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Introduction 
 

 

 

 

 

Grain boundary (GB) diffusion is a particularly important and interesting topic from 

the viewpoints of technology and basic understanding of diffusion processes in solids. It plays 

a crucial role in different processes such as sintering, creep, grain growth, or solid state 

reactions, all of them affecting the properties of a polycrystalline material. GB diffusion is 

crucial, for example, for corrosion in metals and transport properties of oxides. That is why 

this phenomenon attracts great attention, leading to a huge number of experimental and (still 

increasing number of) theoretical works on this subject. Recently, very interesting 

experimental techniques, like secondary ion mass spectroscopy (SIMS) [Sou04] and Auger 

electron spectroscopy [WanJ04], were improved in order to understand the diffusion 

phenomenon on the nanoscale. Simultaneously, the capabilities of theoretical computational 

methods as well as the performance of modern computers have increased drastically [Nak98]. 

Both theoretical and experimental approaches help each other in understanding GB diffusion. 

While the theoretical methods like ab initio methods [Liu02] help us to understand the 

interactions between the diffusing atoms and GBs, it is the phenomenological approach which 

serves as a bridge between the atomistic methods and the experiment, on the one hand, and 
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explains physical processes on the basis of macroparameters, on the other hand. The 

phenomenological (continuum) equations (typically differential equations) are used in the 

experimental evaluations to provide a desired physical quantity. For GB diffusion, this is, of 

course, the GB diffusivity (Dgb).  A very actual question is what happens with diffusion, if the 

sample reduces in size. Owing to the importance of the problem, the number of 

phenomenological studies on nanocrystalline materials is steadily increasing. Despite this 

fact, Dgb for nanocrystalline materials is mostly obtained by using the methods suggested 

several decades ago. The aim of the present phenomenological studies is to analyze „size 

effects“ caused by the increasing volume fraction of GBs in nanocrystalline materials, to 

estimate possible errors arising with the application of conventional models to find Dgb, and to 

suggest new methods, if possible. 

The first chapter of the present dissertation is devoted to the phenomenological theory 

for describing GB diffusion. The main ideas and equations comprising the actual 

phenomenological theory of GB diffusion [Kau95] are considered. The kinetics of GB 

diffusion is explained on the basis of three main diffusion regimes: type-A, -B and -C as 

proposed by Harrison [Harr61]. Also a new classification proposed by Mishin [Mis95] is 

mentioned as far as the small grain sizes are concerned. The main equations which are used to 

deduce Dgb from the measured diffusion profiles in one of the diffusion regimes are discussed 

as well. The derivation of Fisher’s system is given and the important assumptions stemming 

from this derivation are emphasized. Moreover, Le Claire’s equation [Cla63] serving as the 

main tool for deducing Dgb for the measured concentration gradient in the B-regime is 

discussed in detail. Hart’s equation [Hart57], being the more popular equation that allows one 

to find Dgb from the diffusion profile measured under conditions of the type-A kinetics, is also 

taken account of. The segregation modifications of this equation [Mor60] as well as of 

Maxwell-Garnett’s equation [Kal02] are addressed too. 

Chapter two deals with the application of finite element method (FEM) for numerical 

integration of the diffusion equations for cases where analytical solutions cannot be obtained. 

In the present study two such cases are met, namely by simulating realistic polycrystalline 

microstructures and blocking space charge effects. Particularly, the derivation of the equations 

used in the finite element program is explicitly explained for the problem of GB diffusion. 

Since the finite element program FLUX-EXPERT [Flu00] is used in the present study, its 

main structure is discussed in the second chapter. 

In the third chapter, the main effects which lead to significant errors of deducing Dgb 

from the diffusion profile measured at extremely short diffusion lengths are discussed in 
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detail. For this case the diffusion profiles were calculated by using Whipple’s solution 

[Whi54] with varying diffusion times (t) in the range 2·103 – 106 seconds for different ratios 

of diffusivities (∆) between the GB (Dgb) and the bulk (grain) (Dg). Consequently, the results 

of the second chapter correspond to diffusion in the B-regime. It is important to note that the 

parameter β = [(∆-1)δ]/[2 gD t ] was allowed to vary over the orders of magnitude from 

several thousands to tens (here δ is the GB thickness). The errors in finding Dgb by using Le 

Claire’s relation were estimated. The relation itself is discussed rigorously under different 

conditions, and the reasons of arising errors are explained. New equations for deducing the 

ratio ∆ are suggested on the basis of calculated diffusion profiles. Namely, the equation is 

proposed to calculate properly the derivative ∂lnCav/∂w6/5 depending on the diffusion time, 

which was suggested by Le Claire [Cla63] to be treated as a constant (here w is the 

dimensionless coordinate). Additionally, a criterion was found deciding on whether the new 

method is to be preferred or Le Claire‘s method is still sufficient, based on the knowledge of 

dimensionless parameter α = δ/(2 gD t ). The main suggestion to improve Dgb determination 

proposed in this study is based on plotting the derivative of the diffusion profile, i.e. 

∂lnCav/∂y6/5, as a function of y6/5 (y is the coordinate along the diffusion direction) and to 

analyze it. The derivative is characterized by the maximum which always gives the correct 

Dgb. The analytical dependences are suggested for the positions of this maximum as well as its 

value. Additionally, the numerical problems of integrating the Whipple solution used in an 

integral form [Whi54] are discussed.  

How realistic microstructures can be simulated by using FEM is discussed in the 

fourth chapter. The important issue is the accuracy of finite element calculations with 

emphasis on the diffusion problems. With respect to the accuracy, mesh of integration and 

influence of boundaries of geometrical models proposed in this chapter are especially 

considered. Another parameter considered is the time increment used in the transient kinetics 

problems. This parameter determines the overall result, if extremely short diffusion times are 

concerned. A special procedure for simulating GB diffusion at short diffusion times using 

FEM is proposed. Several microstructures are discussed and different angles between a 

particular GB of the microstructure to the diffusion direction were probed. The results 

obtained for these microstructures are compared with those obtained for two main models of 

polycrystalline materials, i.e. the model of parallel boundaries and the model of square grains. 

It is shown that the model of square grains is a quite reasonable approximation, if the number 

of parallel and perpendicular paths is comparable. The area fractions of GBs were varied and 

the impact on the diffusion profile analyzed. Not only short but also long diffusion times were 
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studied, i.e. the A-regime of GB diffusion was simulated too. Since the problems of using 

Hart’s equation [Hart57] for increasing GB volume fractions have already been discussed by 

Belova and Murch [Bel03], in the present study emphasis is laid on the diffusion accompanied 

with impurity segregation. Both Hart’s equation and Maxwell-Garnett’s equation (in its 

improved form suggested by Kalnin et al. for the segregation problems [Kal02]) are compared 

by varying the segregation coefficient from unity to several hundreds. Specifically, the Hart 

equation gives large errors in Dgb due to the linear dependence of the effective diffusivity 

(which is the only quantity measurable in the A-regime) on the segregation coefficient. For 

the segregation coefficient only Henry’s [Cab91] law is considered.  

The conventional GB diffusion models, starting out from Fisher’s model [Fis51], 

completely ignore the existence of space charge regions in ionic solids. However, the role of 

the space charge effects has already been discussed in many contributions [Mai95]. Recently, 

it was shown experimentally that the depletion space charge layers (SCLs) can significantly 

alter the diffusion profile [Sou05], [WanR05]. In this case improved models are necessary. In 

the fifth chapter the significance of space charge effects is discussed with a focus on the 

depletion layers [Gou02]. A mathematical model was obtained which takes into account 

analogous approximations for the GBs as Fisher proposed [Fis51]. The main difference is 

related to the incorporation of a third diffusivity in order to simulate the space charge effects. 

Consequently, the mathematical description comprises three differential equations which are 

needed to simulate space charge effects. Again, FEM is used here to numerically integrate the 

diffusion equations. Errors in obtaining Dgb by means of conventional models (both the Le 

Claire equation and the Hart equation) were estimated. The calculated diffusion profiles and 

their properties are discussed. It is shown how the apparent GB diffusivity (Dgb,app) can be 

estimated by using new expressions, discussed in the third chapter. However, the use of those 

is possible in the B-regime only. The diffusion profiles were simulated under conditions of 

type-A kinetics for the models of parallel boundaries and square grains too. The diffusion 

times needed to exclude the space charge effects strongly depend on the ratio Λ = Dg/Dscl, 

where Dscl is the diffusion coefficient used in the SCL. This ratio was varied here from 0.1 to 

103. In the fifth chapter some numerical problems which can arise when simulating diffusion 

with blocking SCLs are considered. This is done to demonstrate the accuracy of obtained 

results and give important hints for future studies.        

Lastly, the main results are summarized in Conclusions. In this part the procedures to 

improve Dgb determination are also explained.                                           
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Chapter I. The classical grain boundary 
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Introduction  
 

As soon as diffusion along GBs is concerned, idealized GB models need to be 

introduced. This is done necessarily, because the real GB structure cannot be taken into 

account on a continuum level. Contrary to the atomistic description, the continuum approach 

deals with the averaged situation in which Dgb becomes the most important characteristic 

bearing information on the structure and interaction of atoms, including the interaction of 

diffusing atoms with the host atoms. In some cases, one may consider the diffusivity along a 

particular GB from the measurements on bicrystals, for example Σ11, when the GB structure 

is determined by one of the high resolution imaging techniques like HRTEM [Höc94], 

[Leo99] and apply the conventional models to find Dgb in this boundary [Lib94]. However, a 

polycrystalline material consists of GBs characterized by different misorientations between 

the grains and, as a consequence, different Dgb’s. Clearly, the measured Dgb in these materials 

represents some averaged value. There are also evidences that the structure of GBs in 

nanocrystalline materials is similar to that of coarse-grained materials [Gle89], [Wür03], 
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[Bar05]. Consequently, the conventional models used to find Dgb in coarse-grained materials 

may be applied to nanomaterials as well.   

 

1.1 Grain boundary model. Guggenheim or Fisher? 
 

There are different interface models in the literature used to analyze and describe 

various processes related to the interfaces, like diffusion or segregation. One of them was 

suggested by Gibbs [Def66]. It excludes the real GB thickness, and the concentration change 

at the interface in this model is step-like. Another model was proposed by Guggenheim 

[Gug40]. This model is more realistic in comparison with the Gibbs model, because the 

thickness of GB is taken into account. Fisher [Fis51] was the first who successfully used a 

similar model to describe diffusion along GBs by means of diffusion equations.  

 

Interface

Phase A

Phase B

Ci

x 
 

Fig. 1.1 Interfacial model according to Guggenheim [Gug40]. Adapted from [Cab91]. 

 

In fig. 1.1 the concentration Ci corresponds to a particular component (i) of a solid 

solution. The interface is thought to be embedded between two phases A and B. If phase A 

and phase B are chemically identical materials, the interface is termed a GB. Equilibrium 

concentration changes are supposed to occur only at the boundaries (interfaces) separating the 

interface and the adjacent phases, or in the case of a polycrystalline material, the GB and the 

grain. By supposing that the lateral change of the concentration within the GB (i.e. in the x-

direction) is negligible, Fisher could describe diffusion within the GB by one dimensional 
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Fick’s second law [Fis51]. He also supposed that concentrations at the boundaries separating 

the GB and grains are equal. In this way the segregation effects were excluded. All the 

approximations introduced by Fisher’s model are discussed in the next section on a 

mathematical level. One should pay attention to the fact that Fisher’s model refers to a quasi 

two dimensional (2D) representation of the GB.  

 

1.1.1 Isolated grain boundary model 
 

The model used by Fisher to describe diffusion along the GBs comprises the free 

surface carrying the diffusion source and the GB being perpendicular to that surface. The GB 

has a constant thickness δ (fig. 1.2), i.e. represents a slab, with the diffusion coefficient (Dgb) 

remaining constant along the GB. Therefore, the diffusion coefficients Dgb within the GB and 

Dg within the grain are not functions of concentration, time or positional coordinate. Fisher’s 

model, known also as the isolated boundary model, represents a typical 2D semi-infinite 

problem. The concentrations and fluxes coincide at the boundaries separating the GB and the 

grain, i.e. at x = ±δ/2, allowing the leakage of atoms that exists from the GB into the grain to 

be taken into account. Consequently, Fisher’s model is based on the assumption that Dgb >> 

Dg. One can see from fig. 1.2 that the concentration distribution in this model is symmetrical 

with respect to the point x = 0. The following assumptions are assumed by Fisher’s model: 

 

1) Fick’s laws are obeyed in both the crystal (grain) and the GB slab. 

2) The diffusion coefficients Dg and Dgb are isotropic and independent of concentration, 

position and time. 

3) The diffusant flow is continuous at the GB/grain interface (boundary). 

4) The width of the GB is so small that the concentration variation across it (i.e. in the x-

direction) is negligible. 

5) The condition Dgb >> Dg is fulfilled with the consequence that the mass transport in 

the bulk is essentially preceded by GB transport (red arrows in fig. 1.2).  

 

All results discussed in the present work were obtained by using these approximations 

except a modification related to segregation effects. The latter requires supposing that the 

concentrations at the boundary between the grain and the GB are not equal; however, the 

continuity conditions are still valid as well all the other assumptions. The segregation effects 

have been addressed [Bok58], analyzing derivation of Dgb in the case of impurity diffusion. 
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Fig. 1.2 Isolated boundary model. 

 

1.1.2 Mathematical description of grain boundary diffusion in the isolated grain 
boundary model 
 

Fisher was the first who derived the set of two diffusion equations for the GB 

diffusion problem and solved them approximately, whereas Whipple [Whi54] gave a rigorous 

mathematical analysis, including the exact analytical solution to the diffusion equations. 

The first diffusion equation represents diffusion within the grain with the diffusion 

coefficient Dg, the second one diffusion within the GB with the diffusion coefficient Dgb (Eq. 

(1.1)): 

 
2 2

g g g
g 2 2

2 2
gb gb gb

gb 2 2

C C C
D , / 2

t x y

C C C
D , / 2

t x y

                         if x

                     if x

δ

δ

⎧ ⎛ ⎞∂ ∂ ∂
= + ≥⎪ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎝ ⎠

⎨
⎛ ⎞∂ ∂ ∂⎪ = + ≤⎜ ⎟⎪ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎩

 ,      (1.1) 
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where t is the diffusion time. Both Fick’s second laws [Fic55] are coupled by applying the 

boundary conditions of equal concentrations and fluxes at the grain/GB interface (Eq. (1.2)): 

 

g gb

g gb

C (x, y, t) C (x, y, t)
, / 2.

J (x, y, t) J (x, y, t)

      
    if x δ

=⎧⎪ =⎨ =⎪⎩
       (1.2) 

 

These two continuity conditions (Eq. (1.2)) correspond to the conservative property of 

diffusion [Ghe88] and presuppose the steady state and diffusional equilibrium between the 

GB and the grain. Obviously, additional boundary and initial conditions are related to the 

surface. There are two important boundary conditions referring to y = 0: constant source and 

instantaneous source. While Whipple solved the relevant mathematical problem for the case 

of constant source, Suzuoka [Suz61] found the corresponding solution for the instantaneous 

source. For both cases the initial and boundary conditions are presented in Eqs. (1.3a) and 

(1.3b). 

         

    

In Eq. (1.3b) δ(y) is the delta function and M is the amount of diffusant deposited per unit 

area of the surface, whereas in Eq. (1.3a) C0 is the constant concentration of diffusant at the 

surface. Correspondingly, the mathematical problem of diffusion when both bulk (grain) and 

GB contribute is to solve the system of differential equations (Eq. (1.2)) subject to the 

boundary and initial conditions given by Eqs. (1.2) and (1.3). 

 

1.1.3 Transformations made to obtain Fisher’s system 
 

In Fisher's model the concentration can be easily expanded into a Taylor series with 

respect to x = 0 [Kau95], [Whi54]. Particularly, the GB concentration can be expanded, since 

the GB can be considered as a very thin slab, and the concentration within it is 

Constant source: Instantaneous source: 

 

 

0C(x, y, t) C      at y 0
         C(x, y, t) 0        at t 0 

C(x, y, t) 0        at y

= =⎧
⎪ = =⎨
⎪ = →∞⎩

(1.3a) 

 

y 0

C(x, y, t) C(x, t)         at y 0
C(x, y, t) M (y)          at t 0

         C(x, y, t)  0                at y 
C(x, y, t) 0 

y

δ

=

= =⎧
⎪ = =⎪⎪

= → ∞⎨
⎪∂⎪ =

∂⎪⎩

    (1.3b)
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homogeneously distributed [Sut95]. However, this is not the case for the grain concentration. 

Consequently, 

 
22

gb gb
gb gb x 0 x 0 x 02

3 4 n3 4 n
gb gb gb

x 0 x 0 x 03 4 n

C (x, y, t) C (x, y, t)xC (x, y, t) C (x, y, t) x
x 2 x

C (x, y, t) C (x, y, t) C (x, y, t)x x x...
3! x 4! x n! x

= = =

= = =

∂ ∂
= + + +

∂ ∂
∂ ∂ ∂

+ + + +
∂ ∂ ∂

.        (1.4a) 

 

The first derivative of an even function gives an odd function which is zero at the point of 

symmetry x = 0. Hence, one can neglect all the “odd” derivatives: 

 
2 42 4

gb gb
gb gb x 0 x 0 x 02 4

nn
gb

x 0n

C (x, y, t) C (x, y, t)x xC (x, y, t) C (x, y, t) ...
2 x 4! x

C (x, y, t)x ,
n! x

 where n  2m with m 1,2,...

= = =

=

∂ ∂
= + + +

∂ ∂
∂

+ = =
∂

.            (1.4b) 

 

Substituting Eq. (1.4b) into the diffusion equation for the GB (Eq. (1.1)), one obtains the 

following expression 

 
nn

gb
gb x 0 x 0n

n 2m

n2 n
gb

gb x 02 n
n 2m

n2 n
gb

gb x 0 x 02 n
n 2m

C (x, y, t)xC (x, y, t)
t n! x

C (x, y, t)xD
x n! x

C (x, y, t)xC (x, y, t) ,
y n! x

where m 1,2,...

∞

= =
=

∞

=
=

∞

= =
=

⎛ ⎞∂∂
+ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎛ ⎞∂∂
+⎢ ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎝ ⎠⎣

⎤⎛ ⎞∂∂
+ + =⎥⎜ ⎟⎜ ⎟∂ ∂ ⎥⎝ ⎠⎦

∑

∑

∑

.              (1.4c) 

 

The GB concentrations are equal at x = 0 and x = ±δ/2. This property allows one to transform 

the last expression into a much simpler form, considering the equation at x = ±δ/2 and, 

neglecting the higher order terms (i.e. of order δ2 and higher). Such a simplification is related 

to the fourth assumption supposed by Fisher’s model. This yields 

 

( )
2 2

gb gb gb x 0 gb2 2C (0, y, t) D C (x, y, t) C 0, y, t
t x y=

⎡ ⎤∂ ∂ ∂
= +⎢ ⎥∂ ∂ ∂⎣ ⎦

.               (1.4d) 
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The latter equation can be further simplified by substituting Eq. (1.4b) into the boundary 

conditions (Eq. (1.2)) and keeping in mind that   

 

( )gb
gb gbx x

2 2

C x, y, t
J D

xδ δ
= =

∂
= −

∂
.         (1.4e) 

 

In this way, the continuity conditions are rewritten neglecting the higher order terms as: 

 

( ) ( )

( ) ( )

gb x 0 g x
2

2
gb g

gb x 0 g2 x
2

C x, y, t C x, y, t

C x, y, t C x, y, t
D D

2 x x

δ

δ

δ

=
=

=
=

⎧
=⎪

⎪
⎨

∂ ∂⎪
± =⎪ ∂ ∂⎩

 .       (1.5) 

 

Finally, Eq. (1.5) allows one to write down the following equations for the GB diffusion  

 

( ) ( ) ( )

( ) ( ) ( )

2 2
g g g

g 2 2

2
g gb g g

gb 2

C x, y, t C x, y, t C x, y, t
D , / 2

t x y

C y, t C y, t D C y, t
D , / 2

t y / 2 x

                         if x
 

                             if x

δ

δ
δ

⎧ ⎛ ⎞∂ ∂ ∂
= + ≥⎪ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎝ ⎠⎨

∂ ∂ ∂⎪
= + =⎪ ∂ ∂ ∂⎩

.  (1.6a) 

 

All terms in the second equation are taken at x = ±δ/2, so it exactly represents the boundary 

condition. Eq. (1.6a) is known as the Fisher system. It is important to note, that the solution 

which can be obtained by solving Eq. (1.6a) reveals the concentration within the grain and 

neglects the concentration within the GB.  If one believes that the assumptions introduced by 

Fisher’s model (see page 3) are reasonable and really reflect the adequate physical situation, 

the only approximation is related to neglecting higher orders terms in the expansion of Cgb.  

If there is segregation, the first equation in Eq. (1.5) is replaced by [Her05]: 

 

gb gC (x, y, t) sC (x, y, t), / 2        if x δ= =                  (1.6b) 

  

where s is the equilibrium segregation coefficient or segregation factor. Eq. (1.6b) is known as 

Henry’s isotherm [Cab91], which is valid for dilute conditions. By using this boundary 

condition Eq. (1.6a) can be rewritten in the following form [Gib66] 
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( ) ( ) ( )

( ) ( ) ( )

2 2
g g g

g 2 2

2
g gb g g

gb 2

C x, y, t C x, y, t C x, y, t
D , / 2

t x y

C y, t C y, t D C y, t
D / 2

t y s / 2 x

                         if x
 

.                             if x

δ

δ
δ

⎧ ⎛ ⎞∂ ∂ ∂
= + ≥⎪ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎝ ⎠⎨

∂ ∂ ∂⎪
= + =⎪ ∂ ∂ ∂⎩

            (1.6c) 

 

1.1.4 An alternative derivation of Fisher’s system  
 

Shewmon [She63] published a more didactic approach to arrive at Fisher’s system. 

Interestingly, his derivation is more elegant in the sense that it allows the straightforward 

finding of the corresponding equations without rigorous mathematical transformations. Let us 

consider a 2D slab of the length dy and thickness δ (fig. 1.3). The slab is embedded into the 

system of two crystals (grains) from both sides, having a different diffusivity. If that slab is an 

element of a GB, two fluxes are possible from its GB/grain interfaces, i.e. from the GB into 

the grains, namely the fluxes Jx in fig. 1.3. There is also the flux coming from the top of the 

slab Jy and leaving some amount of material inside the slab. The amount of material is 

changed within the slab due to the non-zero difference of fluxes and is given by (∂Jy/∂y)dy, if 

dy is very small. The fluxes Jx and Jy are different, because these are determined by the 

diffusion coefficients Dg and Dgb, respectively. The volume of the element is 1dyδ, where the 

unity corresponds to the length along a z-direction. So the concentration changes with time. 

Accordingly, 

 

g y
x

C J
dy dy 2dyJ

t y
δ δ
∂ ∂

= − −
∂ ∂

,         (1.7) 

 

where the negative signs obviously correspond to out-diffusion. Introducing Fick’s first law, 

the following final equation for diffusion along the GB results: 

 
2

g g g g
gb 2 x

2

C C 2D C
D

t y x δδ =

∂ ∂ ∂
= +

∂ ∂ ∂
.         (1.8) 
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Fig. 1.3 Schematic representation of the GB model for deducing Eq. (1.8). 
Adapted from [She63].  

 

1.1.5 Whipple’s solution 
 

Whipple [Whi54] solved Fisher’s system (Eq. (1.6)) by means of the Fourier-Laplace 

transform [Bee03]. Properties of this solution will be discussed in chapter III. Here only the 

solution is presented, which reads  

 
2

0
g 0 1/ 2 3/ 2

1

C d 1 1 1C ( , , ) C erfc exp erfc
2 2 4 2

∆ηη σ η ∆ σ
η ξ β ξ

π σ σ ∆ σ β
⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= + − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

∫ .  (1.9a) 

 

The solution is of integral form with the integral being responsible for GB diffusion. The first 

term of the solution, obviously, represents diffusion within the grain. Different dimensionless 

quantities are used in the Whipple solution. The dimensionless quantities η and ξ are, in fact, 

dimensionless coordinates and given by 
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g

y
D t

η = ,                      (1.9b)  

 

g

x / 2 ,   if x / 2
D t
± δ

ξ = ≥ δ .                    (1.9c) 

 

Eq. (1.9a) differs from original expression by the modulus |ξ|. The latter is needed, if the 

solution is considered at x ≤ -δ/2 (see also Eq. (1.9c)). The meaning of the dimensionless 

parameter β is more complex. According to Kaur et al. [Kau95] it characterizes the diffusion 

process in the sense that a large β-value means that the diffusion along the GBs is greatly 

pronounced in comparison with bulk diffusion, i.e. the penetration depth along the GB is 

much larger. It is also related to the inclination angle between an isoconcentration line and the 

GB. Finally, it is not only high when ∆ is large, but also when t is short. The analytical form 

of β is 

 

 ( ) ( )
g

1
1

2 D t
∆ − δ

β = = ∆ − α .                   (1.9d) 

   

Here the quantity α shows how the diffusion length in the grain ( g gL D t= ) exceeds the GB 

thickness (δ).  

 

1.2 Diffusion kinetic regimes 
  

Diffusion in an isolated GB (fig. 1.2) can be analyzed or simulated on the basis of Eqs. 

(1.6c) and (1.9a). In particular, Le Claire [Cla63] could suggest a simple procedure for 

determining Dgb based on integration of Whipple’s solution. However, the procedure cannot 

be used for any experimental condition. It is a purpose of the present study to analyze such 

conditions when Le Claire's procedure is not valid. GB diffusion goes through different 

physical situations as the temperature and/or diffusion time increase. Accordingly, Harrison 

[Harr61] introduced three diffusion regimes and only in one of them the Whipple solution to 

Fisher’s system is valid. The application of Harrison’s classification is also discussed in 

excellent reviews on GB diffusion, for example [Mis97], [Mis99]. Additionally, a new 

classification introduced by Mishin [Mis95] is used and discussed here in more detail as being 



Chapter I.                                            The classical grain boundary diffusion models 
 

 15

applicable to a variety of materials ranging from coarse grained to nanocrystalline. It should 

be mentioned that there are also classifications that take into account GB motion [Güt93] or 

GB diffusion accompanied by diffusion along dislocations [Klin99]. These are not a subject 

of the present study.   

In the aforementioned classification it is supposed that penetration along GBs is 

deeper than in the remaining grains. As a consequence of the transport coefficient being larger 

along the GBs, diffusing atoms first move along these paths. For analyzing diffusion regimes 

surface diffusion is not considered as a rate-limiting process (recently, Preis and Sitte 

[Prei05], derived analytical solutions for the thin-film problem taking account of rate limiting 

surface exchange reactions).  

In the very beginning of the diffusion process the atoms (traces) move through the GB 

without a significant contribution to the bulk. It is expected that the overall process is 

determined by Dgb only; it can be described by a complementary error-function solution to the 

diffusion equation in the case of a constant source. Such a situation was called by Harrison the 

C-kinetics and later extended by Mishin to an additional C´-regime to take into account the 

situations when the grain size can be very small. So the conditions of the C and C´ – regime 

(in terms of Mishin’s classification) can be written as follows: 

 

Lg << sδ/2 << Lgb << d   (C-regime)                         (1.10a) 

 

and 

  

Lg << sδ/2 << d << Lgb   (C´-regime).               (1.10b) 

 

Here Lg, Lgb are the grain and GB diffusion lengths, respectively, d is the average grain size 

and s the segregation factor. The segregation factor (s) is introduced for generality and is set 

to 1 for self-diffusion. In fig. 4a an example of the C´-regime is given obtained by simulating 

diffusion using the finite element method (FEM) (the numerically obtained figures serve here 

as explanation figures. The quantitative analysis will be given in chapter IV).  In this figure 

bright colors represent the enhanced concentration around the interfaces (see also color 

pattern in fig. 4a). However, the diffusion process is supposed to be confined within the GBs 

in the C (C´)-regime. The existence of the C (C´)-regime itself is still questionable, what was 

already mentioned in [Kau95] and is shortly discussed here. However, this is the only regime, 

in which Dgb (as it is believed) is directly obtained. This fact is used in many experiments to 
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find s [Her03]. It proceeds typically for a very short time which can be much shorter than in 

the case of type-B kinetics (fig. 5a, see also discussion below). That is why the C (C´)-regime 

is difficult to verify experimentally, because of short t and/or low temperatures, in which case 

very small GB concentrations result. Consequently, the usually studied regime is the B-

regime. Its evaluation is more reliable, especially for coarse-grained materials.    

 The exact solution found by Whipple (Eq. (1.9a)) corresponds to the B-regime. The 

range of validity of this regime is defined as follows: 

 

sδ/2 << Lg << Lgb << d (B-regime according to Harrison [Harr61] or B2-regime according to 

Mishin [Mis95])                           (1.11a) 

 

and 

 

sδ/2 << Lg << d << Lgb (B2´-regime according to Mishin [Mis95]).           (1.11b) 

 

For the main results in the present study the common term B - regime is used, because the 

Whipple solution is valid in both the B2- and B2´-regime. It seems to be that differentiation of 

the B-regime into the B2- and B2´-regime is interesting only from the point of view of 

understanding how the diffusion process proceeds. This is also interesting in order to 

distinguish different types of materials as was proposed by Mishin [Mis95].  

The diffusion lengths plotted on the logarithmic scale for different types of materials 

indicate that the B-regime is suppressed in materials with smaller grain sizes (fig. 5), while 

the A-regime becomes more prolonged. The plots shown in fig. 5 are very useful from the 

point of view of understanding diffusion in a polycrystal. These also allow to properly tune 

numerical experiment, because knowing penetrations is extremely important in order to avoid 

possible errors. Importantly, bold lines in fig. 5 correspond to the diffusion lengths 

responsible for the process in a particular regime. For instance, both Lg and Lgb can be 

obtained in the B-regime. All the plots were plotted for Dg = 2.95⋅10-4 nm2/s (2.95·10-16 

mm2/s) and d = 25 nm. Different ratios ∆ = Dgb/Dg were used in order to realize the different 

types of materials.  

 Two diffusion lengths (blue and red lines) shown in fig. 5 have the same slope on the 

logarithmic scale, as in such cases the same power law ~t1/2 is obeyed which is a typical 

diffusion dependence. In the B-regime, however, the diffusion length in the GB (green line) 

follows another law, viz. [Kau95] 
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gb
gb 1/ 4

g

s D
L

(4D / t)
δ

= ,                  (1.12a) 

 

where s is again the segregation factor, t the diffusion anneal time and δ the GB thickness. 

The effects of segregation are excluded in fig. 1.5, i.e. those are plotted for s = 1 only. 

Moreover, not only Lgb, but also the parameter β depends on s as 

 

( )s 1β = ∆ − α .                    (1.12b) 
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b) 
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c) 
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Fig. 1.4 a) Concentration distribution in a square grain pattern under conditions of the 
C´ kinetics regime (d = 5 nm). b) A concentration distribution in a general polycrystal 
under conditions of type-B kinetics for ∆ = 102 (d = 25 nm) b’) the same for ∆ = 
2.2·104 (d = 25 nm) c) A concentration distribution in a general polycrystal for the 
type-A kinetics for ∆ = 102 (d = 25 nm). All white lines correspond to the GBs. Also 
shown are relevant color patterns, in which different colors correspond to certain 
isoconcentration line. Distributions in b) and c) were obtained by using general model 
3 used in the present study, for details see chapter IV. 

