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Introduction 
 

Le Claire’s relation is still remaining the only one used for the evaluation of GB 

diffusivity (Dgb) from the diffusion profiles measured under conditions of type-B kinetics. The 

relation is based on the finding of Levine and McCallum [Lev60] that the GB part of lnCav = 

f(y6/5) plot is a linear function. However, it is very difficult to suggest a scale in which the 

diffusion profile is exactly a linear function for a broad range of parameters. In this chapter 

we investigate the validity of such a linear dependence for short diffusion times. 
 

3.1 Important definitions  
 

For that purpose Whipple’s solution was integrated, fixing the penetration depth at 500 

nm and varying the diffusion time (t) and the ratio of diffusivities (∆). These are the typical 

experimental conditions [Mis99] too when measuring the concentration profile and 

determining the GB diffusivity (Dgb), because ∆ is unknown. For the integration a sample 

characterized by a width of 25 nm and a length of 500 nm was used. Such a sample is called 
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hereafter also as a geometrical model. The value for Dg = 2.95·10-4 nm2/s (2.95·10-16 mm2/s) 

as well as Dgb = 6.42 nm2/s (6.42·10-12 mm2/s) were taken from the Arrhenius relations found 

in [Bro99a] on oxygen diffusion in ultrafine-grained undoped ZrO2 at 500ºC. These values 

satisfy ∆ = 2.2·104, whereas other ratios in the calculations were obtained by varying Dgb and 

fixing Dg. Most results shown in the present work reflect the behavior of Cav(y, t) and the 

distribution of Cg(x, y ,t).  

The main aim of the present study is to check the validity of Le Claire’s relation for 

short-time situations and to estimate possible errors of the Dgb determination. An apparent GB 

diffusivity (Dgb,app) is introduced which can be compared with a true diffusivity Dgb,true used in 

the calculation.   

 

3.1.1 The C- or B-regime? 
 

In order to be able to evaluate Dgb by using Le Claire’s relation, one should only know 

that the condition of type-B kinetics is satisfied. The diffusion length in the bulk (grain) (Lg) 

was allowed to vary from a very small value of 0.77 nm at t = 2000 s. This implies an 

extremely short Lg of the order of atomic spacing, and high concentration gradients. Such an 

extreme situation corresponds to Lg which does not exceed the GB thickness (δ) significantly. 

One could open the question about the validity of the type-C kinetics under such conditions. 

In order to understand the diffusion profile calculated for condition of Lg = 0.77 nm 

corresponds more to the B-regime or C-regime, the diffusion profile was fitted by a 

complementary error-function with Dgb. If tentatively the evaluation for type-C is used, the 

diffusion coefficient is wrong by four orders of magnitude. It is, hence, clear that the diffusion 

profile does not represent a complementary error function (fig. 3.1) and, consequently, the 

diffusion process does not correspond to the kinetics of type-C. This also makes generally the 

existence of the C-regime questionable, although the situations of very small diffusion lengths 

are of particular interest here. According to this result, it is enough to make several jumps for 

the atoms moving from the GB into the grain (this is caused by the concentration gradient, 

what is proposed by Fisher’s system (Eq. (1.6a)) to observe the B-regime.   

   

3.2 Integrating Whipple’s solution  
 

The integration of Whipple’s solution should be done very carefully, because the short 

t leads to steep gradients and a reduced effective region of integration. The concentrations and 
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penetrations are smaller. In this case both the density of integration mesh, as far as the 

numerical integration is concerned, and the limits of integration can be important. The 

constant intervals (steps) ∆x or ∆y, depending on the direction, determine the mesh density 

and are chosen to be important parameters to achieve a very well converged result. In some 

cases it suffices to find these steps properly. This has nothing to do with the integration step 

used in the quadrature formula [Pres02] since the integration was performed by using the 

algorithms worked out in the program MatLab [Kiu05] with applying a function ‘quadl’ 

[Mat04] based on adaptive Lobatto quadrature [Gan00]. The relevant intervals are due to the 

2D nature of the problem of GB diffusion and the integral form of Whipple’s solution.    
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Fig. 3.1 A comparison of the Whipple (red curve) and gberfc(y / 2 D t ) (blue 

curve) solutions for ∆ = 2.2⋅104 at t = 2000 s. The concentration Cav is 
normalized with respect to C0 (Eq. (1.3a)). 

 

The integration was performed for each x-value along the whole length of 500 nm. 

Obviously, the interval ∆y is of particular importance. The result is much more sensitive to 

this interval rather than to ∆x. For this problem the convergence means that the result remains 

unchanged when increasing the step of integration and, at the same time, satisfying the 

necessary error limits. Most of the problems with the integration of Whipple’s solution are 

related to numerical instability. Additionally, in the analysis we are interested in the derivative 

of the concentration profile is plotted. The derivative (in some cases the term ‘gradient’ is 

used in the present work) allows one first to analyze the physical result, and second, to 

estimate the quality of integration. This is reflected in the strong sensitivity of the derivative 

with respect to changes of the profile introduced by any numerical factors. Namely, numerical 
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instabilities are reflected immediately. To estimate the value of the slope of the profile (Eq. 

(1.16)), the scale of the ordinate (∂lnCav/∂y6/5) was changed significantly due to a rapid 

dependence of the bulk diffusion part of the profile on y in comparison with the GB part of 

the profile. Thus these two parts obviously have very different rates. At each t the integration 

scheme (the interval ∆y and the limits of integration) was verified separately for all ratios ∆ = 

Dgb/Dg used, whereas the step ∆x was once obtained and fixed in the calculations to 0.1 nm.  

The interval ∆y was varied from 40 nm to 0.25 nm for ∆ = 2.20⋅104 at t = 2000 s (fig. 3.2). On 

the one hand, the GB part of the derivative is not affected significantly when ∆y is increased. 

This is important, because decreasing the step leads to numerical instabilities (spikes in fig. 

3.2a). On the other hand, increasing the interval ∆y changes the bulk part (fig. 3.2b). This is 

clear, because the integration of the bulk part requires smaller intervals. Interestingly, the bulk 

diffusion is observed up to 6 nm6/5 at t = 2000 s for Dg = 2.95·10-4 nm2/s and Dgb = 6.42 nm2/s. 

At deeper penetrations only the GB diffusion plays a role. The numerical instabilities exist 

even with ∆y = 1.0 nm, while further increasing the integration step is impossible due to 

deviations in the bulk part.  

The integral published by Whipple [Whi54] contains ∆ as the upper limit of 

integration and σ as the integration parameter (Eq. (1.9a)). All the curves shown in fig. 3.2 

were obtained with ∆ (= 2.2⋅104) as the upper limit of integration (σmax). In many cases ∆ can 

be a very large value, making the region of integration too large and leading to very small 

concentrations. After obtaining the density of mesh (∆y = 1.0 nm), the upper limit of 

integration was decreased, because very low concentrations can also lead to the instabilities. 

