Untersuchung von Druckumwandlungen an Oxiden und Fluoriden und Synthese neuer Verbindungen

Denis Orosel

Max-Planck-Institut für Festkörperforschung, Stuttgart 2007

Untersuchung von Druckumwandlungen an Oxiden und Fluoriden und Synthese neuer Verbindungen

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

> vorgelegt von Denis Orosel aus Nürnberg

Hauptberichter: Prof. Dr. Dr. h. c. M.Jansen Mitberichter: Prof. Dr. T. Schleid

Tag der Einreichung: 20.12.2006 Tag der mündlichen Prüfung: 20.04.2007

Max-Planck-Institut für Festkörperforschung, Stuttgart 2007

Danksagung

Ich danke meinem Doktorvater Herrn Prof. Dr. Dr. h. c. Martin Jansen für die interessante Themenstellung, die ausgezeichneten Arbeitsbedingungen und für seine stets wohlwollende Unterstützung und Diskussionsbereitschaft.

Weiterhin danke ich

Herrn Prof. Dr. Thomas Schleid für die Anfertigung des Mitberichtes,

Herrn Dr. Paul Balog und Herrn Frank Falkenberg für die Durchführung der Hochdruckversuche,

Herrn Priv.-Doz. Dr. Robert Dinnebier für die freundliche Unterstützung bei Strukturlösungen und -verfeinerungen,

Dr. Christian Oberndorfer und Herrn Klaus Hertel für die Durchführung der DTA/TG/MS-Messungen,

Herrn Wolfgang König und Frau Marie-Louise Schreiber für Aufnahme der Infrarotspektren und Herrn Armin Schulz für Aufnahme der Ramanspektren,

Frau Marie-Louise Schreiber für die Durchführung der Elementanalysen,

meinen Kollegen Dr. Angelika Epple, Carsten Schmidt, Lars Epple, Dr. Dieter Fischer, Dr. Dragan Pitschke, Hasan Cakmak, Hanne Nuss, Dr. Timo Sörgel, Jasmin Jarcak, Michael Fischer, Kerstin Schunke für den guten wissenschaftlichen Austausch und die schöne gemeinsame Zeit in Stuttgart,

sowie allen Mitarbeiterinnen und Mitarbeitern der Abteilung für das angenehme Arbeitsklima.

für Ingrid, Julia und meine Eltern

Inhaltsverzeichnis

1	Einleitung	1
2	Allgemeiner Teil	3
	2.1 Präparative Arbeitsmethoden	3
	2.1.1 Schutzgastechnik	3
	2.1.1.1 Schutzgasanlage	3
	2.1.1.2 Handschuhkasten	4
	2.1.2 Hochdruck-Apparaturen	4
	2.1.2.1 Piston-Zylinder-Presse	4
	2.1.2.2 BELT-Presse	5
	2.1.2.3 Multianvil-Presse	6
	2.1.2.4 Diamantstempelzellen	8
	2.2 Analytische Arbeitsmethoden	10
	2.2.1 Röntgenbeugung an Pulvern	10
	2.2.1.1 Labordiffraktometer	10
	2.2.1.2 Heizguinier	10
	2.2.1.3 Synchrotronmessungen	11
	2.2.1.4 Lösung und Verfeinerung von Kristallstrukturen aus Pulver-	
	daten	12
	2.2.2 Neutronenbeugung an Pulvern	12
	2.2.3 Energiedispersive Röntgenspektroskopie	13
	2.2.4 Thermische Analyse	13
	2.2.5 Infrarot-Spektroskopie	14
	2.2.6 Raman-Spektroskopie	14
	2.2.7 Magnetische Messungen	15
3	Snezieller Teil	17
5	3.1 Hochdruckuntersuchungen an Verbindungen mit freiem Elektronennaar	17
	3.1.1 Selen(IV)oxid SeOo	17
	3 1 1 1 Hochdruckexperimente und Röntgenbeugung an Pulvern	17
	3.1.1.2 Ergebnisse der Hochdruckexperimente	18
	3113 Strukturbestimmung	20
	3114 Strukturbeschreibung	21
	3115 Berechnungen der Gitterenergie	26
	3116 Raman-Spektroskopie	20
		- '

3.1.2 Antii	mon(III)oxid Sb ₂ O ₃	30
3.1.2.1	Darstellung von Sb_2O_3 und Röntgenbeugung an Pulvern $\ . \ .$	30
3.1.2.2	Ergebnisse der Hochdruckversuche	31
3.1.2.3	Strukturbestimmung	32
3.1.2.4	Strukturbeschreibung	35
3.1.2.5	Berechnungen der Gitterenergie	37
3.1.3 Antii	mon(III,V)oxid Sb ₂ O ₄	39
3.1.3.1	Darstellung von Sb_2O_4 und Röntgenbeugung an Pulvern	39
3.1.3.2	Hochdruckexperimente	39
3.1.3.3	Ergebnisse der Hochdruckversuche	41
3.1.3.4	Strukturbestimmung und -beschreibung	45
3.1.3.5	Berechnungen der Gitterenergie	46
3.1.3.6	Ergebnisse	47
3.1.4 Bism	nut(III)fluorid BiF ₃	50
3.1.4.1	Hochdruckversuche mit Hochdruckpressen	50
3.1.4.2	Ergebnisse der Hochdruckversuche	50
3.1.4.3	Röntgenbeugung an Pulvern	51
3.1.4.4	Strukturbestimmung	53
3.1.4.5	Strukturbeschreibung	56
3.1.4.6	Berechnungen der Gitterenergie	56
3.1.4.7	Ergebnisse	57
3.2 Hochdruck	untersuchungen an Verbindungen mit Gerüst- oder Schicht-	
struktur .		59
3.2.1 Arse	$n(V)$ oxid As_2O_5	59
3.2.1.1	Hochdruckversuche mit Diamantstempelzelle	59
3.2.1.2	Hochdruckversuche mit Hochdruckpressen	62
3.2.1.3	Röntgenbeugung an Pulvern	62
3.2.1.4	Strukturbestimmung	64
3.2.1.5	Strukturbeschreibung	65
3.2.1.6	Berechnungen der Gitterenergie	65
3.2.2 Vana	$\operatorname{dium}(V) \operatorname{oxid} V_2 O_5 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	68
3.2.2.1	Hochdruckversuche und Röntgenbeugung an Pulvern	68
3.2.2.2	Ergebnisse der Hochdruckversuche	69
3.2.2.3	Strukturbestimmung und Strukturbeschreibung	70
3.2.2.4	Ramanspektroskopie	72
3.2.2.5	Theoretische Berechnungen der Phasengrenzen	72

	3.2.2.6	Ergebnisse	75	
	3.3 Synthese v	von Verbindungen	77	
	3.3.1 Hex	akaliumnonaoxodiselenat(VI) K ₆ (SeO ₄)(SeO ₅)	77	
	3.3.1.1	Darstellung von $K_6(SeO_4)(SeO_5)$	78	
	3.3.1.2	Röntgenbeugung an Pulvern	78	
	3.3.1.3	Strukturbestimmung	78	
	3.3.1.4	Strukturbeschreibung	79	
	3.3.1.5	Berechnung der Gitterenergie	82	
	3.3.1.6	Ergebnisse	83	
	3.3.2 Arse	$en(III,V)$ oxosäure $H_6As_{14}O_{31}$	85	
	3.3.2.1	Darstellung der Arsen(III,V)oxosäure H ₆ As ₁₄ O ₃₁ und Rönt-		
		genbeugung an Pulvern	85	
	3.3.2.2	Strukturbestimmung	86	
	3.3.2.3	Strukturbeschreibung	89	
	3.3.2.4	Ergebnisse	92	
	3.3.3 Palla	adium(II)metaarsenat (PdAs ₂ O ₆)	94	
	3.3.3.1	Darstellung von PdAs ₂ O ₆ , thermisches Verhalten und Rönt-		
		genbeugung an Pulvern	94	
	3.3.3.2	Strukturbestimmung	95	
	3.3.3.3	Strukturbeschreibung	95	
	3.3.3.4	Raman-Spektroskopie	98	
	3.3.3.5	Magnetisches Verhalten	99	
	3.3.3.6	Neutronenbeugung	100	
4	Zusammenfass	ung	105	
5	Abstract		110	
Li	teraturverzeichn	is	115	
A	Anhang		125	
Ał	bildungsverzeic	hnis	169	
Та	Tabellenverzeichnis 1			

INHALTSVERZEICHNIS

1 Einleitung

Im Rahmen dieser Dissertation sollte das Verhalten von verschiedenen Verbindungs- und Strukturtypen bei hohen Drücken und Temperaturen untersucht werden. Dabei handelte es sich hauptsächlich um Verbindungen mit sogenannten "offenen" Strukturen, das heißt vor allem Gerüst- und Schichtstrukturen. Gerade solche Strukturen bieten sich für Untersuchungen bei hohen Drücken an, da zum einen die Koordinationszahlen der beteiligten Atome relativ niedrig sind und diese infolge der Druck-Koordinationsregel¹ noch erhöht werden können. Zum anderen weisen diese Strukturen auch noch genügend Raum in der atomaren Anordnung auf, so dass eine Reorientierung von einzelnen Atomen oder von Baueinheiten möglich ist.

Vor 30 Jahren wurde die Rolle des freien Elektronenpaares in der Strukturchemie beschrieben.^{2,3} Eine detaillierte Diskussion der Geometrie der Koordinationspolyeder einschließlich des freien Elektronenpaares wurde später veröffentlicht.⁴ Um genauer zu sein, wurde in der späteren Arbeit dem Elektronenpaar ein Volumen zugewiesen, welches dem eines Sauerstoffatoms entspricht. Die Bedeutung von Verbindungen mit ungebundenen Elektronenpaaren nimmt stetig zu, da diese Substanzen interessante strukturelle Eigenschaften aufweisen. Besonders wegen ihrer normalerweise sehr ausgeprägten Stereoaktivität des freien Elektronenpaares. Die beinahe systematische Ausrichtung der Elektronenpaare entlang bestimmter Richtungen, ist oft ein Ausgangspunkt für die Entstehung offener Gerüststrukturen, da die ungebundenen Elektronenpaare eine Tendenz zeigen alle in Richtung eines Hohlraumes^{5–8} oder zwischen zwei Schichten zu zeigen und so Schichtstrukturen ausbilden.⁹⁻¹¹ Die freien Elektronenpaare sind auch für verschiedene physikalische Eigenschaften verantwortlich. Als Ergebnis der großen Anisotropie der atomaren Umgebung dieser Materialien, weisen diese oft eine starke Polarisierung¹² auf, welche zu weiteren physikalischen Eigenschaften, wie Ferro- oder Piezoelektrizität führen kann.^{13,14} Ein häufiges Merkmal ist auch, dass alle Bindungen zwischen den Liganden und dem Atom mit den ungebundenen Elektronenpaar auf der einen Seite, während das freie Elektronenpaar die andere Seite besetzt. Die freien Elektronenpaare spielen eine wichtige ein Rolle bei Temperatur induzierten Phasenumwandlungen^{15,16} und in einigen Fällen auch bei druckinduzierten Phasenumwandlungen, wie z. B. bei Blei und Wismut.^{17,18} Die Art der Phasenumwandlungen ist schwer vorherzusagen, aufgrund der vielfältigen Möglichkeiten wie sie auf den äußeren Druck reagieren können. Ebenso können schon geringe Änderungen in der Orientierung oder Anordnung der Elektronenpaare als eine Phasenumwandlung gezählt werden.^{13, 15} Es wird auch angenommen, dass die Wechselwirkung zwischen den freien Elektronenpaaren die Struktur normalerweise stabilisieren.^{7,9} Falls eine druckinduzierte "Delokalisierung"der freien Elektronenpaare möglich ist, könnten die Verbindungen "metallisches" Verhalten zeigen. Das durch hohe Drücke in Halb- und Nichtmetallen ein "metallischerSZustand erreicht werden kann, ist bekannt. So zeigen die reinen Elemente wie Phosphor (p > 10GPa),^{19,20} Schwefel(p > 83GPa),²¹ Selen (p > 28GPa)²² in eine Phasenumwandlung in eine metallische Phase. In der Literatur ist wenig bekannt über das Verhalten der Oxide und Fluoride der 15. und 15. Gruppe des Periodensystems der Elemente bei erhöhten Drücken und Temperaturen, obwohl die reinen Elemente sehr gut untersucht sind.. Ein gemeinsames Merkmal dieser Materialien ist das ungebundene freie Elektronenpaar in vielen der binären und ternären Verbindungen von z.B. As³⁺, Sb³⁺, Bi³⁺, Se⁴⁺ und Te⁴⁺. Berichte über die Strukturen, die physikalischen und chemischen Transporteigenschaften solcher Verbindungen sind selten,^{23–25} meistens aufgrund ihrer Reaktivität. Theoretische Modelle besagen, dass durch hohe Drücke neue elektronische Eigenschaften in diesen Strukturen möglich wären. Zusätzlich wurde lange angenommen, dass die Umwandlung in Phasen mit höherer Dichte oft mit einer Änderung der elektronischen Eigenschaften zu metallischen Verhalten einher geht. Dies geschieht

entweder durch Delokalisierung des Elektronenpaares oder durch Überlappung des Leitungsbandes mit dem Valenzband, welches das nicht-bindende Elektronenpaar enthält.

2 Allgemeiner Teil

2.1 Präparative Arbeitsmethoden

2.1.1 Schutzgastechnik

Die meisten von den im Rahmen dieser Arbeit verwendeten und dargestellten Substanzen sind hydrolyse- und oxidationsempfindlich. Aus diesem Grund wurden diese unter Schutzgas gehandhabt und aufbewahrt. Die Experimente wurden zum Teil unter Anwendung der Schlenktechnik an einer Schutzgasanlage durchgeführt. Für das Einwiegen und die Handhabung der festen Substanzen wurden auch mit Argon gefüllte Handschuhkästen verwendet.

2.1.1.1 Schutzgasanlage

Die Schutzgasanlage besteht aus zwei Hauptkomponenten: Der Vakuumapparatur inklusive der an ihr angeschlossenen Vakuumpumpe und der Gasreinigungsanlage. Vakuumapparatur: An diese ist ein Pirani-Manometer (Thermovac TR 211 KF, Fa. Leybold) angeschlossen, das eine Druckmessung im Bereich von $1 \cdot 10^{-3} - 10^3$ mbar ermöglicht. Damit wird auch die Dichtigkeit der Anordnung aus Vakuumapparatur und jeweils angeschlossener Versuchsvorrichtung überprüft. Alle Hähne und Schliffverbindungen sind mit Vakuumfett (Ramsay-Fett weich, Fa. Leybold bzw. KWS Schliff-Fett, Fa. Roth) abgedichtet. Die Vakuumpumpe ist über einen Metallbalgenschlauch an die Vakuumapparatur angeschlossen. Es wird eine zweistufige Drehschieberpumpe (RV5, Fa. Edwards, Saugvermögen 5.1 m³/h) verwendet. Bei der Gasreinigungsanlage wird Argon 5.0 (Tieftemperaturservice, Max-Planck-Institute Stuttgart) zur Durchflusskontrolle über eine Kupferleitung in einen mit Paraffinöl gefüllten Blasenzähler geleitet. Von dort aus wird es über ein Metallüberdruckventil durch vier Trockentürme geführt, die nacheinander Blaugel, Kaliumhydroxid, Molekularsieb (Porenweite 3 Å)und Phosphorpentoxid auf einem inerten Trägermaterial (Sicapent, Fa. Merck) enthalten. Diese Anordnung entfernt Feuchtigkeitsspuren aus dem Schutzgas Argon. Zur Beseitigung letzter Wasser-, Sauerstoff- und Stickstoffspuren wird es über mindestens 700 °C heißen Titanschwamm geleitet. Dieser befindet sich in einem Rohr aus Quarzglas, das mit einem Röhrenofen beheizt wird und über eine Kupferleitung mit der Vakuumapparatur verbunden ist. Vor der Überführung von Substanzen in die jeweilige Apparatur wird diese zunächst unter Ausheizen mit einer nichtleuchtenden Bunsenbrennerflamme evakuiert. Diese Vorgehensweise dient dazu, Feuchtigkeitsreste von der Gefäßinnenwand zu entfernen.

2.1.1.2 Handschuhkasten

Bei dem Handschuhkasten (MB 200, Fa. M. Braun) erfolgt die Reinigung des Schutzgases durch Umwälzen über Molekularsieb und einen Kupferkontakt. Die Reinheit des Schutzgases lässt sich über Gasanalysatoren beurteilen. Der Wassergehalt liegt unter 0,2 ppm und der Sauerstoffgehalt unter 0,2 ppm.

2.1.2 Hochdruck-Apparaturen

2.1.2.1 Piston-Zylinder-Presse

Für die in dieser Arbeit bis zu einem Druck von 2 GPa und Temperaturen bis 800 °C durchgeführten Experimente wurde eine nach W. Johannes²⁶ modifizierte Piston-Zylinder-Presse eingesetzt (siehe Abbildung 2.1). Bei den Versuchen kann mit einem Probenvolumen bis 60 mm³ gearbeitet werden. Die Presse ist aus Stahl konstruiert. Durch ein hydraulisches System (Öl) werden zwei Stempel aus Hartmetall (Wolframcarbid) gegeneinander gedrückt. Die Probe befindet sich zwischen ihnen, umgeben von Kochsalz als plastisches Druckmedium, um eine möglichst quasihydrostatische Druckübertragung zu erreichen (siehe Abbildung 2.2). Die Druckzelle mit der Probe wird in eine Matrize eingebaut, deren Kern aus Wolframcarbid besteht und der wiederum von Ringen aus gehärtetem Stahl umgeben ist. Die Aufheizung der Proben erfolgte durch elektrische Widerstandsheizung mittels eines dünnen Graphitrohres. Die Temperaturmessung und Temperaturregulierung erfolgte durch ein Mantelthermoelement aus Ni-Cr/Ni, welches bei der Probe positioniert wurde.

Mittlere Matrize Obere Matrize Obere Matrize Obere Matrize Obere Matrize Obere Matrize Obere Matrize

Abb. 2.1: Bild der verwendeten Piston-Zylinder-Presse für Drücke bis ca. 2,5 GPa und 1000 °C.

Abb. 2.3: Ausschnitt mit den notwendigen Teilen für den Einbau der Probe.

2.1.2.2 BELT-Presse

Zur Erzeugung von Drücken im Bereich von 2,5 bis 8 GPa stand eine BELT-Presse (Diefenbacher GmbH) (siehe Abbildung 2.4) zur Verfügung. Mit dieser können gleichzeitig Temperaturen von maximal 1200 °C erreicht werden. Das Probenvolumen, das hier für die Versuche zur Verfügung steht, beträgt 45-50 mm³. Dabei wird die Kraft von zwei konischen Stempeln aus Wolframcarbid uniaxial über feste Medien quasihydrostatisch auf die Probe übertragen. Dabei treten starke Tangentialkräfte auf. Deshalb sind die Stempel in spezielle Stempelfassungen eingepreßt. Diese bestehen aus drei konischen, kalt ineinandergepreßten Stützringen aus Wolframcarbid bzw. Stahl. Die Probe befindet sich innerhalb einer doppelt konisch geschliffenen Matrize aus Wolframcarbid, welche ebenfalls in zwei konische Stützringe aus Stahl kalt eingepresst ist (siehe Abbildung 2.5). Durch das Einpressen wird im Material eine Spannung erzeugt, die den Kräften beim Experimentieren entgegengesetzt wirkt. Auf diese Weise wird die mechanische Belastbarkeit des Materials stark erhöht. Ein weiterer Stahlring, welcher von Kühlwasser durchflossen werden kann, umgibt die beiden Stützringe. Das druckübertragende Medium im Inneren der Matrize ist ein Hohlzylinder aus Pyrophyllit. Der direkte Kontakt zwischen den Stempeln und der Wolframcarbid-Matrize wird durch zwei Konen aus Pyrophyllit vermieden. Pyrophyllit ist ein Schichtsilicat und besitzt sehr gute quasihydrostatische Eigenschaften. Im Inneren des Pyrophyllit-Hohlzylinders befindet sich eine zylindrische Graphithülse. Diese dient als Widerstandsofen zur Aufheizung der Probe. Die Probe befindet sich in einem verschließbaren Tiegel, welcher aus verschiedenen Materialen bestehen kann (BN, Au, Pt, Pd, Al₂O₃). Die Graphithülse ist mit zwei Graphitscheiben bedeckt. Der elektrische Kontakt zwischen der Graphithülse und den Wolframcarbid-Stempeln erfolgt über zwei Molybdän-Scheibchen sowie zwei Stahlringe, in die jeweils ein Korundscheibchen

Abb. 2.4: Bild der eingesetzten Belt-Presse für Drücke bis 8 GPa und Temperaturen bis 1200 °C.

Abb. 2.5: Belt-Modul mit mittlerer und oberer Matrize und weiteren notwendigen Teilen.

Abb. 2.6: Schematischer Aufbau der Hochdruckzelle der BELT-Presse.

2.1.2.3 Multianvil-Presse

Zur Erzeugung von Drücken von 4,5 bis 29 GPa stand eine 1000-Tonnen-Hochdruckpresse (Fa. Voggenreiter & Söhne GmbH) mit einem Multianvil-Modul (Walker-Modul) zur Verfügung (siehe Abbildung 2.7). Dabei wird die Kraft, die von einer hydraulischen Presse erzeugt wird, über verschiedene Stempel zunächst auf die sechs Flächen eines Würfels, und schließlich auf die acht Flächen eines MgO-Oktaeders, welcher die Probe enthält, nahezu isotrop übertragen. Durch diese Versuchsanordnung werden die zur Seite wirkenden Kräfte stark minimiert. Es kann somit bei Drücken von bis zu 27 GPa mit 4-20 mm³ Probenvolumen gearbeitet werden. Gleichzeitig sind Synthesetemperaturen

eingefasst ist. Diese dienen der thermischen Isolierung des Systems (siehe Abbildung 2.6.

bis zu 2500 °C möglich. Die Probe wird dabei in Tiegel aus unterschiedlichen Materialien (BN, Au, Pt, Pd, Al₂O₃) gefüllt und dicht verschlossen. Eine LaCrO₃-Hülse dient als Widerstandsofen. Der Widerstandsofen wird in eine ZrO₂-Hülse, die der thermischen Isolierung des Systems dient, überführt und dann in ein durchbohrtes MgO-Oktaeder gesetzt (siehe Abbildung 2.9. Um das präparierte Oktaeder herum werden nun acht 32mm Wolframcarbid-Würfel, bei denen je eine Ecke abgeschliffen wurde, so positioniert, dass die Dreiecksflächen der Würfel und des Oktaeders zur Deckung gelangen (siehe Abbildung 2.8). Die Kraftübertragung auf das Oktaeder erfolgt über deren Dreicksflächen. Durch die Anordnung der acht Wolframcarbidwürfel resultiert ein größerer Würfel, dessen Flächen mit Glasgewebe-Platten beklebt werden. Der so präparierte Würfel wird in einem Stahlring zwischen sechs sogenannten Wedges derart positioniert, dass die Raumdiagonale des Würfels parallel zur Richtung der Presskraft ausgerichtet ist. Die Geometrie der Wedges sorgt dafür, dass die von der Presse erzeugte uniaxiale Kraft gleichmäßig auf alle Flächen des Würfels und von diesem über die dreieckigen Stempelflächen auf den MgO-Oktaeder übertragen werden kann. Das so zusammengesetzte Walker-Modul wird in der Hochdruckpresse platziert. Die Messung von Druck und Temperatur im Walker-Modul erfolgte indirekt über entsprechende Kalibrierungskurven. Zur Druckkalibrierung wurde die Widerstandsänderung von Bi, Tl und Ba in Abhängigkeit vom Druck gemessen. Die Temperaturmessung erfolgte mit einem koaxial zum LaCrO₃-Widerstandsofen eingeführten Thermoelement W-5%Re bzw. W-26%Re.

Abb. 2.7: Multianvil-Presse, ausgestattet mit einem Walker-Modul für 32mm WC-Würfel; einsetzbar für Drücke bis zu 27 GPa and 2500 °C.

Abb. 2.8: Anordnung der WC Würfel and der oktaedrischen Hochdruckzelle.

Abb. 2.9: Schema des zusammengebauten Oktaeders.

2.1.2.4 Diamantstempelzellen

Mit Diamantstempelzellen^{27–31} können die heutzutage höchsten Drücke (p > 100 GPa) erreicht und mit Laserheizung können auch sehr hohe Temperaturen (T > 1500 °C) erzeugt werden (siehe Abbildung 2.10). Normalerweise werden heutzutage die meisten Hochdruckexperimente mit Diamantstempelzellen an Synchrotronquellen durchgeführt, denn dort hat man eine genügend hohe Intensität und Brillanz des Strahls und gleichzeitig kann man ihn auch sehr fein gebündelt werden bei den Streuexperimenten.

Im Rahmen der Arbeit sind verschiedene Diamantstempelzellen zum Einsatz gekommen. Zum einen ist eine Diamantstempelzelle mit einem Probenhalter aus Edelstahl T301 verwendet worden. Dieser ist zuerst von einer Dicke von 250 μ m auf 40 μ m zusammengepresst worden und dann wurde mittels Funkenerosion ein Loch mit 100 μ m Durchmesser hergestellt. Die Probe wurde zu einer dünnen Tablette von etwa 10 μ m Dicke gepresst und hatte einem kleineren Durchmesser als das Loch im Probenhalter. Als Druckmedium ist Silikonöl benutzt worden, da es chemisch inert ist und für eine hydrostatische Druckverteilung sorgt.

Zum anderen wurde eine Diamantstempelzelle benutzt, bei der als Druckmedium Stickstoff verwendet wurde. Dieser wurde durch Abkühlung der vorbereiteten Diamantstempelzelle auf eine Temperatur von -180 °C in flüssigem Zustand eingefüllt (kryogenes Füllen) und danach wurde die Zelle verschlossen, bevor sie wieder auf Raumtemperatur erwärmt wurde (siehe Abbildung 2.11).

Zusätzlich kamen bei beiden Versuchen noch kleine Rubine in die Probenkammer für die Druckbestimmung mittels der Rubinfluoreszenzmethode.^{32, 33} Dabei wird der Druck wird nach folgender Formel³³ berechnet:

$$P = \frac{A}{B} [(\lambda / \lambda_0) B - 1] (GPa)$$

, wobei λ die gemessene Wellenlänge der Rubin R_1 -Linie ist. $\lambda_0 = 694,24$ nm ist der Wert bei Normaldruck (p = 1 bar) und 298 K und die Werte für betragen A = 1904 und B= 5. Der Druck wurde bei jedem Schritt durch Mittelung des Druckes vor und nach der Aufnahme des Pulverdiffraktogrammes bestimmt.

Abb. 2.10: Abbildung der verwendeten Typen von Diamantstempelzellen für die Versuche.

Abb. 2.11: Abbildung einer für das kryogene Befüllen mit flüssigen Stickstoff vorbereiteten Diamantstempelzelle.

2.2 Analytische Arbeitsmethoden

2.2.1 Röntgenbeugung an Pulvern

2.2.1.1 Labordiffraktometer

Fur die röntgenographischen Untersuchungen an Pulvern werden zwei automatische Pulverdiffraktometer (STADI-P, Fa. STOE) mit fokussierendem Germaniumeinkristallmonochromator und Debye-Scherrer-Geometrie verwendet.

Ein Gerät ist mit einer Kupferanode ($\lambda = 1,5406$ Å) ausgerüstet und besitzt zwei Detektoren mit verschiedener Auflösung und Winkelbereichen. Zum einen ein IP-PSD (Image Plate Position Sensitive Detector, Winkelbereich 140°, Auflösung $\Delta 2\theta = 0,10°$). Wegen der höheren Intensitäten eignet sich das IP-PSD besonders fur schnelle Routinemessungen, d.h. fur die Phasenanalyse der Proben. Zum anderen ein linearer PSD-Detektor (Winkelbereich 6°, Auflösung $\Delta 2\theta = 0,08°$), welcher für Präzisionsmessungen eingesetzt wird. Das zweite Gerät ist mit einer Molybdänanode ($\lambda = 0,7093$ Å) ausgerüstet und besitzt einen linearen Detektor. Dieses Gerät wird für Röntgenbeugung an Pulvern verwendet, die stark strahlabsorbierende Elemente erhalten. An dem Gerät besteht auch die Möglichkeit temperaturabhängige (25 °C < T(±5 °C) < 500 °C) Beugungsaufnahmen aufzuzeichnen.

Elementares Silizium dient als externer Standard für die Korrektur der Messwerte bezüglich des 2 θ -Nullpunktes bei beiden Geräten. Die Aufnahme und die Auswertung der Pulverdiffraktogramme erfolgt rechnergestützt durch die Software von STOE WinXPOW.³⁴ Der Vergleich Pulverdiffraktogramme der Edukte und der Reaktionsprodukte mit bekannten Substanzen erfolgte mit Hilfe von Datenbanken (z.B. PCPDFWIN³⁵).

Luftempfindliche Proben werden unter Argon in Markröhrchen ($\emptyset = 0,1 - 0,5$ mm, Glas Nr. 14, Fa. Hilgenberg) gefüllt, die durch Verschmelzen versiegelt werden.

2.2.1.2 Heizguinier

Temperaturabhängige Röntgenpulverdiffraktometrie zur Untersuchung von Phasenumwandlungen, Schmelz- und Zersetzungstemperaturen wurden mit einer Guinier-Kamera (FR 553, Fa. Enraf-Nonius) durchgeführt. Die verwendete Cu-K α -Strahlung ($\lambda = 1,5406$ Å) wird mit einer Feinfokusröntgenröhre erzeugt und durch einen zylindrisch geschliffenen, auf einen spezifischen Krümmungsradius gebogenen Quarzeinkristall (Johansson-Monochromator) monochromatisiert. Es können Temperaturen zwischen Raumtemperatur (20 °C) und T = 850 °C durch einen geheizten Luftstrom erreicht werden. Die Proben werden unter Argon in Kapillaren ($\emptyset = 0,1 - 0,5$ mm) aus Glas (Lindemann Glas Nr. 14) für Messungen bis T = $300 \,^{\circ}$ C und aus Quarzglas für Messungen über T = $300 \,^{\circ}$ C eingeschmolzen.

Die Aufnahmen können kontinuierlich als Fahrspur oder auch in festgelegten Temperaturschritten als Standspuren angefertigt werden. Die Korrektur der Filmlänge erfolgt mit Silizium als externem Standard. Die Datensammlung erfolgte auf röntgenempfindlichen Imageplatten, die rechnergestützt ausgelesen und mit Hilfe des AIDA-Image-Analyser-Programms (Version 4.06)³⁶ verarbeitet werden.

2.2.1.3 Synchrotronmessungen

Im Gegensatz zu Laborgeräten weisen Synchrotronquellen eine hohe Intensität, hohe Kohärenz, geringe Divergenz und einen durchstimmbaren Wellenlängenbereich auf. Die damit verbundene höhere Auflösung erlaubt eine deutliche bessere Trennung benachbarter Reflexe auch bei hohen Streuwinkeln. Gleichzeitig ist das Signal-zu-Rausch-Verhältnis um etwa Faktor 10 besser als bei einem Laborgerät, wodurch auch Reflexe mit geringer Intensität detektiert werden können. Hochaufgelöste Röntgenbeugungsexperimente wurden an der Beamline ID31 der ESRF (European Synchrotron Radiation Facility, Grenoble, Frankreich) durchgeführt. Die Fokussierung des Strahls erfolgt mittels eines rhodiumbeschichteten Siliziumspiegels, die anschließende Monochromatisierung mit Hilfe eines Si(111)-Doppelmonochromators. Die Größe des einfallenden Strahls wird durch einen Spalt auf 2·0,6 mm² begrenzt. Die Wellenlänge wird durch die Messung von Silizium als externen Standard bestimmt. Der gebeugte Strahl wird durch neun Ge(111)-Analysatorkristalle (Abstand von 2°) und neun Szintillationszähler gleichzeitig detektiert. Die Intensitätsabnahme des Primärstrahls wird durch Normierung ausgeglichen.

Die "in situ" Hochdruckversuche mit den Diamantstempelzellen wurden mit winkeldispersiver Röntgendiffraktometrie (ADXRD) bei Raumtemperatur zum einen an der ID-B Station von HPCAT am Advanced Photon Source (APS), Argonne National Labratory durchgeführt. Ein Doppelkristallmonochromator mit wassergekühlten Diamant (111) und Silizium (220) erzeugte monochromatische Strahlung mit einer Wellenlänge von λ = 0,4157 Å. Diese wurde mit modularen piezoelektrischen bimorphen Multielektrodenspiegeln in Kirkpatrick-Baez-Konfiguration auf einen Durchmesser von 15 μ m fokussiert. Ein MAR345 Bildplattendetektor mit 10 μ m Punktauflösung wurde für die Aufnahme der Beugungsbilder eingesetzt und die Belichtungszeiten betrugen zwischen 30 s und 150 s. Der Abstand zwischen Probe und Detektor betrug 428 mm. Die Software FIT2D³⁷ wurde zur Integration der Beugungsbilder benutzt. Für den Fehler bei der δ d/d Messung wurde ein Wert von 10⁻⁴ angenommen, aufgrund der Kalibrierung mit einem Siliziumstandard, welcher vom National Institute of Standards and Technology (NIST) erworben wurde. Der andere "in situ" Hochdruckversuch wurde an der Beamline ID09A des ESRF, Grenoble durchgeführt. Die weiße Strahlung wird vertikal durch einen sphärischen Spiegel gebündelt und durch einen gebogenen Silizium (111) monochromatisiert. In diesem Fall wurde eine Energie ausgewählt, die einer Wellenlänge von $\lambda = 0,41592$ Å entspricht. Der Strahldurchmesser beträgt 30x30 μ m². Der Abstand zwischen Probe und Detektor betrug hier 363 mm . Als Detektor wurde ebenfalls ein MAR345 Bildplattendetektor verwendet und die Daten wurden ebenfalls mit FIT2D³⁷ ausgewertet.

2.2.1.4 Lösung und Verfeinerung von Kristallstrukturen aus Pulverdaten

Beugungsuntersuchungen an Pulvern liefern eine eindimensionale Abbildung des reziproken Gitters. Aufgrund der begrenzten Auflösung der Detektoren geht bei der Aufnahme von Pulverdiffraktogrammen häufig die Information über die Intensität der einzelnen Reflexe durch die Überlagerung benachbarter Reflexe verloren. Zusätzlich kommt es bei niedersymmetrischen Strukturen oder solchen mit großen Gitterkonstanten oft zu einer Überlagerung von nicht symmetrieäquivalenten Reflexen. Daher können Strukturverfeinerungsmethoden, die auf der Berechnung der Strukturfaktoren auf Grundlage gemessener, integrierter Intensitäten beruhen, im allgemeinen nicht zur Lösung komplexer Strukturen verwendet werden. Liegt jedoch ein Strukturmodell vor, so kann das Problem der Überlagerung von Reflexen durch eine von Rietveld^{38,39} entwickelte Methode umgegangen werden. Dieses Verfahren eignet sich sowohl für an Synchrotron als auch mit Labordiffraktometern gemessenen Daten. Hierbei gehen nicht die integrierten Intensitäten, sondern die einzelnen Datenpunkte der Messung in die Berechnung ein. Im ersten Schritt werden Gitterkonstanten, Profilparameter und Untergrundkoeffizienten nach der LeBail-Methode⁴⁰ bzw. Pawley-Methode⁴¹ verfeinert. Im zweiten Schritt werden Strukturparameter durch die Methode der kleinsten Quadrate so lange variiert, bis das berechnete Profil mit dem beobachteten Pulverdiffraktogramm möglichst genau übereinstimmt. In dieser Arbeit werden für die Rietveld-Verfeinerung der Röntgendaten die Programme FullProf⁴² und GSAS/EXPGUI^{43,44} verwendet. Zur graphischen Darstellung der erhaltenen Strukturinformationen wird das Programm Diamond⁴⁵ benutzt.

2.2.2 Neutronenbeugung an Pulvern

Auch Neutronen können an kristallinem Material gebeugt werden, so wie Röntgenstrahlen. Nur tritt heir keine Wechselwirkung zwischen den Elektronen auf, sondern die Neutronen werden an den Atomkern gestreut. Das Neutron besitzt neben einem spin (s = 1/2) auch noch ein magnetisches Moment ($\mu_B = -1,9135 \ \mu_\kappa$), so dass man neben der Atompositionen auch die magnetischen Eigenschaften des Materials bestimmen kann. Die Neutronenbeugung hängt von der Neutronenstreulänge ab, die für benachbarte Elemente des Periodensystems, aber auch für verschiedene Isotope desselben Elementes sehr unterschiedlich sein kann. Die Neutronenbeugung ist zusammen mit der Röntgenbeugung eine ergänzende analytische Methode zur Strukturaufklärung. Ein Nachteil der Neutronenbeugung ist jedoch, dass für die erfolgreiche Durchführung eines Neutronenbeugungsexperimentes große Probenmengen (3 - 4g) nötig sind, da die Streulängen für die Atome recht verschieden sind, aber ihre Beiträge jedoch relativ klein sind. Für die Neutronenbeugung werden in der Regel thermische Neutronen genutzt, welche Energien < 0,1 eV besitzen. dies entspricht dem Temperaturenbereich T = 0 - 1000 K.

Im Rahmen dieser Arbeit wurden temperaturabhängige Neutronenmessungen am SPO-DI (Structure Powder Diffractometer) an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II), Garching durchgeführt. Am Diffraktometer wurde ein vertikal fokussierender Monochromator verwendet, der aus 17 Ge(551)-Kristallen besteht. Die Wellenlänge der Neutronen betrug $\lambda 1 = 1,5490$ Åund $\lambda 2 = 1,9830$ Å(Verhältnis $\lambda 2/\lambda 1 = 0,05$). Das Detektor-Array besteht aus 80 einzelnen He-3 Detektoren, die ortsempfindlich sind in vertikaler Richtung. Mit einem Kryostat kann die Temperatur der Probe während der Messung in einem Bereich zwischen T = 3 K - 300 K geregelt werden.

2.2.3 Energiedispersive Röntgenspektroskopie

Zur Untersuchung von Gefüge und Morphologie der Proben wird in dieser Arbeit ein Rasterelektronenmikroskop XL 30 TMP (Philips Electron Optics, Eindhoven) mit Wolfram-Kathode verwendet. Die Beschleunigungsspannung ist stufenlos bis 30 kV regelbar. In der Regel wurde mit 25 kV gearbeitet. Das Gerät enthält ein integriertes EDX-System von EDAX (EDAX, Traunstein-Neuhof) mit S-UTW-Si(Li)-Detektor (Super Ultra Thin Window, Polymerfenster, aktive Detektorfläche von 10 mm²). Die Eigenabsorption dieses Detektorfensters erlaubt einen Nachweis ab der Ordnungszahl Z = 5 (Bor). Die qualitative und quantitative Auswertung des Energiespektrums (Auflösung <135 eV für Mn-K_{\alpha} / 1000 cps bzw. 65 eV für C) erfolgt mit dem Programmsystem Phoenix (EDAX, Traunstein-Neudorf).

2.2.4 Thermische Analyse

Das benutzte Thermoanalysegerät (STA 429, Fa. Netzsch, Trägergas Argon) erlaubt die gleichzeitige Aufnahme von Thermogravimetrie- und Differenzthermoanalysekurven. Die Proben wurden für die Messungen in Korundtiegel eingewogen. Das Gerät ermöglicht eine simultane Thermoanalyse gekoppelt mit Massenspektrometrie, dazu kann es mit einem Quadrupol-Massenspektrometer (QMG 421, Fa. Balzer, Hudson, NH, USA) gekoppelt betreiben. Dabei werden die freiwerdenden Pyrolyseprodukte mit Helium als Trägergas in das Massenspektrometer eingeleitet. Es können Ionen mit Massen bis zu Ladungsverhältnissen von 200 u/e nachgewiesen werden. Die Zusammensetzung des Pyrolysegases liefert wertvolle Informationen über die chemischen Reaktionen beim thermischen Abbau der untersuchten Verbindungen.

2.2.5 Infrarot-Spektroskopie

Um von einem Festkörper Infrarotspektren aufnehmen zu könnne, kann dieser in Form eines KBr- oder CsI-Presslings gebracht werden. Hierzu werden 1-3 mg der Probe mit ca. 400mg KBr oder CsI verrieben und in einem Presswerkzeug unter Belastung von ca. 10 t in Pillenform gepresst. Handelt es sich um luftempfindliche Substanzen erfolgt die Präparation in einem Handschuhkasten.

Der Pressling wird mit polychromatischen Licht im infraroten Bereich ($\bar{v} = 10$ bis 10000 cm⁻¹, $\lambda = 1$ mm bis 1 μ m) durchstrahlt. Ist die Energie eines Photons genau so groß wie die Energiedifferenz zweier benachbarter Schwingungsniveaus, so wird dieses absorbiert und die Gesamtstrahlung in diesem Wellenlängenbereich geschwächt. Damit eine Anregung auf diese Weise möglich wird, muss sich während der Schwingung das Dipolmoment ändern.

Die in dieser Arbeit aufgeführten Spektren wurden mit dem Fouriertransformspektrometer IFS 133v der Firma Bruker, Karlsruhe, aufgenommen. Während der Messung ist das gesamte Gerät evakuiert. Das Gerät verfügt über vier verschiedene Detektoren, von denen aber nur einer in dieser Arbeit eingesetzt wurde. Dieser DTGS-Detektor (deuteriertes Triglycerinsulfat, Ferroelektrikum) registriert bei der Verwendung eines Kaliumbromidfensters Strahlung mit Wellenzahlen zwischen 4000 cm⁻¹ und 400 cm⁻¹ und mit Cäsiumiodidfenstern Wellenzahlen bis hinab zu 200 cm⁻¹. Es besitzt ein Auflösungsvermögen von 2 cm⁻¹. Der Vorteil eines FT-IR-Spektrometers ist, dass der Detektor alle Wellenlängen der durchgelassenen Strahlung auf einmal in Form eines Interferogramms detektiert, welches mit Hilfe einer Fourier-Transformation in das Spektrum umgerechnet wird.

2.2.6 Raman-Spektroskopie

Bei der Ramanspektroskopie wird die Probe mit monochromatisiertem Licht (Laser) bestrahlt. Während der größte Teil der Strahlung ohne Wechselwirkung mit der Probe wieder austritt, wird ein geringer Anteil inelastisch gestreut. Das Streulicht weist neben der Frequenz des eingestrahlten Lichtes noch weitere Frequenzen auf, die auf die Schwingungen des streuenden Moleküls zurückzuführen sind. Die luftempfindlichen Substanzen dieser Arbeit wurden alle in Glas- bzw. Quarzglaskapillaren (0,1 - 0,5 mm Durchmesser) mit einem Ramanspektrometer Typ LabRAM von Jobin Yvon, Horiba vermessen.

2.2.7 Magnetische Messungen

Die Messung der Temperaturabhängigkeit der magnetischen Suszeptibilität erfolgte mit einem SQUID-Magnetometer (SQUID = Superconducting Quantum Interferometer Device, MPMS 5.5, Fa. Quantum Design). Das Gerät erlaubt Untersuchungen im Temperaturbereich 1,7 - 800 K in homogenen Magnetfeldern bis zu 7 T. Bei luftempfindlichen Proben (80 - 150 mg) werden diese unter Helium in Ampullen aus hochreinem Quarzglas (Suprasil) eingeschmolzen. Für Messung von luftunempfindlichen Proben im Temperaturbereich von 1,7 - 330 K können auch Gelatine-Kapseln benutzt werden. Die Magnetisierung wird um Beiträge des Probenhalters korrigiert. Die Werte für die diamagnetischen Kernkorrekturen werden aus Tabellenwerken⁴⁶ entnommen.

3 Spezieller Teil

3.1 Hochdruckuntersuchungen an Verbindungen mit freiem Elektronenpaar

3.1.1 Selen(IV)oxid SeO₂

Die bekannte Modifikation des α -SeO₂ (Downeyit), ist bei Normaldruck zwischen - 140 °C und etwa 300 °C stabil.^{47,48} Das α -SeO₂ kristallisiert in der tetragonalen Raumgruppe *P*4₂/*mbc* (Nr. 135) mit *a* = 836,22 pm, *c* = 506,12 pm, *V* = 353,9·10⁶ pm³ und Z = 8. Kürzlich wurde von einer Hochdruckmodifikation des SeO₂ (des weiteren als Grz-SeO₂ bezeichnet) bei Drücken über 7 GPa und Raumtemperatur berichtet, welche bei Experimenten in einer Diamantstempelzelle gefunden wurde.⁴⁹ Diese neue metastabile Phase war nicht auf Normaldruck abschreckbar und zur Beschreibung wurde die orthorhombische Raumgruppe *Pbam* (Nr. 55) mit *a* = 813,4 pm, *b* = 792,8 pm, *c* = 494,9 pm, *V* = 319,6·10⁶ pm³ und Z = 8 vorgeschlagen. Das Hochdruckverhalten von α -TeO₂ (Paratellurit) wurde in einem Übersichtsartikel⁵⁰ diskutiert. Dabei zeigt das α -TeO₂ in dieser Untersuchung eine reversible Phasenumwandlung zweiter Ordnung, welche bei 0,9 GPa und Raumtemperatur erfolgt. Die tetragonale Raumgruppe *P*4₁2₁2 (Nr. 92) des α -TeO₂ mit *a* = 480,8 pm, *c* = 761,2 pm, *V* = 175,9·10⁶ pm³ und Z = 4, wandelt sich bei Druckerhöhung zu der orthorhombischen Raumgruppe *P*2₁2₁2 (Nr. 18) mit *a* = 460,5 pm, *b* = 485,6 pm, *c* = 753,0 pm, *V* = 168,4·10⁶ pm³ und Z = 4 um.

3.1.1.1 Hochdruckexperimente und Röntgenbeugung an Pulvern

Es sind mit SeO₂ Hochdruckversuche mit Drücken bis 19,5 GPa und Temperaturen zwischen Raumtemperatur und 820 °C durchgeführt worden. Dazu wurde für Drücke bis 2 GPa eine Piston-Zylinder-Presse, für Drücke bis 7 GPa eine BELT-Presse benutzt und eine Multianvil-Presse wurde für Drücke ab 7 GPa eingesetzt.

Es wurde weißes kristallines pulverförmiges Selendioxid (Sigma-Aldrich 99,999%) eingesetzt. Dieses wurde vor Benutzung 4 Tage bei 150 °C unter einem Strom von trockenem Sauerstoff getrocknet worden. Nach der Trockung wurde das α -SeO₂ nur noch in einem mit trockenem Argon gefüllten Handschuhkasten gehandhabt und aufbewahrt. Für die Experimente wurde das Selendioxid in dicht schließende Platintiegel gefüllt. Die gefüllten Tiegel wurden je nach den Versuchsbedingungen in die entsprechende Presse eingebaut und der Versuch gestartet. Am Ende der Versuche wurden die Proben von der Versuchstemperatur auf Raumtemperatur abgeschreckt. Der Druck wurde bei der Piston-Zylinder-

Abb. 3.1: Darstellung des p-T Phasendiagramms von Selendioxid, welches aus den experimentellen Daten erstellt werden konnte. Schwarz kennzeichnet α -SeO₂, β -SeO₂ ist Rot, γ -SeO₂ ist Blau. Die Phasengrenze zwischen β - und γ -SeO₂ ist gestrichelt dargestellt. Dr Tripelpunkt aus der Literatur ist in Grün eingezeichnet.

und BELT-Presse schnell erniedrigt (innerhalb von 5 bis 15 Minuten), während er bei der Multianvil-Presse langsam verringert wurde (innerhalb mehrerer Stunden).

Nach Beendigung der Experimente wurden alle Proben im Handschuhkasten geöffnet und unter Schutzgas gehandhabt. Die Abwesenheit von Wasser wurde mittels IR-Spektroskopie überprüft. Die erhaltenen Produkte fallen als weiße mikrokristalline Pulver an. Für die Aufnahme von Pulverdiffraktogrammen, wurden die Proben in Glaskapillaren (Lindemannglas Nr. 14) gefüllt. Die Proben wurden während der Messung bei einer Temperatur von T = -190 °C gehalten. Diese Messungen wurden an einem STOE Diffraktometer mit Cu-Strahlung ($\lambda = 1,5406$ Å) mit einer angeschlossenen Oxford Cryo Kühleinheit durchgeführt.

3.1.1.2 Ergebnisse der Hochdruckexperimente

Die Ergebnisse der Hochdruckversuche bis 19,5 GPa und 820 °C sind in Abbildung 3.1 dargestellt. Es sind zwei neue metastabile Hochdruckmodifikationen des Selendioxides dargestellt worden, welche mit β - und γ -SeO₂ bezeichnet werden. Die gestrichelte Linie im Phasendiagramm zwischen β - und γ -SeO₂, stellt die Phasengrenze zwischen den beiden Phasen dar, die durch die experimentellen Daten gut bestimmt ist. Die eingezeichneten Fehlerbalken setzen sich aus der Unsicherheit bei der Temperaturmessung und einem

Abb. 3.2: Plot der Rietveld-Verfeinerung für β -SeO₂bei T = 200 K (λ = 1,540598 Å) nach Hochdruckversuch bei 2 GPa und 570 °C. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe *Pmc*2₁ (grüne Linie), die Reflexlagen von β -SeO₂, sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Abb. 3.3: Plot der Rietveld-Verfeinerung für γ -SeO₂bei T = 200 K (λ = 1,540598 Å) nach Hochdruckexperiment bei 6 GPa und 820 °C. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe *Pmc*2₁ (grüne Linie), die Reflexlagen von γ -SeO₂, sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

kleinen Temperaturgradienten in den Hochdruckzellen zusammen. In Abbildung 3.1 ist auch der in der Literatur⁵¹ erwähnte Tripelpunkt von Selendioxid bei 389,3 °C und etwa 9 bar eingetragen (grünes Dreieck). Die zwei neuen Modifikationen bleiben bei Normaldruck und Temperaturen unter -30 °C stabil. Werden sie dagegen einige Stunden bei Raumtemperatur aufbewahrt, so wird die Umwandlung in das bei Normalbedingungen thermodynamisch stabile α -SeO₂ ausgelöst. Diese Umwandlung ist nach einigen Tagen vollständig.

Phase	β-SeO ₂	γ-SeO ₂		
Kristalldaten	<u> </u>	1		
Raumgruppe	<i>Pmc</i> 2 ₁ (Nr. 26)			
Gitterkonstanten	a = 507,22(1) pm	a = 507,10(2) pm		
	b = 447,04(1) pm	b = 448,32(2) pm		
	c = 753,09(2) pm	c = 1496,72(6) pm		
Zellvolumen	$V = 170,76(1) \cdot 10^6 \text{ pm}^3$	$V = 340,27(3) \cdot 10^6 \text{ pm}^3$		
Z	4	8		
Molvolumen	25,712 cm ³ /mol	25,618 cm/mol		
Molgewicht	443,83 g/mol	887,66 g/mol		
Dichte (berechnet)	4,316 g/cm ³	4,332 g/cm ³		
Dichte (gemessen)	$4,3(1) \text{ g/cm}^3$	а		
Datensammlung				
Strahlquelle	STOE Stadi-P			
Monochromator	Ge(111)			
Strahlung	$Cu_{K\alpha} (\lambda = 1,540598 \text{ Å})$			
Messbereich; Schrittweite	10° - 130°2θ; 0,01°2θ	10° - 115°2θ; 0,01°2θ		
Anzahl der gemessenen Reflexe	178	288		
Strukturverfeinerung				
Verwendetes Programm	GSAS/EXPGUI ^{43,44}			
Anzahl der verfeinerten Parameter	30	40		
R_p^b	8,11 %	9,55 %		
R_{wp}^{b}	10,54 %	13,72 %		
$R(F^2)^b$	7,32 %	5,02 %		

Tabelle 3.1: Kristallographische und analytische Daten und Daten für die beiden neuen Phasen β - und γ -SeO₂(Standardabweichung in Klammern)

^azu geringe Probenmenge

^bAlle Werte sind mit GSAS berechnet

3.1.1.3 Strukturbestimmung

Die erhaltenen Röntgenpulverdiffraktogramme konnten weder mit den Parametern der Raumtemperaturphase (α -SeO₂),⁴⁸ noch mit den Daten der Hochdruckphase (Grz-SeO₂)⁴⁹ in Einklang gebracht werden. Die Reflexe der beiden neuen Hochdruckmodifikationen konnten orthorhombisch indiziert werden. Für β -SeO₂ ergaben sich a = 507,22(1) pm, b = 447,04(1) pm, c = 753,09(2) pm und $V = 170,76(1)\cdot10^6$ pm³ und für γ -SeO₂ erhielt man für a = 507,10(2) pm, b = 448,32(2) pm, c = 1496,72(6) pm und

Atom	Wyckhoff-Position	x	У	z	$B_{\rm iso} [\rm pm^2]$
β -SeO ₂					
Se1	2b	1/2	0,252(1)	0^{b}	0,78(5)
Se2	2a	0	0,122(1)	0,375(1)	0,73(5)
01	2a	0	0,746(4)	0,672(2)	0,8(3)
O2	2b	1/2	0,620(3)	-0,039(2)	0,9(3)
O3	4c	0,247(2)	0,152(2)	0,841(1)	1,0(2)
γ-SeO ₂					
Se1	2b	1/2	0,027(1)	0^{b}	1,5(2)
Se2	2b	1/2	0,511(2)	0,2492(1)	1,4(2)
Se3	2a	0	0,107(2)	0,6894(7)	1,2(2)
Se4	2a	0	0,344(2)	0,4369(7)	1,4(2)
01	2a	0	0,476(8)	0,337(4)	2,8(1,4)
O2	2a	0	0,027(6)	0,090(3)	0,1(9)
O3	2b	1/2	0,617(8)	0,486(3)	3,0(1,1)
O4	2b	1/2	0,166(8)	0,225(3)	1,3(9)
O5	4c	0,254(6)	0,624(6)	0,176(2)	2,2(9)
06	4c	0,248(5)	0,061(2)	0,419(2)	0,6(6)

Tabelle 3.2: Atompositionen und isotrope thermische Auslenkungsparameter für β -SeO₂ und γ -SeO₂(Standardabweichung in Klammern)

 $V = 340,27(3) \cdot 10^6 \text{ pm}^3$. Nach Überprüfung der systematischen Auslöschungen blieben 3 mögliche Raumgruppen übrig, *Pna2* (Nr. 28), *Pnma* (Nr. 51) und *Pmc2*₁ (Nr. 26). Aber nur die Raumgruppe *Pmc2*₁ lieferte vernünftige mit ENDEAVOUR⁵² Lösungen für die Atompositionen für die beiden neuen Phasen. Diese Datensätze wurden für die endgültige Rietveld-Verfeinerungen mit dem Softwarepaket GSAS/EXPGUI^{43,44} verwendet. Die Parameter die verfeinert wurden, waren der Skalierungsfaktor, die Gitterparameter, die Profilparameter der Pseudo-Voigt-Funktion, die Atompositionen und die isotropen Temperaturfaktoren. Da die z-Position in dieser asymmetrischen Raumgruppe frei wählbar ist, wurde die z-Position für ein Se-Atom auf 0 festgelegt. Die verfeinerten Pulverdiffraktogramme sind für β -SeO₂ in Abbildung 3.2 und für γ -SeO₂ in Abbildung 3.3 dargestellt. Es wurde letztendlich wegen der Röntgenabsorption der Verbindungen noch eine Absorptionskorrektur eingeführt. Die endgültigen verfeinerten Strukturparameter für β - und γ -SeO₂ sind in Tabelle 3.1 und die verfeinerten Atompositionen in Tabelle 3.2 angegeben. Die Bindungslängen und -winkel von den beiden neuen Hochdruckphasen sind im Vergleich mit α - und Grz-SeO₂ in Tabelle 3.3 und Tabelle 3.4 aufgeführt.

3.1.1.4 Strukturbeschreibung

Die Strukturen der α -, β - und γ -Modifikation des SeO₂ sind alle aus trigonalen Pyramiden SeO₃ aufgebaut. Nimmt man noch das freie Elektronenpaar als Pseudo-Ligand hinzu, so ergibt sich eine tetraedrische Koordination SeO₃*E*, wobei *E* das freie Elektronenpaar bezeichnet. Das Se-Atom sitzt im Zentrum und ist an der Basis von drei Sauerstoffatomen

Abb. 3.4: Abbildung der unendlichen Zickzack-Kette in α-SeO₂ mit den dazugehörigen Atomabständen.

Abb. 3.5: Abbildung der unendlichen Zickzack-Kette in β -SeO₂ mit den dazugehörigen Atomabständen.

- Abb. 3.6: Abbildung der ersten kristallographisch unabhängigen Se–O-Kette in γ-SeO₂ mit den dazugehörigen Atomabständen.
- **Abb. 3.7:** Abbildung der zweiten kristallographisch unabhängigen Se–O-Kette in γ -SeO₂ mit den dazugehörigen Atomabständen.

Abstände innerhalb der Ketten [pm]									
	α -SeO ₂		β -SeO ₂						
Se-O _{Brücke}	Se – O2 (2x)	179(1)	Se1 – O2 (2x)	181(1)					
			Se2 – O2 (2x)	177(1)					
Se-O _{Terminal}	Se - O1	162(1)	Se1 – O3	167(2)					
			Se2 – O1	164(2)					
	γ -SeO ₂		Grz-SeO ₂ ⁴⁹						
Se-O _{Brücke}	Se2 - O5(2x)	175(3)	Se1 – O1 (2x)	191(1)					
	Se3 – O5 (2x)	177(3)	Se2 – O1 (2x)	177(1)					
	Se1 – O6 (2x)	180(3)							
	Se4 – O6 (2x)	181(3)							
Se-O _{Terminal}	Se2 - O4	158(4)	Se1 – O2	172(2)					
	Se3 – O2	159(5)	Se2 – O3	149(2)					
	Se1 – O3	160(3)							
	Se4 – O1	160(6)							
Abstände zwischen den Ketten [pm]									
Abstände zwi	schen den Ketten	[pm]							
Abstände zwi	schen den Ketten α -SeO ₂	[pm]	β -SeO ₂						
Abstände zwi	schen den Ketten $\frac{\alpha - \text{SeO}_2}{\text{Se} - \text{O1}(2\text{x})}$	[pm] 284(1)	β -SeO ₂ Se1 – O1 (2x)	285(1)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2	[pm] 284(1) 274(1)	β -SeO ₂ Se1 – O1 (2x) Se1 – O3	285(1) 284(2)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2	[pm] 284(1) 274(1)	β -SeO ₂ Se1 – O1 (2x) Se1 – O3 Se2 – O1	285(1) 284(2) 280(2)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2	[pm] 284(1) 274(1)	β -SeO ₂ Se1 - O1 (2x) Se1 - O3 Se2 - O1 Se2 - O3 (2x)	285(1) 284(2) 280(2) 286(1)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2	[pm] 284(1) 274(1)	$\frac{\beta - \text{SeO}_2}{\text{Se1} - \text{O1} (2x)}$ $\frac{\text{Se1} - \text{O3}}{\text{Se2} - \text{O1}}$ $\frac{\text{Se2} - \text{O3} (2x)}{\text{Se2} - \text{O3} (2x)}$	285(1) 284(2) 280(2) 286(1)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2 γ -SeO ₂	[pm] 284(1) 274(1)	β-SeO ₂ Se1 – O1 (2x) Se1 – O3 Se2 – O1 Se2 – O3 (2x) Grz-SeO ₂ ⁴⁹	285(1) 284(2) 280(2) 286(1)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2 γ -SeO ₂ Se2 – O1 (2x)	[pm] 284(1) 274(1) 286(3)	β-SeO ₂ Se1 – O1 (2x) Se1 – O3 Se2 – O1 Se2 – O3 (2x) Grz-SeO ₂ ⁴⁹ Se1 – O3 (2x)	285(1) 284(2) 280(2) 286(1) 285					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2 γ -SeO ₂ Se2 – O1 (2x) Se2 – O4	[pm] 284(1) 274(1) 286(3) 297(3)	β-SeO ₂ Se1 - O1 (2x) Se1 - O3 Se2 - O1 Se2 - O3 (2x) Grz-SeO ₂ ⁴⁹ Se1 - O3 (2x) Se1 - O2	285(1) 284(2) 280(2) 286(1) 285 266(2)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2 γ -SeO ₂ γ -SeO ₂ Se2 – O1 (2x) Se2 – O4 Se3 – O1	[pm] 284(1) 274(1) 286(3) 297(3) 290(5)	β-SeO ₂ Se1 - O1 (2x) Se1 - O3 Se2 - O1 Se2 - O3 (2x) Grz-SeO ₂ ⁴⁹ Se1 - O3 (2x) Se1 - O2 Se2 - O3	285(1) 284(2) 280(2) 286(1) 285 266(2) 257(2)					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2 γ -SeO ₂ Se2 – O1 (2x) Se2 – O4 Se3 – O1 Se3 – O4 (2x)	[pm] 284(1) 274(1) 286(3) 297(3) 290(5) 287(2)	$\frac{\beta - \text{SeO}_2}{\text{Se1} - \text{O1} (2x)}$ Se1 - O3 Se2 - O1 Se2 - O3 (2x) Grz-SeO ₂ ⁴⁹ Se1 - O3 (2x) Se1 - O2 Se2 - O3 Se2 - O3 Se2 - O2 (2x)	285(1) 284(2) 280(2) 286(1) 285 266(2) 257(2) 278					
Abstände zwi	schen den Ketten $\frac{\alpha - \text{SeO}_2}{\text{Se} - \text{O1}(2x)}$ $\frac{\gamma - \text{SeO}_2}{\text{Se} - \text{O2}}$ $\frac{\gamma - \text{SeO}_2}{\text{Se}_2 - \text{O1}(2x)}$	[pm] 284(1) 274(1) 286(3) 297(3) 290(5) 287(2) 287(2)	$\frac{\beta - \text{SeO}_2}{\text{Se1} - \text{O1} (2x)}$ Se1 - O3 Se2 - O1 Se2 - O3 (2x) Grz-SeO ₂ ⁴⁹ Se1 - O3 (2x) Se1 - O2 Se2 - O3 Se2 - O2 (2x)	285(1) 284(2) 280(2) 286(1) 285 266(2) 257(2) 278					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2 γ -SeO ₂ Se2 – O1 (2x) Se2 – O4 Se3 – O1 Se3 – O4 (2x) Se1 – O2 (2x) Se1 – O3	[pm] 284(1) 274(1) 286(3) 297(3) 290(5) 287(2) 287(2) 287(2) 290(3)	$\frac{\beta - \text{SeO}_2}{\text{Se1} - \text{O1} (2x)}$ Se1 - O3 Se2 - O1 Se2 - O3 (2x) Grz-SeO ₂ ⁴⁹ Se1 - O3 (2x) Se1 - O2 Se2 - O3 Se2 - O2 (2x)	285(1) 284(2) 280(2) 286(1) 285 266(2) 257(2) 278					
Abstände zwi	schen den Ketten α -SeO ₂ Se – O1 (2x) Se – O2 γ -SeO ₂ Se2 – O1 (2x) Se2 – O4 Se3 – O1 Se3 – O4 (2x) Se1 – O2 (2x) Se1 – O3 Se4 – O2	[pm] 284(1) 274(1) 286(3) 297(3) 290(5) 287(2) 287(2) 287(2) 290(3) 283(4)	$\frac{\beta - \text{SeO}_2}{\text{Se1} - \text{O1} (2x)}$ Se1 - O3 Se2 - O1 Se2 - O3 (2x) Grz-SeO ₂ ⁴⁹ Se1 - O3 (2x) Se1 - O2 Se2 - O3 Se2 - O3 Se2 - O2 (2x)	285(1) 284(2) 280(2) 286(1) 285 266(2) 257(2) 278					

 Tabelle 3.3: Übersicht über die Bindungslängen in der Literatur erwähnten und den beiden neuen Phasen von Selendioxid (Standardabweichung in Klammern)

und an der Spitze von dem freien Elektronenpaar koordiniert. Die SeO₃*E*-Einheiten sind in allen Modifikationen jeweils über zwei der drei Sauerstoffatome miteinander verknüpft und ergeben so unendliche Zickzack-Ketten. Die zwei nicht verknüpften Ecken, werden zum einen durch das terminale Sauerstoffatom und zum anderen durch das ungebundene Elektronenpaar besetzt. Das besondere an diesen Ketten ist, dass die freien Elektronenpaare alle in die gleiche Richtung orientiert sind. Die Ketten selbst verändern sich kaum, wie man anhand der Bindungslängen in Abbildung 3.4, Abbildung 3.5, Abbildung 3.6 und Abbildung 3.7 erkennen kann. Die drei Modifikationen α -, β - und γ -SeO₂ unterscheiden sich hauptsächlich nur in der Orientierung der Ketten zueinander.

Bei α -SeO₂ erkennt man gut die tetragonale Symmetrie und die vierzähligen Achsen (siehe Abbildung 3.8). Dadurch weisen die Ketten vier unterschiedliche Orientierungen zueinander auf. Zusätzlich sind die Ketten dabei in Richtung der *c*-Achse immer so gegen-

Bindungswinkel [°]			
α -SeO ₂		β -SeO ₂	
O2 – Se1 – O2	89,5(1)	O2 - Se1 - O3(2x)	97,3(5)
O2 - Se1 - O3(2x)	98,4(1)	O2 - Se1 - O2	90,3(7)
		O2 - Se2 - O2	90,3(6)
		O1 - Se2 - O2(2x)	96,7(5)
Se - O2 - Se	121,6(1)	Se1 - O2 - Se2	125,3(6)
γ -SeO ₂		Grz-SeO ₂ ⁴⁹	
O4 - Se2 - O5(2x)	98,1(4)	O1 - Se1 - O2(2x)	116,2
O5 - Se2 - O5	91,(7)	O1 - Se1 - O1	71,4
O5 - Se3 - O5	93,2(7)	O1 - Se2 - O1	100,1
O2 - Se3 - O5(2x)	98,2(4)	O1 - Se2 - O3(2x)	79,9
O3 - Se1 - O6(2x)	97,3(5)		
O6 - Se1 - O6	90,1(6)		
O6 - Se4 - O6	88,5(6)		
O1 - Se4 - O6(2x)	96,9(4)		
Se2 - O5 - Se3	130,4(7)	Se1 – O1 – Se2	110,4
Se1 - O6 - Se4	123,4		

 Tabelle 3.4: Übersicht über die Winkel in der Literatur erwähnten und den beiden neuen Phasen von Selendioxid (Standardabweichung in Klammern)

einander verschoben, dass das freie Elektronenpaar in den Raum zwischen den terminalen Sauerstoffatomen der Nachbarketten zeigt. Die unendlichen Ketten weisen bei β -SeO₂ eine andere Orientierung auf, wie in Abbildung 3.9 zu sehen ist. Hier sind die Zickzack-Ketten in Schichten parallel der *ab*-Ebene angeordnet und alle Ketten einer Schicht zeigen in die gleiche Richtung. In diesem Fall sind die Ketten Richtung der *a*-Achse etwas verschoben, damit auch hier die freien Elektronenpaare in den freien Raum zwischen den terminalen Sauerstoffatomen orientiert sind. Die Anordnung der unendlichen Ketten bei γ -SeO₂ ist ähnlich der der β -Phase. Auch hier gibt es Schichten von Ketten parallel der *ab*-Ebene, nur sind es in diesem Fall Doppelschichten (siehe Abbildung 3.10).

Um Informationen über die mögliche Verbindung zwischen allen Phasen zu erlangen, sollten die Bindungen und Winkel der verfeinerten Kristallstrukturen genauer verglichen werden. Es ist deutlich erkennbar, dass alle Werte von β - und γ -Phase in einem vergleichbaren Bereich wie bei α -SeO₂ liegen. Die Summe der O–Se–O Winkel bleibt unverändert und nur der Se–O–Se Winkel und die Länge der Bindung zum terminalen Sauerstoff zeigen leichte Veränderungen. Diese Ähnlichkeit trifft auch auf die zweite Koordinationssphäre zu, trotz der unterschiedlichen Anordnung der Zickzack-Ketten. Interessant ist auch die Tatsache, dass sich der Se–O-Abstand zwischen den einzelnen Ketten kaum verändert. Diese Abstände variieren zwischen 270 pm und 300 pm (siehe Tabelle 3.3) und sind damit kürzer, als die, die man für eine van der Waal's Bindung zwischen Selen (200 pm) und Sauerstoff (152 pm) erwartet. Diese intermolekularen van der Waal's Bindungen spielen eine Rolle für die Stabilität bzw. Metastabilität der Phasen.

Abb. 3.8: Abbildung von α -SeO₂ mit Blick entlang [001]. Die Selenatome sind in Blau und die Sauerstoffatome in Rot dargestellt.

Abb. 3.9: Abbildung von β -SeO₂ mit Blick entlang [100]. Die Selenatome sind in Blau und die Sauerstoffatome in Rot dargestellt.

Abb. 3.10: Abbildung von γ -SeO₂ mit Blick entlang [100]. Die Selenatome sind in Blau und die Sauerstoffatome in Rot dargestellt.

					ECoN	MEFIR
α -SeO ₂						
	Se					
01	2/2, 180 (2x)				2,0	155
O2	1/1, 162				1,0	140
ECoN	2,8					
MEFIR	24					
β -SeO ₂						
	Se1	Se2				
01	-	1/1, 163			1,0	140
O2	2/1, 181 (2x)	2/1, 177(2x)			2,0	151
03	1/1, 167	_			1,0	140
ECoN	2,9	2,9				
MEFIR	29	25				
γ -SeO ₂						
, -	Se1	Se2	Se3	Se4		
01	_	_	_	1/1, 160	1.0	140
O2	_	_	1/1, 159	_	1.0	140
03	1/1, 160	_	_	_	1.0	140
O4	_	1/1, 158	_	_	1.0	140
05	_	2/1, 175(2x)	2/1, 177 (2x)	_	2.0	155
06	2/1, 180(2x)	_	_	2/1, 181 (2x)	2,0	158
ECoN	2.7	2.8	2.8	2.6	,	
MEFIR	22	19	21	22		
Grz-SeO	,					
	Se1	Se2				
01	2/1, 191 (2x)	2/1, 178(2x)			1.9	160
02	1/1. 172	0/0			1.0	140
03	0/0	1/1. 149			1.0	140
ECoN	2.6	1.8			-,-	
MEFIR	34	9				
$\begin{array}{c} \gamma \text{-SeO}_2 \\ 01 \\ 02 \\ 03 \\ 04 \\ 05 \\ 06 \\ \text{ECoN} \\ \text{MEFIR} \\ \text{Grz-SeO}_2 \\ 01 \\ 02 \\ 03 \\ \text{ECoN} \\ \text{MEFIR} \end{array}$	Se1 - 1/1, 160 - 2/1, 180 (2x) 2,7 22 Se1 2/1, 191 (2x) 1/1, 172 0/0 2,6 34	Se2 - - 1/1, 158 2/1, 175 (2x) - 2,8 19 Se2 2/1, 178 (2x) 0/0 1/1, 149 1,8 9	Se3 - 1/1, 159 - 2/1, 177 (2x) - 2,8 21	Se4 1/1, 160 - - 2/1, 181 (2x) 2,6 22	1,01,01,02,02,02,01,91,01,0	140 140 140 155 158 160 140 140

Tabelle 3.5: Übersicht über die Motive der gegenseitigen Zuordnung [pm], der effektiven
Koordinationszahl (ECoN) und der mittleren effektiven Ionenradien (MEFIR)
in pm für alle Modifikationen des Selendioxides

3.1.1.5 Berechnungen der Gitterenergie

Die Motive der gegenseitigen Zuordnung, die effektive Koordinationszahl (ECoN) und die mittleren fiktiven Ionenradien (MEFIR)⁵³ wurden berechnet und sind in Tabelle 3.6 aufgelistet. Für α -, β - und γ -SeO₂ sind die Werte für die gleichen Atomsorten in guter Übereinstimmung und liegen im erwarteten Bereich. Das ist ein Anzeichen dafür, dass die neuen Hochdruckmodifikationen von Selendioxid ausgewogene Kristallstrukturen aufweisen. Die Werte für den Madelunganteil für die Gitterenergie^{54,55} sind für die gleichen Ionen in der gleichen Größenordnung und sind in Tabelle 3.6 aufgeführt. Der Coulombanteil der Gitterenergie beträgt für α -SeO₂ (13029 kJ/mol)und ist vergleichbar mit dem Wert für β -SeO₂ (13035 kJ/mol), während sich für γ -SeO₂ ein höherer Coulombanteil

MAF	PLE (α -SeO ₂)	MAF	PLE (β -SeO ₂)
Se	1951	Se1	1954
		Se2	1980
O1	561	01	560
O2	599	02	592
		03	547
	$\Sigma = 13024 \text{ kJ/mol}$		$\Sigma = 13028 \text{ kJ/mol}$
MAF	PLE $(\gamma$ -SeO ₂)	MAF	PLE (Grz-SeO ₂ ⁴⁹)
Se1	1975	Se1	1879
Se2	2034	Se2	2023
Se3	2014		
Se4	1952		
01	570	O1	504
O2	571	02	544
O3	573	03	606
O4	558		
05	599		
06	587		
	$\Sigma = 13208 \text{ kJ/mol}$		$\Sigma = 12697 \text{ kJ/mol}$

 Tabelle 3.6: Übersicht über den Madelunganteil der Gitterenergie für die verschiedenen SeO2-Modifikationen

der Gitterenergie (13208 kJ/mol) ergibt. Geht man nach den reinen Summen der Coulombanteile der Gitterenergien sollten die α - und β -Phasen ähnliche Stabilität besitzten, dem gegenüber wäre die γ -Phase die stabilste Phase. Das die beiden Hochdruckphasen jedoch nur metastabil sind, kann man sich durch die kürzeren Se–O Abstände erklären, da die Energien direkt von der Ladung und der Bindungslängen abhängen. Da γ -SeO₂ die kürzesten Se–O Abstände aufweist, ergibt sich somit auch die höchste Gitterenergie. Für die Grz-SeO₂ Phase ergibt sich ein deutlicher Unterschied in den Werten für ECoN und MEFIR für die gleichen Atomsorten (siehe Tabelle 3.5). Dies gilt ebenso für den Madelunganteil und den Coulombanteil der Gitterenergie in Tabelle 3.6. Diese Ergebnisse deuten auf eine sehr unausgewogene Kristallstruktur bei Grz-SeO₂ hin und liefern eine mögliche Erklärung für die vollständige reversible Umwandlung der Hochdruckphase in die α -Phase von Selendioxid bei Druckentlastung.

3.1.1.6 Raman-Spektroskopie

In den Ramanspektren der β - und γ -Phasen des Selendioxides (siehe Abbildung 3.11) und Tabelle 3.7 sind einige Banden verschoben und es treten auch einige neue Banden auf im Vergleich mit α -SeO₂. Die neuen Ramanbanden entstehen durch die größere Entartung der E_g-Moden aufgrund der Symmetrieerniedrigung der Kristallsymmetrie von $P4_2/mbc$ bei α -SeO₂ $[D_{4h}^{13}]$ zu $Pmc2_1$ $[C_{2V}^2]$ bei β - und γ -SeO₂ und der daraus resultierenden Aufspaltung der Positionen der Se- und O-Atome in den neuen Hochdruckphasen. Die Ban-

Abb. 3.11: Darstellung der kombinierten Ramanspektren für die α - (schwarz), β - (rot) und γ -Phase (blau) des Selendioxides

den in α -SeO₂ lassen sich nach der Literatur⁵⁶ verschiedenen Schwingungen zuordnen. Die Banden im Bereich um 900 cm⁻¹ lassen sich der Se–O Streckschwingung der terminalen O-Atome zuordnen, im Bereich 500 bis 750 cm⁻¹ passen die Banden zu den O–Se–O Streckschwingungen (symmetrischen und asymmetrisch). Die Banden im Bereich 190 bis 360 cm⁻¹ gehören zu den unterschiedlichen O-Se-O Biegeschwingungen, wobei die höheren Wellenzahlen zu den terminalen Sauerstoffatomen passen. Die Ramanspektren von β und γ -SeO₂ zeigen über den ganzen Wellenzahlenbereich ein vergleichbares Verhalten. In der Region von 215 bis 340 cm⁻¹ weisen die Spektren unterschiedliche Bandenpositionen und auch Bandenintensitäten auf. Das kann man als das Ergebnis der zwei unabhängigen unendlichen Selendioxidketten in der γ -Phase gegenüber der einzelnen Kette in der β -Phase ansehen.

α -SeO ₂ ⁵⁶ [cm ⁻¹]	α -SeO ₂ [cm ⁻¹]	β -SeO ₂ [cm ⁻¹]	γ-SeO ₂ [cm ⁻¹]
		175	
197 (e _g)	195	195	194
$203 (a_{1g})$			
$253 (e_g)$	252	259	253
0		269	265
284 (b _{1g})			
$288 (a_{1g} + b_{2g})$	287	281	281
$301 (e_g)$	300		297
357 (b _{2g})	356	349	345
C		515	511
$523 (e_g)$	520		518
$531 (e_g)$		6	
$596(a_{1g})$	596	569	569
$706 (b_{2g})$	706	711	709
886 (a_{1g})	885	900	895
910 (b _{2g})	909		
940 (b_{1g})	940	925	924

Tabelle 3.7: Übersicht über die Raman-Daten der verschiedenen SeO2-Modifikationen im
Vergleich mit Referenzwerten für α -SeO2 aus der Literatur⁵⁶

3.1.2 Antimon(III)oxid Sb₂O₃

Im System Antimon-Sauerstoff sind 4 verschiedene oxidische Verbindungen bekannt, die bei Normalbedingungen (1 bar) und bei Temperaturen bis zu 1250 °C existieren. Dabei handelt es sich um Sb₂O₃, Sb₂O₄, Sb₆O₁₃ und Sb₂O₅.

Von Sb₂O₃ sind zwei Modifikationen bekannt. Das eine ist das kubische Sb₂O₃ (Senarmontit) und das orthorhombische Sb₂O₃ (Valentinit). Die kubische Modifikation (nachfolgend α -Sb₂O₃ genannt) ist isotyp mit dem kubischen As₂O₃. Es kristallisiert in *Fd3m* (Nr. 227) mit *a* = 1115,19 pm, *V* = 1386,91·10⁶ pm³ und Z = 16.^{57,58} Die orthorhombische Modifikation (nachfolgend β -Sb₂O₃ genannt) kristallisiert in Raumgruppe *Pccn* (Nr. 56) mit *a* = 491,1 pm, *b* = 1246,4 pm, *c* = 541,2 pm, *V* = 331,27·10⁶ pm³ und Z = 4.⁵⁹

Das α -Sb₂O₃ ist die stabile Modifikationen bei Normalbedingungen,⁶⁰ während das β -Sb₂O₃ die stabile Modifikation bei hohen Temperaturen darstellt. Nach den Daten aus der Literatur liegt der Umwandlungsbereich von der α - in die β - Modifikation zwischen 570 °C und 606 °C.⁶⁰⁻⁶³ Das β -Sb₂O₃ ist zwar metastabil, existiert aber über lange Zeit bei Normaltemperatur und -druck.^{60, 63} Des weiteren wurde in der Literatur nur ein Artikel über die Untersuchung von Sb₂O₃ bei hydrothermalen Bedingungen gefunden.⁶¹ Dabei wurde jedoch nur ein Druckbereich bis zu p = 0,3 GPa und bis T = 700 °C untersucht. Im Rahmen der Arbeit sollte das Verhalten von Sb₂O₃ bei höheren Drücken und Temperaturen untersucht werden.