 

The main difference between the results in figs. 1.4b and 1.4b’ does not only lie in the 

different ratios ∆, but also in the behavior of concentration around the GBs. The inclination 

angle between a particular isoconcentration line (defined by a line of a particular color) and a 

GB is larger for smaller ratio ∆. Qualitatively speaking; the result in fig. 1.4b represents a 
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classical solution (distribution) in the type-B kinetics, corresponding to the B2 – regime 

according to the classification of Mishin [Mis95]. Contrary to this, the inclination angle in the 

distribution in fig. 1.4b’ is much smaller, indicating a typical situation for ultrafine-grained 

(nanocrystalline) materials. Because of this, the diffusion length in the GB (Lgb, green line in 

fig. 1.5) never reaches d for ∆ = 102, and the A-regime always starts before the diffusion 

length in the grain (Lg, red line in fig. 1.5) reaches that in the GB for ∆ = 2.2·104, if d is 25 nm 

(fig. 1.5c). 

The A-regime starts when the red and green lines in fig. 1.5 are crossed, or when Lg 

equals d. In fact, the diffusion length in the A-regime represents some effective diffusion 

length (not shown in fig. 1.5), which is a combination of Dg and Dgb. In this regime the 

distribution is homogeneous, what allows different theories valid for homogeneous systems to 

be applicable in the A-regime. High temperatures and/or long diffusion times are needed to 

observe the A-regime in coarse-grained materials. Contrary, it is suggested that the A-regime 

is important for ultrafine-grained materials (nanomaterials) due the suppression of B-regime 

[Bek04] (the condition discussed in reference is too rigorous and the existence of the B-

regime is not questionable even for nanomaterials, what is proved in the present study). The 

effect is just related to the small grain sizes. The conditions for the A-regime are the 

following: 

 

d << Lg  ≈  Lgb.                    (1.13)      

 

That is, the main condition for the A-regime is Lg >> d. This starts at the point of equal Lg and 

Lgb (fig. 1.5). However, there is a situation when Lg reaching d is still smaller than Lgb. In this 

case the A´ - regime arises. One additional regime is the so called B4-regime, in which Lg ≈ 

Lgb << d. This corresponds to the situation that the diffusion fronts from the GB into the grain 

are not distinguishable anymore and are not overlapping. The inclination angle between the 

isoconcentration line and the GB is simply 90º in this case. Another possibility is shown in 

fig. 1.5a, in which Lg reaches d at the same point, where this equals Lgb. That is why it can be 

attributed to both A and B4 regimes. In the distribution in fig. 1.4c the classical situation is 

shown, the homogeneous distribution is seen up to a very low level of the concentration. As 

far as the diffusion process in all of the type A regimes (B4, A, A´) is obviously described by 

the solution to diffusion equation in homogeneous media without any exceptions. 

Accordingly, only one definition is used in the present work, namely the A-regime.     
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1.3 Deducing the grain boundary diffusivity from the diffusion profile 
 

It is to be mentioned, that the diffusion profile is understood as the dependence Cav = 

f(y) or lnCav = f(y6/5) (see discussion below), where Cav is an average concentration being a 

function of time t and penetration depth y. Such a concentration can be found by integrating 

Cg(x, y, t) along x for the whole range of y, what, in a sense, is a theoretical definition. 

Experimentally the same quantity can be found, when the sample is cut in slices, and the 

concentration in each slice is determined, what exactly is the case of tracer measurements 

[Ask70], [Meh05]. As sectioning methods, including SIMS technique in a depth profiling 

mode, obtain the average concentration (Cav) as a function of y and t, there should be a 

procedure which allows the grain boundary diffusivity (Dgb) to be found. Moreover, since 

diffusion in a polycrystalline sample passes different kinetic regimes, depending on t or 

temperature, at least three equations are needed to perform the diffusion profile measurements 

safely. In fact, such equations exist and intensive literature can be found on applying all the 

three equations. Nevertheless, these equations are still debated owing due to 1) simplifications 

made in the models [Chu96a], [Bel01], [Bel03] to find this or that equation and 2) special 

conditions [Bek04] for studying the GB diffusion and new types of materials [Mis95]. Here 

we essentially discuss application of two equations due to 1) obvious solution given by the 

complementary error-function in the type-C kinetics, which need not be explained in detail, 

and 2) importance of the B-regime and especially A-regime for nanocrystalline materials.  

The B-regime has been remaining the most reliable regime for many years, since the 

grain size of tens of micrometers in the coarse grained materials determines the overall 

behavior. A procedure to extract Dgb from the measured diffusion profile was proposed by Le 

Claire [Cla63]. The advantage of the diffusion profile measured in the B-regime is in fact, that 

the bulk and GB diffusion are separable. Following mathematical intuition and knowing that 

the diffusion profiles are linear functions of y6/5 [Lev60], Le Claire came up with the 

following expression 

 
5/35/3

g av av
gb 6/5 6/5

D ln C ln CD 2
t w y

δ
−

⎛ ⎞∂ ∂⎛ ⎞= − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 ,                 (1.14) 

 

where w is the dimensionless coordinate, having a very important property of making the 

diffusion profile plotted as a function of w independent of ∆. This is based on the following 
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a) 

 
b) 

 
 

 

 



Chapter I.                                            The classical grain boundary diffusion models 
 

 23

c) 

 
d) 

 
 

Fig. 1.5 How diffusion lengths along the GBs (Lgb) and grains (Lg) vary with the 
diffusion time (t) for a) ∆ = 102 (coarse-grained material), b) ∆ = 103 (fine-grained 
material), c) ∆ = 2.2·104 (ultrafine-grained material), d) ∆ = 105 (ultrafine-grained 
material). The dependences are plotted on the logarithmic scale. In the case of green 
line Lgb is given by Eq. (1.12a).  
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expression for w: 

 
1/ 4

g

g gb

4Dy yw
tD t D

η
β β δ

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
,                 (1.15) 

 

where η is the dimensionless coordinate weighted to the diffusion length in grain (bulk) and 

used in the original Whipple solution [Whi54]. While the second derivative in Eq. (1.14) 

represents an experimentally measurable gradient, the derivative with respect to w can not be 

obtained without knowing Dgb. Le Claire suggested that it can be replaced by a constant value, 

if β >> 10 (Eq. (1.9d)) and w >> 2. Both the quantities are ∆-dependent; therefore these are 

also unknown for the once measured diffusion profile. However, it is believed that in most 

cases the conditions are satisfied. If it is really the case, the derivative is replaced by a 

constant value of –0.78 according to Le Claire [Cla63], giving rise to 

 
5/3

g av
gb 6/5

D ln CD 1.322
t y

δ
−

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

.                  (1.16) 

 

The latter expression is known as Le Claire’s relation, which is the only expression used, 

when the gradient is measured under conditions of type-B kinetics. Eq. (1.16) is modified, if 

the segregation of impurities is concerned. The triple product sδDgb [Bok58] comes into play 

in this case. The role of segregation effects in the type-B kinetics is not discussed in the 

present study. Recently, Chung and Wuensch [Chu96a] observed that the conditions of 

validity of Eq. (1.16) were not fulfilled in the case of very shallow diffusion gradients. Such 

situations are discussed in the present study. 

 Hart’s equation is widely used [Hart57], if the diffusion profile was measured at very 

long t and/or high temperatures. The equation represents a linear combination of diffusivities 

Dg and Dgb weighted to the volume fraction of GBs (g):  

 

( )eff gb gD gD 1 g D= + − .                 (1.17a) 

 

His equation was modified to take into account segregation by Mortlock [Mor60] and reads:  

 

( )eff gb gD sgD 1 sg D= + − .                 (1.17b) 
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The latter expression is known as the Hart-Mortlock equation in which includes the 

equilibrium segregation factor s is given by Eq. (1.6b). Since this equation is valid only for 

the model of parallel boundaries, another expression was also suggested to deduce Dgb 

[Kal01]: 

 

( )
gb g gb

eff
gb g

sD (2 g)D sgD
D

1 g sg sD (2 g) gD

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− + − +⎣ ⎦

.                 (1.18) 

 

This is a modified Maxwell-Garnett, or Maxwell equation [MaxG04], [Max54] which is 

believed to be valid for realistic polycrystalline microstructures. 

 All these equations are currently used to deduce Dgb from the measured diffusion 

profiles except Eq. (1.18). Up to now there are no publications demonstrating the use of Eq. 

(1.18) in diffusion experiments. As these equations do not take into account the conditions of 

small grain sizes, it is the aim here to check the validity of those theories under conditions of 

short t. In the next chapters the discussion of such specific conditions will be continued on the 

basis of numerical evaluations of Whipple’s solution as well as numerical integrations of the 

Fisher system.  
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Introduction 

 
 The finite element method (FEM) is a very useful numerical tool that allows one to 

effectively integrate differential equations. The physical problems that can be solved by FEM 

can in general case be discrete or continuum in nature [Com94]. As far as diffusion is 

concerned, solving continuum problems is relevant in the present work. Consequently, the 

general definition for the finite element problem is given in this chapter. As diffusion along 

and across GBs has its own specific features, the integrals that were evaluated to find the 

physical property at each node of the finite element mesh are also given. Different numerical 

problems related to FEM and accompanying simulation of GB diffusion by FEM are 

explained along with discussion of the main results in coming chapters. 

 Particularly, FEM was chosen as effective tool for numerical integration in such 

problems that are characterized by complicated geometries. One can find a broad literature on 

the application of FEM to different mechanical problems. There even exist several serious 

books on using FEM to integrate conduction type equations [Com94], [Lew96], [Hun02] as 
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for heat conduction. Moreover, FEM was recently used to describe atoms and diatomic 

molecules [Kop98], to investigate electronic structure of quantum dots [Qu03] and to make it 

possible to couple atomistic and continuum approaches [Cur03]. So a broad range of physical 

problems that can be solved by FEM show its importance and uniqueness. 

 

2.1 General aspects with respect to continuum problems 

 
 Two procedures are always associated with FEM, namely discretization and 

integration. The former is directly related to the transformation of differential equation into a 

system of algebraic equations which then has to be solved numerically [Com94]. The latter 

applies to the fact, that in FEM each term of the differential equation is written in integral 

form, and each integral has to be solved at each point of the mesh. The mesh is a common 

principle of all numerical integrations. Mostly all numerical difficulties that arise during the 

calculation are associated with the mesh, especially in transient physical problems. 

Importantly, in FEM the unknown function (field) is approximated by interpolation at the 

points of mesh.  

The general concept to solve a physical problem by using FEM constitutes of the 

following: 

- understanding the physical phenomenon 

- writing down the governing partial differential equation subject to the corresponding 

boundary conditions 

- obtaining the equation in FEM formulation which should be solved, i.e. with the 

projection polynomials and in integral form 

- finding a qualitative and reasonable mesh for the physical problem 

- running FEM program 

 

In the case of instationary problems the time interval is also responsible for the accuracy and 

stability of the obtained results. So, in principle, one has to keep in mind this aspect too 

[Tho97].  

 

2.2 Fisher’s system expressed in the form suitable for finite element 

calculation 
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 Fisher’s system reads 

 

g
g g

gb g
gb gb gx

C (x, y, t)
D divgrad[C (x, y, t)] 0

t
C (y, t) 2D

D divgrad[C (y, t)] grad [C (x, y, t)] 0
t δ

→

∂⎧
− =⎪⎪ ∂

⎨∂⎪ − − =⎪ ∂⎩

.       (2.1) 

 

The weak formulation [Flu92a] requires to first project the differential equation on the 

projection polynomials based on Galerkin’s projective method. Accordingly, the equation for 

grain diffusion can be written as [Flu92a] 

 

( )g
i i g g

C (x, y, t)
dxdy D divgrad[C (x, y, t)] dxdy 0

tΓ Γ

α α
∂

+ − =
∂∫∫ ∫∫ ,     (2.2) 

 

where αi is the projection polynomial. The second integral in Eq. (2.2) may also be 

generalized as  

 

{ }g
i i g g

C (x, y, t)
dxdy div D grad[C (x, y, t)] dxdy 0

t
α α

→∂
+ − =

∂∫∫ ∫∫ .     (2.3) 

 

By using the mathematical transformation [Flu92a] 

 

{ } { }i g g i g g

g g i

div D grad[C (x, y, t)] div D grad[C (x, y, t)]

D grad[C (x, y, t)]grad[ ]

α α

α

→ →

→ →

− = −

+

     (2.4) 

 

Eq. (2.3) becomes 

 

{ }g
i i g g

g g i

C (x, y, t)
dxdy div D grad[C (x, y, t)] dxdy

t

D grad[C (x, y, t)]grad[ ] 0 .

  

  

Γ Γ

Γ

α α

α

→

→ →

∂
+ −

∂

+ =

∫∫ ∫∫

∫∫
                (2.5) 
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According to Gauss-Ostrogradsky’s theorem [Flu92a], [Kor68] it follows that 

 

{ }i g i g gg
d

div D grad[C (x, y, t)] dxdy D grad[C (x, y, t)]ndl
Γ Γ

α α
→ → →

− = −∫∫ ∫ .    (2.6) 

 

Substituting Eq. (2.6) into Eq. (2.5) gives 

 

g
i i g g

d

g g i

C (x, y, t)
dxdy D grad[C (x, y, t)] n dl

t

D grad[C (x, y, t)]grad[ ]dxdy 0
Γ Γ

Γ

α α

α

→ →∂
+

∂

+ =

∫∫ ∫

∫∫
.                 (2.7) 

 

The equation for GB diffusion in Eq. (2.1) is the boundary condition itself and is taken at x = 

± δ/2 (fig. 1.2). Recalling this boundary condition and using the transformations given by Eqs. 

(2.4) and (2.6), the final form of Fisher’s system used in finite element program is 

 

g gb
i i gb g i i

d d

g g i

C (x, y, t) C (y, t)
dxdy D grad[C (x, y, t)]grad[ ]dy dy

t 2 2 t

D grad[C (x, y, t)]grad[ ]dxdy 0
Γ Γ Γ

Γ

δ δ
α α α α

α

→∂ ∂
+ +

∂ ∂

+ =

∫∫ ∫ ∫

∫∫
.  (2.8) 

 

According to standard finite element procedure this final expression is used in the matrix 

form. In the expression the second and fourth integrals represent the conduction parts, 

whereas the other two integrals are responsible for the time variation. It should be noted that 

surface conditions (Eq. 1.3a) that exist in the GB diffusion problem are taken into account in 

Eq. (2.8). Importantly, segregation problems require the use of the same equation in which the 

second and the third integral are multiplied by the segregation factor s according to Eq. (1.6c). 

 

2.2.1 Finite element method formulation of space charge layer problem 

 
 The space charge layer problem is complex due to additional equations and boundary 

conditions. Fisher’s system was extended in order to take into account the space charge 

effects. According to the model which will be discussed in chapter V the system of partial 

differential equations for the space charge problem reads 
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g
g g

scl
g scl

gb scl
gb gb sclx

C (x, y, t)
D divgrad[C (x, y, t)] 0

t
C (x, y, t) D divgrad[C (x, y, t)] 0

t
C (x, y, t) 2DD divgrad[C (y, t)] grad [C (x, y, t)] 0

t δ

→

∂⎧
− =⎪ ∂⎪

∂⎪ − =⎨ ∂⎪
∂⎪

− − =⎪ ∂⎩

,                        (2.9) 

 

where Cscl and Dscl are the concentration and diffusivity within the SCL. While the continuity 

condition at the interface between the GB (or the GB core) and space charge layer (SCL) is 

reflected in the last equation (as it is supposed by Fisher’s system), additional boundary 

conditions should be written for the interface between the SCL and bulk (fig. 5.1). Supposing 

equal fluxes and concentration at that interface gives 

 

scl g sclC (x, y, t) C (x, y, t)        at      x
2
δ

δ⎛ ⎞= = ± +⎜ ⎟
⎝ ⎠

  

 

and                      (2.10) 

 

gscl
scl g scl

C (x, y, t)C (x, y, t)D D
y y

      at x  
2
δ

δ
∂∂ ⎛ ⎞= = ± +⎜ ⎟∂ ∂ ⎝ ⎠

. 

 

The advantage of using the finite element program is that these boundary conditions together 

with the boundary condition of zero flux at the bottom of geometry used are automatically 

included. One needs to slightly modify the equation derived for the more general problem, 

namely Eq. (2.8). This leads to the following expression: 

 

  

gb
i i gb g i i

d d

i

C (y, t)C(x, y, t) dxdy D grad[C (x, y, t)]grad[ ]dy dy
t 2 2 t

Dgrad[C(x, y, t)]grad[ ]dxdy 0
Γ Γ Γ

Γ

δ δ
α α α α

α

→ ∂∂
+ +

∂ ∂

+ =

∫∫ ∫ ∫

∫∫
.      (2.11) 

 

In the last expression C and D can either correspond to the grain or SCL. This means that the 

same equation is applied to both regions which have finite dimensions. The difference 

between these regions (grain and SCL) does not lie only in different diffusivities. Applying 

Eq. (2.11) for the bulk (grain), Dgb is not used or equal to zero. This is achieved in the finite 

element program, at least in a particular case of FLUX-EXPERT used in the current work, by 
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creating the regions with different properties when generating the mesh for the problem 

[Sima95]. The finite element calculations are relevant for chapter IV and chapter V. In the 

following chapter III we numerically evaluate Whipple’s solution by using the program 

MatLab.     

   

2.3 Finite element calculation by using FLUX-EXPERT 

 
 FLUX-EXPERT is based on the Expert-System technique [Mas84] and, consequently, 

is organized in the way that one has to use different modules [Flu00] in order to obtain the 

solution. Each module represents a program (or a package) for passing a separate step in 

solution (fig. 2.1). Usually one has to start with definition of the geometrical model and of the 

mesh. This is done in the program ‘SIMAIL’ [Sima95], [Sima97] which only creates the 

mesh, and the result is saved in the file with the extension ‘DAT’. The shape of the elements 

is also determined in this program. In the present study on GB diffusion the triangular 

elements were only used.  

The program FLUX-EXPERT has several libraries of equations for solving particular 

physical problems. For example, the diffusion equation, called DIFFUS_2D.EQU [Simu02], 

is usually supplied once the program is installed. However, this equation exists for solving 2D 

stationary diffusion problems and simple boundary conditions of Neumann type [Flu95a], 

[Flu99]. Fisher’s system represents Fick’s second law subject to a specific boundary condition 

which represents diffusion along a GB and takes into account a leakage of atoms from a GB 

into a grain. Thus, to simulate GB diffusion, one needs first to create an equation. This can be 

done in the module ‘Generator’ [Flu92b]. The ‘Generator’ is an important feature of FLUX-

EXPERT which suggests much more possibilities for the user [Bau85], [Szt92]. This module 

makes the use of FLUX-EXPERT very flexible since different equations can be met in real 

research. When describing the equation, the computation algorithms which can be important 

for this problem are also defined in ‘Generator’. To solve Fisher’s system, the transient 

algorithm is necessary. Consequently, the algorithm called ‘RLTDMC’ was used. This 

algorithm is non-symmetric, transient, linear, “ill (poorly)-conditioned”, i.e. the Gauss method 

is used for solving the system of equations [Flu92c]. The operator ∂/∂t is replaced by the 

corresponding finite difference scheme [Flu92d]. Importantly, the final system containing the 

integrals and time differences is implicit in nature. The latter avoids the numerical instabilities 

associated with finite difference schemes when written in explicit form [For60]. However, 

before describing the equation all the physical properties should be defined. The module 
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‘GNOYAU’ allows one to define the physical properties, also called identifiers (for example, 

Dgb), and different operators [Flu00] such as the integrand operators, the operators of 

differential weights of integrals, the algorithm operators. These operators can then be used in 

the module ‘Generator’ for a particular equation. In the case of Fisher’s system Eq. (2.8) was 

incorporated and used along all calculations by FLUX-EXPERT. Another feature of FLUX-

EXPERT is that all the physical properties are collected in the data base which can be 

modified by ‘Generator’, i.e. new necessary physical properties can be added. Therefore, Dgb   

 

Generator

SIMAIL CVNOPODAT DEC

PROPHY PRO SOLVER

EQU

Solution

GNOYAU

 
 

Fig. 2.1 A scheme of steps necessary for obtaining the final solution by using 
FLUX-EXPERT. Each step represents a module of the program. 

 

was described in order to use it in the equation while Dg and Dscl were represented by a 

diffusion coefficient DC supported by the program [Simu02].  

Since the equation and the mesh are defined, these can be used in the module ‘Prophy’ 

which creates the problem file for integration. Thus, this file contains information on the 

mesh, the physical properties involved and the equation. The extension of the file produced by 

‘Prophy’ is ‘PRO’, and this is usually the biggest file among all the files which are used for 

solving a physical problem. Finally, the program ‘Solver’ is used to integrate the differential 

equations and the result of this integration is saved in PRO-file.  
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Introduction 
 

Le Claire’s relation is still remaining the only one used for the evaluation of GB 

diffusivity (Dgb) from the diffusion profiles measured under conditions of type-B kinetics. The 

relation is based on the finding of Levine and McCallum [Lev60] that the GB part of lnCav = 

f(y6/5) plot is a linear function. However, it is very difficult to suggest a scale in which the 

diffusion profile is exactly a linear function for a broad range of parameters. In this chapter 

we investigate the validity of such a linear dependence for short diffusion times. 
 

3.1 Important definitions  
 

For that purpose Whipple’s solution was integrated, fixing the penetration depth at 500 

nm and varying the diffusion time (t) and the ratio of diffusivities (∆). These are the typical 

experimental conditions [Mis99] too when measuring the concentration profile and 

determining the GB diffusivity (Dgb), because ∆ is unknown. For the integration a sample 

characterized by a width of 25 nm and a length of 500 nm was used. Such a sample is called 
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hereafter also as a geometrical model. The value for Dg = 2.95·10-4 nm2/s (2.95·10-16 mm2/s) 

as well as Dgb = 6.42 nm2/s (6.42·10-12 mm2/s) were taken from the Arrhenius relations found 

in [Bro99a] on oxygen diffusion in ultrafine-grained undoped ZrO2 at 500ºC. These values 

satisfy ∆ = 2.2·104, whereas other ratios in the calculations were obtained by varying Dgb and 

fixing Dg. Most results shown in the present work reflect the behavior of Cav(y, t) and the 

distribution of Cg(x, y ,t).  

The main aim of the present study is to check the validity of Le Claire’s relation for 

short-time situations and to estimate possible errors of the Dgb determination. An apparent GB 

diffusivity (Dgb,app) is introduced which can be compared with a true diffusivity Dgb,true used in 

the calculation.   

 

3.1.1 The C- or B-regime? 
 

In order to be able to evaluate Dgb by using Le Claire’s relation, one should only know 

that the condition of type-B kinetics is satisfied. The diffusion length in the bulk (grain) (Lg) 

was allowed to vary from a very small value of 0.77 nm at t = 2000 s. This implies an 

extremely short Lg of the order of atomic spacing, and high concentration gradients. Such an 

extreme situation corresponds to Lg which does not exceed the GB thickness (δ) significantly. 

One could open the question about the validity of the type-C kinetics under such conditions. 

In order to understand the diffusion profile calculated for condition of Lg = 0.77 nm 

corresponds more to the B-regime or C-regime, the diffusion profile was fitted by a 

complementary error-function with Dgb. If tentatively the evaluation for type-C is used, the 

diffusion coefficient is wrong by four orders of magnitude. It is, hence, clear that the diffusion 

profile does not represent a complementary error function (fig. 3.1) and, consequently, the 

diffusion process does not correspond to the kinetics of type-C. This also makes generally the 

existence of the C-regime questionable, although the situations of very small diffusion lengths 

are of particular interest here. According to this result, it is enough to make several jumps for 

the atoms moving from the GB into the grain (this is caused by the concentration gradient, 

what is proposed by Fisher’s system (Eq. (1.6a)) to observe the B-regime.   

   

3.2 Integrating Whipple’s solution  
 

The integration of Whipple’s solution should be done very carefully, because the short 

t leads to steep gradients and a reduced effective region of integration. The concentrations and 
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penetrations are smaller. In this case both the density of integration mesh, as far as the 

numerical integration is concerned, and the limits of integration can be important. The 

constant intervals (steps) ∆x or ∆y, depending on the direction, determine the mesh density 

and are chosen to be important parameters to achieve a very well converged result. In some 

cases it suffices to find these steps properly. This has nothing to do with the integration step 

used in the quadrature formula [Pres02] since the integration was performed by using the 

algorithms worked out in the program MatLab [Kiu05] with applying a function ‘quadl’ 

[Mat04] based on adaptive Lobatto quadrature [Gan00]. The relevant intervals are due to the 

2D nature of the problem of GB diffusion and the integral form of Whipple’s solution.    

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

y, nm

C
av

 
 

Fig. 3.1 A comparison of the Whipple (red curve) and gberfc(y / 2 D t ) (blue 

curve) solutions for ∆ = 2.2⋅104 at t = 2000 s. The concentration Cav is 
normalized with respect to C0 (Eq. (1.3a)). 

 

The integration was performed for each x-value along the whole length of 500 nm. 

Obviously, the interval ∆y is of particular importance. The result is much more sensitive to 

this interval rather than to ∆x. For this problem the convergence means that the result remains 

unchanged when increasing the step of integration and, at the same time, satisfying the 

necessary error limits. Most of the problems with the integration of Whipple’s solution are 

related to numerical instability. Additionally, in the analysis we are interested in the derivative 

of the concentration profile is plotted. The derivative (in some cases the term ‘gradient’ is 

used in the present work) allows one first to analyze the physical result, and second, to 

estimate the quality of integration. This is reflected in the strong sensitivity of the derivative 

with respect to changes of the profile introduced by any numerical factors. Namely, numerical 
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instabilities are reflected immediately. To estimate the value of the slope of the profile (Eq. 

(1.16)), the scale of the ordinate (∂lnCav/∂y6/5) was changed significantly due to a rapid 

dependence of the bulk diffusion part of the profile on y in comparison with the GB part of 

the profile. Thus these two parts obviously have very different rates. At each t the integration 

scheme (the interval ∆y and the limits of integration) was verified separately for all ratios ∆ = 

Dgb/Dg used, whereas the step ∆x was once obtained and fixed in the calculations to 0.1 nm.  

The interval ∆y was varied from 40 nm to 0.25 nm for ∆ = 2.20⋅104 at t = 2000 s (fig. 3.2). On 

the one hand, the GB part of the derivative is not affected significantly when ∆y is increased. 

This is important, because decreasing the step leads to numerical instabilities (spikes in fig. 

3.2a). On the other hand, increasing the interval ∆y changes the bulk part (fig. 3.2b). This is 

clear, because the integration of the bulk part requires smaller intervals. Interestingly, the bulk 

diffusion is observed up to 6 nm6/5 at t = 2000 s for Dg = 2.95·10-4 nm2/s and Dgb = 6.42 nm2/s. 

At deeper penetrations only the GB diffusion plays a role. The numerical instabilities exist 

even with ∆y = 1.0 nm, while further increasing the integration step is impossible due to 

deviations in the bulk part.  

The integral published by Whipple [Whi54] contains ∆ as the upper limit of 

integration and σ as the integration parameter (Eq. (1.9a)). All the curves shown in fig. 3.2 

were obtained with ∆ (= 2.2⋅104) as the upper limit of integration (σmax). In many cases ∆ can 

be a very large value, making the region of integration too large and leading to very small 

concentrations. After obtaining the density of mesh (∆y = 1.0 nm), the upper limit of 

integration was decreased, because very low concentrations can also lead to the instabilities. 

Moreover, the values of concentration are so low in such regions that those do not sufficiently 

contribute to Cg (Eq. (1.9a)). It was observed that the numerical noise arises with σmax being 

15000 (hardly seen in fig. 3.3) for the same parameters that used in fig. 3.2. However, the 

convergence with respect to the upper limit of integration is reached with σmax = 20000. Again 

the instabilities do not allow for a completely correct result. But, if σmax, the upper limit of 

integration, is chosen to be small enough, the function ∂lnCav/∂y6/5 = f(y6/5) becomes even 

more nonlinear (fig. 3.3). In this sense, fitting the dependences lnCav = f(y6/5) to a straight line 

would give very large errors in determining Dgb. The area under the derivative as well as its 

value at the maximum decreases with decreasing σmax. Therefore, it is necessary to use at least 

σmax = 15000 for the parameters ∆ = 2.2⋅104 and t = 2000 s. This means one always has to find 

reasonable values σmax, otherwise the slope can be overestimated due to numerical reasons. In 

fig. 3.4 the integrand of Whipple’s solution is plotted as a function of σ for the same diffusion 
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Fig. 3.2 Variation of the derivative ∂lnCav/∂y6/5 as a function of y6/5 obtained 
for small a) and large b) ∆y-steps for ∆ = 2.2⋅104 and t = 2000 s. 
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   Fig. 3.3 Different upper limits of integration for ∆ = 2.2⋅104 and t = 2000 s. 

 

parameters as in figs. 3.2 and 3.3. It is clearly seen that the integrand has large values at small 

σ and decreases slowly with σ approaching very small values. One can conclude from this 

plot, that the reason of the overestimation of the slope for σ being smaller than 15000 (fig. 

3.3) comes from the cut-off. In other words, the overestimation is due to lost concentrations at 

values of σ larger than 1000. The value of the integrand for σ = 15000 (∆ = 2.2⋅104), y = 10 

nm and x = 0.25 nm, i.e. exactly at the GB since the GB thickness is 0.5 nm, is 3.77⋅10-9. This 

is one of the highest integrand values which can be observed at these coordinates for σ = 

15000.  Such small values should also be taken to effectively integrate Whipple‘s solution. 

Consequently, the problem of very large ∆ is especially important for integrating Whipple’s 

solution at short t. In such cases, the diffusion length can be much shorter than the length of 

the sample. So shorter penetrations demand smaller integration limits. Fig. 3.4 shows the 

influence of increasing coordinates x and/or y. All the changes in the directions parallel with 

the GB or perpendicular to that lead only to a decreasing area under the integrand. The 

maximum of the integrand is shifted to larger and smaller σ for the increased coordinates y 

and x, respectively. It can be mentioned, that all the values discussed are sensitive to 

parameters such as diffusivities and t. An important consequence coming from fig. 3.4 is that 

the integral can have a maximum value at rather small y-coordinates.  



Chapter III.   Nonlinearity effect 

 

 41

 Finally, different integration intervals were tried in the two parts of the diffusion 

profile. As it is clearly seen in fig. 3.2 the results for ∆y = 0.25 nm and ∆y = 0.5 nm do not 

deviate from each other, satisfying the error of 1%. The only problem of those is related to  
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Fig. 3.4 Integrand of Whipple’s solution plotted as a function of σ for different 
coordinates y and x. 

 

instabilities. So ∆y = 0.5 nm can be taken as integration interval in the bulk part. Because the 

deviations in the GB part arise with ∆y being larger than 10 nm, that value is suggested to be 

a limit of integration in the GB part. In fig. 3.5a the results of integration with different 

intervals in the two parts of the profile are compared with the result obtained with a constant 

step. The bulk part was integrated up to a penetration of 50 nm, which exceeds the bulk 

diffusion length and lies in the region of obvious intermixing between the bulk and GB parts 

of diffusion. The result of integration with two intervals is in a very good agreement with the 

result of constant integration interval. Consequently, different integration intervals should be 

used at t = 2000 s in order to exclude any numerical problems and to obtain accurate results.  

The increase of t allows the same interval of integration to be used for both parts of the 

derivative. Thus, the numerical instabilities disappear already at t = 4700 s with ∆y = 1 nm 

due to an increased level of concentration in both the bulk and GB parts of diffusion profile 

(the length of the sample is fixed). Nevertheless, the deviations in the bulk part with 

increasing ∆y seem to be similar to those observed at t = 2000 s up to 13200 s despite the fact  
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Fig. 3.5 a) A comparison of different integration schemes at t = 2000 s and ∆ = 
2.2 ·104, b) An example of the numerical instabilities for ∆ = 103 at different t 
(note: the slope decreases with t).  
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that the derivative of the bulk part changes with t too. Finally, the step in the bulk part was 

successfully varied in the calculations from 0.5 nm at t = 2000 s to 5.0 nm at t = 500000 s.  