Moreover, the values of concentration are so low in such regions that those do not sufficiently 

contribute to Cg (Eq. (1.9a)). It was observed that the numerical noise arises with σmax being 

15000 (hardly seen in fig. 3.3) for the same parameters that used in fig. 3.2. However, the 

convergence with respect to the upper limit of integration is reached with σmax = 20000. Again 

the instabilities do not allow for a completely correct result. But, if σmax, the upper limit of 

integration, is chosen to be small enough, the function ∂lnCav/∂y6/5 = f(y6/5) becomes even 

more nonlinear (fig. 3.3). In this sense, fitting the dependences lnCav = f(y6/5) to a straight line 

would give very large errors in determining Dgb. The area under the derivative as well as its 

value at the maximum decreases with decreasing σmax. Therefore, it is necessary to use at least 

σmax = 15000 for the parameters ∆ = 2.2⋅104 and t = 2000 s. This means one always has to find 

reasonable values σmax, otherwise the slope can be overestimated due to numerical reasons. In 

fig. 3.4 the integrand of Whipple’s solution is plotted as a function of σ for the same diffusion 



Chapter III.   Nonlinearity effect 
 

 39

a) 

0 300 600 900 1200 1500 1800
-0.015

-0.012

-0.009

-0.006

-0.003

0.000
∂l

nC
av

/∂
y6/

5 , n
m

-6
/5

y6/5, nm6/5

 ∆y = 0.25 nm
 ∆y = 0.5 nm
 ∆y = 1 nm

bulk diffusion part

GB diffusion part

 
b) 

0 300 600 900 1200 1500 1800
-0.015

-0.012

-0.009

-0.006

-0.003

0.000

∂l
nC

av
/∂

y6/
5 , n

m
-6

/5

y6/5, nm6/5

 ∆y = 1.0 nm
 ∆y = 2.0 nm
 ∆y = 5.0 nm
 ∆y = 10.0 nm
 ∆y = 20.0 nm
 ∆y = 40.0 nm

 
 

Fig. 3.2 Variation of the derivative ∂lnCav/∂y6/5 as a function of y6/5 obtained 
for small a) and large b) ∆y-steps for ∆ = 2.2⋅104 and t = 2000 s. 
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   Fig. 3.3 Different upper limits of integration for ∆ = 2.2⋅104 and t = 2000 s. 

 

parameters as in figs. 3.2 and 3.3. It is clearly seen that the integrand has large values at small 

σ and decreases slowly with σ approaching very small values. One can conclude from this 

plot, that the reason of the overestimation of the slope for σ being smaller than 15000 (fig. 

3.3) comes from the cut-off. In other words, the overestimation is due to lost concentrations at 

values of σ larger than 1000. The value of the integrand for σ = 15000 (∆ = 2.2⋅104), y = 10 

nm and x = 0.25 nm, i.e. exactly at the GB since the GB thickness is 0.5 nm, is 3.77⋅10-9. This 

is one of the highest integrand values which can be observed at these coordinates for σ = 

15000.  Such small values should also be taken to effectively integrate Whipple‘s solution. 

Consequently, the problem of very large ∆ is especially important for integrating Whipple’s 

solution at short t. In such cases, the diffusion length can be much shorter than the length of 

the sample. So shorter penetrations demand smaller integration limits. Fig. 3.4 shows the 

influence of increasing coordinates x and/or y. All the changes in the directions parallel with 

the GB or perpendicular to that lead only to a decreasing area under the integrand. The 

maximum of the integrand is shifted to larger and smaller σ for the increased coordinates y 

and x, respectively. It can be mentioned, that all the values discussed are sensitive to 

parameters such as diffusivities and t. An important consequence coming from fig. 3.4 is that 

the integral can have a maximum value at rather small y-coordinates.  
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 Finally, different integration intervals were tried in the two parts of the diffusion 

profile. As it is clearly seen in fig. 3.2 the results for ∆y = 0.25 nm and ∆y = 0.5 nm do not 

deviate from each other, satisfying the error of 1%. The only problem of those is related to  
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Fig. 3.4 Integrand of Whipple’s solution plotted as a function of σ for different 
coordinates y and x. 

 

instabilities. So ∆y = 0.5 nm can be taken as integration interval in the bulk part. Because the 

deviations in the GB part arise with ∆y being larger than 10 nm, that value is suggested to be 

a limit of integration in the GB part. In fig. 3.5a the results of integration with different 

intervals in the two parts of the profile are compared with the result obtained with a constant 

step. The bulk part was integrated up to a penetration of 50 nm, which exceeds the bulk 

diffusion length and lies in the region of obvious intermixing between the bulk and GB parts 

of diffusion. The result of integration with two intervals is in a very good agreement with the 

result of constant integration interval. Consequently, different integration intervals should be 

used at t = 2000 s in order to exclude any numerical problems and to obtain accurate results.  

The increase of t allows the same interval of integration to be used for both parts of the 

derivative. Thus, the numerical instabilities disappear already at t = 4700 s with ∆y = 1 nm 

due to an increased level of concentration in both the bulk and GB parts of diffusion profile 

(the length of the sample is fixed). Nevertheless, the deviations in the bulk part with 

increasing ∆y seem to be similar to those observed at t = 2000 s up to 13200 s despite the fact  
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Fig. 3.5 a) A comparison of different integration schemes at t = 2000 s and ∆ = 
2.2 ·104, b) An example of the numerical instabilities for ∆ = 103 at different t 
(note: the slope decreases with t).  
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that the derivative of the bulk part changes with t too. Finally, the step in the bulk part was 

successfully varied in the calculations from 0.5 nm at t = 2000 s to 5.0 nm at t = 500000 s.  

Such a situation is remaining until the interval becomes too small for the integration of 

the GB part. One can observe similar instabilities as shown in fig. 3.5 for t = 13200 s: the 

problem of low concentrations is replaced by another one, the small changes of the derivative 

in the GB diffusion part. In this case the variation of σmax cannot longer improve the result 

and only integrating with different intervals in different parts of the profile allows again a 

qualitative result to be obtained. An example of the instabilities arising in the integration is 

also presented in fig. 3.5b. 

 

3.3 Errors in determining the grain boundary diffusivity 
 

As far as the procedure of integrating the Whipple solution is clear, one can examine 

different t and ∆. As it was explained above, the length and the width of the sample 

(geometrical model) were fixed to 500 nm and 25 nm, respectively. This exactly reflects the 

isolated boundary arrangement (fig. 1.2). Recently, many theoretical works on the evaluation 

of Whipple’s solution were published which are based on the transformation of the solution 

directly to the average concentration Cav(y, t) [Chu96b], [Eva97], [Sha98]. Such 

transformations are not used here but will be discussed in the following sections. Also, the 

integration used in the present work is very similar to what is done experimentally.  