3.1.2.1 Darstellung von Sb₂O₃ und Röntgenbeugung an Pulvern

Für die Experimente wurden beide Modifikationen von Sb₂O₃ verwendet. Das α -Sb₂O₃ wurde durch Sublimation im Vakuum für 12 Stunden bei 500 °C hergestellt. Dabei kristallisierte die α -Modifikation als weißer Belag an einem Kühlfinger im Sublimationsrohr. Die Reflexe der Röntgenpulverdiffraktogramme konnten nur dem α -Sb₂O₃ zugeordnet werden. Das β -Sb₂O₃ wurde nach Anleitung⁶⁴ aus einer HCl-sauren Lösung von SbCl₃ und einer kochenden Na₂CO₃-Lösung dargestellt. Der erhaltene Niederschlag wurde getrocknet und die anschließende Aufnahme des Pulverdiffraktogramms zeigte nur die Reflexe, die zum β -Sb₂O₃ gehören. Obwohl die beiden Modifikationen von Sb₂O₃ nicht luft- oder feuchtigkeitsempfindlich sind, wurden sie nach dem Trocknen in einem mit Argon gefüllten Handschuhkasten aufbewahrt. Für die Experimente wurden die Pulver der beiden Modifikation im Handschuhkasten in dicht schließende Tiegel gefüllt und dann in Versuchen bei unterschiedlichen Drücke bis 2 GPa eine Piston-Zylinder-Presse, für Drücke bis 7 GPa eine BELT-Presse benutzt und eine Multianvil-Presse wurde für

Drücke ab 7 GPa eingesetzt. Nach Beendigung der Versuche wurden die Proben alle mit Röntgenpulverdiffraktometrie untersucht.

Abb. 3.12: Phasendiagramm von Sb₂O₃ aus den Daten der Experimente in den Hochdruckpressen bei Drücken bis 19,5 GPa und Temperaturen bis 600 °C.

3.1.2.2 Ergebnisse der Hochdruckversuche

Die Ergebnisse der Hochdruckversuche mit Sb₂O₃ sind in Abbildung 3.12 dargestellt. Man erkennt, dass das kubische Sb₂O₃ bei niedrigen Drücken bis 2 GPa und 400 °C stabil ist, danach wandelt es sich in das orthorhombische Sb₂O₃ um, welches dann bis zu einem Druck von 7 GPa und 400 °C erhalten bleibt. Bei niedrigeren Temperaturen (bis 200 °C) bleibt das kubische Sb₂O₃ auch bei höheren Drücken bis zu 15 GPa stabil. Bei weiteren Experimenten im gleichen Druckbereich, aber bei Temperaturen über 400 °C zersetzt sich Sb₂O₃ in β -Sb₂O₄ und elementares Antimon zu zersetzen. Bei dem Versuch bei 19,5 GPa und 400 °C waren nur noch β -Sb₂O₄ und elementares Sb nachweisbar. Diese Zersetzung ist aber auch von der Haltezeit abhängig, da bei einem Versuch bei 15 GPa und 400 °C und 18 Stunden Haltezeit nur β -Sb₂O₄ und Sb identifiziert wurden. Bei Drücken von 10 GPa und 12,5 GPa und Temperaturen bis 400 °C, wurde eine neue Modifikation von Sb₂O₃ gefunden, die als γ -Sb₂O₃ bezeichnet wird. Es wurde auch noch eine zweite neue Phase gefunden, die in kleinen Mengen auch in den Pulverdiffraktogrammen bei 10 und 12,5 GPa auftritt. Sie ist die Hauptphase bei 15 GPa und 390 °C, jedoch war eine Indizierung nicht erfolgreich.

3.1.2.3 Strukturbestimmung

Für die Strukturbestimmung waren die Aufnahmen der Laborpulverdiffraktometer nicht ausreichend, da es starke Überlagerungen der Reflexe gab. Daher wurde für die Probe aus dem Versuch bei 10 GPa und 400 °C an der Beamline ID31 am ESRF, Grenoble ein hochaufgelöstes Pulverdiffraktogramm aufgenommen. Die neue Modifikation γ -Sb₂O₃kristallisiert orthorhombisch in der Raumgruppe $P2_12_12_1$ (Nr. 19), a = 1164,13(1)pm, b = 756,66(0) pm, c = 747,72(0) pm, $V = 658,64(1) \cdot 10^6$ pm³ und Z = 8. Die Gitterparameter zeigen eine Zusammenhang mit denen von α -Sb₂O₃. Dabei ist die *a*-Achse von γ -Sb₂O₃ etwas länger und die *b*- und *c*-Achsen sind ungefähr $a\sqrt{2}$ der α -Modifikation. Die Struktur wurde mit Hilfe des Programmes Endeavour⁵² gelöst. Mit dem besten Strukturvorschlag wurde dann eine Rietveld-Verfeinerung mit dem Programmen GSAS/EXPGUI^{43,44} durchgeführt. Die kristallographischen Daten der Verfeinerung sind in Tabelle 3.8 angegeben. Die Atompositionen sind in Tabelle 3.9 und die Atomabstände und Bindungswinkel sind in Tabelle 3.10 aufgeführt.

Kristalldaten	
Raumgruppe	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (Nr. 19)
Gitterkonstanten	a = 1164, 13(1) pm
	b = 756,66(0) pm
	c = 747,72(0) pm
Zellvolumen	$V = 658,64(1) \cdot 10^6 \text{ pm}^3$
Z	8
Molvolumen	49,587 cm ³ /mol
Molgewicht	291,50 g/mol
Dichte (berechnet)	5,879 g/cm ³
Datensammlung	
Strahlquelle	Beamline ID31, ESRF
Monochromator	Si(111)
Strahlung	0,24804 Å
Messbereich; Schrittweite	1,5°<2°θ<18,7°; 0,002°2θ
Anzahl der gemessenen Reflexe	938
Strukturverfeinerung	
Verwendetes Programm	GSAS/EXPGUI ^{43,44}
Anzahl der verfeinerten Parameter	45
R_p^a	4,89%
$\hat{\mathbf{R}_{wp}}^{a}$	6,93%
$R(F^2)^a$	3,86%

Tabelle 3.8: Ausgewählte kristallographische Daten und die Ergebnisse der Strukturverfeinerung von γ -Sb₂O₃ (Standardabweichung in Klammern).

^aAlle Werte sind mit GSAS berechnet

Abb. 3.13: Darstellung der Koordination der vier kristallographisch unabhängigen Antimonatome und der Sb–O Atomabstände.

Abb. 3.14: Darstellung der Sb₃O₃-Ringe, deren Verknüpfung und der sich daraus bildenden unendlichen Ketten in γ -Sb₂O₃.

Abb. 3.15: Blick auf die Struktur von γ -Sb₂O₃ entlang [100]. Man erkennt die tetragonale Stabpackung der unendlichen Ketten.

Abb. 3.16: Blick auf die Struktur von γ -Sb₂O₃ entlang [010].

Atom	Wyckhoff-Position	x	у	z	$B_{\rm iso} [{\rm pm}^2]$
Sb1	4a	0,23483(25)	0,46873(26)	0,47242(31)	0,0032(6)
Sb2	4a	0,51173(25)	0,18417(22)	0,27847(25)	0,0077(5)
Sb3	4a	0,00467(25)	0,24514(19)	0,24017(27)	0,0090(6)
Sb4	4a	0,23961(27)	0,00956(28)	0,01398(33)	0,0081(7)
01	4a	0,3936(10)	0,4749(13)	0,1484(18)	0,0118(17)
O2	4a	0,1462(10)	0,3978(17)	0,2543(14)	0,0118(17)
O3	4a	0,1112(11)	0,0387(15)	0,1932(18)	0,0118(17)
O4	4a	0,0131(16)	0,1807(12)	0,4964(9)	0,0118(17)
05	4a	0,2480(16)	0,2384(9)	0,6115(14)	0,0118(17)
06	4a	0,3629(9)	0,0493(17)	0,3043(16)	0,0118(17)

Tabelle 3.9: Atompositionen und isotrope Temperaturfaktoren für γ-Sb₂O₃ (Standardabweichung in Klammern).

Tabelle 3.10: Übersicht über die Atomabstände (pm) und Winkel (°) in γ-Sb₂O₃ (Standardabweichung in Klammern)

Sb1 – O1	203,68(13)	Sb3 – O2	201,50(12)
Sb1 – O2	200,31(11)	Sb3 – O3	202,52(12)
Sb1 – O5	203,53(8)	Sb3 – O4	197,94(72)
Sb2 – O1	200,52(11)	Sb4 – O3	201,97(13)
Sb2 - O4	196,96(8)	Sb4 – O5	201,81(8)
Sb2 - O6	202,00(12)	Sb4 - O6	202,00(12)
O1 - Sb1 - O2	101,8(5)	O2 - Sb3 - O3	87,2(5)
O1 - Sb1 - O5	84,5(5)	O2 - Sb3 - O4	92,8(5)
O2 - Sb1 - O5	103,0(5)	O3 - Sb3 - O4	87,0(5)
O1 - Sb2 - O4	99,9(4)	O3 - Sb4 - O5	85,1(5)
O1 - Sb2 - O6	92,7(5)	O3 - Sb4 - O6	95,8(5)
O4 - Sb2 - O6	100,8(5)	O5 - Sb4 - O6	96,8(5)
Sb3 - O3 - Sb4	130,7(7)		

3.1.2.4 Strukturbeschreibung

Die Kristallstruktur von γ -Sb₂O₃ besteht aus trigonal-pyramidal koordinierten Antimonatomen SbO₃ (siehe Abbildung 3.13). Berücksichtigt man noch das ungebundene Elektronenpaar (5s²) als Pseudo-Ligand, dann erhält man wieder eine tetraedrische Umgebung für das Sb³⁺ als SbO₃E, in der gleichen Art wie bei den Modifikationen des SeO₂. Es bilden sich ähnlich wie bei SeO₂ unendliche Ketten aus den SbO₃E-Einheiten. Drei dieser SbO₃E-Baueinheiten sind so verknüpft, dass sich Sb₃O₃-Ringe ausbilden, während das vierte SbO₃E die Verknüpfung zwischen den Sb₃O₃-Ringen (siehe Abbildung 3.14) bildet. Dieses Sb-Atom (Sb4) verknüpft auch die Ketten über eine Sb4–O3–Sb3-Brücke miteinander. Betrachtet man die Anordnung der unendlichen Ketten zueinander in Richtung der *a*-Achse, so erkennt man eine tetragonale Stabpackung⁶⁵ der Ketten, wie man in Abbildung 3.15 sieht. Die einzelnen SbO₃E-Einheiten sind in der Art miteinander verbunden, dass die freien Elektronenpaare in die Hohlräume zwischen den Ketten gerichtet sind. Es ergibt sich eine weitere Erklärung für die Stabilität dieser Struktur, wenn man vier etwas länger Sb–O Abstände berücksichtigt. Diese Abstände, die zwischen 262 pm und 272 pm liegen, sind kürzer als die Summe der van der Waals-Radien und haben auch noch einen Beitrag zu den Valenzsummen der beteiligten Antimon- und Sauerstoffatome. Dieser Einfluss ist in Tabelle 3.11 aufgelistet.

Vergleicht man die Struktur von γ -Sb₂O₃ mit denen der beiden anderen Modifikationen, sieht man gewisse Ähnlichkeiten mit β -Sb₂O₃. Die Struktur von β -Sb₂O₃ besteht aus miteinander verknüpften Sb₂O₃-Einheiten, welche unendliche Ketten aufbauen, die parallel zur *c*-Achse verlaufen. Die Anordnung der Ketten zueinander ergibt eine hexagonale Stabpackung im Vergleich zu der tetragonalen Stabpackung bei γ -SbO (siehe Abbildung 3.17).

Tabelle 3.11: Berechnung der Valenzsummen für γ -Sb₂O₃ (mit und ohne Berücksichtigung
der van der Waals-Radien).

Atome	Sb1	Sb2	Sb3	Sb4		
Valenzsumme ^a	2,61	2,81	2,74	2,65		
Valenzsumme ^b	2,74	2,92	2,91	2,82		
Atome	01	O2	O3	04	05	06
Valenzsumme ^a	1,76	1,81	1,75	1,99	1,73	1,76
Valenzsumme ^b	1,87	1,95	1,91	1,99	1,73	1,94

^aohne van der Waals-Radien

^{*b*}mit van der Waals-Radien

Abb. 3.17: Abbildung der Struktur von β -Sb₂O₃ entlang [001]. Deutlich erkennbar ist die hexagonale Stabpackung der Ketten.

3.1.2.5 Berechnungen der Gitterenergie

Die Motive der gegenseitigen Zuordnung, die effektive Koordinationszahl (ECoN) und die mittleren fiktiven Ionenradien (MEFIR)⁵³ wurden für γ -Sb₂O₃ und zum Vergleich für α - und β -Sb₂O₃ berechnet und sind in Tabelle 3.12 aufgelistet. Die Werte für die gleichen Atomsorten zeigen eine gute Übereinstimmung und liegen im erwarteten Bereich. Die Werte für den Madelunganteil der Gitterenergie^{54, 55} sind für gleiche Ionen in der gleichen Größenordnung (siehe Tabelle 3.13). Der Coulombanteil der Gitterenergie liegt für alle drei Modifikationen in einem kleinen Bereich. Für α -Sb₂O₃ beträgt der Wert 14930 kJ/mol und für β -Sb₂O₃ 15022 kJ/mol, während sich für γ -Sb₂O₃ ein Coulombanteil der Gitterenergie besitzt im Vergleich zum α -Sb₂O₃ lässt sich durch kürzere Sb–O Abstände im γ -Sb₂O₃ erklären. Die Energien hängen hier direkt von der Ladung und den Bindungslängen ab.

Tabelle 3.12: Übersicht über die Motive der gegenseitigen Zuordnung, der effektiven Koordinationszahl (ECoN) und der mittleren effektiven Ionenradien (MEFIR) [pm] für die verschiedenen Modifikationen von Sb₂O₃.

					ECoN	MEFIR
α -Sb ₂ O ₃						
	Sb					
0	3/2				2,0	140
ECoN	3,0					
MEFIR	58					
0 61 0						
β -Sb ₂ O ₃	C1					
	Sb					
01	1/2				2,2	144
O2	2/2				2,1	142
ECoN	3,2					
MEFIR	59					
γ -Sb ₂ O ₃	G1 1	G1 0	G1 A	61 4		
	Sb1	Sb2	Sb3	Sb4		
01	1/1	1/1	-	-	2,0	143
02	1/1	-	1/1	-	2,0	141
03	_	_	1/1	1/1	2,0	142
O4	-	1/1	1/1	_	2,0	140
05	1/1	_	_	1/1	2,0	141
06	_	1/1	_	1/1	2,0	142
ECoN	3,0	3,0	3,0	3,0		
MEFIR	61	58	59	62		

Atom	MAPLE (α -Sb ₂ O ₃)	MAPLE (β -Sb ₂ O ₃)	MAPLE $(\gamma$ -Sb ₂ O ₃)
Sb1	1107,9	1091,3	1049,1
Sb2			1077,1
Sb3			1071,6
Sb4			1094,7
01	450,3	502,9	508,8
O2		451,6	502,1
O3			478,4
O4			457,5
05			450,8
06			482,2
	$\Sigma = 14930 \text{ kJ/mol}$	$\Sigma = 15022 \text{ kJ/mol}$	$\Sigma = 15011 \text{ kJ/mol}$

Tabelle 3.13: Vergleich der MAPLE-Werte für γ -Sb₂O₃, α -Sb₂O₃⁵⁸ und β -Sb₂O₃.⁵⁹

3.1.3 Antimon(III,V)oxid Sb₂O₄

In der Literatur sind über die oxidischen Verbindungen des Antimon nur wenige Daten über das Hochdruckverhalten bei Raumtemperatur oder bei höheren Temperaturen bekannt. Über Sb₂O₄ wurden überhaupt keine Informationen gefunden. Im Rahmen dieser Arbeit ist zum ersten Mal das Verhalten von Sb₂O₄ bei hohen Drücken bei Raumtemperatur, als auch bei höheren Temperaturen untersucht worden.

Das gemischtvalente Sb₂O₄ enthält Antimon in den Oxidationsstufen +3 und +5, wobei das dreiwertige Antimonatom ein stereochemisch aktives freies Elektronenpaar besitzt. Laut Literatur existieren von Sb₂O₄ zwei Modifikationen. Zum einen die Raumtemperaturmodifikation α -Sb₂O₄,^{66–70} die orthorhombisch kristallisiert, in der Raumgruppe *Pna*2₁ (Nr. 33) mit *a* = 544,26 pm, *b* = 480,98 pm, *c* = 1178,30 pm, *V* = 308,45 · 10⁶ pm³ und Z = 4. Zum anderen die monoklinen Hochtemperaturmodifikation β -Sb₂O₄,^{68–71} die in der Raumgruppe *C*2/*c* (Nr. 15) mit *a* = 1205,82 pm, *b* = 483,44 pm, *c* = 538,27 pm, *V* = 303,65 · 10⁶ pm³ und Z = 4 kristallisiert. Laut Literaturangaben findet die Umwandlung von der α - zur β -Phase bei Normaldruck und 935 °C statt.^{68,72}

3.1.3.1 Darstellung von Sb₂O₄ und Röntgenbeugung an Pulvern

Das Ausgangsmaterial von kristallinem α -Sb₂O₄ Pulver wurde durch Erhitzen von Sb₂O₃ (Ventron-Alfa Products, ultrapure) im Sauerstoffstrom bei 530 °C für 24 Stunden hergestellt.

$$2Sb_2O_3 + O_2 \rightleftharpoons 2Sb_2O_4$$

Das erhaltene Pulver wurde im Achatmörser gut gemörsert und ein zweites Mal im Sauerstoffstrom unter gleichen Bedingungen erhitzt. Im Röntgenpulverdiffraktogramm wurden nur die Braggreflexe, des α -Sb₂O₄ identifiziert.

3.1.3.2 Hochdruckexperimente

Für die Hochdruckversuche bei Raumtemperatur und erhöhter Temperatur mit der BELT-Presse wurde das Antimon(III,V)oxid in dicht schließende Tiegel aus unterschiedlichen Materialien (Pt, Pt+hBN). gefüllt. Nach den Versuchen wurden alle Proben unter Normalbedingungen mittels Röntgenpulverdiffraktometrie untersucht.

Für die "in situ"-Hochdruckuntersuchungen mit der Diamantstempelzelle wurde das α -Sb₂O₄ zu einer kleinen, dünnen Tablette gepresst. Diese wurde in die vorbereitete Öffnung ($\emptyset = 100 \ \mu$ m) im Probenhalter der Diamantstempelzelle gegeben. Anschließend wurden Rubinsplitter für die Druckbestimmung und Silikonöl als Druckmedium hinzugefügt. Die "in situ"-Messungen wurden mit einer Wellenlänge von $\lambda = 0,4157$ Å an der ID-B Beamline von HPCAT am Advanced Photon Source (APS), Argonne National Labratory durchgeführt.

3.1.3.3 Ergebnisse der Hochdruckversuche

Im Versuch mit der Diamantstempelzelle bei Raumtemperatur (siehe Abbildung 3.18) beginnt die Umwandlung von α -Sb₂O₄ bei relativ geringen Drücken. Die vollständige Umwandlung zu β -Sb₂O₄ erfolgt bei viel höheren Drücken, als bei den Hochdruckversuchen unter erhöhter Temperatur. Die ersten Braggreflexe die der β -Phase zugeordnet werden können, erscheinen bei 3,3 GPa (siehe Ausschnitt Abbildung 3.18). Bei weiterer Druckerhöhung werden die Reflexe der α -Phase schrittweise kleiner. Bei einem Druck von etwa 20 GPa ist nur noch die β -Phase erkennbar. Bei diesen hohen Drücken zeigen die Braggreflexe eine deutliche druckinduzierte Verbreiterung. In den Pulverdiffraktogrammen ist bis zum Erreichen des Maximaldruckes von 27,3 GPa keine Veränderung mehr erkennbar. Bei anschließender Druckentlastung konnten keine Anzeichen für eine Rückumwandlung in das α -Sb₂O₄ gefunden werden. Des weiteren ließ sich auch 24 Stunden nach vollständiger Druckentlastung auf Normaldruck nur die β -Phase des Sb₂O₄ in den Pulverdiffraktogrammen nachweisen. Durch die Experimente mit der Diamantstempelzelle ließen sich Daten für die druckinduzierte Volumenänderung für die beiden Modifikationen von Antimon(III,V)oxid erhalten. Diese Ergebnisse wurden benutzt um das Kompressionsmodul für jede der beide Phasen zu bestimmen. Dies geschah mit Hilfe der Birch-Murnaghan-Zustandsgleichung 3.Ordnung:⁷³

$$p_{BM} = \frac{3}{2} K_{0T} \left[\left(\frac{V_0}{V} \right)^{7/3} - \left(\frac{V_0}{V} \right)^{5/3} \right] \cdot \left[1 - \frac{3}{4} (4 - K'_{0T}) \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right] \right]$$

wobei p für den Druck, V_0 für das Volumen bei p = 0 und K_{0T} und K'_{0T} für das Kompressionsmodul und die erste Ableitung des Kompressionsmoduls stehen. Für die Berechnung wurde das Programm EOSFIT 5.2 von R. Angel,⁷⁴ sowie das "Non-linear curve fitting" von J. Pezzulo⁷⁵ verwendet. Für K'_0 wurde bei der Berechnung ein typischer Wert von 4 eingesetzt. Die berechneten Kurven sind in Abbildung 3.19 und Abbildung 3.20 dargestellt. Die ermittelten Kompressionsmodule betragen für die α -Phase von Sb₂O₄ $K_{0\alpha} = 143 \pm 1.5$ GPa und für die β -Phase $K_{0\beta} = 105 \pm 1.5$ GPa. Ähnliche Werte

Abb. 3.19: Diagramm mit der Entwicklung der Zellkonstanten und des Volumens von α -Sb₂O₄ im untersuchten Druckbereich. Die aus den Druck- und Volumendaten berechnete isotherme Zustandsfunktion (Birch-Murnaghan) von α -Sb₂O₄ ist als gestrichelt Linie dargestellt.

Abb. 3.20: Diagramm mit der Entwicklung der Zellkonstanten und des Volumens von β -Sb₂O₄ im untersuchten Druckbereich. Die aus den Druck- und Volumendaten berechnete isotherme Zustandsfunktion (Birch-Murnaghan) von β -Sb₂O₄ ist als gestrichelt Linie dargestellt.

Abb. 3.21: Phasendiagramm von Sb₂O₄ aus den Daten der Experimente in der Hochdruckpresse bis p = 6 GPa und unterschiedlichen Temperaturen.

Abb. 3.22: Phasendiagramm von Sb_2O_4 aus den Daten der Experimente in den Hochdruckpressen bei einem Druck von p = 6 GPa und verschiedenen Temperaturen und Haltezeiten.

wurden auch mit der Vinet-Gleichung:⁷⁶

$$p_{Vin} = \frac{3K_{0T}[1 - (\frac{V}{V_0})^{1/3}]}{(\frac{V}{V_0})^{2/3}} \cdot exp[\frac{3}{2}(K'_{0T} - 1)(1 - (\frac{V}{V_0})^{1/3})]$$

erhalten. Der niedrigere Wert von $K_{0\beta}$ für β -Sb₂O₄ ist eher untypisch für Oxide, welche meistens einen Anstieg von K_0 für Hochdruckphasen bei zunehmender Dichte aufweisen. Jedoch ist eine solche Anomalie nicht einzigartig, sie wurde schon bei elementarem Si, Pb und den Verbindungen FeS (Troilit)⁷⁷ und FeSb₂O₄⁷⁸ beobachtet.

Die Ergebnisse der Versuche mit den Hochdruckpressen sind in Abbildung 3.21 und Abbildung 3.22 dargestellt. Man kann erkennen, dass die Hochdruckexperimente zu einer vollständigen Umwandlung von α - zu β -Sb₂O₄ bei einem Druck von p = 4 GPa und T = 400 °C und p = 6 GPa und T = 375 °C führten. Bei Drücken zwischen 4 GPa und 6 GPa und Temperaturen zwischen 23 °C und 350 °C erhält man Mischungen aus der α - und β -Phase, wobei der Anteil von β -Sb₂O₄ mit höherer Temperatur zunimmt. Bei p = 6 GPa und T = 400 °C konnten im Pulverdiffraktogramm neben β -Sb₂O₄ auch geringe Spuren von Sb₂O₃ nachgewiesen werden. Das heißt bei diesen Temperaturen und Drücken setzt schon eine Zersetzung der Probe ein. Des weiteren konnten in dem Pulverdiffraktogramm bei p = 6 GPa und Raumtemperatur geringe Spuren der monoklinen β -Phase festgestellt werden. Der Anteil der β -Phase ist nach 24 Stunden deutlich höher als nach 2 Stunden, wo sich nur Spuren erkennen lassen. Die Umwandlung von der α - in die β -Phase bei p = 6 GPa und Raumtemperatur erfolgt sehr langsam.

Abb. 3.23: Plot der Rietveld-Verfeinerung für α -Sb₂O₄ (λ = 1,5406 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe *Pna*2₁ (grüne Linie), die Reflexlagen von α -Sb₂O₄, sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Abb. 3.24: Plot der Rietveld-Verfeinerung für β -Sb₂O₄ ($\lambda = 1,5406$ Å) nach dem Hochdruckversuch bei 6 GPa und 375 °C. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe *C*2/*c* (grüne Linie), die Reflexlagen von β -Sb₂O₄, sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Phase	α -Sb ₂ O ₄	β -Sb ₂ O ₄
Kristalldaten		
Raumgruppe	<i>Pna</i> 2 ₁ (Nr. 33)	<i>C</i> 2/ <i>c</i> (Nr. 15)
Gitterkonstanten	a = 544,25(2)) pm	a = 1206,42(2) pm
	b = 480,98(2) pm	b = 483,61(1) pm
	c = 1178,21(5) pm	c = 538,46(1) pm
		$\beta = 104,60(1) \text{ pm}$
Zellvolumen	$V = 308,42(2) \cdot 10^6 \text{ pm}^3$	$V = 304,01(2) \cdot 10^6 \text{ pm}^3$
Z	4	4
Molvolumen	46,441 cm ³ /mol	45,777 cm [/] mol
Molgewicht	M = 307	,50 g/mol
Dichte (berechnet)	$6,622 \text{ g/cm}^3$	$6,718 \text{ g/cm}^3$
Datensammlung		
Strahlquelle	STOE	Stadi-P
Monochromator	Ge(111)
Strahlung	$Cu_{K\alpha} (\lambda =$	= 1,5406 Å)
Messbereich; Schrittweite	$12^{\circ} < 2^{\circ}\theta < 88,70^{\circ}; 0,01^{\circ}2\theta$	12°<2°θ<89,96°; 0,01°2θ
Anzahl der Datenpunkte	7779	7799
Anzahl der gemessenen Reflexe	137	127
Strukturverfeinerung		
Verwendetes Programm	GSAS/EX	PGUI ^{43,44}
Anzahl der verfeinerten Parameter	33	26
R_p^a	6,74 %	6,87 %
$\hat{R_{wp}}^a$	8,58 %	9,02 %
$R(F^2)^a$	6,40 %	8,82 %

Tabelle 3.14: Kristallographische Daten und Güte der Rietveld-Anpassung für α - und β -Sb₂O₄.

^{*a*}Alle Werte sind mit GSAS berechnet

3.1.3.4 Strukturbestimmung und -beschreibung

Das Softwarepaket GSAS/EXPGUI^{43,44} wurde für die Rietveldverfeinerung der Kristallstrukturen beider Modifikationen des Antimon(III,V)oxids eingesetzt. Als Anfangswerte für die Anpassung der Pulverdiffraktogramme von α - und β -Sb₂O₄ wurden die Daten von der Einkristallstrukturen von Amador et al.⁷⁰ verwendet. Die verfeinerten Werte für die Zellparameter und die Atompositionen (siehe Tabelle 3.14, Tabelle 3.15 und Tabelle 3.16) und die sich daraus ergebenden Bindungslängen und -winkel, liegen im Bereich der Werte von früheren Anpassungen^{67–71} (siehe 3.17 und 3.18). Wie in Abbildung 3.25 und Abbildung 3.26 zu sehen ist, sind sich die beiden Kristallstrukturen der beiden Modifikationen sehr ähnlich, obwohl α -Sb₂O₄ orthorhombisch in der Raumgruppe *Pna*2₁ und β -Sb₂O₄ monoklin in der Raumgruppe *C*2/*c* vorliegen.

Die Struktur besteht in beiden Modifikationen aus verzerrten Sb^VO₆-Oktaedern und aus quadratisch-pyramidalen Sb^{III}O₄*E*-Einheiten (*E* = freies Elektronenpaar). Die SbO₆-Oktaeder sind über gemeinsame Ecken miteinander verknüpft und bilden Schichten parallel zur *ab*-Ebene in der α -Phase und parallel der *bc*-Ebene in der β -Phase (siehe Abbildung 3.25 und Abbildung 3.26). Die Oktaeder der β -Phase zeigen nur eine sehr

Atom	Wyckhoff-Position	x	У	z	U _{iso} [pm ²]
Sb1 (+5)	4a	0,3718(2)	0,0135(7)	0,2501(5)	0,0134(1)
Sb2 (+3)	4a	0,9793(6)	0,0354(3)	0,0030(5)	0,028(1)
01	4a	0,3373(25)	0,1404(29)	0,0889(7)	0,037(2)
O2	4a	0,1520(19)	0,7195(21)	0,1989(9)	0,037(2)
03	4a	0,0780(19)	0,2006(23)	0,3112(9)	0,037(2)
O4	4a	0,3432(28)	0,8039(30)	0,3954(8)	0,037(2)

Tabelle 3.15: Atompositionen und isotrope Temperaturfaktoren für α -Sb₂O₄.

Tabelle 3.16: Atompositionen und isotrope Temperaturfaktoren für β -Sb₂O₄.

Atom	Wyckhoff-Position	x	У	z	U _{iso} [pm ²]
Sb1 (+5)	4 <i>c</i>	1/4	1/4	0	0,029(1)
Sb2 (+3)	4e	0	0,2822(4)	1/4	0,025(1)
O1	8f	0,1973(6)	0,0517(16)	6736(17))	0,022(3)
O2	8f	0,0895(7)	0,4087(16)	0,9540(16))	0,036(3)

geringe Abweichung vom idealen Oktaeder auf, während in der α -Phase es zu einer deutlich sichtbaren Verzerrung des SbO₆-Oktaeders kommt. Die Sb³⁺-Atome liegen genau zwischen den Oktaederschichten. Sie verknüpfen die Schichten, indem sie mit je zwei Sauerstoffatomen aus der darüber und darunter liegenden Schicht eine quadratische Grundfläche bilden, über welcher das Sb³⁺-Atom sitzt. Die Spitze dieser quadratischpyramidalen SbO₄*E*-Einheit wird vom freien Elektronenpaar gebildet. Die Spitzen der einzelnen SbO₄*E*-Einheiten zeigen jeweils in entgegengesetzte Richtungen.

Tabelle 3.17: Vergleich der Atomabstände [pm] aus der Rietveld-Anpassung für α - und β -Sb₂O₄.

Bindungslängen [pm]				
α -Sb ₂ O ₄		β -Sb ₂ O ₄		
Sb1 – O1	200(1)	Sb1 – O1	193(1) (2x)	
Sb1 - O2	195(1)	Sb1 – O1	196(1) (2x)	
Sb1 - O2	199(1)	Sb1 – O2	204(1)(2x)	
Sb1 – O3	192(1)			
Sb1 – O3	197(1)			
Sb1 – O4	199(2)			
Sb2 - O1	201(2)	Sb2 - O2	200(1)(2x)	
Sb2 - O1	225(2)	Sb2 - O2	222(1)(2x)	
Sb2 - O4	205(2)			
Sb2 - O4	230(2)			

3.1.3.5 Berechnungen der Gitterenergie

Für α - und β -Sb₂O₄ wurden die Werte für den Madelunganteil der Gitterenergie (MAPLE)^{54, 55} berechnet. Die Werte für gleichen Ionen liegen bei beiden Modifikationen in einem vergleichbaren und erwarteten Bereich (siehe Tabelle 3.19). Die Summe der Coulombanteile der Gitterenergie für β -Sb₂O₄ ist mit 26635 kJ/mol höher als bei der

Abb. 3.25: Blick auf die Kristallstruktur von α -Sb₂O₄ entlang [010] und [100].

Abb. 3.26: Blick auf die Kristallstruktur von β -Sb₂O₄ entlang [010] und [001].

 α -Modifikation mit 26619 kJ/mol. Zudem erkennt man bei den MAPLE-Werten für Sauerstoff bei der α -Phase eine deutlich größere Streuung als bei der β -Phase. Somit besitzt β -Sb₂O₄ der Gitterenergie nach die größere Stabilität.

3.1.3.6 Ergebnisse

Zum ersten Mal wurden Hochdruckversuche bei Raumtemperatur und erhöhten Temperaturen mit Sb₂O₄ durchgeführt. Durch die experimentellen Daten mit Diamantstempelzellen und Hochdruckpressen konnte gezeigt werden, dass die β -Modifikation (laut Literatur die Hochtemperaturphase), sowohl durch Druckerhöhung als auch durch hohe Temperaturen^{68,72} erhalten werden kann. Es wurde zudem festgestellt, dass die monokline β -Modifikation nach Bildung durch die Hochdruckexperimente erstaunlich

Bindungswinkel [°]				
α -Sb ₂ O ₄		β -Sb ₂ O ₄		
O1 - Sb1 - O2	82,5(5)	O1 – Sb1 – O1	180,0 (2x)	
O1 - Sb1 - O2	87,5(5)	O1 - Sb1 - O1	89,6(3) (2x)	
O1 - Sb1 - O3	101,1(5)	O1 - Sb1 - O1	90,4(3) (2x)	
O1 - Sb1 - O3	97,5(5)	O1 - Sb1 - O2	85,7(3) (2x)	
O1 - Sb1 - O4	164,0(5)	O1 - Sb1 - O2	94,3(3) (2x)	
O2 - Sb1 - O2	88,2(4)	O1 - Sb1 - O2	90,5(3) (2x)	
O2 - Sb1 - O3	86,9(5)	O1 - Sb1 - O2	89,5(3) (2x)	
O2 - Sb1 - O3	94,0(5)	O2 - Sb1 - O2	180,0	
O2 - Sb1 - O3	175,9(5)			
O2 - Sb1 - O3	172,5(4)			
O2 - Sb1 - O4	92,0(5)			
O2 - Sb1 - O4	81,4(5)			
O3 - Sb1 - O3	90,6(4)			
O3 - Sb1 - O4	94,9(5)			
O3 - Sb1 - O4	81,6(5)			
O1 - Sb2 - O1	86,1(4)	O2 - Sb2 - O2	148,1(3)	
O1 - Sb2 - O4	90,2(5)	O2 - Sb2 - O2	72,2(3) (2x)	
O1 - Sb2 - O4	74,0(5)	O2 - Sb2 - O2	84,0(3) (2x)	
O4 - Sb2 - O1	74,3(5)	O2 - Sb2 - O2	83,4(3)	
O1 - Sb2 - O4	146,4(5)			
O4 - Sb2 - O4	78,9(4)			

Tabelle 3.18: Vergleich der Winkel [°] aus der Rietveld-Anpassung für α - und β -Sb₂O₄.

Tabelle 3.19: Vergleich der MAPLE-Werte für α -Sb₂O₄und β -Sb₂O₄.

Atom	Ladung	MAPLE (α -Sb ₂ O ₄)	MAPLE (β -Sb ₂ O ₄)
Sb1	+5	3044,5	3025,7
Sb2	+3	1098,3	1118,6
01	-2	550,7	598,9
O2	-2	569,9	510,4
03	-2	607,1	
O4	-2	488,7	
		$\Sigma = 26619 \text{ kJ/mol}$	$\Sigma = 26635 \text{ kJ/mol}$

stabil bei Normalbedingungen ist und die Rückumwandlung in das α -Sb₂O₄ nicht mehr möglich ist. Sogar nach Aufheizen auf 800 °C mit einer Heizguinier-Röntgenkamera konnte keine Veränderung von β -Sb₂O₄ beobachtet werden (siehe Abbildung 3.27). Bei der Betrachtung der Kristallstrukturen fällt auf, dass bei Normalbedingungen β -Sb₂O4 ein Zellvolumen von $V = 303, 62 \cdot 10^6 pm^3$ besitzt und eine Dichte von $\rho = 6,73g/cm^3$ hat. Durch Vergleich der korrespondierenden Werte für α -Sb₂O4, welche das Ergebnis des normalen Herstellungsprozesses bei 1 bar sind, ergibt sich ein Zellvolumen von $V = 308, 47 \cdot 10^6 pm^3$ und eine Dichte von $\rho = 6,62g/cm^3$. Diese Ergebnisse zeigen, dass die Packung in der Kristallstruktur der β -Modifikation effizienter ist als die der α -Modifikation. Bisher galt die α -Modifikation als die stabile Phase bei Normaldruck und Raumtemperatur. Normalerweise erwartet man für eine "Hochtemperaturphase" ein größeres Volumen und geringere Dichte im Vergleich zur Raumtemperaturmodifikation.

Abb. 3.27: Heizguinieraufnahme von Sb₂O₄ im Temperaturbereich 20 °C - 800 °C - 20 °C. Im gesamten Temperaturbereich ist keine Phasenumwandlung erkennbar.

h]

Aus den Ergebnissen der Hochdruckversuche ergibt sich, dass β -Sb₂O₄ die thermodynamisch stabilere Modifikation im gesamten untersuchten Druck- und Temperaturbereich darstellt. Dieses Ergebnis wird auch durch die Tatsache gestützt, dass sich Sb₂O₃ bei hohen Drücken und erhöhter Temperatur (≈ 400 °C) in β -Sb₂O₄ und elementares Antimon zersetzt. Mit diesen Ergebnissen wird die frühere Annahme von Keve und Skapski,⁷⁹ dass die β -Phase die stabilere Modifikation des Sb₂O₄ ist, bestätigt.

3.1.4 Bismut(III)fluorid BiF₃

Über BiF₃ gibt es vor allem in der älteren Literatur unterschiedliche Angaben über die Kristallstruktur. Es existieren dabei Angaben über eine Modifikation^{80–82} und eine orthorhombische Modifikation von BiF₃.^{83,84} Eine genaue Untersuchung von Greis et al.⁸⁵ zeigte, das BiF₃ die orthorhombische Kristallstruktur besitzt und diese zum Strukturtyp des YF₃ gehört. BiF₃, nachfolgend als α -BiF₃ bezeichnet, kristallsiert in der Raumgruppe *Pnma* (Nr. 62) mit *a* = 656,14 pm, *b* = 701,53 pm, *c* = 484,14, *V* = 222,85 · 10⁶ pm³ und Z = 8. Es zeigt beim Erhitzen bis zur Schmelztemperatur von 757 °C keine Phasenumwandlung. Bei der in der Literatur erwähnten kubische Modifikation von BiF₃ handelt es sich um ein Oxidfluorid des Bismuts mit der Zusammensetzung BiO_{0,5}F₂.

Über das Verhalten von BiF₃ bei erhöhten Drücken gibt es zwei Literaturangaben,^{86,87} dabei wird in einer der beiden eine Hochdruckmodifikation des Bismut(III)fluorids (T-BiF₃) erwähnt.⁸⁷ Die Struktur wurde aber bisher nicht vollständig aufgeklärt, da keine reine Phase erhalten wurde. Es wurden nur die Gitterparameter einer trigonalen Zelle mit a = 707,6 pm und c = 735,0 pm bestimmt. Das sogenannte "T-BiF₃" soll eine dem Tysonit (LaF₃) ähnliche Struktur aufweisen, eine Strukturvorschlag wurde schon früher aufgestellt.⁸⁵ Im Rahmen der Arbeit sollte die Hochdruckmodifikation einphasig dargestellt werden und die Struktur vollständig bestimmt werden.

3.1.4.1 Hochdruckversuche mit Hochdruckpressen

Für die Versuche wurde hochreines BiF_3 (Sigma-Aldrich, 99,99+ %) verwendet, welches vor Benutzung noch einmal im Vakuum bei 100 °C für 24 Stunden getrocknet wurde. Danach wurde das BiF_3 in einen mit Argon gefüllte Handschuhkasten überführt. Das Pulverdiffraktogramm zeigte nur Braggreflexe, die dem orthorhombischen BiF_3 zugeordnet werden können. Alle Proben für die Hochdruckversuche wurden im Handschuhkasten vorbereitet und dann in die Piston-Zylinder-Presse für Experimente bis 2 GPa Druck, in die BELT-Presse für Versuche bis 6 GPa oder in die Multianvil-Presse für die Versuche bis 20 GPa Druck eingebaut. Die Versuche wurden bis zu Drücken von 20 GPa und Temperaturen bis 700 °C durchgeführt.

3.1.4.2 Ergebnisse der Hochdruckversuche

Die Ergebnisse der Hochdruckexperimente sind in Abbildung 3.28 dargestellt. Es ist deutlich erkennbar, dass bei den Experimenten bis 20 GPa Druck und 700 °C Mischungen aus α - und β -BiF₃ entstanden sind. Bei drei Versuchen wurde eine Zersetzung der Probe in

Abb. 3.28: Darstellung des p-T Phasendiagramms von BiF₃ aus den Daten der Experimente in den Hochdruckpressen bei Drücken bis 20 GPa und Temperaturen bis 700 °C.

elementares Bismut beobachtet und das bei niedrigeren Temperaturen als die Schmelztemperatur bei Normaldruck (757 °C). Das Pulverdiffraktogramm des Versuches bei 2 GPa und Raumtemperatur zeigte keine Mischung der beiden Modifikationen, wie in der Literatur berichtet,⁸⁷ sondern nur dir Reflexe des reinen α -BiF₃.

3.1.4.3 Röntgenbeugung an Pulvern

Die Hochdruckexperimente wurden durch Abschreckung auf Raumtemperatur und schnelle Druckerniedrigung beendet. Die Hochdruckzellen aus den Versuchen wurden im Handschuhkasten geöffnet und die pulverförmigen Proben auf einen Flachträger für die Aufnahme der Pulverdiffraktogramme präpariert. Wegen der starken Absorption durch Bismut wurden keine Kapillaren für die röntgenographischen Untersuchungen verwendet. Ausgewählte Proben wurden unter Vakuum für eine Stunde auf 350 °C erhitzt, um zu kontrollieren, ob sich Oxidfluoride des Bismut gebildet haben. Die Oxidfluoride BiO_xF₃₋₂ bleiben durch die Temperaturbehandlung unverändert,⁸⁵ während sich β -BiF₃ (Hochdruckmodifikation) wieder in die α -Modifikation umwandelt⁸⁷ (siehe Abbildung 3.29).

Abb. 3.29: Pulverdiffraktogramme des Hochdruckexperiments bei p = 2 GPa und T = 500 °C. Das obere Pulverdiffraktogramm zeigt die Mischung aus α - (Rot) und β -BiF₃ (Blau) nach dem Hochdruckversuch. Das untere Pulverdiffraktogramm zeigt die gleiche Probe nach dem Erhitzen auf 350 °C, man erkennt nur noch die Reflexe des α -BiF₃ (Rot).

Abb. 3.30: Plot der Rietveld-Verfeinerung für α - und β -BiF₃ (λ = 1,5406 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in der Raumgruppe *P*6₃/*mmc* (grüne Linie), die Reflexlagen von α -(Rot) und β -BiF₃ (Schwarz), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Kristalldaten	
Raumgruppe	<i>P</i> 6 ₃ / <i>mmc</i> (Nr. 194)
Gitterkonstanten	a = 407,89(2) pm
	c = 734,43(3) pm
Zellvolumen	$V = 105,82(1) \cdot 10^6 \text{ pm}^3$
Z	2
Molvolumen	31,868 cm ³ /mol
Molgewicht	229,84 g/mol
Dichte (berechnet)	8,347 g/cm ³
Datensammlung	
Strahlquelle	STOE Stadi-P
Monochromator	Ge(111)
Strahlung	CuK_{α} ($\lambda = 1,5406$ Å)
Messbereich; Schrittweite	12,0°<2°θ<94,9°; 0,01°2θ
Anzahl der Datenpunkte	8234
Anzahl der gemessenen Reflexe	151
Strukturverfeinerung	
Verwendetes Programm	GSAS/EXPGUI ^{43,44}
Anzahl der verfeinerten Parameter	37
R_p^a	6,61 %
R_{wp}^{a}	8,69 %
$R(\hat{F}^2)^a$	6,19 %
reduziertes χ^{2a}	1,880

Tabelle 3.20: Ausgewählte kristallographische Daten und Ergebnisse der Strukturverfeinerung von β -BiF₃ (Standardabweichung in Klammern).

^aAlle Werte sind mit GSAS berechnet

Tabelle 3.21: Atompositionen und isotrope Temperaturfaktoren für β -BiF₃ (Standardabweichung in Klammern).

Atom	Wyckhoff-Position	x	у	z	$B_{\rm iso} [\rm pm^2]$
Bi	2d	2/3	1/3	1/4	0,0064(4)
F1	2b	0	0	1/4	0,0750(19)
F2	4f	1/3	2/3	0,0868(12)	0,0750(19)

3.1.4.4 Strukturbestimmung

Durch die Hochdruckversuche wurden Mischungen mit unterschiedlichen Verhältnissen zwischen α - und β -BiF₃ erhalten. Da die Positionen der Braggreflexe des α -BiF₃ bekannt sind, konnte mit den übrigen Braggreflexen eine Indizierung durchgeführt werden. Dabei erhielt man zwei Zellen, zum einen eine Zelle mit den Gitterparametern a = 706,83 pm, c = 733,94 pm und $V = 317,55 \cdot 10^6$ pm³, welche gut mit den Angaben aus der Literatur⁸⁷ übereinstimmt. Für die andere Zelle wurden die Gitterparameter a = 407,94 pm, c = 733,68 pm und $V = 105,7 \cdot 10^6$ pm³ gefunden. Die Güte der Indizierung war mit der kleineren Zelle besser, als mit der großen Zelle aus der Literatur. Es wurde auch ein mögliches Strukturmodell für die kleinere Zelle gefunden, nämlich das CmF₃.⁷ Das Curium(III)fluorid zeigt ein ähnliches Bild, auch dort ist eine Indizierung mit einer großen trigonalen Zelle *P*-3*c*1 (Nr. 165) und mit einer kleineren hexagonalen Zelle *P*6₃/*mmc* (Nr. 194) möglich. Beide besitzen sehr ähnliche Gitterparameter wie das β -BiF₃. Die Gitterparameter der hexagonalen und trigonalen Zelle stehen in folgendem Zusammenhang $a_h = \sqrt{3}a_t$. Für das β -BiF₃ wurde für beide Zellen eine LeBail-Anpassung durchgeführt und die hexagonale Zelle zeigte das bessere Ergebnis. Anschließend wurde eine Rietveld-Verfeinerung mit beiden Modifikationen ausgeführt. Die kristallographischen Daten sind in Tabelle 3.20, die Atompositionen in Tabelle 3.21 und die Atomabstände und Winkel in Tabelle 3.22 angegeben.

Abb. 3.31: Koordination um das Bi-Atom und Darstellung der kürzesten Bi–F Abstände in β -BiF₃.

Abb. 3.32: Abbildung der gesamten Koordination für das Bi-Atom in β -BiF₃.

Tabelle 3.22: Übersicht über die Atomabstände	(pm) und Winkel (°) in β -BiF ₃ (Standardab-
weichung in Klammern)	

Bi-F1	235,5(1)	Bi – F2	247,4(9) (2x)
Bi – F1	235,5(1) (2x)	Bi – F2	264,2(4)(4x)
	Bi - F2	264,3(4)(2x)	
F1 - Bi - F1	119,9(1)	F2 - Bi - F2	53,9(2)
F1 - Bi - F1	120,0(1)(2x)	F2 - Bi - F2	63,0(2) (2x)
F1 - Bi - F2	90,0(1) (2x)	F2 - Bi - F2	117,0(2) (2x)
F1 - Bi - F2	63,5(1) (4x)	F2 - Bi - F2	63,0(2) (2x)
F1 - Bi - F2	63,5(1) (4x)	F2 - Bi - F2	116,9(2) (2x)
F1 - Bi - F2	153,0(1) (4x)	F2 - Bi - F2	63,0(2) (2x)
F1 - Bi - F2	90,0(1) (2x)	F2 - Bi - F2	117,0(2) (2x)
F1 - Bi - F2	153,0(1) (2x)	F2 - Bi - F2	127,1(2)(2x)
F1 - Bi - F2	63,6(1) (4x)	F2 - Bi - F2	101,1(2)
F1 - Bi - F2	90,0(1) (2x)	F2 - Bi - F2	54,0(2) (2x)
F2 - Bi - F2	180,0(1)	F2 - Bi - F2	127,1(2)(4x)
F2 - Bi - F2	101,027 (4x)	F2 - Bi - F2	101,0(2)

Abb. 3.33: Blick auf die Kristallstruktur von β -BiF₃ entlang [010] (oberes Bild) und [001] (unteres Bild).

3.1.4.5 Strukturbeschreibung

Die Struktur von β -BiF₃ mit der hexagonalen Zelle ist aus aus hoch koordinierten Bi³⁺-Ionen aufgebaut. Das Bi besitzt drei kurze Bi-F1-Bindungen mit 235,5 pm und zwei etwas längere Bi-F2-Bindungen mit 247,9 pm. Betrachtet man nur diese kurzen Bindungen, so ergibt sich eine trigonal-bipyramidale Koordination für das Bi. Diese trigonalen Bipyramiden sind über die drei äquatorialen F-Atome miteinander zu Schichten verknüpft. Die Schichten sind in Richtung der c-Achse so angeordnet, dass die axialen F2-Atome in die Lücken zwischen den Bipyramiden der darunter- und darüberliegenden Schicht zeigen. Das Bismut weist aber noch 6 längere Bi-F2-Abstände von 264 pm auf. Jedes dieser F1-Atome überkappt dabei eine Fläche der trigonalen Bipyramide. Zudem stellt es auch ein axiales F-Atom der trigonalen Bipyramide aus der Schicht darüber bzw. darunter dar. Somit ergibt sich für das Bi in diesem Fall die Koordinationszahl 11 (5 kurze + 6 längere Bi–F Abstände). Im Vergleich dazu weist α -BiF₃ die Koordinationszahl 8 auf, mit Bi-F-Abstände die zwischen 223,3 pm und 250,3 pm variieren. Daraus ergibt sich ein leicht deformiertes quadratisches Antiprisma als Koordinationspolyeder. Die quadratischen Antiprismas sind über gemeinsame Kanten und Ecken miteinander verknüpft (siehe Abbildung 3.34).

Abb. 3.34: Blick auf die Kristallstruktur von α -BiF₃ entlang [010] und [001].

3.1.4.6 Berechnungen der Gitterenergie

Für α - und β -BiF₃ wurden die Motive der gegenseitigen Zuordnung, die effektive Koordinationszahl (ECoN) und die mittleren fiktiven Ionenradien (MEFIR)⁵³ berechnet (siehe Tabelle 3.23). Die Werte für die gleichen Atomsorten zeigen eine gute Übereinstimmung und liegen in dem erwarteten Bereich. Die Werte für den Madelunganteil für die Gitterenergie^{54, 55} sind für die gleichen Ionen in der gleichen Größenordnung und sind in Tabelle 3.24 aufgeführt. Die Coulombanteile der Gitterenergien betragen für das α -BiF₃ 5493 kJ/mol und für β -BiF₃ 5424 kJ/mol (Unterschied von \approx 70 kJ/mol). Die α -Modifikation des BiF₃ besitzt die höhere Gitterenergie und ist damit die stabilere Modifikation. Es wurde auch der Coulombanteil der Gitterenergie für das tysonitähnliche Modell "T-BiF₃" berechnet. Die Summe der Gitterenergie (5394 kJ/mol) ist aber noch niedriger als bei β -BiF₃und wäre energetisch gesehen noch ungünstiger.

Tabelle 3.23: Übersicht über die Motive der gegenseitigen Zuordnung, der effektiven Koor-
dinationszahl (ECoN) und der mittleren effektiven Ionenradien (MEFIR) [pm]
für α^{84} - und β -BiF3

		ECoN	MEFIR
α -BiF ₃		Leon	
51 5	Bi		
F1	2/2	2,0	143
F2	6/3	2,9	151
ECoN	7,7		
MEFIR	87		
β-BiF ₃			
1 5	Bi		
F1	3/3	3,0	140
F2	8/4	3,9	154
ECoN	101,0		
MEFIR	59		

Tabelle 3.24: Vergleich der MAPLE-Werte für α -BiF₃⁸⁴ und β -BiF₃.

Atom	MAPLE (α -BiF ₃)	MAPLE (β -BiF ₃)
Bi	949,1	952,6
F1	117,4	125,2
F2	121,9	109,0
	$\Sigma = 5493 \text{ kJ/mol}$	$\Sigma = 5424 \text{ kJ/mol}$

3.1.4.7 Ergebnisse

Eine so hochsymmetrische hexagonale Kristallstruktur für das β -BiF₃ scheint auf den ersten Blick ungewöhnlich, da das dreiwertige Bismut ein freies Elektronenpaar besitzt und dieses durch die hohe Koordinationszahl von 11 keinen Platz hat sich in eine bestimmte Richtung zu orientieren. Wenn man das Modell für die tysonitähnliche trigonale Kristallstruktur für BiF₃ betrachtet, besitzt dort das Bi³⁺-Kation ebenfalls eine hohe Koordinationszahl von 9 + 2. Die trigonale Struktur stellt eine leicht verzerrte Struktur des hexagonalen β -BiF₃ dar. Im Gegensatz dazu hat das freie Elektronenpaar bei der α -Modifikation durch die niedrigere Koordinationszahl von 8 genügend Raum sich in Richtung der quadratischen Flächen des Antiprismas zu orientieren. Das Verhalten, dass das freie Elektronenpaar bei Bi³⁺-Kationen kaum ausgeprägt ist, wurde schon von Shannon⁸⁸ in dem Artikel über die Ionenradien von Halogeniden und Chalkogeniden berichtet. Es ist von der Kristallstruktur abhängig, wie deutlich sich das freie Elektronenpaar bemerkbar macht.

3.2 Hochdruckuntersuchungen an Verbindungen mit Gerüst- oder Schichtstruktur

3.2.1 Arsen(V)oxid As₂O₅

Obwohl das Arsen(V)oxid schon lange bekannt⁸⁹ ist, wurde die Kristallstruktur erst 1977 aufgeklärt.^{90–92} Eine Ursache dafür ist das hygroskopische Verhalten und die Neigung zur Bildung amorpher Pulver bei der Herstellung von As₂O₅. Es gibt eine Raumtemperaturmodifikation von As₂O₅,^{90,91} die nachfolgend als α -Phase bezeichnet wird. Das α -As₂O₅ kristallisiert orthorhombisch in der Raumgruppe *P*2₁2₁2₁ mit *a* = 864,6 pm, *b* = 844,9 pm, *c* = 862,6 pm, *V* = 337,93 · 10⁶ pm³ und Z = 4. Des weiteren existiert auch eine Hochtemperaturmodifikation von As₂O₅,⁹³ die nachfolgend als β -Phase bezeichnet wird. Diese ist tetragonal *P*4₁2₁2 mit *a* = 857,2 pm und *c* = 463,6 pm, V = 340,65 · 10⁶ pm³ und Z = 4. Die reversible Umwandlung zwischen der α - und β - Phase erfolgt bei 305 °C und ist ein Übergang 2.Ordnung. Bei diesem Übergang handelt es sich um eine ferroelastische Phasenumwandlung. Diese ist experimentell^{94–97} und mit theoretische Berechnungen⁹⁸ detailiert untersucht worden. Im Rahmen dieser Arbeit wurde das Verhalten von As₂O₅ bei hohen Drücken bei Raumtemperatur, als auch bei höheren Temperaturen untersucht. In der Literatur wurden keine Informationen über das Hochdruckverhalten gefunden.

3.2.1.1 Hochdruckversuche mit Diamantstempelzelle

Für die Untersuchung des Verhaltens von α -As₂O₅ wurde dieses durch Oxidation von As₂O₃ und anschließender Entwässrung der erhaltenen Arsensäure dargestellt.^{92,99}Für die Experimente bei hohen Drücken und Raumtemperatur, wurde eine kleine Menge As₂O₅ in Pulverform unter Schutzgas in eine Diamantstempelzelle gegeben. Zur Bestimmung des Druckes mit der Ramanmethode wurden Rubinsplitter zugegeben Anschließend wurde die Zelle mit Stickstoff als Druckmedium gefüllt und verschlossen. Die Messung erfolgte an der Synchrotronbeamline ID09 am ESRF, Grenoble. Die Messung wurde bei einer Wellenlänge von 0,41592 Å durchgeführt und Pulverdiffraktogramme im Winkelbereich zwischen $2,5^{\circ}$ und $25^{\circ}2\theta$ aufgenommen. Der Druck in der Diamantstempelzelle wurde jeweils vor und nach der Messung bestimmt und daraus der Mittelwert gebildet. Aus den Daten des Hochdruckexperiments mit der Diamantstempelzelle erkennt man, dass α-As₂O₅ bis zu einem Druck von 19,5 GPa keine Phasenumwandlung bei Raumtemperatur zeigt (siehe Abbildung 3.35). Aus den erhaltenen Druck-Volumen Daten konnte das Kompressionsmodul für die α-Phase des Arsen(V)oxid bestimmt werden. Dies geschah mit Hilfe der Birch-Murnaghan-Zustandsgleichung⁷³ 3.Ordnung und der Vinet-Zustandsgleichung.⁷⁶ Für die Berechnung wurde das Programm EOSFIT 5.2,⁷⁴ sowie das "Non-linear curve fitting"⁷⁵ verwendet. Die berechnete Druck-Volumen Kurve ist in Abbildung 3.36 dargestellt. Das ermittelte Kompressionsmodul und die erste Ableitung betragen für α -As₂O₅ mit der Birch-Murnaghan-Zustandsgleichung $K_0 = 88,4 \pm 2,3$ GPa und $K'_0 = 4,0 \pm 0,4$ GPa. Vergleichbare Werte wurden mit der Vinet-Zustandsgleichung erhalten, nämlich $K_0 = 87,6 \pm 2,3$ GPa und $K'_0 = 4,2 \pm 0,4$ GPa.

Abb. 3.35: Darstellung der in situ Pulverdiffraktogramme bei Druckerhöhung während des Diamantstempelzellenexperiments mit α -As₂O₅ bei Raumtemperatur.

Abb. 3.36: Diagramm mit der Entwicklung der Zellkonstanten und des Volumens von α -As₂O₅ im untersuchten Druckbereich. Die aus den Druck- und Volumendaten berechnete isotherme Zustandsfunktion (Birch-Murnaghan) von α -As₂O₅ ist als gestrichelt Linie dargestellt.

Abb. 3.37: Darstellung des p-T Phasendiagramms von As₂O₅, welches aus den experimentellen Daten mit den Hochdruckpressen erstellt werden konnte.

3.2.1.2 Hochdruckversuche mit Hochdruckpressen

Es wurden auch Hochdruckversuche mit α -As₂O₅ durchgeführt, dabei wurde die Piston-Zylinder-Presse für Experimente bis 2 GPa Druck, die BELT-Presse für Hochdruckversuche bis 6 GPa oder die Multianvil-Presse für die Versuche bis 20 GPa Druck eingesetzt. Dazu wurde das α -As₂O₅ in einem Handschuhkasten unter Schutzgas in verschließbare Tiegel aus unterschiedlichen Material (Pt, Au, Pd) gefüllt und dann in die Presse eingebaut. Dabei zeigte sich, das die α -Phase über einen weiten Druck- und Temperaturbereich stabil ist. Des weiteren benötigt mindestens eine Temperatur von T \approx 500 °C, um bei den hohen Drücken eine neue Phase von As₂O₅ zu erhalten (siehe Abbildung 3.37).

Kristalldaten	
Raumgruppe	$P2_1/n$ (Nr. 14)
Gitterkonstanten	a = 880,38(4) pm
	b = 829,44(4) pm
	c = 479,36(3) pm
	$\beta = 96,86(0)^{\circ}$
Zellvolumen	$V = 347,54(17) \cdot 10^6 \text{ pm}^3$
Z	4
Molvolumen	52,317 cm ³ /mol
Molgewicht	229,84 g/mol
Dichte (berechnet)	4,393 g/cm ³
Datensammlung	
Strahlquelle	Heizguinier (FR 553, Fa. Enraf-Nonius)
Monochromator	Quarzeinkristall (Johansson-Monochromator)
Strahlung	CuK_{α} ($\lambda = 1,5406$ Å)
Messbereich; Schrittweite	9,8°<2° <i>θ</i> <78,3°; 0,02°2 <i>θ</i>
Anzahl der Datenpunkte	2735
Anzahl der gemessenen Reflexe	280
Strukturverfeinerung	
Verwendetes Programm	GSAS/EXPGUI ^{43,44}
Anzahl der verfeinerten Parameter	54
R_p^a	3,13 %
R_{wp}^{a}	4,52 %
$R(F^2)^a$	9,41 %

Tabelle 3.25: Kristallographische und analytische Daten von γ -As2O5 (Standardabweichung
in Klammern).

^aAlle Werte sind mit GSAS berechnet

3.2.1.3 Röntgenbeugung an Pulvern

Da sich die mit den Hochdruckexperimenten erhaltenen Phasen wieder in die α -Phase von As₂O₅ umwandeln, wurde mit Heizguinier-Aufnahmen im Temperaturbereich 20 °C - 350 °C - 20 °C nachgewiesen. Dabei zeigte sich bei einigen Heizguinier-Messungen, dass sich die Hochdruckphasen über eine intermediäre Phase in die α -Modifikation von As₂O₅ umwandeln (siehe Abbildung 3.38).

Abb. 3.39: Plot der Rietveld-Verfeinerung für γ -As₂O₅ aus den Daten der Heizguiniermessung im Temperaturbereich T = 205 °C - 255 °C (λ = 1,5406 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von γ -As₂O₅ (Schwarz) und HT-As₂O₅ (Rot), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Atom	Wyckhoff-Position	x	у	Z	$B_{\rm iso} [{\rm pm}^2]$
As1	4e	0,615(1)	0,898(1)	0,602(1)	0,050(2)
As2	4e	0,713(1)	0,220(1)	0,360(1)	0,037(2)
01	4e	0,515(2)	0,060(2)	0,687(4)	0,039(3)
O2	4e	0,800(2)	0,247(3)	0,072(4)	0,039(3)
O3	4e	0,240(2)	0,967(3)	0,547(4)	0,039(3)
O4	4e	0,989(2)	0,765(3)	0,234(3)	0,039(3)
05	4e	0,229(3)	0,612(3)	0,411(4)	0.039(3)

Tabelle 3.26: Atompositionen und isotrope Temperaturfaktoren für γ -As₂O₅ (Standardabweichung in Klammern).

3.2.1.4 Strukturbestimmung

Eine Indizierung der bei den Heizguinier-Messungen intermediär auftretenden Phase war im monoklinen System möglich, mit sehr ähnlichen Zellparametern, wie sie die α -, und β -Phase von As₂O₅ aufweisen. Nach den Auslöschungsbedingungen ergab sich als Raumgruppe für diese intermediäre Phase $P2_1/n$, mit a = 880,38(4) pm, b = 829,44(4)pm, c = 479,36(3) pm, $\beta = 96,86(0)^\circ$, $V = 347,54(17)\cdot10^6$ pm³ und Z = 4. Die kristallographischen Daten sind in Tabelle 3.25, die Atompositionen in Tabelle 3.26 und die Atomabstände und Winkel sind in Tabelle 3.27 aufgeführt. Das Pulverdiffraktogramm mit der Rietveld-Anpassung ist in Abbildung 3.39 dargestellt.

As1 – O1	168(2)	As2 – O2	167(2)
As1 – O1	172(2)	As2 – O3	165(2)
As1 – O2	172(2)	As2 - O4	182(2)
As1 – O3	190(2)	As2 – O5	181(2)
As1 – O4	190(2)		
As1 – O5	164(2)		
O1 – As1 – O1	73,6(9)	O2 - As2 - O3	103,0(10)
O1 – As1 – O2	165,2(10)	O2 - As2 - O4	107,3(9)
O1 – As1 – O2	92,5(9)	O2 - As2 - O5	106,0(9)
O1 – As1 – O5	95,7(10)	O3 - As2 - O4	117,4(10)
O1 – As1 – O3	89,4(9)	O3 – As2 – O5	121,1(10)
O1 – As1 – O3	90,7(9)	O4 - As2 - O5	101,1(9)
O1 – As1 – O4	98,3(9)		
O1 – As1 – O4	93,2(9)		
O1 – As1 – O5	169,2(10)	As1 – O1 – As1	106,4(11)
O2 - As1 - O3	84,0(9)	As1 - O2 - As2	106,4(11)
O2 - As1 - O4	87,3(9)	As1 - O3 - As2	106,4(11)
O2 - As1 - O5	98,2(10)	As1 - O4 - As2	106,4(11)
O3 – As1 – O4	171,0(9)	As1 - O5 - As2	106,4(11)
O3 – As1 – O5	90,1(9)		
O4 - As1 - O5	88,9(9)		

Tabelle 3.27: Übersicht über die Bindungslängen (pm) und -winkel (°) in γ -As₂O₅ (Stan-
dardabweichung in Klammern)

Abb. 3.40: Darstellung des AsO₆ Oktaeders und AsO₄ Tetraeders in γ -As₂O₅ mit Angabe der Bindungslängen in pm.

3.2.1.5 Strukturbeschreibung

Da das intermediäre γ -As₂O₅ eine monokline Verzerrung von α - bzw. β -As₂O₅ darstellt, ist die Kristallstruktur diesen sehr ähnlich. Die Struktur ist ebenfalls aus AsO₆ Oktaedern und AsO₄ Tetraedern aufgebaut (siehe Abbildung 3.40). Die mittlere Bindungslänge beträgt für den Oktaeder in γ -As₂O₅ 176 pm und für den Tetraeder liegt sie bei 174 pm. Damit liegen sie in einem vergleichbaren Bereich, wie bei α -As₂O₅ mit 182 pm für den Oktaeder und 168 pm für den Tetraeder. Die Struktur bei der α - und der β -Phase besteht aus eckenverknüpften AsO₆-Oktaedern, die unendliche Zickzack-Ketten in Richtung der c-Achse ausbilden. Eine solche Kette ist dann durch die Tetraeder jeweils so verknüpft, dass sie von vier weiteren Ketten umgeben ist. Dadurch bilden sich dann nahezu quadratische, röhrenförmige Hohlräume in der Struktur, die ebenfalls entlang der c-Achse verlaufen. Auf den ersten Blick scheint die Struktur von γ -As₂O₅ den gleichen Aufbau von AsO₆-Oktaedern und AsO₄-Tetraedern zu besitzen (siehe Abbildung 3.41 und Abbildung 3.42). Bei genauerer Betrachtung bilden sich hier keine Ketten von eckenverknüpften Oktaedern, sondern es sind je 2 Oktaeder über gemeinsame Kanten miteinander verknüpft und bilden As₂O₁₀-Einheiten. Diese Einheiten sind dann über die Tetraeder so verbunden, dass sie in Richtung [001] übereinander gestapelt sind und sich dabei wieder die röhrenförmigen Hohlräume ausbilden. In diesem Fall zeigen die Hohlräume aber eine stärkere Verzerrung von der quadratischen Form als es bei α - bzw. β -As₂O₅ der Fall ist.

3.2.1.6 Berechnungen der Gitterenergie

Für γ -As₂O₅ wurden Berechnungen für die Werte des Madelunganteils der Gitterenergie (MAPLE)^{54, 55} durchgeführt. Zum Vergleich sind auch die Werte von α - und β -As₂O₅ bestimmt worden. Die Werte für gleiche Ionen liegen bei allen drei Modifikationen in

Abb. 3.41: Abbildung der Struktur von γ -As₂O₅ mit Blick entlang [001]. Arsen ist in Grau und Sauerstoff in Rot dargestellt.

Abb. 3.42: Abbildung der Struktur von γ -As₂O₅ mit Blick entlang [100]. Arsen ist in Grau und Sauerstoff in Rot dargestellt.

einem vergleichbaren und erwarteten Bereich (siehe Tabelle 3.28). Wie man erkennt ist α -As₂O₅ die stabilste Form, da die Summe der Coulombanteile der Gitterenergie erwartungsgemäß den höchsten Wert besitzt (40510 kJ/mol). Die Werte für die metastabilen Modifikationen betragen für β -As₂O₅ (Hochtemperaturmodifikation) 40463 kJ/mol und für γ -As₂O₅ 40436 kJ/mol. Da sich die Energien der beiden nur geringfügig unterscheiden, kann man sich das intermediäre Auftreten der γ -Modifikation bei Umwandlung der Hochdruckphasen von As₂O₅ zurück in die α -Phase während der Heizguinieraufnahmen erklären.

Atom	MAPLE (γ -As ₂ O ₅)	MAPLE (α -As ₂ O ₅)	MAPLE (β -As ₂ O ₅)
As1	3174,4	3098,4	3118,5
As2	3015,4	3125,6	3099,7
01	764,5	732,4	733,5
O2	718,3	671,9	673,4
O3	681,9	676,0	683,9
O4	618,9	682,0	
05	686,5	691,3	
	$\Sigma = 40436 \text{ kJ/mol}$	$\Sigma = 40510 \text{ kJ/mol}$	$\Sigma = 40463 \text{ kJ/mol}$

Tabelle 3.28: Vergleich der MAPLE-Werte für γ -As₂O₅, α As₂O₅^{90,91} und β -As₂O₅.⁹³

3.2.2 Vanadium(V)oxid V₂O₅

Das Vanadium(V)oxid V₂O₅ ist bei Normaldruck und hohen Temperaturen, als auch bei erhöhtem Druck und Temperaturen genauer untersucht worden. Es sind verschiedene Modifikationen bekannt. Zum einen das orthorhombische V₂O₅, das auch als α -V₂O₅ bezeichnet wird.¹⁰⁰ Es kristallisiert in der Raumgruppe *Pmmn* (Nr. 59) mit a = 1151,2 pm, $b = 356.4 \text{ pm}, c = 436.8 \text{ pm}, V = 179.21 \cdot 10^6 \text{ pm}^3 \text{ und } \text{Z} = 2. \text{ Zum anderen } \gamma \text{-V}_2\text{O}_5 \text{ wel-}$ ches durch chemische oder elektrische Deintercalation von Li aus γ -LiV₂O₅¹⁰¹ erhalten wird. Das γ -V₂O₅ kristallisiert ebenfalls orthorhombisch in der Raumgruppe *Pnma* (Nr. 62) mit a = 994,6 pm, b = 358,5 pm, c = 1004,2 pm, $V = 358,1 \cdot 10^{6}$ pm³ und Z = 4. Es handelt sich dabei um eine metastabile Phase, die sich beim Erhitzen auf eine Temperatur von über T = 340 °C wieder in die α -Modifikation umwandelt. Des weiteren sind zwei Hochdruckmodifikationen von V_2O_5 bekannt. Zum einen das β - V_2O_5 ,¹⁰² welches monoklin in der Raumgruppe $P2_1/m$ (Nr. 11) kristallisiert mit a = 711,40 pm, b = 357,18 pm, c = 628,46 pm, $\beta = 90.07^{\circ}$, $V = 159,69 \cdot 10^{6}$ pm³ und Z = 2. Es tritt in einem mittleren Druckbereich zwischen 2,5 und 8 GPa und bei Temperaturen bis 900 °C auf. Die zweite Hochdruckmodifikation ist das B-V₂O₅,¹⁰³ es ist ebenfalls monoklin, aber kristallisiert in der Raumgruppe C2/c (Nr. 15) mit a = 1196,40 pm, b = 469,86 pm, c = 532,49 pm, V = $290.01 \cdot 10^6$ pm³ und Z = 4. Diese Modifikation bildet sich bei Drücken zwischen 8 und 9 GPa bei Temperaturen bis 1100 °C. Aus Gründen der Konsistent der Phasenbenennungen nach dem griechischen Alphabet, wurde die B-Modifikation in δ -V₂O₅ umbenannt. Diese beiden Hochdruckmodifikationen (β - und δ -V₂O₅) sind metastabil und lassen sich auf Raumtemperatur und Normaldruck abschrecken. Beim Erhitzen wandelt sich die β -Modifikation bei \approx 400 °C und die δ -Modifikation bei \approx 230 °C wieder in das α -V₂O₅ um.¹⁰³

Es sind alle Kristallstrukturen der bisher aufgeführten V₂O₅-Modifikation bekannt, außer die der δ -Modifikation. In der Literatur wird erwähnt, dass sie isotyp mit Sb₂O₅,^{104, 105} B-Nb₂O₅¹⁰⁶ und B-Ta₂O₅¹⁰⁷ ist,¹⁰³ doch gibt es bisher keine Untersuchungen dazu. Die fehlenden Untersuchungen wurden im Rahmen dieser Arbeit durchgeführt, zusätzlich sollte das Verhalten von V₂O₅ bei Drücken über 10 GPa untersucht werden.

3.2.2.1 Hochdruckversuche und Röntgenbeugung an Pulvern

Vor den Versuchen wurde das orthorhombische α -V₂O₅ (>99%, Merck) 16 Stunden bei 200 °C im Vakuum getrocknet und danach unter Schutzgas im Handschuhkasten gehandhabt und aufbewahrt. Das gelb-orange Pulver wurde in dicht schließende Pt-Tiegel gefüllt um eine Kontamination mit Luft und Feuchtigkeit zu verhindern. Die Experimente bei hohen Drücken und Temperaturen wurden je nach Versuchsbedingungen in den entspre-

Abb. 3.43: Darstellung des p-T Phasendiagramms von V₂O₅ aus den Daten der Hochdruckexperimente. Die Schmelzkurve ist als rote gestrichelte Linie dargestellt.

chenden Pressen durchgeführt. Die Dauer der Experimente variierte zwischen 2 und 24 Stunden. Alle Hochdruckexperimente wurden durch Abschreckung auf Raumtemperatur und anschließender sofortiger Druckentlastung auf Normaldruck beendet. Nach den Versuchen wurden alle Proben in einem mit trockenem Argon gefüllten Handschuhkasten geöffnet. Das pulverförmige Probenmaterial wurde für die weiteren Untersuchungen in Kapillaren gefüllt . Alle Proben aus den Hochdruckversuchen und das Ausgangsmaterial sind durch Röntgenpulverdiffraktometrie mit Mo-K_{α}-Strahlung untersucht worden. Ausgewählte Proben wurden im Abstand von Tagen bzw. Wochen erneut gemessen, um die Stabilität der Phasen bei Normalbedingungen zu untersuchen.

3.2.2.2 Ergebnisse der Hochdruckversuche

Die Ergebnisse der Hochdruckversuche sind in Abbildung 3.43 dargestellt. Wie man erkennen kann, wurde bei den Versuchen bis zu Drücken von 29 GPa und Temperaturen bis 1450 °C außer den bekannten Phasen keine neue Hochdruckphase gefunden. Durch die Hochdruckexperimente lässt sich erkennen, dass das δ -V₂O₅ bis zu einem Druck von 25 GPa stabil ist. Des weiteren konnte die Schmelzkurve von V₂O₅ bis zu Drücken von 20 GPa gut bestimmt werden. Aus den experimentellen Daten wird deutlich, dass man eine Temperatur von T = 200 °C benötigt, damit sich α -V₂O₅ in die der Hochdruckmodifikationen β - bzw. δ -V₂O₅ umwandelt. Bei Experimenten mit Drücken von p = 29 GPa und

Abb. 3.44: Plot der Rietveld-Verfeinerung für δ -V₂O₅ aus den Pulverdaten der Synchrotronmessung ($\lambda = 0,43085$ Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von δ -V₂O₅ (Schwarz) und Pt (Rot), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Raumtemperatur konnte nur die α -Modifikation nachgewiesen werden.

3.2.2.3 Strukturbestimmung und Strukturbeschreibung

In früheren Untersuchungen wurde berichtet, dass δ -V₂O₅ isostrukturell mit Sb₂O₅,^{104,105} B-Nb₂O₅¹⁰⁶ und B-Ta₂O₅¹⁰⁷ sein soll, es wurde bisher aber keine Strukturverfeinerung veröffentlicht. Daher wurde eine Rietveld-Verfeinerung für die δ -Modifikation durchgeführt. Dazu wurde für die Strukturbestimmung ein hochaufgelöstes Pulverdiffraktogramm einer Probe aus dem Versuch bei p = 15 GPa und T = 600 °C am Synchrotron am ESRF, Grenoble an der Beamline ID31 aufgenommen. Die verfeinerten Gitterparameter sind a = 1197,19(2) pm, b = 470,16(1) pm, c = 532,53(1) pm, $\beta = 104,41(0)^{\circ}$ und stimmen gut mit den Werten aus der Literatur¹⁰³ überein. Als Startpositionen für die Atome wurden die Atompositionen des Sb₂O₅ verwendet. Die kristallographischen Daten der Verfeinerung sind in Tabelle 3.29 aufgeführt, die Atompositionen in Tabelle 3.30 und die Atomabstände und Winkel in Tabelle 3.31. Die Struktur von δ -V₂O₅ besteht aus verzerrten VO₆-Oktaedern, bei denen das Vanadium aus dem Zentrum in Richtung einer Ecke ausgelenkt ist. Das führt zu einer anisotropen

<i>C</i> 2/ <i>c</i> (Nr. 15)
a = 1197,19(2) pm
b = 470,16(1) pm
c = 532,53(1) pm
$\beta = 104,41(0)^{\circ}$
$V = 290,32(7) \cdot 10^6 \text{ pm}^3$
4
43,714 cm ³ /mol
181,88 g/mol
4,161 g/cm ³
Beamline ID31, ESRF
Si(111)
$\lambda = 0,43085 \text{ Å})$
4°<2θ<26,8°; 0,003°2θ
7933
192
GSAS/EXPGUI ^{43,44}
38
6,33 %
8,70 %
4,26 %

Tabelle 3.29: Kristallographische und analytische Daten von δ -V₂O₅ (Standardabweichung in Klammern).

^aAlle Werte sind mit GSAS berechnet

Diese anisotrope Umgebung für das Vanadium ist in allen bekannten Modifikationen des V₂O₅ zu finden, nur unterschiedlich stark ausgeprägt. Bei der α -Modifikation liegen die V–O-Abstände bei 157,5 bis 201,7 pm, bei der β -Modifikation¹⁰² zwischen 158,3 und 229,5 pm und in der γ -Modifikation zwischen 154,8 und 198,6 pm. Das scheint eine intrinsische Eigenschaft der Kristallchemie von Vanadium(V) zu sein. Die Struktur lässt sich als Ketten aus kantenverknüpften VO₆-Oktaedern beschreiben. Die Ketten sind über gemeinsame Ecken zu einer Zickzack-Anordnung verbunden. Dadurch entstehen Schichten, die parallel der *ac*-Ebene gestapelt sind. Es ergibt sich ein 3D-Netzwerk von kanten- und eckenverknüpften VO₆-Oktaedern (siehe Abbildung 3.45 und Abbildung 3.46). Betrachtet man die Anordnung der Oktaeder in δ -V₂O₅ genauer, so erkennt man die Ähnlichkeit mit der Rutil-Struktur. Im Gegensatz zum Rutil bestehen die Stapel von kantenverknüpften aus jeweils zwei Oktaedern und nicht nur aus einem Oktaeder. Dabei bilden die Sauerstoffatome eine verzerrte hexagonal dichteste Packung, wie man in Abbildung 3.47 erkennen kann.

Atom	Wyckhoff-Position	x	У	Z	$B_{\rm iso} [{\rm pm}^2]$
V	8f	0.35675(6)	0.26323(22)	0.25477(14)	0.0012(2)
01	4e	1/2	0.3840(7)	1/4	0.0213(12)
O2	8f	0.10981(20)	0.4326(4)	0.4849(6)	0.0136(7)
O3	8f	0.20219(19)	0.0716(5)	0.1311(5)	0.0184(8)

Tabelle 3.30: Atompositionen und isotrope Temperaturfaktoren für δ -V₂O₅ (Standardabweichung in Klammern).