Such a situation is remaining until the interval becomes too small for the integration of 

the GB part. One can observe similar instabilities as shown in fig. 3.5 for t = 13200 s: the 

problem of low concentrations is replaced by another one, the small changes of the derivative 

in the GB diffusion part. In this case the variation of σmax cannot longer improve the result 

and only integrating with different intervals in different parts of the profile allows again a 

qualitative result to be obtained. An example of the instabilities arising in the integration is 

also presented in fig. 3.5b. 

 

3.3 Errors in determining the grain boundary diffusivity 
 

As far as the procedure of integrating the Whipple solution is clear, one can examine 

different t and ∆. As it was explained above, the length and the width of the sample 

(geometrical model) were fixed to 500 nm and 25 nm, respectively. This exactly reflects the 

isolated boundary arrangement (fig. 1.2). Recently, many theoretical works on the evaluation 

of Whipple’s solution were published which are based on the transformation of the solution 

directly to the average concentration Cav(y, t) [Chu96b], [Eva97], [Sha98]. Such 

transformations are not used here but will be discussed in the following sections. Also, the 

integration used in the present work is very similar to what is done experimentally.  

 The result obtained by simply integrating Whipple’s solution is depicted in the 

following figure for ∆ = 2.2⋅104 at t = 2000 s: 
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Fig. 3.6 Variation of lnCav  a) and ∂lnCav/∂y6/5 b) with y6/5 calculated for ∆ = 
2.2⋅104 ant t = 2000 s. 
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In fig. 3.6a one can see a typical diffusion profile, comprising two distinguishable parts: a 

near surface part (or so-called bulk part) and a deeper penetration tail due to the GB diffusion. 

As it was mentioned above, the slope of the GB part gives Dgb according to Le Claire’s 

relation (Eq. (1.16)). There are two possibilities to verify such a slope. One of them is to fit 

the GB part of profile by a straight line subtracting the bulk part. This is usually done in the 

experiments [Her05], [Yas97], [Kow00], [Bak02]. However, the profile is expected to be a 

nonlinear function of y6/5, and the nonlinearity of its GB part can strongly depend on the 

depth. Consequently, another possibility might be preferred, namely to plot the derivative of 

the profile in order to estimate the effect of nonlinearity. Fig. 3.6b shows that indeed the 

profile is nonlinear, i.e. the derivative simply confirms this.  

At some point (y6/5 ~ 300 nm6/5 in fig. 3.6b) the derivative is characterized by a 

maximum which is close to the bulk part but, in fact, corresponds to the GB part. In the 

present study it is proved, that this maximum gives the correct slope or, at least, the smallest 

error to find Dgb using Le Claire’s relation. To prove this statement, the diffusion profiles 

were calculated by using Whipple’s solution at different t, varying ∆ from 102 to 105.  

According to fig. 1.5 (the diffusion lengths dependences with t), calculating the 

profiles up to t = 500000 s guarantees the B-regime for different ratios ∆. The slope of the 

profiles decreases with t, and this is clearly seen in the dependences lnCav = f(y6/5) (fig. 3.7a). 

The same behavior, obviously, can be observed for all other ratios ∆ (fig. 3.8). Importantly, 

the slope varies with t striving for some saturation at the maximum (figs. 3.7b and 3.8). 

However, this saturation can never be reached. It means only that having an opportunity to 

obtain the profiles at very long t, as it is the case for coarse-grained materials; one can observe 

the values of Dgb rather independent of the effects of the GB diffusion nonlinearity. This 

might be the reason why the effect of nonlinearity has not yet been discussed in the literature. 

However, the effect of nonlinearity is more pronounced at shorter t. Therefore, the derivative 

varies with t and along the coordinate y (fig. 3.7b and fig. 3.8). Importantly, all the profiles 

and their derivatives, shown in figs. 3.7b and 3.8, were calculated for one maximum value of 

the depth (the length of geometrical model) for ∆ being 2.2·104 and 105, namely 500 nm. For 

∆ = 102 the maximum depth was 40 nm at t = 2000 s and 500 nm at t ≥ 100000 s in order to 

exclude the effect of very small concentrations. This is done because Cav at y = 40 nm for ∆ = 

102 and y = 500 nm for larger ∆ at t = 2000 s is about 0.3·10-6. One may conclude that deeper 

penetrations than those used in figs. 3.7 and 3.8, can lead to larger errors in determining Dgb 

[Gry05]. 
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The calculated profiles were fitted by a straight line according to the procedure usually 

used in the experiments and relevant errors in determining Dgb were obtained (fig. 3.9, black 

lines). The error and derivative vary with t. This is reflected in the decreasing error. At longer 

t the slope is more correct than at shorter ones (again the length of the sample was fixed). It 

does not mean that the error cannot be larger at long t. The value of the error is only a matter 

of the nonlinearity of profile. This increases, if deeper diffusion profiles are used. 

Interestingly, the fitting gives slopes which more strongly deviate from those at the maximum 

as t shortens. The same can be observed in the case of smaller ratios ∆. The profile is even 

more nonlinear under conditions of small ∆, giving larger errors. The error is about 45% at 

2000 s for ∆ = 102.  

 The derivatives plotted in fig. 3.8 demonstrate that the slope is larger at shorter t, 

decreasing the apparent Dgb (Dgb,app) when applying the Le Claire relation. That is why Dgb is 

underestimated when the diffusion profile is fitted by a straight line, especially in the cases of 

short t and, as a consequence, short diffusion lengths. The maxima of derivatives of calculated 

profiles were also put into Le Claire’s relation. Taking the values of the derivatives at the 

maximum allows one to reduce the error (fig. 3.9, red curves). It can be understood in such a 

way, that the diffusion process developing around and along a GB passes through different 

conditions, and there is only one situation corresponding to the considered diffusion regime. 

The deeper the penetration depth the smaller the contribution of GB to diffusion in the grain 

and the lower the level of concentration around and within the GB. Therefore, the whole 

process is becoming to be concentrated within the GB. In other words, the contribution of GB 

is not simply a linear process of y6/5 or any other power law.  

Interestingly, the error for ∆ = 2.2·104 and 105 (fig. 3.9b) increases at longer t. In these 

cases the maximum was not reached for the used length of the sample (for example, the curve 

for t = 500000 s in fig. 3.8c), although the diffusion profile itself still comprises the two 

distinguishable parts. This opens a question about an additional effect related to the 

nonlinearity. One may conclude that the length of the whole geometrical model may be too 

great giving the slope affected by the new conditions along the depth or too short giving the 

slope affected by the bulk part of the diffusion profile [Kau95]. In both cases the 

concentrations and derivatives are smaller than those at the maximum. In these cases the 

derivative does clearly show how the profile is affected. The discussion of short lengths of the 

sample will be continued in the next section. 
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Fig. 3.7 Variation of lnCav for t = 2000 s – 13200 s a) and ∂lnCav/∂y6/5 for t = 
2000 s – 1·106 s b) with y6/5 calculated for ∆ = 2.2·104. 
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When the positions of the maxima are known, one would compare them with a 

criterion, which has already been discussed in the literature [Moy91], but very often ignored 

in the evaluation of experiments. The criterion is based on the relationship between y and Lg. 

According to this criterion, the determination of Dgb should be done from those parts of 

measured diffusion profile, which satisfy y g5L≥ . In the calculations Lg is the same for all 

ratios ∆ used and depends only on t, because Dg was fixed. However, the ratio ∆ increases, 

and the position of maximum goes from 6/5
maxy ~ 12 nm6/5 for ∆ = 102 at t = 2000 s (the 

corresponding diffusion length Lg ~ 0.77 nm) to 6/5
maxy ~ 1732 nm6/5 for ∆ = 105 at t = 500000 s 

(which is, in fact, not the position of maximum, but simply corresponds to the depth of 500 

nm, Lg ~ 12 nm). The positions satisfy the criterion by being 10 times larger than Lg for ∆ = 

102 at t = 2000 s and 42 times larger than Lg for ∆ = 105 at t = 500000 s. So the criterion is 

very rough. It only reminds one that the GB part of diffusion profile is influenced by the bulk 

diffusion part. The criterion is still not absolutely correct and even misleading when the 

profile is fitted by the straight line. 

It is interesting to analyze here how the maximum appears. In fig. 3.10 solutions given by 

pure bulk diffusion (a complementary error-function in the case of a constant source) and by 

Whipple’s solution excluding bulk diffusion (pure GB contribution) are presented separately 

for ∆ = 105 at t = 500000 s and t = 2000 s. A sum of both contributions gives Cav obtained by 

integrating Eq. (1.9a), also shown in fig. 3.10. The bulk diffusion solution decreases rapidly in 

comparison with the GB diffusion part. Whipple’s solution coincides with purely bulk 

diffusion at very small coordinates and then is influenced by both contributions, and for larger 

y-coordinates dominates by the GB part. The GB contribution becomes predominant at 

around 110 nm6/5 in fig. 3.10a, what is much smaller (by a factor of 16 in this nonlinear scale) 

than the position of the corresponding maximum ( 6/5
maxy ~ 1732 nm6/5). Normally, for the 

parameters involved one needs a length of the sample larger than 500 nm in order to reach the 

maximum at long t. The maximum can correspond to the beginning of the B-regime since the 

diffusion regimes change each other not only with time but also along y [Kau95]. This regime 

finishes when the derivative goes down. The position of the maximum for ∆ = 105 at t = 2000 

s (fig. 3.10b) is about 763 nm6/5, what is 100 times larger (on the nonlinear scale) than the 

coordinate at which the GB part becomes the solution determining part. The longer t obtains a 

much more slowly varying function, suggesting the slope to be very small, whereas shorter t 

gives higher derivatives. In both the cases the overall solution is determined by the bulk 

diffusion part only at extremely small depths, i.e. of the order of several nanometers. 
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Fig. 3.8 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 obtained for a) ∆ = 
102, b) ∆ = 103, c) ∆ = 105. The dashed line means that the integration in this 
region was very unstable and, therefore, impossible. 

 

 

3.3.1 Nonlinearity and small values of dimensionless parameter w 
 

The parameter w (Eq. (1.15)) is a very helpful quantity as regards understanding the 

conditions of the developing diffusion process. The problem of this parameter is in fact that 

its knowledge requires the knowledge of the diffusion coefficient Dgb. Meanwhile, the 

parameter makes the diffusion profiles plotted as a function of w for fixed t independent of 

the ratio of diffusivities ∆. This seems to be one of the main reasons, why Le Claire suggested 

the derivative ∂lnCav/∂w6/5 to be constant [Cla63]. Moreover, Le Claire mentioned that w 

should be larger than 2 to use his relation. On the other hand, the condition of w << 2 can be 

understood, if the gradient ∂lnCav/∂y6/5 is analyzed. As it was mentioned above, the 

contribution of bulk diffusion to the concentration profile is very restricted, because of 

interference of bulk diffusion with GB diffusion. The interference starts at surprisingly small 

values of y. The reason is that the derivative changes its value going slowly through the 

maximum and then decreasing due to the GB contribution only. In fig. 3.11 the dependence of  
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Fig. 3.9 Variation of the errors in determining Dgb with time (Dgb,app was 
obtained by using Le Claire’s relation): a) ∆ = 102, ∆ = 103, b) ∆ = 2.2·104, ∆ = 
105. Errors were estimated according to ( )gb,app gb,true gb,trueD D / D 100%− ⋅ . 
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Fig. 3.10 Whipple’s solution (circles) compared with its bulk part (squares) and 
GB part (triangles) at t = 500000 s a) and 2000 s b) for ∆ = 105. 
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the dimensionless parameter w on the real coordinate y is shown for different t, where the 

domain of inapplicability of Le Claire’s relation is determined by values of w less than 2. 

Despite the fact of very different t, 2000 s and 500000 s, the values of w can be either smaller 

or larger than 2. In the dominator of w is the square root of Dgtβ. While the β - parameter (Eq. 

(1.9d)) decreases with the diffusion time as t-1/2, the positional coordinate y can be increased – 

both facts lead to the compensated values of w. The value of 2 is reached at smaller y, if t is 

decreased, because the shown linear dependences have different slopes. This looks like that 

there is a higher probability to arrive to the conditions of w << 2 for longer t, because the 

range of y is larger than for shorter t. One should keep in mind that the increase of t is only 

possible for a polycrystalline sample having larger grains, and deeper penetrations are needed 

to observe the nonlinearity. Particularly, at higher t the position of maximum is shifted to 

larger values of y. Correspondingly, the values of w larger than 2 for t = 500000 s arise at 

sufficiently larger values of y in comparison with t = 2000 s. An interesting question to be 

addressed is about the shape of diffusion profile at different w.  

In order to analyze the diffusion profiles for different values of w, y was varied from 0 

to 500 nm for t = 2000 s and ∆ = 2.2·104. It is clear, that small values of w correspond to those 

parts of the diffusion profile, which are mostly influenced by bulk diffusion (fig. 3.12a). If the 

dimensionless parameter (w) increases, the profile changes from steep part to the interference 

part. Such a behavior continues until the maximum of the derivative is reached as it was 

observed for the dependences on the real coordinate. The corresponding diffusion profiles 

were plotted for considered w-values (fig. 3.12b). Surprisingly, the shape of those profiles in 

the dependence lnCav = f(y6/5) represents classical, usually expected,  diffusion profiles, 

comprising two distinguishable parts due to bulk diffusion and GB diffusion separately. 

Consequently, Dgb can be found from such dependence by applying Le Claire’s relation. 

However, this would cause errors since the maximum is not reached. Thus the qualitative 

estimation of the profile leads to the situation when Dgb is found according to the procedure, 

which is not straightforward. This also allows the problems discussed in [Chu96a] to be better 

understood. In the latter paper, errors of the order of 70% were observed. However, an 

explanation of those errors was not given. Instead, they suggested a new expression for the 

δDgb-product which requires the knowledge of new fitting parameters summarized in this 

paper. According to the present analysis, the maximum of the gradient gives an accurate result 

and many problems of using the conventional procedures are related to the nonlinearity.       
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Fig. 3.11 Dependence of the dimensionless quantity w on real positional 
coordinate y for t = 2000 s and t = 500000 s.  

 

3.3.2 Analyzing the errors of using Le Claire’s constant 

 

  In fig. 3.9 the errors of finding the GB diffusivity (Dgb) remained high, even after 

using the maximum of the derivative. It was supposed that an additional problem is related to 

Le Claire’s constant ( 6/5
avln C / w 0.78∂ ∂ ≈ − , Eq. (1.14)) as being the only quantity, which 

was not discussed up to now. As far as the diffusion profiles were obtained for different ratios 

∆ and t, the derivatives of those as functions of dimensionless coordinate w were also plotted. 

The deviations of the derivative from Le Claire’s constant were observed and estimated. In 

fig. 3.13 the derivatives are depicted for the same ratios ∆ and t as in fig. 3.8. The qualitative 

picture is similar, but the meaning is different. Interestingly, the derivatives for different ∆ 

have the positions of maxima at the same w which vary from 2 to 6, depending on t. For the 

smallest ratio ∆ = 102 Le Claire’s constant is reached at t = 100000 s due to β close to 1 in 

contrast to other ratios. This is an exception case which refers to small ∆ which is unlikely in 

diffusion experiments, unless small angle grain boundaries are concerned. Thus, for the ratios 

∆ larger than 102 it takes at least 500000 s to reach Le Claire’s constant for the diffusion 

parameters used in the present study. An important property of the dependences in figs. 3.13c 

and 3.13d is in fact that these become more and more restricted with t. Comparing the 

dependences for ∆ = 2.2·104 and ∆ = 105 demonstrates that the values of w are twice as large 
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as in the former case, while the positions of maxima are approximately the same. This is 

related to the values of β and the length of the sample remaining constant. Large values of w 

always mean very deep profiles characterized by nonlinearity, what was also considered in the 

theoretical study of Le Claire [Cla63]. The nonlinearity in his profiles is obvious, but Le 

Claire did not discuss this property properly. Therefore, the tendency is that the position of 

maximum shifts to higher values of w, and that the maximum value of derivative tends to Le 

Claire’s constant as t grows. Both facts make the dependence more and more parallel to the 

abscissa, i.e. tending to a constant value for a fixed length of the sample. In this sense one 

may expect that there can be situations depending on the parameters in which the derivative 

is, to some extent, a constant value. Consequently, high temperatures and/or long diffusion 

times lead more or less to Le Claire’s constant. 

The Le Claire constant is reached for very different values of β, varying from 2 for ∆ = 

102 at t = 100000 s to 2000 for ∆ = 105 at t = 500000 s. These values cover a wide β-range in 

comparison with Le Claire’s work. Consequently, the values of β do not really determine the 

accuracy of the result. However, y and t are relevant for the deviations from Le Claire’s 

constant. It is very likely that diffusion in ultrafine-grained materials (or nanocrystalline 

materials) is studied under conditions of short t and penetrations. That is why the measured 

diffusion profile can be obtained for w << 2. This effect has already been observed by Chung 

[Chu96a] when measuring the diffusion profile for MgO bicrystal. The latter point is 

discussed below. Importantly, the maxima of the derivatives correspond only to values of w 

larger than 2 according to fig. 3.13.  

As the maxima of the derivatives on the real coordinate are known from fig. 3.8, then one 

may estimate the maxima of derivatives on the dimensionless coordinate and put both into the 

original expression of Le Claire (Eq. (1.14)). Following this procedure, the evaluation of 

errors for finding Dgb was continued (fig. 3.14). The errors are greatly reduced at shorter 

times, namely from 35% to very small errors not exceeding 1%. Nevertheless, the errors for 

larger ratios ∆ and longer t are still high and increase with t. The reason comes from the 

∂lnCav/∂w6/5 values taken at the maximum, while the length of geometrical model (500 nm) 

gives shorter values of w. These values were taken at the maxima to be in accordance with 

procedure used for shorter t. The dashed curves in figs. 3.13c and 3.13d show how the length 

was increased to reach the maximum for longer t. However, these values obviously give 

larger errors. By using the values found at the depth of 500 nm being the length of 

geometrical model, the error was decreased (red and blue points in fig. 3.14).     
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Fig. 3.12 Variation of the dimensionless quantity w as a function y6/5 along the 
derivative of the diffusion profile a) and the diffusion profile b) calculated for 
∆ = 2.2·104 at t = 2000 s.  

 



Chapter III.   Nonlinearity effect 

 

 57

a) 

0 2 4 6 8 10 12 14 16 18 20 22

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

100000 s

13200 s
10700 s

8200 s
4700 s

3600 s

2000 s

∂l
nC

av
/∂

w
6/

5

w6/5

Le Claire's constant

 
b) 

0 2 4 6 8 10 12 14

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

500000 s
100000 s13200 s

10700 s
8200 s

4700 s

3600 s

∂l
nC

av
/∂

w
6/

5

w6/5

Le Claire's constant

2000 s

 
 



Chapter III.   Nonlinearity effect 

 

 58

c) 

0 2 4 6 8 10 12

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

500000 s

100000 s
13200 s

10700 s
8200 s

4700 s

3600 s∂l
nC

av
/∂

w
6/

5

w6/5

Le Claire's constant

2000 s

 
d) 

0 2 4 6

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

500000 s
100000 s

13200 s
10700 s

8200 s4700 s
3600 s

∂l
nC

av
/∂

w
6/

5

w6/5

Le Claire' constant

2000 s

 
Fig. 3.13 Variation of the derivatives ∂lnCav/∂w6/5 with w6/5 for a) ∆ = 102, b) ∆ 
= 2.2·104, c) ∆ = 103 and d) ∆ = 105 at different diffusion times. Le Claire’s 
constant is also indicated. The dashed curves were obtained by increasing the 
length of the sample and indicate restriction due to this finite length. 
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 All the points discussed so far give a clear explanation of how the errors arise when 

extremely small diffusion lengths come into play. These situations very likely occur in 

nanomaterials with very small grains. As Dgb needs to be obtained, such an error analysis 

must be done as far as experimental evaluation is concerned. However, it is difficult to take 

account all the effects observed in the preceding sections. Obviously, improved procedures to 

deduce Dgb are necessary. 
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Fig. 3.14 Errors in determining Dgb calculated by putting both maxima on y6/5 
and w6/5 into the original Le Claire expression. The dashed arrows show how 
the error is reduced after using the improved derivative.  

 

 

3.4 Discussing new procedures for finding the grain boundary 

diffusivity 

 
3.4.1  An analytical expression for ∂lnCav/∂w6/5 at the maximum 
 

 First of all, a very useful expression can be suggested for the derivative ∂lnCav/∂w6/5. 

Plotting the maxima found in the preceding section from the dependences ∂lnCav/∂w6/5 = 
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f(w6/5) as functions of another dimensionless parameter α (Eq. (1.9d)), it was observed that 

they almost linearly dependent on α (fig. 3.15). A small curvature, seen in this figure, cannot 

introduce a large error. As it can be expected, and was mentioned above, the maxima for ∆ > 

102 almost coincide, and only the result for ∆ = 102 is slightly different from all the others. 

Despite that fact, one can see the slopes of all of the lines being the same. The values of α 

vary from 0.02 at longer times to 0.32 at shorter times. The large values of α as 0.32 can be 

attributed to the so-called B1-regime [Mis95], [Mis92a] – the transition between the B- (B2- or 

B2´-) and C- regimes. This regime can be relevant for discussion here. Consequently, the 

result in fig. 3.15 shows that the B1-regime especially important for the cases of shallow 

penetrations.  

Fitting the lines shown in fig. 3.15 to a straight line yields the following expression  

 

av
6/5

ln C 0.77 0.71
w

α
∂

= − −
∂

,          (3.1) 

 

neglecting the difference which exists between the line for ∆ = 102 and the others. This 

expression is very helpful (at least in the range of α used) since one can simply estimate the 

value of α, which only requires Dg to be known. According to fig. 3.15, α > 0.02 requires Eq. 

(3.1) to be used to find the derivative ∂lnCav/∂w6/5 properly. If it is not the case, Le Claire’s 

constant should be put into the original expression for the δDgb – product.  

According to what was discussed before, there are some cases when the derivative 

taken at the maximum also leads to significant errors (this is concerned only the derivative on 

w, if the length of the sample is too short to arrive exactly at the maximum). On the other 

hand, by plotting the derivative ∂lnCav/∂y6/5 it can be found out whether or not the maximum 

is reached. For the accurate determination of Dgb, it is suggested to increase the penetration 

depth (if not the length of the sample) until the maximum is reached despite these errors. This 

is, because the value of ∂lnCav/∂w6/5 at the depth corresponding to the length of the sample is 

impossible to find. Table 2.1 compares the values of ∂lnCav/∂w6/5 = f(w6/5) at the maximum 

taken from the calculated dependences (fig. 3.13) with those found by using Eq. (3.1).  

It should be emphasized that Szabo et al. [Sza90] in their discussion of how to find the 

segregation coefficient (s) and Dgb separately, observed deviations of the apparent parameters 

from the true ones if α increases. The explanation of this effect is given here and, moreover, 

an improved procedure to deduce Dgb is suggested. 
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Fig. 3.15 Maxima of the dependences ∂lnCav/∂w6/5 = f(w6/5) plotted against the 
dimensionless parameter α for different ratios ∆. 

 

 

 

Table 3.1 A comparison of the derivatives at the maximum found by using calculated 
dependences and Eq. (3.1) for ∆ = 2.2·104. 

 

t, s ∂lnCav/∂w6/5 = f(w6/5)true ∂lnCav/∂w6/5 = f(w6/5)Eq. 2. 1 

2000 -0.99 -1.00 
3600 -0.94 -0.94 
4700 -0.92 -0.92 
8200 -0.89 -0.88 
10700 -0.87 -0.87 
13200 -0.86 -0.86 

100 000 -0.80 -0.80 
500 000 -0.78 -0.78 
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3.4.2 The reason of observing a constant value for ∂lnCav/∂w6/5. Discussing 

procedures used in the literature 

 
It is believed that there are certain cases when the exact Whipple’s solution can be 

transformed to a simpler mathematical form. These cases have been for the first time 

introduced by Whipple [Whi54] and Le Claire [Cla63] and were explicitly discussed later in 

the book of Kaur et al. [Kau95]. The origin of those transformations lies in a fact that the ratio 

of diffusivities (∆) can be very large, typically, of the order of 105 or so for metals. The 

expression for Cg (used in the cited paper of Le Claire) then reads: 

 
2

g 1/ 2 3/ 2
1

d 1 1C ( , , ) erfc exp erfc
2 2 4 2
η η σ η σ

η ξ β ξ
π σ σ β

∞     − = + − +     
      

∫ .    (3.2) 

 

The meaning of the dimensionless quantities η and ξ was given in chapter I (Eqs. (1.9b) and 

(1.9c)). By comparing with Eq. (1.9a) the upper limit ∆ is replaced by infinity, and the term 
1/ 21∆

∆ σ
− 

 − 
 under the complementary error-function is simply ignored. After Le Claire, the 

same transformation was applied by Chung and Wuensch [Chu96a], [Chu96b], and it is 

important to discuss this once more in order to prevent possible errors. As it has been 

explained [Kau95], the approximation ∆→ ∞  may be used when β << ∆ with β remaining 

finite. In the present study β was varied from 2 (∆ = 102, t = 100000 s) to 32518 (∆ = 105, t = 

2000 s), always being smaller than ∆. Strictly speaking, the ratio ∆/β is 50 at longer times and 

only 3 at shorter times for all ∆ used. Additionally, η (Eq. (1.9b)) varies from 41 to 650 in all 

the calculations in the present study. These values of η are smaller than ∆, except for ∆ as 

small as 102. Since η is weighted by the diffusion length Lg, the ratio y/Lg is exactly of the 

order of several hundreds or smaller; otherwise extremely deep penetrations come into play. 

Unrealistic situations, when η >> ∆ were supposed by Le Claire when suggesting Eq. (3.2). 

On the other hand, such an approximation allows the contribution of bulk diffusion to be 

neglected, and Le Claire transformed Eq. (3.2) to a special mathematical form for Cav, 

neglecting the bulk diffusion part. One can also think of this approximation in terms of w. If η 

is much larger than ∆ which itself is much larger than β, then w increases to values of tens or 

even hundreds. Nevertheless, the maximum of ∂lnCav/∂w6/5 lies in the region of w from 2 to 6 

and not larger. In fig. 3.16 two derivatives are shown, calculated under condition β < ∆. The 
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first of them was obtained by using a convenient mathematical form to better integrate Eq. 

(3.2), published in [Kau95], excluding bulk diffusion. The second one was found by using the 

same mathematical form, taking into account bulk diffusion. The equation used for integration 

is                                                                                                                                                              

( ) 1/ 2

1/ 2

av

1/ 2 1/ 2 22 2
g

1/ 2
0

2 2

wC erfc
2

1 1 1 1exp
4 D t w 4wexp d

L 4 1 1 1 1 1 1erfc
2 2

β

β

π τ βτ
τ

π

τ β τ β

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎡ ⎤⎧ ⎫⎛ ⎞

− −⎢ ⎥⎨ ⎬⎜ ⎟
⎛ ⎞ ⎝ ⎠⎩ ⎭⎢ ⎥−⎜ ⎟ ⎢ ⎥⎧ ⎫⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎢ ⎥− − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

∫
,        (3.3) 

 

where τ is a new integration variable related to σ through
1/ 2

1
∆ σ β

τ
∆ σ

⎡ − ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
; L is the width of 

the sample or the distance over which Cg is averaged. The difference between Eq. (3.3) and 

the one originally suggested in [Kau95] lies in the use of bulk diffusion part. Comparison of 

both equations shows that the maximum is not influenced by neglecting bulk diffusion (fig. 

3.16, dashed lines). This again confirms that the bulk part is confined within a very tiny 

region, what is also shown in fig. 3.10. So the maximum lies far enough from the bulk part 

and corresponds only to the GB diffusion. Interestingly, Eq. (3.3) was integrated successfully 

by using MatLab without any serious numerical problems. One may conclude here that, in 

principle, bulk diffusion may be excluded but not because η >> ∆ which is an unrealistic 

condition. Interestingly, the maximum of the calculated derivatives is slightly higher than Le 

Claire’s constant. 

 More important is another condition, viz. β << ∆. The ratio ∆/β = 50 leads to Le 

Claire’s constant, according to the results of the present study. Comparing this with what was 

discussed by Chung and Wuensch [Chu96a], ∆/β ≥ 50 looks much more realistic. They used 

the condition ∆/β (≈ 2Lg/δ) ≥ 103 in order to apply∆→ ∞ . In this case β ≈ ∆/103. For small 

ratios ∆, say 102 or 103, the condition is never fulfilled, giving the values smaller or equal 

than 1. This would mean that the measurements on small angle boundaries could not be 

evaluated.  

Continuing the discussion started in [Kau95] with respect to the reasons leading to 

∆→ ∞ , the erfc-term in Whipple’s solution (Eq. (1.9a)) was plotted against σ for two 

extreme cases: ∆ = 105 and ∆ = 102 (fig. 3.17). The diffusion time (t) was varied from 2000 s 

to 500000 s not only because exactly these times were used in the present study, but also 
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because these cover the values of β which can be met in the measurements. The values of β ≥ 

∆ would mean Lg ≤ δ, what corresponds to the type-C diffusion kinetics. Consequently, 

another criterion for the C-regime is β > ∆, which is the same as Lg < δ and leads to complex 

Cg. Otherwise, Lg is larger than δ, and the B-regime becomes responsible for the diffusion 

process, regardless we refer to the classical B-regime or B2, B2´, or B1. 
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Fig. 3.16 Variation of the derivatives with w6/5 calculated for ∆ = 102 by using 
Eq. (3.3) excluding (dashed curves) and including (solid curves) the bulk 
diffusion part. 

 

Appreciable values of the erfc-term are possible, if β is close to ∆. In these cases the upper 

limit of integration should be exactly ∆. If β decreases, the upper limit can be taken smaller 

and at t = 500000 s it can surely be replaced by infinity (fig. 3.17). In fact, it is a very 

restricted region of β, when ∆→ ∞  may be used for nanomaterials. The restriction is defined 

by Lg, because increase of t leads finally to the A´-regime as it is the case for ∆ = 105 with the 

average grain size of 50 – 100 nm or so (fig. 1.5d).  This is the typical situation for 

nanomaterials when we proceed to the A-type regimes at large β. The new criterion for using 

∆→ ∞ , suggested in the present study, is that α should be smaller than 0.02. Interestingly, if 

it is not taken into account, the integration of Eq. (3.3) gives Le Claire’s constant, even if α > 

0.02 (fig. 3.18). This, of course, can be misleading. This is the aim of the experiment to find 

β, while α can be estimated, knowing Dg. Consequently, the analysis in terms of α is more 

convenient and allows one to make all necessary conclusions. 
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Fig. 3.17 The term erfc[…] taken directly from Whipple’s solution (Eq. (1.9a)) 
is calculated at ξ = 0 for ∆ = 105 a) and ∆ = 102 b). 
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Fig. 3.18 Variation of the derivative ∂lnCav/∂w6/5 as a function of w6/5 
calculated by using Eq. (3.3) for different ratios ∆ at t = 2000 s a) and t = 
500000 s b). 
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An additional and important comment is that similar results can also be obtained, say 

for ∆ = 102, if in the exact Whipple solution ∆ = 105 (the upper limit of integration) is used 

instead of ∆ with β corresponding to ∆ = 102. This is, of course, an artificial point, which is 

nothing but only a mathematical trick to get to Le Claire’s constant, because the range of 

varying σ is increased in this case. In this sense the following question arises. Is the result 

obtained for a very short time correct under these conditions? Probably, it would be enough to 

increase the range for σ. The answer is very nicely given by comparing the exact Whipple 

solution with the result of FEM. By using numerical method to integrate Fisher’s system (Eq.  

(1.6)), one observes the solution independent of Whipple’s solution and, consequently, of 

∆→ ∞ . The corresponding result is discussed in chapter IV (fig. 4.1). Here it is only 

important to mention that the results of both integrations coincide within a very small error 

even at 2000 s.  

