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Max-Planck-Institut für Festkörperforschung

Stuttgart 2006





A mathematician may say anything he pleases,
but a physicist must be at least partially sane.

J. Willard Gibbs

3



Contents

Symbols, Constants, and Abbreviations 7

1 Introduction 11

2 Two-dimensional electron system in a magnetic field 15

2.1 Two-dimensional electron system . . . . . . . . . . . . . . . . . . . . 15

2.2 Classical magnetotransport . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The integer quantum Hall effect . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Landau level quantization . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Transport in high magnetic field . . . . . . . . . . . . . . . . . 19

2.3.3 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Percolation picture . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The fractional quantum Hall effect . . . . . . . . . . . . . . . . . . . 24

2.4.1 Laughlin’s trial wavefunction . . . . . . . . . . . . . . . . . . 25

2.4.2 Composite Fermions (CF) picture . . . . . . . . . . . . . . . . 27

3 Quantum Hall ferromagnetism 29

3.1 Exotic spin order at ν = 1 . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 QHF: theoretical pictures . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 QHF at fractional filling factors . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The spin in the CF picture . . . . . . . . . . . . . . . . . . . . 38

3.4 The spin phase transition at ν = 2/3 . . . . . . . . . . . . . . . . . . 41

3.4.1 Electron spin polarization at ν = 2
3

. . . . . . . . . . . . . . . 45

4 Experimental techniques and setup 49

4.1 Surface acoustic waves on piezoelectric materials . . . . . . . . . . . . 49

4.2 Magneto-acoustic interactions mechanism . . . . . . . . . . . . . . . . 51

4.2.1 Acousto-electric effect . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4



5 Results and discussion 73
5.1 About the devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Quasi-DC transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Lack of reproducibility and exchange effects . . . . . . . . . . 76

5.3 Time dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Transport in small Hall bars . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 SAW measurement: small current regime . . . . . . . . . . . . . . . . 86

5.6 SAW measurement: high current regime . . . . . . . . . . . . . . . . 90

5.7 Acousto-electric measurements . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Domain orientation at the transition . . . . . . . . . . . . . . . . . . 94

5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusions 101

A Sample structure 105
A.1 Wafer 81644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Wafer 8813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 107

Deutsche Zusammenfassung 120

Acknowledgments 123

Curriculum Vitae 124

5



6



Symbols, Constants, and Abbreviations

Symbols

A Vector potential.

b Fit parameter of integer number (only in Sec. 2.4).

B, Magnetic field vector.

E Electric field vector.

Ec Coulomb energy.

EF Fermi energy.

Ez Zeeman energy.

f Frequency or generic rational number (only in Sec. 2.4).

H Hamiltonian.

HN Hermite polynomials.

I, I Current.

J Current density vector.

k 2
eff Electromechanical coupling coefficent.

ki Momentum in the i direction or wavevector.

lB Magnetic length.

L Length.

m Odd integer number.

m∗ Electron effective mass.

n, ne Electron density.

N, N Landau level index or number of finger pair in an IDT.

p Generic integer number.

p Momentum operator.

P Electron polarization.

r Position vector.

Rii Resistance.

S Electron spin operator.

S Electron spin or strain.



Symbols, Constants, and Abbreviations

t Time.

T, T Temperature or stress.

v Velocity vector.

Vi Electrical potential.

VH, VH Hall voltage.

vSAW Surface acoustic wave velocity.

x, y, z , x, y, z Position coordinates.

W Width.

Λ Attenuation.

ε Electrical permittivity.

λ Wavelength.

∆E Energy spacing.

∆CF Composite fermion cyclotron energy.

∆Esubband Subband energy spacing.

τ Relaxation time.

ωc Cyclotron frequency.

ω∗
c Composite fermion cyclotron frequency.

ωcr Conductivity relaxation frequency.

µ Mobility.

µi Chemical potential.

σ Conductivity.

σ̄ Conductivity tensor.

ΨN Wavefunction.

φN One-dimensional harmonic oscillator wavefunction.

εN Energy of the Nth Landau level.

ν Filling factor.

νCF Composite fermion filling factor.

ρ Resistivity or material density.

ρxx Longitudinal resistivity.

ρxy Transversal (Hall) resistivity.

Constants

e = −1.6021917 · 10−19 C Electron charge.
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Symbols, Constants, and Abbreviations

e2/h = 1/RK = 0.3874045 · 10−6 Ω−1 Conductance quantum.

Φ0 = h/e = 2.41797 Tm2 Magnetic flux quantum.

gS = 1, 2 Spin degeneracy.

g∗ = −0.44 Effective Landé factor of electrons in bulk GaAs.

h = 6.626196 · 10−34 Js Planck constant.

~ = h/2π Reduced Planck constant.

kB = 1.380650 · 10−23JK−1 Boltzmann constant.

m0 = 9.109558 · 10−31 kg Electron mass.

m∗ = 0.067m0 Effective electron mass in bulk GaAs.

µB = 9.274096 JT−1 Bohr magneton.

RK = 25812.807 Ω Von Klitzing constant.

Abbreviations

2DEG Two-dimensional electron gas.

2DES Two-dimensional electron system.

a.u. Arbitrary units.

CF Composite Fermion.

DC Direct current.

DOS Density of State.

ESR Electron Spin Resonance.

FQHE Fractional Quantum Hall Effect.

HLR Huge longitudinal resistance.

HF High Frequency.

IDT Interdigital transducer.

IQHE Integer Quantum Hall Effect.

LL Landau Level.

LLL Lowest Landau Level.

MBE Molecular Beam Epitaxy.

NMR Nuclear Magnetic Resonance.

QHE Quantum Hall Effect.

QHF Quantum Hall Ferromagnetism, Quantum Hall Ferromagnet.

QW Quantum Well.

RDNMR Resistively detected nuclear magnetic resonance.
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Symbols, Constants, and Abbreviations

SAW Surface acoustic wave.

SdH Shubnikov-de Haas.

SO Spin-orbit.
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1 Introduction

The goal of this work is to investigate spin phenomena which occur in two-dimensional

electron systems (2DESs) at high magnetic fields and low temperatures.

In the integer quantum Hall effect the electrons occupy an integer number of highly

degenerate energy levels separated by the cyclotron energy referred to as Landau

levels (Sec. 2.3.1). Due to the electron spin, each of these levels splits into two,

separated by the Zeeman energy. When two of these energy levels are degenerate

and the number of electrons is not sufficient to fill all of them, two different ground

states with different electron polarization can coexist. The system is characterized

by ferromagnetic ordering and it is referred to as a quantum Hall ferromagnet. This

phenomenon can be explained by exchange energy gain in the ferromagnetic state

and Hartree-Fock models are able to describe the physics involved.

The study of a realistic quasi-2DES formed at the interfaces in semiconductor het-

erostructures leads to effects that are not included in the free-particle picture de-

scribed above. If electron-electron interaction is considered, new ground states ap-

pear with the electrons occupying certain fractions of the available states. This

phenomenon is called fractional quantum Hall effect (Sec. 2.4). At the end of the

previous millennium, new experimental works observed phenomena reminiscent of

quantum Hall ferromagnetism also in the fractional quantum Hall effect regime, be-

ing most pronounced at filling factor 2
3

and 2
5
. In this situation the spin-ordered

states become highly correlated and the Hartree-Fock approximation is no longer

valid. Transitions between ground states of different spin polarization become pos-

sible. Experimental works have provided evidence that these phenomena are closely

related to Ising (spin-lattice) ferromagnets. This points to the possibility of for-

mation of domains with ground states characterized by different spin polarization.

However, observations without analogy to the usual Ising systems have also been

reported.

This picture is even more complicated when the role of nuclei is included. At filling

factor 2
3

many experimental results point out that the electron dynamics is strongly

correlated to the one of the host nuclei.
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1 Introduction

The objective of the present work is to study the ground state and the low-lying

excited states at filling factor 2
3
. In order to do this we employ two different measure-

ment techniques. We study the transport properties of a two dimensional electron

system with surface acoustic waves and compare them with data obtained from

standard lock-in techniques.

Surface acoustic waves are elastic modes propagating on the surface of the crystal.

In GaAs they are accompanied by deformation and an oscillating electric field. The

latter can interact with the mobile carrier in the two-dimensional electron system

and give rise to attenuation and velocity shift of the acoustic wave. Measuring these

effects gives access to the electron conductivity. An important aspect is that the

conductivity is probed at the frequency and the wavelength of the acoustic mode, a

parameter that is chosen during the design of the device and can be optimized up

to the GHz range.

The use of surface acoustic waves opens up the possibility to study the spin phase

transition at 2
3

in a different and complementary way with respect to the quasi-DC

technique, giving a more complete picture of the phenomenon.

This thesis is organized as follows:

• Chapter 2 will describe the basic properties of a two-dimensional electron

system in a magnetic field. The concept of Landau level quantization is in-

troduced together with models that allow the understanding of the integer

quantum Hall effect. The fractional quantum Hall effect is also presented. It

will be treated using both the Laughlin’s trial-wavefunction framework and

the composite fermion picture.

• In Chapter 3 we introduce the concept of quantum Hall ferromagnetism. The

theoretical pictures put forward to understand this phenomenon will be intro-

duced, together with the experimental evidence of a spin phase transition at

fractional filling factors. In the last part of the chapter we will concentrate on

the spin phase transition at filling factor 2
3
.

• Chapter 4 will describe in more detail the measurement techniques and the

interaction mechanism between a surface acoustic wave and a two-dimensional

electron system. Part of our work has been the design and realization of a

setup that allows surface acoustic wave measurements. Problems and obstacles

12



encountered during this work will be discussed, together with the solution

adopted to solve them.

• Chapter 5 is the main part of this work. The results of the study of the spin

phase transition at ν = 2
3

will be presented. Measurements obtained at low and

high frequency will be compared. We will also comment on our experimental

findings and try to suggest the physics that these imply.

• Finally, we will summarize our results in the Conclusion chapter.

After reading the introduction I would like to wish the reader enjoyment reading

this thesis. If you are a newcomer in the field of fractional quantum Hall systems,

may this work help you to appreciate how interesting and original the playgrounds

in the lowest Landau level are. And if you are an expert in this field, I hope this

work still brings something you have not known before.
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2 Two-dimensional electron system in a magnetic

field

In this chapter we will describe the main properties of a two-dimensional electron

system (2DES) in a magnetic field.

In Sec. 2.1 we mention what we mean by 2D and how it is possible to create such a

system. In Sec.2.2 we will describe the classical motion of an electron in a magnetic

field. The latter is treated quantum-mechanically in Sec. 2.3. Using the concepts of

Landau level quantization and level-broadening by disorder (Sec. 2.3.1) we explain

the experimental finding known as integer quantum Hall effect (Sec. 2.3.2). For this

purpose we introduce two intuitive pictures involving edge states (Sec. 2.3.3) and

the percolation picture (Sec. 2.3.4).

The fractional quantum Hall effect is presented in Sec. 2.4. To understand this

many-body phenomenon we introduce the Laughlin’s picture in Sec. 2.4.1 and the

composite fermion picture in Sec. 2.4.2 respectively

2.1 Two-dimensional electron system

The major impetus in the studies of the quantum Hall effect (QHE) is due to the

experimental realization of almost ideal two-dimensional electron systems (2DESs).

The electrons are free to move in only two spatial dimensions, while they have

quantized energy levels in the third dimension1. Electron layers have been created

in many different ways: on the surface of liquid helium, in a single layer of graphene,

in Metal-Oxide-Semiconductor Field Effect Transistors and in semiconductor het-

erostructures.

In the latter case the 2DES is formed at the interface between two semiconductors

with different band gaps. One of the most common systems is the GaAs/AlxGa1−xAs

(0 < x < 1) heterostructure. The lattice constants for the two materials are almost

identical so that the interface is nearly free from disorder. Moreover, using the

1In reality, the wave functions have a finite spatial extension also in the third dimension.
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2 Two-dimensional electron system in a magnetic field

Figure 2.1: The conduction band of an AlGaAs/GaAs heterostructure (a) and a
quantum well (b) are schematically shown along the grown direction z. A 2DES
forms in the GaAs layer with quantized energies in the z-direction. At low temper-
atures (kBT << ∆Esubband) only the lowest subband is populated. The electrons,
supplied from a Si-donor layer, fill the 2DES up to the Fermi energy EF.

molecular beam epitaxy (MBE) growth technique, it is possible to have precise con-

trol over the spatial dimensions of the different layers. Since the AlxGa1−xAs band

gap is wider than that of GaAs, the mobile carriers from the doped AlGaAs alloy

move across the interface to the low-lying conduction band of the GaAs. Due to

the electric field caused by this charge transfer, the energy bands at the interface

are bent and (in first approximation) a triangular potential is formed, as shown in

Fig. 2.1a. At low temperature, i.e. kBT < ∆Esubband (subband energy spacing), and

low density, the electrons occupy only the lowest subband. The doping is usually

achieved with a Si-donor layer placed far from the interface in order to minimize

scattering.

Electrons can be confined in a potential well, called a quantum well (QW), if two

heterojunctions are grown in series (AlxGa1−xAs/GaAs/AlxGa1−xAs) as shown in

Fig. 2.1b.

2.2 Classical magnetotransport

Fig. 2.2 shows a typical Hall bar geometry: a current I is applied between the source

and the drain of a 2DES of width W and length L. In the presence of a perpendicular

magnetic field B, the electrons are deflected sideways due to the Lorentz force and

produce a voltage VH perpendicular to the direction of the current (usually called

Hall voltage). The transverse or Hall resistance (Rxy or RH) is defined as Rxy = Vxy/I

16



2.2 Classical magnetotransport

Figure 2.2: For magnetotransport measurements, a Hall bar-shaped sample of
width W and length L can be used. The current flows from source to drain and
the longitudinal voltage Vxx, and transverse or Hall voltage Vxy, is measured. A
magnetic field is usually applied in the z-direction, perpendicular to the 2DES.

while the longitudinal resistance (Rxx) is defined as Rxx = Vxx/I.

The classical equation of motion of an electron in a dissipative medium, in the

presence of an electric field E and a magnetic field B, is:

m∗dv

dt
= −eE− ev ×B−m∗v

τ
, (2.1)

where m∗ is the electron effective mass and a damping term with constant relaxation

time τ has been included to take into account the scattering of the electrons by

phonons, impurities and other electrons. Under stationary conditions (dv/dt = 0),

in a Hall bar geometry with the electric fields in the xy-plane and the magnetic field

in the z-direction with a value B, Eq. 2.1 becomes

vx = − eτ

m∗
1

1 + ω 2
c τ 2

(Ex − ωcτEy) (2.2)

vy = − eτ

m∗
1

1 + ω 2
c τ 2

(Ey + ωcτEx) (2.3)

where ωc = eB/m∗ is the cyclotron frequency. The mobility µ is defined as µ =

eτ/m∗ and gives information about the transport quality of the sample. The current

density J = ne (−e)v (where ne is the electron density) is related to the electric field

by the conductivity tensor σ̄ (B) via J = σ̄ (B)E. From that we can deduce the

17



2 Two-dimensional electron system in a magnetic field

resistivity tensor ρ̄ (B) = σ̄−1 (B), so we end up with the following equation for the

transversal and longitudinal resistivity:

ρxx (B) =
1

eneµ
and ρxy (B) =

B

ene

.

2.3 The integer quantum Hall effect

2.3.1 Landau level quantization

At high magnetic field the electrons can complete a full cyclotron path and interfere

with themselves. In such a situation the classical model described above is no longer

valid and a quantum treatment of the problem is required [1].

One convenient choice of the vector potential A describing the magnetic field is the

so-called Landau gauge: A (r) = (−yB, 0, 0). The Hamiltonian of a free electron in

a magnetic field can be written as

H =
(
p 2

y + (px − eBy)2) 1

2m∗ (2.4)

Taking advantage of the translation symmetry in the x direction, we can write the

wavefunctions in the form ΨN(x, y) = eikxxφN(y) where the eigenfunctions φN(y)

results in the solution of a one-dimensional displaced harmonic oscillator whose

frequency is the cyclotron frequency ωc = eB
m∗ and whose central position is y0 =

−kx`
2
B, with `B =

√
~

eB
the magnetic length.

Hence, the total eigenfunctions ΨN are:

ΨN ∝ eikxxexp

[
−(y − y0)

2

2`2
B

]
HN

[
(y − y0)

`B

]
, (2.5)

where HN are the Hermite polynomials.

The energy eigenvalues are a discrete set of ladder-levels referred to as Landau levels

(LLs):

εN = ~ωc

(
N +

1

2

)
, (2.6)

where N = 0, 1, 2... is the Landau level index. We can include the spin degree of

freedom by adding the Zeeman energy term EZ to equation 2.6:

εN = ~ωc

(
N +

1

2

)
+ g∗µBBs. (2.7)
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2.3 The integer quantum Hall effect

where g∗ is the reduced g-factor, µB is the Bohr magneton, and s the spin quantum

number = ±1/2. The energy eigenvalues are obtained regardless of the gauge chosen

for the vector potential A. Also, the center coordinate of the wavefunctions y0 is

independent of (x,y), which means that each electron will have the same energy,

and the degeneracy of a single LL will depend on the number of states that can be

packed into that level. If the system is confined in a rectangular cell of sides Lx

and Ly, the degeneracy of each LL (NL) is the number of allowed values of kx, such

that the center y0 lies between 0 and Ly. Using periodic boundary conditions in

the x direction, we obtain NL = LxLyeB/h. The filling factor ν can be defined as

the ratio between the total number of electrons, Ne, and the degree of degeneracy

in each LL, NL:

ν =
Ne

NL

=
neh

eB
. (2.8)

So far, we have only considered the DOS of the LLs to be δ-like functions. However,

in reality the LLs will be broadened by disorder [1]. The tails of the LLs now consist

of localized states (i.e. states in which electrons are confined to a small region in

space and do not carry current across the sample) and current-carrying or extended

states at the center of the levels. It should be noticed that even if the Fermi energy is

located in a gap between Landau levels, extended states always exist at the lateral

boundaries of the 2DEG since the Landau level energy raises at the edge. This

results in extended states at the Fermi energy running parallel to the edge (see

Sec. 2.3.3).

2.3.2 Transport in high magnetic field

Fig. 2.3 shows one measurement of electronic transport properties performed on a

2DES at a temperature of 280 mK. In this graph, the longitudinal resistivity ρxx

(solid curve) and the Hall resistivity ρxy (dashed curve) are plotted versus the mag-

netic field B. At low fields (B < 0.2 T), ρxy increases linearly with B while ρxx

remains constant, as expected from the classical magnetotransport theory described

in Sec. 2.2. However, at higher fields, a series of plateaus in the Hall resistivity, ac-

companied by a vanishing longitudinal resistivity, becomes the most striking feature

in the curve. The value of these steps is given by:

ρxy =

(
1

ν

)
h

e2
(2.9)
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2 Two-dimensional electron system in a magnetic field

Figure 2.3: IQHE: at high magnetic fields the Hall resistivity ρxy (dashed curve)
is characterized by plateaus quantized to (1/ν)h/e2 for integer filling values ν, ac-
companied by a vanishing longitudinal resistivity ρxx (solid curve). Inset: SdH
oscillations in ρxx at low fields (Sample from wafer 71994).

for an integer filling factor ν. This phenomenon, discovered by Klaus von Klitzing,

is known as the integer quantum Hall effect (IQHE) [2, 3]. The resistance value at

filling factor 1 is known as the von Klitzing constant (RK = 25812.807... Ω) and

is used to maintain the standard of electrical resistance by metrology laboratories

around the world. In fact, it can be measured with a precision up to 10−8 [4, 5],

depends only on the fundamental constants e and h and is not affected by any sam-

ple parameters. The oscillations in ρxx at low fields where there are no plateaus,

known as Shubnikov-de Haas (SdH) oscillations, are periodic in 1/B and inversely

proportional to the density: ∆(1/B) = gse/hne (gs is the spin degeneracy).

