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Zusammenfassung

Die technologische Bedeutung von Fluiden geladener plättchenförmiger
Kolloide wie Ton basiert auf einem facettenreichen Phasenverhalten mit
Sol-Gel-Übergängen, Ausflockung und sogar flüssigkristallinen Phasen ge-
tragen von Translations-, Orientierungs- und Ladungsfreiheitsgraden. Die
gezielte Steuerung von Fluiden geladener plättchenförmiger Kolloide unter
technologisch relevanten Gegebenheiten setzt ein tiefgehendes Verständ-
nis dieser Systeme voraus, das nicht nur homogene Fluide, sondern auch
die Gegenwart von räumlichen Inhomogenitäten wie Grenzflächen um-
fasst. Letztere sind als geladene Grenzflächen von besonderer Bedeutung,
da Fluide geladener Teilchen leicht durch Elektroden beeinflusst werden
können. Während die Volumeneigenschaften von Fluiden geladener plätt-
chenförmiger Kolloide schon Gegenstand einiger theoretischer Studien wa-
ren, fehlten bisher theoretische Untersuchungen zu Inhomogenitäten in
solchen Systemen.

Im Rahmen dieser Arbeit wird ein Modellfluid bestehend aus einer
ternären Mischung von monodispersen plättchenförmigen Makroionen und
von Salzionen betrachtet. Die Teilchen werden als harte Quader modelliert,
deren Kanten ausschließlich parallel zu den kartesische Achsen ausgerich-
tet sind (Zwanzig-Modell) und in deren Zentren die Ladungen der Teilchen
konzentriert sind. Die Ladungen werden als vorgegebene Modellparame-
ter aufgefasst. Es wird eine Dichtefunktionaltheorie entwickelt, mit deren
Hilfe das Modellfluid aus Makroionen und Salz sowohl im Volumen als
auch mit freien Grenzflächen oder in Gegenwart geladener Grenzflächen
beschrieben werden kann. Sie ist qualitativer Natur, da der Zusammen-
hang zwischen tatsächlichen Ladungen und den effektiven Modellladungen
nicht bestimmt wird. Von technisch begründeten Näherungen wie etwa der
Verwendung des Zwanzig-Modells wird hingegen kein qualitativer Einfluss
auf die Resultate erwartet.

Dichte-Dichte-Phasendiagramme für die Volumenphasen (Fig. 3.1) zei-
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12 Zusammenfassung

gen eine isotrope und eine nematische Phase getrennt durch einen Pha-
senübergang erster Ordnung. Das Zweiphasenkoexistenzgebiet verschiebt
sich bei zunehmender Makroionenladung und festgehaltender Salzdichte zu
größeren Makroionenpackungsdichten hin. Für festgehaltene Makroionen-
ladung und zunehmende Salzdichte wird der Grenzfall quasiharter Plätt-
chen erreicht. Das Donnan-Potential (Fig. 3.2) zwischen koexistierenden
Phasen lässt sich aus den chemischen Potentialen im Rahmen einer Volu-
menstrukturrechnung gewinnen.

Volumen- und Oberflächenphasendiagramme (Fig. 3.3) als Funktionen
von Makroionenladung, Übersättigung und Oberflächenladung werden
mittels asymptotischer Analyse des effektiven Grenzflächenpotentials und
numerischer Lösung der Euler-Lagrange-Gleichungen berechnet. Das ef-
fektive Grenzflächenpotential zeigt das gleiche asymptotische Verhalten
wie in Systemen mit nichtretardierten isotropen Dispersionskräften ob-
wohl das Modell keine Dispersionskräfte enthält. Dieses Phänomen lässt
sich zurückführen auf die im Rahmen der Dichtefunktionaltheorie verwen-
dete Teilchen-Teilchen Paarverteilungsfunktion mit Debye-Hückel-artigem
asymptotischem Abfall.

Die vorgestellte Dichtefunktionaltheorie ist in der Lage, die Struktur
freier fluid-fluid-Grenzflächen zu beschreiben. Diese Eigenschaft ist im
Falle von Fluiden geladener Teilchen nicht trivial. Die Dichteprofile und
die Profile des nematischen Ordnungsparameters an freien Grenzflächen
zwischen koexistierenden isotropen und nematischen Phasen (Figs. 4.1
und 4.2) zeigen nichtmonotones Verhalten. Der Wert des nematischen
Ordnungsparameters im Innern der nematischen Phase nimmt mit zu-
nehmender Makroionenladung ab. Die Breite der Grenzfläche ist durch
die Debye-Länge gegeben. Die Grenzflächenspannung nimmt mit zuneh-
mender Makroionenladung ab. An der freien Grenzfläche bildet sich eine
elektrische Doppelschicht (Fig. 4.3). Die zugehörigen Profile des elektro-
statischen Potentials (Fig. 4.4) zeigen ein monotones Verhalten.

Vollständige Benetzung einer geladenen Oberfläche in Kontakt mit ei-
ner isotropen Phase durch eine nematische Phase tritt zwischen zwei
Benetzungsübergangspunkten erster Ordnung auf der Isotrop-Nematisch-
Koexistenzlinie auf (Fig. 4.5). Entlang der übrigen Teile der Isotrop-
Nematisch-Koexistenzlinie ist die Benetzung nur unvollständig (Fig. 4.6).
Das Verhalten von Adsorption (Fig. 4.7) und Benetzungsfilmdicke
(Fig. 4.8) bei Annäherung an die Benetzungsübergangspunkte wird zur Be-
stimmung der Benetzungsübergangspunkte im Phasendiagramm benutzt.
Während sich die Ordnung der Benetzungsübergange und das asymptoti-
sche Potenzgesetz der Adsorption bei vollständiger Benetzung aus analy-



Zusammenfassung 13

tischen Überlegungen ergibt, müssen die Positionen der Benetzungsüber-
gangspunkte im Phasendiagramm numerisch bestimmt werden. Die zu-
gehörigen Vorbenetzungslinien werden numerisch nicht aufgelöst.

Benetzungübergänge erster Ordnung einer geladenen Oberfläche in Kon-
takt mit einer nematischen Phase durch eine isotrope Phase werden auf
der Isotrop-Nematisch-Koexistenzlinie durch eine unstetige Divergenz der
Adsorption beim Überqueren des Benetzungsübergangspunkts bestimmt
(Fig. 4.9). Die Vorbenetzungslinien, wo die Adsorption endliche Unste-
tigkeiten zeigt (Fig. 4.11), enden in kritischen Punkten (Fig. 4.10). Salz-
und Gegenionendichte in Wandnähe werden erwartungsgemäß stark von
Oberflächenladungen beeinflusst (Fig. 4.12).

Bilden sich quasi-freie Isotrop-Nematisch-Grenzflächen zwischen dem
Volumeninnern und Benetzungsfilmen endlicher Dicke aus, so kommt es bei
Veränderung der Oberflächenladung zu einem Übergang von monotonen
zu nichtmonotonen Profilen des elektrostatischen Potentials (Fig. 4.13).
Nichtmonotone Profile des elektrostatischen Potentials sind äquivalent zum
Auftreten einer Ladungsinversion. Oberflächenpotential und -ladung ver-
schwinden nicht gleichzeitig (Fig. 4.14), d.h. Ladungsnullpunkt und iso-
elektrischer Punkt fallen nicht zusammen, da neben der Coulomb-Kraft
noch Hartkörperkräfte wirken.
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Summary

The technological importance of fluids of charged platelike colloids, such
as clay, is based on a rich phase behaviour including sol-gel transitions,
flocculation, and even liquid crystalline phases promoted by translational,
orientational, as well as charge degrees of freedom of the constituting par-
ticles. In order to control fluids of charged platelike colloids in technologi-
cally relevant set-ups, these systems have to be understood not only with
respect to their bulk properties but also in the presence of spatial inhomo-
geneities such as fluid-fluid or fluid-substrate interfaces. The latter case
for charged substrates is of particular importance because electrodes are a
common means to manipulate fluids of charged particles. Whereas some
theoretical studies of bulk fluids of charged platelike colloids have been
performed in the past, no theoretical investigations of inhomogeneities of
such systems have been undertaken prior to this work.

Within the present work, a model fluid composed of a ternary mixture of
monodisperse platelike macroions and salt ions is considered. The particles
are modelled by hard cuboids with their edges constrained to be parallel to
the Cartesian axes corresponding to the Zwanzig model and the charges of
the particles are kept fixed and concentrated in their centres (Fig. 2.1). A
density functional theory is developed which is able to describe the model
fluid of macroions and salt in bulk configurations, with a free interface
between coexisting bulk phases, as well as in the presence of a charged
substrate. It provides a qualitative approach because it does not determine
the relation between the actual and the effective charges entering into the
model. Technically motivated approximations, such as using the Zwanzig
model, are expected not to influence the results qualitatively.

The bulk phase diagrams in terms of densities (Fig. 3.1) exhibit one
isotropic phase and one nematic phase separated by a first-order phase
transition. For increasing macroion charge and fixed salt densities, the
two-phase coexistence region is shifted to larger macroion packing frac-
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16 Summary

tions. For fixed macroion charge and increasing salt density, the limit of
quasi-hard platelets is approached. The Donnan potential between coex-
isting phases (Fig. 3.2) can be expressed in terms of the particle chemical
potentials obtained from bulk structure calculations.

Bulk and surface phase diagrams (Fig. 3.3) in terms of macroion charge,
supersaturation, and surface charge density are calculated by means of
an asymptotical analysis of effective interface potentials and by numeri-
cal solutions of the Euler-Lagrange equations. The effective interface po-
tentials exhibit the same asymptotic behaviour as systems governed by
non-retarded isotropic dispersion forces although the model does not in-
clude dispersion forces. The origin of this phenomenon can be traced back
to using within the density functional a particle-particle pair distribution
function which decays asymptotically with a Debye-Hückel form.

The proposed density functional theory is able to describe the structure
of free fluid-fluid interfaces. This property is not trivial in the case of fluids
of charged particles. Density and nematic order parameter profiles at free
interfaces between isotropic and nematic phases at coexistence (Figs. 4.1
and 4.2) show non-monotonic behaviours. The value of the nematic or-
der parameter in the nematic bulk phase decreases upon increasing the
macroion charge. The width of the interface is approximately given by
the Debye length. The interfacial tension decreases upon increasing the
macroion charges. An electrical double layer forms at the free interface
(Fig. 4.3). The corresponding electrostatic potential profiles (Fig. 4.4)
exhibit a monotonic behaviour.

Complete wetting of a charged substrate in contact with an isotropic
bulk phase by a nematic phase occurs in between two first-order wetting
transition points on the isotropic-nematic bulk coexistence curve (Fig. 4.5)
whereas only partial wetting occurs at the remaining parts of the isotropic-
nematic coexistence line (Fig. 4.6). The continuous but limited increase of
the excess adsorption (Fig. 4.7) and of the wetting film thickness (Fig. 4.8)
upon approaching the wetting transition points is used to locate the wet-
ting transition points within the phase diagrams. Whereas the first-order
character of the wetting transitions and the asymptotic power law of the
excess adsorption upon complete wetting have been inferred from analyt-
ical considerations, the location of the wetting transition points must be
obtained numerically. The corresponding prewetting lines are not resolved
numerically.

First-order drying of a charged substrate in contact with a nematic bulk
phase by the isotropic phase, characterised by a discontinuous divergence
of the excess adsorption upon crossing the drying transition point, is found
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at isotropic-nematic coexistence (Fig. 4.9). The predrying line, where the
excess adsorption shows a finite discontinuity (Fig. 4.11), terminates at a
critical point (Fig. 4.10). As expected, salt ion densities and counter ion
densities close to the wall are strongly influenced by the surface charges
(Fig. 4.12).

If quasi-free isotropic-nematic interfaces between the bulk and wetting
films of finite thickness form, a crossover is found from monotonic to non-
monotonic electrostatic potential profiles upon varying the surface charge
density (Fig. 4.13). Non-monotonic electrostatic potential profiles are
equivalent to the occurrence of charge inversion. Surface potential and
surface charge do not vanish simultaneously (Fig. 4.14), i.e., the point of
zero charge and the isoelectric point of the surface do not coincide due to
the presence of both Coulomb interactions and hard-core repulsion.
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Chapter 1

Introduction

The scientific and technological importance of clays as colloidal suspen-
sions composed of charged platelike particles is discussed and the goals
of this work, revolving around the modelling of inhomogeneities in fluids
composed of charged platelike colloids, are specified. From the scientific
point of view, fluids of charged platelike colloids are located at the bor-
derlines between electrochemistry, physics of complex fluids, and colloid
science. Hence there is the opportunity to combine successful concepts of
these fields and, moreover, to learn about their interrelation. In order to
embed the present work into the current scientific context, selected issues
are briefly reviewed.

1.1 Aim of the present work

Clay is one of the oldest and most versatile materials being used by
mankind. If wet it is soft and able to take almost any shape whereas
it becomes hard and fragile when dried. Loosely distributed clay is a
necessary condition for fertile soil, the stability of concrete hinges upon
the crosswise arrangement of clay particles, catalytic converters and fil-
ters often use porous clay matrices, clay is a widely used filling material
in cosmetics and paper industries, etc. Moreover, the properties of clay
are related to various environmental phenomena such as the occurrence of
mud avalanches at treeless hillsides or the decay of soil productivity upon
flooding with sea water.

Therefore, it is understandable that clay has been a subject of research
for a long time. In 1938, Langmuir observed an isotropic-anisotropic tran-
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20 Introduction

sition by performing a thorough analysis of bentonite [Langmuir1938],
which form upon the weathering of volcanic ashes. By means of birefrin-
gence and rheological measurements, which are nowadays standard meth-
ods [Mourchid1995], he characterised the anisotropic structure as a gel.
Bentonite comprises mostly the clay mineral montmorillonite, which has
been investigated intensively [Leach2005, Norrish1954, Rand1980]. For a
comprehensive overview over clay minerals see the book of Giese and van
Oss [Giese2002].

The distinct properties of clay are brought about by particles of plate-
like shape which are decorated with charged groups. The actual shape and
size of clay particles is determined by their evolution or fabrication process.
The clay surface charge, however, varies according to the electrolytic envi-
ronment, particularly upon changing the pH. Moreover, due to the typical
size of their constituting particles in the range between 10 nm and 1µm,
clays can be considered as colloids [Hunter2001, Russel1989, Shaw1980].
The colloidal particles interact with each other due to the charges as well
as due to their intrinsic platelike volume, which gives rise to entropically
induced liquid crystal transitions. Moreover, dispersion forces provide an
attractive interaction which can lead to flocculation if the charges are too
small or too strongly screened.

Whereas either the charge or the platelike character has been addressed
in investigations of inhomogeneous colloids, no such studies of the combi-
nation of both properties have been performed prior to the present work.
Possible inhomogeneities in colloids are free interfaces due to the spatial
contact between thermodynamically coexisting bulk phases, fluid-substrate
interfaces due to system boundaries, or density gradients due to external
fields such as gravitation. Electrically charged surfaces, e.g., electrodes,
are of particular technological importance for charged colloids as they offer
the possibility to manipulate the fluid behaviour in a simple way. In order
to control the fluid properties by means of an electrode, the surface phase
behaviour of that fluid has to be known.

The purpose of the present work is twofold: First, a well-defined, physi-
cally sensible, and numerically tractable model of fluids of charged platelike
colloids will be developed which allows one to describe homogeneous as well
as inhomogeneous systems on the same footing. This non-trivial task is
addressed in Ch. 2. Secondly, the model developed in Ch. 2 will be thor-
oughly investigated with respect to the bulk phase behaviour (Sec. 3.1), to
the structure of free interfaces between coexisting isotropic and nematic
bulk phases (Sec. 4.1), to the surface phase behaviour (Sec. 3.2) consid-
ering wetting (Sec. 4.2) and drying (Sec. 4.3) of a charged substrate, as
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well as to the electrostatic properties of the model fluid in contact with an
electrode (Sec. 4.4).

In view of many experimentally undetermined parameters describing flu-
ids of charged platelike colloids and the technically demanding anisotropic
particle-particle interactions, the investigation within the present work is
carried out only on a qualitative level. This has to be considered already
as significant progress because present experimental and computer simu-
lational techniques are not yet developed to such an extent in order to
perform precise analogous studies of interfacial structures or wetting of
charged substrates in fluids of charged platelike colloids. This work is
intended to establish a model exhibiting a rich bulk and surface phase be-
haviour which is expected to provide guidance for future experimental and
theoretical studies.

Modelling inhomogeneities in fluids of charged platelike colloids implies
the consideration of bulk as well as interfacial and surface properties.
Hence the remaining sections of this chapter are devoted to a brief re-
view of relevant aspects of bulk fluids (Sec. 1.2) and inhomogeneous fluids
(Sec. 1.3).

1.2 Bulk fluids

1.2.1 General theoretical approaches

Throughout the 19th century equilibrium bulk fluids have been de-
scribed in terms of the empirical ideal gas equation of state modi-
fied by activity coefficients or later by the van der Waals equation of
state. These equations of state contain a priori undetermined param-
eters which have to be adapted in order to fit measurements. Since
the advent of statistical mechanics it is in principle possible to con-
struct theories of fluids by merely defining the interaction potentials
[Hansen1986, McQuarrie2000]. Unfortunately, only very simplistic models
such as the one-dimensional hard particle fluid [Herzfeld1934, Tonks1936]
are analytically soluble. In order to handle more complicated systems
such as fluid mixtures [Kirkwood1951, McMillan1945], graphical meth-
ods [Hansen1986, Mayer1958, McDonald1978, Uhlenbeck1962], variational
formulations [deDominicis1962], and perturbation schemes [Barker1967/1,
Barker1967/2, McQuarrie1966, Weeks1971, Zwanzig1954] have been devel-
oped.

One class of general descriptions of bulk fluids is furnished by integral
equation theories. The main ingredient besides the Ornstein-Zernike equa-
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tion [Ornstein1914], which relates the pair correlation function and the
direct correlation function, is a closure relation, which provides an in-
dependent relation between the pair correlation function and the direct
correlation function [Caccamo1996, Hansen1986]. The fact that closure
relations are not exactly known renders integral equation theories ap-
proximative. Classical closure relations are due to Percus and Yevick
(PY) [Percus1958, Percus1962] as well as the hypernetted chain (HNC)
approximation due to Morita [Morita1958, Morita1959, Morita1960/1,
Morita1960/2]. The PY theory has been solved analytically for one-
component fluids [Thiele1963, Wertheim1963, Wertheim1964] as well as
for mixtures [Lebowitz1964]. Due to the approximative character of clo-
sure relations, thermodynamic consistency between the virial route, the
energy route, and the compressibility route are not obvious from the out-
set. For example, virial and compressibility route within PY theory lead
to different equations of state [Hansen1986].

