiles calculated for both models under these conditions differ, and the discrepancy 

increases with equilibrium segregation factors. The Maxwell-Garnett equation is not valid for 

the model of parallel boundaries, especially for large equilibrium segregation factors.         