 The result obtained by simply integrating Whipple’s solution is depicted in the 

following figure for ∆ = 2.2⋅104 at t = 2000 s: 
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Fig. 3.6 Variation of lnCav  a) and ∂lnCav/∂y6/5 b) with y6/5 calculated for ∆ = 
2.2⋅104 ant t = 2000 s. 
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In fig. 3.6a one can see a typical diffusion profile, comprising two distinguishable parts: a 

near surface part (or so-called bulk part) and a deeper penetration tail due to the GB diffusion. 

As it was mentioned above, the slope of the GB part gives Dgb according to Le Claire’s 

relation (Eq. (1.16)). There are two possibilities to verify such a slope. One of them is to fit 

the GB part of profile by a straight line subtracting the bulk part. This is usually done in the 

experiments [Her05], [Yas97], [Kow00], [Bak02]. However, the profile is expected to be a 

nonlinear function of y6/5, and the nonlinearity of its GB part can strongly depend on the 

depth. Consequently, another possibility might be preferred, namely to plot the derivative of 

the profile in order to estimate the effect of nonlinearity. Fig. 3.6b shows that indeed the 

profile is nonlinear, i.e. the derivative simply confirms this.  

At some point (y6/5 ~ 300 nm6/5 in fig. 3.6b) the derivative is characterized by a 

maximum which is close to the bulk part but, in fact, corresponds to the GB part. In the 

present study it is proved, that this maximum gives the correct slope or, at least, the smallest 

error to find Dgb using Le Claire’s relation. To prove this statement, the diffusion profiles 

were calculated by using Whipple’s solution at different t, varying ∆ from 102 to 105.  

According to fig. 1.5 (the diffusion lengths dependences with t), calculating the 

profiles up to t = 500000 s guarantees the B-regime for different ratios ∆. The slope of the 

profiles decreases with t, and this is clearly seen in the dependences lnCav = f(y6/5) (fig. 3.7a). 

The same behavior, obviously, can be observed for all other ratios ∆ (fig. 3.8). Importantly, 

the slope varies with t striving for some saturation at the maximum (figs. 3.7b and 3.8). 

However, this saturation can never be reached. It means only that having an opportunity to 

obtain the profiles at very long t, as it is the case for coarse-grained materials; one can observe 

the values of Dgb rather independent of the effects of the GB diffusion nonlinearity. This 

might be the reason why the effect of nonlinearity has not yet been discussed in the literature. 

However, the effect of nonlinearity is more pronounced at shorter t. Therefore, the derivative 

varies with t and along the coordinate y (fig. 3.7b and fig. 3.8). Importantly, all the profiles 

and their derivatives, shown in figs. 3.7b and 3.8, were calculated for one maximum value of 

the depth (the length of geometrical model) for ∆ being 2.2·104 and 105, namely 500 nm. For 

∆ = 102 the maximum depth was 40 nm at t = 2000 s and 500 nm at t ≥ 100000 s in order to 

exclude the effect of very small concentrations. This is done because Cav at y = 40 nm for ∆ = 

102 and y = 500 nm for larger ∆ at t = 2000 s is about 0.3·10-6. One may conclude that deeper 

penetrations than those used in figs. 3.7 and 3.8, can lead to larger errors in determining Dgb 

[Gry05]. 
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The calculated profiles were fitted by a straight line according to the procedure usually 

used in the experiments and relevant errors in determining Dgb were obtained (fig. 3.9, black 

lines). The error and derivative vary with t. This is reflected in the decreasing error. At longer 

t the slope is more correct than at shorter ones (again the length of the sample was fixed). It 

does not mean that the error cannot be larger at long t. The value of the error is only a matter 

of the nonlinearity of profile. This increases, if deeper diffusion profiles are used. 

Interestingly, the fitting gives slopes which more strongly deviate from those at the maximum 

as t shortens. The same can be observed in the case of smaller ratios ∆. The profile is even 

more nonlinear under conditions of small ∆, giving larger errors. The error is about 45% at 

2000 s for ∆ = 102.  

 The derivatives plotted in fig. 3.8 demonstrate that the slope is larger at shorter t, 

decreasing the apparent Dgb (Dgb,app) when applying the Le Claire relation. That is why Dgb is 

underestimated when the diffusion profile is fitted by a straight line, especially in the cases of 

short t and, as a consequence, short diffusion lengths. The maxima of derivatives of calculated 

profiles were also put into Le Claire’s relation. Taking the values of the derivatives at the 

maximum allows one to reduce the error (fig. 3.9, red curves). It can be understood in such a 

way, that the diffusion process developing around and along a GB passes through different 

conditions, and there is only one situation corresponding to the considered diffusion regime. 

The deeper the penetration depth the smaller the contribution of GB to diffusion in the grain 

and the lower the level of concentration around and within the GB. Therefore, the whole 

process is becoming to be concentrated within the GB. In other words, the contribution of GB 

is not simply a linear process of y6/5 or any other power law.  

Interestingly, the error for ∆ = 2.2·104 and 105 (fig. 3.9b) increases at longer t. In these 

cases the maximum was not reached for the used length of the sample (for example, the curve 

for t = 500000 s in fig. 3.8c), although the diffusion profile itself still comprises the two 

distinguishable parts. This opens a question about an additional effect related to the 

nonlinearity. One may conclude that the length of the whole geometrical model may be too 

great giving the slope affected by the new conditions along the depth or too short giving the 

slope affected by the bulk part of the diffusion profile [Kau95]. In both cases the 

concentrations and derivatives are smaller than those at the maximum. In these cases the 

derivative does clearly show how the profile is affected. The discussion of short lengths of the 

sample will be continued in the next section. 
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Fig. 3.7 Variation of lnCav for t = 2000 s – 13200 s a) and ∂lnCav/∂y6/5 for t = 
2000 s – 1·106 s b) with y6/5 calculated for ∆ = 2.2·104. 
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When the positions of the maxima are known, one would compare them with a 

criterion, which has already been discussed in the literature [Moy91], but very often ignored 

in the evaluation of experiments. The criterion is based on the relationship between y and Lg. 

According to this criterion, the determination of Dgb should be done from those parts of 

measured diffusion profile, which satisfy y g5L≥ . In the calculations Lg is the same for all 

ratios ∆ used and depends only on t, because Dg was fixed. However, the ratio ∆ increases, 

and the position of maximum goes from 6/5
maxy ~ 12 nm6/5 for ∆ = 102 at t = 2000 s (the 

corresponding diffusion length Lg ~ 0.77 nm) to 6/5
maxy ~ 1732 nm6/5 for ∆ = 105 at t = 500000 s 

(which is, in fact, not the position of maximum, but simply corresponds to the depth of 500 

nm, Lg ~ 12 nm). The positions satisfy the criterion by being 10 times larger than Lg for ∆ = 

102 at t = 2000 s and 42 times larger than Lg for ∆ = 105 at t = 500000 s. So the criterion is 

very rough. It only reminds one that the GB part of diffusion profile is influenced by the bulk 

diffusion part. The criterion is still not absolutely correct and even misleading when the 

profile is fitted by the straight line. 