  

3.4.3 On important dependences for finding the grain boundary diffusivity 
 

Summarizing the previous sections, the following procedure could be suggested for 

nanomaterials: 1) Measure the diffusion profile and determine Dg by simply fitting the near 

surface part to the complementary error-function solution or Gaussian function depending on 

boundary conditions. 2) Plot the derivative of the measured diffusion profile and identify its 

maximum, (∂lnCav/∂y6/5)max (it is recommended to reach this maximum). 3) Calculate the 

parameter α. 4) If α > 0.02, use Eq. (3.1) to find the derivative (∂lnCav/∂w6/5)max and put the 

derivatives into Eq. (1.14), or if α < 0.02 use the standard Le Claire constant. The 

disadvantage of this procedure is in fact, that plotting the derivative can be a serious problem 

for the experimental profile due to, for example, scattering of the experimental points 

[Kow00]. An alternative procedure which further improves the determination of Dgb and is 

more sufficient for ionic materials (as it will be shown in chapter V) is discussed now. 

As far as the maximum is responsible for the accuracy of determined diffusion 

coefficient Dgb, it would be better to find the derivative at the maximum as accurately as 

possible. It seems to be the only possibility to find Dgb accurately. Because of this, it would be 

particularly interesting to analyze how the position of the maximum depends on t. In fig. 3.19 

the positions for different ∆ are plotted as functions of t on the logarithmic scale. It is very 

likely that the positions are linearly dependent on t on the logarithmic scale, what is very well 

seen for smaller ratios ∆. The points for ∆ = 2.2·104 and 105 at long t are affected by the finite 

length of geometrical model (500 nm), reflecting that the necessary maximum is not reached. 
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That is why, the maxima for these large ratios ∆ were taken at one point of 500 nm, beginning 

from 13200 s for ∆ = 105 and 100000 s for ∆ = 2.2·104. The following relationship for y6/5 at 

the maximum is found: 

 
6/5
maxlog(y ) log(K) H log(t)= + ⋅  

or             (3.4) 
6/5 H
maxy K t= ⋅ , 

 

where t is as usually the diffusion time, K is a normalizing coefficient which depends on ∆ 

and, in general, on Dg and Dgb. However, the most useful information comes from the 

parameter H which is found out to be independent of Dg and Dgb, at least in the considered 

range of parameters. The parameter H determines the slope of the lines in fig. 3.19 and allows 

one to know t needed to reach the maximum, if the diffusion profile once measured is too 

shallow. This power law is not surprising since it reflects the typical diffusion property – 

dependence as a power law on t. In order to realize the long times (107 s – 1010 s) for large 

ratios ∆, the width as well as the length of the sample was increased (fig. 3.20), and Eq. (3.2) 

was integrated since β is much smaller than ∆. Consequently, the parameter H was 

determined by fitting the lines in figs. 3.19 and 3.20 to a straight line and is summarized in 

table 3.2. The perfect linear dependences were observed for short and very long times (red 

lines, reflecting the fitting in fig. 3.20, show this very clearly). Comparing the results of 

integration of the exact Whipple solution and Eq. (3.2) at t = 500000 s shows that the latter 

slightly overestimates the maximum positions (not shown here). The exact Whipple solution 

could not be integrated at so high t properly leading to very strong numerical instabilities. The 

dependencies in fig. 3.20 are characterized by a nonlinearity which is also seen for ∆ = 103 

and 102 in fig. 3.19. The width of 5157 nm (~ 5.16 µm) was applied for ∆ = 105, what 

demonstrates that a micrometer regime is already relevant here. However, this gives huge 

diffusion times which will never be realized in the experiments at least for the parameters Dg, 

Dgb used in the present study; however the temperature can be increased. More importantly, 

the slopes for all ∆ used are very well comparable for short t (table 3.2). In these calculations 

the β – parameter was varied up to ~10 – 15 for all ∆. The most reasonable value of H is 0.6, 

because it suggests that ymax ~ t1/2 – the expected dependence. As the diffusion time grows up, 

the process slowly develops with time in a comparison with short t giving rise to the 

nonlinearity in figs. 3.19 and 3.20 (this can be the second reason explaining the effect of 

nonlinearity discussed in the preceding sections).    
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 A similar behavior was observed for the maximum of the derivatives. When plotting 

the absolute values of maxima for relevant ratios ∆ from t = 2000 s up to 500000 s, straight 

lines arise on the logarithmic scale (fig. 3.21). Again and importantly, similar slopes were 

observed for all the ratios ∆. In the dependence for the position of the maximum the values K 

are ∆-dependent, and to analytically calculate the position one needs to know this parameter. 

However, the most important is the maximum which can directly be put into Eq. (1.16). The 

general expression for the lines in fig. 3.21 is represented as follows: 

 

( ) ( )av
6/5

max

ln C
log log A B log t

y
∂

= + ⋅
∂

,                   (3.5)       

 

where B is the slope of the dependence ( )( )av
6/5

max

ln Clog f log t
y

∂
=

∂
, A is the parameter which 

is ∆-dependent and also depends on t. In table 3.3 the values of the slopes are summarized for 

various ∆. These are very close to each other, indicating that single slope of approximately –

0.34 may be used when calculating the derivative - 6/5
avln C / y∂ ∂ at the maximum, at least for 

Dg = 2.95·10-4 nm2/s. This conclusion is not very much different from the analysis performed 

by Atkinson and Taylor [Atk79], since they supposed that the gradient  

- 6/5
avln C / y∂ ∂  should be proportional to t-0.3. However, an analytical relation to find the slope 

was not suggested.     

 All the quantities in Eq. (3.5) do not bear enough information on the diffusion 

coefficients. These quantities are dependent on the parameters and vary with both ∆ and 

absolute values of Dg and Dgb. In this form Eq. (3.5) is difficult to use for finding ∆. However, 

it could be particularly important, since in many cases the measured diffusion profile can be 

influenced by additional processes accompanying diffusion of a solute in the material. Even 

though the quantities A and B are known, it is unclear how to relate them to ∆. If the quantity 

B is supposed to be a constant, there should be a relation between the quantities A and ∆. The 

later comes from the fact that the lines in fig. 3.21 are shifted up with increased ∆.  

 Consequently, the values of A found by fitting the functions in fig. 3.21 to the straight 

line were plotted against ∆. The corresponding result shown in fig. 3.22 suggests that there is 

a linear dependence of log(A) on log(∆) also on the logarithmic scale. This is a particularly 

important result, because it directly relates the slope (the maximum of the derivative) of the 

diffusion profile with the ratio ∆.  According to this plot and in the fashion of Eq. (3.5) log(A) 

can be found by using 
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( ) ( ) ( )log A log C F log ∆= + ⋅ .                       (3.6) 

 

In this equation the quantity C can be different depending on Dg and t, and finally, the general 

expression for the slope is 
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or             (3.7) 
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All the dependencies (Eqs. (3.5) and (3.6)) reflect the fact that the maximum of derivative 

follows a single law when increasing the ratio ∆ or time t. Further details on using Eq. (3.7) 

will be discussed in chapter V. 
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Fig. 3.19 Variation of y6/5 taken at the maximum of the derivatives ∂lnCav/∂y6/5 
with t for different ∆ on the logarithmic scale. The length of the geometrical 
model is 500 nm. 
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Table 2.2 Different slopes H varying t ( 6/5

maxy ). 

H(t) ∆ 2·103 s ≤ t ≤ 1.32·104 s 1·105 s ≤ t ≤ 2.1·106 s 2.1·106 s ≤ t ≤ 1010 s 
102 0.59 0.53 (up to 1·105 s) - 
103 0.58 0.50 (up to 5·105 s) - 

2.2·104 0.60 0.42 (0.50) 0.29 
105 0.61 0.42 0.30 
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Fig. 3.20 Variation of y6/5 taken at the maximum of the derivatives ∂lnCav/∂y6/5 
with t for different ∆ on the logarithmic scale. The width and the length of the 
geometries were increased to reach small values of β: the length of about 40 
000 nm is needed to integrate Eq. (3.2) for ∆ = 105 at t = 1010 s. Red lines 
correspond to the fitting. 

 

Table 3.3 The values of the slope B for various ∆ (Dg = 2.95·10-4 nm2/s). 

∆ B 
102 -0.32 
103 -0.33 

2.2·104 -0.34 
105 -0.36 
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Fig. 3.21 Variation of the modulus of the maximum with t for different ∆. The 
result is performed on the logarithmic scale. 
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Fig. 3.22 Variation of log(A) in Eq. (3.5) with ∆. 
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Summary 
 

It is shown that the nonlinearity of the diffusion profile lnCav = f(y6/5) has to be 

analyzed, especially at short diffusion times. The maximum of the diffusion profile can be 

used to find the GB diffusivity accurately under such conditions. This maximum corresponds 

to the diffusion kinetics which is relevant under certain conditions. The use of Le Claire’s 

relation requires type-B kinetics, and the maximum reflects that situation. Application of Le 

Claire's constant of 1.322 leads to errors at very short diffusion times. In order to improve the 

determination of the GB diffusivity, an equation is suggested to find the derivative 

(∂lnCav/∂w6/5) at the maximum. The improved procedure is explained in detail. Additionally, 

new dependences are derived on the basis of integrations of the exact Whipple solution for the 

maximum value of (∂lnCav/∂y6/5) and its position. For the dependence of the gradient 

(∂lnCav/∂y6/5) at the maximum the quantity B is found to be ~-0.34. The value of the gradient 

at a certain diffusion time can be directly used in the Le Claire relation, if the quantities F and 

C are known.  
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Introduction  
 

 A polycrystal consists of GBs differently oriented with respect to each other and the 

diffusion direction. Even though it is important to take these orientations into account, 

conventional GB diffusion models ignore this effect. In this chapter realistic microstructures 

are discussed, and the conventional analysis is applied to the diffusion profiles calculated in 

both the B-regime and the A-regime. The influence of the crystallographic misorientations of 

the grains is neglected [Lea57].  

 It is important to mention that the reliability of the model of isolated boundaries (fig. 

1.2) as a representation of a polycrystal is partly based on sufficiently small values of the 

parameter β (see discussion below and [Kau95]) and/or large grain sizes. In this case the grain 

shape and the GBs orientations do not play a significant role. On the other hand, as the 

diffusion time (t) shortens, the diffusion process in a polycrystal is mostly determined by the 

GB contribution. This is the typical situation in materials with small grain sizes. 
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Different theoretical methods were recently applied in order to analyze the diffusion 

behavior under realistic conditions. Attempts were undertaken to analyze GB diffusion in 

realistic microstructures by using Potts model [Swi97] and phase field approach [Zhu01]. 

Moreover, attempts were also undertaken to obtain some analytical solutions to describe 

diffusion in real polycrystals [Bed05]. However, the model of parallel boundaries (the same as 

the isolated boundary model in the B-regime) and the model of square grains are very often 

considered when simulating diffusion in polycrystalline materials by using the Monte-Carlo 

method [Bel03]. Also the model of spherical grains is convenient for analytical evaluations 

[Harr61] as well as for numerical considerations [Sak90]. The analysis of GB diffusion in 

realistic microstructures is mostly restricted to the extreme cases of the A- or C-regime. 

Consequently, both the model of parallel boundaries and the model of square grains are 

analyzed in the present study in the B- as well as A-regime but with an eye to more realistic 

(general) microstructures, developed here by using the finite element approach. Further 

literature and ideas on simulating diffusion in the realistic microstructures are discussed in the 

following sections.   

 

4.1 Finite Element Calculation. To get started 
 

As already mentioned the finite element method (FEM) is a very useful tool for 

studying different physical processes [Sim06]. Application of the FEM to problems of 

diffusion and heat conduction was discussed in the literature due to the importance of these 

processes and the possibility to model these by means of classical differential equations (for 

example, [Com94]). That is, a linear partial differential equation of the second order of 

parabolic type is treated in the case of mass transfer (heat conduction) [Wei65]. Moreover, a 

numerical study of such processes can serve as a model simulation of instationary problems 

for the finite element calculations. However, problems such as GB diffusion have never been 

studied intensively by FEM. The paper of Whipple [Whi54] was published in earlier 50‘s of 

the last century. Since that time, Whipple’s solution has been remaining the only exact 

solution of diffusion equations to the GB diffusion problem, and there was no need to solve 

the Fisher system by means of numerical methods. Only a single paper, by Z. Knesl et al. 

[Kne74], was dealing with FEM for interacting GBs in the model of square grains. Even 

though, numerical methods can help to obtain the concentration distribution for such 

geometrical situations. As a result of this simulation they simply compared the diffusion 

profiles obtained for the isolated boundary model to those for the square grains for the 
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interacting GBs. Despite this fact, it was a pioneering work as regards on the application of 

FEM to the problems of GB diffusion.  

There is always a numerical aspect relating to the integration of differential equations. 

The accuracy of integration defines the quality of simulating concentration profiles, which is 

reflected in the parameters obtained from simulated profiles. The integration can become very 

critical in the cases of extremely small diffusion lengths, because the diffusion process in the 

bulk (grain) is concentrated closely to the surface where the gradients are very high. This is 

specifically important for GB diffusion, because of two interrelated processes: the GB 

diffusion rates can be significantly different from the bulk diffusion rates. The GB 

contribution to the overall process is prolonged along the y-coordinate (fig. 1.2) at short t and 

is strongly concentrated around the GB. This implies that high densities of integration meshes 

are required in those regions in order to get accurate results. Otherwise, the simulated 

diffusion profiles could either be inaccurate or even physically inadequate by giving negative 

concentrations. It is the purpose here to show: 1) how the GB diffusion problem can be 

resolved by using FEM, 2) which problems arise when integrating Fisher’s system (Eq. 

(1.6a)) by FEM, 3) what conclusions can be drawn from numerical analysis.   

 

4.1.1 Main characteristics of the geometrical model of isolated boundary used 

in the finite element program 
 

The typical t used in the present work is 2000 s for ∆ = 2.2⋅104. In this case Lg ≈ 0.77 

nm, i.e. it is comparable with the interatomic spacing, whereas Lgb ≈ 64.61 nm. Let the whole 

length of geometrical model be 500 nm and the width 40 nm. The length of 500 nm is mostly 

used, if not stated otherwise. That is, the geometry is represented by a rectangle box with the 

diffusant applied at the free surface. The diffusant moves into the box under the concentration 

gradient until a whole space is filled up by the diffusant. This problem is again two-

dimensional with reflecting boundaries at all sides of the geometrical model, if a special 

property is not defined, for example, the GB or the free surface. The GB thickness (δ) is 

neglected as it is supposed by Fisher’s model. The latter means that the GB is represented by 

a line with neglecting the GB concentration within it. The relevant geometrical model is 

equivalent to that used to integrate Whipple’s solution. The only difference between the two 

solutions is the influence of reflecting boundaries in the FEM model. Consequently, Eq. (1.3a) 

should be added by the zero-flux condition at the bottom of geometry. However, our main 

analysis is related to the maximum of the derivative of lnCav = f(y6/5). If the maximum is not 
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affected by the boundary, the solution is valid for infinite systems as well. The role of this 

condition for simulation of diffusion in the A-regime is discussed in section 4.2.3.1.  

 

4.1.2 A comparison of Whipple’s solution and FLUX-EXPERT’s simulation 

results 
 

To compare Whipple’s solution with FLUX-EXPERT’s result, a consideration of 

single GB is necessary. The two results are shown in fig. 4.1. These coincide within an error 

of 1% until the influence of the zero-flux boundary condition becomes significant at larger 

coordinates (the derivative goes to zero). This demonstrates that the model applied in FLUX-

EXPERT (the geometrical model, mesh as well as the derived Eq. (2.8)) can be used to 

integrate the Fisher system. This is particularly important because diffusion is studied here 

under extreme conditions: short t and diffusion lengths, leading to high derivatives. In the 

next sections the results of the integration in FLUX-EXPERT for different geometrical 

models and parameters are discussed. All these results were obtained with a very high 

accuracy, what is, however, computationally costly. 
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Fig. 4.1 A comparison of the integration by FEM (FLUX-EXPERT) with 
Whipple’s solution (MATLAB). The ratio ∆ = 2.2⋅104 and t = 2000 s. 
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4.1.3 The accuracy of results obtained in FLUX-EXPERT 
 

4.1.3.1 The averaging of concentration Cg 

  

It is reasonable to discuss here how, using FLUX-EXPERT, the concentration Cg(x, y, 

t) is integrated along the direction perpendicular to the GB. The diffusion parameters are 

found from the profile of concentration Cg(x, y, t) averaged along the x-direction (fig. 1.2), 

which reveals the concentration Cav(y, t) as a function of coordinate y only. This is done in the 

same manner as in real diffusion experiments by using, for example, tracer measurements 

[Ask70]. FLUX-EXPERT gives the concentration distribution over all mesh points. One can 

also plot the concentration along different paths of the geometrical model [Flu92e]; however, 

the averaging is not realized in the program specifically. The special script was written by 

using the programming language Perl in order to obtain Cav.  
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Fig. 4.2 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated with 
different intervals ∆x and ∆y. 

 

The script runs the module XPLOIT [Flu92e], in which the concentration is calculated 

along the paths of constant y-coordinates in the automatic mode. The module allows one to 

calculate the integral itself; however the averaging is done by dividing that integral by (xmax – 

xmin), i.e. the width of the geometrical model used. Consequently, 
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max

main

x

av g
max min x

1C (y, t) C (x, y, t)dx
x x

=
− ∫         (4.1) 

 

The steps of integration are controlled in this script along both directions, but the interval 

along the x-direction (∆x) is, of course, an important parameter. In the present work the only 

intervals used to obtain Cav are ∆x = 0.20 and 0.25 nm. If the interval ∆x is decreased, say by 

a factor of 2, the derivative does not change and, in principle, the same result can be obtained 

(fig. 4.2, black line). The step along the y-direction can influence the result as well, leading to 

numerical instabilities similar to those observed by integrating Whipple’s solution (see section 

3.2). The instability is reflected in noise and spikes, for example at y6/5 ∼ 750 nm6/5 in fig. 4.2. 

Such spikes are enhanced when the interval ∆y decreases. 
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Fig. 4.3 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated with 
different steps ∆y in the GB part. 

 

Consequently, the following ∆y-intervals were tested in the GB part of the diffusion 

profiles (i.e. in the region 50 – 500 nm for ∆ = 2.2·104 at t = 2000 s): 0.25, 2.00, 5.00, and 

10.00 nm, while the interval in the bulk part of the profile was fixed to 0.25 nm. The 

derivatives of the corresponding diffusion profiles are presented in fig. 4.3. In this way one 
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can show that increasing the interval of integration (∆y) in the GB part leads to derivatives 

without instabilities. In order to get a similarly smooth profile of the derivative three steps 

were finally adapted according to three parts of the diffusion profile: bulk part, GB part and 

the reflecting boundary. The example of this profile is shown in fig. 4.1 obtained with the ∆y-

steps 0.25, 20.0, 5.0 in the bulk, GB and reflecting boundary parts, respectively. 

 

4.1.3.2 The effect of the finite element mesh 

 

Diffusion has a specific feature which should be taken into account for numerical 

integration of the diffusion equations by FEM. The diffusion gradients vary with time striving 

for zero until the equilibrium is achieved. On simulating diffusion in different kinetic regimes, 

the problem of the mesh becomes very important. One would thus presume different density 

meshes in different parts of geometry and/or at different t. This also complicates the 

numerical integration of diffusion equations. However, it would be useful to find a universal 

mesh for certain diffusion parameters, sufficiently dense to use it under different conditions. 

Moreover, there is always a trade-off between mesh density and time interval (∆t). Several 

calculations are typically needed to get a final diffusion profile, which depends on the 

parameters (diffusivities, t) used in the numerical experiment. Unfortunately, it is not possible 

to simply increase the density, because it would giantly increase the computational time. 

Moreover, the finite element program used has limits too. In particular, FLUX-EXPERT has a 

maximum number of elements of one million (!), at least for the version of the program used 

in the present work [Flu00]. One can imagine that this maximum number is fixed for the 

whole geometry, and once the geometry was defined, satisfying the accuracy, it is not possible 

to increase its length further. One should pay attention that these numerical problems become 

specifically important when simulating diffusion in nanocrystalline materials due to small 

diffusion lengths.    

The mesh density for the concentration profile plotted in fig. 4.1 is as follows: 0.25 nm 

along the x-direction and about 0.24 nm along the y-direction. Hereafter this mesh is called 

mesh 1. Such a mesh density implies the number of triangle elements to be 657729 for the 

geometry of 40 nm in width and 500 nm in length (40x500 nm2). The same density for the 

geometry of 25 nm in width gives 409940 triangle elements. This is the most dense mesh used 

in the present work (except the space charge layer problems discussed in the next chapter), for 

which the number of elements is already half of the program’s limit (see also other examples 

in table 4.1). The result obtained by using this mesh is consistent with that obtained by 
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integrating Whipple’s solution (fig. 4.1). This allows mesh 1 to be a model mesh and to skip a 

comparison of that with more dense meshes. In fig. 4.4a the profile for mesh 1 (red curve) is 

compared with that for smaller number of elements. The density was also decreased to 0.5 nm 

and about 0.48 along the x- and y-direction, respectively. This is a mesh, called mesh 2, with 

~164884 elements for the sample: 40x500 nm2. It is very important to note that for a mesh of 

smaller density the reflecting boundary leads to larger values of the concentration Cav(y, t), 

especially at deeper y-coordinates. In this case the derivative looks more like a straight line in 

the GB part artificially, but this is purely the effect of the mesh only (green and blue lines in 

fig. 4.4a). In the worst case, the decrease of the mesh density could lead to a vanishing of the 

GB part, affecting the maximum so strongly that the slope of the diffusion profile could not be 

obtained.  

The integration parameters (the interval ∆y, see discussion above) differ for both mesh 

1 and mesh 2. The interval ∆y = 10 nm and smaller along the GB part leads to the instabilities 

for mesh 2 (blue and green curves). In fig. 4.4b the comparison of mesh 1 is made with 

additional new meshes for the same geometry (40x500 nm2) at longer t in order to get a 

preliminary impression of the introduced errors. Additionally, decreasing mesh density does 

not really allow one to start the calculation with short time of 200 s, as it was done with mesh 

1. Consequently, the starting times are 200 s for mesh 3 and 7000 s for mesh 4 (table 4.1). In 

fig. 4.4b the noise (green curve) is related to a very small step integration ∆y of 0.25 nm. 

Obviously, such intervals together with small densities are not advisable. The results for mesh 

1 and mesh 3 coincide at t = 10700 s, demonstrating that one can use the meshes of smaller 

densities for simulating diffusion at higher t only. However, the main choice is made for mesh 

1 is preferred as satisfying the necessary accuracy at short t and allowing t to be increased as 

well as the ratio of diffusivities (∆).                         

 

Table 4.1 Parameters of different test meshes. 

Name Density along x/y direction Number of triangle 
elements (40x500 nm2) 

mesh 1 0.25/0.24 657729 
mesh 2 0.50/0.48 ~164864 
mesh 3 1.00/0.97 41391 
mesh 4 2.00/1.95 10445 

 

 

4.1.3.3 The effect of the time interval 
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Fig. 4.4 A comparison of different meshes at a) t = 2000 s and b) t = 10700 s. 
The steps ∆y1 and ∆y2 mean the intervals in the bulk part and GB part of the 
profile, respectively. 
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As we deal with transitory problems, the solution strongly depends on the time interval 

used. The smaller the interval ∆t the more accurate the solution. Because very small values ∆t 

leads to time-consuming calculations, an appropriate computational procedure should be 

found with respect to that parameter too. In order to check its effect, various ∆t were used, 

simulating the diffusion profile for conditions ∆ = 2.2⋅104 at t = 2000 s. The interval ∆t was 

varied from 600 s to 6.25 s, starting the calculation with t of 200 s. In all the calculations 

under conditions of the type-B kinetics (see section 1.2), this starting time was taken as 200 s, 

if not otherwise stated. Consequently, the largest ∆t suggests 3 computational steps, whereas 

the smallest one 288 steps.  

The profiles for various ∆t are presented in fig. 4.5. One can see that there is a very 

little difference in the derivatives calculated for ∆t = 6.25, 12.5 and 25 s. Finally, ∆t = 12.5 s 

was used in all the calculations up to 13200 s. It was observed, that after 13200 s ∆t can be 

increased and, consequently, in the A-regime the time interval of 20000 s was used.  

The starting time value can affect the accuracy of a particular result, especially at very 

short t. That is why, ∆t should be tuned every time, beginning a new calculation with a new 

geometry (or mesh) and parameters. In fig. 4.5 it is demonstrated that large ∆t = 600 s leads to 

the vanishing of the maximum. Fitting the corresponding profile by a straight line does not 

give a correct slope. 

 

4.2 Realistic polycrystalline microstructures 
 

In GB diffusion studies the isolated boundary model (fig. 1.2) has been serving as a 

good approximation of a real microcrystalline structure for many years. However, a real 

microcrystalline structure comprises many GBs differently oriented to each other and to the 

diffusion direction. Ignoring the GBs orientations seems justified by the fact that in coarse-

grained materials the influence of a GB orientation on a concentration profile is negligible, 

because of the possibility to study diffusion under conditions of high temperatures and/or long 

t. The type-B kinetics is considered for the coordinate developing process. In the case of 

coarse-grained materials Lgb is also less than d [Kau95], i.e. the condition given by Eq. (1.11a) 

is fulfilled. It is believed that the diffusion process changes with time and along a GB oriented 

perpendicularly to the surface. One would expect that the role of GBs, which are not parallel 

to the diffusion direction increases, if the β-parameter increases (Eq. (1.9d)), i.e. the larger 

ratio ∆ or significantly shorter t (and/or smaller d) are considered. The former would lead to 

the condition Lgb >> d, whereas the latter tends to the specific type-B kinetics in which all the 
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properties discussed so far are valid (chapter III) and the condition Lgb >> d can be recalled 

also. Interestingly, Lg can reach d earlier than Lgb, what would exactly mean that one faces the 

type-B4 kinetics (fig. 1.5a, imagine that d > 25 nm) but this is only possible for coarse-grained 

materials.  

There is another interesting finding of Mishin [Mis92b] that plotting the diffusion 

profile versus y6/5 or simply y gives, in principle, similar errors of determining Dgb in a 

coarse-grained polycrystal when only the orientation of a GB to the surface is taken into  
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Fig. 4.5 A comparison of the derivatives of concentration profiles calculated by 
the FEM with different time intervals (∆t) at t = 2000 s. 

 

account and analyzed. This is not true for a bicrystal, or an idealized system of parallel 

boundaries, because the profile is more nonlinear in this case according to Mishin. However, 

this opens the question about the validity of both methods (i.e., lnCav = f(y6/5) and lnCav = f(y)) 

for polycrystals, what is also mentioned in [Kau95]. The other possible situations for Lgb 

being larger than d are discussed in the present work (fine-grained or ultrafine-grained 

materials [Mis95]). Nanocrystalline materials, characterized by grains of ten-hundreds of 

nanometers, have Lg of several or tens nanometers, what gives rise to β-values of the order of 

several thousands. The problems discussed above concerning the application of Le Claire’s 
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relation (Eq. (1.16)) come into play together with the GBs orientations. The problems of GB 

orientations make the diffusion studies more complicated. In this sense the effects of small 

grain sizes are size effects – a term that arises particularly when discussing properties of 

nanocrystalline materials [Mai03], [Mai04a].          

Two important points are taken into account now. First, the orientation of a GB to the 

surface is not analyzed. According to [Kau95], after the pre-diffusion anneals the GBs will 

tend to maximize the inclination angles with the surface in a way that most of their values will 

be around 90º. Moreover, the diffusion profile for real polycrystalline specimen represents an 

averaged resultant of the influence of different GBs orientations.  

 

4.2.1 A comparison of the model of parallel boundaries with the model of 

square grains under conditions of type-B kinetics 
 

The model of square grains used to analyze the corresponding diffusion effects 

represents a 2D pattern with GBs being simple lines perpendicular or parallel to the diffusion 

direction. Consequently, the concentration within the GBs is neglected. Each GB forms a side 

of square (fig. 4.6). Also the zero flux condition is used at the sample’s bottom as a boundary 

condition. The typical grain sizes are 10, 25, 50 and 100 nm. Correspondingly, the grain size 

for the model of parallel boundaries simply means the distance between two neighboring 

GBs. The diffusion time was varied to cover different kinetic regimes, going from the B-

regime to the A-regime. This allows one to apply different procedures used to deduce Dgb. 

The typical ratio of diffusivities ∆ is 2.2⋅104, however in some cases smaller ratios are also 

used (it is indicated).  Such ratios fit very well to all important requirements needed to be 

taken into account for the accuracy and convergence when simulating diffusion by FEM.   

  

4.2.1.1 The model of parallel boundaries at short diffusion times 

  

It is reasonable to start the analysis of the B-regime at short t with the model of 

parallel boundaries. Let us consider the variation of the distance between the boundaries from 

10 nm to 100 nm. The diffusion process is analyzed at 2000 s. The values of diffusion 

parameters are the same as explained in chapter III. Under these conditions the contribution of 

GBs leads to the same slopes independently of d, whereas the bulk contribution (given by a 

complementary error-function) intermixed with the GB contribution changes. Because the 

average concentration (Cav) represents the grain concentration averaged along the direction 
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perpendicular to the GB, the GB part of the concentration is larger for smaller distances. This 

is confirmed by the result shown in fig. 4.8.  

 The GB part of the concentration reduces to a constant value when the distance 

is doubled (the results for d = 12.5, 25, 50 and 100 nm in fig. 4.7). Consequently, smaller 

deviations of the concentration Cav in the bulk part of the profile result for the larger 

distances. For larger d the bulk parts of the profiles are better determined by a complementary 

error-function solution (red curve in fig. 4.7). The strongest deviation appears, of course, for d 

= 10 nm, suggesting that this result will lead to serious errors in determining Dg from the 

corresponding profile. This is ascribed to an additional effect related to the small grain sizes. 

In order to emphasize the effect, the concentration profiles for the same parameters were 

calculated for the micrometer regime (fig. 4.7). 

 

d

d

x

y
 

 

Fig. 4.6 Schematic representation of the square grain model. 
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Fig. 4.7 Variation of lnCav with y6/5 calculated for the model of parallel 
boundaries for different distances between the boundaries (d). 
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Fig. 4.8 Variation of lnCav with y6/5 calculated for ∆ = 2.2⋅104 at t = 2.04⋅109 s 
for the model of parallel boundaries. 

 

The diffusion length in the grain (Lg) at t = 2.04⋅109 s is about 0.78 µm for the profiles 

in fig. 4.8. This is exactly by three orders of magnitude higher than that at t = 2000 s. The 

deviations in the bulk parts for the profiles for different d are smaller in comparison with the 

nanometer regime. The GB part is affected in a way the two distinguishable parts of the 

profiles disappear with time (very small values of β arise). The profiles are less acute 

(between the two parts of the profiles) in fig. 4.8 in comparison with fig. 4.7. The slopes of 

the GB parts of the profiles shown in fig. 4.7 or in fig. 4.8 are the same for varying 

corresponding d. Clearly, the slope can then be changed only by varying t, if ∆ is fixed. Yet, 

the profile in a nanoregime is more sensitive to the distance d. The process in the grain has not 

enough time to adopt a complementary error-function at very short t. In fig. 4.9 the diffusion 

profiles as shown in fig. 4.7 and fig. 4.8 for d = 25 and 10 nm and d = 25 and 10 µm are 

presented again together with the corresponding complementary error-function solutions to 

analyze the transition from the bulk diffusion parts to the GB parts of the profiles on different 

scales. The deviation of the result for d = 10 nm from its bulk diffusion profile is larger than 

that for d = 10 µm. Interestingly, the profiles in fig. 4.9b correspond mostly to bulk diffusion 

and only partly to the intermixture of the bulk and the GB parts, whereas on the nanoscale the 

GB part is very distinguishable despite the reduced values of y.       
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 Understanding the diffusion process at different time scales allows one to analyze the 

role of GBs in the model of square grains or in one of the general representations of a 

polycrystal. The short times lead to an artificial prolongation of the process along GBs and, as 

a result, the GBs orientation can play a role. In these cases Lgb is typically much larger than d, 

and the kinetics are slightly different in comparison with the coarse-grained materials. 