A generalisation of the PY closure for hard-sphere fluids to arbitrary in-
teraction potentials is the so-called mean spherical approximation (MSA).
The corresponding integral equation theory has been solved exactly for
charged hard spheres [Waisman1970, Waisman1972/1, Waisman1972/2].
Due to the availability of an analytical solution, the thermodynamics of this
MSA model in the bulk [Blum1977] and at charged walls [Henderson1978]
has been elaborated extensively. Like PY theory, the MSA theory for
charged hard spheres is thermodynamically inconsistent. In order to
remedy this inconsistency, the generalised mean spherical approxima-
tion (GMSA) has been introduced [Hoye1974]. Although the GMSA
of ionic fluids has not been solved analytically the asymptotic decay of
the correlation functions has been obtained by means of a pole analysis
[LeotedeCarvalho1994], which is also applicable to other integral equation
theories [Evans1994]. An exactly soluble integral equation theory is ob-
tained by choosing the so-called Yukawa closure, which is in principle the
MSA of a linear combination of Yukawa potentials [Hoye1977]. The basic
idea behind the introduction of the Yukawa closure is to approximate a
given interaction potential, e.g., of Lennard-Jones type, by a sufficiently
large sum of suitably chosen Yukawa potentials and thereby finding an
approximately analytical MSA solution of the potential of interest. More-
over, the integral equation theory of the Yukawa closure has been solved
for mixtures [Blum1980].

Besides their application as model systems, fluids of hard particles
are widely used as reference systems within liquid state theory. Scaled
particle theory [Helfand1960, Oversteegen2005] is a general approach to
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fluids of hard particles, which has first been applied to hard spheres
[Helfand1961, Reiss1959, Reiss1977]. A generalisation to mixtures of hard
particles is straightforward [Lebowitz1965]. Over the years, the important
hard sphere fluid has attracted a lot of attention leading to some quite re-
liable equations of state. The probably most popular compromise between
precision and simplicity is furnished by the equation of state proposed by
Carnahan and Starling [Carnahan1969] which has been extended to mix-
tures by Mansoori and coworkers [Mansoori1971]. Generalisations of these
equations of state are proposed until recently [HansenGoos2006]. Scaled
particle theory is well applicable to hard particles of any shape. The ref-
erence system composed of hard platelets which will be used within the
present work, is based on scaled particle theory. Another general method
to describe the interaction between fluid particles of arbitrary shape is the
reference interaction site model (RISM) [Chandler1972].

A general feature of mixtures of large and small particles with hard cores
is the presence of an effective interaction on purely entropic grounds: Any
large colloid particle produces an excluded volume for the small parti-
cles. If the excluded volumes of two large colloidal particles overlap the
small particles gain translational entropy which leads to an effective at-
traction between the large colloidal particles. As the small particles are
depleted from the space between the colloidal particles, this entropic at-
traction is called depletion force. A theoretical prediction has been given
by Asakura and Oosawa [Asakura1954, Asakura1958] and experimental
phase diagrams of colloid-polymer mixtures have been well established
[Helden2004, Lekkerkerker1992]. Moreover, theoretical work aiming at
quantitative description of depletion potentials by means of density func-
tional theory is nowadays available [Roth2000, Roth2003, Roth2006]. The
model presented in this work can also be considered as a mixture of large
and small particles with hard cores. Depletion interactions, which partic-
ularly manifest themselves in a pronounced attraction of large particles to
a hard substrate, are implicit in the density functional to be described in
Ch. 2.

1.2.2 Fluids of charged particles

Fluids of charged particles such as electrolyte solutions exhibit a com-
pletely different behaviour as compared to hard particle fluids due to the
Coulomb interaction between charges. The emergence of bulk theories of
electrolytes is connected with the proposition of dissociation of salt into
ions upon dissolution in water. This fact was not obvious from the outset
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and quite some progress has been made by determining the correct number
of particles dispersed in the system which allowed one to calculate approx-
imately the osmotic pressure by means of van’t Hoff’s law [Arrhenius1887].
Whereas the approximation of ions by noninteracting particles proved valid
for weak electrolytes, which produce only a small amount of ions, there
were large deviations between theory and experimental results in the case
of strong electrolytes. Debye and Hückel [Debye1923] resolved this prob-
lem for the case of dilute solutions of strong electrolytes by introducing
the concept of what is nowadays called correlations : Although the solu-
tion is locally charge neutral on average, close to a positively charged ion
there will be preferably negatively charged ones and vice versa. By solv-
ing the linearised radial Poisson-Boltzmann equation within a comoving
frame of a single ion, approximate analytical expressions for the free en-
ergy and the pair distribution functions can be obtained. The probably
most important property revealed by Debye and Hückel is the exponential
screening of the ion charge by the surrounding cloud of oppositely charged
ions. These results are asymptotically correct in the limit of high dilution
[Kirkwood1954, McQuarrie2000]. The opposite limit of concentrated elec-
trolytes has been studied by Onsager [Onsager1933]. Debye-Hückel theory
has been extended in many respects. One important extension, initiated
by Bjerrum [Levin1996, Levin2002], is related to the formation of so-called
ion pairs which consist of ions whose attractive electrostatic interaction en-
ergy is larger than the thermal energy [Fuoss1934, Levin1996, Lovett1968,
Poirier1961, Reiss1956, Stillinger1968/1, Tamashiro1998].

The fundamental question about the existence of the thermodynamic
limit of electrolyte solutions is non-trivial due to the long-ranged Coulomb
interaction between the dissolved ions. For globally charge neutral systems
composed of charged hard particles the existence as well as the indepen-
dence of the boundaries in the thermodynamic limit have been proved by
Lebowitz and Lieb [Lebowitz1969, Lieb1972]. Furthermore exact sum rules
have been established. Two sum rules concerning bulk electrolyte solutions
are due to Stillinger and Lovett [Stillinger1968/1, Stillinger1968/2]: The
first asserts that the charge of an ion is completely screened by its sur-
rounding screening cloud whereas the second furnishes a somewhat tech-
nical condition on the second moment of the distance with respect to the
radial distribution function.

A simplifying model of ionic solutions is given by the one-component
plasma, which is the classical analogue to the jellium model for the electron
gas within solids. It comprises one ionic species dispersed in a structureless,
uniformly charged background, which leads to a globally charge neutral
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system. This model offers the possibility to test theoretical approaches
analytically in order to assess the physical nature of certain approximations
[Baus1980, Nordholm1984, Tamashiro1999].

Models for charged spherical colloids are of great interest in col-
loid science. The celebrated DLVO theory [Hunter2001, Russel1989,
Verwey1948] is based on the model of hard spherical colloids interact-
ing via Coulomb and van der Waals interactions. It has been reviewed
quite recently [Belloni2000, Hansen2000]. DLVO theory inspired many
investigations of various aspects of interactions between charged spheres
such as the effective interaction [Harnau2002/2, vanRoij2000], phase
behaviour [Sogami1984, Tamashiro2003, vanRoij1999, vonGrunberg2001,
Warren2000, Zoetekouw2006], or counterion condensation [Levin1998,
Lowen1993].

Charged platelike particles provide an analytical challenge because of
their reduced rotational symmetry as compared to spherical particles. Ap-
proaches with a maximum of remaining symmetry are Wigner-Seitz cell
methods [Trizac1997]. Far-field approximations, similar to the multipole
expansion of classical electrostatics, reveal an anisotropic effective plate-
plate interaction [Agra2004, Trizac2002]. The structure factor of charged
discs obtained by means of an interaction site model compares well with
results from neutron scattering at laponite platelets [Harnau2001]. More-
over, theoretical bulk phase diagrams of charged discs have been elab-
orated in terms of an effective hard-platelet model [Rowan2002] or by
field-theoretical methods [Lue2006]. An important observation related to
the interaction potential of charged colloids is the applicability of asymp-
totic expressions, such as the screened Coulomb potential within Debye-
Hückel theory, provided the bare charges are replaced by effective charges
[Alexander1984, Bocquet2002]. The usage of effective limiting laws for
large colloid-colloid separations are computationally advantageous because
they are of particular simple form. In this work an effective pair distribu-
tion function of Debye-Hückel form will be applied.

Upon bringing two fluids into contact separated by a semipermeable
membrane, particle currents occur in order to establish thermodynamic
equilibrium. Necessary conditions are equal chemical potentials of the par-
ticles which can pass the membrane. For the case of electrolytic solutions
this condition does not imply equal concentration because an electrostatic
potential difference occurs at the membrane which is able to stabilise a
concentration gradient [Donnan1911, Donnan1924]. This phenomenon is
called Donnan effect and the electrostatic potential difference at the mem-
brane is termed Donnan potential [Adamson1973]. Within the present



26 Introduction

work, this effect will also occur at fluid-fluid interfaces.

Field theories for ionic systems [Caillol2003, Caillol2005, Ciach2005]
have been applied to a large extent during the last years because they
provide formally exact representations of the model under considera-
tion. Such exact representations offer the possibility to introduce ap-
proximations in a controlled way thereby clarifying their range of valid-
ity. Poisson-Boltzmann theory, e.g., is recovered as the mean-field, i.e.,
zero-loop, description in the weak coupling limit [Coalson1992, Netz1999,
Netz2000/1, Netz2000/2]. The corresponding mean-field equation is the
sine-Gordon equation, which resembles the Poisson-Boltzmann equation
[Caillol2001, Caillol2004, Raimbault2001]. Systematic improvements are
possible within field theory: In the strong coupling limit, for instance, a
virial or high-temperature, expansion is applicable [Netz2000/2]. Expan-
sions beyond mean-field theory serve to study the critical behaviour of
ionic systems [Ciach2000, Ciach2001, Ciach2002, Ciach2003].

The pairwise attraction of oppositely charged particles within a mixture
of charged hard spheres fulfils a necessary condition of ”liquid-vapour”
phase separation. The existence of such a phase separation and the corre-
sponding critical point in the case of the restricted primitive model (RPM),
which comprises a binary mixture of oppositely charged hard spheres
of equal size and valency, has been established by Stell and coworkers
[Stell1976]. Later Stell [Stell1992] argued that the RPM critical point be-
longs to the Ising universality class which has recently been confirmed by
computer simulations [Caillol2002, Luijten2002]. In view of the exponen-
tial screening of Coulomb potentials within electrolyte solutions this result
might appear to be not too surprising. On the other hand, at that time
there seem to exist two classes of ionic systems: those which exhibit Ising
critical behaviour and those which exhibit mean-field (or classical) critical
behaviour [Fisher1994, Stell1995]. This different behaviour has been sus-
pected to arise from different mechanisms: If Coulomb interactions drive
the phase separation, as for the RPM, so-called Coulombic criticality oc-
curs, whereas phase separation due to solvent-solute repulsion results in
so-called solvophobic criticality [Fisher1994, Stell1995]. Numerous ana-
lytical [Ciach2001, Ciach2002, Fisher1993, Levin1994, Levin1996] as well
as computer simulational [Artymov2003, Kobelev2002/1, Kobelev2002/2,
Panagiotopoulos2005] studies of ionic criticality have been performed in
recent years. First experimental studies of criticality in ionic systems
pointed towards both Ising [Johnson1964] as well as mean field [Pitzer1985]
behaviour. However, after recent thorough cross-checks, no convincing ex-
perimental evidences for mean-field critical behaviour of ionic fluids remain
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and it is expected that actual ionic fluids generally exhibit Ising criticality
[Schroer2006].

1.2.3 Liquid crystalline phases in platelike colloids

Liquid crystal phase transitions [deGennes1993, Singh2000] in suspen-
sions of rodlike colloids have been studied for decades. Widely used
model systems are suspensions of V2O5 needles or tobacco mosaic virus
[Dogic2006] as well as more recently investigated mineral systems such
as boehmite dispersions [Buining1993, Buining1994]. Compared to rod-
like colloids, observing liquid crystal transitions in suspensions of platelike
colloids is rather challenging because these transitions are usually pre-
empted by gelation [Davidson2005, Langmuir1938]. In recent years, this
gelation transition has been widely studied for the model clay laponite
[Gabriel1996, Knaebel2000, Levitz2000, Mourchid1995, Mourchid1998,
Nicolai2000, Nicolai2001, Porion2001]. True liquid crystal transitions of
platelike colloids became possible only in recent years due to the devel-
opment of methods to synthesise model systems which do not merely un-
dergo gelation. The most intensively studied material is gibbsite (Al(OH)3)
[vanderBeek2003, vanderBeek2004, vanderKooij1998, vanderKooij2000/1,
vanderKooij2000/2, vanderKooij2001, Wijnhoven2005]. Suspensions of
gibbsite platelets can be either charge or sterically stabilised. Other
systems under investigation are composed of layered double hydrox-
ides [Liu2003, Wang2005] or nickel(II) hydroxide (Ni(OH)2) [Brown1998,
Brown1999].

The application of standard computer simulational techniques
[Allen1987] for investigations of platelike particles is quite demanding be-
cause of low acceptance rates of Monte Carlo moves or short time scales
within molecular dynamics due to the platelike geometry. Due to increas-
ing computer power and by improving the simulational techniques, in par-
ticular due to the development of the transition path sampling method
[Dellago1998], modern computer simulation studies of platelike particles
not only lead to phase diagrams [Casey1995, John2005, Meyer2001/1,
Meyer2001/2, Veerman1992] but can even serve to calculate interfacial
properties [Vink2005/1, Vink2005/2]. Due to this progress, computer sim-
ulations become an alternative to actual experiments.

The increasingly large amount of experimental and computer simula-
tional data on liquid crystalline systems calls for more and more sophis-
ticated theoretical descriptions in terms of which these data can be inter-
preted. Theoretical studies of liquid crystal phase transitions have been
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performed intensively on the level of phenomenological theories within
the framework of Franck elasticity theory [deGennes1993, Singh2000]. On
the other hand, microscopic models of such phase transitions in fluids of
rodlike or platelike particles are still under construction. The first ap-
proach to describe rodlike colloidal particles is the second-order virial ap-
proximation of infinitely long thin needles due to Onsager [Onsager1942,
Onsager1949]. This theory is very popular and it gave rise to vari-
ous extensions relaxing some or all geometrical restrictions on the par-
ticles [Lekkerkerker1984, Shundyak2001, Shundyak2002, Shundyak2003,
Shundyak2004, Shundyak2006, vanRoij2005, Varga2005]. Although in-
troduced for rodlike particles, an Onsager-like theory is also applicable
to platelike particles [Forsyth1978, Wensink2001]. Only a few investi-
gations of freely rotating platelike particles go beyond the Onsager the-
ory [Harnau2002/1]. Zwanzig simplified the Onsager theory for rods
even more by restricting the orientations of the rods to only three mu-
tually orthogonal directions which allowed him to calculate virial coeffi-
cients up to 6th order [Zwanzig1963]. This Zwanzig approximation has
been applied to rodlike as well as to platelike particles [Cuesta1999].
In contrast to infinitely long thin needles, where a second-order virial
theory is sufficient [Zwanzig1963], one needs at least third-order den-
sity terms for infinitely wide thin plates [Harnau2002/4]. Within the
present work, a fundamental measure functional for parallel hard paral-
lelepipeds [Cuesta1997/1, Cuesta1997/2], which reproduces the exact sec-
ond and third virial coefficients for bulk systems, will be applied. The
bulk phase behaviour within this model has been investigated to some
extent for cubes [MartinezRaton1999] as well as for rod- and platelike ob-
jects in three-dimensional [Bier2004, Harnau2002/4, MartinezRaton2003,
MartinezRaton2004] and in two-dimensional [MartinezRaton2005] sys-
tems. In contrast, studies of interfaces in fluids of hard platelike par-
ticles within Zwanzig approximation have been rarely performed so far
[Bier2004, Harnau2002/3, Moore1992].

1.3 Inhomogeneous fluids

1.3.1 Density functional theories of classical fluids

Density functional theories, which describe fluids in terms of one-
particle density profiles, are the method of choice for studies of in-
homogeneous classical [Evans1979, Evans1989, Evans1992, Wu2006] as
well as quantum [Ebner1975, Padmore1974, Saam1975, Stringari1987]
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fluids. The density functional method has been first formu-
lated in the 1960s within studies of the electron gas in solids
[Hohenberg1964, Mermin1965]. However, it has been implicitely applied
in much earlier theories of classical fluids [Onsager1942, Onsager1949,
Rowlinson1979, vanderWaals1894]. Early classical density functional
theories applied the random phase approximation (RPA) [Johnson1981,
Harrowell1982, Hooper1980, Hooper1981/1, Hooper1981/2, Hooper1982,
Nordholm1980/1, Nordholm1980/2, Nordholm1981, Nordholm1982/1,
Nordholm1982/2]. However, these theories were not able to appropriately
accounted for the freezing transition because the density configurations
corresponding to solid phases are rapidly varying in space. Hence the
freezing transition has been considered as a benchmark for reliable density
functionals [Baus1985, Colot1985, Colot1986, Curtin1988, Haymet1986,
Lutsko1990/1, Lutsko1990/2]. Progress has been made by the introduction
of weighted density approximations (WDA) of various levels of sophistica-
tion [Curtin1985, Denton1989, Tarazona1984, Tarazona1985].

A special class of WDA is formed by so-called fundamental measure the-
ories (FMT) which have been introduced by Rosenfeld [Rosenfeld1989] for
a fluid of hard spheres. The key idea of FMT is the choice of the weight
functions according to geometric quantities of single particles (fundamen-
tal measures) such as the particle number, the diameter, the surface area,
or the volume, instead of two-particle quantities such as excluded vol-
umes. An alternative but equivalent form of Rosenfeld’s FMT has been
derived by Kierlik and Rosinberg [Kierlik1990, Phan1993]. Rosenfeld’s
theory for spatially homogeneous densities reproduces the Percus-Yevick
equation of state. In contrast, the so-called White Bear functional by
Roth and coworkers [Roth2002] is constructed in order to lead to the gen-
eralised Carnahan-Starling equation of state [Mansoori1971]. The possibil-
ity of constructing fundamental measure theories of fluids of non-spherical
particles has been studied [Rosenfeld1994, Rosenfeld1995, Wertheim1994].
It has been found that this problem is not generally soluble with a fi-
nite number of weight functions. With respect to freezing the original
Rosenfeld FMT led to an unstable solid for all packing fractions. In or-
der to avoid this unphysical property, density functionals with correct di-
mensional crossovers have been developed [Rosenfeld1996, Rosenfeld1997],
i.e., the density functional evaluated for density profiles corresponding to
confined geometries of effectively lower dimension reduce to the density
functional corresponding to that lower dimension. For hard sphere fluids
it is possible to construct fundamental measure functionals of arbitrary
dimension by requiring correct dimensional crossovers to the known zero-
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dimensional density functional [Tarazona1997]. One could also set out
from the one-dimensional system because the corresponding density func-
tional is also known exactly [Percus1976].

