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Deutsche Zusammenfassung

Diese Doktorarbeit trägt den Titel ,,Neutronenstreumessungen an dotierten Cup-
raten: Na8Cu5O10 und YBa2Cu3O6+x”. Im Laufe dieser Doktorarbeit wurden mit-
hilfe von drei unterschiedlichen neutronenspektroskopischen Messmethoden Eigen-
schaften der Cuprate Na8Cu5O10, YBa2Cu3O7 und YBa2Cu3O6.6 untersucht. Die
Gemeinsamkeit dieser drei Substanzen besteht darin, dass sie alle dotierte Mott-
Isolatoren sind. Dennoch ist das Natriumcuprat Na8Cu5O10 ein magnetischer Isola-
tor, während YBa2Cu3O7 und YBa2Cu3O6.6 supraleitend sind. Dies kann dadurch
erklärt werden, dass die supraleitenden Cuprate zweidimensionale Cupratschichten
beinhalten mit ,,Ecken-teilenden” CuO4-Quadraten, Natriumcuprat aber eindimen-
sionale Cupratketten mit ,,Kanten-teilenden” CuO4-Quadraten.
Die Arbeit ist in sieben Kapitel eingeteilt, wobei das erste Kapitel die Einleitung
darstellt. Das zweite Kapitel ist eine einfache Einführung in Neutronen als Mess-
teilchen und Neutronenstreuung im Allgemeinen. Im dritten Kapitel wird dann das
Material Natriumcuprat Na8Cu5O10 vorgestellt. Als wichtigstes Merkmal enthält
dieses neue Material sogenannte ,,Kanten-teilende” CuO2-Spinketten. Innerhalb
dieser Spinketten wechseln sich Kupferionen mit unterschiedlichen Valenzzuständen
ab (Ladungsordnung). Danach werden die Neutronen-Diffraktionsmessungen be-
schrieben, die am G4-2 Spektrometer in Saclay gemacht wurden. Mithilfe dieser
Messungen wurde der magnetische Grundzustand von Na8Cu5O10 bestimmt. Hi-
erzu wurden die Messdaten mit dem Refinement-Programm Fullprof verfeinert.
Hierbei haben wir herausgefunden, dass diese Substanz einen inkommensurablen
amplitudenmodulierten magnetischen Grundzustand (Spindichtewelle) hat. Dieser
magnetische Grundzustand ist in Einklang mit physikalischen Überlegungen und
bisherigen Experimenten. Die Inkommensurabilität wird in diesem Kapitel mithilfe
eines einfachen Modells erklärt, das auf konkurrierenden Wechselwirkungen zwis-
chen Spins beruht.
Im vierten Kapitel werden die wichtigen Bestandteile eines Dreiachsenspektrome-
ters erklärt. Hierzu gehören die Abschirmung, der Monochromator, der Analysator,
Kollimatoren, Filter und Absorber. Zum Abschluss des Kapitels wird die Justage
des Spektrometers beschrieben.
Im fünften Kapitel wird zunächst beschrieben, wie eine Probe justiert wird. Danach
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8 Deutsche Zusammenfassung

wird der Streuquerschnitt für Phononen hergeleitet. Hieraus können interessante
Folgerungen für Phononenexperimente mit Neutronen gezogen werden. Insbeson-
dere ist eine Aussage darüber möglich, an welchem Punkt im reziproken Raum die In-
tensität für Phononenmessungen am stärksten ist. Im Weiteren wird in diesem Kapi-
tel noch die Auflösungsfunktion des Dreiachsenspektrometers beschrieben. Diese ist
von Bedeutung, um später den Einfluss des Spektrometers auf die Linienbreite der
gemessenen Phononen herausrechnen zu können und somit die genaue intrinsische
Linienbreite der Phononen bestimmen zu können. Zum Abschluss dieses Kapitels
werden die ebenfalls sehr wichtigen ,,falschen Signale” besprochen. Diese Signale
können unter bestimmten Spektrometerkonfigurationen im Detektor auftreten, ohne
dass hierbei ein inelastischer Streuprozess an der Probe stattfindet. Daher müssen
sie nach Möglichkeit vermieden, auf jeden Fall aber erkannt werden.
Im sechsten Kapitel wird zunächst das System YBa2Cu3O6+x beschrieben. Hier-
bei wird die Struktur erklärt, die im wesentlichen aus der supraleitenden CuO2-
Doppelschicht und den CuO-Ketten besteht. Die CuO-Ketten sind je nach Dot-
ierungsgrad mehr oder weniger mit Sauerstoffionen gefüllt. Hierbei wird die CuO2-
Doppelschicht mit Löchern dotiert. Je nach Dotierung ist das System YBa2Cu3O6+x

dann ein antiferromagnetischer Mott-Isolator oder ein Supraleiter. Wenn man die
Übergangstemperatur des supraleitenden Zustandes über der Dotierung abträgt,
erhält man zwei Plateaus, bei denen sich die Übergangstemperatur nur schwach
verändert mit der Dotierung und die fast den ganzen supraleitenden Bereich be-
schreiben. Unsere beiden Proben befinden sich genau in diesen beiden unterschied-
lichen Plateaus. Diese beiden Plateaus sind ein wesentlicher Bestandteil des ent-
sprechenden Phasendiagramms von YBa2Cu3O6+x, welches auch im fünften Kapitel
ausführlich besprochen wird. Zu Vergleichszwecken haben wir darüber hinaus noch
die antiferromagnetische Substanz YBa2Cu3O6.1 untersucht.
Danach werden kurz wichtige Eigenschaften der Hochtemperatursupraleiter bespro-
chen. Hierzu gehört die Paarungssymmetrie der Cooperpaare. Im Gegensatz zur
s-Wellen- Symmetrie in konventionellen Supraleitern, haben die (unkonventionellen)
Hochtemperatursupraleiter eine d-Wellen-Symmetrie. Dies wurde insbesondere durch
Tunnel- und ARPES-Messungen herausgefunden. Das ”Pseudogap” ist eine weitere
Besonderheit, die nur bei unkonventionellen Supraleitern auftritt. Hierbei ist die Zu-
standsdichte der elektronischen Zustände über dem Ferminiveau auch oberhalb von
Tc deutlich reduziert. Danach wird die ,,Buckling”-Phononenmode beschrieben. Sie
entsteht durch die Oszillation der Sauerstoffionen innerhalb der CuO2-Doppelschicht.
Hierbei schwingen diese Ionen transversal, d.h. orthogonal zur CuO2-Doppelschicht.
Die Bedeutung dieser Mode beruht auf theoretischen Vorhersagen, denen zufolge
diese Mode zur Bildung von Cooper-Paaren mit d-Wellen-Symmetrie besonders
stark beiträgt. Dann werden wichtige frühere Experimente besprochen, die eine
supraleitungsinduzierte Anomalie dieser Phononenmode beschreiben. Möglicherweise
steht diese Anomalie mit dem in ARPES-Messungen festgestellten ,,,Kink” in der
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Dispersionsrelation der Elektronen in Verbindung. Dieser Zusammenhang wird zur
Zeit allerdings sehr kontrovers diskutiert. Im Weiteren wird noch auf andere Pho-
nonenanomalien und auf die Streifentheorie Bezug genommen. Diese könnten mit
dem von uns untersuchten supraleitungsinduzierten Effekt der ,,Buckling-Mode” in
Zusammenhang stehen.
In den Unterkapiteln 6.9 und 6.11 werden dann unsere Phononenmessungen der
,,Buckling”-Mode in YBa2Cu3O7 und YBa2Cu3O6.6 dargestellt. Zunächst werden
jeweils die wichtigsten Ergebnisse unserer Messungen zusammengefasst. In dem
Energiebereich, in dem bisher nur die ,,Buckling”-Mode beobachtet wurde, konn-
ten wir noch zwei weitere Moden messen. Dies kann dadurch erklärt werden, dass
wir mit einer höheren Auflösung und an entzwillingten Kristallen gemessen haben.
Diese drei Moden konnten durch den Vergleich der Messdaten mit Raman- und In-
frarotmessungen identifiziert werden. Unterhalb der ,,Buckling”-Mode konnten wir
eine Mode des apikalen Sauerstoffs messen und bei höherer Energie eine Mode, bei
der Sauerstoffionen innerhalb der Doppelschicht und in den Sauerstoffketten schwi-
ngen. Diese letztere Mode wurde für die Dotierung x = 1.0 in beiden Richtungen
entlang der a∗-Achse und der b∗-Achse gemessen, wohingegen sie für die Dotierung
x = 0.6 nur entlang der b∗-Achse beobachtet wurde. Dies ist dadurch erklärbar,
dass bei dieser Mode unter anderem die Sauerstoffionen in den Ketten schwin-
gen, deren Konzentration sehr stark dotierungsabhängig ist. Die apikale Mode
ist im allgemeinen sehr schwach, daher konnten wir sie lediglich für YBa2Cu3O7