Even though the IQHE was discovered almost 25 years ago, there are still many

questions which remain unanswered concerning its nature. Several successful ap-

proaches and formalisms, however, have been put forward which accurately describe

many of the observed phenomena (for a review see [1, 6, 7, 8]). In general, all of

these approaches include Landau level formation, low temperatures (kBT << ~ωc)

and the existence of localized states. In this work we will concentrate on two differ-
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2.3 The integer quantum Hall effect

ent approaches: the edge state and the percolation pictures.

2.3.3 Edge states

In Sec. 2.3.1 we calculated the energy spectrum of free electrons. Now we consider

the problem of electrons confined in an Hall bar of finite width by a soft wall poten-

tial V (y), where the potential changes slowly with respect to the magnetic length.

Far from the boundary (where V (y) = 0) the energy eigenvalues are the same as

in Eq. 2.7 [1]. Near the boundary the energy of a state is just the sum of the Lan-

dau energy and the electrostatic energy. Due to the confining potential, the group

velocity

vk =
1

~
∂εnk

∂k
ŷ (2.10)

has an opposite sign on the two edges of the sample. For N filled LLs, one gets N

quasi-one-dimensional edge channels at the Fermi energy on either side of the sample

through which dissipationless current flows2. Using the Landauer formulation of

transport, a Hall voltage drop across the sample in the y direction corresponds to

a difference in the (electro)chemical potential between the two edges. Assuming

zero temperature and integrating over the group velocities of all occupied states one

obtains IN = Ne/h× [µR − µL], where µR (µL) is the chemical potential of the right

(left) edge. Hence we obtain

IN = N
e2

h
VH (2.11)

with N integer. Since in the QHE case the right and left movers are physically

separated in such a way that the voltage drop is transverse to the current, we have

the desired results

σxx = 0 σyx = N
e2

h
. (2.12)

In the presence of localised states, the current will be reduced due to backscattering.

However, in the QHE case, that process would require transfer of the electron from

2The semi-classical interpretation of these currents is that they represent skipping orbits in which
the circular cyclotron motion is interrupted by collisions with the walls at the edge of the
sample.
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2 Two-dimensional electron system in a magnetic field

one edge of the sample to the other, since they are spatially separated. For ideal

samples without disorder the probability for such a process to happen is exponen-

tially small. In short, only forward scattering can happen. If the disorder causes

LL mixing to occur, then the electron in one channel can scatter into another, but

still going in the same direction, so there is no backscattering. This unidirectional

nature of the edge state gives rise to the universal Hall quantization. The localized

states formed by the disorder will allow the chemical potential to vary smoothly

with density (or magnetic field), but will not contribute to the transport, so the

Hall conductance will be quantized over a plateau of finite width.

In the presence of a magnetic field most states are localized. However, if all states

were localized, no transition from one QHE plateau to the next would be possible.

In order to understand this we will now introduce the intuitive percolation picture.

2.3.4 Percolation picture

Let us consider a smooth random potential caused, for example, by ionized silicon

donors remotely located away from the 2DES. We also consider the magnetic length

to be small on the scale over which the potential varies (see e.g. [9]).

Due to the motion of electrons perpendicular to the potential gradient, charges at

the Fermi energy EF move along the equipotential lines EF = constant.

As we decrease the magnetic field at constant density and occupy a single LL with

electrons, the Fermi energy moves across the broadened level. At the low-energy

tail, electrons first start occupying the deep valleys; they are localized and do not

contribute to transport (Fig. 2.4a). At this point ρxx vanishes and ρxy is quantized.

As the magnetic field is further changed, the occupied valleys grow larger until their

shorelines, where the electrons can move, percolate from one side of the sample to

the other (Fig. 2.4b). Electrons can now move across the sample and scatter back to

the source. As the Fermi level approaches the percolation threshold (the center of

the LL) the trajectories of the edge states on the two sides will go deeper and deeper

into the bulk and the edge states start to communicate with each other. Electrons

in one edge state can be backscattered into the other edge state and be reflected.

This backscattering process impedes transmission of the electrons from source to

drain and thereby causes ρxx to take on finite values and ρxy to deviate from the

quantized value. At this point the Fermi energy lies in the extended states of the

LL. By further increasing the field, the electrons occupy most of the sample except
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2.3 The integer quantum Hall effect

Figure 2.4: Left: Confinement potential for a sample of width W . LLs are affected
in the bulk by the disorder and curve up sharply near the edges due to sample
boundaries. Right: Contour maps of the potential landscape. Dark gray areas
indicate filled states and light gray areas empty states. (a) The Fermi energy, EF,
is at the low-energy tail of the second LL (localized states). Electrons occupy only
deep valleys without backscattering (ρxy is quantized, ρxx = 0). Intersection of EF

with the first LL near the edges leads to edge channels as indicated on the Hall bar
with red line. (b) EF is at the center of the second LL (extended states). Electrons
backscatter from one edge to the other (ρxy is not quantized, ρxx 6= 0). (c) EF is
at the high-energy tail of the second LL (localized states). Current flows on energy
contours of mountain tops and edge states (red and blue line) without backscattering
(ρxy is quantized, ρxx = 0).

for the top of the potential hills. In this case, backscattering is again suppressed

and ρxx vanishes while ρxy is quantized (see Fig. 2.4c).
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2 Two-dimensional electron system in a magnetic field

2.4 The fractional quantum Hall effect

Quantized Hall plateaus characterized by simple rational fractional quantum num-

bers appear at very low temperature and in the case of weak disorder.

Figure 2.5 shows the longitudinal resistivity and the Hall resistance versus the

magnetic field for a high-mobility sample. The curves are characterized by plateaus

in ρxy quantized to values of h/fe2, where f is an exact rational value with an odd

denominator, accompanied by a vanishing ρxx. In the LLL, these fractions occur at

certain sequences, which can be summarized by the following equations:

f =
b

2pb± 1
(2.13)

and

f = 1− b

2pb± 1
, . (2.14)

Here, p and b are both integer numbers. All of these fractional states are charac-

terized by having odd denominators, being symmetric around ν = 1/2 and having

Figure 2.5: FQHE: in the lowest Landau level (LLL), a number of plateaus at
fractional values of h/fe2 appear in the Hall resistance, accompanied by a van-
ishing longitudinal resistivity. These fractional quantum Hall states are caused by
Coulomb interactions between the electrons in a strongly correlated system. These
measurements were performed by J.H. Smet and the sample grown by W. Wegschei-
der.
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2.4 The fractional quantum Hall effect

a larger energy gap for small denominators. The existence of fractional QH states

was completely unexpected, since in the single particle picture no gap should exist

below ν = 1. In order to understand the FQHE, electron-electron interaction has to

be taken into account. As a result, the Hamiltonian of equation 2.4 now reads

H =
1

2m∗ (−i~∇+ eA(rj))
2 +

e2

4πε0

∑
j<k

1

rj − rk

+
∑

j

U(rj) + gµBB · S. (2.15)

In the Hamiltonian, we have added the Coulomb interaction energy (second term

on the right side), the positive background and disorder potential (third term) and

the Zeeman energy (last term) [8, 10].

Several approaches were taken in order to understand the problem of interactions in

the lowest Landau level (LLL) [11, 12, 13]. Laughlin’s proposal of a trial wavefunc-

tion proved to be very successful in describing the strong electron correlations that

characterize the ν = 1/m QH ground states with m being an odd integer [14, 15].

This is treated in the next section.

2.4.1 Laughlin’s trial wavefunction

When the FQHE was discovered, Robert Laughlin realized that one could write

down a many-body variational wavefunction at filling factor 1/m in the form

Ψ1/m =
∏
i<j

(zi − zj)
m exp

[
− 1

4`2
B

∑
i

|zi|2
]

. (2.16)

In this formula, zi,j is the position of an electron denoted as a complex number and

m = 2p+1 where p is an integer. There are certain restrictions for the wavefunctions.

For example, for Ψ1/m to be analytic m must be an integer and to preserve the

antisymmetry it has to be restricted to odd integers. It is assumed that since the

electrons are only occupying the lowest spin split LL, the spin degree of freedom is

frozen, i.e. the system is fully polarized3.

The second part of Eq. 2.16 is merely the Gaussian wavefunction of the problem

without interactions. More interesting is the first part of the equation, the so-

called Jastrow-type term. This term naturally builds in good correlations among

the electrons because each particle sees an m-fold zero at the position of all the

3In reality this assumption holds only for ν = 1/m ground states. At other fractional filling
factors, partial or zero polarization ground states do exist.

25



2 Two-dimensional electron system in a magnetic field

other particles. The wavefunction vanishes extremely rapidly if any two particles

approach each other, and this helps minimize the expectation value of the Coulomb

energy.

Laughlin’s trial wavefunction method was well corroborated by Monte-Carlo and

other numerical calculations and set the base for understanding the FQHE.

Laughlin’s fractionally charged quasiparticles

So far, we have presented the necessary wavefunction that explains the FQH ground

states at ν = 1/m. Since at these filling factors ρxx → 0, gapped elementary

excitations should exist. Here the question arises what these gapped excitations are.

Laughlin showed that they are fractionally charged quasiparticles [14, 15]. This can

be understood by considering ν = 1/3 as an example. If we move away from exactly

ν = 1/3 by either slightly increasing (ν < 1/3) or decreasing (ν > 1/3) the magnetic

field (or changing the density), we can introduce or remove a single quantum of

magnetic flux, respectively. Since 3 flux quanta exist per electron of charge e,

it is then equivalent to say that the introduction or removal of a flux quantum

means adding either a quasihole or a quasielectron of fractional charge e∗ = e/3.

The excitation gap is then given by the necessary energy required to include the

quasiparticle. In general quasiparticle excitations have a charge e∗ = e/m and

obey neither Bose-Einstein nor Fermi-Dirac statistics, but rather anyonic statistics.

Shot-noise and tunnel experiments, which have satisfactorily proven the existence

of fractionally charged excitations, were essential in supporting Laughlin’s theory

[16, 17]. Recent works on Aharonov-Bohm interferometers have also proven the

anyonic nature of these quasiparticles [18, 19]. One major drawback of Laughlin’s

approach is that it only accounts for the 1/m FQH ground states. The wavefunctions

for the other fractions (see Fig. 2.5 and equations 2.13 and 2.14), such as ν =

2/3, are not considered if Laughlin’s ansatz is used. Many of the missing fractions

could be accounted for by the hierarchy approach, in which higher order FQHE

states are constructed with Laughlin’s quasiparticles instead of electrons [20, 21, 22].

Nonetheless, this approach turned out to be incomplete. For example, it failed to

describe the experimental data, in which some states are more stable than others.

A very elegant and natural way of describing all of the FQHE states in the LLL is

Jain’s composite fermion picture described in the next section.
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2.4 The fractional quantum Hall effect

2.4.2 Composite Fermions (CF) picture

The resemblance between the IQHE and the FQHE seen experimentally hinted to

the idea that many of the phenomena occurring in the FQHE could be explained by

transforming the strongly interacting system of electrons into a weakly interacting

system of some new quasi-particles. Jain’s success in identifying composite fermion

as these quasi-particles was a major achievement in this field [23]. In the following,

we describe the basic concepts of this model: if an even number (2p) of vortices of the

many-body wavefunction are captured by an electron, a new quasiparticle, referred

to as a composite fermion (CF) is formed [10, 23, 24]4. In a simplified picture, we

can say that 2p point flux quanta are attached to an electron. At ν = 1/2, p = 1

and for this special case each electron carries exactly 2 flux quanta. The composite

particles experience an effective magnetic field, which is given by

Beff = Bext − 2neφ0. (2.17)

Here, Bext is the external magnetic field and ne the electron density. Generally

speaking, it is possible to interpret the effective magnetic field as follows: an electron

is attached to 2 “fictitious” flux quanta which are oriented opposite to the external

magnetic field. These partially cancel the real magnetic field resulting in Beff .

At ν = 1/2, Beff = 0 and a CF Fermi sea forms. Beff deviates from 0 as one

moves away from ν = 1/2 and it is negative for ν > 1/2 and positive for ν < 1/2.

Consequently, composite fermions occupy CF LL which are energetically separated

by ~ω∗
c , with the CF cyclotron frequency ω∗

c = eBeff

m∗
CF

, where m∗
CF is the CF effective

mass. The CF filling factor can be obtained from the electron filling factor by using

the following relation:

ν =
νCF

2νCF ± 1
. (2.18)

This is obtained by replacing B by Beff of equation 2.8. For example, ν = 2/3

and ν = 2/5 become νCF = 2 for negative or positive Beff , respectively. The CF

model explains the experimental results astonishingly well. All of the fractional

states can be well understood with this model. Even the recently discovered FQHE

fractions (for example ν = 4/11 and ν = 5/13) could be explained as FQH states of

CFs [25, 26]. Comparing again with Fig. 2.5, we see that ρxx shows SdH oscillations

4If an odd number of vortices is captured by an electron, the resulting quasi-particle is a composite
boson.
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2 Two-dimensional electron system in a magnetic field

which are symmetrical around ν = 1/2. This resembles the case for electrons around

B = 0.

In general, the FQHE of strongly-correlated electrons can be considered to be the

IQHE of weakly interacting composite fermions.
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3 Quantum Hall ferromagnetism

In this chapter we describe the physics of a 2DES when different Landau levels be-

come degenerate in energy.

The system presents features similar to what observed in magnetism, like hysteresis,

peculiar time dependence, Barkhausen jumps and so on. Due to the above analogy

this field has been named quantum Hall ferromagnetism (QHF) and the ground

states can be characterized by ferromagnetic ordering.

In Sec. 3.1 we describe the simplest and most understood quantum Hall ferromag-

net: a 2DES at filling factor 1. Peculiar type of charged spin-textures excitations

named skyrmions can occur in this system due to the interplay between Zeeman

and Coulomb energy. Different kind of ferromagnetic ordering can occur in QHFs,

and many theories have been used to describe them. Some of these are reviewed in

Sec. 3.2, where we focus on the similarities and the main differences between them.

The concept of domain formation at the (phase) transition between different ground

states will be introduced. In the same chapter we will also describe the low-energy

excitations that are predicted for a QHF and that are responsible for the peculiar

experimental features of these systems.

QHFs have been studied extensively in many experiments. We will review the main

experimental findings in Sec. 3.3, where we will concentrate on experiments per-

formed at fractional filling factors. We will describe the main fingerprints of the

QHF like hysteresis and reentrant behavior of the longitudinal resistance upon tilt-

ing the magnetic field. The last section, Sec. 3.4, deals with the special quantum

Hall ferromagnet that occurs at ν = 2
3
, the subject of the rest of this thesis. This

system has been extensively studied experimentally. Moreover, at this particular

filling factor, the 2DES is strongly coupled with the spin of the host nuclei through

hyperfine interaction. This interaction can produce dynamical nuclear polarization

and a huge increase of the longitudinal resistance, a phenomenon named HLR.
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3 Quantum Hall ferromagnetism

3.1 Exotic spin order at ν = 1

At ν = 1 the lowest spin state of the lowest LL is completely filled. Naively one would

expect that the spin dynamics of electrons are frozen out by the Zeeman energy1.

However, in GaAs, the Zeeman energy is much smaller than the cyclotron energy

due to the small effective mass and the reduced g factor. This means that it is pos-

sible to be in a regime in which the orbital motion is fully quantized (kBT < ~ωc),

but the low-energy spin fluctuations are not completely frozen out (kBT ∼ g∗µBB).

The peculiar kind of ferromagnetism in this system is called itinerant, or Heisenberg

type, and it depends on the interplay between the Zeeman energy and the Coulomb

energy between electrons. Magnetism occurs not because of direct magnetic forces,

but rather because of the combination of electrostatic forces and the Pauli prin-

ciple. In a fully ferromagnetic state all the spins are parallel and hence the spin

part of the wavefunction is symmetric. This means that the spatial part has to be

antisymmetric and it vanishes when any two particles approach each other. This

makes the Coulomb energy much higher than the Zeeman splitting, stabilizing the

ferromagnetic state and giving rise to a fully polarized ground state [9].

Let us consider the low energy excitations of this ferromagnetic state.

The lowest-lying excitations are spin waves, in which the spin orientation undergoes

smooth fluctuations in space and time. Since they don’t carry charge they do not

strongly alter the transport properties.

Since at ν = 1 the lowest spin state is fully occupied, a second kind of excitations

is obtained by reversing a single spin. However, in 1993, Sondhi et al. [27] discov-

ered that it is energetically favorable to form a topological spin texture by partially

tuning some of the spins. Such a topological object, referred to as skyrmion2, is

schematically drawn in Fig. 3.1. Skyrmions are characterized by having their spin

turned downward at the center and gradually turning upward over a certain dis-

tance from the center. At intermediate distances, all the spins point in the xy-plane

and exhibit a vortex-like winding configuration. Whenever the Coulomb exchange

energy is large in comparison to the Zeeman energy a skyrmion is energetically more

favorable than a single spin flip. The size of a skyrmion and the number of spin re-

versals are then determined by the interplay between these two energies. At EZ = 0

1In free space with g=2 (neglecting QED corrections) the Zeeman splitting is equal to the cy-
clotron splitting.

2The name is due to its provenance from the Skyrme model in nuclear physics [28].
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3.1 Exotic spin order at ν = 1

the size of the skyrmion should be infinite. Increasing the Zeeman energy shrinks

the skyrmion in order to balance the Coulomb energy. At large EZ the single par-

ticle model is restored and the excitations are single spin flips. Skyrmions carry a

charge that is equal to ±e and freeze out at exactly filling factor 1 at sufficiently low

temperatures. However, as one moves away from it, the energetically lowest way to

add or remove charge is through the formation of a finite density of skyrmions (for

ν > 1) or antiskyrmions (ν < 1) [29]. Experimentally, the presence of skyrmions was

first observed with Nuclear Magnetic Resonance (NMR) by measuring the Knight

shift in the Larmor frequency of the host nuclei [30], and then by detecting the heat

capacity [31, 32].

New low-energy collective excitations exist in the presence of many skyrmions: the

so-called Goldstone modes. Unlike ordinary spin waves, these Goldstone modes can

have a minimum excitation gap lower than the Zeeman energy. In fact, the system

can support excitations down to zero energy. These excitations are related to the

broken spin rotational symmetry of the ground state and they can be understood

using a semi-classical picture: in ordinary ferromagnets all the spins in the ground

state are aligned along a particular axis. The ground state is invariant under ro-

tation around this axis, so no additional energy is required for such a symmetry

Figure 3.1: The lowest-lying energy excitations of the QHF state ν = 1 at vanish-
ing Zeeman energy are topological objects with an underlying spin-texture known as
skyrmions. These structures are characterized by gradually flipping numerous elec-
tron spins but yet they carry exactly one unit of charge. The spin points downwards
at the center and upwards at a distance far from the center. At some intermediate
distance the spin points in the xy-plane. The existence and the size of a skyrmion
are determined by the interplay between EZ and EC.
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3 Quantum Hall ferromagnetism

operation. In the presence of skyrmions the spins are no more aligned and the sys-

tem is not collinear. States produced by different rotations of the ground state are

now distinguishable from each other and additional excitations are produced.

3.2 QHF: theoretical pictures

In the previous section we introduced the Heisenberg ferromagnet at ν = 1 and

we briefly mentioned the different kinds of low-lying excitations in such a system.

It turns out that many-body interactions can give rise to ferromagnetic ordering

at many other filling factors, leading to the notion of quantum Hall ferromagnets

(QHFs) [33]. In general, according to Hartree-Fock theory, broken-symmetry ground

states occur at integer filling factors in quantum Hall systems whenever two or more

partially filled LLs are degenerate. In this situation, the system can support differ-

ent ground states, with the formation of domains of different ferromagnetic order.