A model which allows for the construction of an FMT which is even sim-
pler and more transparent than for fluids of hard spheres is furnished by flu-
ids of parallel hard parallelepipeds (cuboids) [Cuesta1996, Cuesta1997/1,
Cuesta1997/2, MartinezRaton1999, MartinezRaton2003]. This model is
of particular importance for the present work, as a fluid of hard platelike
particles modelled by such hard cuboids will be used as a reference sys-
tem. The corresponding fundamental measure functional can be derived
either by requiring correct dimensional crossovers to the zero-dimensional
density functional [Cuesta1997/1] or by means of scaled particle theory
[Cuesta1997/2].

In principle, integral equation theories are also applicable to inhomo-
geneous fluids [Oettel2005, Plischke1988, Plischke1989]. However, besides
the Ornstein-Zernike equation and the (approximative) closure relation
one has to specify a third equation relating the density profiles to the
correlation functions or the direct correlation functions. Such an addi-
tional equation may be the first Yvon-Born-Green equation [Hansen1986]
or the Euler-Lagrange equation of a density functional theory. The ma-
jor disadvantage of inhomogeneous integral equation theory as compared
to density functional theory is the difficult construction of approximative
closure relations from physical intuition.

1.3.2 Interfacial structure and wetting

The structure of interfaces between coexisting bulk phases is of importance
of both fundamental and applied science: It is intimately related to the
interactions between the constituting particles which determine important
interfacial quantities such as the interfacial tension.

Van der Waals was the first who calculated the interfacial structure
via an expansion of the free energy in gradients of density profiles
[Rowlinson1979, vanderWaals1894]. Later Cahn and Hillard reintroduced
essentially the same formalism [Cahn1958/1, Cahn1958/2, Cahn1959].
Within the van der Waals-Cahn-Hillard approach the interfacial structure
is represented by a smoothly varying profile with translational symme-
try parallel to the interface. This description is in contrast to the cap-
illary wave picture introduced by Buff, Lovett, and Stillinger [Buff1965]
which considers a sharp, steplike intrinsic density profile with thermally
activated undulations parallel to the interface. Nowadays, both descrip-
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tions are considered as extreme cases of a general interfacial theory in
which fluctuations of wave lengths smaller than the bulk correlation
length are attributed to the intrinsic profile whereas fluctuations of wave
lengths larger than the bulk correlation lengths are called capillary waves
[Mecke1999, Napiorkowski1993, Weeks1977].

The presence of electrolytes in a fluid phase influences the interfacial ten-
sion: Wagner observed that the liquid-vapour interfacial tension increases
upon increasing the salt concentration [Wagner1924]. He attributed this
phenomenon to the repulsion of the ions from the liquid-vapour inter-
face due to their image forces. Later, Onsager and Samaras developed
a considerably simplified theory by assuming, in contrast to Wagner, a
spatially homogeneous screening of the surface charge [Onsager1934]. An
analytically convenient canonical approach has been proposed by Levin
[Levin2000, Levin2001]. The interfacial tension of an ionic solution in con-
tact with a charged wall is not only influenced by the salt concentration of
the liquid but also by the electrostatic surface potential. This gives rise to
electrocapillarity [Grahame1947] (or electrowetting), which has meanwhile
found several applications in lab-on-a-chip devices, micro lenses, fibre op-
tics, or display technology [Mugele2005, Quilliet2001].

Measuring interfacial properties of fluids and solids is a challenge because
in most cases the signals due to interfacial fluid particles superimpose onto
much stronger signals from particles in the bulk. X-ray and neutron reflec-
tometry, which is sensitive to the gradient of the mean scattering length
density, offers a rather straightforward method to directly obtain inter-
facial density profiles [Thomas1996]. Grazing incidence X-ray and neu-
tron scattering provide spatially resolved information on interfacial fluctu-
ations [Dietrich1995]. In contrast, ellipsometry yields only indirect infor-
mation on the interfacial structure [Bain1998, Keddie2001, Teppner1999].
Very rich interfacial data corresponding to particle orientations and con-
formations is obtained by means of non-linear optical methods such as
second harmonic generation (SHG) or sum-frequency generation (SFG),
which occur only in regions without spatial inversion symmetry [Bain1998,
Shen1989, Vidal2005]. In particular, the addition of an infrared interface
signal to a monochromatic visible light laser beam applying SFG shifts the
interface signal into the experimentally advantageous visible light range of
the electromagnetic spectrum.

Within a macroscopic description, wetting of a substrate in contact
with a fluid phase by another fluid phase occurs if the contact angle of
the latter phase vanishes. Young’s equation relates this contact angle
to the interfacial tensions. Microscopic theories, such as density func-
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tional theories, enable one to calculate the interfacial tensions in terms
of model parameters. In terms of a microscopic point of view, wetting
amounts to the formation of a macroscopically large film upon approach-
ing phase coexistence along a thermodynamic path. Under these con-
ditions, substrate potentials compete with fluid-fluid interactions giving
rise to an effective interface potential of the depinning interface. The
wetting behaviour can be completely inferred from monitoring the min-
imum of the effective interface potential. A brief introduction into the
concepts of wetting theory to the extent used in this work will be given
in Sec. 2.5. Thorough treatments on wetting phenomena can be found in
Refs. [deGennes1985, Dietrich1988, Schick1990, Sullivan1986] and certain
recent trends are reviewed in Ref. [Bonn2001].

1.3.3 Charged substrates

Upon bringing a hydrophilic substrate, such as a container wall or the
surface of a colloidal particle, into spatial contact with an electrolyte so-
lution the substrate becomes charged due to adsorption and desorption of
charge determining ions. The surface charge density acquired by the sub-
strate depends on the structure of the ion density profiles which in turn
are determined by the surface charge density.

The adsorption and desorption processes for given ion distributions are
usually modelled in terms of chemical reactions and accompanying reac-
tion constants. Several models have been developed which differ in the
number of chemical reactions taken into account. The traditional ap-
proach considers two chemical reactions, one adsorption and one desorption
reaction, and is termed 2pK model [Chan1975, Davis1978, Healy1978].
Adsorption and desorption at some mineral surfaces, such as gibb-
site (Al(OH)3), takes place at certain binding sites which are either
occupied or unoccupied. Within the so-called 1pK model [Bolt1982,
Hiemstra1987, vanRiemsdijk1986] the charge regulation of such substrates
is described by only one adsorption / desorption reaction. Both ap-
proaches are special cases of the MUlti SIte Complexation model (MU-
SIC) [Hiemstra1989] which is able to take into account many types of
binding sites of different activities. The challenge within all of these
charge regulation models resides in determining the reaction constants
which are typically fixed by fits to experimental values of the ζ potential
or of the isoelectric point [Hunter1981, Kosmulski2002, Kosmulski2004,
Kosmulski2005, Kosmulski2006, Sondi1997]. Nowadays charge regula-
tion models are standard tools in studies of surface properties which
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serve to relate model parameters to experimentally accessible quantities
[Biesheuvel2001, Hecht2006, Rahnemaie2006].

The inverse problem of determining the density profiles of ions in the
vicinity of a charged substrate of given charge density has been addressed
for more than a century. Intuitively one expects the attraction of oppo-
sitely charged ions and the repulsion of like-charged ions by a charged
wall. In the 19th century, the structure of electrolytic solutions close
to a charged substrate was described by the so-called electrical double
layer modelled as a capacitor composed of the charged substrate and the
Helmholtz layer, which is a planar arrangement of ions located parallel
to the substrate exactly neutralising the surface charge [Helmholtz1879].
Later Gouy [Gouy1910] and Chapman [Chapman1913] introduced the al-
ternative picture of a diffuse layer by using the Poisson-Boltzmann equa-
tion. The latter comprises the Poisson equation of electrostatics with the
charge density approximated by a sum of the bulk charge densities of each
ion species weighted by a Boltzmann factor corresponding to the elec-
trostatic energy of that ion species in the local electrostatic field. The
electrostatic potential for 1:1, 1:2, and 2:1 electrolytes obtained within
Gouy-Chapman theory decays exponentially [Gouy1910]. This result is
generally expressed as the screening of the surface charge by the surround-
ing mobile ions. The calculated capacity of the Gouy-Chapman electrical
double layer did not agree well with experimental data, which Stern at-
tributed to the ability of ions within Gouy-Chapman theory to approach
the substrate down to zero distance [Stern1924]. Hence he proposed a gap
of molecular width free of ions between the substrate and the so-called
Stern layer, which is formed by ions adsorbed to the substrate. In con-
trast to the Helmholtz layer, the Stern layer does not neutralise the surface
charges completely. Beyond the Stern layer a diffuse layer in the spirit of
Gouy and Chapman is assumed. Since Stern’s unification of Helmholtz and
Gouy-Chapman theory, various surface models have been proposed which
differ mainly in the number of Stern layers and the presence or absence of
a diffuse layer [Westall1980].

An alternative to proposing ad hoc models for the ionic structure
near charged walls is furnished by density functional theories, which
offer the opportunity to calculate inhomogeneous structures. Early
studies by Evans and Sluckin have been performed within the lo-
cal density approximation in conjunction with the Poisson equation
[Evans1980, Sluckin1981]. Today, more advanced, non-local density func-
tionals, based upon the weighted density functional approach, are in
use [MieryTeran1990, Patra1993, Patra1994/1, Patra1994/2, Patra1999,
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Patra2002/1, Patra2002/2, Tang1990] which are able to reproduce com-
puter simulational results [Torrie1979, Torrie1982] with a high degree of
accuracy. Moreover, exact sum rules offer another possibility to assess
the reliability of density functional approaches [Blum1981, Carnie1981/1,
Carnie1981/2, Gruber1981, Henderson1979, Henderson1981].

Whereas Poisson-Boltzmann theories provide simple and reliable ap-
proaches for weakly charged substrates, they become invalid in the
strong coupling limit [Netz2001/2]. However, the ”apparent” surface
charge density at large distances from the substrate is small due to the
screening by ions. Hence the application of Poisson-Boltzmann the-
ories is justified provided the surface charge is renormalised properly
[Aubouy2003, Netz2003]. Ions condensed onto strongly charged sub-
strates form quasi two-dimensional plasmas [Moreira2000, Moreira2002/1,
Moreira2002/2, Rouzina1996, Shklovskii1999]. Two-dimensional plasmas
are isomorphic to the xy model for which the Kosterlitz-Thouless transi-
tion, a binding-unbinding transition of vortices at low densities, takes place
[Kosterlitz1973, Levin2002]. In the language of electrolytes this transition
corresponds to an insulator-conductor transition due to the formation of
ion pairs. Interestingly, some two-dimensional Coulomb systems are or
are expected to be exactly soluble [Samaj2003, Samaj2004, Samaj2005/1,
Samaj2005/2, Tellez2005/1, Tellez2005/2]. Analytical solutions of two-
dimensional electrolytes are extremely valuable because they offer the pos-
sibility of analytical studies of correlations in such systems, which are
considered to be responsible for effects such as like-charge attraction and
charge inversion [Levin2002].

An attraction between equal, like-charged particles was reported for ex-
periments on geometrically confinded colloidal suspensions [Kepler1994,
Crocker1996, CruzdeLeon1998, Han2003, Grier2000, Grier2004]. These
measurements have been performed by means of digital video microscopy
which leads to pair distribution functions. Using the zero-order den-
sity approximation to the pair distribution functions or integral equa-
tion closures, one obtains approximate effective interaction potentials.
These investigations stimulated a lively theoretical controversy on the
applicability of Poisson-Boltzmann theories close to walls [Goulding1998,
Goulding1999, Mateescu2001, Trizac1999, Trizac2000, Trizac2001] which
led to, e.g., a general proof of the statement that long-ranged inter-
actions between like-charged particles within Poisson-Boltzmann theory
are necessarily repulsive [Neu1999, Sader1999, Sader2000]. Therefore,
like-charge attraction is attributed to correlation effects, which are not
taken into account by Poisson-Boltzmann theory. However, recent exper-
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imental investigations challenge former reports on like-charge attraction
by asserting erroneous particle-particle distances due to optical artefacts
[Baumgartl2005, Baumgartl2006].

Short-ranged like-charge attraction has been observed in computer sim-
ulation studies on bulk colloid-polyelectrolyte mixtures [Messina2002/1,
Messina2002/2]. Moreover, the inverse effect, a repulsion between oppo-
sitely charged surfaces, has been reported recently [Trulsson2006]. Fi-
nally, several theoretical models have been proposed predicting an attrac-
tion between equally charged walls enclosing a narrow film of electrolyte
[Bohnic2004, Diehl1999, Naji2004, Rouzina1996].

Charge inversion of colloids refers to the condensation of ions such that
the surface charge is overcompensated by the total charge of the condensed
ions. Theoretical models exist which exhibit this phenomenon for suffi-
ciently large surface charge density and multivalent ions [Pianegonda2005].
The condensed ions are considered to form a strongly correlated, quasi
two-dimensional liquid [Perel1999, Shklovskii1999]. Experimental detec-
tion of charge inversion is possible [vanderHeyden2006], e.g., by measuring
the streaming potential [Hunter1981]. Within a recent study on trivalent
La3+ ions, charge inversion occurred even for very small ionic strength
[Pittler2006]. The model derived within the present work exhibits charge
inversion of the surface charge under certain conditions. This charge in-
version will be detected by a reversal of the electric field with respect to
the surface field. According to the generally expectation, this phenomenon
occurs due to correlations between the charged particles which are directly
modelled within the present approach.
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Chapter 2

Model and general

formalism

In this work, inhomogeneities in fluids of charged platelike colloids will be
investigated within a particular model. Density functional theory, which
is considered as an appropriate general approach to this kind of problems,
is recollected first. Next, the model as well as the construction of the cor-
responding density functional will be explained in detail. Finally, basic
concepts of wetting theory are introduced. In particular, an analytical
asymptotic expression for the effective interface potential, which is needed
in subsequent chapters, will be calculated. This chapter provides all rel-
evant quantities, concepts, and equations to be solved numerically in the
following chapters.

2.1 Foundations of density functional theory

In view of the inhomogeneities in fluids of charged platelike colloids to
be investigated in this work, density functional theory [Evans1979] is the
method of choice [Evans1992]. This approach describes fluids in terms of
number density profiles, i.e., number densities as functions of position in
space and maybe further degrees of freedom such as particle orientations.
In a one-component fluid of, e.g., disclike particles the number density at
position r of particles with disc orientation specified by the normal vector
n is given by %(r,n). An additional index v describing the particle species
is introduced in the case of multi-component fluids of disclike particles:
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%v(r,n).
Within grandcanonical density functional theory, the equilibrium num-

ber density profiles %eq
v minimise a density functional [Evans1979]

Ω[%]=
∑

v

∫

d3r

∫

d2n%v(r,n)
(

ln
(

%v(r,n)Λ3
v

)

−1−µv +Vv(r,n)
)

+F ex[%],

(2.1)
where % denotes the set of all density profiles %v . Λv and µv describe
the thermal de Broglie wavelength and the chemical potential of particle
species v, respectively. Vv is the external potential exerted on particles of
species v, e.g., due to walls. F ex denotes the free energy in excess over the
ideal gas contribution to Ω. It depends only on the interaction between
fluid particles and not on external fields. Throughout this work energies
(e.g., Ω, µv, Vv , and F ex) are expressed in units of the thermal energy kBT
and are therefore taken to be dimensionless.

The stationarity condition of Ω[%] at % = %eq amounts to the Euler-
Lagrange equation:
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For the density functional in Eq. (2.1) one readily finds

ln
(

%eq
v (r,n)Λ3

v

)

− µv + Vv(r,n) − cv(r,n, [%
eq]) = 0, (2.3)

where the one-particle direct correlation function

cv(r,n, [%]) := − δ F ex

δ%v(r,n)

∣

∣

∣

∣

∣

%

(2.4)

has been introduced.
The minimal value Ω[%eq] equals the grand potential Ωeq(T, V, µ)

[Evans1979], from which all thermodynamic quantities can be derived.
The type of excess free energy functional F ex[%] used within the present
study corresponds to a mean field theory . One therefore expects classi-
cal critical exponents close to critical points [Binney1992, Goldenfeld1992,
leBellac1991, Plischke1994, Stanley1971].

If the density functional Ω in Eq. (2.1) were exactly known, the cor-
responding equilibrium number density profiles %eq would also be exact
[Evans1979]. In practice, however, Ω, or equivalently F ex, is not known
exactly but only approximately. There are some formally exact relations
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between the excess free energy functional F ex and quantities such as pair
distribution functions, interaction potentials, external potentials, or two-
particle direct correlation functions which might be exploited in order to
determine F ex approximately [Evans1979]. One such relation [Evans1979]
relates F ex to the interaction potential Uvw(r,n, r′,n′) between two parti-
cles of species v and w at positions r and r′ and orientations n and n′, re-
spectively, and the pair distribution function gvw(r,n, r′,n′) [Hansen1986]:

δF ex

δUvw(r,n, r′,n′)
=

1

2
%v(r,n)%w(r′,n′)gvw(r,n, r′,n′). (2.5)

Upon decomposing the total particle-particle interaction U = U ref + Uper

into a reference part U ref and a perturbation part Uper one finds along the
path in function space U (η) := U ref + ηUper, η ∈ [0, 1]

dF ex,(η)

dη
=

∑

vw

∫

d5x

∫

d5x′
δF ex

δUvw(x,x′)

∣

∣

∣

∣

∣

U(η)

dU
(η)
vw (x,x′)

dη
(2.6)

=
1

2

∑

vw

∫

d5x

∫

d5x′ %v(x)%w(x′)g(η)
vw (x,x′)Uper

vw (x,x′),

where the abbreviation x := (r,n) has been introduced. Using the fact
that F ex,(0) = F ex,ref and F ex,(1) = F ex leads to

F ex = F ex,ref +

1
∫

0

dη
dF ex,(η)

dη

= F ex,ref (2.7)

+
1

2

∑

vw

∫

d5x

∫

d5x′ %v(x)%w(x′)Uper
vw (x,x′)

1
∫

0

dη g(η)
vw (x,x′).

