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Nomenclature

3 + 1 odd number of incoming and outgoing legs

χ cutoff function

∆ off-diagonal self-energy or external field

∆c counterterm

G matrix Green’s function

Γ effective action

Λ cutoff parameter

Λc critical scale

U matrix of effective interactions

µ chemical potential

ν multiplicity of degrees of freedom introduced to take into account symmetry
breaking

νm bosonic Matsubara frequency

Ω thermodynamic potential (only in chapters 2 and 4)

ωn fermionic Matsubara frequency

ψ, φ Grassmannian fields

Q quadratic part of the action

ρ density of states

S single-scale propagator

Σ self-energy

σi Pauli matrix

ε dispersion relation
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Q (π, π, . . . )

ξ dispersion relation minus chemical potential

B bubble

c, c† annihilation/creation operator

E quasi-particle dispersion

H Hamiltonian

S action

T temperature

t, t′ hopping amplitude between nearest and next-nearest neighbors, respectively

Tc critical temperature

U0, V0 bare couplings/interactions

V , U , Ω, X, W effective interactions

W one half of the bandwidth in chapters before the fifth, anomalous effective
interaction therein and thereafter

W generating functional of the connected Green’s functions

Z partition function

1PI one-particle irreducible

BCS Bardeen, Cooper, Schrieffer

BEC Bose-Einstein condensation

CDW charge-density wave

det determinant

DoS density of states

eff effective

ext external

fRG functional renormalization group

i.a. interacting or interaction

Im imaginary part
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kin kinetic

MF mean field

PH particle-hole

PP particle-particle

Re real part

RG renormalization group

RHS right-hand side

td. pot. thermodynamic potential

Tr Trace

w/o fw setting all 3 + 1 effective interactions to zero

with fw keeping all 3 + 1 effective interactions

8



Chapter 1

Introduction

1.1 Context

Interacting many-particle systems contain fascinating physics, presenting a wealth
of phases with experimentally and technologically exploitable properties as dis-
parate as superconductivity, large magnetoresistances and multiferroicity. The-
oretically understanding the occurence of these phenomena would facilitate the
development of new materials as well as their technological employment while
empowering experimentalists to optimize their measurements and experiments.
However, microscopically understanding the phase transitions which are at the
heart of the problem is an intriguing challenge epitomized by the break-down of
perturbation theory, which is so successful in other fields of theoretical physics.

1.1.1 Functional renormalization group schemes

Renormalization group (RG) methods are powerful tools that facilitate the system-
atic investigation of the physics of many-particle systems even in situations where
perturbation theory breaks down. In the Wilsonian RG approach for an action
containing monomials up to quartic order in the underlying fields, the degrees of
freedom are ordered by their kinetic energy and taken into account successively.
Contributions from the individual degrees of freedom are summed up starting at
the highest energy. This can be viewed as generating a family of effective actions
called the RG flow and parametrized by the lowest energy scale taken into account,
which is called the cutoff. Wilson (1971b) originally devised this method to inves-
tigate critical phenomena in a generalized Ising model. Some important points in
the development of his idea are listed in the following. Weinberg (1973) explicitly
included the momentum dependence of the self-energy for the first time beyond
Z-factor renormalization in an RG calculation. Wegner and Houghton (1973) em-
ployed an effective Hamiltonian as a generating functional to derive exact RG
equations. Nicoll and Chang (1977), focussing on the generating functional for the
one-particle irreducible (1PI) Green’s functions, found both an explicit differential
equation for the generating functional as well as a simplification of the Wegner-
Houghton flow equations. Accessing the RG via a generating functional proved
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1 Introduction

to be a fruitful avenue: Polchinski (1984) started from the partition function to
obtain a hierarchy of differential equations allowing him to prove renormalizability
of certain scalar field theories. Wieczerkowski (1988) derived a different but also
exact hierarchy which is particularly well-suited for mathematical considerations.
Wetterich (1993) developed a flow equation for the 1PI effective action and derived
a hierarchy of differential equations for the 1PI vertex functions, motivated by crit-
ical phenomena in statistical mechanics and high-temperature phase transitions in
particle physics.

The term ‘exact RG’ is frequently used if an exact flow equation or exact hi-
erarchy of flow equations as described above is used to derive an approximation.
However, if fermionic models are studied in this way, the term ‘functional RG’
(fRG) is also common, and is adopted in the following. Early investigations us-
ing Wilson’s RG for fermions were undertaken by Benfatto and Gallavotti (1990);
Feldman and Trubowitz (1990, 1991). This approach together with an analytical
classification of the parts of the flowing coupling functions according to RG rel-
evance was popularized by Shankar (1991, 1994). A hierarchy of fermionic flow
equations was derived by Salmhofer (1998a) from the Wick-ordered effective inter-
action and used for mathematical investigations. Later, an equivalent flow equation
hierarchy was derived from the generator of the 1PI vertex functions by Salmhofer
and Honerkamp (2001). This work is based on the latter hierarchy. Another re-
cent development for fermions is the exact hierarchy of two-particle irreducible flow
equations (Dupuis (2005)) named after the property of the vertex functions calcu-
lated in the flow. They have proven convenient for the study of symmetry-breaking
due to the favorable analytical properties of these vertex functions. We note the
first dimension of the structure of the fRG field which this work belongs to: there
are various schemes, equivalent in principle, whose differences are reflected in the
quantities calculated and the diagrams used in their formulation. The distinction
is important because approximations are used in most applications and may lead
to variations in the results depending on the scheme employed.

The solid and versatile formal base which the generating functionals provide
has also leveraged the development of new types of flow parameters. It was realized
that the cutoff can formally be introduced via a cutoff function which can be chosen
arbitrarily provided that certain differentiability conditions are met and that there
is a well-understood starting point. While earlier investigations mostly refer to
the physically appealing original energy- or momentum-shell cutoff, taking into
account the degrees of freedom ordered by their frequency has proven similarly
successful (Enss (2005); Andergassen (2006)). Perhaps more astonishingly, the
physical temperature (Honerkamp and Salmhofer (2001)) as well as the interaction
strength (Honerkamp et al. (2004)) have been introduced as flow parameters. The
latter two procedures have the computational advantage of scanning a slice of the
phase diagram in a single RG run, while the former schemes yield information
about a single point only. Thus, we note a second dimension in the structure of
the field: different cutoff functions, equivalent in principle but exhibiting specific
advantages and disadvantages in practice, can be chosen.
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1.1 Context

In studies of the electronic structure of condensed matter, the basic building
blocks are spin-1

2
electrons, which are fermions. However, it can be advantageous

to formally replace fermion bilinears with bosonic fields to remove the part of the
action quartic (and troublesome) in the original fermions (Altland and Simons
(2006)). This exact process is called a Hubbard-Stratonovich transformation. It
permits simplifications based on physical intuition about the bosonic fields. How-
ever, the decoupling of the quartic part of the action is ambiguous insofar as the
distribution of the fermionic interaction over different bosonic channels can be var-
ied. This variation introduces a bias into the approximations that follow. The fRG
literature based on the idea of introducing bosons is rooted in field-theoretic high-
energy physics, building on the approach by Wetterich (1993). At first, investiga-
tions focussed on field-theoretical models. By exploiting an analogy to quantum
electrodynamics, Bergerhoff et al. (1996) discussed the nature of the transition in
both type-I and type-II superconductors. Symmetry breaking remained an impor-
tant topic, with Rosa et al. (2001); Höfling et al. (2002) studying the universal and
critical properties of the Gross-Neveu and Neveu-Yukawa models. Spontaneous or-
dering in a fermionic system was studied by Baier et al. (2004); Baier et al. (2005),
who investigated antiferromagnetism in the two-dimensional repulsive Hubbard
model, introducing a bosonic field to take into account the symmetry breaking.
Motivated by the same model, Krahl and Wetterich (2007) investigated a system
exhibiting d-wave superconductivity. Recently, Schütz et al. (2005) have modi-
fied the formalism to emphasize the importance of carefully treating the fermionic
degrees of freedom on an equal footing with the bosonic ones. Schütz and Kopi-
etz (2006) provided examples of calculations in phases with symmetry breaking
employing this modification.

A number of works which keep the fermionic degrees of freedom while not in-
troducing any additional fields have appeared recently. Several of them are based
on Salmhofer (1998b) or Salmhofer and Honerkamp (2001). A series of studies
on the repulsive Hubbard model was commenced by Zanchi and Schulz (1998);
Halboth and Metzner (2000) finding antiferromagnetism and d-wave supercon-
ductivity with different fRG approaches. These works cope with divergent flows
arising in the symmetry-broken phase by identifying leadingly divergent couplings
and susceptibilities, respectively. Despite these divergencies at a critical scale, a
number of insights were gained from this approach also later on. Honerkamp and
Salmhofer (2001) employed a temperature flow, focussing on the interplay of fer-
romagnetism and different types of superconductivity. Honerkamp et al. (2001)
discussed the (in)stability of the Fermi liquid in the two-dimensional Hubbard
model. Rohe and Metzner (2005) studied the pseudogap phenomenon and the
importance of hot spots where the Fermi surface intersects the umklapp surface.
Fu et al. (2006) found that introducing phonons into the Hubbard model supports
d-density-wave order. Reiss et al. (2007) considered the interplay of antiferro-
magnetism and d-wave superconductivity by combining the fRG with a mean-field
calculation, obtaining quantitative results for the appropriate order parameters.
The flow is stopped above the critical scale and an effective model containing
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1 Introduction

the remaining scales is solved using mean-field theory, thereby sidestepping the
divergence. Other recent works have focussed on improving the method itself.
Honerkamp et al. (2004) introduced the concept of the interaction flow. Salmhofer
et al. (2004); Gersch et al. (2005); Gersch et al. (2006b) focussed on calculations
in symmetry-broken regimes and provide the foundation of this thesis. The latter
works are based on a modification of the flow equations by Katanin (2004) which
improves the fulfillment of Ward identities in fRG flows. If the feedback of the
order parameter on the flow of the effective interactions is taken into account, it is
finally possible to circumvent the divergence of the flow in the symmetry-broken
phase. Thus, systems can be taken into account in their entirety, as has previously
only been done in symmetric-phase studies. Two examples of such studies for one-
dimensional systems are provided by Enss et al. (2005); Andergassen et al. (2006)
investigating universality regimes, conductances, and the Kondo effect in systems
with impurities. A brief review on fRG recent work on the two-dimensional re-
pulsive Hubbard model as well as on one-dimensional systems with impurities is
provided by Metzner (2005).

Thus reviewing the recent fRG literature, we note that by choosing the nature of
the fields considered, either keeping the fermionic degrees of freedom or introducing
bosonic ones in addition or stead, a study posits itself in the third dimension of
the field. This completes our brief overview of the application of the fRG in the
study of the behavior of interacting electrons in condensed matter.

1.1.2 Counterterms

Counterterms, the essential idea behind which is to write 0 = a−a and to treat one
a as an addition to the interacting and the other a as an addition to the noninter-
acting part of the action, are key to the methodological developments introduced
in this work. They have already been employed in fRG calculations before, notably
in studies on the symmetric state of interacting electron systems. An early work
by Feldman and Trubowitz (1990) considers systems with spherical free Fermi
surfaces. Unphysical infrared divergencies of perturbation theory are removed by
adjusting the chemical potential on the propagator lines to the interacting Fermi
surface, countering this by an appropriate addition to the self-energy. The addition
is determined by renormalization-group methods. This procedure can be viewed
as a shift from the chemical potential into the interaction. Feldman et al. (1996)
employ it for more general Fermi surfaces which necessitate a counterterm that
is a function in momentum space. They identify and find bounds for the most
singular contributions to this counterterm function under slightly more restrictive
conditions in Feldman et al. (1999). The authors prove regularity properties of the
counterterm function in Feldman et al. (1998), which they use to study the invert-
ibility of the mapping induced by the counterterm which transforms the interacting
to the corresponding free Fermi surface (Feldman et al. (2000)).

Counterterms have also been used in the study of symmetry breaking. The work
by Feldman and Trubowitz (1991) is devoted to flows with symmetry-breaking in
the Cooper channel for a spherically symmetric electron-phonon system. Coun-
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1.1 Context

terterms are again used to remove unphysical divergencies as in Feldman and
Trubowitz (1990). The self-consistency equation for the superconducting order
parameter is recovered as an approximation from the flow. Neumayr and Metzner
(2003) study the interplay of d-wave superconductivity and Fermi surface deforma-
tions by a counterterm technique. The effective interactions causing the symmetry
breaking are constructed order by order in perturbation theory. The counterterm
is determined by setting the self-energy on the Fermi surface equal to zero, giv-
ing rise to a self-consistency equation. This completes the overview of the use of
counterterms with particular emphasis on the fRG and also finishes the discussion
of the methodological context.

1.1.3 Hubbard model

One of the simplest models to study interacting electrons is the Hubbard model,
originally introduced to study ferromagnetism of itinerant electrons by Hubbard
(1963); Kanamori (1963); Gutzwiller (1965). Essentially, the electrons are consid-
ered to be located on the sites of a lattice, their ability to transfer from one site
to another usually diminishing with increasing distance between the sites, while
configurations with two electrons on the same site are either favored or disfavored.
The former property sets the itinerant character of the constituent electrons, while
the latter determines the interaction. This model exhibits complex behavior far
beyond its superficial simplicity. The repulsive version, in which double occupation
is disfavored, has drawn considerable attention especially following the conjecture
by Anderson (1987) that it explains the phenomenon of superconductivity at very
high critical temperatures in certain ceramics (Bednorz and Müller (1986)) if re-
stricted to two dimensions.

The attractive version has similarly been under intense investigation. The qual-
itative properties are well-understood in certain cases (see Scalettar et al. (1989);
Alvarez and González (1998)) and reviewed by Micnas et al. (1990). Important
conclusions include that superconductivity arises below a critical temperature.
The superconductivity is degenerate with a density-wave order if there is nesting.
At weak coupling, results for the order parameter have been obtained by studying
perturbation theory up to second order by Mart́ın-Rodero and Flores (1992). At
intermediate coupling, Monte Carlo investigations have been employed to study
the BCS to Bose-Einstein condensation (BEC) crossover (Singer et al. (1996)) and
the pseudogap phenomenon (Randeria et al. (1992); dos Santos (1994)) known
from high-Tc superconductivity. T -matrix approaches (Keller et al. (1999)) have
also proven fruitful for the study of the BCS to BEC crossover. At strong coupling,
Robaszkiewicz et al. (1981) found a way to map the Hubbard model onto an effec-
tive anisotropic Heisenberg spin model, from which results could be obtained by
mean-field calculations. In the same work, a mapping from the attractive model
at arbitrary filling to the repulsive model in a finite magnetic field is introduced.
Recent investigations with modern methods have been actuated by the desire to
further investigate the pseudogap phenomenon (Rohe and Metzner (2001); Toschi
et al. (2005a)), to further study the crossover from BCS to BEC behavior (Toschi
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1 Introduction

et al. (2005b)), and to test the new methods’ capability to study non-mean-field
models (Metzner et al. (2006); Strack et al. (2007)). In this work, we study the
attractive Hubbard model in the latter spirit.

1.2 In this work

We strive to construct a method which is able to approximate the order parameters
associated with a microscopic model including itinerant interacting fermions and
external fields, but no disorder. We apply the functional renormalization group
(fRG) in the one-particle irreducible (1PI) scheme employing both momentum-
shell as well as interaction flow, treating the fermionic degrees of freedom without
introducing bosons to prevent bias. If symmetry-breaking – characterized by an or-
der parameter becoming finite – occurs, practical implementations of this method
have until recently been plagued by divergencies which make it impossible to ob-
tain quantitative results for the order parameter without employing an additional
method (Reiss et al. (2007)). However, Katanin (2004) has found a truncation
of the 1PI fRG hierarchy which improves the fulfillment of Ward identities in the
flow. Ward identities have also been fruitfully employed by Enss (2005) and in
a bosonic RG (Castellani et al. (1997); Pistolesi et al. (2004)) as well as in a
bosonic fRG context (Strack et al. (2007)). Employing Katanin’s truncation en-
abled Salmhofer et al. (2004) to reproduce the exact order parameter of a reduced
Bardeen-Cooper-Schrieffer (BCS) model at zero temperature by studying the sys-
tem in a small external field. Physical divergencies related to the Goldstone mode
only appear in the limit of vanishing external field. While curing divergences, this
procedure is more difficult compared to its predecessors in two respects. First,
there is an increase in analytical complexity, as the feedback of the flow of the
order parameter onto the flow of the effective interactions must be taken into ac-
count, leading to a propagator with matrix character. Anomalous interactions
arise which necessitate additional flow equations. Second, there is an increase in
numerical complexity as the integrals which need to be computed in the solution
of the flow equations become more difficult to evaluate in the Katanin trunca-
tion. This is due to the terms added in the integrands having a larger support
in the Brillouin zone as compared to the terms appearing without the Katanin
truncation. Also, the increase in analytical complexity discussed above translates
directly into an increase in numerical complexity.

The present text builds on the important treatises by Katanin (2004); Salmho-
fer et al. (2004), as alluded to above. We extend the application of the Katanin-
truncated 1PI fRG to the breaking of discrete symmetries and to finite tempera-
tures by studying a reduced charge-density-wave (CDW) model at half filling for
which the mean-field solution is exact. The second-order phase transition is cap-
tured exactly also by the fRG. The divergence of the effective interaction is curbed
in analogy to the case of continuous-symmetry breaking. The key difference lies
in the absence of anomalous effective interactions and the absence of massless col-
lective excitations in the CDW case. However, for the momentum-shell flow, the
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1.2 In this work

divergence of the effective interaction is re-encountered at a critical scale if the
external field is reduced to zero even away from criticality. This can present a
problem for the accuracy of the fRG for more complicated models in the trunca-
tion employed here in the following way. Because the truncation neglects terms of
order three in the effective interaction for models where mean-field theory is not
exact, large effective interactions can be tolerated safely only if they live on a suffi-
ciently small part of the total phase space, e.g. appear only in a thin shell around
the Fermi energy and for specific momentum combinations. However, the effec-
tive interaction increases with decreasing external field while the shell thickness as
well as the momentum combinations involved remain almost constant. Therefore,
the contributions neglected for a non-reduced model are bound to become more
important for smaller values of the external field. On the other hand, a larger
external field implies obtaining results which are further away from the values for
spontaneous symmetry breaking at zero external field. Thus, the aims of keeping
the effective interaction small during the flow in order to justify the truncation
employed and keeping the external field small in order to introduce as small a bias
as possible are found to be conflicting. These results have already been published
(Gersch et al. (2005)).

The reduced charge-density-wave model is found to exhibit first-order phase
transitions in a certain filling range upon varying the temperature or the chemi-
cal potential, providing a testbed to study the ability of the method to describe
first-order phase transitions. By employing a counterterm and an interaction flow,
the Katanin-truncated fRG is proven capable of reproducing the exact results for
such transitions in the reduced model independent of the strength of the coun-
terterm: all flows terminate at one of a finite set of strong attractors. The role
of counterterms in the renormalization group literature as described above has
focussed on the removal of divergencies. In this work, the counterterm serves the
purpose of selecting a certain symmetry-broken configuration. It also opens a gap
in the spectrum of the system, thereby circumventing even physical divergences
until the flow of the non-diverging quantities has saturated. Metastable phases
are accessible which cannot be studied using only an external field, as the external
field biasses the fRG flow towards the stable configuration in the CDW model.
As an example illustrating this new-found capability, we study a simple hysteresis
phenomenon where it is important to obtain results for both the stable and the
metastable configurations. Furthermore, at least away from criticality and for the
breaking of a discrete symmetry, the method thus constructed does not lead to a
conflict in aims as known from the previous procedure. In fact, it is possible to
eliminate all traces of the critical-scale divergence away from criticality if only a
discrete symmetry is broken. These results have already been published (Gersch
et al. (2006b)).

In order to put this methodologial development into a more general framework
and in order to introduce the formalism employed in the following study of super-
conductivity, a generalization of the ideas of Salmhofer and Honerkamp (2001);
Katanin (2004); Salmhofer et al. (2004) to the case of general symmetry-breaking
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1 Introduction

and multiple order parameters is discussed. The idea that symmetry-breaking im-
plies the rise of nonzero expectation values of pairs of fermionic operators which
are unpaired in the Hamiltonian is formalized, and the 1PI fRG equations for arbi-
trary pairings are derived emphasizing their diagrammatic structure. This proves
useful for a graphical understanding of the Katanin truncation.

At low temperatures where symmetry breaking occurs, forward scattering pro-
cesses in which no momentum is transferred between the particles involved are
important (Metzner et al. (1998)). To understand the interplay of such processes
with the BCS scattering driving superconductivity, we use the formalism taking
into account symmetry breaking in a resummation of the perturbation theory for a
model incorporating reduced Cooper as well as forward scattering. We show that
the resummation solves the model exactly. The combination of scattering pro-
cesses gives rise to anomalous effective interactions which correspond to operator
products of odd numbers of fermion annihilation and creation operators. These
anomalous effective interactions are referred to as 3 + 1, reflecting the number of
incoming (outgoing) and outgoing (incoming) legs in a graphical representation.
Equivalently, anomalous effective interactions with four incoming legs are referred
to as 4 + 0. Explicit formulas are found for these as well as for the other effective
interactions, permitting the study of interdependencies. The resummation scheme
is numerically applied to the attractive Hubbard model as an approximation. The
effect of the 3 + 1 on the other effective interactions is found to vary in strength.
However, it proves to be small for the effective interactions driving symmetry
breaking. Furthermore, including the 3 + 1 effective interactions does not modify
the basic nature of the dispersion relation of the Goldstone mode, as expected.
Overall, the qualitative impact of the 3 + 1 anomalous effective interactions is
found to be small.

Concluding the work is the application of both the newly-developed coun-
terterm procedure as well as the procedure employing a small external-field to
the superconducting instability of the attractive Hubbard model at zero tempera-
ture. The formal framework developed for general symmetry breaking permits the
concurrent study of normal and anomalous interactions including those of 3 + 1
character, fully taking into account their influence on the order parameter. The
renormalization procedure is carried out numerically, discretizing the momentum
dependence of the effective interactions and self-energies by patching according
to Rohe (2005) while dropping the energy dependence. Other patching schemes
are considered for example by Zanchi and Schulz (1998); Halboth and Metzner
(2000). All these schemes are set up to take into account the parts of the effective
interactions driving the symmetry breaking, but also others. The physical result of
the calculation is that previous works by Mart́ın-Rodero and Flores (1992); Reiss
(2006) studying the influence of fluctuations on the strength of the symmetry
breaking are confirmed in their prediction that the order parameter is suppressed
to about 50% of its mean-field value at weak coupling. The order parameter ex-
hibits only a negligible momentum dependence. Methodologically, it is found that
the fRG flow equations can be integrated completely for the momentum-shell flow
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1.2 In this work

if the external field is large enough. However, large couplings arise in the flow if the
discrepancy to results by Mart́ın-Rodero and Flores (1992); Reiss (2006) is to be
kept smaller than 20% by reducing the strength of the external field. Fortunately,
unphysical divergences are restricted to much smaller values of the external field.
The interaction flow is capable of staying in the weak-coupling limit because for
the breaking of a continuous symmetry as considered here, the rise of the effective
interaction is pushed towards the end of the flow by increasing the counterterm.
However, due to the approximative nature of the method in the context of the
attractive Hubbard model as well as the systematic errors introduced in the nu-
merical implementation, the counterterm cannot be chosen arbitrarily large. The
strong-attractor behavior encountered for the mean-field model is transformed into
a clustering of final values for certain counterterm strengths. A final value from
this cluster is taken as an approximation for the true value. This is justified by
considering the cluster as the analogon of the strong attractor appearing for the
reduced CDW model.

This thesis is structured as follows. In chapter 2, the exact temperature and
external-field dependence of the order parameter and effective interaction for a re-
duced charge-density-wave model is obtained for both first- and second-order phase
transitions by solving the mean-field equations. Chapter 3 gives a derivation of the
1PI fRG equations, introducing a formalism to take into account symmetry break-
ing and analyzing diagrammatically the flows generated by applying the Katanin
truncation. Chapter 4 treats the charge-density-wave model from chapter 2 with
the fRG method from chapter 3, solving the first- and second-order transition
problems by introducing a counterterm for the order parameter, and the second-
order problem also by introducing a small external field. In chapter 5, the impact
of anomalous 3 + 1 effective interactions is analyzed by employing the formalism
for symmetry-breaking in a resummation of perturbation theory. This framework
is applied as an approximation to the attractive Hubbard model to study its ef-
fective interactions. The chapter culminates in a study of the attractive Hubbard
model with the 1PI fRG in the Katanin truncation, studying the suppression of
the order parameter below its mean-field value and comparing the counterterm
with the external-field flow.

17



Chapter 2

Charge-density wave: mean-field

approach

In this section, we introduce the concept of a phase transition following section 4.1
of Negele and Orland (1998). We discuss and solve models exhibiting phase tran-
sitions, which serve as benchmark models for our renormalization-group methods.

By definition, a phase transition of a physical system occurs if its parameters
pass from a region where a locally measurable observable, for example a spectral
gap or the magnetization, assumes finite values to a region where it is zero (or
infinite). Said locally measurable observable is called the order parameter of the
phase transition, while the parameter value separating the two parameter regions
is called critical. The transition is said to be of second order if the dependence
of the order parameter on the physical parameter which is changed is continuous
in the critical region. If there is an isolated discontinuity of the order parameter
at the critical parameter, the transition is considered to be of first order. We will
study examples of both types of transitions in this section.

2.1 Second-order phase transitions

We commence with the second-order case as it presents a slightly reduced chal-
lenge. This is because due to the continuity condition, a relevant minimum of
the thermodynamic potential as a function of the order parameter is always found
starting at a small order parameter value.

2.1.1 Model

We introduce a model exhibiting the spontaneous formation of a charge-density
wave, which we will use as example and benchmark for our renormalization group
calculations. The phase transition in this model is of second order. We com-
bine this introduction with a qualitative discussion. Furthermore, several formal
conventions are fixed.
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2.1 Second-order phase transitions

We consider spinless fermions on a d-dimensional hyper-cubic lattice with N
sites labeled by x. The kinetic energy is given by a tight-binding dispersion
with nearest-neighbor hopping amplitude t. We also assume a repulsive nearest-
neighbor density-density interaction V0. The Hamiltonian reads

H = −t
∑

x,n

(c†xcx+n + h.c.) + V0

∑

x,n

c†xcxc
†
x+ncx+n. (2.1)

The sum over n runs over the d unit vectors of the d-dimensional hypercubic
lattice with lattice constant set to one. We assume half filling with an average
of one particle per two lattice sites, 〈nx〉 = 1/2. The nearest-neighbor density-
density repulsion favors a charge-density wave (CDW), i.e. a periodic arrangement
of the particles in which the probability of two particles being nearest neighbors
is reduced. This tendency competes with the hopping term, which decreases with
increasing homogeneity of the electron distribution, and with the entropy, which
increases when this homogeneity is increased.