It is interesting to analyze here how the maximum appears. In fig. 3.10 solutions given by 

pure bulk diffusion (a complementary error-function in the case of a constant source) and by 

Whipple’s solution excluding bulk diffusion (pure GB contribution) are presented separately 

for ∆ = 105 at t = 500000 s and t = 2000 s. A sum of both contributions gives Cav obtained by 

integrating Eq. (1.9a), also shown in fig. 3.10. The bulk diffusion solution decreases rapidly in 

comparison with the GB diffusion part. Whipple’s solution coincides with purely bulk 

diffusion at very small coordinates and then is influenced by both contributions, and for larger 

y-coordinates dominates by the GB part. The GB contribution becomes predominant at 

around 110 nm6/5 in fig. 3.10a, what is much smaller (by a factor of 16 in this nonlinear scale) 

than the position of the corresponding maximum ( 6/5
maxy ~ 1732 nm6/5). Normally, for the 

parameters involved one needs a length of the sample larger than 500 nm in order to reach the 

maximum at long t. The maximum can correspond to the beginning of the B-regime since the 

diffusion regimes change each other not only with time but also along y [Kau95]. This regime 

finishes when the derivative goes down. The position of the maximum for ∆ = 105 at t = 2000 

s (fig. 3.10b) is about 763 nm6/5, what is 100 times larger (on the nonlinear scale) than the 

coordinate at which the GB part becomes the solution determining part. The longer t obtains a 

much more slowly varying function, suggesting the slope to be very small, whereas shorter t 

gives higher derivatives. In both the cases the overall solution is determined by the bulk 

diffusion part only at extremely small depths, i.e. of the order of several nanometers. 
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Fig. 3.8 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 obtained for a) ∆ = 
102, b) ∆ = 103, c) ∆ = 105. The dashed line means that the integration in this 
region was very unstable and, therefore, impossible. 

 

 

3.3.1 Nonlinearity and small values of dimensionless parameter w 
 

The parameter w (Eq. (1.15)) is a very helpful quantity as regards understanding the 

conditions of the developing diffusion process. The problem of this parameter is in fact that 

its knowledge requires the knowledge of the diffusion coefficient Dgb. Meanwhile, the 

parameter makes the diffusion profiles plotted as a function of w for fixed t independent of 

the ratio of diffusivities ∆. This seems to be one of the main reasons, why Le Claire suggested 

the derivative ∂lnCav/∂w6/5 to be constant [Cla63]. Moreover, Le Claire mentioned that w 

should be larger than 2 to use his relation. On the other hand, the condition of w << 2 can be 

understood, if the gradient ∂lnCav/∂y6/5 is analyzed. As it was mentioned above, the 

contribution of bulk diffusion to the concentration profile is very restricted, because of 

interference of bulk diffusion with GB diffusion. The interference starts at surprisingly small 

values of y. The reason is that the derivative changes its value going slowly through the 

maximum and then decreasing due to the GB contribution only. In fig. 3.11 the dependence of  
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Fig. 3.9 Variation of the errors in determining Dgb with time (Dgb,app was 
obtained by using Le Claire’s relation): a) ∆ = 102, ∆ = 103, b) ∆ = 2.2·104, ∆ = 
105. Errors were estimated according to ( )gb,app gb,true gb,trueD D / D 100%− ⋅ . 
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Fig. 3.10 Whipple’s solution (circles) compared with its bulk part (squares) and 
GB part (triangles) at t = 500000 s a) and 2000 s b) for ∆ = 105. 
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the dimensionless parameter w on the real coordinate y is shown for different t, where the 

domain of inapplicability of Le Claire’s relation is determined by values of w less than 2. 

Despite the fact of very different t, 2000 s and 500000 s, the values of w can be either smaller 

or larger than 2. In the dominator of w is the square root of Dgtβ. While the β - parameter (Eq. 

(1.9d)) decreases with the diffusion time as t-1/2, the positional coordinate y can be increased – 

both facts lead to the compensated values of w. The value of 2 is reached at smaller y, if t is 

decreased, because the shown linear dependences have different slopes. This looks like that 

there is a higher probability to arrive to the conditions of w << 2 for longer t, because the 

range of y is larger than for shorter t. One should keep in mind that the increase of t is only 

possible for a polycrystalline sample having larger grains, and deeper penetrations are needed 

to observe the nonlinearity. Particularly, at higher t the position of maximum is shifted to 

larger values of y. Correspondingly, the values of w larger than 2 for t = 500000 s arise at 

sufficiently larger values of y in comparison with t = 2000 s. An interesting question to be 

addressed is about the shape of diffusion profile at different w.  

In order to analyze the diffusion profiles for different values of w, y was varied from 0 

to 500 nm for t = 2000 s and ∆ = 2.2·104. It is clear, that small values of w correspond to those 

parts of the diffusion profile, which are mostly influenced by bulk diffusion (fig. 3.12a). If the 

dimensionless parameter (w) increases, the profile changes from steep part to the interference 

part. Such a behavior continues until the maximum of the derivative is reached as it was 

observed for the dependences on the real coordinate. The corresponding diffusion profiles 

were plotted for considered w-values (fig. 3.12b). Surprisingly, the shape of those profiles in 

the dependence lnCav = f(y6/5) represents classical, usually expected,  diffusion profiles, 

comprising two distinguishable parts due to bulk diffusion and GB diffusion separately. 

Consequently, Dgb can be found from such dependence by applying Le Claire’s relation. 

However, this would cause errors since the maximum is not reached. Thus the qualitative 

estimation of the profile leads to the situation when Dgb is found according to the procedure, 

which is not straightforward. This also allows the problems discussed in [Chu96a] to be better 

understood. In the latter paper, errors of the order of 70% were observed. However, an 

explanation of those errors was not given. Instead, they suggested a new expression for the 

δDgb-product which requires the knowledge of new fitting parameters summarized in this 

paper. According to the present analysis, the maximum of the gradient gives an accurate result 

and many problems of using the conventional procedures are related to the nonlinearity.       
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Fig. 3.11 Dependence of the dimensionless quantity w on real positional 
coordinate y for t = 2000 s and t = 500000 s.  

 

3.3.2 Analyzing the errors of using Le Claire’s constant 

 

  In fig. 3.9 the errors of finding the GB diffusivity (Dgb) remained high, even after 

using the maximum of the derivative. It was supposed that an additional problem is related to 

Le Claire’s constant ( 6/5
avln C / w 0.78∂ ∂ ≈ − , Eq. (1.14)) as being the only quantity, which 

was not discussed up to now. As far as the diffusion profiles were obtained for different ratios 

∆ and t, the derivatives of those as functions of dimensionless coordinate w were also plotted. 