Given approximations for F ex,ref and g(η) lead to expressions for F ex.
The simplest choices F ex,ref = 0 and g(η) = 1, i.e., an ideal gas ref-
erence system (U ref = 0) and vanishing correlations between the parti-
cles, yields the density functional analogue of the high-temperature ex-
pansion [Hansen1986]. By substituting the pair distribution function

g
(η)
vw (x,x′) := exp(−ηUper

vw (x,x′)), on the other hand, one obtains the ana-
logue of a virial expansion up to second order [Hansen1986]. Within the
current work, a more elaborated fundamental measure excess free energy
F ex,ref (Sec. 2.2) and a pair distribution function g(η) similar to the one
known from Debye-Hückel theory (Sec. 2.3) will be used. These concepts
will be introduced next.
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2.2 Zwanzig model and reference functional

The model fluid considered in this work is a ternary mixture of charged
platelike colloids and salt dissolved in a dielectric solvent (e.g., water) with
dielectric constant ε. The solvent is treated as a continuum.

Throughout this work dimensionless charges will be expressed in units of
the elementary charge e. Due to the electrical charges involved, one length

scale of the system is given by the Bjerrum length `B :=
e2

4πε0εkBT
, which

describes the distance between two isolated elementary charges e whose
Coulomb interaction energy equals the thermal energy kBT . For T =
300 K and ε = 78 (water) one has `B ≈ 0.72 nm. Henceforth lengths are
given in units of the Bjerrum length `B and are taken to be dimensionless.
Dimensional and dimensionless quantities are denoted by the same symbol
in order to avoid a clumsy notation — they can be distinguished by the
presence or absence of units.

For technical convenience, an approximation due to Zwanzig
[Zwanzig1963] concerning the orientational degrees of freedom, which in
the previous section have been described by the continuously varying
platelet normal vector n, will be applied: the particles are restricted to take
one out of only three mutually perpendicular orientations. These allowed
orientations are chosen to be parallel to the Cartesian axes. Hence the
integrals

∫

d2n in Eqs. (2.1), (2.6), and (2.7) can be replaced by sums
∑

n
.

Enumerating the finite set of pairs (v,n) (Sec. 2.1) by the type index i, the
double summation

∑

v

∑

n
over all species and orientations is accounted

for by the single summation
∑

i over all types i ∈ {Mx,My,Mz, S, C} (see
Fig. 2.1). In terms of this nomenclature Eq. (2.1) reads

Ω[%] =
∑

i

∫

d3r %i(r)
(

ln
(

%i(r)
)

− 1 − µ∗
i + Vi(r)

)

+ F ex[%], (2.8)

where the reduced chemical potentials µ∗
i := µi − 3 ln Λi have been intro-

duced.
All particles are modelled as square cuboids with their edges parallel to

the Cartesian axes. For simplicity, the charges are fixed, monodisperse,
and concentrated at the centres of the particles. The particles of the first
species represent the macroionsM of size DM ×DM ×LM , DM > LM , and
charge QM . The three different macroion orientations possible within the
Zwanzig model give rise to the three types Mx, My, and Mz corresponding
to whether the LM -edges are parallel to the x-, y-, or z-axis, respectively
(see Fig. 2.1). The second species consists of salt ions S modelled as
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DM

DM

LM

QM
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DM

LM

DM

QM
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QS
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QC = −QS

C

z

y

x

Figure 2.1: Macroions M are square cuboids of size DM ×DM ×LM , DM > LM

with the effective charge QM whereas salt ions S and counterions C are cubes of
side length DS with charges QS and −QS, respectively. The pointlike charges
(•) are localised at the centres of the cuboids. The macroions can adopt three
possible orientations Mx, My, and Mz corresponding to the LM -edges being
parallel to the x-, y-, and z-axis, respectively.

cubes of side length DS and charge QS . Since cubes can adopt only one
orientation within the Zwanzig model, the species S is identical with the
type S (see Fig. 2.1). The salt ion charge QS is chosen to have the same
sign as the macroion charge QM if the latter does not vanish. Finally,
the third species consists of counterions C guaranteeing overall charge
neutrality. They are also described by cubes with the same side length
DS but opposite charge QC := −QS. The corresponding type is also
termed C (see Fig. 2.1). Due to the choice of the same sign for QM

and QS , ions of species C are counterions in the usual sense for both the
macroions M and the salt ions S. %i(r), i ∈ {Mx,My,Mz, S, C}, denotes
the number density at point r of the centres of macroions with orientation
along the x-, y-, and z-axis, salt ions, and counterions, respectively. If
type i corresponds to species v and orientation n, it is %i(r) = %v(r,n)
(Sec. 2.1). The abbreviation %(r) := (%Mx

(r), . . . , %C(r)) is introduced for
later convenience.

In this work the reference excess free energy functional F ex,ref to be
substituted into Eq. (2.7) corresponds to the model fluid just described
with all particle charges vanishing (QM = QS = 0). The particles of this
reference fluid hence interact only via the hard-core interactions which
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prevent the particles from overlapping. A fundamental measure theory of
hard cuboids within the Zwanzig model which reproduces the exact second
and third order virial coefficients has been derived in Refs. [Cuesta1997/1,
Cuesta1997/2]. Fundamental measure theory refers to the approximation
[Rosenfeld1989]

F ex,ref [%] :=

∫

d3r Φ
(

n(r)
)

(2.9)

with appropriately chosen weighted densities

nα(r) =
∑

i

∫

d3r′ ωα,i(r − r′)%i(r
′) (2.10)

and an excess free energy density Φ which is a function of the weighted
densities. The weight functions ω used in Eq. (2.10) are given by
[Cuesta1997/1, Cuesta1997/2]

ω0,i(r) = a(x, Sx
i )a(y, Sy

i )a(z, Sz
i )

ω1x,i(r) = b(x, Sx
i )a(y, Sy

i )a(z, Sz
i )

ω1y,i(r) = a(x, Sx
i )b(y, Sy

i )a(z, Sz
i )

ω1z,i(r) = a(x, Sx
i )a(y, Sy

i )b(z, Sz
i )

ω2x,i(r) = a(x, Sx
i )b(y, Sy

i )b(z, Sz
i )

ω2y,i(r) = b(x, Sx
i )a(y, Sy

i )b(z, Sz
i )

ω2z,i(r) = b(x, Sx
i )b(y, Sy

i )a(z, Sz
i )

ω3,i(r) = b(x, Sx
i )b(y, Sy

i )b(z, Sz
i ) (2.11)

with Sd
i , d ∈ {x, y, z}, denoting the extension of cuboids of type i in direc-

tion d and with the abbreviations a(d, S) := 1
2

(

δ(S/2 − d) + δ(S/2 + d)
)

and b(d, S) := Θ(S/2 − |d|). Spatial integrals of the weight functions
Eq. (2.11) can be interpreted as characteristic one-particle quantities such
as number, side lengths, cross-sectional areas, and occupied volume; hence
the notion fundamental measure. Requiring exact second and third or-
der virial coefficients as well as the property of dimensional crossover
[Cuesta1997/1, Cuesta1997/2] the excess free energy density reads

Φ(n) = −n0 ln(1− n3) +
n1xn2x + n1yn2y + n1zn2z

1 − n3
+
n2xn2yn2z

(1 − n3)2
. (2.12)

One part of the investigations done in this work have been devoted to the
fluid in contact with a charged substrate. The charged wall, which confines
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the fluid from one side, is modelled as impenetrable for the fluid particles.
Moreover, it carries a fixed homogeneously distributed surface charge of
areal density σ which, depending on the sign of σ, can be assumed to have
been generated by releasing an appropriate amount of ions of either type
S or type C into the fluid.

The system under consideration is coupled to two particle reservoirs:
One supplies neutralised macroions (chemical formula CkM,k := QM

QS
≥ 0)

and the other neutral salt (chemical formula CS); µCkM and µCS denote
the corresponding chemical potentials. The ”molecules” dissociate upon
entering the system:

CkM −→ kCQC +MQM ,

CS −→ CQC + SQS . (2.13)

These equilibrium chemical reactions lead to the following relations be-
tween the reservoir chemical potentials (µCkM and µCS) and the particle
chemical potentials (µi, i ∈ {Mx,My,Mz, S, C}, µMx

= µMy
= µMz

=:
µM ):

µCkM = kµC + µM

µCS = µC + µS . (2.14)

Defining the reduced reservoir chemical potentials (ΛMx
= ΛMy

= ΛMz
=:

ΛM )

µ∗
CkM := µCkM − 3(k ln ΛC + ln ΛM )

µ∗
CS := µCS − 3(ln ΛC + ln ΛS), (2.15)

Eq. (2.14) is equivalent to

µ∗
CkM = kµ∗

C + µ∗
M

µ∗
CS = µ∗

C + µ∗
S . (2.16)

Upon solving the Euler-Lagrange equations corresponding to the density
functional Eq. (2.8) for mixtures of platelike macroions and monovalent salt
under the constraint of global charge neutrality, the equilibrium state of
this system is obtained in terms of density profiles %. In order to identify
various structures of the fluid it is advantageous to express the macroion
densities %Mx

, %My
, and %Mz

in terms of the total macroion density %M :=
%Mx

+ %My
+ %Mz

, the nematic order parameter along the z-axis

sM :=
3

2

%Mz

%M

− 1

2
∈
[

−1

2
, 1

]

, (2.17)
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and the biaxiality order parameter perpendicular to the z-axis

qM :=
%Mx − %My

%M
. (2.18)

The definition of sM coincides with the well-known scalar liquid-crystal
order parameter [deGennes1993] S = 〈P2(cosϑ)〉 = 3

2 〈(cosϑ)2〉 − 1
2 for

the special case of a Zwanzig model, within which the only possible
macroion orientations are parallel (Mz, cosϑ = 1) and perpendicular
(Mx,y, cosϑ = 0) to the z-axis. Therefore, structures with sM = 0 and
sM > 0 are called isotropic and nematic, respectively. The biaxiality order
parameter qM vanishes if there is no preference of either macroion orien-
tation perpendicular to the z-axis. Structures with qM = 0 and qM 6= 0
will be called uniaxial and biaxial , respectively.

2.3 Debye-Hückel theory and perturbation

functional

In the previous section the reference fluid has been chosen as a mix-
ture of hard cuboids whose excess free energy functional F ex,ref entering
in Eq. (2.7) has been approximated within fundamental measure theory
(Eqs. (2.9)–(2.12)). In this section an approximate pair distribution func-
tion g(η) in Eq. (2.7) corresponding to the particle-particle interaction
U (η) = U ref + ηUper, η ∈ [0, 1], will be defined. Here U ref

ij (r) — the ref-
erence hard-core interaction — is infinite if two particles of types i and
j, respectively, with centre-centre distance r overlap and zero otherwise.
The perturbation interaction Uper

ij (r) describes the Coulomb interactions
between two particles of types i and j at distance r with chargesQi and Qj ,
respectively. Dispersion forces are not taken into account. For technical
convenience the following approximation is applied:

Uper
ij (r) :=

QiQj

‖r‖∞
, (2.19)

where the usual Euclidean norm ‖r‖2 =
√

x2 + y2 + z2 is replaced by
the supremum norm ‖r‖∞ = max(|x|, |y|, |z|) because of computational
advantages. Since these two norms are topologically equivalent, i.e.,
‖r‖∞ ≤ ‖r‖2 ≤

√
3 ‖r‖∞, it is not expected that the results change quali-

tatively due to this approximation. Furthermore, ‖·‖∞-spheres are cubes
with their edges parallel to the Cartesian axes; therefore, the supremum
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norm is the most natural and adapted norm in the context of a Zwanzig
model for cuboids.

Since U (η) includes Coulomb interactions a simple and sensible choice
for g(η) might be of the form obtained within the Debye-Hückel theory
for electrolytes [Debye1923, McQuarrie2000]. This theory calculates the
electrostatic potential ϕDH,p(r) around an ion of species p in a comoving
frame by solving the linearised radial Poisson-Boltzmann equation

1

r2
d

dr

(

r2
d

dr
ϕDH,p(r)

)

= κ2
DHϕDH,p(r) (2.20)

with the screening factor κ2
DH = 4π

∑

p′ q2p′np′ , where qp′ and np′ are the
valency and the bulk number density of ion species p′, respectively. The
solution for a charge neutral system and vanishing electrostatic potential
infinitely far from the origin, i.e., ϕDH,p(∞) = 0, is given by [Debye1923,
McQuarrie2000]

ϕDH,p(r) =
qp
r

exp(−κDHr). (2.21)

Ultimately, this expression yields the pair distribution function within
Debye-Hückel theory

gDH,pp′(r) = 1 − qpqp′ exp(−κDHr)

r
. (2.22)

The linearisation approximation which leads to Eq. (2.20) is justified only
for distances with small values of ϕDH,p(r), i.e., for r → ∞. Moreover,
gDH,pp′ in Eq. (2.22) is only meaningful for large distances r, because oth-
erwise it can become negative, which is impossible for pair distribution
functions. On the other hand, the functional form of gDH,pp′(r) is asymp-
totically exact [McQuarrie2000] except for the ”amplitude” qpqp′ , because
the linearisation approximation of Eq. (2.20) does not influence the asymp-
totic behaviour of ϕDH,p. The ”amplitudes” in front of exp(−κDHr)/r
within given exact asymptotic pair distribution functions may serve to in-
fer effective valencies q∗p , which in general differ from the bare valencies qp

entering in Eq. (2.22) [Aubouy2003].
Motivated by Eq. (2.22) the pair distribution function g(η) corresponding

to the particle-particle interaction U (η) is approximated by

g
(η)
ij (r, r′) := exp

(

− U ref
ij (r − r′)

)

max
[

0, (2.23)

1 − Uper
ij (r − r′)η exp

(

−√
ηκ(r, r′; [%]) ‖r− r′‖∞

)

]

.
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The screening factor in Eq. (2.23) is chosen as

κ(r, r′; [%]) :=
1

2

(

κ̃(r; [%]) + κ̃(r′; [%])
)

(2.24)

where only anions and cations contribute to the screening [Warren2000]:

κ̃(r; [%]) :=
√

4πQ2
S(%A(r) + %C(r)). (2.25)

This pair distribution function has non-negative values, it vanishes
within the hard-core, and it approaches unity at infinitely large distances.
Again, here the Euclidean norm ‖·‖2 has been replaced by the supremum
norm ‖·‖∞. The factor

√
η in Eq. (2.23) is introduced because ηUper is

equivalent to Eq. (2.19) with Qi replaced by
√
ηQi, and κ in Eq. (2.24)

scales linearly with the charges. Furthermore, the charge parameters Qi

have to be interpreted as effective charges in order to reproduce the actual
effective interactions between charged particles within Debye-Hückel the-
ory [Aubouy2003]. The relation between Qi and actual charges remains
undetermined within the present work.

The analysis rendered that, for a spatially constant screening factor κ,
the above model does not yield stable interfacial profiles. This led to intro-
duce the spatially varying expression in Eq. (2.24). Alternative expressions
for inhomogeneous screening factors are known from the theory of elec-
trolytes: In Ref. [Lee1997] non-symmetric screening factors are provided
whereas in Ref. [Groh1998] κ is calculated from the mean salt density. Here
the definition in Eqs. (2.24) and (2.25) is preferred because it is symmetric
and the screening is determined by the salt concentration at the actually
investigated positions.

With Eq. (2.23), the innermost integral in Eq. (2.7) can be evaluated
leading to an expression

1
∫

0

dη g
(η)
ij (r, r′) = exp

(

− U ref
ij (r − r′)

)(

1 +Gij(κ(r, r
′; [%]), ‖r− r′‖∞)

)

(2.26)
with functions

Gij(κ, s) := −
1
∫

0

dη min
[

1, Uper
ij (s)η exp(−√

ηκs)
]

(2.27)
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which decay for s −→ ∞ as

Gij(κ, s) ' −
1
∫

0

dη Uper
ij (s)η exp(−√

ηκs)

= −QiQj

s

1
∫

0

dη η exp(−√
ηκs)

= −QiQj

s

1
∫

0

dζ 2ζ3 exp(−ζκs)

= −2QiQj

κ4s5
γ(4, κs)

' −12QiQj

κ4s5
, (2.28)

where γ denotes the incomplete gamma function [Abramowitz1972,
Gradshteyn1980]. Therefore, the integrand in Eq. (2.7) vanishes at small

distances ‖r − r′‖∞ due to U ref
ij , whereas it decays as ‖r− r′‖−1

∞ for

‖r− r′‖∞ −→ ∞. In order to isolate the ‖r− r′‖−1
∞ asymptotics, unity

has been added and subtracted on the right-hand side of Eq. (2.26), which,
after insertion into Eq. (2.7), leads to the following decomposition of the
perturbation excess free energy functional

F ex,per = F ex,per
el + F ex,per

corr (2.29)

with the electrostatic part

F ex,per
el [%] :=

1

2

∑

ij

∫

d3r

∫

d3r′ %i(r)%j(r
′)Uper

ij (r, r′) (2.30)

and the correlation part

F ex,per
corr [%] :=

1

2

∑

ij

∫

d3r

∫

d3r′ %i(r)%j(r
′)Uper

ij (r, r′)
[

exp
(

− U ref
ij (r, r′)

)

−1 + exp
(

− U ref
ij (r, r′)

)

Gij

(

κ(r, r′; [%]), ‖r − r′‖∞
)

]

.(2.31)

Note that, although the integrands in Eqs. (2.30) and (2.31) are undefined

for r = r′, the three-dimensional integrals exist due to the ‖r− r′‖−1
∞
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asymptotics for ‖r− r′‖∞ −→ 0. Since the integrand in Eq. (2.31) decays

as ‖r − r′‖−6
∞ for ‖r − r′‖∞ −→ ∞, F ex,c

corr is well-defined for all finite system
volumes V and the thermodynamic limit of the ratio 1

V
F ex,c

corr exists. This
decay is the same as in models of non-retarded isotropic dispersion forces
[Dietrich1988, Dietrich1991, Schick1990].