Single-particle states in the IQHE are defined by the subband (or layer index), by

the LL index and by the electron spin orientation. In the theory of QHFs the levels

under study are labeled with a pseudospin variable of value ’up’ or ’down’, indicated

respectively with ↑ and ↓. In this language the splitting between pseudospin-up and

-down plays the role of the Zeeman energy and determines the ground state prop-

erties. The introduction of a pseudospin variable brings a direct analogy with the

field of magnetism. It also allows the study of different energy crossing within the

same theoretical framework. When two pseudospin energy levels cross each other,

the pseudospin degeneracy can be spontaneously broken, giving rise to pseudospin

anisotropy. Depending on the nature of the crossing, different kinds of ferromag-

netic anisotropy are possible, each of them exhibiting different properties [33]. Sys-

tems with easy-axis anisotropy present a discrete direction at which the energy

of the ordered state is minimized. They have long-range order at finite temper-

ature and Ising-type phase transitions. For systems with easy-plane anisotropy a

continuum of coplanar pseudospin magnetization orientations exists at which the

energy of the ordered state is minimized. They do not have long-range order but

do have a Kosterlitz-Thouless phase transition at finite temperature. Finally, in the

isotropic case, all directions of pseudospin magnetization have identical energy, only

the ground state has long-range order and there are no finite-temperature phase

transitions.
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3.2 QHF: theoretical pictures

A lot of different theoretical works discuss the physics of QHFs. We will present

some of the most important ones in this section.

Already in 1985 Giuliani and Quinn [34] proposed that in a QH system at filling

factor 2, a phase transition from a paramagnetic to a ferromagnetic phase should

occur at LL crossing.

Later on, an important step in the understanding of QH ferromagnetism came from

the two papers of Fal’ko and Iordanskii [35, 36]. They calculated the low-lying ex-

citations in a 2DES characterized by a single-particle Zeeman energy on average

equal to zero over the 2D plane, but locally fluctuating between positive and nega-

tive values. They argue that such fluctuations, given by interface roughness in the

device or by inhomogeneity of the nuclear spin polarization, would lead to the for-

mation of a multidomain structure in the ferromagnetic 2DES. In contrast to [34],

the theory of Fal’ko and Iordanskii includes also spin-orbit coupling. In [35] they

calculate the excitation spectrum for ν = 1. The lowest eigenvalue corresponds to a

spin wave (the Goldstone mode) in which the component of the polarization vector

in the plane of the 2DES varies smoothly along the domain walls. Other excited

states are spin waves in the bulk of the domains, rather than along the walls; their

spectrum has a gap of the order of the Zeeman energy and a linear dispersion in the

wavevector. The soft excitations described until now do not carry charge so they do

not affect the transport properties. More important is a second kind of excitations

that develops at the domain wall. These are charged topological spin textures very

similar to skyrmions (see Sec. 3.1), but with the difference of being localized at the

domain wall and having an activation energy lower than the one of standard 2D

skyrmions. The latter condition prevents these new topological excitations to decay

into skyrmion-bulk excitations. In the paper they suggest that this quasi-skyrmion

excitation can have a dominating role in the dissipative conductivity σxx when the

network of DWs forms a percolation cluster through the entire 2D plane. In [36]

they extended their analysis to a narrow QW in the ν = (2n + 1) QH ferromagnetic

state. They deduce that, upon decreasing the single particle Zeeman splitting Ez,

the pseudospin polarization of the system exhibits an easy-axis configuration with

the formation of the quasi-skyrmion excitations described above. Upon further de-

creasing Ez, the easy-axis configuration is followed by a phase transition to helical
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spin texture3.

Jungwirth and MacDonald [33, 38] and in collaboration with others [39, 40], pub-

lished many contributions to the field of QH ferromagnetism. In [33] they present

a Hartree-Fock analysis of the different kinds of ferromagnetism, including a clas-

sification of the different pseudospin anisotropies depending on the nature of the

crossing LLs. In [38] they investigate the Ising-type ferromagnet at ν = 3 in order

to explain the origin of the anomalous dissipation observed in experiments [41]. In

the framework of Hartree-Fock theory, they propose that close to the degeneracy

the system breaks up into domains of different pseudospin polarization. The domain

wall loops carry a charge quantized in units of the electron charge e and the relative

number of these loops changes as a function of the magnetic field. Exactly at the

degeneracy point, most of the domains are large and carry a charge of 2e. The

Hartree-Fock quasi-particle energy reduces drastically near the domain wall. They

suggest that the increase in dissipation is due to the fact that the quasi-particle can

percolate across the sample by scattering between overlapping loops. In their picture

the domain wall loops shrink and do not overlap any more when the temperature

is too low or the electron density is too high, in accordance with the experimental

findings. Their model also reproduces the experimental asymmetry in the longitu-

dinal resistance when the magnetic field is swept upwards or downwards. Moreover,

the experimental temperature at which the pseudospin order is lost (∼ 500mK) is

correctly reproduced by their theory.

Chalker et al. [42] present a similar argument for the dissipation in Ising type

QHF, but in order to explain the experimental observation of magnetoresistance

anisotropy in Ref. [43, 44], they suggest that, when a magnetic field component

parallel to the plane of the 2DES is added, the domains assume a stripe shape de-

pending on the orientation of the gradient of the surface roughness with respect to

the direction of the in-plane magnetic field.

Brey and Tejedor present a different picture [45]. They start by assuming the exis-

tence of domains, and they calculate the energy spectrum of a domain wall at ν =

2. They consider a functional that include both the spin-orbit interaction and the

3Recently helical spin-order in magnetic materials has been observed in real space [37].
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Coulombic interaction between the charged domain walls and that describes the low-

energy pseudospin textures of the system. The solutions obtained are topological

excitations related to neutral and charged domain walls. For the latter, they com-

pute the size and the energy of the excitations as a function of the spin-orbit term.

In their picture, the current along the domain walls is different from zero only if the

chemical potential does not lie in the charge excitation gap. On the other hand, if

the chemical potential does lie in the gap, the carrier has to pass across the domain

wall. In other words, one electron with a given real spin can pass across the wall

smoothly flipping its spin. Since the spin-orbit coupling (related to the excitation

gap of the domain wall) is small, only a few electrons can pass through the wall, and

the resistance is therefore high. They also claim that the hyperfine interaction with

the nuclear spin has no role in the transport properties. At most, due to the slow

relaxation time of the nuclear spins, those can serve as spin memory for the electrons.

The last theoretical work that we want to mention is from Freire and Egues [46].

They employ the spin density functional theory (SDFT) in a local spin density ap-

proximation to calculate adiabatically (in the change of the magnetic field) longitudi-

nal resistance, total energy, spin-dependent electron density and spin polarization.

Without including domains, they find that all of these quantities show hysteretic

behavior depending on the magnetic field sweep direction, in accordance with the

experiment of Ref. [47]. They attribute this effect to the coexistence of two solutions

of the ground state SDFT functional due to the spin-dependent exchange potentials

of the 2DES for up and down magnetic field sweep. They also infer that a dip in

the Hall resistance should be present at the magnetic field at which the hysteresis

is present.

In conclusion, many different theories have been used to describe the physics of

a QHF. All of them managed to reproduce some of the experimental features and it

is difficult to decide upon which theory is the correct one.

Two in particular are the questions that remain to be answered: do the domains

exist? Which is the mechanism responsible for the anomalous dissipation at the

phase transition observed in experiments?
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3.3 QHF at fractional filling factors

In the previous paragraph we reviewed some of the main theoretical approaches to

the problem of QH ferromagnetism. We focus now on experiments.

QH ferromagnetic order at integer filling factors has been studied in a variety

of different systems, including GaxIn1−xAs/InP [48], GaAs/AlxGa1−xAs [44], InSb

[49], Si/SiGe [43], magnetically doped QWs [47], parabolic QWs [50], AlAs QWs

[41, 51, 52, 53]. Moreover, using wide QWs or bilayer systems, the extra degree

of freedom due to the (different) layer indeces opens the intriguing possibility to

study different kinds of ferromagnetic order in the same sample [54, 55, 56]. All of

the above systems present interesting features that would deserve being mentioned.

However, from now on, we will focus on spin phenomena occurring at fractional

filling factors.

Soon after the discovery of the FQHE, Halperin suggested the existence of a ground

state with partial spin polarization in the fractional quantum Hall regime. Ex-

act diagonalization results by Chakraborty and Zhang [57, 58] indicated that such

states can sometimes be energetically more favorable than the fully polarized ones

depending on the interplay between the Zeeman energy Ez and the Coulomb energy

Ec = e2/(εlB)4.

There are (at least) three ways to manipulate the ratio Ez/Ec: applying a mag-

netic field parallel to the plane of the 2DEG, changing the g∗ factor by hydrostatic

pressure, lowering the magnetic field and/or the electron densities at constant filling

factor. In the following sections we will briefly describe the three methods and men-

tion some of the first evidences of spin-phase transitions obtained with the different

configurations5.

At constant filling factor the Coulomb energy is given by the component of the

magnetic field perpendicular to the 2D plane (B⊥), since the motion of electrons is

confined to that plane. Electron spins are not affected by this confinement, hence

the Zeeman energy is proportional to the total magnetic field B. By tilting the

sample with respect to the direction of the magnetic field, we can change the ratio

4The direct measurement of the spin-polarization of a 2DES at fractional filling factor was per-
formed later by Kukushkin et al. [59].

5A more detailed review of results, both theoretical and experimental, regarding spin in FQHE
was given by Chakraborty in 2000 [60].
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between B⊥ and B, and thus between Ez and Ec. However, since B is always ≥ B⊥,

we can only make the Zeeman energy larger than the Coulomb energy, and not the

opposite. The first experiments concerning a spin phase transition in the FQHE

are, to my knowledge6, those of Clark et al. [62] and Eisenstein et al. [63]. The

experimental observation was that on tilting the sample the longitudinal resistivity

at ν = 4
3

[62] and ν = 8
5

[63] shows a reentrant behavior: it had a pronounced

minimum at zero tilt angle which disappears at large enough tilt and reappeared for

yet higher angles (see Fig. 3.2a). The authors suggest that a transition to a fully

spin polarized state occurs upon increasing the Zeeman energy by tilting the sample.

By applying hydrostatic pressure to a GaAs sample, it is possible to modify the

Figure 3.2: Spin transition of the ground state at filling factors 8
5 and 2

5 observed
as a reentrant behavior of the QH states upon changing the ratio between Zeeman
energy Ez and Coulomb energy Ec. The transition can be induced by tilting the
sample in a magnetic field (a)(adapted from [63]) or by applying a hydrostatic
pressure in order to change g∗ (b)(adapted from [64]).

6In [61] Eisenstein et al. observed a rapid collapse of the ν = 5/2 state upon increasing the
angle. This represents the first observation of a fractional state whose ground state is not fully
polarized, but no recovery of the state was reported after the collapse. We prefer not to include
this work here as evidence of a spin phase transition.
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spin-orbit coupling and decrease the g∗ factor. Eventually, it is possible to achieve

Ez ∝ g ∼ 0, but such experiments are technologically difficult. Morawicz et al. [65]

were the first to study a fractional quantum Hall state under pressure, but they

did not recognize the transition at ν = 4
3
. Later experiments by Kang et al. [64]

demonstrated the spin phase transition at filling factor 2
5

as a reentrant behavior

of the longitudinal resistivity as a function of the applied pressure (see Fig. 3.2b).

Leadly et al. [66] achieved such a high pressure that they managed to make the g∗

factor vanish. They presented data of activation energy gap measurements at ν = 2
5
,

2
3

and 1
3

as a function of Ez/Ec. Interestingly, they were able to claim the existence

of skyrmions at ν = 1
3
, the CF analogy of skyrmions at ν = 1.

Recently, experimental findings [67, 68] obtained at ν = 2
5

upon applying an hy-

drostatic pressure indicate that a transition between a spin-polarized and a spin-

unpolarized state can be accompanied with phenomena reminiscent of ferromag-

netism. Cho et al. [67] reported hysteretic phenomena at filling factor ν = 2
5
, 3

7
, 4

7

and 4
9
. They showed (for ν = 2

5
) that hysteresis occurs only if the two spin ground

states have similar energy (see Fig. 3.3a). Eom et al. [68] studied the temporal evo-

lution of Rxx and found a logarithmic behavior without saturation (see Fig. 3.3b).

In this article a comparison with magnetic materials is also presented.

Due to the different dependency of Ec and Ez on B or n, it is possible to change

the ratio between Zeeman and Coulomb energy by just changing the magnetic field

and/or the density. The latter option can be achieved in different ways: by chang-

ing the doping concentration during growth [69], by illuminating the sample and by

using a metallic layer as a gate.

3.3.1 The spin in the CF picture

Even though the spin phase transitions can be satisfactorily understood by only con-

sidering the strongly correlated electron system, the weakly interacting CF picture

provides a more intuitive way of understanding these phenomenon.

In Sec. 2.4.2, we explained that the CF Fermi-sea develops into a discrete series of

LLs energetically separated by ~ω∗
c if ν 6= 1/2. If we introduce the spin degree of

freedom, we can further split these levels by the Zeeman energy g∗µBB as in the

case of the IQHE. The latter splitting, however, depends on the external magnetic

field and not on Beff . Drawing the first CF LLs as a function of Btot at tilted fields
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3.3 QHF at fractional filling factors

Figure 3.3: Cho et al. studied the spin phase transitions at ν = 2
5 , 4

7 , 4
9 by

applying hydrostatic pressure in order to change the g∗ factor (a) (adapted from
[67]). They observed a dramatic hysteresis in the up and down magnetic-field sweeps
in close proximity of these transitions. Using the same method, Eom et al. per-
formed detailed temperature and time dependence measurements. They observed a
logarithmic dependence, similar to what is observed in ferromagnetic materials (b)
(adapted from [68]).

(or equivalently, as a function of n) and including the spin-splitting, the crossings

of CF LLs become clear. This is plotted in Fig. 3.4 for the CF LLs N = 0 and 1.

The spin-up level is depicted as a solid line, the spin-down is shown as a dashed

line and the Fermi energy at νCF = 2 as a thin dotted line. The splitting between

two levels of same spin, for example N = (0, ↑) and N = (1, ↑) is given by the CF

cyclotron energy ~ω∗
c1 at field B1. The splitting between levels of different spin of

the same CF LL, e.g. N = (0, ↑) and N = (0, ↓) is the Zeeman energy (g∗µBB1

at B1). Considering the case of fixed filling factor νCF = 2 as an example, we see

that at low fields ~ω∗
c1 > g∗µBB1. The two CF LLs have different spin orientations

and the polarization is therefore zero. The polarization is given by the following

expression:

P =
N↑ −N↓

N↑ + N↓
. (3.1)
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3 Quantum Hall ferromagnetism

Figure 3.4: Spin-split composite fermion Landau levels. Since the CF cyclotron
energy increases as

√
n or

√
B and the Zeeman energy as n or B, crossings between

ground states of different polarizations exist. The thin-dotted line represents the
Fermi level at νCF = 2. For simplicity, we have connected the low field and the
high field regions with straight lines. The polarization can be determined from
P = N↑−N↓

N↑+N↓
and its value is indicated on the Fermi energy line. At νCF = 2

(ν = 2/3), a transition occurs from P = 0 to P = 1 at ~ω∗c = EZ.

where N↑ (N↓) represents the number of electrons with spin-up (down). Increasing

the magnetic field has a different effect on both energies. While the Zeeman splitting

increases linearly with the field B, the CF cyclotron energy increases as
√

B (mCF ∝√
B). Therefore, at higher magnetic field, ~ω∗

c2 < gµBB2 and the two occupied CF

LLs have the same spin orientation, i.e. the system is polarized7. A transition

between N = (0, ↓) and N = (1, ↑) occurs whenever the CF cyclotron and the

Zeeman energies are the same8:

~ω∗
c =

~e

mp
CF

|Beff | = EZ = g∗CFµBBext. (3.2)

In this equation, mp
CF is the CF polarization mass [71] and Beff is given by equation

2.17. The CF g-factor g∗CF has been measured to be largely the g-factor of the

electrons g∗ [72]. In references [73], [74] and [75], it is shown that the critical value

7Since the CF spin and the electron spin are the same, it is equivalent to refer to a CF or electron
spin polarization [70].

8For simplicity, we have drawn straight lines from the low field to the high field region. It is
however important to remember that the CF cyclotron energy increases as

√
B.
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3.4 The spin phase transition at ν = 2/3

of spin transitions in the FQHE is more accurately described by the CF picture than

by the Coulomb to Zeeman energy ratio of the electrons.

Due to the similarity between the experimental findings occurring at integer QHFs

and at fractional quantum Hall states, and taking into account the analogy between

electronic systems at ν = 2
3

or 2
5

and composite fermion system at νCF = 2, it was

suggested already in 1998 [67] that the spin-phase instability at fractional filling

factors can be described as the integer quantum hall ferromagnetism of composite

fermions.

3.4 The spin phase transition at ν = 2/3

Soon after the discovery of the FQHE, a lot of research was conducted for the study

of the state at ν = 2
3
.

Already in 1984 numerical calculations in small size systems by Chakraborty and

Zhang [57, 58] showed that at small magnetic field the ground state is unpolarized,

while at high field it is polarized, with a gapless region at intermediate fields. The

first experimental evidence of a spin-transition at ν = 2
3

was provided by Clark and

Maksym [76, 77]. They observed a reentrant behavior of the longitudinal resistance

of the fractional state upon tilting the magnetic field,. Moreover, they also observed

a splitting of the 2
3

minimum at the angles where the minimum was the weakest.

Later Eisenstein et al. [78] measured a reduction of the activation energy at ν = 2
3

either by changing the density or by tilting (see Fig. 3.5a). Their data were given as

evidence for a transition between different spin-polarized ground states. Engel et al.

[79] reported the splitting of the minimum in the longitudinal resistance at ν = 2
3

(i.e. the occurrence of a resistance peak at the phase transition) upon tilting the

magnetic field (see Fig. 3.5b). They claim that this could be due to the coexistence

of the two spin phases, polarized and unpolarized, in the ground state.

The experiments discussed above indicate the (co)existence of ground states with

different spin polarization. In 1998 the experimental work of Kronmüller et al.

[80, 81] presented unexpected phenomena occurring at the spin transition at ν = 2
3
.

They measured the longitudinal resistance of a 15 nm-wide quantum well as a func-

tion of the magnetic field. At small current they detected a tiny peak close to the 2
3

minimum. On the other hand a sharp and huge peak around ν = 2
3

was observed at

low magnetic field sweep rate and high enough current (Fig. 3.6a). This unexpected

peak was named huge longitudinal resistance (HLR). The temporal evolution of this
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3 Quantum Hall ferromagnetism

Figure 3.5: Eisenstein et al. studied the spin phase transitions at ν = 2
3 by

changing the density and tilting the sample in a magnetic field (a). In both cases
they find a minimum in the activation energy that they interpreted as evidence of
a phase transition (adapted from [78]). Engel et al., monitoring the longitudinal
resistance at ν = 2

3 upon tilting the sample, found a splitting in the fractional
minimum (b) (adapted from [79]).

HLR was measured by setting the magnetic field to an appropriate value and record-

ing Rxx as a function of time. A monotonic increase and a subsequent saturation

were found, where the typical times to form the HLR varied from minutes to several

hours, with longer times for wider Hall bars (Fig. 3.6a inset). Both the longitudinal

and Hall resistances show hysteretic behavior sweeping the magnetic field upwards

and downwards. The authors suggest that at the transition the electronic system

breaks up into domains of different spin configuration. The source of the HLR could

be electron scattering at the domain walls. The long relaxation rates of Rxx ob-

served in [82] suggested that the nuclear spins are involved into the formation of

these domains via the hyperfine interaction. In order to prove this Kronmüller et

al. [83] performed resistively detected nuclear magnetic resonance (RDNMR): they

monitored the value of the longitudinal resistance while irradiating the sample with

a radio-frequency signal. They detected a reduction of the value of the HLR when-

ever the irradiated frequency was corresponding to transitions between different spin

states of the host material nuclei: 75As, 69Ga, 71Ga, all having spin I = 3/2. The

nuclear resonance peaks measured in Rxx were fourfold splitted; quite unexpected

since the quadrupole moment allows only three resonance frequencies between the

four states Iz = ±3
2

and ±1
2
. The authors argued about a new kind of interaction
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3.4 The spin phase transition at ν = 2/3

Figure 3.6: HLR at ν = 2
3 (a). When a small current is used, ρxx presents only a

small peak close to ν = 2
3 . When a large current is applied and the magnetic field is

swept slowly, a huge peak in the resistance is detected. (a) inset shows the temporal
evolution of the HLR peak for two different sample widths: 800 µm (indicated with
dots) and 80 µm (indicated by triangles). Figure from [80]. (b) shows the response
of the HLR upon irradiating the sample with a radio-frequency signal in resonance
with the Larmor frequencies of the three host nuclei. The value of ρxx shows a
fourfold splitting (from [83]).

between electrons and nuclei9. In a different type of device, but still using RDNMR,

the expected threefold splitting at ν = 2
3

was detected by Smet et al. [85]. In the

same work, Barkhausen steps (long known in magnetism [86]) in the temporal evo-

lution of the resistance were found, bringing thus another analogy with magnetism.