mit hinreichender Statistik messen. Für q = 0.3, x = 1.0 konnten wir einen
supraleitungsinduzierten Austausch des Spektralgewichts zwischen dieser apikalen
Mode und der ,,Buckling”-Mode nachweisen. Hierbei nimmt die Intensität der
,,Buckling”-Mode deutlich ab, wohingegen die Intensität der apikalen Mode deut-
lich zunimmt. Dies bedeutet, dass sich supraleitungsinduziert der Eigenvektor des
Phonons verändert, und nicht nur die Energie und die Linienbreite. Dieser Effekt ist
auf einen engen Bereich der Brillouin-Zone um den zweidimensionalen Wellenvek-
tor q = (0, 0.3) herum beschränkt; ein analoger Effekt bei q = (0.3, 0) wurde nicht
beobachtet. Dies deutet auf eine ungewöhnliche Elektron-Phonon-Wechselwirkung
hin, die durch kollektive Moden hervorgerufen werden könnte. Die Anisotropie des
Effektes kann im Wesentlichen dadurch erklärt werden, dass die apikale Mode für die
a∗-Richtung nicht in der Nähe der ,,Buckling”-Mode liegt. Daher ist die Streifenthe-
orie als eventuelle Erklärungsmöglichkeit für diesen stark anisotropen Effekt nicht
notwendig.
Für x = 0.6 konnten wir einen ähnlichen Effekt beobachten: bei q = (0, 0.35) nimmt
die Intensität der ,,Buckling”-Mode deutlich ab, allerdings konnte hierbei die apikale
Mode nicht eindeutig aufgelöst werden. Wir vermuten dennoch einen ähnlichen
Mechanismus wie für x = 1.0. Es ist wichtig, dass dieser Effekt sowohl in YBa2Cu3O7

als auch in YBa2Cu3O6.6 beobachtet wurde, denn bisher wurden supraleitungsin-
duzierte Phononeneffekte in Yttriumbariumcuprat nur beim optimal dotierten Ma-
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terial festgestellt. In der Tat konnten bisher festgestellte supraleitungsinduzierte
Phononeneffekte (Renormalisierung der Phononenenergie) für x = 1.0 und q = 0
reproduziert werden. Für x = 0.6 und q = 0 konnte ein solcher Effekt ebenfalls in
Einklang mit früheren Messungen nicht beobachtet werden. Allerdings ergab sich in
Ergänzung zu diesen früheren Messungen ein anisotropes Verhalten der ,,Buckling”-
Mode innerhalb der Brillouinzone. Das interessante Verhalten der ,,Buckling”-Mode
ist schliesslich im letzten Abschnitt des fünften Kapitels zusammengefasst (siehe
6.12).
Das siebte Kapitel enthält Spin-Echo-Messungen über die ,,Buckling”-Mode in
YBa2Cu3O7. Zunächst wird kurz das Funktionsprinzip des Spin-Echo-Spektrometers
Trisp am FRMII in München beschrieben, an dem die Messungen durchgeführt
wurden. Die Messergebnisse sind konsistent mit unseren Dreiachsenmessungen an
derselben Probe.



Chapter 1

Introduction

It is well known that ordinary metals such as mercury and lead exhibit superconduc-
tivity at low temperatures. In these conventional superconductors the dissipation-
less current originates from the formation of so-called s-wave Cooper pairs. This
is possible due to the instability of the Fermi liquid to any non-zero attractive in-
teraction, which is the electron-phonon coupling for conventional superconductors.
Since 1986 so-called high temperature superconductors with transition temperatures
above the boiling point of liquid nitrogen have been discovered. These are called
unconventional superconductors, because the phase transition breaks not only gauge
symmetry but also spatial symmetries. In the high temperature superconductors,
the Cooper pair wave function has d-wave symmetry. However, the mechanism un-
derlying the formation of Cooper pairs in these materials is still controversial. As in
many other transition metal oxides, the conduction electrons in the cuprates exhibit
strong electronic correlations leading to interesting magnetic phenomena. In partic-
ular, the undoped parent compound (x = 0) of the system YBa2Cu3O6+x is a Mott
insulator. According to band theory this material should be a metal. However, due
to the strong electronic correlations the valence band is split into two sub-bands,
and only the lower sub-band is filled. As a consequence, it becomes an antiferro-
magnetic insulator. By introducing holes into such a Mott-insulating state, so-called
Zhang-Rice singlets are formed which have no net magnetic moment.
The superconducting cuprates are doped Mott insulators. Na8Cu5O10 is an example
of a doped Mott insulator that remains insulating. It is a relatively new substance
which was synthesized recently at the MPI-FKF. The special experimental challenge
during the work with this material was its air sensitivity. The important building
block in this cuprate is the one dimensional CuO2 spin chain which consists of
edge-sharing CuO4 units. Within these chains, spin bearing copper ions and non-
magnetic Zhang-Rice singlets alternate. In contrast to the superconducting cuprates
this material does not become superconducting upon doping. Instead it develops
a charge-ordered state in which spin-bearing copper ions and Zhang-Rice singlets

11



12 Chapter 1. Introduction

alternate. This thesis describes the determination of the magnetic ground state of
the charge-ordered chains in Na8Cu5O10. We show that the magnetic ground state is
a spin-density wave, with periodicity different from that of the charge-ordered state.
Charge order with uniaxial propagation vector (”stripes”) has also been observed
in some families of high temperature superconductors, such as La2−xBaxCuO4 with
x = 1