Tabelle 3.31: Übersicht über die Bindungslängen (pm) und -winkel (°) in δ -V₂O₅ (Standardabweichung in Klammern)

V – O1	181,3(1)	V – O3	178,4(3)
V - O2	162,9(3)	V - O3	201,6(2)
V - O2	211,2(3)	V - O3	214,5(3)
O1 - V - O2	99,0(1)	O2 - V - O3	92,1(1)
O1 - V - O2	84,3(1)	O2 - V - O3	101,8(1)
O1 - V - O3	101,9(1)	O2 - V - O3	162,7(1)
O1 - V - O3	87,7(1)	O2 - V - O3	166,5(1)
O1 - V - O3	158,4(1)	O3 - V - O3	93,8(1)
O2 - V - O2	93,2(1)	O3 - V - O3	88,2(1)
O2 - V - O3	75,8(1)	O3 - V - O3	78,0(1)
O2 - V - O3	76,7(1)		

3.2.2.4 Ramanspektroskopie

Nach abschrecken der Proben auf Normalbedingungen, wurden die Verbindungen ramanspektroskopisch untersucht. In Abbildung 3.48 sind die Spektren für die α -, β - und δ -Phase abgebildet. Die Spektren der drei Modifikationen unterscheiden sich nur geringfügig. Vergleicht man das Ramanspektrum, das zu β -V₂O₅ gehört und durch Abschreckung von 5 GPa, 350 °Cerhalten wurde, mit den "in situ"-Daten bei 5,5 GPa und Raumtemperatur,¹⁰⁸ so erkennt man das diese identisch sind.

3.2.2.5 Theoretische Berechnungen der Phasengrenzen

Zur Unterstützung der experimentellen Untersuchung des Druck-Temperatur Phasendiagrammes von V_2O_5 sind zusätzlich noch theoretische Berechnungen gemacht worden. In einem ersten Schritt wurden Kandidaten für mögliche stabile und metastabile Strukturen in diesem System gesucht. Die Identifikation der Kandidaten erfolgte durch "simulated annealing" um möglichst viele lokale Minima der Potentialenergie zu finden. Da solche globalen Optimierungen viele Millionen Energieberechnungen enthalten, war es notwendig einfache empirische Potentiale zu verwenden, die aus einer Summe von Coulomb und Lennard-Jones Zwei-Körper-Wechselwirkungstermen bestehen. Die Parameter der Potentiale wurden durch die Summe der Radien und der Ladungen der beteiligten Ionen

Abb. 3.45: Abbildung der Kristallstruktur von δ -V₂O₅ entlang [001].

Abb. 3.46: Abbildung der Kristallstruktur von δ -V₂O₅ entlang [010].

Abb. 3.47: Darstellung der Kristallstruktur von δ -V₂O₅ um Ähnlichkeit mit der Rutilstruktur aufzuzeigen.

bestimmt mit q(V) = +5, q(O) = -2; r(V5+) = 59 pm und r(O2-) = 132 pm. Aufgrund der Vereinfachungen sind die Werte für die Energien als auch für die geometrischen Faktoren der resultierenden Strukturkandidaten von begrenzter Genauigkeit. Daher wurden in einem zweiten Schritt lokale Optimierungen der Strukturkandidaten auf der "ab initio" Ebene mit Hilfe einer Hatree-Fock-Näherung mit dem Programm CRYSTAL2003¹⁰⁹ mit den implementierten heuristischen Algorithmus HATREE^{110,111} durchgeführt. Es wurde die Energie als Funktion des Volumens berechnet, wodurch man Informationen über die (Meta-) Stabilität der Strukturen in Abhängigkeit vom Druck enthält. Für das betrachtete System V₂O₅ wurden 40 globale Optimierungen ausgeführt, jede in einem großen Druckbereich (zwischen 0,1 bis 15 GPa). Die resultierenden Strukturkandidaten wurden bezüglich ihrer Symmetrien und möglicher Raumgruppen mit den Programmroutinen SFND¹¹² und RGS¹¹³ untersucht. Nach Entfernen kleiner Verzerrungen erhält man idealisierte Strukturkandidaten. Unter Berücksichtigung das Strukturen mit niedriger Symmetrie Verzerrungen höher symmetrischer Strukturen darstellen, konnten neben den 4 experimentell beobachteten Modifikationen noch 73 neue Kandidaten für das V2O5System berechnet werden.

Abb. 3.48: Darstellung der Ramanspektren von α - (schwarz), β - (grün) und δ -V₂O₅ (rot). Es ist deutlich erkennbar, dass die Ramanspektren der drei unterschiedlichen Modifikationen große Ähnlichkeiten aufweisen.

In einem kürzlich erschienen Artikel¹¹¹ sind verschiedene "ab initio" Methoden (Hatree-Fock, sechs verschiedene DFT-Funktionale) verglichen worden bezüglich ihrer Leistung am Beispiel der Alkalimetallsulfide. Basierend auf diesen Ergebnissen wurde die Hatree-Fock-Methode für die lokale Verfeinerung der insgesamt 77 Strukturkandidaten für V₂O₅ gewählt. Die berechneten Kurven (Energie gegen das Volumen) für die experimentell beobachteten vier Modifikationen (α , β , γ und δ -V₂O₅) und für drei andere vielversprechende neu vorhergesagten Strukturkandidaten sind in Abbildung 3.49 dargestellt. Es werden mindestens zwei Phasenumwandlungen im experimentell untersuchten Druckbereich dieser Arbeit erwartet, nämlich von der α - zur β -Modifikation bei einem Druck von 5,3 GPa und eine zweite Umwandlung von β - zu δ -V₂O₅ bei einem Druck von 9,5 GPa. Die bei Normalbedingungen stabile Struktur ist die der α -V₂O₅ mit *a* = 1151,2 pm, b = 356.4 pm, c = 436.8 pm.¹⁰⁰ Die berechneten Werte für diese Modifikation liegen bei a = 1139 pm, b = 353 pm, c = 432 pm und liegen in einem vernünftigen Bereich. Die bei den Hatree-Fock Berechnungen eingesetzten Basissätze waren ein Vollelektron-Basissatz 86-411d3G (AEBS) für Vanadium¹¹⁴ und ein Vollelektron-Basissatz 8-411G (AEBS) im Fall des Sauerstoffes.¹¹⁵

Abb. 3.49: Abbildung der berechneten Kurven (Energie gegen das Volumen) für die experimentell beobachteten vier Modifikationen (α , β , γ und δ -V₂O₅) und für drei andere vielversprechende neu vorhergesagten Strukturkandidaten.

3.2.2.6 Ergebnisse

Die Ergebnisse aller Hochdruck- und Hochtemperaturexperimente dieser Arbeit und der früheren Untersuchungen^{103, 108, 116, 117} sind gemeinsam in Abbildung 3.50 dargestellt. Für den mittleren Druckbereich, der schon früher bei hohen Temperaturen untersucht wurde, 103, 116-118 erlauben die Ergebnisse dieser Arbeit die beiden Phasengrenzen zwischen α und β und zwischen β und δ genauer einzugrenzen (gepunktete Linien in Abbildung 3.50). Wie bei den theoretischen Berechnungen diskutiert, ergeben sich die beiden Phasengrenzen bei einer Temperatur am absoluten Nullpunkt für die Umwandlung von α zu β -V₂O₅ bei 5,3 GPa und für β - zu δ -V₂O₅ bei 9,5 GPa (halbgefüllten Halbkreise am unteren Rand des Phasendiagramms in Abbildung 3.50). Die Phasengrenze zwischen der α - und der β -Modifikation wird eingegrenzt durch Versuche in denen eine Mischung von beiden Modifikationen identifiziert wurde (z.B. p = 4 GPa, T = $250 \degree$ C). Sowie durch Daten für das reine α - und β -V₂O₅ aus den Ergebnissen dieser Arbeit, aus früheren Arbeiten und durch Proben, in denen neben der α -Modifikation auch geringe Mengen von VO₂ nachgewiesen wurden (z.B. p = 1,5 GPa, T = 600 °C und p = 2 GPa, T = 500 °C) und durch die Schmelztemperatur bei Normaldruck von 675 °C. Es ist realistisch anzunehmen, dass die Extrapolation zu tieferen Temperaturen der durch diese Punkte begrenzten Kurve, bei Temperaturen am absolutem Nullpunkt (0 K) diese bei 5,3 GPa schneidet, wie

Abb. 3.50: Darstellung des p-T Phasendiagramms von V₂O₅ aus den Daten der Hochdruckexperimente (große Symbole), der theoretischen Berechnungen und der Literatur (kleine Symbole). Die Phasengrenzen sind gepunktete und die Schmelzkurve ist als gestrichelte rote Linie dargestellt.

die theoretisch vorhergesagt wurde.

Ähnliches gilt für die Phasengrenze zwischen β - und δ -V₂O₅ welche ebenfalls durch die Ergebnisse dieser Arbeit mit einer Mischung der beiden Phasen (9 GPa, 200 °C) und der früheren Arbeit,¹⁰³ bestimmt wurde. Auch hier ergibt eine Extrapolation zu niedrigeren Temperaturen eine gute Übereinstimmung mit der theoretischen Vorhersage von 9,5 GPa bei 0 K. Im neu untersuchten Druckbereich zwischen 10 GPa und 25 GPa wurde bei Experimenten nur die Umwandlung von α -V₂O₅ in die δ -Modifikation beobachtet. Wie man in Abbildung 3.50 sieht, ist die Phasengrenze zwischen der β - und δ -Modifikation gut bis zur Schmelze/Zersetzung definiert.

Wie man Abbildung 3.50 auch entnehmen kann, wurde bei allen Versuchen mit Abschreckung von Temperatur und sofortiger Druckentlastung bei Temperaturen unter 200 °C und bei Drücken bis 29 GPa, nur das orthorhombische α -V₂O₅ beobachtet. Diese Ergebnisse stimmen gut mit den Angaben aus der Literatur¹¹⁶ überein und deuten darauf hin, dass im gesamten untersuchten Druckbereich bei Temperaturen unter 200 °C der Druckeffekt nur zu einer anisotropen Verringerung der Zellgrösse bzw. des Volumens der Schichtstruktur oder einen ungeordneten Zustand^{119,120} bewirkt, ohne das eine möglicherweise erhaltene Struktur einrastet. Die erste Möglichkeit wird stark durch frühere Untersuchungen^{103,116,117} gestützt, die ein erhöhtes anisotropes Verhalten der Schichtstruktur von α -V₂O₅ berichten.

3.3 Synthese von Verbindungen

3.3.1 Hexakaliumnonaoxodiselenat(VI) K₆(SeO₄)(SeO₅)

Neben der bevorzugten Koordination stellt die höchst mögliche Koordinationszahl einer Elementes ein wichtiges Anzeichen dar, z.B. zur Charakterisierung der strukturellen Flexibilität. Im Detail, hat die Veränderung der Koordinationszahl einen großen Einfluss auf die beteiligten chemischen Bindungen, d.h. auf die Hybridisierung oder den ionischen Charakter und sie beeinflusst auch die elektronischen Strukturen und mechanischen Eigenschaften des jeweiligen Materials. Historisch gesehen, wurde diese Tatsache hauptsächlich im Zusammenhang mit den Oxoanionen der Hauptgruppenelemente betrachtet. Die verwendete Möglichkeit war die Koordination des zentralen Nichtmetalls aufzuweiten, meistens in der höchsten Oxidationsstufe, in dem man durch Säure-Basen-Reaktionen ein oder mehrere Oxidionen hinzufügte. Die sich daraus ergebenden Komplexanionen, die reicher an Sauerstoff sind als die normalen Anionen, werden gewöhnlich als Orthoanionen bezeichnet. Bekannte Beispiele sind Na₃NO₃ und Na₃NO₄, die beide so verstanden wurden, als dass sie die Orthoanionen NO3³⁻ und NO4³⁻ enthalten.¹²¹ Allerdings zeigten neuere Strukturuntersuchungen, dass die Familie der Nitrite A₃NO₃ (A=Na, K, Rb, Cs) Oxid-Nitrite sind, die eine Perowskit-ähnliche Struktur besitzen, aber noch immer das normale NO2⁻ Anion mit Rotationsfehlordnung enthalten.¹²²⁻¹²⁸ Im Gegensatz dazu sind die Nitrate A₃NO₄ (A=Na, K, Rb, Cs) wirkliche Orthosalze mit dem exotischen NO₄³⁻ Anion als bestimmende Einheit.^{129–134} Die Kandidaten, die sich anbieten, um diese noch immer kleine Gruppe zu erweitern, sind die Karbonate und Borate. Dennoch sind bisher alle Versuche gescheitert die entsprechenden Orthosalze darzustellen, sogar bei Anwendung erhöhten hydrostatischen Druckes während der Synthesen, welcher die Bildung einer höheren Koordination begünstigen würde (Druck-Koordinations-Regel).¹ Andererseits ist es aber möglich ein Fluorid an ein Karbonat zu binden, was zu CO₃F⁻ führte, welches isoelektronisch mit dem Orthokarbonatanion ist.^{135,136} Die Nichtmetall-Elemente der dritten und vierten Hauptgruppe bevorzugen in ihren Oxoanionen die tetraedrische Koordination, die thermodynamisch als auch kinetisch stabil ist. Da die Bereitschaft die Koordinationssphäre zu erweitern mit der Größe des Zentralatoms zunimmt, bot es sich an statt der Nichtmetall-Elemente der vierten Hauptgruppe die der sechsten Hauptgruppe zu verwenden, um die tetraedrischen Oxoanionen durch ein oder zwei Oxidionen zu erweitern. Tatsächlich ist es vor kurzem gelungen Beispiele mit Penta- und Hexaoxoselenaten(VI) zu verwirklichen. Mit dem gegenwärtigen Wissenstand ist es jedoch schwierig die entstandenen Strukturen zu klassifizieren oder zu Verstehen: Li₄SeO₅ bildet sich bei Normaldruck aus Li2O und Li2SeO4 und enthält Selen in trigonal-bipyramidaler Koordination.^{137–139} Die Synthese von Na₄SeO₅^{140–142} währenddessen benötigt einen hydrostatischen Druck von 2,5GPa und enthält das Selen in quadratisch-pyramidaler Koordination. Schließlich enthält $Na_{12}(SeO_6)(SeO_4)_3$ ein oktaedrisches Oxoanion des Selens und dieses lässt sich bei Normaldruck herstellen.¹⁴³ Als eine Vorausbedingung, um die generell zugrunde liegenden Prinzipien zu verstehen, welche die Synthesebedingungen, die Zusammensetzungen und die Strukturen der Orthoselenate steuern, muss das empirische Wissen erweitert werden. Daher wurde das System K₂O/K₂SeO₄ mit in die Untersuchungen aufgenommen.

3.3.1.1 Darstellung von K₆(SeO₄)(SeO₅)

 $K_6(SeO_4)(SeO_5)$ wurde durch Festkörperreaktion von K_2O und K_2SeO_4 im molaren Verhältnis (1:1) unter hohem Druck nach der Gleichung:

$$K_2O + 2K_2SeO_4 \Longrightarrow K_6Se_2O_9$$

erhalten. Die gut homogenisierte Ausgangsmischung wird im Handschuhkasten in Goldampullen ($\emptyset = 4 \text{ mm}$) gefüllt und diese werden unter Kühlung zugeschmolzen. Die Umsetzung wird in der Piston-Zylinder-Presse unter einem Druck von 2 GPa und 625 °C (20 - 625 °C mit 300 °C/h, 625 °C: 72h, 625 - 30 °C: -1200 °C/h) vorgenommen. Das Reaktionsprodukt ist ein schwach grau gefärbtes, mikrokristallines Pulver, welches sehr luftund feuchtigkeitsempfindlich ist und daher nur unter Schutzgas aufbewahrt werden kann.

3.3.1.2 Röntgenbeugung an Pulvern

Von K₆(SeO₄)(SeO₅) wurden Pulverdiffraktogramme im Bereich 5-90° 2 θ mit einer Auflösung von 0,01° 2 θ aufgenommen und mit Silizium als externen Standard bezüglich des Nullpunktes korrigiert. Die Pulverdiffraktogramme konnten tetragonal indiziert und die Gitterkonstanten a = 812,6 pm und c = 1749,5 pm mit $V = 1155,2\cdot10^6$ pm³ nach der Methode der kleinsten Fehlerquadrate verfeinert werden. Aufgrund des schlechten Verhältnisses Intensität zu Untergrund, konnte die Raumgruppe und die Struktur nicht aus den Pulverdaten der Labordiffraktometer bestimmt werden.

3.3.1.3 Strukturbestimmung

Für die Strukturbestimmung wurde vom mikrokristallinen Pulver an der Beamline X3B1 am NSLS (Brookhaven, USA) ein hoch aufgelöstes Pulverdiffraktogramm aufgenommen. Für die Strukturlösung wurde das Programm ENDEAVOUR^{52, 144} eingesetzt. Dabei wurden die aus dem besten Strukturvorschlag erhaltenen Atompositionen als Startwerte für

Abb. 3.51: Plot der Rietveld-Verfeinerung für K₆(SeO₄)(SeO₅ bei T = 25 °C (λ = 0,64895 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe *P*4₁2₁2 (grüne Linie), die Reflexlagen von K₆(SeO₄)(SeO₅, sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

die endgültige Rietveld-Verfeinerung eingesetzt. Bei der Verfeinerung wurden die Atompositionen, die isotropen Temperaturfaktoren, die Zellparameter und die Parameter der pseudo-Voigt Profilfunktion freigegeben. Die Ergebnisse der Rietveld-Anpassung sind in Tabelle 3.32 aufgeführt, die endgültigen Atompositionen sind in Tabelle 3.33 und ausgewählte Bindungslängen und- winkel sind in Tabelle 3.34 aufgelistet.

3.3.1.4 Strukturbeschreibung

Das $K_6Se_2O_9$ ist das erste Kaliumorthoselenat(VI), wobei die Struktur zwei unterschiedliche Oxoselenat-Anionen enthält (siehe Abbildung 3.52). Zum einen ist dies das tetraedrische $SeO_4^{2^2}$ -Anion. Die Bindungslängen Se–O (163-165 pm) und die Winkel (103-113°) stimmen mit den Werten aus der Literatur^{145–149} gut überein. Zum anderen das $SeO_5^{4^2}$ -Anion, welches trigonal-bipyramidal aufgebaut ist. Das ist das zweite Beispiel, in welchem das Pentaoxoselenat-Anion in dieser Koordination nach dem Li₄SeO₅^{137–139} auftritt. Im Vergleich der SeO₅⁴⁻-Anionen in Li₄SeO₅ und K₆Se₂O₉ besitzen beide eine ähnliche Geometrie. Die äquatorialen Bindungen als auch die axialen sind etwas kürzer, was auch zu einer kürzeren durchschnittlichen Bindungslänge bei Se–O von 169 pm im Vergleich zu 174 pm bei der entsprechenden Lithiumverbindung

Kristalldaten	
Raumgruppe	<i>P</i> 4 ₁ 2 ₁ 2 (Nr. 92)
Gitterkonstanten	a = 812,59(1) pm
	c = 1749,53(2) pm
Zellvolumen	V = 1155, 21(2)
Z	4
Molvolumen	86,974 cm ³ /mol
Molgewicht	536,50 g/mol
Dichte (berechnet)	3,085 g/cm ³
Datensammlung	
Strahlquelle	Beamline X3B1, NSLS
Monochromator	Si(111)
Strahlung	0,64895 Å
Messbereich; Schrittweite	$4^{\circ} < 2^{\circ} \theta < 44^{\circ}; 0,003^{\circ} 2\theta$
Anzahl der gemessenen Reflexe	567
Strukturverfeinerung	
Verwendetes Programm	GSAS/EXPGUI ^{43,44}
Anzahl der verfeinerten Parameter	41
R_p^a	7,51 %
\mathbf{R}_{wp}^{a}	9,72 %
$R(F^2)^a$	7,96 %

Tabelle 3.32: Kristallographische und analytische Daten von $K_6(SeO_4)(SeO_5)$ (Standardabweichung in Klammern).

^aAlle Werte sind mit GSAS berechnet

führt. Die Differenz zwischen den äquatorialen und den axialen Se-O Bindungen ist etwa 7,0% im Vergleich zu 4,9% beim Li₄SeO₅. Auch die Bindungswinkel bei K₆Se₂O₉ zeigen eine etwas größere Abweichung von der trigonalen Bipyramide als im Lithiumorthoselenat(VI). Im Rahmen der Standardabweichungen sind diese Abweichungen als signifikant zu betrachten. Man kann dies auf die stärkere Polarisation durch K⁺ im Vergleich zu Li⁺ zurückführen und auf die ausgewogene [A]⁵[B]⁵ Strukturvariante^{137–139} die das Li₄SeO₅ annimmt. Die Koordinationszahlen der Kalium-Atome betragen bei K2 6, bei K1 und K3 jeweils 8 (siehe Abbildung 3.53). Die K-O Bindungslängen liegen im Bereich zwischen 264 und 338 pm. Wenn die Summenformel K₆Se₂O₉ halbiert wird, so erhält man K₃SeO_{4,5} und betrachtet man zusätzlich die Anordnung von Kalium, Tetraoxoselenat und Pentaoxoselenat in $K_6(SeO_4)(SeO_5)$ dann gehört es zu der großen Familie der anorganischen A₃B-Strukturtypen, für die Li₃Bi¹⁵⁰ als Aristotyp betrachtet werden kann. Weitere Vertreter dieser Strukturfamilie sind Na₃PO₄,¹⁵¹ Na₃AlF₆¹⁵² oder Na₃OsO₅.¹⁵³ Alle diese Verbindungen basieren auf dem Motiv einer kubisch dichtesten Packung der komplexen Anionen, wo dann alle tetraedrischen und oktaedrischen Lücken von den Alkaliionen besetzt sind. Die Raumgruppe mit der höchst möglichen Symmetrie Fm-3m (Nr. 225) ist für Li₃Bi verwirklicht. Es kommt durch verschiedene Ursachen zu einer Symmetrieerniedrigung, im Fall von $K_6(SeO_4)(SeO_5)$ liegt es zum großen Teil an den zwei unterschiedlichen Oxoselenat-Anionen.

Abb. 3.52: Koordinationsumgebung der beiden Selenatome K₆(SeO₄)(SeO₅.

Tabelle 3.33:	Atompositionen	und isotrope	thermische .	Auslenkungspa	arameter für
	$K_6(SeO_4)(SeO_5)$) (Standardab	weichung in	Klammern).	

Atom	Wyckhoff-Position	x	у	Z	$B_{\rm iso} [{\rm pm}^2]$
Se1	4a	0,2381(3)	0,2381(3)	0	0,002(1)
Se2	4a	0,2530(3)	0,2530(3)	1/2	0,002(1)
K1	8b	-0.0032(9)	0,4760(9)	0,3731(7)	0,017(1)
K2	8b	0,2225(6)	0,2120(6)	0,2455(3)	0,022(1)
K3	8b	-0,0013(6)	0,0419(8)	0,3957(2)	0,012(2)
01	8b	0,2597(2)	0,0384(6)	0,0132(9)	0,028(4)
O2	8b	0,2973(2)	0,3349(2)	0,0771(5)	0,065(6)
O3	8b	0,2558(2)	0,2556(2)	0,3993(2)	0,009(3)
O4	8b	0,0581(5)	0,3069(1)	0,4985(1)	0,011(4)
O5	4a	0,6047(6)	0,6047(6)	0	0,022(5)

Man findet einen ähnlichen strukturellen Aufbau bei Verbindung der $Rb_6(TeO_4)(TeO_5)$,¹⁵⁴ welche in der monoklinen Raumgruppe C2/c (Nr.15) kristallisiert. Die Struktur besitzt auch das Motiv der kubisch dichtesten Packung der Anionen, bei der alle tetraedrischen und oktaedrischen Lücken mit Rubidium besetzt sind. Das TeO₄²⁻- und TeO₅⁴⁻-Polyeder haben aber ganz andere Orientierungen zueinander im Vergleich zu K₆Se₂O₉. Betrachtet man aber nur die Positionen der Alkalimetalle, des Selens und des Tellurs, so ist es doch möglich die Strukturen miteinander in Beziehung bringen. Eine Möglichkeit für die Umwandlung führt über die gemeinsame Obergruppe 14₁/amd. Der mögliche Umwandlungspfad mit den minimal nicht-isomorphen Obergruppen wäre $P4_12_12 \Rightarrow I4_122 \Rightarrow I4_1/amd \leftarrow I4_1/a \leftarrow C2/c$. Dies bezieht sich aber nur auf die Alkaliionen, Selen- und Telluratome ohne Berücksichtigung der Positionen der Sauerstoffatome.

Se1 – O2	163(1)(2x)	Se2 – O5	164(1)		
Se1 – O1	165(1)(2x)	Se2-04	164(1)(2x)		
		Se2 – O1	176(1)(2x)		
O2 - Se1 - O2	113,5(5)	O5 - Se2 - O4	119,5(3)		
O2 - Se1 - O1	109,0(6)	O5 - Se2 - O4	119,5(2)		
O2 - Se1 - O1	110,8(6)	O5 - Se2 - O3	89,0(6) (2x)		
O2 - Se1 - O1	110,8(7)	O4 - Se2 - O4	121,0(3)		
O2 - Se1 - O1	109,0(8)	O4 - Se2 - O3	91,4(10) (2x)		
O1 - Se1 - O1	103,3(5)	O4 - Se2 - O3	89,6(10) (2x)		
		O3 - Se2 - O3	177,9(2)		
K1 - 04	264(2)	K2 – O1	266(1)	K3 — O2	269(2)
K1 – 04	269(2)	K2 – O3	273(1)	K3 — O3	269(2)
K1 – 03	274(2)	K2 – O4	273(1)	K3 — O3	272(2)
K1 – 03	280(2)	K2 – O5	280(1)	K3 — O5	273(4)
K1 – 01	294(2)	K2 – O2	317(1)	K3 — O4	285(2)
K1 - 02	306(2)	K2 – O2	332(1)	K3 - 01	294(1)
K1 – 01	314(2)			K3 — O1	301(2)
K1 - 02	338(2)			K3 — O4	312(2)

Tabelle 3.34: Übersicht über ausgewählte Bindungslängen (in pm) und -winkel (in °) inHexakaliumpentaoxotetraselenat(VI) (Standardabweichung in Klammern).

3.3.1.5 Berechnung der Gitterenergie

Die Berechnungen des Madelunganteils der Gitterenergie $(MAPLE)^{54,55}$ zeigt für identische Ionen Werte mit vergleichbarer Größe und die Werte liegen im erwarteten Bereich (siehe Tabelle 3.35). Der Coulomb-Anteil der Gitterenergie für K₆Se₂O₉ beträgt 63859 kJ/mol und stimmt sehr gut mit der Summe aus der Gitterenergien der Edukte K₂O (2511 kJ/mol) und K₂SeO₄ (2x 30284 kJ/mol) von 63079 kJ/mol überein.

Atom	Ladung	PMF	MAPLE
Se1	+6	20,84	4228,6
Se2	+6	22,54	4572,5
K1	+1	0,603	122,4
K2	+1	0,625	126,9
K3	+1	0,628	127,4
01	-2	3,304	669,8
O2	-2	3,353	681,0
O3	-2	2,737	555,1
O4	-2	3,110	631,1
05	-2	3,085	627,0
			$\Sigma = 63859 \text{ kJ/mol}$

Tabelle 3.35: MAPLE-Tabelle für K₆(SeO₄)(SeO₅).

Abb. 3.53: Blick auf die Kristallstruktur von $K_6(SeO_4)(SeO_5)$ entlang [010]. Die Se⁶⁺ mit trigonal bipyramidaler Koordination ist in Blau und Se⁶⁺ mit tetraedrischer Koordination ist in Grün dargestellt. Die Kaliumatome sind hellgelb gezeichnet.

3.3.1.6 Ergebnisse

Betrachtet man die kleine Zahl der bisher bekannten Alkali Orthoselenate(VI), so ist der Reichtum an Zusammensetzungen und der topologischen Variationen erstaunlich. Es sind bisher drei verschiedene Oxoselenat-Anionen bekannt, deren Koordinationszahlen die Koordinationszahl vier übersteigen. Das ist zum einen SeO₅⁴⁻, einmal mit trigonalbipyramidaler und einmal mit quadratisch-planarer Koordinationsgeometrie und zum anderen Seo₆⁶⁻ mit oktaedrischer Koordinationssphäre. Bei qualitativer Betrachtung, scheinen die Zusammensetzungen, die Strukturen und die Synthesebedingungen der bisher verwirklichten Orthoselenate(VI) hauptsächlich von einigen vorrangigen Strukturprinzipien abzuhängen, die zu der Stabilität der erhaltenen Phasen beiträgt. Letzteres kann man bei Li₄SeO₅ sagen, die mit dem binären A^[5]B^[5] Strukturtyp^{137–139} verwandt ist und bei

Abb. 3.54: Koordinationsumgebung der drei kristallographisch unabhängigen Kalium Atome in K₆(SeO₄)(SeO₅.

 $Na_{12}(SeO_6)(SeO_4)_3$,^{140–142} das von der Struktur des Mo_6Cl_{12} ^{155,156} abgeleitet werden kann. Zum anderen gibt es noch Na_4SeO_5 ,^{140–142} welches isotyp mit Na_4MoO_5 ¹⁴² ist und einen eigenen Strukturtyp darstellt, jedoch lässt sich die Anordnung der Polyeder lässt von der Struktur des NbF_6 ¹⁵⁷ ableiten.

3.3.2 Arsen(III,V)oxosäure H₆As₁₄O₃₁

Während der Untersuchungen des Verhaltens von As_2O_5 bei erhöhten Drücken und Temperaturen wurde die neue Verbindung $H_6As_{14}O_{31}$ erhalten. Bisher gibt es in der Literatur strukturelle Informationen nur über As_2O_5 mit unterschiedlichen Gehalten von Kristallwasser^{158,159} und über eine gemischtvalente Arsen(III,V)oxosäure¹⁶⁰ As₃O₅(OH).

3.3.2.1 Darstellung der Arsen(III,V)oxosäure H₆As₁₄O₃₁ und Röntgenbeugung an Pulvern

Das Ausgangsmaterial war kristallines As₂O₅, welches aufgrund der hygroskopischen Eigenschaften nur im Handschuhkasten oder in der Schlenkapparatur gehandhabt wurde. Das Pulver wurde im Handschuhkasten in dichtschließende Pt-Tiegel (\emptyset = 2mm) gefüllt. Die Probentiegel sind dann in die Multianvil-Presse bei Drücken zwischen 6 und 8 GPa und Temperaturen zwischen 500 °C und 580 °C für 2 bis 3 Stunden gepresst worden. Bei Ende des Versuchs wurden die Proben auf Raumtemperatur abgeschreckt und der Druck wurde langsam verringert. Die Tiegel wurden wieder in den Handschuhkasten eingeschleust und dort vorsichtig geöffnet.

Abb. 3.55: Heizguinieraufnahme von $H_6As_{14}O_{31}$ im Temperaturbereich 20 °C - 350 °C - 20 °C. Die Phasenumwandlung von $H_6As_{14}O_{31}$ zu As_2O_5 erfolgt bei ≈ 170 °C.

Ein Teil des kristallinen Pulvers von $H_6As_{14}O_{31}$ ist in Glaskapillaren abgefüllt worden zur Aufnahme von Röntgenpulverdiffraktogrammen, zum einen mit den STOE Labordiffraktometern bei Raumtemperatur, als auch für temperaturabhängige Messungen mit der Heizguinier. Die Pulverdiffraktogramme sind jedoch nicht phasenrein und es sind neben den Reflexen der neuen Verbindung noch Spuren der Ausgangsverbindung As₂O₅ zu erkennen.

Abb. 3.56: Ausschnitt aus der Kristallstruktur von H₆As₁₄O₃₁ entlang der *c*-Achse mit den trigonalen Kanälen nach der Rietveldanpassung ohne die Wasserstoffatome. Die Karte der nachfolgenden Berechnung der Differnzelektronendichte ist überlagert und zeigt deutlich die Positionen der Wasserstoffatome in zwei unterschiedlichen Höhen innerhalb der Kanäle.

Die temperaturabhängige Messung von $H_6As_{14}O_{31}$ wurde im Bereich 20 °C - 350 °C - 20 °C durchgeführt (siehe Abbildung 3.55. Dabei erkennt man beim Aufheizen der Probe eine vollständige Rückumwandlung von $H_6As_{14}O_{31}$ bei \approx 170 °C in die Raumtemperaturphase von As_2O_5 . Beim weiteren Erhitzen sieht man noch die reversible Umwandlung der Raumtemperaturphase in die Hochtemperaturphase bei \approx 310 °C. Beim Abkühlen zeigt sich dann wieder die Rückumwandlung in die Raumtemperaturphase des As_2O_5 . Nach dem Aufheizen und Abkühlen von findet man keine Spuren mehr von der neuen Verbindung $H_6As_{14}O_{31}$.

3.3.2.2 Strukturbestimmung

Zur Bestimmung der Struktur von $H_6As_{14}O_{31}$ sind zwei Proben in Kapillaren gefüllt und am Synchrotron gemessen worden. Die hochaufgelösten Pulverdiffraktogramme wurden an der Beamline ID31 am ESRF, Grenoble im Winkelbereich 1°2 θ bis 25°2 θ mit einer

Abb. 3.57: Plot der Rietveld-Verfeinerung für H₆As₁₄O₃₁ bei T = 25 °C (λ = 0,24804 Å) nach Hochdruckversuch bei 6 GPa und 580 °C. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe P6₃ (grüne Linie), die Reflexlagen von H₆As₁₄O₃₁ (Schwarz) und As₂O₅ (Rot), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Schrittweite von $0.002^{\circ}2\theta$ aufgenommen. Die Wellenlänge ($\lambda = 0.24804$ Å) und der Nullpunkt wurden durch einen externen Silicium-Standard bestimmt. Die Datenreduktion wurde mit GUFI¹⁶¹ durchgeführt und auch der Untergrund wurde manuell damit bearbeitet. Eine Indizierung des Pulverdiffraktogrammes war möglich, die zu einer hexagonalen Zelle für H₆As₁₄O₃₁ führte. Die Untersuchung der Auslöschungsbedingungen ergab die beiden Raumgruppen $P6_3$ bzw. $P6_3/m$ als die wahrscheinlichsten. Die Kristallstruktur von H₆As₁₄O₃₁ wurde durch globale Optimierung im "direct space" mit dem Programm DASH¹⁶² gelöst. Da die genaue Zusammensetzung nicht bekannt war, sind a priori zwei Arsen und 5 Sauerstoffatome als Inhalt der Elementarzelle angegeben worden. Die beste Lösung für die Struktur aus dem "simulated annealing" wurde durch eine anschließende Rietveldverfeinerung mit GSAS/EXPGUI^{43,44}bestätigt. Durch die Berechnung von Differnzfourier-Karten wurden noch zwei weitere Atome auf einer dreizähligen Achse gefunden, zum einen ein Arsenatom auf 2/3 1/3 0.24 und ein Sauerstoffatom auf 1/3 2/3 0.1, welches aber nur zur Hälfte besetzt ist. Während der Rietveldverfeinerung wurde auch der Besetzungsfaktor des Sauerstoffatoms freigegeben, dieser zeigte aber nur sehr geringe Abweichungen vom Wert 0,5, so dass er bei diesem belassen wurde. Die Position der fehlenden Wasserstoffatome konnte durch wiederholte Rietveldverfeinerungen und

Differenzfourieranalysen in den hexagonalen Kanälen um den Ursprung der Elementarzelle bestimmt werden (siehe Abbildung 3.56). Die Ergebnisse der Rietveldverfeinerung, die kristallographischen Daten, die Güte der Verfeinerung, die Atompositionen und ausgewählte Atomabstände- und -winkel sind in Tabelle 3.36, Tabelle 3.37 und Tabelle 3.38 angegeben und das Diagramm der Verfeinerung in Abbildung 3.57.

Kristalldaten			
Raumgruppe	<i>P</i> 6 ₃ (Nr. 173)		
Gitterkonstanten	a = 1204,56(1) pm		
	c = 473,43(0) pm		
Zellvolumen	$V = 594,90(1) \cdot 10^6 \text{ pm}^3$		
Z	2		
Molvolumen	179,154 cm ³ /mol		
Molgewicht	1550,93 g/mol		
Dichte (berechnet)	4,329 g/cm ³		
Datensammlung			
Strahlquelle	Beamline ID31, ESRF		
Monochromator	Si(111)		
Strahlung	0,24804 Å		
Messbereich; Schrittweite	1,2°<2° <i>θ</i> <18,2°; 0,002°2 <i>θ</i>		
Anzahl der gemessenen Reflexe	495		
Strukturverfeinerung			
Verwendetes Programm	GSAS/EXPGUI ^{43,44}		
Anzahl der verfeinerten Parameter	39		
R_p^a	7,45 %		
$\hat{R_{wp}}^a$	11,11 %		
$R(F^2)^a$	8,66 %		

Tabelle 3.36: Kristallographische und analytische Daten von H₆As^{III}₇As^V₇O₃₁ (Standardabweichung in Klammern).

^aAlle Werte sind mit GSAS berechnet

Tabelle 3.37: Atompositionen und isotrope Temperaturfaktoren für H₆As₁₄O₃₁ (Standardabweichung in Klammern).

Ì	Atom	Wyckhoff-Position	x	У	z	$B_{\rm iso} [\rm pm^2]$	Besetzungsfaktor
	As1	6c	0,68275(26)	0,82462(26)	0,2500(29)	0,008(1)	
	As2	6c	0,43777(31)	0,38950(23)	0,2581(28)	0,010(1)	
	As3	2b	0,6667	0,3333	0,2436(26)	0,008(1)	
	01	6c	0,4759(14)	0,5316(14)	0,040(4)	0,001(2)	
	O2	6c	0,8484(7)	0,9112(13)	0,1696(34)	0,001(2)	
	O3	6c	0,6346(14)	0,9228(12)	0,4285(30)	0,001(2)	
	O4	6c	0,8285(14)	0,6124(13)	0,4208(29)	0,001(2)	
	05	6c	0,3635(6)	0,8166(6)	0,5786(29)	0,001(2)	
	O6	2b	0,3333	0,6667	0,0921(30)	0,002	0,5
	Н	6c	0,891(6)	0,972(15)	0,009(20)	0,000	

As1–O4	172(2)	As2–O3	186(2)
As1–O2	177(1)	As2–O4	201(2)
As1–O3	177(2)	As3–O6	165(2)
As2–O1	166(2)	As3–O5	182(1)
As2–O5	172(1)	As3–O5	183(1)
As2–O1	185(2)	As3–O5	183(1)
O2–H	100(1)		
H–H	205(6)	H–H	265(6)
O4-As1-O2	102,8(7)	O3-As2-O4	84,7(6)
O4-As1-O3	110,1(7)	O6-As3-O5	115,3(6)
O2-As1-O3	111,0(7)	O6-As3-O5	115,3(6)
O1-As2-O5	100,6(8)	O6-As3-O5	115,2(6)
O1-As2-O1	97,1(9)	O5–As3–O5	103,1(6)
O1-As2-O3	91,2(8)	O5–As3–O5	103,1(6)
O1-As2-O4	93,6(7)	O5–As3–O5	103,1(6)
O5-As2-O1	91,9(6)	As1-O3-As2	124,9(8)
O5-As2-O3	162,7(7)	As1-O4-As2	119,4(8)
O5-As2-O4	82,0(6)	As1-04-05	153,6(8)
O1-As2-O3	99,2(7)	As2-O1-As2	140,4(9)
O1-As2-O4	168,5(6)	As2-O5-As3	125,1(7)
As1–O2–H	127,5(7)		

Tabelle 3.38: Übersicht über die Bindungslängen (pm) und -winkel (°) in H₆As₁₄O₃₁ (Standardabweichung in Klammern)

3.3.2.3 Strukturbeschreibung

Die Kristallstruktur von $H_6As^{III}_7As^V {}_7O_{31}$ kann als dreidimensionales Netzwerk beschrieben werden, das von drei unterschiedlichen Koordinationspolyedern der Arsenkationen aufgebaut wird (siehe Abbildung 3.58). Die Koordinationszahl dieser Polyeder hängt von der Ladung des zentralen Arsenkations ab. Das erste Polyeder kann als verzerrte quadratische Pyramide von $As2^{5+}O_5$ beschrieben werden. Die As2-O Bindungen liegen zwischen 167 pm und 202 pm und ergeben eine durchschnittliche Länge von 182 pm. Bisher ist für fünfwertiges Arsen in der Literatur die Koordinationszahl 5 nur für Halogenverbindungen vom Typ AsX_5 mit X = F, Cl bekannt, ^{163, 164} welche die Form einer trigonalen Bipyramide aufweisen. Mit Sauerstoff als Ligand sind nur As^VO_4 Tetraeder und As^VO_6 Oktaeder als Koordinationspolyeder bekannt. Die quadratischen Pyramiden von $As2^{5+}O_5$ sind über As2-O1 Brücken mit Bindungslängen von 167 pm und 184 pm miteinander verknüpft und bilden so unendliche Zickzack-Ketten parallel der *c*-Achse.

Das zweite Koordinationspolyeder ist die für dreiwertiges Arsen typische trigonale Pyramide,^{165,166} wie sie bei As1 auftritt (siehe Abbildung 3.59). Zwei der drei basalen Sauerstoffatome O3 und O4 verknüpfen die trigonalen Pyramiden mit den unendlichen Ketten aus verzerrten quadratischen Pyramiden von As2⁵⁺O₅. Das dritte Sauerstoffatom O2 bildet mit dem Wasserstoffatom eine terminale OH-Gruppe. Die OH-Gruppe ist auch durch Infrarot-Messungen bestätigt worden und zwar als breite Bande im Bereich um 3500 cm⁻¹,

Abb. 3.58: Blick auf die Kristallstruktur von $H_6As_{14}O_{31}$ entlang [001]. Die Arsenatome sind in Grau, die Sauerstoffatome in Rot und die Wasserstoffatome in Hellblau dargestellt.

der typisch ist für die Hydroxyl-Gruppe. Die Bindungslängen für As1-O sind mit 172 pm bis 177 pm im Bereich der üblichen As³⁺-O Bindungen. Wenn das freie Elektronenpaar von As1³⁺, welches ungefähr in Richtung [111] zeigt, auch als Ligand betrachtet wird, ergibt sich ein As1³⁺O₃*E* Tetraeder. Das freie Elektronenpaar liegt auf einer Seite des As13+, während die Arsen-Sauerstoff Bindungen alle auf der anderen Seite liegen, so wie es für As^{III}O₃ typisch ist.¹⁶⁵

Die dritte Arsenposition As3 weist eine Ladungsfehlordnung auf und wird dabei statistisch von As³⁺ und As⁵⁺ Kationen besetzt. Im Fall des dreiwertigen As3³⁺ wird ebenfalls eine trigonal pyramidale Koordination verwirklicht, so wie bei As1³⁺ (Abbildung 3.59). Die Bindungslängen As3³⁺-O sind mit 183 pm zwar länger als beim As1³⁺, liegen aber noch im Bereich der möglichen As³⁺-O Bindungen. Das freie Elektronenpaar von As3³⁺ zeigt hier in Richtung der *c*-Achse und vervollständigt so den As3³⁺O₃*E* Tetraeder. Die gleiche tetraedrische Koordination wird auch für das fünfwertige As3⁵⁺ erreicht, wenn das als Pseudoligand fungierende freie Elektronenpaar durch das Sauerstoffatom O6 ersetzt wird. Die Bindung zwischen As3⁵⁺-O6 hat eine Länge von 165 pm und unterstreicht so auch die Ladung von 5+ für das Arsenkation. Der Besetzungsfaktor von O6 wurde während der endgültigen Rietveldverfeinerung auch freigegeben und zeigte nur sehr geringe Abweichung von 50%.

Die Zickzack-Ketten von As $2^{5+}O_5$ parallel der *c*-Achse werden durch die zwei dreizähligen Achsen der Raumgruppe *P*6₃ vervielfältigt. Die Ketten sind zudem über As $3^{3+/5+}O_{3/4}$ und As $1^{3+}O_3$ Polyeder miteinander verknüpft und bilden so ein 3-dimensionales Netzwerk mit "offenen" Kanälen um den Ursprung der Elementarzelle, die in Richtung [001] verlaufen (Abbildung 3.58). Diese Kanäle sind mit den Wasserstoffatomen der Hydroxyl-Gruppen gefüllt, die zu den As $1^{3+}O_3H$ Polyedern gehören. Aufgrund der 6₃-Schraubenachse befinden sich die Wasserstoffatome an den Ecken von Oktaedern, die über gemeinsame Flächen miteinander verbunden sind (siehe Abbildung 3.60). Die H-H-Abstände in den Dreiecksflächen senkrecht zur *c*-Achse betragen 205 pm, was ziemlich genau der summe der van der Waals-Radien für die Wasserstoffatome entspricht. Die anderen Abstände zwischen den Wasserstoffatomen des Oktaeders betragen 265 pm.

Abb. 3.59: Darstellung der Koordinationspolyeder der drei kristallographisch unabhängigen Arsenatome.

Abb. 3.60: Darstellung der aus Wasserstoffatomen aufgebauten Oktaeder in den Kanälen und der Struktur von H₆As₁₄O₃₁.

Im Gegensatz dazu besteht die Kristallstruktur der einzigen anderen bekannten gemischt valenten Arsen(III,V)oxosäure¹⁶⁰ As₃O₅(OH) aus Schichten, die parallel der *a,b*-Ebene verlaufen. Diese Schichten werden durch As³⁺-Atome mit der typischen trigonal pyramidalen Koordination As^{III}O₃ bzw. tetragonaler Koordination bei Berücksichtigung des freien Elektronenpaares As^{III}O₃*E* und durch As⁵⁺⁻Atome in tetragonaler Koordination As^VO₄ (siehe Abbildung 3.61). Zwei der Sauerstoffatome des As^VO₄ Tetraeders sind terminale Atome und weisen Bindungslängen von 159 pm und 165 pm auf. Die zwei anderen Sauerstoffatome des As^VO₄ bilden Brücken zu den trigonalen Pyramiden As^{III}O₃ mit As^V-O Bindungslängen von 167 pm, womit sich eine durchschnittliche As^V-O Bindungslänge von 164 pm ergibt. Alle Sauerstoffe der As^{III}O₃-Pyramiden sind Brückenatome und weisen Bindungslängen zwischen 178 pm und 184 pm auf, was zu einer mittleren Bindungslänge von 180 pm führt. Auch wenn die Autoren die Wasserstoffatome nicht durch die Röntgenbeugungsaufnahmen identifizieren konnten, nahmen sie an, dass sich die Wasserstoffpositionen zwischen den Schichten befinden und so die Struktur durch Ausbildung von Wasserstoffbrückenbindungen stabilisieren.

Abb. 3.61: Blick auf die Kristallstruktur von As₃O₅OH¹⁶⁰ entlang der *b*-Achse. Arsen ist in Grau und Sauerstoff in Rot dargestellt.

3.3.2.4 Ergebnisse

Auf den ersten Blick sieht die Kristallstruktur von $H_6As_{14}O_{31}$ wie eine Netzwerkstruktur mit offenen Kanälen aus, was den Synthesebedingungen bei hohen Druck und Temperatur widersprechen würde. Die wahre Natur der kristallographischen Packung kann man nur erkennen, wenn die genauen Positionen der Wasserstoffatome innerhalb der Kanälen bekannt sind. Dies offenbart dann die hohe Packungsdichte der Struktur. Das sieht man auch an der Erhöhung der Dichte um etwa 13% im Vergleich mit der einzig anderen bekannten Oxosäure des Arsens.

Es ist interessant, dass das dreiwertige As³⁺ als Koordinationspolyeder immer eine trigonale Pyramide bzw. einen Tetraeder, wenn man das freie Elektronenpaar als individuellen Ligangen betrachtet, aufweist. Dies stimmt gut mit der fünften Pauling'schen Regel, der "Sparsamkeitsregel". Die Regel besagt, dass die Anzahl der notwendigen unterschiedlichen Komponenten in einem Kristall klein sein soll. Man kann auch sagen, dass die chemisch ähnlichen Atome eine ähnliche Umgebung besitzen. Im Gegensatz dazu sind für fünfwertiges Arsen As^{5+} bisher drei verschiedene Koordinationspolyeder bekannt, das AsO₄ Tetraeder, die AsF₅ trigonale Bipyramide und das AsO₆ Oktaeder. Mit dieser Arbeit, wird ein vierter Koordinationtyp für As⁵⁺ hinzugefügt, nämlich eine verzerrte quadratische AsO₅ Pyramide. Es ist offensichtlich, das die Koordination des As⁵⁺ Kations, welches kein stereochemisch aktives freies Elektronenpaar besitzt, hauptsächlich durch Packungs- und Größeneffekte gelenkt wird. Das die Pauling'sche Regel für As⁵⁺ nicht immer gültig ist, sieht man schon bei der Raumtemperaturund Hochtemperaturphase von As₂O₅, deren Struktur sowohl As^VO₄ Tetraeder als auch As^VO₆ Oktaeder enthält.^{90–93}

3.3.3 Palladium(II)metaarsenat (PdAs₂O₆)

Das zweiwertige Palladium besitzt eine d⁸-Elektronenkonfiguration und zeigt dadurch eine ausgeprägte Präferenz für quadratisch-planare Koordinationen mit einem daraus resultierenden diamagnetischen Grundzustand. Es gibt bisher nur wenige Ausnahmen von dieser Regel und die sind bisher nur in der Fluorchemie von Palladium bekannt. Dies sind zum einen die Normaldruck^{167, 168} und die Hochdruckmodifikation¹⁶⁹ von PdF₂ und zum anderen die davon abgeleiteten Fluoropalladate(II).¹⁷⁰ In diesen Kristallstrukturen liegt Palladium oktaedrisch koordiniert vor und ist dadurch paramagnetisch mit teilweise erstaunlich hohen Curie- bzw. Neel-Temperaturen. Für zweiwertiges Palladium in oktaedrischer Sauerstoffumgebung ist in der Literatur bisher nur ein Beispiel erwähnt worden und zwar Ca₂PdWO₆,¹⁷¹ dessen magnetisches Verhalten allerdings nicht untersucht wurde.

3.3.3.1 Darstellung von PdAs₂O₆, thermisches Verhalten und Röntgenbeugung an Pulvern

Zur Darstellung von PdAs₂O₆ wird PdO und As₂O₅ im Molverhältnis 1:1,1 in einem mit trockenem Argon gefüllten Handschuhkasten eingewogen und im Achatmörser sorgfältig vermahlen.

$$PdO + As_2O_5 \rightleftharpoons PdAs_2O_6$$

Die Mischung wird dann zu Tabletten gepresst, welche in ein Quarzrohr überführt und dann unter Vakuum für 12 Stunden bei 100 °C und anschließend 24 Stunden bei 200 °C getrocknet werden. Das evakuierte Quarzrohr mit der Probe wird abgeschmolzen und die Quarzampulle mit einer Rate von 100 °C/h auf 700 °C aufgeheizt und bei dieser Temperatur 100 Stunden getempert. Nach Abkühlung (50 °C/h) auf Raumtemperatur zeigt sich ein deutlich sichtbarer Beschlag des Quarzglases. Das rotbraune mikrokristalline Produkt ist nach der Synthese unempfindlich gegen Luft und Feuchtigkeit. Die Röntgenpulverdiffraktogramme zeigen, dass das Produkt nicht absolut reinphasig ist, sondern sich noch geringe Mengen von Palladium(II)oxid nachweisen lassen. Obwohl ein Überschuss an As₂O₅ verwendet wurde, geht bei diesen Synthesebedingungen ein Teil des As₂O₅ für die Reaktion verloren, da es sich an den Quarzglas niederschlägt bzw. damit reagiert. Die thermische Analyse von Palladiummetaarsent im Korundtiegel mit Argon als Spülgas bei einer Heizrate von 10 K/min, zeigt die Zersetzung der Verbindung ab etwa 700 °C

unter Abgabe von Sauerstoff. Nach dem Aufheizen bis 1000 °C bleibt als Zersetzungsprodukt nur noch reines Palladium als Pulver übrig, was durch Röntgenpulverdiffraktogramme bestimmt wurde.

Abb. 3.62: Plot der Rietveld-Verfeinerung für $PdAs_2O_6$ bei T = 25 °C (λ = 0,7093 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe *P*-31*m* (grüne Linie), die Reflexlagen von PdAs₂O₆(Schwarz) und PdO (Rot), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

3.3.3.2 Strukturbestimmung

Die Röntgenpulverdiffraktogramme wurden mit einem STOE StadiP Diffraktometer angefertigt, welches mit einem gebogenen Primärstrahlmonochromator Ge [111] und linearem ortsempfindlichen Detektor ausgestattet ist (Mo-K - Strahlung (a = 0,7093 Å), Raumtemperatur, 5° bis 70° in 2 theta). Die Bestimmung und Verfeinerung der Gitterkonstanten erfolgt mit dem Programmpaket WinXPOW.³⁴ Die endgültige Strukturverfeinerung nach der Rietveld-Methode wurde mit dem GSAS/EXPGUI-Progammpaket^{43,44} und ausgeführt. Als Startparameter wurden die für NiAs₂O₆ publizierten Atompositionen¹⁷² gewählt. Die Daten und die Angaben zur Strukturverfeinerung von PdAs₂O₆sind in Tabelle 3.39 und die Atompositionen in Tabelle 3.40 aufgeführt, das gemessene und berechnete Pulverdiffraktogramm ist in Abbildung Abbildung 3.62 dargestellt.

3.3.3.3 Strukturbeschreibung

Der Kristallstruktur nach gehört $PdAs_2O_6$ ebenso wie die isotypen Verbindungen $M^{2+}As_2O_6$ mit M^{2+} = Ca, Pb, Ni, Mn, Co, Cd, $Hg^{172-175}$ zur Strukturfamilie des Bleiantimonats $PbSb_2O_6$.¹⁷⁶ Der As₂O₆-Teil der Kristallstruktur besteht aus kantenverknüpf-

Abb. 3.63: Blick auf die Kristallstruktur von PdAs₂O₆ entlang [001] (oberes Bild) und [010] (unteres Bild). Palladium ist in Violett, Arsen in Hellgrau und Sauerstoff in Rot dargestellt.
Kristalldaten	
Raumguppe	<i>P</i> 31 <i>m</i> (Nr. 162)
Gitterkonstanten	a = 481,96(1) pm
	c = 466,46(1) pm
	$V = 93,84(1) \cdot 10^6 \text{ pm}^3$
Z	1
Molvolumen	56,517 cm ³ /mol
Molgewicht	352,26 g/mol
Dichte (berechnet)	6,233 g/cm ³
Dichte (gemessen)	6,306 g/cm ³
Datensammlung	
Strahlquelle	STOE Stadi-P
Monochromator	Ge(111)
Strahlung	$Mo_{K\alpha} (\lambda = 0,7093 \text{ Å})$
Messbereich; Schrittweite	5°<2°θ<70°; 0,01°2θ
Anzahl der gemessenen Reflexe	259
Strukturverfeinerung	
Verwendetes Programm	GSAS/EXPGUI ^{43,44}
Anzahl der verfeinerten Parameter	18
R_p^a	2,46 %
R_{wp}^{a}	3,06 %
$R(\dot{F}^2)^a$	8,59 %

Tabelle 3.39: Kristallographische und analytische Daten von PdAs₂O₆(Standardabweichung in Klammern)

^{*a*}Alle Werte sind mit GSAS berechnet

 Tabelle 3.40:
 Atompositionen und isotrope Temperaturfaktoren für PdAs₂O₆(Standardabweichung in Klammern)

Atom	Wyckhoff-Position	x	у	z	$B_{\rm iso} [\rm pm^2]$
Pd	1 <i>a</i>	0	0	0	0,0102(3)
As	2d	2/3	1/3	1/2	0,0112(3)
0	6k	0,3695(7)	0	0,2926(5)	0,0070(6)

ten AsO₆-Oktaedern, die Honigwabenschichten ausbilden, analog zu den $^2_{\infty}$ [Al₂Cl₆]-Schichten in AlCl₃.^{177, 178} Die As–O Abstände liegen mit 181 pm im erwarteten Bereich und stimmen beispielsweise gut mit dem mittleren As–O Abstand von 182 pm der AsO₆ Oktaeder in As₂O₅ überein. Die Winkel weichen jedoch erheblich von denjenigen in einem regulären Oktaeder ab (siehe Tabelle 3.41). Daraus ergibt sich eine Stauchung der AsO₆-Oktaeder entlang der [001] Richtung. Die As₂O₆-Schichtpakete sind in Richtung der *c*-Achse in einer Weise gestapelt, dass die unbesetzten Oktaederlücken übereinander zu liegen kommen und sich für die Sauerstoffatome eine Abfolge im Sinne einer hexagonal dichtesten Kugelpackung ergibt. Von den in den Zwischenschichten resultierenden Oktaederlücken ist ein Drittel mit zweiwertigen Palladium besetzt, und zwar genau diejenigen, die sich oberhalb bzw. unterhalb einer unbesetzten Lücke der As₂O₆-Schichten befinden. Zwar trägt das Palladium (2+) gegenüber dem Arsen (5+) die deutlich geringere Kationenladung, gleichwohl weisen die PdO₆ Oktaeder eine nahezu ideale oktaedrische

Pd–O	224(1) (6x)	O-Pd-O	180,0 (3x)
			86,8(1) (6x)
			93,2(1) (6x)
As–O	181(1)(2x)	O-As-O	170,4(1) (3x)
	181(2)(2x)		79,3(1) (3x)
	181(1)(2x)		93,3(1) (3x)
			94,0 (6x)

 Tabelle 3.41: Übersicht über die Atomabstände (pm) und Winkel (°) in Palladium(II)metaarsenat (Standardabweichung in Klammern)

Geometrie auf. Der Pd–O-Abstand beträgt 224 pm, was mit der Summe von 226 pm der Ionenradien von O²⁻ (140 pm) und sechsfach koordiniertem Pd²⁺ (86 pm) fast genau übereinstimmt.

Abb. 3.64: Abbildung des Ramanspektrums für PdAs₂O₆.

3.3.3.4 Raman-Spektroskopie

Das Ramanspektrum von $PdAs_2O_6$ ist in Abbildung 3.64 abgebildet. Die Ramandaten von $PdAs_2O_6$ sind im Vergleich mit den Daten von $CaAs_2O_6$ und $PbAs_2O_6^{173}$ in Tabelle 3.42 aufgeführt. Man erkennt das alle Banden in einem ähnlichen Bereich liegen, nur die schwache Bande bei 360 cm⁻¹ bzw. 399 cm⁻¹ ist im Spektrum von Palladium(II)metaarsenat nicht zu erkennen.

Bande PdAs ₂ O ₆ [cm ⁻¹]	$PbAs_2O_6 [cm^{-1}]$	$CaAs_2O_6$ [cm ⁻¹]	Zuordnung
768 (sh)	760 (sh)	775 (sh)	σ (As-O)
747 (s)	745 (s)	763 (s)	σ (As-O)
544 (w)	513 (w)	539 (w)	σ (As-O-M)
414 (s)	413 (m)	428 (m)	δ (As-O-M)
	360 (w)	399 (w)	δ (As-O)
300 (m)	262 (m)	290 (m)	δ (As-O)

Tabelle 3.42: Ramandaten von PdAs₂O₆ im Vergleich mit den Daten von CaAs₂O₆ und PbAs₂O₆¹⁷³

3.3.3.5 Magnetisches Verhalten

Die magnetischen Messungen mit $PdAs_2O_6$ erfolgten mit einem SQUID-Magnetometer zwischen T = 5 K - 700 K in magnetischen Feldern bis 5 Tesla. Für die Tieftemperaturmessung von T = 5 K - 330 K, wurde $PdAs_2O_6$ in eine Gelatinekapsel gefüllt, während es für die Hochtemperaturmessung in ein Suprasil-Röhrchen abgefüllt wurde. In oktaedrischer Umgebung weist Pd^{2+} die Elektronenkonfiguration $t_{2g}^{6}e_{g}^{2}$ auf. Damit im Einklang verhält sich $PdAs_2O_6$ (bei hohen Temperaturen) paramagnetisch, siehe Abbildung 3.65. Allerdings ergibt eine Auswertung nach dem Curie-Weis Gesetz mit diamagnetischer Korrektur¹⁷⁹ ein Moment von $\mu B = 3,17$ (p = -251 K), der mit dem berechneten Wert für den spin-only Fall ($\mu B = 2,83$) nicht übereinstimmt.

Abb. 3.65: Messung der magnetischen Suszeptibilität von PdAs₂O₆ bei einem Feld von 1 Tesla. Auftragung von $1/\chi_{mol}$ [mol/emu] (volle Kreise) und $\chi \cdot T$ [emu·K/mol] (offene Kreise) gegen T [K]

Auffällig ist die hohe Ordnungstemperatur von T \approx . 150 K bei Palladium(II)metaarsenat. Hier zeigt sich eine Parallele zu den Palladium(II)fluoriden, die zum Teil ebenfalls beachtlich hohe Ordnungstemperaturen aufweisen. Die Normaldruckmodifikation von PdF₂^{167, 168} und die Hochdruckmodifikation¹⁶⁹ ordnen magnetisch bei T = 225 K bzw. T = 160 K. Die hohe Ordnungstemperatur bei PdAs₂O₆ist auch deshalb bemerkenswert, da bei den Fluoriden die Pd-Atome direkt über gemeinsame F-Atome miteinander verbunden sind. Der Pd–Pd-Abstand liegt bei PdF₂ zwischen 339 pm und 389 pm und für die Hochdruckmodifikation bei 377 pm. Dagegen sind beim Palladium(II)metaarsenat die PdO₆-Oktaeder magnetisch isoliert und die Pd-Atome sind nur über die Kanten der AsO₆-Oktaeder miteinander verbunden. Zudem beträgt der Pd–Pd-Abstand 466 pm und 482 pm, was deutlich größer ist als bei den Palladium(II)fluoriden.

5 K	5 K (magnet. Phase)	200 K
$P\bar{3}1m$	$P\overline{1}$	$P\bar{3}1m$
a = 482,13(1) pm	a = 482,13(1) pm	a = 482,27(1) pm
c = 466,05(1) pm	c = 931,97(0) pm	c = 466,45(1) pm
$V = 93.82(0) \cdot 10^6 \text{ pm}^3$	$V = 187,61(0) \cdot 10^6 \text{ pm}^3$	$V = 93,95(0) \cdot 10^6 \text{ pm}^3$
_	352,26 g/mol	-
6,235 g/cm ³		6,233 g/cm ³
	SPODI, FRM II, Garching	
Neutronen $\lambda 1 =$	$1,54900$ Å, $\lambda 2 = 1,98300$ Å	Å, $\lambda 2/\lambda 1 = 0.05$
C),3°<2°θ<159,95°; 0,05°2€)
	Ge(551)-Kristall	
	FULLPROF ⁴²	
	16	
6,3	6 %	6,21 %
8,7	9 %	8,64 %
7,3	1 %	7,28 %
	5 K $P\bar{3}1m$ a = 482,13(1) pm c = 466,05(1) pm $V = 93.82(0) \cdot 10^6 \text{ pm}^3$ $6,235 \text{ g/cm}^3$ Neutronen $\lambda 1 =$ (0) 6,33 8,7 7,3	$5 \text{ K} 5 \text{ K} 9 \text{ magnet. Phase}) \\ P\bar{3}1m P\bar{1} P\bar{1} \\ a = 482,13(1) \text{ pm} a = 482,13(1) \text{ pm} \\ c = 466,05(1) \text{ pm} c = 931,97(0) \text{ pm} \\ V = 93.82(0) \cdot 10^6 \text{ pm}^3 V = 187,61(0) \cdot 10^6 \text{ pm}^3 \\ 352,26 \text{ g/mol} \\ 6,235 \text{ g/cm}^3 SPODI, FRM II, Garching \\ \text{Neutronen } \lambda 1 = 1,54900 \text{ Å}, \lambda 2 = 1,98300 \text{ A} \\ 0,3^{\circ}<2^{\circ}\theta<159,95^{\circ}; 0,05^{\circ}26 \\ \text{Ge}(551)-\text{Kristall} \\ \text{FULLPROF}^{42} \\ 16 \\ 6,36 \% \\ 8,79 \% \\ 7,31 \% \\ \end{array}$

Tabelle 3.43: Kristallographische Daten von PdAs₂O₆ aus den Daten der Neutronenmessung (Standardabweichung in Klammern).

^aAlle Werte sind mit FULLPROF berechnet

3.3.3.6 Neutronenbeugung

Um genauere Informationen über die magnetische Struktur von $PdAs_2O_6zu$ erhalten, wurden Neutronenbeugungsmessungen am FRM-II, Garching durchgeführt. Dazu wurde die Probe einmal unterhalb (bei T = 5 K) und einmal oberhalb (T = 200 K) der Ordnungstemperatur von T = 150 K gemessen. Man erkennt bei der Messung bei T = 5 K deutlich die Reflexe der magnetischen Phase (siehe Abbildung 3.66), die bei der Messung bei T = 200 K nicht mehr zu sehen sind (siehe Abbildung 3.67). Die Ergebnisse der Rietveld-Anpassungen und die kristallographischen Daten sind in Tabelle 3.42 angegeben. Die

Abb. 3.66: Plot der Rietveld-Verfeinerung des Neutronenpulverdiffraktogrammes für $PdAs_2O_6$ bei T = 5 K. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von $PdAs_2O_6$ (Schwarz), der magnetischen Phase (Orange) und PdO (Blau), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

Abb. 3.67: Plot der Rietveld-Verfeinerung des Neutronenpulverdiffraktogrammes für $PdAs_2O_6$ bei T = 200 K. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von $PdAs_2O_6$ (Schwarz) und PdO (Blau), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.

magnetische Struktur basiert auf einer triklinen Zelle *P*-1 mit mit gleichen *a,b*-Achsen, aber verdoppelter *c*-Achse im Vergleich zur Zelle von PdAs₂O₆. Die magnetische Struktur enthält zwei kristallographisch unabhängige Pd-Positionen in (0 0 0) und (0 0 1/2). Die magnetischen Momente sind in einer Ebene jeweils alle in Richtung [100] bzw. [-100] ausgerichtet, dadurch ergibt sich eine einfache antiferromagnetische Anordnung der magnetischen Momente des Pd²⁺. Für isotypes und isoelektronisches NiAs₂O₆ wurde eine Ordnungstemperatur von T = 30 K bestimmt,¹⁷² die somit fünfmal niedriger ist als die bei Palladium(II)metaarsenat. Die magnetische Austauschwechselwirkung kann bei NiAs₂O₆ nur über Super-Super-Austausch erfolgen, was auch für das PdAs₂O₆ zutrifft. Eine mögliche Erklärung für die höhere Ordnungstemperatur des Pd²⁺ gegenüber dem Ni²⁺ könnte die größere Reichweite der 4*d*-Orbitale des Palladiums im Vergleich zu den 3*d*-Orbitalen des Nickels sein.

Abb. 3.68: Darstellung der magnetischen Struktur von PdAs₂O₆ aus den Daten der Neutronenbeugung bei 5K entlang [001]. Die blauen Pfeile gegen die Orientierung der magnetischen Momente an. Palladium ist in Violett, Arsen in Hellgrau und Sauerstoff in Rot dargestellt.

Abb. 3.69: Darstellung der magnetischen Struktur von PdAs₂O₆ aus den Daten der Neutronenbeugung bei 5K entlang [010]. Die blauen Pfeile gegen die Orientierung der magnetischen Momente an. Palladium ist in Violett, Arsen in Hellgrau und Sauerstoff in Rot dargestellt.

4 Zusammenfassung

Selen(IV)oxid SeO₂

Die Untersuchung des α -SeO₂ bei Drücken bis 19,5 GPa und Temperaturen bis 820 °C ergab zwei neue metastabile Hochdruckphasen, nämlich β - und γ -SeO₂. Beide kristallisieren in der Raumgruppe *Pmc*2₁ (Nr. 26), die β -Modifikation mit a = 507,22(1) pm, b =447,04(1) pm, c = 753,09(2) pm und $V = 170,76(1)\cdot10^6$ pm³ und die γ -Modifikation mit a = 507,10(2) pm, b = 448,32(2) pm, c = 1496,72(6) pm und $V = 340,27(3)\cdot10^6$ pm³. Die Struktur ist in allen drei Modifikationen aus eckenverknüpften SeO₃*E*-Tetraedern aufgebaut, die unendliche Zickzack-Ketten bilden. Der Hauptunterschied in den Kristallstrukturen zwischen α -, β - und γ -SeO₂ besteht in der Orientierung dieser Ketten zueinander. Des weiteren konnte im p-T-Diagramm die Phasengrenze zwischen der β - und γ -Modifikation des SeO₂ bestimmt werden.

Antimon(III)oxid Sb₂O₃

Es wurden Hochdruckexperimenten mit kubischen (α) und orthorhombischen (β) Sb₂O₃ zu einem Druck von 19,5 GPa und Temperaturen bis 400 °C durchgeführt. Ein p-T-Phasendiagramm für Sb₂O₃ wurde für den untersuchten Bereich erstellt. Es konnte die Struktur einer neuen Hochdruckmodifikation γ -Sb₂O₃ aus Synchrotronpulveraufnahmen gelöst werden. Diese kristallisiert in der Raumgruppe *P*2₁2₁2₁, *a* = 1164,13(1) pm, *b* = 756,66(0) pm, *c* = 747,72(0) pm und *V* = 658,64(1)·10⁶ pm³. Die Struktur wird aus SbO₃*E*-Einheiten aufgebaut. Drei dieser Einheiten sind zu Sb₃O₃-Ringen verknüpft, die jeweils über eine weitere SbO₃*E*-Einheit unendlichen Ketten in Richtung der *a*-Achse bilden. Die Ketten sind über eine Sauerstoffbrücke miteinander verbunden. Die Anordnung der Ketten zueinander kann man als tetragonale Stabpackung bezeichnen. Bei dem Hochdruckversuch bei 19,5 GPa und 400 °C wurde die Zersetzung in β -Sb₂O₄ und elementares Antimon festgestellt.

Antimon(III,V)oxid Sb₂O₄

Vom Sb₂O₄ sind eine Raumtemperatur- (α) und eine Hochtemperaturmodifikation (β) in der Literatur bekannt. Die α - β Umwandlung soll bei Normaldruck bei 935 °C erfolgen. Das Verhalten von α -Sb₂O₄ wurde durch Versuche mit einer Diamantstempelzelle bis 27,3 GPa Druck bei Raumtemperatur und in der Belt-Presse bis 6 GPa Druck und bei Temperaturen bis 400 °C untersucht. Die ersten Anzeichen für die Umwandlung von der α -Phase in die β -Phase konnten in der Diamantstempelzelle ab 3,3 GPa Druck beobachtet werden. Die vollständige Umwandlung erfolgte erst bei etwa 20 GPa Druck. Bei Druckerniedrigung bleibt das β -Sb₂O₄ erhalten und wandelt sich nicht mehr in die α -Phase um. Aus den experimentellen Daten mit der Diamantstempelzelle konnten auch die Kompressionsmodule für die α - und β -Phase berechnet werden. Für α -Sb₂O₄ ergab sich für $K_{0\alpha} = 143 \pm 1,5$ GPa und für β -Sb₂O₄ ergab sich für $K_{0\beta} = 105 \pm 1,5$ GPa. Die Versuche in den Hochdruckpresse zeigten schon bei p = 4 GPa und T = 400 °C und p = 6 GPa und T = 375 °C eine vollständige Umwandlung von α - zu β -Sb₂O₄. Es wurde auch eine Heizguinier-Aufnahme bis T = 800 °C mit der β -Modifikation durchgeführt, aber es konnte keine Rückumwandlung in die α -Modifikation beobachtet werden. Die Ergebnisse erlauben die Schlussfolgerung, dass das β -Sb₂O₄ die stabilere Phase im gesamten untersuchten Druck- und Temperaturbereich darstellt.

Bismut(III)fluorid BiF₃

Das Hochdruckverhalten von α -BiF₃ wurde bis zu einem Druck von 20 GPa und Temperaturen bis 700 °C untersucht. In der Literatur wurde schon eine dem Tysonit (LaF₃) ähnliche trigonale Hochdruckmodifikation "T-BiF₃" mit a = 707,6 pm und c = 735,0 pm erwähnt, aber die Struktur wurde nicht vollständig gelöst. Bei der Indizierung wurde eine kleinere Zelle mit a = 407,94 pm, c = 733,68 pm und $V = 105,7 \cdot 10^6$ pm³ gefunden. Diese Zelle ergab bei der LeBail-Anpassung die besseren Ergebnisse, daher wurde mit ihr auch die Rietveldverfeinerung durchgeführt. Diese Hochdruckmodifikation (β -BiF₃) kristallisiert in der hexagonalen Raumgruppe P63/mmc. In der Struktur gibt es fünf kürzere Bi-F Abstände (235 - 247 pm), die eine trigonale Bipyramide als Koordinationspolyeder um das Bi-Atom bilden. Dazu kommen noch sechs längere Bi-F (264 pm) Abstände, die jede Fläche der Bipyramiden überkappen, somit ergibt sich für das Bismut eine Koordinationszahl von 11. Die trigonalen Bipyramiden sind über die drei äquatorialen F-Atome zu Schichten verknüpft und die überkappenden F-Atome sind zugleich die axialen F-Atome der darüber- bzw. darunterliegenden Schicht. Aufgrund der hohen Koordinationszahl ist das freie Elektronenpaar kaum ausgeprägt, was eine bekannte Eigenschaft von Bi-Verbindungen ist.

Arsen(V)oxid As₂O₅

Das Verhalten von α -As₂O₅ ist zum einen mit Hilfe von Experimenten in Diamantstempelzellen bei Drücken bis 19,5 GPa und Raumtemperatur untersucht worden. Es wurde keine Phasenumwandlung im gesamten Druckbereich festgestellt. Aus den Daten konnte das Kompressionsmodul für α -As₂O₅ berechnet werden $K_0 = 88.4 \pm 2.3$ GPa. Zum anderen wurde α -As₂O₅ mit Hilfe von Hochdruckpressen bis zu 19 GPa Druck und Temperaturen bis 1400 °C untersucht. Es ist eine Temperatur von mindestens T ≈ 500 °C notwendig, damit sich eine Hochdruckmodifikation bildet. Es sind zwei Bereiche im p-T-Diagramm identifiziert worden, in denen sich metastabile Hochdruckmodifikationen bilden. Die Pulverdiffraktogramme der Hochdruckmodifikationen des α -As₂O₅ konnten bisher nicht indiziert werden. Um die Stabilität der Hochdruckmodifikationen zu bestimmen, wurden temperaturabhängigen Pulverdiffraktogrammen mit einer Heizguinier-Kamera aufgenommen. Es konnte die Umwandlung der Hochdruckmodifikationen über eine intermediäre Phase (γ -As₂O₅) in die α -Modifikation beobachtet werden. Das intermediäre γ -As₂O₅ kristallisiert monoklin in der Raumgruppe P2₁/n, a = 880, 38(4) pm, b = 829,44(4) pm, c = 479,36(3) pm, $\beta = 96,86(0)^{\circ}$ und $V = 347,54(17) \cdot 10^{6}$ pm³. Die Kristallstruktur ist ähnlich wie bei α-As₂O₅ aus AsO₆ Oktaedern und AsO₄ Tetraedern aufgebaut. Die Struktur der α -Modifikation besteht aus eckenverknüpften AsO₆-Oktaedern besteht, die unendliche Zickzack-Ketten entlang der c-Achse bilden. Die Ketten sind dann über die AsO₄Tetraeder so verknüpft, dass sie von vier weiteren Ketten umgeben sind. Auf den ersten Blick scheint das auch bei γ -As₂O₅ der Fall zu sein, aber hier bilden sich anstatt der Ketten As₂O₁₀-Einheiten die entlang der *c*-Achse übereinander gestapelt sind. Die As₂O₁₀- Einheiten sind über die Tetraeder miteinander verknüpft.

Vanadium(V)oxid V₂O₅

Es wurde das Verhalten von α -V₂O₅ bei Drücken bis 29 GPa und Temperaturen bis 1450 °C untersucht. Aus den Daten der Hochdruckversuche konnte das p-T-Phasendiagramm erweitert werden. Es sind aber keine neuen Hochdruckphasen in dem Druckbereich gefunden. Die Struktur einer Hochdruckmodifikation (β -V₂O₅) war schon aufgeklärt, die der anderen Hochdruckmodifikation (δ -V₂O₅) war noch nicht vollständig bestimmt. Die durchgeführte Rietveld-Verfeinerung ergab für δ -V₂O₅ (*C2/c*) *a* = 1197,19(2) pm, *b* = 470,16(1) pm, *c* = 532,53(1) pm, β = 104,41(0)° und *V* = 290,32(7)·10⁶ pm³. Die Struktur ist aus verzerrten VO₆-Oktaedern aufgebaut. Es bilden sich Ketten aus kantenverknüpften VO₆-Oktaedern, welche über gemeinsame Ecken zu einer Zickzack-Anordnung verknüpft sind. Es entstehen Schichten, die parallel der *ac*-Ebene gestapelt sind. Bei genauer Betrachtung erkennt man eine Ähnlichkeit zur Rutil-Struktur.

Hexakaliumnonaoxodiselenat(VI) K₆(SeO₄)(SeO₅)

Das K₆(SeO₄)(SeO₅) wurde durch Festkörperreaktion aus K₂O und K₂SeO₄ bei einem Druck von p = 2 GPa und einer Temperatur von T = 625 °C hergestellt. Die Verbindung kristallisiert in der tetragonalen Raumgruppe $P4_12_12$ mit a = 812,6 pm, c = 1749,5 pm und $V = 1155,2\cdot10^6$ pm³. Die Kristallstruktur von K₆(SeO₄)(SeO₅) ist aus SeO₄ Tetraedern und SeO₅ trigonalen Bipyramiden aufgebaut. Das ist das zweite Beispiel nach Li₄SeO₅, dass das Selen eine trigonale Bipyramide als Koordinationpolyeder aufweist. Die Struktur lässt sich mit dem Motiv einer kubisch dichtesten Packung der Anionen beschreiben, bei der alle tetraedrischen und oktaedrischen Lücken mit Kalium besetzt sind. Man findet einen ähnlichen strukturellen Aufbau bei der Verbindung Rb₆(TeO₄)(TeO₅), welche in der monoklinen Raumgruppe C2/c kristallisiert. Halbiert man die Summenformel K₆Se₂O₉ und reduziert man sie auf die K- und Se-Positionen, dann gehört es zu der großen Familie der anorganischen A₃B-Strukturtypen, für die Li₃Bi den Aristotyp darstellt.

Arsen(III,V)oxosäure H₆As^{III}₇As^V₇O₃₁

Bei Hochdruckversuchen mit As₂O₅ wurde bei Drücken zwischen p = 6 - 8 GPa und Temperaturen zischen T = 500 - 580 °C eine gemischtvalente Arsen(III,V)oxosäure erhalten. Das Struktur des H₆As^{III}₇As^V₇O₃₁ wurde aus hochauflösenden Synchrotronpulveraufnahmen gelöst. Es kristallisiert in der Raumgruppe *P*6₃ (Nr. 173), *a* = 1204,56(1) pm, *c* = 473,43(0), *V* = 594,90(1)·10⁶ pm³. Die Struktur ist ein dreidimensionales Netzwerk aus den bekannten AsO₄ Tetraedern für As⁵⁺ und AsO₃*E* Tetraedern für As³⁺. Aber sie enthält auch ein neuen Koordinationspolyeder für das As⁵⁺-Kation, nämlich AsO₅ als quadratischen Pyramide. Die quadratischen Pyramide von AsO₅ sind über gemeinsame Ecken zu unendlichen Ketten verknüpft, die parallel der *c*-Achse verlaufen. diese Ketten sind durch die AsO₄ und AsO₃*E* miteinander verbunden. Die Struktur von H₆As₁₄O₃₁ weist auch scheinbar leere Kanäle auf, die parallel der *c*-Achse durch die Struktur verlaufen. Durch die Güte der Synchrotronpulveraufnahmen konnten die H-Atome innerhalb der Hohlräume lokalisiert werden. Dort bauen die H-Atome Oktaeder auf, welche die Kanäle ausfüllen.