Kraus et al. [87] proposed that the quantum Hall ferromagnetism and the HLR

at ν = 2
3

are just two different operating modes of the same spin-phase transition.

In their work they accurately studied the longitudinal resistivity ρxx at the ν = 2
3

transition as a function of density and tilt angle, both in the low current regime,

where just a small peak was observed at ν = 2
3
, and in the high current regime at

slow sweep rate, where the HLR showed up. They showed that the HLR develops

exactly at the phase boundary between spin-polarized and spin-unpolarized ground

state (Fig. 3.7). According to the authors, the small ρxx peak in the low current

regime is due to back scattering of electrons along the domain walls. The increase

in resistivity in the HLR regime is explained by scattering of electrons across the

domain boundaries, involving nuclear spin polarization changes (flip-flop scattering)

9Later on, this fourfold splitting was found to be due to the mechanical strain of the sample
caused by the glue used in the experiment [84].
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3 Quantum Hall ferromagnetism

Figure 3.7: The two different modes of operation of the spin phase transition at
ν = 2

3 . The main graphs show color plots of the longitudinal resistance as a function
of filling factor and density. The top traces show ρxx at the fixed density indicated
by dashed lines in the main graph. In the low current regime (a) a small peak
separates the regions of spin-polarized and spin-unpolarized ground state. In the
high current regime (b) the HLR develops at the phase boundary. Figure from [87].

due to hyperfine interaction.

This last process allows the control of the nuclear spin polarization by manipulat-

ing the electron system at ν = 2
3

[88, 89, 90, 91, 92]. In particular, Hashimoto et al.

[93] showed that the HLR is completely suppressed when the potential of the QW

hosting the 2DES is made very asymmetric by gate voltages. Furthermore, they

find that the nuclear spin relaxation time is also modified by this asymmetry. They

argued that this is due to the enhancement of the SO interactions. The SO mixes

LLs with opposite spins making the electron spin component along the magnetic

field direction no longer a conserved quantity. Therefore, electron spin-flips can oc-

cur without nuclear spin-flops, facilitating the transport across the domain walls.

As discussed above, many experimental works studied the QHF at ν = 2
3
. These

works concern the detection of the longitudinal resistivity with low-frequency tech-

niques. The different authors find unexpected transport properties at filling factor
2
3
. However, they could not find evidence of domains or convincing arguments about

the physical origin of their experimental results. For this reason a different technique

has to be employed.
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3.4 The spin phase transition at ν = 2/3

3.4.1 Electron spin polarization at ν = 2
3

The electron spin is involved in the transition at ν = 2
3
. Here we review some of

the experiments that allowed the direct measurement of the spin polarization at this

filling factor.

Kukushkin et al. [59] employed an optical technique to measure the polarization

of a 2DES at several filling factors. A metallic gate was used, and the electronic

polarization was studied at a fixed filling factor and a variable density and magnetic

field. At ν = 2
3
, this experiment confirmed that the polarization is zero for low

Zeeman energy and one for high Zeeman energies, as expected for a spin-unpolarized

and a fully spin-polarized ground state. However a kink at the value of one half was

observed at the transition between these two polarization values, (Fig. 3.8).

Freytag et al. [94] used the Knight shift of the NMR signal of a multiple quantum

well structure as a probing tool for the electron polarization. The device consisted of

many (100) quantum wells separated by barriers wide enough that the wells can be

considered as independent. They measured that the fully polarized state at ν = 2
3

turned into a stable ground state with P approximately 0.775 when the Zeeman

energy was decreasing (Fig. 3.9). However, in this experiment a low enough Zeeman

energy for the unpolarized ground state to take over was not obtained. The result of

Freytag et al. is in contradiction with the one of Kukushkin et al., and the scientific

community agrees in considering the finding of Freytag et al. as an experimental

artifact.

More recently, Stern et al. [95] measured the electron polarization of a single QW by

using a technique that combines RDNMR with standard NMR. The absolute degree

of electron spin polarization can be determined by measuring the Knight shift of the

nuclei interacting with electrons and comparing the results with the nuclear signal

in the absence of the 2DES. The Knight shift was measured by RDNMR, while the

unshifted signal is obtained with standard NMR techniques. They showed that at

ν = 2
3
, both in the low and high current regime, the RDNMR signal shows two

resonance features. One can be assigned to an unpolarized system (P = 0), while

the other one to a fully polarized one (P = 1) (Fig. 3.10).

The results presented in this section give strong evidence of the presence of (at

least) two different spin polarization values at ν = 2
3
.

However, the morphology of the domains and the type of excitations at the transition

are not understood.
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3 Quantum Hall ferromagnetism

Figure 3.8: Electron spin polarization at different filling factors measured with an
optical technique by Kukushkin et al.. Concerning ν = 2

3 , at low Zeeman energy
the system is unpolarized (polarization = 0), while at high Zeeman energy it is fully
polarized (polarization = 1). Between these two regimes, a feature at polarization
= 0.5 is detected. Figure adapted from [59].

Figure 3.9: Electron spin polarization at ν = 2
3 measured by Freytag et al. with

NMR techniques. The sample is a multiple quantum well structure. Reducing the
Zeeman energy, the system moves from a fully polarized state (polarization = 1) to
a partially polarized state (polarization = 0.775). The inset shows the normalized
NMR spectra. Figure from [94]
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3.4 The spin phase transition at ν = 2/3

Figure 3.10: Resistance Detected NMR at ν = 2
3 in the low current regime (a)

and in the high current regime (b). The signal presents two resonance features when
the sample is irradiated with a RF signal in resonance with the Larmor frequency
of the host nuclei. Combining a standard NMR technique, Stern et al. were able to
assign these two features to a system fully polarized (P = 1) or unpolarized (P = 0).
Figure adapted from [95]
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4 Experimental techniques and setup

In this chapter we describe the different techniques that we used in the investigation

of the spin phase transition at ν = 2
3
.

In our work we employ a technique based on the detection of high frequency surface

acoustic waves (SAW) together with quasi-DC transport measurements. In Sec. 4.1

we describe the basic properties of the propagation of a SAW on GaAs. The mech-

anism of interaction of a SAW with a 2DES is described in Sec. 4.2 where we also

present the technique that we employ. A great part of the work concerns the de-

sign and the realization of a setup that allows the detection of SAW transmission

with a good signal to noise ratio. For this reason, the sample preparation and the

experimental apparatus are described in detail in Sec. 4.3.

4.1 Surface acoustic waves on piezoelectric materials

Surface acoustic waves are modes of elastic energy propagating along the surface

of a crystal [96]. The amplitude of the wave decays almost exponentially into the

bulk and nearly all of the energy is contained within a wavelength from the surface.

The physical motion of this wave is associated mechanically with a time-dependent

elliptical displacement of the surface structure (Fig. 4.1(a)). One component of this

displacement is parallel to the SAW propagation axis, while the other is normal to

the surface. On piezoelectric materials such as GaAs a mechanical strain produces

an electric field and, conversely, an applied electric field produces a mechanical strain

in the crystal. Hence, in GaAs, the propagation of a SAW is accompanied by an

elastic field and an electric field.

One of the most frequently used ways to generate SAWs is through the use of inter-

digital transducers (IDTs). An IDT (Fig. 4.1(b)) consists of an array of interleaved

metal electrodes deposited on a piezoelectric substrate. Applying an alternating

voltage to the contacts will cause a spatial strain distribution of periodicity P in

the crystal below. If the frequency (f0) of the applied voltage is such that the peri-

odicity is equal to the wavelength λ = vSAW

f0
(with vSAW the velocity of the acoustic
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4 Experimental techniques and setup

Figure 4.1: Sketch of the particle displacement in a medium due to a surface
acoustic wave (a). The main energy flow is concentrated within a distance of the
order of a wavelength beneath the surface. Cartoon of an interdigital transducer
(b). When an oscillating voltage of frequency f0 = vSAW/P is applied, a surface
acoustic wave is generated.

wave), SAWs are generated in both directions perpendicular to the electrodes. Con-

sequently, the periodicity of the electrodes determines the fundamental resonance

frequency of the IDT for a particular material. Two IDTs are required in a ba-

sic SAW device configuration. One of these acts as the device input and converts

voltage variations into mechanical acoustic waves. The other IDT is employed as

an output receiver and converts mechanical SAW vibrations back into output volt-

ages. To characterize the different crystal axis and SAW propagation directions,

the electromechanical coupling coefficient k 2
eff is usually defined. This parameter

is a measure of the efficiency of a given piezoelectric material in converting an ap-

plied electrical signal into the mechanical energy associated with a SAW. The higher

k 2
eff , the more efficiently a material is able to generate and detect SAWs. When

the surface is covered with a conducting metal film the time-varying electric field

associated with the SAW causes the metal surface film to accumulate charge. If the

SAW propagation is modeled as an equivalent electrical transmission line LC, the

additional charge accumulation increases C. Since the electromagnetic wave velocity

of a transmission line is proportional to 1/
√

C, an increase in C will decrease the

velocity.

In a piezoelectric crystal like GaAs, an acoustic wave can couple to mobile charge

carriers via the associated longitudinal electric field with it1.

The next section will describe first the interaction of an acoustic wave in bulk ma-

terials and then move onto the case of a SAW interacting with a 2DES.

1In most of the cases the effect of the deformation potential due to the elastic field is much smaller
than the effect of the electric field.
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4.2 Magneto-acoustic interactions mechanism

Let us consider a small static deformation of an elastic solid. We can define two

second-rank tensor parameters [97]: the stress {T} and strain {S}.
The stress is the force F applied per unit area A of the solid and its component can

be written as Tij = Fi/Aj with i, j = x, y, z. The strain represents the fractional

deformation due to the force F and can be defined as Sij = ∆i/Lj, where ∆ is

the fractional deformation of the solid of length L. The stress and strain tensors

can be reduced to matrices of six elements (indicated as [T ] and [S]) by symmetry

arguments. The equations of state describing the propagation of elastic waves in

piezoelectric materials are [98]

[T ] = [c] [S]− [epz]
t E and D = [epz] [S] + [ε]E (4.1)

where E is the electric field, D the electric displacement field, [c] is the elastic

stiffness, [epz] is the piezoelectric constant and [ε] the electrical permittivity.

For SAWs propagating in piezoelectrics materials the electromechanical coupling

coefficient k 2
eff can be defined as [98]

k 2
eff =

e 2
pz

cε
(4.2)

where the tensor subscripts have been dropped.

The analysis of the propagation of a SAW in a piezoelectric material with a fi-

nite conductivity σ has been completed by various authors [99, 100]. Here we just

present the main results: the propagating electric field E accompanying the SAW

can couple to the mobile carriers in the material and leads to induced currents and

associated ohmic losses σE. This transfer of power from the wave is observed as

an attenuation and velocity shift of the SAW as a function of the conductivity. In

a simple relaxation model, in the linear regime, the attenuation Γ and the velocity

shift ∆v are, respectively

Γ =
ω

v

k 2
eff

2

ωcr/ω

1 + (ωcr/ω)2 and
∆v

v
=

k 2
eff

2

1

1 + (ωcr/ω)2 (4.3)

where ωcr = σ/ (ε1 + ε2), with ε1 (ε2) the dielectric constants of the half-space above

(below) the crystal surface. The conductivity relaxation frequency ωcr is the rate

at which the electron system relaxes back to the equilibrium distribution. If the

sound frequency ω is much smaller than ωcr the carriers will be able to redistribute
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themselves rapidly enough to screen the external piezoelectric field. This results in

inducing a periodically-spaced charge wave traveling in phase with the SAW. In the

present context the electric field is effectively screened by the carriers and no loss of

energy will occur. This is the situation for a perfect conductor. As the conductivity

falls, the time required for a charge wave to build up increases and a situation

arises where, as the elastic wave moves on, the charge carriers are no more able to

screen the electric potential. This imperfect screening of the SAW potential causes

a finite dissipation. The maximum attenuation occurs when the SAW frequency

equals the conductivity relaxation frequency (ω = ωcr). Finally, if the frequency

ω becomes much greater than ωcr, the electron distribution can no longer respond

to the acoustic wave. The inability to screen the field of the SAW results in a

maximum piezoelectric stiffening of the crystal. No charge wave is induced, hence

the current is zero and the associated acoustic losses are minimal. In this situation

the material behaves as an insulator. We can model the 2DES as a thin sheet of

mobile carriers with sheet conductivity σ� located directly on top of the crystal. Let

us also suppose that the thickness of this conducting layer is much smaller than the

SAW wavelength. In this situation, the longitudinal electric field of the SAW can

be screened only at the surface. Restricting the conductivity to a thin sheet results

in a modification of the conductivity relaxation frequency ωcr, that becomes [101]

ωcr =
σ�k

(ε1 + ε2)
(4.4)

where k = 2π/λ is the wavevector of the SAW. Eq. 4.3 becomes now

Γ =
ω

v

k 2
eff

2

σ�(ω)/σm

1 + (σ�(ω)/σm)2 and
∆v

v
=

k 2
eff

2

1

1 + (σ�(ω)/σm)2 (4.5)

where σm = v (ε1 + ε2) is independent of the frequency. Eq. 4.5 tells us that the

attenuation and the velocity shift of a SAW on a piezoelectric substrate containing a

2DES is controlled by the sheet conductivity. In a magnetic field we have to consider

the magnetic field induced anisotropy of the conductivity tensor. If the longitudinal

electric field accompanying the SAW lies in the x direction, σ� has to be replaced

by σxx (B). Thus, in a 2DES in a Hall bar geometry, the relaxation interaction is

strongest for σxx ' σm (Fig. 4.2). For GaAs the characteristic conductivity σm,

when liquid 3He is above the surface, is approximately 3.6×10−7Ω−1.

Eq. 4.5 tells us that by monitoring the attenuation and the velocity shift of a SAW

we can probe the conductivity of the 2DES at a frequency much higher than using
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Figure 4.2: Attenuation (upper panel) and velocity shift (lower panel) of a surface
acoustic wave as function of the conductivity as predicted from Eq. 4.5.

quasi-DC techniques. Moreover, with standard quasi-DC techniques we measure the

sum of resistivities of the 2DES while with SAW technique we probe its conductivity

at the length scale given by the acoustic wavelength.

The above model was originally derived for systems in the absence of an applied

magnetic field under the assumptions that kl � 1 and ωτ � 1 (with l mean free

path). If a magnetic field is applied, the first condition has to be replaced by kRC

where RC is the cyclotron radius. The regime of validity of these conditions is

called local regime [102, 103, 104, 105]. Many experiments show the validity of

this relaxation model in a wide range of frequencies and magnetic field strengths

[106, 107, 108, 109, 110, 111, 112].

Wixforth et al. [106] studied a 2DES at integer filling factor using a SAW frequency

of about 70 MHz (see Fig. 4.3). The agreement between the experiment and Eq. 4.5

is extremely good.

Some deviations from the relaxation model of Eq. 4.5 are observed at very high

frequency and strong magnetic field, when the surface acoustic wavelength becomes

comparable with the length scale characterizing the electron system. Willett et al.

[113, 114, 115, 116, 117] used SAW of very high frequency (up to 7.8 GHz) to study

the electron correlations in the fractional quantum Hall regime. One of the main
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results of their study is the measurement of a Fermi sea at ν = 1
2

which is evidence

for the composite fermion picture of the FQHE. This was achieved by studying the

velocity shift of a SAW for different sound wavelengths. At ν = 1
2
, a peak in Γ

and ∆v was predicted by using Eq. 4.5. However, when the SAW wavelength was

comparable to the quasi-particle mean free path, they detected instead a dip in both

the attenuation and the velocity shift (Fig. 4.4).

Figure 4.3: SAW measurement of a 2DES in the integer quantum Hall regime
with an acoustic frequency of 70 MHz. The transmission and the velocity shift on
the SAW are shown together with the conductivity of the 2DES. The solid lines are
experimental data, while the dotted lines are obtained using Eq. 4.5. The agreement
is very good. Figure from [106].
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Figure 4.4: SAW measurement of a 2DES in the fractional quantum Hall regime
with an acoustic frequency of 700 MHz. The amplitude and the velocity shift of
the SAW are shown together with the conductivity of the 2DES. The solid lines are
experimental data, while the dashed lines are obtained using Eq. 4.5. At filling factor
1
2 , Eq. 4.5 predict a peak in both amplitude and velocity shift of the SAW. Instead,
a dip was experimentally detected (solid lines). The local-regime conditions are not
fulfilled since the acoustic wavelength becomes comparable with the CF mean free
path, so Eq. 4.5 is not valid any more. Figure from [113].

4.2.1 Acousto-electric effect

A well-defined momentum characterizes a SAW. When the traveling electrostatic

potential of the wave interacts with a 2DES it perturbs the electron density and

transfers part of the momentum to the mobile carriers. This will induce drag currents

and voltages depending on the experimental configuration. This is the acousto-

electric effect (AE) [118]. In the following section we derive the expression for the

acousto-electric effect based on the theory of Falko et al. [119].

For piezoelectric materials a SAW propagating along the x direction is accompanied
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by an electric field ESAW (x, t) = − ∂
∂x

Φ (x, t) = E0e
i(kx−ωt) where Φ is the varying

potential of the SAW. As mentioned previously the mobile carriers in the 2DES

screen this field. This leads to an effective electric field

Eeff =
ESAW

1 + i (σxx/σm)
. (4.6)

The action of the effective electric field is to perturb the density of the mobile

carriers. The non-linear second-order density perturbation leads to a finite acous-

toelectric drag current within the 2DES. This (time-averaged) drag current jac can

be expressed in the form

jac
i = Λil

IΓ

v
= ΛilQl. (4.7)

Here I denotes the acoustic intensity of the wave and is related to the attenuation Γ

by I = I0exp (−Γx). Q represents a ’phonon pressure’ while Λil is the acoustoelectric

tensor. Thus a SAW of intensity I is attenuated by the 2DES and a momentum Q

is transferred to the mobile carriers. The drag current causes a DC electric field to

appear which in turn causes an ohmic current to flow in the 2DES. In the presence

of a magnetic field this electric field causes also a Hall current to appear.

Falko et al. found the acoustoelectric tensor to be given by

Λil = −∂σil

∂n
, (4.8)

with n the electron density. The derivatives of the conductivity may be expressed

as

∂σ

∂n
=

∂σ

∂ν

∂ν

∂n
=

ν

n

∂σ

∂ν
. (4.9)

In our experiments all the contacts are left open and no macroscopic current is

permitted. With this boundary condition, using the expression for the LL filling

factor ν = nh
eB

and recalling that

σ̄ =

(
σxx σxy

σxx σxy

)
= ρ̄ −1 =

1

ρxxρyy − ρxyρyx

(
ρyy −ρxy

−ρyx ρxx

)
,

we end with the following expressions for the electric field components

Ex =
ΓI

ven

(
νρxy

∂σyx

∂ν
+ νρxx

∂σxx

∂ν

)
(4.10)
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and

Ey =
ΓI

ven

(
νρyx

∂σxx

∂ν
+ νρyy

∂σyx

∂ν

)
. (4.11)

Eq. 4.10 and Eq. 4.11 will be used in Sec. 5.5 to interprete the experimental findings

of the acoustoelectric measurements.