8
. However, it is still controversial whether this state is generic to this family

of materials and whether fluctuations characteristic of dynamical stripes play an
essential role for high temperature superconductors. Evidence for these dynamical
stripes has been claimed based on the observation of phonon anomalies. This is one
reason why it is interesting to investigate phonons in high temperature supercon-
ductors.
A very important observation in the high temperature superconductors is the ap-
pearance of a magnetic resonance mode below the superconducting transition tem-
perature. As this collective magnetic excitation is directly related to the super-
conducting transition, there are good reasons to believe that the Cooper pairs in
the cuprates may be formed due to attractive antiferromagnetic correlations. How-
ever, until now the role of the electron-phonon coupling in the cuprates is still un-
clear. This is the second reason why investigating phonons in cuprates is interesting.
Whereas the presence of superconductivity-induced phonon effects in these cuprates
is undisputed, the relation of these effects to the formation of the Cooper pairs is still
highly controversial. In order to clarify the role of the phonons for the Cooper pair
formation in high-temperature superconductors, these superconductivity-induced
phonon effects should be studied more intensively for different cuprates and by
different spectroscopic methods. In chapter 6 we present our recent contribution
to this research field. We performed inelastic neutron scattering measurements on
the phonon buckling mode in the system YBa2Cu3O6+x for doping levels x = 0.1,
x = 0.6 and x = 1. This particular phonon mode has showed superconductivity-
induced phonon softening in previous experiments for x = 1 and has been predicted
to support the experimentally observed d-wave pairing state. In addition to this
effect, we found a novel anisotropic superconductivity-induced transfer of spectral
weight of the buckling phonon mode to another phonon mode. This new effect is
a strong indication of an unusual electron-phonon interaction and therefore should
influence the debate on the importance of electron-phonon interactions in high Tc

materials. Its observation was made possible by our fully detwinned samples and
the high resolutions of the spectrometers Puma at FRMII in Munich and 1T1 in
Saclay. In previous measurements this q-dependent and anisotropic effect could not
be observed as crystallographic twinning and lower spectrometer resolution mixed
up contributions from different directions and different phonon modes. In measure-
ments on YBa2Cu3O6.6 (underdoped) with lower resolution we also observed a loss
in intensity of the buckling mode, which is consistent with a picture of two interact-
ing phonon modes.
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There follows a brief comparison of the two materials investigated in this thesis
YBa2Cu3O6+x and Na8Cu5O10. Although both compounds are doped Mott insula-
tors with strongly correlated electrons, they behave completely differently; whereas
Yttrium Barium Cuprate shows superconductivity upon doping, Sodium Cuprate
remains a magnetic insulator. The main difference between the two investigated
compounds is the dimensionality of their electronic structure, which derives from
copper oxide planes in Yttrium Barium Cuprate and chains in Sodium Cuprate. The
planes in YBa2Cu3O6+x consist of corner-shared CuO4-units, whereas the chains in
Na8Cu5O10 have edge-shared CuO4-units. Compared to corner-sharing cuprates
with a Cu-O-Cu bond angle of 180◦, the edge-sharing cuprates have a Cu-O-Cu
bond angle around 90◦. As a result in the edge-sharing cuprates two orthogonal
p-orbitals overlap with the d-orbitals of the copper ions. Hence the hopping of the
electrons is strongly reduced and the corresponding superexchange is very weak.
This explains why even doped edge-sharing 1D cuprates are insulators.
This thesis is organized as follows: The first chapter is an introduction to the topic
and the second to neutron scattering. The third chapter introduces the doped
Sodium Cuprate Na8Cu5O10 and presents the magnetic neutron diffraction mea-
surements that have been performed in order to determine its magnetic structure:
a spin-density wave with commensurate spin modulation along the charge ordered
chains and with incommensurate spin modulation perpendicular to these chains.
The fourth chapter provides an extensive description of a triple axis spectrometer,
the instrument used for the phonon measurements on YBa2Cu3O6+x. In the fifth
chapter the dynamical structure factor for phonons is derived. This leads to im-
portant information on how to optimize the phonon measurements on the buckling
mode. Then it is explained how such a phonon measurement works and the reso-
lution function is discussed. This chapter concludes with the discussion of spurious
effects. It is very important to be aware of these effects as they can pretend phys-
ical effects which are not present. The sixth chapter begins with the description
of the system YBa2Cu3O6+x in general and especially of the buckling mode in that
system. Moreover previous measurements connected to the buckling mode are re-
viewed. Sections 6.9 - 6.11 present the inelastic neutron measurements we performed
on the buckling mode in YBa2Cu3O7 and YBa2Cu3O6.6 as well as control mea-
surements on undoped YBa2Cu3O6.1. In particular, we describe a new anisotropic
superconductivity-induced phonon effect related to unusual electron-phonon inter-
action. Section 6.12 contains a summary of these measurements and a discussion
on how these measurements can be understood and related to previously reported
measurements and effects, especially a possible relation to the well known ”kink”
in ARPES measurements. The final chapter explains the principle of a spin echo
spectrometer and data acquisition. It reports our spin echo measurements on the
buckling mode in YBa2Cu3O7. These measurements are consistent with our triple
axis measurements.



Chapter 2

Neutrons and reciprocal space

2.1 Neutrons for experiments

The neutron is composed of three quarks, one up and two down quarks, so that
the neutron has no net electric charge. However it has a charge distribution leading
to a finite radius and a net magnetic moment of µn = 1.91µN [1]. Moreover the
neutron has a finite mass of around mN = 1u and spin 1/2. This has important
consequences for neutron scattering, as the neutron can not only interact with the
atomic nuclei through the strong interaction force but also with the electrons by
magnetic dipole-dipole interaction. Therefore one distinguishes between nuclear
neutron scattering and magnetic neutron scattering. The free electron has a finite
lifetime of 10 minutes and 16 seconds. However this is no problem for neutron
scattering experiments. If one makes measurements with neutrons in the thermal
energy range 10meV < EN < 100meV (if EN is the energy of the neutron below
this energy range one speaks of cold and above this energy range of hot neutrons),
for example with 60meV , then the velocity of the neutrons is around 3.4km/s that
means that the neutrons cover the distance from the neutron source to the detector
within milliseconds.
Nowadays there are two possible designs of neutron sources: fission and spallation
sources. In a fission reaction a thermal neutron is absorbed by a 235U -nucleus which
then decomposes into smaller nuclei and several neutrons. On average one fission
reaction produces 2.5 highly energetic neutrons (with a kinetic energy of ∼ 2MeV ).
In addition the heat of the other reaction products of around 200MeV per neutron
has to be cooled away. An example of a fission source is the neutron reactor Orphée
in Paris at the Laboratoire Léon Brillouin. This reactor is a swimming pool type
reactor with a thermal power of 14MW and a neutron flux of 3 · 1014 neutrons
per cm−2s−1: In order to produce a significant neutron flux the fuel elements (the
core of the reactor, aluminium - uranium alloy enriched with 235U) are separated

14
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by narrow channels of water. This ensures a large thermal energy exchange per
unit volume. The nuclear reaction is controlled by vertically moving control rods
consisting of a material which is absorbing neutrons (Hafnium). The core is placed
in a reflector of heavy water circulating from bottom to top in a stainless steel vat.
In order to protect the scientists from the neutron beam in addition the core is
surrounded by a pool of light water with 15m height and 4.5m in diameter, and
the pool is surrounded by a 1.5m thick concrete wall. There are 9 horizontal tubes
which are tangential to the core (in order to reduce fast neutrons in the neutron
beams). In this way 20 neutron beams are made available for the spectrometers.
As mentioned before the core is situated in a heavy water tank, which is 2m high
and has a diameter of 2m. The water is kept at a temperature of around 50 degree
Celsius in order to operate as a moderator for the thermal beam tubes. Thus one
obtains for example for the spectrometer 1T at the first beam tube a flux of thermal
neutrons of about 3.93 · cm−2s−1. This measurement was made by activation of a
gold foil. There are also beam tubes for cold and hot neutrons available. For the
cold neutron beams a ”cold source” of liquid hydrogen is used as a moderator and
for the hot neutron beams a ”hot source” of a heated graphite cylinder (with 1400K)
is used as a moderator.
In a spallation source highly energetic protons (around 1GeV ) are fired at heavy
nuclei, which are excited by the collision. Afterwards the nuclei eject neutrons with
the energy of 1 − 2MeV . One of the strongest spallation sources is ISIS in Great
Britain at the Rutherford Appleton Laboratory. An important difference between
the spallation sources and a reactor is that the spallation sources are pulsed. That
means that there is no continuous flux of neutrons.