In the case where a CDW is formed with a fixed modulation amplitude nCDW,
the charge density 〈nx〉 takes only two values, 1/2 + nCDW on a given site and
1/2 − nCDW on each adjacent site. Therefore, the half-filled CDW state breaks a
discrete Ising-type symmetry, where there are two distinct ordered states. While
in one dimension such order can only occur in the ground state, in two and higher
dimension it is possible to have a nonzero critical temperature Tc.

For any band filling which is not a rational number, a CDW with an incommen-
surate modulation wave-vector generates infinitely many different density values
on the lattice sites. The lattice sites sample an oscillation which is incommen-
surate with their spacing, so the density on a given lattice site does not repeat
on a different lattice site. The possible values form a continuum, and when this
symmetry is broken, at a given lattice site one of the values is assumed. Hence, a
continuous symmetry is broken.

Continuing with the half-filled case, we Fourier-transform the Hamiltonian us-
ing

cx =
1√
N

∑

k

eikxck (2.2)

and obtain

H = − 2t
∑

k

L(k) c†kck

+
V0

N

∑

k1,k2,q

L(q) c†k1
ck1−qc

†
k2
ck2+q, (2.3)

where we have introduced L(k) =
∑d

i=1 cos(ki). Abbreviating the dispersion

ε(k) = −2t
∑d

i=1 cos(ki) = −2tL(k), we note that the nesting condition ε(k) =
−ε(k+Q) is fulfilled for the wave-vector Q = (π, . . . , π). This causes a divergence
of the non-interacting charge response at the nesting wave-vector for T → 0. If
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2 Charge-density wave: mean-field approach

the interactions are treated in the random phase approximation, the charge re-
sponse at Q actually diverges at a finite temperature, giving an estimate of Tc for
the charge-density wave formation. In a mean-field treatment of the symmetry-
breaking in which the interaction term is decoupled with an alternating charge
density, anomalous particle-hole pairing expectation values 〈c†k+Qck〉 arise below
the transition temperature.

Although this physical picture of a CDW transition is essentially correct re-
garding the ground state properties, the model (2.3) has not been solved exactly.
However, by a reduction of the interaction keeping only processes that change both
particle’s momenta by Q,

Hred =
∑

k

ε(k) c†kck

− V0

N

∑

k1,k2

c†k1
ck1−Qc

†
k2
ck2+Q, (2.4)

we obtain a solvable model, as we show below. Intuitively put, this is because in
(2.4) the interaction between fermions on the lattice sites x and x′ corresponds to
an infinite range density-density interaction with oscillating sign,

−V0N
−1 cos[Q(x − x′)]nxnx′ .

The infinite range already suggests that mean-field theory could be exact because
each particle is acted upon equally strongly by all the other particles.

We show in 2.1.2 that as in the reduced BCS pairing model (Mühlschlegel
(1962)), mean-field theory actually is exact for the reduced model (2.4) in the
thermodynamic limit N → ∞. Instead of the BCS case’s superconducting state,
there is a CDW ordered state below a critical Tc > 0 in any dimension d. For the
half-filled commensurate case, there are two distinct degenerate symmetry-broken
configurations and the electronic order parameter nCDW is real.

For convenience in our analytic considerations and because it is essential for the
renormalization group calculations, we include a real external field ∆ext cos(Qx)
coupling to particle-hole pairs c†kck+Q and c†k+Qck which lifts the degeneracy of the
ordered states by explicitly breaking the translational symmetry of the original
Hamiltonian (2.4). In momentum space, this term couples to pairs of particles
whose momenta differ by Q = (π, . . . , π). If ∆ext is very small compared to all
other relevant energy scales, it does not change macroscopic observables away
from the critical temperature. However, it allows us to integrate the RG differen-
tial equations over all scales without encountering divergences. The Hamiltonian
including the external field reads

Hred =Hkin +
∑

k

∆extc
†
kck+Q

− V0

N

∑

k1,k2

c†k1
ck1+Qc

†
k2
ck2−Q. (2.5)
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2.1 Second-order phase transitions

We introduce a frequency-space field-integral representation in the usual way.
Writing T for temperature, we define the fermionic Matsubara frequencies ωj :=
(2j + 1)πT and obtain Grassmann fields ψk,ωn

, ψ̄k,ωn
. Introducing the Nambu-like

notation

Ψk,ωn
=

(
ψk,ωn

ψk+Q,ωn

)

,

Ψ̄k+Q,ωn
=
(
ψ̄k,ωn

ψ̄k+Q,ωn

)
,

the partition function reads

Z =

∫

D(ψ̄, ψ) exp

[

−1

2
T
∑

n,k

Ψ̄k,ωn
Q(εk, ωn)Ψk,ωn

−V0
T 3

N

∑

n1,n2,n3

k1,k2

ψ̄k1,ωn1
ψk1+Q,ωn3

ψ̄k2,ωn2
ψk2−Q,ω4

]

.

(2.6)

Here, ω4 = ωn1+n2−n3
and

Q (εk, ωn) =

(
iωn − εk −∆ext

−∆ext iωn + εk

)

(2.7)

(see e.g. Lee et al. (1974)). The minus sign in front of the second ε arises from
the Q-anti-periodicity of the cosine. The doubling of the number of degrees of
freedom by introducing the Nambu notation is compensated by the 1/2 in front
of the quadratic part of the action. Due to the explicit symmetry breaking, there
is a nonzero off-diagonal component in the propagator. The method of treating
symmetry breaking by formally accounting twice for the degrees of freedom is gen-
eralized in section 3.1. If we apply mean-field theory by decoupling the interaction
term in the CDW channel, the CDW order parameter due to the interaction, ∆i.a.,
will add to ∆ext.

2.1.2 Mean-field solution and resummation

We would like to gain a quantitative understanding of the model (2.4) to facilitate
its employment as a benchmark for the renormalization group calculations. To this
end, we resum the perturbation expansions for the self-energy and the effective in-
teraction in the thermodynamic limit N → ∞ in this section. For our model, this
is equivalent to mean-field theory in the CDW amplitude with modulation wave-
vector Q. This statement is proven in the context of first-order phase transitions
in section 2.2.2.

Due to the explicit symmetry breaking with ∆ext 6= 0 there is a nonzero fre-
quency independent off-diagonal propagator which scatters a fermion with wave-
vector k to k + Q and vice versa. Therefore, besides normal (diagonal) wave-vector
conserving propagators, also anomalous (off-diagonal) propagators appear in the
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2 Charge-density wave: mean-field approach

diagrams of perturbation theory. On a one-particle level, the interaction causes
the occurence of an off-diagonal self-energy ∆i.a. supplementing ∆ext from the non-
interacting propagator (2.7). In the following, we determine ∆i.a. as well as the
effective interaction V .

We reason hereafter that the special momentum structure of the bare interac-
tion reduces the diversity of the diagrams contributing to the perturbation expan-
sion of the effective interaction, similarly as in Gaudin (1960); Langer (1964). We
note that the interaction term in (2.5) includes a prefactor 1/N , contributing a
factor 1/N2 to all second-order diagrams in the expansion in the bare interaction
strength,
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.+≈ + +

From the left-hand side of the equation in Fig. 2.1(b), this same prefactor brings

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

++ · · · =

= + =

= ++(a)

(b) = + +

+ . . .

Figure 2.1: Resummation of the perturbation expansion of the reduced charge-
density-wave model: (a) self-energy (hatched circle) and (b) effective interac-
tion (hatched rectangle). Undirected internal lines carry a summation over their
Nambu-like indices in addition to the frequency summation and momentum in-
tegration. Double-arrowed lines correspond to off-diagonal propagator elements,
bold lines to full and thin lines to bare propagators.

a factor N . For there to remain a finite contribution from a given second-order
diagram in the thermodynamic limit N → ∞, the internal lines must be of or-
der N . However, in all second order diagrams except the one also depicted in
Fig. 2.1(b), the restricted momentum structure of the interaction implies that the
internal momentum is fixed by an external momentum, leaving only a single term
from the trace implied by the diagram. Hence, the contribution of such a dia-
gram is O(1/N) and vanishes for N → ∞. The diagram depicted retains one
summation over all degrees of freedom in spite of the bare interaction’s restricted
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2.1 Second-order phase transitions

momentum structure, yielding a finite contribution in the thermodynamic limit.
These arguments can be iterated to arbitrary order in the bare interaction, show-
ing that only diagrams retaining one integration per each interaction line beyond
the first contribute in the thermodynamic limit. Therefore, only the bubble chains
indicated in Fig. 2.1(b) contribute to the perturbation expansion of the effective
interaction. The derivation of the formula in Fig. 2.1(b) is concluded by noting
that repeated substitution of the right-hand side for the hatched rectangle in the
right-most diagram yields the perturbation series we derived above.

Next, we discuss the possible rise of anomalous effective interactions as known
from the BCS case (see section 5.1 or Salmhofer et al. (2004)). Since each bub-
ble in the diagrams remaining in the thermodynamic limit transfers a momentum
Q due to the special structure of the bare interaction, only effective interaction
processes with a momentum transfer of Q exist. In particular, no effective in-
teractions violating the translation symmetry are generated. This is different for
incommensurate charge-density waves, where pairs of internal anomalous propaga-
tors add even multiples of the incommensurate charge-density wave vector to the
total incoming momentum, generating effective interactions which violate momen-
tum conservation. In the half-filled case, any even multiple of the charge-density
wave vector is an integer multiple of 2Q = (2π, . . . , 2π), and thus equivalent to
zero.

We discuss the perturbation theory for the self-energy in order to determine
∆i.a.. In Fig. 2.1(a) we show the perturbation expansion for the off-diagonal self-
energy. Due to the same arguments as for the expansion of the effective interaction,
only diagrams which retain one momentum integration per interaction line con-
tribute in the thermodynamic limit. Therefore, in the thermodynamic limit only
diagrams constructed by forming trees of tadpole diagrams – depicted in the first
equality of Fig. 2.1(a) – contribute. This implies that the normal diagonal self-
energy vanishes in the thermodynamic limit since a tadpole diagram will always
transfer a momentum Q through its base if the interaction is nonzero only for this
momentum transfer. This allows us to note the full propagator G as an aside:

G(iωn, εk) =
1

ω2
n + ε2

k + (∆ext + ∆i.a.)2

(
−iωn − εk −∆i.a. − ∆ext

−∆i.a. − ∆ext −iωn + εk

)

. (2.8)

By substituting the diagrammatic form

��
��
��

��
��
��

��
��
��
��
��
��
��
��= ++ + . . .

of the geometric series expansion of the Dyson equation into

�
�
�
�

+

from Fig. 2.1(a), we obtain
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2 Charge-density wave: mean-field approach
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By repeated substitution of this expansion for the hatched circles included in itself,
we recover

++ + + + . . .

which we recognize from the first line of Fig. 2.1(a), explaining the figure’s second
equality. The diagrammatic form

��
��
��

��
��
��

= +

of the Dyson equation justifies the last equality, albeit without the arrows. They
appear since if a tadpole diagram is not connected to other tadpole diagrams,
only the terms off-diagonal in the Nambu-like space are non-vanishing. This is
because the outgoing momentum of such an off-diagonal line equals the incoming
momentum plus Q, which is compatible with the reduced momentum structure of
the interaction. The exact resummation thus derived is equivalent to self-consistent
Hartree-Fock theory of which the Fock contributions vanish in the thermodynamic
limit. This is equivalent to the statement that Hartree mean-field theory is exact
for this model.

With the aid of (2.8), we symbolically evaluate in the following the diagram-
matic equations obtained above. We assume the density of states to be constant
over the Brillouin zone and equal to its value at the Fermi energy to remove
dimension-specific effects. Evaluating Fig. 2.1(a) and denoting the self-energy due
to the interaction by ∆i.a., the band edge by W , the density of states at the Fermi
energy ρ0, the Fermi distribution f(x) := (1 + exp(x/T ))−1, Σ := ∆i.a. + ∆ext

as well as E :=
√
ε2 + Σ2, we obtain the gap equation (compare e.g. Rice and

Strässler (1973))

Σ − ∆ext = V0T
∑

n

ρ0

∫ W

−W

dε
Σ

ω2
n + E2

= V0Σρ0

∫ W

0

dε
tanh(E/2T )

E
, (2.9)

where we have used (B.6). We have also assumed a flat density of states ρ(ε) ≡ ρ0.
(2.9) resembles the BCS (Bardeen et al. (1957)) and excitonic insulator (Jérome
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2.1 Second-order phase transitions

et al. (1967)) gap equations. If we set T = ∆ext = 0, solving (2.9) analytically
yields (compare e.g. Bardeen et al. (1957); Grüner and Zettl (1985))

Σ = 2t
1

sinh (1/V0ρ0)

V0ρ0≪1≈ 4t exp

(

− 1

V0ρ0

)

. (2.10)

Similar equations are found in the BCS theory for superconductors (Bardeen et al.
(1957)).

We turn to the effective interaction with zero frequency transfer. As argued
above, only fermionic bubbles contribute in the thermodynamic limit N → ∞. In
the notation, we omit the arguments of the hyperbolic functions originating from
the Fermi distribution from now on: they are always E/2T . We abbreviate the
bubble integral

B := −Tr(G(iωn, εk)G(iωn, εk+Q))

= T
∑

ωn

ρ0

∫ W

W

ω2
n + ε2 − Σ2

(ω2
n + E2)2 (2.11)

= ρ0

∫ W

0

dε

E2

[
Σ2

2T
cosh−2 +

ε2

E
tanh

]

, (2.12)

where we have used εk+Q = −εk for the first and (B.3) and (B.4) for the second
equality. The evaluation of Fig. 2.1(b) yields

V =
V0

1 − V0B
. (2.13)

If ∆ext = 0, we can define the critical temperature Tc via the condition that
1 = V0B(Tc), i.e. that the denominator of (2.13) vanishes and V diverges. By
analyzing (2.12) we note that this criterion for Tc coincides with the temperature
below which we can find a nonzero solution of the gap equation (2.9). For small
V0 and Σ = 0 we find 1.76Tc ≈ 4t exp(−1/V0ρ0) ≈ Σ(T = 0) (see e.g. Grüner
and Zettl (1985)). This is true when the approximation in (2.10) is valid. This
concludes the analytical treatment of (2.5).

2.1.3 Dimensionless example

As a finite ∆ext allows us to integrate the renormalization group equations over all
scales as we see in section 4.1, we are interested in the dependence of the mean-
field solutions (2.9) and (2.13) on ∆ext. In particular, we illustrate in the following
where the system including a finite symmetry-breaking field (2.5) is practically
indistinguishable from the system without symmetry-breaking field, (2.4). To
this end, we show in the upper part of Fig. 2.2 convergence of Σ∆ext(T ) to Σ(T )
for ∆ext → 0. The convergence is worst in the vicinity of a kink that can be
discerned at T ≈ 0.1t in the graph for ∆ext = 0. As an aside, we note that the
continuity of the graph of Σ(T ) is the hallmark of a second-order phase transition
according to our definition at the beginning of section 2. We would like to be more

25
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Figure 2.2: (top) Solutions Σ(T ) of the gap equation for V0 = 2t and small to
intermediate initial self-energies ∆ext. (bottom) Temperature dependence of the
effective interactions calculated by resumming the perturbation expansion for V0 =
2t and small to intermediate initial self-energy. ρ0 = 1/2π, W = 2
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2.2 First-order phase transitions

concrete about the temperature range in which the system including a symmetry-
breaking field can be used to approximate the system without symmetry-breaking
field. To this end, we consider the dependence of the effective interaction on
both temperature and the symmetry-breaking field as plotted in the lower part
of Fig. 2.2. Its singularity is regularized by a nonzero ∆ext which cuts off the
integrand of the bubble integral (2.12). The figure also shows a strong suppression
of the effective interaction peak with increasing ∆ext. Its location converges to Tc

from above for ∆ext → 0. In the figure, we also spot convergence of V ∆ext(T ) to
V (T ) for T ≪ Tc and T ≫ Tc. We see that V ∆ext(T ) ≈ V (T ) if T is outside the
double width at half maximum of V ∆ext(T ). If T is outside said width and also
below Tc, we learn from the upper part of the figure that Σ∆ext(T ) ≈ Σ(T ). This
is thus the temperature region in which the initial symmetry-breaking field does
not appreciably change the physics.

This concludes our study of the second-order phase transition in the reduced
CDW model. We have exactly solved the model using mean-field theory, deter-
mining the CDW amplitude as an anomalous self-energy as well as the effective
interaction at zero energy transfer. We have gauged the impact of an external
symmetry-breaking field on the results.

2.2 First-order phase transitions

The first-order case presents a subtly elevated challenge as compared to the second-
order case. As there is no continuity condition, scans of the order parameter space
are necessary. A main result of this thesis is the development of a procedure –
which is presented in section 4.2 – to deal with these scans in the framework of
the functional renormalization group. In this section, we solve a model to serve as
a benchmark for this method.

2.2.1 Model

We modify the Hamiltonian (2.5) to include a chemical potential µ which allows
us to vary our system’s filling:

Hred =
∑

k

ξ(k) c†kck −
V0

N

∑

k1,k2

c†k1
ck1+Qc

†
k2
ck2−Q

+
∑

k

(∆ext + Σi − ∆c) c
†
kck+Q, (2.14)

where ξ(k) := ε(k) − µ. The chemical potential can be adjusted to produce a
system exhibiting a first-order phase transition. The dispersion fulfills the nesting
relation ε(k) = −ε(k − Q). For V0 > 0 the interaction term can lead to charge-
density-wave ordering with wavevector Q, as discussed in section 2.1.2. The same
two-sublattice charge modulation is induced by the last term, which breaks the
translational symmetry of the Hamiltonian by coupling a field alternating in space
to the fermion density.
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2 Charge-density wave: mean-field approach

Note that the external-field part of the Hamiltonian has been blown up in
comparison to (2.5) to include an initial self-energy Σi and a counter term ∆c. In
the fRG treatment, Σi will be used as the initial condition for the off-diagonal self-
energy. The counterterm ∆c will be included in the bare propagator to prevent this
from affecting the physics of the system. Setting Σi = ∆c guarantees a cancellation
at the end of the fRG flow, and allows us to produce results at zero external field
by setting ∆ext = 0. ∆ext is no longer necessary for the fRG flows, but allows us
to study the effect of an external field and hysteresis phenomena.

2.2.2 Mean-field treatment

The physical properties of the model for (∆ext + Σi − ∆c) = 0 depend on the
chemical potential µ. As discussed in 2.1.2, at half-filling (µ = 0), the Fermi
surface exhibits nesting and an exact resummation of perturbation theory, equiv-
alent to a mean-field treatment, finds a second-order phase transition toward the
charge-density-wave state at a critical temperature Tc. In this ordered state,
∆̃i.a. := V0

N

∑

k〈c
†
kck+Q〉 is nonzero. This second-order mean-field transition van-

ishes if µ is chosen large compared to Tc(µ = 0). In this case, the symmetric
configuration will appear stable when considering only a sufficiently small vicinity
of ∆i.a. = 0. A more complete scan of the order parameters space, however, reveals
global minima of the thermodynamic potential at finite ∆i.a. for temperatures be-
low a threshold Tt. These minima develop independently of the minimum at zero
order parameter as the temperature is lowered. In such a situation, the system’s
stable configuration changes from symmetric with ∆i.a. = 0 to symmetry-broken
with ∆i.a. 6= 0 discontinuously upon lowering the temperature below Tt. This
phenomenon is the defining property of a first-order phase transition. The µ − T
phase diagram for the Hamiltonian (2.14) is shown in Fig. 2.3. The T = 0 ther-
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Figure 2.3: µ-T phase diagram of (2.14) for V0 = 2.0t.
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2.2 First-order phase transitions

modynamic potentials as functions of ∆i.a. described above are shown in Fig. 2.6
for µ = 0 and both for first-order and second-order cases with µ 6= 0.

To understand how such a simple model can have a first-order transition, we
derive the gap equation from Fig. 2.1(a) as in (2.9). From the quadratic part of
the action

Q (iωn, ε) =

(
iωn − εk + µ −∆ext − Σi + ∆c

−∆ext − Σi + ∆c iωn + εk + µ

)

, (2.15)

which is derived from (2.7) by including µ and supplementing ∆ext with Σi − ∆c,
we obtain the propagator as a function of Matsubara frequencies ωn and kinetic
energies εk

G(iωn, εk) =
1

−(iωn + µ)2 + E2
k

(
−iωn − εk − µ −∆eff

−∆eff −iωn + εk − µ

)

, (2.16)

where we have abbreviated ∆eff := ∆i.a. + ∆ext + Σi − ∆c and E :=
√

ε2 + ∆2
eff in

parallel to our conventions in (2.9). Evaluating the diagrams in Fig. 2.1(a) yields

∆eff − ∆ext − Σi + ∆c =
V0T

N

∑

ωn,k

∆eff

−(iωn + µ)2 + E2
k

=
V0T

N

∑

ωn,k

∆eff

ω2
n − 2iµωn − µ2 + E2

k

=
V0T

N

∑

ωn,k

∆eff

ω2
n + i(E+

k + E−
k )ωn −E+

k E
−
k

=
V0

N

∑

k

∆eff

(E+
k −E−

k )

(
f(E−

k ) − f(E+
k )
)
, (2.17)

where the dispersion relation E± := ±E − µ is introduced in the third equality
and the Matsubara sum is evaluated according to (B.14) in the last line.

To facilitate the arguments in this section, we show that the gap equation can
also be obtained from the variational condition that the grand canonical poten-
tial Ω be minimal if the two-particle interaction is mean-field decoupled in an
appropriate channel. To this end, we study the partition function

Z = Tr exp
(
T−1Hred

)
(2.18)

of (2.14) without introducing field integrals and decouple the interaction term of
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2 Charge-density wave: mean-field approach

Hred into

V0

N

∑

k1,k2

c†k1
ck1+Qc

†
k2
ck2+Q

=
V0

N

∑

k1,k2

[(

c†k1
ck1+Q −

〈

c†k1
ck1+Q

〉)(

c†k2
ck2+Q −

〈

c†k2
ck2+Q

〉)

+2
(

c†k1
ck1+Q

〈

c†k2
ck2+Q

〉)

−
(〈

c†k1
ck1+Q

〉〈

c†k2
ck2+Q

〉)]

≈
∑

k1

2∆̃i.a.c
†
k1
ck1+Q − N∆̃2

i.a.

V0
, (2.19)

where we have neglected the term quadratic in the fluctuations in the approxima-
tion in the last line, and abbreviated ∆̃i.a. = V0

N

∑

k〈c
†
kck+Q〉 as above. Plugging

the decoupling (2.19) into the partition function (2.18), we obtain

ZMF =Tr exp

[

1

T

∑

k

(

ξkc
†
kck + ∆effc

†
kck+Q

)

+
N∆̃2

i.a.

TV0

]

=Tr exp

[

1

2T

∑

k

(

c†k c†k+Q

)(εk − µ ∆eff

∆eff −εk − µ

)(
ck
ck+Q

)

+
N∆̃2

i.a.

TV0

]

=Tr exp

[

1

2T

∑

k

(

γ†k β†
k

)
(
E+

k 0
0 E−

k

)(
γk

βk

)

+
N∆̃2

i.a.

TV0

]

, (2.20)

where ∆eff = ∆ext + Σi −∆c − 2∆̃i.a. is used in the first line and composite ladder
operators

γ†k =
1

√

2E(εk − Ek)

(

−∆effc
†
k − (Ek − εk)c

†
k+Q

)

β†
k =

1
√

2E(εk − Ek)

(

(−Ek + εk)c
†
k + ∆effc

†
k+Q

)

are introduced in the third line. γ, γ† and β, β† obey fermionic commutation
relations while β, γ commute. The grand canonical potential is

ΩMF = T lnZMF

=
N∆̃2

i.a.

V0
+ T ln Tr exp

[

1

T

∑

k

′
(E+

k γ
†
kγk + E−

k β
†
kβk)

]

=
N∆̃2

i.a.

V0

+ T ln
∏

k

′ (

1 + eE
+
k
/T
)(

1 + eE
−

k
/T
)

=
N∆̃2

i.a.

V0
+ T

∑

k

′
ln
(

1 + eE
+
k
/T
)(

1 + eE
−

k
/T
)

, (2.21)
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2.2 First-order phase transitions

where we have restricted the summation in the second line to only one half of
the Brillouin zone and removed a factor 1/2 in comparison to (2.20). These
measures balance each other out. Differentiating the grand canonical potential
ΩMF = T lnZMF with respect to ∆̃i.a. and setting this derivative to zero yields

2N∆̃i.a.

V0
+
∑

k

∆eff

E+
k −E−

k

(
f(E−

k ) − f(E+
k )
)

= 0. (2.22)

By 2∆̃i.a. = −∆i.a., (2.22) is equivalent to (2.17).
The derivation of (2.22) merits discussion. (2.22) is derived from the form

(2.21) of the grand canonical potential ΩMF by differentiating with respect to the
order parameter ∆i.a.. This implies that by integrating the left-hand side of the
gap equation (2.22) from zero order parameter to a finite value ∆, we obtain the
grand canonical potential for ∆. This means that if at a given ∆0

i.a. the right-hand
side of (2.17) is larger (smaller) than the left-hand side, ΩMF(∆0

i.a.) is decreasing
(increasing) in ∆i.a.. Therefore, we can distinguish stable, metastable, and unstable
configurations by studying the gap equation.

2.2.3 Example: two dimensions

As an example, we discuss the zero-temperature case in two spatial dimensions
without external field and ∆c = Σi = 0. Considering the two sides of (2.17) as
functions of ∆i.a., we plot their graphs in Fig. 2.4. The right-hand side exhibits a
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Figure 2.4: The right-hand side of the gap equation (2.17) has a kink at ∆i.a. = |µ|
leading to further solutions. The solutions at ∆i.a. = 0, 0.39t are minima while the
solution at ∆i.a. = 0.24t is a maximum of the grand canonical potential Ω. All
data obtained for V0 = 2t.

kink at ∆i.a. = |µ| because the sign of one of the dispersion branches E± changes
on the whole εk = 0 line. Subsequently, the Fermi function cuts this line from the
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Figure 2.5: Right-hand side of the gap equation (2.17) for V0 = 2t, T = 0, and
varying chemical potential µ. Note that there is no dependence on µ for ∆i.a. > µ.

integration domain on the right-hand side of (2.17). At the kink, the slope of the
right-hand side of (2.17) as a function of ∆i.a. diverges as (1/

√

|µ| − ∆i.a.) log(|µ|−
∆i.a.) for ∆i.a. ր |µ|, as is shown by Reiss (2006). The right-hand side does not
depend on µ if ∆i.a. > |µ|, i.e. to the right of the kink in the figures, since µ enters
the gap equation only via the Fermi distributions, see Fig. 2.5.