 

4.2.1.2 The model of square grains at short diffusion times 

 

Let us first compare the profiles calculated for the square grains with the 

corresponding profiles for the parallel boundaries at fixed t. In fig. 4.10 the profiles are 

performed for these two models for ∆ = 2.2⋅104 at t = 2000 s and for d = 25 nm and 100 nm. 

The profile for the square grains comprises two types of diffusion paths, namely parallel and 

perpendicular ones. The perpendicular GBs lead to spikes clearly seen in fig. 4.10. The 

number of these perpendicular paths is 19 for d = 25 nm and 4 for d = 100 nm for the fixed 

total length of the sample (geometry) of 500 nm. Each of them contributes to the profile 

changing the slope of it. It is seen that the discrepancy between the two models is more 

pronounced for smaller d. Moreover, one can recall here the effect of nonlinearity discussed 

in chapter III. When increasing the volume fraction of GBs (g) or decreasing d, the effect of 

nonlinearity is further induced, especially at very deep parts of the profiles (figs. 4.10b and 

4.11).   

When, second, analyzing the effect of g, one should be especially careful with the 

slope of the profile. The slope increases with decreasing d (fig. 4.11). The atoms move 

through the perpendicular and parallel boundaries in the model of square grains, and their 

concentration should be decreased in comparison with the motion of those along the parallel 

paths only. Surely, if the number of perpendicular GBs is higher, the concentration reduces. 

Consequently, two effects characterize the diffusion profile. One is related to 

increasing/decreasing d and leads to larger concentrations for smaller distances d, especially 

at coordinates close to the surface (fig. 4.11). Another one also depends on d and with 

decreasing d leads to smaller concentrations in comparison with the parallel boundaries. If the 

distance d is 25 or 10 nm, there is a convex curvature of the profile, because the perpendicular 

boundaries do not allow the number of atoms to be increased. This is in contrast to d = 50 or 

100 nm, when the concentration increases at the deeper parts of the profile for the fixed length 

of the sample. If one believes that the model of square grains indeed represents a general 

polycrystal, then the GBs orientations can change the values of Dgb,app applying Le Claire’s  



Chapter IV.                                                                                                                Realistic microstructures 
 

 90

 

a) 

0.0 2.5 5.0 7.5 10.0

-4

-3

-2

-1

0

ln
C

av

y6/5, nm6/5

 d = 10 nm
 d = 25 nm
 bulk diffusion 

 
b) 

0.0 2.5 5.0 7.5 10.0

-4

-3

-2

-1

0

ln
C av

y6/5, µm6/5

 d = 25 µm
 d = 10 µm
 bulk diffusion

 
Fig. 4.9 A comparison of the diffusion profiles calculated at t = 2000 s a) and t 
= 2.04⋅109 s b) for different distances between the parallel boundaries (the 
same profiles as performed in figs. 4.7 and 4.8, but for another scale of y6/5). 
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relation (Eq. (1.16)). The larger the slope the smaller the value of Dgb,app. Such an 

underestimation of Dgb is very typical for short t in the model of square grains in the type-B 

kinetics. The slope of the profile varies with t as well as with d. In order to estimate possible 

errors all the profiles presented in fig. 4.11 were fitted by straight lines. Accordingly, table 4.2 

contains information on varying Dgb,app determined by applying Le Claire’s relation. Also the 

results of fitting the profiles calculated for the parallel boundaries are presented. As it is 

expected, all the slopes for the square grains are larger than for the parallel boundaries. It is 

important to notice that the slopes presented in table. 4.2 may only be compared with the 

slope of –0.00675, giving Dgb,app = 4.22 nm2/s which itself is erroneous (Dgb,true = 6.42 nm2/s). 

The latter value includes the corrected Le Claire’s constant, but is affected by the effect of 

nonlinearity. Consequently, Dgb,app can be three times smaller than the true value applying the 

conventional analysis when the effects of GBs orientations are not taken into account. The 

underestimation can be even larger, if the profile is measured (or calculated) for deeper 

coordinates influenced by larger number of perpendicular GBs.        

Analyzing the derivatives of the profiles in the grain closest to the surface (fig. 4.12) 

reveals that the maximum is not reached even for d = 100 nm due to the perpendicular 

boundaries, since the position of maximum 6/5
maxy ≈ 300 nm6/5 at t = 2000 s for ∆ = 2.2·104. The 

positions of perpendicular GBs are 15.85, 47.59, 251.19 nm6/5 for d = 10, 25, 100 nm, 

respectively. Moreover, the effect of perpendicular GBs is reflected in the increasing 

derivative in fig. 4.12. The peaks (spikes) in the diffusion profiles are broadened (red curve in 

fig. 4.12), i.e. their contribution can be characterized by certain widths.  

 

Table 4.2 The slopes and values of Dgb,app calculated by fitting the diffusion profiles by  
straight lines for different d. The values of Dgb,app should be compared with the value 
of 4.22 nm2/s. 

 
Square grains Parallel boundaries d, nm -slope Dgb,app, nm2/s -slope Dgb,app, nm2/s 

10 0.0113 1.79 0.00713 3.85 
25 0.01095 1.88 0.00714 3.84 
50 0.0101 2.15 0.00715 3.83 
100 0.00892 2.65 0.00716 3.82 
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Fig. 4.10 Variation of lnCav with y6/5 calculated for two models with d = 100 
nm a) and d = 25 nm b). 

 



Chapter IV.                                                                                                                Realistic microstructures 
 

 93

0 300 600 900 1200 1500 1800
-21

-18

-15

-12

-9

-6

-3

0

ln
C

av

y6/5, nm6/5

 d = 10 nm
 d = 25 nm
 d = 50 nm
 d = 100 nm

 
Fig. 4.11 A comparison of the diffusion profiles calculated for the model of 
square grains with different volume fractions of GBs. 
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Fig. 4.12 A comparison of the derivatives ∂lnCav/∂y6/5 calculated for the model 
of square grains (only the first grain is taken into consideration) with d = 10, 25 
and 100 nm. 
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A logical question arises when the model of square grains is used to simulate the 

diffusion profiles in a real microstructure, namely the question concerning different spatial 

orientation of GBs. The disadvantage of the model of square grains is that it comprises only 

perpendicular or parallel GBs. Can this model represent a realistic situation? In order to 

answer this question new models were proposed consisting of differently oriented GBs, i.e. 

GBs being not necessarily perpendicular to the diffusion direction. The models represent 

specific cases and may not exactly correspond to real polycrystals. However, the results 

obtained for these models give an important hint on the behavior of the diffusion process in 

realistic situations. 

    

4.2.2 General geometrical models 
 

4.2.2.1 Main characteristics of general geometrical models 

 

Let us define the fist general model (denoted here as general geometry 1) comprising a 

unit with 17 GBs (6 parallel boundaries and 11 all others) of different orientations and 

lengths. The length (depth) of that unit is 250 nm, while the width is 40 nm.  The unit was 

reflected once with respect to y = 250 nm for simulating diffusion at different time scales. 

Finally, the geometry used to simulate diffusion was 40 nm in width and 500 nm in depth. 

The unit is presented in fig. 4.13a, where also the length of all GBs are shown which vary 

from 20.6 to 70 nm (= the longest parallel boundary). All parallel boundaries in this geometry 

are situated at x = 0 only. In this way the half of the real grains was realized, because the 

number of triangle elements in the mesh used is already about 710000. When creating the 

mesh, some grains were divided into rectangular and triangular parts (see a snapshot in 

window in fig. 4.13a) in order to have a mesh of high quality. The former always gives a 

mesh of the high quality, while the latter suffices from sharp angles between the boundaries. 

One can estimate that d = 30.5 nm in this geometry by summing the lengths of all boundaries 

and dividing the sum by the number of boundaries (see discussion below). The lengths of GBs 

being closer to the surface are about 25 nm. Diffusion was simulated at rather short t, not 

exceeding 13200 s for ∆ = 2.2⋅104, and the results obtained can be compared to a real 

polycrystal having d = 25 nm, or a little bit larger. The angles between the GBs and the 

diffusion direction vary from 14º to 78.7º in the general geometry 1 except for the parallel 

boundaries having 0º. Varying GBs lengths and angles in a wide range allows the general 

geometry 1 to be adapted to a quite generalized situation. 
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Fig. 4.13 Concentration distribution in the general geometry 1 (a) and general 
geometry 2 (b) at t = 8200 s for ∆ = 2.2⋅104. The distribution is shown in 
colors, see explanation on the color pattern. White lines are GBs. In the 
window the fragment of the geometry drawn in the program SIMAIL [Sim95] 
is presented (red and green lines are GBs, white lines are additional lines used 
to make the quality of the mesh higher, i.e. the corresponding triangle and 
rectangular parts). Also the lengths of GBs in nm and their angles in degrees 
with respect to the diffusion direction are shown. An artifact means that in fact 
there is no GB at this place. 
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Fig. 4.14 Concentration distribution in the general geometry 3 at t = 8200 s for 
∆ = 2.2⋅104. The distribution is shown in colors, see explanation on the color 
pattern. White lines are GBs. The lengths of GBs are also shown. Only some 
angles with respect to the diffusion direction are indicated. 
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The general geometry 2 presented in fig. 4.13b is used for the same objective of 

analyzing the profile affected by different orientations of GBs. The unit is reflected at y = 260  

nm. However, in this case d = 64 nm. The geometry is characterized by 4 parallel boundaries 

and 3 boundaries having the angles 42º and 36º to the diffusion direction. 

One more general model (general geometry 3) was used with a larger number of 

grains and GBs in comparison with general geometries 1 and 2. The unit of this geometry is 

shown in fig. 4.14.  The geometry consists of 57 GBs, including 21 parallel GBs. The lengths 

of GBs vary from 8 to 50 nm. The average grain size (d) was estimated to be 29.1 nm. So the 

results obtained for such a geometry should be comparable with those for d = 25 – 30 nm. As 

one can see, the geometry is twice as wide as for the general geometries 1 and 2. The 

problems of creating the mesh for this geometry become more serious than for the general 

geometries 1 and 2. Consequently, the number of triangle elements for this geometry is 

355537 for the unit in fig. 4.14 and 710722 for the final geometry of the length 500 nm and of 

the width 160 nm. Using the general geometry 3, one should clarify the error introduced by 

the mesh of the smaller density. Advantage of this geometry is that the angles are very 

different, suggesting the contributions of very different boundaries. Additionally, some grains 

are very small, and these would be filled by diffusant in a very short t. This is a particular 

property of general geometry 3, which is important. 

 

4.2.2.2 Simulation results obtained in the general geometrical models 

 

All the geometrical models described so far were used to analyze the effects of GBs 

orientations. The lengths of the samples (geometrical models) were fixed to about 500 nm 

depending on the geometry, and the diffusion profiles were calculated at t = 8200 s for ∆ = 

2.2·104. The corresponding model of square grains exhibits 8 perpendicular GBs for d = 60 

nm, if the GB at y = 540 nm (the length of the sample) is modeled as a reflecting boundary 

with the flux of atoms at this boundary being zero. As it was explained, the perpendicular 

boundaries lead to steeper diffusion profiles having spikes. That is why Cav was decreased in 

comparison with the model of parallel boundaries. However, the spikes themselves reflect 

increased concentrations around the perpendicular GBs. This effect is also confirmed in fig. 

4.15, plotting the profile for square grains with d = 60 nm together with the profile calculated 

for the general geometry 2. The profile for the general geometry 2 has also the spikes slightly 

prolonged along the depth and, in principle; the profile is very close to that calculated for 

square grains. One GB in this model is oriented like having the angle with the parallel 
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boundary larger than 90º (the boundary of 68 nm in fig. 4.13b). It should be noted that the 

boundary gives a contribution to the profile with the angle 36º, because the concentration Cg 

is integrated along the x-direction varying y-coordinates from y = 0 nm to 520 nm. The 

difference of that boundary is reflected in the increasing concentration along the depth until 

its end is reached. The general geometry 1 has also several boundaries with the same effect. If 

the number of GBs is increased, this leads to further reduction of Cav, what increases the slope 

of the profile (black line in fig. 4.15, general geometry 1). Consequently, different slopes for 

general geometries 1 and 2 were observed despite the fixed t of 8200 s.  

The profile calculated for the general geometry 1 could also be compared with that 

calculated for the square grains with d = 30 nm, because of similar grain size (d = 30.5 nm). 

The latter point is particularly important. As it is immediately seen in fig. 4.16, the profile for 

the general geometry 1 is characterized by the concentrations which are smaller than those for 

the square grains. This is related to the fact that the geometry under consideration has larger 

grain areas, which suggests reduced concentrations in the parts of the profiles close to the 

surface. Nevertheless, the slope of the profile for the general geometry 1 is slightly increased 

in comparison with the square grains of 30 nm. On the one hand, an increase of the slope is 

only possible, if the number of perpendicular GBs is larger. On the other hand, for the general 

geometry 1 the increase is related to the fact that the number of parallel boundaries in this 

geometry is smaller than the number of the others. The contribution of parallel boundaries 

exists but is not significant enough, i.e. mostly the other orientations affect the profile. Such 

situations are very difficult to predict, because the orientations can be different. Moreover, it 

is difficult to estimate d in such situations. Interestingly, d can also be estimated by taking the 

square root of the average grain area. According to this procedure, d was found to be about 40 

nm for the general geometry 1. However, the larger grain size (in comparison with the square 

grains) would lead to a decrease of the slope.  

Consequently, the slope of the concentration profile increases, if the number of 

parallel boundaries is smaller than all the others comparing these profiles with those for the 

square grains or when similar numbers of the two types of boundaries (parallel and 

perpendicular) comprise the geometry. Additionally, the profile for the general geometry 2 is 

not very much different from that for the square grains (fig. 4.15). In order to check this point 

further, the profile calculated for the general geometry 3 was analyzed, because this geometry 

comprises a large number of different GBs. In fig. 4.17 three profiles are compared, namely 

the profile for general geometry 1, the square grains with d = 25 nm and the general geometry 

3. In the latter the number of GBs is by about a factor of 3 larger than in the general geometry 
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1. The number of parallel boundaries is extremely smaller than that of the others (there is no 

contribution of parallel diffusion paths at all). It is very significant, because the concentration 

once increased cannot be decreased sufficiently. This distinguishes the geometry from the 

general geometry 1. Additionally, some grains in the geometry are very small. These two facts 

cause some nonlinearity of the profile. Interestingly, the profile for the general geometry 3 is 

close to the profile for the model of square grains (both the profiles have d around 25 nm) and 

the slopes of those are believed to be similar. The decrease of the concentration at the 

coordinates close to the surface is similar in the two models. Because the model of square 

grains comprises the two extreme orientations, namely 0º and 90º with respect to the diffusion 

direction, it is supposed that the model of square grains is a good averaged representation of 

the real microcrystalline structure. 
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Fig. 4.15 A comparison of the diffusion profile of general geometry 2 with the 
profile of the model of square grains and general geometry 1. All the three 
profiles were calculated at t = 8200 s for ∆ = 2.2·104. 

 

The role of perpendicular boundaries is not the same at different t. It is, of course, 

related to the decreasing value of the parameter β (Eq. (1.9d)) with t. Thus, the parameter β 

yields information on the role of GBs orientations in the case of Lgb >> d. Of course, small 

values of β allow the contributions of perpendicular boundaries to be excluded (see discussion  
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Fig. 4.16 A comparison of the diffusion profile of general geometry 1 with the profile 
of the model of square grains with d = 30 nm. All the profiles were calculated at t = 
8200 s for ∆ = 2.2·104. 
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Fig. 4.17 A comparison of the diffusion profile of general geometry 3 with the 
profiles of the model of square grains with d = 25 nm and general geometry 1. 
All the three profiles were calculated at t = 8200 s for ∆ = 2.2·104. 
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above). However, the A-regime starts when Lg is comparable with d, and in nanomaterials β 

remains high even when Lg ≈ d. Nonetheless, the condition for starting the A-regime in 

nanomaterials is the same, and the contribution of perpendicular boundaries is negligible 

when Lg ≈ d. This is confirmed by the result in fig. 4.18. The parameter β is around 182 at t = 

3⋅106 s and, for comparison, 3488 at t = 8200 s for ∆ = 2.2·104. It is seen the two profiles for 

parallel boundaries and square grains coincide at long t. Below is given further analysis on the 

role of perpendicular boundaries.  
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Fig. 4.18 A comparison of two profiles obtained for the model of square grains 
and the model of parallel boundaries at t = 3·106 s for ∆ = 2.2·104 (d = 25 nm, 
Lg ≈ 30 nm). Parameters: β = 182, α = 0.17.  

 

4.2.3 A comparison of the model of parallel boundaries with the model of 

square grains under conditions of type-A kinetics 
 

As the model of square grains is a good representation of a realistic microstructure, the 

results for this model can be compared to those obtained for the model of parallel boundaries 

in the A-regime. Such a comparison would allow one to better understand the role of different 

evaluation equations in terms of extracting Dgb from the diffusion profiles measured in the A-

regime. The A-regime is particularly important for nanocrystalline materials due to small 

grain sizes. One may simply define the A-regime to be observed, if Lg exceeds d (no matter to 
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which extent), while Lgb can be larger (nanomaterials) or smaller than d (coarse-grained 

materials). According to Monte-Carlo simulations of Belova and Murch [Bel01], the A-

regime is observed when ( )gd / 2L  ≤ 0.4. The role of GBs orientations is not sufficient in the 

A-regime due to the result in fig. 4.18. In order to better clarify this point the diffusion 

profiles were calculated for both the model of parallel boundaries and square grains at high t. 

The different equations (Eqs. (1.17)-(1.18)) were used in order to compare Dgb,app with the 

true one. On the one hand, analysis of the equations has been started recently by Belova and 

Murch [Bel03], [Bel04]. Also a very interesting mathematical analysis was performed by 

Mishin [Mis92c] in order to suggest the expression for the effective diffusivity (Deff) in 

heterogeneous media. On the other hand, the problem of Deff has a very strong analogy with 

those problems dealing with conductivity in heterogeneous media which are discussed, for 

example, in [Lan78], [Gar95], [Harte04], [Kab05]. Most of these contributions concern 

Maxwell’s (Maxwell-Garnett’s) equation (Eq. (1.18)). However, Hart’s equation (or Hart-

Mortlock’s equation for studying diffusion with segregation) is still remaining the only 

equation used for determining Dgb in the A-regime. Up to now one cannot find any 

experimental paper on Dgb measurement where Maxwell’s or similar equation is used. It 

should also be noted, that Kalnin et al. [Kal02] modified Maxwell-Garnett’s equation for the 

problems of segregation. Consequently, there is the purpose here to compare all these 

equations. Segregation is also studied varying the segregation coefficient (s) from very small 

to very large values. This implies the possibility to analyze Deff under these different 

conditions, i.e. different values of s and geometries.  

 

4.2.3.1 Analyzing the boundary condition at the bottom 

  

 The problem of the reflecting boundary becomes particularly important when 

simulating diffusion by FEM in the A-regime for a semi-infinite sample. However, for finite 

systems, for example, thin films, the reflecting boundary is a necessary condition [Gil76]. It is 

reasonable to analyze the boundary effect in order to estimate possible errors in determining 

Dgb. The increased diffusion lengths, especially Lgb, lead to the increase of concentration at 

the bottom of the sample and, thus, the concentration profiles affected by the reflecting 

boundary.  

 In fig. 4.19 the derivatives are performed for different lengths of the sample (the 

model of parallel boundaries) at t = 7·105 s. The result corresponds to the B-regime, because 
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of ( )gd / 2L  ≈ 0.87 at that time for ∆ = 2.2⋅104. As one can see, the length of 500 nm may not 

be used for the analysis in the B-regime at so a high t, because the effect of the reflecting 

boundary becomes very strong – the maximum of the derivative is suppressed by this 

influence. The maximum appears, if the length is increased to 3200 nm. Interestingly, 

Shewmon [She63] explained that for an accurate experimental determination of the diffusivity 

(D) the concentration should decrease at least by an order of magnitude, what means a 

minimum penetration Dt3  y ≈  (D is the diffusivity of a solute and t has its usual meaning). 

The diffusion length Lgb of 279.46 nm for ∆ = 2.2⋅104 at t = 7·105 s is only about twice as 

small as the length 500 nm. One needs to increase the length of the sample to guarantee 

several diffusion lengths and to calculate the diffusion profiles at appropriate times by using 

the FEM. The concentration profiles were also calculated in the A-regime for different lengths 

of the sample (fig. 4.20). It could be expected, that the boundary effect, arising in the B-

regime, can alter the profile sufficiently in the A-regime too. For the length 1000 nm (fig. 

4.20) Cav is about 0.70 at the bottom of the sample, while it is about zero at y = 3200 nm. 

Table 4.3 comprises the calculated diffusion lengths in the A-regime (Leff) and the values of 

Cav at the bottom of the sample of different lengths for ratios ∆ from 102 to 105 at t = 5⋅106 s. 

The value of Cav at the bottom reflects the minimum concentration in the sample (Cav,min) 

except the point at the GB. The diffusion length Leff was calculated according to effD t , 

where Deff was found by using Hart’s equation (Eq. (1.17a)). The following three lengths of 

the sample are compared in table 4.3: 500 nm, 1000 nm and 3200 nm. Depending on the ratio 

∆, the length can be chosen very long to exclude the boundary effect, keeping in mind the cost 

issue of computational time. In order to find the most suitable length for a particular case of ∆ 

= 2.2⋅104, the values of Dgb,app were calculated. According to table 4.3, the concentrations of 

about 0.90, 0.70 or even 0.30 (the corresponding Dgb,app is not shown in the table) at the 

bottom may not be used, leading to significant errors. For instance, Dgb is overestimated by a 

factor of 26 for the length 1000 nm, because Leff is larger than 1000 nm for ∆ = 2.2⋅104 at t = 

5ּ106 s. The length of the model should be 3-4 times larger to obtain a reasonable result. If the 

ratio ∆ is small (= 102), the length may be surely 500 nm to find Dgb accurately. The value of 

Cav,min for ∆ = 102 and the length of 500 nm is so small, that Dgb is very accurate (not shown 

in the table), providing an error less than 1%. In a sense, this analysis confirmed suggestions 

of Shewmon for the experiment. If the profile is affected by the boundary in the B-regime, 

what is very possible with Lgb being only twice smaller that the length of the sample, Dgb,app 

can be extremely large. In the present study, t was increased up to 50ּ106 s! 
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Fig. 4.19 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated at t = 
7·105 s for ∆ = 2.2⋅104 for the model of parallel boundaries of two lengths: a) 
500 nm, b) 3200 nm. 
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Fig. 4.20 Variation of Cav with y calculated at t = 5⋅106 s for ∆ = 2.2⋅104 for the 
model of square grains of two lengths: a) 1000 nm, b) 3200 nm. 
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For such high t much longer samples (geometries) are needed. Finally, the model of the length 

of 13000 nm was chosen as an appropriate one for different ratios ∆ and t except ∆ = 102 for 

which the length was 1000 nm and 2000 nm for studying segregation effects (see discussion 

below). 

 

Table 4.3 The minimum values of the average concentration (Cav,min) and diffusion lengths Leff 
(Hart’s equation, Eq. (1.17a)) calculated for different ratios of the diffusivities (∆) and lengths 
of the sample (the model of square grains) at t = 5⋅106 s. The average grain size (d) is assumed 
to be 25 nm. Also are presented the values of Dgb,app calculated for ∆ = 2.2⋅104 by using Hart’s 
equation, i.e. these values should be compared with the true one of 6.42 nm2/s*. 
 

Cav, min ∆ Leff, nm 500 nm 1000 nm 3200 nm Type of material 

102 84 4.68ּ10-7 - - Coarse-grained 
103 240 8.05ּ10-2 1.81·10-4 2.45·10-26 Fine-grained 

2.2⋅104 1.11⋅103 9.94ּ10-1 7.20ּ10-1 8.91ּ10-3 Ultrafine-grained 
105 2370 - - 3.47·10-1 Ultrafine-grained 

Dgb,app, nm2/s  2.26·104 2.61·101 6.31  
 

*The values of Dgb,app were calculated by using an improved procedure, see discussion below. 

 

4.2.3.2 Analyzing Hart’s equation and Maxwell-Garnett’s equation 

 

 The A-regime is characterized by the fact that both the Hart equation and the 

Maxwell-Garnett equation suppose the steady-state condition of diffusion to be fulfilled. The 

area under the diffusion profiles calculated by FEM varies as t increases (fig. 4.21). This 

would imply slightly different diffusivities, found by Hart’s or Maxwell’s (Maxwell-Garnett) 

equation. As it will be shown below the latter discrepancy is insufficient. Moreover, as t is 

50ּ106 s, the variation becomes extremely slow. In the present study the concentration profiles 

were calculated at very long t for the model of square grains and parallel boundaries leading 

to the conditions very close to the steady-state. The overall process is called here a quasi-

steady-state diffusion.  

The diffusion time was varied from 2ּ106 s to 50ּ106 s. However, the value of 50ּ106 s 

corresponds to 19 months and would unlikely be realized experimentally. Clearly, large 

absolute values of t are related to the temperature, since the diffusivities used in the 

simulation were quite small as being taken at 500ºC according to the Arrhenius dependences 

found in [Bro99a] for undoped ZrO2. Increasing the temperature would allow one to decrease 

t. Anyway, as the A-regime is concerned one can think of the interacting GBs in the sense that 
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the atoms move between different boundaries, and one can apply the corresponding equations 

for Deff.  

Calculating the values of Deff as a function of t for different ∆, different kinetic 

regimes were covered as proposed by Mishin [Mis95], namely the A- and A´-regimes. Since 

the GB and grain contributions are not separated in the A-regime, and the overall diffusion 

process is described by single diffusion equation with Deff, the diffusivity Deff was found by 

fitting the concentration profiles with a complementary error-function solution to diffusion 

equation using the program MATLAB. In this program a special toolbox was used for the 

fitting, namely the Optimization toolbox [Mat03], [Mat06]. The default values of optimization 

parameters of the standard function of the Optimization toolbox “lsqcurvefit” based on the 

nonlinear least-squares method [Ger03] were used for fitting. For instance, the total number of 

iterations was 400, whereas the absolute and relative errors were fixed to 10-6.  

The models of square grains and parallel boundaries are compared in fig. 4.22 for 

different ∆, t = 10·106 – 50·106 s, fixed area fraction (2D geometry) of GBs (g) and fixed Dg. 

The larger ratio ∆ yields increased values of Deff. This can be understood by the fact, that Deff 

is more determined by Dgb which is increased along the simulation for larger ∆. Moreover, 

increasing g (decreasing d) makes Deff determined by Dgb only, as it is discussed in [Kau95]. 

In other words, the increase of Dgb leads to the same effects as the increase of g. The value of 

g was calculated as Sgb/Stotal, where Sgb and Stotal are the area given by GBs and the total area 

of 2D geometry (sample), respectively. Consequently, g for the model of square grains is 

twice as large as that for the model of parallel boundaries, if d is the same in both cases. For d 

= 25 nm g is about 1.96·10-2 for the parallel boundaries and 3.84·10-2 for the squares, if the 

length of the sample is 13000 nm. One has also to pay attention to the fact that Deff is the 

same in the two models (fig. 4.22). It is related to the finding in fig. 4.18. According to these 

results, the role of perpendicular boundaries is negligible, if diffusion is studied in the type-A 

kinetics. Then it is interesting to compare the corresponding concentration distributions in 

order to clarify the latter point.  

In fig. 4.23 a fragment of the concentration distribution in the model of parallel 

boundaries as well as in the model of square grains at t = 3·106 s for ∆ = 2.2·104 is shown in 

color. The concentration variation from 0.6 to 0.3 corresponds to a depth range from 475 nm 

to 800 nm. Because the difference between the two models increases along the depth y (the 

diffusion regimes change with the depth), this range of the concentration was chosen as the 

most interesting one for the analysis of the role of perpendicular boundaries. The distributions 

for the two models completely coincide at higher concentrations. Similar values of 
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concentration were obtained in both models at the same depths. This confirms the idea about 

the negligibility of perpendicular GBs in the A-regime. The distributions are only slightly 

different at the points of the concentration level change. For instance, the concentration 0.375 

arises at y ≈ 730 nm in the model of parallel boundaries, whereas it arises at y ≈ 755 nm in the 

model of square grains. What one is eventually interested in is the value of a calculated 

apparent GB diffusivity (Dgb,app).  
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Fig. 4.21 Variation of Cav with y calculated at different t for ∆ = 2.2⋅104 for the 
model of square grains. 

 

Moreover, very recently Belova and Murch [Bel04] posed the question about the transition 

from the type-B kinetics to the type-A kinetics for the model of square grains. The answer to 

this question is given here due to the results in figs. 4.22 and 4.23: the condition for the 

transition in both the model of square grains and the model of parallel boundaries is the same 

(the condition ( )gd / 2L  ≤ 0.4 was suggested by Belova and Murch for the model of parallel 

boundaries [Bel01]), since the role of perpendicular boundaries vanishes at high t. However, 

segregation of impurity atoms leads to another effect. In order to make a comparison of Dgb,app 

with the true value, used in the simulation, for GB diffusion accompanied by segregation, two 

equations will be used: Hart’s equation and Maxwell-Garnett’s equation. 
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Fig. 4.22 Time evolution of Deff for different ratios ∆: a) square grains, b) 
parallel boundaries. 
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Fig. 4.23 A fragment of the concentration distribution at t = 3·106 s: a) parallel 
boundaries, b) square grains. White lines represent to the perpendicular GBs 
with respect to the diffusion direction. The parallel boundaries in both 
distributions are at x = 0.0 and 25.0 nm. The corresponding color pattern is also 
shown.  
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4.2.3.3 Segregation effects under conditions of type-A kinetics 

 

 The Hart equation and its extended version for diffusion of impurities, known as Hart-

Mortock’s equation (Eq. (1.17b)), is widely used to deduce Dgb, if the diffusion profile is 

measured under conditions of the kinetics of type-A. As Belova and Murch [Bel03] showed, 

the Hart-Mortlock equation leads to errors of deducing Dgb, when simulating diffusion in the 

model of square grains varying g and fixing the segregation factor (s). In the present work 

another important point is addressed, namely the influence of segregation. Very often s is 

obtained by measuring the triple product sδDgb in the B-regime, if Dgb is known from the 

measurements in the C-regime [Her03]. However, the measurements in the C-regime are not 

always possible. Then one could combine the measurements in the B- and A-regime. When 

knowing the product sDgb from the measurements in the B-regime, the only unknown 

parameter in the Hart-Mortlock equation or the Maxwell-Garnett equation is s. Can the Hart-

Mortlock equation provide reasonable values for s? It is supposed that s can be used as the 

ratio of the corresponding concentrations in the GB and in the grain (Eq. (1.6b), very dilute 

conditions). The question of the validity of Hart-Mortlock’s equation with respect to 

segregation has not been analyzed yet. Contrary, the Maxwell-Garnett equation was recently 

analyzed theoretically, extended to the problems of segregation and chemical diffusion 

[Kal02], [Jam06]. In the study of Belova and Murch [Bel03], it was proved that the Maxwell-

Garnett equation gives smaller errors than Hart-Mortlock’s equation varying g. Nevertheless, 

segregation imposes new conditions, i.e. suppresses the type-B kinetics. This is why it can be 

particularly interesting to analyze the equations under the conditions induced by the 

segregation.    