2.2 Energy and momentum conservation and the

dispersion relation of neutrons

For scattering and diffraction experiments of neutrons the following conservation
laws are important: the conservation of energy and the conservation of momentum
[2]:

h̄ω = Ei − Ef (2.1)

| ~K| = k2
i + k2

f − 2kikf cos θS (2.2)

~K = ~kf − ~ki. (2.3)

~K is called the scattering vector. ~ki and ~kf are the wave vectors of the neutrons
in the incident and the final beams. The angle between the incident and the final
beam is 2θS, whereas θ is called the scattering angle of the sample. The wavelength
of the neutrons is λ = 2π/|~k|. Ef and Ei are the energies of the neutrons in the
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incident and final beams. These conservation laws are important for elastic and
inelastic neutron scattering. For elastic neutron scattering the values |~ki| and |~kf |
are equal, whereas they are different for inelastic neutron scattering.
A further very important relationship for neutron scattering experiments is the
dispersion relation for neutrons:

E =
h̄2k2

2mn

(2.4)

E[meV ] = 2.072k2[Å−2] (2.5)

with mn the mass of the neutron. The second equation is practical if one wants
to calculate the energy from the wave vector of the neutrons. Thermal neutrons
are important for measuring collectives excitations in condensed matter, such as
phonons, because their energy is well matched to the energy of such excitations.

2.3 Differential cross section for neutron scatter-

ing

The content of this section can also be found in the good article of H.Zabel [3]. A
neutron experiment means that a neutron beam characterized by the initial wave
vector ki and the corresponding energy Ei = h̄2k2

i /2m is scattered by the sample
due to interaction processes of the neutrons with the sample. The interesting ex-
perimental quantity is the differential cross section it measures the neutrons being
scattered in a given solid angle dΩf in the direction of the wave vector kf with a
final energy between Ef and Ef +dEf . One distinguishes between the coherent and
the incoherent part of the differential cross section [3]:

d2σ

dΩfdEf

=
d2σ

dΩfdEf

|coh +
d2σ

dΩfdEf

|incoh . (2.6)

Incoherent scattering occurs for mono atomic samples if there are different isotopes
and if the atoms have a nuclear spin which is not parallel for all the atoms. That
means that the scattering length of the various atoms are different. In most of the
cases incoherent scattering leads to an unwanted intrinsic background of the sample.
Whereas the coherent part of the scattering cross section provides information about
cooperative effects among the atoms which lead to elastic Bragg scattering but also
to inelastic scattering by phonons and magnons. Therefore in the following text the
coherent scattering cross section will be treated as the final goal is to derive the
structure factor for elastic Bragg scattering and the dynamical structure factor for
phonons.
The interaction between the neutrons and the sample which is considered here is
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weak in that sense that the neutrons doesn’t change the nature of the eigenstates
itself but cause a transition between different eigenstates of the sample. For this
case Fermi’s golden rule describes the interaction of the neutrons with the sample
and the differential cross section can be written:

d2σ

dΩfdEf

=
kf

ki

(
mn

2πh̄

)2

|〈~kfλf |V |~kiλi〉|2δ(h̄ω + Ei − Ef ), (2.7)

where mn is the neutron mass, λf is the final eigenstate of the sample, λi is the
initial eigenstate of the sample and h̄ω is the excitation energy of the quasi particle
(inelastic scattering). As the interaction is weak one can calculate the matrix element
using the Born approximation and treat the incident and final neutrons as plane
waves. Moreover one can assume the scattering centers identical (one atom per unit
cell) and for nuclear scattering the interaction potential is a δ-function in space.
Then it follows for the (coherent) differential cross section:

d2σ

dΩfdEf

= N
kf

ki

σcoh

4π
· S( ~K, ω) (2.8)

where N is the number of nuclei and σcoh = 4πb2 is the coherent cross section with b
being the scattering length of identical, coherent scatterers. S( ~K, ω) is the scattering
function given by:

S( ~K, ω) =
1

2πh̄N

∑

ll′

∫ ∞

−∞
dt〈exp(−i ~K ~Rl′(0)) exp(i ~K ~Rl(t))〉 exp−iωt, (2.9)

where ~K is the scattering vector, t is the time, ~Rl′(0) and ~Rl(t) are position vectors
at different times for different nuclei labelled by l′ and l. The brackets indicate the
average over initial states also called the thermal average. The goal of most neutron
scattering experiments is to measure S( ~K, ω) and thereby determine the microscopic
properties of the system under investigation as the scattering function contains all
the physics of the target [3].
The following three properties of the scattering function [3] [2] (for the first two
properties only the inelastic part of the scattering function is considered) are quite
interesting. First of all the principle of detailed balance:

S(− ~K,−ω) = exp(−h̄ω/kBT ) S( ~K, ω), (2.10)

where kB is Boltzmann’s constant and T is the temperature. This property expresses
that the transition probability depends on the Boltzmann factor and thus especially
on the fact whether an excitation will be annihilated or created. The Boltzmann
factor is lower if an excitation is annihilated.
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Second, the scattering function is related to the dissipative part of a linear response
function via the fluctuation-dissipation theorem:

S( ~K, ω) =
χ′′( ~K, ω)

1− exp(−h̄ω/kBT )
, (2.11)

where χ′′( ~K, ω) is the imaginary part of the dynamical susceptibility.
Third the scattering function can be expressed as space and time Fourier transform
of the correlation function G(~r, t), reflecting the fact that the scattering function in
general contains information on the position and the motion of the atoms within
the sample:

S( ~K, ω) =
1

2πh̄

∫
G(~r, t) exp i(~k~r − ωt)d~rdt, (2.12)

where ~r is the position vector. If a particle of the sample is at ~Rl′ at the time zero,
the correlation function is the probability that another particle l is at ~Rl = ~Rl′+~r at
another time t. Hence the correlation function can be expressed through δ-functions
in real space:

G(~r, t) =
1

N

∑

ll′

∫
〈δ(~r′ − ~Rl′(0))δ(~r′ + ~r − ~Rl(t))〉d~r. (2.13)