The deviations of the derivative from Le Claire’s constant were observed and estimated. In 

fig. 3.13 the derivatives are depicted for the same ratios ∆ and t as in fig. 3.8. The qualitative 

picture is similar, but the meaning is different. Interestingly, the derivatives for different ∆ 

have the positions of maxima at the same w which vary from 2 to 6, depending on t. For the 

smallest ratio ∆ = 102 Le Claire’s constant is reached at t = 100000 s due to β close to 1 in 

contrast to other ratios. This is an exception case which refers to small ∆ which is unlikely in 

diffusion experiments, unless small angle grain boundaries are concerned. Thus, for the ratios 

∆ larger than 102 it takes at least 500000 s to reach Le Claire’s constant for the diffusion 

parameters used in the present study. An important property of the dependences in figs. 3.13c 

and 3.13d is in fact that these become more and more restricted with t. Comparing the 

dependences for ∆ = 2.2·104 and ∆ = 105 demonstrates that the values of w are twice as large 
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as in the former case, while the positions of maxima are approximately the same. This is 

related to the values of β and the length of the sample remaining constant. Large values of w 

always mean very deep profiles characterized by nonlinearity, what was also considered in the 

theoretical study of Le Claire [Cla63]. The nonlinearity in his profiles is obvious, but Le 

Claire did not discuss this property properly. Therefore, the tendency is that the position of 

maximum shifts to higher values of w, and that the maximum value of derivative tends to Le 

Claire’s constant as t grows. Both facts make the dependence more and more parallel to the 

abscissa, i.e. tending to a constant value for a fixed length of the sample. In this sense one 

may expect that there can be situations depending on the parameters in which the derivative 

is, to some extent, a constant value. Consequently, high temperatures and/or long diffusion 

times lead more or less to Le Claire’s constant. 

The Le Claire constant is reached for very different values of β, varying from 2 for ∆ = 

102 at t = 100000 s to 2000 for ∆ = 105 at t = 500000 s. These values cover a wide β-range in 

comparison with Le Claire’s work. Consequently, the values of β do not really determine the 

accuracy of the result. However, y and t are relevant for the deviations from Le Claire’s 

constant. It is very likely that diffusion in ultrafine-grained materials (or nanocrystalline 

materials) is studied under conditions of short t and penetrations. That is why the measured 

diffusion profile can be obtained for w << 2. This effect has already been observed by Chung 

[Chu96a] when measuring the diffusion profile for MgO bicrystal. The latter point is 

discussed below. Importantly, the maxima of the derivatives correspond only to values of w 

larger than 2 according to fig. 3.13.  

As the maxima of the derivatives on the real coordinate are known from fig. 3.8, then one 

may estimate the maxima of derivatives on the dimensionless coordinate and put both into the 

original expression of Le Claire (Eq. (1.14)). Following this procedure, the evaluation of 

errors for finding Dgb was continued (fig. 3.14). The errors are greatly reduced at shorter 

times, namely from 35% to very small errors not exceeding 1%. Nevertheless, the errors for 

larger ratios ∆ and longer t are still high and increase with t. The reason comes from the 

∂lnCav/∂w6/5 values taken at the maximum, while the length of geometrical model (500 nm) 

gives shorter values of w. These values were taken at the maxima to be in accordance with 

procedure used for shorter t. The dashed curves in figs. 3.13c and 3.13d show how the length 

was increased to reach the maximum for longer t. However, these values obviously give 

larger errors. By using the values found at the depth of 500 nm being the length of 

geometrical model, the error was decreased (red and blue points in fig. 3.14).     
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Fig. 3.12 Variation of the dimensionless quantity w as a function y6/5 along the 
derivative of the diffusion profile a) and the diffusion profile b) calculated for 
∆ = 2.2·104 at t = 2000 s.  
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Fig. 3.13 Variation of the derivatives ∂lnCav/∂w6/5 with w6/5 for a) ∆ = 102, b) ∆ 
= 2.2·104, c) ∆ = 103 and d) ∆ = 105 at different diffusion times. Le Claire’s 
constant is also indicated. The dashed curves were obtained by increasing the 
length of the sample and indicate restriction due to this finite length. 
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 All the points discussed so far give a clear explanation of how the errors arise when 

extremely small diffusion lengths come into play. These situations very likely occur in 

nanomaterials with very small grains. As Dgb needs to be obtained, such an error analysis 

must be done as far as experimental evaluation is concerned. However, it is difficult to take 

account all the effects observed in the preceding sections. Obviously, improved procedures to 

deduce Dgb are necessary. 

103 104 105

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Er
ro

r i
n 

%

t, s

 ∆ = 102

 ∆ = 103

 ∆ = 2.2⋅104

 ∆ = 2.2⋅104, improved ∂lnCav/∂w
6/5

 ∆ = 105

 ∆ = 105, improved ∂lnCav/∂w
6/5

 
Fig. 3.14 Errors in determining Dgb calculated by putting both maxima on y6/5 
and w6/5 into the original Le Claire expression. The dashed arrows show how 
the error is reduced after using the improved derivative.  

 

 

3.4 Discussing new procedures for finding the grain boundary 

diffusivity 

 
3.4.1  An analytical expression for ∂lnCav/∂w6/5 at the maximum 
 

 First of all, a very useful expression can be suggested for the derivative ∂lnCav/∂w6/5. 

Plotting the maxima found in the preceding section from the dependences ∂lnCav/∂w6/5 = 
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f(w6/5) as functions of another dimensionless parameter α (Eq. (1.9d)), it was observed that 

they almost linearly dependent on α (fig. 3.15). A small curvature, seen in this figure, cannot 

introduce a large error. As it can be expected, and was mentioned above, the maxima for ∆ > 

102 almost coincide, and only the result for ∆ = 102 is slightly different from all the others. 

Despite that fact, one can see the slopes of all of the lines being the same. The values of α 

vary from 0.02 at longer times to 0.32 at shorter times. The large values of α as 0.32 can be 

attributed to the so-called B1-regime [Mis95], [Mis92a] – the transition between the B- (B2- or 

B2´-) and C- regimes. This regime can be relevant for discussion here. Consequently, the 

result in fig. 3.15 shows that the B1-regime especially important for the cases of shallow 

penetrations.  

Fitting the lines shown in fig. 3.15 to a straight line yields the following expression  

 

av
6/5

ln C 0.77 0.71
w

α
∂

= − −
∂

,          (3.1) 

 

neglecting the difference which exists between the line for ∆ = 102 and the others. This 

expression is very helpful (at least in the range of α used) since one can simply estimate the 

value of α, which only requires Dg to be known. According to fig. 3.15, α > 0.02 requires Eq. 