 Diffusion profiles were simulated in the model of parallel boundaries and in the model 

of square grains by using the modified Fisher system (Eq. (1.6c)). The average grain size (d) 

used in the simulation was fixed to 10 nm, whereas s was varied from 5 to 640. The value of s 

= 640 can be considered as a kind of maximum, because a further increase of s did not give a 

significant difference. However, larger values of s are also possible in different materials 

depending on temperature [Div01]. In fig. 4.24 the diffusion profiles calculated for varying s 

are depicted for fixed ratio ∆ = 102 and time t = 106 s. The length of the sample (geometry) 

was fixed to 2000 nm. The following property is reflected in fig. 4.24, the diffusion process 

with segregation is a nonlinear process going to some saturation, but never reaches it. In this 

sense, the situation is similar to the variation of t (fig. 4.21), i.e. the area under the curves 

varies with s.  
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Fig. 4.24 Variation of Cav with y calculated for different segregation 
coefficients (s) for the model of square grains. The average grain size is 10 nm 
and t = 106 s. 

 

 Importantly, segregation suppresses the B-regime (Eqs. (1.10)-(1.11)) and gives larger 

values of Lgb (Eq. (1.12a)). Although, the rates of diffusion in the bulk are the same as in the 

case of diffusion without segregation. Segregation leads to larger values of β (Eq. (1.12b)) at 

the moment when the A-regime comes into play. This situation is similar to that for 

decreasing d. In both cases β can be very large even if Lg ≥ d. It can be understood by the fact 

that segregation leads to an enhanced concentration within the GBs, because it restricts the 

contribution of GBs into the bulk (grain).  

 Following the procedure discussed in the preceding section, the diffusion profiles were 

fitted by a complementary error-function with the resulting Deff being valid for a constant 

surface source as used in the simulation. Along with the fitting, the values of Deff were 

estimated by using Hart-Mortlock’s equation and Maxwell-Garnett’s equation for each value 

of s. In fig. 4.25 the results of fitting are compared with those calculated by using the Hart-

Mortlock and Maxwell-Garnett equations for the model of parallel boundaries as well as for 

the model of square grains. One can see the discrepancy that exists between the Hart-

Mortlock equation and the simulation. The discrepancy increases with s, because the 

dependence of Deff on s is linear in one case and nonlinear in another one. Contrary, Maxwell-

Garnett’s equation gives much more reasonable values for Deff. This suggests that the linear 
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dependence supposed by the Hart-Mortlock equation is not valid even for the model of 

parallel boundaries when the Hart type equations are expected to be valid similarly to mixture 

rules [Nie78]. In fig. 4.26 the Maxwell-Garnett equation is compared separately with the 

simulation result. Interestingly, the deviation of Maxwell-Garnett’s equation from the 

simulation is larger for the model of parallel boundaries. To estimate these deviations Dgb,app 

was calculated by fitting the diffusion profiles by the complementary error-function with the 

Hart-Mortlock or Maxwell-Garnett type equations instead of a single Deff, i.e. the fitting with 

respect to Dgb was done because all other parameters in the equations are known. The errors 

of determining Dgb were found from the fitting results and are summarized in table 4.4. The 

values of Dgb,app are typically smaller than the true one (Dgb,true = 2.95·10-2 nm2/s or 2.95·10-14 

mm2/s). Moreover, the errors vary with s in most cases. Very large errors were observed by 

using the Hart-Mortlock equation for the model of square grains, and smaller errors of 

applying this equation to the model of parallel boundaries were found for s = 5-20. However, 

the error increases up to ~100% for both the models applying the Hart-Mortlock equation, if s 

= 640. The Maxwell-Garnett type equation gives very small errors for the model of square 

grains. An error of 5% observed when this equation is applied to the model of square grains 

can have a numerical origin. Nevertheless, an error of 95% was observed for the model of 

parallel boundaries when using the Maxwell-Garnett type equation. Moreover, the Maxwell-

Garnett type equation overestimates Dgb by a factor of 2, if applied to the model of parallel 

boundaries. By putting into Maxwell-Garnett’s equation the value of g corresponding to the 

square grains and applying it again to the model of parallel boundaries, the error (improved 

Dgb,app and error in table 4.4) was decreased to about 58% for s = 40. This was done according 

to the finding in the present work, that the diffusion profiles calculated for the model of 

parallel boundaries and the model of square grains are very similar at high t, i.e. in the A-

regime in the case of self-diffusion (figs. 4.18 and 4.22). The decrease of the error indicates 

that the use of this equation requires g to be calculated for the model of square grains even if 

applied to the model of parallel boundaries. Similarly, the Hart type equation is supposed to 

be valid for the model of square grains if g is calculated as for the model of parallel 

boundaries. But this is valid only with s = 1. Segregation implies that the coincidence of the 

diffusion profiles for s = 1 does not longer exist in the case of s > 1. Accordingly, a significant 

error still remained for larger s even after using an appropriate g applying Maxwell-Garnett 

equation to the model of parallel boundaries. Additionally, there is a possible saturation of 

Deff as a function of s. Therefore, at very large s the s-variation is close to steady-state with 

respect to that parameter.  
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Fig. 4.25 Effective diffusivities obtained by fitting the simulated diffusion 
profiles to a complementary error-function for the model of parallel boundaries 
a) and the model of square grains b). 
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Fig. 4.26 A comparison of the simulation results with the Maxwell-Garnett 
type equation for the model of parallel boundaries a) and square grains b). 
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Table 4.4 The values of Dgb,app and the errors of finding Dgb found from the simulated 
diffusion profiles by using the Maxwell-Garnett equation and the Hart-Mortlock equation  for 
the model of parallel boundaries a) and the model of square grains b). Dgb,true = 2.95⋅10-2 
nm2/s. 
 

a) 

 

s 

Dgb,app due 
to Hart-

Mortlock’s 
eq., 

nm2/s 

Error in % 
due to Hart-
Mortlock’s 

eq. 

Dgb,app due to 
Maxwell-

Garnett’s eq., 
nm2/s 

Error in % 
due to 

Maxwell-
Garnett’s eq. 

Improved 
Dgb,app due to 

Maxwell-
Garnett’s eq., 

nm2/s 

Error in % 
due to 

improved 
Maxwell-
Garnett’s 

eq. 
5 2.48·10-2 16 5.74·10-2 94 3.33·10-2 13 
10 2.07·10-2 30 5.75·10-2 94 3.72·10-2 26 
20 1.56·10-2 47 5.75·10-2 94 4.20·10-2 42 
40 1.05·10-2 64 5.75·10-2 95 4.67·10-2 58 
80 6.42·10-3 78 5.75·10-2 95 5.05·10-2 71 
160 3.70·10-3 87 5.76·10-2 95 5.31·10-2 80 
320 2.10·10-3 93 5.76·10-2 95 5.46·10-2 85 
640 1.23·10-3 96 5.76·10-2 95 5.54·10-2 88 

 

b) 

 

s 

Dgb,app due 
to Hart-

Mortlock’s 
eq., 

nm2/s 

Error in % 
due to Hart-
Mortlock’s 

eq. 

Dgb,app due to 
Maxwell-

Garnett’s eq., 
nm2/s 

Error in % 
due to 

Maxwell-
Garnett’s eq. 

5 1.12·10-2 62 2.90·10-2 2 
10 8.39·10-3 72 2.88·10-2 2 
20 5.49·10-3 81 2.79·10-2 5 
40 3.41·10-3 88 2.80·10-2 5 
80 2.03·10-3 93 2.81·10-2 5 
160 1.21·10-3 96 2.81·10-2 5 
320 7.68·10-4 97 2.81·10-2 5 
640 5.35·10-4 98 2.81·10-2 5 
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Summary  
 

The slope of the concentration profile (lnCav = f(y6/5)) increases as the average grain 

size decreases, and the grain boundaries orientations become important. Specifically, the ratio 

between the number of parallel and other diffusion paths is also very important in that sense. 

Accordingly, the slope also increases if the potion of parallel GBs is smaller than others. The 

increase of the slope suggests that Dgb can be underestimated when applying the conventional 

procedure, i.e. Le Claire’s relation. Errors of the order of 50% are very possible (pure 

microstructure effect). The model of square grains, widely used in the literature, can represent 

an average microcrystalline structure, if the numbers of parallel and perpendicular diffusion 

paths are comparable. As the diffusion time grows, the role of perpendicular GBs vanishes, 

suggesting that the same criterion can be used for the transition from the B-regime to the A-

regime for the models of square grains and parallel boundaries (for example, [Bel01]). In this 

case, the Hart-Mortlock equation is valid even for the model of square grains if the volume 

(area) fraction of GBs is calculated as for the model of parallel boundaries. However, 

segregation dictates new conditions for diffusion in polycrystalline materials. The diffusion 

profiles calculated for both models under these conditions differ, and the discrepancy 

increases with equilibrium segregation factors. The Maxwell-Garnett equation is not valid for 

the model of parallel boundaries, especially for large equilibrium segregation factors.         
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Introduction 

 
Space charge layer (SCL) effects are discussed in this chapter due to their importance 

in ionic and partly covalent materials. Unlike in materials where electrons are always 

available and fast, in ceramic systems there are typically two – oppositely charged – carriers 

the conductivity of which has to be taken into account [Duf86]. Because the individual defect 

formation energies differ, SCL arises and causes an electric potential difference between the 

surface, or GB, and the bulk interior [Leh53]. SCL affects considerably the properties of ionic 

materials and can in many cases be very significant [Mai95]. Despite this fact, conventional 

GB diffusion models typically neglect the space charge contribution. This seems to be due to 

two main reasons. First, the conventional models were applied historically to a large extent to 

metals, intermetallic compounds and alloys, in which the SCL does not exist. Preparation of 

ionic materials, like ceramic oxides, is much more complicated in comparison with metals 

and, that is why, diffusion data on these materials are still contradictory. However, nowadays 

one can find intensive literature on diffusion studies in oxides (for example, on diffusion in 

doped ZrO2: [Kil03a], [Kil03b], [Arg04], [Tay04], [Kil04], [Tay05], on diffusion in α-Al2O3: 
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[Pro96a], [Pro96b], [Gal96], on diffusion in MgO: [Lib94], [Yoo02]). Second, it has been 

believed for a long time that the space charge contribution is negligible [Mis01], even at low 

temperatures. Indeed, the penetration profiles are treated by using Le Claire’s relation for all 

the diffusion experiments based on penetration-depth profiles measurements without taking 

into account the SCLs at all. There are, however, intensive studies, e.g., in particular, on 

SrTiO3, that show the drastic relevance of them as regard, transport [Leo99], [Gou01a]. 

There are several theoretical studies on discussion of the role of SCLs in diffusion 

studies. Yan et al. [Yan77] analyzed slightly enhanced diffusion near the boundaries, i.e. in 

the SCL, in doped and undoped KCl. Despite the fact, that this paper was not directly 

concerned the diffusion profiles measured by one of the appropriate techniques, Yan could 

suggest a model for diffusion analysis in ionic materials. Because of the SCL, the GB is to be 

considered as an inhomogeneous region, consisting of the GB core and the adjacent SCL. 

Accordingly, three diffusivities are used in Yan’s model: in the bulk, SCL and GB core. The 

diffusivity within the SCL is suggested to be coordinate-dependent in Yan’s model. Recently, 

Jamnik and Maier [Jam95], [Jam97a], [Jam01a] considered a similar model of the GBs in 

ionic materials. For this reason we distinguish here between the GB core and SCL. In this 

sense the GB core is the region which was supposed in the preceding chapters. The 

dependence of SCL diffusivity (Dscl) on coordinate was also taken into account in the 

derivations of Chung et al. [Chu00] on the basis of Gouy-Chapman model [Boc77]. The role 

of this dependence is discussed in this chapter on the basis of simulations by FEM and the 

program FLUX-EXPERT.    

Contrary to the conclusion of Mishin and Gust on the importance of SCL [Mis01] 

(mostly based on the theoretical findings of Yan [Yan77]), Wang [WanR05] and De Souza 

[Sou05] took into account the SCL with the diffusivity different from that of the infinite bulk 

and surface, in order to analyze their experimental results properly. In both papers perovskite-

like ABO3 materials are concerned with SCL depleted of mobile charge carriers, viz. oxygen 

vacancies. Additionally, SrTiO3 is recognized as a model electroceramic material with very 

different properties depending on experimental conditions [Sou03], [Mai04]. It could also be 

shown that SCLs can even overlap in nanocrystalline SrTiO3 – the effect that we neglect in 

the following [Bal06]. Another important example of depleted SCL refers to ZrO2. Here it can 

be mentioned that not only depth-profile measurements but also conductivity measurements 

provide important information on transport properties of ionic materials [Hei03]. By means of 

impedance spectroscopy Gou et al. [Gou01b], [Gou02] demonstrated the GB resistivity which 

was two to three orders of magnitude higher than in the bulk in yttria-doped ZrO2 at low 
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temperatures. The effect was attributed to space charges and the results were successfully 

explained by the Mott-Schottky model [Mot39], [Scho39]. The blocking space charge effects 

were also observed in another fluorite structure material, namely doped nanocrystalline CeO2 

[Kim02]. The perpendicular GBs in this material lead to an additional semi-circle in the 

impedance spectra. The impact of those boundaries on impedance has already been discussed 

by Maier [Mai86]. Despite these facts, nobody has revealed the importance of SCLs adjacent 

to the GB cores studying oxygen in-diffusion in ZrO2. In the following papers [Bro99b], 

[Knö03] on oxygen diffusion in doped and undoped nanocrystalline ZrO2 the SCLs are 

completely ignored. Moreover, there are contradictions in the literature on the behavior of 

transport properties measured by impedance spectroscopy and depth-profiling methods 

[Man97], [Bro04]. Consequently, it is the purpose here to discuss the impact of SCL on 

diffusion in ionic materials in terms of conventional GB diffusion models. 

 As we are interested in fast GB transport we will focus on depletion layers between 

which the fast diffusing core is embedded. For simplicity’s sake we again ignore the profiles 

within the GB core and characterize the SCL by a laterally constant effective transport 

coefficient. Also effects caused by electrical fields as discussed by Jamnik and Maier 

[Jam97b], [Jam01b] and Schmalzried et al. [Schm98] are neglected.  
 

5.1 Mathematical model to describe diffusion in a polycrystal 

including space charge layers 
 

Mathematically diffusion in polycrystalline materials can be described by means of 

differential equations, if both diffusion in the bulk and GBs obey Fick’s law as it was 

explained in chapter I. The assumptions of an infinitely thin GB and a steplike change of the 

diffusion coefficient can be used for the SCL problem as well, leading to a system of three 

differential equations. The diffusivities are taken as time and concentration independent.  The 

2D case of this model suggests the following equations with Cg, Cgb and Cscl being the grain, 

GB and SCL concentrations, respectively 
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                            (5.1) 

 

As usual the relevant equation in the grain is Fick’s second law. The same is true for SCL as 

long as we ignore inhomogeneity effects and effects due to charge separation. For the GB we 

have to take the same form as in the Fisher system (Eq. (1.6a)). The main difference of this 

new model and the Fisher system is in fact, that the leakage of atoms exists from the GB to 

SCL. The term which controls this leakage is characterized by Dscl. Again, the problem is 

symmetrical with respect to x = 0. The relevant mathematical model corresponds to the 

geometrical model depicted in fig. 5.1. The thickness of SCL is denoted as δscl and is fixed to 

1 nm along the calculations. The effective thickness δscl was employed in many theoretical 

considerations on space charges, leading to an abrupt variation of diffusion coefficients. 

However, there are contradictions in the literature with respect to this property. For example, 

in ZrO2 δscl varies from 0.35 to 3 nm [Dij81], [Aok96]. Here the value was chosen as being 

the average of this range as well as from the point of view of numerical conveniences.  

As before, the boundary conditions at the surface reflect a constant source and 

sufficiently fast surface reaction with zero initial concentration at y > 0: 

 

g gb

g gb

C (x, y, t) C (x, y, t) 1

C (x, y, t) C (x, y, t) 0

       at   y  0
      at   t  0, y 0 

= = =⎧⎪
⎨ = = = >⎪⎩

 . (5.2a) 

 

The continuity conditions and mass balance were used at interfaces: between GB and SCL, 

SCL and grain. Correspondingly, equal fluxes and concentrations were applied: 

 

scl gb

scl gb

C (x, y, t) C (x, y, t)
, / 2

J (x, y, t) J (x, y, t)

      
    if x δ

=⎧⎪ =⎨ =⎪⎩
                (5.2b) 

 

and                       
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scl g
scl

scl g

C (x, y, t) C (x, y, t)
, .

J (x, y, t) J (x, y, t) 2

      
    if x δ

δ
=⎧⎪ = +⎨ =⎪⎩

      (5.2c) 

 

Correspondingly, the equation describing diffusion along the GB core in Eq. (5.1) takes 

account of the relevant conditions at the interface between the GB and SCL (Eq. (5.2b)). The 

unity in Eq. (5.2a) means that the concentration is normalized with respect to the 

concentration at the surface. In the present study regarding the SCL problems the GB, or GB 

core is always assumed to represent a structurally disturbed region, i.e. we refer to the 

misorientation of grains. The question of the SCL to be the part of the GB or the bulk is not 

discussed here as it does not play a role given the above assumption. The system was 

numerically integrated with the flux boundary condition at the bottom of the sample used in 

the calculation is equal to zero (fig. 5.1). The role of this boundary condition was analyzed in 

the manner as discussed in chapter IV and estimated to be negligible, suggesting the obtained 

results correspond to the semi-infinite systems (see discussion below) and partly thin films in 

the sense that only the maximum of the derivative ∂lnCav/∂y6/5 determines Dgb. Importantly, 

all the conclusions made in chapter III are important for the SCL problems too.    

The system of equations (Eq. (5.1)) was solved using FEM (FLUX-EXPERT, 

Simulog, France) as described in chapter II. Different kinetic regimes for different ratios of 

diffusivities ∆ are covered, and different GB networks (parallel boundaries and square grains) 

are considered. In all the cases the calculated concentration distribution was numerically 

integrated parallel to the surface providing the average concentration (Cav). From the resulting 

concentration profiles Dgb values were deduced by using the conventional equations in order 

to compare them with the exact value (used in the simulation) and to estimate the error. In the 

calculations Dg and δ were fixed to 2.95⋅10-4 nm2/s (2.95·10-16 mm2/s) and 0.5 nm, 

respectively, whereas Dgb and Dscl were varied in order to have different ratios with respect to 

Dg. Accordingly, the ratio Λ = Dg/Dscl was introduced for convenience.  

 

5.2 Accuracy of the simulated diffusion profiles and effect of 

coordinate-dependent space charge layer diffusivity 
 

5.2.1 The finite element mesh and diffusion barrier at the bottom of the 

geometrical model 
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Fig. 5.1 Schematic representation of the geometrical model used for calculation 
including space charges. 

 

 

 The choice of an appropriate mesh for SCL diffusion problems is very critical due to 

the fact that Dscl differs from Dg. Different meshes (or, in other words, meshes of different 

densities) were tried, in order to find the most suitable one. Major emphasis was laid on 

optimizing the mesh in the SCL, because the problems of interest involve extremely small 

diffusivities in this region (blocking space charge effects). In fig. 5.2 a fragment of the mesh 

used for SCL diffusion is depicted. One can see a great difference between the densities of the 

mesh in the bulk and SCL. Such a mesh allows one to simulate diffusion in the type-B 

kinetics at very short t. The mesh in the SCL is homogenous as in the bulk, while close to the 

SCL the bulk mesh was inhomogeneous and adapted to the SCL-bulk transition. As a result, 

the number of triangle elements of the mesh in the SCL is about 87% of a whole number of 

the elements in the geometrical model (sample). However, the length of the sample was only 

100 nm for simulating diffusion in the B-regime. Further increasing the mesh density did not 

allow Dscl to be more decreased, because the finite element problem with the higher density 

could not be solved even if the length of the sample was decreased. Consequently, the 

smallest value of Dscl used in the present study was 2.95⋅10-7 nm2/s (2.95·10-19 mm2/s), and, 

for comparison, Dgb = 2.95⋅10-2 nm2/s (2.95·10-14 mm2/s). The interval between the nearest 

points of the mesh is about 0.03 nm and 0.5 nm in the SCL and bulk, respectively.  
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 The mesh was also optimized for studying diffusion in the A-regime. The 

corresponding analysis will be given below. 

 

SCLBulk

 
 

Fig. 5.2 A fragment of the mesh used to simulate diffusion in the B-regime (δscl 
= 1 nm). The red line represents the GB. 

  

In order to prove that the obtained mesh is suitable for a diffusion study with various 

Dscl, the diffusion profile was calculated for the test case Dscl = Dg. This should give the same 

profile as obtained with mesh 1 described in chapter IV. The gradients of the corresponding 

profiles are compared in fig. 5.3. Obviously, there is a discrepancy between these profiles 

which increases along the depth indicating that the mesh density is not optimal, especially in 

the GB part. However, the gradients coincide at the maximum where the main interest of the 

present analysis lies.  

Furthermore, it has to be noticed again that we are interested in small Dscl-values. The 

mesh shown in fig. 5.2 was also examined with respect to such small values. The diffusion 

profile was calculated for the sample comprised the SCL only in order to check the quality of 

the mesh. This means the bulk diffusion was simulated with the smallest Dscl. The 

corresponding diffusion profile is shown in fig. 5.4 and compared with the complementary 

error-function solution to diffusion equation. These profiles mostly coincide. This allowed us 
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to conclude that the relevant SCL mesh suffices for our purposes despite the deviations 

observed in fig. 5.3.          

0 50 100 150 200 250
-0.20

-0.15

-0.10

-0.05

0.00

0 50 100 150 200 250
-40

-30

-20

-10

0

ln
C av

y 6/5, nm 6/5

∂l
nC

av
/∂

y6/
5 , n

m
-6

/5

y6/5, nm6/5

 ∆ = 102, Λ = 1
 ∆ = 102, without SCL

boundary condition

 
Fig. 5.3 A comparison of the mesh used for taking into account space charge 
effects with the mesh without the SCL having the same mesh density as for 
mesh 1 described in chapter IV. The profiles were calculated for the length of 
100 nm at t = 4700 s. Also the lnCav = f(y6/5) dependence is shown in inset. 

 
Contrary to all the diffusion problems discussed so far, the meshes used for the SCL 

problems for simulation in the diffusion regimes of type-A and -B are very different.  This is 

caused by extremely small diffusion lengths in the SCL under conditions of type-B kinetics. 

Two meshes were used to simulate the diffusion profiles in the A-regime. One mesh 

corresponds to simulations with Dscl = 2.95⋅10-7 nm2/s and another one to values Dscl = 

2.95⋅10-5 nm2/s or larger. These meshes will also be analyzed with respect to the accuracy of 

the obtained results. In fig. 5.5 the diffusion profiles for the two values of Dscl are compared 

with the corresponding complementary error-function solutions. These calculations refer to 

SCL diffusion only as in fig. 5.3. The accuracy of the profile calculations is obvious, 

suggesting that these meshes can be used for simulating diffusion at long t. Interestingly, the 

density of the mesh in the SCL is 0.0625 and 0.125 for smaller and larger diffusivity, 

respectively. It is only double as large in the one case and four times larger in the other case  
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Fig. 5.4 A comparison of the bulk diffusion profiles obtained for Dbulk = 
2.95⋅10-7 nm2/s, representing Dscl, with the exact analytical solution to diffusion 
equation given by a complementary error-function (Erfc). 
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Fig. 5.5 A comparison of the two meshes (for different Dbulk, representing Dscl, 
see the text) used to simulate diffusion in the A-regime with the corresponding 
complementary error-function solutions (Erfc) at t = 3·106 s. 
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as for the mesh used for the B-regime. The density of the mesh in the bulk part of the 

geometrical model remains unchanged and is the same as used in all the calculations in the A-

regime in the present study.   

One can expect that the profiles calculated for the finite element model used are 

affected by the boundary condition at the bottom of the sample (geometrical model). This 

indeed plays an important role when simulating diffusion along the GBs accompanied by 

diffusion in the SCL with very small Dscl. Accordingly, one can plot the derivative of the 

profile calculated for the smallest Dscl. In fig. 5.6 such a derivative is shown (solid curve). As 

it was explained in chapter IV, the strong effect of the boundary condition is reflected in the 

extreme case that the maximum of the profile disappears, because the gradient goes to zero. 

This refers to the question of validity of the solutions for semi-infinite systems for the 

problem discussed here. As it is seen in fig. 5.6 the maximum is very well distinguishable and 

can be very easily estimated. The rest of the profile is affected by different factors, including 

the zero flux condition at the bottom. This also indicates that a sample length of 100 nm can 

be used to simulate diffusion in the B-regime.      

 

5.2.2 The reason of using constant space charge diffusivity 
 

 First, it should be again noted that the main interest is related to the maximum of the 

derivative of the diffusion profile. This maximum gives the proper value of Dgb when deduced 

by using the conventional Le Claire relation. The constant Dscl used in the present simulation 

is questionable, since the concentration of defects varies with the distance perpendicular to the 

GB. That is why, for example, Chung et al. [Chu00] proposed the model of diffusion along 

the GBs with the adjacent SCLs based on the Gouy-Chapman model, in which Dscl is 

coordinate dependent. In order to check the effect of the coordinate dependent Dscl, the SCL 

thickness (δscl) was drastically reduced and a new model was developed.  

Decreasing δscl from 1 nm to 0.03 nm, the SCL thickness was reduced to an 

unrealistically and infinitely thin region. However, the effect of blocking SCL is so strong, 

that the position of the maximum of the derivative is very similar to that for δscl = 1 nm as fig. 

5.6 shows. The values of the derivatives are also very close, suggesting that the maximum is 

determined by what happens in the first atomic layers close the GB core independent of 

thickness of the SCL and dependence of the diffusivity on coordinate. This means, that the 

maximum reflects directly the movement of the atoms from the GB core into the SCL. It is 

the same as the B-regime starts immediately when the leakage of diffusing atoms starts from 
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the GB into the grain. The beginning of this process determines the position of the maximum 

and its magnitude. To investigate further the insensitivity of the maximum on the coordinate 

dependence of Dscl, an additional calculation was performed. In the new calculation δscl was 

increased to 3 nm, and the SCL itself was divided into three regions with the thickness of 1 

nm each. The diffusivities were different in all the three regions and varied from 2.95·10-7 

nm2/s in the first region directly adjacent to the GB core to 2.95·10-5 nm2/s in the third region 

followed by the bulk (fig. 5.8). The concentration is enhanced in the first region due to the 

leakage from the GB core. This region is mostly filled by the diffusant at sufficiently long t 

such that it can lead to the flux of atoms to the second region. Interestingly, there is no 

leakage from the third region to the second one. The diffusion profiles calculated in this 

model are compared with those with the constant Dscl (δscl = 1 nm) at different t in fig. 5.7. 

There is no significant difference between the two models, indicating the overall result is 

determined by the region adjacent to the GB core even at long t. At shorter t the rest of the 

diffusion profiles becomes much more different depending on δscl and coordinate dependent 

Dscl (not shown here). Importantly, the maximum is not affected remaining the same under 

these quite different conditions. The fact that the diffusion profiles have two distinguishable 

parts at t = 3·106 s will be discussed in the coming section.           

 
Fig. 5.6 Variation of the derivative ∂lnCav/∂y6/5 with y6/5 calculated for two 
different SCL thicknesses for ∆ = 102. 
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Fig. 5.7 Variation of lnCav with y6/5 calculated for the cases of constant and 
coordinate dependent Dscl for ∆ = 102. 

 

 

5.3 How diffusion proceeds in the models of parallel boundaries and 

square grains 
 

Two models were used to study diffusion in ionic materials, namely the model of 

parallel boundaries (or, isolated GB model, if Lg < d/2) and of square grains. As it was 

explained in chapter IV, these are the most important models, allowing diffusion to be 

characterized even in realistic polycrystalline microstructures. As usual, t and d were taken 

quite small, in order to reproduce situations in nanocrystalline materials. Emphasis is laid on 

the blocking effect recently observed in variety of ionic materials [see, for example, [Gou02]]. 

Consequently, the SCL diffusivities (Dscl) are supposed to be smaller than the grain 

diffusivities (Dg), whereas the GB diffusivity (Dgb) exceeds both. However, the situations 

when Dscl > Dg are also discussed in order to analyze the whole trend of the ratio 

Dgb,app/Dgb,true (here Dgb,app is, as usual, an apparent GB diffusivity found by applying 

conventional models, and Dgb,true is a true GB diffusivity used to simulate the diffusion 

profiles) as a function of Λ = Dg/Dscl. The latter is a new parameter which makes the analysis 

simpler. For both models and different diffusion regimes a recipe is given how to properly  
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Fig. 5.8 Concentration distribution in the model of parallel boundaries with the 
SCL of the thickness 3 nm, comprising three parts with different diffusivities. 
The free surface is at y = 0 nm, whereas two neighboring parallel boundaries 
are at x = 0 and 25 nm, respectively. The result was obtained under conditions 
of the conventional A-regime, i.e. Lg is larger than the distance between the 
parallel boundaries. White lines show the borders of corresponding regions of 
different diffusivities. There is no a special physical property along white lines. 
Each color corresponds to certain value of the concentration, what is explained 
on a color pattern.  
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find Dgb. The suggestions which can be found in this chapter supplement the observations of 

the preceding chapters. Consequently, the problems of Le Claire’s constant and the 

nonlinearity are also relevant here.  

 

5.3.1 The model of parallel boundaries under conditions of type-B kinetics 
 

 It is important to note once more that both the model of parallel boundaries and the 

isolated GB model lead to the same results until Lg > d/2, where d is the average grain size or 

the distance between two neighboring parallel boundaries. In the present study for ionic 

materials the isolated GB model was used (what is caused by a very dense mesh used in the 

SCL) at extremely short t. Thus, only diffusion in the B-regime occurs. Consequently, the 

obtained results are valid for parallel boundaries as well. Trying various values for Dscl the 

diffusion profiles were calculated for fixed Dg (= 2.95·10-4 nm2/s) and Dgb (= 2.95·10-2 nm2/s). 

In fig. 5.9 the profiles are presented, with Λ (= Dg/Dscl) varying from 10-1 to 103. According to 

the conventional procedure, the profiles represent dependences in the form lnCav = f(y6/5). The 

smallest value of Dscl is 2.95·10-7 nm2/s, which corresponds to the diffusion length in the SCL 

3.73·10-2 nm at t = 4700 s. Such a value scales with the density of mesh used to simulate 

diffusion in the SCL, what also confirms the quality of obtained result. Additionally, a very 

small value of Dscl would mean a very small contribution of diffusion in the SCL. However, 

the slopes of diffusion profiles vary with Λ (fig. 5.9) which is usually unknown in the 

experiments. This is why, it became particularly important to estimate the errors of 

determining Dgb introduced by the SCL using the conventional procedures.  