Palladium(II)metaarsenat PdAs₂O₆

Die Verbindung PdAs₂O₆ wurde durch Festkörpersynthese aus PdO und As₂O₅ im Vakuum bei 700 °Cerhalten. Es kristallisiert in der Raumgruppe $P\bar{3}1m$ (Nr. 162) mit a =481,96(1) pm, c = 466,46(1) pm und $V = 93,84(1)\cdot10^6$ pm³. Das PdAs₂O₆ gehört zum Strukturtyp des Blei(II)antimonates PbSb₂O₆. Die Struktur besteht aus kantenverknüpften AsO₆ Oktaedern, die Honigwabenschichten aufbauen. Von den in den Zwischenschichten resultierenden Oktaederlücken ist ein Drittel mit Pd²⁺-Kationen besetzt und zwar diejenigen, welche sich oberhalb bzw. unterhalb einer unbesetzten Lücke in den Honigwabenschichten befinden. Bei oktaedrischen Koordination weist das Pd²⁺-Kation die Elektronenkonfiguration $t_{2g}^{6}e_{g}^{2}$ auf. Damit im Einklang verhält sich PdAs₂O₆ (bei hohen Temperaturen) paramagnetisch und es zeigt bei einer Temperatur von T \approx . 150 K eine magnetische Ordnung. Ein ähnliches Verhalten bei ähnlichen Ordnungstemperaturen war bisher nur von den Pd(II)fluoriden bekannt. Zur Bestimmung der magnetischen Struktur wurden Neutronenmessungen durchgeführt. Die magnetische Struktur (*P*-1 (Nr. 2), *a,b* = 482,13(1) pm, *c* = 931,97(0) pm und *V* = 187,61(0)·10⁶ pm³) besitzt zwei kristallographisch unabhängige Pd-Positionen in (0 0 0) und (0 0 1/2). Alle magnetischen Momente sind innerhalb einer Ebene jeweils in Richtung [100] bzw. [-100] ausgerichtet. Dadurch ergibt sich eine einfache antiferromagnetische Anordnung der magnetischen Momente der Pd²⁺-Kationen.

5 Abstract

Selen(IV)oxid SeO₂

The investigation of α -SeO₂at pressures up to 19.5 GPa and temperatures up to 820 °C resulted in two new metastable high pressure phases, β - and γ -SeO₂. Both crystallize in the space group *Pmc*21 (No. 26), the β -modification with a = 507,22(1) pm, b = 447,04(1) pm, c = 753,09(2) pm and $V = 170,76(1)\cdot10^6$ pm³ and the γ -modification with a = 507,10(2) pm, b = 448,32(2) pm, c = 1496,72(6) pm and $V = 340,27(3)\cdot10^6$ pm³. The crystal structure consists in all three modifications of corner-sharing SeO₃*E* te-trahedra, which form infinite zigzag chains. The main difference in the crystal structures between α -, β - and γ -SeO₂ exist in the orientation of these chains to each other. The phase boundary between the β - and γ -modification in the p-T-phase diagram of SeO₂ was determined.

Antimon(III)oxid Sb₂O₃

High pressure experiments with cubic (α) and orthorhombic (β) Sb₂O₃ were accomplished up to pressures of 19,5 GPa and temperatures up to 400 °C. A p-T-phase diagram for the investigated region was established. The structure of a new high pressure modification γ -Sb₂O₃ was solved from high-resolution synchrotron powder diffraction. It crystallizes in the space group *P*2₁2₁2₁ with *a* = 1164,13(1) pm, *b* = 756,66(0) pm, *c* = 747,72(0) pm and *V* = 658,64(1) \cdot 10⁶ pm³. The structure is composed of SbO₃*E*-Einheiten. Three of these units are linked to Sb₃O₃-rings, that form respectively over a further SbO₃*E*-units infinite chains along the a-axis. These chains are connected over an oxygen bridge. One can designate the arrangement of the infinite chains to each other as a tetragonal rod packing. In the high pressure high temperature experiment at 19.5 GPa and 400 °C the decomposition in β -Sb₂O₄ and elementary antimony was observed.

Antimon(III,V)oxid Sb₂O₄

Of Sb₂O₄ an ambient temperature modification (α) and a high temperature modification (β) are known in the literature. The α - β transformation is reported to occur at 935 °C. The behavior of α -Sb₂O₄ was investigated through high pressure experiments with a diamond anvil cell up to 27.3 GPa pressure at ambient temperature and in the Belt press up to 6 GPa pressure and temperatures up to 400 °C. The first indications for the transformation from the α - to the β -modification were be observed in the diamond anvil cell starting

at 3.3 GPa pressure. The transformation was completed not before ≈ 20 GPa pressure. During pressure release the β -Sb₂O₄ preserved and is not converted back to the α -phase. From the experimental data of the diamond anvil cell runs the bulk modulus of the α - und β -phase were determined. For α -Sb₂O₄ a $K_{0\alpha} = 143 \pm 1,5$ GPa and for β -Sb₂O₄ a $K_{0\beta} = 105 \pm 1,5$ GPa resulted. The experiments in the high-pressure device showed already with p = 4 GPa and T = 400 °C and p = 6 GPa and T = 375 °C a complete transformation from α - to β -Sb₂O₄. Also a heating Guinier measurement up to T = 800 °C was made with the β -modification, but no transformation back into the α -modification was be observed. The results allow the conclusion that the β -Sb₂O₄ is the more stable phase over the complete investigated p-T-range.

Bismut(III)fluorid BiF₃

The high pressure behavior of a-BiF3 was investigated up to a pressure of 20 GPa and temperature up to 700 °C. In the literature a tysonite-like (LaF₃) trigonal high pressure modification "T-BiF₃" was already described with a = 707.6 pm and c = 735.0 pm, but the structure was not completely solved. During indexing a smaller cell with a = 407.94 pm, c = 733.68 pm and to $V = 105,7\cdot10^6$ pm³ was found. This cell gave the better results during the LeBail-refinements and was therefore also used for the Rietveld-refinement. This high pressure modification (β -BiF₃) crystallizes in the hexagonal space group $P6_3/mmc$. In the structure are five shorter Bi-F bonds (235 - 247 pm), which form a trigonal bipy-ramidal coordination sphere for the Bi-atom. In addition there are six longer Bi-F bonds (264 pm), which are capping each face of the bipyramid and this results in the high coordination number of 11 for the bismuth. The trigonal bipyramids are connected over the three equatorial F-atoms to layers and the capping F-atoms are at the same time the axial F-atoms of the layer above or below. Due to the high coordination number the character of the lone electron pair is constrained, an effect which is well known for Bi-compounds.

Arsen(V)oxid As₂O₅

The high pressure behavior of α -As₂O₅ was examined on the one hand with a diamond anvil cell at pressure up to 19.5 GPa and ambient temperature. No phases transitions in the complete pressure range were observed. With the experimental data, the bulk modulus for α -As₂O₅ was determined as $K_0 = 88.4 \pm 2.3$ GPa. On the other hand α -As₂O₅ was investigated with high pressure devices up to 19 GPa pressure and temperatures up to 1400 °C. A temperature of T \approx 500 °C is necessary that a high pressure modification can form. Two areas in the p-T-diagram were identified, in which metastable high pressure modifications were obtained. Up to now it was not possible to index the powder diffraction patterns of the high pressure modifications of α -As₂O₅. In order to determine the stability of the high pressure modifications, temperature dependent powder diffraction measurements with a heating Guinier-camera were made. The transition of the high pressure modifications through an intermediate phase (γ -As₂O₅) back into the α -modification was observed. This intermediate γ -As₂O₅ crystallizes in the monoclinic space group *P*2₁/*n* with *a* = 880,38(4) pm, *b* = 829,44(4) pm, *c* = 479,36(3) pm, β = 96,86(0)° and *V* = 347,54(17)·10⁶ pm³. The crystal structure is similar to the one of α -As₂O₅. It is built up by AsO₆ octahedra and AsO₄ tetrahedra. The structure of the α -modification consists of corner-sharing AsO₆ octahedra, which build infinite zigzag-chains parallel the *c*-axis. A chain is then connected over AsO₄ tetrahedra in such way that it is surrounded by four other chains. At a first view, it seems to be also the case in γ -As₂O₅, but instead of the infinite chains As₂O₁₀ units form, which are stacked along the c-axis. These As₂O₁₀ units are connected through the tetrahedra.

Vanadium(V)oxid V₂O₅

The behavior α -V₂O₅ at pressures up to 29 GPa and temperatures up to 1450 °C was investigated. It was possible to extend the p-T-phase diagram by the data of the high pressure experiments. However no new high pressure phases were found in the investigated pressure and temperature range. The structure of a high pressure modification (β -V₂O₅) was already completely solved, but the other high-pressure modification (δ -V₂O₅) was not yet completely solved. The conducted Rietveld-refinement resulted for δ -V₂O₅ (*C*2/*c*) in *a* = 1197,19(2) pm, *b* = 470,16(1) pm, *c* = 532,53(1) pm, β = 104,41(0)° and *V* = 290,32(7)·10₆ pm₃. The structure is composed of distorted VO₆ octahedra. These octahedra are connected by common edges and form chains, which are linked to a zigzag arrangement over common corners. Thus layers are built, which are stacked parallel the *ac*-plane. At a closer look the similarity to the rutile structure can be recognized.

Hexakaliumnonaoxodiselenat(VI) K₆(SeO₄)(SeO₅)

The compound $K_6(SeO_4)(SeO_5)$ was synthesized by solid state reaction from K_2O and K_2SeO_4 at a pressure of p = to 2 GPa and a temperature of T = 625 °C. The compound crystallizes in the tetragonal space group P4₁2₁2 with a = 812.6 pm, c = 1,749.5 pm and $V = 1,155,2\cdot10^6$ pm³. The crystal structure of $K_6(SeO_4)(SeO_5)$ is built up from SeO₄ tetrahedra and SeO₅ trigonal bipyramids. This is the second example after Li₄SeO₅ that the selenium shows a trigonal bipyramid as the coordination polyhedron. The structure

5 Abstract

can be described by a motive of cubic closest packing of the anions with all tetrahedral and octahedral voids occupied by potassium. A similar structural configuration is found in the compound $Rb_6(TeO_4)(TeO_5)$, which crystallizes in the monoclinic space group C2/c. If the empirical formula $K_6Se_2O_9$ is halved and reduced to only the K and Se positions, then it belongs to the large family of the inorganic A₃B-structure-types, for which Li₃Bi represents the aristotype.

Arsen(III,V)oxosäure H₆As₁₄O₃₁

During high-pressure experiments with As_2O_5 at pressures between p = 6 - 8 GPa and temperatures T = 500 -580 °C a mixed-valent arsenic(III, V)oxoacid was obtained. The structure of the $H_6As^{III}_7As^V _7O_{31}$ was solved from high resolution synchrotron powder diffraction measurements. It crystallizes in the space group P6₃ (No. 173), a = 1204,56(1) pm, c = 473,43(0) and $V = 594,90(1) \cdot 10^6$ pm³. The structure is a three-dimensional network built from the well-known AsO₄ tetrahedra for As⁵⁺ and AsO₃*E* tetrahedra for As³⁺. But it contains also a new coordination polyhedron for the As⁵⁺-cation, namely AsO₅ square pyramids. The AsO₅ square pyramids are connected together by common corners and form infinite zigzag-chains along the *c*-axis. These chains are interconnected by the AsO₄ and AsO₃*E* units. The structure of H₆As₁₄O₃₁ also contains apparently empty channels, which run parallel to the *c*-axis through the structure. Because of the high quality of the synchrotron powder diffraction it was possible to locate the H-atoms within the channels. There the H-atoms form octahedra construct, which fill out the channels.

Palladium(II)metaarsenat PdAs₂O₆

The compound PdAs₂O₆ was synthesized through the solid state reaction of PdO and As₂O₅ under vacuum at 700 °CThe compound crystallizes in the space group *P*-31*m* (no. 162) with *a* = 481,96(1) pm, *c* = 466,46(1) pm and *V* = 93,84(1)·10⁶ pm³. The PdAs₂O₆ is a member of the lead(ii)antimonate PbSb₂O₆ structure-type. The structure consists of edge-sharing AsO₆ octahedra, which built up honeycomb-layers. One third of the resulting octahedral voids between the honeycomb-layers is occupied with Pd²⁺-cations. These occupied octahedral voids are above or beneath the void in the honeycomb-layers. In octahedral coordination, the Pd²⁺-cation exhibits $t_{2g}^{6}e_{g}^{2}$ as the electronic configuration. Therewith is in good agreement, that PdAs₂O₆ (in high temperatures) shows paramagnetic behavior and it exhibits at a temperature of T \approx 150 K magnetic ordering. Such a behavior at similar ordering temperatures was previously known only for the Pd(II)fluorides. For the determination of the magnetic structure, neutron diffraction measurements were

carried out. The magnetic structure (*P*-1 (no. 2), a,b = 482,13(1) pm, c = 931,97(0) pm and $V = 187,61(0)\cdot10^6$ pm³) possesses two crystallographically independent Pd positions at (0,0,0) and (0,0, 1/2). All magnetic moments are aligned inside one layer respectively in direction [100] or [-100]. This results in a simple antiferromagnetic arrangement of the magnetic moments for the Pd²⁺-cations.

Literaturverzeichnis

- [1] A. Neuhaus, *Chimia* **1964**, *19*, 93–103.
- [2] Solid State Chem. Proceed of the fifth Materials Research Symposium, Vol. 364. NBS Sec. Publ., 1972.
- [3] J. Galy G. Meunier S. Anderson, A. Åström, J. Solid State Chem. 1973, 6, 187.
- [4] S. Anderson A. Åström J. Galy, G. Meunier, J. Solid State Chem. 1973, 13, 142– 159.
- [5] J. Galy B. Darriet, Acta Crystallogr. B 1977, 33, 1489–1492.
- [6] M. S. Wickleder, Chem. Rev. 2002, 102, 2011–2087.
- [7] J. Galy J. C. Trombe P. Millet, L. Sabadié, J. Solid State Chem. 2003, 173, 49–53.
- [8] B. Provost Raveau J. Leclaire, J. Chardon, J. Solid State Chem. 2002, 163, 308–312.
- [9] E. Suard M. Drache P. Conflant S. Obbade, M. Huve, J Solid State Chem. 2002, 168, 91–99.
- [10] K. W. Törnroos M. Johnsson, Solid State Sci. 2003, 5, 263–266.
- [11] B. Frit J. P. Laval, L. Guillet, Solid State Sci. 2002, 4, 549–556.
- [12] S. A. Potachev V. T. Avanesyan, V. A. Bordovski, J. Non-Cryst. Solids 2002, 305, 136–139.
- [13] S. Amelinckx V. Kahlenberg H. Böhm L. Nistor, G. Van Tendeloo, J. Solid State Chem. 1995, 119, 281–288.
- [14] P. Thomas A. Mirgorodsky T. Merle-Méjean B. Frit J. C. Champarnaud-Mesjard, S. Blanchandin, J. Phys. Chem. Solids 2000, 61, 1499–1507.
- [15] M. Pinot J.-M. Kiat, P. Garnier, J. Solid State Chem. 1991, 91, 339–349.
- [16] G. Calvarin M. Pinot J.-M. Kiat, P. Garnier, J. Solid State Chem. 1993, 103, 490– 503.
- [17] M. Kikuchi H. Chiba Y. Syono T. Atou, H. Faqir, *Mater. Res. Bull.* 1998, 33, 289–292.

- [18] M. Hanfland M. Jansen R. E. Dinnebier, S. Carlson, Am. Mineral. 2003, 88, 996– 1002.
- [19] J. C. Jamieson, Science 1963, 139, 1291.
- [20] H. Iwasaki T. Kikegawa, Acta. Crystallogr. B 1983, 39, 158.
- [21] H. Kawamura Y. Akahama, M. Kobayashi, Phys. Rev. B 1993, 48, 6862.
- [22] H. Kawamura Y. Akahama, M. Kobayashi, Phys. Rev. B 1993, 47, 20.
- [23] S. Carlson J. Haines J.-M. Leger U. Häussermann, P. Berastegui, Angew. Chem. Int. Ed. 2001, 40, 4624.
- [24] H. Beck D. Becker, Z. Kristallogr. 2004, 219, 348.
- [25] I. Loa K. Syassen M. Hanfland und Y.-L. Mathis X. Wang, F. Zhang, *Phys. Status Solidi B* 2004, 241, 3168.
- [26] W. Johannes, N. Jb. Miner. MH 1973, 7-8, 337.
- [27] A. van Valkenburg E. N. Bunting C. E. Weir, E. R. Lippincott, J. Res. Nat. Bur. Stand. A 1959, 63, 55.
- [28] P. M. Bell H. K. Mao, Science 1978, 200, 1145.
- [29] J. D. Barnett G. J. Piermarini, S. Block, J. Appl. Phys. 1973, 44, 5377.
- [30] L. H. Jones R. L. Mills L. A. Schwalbe D. Schiferl R. LeSar, S. A. Ekberg, Solid State Comm. 1979, 32, 131.
- [31] J. C. Bronson L. C. Schmidt R. L. Mills, D. H. Liebenberg, *Rev. Sci. Instrum.* 1980, 51, 891.
- [32] J. D. Barnett S. Block R. A. Forman, G. J. Piermarini, Science 1972, 176, 284.
- [33] J. D. Barnett R. A. Forman G. J. Piermarini, S. Block, J. Appl. Phys. 1975, 46, 2774.
- [34] Software-paket STOE WinXPOW, Firma Stoe & Cie GmbH, Darmstadt, Deutschland. **1999**.
- [35] JCDPS-ICDD, USA, PCPDFWIN 1.22; www.icdd.com.,.
- [36] Aida 4.06, raytest GmbH, Straubenhardt, Deutschland. 2005.

- [37] M. Hanfland A. N. Fitch D. Häusermann A. P. Hammersley, S. O. Svensson, *High Pressure Res.* 1996, 14, 235–248.
- [38] H. M. Rietveld, Acta Crystallogr. 1967, 22, 151.
- [39] H. M. Rietveld, J. appl. Crystallogr. 1969, 2, 65.
- [40] J. L. Fourquet A. LeBail, H. Duroy, Mat. Res. Bull. 1988, 23, 447.
- [41] G. S. Pawley, J. Appl. Crystallogr. 1981, 14, 357.
- [42] J. Rodríguez-Carvajal, *Commission on Powder Diffraction Newsletter* **2001**, *26*, 12–19.
- [43] R. B. Von Dreele C. Larson Los Alamos National Labratory Report LAUR 86-748, , 2000.
- [44] B. H. Toby, J. Appl. Crystallogr. 2001, 34, 210–221.
- [45] Diamond Visual Crystal Structure Information System, Version 3.1a, Crystal Impact GbR, Bonn. K. Brandenburg 1997-2005.
- [46] H. Lueken, Magnetochemie, B. G. Teubner, Stuttgart, Leipzig 1999.
- [47] J. D. McCullough, J. Am. Chem. Soc. 1937, 59, 789–794.
- [48] J. Galy K. Ståhl, J. P. Legros, Z. Kristallogr. 1992, 202, 99–107.
- [49] R. Lauck K. Syassen I. Loa P. Bouvier A. Grzechnik, L. Farina, J. Solid State Chem. 2002, 168, 184–191.
- [50] C. B. Alcook V. P. Itkin, J. Phase Equil. 1996, 17, 533–538.
- [51] V. V. Pechkovskii V. N. Makatun, Russ. J. Phys. Chem. 1970, 44, 1522.
- [52] Endeavour, Version 1.4, Crystal Impact GbR, Bonn. H. Putz K. Brandenburg 2000-2006.
- [53] R. Hoppe, Z. Kristallogr. 1979, 150, 23-52.
- [54] R. Hoppe, Angew. Chem. 1970, 82, 7.
- [55] R. Hoppe, Angew. Chem. Int. Ed. Engl. 1970, 9, 25.
- [56] W. Smith A. Anderson, A. Sanders, J. Raman Spectrosc. 2000, 31, 403–406.
- [57] R. M. Bozorth, J. Am. Chem Soc. 1923, 45, 1621.

- [58] C. Svensson, Acta Crystallogr. B 1975, 31, 2016.
- [59] C. Svensson, Acta Crystallogr. B 1974, 30, 458.
- [60] H. Manohar P. S. Gopalakrishnan, J. Solid State Chem. 1975, 15, 61.
- [61] R. Roy W. B. White, F. Dachille, Z. Kristallogr. 1967, 125, 450.
- [62] F. Fenwick J. Roberts, J. Am. Chem. Soc. 1928, 50, 2125.
- [63] S. B. Hendricks M. J. Burger, J. Chem. Phys. 1937, 5, 600.
- [64] H. Debray, J. Prakt. Chem. 1866, 98, 151.
- [65] S. Andersson M. O'Keeffe, Acta Crystallogr. A 1977, 33, 914.
- [66] H. Pätzold und H. Strunz W. Gründer, Neues Jahrb. Min. 1962, 5, 93.
- [67] K. Dihlström, Z. Anorg. Allg. Chem. 1938, 239, 57.
- [68] A. C. Skapski D. Rogers, Proc. Chem. Soc. 1964, 400-401.
- [69] G. Thornton, Acta Crystallogr. B 1977, 33, 1271–1273.
- [70] M. A. Monge I. Rasines C. Ruiz Valero J. Amador, E. Gutierrez Puebla, *Inorg. Chem.* 1988, 27, 1367–1370.
- [71] L. Zefiro A. Palenzona R. Basso, G. Lucchetti, Eur. J. Mineral. 1999, 11, 95–100.
- [72] J. F. Brazdil M. Mehicic R. K. Grasselli R. G. Teller, M. R. Antonio, *Inorg. Chem.* 1985, 24, 3370–3375.
- [73] F. D. Murnaghan, Am. J. Math. 1937, 59, 235–260.
- [74] Eos-fit v.5.2, www-freeware. R. J. Angel 2001-2003.
- [75] Nonlinear least squares regression (curve fitter). John C. Pezzullo 2005.
- [76] J. R. Smith J. H. Rose P. Vinet, J. Ferrante, J. Phys. C: Solid State Phys. 1986, 19, L467–L473.
- [77] T. Kikegawa O. Shimomura K. Kusaba, Y. Syono, J. Phys. Chem. Solids 1998, 59, 945.
- [78] P. Rajiv M. Hanfland A. Grzechnik M. Jansen B. Hinrichsen, R. E. Dinnebier, J. Phys.: Condens. Matter 2006, 18, S1021.
- [79] A. C. Skapski E. T. Keve, J. Solid State Chem. 1973, 8, 159–165.

- [80] U. Croatto, Gazz. Chim. Ital. 1944, 74, 20.
- [81] R. Fricke F. Hund, Z. anorg. Allg. Chem. 1949, 258, 198.
- [82] J. E. Castle E. L. Muetterties, J. Inorg. Nucl. Chem. 1961, 18, 148.
- [83] B. Aurivillius, Acta Chem. Scand. 1955, 9, 1206.
- [84] N. Norman A. K. Cheetham, Acta Chem. Scand. A 1974, 28, 55.
- [85] M. Martinez-Ripoll O. Greis, Z. Anorg. Allg. Chem. 1977, 436, 105.
- [86] W. A. McCollum A. J. Darnell, J. Phys. Chem. 1968, 72, 1327.
- [87] F. V. Kalinchenko A. V. Novoselova E. I. Ardashnikova, M. P. Borzenkova, Zh. Neorg. Khimii 1981, 26, 1727.
- [88] R. D. Shannon, Acta Crystallogr. A 1976, 32, 751.
- [89] T. Bergman, De Arsenico. Altenburg 1777 (nach Gmelins Handbuch der anorganischen Chemie, 8. Aufl., System-Nr. 17. Verlag Chemie, Weinheim 1952).
- [90] M. Jansen, Angew. Chem. 1977, 89, 326.
- [91] M. Jansen, Angew. Chem. Int. Ed. Engl. 1977, 16, 314.
- [92] M. Jansen, Z. Anorg. Allg. Chem. 1978, 441, 5.
- [93] M. Jansen, Z. Naturforsch. B 1979, 34, 10.
- [94] M. Jansen S. Dreher U. Bismayer, E. Salje, J. Phys. C 1986, 19, 4537.
- [95] M. Jansen S. Dreher U. Bismayer, E. Salje, Z. Krsitallogr. 1986, 174, 18.
- [96] E. Salje S. A. T. Redfern, J. Phys. C 1988, 21, 277.
- [97] S. A. T. Redfern W. W. Schmahl, J. Phys. C 1988, 21, 3719.
- [98] A. Garcia J. A. Valgoma, J. M. Perez-Mato, *Ferroelectrics* 2000, 237, 377.
- [99] G. Brauer, Handbuch der pr\u00e4parativen anorganischen Chemie, Band 2, Ferdinand Enke Verlag, Stuttgart 1978.
- [100] J. Galy R. Enjalbert, Acta Crystallogr. C 1986, 42, 1467.
- [101] J. P. Doumerc M. Pouchard P. Hagenmuller J. M. Cocciantelli, P. Gravereau, J. Solid State Chem. 1991, 93, 497.

- [102] P.-E. Werner I. P. Zibrov V. P. Filonenko, M. Sundberg, Acta Crystallogr. B 2004, 60, 375.
- [103] I. P. Zibrov V. P. Filonenko, Inorg. Mater. 2001, 37, 953.
- [104] M. Jansen, Angew. Chem. 1978, 90, 141.
- [105] M. Jansen, Acta Crystallogr. B 1979, 35, 539.
- [106] T. S. Ecrit, *Mineralogy and Petrology* **1991**, *43*, 217.
- [107] M. Sundberg P.-E. Werner I. P. Zibrov, V. P. Filonenko, Acta Crystallogr. B 2000, 56, 659.
- [108] A. Grzechnik, Chem. Mater. 1998, 10, 2505.
- [109] C. Roeti M. Causa-N. M. Harrison R. Orlando C. M. Zizovich-Wilson V. R. Saunders, R. Dovesi University of Torino, Italy, , 2003.
- [110] M. Jansen Z. Cancarevic, J. C. Schön, Mat. Sci. Forum 2004, 453, 71.
- [111] M. Jansen J. C. Schön, Z. Cancarevic, Chem. Phys. 2004, 121, 2289.
- [112] A. Hannemann M. Jansen R. Hundt, J. C. Schön, J. Appl. Crystallogr. 1999, 32, 413.
- [113] J. C. Schön M. Jansen A. Hannemann, R. Hundt, J. Appl. Crystallogr. 1998, 31, 922.
- [114] P. Alemany E. Ruiz, M. Llunell, J. Solid State Chem. 2003, 176, 400.
- [115] C. Freyria-Fava M. Prencipe-V. R. Saunders R. Dovesi, C. Roetti, *Chem. Phys.* 1991, 156, 11.
- [116] W. Arakawa T. Suzuki, S. Saito, J. Non-Cryst. Solids 1977, 24, 355.
- [117] Y. Syono-T. Kikegawa K. Kusaba, E. Ohshima, J. Cryst. Growth 2001, 229, 467.
- [118] H.G. Drickamer S. Minomura, J. Appl. Phys. 1963, 34, 3043.
- [119] A. S. Fedyukov-Y. G. Zainulin V. L. Volkov, B. G. Golovkin, *Inorg. Mater.* 1988, 24, 1568.
- [120] U. Schwarz K. Syassen M. Hanfland R. Kremer I. Loa, A. Grzechnik, J. Alloys Compd. 2001, 317-318, 103.
- [121] W. Morawietz E. Zintl, Z. Anorg. Allg. Chem. 1938, 226, 372.

- [122] M. Jansen, Angew. Chem. 1976, 88, 410.
- [123] M. Jansen, Angew. Chem. Int. Ed. Engl. 1976, 15, 376.
- [124] M. Jansen, Z. Anorg. Allg. Chem. 1977, 435, 13.
- [125] M. Jansen, Angew. Chem. 1977, 89, 567.
- [126] M. Jansen, Angew. Chem. Int. Ed. Engl. 1977, 16, 534.
- [127] B. Wolf M. Jansen, Z. anorg. Allg. Chem. 1983, 497, 65.
- [128] B. Wolf M. Jansen, Z. Anorg. Allg. Chem. 1983, 502, 153.
- [129] M. Jansen, Angew. Chem. 1979, 91, 762.
- [130] M. Jansen, Angew. Chem. Int. Ed. Engl. 1979, 18, 698.
- [131] M. Jansen, Z. Anorg. Allg. Chem. 1982, 491, 175.
- [132] M. Jansen T. Bremm, Z. Naturforsch. B 1991, 46, 1031.
- [133] M. Jansen T. Bremm, Z. anorg. Allg. Chem. 1992, 608, 49.
- [134] M. Jansen T. Bremm, Z. anorg. Allg. Chem. 1992, 608, 56.
- [135] M. Jansen J. Arlt, Z. Naturforsch. B 1990, 45, 943.
- [136] M. Jansen B. Albert, J. Arlt, Z. Anorg. Allg. Chem. 1992, 607, 13.
- [137] M. Jansen H. Haas, Angew. Chem. 1999, 111, 2033.
- [138] M. Jansen H. Haas, Angew. Chem. Int. Ed. 1999, 38, 1910.
- [139] M. Jansen H. Haas, Z. Anorg. Allg. Chem. 2000, 626, 1174.
- [140] M. Jansen H. Haas, Angew. Chem. 2000, 112, 4533.
- [141] M. Jansen H. Haas, Angew. Chem. Int. Ed. 2000, 39, 4362.
- [142] M. Jansen H. Haas, Z. Anorg. allg. Chem. 2001, 627, 755.
- [143] M. Jansen H. Haas, Z. Anorg. allg. Chem. 2001, 627, 1313.
- [144] M. Jansen H. Putz, J. C. Schön, J. Appl. Crystallogr. 1999, 32, 864.
- [145] D. W. J. Cruickshank A. Kalman, J. S. Stephens, Acta Crystallogr. B 1970, 26, 436.

- [146] D. W. J. Cruickshank A. Kalman, J. S. Stephens, Acta Crystallogr. B 1970, 26, 1451.
- [147] P. Hartmann, Z. Kristallogr. 1989, 187, 139.
- [148] Y. Shiozaki I. Takahashi, A. Onodera, Acta Crystallogr. C 1987, 43, 179.
- [149] A. arnaiz F. J. Zuniga, T. Breczewski, Acta crystaollgr. C 1991, 47, 638.
- [150] G. Brauer E. Zintl, Zeitschrift für Elektrochemie 1935, 41, 297.
- [151] M. Jansen D. M. Wienich, Z. Anorg. Allg. Chem. 1980, 461, 101.
- [152] S. Z. Sasvari S. V. Naray-Szabo, Z. Kristallogr. 1938, 99, 27.
- [153] H. Schilder H. Lueken M. Jansen K. M. Mogare, W. Klein, Z. Anorg. Allg. Chem. 2006, in press.
- [154] R. Hoppe T. Wisser, Z. Anorg. Allg. Chem. 1990, 584, 105.
- [155] J. V. Tillack F. Kuhnen H. Wöhrle H. Baumann H. Schäfer, H. G. von Schnering, Z. Anorg. Allg. Chem. 1967, 353, 281.
- [156] K. Peters H.G. von Schnering, W.Mmay, Z. Kristallogr. 1993, 208, 368.
- [157] A. J. Edwards, J. Chem. Soc. 1964, 3714.
- [158] E. Thilo K. H. Jost, H. Worzala, Acta Crystallogr. 1966, 21, 808.
- [159] H. Worzala, Acta Crystallogr. B 1968, 24, 987.
- [160] P. G. Jones E. Schwarzmann G. M. Sheldrick D. Bodenstein, A. Brehm, Z. Naturforsch. B 1982, 37, 138.
- [161] L. Finger R. E. Dinnebier, Z. Kristallogr. Supplement 1998, 15, 148.
- [162] N. Shankland W. I. F. David, K. Shankland, Chem. Commun. 1998, 8, 931.
- [163] R. Hoppe J. Koehler, A. Simon, Z. Anorg. allg. Chem. 1989, 575, 55.
- [164] K. Seppelt S. Haupt, Z. Anorg. Allg. Chem. 2002, 628, 729.
- [165] F. Pertlik, Monatsh. Chem. 1978, 110, 387.
- [166] G. M. Sheldrick E. Schwarzmann P. G. Jones, W. Beesk, Acta Crystallogr. B 1982, 36, 439.
- [167] R. Maiitlando N. Bartlett, Acta Crystallogr. 1958, 11, 747–748.

- [168] R. Hoppe D. Paus, Z. Anorg. Allg. Chem. 1977, 431, 207–216.
- [169] B. G. Müller, Naturwissenschaften 1979, 66, 519.
- [170] B. G. Müller, J. Fluorine Chem. 1982, 20, 291.
- [171] W. X. Li Z. M. Fu, Sci. China A 1996, 39, 981.
- [172] J. E. Greeden A. M. Nakua, J. Solid State Chem. 1995, 118, 402.
- [173] F. J. Ramírez S. Bruque E. R. Losilla, M. A. G. Aranda, J. Phys. Chem. 1995, 99, 12975.
- [174] M. Weil, Z. Naturforsch. B 2000, 55, 699.
- [175] M. Weil, Acta Crystallogr. E 2001, 57, i22.
- [176] A. Magneli, Ark. Chem. Min. Geol. B 1941, 15, 1.
- [177] J. A. A. Ketelaar, Z. Kristallogr. 1935, 90, 237.
- [178] S. I. Troyanov, Zhurnal Neorganicheskoi Khimii 1992, 37, 266.
- [179] H. Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie, Gr. II, Bd. 2, Springer, Berlin **1966**.

A.1 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für β -SeO₂

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
1	0	0	17,486	5,0722	-0,002	0,269	0,150	0,00
0	1	0	19,860	4,4704	2553,092	2422,242	0,135	20,07
0	1	1	23,134	3,8441	2278,838	2186,826	0,131	28,21
0	0	2	23,624	3,7655	9795,122	8939,681	0,131	58,93
1	1	0	26,572	3,3537	2688,909	2631,909	0,122	27,18
1	1	1	29,139	3,0637	5797,605	6133,916	0,122	100,00
1	0	2	29,536	3,0234	7480,519	7082,259	0,122	64,76
0	1	2	31,043	2,8799	2710,299	2528,245	0,118	22,14
2	0	0	35,379	2,5361	10224,873	11136,906	0,118	34,09
1	1	2	35.841	2,5044	1779,903	1820.328	0.118	23.68
0	2	0	40,333	2,2352	4496,827	4138,758	0,118	13,06
2	1	0	40,892	2,2059	206,714	277,489	0,118	0,98
0	1	3	41,225	2,1888	2226,518	2541,850	0,118	11,55
0	2	1	42,152	2,1428	551,799	569,523	0,122	2,68
2	1	1	42,692	2,1169	2629,309	2458,624	0,122	28,78
2	0	2	42,978	2,1035	4475,648	4360,396	0,122	23,52
1	2	0	44,261	2,0454	1594,103	1613,356	0,122	7,87
1	1	3	45,090	2,0097	1178,510	1170,406	0,122	11,68
1	2	1	45,954	1,9739	3027,244	2973,235	0,122	29,62
0	2	2	47,267	1,9221	1585,311	1546,833	0,122	7,28
2	1	2	47,761	1,9033	448,369	483,216	0,122	3,90
0	0	4	48,316	1,8827	235,309	102,847	0,122	0,58
1	2	2	50,769	1,7973	2436,899	2535,277	0,122	21,05
1	0	4	51,765	1,7651	8953,494	9617,821	0,122	37,63
0	1	4	52,726	1.7351	2061,443	1910.871	0.126	8.72
3	0	0	54,221	1,6907	148,251	0,246	0,126	0,32
2	2	0	54,707	1,6769	2092,786	1958,140	0,126	8,32
0	2	3	54,974	1,6693	1033,925	1061,197	0,131	3,91
2	1	3	55,418	1,6570	4833,269	5016,184	0,131	37,54
1	1	4	55,979	1,6417	719,836	797,836	0,131	5,43
2	2	1	56,163	1,6368	2629,293	2668,444	0,131	20,40
1	2	3	58,142	1,5857	1771,156	1894,300	0,131	13,00
3	1	0	58,314	1,5814	1465,404	1285,481	0,131	5,50
3	1	1	59,713	1,5477	3941,371	3710,131	0,131	28,17
3	0	2	59,937	1,5424	3840,631	3732,444	0,131	13,81
2	2	2	60,393	1,5318	1625,000	1681,848	0,131	11,49
2	0	4	61,283	1,5117	653,437	573,090	0,131	2,52
0	3	0	62,268	1,4901	1644,617	1171,905	0,131	2,94
0	3	1	63,615	1,4618	5298,416	4820,836	0,131	18,04
3	1	2	63,797	1,4580	1150,543	1005,802	0,131	7,85
0	2	4	64,694	1,4400	1287,535	1320,518	0,140	4,18
2	1	4	65,096	1,4320	813,397	739,247	0,140	5,35
1	3	0	65,216	1,4297	1106,726	1007,621	0,140	3,70
0	1	5	65,337	1,4273	4503,479	4316,068	0,140	14,90
1	3	1	66,530	1,4046	733,930	615,609	0,140	4,75
2	2	3	67,082	1,3944	2482,643	2543,668	0,140	16,31
0	3	2	67,565	1,3856	1347,636	1336,499	0,140	4,43
1	2	4	67,584	1,3852	1623,804	1607,615	0,140	10,41
1	1	5	68,213	1,3740	1112,392	974,153	0,140	7,20
3	2	0	69,690	1,3484	1171,750	1143,721	0,140	3,57
3	1	3	70,310	1,3380	811,808	707,803	0,140	5,05
1	3	2	70,397	1,3366	850,248	795,648	0,140	5,31
3	2	1	70,963	1,3273	1999,146	1861,302	0,140	12,45
2	3	0	73,691	1,2848	215,044	87,910	0,149	0,63
0	3	3	73,919	1,2814	1099,991	825,533	0,149	3,37
3	2	2	74,728	1,2695	1633,438	1585,807	0,149	9,76
4	0	0	74,827	1,2681	10087,380	9068,981	0,149	15,36
2	3	1	74,936	1,2665	4775,588	4464,391	0,149	28,64
3	0	4	75,532	1,2580	6581,782	6075,987	0,149	19,56
0	0	6	75,730	1,2552	4434,262	4047,409	0,149	6,68
2	2	4	75,940	1,2522	1553,913	1491,156	0,149	9,16
0	2	5	76,165	1,2491	1387,421	1313,363	0,149	4,08
2	1	5	76,540	1,2439	3510,511	3614,439	0,149	20,55
1	3	3	76,651	1,2423	4448,468	4339,964	0,149	26,28
4	1	0	78,325	1,2199	882,278	759,763	0,149	2,59
1	0	6	78,442	1.2184	2889 269	2716 014	0 149	8 41

						-2		
<u>h</u>	k	1	20	d [A]	F ₀ ²	F _c ²	FWHM	1100
2	3	2	78,632	1,2159	208,535	191,235	0,149	1,12
1	2	3	70.021	1,2128	572 247	991,755 542,522	0,149	3,07
3	1	4	79,021	1,2109	5/5,54/	545,552 088 218	0,149	3,28
4	1	1	79,210	1,2064	700 505	988,218 704 615	0,149	5,20
4	1	2	79,547	1,2042	2265 877	2801 102	0,158	4,01
4	2	2	79,744 80.864	1,2017	1188 258	1200.067	0,158	9,52
3	2	5	00,004	1,10/9	521 218	1309,907	0,158	0,75
1	2	4	82,500	1,1755	021,318	470,518	0,158	2,94
0	3	4	82,500	1,1084	921,231	1109,602	0,158	2,08
4	1	2	83,185	1,1005	782,008	834,033	0,158	4,49
2	3	3	84,095	1,1457	351,460	574,222	0,158	3,12
1	3	4	85,158	1,1380	342,278	400,147	0,158	1,88
2	0	0 5	80,440	1,1249	1522,985	1649,225	0,168	4,18
2	2	5	80,809	1,1205	1482,207	644 202	0,168	8,54
5	3	0	07,124	1,1176	48 525	52 521	0,108	1,72
3	3	1	88 323	1,1170	48,555	J2,J21 434 713	0,108	2 50
0	4	1	88 254	1,1055	54 247	52 425	0,108	2,50
4	7	0	88 612	1,1035	1416.022	1476 022	0,108	4 11
4	1	2	80,015	1,1029	1410,032	1470,933	0,100	9,11
4	2	3	89,195	1,0972	1060 200	1000,525	0,108	6,55
5	2	4	89,293 80,487	1,0905	1204.072	1079,882	0,108	4.02
1	2 1	0	07,40/ 80 700	1,0944	1374,913	3182,500	0,108	4,05
1	4	1	80 810	1,0914	100 642	J102,319 462 502	0,108	2,34
+ 2	2 1	1 6	80 851	1,0213	706 119	+02,000	0,108	2,05
2	1	5	80 877	1,0909	710,110	671 106	0,108	4,10
1	1	1	00,007	1,0907	54 116	17 172	0,108	4,10
1	4	2	91,997	1,0001	514 350	523 108	0,108	2 98
0	4	2	01.052	1,0717	2651 272	2700 650	0,179	2,90
1	2	6	91,932	1,0714	769.616	2700,030	0,179	1,11
2	2	4	92,130	1,0098	260 505	246 424	0,179	2.05
0	3	5	03 313	1,0012	427 540	3940,424	0,179	1.25
4	2	2	93,515	1,0595	427,540	771 810	0,179	5.02
4	0	4	94 189	1,0505	33 171	26.426	0,179	0.11
1	4	2	94,109	1,0318	2100 378	1969.078	0,179	12 39
0	1	7	94,577	1,0460	720.946	644 761	0,179	2.18
1	3	5	95 964	1,0400	2285 935	2344 092	0,179	13 44
1	1	7	97 529	1,0305	2285,935	2344,092	0,179	13.48
4	1	4	97,609	1,0238	799.087	768 886	0,189	4 96
2	4	0	97,002	1,0227	32 780	32 414	0,189	0.11
3	3	3	97,939	1,0212	2795 989	3005 756	0 189	17.00
0	4	3	97 971	1.0210	59 873	63 875	0 189	0.20
2	4	1	98 962	1.0134	27 483	12 806	0 189	0.19
5	0	0	98 823	1 0144	2 5 5 5	1 286	0,189	0.00
4	2	3	99 445	1,0111	625 770	600,951	0 189	3 74
3	0	6	99.708	1.0078	1790.421	1922.601	0.189	5.50
2	2	6	100.110	1.0048	983.977	965.673	0.189	6.12
3	2	5	100.137	1.0046	764.064	738.624	0.189	4.66
1	4	3	100.649	1,0009	6.925	3,715	0.189	0.05
5	1	0	102.284	0,9893	696.386	611.653	0,200	2.27
2	4	2	102.624	0,9869	1343.329	1314.995	0,200	8.43
3	1	6	103.180	0,9831	332.022	343.281	0,200	2.08
5	1	1	103,514	0,9809	2025,059	1797,208	0,200	13,10
5	0	2	103.714	0,9795	1962.908	1834.418	0,200	6.44
2	3	5	104,021	0,9775	450,201	447,702	0,200	2.95
0	2	7	105,250	0,9694	1174,502	1090,778	0,211	3.99
2	1	7	105,628	0,9670	161,219	139,168	0,211	1,02
4	3	0	105,824	0,9657	544,843	516,060	0,211	1,88
3	3	4	106,534	0,9612	272,045	282,499	0,211	1,81
0	4	4	106,566	0,9610	3160,981	3314,576	0,211	10,66
0	3	6	106,734	0,9600	520,626	575,451	0,211	1,81
4	3	1	107,074	0,9579	2234,075	2302,680	0,211	15,30
5	1	2	107,245	0,9568	502,480	502,197	0,211	3,48
1	2	7	108,008	0,9522	641,494	651,203	0,211	4,37
4	2	4	108,092	0,9517	661,573	684,651	0,211	4,50
4	1	5	108,706	0,9480	2135,358	2080,671	0,211	15,11
2	4	3	108,854	0,9471	3,043	3,105	0,211	0,03
1	4	4	109.344	0,9442	38.685	42.015	0.222	0.32
1	3	6	109,515	0,9432	287,697	274,884	0,222	2,02
0	0	8	109,838	0,9414	2730,527	2681,407	0,222	4,85
4	3	2	110,877	0,9354	690,073	593,644	0,222	5,27
3	4	0	111.436	0,9323	2574.538	2305.047	0,222	9.42
1	0	8	112.673	0,9256	35.905	26.181	0,234	0.16
3	4	1	112.730	0,9253	12.347	10.452	0,234	0.10
5	2	0	113,010	0,9238	686,840	591,062	0,234	2,60
0	1	8	113,499	0,9212	383,442	403,976	0,234	1,47
5	1	3	113 644	0 9204	369.961	371 239	0.234	2.86

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
3	2	6	113,962	0,9187	565,741	560,327	0,234	4,31
5	2	1	114,319	0,9169	889,124	857,903	0,234	7,06
1	1	8	116,414	0,9063	383,180	362,519	0,246	3,14
2	2	7	116,584	0,9055	966,548	956,409	0,246	8,09
3	4	2	116,689	0,9050	1462,051	1416,269	0,246	12,08
4	3	3	117,450	0,9013	374,473	404,175	0,246	3,15
2	4	4	118,008	0,8987	2123,818	2165,926	0,246	17,60
2	3	6	118,191	0,8978	356,759	370,077	0,246	3,09
3	3	5	118,221	0,8977	1643,637	1705,293	0,246	13,88
0	4	5	118,256	0,8975	36,993	38,617	0,246	0,17
5	2	2	118,331	0,8972	750,010	786,284	0,246	6,45
0	5	0	118,996	0,8941	337,513	366,715	0,258	0,71
5	0	4	119,218	0,8931	3206,281	3113,911	0,258	14,15
4	0	6	119,438	0,8921	1940,170	1943,380	0,258	8,72
4	2	5	119,923	0,8899	706,809	677,571	0,258	6,31
3	1	7	119,999	0,8895	1681,500	1619,204	0,258	14,96
0	5	1	120,376	0,8878	1434,436	1419,988	0,258	6,41
1	4	5	121,301	0,8838	2,421	2,050	0,258	0,02
2	0	8	121,590	0,8825	2310,465	2423,825	0,258	10,53
1	5	0	122,064	0,8805	568,214	472,191	0,271	2,75
5	1	4	123,196	0,8758	328,867	299,879	0,271	3,17
4	1	6	123,425	0,8748	489,410	488,080	0,271	4,86
1	5	1	123,490	0,8745	261,622	266,162	0,271	2,50
3	4	3	123,624	0,8740	2,602	2,688	0,271	0,03
0	3	7	124,049	0,8723	1681,521	1684,351	0,271	8,25
0	5	2	124,641	0,8699	332,385	322,455	0,284	1,64
0	2	8	125,229	0,8676	474,914	465,540	0,284	2,37
5	2	3	125,392	0,8669	692,932	654,194	0,284	7,09
2	1	8	125,676	0,8658	407,514	405,081	0,284	4,27
1	3	7	127,302	0,8596	423,996	443,246	0,297	4,66
4	3	4	127,402	0,8593	500,297	538,179	0,297	5,58
1	5	2	127,919	0,8574	399,630	410,363	0,297	4,37
1	2	8	128,533	0,8551	767,601	774,544	0,297	8,61

A.2 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für γ -SeO₂

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
0	0	2	11,821	7,4836	19,327	11,761	0,266	0,12
1	0	0	17,479	5,0710	196,298	0,003	0,206	0,58
0	1	0	19,792	4,4832	339,128	292,951	0,195	0,76
0	1	1	20,670	4,2946	3373,925	3463,544	0,195	13,74
1	0	2	21,151	4,1980	25,338	13,897	0,195	0,10
0	1	2	23,113	3,8459	8814,623	8540,261	0,179	29,04
0	0	4	23,764	3,7418	36317,730	36240,010	0,179	56,58
1	1	0	26,521	3,3588	567,332	311,365	0,179	1,47
0	1	3	26,716	3,3346	6892,122	6293,443	0,179	17,23
1	1	1	27,193	3,2773	6152,829	5866,387	0,179	29,57
1	1	2	29,122	3,0643	24195,902	23949,736	0,179	100,00
1	0	4	29,651	3,0109	26563,283	26464,498	0,179	53,75
0	1	4	31,112	2,8727	807,073	330,399	0,179	1,56
1	1	3	32,103	2,7862	4069,071	4077,592	0,179	14,24
2	0	0	35,376	2,5355	43012,720	41919,350	0,179	30,81
1	1	4	35,903	2,4995	170,419	167,337	0,184	0,47
0	0	6	35,977	2,4945	156,048	155,091	0,184	0,11
0	1	5	36,053	2,4895	3892,805	3965,842	0,184	5,49
2	0	2	37,423	2,4014	-0,324	23,202	0,184	0,00
0	2	0	40,202	2,2416	14586,270	13287,628	0,184	8,40
1	0	6	40,262	2,2384	48,408	45,587	0,184	0,06
1	1	5	40,330	2,2347	3400,345	3277,540	0,184	7,66
0	2	1	40,670	2,2169	1535,579	1573,541	0,184	1,60
2	1	0	40,859	2,2070	17,415	17,405	0,184	0,02
2	1	1	41,321	2,1834	386,409	381,134	0,184	0,76
0	1	6	41,392	2,1798	8328,931	8563,802	0,184	8,41
0	2	2	42,048	2,1473	140,182	158,155	0,184	0,12
2	1	2	42,682	2,1169	8975,193	8651,355	0,184	18,66
2	0	4	43,063	2,0990	16433,916	15812,091	0,184	16,25
1	2	0	44,141	2,0502	5807,803	5621,544	0,184	5,36
0	2	3	44,267	2,0447	2009,900	2033,146	0,184	1,77
1	2	1	44,575	2,0312	5840,650	5862,893	0,184	10,95
2	1	3	44,876	2,0183	1361,404	1340,787	0,184	2,39

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
1	1	6	45.247	2.0026	4453,209	4636,357	0.184	8.02
1	2	2	45.858	1.9773	999.386	955.844	0.189	1.79
0	1	- 7	47.052	1 0200	3569 604	3964 586	0.189	3.01
0	2		47,052	1,9299	4900 292	4925 922	0,189	2,01
0	2	4	47,233	1,9229	4809,283	4825,823	0,189	3,91
2	1	4	47,813	1,9010	30,707	30,489	0,189	0,05
1	2	3	47,937	1,8963	2454,776	2409,353	0,189	4,03
0	0	8	48,630	1,8709	1074,433	517,532	0,189	0,46
1	1	7	50,566	1.8037	1815.738	1618.451	0.189	2.69
1	2	4	50 738	1 7980	8521 203	8178 810	0.189	12.58
1	2	-	50,758	1,7980	710.000	700.264	0,189	12,50
0	2	5	50,851	1,7943	/19,960	/00,264	0,189	0,49
2	0	6	51,344	1,7782	9,636	9,296	0,189	0,01
2	1	5	51,400	1,7764	970,242	911,286	0,189	1,36
1	0	8	52,065	1,7553	33163,582	32784,270	0,194	23,27
0	1	8	52,996	1,7266	285,657	189,287	0,194	0,20
1	2	5	54 184	1 6915	5876 865	5741 511	0.200	7 67
2	0	0	54 224	1,6003	5 360	5 275	0,200	0.00
2	2	0	54,007	1,0703	5704 (20	5205 162	0,200	2,00
2	2	0	54,607	1,6794	5704,630	5395,162	0,200	3,67
2	2	1	54,979	1,6689	4597,377	4536,524	0,200	5,91
0	2	6	55,036	1,6673	200,594	200,306	0,200	0,12
2	1	6	55,556	1.6529	17125.252	17004.111	0.200	21.39
3	0	2	55 707	1 6488	0.366	0.363	0.200	0.00
'n	n	2	56 092	1 6204	1201 104	1220 622	0,200	1 4 1
4	2	2	50,085	1,0380	1201,100	1229,032	0,200	1,01
1	1	8	56,240	1,6344	92,771	79,780	0,200	0,11
2	2	3	57,893	1,5916	5443,575	5340,090	0,200	6,37
1	2	6	58,203	1,5839	558,899	559,389	0,200	0,64
3	1	0	58,293	1,5817	155,595	158,174	0,200	0,09
3	1	1	58.649	1.5729	2827.001	2701.180	0.200	3 25
0	1	0	59 215	1 5502	3256 486	3771 864	0.200	1 86
2	1	2	50 710	1,5372	12100.000	12641 415	0,200	14.47
3	1	2	59,/10	1,54/5	13199,069	12041,415	0,205	14,47
0	2	7	59,722	1,5472	2330,522	2231,312	0,205	1,27
3	0	4	60,010	1,5405	13402,674	12879,815	0,205	7,38
2	1	7	60,216	1,5357	1620,130	1653,348	0,211	1,72
2	2	4	60.369	1.5322	5275.873	5502.701	0.211	5.70
3	1	3	61.452	1 5077	1964 527	1044 587	0.211	2 10
2	0	5	61,452	1,5077	2161.074	2274 (01	0,211	1.25
2	0	8	61,555	1,5054	2161,074	22/4,091	0,211	1,25
0	0	10	61,952	1,4967	275,948	313,560	0,211	0,08
0	3	0	62,060	1,4944	764,034	827,237	0,211	0,21
1	1	9	62,247	1,4904	668,740	686,899	0,211	0,67
0	3	1	62,403	1,4870	1316,235	1349,179	0,211	0,67
1	2	7	62 739	1 4798	2277 605	2338 354	0.211	2 31
0	2	2	63 426	1,1756	14402 552	14702 105	0.211	7 22
0	5	2	03,420	1,4055	14403,332	14792,103	0,211	7,25
2	2	5	63,465	1,4646	28/3,329	2980,440	0,211	2,95
3	1	4	63,844	1,4569	71,429	64,549	0,211	0,07
0	2	8	64,866	1,4363	4306,934	4534,603	0,211	2,04
1	0	10	64,909	1,4355	17,108	17,936	0,211	0,01
1	3	0	65 014	1 4334	792 735	831 435	0.211	0.39
0	3	2	65 110	1 4315	5111 847	5382 231	0.211	2 51
2	5	ر د	65,007	1,4071	100 112	105.025	0,211	2,31
2	1	8	03,337	1,4271	190,113	195,026	0,211	0,19
1	3	1	65,348	1,4269	1812,648	1853,310	0,211	1,73
0	1	10	65,722	1,4197	13039,127	14611,605	0,211	6,14
1	3	2	66,346	1,4078	1788,173	1775,931	0,222	1,65
3	0	6	66.802	1.3993	10.456	10.409	0.222	0.01
3	1	5	66 850	1 3085	1814 632	1798 100	0.222	1 69
2	2	<i>,</i>	67 1 4 1	1 2021	750.002	715 700	0,222	1,00
2	2	0	0/,141	1,3931	/58,862	/15,/00	0,222	0,72
0	3	4	67,431	1,3878	1079,443	902,597	0,222	0,51
1	2	8	67,754	1,3820	4437,064	4478,580	0,222	4,03
1	3	3	67,993	1,3777	349,985	357,276	0,222	0,32
1	1	10	68,592	1,3671	2183,892	2392,494	0,222	1.95
3	2	0	69 608	1 3496	3840 365	3525 892	0 222	1.64
2	2 2	1	60.022	1 2440	3175 741	3009 412	0,222	1,04 0 70
5	2	1	09,932	1,5442	51/5,/01	3098,013	0,222	2,78
1	3	4	/0,267	1,3386	428,798	430,170	0,222	0,37
0	3	5	70,360	1,3370	383,762	380,877	0,222	0,17
3	1	6	70,436	1,3358	2704,532	2649,074	0,222	2,33
0	2	9	70,447	1,3356	1848,917	1807,449	0,222	0,77
3	2	2	70 898	1 3282	501.096	527 568	0 222	0.43
2	1	6	70,000	1 2202	1472.002	1540.000	0,222	1.05
2	1	9	70,900	1,3282	14/2,002	1346,090	0,222	1,25
2	2	7	71,361	1,3207	3303,341	3375,893	0,222	2,85
3	2	3	72,497	1,3028	1309,019	1284,168	0,234	1,09
0	1	11	72,547	1,3020	1587,878	1582,326	0,234	0,67
1	3	5	73,144	1,2929	3011.313	2986.931	0.234	2.48
1	2	0	73 230	1 2016	2228 696	2243 000	0.234	1 80
2	~	10	72 404	1,2210	41 047	2275,220	0,234	1,00
2	0	10	/3,404	1,2889	41,94/	39,143	0,234	0,02
2	3	0	73,504	1,2874	3,877	3,645	0,234	0,00
2	3	1	73,820	1,2827	1165,233	1122,112	0,234	0,96
0	3	6	73,869	1,2820	2348,295	2281,694	0,234	0,96
3	1	7	74.574	1.2716	999.780	989.547	0.234	0.80
3	2	, Д	74 711	1 2606	1800 206	4619 255	0.224	2 07
5	2	+	/+,/11	1,2090	+007,200	-1010,233	0,234	2,0/

	h	k	1	2θ	d [Å]	F_{ρ}^2	F_c^2	FWHM	i100
-	2	3	2	74,766	1,2688	12826,128	12070,839	0,234	10,34
	4	0	0	74,836	1,2678	31788,156	29321,828	0,234	6,50
	1	1	11	75,299	1,2611	1583,820	1530,744	0,234	1,25
	3	0	8	75,784	1,2542	20055,828	19009,887	0,234	7,92
	4	2	2	76,090	1,2500	2,890	2,920	0,234	0,00
	0	0	12	76,283	1,2473	12042.009	12205.525	0.234	2.39
	2	3	3	76,333	1,2466	1875,649	1886,998	0,234	1,44
	0	2	10	76,466	1,2448	357,388	353,600	0,234	0,14
	1	3	6	76,603	1,2429	11708,386	11806,049	0,234	9,16
	2	1	10	76,905	1,2387	11452,800	12009,195	0,246	8,87
	3	2	5	77,526	1,2304	3829,772	3463,486	0,246	2,96
	0	3	7	77,938	1,2249	3219,402	2710,864	0,246	1,27
	4	1	0	78,315	1,2199	243,294	170,237	0,246	0,10
	2 4	1	4	78,510	1,2174	1231 235	926 159	0,246	0,05
	1	0	12	78,990	1,2112	8988,775	9198,788	0,246	3,38
	1	2	10	79,171	1,2089	488,152	479,342	0,246	0,37
	3	1	8	79,249	1,2079	65,425	62,970	0,246	0,05
	4	1	2	79,552	1,2040	2452,162	2201,946	0,246	1,86
	0	1	12	79,742	1,2016	115,604	101,176	0,246	0,04
	4	0	4	79,815	1,2007	10837,563	9326,840	0,246	4,11
	1	3	6	80,629	1,1906	822,441	849,664	0,246	0,60
	3	2	3	80,925	1,1870	357,738 1878 463	329,877 1652 981	0,246	0,26
	2	3	5	81,285	1,1830	236.475	220,588	0.246	0.18
	2	2	9	81,368	1,1817	3533,564	3317,990	0,246	2,66
	1	1	12	82,419	1,1693	72,090	58,000	0,258	0,05
	0	3	8	82,558	1,1676	916,449	820,019	0,258	0,35
	0	2	11	82,947	1,1631	1011,521	813,301	0,258	0,37
	4	1	4	83,236	1,1598	127,110	108,799	0,258	0,10
	2	1	11	83,377	1,1582	1145,521	1043,760	0,258	0,84
	3 2	1	9	84,405 84,649	1,1401	495,504	409,448	0,258	0,55
	3	2	7	84,901	1,1413	1541.709	1412,184	0.258	1,59
	1	3	8	85,218	1,1379	175,524	160,164	0,258	0,13
	1	2	11	85,605	1,1337	1544,232	1560,023	0,258	1,07
	4	0	6	85,936	1,1302	90,091	77,899	0,271	0,03
	4	1	5	85,980	1,1297	1279,695	1097,292	0,271	0,94
	0	4	0	86,833	1,1208	4,907	5,412	0,271	0,00
	3	0	10	86,854	1,1206	25,091	27,498	0,271	0,01
	2	0	12	86 989	1,1190	400,587	4507 678	0,271	1.37
	0	4	12	87.137	1,1177	136.305	149.474	0,271	0.05
	2	2	10	87,166	1,1174	481,715	525,050	0,271	0,35
	3	3	1	87,253	1,1165	1059,482	1131,714	0,271	0,74
	0	1	13	87,384	1,1151	1287,074	1357,560	0,271	0,46
	0	3	9	87,738	1,1115	1392,723	1325,766	0,271	0,50
	0	4	2	88,048	1,1084	68,874	67,876	0,271	0,03
	3	2	0	88 544	1,1075	4171 742	3975 803	0,271	1.50
	2	3	7	88.602	1,1029	702.501	665.622	0,271	0.47
	4	2	1	88,848	1,1005	869,430	786,927	0,271	0,58
	4	1	6	89,322	1,0959	4349,605	4106,246	0,271	2,93
	3	2	8	89,461	1,0946	2806,042	2724,240	0,271	1,97
	1	4	0	89,479	1,0944	7206,787	7023,198	0,271	2,48
	0	4	3	89,566	1,0935	1407,478	1385,166	0,271	0,51
	3	3	3	89,682	1,0924	234,261	231,531	0,271	0,17
	1	4	1	89,758	1,0917	1355 353	1356 879	0,271	0.93
	0	2	12	89,946	1,0899	4177,893	4358,977	0,271	1,49
	1	1	13	90,029	1,0891	335,764	350,885	0,284	0,23
	3	1	10	90,238	1,0871	1345,109	1422,441	0,284	0,94
	2	1	12	90,373	1,0859	202,152	224,747	0,284	0,15
	1	3	9	90,383	1,0858	727,122	807,641	0,284	0,50
	1	4	2	90,693	1,0829	111,193	147,242	0,284	0,08
	4	2 4	5 4	91,270	1,0773	4848 446	4913 800	0.284	1 70
	3	3	4	91.807	1.0726	244.642	251.339	0.284	0.17
	0	0	14	92,197	1,0691	53,360	57,069	0,284	0,01
	1	4	3	92,211	1,0690	1060,745	1141,891	0,284	0,74
	1	2	12	92,590	1,0656	1896,328	2287,083	0,284	1,27
	2	3	8	93,157	1,0606	135,493	141,339	0,284	0,09
	4	1	7	93,269	1,0596	1309,434	1319,788	0,284	0,92
	4	2	4	93,402	1,0584	1942,910	1924,411	0,284	1,32
	2	2	11	93,543	1,0572	986.844	1002.476	0,284	0.71
		-	-	,* .*	,	,	,	.,=	.,

129

h	k	1	2θ	d [Å]	F_{o}^{2}	F_c^2	FWHM	i100
1	4	4	94,339	1,0504	4053,370	4432,207	0,297	2,81
0	4	5	94.427	1.0496	1233.670	1348.051	0.297	0.44
4	0	8	94 442	1.0495	118 723	130,667	0.297	0.05
3	3	5	04 543	1,0495	1742 284	1883 687	0.207	1 22
2	2	0	04.625	1,0400	1260 120	1460 724	0,297	0.04
5	2	9	94,023	1,0460	1509,159	1400,724	0,297	0,94
1	0	14	94,846	1,0461	25,265	26,521	0,297	0,01
0	1	14	95,588	1,0399	2021,885	2119,414	0,297	0,72
4	2	5	96,144	1,0354	361,962	370,753	0,297	0,24
1	3	10	96,161	1,0352	5598,935	5731,473	0,297	3,89
3	1	11	96,627	1,0315	972,624	982,046	0,297	0,68
1	4	5	97,084	1,0278	703,569	696,553	0,297	0,50
2	4	0	97,432	1,0251	85,074	80,002	0,311	0,03
0	2	13	97,555	1,0241	2508,261	2420,685	0,311	0,89
2	4	1	97,738	1.0227	36.027	35,374	0.311	0.03
0	4	6	97 785	1.0223	322 488	318 178	0.311	0.12
4	1	8	97,705	1,0225	101 867	100 643	0,311	0.07
+	2	6	07.002	1,0214	7220.852	7246 555	0,311	5.24
3	3	0	97,902	1,0214	/320,852	/246,555	0,311	5,24
2	1	13	97,986	1,0208	855,707	855,450	0,311	0,61
1	1	14	98,252	1,0187	5798,443	5898,164	0,311	4,09
2	3	9	98,344	1,0180	852,855	835,012	0,311	0,61
2	4	2	98,658	1,0156	34,712	27,005	0,311	0,03
5	0	0	98,844	1,0142	7,964	5,871	0,311	0,00
4	2	6	99,514	1,0092	134,900	82,600	0,311	0,10
0	3	11	99,929	1,0061	584,529	470,475	0,311	0,22
5	0	2	100,074	1,0050	3,216	2,846	0,311	0.00
2	4	3	100.196	1.0041	517.589	488.497	0.311	0.37
1	2	13	100 231	1,0039	845 259	799 919	0 311	0.61
3	õ	12	100.265	1 0036	6133 137	5803 202	0 311	2,01
2	2	12	100,205	1,0030	362 266	326 441	0,511	2,22
5	4	10	100,445	1,0023	50,300	330,441	0,311	0,26
1	4	6	100,463	1,0022	52,174	48,094	0,311	0,04
2	2	12	100,581	1,0013	2554,125	2258,116	0,311	1,86
0	4	7	101,790	0,9927	2136,611	2288,827	0,324	0,79
3	3	7	101,908	0,9919	535,558	586,077	0,324	0,38
5	1	0	102,285	0,9892	102,278	104,094	0,324	0,04
2	4	4	102,362	0,9887	2832,239	2840,903	0,324	2,04
5	1	1	102,596	0,9871	1025,775	953,369	0,324	0,76
1	3	11	102.625	0.9869	1447.115	1335,995	0.324	1.06
2	0	14	102 880	0.9851	34 321	31 340	0.324	0.01
4	1	9	103 093	0.9836	1282 649	1228 531	0.324	0.97
5	1	ź	102 521	0,9050	6026.080	5185 616	0.324	4 47
1	2	- 7	102 542	0,9807	1206 564	1024 686	0,324	0.00
4	2	12	103,342	0,9800	52 054	1034,080	0,524	0,90
3	1	12	103,723	0,9794	52,054	45,582	0,324	0,04
5	0	4	103,797	0,9789	5730,792	4801,296	0,324	2,16
2	3	10	104,227	0,9760	837,426	816,178	0,338	0,62
1	4	7	104,505	0,9742	12,010	12,164	0,338	0,01
0	1	15	104,536	0,9740	759,402	771,144	0,338	0,29
5	1	3	105,097	0,9703	748,303	718,367	0,338	0,57
2	4	5	105,175	0,9698	460,692	441,611	0,338	0,34
4	0	10	105,554	0.9674	127.345	121,308	0.338	0.05
4	3	0	105.652	0,9667	273.619	262.539	0.338	0.11
0	2	14	105 932	0.9650	259 463	243 411	0.338	0.10
۵	2	1	105,952	0.06/7	565 221	531 /6/	0,350	0,10
7	1	14	106 277	0.0622	13/ 006	127 004	0,220	0,43
4	1	14	100,377	0,9022	+34,990	427,090	0,338	0,30
0	4	8	106,486	0,9615	00/0,639	6497,917	0,338	2,55
3	3	8	106,606	0,9607	104,112	100,583	0,338	0,08
4	3	2	106,917	0,9588	6114,285	5702,225	0,338	4,74
3	2	11	107,009	0,9582	1087,386	1015,710	0,353	0,82
0	3	12	107,113	0,9576	500,747	467,468	0,353	0,20
1	1	15	107,286	0,9565	920,452	867,211	0,353	0,70
5	1	4	107,309	0,9564	29,476	27,809	0,353	0,02
4	2	8	108,277	0,9505	1825,979	1809,277	0,353	1,39
2	2	13	108.425	0,9496	2528.386	2508,922	0.353	2.01
4	3	3	108 510	0.9491	1989 554	1953 970	0.353	1.60
2	1	6	108 665	0.9/87	30 125	37 670	0 353	0.02
- 1	+	1.4	100,005	0,2402	125 001	100 (77	0,333	0,03
1	2	14	108,702	0,9480	135,081	129,677	0,353	0,10
4	1	10	109,098	0,9456	6219,758	5818,074	0,353	4,95
1	4	8	109,264	0,9446	30,684	27,211	0,353	0,03
1	3	12	109,901	0,9409	148,840	135,074	0,368	0,12
5	0	6	110,147	0,9395	6,558	5,746	0,368	0,00
5	1	5	110,194	0,9393	760,643	682,676	0,368	0,61
4	3	4	110,766	0,9360	281,469	292,780	0,368	0,24
0	0	16	110.865	0.9355	6834.629	6980.428	0,368	1.36
2	3	11	110,005	0.9357	108 015	108 753	0,368	0.00
2	1	0	111 104	0.03/1	4977 855	4682 515	0,360	1 07
2	4	1	111,104	0,9341	4727,000	4062,313	0,208	1,97
2	4	1	111,430	0,9323	948,100	6/4,000	0,568	0,76
3	1	13	111,695	0,9308	245,284	243,525	0,368	0,19
0	4	9	111.952	0.9294	793.295	864,169	0.368	0.32

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
3	3	9	112,077	0,9287	451,773	531,692	0,368	0,36
3	4	2	112,411	0,9269	81,572	105,296	0,375	0,07
2	4	7	112,886	0,9244	835,845	801,399	0,383	0,68
5	2	0	112,948	0,9240	1540,157	1452,177	0,383	0,63
5	2	1	113,278	0,9223	1385,444	1253,495	0,383	1,18
4	3	5	113,717	0,9200	176,251	160,505	0,383	0,16
1	0	16	113,722	0,9199	127,495	115,408	0,383	0,06
5	1	6	113,795	0,9196	1190,055	1066,547	0,383	1,02
4	2	9	113,807	0,9195	833,819	748,960	0,383	0,69
3	4	3	114,063	0,9182	798,401	736,270	0,383	0,68
3	2	12	114,479	0,9160	1486,359	1486,987	0,383	1,24
0	1	16	114,532	0,9157	11,236	11,219	0,383	0,01
5	2	2	114,273	0,9171	212,117	209,294	0,383	0,18
1	4	9	114,833	0,9142	55,420	54,302	0,383	0,05