Since E+
k (E−

k ) is always positive (negative) for ∆i.a. > |µ|, the thermodynam-
ically stable solution is always half filled if the thermodynamically stable value of
∆i.a. is larger than the modulus of the chemical potential. In this case, the system
exhibits vanishing compressibility. This effect is neglected if the dependence of
the filling on ∆i.a. is not taken into account, as by Hirsch (1985). For a detailed
discussion, see Reiss (2006).

Since (2.22) is obtained from ∂∆i.a.
ΩMF = 0, all intersection points are extrema

or saddle-points of Ω. If all intersection points are extrema of Ω(∆i.a.), the out-
ermost one must correspond to a minimum of Ω(∆i.a.) for a thermodynamically
stable configuration of the system to exist. Furthermore, by the construction of
(2.22) and the discussion in the last paragraph of section 2.2.2, the integral of the
bisector minus the right-hand side of (2.17) is equal to the energy gained through
the opening of a finite gap. Thus, comparing the areas enclosed by the two graphs
of Fig. 2.4 determines which of the two minima given by the intersections has lower
energy.

Plots of the thermodynamic potential are shown in Fig. 2.6. For small |µ| > 0,
a local minimum develops at ∆i.a. = 0, which becomes the global and finally the
only minimum if µ is increased further. Numerical study of (2.17) and Ω for various
T and µ leads to the phase diagram of Fig. 2.3.

This concludes our mean-field investigation of the CDW mean-field model for
general filling. We have derived the gap equation (2.17) without resorting to
any approximation. In the derivation of (2.22), we have shown that mean-field
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Figure 2.6: The grand canonical potential for t′ = 0, V0 = 2t. The position of the
minimum at non-zero gap values does not change appreciably with µ, while the
energy gain strongly depends on µ. Ω(∆i.a. = 0) is subtracted from all curves.

theory yields the same result. From the quasiparticle energies E± appearing in
the diagonalization in (2.20) and the way they enter (2.17), we have seen how
first-order phase transitions arise. Our understanding of the model (2.14) thus
suffices to employ it as a testing ground for the functional renormalization-group
method developed in 3.
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Chapter 3

Deriving the renormalization

group scheme

The term functional renormalization group (fRG) refers to any method which de-
rives a set of properties of a physical system from an exact infinite hierarchy of
ordinary differential equations. The differential equations which we derive here can
be expressed as one-particle irreducible (1PI) Feynman diagrams, and the physical
properties calculated are the so-called 1PI vertices. Hence, this particular incarna-
tion of the fRG is called the 1PI scheme. Other frequently-encountered implemen-
tations are the Wick-ordered (Wieczerkowski (1988)) and Polchinski (Polchinski
(1984)) schemes. A comparative derivation of the flow equations for each of these
three schemes can be found in Enss (2005), and Rohe (2005) compares the results
for certain approximate solutions in the context of the two-dimensional repulsive
Hubbard model.

3.1 General formalism for symmetry breaking

Our goal in this chapter is to generalize the formal treatment of specific broken
symmetries such as the translation-invariance breaking introduced in section 2.1.2.
We start from the fermionic action S typically found in the exponent of the func-
tional integral representation of a partition function

Z =

∫

D(ψ̄, ψ)e−S(ψ̄,ψ), (3.1)

see e.g. chapter 2 of Negele and Orland (1998). Separating the quadratic part, we
write

S(ψ̄, ψ)
def
= (ψ̄, Qψ) − Ṽ (ψ̄, ψ), (3.2)

where ψ̄, ψ are Grassmannian fields and we have introduced the notation

(ψ̄, Qψ) =
∑

j

ψ̄jQjψj .
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3.1 General formalism for symmetry breaking

Ṽ is assumed to be a polynomial where each monomial has an equal number of
ψ and ψ̄ factors. j is the collection of indices in which Q is diagonal. For free
particles, j is the triple (iωn,k, s) of Matsubara frequency (again, see Negele and
Orland (1998)), particle momentum, and spin while Qj = iωn− ξk, where ξ is the
difference between the dispersion relation ε and the chemical potential µ.

For Bardeen-Cooper-Schrieffer (BCS) superconductivity (Bardeen et al. (1957)),
symmetry breaking is taken into account by expanding Q into a matrix Q so that
the quadratic part of the action reads

(φ̄,Qφ) =
1

2

∑

s,k

(
ψ̄s,k ψ−s,−k

)
(
iωn − ξk ∆k

∆∗
k iωn + ξ−k

)(
ψs,k
ψ̄−s,−k

)

.

This is equal to (ψ̄, Qψ) if ∆ = 0. In comparison with ψ, the field operator φ
has an additional index which can assume two different values. Flipping this index
reverses the spin s, the four-momentum k, and switches the bar of the associated ψ
or ψ̄ to form singlet pairs of particles or holes, ψ̄s,kψ̄−s,−k and ψ−s,−kψs,k, through
the off-diagonal elements of Q . The strength of this pairing is given by ∆k. It
violates the particle-number conservation of the quadratic part of the action and
breaks its invariance under phase shifts of the field operators.

To generalize this formulation, we introduce a generalized Nambu index l which
can assume ν different values:

S = ν−1
∑

j;l1l2

φ̄jl1Q j;l1l2φjl2 − V (φ̄, φ). (3.3)

For each ψj , there must be ν pairs (ji, li), i = 1, . . . , ν, such that

either 1. φjili = ψj or 2. φ̄jili = ψj , (3.4)

and the equivalent mapping must hold for each ψ̄j . Then, if the action is to remain
invariant under the transformation to the new fields,

Q ji;lili =

{
Qj for alternative 1 in (3.4)
−Qj for alternative 2 in (3.4),

the sign being due to the anticommutative property of the Grassmannian fields.
All entries of Q off-diagonal in the l-indices constitute external fields favoring one
possible symmetry breaking. In the BCS example, this is the pairing field ∆k. By
Wick’s theorem, the inverse of ν−1Q is the bare Green’s function G0 of the physical
system under consideration. Under this inversion, the off-diagonal external fields
turn into anomalous bare propagators.

As another example of such a transformation and the introduction of an exter-
nal field, in (2.7) the additional index is used to – depending on its value – add
or not add a momentum Q = (π, π, . . . ) to the momentum index of the original
field. This introduces processes which do not conserve momentum into the action,
breaking translational symmetry.
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3 Deriving the renormalization group scheme

3.2 Introducing the cutoff

In the following derivation of the flow equations for the one-particle irreducible
(1PI) vertices, we follow Salmhofer and Honerkamp (2001) and Meden (2005). We
introduce a real parameter Λ into our action by substituting Q with

Q Λ := Q /χ(Λ), (3.5)

where χ(Λ) is a function of the indices j, l1, l2 of Q and the division in (3.5) is
component-wise. χ must be differentiable in the continuous parameters of Q and
in Λ. Furthermore, there must be a Λi ∈ R for which the physical system SΛ

is solvable, i.e. the vertex functions are known, and a Λf with χ(Λf) ≡ 1, i.e.
SΛ = S. These conditions allow for numerous choices of χ with various physical
interpretations (see, for example, Enss (2005), section 4.2). Some problems can be
simplified significantly by chosing a suitable cutoff function, as we see in chapter
5.

3.3 Generating functionals

Our aim is to calculate the anomalous self-energy and the effective interaction.
The generating functional for these functions is the effective action, for which we
know no explicit form in terms of microscopic parameters but which is related to
the generating functional W for the (connected) Green’s functions by a Legen-
dre transformation. Therefore, we first pass from the cutoff-dependent partition
function ZΛ to WΛ by introducing Grassmannian source fields η, η̄:

expW(η, η̄) =

∫ D(φ̄, φ)

det Q /ν
exp

[
−S(φ̄, φ) + (φ̄, η) + (η̄, φ)

]
. (3.6)

We no longer explicitly denote the cutoff dependence for readability. We introduce
the field expectation values in the presence of the sources,

J := −∂W
∂η̄

(η, η̄), J̄ :=
∂W
∂η

(η, η̄) (3.7)

as well as their inverses η(J, J̄) and η̄(J, J̄). The effective action

Γ(J, J̄) = −W
(
η(J, J̄), η̄(J, J̄)

)
−
(
J̄ , η(J, J̄)

)
−
(
η̄(J, J̄), J

)
(3.8)

is the generating functional of the one-particle irreducible vertex functions γm (see
Negele and Orland (1998)).

3.4 The flow equation for the effective action

In this section, we derive a flow equation for the effective action Γ through a flow
equation for the generating functional W of the connected Green’s functions. Γ
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3.4 The flow equation for the effective action

and W are related through (3.8), which we differentiate with respect to Λ to obtain

Γ̇ = −∂ΛW (η, η̄) − (η̇, ∂ηW (η, η̄)) − ( ˙̄η, ∂η̄W (η, η̄))

− (J̄ , η̇) − ( ˙̄η, J),

where we have omitted (J, J̄) for readability. Employing (3.7), we see that all
terms but the first on the right-hand side cancel and find Γ̇ = −∂λW(η, η̄). Hence,
we can obtain a flow equation for Γ from a flow equation for W. We thus take the
partial derivative of (3.6) with respect to Λ, obtaining

∂ΛW expW (3.9)

from the left-hand side, again omitting parameters for brevity. Differentiating the
normalization factor on the right-hand side yields

∂Λ
1

det(Q /ν)
= − 1

(det(Q /ν))2
∂Λ exp Tr ln (Q /ν)

= − 1

det(Q /ν)
Tr
(

Q̇ Q −1
)

. (3.10)

Finally, we differentiate the exponential:

− 1

ν

∫ D(φ̄, φ)

det(Q /ν)
(φ̄, Q̇φ)e−S(φ̄,φ)+(φ̄,η)+(η̄,φ)

= − 1

ν

∫ D(φ̄, φ)

det(Q /ν)
(∂η, Q̇ ∂η̄)e

−S(φ̄,φ)+(φ̄,η)+(η̄,φ)

= − 1

ν
(∂η, Q̇ ∂η̄) exp(W)

= − 1

ν

(

(∂ηW, Q̇ ∂η̄W) + Tr(Q̇ ∂η∂η̄W)
)

exp(W). (3.11)

Note that in (3.11), the product Q̇ ∂η∂η̄W is a matrix product, where the indices
of the second term are given by the parameters of the source fields in the partial
derivatives. We combine (3.9), (3.10), and (3.11) into

∂ΛW = −1

ν

(

νTr
(

Q̇ Q −1
)

+ (∂ηW, Q̇ ∂η̄W) + Tr(Q̇ ∂η∂η̄W)
)

. (3.12)

To eliminate W in favor of Γ, we replace the second term with −(J̄ , Q̇ J)
according to (3.7). For the third term, we need two additional relations, which we
derive in the following. For the first relation, we differentiate (3.8) with respect to
the field expectation values J, J̄ :

∂JΓ = − (∂Jη, ∂ηW(η, η̄)) − (∂J η̄, ∂η̄W(η, η̄))

+
(
J̄ , ∂Jη

)
− (∂J η̄, J) + η̄

= η̄,

∂J̄Γ = − η, (3.13)
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3 Deriving the renormalization group scheme

The cancellations are due to (3.7). For the second relation, we differentiate (3.7)
with respect to J and J̄ and obtain

1I = − (∂Jη ∂η ∂η̄W + ∂J η̄ ∂η̄ ∂η̄W)

1I = ∂J̄η ∂η ∂ηW + ∂J̄ η̄ ∂η̄ ∂ηW
0 = − (∂J̄η ∂η ∂η̄W + ∂J̄ η̄ ∂η̄ ∂η̄W)

0 = ∂Jη ∂η ∂ηW + ∂J η̄ ∂η̄ ∂ηW. (3.14)

Using (3.13), we rewrite our second relation (3.14) as

(
∂J̄∂J ∂J̄∂J̄
∂J∂J ∂J∂J̄

)

Γ

︸ ︷︷ ︸

=:V

(
∂η̄∂η −∂η̄∂η̄
−∂η∂η ∂η∂η̄

)

W = 1I. (3.15)

This allows us to replace the second derivative of W in (3.12) with the upper left
(or – up to a sign – the lower right) entry of V−1 to obtain the flow equation

Γ̇ =
1

ν

(

νTr
(

Q̇ Q −1
)

− (J̄ , Q̇ J) − Tr(Q̇ (V−1)11)
)

. (3.16)

3.5 The flow equations for the 1PI vertex func-

tions

By expanding (3.16) in the field expectation values J, J̄ and comparing coefficients,
we derive flow equations for the 1PI vertex functions γm. First, we expand the
effective action in the field expectation values:

Γ(J, J̄) =
∑

m=0

∑

X1...X2m

γm(X1, . . . , X2m)

(m!)2
J̄(X1) . . . J̄(Xm)J(Xm+1) . . . J(X2m),

(3.17)
where the indices Xi comprise both index types known from (3.3). We choose γm
antisymmetric under permutations of the first m arguments and of the second m
arguments. This makes the expansion (3.17) unambiguous. Plugging (3.17) into
(3.15) while setting η = η̄ = 0 and J = J̄ = 0 yields

G = −γ−1
1 . (3.18)

Our strategy is to plug (3.17) into (3.16) and compare the coefficients of mono-
mials in J, J̄ on both sides of the equation, but this is non-trivial due to the matrix
inversion in (3.16). To study this inversion, we first notice that an equal number of
J and J̄ arise in each term of (3.17), since our action (3.2) contains only monomials
with an equal number of φ and φ̄. This argument can be understood by picturing
perturbation theory diagrams for the vertex functions: All bare vertex functions
have an even number of external legs, and every connection between two vertex
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3.5 The flow equations for the 1PI vertex functions

functions makes two legs internal. (3.15) thus implies that terms constant in J, J̄
appear only on the diagonal of V:

V =

(
−γ1 0
0 γ1

)

︸ ︷︷ ︸

=:V0

+

(
Γ̃ ∂2

J̄
Γ

∂2
JΓ −Γ̃T

)

︸ ︷︷ ︸

=:Ṽ

. (3.19)

Note that

Γ̃(Y1, Y2) =
∑

m=1

∑

X1,...,X2m

γm+1(Y1, X1, . . . , Xm, Y2, Xm+1, . . . , X2m)

(m!)2

J̄(X1) . . . J̄(Xm)J(Xm+1) . . . J(X2m) (3.20)

by the product rule and the antisymmetry of the vertex functions γm. Likewise,
we find

(∂J∂JΓ) (Y1, Y2) =
∑

m=1

∑

X1,...,X2m

γm+1(X1, . . . , Xm+1, Y1, Y2, Xm+2, . . . , X2m)

(m− 1)!(m+ 1)!

J̄(X1) . . . J̄(Xm+1)J(Xm+2) . . . J(X2m), (3.21)

and a very similar formula for ∂J̄∂J̄Γ. The second matrix Ṽ of (3.19) therefore only
contains vertex functions with m ≥ 2. We expand V−1 into a geometric series:

V−1 = V−1
0

(

1I + ṼV−1
0 + (ṼV−1

0 )2 + (ṼV−1
0 )3 + . . .

)

, (3.22)

with

ṼV−1
0 =

(
Γ̃G −∂J̄∂J̄ΓG

∂J∂JΓG Γ̃TG

)

, (3.23)

where we have used (3.18). By (3.12) and (3.15), we only need to consider the
upper left entry of V−1.

As a concrete first example, we construct the contribution of order zero in J, J̄ .
Since γ−1

1 = −G by (3.18), we obtain

Tr
(

Q̇ γ−1
1

)

= Tr
(

Q̇ Gγ1G

)
def
= −Tr

(
Sγ1

)
, (3.24)

where we have defined the single-scale propagator S. The name is motivated by its
living on only the cutoff energy scale Λ when the limit of a sharp momentum shell
cutoff is considered. This can be seen by plugging χ(Λ) = Θ(|ξk| − Λ) into (3.5)
and taking the scale derivative to obtain the δ-distribution. Considering (3.24), we
observe that the last term is the simplest case of a linear tree of vertex functions
γ connected by full propagators G and closed by convolution with the single-scale
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3 Deriving the renormalization group scheme

propagator S. Combining (3.24) and (3.16), we find the full flow equation for γ0:

γ̇0 =
1

ν
Tr
(

Q̇ (Q −1ν − G)
)

= −1

ν
Tr

(
χ̇

χ

(
ν − ν(1I − ΣQ −1ν)−1

)
)

= −1

ν
Tr

(
χ̇ν

χ

(
ΣQ −1ν + (ΣQ −1ν)2 + . . .

)
)

= Tr

(
χ̇

χ
ΣG

)

(3.25)

where we have used (3.5) and the Dyson equation

− γ1 = G−1 =
1

ν
Q − Σ (3.26)

for the second equality, employed geometric series expansion for the third and
geometric series contraction for the fourth equality.

The tree concept is illustrated further by considering as a second example terms
of second order in J, J̄ arising from the second term V−1

0 ṼV−1
0 in (3.22). The upper

left component of this term is −γ−1
1 Γ̃γ−1

1 = −GΓ̃G. Keeping only the coefficient
of the second-order monomial in J, J̄ leaves

−
∑

X1,X2,Y1,Y2

G(•, Y1)γ2(Y1, X1, Y2, X2)J̄(X1)J(X2)G(Y2, •), (3.27)

where the bullets are placeholders for the indices of GΓ̃G. We plug this into (3.16)
to obtain

γ̇1 =
1

ν

(

−Q̇ + Tr(Sγ2)
)

. (3.28)

Employing the Dyson equation (3.26), we attain the flow equation

Σ̇ =
1

ν
Tr(Sγ2) (3.29)

for the self-energy Σ. Diagramatically, this can be expressed as

where the placement of the arrows is given by the structure of (3.27). We see that
ṼV−1

0 contributes to the flow equation of γm a tadpole diagram in which γm+1 is
closed by a single-scale propagator S.
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3.5 The flow equations for the 1PI vertex functions

The flow equation for γ2 is thus given by a tadpole diagram closing γ3 and the
diagrams arising from inserting the third term of (3.22) into (3.16). The upper
left component of this third term reads

GΓ̃GΓ̃G − G∂2
J̄ΓG∂2

JΓG. (3.30)

Keeping only the terms of fourth order in J̄ , J , we obtain

γ̇2(α1, α2, α3, α4)

=
4

ν

∑

Xi

[

γ2(X1, α1, X2, α3)G(X2, X3)γ2(X3, α2, X4, α4)

−1

4
γ2(X1, X2, α3, α4)G(X2, X3)γ2(α1, α2, X3, X4)

]

S(X4, X1)

+O(γ3). (3.31)

The discrepancy in the combinatorial prefactors of the two terms arises from the
combinatorial discrepancy between (3.20) and (3.21). The antisymmetry of γ2 is
preserved in the second term of (3.31), but the first one needs to be antisym-
metrized before or during the integration of the flow equation. The diagrammatic
form of (3.31) is

In each second-order diagram, the single-scale propagator S can be put on any
internal line due to the cyclic property of the trace. We see that (3.30) contributes
bubble diagrams to the flow of γm.

We present construction rules for the right-hand side of the flow equation for
γm. These are derived from the structure of (3.23) and (3.22) as well as from the
combinatorial factors in (3.20) and (3.21), as can be seen from the examples above.
The diagrams on the right-hand side of the flow equation for γm are constructed
in the following way.

1. Form all linear trees with 2m+2 external legs by connecting vertex functions
γm with full Green’s functions G.

2. Close these trees with a single-scale propagator S so that a one-particle irre-
ducible diagram is formed.

The diagrams are evaluated by forming matrix products of γm for the vertices and
G for the lines and tracing over the external indices of the resulting convolution.
For the combinatorial factors,
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3 Deriving the renormalization group scheme

• a 2m-vertex by itself incurs a factor (m!)−2.

• a 2m-vertex within a linear tree incurs

– a factor ((m− 1)!)−2 if its internal legs are antiparallel.

– a factor ((m− 2)!m!)−1 if its external legs are pointing out of the dia-
gram.

– a factor −((m− 2)!m!)−1 if its external legs are pointing into itself.

As the last step, the right-hand side must be antisymmetrized.
As an example, we draw the flow equation for γ3:

The last term constitutes a feed-back of γ4 on the flow of γ3. The flow equa-
tions for all γm form a hierarchy in which a given level feeds back on the level
above through a tadpole diagram arising from the second term in (3.22). While
the author knows no method which extracts physical information from the whole
hierarchy, truncations yield approximations for which rigorous error estimates can
be obtained (Salmhofer and Honerkamp (2001)). We present the truncation which
we employ in the remainder of this work in the next section.

3.6 The Katanin truncation

In this section, following Katanin (2004), we truncate the infinite hierarchy of flow
equations derived in 3.5. There are two key advantages to Katanin’s approach
in comparison to the usual zeroing of γ6 (see Zanchi and Schulz (1998); Halboth
(1999); Halboth and Metzner (2000); Halboth and Metzner (2000); Zanchi and
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3.6 The Katanin truncation

Schulz (2000); Salmhofer and Honerkamp (2001); Rohe (2005); Enss (2005); Fu
et al. (2006)). First, the approximate flow equations it delivers are exact up to
third order in the quartic part of the action (3.2), and thus ideally suited for the
treatment of physical problems with two-particle interactions. Second, a further
approximation brings the approximate flow equations into a form that is treatable
and still reproduces the exact solutions of the mean-field models introduced in
chapter 2 and section 5.1. Treatable here means that the usual divergence of the
flow of γ2, which has previously been used as a signpost for symmetry breaking,
can be circumvented. The fRG for the two-particle irreducible vertex functions
has similar advantages for mean-field models (Dupuis (2005)).

We study the flow equation for γ3 up to third order in γ2. The only diagram
we have to treat is

where we have omitted the arrows for brevity. We rewrite the single-scale propa-
gator

S = −GQ̇G = −G( ˙G−1 + Σ̇)G = Ġ − GΣ̇G (3.32)

to isolate the dependence on Ġ. Plugging (3.32) into the above diagram yields

where the second diagram is of fourth order in γ2 as can be seen by plugging in the
flow equation for Σ, (3.29). The second diagram is therefore subsequently ignored.
Up to order three in γ2, the first diagram is the scale derivative of

as can be seen diagrammatically by taking into account that γ̇2 is of order two in
γ2 according to (3.31). This implies that in our approximation γ3 is given by the
above triangle diagram.

We diagrammatically plug our result for γ3 into the flow equation (3.31) for
γ2. We observe that in the absence of arrows, there are two topologically distinct
ways to close the diagram with a single-scale propagator S:
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3 Deriving the renormalization group scheme

We first consider the second “panting-dog” diagram, where we discern the tadpole
diagram from (3.29) in the dog’s tongue. Substituting Σ̇, we exploit (3.32) to
combine the resulting diagram with the loop diagrams from the flow equation for
γ2, (3.31), to obtain

Secondly, we study the first “dog-snout” diagram, which consists of two loops
overlapping in the dog’s brow. In chapter 2 and section 5.1, we see that diagrams
with overlapping loops vanish in the thermodynamic limit for mean-field models.
Furthermore, the dog-snout diagram is of third order in γ2, and therefore less
important in a weak-coupling context than the panting-dog diagram, which turned
out to contribute on the second order of γ2. We ignore the dog snout’s contribution
in the remainder of this work. The flow equations which we employ are

Solving these flow equations yields the exact self-energy and effective interaction
in the thermodynamic limit for any model with only two-particle interactions for
which the dog-snout diagram vanishes. We study an example both analytically
and numerically in chapter 4. In addition, in the presence of only two-particle
interactions, the corrections to the right-hand side of these flow equations are of
third order in the interaction strength (Salmhofer et al. (2004)). Furthermore,
the fulfillment of Ward identities in the flow is systematically improved by this
modification (Katanin (2004)).
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Chapter 4

Charge-density wave:

renormalization-group approach

4.1 Second-order phase transitions

4.1.1 Renormalization group setup

We apply the one-particle irreducible (1PI) functional renormalization group (fRG)
scheme introduced in chapter 3 to the reduced charge-density-wave model (2.4) at
half filling of section 2.1.1. The 1PI scheme is described by Salmhofer and Hon-
erkamp (2001); Wetterich (1993) and is here employed in the version suggested by
Katanin (2004), as derived in section 3.6. In this version, the differential equations
for the self-energy and effective interaction constitute a closed system. The special
structure of the interaction in (2.4) allows us to further simplify the equations. In
contrast to the Bardeen-Cooper-Schrieffer (BCS) flow studied by Salmhofer et al.
(2004), no anomalous effective interactions are generated in our case. We ver-
ify analytically and numerically that the fRG reproduces the resummation results
from sections 2.1.2 and 2.1.3.

Following section 3.2, we introduce a cutoff function

χ(Λ) = Θ (|ξ| − Λ) . (4.1)

In our calculations, all modes satisfying |ξ| > Λ have been integrated out. The
effective interaction and self-energy at this scale can thus be interpreted as param-
eters of an effective theory for a reduced system with smaller bandwidth. We start
the flow at Λi = W , where 2W is our system’s bandwidth and all modes have yet
to be integrated out. We integrate the flow down to Λf = 0, as we see from (4.1)
that χ(Λf) ≡ 1. To analytically implement this procedure, we introduce χ(ξ,Λ)
as a placeholder for any cutoff function, which shall have range [0, 1], assume the
value 1/2 when Λ = ξ, approach 0 when reducing ξ below Λ and 1 when increasing
ξ above Λ. We replace Q (ξ) by Q (ξ)/χ(ξ,Λ) as in (3.5), suppressing low-energy
modes in the field integral and rendering the self-energy and effective interaction
scale-dependent.
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4 Charge-density wave: renormalization-group approach

The replacement of GS in the flow (3.31) of the effective interaction by ĠG (see
section 3.6) is crucial for our ability to follow the flow down to Λ = 0. This is be-
cause in the original version of the fRG, the flow of the effective interaction diverges
before all modes are integrated out. In the Katanin version of the 1PI scheme,
the exact hierarchy of RG differential equations with the exception of the first
equation is written using only full four-point functions, full propagators and scale-
differentiated full propagators on the right-hand sides. The differential equations
for the self-energy and the four-point function thus constitute a closed system. In
particular, the contribution to the flow of the four-point function which involves
the six-point function (see the diagrammatic equation on page 41) is partially
taken into account in the Katanin scheme by diagrams involving only four-point
functions and full or scale-differentiated full propagators, respectively. The part
with overlapping loops – the dog-snout diagram of section 3.6 – of this contribu-
tion vanishes for the special structure of the interaction and the thermodynamic
limit considered here. The remaining part of this contribution is taken into ac-
count by the replacement of the single-scale propagator by the scale-differentiated
full propagator. We use the diagrammatic conventions from section 2.1.2, where
a hatched rectangle denotes the effective interaction V , a hatched circle denotes
the anomalous self-energy ∆i.a., and bold lines denote full propagators. We intro-
duce the additional convention that straight lines denote Λ-differentiation of all
entities crossed by the line. The graphical form of the fRG differential equations
according to these conventions is as shown in Fig. 4.1. The right-hand side of the
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Figure 4.1: The hierarchy of flow equations for the self-energy and the effective
interaction

flow equation for the self-energy only contains the off-diagonal (anomalous) part
of the single-scale propagator S due to the restricted form of the interaction. This
is discussed in the context of the derivation of the gap equation (2.9) in 2.1.2.