4.3 Setup

In the previous section we showed how it is possible to obtain complementary in-

formation about the electronic properties of the 2DES using quasi-DC and SAW

measurements. In the rest of this chapter we will explain how these measurement

are conducted. One of the main requirements is to have a device that allows the

realization of low and high frequency (HF) measurements with the best possible

efficiency. This will be discussed in Sec.4.3.1. The second important requirement

is to have a measurement setup with high enough signal to noise ratio, in order to

obtain reliable results. Our system will be outlined in Sec. 4.3.2.

4.3.1 Sample preparation

Fig. 4.5 shows one of our typical devices. We start with a MBE-grown wafer contain-

ing a 15 nm GaAs quantum well imbedded between AlxGa1−xAs barriers doped with

a layer of Si donors. A Hall bar 900 µm long and 200 µm wide is defined by standard

photolithography and wet chemical etching. Eight ohmic contacts to the 2DES are

achieved by deposition of Au/Ge/Ni (3016/1538/900Å) in a vacuum chamber and

subsequent annealing at 370oC for 120 s and at 440oC for 50 s in a N2 atmosphere

at 300 mbar. These ohmic contacts are used for the quasi-DC measurements. After

the ohmic contacts, single-finger IDTs are fabricated using photolithography (for

fundamental frequencies up to 450 MHz) and subsequent evaporation of 80-100 nm

of Al. Finally, as last step of the preparation of our device, pads of Ti/Au (15/150

nm) are deposited over the ohmic contacts and the transducer pads.

In the following section we discuss the design factors for the IDTs.

Since the frequency response of a SAW delay line allows only the transmission of

frequencies close to resonance [98], we will refer to our device as a SAW (bandpass)

filter.

An important consideration when designing the SAW devices is the spatial sepa-

ration of the transducers. The size of the package and spatial constrictions within
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the cryostat determine the maximum separation of the IDTs. Sufficient delay is

required to allow the delayed SAW pulse to be time-resolved from the electromag-

netic breakthrough between the RF lines. A greater separation would enhance the

sensitivity of the device as the wave would propagate over a longer interaction re-

gion. Furthermore it is desirable to have the IDTs far from the 2DES in order to

reduce the electromagnetic cross-talk. Trading these factors against the inherent

propagation losses and considering the restrictive limits imposed by the package, an

IDT separation of about 2.3 mm was chosen, yielding a SAW delay time τSAW of

about 800 ns.

The second important point is the direction along which the transducers have to

be oriented. In general, SAW piezoelectric substrates are anisotropic. This means

that their SAW propagation characteristic is not the same in all directions. This

can lead to an effect known as beam steering2, which can degrade the response of a

SAW delay line [96, 121]. The reason for this is that in anisotropic media the flow

of power is not necessarily perpendicular to the phase front. Instead, it makes an

2Also known as phonon focusing (see for example [120]).

Figure 4.5: A top-view image of one of our devices. The IDTs, the Hall bar and
the ohmic contact are indicated, together with the silver paste used to damp the
wave reflected by the edge of the crystal. The IDTs have a fundamental frequency
of 450 MHz. See text for the details of preparation. The scale is shown by the
horizontal bar on the left.
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angle α with the perpendicular given by

α =
1

v

dv

dθ
(4.12)

where θ is the angle between the propagation direction and the crystal axis. This

means that only those directions in which the velocity is a maximum or a minimum

can be used for SAW devices. Improper alignment of an IDT with the required

crystal direction can also result in beam steering [121]. The next restriction comes

from the requirement of strong piezoelectric coupling. For the reasons mentioned

above, in our devices, the IDTs are oriented along the [110] direction on the (001)

plane of GaAs, which has k 2
eff of 6.4×10−4 and a SAW velocity of 2863 m/s [122,

123].

For the fabrication of a SAW delay line thin metal films are deposited to form IDTs.

These films need to be light enough so that they do not damp the surface wave

excessively. Because of its low density we employ Al. The metal films should be as

thin as possible but at the same time should provide good electrical contact and low

resistance. In our structure we used a thickness between 75 nm and 100 nm.

Until now we focused on the fundamental resonance frequency. A single-finger IDT

structure like the one showed in Fig. 4.5 can operate at harmonic frequencies as

well. This harmonic use is attractive for three reasons: first it enables gigahertz

SAW filters to be fabricated with standard photolithography techniques. Second,

the use of harmonics can be useful when the response at the fundamental frequency

is degraded by bulk wave interference. Third, harmonic operations allow the study

of the response of the same 2DES at different frequencies without changing the

environmental conditions. The frequency response at harmonics depends strongly

on the ratio between the width of a single electrode and the distance between two

consecutive ones. In order to enable the generation of as many harmonics at low

frequency as possible, a ratio metallized:unmetallized regions of 3:2 was chosen.

Within our devices we managed to excite up to the 11th harmonic.

So far we have only analyzed the behavior of the SAW filter alone. In reality

it is connected to some external circuit and requires impedance matching. The

impedance of the IDTs can be adjusted to match the external source (usually 50 Ω)

by varying the width of the acoustic beam set by the aperture W (see Fig. 4.1).

The last parameter to consider in the design of the transducers is the number of

finger pairs N , which is related to the bandwidth ∆f of the SAW filter by the
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relation

∆f

f
=

1

N
. (4.13)

In order to have more acoustic power one should have a larger N . However, in-

creasing N will reduce the bandwidth of operation of the filter. Moreover, higher

N implies a higher value of the capacitance of the IDT and maintaining impedance

matching becomes difficult. Our IDTs have N = 40.

An IDT generates SAWs in both directions, towards the Hall bar and the crystal

edge. A spot of a two-component silver paste is applied behind the IDTs to damp

the incoming acoustic waves (see Fig. 4.5) that could be reflected by the sample edge

and degrade the performance of the transducers. The input transducer generates

not only SAWs but also waves propagating into the bulk in any direction. Some

of these waves can be reflected at the bottom of the crystal and reach the output

transducer modifying the response of the filter. To reduce this effect, the devices

are glued onto the sample holder with the same silver paste as before in order to

absorb most of the bulk waves.

Many other sources contribute to decrease the performance of the SAW filter [98].

An inherent insertion loss is associated with the geometry of the device itself. When

excited by an alterning voltage the IDT generate surface acoustic waves in both

directions. This inherently causes a 3 db insertion loss since part of power is lost in

this unwanted process. Moreover, some of the SAW power received at the output

transducer is radiated back through the piezoelectric effect. The portion reflected

back to the input transducer can lead to further generation of SAWs from the input

towards the output transducer. This new wave will then arrive at the output trans-

ducer delayed by 2τSAW with respect to the main SAW pulse (so the name Triple

Transit Echo) and produce ripples in the frequency pattern. In modern SAW tech-

nology some tricks or special IDT geometries are used to reduce these (and many

more) second-order effects. They mainly consist in increasing the performance of a

SAW filter at one, and only one, operation frequency. Since we prefer to have a good

frequency response at all harmonics, such solutions were not adopted. Moreover the

limited space in our cryostat, together with the presence of the Hall bar along the

propagation path, makes many of these solutions not applicable.

After describing how to prepare a device for generating and detecting surface acous-

tic waves we turn to the requirements for the 2DES in order to be studied with

SAWs.
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As shown in Fig. 4.2, the changes in the attenuation and velocity shift of a SAW are

more dramatic when the conductivity of the 2DES is similar to σm, which in GaAs

is a small quantity (in our experiments 3.6×10−7Ω−1 ). Therefore, in SAW measure-

ments, any unwanted contribution to the conductivity smears out the changes we

are looking for. The main detrimental effect in high mobility 2DES is the parallel

conduction. Special attention has to be put in the design of the MBE-wafers in

order to reduce this effect and still have good electron mobilities.

The density of the mobile carriers cannot be set precisely enough during growth to

have the spin phase transition exactly at ν = 2
3
. This means that it is convenient to

change the electron density of the 2DES by means of a metallic gate. A top-gate is

usually preferable since it is technologically easy to fabricate and it does not require

a high voltage to be applied due to the close proximity with the 2DES. We used

a structure in which the 2DES is located 400 nm below the surface. On the top

of the Hall bar a 8.5 nm thick AuPd layer is deposited to be used as the top-gate.

Unfortunately, although our gate has an extremely small thickness, our attempts to

detect a clear signal from this structure failed because the metal electrode shorts

the electric field of the wave, the main mechanism of interaction between the SAW

and the 2DES. We also tested devices with a back-gate. For this purpose we de-

signed two different types of structure. In both of them the 2DES resides 120 nm

below the surface but the gate is obtained in two different ways. In the first type of

structure a layer of p-doped GaAs is grown about 1 µm below the quantum well. In

order to have the 2DES electrically separated from the gate it is necessary to obtain

ohmic contacts to the QW and to the p-doped GaAs which are perfectly n-type and

p-type respectively in order to avoid a short circuit. This avoids prestructuring the

gate layer prior to overgrowing it [124, 125, 126]. We successfully managed to fulfill

these requirements and some devices were prepared which were tunable over a wide

range of electron density and still show mobilities exceeding 600000 cm2/Vs. Alter-

natively the devices are glued onto the sample holder with conducting silver paste,

as above mentioned; the holder itself can then be used as back-gate. This solution

is relatively simple but has the disadvantage that the metallic gate is far from the

2DES and high voltage is required in order to slightly modify the carrier density.

This means that the sample has to be designed to have an intrinsic carrier density

already close to the optimal value. This has been achieved by optimizing the doping

concentration and the spacer extension (see App. A for the sample structure). All

the measurements that will be presented in Chapter 5 are obtained with the last
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type of sample.

In addition to all of these efforts a setup with a high signal to noise ratio is required

in order to detect small changes in the attenuation and velocity of the SAWs. Our

apparatus is described in the next section.

4.3.2 Apparatus

Sample holder

The metallic transducers behave essentially as antennas. This means that at high

frequencies they will generate unwanted electromagnetic radiation that can inter-

fere with the signal in which we are interested. It turned out that these sources

of radiation were not sufficiently screened using the sample holders normally used

for quasi-DC measurements. For this reason a special sample holder was designed.

Fig. 4.6 shows one of these devices. It consists of a custom-designed PC board;

the dielectric material is FR4, while the metallization material is copper, partially

covered with tin. The ohmic contacts and the transducers are connected to the met-

allized parts of the board by gold wires 25 µm in diameter. Gold pins are used for

Figure 4.6: An image of our PC board with the device inserted. The bonding
wires are present. After the device is glued with silver paste and the bonding wiring
is ready, a metallic cover is put on the top using three screws. The cover voltage
is put to ground to shield the device from electromagnetic radiation. See text for
details.
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connecting the ohmic contacts to the DC wiring of the cryostat. The design of the

high frequency lines must be more accurate in order to avoid power dissipation and

electromagnetic radiation. To save space we use SMP Straight Plug connectors for

the transmission of the high-frequency signal. The connection between the bond-

ing wires and the SMP connectors is realized with grounded-coplanar-waveguide

designed for 50 Ω impedance3. Also the bonding wires connecting the coplanar

waveguides to the transducers behave like antennas when subjected to a HF signal.

To reduce this contribution we opted for having wires as short as possible. This is

achieved by creating a slot in the PC board that contains the device, reducing in

this way the vertical extension of the wires. This slot is metallized and is used as a

back-gate (see Sec. 4.3.1).

Finally, as a shield against external perturbation, a brass cup connected to ground

covers the device. The main idea behind this design is to confine the sample into a

metal cavity with dimensions much smaller than the wavelength of the ambient RF

signals.

Cryogenic insert

Our first choice had been a Heliox insert from Oxford Instruments. It allows mea-

surements in vacuum, where the mass loading on the surface is negligible. It has a

nominal base temperature of about 270 mK and enough space for the sample holder

and for a mechanism to tilt the sample in situ. High frequency low loss coaxial cables

were required to carry the RF signal to the input IDT and detect the transmitted

SAW from the output IDT. However heat flow through the RF lines thermally loaded

the sample. To counteract this, great care had been taken to dissipate the heat to

prevent thermal conduction to the device. Sapphire striplines were mounted onto

the 4He and 3He pot respectively. The lines were defined by thermal evaporation of

Au, and their dimension was calculated in order to achieve 50 Ω impedance. Cables

were thermally anchored in this manner on the 4He and 3He pot. Furthermore, the

outer conductors of the coaxial cables were thermally anchored to the conical seal

of the Heliox. Connections between the coax and the strip line were made using

silver solder paste. The RF lines consisted of three sections: first, semi-rigid coaxial

cables were mounted between the top of the insert and the 4He pot. These were

3The layout recommendation from the company producing the SMP connector (Rosenberger
Hochfrequenztechnik GmbH) was used.
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terminated at the top end with a 50 Ω SMA connector. This type of cable (Preci-

sion Tube, model AS50085) has a stainless steel outer conductor of thickness 0.25

mm, a silver plated copper-clad steel inner core of 0.5 mm diameter and a PTFE

dielectric. Thinner and more flexible coaxial cables were inserted between the 1 K

pot and the 3He pot. These have an inner conductor diameter of 0.11 mm, an outer

conductor of 0.51 mm and a PTFE dielectric. The attenuation is higher than for the

previous cables and they were inserted to increase the thermal isolation of the 3He

pot. Finally, the lower section connecting the 3He and the sample consisted of the

semi-rigid coax plus twisted copper wires at the very end. With these modifications

we managed to reduce the heat load of the sample. However, due to poor reliability

of the insert (leaks) and technical problems with the rotating mechanism, we moved

to a different system.

The measurements shown in Chapter 5 are performed in an Oxford Instruments

cryostat equipped with a superconducting magnet with a maximum magnetic field

value of 12 T. The sample holder resides in a 3He bath inside a 3He pumped insert

whose lowest temperature is nominally 350 mK (homemade 3He system).

The liquid above the device dissipates part of the acoustic power. There are two

main mechanisms of dissipation: due to generation of compressional waves into the

liquid, and due to friction with the liquid at the surface. The attenuation due to

these two effects can be estimated to be [127] 3.37 db/cm and 3.7×10−3 db/cm

respectively, low enough to be disregarded.

The insert was equipped with a small Philips RuO2 thermal resistor placed in close

proximity to the device, a bigger Ge resistor still close to the sample holder, a heater

to remove liquid 3He for allowing faster device replacement and a LED to illuminate

the device. 21 double-insulation constantan wires were inserted to perform quasi-

DC measurements, to apply the voltage to the gate and to control the electronic

devices just mentioned. Two low-loss coaxial cables were required to carry the HF

voltage to the transducers and detect the SAW signal. The coax that we inserted

were the same semi-rigid Precision Tube cables that we have described above. They

terminated at the very top end of the insert with 50 Ω SMA connectors, and at the

bottom with SMP Straight Jack connectors compatible with the SMP connectors

on the sample holder. In this way the sample holder can be easily (dis)connected

to the HF line just by plugging it. Special care has to be taken in order to avoid

excessive heating from the HF lines to the 2DES. The 3He bath in which the coaxial

cables terminate provides already a good dissipation. Moreover, several heat sinks
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are placed along the full length of the cables and also along the insert itself to in-

crease heat dissipation.

With the modifications mentioned above we were able to work at a temperature of

about 400-500 mK for about 30 hours. After this time, the liquid 3He is almost

completely evaporated, the pumping on its surface has to be stopped and the 3He

gas has to be condensed again at about 1.3 K. Waiting a longer time caused the

device to warm up dramatically to more than 30 K, with the consequence that the

2DES could have different characteristics in a second cooldown. To prevent this we

did not perform continuous measurements for more than 20 hours.

A Keithley Source Measurement Unit 236 provided the DC voltage to the gate. This

instrument allows the determination of the resistance between the 2DES and the

metallic back-gate. In all the measurements shown in this thesis, the value of this

resistance was higher than 5 GΩ for an area of 0.18 mm2.

With the exception of the power supply of the magnet, which was controlled via

a Serial connection, all the instruments were controlled via a GPIB interface by

self-written programs in Labview.

Quasi-DC transport measurements

Theoretical predictions of the velocity shift and attenuation of surface acoustic waves

based on Eq. 4.5 rely on the measurement of the low-frequency conductivity. Trans-

port measurements were made using the Hall bar geometry shown in Fig. 4.5. The

transversal and longitudinal voltages were measured simultaneously with two Signal

Recovery 5210 lock-in amplifiers, whose outputs were fed into Keithley 199 digital

multimeters and then read out by a GPIB interface. Measurements were performed

in a 4-point configuration, with separated contacts being used for source, drain, volt-

age probes. The reference signal was given by the internal source of one of the lock-in

amplifiers. The applied current was generated by the internal oscillator of the same

lock-in amplifier followed by an in-series 10 MΩ resistor. If not otherwise specified,

reference signals of 3.4 Hz were used, with excitations currents in the range 1-200 nA.

SAW transmission

SAW attenuation and velocity measurements are usually made with pulsed signals

in order to use the different arrival times to distinguish between the unwanted (fast)
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electromagnetic cross-talk and the (slower) SAW signal. However the construction

of a linear, low-noise detection system is not an easy task. Our approach is to

use an Agilent Technologies network analyzer E5071B equipped with the option

of time-domain measurements. With this instrument we can send frequency-swept

continuous waves to the input transducer and measure simultaneously both phase

and amplitude of the signal induced from the output transducer. This allows us

the inverse Fourier transformation of the data to the time domain and still use ar-

rival time discrimination to select the desired SAW signal through bandpass window

gating. Once the correct gating is chosen, it is possible to return to the frequency

domain where, thanks to above procedure, the signal caused by frequencies not in

resonance with our IDTs is strongly suppressed, and this results in an enhanced

signal to noise ratio.

Before being sent to the network analyzer the signal coming from the output trans-

ducer is amplified. We use one of three different models of amplifier from Miteq

depending on the frequency range in which we are working: AU-1114 (10-500 MHz),

AM-1533 (1-1000 MHz) and AFS5-00100600-1 (0.1-6 GHz).

Furthermore the signal is averaged over 100 spectra by the network analyzer to in-

crease the signal to noise.

Flexible low-loss coaxial cables LMR-240 from Times Microwave Systems are used

from the network analyzer to the cryostat and from the amplifier to the network

analyzer.

It is important to stress that the SAW measurements are performed simultaneously

with the quasi-DC transport measurements described in the previous section. This

allows a direct comparison between the results obtained with the two techniques.

Fig. 4.7 shows an example of such a kind of measurement. The experimental at-

tenuation and velocity shift for a SAW of frequency 350 MHz are plotted in the

upper graphs. At low magnetic field (B.1 T) both the attenuation and the velocity

shift show characteristic oscillations which coincide in position with the Shubnikov-

de Haas oscillations. At higher field, when the quantum Hall effect becomes more

pronounced, the oscillations in the attenuation split into two peaks surrounding the

region of integer filling factor. The prediction of Eq. 4.5 are shown in the lower

graphs of Fig. 4.7. The curves qualitatively reproduce the experimental results al-

though there are some quantitative differences. The experimental oscillations seem

to be superimposed on a smooth background. Moreover, the experimental atten-

uation maxima do not reach the theoretical value of k k 2
eff/2 (see Eq. 4.5). One
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Figure 4.7: Velocity shift (left panels) and attenuation (right panels) of a surface
acoustic wave as a function of the magnetic field. The upper graphs are the ex-
perimental results, while the lower ones are the calculations based on Eq. 4.5. The
acoustic power at the top of the inset was -20 dbm. Data obtained from wafer 8813
with a SAW frequency of 350 MHz.

possible reason is the acoustic load caused by the AlGaAs barrier in our sample

and (much more important) by the doping layer. The latter source of attenuation

is included in Eq. 4.5 only through the contribution that it adds to σxx, but the

SAW is more sensitive to any extra conductive channel than quasi-DC transport.

Another difference between the experimental and the theoretical curves is that the

width of the peaks in the velocity shift and the distances between the splitted peaks

in the attenuation are smaller than the predicted ones, whose positions coincide

with the widths of the quantum Hall effect as obtained from the transport data.

We do not know yet where this difference comes from. One possible explanation

is due to the fact that standard quasi-DC transport probes the conductivity of the

edge states, while in the case of SAW propagation we probe the bulk conductivity

of the 2DES. The asymmetry of the peaks in Γ is probably caused by small inho-

mogeneities of the sample [108]. In short, our setup allows us the detection of all

the features present in the standard quasi-DC transport measurement with SAWs.