The upper formula expresses the correlation of all the pairs of two atoms within
the sample and hence the summation is over all these pairs (even self correlation is
considered). The brackets reflect the thermal average. Inserting the upper formula
in equation 2.12 one gets again the result for the scattering function from equation
2.9.
We are now specifying the sample. We assume that the particles move only in the
vicinity of their so-called equilibrium positions which are given by a Bravais lattice.
So the possible motions of the particles can be described by lattice oscillations or
more precisely as a superposition of the normal modes. Hence the crystal may be
modelled as a set of coupled harmonic oscillators. This leads for the atoms of the
sample the following position vector:

~Rl(t) = ~l + ~ul(t), (2.14)

where ~l is the time independent equilibrium position of the atoms and ~ul(t) is the
time dependent motion around these equilibrium positions. Inserting this position
vector in equation 2.9, one obtains for the scattering function the following expres-
sion [3]:

S( ~K, ω) =
1

2πh̄

∑

l

exp(i ~K~l)
∫
〈exp U exp V 〉 exp(−iωt)dt, (2.15)
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with U = −i ~K ~u0(0) and V = i ~K~ul(t). The sum over l and l′ could be simplified
recognizing that for each value of l′ the sum over l is the same and the origin can
be chosen arbitrarily at l′ = 0. Instead of the sum one has to multiply the whole
expression by the number of atoms within the sample N . Afterwards the factor
exp(i ~K~l) could be taken out of the integral as it is time and temperature indepen-
dent.
Using the concepts of the quantum mechanical harmonic oscillator and normal
modes one can express U and V in the following way. In general one has to con-
sider all the normal modes depending on q the phonon wave vector and j labelling
the three different polarizations. The following calculation is made for one normal
mode representing the others. (Each phonon mode is orthogonal and can usually be
treated independently within the harmonic approximation) Later the other modes
have again to be considered by the appropriate summation.

U = −i ~K~u0(0) = −i(ca~q,j + c∗a+
~q,j) (2.16)

V = i ~K~ul(t) = i(da~q,j + d∗a+
~q,j), (2.17)

with

c =

(
h̄

2MN

)1/2 ~Kε~q,j√
ω~q,j

, d =

(
h̄

2MN

)1/2 ~Kε~q,j√
ω~q,j

exp i(~q ~l − ωt), (2.18)

where a~q,j = as and a+
~q,j = a+

s are the annihilation and creation operators of the
corresponding phonon mode, ε~q,j is the polarization vector for the corresponding
phonon mode, ω~q,j is the phonon frequency for the corresponding phonon mode and
M is the mass of the atom. Instead of the indices for the normal modes ~q and j,
s is used as a collective index. According to quantum theory the annihilation and
creation operator have the following properties:

as|n〉s =
√

n|n− 1〉s, a+
s |n〉s =

√
n + 1|n + 1〉s, (2.19)

where the operators for different modes commute:

[as, a
+
s′ ] = δs,s′ . (2.20)

The vectors |n〉s denote the eigenstates of the quantum mechanical oscillator and n is
the corresponding eigenvalue. Using the properties of the annihilation and creation
operator, one can show that [3]:

〈exp U exp V 〉 = 〈exp(U + V )〉 · exp(1/2[U, V ]). (2.21)

Using the fact that the exponential (U + V ) is a Gaussian distribution and that we
are in thermal equilibrium we can simplify the former expression to:

〈exp U exp V 〉 = exp 〈U2〉 · exp 〈UV 〉. (2.22)
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Using the above relation and the fact that the factor exp 〈U2〉 is time independent,
we obtain for the scattering function (see equation 2.15) the following expression:

S( ~K, ω) =
1

2πh̄

∑

l

exp (i ~K~l) exp 〈U2〉
∫

exp 〈UV 〉 exp (−iωt)dt. (2.23)

Where 〈U2〉 is the self correlation function of the time dependent deviation while
〈UV 〉 is the average pair correlation function of the deviation. From 〈U2〉 it follows
the Debye-Waller factor, whereas from 〈UV 〉 follows the phonon cross section. The
factor exp 〈U2〉 is called the Debye-Waller factor, with

〈U2〉 = −2W = − h̄

2MN

∑
s

( ~K~εs)
2

ωs

coth(1/2h̄ωsβ) (2.24)

the Debye-Waller constant W , β = 1
kBT

and kB is the Boltzmann constant.
The integral in equation 2.23 contains the factor exp 〈UV 〉 which can be expanded
by expansion of the e-function:

exp 〈UV 〉 = 1 + 〈UV 〉+
1

2!
〈UV 〉2 + ... (2.25)

The first term yields the scattering function for elastic scattering (ω=0) for point-like
scatterers:

S( ~K) =
1

2πh̄

∑

l

exp (i ~K~l) exp−2W. (2.26)

In general, for arbitrary ~K the phase adds up incoherently and hence the net value of
the scattering function is zero. However, if the scattering vector equals a reciprocal
lattice vector, then the phases add up coherently and the scattering function becomes
finite. This condition is called the Bragg condition and the corresponding scattering
peak a Bragg peak. This is a very important scattering condition and therefore it
is discussed in the following section (2.4) in some detail.

2.4 Elastic Scattering

In the following section the well-known but important scattering conditions for elas-
tic scattering of neutrons will be stated [4]. But also for inelastic scattering these
relations play an important role for example for aligning the sample and in deter-
mining spurious contributions to the scattering cross section.
In a scattering experiment there is always an initial wave vector of the neutrons ~ki,
which corresponds to the neutron beam which is incident on the sample, and a final
wave vector ~kf , which corresponds to the scattered neutron beam. When the neu-

trons are scattered this process corresponds to a phase difference exp[i(~kf − ~ki) · ~r]
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(see equation 2.26) between the incident and the scattered beam which is quantified
by the difference of the initial and the final wave vector:

~K = ~kf − ~ki, (2.27)

where ~K is the scattering vector of the experiment.
However, as pointed out in the previous section (2.3), an intense scattered beam
only appears if this difference corresponds to a reciprocal lattice vector Ghkl =
h~b1 + k~b2 + l~b3, which is given by the reciprocal lattice, defined by the reciprocal
lattice vectors ~b1,~b2,~b3, of the sample and h, k, l are the Miller indices:

~K = ~Ghkl. (2.28)

This is the important scattering condition for elastic scattering. If this relation is
not fulfilled no Bragg reflection is visible. One visualizes this relationship with the
help of the Ewald sphere (see figure 2.1). In this figure at the right the reciprocal
lattice vectors are shown. At the left the Ewald sphere is constructed. The vector
~ki ends at an arbitrary point of the reciprocal lattice. If the circle with radius |~ki|
crosses another reciprocal lattice point the scattering condition is fulfilled as the
difference vector is also a vector of the reciprocal lattice. The vector which points
to the second reciprocal lattice point is ~kf . The angle between ~ki and ~kf is twice
the scattering angle θ.

Figure 2.1: Ewald sphere with which the important condition for elastic scattering
can be illustrated.

The distance of two scattering planes in real space corresponding to a lattice vector
in reciprocal space is given by

dhkl =
2π

Ghkl

, (2.29)
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with Ghkl = |~Ghkl|.
With this relation and k = |~ki| = |~kf | = 2π/λ it follows from the scattering condition
2.28 Bragg’s law [4]:

2dhkl sin θ = n · λ, (2.30)

where λ is the wave length of the neutrons of the electron beam and n is a whole
number, it gives the higher order peaks of Bragg scattering. Bragg’s law is another
way of expressing the scattering condition for elastic scattering.
Bragg’s law is a fundamental law of scattering. With this law one can calculate the
positions of the nuclear and magnetic Bragg reflections (see section 3.7), and it is
also useful for aligning a sample for measurements at a triple-axis spectrometer (see
section 5.1).