(3.1) to be used to find the derivative ∂lnCav/∂w6/5 properly. If it is not the case, Le Claire’s 

constant should be put into the original expression for the δDgb – product.  

According to what was discussed before, there are some cases when the derivative 

taken at the maximum also leads to significant errors (this is concerned only the derivative on 

w, if the length of the sample is too short to arrive exactly at the maximum). On the other 

hand, by plotting the derivative ∂lnCav/∂y6/5 it can be found out whether or not the maximum 

is reached. For the accurate determination of Dgb, it is suggested to increase the penetration 

depth (if not the length of the sample) until the maximum is reached despite these errors. This 

is, because the value of ∂lnCav/∂w6/5 at the depth corresponding to the length of the sample is 

impossible to find. Table 2.1 compares the values of ∂lnCav/∂w6/5 = f(w6/5) at the maximum 

taken from the calculated dependences (fig. 3.13) with those found by using Eq. (3.1).  

It should be emphasized that Szabo et al. [Sza90] in their discussion of how to find the 

segregation coefficient (s) and Dgb separately, observed deviations of the apparent parameters 

from the true ones if α increases. The explanation of this effect is given here and, moreover, 

an improved procedure to deduce Dgb is suggested. 
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Fig. 3.15 Maxima of the dependences ∂lnCav/∂w6/5 = f(w6/5) plotted against the 
dimensionless parameter α for different ratios ∆. 

 

 

 

Table 3.1 A comparison of the derivatives at the maximum found by using calculated 
dependences and Eq. (3.1) for ∆ = 2.2·104. 

 

t, s ∂lnCav/∂w6/5 = f(w6/5)true ∂lnCav/∂w6/5 = f(w6/5)Eq. 2. 1 

2000 -0.99 -1.00 
3600 -0.94 -0.94 
4700 -0.92 -0.92 
8200 -0.89 -0.88 
10700 -0.87 -0.87 
13200 -0.86 -0.86 

100 000 -0.80 -0.80 
500 000 -0.78 -0.78 
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3.4.2 The reason of observing a constant value for ∂lnCav/∂w6/5. Discussing 

procedures used in the literature 

 
It is believed that there are certain cases when the exact Whipple’s solution can be 

transformed to a simpler mathematical form. These cases have been for the first time 

introduced by Whipple [Whi54] and Le Claire [Cla63] and were explicitly discussed later in 

the book of Kaur et al. [Kau95]. The origin of those transformations lies in a fact that the ratio 

of diffusivities (∆) can be very large, typically, of the order of 105 or so for metals. The 

expression for Cg (used in the cited paper of Le Claire) then reads: 

 
2

g 1/ 2 3/ 2
1

d 1 1C ( , , ) erfc exp erfc
2 2 4 2
η η σ η σ

η ξ β ξ
π σ σ β

∞     − = + − +     
      

∫ .    (3.2) 

 

The meaning of the dimensionless quantities η and ξ was given in chapter I (Eqs. (1.9b) and 

(1.9c)). By comparing with Eq. (1.9a) the upper limit ∆ is replaced by infinity, and the term 
1/ 21∆

∆ σ
− 

 − 
 under the complementary error-function is simply ignored. After Le Claire, the 

same transformation was applied by Chung and Wuensch [Chu96a], [Chu96b], and it is 

important to discuss this once more in order to prevent possible errors. As it has been 

explained [Kau95], the approximation ∆→ ∞  may be used when β << ∆ with β remaining 

finite. In the present study β was varied from 2 (∆ = 102, t = 100000 s) to 32518 (∆ = 105, t = 

2000 s), always being smaller than ∆. Strictly speaking, the ratio ∆/β is 50 at longer times and 

only 3 at shorter times for all ∆ used. Additionally, η (Eq. (1.9b)) varies from 41 to 650 in all 

the calculations in the present study. These values of η are smaller than ∆, except for ∆ as 

small as 102. Since η is weighted by the diffusion length Lg, the ratio y/Lg is exactly of the 

order of several hundreds or smaller; otherwise extremely deep penetrations come into play. 

Unrealistic situations, when η >> ∆ were supposed by Le Claire when suggesting Eq. (3.2). 

On the other hand, such an approximation allows the contribution of bulk diffusion to be 

neglected, and Le Claire transformed Eq. (3.2) to a special mathematical form for Cav, 

neglecting the bulk diffusion part. One can also think of this approximation in terms of w. If η 

is much larger than ∆ which itself is much larger than β, then w increases to values of tens or 

even hundreds. Nevertheless, the maximum of ∂lnCav/∂w6/5 lies in the region of w from 2 to 6 

and not larger. In fig. 3.16 two derivatives are shown, calculated under condition β < ∆. The 



Chapter III.   Nonlinearity effect 
 

 63

first of them was obtained by using a convenient mathematical form to better integrate Eq. 

(3.2), published in [Kau95], excluding bulk diffusion. The second one was found by using the 

same mathematical form, taking into account bulk diffusion. The equation used for integration 

is                                                                                                                                                              

( ) 1/ 2

1/ 2

av

1/ 2 1/ 2 22 2
g

1/ 2
0

2 2

wC erfc
2

1 1 1 1exp
4 D t w 4wexp d

L 4 1 1 1 1 1 1erfc
2 2

β

β

π τ βτ
τ

π

τ β τ β

 
= + 

 
   

− −   
     −          − − −          

∫
,        (3.3) 

 

where τ is a new integration variable related to σ through
1/ 2

1
∆ σ β

τ
∆ σ

 −  =   −  
; L is the width of 

the sample or the distance over which Cg is averaged. The difference between Eq. (3.3) and 

the one originally suggested in [Kau95] lies in the use of bulk diffusion part. Comparison of 

both equations shows that the maximum is not influenced by neglecting bulk diffusion (fig. 

3.16, dashed lines). This again confirms that the bulk part is confined within a very tiny 

region, what is also shown in fig. 3.10. So the maximum lies far enough from the bulk part 

and corresponds only to the GB diffusion. Interestingly, Eq. (3.3) was integrated successfully 

by using MatLab without any serious numerical problems. One may conclude here that, in 

principle, bulk diffusion may be excluded but not because η >> ∆ which is an unrealistic 

condition. Interestingly, the maximum of the calculated derivatives is slightly higher than Le 

Claire’s constant. 

 More important is another condition, viz. β << ∆. The ratio ∆/β = 50 leads to Le 

Claire’s constant, according to the results of the present study. Comparing this with what was 

discussed by Chung and Wuensch [Chu96a], ∆/β ≥ 50 looks much more realistic. They used 

the condition ∆/β (≈ 2Lg/δ) ≥ 103 in order to apply∆→ ∞ . In this case β ≈ ∆/103. For small 

ratios ∆, say 102 or 103, the condition is never fulfilled, giving the values smaller or equal 

than 1. This would mean that the measurements on small angle boundaries could not be 

evaluated.  