A.3 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für γ -Sb₂O₃

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
1	1	0	2,239	6,3442	105,201	46,719	0,008	0,11
1	0	1	2,258	6,29124	250,252	93,768	0,008	0,26
2	0	0	2,44	5,82064	2086,551	9,535	0,008	0,93
0	1	1	2,671	5,31848	9328,842	9477,069	0,008	7,01
1	1	1	2,937	4,83753	3996,723	3483,105	0,008	4,97
2	1	0	3,079	4,61351	3532,428	3507,366	0,008	2
2	0	1	3,093	4,59303	191,959	309,086	0,008	0,11
2	1	1	3,619	3,92628	42,721	56,639	0,008	0,04
0	0	2	3,801	3,73859	7220,614	3721,75	0,008	1,34
0	2	0	3,756	3,78328	9054,913	7370,432	0,008	1,72
1	2	0	3,949	3,59804	10006,825	12110,528	0,008	3,48
1	0	2	3,992	3,55953	-21,115	235,028	0,008	0
3	1	0	4,115	3,45284	-6,159	351,365	0,011	0
3	0	1	4,126	3,44423	-1,529	153,947	0,011	0
0	2	1	4,209	3,37576	12731,063	12640,872	0,008	3,88
0	1	2	4,24	3,35178	2639,478	1634,515	0,008	0,79
1	2	1	4,383	3,24219	9522,178	9659,079	0,008	5,35
1	1	2	4,412	3,22093	5694,572	5907,383	0,008	3,15
2	2	0	4,48	3,1721	353086,8	350492,25	0,008	94,81
2	0	2	4,518	3,14562	378450,4	380988,2	0,008	100,01
3	1	1	4,533	3,13475	8424,899	8678,425	0,011	4,41
2	2	1	4,867	2,92018	21184,156	21271,479	0,011	9,63
4	0	0	4,883	2,91032	353438,5	366782,8	0,011	39,99
2	1	2	4,893	2,90462	12679,675	13172,365	0,011	5,7
4	1	0	5,232	2,71632	3139,04	2553,157	0,011	0,62
4	0	1	5,24	2,71212	19,725	14,122	0,011	0
3	2	0	5,247	2,70887	3041,866	2219,854	0,011	0,61
3	0	2	5,279	2,69233	2439,875	2413,892	0,011	0,47
0	2	2	5,345	2,65924	242181,59	248387,31	0,011	45,81
1	2	2	5,483	2,59246	20710,342	17959,471	0,011	7,38
4	1	1	5,567	2,55307	11096,931	10596,686	0,011	3,83
3	2	1	5,581	2,54689	9758,911	9791,025	0,011	3,37
3	1	2	5,604	2,53654	4512,985	4645,5	0,011	1,55
1	3	0	5,766	2,46499	2088,122	1920,512	0,011	0,34
1	0	3	5,832	2,43716	1103,754	682,087	0,011	0,17
2	2	2	5,877	2,41877	3071,093	3123,439	0,011	0,95
0	3	1	5,948	2,38988	1973,126	929,157	0,011	0,3
0	1	3	6,005	2,36727	501,814	544,416	0,011	0,08
1	3	1	6,072	2,34106	7307,753	6693,558	0,011	2,12
1	1	3	6,128	2,31979	5338,037	4147,839	0,011	1,52
2	3	0	6,142	2,31426	47,183	31,111	0,011	0,01
4	2	0	6,162	2,30676	4678,796	3746,602	0,012	0,67
4	0	2	6,19	2,29651	6150,563	5058,607	0,014	0,86
2	0	3	6,204	2,29118	253,758	184,353	0,011	0,04
5	1	0	6,388	2,22529	78,037	412,192	0,014	0,01
5	0	1	6,395	2,22298	140,969	755,787	0,014	0,02
2	3	1	6,43	2,21079	2020,771	2734,4	0,011	0,53
4	2	1	6,449	2,20425	11413,44	12570,242	0,014	2,96
4	1	2	6,469	2,19753	8165,046	7985,641	0,014	2,1
3	2	2	6,481	2,19358	12025,404	12822,496	0,011	3,08
2	1	3	6,483	2,19285	504,242	546,93	0,011	0,14
5	1	1	6,666	2,13284	11645,349	13078,326	0,014	2,84

h k 1 26 I_{c1}^{2} F_{c2}^{2} FWHM 1100 3 0 6.779 20708 1194,756 1171,601 0.011 0.01 0 2 36 6.81 208086 9222,427 1043,418 0.011 1.05 1 3 2 6.89 209793 1566,581 1259,657 0.011 2.34 1 2 3 6.999 2.04848 9124,058 8472,615 0.011 2.44 3 1 6.987 2.03491 7621,78 6194,707 0.014 1.44 5 0 7.171 1.982861 14235,851 12128,5 0.014 1.44 2 2 7.226 1.96716 667.900 1712,543 0.014 0.44 2 2 7.226 1.96716 667.900 171,543 0.014 0.11 5 1 7.451 1.87041 1853,3059 954,344 0.014									
3 3 0 6.723 2.11473 2.0278 2.75,471 0.011 0.014 3 0 3 6.779 2.09708 1149.756 1171.601 0.011 0.14 0 2 3 6.83 2.09808 922.427 10433,418 0.011 1.03 1 3 2.6999 2.04884 9124.058 8472.615 0.011 2.04 3 1 3 7.035 2.0209 8017.585 570.192 0.014 1.48 5 0 2 7.171 1.98286 14235.851 12128.5 0.014 0.44 2 2 3 7.255 1.95981 6672.217 6492.331 0.014 0.44 2 2 3 7.551 1.95981 6872.217 6492.331 0.014 0.014 2 2 3 7.551 1.85964 1.8784.88 2.0077.0 0.014 0.014 3 3 7.551	h	k	1	2θ	[Å] b	F_{-}^{2}	F_{-}^{2}	FWHM	i100
5 0 0.779 2.09708 1149.756 1171.601 0.011 0.014 0 2 6.81 2.090708 1192.756 1171.601 0.011 0.13 1 3 2 6.831 2.0813 1322.430 14769.556 0.011 0.53 1 3 2 6.909 2.04584 9124.058 8472.615 0.011 2.043 3 1 6.987 2.03491 7621.78 6194.707 0.014 1.48 5 2 0 7.171 1.98286 14235.851 12128.5 0.014 1.44 4 2 7.226 1.96776 667.900 712.543 0.014 0.14 6 0 0 7.225 1.95981 6872.217 6492.31 0.014 0.14 6 1 7.450 1.91002 5954.344 0.014 0.017 7.451 1.89002 7945.216 5949.244 0.014 0.14	3	3	0	6 723	2 11/73	240.278	275 471	0.011	0.03
3 0 3 2.09 1.199,330 1.199,330 1.199,330 1.199,356 0.011 1.03 0 2 3 6.831 2.08133 1.3224,309 1.4769,556 0.011 0.03 1 3 3 6.999 2.04884 9124,058 8472,615 0.011 2.04 3 1 3 7.035 2.0209 8017,585 5703,192 0.014 1.48 5 0 2 7.171 1.92866 1.4225,851 1.2128,5 0.014 1.44 2 2 3 7.226 1.95676 667.901 7.12,543 0.014 0.44 2 2 3 7.225 1.95981 6872.217 6492,331 0.014 1.41 4 0 7.46 1.99002 7953,514 0.014 0.71 0.52 4 0 7.517 1.8906 1.842,329 1.460,886 0.011 0.72 4 3 7.51	2	0	2	6 770	2,11473	1140 756	1171.601	0,011	0,03
0 3 2 0.88 2.09.80 9.224.27 9.193.418 0.011 1.153 1 3 2 6.999 2.045793 1566.581 1259.657 0.011 0.23 3 1 6.989 2.04848 9124.058 8472.615 0.011 2.34 3 1 6.987 2.04848 9124.058 8172.515 0.014 1.74 5 2 7.171 1.982266 14235.851 1212.85 0.014 1.44 5 2 7.126 1.95766 667.900 1712.543 0.014 0.14 4 2 2 7.226 1.95776 667.207 6192.331 0.014 0.14 5 1 2 7.436 1.91219 5051.1 488.424 0.014 0.76 6 0 7.511 1.89164 187874.89 166633.67 0.011 1.239 6 0 7.511 1.88916 1875.905 1615.958	3	0	3	0,779	2,09708	1149,730	11/1,001	0,011	0,14
0 2 3 6.831 208133 13224.309 14769.556 0.011 0.35 1 3 3 6.999 2.04884 9124.058 1239.657 0.011 2.04 3 1 3 7.035 2.0209 8017.585 5703.192 0.014 1.47 5 0 2 7.171 1.92826 1.4235.851 1.212.85 0.014 1.44 2 2 7.225 1.96776 667.901 717.15.43 0.014 1.44 4 2 7.225 1.95981 6672.217 6492.331 0.014 1.44 6 0 7.328 1.94021 530.59 958.14 0.014 0.78 4 0 7.451 1.99061 26737.57 595.434 0.014 0.76 5 1.1 7.461 1.99062 27637.59 25437.804 0.017 2.02 6 1 7.571 1.87045 1.877.49 1.6663.67	0	3	2	6,8	2,09086	9222,427	10433,418	0,011	1,08
1 3 2 6.999 2.05793 1566.581 12.926.57 0.011 0.35 3 1 6.989 2.04849 17621.78 6194.707 0.014 1.748 3 1 3 7.035 2.0209 8017.585 5703.192 0.014 1.748 5 2 7.171 1.95266 14223.581 1212.85 0.014 0.44 5 2 7.261 1.96716 667.7001 712.543 0.014 0.44 2 2 7.2755 1.95981 2.0575 5954.344 0.014 0.14 5 1 2 7.456 1.91219 5051.21 488.864 0.014 0.76 6 0 7.456 1.99060 1.9452.21 480.868 0.014 0.77 0 0 7.571 1.8791.22 1.461.886 0.014 0.76 0 0 7.616 1.8791.2 1.241.43 0.014 0.79	0	2	3	6,831	2,08133	13224,309	14769,556	0,011	1,53
1 2 3 6.987 2.04844 9124.058 8.472.615 0.011 2.044 3 1 3 7.035 2.0209 8017.585 5703.192 0.014 1.44 5 0 2 7.171 1.98286 1.4235.851 1212.8.5 0.014 0.044 4 2 2 7.255 1.96374 2673.08 808.03 0.014 0.044 4 2 7.255 1.959781 6672.01 712.543 0.014 1.44 6 0 7.328 1.94021 53.059 95.814 0.014 0.078 5 2 1 7.466 1.90602 7945.216 5494.244 0.014 0.766 6 1 0 7.566 1.87874.89 16663.367 0.011 1.99 6 1 0 7.671 1.89366 1.8477.155 933.3827 0.011 1.23 6 1 0 7.671 1.89465	1	3	2	6,909	2,05793	1566,581	1259,657	0,011	0,35
3 1 6.987 2.0490 7621.78 6194.707 0.014 1.488 3 1 3 7.035 2.0209 8017.585 5703.192 0.014 1.488 5 2 2 7.171 1.98268 14223.581 1212.85 0.014 0.014 4 2 2 7.225 1.96764 679.01 712.534 0.014 0.014 4 0 0 0 7.238 1.94021 550.59 958.144 0.017 0 5 1 2 7.436 1.91219 501.21 488.424 0.014 0.11 1.07 6 1 0 7.566 1.87941 1005.147 1434.304 0.017 0.52 6 0 1 7.571 1.88029 267357.59 25457.808 0.011 1.72 1 3 7.671 1.88045 5887.33 650.537 0.011 0.12 1 4 7.60	1	2	3	6,939	2,04884	9124,058	8472,615	0,011	2,04
3 1 3 7,035 2,0209 807,585 570,192 0,014 1,44 5 0 2 7,171 1,9784 772,368 808,03 0,014 0,048 2 3 2 7,226 1,96716 667,901 712,543 0,014 0,44 4 2 2 7,255 1,95916 6672,217 6492,331 0,014 1,44 6 0 7,738 1,94021 53,059 958,14 0,014 0,78 1 2 7,436 1,91021 9051,21 4884,264 0,014 0,71 0 4 0 7,511 1,89006 1842,325 9494,244 0,011 0.95 6 0 1 7,556 1,8781,49 16663,367 0,011 1.23 1 4 0 7,556 1,8781,50 1.831 1.30 0,014 0,014 0 4 7,670 1,84655 1375,905 <th1< td=""><td>3</td><td>3</td><td>1</td><td>6 987</td><td>2 03491</td><td>7621 78</td><td>6194 707</td><td>0.014</td><td>1.68</td></th1<>	3	3	1	6 987	2 03491	7621 78	6194 707	0.014	1.68
3 1 3 7.03 2.02.9 801/263 201.163 200.142 201.14 5 2 0 7.171 1.95286 14223.583 1.2128.5 0.014 0.014 4 2 2 7.226 1.96716 667.901 17.15.34 0.014 0.014 4 2 3 7.255 1.9581 6872.217 6492.331 0.014 0.014 5 1 2 7.436 1.91219 5051.21 4884.244 0.014 0.017 5 1 2 7.436 1.91219 5051.21 4884.244 0.014 0.017 0.50 6 1 0 7.517 1.89016 1878.759 554578.08 0.011 1.70 6 0 1 7.661 1.87046 1878.755 5933.827 0.011 0.71 1 4 7.616 1.88045 1.5278.10 0.014 0.25 3 2 7.725	2	1	2	7.025	2,0200	2017 525	5703 102	0.014	1 74
5 0 2 0 7,194 195244 722308 80803 0.014 0.044 2 3 2 7.225 1.95764 7227.308 80803 0.014 0.044 4 2 2 3 7.225 1.95981 6672.217 6492.331 0.014 1.44 6 0 7.328 1.94021 53.059 95.814 0.014 0.48 6 0 7.466 1.90602 7945.216 5494.244 0.014 0.76 7.511 1.89106 1.8737.459 1.6663.36.7 0.011 8.9 6 0 1 7.571 1.87802 2129.171 2471.305 0.017 0.22 0 0 4 7.661 1.86629 26735.7.59 24378.08 0.011 1.23 1 4 0 7.661 1.86637.35 5933.327 0.011 0.25 3 2 7.753 1.84465 2787.355 9334.34	5	1	5	7,055	2,0209	0017,505	5705,192	0,014	1,74
5 0 2 7,194 1.97634 727.308 808,03 0,014 0,014 4 2 2 7,225 1.95776 667.001 71,2343 0,014 0,14 2 2 7,235 1.95981 6872,217 6492,331 0,014 1,41 2 2 7,328 1.94021 53309 95,8141 0,017 0 5 1 2 7,436 1.90602 7945,216 5494,244 0,014 0,76 4 0 7,517 1.87941 10105,147 11543,804 0,017 0,95 6 1 0 7,607 1.87902 2129,171 2471,305 0,011 1,239 1 3 2 7,674 1.84655 2.787,355 3933,827 0,011 0,14 3 2 7,754 1.83465 568,734 60,011 1,239 1 3 7,754 1.83456 2848,779 26739,959 0,0	5	2	0	7,171	1,98286	14235,851	12128,5	0,014	1,48
2 3 2 7.22 1.96776 667.901 712,543 0.014 0.14 2 2 3 7.255 1.95981 6872,217 6492,331 0.014 1.44 6 0 7.328 1.94021 53.059 95.814 0.014 0.48 5 1 2 7.436 1.9119 505.121 4884,264 0.014 0.76 6 0 7.511 1.89106 1.842,329 1460.886 0.014 0.76 0 0 7.511 1.89106 1.842,329 1460.886 0.011 0.795 6 0 1 7.571 1.87102 2.129.171 2.417.305 0.017 0.22 0 0 4 7.607 1.86022 2.6735.759 2.5457.808 0.011 1.17 4 3 1 7.699 1.84695 1.375.905 1615.958 0.014 0.024 1 4 7.725 1.844956 56	5	0	2	7,194	1,97634	727,308	808,03	0,014	0,08
4 2 2 7 7,255 1,95981 6872,217 6492,331 0.014 1,4 5 2 1 7,419 1,91661 5073,765 5954,394 0.014 1,11 4 3 0 7,466 1,90602 7945,216 5494,244 0.014 0,76 4 0 3 7,511 1,83906 1842,329 1460,880 0.014 0,76 6 1 0 7,567 1,86929 267357,59 254578,08 0.011 12,39 1 4 0 7,666 1,87941 10105,147 11543,804 0.017 0.02 1 3 1 7,670 1,86929 267357,59 254578,08 0.011 1.239 1 3 2 7,764 1,86924 2787,35 5393,827 0.011 0.14 3 2 7,743 1,83465 6068,733 600,537 0.014 0.01 4 1	2	3	2	7,226	1,96776	667,901	712,543	0,014	0,14
2 2 3 7,258 1,95981 6872,217 6492,331 0,014 1,4 6 0 7,328 1,94021 53,059 95,814 0,017 0 5 1 2 7,436 1,91219 505,121 4884,264 0,014 0,76 4 0 3 7,511 1,89306 1842,329 1460,866 0,014 0,70 0 4 0 7,571 1,87104 11613,3804 0,017 0,95 6 0 1 7,656 1,87744 10163,188 1050,685 0,011 12,3 1 4 0 7,616 1,86929 26735,799 254378,085 0,011 0,25 3 2 7,725 1,84405 5787,355 3933,827 0,011 0,25 3 2 3 7,733 1,83446 568,733 650,537 0,011 2,14 6 1 7,850 1,831414 3352,523	4	2	2	7,243	1,96314	265815,38	262067,72	0,014	54,41
6 0 0 7,328 194021 53,059 95,814 0,017 0 5 1 2 1 7,436 191219 5051.21 4884,364 0,014 0,014 4 3 0 7,646 190602 7945,216 5494,244 0,014 0,07 6 1 0 7,517 1,87941 10105,147 11543,804 0,017 0,92 6 1 0 7,607 1,86715 12357,95 254578,808 0,011 12,39 1 4 0 7,607 1,84565 2787,355 3933,827 0,011 0,25 3 3 2 7,725 1,84665 2787,33 650,377 0,014 0,70 3 2 7,725 1,84665 2787,33 50,377 0,014 0,14 3 7,743 1,84386 2348,779 2673,959 0,011 2,14 1 1 7,802 1,82271	2	2	3	7.255	1,95981	6872.217	6492.331	0.014	1.4
0 0 7,419 1,91661 5073,765 593,4394 0,014 0,014 5 1 2 7,436 1,91219 5051,21 4884,264 0,014 0,746 4 0 3 7,511 1,89306 1842,329 1460,886 0,014 0,71 0 4 0 7,517 1,89164 18787,429 166633,67 0,011 8,93 6 0 1 7,571 1,87802 2129,171 2471,305 0,011 12,39 6 0 4 7,607 1,86929 26735,759 254578,08 0,011 0,23 3 1 7,690 1,84665 2783,753 593,3327 0,011 0,25 3 2 7,753 1,84067 4364,684 5337,719 0,014 0,79 4 1 7,754 1,83366 28484,779 26739,959 0,011 2,14 6 1 7,753 1,83415 60082,693	6	0	0	7 328	1 94021	53.059	95 814	0.017	0
3 2 1 7,436 1,9101 2013,03 3,924,394 0,014 1,14 4 3 0 7,46 1,90002 7945,216 5494,244 0,014 0,74 4 0 3 7,511 1,89164 187874,59 16603,67 0,011 8,9 6 1 0 7,566 1,87941 10105,147 11543,804 0,017 0,2 0 0 4 7,607 1,86929 267357,59 254578,08 0,011 1,2,39 1 4 0 7,616 1,86715 12636,138 10502,685 0,014 0,014 0,25 3 2 7,725 1,84067 4364,684 5337,19 0,014 0,10 3 2 7,733 1,83416 5668,73 650,537 0,014 0,10 3 7,743 1,83346 2848,779 26739,959 0,011 2,18 0 4 1 7,755 1,81	5	2	1	7,520	1,04621	5672 765	5054 204	0,017	1 1 1
5 1 2 7,46 1,9002 745.1 1,90002 745.2 1,6633,67 0,011 0,71 0 4 0 7,517 1,89164 187874,89 166633,67 0,011 8,9 6 1 0 7,517 1,87162 2129,171 2471,305 0,017 0,23 6 0 1 7,561 1,87502 2129,171 2471,305 0,011 12,39 1 4 0 7,616 1,86929 267357,59 254578,08 0,011 0,23 3 2 7,725 1,84065 2787,355 3933,827 0,011 0,14 7 7,734 1,83364 568,733 650,537 0,014 0,19 4 1 7,753 1,84144 3935,29 30,012 2,14 6 1 1 7,85 1,81144 3935,29 0,011 2,14 6 1 7,901 1,7991,19 1,266,00 0,01	5	2	1	7,419	1,91001	5075,705	3934,394	0,014	1,11
4 3 0 7,46 1,90602 7945,216 5494,244 0,014 0,07 0 4 0 7,517 1,89306 1842,329 1460,886 0,011 8,99 6 1 0 7,556 1,87904 11005,147 11543,804 0,017 0.02 0 0 4 7,607 1,86929 267357,59 254578,08 0,011 12,39 1 4 0 7,669 1,84695 1375,905 1615,958 0,014 0,25 3 2 7,725 1,84067 4364,684 5337,719 0,014 1,079 3 2 7,733 1,8346 5068,733 650,537 0,011 2,14 1 7,825 1,83152 9661,31 37119,03 0,014 6,91 1 4 7,836 1,81474 39365,29 34023,777 0,011 3,43 1 4 1 7,855 1,919,63 1,838,895	5	1	2	7,436	1,91219	5051,21	4884,264	0,014	0,98
4 0 3 7,511 1,89306 1842,329 1460,886 0.014 0.17 6 1 0 7,556 1,87941 10105,147 11543,804 0.017 0.95 6 0 1 7,571 1,87802 2129,171 2471,305 0.011 1.23 1 4 0 7,616 1,86715 12636,138 10502,685 0.011 0.14 4 0 7,616 1,86715 12636,138 10502,685 0.011 0.04 3 2 7,725 1,84067 4364,684 5337,719 0.014 0.07 4 1 7,754 1,8356 2873,35 3933,827 0.011 3,14 5 2 7,753 1,83145 6006,824 672,521 0.014 0,17 6 1 1 7,850 1,81474 9365,23 3402,3777 0.013 34 1 1 4 7,751 1,8395 0.011	4	3	0	7,46	1,90602	7945,216	5494,244	0,014	0,76
0 4 0 7,556 1,87941 10105,147 11543,804 0,017 0,95 6 0 1 7,571 1,8702 212,171 2471,1305 0,017 0,25 0 0 4 7,670 1,8692 267357,59 254578,08 0,011 1,239 1 4 0 7,616 1,8695 1375,905 1615,958 0,014 0,25 3 3 2 7,725 1,84067 4364,684 5337,719 0,014 0,12 3 2 3 7,753 1,83415 6008,824 6722,521 0,014 0,10 1 1 7,853 1,81447 39365,29 3402,3777 0,011 4,18 1 4 1 7,854 1,8152 39651,31 37119,03 0,014 6,91 1 4 7,931 1,79902 1319,933 1388,855 0,011 1,13 1 4 7,931 1,79902 </td <td>4</td> <td>0</td> <td>3</td> <td>7,511</td> <td>1,89306</td> <td>1842,329</td> <td>1460,886</td> <td>0,014</td> <td>0,17</td>	4	0	3	7,511	1,89306	1842,329	1460,886	0,014	0,17
6 1 0 7,566 1,87941 10105,147 11543,804 0,017 0,95 6 0 1 7,571 1,87802 2129,171 2471,305 0,017 0,22 1 4 0 7,616 1,86715 12636,138 10502,685 0,011 0,23 3 1 7,764 1,84655 2787,355 393,827 0,014 0,07 4 1 3 7,773 1,8466 568,733 650,537 0,014 1,01 3 2 7,753 1,83415 6008,824 672,2521 0,014 1,01 4 1 7,855 1,81122 3965,131 37119,03 0,014 6,91 2 4 7,99 1,77977 573,92 548,227 0,011 2,33 3 8,014 1,75262 7422 757,012 0,014 1,22 5 2 2 8,118 1,75242 212777,34 280,461	0	4	0	7,517	1,89164	187874,89	166633,67	0,011	8,9
6 0 1 7,571 1,87802 2129,171 2471,305 0,017 0,2 0 0 4 7,667 1,86929 267357,59 254578,08 0,011 1,239 1 4 0 7,669 1,84695 1375,905 1615,958 0,014 0,26 1 0 4 7,704 1,84667 4364,684 5337,719 0,014 0,17 3 2 3 7,753 1,83415 6008,824 6722,521 0,014 0,17 4 1 7,753 1,83366 23648,779 26739,959 0,012 1,14 6 1 1 7,783 1,83366 23651,31 37119,03 0,014 6,01 4 7,785 1,83152 3965,131 37119,03 0,014 6,21 1 4 7,930 1,79902 1319,63 13838,895 0,011 1,13 1 1 4 7,931 1,79308 1	6	1	0	7.566	1.87941	10105.147	11543.804	0.017	0.95
0 0 1 7.607 1.86929 267357.99 254578.08 0.011 12.39 1 4 0 7.616 1.86715 12636.138 10502.685 0.011 0.23 1 0 4 7.704 1.84655 1375.905 1615.958 0.014 0.26 3 3 2 7.725 1.84067 4364.684 5337.719 0.014 0.01 2 3 7.753 1.84565 2787.955 933.827 0.011 2.39 2 3 7.753 1.84565 2787.959 0.011 0.14 4 1 7.754 1.83366 2348.779 26739.959 0.011 3.14 1 4 7.855 1.81147 39365.29 30.014 6.91 2 4 0 7.991 1.79907 573.923 548.227 0.011 1.23 2 0 4 7.991 1.77248 2056.902 0.014 0.24	6	0	1	7 571	1 87802	2120 171	2471 305	0.017	0.2
0 0 4 7,616 1,86715 1253(5,138 1052,685 0.011 1.2,39 4 3 1 7,699 1,84695 1375,905 1615,958 0.014 0.26 1 0 4 7,704 1,84565 2787,355 3933,827 0.011 0.014 0.27 4 1 3 7,753 1,83415 6008,824 6722,521 0.014 0.11 3 2 3 7,753 1,83415 6008,824 6722,521 0.014 0.07 0 1 4 7,754 1,83386 2348,779 26739,959 0.011 2.14 6 1 1 7,855 1,81152 3965,131 37119,03 0.014 6.91 1 4 7,953 1,77977 573,923 548,227 0.011 0.05 0 3 3 8,114 1,75283 2924,774 2836,839 0.014 0.25 2 2	0	0	1	7,571	1,87802	2129,171	2471,303	0,017	12.20
1 4 0 7,669 1,86715 12636,138 1052,665 0,011 0,26 3 3 2 7,725 1,84067 4364,684 5337,719 0,014 0,26 3 3 2 7,725 1,84067 4364,684 5537 0,014 0,10 3 2 3 7,753 1,83415 6008,824 6722,521 0,014 1,08 0 4 1 7,753 1,83415 6008,824 6722,521 0,011 3,14 0 1 4 7,855 1,81172 39651,31 37119,03 0,014 6,91 2 4 0 7,905 1,79908 15982,191 16256,902 0,014 2,73 2 0 4 7,991 1,7173 8204,774 2836,899 0,014 2,23 2 2 8,118 1,72733 2924,774 2836,899 0,014 2,24 3 3 8,114	0	U	4	7,607	1,86929	20/35/,59	2545/8,08	0,011	12,39
4 3 1 7.699 1.84655 1275.905 1615.958 0.011 0.25 1 0 4 7.704 1.84565 2787.355 3933.827 0.011 0.27 3 2 7.725 1.84067 3546.684 550.537 0.014 1.01 3 2 3 7.753 1.833415 6008.824 6722.521 0.011 2.14 6 1 1 7.754 1.83386 23648.79 26739.959 0.011 2.14 6 1 4 7.856 1.81152 3938.895 0.011 1.13 1 4 7.931 1.79308 15982.191 16256.902 0.014 2.73 7.0 3 8.021 1.77273 754.923 548.227 0.014 1.22 5 2 2 8.118 1.75173 7882.193 7933.262 0.014 1.22 5 3 0 8.238 1.7242 27570.12 </td <td>1</td> <td>4</td> <td>0</td> <td>7,616</td> <td>1,86715</td> <td>12636,138</td> <td>10502,685</td> <td>0,011</td> <td>1,17</td>	1	4	0	7,616	1,86715	12636,138	10502,685	0,011	1,17
1 0 4 7,704 1,84067 4364,684 5337,719 0,011 0,25 3 3 2 7,725 1,84067 4364,684 5337,719 0,014 0,11 3 2 3 7,753 1,83415 6008,824 6722,521 0,014 1,08 0 4 1 7,753 1,83415 6008,824 6722,521 0,014 1,08 0 1 4 7,855 1,81174 39365,29 34023,777 0,011 3,33 1 4 1 7,855 1,81152 39651,31 37119,03 0,014 6,91 2 4 0 7,995 1,79908 1,79308 1525,902 0,014 1,22 3 3 8,011 1,77123 7824,174 2836,839 0,014 1,22 5 2 2 8,118 1,75173 782,193 7933,262 0,014 1,35 6 2 0 <	4	3	1	7,699	1,84695	1375,905	1615,958	0,014	0,26
3 2 7,725 1,84067 4364,684 5337,719 0,014 0,79 4 1 3 7,753 1,83415 6008,824 6722,521 0,014 1,01 3 2 3 7,753 1,833415 6008,824 6722,521 0,011 2,14 6 1 1 7,754 1,83386 23848,779 26739,959 0,011 2,14 6 1 4 7,856 1,81424 39365,29 34023,777 0,011 3,43 7 4 0 7,905 1,79902 1319,63 13838,895 0,011 1,13 1 4 7,931 1,77977 573,923 548,227 0,014 0,24 0 3 3 8,021 1,77123 2924,774 2836,839 0,014 1,22 5 2 2 8,118 1,75173 7882,193 7933,262 0,014 1,63 2 4 1 8,238	1	0	4	7,704	1,84565	2787,355	3933,827	0,011	0,25
4 1 3 7,743 1,83646 568,733 650,537 0,014 1,01 3 2 3 7,753 1,83415 6008,824 6722,521 0,014 1,08 0 4 1 7,754 1,83386 23848,779 26739,959 0,011 2,017 0 1 4 7,855 1,81152 39651,31 37119,03 0,014 6,017 1 4 0 7,905 1,79902 1399,63 13838,895 0,011 1,13 1 1 4 7,931 1,79308 15982,191 16256,902 0,014 2,73 2 0 4 7,99 1,77273 282,474 286,839 0,014 1,22 5 2 2 8,118 1,75173 7882,193 7933,262 0,014 1,22 5 2 2 8,118 1,75173 7882,193 7933,262 0,014 1,67 6 2 0 8,238 1,72642 21771,128 208574,23 0,017 1,721	3	3	2	7,725	1,84067	4364,684	5337,719	0,014	0,79
2 3 7.753 1.84115 6008,824 6722,521 0,014 1.08 0 4 1 7.753 1.83156 0208,824 6722,521 0,014 1.08 0 1 4 7.836 1.81474 39365,29 34023,777 0,011 3.43 1 4 1 7.855 1.81152 3965,131 37119,03 0,014 6,91 2 0 4 7.991 1.79308 15982,191 16256,902 0,014 0,73 2 0 4 7.991 1.77283 2924,774 2836,839 0,014 0,24 1 3 8.114 1.75262 7422 7570.12 0,014 1,22 2 2 8.118 1.7173 782.193 793.362 0,014 1,67 6 0 2 8.238 1.72642 210771,28 20874,23 0,017 1,721 5 3 0 8.331 1.71078	4	1	3	7,743	1.83646	568.733	650.537	0.014	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	2	7 753	1 83/15	6008 824	6722 521	0.014	1 09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	.) 1	7,135	1 02207	22040 770	26720.050	0,014	1,08
6 1 1 7,802 1,82271 411,329 38,484 0,017 0,017 0 1 4 7,836 1,811474 39365,29 34023,777 0,011 3,43 1 4 1 7,855 1,81152 39651,31 37119,03 0,014 6,91 2 4 0 7,995 1,79902 13199,63 13838,895 0,011 1,13 1 1 4 7,931 1,779308 15982,191 1626,902 0,014 1,22 5 2 0 8,101 1,77123 2924,774 2836,839 0,014 1,22 5 2 2 8,118 1,75173 7882,193 7933,262 0,014 3,35 2 1 4 8,209 1,73249 10500,409 1442,273 0,017 18,12 2 0 8,258 1,72212 230176,83 20773,45 0,014 0,44 4 3 2	0	4	1	7,754	1,83386	23848,779	26/39,959	0,011	2,14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1	1	7,802	1,82271	411,329	338,484	0,017	0,07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	4	7,836	1,81474	39365,29	34023,777	0,011	3,43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	1	7,85	1,81152	39651,31	37119,03	0,014	6,91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4	0	7,905	1,79902	13199.63	13838.895	0.011	1.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	4	7 931	1 79308	15982 191	16256 902	0.014	2 73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	4	7,00	1,79500	572 022	548 227	0,014	2,75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	4	1,99	1,77977	373,923	346,227	0,011	0,05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3	3	8,021	1,77283	2924,774	2836,839	0,014	0,24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	3	8,114	1,75262	7422	7570,12	0,014	1,22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	2	8,118	1,75173	7882,193	7933,262	0,014	1,28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4	1	8,13	1,7491	20650,107	20196,564	0,014	3,35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	4	8,209	1,73249	10500,409	11442,273	0,014	1,67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	0	8.238	1.72642	217771.28	208574.23	0.017	17.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0	2	8 258	1 72212	230176.83	227773 45	0.017	18.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	2	2	0,250	1,72212	1900 501	1621.045	0,017	0.14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	0	0,515	1,71078	1800,391	1031,043	0,014	0,14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0	3	8,359	1,7014	837,97	850,805	0,014	0,06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	4	0	8,364	1,70036	18402,955	18931,717	0,014	1,41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3	2	8,375	1,69807	11554,061	11160,046	0,014	1,77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	3	8,386	1,69591	2979,541	2857,067	0,014	0,45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	3	8,401	1.69295	13764.413	13655,273	0.014	2.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	2	8 4 2 6	1 68788	8166 544	8850.067	0.014	0.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-	2 A	0,720 0 115	1 60 / 00	0 012	0.270	0,014	0,02
6 2 1 8,455 1,68217 10150,742 10148,202 0,017 1,53 6 1 2 8,47 1,67917 9283,296 8361,903 0,017 1,39 0 2 4 8,486 1,67589 1511,671 1101,1 0,014 2,71 5 3 1 8,528 1,66769 6240,291 5303,686 0,014 2,77 5 3 1 8,528 1,66769 6240,291 5303,686 0,014 0,92 5 1 3 8,568 1,65893 38291,51 40182,34 0,014 0,91 3 4 1 8,578 1,65803 38291,51 40182,34 0,014 2,18 7 1 0 8,757 1,62427 1346,066 16591,57 0,017 0,09 7 0 1 8,762 1,6237 19,856 22,506 0,017 0 2 4 8,82	5	0	4	8,445	1,08408	8,013	9,279	0,014	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	1	8,455	1,68217	10150,742	10148,202	0,017	1,53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1	2	8,47	1,67917	9283,296	8361,903	0,017	1,39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	4	8,486	1,67589	1511,671	1101,1	0,014	0,11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	2	8,514	1,67041	18299.002	16591.908	0.014	2.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3	1	8 528	1.66769	6240 291	5303 686	0.014	0 97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	2	8 560	1 65005	0/02 462	0572.002	0.014	1 27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	1	3	0,008	1,00990	5402,402	7512,902	0,014	1,3/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	4	8,574	1,65879	6210,776	6445,004	0,014	0,91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	4	1	8,578	1,65803	38291,51	40182,34	0,014	5,58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	4	8,652	1,64385	15247,538	11533,543	0,014	2,18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	0	8,757	1,62427	1346,066	1659,157	0,017	0,09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	0	1	8,762	1.62337	19.856	22.506	0.017	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Δ	2	8 774	1 6211	109930 66	117147 84	0.014	15 34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-	2	0,774	1,0211	5353 402	5220.250	0,014	0.72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	5	5	0,821	1,01251	3252,403	3339,339	0,014	0,72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	4	8,832	1,61046	187087,41	192302,02	0,014	25,71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	1	8,961	1,58725	18665,607	18314,709	0,017	2,49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4	0	8,968	1,58605	113414,73	108439,57	0,014	7,55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	4	9.044	1,57281	173666.7	176037.61	0.014	11.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	,	9.075	1 56727	047 242	778 021	0.017	0.12
5 5 2 9,144 1,55564 1507,945 1643,87 0,017 0,17 5 2 3 9,167 1,5517 10871,155 10934,625 0,017 1,39 4 4 1 9,168 1,5513 23317,131 23460,721 0,014 2,97 3 4 2 9,19 1,5478 7985,19 12125,966 0,014 1,02 4 1 4 9,238 1,53989 19719,77 22036,707 0,014 2,49 3 2 4 9,246 1,53853 2199,614 2247,044 0,014 0,28 6 3 0 9,25 1,53784 1,7 1,699 0,017 0,01 7 2 0 9,344 1,52244 3485,089 3958,29 0,017 0,21	5	2	4	9,073	1,50/5/	747,542	1/0,921	0,017	0,12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3	2	9,144	1,55564	1307,545	1643,87	0,017	0,17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	3	9,167	1,5517	10871,155	10934,625	0,017	1,39
3 4 2 9,19 1,5478 7985,19 12125,966 0,014 1,02 4 1 4 9,238 1,53989 19719,77 22036,707 0,014 2,49 3 2 4 9,246 1,53853 2199,614 2247,044 0,014 0,28 6 3 0 9,25 1,53784 1,7 1,699 0,017 0 6 0 3 9,291 1,53101 240,028 226,657 0,017 0,01 7 2 0 9,344 1,52244 3485,089 3958,29 0,017 0.21	4	4	1	9,168	1,55153	23317,131	23460,721	0,014	2,97
4 1 4 9,238 1,53989 19719,77 22036,707 0,014 2,49 3 2 4 9,246 1,53853 2199,614 2247,044 0,014 0,28 6 3 0 9,25 1,53784 1,7 1,699 0,017 0 6 0 3 9,291 1,53101 240,028 226,657 0,017 0,011 7 2 0 9,344 1,52244 3485,089 3958,29 0,017 0,21	3	4	2	9,19	1,5478	7985,19	12125,966	0,014	1,02
3 2 4 9,246 1,53853 2199,614 2247,044 0,014 0,28 6 3 0 9,25 1,53784 1,7 1,699 0,017 0 6 0 3 9,291 1,53101 240,028 226,657 0,017 0,017 7 2 0 9,344 1,52244 3485,089 3958,29 0,017 0,21	4	1	4	9.238	1,53989	19719.77	22036.707	0.014	2.49
6 3 0 9,25 1,5303 249,014 2247,044 0,014 0,26 6 3 0 9,25 1,53784 1,7 1,699 0,017 0 6 0 3 9,291 1,53101 240,028 226,657 0,017 0,01 7 2 0 9,344 1,52244 3485,089 3958,29 0,017 0.21	3	2		9.246	1 53853	2199 614	2247 044	0.014	0.20
0 5 0 9,25 1,55/84 1,7 1,699 0,017 0 6 0 3 9,291 1,53101 240,028 226,657 0,017 0,01 7 2 0 9,344 1,52244 3485.089 3958.29 0.017 0.21	5	2	+	0.25	1,53055	2199,014	1.000	0,014	0,28
6 0 3 9,291 1,53101 240,028 226,657 0,017 0,01 7 2 0 9,344 1,52244 3485,089 3958,29 0,017 0.21	0	3	0	9,25	1,53/84	1,7	1,699	0,017	0
7 2 0 9,344 1,52244 3485,089 3958,29 0,017 0.21	6	0	3	9,291	1,53101	240,028	226,657	0,017	0,01
	7	2	0	9,344	1,52244	3485,089	3958,29	0,017	0,21
-	h	k	1	20	d [Å]	F_{0}^{2}	F_c^2	FWHM	i100
---	---	---	---	--------	---------	-------------	-----------	-------	------
-	7	0	2	9,362	1,51949	47,192	114,974	0,017	0,01
	4	3	3	9,396	1,51404	2894,61	3329,617	0,017	0,35
	0	4	3	9,441	1,5068	7797,593	6557,029	0,014	0,47
	6	3	1	9,444	1,50631	6885,575	5740,67	0,017	0,82
	0	3	4	9,472	1,5018	2017,175	1658,637	0,014	0,12
	1	5	0	9,479	1,50068	3679,894	2944,726	0,014	0,22
	6	1	3	9,48	1,5006	4538,418	3574,979	0,017	0,54
	1	4	3	9,52	1,49434	33738,918	29299,813	0,014	3,97
	7	2	1	9,536	1,49183	7477,605	6961,819	0,017	0,88
	7	1	2	9,549	1,48975	3380,084	3568,852	0,017	0,4
	1	3	4	9,551	1,48945	4455,661	4849,238	0,014	0,52
	1	0	5	9,591	1,48325	4967,122	5397,604	0,014	0,29
	0	5	1	9,591	1,48324	2145,465	2333,095	0,014	0,13
	1	5	1	9,669	1,47134	3362,701	2699,926	0,014	0,38
	5	4	0	9,69	1,46815	2558,766	1680,934	0,017	0,15
	0	1	5	9,697	1,46706	6359,038	4534,2	0,014	0,36
	8	0	0	9,777	1,45516	209261,25	218491,52	0,02	5,86
	2	5	0	9,714	1,46462	140,397	116,129	0,014	0,01
	4	4	2	9,744	1,46009	8454,094	7749,982	0,017	0,95
	2	4	3	9,753	1,45872	24267,473	23313	0,014	2,73
	5	0	4	9,76	1,45763	7640,256	7441,2	0,017	0,43
	1	1	5	9,774	1,45555	5930,995	6257,735	0,014	0,66
	2	3	4	9,783	1,45417	31550,895	33845,344	0,014	3,54
	4	2	4	9,796	1,45231	442,896	455,24	0,017	0,05
	2	0	5	9,823	1,4484	19,192	14,505	0,014	0
	5	4	1	9,876	1,44064	32019,906	31160,266	0,017	3,51
	8	1	0	9,956	1,42897	5960,945	6841,798	0,02	0,32
	8	0	1	9,961	1,42836	285,094	321,34	0,02	0,02
	2	5	1	9,899	1,4373	14332,16	12073,942	0,014	1,55
	5	1	4	9,94	1,43131	10236,659	11615,674	0,017	1,11
	2	1	5	10,001	1,42257	4773,511	4527,523	0,014	0,51
	6	3	2	10,004	1,42222	7386,019	7142,398	0,017	0,79
	7	2	2	10,091	1,41001	12341,368	12528,271	0,017	1,29
	6	2	3	10,025	1,41921	2434,177	2643,636	0,017	0,26
	8	1	1	10,137	1,40357	1444,796	1451,825	0,02	0,15
	5	3	3	10,087	1,41048	32008,473	32059,879	0,017	3,35
	3	5	0	10,092	1,40989	3931,023	3999,806	0,014	0,21
	3	4	3	10,13	1,40462	2/266,826	28980,801	0,017	2,85
	0	5	2	10,143	1,40275	69,5	65,303	0,014	0
	3	3	4	10,159	1,40057	6162,29	5/28,032	0,017	0,64
	3	0	2	10,197	1,3954	57,228	57,942	0,014	0.25
	1	5	2	10,280	1,36330	1542 642	1660 676	0,017	0,55
	1	2	2	10,217	1,39207	1542,045	1009,070	0,014	0,16
	7	2	1	10,504	1,36091	4559,401	4043,31	0,014	1.56
	3	1	5	10,424	1,30500	1681 613	1843 631	0,02	0.17
	7	1	3	10,309	1,37220	21165 953	21331 521	0.02	2.07
	8	2	0	10,477	1 35816	10 300	10.489	0,02	2,07
	5	4	2	10,413	1 36655	15203 469	14715 012	0.017	15
	8	0	2	10 493	1,35606	673 952	607 977	0.02	0.03
	2	5	2	10.434	1.36371	7315,386	7620.315	0.017	0.72
	5	2	4	10.462	1.36017	3157,999	3256.594	0.017	0.31
	6	4	0	10.506	1.35444	12085.949	10675.617	0.017	0.58
	2	2	5	10.52	1.35266	10516.85	9496.504	0.017	1.01
	6	0	4	10,571	1,34616	1266,881	2081,434	0,017	0,06
	8	2	1	10,649	1,3363	6082,885	6654,131	0,02	0,57
	8	1	2	10,661	1,33479	10924,636	11417,626	0,02	1,03
	4	5	0	10,598	1,34264	1424,766	2526,584	0,017	0,07
	4	4	3	10,635	1,33809	5814,118	6457,131	0,017	0,55
	4	3	4	10,663	1,33458	3050,741	3151,403	0,017	0,29
	6	4	1	10,677	1,33275	11353,198	11335,014	0,017	1,07
	4	0	5	10,699	1,33011	719,091	758,55	0,017	0,03
	0	4	4	10,703	1,32962	59239,94	64151,42	0,017	2,78
	6	1	4	10,737	1,32535	8281,776	9031,128	0,017	0,77
	4	5	1	10,769	1,32151	4446,656	3652,669	0,017	0,41
	1	4	4	10,772	1,32103	3639,795	3094,659	0,017	0,34
	3	5	2	10,787	1,3192	710,415	696,965	0,017	0,07
	6	3	3	10,874	1,30876	3978,847	4081,088	0,017	0,36
	7	3	2	10,934	1,30154	5798,491	5994,244	0,02	0,52
	4	1	5	10,863	1,31003	3908,98	3903,664	0,017	0,35
	3	2	5	10,87	1,30919	10541,402	10834,296	0,017	0,95
	7	2	3	10,954	1,29923	5444,289	5163,374	0,02	0,48
	2	4	4	10,979	1,29623	4185,12	3636,227	0,017	0,37
	0	5	3	11,002	1,29354	9061,339	9623,698	0,017	0,4
	0	3	5	11,064	1,28633	1373,653	1108,633	0,017	0,06
	1	5	3	11,07	1,28563	5829,836	5267,363	0,017	0,51
_	8	2	2	11,149	1,27654	110056,47	104172,49	0,02	9,46

h	k	1	2θ	d [Å]	F_{2}^{2}	E_{a}^{2}	FWHM	i100
	1	0	11 162	1 27/08	1 204	0.001	0.02	0
9	1	0	11,105	1,27498	1,504	0,901	0,02	0
9	0	1	11,167	1,27455	2023,12	1882,572	0,02	0,09
6	4	2	11,176	1,27344	69345,92	66303,6	0,017	5,93
1	3	5	11,132	1,27855	6544,917	5807,558	0,017	0,57
6	2	4	11.222	1.26827	112897.78	113099.25	0.017	9.57
5	5	0	11 217	1 26884	2 659	2 634	0.017	0
5	2	0	11,217	1,20004	2,059	0710.009	0,017	0.4
8	3	0	11,292	1,20045	9508,215	9/18,808	0,02	0,4
9	1	1	11,324	1,25684	25335,705	25224,057	0,02	2,11
5	4	3	11,251	1,265	18711,814	18707,711	0,017	1,58
8	0	3	11,326	1,25666	1046,612	1040,824	0,02	0,04
4	5	2	11 263	1 26363	2134 354	2145 894	0.017	0.18
2	5	2	11,205	1,26303	2154,554	2145,054	0,017	0,10
2	5		11,271	1,20274	830,932	838,901	0,017	0,07
5	3	4	11,278	1,26203	3976,688	3989,157	0,017	0,33
0	6	0	11,286	1,26109	15834,672	16396,799	0,014	0,33
5	0	5	11,312	1,25825	7823,446	7956,198	0,017	0,33
3	4	4	11.316	1.25783	6372.58	6469.01	0.017	0.53
7	4	0	11 396	1 24899	10966 125	9105 356	0.02	0.45
2	2	5	11,220	1,24077	1600 246	1677 951	0,02	0,45
2	3	5	11,552	1,23002	1099,240	1077,851	0,017	0,14
4	2	5	11,343	1,25482	1614,254	1529,685	0,017	0,13
1	6	0	11,352	1,25376	1578,123	1392,318	0,014	0,07
8	3	1	11,452	1,24289	5241,345	5470,256	0,02	0,43
5	5	1	11.378	1,25096	7443.494	5745.909	0.017	0.62
7	0		11 /56	1 24240	3 /09	3 0/19	0.02	0,02
/ e	1	-	11,400	1,27247	03,470	(12,274)	0,02	0.05
8	1	5	11,482	1,23968	002,682	013,273	0,02	0,05
0	0	6	11,421	1,2462	463,751	400,734	0,014	0,01
0	6	1	11,446	1,24353	6616,055	7067,188	0,017	0,27
5	1	5	11,468	1,2412	6742,842	6731,18	0,017	0,55
7	4	1	11,554	1,23192	17669.604	17458.088	0.02	1.42
1	0	6	11 487	1 23012	3186 158	3276 576	0.017	0.13
1	0	1	11,407	1,23912	5180,158	5270,570	0,017	0,15
1	6	1	11,511	1,23649	58368,61	5/4/5,08	0,017	4,/
7	1	4	11,61	1,22607	7946,025	8456,836	0,02	0,63
2	6	0	11,549	1,2325	20844,535	20661,443	0,017	0,84
9	2	0	11,63	1,22392	3806,709	4163	0,02	0,15
9	0	2	11.645	1.22238	145.688	155.273	0.02	0.01
0	1	6	11 576	1 22963	12084 043	13166 801	0.017	0.52
2	-	2	11,570	1,22905	12120 444	12041 710	0,017	1.04
3	5	3	11,599	1,22/16	13139,444	13841,/18	0,017	1,04
1	1	6	11,641	1,22283	17256,344	18732,736	0,017	1,36
3	3	5	11,658	1,22099	16615,697	17442,754	0,017	1,31
7	3	3	11,736	1,2129	2655,508	2593,215	0,02	0,21
2	0	6	11.681	1.21858	76532.53	80749.48	0.017	3.01
2	6	1	11 705	1 21609	10971 786	9745 859	0.017	0.85
2	2	1	11,705	1,21005	2454 614	2204 771	0,017	0,05
9	2	1	11,785	1,20783	2434,014	2394,771	0,02	0,19
9	1	2	11,796	1,20674	3444,134	3225,969	0,02	0,26
4	4	4	11,77	1,20938	62154,77	62844,17	0,017	4,79
5	5	2	11,848	1,20153	8949,907	7690,986	0,017	0,67
2	1	6	11,832	1,20308	36527,38	32527,092	0,017	2,78
8	3	2	11 919	1 19438	4483 209	4559 117	0.02	0.34
5	ĥ	5	11 022	1 10305	4023 802	4058 925	0.017	0.2
5	2	5	11,923	1,19393	4025,603	4038,833	0,017	0,5
6	5	U	11,93	1,19327	3706,122	3093,798	0,017	0,14
8	2	3	11,937	1,19259	5704,542	5630,589	0,02	0,43
3	6	0	11,869	1,19935	395,422	339,445	0,017	0,02
6	4	3	11,962	1,19007	16491,26	15597,076	0,02	1,23
6	3	4	11,987	1.1876	18430.656	19010.916	0.02	1.37
ñ	6	2	11 012	1 10/04	20745 749	30675 942	0.017	1 1 2
7	4	2	12,017	1,1,2474	1120.072	1100.020	0,017	1,12
/	4	2	12,017	1,18463	1120,062	1109,038	0,02	0,08
6	0	5	12,019	1,18444	2828,76	2777,045	0,017	0,1
4	5	3	12,044	1,18204	5753,996	5975,117	0,017	0,43
1	6	2	11,976	1,18869	1211,61	1172,369	0,017	0,09
7	2	4	12.06	1,18046	5115.733	5791.085	0.02	0.37
3	0	6	11 998	1 18651	6420 778	6892 972	0.017	0.24
, ,	-	1	12,002	1 17025	5150 (7	5390 572	0.00	0.20
0	2	1	12,082	1,1/835	5152,67	5280,573	0,02	0,38
3	6	1	12,022	1,18421	53491,68	51788,6	0,017	3,95
4	3	5	12,1	1,17653	827,478	822,089	0,017	0,06
0	2	6	12,027	1,18364	83758,9	78097,62	0,017	3,08
1	2	6	12.09	1.17757	3673.344	3687.152	0.017	0.27
6	1	5	12 166	1 17010	2376 141	2500 917	0.02	0.17
0	-	ر ،	12,100	1,17019	2370,141	2300,917	0,02	0,17
0	5	4	12,104	1,1/619	1/61/,54/	1/41/,004	0,017	0,64
0	4	5	12,136	1,17313	18784,59	17637,393	0,017	0,68
3	1	6	12,145	1,17219	16645,857	16380,362	0,017	1,2
10	0	0	12,23	1,16413	647,818	515,034	0,023	0,01
2	6	2	12.163	1,17053	11910.853	12602 67	0.017	0.86
0	ñ	2	12.24	1 16217	3307 549	2057.062	0.022	0.24
9	2	4	12,24	1,10017	3372,348	2957,003	0,025	0,24
1	5	4	12,166	1,17023	2121,118	2243,627	0,017	0,15
1	4	5	12,197	1,16722	17687,52	16481,102	0,017	1,27
5	4	4	12,331	1,15461	1583,019	1650,128	0,02	0,11
8	4	0	12,344	1,15338	61039.98	61921.05	0,02	2,13
2	2	6	12 275	1 1500	178 200	190 741	0.017	0.01

-	h	Ŀ	1	20	۲Å٦ ل	<i>r</i> ²	<i>r</i> ²	EWIIM	:100
-	n	ĸ	1	20	u [A]	r _o	r _c	FWHN	1100
	9	3	0	12,37	1,15095	8930,767	7932,018	0,02	0,31
	10	1	0	12,374	1,15059	17961,836	15900,188	0,023	0,62
	10	0	1	12,378	1,15027	2309,005	2035,867	0,023	0,08
	4	6	0	12 304	1 15713	14422 954	12956 79	0.017	0.51
		0	4	12,301	1 1 1 1 2 2 6	102881	05000 16	0.02	2 56
	0	0	4	12,399	1,14820	102881	93999,10	0,02	5,50
	9	0	3	12,401	1,14808	676,926	635,674	0,02	0,02
	2	5	4	12,349	1,15289	642,172	634,484	0,017	0,04
	2	4	5	12,381	1,15	712,518	617,892	0,017	0,05
	8	4	1	12 491	1 1 3 9 9	9365 821	9545 821	0.02	0.64
	4		2	12,121	1 1 4 5 5 0	1 005	1 160	0.017	0,01
	4	0	0	12,428	1,14559	1,095	1,109	0,017	0
	9	3	1	12,517	1,13755	14843,375	14542,617	0,023	1,01
	10	1	1	12,52	1,13721	315,161	309,644	0,023	0,02
	6	5	2	12,525	1,13677	7287,4	7176,917	0,02	0,5
	4	6	1	12 451	1 14352	2899 516	2653 893	0.017	0.2
	0	1	4	12,451	1,12526	12111 201	12592 710	0,017	0,2
	0	1	4	12,342	1,15520	13111,281	15562,719	0,02	0,89
	3	6	2	12,467	1,14202	4736,174	4795,547	0,017	0,32
	9	1	3	12,544	1,13509	8890,05	9254,875	0,023	0,61
	5	5	3	12,592	1,13075	398,381	417,18	0,02	0,03
	6	2	5	12 597	1 13034	3645 823	3842 567	0.02	0.25
	4	-	6	12,571	1,120001	10248.000	0040.004	0,017	0,20
	4	1	0	12,571	1,13208	10348,999	9849,884	0,017	0,7
	5	3	5	12,647	1,12592	1397,807	1265,636	0,02	0,09
	3	5	4	12,65	1,12562	3403,162	3146,259	0,02	0,23
	3	2	6	12.577	1.13214	1168,987	1152.861	0.017	0.08
	8	3	3	12 659	1 12478	6135 832	5812 165	0.02	0.41
	2	4	-	12,000	1,12202	14021 102	12451 222	0,02	0,02
	3	4	5	12,08	1,12293	14031,103	13451,225	0,02	0,93
	7	5	0	12,722	1,11927	5867,732	6049,86	0,02	0,19
	0	6	3	12,654	1,12525	18163,35	17158,078	0,017	0,6
	7	4	3	12,752	1.11663	17814.961	17686.604	0.02	1.17
	7	3	4	12 776	1 11459	3265 802	3270 606	0.02	0.21
	í	6	2	12,770	1,12002	42045.56	45(24.92	0,02	0,21
	1	0	3	12,/13	1,12003	42945,56	45054,85	0,017	2,83
	10	2	0	12,798	1,11265	71873,81	74713,22	0,023	2,34
	7	0	5	12,806	1,11198	581,775	610,197	0,02	0,02
	10	0	2	12.811	1.11149	80840.84	83743.37	0.023	2.63
	0	3	6	12 745	1 11726	47215 73	46487 34	0.017	1.55
	ć	5	0	12,745	1,11720	47215,75	40407,54	0,017	1,55
	5	6	0	12,842	1,10888	6662,789	68/0,0/4	0,017	0,21
	7	5	1	12,864	1,10694	5758,227	5532,883	0,02	0,37
	1	3	6	12,804	1,11215	4762,371	5017,156	0,017	0,31
	4	6	2	12.882	1.10539	23570,785	23505.021	0.02	1.51
	2	6	3	12 889	1 1048	753 959	749 525	0.017	0.05
	2	4	2	12,009	1,1040	2051 812	2010.862	0,017	0,05
	ð	4	2	12,921	1,10212	2051,812	2010,862	0,02	0,15
	10	2	1	12,94	1,10053	4744,736	4487,461	0,023	0,3
	7	1	5	12,944	1,10016	3155,525	2962,327	0,02	0,2
	9	3	2	12.946	1.1	3391,446	3185,979	0.023	0.21
	10	1	2	12 0/0	1 00060	6444 524	6044 224	0.023	0.41
	10	1		12,949	1,09909	0444,524	0044,224	0,023	0,41
	8	2	4	12,96	1,09876	149,723	139,983	0,02	0,01
	5	0	6	12,961	1,09871	14,455	13,475	0,017	0
	9	2	3	12,962	1,09861	9787,87	9157,243	0,023	0,62
	2	3	6	12.979	1.09723	1577.557	1518.237	0.017	0.1
	5	6	1	12 983	1.09688	42041 57	41158.05	0.02	2.65
	6	4	4	12,000	1,00070	1706 076	17(2,574	0,02	0.11
	0	4	4	12,984	1,09079	1/90,970	1705,574	0,02	0,11
	4	2	6	12,988	1,09643	56455,26	56119,07	0,02	3,57
	4	5	4	13,059	1,0905	15824,583	14698,749	0,02	0,99
	4	4	5	13,089	1,08806	13200,746	13467,402	0,02	0,82
	5	1	6	13,098	1.08731	10406.336	10860.164	0.02	0.65
	2	6	2	13 179	1 08072	35057 92	35519 70	0.02	2,00
	5	-	3	13,178	1,00075	33737,03	55516,79	0,02	2,2
	6	5	3	13,232	1,07628	1636,518	1524,493	0,02	0,1
	3	3	6	13,265	1,07364	5641,418	5967,418	0,02	0,34
	7	5	2	13,282	1,07225	469,673	465,17	0,02	0,03
	6	3	5	13.284	1.07211	2546.684	2498.98	0.02	0.15
	1	7	0	12 222	1.07621	4060 570	2777 008	0.017	0.12
	1		0	13,232	1,07031	4000,379	5777,908	0,017	0,12
	9	4	0	13,339	1,06773	/32,041	/42,882	0,023	0,02
	7	2	5	13,35	1,06685	13776,804	13960,631	0,02	0,82
	10	2	2	13,355	1,06642	23,411	23,536	0,023	0
	0	7	1	13.313	1,06981	7139.455	7142.164	0.017	0.21
	0	5	5	13 20	1.0627	2/37 2/5	2069 574	0.02	0.07
	0	5	, ,	10,09	1,0057	2+37,343	2000,374	0,02	0,07
	9	0	4	13,39	1,06366	.5586,09	3033,173	0,023	0,11
	5	6	2	13,397	1,0631	275,22	223,314	0,02	0,02
	1	7	1	13,369	1,06533	603,423	593,018	0,017	0,04
	1	5	5	13,446	1,05928	14401,832	13406,072	0,02	0,85
	1	0	7	13 30	1.0637	3178.62	2691 857	0.017	0.09
	4	2	<i>`</i>	12 47	1.05727	10506 020	10027.007	0.02	0,09
	0	0	0	15,47	1,03/3/	19300,939	1905/,980	0,02	0,57
	9	4	1	13,475	1,057	17523,506	17372,115	0,023	1,02
	10	3	0	13,475	1,05697	49,506	49,056	0,023	0
	2	7	0	13,401	1,06277	582,449	457,489	0,017	0,02
	5	2	6	13 499	1 05512	2723.91	2786 261	0.02	0.16
	10	0	2	12 504	1.05475	2,25,71	2160,201	0,02	0,10
	10	0	3	15,504	1,03475	2,090	2,104	0,023	0
	9	1	4	13,522	1,0533	5927,643	6050,392	0,023	0,34

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
0	1	7	13,466	1,05768	1223,183	1162,042	0,017	0,04
5	5	4	13,567	1,04983	295,68	296,886	0,02	0,02
4	6	3	13,571	1,04953	8550,919	8703,024	0,02	0,5
8	5	0	13,579	1,04891	7182,092	7421,498	0,02	0,21
6	0	6	13,584	1,04854	61523,68	63558,8	0,02	1,77
11	1	0	13,59	1,0481	1717,826	1742,037	0,023	0,05
11	0	1	13,593	1,04785	16,137	16,238	0,023	0
5	4	5	13,596	1,04765	17506,299	17488,35	0,02	1,01
1	1	7	13,522	1,05334	1942,618	2006,771	0,017	0,11
6	6	1	13,605	1,04695	8690,854	8506,045	0,02	0,5
8	4	3	13,608	1,04673	3151,702	3082,153	0,023	0,18
10	3	1	13,61	1,04657	5966,054	5830,295	0,023	0,34
2	/	1	13,537	1,05219	840,877	849,047	0,017	0,05
2	5	3	13,012	1,04057	7606 840	7402 476	0,02	0,34
8	3	4	13,625	1,04505	5745 787	5628 571	0.023	0,22
9	3	3	13,631	1,04492	20651 775	20258 781	0.023	1 18
2	0	7	13,557	1.05062	1.324	1.078	0.017	0
10	1	3	13,635	1.04465	2901.523	2853,925	0.023	0.17
4	3	6	13.656	1.04304	34617,906	35182.94	0.02	1.97
8	0	5	13,658	1.0429	1316.851	1337.679	0.02	0.04
1	6	4	13,68	1,04124	842,594	857,962	0,02	0,05
0	4	6	13,687	1,04066	2311,14	2334,819	0,02	0,07
8	5	1	13,713	1,03874	3738,488	3727,623	0,02	0,21
6	1	6	13,715	1,03861	24380,336	24457,121	0,02	1,38
7	4	4	13,716	1,03851	4439,763	4465,53	0,02	0,25
0	7	2	13,717	1,0384	633,763	642,3	0,017	0,02
11	1	1	13,723	1,03795	20747,408	20978,314	0,023	1,17
1	4	6	13,742	1,03653	2073,402	2040,483	0,02	0,12
3	7	0	13,679	1,04129	3018,122	3076,131	0,017	0,09
2	1	7	13,688	1,04064	2014,071	2035,519	0,017	0,11
1	7	2	13,772	1,0343	4407,665	4011,758	0,02	0,25
8	1	5	13,788	1,03313	4254,094	4117,02	0,02	0,24
3	7	1	13,812	1,03134	2779,581	2329,095	0,02	0,15
2	6	4	13,844	1,02897	21585,955	20568,348	0,02	1,2
0	2	7	13,857	1,02798	2071,21	1981,864	0,02	0,06
9	4	2	13,875	1,02668	12547,892	12385,876	0,023	0,69
3	3	5	13,880	1,02585	0388,221	0323,179	0,02	0,35
2	4	07	13,900	1,02442	39200,28	59180,07	0,02	2,10
1	2	7	13,652	1,02980	5462.74	5444 802	0,017	0,22
9	2	4	13,912	1,024	2818 263	2785 873	0.023	0.15
2	7	2	13 935	1,02226	806 923	760 368	0.025	0.04
7	5	3	13,952	1 02104	18159 982	17430 432	0.02	0.99
3	1	7	13,96	1.02045	3974.142	3903.854	0.02	0.22
11	2	0	13,977	1,01917	1,444	1,508	0,023	0
11	0	2	13,99	1,01829	1368,572	1369,519	0,023	0,04
7	3	5	14,001	1,01748	16073,253	16377,05	0,02	0,88
6	6	2	14,001	1,01746	5080,969	5185,071	0,02	0,28
10	3	2	14,006	1,01711	8957,375	9190,371	0,023	0,49
10	2	3	14,021	1,016	3221,914	3286,824	0,023	0,17
4	7	0	14,059	1,0133	472,673	465,102	0,02	0,01
5	6	3	14,061	1,01313	34572,699	34432,758	0,02	1,86
2	2	7	14,073	1,01231	265,14	264,088	0,02	0,01
6	2	6	14,099	1,01045	377,595	395,437	0,02	0,02
8	5	2	14,106	1,00991	3387,451	3663,936	0,023	0,18
11	2	1	14,107	1,00984	4160,83	4509,777	0,023	0,22
3	6	4	14,113	1,00944	303,437	336,341	0,02	0,02
11 F	1	2	14,117	1,00919	9/6,849	1089,575	0,023	0,05
5	5 5	0	14,145	1,00729	1200 002	1774.040	0,02	0,3
0 9	2 2	4	14,104	1,0054	1043 000	1763 226	0,02	0,07
0 3	∠ ⊿	6	14,17/	1,0054	1887 847	2105,220	0,025	0,00
7	6	0	14 178	1,00485	73 787	80 891	0.02	0,1
, 1	7	1	14 188	1.00412	7105 35	6753 365	0.02	0.37
6	4	5	14,191	1.00389	979.628	919,179	0.02	0.05
3	7	2	14.203	1,00311	5121,121	4663.588	0.02	0.27
4	0	7	14,207	1,00276	131.706	119.423	0.02	0
4	5	5	14,26	0,99906	2200.962	2134.031	0.02	0.11
7	0	6	14,286	0,99727	6677,014	6762,32	0,02	0,17
7	6	1	14,306	0,9959	30556,131	34069,02	0,02	1,59
4	1	7	14,332	0,99407	1279,771	1210,932	0,02	0,07
3	2	7	14,338	0,9937	2825,182	2634,194	0,02	0,14
0	7	3	14,367	0,99169	29,562	31,649	0,02	0
10	4	0	14,371	0,99143	704,042	732,034	0,023	0,02
7	1	6	14,41	0,98872	12046,65	11587,045	0,02	0,61
10	0	4	14,418	0,98817	390,428	367,215	0,023	0,01

•	h	k	1	20	d [Å]	F_{o}^{2}	F_c^2	FWHM	i100
	1	7	3	14,419	0,98811	5991,37	5656,249	0,02	0,3
	4	6	4	14,482	0,98388	8763,546	8125,169	0,02	0,44
	0	3	7	14,486	0,9836	303,333	280,957	0,02	0,01
	11	2	2	14,49	0,98329	3316,132	2985,346	0,027	0,17
	9	5	0	14,491	0,98325	1,592	0,509	0,023	0
	10	4	1	14,497	0,98283	5838,751	5124,728	0,023	0,29
	8	4	4	14,516	0,98157	43365,52	36520,39	0,023	2,17
	9	4	3	14,518	0,98146	14082,033	11817,849	0,023	0,7
	5	7	0	14,533	0,98042	4065,359	3368,865	0,02	0,1
	1	3	1	14,538	0,9801	15225,628	12983,495	0,02	0,76
	4	3	4	14,556	0,98007	324 049	279.073	0,025	0,24
	10	1	4	14,541	0,9799	11353 032	279,073	0,02	0,02
	9	0	5	14 565	0,97933	13615 313	13483 979	0.023	0,30
	4	7	2	14,569	0.97801	4127.577	4242.41	0.02	0.21
	2	7	3	14,575	0.9776	9842,719	10443,759	0.02	0.49
	11	3	0	14,601	0,97587	1182,795	1175,048	0,023	0,03
	9	5	1	14,616	0,97486	12428,278	12666,209	0,023	0,62
	11	0	3	14,627	0,97412	7582,092	7641,074	0,023	0,19
	6	6	3	14,638	0,97339	1485,758	1457,325	0,02	0,07
	10	3	3	14,643	0,97309	1176,004	1144,347	0,023	0,06
	5	7	1	14,658	0,9721	1457,673	1416,175	0,02	0,07
	5	0	7	14,677	0,97087	23,596	24,645	0,02	0
	7	6	2	14,684	0,97041	5313,096	5686,125	0,023	0,26
	9	1	5	14,687	0,97022	12580,722	13462,068	0,023	0,62
	12	0	0	14,688	0,97011	60474,5	64003,88	0,027	0,74
	2	3	7	14,692	0,96985	85,829	92,283	0,02	0
	4	2	7	14,701	0,96929	3627,816	3692,878	0,02	0,18
	0	3	0	14,/1/	0,96821	3831,//5	3584,606	0,02	0,19
	5	5	1	14,720	0,90707	18115.012	16721 110	0,027	0,89
	0	5	2	14,720	0,90731	4705.003	4471 272	0,02	0,88
	11	1	3	14,739	0,90078	22358 074	21544 441	0,023	1.09
	7	2	6	14,777	0.96433	1587.43	1622.709	0.023	0.08
	0	6	5	14,781	0,96406	2,379	2,544	0,02	0
	8	3	5	14,786	0,96376	503,272	509,024	0,023	0,02
	5	1	7	14,798	0,96297	542,737	543,085	0,02	0,03
	12	1	0	14,809	0,96223	5955,393	5885,295	0,027	0,14
	12	0	1	14,812	0,96204	116,314	114,489	0,027	0
	0	5	6	14,813	0,962	486,484	476,027	0,02	0,01
	3	7	3	14,831	0,96081	1297,145	1313,321	0,02	0,06
	1	6	5	14,832	0,96077	21654,27	21946,58	0,02	1,04
	7	5	4	14,839	0,96029	4191,439	4241,02	0,023	0,2
	1	5	6	14,864	0,95873	1775,525	1762,632	0,02	0,09
	10	4	5	14,865	0,95862	8507,565	8441,9	0,023	0,41
	10	4	2	14,87	0,95851	56082.2	56286 53	0,023	1,81
	12	1	1	14,905	0,9501	3949.07	4012 192	0,023	0.19
	5	6	4	14 942	0.9537	1486 839	1536 52	0.027	0.07
	3	3	7	14,947	0.95344	6652,847	6868,891	0.02	0.32
	8	6	0	14,953	0,95301	4948,442	4980,502	0,023	0,12
	2	6	5	14,984	0,9511	10991,381	10614,689	0,02	0,52
	9	5	2	14,987	0,95091	5991,281	5796,164	0,023	0,28
	5	4	6	15	0,95008	3001,173	2858,899	0,02	0,14
	2	5	6	15,015	0,94912	21888,285	21179,52	0,02	1,03
	5	7	2	15,027	0,94836	2619,17	2520,844	0,02	0,12
	9	2	5	15,047	0,94714	3330,89	3084,196	0,023	0,16
	8	0	6	15,056	0,94653	9,101	8,365	0,023	0
	0	8	0	15,068	0,94582	4798,831	4676,802	0,02	0,06
	8	0	1	15,075	0,94536	3533,009 8487 205	3555,562	0,025	0,16
	11	3	2	15,092	0,94428	6847.85	7318 916	0,02	0.32
	11	2	3	15,025	0.94335	3206 214	3235 489	0.027	0.15
	1	8	0	15,118	0.94271	1001,565	939,919	0.02	0.02
	5	2	7	15,155	0,9404	12614,833	12576,55	0,02	0,58
	12	2	0	15,166	0,93971	576,308	565,534	0,027	0,01
	8	1	6	15,174	0,93921	7385,967	7087,428	0,023	0,34
	12	0	2	15,178	0,93901	748,806	711,175	0,027	0,02
	4	7	3	15,183	0,93869	180,939	168,556	0,02	0,01
	0	8	1	15,189	0,93834	36,466	32,525	0,02	0
	6	7	1	15,213	0,93684	498,237	449,684	0,02	0,02
	0	7	4	15,231	0,93575	648,312	641,346	0,02	0,01
	6	0	7	15,231	0,93573	2107,196	2089,063	0,02	0,05
	3	6	5	15,233	0,93562	21404,896	21490,111	0,02	0,98
	1	8	1 0	15,238	0.02465	44/01,55	40342,98	0,02	2,04
	2	5	8 6	15,249	0,93403	20323,230	29003,402	0,02	0,52
	3	3	υ	13,204	0,933/3	1320,938	1321,023	0,02	0,07

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
2	8	0	15,267	0,93357	8017,919	7988,56	0,02	0,18
1	7	4	15,28	0,93274	5970,558	5952,289	0,02	0,27
6	5	5	15,281	0,93272	4355,738	4345,794	0,023	0,2
12	2	1	15,286	0,93237	2263,863	2273,573	0,027	0,1
7	6	3	15,293	0,93196	23464,41	23813,547	0,023	1,06
12	1	2	15,295	0,93186	10183,036	10283,163	0,027	0,46
4	0	8	15,290	0,93165	2087 935	2121.63	0,02	0,05
0	4	7	15,324	0.93012	174.094	169.85	0.02	0,05
6	1	7	15,348	0,92866	2955,027	3019,441	0,02	0,13
0	1	8	15,366	0,9276	28125,828	28691,219	0,02	0,63
7	3	6	15,369	0,92741	3234,132	3294,588	0,023	0,15
1	4	7	15,373	0,92717	6346,741	6456,837	0,02	0,28
9	4	4	15,373	0,92714	80,353	81,337	0,023	0
2	8	1	15,386	0,92638	125,839	123,269	0,02	0,01
2	7	8	15,415	0,92467	2537 035	2/05 103	0,02	0,72
11	4	4	15,428	0,92358	10478 099	10249 471	0.027	0.23
8	6	2	15,434	0,92348	17174.711	16755.02	0.023	0,25
2	0	8	15,445	0,92283	0,023	0,013	0,02	0
10	5	0	15,448	0,9227	5590,844	5363,886	0,023	0,12
10	4	3	15,473	0,92122	5315,753	5391,783	0,023	0,24
11	0	4	15,477	0,92095	2414,313	2469,597	0,027	0,05
6	6	4	15,488	0,92033	19206,908	19839,42	0,023	0,85
10	3	4	15,492	0,92007	8282,592	8436,936	0,023	0,36
3	8	0	15,512	0,91892	420,493	402,078	0,02	0,01
10	0	5	15,517	0,91861	7022.07	1887,335	0,023	0,04
2	4	6	15,519	0,91847	30040 57	38108.46	0,02	1 75
6	4	6	15,523	0.91708	33096.996	31274.746	0.023	1,75
0	8	2	15,545	0,91693	4897,961	4619,691	0,02	0,11
11	4	1	15,551	0,91662	8571,294	8071,021	0,027	0,37
2	1	8	15,561	0,91604	13139,215	12244,313	0,02	0,57
10	5	1	15,565	0,91576	5284,97	4944,251	0,023	0,23
6	7	2	15,569	0,91553	1502,51	1402,328	0,023	0,07
4	6	5	15,576	0,91516	947,883	891,281	0,023	0,04
8	5	4	15,583	0,91474	10612,653	10125,042	0,023	0,46
11	5	3	15,584	0,91465	2101 014	1544,035	0,023	0,07
11	8	2	15,592	0,9142	736 577	718 834	0.027	0,14
4	5	6	15,606	0.91339	807.89	802,137	0.023	0.04
8	4	5	15,608	0,9133	7287,14	7246,026	0,023	0,32
5	7	3	15,624	0,91237	9925,954	10136,752	0,023	0,43
9	3	5	15,628	0,91209	1780,871	1824,514	0,023	0,08
3	8	1	15,629	0,91205	38725,07	40025,34	0,02	1,68
10	1	5	15,631	0,91191	1005,179	1029,044	0,023	0,04
12	2	2	15,641	0,91136	39393,64	39539,89	0,027	1,7
3	7	4	15,67	0,90967	3067,729	3031,773	0,02	0,13
3	0	8	15,688	0,9087	515 398	527.072	0.027	0,27
6	2	7	15,693	0,90836	85.52	87.707	0,023	0,01
0	2	8	15,71	0,90737	340,056	344,704	0,02	0,01
7	7	0	15,729	0,90631	1800,649	1727,091	0,023	0,04
5	3	7	15,733	0,90606	16472,963	15708,787	0,023	0,7
2	8	2	15,738	0,90576	6837,31	6465,409	0,02	0,29
12	3	0	15,744	0,90544	12240,616	11550,457	0,027	0,26
1	2	8	15,758	0,90462	816,755	774,784	0,02	0,03
3	4	7	15,76	0,9045	11845,029	11320,925	0,02	0,5
12	U 6	5	15,787	0,90404	2470,898 3751 257	2401,085 3821 402	0,027	0,05
3	1	8	15 801	0,90290	13970 747	14925 954	0.025	0,08
7	7	1	15,845	0,89973	9813,057	9735.49	0,023	0,41
4	8	0	15,848	0,89951	4746,201	4906,792	0,02	0,1
12	3	1	15,86	0,89887	2138,024	2262,317	0,027	0,09
7	0	7	15,862	0,89875	15962,914	17086,82	0,023	0,34
12	1	3	15,881	0,89766	83,556	83,639	0,027	0
9	0	6	15,885	0,89744	463,742	457,815	0,023	0,01
11	4	2	15,9	0,89663	204,177	202,152	0,027	0,01
2	2	8	15,901	0,89654	22982,211	22745,686	0,02	0,96
9	6	1	15,903	0,89645	19538,207	19417,908	0,023	0,82
10	5	2	15,909	0,89008	6991 425	7017 162	0,025	0,05
11	2	4	15,932	0.89482	1173.865	1173.802	0,027	0.05
4	8	1	15,963	0,89307	737,424	730,374	0,02	0,03
10	2	5	15,971	0,89267	3467,109	3462,408	0,027	0,14
7	1	7	15,974	0,89247	7696,554	7713,373	0,023	0,32
3	8	2	15,976	0,89236	3482,103	3497,427	0,02	0,14

h	k	1	20	[Å] b	F^2	F^2	FWHM	i100
	1	6	15 007	0.8012	7121.841	7172 720	0.022	0.20
9	1	0	15,997	0,8912	/121,641	1175,729	0,023	0,29
4	/	4	16,004	0,89083	10/0,0/4	10/4,/46	0,023	0,04
5	6	5	16,006	0,89072	16628,525	16675,631	0,023	0,68
8	6	3	16,016	0,89016	6545,368	6533,748	0,023	0,27
4	0	8	16,021	0,88988	28271,48	28162,736	0,02	0,58
13	1	0	16,032	0,88928	28,287	27,9	0,027	0
13	0	1	16,035	0,88913	2137,936	2105,605	0,027	0,04
5	5	6	16,035	0,88909	4903,306	4810,211	0,023	0,2
0	6	6	16.084	0.88641	18936.434	18800.555	0.023	0.38
8	3	6	16.088	0.88618	19193 662	18840.4	0.023	0.78
4	4	7	16,000	0,00010	977.085	251 024	0,023	0,70
4	4		16,092	0,88398	877,085	831,934	0,025	0,04
/	6	4	16,109	0,88508	639,068	600,442	0,023	0,03
0	8	3	16,123	0,88429	1651,185	1636,851	0,02	0,03
1	6	6	16,131	0,88385	354,652	365,251	0,023	0,01
4	1	8	16,132	0,88379	25499,646	26411,471	0,02	1,03
3	2	8	16,137	0,88353	2997,067	3125,554	0,02	0,12
13	1	1	16,146	0,88305	21044,605	21672,068	0,027	0,85
6	7	3	16,146	0,88303	9186,463	9509,533	0,023	0,37
7	4	6	16 162	0.88218	566 621	578 516	0.023	0.02
1	8	3	16.17	0.88175	33175 441	34074 258	0.02	1.34
7	7	2	16 197	0,00175	4570 112	4512 590	0,02	0.19
10	,	2	16,187	0,8808	4379,112	4313,389	0,025	0,18
12	3	2	16,202	0,88	1055,518	1048,964	0,027	0,04
12	2	3	16,215	0,87929	1527,651	1609,746	0,027	0,06
9	6	2	16,244	0,87772	741,111	702,112	0,023	0,03
6	3	7	16,252	0,8773	381,165	355,977	0,023	0,02
0	3	8	16,269	0,87641	1886,202	2006,323	0,02	0,04
2	6	6	16,271	0,87631	1341,792	1429,589	0,023	0,05
5	8	0	16,271	0,87627	4974,366	5327,696	0,02	0,1
0	7	5	16,276	0,87604	13341,179	14231,402	0,023	0,27
10	4	4	16,279	0,87586	121,36	127,662	0,027	0,01
4	8	2	16 304	0 87455	3393 653	3351 288	0.02	0.14
7	2	7	16 306	0.87441	2265 038	2220 631	0.023	0,14
2	0	2	16,200	0,07471	1995 254	1922 5	0,025	0,07
2	0	3	16,309	0,87420	1885,254	1855,5	0,02	0,07
1	3	8	16,315	0,8/393	5061,818	4830,414	0,02	0,2
1	7	5	16,322	0,87357	4513,747	4225,223	0,023	0,18
9	2	6	16,329	0,87321	3400,797	3121,151	0,023	0,13
0	5	7	16,339	0,87267	5719,361	5044,431	0,023	0,11
13	2	0	16,363	0,87141	4142,963	3523,679	0,027	0,08
13	0	2	16,374	0,87085	1929,525	1717,273	0,027	0,04
5	8	1	16,384	0,87032	37121,2	35155,69	0,02	1,45
1	5	7	16,385	0,87023	13860,027	13215,023	0,023	0,54
9	5	4	16,386	0,87021	1057,344	1004,244	0,027	0,04
9	4	5	16 409	0 86897	17355 297	17389.012	0.027	0.68
5	- 7	4	16 423	0.86825	5416.816	5560.937	0.023	0.21
0	, ,	-	16 422	0,00025	2701 210	2717 808	0,023	0,21
0	,	0	10,455	0,80775	2701,319	2717,898	0,023	0,05
5	0	8	16,44	0,86/3/	5444,105	5395,633	0,02	0,11
11	5	0	16,442	0,86727	6481,591	6442,029	0,027	0,13
2	3	8	16,454	0,86664	36278,85	36628,98	0,02	1,41
2	7	5	16,46	0,86629	3189,021	3246,249	0,023	0,12
4	2	8	16,461	0,86624	51,075	52,022	0,023	0
11	4	3	16,465	0,86604	14158,871	14354,893	0,027	0,55
13	2	1	16,475	0,86555	1326,441	1341,643	0,027	0,05
10	5	3	16,479	0,86531	3762,793	3807,085	0,027	0,15
13	1	2	16 482	0.86514	2945 528	2964 212	0.027	0.11
11	3	4	16 483	0.86508	3481 696	3504 35	0.027	0.13
3	6	6	16 501	0.86415	478 869	463 476	0.023	0.02
11	0	5	16 507	0.86286	1820 846	1765.97	0,025	0,02
	0	7	16,500	0,00500	5002 524	1705,87	0,027	0,04
5	4	/	16,509	0,80375	5003,524	4816,049	0,023	0,19
6	6	5	16,517	0,86335	7040,711	6812,765	0,023	0,27
12	4	0	16,519	0,86321	24095,209	23325,445	0,027	0,46
10	3	5	16,521	0,86314	4387,489	4244,254	0,027	0,17
2	5	7	16,523	0,86303	3474,342	3352,014	0,023	0,13
3	8	3	16,539	0,86218	30598,053	30137,629	0,023	1,18
8	7	1	16,544	0,86194	2872,982	2837,84	0,023	0,11
6	5	6	16,545	0,86187	15848,596	15653,087	0,023	0,61
5	1	8	16,548	0,86172	15255,646	15069,112	0,023	0.59
11	5	1	16.553	0,86149	9389.768	9157.884	0.027	0.36
8	ñ	7	16 561	0.86108	821 269	785 388	0.023	0.02
12	0	, л	16 561	0.86106	34450 352	32968 508	0.025	0.66
12	5	-+	16 404	0,00100	2502 595	22700,398	0,027	0,00
8 	5	5	10,000	0,038/3	3393,383	5/14,193	0,025	0,14
11	1	5	10,615	0,85829	6411,621	0005,939	0,027	0,24
12	4	1	16,63	0,85752	3993,706	3929,415	0,027	0,15
8	1	7	16,668	0,85556	1085,402	1021,552	0,023	0,04
12	1	4	16,669	0,85554	6769,179	6397,939	0,027	0,26
10	6	0	16,672	0,85539	7682,88	7302,054	0,023	0,15
3	3	8	16,682	0,85487	8257,489	8055,883	0,023	0,31
3	7	5	16,688	0,85454	10620,744	10511,16	0,023	0,4

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
5 8 2 16,716 0,85315 -4,079 96,113 0,023 7 7 3 16,743 0,85175 -38,267 569,616 0,023 12 3 3 16,758 0,85141 -832,066 14989,544 0,027 10 0 6 16,764 0,8507 -1509,521 24503,488 0,027 6 8 0 16,774 0,85018 -249,473 5188,968 0,023 10 6 1 16,797 0,84905 -152,222 3077,846 0,023 9 6 3 16,799 0,84896 -122,777 19702,971 0,027 13 2 2 16,805 0,84866 -26,543 424,932 0,023 14 6 16,846 0,84648 -13,786 293,191 0,023 14 4.8 3 16,856 0,84551 -284,155 4814,549 0,027 5 2 8 </td <td>i100</td>	i100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
1 1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
	0
	C C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
8 6 4 16,797 0,84903 -159,222 3077,846 0,023 9 6 3 16,799 0,84896 -1122,727 19702,971 0,027 13 2 2 16,805 0,84866 -26,543 424,932 0,023 4 6 6 16,819 0,84795 -847,679 14877,283 0,023 7 3 7 16,848 0,84648 -113,786 293,191 0,023 4 8 3 16,856 0,84609 -77,812 1078,595 0,023 9 3 6 16,868 0,84531 -29,38 52,797 0,023 10 1 6 16,871 0,84526 -472,18 7213,914 0,023 11 5 2 16,881 0,84433 -35,186 599,275 0,027 6 8 1 16,883 0,84474 -60,744 1199,324 0,023 11 5	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
3 3 3 16,777 0,84566 -122,127 17,02,771 0,027 13 2 16,805 0,84866 -26,543 424,932 0,023 7 3 7 16,846 0,84666 -91,948 1691,19 0,023 8 4 6 16,848 0,84648 -13,786 293,191 0,023 9 3 6 16,856 0,84543 -2,938 52,797 0,023 10 1 6 16,871 0,84537 -484,635 7566,072 0,027 8 7 2 16,873 0,84537 -484,635 7566,072 0,023 10 1 6 16,871 0,84537 -484,635 7566,072 0,027 8 7 2 16,873 0,84526 -472,18 7213,914 0,023 11 5 2 16,881 0,84483 -351,86 599,275 0,027 6 8 1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
8 4 6 16,848 0,84648 -13,786 293,191 0,023 4 8 3 16,856 0,84609 -77,812 1078,595 0,023 9 3 6 16,868 0,84551 -284,155 4814,549 0,027 5 2 8 16,869 0,84537 -484,635 7566,072 0,023 10 1 6 16,873 0,84526 -472,18 7213,914 0,023 11 5 2 16,881 0,84433 -35,186 599,275 0,027 6 8 1 16,883 0,84474 -60,744 1199,324 0,023 0 8 4 16,990 0,84394 -296,816 4388,857 0,023 13 0 3 16,921 0,84284 -296,161 5569,962 0,023 11 2 5 16,935 0,84214 -38,985 1354,065 0,023 12 4	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
4 5 16,850 6,84657 17,412 16,853 6,027 9 3 6 16,869 0,84551 -284,155 4814,549 0,027 5 2 8 16,869 0,84551 -284,155 4814,549 0,023 10 1 6 16,871 0,84537 -484,635 7566,072 0,023 11 5 2 16,873 0,84526 -472,18 7213,914 0,023 11 5 2 16,881 0,84483 -35,186 599,275 0,027 6 8 1 16,890 0,84394 -290,816 4388,857 0,023 13 0 16,901 0,84387 -368,586 5617,178 0,027 6 7 4 16,922 0,84284 -296,161 5569,962 0,023 13 0 3 16,924 0,84274 -28,892 489,486 0,027 6 7 4 16,937 </td <td>0</td>	0
9 5 6 16,868 0,84531 -284,153 4814,399 0,021 5 2 8 16,868 0,84531 -2,938 52,797 0,023 10 1 6 16,871 0,84537 -484,635 7566,072 0,027 8 7 2 16,873 0,84526 -472,18 7213,914 0,023 11 5 2 16,881 0,84437 -484,635 7656,072 0,027 6 8 1 16,883 0,84474 -60,744 1199,324 0,023 0 8 4 16,999 0,84394 -296,816 4388,857 0,023 13 0 16,901 0,84284 -296,161 5569,962 0,023 13 0 3 16,924 0,84274 -28,892 489,486 0,027 11 2 5 16,938 0,84204 -3,951 94,95 0,023 12 4 2	0
5 2 8 16,869 0,84543 -2,938 52,797 0,023 10 1 6 16,871 0,84537 -484,635 7566,072 0,027 8 7 2 16,871 0,84537 -484,635 7566,072 0,023 11 5 2 16,873 0,84526 -472,18 7213,914 0,023 6 8 1 16,883 0,84474 -60,744 1199,324 0,023 0 8 4 16,899 0,84394 -290,816 4388,857 0,023 13 0 16,901 0,84387 -368,586 5617,178 0,027 6 7 4 16,922 0,84284 -296,161 5569,962 0,023 13 0 3 16,924 0,84274 -28,892 489,486 0,027 11 2 5 16,935 0,84219 -801,613 13759,049 0,023 12 4 2 <td>u</td>	u
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
6 8 1 16,853 0,84474 -50,744 1199,524 0,023 13 3 0 16,899 0,84394 -290,816 4388,857 0,023 13 3 0 16,901 0,84387 -368,586 5617,178 0,027 6 7 4 16,922 0,84284 -296,161 5569,962 0,023 13 0 3 16,924 0,84274 -28,892 489,486 0,027 6 0 8 16,938 0,84204 -3,951 94,955 0,023 1 8 4 16,947 0,84108 -7,657 142,265 0,027 8 2 7 16,987 0,83961 -119,701 1739,21 0,023 12 2 4 16,988 0,83959 -15,597 255,729 0,027 4 3 8 16,996 0,83918 -134,231 2621,111 0,023 14 7	0
0 8 4 16,899 0,84394 -290,816 4388,857 0,023 13 3 0 16,901 0,84387 -368,586 5617,178 0,027 6 7 4 16,922 0,84284 -296,161 5569,962 0,023 13 0 3 16,924 0,84274 -28,892 489,486 0,027 11 2 5 16,935 0,84219 -801,613 13759,049 0,023 1 8 4 16,944 0,84274 -38,985 1354,065 0,023 1 8 4 16,987 0,83961 -119,701 1739,21 0,023 12 4 2 16,987 0,83961 -119,701 1739,21 0,023 12 2 4 16,988 0,83959 -15,597 255,729 0,027 4 3 8 16,996 0,83918 -134,231 2621,111 0,023 14 7 <td>U U</td>	U U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
6 6 6 10,536 0,04204 -5,551 94,95 0,023 1 8 4 16,944 0,84173 -83,085 1354,065 0,023 1 2 4 16,944 0,84108 -7,657 142,265 0,023 12 4 2 16,987 0,83961 -119,701 1739,21 0,023 12 2 4 16,988 0,83959 -15,597 255,729 0,027 4 3 8 16,996 0,83918 -134,231 2621,111 0,023 4 7 5 17,002 0,83886 -660,936 12677,225 0,023 13 3 1 17,009 0,83855 -748,043 13395,646 0,029 0 4 7,009 0,83854 -360,97 6008,084 0,022 1 9 0 17,009 0,83854 -360,97 608,084 0,023 13 1 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Û
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
4 3 8 10,930 0,83916 -134,231 2024,111 0,023 4 7 5 17,002 0,83886 -660,936 12677,225 0,023 6 4 7 17,005 0,83887 -285,283 5392 0,023 13 3 1 17,009 0,83855 -748,043 13395,646 0,029 1 9 0 17,009 0,83854 -360,97 6008,084 0,02 0 4 8 17,021 0,83794 -929,356 15577,486 0,023 13 1 3 17,029 0,83756 -766,078 13285,489 0,032 6 1 8 17,043 0,83596 -411,828 6619,123 0,023 4 5 7 17,063 0,83578 -22,17 352,847 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -470,75 648,574 0,022 <td< td=""><td>0</td></td<>	0
4 7 5 17,002 0,83886 -660,936 1267,225 0,023 6 4 7 17,002 0,83873 -285,283 5392 0,023 13 3 1 17,009 0,83855 -748,043 13395,646 0,029 1 9 0 17,009 0,83854 -360,97 6008,084 0,02 0 4 8 17,029 0,83794 -929,356 15577,486 0,023 13 1 3 17,029 0,83756 -766,078 13285,489 0,032 6 1 8 17,043 0,83657 -411,828 6619,123 0,023 4 5 7 17,063 0,83578 -22,17 352,847 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 1 4 8 17,072 0,83546 -47,075 648,574 0,022 2 8	0
6 4 7 17,005 0,83873 -285,283 5392 0,023 13 3 1 17,009 0,83855 -748,043 13395,646 0,029 1 9 0 17,009 0,83855 -748,043 13395,646 0,029 0 4 8 17,021 0,83794 -929,356 15577,486 0,023 13 1 3 17,029 0,83794 -929,356 15577,486 0,023 13 1 3 17,029 0,83765 -766,078 13285,489 0,032 6 1 8 17,063 0,8359 -288,891 5411,274 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,022 2 8	C C
13 3 1 17,009 0,83855 -748,043 13395,646 0,029 1 9 0 17,009 0,83855 -360,97 6008,084 0,02 0 4 8 17,021 0,83794 -929,356 15577,486 0,023 13 1 3 17,029 0,83756 -766,078 13285,489 0,032 6 1 8 17,043 0,83687 -411,828 6619,123 0,023 4 5 7 17,063 0,83578 -22,17 352,847 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,02 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
0 4 8 17,021 0,83794 -929,356 15577,486 0,023 13 1 3 17,029 0,83756 -766,078 13285,489 0,032 6 1 8 17,043 0,83756 -411,828 6619,123 0,023 4 5 7 17,063 0,8359 -288,891 5411,274 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,022 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
1 3 17,021 0,03756 -766,078 13285,489 0,032 6 1 8 17,043 0,83756 -766,078 13285,489 0,032 4 5 7 17,063 0,8359 -288,891 5411,274 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,02 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
15 1 35 17,029 0,83736 -700,078 15263,469 0,022 6 1 8 17,043 0,83687 -411,828 6619,123 0,023 4 5 7 17,063 0,83578 -228,891 5411,274 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,02 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
6 1 8 17,043 0,83687 -411,828 6619,123 0,023 4 5 7 17,063 0,8359 -288,891 5411,274 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,022 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	U U
4 5 7 17,063 0,8359 -288,891 5411,274 0,023 1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,02 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
1 4 8 17,066 0,83578 -22,17 352,847 0,023 0 9 1 17,072 0,83546 -47,075 648,574 0,02 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
0 9 1 17,072 0,83546 -47,075 648,574 0,02 2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
2 8 4 17,077 0,83521 -148,804 2477,056 0,023	0
2 6 4 17,077 0,05521 -140,004 2477,050 0,025	0
/ 6 5 1/,101 0,83405 -1083,701 19787,883 0,023	U
10 6 2 17,106 0,83384 -144,604 2768,417 0,027	0
1 9 1 17,116 0,83332 -39,425 723,186 0,02	0
7 5 6 17,129 0,83271 -95,478 1780,565 0,023	0
2 9 0 17.142 0.83209 -10.231 82.337 0.02	0
14 0 0 17 154 0 83152 -74 025 1246 461 0 022	0
17 0 0 17,134 0,05152 -74,025 1240,401 0,032	-
10 2 0 17,180 0,82997 -10,665 210,284 0,027	0
9 7 0 17,197 0,82944 -141,273 2261,633 0,023	0
2 4 8 17,198 0,82939 -1,988 44,992 0,023	0
6 8 2 17,206 0,82901 4937.682 4891.402 0.023	0.18
1 0 9 17 213 0 82869 6490 161 6539 455 0.02	0.12
5 6 6 17,210 0,02007 0720,101 0007,700 0,02	0,12
3 U O 17,219 U,82841 554,726 558,965 0,023	0,02
11 4 4 17,227 0,82803 3197,667 3175,535 0,027	0,11
10 5 4 17,24 0,82739 3033,717 3013,358 0,027	0,11
2 9 1 17,248 0,82699 4902,885 4962,919 0.02	0,17
5 8 3 17.255 0.82667 23087.898 23448 734 0.023	0.87
14 1 0 17 258 0.82654 13371 77 12467 679 0.022	0.24
17 1 0 17,250 0,02054 15571,77 15407,076 0,052	0,24
14 0 1 17,26 0,82643 2081,148 2090,757 0,032	0,04
10 4 5 17,262 0,82633 533,853 535,492 0,027	0,02
0 1 9 17,273 0,82583 1448,818 1421,048 0,02	0,03
3 8 4 17.298 0.82466 403.865 402.933 0.023	0.01
9 7 1 17 303 0 82438 5143 829 5220 13 0 022	0.19
1 1 0 17.214 0.02724 1021.001 1044 (200 0.027	0,10
1 1 9 17,310 0,82376 1231,281 1266,632 0,02	0,04
9 0 7 17,319 0,82363 1746,076 1779,353 0,023	0,03
13 3 2 17,329 0,82316 1726,932 1730,807 0,032	0,06
13 2 3 17,342 0,82258 9543,788 9374,937 0.032	0,33
2 0 9 17.344 0.82246 2.572 2.48 0.02	0
7 8 0 17 351 0 80216 102 607 00 670 0 002	
· · · · · · · · · · · · · · · · · · ·	0
o 2 8 17,555 0,82193 18343,748 17881,439 0,023	0,64
3 9 0 17,361 0,82166 4910,479 4806,104 0,02	0,09
9 5 5 17,363 0,82157 17235,773 16936,668 0,027	0,6
14 1 1 17.364 0.82154 342.876 337.645 0.032	0.01
0 9 2 17 391 0 82024 821 006 829 89 0 022	0.01
5 2 17,551 0,02024 021,070 020,00 0,025	0,01
5 5 8 17,392 0,82022 3661,234 3693,541 0,023	0.13
5 7 5 17,398 0,81992 1936,818 1953,714 0,023	0,1.