In Ch. 3 bulk phase diagrams of spatially homogeneous phases will be
determined by solving the Euler-Lagrange equation corresponding to den-
sity functional Eq. (2.8) in the subspace of spatially homogeneous density
profiles %(bulk). In order to assess the stability of such spatially homoge-
neous states, one has to check whether the second order term of a func-
tional Taylor expansion of Ω[% = %(bulk) + δ%] around %(bulk) in powers of
perturbations δ% is non-negative. Consider the particular perturbations
δ%Mx

(r) := A(δ(r−v)− δ(r−u)) and δ%My ,...,C(r) := 0 which correspond
to the translation of an amount A of particles of type Mx from position u

to position v. According to Eqs. (2.8), (2.7), (2.9), (2.26), and (2.19), one
obtains for ‖v − u‖∞ > DM

1

2

∑

ij

∫

d3r

∫

d3r′
δ2 Ω

δ%i(r)δ%j(r′)

∣

∣

∣

∣

∣

%(bulk)

δ%i(r)δ%j(r
′)

=
1

2

∑

ij

∫

d3r

∫

d3r′ δ%i(r)δ%j(r
′)

(

1

%
(bulk)
i (r)

δijδ(r − r′)

+

∫

d3r′′
∑

α,α′

∂2Φ

∂nα∂nα′

(n(bulk)(r′′))ωα,i(r − r′′)ωα′,j(r
′ − r′′)

+Uper
ij (r − r′) exp

(

− U ref
ij (r − r′)

)(

1 +Gij(κ(r, r
′; [%]), ‖r − r′‖∞)

)

)

= A2

(

∑

α,α′

∂2Φ

∂nα∂nα′

(n(bulk))

∫

d3r′′ ωα,Mx
(r′′)ωα′,Mx

(r′′)

−Q2
M

1 +GMxMx
(κ(v,u; [%]), ‖v − u‖∞)

‖v − u‖∞

)

. (2.32)

Whereas the first term is positive, the second term is negative (see
Eq. (2.27)) and its absolute value increases proportional to Q2

M . Hence the
expression in Eq. (2.32) becomes negative, i.e., the spatially homogeneous
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state %(bulk) is unstable with respect to spatial variations, if the macroion

charge |QM | is sufficiently large. Thus, the choice for g(η) in Eq. (2.23)
leads to spatially inhomogeneous bulk phases if the effective macroion
charge |QM| is larger than some threshold value which, for the parame-
ters used within the present work, is approximately 1.2|QS|. As already
mentioned, the threshold value in terms of actual charges is undetermined.
In this work only sufficiently small effective macroion charges are consid-
ered, such that stable spatially homogeneous bulk phases exist. Such small
effective macroion charges occur for pH values close to the point of zero
charge [Kosmulski2002, Kosmulski2004, Kosmulski2005, Kosmulski2006].

2.4 Substrate, electrostatic, and Donnan po-

tentials

By imposing suitable boundary conditions, only systems with translational
symmetry in the lateral x and y directions are considered. Hence, in
the absence of spontaneous symmetry breaking, all densities %i depend
at most on the z coordinate. Since the thermodynamic limit of glob-
ally charge neutral systems of Coulomb interacting hard particles exists
[Lebowitz1969, Lieb1972], i.e., the bulk free energy density depends neither
on the shape nor on the boundaries of the system volume V , the following
system volumes V (L) := A(L) × [ẑ(L), ẑ(L) + L] of size 2L× 2L× L are
considered in the limit L −→ ∞, where A(L) is a square in the xy plane
of side length 2L with (lateral) periodic boundary conditions and ẑ(L) de-
notes an arbitrary real function of the extention L. In order to ensure that
the strongly varying parts of the density profiles %(z) are located in the

vicinity of position z = 0 upon L → ∞, the choice ẑ(L) := −L
2 is made

for the investigation of free interfaces (Sec. 4.1) whereas ẑ(L) := 0− is set
for charged substrates (Secs. 4.2–4.4). The notation 0− in the latter case
is used in order to emphasise that the wall charges belong entirely to the
system volume.

If a charged hard wall is present at z = 0, a corresponding substrate
potential Vi is exerted on particles of type i. This substrate potential can
be decomposed as Vi = V h

i + V c
i with the hard wall contribution

V h
i (r) :=

{

∞ , z ≤ Sz
i

2

0 , z >
Sz

i

2

, (2.33)

where Sz
i is the z-extension of particles of type i, and the contribution due
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to the surface charge

V c
i (r) :=

∫

V

d3r′
Qiσδ(z

′)

‖r − r′‖∞
. (2.34)

The electrostatic self energy of the wall is given by

U self(σ) :=
1

2

∫

V

d3r

∫

V

d3r′
σδ(z)σδ(z′)

‖r − r′‖∞
. (2.35)

In the absence of a charged hard wall Vi(z) as well as U self(σ) vanish.

Introducing the local charge density

%Q(r, [%]) :=
∑

i

Qi%i(r) + σδ(z) (2.36)

and the electrostatic potential

ψ(r, [%]) :=

∫

V

d3r′
%Q(r′, [%])

‖r− r′‖∞
(2.37)

one readily finds (see Eqs. (2.30), (2.34), and (2.35))

F ex,per
el [%] +

∑

i

∫

V

d3r %i(r)V
c

i (r) + U self(σ)

=
1

2

∫

V

d3r

∫

V

d3r′
%Q(r, [%])%Q(r′, [%])

‖r − r′‖∞

=
1

2

∫

V

d3r %Q(r, [%])ψ(r, [%]). (2.38)

For systems with translational invariance perpendicular to the z-axis,
the electrostatic potential in Eq. (2.37) can be expressed as

ψ(z, [%]) =

ẑ(L)+L
∫

ẑ(L)

dz′ %Q(z′, [%])

∫

A(L)

d2a′
1

‖(a′, z − z′)‖∞
, (2.39)
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where a′ denotes a two-dimensional vector in the x-y plane. The inner
integral in Eq. (2.39) leads to

∫

A(L)

d2a′
1

‖(a′, z − z′)‖∞
=

|z−z′|
∫

0

da′ 8a′
1

|z − z′| +

L
∫

|z−z′|

da′ 8a′
1

a′

= −4|z − z′| + 8L. (2.40)

Global charge neutrality

ẑ(L)+L
∫

ẑ(L)

dz %Q(z, [%]) = 0 (2.41)

reduces Eq. (2.39) to

ψ(z, [%]) = −4

ẑ(L)+L
∫

ẑ(L)

dz′ %Q(z′, [%])|z − z′|. (2.42)

By differentiating twice, one finds that ψ fulfils the Poisson equation

ψ′′ = −8%Q. (2.43)

Furthermore, due to Eq. (2.41) one obtains

ψ(ẑ(L), [%]) = −4

ẑ(L)+L
∫

ẑ(L)

dz′ %Q(z′, [%])(z′ − ẑ(L))

= −4

ẑ(L)+L
∫

ẑ(L)

dz′ %Q(z′, [%])z′

= 4

ẑ(L)+L
∫

ẑ(L)

dz′ %Q(z′, [%])(ẑ(L) + L− z′)

= −ψ(ẑ(L) + L, [%]). (2.44)

Combined with Eqs. (2.29) and (2.38), the density functional in Eq. (2.8)
takes the final form

Ω[%]=4L2

(

∑

i

ẑ(L)+L
∫

ẑ(L)

dz %i(z)
(

ln(%i(z)) − 1 − µ∗
i + V h

i (z) +
1

2
Qiψ(z, [%])

)
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+
1

2
σψ(ẑ(L), [%])

)

+ F ex,ref [%] + F ex,per
corr [%] − U self(σ) (2.45)

which has to be minimised under the constraint of global charge neutrality
Eq. (2.41). The corresponding Euler-Lagrange equations read

ln(%i(z))−µ∗
i +V h

i (z)+Qiψ(z, [%])−crefi (z, [%])−cper
corr,i(z, [%]) = 0. (2.46)

In the isotropic and the nematic bulk fluid, the densities % are spatially
constant. In this case, the Euler-Lagrange equations Eq. (2.46) comprise
five coupled equations:

ln(%
(bulk)
i ) − µ

∗(bulk)
i − c

ref,(bulk)
i − c

per,(bulk)
corr,i = 0, (2.47)

where the chemical potentials µ
∗(bulk)
i fulfil Eq. (2.16) and the local charge

neutrality condition
∑

i Qi%
(bulk)
i = 0. The electrostatic contribution

−cper,(bulk)
el,i = Qiψ

(bulk) is absent in Eq. (2.47) because the electrostatic
potential ψ vanishes in locally charge neutral systems (see Eq. (2.37)).

For determining the number density profiles at free interfaces between
coexisting bulk phases B1 and B2, the Euler-Lagrange equations

ln
(

%i(z)
)

− µ∗
i +Qiψ(z, [%]) − crefi (z, [%]) − cper

corr,i(z, [%]) = 0 (2.48)

are to be solved with the boundary conditions

%i(ẑ(L)) = %
(B1)
i , %i(ẑ(L) + L) = %

(B2)
i . (2.49)

In order that for z = ẑ(L) and z = ẑ(L) + L Eq. (2.48) reduces to
Eq. (2.47) for B1 and B2, respectively, one has to require

−µ∗
i +Qiψ(ẑ(L), [%]) = −µ∗(B1)

i ,

−µ∗
i +Qiψ(ẑ(L) + L, [%]) = −µ∗(B2)

i . (2.50)

Using Eq. (2.44), one readily concludes

µ∗
i =

1

2
(µ

∗(B1)
i + µ

∗(B2)
i ) (2.51)

and

ψD := ψ(ẑ(L) + L, [%]) − ψ(ẑ(L), [%]) =
1

Qi

(µ
∗(B1)
i − µ

∗(B2)
i ). (2.52)
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ψD is known as Donnan potential [Adamson1973] between the two bulk
phases B1 and B2. It maintains a density gradient of the mobile particles
at the interface between two coexisting bulk phases. Its definition given
above is unique, i.e., the rightmost expression is in fact independent of i
due to Eq. (2.16), e.g.,

µ
∗(B1)
S − µ

∗(B2)
S

QS
=

(µ∗
CS − µ

∗(B1)
C ) − (µ∗

CS − µ
∗(B2)
C )

−QC
=
µ
∗(B1)
C − µ

∗(B2)
C

QC
.

(2.53)

2.5 Theory of wetting

The purpose of this section is to introduce the basic concepts of wetting
theory to the extent necessary for Ch. 4. Thorough reviews can be found
in Refs. [deGennes1985, Dietrich1988, Schick1990, Sullivan1986].

A fluid deep within the one-phase region of the phase diagram in contact
with a substrate exhibits the structure of the stable bulk phase down to
microscopic distances from the substrate. Upon approaching two-phase
coexistence along a thermodynamic path can lead to the formation of a
macroscopic film at the substrate with a fluid structure corresponding to
the (previously) metastable bulk phase; this phenomenon is called complete
wetting . In contrast, partial wetting occurs if only films of finite thickness of
the metastable bulk phase are attained. Wetting transitions occur at state
points of two-phase coexistence lines where complete wetting is separated
from partial wetting. Upon approaching a wetting transition along two-
phase coexistence from the partial wetting side, the film thickness either is
bounded from above close to the wetting transition and jumps to infinity at
the wetting transition, or it increases continuously to infinity. The former
case is called first-order wetting transition whereas the latter case is called
critical wetting transition.

In principle, the asymptotic wetting behaviour can be completely in-
ferred from the effective interface potential Ωeff(ζ) := (Ω[%

ζ
]−Ωbulk)/(4L2)

where Ω is the density functional Eq. (2.45), Ωbulk denotes the bulk con-
tribution to the grand potential and the density profiles %

ζ
are the so-

lutions of the Euler-Lagrange equations Eq. (2.46) under the constraint
of a prescribed film thickness ζ characterised by the position of the
isotropic-nematic interface [Dietrich1988]. The effective interface poten-
tial Ωeff resembles the thermodynamic potential within Landau theory
[Binney1992, Goldenfeld1992, Landau1979, leBellac1991, Plischke1994,
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Stanley1971] from which all stable and metastable states as well as the
order of phase transitions can be inferred. Ωeff(ζ) takes its global mini-
mum at the equilibrium interface position ζ∗; the corresponding density
profiles %

ζ∗
are the unconstraint minima of Eq. (2.45). Local minima of

Ωeff are related to interface locations which are only metastable. ζ∗ = ∞
and ζ∗ < ∞ at two-phase coexistence correspond to complete and partial
wetting, respectively. If ζ∗ → ∞ continuously upon approaching a wetting
transition point along coexistence critical wetting occurs. A first-order
wetting transition, on the other hand, is identified if Ωeff(ζ) at the wetting
transition exhibits two global minima, one at ζ < ∞ and another one at
ζ = ∞, with a maximum in between [Dietrich1988].

In the following, the asymptotic behaviour of the effective interface po-
tential Ωeff(ζ) for ζ → ∞ will be determined analytically for the case of a
wall in contact with an isotropic bulk fluid (compare Sec. 4.2). The analo-
gous expressions for the case of a wall in contact with a nematic bulk fluid
(compare Sec. 4.3) can be obtained by interchanging the terms ”isotropic”
and ”nematic”.

Since exact solutions are out of reach for the present model, Ωeff(ζ)
is approximated by considering the following subspace of density profiles
[Dietrich1991]:

%̃i,ζ(z) :=

{

%wn
i (z) , z ≤ ζ/2
%ni

i (z − ζ) , z > ζ/2
, (2.54)

where %wn(z) and %ni(z) correspond to solutions of the Euler-Lagrange
equations Eq. (2.46) with wall-nematic and nematic-isotropic boundary
conditions, respectively. The interfaces for %wn(z) and %ni(z) are located at
z = 0. Therefore, in the interval z ∈ (−∞, ζ/2] the trial density profile %̃

ζ
is

described by the wall-nematic profile whereas in the interval z ∈ (ζ/2,∞)
it is given by the free nematic-isotropic profile shifted to position ζ. Due to
%wn

i (∞) = %ni
i (−∞), the discontinuity of %̃

ζ
at z = ζ/2 vanishes in the limit

ζ → ∞. The leading asymptotic terms of Ωeff(ζ → ∞) are independent of
the actual form of the density profiles %̃

ζ
(z) within the transition regime

around z = ζ/2 [Dietrich1991].
Except for the electrostatic term Eq. (2.38), the density functional in

Eq. (2.45) is identical to the one in Ref. [Dietrich1991] modelling isotropic
nonretarded van der Waals forces, because the integrand Φ(n(r)) of F ex,ref

(Eq. (2.9)) represents interactions of only finite range and the integral
kernel Uper

ij (r)Gij(κ, r) of F ex,per
corr (Eq. (2.31)) as a function of r decays

proportional to ‖r‖−6
∞ (Eqs. (2.19) and (2.28)). Using the results of
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Ref. [Dietrich1991] for this part of the effective interface potential along
thermodynamic paths with constant salt reservoir chemical potential µ∗

CS

leads to

Ω̃eff(ζ → ∞) = γwn + γni − (%ni
M (−∞) − %ni

M (∞))∆µ∗
CkMζ

+a2ζ
−2 + a3ζ

−3 + O(ζ−4) (2.55)

with the wall-nematic and nematic-isotropic interfacial tensions γwn and
γni, respectively, the difference ∆µ∗

CkM of the macroion reservoir chemical
potential with respect to the value at isotropic-nematic coexistence, and
the amplitudes [Dietrich1991]

a2 =
1

2

∑

ij

Tij (2.56)

and
a3 =

∑

ij

Tij(di,wn − dj,ni) (2.57)

where the abbreviation

Tij := −
24Q2

iQ
2
j

κ4
%ni

i (−∞)
(

%ni
j (−∞) − %ni

j (∞)
)

(2.58)

has been introduced. The quantities

di,wn :=

∞
∫

0

dz

(

1 − %wn
i (z)

%wn
i (∞)

)

(2.59)

and

dj,ni :=

0
∫

−∞

dz
(

%ni
j (z) − %ni

j (−∞)
)

+

∞
∫

0

dz
(

%ni
j (z) − %ni

j (∞)
)

%ni
j (−∞) − %ni

j (∞)
(2.60)

are related to excess adsorptions of the wall-nematic and the free nematic-
isotropic interface, respectively.

In order to calculate the contribution of the electrostatic term Eq. (2.38)
to the asymptotic behaviour of Ω̃eff(ζ) for ζ → ∞, the asymptotic be-
haviour of the density profiles %wn(z) and %ni(z) at distances far from the
substrate and interface, respectively, has to be determined. Expanding the
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Euler-Lagrange equations (Eq. (2.46)) for z → ∞ around the bulk values
provides the number density deviations ∆%(z) := %(z) − %(∞) with

∆%i(z → ∞) = %i(∞)
(

− ∆V h
i (z) −Qi∆ψ(z) + ∆crefi (z) + ∆cper

corr,i(z)
)

.
(2.61)

The electrostatic potential difference ∆ψ depends on ∆% via the local

charge density %Q (see Eqs. (2.36) and (2.37)). However, this dependence
will not be used for the derivation of, c.f., Eq. (2.68). Inserting Eqs. (2.9)
and (2.31) into Eq. (2.4) leads to

∆crefi (z → ∞) = −
∑

j

∆%j(z)Aij (2.62)

and
∆cper

corr,i(z → ∞) =
∑

j

(

tij(z) − ∆%j(z)Bij

)

, (2.63)

where tij(z) := −24Q2
iQ

2
j%j(∞)κ̃(∞)−4z−3. The spatially constant 5× 5-

matrices Aij and Bij depend only on model parameters (particle sizes and
charges) and bulk quantities: The 5 × 5-matrix Aij in Eq. (2.62) is given
by

Aij = −
∞
∫

−∞

dz crefij

(

z, [%(∞)]
)

, (2.64)

where %(∞) is the set of constant bulk density profiles. By introducing

wij(z) :=

∫

A(L)

d2a Uper
ij (a, z)

(

exp(−U ref
ij (a, z)) − 1

+ exp(−U ref
ij (a, z))Gij(κ, ‖a, z‖∞)

)

, (2.65)

which renders Eq. (2.31) in the form

F ex,per
corr [%] =

1

2
4L2

∑

ij

∞
∫

0−

dz

∞
∫

0−

dz′ %i(z)%j(z
′)wij(z − z′), (2.66)

the 5 × 5-matrix Bij in Eq. (2.63) can be expressed as

Bij =

∞
∫

−∞

dz wij(z). (2.67)
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Defining Mij := δij/%i(∞) + Aij + Bij and since V h
i (z) = 0 for z >

1
2 maxi(S

z
i ) (Eq. (2.33)), Eq. (2.61) is equivalent to

∑

j

Mij∆%j(z → ∞) = −Qi∆ψ(z) +
∑

j

tij(z). (2.68)

Firstly, Eq. (2.68) implies an asymptotic decay of ∆%i(z) not faster
than proportional to z−3; otherwise ∆ψ(z → ∞) = Kz−3 with
some spatially constant amplitude K would fulfil the relation K +
24Qiκ̃(∞)−4

∑

j Q
2
j%j(∞) = 0 simultaneously for all i which is impossible

because the second term depends on i whereas the first does not. Moreover,
it can be shown that the deviations ∆%i(z) exhibit a purely algebraic decay
in leading order. One is led to the conclusion that the asymptotic Euler-
Lagrange equations (2.68) in conjunction with the Poisson equation (2.43)
lead to the properties ∆%i(z → ∞) = O(z−3), ∆ψ(z → ∞) = O(z−3),
and %Q(z → ∞) = O(z−5). Note that on the right-hand side of Eq. (2.36)
for z → ∞ the leading and the next to leading order contributions to the
density profiles % cancel.