Continuing the discussion started in [Kau95] with respect to the reasons leading to 

∆→ ∞ , the erfc-term in Whipple’s solution (Eq. (1.9a)) was plotted against σ for two 

extreme cases: ∆ = 105 and ∆ = 102 (fig. 3.17). The diffusion time (t) was varied from 2000 s 

to 500000 s not only because exactly these times were used in the present study, but also 
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because these cover the values of β which can be met in the measurements. The values of β ≥ 

∆ would mean Lg ≤ δ, what corresponds to the type-C diffusion kinetics. Consequently, 

another criterion for the C-regime is β > ∆, which is the same as Lg < δ and leads to complex 

Cg. Otherwise, Lg is larger than δ, and the B-regime becomes responsible for the diffusion 

process, regardless we refer to the classical B-regime or B2, B2´, or B1. 
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Fig. 3.16 Variation of the derivatives with w6/5 calculated for ∆ = 102 by using 
Eq. (3.3) excluding (dashed curves) and including (solid curves) the bulk 
diffusion part. 

 

Appreciable values of the erfc-term are possible, if β is close to ∆. In these cases the upper 

limit of integration should be exactly ∆. If β decreases, the upper limit can be taken smaller 

and at t = 500000 s it can surely be replaced by infinity (fig. 3.17). In fact, it is a very 

restricted region of β, when ∆→ ∞  may be used for nanomaterials. The restriction is defined 

by Lg, because increase of t leads finally to the A´-regime as it is the case for ∆ = 105 with the 

average grain size of 50 – 100 nm or so (fig. 1.5d).  This is the typical situation for 

nanomaterials when we proceed to the A-type regimes at large β. The new criterion for using 

∆→ ∞ , suggested in the present study, is that α should be smaller than 0.02. Interestingly, if 

it is not taken into account, the integration of Eq. (3.3) gives Le Claire’s constant, even if α > 

0.02 (fig. 3.18). This, of course, can be misleading. This is the aim of the experiment to find 

β, while α can be estimated, knowing Dg. Consequently, the analysis in terms of α is more 

convenient and allows one to make all necessary conclusions. 
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Fig. 3.17 The term erfc[…] taken directly from Whipple’s solution (Eq. (1.9a)) 
is calculated at ξ = 0 for ∆ = 105 a) and ∆ = 102 b). 
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Fig. 3.18 Variation of the derivative ∂lnCav/∂w6/5 as a function of w6/5 
calculated by using Eq. (3.3) for different ratios ∆ at t = 2000 s a) and t = 
500000 s b). 
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An additional and important comment is that similar results can also be obtained, say 

for ∆ = 102, if in the exact Whipple solution ∆ = 105 (the upper limit of integration) is used 

instead of ∆ with β corresponding to ∆ = 102. This is, of course, an artificial point, which is 

nothing but only a mathematical trick to get to Le Claire’s constant, because the range of 

varying σ is increased in this case. In this sense the following question arises. Is the result 

obtained for a very short time correct under these conditions? Probably, it would be enough to 

increase the range for σ. The answer is very nicely given by comparing the exact Whipple 

solution with the result of FEM. By using numerical method to integrate Fisher’s system (Eq.  

(1.6)), one observes the solution independent of Whipple’s solution and, consequently, of 

∆→ ∞ . The corresponding result is discussed in chapter IV (fig. 4.1). Here it is only 

important to mention that the results of both integrations coincide within a very small error 

even at 2000 s.  

  

3.4.3 On important dependences for finding the grain boundary diffusivity 
 

Summarizing the previous sections, the following procedure could be suggested for 

nanomaterials: 1) Measure the diffusion profile and determine Dg by simply fitting the near 

surface part to the complementary error-function solution or Gaussian function depending on 

boundary conditions. 2) Plot the derivative of the measured diffusion profile and identify its 

maximum, (∂lnCav/∂y6/5)max (it is recommended to reach this maximum). 3) Calculate the 

parameter α. 4) If α > 0.02, use Eq. (3.1) to find the derivative (∂lnCav/∂w6/5)max and put the 

derivatives into Eq. (1.14), or if α < 0.02 use the standard Le Claire constant. The 

disadvantage of this procedure is in fact, that plotting the derivative can be a serious problem 

for the experimental profile due to, for example, scattering of the experimental points 

[Kow00]. An alternative procedure which further improves the determination of Dgb and is 

more sufficient for ionic materials (as it will be shown in chapter V) is discussed now. 

As far as the maximum is responsible for the accuracy of determined diffusion 

coefficient Dgb, it would be better to find the derivative at the maximum as accurately as 

possible. It seems to be the only possibility to find Dgb accurately. Because of this, it would be 

particularly interesting to analyze how the position of the maximum depends on t. In fig. 3.19 

the positions for different ∆ are plotted as functions of t on the logarithmic scale. It is very 

likely that the positions are linearly dependent on t on the logarithmic scale, what is very well 

seen for smaller ratios ∆. The points for ∆ = 2.2·104 and 105 at long t are affected by the finite 

length of geometrical model (500 nm), reflecting that the necessary maximum is not reached. 
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That is why, the maxima for these large ratios ∆ were taken at one point of 500 nm, beginning 

from 13200 s for ∆ = 105 and 100000 s for ∆ = 2.2·104. The following relationship for y6/5 at 

the maximum is found: 

 
6/5
maxlog(y ) log(K) H log(t)= + ⋅  

or             (3.4) 
6/5 H
maxy K t= ⋅ , 

 

where t is as usually the diffusion time, K is a normalizing coefficient which depends on ∆ 

and, in general, on Dg and Dgb. However, the most useful information comes from the 

parameter H which is found out to be independent of Dg and Dgb, at least in the considered 

range of parameters. The parameter H determines the slope of the lines in fig. 3.19 and allows 

one to know t needed to reach the maximum, if the diffusion profile once measured is too 

shallow. This power law is not surprising since it reflects the typical diffusion property – 

dependence as a power law on t. In order to realize the long times (107 s – 1010 s) for large 

ratios ∆, the width as well as the length of the sample was increased (fig. 3.20), and Eq. (3.2) 

was integrated since β is much smaller than ∆. Consequently, the parameter H was 

determined by fitting the lines in figs. 3.19 and 3.20 to a straight line and is summarized in 

table 3.2. The perfect linear dependences were observed for short and very long times (red 

lines, reflecting the fitting in fig. 3.20, show this very clearly). Comparing the results of 

integration of the exact Whipple solution and Eq. (3.2) at t = 500000 s shows that the latter 

slightly overestimates the maximum positions (not shown here). The exact Whipple solution 

could not be integrated at so high t properly leading to very strong numerical instabilities. The 

dependencies in fig. 3.20 are characterized by a nonlinearity which is also seen for ∆ = 103 

and 102 in fig. 3.19. The width of 5157 nm (~ 5.16 µm) was applied for ∆ = 105, what 

demonstrates that a micrometer regime is already relevant here. However, this gives huge 

diffusion times which will never be realized in the experiments at least for the parameters Dg, 