In the flow of the effective interaction (right part of Fig. 4.1), the summa-
tion over the Nambu indices of the internal lines includes normal and anomalous
propagators. Analogously to the perturbation expansion in section 2.1.2, in the
thermodynamic limit N → ∞ the special momentum structure of the initial in-
teraction is conserved by the RG flow of the effective interaction. At half fill-
ing, no new effective interactions with different external legs are generated. This
is in contrast to the BCS pairing model (Bardeen et al. (1957)), where U(1)-
symmetry-breaking effective interactions with four incoming or four outgoing legs
are generated (Salmhofer et al. (2004)). For the BCS case, linear combinations
of normal and anomalous effective interactions are identified with amplitude and
phase modes. These names stem from the thermodynamic potential as a func-
tion of the order parameter. Rotating the µ = 0 graph of Fig. 2.6 around the
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4.1 Second-order phase transitions

ΩMF-axis, we obtain a shape that has been described as a Mexican hat but also
as a Bordeaux bottle bottom, see Fig. 4.2. This is a thermodynamic potential

 0

 0

td. pot.

order parameter x

td. pot.

ord
er 

pa
ram

ete
r y

Figure 4.2: The Bordeaux-bottle bottom or Mexican hat thermodynamic potential

shape typical for the breaking of a continuous symmetry. It sports a continuum
of energetically degenerate minima of the thermodynamic potential. Selecting one
of these minima breaks the symmetry. The shape implies the existence of two
distinct types of excitations, one radial and one angular in the order parameter
plane. They are called amplitude and phase mode, respectively. Phase modes can
be excited with arbitrarily small energy since there is no energy slope to overcome
as for the amplitude mode. Thus, the phase mode is massless while the amplitude
mode is massive away from criticality (Salmhofer et al. (2004)), a fact that is also
observed when studying bosonic theories (Strack et al. (2007)). In the half-filled
CDW model, there is no phase mode, as the order parameter has no phase. In
this case, the effective interaction behaves like the amplitude mode of the BCS
problem.

4.1.2 Renormalization group and resummation

We prove in the following that the equations in Fig. 2.1 are equivalent to the fRG
equations in Fig. 4.1. We observe that the cutoff changes neither the structure of
the bare interaction nor the conservation laws of the bare propagator. Therefore,
the arguments of section 2.1.2 that lead to the resummations of the perturbation
expansions for the self-energy and the effective interaction also hold for the cut-off
system. We take the derivative with respect to Λ of the diagrammatic form of the
Bethe-Salpeter equation for the cut-off system:
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4 Charge-density wave: renormalization-group approach
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On the right-hand side, we have applied the product rule. We repeatedly replace
the scale-differentiated effective interaction on the right-hand side with the full
right-hand side to obtain:
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We identify the sum of loop chains that we resummed in the derivation of Fig. 4.1(b)
and thus recover the right-hand side of the flow equation for the effective inter-
action. Since the solution of the corresponding initial-value problem is unique,
the solution of the fRG flow equations satisfies the Bethe-Salpeter equation from
which we started. This demonstrates the equivalence of the effective interaction
flow equation and the Bethe-Salpeter equation.

We now study the flow equation for the self-energy. Replacing the effective
interaction on the right-hand side with the right-hand side of the diagrammatic
form of the Bethe-Salpeter equation yields:

�
�
�
�

��
��
��

��
��
�� �

�
�

�
�
�

= = +

S
S

S

The flow equation for the self-energy allows us to substitute the cutoff-differentia-
ted self-energy for the tadpole part of the diagram including the effective interac-
tion:

�
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�
�

=
S

+

Symbolically, the loops of the two tadpole diagrams read:

G

(
d

dΛ
Σ

)

G − G

(
d

dΛ
G−1

0

)

G = −G

(
d

dΛ
G−1

)

G =
d

dΛ
G. (4.2)

This shows that the fRG flow equation for the self-energy is the derivative of the
gap equation for the system including the cutoff. Since the solution of the corre-
sponding initial-value problem is unique, the solution of the fRG flow equations is
also a solution of the gap equation. This concludes the proofs of the equivalence
of the resummation and the fRG equations for the case of the Hamiltonian (2.5).
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4.1 Second-order phase transitions

4.1.3 Flow equations at finite temperature

To evaluate the diagrams of Fig. 4.1, we derive the cutoff Green’s function from
(2.7) and (2.8):

GΛ =
χ(Λ)

ω2
n + ε2 + (χ(Λ)ΣΛ)2

(
−iωn − ε −χ(Λ)ΣΛ

−χ(Λ)ΣΛ −iωn + ε

)

. (4.3)

In comparison with (2.8), the self-energy is replaced by its scale-dependent variant
multiplied by χ, and the Green’s function as a whole is multiplied by χ.

(4.3) enables us to write down the flow equation for the effective interaction
V . To that end, we first note the complication that the momentum arguments
of the propagators in the right loop of Fig. 4.1 differ by Q, just as in the mean-
field case 2.1. However, this only changes the sign of the bare energies ε written
on the diagonal of (4.3), as Σ is constant in momentum and χ contains only the
modulus of ε. This eases the evaluation of the diagram which proceeds mainly by
multiplying Gk and Gk+Q and tracing, which yields

V̇ = V 2T
∑

k,ωn

∂

∂Λ

2χ2

(ω2
n + ε2 + χ2Σ2)2

(
−ω2

n − ε2 + χ2Σ2
)
,

where we have suppressed the dependence on Λ in the notation. Second, we note
that the Matsubara sum can be done analytically using (B.3) and (B.4) to obtain

V̇ = 2V 2 ∂

∂Λ

∑

k

χ2

{

(−ε2 + χ2Σ2)

[
tanh

4E3
− 1

8TE2 cosh2

]

−tanh

4E
− 1

8T cosh2

}

,

(4.4)

where we have suppressed the arguments of the hyperbolic functions, all of which
are E/2T , as well as momentum arguments, all of which are k, and recycled
E to abbreviate

√

ε2 + χ2Σ2. This form of the flow equation already suffices
for numerical evaluation purposes, and we will exploit this in the context of the
Hubbard model in section 5.3.

To further our analytical understanding of the flow equations, we evaluate the
scale derivative of the integral in (4.4). To make optimal use of the sharp cutoff
(4.1), we employ Morris’ lemma (3.19) of Morris (1994) in the following way. We
first rewrite the integration over momenta as an integration over energies

∑

k

→
∫ W

−W

dερ(ε),

which is unproblematic as k appears only as εk in (4.4). Second, we note that the
Λ-dependence of the right-hand side of (4.4) stems from χ and Σ. This implies
that the Λ-derivative of the integrand I is split into two parts:

∫ W

−W

dερ(ε)İ =

∫ W

−W

dερ(ε)

(

χ̇
∂I
∂χ

+ Σ̇
∂I
∂Σ

)
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4 Charge-density wave: renormalization-group approach

which can be rewritten as
∫ W

−W

dερ(ε)İ =

∫ W

−W

dερ(ε)

(

I|χ=1δ(|ε| − Λ) + Σ̇
∂I
∂Σ

)

according to Morris’ lemma. Third, we plug in the expression for I from (4.4) to
obtain

V̇ =ρ0V
2

{

− Λ2

E

(
Λ2

E2
tanh +

Σ2β

2E
cosh−2

)∣
∣
∣
∣
ε=Λ

−
∫ W

Λ

dε

E

ΣΣ̇

E2

[
3ε2

E2

(

tanh−βE
2

cosh−2

)

+ β2Σ2 tanh

2 cosh2

]}
∣
∣
∣
∣
∣
χ=1

, (4.5)

where we have assumed a constant density of states to remove dimensionality
effects. This is the flow equation we will use for our numerical and analytical
analysis. Note that χ has been eliminated from the expression along with one
integration in comparison to (4.4).

We turn to the flow equation for the order parameter and anomalous self-energy
Σ. Its diagrammatic form is drawn in the left part of Fig. 4.1. The algebraic com-
plexity of the equation can be significantly reduced by employing Morris’ lemma
(3.19) of Morris (1994). To this end, we study the single-scale propagator S ap-
pearing in the diagram. We note that

χ̇
∂G

∂χ
= χ̇

∂

∂χ
(Q − Σσx)

−1

= (Q − Σσx)
−1χ̇

∂Q

∂χ
(Q − Σσx)

−1

= −G Q̇ G

= S. (4.6)

(4.6) facilitates the use of Morris’ lemma in the presence of single-scale propagators.
We continue with our study of the self-energy flow by including the external field
∆ext in Σ as its initial condition. Evaluating the diagrams of Fig. 4.1, we again sup-
press scale and frequency dependence in the notation and write E :=

√

ε2 + χ2Σ2,
where Σ is the spectral gap caused by the symmetry breaking. The fRG differential
equation reads

Σ̇ = V
Σρ0

E
tanh

∣
∣
∣
∣
ε=Λ
χ=1

, (4.7)

where we have switched from momentum integration to energy shell integration,
used (4.6), and assumed a flat density of states ρ0 in order to remove dimensionality
effects. If we choose ∆ext = 0, Σ remains zero for all scales. Then only the
first term in (4.5) remains, and the flow will diverge at a nonzero scale Λc. We
would thus be neither able to integrate over all scales nor compare our results to
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4.1 Second-order phase transitions

the resummation of section 2.1.2. We therefore always study the RG equations
for a finite ∆ext, usually 10−4t. We show in the following that this circumvents
the divergence of the effective interaction while still enabling us to approximate
arbitrarily well the exact mean-field results without explicit symmetry breaking in
the temperature range determined in section 2.1.3.

4.1.4 Renormalization group at zero temperature

We first consider zero temperature, T = 0. In this case, it is easier to write
down the analytical expressions, the roles of the different right-hand side terms
are easily identifiable, and the value of the effective interaction at Λ = 0 is nearly
independent of ∆ext, as Λc is larger than the double width at half maximum of the
effective interaction flow peak (see Fig. 4.3, lower part).

In the limit T → 0, (4.5) and (4.7) become

− d

dΛ
V = V 2 Λ2ρ0√

Λ2 + Σ2
3 − 3V 2Σ

(

−dΣ

dΛ

)∫ W

Λ

dξ
ξ2ρ0

E5
, (4.8)

− d

dΛ
Σ = VΣρ0

1√
Λ2 + Σ2

. (4.9)

(4.8) and (4.9) can be integrated numerically. The typical shapes of these flows
are exhibited in Fig. 4.3. We see that the divergence of the effective interaction is
regularized by the external symmetry-breaking field, which is taken into account
as the initial value of Σ. Hence, we can integrate out all modes of the fermionic
spectrum. The effective interaction in the CDW problem behaves analogously to
the linear combination of normal and anomalous effective interactions in the BCS
problem (Salmhofer et al. (2004)) which drives the flow of the order parameter.
This agrees with our interpretation of the effective interaction as an amplitude
mode. The Λ-dependence of Σ around the scale where V peaks approaches a kink
for ∆ext → 0. The graph of Σ(Λ) resembles the graph of Σ(T ) from Fig. 2.2,
showing that temperature acts in a similar fashion as the cutoff in this system.
The main difference between the graphs is that Σ(T → 0) approaches a constant
function while Σ(Λ → 0) is linear.

The impact of the self-energy feedback on the RG flow can be thoroughly
understood by analyzing the terms appearing in (4.8) and (4.9). Bear in mind that
we think of the flow as progressing from larger to smaller values of Λ, i.e. from
right to left in our plots. We first consider the limit Σ = 0. Now, the self-energy no
longer flows while the effective interaction flows according to −dV/dΛ ∝ V 2/Λ. For
any positive V0, the solution of the corresponding initial value problem is singular,
showing that at T = 0 symmetry is broken for all repulsive initial interactions.

An arbitrarily small initial symmetry-breaking field immediately has dramatic
consequences: As soon as V begins to increase strongly, so does the self-energy due
to the coupled effects of a large V and a back-feeding Σ on the RHS of (4.9). The
second term on the RHS of (4.8) is negative. It corresponds to a correction of the
flow by the modes which are integrated out at the current scale, which is necessary
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Figure 4.3: Low-energy portions of the T = 0 flows of the self-energy (top) and
effective interaction (bottom) for V0 = 2t and various ∆ext. ρ0 = 1/2π for all
numerical calculations. Compare with Fig. 2.2.
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4.1 Second-order phase transitions

because these modes’ self-energy is changing in the flow even at scales where the
modes themselves are integrated out. It becomes large as the slope of Σ exceeds Σ
itself, while the positive first term is damped by an effective Λ2/Σ3-dependence as
soon as Σ becomes much larger than Λ. The effective interaction is hence pulled
back down. It never reaches zero since the negative second term on the RHS of (4.8)
becomes proportional to V 3 while the positive first term becomes proportional to
V 2 (dΣ/dΛ is O(V )). This implies that the self-energy never decreases. The two
terms on the RHS of (4.8) thus approach mutual cancellation, causing V and in
turn −dΣ/dΛ to be almost constant in Λ (the contributions from Σ on the RHS
of (4.9) cancel when Σ ≫ Λ).

The behavior described above remains qualitatively the same at finite temper-
atures, as long as these are below the double width at half maximum of V ∆ext(T ).
This is illustrated by the lowest-temperature curve of the lower panel of Fig. 4.4.
The shape of V (Λ) is very similar to the shape of V (T ) in the lower part of Fig. 2.2,
thus illustrating again that temperature has an effect comparable to that of an en-
ergy or momentum cutoff. The finite temperature case is discussed in detail in the
next section.

4.1.5 Renormalization group flows at finite temperatures

We now turn to the analysis of the finite temperature fRG equations (4.5) and
(4.7). Due to their more involved nature, the analysis is largely numeric. We
find the same behavior as calculated using the conventional resummation methods
applied in section 2.1.2. The initial symmetry-breaking field plays the same crucial
role as in the zero-temperature case. We use a coupling of V0 = 2t in the following.

The upper plot of Fig. 4.4 shows how the flows of the self-energy flatten if the
temperature increases beyond T ≈ 0.1t. Above Tc, Σ(Λ = 0) vanishes in the limit
∆ext → 0. The flow of the effective interaction is shown in the lower panel of
Fig. 4.4. The graph of the flow is pushed to the left with increasing temperature,
its shape remaining largely unchanged. As the flow’s maximum approaches zero,
the final value of the effective interaction increases until the maximum has reached
Λ = 0. This corresponds to the behavior of the effective interaction on the low-
temperature side of Fig. 2.2 (lower part). For even higher temperatures, the final
value of the effective interaction decreases, corresponding to the behavior on the
high-temperature side of Fig. 2.2.

The lower part of Fig. 4.5 shows that Λc(T ) saturates quickly far below the
critical temperature. It also illustrates the motion of the effective interaction flow
maximum, which is pushed to lower scales by an increase in temperature as de-
scribed above. It approaches zero in a linear fashion with increasing temperature,
in contrast to Σ(T → Tc), which exhibits a square-root behavior.

We are furthermore interested in the dependence on ∆ext of the flow of the
self-energy at finite temperatures. As we see below, this raises the question of the
method’s extensibility to non-mean-field models, which is undertaken in section 5.
This question arises due to the interplay of the correctness of the truncation and
the necessary limit of vanishing external field, which is studied below. In contrast
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Figure 4.4: Flows of the self-energy Σ and the effective interaction V plotted
against Λ for temperatures around the transition, V0 = 2t and ∆ext = 10−4t.
ρ0 = 1/2π for all numerical calculations.
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numerical calculations.
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4 Charge-density wave: renormalization-group approach

to the resummation treatment case (see the upper part of Fig. 2.2), we cannot
set ∆ext to zero as the effective interaction would diverge before the flow reaches
Λf = 0. However, the upper part of Fig. 4.3 implies that lim∆ext→0 Σ∆ext

(Λ) exists
and is approached in a continuous fashion. For T > 0, if ∆ext ≈ Σ(Λf)/100, there
is a clearly observable steep rise of Σ(T ) (see the upper part of Fig. 4.4) which
would permit a fairly precise determination of Tc even in models with complexity
beyond what is studied here. However, note that for such ∆ext, the effective
interaction reaches maximal values ∼ 100t in the flow. This is much larger than
the bandwidth of low-dimensional systems (see, e.g., the lower part of Fig. 4.6 for
the temperature evolution). The agreement between fRG and mean-field results
in spite of these large effective interactions underlines that the truncated fRG is
exact for our model.

Close to the T -dependent critical scale Λc, the effective interaction reaches a
maximum whose height depends singularly on ∆ext (see Fig. 4.6, lower panel). A
numerical analysis shows that the maximal effective interaction is ∝ 1/∆α

ext with
α ≈ 2/3. The values for the maximal effective interaction can be read off for T = 0
in Fig. 4.3 (bottom) and for finite temperatures in the lower part of Fig. 4.6. For
a direct application of the method to non-mean-field models, the maximum of the
effective interaction must be restricted to smaller values. Otherwise, the small-
interaction approximation from section 3.6 is not justified. However, a larger ∆ext

entails that the rise of ΣΛ=0(T ) at Tc gets smeared out strongly (see Fig. 4.5 (upper
part) and Fig. 2.2 (upper part)). The upper part of Fig. 4.6 shows that far below
Tc, the relative error ∆Σ/Σ is linear in ∆ext. At the highest considered ∆ext, it
is already of the order of 0.1 while V (Λc) is still ≈ 10t. This implies that the
method we employ could be improved in the closely intertwined areas of effective
interaction suppression and gap value accuracy, as will be attempted in the next
section.

4.2 First-order phase transitions

In this section, we describe and apply an extension of the one-particle irreducible
(1PI) fermionic functional renormalization group (fRG) scheme as formalized by
Salmhofer and Honerkamp (2001) permitting the study of first-order phase tran-
sitions and hysteresis phenomena. We show how this constitutes an improvement
of the capabilities of the method as introduced in chapter 3 and applied in section
4.1. The extension also allows us to circumvent the rise of large interactions at
intermediate scales which has plagued the approach so far while preserving the
accuracy of the results for the gap. As above, we start from the flow equations
as suggested by Katanin (2004), derived in section 3.6, studied for the case of the
breaking of a continuous symmetry in Salmhofer et al. (2004) and for the case of
the breaking of a discrete symmetry in section 4.1, see Gersch et al. (2005). We
use the interaction flow by Honerkamp et al. (2004), which permits the fruitful
employment of counterterms as introduced in section 4.2.1. We show flows for
first-order (section 4.2.2) and second-order (section 4.2.3) phase transitions, dis-
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4 Charge-density wave: renormalization-group approach

cussing the effect of the counterterm on possible approximations. We also study
the effect of an external field on the flow, identifying a criterion for unphysical
starting points.

4.2.1 Renormalization group setup with counterterm

The basic setup of a 1PI fRG calculation with Katanin’s modification is outlined
in 4.1.1 and for the reduced BCS model by Salmhofer et al. (2004). To understand
the problem solved in the following, we consider the order-parameter dependence
of the thermodynamic potential Ω in the plot for µ = 0 in Fig. 2.6. Following
the lead of Salmhofer et al. (2004); Gersch et al. (2005), a small external field
is included as the initial condition for the order parameter in section 4.1. This
external field is relevant in Wilson’s fixed-point picture (Wilson (1971a,b)), but
does not appreciably change the physics away from critical scales. It biases the fRG
flow toward the thermodynamic potential minimum at finite ∆i.a. (see the µ = 0
graph in Fig. 2.6), which becomes the endpoint of the flow. This method is unable
to deal with first-order phase transitions where the thermodynamically stable state
is separated from the symmetric state by an energy barrier. A thermodynamic
potential as function of the order parameter illustrating this situation is depicted in
the plot for µ = −0.2t in Fig. 2.6. Because the external field must be small, the flow
always veers toward the symmetric minimum at zero order parameter, following
the gradient of the thermodynamic potential. Other minima are inaccessible, even
if their thermodynamic potentials are smaller. Furthermore, the method cannot
be used to study hysteresis effects appearing if systems exhibiting second-order
phase transitions (see the graphs for µ = 0 and µ = −0.1t in Fig. 2.6) are placed
in an external field. The external field destroys the axis symmetry of Ω(∆i.a.), but
always biases the flow toward the global minimum of the thermodynamic potential,
making it impossible to study the metastable configuration. Thus, the challenge
encountered here is to set up an fRG scheme with a parameter that allows the
selection of any stable or metastable configuration as the endpoint of the flow.

The basic idea that will be exploited in the following is to include in the cal-
culation a counterterm ∆c of arbitrary strength that cancels an equally strong
external field Σi as introduced in (2.14), but only at the end of the flow. In the
fRG calculation, the external field is taken into account as the initial value of the
order parameter Σ, while the counterterm ∆c is included in the bare propagator.
Schematically, the matrix Green’s function of the system reads

G−1 =
Q0 + ∆c

χ
− Σ, (4.10)

where χ is the cutoff function and Q0 is the inverse bare propagator without
counterterm. For any degree of freedom with χ 6= 1, counterterm and self-energy
do not cancel each other. However, the special case χ ≡ 1 is approached at the
end of the fRG flow. Thus, the effective action of the original symmetric model is
recovered.
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4.2 First-order phase transitions

We first consider the case of χ = χΛ(k) describing the sharp momentum-
shell cutoff of conventional RG schemes (see Wilson (1971b, 1972); Wegner and
Houghton (1973) and (4.1) of section 4.1.1). In this case, only momenta for which
χΛ(k) = 1 are taken into account in the RG flow. For these momenta, ∆c and
Σ cancel exactly at the start of the flow, causing Σ to remain stationary. This
is due to the right-hand side of the 1PI flow equation for the order parameter
being proportional to the anomalous part of the Green’s function (compare (4.7))
which vanishes if ∆c and Σ cancel. This argument generalizes to the case of
multiple order parameters, as can be seen by considering the adjugate matrix of the
inverse Green’s function, which is schematically similar to (4.10) but with multiple
different counterterms and self-energies in the spirit of section 3.1. Consequently,
∆c and Σ also cancel at all stages of the flow. In the case of a second-order
transition, the fRG diverges at a Λc 6= Λf as no gap opens in the spectrum and
small energy denominators appear. In the case of a first-order transition, the
flow remains finite, incorrectly suggesting that the symmetric phase is stable. We
conclude that we have to employ a softer cutoff function.

Next, we consider the softest possible cutoff function, provided by the interac-
tion flow introduced by Honerkamp et al. (2004). It works by linearly turning on
the interaction with the flow parameter (note the similarity to the treatment by
Mahan (2000), from page 148) while turning on the counterterm with the square
root of the flow parameter. By rescaling the fields, this is found to be equivalent
to employing a cutoff function χ which is constant at all momenta, zero at the
start of the flow, one at the end of the flow, and

χ =
√

Λ (4.11)

in between. With this, the counterterm and the external field in (4.10) cancel only
at the end of the flow, and all configurations become accessible, as is illustrated in
the following.

We prepare to evaluate the flow equation diagrams in Fig. 4.1. For a general
cutoff function χ, we obtain from (2.16) the cut-off Green’s function G for the
Hamiltonian (2.14):

G(iωn,k) =
χ

−(iωn + µ)2 + E2
k

(
−iωn − εk − µ −χΣ + ∆c

−χΣ + ∆c −iωn + εk − µ

)

, (4.12)

where Ek =
√

εk + ∆2
eff and ∆eff = χΣ − ∆c. The external field ∆ext inducing a

charge-density wave as well as Σi are to be absorbed in the initial condition for
Σ. To facilitate the use of Morris’ lemma (3.19) of Morris (1994), we prepare to
employ S = χ̇∂G

∂χ
(see (4.6)) by calculating

∂G

∂χ
(iωn,k) =

1

−(iωn + µ)2 + E2
k

(
−iωn − εk − µ −χΣ − ∆eff

−χΣ − ∆eff −iωn + εk − µ

)

− 2Σ∆effχ

(−(iωn + µ)2 + E2
k)

2

(
−iωn − εk − µ −∆eff

−∆eff −iωn + εk − µ

)

. (4.13)

59



4 Charge-density wave: renormalization-group approach

To evaluate the tadpole of Fig. 4.1, we sum an off-diagonal entry of (4.13) over the
Matsubara frequencies ωn:

T
∑

ωn

∂G12

∂χ
= (−χΣ − ∆eff)

1

2E

(
f(E−) − f(E+)

)

+ Σ∆2
effχ

1

2E2

(
1

E

(
f(E−) − f(E+)

)
+ f ′(E+) + f ′(E−)

)

=
f(E−) − f(E+)

2E

(

−χΣ
ε2

E2
− ∆eff

)

+
f ′(E+) + f ′(E−)

2E2
χΣ∆2

eff , (4.14)

where f(E) = (exp(E/T ) + 1)−1 is the Fermi distribution and (B.14) and (B.15)
are used in the first equality. Tracing over the momentum degrees of freedom, mul-
tiplying with the effective interaction and diagrammatic factors as well as plugging
in χ =

√
Λ in accordance with (4.11), we obtain the flow equation

Σ̇ = −V
∫

ddk

(2π)d
1

4
√

Λ

{
f(E−) − f(E+)

E

[√
ΛΣ

ε2

E2
+ ∆eff

]

−f
′(E−) + f ′(E+)

E2

√
ΛΣ∆2

eff

}

. (4.15)

Turning to the loop diagram of Fig. 4.1, we trace over the Nambu index of
the product of G(iωn,k) and G(iωn,k + Q), making use of the nesting condition
εk = −εk+Q to obtain

2χ2

(−(iωn + µ)2 + E2
k)

2

[
(iωn + εk + µ)(iωn − εk + µ) + ∆2

eff

]

=
−2χ2

ω2
n + (E+ + E−)iωn −E+E−

+
4χ2∆2

eff

(ω2
n + (E+ + E−)iωn −E+E−)2 .