-	h	k	1	20	d [Å]	F_{α}^2	F_{a}^{2}	FWHM	i100
	8	7	3	17,408	0,81948	131,162	130,794	0,023	0
	11	5	3	17,416	0,81909	16520,193	16298,652	0,027	0,57
	3	4	8	17,417	0,81906	341,06	335,885	0,023	0,01
	9	1	7	17,422	0,81879	943,797	920,526	0,023	0,03
	1	9	2	17,435	0,81822	6158,964	6006,537	0,023	0,21
	2	1	9	17,447	0,81765	1403,18	1404,456	0,02	0,05
	11	3	5	17,456	0,81725	14440,808	14695,498	0,027	0,5
	7	8	1	17,456	0,81723	26476,422	27097,945	0,023	0,91
	5	5	7	17,458	0,81716	4944,92	5068,578	0,023	0,17
	12	5	1	17,460	0,81675	283,834	290,403	0,023	0,01
	12	7	6	17,407	0,8167	3910.037	3956 689	0,027	0,11
	12	4	3	17,49	0,81568	1518 578	1499 818	0.023	0,07
	7	7	4	17,493	0.81552	1981.758	1957,467	0.023	0.07
	0	6	7	17,503	0,81508	6888,328	6856,639	0,023	0,12
	8	3	7	17,506	0,8149	1298,704	1292,863	0,027	0,05
	12	3	4	17,507	0,81488	7076,281	7034,882	0,027	0,24
	7	0	8	17,509	0,81479	440,316	438,526	0,023	0,01
	1	7	6	17,514	0,81456	3701,09	3661,306	0,023	0,13
	12	0	5	17,529	0,81386	1721,517	1692,174	0,027	0,03
	1	6	7	17,546	0,81309	9555,167	9664,84	0,023	0,33
	9	6	4	17,546	0,81307	2379,646	2400,317	0,027	0,08
	3	0	9	17,561	0,81239	915 510	210,114	0,02	0,01
	14	2	2	17,565	0,81222	815,519	819,114	0,025	0,03
	14	5	1	17,500	0,81214	3623 923	3650 268	0,032	0,58
	7	4	7	17,572	0.81178	12753.759	12868.656	0.023	0.43
	14	0	2	17,576	0,81169	25900,627	26071,285	0,032	0,44
	0	2	9	17,581	0,81146	1357,341	1369,4	0,023	0,02
	9	4	6	17,595	0,81082	1215,563	1210,417	0,027	0,04
	11	6	0	17,598	0,81067	2007,559	1997,259	0,027	0,03
	4	8	4	17,601	0,81055	4567,233	4543,725	0,023	0,16
	7	1	8	17,611	0,8101	8452,769	8317,126	0,023	0,29
	9	7	2	17,619	0,80975	1295,817	1266,198	0,027	0,04
	1	2	9	17,624	0,8095	3355,365	3264,958	0,023	0,11
	13	4	0	17,627	0,80937	594,264	583,466	0,032	0,01
	12	1	2	17,631	0,80919	3191,472	3146,267	0,027	0,11
	2	7	5	17,034	0,80907	1524 022	1521,205	0,027	0,05
	3	1	9	17,043	0,80804	399 486	401 748	0,023	0,05
	4	9	0	17,664	0.8077	2585,009	2605.66	0.023	0.04
	13	0	4	17,666	0,8076	3864,999	3897,566	0,032	0,06
	14	2	1	17,671	0,80739	972,361	982,11	0,032	0,03
	2	6	7	17,675	0,8072	1244,612	1261,715	0,023	0,04
	14	1	2	17,678	0,80706	4415,087	4444,104	0,032	0,15
	11	0	6	17,686	0,80667	6530,284	6517,508	0,027	0,11
	6	6	6	17,696	0,80626	863,838	859,393	0,023	0,03
	10	3	6	17,699	0,80608	2731,444	2722,445	0,027	0,09
	11	6	1	17,702	0,80594	14985,977	14953,512	0,027	0,5
	4	4	8	17,718	0,80523	19/20,/48	19/95,/3	0,023	0,66
	12	2	1	17,721	0,80478	6004.0	6022.060	0,027	0,58
	6	8	3	17,731	0,80467	978 523	965.02	0.023	0.03
	2	2	9	17,753	0.80369	1120,786	1093.423	0.023	0.04
	8	6	5	17,753	0,80368	2506,237	2454,729	0,027	0,08
	13	1	4	17,767	0,80304	2549,724	2591,153	0,032	0,08
	4	9	1	17,767	0,80303	933,585	950,336	0,023	0,03
	7	8	2	17,769	0,80297	4343,521	4445,214	0,023	0,14
	3	9	2	17,779	0,80251	5884,241	6269,932	0,023	0,2
	8	5	6	17,779	0,80249	1579,088	1671,262	0,027	0,05
	11	1	6	17,787	0,80212	5609,097	5929,433	0,027	0,19
	0	8	5	17,85	0,79936	2920,674	2934,648	0,023	0,05
	13	3	5	17,851	0,7993	1/340,361	1/409,623	0,032	0,57
	3	0	0	17,850	0,79900	4035,827	4055,71	0,023	0,15
	4	3	8	17,80	0,79888	22403 576	22274 758	0,023	0,01
	6	7	0 5	17,804	0.79843	3579 48	3567 619	0.023	0.12
	12	5	2	17,883	0,79789	5939,408	5983,366	0,027	0,19
	3	6	7	17,888	0,79767	6723,823	6838,204	0,023	0,22
	1	8	5	17,892	0,79748	18198,607	18546,902	0,023	0,6
	0	9	3	17,911	0,79663	6737,199	6547,923	0,023	0,11
	7	2	8	17,914	0,79652	2991,404	2897,229	0,023	0,1
	6	5	7	17,928	0,79587	2869,15	2754,687	0,023	0,09
	12	2	5	17,933	0,79566	1147,196	1109,175	0,027	0,04
	0	5	8	17,943	0,79521	20548,395	20138,068	0,023	0,33
	1	9	3	17,953	0,79477	2460,522	2430,402	0,023	0,08
	4	1	9	17,96	0,79447	1244,336	1237,896	0,023	0,04

h	k	1	2θ	d [Å]	F_{α}^2	F_c^2	FWHM	i100
3	2	9	17 965	0 79428	9336 551	9358 786	0.023	0.3
14	2	ź	17,000	0,79420	524 200	536,700	0,025	0,5
14	2	2	17,979	0,79303	324,209	520,098	0,032	0,02
5	8	4	17,984	0,79342	3069,678	3081,248	0,023	0,1
1	5	8	17,986	0,79336	2404,417	2409,402	0,023	0,08
8	8	0	17,993	0,79302	3614,761	3562,322	0,023	0,06
11	6	2	18.011	0.79226	3953,596	3824.214	0.027	0.13
10	7	0	18 014	0.79212	1/311 3/6	13820 165	0.027	0.23
10	,	2	10,014	0,79212	14511,540	13820,105	0,027	0,25
2	8	3	18,018	0,79192	2280,855	2204,14	0,025	0,07
13	4	2	18,039	0,79105	4153,704	4163,396	0,032	0,13
5	9	0	18,045	0,79075	9046,519	9249,059	0,023	0,14
13	2	4	18,067	0,7898	1942,553	1980,844	0,032	0,06
14	3	0	18.060	0 78071	9.67	9 808	0.032	0
14	5	0	18,009	0,78971	9,07	9,000	0,032	0
4	9	2	18,075	0,78949	1464,075	14/2,037	0,023	0,05
2	9	3	18,08	0,78927	168,602	164,795	0,023	0,01
0	3	9	18,084	0,78909	3,63	3,455	0,023	0
11	2	6	18.087	0.78893	1539.344	1443.303	0.027	0.05
14	0	3	18 001	0.78878	104 248	96 502	0.032	0
14	0	5	18,091	0,78878	104,248	90,302	0,032	0
8	8	1	18,095	0,7886	369,384	330,998	0,023	0,01
5	4	8	18,099	0,78844	288,166	255,039	0,023	0,01
2	5	8	18,112	0.78789	1064.64	961.135	0.023	0.03
10	7	1	18 116	0.78771	219 910	204 671	0.027	0.01
10	2	1	10,110	0,78771	510,019	294,071	0,027	0,01
1	3	9	18,126	0,78728	7720,277	7513,477	0,023	0,25
8	7	4	18,131	0,78706	2546,171	2521,936	0,027	0,08
10	0	7	18,131	0,78705	2153,255	2133,916	0,027	0,03
9	7	3	18.132	0,787	11386.78	11320.818	0.027	0.36
ú	5	1	18 120	0.78670	4005 104	5022 072	0,027	0.16
11	5	4	10,139	0,70072	+793,194	3033,872	0,027	0,10
8	0	8	18,146	0,7864	15652,432	15960,445	0,023	0,25
5	9	1	18,147	0,78637	2066,071	2110,522	0,023	0,07
4	7	6	18,151	0,7862	3243,399	3297,792	0.023	0.1
11	4	5	18.16	0.7858	4282 601	4307 224	0.027	0.14
	-	5	10,10	0,7050	4202,001	4507,224	0,027	0,14
14	3	1	18,171	0,78534	4447,825	4468,168	0,032	0,14
10	5	5	18,173	0,78526	3505,979	3528,49	0,027	0,11
4	6	7	18,182	0,78488	5897,937	5991,152	0,023	0,19
14	1	3	18 19	0 78453	2233 442	2240.49	0.032	0.07
14	4	7	18,200	0,70455	429.652	420.256	0,032	0,07
0	4	/	18,209	0,7857	438,033	450,550	0,027	0,01
12	4	4	18,209	0,78369	19428,777	19096,215	0,032	0,61
9	3	7	18,227	0,78294	12231,824	12161,106	0,027	0,39
3	8	5	18,227	0,78292	15146,998	15076,912	0,023	0,48
10	1	7	18.23	0.78283	2513 051	2507 727	0.027	0.08
10	1	,	10,23	0,78285	2515,951	14567.042	0,027	0,00
5	0	9	18,238	0,78247	14488,361	14567,042	0,023	0,23
7	6	6	18,244	0,78224	377,887	377,84	0,027	0,01
8	1	8	18,245	0,78219	13770,208	13760,02	0,023	0,43
2	3	9	18 251	0 78194	631 753	629.25	0.023	0.02
4	2	0	18 257	0.78165	250 152	247.862	0.022	0.01
-	4	,	10,237	0,78105	250,155	247,803	0,023	0,01
/	8	3	18,278	0,78077	22279,285	22636,102	0,027	0,7
3	9	3	18,288	0,78035	4014,883	4117,875	0,023	0,13
3	5	8	18,32	0,77902	2532,952	2519,912	0,023	0,08
5	1	9	18 336	0 77832	2488 909	2483 419	0.023	0.08
10		<i>,</i>	10,550	0,77052	11000.079	10170.97	0,025	0,00
10	0	4	10,348	0,77782	11969,278	121/9,8/	0,027	0,37
12	5	3	18,389	0,7761	1910,844	1880,842	0,032	0,06
10	4	6	18,395	0,77585	23434,486	23017,688	0,027	0,72
8	8	2	18,397	0,77576	2500,379	2453,378	0,027	0,08
7	3	8	18 407	0.77533	6927 235	6788 437	0.027	0.21
, ,	-	-	10 412	0.77500	0902 242	0670.945	0.027	0,21
/	/	5	18,415	0,77508	9693,342	90/9,845	0,027	0,31
10	7	2	18,417	0,77491	3021,952	2950,19	0,027	0,09
12	3	5	18,427	0,77453	299,136	292,36	0,032	0,01
6	8	4	18,442	0,7739	3341.143	3346.757	0.027	0.1
5	0	2	18 1/19	0 77364	2050 204	2080 11	0.022	0.04
5	7	4	10,440	0,77304	2000,094	2000,11	0,025	0,00
3	3	9	18,457	0,77326	8840,914	9023,373	0,023	0,27
9	6	5	18,464	0,77298	7060,652	7198,047	0,027	0,22
7	5	7	18,47	0,77274	15318,938	15628,221	0,027	0,47
14	3	2	18,472	0,77266	8561,637	8693,845	0.032	0.26
14	2	3	18 / 93	0 77218	990 800	993 377	0.032	0.02
17	4	2	10,405	0,77210	220,009	2000 11	0,032	0,05
15	1	U	18,487	0,77204	5106,997	5099,167	0,032	0,05
15	0	1	18,489	0,77194	185,254	184,11	0,032	0
9	5	6	18,49	0,77191	3755,311	3724,946	0,027	0,11
6	9	0	18 502	0 77142	1788 195	1741 706	0.023	0.03
11		2	10,502	0.77001	10072 52	0050 221	0,025	0,05
11	0	5	18,514	0,77091	10072,52	9959,331	0,027	0,31
4	8	5	18,516	0,77081	4135,434	4097,027	0,023	0,13
13	5	0	18,52	0,77067	368,767	366,098	0,032	0,01
10	2	7	18,523	0.77055	152 709	151.85	0.027	. 0
-	-	2	10,525	0.77054	1000.000	1000 170	0.027	0.07
5	/	0	18,523	0,77054	1908,906	1898,178	0,027	0,06
8	2	8	18,537	0,76995	327,518	329,366	0,027	0,01
13	4	3	18,541	0,7698	4008,42	4019,57	0,032	0,12
5	6	7	18,553	0,7693	9876.713	9847.896	0.027	0.3
6	4	8	18 554	0 76927	47 70	47 506	0.027	.,,5
10	-		10,004	0,70927	41,19	+7,390	0,027	0
13	3	4	18,557	0,76913	4088,935	4045,86	0,032	0,12

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
12	6	0	18,562	0,76892	814,853	799,121	0,027	0,01
4	9	3	18,576	0,76836	3798,854	3702,759	0,023	0,12
11	3	6	18,577	0,76833	2654,389	2598,706	0,027	0,08
13	0	5	18,578	0,76827	14776,945	14497,746	0,032	0,22
15	1	1	18,586	0,76795	18224,045	18038,145	0,032	0,55
6	9	1	18,601	0,76735	2650,877	2699,764	0,023	0,08
4	5	8	18,607	0,76709	17486,928	17990,553	0,023	0,53
0	9	4	18,615	0,76675	651,498	664,769	0,023	0,01
13	5	1	18,619	0,7666	11563,372	11629,513	0,032	0,35
5	2	9	18,627	0,76626	591,075	577,77	0,023	0,02
12	0	6	18,646	0,7655	208,638	203,597	0,027	0
1	9	4	18,656	0,76509	3831,219	3797,214	0,023	0,12
12	6	1	18,661	0,76489	1450,493	1443,231	0,027	0,04
13	1	5	18,674	0,76434	10641,108	10608,559	0,032	0,32
6	0	9	18,69	0,76373	121,655	120,444	0,023	0
9	8	0	18,696	0,76348	4055,023	4014,785	0,027	0,06

A.4 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für α -Sb₂O₄

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
0	0	2	15,028	5,8914	1138,963	1042,972	0,200	1,52
0	1	1	19,924	4,4533	3686,338	3767,116	0,194	5,77
1	1	0	24,683	3,6042	1450,104	944,856	0,200	1,54
1	1	1	25,831	3,4466	16630,793	17265,391	0,200	32,59
1	1	2	29,022	3,0745	62542,180	62991,090	0,205	100,00
0	1	3	29,336	3,0423	4771,911	4737,009	0,205	3,72
0	0	4	30,320	2,9457	82713,070	85584,340	0,205	30,68
2	0	0	32,888	2,7213	18811,957	17873,098	0,211	6,06
1	1	3	33,727	2,6556	9126,770	9268,994	0,211	11,31
2	0	1	33,780	2,6515	20260,037	19946,098	0,211	12,49
2	0	2	36,338	2,4705	19468,477	18031,791	0,211	10,60
0	2	0	37,363	2,4050	41383,490	44400,260	0,217	10,85
2	1	0	37,961	2,3685	83,439	248,701	0,217	0,04
2	1	1	38,750	2,3221	445,688	826,557	0,222	0,45
1	1	4	39,479	2,2808	1872,592	1816,433	0,222	1,77
2	0	3	40,289	2,2369	11696,373	11270,072	0,222	5,42
0	2	2	40,482	2,2266	11,838	9,352	0,222	0,01
1	2	0	40,997	2,1998	159,783	156,481	0,222	0,07
2	1	2	41,041	2,1976	2680,678	2614,997	0,222	2,39
1	2	1	41,738	2,1625	2128,240	1803,625	0,222	1,86
0	1	5	42,694	2,1162	3160,176	2088,818	0,222	1,32
1	2	2	43,900	2,0608	1333,453	591,691	0,234	1,06
2	1	3	44,643	2,0283	1093,658	1011,626	0,234	0,85
2	0	4	45,335	1,9989	13686,064	13833,321	0,234	5,21
1	1	5	45,979	1,9724	8279,335	8242,537	0,234	6,17
0	0	6	46,191	1,9638	1784,518	1605,119	0,234	0,33
1	2	3	47,327	1,9193	3687,993	3805,832	0,234	2,62
0	2	4	48,850	1,8630	49383,440	49132,250	0,246	16,76
2	1	4	49,333	1,8459	359,610	571,033	0,246	0,24
2	2	0	50,613	1,8021	8878,841	8060,665	0,246	2,85
2	0	5	51,242	1,7815	15747,471	15767,302	0,246	4,97
2	2	1	51,244	1,7814	17280,906	17308,318	0,246	10,89
1	2	4	51,832	1,7626	71,945	135,328	0,246	0,05
1	1	6	53,066	1,7245	31580,010	31500,402	0,258	18,95
2	2	2	53,104	1,7233	9707,231	9726,745	0,258	5,81
3	1	0	53,977	1,6975	42120,010	37632,680	0,258	12,28
3	1	1	54,580	1,6801	8273,027	7408,002	0,258	4,74
2	1	5	54,919	1,6706	437,904	449,343	0,258	0,25
2	2	3	56,109	1,6379	15981,738	15264,290	0,258	8,82
3	1	2	56,363	1,6311	93,925	96,658	0,258	0,05
1	2	5	57,245	1,6081	2337,378	2075,665	0,271	1,26
2	0	6	57,859	1,5925	10266,561	9360,235	0,271	2,72
0	1	7	58,006	1,5888	1291,953	1172,528	0,271	0,34
0	3	1	58,009	1,5887	5194,612	4705,175	0,271	1,37
3	1	3	59,257	1,5582	5898,615	5010,055	0,271	3,02
1	3	0	60,114	1,5380	56,439	61,396	0,271	0,01
2	2	4	60,146	1,5373	4705,803	5169,040	0,271	2,38
1	1	7	60,674	1,5251	5005,966	5725,380	0,284	2,50
1	3	1	60,677	1,5251	3517,895	4031,135	0,284	1,77
0	2	6	60 851	1 5211	691 055	895 342	0 284	0.17

	h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
1 3 2 62.349 1.4881 17007.756 1948.072 0.284 0.39 0 0 8 63.069 1.4729 24327.954 24720.785 0.284 0.64 1 2 6 64.348 1.660 020.758 218.610 0.242 0.244 0.010 3 2 0 64.366 1.4737 1.877.88 20.868 0.297 0.077 1 3 3 65.011 1.4315 1075.478 622.688 0.297 0.277 2 2 5 65.111 1.4315 8591.953 8352.299 0.297 3.92 3 2 6.61.11 1.4315 8591.953 8365.299 0.297 0.311 0.016 3 1 6.83.04 1.435.88 930.813 0.311 0.029 1 1 8 6.83.04 1.36.04 345.689 500.813 0.031 0.021 1 1 6.84.89<	2	1	6	61,268	1,5118	161,285	283,702	0,284	0,08
0 3 3 62.522 1.4844 100.196 119.730 0.284 2.30 3 1 4 63.069 1.4708 20339.279 2134.068 0.284 0.00 3 2 6 63.448 1.4435 0.0409 0.242 0.284 0.00 3 2 1 64.805 1.4483 0.0409 0.242 0.284 0.00 3 2 5 65.011 1.4315 10736.271 10457.389 0.297 2.44 2 2 5 65.111 1.4315 891.933 836.299 0.297 0.22 3 0 67.785 1.3814 200.55 131.31 0.012 0.22 1.31 6.64.19 1.405 500.653 338.767 0.297 0.24 3 1 6.64.91 1.405 500.653 338.767 0.297 0.22 3 0 6.61.91 1.405 500.6311 0.218 0.311	1	3	2	62,349	1,4881	17007,736	19438,072	0,284	8,20
0 8 6.3.09 1.4.729 24327.984 24207.85 0.224 9.64 1 2 6 63.148 1.4650 203.758 218.610 0.224 0.00 3 2 1 64.805 1.4453 -0.409 0.242 0.234 0.00 3 2 1 64.806 1.4351 1675.478 6262.688 0.297 3.02 2 5 65.111 1.4315 1675.478 662.688 0.297 3.02 2 5 65.111 1.4315 1675.478 662.688 0.297 3.02 2 5 65.111 1.4315 1675.62 483.039 0.311 0.016 3 1 68.804 1.3634 348.689 500.813 0.311 0.016 1 1 8 68.807 1.3634 91.295 1.31.30 0.311 0.01 1 1 8 68.807 1.3634 91.311 0.02	0	3	3	62,522	1,4844	1603,196	1719,730	0,284	0,39
3 1 4 65,170 1,4708 20339,279 21314,008 0.2244 0,00 3 2 0 64,263 1,4483 0,469 0,242 0,284 0,00 3 2 0 64,806 1,4473 1987,798 2086,135 0,297 0,87 2 0 64,806 1,41315 19076,271 10457,389 0,297 3,92 2 2 66,111 1,41315 19076,33 8365,299 0,297 3,92 3 0 67,785 1,5144 205,55 160,024 0,311 0,026 2 1 7 68,310 1,3720 2513,891 243,795 0,311 0,11 3 4 68,807 1,3644 9,1295 131,312 0,311 0,125 4 0 0 68,807 1,3644 9,120 0,311 0,115 3 4 69,487 1,3517 1201,616 122,677 0,311	0	0	8	63,069	1,4729	24327,984	24720,785	0,284	2,90
1 2 0 64.263 1.4433 0.049 0.242 0.284 0.00 3 2 1 64.806 1.4321 6757478 6628.688 0.297 0.87 2 0 7 65.110 1.4315 10736.271 10457.389 0.297 0.22 3 0 67.785 1.3814 200.536 160.024 0.311 0.06 1 1 68.310 1.3774 484.840 3661.00 0.311 0.229 3 1 68.303 1.3720 2513.891 2343.795 0.311 0.18 4 0 0 66.863 1.3667 1396.205 100.610 0.311 0.311 3 4 68.807 1.3634 344.689 50.0313 0.311 0.312 2 3 69.065 1.3589 664.711 1037.147 0.311 0.011 1 2 7 70.373 1.336 6737.16 1.225.058	3	1	4	63,170	1,4708	20339,279	21314,068	0,284	9,64
3 2 0 64,306 1,4435 194,798 208,6135 0.274 0.244 0.244 0.244 0.244 1 3 3 65,801 1,435 1073,7478 0628,688 0.297 3.92 2 2 5 65,111 1,4315 1073,257 10457,389 0.297 0.297 2 2 66,119 1,4065 500,653 338,767 0.297 0.227 3 1 68,310 1.3774 4854,860 3661,406 0.311 0.022 3 1 68,301 1.3674 344,862 483,09 0.311 0.124 1 3 4 68,807 1.3634 91,295 131,329 0.311 0.14 1 1 69,685 1.3697 1304,614 102,29 0.311 0.125 2 6 70,0273 1.3328 1463,045 1372,448 0.311 0.11 2 6 71,045 1	1	2	6	63,448	1,4650	203,758	218,610	0,284	0,10
3 3 65081 1,432 675,478 628,688 0.297 3.07 2 0 7 65,110 1,4315 891,938 365,529 0.297 2,2 3 2 2 66,419 1,4055 \$90,053 338,767 0.297 0.22 3 0 67,785 1,3814 290,536 160,024 0.311 0.06 3 1 5 68,012 1,3774 4854,860 3661,406 0.311 0.16 1 1 8 68,804 1,3634 912,95 113,10 0.44 1 0 68,896 1,3570 201,1616 122,558 0.311 0.01 2 3 2 69,886 1,3449 31,221 22,677 0.311 0.01 2 7 70,373 1,358 464,045 317,448 0,311 0.11 4 0 2 71,048 1,3226 273,31 305,079 0.	3	2	1	64,203	1,4485	-0,409	2086 135	0,284	0,00
1 0 7 6.5110 1.4315 10736,271 104573,389 0.237 2.44 2 2 6.5110 1.4315 10736,271 104573,389 0.297 3.92 2 2 6.6419 1.4055 5006,53 338,767 0.297 0.222 3 0 67,785 1.3714 44854,860 3661,406 0.311 0.022 1 1 8 68,804 1.3634 344,869 500,311 0.015 3 4 68,807 1.3634 344,869 500,311 0.014 4 0 1 69,486 1.3589 664,711 1037,147 0.311 0.022 3 2 67 70,373 1.3258 2.747,116 0.311,40 0.11 0.22 6 70,024 1.3278 574,150 2.381,764 0.324 0.66 2 6 72,0371 1.3258 2.747,10 0.311 0.024 0.311 0.214 0.	1	3	3	65 081	1,4375	6757 478	6628 688	0,297	3.07
2 2 5 65,111 1,4315 8591,953 8365,299 0,297 0,227 3 2 2 66,419 1,4065 500,653 338,767 0,297 0,22 3 1 5 68,012 1,3774 4854,860 3661,406 0,311 0,02 2 3 1 68,313 1,3720 2513,891 2343,795 0,311 0,04 4 0 0 68,963 1,3644 912,95 13,122 0,311 0,04 4 0 1 69,487 1,3549 664,711 1037,147 0,311 0,01 2 2 6 70,924 1,3278 5095,542 4540,584 0,311 2,11 4 0 2 71,048 1,3226 373,733 336,707 0,324 0,55 3 72,0431 1,3032 2523,340 2036,397 0,324 0,324 0,324 0,324 0,324 0,324 0,324	2	0	7	65 110	1,4315	10736 271	10457 389	0,297	2.44
3 2 2 66,419 1,4065 500,653 338,767 0,297 0,22 2 3 0 67,785 1,3814 200,536 160,024 0,311 0,06 2 1 7 68,310 1,3774 458,480 366,1406 0,311 0,29 3 1 68,313 1,3720 251,389 234,3795 0,311 0,15 4 0 0.68,963 1,3667 1396,023 210,056 0,311 0,025 4 0 0 66,8477 1,3517 1221,625 80,311 0,011 1 2 7 70,373 1,3368 143,045 1372,488 0,311 0,022 2 3 5 71,056 1,3278 5065,524 540,544 0,314 0,41 1 0 72,081 1,3278 505,554 450,34 0,324 0,041 2 4 72,664 1,2795 2,41,42 0,334	2	2	5	65,111	1,4315	8591,953	8365,299	0.297	3.92
2 3 0 67,785 1.3874 4854,80 160,024 0.311 0.06 3 1 5 68,310 1.3774 4854,80 50,031 0.311 0.022 2 3 1 68,313 1.3721 518,626 483,039 0.311 0.021 1 3 4 68,804 1.3634 91,295 131,329 0.311 0.04 4 0 0 68,963 1.3607 1396,203 2100,561 0.311 0.25 2 3 2 69,886 1.3449 31,221 22,677 0.311 0.01 2 7 70,373 1.3368 1463,045 1372,488 0.311 2.11 2 6 70,924 1.3228 7347,150 2381,744 0.334 0.041 2 71,056 1.3256 3872,339 366,037 0.324 0.011 3 72,473 1.3003 1.022,44 0.0324 0.01	3	2	2	66,419	1,4065	500,653	338,767	0,297	0,22
3 1 5 68,012 1,3721 518,626 483,039 0,311 0.22 2 1 68,310 1,3720 2518,891 234,3755 0,311 0,021 1 1 8 68,804 1,3634 91,295 131,329 0,311 0,01 4 0 0 68,963 1,3667 1396,203 2100,561 0,311 0,29 4 0 1 69,485 1,3517 1201,616 1225,058 0,311 0,01 2 2 6 7,024 1,3278 505,542 454,054 0,311 2,01 2 7 7,033 1,3256 387,239 3367,097 0,324 0,01 2 2 7,1056 1,3256 387,2139 3367,097 0,324 0,01 2 4 72,694 1,2997 21,346 16,6494 0,324 0,01 2 4 72,694 1,2997 21,346 16,6494	2	3	0	67,785	1,3814	290,536	160,024	0,311	0,06
2 1 7 68.310 1.3720 2518.891 2343,795 0.311 0.022 2 3 1 68.807 1.3634 348.689 50.813 0.311 0.04 4 0 0 68.963 1.3634 91.295 131.329 0.311 0.04 3 2 3 69.065 1.3589 664.711 1037.147 0.311 0.25 3 2 69.886 1.3494 31.221 2.2677 0.311 0.15 4 0 2 71.048 1.3258 274.7150 23181.764 0.324 5.65 0 3 5 71.056 1.3256 387.133 367.097 0.324 0.01 2 4 72.693 1.2097 21.346 16.949 0.324 0.01 2 3 7.47.16 1.2840 349.115 316.667 0.324 0.01 2 0 8 72.983 1.2957 1.	3	1	5	68,012	1,3774	4854,860	3661,406	0,311	2,09
2 3 1 68,313 1,3534 348,689 500,813 0,311 0,16 1 3 4 68,807 1,3634 91,295 131,329 0,311 0,15 3 2 63,865 1,3589 66,4711 1037,147 0,311 0,25 2 3 2 69,886 1,3449 31,221 22,677 0,311 0,01 1 2 7 70,373 1,3368 1463,045 1372,448 0,311 0,21 4 0 2 71,048 1,3256 387,2339 3367,097 0,324 0,564 3 72,473 1,3032 2523,430 206,834 0,324 0,01 4 1 72,595 1,3013 102,796 82,712 0,324 0,01 3 74,743 1,3032 253,430 206,834 0,324 0,01 4 1 7,2694 1,2997 1,346 16,949 0,324 0,01 <td>2</td> <td>1</td> <td>7</td> <td>68,310</td> <td>1,3721</td> <td>518,626</td> <td>483,039</td> <td>0,311</td> <td>0,22</td>	2	1	7	68,310	1,3721	518,626	483,039	0,311	0,22
1 1 8 68.804 1.3634 91.295 13.239 0.311 0.15 3 2 3 69.065 1.3589 664.711 1037.147 0.311 0.29 4 0 1 69.487 1.3517 1201.616 1225.058 0.311 0.011 2 2 69.886 1.3449 31.221 22.677 0.311 0.011 2 2 67.0324 1.3278 5005.542 4540.584 0.311 2.011 4 0 2 71.048 1.3256 3872.339 3367.097 0.324 0.80 4 1 0 72.081 1.3003 662.83 45.222 0.324 0.01 2 4 72.695 1.3013 102.796 82.742 0.324 0.02 3 73.466 1.2880 3349.115 3160.667 0.324 0.03 4 0 7.716 1.2424 333.90.22 0.38 0.03 <td>2</td> <td>3</td> <td>1</td> <td>68,313</td> <td>1,3720</td> <td>2513,891</td> <td>2343,795</td> <td>0,311</td> <td>1,08</td>	2	3	1	68,313	1,3720	2513,891	2343,795	0,311	1,08
1 3 4 68,807 1,3634 91,295 131,329 0,311 0,04 4 0 1 69,487 1,3517 120,616 1225,058 0,311 0,25 2 3 2 69,886 1,3499 31,221 22,677 0,311 0,61 2 2 6 70,924 1,3278 5095,542 4540,584 0,311 2,11 4 0 2 71,048 1,3258 277,471,50 23813,764 0,324 0,80 4 1 0 72,0781 1,3033 66,283 45,322 0,324 0,04 1 1 72,595 1,3013 102,796 82,742 0,324 0,04 2 8 72,983 1,2257 1,366 16,949 0,324 0,024 3 1 6 73,716 1,2842 333,963 288,545 0,324 0,12 1 9 75,565 1,2421 88,	1	1	8	68,804	1,3634	348,689	500,813	0,311	0,15
4 0 0 68,96.3 1,369 166,4711 100,511 0,15 3 2 3 69,065 1,3589 66,64711 100,7147 0,311 0,25 2 3 2 69,886 1,3449 31,221 22,677 0,311 0,011 2 2 6 70,924 1,3278 5095,542 4540,584 0,311 2,214 4 0 2 71,048 1,3258 27347,150 23813,764 0,324 0,564 3 5 71,048 1,3032 252,3430 2036,397 0,324 1,02 4 1 0 72,081 1,2033 466,733 4206,834 0,324 0,01 2 4 72,694 1,2997 21,346 16,949 0,324 0,01 3 5 73,468 1,2880 3349,115 3160,667 0,324 0,013 4 1 2 74,128 1,2878 30,6852	1	3	4	68,807	1,3634	91,295	131,329	0,311	0,04
3 2 3 69,065 1,3589 668,711 103,7147 0,211 0,257 2 3 2 69,886 1,3449 31,221 22,677 0,311 0,011 1 2 7 70,373 1,3368 1463,045 1372,488 0,311 0,011 2 2 6 70,924 1,3278 5005,542 4540,554 4540,554 4540,554 4540,532 0,3244 0,80 4 1 72,081 1,3093 662,83 45,322 0,3244 0,04 2 3 3 72,473 1,3032 2523,430 2036,397 0,224 0,04 2 0 8 72,983 1,2297 2,1346 16,949 0,324 0,01 2 0 8 72,983 1,2287 233,963 288,545 0,324 0,12 3 1 6 73,716 1,2242 333,963 288,545 0,338 0,01	4	0	0	68,963	1,3607	1396,203	2100,561	0,311	0,15
4 0 1 109,459 12317 1201,010 1223,035 0.311 0.201 2 2 69,866 1,3449 31,221 22,677 0.311 0.011 2 2 6 70,024 1,3278 5095,542 4540,584 0.311 0.211 4 0 2 71,048 1,3258 3872,339 3367,097 0.324 0.001 4 1 0 72,081 1,3093 66,283 45,322 0.324 0.04 3 3 72,473 1,1031 102,796 82,742 0.324 0.04 3 2 4 72,694 1,2997 21,346 16,949 0.324 0.031 1 3 5 73,466 1,2880 349,115 3160,667 0.324 0.035 1 1 6 73,716 1,2812 333,963 288,545 0.338 0.032 1 1 9 75,149 1,	3	2	3	69,065	1,3589	004,/11 1201.616	1037,147	0,311	0,29
1 2 0.5000 1.3368 1.211 1.2217 0.311 0.611 1 2 7 70.373 1.3368 1.663.045 1572.488 0.311 0.611 2 2 71.048 1.3258 27347.150 23813,764 0.324 0.80 3 5 71.056 1.3256 3872.339 3367.097 0.324 0.80 4 1 0 72.081 1.3093 662.83 45.322 0.324 0.01 2 3 72.473 1.3032 2523.430 2036.397 0.324 0.04 3 2 4 72.694 1.2997 21.346 16.949 0.324 0.04 3 5 73.466 1.2857 257.670 235.650 0.324 0.05 3 1 6 73.716 1.2842 33.963 288.545 0.338 0.02 4 1 7.656 1.2560 2.345.379 2.2440.602 0.	4	3	2	69,487	1,5517	31 221	22 677	0,311	0,23
1 1 1 1 1 1 0 0.11 2 11 4 0 2 71,048 1.3228 5795,542 4540,584 0.324 0.831 4 1 0 72,081 1.3036 66,283 45,322 0.324 0.011 2 3 3 72,473 1.3032 2523,430 206,637 0.324 0.041 3 2 4 72,695 1.3013 102,796 82,742 0.324 0.041 3 2 4 72,694 1.2953 4668,733 4206,834 0.324 0.041 3 5 73,466 1.2850 257,670 235,650 0.324 0.12 1 9 75,149 1.2633 152,305 98,215 0.338 0.02 1 1 76,659 1.2421 88,052 80,845 0.338 0.04 4 0 4 77,161 1.2352 120,99	1	2	7	70 373	1,3449	1463 045	1372 488	0,311	0,61
4 0 2 71,048 1,3258 27347,150 23813,764 0,324 5,65 0 3 5 71,056 1,3256 3872,339 3367,097 0,324 0,001 2 3 3 72,473 1,3032 2523,430 2036,397 0,324 0,01 4 1 1 72,595 1,3013 102,796 82,742 0,324 0,04 3 2 4 72,694 1,2997 21,346 16,6949 0,324 0,04 1 3 5 73,466 1,2880 349,115 3160,667 0,324 0,034 1 1 2 74,128 1,2781 306,852 161,988 0,324 0,12 0 1 9 75,149 1,2633 152,355 98,245 0,338 0,02 2 1 8 76,635 1,2507 420,556 444,868 0,338 0,02 2 1 77,716	2	2	6	70,924	1.3278	5095,542	4540,584	0.311	2.11
0 3 5 71,056 1,3256 3872,339 3367,097 0,324 0,80 4 1 0 72,081 1,3093 66,283 45,322 0,324 1,01 2 3 3 72,473 1,3032 2523,430 2036,397 0,324 1,001 2 4 72,694 1,2997 21,346 16,949 0,324 0,011 2 0 8 72,983 1,2957 257,670 235,650 0,324 1,055 3 1 6 73,716 1,2842 333,963 288,545 0,324 0,13 4 1 2 74,128 1,2508 43,475 46,107 0,338 0,03 2 8 75,656 1,2560 2,446,827 0,338 0,04 4 70,161 1,2352 120,998 143,982 0,333 0,02 2 3 4 76,035 1,2507 420,556 444,868 0,338	4	0	2	71,048	1,3258	27347,150	23813,764	0,324	5,65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3	5	71,056	1,3256	3872,339	3367,097	0,324	0,80
2 3 3 72,473 1,3032 2523,430 2036,397 0,324 1,02 4 1 1 72,595 1,3013 102,796 82,742 0,324 0,04 2 0 8 72,983 1,2953 4668,733 4206,834 0,324 0,94 1 3 5 73,466 1,2880 3349,0115 3160,667 0,324 1,035 3 1 6 73,716 1,2847 2333,963 288,545 0,324 0,13 4 1 2 74,128 1,257 254,537 98,215 0,338 0,03 0 2 8 75,656 1,2560 2,246,607 0,338 0,04 4 0 4 77,161 1,2352 120,998 143,982 0,353 0,02 3 2 5 77,259 1,2339 616,159 770,719 0,353 0,02 1 9 77,511 1,2305<	4	1	0	72,081	1,3093	66,283	45,322	0,324	0,01
4 1 1 72,595 1,3013 102,796 82,742 0,324 0,041 3 2 4 72,694 1,2997 21,346 16,949 0,324 0,041 3 5 73,466 1,2880 3349,115 3160,667 0,324 1,35 4 0 3 73,618 1,2827 257,670 235,650 0,324 0,13 4 1 2 74,128 1,2781 306,852 161,988 0,324 0,12 0 1 9 75,149 1,2633 152,305 98,215 0,338 0,02 2 3 4 76,035 1,2507 420,556 444,868 0,338 0,02 2 3 4 76,035 1,2507 420,556 444,868 0,338 0,04 4 0 4 77,161 1,2352 120,998 143,982 0,353 0,24 1 1 9 77,511	2	3	3	72,473	1,3032	2523,430	2036,397	0,324	1,02
3 2 4 72,694 1,2997 21,346 16,949 0,324 0,01 2 0 8 72,983 1,2953 4668,733 4206,834 0,324 0,94 1 3 73,618 1,2857 257,670 235,650 0,324 0,05 3 1 6 73,716 1,2842 333,963 288,545 0,324 0,12 0 1 9 75,149 1,2633 152,305 98,215 0,338 0,03 0 2 8 75,656 1,2500 420,456 44,486 0,338 0,04 1 3 76,659 1,2421 88,052 80,845 0,338 0,04 4 0 4 77,161 1,2352 120,998 143,982 0,353 0,24 1 9 77,511 1,2301 3739,664 4617,777 0,353 0,46 1 3 6 79,015 1,2109 8833,9	4	1	1	72,595	1,3013	102,796	82,742	0,324	0,04
2 0 8 72,983 1,2953 4668,733 4206,834 0,324 1,35 4 0 3 73,618 1,2880 3349,115 3160,667 0,324 0,35 3 1 6 73,716 1,2842 333,963 288,545 0,324 0,12 0 1 9 75,149 1,2633 152,305 98,215 0,338 0,03 0 2 8 75,656 1,2500 23454,379 22440,602 0,338 0,02 2 3 4 76,035 1,2507 420,556 444,868 0,338 0,04 4 0 4 77,161 1,2352 120,998 143,982 0,353 0,02 3 2 5 77,259 1,2391 3739,664 4617,777 0,353 0,96 2 2 77,75,43 1,2301 3739,664 4617,777 0,353 1,03 3 6 79,070	3	2	4	72,694	1,2997	21,346	16,949	0,324	0,01
1 3 5 73,466 1,2880 3349,115 3160,667 0,324 0,05 3 1 6 73,716 1,2857 257,670 235,650 0,324 0,015 3 1 6 73,716 1,2857 257,670 235,650 0,324 0,12 0 1 9 75,149 1,2633 152,305 98,215 0,338 0,03 0 2 8 75,656 1,2560 23454,379 2244,000 0,338 0,02 2 3 4 76,035 1,2207 420,556 444,868 0,338 0,04 4 0 4 77,161 1,2302 2483,155 3085,850 0,353 0,022 2 7 77,543 1,2301 3739,664 4617,77 0,353 0,061 1 9 77,514 1,2202 15103,554 10893,064 0,353 3,06 1 2 8 78,076	2	0	8	72,983	1,2953	4668,733	4206,834	0,324	0,94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	5	73,466	1,2880	3349,115	3160,667	0,324	1,35
3 1 0 73,710 11,2442 235,363 256,343 0,324 0,13 4 1 2 74,128 1,2781 306,852 161,988 0,324 0,13 0 1 9 75,149 1,2633 152,305 98,215 0,338 0,003 2 8 75,656 1,2507 420,556 444,868 0,338 0,016 4 1 3 76,659 1,2421 88,052 80,845 0,333 0,002 3 2 5 77,259 1,2339 616,159 770,719 0,353 0,24 1 1 9 77,514 1,2301 3739,664 4617,777 0,353 1,04 2 8 78,014 1,2239 161,442 153,856 0,353 0,06 1 3 6 79,015 1,2025 11503,54 10893,064 0,353 1,38 0 79,670 1,2014 7032,852	4	0	3	73,618	1,2857	257,670	235,650	0,324	0,05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	2	73,710	1,2642	306 852	200,343	0,324	0,15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	9	75 149	1,2781	152 305	98 215	0,324	0,12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	8	75.656	1.2560	23454.379	22440.602	0.338	4,59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	8	76,033	1,2508	43,475	46,107	0,338	0,02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	4	76,035	1,2507	420,556	444,868	0,338	0,16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	3	76,659	1,2421	88,052	80,845	0,338	0,04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	4	77,161	1,2352	120,998	143,982	0,353	0,02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	5	77,259	1,2339	616,159	770,719	0,353	0,24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	9	77,511	1,2305	2483,155	3085,850	0,353	0,96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	7	77,543	1,2301	3739,664	4617,777	0,353	1,46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	8	78,014	1,2239	161,442	153,856	0,353	0,06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3	0	79,013	1,2109	0055,952 11503 554	10893.064	0,353	3,38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	0	79,072	1,2025	7032 852	6623 967	0,353	1,09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	4	80,159	1,1964	18,713	17,969	0.368	0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	7	80,254	1,1952	2916,342	2812,533	0,368	1,10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	1	80,257	1,1952	1709,618	1648,728	0,368	0,65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	5	80,538	1,1918	1436,159	1444,667	0,368	0,54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	0	81,153	1,1843	98,837	115,059	0,368	0,02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	9	81,527	1,1798	6693,216	7871,709	0,368	1,26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	5	81,647	1,1783	1008,896	1142,592	0,368	0,19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	1	81,648	1,1783	333,576	378,194	0,368	0,13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	10	81,652	1,1783	155,184	176,625	0,368	0,02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	2	81,657	1,1782	1458,599	1647,779	0,368	0,27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3 1	2	01,745 81.007	1,1772	101,123	112,040	0,368	0,04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		1	82 491	1,1742	2849 468	+0,109 2830 772	0,508	1.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	6	82,732	1,1656	187.303	183.159	0,368	0.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	2	83,131	1,1610	13072.119	12353.969	0,383	4.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3	7	83,137	1,1610	1243,289	1175,106	0,383	0,23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	2	83,971	1,1516	148,900	152,725	0,383	0,06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	3	84,212	1,1489	2538,226	2665,413	0,383	0,94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	9	84,488	1,1458	133,636	145,837	0,383	0,05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	5	84,607	1,1445	594,174	612,450	0,383	0,22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	8	84,981	1,1404	1871,547	1931,834	0,383	0,70
4 2 3 85,591 1,1338 668,997 755,933 0,398 0,25 2 3 6 85,965 1,1299 41,403 44,919 0,398 0,02 1 2 9 86,424 1,1250 633,648 627,158 0,398 0,23 1 4 3 86,428 1,1250 1839,566 1819,121 0,398 0,68 1 1 10 86,914 1,1200 9732,767 9740,000 0,398 3,60 4 0 6 87,062 1,1184 11752,484 11554,666 0,398 2,18	1	3	7	85,444	1,1354	1971,351	2322,555	0,383	0,74
2 5 6 85,965 1,1299 41,405 44,919 0,398 0,02 1 2 9 86,424 1,1250 633,648 627,158 0,398 0,23 1 4 3 86,428 1,1250 1839,566 1819,121 0,398 0,68 1 1 10 86,914 1,1200 9732,767 9740,000 0,398 3,60 4 0 6 87,062 1,1184 11752,484 11554,666 0,398 2,18	4	2	3	85,591	1,1338	668,997	755,933	0,398	0,25
1 2 9 80,424 1,1250 635,648 627,138 0,598 0,23 1 4 3 86,428 1,1250 1839,566 1819,121 0,398 0,68 1 1 10 86,914 1,1200 9732,767 9740,000 0,398 3,60 4 0 6 87,062 1,1184 11752,484 11554,666 0,398 2,18	2	3	6	85,965	1,1299	41,403	44,919	0,398	0,02
1 -	1	2	9 2	86.424 86.429	1,1250	033,648	027,158	0,398	0,23
4 0 6 87,062 1,1184 11752,484 11554,666 0,398 2,18	1	4	5 10	00,428 86 917	1,1230	1039,300 9732 767	9740.000	0,598	3 60
	4	0	6	87.062	1,1184	11752.484	11554.666	0.398	2.18
0 4 4 87,563 1,1133 10018,577 9610,129 0.398 1.85	0	4	4	87,563	1,1133	10018,577	9610,129	0,398	1,85

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
3	1	8	87,647	1,1125	8795,317	8577,236	0,398	3,25
3	3	4	87,650	1,1124	8120,181	7923,987	0,398	3,00

A.5 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für β -Sb₂O₄

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
2	0	0	15,179	5,8372	316,597	371,669	0,215	0,48
1	1	0	19,868	4,4679	4170,471	3774,055	0,190	7,36
1	1	-1	24,962	3,5661	343,023	396,109	0,164	0,40
1	1	1	27,513	3,2408	101929,500	101854,270	0,168	100,00
3	1	0	29,450	3,0318	4781,266	4941,669	0,168	3,90
4	0	0	30,619	2,9186	87904,450	89203,580	0,168	33,56
3	1	-1	31.065	2.8777	83709,480	87720,950	0.168	62.61
2	0	-2	33,946	2.6397	75100.590	71142.000	0.173	25.34
0	0	2	34 408	2,6053	-1 428	64 173	0.173	0.00
3	1	1	37 104	2,0000	1254 758	1347 818	0.173	0.68
0	2	0	37 165	2,4217	51217 820	53280 670	0.173	13 30
1	1	_2	38 256	2,4101	2158 072	1553 671	0.173	1 13
1	0	-2	40 146	2,5515	6064 811	6180 722	0,170	1,13
4	2	-2	40,140	2,2451	124,677	0180,722	0,179	1,02
2	1	2	40,555	2,2340	154,077	97,114	0,179	1.44
3	1	-2	40,980	2,2012	5201,798	2561,591	0,179	1,40
0	2	1	41,133	2,1934	5989,630	4615,559	0,179	2,59
2	0	2	41,337	2,1831	65124,910	63189,900	0,179	15,10
1	1	2	41,764	2,1617	1433,872	1554,167	0,179	0,66
2	2	-1	42,437	2,1290	-65,641	1,623	0,184	0,00
5	1	-1	42,531	2,1245	101,830	164,570	0,184	0,04
5	1	0	42,994	2,1027	2997,802	1395,380	0,184	1,18
2	2	1	45,680	1,9850	5236,458	4454,459	0,189	1,86
6	0	0	46,656	1,9458	-5,577	236,666	0,189	0,00
4	2	0	48,886	1,8620	65764,830	61007,540	0,189	20,22
5	1	-2	49,084	1,8550	866,595	940,045	0,194	0,27
4	2	-1	49,217	1,8503	1748,929	2320,887	0,194	0,54
5	1	1	50,319	1,8123	58462,310	62100,380	0,200	17,55
3	1	2	50,442	1,8082	1861,995	1821,236	0,200	0,57
6	0	-2	50,981	1,7903	64471,730	63794,220	0,200	9,34
2	2	-2	51,204	1,7830	69915,010	67879,140	0,200	20,39
0	2	2	51,536	1,7723	-2,417	151,187	0,200	0,00
4	0	2	52,629	1,7381	2499,725	221,998	0,200	0,35
1	1	-3	54,795	1,6743	67294,910	65697,010	0,205	18,25
4	2	1	54,936	1.6704	3875,169	4210,900	0.205	0.98
3	1	-3	55,537	1.6537	-0.341	13,752	0.211	0.00
4	2	-2	55,847	1,6453	1590 888	1451 959	0.211	0.39
2	2	2	56 781	1 6204	48908 450	52077 890	0.211	11.99
7	1	-1	56,799	1 6199	57682 310	61503 440	0.211	13.45
1	3	0	57 694	1 5969	5894 983	5407 043	0.211	1 33
7	1	0	58 505	1,5767	626 240	746 825	0,211	0.1/
1	1	2	58,505	1,5707	0.30,340	18 256	0,211	0,1-
1	2	1	50.062	1,5080	-0,495	12 287	0,211	0,00
1	2	-1	57,905	1,5410	-0,100	13,30/	0,222	0,00
0	2	-1	60.050	1,5389	1103,333	2021,039	0,222	0,24
י ר	1	-3	60.000	1,5191	45001,070	42637,390	0,222	9,4
	1	-2	00,908	1,518/	2402,020	2369,844	0,222	0,51
6	2	0	61,093	1,5159	33,994	30,672	0,222	0,01
1	3	1	61,257	1,5123	49812,720	42268,530	0,222	10,24
3	3	0	62,304	1,4893	1739,983	24/6,481	0,222	0,35
5	1	2	62,730	1,4802	396,809	444,951	0,222	0,08
3	3	-1	63,219	1,4699	40199,210	40200,770	0,222	7,81
8	0	0	63,734	1,4593	36788,340	33750,930	0,234	3,55
2	2	-3	64,681	1,4402	2052,599	2297,890	0,234	0,41
6	2	-2	64,748	1,4389	36976,680	40440,980	0,234	7,00
8	0	-2	64,843	1,4370	46,630	50,570	0,234	0,00
7	1	1	65,805	1,4183	-0,215	4,209	0,234	0,00
4	2	2	66,172	1,4113	20,012	28,254	0,234	0,00
0	2	3	66,206	1,4107	2382,802	3071,150	0,234	0,46
6	0	2	66,830	1,3990	56565,810	57182,740	0,234	5,27
3	3	1	66,949	1,3968	2677,528	2670,172	0,234	0,48
3	1	3	67,122	1,3936	36240,540	37603,640	0,234	6,94
4	2	-3	67,531	1,3862	3709,529	2801,585	0,234	0.67
6	2	1	67.626	1,3845	3335.727	2560.433	0.240	0.59
1	3	-2	67.712	1,3829	3479.827	2390.056	0.246	0.62
3	3	-2	69,577	1,3503	7053.384	3250.772	0.246	1.18
~	~	-		-,			-,	-,

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
2	0	-4	69,860	1,3456	442,630	217,287	0,246	0,04
1	3	2	70,129	1,3410	6127,877	4054,313	0,246	1,03
7	1	-3	70,391	1,3367	34,604	11,096	0,246	0,01
5	3	-1	70,675	1,3320	14,809	3,685	0,246	0,00
5	3	0	71,007	1,3266	4995,614	4019,204	0,246	0,81
4	0	-4	71,426	1,3198	37076,670	35064,824	0,246	3,24
2	2	3	71,965	1,3113	1033,909	1547,938	0,258	0,18
0	0	4	72,515	1,3027	33518,844	33957,430	0,258	2,93
3	1	-4	73,179	1,2925	247,638	77,278	0,258	0,04
9	1	-1	73,226	1,2918	56,707	22,003	0,258	0,01
1	1	-4	73,719	1,2843	1975,530	1190,317	0,258	0,33
8	2	-1	74,064	1,2792	3578,481	1949,363	0,258	0,54
6	2	-3	74,511	1,2726	870,129	185,280	0,258	0,14
5	3	-2	75,583	1,2572	2788,228	3610,556	0,271	0,42
9	1	-2	75,759	1,2547	26,346	58,558	0,271	0,01
9	1	0	75,891	1,2529	256,322	385,162	0,271	0,04
8	2	0	76,139	1,2494	34978,266	33042,465	0,271	5,20
5	3	1	76,553	1,2437	24363,150	26272,342	0,271	3,65
3	3	2	76,650	1,2424	1478,894	1624,146	0,271	0,23
5	1	-4	76,775	1,2406	147,369	189,127	0,271	0,02
6	0	-4	77,110	1,2361	-12,109	285,450	0,271	0,00
8	2	-2	77,166	1,2353	-0,365	0,009	0,271	0,00
7	1	2	77,887	1,2257	1396,962	734,895	0,271	0,21
1	1	4	78,367	1,2194	162,886	215,319	0,271	0,03
6	2	2	79,019	1,2109	19942,525	20281,348	0,284	2,98
5	1	3	79,022	1,2109	31,058	31,489	0,284	0,00
0	4	0	79,168	1,2090	22231,898	18606,406	0,284	1,58
2	0	4	79,227	1,2083	1295,119	1014,870	0,284	0,10
1	3	-3	80,181	1,1963	17594,016	15507,132	0,284	2,60
3	3	-3	80,798	1,1887	102,112	167,553	0,284	0,02
2	4	0	81,193	1,1839	747,551	874,329	0,284	0,10
10	0	-2	81,316	1,1824	24346,234	25900,834	0,284	1,71
4	2	3	81,600	1,1790	164,611	136,315	0,284	0,03
0	4	1	81,708	1,1777	2644,736	2396,255	0,284	0,37
1	3	-1	81,858	1,1760	15711,254	14975,997	0,284	2,19
2	2	-4	81,874	1,1758	20,330	19,430	0,284	0,00
10	0	0	82,584	1,1675	752,916	874,847	0,297	0,05
2	4	-1	82,584	1,16/5	6062,028	/039,533	0,297	0,83
8	2	1	83,272	1,1595	137,014	149,738	0,297	0,02
/	3	0	83,312	1,1591	1427,309	14/7,873	0,297	0,20
9	1	-3	83,339	1,1588	21963,969	22256,154	0,297	3,07
4	2	-4	83,304 82,507	1,1383	21452,708	21419,254	0,297	3,13
9	1	1	82,597	1,1559	23121,021	22720,047	0,297	3,30
1	3	3 7	03,391	1,1339	3,000	3,3/9	0,297	0,00
8 7	1	4	05,000 84 247	1,1331	1,007	1,500	0,297	0,00
/ 0	1	-4 1	04,347 84 406	1,14/5	402,374	22081 024	0,297	0,07
2	2 1	4	84 853	1,1408	1804 / 136	22701,954	0,297	2,70
2	7	_3	85 280	1,1419	408 422	650 550	0.311	0.06
5	2	-3	85 / 23	1,1373	19430 030	22040 432	0.311	2 70
7	3	-5	85 449	1 1355	1229 600	1370 521	0 311	0.17
, 8	0	-2	86 676	1 1225	24679 645	29490 771	0 311	1 73
3	1	4	86 945	1 1197	773 440	739 316	0 311	0.11
5	3	2	87.006	1 1 1 9 1	2644 149	2427 360	0 311	0.36
4	4	0	87 213	1 1170	23514 604	17410 939	0 311	3 11
4	4	_1	87 463	1 1144	4370.013	2618 646	0 311	0.58
6	2	-4	88,847	1,1006	249 264	99 143	0.324	0.03
2	4	-2	88,991	1,0992	24464 813	14033 250	0.324	3 24
0	4	2	89,250	1.0967	146.608	120.202	0,324	0.02
7	3	- 1	89,777	1.0916	7.837	63.428	0.324	0.00
4	0	4	89,786	1.0915	2650.035	18500.039	0.324	0.24

A.6 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für β -BiF₃

					_2	_2		
h	k	1	2θ	d [A]	F_0^2	F_c^2	FWHM	i100
0	0	2	24,314	3,67217	22571,078	22399,902	0,317	40,71
1	0	0	25,287	3,53239	5818,543	5453,822	0,252	29,12
1	0	1	28,103	3,18333	12733,188	12908,939	0,252	100
1	0	2	35,322	2,54576	2528,712	2804,057	0,265	11,72
1	1	0	44,479	2,03943	26239,512	23986,951	0,246	39,26

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
1	0	3	45,114	2,01212	15110,86	15866,014	0,271	43,01
0	0	4	49,707	1,83608	17512,508	15249,563	0,284	6,71
1	1	2	51,291	1,78292	16011,255	15272,334	0,284	34,04
2	0	0	51,811	1,7662	4378,384	3756,187	0,258	4,6
2	0	1	53,4	1,71724	10442,644	9843,002	0,258	20,16
1	0	4	56,532	1,62915	2898,347	2520,078	0,284	4,91
2	0	2	57,985	1,59167	2377,809	2559,831	0,271	3,7
2	0	3	65,163	1,43234	9534,803	10672,744	0,284	11,81
1	1	4	68,832	1,36455	11056,411	11529,42	0,311	12,19
1	0	5	69,311	1,35628	8312,146	8207,656	0,297	9,08
2	1	0	70,569	1,33512	2731,75	2839,557	0,284	2,87
2	1	1	71,901	1,31359	8269,804	7816,693	0,297	16,88
2	0	4	74,577	1,27288	2240,546	2207,565	0,311	2,11
2	1	2	75,841	1,25476	2271,968	2214,425	0,311	4,16
0	0	6	78,093	1,22406	11373,26	11903,41	0,324	1,67
3	0	0	81,815	1,17746	12120,178	11160,688	0,311	5,05
2	1	3	82,266	1,17214	8084,391	7938,282	0,324	13,22
3	0	1	83,086	1,16262	0	0	0,324	0
1	0	6	83,616	1,15658	2753,833	2365,484	0,338	2,22
2	0	5	86,108	1,12935	6509,854	6635,027	0,338	4,95
3	0	2	86,884	1,12124	9224,686	9098,46	0,338	7
2	1	4	91,114	1,07982	1975,116	1899,211	0,368	2,85
3	0	3	93,19	1,06111	0	0	0,353	0
1	1	6	94,533	1,04953	8869,438	9102,53	0,383	6,32

A.7 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für γ -As₂O₅

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
1	1	0	14,674	6,01616	11197,923	10728,729	0,199	100
1	0	-1	20,097	4,40636	3016,348	3064,59	0,187	7,56
2	0	0	20,266	4,37005	13003,505	12021,672	0,187	32,2
0	2	0	21,372	4,14686	5967,292	6227,496	0,187	13,24
0	1	1	21,472	4,1277	9772,088	10344,276	0,187	43,34
1	0	1	22,255	3,98449	20530,648	20479,363	0,187	42,83
1	1	-1	22,796	3,89126	9185,678	8834,678	0,187	36,82
2	1	0	22,947	3,86619	1029,348	995,151	0,187	4,19
1	2	0	23,691	3,74654	1982,725	1771,341	0,187	7,56
1	1	1	24,731	3,59152	914,343	977,473	0,181	3,28
2	1	-1	28,097	3,16906	2337,081	2272,756	0,186	6,64
0	2	1	28,489	3,12643	7049,569	6904,155	0,186	19,22
1	2	-1	29,518	3,01985	7979,81	8070,631	0,186	20,68
2	2	0	29,636	3,00808	5802,896	5906,576	0,186	14,68
1	2	1	31,064	2,87315	8271,528	7987,274	0,19	19,98
2	1	1	31,248	2,85668	2523,674	2307,996	0,19	6,06
3	1	0	32,511	2,74871	2007,027	1499,51	0,19	4,43
2	2	-1	33,855	2,64271	11735,007	10592,021	0,19	25,19
1	3	0	33,946	2,63585	602,815	555,09	0,19	1,21
3	0	-1	34,045	2,62842	1004,879	882,405	0,19	1,07
3	1	-1	35,77	2,50561	15526,53	16566,156	0,195	29,48
2	2	1	36,561	2,45327	97,323	76,291	0,195	0,14
0	3	1	37,558	2,39048	719,385	751,209	0,195	1,17
3	2	0	37,666	2,38386	6638,254	6820,83	0,195	11,71
0	0	2	37,738	2,37947	135,689	139,466	0,195	0,12
3	0	1	38,024	2,36229	26399,543	28604,953	0,195	23,17
1	3	-1	38,369	2,34182	3106,141	3217,655	0,2	5,32
2	3	0	38,463	2,33632	10911,556	11532,397	0,2	18,81
0	1	2	39,324	2,2872	11487,265	12061,985	0,2	18,91
1	1	-2	39,496	2,27765	94,712	91,432	0,2	0,12
3	1	1	39,6	2,27193	1386,957	1233,926	0,2	2,44
1	3	1	39,61	2,27139	1976,12	1774,52	0,2	2,91
3	2	-1	40,566	2,22004	577,333	137,195	0,2	1,04
2	0	-2	40,891	2,20318	637,259	132,35	0,2	0,61
4	0	0	41,247	2,18502	2110,845	1890,564	0,195	1,93
1	1	2	41,889	2,15299	7,379	7,14	0,206	0,01
2	3	-1	41,904	2,15228	10,031	9,759	0,206	0,01
2	1	-2	42,378	2,12933	7094,934	6656,238	0,206	10,82
4	1	0	42,723	2,11293	3181,246	2357,765	0,206	4,71
0	4	0	43,579	2,07343	519,021	548,128	0,206	0,43
0	2	2	43,792	2,06385	1157,711	1005,045	0,206	1,76
1	2	-2	43,95	2,05682	865,554	834,012	0,206	1,22

h	k	1	20	d [Å]	F_{α}^2	F_c^2	FWHM	i100
2	2	1	44.045	2.05261	4760 746	4912 271	0.206	7.05
3	2	1	44,045	2,03201	4700,740	4612,271	0,200	7,05
2	3	1	44,19	2,04618	46,865	44,381	0,206	0,05
4	1	-1	44,805	2,01957	124,936	128,219	0,206	0,16
1	4	0	11 855	2 01744	5116 746	5425 361	0.206	7.16
1	-	0	44,000	2,01744	5110,740	3423,301	0,200	7,10
3	3	0	45,139	2,00539	2927,828	3381,252	0,206	4,21
2	0	2	45,454	1,99224	4313,436	4381,918	0,211	3,22
1	2	2	46 155	1 96363	5681 643	4763 317	0.211	7 82
	2	2	16,155	1,045(2	2840,200	2701.259	0,211	2.00
2	2	-2	40,007	1,94565	2849,509	2701,358	0,211	3,90
2	1	2	46,824	1,93714	330,189	341,24	0,212	0,39
4	2	0	46 928	1 93309	3233 177	3340 969	0.212	4 28
-	-	0	40,720	1,00050	3255,177	2027,220	0,212	7,20
3	1	-2	47,568	1,90858	3950,062	3927,228	0,217	5,34
3	3	-1	47,666	1,90489	3883,492	3798,804	0,217	5,63
0	4	1	47 774	1 90085	401 895	414 638	0.217	0.54
1		1	40.445	1,90005	11102,000	11000.000	0,217	14.64
1	4	-1	48,445	1,8/61	11182,009	11098,288	0,217	14,64
2	4	0	48,523	1,87327	2698,522	2761,994	0,217	3,44
4	2	-1	48.869	1.86083	3747.96	3820.549	0.217	4.86
	-	-	40.079	1.0524	2055 424	2247.264	0.017	2.55
4	1	1	49,078	1,8554	2055,454	2247,204	0,217	2,55
1	4	1	49,479	1,8393	3927,323	3712,219	0,217	5,17
0	3	2	50.532	1.80345	27.566	46.385	0.222	0.04
	2	-	50,552	1,00010	21,500	105,040	0,222	0,01
1	3	-2	50,673	1,79876	84,082	105,249	0,222	0,09
3	3	1	50,759	1,79594	153,439	181,022	0,222	0,17
2	2	2	50 764	1 79576	3709 17	4415 142	0 222	4 54
-	-	-	55,704	1,7570	201.57	-++15,142	0,222	
2	4	-1	51,422	1,77432	331,672	320,224	0,222	0,43
3	2	-2	51,466	1,77293	4337,287	4341,391	0,222	5,27
1	3	2	52 663	1 73543	1045 42	1134 623	0 228	1 26
	5	2	52,005	1,73343	1040,42	1154,025	0,220	1,20
4	2	1	52,893	1,72844	6,939	8,544	0,228	0,01
2	3	-2	53,074	1,72297	1422,304	1472,752	0,228	1,61
4	0	2	52 252	1 71464	2722 42	2557 800	0.224	2.22
4	0	-2	55,555	1,71404	5752,42	3337,899	0,234	2,23
4	3	0	53,366	1,71424	837,978	803,475	0,234	0,97
2	4	1	53,392	1,71345	4554,097	4413,381	0,234	5,22
5	1	0	52 404	1 71044	545.22	554 126	0.224	0.6
5	1	0	55,494	1,71044	545,22	554,150	0,234	0,0
5	0	-1	53,571	1,70817	1230,291	1305,952	0,234	0,69
3	1	2	53.631	1.70641	6200.695	6807.554	0.234	7.37
2	4	0	54 210	1 69020	74.020	55 095	0.224	0.00
3	4	0	54,219	1,08929	74,939	55,085	0,234	0,09
4	1	-2	54,574	1,67913	99,721	83,873	0,234	0,11
5	1	-1	54,789	1.67306	5357.052	5372.859	0.24	6.2
4	2	1	55 14	1 66225	10.221	10.046	0.24	0.01
4	3	-1	55,14	1,00525	19,231	19,940	0,24	0,01
1	5	0	56,378	1,62965	3352,937	2071,925	0,234	3,88
3	4	-1	56,444	1.62789	50.849	33,406	0.234	0.06
2	2	-	56,007	1 (1(20)	4(27,722	2001.14	0.024	5.12
2	3	2	30,887	1,01029	4057,752	2991,14	0,234	5,15
5	2	0	57,1	1,61076	1517,657	1193,444	0,234	1,68
3	2	2	57.231	1.60739	1786,741	1390,443	0.234	1.98
2	-	-	57,526	1,50050	2070 526	2270,272	0.024	2.41
3	3	-2	57,530	1,59959	3070,526	2219,313	0,234	3,41
1	0	-3	57,732	1,59463	2329,588	1952,933	0,234	1,33
4	2	-2	58,136	1.58453	1537.398	1293.434	0.234	1.64
-	-	-	50,000	1,50007	1207,270	1055 007	0.024	0.7
5	0	1	58,285	1,58087	1287,578	1255,887	0,234	0,7
5	2	-1	58,342	1,57942	1599,781	1620,101	0,234	1,74
4	3	1	58.863	1.56668	2014.78	1614.093	0.246	2.23
	-		50,005	1,50000	201 1,70	5,000	0,210	2,20
0	5	1	38,8/8	1,30032	5,948	5,238	0,246	0
1	1	-3	58,893	1,56595	1023,506	813,722	0,246	1,15
0	4	2	59.007	1,56321	816.008	644 14	0.246	0.88
1	7	2	50,101	1,50521	144 470	110 005	0,240	0,00
1	4	-2	59,134	1,56015	144,478	119,005	0,246	0,15
3	4	1	59,211	1,55831	402,52	334,778	0,246	0,47
0	1	3	59.221	1,55807	940.906	797.041	0.246	1.01
=	1	1	50 420	1 55001	60,117	40,120	0.246	0.07
5	1	1	39,438	1,35291	02,117	49,138	0,246	0,07
1	5	-1	59,46	1,55239	850,674	675,256	0,246	0,89
2	5	0	59,527	1,55079	430,152	331,401	0,246	0.45
1	5	1	60 362	1 53125	121 705	281 90	0.246	0.44
1	-	-	00,502	1,00100	+2+,/0J		0,240	- 0,44
1	0	3	60,461	1,52906	1517,881	1485,231	0,246	0,8
2	1	-3	60,628	1,52526	1213,021	1128,023	0,246	1,21
4	0	2	60 797	1.52144	11963.055	10631 496	0 246	6 31
í		2	(0.00)	1,52177	0.570	0.555	0,240	5,51
1	4	2	00,936	1,51829	0,579	0,555	0,258	0
2	4	-2	61,31	1,50992	6520,825	6215,661	0,258	6,87
4	4	0	61.576	1,50404	6870.819	7285.051	0.258	7.07
÷	-	~	C1 = C1	1,00070	4170	1110.000	0.050	1,07
1	1	3	61,591	1,50372	41/2,694	4442,809	0,258	4,15
4	1	2	61,922	1,49647	160,553	156,999	0,258	0,18
2	5	-1	62 071	1 49323	10010 578	9849 272	0 258	10.31
-	5	-1	02,071	1,79923	10010,370	1007,212	0,200	10,51
1	2	-3	62,297	1,48838	1803,337	1786,465	0,258	1,81
0	2	3	62,614	1,48161	6644,365	6195,908	0,258	6,88
5	3	0	62.81	1 47745	120 206	126 945	0.259	0.12
J -	5	0	02,01	1,47743	129,300	120,043	0,238	- 0,13
5	2	1	62,823	1,47717	5603,681	5503,146	0,258	5,76
3	3	2	62,933	1,47485	1193.856	1182.908	0.258	1.18
5	1	2	62 021	1 4729	2455 725	2450 17	0.250	2,10
5	1	-2	03,031	1,4728	2455,725	2450,17	0,258	2,53
4	4	-1	63,202	1,46924	408,833	425,929	0,271	0,4
3	0	-3	63,223	1,46879	9908,565	10449,396	0,271	4.87
Λ	2		63 790	1 45712	10086 222	10019 522	0.271	10.12
+	3	-2	05,789	1,43/13	10000,552	10018,333	0,271	10,12
6	0	0	63,811	1,45668	769,189	763,484	0,271	0,37