Fig. 4.8 shows a comparison between the longitudinal resistivity ρxx at low field with

the SAW transmitted signal. Oscillations are clearly resolved in the transmission

that fully reproduce the well-known Shubnikov-de Haas oscillations in the resistivity.

This ensures the sensitivity of our setup even to small changes in the conductivity.
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Figure 4.8: Longitudinal resistivity (black curve) and acoustic transmission (red
curve) along the SAW delay line at low magnetic field. Data obtained from wafer
8813 with a SAW frequency of 350 MHz.

SAW drag

For this kind of measurements we use the same type of device as described in

Sec. 4.3.1 and employ the experimental configuration called ’open geometry’ [128].

We generate SAWs with one of the transducers while the other is kept short cir-

cuited. All of the contacts of the Hall bar are left open and the action of the SAW is

to generate electric fields in the sample where no macroscopic current is permitted.

An amplitude modulated (AM) signal is generated by an HP8657A RF-generator

and sent to the input IDT while the other IDT is connected to ground. The refer-

ence modulation signal for the RF-generator is a sinusoidal wave with a frequency

of 70 Hz and the ratio on/off of the AM output signal is set to 99%. The voltage

generated by the SAW at the contacts of the Hall bar is detected with standard

lock-in technique with the reference frequency given by the modulation signal.

Studying the acoustoelectric effects is not an easy task. It is extremely difficult to

separate the contribution of the 2DES from that generated by impurities, by non-

perfect contacts and so on. In the following we show the capabilities of our setup

using measurements performed on the same wafer of Fig. 4.7.

First we check that we can detect acousto-drag voltages: we fix the value of the

magnetic field and we sweep the input frequency in a range around the resonance

frequency of the transducer. Since the IDTs produce SAWs only at a precise fre-

quency, the voltage due to the acoustic wave should appear only when the exciting
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Figure 4.9: Drag voltage measured at a magnetic field of 10 T and an acoustic
power of -10 dbm. The solid and dashed lines are recorded under the same exper-
imental conditions but using two different transducers. Data obtained from wafer
8813 with a SAW frequency of 233 MHz.

frequency is equal to the resonance frequency. The same resonant structure should

be detected also when the input IDT is interchanged, but from symmetry arguments

its sign should be reversed. A typical result for the longitudinal (drag) voltage mea-

sured at 10 T and input power of -10 dbm is reported in Fig.4.9. A clear resonant

signal is detected around the resonance frequency of 233 MHz. Using the opposite

IDT the features at the resonance frequency are inverted, as expected. The quan-

titative differences are due to the fact that the two transducers are not perfectly

identical. We check that the experimental results in the acoustoelectric measure-

ments are present only when the signal applied to the transducer is at resonance.

To get rid of the smooth background signal, which is typically one order of magni-

tude smaller than the SAW induced signal, we subtract from the trace taken at the

resonance frequency the one taken out of resonance.

Fig. 4.10 shows the quasi-DC measurement of the longitudinal and Hall resistivities

taken at a temperature of 1.3 K. The features related to the integer quantum Hall

effect are well resolved. In Fig. 4.11, the upper panel shows the drag voltage mea-

sured on the same sample for an input power of -10 dbm. At low field (B . 1 T) the

curve presents oscillations that are in phase with the Shubnikov-de Haas oscillations.

At higher fields the drag voltage is zero at integer filling factors: the SAW-induced

electron flow is dissipationless. It is interesting to note that the overall drag voltage
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Figure 4.10: Longitudinal and Hall resistivities measured with quasi-DC tech-
niques. Data obtained at a temperature of 1.3 K from wafer 8813

resembles quite well ρxx even though we are not applying any quasi-DC current.

This can be understood since now it is the SAW that transfers a non-zero average

momentum in the direction of its propagation to the electrons. The above results

show that our setup allows the detection of drag voltages. Fig. 4.11 lower panel

shows the drag signal calculated according to Eq. 4.10 using the data of Fig. 4.10.

Qualitatively the theoretical curve reproduces all the features present in the exper-

imental one. Quantitatively this is not the case. No quantitative comparisons have

been reported in previous works. Nevertheless the theory of Falko et al. is the one

that reproduces the experimental features best.

The above results show that our setup allows the detection of the signal due to the

acousto-drag and that Eq. 4.10 can be used to qualitatively interpret our experi-

mental findings.
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Figure 4.11: Upper panel: drag signal from wafer 8813. Data obtained at a
temperature of 1.3 K and an acoustic power of -10 dbm with a SAW of frequency
233 MHz. Lower panel: drag signal calculated from the quasi-DC data shown in
Fig. 4.10 using Eq. 4.10.
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5 Results and discussion

In this chapter we present our experimental results concerning the spin phase tran-

sition at filling factor 2
3
. This transition has been studied both in the low current

regime, where the quantum Hall ferromagnetism is present, and in the high current

regime, where the interaction between electron and nuclear spins takes place.

We study the transition mainly by detecting the longitudinal transport properties

of the 2DES close to ν = 2
3

and the SAW damping simultaneously.

In the first part we show the results obtained with quasi-DC techniques at a probing

frequency of 3.4 Hz. Then we study the conductivity of the 2DES at high frequen-

cies using SAW.

Finally, in the last part of the chapter, we will discuss our experimental findings.

5.1 About the devices

In order to study the phase transition at ν = 2
3

with SAWs it is crucial to have a

2DES of good quality.

The most important requirement is a weak parallel conduction because it shorts

the electric field (see Chap. 4). Whenever the parallel conduction is absent in the

quasi-DC transport data, SAW measurements are possible and the results reliable.

In order to change the electron density a metallic top-gate should be (if possible)

avoided. In fact a conducting layer on the surface contributes to the screening of

the electrical potential of the wave, reducing the signal to noise ratio. If using a

back-gate great care has to be taken in order to change the applied voltage slowly,

otherwise increased leakage currents can be detected.

We measured several devices from two different wafers. They all show qualitatively

the same results. In the rest of this chapter we concentrate on the data obtained

from the wafer 81644 (see Appendix for the sample structure). We will focus in

particular on two devices obtained from that wafer with back-gates on the bottom

surface. The preparation is similar for both (see Sec.4.3.1) except for the design

of the IDTs. In one of the samples (sample A) the resonance frequency of the
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5 Results and discussion

transducers is about 233 MHz while in the other (sample B) it is 115 MHz.

Unless otherwise mentioned, during the measurements the gate voltage was kept

fixed in order to have the degeneracy between the two ground states (spin polarized-

spin unpolarized) at filling factor 2
3
. The transition between one spin configuration

to the other is achieved by sweeping the magnetic field around the fractional filling

factor.

5.2 Quasi-DC transport

In this section we describe the magnetotransport measurements of our devices at 2
3

filling. The main results of previous works at the spin transition are reproduced.

As in earlier works the details of the hysteresis varied from sample to sample and

experimental runs. The possible explanations for these differences are discussed and

the experimental procedures to get consistent results are described.

Fig. 5.1, main graph, shows the longitudinal resistivity for sample B plotted as

a function of the magnetic field for the two sweep directions of the magnetic field.

Figure 5.1: Main graph: longitudinal resistivity for sample B as a function of the
magnetic field for the two sweep directions: up (solid line) and down (dashed line).
The data are taken in the low current regime: the excitation current is 10 nA and
the magnetic field sweep rate is 0.4 T/min. The regions of dissipationless transport
at filling factor 1 and 2 are indicated. The vertical dotted line indicates the position
of filling factor 2

3 . Inset: zoom on the magnetic field region close to ν = 2
3 .
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5.2 Quasi-DC transport

These date are taken with an excitation current of 10 nA and a field sweep rate of 0.4

T/min. One recognizes the regions of dissipationless transport corresponding to the

integer quantum Hall regime (filling factor 1 and 2 are indicated in the figure). At

low magnetic field, Shubnikov-de Haas oscillations are also visible. More important

is the high field region, where the vertical dotted line at about 8.9 T indicates the

position of the filling factor 2
3
. This region is plotted in an enlarged view in the

inset. At ν = 2
3

a minimum in the resistivity is expected. Instead, the curves show a

small peak at this filling factor. This resistivity maximum indicates that the phase

transition is taking place [54].

Fig. 5.2 represents the same kind of measurement as before, but now the current

has been increased to 200 nA and the magnetic field sweep rate, in the region close

to ν = 2
3
, has been reduced to 5 mT/min. Instead of the small peak of Fig. 5.1 a

huge increase of the resistivity (HLR) is now present at the phase transition.

From now on, we will refer to these different behaviors as the low current and the

high current regime.

Figure 5.2: Main graph: longitudinal resistivity for sample B as a function of the
magnetic field for the two sweep directions: up (solid line) and down (dashed line).
The data are taken in the high current regime: the excitation current is 200 nA
and the magnetic field sweep rate is 5 mT/min close to the transition. The vertical
dotted line represents the position of ν = 2

3 . Inset: zoom on the magnetic field
region close to ν = 2

3 .

75
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5.2.1 Lack of reproducibility and exchange effects

Fig. 5.3 summarizes the longitudinal resistivity at the phase transition for the two

different regimes. The solid lines are taken in the low current regime, the dashed

line in the high current one; the black curves correspond to a magnetic field sweep

up, while the red curves are for fields changing downwards 1.

Looking at Fig. 5.3, there are two effects that distinguish the high current from

the low current regimes.

The first one is the increase in resistivity already mentioned. The second one is

the dramatic hysteretic behavior present in the high current regime upon changing

direction of the magnetic field sweep. Let us focus on this second point.

Fig. 5.4 shows the longitudinal resistivity close to filling factor 2
3

for sample A, taken

in the low current and in the high current regime respectively. For this sample the

hysteresis is present not only in the high current regime but also in the low current

one. The same phenomenon, although not so dramatic, is present during a second

1In the rest of the chapter, the same notation holds if not otherwise indicated.

Figure 5.3: Longitudinal resistivity for sample B in the high and low current regime
as a function of the magnetic field for the two sweep directions in the region close
to filling factor 2

3 . The solid lines correspond to the low current regime (I = 10 nA,
B-sweep rate of 0.4 T/min), while the dashed lines are for the high current regime (I
= 200 nA, B-sweep rate of 5mT/min). Black lines refer to upwards B-sweep, while
the red lines are for the downwards B sweep.
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5.2 Quasi-DC transport

Figure 5.4: Longitudinal resistivity for sample A in the high and low current
regime as a function of the magnetic field for the two sweep directions. Inset: zoom
on the region close to filling factor 2

3 . The notation is the same as in Fig. 5.3

cooldown (from room temperature) of sample B (see Fig. 5.5).

Figure 5.5: Longitudinal resistance for a different cooldown of sample B in the
high and low current regime as a function of the magnetic field for the two sweep
directions. The different lines have the same meaning as in Fig.5.3. Inset: zoom on
the region close to filling factor 2

3
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Phase transitions at the crossing of different LLs are often characterized by hys-

teretic phenomena [54]. Previous studies of the spin transition at ν = 2
3

are char-

acterized by hysteresis in the low and high current regime [80, 87, 73]. However,

hysteresis in the low current regime has been observed only at temperatures lower

than 70 mK, much lower than the one of our experiments. Moreover, while in the

high current regime the transport properties changed for different cooldowns also

in the previous works, in the low current regime they were quite stable. It is not

completely clear why our devices show different behaviors. Stern [84] studied the

hysteresis in the low current regime at 70 mK as a function of the gate voltage (i.e.

the filling factor) for a 15 nm QW. The hysteresis is present when the voltage is

varied at a fast rate (0.6 V/min) while it disappears for a slower voltage rate (6

mV/min). He attributes this effect to the exchange energy of the electrons. To

understand this argument let us look at the energy diagram depicted schematically

in Fig. 3.4. Approaching the coincidence from the low field region the two occupied

level has opposite spin index. Since the Pauli exclusion principle does not prevent

electrons with opposite spins from approaching each other, their Coulomb interac-

tion is strongly modified. The transition does not occur at the level coincidence

but is slightly shifted. On the other side of the crossing point such a modification

is less effective. In other words, the transition does not occur symmetrically with

respect to the crossing point. Activation energy measurements of Stern show dif-

ferent energy gaps on the two sides of the transition and the slope with which the

coincidence is approached is slightly different for the two magnetic field directions.

These data confirm the picture described above. In our measurements the magnetic

field is changed relatively fast (0.4 T/min). A stronger exchange interaction with

respect to previous studies could be the reason for the detection of the hysteresis at

higher temperature.

The lack of reproducibility of the transition in devices obtained from the same wafer

and even in the same device in different cooldown cycles suggests that microscopic

differences play a role in the observed phenomena. One of these differences could be

local random fluctuation of the thickness of the QW. As previously mentioned the

polarization of the 2DES depends on the ratio between Zeeman and Coulomb en-

ergy. A different width of the quantum well causes corrections to both these energies.

The g-factor has to be modified due to corrections arising from the non-parabolicity

of the band structure in GaAs [129] and from the confinement induced light-hole

heavy-hole splitting in the valence band of GaAs [130]. The Coulomb energy can be
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5.2 Quasi-DC transport

calculated according to

EC =
e2

4πεl eff
B

(5.1)

where l eff
B =

√
l 2
B + λ2 is the effective magnetic length and λ is the full-width-

half-maximum of the wavefunction, which depends on the QW thickness [131, 132].

Different devices, although originating from the same wafer, could have different

QW-width fluctuations. This implies different domain morphology and a different

response as a function of the magnetic field.

Also the hyperfine interaction between electron and nuclear spin can strongly influ-

ence the electronic transport at 2
3
. Whenever the nuclei are polarized they create

a local magnetic field, referred to as the nuclear hyperfine field BN. As a result

the Zeeman energy changes to g∗µB(Bext + BN). The change in the electron spin

resonance (ESR) frequency due to the nuclear hyperfine field is known as the Over-

hauser shift [133]. The different response of our devices could be due to a different

nuclear polarization. This is however quite unlikely to happen. The nuclei can only

be polarized thermally or through spin flip-flop processes. The thermal polarization

is negligible at the temperature and magnetic field of our experiment (T w 400

mK, B w 10 T). Spin flip-flop scattering should not occur in the low current regime

because the current that we apply is not strong enough to polarize the nuclei (see

Sec. 5.4).

The different behavior of our devices could be due to a different disorder potential

which can act through pinning centers for the domain nucleation and the domain

wall topology2. One should mention that the wafer 81644 has been grown with a

different MBE machine with respect to the ones used by previous authors [80, 73, 84]

and the impurity potential distribution could be different.

Let us focus on the high current regime. In this regime the interaction between

electron and nuclear spin becomes stronger. The current can actually induce a dy-

namical nuclear polarization that can cause the HLR. Previous results [80] report

that the local maximum of the HLR occurs at the magnetic field value at which

the phase transition is taking place. As mentioned, in the low current regime this

value can vary depending on the B-sweep direction: it is quite different in sample

A and more similar in sample B. It is noteworthy that the HLR peaks for the two

magnetic field directions are more separated in sample A (Fig. 5.4) than in sample B

2Regarding the role of the pinning potential in ferromagnetic materials see [134, 135].
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(Fig. 5.3 and 5.5) and that there is also a difference between the relative amplitude

of the HLR of the two samples for the different B-sweep direction. The origin of

this irreproducibility in detail is not completely understood.

In the rest of the thesis in each section we will present only measurements performed

on the same device during the same cooldown. We want to stress that with this

precaution all of the results are perfectly reproducible. Moreover, the experimental

findings and the conclusions are consistent among different devices and different

cooldowns.

5.3 Time dependence

Time dependent measurements in the large current regime show the typical variation

of the resistance over minutes and hours. In addition we observe a ”switching”

between two resistance values in some of our samples that was not reported before.

In general, our data are consistent with the formation of domains. The details of

this formation are not reproducible and depend in particular on the sample being

in the small or large current regime.

These measurements are performed on sample B. Fig. 5.6 shows the longitudinal

resistivity close to filling factor 2
3

in the low (solid line) and high (dashed line)

current regime for a magnetic field sweep up. As shown in the previous section an

increase in the resistance develops in the high current regime.

The time-dependent data are measured in a ’reset-and-probe’ fashion. This type

of measurement is normally performed by quickly changing the filling factor by

means of a top-gate [89, 88, 84, 132]. In our devices we did not employ a top-gate

and the voltage to the back-gate had to be varied slowly in order to avoid leakages.

For this reason we decided to vary the filling factor by changing the magnetic field.

The complete measurement procedure is described in the following. We move with

the magnetic field to one of the values indicated in Fig. 5.6 with a sweep rate of 0.4

T/min. We then stop the field and record the value of the resistivity as a function of

time (’probe’). After that we move back to a magnetic field value Breset and monitor

the resistivity as a function of time. The value decreases until it reaches a stable

minimum (’reset’). This procedure is repeated for the five magnetic field values

indicated in Fig. 5.6. Hashimoto et al. [89] find an enhanced relaxation rate of the

resistivity when νreset w 1 due to the presence of skyrmions (see Sec. 3.1). However,

as stated by Höppel ([132] pag.111), ’almost any reset filling factor sufficiently far

80



5.3 Time dependence

Figure 5.6: Longitudinal resistivity of sample B measured in the low current regime
(solid line) and in the high current regime (dashed line) for a different cooldown cycle
with respect to Fig. 5.3. The magnetic field values at which the ’probe’ measure-
ments are performed (see text for details) are indicated.

away from 2/3 and any reset time well above a few seconds can be used to achieve

an always equal nuclear magnetic field’.

Since the magnetic field cannot be varied over a large range instantaneously we

choose to perform the reset measurement at Breset = 8.5 T. This value is far enough

from the transition to exclude influences from the physics occurring at ν = 2
3

but

can be reached in about one minute. To ensure the same initial conditions we wait

at Breset for about half an hour before the next ’probe’ measurement begins. Fig. 5.7

summarizes the results. The resistivity shows a fast and huge increase in the first

ten minutes (not shown) followed by a smooth (almost) monotonic change without

saturation even after more than one and a half hours. This general behavior has

already been reported by previous authors [80, 136]. Our data present however

some new features. The first one is that the smooth change in resistivity seems to

depend on the magnetic field value at which the measurement is performed. For

filling factors higher than 2
3

(i.e. lower magnetic fields) the resistivity increases as a

function of time. For lower filling factors (i.e. higher magnetic field) the resistivity

decreases with time. To our knowledge, at ν = 2
3
, previous works report only an

increase. A behavior similar to ours is reported by Eom et al. [68] for ν = 2
5
.

The value of the resistance as a function of time was well fitted by a logarithmic
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5 Results and discussion

Figure 5.7: Longitudinal resistivity as a function of time for the five magnetic
field values indicated in Fig. 5.6. The value of the magnetic field at which the
measurement has been performed is indicated in each panel. Data begin at a time
when the first fast increase in the resistivity value is already completed.

dependence. They argued that this is due to different kinds of dynamics in which

the domains are involved. They interpret their result as aging effect due to domain

growth (below ν = 2
5
) and shrinking (above ν = 2

5
) [137]. This picture seems to

fit qualitatively with our data. There are however some important differences. Our

data did not present any logarithmic dependence as a function of time. Actually,

no simple dependence has been found for our data. Eom et al. report about a non-

linear voltage-current characteristic at filling factor 2
5

but did not show the data. It

is not known if their results have been obtained in the high current regime, where

the interaction with the nuclei could be important3.

We note here that a long relaxation time due to growing and shrinking of domains

is indeed expected in a classic Ising model. However, in our system it is difficult to

predict the effects due to the DNP and the picture of domain growing and shrinking

can be more complicated. Another interesting aspect concerns the resistivity traces

recorded at 8.575 T and 9.35 T. These magnetic field values are at the border of the

3They consider the nuclear effects not to be important for their findings.
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5.3 Time dependence

Figure 5.8: Relaxation curve at Breset after the ’probe’ measurement at 8.865
T (see text for details). The value of the resistance drops rapidly in the first 10
minutes; after about 30 minutes it reachs to a steady value.

region in which the HLR develops. The majority of the sample is either unpolarized

(8.575 T) or fully polarized (9.35 T): most likely only a few domains are present.