Performing the Matsubara sum according to (B.14) and (B.15) yields

2χ2

[

−f(E−) − f(E+)

2E

ε2

E2
+
f ′(E−) + f ′(E+)

2E2
∆2

eff

]

. (4.16)

To complete the evaluation of the loop diagram of Fig. 4.1, we substitute
√

Λ for χ,
differentiate (4.16) with respect to Λ, multiply with V 2, trace over the momentum
degrees of freedom and include diagrammatic factors to obtain

V̇ = −V 2

∫
ddk

(2π)d
1

2E2

{

f(E−) − f(E+)

E
ε2

(

3Λ
Ė

E
− 1

)

+

(
f ′(E−) + f ′(E+)

)

(

3ε2Λ
Ė

E
+ ∆2

eff

)

−
(
f ′′(E−) + f ′′(E+)

)
Λ∆2

effĖ

}

. (4.17)
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4.2 First-order phase transitions

We furthermore need to calculate the thermodynamic potential using the func-
tional renormalization group. From the flow equation (3.25) for γ0 and the relation
Ωi.a. = Tγ0 for the thermodynamic potential Ω, we construct

Ω̇ = −T
2

Tr

(

Σ
χ̇

χ
G

)

. (4.18)

If the flow is started at the thermodynamic potential of the non-interacting system,
the full thermodynamic potential is recovered. Since we will always do so, we have
written Ω instead of Ωi.a. in (4.18). Evaluating the Matsubara sums, (4.18) reads

Ω̇ =

∫
ddk

(2π)d
Σ∆eff

f(E−) − f(E+)

4E
√

Λ
. (4.19)

(4.15), (4.17), and (4.19) constitute a closed system of integro-differential equations
which can be numerically solved given appropriate initial conditions.

4.2.2 Flows for first-order phase transitions

We consider a system exhibiting a first-order phase transition at a transition tem-
perature Tt. Our example is (2.14) at µ = 0.245t, which exhibits a first-order phase
transition in temperature according to the phase diagram in Fig. 2.3. Studying
flows below Tt (see Fig. 4.7), we notice two strong attractors. By its lower ther-
modynamic potential at the end of the flow, one of them can be identified with
the stable, symmetry-broken configuration. The values for the order parameter,
effective interaction, and thermodynamic potential difference reproduce the exact
mean-field results. Note that the final values do not depend on the magnitude of
the counterterm. This means that the dependence of the results on the external
field, known from sections 2.1.3, 2.2.3, 4.1.4, and 4.1.5 as well as Gersch et al.
(2005); Dupuis (2005); Salmhofer et al. (2004), is eliminated. This is an advantage
of the procedure introduced here.

Considering Fig. 4.7(a), we see that there is a separatrix between the effective
gap flows to the metastable configuration and the flows to the stable configuration.
The distances between the gap flows for different counterterm values decrease
monotonically with increasing cutoff. The flows contract onto a single point. In
models more complicated than (2.14), this contraction will no longer lead to a
single point due to the approximations which become necessary, but the strength
of the contraction can be interpreted as a measure of the approximations’ quality.
Here, those flows which exhibit weak changes of the effective interaction away
from Λ = 1 and weak changes of the order parameter close to Λ = 1 are most
promising for determining order parameters in more complicated models. We see
that the flows closest to the separatrix are not optimal flows since ∆(Λ) still shows
a large slope at Λ = 1. This final slope is smallest for a counterterm of roughly
twice the magnitude of the order parameter. Such a flow would yield an excellent
approximation of the order parameter, even if it were to be stopped at Λ = 0.75.

Considering the flows of the effective interaction in diagram 4.7(b), we do not
find a separatrix as in (a). Instead, the flows corresponding to the ones close to the
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Figure 4.7: Flows for V0 = 2t at µ = 0.245t, T = 0.01t < Tt, and ∆c increasing
from 0.01t to 1.01t in increments of 0.1t. Broken lines denote flows converging to
the stable symmetry-broken configuration; solid lines denote flows converging to
the metastable symmetric configuration. The flow starts at Λ = 0 and finishes at
Λ = 1. (a) Effective gap ∆eff . ∆c for each graph can be read off at the y-axis. (b)
Effective interaction V . Flows converging at 10.14t pass through greater values
with increasing counter-term. Flows converging at 4.43t behave inversely. (c)
Thermodynamic potential Ω. Flows pass through smaller values with increasing
counterterm.
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4.2 First-order phase transitions

separatrix in (a) develop a shoulder which becomes a maximum for certain values
of the counterterm (for an example of such a maximum, see diagram 4.8(b)). The
flows exhibiting the strongest effective interactions correspond to the flows giving
the worst approximations for the order parameter if terminated prematurely. This
entails for applications to models where this method is not exact that carefully
chosing the counterterm can significantly simplify the calculation and improve the
accuracy of the results.

The flows of the thermodynamic potential shown in 4.7(c) again exhibit sepa-
ratrix behaviour. This is in contrast to the flows above Tt. For the thermodynamic
potential, the flows closest to the separatrix yield the best approximations if ter-
minated prematurely. However, it is apparent from 4.7(c) that the flow must be
continued until the external field is completely compensated by the counterterm
to obtain reliable results for the thermodynamic potential.

Flows above Tt are illustrated in Fig. 4.8. Again, we clearly discern two attrac-
tors. In this case, however, the thermodynamic potential flows of the symmetry-
broken-phase attractor cross the thermodynamic potential flows of the symmetric-
phase attractor. The symmetric phase is therefore thermodynamically more stable.
Apart from this, the flows behave similarly as those below Tt. For inconveniently
chosen counterterms, the maxima in the effective-interaction flows are clearly vis-
ible in 4.8(b). Nevertheless, the flows reproduce the exact mean-field results.

4.2.3 Counterterm flows for second-order phase transitions

The flows for second-order phase transitions behave similarly to the flows for first-
order phase transitions, but only a single attractor appears, as can be seen in
Fig. 4.9(a). Fig. 4.9(b) shows that it is possible to suppress the effective inter-
action during the flow by chosing a large counterterm. Approximations for the
order parameter can be obtained by stopping the flow before Λ reaches 1. The
quality of such an approximation depends on the counterterm chosen. Again,
the best approximation can be obtained by chosing a counterterm of twice the
non-approximated value of the gap.

4.2.4 External field

If the external field ∆ext in (2.14) is zero, the half-filled system below Tc ex-
hibits two degenerate stable configurations (local minima of the thermodynamic
potential) distinguished by the sign of the order parameter. If ∆ext is non-zero,
this degeneracy is lifted. The fRG scheme outlined above allows us to select the
endpoint of the flow independently of the external field by appropriately setting
the counterterm, in contrast to the scheme from section 4.1. The flows toward the
metastable configuration are shown in Fig. 4.10 (broken lines). As the external field
is increased toward a critical value, the order parameter for the metastable con-
figuration vanishes and the corresponding local minimum of the thermodynamic
potential disappears. Beyond this critical value, the flows for negative counter-
terms become divergent as the effective gap reaches values close to zero, exposing
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Figure 4.8: Flows for V0 = 2t at µ = 0.245t, T = 0.04t > Tt, and ∆c increasing
from 0.01t to 1.01t in increments of 0.1t. Broken lines denote flows converging to
the metastable symmetry-broken configuration; solid lines denote flows converging
to the stable symmetric configuration. The flow starts at Λ = 0 and finishes at
Λ = 1. (a) Effective gap ∆eff . ∆c for each graph can be read off at the y-axis. (b)
Effective interaction V . Flows converging at 11.90t pass through greater values
with increasing counter-term. Flows converging at 5.62t behave inversely. (c)
Thermodynamic potential Ω. Symmetric flows pass through smaller values with
increasing counterterm, and so do symmetry-broken flows.
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Figure 4.9: Flows for V0 = 2t at µ = 0, T << Tc, and ∆c increasing from 0.01t
to 1.01t in increments of 0.1t. Broken lines denote flows converging to the stable
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interaction V . Flows pass through smaller values with increasing counterterm.
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Figure 4.10: Flows of ∆eff at µ = 0 for V0 = 2t. Full (broken) lines have ∆c = (−)t.
The external field increases from 0 to 0.15t with increasing final values of the flow.
The flow starts at Λ = 0 and finishes at Λ = 1.
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4 Charge-density wave: renormalization-group approach

low-energy modes. Such a divergence can be used as an indicator for an adversely
chosen starting point. The flows for positive counterterms (full lines in Fig. 4.10)
always attain the stable solution. Calculating the flows as for Fig. 4.10, but for
negative values of the external field ∆ext, we obtain the hysteresis curve of Fig. 4.11.
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Figure 4.11: Hysteresis effect in an external field. All solutions represent
symmetry-broken configurations. Green lines (×-symbols) represent stable, red
lines (+-symbols) metastable configurations.
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Chapter 5

Attractive Hubbard model

This chapter has three main goals. First, to study the influence of the 3+1 anoma-
lous effective interactions arising when Cooper and forward scattering are present
in a model. To this end, a reduced model containing only Cooper and forward scat-
tering with zero momentum transfer is solved by a resummation of perturbation
theory in section 5.1, which yields analytical formulas for all effective interactions.
The same resummation is applied as an approximation to the attractive Hubbard
model in two dimensions in section 5.2, allowing us to study the impact of the
3 + 1 effective interaction numerically and graphically. The Cooper and forward
scattering model is more general in the sense that it permits adjusting the strength
of the forward scattering independently of the strength of the Cooper scattering
and contains a more general spin structure of the interaction. However, the Hub-
bard model is more general in the sense that its interaction contains scattering
processes with arbitrary momentum transfer. Turning to the fRG treatment, we
discuss in section 5.3 the momentum-shell flows of the 3 + 1 anomalous effective
interactions for the attractive Hubbard model. The second goal is to study fRG
flows in the Katanin truncation for a non-mean-field model. This is undertaken in
sections 5.3.3 and 5.3.4, comparing the momentum-shell flow with the interaction
flow. The third goal is to find results for the superconducting order parameter
in the attractive Hubbard model at zero temperature in two dimensions. This is
accomplished in section 5.3.5, where we obtain values comparable to the literature
by employing the interaction-flow procedure.

5.1 Resummation approach to Cooper and for-

ward scattering

We commence our study of the 3 + 1 effective interactions by studying the impact
of the inclusion of forward scattering processes on a reduced BCS model for su-
perconductivity. In reduced BCS models where the electrons only interact in the
Cooper channel, anomalous effective interactions which have four incoming or four
outgoing legs appear in addition to the regular vertices with two incoming and
two outgoing legs. As we shall see, the additional inclusion of forward scattering
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5 Attractive Hubbard model

gives rise to anomalous two-particle effective interactions sporting three incoming
or outgoing legs. Origin, strength, and impact of these scattering processes are
discussed below.

5.1.1 Fermions with Cooper and forward scattering

To restrict ourselves to the study of a system containing only Cooper and forward
scattering, we start from the Hamiltonian

H =
∑

k

∑

s

εkc
†
kscks (5.1)

− 1

N

∑

k1k2

V0(k1k2)c
†
−k2↓

c†k2↑
ck1↑

c−k1↓
(5.2)

− 1

2N

∑

k1k2

∑

s1,s2

U0(k1k2)c
†
k1s1

ck1s1
c†k2s2

ck2s2
(5.3)

+
∑

k

(

∆ext(k)c†−k↓c
†
k↑ + ∆∗

ext(k)ck↑c−k↓

)

. (5.4)

c and c† are fermionic annihilation and creation operators, respectively, (5.1) is
a kinetic energy term, (5.2) is a singlet-channel Cooper scattering term, (5.3)
describes spin-independent forward scattering with zero momentum transfer, and
(5.4) describes the coupling of an external pairing field to the system. (5.2) and
(5.3) thus form the interaction part of the Hamiltonian.

Passing to a functional integral formulation within the Matsubara formalism at
nonzero temperature T as in (2.6) and (3.1), we obtain the grand canonical action

S =
∑

k

∑

s

(iωn − ξk)ψ̄ksψks (5.5)

+
∑

k1,k2

∑

n1,n2,n3

V0(k1k2)ψ̄n1−k2↓ψ̄n2k2↑ψn3k1↑ψn4−k1↓ (5.6)

+
∑

k1,k2

∑

n1,n2,n3

∑

s1,s2

1

2
U0(k1k2)ψ̄n1k1s1ψn2k1s1ψ̄n3k2s2ψn4k2s2 (5.7)

−
∑

k

(
∆ext(k)ψ̄−k↓ψ̄k↑ + ∆∗

ext(k)ψk↑ψ−k↓

)
, (5.8)

where n4 is chosen so that energy is conserved and ψ and ψ̄ are the Grassmann
fields matching c and c†, respectively. The sign is chosen such that −S appears in
the exponent of the functional integral for the partition sum, as in (3.1) and (2.6).
We substitute

φ̄k+ = ψ̄k↑, φk+ = ψk↑, φk− = ψ̄−k↓, φ̄k− = ψ−k↓, (5.9)

similarly to the general scheme (3.4) outlined in section 3.1, and obtain for the
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5.1 Resummation approach to Cooper and forward scattering

interaction parts (5.6) and (5.7) of the action:

−
∑

k1,k2

∑

n1,n2,n3

{

V0(k1k2)φ̄k1−φ̄k2+φk1+φk2−+

∑

N1=±,N2=±

N1N2
1

2
U0(k1k2)φ̄k1N1

φ̄k2N2
φk1N1

φk2N2

}

, (5.10)

where we have suppressed the Matsubara frequencies in the notation for brevity.
Note that because we have absorbed the spin degree of freedom into the Nambu
index, there is no multiple-counting of degrees of freedom, implying that the com-
pensating factor ν from section 3.1 is 1.

To simplify the necessary antisymmetrization of the vertex, we rewrite (5.10)
by furnishing each φ with its own momentum/energy and Nambu index, which
necessitates introducing additional sums and Kronecker deltas. We organize the
four Nambu indices into one multiindex N, write (±±±±) := δN1±δN2±δN3±δN4±,
and abbreviate φkiNi

= φi as well as φ̄kiNi
= φ̄i. Thereby, (5.10) becomes:

−
∑

k1...k4,N

δn1+n2,n3+n4
δk1k3

δk2k4
φ̄1φ̄2φ3φ4×

{

V0(k1k2)(− + +−) +
1

2
U0(k1k2)N1N2δN1N3

δN2N4

}

= −1

4

∑

k1...k4,N

δn1+n2,n3+n4
φ̄1φ̄2φ3φ4×

{[V0(k1k2)((− + +−) + (+ −−+))

+U0(k1k2)N1N2δN1N3
δN2N4

] δk1k3
δk2k4

− [V0(k1k2)((+ − +−) + (− + −+))

+U0(k1k2)N1N2δN1N4
δN2N3

] δk1k4
δk2k3

} .

We introduce the bare four-point function,

V0(1234) = δn1+n2,n3+n4
{ [V0(k1k2)((− + +−) + (+ −−+))

+U0(k1k2)N1N2δN1N3
δN2N4

] δk1k3
δk2k4

− [V0(k1k2)((+ − +−) + (− + −+))+

U0(k1k2)N1N2δN1N4
δN2N3

] δk1k4
δk2k3

} , (5.11)

where we have written i instead of kiNi in the argument of V0. For the calculation
of the δp1p3

-part of the effective interaction, the bare four-point function is most
conveniently written in matrix form,

V0(k1k2) =







U0(k1k2) 0 0 −U0(k1k2)
0 0 V0(k1k2) 0
0 V0(k1k2) 0 0

−U0(k1k2) 0 0 U0(k1k2)







(5.12)
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5 Attractive Hubbard model

where momentum and energy conservation are shifted into the diagrammatics, N1

is paired with N3, N2 with N4, and the base

{(−−), (−+), (+−), (++)}

illustrated in Fig. 5.7 is used. The notation (±±) is defined in analogy to the
parentheses with four signs introduced above. A contribution proportional to δk1k2

is neglected as it lives on a set of degrees of freedom with dimensionality reduced
in comparison to the set of degrees of freedom on which V0 lives. Note that the
rank of V0 is three, which makes it possible to reduce the number of equations
determining the effective interactions as is done in section 5.1.4.

Rewritten using the substitution (5.9), the quadratic parts (5.5) and (5.8) of
the action akin to the quadratic parts (5.1) and (5.4) of the Hamiltonian can be
written in a form amenable to the usual treatment of functional integrations via
Wick’s theorem (Negele and Orland (1998) page 75):

∑

k1k2,N1N2

φ̄1φ2δk1k2







[iωn1
− ξk1

]
︸ ︷︷ ︸

=Q ++

(++) + [iωn1
+ ξ−k1

]
︸ ︷︷ ︸

=Q −−

(−−)

−∆ext(k1)
︸ ︷︷ ︸

=−Q +−

(+−) − ∆∗
ext(k1)

︸ ︷︷ ︸

=−Q −+

(−+)







.

This identifies the matrix Q from the formalism taking into account symmetry
breaking introduced in section 3.1, see (3.3). In order to find an explicit form of
the full propagator, we determine the normal and anomalous self-energy in the
next section.

5.1.2 Gap equation

Commanding the diagrammatically simple antisymmetrized bare four-point func-
tion (5.11)/(5.12), in this section we show by a diagrammatic resummation that
mean-field theory is exact in the thermodynamic limit for the Hamiltonian speci-
fied by (5.1)+(5.2)+(5.3)+(5.4). We can employ Hugenholtz diagrammatics (see
Negele and Orland (1998) chapter 2.3), as there are no anomalous expectation
values in the φ-fields. Propagators anomalous in the ψ-fields are normal in the
φ-fields: 〈φ+φ̄−〉 = 〈ψψ〉. Diagrammatically, the perturbation expansion for the
self-energy is shown in the first row of Fig. 5.1. It consists of a sum of all diagrams
obtained by connecting bubbles via bare interaction vertices. This is due to the
following argument, which proceeds in analogy to the one in section 2.1.2. An over-
lap between two loops removes one integration over all degrees of freedom due to
the reduced momentum structure of the interaction (5.2)+(5.3). This diminishes
the contribution of such a diagram by a factor proportional to the inverse system
size in comparison with the diagrams actually drawn here. The diagrams which
contribute in leading order in the system size can thus be resummed as shown in
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5.1 Resummation approach to Cooper and forward scattering

Figure 5.1: Perturbation expansion for the self-energy. Small circles represent bare
interactions, lines with arrows represent bare propagators, bold lines with arrows
represent full propagators, and filled circles represent the self-energy.

the second row of Fig. 5.1. Translating the last diagram into the language of the ψ-
fields via the substitution (5.9), we find self-consistent Hartree-Fock theory, which
we draw in Fig. 5.2. The Fock part contributes only in the symmetry-broken

Figure 5.2: The diagrams of the right-hand side of the self-consistency equation
for the self-energy in the language of the ψ-fields

case, yielding anomalous self-energies which lead to the anomalous propagators
characteristic for the symmetry-broken phase. In section 5.1.3, we see how these
anomalous propagators lead to anomalous effective interactions.

To further our control of the self-energy of the system given by the Hamiltonian
(5.1)+(5.2)+(5.3)+(5.4), we study the diagrammatic equations obtained above
symbolically. Evaluating the diagrams of Fig. 5.1 while suppressing convergence-
generating factors in the notation leads to the gap equation

ΣN1N2
(p) = −

∑

k;M1,M2

[ δN1N2
δM1M2

M2N1U0(pk)

+V0(pk)(δN1−δM2+δN2+δM1− + δN1+δM2−δN2−δM1+)] GM1M2
(k),

where volume and temperature factors are absorbed into the summation symbol
∑

as we continue to do in the following. The sign stems from the fermion loop. Note
that for the one-particle Green’s function as well as the self-energy, the first index
refers to an outgoing line, while the second refers to an ingoing line. Explicitly
distinguishing the case off-diagonal in Nambu space from the case diagonal in
Nambu space and inserting convergence-generating factors where necessary, we
obtain two distinct equations,

Σ±±(p) = ∓
∑

k

U0(pk)
[

G++(k)eiωn0+ − G−−(k)eiωn0−
]

,

Σ±∓(p) = −
∑

k

V0(pk)G±∓(k).
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5 Attractive Hubbard model

Writing ∆(p) := −∆ext(p) − Σ+−(p), Σ(p) := Σ++(p), and

E(k) :=
√

(ξk + Σ(k))2 + |∆(k)|2,

furthermore assuming ξk = ξ−k, and using the base {(+), (−)} defined in analogy
to the cases for two and four Nambu indices, we find

G(k) =
1

ω2
n + E(k)2

(
−iωn − ξk − Σ(k) ∆(k)

∆∗(k) −iωn + ξk + Σ(k)

)

(5.13)

=:

(
G(k) F (k)
F ∗(k) H(k)

)

(5.14)

and

Σ(p) = −
∑

k

U0(kp)
eiωn0+(−iωn − ξk − Σ(k)) + eiωn0−(iωn − ξk − Σ(k))

ω2
n + E(k)2

∆(p) = −∆ext(p) +
∑

k

V0(pk)
∆(k)

ω2
n + E(k)2

.

The self-energies do not depend on Matsubara frequency since V0, U0, and ∆ext

do not depend on Matsubara frequency. The Matsubara sums can therefore be
performed analytically according to (B.6), (B.12), and (B.13). The result is

∆(p) = −∆ext(p) +
∑

k

V0(pk)
∆(k) tanh(βEk/2)

2Ek

(5.15)

Σ(p) = −
∑

k

U0(pk)

[

1 − ξk + Σ(k)

Ek

tanh(βEk/2)

]

. (5.16)

Setting U0 = 0, (5.15) becomes the superconducting gap equation (see Mahan
(2000), page 641). Setting V0 = 0, (5.16) turns into

Σ(p) = −2
∑

k

U0(pk)f(ξk + Σ(k)), (5.17)

where f(E) is the usual Fermi function. (5.17) is the Hartree self-energy equation
appropiate for the interaction term (5.3). This concludes the section on the gap
equations, in which an explicit form of the full propagator was found and self-
consistency equations determining the superconducting order parameter as well as
the normal self-energy were derived.

5.1.3 Bethe-Salpeter equation

In this section, we determine the effective interaction by a resummation simi-
lar in fashion to the resummation for the charge-density wave (CDW) presented
in Fig. 2.1 of section 2.1.2. We start by determining the structure of the per-
turbation expansion for the effective interaction and studying the change in the
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5.1 Resummation approach to Cooper and forward scattering

Figure 5.3: Bethe-Salpeter equation for the four-point function. Filled circles
represent effective four-point functions, empty circles represent bare four-point
functions, lines which have both ends terminating in a vertex represent full propa-
gators, other lines are decorations. Note that the first two indices refer to incoming
lines, while the second pair refers to outgoing lines.

diagrammatics caused by the substitution (5.9). In the thermodynamic limit, the
perturbation expansion for the effective interaction includes only bubble diagrams
which can be resummed into a Bethe-Salpeter equation as shown in figure 5.3.
This is due to an argument which is analogous to the arguments presented for the
CDW in section 2.1.2 and for the superconducting gap equation in section 5.1.2.
The contributions from all other diagrams, notably particle-particle diagrams in
φ-fields, vanish. Translating the diagrams into the language of the ψ-fields via the
substitution (5.9), we find that we are resumming diagrams of the type exemplified
in figure 5.4. Our calculation includes chains of bubbles (first example), ladders

, , ,

Figure 5.4: Examples of the ψ-field diagrams resummed by the φ-field Bethe-
Salpeter equation

(second example), and connecting parts (third example), forming diagrams such
as the fourth example. Adding arrows to the connecting part as in Fig. 5.5, we find
effective interactions with an uneven number of incoming arrows in the symmetry-
broken phase. These are taken into account automatically in the Bethe-Salpeter

Figure 5.5: Symmetry-broken phase diagram in ψ-field language generating an
effective interaction with three incoming arrows

equation in the φ-formalism.

Referring to the enlarged version Fig. 5.6 of the loop diagram from Fig. 5.3,

73



5 Attractive Hubbard model

Figure 5.6: Blow-up of the bubble diagram from the right-hand side of the equation
in Fig. 5.3.

we can write down the Bethe-Salpeter equation symbolically:

VN(p1 . . . p4) =V0N(p1 . . . p4)−
∑

k,M

VN1M3N3M4
(p1, p2 + k, p3, p4 + k)GM3M2

(p2 + k)×

GM1M4
(p4 + k)V0M1N2M2N4

(p4 + k, p2, p2 + k, p4), (5.18)

where the momentum conservation of V0 is used to simplify the expression. Since
propagators are momentum and energy conserving, the full four-point function has
the same momentum and energy structure as the bare four-point function. How-
ever, the Nambu structure can be different, since propagators do not necessarily
conserve the Nambu index. This is how effective interactions with an odd number
of incoming arrows are generated in the φ-formalism. We neglect the second ma-
trix from (5.12) to calculate the δp1p3

part of V and denote the Nambu indices in
pairs to make the matrix structure as in Fig. 5.7 visible, obtaining

VN1N3,N2N4
(p1p2) =V0N1N3,N2N4

(p1p2)−
∑

q,M

V0M1M2,N2N4
(kp2)GM1M4

(k)GM3M2
(k)VN1N3,M3M4

(p1k)

def
=
∑

k,M

V0M1M2,N2N4
(kp2)LM3M4,M1M2

(k)VN1N3,M3M4
(p1k).

(5.19)

(5.19) becomes

V(p1p2) = V0(p1p2) −
∑

k

V(p1k)L(k)V0(kp2). (5.20)

This determines the effective interaction implicitly. The explicit evaluation is the
topic of the sections below.

5.1.4 Redundancies of V

In this section, the redundancies of V are analyzed to facilitate its explicit deter-
mination below. To carry out the analysis, we study (5.20) component-wise. To
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5.1 Resummation approach to Cooper and forward scattering

Figure 5.7: A diagram for every entry of V.

this end, we consider the entries of V(k1k2) diagramatically. Their diagrammatic
representations are defined in Fig. 5.7. A detailed study of LV0 from (5.20) is ex-
pedient to further our understanding of the Bethe-Salpeter equation. Neglecting
momentum/energy parameters for brevity and using H2 = G∗2, we find

LV0 =







G∗2 HF ∗ FH FF ∗

F ∗H F ∗2 GH GF ∗

HF HG F 2 FG
F ∗F F ∗G GF G2







V0

=







−U0(FF
∗ −G∗2) V0FH V0F

∗H −U0(G
∗2 − FF ∗)

−U0F
∗(G−H) V0GH V0F

∗2 −U0F
∗(H −G)

−U0F (G−H) V0F
2 V0GH −U0F (H −G)

−U0(G
2 − F ∗F ) V0FG V0F

∗G −U0(FF
∗ −G2)






. (5.21)

From (5.13), we find (G−H) ∈ R and GH ∈ R for Σ ∈ R. With this, we see by
multiplying the matrix from Fig. 5.7 with (5.21) and studying (5.20) component-
wise that the relations from Fig. 5.8 hold. The first matrix from (5.12), constituting
the part of the bare interaction relevant for this calculation, also fulfills the relations
from Fig. 5.8. With the shorthands introduced in Fig. 5.8, the effective interaction
matrix thus simplifies to

V =







U∗ Ω∗
2 Ω2 −U

−Ω1 W ∗ V Ω1

−Ω∗
1 V ∗ W Ω∗

1

−U∗ −Ω∗
2 −Ω2 U






, (5.22)
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Figure 5.8: Relations between the components of V

where parameter-free notation is used for brevity. To remove as many redundancies
as possible while preserving the structure of (5.20), we introduce

Vnew :=





U Ω2 Ω∗
2

−Ω1 V W ∗

−Ω∗
1 W V



 , (5.23)

LnewVnew
0

:=





G2 +G∗2 − 2FF ∗ F ∗(H −G) F (H −G)
F (H −G) HG F 2

F ∗(H −G) F ∗2 HG









U0 0 0
0 V0 0
0 0 V0



 (5.24)

=





U0(G
2 +G∗2 − FF ∗) V0F

∗(H −G) V0F (H −G)
U0F (H −G) V0HG V0F

2

U0F
∗(H −G) V0F

∗2 V0HG



 . (5.25)

Multiplying (5.23) by (5.25), we obtain the same equations as by multiplying (5.22)
by (5.21). This means that the matrix equation

Vnew(p1p2) = Vnew
0 (p1p2) −

∑

k

Vnew(p1k)Lnew(k)Vnew
0 (kp2) (5.26)

is equivalent to (5.20). In conclusion, the redundancies of V allow us to reduce the
16 scalar equations of (5.20) to the nine scalar equations of (5.26).