 As one can see in fig. 5.9, the slope decreases as Λ increases, or as Dscl becomes 

smaller. The profile for Λ = 1 is also shown in fig. 5.9 and, it is possible, at least qualitatively, 

to state that Dgb found from such profiles by applying the Le Claire relation is overestimated, 

if Λ > 1. On the other hand, the slopes of the profiles calculated for Λ < 1 increase, what leads 

to opposite trend in the Dgb,app behavior. Because of these two trends, one has to distinguish 

diffusion under different conditions: Λ < 1 or Λ > 1. The purpose of this distinction is to 

emphasize different physical situations, but the procedure to deduce Dgb is the same. The 

difference between the two situations is demonstrated in fig. 5.10. In this figure fragments of 

the concentration fields are shown at t = 4700 s. If Λ > 1, diffusion is prolonged in the bulk 

and along the GB core, and one can immediately see, that there are fluxes from the GB core to 

the SCL and from the grain (bulk) to the SCL. The concentration field around the GB core is 

exactly what is expected for the non-overlapping fluxes from the neighboring parallel 
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diffusion paths. Such a contribution of the SCL is also similar to the situation, when diffusing 

atoms cannot move inside the material from the source due to the surface reaction, but 

because of the fast surface diffusion the atoms move along the surface (or along the GB core, 

if it is concerned). The blocking effect is reflected by the drastically reduced concentration 

within the SCL, and the question arises how this can affect the diffusion profile. Contrary, 

there is a flux from the SCL into the grain, if Λ < 1 (fig. 5.10b). Here the question about the 

overlapping within the SCL is not relevant, and the SCL can be filled by the diffusant in a 

very short time. It looks like the GB has increased its thickness due to the SCL, especially at 

higher diffusion times. However, it is also a matter of parameters, like the thickness δscl and 

diffusivity Dgb. It can be mentioned, that the overall process is not prolonged under conditions 

of Λ < 1. This is clear, as prolongation is only caused by great difference in the diffusivities in 

the two adjacent regions. Such a prolongation is more typical for diffusion for Λ > 1. One can 

see that the isoconcentration lines in fig. 5.10a are almost parallel to the GB core, i.e. the 

angle between them is very small – a situation typical for large values β and short t.                 
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Fig. 5.9 Variation of lnCav with y6/5 calculated at t = 4700 s for ∆ = 102 and 
various Λ. 
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Fig. 5.10 A fragment of the concentration distribution in the model of isolated 
GB (the GB core is sitting exactly at x = 0 nm) with the adjacent SCL of the 
thickness 1 nm. As usual, a free surface is situated at y = 0 nm. Parameters: a) 
Λ = 103, ∆ = 102, t = 4700 s and b) Λ = 10-1, ∆ = 102, t = 4700 s. The color 
patterns have their usual meaning. 
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The errors of using Le Claire’s relation are demonstrated in fig. 5.11. Three curves are shown 

corresponding to three different procedures of deducing Dgb. First, Dgb,app was calculated by 

using the standard Le Claire relation with a constant of 1.322 (Eq. (1.16)). The corresponding 

errors are shown as circles in fig. 5.11. This means that fitting the calculated diffusion profiles 

to the straight line was applied. In this case Dgb,app is larger than the true one by a factor of 

about 3 at Λ = 103. Then the maximum of the derivative ∂lnCav/∂y6/5 was taken and used in Le 

Claire’s relation (squares in fig. 5.11). In chapter III it was shown that this maximum gives 

the more accurate value for Dgb when Le Claire’s relation is used. Taking the maximum leads 

to even larger errors in comparison with the errors of the standard fit, and Dgb is overestimated 

by a factor of 4 at Λ = 103. Moreover, the ratio Dgb,app/Dgb,true is not unity at Λ = 1 in both 

cases. Obviously, this is related to the constant of 1.322. According to the findings of chapter 

III, the derivative ∂lnCav/∂w6/5 should be calculated properly depending on the parameter α 

(= g/ 2Lδ ). Finally, the improved derivative ∂lnCav/∂w6/5 was calculated by using Eq. (2.1) 

and put into the original Le Claire relation (Eq. (1.14)) instead of the constant 1.322. The 

latter is caused by very short t involved in the simulation, and all the discussions of chapter III 

are relevant here too. The parameter α is about 0.21 at t = 4700 s for Dg = 2.95·10-4 nm2/s. 

Following this improved procedure, the ratio Dgb,app/Dgb,true was recalculated and finally 

achieved unity at Λ = 1 (triangles in fig. 5.11). But, the errors in finding Dgb increase further 

even after applying the improved procedures, giving Dgb overestimated by a factor of about 6 

at Λ = 103. Interestingly, the attempts to reduce the errors by using the improved procedures 

make the discrepancy between the apparent and true diffusivities larger. This is related to the 

fact that the equations used for calculating Dgb completely ignore the third diffusivity 

involved in the process, namely Dscl. One has to pay attention that the flux of atoms moving 

from the GB core into the SCL is determined by Dscl and, therefore, the maximum of the 

derivative as being determined by this motion, should reveal something close to the ratio of 

diffusivities Dgb/Dscl. This ratio is obviously larger than ∆ and Λ for the blocking SCL, 

because Dg > Dscl. However, this expectation should be clarified.  
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Fig. 5.11 Errors in calculating Dgb by using the conventional Le Claire equation 
and the improved procedures discussed in chapter III. The calculated profiles 
correspond to ∆ = 102 and t = 4700 s. Errors were estimated according to 

( )gb,app gb,true gb,trueD D / D 100%− ⋅ . 

  

The blocking SCLs are accompanied by two processes. One is related to diffusion 

from the GB core into the SCL and another one is related to diffusion from the grain into the 

SCL. These processes are taken into account by the continuity conditions at the corresponding 

interfaces (Eq. (5.2a) and (5.2b)).  In order to clarify, which process really determines the 

maximum of the derivatives, the plots ∂lnCav/∂y6/5 = f(y6/5) were analyzed and the equations 

derived in chapter III applied. The corresponding maxima for the SCL problem are rather 

small (fig. 5.12) and comparable to those in figs. 3.8a or 3.8b, i.e. for non-space-charge 

problems with ∆ = 102 or 103. However, the calculations differ by values of the diffusivities in 

the region adjacent to the GB core (i.e., Dg for the results in fig. 3.8 and Dscl in fig. 5.12). For 

Λ = 103 and Dscl = 2.95·10-7 nm2/s the ratio Dgb/Dscl equals 105. The same ratio was realized in 

chapter III with Dg = 2.95·10-4 nm2/s and Dgb = 2.95·101 nm2/s. However, the values of the 

corresponding maxima differ by two orders of magnitude. Generally, increasing ∆ with fixed 

Dg leads to smaller values of the maxima. But, increasing ∆ (=Dgb/Dscl for the SCL problem) 

with fixed Dgb leads to much smaller deviations in the derivatives for different ratios in 
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comparison with the results in fig. 3.8, from -0.12 for Λ = 100 (Dgb/Dscl = 102) to -0.04 for Λ = 

103 (Dgb/Dscl = 105). Probably, the latter effect depends on the absolute value of Dscl. It is 

difficult to expect the ratio between the diffusivities knowing only the absolute value of the 

derivative at the maximum. A new procedure should be used in order to extract this ratio. 

Moreover, in the SCL problems a third diffusivity is involved (Dscl) which is also unknown. 

However, this diffusivity determines the value of the maximum.  
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Fig. 5.12 Variation of the derivative at t = 4700 s for ∆ = 102. 

 

In fig. 5.13 the derivatives are compared with the results of Whipple’s solution 

integration (Eq. (1.9a)) which were obtained by fixing Dgb and varying Dg and Dscl, 

respectively. In the integration the same ratios of diffusivities were used as for the SCL 

problem, i.e. ∆ in the integration equals Dgb/Dscl in the simulation (∆ in fig. 5.13 indicates the 

ratio used in the simulation). One can easily see that the derivatives simulated for the SCL 

problem are very close to those obtained by the integration, despite the fact that there is a flux 

of atoms from the grain into the SCL. This confirms that the maximum of the derivative is 

determined mostly by what happens between the GB core and the SCL. In fig. 5.13 the 

positions of maxima of the SCL problem slightly differ in comparison with Whipple’s 

solution integration. The maximum is shifted to larger values of y6/5 in the case of the SCL 

problem (red curves), especially for larger Λ.        
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Fig. 5.13 A comparison of Whipple’s solution and the simulation result of the 
SCL problem at t = 4700 s. The black curves correspond to Whipple’s solution, 
whereas the red curves are responsible for the simulation. 

 

 Interestingly, the contribution of bulk diffusion can be observed at very short t. In fig. 

5.14 different profiles simulated for the SCL problem are compared, and the complementary 

error-function solution is shown for Dg. The bulk diffusion is responsible for the process in 

the near-surface part of the profile for the smaller Dscl. However, this contribution becomes 

less pronounced, if Λ decreases. It means that, in principle, Dg can be still extracted even for 

blocking SCL, how it is done in the experiments [Sou05]. The bulk diffusion part is quite 

short and is followed by the part determined by the ratio Dgb/Dscl. Since Dg is smaller than 

Dgb, the process along the GB in the blocking SCL problem is characterized by even smaller 

slopes that one could expect to give a larger diffusivity. It should also be noticed that the 

profiles in fig. 5.14 are intersecting at y6/5 ≈ 30 nm6/5. For y6/5 < 30 nm6/5 the area under these 

curves or the total amount of material entering the sample is larger for the smallest ratio Λ = 

0.1. For y6/5 > 30 nm6/5 the opposite situation is observed. Nevertheless, it was found out that 

in the whole range of y6/5 the total area is increased for Λ = 0.1. Consequently, the blocking 

SCLs decrease the total amount of material in the sample, at least at short t. 

   In order to improve the determination of Dgb, the new equation, discussed in chapter 

III (Eq. (3.7)), was used instead of Le Claire’s relation. This equation relates the maximum of 
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the derivative ∂lnCav/∂y6/5 and the ratio ∆, or specifically for the SCL problem, the ratio 

Dgb/Dscl. Thus, Eq. (3.7) can be rewritten in the following form 

 

 
F

gb Bav
6/5

sclmax

Dln C C t
y D

⎛ ⎞∂
= ⋅ ⋅⎜ ⎟∂ ⎝ ⎠

.         (5.3) 

 

One of the ideas which can automatically arise is the fitting experimental data to Eq. (5.3). 

However, this equation cannot be used for real fitting, since consisting of two multiplied 

unknown parameters, i.e. C and ∆F (here ∆ means the ratio Dgb/Dscl as well). By using the 

fitting one can only find the prefactor to tB, i.e. the whole term C(Dgb/Dscl)F. So the application 

of this equation requires knowledge of the unknowns C, F and B. As it was mentioned in 

chapter III the unknown parameter C is dependent on Dg and can strongly vary. Because of 

the problem of fitting, these parameters were estimated by integrating Whipple’s solution for 

the diffusivities used to simulate diffusion for the SCL problem. The results are summarized 

in table 5.1.  The integration was performed fixing Dscl and varying Dgb, i.e. to guarantee 

Dgb/Dscl to be 102 and 105 in order to have extremely different ratios. For each ratio Dgb/Dscl 

two very different t were realized, namely 2·103 s and 106 s, providing the quantities B, C and 

F. Consequently, this procedure was applied for each Dscl and Λ used. The absolute value of B 

slightly decreases with increasing Λ, C varies significantly with Λ, whereas F remains 

constant. The apparent GB diffusivity (Dgb,app) was calculated according to 

 

( )
10/310/3

av av
gb,app 6/5 6 /52

gb scl

ln C ln C4D
w yD / D tδ

−
⎛ ⎞∂ ∂⎛ ⎞= − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

,      (5.4) 

 

where the ratio Dgb/Dscl is known from Eq. (5.3) and the derivative ∂lnCav/∂w6/5 is found 

according to the improved procedure . The errors in finding Dgb were decreased by applying 

Eqs. (5.3) and (5.4) in comparison with Le Claire’s relation (table 5.1). Still remaining errors 

can be attributed to deviations of the corresponding maxima from the result of integration of 

Whipple’s solution (fig. 5.13). Consequently, Eq. (5.4) may be used to find Dgb,app. The 

disadvantage of this relation is in fact that it requires knowledge of all the parameters 

involved: C, B, F. Here a hint can be given for future research. It is particularly important to 

find a procedure to deduce Dgb in ionic materials. Eq. (5.3) seems to be a suitable candidate to 

improve the determination of Dgb. Further evaluations using Whipple’s solution could help to 

correlate the maxima and ratios and all the other parameters.          
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Fig. 5.14 A comparison of the profiles for different Λ and a complementary 
error function solution (Erfc-solution) in the region of very small depths. 

 

Table 5.1 The parameters obtained to evaluate Eq. (5.3) and apparent GB diffusivities found 
by using Eq. (5.4) for t = 4700 s.  As usual the errors were found due to 

( )gb,app gb,true gb,trueD D / D 100%− ⋅ .  

 
Λ B C F Dgb,app, nm2/s Error in % 

103 -0.47 2540 -0.61 9.11·10-4 97 
102 -0.43 562.65 -0.60 4.03·10-3 86 
101 -0.38 134 -0.60 1.09·10-2 63 

 
 
 
5.3.2 The model of square grains under conditions of type-B kinetics 
 

 The model of square grains was used here to analyze the effect of blocking GBs under 

realistic conditions. The results obtained for this model with space charge effects included 

were compared with those obtained for the model of parallel boundaries and the model of 

square grains without SCLs. The importance of blocking SCLs lies in the channeling of 

transport. In other words, the reduced diffusivities in the regions adjacent to the GBs suggest 

an enhanced β-parameter (Eq. (1.9d)) and, as a result of this, increased penetrations. Indeed, 

the increased ratios between the diffusivities lead to smaller slopes, as it was shown in the 
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preceding section (fig. 5.12). If the perpendicular GB comes into play, the slope is changed 

the more strongly, the shorter diffusion time or the larger ratio between the diffusivities. The 

profile calculated for Λ = 102 and ∆ = 102 for the model of square grains is compared with 

that for the model of parallel boundaries and square grain without the SCL (fig. 5.15a). 

Because the ratio of diffusivities ∆ is small, there are no corresponding contributions of 

perpendicular GBs in the model of square grains without SCL (see, for example, fig. 4.9). 

This makes the profile for the square grains without the SCL very comparable to the profile 

for the parallel boundaries without SCLs. Despite such a role of perpendicular GBs for the 

small ratio ∆, the slopes of the profiles for the square grains with the SCL are very different in 

comparison with the slopes of those profiles obtained without the SCL. Consequently, the role 

of GBs surrounded by the blocking SCLs is very specific and important. Moreover, the slope 

of the profile with the SCL decreases with Λ. It can make Dgb,app larger applying the 

conventional equations, whereas the slope is increased in the problems without the SCL (fig. 

4.9). This, obviously, yields one more specific role of the blocking SCL. Some diffusion 

profiles were also calculated for larger ∆. According to fig. 5.15b the contribution of 

perpendicular GBs is reflected in the larger slope in comparison with the situation when only 

parallel boundaries contribute. It is very clearly seen in fig. 5.15b that the slope of the profile 

is decreased by the influence of the blocking SCLs. Because the effects in the problems with 

and without the SCLs have opposite trends in the slope behavior, the question is only which 

of them dominates. In the case of the SCL problems, the contribution is directly determined 

by the ratio Λ. Obviously, the larger Λ, the smaller the slope. Since the results in figs. 5.15a 

and 5.15b have the same Λ, these are also comparable. The profile for larger ∆ is 

characterized by typical spikes which are very tiny in comparison with the profiles without 

the SCLs. Surely, this is due to diffusion confined within the GBs in the SCL problem, i.e. 

there is no significant diffusion from the GBs to the adjacent SCLs.             

 

5.3.3 The model of parallel boundaries and the model of square grains under 

conditions of type-A kinetics 
         

According to fig. 1.5 the increase of t should finally lead to the A-regime. As far as the 

overall process is determined to a great extent by the ratio of the GB and SCL diffusivities, 

the A-regime is met when the diffusion length in the SCL is comparable to that in the grain 

and GB. It can be understood in the way that three different processes should have similar 

diffusion lengths, leading to a homogeneous situation. If this is not the case, and the processes 
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are still separable, the homogeneous solutions, such as Hart’ equation (Eq. (1.17a)) lead to 

significant errors. The diffusion time needed to reach the homogenous situation can be 

extremely long, giving unrealistic values of several tens of millions seconds. In order to 

emphasize these points, the concentration distribution is shown in the model of parallel 

boundaries in fig. 5.16 at t = 3·106 s for Λ = 103. At such a high t nominally the A-regime is 

valid, as being determined by the condition Lg > d (Lg ≈ 30 nm, d = 25 nm). In the region of 

SCL the concentration differs from that in the bulk. The contribution from GBs enhances the 

concentration within the SCL at high t despite a very small diffusivity Dscl. The role of SCLs 

is not the same as it was at short t. The contribution to the grain comes partly from the 

combined SCL-GB system. In this sense both the regions, the SCL and GB, represent one part 

of the sample. This is similar to what was discussed in section 5.2.2. Because of the blocking 

effect, first, some time is needed to fill the SCL by the diffusant, and then the contribution 

would continue from the SCL-GB into the grain. As a result, the diffusion profiles obtained 

under the nominal A-regime conditions comprise two distinguishable parts. In fig. 5.17 the 

diffusion profile calculated for the model of parallel boundaries with the SCL at high t is 

compared with that without SCL. Two interesting cases are also compared in fig. 5.17, 

namely Λ = 10 and Λ = 103. If the ratio Λ is small enough, the corresponding profile strongly 

differs from that for larger Λ and is close to the profile without the SCL, also shown fig. 5.17. 

The latter difference arises at very low concentrations due to the changed kinetics. However, 

if the larger Λ occurs, the two parts of the profile arise. Consequently, it would be necessary 

to apply the conventional procedure used for the B-regime. On the other hand, the A-regime is 

relevant. The problem, of course, deals with the conditions (Eqs. (1.9), (1.10), (1.11)) which 

do not take into account the third diffusivity involved in the process. The Hart equation, being 

the equation for the A-regime, was used to find Dgb,app, and the errors were indeed observed 

(fig. 5.18). The errors in finding Dgb are high, suggesting that it is underestimated, if the 

conventional equation is used. The error increases with Λ, reaching 88% at Λ = 103. The 

shorter t the larger the error (in the A-regime). For Λ = 102, t = 50·106 s is sufficient to reach 

the ratio Dgb,app/Dgb,true ≈ 1. On the other hand, applying Le Claire’s relation gives even larger 

error. Because the profile with the two distinguishable parts is observed for large Λ, the 

procedure discussed in the preceding section can be applied, if one believes that the slope of 

the profile reflects the process between the GB and the SCL at t = 3·106 s. Accordingly, the 

quantities B, C and F were taken from table 5.1 for Λ = 103 and Eqs. (5.3) and (5.4) were used  
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Fig. 5.15 Variation of lnCav with y6/5 calculated for the model of square grains 
with the GBs surrounded by the blocking SCLs compared with those for the 
square grains and parallel boundaries without SCLs for Λ = 102 and a) ∆ = 102, 
b) ∆ = 2.2⋅ 104 at t = 8200 s.   
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to find Dgb,app. The error in finding Dgb was reduced to 44%, indicating the importance and 

validity of Eq. (5.3) for SCL problems.               

 The perpendicular GBs surrounded by the SCLs play a crucial role as it was also 

discussed in the preceding section. These lead to opposite trends when using the conventional 

models for the SCL problems and the non-space-charge problems in the B-regime. The 

concentration distribution is shown in fig. 5.19 for the model of square grains at long t. It is 

clearly seen that the role of the first grain is very specific. This grain is filled completely by 

the diffusant, whereas other grains are characterized by much smaller concentrations. The 

concentration is also enhanced within the GBs. One can expect that the effect of perpendicular 

GBs with the SCLs is to increase the concentration along the depth, in comparison with the 

model of parallel boundaries, which is due to deep penetrations. Consequently, the sample can 

be filled by the diffusant at long t, if each separate grain is filled. However, the perpendicular 

GBs with the SCLs do not allow the diffusant to proceed further into the next grain. The 

concentration is drastically reduced due to these GBs (fig. 5.20). An abrupt change of the 

kinetic regimes occurs along the depth. Again the effect is more pronounced for increasing Λ. 

Very similar effects due to the blocking SCLs were observed experimentally on different 

systems [Leo99], [Sou05], and [WanR05]. However, while studying diffusion in 

polycrystalline materials, it is very difficult to exclude such effects.  

At longer t the concentration within the grains increases, and the step between the 

concentrations in two nearest grains vanishes. It is very well seen in figs. 5.21 and 5.22 for Λ 

= 102. Nevertheless, the effect of perpendicular GBs is so strong that resolving the problem of 

SCL by varying t is impossible. In a bicrystal one can estimate at least the role of SCL by 

plotting lnCav = f(y6/5) even under conditions of the A-regime. In this case the use of Eq. (5.2) 

is very important, since both the Hart equation and Le Claire’s relation yield significant 

errors.  In polycrystals, either high temperature is needed to completely exclude the role of 

SCL or high gradients are needed to restrict analysis to the process close to the surface, in 

order to apply the improved procedure for the B-regime discussed in the present study.       
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Fig. 5.16 Concentration distribution in the model of parallel boundaries at t = 
3·106 s. The GBs are used at x = 0.0 and 25.0 nm, whereas white lines 
correspond to the SCL/grain interface. 
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Fig. 5.17 Variation of lnCav with y6/5 calculated for Λ = 103 and Λ = 10. The 
diffusion profiles are compared with that without SCL at t = 3·106 s. The ratio 
∆ is 102. 
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Fig. 5.18 Errors in determining Dgb by using conventional Hart’s equation. 
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Fig. 5.19 A fragment of the concentration distribution in the model of square 
grains at t = 3·106 s. The parameters used are the same as in fig. 5.16. The GBs 
are situated at x = 0.0 and 25.0 nm, y = 25, 50, 75 and 100 nm.  
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Fig. 5.20 Variation of Cav with y calculated at t = 3·106 s for different Λ. 
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Fig. 5.21 Variation of the diffusion profiles with y calculated for Λ = 102 and ∆ 
= 102 at t = 3·106 s are compared with the model without the SCL. 

 

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

C
av

y, nm

 square grains without SCL
 Λ = 10
 Λ = 103

 
Fig. 5.22 Variation of Cav with y calculated for Λ = 103 and Λ = 10 in the 
model of square grains. The profiles are compared with that for the model of 
square grains without SCL for ∆ = 102 at t = 50·106 s. 
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Summary 
 

The effects of blocking SCLs were analyzed by simulating the diffusion profiles by 

means of the finite element approach. The kinetic regimes of type-A and -B were considered 

and the models of square grains and parallel boundaries applied. A very strong contribution of 

blocking effects was observed in both the kinetic regimes. This means that space charge 

effects should definitely be taken into account when deducing Dgb from the diffusion profiles 

measured in ionic materials. In the B-regime Dgb is overestimated, and the error increases 

with the ratio Λ = Dg/Dscl. Importantly, a relation is suggested to find the ratio Dgb/Dscl from 

the slopes measured in the B-regime on the basis of equations derived in chapter III. It is 

proposed how to find Dgb by using these new relations. In the A-regime Dgb is typically 

underestimated, and the errors increase with decreasing diffusion time. Again the use of a 

newly proposed procedure reduced the errors. This confirms the importance of those 

equations.  

Strong concentration drops were observed in microstructure, what is also consistent 

with the experimental findings. In these cases the main suggestion is to analyze the diffusion 

profiles close to the surface.    
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I. In this dissertation diffusion in polycrystalline materials was studied under 

conditions of short diffusion times and, as a consequence, high concentration gradients in the 

type-B kinetics. The conventional models were tested for such conditions against the 

calculated diffusion profiles, in order to estimate corresponding errors in the evaluation of the 

grain boundary (GB) diffusivities (Dgb) as well to develop improved evaluation procedures. It 

was found that:  

 

1) The application of Le Claire’s method (Eq. (1.16)) can lead to substantial errors, when 

applied to the calculated diffusion profiles.  

 

2) One reason for the large errors is related to the nonlinearity of diffusion profiles in lnCav = 

f(y6/5) plot, where Cav is the average concentration measured by one of the depth profiling 

methods and y is the penetration depth. An improved procedure is proposed for using Le 

Claire’s relation: 
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a) The derivative of the diffusion profile should be plotted, in order to estimate the effect 

of profile nonlinearity.  

b) The maximum value of the derivative should be used instead of fitting the profile to a 

straight line.  

 

3) If Le Claire’s method is to be applied, the derivative ∂lnCav/∂w6/5 should not be 

necessarily constant (w is the dimensionless coordinate) depending on the dimensionless 

parameter α (Eq. (1.9d)). Consequently, Le Claire’s constant should be replaced by an 

improved value calculated by the following relation, giving the maximum value of 

∂lnCav/∂w6/5 at fixed diffusion time: 

 

α71.077.0
ln

max
5/6 −−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

w
Cav .  

 

The dimensionless parameter α (Eq. (1.9d)) should be larger than 0.02, otherwise Le Claire’s 

constant (≈ 0.78) may be safely used. This parameter can be easily estimated in the 

experiment, if the grain diffusivity (Dg) and the GB thickness (δ) are known.   

 

4) For the dependence of the position of the maximum of the derivative ∂lnCav/∂y6/5 on the 

diffusion time the following empirical expression was found 

 
6/5 H
maxy K t= ⋅ , 

 

where H is around 0.60, K is a function of grain diffusivity (Dg) and Dgb and t the diffusion 

time. The expression requires the condition β > 10 (Eq. (1.9d)) to be fulfilled. 

 

5) The maximum value of the derivative ∂lnCav/∂y6/5 can be found by using the following 

expression 

 

F Bav
6/5

max

ln C
C t

y
∆

∂
= ⋅ ⋅

∂
, 

 

where the ratio of diffusivities ∆ equals Dgb/Dg, C depends on diffusion time and Dg, B and F 

are almost constants and given by –0.61 and –0.34, respectively. 
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 II. The conventional models ignore the GBs orientations with respect to the diffusion 

direction. Realistic microcrystalline structures were used, in order to estimate these effects. 

For this purpose three general geometrical models were developed which are directly 

comparable with the popular model of square grains and parallel boundaries. It was observed 

that the relevant effects manifest themselves: 

 

1) Steeper diffusion profiles with concentrations smaller than compared to the situation when 

only parallel GB diffusion paths are present. Consequently, 

 

This increases the slope of the diffusion profile with decreasing grain sizes, and, as a 

result of this, the use of Le Claire’s relation underestimates Dgb. 

 

2) General geometries with similar numbers of perpendicular and parallel paths are very well 

comparable with the model of square grains. Consequently, 

  

This makes the model of square grains as a good approximation of the polycrystalline 

microstructure also for instationary diffusion. 

 

3) Negligible role of perpendicular GB diffusion paths in the model of square grains, if the 

diffusion time increase guarantees the A-regime of diffusion. Consequently, 

 

It was observed that the concentration profiles in both the model of parallel boundaries 

and the model of square grains almost coincide at very long diffusion times. 

 

Additionally, the effects of impurity segregation were taken into account when 

analyzing diffusion in realistic microstructures. Very small and very large segregation 

coefficients (s) were used, allowing the conventional equations to be compared for different 

situations. The following conclusions were made: 

 

1) The Hart-Mortlock (Eq. (1.17b)) equation is not valid when deducing Dgb with s larger 

than 20 even in the model of parallel boundaries. The use of this equation gives increasing 

errors with s. For example, errors of the order of 90% can be observed for s = 160 – 640. 
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2) The Hart-Mortlock equation is correct for finding Dgb in the model of square grains, if the 

volume (area) fraction of GBs is taken as it is in the model of parallel boundaries, and 

segregation is negligible. This conclusion refers to the negligible role of perpendicular GB 

diffusion paths at long diffusion times.   

 

3) The Maxwell-Garnett type equation (Eq. (1.18b)) for segregation is not valid in the model 

of parallel boundaries under conditions of strong segregations and may be only applied in the 

model of square grains. Consequently,  

 

Inappropriate use of the Maxwell-Garnett type equation increases the errors of finding 

Dgb. The error increases with s and can reach 90% and larger for s ≥ 640.   

     

III. The existence of depleted space charge layers (SCL) in ionic materials was taken into 

account. A special model was proposed in which constant space charge layer diffusivity (Dscl) 

is introduced. The diffusion profiles were simulated by the finite element method in the B- as 

well as A-regime varying the ratio Λ = Dg/Dscl. The main results are summarized in the 

following: 

 

1) The depleted space charge layer leads to diffusion profiles with slopes different from 

those without space charge layers. Namely, the slope of the profile decreases with the ratio Λ 

= Dg/Dscl. Consequently, 

 

The conventional Le Claire relation (Eq. (1.16)) overestimates Dgb by a factor of 6, if Λ = 

103 at very short diffusion times. 

 

2) The maximum of the derivative of the profile measured in the B-regime is determined by 

the transport process between the GB and SCL. Using the new equation for the maximum 

(Eq. (2.7) or I.5) of the derivative allows the ratio Dgb/Dscl to be obtained and, as a result of 

this, Dgb according to modified original Le Claire’s relation (Eq. (1.14)) 

 

( )
10/310/3

av av
gb,app 6/5 6 /52

gb scl

ln C ln C4D
w yD / D tδ

−
⎛ ⎞∂ ∂⎛ ⎞= − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

  , 

 

where ∂lnCav/∂w6/5 is determined by Eq. (1.14) or is -0.78 depending on α (see also I.3). 
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3) The kinetic regimes are shifted in time if the blocking space charge effects play a role. In 

this case, the diffusion profiles should be plotted in nonlinear scale according to lnCav = f(y6/5) 

even if the nominal A-regime conditions are satisfied, in order to qualitatively estimate the 

effect of blocking SCLs. Consequently, 

 

In the nominal A-regime strongly blocking SCLs may lead to a severe underestimation of 

Dgb by using a conventional analysis. 

 

4) The role of perpendicular GB paths increases, if these are surrounded by blocking space 

charge regions. Consequently, 

 

a) Crossing GBs with SCLs lead to the drop and significant decrease of concentration in 

the model of square grains. 

b) Crossing GBs (square grains) with SCLs lead to further blocking effects and even for 

long diffusion times (nominal A-regime) modified profiles with two distinguishable parts 

and varying slopes may result. 

 

 IV. Moreover, along with the computer calculations, a procedure was developed for 

proper simulations of diffusion in polycrystalline materials by means of the finite element 

method. The procedure considers simulation of diffusion in a semi-infinite solid and the main 

aspects are summarized as follows: 

 

1) Simulating diffusion in the B-regime, a special attention should be paid to the finite 

element mesh. Consequently, 

 

a) The derivatives of diffusion profiles can be calculated for different mesh densities, in 

order to find the optimal mesh with respect to the initial time and the diffusion times of 

interest.  

 b) The denser mesh the shorter diffusion times for which profiles can be obtained. 

 

2) The derivatives allow one also to estimate the effect of the boundary at the bottom of the 

geometrical model (sample) used, e.g., the condition of zero flux. Consequently, 
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If the maximum of the profile is not distinguishable, the length of the geometrical model 

should be increased and, if necessary, the density of mesh should be decreased.  

 

3) The length of the geometrical model should be at least eff4 D t  (Deff is the effective 

diffusivity which reflects the homogeneous character of diffusion in the A-regime and can be 

obtained by using the Hart or Maxwell-Garnett equation) for properly simulating the diffusion   

profiles in the A-regime, otherwise the effect of the boundary condition becomes significant. 

 

4) The simulation mesh density in the A-regime can be significantly reduced in comparison 

with the B-regime. However, the time increment can be increased. It means that some 

adaptive procedure with respect to the time increment is useful when simulating the diffusion 

profiles in the B-regime and A-regime simultaneously. 
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1. Einführung 
 

 Viele anorganische Materialien in der Natur wie auch in technischen Anwendungen 

sind polykristallin. Die Struktur und die Chemie der Korngrenzen in den Materialien 

unterscheiden sich von Volumeneigenschaften, was die Ursache veränderter 

Transporteigenschaften der Korngrenzen ist. Erhöhte Diffusionskoeffizienten längs der 

Korngrenze erweisen sich als sehr relevant für die Anwendungen in vielen polykristallinen 

Materialien. Die Bedeutung der Korngrenzen erhöht sich weiter, wenn nanokristalline 

Materialien mit hoher Grenzflächendichte betrachtet werden. So befasst sich eine große 

Anzahl von experimentellen Arbeiten mit der Messung von erhöhten 

Korngrenzendiffusionskoeffizienten sowohl in Metallen als auch in keramischen Materialien. 
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   Viele dieser Messungen beruhen auf der Bestimmung des Diffusionsprofils bei 

verschiedenen Temperaturen und/oder Zeiten. Das gemessene Profil spiegelt gewöhnlich die 

mittlere Diffusantkonzentration Cav parallel zur Oberfläche als Funktion der Eindringtiefe 

wider und kann zum Beispiel durch die Methode der Sekundärionen-Massenspektroskopie 

(SIMS) bestimmt werden. Je nach experimentellen Bedingungen existieren verschiedene 

Gleichungen, um den Diffusionskoeffizient der Korngrenze (Dgb) aus diesen Profilen zu 

bestimmen [Mis97]. Das bekannteste Modell nach Harrison [Harr61] betrachtet drei 

idealisierte Typen der Korngrenzdiffusion, die mit Typ A, Typ B und Typ C bezeichnet 

werden. In dieser Klassifikation bestimmt die Diffusionslänge im Volumen (oder innerhalb 

eines Korns) g gL D t=  die Kinetik, hierbei bezeichnet Dg den Diffusionskoeffizient im 

Korn. Im Bereich der Typ-B-Kinetik ist die Diffusionslänge Lg größer als die Korngrenzdicke 

(δ), aber viel kleiner als die durchschnittliche Korngröße (d). In diesem Fall kann Diffusion in 

einem polykristallen Material in erster Näherung durch die Modellgeometrie, die in Bild 1 

dargestellt ist, beschrieben werden, d.h. durch eine isolierte Korngrenze senkrecht zur 

Oberfläche.   