In similar conditions Stern [136] observes increases of the resistivity that look like

jumps after tens of minutes. In our devices the resistivity shows also jumps in its

value but they are much more numerous compared to the data of Stern. There

are also other differences: the jumps in the value of the resistance that we observe

are faster compared to Stern’s ones. Moreover the value of the resistivity not only

increases but also decreases. The resistivity oscillates between two different values

in a way similar to telegraph noise. The latter is usually observed when a system

jumps between two different states. One possible explanation is that the system

is characterized by two different ground states. These data support the picture of

domain formation at the phase transition.

After each ’probe’ measurement the magnetic field is changed to 8.5 T in order for

the system to relax. As an example Fig. 5.8 plots the relaxation curve after the

measurement at 8.865 T. The value of the resistivity decreases to a stable value

after about 10 min.

83



5 Results and discussion

5.4 Transport in small Hall bars

Magnetotransport measurements are performed in Hall bars which are only 10, 5

and 2 µm wide. No size dependence of the resistance behavior at ν = 2
3

was found

down to this length scale.

Fig. 5.9 shows the longitudinal resistivity for a Hall bar 10 µm (upper panels) and

5 µm (lower panels) wide, with contact arms separated by a distance of 30 µm in

both cases.

We plot measurements taken in the low current regime (1.5 nA and 1 nA, solid

curves) and in the high current one (10 nA and 5 nA, dashed curves) respectively.

The two devices behave similar to the ones described in the previous sections: in

the low current regime a resistivity maximum signals the spin phase transition;

this maximum develops into the HLR peak in the high current regime. Fig. 5.10

shows the longitudinal resistivity measured in the Hall bar 5 µm wide, using contact

arms separated by a distance of 30 µm (black curves) and 10 µm (red curves).

Figure 5.9: Longitudinal resistivity for Hall bars 10 µm (lower graph) and 5 µm
(upper graph) wide, both in the low (1.5 nA and 1 nA, solid curves) and high (10
nA and 5 nA, dashed curves) current regime. The insets show a zoom on the region
close to filling factor 2

3 .
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Figure 5.10: Longitudinal resistivity for a 5 µm wide Hall bar measured using
different contact arms. Black curves: contact arms separated by 30 µm. Red
curves: contact arms separated by 10 µm. Solid lines are measured in the low
current regime, dashed lines in the high current regime. The magnetic field is swept
upwards during these measurements.

No real difference is present between the curves measured with the two different

configurations. These results show that the phenomena responsible for the spin

phase transition are taking place on a shorter length scale. To compare the different

Hall bar devices we plot the current-voltage characteristic in Fig. 5.11. The applied

current is normalized to the width of the Hall bar W. The vertical arrows in the figure

point the value of the critical current density where the HLR develops. Although

the three devices have different dimensions this value is nearly the same for all three

of them and is equal to about 0.33 nA/µm. This means that the mechanism behind

the phase transition at ν = 2
3

is qualitatively (and quantitatively) the same in Hall

bars 200 µm and 5 µm wide.

The deviation from linearity in the high current regime changes with size. However,

the distance between the voltage probes is not the same for the different Hall bars

and a comparison is not possible. Further studies need to address this aspect.

We also studied a device in which the width of the Hall bar was only 2 µm.

Unfortunately in this device the gate presented higher leakage current with respect

to the previous ones. It was therefore not possible to tune the electron density in

order to have the spin transition exactly at filling factor 2
3
. Fig. 5.12 shows the
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Figure 5.11: Longitudinal voltage at filling factor 2
3 for devices with different Hall

bar widths, plotted as a function of the normalized applied current. The onset of
the non-linearity due to the development of the HLR is almost constant for the three
devices and is indicated by the vertical arrows.

results measured with the gate voltage set to zero. The upper panel shows the

longitudinal resistivity in the low (0.3 nA and 0.4 T/min, thin black line) and in the

high current regime (1.8 nA and 2mT/min, thick red line). The peak related to the

spin transition is present at 9.8 T also in this small device. The lower panel shows

the V(I) characteristic of the peak at 9.8 T. As in the wider devices the non-linearity

sets in at a critical current density of about 0.33 nA/µm.

To conclude this section, the quantum Hall ferromagnetism seems to behave in the

same way in Hall bars 200, 10, 5 and 2 µm wide.

5.5 SAW measurement: small current regime

The rest of this chapter represents the main part of our work. It presents the

experimental investigation of the spin phase transition at ν = 2
3

based on SAW

measurements. All the SAW measurements shown are performed in the so-called

low power regime. This means that the measurements are not affected by the acous-

tic power. In order to avoid excessive heating of the 2DEG the power fed to the

coaxial lines is below -20 dbm.

In this section we concentrate on the low current regime. The data shown have

been measured on sample A.
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5.5 SAW measurement: small current regime

Figure 5.12: Upper panel: quasi-DC longitudinal resistivity for a Hall bar 2 µm
wide in the low (thin black curve) and high current regime (thick red curve). The
peak related to the phase transition is detected at 9.8 T. Lower panel: V(I) charac-
teristic of the peak at 9.8 T.

Fig. 5.13, upper panel, shows the longitudinal resistivity for the two B-sweep di-

rections (black line B-sweep up, red line B-sweep down). The lower panel plots

the normalized velocity shift recorded during the same magnetic field sweeps. The

vertical dashed line indicates the position of ν = 2
3
. The velocity shift increases

whenever the conductivity falls below a certain critical value, as expected from the

model presented in Sec. 4.2 4. This is evident at low and high magnetic fields.

In the rest of this thesis we will focus on the magnetic field region close to ν = 2
3
. For

better comparison we will plot the normalized longitudinal conductivity measured

with quasi-DC and SAW techniques.

The normalized quasi-DC conductivity is obtained by inverting the resistivity

tensor according to the formula

σ̄ =

(
σxx σxy

σxx σxy

)
= ρ̄ −1 =

1

ρxxρyy − ρxyρyx

(
ρyy −ρxy

−ρyx ρxx

)
.

4This is not true for the total magnetic field region corrisponding to filling factor 2. See Sec. 4.3.2
for discussion.
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Figure 5.13: Upper panel: longitudinal resistivity measured with quasi-DC tech-
niques for B-field swept upwards (black curve) and downwards (red curve) for sample
A in the low current regime. Lower panel: normalized velocity shift of a SAW with
a frequency of about 233 MHz recorded during the same magnetic field sweeps.

The SAW conductivity is derived using

σxx

σm

=

√
k 2

eff

2

v

∆v
− 1 (5.2)

obtained by inverting Eq. 4.5. Fig. 5.14 shows the result of this procedure applied

to the measurements of Fig. 5.13 The curve representing the B-sweep up is plotted

in black and the one corresponding to the B-sweep down in red. In the upper panel

the quasi-DC measurement is plotted. A small peak with strong hysteresis replaces

the minimum in the longitudinal conductivity expected in the fractional quantum

Hall regime. This behavior is in agreement with the one shown in Sec. 5.2 (see

the longitudinal resistivity in Fig.5.4). The lower panel shows the conductivity as

determined by monitoring the velocity shift of a SAW, with the same scale as for the

quasi-DC σxx. One can clearly notice the minimum in the conductivity expected for

the filling factor 2
3

but, really surprising, no peaks related to the spin-phase transition

are discernable from this measurement. No sign of quantum Hall ferromagnetism is

present in the conductivity measured at 233 MHz!

As mentioned in Sec. 4.3, our transducers can also operate at odd harmonics.
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Figure 5.14: Upper panel: longitudinal conductivity measured with quasi-DC
techniques for B-field swept upwards (black curve) and downwards (red curve) for
sample A in the low current regime close to filling factor 2

3 . Lower panel: the same
but determined from the velocity shift of a SAW at a frequency of about 233 MHz
during the same magnetic field sweeps.

We use this property to study the sample at higher frequency. Fig. 5.15 shows the

results obtained with frequencies of about 705 MHz and 1.2 GHz. In the upper

panel we show the longitudinal conductivity measured with quasi-DC techniques

for comparison. As in Fig. 5.14, the phase transition appears as a peak in the

quasi-DC conductivity with hysteretic behavior. In the middle and lower panels the

conductivity deduced from the velocity shift is shown for a SAW frequency of 705

MHz (middle panel) and of 1.2 GHz (lower panel). As for the curve at 233 MHz

in Fig. 5.14 no sign of ferromagnetism is present. We want to stress here that the

resolution of our setup allows the measurement of changes in the velocity of the

SAW smaller than 1 part-per-million, corresponding to σxx/σm changes of 0.02.
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Figure 5.15: Upper panel: longitudinal conductivity measured with quasi-DC
techniques for B-field swept upwards (black curve) and downwards (red curve) for
sample A in the low current regime close to filling factor 2

3 . Middle and lower panel:
the same but determined from the velocity shift of a SAW at a frequency of about
705 MHz (middle panel) and 1.2 GHz (lower panel).

5.6 SAW measurement: high current regime

We now concentrate our SAW study to the high current regime.

Fig. 5.16 shows the longitudinal conductivity in the high current regime measured

with the quasi-DC technique (upper panel) and with a SAW of 233 MHz (lower

panel) to be compared with Fig. 5.14.

In the quasi-DC conductivity the development of the HLR is taking place. Instead

of a small local maximum at the fractional filling factor we detect a huge peak. As

in the low current regime, the increase of the conductivity at filling factor 2
3
, well
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Figure 5.16: Upper panel: longitudinal conductivity measured with quasi-DC
techniques for B-field swept upwards (black curve) and downwards (red curve) for
sample A in the high current regime, close to filling factor 2

3 . Lower panel: the same
but determined from the velocity shift of a SAW at a frequency of about 233 MHz
during the same magnetic field sweep. Figure to be compared with Fig. 5.14

distinguishable in the quasi-DC measurement, is missing in the SAW measurement.

The minimum at ν = 2
3

remains. Due to the resolution of our measurement we can

state that if a peak is present in the SAW conductivity it has to be at least 100 times

smaller than in the quasi-DC case. We can repeat the same kind of measurement

for the other harmonics but, as shown in Fig. 5.17 (to be compared with Fig. 5.15),

the result remains the same.

Fig. 5.18 summarizes the conductivity measurements in the low current (left panel)

and in the high current regime (right panel) for a magnetic field changing upwards

(black curves) and downwards (red curves). In the top panels we show the dramatic

difference seen in the quasi-DC data between the two regimes. In the lower panel

we show the high-frequency data for SAW frequencies of 233 MHz, 705 MHz and

1.2 GHz. The signatures of the phase transition seen in the quasi-DC conductivity

are missing in the SAW one.
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Figure 5.17: Upper panel: longitudinal conductivity measured with quasi-DC
techniques for B-field swept upwards (black curve) and downwards (red curve) for
sample A in the high current regime, close to filling factor 2

3 . Middle and lower
panel: the same but determined from the velocity shift of a SAW at a frequency of
about 705 MHz (middle panel) and 1.2 GHz (lower panel). Figure to be compared
with Fig. 5.15

5.7 Acousto-electric measurements

The most simple explanation for the observed phenomena is that the SAWs do not

couple to the quasi-particles at the domain wall responsible for the conductivity

maximum at the phase transition. We performed acousto-electric measurements to

show that this is not the case.

Fig. 5.19 shows the longitudinal drag voltage measured in sample B with an acoustic

power of -10 dbm (upper curve) together with the result calculated using Eq. 4.10
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Figure 5.18: Upper panels: longitudinal conductivity measured with quasi-DC
techniques for B-field swept upwards (black curves) and downwards (red curves) for
sample A in the low (left panel) and high current regime (right panel) close to filling
factor 2

3 . Lower panels: the same but determined from the velocity shift of a SAW
at a frequency of about 233 MHz, 705 MHz and 1.2 GHz (from top to bottom). The
figures are shifted vertically by 2.5 for clarity.

(lower curve).

Only the magnetic field region close to the spin transition is plotted in the figure.

From the calculated curve we expect that the drag signal shows a local maximum

at the transition. This is in fact what we detect in the experiment. As mentioned

in Sec. 4.3.2 the theory is not able to predict the result quantitatively. Also the

prediction of a negative drag at about 9.7 T is not reproduced in the experimental

curve. It is however important that in both curves of Fig. 5.19 a peak is present at

the phase transition (dotted line).

This ensures that the SAWs couple to the excitations characterizing the quantum

Hall ferromagnet.

In the measurement shown the voltage of the back-gate is set to zero and therefore

the spin transition is not exactly at ν = 2
3
. Setting the correct electron density does

not change the experimental findings but the transition peak becomes less sharp in

the experimental and in the calculated curve.
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5 Results and discussion

Figure 5.19: Longitudinal drag voltage detected on sample B in a magnetic field
region close to the spin phase transition. The upper curve is the experimental
measurement for an acoustic power of -10 dbm. The lover curve is calculated using
Eq. 4.10.

5.8 Domain orientation at the transition

In our experiment the acoustic field is formed by (almost) straight wave fronts

perpendicular to the direction of the current and propagating parallel to it. To detect

some changes in the SAW conductivity the acoustic wave has to propagate across

regions of different conductivity. This means that it has to cross the domain walls. If

the domains are in shape of stripes parallel to the direction of the SAW propagation

the same conductivity will be measured with and without domains and the phase

transition would not be detected. Unfortunately, due to space constraints in the

cryostat, it was not possible to install extra coaxial cables in order to have two SAW

beams propagating perpendicular to each other. There are two other parameters

that give a preferential direction to our experiment: the surface roughness and the

current direction. We have not checked yet the dependence on the surface roughness

in our devices. We have however performed measurements in which the direction
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5.8 Domain orientation at the transition

Figure 5.20: Quasi-DC resistance measured parallel to the direction of the applied
current. Upper panel: resistance measured with the B-field swept upwards (black
curve) and downwards (red curve) for sample B in the low and high current regime
respectively, with the current applied parallel to the long side of the Hall bar. Lower
panel: the same but measured with the current applied parallel to the short side of
the Hall bar

of the current was changed. During the measurements that we showed so far the

current for the quasi-DC measurement, whose effects especially in the high current

regime are not negligible, has been applied along the long side of the Hall bar (see

Fig. 4.5). It is also possible to apply the current along the short side of the Hall bar5.

Fig. 5.20 plots the quasi-DC measurements for the two experimental configurations,

i.e. when the current is applied along the long side of the Hall bar (upper panel) and

the short side (lower panel) in the low and high current regime, respectively. We see

in both configurations some features close to the phase transition suggesting that the

current has some effect on the domain morphology. However, the high current regime

5Note that in this case the potential probes are far from the current path.
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is quite different for the two configurations. Moreover, without changing the voltage

applied to the back-gate, the magnetic field value of the minimum (most likely)

associated with ν = 2
3

depends on the direction of the applied current (about 8.8 T

for the upper panel and about 8.4 T for the lower panel). This effect is not clear yet.

Fig. 5.21 shows the SAW conductivity in the HLR regime when the current is applied

along the long (lower right panel) and the short (lower left panel) side of the Hall bar.

The black curves represent the longitudinal conductivity when the B-field is swept

upwards, the red curves the downward sweeps. We also show in the upper panel

the quasi-DC conductivity measured when the current is applied along the long side

of the Hall bar. No clear difference can be detected between the two experimental

configurations. A complete study of the domain orientation with respect to the

Figure 5.21: Upper panel: longitudinal conductivity measured with quasi-DC
techniques for B-field swept upwards (black curve) and downwards (red curve) for
sample B in the high current regime, close to filling factor 2

3 , with the quasi-DC
current applied parallel to the long side of the Hall bar. Lower right panel: the
same but determined from the velocity shift of a SAW at a frequency of 352 MHz,
594 MHz, 836 MHz and 1.33 GHz (from top to bottom). Lower left panel: the same
as the right panel but measured when the quasi-DC current is applied parallel to
the short side of the Hall bar. The curves are shifted vertically by 2.5 for clarity.
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in-plane magnetic field, current direction, crystallographic direction and so on is an

interesting topic that requires additional experiments to be performed.

5.9 Discussion

We studied the spin phase transition at ν = 2
3

monitoring the effect of the 2DES

on the propagation of a SAW. We used SAWs with frequencies ranging from 100

MHz to more than 1 GHz, corresponding to wavelength from 25 µm to 2 µm. The

conclusion is the same for all the cases: no sign of QHF is detected with SAWs.

In our experiment we send with the input IDT an ensemble of SAWs, each one of

a different frequency, centered at the resonance one. With the output transducer

we determine the effect of the 2DES on each component of the input ensemble;

from that we deduce the shift of the group velocity. What we really measure is the

change of the phase of each component of the SAW ensemble due to the interaction

with the system under study. The phase shift φ due to the propagation through a

homogeneous system of length L and SAW velocity v, for a SAW of frequency f , is

φ = L2πf
v

.

Now we focus on the system of our experimental investigation and perform some

quantitative analysis.

We divide our system (2DES plus GaAs crystal) into two different regions. One

region (region 1) indicates the domains and is characterized by a conductivity σ1

and a SAW velocity v1
6. The second region (region 2) indicates the domain walls;

it has a conductivity σ2 and a SAW velocity v2. Since the wavefront of the SAW

are (almost) plane wave in the direction perpendicular to the SAW propagation,

we consider the system invariant along the direction parallel to the wavefront. We

indicate the length of the region 1 with D and the length of region 2 with d (see

Fig. 5.22).

We consider first the situation in which domain walls do not exist and we have a

single homogeneous region of type 1. The phase shift of a SAW of frequency f due

to the 2DES only is

φ′ = (D + d)
2πf

v1

− (D + d)
2πf

v0

= (D + d)2πf

(
1

v1

− 1

v0

)
(5.3)

6This type includes domains of both polarization, one and zero. In our system we do not expect
a conductivity that depends on the electron polarization.
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Figure 5.22: Sketch of the model used to calculate the effect of an inhomogeneous
system on the propagation of a SAW. The sample (2DES + GaAs crystal) is divided
into two regions, each one characterized by a velocity v, a conductivity σ and a length
D or d.

where v0 is the SAW velocity on GaAs.

If we include domain walls the phase shift is

φ′′ = D2πf

(
1

v1

− 1

v0

)
+ d2πf

(
1

v2

− 1

v0

)
. (5.4)

In our experiment we do not detect any difference between the situation with domain

walls and without. Our resolution allows us to state that if a difference exists, it has

to be at least 100 times smaller than in the case of a homogeneous electron system.

This can be written in mathematical terms as

|φ′′ − φ′| < 0.01 |φ′| . (5.5)

The changes in the SAW velocity (i.e. in the phase shift) at the phase transition are

very small (see Fig. 5.13). We can therefore use a Taylor expansion and write

1

v
− 1

v0

≈ − 1

v 2
0

(v − v0) . (5.6)

Combining Eq. 5.6 with Eq. 5.3, Eq. 5.4 and Eq. 5.5 we arrive to the following

condition

d

∣∣∣∣v2 − v0

v0

− v1 − v0

v0

∣∣∣∣ < 0.01(D + d)

∣∣∣∣v1 − v0

v0

∣∣∣∣ . (5.7)

According to the theory presented in Sec. 4.2 the velocity shift is related to the

conductivity. Using Eq. 4.5 we can rewrite Eq. 5.7 as∣∣σ 2
1 − σ 2

2

∣∣ < 0.01
D + d

d

(
σ 2

m − σ 2
2

)
. (5.8)
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We can solve this formula numerically. We arrive to the conclusion that for σ2 > σ1

(as in our case) the inequality is satisfied only for d
D+d

< 0.01. In other words, the

region occupied by the domain walls is 100 times smaller than the region domain

walls plus domains themselves.

The limit that we obtain can be used to obtain additional information on the domain

extension. Before doing that, let us mention the prediction of the theory of QHF

(Sec. 3.2).