5.1.5 Momentum-independent scattering

It is possible to solve (5.26) explicitly if we assume that the bare interactions
U0(p1p2) and V0(p1p2) lack momentum-dependence. In this case, (5.26) becomes

Vnew = Vnew
0 − Vnew

∑

k

Lnew(k)Vnew
0

def
= Vnew

0 − VnewLnew
P Vnew

0 (5.27)

⇒ Vnew = Vnew
0 (1 + Lnew

P Vnew
0 )−1 = (Vnew

0
−1 + Lnew

P )−1 (5.28)

76



5.1 Resummation approach to Cooper and forward scattering

We learn from (5.24) that, in components, the inverse of the RHS of (5.28) reads




G2 +G∗2 − 2FF ∗ + (U0)
−1 F ∗(H −G) F (H −G)

F (H −G) HG+ V −1
0 F 2

F ∗(H −G) F ∗2 HG+ V −1
0



 , (5.29)

where, for each pair of propagators, summation over all possible values of their
omitted momentum and energy arguments is implicit. We choose the following
abbreviations for clarity:

K := F (H −G),

L/V0 := HG+ V −1
0 ,

M/U0 := G2 +G∗2 − 2FF ∗ + (U0)
−1.

(5.29) then reads




M/U0 K∗ K
K L/V0 F 2

K∗ F ∗2 L/V0



 . (5.30)

L/V0 and M/U0 are not optimal as abbreviations; however, this notation keeps
the bare couplings in plain sight and makes it easier to study special cases later
on. In order to invert (5.29), we calculate the cofactor matrix:





(L/V0)
2 − F ∗2F 2 −(KL/V0 −K∗F 2) KF ∗2 −K∗L/V0

−(K∗L/V0 − F ∗2K) ML/U0V0 −KK∗ −(F ∗2M/U0 −K∗2)
K∗F 2 −KL/V0 −(F 2M/U0 −K2) ML/U0V0 −KK∗



 , (5.31)

which is the transpose of the adjugate matrix adj(5.29). We note from (5.15) that
∆(p) is independent of momentum if V0(p1p2) is; and that therefore, F 2F ∗2 =
|F 2|2 and K∗F = KF ∗ in this section. Reading off

det(V−1)

=((L/V0)
2 − |F 2|2)M/U0 −K(K∗L/V0 − F ∗2K) +K∗(K∗F 2 −KL/V0)

=(L/V0 − |F 2|)(L/V0 + |F 2|)M/U0 − 2|K|2(L/V0 − |F 2|)
=(L/V0 − |F 2|)

[
(L/V0 + |F 2|)M/U0 − 2|K|2

]
(5.32)

from (5.30) and (5.31), we identify the Goldstone boson’s divergence-creating in-
fluence by writing out the first factor of (5.32):

L/V0 − |F 2| = GH + V −1
0 − |F 2|

= V −1
0 −

∑

q

1

ω2
n + E2

q

= −∆ext

V0∆
. (5.33)

See the definition of the matrix Green’s function (5.13) and (5.14) for the second
and the gap equation (5.15) for the second step.
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5 Attractive Hubbard model

We conclude the inversion of (5.29) by combining the adjugate matrix (see
(5.31) and following text), the determinant (5.32), and the relation (5.33) through
the matrix inversion formula

A−1 =
1

det A
adj(A)

to obtain:

U =
L/V0 + |F 2|

(L/V0 + |F 2|)M/U0 − 2|K|2 = U0
L+ V0|F 2|

(L+ V0|F 2|)M − 2U0V0|K|2

Ω1 =
K

(L/V0 + |F 2|)M/U0 − 2|K|2 = U0V0
K

(L+ V0|F 2|)M − 2U0V0|K|2

Ω2 =
−K∗

(L/V0 + |F 2|)M/U0 − 2|K|2 = U0V0
−K∗

(L+ V0|F 2|)M − 2U0V0|K|2

V =
−∆(ML/U0 − V0KK

∗)

∆ext [(L/V0 + |F 2|)M/U0 − 2|K|2] = V0
∆

∆ext

U0V0|K|2 −ML

(L+ V0|F 2|)M − 2U0V0|K|2

W =
V0∆(F ∗2M/U0 −K∗2)

∆ext [(L/V0 + |F 2|)M/U0 − 2|K|2] = V 2
0

∆

∆ext

F ∗2M − U0K
∗2

(L+ V0|F 2|)M − 2U0V0|K|2
We realize that Ω1 and Ω2 are finite in the symmetry-broken phase because their
numerators remain finite. This prevents us from neglecting them in further calcula-
tions. Setting U0 = 0, U , Ω1, and Ω2 vanish as expected, while the expressions for V
andW turn into the usual random-phase approximation expressions for the normal
and anomalous effective Cooper interaction. This concludes the study of the model
combining Cooper with forward scattering defined by (5.1)+(5.2)+(5.3)+(5.4).

5.2 Resummation approach to the attractive Hub-

bard model

5.2.1 Hamiltonian

In this section, we study the attractive Hubbard model in two dimensions employ-
ing the approach developed in sections 5.1.1-5.1.3 as an approximation. formalism
and method developed in the preceding section 5.1 for a system incorporating
Cooper and forward scattering. Our goals are to study the Nambu structure of
the effective interaction, to numerically gauge the impact of the effective inter-
actions with an odd number of incoming legs, and to study the momentum and
energy dependence of the effective interaction, analyzing collective modes in the
process. The Hubbard Hamiltonian reads

H =
∑

ks

ξkc
†
kscks −

U0

N

∑

k1k2k3

c†k1↑
ck3↑

c†k2↓
ck1+k2−k3↓

. (5.34)

We also add an external singlet-pairing field term
∑

k

(

∆ext(k)c†−k↓c
†
k↑ + ∆⋆

ext(k)ck↑c−k↓

)

, (5.35)
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5.2 Resummation approach to the attractive Hubbard model

which is sent to zero after the calculations. The tight-binding dispersion relation

ξk = −2t(cos kx + cos ky) − 4t′ cos kx cos ky − µ (5.36)

includes hopping between nearest neighbors with amplitude t and hopping be-
tween next-nearest neighbors with amplitude t′. We pass to a functional integral
representation (cf. (5.5)-(5.8)) and employ the substitution (5.9) to obtain

S =
∑

k

(
φ̄k+ φ̄k−

)
(
iωn − ξk −∆∗

ext(k)
−∆ext(k) iωn + ξk

)(
φk+
φk−

)

+U0

∑

k1k2k3

φ̄k1+φ̄k3−k1−k2,−φk3+φ−k2−,
(5.37)

where k = (iωn,k) and volume as well as temperature factors are implicitly con-
tained in the summation symbol

∑
, a practice we also apply in the following.

Antisymmetrizing the interaction part yields

U0

∑

1...4

δk1+k2,k3+k4(δN1+δN2− − δN2+δN1−) (δN3+δN4− − δN4+δN3−)
︸ ︷︷ ︸

(++)(−−)−(+−)(−+)−(−+)(+−)+(−−)(++)

φ̄1φ̄2φ3φ4, (5.38)

where i, if used as an index, is short for (kiNi), and we have exchanged 2 and 4
in comparison with (5.37). As a matrix according to the Nambu base from figure
5.7, the antisymmetrized bare interaction reads

U0







0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0






δk1+k2,k3+k4. (5.39)

5.2.2 Resummation approach

We employ the gap equation (5.15) as an approximation for the true supercon-
ducting gap equation in the following. The diagonal self energy is absorbed in
the chemical potential, µ→ µ− Σ. We employ the Bethe-Salpeter equation from
Fig. 5.3 as it treats superconductivity and forward scattering, which are the most
important scattering processes at low temperatures (Metzner et al. (1998)). The
blow-up from Fig. 5.6 is shown for the Hubbard model in Fig. 5.9. Evaluating the

Figure 5.9: The loop diagram from figure 5.6 for the Hubbard model
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5 Attractive Hubbard model

diagrams yields the symbolic Bethe-Salpeter equation

U(1234) = U0(1234) −
∑

q

N ′

1...M4

UN1M2N3M1
(p1, k, p3)×

U0M4N2M3N4
(k + p4 − p2, p2, k)GM1M4

(k + p4 − p2)GM3M2
(k),

(5.40)

where as a parameter, i = 1 . . . 4 is short for piNi. Through the introduction of
the loop matrix

LM2M1,M4M3
(k, p) := GM1M4

(k + p)GM3M2
(k) (5.41)

and by exploiting momentum and energy conservation p1 + p2 = p3 + p4 while
setting p := p1 − p3, (5.40) can be rewritten as

U(p1 . . . p4) = U0 −
∑

q

U(p1, k, p3, k + p)L(k, p)U0, (5.42)

where the Nambu indices of U and U0 are organized into pairs as in Fig. 5.7.
U(p1 . . . p4) only depends on p in this approximation, as can be seen by solving for
U. Finally, we obtain

U(p) =

(

U−1
0 +

∑

q

L(k, p)

)−1

. (5.43)

Using the symbols from (5.13),

L =







HH HF ∗ FH FF ∗

F ∗H F ∗F ∗ GH GF ∗

HF HG FF FG
F ∗F F ∗G GF GG






, (5.44)

where for each matrix entry it is understood that k + p is plugged into the first
and k into the second factor, implying that the order of the two propagators is
fixed in this case. Furthermore, a star in (5.44) implies that the complex conjugate
be taken, but only of the gap amplitude in the numerator of the corresponding
propagator.

5.2.3 No Nambu rank reduction

A simplification as given by the relations in figure 5.8 is not possible in the Hubbard
model case. This is because the order of the propagators in the entries of L cannot
be reversed due to their differing arguments and because U0 is nonzero only on
the counter-diagonal. We study this fact in more detail in the following.

We first show which simplifications still apply. Writing

U =







X∗ Ω3 Ω2 U
−Ω∗

4 W ∗ V Ω1

−Ω∗
1 V ∗ W Ω4

U∗ −Ω∗
2 −Ω∗

3 X






, (5.45)
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5.2 Resummation approach to the attractive Hubbard model

we see that our labels are consistent with (5.42) by proceeding as in section 5.1.4.
The stars in (5.45) only imply to take the complex conjugate of the gap amplitude.

For (5.42) to reduce to an equation for 3× 3 matrices, there can only be three
distinct entries in each line of U: at least one entry must be expressible through one
of the others under sign reversal or complex conjugation. We consider the first line
of U. The inequality sign 6= in the following means inequality even if overall signs
and imaginary-part signs are disregarded. Plugging U(k1 . . . k4) = U(k1 − k3) as
well as the loop matrix (5.44) into the resummation equation (5.42), we find that
X∗ 6= Ω3 6= U 6= Ω2 and X∗ 6= Ω2 6= U 6= Ω3. U 6= X follows from the presence of
a U0-term – due to the counter-diagonal structure of the bare interaction (5.39) –
in the equation for U but not in the equation for X. Ω2 6= Ω3 is due to GH 6= HG,
that is the non-commutativity of the propagator products in (5.44). We have thus
shown that the first line of U cannot be simplified because of the Nambu structure
of U0 and the fixed order of the propagators in L, substantiating our claim from
this section’s first paragraph.

5.2.4 Numerical setup

To obtain a deeper understanding of the structure of the effective interaction, we
solve (5.43) numerically in the following. The Matsubara sums in (5.43) can be
performed analytically. This operation proceeds similarly for all components of
L, as the poles are the same in all cases. These poles are determined by the
denominator

D :=
[
(ωn + νm)2 + E2

k+p

] (
ω2
n + E2

k

)

of the products of Green’s functions (5.13) in the loop matrix L, where the sum-
mation is over ωn and k. Note that νm, as a difference between two fermionic
Matsubara frequencies, is a bosonic Matsubara frequency, νm ∈ 2πTZ. The de-
nominator D can be factorized into

D = [i(ωn + νm) + Ep+k] [i(ωn + νm) −Ep+k] [iωn + Ek] [iωn − Ek] .

By the residue theorem, we obtain

T
∑

ωn

g(iωn)

D
=

f(−iνm − Ep+k)g(−iνm − Ep+k)

−2Ep+k(−iνm −Ep+k + Ek)(−iνm −Ek −Ep+k)

+
f(−iνm + Ep+k)g(−iνm + Ep+k)

2Ep+k(−iνm + Ep+k + Ek)(−iνm + Ep+k − Ek)

+
f(−Eq)g(−Eq)

−2Ek(iνm + Ep+k − Ek)(iνm −Ep+k − Ek)

+
f(Eq)g(Eq)

2Ek(iνm + Ep+k + Ek)(iνm −Ep+k + Ek)
, (5.46)

where f(x) = (exp(x/T ) + 1)−1 is the Fermi distribution and g(x) is any smooth
function of order smaller than x3 for large x. Explicit expressions for the individual

81



5 Attractive Hubbard model

bubbles are listed in appendix C. The remaining integration over the Brillouin zone
and the matrix inversion on the right-hand side of (5.43) are performed numerically.
In the following, a system with t′ = t/6, µ = −1.5t, U0 = 2t, ∆ext = 10−4t, and
T = 0.035t is assumed. This choice of parameters corresponds to an approximately
quarter-filled system far below its mean-field critical temperature. We employ an
external field ∆ext = 10−4t. This keeps the numerics well-behaved having no
appreciable influence away from p = 0.

5.2.5 Numerical results: momentum space

We commence by discussing the numerical results for the static part, ν = 0. To
provide an overview, we plot in Fig. 5.10 and 5.11 the normal part V and the
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Figure 5.10: Momentum-dependence of the static part of the normal Cooper-
channel effective interaction V in units of t

anomalous part W of the Cooper channel effective interaction (see (5.45)). We
are particularly interested in the impact of the Ωi on the effective interactions.
To gauge this impact, we study the difference between V calculated by fully solv-
ing (5.43) and V calculated by setting all loops combining normal and anomalous
propagators to zero. This is equivalent to setting the Ωi to zero, because besides
generating the Ωi, these loops are only involved in the feedback of the Ωi onto the
other effective interactions. We abbreviate by Vwith Ω the normal Cooper-channel
effective interaction if the Ωi are taken into account, and by Vw/o Ω otherwise. A
plot of the diffence relative to Vw/o Ω is shown in Fig. 5.12. The change induced by
including the Ωi is smaller than 5% in magnitude and restricted to large and very
small momenta. Only about a quarter of the available phase space shows an ap-
preciable change in the magnitude of V . For very small momenta, the inclusion of
the Ωi suppresses V in magnitude, but only by 2%. Studying the large-momentum
part of Vwith Ω and Vw/o Ω plotted in Fig. 5.13 reveals that the inclusion of the Ωi ac-
tually enhances the magnitude of the normal Cooper channel effective interaction
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Figure 5.11: Momentum-dependence of the static part of the anomalous Cooper-
channel effective interaction W in units of t
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Figure 5.12: Change of the normal Cooper channel effective interaction through
the inclusion of the Ωi, (Vw/o Ω − Vwith Ω)/Vw/o Ω
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Figure 5.13: Normal Cooper-channel effective interaction V with (lower) and with-
out (upper) the Ωi.

for large momenta.

We examine the change in the anomalous Cooper channel effective interaction,
W , attaching labels as above. This is plotted in Fig. 5.14. W is strongly suppressed

-4 -3 -2 -1  0  1  2  3  4
px -4

-3
-2

-1
 0

 1
 2

 3
 4

py

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Figure 5.14: Change of the anomalous Cooper channel effective interaction through
the inclusion of the Ωi, (Ww/o Ω −Wwith Ω)/Ww/o Ω

by the inclusion of the Ωi, especially for large momenta along the Brillouin zone
diagonal, while the suppression for very small momenta is only about 2%, as for
V . Along the crystal axes, W changes by up to 10%. The large change along the
Brillouin zone diagonal is due to the almost complete suppression of the large-
momentum W along the diagonal by the introduction of the Ωi. This suppression
is clearly seen in Fig. 5.15. It is notable that while V is enhanced by the Ωi in
certain parts of the Brillouin zone, W is everywhere suppressed or unchanged. It
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Figure 5.15: Comparison of Wwith Ω (lower) and Ww/o Ω (upper) for large momenta
along the BZ diagonal

is also notable that the absolute value of the suppression of W for large momenta
along the diagonal is quite similar to the absolute value of the enhancement of V .
This implies a transfer of weight from W to V , that is, from anomalous to normal
Cooper channel effective interactions.

Approximative expression To study the collective modes associated with the
symmetry-breaking, we examine the small-momentum behavior of the effective
interaction. An approximate dispersion of the collective modes can be determined
by approximating the effective interaction components as rational functions of
energy and momenta. We start by comparing our momentum-space data for V
and W to the function

α

∆ext + β|p|2 + γ, (5.47)

with α, β ∈ R to be determined. Fig. 5.16 shows the comparison for V . Fig. 5.17
does likewise for W , but setting α = 0.2870 and γ = 0. For the small-momentum
region displayed, (5.47) is an excellent approximation for V and W . Scrutinizing
large momenta (not shown here), it becomes clear that the approximation is much
less good, but still acceptable. Overall, (5.47) is a good approximation for both V
and W provided that α, β, and γ are chosen correctly. This means that for small
|p|, the leading contribution to the denominators of V and W is of second order.

5.2.6 Numerical results: frequency space

To gauge the impact of the inclusion of the Ωi on the energy-dependence of V and
W , we consider the p = 0 part of the vertex. The real and imaginary parts of the
normal V and anomalous Cooper vertices W , both for the case with and for the
case without Ωi, are plotted in figure 5.18. As we discern from figure 5.19, the
maximum change in the normal Cooper-channel vertex upon inclusion of the Ωi is
almost 30%. This maximum change occurs in the real part for νm = ±2πT . The
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Figure 5.16: V in units of t calculated numerically (red lines) in comparison with
the approximation (5.47) using α = −0.2874t2, β = 0.45t, and γ = −3.294t (green
crosses).
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Figure 5.17: W in units of t calculated numerically (red lines) in comparison with
the approximation (5.47) using α = 0.2870t2, β = 0.45t, and γ = 0 (green crosses)
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Figure 5.18: Energy dependence of V = Vwith Ω and Vw/o Ω, W = Wwith Ω and
Ww/o Ω, all in units of t
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Figure 5.19: The energy-dependent change of the normal and anomalous Cooper-
channel vertices upon introduction of the Ωi, νm in units of t
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vertex for νm = 0 does not change and neither does the imaginary part for any
νm. (The value at νm = 0 in the left-hand graph of figure 5.19 is due to numerical
inaccuracy.)

Turning to the right-hand graph, we find that for the imaginary part of the
anomalous Cooper channel effective interaction W , the effect of including the Ωi

is negligible: Im(W ) vanishes always. The real part, however, while unchanged for
νm = 0, is strongly suppressed for νm having finite magnitude. This suppression
grows with |νm| and attains almost 70% for the largest-magnitude Matsubara fre-
quency considered here. This is due to Re(Wwith Ω) approaching 0 much faster than
Re(Ww/o Ω) for large νm. Overall, the effect of the Ωi on the energy dependence of
the normal and anomalous Cooper effective interaction is sizable.

Analytic expressions To complete our study of the Ωi’s impact on the disper-
sion relation for the collective modes present in the symmetry-broken state, we
search an approximate expression for the energy dependence of V and W . To this
end, we extend the expression (5.47) by adding to the denominator:

α

∆ext + βp|p|2 + βνν2
m

+ γ (5.48)

Fig. 5.20 shows the result of least-squares fitting (Levenberg (1944); Marquardt
(1963)) (5.48) via βν to the numerical data for ReV and W . α was determined
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Figure 5.20: Fitting (5.48) to the Matsubara-frequency dependence of ReV (left)
and W (right), everything in units of t. Crosses correspond to numerical results,
lines to the fitted functions. α = −0.2880t, βν = 0.37t−1, and γ = −2t were used
for V , α = 0.2874t, βν = 0.51t−1, and γ = 0 for W .

from the value at νm = 0 of ReV and W , respectively. γ was manually set to 0 for
W and to −2t for V . For small Matsubara frequencies, we obtain a good fit. This
implies a linear dispersion relation for the collective modes at small energies, as in
the case without the Ωi, see Popov (1991).
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5.2 Resummation approach to the attractive Hubbard model

We take the imaginary part of V into account in our approximations by adding
to the numerator of (5.48):

α + ǫiνm
∆ext + βp|p|2 + βνν2

m

+ γ. (5.49)

From Fig. 5.21, we learn that (5.49) fits the data quite well. Numerical calculations
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Figure 5.21: Fitting (5.49) to Im(V ) ǫ ≈ 0.30t, values represented by red crosses
calculated at a lower temperature for verification purposes

at much lower temperature show that the Matsubara-frequency dependence of V
and W does not change at lower temperature. This implies that our calculations
are approximately equivalent to calculations at T = 0.

5.2.7 Combinations of effective interactions

In general, it is convenient to work with as small a number of divergent quantities
as possible. Since our calculations so far have shown that V ≈ −W at p = νm = 0,
we combine V andW into V +W and V −W . This can be interpreted as separating
the amplitude from the phase mode as discussed in section 4.1.1. Only the phase
mode shows the divergence for p = νm = 0, while the amplitude mode is massive
in the symmetry-broken regime.

Momentum dependence We analyze the momentum dependence of V −W
and V +W at νm = 0 as is done for V and W individually above. The amplitude-
mode contribution V +W is fitted to

1

β|p|2 + A
+ γ, (5.50)
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see Fig. 5.22. The fit reproduces the numerically-calculated behavior. For small
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Figure 5.22: Fitting (5.50) to V +W plotted in units of t. A ≈ −0.37t2, β = −1.32t,
γ ≈ −3.32t

momenta, the agreement is better, while for larger momenta, deviations become
larger, but vanish along the diagonal. This is due to an anisotropy in the numerical
data which is not captured by the approximation (5.50).

For V −W , we proceed by fitting (5.47) to the numerically-obtained data. We
plot the result in figure 5.23. We see that the numerical data is reproduced by
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Figure 5.23: Fitting (5.47) to V −W (plotted in units of t and with inverted sign
for easier evaluation). α ≈ −0.57t2, β = 0.46t, γ = −3.33t

the rational function (5.47). For intermediate momenta along the diagonal, the fit
is not optimal as deviations of up to 25% occur. The situation is better for large
momenta, where deviations of about 10% are common.

Energy dependence The energy dependence of V + W and V −W is to be
included in the approximate formula (5.50) in the spirit of the modification turning
(5.47) into (5.48), e.g. by adding βνν

2
m to the denominator. For V + W which
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5.2 Resummation approach to the attractive Hubbard model

is interpreted as the amplitude mode, this presents a challenge. We consider the
approximation function

t2

βp|p|2 + βνν2
m + α

+ γ. (5.51)

Contemplating the left-hand graph of figure 5.24, we become aware of a shoulder
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Figure 5.24: Matsubara-frequency dependence of V + W calculated at two tem-
peratures far below Tc. The blue lines are least-squares fits of (from left to right)
(5.51), (5.52), (5.53). The parameters used in the fits are, from left to right,
{βν = −0.47t−1, α = −0.31t, γ = −2.50t}, {βν = −0.40t−1, α = −0.29t, γ =
−2.31t, αexp = 0.24t, βexp = 3030t−2}, {βν = −0.37t−1, α = −0.28t, γ =
−2.23t, r = 1.72}

close to zero frequency, which is not captured by (5.51). We employ the alternative
approximation function

t2

βp|p|2 + βνν1.8
m + α

+ γ − αexpe
−βexpν2

m (5.52)

As seen from the middle graph of figure 5.24, the numerical data is reproduced
including the shoulder. In order to reduce the number of free parameters compared
to (5.52) but improve the fit compared to (5.51), we study the third alternative

t2

βp|p|2 + βννrm + α
+ γ, (5.53)

which is expanded in comparison to (5.48) and (5.51) in that the exponent of νm
in the denominator is not fixed. This yields the right-most graph. Again, the
important value at νm = 0 is underestimated, albeit less so than in the left-hand
plot. We note that the best fits (5.52) and (5.53) are obtained for an exponent of
νm different from 2 in the denominator. As the exponent of |p| was 2, this implies
a small change in the linearity of the dispersion of the amplitude mode.

The unmodified ansatz (5.48) already reproduces the numerically-obtained re-
sults for V −W upon properly adjusting the parameters, as Fig. 5.25 illustrates.
The agreement is good for small Matsubara frequencies. In the inset, we see that
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Figure 5.25: Fitting (5.48) to V −W . α = −0.58t2, β = 0.46t, γ = −3.33t

the large-frequency behavior is not captured optimally, which is due to our choice
of γ, having taken it from the fit in figure 5.23. However, the exponent 2 for νm is
confirmed by the fit. This confirms the linearity of the dispersion relation of the
Goldstone mode connected to V −W .

The imaginary part of V is present in both V + W and V −W . Since the
imaginary part of W is zero, the imaginary part of the linear combinations is the
same as the imaginary part of V and can be approximated accordingly.

This concludes our resummation study of the attractive Hubbard model includ-
ing the anomalous non-Cooper vertices Ωi. The study has provided an overview of
the momentum, energy, and Nambu index dependence of the effective interaction.
Furthermore, we have learned that the inclusion of effective interactions with an
odd number of inwards-pointing legs leads to quantitative changes in certain cases.
However, no qualitative differences have become apparent in our analysis. We note
in particular that the dispersion relation of the massless Goldstone mode is linear
as expected.