Interestingly, the asymptotic decay proportional to z−3 of ∆%i(z)
within the current model for charged particles equals the corresponding
one for systems governed by non-retarded isotropic dispersion forces in
Ref. [Dietrich1991]. This behaviour is in sharp contrast to the results ob-
tained within multicomponent Poisson-Boltzmann theories which give rise
to exponentially decaying density profiles [Grahame1947].

Substituting the trial density profiles %̃
ζ

into the electrostatic term

Eq. (2.38) and using the asymptotic behaviour of ∆ψ and %Q one obtains
after some manipulations

1

2

∫

V

d3r %Q(r, [%̃
ζ
])ψ(r, [%̃

ζ
]) = const.+ O(ζ−4). (2.69)

Hence the electrostatic term Eq. (2.38) does not contribute to the leading
and next-to-leading non-constant terms of the effective interface potential
Ω̃eff(ζ) in Eq. (2.55).

By inspection one recognises the same leading asymptotic decay of
Ω̃eff(ζ) in Eq. (2.55) as for systems governed by non-retarded isotropic
dispersion forces [Dietrich1988, Schick1990]. This is regarded as a surpris-
ing result because the model (Sec. 2.3) does not include dispersion forces.
The asymptotic behaviour O(ζ−2) in Eq. (2.55) is ultimately generated by
using a pair distribution function gij which decays asymptotically with a
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Debye-Hückel (screened Coulomb) form (Sec. 2.3). This assumption con-
cerning the pair distribution function gij is valid because the linearisation
approximation underlying the Debye-Hückel theory is justified at large
distances.

The parameters %ni(−∞) − %ni(∞), a2, and a3 in Eq. (2.55), which will
be calculated numerically in Chs. 3 and 4, determine the asymptotic func-
tional form of the effective interface potential Ωeff(ζ → ∞), the derivative
of which with respect to ζ is given by

d Ωeff(ζ → ∞)

dζ
' −(%ni

M (−∞)−%ni
M(∞))∆µ∗

CkM−2a2ζ
−3−3a3ζ

−4. (2.70)

For ∆µ∗
CkM ↗ 0, and hence %ni(−∞) − %ni(∞) > 0, the minimum of

Ωeff(ζ) at ζ = ζ∗ fulfils the equation

−(%ni
M (−∞) − %ni

M (∞))∆µ∗
CkM = 2a2(ζ

∗)−3. (2.71)

The left-hand side of Eq. (2.71) is positive and decreases as ∆µ∗
CkM ↗ 0.

Thus, ζ∗ tends to ∞, i.e., complete wetting occurs, if and only if a2 > 0.
In this case an asymptotic behaviour

ζ∗ =

(

−(%ni
M (−∞) − %ni

M (∞))∆µ∗
CkM

2a2

)− 1
3

= O(|∆µ∗
CkM |− 1

3 ) (2.72)

is found.
If ∆µ∗

CkM = 0 and a2 ↗ 0, the equilibrium interface position ζ∗ is given
by

ζ∗ =
3a3

−2a2
. (2.73)

ζ∗ diverges continuously to ∞, i.e., critical wetting occurs, if a3 > 0. In
the case a3 < 0 the interface position ζ = ∞ for a2 < 0 corresponds to a
relative maximum of Ωeff and ζ∗ approaches a finite limit as a2 ↗ 0. At
the wetting transition a2 = 0 for a3 < 0 the equilibrium interface position
ζ∗ exhibits a discontinuous divergence, i.e., first-order wetting occurs.



Chapter 3

Bulk and surface phase

diagrams

Having introduced a density functional theory for a model fluid of charged
platelike colloids in the previous chapter, a first investigation will be de-
voted to the bulk properties, particularly to the bulk phase diagrams.
Although this work aims at interfaces knowledge about the bulk struc-
ture is important in a least three respects: First, one has to ensure that
the model fluid in which inhomogeneities should be investigated exhibits
physically acceptable behaviours in homogeneous configurations. Second,
bulk phase diagrams may serve as a guide which surface phase transitions
can occur and under which conditions. Finally, coexistence conditions and
the corresponding bulk structure have to be determined precisely in order
to calculate equilibrium interfacial profiles. Afterwards, the bulk phase
diagrams augmented by surface phase transition lines will be described in
order to provide a general overview of the wetting and drying phenomena
occurring within the model considered here. The anticipated surface phase
behaviour will be justified in detail in the next chapter.

3.1 Bulk phase diagrams

As a first step in the investigation of the density functional developed in
the last chapter, bulk phase diagrams are determined for various effective
macroion charges QM by solving the bulk Euler-Lagrange equations (2.47)
numerically.

59
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Figure 3.1: Bulk phase diagrams of mixtures of plate-like macroions (DM =
14 nm, LM = 0.72 nm) and monovalent salt (DS = 0.72 nm, QS = −e) for
effective macroion charges QM = 0 (a), QM = 0.25QS (b), QM = 0.5QS (c),
QM = 0.75QS (d), and QM = QS (e) in terms of the platelet packing fraction
ηM = %MD

2
MLM and the salt density %S. Note that %S = 1 mM for DS = 0.72 nm

corresponds to a salt packing fraction %SD
3
S = 2.2 · 10−4. Coexisting states are

connected by (non-horizontal) tie lines. The model exhibits one isotropic (I)
and one nematic (N) phase separated by first-order phase transitions. The salt
density of coexisting phases is higher in the isotropic and lower in the nematic
phase (Donnan effect) as can be inferred from the negative slope of the tie lines.
For increasing effective macroion charge, the isotropic and the nematic binodals
are shifted to larger macroion packing fractions ηM. With increasing salt density
%S, the isotropic-nematic binodals for systems of charged macroions bend towards
lower values of the macroion packing fraction.

It turned out that the biaxial order parameter qM (Eq. 2.18) vanishes
throughout the whole inspected range of chemical potentials µ∗

CkM and
µ∗

CS, whereas the nematic order parameter sM (Eq. 2.17) indicates either
an isotropic fluid (sM = 0) or a nematic fluid (sM > 0).
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Figure 3.2: Donnan potential ψD (see Eq. (2.52)) between the coexisting ne-
matic (N) and isotropic (I) bulk phases in mixtures of platelike macroions and
salt (see Fig. 3.1). For fixed effective macroion charge QM, the Donnan poten-
tial decreases with increasing salt density %S. For salt densities %S ≈ 0.01 mM,
ψD decreases upon increasing |QM|, whereas for salt densities %S ≈ 1 mM, ψD

increases with increasing |QM|.

Figure 3.1 displays phase diagrams for the parameters (compare Fig.
2.1) DM = 14 nm, LM = 0.72 nm, DS = 0.72 nm, QS = −e with
QM = 0, QM = 0.25QS, QM = 0.5QS, QM = 0.75QS, and QM = QS

in terms of the macroion packing fraction ηM = %MD
2
MLM and the salt

density %S. Dimensional salt number densities are given in units of
1 mM = 1 mol/m3 ≈ 6 × 1023 m−3.

One isotropic phase (I) and one nematic phase (N) are found sepa-
rated by first-order phase transitions. Whereas for coexisting phases ηM

is always smaller in the isotropic phase than in the nematic phase, %S

of coexisting phases is higher in the isotropic and lower in the nematic
phase. A similar displacement of salt from regions of large concentra-
tions of charged macroions is known as Donnan effect [Adamson1973,
Donnan1911, Donnan1924]. Whereas the original Donnan effect has been
discovered in systems subdivided by membranes which are impermeable
for macroions, here the density difference of the macroions occurs due to
two coexisting bulk phases. As for the case of membrane equilibrium,
here a Donnan potential ψD (Eq. (2.52)) maintains the density gradients
between the coexisting phases. Figure 3.2 depicts its dependence on the
effective macroion charge QM and the salt density %S. ψD decreases with
increasing salt density %S. This tendency is intuitively expected as the
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Donnan effect becomes less pronounced upon increasing the screening of
the macroion charge by increasing the salt density. For fixed salt density
%S well below ≈ 0.1 mM, ψD decreases with increasing |QM|, whereas this
behaviour is reversed for fixed salt density %S above ≈ 0.1 mM.

Upon an increase of the effective macroion charge |QM|, the isotropic and
the nematic binodals in Fig. 3.1 are shifted to larger values of the macroion
packing fraction ηM. This may be qualitatively understood by introducing
the notion of an effective shape, which, in the present case, for macroions
is given by a hard core surrounded by a soft ‖·‖∞-sphere, i.e., a cube,
with its linear extension proportional to Q2

M due to the pairwise Coulomb
repulsion. For small macroion charges, the effective shape is still platelike
whereas for highly charged colloids, the effective shape tends towards a
cube leading to a shift of the two-phase region to larger macroion packing
fractions.

For fixed effective macroion charge as well as particle shape and increas-
ing salt density %S, the isotropic-nematic binodals in Fig. 3.1 bend towards
smaller macroion packing fractions. This behaviour is expected intuitively,
because high ionic strength causes strong screening which in turn leads to
effectively quasi-hard platelets (see Fig. 3.1(a)).

3.2 Bulk and surface phase diagram

Having calculated the bulk states at coexistence (see Sec. 3.1), the Euler-
Lagrange equations (Eq. (2.46)) for mixtures of platelike macroions and
monovalent salt in contact with a charged hard wall can be solved. Changes
in the wetting behaviour of the substrate by films of (meta)stable struc-
tures different from the bulk structure upon changing model parameters
are reflected by surface phase transitions . These surface phase transitions
are represented by additional points and lines in the phase diagrams (see
Fig. 3.3). Although details of the wetting behaviour of charged substrates
will be discussed in Ch. 4, the resulting surface phase diagram will be
described already here.

The equilibrium states are calculated as function of the chemical po-
tential µ∗

CkM , the effective macroion charge QM , and the surface charge
density σ. The remaining parameters of the model have been fixed as
(see Fig. 2.1) DM = 14 nm, LM = 0.72 nm, DS = 0.72 nm, |QS| = e,
and salt density %S = 0.1 mM in the bulk. As discussed in Sec. 2.3, the
current model yields spatially homogeneous bulk phases only in the range
|QM | . e.
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Figure 3.3: Bulk and surface phase diagram of mixtures of platelike macroions
(DM = 14 nm, LM = 0.72 nm) and monovalent salt (DS = 0.72 nm, |QS| = e) for
salt density %S = 0.1 mM in contact with a charged hard wall of surface charge
density σ = −0.4e/D2

M in terms of effective macroion charge QM and chemical
potential difference ∆µ∗

CkM . The bulk equilibrium states for ∆µ∗

CkM < 0 and
∆µ∗

CkM > 0 are isotropic (I) and nematic (N), respectively. Isotropic-nematic
bulk coexistence corresponds to ∆µ∗

CkM = 0 (solid line). For isotropic boundary
conditions in the bulk (z → ∞) at isotropic-nematic coexistence (∆µ∗

CkM = 0−),

two first-order wetting transition points W− (at QW−

M ∈ [−2 × 10−3e, 0]) and

W+ (at QW+

M ∈ [0.1e, 0.132e]) have been found. The tolerance intervals are
indicated by frames of corresponding widths. Complete wetting by the ne-

matic phase occurs for QM ∈ (QW−

M , QW+

M ) upon approaching coexistence from
the isotropic side. For nematic boundary conditions in the bulk at isotropic-
nematic coexistence (∆µ∗

CkM = 0+), a first-order drying transition point D− (at

QD−

M = −0.35e) has been found. The accompanying predrying line (dashed line)

terminates at a critical point C−

D (at Q
C

−

D
M = −0.87e,∆µ

∗C
−

D
CkM = 0.049). Com-

plete drying by the isotropic phase occurs upon approaching coexistence from

the nematic side for QM < QD−

M . This implies that for QD−

M < QM < QW−

M or

QW−

M < QM < e there is neither complete wetting (by the nematic phase) nor
complete drying (by the isotropic phase). A (not shown) second drying transi-
tion point D+ appears for QM sufficiently large and σ sufficiently small so that
there is reentrance of complete drying for large positive values of QM .

Figure 3.3 displays the bulk and surface phase diagram for the surface
charge density σ = −0.4e/D2

M in terms of the effective macroion charge
QM and the chemical potential difference ∆µ∗

CkM := µ∗
CkM − µ∗IN

CkM . The



64 Bulk and surface phase diagrams

solid line (∆µ∗
CkM = 0) denotes the states of bulk coexistence between

the isotropic (I) phase and the nematic (N) phase, corresponding to the
chemical potential µ∗IN

CkM at coexistence. The bulk equilibrium states for
∆µ∗

CkM < 0 and ∆µ∗
CkM > 0 are isotropic and nematic, respectively.

At isotropic-nematic bulk coexistence with isotropic boundary condi-
tions in the bulk (∆µ∗

CkM = 0−), two first-order wetting transition points
W− and W+ have been found which could be located only within the
intervals of the coexistence line indicated by frames of corresponding
widths: Whereas W− (QW−

M ∈ [−2 × 10−3e, 0]) is known rather pre-
cisely, there remains some uncertainty with respect to the location of W+

(QW+

M ∈ [0.1e, 0.132e]). The corresponding prewetting lines [Dietrich1988]
are so close to the coexistence line such that they could not be resolved
numerically.

Complete wetting by the nematic phase, i.e., the formation of an in-
finitely thick film of nematic structure upon approaching isotropic-nematic
bulk coexistence from the isotropic side (see Sec. 2.5 or Refs. [Dietrich1988,

Schick1990]), occurs exclusively for QM ∈ (QW−

M , QW+

M ). The phenomenon
that partial wetting (see Sec. 2.5 or Refs. [Dietrich1988, Schick1990]), i.e.,
a nematic film of finite thickness, is found for sufficiently large effective
macroion charges |QM | may be qualitatively understood as follows: The
macroion number density profiles %Mx

, %My
, and %Mz

close to the sub-
strate are influenced by the hard-core interactions — which give rise to a
preference of nematic order close to the wall —, the macroion-substrate
Coulomb interactions proportional to |QM |, and the macroion-macroion
Coulomb repulsion proportional to |QM |2. The latter dominates for large
effective macroion charges |QM | leading to a depression of the values of the
macroion number densities near the wall which in turn prevents the growth
of a nematic film. For small effective macroion charges |QM |, %Mx

, %My
,

and %Mz
near the substrate are determined by the balance between the

hard-core interactions and the macroion-substrate interactions which lead
to complete wetting for attractive walls. Details on the wetting behaviour
will be given in Sec. 4.2.

In Fig. 3.3, a first-order drying transition point D− at QD−

M = −0.35e
is found for isotropic-nematic bulk coexistence with nematic boundary
conditions in the bulk fixing the director to be parallel to the interface
normal (∆µ∗

CkM = 0+). The first-order character of the drying transition
at state point D− implies the existence of a predrying line (dashed line in
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Fig. 3.3), along which the excess adsorption of macroions

ΓM :=

∞
∫

0

dz (%M (z) − %M (∞)), (3.1)

which is proportional to the thickness of the emerging film, exhibits a finite
discontinuity. The predrying line is expected to meet the isotropic-nematic
bulk coexistence line tangentially [Hauge1983]. The numerical data are
consistent with this behaviour but not definitely conclusive due to the
numerical difficulties arising from the large thickness of drying films very
close to isotropic-nematic bulk coexistence. The predrying line terminates

at a critical point C−
D located at state point (Q

C
−

D

M = −0.87e,∆µ
∗C

−

D

CkM =

0.049). Complete drying by the isotropic phase occurs for QM < QD−

M

upon approaching isotropic-nematic bulk coexistence from the nematic
side.

As for the wetting scenario discussed above, the macroion-macroion re-
pulsion will prevail over the macroion-substrate interactions for a suffi-
ciently large effective macroion charges |QM |. Therefore, for large |QM |,
the formation of an isotropic film is initiated by the strongly depressed
macroion number density close to the substrate. Hence one expects com-
plete drying for sufficiently large effective macroion charges |QM |. For
a surface charge density σ = −0.4e/D2

M (see Fig. 3.3), partial drying is

found for QM ∈ (QD−

M , e], i.e., an expected second drying transition point
D+ is located in the range QM > e. For smaller surface charge densities
σ, indeed two drying transition points have been found within the range
QM ∈ [−e, e]. More details of the first-order drying transition and the
corresponding predrying line can be found in Sec. 4.3.

Within the intervals QM ∈ [QD−

M , QW−

M ] and QM ∈ [QW+

M , QD+

M ] only
partial wetting and drying occurs. In order to validate the topology of
the bulk and surface phase diagram in Fig. 3.3, a modified version of the
density functional (Eq. (2.45)) has been investigated in which the corre-
lation term F ex,per

corr [%] is omitted. An asymptotic analysis analogous to

Sec. 2.5 leads to exponentially decaying profiles of ∆%, ∆ψ, and %Q. The
corresponding phase diagram is qualitatively the same as in Fig. 3.3. In
particular, there are also first-order wetting and drying transition points
which are separated by intervals of only partial wetting and drying. Due
to the exponentially decaying electrostatic potential, this modified model
is similar to a recently investigated model of hard rods interacting with
an exponentially decaying wall potential [Shundyak2006]. Whereas the au-
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thors of Ref. [Shundyak2006] relied entirely on a numerical approach which
provided them only with evidences of first-order wetting transitions, within
the present work it is analytically shown that the wetting and the drying
transitions displayed in Fig. 3.3 are of first order (Secs. 4.2 and 4.3).