According to Hartree-Fock calculation the extra (quasi-DC) dissipation at the cross-

ing between LLs is due to the propagation across the 2DES of quasi-particles con-

fined to the domain walls. According to the same theories the width of a single

domain wall is about 2lB [38, 45]. However, strictly speaking, the Hartree-Fock

approximation is not valid in the fractional quantum Hall regime due to the high

electron correlations. One can employ the composite fermion framework and sub-

stitute the highly correlated electron system with a weakly interacting CF system.

In this picture the electron magnetic length lB is substituted by the CF magnetic

length l eff
B . After this operation we obtain a value for the width of a single domain

wall of roughly 34 nm.

Now we return to the possible interpretation of our experimental findings.

Surface wave technique has been proven advantageous for the study of spatial in-

homogeneities in 2DESs [108, 138, 139]. In fact, since a SAW integrates over the

whole sample area, it can directly yield information about the spatial uniformity of

the electron system. This means that the upper limit that we obtain from our data

(1%) refers to the amount of domain walls present in the whole sample. Since the

Hall bar that we use is 1 mm long, the total domain wall width results smaller than

10 µm. Recalling that according to theory each domain wall is about 34 nm wide,

we end up with a maximum number of domain wall of about 300. This number (plus

one to be precise) represents also the maximum number of domains in our 2DES. A

straightforward calculation brings to the conclusion that the average extension of a

single domain at ν = 2
3

has to be larger than 3.3 µm.

We can check if this value is reasonable by comparing it with the results obtained

from the quasi-DC measurements in small Hall bars presented in Sec. 5.4.

In the data of Fig. 5.9 and Fig. 5.12 the QHF seems not to change substantially

by reducing the width of the Hall bar from 200 µm to 10, 5 and 2 µm. This is

in agreement with the picture of domain walls that at the transition run from one

edge of the sample to the other. They produce backscattering between the edge
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states and lead to dissipation regardless of how far apart the two edge are. This

picture gives credit to our model in which the direction perpendicular to the SAW

propagation is not playing an important role. The fact that the QHF is present also

when the width of the Hall bar is smaller than our limit for the domain extension

is not a contradiction in this picture. Now we focus on the measurement shown in

Fig. 5.10 performed on the same device but using different voltage probes. We detect

a resistivity peak at the spin phase transition when the center-to-center distance of

the contact arms is 10 µm, meaning that the source of backscattering responsible

for the extra dissipation is present between the two contacts. Also this observation

agrees with our lower limit: since the average domain size is smaller than 10 µm, at

least one domain wall is present between the two voltage probes.

In conclusion, based on a simple model of SAW propagation in an inhomogeneous

2DES, we can state that the region of the sample occupied by domain walls is less

than 1% of the whole sample area. Using Hartree-Fock estimates for the domain

wall width we conclude that the average domain size at the transition is larger than

3.3 µm. A more accurate model should take into account other factors like the

possible reflection and diffraction of a SAW at the domain walls. We do not think

that these improvements would change our limit dramatically. Finally, we checked

the validity of our model by comparison with quasi-DC measurements performed on

Hall bar of small size.

Before concluding this section we want to remark one further aspect of our find-

ings. We discussed our measurements comparing the conductivity detected with

SAWs and with quasi-DC currents. One could argue that this is not valid since

σxx = σxx (ω, k). With the two methods we probe different regions of the dispersion

curve of the excitations at the domain wall. These two regions are not necessar-

ily similar. This argument should apply also for the acoustoelectric measurements.

However we detect a similar response when exciting the 2DES with SAWs and when

calculating the drag signal from the quasi-DC measurements. We can therefore say

that acoustic dispersion effects are negligible.
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In this thesis we investigate the spin phase transition at filling factor 2
3

with both

quasi-DC and SAW techniques.

The first part of this work is the design and realization of a setup that allows low

and high frequency measurements at temperatures as low as 0.4 K. This includes the

choice of the low-loss coaxial cables for the HF signal and a proper thermal anchor-

ing for efficient heat dissipation. In order to reduce the cross-talk signal between the

transducers a special sample holder has been designed which includes SMP connec-

tors and coplanar waveguides for the signal transmission. Great care has been taken

also in the design of interdigital transducers for SAW generation and detection.

We use Hall bars with IDTs at the opposite sides of the 2DES. The quasi-DC σxx is

calculated from the resistivities measured with excitation currents of a few Hz. The

SAW σxx is simultaneously determined from the SAW absorption and dispersion.

A conductivity maximum signals the transition between differently polarized ground

states in the quasi-DC measurements. All standard magneto-transport oscillations

seen with quasi-DC are reproduced with SAWs. However the conductivity peak

at the spin transition is not. This absence is reproduced for acoustic frequencies

ranging from 100 MHz to more than 1 GHz (wavelengths from 25 µm to 2 µm). We

exclude the possibility of stripe domains induced by the quasi-DC current by check-

ing that the results remain the same changing the direction of the applied current.

The conductivity peak is absent in the SAW σxx also when the quasi-DC current is

increased and the quasi-DC conductivity presents the dramatic enhancement known

as huge longitudinal resistance (HLR) regime. This effect is caused by the hyperfine

interaction between the electronic and nuclear spins, the latter becoming polarized

by the huge current (dynamical nuclear polarization).

One could argue that the SAWs do not couple to the excitations at the domain

walls. We check that this is not the case by performing acousto-electric measure-

ments: a SAW interacts with a 2DES by exchanging momentum with the mobile

carriers. This momentum transfer leads to the generation of drag voltages in the

2DES. Measuring the longitudinal drag voltage we detect a peak in the signal at the
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spin transition. The presence and the position of this peak agree with theoretical

predictions and yield evidence of a coupling between SAWs and the quasi-particle

responsible for the quantum Hall ferromagnetism.

In the SAW measurements we monitor the phase shift of the acoustic wave after

that it interact with the whole sample. Our results are therefore integrated over the

whole area of an inhomogeneous 2DES. In order to obtain a quantitative estimate

of the domain width we model the sample as divided into two regions, each of them

characterized by a conductivity, a SAW velocity and a spatial extension. One region

indicates the area occupied by the domain walls, while the other indicates the area

occupied by the domains themselves. We then assume that the total phase shift

is the sum of the phase shift acquired in each single region. Following this simple

model the resolution of our experiment allow us to state that the region occupied

by the domain walls is about 1% of the whole sample area. Using Hartree-Fock

estimates for the width of a single domain wall we arrive to the conclusion that at

ν = 2
3

the domains are larger than 3.3 µm.

We checked the validity of this value by comparing with quasi-DC measurements

performed on Hall bar of small size.

In future experiments the precision of the SAW measurements must be enhanced

and/or smaller Hall bars for the quasi-DC test must be used1. This would allow

to either determine the domain size more accurately or to exclude their existence

altogether.

Other kinds of interaction can occur between a domain wall and a surface acoustic

wave. Several studies [140, 141, 142, 143, 144, 145, 146] show that it is possible to

trap electrons in the potential minima of a SAW and drag them over macroscopic

distances. In our experiment we can exclude this phenomenon since the acoustic

power that we drive into our devices is much smaller (at least 20 times) than the

one needed to confine the carriers. Using hybrid structures or different IDT geome-

tries could allow some electrons to be dragged across the domain wall. This process

would require the flip of the electron spin adding an additional energy cost. In the

high current regime this cost is considered to be the cause of the HLR while in this

case it would come from the energy of the SAW. In other words, the HLR could be

made disappear by simply adding a SAW. In preliminary experiments the heating

1This last hypothesis can be technologically not easy to improve since the resistance minima at
ν = 2

3 become weaker in such small Hall bars.

102



due to the high acoustic power smears out all the features present in the transport

curves and technological improvements has to be considered.

One could also think to drag not only electrons but also the skyrmion-like exci-

tations at the domain boundaries. This would imply to move the domain walls

themselves. In ferromagnetic materials and magnetic semiconductors the domain

walls are normally moved by using pulsed DC current [147, 148]. Recently Saitoh

et al. [149] reported the motion of a domain wall after applying an AC current. It

is however not clear if by using an AC current (or a SAW) it is really possible to

move the domain wall over macroscopic distances or if the only result is an induced

oscillating motion around the equilibrium position. Performing these high power

studies for a quantum Hall ferromagnet requires however special attention in order

to avoid excessive heating of the 2DES.

To conclude, this work opens a new door to study the topology of a quantum Hall

ferromagnet. The technique used in this thesis can be applied also to different

types of QHF. There the different kinds of ferromagnetic order can lead to domain

morphology and low-energy excitations that can give different responses to SAW

excitations. Two-dimensional bilayer systems seem to be very attractive. In these

systems it is actually possible to induce a transition between an easy-axis to an

easy-plane ferromagnetic ordering. SAW detection is a powerful technique to study

the phenomenology of this process.
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A Sample structure

The measurements shown in this thesis are obtained from two different wafers: 81644

and 8813. They have been both grown by molecular beam epitaxy at the Max-

Planck-Institut in Stuttgart by Maik Hauser.

A.1 Wafer 81644

The sample has been grown the 29th July 2005. The detailed structure, from top to

bottom, is the following:

GaAs 20 nm

AlGaAs 20 nm

AlGaAs Si-doped 40 nm

ALGaAs 140 nm

GaAs 15 nm

AlGaAs 160 nm

AlGaAs Si-doped 30 nm

AlGaAs 100 nm

GaAs 2 nm

AlAs 2 nm

GaAs 300 nm

100 × GaAs/AlAs 2nm/2nm

GaAs Substrate.

A.2 Wafer 8813

The sample has been grown the 12th June 1997. The detailed structure, from top

to bottom, is the following:
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A Sample structure

GaAs 10 nm

AlGaAs 10 nm

AlGaAs Si-doped 60 nm

GaAs 20 nm

AlGaAs 20 nm

GaAs 1000 nm

50 × GaAs/AlAs 5nm/5nm

GaAs 250 nm

GaAs Substrate.
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[47] J. Jaroszyński, T. Andrearczyk, G. Karczewski, J. Wróbel, T. Wojtowicz,
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Deutsche Zusammenfassung

Ziel dieser Arbeit ist die Untersuchung eines speziellen Spin-Phänomens in zwei-
dimensionalen Elektronensystemen (2DES) bei hohen Magnetfeldern und tiefen Tem-
peraturen.

Beim ganzzahligen Quanten-Hall-Effekt besetzen die Elektronen eine ganzzahlige
Anzahl von Energie-Niveaus, welche als Landau-Niveaus bezeichnet werden (Kapitel
2.3.1). Der energetische Abstand dieser Landau-Niveaus entspricht der Zyklotron-
energie der Elektronen. Infolge des Elektronenspins kommt bei höheren Magnetfel-
dern eine Zeeman-Aufspaltung der Landau-Niveaus hinzu. Ist die Zahl der Elek-
tronen nicht ausreichend, um ein Landau-Niveau vollständig zu füllen, so können
Grundzustände mit verschiedenen Elektron-Polarisationen koexistieren. Solche Sys-
teme sind charakterisiert durch eine ferromagnetische Ordnung und werden daher
als Quanten-Hall-Ferromagnete (QHF) bezeichnet. Quanten-Hall-Ferromagnetismus
kann durch eine Zunahme der Austauschenergie im ferromagnetischen Zustand er-
klärt werden. Annahmen des Hartree-Fock-Modells sind in der Lage, die physika-
lischen Vorgänge zu beschreiben. Die Untersuchung des quasi-2DES, welches sich
am Übergang der Halbleiter-Heterostruktur ausbildet, führt zu Effekten, die nicht
in das oben beschriebene Bild des Freien-Partikel-Modells passen. Berücksichtigt
man zusätzlich die Wechselwirkung der Elektronen untereinander, dann kommt es
zur Bildung von neuen Grundzuständen, wobei die Elektronen von den vorhan-
denen freien Zuständen nur ganz bestimmte besetzen. Dieses Phänomen ist unter
den Namen gebrochenzahliger Quanten-Hall-Effekt bekannt (Kapitel 2.4). Gegen
Ende des letzten Jahrhunderts lieferten Experimente Hinweise auf ferromagneti-
sche Zustände auch im Bereich des gebrochenzahligen Quanten-Hall Effekts bei den
Füllfaktoren ν = 2

3
und ν = 2

5
. Bei diesen Füllfaktoren sind die Spin-Zustände hoch-

gradig korreliert, und Übergänge zwischen Grundzuständen mit unterschiedlichen
Spin-Polarisationen werden möglich. In dieser Situation ist die Hartree-Fock Nähe-
rung allerdings nicht mehr gültig. Experimente lieferten Hinweise darauf, dass diese
Phänomene in direkter Verbindung zum Ising-Ferromagnetismus stehen. Obwohl es
auch einige Beobachtungen gibt, die keine Analogie zu gewöhnlichen Ising-Systemen
herstellen, könnte die Möglichkeit von Domänenbildung bestehen, wobei die Grund-
zustände durch unterschiedliche Spin-Polarisationen gegeben sind. Das Modell wird
komplizierter, wenn man den Einfluss der Atomkerne berücksichtigt. Verschiedene
Experimente konnten tatsächlich zeigen, dass bei Füllfaktor ν = 2

3
die Elektronen-

dynamik stark an den Kern gekoppelt ist.

In dieser Arbeit sollen nun der Grundzustand und die untersten angeregten Zustände
bei Füllfaktor ν = 2

3
untersucht werden. Dazu werden die Transporteigenschaften
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eines 2-dimensionalen Elektronengases mittels akustischer Oberflächenwellen (Sur-
face Acoustic Waves, SAW) gemessen und mit Daten verglichen, die mit Lock-In
Technik ermittelt wurden.

Akustische Oberflächenwellen sind elastische Moden, die sich entlang der Ober-
fläche eines Kristalls ausbreiten können. In GaAs verursachen diese Wellen eine De-
formation des Kristallgitters und ein oszillierendes elektrisches Feld. Letzteres kann
mit den freien Ladungsträgern eines 2DES wechselwirken und zu einer Dämpfung
und einer modifizierten Ausbreitungsgeschwindigkeit der akustischen Oberflächen-
welle führen. Die Messung dieser Effekte liefert eine elektrische Leitfähigkeit bei
der speziellen Frequenz bzw. Wellenlänge einer akustischen Mode. Dieser Parameter
kann bis in den GHz Bereich ausgeweitet werden und wird beim Design der Probe
festgelegt.

Der erste Teil meiner Arbeit befasst sich daher mit dem Design und dem Auf-
bau eines Messsystems, mit der die Messung von tiefen und hohen Frequenzen
bei Temperaturen von unter 400 mK möglich ist. Dieses Messsystem beinhaltet
u.a. die Wahl eines verlustarmen Koaxialkabels für das HF-Signal, sowie eine gu-
te thermische Ankopplung für eine effiziente Wärmeabfuhr. Um ein Übersprechen
zwischen den Überträgern zu minimieren, wurden ein spezieller Probenhalter mit
SMP-Anschlusstechnik und ein planparalleler Wellenleiter konzipiert. Große Sorg-
falt wurde beim Design der Überträger zur Erzeugung und zur Detektion der akus-
tischen Oberflächenwellen walten gelassen. Für die eigentliche Messung verwendeten
wir Hall-Proben mit Überträgern an den entgegengesetzten Enden der Probe. Eine
quasi-DC Leitfähigkeit σxx konnte dann aus den spezifischen Widerständen bei An-
regungsströmen von einigen Hz errechnet werden. Gleichzeitig konnte ein wellenspe-
zifisches σxx bestimmt werden, indem die Absorption und Dispersion der akustischen
Oberflächenwelle gemessen wurde.

In der quasi-DC Messung fand sich ein Maximum in der Leitfähigkeit, welches
auf einen Phasenübergang zwischen unterschiedlich polarisierten Grundzuständen
hindeutet. Alle normalen Magnetotransport-Oszillationen konnten in der quasi-DC
Messmethode mit der akustischen Oberflächenwellenmessung reproduziert werden.
Sogar die kleinen SdH-Oszillationen konnten in den transmittierten SAWs aufgelöst
werden, was die hohe Auflösung unserer Anordnung bestätigt. Allerdings konnte das
Maximum in der quasi-DC Leitfähigkeit beim Spin-Phasen-Übergang nicht beobach-
tet werden. Dieses unerwartete Ergebnis wurde mit Hilfe der SAWs mit Frequenzen
zwischen 100 MHz und mehr als 1 GHz, was Wellenlängen zwischen 25 µm und 2
µm entspricht, bestätigt.
Wir überprüften mit Hilfe von Akusto-Drag-Messungen, dass die SAWs effektiv mit
den Anregungen interagieren, die verantwortlich für die QHF sind.
Ein Maximum in der Leitfähigkeit der akustischen Oberflächenwelle war ebenfalls
nicht zu beobachten, wenn der quasi-DC Strom erhöht wurde, was zu einer dra-
matischen Zunahme der quasi-DC Leitfähigkeit führte (huge longitudinal resistance
effect, HLR). Dieser Effekt basiert auf dem Einfluss der Kernspins, welche infolge der
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Hyperfein-Wechselwirkung mit den Elektronenspins polarisiert werden (Dynamische
Kernpolarisierung).

Wir haben ein Model entwichelt um die Fortpflanzung von SAW in einem in-
homogenen 2DES zu simulieren. Im Rahmen unserer Messgenauigkeit können wir
sagen, dass die, von den Domänengrenzen eingenommen Fläche, weniger als 1% des
Probenkörpes einnimmt. Unter Verwendung einer Hartree-Fock Abschätzung für die
Dicke einer einzelnen Domänengrenze kommt man durch eine einfache Rechnung zu
dem Ergebnis, dass die Domänengröße 3.3 µm nicht unterschreiten sollte.
Im Bereich des Quanten-Hall-Ferromagnetismus werden viele experimentelle Unter-
suchungen vorgenommen, die sich jedoch hauptsächlich auf die quasi-DC Trans-
porteigenschaften der Elektronensysteme beschränken. In dieser Doktorarbeit ha-
ben wir diese Untersuchungen des Phasenüberganges bei Füllfaktor ν = 2

3
auf den

Hochfrequenzbereich ausgeweitet. Der nächste Schritt wäre die Ausweitung unse-
rer HF-Technik auf verschiedene Arten der ferromagnetischen Ordnung, wie z.B.
Quanten-Hall-Ferromagnetismus, der in elektronischen Doppellagensystemen auf-
tritt. In diesen Doppellagensystemen ist es möglich, die ferromagnetische Ordnung
sowohl entlang der Anisotropieachse als auch in der Anisotropieebene zu erzeugen.

Der Aufbau diese Doktorarbeit ist wie folgt:

• Kapitel 2 liefert eine Beschreibung der fundamentalen Eigenschaften von 2DES
unter dem Einfluss von senkrechten Magnetfeldern. Das Konzept der Landau-
Niveaus wird erläutert, ebenso wie die Modelle zur Beschreibung des ganzzah-
ligen und gebrochenzahligen Quanten-Hall Effekts.

• In Kapitel 3 folgt eine Einführung in die Prinzipien des QHF. Dabei wird
sowohl auf das theoretische Bild als auch auf experimentelle Beweise des Spin-
Phasenüberganges bei gebrochenzahligen Füllfaktoren eingegangen. Im letzten
Teil dieses Kapitels werden wir uns auf den Spin-Phasenübergang bei Füllfak-
tor 2

3
konzentrieren.

• Kapitel 4 beschreibt die verwendeten Messtechniken und die Wechselwirkungs-
mechanismen zwischen akustischen Oberflächenwellen und einem 2DES. Da
ein Grossteil meines Projektes aus dem Design und Aufbau der benötigten
Messvorrichtung bestand, werden ebenfalls die Probleme, die während meiner
Arbeit aufgetaucht sind, und deren Lösung behandelt.

• Kapitel 5 umfasst alle gesammelten Ergebnisse meiner Messungen zum Spin-
Phasenübergang bei Füllfaktor 2

3
. Dabei werden die Daten der quasi-DC Mes-

sungen (3.4 Hz), sowie der HF-Messungen (MHz bis GHz Bereich) präsentiert.
Die experimentelle Befunde werden kommentiert, und es werden Modelle zur
Erklärung vorgeschlagen.

• Abschließend werden alle Ergebnisse in der Zusammenfassung kurz umrissen.
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