5.3 Renormalization group

The one-particle irreducible (1PI) scheme (section 3) of the functional renormaliza-
tion group (fRG) is applied in the Katanin truncation (section 3.6) to the attractive
Hubbard model as given by the Hamiltonian (5.34). Due to the numerical com-
plexity of the problem, the effective interactions as well as the self-energy must
be approximated. In the approximation chosen, we neglect the normal self-energy
and assume the anomalous self-energy to be equal to its value at zero energy and
the effective interactions to be equal to their value at zero energy for all energies.
To take into account the momentum dependence, the Brillouin zone is split into
patches, each of which is bisected by the Fermi surface. All momenta in a given
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5.3 Renormalization group

patch are projected onto the midpoint of the Fermi surface in the same patch.
For symmetry-broken situations, the approximation for the energy dependence as
well as the placement of the sampling points on the Fermi surface correspond to
an overestimation of the effective interaction strength. This leads to a divergence
of the flow if a momentum cutoff with an insufficiently strong external pairing
field or an interaction flow with an insufficiently strong counterterm is employed.
The divergence problem can be remedied by employing the interaction flow and
including a counterterm for the anomalous self-energy as exemplified for a reduced
model in section 4.2.

5.3.1 Flow equations

In this section, we derive an explicit analytic form of the Katanin-truncated (see
section 3.6) one-particle irreducible functional renormalization group flow equa-
tions (see section 3.5) for the Hubbard model (5.34) including superconductivity
according to (5.9). To accomplish this, we need the explicit form of the Green’s
functions. This can be obtained from the Green’s function (5.13) by multiplying
both self-energy components ∆, Σ as well as the Green’s function by the cutoff
function χ. It reads

G(k) =
χ(k)

ω2
n + E(k)2

(
−iωn − ξk − χ(k)Σ(k) χ(k)∆(k)

χ∆∗(k) −iωn + ξk + χ(k)Σ(k)

)

(5.54)

=:

(
G(k) F (k)
F ∗(k) H(k)

)

, (5.55)

where

E(k) =
√

(ξk + χ(k)Σ(k))2 + |χ(k)∆(k)|2.

In order to obtain an analytic expression treatable with numerical methods,
we consider the flow equation

derived in section 3. In the following, we construct an analytical expression corre-
sponding to the particle-particle diagram on the right-hand side. Note that because
of the renaming (5.9) of particles into holes and vice versa in the introduction of
the Nambu index, the particle-particle diagram here does not correspond to the
electronic particle-particle channel, but is a part of the electronic particle-hole
channel in the symmetric phase. We assign labels to the particle-particle diagram
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5 Attractive Hubbard model

abbreviating piNi as i and defining p := p1 + p2. Employing the diagrammatic
rules from section 3.5 yields

−1

8

∑

k,M

UN1N2M4M2
(p1, p2, k)UM3M1N3N4

(k,−k + p, p3)

×∂Λ [GM3M4
(k)GM1M2

(−k + p)] ,

(5.56)

where U stands in for γ2. A factor 1/2 beyond the diagrammatic rules appears
because of the replacement GS → ∂ΛGG/2 from the Katanin truncation. We would
like to bring (5.56) into a form suitable for numerical evaluation. In particular, it
is our goal to place the origin of the integration domain symmetrically with respect
to the integrand’s maxima. We consider the case where all external energies are
zero. For the interaction flow scheme, these maxima are located at the momenta k

with ξk = 0 or ξk+p = 0 due to the energy denominators of the Green’s functions.
For the momentum-shell cutoff scheme, the maxima occur on the line where the
cutoff Λ is equal to the dispersion ξk or ξ−k+p. We rewrite the scale derivative of
the propagators in (5.56):

∂Λ (GM3M4
(k)GM1M2

(−k + p)) = ĠM3M4
(k)GM1M2

(−k + p)

+GM3M4
(k)ĠM1M2

(−k + p)
(5.57)

In a momentum-shell cutoff scheme, the dotted term’s weight is concentrated
around the momentum shells on which the cutoff Λ equals the energy ξk or ξk+p,
respectively, as argued above. Placing the origin of the Brillouin zone at k = 0,
we note that this placement is asymmetric with the weight distribution of the
second term on the right-hand side of (5.57). We therefore shift the origin in this
integration by shifting the integration variable k → −k+ p, and also exchange the
Nambu index names M1 ↔ M3, M2 ↔ M4 in the summation, yielding

GM3M4
(k)ĠM1M2

(−k + p) → ĠM3M4
(k)GM1M2

(−k + p). (5.58)

The differentiation has moved from one Green’s function to the other. We thus
find that the integrand of (5.56) consists of two terms:

UN1N2M4M2
(p1, p2, k)UM3M1N3N4

(k,−k + p, p3)ĠM3M4
(k)GM1M2

(−k + p)+

UN1N2M2M4
(p1, p2,−k + p)UM1M3N3N4

(−k + p, k, p3)ĠM3M4
(k)GM1M2

(−k + p).

(5.59)

These terms are identical due to the antisymmetry of U. Therefore, we use

PP(1234) := −1

4

∑

k,M

UN1N2M4M2
(p1, p2, k)UM3M1N3N4

(k,−k + p, p3)

×ĠM3M4
(k)GM1M2

(−k + p)

(5.60)
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for the numerical treatment, where i = 1 . . . 4 as arguments abbreviate Nipi. Note
that for zero energy, the sign of the argument of the Green’s function can be
inverted. This allows us to use the same routines for the calculation of this product
of Green’s functions as for the calculation of the particle-hole contributions.

We turn to the particle-hole diagram

containing the contributions of the electronic particle-particle channel. Employing
the diagrammatic rules of section 3.5 leads to the expression

1

2

∑

k,M

UM3N2M2N4
(k, p2, k + q)UN1M1N3M4

(p1, k + q, p3)

×∂Λ [GM3M4
(k)GM1M2

(k + q)] ,

(5.61)

where q := p3 − p1. A factor 1/2 beyond the diagrammatic rules appears because
of the replacement GS → ∂ΛGG, as for the particle-particle diagram. Note that
(5.61) needs to be antisymmetrized with respect to the incoming four-momenta p1,
p2 and Nambu indices N1, N2. We treat the differentiation of (5.61) as in (5.57)
and (5.59) to obtain

UM1N2M4N4
(k − q, p2, k)UN1M3N3M2

(p1, k, p3)ĠM3M4
(k)GM1M2

(k − q)+

UM3N2M2N4
(k, p2, k + q)UN1M1N3M4

(p1, k + q, p3)ĠM3M4
(k)GM1M2

(k + q).
(5.62)

Plugging (5.62) into (5.61) yields

PH(1234) :=
1

2

∑

k,M

UM1N2M4N4
(k − q, p2, k)UN1M3N3M2

(p1, k, p3)

×ĠM3M4
(k)GM1M2

(k − q)+

UM3N2M2N4
(k, p2, k + q)UN1M1N3M4

(p1, k + q, p3)

×ĠM3M4
(k)GM1M2

(k + q),

(5.63)

where i as an argument abbreviates Nipi. The full symbolic flow equation thus
reads

U̇(1234) = 4PP(1234) + 2PH(1234)− 2PH(2134), (5.64)

where the antisymmetrization of the particle-hole term is denoted explicitly. The
Matsubara sums in the integrands appearing on the right-hand side can be eval-
uated explicitly if we restrict ourselves to energy-independent couplings and self-
energies. The resulting expressions are listed in appendix C without scale differ-
entiation, which will be carried out numerically.
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To find a more explicit form of the flow equation (3.29) for the self-energy, we
employ (4.6) to obtain

Σ̇N1N2
(p) =

∑

k,M1M2

UM1N2M2N1
(k, p, k)SM1M2

(k)

=
∑

k,M1M2

UM1N2M2N1
(k, p, k)χ̇(k)

∂GM1M2

∂χ
(k) (5.65)

Since U is assumed to be independent of energy, (5.65) shows that no energy
dependence of Σ is generated in the flow. We can therefore do the Matsubara sums
analytically, and list the result in appendix D. This concludes our derivation of
the one-particle irreducible renormalization group flow equations for the Hubbard
model in the Katanin truncation.

5.3.2 Numerical setup

We would like to solve the flow equations (5.65) and (5.64) numerically at T = 0.
To reach this goal, we need to develop an implementation which runs in appro-
priate timeframes on the computers of 2007. The numerical complexity of the
flow equations is determined by the discretization used for the effective interaction
U. We engage in a thought experiment to gauge the numerical complexity of the
problem. Suppose that we choose to represent each momentum argument of U

by taking into account Lk distinct values. Similarly, we represent a Matsubara
frequency argument by Lω distinct values. Without exploiting the symmetries of
U, we note that we have to store L3

kL
3
ω values, and, more importantly, to solve

an integro-differential equation for as many flowing variables. Let’s assume that
Lk = 100, Lω = 10, and that we need 100 discrete steps for the integration of the
differential equation, at each of which an integral kernel requiring 100 floating point
operations must be evaluated 1000 times to obtain a sufficiently accurate estimate
of the integration over the Brillouin zone. There are also 16 combinations of the
four Nambu indices, bringing the total number of floating point operations nec-
essary to 1017, implying that a current machine doing 1000 million floating point
operations per second would take ten thousand days to finish a single fRG inte-
gration. This is a rough estimate, and experience suggests that such integrations
may take even longer in reality due to administrative overheads.

To curb the number of floating point operations necessary for the integration of
the flow equations, we drop the energy-dependence of U, assuming U(ω1, ω2, ω3) =
U(0, 0, 0) for all energies ωi. This means in particular that the total energy of the
particles involved in the interaction as well as their energy difference are zero. This
implies that we are treating the part of the effective interaction most singular in
the energies as representative for the whole effective interation, overestimating its
total weight and therefore also the tendency towards symmetry breaking of the
physical system.

A parametrization taking into account partially the momentum dependence
of the effective interaction is the so-called “patching” as described for example
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by Rohe (2005). The Brillouin zone is split into patches as shown in Fig. 5.26.
The functional value of the effective interaction at the mid-angle of the patch

Figure 5.26: Patching of the Brillouin zone used with varying total number of
patches in the numerical calculations. Every patch covers the same angle.

and on the Fermi surface is assumed to be also valid for all other momenta in
the patch. Thus taking only the momentum dependence along the Fermi surface
into account is motivated by the finding that the dependence perpendicular to the
Fermi surface is irrelevant in the RG sense for the momentum-shell flow without
symmetry-breaking (Shankar (1991, 1994)).

For the self-energy, we choose an analogous parametrization as for the effective
interaction U. This implies an overestimation of the order parameter leading to
a suppression of the flow of the effective interaction due to the removal of small
energy denominators in the loops of (5.64). Furthermore, we neglect the effect of
the normal self-energy by setting it to zero in the flow. This has the important
consequence that the Fermi surface does not shift in the flow. In particular, phe-
nomena such as symmetry-breaking Fermi surface deformations (Metzner et al.
(2003); Yamase and Kohno (2000); Yamase et al. (2005)) are therefore ignored.

The integration of the bubble integrals of appendix C is simplified numerically
by our choice of the Brillouin zone origin in section 5.3.1. We split each patch
into subpatches according to the Gaussian integration rule and integrate over the
lines separating the subpatches. As these lines run perpendicular to the lines
of maximum weight of the bubble integrands and the patches are slim, a small
number (5-7) of lines per patch suffices to approximate the integral over the patch
to the desired accuracy. Furthermore, the parts of each line where the integrand is
maximal are the vicinity of the Fermi surface and the vicinity of the points where
the kinetic energy of an internal line equals the cutoff. For these regions, we choose
a significantly finer mesh for the integration as for the rest of the line.

We turn to the symmetries of the problem to further reduce its numerical com-
plexity. The symmetry of the Brillouin zone under reflections along the kx-axis,
ky-axis and the diagonal allows us to consider one of the momentum arguments of
U only in the Brillouin zone’s first octant. Time reversal symmetry implies that
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flipping all Nambu indices of the effective interaction leaves it invariant if there is
an even number of + indices, and leads to a factor −1 if there is an odd number
of + indices. The antisymmetry of U under the exchange of the outgoing or in-
coming legs implies that we can choose to consider only one of the Nambu index
combinations (+−), (−+). For (−−) and (++), we need to consider only one half
of the possible momentum combinations. We ignore the simplification possible
by exploiting spin rotation invariance because after employing the above simpli-
fications, spin rotation invariance only reduces the number of flowing couplings
by another ∼ 20%. This discussion of the effect of symmetries on the numerical
complexity concludes the setup of the numerical calculation.

5.3.3 Momentum-shell flows

We numerically integrate the flow equations (5.64) and (5.65) as outlined in section
5.3.2, employing a soft momentum-shell cutoff

χ(Λ, ξ) = 1 − 1

eα(|ξ|−Λ)/Λ + 1
. (5.66)

Our results do not depend on α, which adjusts the sharpness of the cutoff. Our
main goal is to obtain a decent approximation for the superconducting order pa-
rameter ∆, which is given by the anomalous part of the self-energy. We include
an initial order parameter in the flow as in section 4, depicting the resulting flow
of the order parameter in Fig. 5.27. On the left, we plot a flow for which the

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1e-05  1e-04  0.001  0.01  0.1  1  10

∆ 
[u

ni
ts

 o
f 

t]

Λ [units of t]

patch 0
patch 1
patch 2

 1e-05  1e-04  0.001  0.01  0.1  1  10
Λ [units of t]

patch 0
patch 1
patch 2

Figure 5.27: Momentum-shell flow of the order parameter. Twelve patches, quarter
filling: µ = −1.41t, t′ = −0.1t; U0 = 1.5t, ∆ext = 10−3t (left), ∆ext = 5 × 10−4t
(right).

maximum effective interaction is four times the bandwidth. Due to the limited
phase space of this maximum effective interaction, this is still a well-controlled
flow. However, from Fig. 4.3 in section 4.1.5 on flows for the charge-density-wave
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mean-field problem, we learn that if the initial order parameter is about 1% of the
final order parameter value, the error in the final order parameter as compared
to the case of spontaneous symmetry breaking is already ∼ 20%. To check the
internal consistency of our method, we note that by solving the BCS gap equation
in the presence of a momentum-shell cutoff, the rule ∆ = 2Λc can be inferred. The
results of Reiss (2006) confirm this for the attractive Hubbard model. In our case,
Λc ≈ 0.025t, and we therefore expect an order parameter magnitude ∆ ≈ 0.05t.
The fRG yields ∆ ≈ 0.06t for ∆ext ≈ 0.02∆, a deviation in the expected range.
Reiss et al. (2007) find ∆ ≈ 0.026t and a corresponding Λc for similar parameters.
In section 5.3.4, we see that the method used by Reiss et al. (2007) yields results
agreeing better with the results obtained here for other fillings. To study the in-
fluence of the external field, we half the strength of the initial order parameter
and plot the resulting flow of the order parameter on the right side of Fig. 5.27.
While the final value of the order parameter is closer to the result estimated from
the critical scale, the effective interaction has exceeded ten times the system’s
bandwidth in the flow.

If we employ too small an external field, the method breaks down. To illus-
trate this, we plot in Fig. 5.28 the relationship between a Cooper-channel effec-
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Figure 5.28: Magnitude of the order parameter in the flow against the Cooper-
channel effective interaction in the flow, which starts at the bottom left of each
graph and terminates at the top right. Twelve patches, quarter filling: µ = −1.41t,
t′ = −0.1t; U0 = 1.5t, ∆ext varies, numbers in parentheses are patch numbers to
be understood within the Nambu formalism (see text).

tive coupling and the order parameter for various external fields. The notation
A(P1, P2, P3) for the momentum dependence of the effective interaction A, where
A ∈ {U,X, V,W,Ωi} in accordance with (5.45), is to be understood in the fol-
lowing way. Each Pi denotes the patch number of the ith momentum parameter
of the matrix element A of U from (5.45). Note that a negative Nambu index Ni

reverses the sign of the ith momentum in comparison to the usual convention. The
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notation properly defined, we note that for small external fields, beyond a certain
magnitude of the effective interaction the increase of the effective interaction in the
flow is not countered by an appropriate increase in the order parameter. The ef-
fective interaction diverges while the order parameter is essentially constant. This
implies that the divergence is due to the unstable V̇ ∼ V 2 structure of the effective
interaction flow equation. The divergence prevents us from considering arbitrarily
small external fields.

We consider the flow of the effective interactions to obtain an understanding of
their relative importance in the system. From our resummation studies in section
5.2, we have learned that the Goldstone phase mode V −W dominates for zero
momentum transfer in the Nambu formalism, which is equivalent to zero total
momentum if we transform back to the original ψ fields according to (5.9). In
Fig. 5.29, we plot several flows from this channel. They dominate in magnitude
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Figure 5.29: Momentum-shell flows of the effective interaction V −W associated
with the Goldstone mode. Twelve patches, quarter filling: µ = −1.41t, t′ = −0.1t;
U0 = 1.5t, ∆ext = 10−3t (left), ∆ext = 5 × 10−4t (right), numbers in parentheses
are patch numbers to be understood within the Nambu formalism.

all other effective interaction flows, including those not shown in the figure, and
exhibit a spread of ∼ 10% under variation of the momentum combination which
decreases with decreasing external field. They are quite similar to the flows found
by Salmhofer et al. (2004).

Complementing the phase mode is the amplitude mode. The effective interac-
tion corresponding to the amplitude mode was found to drive the order parameter
flow. Its flows are plotted in Fig. 5.30. The behavior is largely as expected from
the discussion in section 4.1.4, exhibiting a peak at a certain scale which becomes
sharper with decreasing ∆ext and a saturation for small scales at a value smaller
in magnitude than the maximal magnitude in the flow. The final value averaged
over the momentum combinations in the figure is only weakly dependent on the
strength of the external field. We discuss the flows for small external fields in
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Figure 5.30: Momentum-shell flows of the effective interaction V + W associated
with the amplitude mode. Twelve patches, quarter filling: µ = −1.41t, t′ = −0.1t;
U0 = 1.5t, ∆ext = 10−3t (left), ∆ext = 5 × 10−4t (right), numbers in parentheses
are patch numbers to be understood within the Nambu formalism.

more detail. There is a peculiar non-monotonicity below Λc of individual flows,
exemplified by the flow for patches (0,10,0) in the right graph. This entails that
the arguments of section 4.1.4 are not strictly true for the Hubbard model at very
small external fields. However, the deviation from the predicted behavior is slight.
We note that the final magnitude of V + W is very small for certain momentum
combinations. The last two observations lead us to investigate the spread of the
final values, and we find that they vary by almost 100% about their average. The
average, however, is quite similar to the average at larger external fields, a behavior
which is comparable to the mean-field situation where the final value is only very
weakly dependent on the external field, see Fig. 4.3 (bottom). It is noteworthy
that the qualitative deviations from the mean-field model flows only appear if the
weakness of the external field has already led to effective interactions much larger
than the system’s bandwidth.

We plot the flow of selected X (see U from (5.45)) in Fig. 5.31. This selection
includes the flows of the maximal and minimal finalX as well as allX for which the
first momentum is in the same Brillouin zone quadrant and the second and third
momenta are the same as for the maximum and minimum case. We see that these
effective interactions diverge for zero momentum transfer if ∆ext is sent to zero.
Note that this does not change into zero total momentum upon transformation to
the ψ fields from (5.9) as for V +W and V −W . Maximal and minimal final values
are approximately equal in modulus for small ∆ext, as their sum barely changes
with decreasing ∆ext. The divergence is an order of magnitude weaker than the
divergence in the Cooper channel.

Since U (see U from (5.45)) is related to V through symmetries, we finally study
the 3 + 1 effective interactions by plotting the flow of the maximal and minimal
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Figure 5.31: Momentum-shell flow of the maximal, minimal, and surrounding
X. Twelve patches, quarter filling: µ = −1.41t, t′ = −0.1t; U0 = 1.5t, ∆ext =
10−3t (left), ∆ext = 5 × 10−4t (right). Parameters of X are patch numbers to be
understood in the Nambu formalism.

final Ωi in Fig. 5.32. Ω2 and Ω4 are not plotted as they can be obtained from Ω1

and Ω3 by exploiting time-reversal invariance and the antisymmetry of V under
commutation of the first or the second pair of parameters. We observe that while
the momentum combinations in the figure imply that the 3+1 effective interactions
peak for zero momentum transfer, this does not change into zero total momentum
upon transformation to the ψ fields from (5.9) as for V + W and V − W . We
note that the final value of both Ω1 and Ω3 is singularly dependent on ∆ext. As
this final value increases with decreasing ∆ext, the relative difference between Ω1

and Ω3 becomes less pronounced. It is possible that this difference is an artifact
of our parametrization which places the first three momentum arguments of the
effective interaction on the Fermi surface, but not necessarily the fourth. The
Ωi are comparable in strength to the X, which also diverge for zero momentum
transfer. Comparing the magnitude of the 3 + 1 effective interactions with the
amplitude and phase mode studied before, we find the phase mode to be orders
of magnitude stronger. The amplitude mode is weaker as it is unchanged by
reducing the external field, while Ω1 and Ω3 both diverge. We see in Fig. 5.33
that the 3 + 1 linear combinations also diverge if the external field is sent to zero.
These divergences indicate that the 3 + 1 effective interactions are not completely
negligible. However, as they remain much smaller in the flow than both V and W ,
their exclusion or inclusion is unlikely to cause qualitatively different behavior.

We conclude our investigation of the momentum-shell flow and study the de-
pendence of the order parameter ∆ on the bare interaction U0 and the chemical
potential µ in the attractive Hubbard model at zero temperature employing the
interaction flow. This yields results closer to the ones published previously by
Reiss et al. (2007); Reiss (2006).
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Figure 5.32: Momentum-shell flow of the maximum Ωi. Twelve patches, quarter
filling: µ = −1.41t, t′ = −0.1t; U0 = 1.5t, ∆ext = 10−3t (left), ∆ext = 5 × 10−4t
(right). Parameters of Ωi are patch numbers to be understood in the Nambu
formalism.
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Figure 5.33: Momentum-shell flow of linear combinations of the 3 + 1 effective
interactions. Twelve patches, quarter filling: µ = −1.41t, t′ = −0.1t; U0 = 1.5t,
∆ext = 10−3t (left), ∆ext = 5 × 10−4t (right). Numbers in parentheses are patch
numbers to be understood as parameters of the effective interaction in the Nambu
formalism.
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5.3.4 Interaction flows

We numerically integrate the flow equations (5.64) and (5.65) as outlined in section
5.3.2, employing the interaction flow (Honerkamp et al. (2004)) and including a
counterterm as in section 4.2. The cutoff function is characterized by

χ(Λ) =
√

Λ

as in (4.11). This is equivalent to turning on the interaction linearly from 0 at
Λ = Λi = 0 to its bare value U0 at Λ = Λf = 1. The anomalous part of the Green’s
function (5.54) is considered to stem from an external field Σi and a counterterm
∆c, the difference between the two constituting an effective external field ∆eff , in
analogy to (2.14). The cut-off Green’s function is given schematically as

G−1 =
Q0 + ∆c

χ
− Σ, (5.67)

where the counterterm has been taken into account as part of the bare propagator,
while Σi will be included as the initial condition for the anomalous self-energy.

In Fig. 5.34 we show examples of the flow of the effective order parameter ∆eff
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Figure 5.34: Interaction flows of ∆eff = ∆c − χΣ+− for patch 1 at U0 = 1.5t,
t′ = −0.1t, µ = −1.41t (quarter filling), ∆c from 0.05t to 0.19t

for varying counterterms. The flows terminate if the maximum effective interac-
tion exceeds four times the bandwidth, i.e. if the flow leaves the weak-coupling
regime, or if Λ reaches Λf = 1. We see in the left diagram that the flows no
longer converge onto a single strong attractor as for the mean-field case pictured
in Fig. 4.9. Studying the final 5% of the flow shown in the right plot of Fig. 5.34
reveals that there exists a set of small counterterms for which the flows cross, leav-
ing the weak-coupling regime, and a minimum counterterm for which the flow ends
at Λf = 1. The flows for counterterms whose strength is just beyond this minimum
counterterm terminate closer to each other than do the flows for larger counter-
terms. The minimum counterterm is approximately twice as strong as the final
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order parameter value obtained in the minimum counterterm flow. The behavior
described above is interpreted as being analogous to the strong-attractor behavior
in the mean-field case. The overestimation of the order parameter value for larger
counterterms is attributed to the overestimation of the gap in the flow due to the
neglect of the order parameter’s energy dependence and momentum dependence
perpendicular to the Fermi surface. Consequently, we choose the minimum order
parameter obtainable by terminating the flow at Λf in the weak-coupling regime as
our approximation for the physical order parameter. Note that this final value is
approximately 20% smaller than the final value obtained with the momentum-shell
method in section 5.3.3, which is biased by a finite, albeit small, external field.

5.3.5 Order parameter for superconductivity

Fig. 5.35 shows the strength of the superconducting order parameter ∆ versus
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Figure 5.35: Strength of the superconducting order parameter ∆ for varying in-
teraction strength U0 and chemical potential µ, t′ = −0.1t

the chemical potential as calculated using the interaction flow method including a
counterterm as outlined in section 5.3.4. For small bare coupling U0, ∆ is maximal
if the van Hove points lie on the bare Fermi surface, which is the case for µ = 4t′.
For larger bare coupling, the maximum gradually shifts to smaller µ.

We study the dependence of the order parameter on the bare coupling U0. In
Fig. 5.36, we plot three situations: quarter filling, half filling with t′ = −0.1t,
and half filling with t′ = 0. We compare with the mean-field gap equation (5.15)
adapted to the Hubbard model. The lines in the figures result from least-squares
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fitting

∆ = α exp

(

− β

U0

)

to the numerical data at small U0 via α, β, which works well only away from van
Hove filling. The fluctuations neglected in mean-field have been found to have a
suppressing effect on the order parameter. The situation has been studied for the
extended Hubbard model by van Dongen (1991), for the attractive Hubbard model
by Mart́ın-Rodero and Flores (1992), and for fermions moving in a continuous space
with an attractive contact interaction by Kuchiev and Sushkov (1996). The values
obtained here are quite similar to those obtained by Reiss et al. (2007); Metzner
et al. (2006); Reiss (2006), where the suppression factor varies between 1.5 for
U0 = 3t and 3 for U0 = 0.5t at half filling and t′ = −0.1t. However, we note that
at small couplings, we observe a drop in the gap renormalization ∆MF/∆RG for half
filling and finite t′ and infinite values – suppressed in the figure – for quarter filling
and finite t′ at small coupling. This is due to numerical problems in resolving such
small order parameters as appear for small U0. Note that in the half-filled case, hot
spots where the Fermi surface intersects the umklapp surface exist, as discussed by
Rohe and Metzner (2005); Rohe (2005). In the case of µ = t′ = 0, our results agree
better with Reiss et al. (2007), but the gap renormalization we obtain is smaller
for small couplings. Note that in this case, the Brillouin zone forms a diamond
exhibiting zero curvature. The perfect nesting encountered in this situation leads
to a degeneracy of density waves and superconductivity (Scalettar et al. (1989)).