-	h	k	1	2θ	d [Å]	F_{o}^{2}	F_c^2	FWHM	i100
-	2	5	1	63,824	1,45641	6,659	6,631	0,271	0
	2	2	-3	63,976	1,45331	18,604	18,312	0,271	0,02
	5	3	-1	63,984	1,45316	3168,609	3133,041	0,271	3,12
	3	1	-3	64,325	1,44628	76,888	118,753	0,271	0,07
	2	4	2	64,813	1,43657	2949,535	2859,594	0,271	2,81
	3	5	0	64,500	1,44148	/,20/	9,083	0,271	0,01
	1	2	3	64,907	1,45472	1320.646	1266 669	0,271	1 33
	4	2	2	65 233	1 42834	2713 975	3252 334	0.271	27
	3	4	-2	65.415	1,42481	129.592	171.693	0.284	0.14
	6	1	-1	65,633	1,4206	1422,501	1448,028	0,284	1,34
	2	1	3	65,874	1,41599	1993,689	2130,235	0,284	2
	5	2	-2	66,311	1,40772	723,509	917,928	0,284	0,72
	3	5	-1	66,576	1,40277	598,329	588,267	0,284	0,56
	4	4	1	66,649	1,4014	2984,749	2722,049	0,284	2,91
	3	2	-3	67,572	1,38451	1193,516	1532,061	0,284	1,12
	0	6	0	67,695	1,38229	6620,053	7416,877	0,297	3,22
	1	3	-5	67,749	1,38132	9015,915	9574,34	0,297	8,71
	6	2	5	68 14	1,5739	1038,381	86.043	0,297	0,98
	5	3	1	68 253	1,37433	7257 732	6673 917	0,297	7.08
	1	6	0	68 654	1 36532	7141 123	7626 536	0,297	6.84
	6	2	-1	68,849	1,36193	807,43	844,652	0,297	0,74
	0	5	2	68,917	1,36074	612,72	623,424	0,297	0,56
	1	5	-2	69,034	1,35872	6273,071	5702,74	0,297	5,84
	2	2	3	69,084	1,35786	340,2	289,685	0,297	0,33
	3	5	1	69,105	1,35751	5,912	4,807	0,297	0,01
	2	3	-3	69,36	1,35315	2061,319	1641,598	0,297	2
	4	1	-3	69,819	1,34537	187,947	177,156	0,311	0,17
	1	3	3	70,258	1,33804	212,187	157,356	0,311	0,19
	2	4	2	70,354	1,33045	52,552 584 604	25,010	0,311	0,04
	3	4	2	70,47	1,33433	384,004 4150 943	4038 853	0,311	3.89
	6	1	1	70,500	1.33107	51.998	47.309	0.311	0.04
	1	5	2	70,697	1,3308	3924,675	3461,648	0,311	3,66
	3	0	3	70,859	1,32816	1327,345	1062,911	0,311	0,65
	0	6	1	70,904	1,32742	61,689	51,95	0,311	0,05
	2	5	-2	71,044	1,32516	2020,759	1698,869	0,311	1,94
	4	4	-2	71,28	1,32135	621,951	596,944	0,311	0,57
	4	5	0	71,291	1,32117	134,435	130,609	0,311	0,11
	1	6	-1	71,432	1,31891	599,963	616,919	0,311	0,56
	2	4	-1	71,405	1,31839	125 820	2743,206	0,511	2,45
	2	1	2	71,494	1,31793	98 529	140,042	0,311	0,12
	5	3	-2	71,607	1.31612	418.245	430.822	0.311	0.37
	6	0	-2	71,727	1,31421	15324,526	14801,383	0,311	7,23
	3	1	3	71,902	1,31145	6574,54	5524,675	0,311	6,11
	1	6	1	72,254	1,30593	1414,062	1089,307	0,324	1,34
	6	1	-2	72,765	1,29802	1227,479	1076,816	0,324	1,17
	4	5	-1	72,805	1,2974	7647,611	6243,606	0,324	7,16
	3	3	-3	72,826	1,29709	1104,703	865,128	0,324	1,04
	4	2	-3	72,948	1,29521	38,321	26,162	0,324	0,03
	6	3 2	1	73,373	1,28875	6205 742	/,101	0,324	5.02
	2	6	-1	73,794	1,28205	85 914	62 43	0,324	0.09
	6	3	-1	74.062	1,27847	1260.667	902,738	0,324	1.14
	2	3	3	74,291	1,2751	391,001	341,901	0,338	0,37
	2	5	2	74,316	1,27474	716,154	646,312	0,338	0,65
	5	2	2	74,602	1,27055	846,176	900,805	0,338	0,78
	3	2	3	74,995	1,26487	225,107	203,385	0,338	0,2
	1	4	-3	75,053	1,26404	3634,18	3313,134	0,338	3,42
	3	5	-2	74,882	1,2665	122,07	110,362	0,338	0,11
	0	4	3	75,344	1,25988	120,554	135,365	0,338	0,12
	2	0	1	75,44	1,25852	4953,731	3550,473	0,338	4,45
	5	4	-2	13,331 75 8/15	1,23/13	4009,029	4203,911	0,338	3,08 1.04
	5	0	-3	75,943	1,25143	3092.822	3549.125	0,338	1,38
	4	5	1	76,047	1,24998	1103,92	1288,228	0,338	0,99
	3	6	0	76,128	1,24885	467,904	559,429	0,338	0,44
	7	0	-1	76,425	1,24475	1368,792	1725,327	0,353	0,58
	2	4	-3	76,599	1,24234	762,659	895,198	0,353	0,64
	5	1	-3	76,96	1,23742	1024,607	1033,799	0,353	0,95
	7	1	0	77,163	1,23467	21,616	25,158	0,353	0,02
	7	1	-1	77,439	1,23096	151,453	177,681	0,353	0,13
	1	4	3	77,465	1,23062	2538,296	2945,031	0,353	2,3
	4	4	2	78 007	1,22063	359,05	340,038	0,353	0,53
_	3	0	- 1	/0,00/	1,22342	0,274	7,101	0,555	0,01

A.8 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für δ -V₂O₅

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
1 1 0 5,671 4,3799 8,138 5,674 0,027 9,95 1 1 1 7,76 3,49337 8818,989 8691,505 0,027 9,959 3 1 0 8,278 2,98511 127,622 19,529 0,032 5,732 3 1 -1 8,732 2,89881 14046,537 0,032 5,733 2 0 -2 9,473 2,60978 197,73 11,7268 0,036 6,22 3 1 1 10,336 2,31626 49,04 121,03 0,041 0,24 0 2 1,1,420 2,2166 3,895,708 3812,616 0,032 9,84 2 0 1,1,432 2,17855 14,414 1,71,13 0,036 0,88 2 2 1,1,133 2,17855 3,641 5,463 0,041 0,027 1 1 2,22066 3,5941 13,036 0,441 <	2	0	0	4,262	5,79761	1665,439	1710,049	0,023	26,21
1 1 1 1 7,76 3,18484 9330,66 9068,47 0,036 87,66 3 1 0 8,272 2,89571 2,7,62 19,529 0,032 7,522 4 0 0 8,272 2,88069 13530,113 13184,536 0,046 37,13 2 0 -2 9,586 2,57889 12154,38 11098,936 0,046 22,13 3 1 1 10,316 2,39227 4268,153 3405,437 0,046 22,32 4 0 -2 11,432 2,16472 15,041 2,2759 0,036 0,032 2 0 2 11,434 2,16878 3,564 5,463 0,041 0,021 1 1 1,593 2,13912 31,42 3,6502 0,036 1,34 5 1 -1 11,789 2,09814 180,392 191,411 0,041 0,21 1 11,593 <t< td=""><td>1</td><td>1</td><td>0</td><td>5,671</td><td>4,35709</td><td>8,138</td><td>5,674</td><td>0,027</td><td>0,14</td></t<>	1	1	0	5,671	4,35709	8,138	5,674	0,027	0,14
1 1 1 7,76 3,1444 9330,66 9068,47 0.036 87,76 3 1 0 8,527 2,98581 1207,362 19,529 0.032 57,32 3 1 -1 8,732 2,89881 11046,537 0.032 57,32 2 0 -2 9,473 2,8909 125,133 1104,537 0.046 37,131 2 0 -2 9,473 2,31026 49,04 121,03 0.046 37,131 4 0 -2 11,133 2,21066 36,712 8,962 0.036 0.08 2 0 11,133 2,21687 3,564 5,463 0.041 0.02 1 1 2 11,563 2,13355 740,043 787,313 0.036 1.34 5 1 0 11,894 2,07981 6392,787 654519 0.041 0.24 2 1 11,7563 2,13925 773	1	1	-1	7,074	3,49337	8818,989	8691,505	0,027	99,95
3 1 0 8,278 2,9871 27,362 19,529 0,032 0,782 4 0 0 8,727 2,89881 14407,046 14466,537 0,032 57,82 3 1 -1 8,752 2,8309 15350,113 13184,536 0,046 2,713 2 0 -2 9,473 2,60978 1987,87 1817,268 0,046 2,23 1 1 1,056 2,31026 49,04 121,03 0,041 0,24 0 2 1,057 2,31033 3895,708 3312,616 0,032 9,84 2 0 2 1,137 2,22666 36,712 8,962 0,036 0,08 2 1 11,373 2,17855 740,043 787,7313 0,031 30,86 1 1 1,1583 2,13912 321,742 365,029 0,036 1,41 1 1,1789 2,09814 180,927,87 6646,519	1	1	1	7,76	3,18484	9330,66	9068,47	0,036	87,66
4 0 0 8,527 2,83069 13530,113 13184,536 0.032 5782 3 1 -1 8,732 2,83069 13530,113 13184,536 0.032 100 0 0 2 9,586 2,57889 12154,38 11089,936 0.046 32,132 1 1 -2 10,675 2,3162 49,04 121,03 0.041 0.22 2 0 10,519 2,31626 49,04 121,13 0.046 0.23,13 4 0 -2 11,137 2,22066 36,712 8,962 0.036 0.048 3 1 -2 11,433 2,17855 114,414 171,113 0.036 0.49 3 1 -1 11,789 2,13355 7400,643 787,313 0.051 33,46 5 1 0 11,894 2,07971 519,117 5386,866 0.036 1,232 2 -1 11,2733 <td>3</td> <td>1</td> <td>0</td> <td>8,278</td> <td>2,98571</td> <td>27,362</td> <td>19,529</td> <td>0,032</td> <td>0,23</td>	3	1	0	8,278	2,98571	27,362	19,529	0,032	0,23
3 1 -1 8,732 2,83069 13530,113 13184,536 0,032 100 0 0 2 9,473 2,0078 117,268 0,046 2,713 1 1 10,036 2,2327 4268,153 3405,437 0,046 2,235 1 1 -0,676 2,31626 49,04 121,03 0,041 0,24 0 2 11,452 2,16472 15,041 22,759 0,057 0,033 4 0 -2 11,453 2,17855 114,414 171,113 0,036 0,49 2 1 11,563 2,13912 321,742 365,029 0,036 1,34 5 1 -1 11,789 2,09814 180,992 191,411 0,041 2,52 2 1 11,273 1,94281 40,048 41,755 0,041 0,51 3 1 -2 13,517 1,8308 295,331 280,022 0,046 </td <td>4</td> <td>0</td> <td>0</td> <td>8,527</td> <td>2,89881</td> <td>14907,046</td> <td>14466,537</td> <td>0,032</td> <td>57,82</td>	4	0	0	8,527	2,89881	14907,046	14466,537	0,032	57,82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	-1	8,732	2,83069	13530,113	13184,536	0,032	100
2 0 -2 9,473 2,60978 1987,87 1817,268 0,036 6,22 3 1 1 10,336 2,30227 4268,153 3405,437 0,044 22,354 0 2 0 10,519 2,35083 3895,708 3812,616 0,032 9,84 2 0 2 11,426 2,16472 15,041 22,759 0,036 0,036 4 0 -2 11,353 2,17855 114,314 171,113 0,036 0,49 3 1 -2 11,404 2,16878 3,564 5,463 0,041 0,051 3,086 0 2 1 11,789 2,09814 13092 191,411 0,041 0,728 5 1 0 11,884 2,0791 6392,787 6646,519 0,041 10,51 5 1 12,053 1,94281 40,941 841,7253 0,041 0,151 4 2	0	0	2	9,586	2,57889	12154,38	11098,936	0,046	37,13
3 1 1 10,336 2,3927 4268,153 3405,437 0.046 2,235 1 1 -2 10,676 2,31626 49,04 121,03 0.041 0.24 2 0 2 11,426 2,16472 15,041 22,759 0.057 0.033 4 0 -2 11,137 22,2066 36,712 8,962 0.036 0.044 3 1 -2 11,404 2,16878 3,564 5,463 0.041 0.022 1 1 2 11,1789 2,13912 321,742 365,29 0.036 1,34 5 1 -1 11,789 2,09814 180,392 191,411 0.041 0,72 2 2 1 12,735 1,94281 40,948 41,755 0.041 0,14 6 0 0 12,803 139254 6240,18 646,519 0.041 2,387 5 1 1	2	0	-2	9,473	2.60978	1987.87	1817,268	0.036	6.22
1 1 -2 10,676 2,31626 49,04 121,03 0,041 0,24 0 2 10,519 2,35083 3895,708 3812,616 0,032 9,84 2 0 11,333 2,17855 114,314 171,113 0,036 0,49 3 1 -2 11,403 2,16375 7460,643 7877,313 0,051 30,86 0 2 11 11,563 2,13355 7460,643 7877,313 0,051 30,86 0 2 11 11,789 2,00814 180,392 191,411 0,041 0,72 5 1 0 11,894 2,07981 6392,787 6646,519 0,041 0,51 6 0 12,803 1,93284 624,0108 6161,269 0,041 0,51 1 13,554 1,82588 798,286 7598,617 0,044 0,38 4 2 1 13,652 1,81293 263,655	3	1	1	10.336	2.39227	4268,153	3405,437	0.046	22.35
0 2 0 1.519 2.35083 3895,708 3812,616 0.032 9,84 2 0 2 11,426 2.16472 15,041 22,759 0.037 0.038 4 0 -2 11,353 2.17855 114,314 171,113 0.036 0.049 3 1 -2 11,404 2.16878 3.564 5.463 0.041 0.026 1 1 2 11,553 2.13912 321,742 365,029 0.036 1.34 5 1 -1 11,789 2.09814 180,392 191,411 0.041 0.72 2 2 -1 11,906 2.07772 5159,117 5386,866 0.036 2.02 2 0 13,554 1.92281 40,048 41,755 0.041 10,14 6 0 12,3517 1.83088 295,331 280,022 0.046 0.89 4 0 12,3517 1.83088	1	1	-2	10.676	2.31626	49.04	121.03	0.041	0.24
2 0 2 11,137 2,16472 15,041 22,759 0,057 0,033 4 0 -2 11,137 2,2066 36,712 8,962 0,036 0,048 2 2 0 11,353 2,17855 114,314 171,113 0,036 0,041 1 2 11,503 2,13912 321,742 36,602 0,041 0,021 5 1 -1 11,563 2,13912 321,742 36,602 0,041 2,728 5 1 0 11,894 2,07981 6392,787 6646,519 0,041 2,508 2 2 1 12,735 194281 40,948 41,755 0,041 0,141 6 0 0 12,803 1,92484 240,331 280,220 0,041 0,318 4 2 13,517 1,83088 295,331 280,022 0,046 0,83 3 1 2 13,836 <th< td=""><td>0</td><td>2</td><td>0</td><td>10,519</td><td>2,35083</td><td>3895 708</td><td>3812 616</td><td>0.032</td><td>9.84</td></th<>	0	2	0	10,519	2,35083	3895 708	3812 616	0.032	9.84
1 0 -2 11,133 2,2206 36,712 8,962 0,036 0,036 2 2 0 11,333 2,17855 114,314 171,113 0,036 0,049 3 1 -2 11,404 2,16878 3,564 5,463 0,041 0,051 30,86 0 2 1 11,563 2,13355 7460,643 7877,313 0,051 30,86 0 1 14 11,789 2,09814 180,392 191,411 0,041 0,725 2 2 -1 11,906 2,07772 5159,117 5386,866 0,036 20.22 2 0 13,554 1,92281 40,948 41,755 0,041 0,141 5 1 -2 13,517 1,83088 295,331 280,022 0,046 0,53 3 1 2 13,534 1,7893 637,236 645,596 0,063 1,83 4 0	2	0	2	11 426	2,55005	15 041	22 759	0.057	0.03
2 2 0 11,131 1,1230 11,131 11,131 11,130 0,112 0,102 0,103 0,033 0,043 3 1 -2 11,493 2,16878 3,564 5,463 0,041 0,021 1 1 2,6637 7460,643 7877,313 0,041 0,72 5 1 -1 11,793 2,09814 180,392 191,411 0,041 0,72 5 1 -1 11,793 2,09814 40,948 41,755 0,041 0,72 2 2 -1 11,066 2,0777 5159,117 5386,866 0,036 20,22 2 2 1 12,735 1,94281 40,948 41,755 0,041 0,41 2,387 5 1 1 13,554 1,82588 7982,286 7598,617 0,041 23,87 5 1 1 1 13,652 1,81293 263,655 258,544 0,041	4	0	-2	11,420	2,10472	36 712	8 962	0.036	0.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	0	11 353	2,22000	114 314	171 113	0.036	0.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	_2	11,555	2,17855	3 564	5 463	0.041	0,49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	2	11,404	2,10076	7460 643	7877 313	0.051	30.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1	11,595	2,15555	221 742	265.020	0,031	1.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	1	11,303	2,13912	321,742	101 411	0,050	0.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	-1	11,789	2,09814	180,392	191,411	0,041	0,72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	1	11,894	2,07981	6392,787	529(9((0,041	25,08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	-1	11,906	2,07772	5159,117	5380,800	0,030	20,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	1	12,735	1,94281	40,948	41,755	0,041	0,14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0	0	12,803	1,93254	6240,018	6161,269	0,041	10,51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	-2	13,517	1,83088	295,331	280,022	0,046	0,89
5 1 1 13,789 1,79494 849,314 884,923 0,051 2,45 3 1 2 13,836 1,78893 637,236 645,596 0,063 1,83 4 0 2 14,348 1,72531 7606,489 7506,302 0,069 10,1 6 0 -2 13,964 1,77262 5005,273 5277,882 0,046 7,03 2 2 14,249 1,73733 15428,291 15809,177 0,046 41,56 1 1 -3 14,98 1,6529 8427,649 8081,373 0,051 20,43 4 2 1 15,079 1,64214 15,714 15,36 0,051 0,04 3 1 -3 15,176 1,63171 8744,2 8701,272 0,046 20,63 4 2 -2 15,541 1,6033 18655,43 18789,363 0,046 42,4 1 1 3 15,976 1,55052 553,6,906 4683,745 0,063 11,72	4	2	0	13,554	1,82588	7982,286	/598,617	0,041	23,87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	1	13,789	1,79494	849,314	884,923	0,051	2,45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	2	13,836	1,78893	637,236	645,596	0,063	1,83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	-1	13,652	1,81293	263,655	258,544	0,041	0,78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	2	14,348	1,72531	7606,489	7506,302	0,069	10,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0	-2	13,964	1,77262	5005,273	5277,882	0,046	7,03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	-2	14,172	1,74668	347,431	394,688	0,046	0,95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	2	14,249	1,73733	15428,291	15809,177	0,046	41,56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	-3	14,98	1,6529	8427,649	8081,373	0,051	20,43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	1	15,079	1,64214	15,714	15,36	0,051	0,04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	-3	15,176	1,63171	8744,2	8701,272	0,046	20,63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	-2	15,341	1,6143	16269,817	16285,989	0,046	37,52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	2	15,553	1,59242	431,154	417,734	0,057	0,97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	-1	15,447	1,6033	18655,43	18789,363	0,046	42,4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	3	15,976	1,55052	5536,906	4683,745	0,063	11,72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	0	15,854	1,56233	41,775	30,718	0,051	0,09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	0	15,949	1,5531	938,413	784,248	0,046	1,99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	-2	16,5	1,50154	123,592	129,805	0,051	0,24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	-1	16,365	1,51382	280,444	242,837	0,051	0,56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	0	16,597	1,49286	4839,518	4599,964	0,051	9,44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	2	16,893	1,46684	194,834	179,796	0,076	0,37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	-1	16,506	1,50102	2942,911	3124,128	0,046	5,81
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	-3	16,521	1,49964	7,437	7,705	0,051	0,01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	1	16,815	1,47364	3812,434	3613,875	0,046	7,23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	0	0	17,098	1,4494	5415,085	5191,908	0,051	4,96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	0	17,063	1,45236	223,5	208,48	0,046	0,41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0	2	17,842	1,38944	11109,508	11241,059	0,076	9,28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	1	17,624	1,40645	8862,737	9478,622	0,063	15,21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	0	-2	17,406	1,4239	3463,434	3628,47	0,051	3,05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	-1	17,29	1,43341	6322,147	6489,222	0,051	11,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	3	17,97	1,37962	7079,831	7192,454	0,083	11,65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	-3	17,51	1,41552	165,074	176,784	0,051	0,29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	-2	17,513	1,41535	4840.568	5188.756	0,051	8,42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	2	17,823	1,39091	7881.708	7973.049	0,063	13.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	3	17,864	1.38774	1059.563	1062.332	0,063	1.77
3 3 1 18,163 1,36509 17681,162 17475,689 0,051 28,43 4 2 -3 18,193 1,36285 181,392 179,799 0,051 0,29 1 3 -2 18,36 1,3505 269,008 386,712 0,051 0,42 2 0 -4 18,634 1,33083 67,606 111,569 0,063 0,057 7 1 -3 18,777 1,3308 7159,273 8035,312 0.057 10,71	6	2	1	18,156	1.3656	373.072	370.407	0,063	0.6
4 2 -3 18,193 1,36285 181,392 179,979 0,051 0,29 1 3 -2 18,36 1,3505 269,008 386,712 0,051 0,42 2 0 -4 18,634 1,33083 67,606 111,569 0,063 0,057 7 1 -3 18,777 1,3308 7159,273 8035,312 0,057 10,71	3	3	1	18,163	1,36509	17681.162	17475.689	0.051	28,43
1 3 -2 18,36 1,3505 269,008 386,712 0,051 0,42 2 0 -4 18,634 1,33083 67,606 111,569 0,063 0,05 7 1 -3 18,777 1,3208 7159,273 8035,312 0,057 10,71	4	2	-3	18,193	1.36285	181 392	179 979	0.051	0.29
2 0 -4 18,634 1,33083 67,606 111,569 0,063 0,05 7 1 -3 18,777 1,3208 7159 273 8035 312 0,057 10.71	-7	2	.2	18 36	1 3505	260.009	386 712	0.051	0.42
7 1 -3 18.777 1.3208 7159 273 8035 312 0.057 10.71	2	0	-4	18 634	1 33083	67 606	111 569	0.063	0.05
a design and the second and the seco	7	1	-3	18,777	1,3208	7159.273	8035.312	0.057	10.71

h	k	1	20	d [Å]	F ²	E ²	EWIIM	;100
11	ĸ	1	20	u [A]	Г ₀	<i>F_C</i>	F W FIM	1100
3	3	-2	18,798	1,31933	171,083	193,618	0,051	0,26
1	3	2	18,914	1,31128	93,195	117,594	0,057	0,14
2	2	3	19,197	1,29213	41,853	41,347	0,069	0,06
4	0	-4	19,008	1,30489	8303,134	8784,7	0,057	6,05
0	0	4	19,238	1,28944	10739,237	10096,265	0,076	7,62
5	3	-1	19 037	1 30293	325 734	338 832	0.057	0.47
5	2	0	10 102	1,2025	85.055	03 800	0.051	0.12
5	5	0	19,102	1,2985	83,933	95,809	0,051	0,12
1	1	-4	19,548	1,26915	40,247	35,291	0,069	0,06
9	1	-1	19,381	1,27997	753	701,046	0,057	1,05
3	1	-4	19,435	1,27645	976,728	868,605	0,063	1,36
8	2	-1	19,662	1,26191	138,426	90,94	0,057	0,19
6	2	-3	19,807	1,25273	2945,774	2213,319	0,057	3,92
5	1	3	20.685	1.2001	225.682	246.788	0.09	0.27
7	1	2	20.416	1 21575	357 008	378.068	0.083	0.45
, ,	1	2	20,410	1,21375	12,000	378,008	0,085	0,45
9	1	0	19,971	1,24233	42,989	50,005	0,037	0,00
9	1	-2	19,98	1,24202	1715,52	1447,901	0,057	2,24
1	1	4	20,58	1,20612	40,864	54,843	0,083	0,05
8	2	0	20,115	1,23375	2650,385	2683,177	0,057	3,41
3	3	2	20,382	1,21773	85,875	88,142	0,063	0,11
5	3	-2	20,165	1,23071	47,554	48,422	0,057	0,06
5	1	-4	20 257	1 2252	9.068	9 284	0.057	0.01
2	0		20,237	1 10713	573 745	500 212	0.00	0.35
2	0	-	20,757	1,19715	969.454	012 792	0,07	1.04
0	2	2	20,754	1,19614	808,454	912,782	0,076	1,04
6	0	-4	20,307	1,22218	3735,139	3804,269	0,057	2,35
5	3	1	20,35	1,21962	94,42	96,805	0,057	0,12
8	2	-2	20,379	1,21791	2586,347	2655,523	0,063	3,24
4	2	3	21,335	1,16394	236,4	237,495	0,083	0,27
0	4	0	21.124	1.17541	4263,785	4560.524	0.051	2.46
8	0	2	21 645	1 14743	1747 831	1678 361	0.09	0.96
10	0	2	21,045	1,17227	7022 451	7355 012	0.057	4.04
10	0	-2	21,101	1,17227	7035,451	7353,012	0,057	4,04
1	3	-3	21,185	1,17208	90,542	94,471	0,063	0,1
10	0	0	21,417	1,15952	1548,003	1492,22	0,063	0,87
2	2	-4	21,443	1,15813	1221,911	1211,027	0,069	1,37
3	3	-3	21,325	1,16446	6373,82	6423,64	0,063	7,21
9	1	1	21,655	1,14694	150,179	143,252	0,076	0,16
8	2	1	21.668	1.14622	1588.805	1516.736	0.069	1.74
ő	1	3	21.671	1 1/61	613 666	584 707	0.063	0.67
0	2	-5	21,071	1,1401	6554 205	6428 267	0,005	6.04
0	2	4	21,975	1,13034	0334,203	0438,307	0,078	0,94
1	3	-1	21,521	1,15399	1794,041	1909,237	0,063	1,99
4	2	-4	21,771	1,14091	3156,92	3193,882	0,063	3,41
2	4	0	21,559	1,15198	501,546	536,926	0,057	0,55
3	1	4	22,411	1,10872	133,873	118,103	0,098	0,14
0	4	1	21,672	1,14603	1354,705	1287,037	0,057	1,48
1	3	3	21 908	1 13384	4307 898	4225 337	0.069	4 59
7	1	4	21,000	1 12266	270 502	266 352	0.063	0.20
7	2	-4	21,912	1,13500	270,393	200,352	0,005	0,29
/	3	0	21,819	1,13843	852,267	826,807	0,063	0,92
2	4	-1	21,86	1,13629	1755,5	1668,59	0,057	1,88
8	2	-3	22,159	1,12116	66,693	71,051	0,063	0,07
7	3	-2	22,298	1,11426	680,271	626,018	0,063	0,7
5	3	-3	22,314	1,11348	325,473	293,607	0,063	0,33
8	0	-4	22,378	1,11033	6658,976	5952,472	0,063	3,38
4	0	4	22.964	1.08236	8184,123	7725.961	0.105	3.92
2	4	1	22 331	1 11263	36 647	32 679	0.057	0.04
-	2	,	22,551	1 00005	14 207	0.001	0,037	0.01
5	5	2	22,394	1,09985	14,297	9,891	0,078	0,01
6	2	-4	22,92	1,08439	4108,089	3884,162	0,063	3,96
4	4	0	22,816	1,08927	6170,639	5608,403	0,057	6
2	2	4	23,304	1,06678	513,388	524,038	0,09	0,48
4	4	-1	22,875	1,08651	271,981	259,134	0,063	0,26
7	3	1	23,152	1,0737	6990,534	6892,293	0,069	6,58
3	3	3	23,419	1.06161	3228,257	3284,149	0.076	2.96
10	2	-1	23,309	1.06655	25 501	26 158	0.063	0.02
7	-	2	22,200	1,000000	7161 909	6779 199	0,005	6.28
2	1	2	22,007	1.07172	696 262	691 622	0,105	0,20
2	4	-2	25,195	1,0/1/3	000,303	001,032	0,003	0,04
0	4	2	23,242	1,06956	4860,932	4951,666	0,063	4,53
11	1	-1	23,472	1,05926	4538,398	4550,809	0,063	4,14
6	2	3	24,073	1,03317	0,076	0,074	0,098	0
9	1	2	24,216	1,02714	30,982	31,783	0,098	0,03
10	2	-2	23,703	1,04907	4357,499	4288,233	0,069	3,89
11	1	-2	23 753	1.04686	138 004	138 341	0.063	0.12
1	4	1	23,750	1.04617	505 021	500 949	0.062	0.45
+	-	2	23,707	1,02115	2700 744	2725 570	0,005	2 10
8	2	2	24,121	1,03115	5/09,/44	5/35,5/9	0,09	3,18
10	2	0	23,915	1,03991	8005,224	7620,844	0,069	7
4	4	-2	23,939	1,03886	5883,814	5600,318	0,063	5,13
3	1	-5	23,946	1,03857	5970,953	5677,429	0,076	5,21
1	1	-5	24,255	1,02554	1173,614	1252,298	0,09	0,99
5	1	4	24,872	1,00046	12,365	13,851	0,113	0,01
7	3	-3	24.051	1.0341	7531.585	7164.498	0.069	6.5
	-	-	= .,001	-,		,	-,007	0,0

h	k	1	28	ط (Å]	F ²	F^2	FWHM	i100
	1	2	24 078	1.03206	300 374	374 077	0.062	0.34
11	1	0	24,078	1,03290	7 225	7 401	0,005	0,54
0	1	4	24,182	1,02633	182 222	180 882	0,009	0.15
5	1	-4	24,238	1,02023	55 24	50 877	0,009	0,15
9	3	-1	24,531	1,01/15	147.42	160 842	0,009	0.12
3	3	-1	24,551	1,0124	368 953	400 146	0,009	0,12
6	4	-1	24,574	1,01056	404 396	450 565	0.069	0.33
1	3	-4	24,62	1,01050	251 244	277 856	0.076	0.2
6	4	0	24 777	1,00425	1425 242	1599 411	0.063	1.15
8	2	-4	24,777	1 00398	444 652	499 855	0,069	0.36
1	1	5	25 311	0.9834	4219 339	4030 876	0,009	3 24
4	2	4	25 317	0.98316	3703 506	3546.043	0.105	2.84
6	0	4	25,517	0.96721	1105 406	1116 755	0.122	0.41
11	1	-3	24,996	0.99559	2341.446	2412.683	0.069	1.85
9	3	0	25.005	0.99524	3.289	3,389	0.069	0
9	3	-2	25.012	0.99496	76.025	78.673	0.069	0.06
10	0	-4	25.039	0.9939	4680.908	5023.343	0.069	1.84
10	2	-3	25.052	0.99338	41.539	45,737	0.076	0.03
10	0	2	25.639	0.97102	4777,386	4801,173	0.098	1.78
7	3	2	25,366	0.98131	449.576	427.561	0.083	0.34
12	0	-2	25,156	0.98934	7,654	10.089	0.069	0
10	2	1	25,453	0.97798	338,128	329,224	0.083	0.26
5	3	-4	25,236	0,98625	1,562	1,701	0,069	0
1	3	4	25,5	0,97622	418,512	417,624	0,083	0,32
5	3	3	25,585	0,97302	1070,121	1072,692	0,09	0,8
2	4	-3	25,409	0,97967	31,596	29,973	0,069	0,02
6	4	-2	25,41	0,97962	2055,742	1951,525	0,069	1,56
2	2	-5	25,72	0,96799	1,185	1,188	0,083	0
11	1	1	25,807	0,96478	3710,41	3774,187	0,083	2,72
7	1	-5	25,609	0,97213	5720,586	5720,935	0,069	4,27
4	4	2	25,629	0,9714	4710,672	4717,358	0,069	3,51
0	4	3	25,658	0,97032	359,281	362,319	0,069	0,27
12	0	0	25,767	0,96627	606,049	616,789	0,076	0,22
4	2	-5	25,794	0,96527	5,608	5,702	0,076	0
0	2	5	26,368	0,94461	1025,074	817,277	0,098	0,71
6	4	1	25,865	0,96266	168,291	168,386	0,069	0,12
4	4	-3	25,892	0,9617	203,401	200,597	0,069	0,15
9	3	1	26,385	0,94403	542,162	419,827	0,083	0,38
9	3	-3	26,398	0,94356	785,512	602,452	0,076	0,55
2	4	3	26,62	0,93585	22,145	22,263	0,076	0,02
1	5	0	26,579	0,93725	279,297	267,646	0,063	0,19
6	2	-5	26,584	0,93708	2,13	2,055	0,076	0
7	3	-4	26,598	0,93658	411,665	408,644	0,076	0,28

A.9 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für K₆(SeO₄)(SeO₅)

h	k	l	20	d [Å]	F_o^2	F_c^2	FWHM	i100
1	0	1	5,049	7,3697	2156,197	1498,418	0,027	5,79
1	0	2	6,251	5,9535	-1,253	425,773	0,025	0,00
1	1	0	6,477	5,7459	-1,152	59,364	0,029	0,00
1	1	1	6,817	5,4590	308,093	60,745	0,026	0,43
1	1	2	7,750	4,8025	44798,940	43985,410	0,025	45,57
1	0	3	7,856	4,7379	413,485	252,347	0,029	0,46
0	0	4	8,511	4,3738	54402,420	41284,120	0,033	11,65
2	0	0	9,163	4,0629	44775,360	39719,130	0,037	16,26
1	1	3	9,096	4,0930	166,121	148,321	0,026	0,12
2	0	1	9,408	3,9576	280,817	547,746	0,037	0,20
1	0	4	9,668	3,8513	-0,150	0,029	0,033	0,00
2	0	2	10,106	3,6849	-21,418	713,371	0,037	0,00
2	1	0	10,248	3,6340	-48,780	921,056	0,037	0,00
2	1	1	10,467	3,5581	-13,862	73,951	0,037	0,00
1	1	4	10,701	3,4802	-18,341	265,713	0,030	0,00
2	1	2	11,099	3,3559	-4,898	29,547	0,035	0,00
2	0	3	11,173	3,3337	27,987	595,386	0,035	0,00
1	0	5	11,592	3,2138	4179,979	1422,250	0,035	2,07
2	1	3	12,080	3,0842	4450,077	226,373	0,030	3,99
1	1	5	12,468	2,9885	2143,540	1765,651	0,030	0,90
2	0	4	12,518	2,9768	238869,720	227126,770	0,035	100,00
2	2	0	12,972	2,8729	264907,310	266226,470	0,035	51,54
2	2	1	13,147	2,8350	25,181	24,555	0,035	0,01

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
2	1	4	13,335	2,7951	5539,289	5304,173	0,032	4,14
1	0	6	13,582	2,7445	7548,361	3811,675	0,039	2,78
2	2	2	13,657	2,7295	126,019	24,360	0,035	0,05
3	0	1	13,927	2,6767	7969,273	6334,799	0,044	2,77
2	0	5	14,061	2,6513	3650,482	4838,814	0,035	1,21
3	0	2	14,339	2,0002	18734 824	20608 742	0.041	6.13
3	1	0	14,410	2,5696	276,521	702.071	0.041	0.09
2	2	3	14,468	2,5772	755,291	928,032	0,035	0,23
3	1	1	14,667	2,5424	12,196	72,696	0,041	0,00
2	1	5	14,795	2,5206	-1,293	1,519	0,035	0,00
3	1	2	15,127	2,4655	10762,440	12984,821	0,041	4,97
3	0	3	15,182	2,4566	1562,485	1493,727	0,041	0,47
1	0	/	15,615	2,3889	3362,956	3764,306	0,041	0,92
2	0	6	15,747	2,4015	42.874	201.900	0.037	0.01
3	1	3	15,865	2,3515	15,774	126,433	0,041	0,00
3	0	4	16,203	2,3028	-3,831	112,186	0,041	0,00
1	1	7	16,280	2,2919	1971,461	2156,455	0,037	0,48
2	1	6	16,407	2,2743	9992,567	10681,922	0,035	4,88
3	2	0	16,558	2,2537	5465,845	6039,420	0,041	1,30
3	2	1	16,696	2,2352	6811,775	7349,967	0,041	3,24
2	2	5	16 808	2,2130	7 296	10 418	0.032	0,18
0	0	8	17,067	2,1869	282922,340	269503,060	0,032	15,47
3	2	2	17,102	2,1824	959,754	789,230	0,041	0,45
3	0	5	17,429	2,1419	454,280	333,336	0,041	0,09
2	0	7	17,537	2,1288	6141,623	3774,671	0,037	1,27
1	0	8	17,679	2,1118	1216,019	493,676	0,041	0,25
3	2	5	17,760	2,1022	2226,030	2192,277	0,039	0,96
2	1	7	18,029	2,0711	79.514	63.460	0.037	0.03
4	0	0	18,384	2,0315	230142,450	209868,390	0,049	21,45
2	2	6	18,248	2,0465	883,279	683,163	0,034	0,17
1	1	8	18,271	2,0439	2677,106	2124,394	0,041	0,53
4	0	1	18,509	2,0179	1167,426	757,051	0,049	0,21
3	2	4	18,644	2,0034	306.083	/1/4,232	0,039	3,18
4	1	0	18,955	1,9708	700.089	611.223	0.049	0.13
3	0	6	18,823	1,9845	21,445	16,405	0,041	0,00
4	1	1	19,076	1,9584	3592,270	2463,471	0,049	1,26
4	1	2	19,434	1,9226	1472,060	1370,106	0,047	0,49
4	0	3	19,478	1,9184	3401,720	2770,896	0,047	0,56
3	1	6	19,381	1,9279	4406,729	4103,022	0,039	1,11
3	3	0	19,403	1,9257	5701.978	3501.388	0.041	0.47
3	3	1	19,627	1,9039	147,803	168,232	0,041	0,03
3	2	5	19,724	1,8947	4235,657	4623,766	0,037	1,44
1	0	9	19,767	1,8906	905,124	932,407	0,041	0,15
2	2	7	19,819	1,8856	110,485	342,432	0,037	0,03
4	1	3	20,018	1,8671	630,136	1043,476	0,044	0,21
2	1	8 2	19,946	1,8738	2034,038	3182,109	0,039	0,85
4	0	4	20.289	1.8424	6659,977	8934,761	0,041	0.76
1	1	9	20,301	1,8414	21,958	37,460	0,041	0,00
3	0	7	20,351	1,8368	544,244	1827,224	0,037	0,10
4	2	0	20,576	1,8170	12968,872	17127,414	0,044	1,57
4	2	1	20,688	1,8073	104,262	427,218	0,044	0,02
3	3	5	20,546	1,8197	/30,506	1222,208	0,039	0,13
4	2	2	20,810	1,7908	679,909	826.328	0.044	0,80
3	1	7	20,871	1,7916	358,121	513,071	0,037	0,11
3	2	6	20,971	1,7832	2747,493	3306,388	0,037	0,89
4	0	5	21,289	1,7568	743,659	836,925	0,044	0,09
3	3	4	21,318	1,7545	4155,950	4159,561	0,037	0,59
2	0	9	21,329	1,7535	671,671	649,550 25 785	0,039	0,09
2	2	8	21,303	1,7401	42,007	109219.380	0.037	15.78
4	1	5	21,786	1,7172	1431,163	1875,499	0,044	0,39
1	0	10	21,874	1,7103	5296,422	5160,323	0,044	0,71
2	1	9	21,826	1,7141	42,248	43,059	0,039	0,01
3	0	8	21,989	1,7015	1,081	0,709	0,039	0,00
4	2	4	22,302	1,6780	104036,820 28405 771	27915 828	0,044	25,31
3	3	5	22,300	1,6801	1484.739	1363.034	0,037	0,18
4	0	6	22,453	1,6668	931,077	741,030	0,044	0,12
3	2	7	22,359	1,6737	1796,111	1758,177	0,037	0,47

h	k	1	2θ	d [Å]	F_{2}^{2}	F_{a}^{2}	FWHM	i100
3	1	8	22 472	1 6654	1682 204	1378 726	0.030	0.43
4	1	6	22,472	1,0054	155 750	(12.165	0,035	0,45
4	1	0	22,926	1,0328	155,759	013,105	0,041	0,06
4	3	0	23,036	1,6252	3393,988	1898,557	0,044	0,39
5	0	1	23,136	1,6182	5035,637	4541,124	0,054	0,60
4	3	1	23,136	1,6182	204,895	186,010	0,044	0,06
2	0	10	23,302	1.6069	99.388	404.379	0.041	0.01
4	ñ	5	22,202	1,6125	2476 225	2621 542	0.041	0.56
4	2	5	23,219	1,0125	2470,223	2021,342	0,041	0,50
2	2	9	23,256	1,6100	1999,695	2799,778	0,039	0,23
5	0	2	23,435	1,5978	1004,453	1399,562	0,054	0,13
4	3	2	23,435	1,5978	1007,198	1327,826	0,044	0,25
5	1	0	23,498	1.5936	65,730	481.016	0.054	0.01
3	3	6	23 301	1,6008	8326 569	8456 610	0.037	0.75
5	1	1	23,391	1,0000	70,752	541 770	0,051	0,75
5	1	1	23,597	1,5870	/9,/53	541,772	0,054	0,01
5	1	2	23,891	1,5678	27288,936	27801,242	0,054	5,22
3	0	9	23,715	1,5793	990,161	1514,199	0,041	0,12
5	0	3	23,926	1,5655	4699,853	4847,882	0,054	0,53
4	0	7	23,758	1.5764	86.534	94,991	0.041	0.01
2	1	10	22,750	1,5764	2402 128	2806 610	0.041	0,61
2	1	10	25,759	1,5704	2492,138	2890,019	0,041	0,00
1	0	11	23,999	1,5609	882,101	1066,814	0,047	0,10
3	2	8	23,865	1,5695	4141,374	4265,995	0,039	0,89
4	3	3	23,926	1,5655	2617,785	2635,221	0,041	0,58
3	1	9	24,165	1,5503	1427.855	2045.583	0,039	0.30
5	1	2	24 373	1 5373	60 205	492 070	0.051	0.00
4	1	-	24,313	1,5515	110 150	170.050	0,031	0,00
4	1	/	24,208	1,54/6	118,152	1/8,958	0,041	0,03
1	1	11	24,444	1,5328	-3,555	0,332	0,047	0,00
4	2	6	24,295	1,5421	539,017	1581,878	0,039	0,13
5	0	4	24,598	1,5234	375,133	304,502	0,051	0,04
4	3	4	24,598	1.5234	4185 218	3423 698	0.041	0.84
2	2	7	24,550	1 5202	1074 701	377 000	0.026	0,04
5	3	/	24,050	1,5202	10/4,/91	572,000	0,030	0,10
5	2	0	24,837	1,5089	572,784	353,275	0,051	0,06
5	2	1	24,931	1,5034	1162,826	1335,194	0,049	0,26
5	1	4	25,033	1,4973	119,247	100,832	0,049	0,03
4	0	8	25,186	1.4884	109365.070	104095.930	0.044	10.11
5	2	2	25 210	1 4870	1184 610	1119 655	0.040	0.26
2	2	2	25,210	1,4070	1184,010	74,000	0,049	0,20
2	2	10	25,085	1,4943	90,632	74,690	0,041	0,01
2	0	11	25,313	1,4810	149,199	111,114	0,044	0,02
5	0	5	25,437	1,4740	7390,445	8296,012	0,049	0,72
4	3	5	25,437	1,4740	413,835	475,903	0,041	0,08
3	2	9	25 471	1 4720	1249 248	1377 159	0.039	0.24
5	2	2	25,471	1 4609	4660 667	4190 695	0,039	0,24
5	2	5	25,009	1,4008	4009,007	4189,085	0,049	0,88
4	2	7	25,512	1,4697	3367,412	3643,222	0,039	0,62
3	0	10	25,513	1,4696	12142,470	13198,846	0,044	1,20
0	0	12	25,721	1,4579	58716,410	55556,670	0,049	1,24
2	1	11	25 737	1 4570	665 151	624 722	0.044	0.13
4	1	0	25,151	1,1570	4056 207	2572 927	0.041	0.75
4	1	0	25,012	1,4040	4030,297	3373,827	0,041	0,75
5	1	5	25,859	1,4503	2580,390	2386,659	0,049	0,45
3	1	10	25,934	1,4462	18063,908	16602,588	0,041	2,78
4	4	0	26,112	1,4365	103828,050	106534,840	0,044	4,41
1	0	12	26,139	1,4350	6.887	7.448	0.049	0.00
4	4	1	26 201	1 4317	1513 056	1639 845	0.044	0.12
~	-	1	26,201	1,4400	1313,330	20,040	0.027	0,12
5	3	8	20,031	1,4408	23,532	22,511	0,037	0,00
5	2	4	26,299	1,4264	493,541	415,929	0,049	0,09
5	0	6	26,428	1,4196	2052,123	2489,874	0,049	0,21
4	4	2	26,468	1,4175	135,479	146,757	0,044	0,01
1	1	12	26.550	1.4132	4371,272	4573 340	0.049	0 39
1	2		26,000	1 / 106	180 257	212,0-10	0.020	0,00
7	2	U C	20,420	1,4190	100,557	212,020	0,039	0,03
4	0	9	26,717	1,4045	6055,836	4964,330	0,044	0,50
5	1	6	26,836	1,3984	21164,852	19111,678	0,049	3,08
4	4	3	26,907	1,3948	4055,507	3727,632	0,044	0,32
5	3	0	26,930	1,3936	5895,995	5364,738	0,049	0,49
2	2	11	26,972	1.3915	537.756	447.013	0.044	0.04
5	2	1	27 017	1 3200	1870.052	1608 694	0.040	0,04
5	5	1	21,017	1,3092	10/0,052	1008,084	0,049	0,28
4	2	8	26,852	1,3976	18120,877	16/27,764	0,039	2,58
5	2	5	27,089	1,3856	1865,247	1377,006	0,049	0,31
4	1	9	27,121	1,3840	113,696	84,154	0,044	0,02
5	3	2	27,276	1.3762	24625 375	23368 830	0.049	3 49
2	ົ້	10	27,270	1 2020	1251 102	1027 005	0,012	0.21
5	2	10	27,100	1,3620	1551,102	1037,093	0,039	0,21
2	0	12	27,357	1,3723	91430,920	87008,980	0,046	6,95
3	0	11	27,372	1,3715	1118,636	1101,128	0,044	0,09
4	4	4	27,510	1,3648	14030,439	10965,585	0,044	0,93
6	0	0	27.726	1,3543	16404.684	15264.308	0.051	0.54
5	0	7	27 557	1 3625	1653 950	078 251	0.040	0.12
5	0	,	27,337	1,3023	1035,659	726,551	0,049	0,13
6	0	1	27,811	1,3503	1272,945	1443,186	0,051	0,09
3	3	9	27,519	1,3643	437,406	312,274	0,039	0,04
5	3	3	27,703	1,3554	1101,370	995,933	0,049	0,15
4	3	7	27.557	1,3625	794,242	435,537	0.039	0.13
2	1	10	27 752	1 2521	051 054	007.040	0.044	0.15
2	1	12	21,132	1,3331	931,834	777,04U	0,040	0.15

h	k	1	2θ	d [Å]	F_{-}^{2}	F_{-}^{2}	FWHM	i100
3	1	11	27.767	1.3524	498,440	544.254	0.044	0.07
6	0	2	28.063	1.3384	2407,526	2542,654	0.051	0.19
6	1	0	28,117	1,3359	7935,248	7765,487	0,051	0,59
5	1	7	27,950	1,3437	1982,328	2134,949	0,046	0,29
6	1	1	28,200	1,3320	469,740	633,533	0,051	0,07
5	2	6	28,026	1,3401	358,311	405,849	0,046	0,04
6	1	2	28,449	1,3206	-21,004	185,965	0,051	0,00
4	4	5	28,269	1,3288	55,119	57,738	0,044	0,00
6	0	3	28,480	1,3192	10,972	13,467	0,051	0,00
1	0	13	28,294	1,3277	631,787	638,493	0,041	0,05
5	3	4	28,291	1,3278	167,451	193,219	0,046	0,02
4	0	10	28,338	1,3257	4,516	120,435	0,044	0,00
4	2	9	28,300	1,3274	34,226	42,726	0,041	0,00
6	1	3	28,860	1,3022	916,575	799,080	0,051	0,13
1	1	13	28,677	1,3103	82,684	118,338	0,041	0,01
4	1	10	28,720	1,3084	2933,524	3080,164	0,044	0,43
5	0	8	28,809	1,3044	228,769	216,494	0,046	0,02
0	0	4	29,053	1,2937	61924,660	61098,160	0,051	4,06
2	2	12	28,907	1,3001	20512,838	18901,529	0,046	1,25
3	2	11	28,921	1,2995	2467 486	52,515 2245 102	0,044	0,01
4	2	8 5	28,809	1,3044	2407,480	2345,105	0,039	0,55
6	2	0	29,031	1,2947	66082.050	67039 730	0,040	4.26
5	2	7	29,259	1 2918	2058 752	1959 870	0.046	0.30
6	2	1	29,339	1 2814	2346 987	2349 503	0.051	0,30
4	4	6	29,171	1.2886	6.676	6,773	0.041	0.00
5	1	8	29,186	1,2879	1795,575	1821,488	0,046	0,25
6	1	4	29,427	1,2776	10531,014	10258,654	0,051	1,40
3	3	10	29,098	1,2917	18806,109	18012,633	0,039	1,11
3	0	12	29,283	1,2838	37,824	35,889	0,046	0,00
6	2	2	29,580	1,2712	1970,874	2259,572	0,051	0,28
2	0	13	29,429	1,2775	1493,654	1442,982	0,041	0,10
6	0	5	29,775	1,2630	3619,909	3349,755	0,051	0,23
5	4	0	29,630	1,2691	525,017	535,336	0,041	0,03
3	1	12	29,654	1,2681	2346,517	2416,331	0,046	0,33
5	4	1	29,710	1,2657	3854,594	3676,677	0,041	0,52
6	2	3	29,977	1,2547	2946,995	2981,180	0,051	0,36
2	1	13	29,799	1,2620	276,249	275,973	0,041	0,04
4	2	10	29,841	1,2603	228,536	212,163	0,041	0,03
5	3	6	29,912	1,2574	15341,112	15659,909	0,046	1,69
6	1	2	30,141	1,2480	603,887	290,250	0,051	0,08
5	4	2	29,948	1,2559	167,292	185,945	0,041	0,03
4	0	11	20,035	1,2525	3482,513	30/1,310	0,046	0,22
1	4	7	30,171	1,2408	106 444	26 741	0,041	0,15
5	2	8	30,200	1,2420	348 336	243 157	0.041	0.04
6	2	4	30,524	1,2327	5499.512	6541.192	0.051	0.50
5	4	3	30,340	1,2400	3316,569	3027.643	0.041	0.43
4	3	9	30,171	1,2468	275,829	126,105	0,041	0,04
4	1	11	30,398	1,2377	939,807	732,584	0,046	0,12
6	0	6	30,637	1,2283	610,528	707,334	0,051	0,04
1	0	14	30,463	1,2351	4504,283	4298,777	0,046	0,29
5	1	9	30,532	1,2324	974,155	1239,818	0,041	0,12
3	2	12	30,744	1,2241	1391,393	1844,954	0,046	0,17
3	3	11	30,758	1,2236	592,617	965,627	0,041	0,05
6	1	6	30,994	1,2145	299,582	260,762	0,051	0,04
1	1	14	30,822	1,2211	9733,333	12157,609	0,046	0,46
6	3	0	31,077	1,2113	5307,424	5993,323	0,051	0,31
5	4	4	30,882	1,2188	276,265	380,379	0,041	0,03
2	2	13	30,884	1,2187	66,024	101,587	0,041	0,01
5	2	1	30,924	1,2172	227,296	245,255	0,050	0,05
6	2	5	21,155	1,2064	4405,850 570,600	4045,128	0,031	0,52
0	2	2 2	31 391	1 1000	20,090	21 610	0.051	0,00
2	0	13	31 238	1 2052	627 163	672 056	0.041	0.04
4	4	8	31.361	1,2006	67143.140	64211.060	0.041	3.66
-1	0	7	31.628	1,1907	2918.262	2839,100	0.046	0.16
4	2	11	31.465	1,1968	383.668	378.928	0,041	0.05
2	0	14	31,528	1,1944	229,225	268,829	0,046	0,01
6	3	3	31,757	1,1860	333,345	392,082	0,046	0,04
5	4	5	31,567	1,1930	3195,730	3703,792	0,041	0,38
3	1	13	31,589	1,1922	891,098	954,948	0,041	0,10
5	2	9	31,595	1,1920	315,525	338,058	0,041	0,04
5	0	10	31,629	1,1907	36,319	35,666	0,041	0,00
4	3	10	31,629	1,1907	2365,281	2252,364	0,041	0,29
6	1	7	31,975	1,1782	126,916	131,751	0,046	0,01
4	0	12	31,800	1,1845	17985,965	19187,361	0,041	0,86

h	k	1	2θ	d [Å]	F_{-}^{2}	F_{-}^{2}	FWHM	i100
6	2	6	22.042	1 1757	1707 603	1880.860	0.046	0.20
0	2	0	52,045	1,1737	1707,093	1880,809	0,046	0,20
2	1	14	31,875	1,1817	3536,603	3643,950	0,046	0,40
5	1	10	31,976	1,1781	23240,709	23977,729	0,041	2,23
5	3	8	32.056	1.1752	3414.847	3749,416	0.036	0.39
6	2	4	22 278	1 1674	5712 780	6252 602	0.046	0.61
-	5	4	32,278	1,1074	5/15,789	0232,093	0,040	0,01
7	0	1	32,538	1,1583	1470,877	1798,055	0,063	0,09
4	1	12	32,145	1,1721	1228,395	1143,522	0,041	0,14
7	0	2	32 758	1 1508	701 372	779 221	0.063	0.05
,	1	2	22,750	1,1500	100,572	541.027	0,005	0,05
7	1	0	32,804	1,1492	480,606	541,927	0,063	0,03
5	4	6	32,385	1,1636	765,568	926,623	0,041	0,10
1	0	15	32.648	1.1545	172,955	148.804	0.051	0.01
-	1	10	22,010	1,12,13	122,555	1400.110	0,051	0,01
/	1	1	32,877	1,1407	1331,300	1480,118	0,065	0,12
3	3	12	32,487	1,1601	5641,783	6845,480	0,036	0,31
6	0	8	32,738	1,1514	13474,285	14894,353	0,046	0,58
3	2	13	32 620	1 1555	891 959	892 286	0.041	0.10
	-	15	32,020	1,1555	6771,410	5522,200	0,041	0,10
4	4	9	32,626	1,1555	5771,412	5525,555	0,036	0,30
1	1	15	32,985	1,1430	126,293	113,611	0,051	0,01
5	5	0	32,804	1,1492	1177,104	1336,375	0,046	0,03
6	1	0	22.075	1 1400	6802 226	7008 127	0.046	0.60
-	1	0	33,075	1,1400	0893,220	/098,127	0,040	0,09
5	5	1	32,877	1,1467	1090,916	1232,633	0,046	0,05
7	1	2	33,094	1,1394	17214,428	16912,871	0,063	1,52
2	2	14	32 800	1,1459	4 282	5 422	0.046	0.00
-	2 C		22,099	1,1205	7,202	1005.072	0,040	0,00
/	0	3	55,120	1,1385	2128,069	1996,073	0,063	0,11
6	3	5	32,936	1,1447	855,799	930,302	0,046	0,09
6	2	7	32,996	1,1427	63,320	53,668	0,046	0.01
5	2	10	32 006	1 1/127	2275 012	1005 790	0.041	0.24
5	-	10	52,990	1,142/	2213,913	1775,/09	0,041	0,20
5	5	2	33,094	1,1394	20122,656	19930,885	0,046	0,89
4	2	12	33,161	1,1371	55168,340	50535,990	0,041	5,20
5	0	11	33 174	1 1367	119 589	97 762	0.041	0.01
	0		33,174	1,1507	2712.010	2260.056	0,041	0,01
4	3	11	33,174	1,1367	2/12,919	2269,056	0,036	0,27
3	0	14	33,234	1,1347	153,710	115,469	0,046	0,01
7	1	3	33,453	1.1275	1415.912	1493.672	0.057	0.13
4	4	0	22,472	1,1260	12062 800	12527.222	0.051	0.40
0	4	0	55,472	1,1209	12005,809	12327,222	0,031	0,49
5	3	9	33,298	1,1326	4273,958	3771,807	0,041	0,41
5	4	7	33,330	1,1315	1284,354	1076,351	0,041	0,13
6	4	1	33 544	1 1245	1889.056	2172 098	0.051	0.17
-	- -		22,622	1,1245	1005,050	2172,090	0,051	0,17
/	0	4	33,022	1,1220	46,012	85,047	0,057	0,00
2	0	15	33,650	1,1211	302,149	532,112	0,051	0,01
5	5	3	33,453	1,1275	285,358	302,033	0,046	0,01
5	1	11	33 506	1 1257	145 023	156 157	0.041	0.01
5	1		22,500	1,1257	145,025	130,137	0,041	0,01
6	4	2	33,757	1,11/6	665,906	/11,972	0,046	0,07
3	1	14	33,566	1,1238	6560,648	7365,149	0,046	0,49
7	2	0	33.802	1.1162	49.845	62,862	0.057	0.00
	-	12	22,624	1 1210	26.590	27.042	0.041	0.00
4	0	15	55,024	1,1219	20,380	57,045	0,041	0,00
7	2	1	33,873	1,1139	4600,186	4916,205	0,057	0,45
6	3	6	33,725	1,1187	496,150	548,794	0,046	0,05
7	1	4	33 050	1 1115	355 227	364 430	0.057	0.04
2	1	-	33,950	1,1115	333,227	304,430	0,037	0,04
6	0	9	33,958	1,1112	282,499	283,485	0,046	0,01
2	1	15	33,979	1,1106	279,298	268,805	0,049	0,03
7	2	2	34,085	1.1072	4.803	4.167	0.057	0.00
Ē	-	2	2/ 110	1 1064	507 574	£42 011	0,037	0,00
0	4	3	54,110	1,1064	582,574	543,911	0,046	0,04
5	5	4	33,950	1,1115	5833,826	6019,327	0,046	0,28
4	1	13	33,952	1,1114	997,212	1022,903	0,041	0,10
4	Δ	10	33 000	1 1 1 0 2	11 655	11 224	0.036	0.00
-	+	10	33,990	1,1102	11,000	11,224	0,050	0,00
1	0	5	34,257	1,1018	525,938	357,842	0,057	0,03
6	2	8	34,066	1,1078	44488,210	45689,280	0,046	3,90
7	2	3	34,435	1,0963	1993.934	1679.690	0.057	0.20
3	2	12	31 270	1 1011	2500 655	1789 696	0.041	0.17
5	3	15	J+,∠/ð	1,1011	2399,033	1/00,080	0,041	0,12
6	1	9	34,283	1,1010	889,310	610,918	0,046	0,08
0	0	16	34,526	1,0935	60769,360	50603,050	0,051	0,65
7	1	5	34.580	1,0918	614,772	572.709	0.057	0.05
5	-	0	3/ 201	1.0074	276 144	210.042	0.041	0.02
5	4	ð	54,391	1,0970	520,144	519,042	0,041	0,03
6	4	4	34,599	1,0912	32740,006	31063,100	0,046	2,73
5	2	11	34,487	1,0947	1641,955	1201,883	0,041	0,15
3	2	14	34 545	1 0929	3199 506	2723 071	0.046	0.31
5	2		24 500	1,0010	2204.000	2010.026	0,040	0,51
э	5	5	54,580	1,0918	5204,806	3019,836	0,046	0,14
6	3	7	34,637	1,0901	1393,638	1254,930	0,046	0,13
5	3	10	34,638	1.0900	23427.943	21465.826	0.041	1.86
1	0	16	3/ 9/7	1 0927	277 450	224 027	0.051	0.01
1	U	10	54,847	1,0837	322,450	234,037	0,051	0,01
7	2	4	34,920	1,0815	398,700	253,469	0,057	0,04
2	2	15	34,947	1,0807	1043,190	602,456	0,046	0,05
5	0	12	34 706	1.0852	325 440	260 3/12	0.041	0.01
, ,	0	12	5+,790	1,0032	525,440	200,343	0,041	0,01
4	3	12	34,796	1,0852	1767,695	1440,784	0,041	0,15
7	0	6	35,020	1,0785	8,273	0,120	0,057	0,00
4	2	13	34.922	1,0815	4358.677	2841.225	0.041	0.38
1	1	16	25 1//	1.0740	6250 200	5005 016	0.051	0,50
1	1	10	33,100	1,0742	0239,398	5225,316	0,051	0,28
3	0	15	35.265	1.0713	49,775	48,563	0.046	0.00

h	k	1	20	d [Å]	F_{-}^{2}	F_{-}^{2}	FWHM	i100
6	0	10	35.276	1.0709	424.025	406,696	0.046	0.02
5	1	12	35.115	1.0757	2007.679	1623.064	0.041	0.18
7	1	6	35,337	1,0691	12968,328	12540,838	0,057	0,95
7	3	0	35,411	1,0670	131,529	124,066	0,057	0,01
6	4	5	35,219	1,0726	3521,773	3384,571	0,046	0,29
6	2	9	35,245	1,0719	5144,102	5115,239	0,046	0,43
7	3	1	35,479	1,0650	691,830	617,126	0,057	0,05
7	2	5	35,535	1,0634	2980,920	2323,849	0,057	0,26
5	5	6	35,337	1,0691	14232,642	13830,720	0,041	0,52
3	1	15	35,580	1,0621	369,498	297,791	0,046	0,03
6	1	10	35,591	1,0618	1214,982	990,041	0,046	0,11
4	4	11	35,443	1,0660	4859,152	4391,891	0,036	0,20
7	3	2	35,682	1,0591	14309,072	14174,024	0,057	1,03
4	0	14	35,500	1,0644	46,237	39,018	0,046	0,00
5	4	9	35,560	1,0627	1594,129	1280,424	0,041	0,13
2	0	16	35,796	1,0559	21181,174	19980,209	0,051	0,77
0	3	8	35,004 25,002	1,0590	4575,201	4539,400	0,040	0,58
1	1	14	35,903	1,0528	1/23,379	1735,023	0,037	0,08
7	3	3	36.010	1,0354	310 366	287 031	0,040	0,10
2	1	16	36 107	1,0471	530,265	608 562	0,051	0,02
6	4	6	35 964	1,0471	709 978	561 360	0.046	0.04
7	1	7	36.214	1.0441	271.628	257,334	0.057	0.02
5	2	12	36,057	1,0485	340,806	306,573	0,041	0,03
5	3	11	36,069	1,0482	2137,550	1980,959	0,041	0,16
7	2	6	36,274	1,0424	-2,881	61,791	0,057	0,01
3	3	14	36,124	1,0466	7681,257	8749,363	0,041	0,24
6	5	0	36,346	1,0404	670,330	1099,894	0,051	0,03
6	5	1	36,413	1,0386	659,016	893,191	0,051	0,06
5	5	7	36,214	1,0441	2930,858	2604,289	0,041	0,11
7	3	4	36,485	1,0366	2370,308	2752,833	0,057	0,20
6	5	2	36,612	1,0331	37,355	62,717	0,051	0,00
6	0	11	36,685	1,0311	-11,148	173,383	0,046	0,00
4	3	13	36,487	1,0365	109,995	128,134	0,041	0,01
5	0	13	36,487	1,0365	426,123	494,446	0,046	0,02
3	2	15	36,512	1,0359	119,436	124,268	0,046	0,01
07	2	10	36,522	1,0350	922,035	930,307 506 746	0,046	0,08
4	2	14	36,900	1,0255	48 454	120 747	0,037	0,05
6	5	3	36 941	1,0242	1656 788	1357 377	0.051	0,00
6	1	11	36,990	1.0229	1024.664	934.301	0.046	0.08
5	1	13	36,793	1.0282	1679.032	1882,983	0.046	0.13
6	3	9	36,798	1,0281	1050,583	1201,993	0,046	0,08
2	2	16	37,027	1,0219	31246,240	28405,955	0,051	1,08
6	4	7	36,828	1,0273	3315,759	3881,854	0,046	0,25
5	4	10	36,828	1,0273	36,131	41,645	0,041	0,00
8	0	0	37,261	1,0157	29629,594	28659,010	0,069	0,51
1	0	17	37,063	1,0210	94,512	82,617	0,057	0,00
7	3	5	37,078	1,0206	1798,581	1523,881	0,057	0,13
8	0	1	37,326	1,0140	1436,295	1437,968	0,069	0,05
7	2	7	37,132	1,0192	2027,267	1445,180	0,057	0,15
4	4	12	36,978	1,0232	16385,932	15299,200	0,041	0,53
/	1	8	37,203	1,01/3	895,569	/56,46/	0,057	0,07
8 2	0	16	37,321	1,0090	2834,243	2500,898	0,069	0,11
8	1	10	37,529	1,0140	2007.050	41,400	0,051	0,00
0	1	17	37,365	1.0130	10 822	9 656	0.057	0.00
6	5	4	37,397	1.0122	1503.910	1518.850	0.051	0.11
8	1	1	37,627	1,0062	1062,271	951,741	0,069	0,08
5	5	8	37,203	1,0173	437,375	367,359	0,041	0,02
4	0	15	37,423	1,0115	58,277	47,471	0,046	0,00
7	4	0	37,562	1,0079	754,909	716,277	0,057	0,03
8	1	2	37,820	1,0013	38,007	36,940	0,069	0,00
8	0	3	37,843	1,0007	1855,706	1854,326	0,069	0,06
7	4	1	37,627	1,0062	1410,505	1245,194	0,057	0,11
3	1	16	37,630	1,0062	4839,446	4281,523	0,051	0,37
4	1	15	37,723	1,0037	319,872	232,461	0,046	0,02
5	3	12	37,581	1,0074	112,369	115,615	0,041	0,01
7	3	6	37,791	1,0020	11385,950	10590,488	0,057	0,70
5	4	12	37,820	1,0013	30,083	265 621	0.057	0,00
2 8	2 1	13	38 140	0.9032	7 317	5 037	0,040	0.02
2	0	17	37,963	0.9976	147 450	114 901	0.057	0.00
6	5	5	37.978	0,9973	1317.872	900.710	0,051	0.09
7	0	9	38,002	0,9967	1160,813	795,304	0,057	0,04
6	4	8	37,803	1,0017	10356,759	10007,607	0,046	0,61
8	0	4	38,291	0,9894	3127,980	3564,464	0,069	0,07

h	Ŀ	1	20	دلاته	F2	r ²	EWIIM	;100
n 6	к 2	11	20	u [A]	3380.052	3242 704	FWHM 0.046	0.22
7	2	8	38 100	0,9995	758 507	568 296	0,040	0,23
7	4	3	38 140	0,9932	2282 093	1966 435	0.057	0,05
6	0	12	38 177	0,9923	33558 746	34201 215	0.051	1.08
3	3	15	38 021	0,9962	176 738	123 201	0.046	0.01
8	2	0	38 452	0.9854	7977.064	7649 597	0.069	0.22
6	3	10	38 031	0,9054	277 739	181.660	0.046	0.02
5	0	14	38 241	0,9907	1778 249	2115 146	0.046	0.07
2	1	17	38 259	0,9902	323 468	393 292	0.057	0.02
8	2	1	38 516	0.9839	1492 601	1586 407	0.069	0,02
7	1	9	38 297	0,9892	2336 310	2875 409	0.057	0.15
8	1	4	38 585	0.9822	3187 469	3630 326	0.069	0.21
5	4	11	38 188	0,9920	45 426	51 264	0.041	0.00
4	3	14	38 241	0,9907	565 538	656 934	0.046	0.04
6	1	12	38 471	0,9849	4881 634	4882 605	0.046	0.33
8	2	2	38 705	0,9792	1734 321	2112 744	0.069	0.13
5	5	9	38 297	0.9892	2 630	4 034	0.041	0.00
3	2	16	38 519	0.9838	966 390	1037 528	0.051	0,00
7	4	4	38 585	0,9822	806 509	916 238	0.057	0,00
7	3	7	38,505	0,9822	880 354	1037 866	0,057	0,05
8	0	5	38,020	0,9813	536 273	726 176	0,057	0,05
6	5	6	28 677	0,9755	155 171	180.240	0,009	0,01
5	1	14	38 525	0,9799	10280 518	100,549	0,040	0,01
1	1	14	38 597	0,2034	15 256	16 /79	0,040	0,08
+ 8	7	1.5	30,307	0,7021	102 049	2/7 515	0,041	0,00
4	2	5 15	38 610	0,9710	1307 107	1530 832	0,009	0,01
8	1	5	30,010	0,9615	125 262	108 083	0,040	0,09
1	0	18	30 205	0,9005	1039 300	1006,547	0,009	0,01
6	4	9	38 883	0,9031	430 294	427 860	0,005	0,05
2	2	17	39,136	0,9749	1071 143	427,800 854 354	0.057	0,02
7	4	5	20 150	0,9009	979 775	772 777	0,057	0,05
7	+ 2	0	20 174	0,9085	1866 122	1700 582	0,057	0,00
7	0	10	20 202	0,9080	1161.051	062 374	0,057	0,12
, ,	2	10	39,202	0,9073	18260 112	18122 705	0,057	1.04
0	0	4	20 546	0,9013	1001 127	18123,793	0,009	1,04
6	2	12	20 244	0,9392	10052 221	11257 542	0,009	0,07
5	2	12	20 160	0,9039	88.062	81 872	0,040	0,58
1	0	15	20 200	0,9081	26070 282	26040.680	0,040	0,01
3	0	17	30 125	0,9620	545.068	530 748	0.057	0,79
5	5	7	20 400	0,9020	265 682	014 768	0,037	0,02
7	1	10	20 400	0,9005	15725 800	16224 175	0,040	0,00
6	3	11	30 355	0,9005	463 529	472 501	0,037	0,07
7	2	0	20 557	0,9057	403,329	4,170	0,040	0,05
1	1	19	20 592	0,9589	4,575	4,170	0,057	0,00
5	2	14	20 407	0,9585	207 976	201.066	0,037	0,34
8	1	6	39,407	0,9025	96 227	391,000	0,040	0,02
6	6	0	39,632	0,9520	26890.943	25402 104	0,009	0,01
8	3	0	30,800	0,9570	3298 151	23402,104	0,057	0,59
6	5	1	30,099	0.0567	3270,131	2001,000	0,009	0,10
4	1	16	30,678	0,9562	1545 922	1436 905	0.051	0,10
+ 5	5	10	30 /00	0,9502	1545,922	16867 502	0,031	0,10
2	1	17	30,490	0.9003	1068 291	10007,392	0.041	0,44
8	3	1	30 060	0.9407	83 700	60 304	0,057	0,00
6	0	13	39,700	0.9546	3030 116	3481 509	0.051	0.12
8	2	5	40 011	0.9/25	2533 147	180/ 055	0.051	0,12
5	2 A	12	30 621	0,5465	400.629	304 914	0,009	0,14
7	-+	6	30 837	0.9576	1/ 87/	12 511	0.057	0,02
6	+	2	30 860	0,9520	1045 641	906 216	0.051	0,00
8	3	2	40 144	0.9320	107 324	107 976	0.051	0.04
3	3	∠ 16	30 063	0,9495	1513 142	1033 370	0.009	0.01
6	1	13	40 020	0.9491	310 052	222 101	0.051	0,05
5	0	15	40.052	0.9476	42 222	223,474	0.051	0.02
8	0	15	40 3/1	0.9410	7 2,222 66 350	56 786	0.051	0,00
2	0	18	40 153	0.9453	106.453	105 506	0.007	0,00
- 6	6	10	40 166	0.0450	100,455	3067 644	0.051	0,00
7	5	5	40,100	0,9430	4201,039	4052 215	0.057	0,12
8	2	2	40,165	0,2440	1600.006	4035,213	0,057	0,14
0 7	5 5	3	40,449	0.9387	1099,990	1445,282	0,009	0,10
1	2	16	40,244	0,9452	1455,525	1402,900	0,057	0,08
4	3	15	40,052	0,9470	200,777	201 502	0,046	0,02
0 5	4	10	40,062	0,9474	320,767	201,503	0,046	0,02
3 7	1	15	40,335	0,9412	1099,398	/50,251	0,051	0,06
/	2	10	40,345	0,9410	130,670	100,465	0,057	0,01
8	1	./	40,625	0,9348	105,519	152,018	0,063	0,01
0	5	8	40,411	0,9395	1059,899	828,433	0,046	0,06
/	5	2	40,426	0,9392	15/32,580	13161,394	0,057	0,82
2	1	18	40,435	0,9390	/09,4//	020,452	0,057	0,05
8	2	6	40,680	0,9335	1306,328	1171,410	0,063	0,08

h	k	1	20	d [Å]	F_{π}^{2}	F_{-}^{2}	FWHM	i100
4	4	14	40.263	0.9428	55,184	58,088	0.046	0.00
7	0	11	40,494	0.9377	1292,611	1155.682	0.057	0.04
4	2	16	40.529	0.9369	13992.604	13252.331	0.051	0.71
3	2	17	40,562	0,9362	332,992	307,952	0,051	0,02
6	6	4	40,592	0,9355	7111,445	6320,855	0,051	0,17
7	3	9	40,598	0,9354	501,675	438,189	0,051	0,03
7	4	7	40,625	0,9348	1057,123	969,950	0,057	0,07
8	3	4	40,872	0,9293	3866,652	3943,482	0,063	0,22
7	5	3	40,729	0,9325	1243,160	1073,583	0,057	0,06
6	3	12	40,764	0,9317	3626,463	3373,016	0,046	0,21
7	1	11	40,775	0,9315	1507,654	1449,235	0,057	0,08
6	2	13	40,874	0,9293	138,349	140,460	0,051	0,01
5	5	11	40,775	0,9315	12,791	12,549	0,046	0,00
8	0	8	41,249	0,9212	25773,881	20753,754	0,063	0,66
5	3	14	40,825	0,9304	9721,428	10200,379	0,046	0,46
6	6	5	41,134	0,9237	882,598	648,453	0,051	0,02
7	5	4	41,151	0,9233	151,281	118,522	0,057	0,01
5	2	15	41,175	0,9228	452,004	343,074	0,051	0,03
8	3	5	41,411	0,9178	987,720	841,884	0,063	0,06
8 2	2	10	41,400	0,9167	2724,834	2045,034	0,065	0,14
2	1	10	41,275	0,9207	44,093	37,770	0,057	0,00
0	0	10	41,525	0.9150	1326 168	1236 661	0,005	0,21
5	4	13	41 152	0.9233	643 124	509 730	0.046	0.04
6	0	14	41,132	0.9184	29 416	23 046	0.051	0.00
4	0	17	41,398	0.9181	3045,143	2497,199	0.057	0.08
6	5	9	41,434	0.9173	469,046	423.079	0.046	0.03
7	4	8	41,525	0,9154	719,079	650,829	0,051	0,04
6	4	11	41,331	0,9195	24,059	19,415	0,046	0,00
3	0	18	41,550	0,9148	2058,175	1924,891	0,057	0,06
1	1	19	41,819	0,9092	0,039	0,002	0,063	0,00
7	2	11	41,607	0,9136	122,876	101,925	0,057	0,01
8	4	0	41,853	0,9085	20251,418	20323,787	0,063	0,49
6	1	14	41,656	0,9126	413,362	382,455	0,051	0,02
4	1	17	41,673	0,9123	394,871	359,534	0,057	0,02
7	5	5	41,687	0,9120	185,229	171,821	0,057	0,01
8	4	1	41,912	0,9073	1017,080	986,248	0,063	0,05
9	0	1	42,185	0,9017	1273,751	1163,613	0,083	0,03
7	3	10	41,736	0,9109	14722,168	14063,072	0,051	0,69
6	6	6	41,789	0,9098	634,235	616,698	0,051	0,02
3	1	18	41,824	0,9091	9817,501	9479,286	0,057	0,43
8	3	6	42,063	0,9042	405,081	290,965	0,063	0,02
8	4	12	42,089	0,9036	1294,932	952,973 520,000	0,065	0,07
0	0	12	41,071	0,9081	315 062	320,909	0,037	0,01
5	0	16	42,301	0,0981	25 573	24 533	0,070	0,01
4	3	16	41,915	0,9072	1468 809	1418 984	0.051	0.08
9	1	0	42.398	0.8974	14.205	14.664	0.076	0.00
3	3	17	41,947	0.9066	5,548	5,486	0.051	0.00
9	1	1	42,457	0,8962	1718,875	1821,590	0,076	0,08
8	0	9	42,255	0,9003	2753,344	2949,112	0,063	0,07
8	2	8	42,346	0,8984	6523,698	6638,713	0,063	0,27
2	0	19	42,365	0,8980	0,371	0,408	0,063	0,00
7	1	12	42,144	0,9025	793,236	641,604	0,057	0,04
9	1	2	42,631	0,8927	16038,536	15222,676	0,076	0,73
8	4	3	42,382	0,8977	1477,908	1520,265	0,063	0,07
9	0	3	42,653	0,8922	2305,538	2224,242	0,076	0,06
5	1	16	42,188	0,9016	2629,981	2398,871	0,051	0,15
4	4	15	42,000	0,9055	50,435	38,260	0,046	0,00
6	3	13	42,251	0,9003	989,926	1099,598	0,046	0,05
8	1	9	42,526	0,8948	647,083	691,536	0,063	0,03
1	5	12	42,335	0,8980	8/08,/31	8/58,0/1	0,057	0,58
5 7	5	12	42,144	0,9025	149 JAN 260	40/0,000	0.040	0,10
2 0	1	2	42,000	0,0920	2/16.065	120/ 706	0,005	0.02
7 6	2	14	42,922	0.8958	234 691	263 290	0.051	0.01
4	2	17	42,491	0.8955	50.748	55.463	0.051	0.00
7	4	9	42,526	0,8948	541.465	589.276	0,051	0.03
5	3	15	42,544	0,8944	129,192	126,334	0,046	0,01
6	6	7	42,552	0,8943	87,290	85,175	0,051	0,00
6	5	10	42,553	0,8942	19,394	17,966	0,046	0,00
8	4	4	42,790	0,8895	5557,713	5085,135	0,063	0,22
8	3	7	42,822	0,8889	125,242	101,049	0,063	0,01
3	2	18	42,640	0,8925	522,813	492,961	0,057	0,03
6	4	12	42,686	0,8916	21058,092	22548,646	0,046	0,97
5	4	14	42,744	0,8904	490,186	417,402	0,046	0,03
7	2	12	42,955	0,8863	968,503	369,812	0,057	0,05