2.5 Structure factor for nuclear and magnetic scat-

tering

By changing the summation index in equation 2.26 such that one sums up over the
atoms in the atomic unit cell and then over all unit cells, one obtains Braggs law
and the structure factor for nuclear elastic scattering. In the following formula the
sum has been split again: first one sums over the atoms within the asymmetric
unit cell, then over the symmetry operators which generate the remaining atoms
within the unit cell. In summary one sums over all the atoms in the full unit cell.
Then one obtains the nuclear structure factor Fh (also generalized by occupation
and anisotropic Debye-Waller factors) which is also used in this form by Fullprof:

Fh =
n∑

j=1

Ojfj(~h) exp(−Bj|~h|/4)
m∑

s=1

Tjs(~h) exp
{
2πi(~h{S|~t}s~rj)

}
(2.31)

where n is the total number of atoms in the asymmetric unit cell, m is the number
of the reduced set of symmetry operators (centering lattice translations and inver-
sion center operators removed), j is the index for the jth atom and s for the sth

symmetry operator. ~h is a reciprocal lattice vector, {S|~t}s represents the symmetry

operator with {S|~t}s = ~hT Ss~rj + ~hT~ts, ~rj represents the position vector of the jth

atom, Oj is the occupation factor, fj(~h) is the nuclear form factor, which depends
on the shape of the orbitals and hence it depends on the valence state of the ion,
exp(−Bj|~h|/4) is the isotropic Debye-Waller factor with the isotropic temperature

parameter Bj, the anisotropic Debye-Waller factor is Tjs(~h) = exp
{
−~hT SsβjS

T
s
~h

}

with the symmetrical matrix βj representing the anisotropic temperature parame-
ters. If the isotropic temperature factor is refined then the anisotropic temperature
parameters are zero. The last term in the upper formula is the phase factor which
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depends from the position of the atoms in the nuclear unit cell and from the recip-
rocal lattice vectors.
The structure factor F 2

h for a magnetic phase is calculated according to the general
formula of Halpern and Johnson [5] (also used by Fullprof):

F 2
h = |~Fm(~h)|2 −

(
~e · ~Fm(~h)

)
(2.32)

where ~Fm(~h) is the magnetic structure factor, ~h is the scattering vector, ~e is a unit

vector along the scattering vector. The scattering vector can be written as ~h = ~H+~k,
where ~H is equal to the reciprocal lattice vector of the nuclear lattice (due to the

scattering condition this vector equals ~Ghkl) and ~k is the propagation vector of the
magnetic structure.
The magnetic structures that can be refined with Fullprof must have a distribution
of the magnetic moments µlj that can be developed as a Fourier series:

µlj =
∑

{~k}

~S~kj exp
{
−2πi~k ~Rl

}
, (2.33)

where ~S~kj is the Fourier component of the magnetic moment, ~k is the propagation
vector of the magnetic structure, Rl are the coordinates of the atoms with index l
and j is also an index for the atoms.
If the magnetic moment can be expresses as a Fourier series according to equation
2.33, then the magnetic structure factor can be written in the form:

~Fm( ~H + ~k) = p
n∑

j=1

fj( ~H + ~k)~S~kj exp
{
2πi( ~H + ~k)~rj

}
, (2.34)

where fj( ~H + ~k) is the magnetic form factor. If one considers thermal motion and
the symmetry operations, so that the sum is only over the atoms in the magnetic
asymmetric unit cell one gets the general equation for magnetic scattering, which is
used in the program Fullprof and also given in the Fullprof user manual:

~Fm(~h) = p
n∑

j=1

Ojfj(~h)T iso
j

∑
s

MjsS~kjTjs exp
{
2πi

[
~h{S|~t}s~rj −Ψ~kjs

]}
, (2.35)

where ~h = ~H + ~k is again the scattering vector, ~H and ~k are the lattice vectors of
the nuclear and magnetic lattice in reciprocal space. Oj is the occupation factor,

fj(~h) is the magnetic form factor, which depends on the form of the orbital, T iso
j is

the isotropic Debye-Waller factor and Tjs is the anisotropic one. Mjs is an operator,

which transforms the Fourier components ~S~kj according to the given symmetry.

{S|~t}s is again the symmetry operator which generates from the position of the
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atoms ~rj in the asymmetric magnetic unit cell the whole set of atomic positions in
the magnetic unit cell. The first sum over j goes over the magnetic atoms (ions
with spin) of the asymmetric magnetic unit cell, whereas s goes over the magnetic
symmetry operators. The last term is the phase factor with Ψ~kjs = Φ~kj +φ~kjs, where
Φ~kj is a phase factor which is not determined by the symmetry and φ~kjs is a phase
factor which is determined by symmetry.

2.6 Magnetic structure factor for collinear mag-

netic structures

In the following section the magnetic structure factor, is given according to the book
from Bacon [6]. This gives a more intuitive picture of the magnetic structure factor
than the structure factor in the previous section. Bacon gives a magnetic struc-
ture factor which is general in that sense that one can calculate arbitrary magnetic
models especially the general case of a helimagnetic structure. This formula will
be given in this section and then it will be derived from it the magnetic structure
factor for collinear magnetic models. This formula can be used in order to get a
intuitive understanding under which conditions magnetic Bragg peaks cancel. Using
this knowledge can help if one tries to find a correct model for a given data set.
According to Bacon the magnetic structure factor is given by the following for-
mula where ~h = ~h(h, k, l) is the magnetic scattering vector which is equal with the
reciprocal lattice vector for magnetic Bragg scattering (this is due to the scatter-
ing condition for magnetic Bragg scattering) and for which in general a non zero
structure factor is obtained:

~Fm(~h) = − e2γ

mc2

∑
n

[
~sn − ĥ(ĥ~sn)

]
fn(~h) exp(i~h~%n) (2.36)

Where e2γ/mc2 is a constant with m the electron mass, e the electron charge, c
is the velocity of light and γ is the magnetic moment of the neutron expressed
in nuclear magnetons. n runs over all the magnetic atoms, which are carrying a
magnetic moment, within the magnetic unit cell. ~sn is the spin vector of the nth
atom. ~h = h~a∗ + k~b∗ + l~c∗ is the magnetic scattering vector, which defines the
scattering plane and ĥ is the corresponding unit vector. It is emphasized that even
for the magnetic scattering vectors ~a∗, ~b∗ and ~c∗ are also the reciprocal lattice vectors
of the nuclear lattice. However that means that the Miller indices for magnetic
Bragg reflections are no whole numbers. fn(~h) is the magnetic form factor and
it is determined by the shape of the orbitals in which the electrons bearing the
magnetic moments are. exp(i~h~%n) = exp 2πi(h% + kλ + lσ) is the phase factor and

~%n = %~a + λ~b + σ~c is the position vector of the magnetic atoms in the magnetic unit
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cell. Again ~a, ~b and ~c are the lattice vectors of the nuclear lattice and %, σ and λ
are the relative coordinates of the magnetic atoms. The Debye-Waller factor was
omitted for simplicity.
The spin term of the magnetic structure factor can be simplified so that the structure
factor reads (see figure 2.2):

Figure 2.2: The decomposition of the spin vector ~sn in its component along the
scattering vector ~h and its component on the scattering plane ~sn

p . The horizontal
thick line at the bottom of the picture is the scattering plane, which is rectangular
to the scattering vector ~h.