In the following, we compare the values of the order parameter we calculate
with values of the order parameter calculated with other methods. Table 5.1
compares our fRG results to results obtained by Reiss (2006) using a combination

U [t] fRG fRG and MF random field
1.0 0.04 0.03 0.06
1.5 0.11 0.10 0.09
2.0 0.23 0.21 0.13
2.5 0.35 0.36 0.16
3.0 0.48 0.52∗ 0.19
3.5 0.62 n.a. 0.22

Table 5.1: Superconducting order parameter ∆ in units of t for t′ = 0, half filling,
comparing fRG results to results from a combination of fRG and mean field (MF) as
well as from the random field method. ∗: value obtained using linear extrapolation.

of symmetric-phase fRG and mean field (MF) calculations as well as to results
obtained by Gyorffy et al. (1991) using a random-field method. While the agree-
ment with the results obtained using the combination of fRG and mean field is
very good, the random field method yields comparable values only coincidentally.
It predicts a linear dependence of the order parameter on the bare interaction U0

for weak up to intermediate coupling. However, in the parameter range studied, it
yields the same order of magnitude for the order parameter as the fRG. Table 5.2
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compares our results to results by Reiss (2006) for finite t′. While the values are

U [t] fRG fRG and MF
1.0 0.02 0.02
1.5 0.11 0.07
2.0 0.22 0.15
2.5 0.35 0.26
3.0 0.49∗ 0.38

Table 5.2: Superconducting order parameter ∆ in units of t for t′ = −0.1t, µ =
−0.2612t (half filling), comparing fRG results to results from a combination of
fRG and MF. ∗: value obtained using linear extrapolation.

of the same order of magnitude, the results obtained by employing only the fRG
are larger by between 20 − 30%.

This concludes the numerical study of the flow equations, showing that it is fea-
sible to obtain reasonable order parameter values for the attractive Hubbard model
from them. Furthermore, we have confirmed for weak coupling the strength of the
order parameter suppression by fluctuations found in previous studies (Mart́ın-
Rodero and Flores (1992); Reiss (2006)), which is approximately 50% for a wide
range of parameters.
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Chapter 6

Conclusions

In this work, two new procedures for calculating order parameters in models of itin-
erant interacting fermions exhibiting spontaneous symmetry breaking were imple-
mented. At the heart of both procedures is the one-particle irreducible functional
renormalization group (fRG) method for fermions in a truncation due to Katanin
(2004) which solves mean-field models exactly. The method works by solving a
set of coupled integro-differential equations for the effective interaction(s) and the
order parameter(s) derived from an exact functional differential equation for the
effective action. The solution connects initial values that can be read off from
a model’s definition with the fully renormalized effective values. The first proce-
dure, employing a momentum-shell cutoff and a small external symmetry-breaking
field, is an extension of a procedure suggested by Salmhofer et al. (2004) to the
breaking of a discrete symmetry at finite and zero temperature, and finally to a
non-mean-field model at zero temperature. It was presented here using a gen-
eralization of the Nambu formalism that makes it natural to take into account
all anomalous effective interactions arising in the symmetry-broken phase. The
second procedure combines an interaction flow with a counterterm for the order
parameter and was introduced here. It was presented using the same generalized
Nambu formalism. In both cases, a family of effective actions is generated in the
flow. For the momentum-shell cutoff case, these actions constitute solutions for
systems in a constant external symmetry-breaking field where only modes whose
kinetic energy exceeds a cutoff scale decreasing in the flow are taken into account.
For the interaction-flow case, the effective actions constitute solutions for systems
whose bare interaction is the flow parameter in an external symmetry-breaking
field which is decreasing in the flow. While the former approach delivers results
for only one of possibly many stable, metastable, and unstable equilibrium configu-
rations, the latter approach can treat all of them. By adjusting the initial external
symmetry-breaking field which is completely or partly offset at the end of the flow
by an appropriate counterterm, we chose the configuration of interest. This also
makes it possible to scan the thermodynamic potential landscape of the system
for minima corresponding to stable and metastable configurations. This permits
the study of spontaneous first-order phase transitions and hysteresis effects, both
of which were outside the reach of the fermionic fRG before.
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We have illustrated the interaction-flow procedure by the example of a reduced
charge-density-wave (CDW) model, which exhibits a first-order phase transition
beyond which the lattice translational symmetry – which is discrete – is sponta-
neously broken. The model is solved exactly by the fRG in the truncation employed
here as well as by mean-field theory. For the fRG, this is reflected in the occur-
rence of one strong attractor for each stable and each metastable configuration,
reproducing exact results at zero external field. Flows for all counterterms ter-
minate at one of these attractors. The CDW model also exhibits a second-order
phase transition in a certain parameter range. We have studied this transition
using both the momentum-shell procedure in a small external field as well as the
newly-introduced interaction-flow procedure with a counterterm. As the model is
solved exactly, both methods yield the same results. However, a major difference
was found in the shape of the flows, with the momentum-shell procedure produc-
ing a maximum of the effective interaction at the scale which is critical for zero
external field. In contrast, in the interaction-flow procedure the maximal value of
the effective interaction is reached only at the end of the flow. The critical-scale
maximum also represents a key difference to the momentum-shell treatment of
continuous-symmetry breaking by Salmhofer et al. (2004), where the flow of at
least one effective interaction saturates at its maximum value in the symmetry-
broken phase. While the height of the effective interaction maximum in both cases
is singularly dependent on the external field, the saturation value for discrete-
symmetry breaking is independent of it. This implies that no collective mode
arises as expected for the discrete-symmetry breaking case. The flow of the effec-
tive interaction matches the flow of an effective interaction combination present
in the fRG flow for continuous-symmetry breaking. We have found that while
the maximal effective interaction value is suppressed by increasing the external
field, deviations of the order parameter magnitude from the value for spontaneous
symmetry breaking grow as the external field is increased for the momentum-shell
procedure. This indicates that in our approach for non-mean-field models, a com-
promise for the strength of the external field must be found to obtain reasonable
values from the momentum-shell procedure. This necessity may stem from the
discretization, the numerical implementation, the truncation, or any combination
of these three factors.

As a precursor study to the application of the method to a more complicated
model, a resummation scheme taking into account Cooper and forward scattering
by summing up ladders, bubble chains, and all combinations of the two has been
developed. The main focus of this study were anomalous effective interactions with
an odd number of incoming legs, arising from the above-mentioned combinations
of bubbles and ladders and dubbed “3 + 1” effective interactions. To study their
influence, the generalized Nambu formalism taking into account anomalous effec-
tive interactions was adapted to the case of superconductivity. A reduced model
incorporating Cooper and forward scattering processes has been solved exactly.
Explicit formulas for all effective interactions have been found and analyzed, espe-
cially with regard to the Goldstone mode. The resummation scheme has also been
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applied as an approximation to the two-dimensional attractive Hubbard model.
Numerical calculations have shown that if one neglects the 3 + 1 vertices, the
effective interactions change only slightly for the momentum combinations most
relevant for symmetry-breaking. However, effective interactions for other momen-
tum combinations exhibit changes varying from complete disregard for the 3 + 1
effective interactions to total suppression by them. The qualitative properties of
collective modes were found to be unchanged by the 3 + 1 effective interactions,
as expected.

To study the utility of the fRG procedures for more complicated situations, we
have applied both the external-field and the counterterm variant to the attractive
Hubbard model at zero temperature, which exhibits superconducting order. In
the former case, we have studied the flow of the order parameter as well as of
the various effective interactions in detail. We have found that the order param-
eter saturates at reasonable values even if there are effective interactions in the
flow whose magnitude exceeds ten times the bandwidth. However, if the external
field is chosen too small thus allowing the effective interactions to grow beyond a
certain threshold, the flow of the order parameter stops while the effective interac-
tions diverge at a critical scale. For larger external fields, the effective interaction
associated with the Goldstone mode as well as the effective interaction driving the
order parameter flow have been found to behave as for the case of the mean-field
models. However, 3+1 anomalous effective interactions were shown to arise in the
flow for the attractive Hubbard model. These effective interactions diverge in the
forward-scattering channel if the external field is sent to zero, but more slowly than
the effective interaction associated with the phase mode in the Cooper channel.

For the interaction-flow case, while the strong-attractor behavior from the
mean-field models is not reproduced, we have found a clustering of final values
for a certain set of counterterms. Together with a limit on the strength of the ef-
fective interaction, this allows us to select reasonable results. We have shown such
results for the order parameter for a range of interaction strengths and fillings. We
have found that especially for half filling and vanishing next-nearest neighbor hop-
ping, our results are very close to results found previously using a combination of
fRG and mean-field analysis by Reiss (2006). Away from half-filling, our method
consistently yields a larger order parameter than the earlier calculations. The re-
duction factor comparing the order parameter we calculate to the pure-mean-field
result varies between 1.7 and 2.2. This is quite close to approximate values found
in the nineties. The procedure newly assembled in this thesis has thus been suc-
cessfully applied to a lattice model with itinerant fermions and on-site attractive
interaction in the superconducting phase.
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Anhang A

Deutsche Zusammenfassung

In der vorliegenden Arbeit werden zwei neue Prozeduren zur näherungsweisen Be-
stimmung der mit Symmetriebrechung in Systemen mit itineranten, wechselwir-
kenden Fermionen assoziierten Ordnungsparameter implementiert. Beide basieren
auf der Methode der einteilchenirreduziblen funktionalen Renormierungsgruppe
(fRG) für Fermionen in der Trunkierung von Katanin (2004). Diese löst Modelle
exakt, wenn sie auch durch Molekularfeldtheorie exakt gelöst werden. Ihr wesent-
licher Bestandteil ist ein Satz gekoppelter Integro-Differentialgleichungen für die
effektiven Wechselwirkungen und die Ordnungsparameter, der aus einer exakten
funktionalen Differentialgleichung für die effektive Wirkung hergeleitet wird (Salm-
hofer and Honerkamp (2001)). Diese Gleichungen verbinden aus Modelldefinitionen
bekannte Anfangsbedingungen mit voll renormierten effektiven Werten. Die erste
Prozedur, die einen Impulsschalenfluss und ein kleines äußeres symmetriebrechen-
des Feld einsetzt, ist eine Erweiterung der von Salmhofer et al. (2004) vorgeschla-
genen Prozedur auf endliche Temperaturen, Brechung diskreter Symmetrie und
durch Molekularfeldtheorie nicht exakt lösbare Modelle. Sie wird hier unter Be-
nutzung einer Verallgemeinerung des Nambu-Formalismus präsentiert, die alle bei
Symmetriebrechung auftretenden anomalen effektiven Zweiteilchenwechselwirkun-
gen berücksichtigt. Die zweite Prozedur kombiniert einen Wechselwirkungsfluss
mit einem Gegenterm für den Ordnungsparameter und wird hier eingeführt. In
beiden Fällen wird im Fluss eine Schar effektiver Wirkungen generiert. Beim Im-
pulsschalenfluss sind diese effektiven Wirkungen Lösungen für Systeme, bei denen
nur Freiheitsgrade berücksichtigt werden, deren kinetische Energie oberhalb ei-
ner im Fluss sinkenden Schwelle liegt. Außerdem beziehen sich die Lösungen auf
das System in einem kleinen, im Fluss konstanten, symmetriebrechenden äußeren
Feld. Beim Wechselwirkungsfluss mit Gegenterm ist die nackte Wechselwirkung
der Flussparameter und es ergeben sich Lösungen für ein äußeres Feld, das mit
dem Fluss fällt. Während die erste Variante nur ein Ergebnis für eine bestimmte
Gleichgewichtskonfiguration ergibt, kann die letztere Resultate für beliebige sta-
bile, metastabile oder labile Gleichgewichtskonfigurationen des Systems liefern.
Durch Einstellung des Anfangswert des externen Feldes, das am Ende des Flusses
ganz oder teilweise vom Gegenterm kompensiert wird, erfolgt die Auswahl der zu
untersuchenden Konfiguration. So ist es möglich, die Landschaft des thermodyna-
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mischen Potentials in Abhängigkeit vom Ordnungsparameter zu rastern und auch
unbekannte stabile oder metastabile Gleichgewichtskonfigurationen aufzuspüren.
Damit wird das Studium von spontanen Phasenübergängen erster Ordnung sowie
von Hystereseeffekten möglich, die bisher mit der Methode der fermionischen funk-
tionalen Renormierungsgruppe nicht behandelt werden konnten. Ebenso wird die
direkte Untersuchung der Situation bei verschwindendem äußeren Feld möglich.

Die Prozedur mit Wechselwirkungsfluss wird am Beispiel eines reduzierten La-
dungsdichtewellenmodells illustriert, in dem bei ausreichend niedriger Temperatur
und in einem bestimmten Füllungsbereich eine diskrete Symmetrie spontan ge-
brochen wird. Dieses Modell wird sowohl von der fRG in der hier verwendeten
Trunkierung wie auch durch Molekularfeldtheorie exakt gelöst. Für jeden stabilen
oder metastabilen Gleichgewichtszustand zeigt sich ein starker Attraktor. Flüsse
für beliebige Gegenterme innerhalb eines bestimmten Bereichs enden alle an dem
selben Attraktor, und jeder Fluss endet an einem der physikalischen Attraktoren.
Sowohl für verschwindendes als auch für endliches externes Feld werden exak-
te Ergebnisse reproduziert. Das selbe Modell zeigt auch einen Phasenübergang
zweiter Ordnung in einem bestimmten Parameterbereich. Der Übergang wird in
der vorliegenden Arbeit sowohl mit Hilfe der Impulsschalenprozedur und einem
kleinen externen symmetriebrechenden Feld als auch mit der Prozedur mit Wech-
selwirkungsfluss und einem Gegenterm untersucht. Da das Modell in beiden Fällen
exakt gelöst wird, sind die Ergebnisse in allen Situationen, in denen beide Proze-
duren funktionieren, identisch. Eine deutlicher Unterschied findet sich aber in der
Form der Flüsse. Die Impulsschalenprozedur weist ein deutliches Maximum der ef-
fektiven Wechselwirkung an der Skala auf, die bei verschwindendem externen Feld
kritisch ist. Im Gegensatz dazu wird bei der Wechselwirkungsstärkenprozedur der
Maximalwert der effektiven Wechselwirkung erst am Ende des Flusses erreicht.
Ein wesentlicher Unterschied zur Behandlung der Brechung einer kontinuierlichen
Symmetrie mit der Impulsschalenprozedur zeigt sich im Sättigungsverhalten des
Flusses für kleine Skalen. Während es bei Brechung einer kontinuierlichen Sym-
metrie eine effektive Wechselwirkung gibt, die bei ihrem Maximalwert sättigt und
eine, die zu einem wesentlich kleineren Wert konvergiert, gibt es bei Brechung
einer diskreten Symmetrie nur die letztere. Bei dieser hängt zwar die Höhe des
Maximums im Fluss singulär von der Stärke des externen Feldes ab, der Endwert
ist von ihr aber unbeeinflusst. Dies impliziert, dass im Grundzustand keine kollek-
tive Mode auftritt, wie es bei Brechung einer diskreten Symmetrie auch erwartet
wird. Der Fluss der effektiven Wechselwirkung im Fall der Brechung einer diskreten
Symmetrie entspricht aber dem Fluss einer effektiven Wechselwirkung im Fall der
Brechung einer kontinuierlichen Symmetrie. Bei Brechung einer kontinuierlichen
Symmetrie tritt eine weitere effektive Wechselwirkung auf, die mit einer Phasen-
oder Goldstone-Mode assoziiert wird. Als treibender Faktor für den Fluss des Ord-
nungsparameters erweist sich in beiden Fällen die nicht mit der Goldstone-Mode
assoziierte effektive Wechselwirkung. Dementsprechend sättigt die Steigung des
Ordnungsparameterflusses für kleine Skalen, so dass ein Endwert in Abhängigkeit
vom externen Feld ermittelt werden kann. Während das Maximum der effektiven
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Wechselwirkung im Fluss durch Erhöhung der Stärke des externen Felds unter-
drückt wird, steigt die Abweichung der Stärke des Ordnungsparameters vom Wert
für spontane Symmetriebrechung dadurch. Bei unserer Herangehensweise für die
Impulsschalenprozedur müssen für die Wahl der Stärke des externen Feldes beide
Effekte berücksichtigt werden, wenn Modelle, für welche die Methode nicht exakt
ist, untersucht werden sollen.

Als Vorstudie zur Anwendung der Methode auf ein nicht-reduziertes Modell,
für welches keine exakten Ergebnisse zu erwarten sind, wird eine Resummierung
der Störungstheorie für die effektive Wechselwirkung vorgenommen. Diese Resum-
mierung berücksichtigt Prozesse im Cooper- und Vorwärtsstreuungskanal durch
Summation von Leitern, Blasenketten und allen Kombinationen daraus. Die Un-
tersuchung dient hauptsächlich dem Verständnis der anomalen Wechselwirkungen
mit einer ungeraden Anzahl einlaufender Beinchen und Ihrer Bedeutung. Sie ent-
stehen durch die oben beschriebenen Kombinationen aus Leitern und Blasenket-
ten und werden als effektive 3 + 1 Wechselwirkungen bezeichnet. Ein reduziertes
Modell, das sowohl Cooper- als auch Vorwärtsstreuungsprozesse beinhaltet, wird
durch die Resummierung exakt gelöst. Es ergeben sich Formeln für alle effektiven
Wechselwirkungen, die insbesondere im Hinblick auf die Goldstone-Mode analy-
siert werden. Die Resummierung wird außerdem als Näherung auf das attraktive
Hubbard-Modell in zwei Dimensionen am absoluten Nullpunkt angewandt. Nu-
merische Rechnungen zeigen, dass der Einfluss der effektiven 3 + 1 Wechselwir-
kungen bei denjenigen Impulskombinationen, die für die Supraleitung ausschlag-
gebend sind, schwach ist. Bei anderen Impulskombinationen variiert ihr Einfluss
von völliger Unwichtigkeit bis zu völliger Unterdrückung der entsprechenden effek-
tiven Wechselwirkung. Die qualitativen Eigenschaften der kollektiven Moden sind
wie erwartet unbeeinflusst von den effektiven 3 + 1 Wechselwirkungen.

Um die Nützlichkeit der neuen fRG-Prozeduren für nicht-reduzierte Modelle zu
untersuchen, werden beide Varianten auf das attraktive Hubbard-Modell in zwei
Dimensionen am absoluten Nullpunkt angewandt. Das Modell zeigt dort supralei-
tende Ordnung. Für die Impulsschalenprozedur werden die Flüsse des Ordnungs-
parameters und der verschiedenen effektiven Wechselwirkungen analysiert. Der
Ordnungsparameter konvergiert zu realistischen Werten, auch wenn die effektiven
Wechselwirkungen Maximalwerte annehmen, die ein Zehnfaches der Bandbreite
des Systems übersteigen. Allerdings divergieren die effektiven Wechselwirkungen
bei einer kritischen Skala, wenn das externe Feld zu klein gewählt wird. In dieser
Situation fließt der Ordnungsparameter mit steigender effektiver Wechselwirkung
jenseits eines kritischen Werts für diese nicht mehr. Die Divergenz beschränkt sich
auf die mit der Goldstone-Mode assoziierte effektive Wechselwirkung, während
die den Ordnungsparameter treibende effektive Wechselwirkung entsprechend des-
sen Verhalten nicht weiter fließt. Für größere externe Felder verhalten sich beide
effektive Wechselwirkungen wie in den reduzierten Modellen, die durch Moleku-
larfeldtheorie exakt gelöst werden. Allerdings treten im Fluss für das attrakti-
ve Hubbard-Modell effektive 3 + 1 Wechselwirkungen auf. Diese divergieren im
Vorwärtsstreukanal wenn das externe Feld gegen Null geht, aber langsamer als die
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A Deutsche Zusammenfassung

effektiven Wechselwirkungen, die der Goldstone-Mode im Cooper-Kanal zugeord-
net sind.

Bei der Umsetzung der Prozedur mit Wechselwirkungsfluss existiert kein star-
ker Attraktor wie im Fall des Ladungsdichtewellenmodells. Allerdings häufen sich
die Endwerte für den Ordnungsparameter für Gegenterme aus einem bestimmten
Intervall. Diese Häufung ergibt zusammen mit einer Beschränkung der maximalen
effektiven Wechselwirkung ein Kriterium für die Auswahl eines Resultats für den
Ordnungsparameter. Die so gewonnenen Ergebnisse sind für verschiedene chemi-
sche Potentiale und Wechselwirkungsstärken dargestellt. Insbesondere für halbe
Füllung ähneln die ermittelten Werte stark denen, die mit einer Kombination aus
fRG und Molekularfeldrechnung gefunden wurden. Abseits halber Füllung liefert
die hier verwendete Methode konsistent größere Ergebnisse für den Ordnungs-
parameter als die kombinierte Rechnung. Der Reduktionsfaktor, der die Unter-
drückung des Ordnungsparameters in der fRG-Rechnung im Vergleich zur reinen
Molekularfeldrechnung misst, variiert zwischen 1,7 und 2,2. Dies entspricht den
Näherungswerten, die in den Neunzigern gefunden wurden. Die neu vorgestellte
fRG-Prozedur ist damit erfolgreich als Näherung auf ein bisher nicht exakt gelöstes
festkörperphysikalisches Modell mit Symmetriebrechung angewandt worden.

Die Arbeit gliedert sich wie folgt. In Kapitel 2 wird mit Hilfe der Molekularfeld-
theorie das Ladungsdichtewellenmodell auf Phasenübergänge erster und zweiter
Ordnung untersucht. Die funktionale Renormierungsgruppe wie auch die Katanin-
Trunkierung und die Notation zur Behandlung von im Rahmen von Symmetrieb-
rechungen auftretenden anomalen effektiven Wechselwirkungen werden in Kapitel
3 eingeführt. Kapitel 4 enhält die Lösung des Ladungsdichtewellenmodells mittels
beider Renormierungsgruppenprozeduren. Die Symmetriebrechung im attraktiven
Hubbard-Modell wird in Kapitel 5 sowohl mit beiden Renormierungsgruppenproze-
duren als auch mittels einer Resummierung der Störungstheorie behandelt. Ebenso
werden dort die effektiven 3 + 1 Wechselwirkungen an einem reduzierten Modell
mit Cooper- und Vorwärtsstreuung ohne Impulsübertrag sowie am attraktiven
Hubbard-Modell studiert.
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Appendix B

Matsubara sums

A,B ≥ 0, ωn = (2n+ 1)πT = (2n+ 1)π/β, nF (x) = 1
exp(x/T )+1

.

T
∑

n

1

ω2
n + A2

1

ω2
n +B2

=
1

A2 −B2

(
tanh(βB/2)

2B
− tanh(βA/2)

2A

)

(B.1)

T
∑

n

ωn
ω2
n + A2

ωn
ω2
n +B2

=
1

2(A2 −B2)
(A tanh(βA/2) − B tanh(βB/2)) (B.2)

T
∑

n

1

(ω2
n + A2)2 =

tanh(βA/2)

4A3
− β

8A2 cosh2(βA/2)
(B.3)

T
∑

n

ω2
n

(ω2
n + A2)2 =

tanh(βA/2)

4A
+

β

8 cosh2(βA/2)
(B.4)

T
∑

n

1

(iωn + A)2 = − 1

4T cosh2(βA/2)
(B.5)

T
∑

n

1

ω2
n + A2

=
tanh(βA/2)

2A
(B.6)

T
∑

n

ω2
n

(ω2
n + A2)3 =

1

16A

{
β2 tanh(βA/2)

2 cosh2(βA/2)
− β

2A cosh2(βA/2)
+

tanh(βA/2)

A2

}

(B.7)

T
∑

n

1

(ω2
n + A2)3

=
1

16A3

{
3 tanh(βA/2)

A2
− 3β

2A cosh2(βA/2)
− β2 tanh(βA/2)

2 cosh2(βA/2)

}

(B.8)
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B Matsubara sums

δ > 0 in the following.

T
∑

n

exp(iωnδ)

ω2
n + A2

=
sinh [(β/2 − δ)A]

2A cosh(βA/2)
(B.9)

T
∑

n

(iωn + A) exp(iωnδ)

ω2
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= − exp(Aδ)
1

exp(βA) + 1
= −T

∑

n

exp(iωnδ)

iωn − A

(B.10)

T
∑

n

(iωn − A) exp(iωnδ)

ω2
n + A2 +B2

=
1

2

[

exp(δ
√
A2 +B2)
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(
β
√
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− 1
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√
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(
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√
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(
A√

A2 +B2
+ 1

)]

(B.11)
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2
√
A2 +B2
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√
A2 +B2/2) − 1

2
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T
∑

n
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2
√
A2 +B2

tanh(β
√
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1

2
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T
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n

1

ω2
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1√
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1

2
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1

2

(
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(B.14)
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1

(ω2
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1

(A− B)2

[
2
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T
∑

n

iωn

(ω2
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A +B

(A− B)3
[nF (B) − nF (A)] +

1
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Appendix C

Bubble integrands

The bubble integrands below are obtained by Matsubara summing according to
(5.46) the products (5.44) of Green’s functions (5.13). This operation is per-
formed analytically under the assumption that the self-energy does not depend on
frequency, which is in general an approximation. Note that when these expres-
sions are to be used in a renormalization group flow, the cutoff function employed
therein must be frequency-independent. Similarly, note for the following formu-
las that ∆ and Σ are to be considered differently in different situations. For a
renormalization group flow without counterterm, they are to be multiplied by the
cutoff function, and the whole expression must be multiplied by the two cutoff
functions corresponding to the two convoluted propagators. If there is a counter-
term ∆c present, ∆ must be replaced by χ∆ − ∆c, and the multiplication with χ
is necessary as above.

T
∑

ωn

H(k)H(k + p) =

− 1

eEk+p/T + 1

(Ek+p − (ξk+p + Σk+p))(−iνm + Ek+p − (ξk + Σk))

2Ek+p(iνm − Ek+p + Ek)(−iνm + Ek+p + Ek)

+
1

e−Ek+p/T + 1

(−Ek+p − (ξk+p + Σk+p))(−iνm −Ek+p − (ξk + Σk))

2Ek+p(iνm + Ek+p + Ek)(−iνm − Ek+p + Ek)

− 1

eEk/T + 1

(Ek + iνm − (ξk+p + Σk+p))(Ek − (ξk + Σk))
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+
1

e−Ek/T + 1

(−Ek + iνm − (ξk+p + Σk+p))(−Ek − (ξk + Σk))

2Ek(−iνm + Ek+p + Ek)(iνm + Ek+p − Ek)
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C Bubble integrands

T
∑

ωn

G(k + p)H(k) =
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∑

ωn

H(k + p)F (k) =
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C Bubble integrands
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∑
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Appendix D

Tadpole integrands

T
∑

ωn

G(iωn,k) =
1

2
− (ξk + Σk)

tanh(Ek/2T )

2Ek

We assume Σ−k = Σk and ∆−k = ∆k.

T
∑
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tanh(Ek/2T )

2Ek
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