A.10 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für H₆As³⁺₇As⁵⁺₇O₃₁

h	k	1	20	d [Å]	F_{o}^{2}	F_c^2	FWHM	i100
0	1	0	1.361	10.4318	1210.932	1295.281	0.007	13.8
1	1	0	2 359	6.0228	3671 346	3532.264	0.007	13.93
0	2	0	2,335	5 2159	0	172 741	0.007	0
0	1	1	3 296	4 31113	2232.15	2605 099	0.006	8 67
1	2	0	3,604	3.94285	3846.757	3014.167	0.006	6.24
2	1	0	3 604	3 94285	13284 993	10409 595	0.006	21.56
-	1	1	3 818	3 72205	10347 974	11304 209	0.006	29.92
0	2	1	4 054	3,72205	39008 56	32726 316	0,000	100
0	3	0	4.087	3,3030	1620.068	415 722	0,000	2.06
2	1	1	4,007	3 02075	25615.68	25514 492	0,000	18.08
1	2	1	4,691	3,02975	25015,08	063 776	0,000	1.85
2	2	0	4,021	3,02975	51074 55	52733 53	0,000	18.24
2	1	0	4,72	2 80226	771 594	007.665	0,008	40,24
1	2	0	4,912	2,89320	2052 816	2502 417	0,008	2.66
0	3	1	5.072	2,89520	623 137	502.7	0,008	1.02
0	4	0	5.45	2,60255	26240 715	22107 785	0,000	1,02
2	+ 2	1	5,504	2,00795	20240,713	25107,785	0,008	0.46
2	1	1	5 750	2,54095	1970.092	1040.017	0,000	0,40
3	2	1	5,750	2,40075	10/9,903	1949,017	0,000	2,30
1	2	1	5,756	2,40875	1/085,85	17/15,062	0,000	1.70
3	2	0	5,94	2,39322	5008,069	4210,888	0,008	1,79
2	3	0	5,94	2,39322	55,218	77,298	0,008	0,03
0	0	2	6,005	2,36/17	/4904,06	/35/5,94	0,006	14,52
0	1	2	6,158	2,30848	36,623	49,102	0,006	0,04
0	4	1	6,223	2,2843	35727,52	35152,96	0,008	38,67
1	4	0	6,245	2,27641	6184,343	5907,901	0,008	3,32
4	1	0	6,245	2,27641	9017,87	8614,777	0,008	4,85
1	1	2	6,453	2,20311	3190,469	3803,818	0,006	3,21
0	2	2	6,596	2,15556	891,72	1166,67	0,006	0,86
2	3	1	6,657	2,13584	5157,9	3885,391	0,008	4,87
3	2	1	6,657	2,13584	13565,379	10218,654	0,008	12,82
0	5	0	6,815	2,08636	283,188	226,445	0,008	0,13
4	1	1	6,93	2,05157	1382,779	819,874	0,008	1,2
1	4	1	6,93	2,05157	637,458	377,961	0,008	0,56
1	2	2	7,006	2,0295	1242,366	1445,34	0,006	1,06
2	1	2	7,006	2,0295	8270,967	9622,251	0,006	7,05
3	3	0	7,082	2,0076	298,208	823,202	0,008	0,12
2	4	0	7,213	1,97142	9205,623	11568,64	0,008	3,7
4	2	0	7,213	1,97142	11736,258	14748,862	0,008	4,71
0	3	2	7,267	1,95679	1310,462	1908,9	0,006	1,04
0	5	1	7,448	1,90919	1222,304	1351,307	0,008	0,92
1	5	0	7,59	1,87361	5258,227	5664,223	0,008	1,9
5	1	0	7,59	1,87361	308,708	332,544	0,008	0,11
2	2	2	7,641	1,86103	24343,273	22225,299	0,006	17,4
3	3	1	7,694	1,84829	948,072	1044,491	0,008	0,67
3	1	2	7,762	1,8321	3879,874	4723,924	0,006	2,69
1	3	2	7,762	1,8321	306,895	373,658	0,006	0,21
2	4	1	7,814	1,81994	3357,19	3300,599	0,008	2,29
4	2	1	7,814	1,81994	10826,178	10643,688	0,008	7,39
0	4	2	8,114	1,7528	13971,471	12845,166	0,006	8,84
5	1	1	8,163	1,74214	1327,8	1249,558	0,008	0,83
1	5	1	8,163	1,74214	9793,749	9216,644	0,008	6,12
0	6	0	8,18	1,73863	7394,12	7953,84	0,008	2,3
3	4	0	8,293	1,71498	11239,643	13217,424	0,008	3,4
4	3	0	8,293	1,71498	11117,317	13073,586	0,008	3,36
3	2	2	8,451	1,68298	30796,76	22051,836	0,008	17,94
2	3	2	8,451	1,68298	788,659	564,714	0,008	0,46
2	5	0	8,515	1,67042	505,104	270,946	0,008	0,14
5	2	0	8,515	1,67042	21602,043	11587,672	0,008	6,2
1	4	2	8,669	1,64081	7848,483	7170,168	0,008	4,34
4	1	2	8,669	1,64081	2265,931	2070,091	0,008	1,25
0	6	1	8,715	1,63206	13127,29	11351,845	0,008	7,18
3	4	1	8,821	1,61244	607,117	953,37	0,008	0,32
4	3	1	8,821	1,61244	673,841	1058,151	0,008	0,36
6	1	0	8,941	1,59083	5186,765	7312,638	0,008	1,35
1	6	0	8,941	1,59083	612,976	864,214	0,008	0,16

h	k	1	20	د ۱۴	F ²	F ²	EWUM	;100
2	к 5	1	0.02	1 57525	20042.27	20721 805	0.008	10.66
5	2	1	9,05	1,57525	1822.640	1815 222	0,008	0.02
0	5	2	9,05	1,57525	608 104	700.80	0,008	0,95
0	1	2	9,088	1,50319	281 145	799,89	0,008	0,51
2	2	2	9,117	1,50050	201,145	1721 710	0,008	1.01
5	5	2	9,291	1,5511	1000 464	1/51,/19	0,008	0.01
1	2	2	9,519	1,52056	16783 207	16442 275	0,008	7.80
2	4	2	9,391	1,51487	18240 748	17068 252	0,008	8.62
2	-	2	9,391	1,51040	16258 210	17908,232	0,008	7.64
0	2	3	9,418	1,51049	10358,219	17283,082	0,008	7,64
0	1	1	9,434	1,50798	705,899	729,131	0,008	0,55
1	0	1	9,454	1,50798	2500,117	2650,573	0,008	1,19
4	4	0	9,448	1,5057	22250,006	20590,561	0,008	5,10
0	2	0	9,546	1,49026	39,145	50,455	0,008	0,01
2	5	0	9,546	1,49026	7020,121	9048,440	0,008	1,59
1	5	2	9,540	1,49020	1679 451	0388,234	0,008	1,10
1	1	2	9,084	1,40911	847 927	2010,813	0,008	0,74
2	1	2	9,084	1,40911	047,057	10267 202	0,008	0,57
1	2	2	9,711	1,40312	242 410	242 555	0,008	4,5
1	2	5	9,711	1,40312	343,419	343,333	0,008	0,15
0	2	0	9,835	1,44003	3512,953	3067,376	0,011	0,75
2	0	2	9,835	1,44003	12147,030	10000,828	0,011	2,0
0	3	3	9,901	1,43704	411,774	317,003	0,008	0,17
4	4	1	9,916	1,43488	820,055	005,200	0,008	0,55
5	2	1	10,009	1,4215	2/4,//6	242,171	0,008	0,11
5	5	1	10,009	1,4215	\$302,390 807 256	700 780	0,008	0.27
0	6	2	10,009	1,40128	4601 959	4751 332	0,008	1.84
2	2	3	10,179	1 39781	331 497	331 733	0,000	0.13
4	3	2	10.246	1.3888	5749.477	5706.448	0.008	2.26
3	4	2	10.246	1,3888	6349,141	6301.623	0.008	2.5
1	3	3	10.271	1.38542	16902,492	18540.023	0.008	6.61
3	1	3	10,271	1,38542	2973,666	3261,761	0,008	1,16
6	2	1	10,285	1,38348	27485,781	26540,201	0,008	10,72
2	6	1	10,285	1,38348	34982,676	33779,242	0,008	13,65
7	1	0	10,298	1,38173	647,182	598,008	0,011	0,13
1	7	0	10,298	1,38173	20438,855	18885,85	0,011	3,98
2	5	2	10,426	1,36482	1002,171	1059,13	0,008	0,38
5	2	2	10,426	1,36482	12075,975	12762,173	0,008	4,58
0	4	3	10,54	1,35016	43586,03	44198,72	0,008	16,17
5	4	0	10,655	1,33565	2070,451	2768,276	0,011	0,38
4	5	0	10,655	1,33565	452,647	605,207	0,011	0,08
1	7	1	10,729	1,32639	6077,938	5607,708	0,011	2,17
7	1	1	10,729	1,32639	12879,523	11883,075	0,011	4,61
6	1	2	10,778	1,32037	8249,187	7300,087	0,008	2,92
1	6	2	10,778	1,32037	38,696	34,244	0,008	0,01
2	3	3	10,802	1,31746	1746,189	1895,012	0,008	0,62
3	2	3	10,802	1,31746	213,927	232,159	0,008	0,08
6	3	0	10,828	1,31428	448,21	494,374	0,011	0,08
3	6	0	10,828	1,31428	3853,669	4250,593	0,011	0,68
1	8	0	10,914	1,30397	13083,997	13079,529	0,011	2,30
1	4	3	10,974	1,29694	//3,1/2	/84,801	0,008	0,20
4	1	1	11,974	1,29094	952,555	900,874	0,008	0,55
4		1	11,072	1,20540	4191 620	4100 535	0,011	1.4
7	2	0	11,072	1,20540	2356.076	1850 855	0,011	0.30
2	2 7	0	11 168	1,27445	11166 562	8772 075	0.011	1 84
4	4	2	11 203	1 27047	17431 285	14666 72	0.008	5 71
3	6	1	11,239	1.26639	1569.999	1501.611	0.011	0.51
6	3	1	11.239	1.26639	16850,664	16116.616	0.011	5,48
5	3	2	11,286	1,26115	6929,154	7652,051	0,008	2,23
0	7	2	11,286	1,26115	2578,53	2847,536	0,008	0,83
3	5	2	11,286	1,26115	4805,78	5307,155	0,008	1,55
0	5	3	11,309	1,25862	434,258	520,673	0,008	0,14
0	8	1	11,322	1,25716	1344,274	1396,305	0,011	0,43
3	3	3	11,473	1,24068	1510,189	2233,48	0,008	0,47
2	6	2	11,532	1,23438	5133,227	4940,054	0,008	1,58
6	2	2	11,532	1,23438	4451,234	4283,75	0,008	1,37
4	2	3	11,554	1,232	7858,885	8118,228	0,008	2,41
2	4	3	11,554	1,232	3455,126	3569,136	0,008	1,06
7	2	1	11,567	1,23064	1894,764	1867,684	0,011	0,58
2	7	1	11,567	1,23064	2279,904	2247,319	0,011	0,7
8	1	0	11,659	1,22095	0,059	0,055	0,011	0
1	8	0	11,659	1,22095	722,115	671,548	0,011	0,11
1	5	3	11,794	1,20701	5093,895	5242,768	0,008	1,5
5	1 5	5	11,/94	1,20/01	8,034	8,88/	0,008	0 12
5	5 4	0	11,010	1,20430	70.035	66 443	0,011	0,15
0	-1	0	. 1,027	.,17001	10,949	00,770	0,011	0,01

h	k	1	20	d [Å]	F_{2}^{2}	F_{c}^{2}	FWHM	i100
4	6	0	11.907	1 10661	26 210	22.010	0.011	0.01
4	0	0	11,07/	1,19001	30,219	33,919	0,011	0,01
7	1	2	11,93	1,19331	1029,582	916,725	0,008	0,3
1	7	2	11,93	1,19331	1640,957	1461,083	0,008	0,47
0	0	4	12.028	1.18358	44982.01	47418.64	0.008	2.12
1	0	1	12,042	1 19227	2010 019	2417 507	0.011	0.57
1	0	1	12,042	1,16227	2010,918	2417,507	0,011	0,57
8	1	1	12,042	1,18227	1470,67	1768,025	0,011	0,41
0	1	4	12,106	1,17604	896,897	1072,5	0,008	0,25
7	3	0	12.13	1 17367	58 958	61 838	0.011	0.01
,	-	0	12,15	1,17367	0,510	01,050	0,011	0,01
3	/	0	12,13	1,1/36/	9,519	9,984	0,011	0
0	6	3	12,184	1,16853	4178,516	4313,048	0,008	1,15
5	5	1	12,196	1,16737	9648,921	9967,605	0,011	2,65
4	5	2	12 220	1 16226	441.5	122 172	0.008	0.12
4		2	12,239	1,10320	441,5	422,473	0,008	0,12
5	4	2	12,239	1,16326	1175,977	1125,293	0,008	0,32
1	1	4	12,259	1,16137	1784,758	1620,096	0,008	0,49
4	3	3	12.26	1.16127	484,241	441,542	0.008	0.13
2	4	2	12.26	1 16127	26 725	22 406	0,008	0.01
	-		12,20	1,10127	30,733	33,490	0,008	0,01
4	6	1	12,272	1,16013	4370,955	3901,615	0,011	1,19
6	4	1	12,272	1,16013	7157,067	6388,548	0,011	1,94
0	9	0	12 284	1 1 5 9 0 9	1362 757	1191 572	0.011	0.18
0	é	4	12,204	1,15707	007.61	071.02	0,011	0,10
0	2	4	12,335	1,15424	897,61	871,93	0,008	0,24
6	3	2	12,391	1,14906	67,325	74,419	0,011	0,02
3	6	2	12,391	1,14906	3443.953	3806.869	0.011	0.92
2	=	2	12 412	1 1 1 7 1 4	6/20 240	6259 001	0.000	1 71
2	5	3	12,412	1,14/14	0439,248	0238,001	0,008	1,/1
5	2	3	12,412	1,14714	13,714	13,328	0,008	0
0	8	2	12,466	1,14215	6709,005	6899,478	0,011	1,76
7	3	1	12.499	1,13919	1219.343	1202.181	0.011	0 32
ว	-	1	12 400	1 12010	046 000	022 506	0,011	0.25
3	/	1	12,499	1,13919	946,909	933,386	0,011	0,25
2	8	0	12,51	1,1382	3735,309	3443,002	0,011	0,49
8	2	0	12,51	1,1382	11817,589	10892,771	0,011	1,54
1	2	4	12 561	1 13361	427 884	380 725	0.008	0.11
	2		12,501	1,15501	427,004	560,725	0,008	0,11
2	1	4	12,561	1,13361	5189,505	4617,539	0,008	1,34
0	9	1	12,648	1,12584	210,084	174,977	0,011	0,05
2	7	2	12.69	1 12215	5801 42	6317 167	0.011	1 47
~	,	~	12,09	1,12215	1992 (72	2051 127	0,011	0.40
/	2	2	12,69	1,12215	1883,673	2051,137	0,011	0,48
0	3	4	12,709	1,12046	531,883	544,897	0,008	0,13
1	6	3	12,71	1,12036	765,022	784,04	0,008	0,19
6	1	3	12 71	1 12036	1455 124	1/01 301	0.008	0.37
0			12,71	1,12050	1455,124	524,501	0,000	0,57
2	8	1	12,868	1,10667	495,835	534,777	0,011	0,12
8	2	1	12,868	1,10667	28,25	30,469	0,011	0,01
2	2	4	12,928	1,10156	14104,825	15857,059	0,008	3,43
1	3	4	13	1 00547	104 481	100 448	0.008	0.03
2		7	13	1,00547	109,401	100,440	0,000	0,05
3	1	4	13	1,09547	1222,167	1280,268	0,008	0,29
9	1	0	13,023	1,09355	3570,306	3012,566	0,011	0,43
1	9	0	13 023	1 09355	26075.66	22002 355	0.011	3 13
6	-	0	12,022	1.00255	10015 001	0210 77	0.011	1 21
0	5	0	15,025	1,09355	10915,981	9210,77	0,011	1,31
5	6	0	13,023	1,09355	3183,665	2686,34	0,011	0,38
4	4	3	13,073	1,08939	248,089	239,236	0,008	0,06
8	1	2	13 125	1.08511	75 248	83 668	0.011	0.02
1	1 0	2	12 125	1,00511	1597 512	1765 165	0,011	0.02
1	8	2	13,125	1,08511	1587,513	1/05,155	0,011	0,37
3	5	3	13,144	1,0835	51,501	51,6	0,008	0,01
5	3	3	13.144	1,0835	4308,709	4316.964	0.008	1.01
0	7	2	12 1/4	1 0925	264 47	265 167	0.000	0.00
0		5	13,144	1,0855		505,107	0,008	0,09
7	4	0	13,166	1,08173	4,015	3,784	0,011	0
4	7	0	13,166	1,08173	856,149	807,026	0,011	0,1
0	4	4	13.214	1.07778	4196.263	4188.765	0.008	0.98
5	-		12 200	1.07256	470 (77	512.002	0.011	0,11
3	э	2	13,200	1,07350	4/9,0//	515,802	0,011	0,11
6	4	2	13,337	1,06792	780,376	660,238	0,011	0,18
4	6	2	13,337	1,06792	48,958	41,421	0,011	0,01
2	6	3	13 356	1 06638	17805 850	16988 801	0.008	4.05
-	0	5	10,000	1,00058	17003,037	10200,001	0,000	+,05
6	2	3	13,356	1,06638	15011,903	14323,082	0,008	3,41
9	1	1	13,367	1,0655	2026,37	1994,603	0,011	0,46
6	5	1	13,367	1,0655	216.914	213.513	0.011	0.05
1	0	1	12 267	1.0655	499 700	191 044	0.011	0.11
1	9	1	15,307	1,0055	408,729	461,000	0,011	0,11
5	6	1	13,367	1,0655	5236,142	5154,062	0,011	1,19
2	3	4	13,425	1,06093	274,899	240,871	0,008	0,06
3	2	Δ	13 / 25	1 06003	1027/ 080	9002 315	0.008	2 31
2	4	+	10,420	1,00095	10274,009	1002,515	0,000	2,31
3	8	0	13,447	1,05919	4875,499	4867,297	0,011	0,55
8	3	0	13,447	1,05919	3496,74	3490,856	0,011	0,39
4	7	1	13.507	1.05455	15427.397	14695 88	0.011	3 43
-		,	12 507	1 05 455	E 000	= 1070,00 = E01	0.011	2,-5
/	4	1	15,507	1,03433	5,809	5,534	0,011	0
3	7	2	13,546	1,05152	151,89	162,245	0,011	0,03
7	3	2	13,546	1,05152	1476,513	1577,143	0,011	0,33
1	4	Δ	13 564	1 05012	3852 450	3686 441	0.008	0.85
1	-	7	10,004	1,05012	1010 (5)	1150.175	0,000	0,05
4	1	4	13,564	1,05012	1210,654	1158,478	0,008	0,27
0	10	0	13,655	1,04318	3615,569	4087,049	0,011	0,39
0					151.050	122 (75	0.011	0.02
0	9	2	13.683	1.04099	101.101	1.1.1.0 / 1	0.011	0.05

h	k	1	28	الأا ل	F ²	F ²	FWHM	;100
1	7	2	12 702	1 02057	2076 020	2010 644	0.008	0.62
1	,	3	13,702	1,03937	2870,838	5019,044	0,008	0,02
3	8	1	13,/81	1,03364	456,791	431,016	0,011	0,1
8	3	1	13,781	1,03364	494,044	466,167	0,011	0,11
0	5	4	13,837	1,02947	118,526	128,876	0,008	0,03
9	2	0	13,859	1,02788	1594,396	1644,28	0,011	0,17
2	9	0	13,859	1,02788	414,27	427,232	0,011	0,04
8	2	2	13,887	1,02578	9517,665	9369,294	0,011	2
2	8	2	13,887	1,02578	4890,06	4813,819	0,011	1,03
3	3	4	13,972	1,01958	894,842	680,932	0,008	0,19
4	5	3	13,973	1,01952	2518,751	1910,972	0,008	0,52
5	4	3	13,973	1,01952	837,317	635,273	0,008	0,17
0	10	1	13,984	1.01874	1954.089	1481,152	0.011	0.4
2	4	4	14.039	1.01475	7968.284	7503.511	0.008	1.63
4	2	4	14 039	1 01475	7064 452	6652 422	0.008	1.45
-	3	3	14,007	1 00002	10165 115	0372 302	0,000	2.06
2	6	2	14,107	1,00002	128 041	112,552	0,008	2,00
5	0	2	14,107	1,00522	799 122	227 202	0,008	0,05
0	0	3	14,175	1,00322	/66,133	857,808	0,008	0,10
2	9	1	14,183	1,00447	164,204	1/1,892	0,011	0,03
9	2	I	14,183	1,00447	11586,905	12129,383	0,011	2,32
6	6	0	14,193	1,0038	17321,123	17191,148	0,011	1,73
5	1	4	14,238	1,00065	124,787	125,906	0,008	0,02
1	5	4	14,238	1,00065	1148,768	1159,07	0,008	0,23
5	7	0	14,259	0,99919	1237,144	1248,721	0,011	0,12
7	5	0	14,259	0,99919	2910,96	2938,203	0,011	0,29
5	6	2	14,352	0,99274	2008,729	2173,342	0,011	0,39
6	5	2	14,352	0,99274	5270,798	5702,737	0,011	1,03
9	1	2	14,352	0,99274	4543,731	4916,087	0,011	0,89
1	9	2	14.352	0.99274	17795.604	19253.945	0.011	3.48
2	7	3	14 37	0.9915	567 039	496 725	0.008	0.11
- 7	2	3	14 37	0.9915	429 726	376 439	0.008	0.08
, 1	10	0	14,37	0,00014	900 664	800.87	0,000	0,00
10	10	0	14,39	0,99014	909,004	1001 412	0,011	0,09
10	1	0	14,39	0,99014	1103,289	1091,412	0,011	0,11
8	4	0	14,455	0,98571	2331,745	2209,07	0,011	0,22
4	8	0	14,455	0,98571	0,014	0,013	0,011	0
4	7	2	14,482	0,98387	327,819	387,601	0,011	0,06
7	4	2	14,482	0,98387	353,328	417,763	0,011	0,07
6	6	1	14,51	0,98197	160,389	209,743	0,011	0,03
0	6	4	14,564	0,97839	3364,763	3128,459	0,008	0,64
7	5	1	14,575	0,97765	41,936	31,699	0,011	0,01
5	7	1	14,575	0,97765	2436,248	1841,553	0,011	0,46
3	4	4	14,628	0,97412	1976,721	1969,032	0,008	0,37
4	3	4	14,628	0,97412	4587,822	4569,971	0,008	0,86
10	1	1	14,703	0.96917	3478.17	4472.048	0.011	0.65
1	10	1	14 703	0.96917	129 995	167 141	0.011	0.02
3	8	2	14 739	0.96682	3759 674	3620 754	0.011	0.7
8	3	2	14,730	0.96682	5717 262	5506.008	0.011	1.06
5	2	4	14,755	0,90082	5647.956	5227 448	0,011	1,00
5	2	4	14,750	0,90373	3047,830	3557,448	0,008	1,04
2	5	4	14,750	0,96573	912,712	862,548	0,008	0,17
8	1	3	14,/5/	0,96567	829,46	//6,268	0,011	0,15
1	8	3	14,757	0,96567	773,584	723,977	0,011	0,14
4	8	1	14,767	0,96502	1474,605	1285,378	0,011	0,27
8	4	1	14,767	0,96502	3933,997	3429,177	0,011	0,73
3	9	0	14,776	0,96442	1666,171	1398,531	0,011	0,15
9	3	0	14,776	0,96442	1732,923	1454,556	0,011	0,16
5	5	3	14,883	0,9575	4689,075	5621,479	0,011	0,85
0	10	2	14,929	0,9546	2336,663	2314,714	0,011	0,42
4	6	3	14,946	0,9535	3919,606	3865,06	0,011	0,7
6	4	3	14,946	0,9535	3079,043	3036,22	0,011	0,55
6	1	4	15,008	0,94959	3973,175	4525,334	0,008	0,71
1	6	4	15,008	0,94959	58,004	66,065	0,008	0,01
0	11	0	15.028	0.94835	2367.59	1813.328	0.011	0.21
9	3	1	15.081	0.94501	3117.768	2928,793	0.011	0.55
3	9	1	15 081	0.94501	1866.15	1753 034	0.011	0.33
0	1	5	15 114	0.94299	357 704	369 855	0.008	0.06
0	1 2	2	15 114	0,04299	515 727	556 120	0,000	0,00
9	4	2	15,110	0,74203	747 075	200,129	0,011	0,09
2	9	2	15,110	0,94283	/4/,8/5	800,448	0,011	0,13
7	3	3	15,133	0,94177	934,139	/60,565	0,011	0,16
3	7	3	15,133	0,94177	976,126	794,752	0,011	0,17
10	2	0	15,214	0,9368	1299,11	1460,512	0,014	0,11
2	10	0	15,214	0,9368	4710,027	5295,206	0,014	0,41
1	1	5	15,237	0,93538	1340,73	1899,942	0,008	0,23
0	9	3	15,257	0,93418	433,379	598,443	0,011	0,07
0	2	5	15,299	0,93164	5963,698	6707,255	0,008	1,02
4	4	4	15,317	0,93051	5906,302	6082,611	0,008	1,01
0	11	1	15,328	0,92987	1919,384	1812,492	0,011	0,33
3	5	4	15,379	0,92683	2132,76	2362,147	0,008	0,36
0	7	4	15,379	0,92683	883,443	978,46	0,008	0,15

h	k	1	20	d [Å]	F_{2}^{2}	F_{a}^{2}	FWHM	i100
5	3	4	15.379	0.92683	2935.037	3250.71	0.008	0.5
7	6	0	15,398	0.92567	1745 373	2082 356	0.014	0.15
6	7	0	15,398	0.92567	2035 034	2427 935	0.014	0.17
6	6	2	15 424	0.92414	19397 865	18802 438	0.011	3.26
2	8	3	15.44	0.02315	67 252	65 897	0.011	0.01
2	2	2	15.44	0,92315	127 755	124.08	0,011	0,01
0	2	5	15,44	0,92515	137,733	134,98	0,011	0,02
2	1	5	15,482	0,92069	4255,009	4162,191	0,008	0,71
1	2	5	15,482	0,92069	436,644	427,119	0,008	0,07
7	5	2	15,484	0,92054	7245,792	7152,659	0,011	1,21
5	7	2	15,484	0,92054	989,823	977,101	0,011	0,17
2	10	1	15,511	0,91898	9881,921	9322,707	0,011	1,64
10	2	1	15,511	0,91898	5189,985	4896,286	0,011	0,86
5	8	0	15,52	0,91847	30,562	27,21	0,014	0
8	5	0	15,52	0,91847	1322,087	1177,098	0,014	0,11
6	2	4	15,561	0,91605	2059,448	2182,974	0,008	0,34
2	6	4	15,561	0,91605	3779,845	4006,565	0,008	0,62
0	3	5	15,603	0,9136	264,823	345,662	0,008	0,04
10	1	2	15,605	0,91345	576,959	727,899	0,011	0,09
1	10	2	15,605	0,91345	353,646	446,165	0,011	0,06
4	8	2	15.665	0.90997	297.268	288.828	0.011	0.05
8	4	2	15 665	0 90997	1856 326	1803 621	0.011	0.3
7	6	- 1	15 691	0.90847	558 077	716 542	0.012	0.00
6	7	1	15 601	0.00947	748 615	061 177	0,012	0,09
11	1	1	15,091	0,90847	140,013	024.02	0,012	0,12
11	1	0	15,70	0,90455	930,888	924,93	0,014	0,08
9	4	U	15,76	0,90455	5495,698	5425,55	0,014	0,44
I ,	11	0	15,76	0,90455	850,452	839,597	0,014	0,07
4	9	0	15,76	0,90455	856,673	845,739	0,014	0,07
2	2	5	15,782	0,90327	78,297	66,387	0,008	0,01
8	5	1	15,811	0,90166	266,662	240,074	0,014	0,04
5	8	1	15,811	0,90166	3547,254	3193,565	0,014	0,57
3	1	5	15,842	0,8999	1974,49	1951,534	0,008	0,31
1	3	5	15,842	0,8999	2730,511	2698,766	0,008	0,43
1	7	4	15,86	0,89889	1425,266	1373,071	0,008	0,23
7	1	4	15,86	0,89889	124,946	120,37	0,008	0,02
9	1	3	15,861	0,89884	2478,135	2382,485	0,011	0,39
1	9	3	15.861	0.89884	817.534	785,978	0.011	0.13
6	5	3	15 861	0 89884	66 495	63 929	0.011	0.01
5	6	3	15 861	0 89884	6173 74	5935 432	0.011	0.98
3	0	2	15 063	0,02004	282 773	259.489	0.011	0,90
0	3	2	15 963	0.80314	558 785	512 773	0.011	0,09
7	4	2	15,000	0,89314	745 704	806 544	0,011	0,02
4	7	2	15,979	0,09224	7192 205	7767 242	0,011	1.12
4		3	15,979	0,89224	/182,205	//6/,243	0,011	1,12
0	4	5	16,019	0,89002	13580,074	13351,854	0,008	2,11
11	1	1	16,047	0,88848	2064,367	1930,156	0,014	0,32
4	9	1	16,047	0,88848	195,609	182,892	0,014	0,03
9	4	1	16,047	0,88848	262,937	245,843	0,014	0,04
1	11	1	16,047	0,88848	1801,225	1684,119	0,014	0,28
4	5	4	16,095	0,88583	1021,898	920,267	0,008	0,16
5	4	4	16,095	0,88583	226,222	203,723	0,008	0,03
10	3	0	16,114	0,88481	4474,489	4184,966	0,014	0,34
3	10	0	16,114	0,88481	3446,204	3223,214	0,014	0,26
2	3	5	16,194	0,88046	323,168	392,325	0,008	0,05
3	2	5	16,194	0,88046	542,954	659,144	0,008	0,08
0	11	2	16,196	0,88033	3845,995	4530,298	0,011	0,58
3	6	4	16,212	0,87951	667,514	686,901	0,011	0.1
6	3	4	16.212	0,87951	352,213	362.442	0.011	0.05
3	8	3	16,212	0.87946	684.289	704.281	0.008	0.1
8	3	3	16,212	0.87946	1854 366	1908 541	0.008	0.28
0	8	4	16.27	0.8764	3607 801	3755 877	0,000	0.54
1	1	 	16.31	0.87/25	27/ 26	317 202	0,000	0,54
1	1	5	16.21	0.07425	524,50	50 212	0,000	0,03
10	4	2	16.27	0,07107	762.40	760.071	0,008	0,01
10	2	2	16.27	0,0/10/	2207 275	2292.064	0,011	0,11
2	10	2	10,37	0,8/10/	3397,275	3382,064	0,011	0,5
0	10	3	16,386	0,8/024	669,298	690,778	0,011	0,1
10	3	1	16,395	0,86975	/632,718	/392,066	0,014	1,13
3	10	1	16,395	0,86975	8017,809	7765,028	0,014	1,18
0	12	0	16,403	0,86932	33,891	30,856	0,014	0
7	2	4	16,442	0,86727	885,46	954,042	0,008	0,13
2	7	4	16,442	0,86727	4802,224	5174,183	0,008	0,71
0	5	5	16,539	0,86223	257,388	264,904	0,008	0,04
6	7	2	16,541	0,8621	1665,705	1726,985	0,011	0,24
7	6	2	16,541	0,8621	975,827	1011,728	0,011	0,14
2	9	3	16.557	0,86129	948.629	873,798	0.011	0.14
9	2	3	16,557	0.86129	10512	9682.781	0.011	1.52
7	7	0	16 574	0.8604	245 711	241 63	0.014	0.02
, ,	11	0	16 574	0.8604	1315 927	1203 005	0.014	0.02
11		0	16 574	0.0004	270.900	275 222	0,014	0,09
11	2	U	10,5/4	0,8004	279,869	215,222	0,014	0,02

h	k	1	20	الْمُا ل	F^2	F^2	FWHM	i100
6	8	0	16.631	0.85749	76 468	93 571	0.014	0.01
8	6	0	16,631	0,85749	34 034	41 646	0.014	0,01
3	3	5	16 652	0.8564	223 824	194 845	0.008	0.03
8	5	2	16,655	0,85627	1950 494	1830 341	0,000	0.28
5	8	2	16,655	0.85627	522 436	490 254	0.011	0.07
0	12	1	16,679	0.855027	4390.083	3841 399	0.014	0.63
4	2	5	16,709	0,85352	2232 52	2011 433	0.008	0,05
- 2	4	5	16 709	0,85352	1132.049	1010 942	0,008	0,52
2	1	4	16 782	0,83552	565 512	616 517	0,000	0,10
0	0	4	16 782	0,84082	521.061	570.04	0,008	0,08
1	0 5	4	16.9	0,84982	551,901	52 421	0,008	0,07
9	5	0	10,8	0,64695	05,779	32,421	0,014	0.29
5	9	2	10,8	0,84695	3908,103	3102,290	0,014	0,28
0	11	3	16,839	0,84098	520,455	1005 402	0,011	0,04
2		1	16,848	0,84653	926,249	1085,403	0,014	0,13
/	/	1	16,848	0,84653	50,237	58,868	0,014	0,01
11	2	1	16,848	0,84653	516,246	604,95	0,014	0,07
1	5	5	16,877	0,84508	1689,48	1449,923	0,008	0,23
5	1	5	16,877	0,84508	126,672	108,711	0,008	0,02
9	4	2	16,879	0,84496	2786,653	2541,515	0,011	0,39
4	9	2	16,879	0,84496	117,262	106,947	0,011	0,02
11	1	2	16,879	0,84496	1259,124	1148,36	0,011	0,17
1	11	2	16,879	0,84496	435,365	397,066	0,011	0,06
5	5	4	16,894	0,84424	218,701	240,142	0,01	0,03
7	5	3	16,895	0,8442	68,142	74,209	0,011	0,01
5	7	3	16,895	0,8442	2955,166	3218,283	0,011	0,41
6	8	1	16,903	0,84376	692,198	699,898	0,014	0,1
8	6	1	16,903	0,84376	1776,027	1795,784	0,014	0,25
4	6	4	16,949	0,84149	253,93	247,672	0,011	0,03
6	4	4	16,949	0,84149	171,117	166,9	0,011	0,02
10	1	3	17,006	0,83872	3187,324	2997,006	0,011	0,44
1	10	3	17,006	0,83872	62,706	58,962	0,011	0,01
4	8	3	17,061	0,83603	445,628	448,477	0,011	0,06
8	4	3	17,061	0,83603	1449,81	1459,077	0,011	0,2
5	9	1	17,07	0,8356	5188,526	5284,834	0,014	0,7
9	5	1	17,07	0,8356	2300,805	2343,512	0,014	0,31
4	10	0	17,078	0,83521	290,138	264,424	0,014	0,02
10	4	0	17,078	0,83521	3909,65	3563,147	0,014	0,26
3	7	4	17,115	0,83339	425,414	395,757	0,011	0,06
7	3	4	17,115	0,83339	268,206	249,509	0,011	0,04
1	12	0	17,133	0,83255	42,758	43,044	0,014	0
12	1	0	17,133	0,83255	2892,737	2912,094	0,014	0,19
0	6	5	17,154	0,83155	4248,693	4236,941	0,008	0,57
4	3	5	17,208	0,82892	54,66	48,255	0,008	0,01
3	4	5	17,208	0,82892	507,101	447,679	0,008	0,07
3	10	2	17,211	0,82881	1927,455	1861,368	0,014	0,26
10	3	2	17,211	0,82881	3512,013	3391,813	0,014	0,47
0	9	4	17,225	0,82812	76,442	63,176	0,011	0,01
2	5	5	17,318	0,82373	6834,021	6530,982	0,008	0,9
5	2	5	17,318	0,82373	797,409	762,05	0,008	0,1
9	3	3	17,335	0,82292	1954,29	2050,847	0,011	0,26
3	9	3	17,335	0,82292	1672,244	1754,868	0,011	0,22
4	10	1	17,343	0,82251	1238,066	1161,354	0,014	0,16
10	4	1	17,343	0,82251	47,887	44,919	0,014	0,01
2	8	4	17,388	0,82041	1959,527	1995,711	0,011	0,26
8	2	4	17,388	0,82041	5536,592	5638,829	0,011	0,72
1	12	1	17,398	0,81997	761,524	757,179	0,014	0,1
12	1	1	17,398	0,81997	325,839	323,98	0,014	0,04
11	3	0	17,46	0,81708	1086,024	1158,095	0,014	0,07
3	11	0	17,46	0,81708	1496,143	1595,429	0,014	0,1
0	12	2	17,482	0,81603	796,848	662,921	0,014	0,1
1	6	5	17,534	0,81365	427,667	528,975	0,008	0,05
6	1	5	17,534	0,81365	117,594	145,451	0,008	0,02
0	11	3	17,551	0,81286	1744,535	1663,365	0,011	0,22
11	2	2	17,643	0,80864	85,91	90,883	0,014	0,01
2	11	2	17,643	0,80864	1461,026	1545,587	0,014	0,18
7	7	2	17,643	0,80864	887,351	938,709	0,014	0,11
8	6	2	17,697	0,80622	328,215	350,26	0,014	0,04
6	8	2	17,697	0,80622	342,265	365,254	0,014	0,04
10	2	3	17,711	0,80556	2693,826	2372,828	0,011	0,34
2	10	3	17,711	0,80556	10281,072	9055,981	0,011	1,29
11	3	1	17,72	0,80518	278,351	240,954	0,014	0,03
3	11	1	17,72	0,80518	385,608	333,801	0,014	0,05
9	1	4	17,764	0,8032	1660,955	1605,272	0,011	0,21
5	6	4	17,764	0,8032	1824,051	1762,9	0,011	0,23
6	5	4	17,764	0,8032	4025,343	3890,397	0,011	0,5
1	9	4	17,764	0,8032	13777,515	13315,641	0,011	1,71
8	7	0	17,781	0,80245	4303,022	4585,375	0,014	0,27

h	k	1	2θ	d [Å]	F_o^2	F_c^2	FWHM	i100
7	8	0	17,781	0,80245	439,281	468,105	0,014	0,03
0	13	0	17,781	0,80245	751,344	800,645	0,014	0,05
4	4	5	17,801	0,80155	225,184	242,634	0,008	0,03
0	7	5	17,854	0,79919	72,626	68,124	0,008	0,01
5	3	5	17,854	0,79919	776,728	728,576	0,008	0,1
3	5	5	17,854	0,79919	122,993	115,368	0,008	0,02
5	9	2	17,856	0,79909	4596,911	4248,477	0,014	0,57
9	5	2	17,856	0,79909	201,268	186,013	0,014	0,02
4	7	4	17,87	0,79848	701,193	612,948	0,011	0,09
7	4	4	17,87	0,79848	158,306	138,383	0,011	0,02
6	7	3	17,87	0,79845	308,401	274,493	0,011	0,04
7	6	3	17,87	0,79845	1047,411	932,249	0,011	0,13
6	9	0	17,886	0,79774	1192,724	1251,429	0,014	0,07
9	6	0	17,886	0,79774	5955,571	6248,7	0,014	0,37
2	12	0	17,939	0,79542	1810,253	1982,246	0,014	0,11
12	2	0	17,939	0,79542	100,725	110,295	0,014	0,01
5	8	3	17,976	0,79381	2865,212	3061,69	0,011	0,35
8	5	3	17,976	0,79381	862,425	921,565	0,011	0,1
6	2	5	18,011	0,79225	7864,992	7681,015	0,008	0,95
2	6	5	18,011	0,79225	10691,538	10441,445	0,008	1,29
0	13	1	18,036	0,79116	1692,911	1557,736	0,014	0,2
8	7	1	18,036	0,79116	5012,085	4611,885	0,014	0,6
7	8	1	18,036	0,79116	3445,464	3170,352	0,014	0,41
3	8	4	18,08	0,78929	1870,089	2009,818	0,011	0,22
8	3	4	18,08	0,78929	3036,86	3263,767	0,011	0,36
0	0	6	18,085	0,78906	24086,953	26769,922	0,011	0,48
5	10	0	18,096	0,78857	2647,135	2780,99	0,014	0,16
10	5	0	18,096	0,78857	127,449	133,894	0,014	0,01
10	4	2	18,118	0,78762	2631,24	2701,663	0,014	0,31
4	10	2	18,118	0,78762	742,11	761,972	0,014	0,09
0	1	6	18,137	0,78681	616,148	534,03	0,011	0,07
6	9	1	18,141	0,78665	1450,613	1301,626	0,014	0,17
9	6	1	18,141	0,78665	40,139	36,016	0,014	0
1	12	2	18,17	0,78539	278,204	294,378	0,014	0,03
12	1	2	18,17	0,78539	3183,441	3368,506	0,014	0,38
4	9	3	18,184	0,78478	279,287	286,829	0,011	0,03
1	11	3	18,184	0,78478	13,234	13,591	0,011	0
9	4	3	18,184	0,78478	505,914	519,575	0,011	0,06
11	1	3	18,184	0,78478	990,89	1017,647	0,011	0,12
2	12	1	18,193	0,78442	199,797	195,122	0,014	0,02
12	2	1	18,193	0,78442	928,81	907,078	0,014	0,11

A.11 Tabelle der Quadrate beobachteter (F_o^2) und berechneter (F_c^2) Strukturfaktoren für PdAs₂O₆

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
0	0	1	8,710	4,6646	900,867	819,124	0,127	7,89
1	0	0	9,738	4,1739	73,703	53,908	0,127	1,18
1	0	1	13,084	3,1105	4603,609	4528,286	0,122	100,00
1	1	0	16,915	2,4098	4598,662	4914,456	0,126	31,15
0	0	2	17,482	2,3323	3360,934	3283,467	0,126	7,13
1	1	1	19,059	2,1410	1151,732	1117,130	0,126	6,90
1	1	-1	19,059	2,1410	179,652	175,101	0,126	0,91
2	0	0	19,558	2,0870	341,842	327,804	0,126	1,65
1	0	2	20,053	2,0360	196,758	158,940	0,126	1,77
2	0	1	21,448	1,9050	2775,686	2732,797	0,126	24,44
1	1	-2	24,424	1,6759	5056,906	5094,680	0,126	18,04
1	1	2	24,424	1,6759	8224,754	8286,481	0,126	29,47
2	1	0	25,972	1,5776	140,824	66,551	0,126	0,83
2	0	2	26,353	1,5552	31,548	6,436	0,126	0,18
0	0	3	26,359	1,5549	100,351	10,969	0,126	0,11
2	1	1	27,446	1,4944	2611,225	2783,964	0,126	15,15
2	1	-1	27,446	1,4944	1566,786	1669,388	0,126	9,00
1	0	3	28,164	1,4571	2165,580	1960,206	0,126	12,04
3	0	0	29,526	1,3913	5676,939	6281,636	0,126	14,83
3	0	1	30,843	1,3333	253,607	229,284	0,135	1,45
2	1	-2	31,485	1,3067	94,917	88,032	0,135	0,38
2	1	2	31,485	1,3067	17,356	16,367	0,135	0,05
1	1	3	31,490	1,3065	55,645	48,690	0,135	0,18
1	1	-3	31,490	1,3065	801,442	723,169	0,135	2,08
2	0	3	33,040	1,2469	1943,033	1948,970	0,135	8,36

h	k	1	20	d [Å]	F_{a}^{2}	F_c^2	FWHM	i100
2	2	0	34,225	1,2049	2525,672	2519,237	0,135	5,19
3	0	2	34,522	1,1949	1997,046	1962,984	0,135	8,07
2	2	-1	35,386	1,1666	426,512	346,067	0,135	0,94
2	2	1	35,386	1,1666	5,777	4,202	0,135	0,02
0	0	4	35,400	1,1662	4572,535	3803,196	0,135	3,00
3	1	0	35,669	1,1576	4,481	3,245	0,135	0,01
3	1	-1	36,790	1,1236	1740,044	1922,399	0,135	6,33
3	1	1	36,790	1,1236	962,340	1061,786	0,135	3,45
1	0	4	36,804	1,1231	25,942	28,053	0,135	0,07
2	1	3	37,340	1,1074	1072,710	1158,480	0,135	5,78
2	2	-5	38,685	1,1074	2240 871	2454 274	0,135	3,25
2	2	-2	38 685	1,0705	3205 725	3512 489	0,140	5 48
1	1	4	39.482	1.0497	1280.519	1344.871	0.140	2.10
1	1	-4	39,482	1.0497	2926.435	3075.214	0,140	4.85
4	0	0	39,728	1,0435	2,285	2,656	0,140	0,00
3	1	2	39,990	1,0369	124,661	139,460	0,140	0,35
3	1	-2	39,990	1,0369	37,910	41,827	0,140	0,09
3	0	3	39,994	1,0368	-0,687	0,241	0,140	0,02
4	0	1	40,753	1,0183	1292,330	1201,199	0,140	4,03
2	0	4	40,766	1,0180	59,531	56,339	0,140	0,16
3	2	0	43,466	0,9576	155,719	110,961	0,140	0,41
4	0	2	43,709	0,9525	78,233	77,655	0,140	0,19
2	2	3	43,713	0,9524	255,989	253,869	0,140	0,43
2	2	-3	43,713	0,9524	21,852	21,590	0,140	0,05
3	2	-1	44,421	0,9380	958,905	960,435	0,140	2,62
2	2	1	44,421	0,9380	74 126	72 042	0,140	2,09
2	1	-4	44,433	0,9378	7 185	7 108	0,140	0,17
0	0	5	44.675	0.9329	267.495	314.081	0,140	0.14
3	1	-3	44,898	0.9285	597,337	613,520	0.140	1.59
3	1	3	44,898	0,9285	936,937	962,629	0,140	2,52
4	1	0	45,821	0,9108	1392,369	1420,844	0,140	3,69
1	0	5	45,840	0,9105	942,025	951,339	0,140	2,46
4	1	1	46,737	0,8939	132,638	120,201	0,149	0,42
4	1	-1	46,737	0,8939	0,621	0,180	0,149	0,01
3	0	4	46,749	0,8937	2214,929	2017,974	0,149	5,75
3	2	2	47,192	0,8858	7,355	5,812	0,149	0,01
3	2	-2	47,192	0,8858	0,953	0,673	0,149	0,00
1	1	-5	48,103	0,8700	6,743	0,532	0,149	0,01
1	1	2	48,103	0,8700	35,430 760 114	9,534	0,149	0,06
7	0	5	40,515	0,8005	582 712	597 670	0,149	1,80
4	1	2	49,203	0,8484	1890 919	1920 380	0,149	4 53
4	1	-2	49,408	0.8484	1436.824	1459.123	0.149	3.43
2	2	4	50,067	0,8380	1712,415	1727,328	0,149	2,01
2	2	-4	50,067	0,8380	864,488	871,941	0,149	1,01
5	0	0	50,271	0,8348	157,904	148,459	0,149	0,17
5	0	1	51,127	0,8217	662,503	583,535	0,149	1,48
3	1	-4	51,137	0,8216	59,758	53,236	0,149	0,12
3	1	4	51,137	0,8216	0,409	0,325	0,149	0,00
3	2	3	51,556	0,8154	880,289	870,082	0,149	1,95
3	2	-3	51,556	0,8154	768,252	759,373	0,149	1,70
3	3	0	52,390	0,8033	1745,894	1635,796	0,158	1,93
2	1	-5	52,407	0,8030	638,969	596,847	0,158	1,38
2	2	1	52,407	0,8050	24 721	25 874	0,158	1,55
3	3	-1	53 221	0,7910	136 893	45 003	0,158	0,11
4	2	0	53 427	0,7910	15 282	7 084	0,158	0.03
5	0	2	53,635	0.7860	0.971	0.077	0,158	0.01
4	1	3	53,639	0,7859	22,208	10,741	0,158	0,07
4	1	-3	53,639	0,7859	173,613	104,101	0,158	0,43
4	2	-1	54,247	0,7778	455,714	380,427	0,158	0,93
4	2	1	54,247	0,7778	1071,380	890,927	0,158	2,24
4	0	4	54,258	0,7776	16,489	14,425	0,158	0,03
0	0	6	54,271	0,7774	1379,694	1138,045	0,158	0,48
3	0	5	54,467	0,7749	176,275	130,299	0,158	0,43
1	0	6	55,284	0,7643	54,418	25,962	0,158	0,10
3	3	2	55,664	0,7595	110/,802	804,340	0,158	1,19
5	5	-2	56 450	0,7395	1101,458	128,851	0,158	1,12
5 4	2	_2	56 660	0,7477	42,310	20,782 94 433	0,158	0.27
4	2	2	56.660	0,7472	29.214	20.412	0.158	0.05
5	1	- 1	57,250	0,7402	771,709	627,562	0,158	1,50
5	1	-1	57,250	0,7402	462,753	377,325	0,158	0,89
3	2	-4	57,260	0,7400	73,398	61,245	0,158	0,13
3	2	4	57,260	0,7400	37,944	32,042	0,158	0,06

h	k	1	20	d [Å]	F_o^2	F_c^2	FWHM	i100
1	1	6	57,273	0,7399	1732,920	1406,275	0,158	1,71
1	1	-6	57,273	0,7399	710,861	578,286	0,158	0,69
2	2	-5	57,462	0,7377	6,645	3,453	0,168	0,01
2	2	5	57,462	0,7377	1,811	0,662	0,168	0,00
5	0	3	57,648	0,7355	857,282	691,421	0,168	1,65
2	0	6	58,251	0,7285	44,032	26,084	0,168	0,07
3	1	5	58,438	0,7264	629,311	540,509	0,168	1,18
3	1	-5	58,438	0,7264	713,646	612,657	0,168	1,35
4	1	-4	59,206	0,7178	1114,100	1018,750	0,168	2,09
4	1	4	59,206	0,7178	635,883	581,876	0,168	1,19
5	1	-2	59,583	0,/13/	37,824	38,095	0,168	0,06
2	1	2	59,583	0,7137	11,024	11,089	0,168	0,01
2	2	2	50,586	0,7137	0,519	0,552	0,108	0,00
3	2	-5	59,580 60 540	0,7137	0,057	247 482	0,108	0,00
4	2	-3	60,540	0,7035	554 081	247,465 496.441	0,108	0,49
2	1	-5	61 126	0,7035	61,000	51 630	0,108	0,99
2	1	-0	61 126	0,6974	7 861	6 961	0.168	0.01
6	0	0	61 292	0,6957	1123 816	987 884	0.168	1.01
4	0	5	61 308	0,6955	580 518	511 306	0,168	1,01
6	0	1	62 044	0,6935	21.615	12 572	0.168	0.06
4	3	0	62,044	0,0000	5 255	4 856	0.168	0.01
4	3	1	62,251	0.6789	285 352	290 704	0.179	0.48
4	3	-1	62,977	0,6789	524 792	534 815	0.179	0,40
5	0	4	62,986	0.6788	53 360	54 082	0.179	0.08
3	0	6	62,999	0.6787	715,169	722.859	0.179	1.24
5	1	-3	63,353	0.6753	448,951	449.070	0.179	0.76
5	1	3	63,353	0.6753	309,286	309,367	0.179	0.52
5	2	0	64.085	0.6684	694,254	629,330	0.179	1.18
3	2	5	64.101	0.6682	268,780	244.098	0.179	0.44
3	2	-5	64,101	0.6682	286,226	259,892	0.179	0.47
6	0	2	64,272	0,6666	532,421	524,243	0,179	0,90
0	0	7	64,299	0,6664	21,160	21,303	0,179	0,01
5	2	1	64,819	0,6616	0,750	1,069	0,179	0,01
5	2	-1	64,819	0,6616	20,657	24,057	0,179	0,05
3	3	-4	64,829	0,6615	707,399	785,175	0,179	0,59
3	3	4	64,829	0,6615	649,517	720,830	0,179	0,54
4	3	-2	65,186	0,6583	24,234	28,616	0,179	0,03
4	3	2	65,186	0,6583	59,225	71,229	0,179	0,08
1	0	7	65,214	0,6580	249,526	307,906	0,179	0,40
4	2	-4	65,739	0,6534	-0,025	0,000	0,179	0,00
4	2	4	65,739	0,6534	54,962	56,413	0,179	0,08
2	2	-6	65,751	0,6533	856,621	883,286	0,179	0,71
2	2	6	65,751	0,6533	379,404	391,068	0,179	0,31
4	1	5	65,926	0,6517	0,068	0,165	0,179	0,01
4	1	-5	65,926	0,6517	1,868	1,951	0,179	0,01
3	1	6	66,656	0,6454	62,316	54,590	0,179	0,09
3	1	-6	66,656	0,6454	3,402	3,143	0,179	0,00
5	2	2	66,996	0,6425	599,454	540,010	0,179	0,97
5	2	-2	66,996	0,6425	765,987	689,775	0,179	1,25
1	1	7	67,023	0,6423	50,965	44,018	0,179	0,05
1	1	-7	67,023	0,6423	13,023	10,743	0,179	0,02
6	1	0	67,711	0,6365	2,279	2,547	0,179	0,00
6	0	3	67,895	0,6350	0,057	0,319	0,189	0,00
2	0	7	67,919	0,6348	329,160	362,821	0,189	0,51
6	1	1	68,425	0,6307	167,294	168,763	0,189	0,25
6	1	-1	68,425	0,6307	504,382	508,964	0,189	0,79
5	1	-4	68,434	0,6306	6,621	6,678	0,189	0,01
5	1	4	68,434	0,6306	45,051	45,579	0,189	0,06
4	3	3	68,785	0,6278	317,952	292,875	0,189	0,49
4	3	-3	68,785	0,6278	187,809	173,233	0,189	0,28
4	0	6	69,333	0,6234	19,661	19,687	0,189	0,02
5	0	5	69,503	0,6221	155,025	143,387	0,189	0,23
Abbildungsverzeichnis

2.1	Bild der verwendeten Piston-Zylinder-Presse für Drücke bis ca. 2,5 GPa und 1000 °C.	
2.2	Bild der oberen, mittleren und unteren Matrize und den notwendigen Teile für den Einbau der Probe	4
2.3	Ausschnitt mit den notwendigen Teilen für den Einbau der Probe	5
2.4	Bild der eingesetzten Belt-Presse für Drücke bis 8 GPa und Temperaturen bis 1200 °C.	6
2.5	Belt-Modul mit mittlerer und oberer Matrize und weiteren notwendigen Teilen	6
2.6	Schematischer Aufbau der Hochdruckzelle der BELT-Presse	6
2.7	Multianvil-Presse, ausgestattet mit einem Walker-Modul für 32mm WC- Würfel; einsetzbar für Drücke bis zu 27 GPa and 2500 °C.	7
2.8	Anordnung der WC Würfel and der oktaedrischen Hochdruckzelle	7
2.9	Schema des zusammengebauten Oktaeders.	8
2.10	Abbildung der verwendeten Typen von Diamantstempelzellen für die Ver- suche.	9
2.11	Abbildung einer für das kryogene Befüllen mit flüssigen Stickstoff vor- bereiteten Diamantstempelzelle.	9
3.1	Darstellung des p-T Phasendiagramms von Selendioxid, welches aus den experimentellen Daten erstellt werden konnte. Schwarz kennzeichnet α - SeO ₂ , β -SeO ₂ ist Rot, γ -SeO ₂ ist Blau. Die Phasengrenze zwischen β - und γ -SeO ₂ ist gestrichelt dargestellt. Dr Tripelpunkt aus der Literatur ist in Grün eingezeichnet.	18
3.2	Plot der Rietveld-Verfeinerung für β -SeO ₂ bei T = 200 K (λ = 1,540598 Å) nach Hochdruckversuch bei 2 GPa und 570 °C. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe <i>Pmc</i> 2 ₁ (grüne Linie), die Reflexlagen von β -SeO ₂ , sowie die Differenzkurve (unten) zwischen beobachtetem und	10
		19

3.3	Plot der Rietveld-Verfeinerung für γ -SeO ₂ bei T = 200 K (λ = 1,540598 Å) nach Hochdruckexperiment bei 6 GPa und 820 °C. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe <i>Pmc</i> 2 ₁ (grüne Linie), die Reflexlagen von γ -SeO ₂ , sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.	19
3.4	Abbildung der unendlichen Zickzack-Kette in α -SeO ₂ mit den dazugehö- rigen Atomabständen.	22
3.5	Abbildung der unendlichen Zickzack-Kette in β -SeO ₂ mit den dazugehörigen Atomabständen.	22
3.6	Abbildung der ersten kristallographisch unabhängigen Se–O-Kette in γ -SeO ₂ mit den dazugehörigen Atomabständen.	22
3.7	Abbildung der zweiten kristallographisch unabhängigen Se–O-Kette in γ -SeO ₂ mit den dazugehörigen Atomabständen.	22
3.8	Abbildung von α -SeO ₂ mit Blick entlang [001]. Die Selenatome sind in Blau und die Sauerstoffatome in Rot dargestellt.	25
3.9	Abbildung von β -SeO ₂ mit Blick entlang [100]. Die Selenatome sind in Blau und die Sauerstoffatome in Rot dargestellt.	25
3.10	Abbildung von γ -SeO ₂ mit Blick entlang [100]. Die Selenatome sind in Blau und die Sauerstoffatome in Rot dargestellt.	25
3.11	Darstellung der kombinierten Ramanspektren für die α - (schwarz), β - (rot) und γ -Phase (blau) des Selendioxides	28
3.12	Phasendiagramm von Sb ₂ O ₃ aus den Daten der Experimente in den Hoch- druckpressen bei Drücken bis 19,5 GPa und Temperaturen bis 600 °C	31
3.13	Darstellung der Koordination der vier kristallographisch unabhängigen Antimonatome und der Sb–O Atomabstände.	33
3.14	Darstellung der Sb ₃ O ₃ -Ringe, deren Verknüpfung und der sich daraus bil- denden unendlichen Ketten in γ -Sb ₂ O ₃	33
3.15	Blick auf die Struktur von γ -Sb ₂ O ₃ entlang [100]. Man erkennt die tetra- gonale Stabpackung der unendlichen Ketten.	34
3.16	Blick auf die Struktur von γ -Sb ₂ O ₃ entlang [010]	34
3.17	Abbildung der Struktur von β -Sb ₂ O ₃ entlang [001]. Deutlich erkennbar ist die hexagonale Stabpackung der Ketten.	36

3.18	Darstellung der "in situ" Pulverdiffraktogramme bei Druckerhöhung und Druckentlastung während des Diamantstempelzellenexperiments mit Sb ₂ O ₄ bei Raumtemperatur. Die Pfeile in der Ausschnittsvergrößerung zeigen die ersten Spuren von β -Sb ₂ O ₄	40
3.19	Diagramm mit der Entwicklung der Zellkonstanten und des Volumens von α -Sb ₂ O ₄ im untersuchten Druckbereich. Die aus den Druck- und Vo- lumendaten berechnete isotherme Zustandsfunktion (Birch-Murnaghan) von α -Sb ₂ O ₄ ist als gestrichelt Linie dargestellt.	42
3.20	Diagramm mit der Entwicklung der Zellkonstanten und des Volumens von β -Sb ₂ O ₄ im untersuchten Druckbereich. Die aus den Druck- und Vo- lumendaten berechnete isotherme Zustandsfunktion (Birch-Murnaghan) von β -Sb ₂ O ₄ ist als gestrichelt Linie dargestellt.	42
3.21	Phasendiagramm von Sb_2O_4 aus den Daten der Experimente in der Hoch- druckpresse bis $p = 6$ GPa und unterschiedlichen Temperaturen	43
3.22	Phasendiagramm von Sb_2O_4 aus den Daten der Experimente in den Hoch- druckpressen bei einem Druck von p = 6 GPa und verschiedenen Tempe- raturen und Haltezeiten.	43
3.23	Plot der Rietveld-Verfeinerung für α -Sb ₂ O ₄ (λ = 1,5406 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld- Verfeinerung in Raumgruppe <i>Pna</i> 2 ₁ (grüne Linie), die Reflexlagen von α -Sb ₂ O ₄ , sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.	44
3.24	Plot der Rietveld-Verfeinerung für β -Sb ₂ O ₄ ($\lambda = 1,5406$ Å) nach dem Hochdruckversuch bei 6 GPa und 375 °C. Aufgetragen sind das beob- achtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe <i>C</i> 2/ <i>c</i> (grüne Linie), die Reflexlagen von β -Sb ₂ O ₄ , sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.	44
3.25	Blick auf die Kristallstruktur von α -Sb ₂ O ₄ entlang [010] und [100]	47
3.26	Blick auf die Kristallstruktur von β -Sb ₂ O ₄ entlang [010] und [001]	47
3.27	Heizguinieraufnahme von Sb ₂ O ₄ im Temperaturbereich 20 °C - 800 °C - 20 °C. Im gesamten Temperaturbereich ist keine Phasenumwandlung er- kennbar.	49
3.28	Darstellung des p-T Phasendiagramms von BiF ₃ aus den Daten der Expe- rimente in den Hochdruckpressen bei Drücken bis 20 GPa und Tempera-	
	turen bis 700 °C. \ldots	51

ABBILDUNGSVERZEICHNIS

3.29	Pulverdiffraktogramme des Hochdruckexperiments bei p = 2 GPa und T = 500 °C. Das obere Pulverdiffraktogramm zeigt die Mischung aus α - (Rot) und β -BiF ₃ (Blau) nach dem Hochdruckversuch. Das untere Pul- verdiffraktogramm zeigt die gleiche Probe nach dem Erhitzen auf 350 °C, man erkennt nur noch die Reflexe des α -BiF ₃ (Rot)	52
3.30	Plot der Rietveld-Verfeinerung für α - und β -BiF ₃ ($\lambda = 1,5406$ Å). Auf- getragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in der Raumgruppe $P6_3/mmc$ (grüne Linie), die Reflexlagen von α - (Rot) und β -BiF ₃ (Schwarz), sowie die Differenz- kurve (unten) zwischen beobachtetem und berechnetem Profil	52
3.31	Koordination um das Bi-Atom und Darstellung der kürzesten Bi–F Ab- stände in β -BiF ₃	54
3.32	Abbildung der gesamten Koordination für das Bi-Atom in β -BiF ₃	54
3.33	Blick auf die Kristallstruktur von β -BiF ₃ entlang [010] (oberes Bild) und [001] (unteres Bild)	55
3.34	Blick auf die Kristallstruktur von α -BiF ₃ entlang [010] und [001]	56
3.35	Darstellung der in situ Pulverdiffraktogramme bei Druckerhöhung wäh- rend des Diamantstempelzellenexperiments mit α -As ₂ O ₅ bei Raumtem- peratur.	60
3.36	Diagramm mit der Entwicklung der Zellkonstanten und des Volumens von α -As ₂ O ₅ im untersuchten Druckbereich. Die aus den Druck- und Vo- lumendaten berechnete isotherme Zustandsfunktion (Birch-Murnaghan) von α -As ₂ O ₅ ist als gestrichelt Linie dargestellt	61
3.37	Darstellung des p-T Phasendiagramms von As_2O_5 , welches aus den experimentellen Daten mit den Hochdruckpressen erstellt werden konnte.	61
3.38	Heizguinieraufnahme von einer bisher noch nicht aufgeklärten Hoch- druckmodifikation von α -As ₂ O ₅ im Temperaturbereich 20 °C - 350 °C - 20 °C. Man erkennt eine vollständige Phasenumwandlung der Hoch- druckmodifikation in die γ -Phase von As ₂ O ₅ , die im Temperaturbereich T \approx 205 °C - 255 °C stabil ist. Danach erfolgt eine weitere vollständige Umwandlung in die Hochtemperatur (β)- und Raumtemperatur (α)-Phase von As ₂ O ₅ .	63

3.39	Plot der Rietveld-Verfeinerung für γ -As ₂ O ₅ aus den Daten der Heizgui- niermessung im Temperaturbereich T = 205 °C - 255 °C (λ = 1,5406 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der bes- ten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von γ -As ₂ O ₅ (Schwarz) und HT-As ₂ O ₅ (Rot), sowie die Differenzkurve (unten) zwi- schen beobachtetem und berechnetem Profil.	63
3.40	Darstellung des AsO ₆ Oktaeders und AsO ₄ Tetraeders in γ -As ₂ O ₅ mit Angabe der Bindungslängen in pm	65
3.41	Abbildung der Struktur von γ -As ₂ O ₅ mit Blick entlang [001]. Arsen ist in Grau und Sauerstoff in Rot dargestellt.	66
3.42	Abbildung der Struktur von γ -As ₂ O ₅ mit Blick entlang [100]. Arsen ist in Grau und Sauerstoff in Rot dargestellt.	66
3.43	Darstellung des p-T Phasendiagramms von V_2O_5 aus den Daten der Hochdruckexperimente. Die Schmelzkurve ist als rote gestrichelte Linie dargestellt.	69
3.44	Plot der Rietveld-Verfeinerung für δ -V ₂ O ₅ aus den Pulverdaten der Synchrotronmessung ($\lambda = 0,43085$ Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von δ -V ₂ O ₅ (Schwarz) und Pt (Rot), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.	70
3.45	Abbildung der Kristallstruktur von δ -V ₂ O ₅ entlang [001]	73
3.46	Abbildung der Kristallstruktur von δ -V ₂ O ₅ entlang [010]	73
3.47	Darstellung der Kristallstruktur von δ -V ₂ O ₅ um Ähnlichkeit mit der Ru- tilstruktur aufzuzeigen.	73
3.48	Darstellung der Ramanspektren von α - (schwarz), β - (grün) und δ -V ₂ O ₅ (rot). Es ist deutlich erkennbar, dass die Ramanspektren der drei unterschiedlichen Modifikationen große Ähnlichkeiten aufweisen	74
3.49	Abbildung der berechneten Kurven (Energie gegen das Volumen) für die experimentell beobachteten vier Modifikationen (α , β , γ und δ -V ₂ O ₅) und für drei andere vielversprechende neu vorhergesagten Strukturkandi- daten	75
	uaivii	15

ABBILDUNGSVERZEICHNIS

3.50	Darstellung des p-T Phasendiagramms von V_2O_5 aus den Daten der Hochdruckexperimente (große Symbole), der theoretischen Berechnun- gen und der Literatur (kleine Symbole). Die Phasengrenzen sind gepunk- tete und die Schmelzkurve ist als gestrichelte rote Linie dargestellt	76
3.51	Plot der Rietveld-Verfeinerung für $K_6(SeO_4)(SeO_5 \text{ bei } T = 25 \text{ °C } (\lambda = 0,64895 \text{ Å})$. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe $P4_12_12$ (grüne Linie), die Reflexlagen von $K_6(SeO_4)(SeO_5, \text{ sowie die Differenzkurve}$ (unten) zwischen beobachtetem und berechnetem Profil	79
3.52	Koordinationsumgebung der beiden Selenatome $K_6(SeO_4)(SeO_5$	81
3.53	Blick auf die Kristallstruktur von $K_6(SeO_4)(SeO_5)$ entlang [010]. Die Se ⁶⁺ mit trigonal bipyramidaler Koordination ist in Blau und Se ⁶⁺ mit te- traedrischer Koordination ist in Grün dargestellt. Die Kaliumatome sind hellgelb gezeichnet.	83
3.54	Koordinationsumgebung der drei kristallographisch unabhängigen Kali- um Atome in $K_6(SeO_4)(SeO_5, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots)$	84
3.55	Heizguinieraufnahme von $H_6As_{14}O_{31}$ im Temperaturbereich 20 °C - 350 °C - 20 °C. Die Phasenumwandlung von $H_6As_{14}O_{31}$ zu As_2O_5 erfolgt bei ≈ 170 °C.	85
3.56	Ausschnitt aus der Kristallstruktur von $H_6As_{14}O_{31}$ entlang der <i>c</i> -Achse mit den trigonalen Kanälen nach der Rietveldanpassung ohne die Wasserstoffatome. Die Karte der nachfolgenden Berechnung der Differnzelektronendichte ist überlagert und zeigt deutlich die Positionen der Wasserstoffatome in zwei unterschiedlichen Höhen innerhalb der Kanäle	86
3.57	Plot der Rietveld-Verfeinerung für H ₆ As ₁₄ O ₃₁ bei T = 25 °C (λ = 0,24804 Å) nach Hochdruckversuch bei 6 GPa und 580 °C. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe <i>P</i> 6 ₃ (grüne Linie), die Reflexlagen von H ₆ As ₁₄ O ₃₁ (Schwarz) und As ₂ O ₅ (Rot), sowie die Differenzkurve (unten) zwischen beobachtetem und berechnetem Profil.	87
3.58	Blick auf die Kristallstruktur von $H_6As_{14}O_{31}$ entlang [001]. Die Arsenatome sind in Grau, die Sauerstoffatome in Rot und die Wasserstoffatome in Hellblau dargestellt.	90
3.59	Darstellung der Koordinationspolyeder der drei kristallographisch unab- hängigen Arsenatome.	91

3.60	Darstellung der aus Wasserstoffatomen aufgebauten Oktaeder in den Kanälen und der Struktur von $H_6As_{14}O_{31}$	91
3.61	Blick auf die Kristallstruktur von $As_3O_5OH^{160}$ entlang der <i>b</i> -Achse. Arsen ist in Grau und Sauerstoff in Rot dargestellt.	92
3.62	Plot der Rietveld-Verfeinerung für PdAs ₂ O ₆ bei T = 25 °C (λ = 0,7093 Å). Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung in Raumgruppe <i>P</i> -31 <i>m</i> (grüne Linie), die Reflexlagen von PdAs ₂ O ₆ (Schwarz) und PdO (Rot), sowie die Differenz-kurve (unten) zwischen beobachtetem und berechnetem Profil	95
3.63	Blick auf die Kristallstruktur von PdAs ₂ O ₆ entlang [001] (oberes Bild) und [010] (unteres Bild). Palladium ist in Violett, Arsen in Hellgrau und Sauerstoff in Rot dargestellt.	96
3.64	Abbildung des Ramanspektrums für PdAs ₂ O ₆	98
3.65	Messung der magnetischen Suszeptibilität von PdAs ₂ O ₆ bei einem Feld von 1 Tesla. Auftragung von $1/\chi_{mol}$ [mol/emu] (volle Kreise) und $\chi \cdot T$ [emu·K/mol] (offene Kreise) gegen T [K]	99
3.66	Plot der Rietveld-Verfeinerung des Neutronenpulverdiffraktogrammes für PdAs ₂ O ₆ bei T = 5 K. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von PdAs ₂ O ₆ (Schwarz), der magnetischen Phase (Orange) und PdO (Blau), sowie die Differenzkurve (unten) zwischen beobachte- tem und berechnetem Profil.	101
3.67	Plot der Rietveld-Verfeinerung des Neutronenpulverdiffraktogrammes für PdAs ₂ O ₆ bei T = 200 K. Aufgetragen sind das beobachtete Profil (rote Kreuze), das Profil der besten Rietveld-Verfeinerung (grüne Linie), die Reflexlagen von PdAs ₂ O ₆ (Schwarz) und PdO (Blau), sowie die Diffe- renzkurve (unten) zwischen beobachtetem und berechnetem Profil	101
3.68	Darstellung der magnetischen Struktur von $PdAs_2O_6$ aus den Daten der Neutronenbeugung bei 5K entlang [001]. Die blauen Pfeile gegen die Ori- entierung der magnetischen Momente an. Palladium ist in Violett, Arsen in Hellgrau und Sauerstoff in Rot dargestellt.	102
3.69	Darstellung der magnetischen Struktur von $PdAs_2O_6$ aus den Daten der Neutronenbeugung bei 5K entlang [010]. Die blauen Pfeile gegen die Ori- entierung der magnetischen Momente an. Palladium ist in Violett, Arsen	
	in Hellgrau und Sauerstoff in Rot dargestellt.	103

Tabellenverzeichnis

3.1	Kristallographische und analytische Daten und Daten für die beiden neu- en Phasen β - und γ -SeO ₂ (Standardabweichung in Klammern)	20
3.2	Atompositionen und isotrope thermische Auslenkungsparameter für β -SeO ₂ und γ -SeO ₂ (Standardabweichung in Klammern)	21
3.3	Übersicht über die Bindungslängen in der Literatur erwähnten und den beiden neuen Phasen von Selendioxid (Standardabweichung in Klammern)	23
3.4	Übersicht über die Winkel in der Literatur erwähnten und den beiden neu- en Phasen von Selendioxid (Standardabweichung in Klammern)	24
3.5	Übersicht über die Motive der gegenseitigen Zuordnung [pm], der effek- tiven Koordinationszahl (ECoN) und der mittleren effektiven Ionenradien (MEFIR) in pm für alle Modifikationen des Selendioxides	26
3.6	Übersicht über den Madelunganteil der Gitterenergie für die verschiede- nen SeO ₂ -Modifikationen	27
3.7	Übersicht über die Raman-Daten der verschiedenen SeO ₂ -Modifikationen im Vergleich mit Referenzwerten für α -SeO ₂ aus der Literatur ⁵⁶	29
3.8	Ausgewählte kristallographische Daten und die Ergebnisse der Struktur- verfeinerung von γ -Sb ₂ O ₃ (Standardabweichung in Klammern)	32
3.9	Atompositionen und isotrope Temperaturfaktoren für γ -Sb ₂ O ₃ (Standard- abweichung in Klammern).	35
3.10	Übersicht über die Atomabstände (pm) und Winkel (°) in γ -Sb ₂ O ₃ (Stan- dardabweichung in Klammern)	35
3.11	Berechnung der Valenzsummen für γ -Sb ₂ O ₃ (mit und ohne Berücksichtigung der van der Waals-Radien).	36
3.12	Übersicht über die Motive der gegenseitigen Zuordnung, der effektiven Koordinationszahl (ECoN) und der mittleren effektiven Ionenradien (ME- FIR) [pm] für die verschiedenen Modifikationen von Sb ₂ O ₃	37
3.13	Vergleich der MAPLE-Werte für γ -Sb ₂ O ₃ , α -Sb ₂ O ₃ ⁵⁸ und β -Sb ₂ O ₃ . ⁵⁹ .	38
3.14	Kristallographische Daten und Güte der Rietveld-Anpassung für α - und β -Sb ₂ O ₄ .	45
3.15	Atompositionen und isotrope Temperaturfaktoren für α -Sb ₂ O ₄	46

TABELLENVERZEICHNIS

3.16	Atompositionen und isotrope Temperaturfaktoren für β -Sb ₂ O ₄	46
3.17	Vergleich der Atomabstände [pm] aus der Rietveld-Anpassung für α - und β -Sb ₂ O ₄	46
3.18	Vergleich der Winkel [°] aus der Rietveld-Anpassung für α - und β -Sb ₂ O ₄ .	48
3.19	Vergleich der MAPLE-Werte für α -Sb ₂ O ₄ und β -Sb ₂ O ₄	48
3.20	Ausgewählte kristallographische Daten und Ergebnisse der Strukturver- feinerung von β -BiF ₃ (Standardabweichung in Klammern)	53
3.21	Atompositionen und isotrope Temperaturfaktoren für β -BiF ₃ (Standard- abweichung in Klammern)	53
3.22	Übersicht über die Atomabstände (pm) und Winkel (°) in β -BiF ₃ (Stan- dardabweichung in Klammern)	54
3.23	Übersicht über die Motive der gegenseitigen Zuordnung, der effektiven Koordinationszahl (ECoN) und der mittleren effektiven Ionenradien (ME-FIR) [pm] für α^{84} - und β -BiF ₃	57
3.24	Vergleich der MAPLE-Werte für α -BiF ₃ ⁸⁴ und β -BiF ₃	57
3.25	Kristallographische und analytische Daten von γ -As ₂ O ₅ (Standardabwei- chung in Klammern).	62
3.26	Atompositionen und isotrope Temperaturfaktoren für γ -As ₂ O ₅ (Standard- abweichung in Klammern).	64
3.27	Übersicht über die Bindungslängen (pm) und -winkel (°) in γ -As ₂ O ₅ (Standardabweichung in Klammern)	64
3.28	Vergleich der MAPLE-Werte für γ -As ₂ O ₅ , α As ₂ O ₅ ^{90,91} und β -As ₂ O ₅ . ⁹³	67
3.29	Kristallographische und analytische Daten von δ -V ₂ O ₅ (Standardabwei- chung in Klammern).	71
3.30	Atompositionen und isotrope Temperaturfaktoren für δ -V ₂ O ₅ (Standard- abweichung in Klammern).	72
3.31	Übersicht über die Bindungslängen (pm) und -winkel (°) in δ -V ₂ O ₅ (Standardabweichung in Klammern)	72
3.32	Kristallographische und analytische Daten von $K_6(SeO_4)(SeO_5)$ (Stan- dardabweichung in Klammern).	80

3.33	Atompositionen und isotrope thermische Auslenkungsparameter für $K_6(SeO_4)(SeO_5)$ (Standardabweichung in Klammern).	81
3.34	Übersicht über ausgewählte Bindungslängen (in pm) und -winkel (in °) in Hexakaliumpentaoxotetraselenat(VI) (Standardabweichung in Klammern).	82
3.35	MAPLE-Tabelle für $K_6(SeO_4)(SeO_5)$.	82
3.36	Kristallographische und analytische Daten von $H_6As^{III}_7As^V_7O_{31}$ (Stan- dardabweichung in Klammern).	88
3.37	Atompositionen und isotrope Temperaturfaktoren für $H_6As_{14}O_{31}$ (Stan- dardabweichung in Klammern).	88
3.38	Übersicht über die Bindungslängen (pm) und -winkel (°) in $H_6As_{14}O_{31}$ (Standardabweichung in Klammern)	89
3.39	KristallographischeundanalytischeDatenvon $PdAs_2O_6(Standardabweichung in Klammern)$	97
3.40	AtompositionenundisotropeTemperaturfaktorenfürPdAs2O6(Standardabweichung in Klammern)	97
3.41	Übersicht über die Atomabstände (pm) und Winkel (°) in Palladi- um(II)metaarsenat (Standardabweichung in Klammern)	98
3.42	Ramandaten von $PdAs_2O_6$ im Vergleich mit den Daten von $CaAs_2O_6$ und $PbAs_2O_6^{173}$	99
3.43	Kristallographische Daten von PdAs ₂ O ₆ aus den Daten der Neutronen- messung (Standardabweichung in Klammern)	100

Publikationen

- D. Orosel, O. Leynaud, P. Balog, M. Jansen, "Pressure-temperature phase diagram of SeO₂. Characterization of new phases", J. Solid State Chem. 2004, 177, 1631
- D. Orosel, P. Balog, H. Liu, J. Qian, M. Jansen, "Sb₂O₄ at high pressures and high temperatures", J. Solid State Chem. 2005, 178, 74
- D.Orosel, M. Jansen, "*PdAs*₂O₆, das erste paramagnetische Palladiumoxid", Z. Anorg. Allg. Chem. **2006**, *632*, 1131
- P.Balog, D.Orosel, Z. Cancarevic, C. Schön, M. Jansen, "V₂O₅ phase diagram revisited at high pressures and high temperatures", J. Alloys Comp. 2006, angenommen
- D.Orosel, R. Dinnebier, M. Jansen, "High Pressure Synthesis and Structure Determination of K₆(SeO₄)(SeO₅), the First Potassium Oxoselenate(VI)", Inorg. Chem. 2006, angenommen
- D.Orosel, R. Dinnebier, P. Balog, M. Jansen, *"The Crystal Structure of a New Mi*xed Valence Arsenic(III,V)oxoacid H₆As³⁺₇As⁵⁺₇O₃₁", Z. Kristallogr. 2006, eingereicht

Lebenslauf

Name	Denis Orosel
Geburtstag	26.Oktober 1970
Geburtsort	Nürnberg
Familienstand	verheiratet
Schulausbildung	
1977 - 1981	Grundschule Uhlandstrasse in Nürnberg
1981 - 1991	Hans-Sachs-Gymnasium in Nürnberg
Hochschulstudium	
1991 – 1994	Studium der Chemie an der Friedrich-Alexander-Universität in
	Erlangen
1995 - 2001	Studium der Mineralogie an der Friedrich-Alexander-Universität
	in Erlangen
Nov. 1997	Vordiplom Mineralogie
Nov. 2001	Diplom in Mineralogie
	Diplomarbeit mit dem Thema: Untersuchung der Phasenbezie-
	hungen im Al-reichen Teil der Systeme $Eu_2O_3 - Al_2O_3 - MgO$
	$und EuO - Al_2O_3 - MgO$
Promotion	
Juni 2002 - Dez. 2006	Anfertigung der Dissertation am Max-Planck-Institut für Festkör-
	perforschung, Stuttgart,
	unter der Leitung von Prof. Dr. Dr. h.c. M. Jansen
	Thema: Untersuchung von Druckumwandlungen an Oxiden und
	Fluoriden und Synthese neuer Verbindungen

Hiermit erkläre ich, dass ich diese Dissertation unter Verwendung der angegebenen Hilfsmittel selbstständig angefertigt und bisher noch keinen Promotionsversuch unternommen habe.

Denis Orosel