Dgb used in the present study; however the temperature can be increased. More importantly, 

the slopes for all ∆ used are very well comparable for short t (table 3.2). In these calculations 

the β – parameter was varied up to ~10 – 15 for all ∆. The most reasonable value of H is 0.6, 

because it suggests that ymax ~ t1/2 – the expected dependence. As the diffusion time grows up, 

the process slowly develops with time in a comparison with short t giving rise to the 

nonlinearity in figs. 3.19 and 3.20 (this can be the second reason explaining the effect of 

nonlinearity discussed in the preceding sections).    
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 A similar behavior was observed for the maximum of the derivatives. When plotting 

the absolute values of maxima for relevant ratios ∆ from t = 2000 s up to 500000 s, straight 

lines arise on the logarithmic scale (fig. 3.21). Again and importantly, similar slopes were 

observed for all the ratios ∆. In the dependence for the position of the maximum the values K 

are ∆-dependent, and to analytically calculate the position one needs to know this parameter. 

However, the most important is the maximum which can directly be put into Eq. (1.16). The 

general expression for the lines in fig. 3.21 is represented as follows: 

 

( ) ( )av
6/5

max

ln C
log log A B log t

y
∂

= + ⋅
∂

,                   (3.5)       

 

where B is the slope of the dependence ( )( )av
6/5

max

ln Clog f log t
y

∂
=

∂
, A is the parameter which 

is ∆-dependent and also depends on t. In table 3.3 the values of the slopes are summarized for 

various ∆. These are very close to each other, indicating that single slope of approximately –

0.34 may be used when calculating the derivative - 6/5
avln C / y∂ ∂ at the maximum, at least for 

Dg = 2.95·10-4 nm2/s. This conclusion is not very much different from the analysis performed 

by Atkinson and Taylor [Atk79], since they supposed that the gradient  

- 6/5
avln C / y∂ ∂  should be proportional to t-0.3. However, an analytical relation to find the slope 

was not suggested.     

 All the quantities in Eq. (3.5) do not bear enough information on the diffusion 

coefficients. These quantities are dependent on the parameters and vary with both ∆ and 

absolute values of Dg and Dgb. In this form Eq. (3.5) is difficult to use for finding ∆. However, 

it could be particularly important, since in many cases the measured diffusion profile can be 

influenced by additional processes accompanying diffusion of a solute in the material. Even 

though the quantities A and B are known, it is unclear how to relate them to ∆. If the quantity 

B is supposed to be a constant, there should be a relation between the quantities A and ∆. The 

later comes from the fact that the lines in fig. 3.21 are shifted up with increased ∆.  

 Consequently, the values of A found by fitting the functions in fig. 3.21 to the straight 

line were plotted against ∆. The corresponding result shown in fig. 3.22 suggests that there is 

a linear dependence of log(A) on log(∆) also on the logarithmic scale. This is a particularly 

important result, because it directly relates the slope (the maximum of the derivative) of the 

diffusion profile with the ratio ∆.  According to this plot and in the fashion of Eq. (3.5) log(A) 

can be found by using 
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( ) ( ) ( )log A log C F log ∆= + ⋅ .                       (3.6) 

 

In this equation the quantity C can be different depending on Dg and t, and finally, the general 

expression for the slope is 

 

 ( ) ( ) ( )av
6/5

max

ln C
log log C F log B log t

y
∆

∂
= + ⋅ + ⋅

∂
 

or             (3.7) 

 

F Bav
6/5

max

ln C
C t

y
∆

∂
= ⋅ ⋅

∂
 

 

All the dependencies (Eqs. (3.5) and (3.6)) reflect the fact that the maximum of derivative 

follows a single law when increasing the ratio ∆ or time t. Further details on using Eq. (3.7) 

will be discussed in chapter V. 
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Fig. 3.19 Variation of y6/5 taken at the maximum of the derivatives ∂lnCav/∂y6/5 
with t for different ∆ on the logarithmic scale. The length of the geometrical 
model is 500 nm. 
 
 
 



Chapter III.   Nonlinearity effect 
 

 71

 
Table 2.2 Different slopes H varying t ( 6/5

maxy ). 

H(t) ∆ 2·103 s ≤ t ≤ 1.32·104 s 1·105 s ≤ t ≤ 2.1·106 s 2.1·106 s ≤ t ≤ 1010 s 
102 0.59 0.53 (up to 1·105 s) - 
103 0.58 0.50 (up to 5·105 s) - 

2.2·104 0.60 0.42 (0.50) 0.29 
105 0.61 0.42 0.30 
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Fig. 3.20 Variation of y6/5 taken at the maximum of the derivatives ∂lnCav/∂y6/5 
with t for different ∆ on the logarithmic scale. The width and the length of the 
geometries were increased to reach small values of β: the length of about 40 
000 nm is needed to integrate Eq. (3.2) for ∆ = 105 at t = 1010 s. Red lines 
correspond to the fitting. 

 

Table 3.3 The values of the slope B for various ∆ (Dg = 2.95·10-4 nm2/s). 

∆ B 
102 -0.32 
103 -0.33 

2.2·104 -0.34 
105 -0.36 
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Fig. 3.21 Variation of the modulus of the maximum with t for different ∆. The 
result is performed on the logarithmic scale. 
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Fig. 3.22 Variation of log(A) in Eq. (3.5) with ∆. 
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Summary 
 

It is shown that the nonlinearity of the diffusion profile lnCav = f(y6/5) has to be 

analyzed, especially at short diffusion times. The maximum of the diffusion profile can be 

used to find the GB diffusivity accurately under such conditions. This maximum corresponds 

to the diffusion kinetics which is relevant under certain conditions. The use of Le Claire’s 

relation requires type-B kinetics, and the maximum reflects that situation. Application of Le 

Claire's constant of 1.322 leads to errors at very short diffusion times. In order to improve the 

determination of the GB diffusivity, an equation is suggested to find the derivative 

(∂lnCav/∂w6/5) at the maximum. The improved procedure is explained in detail. Additionally, 

new dependences are derived on the basis of integrations of the exact Whipple solution for the 

maximum value of (∂lnCav/∂y6/5) and its position. For the dependence of the gradient 

(∂lnCav/∂y6/5) at the maximum the quantity B is found to be ~-0.34. The value of the gradient 

at a certain diffusion time can be directly used in the Le Claire relation, if the quantities F and 

C are known.  