Chapter 4

Free and fluid-substrate

interfaces

The isotropic and nematic structures at two phase coexistence, which have
been numerically determined in the previous chapter, are used as boundary
conditions for the Euler-Lagrange equations of spatially varying density
profiles. A first investigation is devoted to the structure of free interfaces
between a semi-infinite isotropic bulk system coexisting with a semi-infinite
nematic bulk system. Next, the structure of a semi-infinite isotropic or
nematic bulk system in contact with a charged hard wall will be addressed.
In particular wetting of the substrate in contact with an isotropic bulk by a
nematic film and drying of the substrate in contact with a nematic bulk by
an isotropic film gives rise to several surface phase transitions. Moreover,
the electrostatic potential profiles at free and fluid-substrate interfaces will
be studied.

4.1 Free interface and interfacial electro-

static potential

Based on the bulk properties provided in the previous chapter, one is
now able to calculate the density profiles at the free interface between
coexisting isotropic and nematic phases by solving the spatially varying
Euler-Lagrange equations (Eq. (2.48)). The interfacial structure and hence
quantities such as the interfacial tension and the interfacial width depend
on the orientation of the director of the nematic bulk phase with respect

67
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Figure 4.1: Macroion density profiles at the free interface between coexisting
isotropic (I) and nematic (N) phases for the mixtures of platelike macroions

and salt as studied in Fig. 3.1 at nematic bulk salt density %
(N)
S = 0.1 mM.

The interface position z = 0 is chosen such that %M(0) = 1
2

“

%
(I)
M + %

(N)
M

”

. The

interface width τni, inferred from the slope of the density profiles at the interface
position z = 0 (see main text), and the Debye length κ−1 decrease monotonically
upon increasing the effective macroion charge |QM|. The same behaviour is found
for the interfacial tension γni. See also Fig. 4.2.

to the interface normal. Within the Zwanzig model (see Sec. 2.2) only two
different director orientations, parallel and perpendicular to the interface
normal, have to be distinguished. However, as the present work is not
primarily concerned with the dependence of the interfacial structure on
the director orientation relative to the interface, the nematic bulk phase is
chosen to be exclusively oriented parallel to the interface normal.

The density and order parameter profiles corresponding to the parame-

ters of Sec. 3.1 and a nematic bulk salt density %
(N)
S = 0.1 mM are depicted

in Figs. 4.1 and 4.2, respectively. The interface position z = 0 is chosen

such that %M(0) = 1
2

(

%
(I)
M + %

(N)
M

)

.

First, and most important, the formalism described in Ch. 2 renders sta-
ble free interfaces between coexisting bulk phases. This should be regarded
as an accomplishment which can be traced back to using the spatially vary-
ing screening factor κ introduced in Eq. (2.24); previous attempts with
spatially constant κ were not successful.

For a given density profile %M(z) (Fig. 4.1), the corresponding interface
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Figure 4.2: Macroion nematic order parameter profiles sM (Eq. (2.17)) at
the free interface between coexisting isotropic (I) and nematic (N) phases
for mixtures of platelike macroions and salt as shown in Fig. 3.1 at nematic
bulk salt density %

(N)
S = 0.1 mM. The position z = 0 is fixed by the choice

%M(0) = 1
2

“

%
(I)
M + %

(N)
M

”

(see Fig. 4.1). On the nematic side of the free interface,

most of the macroions lie parallel to the interface. For z < 0, sM(z) decreases
upon increasing the effective macroion charge |QM|. The inset shows a detailed
view of the steepest portions of the nematic order parameter profiles in the range
sM(z) ∈ [0.2, 0.3] indicated by the frame.

width τni is defined as the spatial distance between the loci, where the
tangent at the density profile at position z = 0 reaches the values of the

nematic bulk density %
(N)
M and the isotropic bulk density %

(I)
M , respectively.

This interface width τni decreases monotonically with increasing effective
macroion charge from τni = 1.8DM for QM = 0.25QS to τni = 1.3DM

for QM = QS (see Fig. 4.1). In parallel, the Debye length κ−1 decreases
monotonically from κ−1 = 1.5DM for QM = 0.25QS to κ−1 = DM for
QM = QS.

The nematic order parameter profiles sM(z) (Fig. 4.2) interpolate almost
monotonically between sM(∞) > 0 in the nematic bulk phase (N) and
sM(∞) = 0 in the isotropic bulk phase (I). Note that sM has been defined
for a director in z-direction, i.e., platelets on the nematic side (z < 0)
are preferably oriented parallel to the free interface. At a fixed position
on the nematic side (z < 0), sM(z) decreases with increasing effective
macroion charge |QM|. This behaviour is consistent with the picture of an
increasingly isotropic effective shape, introduced in Sec 3.1.
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Figure 4.3: Local charge density profiles (Eq. (2.36)) at the free isotropic-
nematic interfaces shown in Figs. 4.1 and 4.2 using the same parameters and line
code. Whereas global charge neutrality holds, deviations from local charge neu-
trality occur near the interface with a negative charge density on the nematic side
(N) and a positive charge density on the isotropic side (I). The corresponding
electrostatic potential profile is shown in Fig. 4.4.

The charge density profiles %Q(z) (Eq. (2.36)) displayed in Fig. 4.3 ex-
hibit deviations from local charge neutrality within the interfacial region
−4DM . z . 4DM. An electrical double layer with a negative charge den-
sity on the nematic side (N) and a positive charge density on the isotropic
side (I) occurs. Such a local charging is an inevitable consequence of the
non-vanishing Donnan potentials ψD shown in Fig. 3.2. The full elec-
trostatic potential profiles ψ(z) are depicted in Fig. 4.4. They increase
monotonically from the macroion-rich nematic phase N to the macroion-
poor isotropic phase I , maintaining the density gradients occurring in the
interface region. The potential difference ψ(∞)−ψ(−∞) equals the Don-
nan potential ψD (see Eq. (2.52) and Fig. 3.2).

The interfacial tensions γni of the interfaces shown in Fig. 4.1 de-
crease monotonically from γni = 108 nN · m−1 for QM = 0.25QS to
γni = 5 nN · m−1 forQM = QS, which are comparable to experimental find-
ings for gibbsite suspensions [vanderKooij2001]. The corresponding wet-
ting parameters ω = (4πγκ−2)−1 [Schick1990], where the bulk correlation
length has been approximated by the Debye length κ−1 (see Eq. (2.23)),
are in the range 6 . . . 340. If the values for γni are indeed so small, the free
isotropic-nematic interfaces are expected to be strongly affected by capil-
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Figure 4.4: Electrostatic potential profiles at the free isotropic-nematic inter-
faces shown in Figs. 4.1-4.3. The potential difference between the nematic and
the isotropic bulk is given by the Donnan potential ψD displayed in Fig. 3.2; it
is indicated for QM = QS.

lary wavelike fluctuations which are not captured by the present theory.

Calculating bulk phase diagrams and density profiles for effective
macroion charges |QM| ≥ 1.25|QS| along the lines described above lead
to unphysical results like, e.g., negative interfacial tensions. The reason
for this phenomenon is that the bulk phases determined in Ch. 3 are as-
sumed to be spatially homogeneous, whereas it has been shown in Sec. 2.3
that the equilibrium bulk states are spatially inhomogeneous for sufficiently
large effective macroion charges.

4.2 Isotropic-substrate interface

In this section, the wetting of a charged hard wall in contact with the
isotropic model fluid of platelike macroions and salt by a film of nematic
structure is discussed. For such wetting scenarios, the boundary conditions
imposed on the solutions of the Euler-Lagrange equations (Eq. (2.46))
require the isotropic bulk structure far from the wall. Isotropic-nematic
coexistence with such boundary conditions is denoted as ∆µ∗

CkM = 0−.
Since the macroion density in nematic wetting films is larger than in the
isotropic bulk (see Fig. 3.1), the scenario considered here is simply referred
to as wetting — in contrast to drying to be introduced in Sec. 4.3.
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Figure 4.5: Excess adsorption ΓM of platelike macroions along vertical ther-
modynamic paths in Fig. 3.3 characterised by fixed effective macroion charges
QM and parameterised by the chemical potential difference ∆µ∗

CkM < 0, which
measures the thermodynamic distance from isotropic-nematic bulk coexistence.
(a) The numerically determined excess adsorption ΓM remains finite upon
∆µ∗

CkM ↗ 0 for QM ≤ −0.01e (see also Fig. 4.6), whereas a divergence is
suggested for the effective macroion charges QM = 0 and QM = 0.1e, i.e., there
is complete wetting of the substratee by a nematic film. (b) The comparison of
the numerical solution for QM = 0 (dashed line) with the analytical asymptotic

power law behaviour ΓM ∼ (−∆µ∗

CkM )−
1
3 (dash-dotted line) (see main text)

indicates that the asymptotic regime is not yet reached within the numerically
accessible range of undersaturations.

Minimising the effective interface potential Ωeff(ζ) in Eq. (2.55) with re-
spect to the interface position ζ leads to the (equilibrium) excess adsorption

ΓM ∼ (−∆µ∗
CkM )−

1
3 ↗ ∞ for ∆µ∗

CkM ↗ 0 as long as a2 > 0 (see Sec. 2.5).
Evaluating the analytic expression for a2 along the isotropic-nematic co-
existence line, which depends only on bulk quantities (see Sec. 2.5), one
finds two wetting transition points — corresponding to W− and W+ in
Fig. 3.3 — with complete wetting, i.e., a2 > 0, in between.

Figure 4.5 displays the excess adsorption ΓM (Eq. (3.1)) as a function of
the chemical potential difference ∆µ∗

CkM < 0 for fixed effective macroion
charges QM . For ∆µ∗

CkM ↗ 0, isotropic-nematic bulk coexistence is ap-
proached along vertical thermodynamic paths in Fig. 3.3. In Fig. 4.5(a)
the curves for QM = 0 and QM = 0.1e suggest a divergence of ΓM in this
limit, i.e., complete wetting of the substrate by a nematic phase occurs for
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these effective macroion charges. On the other hand, for QM ≤ −0.01e
the excess adsorption remains finite, i.e., partial wetting occurs. The com-
plete wetting curves for QM = 0 and QM = 0.1e in Fig. 4.5(a) exhibit no
discontinuity in the shown range. Thus, the prewetting lines attached to
the first-order wetting transition points W− and W+ must be closer to the
isotropic-nematic coexistence line than the numerically accessible values of
∆µ∗

CkM .

Figure 4.5(b) compares the analytically obtained asymptotic behaviour
for the case QM = 0 (dash-dotted line) with the corresponding numerical
solution (dashed line). The differences between these curves indicate that
the ultimate asymptotic regime is not yet reached within the numerically
accessible range of undersaturations.

The order of the wetting transitions at state points W− and W+ in
Fig. 3.3 is determined by Ω̃eff(ζ) for ∆µ∗

CkM = 0 (see Sec. 2.5). Critical
wetting occurs for a2 = 0, provided a3 > 0; if a3 < 0 the wetting transi-
tion is of first order and does not necessarily occur at the point given by
a2 = 0 [Dietrich1988, Dietrich1991]. According to Sec. 2.5 the analytical
expression for a3 contains a contribution due to the wall-nematic excess
adsorption, which is influenced by the surface charge density σ. Therefore,
there is the possibility that the order of the wetting transition depends on
the surface charge density σ. For the values of σ used in the present study,
however, a3 < 0 is found throughout, i.e., the wetting transitions at W−

and W+ are of first order.

Whereas the asymptotical analysis above is reliable with respect to the
order of the wetting transitions at W− and W+, this is not the case
concerning the location of W− and W+, because the wetting transitions
are of first order [Dietrich1988]. Therefore, numerical methods have to be
applied.

In Fig. 4.6 the numerically determined excess adsorption at coexistence
is shown as a function of the surface charge density σ. Without loss of
generality, only curves for negative effective macroion charges QM are dis-
played: since the density functional described in Ch. 2 is invariant under
the simultaneous inversion of the signs of all charges (QM , QS , and σ),
the curve for QM = QM is mapped onto the curve for QM = −QM by
reflecting it at the axis σ = 0.

As expected, the excess adsorption ΓM of the macroions increases with
increasing surface charge density σ for fixed effective macroion charge
QM < 0, because the surface becomes increasingly attractive (or decreas-
ingly repulsive) for the macroions. However, for a fixed surface charge
density σ and sufficiently large effective macroion charges |QM |, ΓM de-
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Figure 4.6: Excess adsorption ΓM of platelike macroions at isotropic-nematic
coexistence with isotropic boundary conditions in the bulk (∆µ∗

CkM = 0−) (see

Fig. 3.3) in terms of the surface charge density σ. Curves for QM = QM and
QM = −QM can be mapped upon each other by reflecting them at the axis
σ = 0. For fixed effective macroion charge, the excess adsorption increases with
increasing surface charge density. For fixed surface charge density, the excess
adsorption decreases upon increasing |QM |, even for attractive walls.

creases upon increasing |QM |, irrespective of the sign of QM , i.e., even
for σQM < 0, for which the wall attracts macroions. This depression
of the macroion number density near the substrate occurs because the
macroion-macroion repulsion dominates the macroion-substrate interac-
tions (see Ch. 3.2). From Fig. 4.6 one can indeed infer that there is partial
wetting for sufficiently large effective macroion charges |QM |.

The variation of the macroion excess adsorption ΓM upon QM ↗ 0 along
isotropic-nematic coexistence for a surface charge density σ = −0.4e/D2

M

is shown in Fig. 4.7. ΓM is finite for −QM ≥ 2×10−3e. On the other hand,
QM = 0 corresponds to hard colloidal platelets for which the occurrence of
complete wetting is well known [Harnau2002/3]. Hence the lower wetting

transition point W− in Fig. 3.3 is located within the range QW−

M ∈ [−2×
10−3e, 0]. In order to locate the upper wetting transition point W+ one
may use the fact that the true wetting transitions points W± can only
be located within the interval QM ∈ [−Q∗

M , Q∗
M ], Q∗

M = 0.1317165(5)e,
where ±Q∗

M are the locations of the wetting transition points inferred
from the asymptotic analysis of Sec. 2.5. This statement follows from the
observation that |QM | > Q∗

M leads to a2 < 0 which renders ζ = ∞ as a
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Figure 4.7: Excess adsorption ΓM of platelike macroions at isotropic-nematic
coexistence with isotropic boundary conditions in the bulk (∆µ∗

CkM = 0−) for a
surface charge density σ = −0.4e/D2

M (see Fig. 3.3) as function of the effective
macroion charge QM . It is finite within the range −QM ≥ 2 × 10−3e which
implies the location of the lower wetting transition point W− (Fig. 3.3) to be
within the range QM ∈ [−2 × 10−3e, 0].
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Figure 4.8: Macroion density profiles %M of a mixture of platelike macroions and
salt at isotropic-nematic coexistence with isotropic boundary conditions in the
bulk (∆µ∗

CkM = 0−) for a surface charge density σ = −0.4e/D2
M (see Fig. 3.3).

Upon decreasing |QM |, i.e., upon approaching the wetting transition point W−

in Fig. 3.3, a nematiclike film forms at the substrate.



76 Free and fluid-substrate interfaces

local maximum of Ωeff(ζ) (see Sec. 2.5). Together with the numerically
found complete wetting for QM = 0.1e one concludes that the location
of the upper wetting transition point W+ lies within the range QW+

M ∈
[0.1e, 0.132e].

Finally, Fig. 4.8 displays the increase of the nematic film thicknesses
upon increasing QM < 0 in terms of the macroion density profiles %M .

4.3 Nematic-substrate interface

In this section the fluid composed of platelike macroions and salt in contact
with a charged hard substrate for nematic boundary conditions at large
distances from the wall is studied. According to the free isotropic-nematic
interface (see Sec. 4.1), the director of the nematic bulk phase, i.e., the
preferred macroion orientation, is chosen to be parallel to the interface
normal. Isotropic-nematic coexistence with these nematic boundary con-
ditions in the bulk will be denoted as ∆µ∗

CkM = 0+. Films forming in
between the substrate and the nematic bulk will be isotropic. Since the
macroion density of an isotropic film is smaller than within the nematic
bulk (see Fig. 3.1), this scenario is called drying .

An asymptotic analysis of the effective interface potential for drying
along the lines of Sec. 2.5 predicts two first-order drying transition points
D− and D+. Due to the first-order character of the drying transitions, the
loci of D− and D+ have been determined numerically (see Sec. 2.5). Note
that the upper drying transition point D+ is not visible in Fig. 3.3 because
it is located at QD+

M > e. However, for sufficiently small surface charge
densities |σ| both drying transition points have been found within the
interval QM ∈ [−e, e]. In contrast to the wetting scenario in Sec. 4.2, the
discontinuity of the excess adsorption at the drying transitions could have
been detected numerically. Moreover, the locations of the predrying lines
in the phase diagrams (e.g., the dashed line in Fig. 3.3) can be numerically
determined.

Figure 4.9 displays the macroion excess adsorption ΓM close to a charged
hard wall with surface charge density σ = −0.4e/D2

M as a function of the

effective macroion charge QM ≤ 0. For −0.35e = QD−

M < QM ≤ 0, the
excess adsorption is finite and bounded from below. It jumps to −∞
at QM = QD−

M . The wall-nematic interfacial tensions of the numerical
solutions with finite excess adsorption are smaller than the sums of the
corresponding wall-isotropic and the isotropic-nematic interfacial tensions.
Therefore, these numerical solutions indeed describe equilibrium structures
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Figure 4.9: Excess adsorption ΓM of platelike macroions at isotropic-nematic
coexistence with nematic boundary conditions (∆µ∗

CkM = 0+) for surface charge
density σ = −0.4e/D2

M (see Fig. 3.3) in terms of the effective macroion charge

QM . The excess adsorption is finite and bounded from below for QM > QD−

M =

−0.35e, whereas at QM = QD−

M it jumps to −∞. It has been verified by a
comparison of interfacial tensions that the numerical solutions with finite ex-
cess adsorption correspond to equilibrium structures and not only to metastable

states. The discontinuity of ΓM at QD−

M identifies state point D− in Fig. 3.3 as
a first-order drying transition point. The latter conclusion can also be drawn
from an asymptotic analysis of the effective interface potential (see main text).

and not only metastable states. The discontinuity of ΓM corresponds to
the occurrence of a first-order drying transition at QD−

M , which is displayed
as state point D− in Fig. 3.3.