~Fm(~h) = − e2γ

mc2

∑
n

~sn
pfn(~h) · exp(i~h~%n). (2.37)

where ~sn
p is the projection of the spin vector of the nth atom in the magnetic unit

cell onto the scattering plane. If the orbitals of the magnetic atoms are equal one
can simplify the magnetic structure factor as the magnetic form factors for different
atoms are equal fn(~h) = f(~h):

~Fm(~h) = − e2γ

mc2
f(~h)

∑
n

~sn
p exp(i~h~%n). (2.38)

The formula above is the general formula in that sense that one can implement an
arbitrary magnetic model where every spin has its own coordinates sn

p . However
for collinear magnetic models, that means all the spins are aligned along the same
direction the magnetic structure factor can again be simplified. Therefore one uses
for the spin component the expression sn

p = σ|~sp|, where σn is +1 if the corresponding
magnetic atom has spin up or is −1 if the corresponding magnetic atom has spin
down. Now the magnetic structure factor reads:

~Fm(~h) = − e2γ

mc2
f(~h)|~sp|

∑
n

σn exp(i~h~%n), (2.39)
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with |~sp| = |~s|
√

1− (ŝq̂)2 = |~s| · sin α and α is the angle between the scattering

vector ~h and the spin vector ~sn.
This magnetic structure factor is consistent with the differential cross section dσ

dΩ

for elastic magnetic scattering for an antiferromagnet (collinear magnetic models)
in Squires’ book [7]:

dσ

dΩ
∼ | ~Fm(~h)|2 ∼ f 2(~h)|~s|2

[
1− (ŝq̂)2

]
|∑

n

σn exp(i~h~%n)|2, (2.40)

where |~s|2 corresponds to the staggered mean spin 〈Sη〉2 and η stands for the spin
direction in sublattice A. In an antiferromagnet the spin structure consists of two
sublattices, one sublattice with spin up and the other sublattice with spin down.
Mean staggered spin means, that the average is made over one sublattice and not
the whole magnetic structure as then the average would be zero.
In the formula above one recognizes the spin term [1− (ŝq̂)2]. This term is zero if
the magnetic moments are parallel to the direction of the magnetic scattering vector.
That means that for this case the intensity for the corresponding magnetic Bragg
reflection cancels. This behavior of the magnetic structure factor can be used for
finding the appropriate magnetic model.
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Magnetic measurements on
Na8Cu5O10

The relation between the magnetic and electric properties of copper oxides has re-
cently been the subject of intense research activity. There are two main reasons for
that special interest. First the occurrence of high temperature superconductivity
is related to magnetism and second usually magnetism and ferroelectricity exclude
each other. Therefore, multiferroic materials which show magnetic order as well
as ferroelectricity are rare and are especially interesting. In particular, states with
collinear and noncollinear magnetic order are currently under discussion in the con-
texts of ferroelectricity in undoped copper-oxide chain compounds [8] and of the
anomalous transport properties of underdoped high temperature superconductors
[9, 10]. Since theoretical methods are well established in one dimension, compounds
with quasi-one-dimensional electronic structure are particularly suitable as model
systems to obtain a detailed understanding of this interplay. However, research
on doped copper-oxide chain compounds has been limited by the lack of materials
that support a significant density of holes on the chains. Most of the attention has
been focused on the “telephone number compounds” (La,Sr)14−xCaxCu24O41, which
contain chain and ladder systems based on edge-sharing CuO4 square plaquettes
[11, 12, 13, 14, 15, 16, 17]. A variety of experiments have revealed intricate charge
and spin ordering patterns on the chain subsystem, which depend strongly on the
hole content. However, complications originating from the presence of two distinct
electronically active subsystems with different hole concentrations and from the ran-
dom potential of substituents (for x 6= 0) partially mask the intrinsic behavior of the
copper-oxide chains. Moreover, recent work has shown that the magnetic properties
of this material are strongly influenced by an incommensurate structural modulation
arising from a mismatch of different units constituting the complex crystal lattice
[15, 16, 17]. Ca2+xY2−xCu5O10, a class of materials containing only copper-oxide
chains, also exhibits a complicated structural modulation unrelated to charge order-
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ing [18, 19]. In addition, the magnetic properties of doped chains in this material
appear to be influenced to a large extent by substitutional disorder and/or oxygen
non-stoichiometry [20].
Therefore the investigation of the magnetic structure in doped spin chain compounds
with long range charge order and a commensurate nuclear structure has not been
possible so far. However, the current chapter of this PhD thesis is dedicated to the
magnetic ground state of a new material which fulfills these special requirements.

3.1 Introduction

NaxCuO2, a recently synthesized family of compounds with very low chemical disor-
der [21, 22, 23]. This material consists entirely of electronically inert Na+ ions and
chains built of edge-sharing CuO4 plaquettes similar to those in (La,Sr)14−xCaxCu24

O41 and Ca2+xY2−xCu5O10 (figure 3.1). Holes donated to the chains by the Na ions
form long-range ordered superstructures that are generally incommensurate with the
Na sublattice . However, in contrast to other copper oxides with dopable chains, in-
commensurate structural modulations unrelated to charge ordering are not present,
so that commensurate charge order can be established if x is a rational number. By
carefully adjusting the chemical synthesis conditions, a state with x = 1.60, corre-
sponding to a hole filling factor of 2/5 on the chains, has recently been stabilized
[23]. The stoichiometric compound created in this way, Na8Cu5O10, is a unique test-
ing ground for theories of magnetism in doped copper oxides, without complications
arising from substitutional disorder and/or incommensurate lattice distortions.
Our measurements were made with two powder samples. One of the samples turned

out to be of better quality and has a mass of 4.5g. The results being reported here
were obtained by measurements with that powder sample [21]. Its magnetic suscep-
tibility was found to be in good agreement with prior reports [21, 22]. In particular,
a magnetic transition temperature TN = 23 K, between the magnetically long range
ordered and the paramagnetic phase, was obtained by analyzing the derivative of
the magnetization as a function of temperature.
The atomic positions within the unit cell are displayed in figure 3.1. The unit cell
comprises ten copper ions, which are organized in two parallel CuO2 chains pointing
along the b-axis. The chains are separated by Na ions. Four of the copper ions in
each unit cell (Cu3 in figure 3.5) were found to exhibit bonding patterns charac-
teristic of spin-less Zhang-Rice singlet states with formal valence 3+. The Cu-O
bond lengths of the remaining six copper ions indicate a valence state of Cu2+ with
spin 1/2. The Cu2+ ions are located in two inequivalent sites, which are surrounded
by two Cu3+ ions (Cu1), and one Cu3+ ion and one Cu2+ ion (Cu2), respectively.
Nominally di- and trivalent copper ions are ordered in the sequence 2-2-3-2-3-2-2-3-
... along the chains (figure 3.1). The charge order is stable up to temperatures well
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Figure 3.1: Nuclear unit cell of Na8Cu5O10. The Cu2+ ions are blue,the Cu3+ ions
green, the oxygen ions are red and the sodium ions are grey. This figure shows, that
there are two CuO2-chains within one nuclear unit cell. Within these chains a given
sequence of Cu2+ and Cu3+-ions leads to charge order. The nuclear structure has
space group symmetry C m. The b-axis is running along the chains. The Cu2+-
ions bear the magnetic moments which are shown by blue arrows. The green ions
are the Zhang-Rice singlets and have (almost) zero magnetic moment. The three-
dimensional magnetic structure is determined by the propagation vector (0.5-α, 0,
0.5-β) and the difference of the magnetic phase between of the ions.

above room temperature [21].