 Fisher [Fis51] hat ein erstes analytisches Modell, das die Korngrenzendiffusion 

beschreibt und als Fishers Modell bekannt ist, veröffentlicht und auch eine annähernde 

Lösung vorgeschlagen. Seitdem versuchten viele Autoren, die Bestimmung der 

Diffusionskoeffizienten der Korngrenzen ausgehend von experimentellen Daten zu 

verbessern. Whipple [Whi54] hat eine exakte analytische Lösung des Fisher-Modells 

gefunden, die eine Integralform aufweist. Le Claire [Cla63] hat auf Grund der Erkenntnisse 

von Levine und MacCallum [Lev60] gezeigt, dass das Produkt δDgb für bekannte Dg und δ 

aus dem Konzentrationsprofil gefunden werden kann. Das Le Claire-Modell wird in 

zahlreichen Experimenten benutzt, um Diffusionsprofile zu analysieren. Allerdings wird meist 

die Hauptnäherung des Le Claire-Modells  nicht überprüft, insbesondere erweist sich ein 

konstanter Koeffizient, der von Le Claire eingeführt worden ist, für kleine Körner als kritisch. 

Die Le Claire-Gleichung lautet [Cla63] 

 
5/3

g av
gb 6/5

D ln CD 1.322
t y

δ
−

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

.            (1) 

  

 Abgesehen von Problemen bezüglich des Modells der isolierten Korngrenze existieren 

auch Fälle, die für nanokristallinen Materialien charakteristisch sind, in denen Lgb >> d. 

Mishin [Mis95] hat zusätzliche kinetische Regimes eingeführt, in denen diese Bedingungen 
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berücksichtigen werden. Unter diesen Bedingungen kann die Korngrenzorientierung in Bezug 

auf Diffusionsrichtung eine wichtige Rolle spielen. In dieser Arbeit wurden realistische 

Geometrien der polykristallinen Struktur erörtert: ein Modell quadratischer Körner und so 

genannte Modelle mit allgemeiner Geometrie, die in Bild 2 und Bild 3 dargestellt werden. 

Ergebnisse der Diffusionssimulation mit diesen Modellen wurden mit Ergebnissen verglichen, 

die mit dem Modell paralleler Korngrenzen erhalten wurden. Die Diffusionszeit (t) wurde so 

variiert, dass eindeutig Typ B oder  Typ A vorlag. In den Fällen des Typs B (d >> Lg >> δ) 

wurde Le Claires Gleichung (1) angewendet, aber in den Fällen des Typs A (Lg >> d) konnte 

nur ein effektiven Diffusionskoeffizient (Deff) experimentell gefunden werden. In diesem Fall 

ließ sich Dgb durch die Anwendung der Hart-Gleichung [Hart57] 

 

( )eff gb gD gD 1 g D= + −               (2) 

 

erhalten, wenn der Volumenanteil (oder Flächenanteil) der Korngrenzen (g) und Dg bekannt 

war. Für Störstellendiffusion musste die Hart-Gleichung durch die Hart-Mortlock-Gleichung 

ersetzt werden [Mor60]: 

 

( )eff gb gD sgD 1 sg D= + − .             (3) 

 

Hierbei muss der Segregationskoeffizient (s) bekannt sein, um Dgb zu finden. Vor kurzem 

wurde bereits gezeigt, dass die Hart-Gleichung (und damit auch die Hart-Mortlock-

Gleichung) bei vergrößertem g und/oder s zu Fehlern führt [Bel03]. In diesem Fall ist es 

besser, die Maxwell-Garnett-Gleichung [MaxG04] 

 

( )
gb g gb

eff
gb g

sD (2 g)D sgD
D

1 g sg sD (2 g) gD

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− + − +⎣ ⎦

           (4) 

 

zu benutzen. Die Gründe, weswegen die Hart-Gleichung zu Fehlern führen kann, waren nicht 

sorgfältig untersucht worden, deshalb werden sie in dieser Arbeit besprochen.      

 Historisch wurde die grundlegende Diffusionstheorie der Korngrenzen für metallische 

Systeme entwickelt. Le Claires und Harts Gleichungen wurden für die Bestimmung der 

Korngrenz-Diffusionskoeffizienten sowohl in Metallen als auch in ionischen Materialien 

benutzt. Man muss jedoch in Betracht ziehen, dass sich die Korgrenzeneigenschaften der 
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Materialien unterscheiden. Wegen der ionischen Natur der Bindung und der Anwesenheit 

geladener Teilchen in den betrachteten Materialen sind Korngrenzen im Allgemeinen geladen 

(z.B. durch geladene Leerstellen, die an Korngrenzen adsorbiert sind). Um insgesamt die 

Elektroneutralität im Material zu gewährleisten, bildet sich eine Raumladungszone in der 

Nähe der Korngrenzen aus. Die Eigenschaften des Materials in diesem Bereich unterscheiden 

sich von den Volumen- und Korngrenzeneigenschaften. Das führte zur Notwendigkeit, die 

veränderten Transporteigenschaften in diesem Bereich zu berücksichtigen und einen neunen 

Diffusionskoeffizienten Dscl, s. z. B. [Yan77], einzuführen. Diffusionsprofile wurden mit den 

Modellen paralleler Korngrenzen und quadratischer Körner für unterschiedliche Verhältnisse 

Λ = Dg/Dscl modelliert. Große Aufmerksamkeit wird Bedingungen geschenkt, unter der Λ > 1, 

d. h. Dscl < Dg ist. Dies wird durch Korngrenzen, die an beweglichen Ladungsträgern verarmt 

sind, realisiert, wobei die Korngrenze aus Kernbereich und aus Raumladungsbereich besteht 

[Jam97] (dabei wird der Diffusionskoeffizient im Raumladungbereich als unabhängig von der 

Ortskoordinate angenommen). Solche Korngrenzen kommen in ZrO2 oder SrTiO3 vor und 

verringern in hohem Maße die Leitfähigkeit der Materialen [Gou01a], [Gou01b]. In dieser 

Arbeit wurde diskutiert, zu welchen Veränderungen das Vorhandensein eines Bereichs mit 

einem im Vergleich zum Volumen verringerten Diffusionskoeffizient führt.                 

                       

2. Physikalische und geometrische Modelle, die in der 

numerischen Untersuchung benutzt wurden 
 

 

Wie schon erwähnt, hat Fisher das erste Modell der Korngrenzdiffusion 

vorgeschlagen, das bis heute ein Standardmodell ist. In diesem Modell wurde die Korngrenze 

als ideales isolierter Schicht, das senkrecht zur Oberfläche orientiert ist, dargestellt (Bild 1). 

Die Diffusionskoeffizienten Dg und Dgb werden von der Zeit, Konzentration und/oder 

Koordinaten unabhängig angenommen. An der freien Oberfläche befindet sich eine 

Diffusionsquelle. In der Arbeit wird nur der Fall einer unerschöpflichen Diffusionsquelle 

betrachtet. Außerdem wird hier ein halbunendliches System betrachtet. Die Diffusion im  
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Bild 1 Isolierte Korngrenze. 

 

Fisher-Modell kann mit zwei Diffusionsgleichungen beschrieben werden, d. h. mit den 

Fickschen Gleichungen unter folgenden Randbedingungen: 

 

g gb

g gb

C (x, y, t) C (x, y, t)      
,      x / 2.

J (x, y, t) J (x, y, t)

=⎧⎪ = δ⎨ =⎪⎩
           (5) 

 

Diese Randbedingungen stellen Gleichgewichtsbedingungen des Diffusionsverlaufs an 

der Grenzfläche zwischen zwei unterschiedlichen Phasen dar. Das Gleichungssystem kann 

jedoch nicht analytisch gelöst werden. Wenn man die Konzentration in der Korngrenze durch 

eine Taylor-Reihe, bezogen auf x = 0, ausdrückt und wenn man Glieder höherer Ordnung (d. 

h. n ≥ 3) vernachlässigt, kann man das Gleichungssystem auf folgende Weise umschreiben 

[Kau95]: 

 

( ) ( ) ( )

( ) ( ) ( )

2 2
g g g

g 2 2

2
g gb g g

gb 2

C x, y, t C x, y, t C x, y, t
D ,                           x / 2

t x y
 

C y, t C y, t 2D C y, t
D ,                               x / 2

t y x

⎧ ⎛ ⎞∂ ∂ ∂
= + ≥ δ⎪ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎝ ⎠⎨

∂ ∂ ∂⎪
= + = δ⎪ ∂ ∂ δ ∂⎩

      (6) 
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Die zweite Gleichung, die die Korngrenze beschreibt, ist die Randbedingung der ersten 

Gleichung; die Vernachlässigung der Korngrenzenkonzentration und der Korngrenzendicke 

wurden berücksichtigt. Die analytische Lösung dieses Gleichungssystems wurde von Whipple 

für eine unendliche Quelle vorgestellt [Whi54]: 

 
2

0
g 0 1/ 2 3/ 2

1

C d 1 1 1C ( , , ) C erfc exp erfc
2 2 4 2

∆ηη σ η ∆ σ
η ξ β ξ

π σ σ ∆ σ β
⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= + − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

∫ ,           (7) 

 

mit ∆ = Dgb/Dg. Die numerische Integration der Whipple-Lösung wurde mit Hilfe der 

Programmiersprache „MatLab“ ausgeführt, die numerische Integration des 

Gleichungssystems (6) durch die Finite-Element-Methode wurde für komplizierte 

geometrische und physikalische Modelle in dieser Arbeit benutzt, um die Effekte auf kleinen 

Längenskalen zu analysieren.  

Das Gleichungssystem (6) muss umgeschrieben werden, wenn Fremdstoffdiffusion 

modelliert  wird. Dabei ist es notwendig, die folgende Randbedingung zu berücksichtigen: 

 

gb gC (x / 2, y, t) sC (x / 2, y, t)δ δ= ± = = ± , 

 

mit s - Segregationskoeffizient. Dann wird das System von Fisher umgeformt [Gib66]: 

 

( ) ( ) ( )

( ) ( ) ( )

2 2
g g g

g 2 2

2
g gb g g

gb 2

C x, y, t C x, y, t C x, y, t
D ,                          x / 2

t x y
 

C y, t C y, t 2D C y, t
D ,                              x / 2

t y s x

⎧ ⎛ ⎞∂ ∂ ∂
= + ≥ δ⎪ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎝ ⎠⎨

∂ ∂ ∂⎪
= + = δ⎪ ∂ ∂ δ ∂⎩

      (8) 

 

Das oben genannte Gleichungssystem wurde für Modellierung mit parallelen 

Korngrenzen und mit quadratischen Körnern nur im Diffusionsregime vom Typ A benutzt. In 

dieser Modellierung ist der Abstand zwischen den parallelen Korngrenzen, der gleich der 

Korngröße ist, d = 10 nm. 

Es muss angemerkt werden, dass diese beiden Modelle (parallele Korngrenzen und 

quadratische Körner) die Standard-Mikrostrukturmodelle eines Polykristalls für die 

Modellierung sind, s. z. B. [Bel03]. Diese Modelle wurden für die Diffusionsanalyse sowohl 

im Typ B als auch im Typ A in Abwesenheit von Segregation benutzt. Ergebnisse im ersten 

Fall, die sich aus den Modellen ergaben, wurden mit realistischeren Mikrostrukturen (Bilder 3 
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und 4) verglichen und Bestimmungsfehler des Diffusionskoeffizienten Dgb abgeschätzt. Es ist 

wichtig festzustellen, dass die parallele Orientierung der Korngrenzen bei Herleitung der 

Hart-Gleichung angenommen wird [Hart57], [Bel03], im Fall der Maxwell-Gleichung jedoch 

kugelförmige Körner [Kal02]. 

Die Idee der Verwendung realistischer Mikrostrukturen bezieht sich drauf, dass in 

üblichen Korngrenzenmodellen angenommen wird, dass die Korngrenze parallel zur 

Diffusionsrichtung orientiert ist. Diese Näherung ist mit dem Wert des Parameters β 

verbunden, der den Sättigungsgrad des Diffusionsprozesses bestimmt. Das heißt, dass die 

Diffusion in nanokristallinen Materialien durch große Werte des Parameters β  

gekennzeichnet ist: große Werte β  bedeuten tiefe Durchdringung. Dabei erhöht sich die Rolle 

der Korngrenzorientierung relativ zur Diffusionsrichtung. 

Auf diese Weise ist das Modell der quadratische Körner die einfachste Näherung der 

Mikrostruktur. In dieser Arbeit wurden Diffusionsprofile für verschiedene Flächenanteile (g) 

modelliert, d. h. die durchschnittliche Korngröße variiert von 10 bis 100 nm. 

Die Ergebnisse wurden mit dem Modell paralleler Korngrenzen sowohl im Typ B als 

auch im Typ A verglichen. Zusätzlich wurden für den Typ B drei so genannte allgemeine 

Modelle untersucht. Diese Modelle unterscheiden sich durch die Zahl der parallelen, 

senkrechten und sonstigen Korngrenzen. Das allgemeine Modell (Geometrie) 1 (Länge 250 

nm, Breite 40 nm) umfasst 17 Korngrenzen (6 parallelen Korngrenzen, 11 sonstige); die 

durchschnittliche Korngröße im allgemeinen Modell 1 ist 30.5 nm.  

 

Nummer des 
allgemeinen 

Modells 

Zahl der 
parallelen 

Korngrenzen 

Zahl der 
sonstigen 

Korngrenzen 

Neigungswinkel 
in Grad 

Durchschnitt-
liche 

Korngröße 
1 6 11 14 - 78.7 30.5 
2 4 3 36 - 42 64 
3 21 36 16 - 69.3 29.1 
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Bild 2 Allgemeines Modell 1 mit Konzentrationsverteilung (a) und allgemeines 
Modell 2 (b), in Farbe dargestellt. Alle weißen Linien sind Korngrenzen. 
Korngrenzenlängen und Neigungswinkel in Grad sind auch dargestellt.    
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Bild 3 Die allgemeine Modell 3. Alle weißen Linien sind Korngrenzen. 
Korngrenzenlängen und Neigungswinkel in Grad sind auch dargestellt. 
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Die geometrischer Parameter der drei allgemeinen Modelle, die in dieser Arbeit benutzt 

wurden, sind in der Tabelle aufgeführt. Man sieht aus der Tabelle, dass zwei Modelle, 

nämlich Modell 1 und Modell 3, durch die gleiche durchschnittliche Korngröße aufweisen, 

aber sich stark in der Zahl der Korngrenzen und durch die Werte der Orientierungswinkel  

unterscheiden. Die durchschnittliche Korngröße wurde durch die Summe aller 

Korngrenzenlängen im Modell dividiert durch die Gesamtzahl der Korngrenzen abgeschätzt. 

Jedes Modell stellt ein Element dar, das dann in die Länge und/oder in die Breite gespiegelt 

wurde, um eine ausreichende Gesamtlänge der Geometrie zu gewährleisten. 

 

3. Ergebnisse und Diskussion 
 

3.1 Nichtlinearitätseffekt 
 

 Im Diffusionsregime vom Typ B wird den Diffusionskoeffizient Dgb durch das Le 

Claire – Verhältnis bestimmt, wenn der Diffusionskoeffizient Dg und die Korngrenzdicke 

bekannt sind. Das Verhältnis beruht darauf, dass die Abhängigkeit lnCav = f(y6/5) (Cav ist ein 

Konzentration, der experimentell abgeschätzt) aus zwei Anteilen besteht: ein Volumenanteil 

(nahe an der Oberfläche) und ein Korngrenzanteil. Dabei soll der Korngrenzanteil des Profils 

eine lineare Funktion von y6/5 sein. Es ist unmöglich, eine allgemeine lineare Beziehung 

aufzustellen. Dies ist eine Frage der Parameter und der Bedingungen. Es ist empirisch 

offensichtlich, dass der Korngrenzanteil mit der Abhängigkeit lnCav = f(y6/5) bei hohen 

Diffusionstemperaturen und/oder bei langen Diffusionszeiten durch eine gerade Linie 

angenähert werden kann. In Nanomaterialien werden im Diffusionsregime vom Typ B sehr 

kurze Diffusionszeiten betrachtet. Dabei wird die Nichtlinearität des Korgrenzprofilanteils 

stärker ausgeprägt.  

Die Diffusionsprofile wurden durch Integration der Whipple-Lösung (Gl. (3)) 

berechnet (das Verhältnis der Diffusionskoeffizienten ∆ variiert von 102 bis 105 und die 

Diffusionszeit variiert von 2·103 s bis 1⋅106 s). Diese berechneten Profile wurden durch 

Gerade angenähert. Die erhaltenen Neigungswinkel können unmittelbar in die Le Claire-

Gleichung eingesetzt werden und der Diffusionskoeffizient Dgb kann abgeschätzt werden. Die 

Anwendung der Le Claire-Lösung führt wegen der Nichtlinearität zu Fehlern in der 

Bestimmung von Dgb. In Bild 4 wird die Ableitung des Profils dargestellt, das für ∆ = 2.2·104 

und t = 2000 s berechnet wurde. Dieses Profil hat einen deutlich ausgeprägten 



Kurzfassung der Dissertation in deutscher Sprache 
 

 165

Nichtlinearitätseffekt. Die Fehler, die durch die Anwendung der Le Claire-Gleichung 

entstehen, werden in Abhängigkeit von der Zeit für unterschiedliche Verhältnisse ∆ (schwarze 

Linie) in Bild 5 dargestellt. Es ist interessant, dass das Profil durch an Maximum 

charakterisiert ist. Dieses Maximum entspricht unmittelbar dem Diffusionsregime vom Typ 

B, während die Nichtlinearität des Profils durch die Veränderungen des Diffusionsregimes in 

der Tiefe y hervorgerufen wird. Die Fehler der Bestimmung von Dgb können erheblich 

verringert werden, indem die Maxima der Ableitung in der Le Claire-Gleichung (rote Linien 

in Bild 2) verwendet wurden.  
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Bild 4 Ableitung des Profils: ∆ = 2.2·104, t = 2000 s. 

 

Die Fehler waren trotzdem erheblich, und sogar für ∆ = 2.2·104, 105 erhöht sich der 

Fehler bei längeren Diffusionszeiten. Für die Analyse des Effekts muss berücksichtigt 

werden, dass die Konstante in der Le Claire-Gleichung dem Wert  

 
5/3

av av
6/5 6 /5

ln C ln C
1.322 2 0.78

w w
∂ ∂⎛ ⎞= − ⇒ = −⎜ ⎟∂ ∂⎝ ⎠

           (9) 

 

entspricht. Die Ableitung von lnCav nach dem dimensionslosen Parameter w ist von ∆ 

unabhängig, aber sie ist zeitabhängig. Nur bei sehr langen Zeiten wird diese Ableitung 

konstant. In Bild 6 wird ein Beispiel der Abhängigkeit ∂lnCav/∂w6/5 = f(w6/5) für ∆ = 2.2⋅104 

gezeigt. So führt die Anwendung der Konstanten 1.322 auch in Bild 5 zu Fehlern. Es wurde 

herausgefunden, dass die Maxima der Ableitung ∂lnCav/∂w6/5 = f(w6/5) vom dimensionslosen  
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Bild 5 Bestimmungsfehler des Diffusionskoeffizienten Dgb für ∆ = 102, 103 a) 
und ∆ = 2.2⋅104, 105 b). 
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Parameter g/(2L )α δ=  linear abhängig sind. Der folgende Ausdruck wird für  eine genaue 

Bestimmung ∂lnCav/∂w6/5 = f(w6/5) vorgeschlagen: 

 
av

6/5

ln C 0.77 0.71
w

α
∂

= − −
∂

.           (10)    

 

Außerdem ändert sich die Maximumlage der Abhängigkeit ∂lnCav/∂y6/5 = f(y6/5) mit der Zeit 

nach dem folgenden  Potenzgesetz 

 
6/5 H
maxy K t= ⋅ ,             (11) 

 

wobei K von den Diffusionsparametern abhängt. Schließlich können die Ableitungswerte im 

Maximum näherungsweise nach         
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Bild 6 Ableitung von lnCav nach dem dimensionslosen Parameter w bei 
fixiertem ∆ = 2.2⋅104 für verschiedene Zeiten. Die durchgezogenen Linien 
entsprechen einer festen Geometrielänge von 500 nm. Die gepunkteten Linien 
entsprechen einer Längevergrößerung bis das Maximum erreicht.     
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F Bav
6/5

max

ln C
C t

y
∆

∂
= ⋅ ⋅

∂
,            (12) 

 

bestimmt werden, wobei C ist Diffusionsparameter-Funktion und B den Wert -0.34 in einem 

breiten Bereich der Diffusionsparameter annehmen kann.  

 

3.2 Realistische Mikrostrukturen 
 

 Sowohl das Diffusionsregime vom Typ B als auch das Diffusionsregime vom Typ A 

wurden für die Analyse des Orientierungseinflusses der Korngrenze relativ zur 

Diffusionsrichtung benutzt. Im Diffusionsregime vom Typ B wurden die Diffusionsprofile 

sowohl in allen drei allgemeinen Modellen (Tabelle) als auch im Modell quadratischer Körner 

berechnet. Die Verringerung der Korngröße im Modell quadratischer Körner führt zur 

Vergrößerung der Profilneigung (Bild 7). Der Diffusionskoeffizient Dgb kann durch die 

Anwendung der Le Claire-Gleichung unterschätzt werden. Wenn das allgemeine 

Mikrostrukturmodell eine stark unterschiedliche Zahl der parallelen und senkrechten 

Diffusionswege hat, können sowohl niedrige Konzentrationen als auch erhöhte 

Konzentrationen im Vergleich zum Modell quadratischer Körner entstehen. Diese Situation 

ist sehr schwer vorauszusagen. In Bild 8 werden die allgemeinen Modelle 1 und 3 mit dem 

entsprechenden Modell quadratischer Körner verglichen. Wenn die Zahl der Pfade 

miteinander vergleichbar ist, dann ist das Modell quadratischer Körner eine gute Näherung 

des Polykristalls.  

 Im Diffusionsregime vom Typ A wurden die Diffusionsprofile sowohl im Modell 

quadratischer Körner als auch im Modell paralleler Korngrenzen mit d = 10 nm modelliert. 

Der Segregationskoeffizient wurde von 5 bis 640 variiert. Sowohl die Hart-Mortlock-

Gleichung (Gl. 3) als auch Maxwell-Garnett-Gleichung (Gl. 4) wurden mit der Modellierung 

verglichen. In Bild 9 werden die entsprechenden Ergebnisse gezeigt. Die Hart-Mortlock-

Gleichung kann für die Bestimmung von Dgb nicht einmal für das Modell paralleler 

Korngrenzen verwendet werden, da sie zu Fehlern von 90 Prozent führt. Im Gegensatz dazu 

kann jedoch die Maxwell-Garnett-Gleichung für das Modell quadratischer Körner eingesetzt 

werden.                
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Bild 7 Diffusionsprofile für quadratische Körner unterschiedlicher Korngrößen. 
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Bild 8 Diffusionsprofile für quadratische Körner und für die allgemeinen 
Modelle 1 und 3. 
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Bild 9. Vergleich der Simulation der Maxwell-Garrnet-Gleichung mit der Hart-
Mortlock-Gleichung.  

 

3.3 Probleme durch Raumladungszonen 
 

 Vor kurzem wurde experimentell gezeigt [Sou05], dass die Verarmungsrandschichten 

der Raumladung eine sehr wichtige Rolle bei der Bestimmung des Diffusionskoeffizienten in 

ionischen Materialien spielen. In dieser Arbeit wurden die Diffusionsprofile für ∆ = 102 mit 

unterschiedlichen Verhältnissen Λ (= Dg/Dscl) sowohl im Regime vom Typ B als auch im 

Regime vom Typ A berechnet. In Bild 10 werden die Abhängigkeiten lnCav = f(y6/5) für t  = 

4700 s dargestellt. Es muss angemerkt werden, dass sich die Neigung des Korngrenzanteils 

mit Veränderung von Λ ändert. Das bedeutet, dass, wenn die entsprechende Neigung in die Le 

Claire-Gleichung eingesetzt wird, Dgb stark überschätzt werden kann. Bei dem größten Λ = 

103 ist  Dgb sechsfach überschätzt. Diese große Überschätzung ist auch dann möglich, wenn 

verbesserte Ableitungswerte der Gleichung ∂lnCav/∂w6/5 = f(w6/5) und die Maxima der 

Abhängigkeit ∂lnCav/∂w6/5 = f(y6/5) benutzt werden. Auch die Ableitung der berechneten 

Profile wurde analysiert. Um zu verstehen, welchem Verhältnis der Diffusivitäten das 

Maximum der Ableitung entspricht, wurde Gleichung 12 benutzt.  

 Die Modellierung der Diffusionsprofile im Regime vom Typ A hat gezeigt, dass der 

Raumladungsbereich zur Verschiebung des kinetischen Regimes in der Zeit führt. Eine 
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Profilstruktur, die für das Regime vom Typ A, d. h. gL d>  und lnCav = f(y6/5) berechnet 

wurde, zeigt, dass das Profil zwei unterschiedliche Anteile besitzen kann: einen 

Korngrenzanteil und einen Volumenanteil. In Bild 11  ist ein solches Profil für Λ = 103 bei t = 

3⋅106 s dargestellt. Außerdem zeigt sich die starke Konzentrationsänderung im Modell 

quadratischer Körner wegen der senkrechten Korngrenzen, die von der Raumladungszone mit 

Dg > Dscl (Bild 12) umgeben sind. Diese Ergebnisse zeigen, dass die Diffusion in der 

Raumladungszone durch die Einführung des dritten Diffusionskoeffizienten Dscl 

berücksichtigt werden muss. Die Bestimmungsfehler in Dgb durch die üblichen 

Auswertungsmethoden sind im Regime vom Typ A für das Modell paralleler Korngrenzen in  
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Bild 10  Diffusionsprofile für unterschiedliche Verhältnisse Λ für ∆ = 102 und t  
= 4700 s. 
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Bild 11 Vergleich der Diffusionsprofile bei unterschiedlichen Verhältnissen Λ 
und der Diffusionsprofile ohne Raumladungsschicht im Regime von Typ A für 
parallele Korngrenzen für t = 3·106 s. 
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Bild 12 Vergleich der Diffusionsprofile mit und ohne Raumladungsschicht im 
Regime von Typ A für quadratische Körner. 
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Bild 13 Bestimmungsfehler in Dgb durch die üblichen Auswertungsmethoden 
im Regime vom Typ A für das Modell paralleler Korngrenzen. 

 

   

4. Zusammenfassung  
 

In dieser theoretischen Arbeit wurden drei Effekte untersucht: 

 

1) Der Effekt verschiedener Näherungen und Werte des Diffusionskoeffizienten bei 

kurzen Zeiten im Regime vom Typ B 

2) Der Effekt großer und kleiner Segregationskoeffizienten im Regime vom Typ A 

3) Der Effekt einer an beweglichen Ladungsträgern verarmten Raumladungszone, 

sowohl im Regime vom Typ B als auch im Regime vom Typ A  

 

Alle drei Effekte wurden im Modell paralleler Korngrenzen (oder im Modell isolierter 

Grenzen) und im Modell quadratischer Körner analysiert. Außerdem wurde die Rolle der 

Korngrenzorientierung relativ zur Diffusionsrichtung bei kleinen Diffusionszeiten 

abgeschätzt.  
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Die Nichtlinearität der Diffusionsprofile zeigt sich bei kleinen Diffusionszeiten besonders 

stark und führt zu Fehlern in der Bestimmung des Korngrenzdiffusionskoeffizienten (Dgb), 

falls die Le Claire-Gleichung angewendet wird. In diesem Fall wird vorgeschlagen, die 

Ableitung des Konzentrationsprofils zu betrachten. Die Auswertung des Maximums der 

Ableitung führt zur Verringerung des Fehlers in Dgb. Die Le Claire - Konstante kann auch der 

Grund der Fehler bei kleinen Diffusionszeiten sein. Die Gleichung für die Ableitung 

dlnCav/dw6/5 in  Abgängigkeit vom Wert des Parameters α lautet:     

 

av
6/5

ln C 0.77 0.71
w

α
∂

= − −
∂

, wenn α > 0.02. 

 

Falls α < 0.02 ist, kann die Le Claire-Konstante benutzt werden. 

 Folgende analytische Abhängigkeiten wurden für die Position der Maximumsableitung 

und für seinen Wert bestimmt  

 
6/5 H
maxy K t= ⋅ , 

 

F Bav
6/5

max

ln C
C t

y
∆

∂
= ⋅ ⋅

∂
, 

 

wobei C und K eine Funktion von Diffusionsparameter sind und B den Wert -0.34 in einem 

breiten Bereich der Diffusionsparameter annehmen kann. 

Korngrenzen Senkrecht zur Diffusionsrichtung führen zu steilen Diffusionsprofilen, 

zur Vergrößerung des Neigungswinkels und zur Unterschätzung vom Dgb. Wenn sich die Zahl 

paralleler Korngrenzen der Zahl anderer Orientierungen in der realistischen Mikrostruktur 

nähert, ist das Modell quadratischer Körner eine gute Näherung der Mikrostruktur. Es ist 

interessant, dass sich die Rolle senkrechter Korngrenzen für große Zeiten verringert. So fallen 

im Regime vom Typ A die Diffusionsprofile, die im Modell paralleler Korngrenzen und im 

Modell quadratischer Körner gemessen wurden, zusammen. 

 Im Fall der Selbstdiffusion kann die Hart-Gleichung unabhängig von der 

Mikrostruktur verwendet werden, wenn die Volumendichte der Korngrenzen dem Modell 

paralleler Korngrenzen entspricht. Die Erhöhung des Segregationskoeffizienten führt zu 

einem starken Unterschied der Modelle. Die Hart-Mortlock-Gleichung kann nicht einmal für 

das Modell paralleler Grenzen verwendet werden, außer wenn der Segregationskoeffizient 
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kleiner als 20 ist. Die Maxwell-Garnett-Gleichung kann ausschließlich für das Modell 

quadratischer Körne angewendet werden.  

Die an beweglichen Ladungsträgern verarmte Raumladungszone führt zur 

Transportbehinderung. Der Blockierungseffekt zeigt sich in der Verkleinerung der 

Profilneigung und in der Unterschätzung des Dgb, falls die Le Claire-Gleichung benutzt wird. 

Es wurde gefunden, dass das Maximum der Ableitung des Profils vom Dgb in der Korngrenze 

und Dscl in der Raumladungszone abhängig ist. Folglich lässt die neue Gleichung (Gl. 12) für 

das Maximum der Ableitung das Verhältnis Dgb/Dscl bestimmen, aber die Le Claire-Gleichung 

ergibt Dgb. Der Blockierungseffekt zeigt sich auch in der Regimeverschiebung mit der Zeit. 

Selbst wenn die Bedingungen des Typ A Regimes erfüllt sind, kann das Diffusionsprofil aus 

zwei unterschiedlichen Teilen (Volumen und Korngrenzanteile) bestehen.                      
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