A first-order drying transition is accompanied by a predrying line in
the surface phase diagram (see the dashed line in Fig. 3.3), which con-
nects the drying transition point D− with a critical point C−

D , located at

(Q
C

−

D

M = −0.87e,∆µ
∗C

−

D

CkM = 0.049). The predrying line may be parame-

terised in terms of, e.g., the effective macroion charge: ∆µ∗PD
CkM (QM ) for

QM ∈ [Q
C

−

D

M , QD−

M ) denotes the chemical potential difference ∆µ∗
CkM for

which the excess adsorption ΓM as a function of QM and ∆µ∗
CkM exhibits

a finite discontinuity ∆ΓM . Figure 4.10 displays this discontinuity as a
function of the effective macroion charge QM (solid line). It vanishes ac-

cording to a power law ∆ΓM ∼ (QM −Q
C

−

D

M )β with the mean field critical
exponent β = 1

2 (dashed line). Beyond mean field theory, one expects an
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Figure 4.10: Excess adsorption discontinuity ∆ΓM (solid line) of a mixture of
platelike macroions and salt at the predrying line parameterised by the effective
macroion charge QM for a surface charge density σ = −0.4e/D2

M (see Fig. 3.3).

The excess adsorption difference vanishes for QM ↘ Q
C

−

D
M = −0.87e according to

a power law ∆ΓM ∼ (QM −Q
C

−

D
M )β with the mean field critical exponent β = 1

2

(dashed line).

exponent β = 1
8 , corresponding to the two-dimensional Ising universality

class.

Figure 4.11 depicts the formation of an isotropic film upon approach-
ing isotropic-nematic coexistence for ∆µ∗

CkM > 0 with effective macroion
charge QM = −0.6e and surface charge density σ = −0.4e/D2

M . A fi-
nite discontinuity of the film thickness upon crossing the predrying line at
∆µ∗

CkM ≈ 0.03 can be inferred.

Figure 4.12 displays the salt ion density profile %S and the counter ion
density profile %C for the case of effective macroion charge QM = −0.1e
and surface charge density σ = −0.4e/D2

M at isotropic-nematic bulk co-
existence with nematic boundary conditions in the bulk (∆µ∗

CkM = 0+).
The positive counter ions C are attracted by and the negative salt ions S
are repelled from the negatively charged wall. This behaviour is found to
be qualitatively independent of the chemical potential difference ∆µ∗

CkM

and the boundary conditions (isotropic or nematic) in the bulk. Attraction
and repulsion are reversed upon reversing the sign of σ. As discussed in
Sec. 3.2, the number densities close to the charged hard wall follow from
a balance between entropic contributions due to the hard cores as well as



Free and fluid-substrate interfaces 79

0.01

0.02

0.04

∆µ∗

CkM
= 0.06

QM = −0.6e, σ = −0.4e/D2

M

z/DM

%
M

D
2 M

L

1086420

0.1

0.09

0.08

0.07

0.06

0.05

Figure 4.11: Macroion density profiles %M of a mixture of platelike macroions
with QM = −0.6e and salt in contact with a substrate of charge density σ =
−0.4e/D2

M upon crossing the predrying line at ∆µ∗

CkM ≈ 0.03 (Fig. 3.3). At
the predrying line, a quasi-isotropic film with finite thickness appears at the
substrate.
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Figure 4.12: Salt ion (S) and counter ion (C) density profile in a mixture
of platelike macroions with QM = −0.1e and salt at isotropic-nematic bulk
coexistence with nematic boundary conditions in the bulk (∆µ∗

CkM = 0+) in
contact with a charged substrate at z ≤ 0 with surface charge density σ =
−0.4e/D2

M (see Fig. 3.3).
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energetic contributions due to the Coulomb interaction. Hence it is not
necessarily the ion species of maximal charge and minimal size which ac-
cumulates at the substrate (compare the first peaks in Figs. 4.8, 4.11, and
4.12).

The rather strong variation of the salt and counter ion density profiles
close to a strongly charged wall reveals limitations of the approximation
of a fixed effective macroion charge QM within the current model because
actually macroion charges adapt according to the local electrolytic envi-
ronment by means of charge regulation mechanisms. Therefore, macroion
charges close to and far from a charged wall are expected to differ con-
siderably. However, no charge regulation model [Bolt1982, Chan1975,
Davis1978, Healy1978, Hiemstra1987, Hiemstra1989, vanRiemsdijk1986] is
included into the formalism described in Ch. 2 in order to gain much needed
technical advantages.

4.4 Electrostatic surface potential

Whereas the two preceding sections have been focused on the fluid struc-
ture close to charged substrats, this section addresses the electrostatic
properties of the substrate due to the contact with the fluid of charged
particles.

The electrostatic potential profile difference ∆ψ(z) := ψ(z) − ψ(∞)
(see Eq. (2.42)) relative to the electrostatic bulk potential ψ(∞) for
QM = −0.5e at isotropic-nematic bulk coexistence with isotropic bound-
ary conditions in the bulk (∆µ∗

CkM = 0−) is shown in Fig. 4.13. For
large distances z from the substrate, ∆ψ(z) decays proportional to z−3

(see Sec. 2.5). Upon increasing the surface charge density σ a crossover
from monotonic to non-monotonic electrostatic potential profiles occurs at
σ = 0. According to Eq. (2.43), the slope of the electrostatic potential dif-
ference at the wall is given by the surface charge density: ∆ψ′(0+) = −8σ.
On the other hand, an electrical double layer is formed with a negatively
charged layer on the nematic side and a positively charged layer on the
isotropic side if a quasi-free interface between the isotropic bulk and a ne-
matic film of finite thickness is present (see Sec. 4.1). Thus ∆ψ approaches
its bulk value 0 from below, i.e., ∆ψ′(z) > 0 for large distances z from the
substrate. Therefore, for σ > 0, i.e., ∆ψ′(0+) < 0, ∆ψ(z) is minimal at
some finite distance 0 < z0 < ∞, whereas for σ < 0, i.e., ∆ψ′(0+) > 0,
∆ψ attains its minimal value at z = 0.

In the aforementioned case, a quasi-free isotropic-nematic interface is
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Figure 4.13: Electrostatic potential difference profiles ∆ψ relative to the electro-
static bulk potential in a mixture of platelike macroions with QM = −0.5e and
salt at isotropic-nematic bulk coexistence with isotropic boundary conditions in
the bulk (∆µ∗

CkM = 0−) (see Fig. 3.3). The slope of ∆ψ at the substrate (z = 0)
is governed by the surface charge density σ whereas the bulk value ∆ψ(∞) = 0
is approached proportional to z−3 from below. Hence upon increasing the sur-
face charge, a crossover from monotonic to non-monotonic electrostatic potential
profiles occurs.

formed at isotropic-nematic coexistence with isotropic boundary condi-
tions in the bulk. Quasi-free isotropic-nematic interfaces also occur for
nematic boundary conditions in the bulk close to complete drying. In the
latter case, the electrostatic potential decreases upon approaching the bulk
because QM < 0. Moreover, it is found that the electrostatic potential is
a monotonic function of the distance from the substrate if no isotropic-
nematic interface form, e.g., for nematic boundary conditions in the bulk
and QM = 0.

Since the spatial derivative of the electrostatic potential is proportional
to the electric field, the occurrence of non-monotonic electrostatic potential
profiles is equivalent to the phenomenon of charge inversion, i.e., the local
inversion of the direction of the electric field with respect to the surface
field. Charge inversion [Levin2002] is possible within the present formalism
as correlations beyond the random phase approximation (RPA) are taken
into account (see Sec. 2.3).

Figure 4.14 displays the electrostatic substrate potential ∆ψ(0) as a
function of the surface charge density σ at isotropic-nematic coexistence



82 Free and fluid-substrate interfaces

−0.5
−0.3
−0.2

QM/e = −0.1

∆µ∗

CkM
= 0−

σD2

M
/e

∆
ψ

(0
)/

m
V

0.40.20-0.2-0.4

8

4

0

-4

-8

-12

Figure 4.14: Electrostatic surface potential ∆ψ(0) = ψ(0)−ψ(∞) as a function
of the surface charge density σ in a mixture of platelike macroions and salt
at isotropic-nematic coexistence with isotropic boundary conditions in the bulk
(∆µ∗

CkM = 0−) (see Fig. 3.3). All curves are monotonically increasing but they
do not pass through the origin (�) at (σ = 0,∆ψ(0) = 0) if QM 6= 0. Thus,
the point of zero (surface) charge (σ = 0) does not coincide with the isoelectric
point (∆ψ(0) = 0). Note that curves for QM = QM and QM = −QM can be
mapped upon each other by reflecting them at the origin.

with isotropic boundary conditions in the bulk (∆µ∗
CkM = 0−). Curves for

QM = QM and QM = −QM can be mapped upon each other by reflect-
ing them at the origin (�). As expected, the surface potential increases
monotonically with the surface charge. However, the points of zero charge
(σ = 0) do not coincide with the isoelectric points (∆ψ(0) = 0), i.e.,
the curves in Fig. 4.14 do not pass through the origin (�), in contrast to
Poisson-Boltzmann theories [Grahame1947]. This behaviour arises from
the hard-core interaction of the particles [Messina2002/3], which leads to
a depletion attraction of the larger macroions towards the wall on purely
entropic grounds. Therefore, for a hard and uncharged wall (σ = 0), nega-
tively charged macroions (QM < 0) are accumulated close to the substrate
leading to a negative electrostatic surface potential (∆ψ(0) < 0).

It has been checked that the sign of the electrostatic substrate potential
∆ψ(0) for vanishing surface charge density σ = 0 depends only on the sign
of the effective macroion charge and not on the boundary conditions in the
bulk or the chemical potential difference ∆µ∗

CkM .



Chapter 5

Conclusions and outlook

In this work a density functional theory of fluids of charged platelike col-
loids has been developed (Ch. 2) and intensively investigated with respect
to spatially homogeneous (Ch. 3) as well as inhomogeneous (Ch. 4) sys-
tems.

Within this density functional theory bulk fluids, free interfaces, and
charged substrates are described on the same footing. On the one hand,
bulk structures are used as boundary conditions for interfacial profiles.
Hence in order to achieve numerical consistency a unified description is
required. On the other hand, the bulk description within the theory of the
present work, which proved to be in good agreement with intuitive expec-
tations (Sec. 3.1), compared with other bulk theories of charged platelike
colloids may serve to assess the reliability and degree of sophistication of
the results gained within this study. Additional advantages of the present
approach are analytically accessible asymptotic expressions for the effective
interface potential, which are required for the model studied here because
of otherwise inconclusive numerical data.

Bulk and surface phase diagrams of fluids of charged platelike col-
loids have been analysed by a combination of analytical and numerical
tools. Bulk phase transitions have been determined by numerically solv-
ing the spatially homogeneous Euler-Lagrange equations. The resulting
bulk structures served as boundary conditions to numerical solutions of
spatially inhomogeneous Euler-Lagrange equations. The inhomogeneous
solutions have been used to calculate the asymptotic form of the effective
interface potential which have led to analytical predictions of first-order
surface phase transitions such as wetting and drying which imply the exis-
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tence of corresponding prewetting and predrying lines. Whereas the order
of the surface phase transitions can be inferred from the asymptotic ef-
fective interface potential, the location of the phase transitions had to
be determined numerically. This combination of numerical and analyt-
ical methods turned out to be very effective. Moreover, it is generally
applicable and not limited to the present model.

The analyses in Chs. 3 and 4 led to numerous qualitative results concern-
ing, e.g., the location and width of the isotropic-nematic coexistence region,
the occurrence of a Donnan effect, the width and interfacial tension of free
interfaces, the formation of electrical double layers at free interfaces, the
existence of first-order surface phase transitions, the asymptotic growth
behaviour of complete wetting and drying films, and the occurrence of
charge inversion. These phenomena are expected to be directly accessible
in experiments if stable suspensions of charged platelike colloids close to
the point of zero effective colloid charge become available.

A theoretically interesting finding within the formalism of this work is
an effective interface potential of the same asymptotic form as for non-
retarded isotropic dispersion forces. This is a remarkable result as the
present model does not include dispersion forces. It is ultimately generated
by the application of a pair distribution function which agrees with the
asymptotically correct Debye-Hückel form. An interesting future problem
is the inclusion of dispersion forces into the model introduced within this
work. However, only the dynamic components contribute to the leading
asymptotic terms of the effective interface potential because the static
van der Waals interactions decay exponentially [Mahanty1976, Russel1989,
Netz2001/1].

Within the model described in Ch. 2 the particle orientations are re-
stricted to three mutually perpendicular directions (Zwanzig model) and
the values of particle charges, in particular those of the macroions, are kept
fixed and are concentrated in the particle centres. These simplifications
are introduced in order to gain technical advantages, and the results are
expect not to change qualitatively upon relaxing these approximate con-
straints. Moreover, the present model furnishes only a qualitative approach
because the relation between actual macroion charges and the model pa-
rameter describing the effective macroion charge remains undetermined.
Deriving such a relation is an important problem which deserves to be
addressed in the future.

A further challenge related to the choice of the pair distribution func-
tions in Ch. 2 appears if, as within the present study, the effective shape
of the macroions becomes more and more isotropic upon increasing the
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macroion charge: In this case, any anisotropy of the interactions is due
to the hard cores only and the two-phase region between isotropic and
anisotropic phases is shifted to unrealistically large packing fractions. In
order to cure this deficiency of the present model, the pair distribution
functions must be chosen properly to yield anisotropic effective macroion
shapes up to large macroion charges. Unfortunately, deriving analytical
expressions for pair distribution functions of platelike particles with inho-
mogeneous charge distributions is still a big challenge. One promising idea
could be to approximate the pair distribution function by the leading far-
field contribution of the effective pair-potential [Trizac2002]. Within that
approach, the effective interactions between two particles can be expressed
as the product of the well-known isotropic Debye-Hückel potential and
two one-particle anisotropy functions [Trizac2002, Agra2004]. According
to these anisotropy functions, the effective shapes of platelike macroions
become increasingly anisotropic with increasing ionic strength and they
remain anisotropic for large macroion charges. However, within the range
of parameters used in the present work, the anisotropy functions yield val-
ues close to unity for all directions. Therefore it can be expected that the
distribution of the charges on the macroions plays an important role for
high charges but not for small charges.

In conclusion, the density functional theory developed in this work can
be regarded as a first step to qualitatively understand free interfaces and
charged substrates in suspensions of charged platelike colloids. It leads to
various definite qualitative predictions for the bulk and surface phase be-
haviour, the structure of free interfaces, the wetting and drying behaviour
of charged substrates, as well as the electrostatics within these complex
fluids which are expected to be readily testable in experiments if appropri-
ate model systems become available. Theoretical questions raised by the
results of this work about the relation between actual and model charges,
the asymptotic form of pair distribution functions for charged platelike
particles, or the generality of the asymptotic form of the effective inter-
face potential of electrolyte solutions, which will be addressed in future
work, are expected to further improve the understanding of the important
material class of fluids of charged platelike colloids.
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9, 457 (1910).

[Gradshteyn1980] I.S. Gradshteyn and I.M. Ryzhik, Table of inte-
grals, series, and products (Academic Press, New
York, 1980).

[Grahame1947] D.C. Grahame, The electrical double layer and the
theory of electrocapillarity, Chem. Rev. 41, 441
(1947).

[Grier2000] D.G. Grier, When like charges attract: interactions
and dynamics in charge-stabilized colloidal suspen-
sions, J. Phys.: Condens. Matter 12, A85 (2000).



Bibliography 97

[Grier2004] D.G. Grier and Y. Han, Anomalous interactions
in confined charge-stabilized colloid, J. Phys.: Con-
dens. Matter 16, S4145 (2004).

[Groh1998] B. Groh, R. Evans, and S. Dietrich, Liquid-vapor
interface of an ionic fluid, Phys. Rev. E 57, 6944
(1998).

[Gruber1981] Ch. Gruber, J.L. Lebowitz, and Ph.A. Martin,
Sum rules for inhomogeneous Coulomb systems, J.
Chem. Phys. 75, 944 (1981).

[Han2003] Y. Han and D.G. Grier, Confinement-Induced Col-
loidal Attractions in Equilibrium, Phys. Rev. Lett.
91, 038302 (2003).

[Hansen1986] J.-P. Hansen and I.R. McDonald, Theory of simple
liquids (Academic Press, Amsterdam 1986).

[Hansen2000] J.-P. Hansen and H. Löwen, Effective Interactions
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McGillivray, and M. Lösche, Charge Inversion
at Minute Electrolyte Concentrations, Phys. Rev.
Lett. 97, 046102 (2006).

[Pitzer1985] K.S. Pitzer, M.C.P. de Lima, and D.R. Schreiber,
Critical Point and Phase Separation for an Ionic
System, J. Phys. Chem. 89, 1854 (1985).

[Plischke1988] M. Plischke and D. Henderson, Pair correlation
functions and density profiles in the primitive
model of the electric double layer, J. Chem. Phys.
88, 2712 (1988).

[Plischke1989] M. Plischke and D. Henderson, The primitive
model of the electric double layer: Nonsymmetric
electrolytes, J. Chem. Phys. 90, 5738 (1989).

[Plischke1994] M. Plischke and B. Bergersen, Equilibrium statis-
tical physics, (World Scientific, Singapore, 1994).

[Poirier1961] J.C. Poirier and J.H. DeLap, On the Theory of Ion
Pairs in Solutions, J. Chem. Phys. 35, 213 (1961).

[Porion2001] P. Porion, M. Al Mukhtar, S. Meyer, A.M. Faugère,
J.R.C. van der Maarel, and A. Delville, Nematic
Ordering of Suspesions of Charged Anisotropic
Colloids Detected by 23Na Nuclear Magnetic Reso-
nance, J. Phys. Chem. B 105, 10505 (2001).

[Quilliet2001] C. Quilliet and B. Berge, Electrowetting: a recent
outbreak, Curr. Opin. Colloid Interface Sci. 6, 34
(2001).



112 Bibliography

[Rahnemaie2006] R. Rahnemaie, T. Hiemstra, and W.H. van Riems-
dijk, A new surface structural approach to ion ad-
sorption: Tracing the location of electrolyte ions,
J. Colloid Interface Sci. 293, 312 (2006).

[Raimbault2001] J.-L. Raimbault and J.-M. Caillol, Sine-Gordon
Theory for the Equation of State of Classical Hard-
Core Coulomb Systems. II. High-Temperature Ex-
pansion, J. Stat. Phys. 103, 777 (2001).

[Rand1980] B. Rand, E. Pekenć, J.W. Goodwin, and R.W.
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