3.2 Neutron diffraction measurements at 3 T-2

and Rietveld refinement

As Na8Cu5O10 is sensitive to air, for the neutron measurements the samples were
sealed in air-tight vanadium cans, which were loaded into a helium flow cryostat.
The neutron diffraction data were taken at the Laboratoire Leon Brillouin in Saclay,
France. In order to determine the nuclear structure, we used the high-resolution
diffractometer 3-T-2. For that spectrometer the resolution is optimized for higher
angles (∆Q (Å−1) ≈ 0.0125 from 60 degrees to 90 degrees). The incident wave-
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Figure 3.2: Rietveld Refinement of the powder diffraction pattern from our sample
made with Fullprof. The black line shows the calculated refinement, whereas the
red dots are the measured data. The Bragg reflections are indicated by green lines.
The blue curve gives the difference between the calculated and measured intensities.

length was 1.23 Å. Our measurements were performed at room temperature (around
290K). Figure 3.2 shows the corresponding high-resolution powder diffraction pat-
tern. The nuclear intensities for both samples were refined with the program Full-
prof [24] on the basis of the monoclinic space group Cm. The unit cell parameters
a = 8.23492 ± 0.00014Å, b = 13.92889 ± 0.00020Å, c = 5.71324 ± 0.00010Å, and
β = 111.91± 0.004◦, the isotropic Debye-Waller factor 1.2478(6) Å2 and atomic po-
sitions (see table 3.1) obtained from the refinement agree with the results of earlier
x-ray diffraction studies [21, 23]. Additionally the asymmetry parameters of the line
shape were quite small. The line shape was assumed to be a pseudo-Voigt func-
tion, which is a linear combination of a Lorentzian with a Gaussian. The resulting
diffraction pattern yields an excellent description of the experimental data (figure
3.2), as indicated by the goodness-of-fit-parameters RP = 0.213, Bragg R = 0.109,
and χ2 = 0.0473. This implies that the sample is chemically homogeneous, and
that the lattice structure is indeed commensurate. Another sample prepared under
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Atom Wyck. x/a y/b z/c
Cu1 2a 0.30(3) 0.5 -0.16(0)
Cu2 4b 0.26(9) 0.90(5) 0.80(0)
Cu3 4b 0.27(6) 0.70(1) -0.18(2)
Na1 4b 0.14(6) 0.87(4) 0.19(7)
Na2 2a 0.96(6) 1 0.38(4)
Na3 4b 0.90(7) 0.79(4) 0.42(9)
Na4 4b 0.56(3) 0.86(2) 0.16(5)
Na5 2a 0.44(8) 1 0.45(8)
O1 2a 0.20(0) 1 0.53(8)
O2 2a 0.34(4) 1 0.05(6)
O3 4b 0.25(4) 0.59(5) 0.58(3)
O4 4b 0.31(3) 0.80(5) 0.03(3)
O5 4b 0.23(1) 0.79(5) 0.56(1))
O6 4b 0.33(5) 0.60(7) 0.05(9)

Table 3.1: The refined atomic positions of the ions within the asymmetric unit cell
are given in units of the lattice constants a = 8.23492 ± 0.00014Å, b = 13.92889 ±
0.00020Å, c = 5.71324 ± 0.00010Å, and β = 111.91 ± 0.004◦, which have also
been refined. Moreover, the anisotropic temperature (displacement) factor (Biso:
isotropic Debye-Waller factor 1.2478(6)) has also been obtained by our refinement.
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nominally identical conditions yielded substantially worse refinements, and data on
a sample consisting of batches of powder material synthesized in different reactions
could only be fitted by a superposition of different charge ordering patterns. These
findings show the sensitivity of the nuclear structure to the synthesis conditions.

3.3 Magnetic measurements at G 4-1

Figure 3.3: Integrated intensities of the (∓0.5 ∓ α, 1, ±0.5 ± β)- and the (0.5-α,
0, 0.5+β) magnetic Bragg reflection as a function of temperature. The line is the
result of a power-law fit. Thus we obtained a transition temperature of 23K.

Our magnetic measurements were taken at G 4-1, a cold neutron two axis spec-
trometer for magnetic structure determination. The resolution was optimized for
small angles (∆Q (Å−1) ≈ 0.0065 up to about 20 degrees). The incident wavelength
was λ = 2.43 Å. With a 800-cell multi-detector, we could cover a 2θ range from
3 degrees up to 82.9 degrees in 0.1 degrees steps. We used a cryostat, so that we
could reach temperatures down to 1.4K. Before each measurement the temperature
was stabilized for 5 minutes. For our Na8Cu5O10 powder sample, we took data
above and below the magnetic ordering temperature TN . To obtain the temper-
ature dependent magnetic order parameter, we measured the diffraction patterns
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for our sample at 1.4K, and from 4K to 20K in steps of 4K. In order to determine
the transition temperature we made three further measurements between 20K and
25K. (For our second sample measurements at 1.4K, 20K and 30K were made.) By
comparing the magnetic measurements below and above TN two magnetic Bragg re-
flections were identified. Further magnetic Bragg reflections could not be identified
above the background. The temperature evolution of the integrated intensity of the
(∓0.5 ∓ α, 1, ±0.5 ± β)- and the (0.5-α, 0, 0.5+β) magnetic Bragg reflection (see
figure 3.4) ,is well described by a power-law fit without detectable rounding near
TN = 23K (see figure 3.3), which indicates homogeneous magnetic long-range order
in the low-temperature phase. Moreover, the Néel temperature of 23K is consistent
with our susceptibility measurements.

3.4 Magnetic model for Na8Cu5O10

The magnetic structure was refined using Fullprof. And our data for T = 1.4K
together with this refinement is shown in figure 3.4. The corresponding formula for
the magnetic structure factor is explained in section 2.5. The positions of the mag-
netic Bragg peaks indicate an approximate doubling of the unit cell along a and c,
whereas the magnetic and nuclear unit cells coincide along the spin-chain axis b. A
systematic shift away from scattering angles corresponding to commensurate Bragg
reflections (inset in figure 3.4) reveals that the magnetic structure is incommensu-
rate. The propagation vector resulting from the refinement is (−0.5 + α, 0, 0.5− β)
with α = 0.089(3) and β = −0.030(1) at 1.4K. The Miller indices of the magnetic
Bragg reflections are shown in figure 3.4. The asymmetric lineshape of the magnetic
peak at higher scattering angle is well explained as a consequence of the superposi-
tion of two resolution-limited, nearly coincident incommensurate Bragg reflections.
Although only three inequivalent magnetic Bragg reflections are visible, the diffrac-
tion pattern imposes strong constraints on the magnetic structure. Because of the
large unit cell and the incommensurate magnetic modulation, most possible spin
arrangements generate additional Bragg reflections with intensities well outside the
experimental error bars, where none are observed. By far the best agreement with
the data (RP = 0.245, Bragg R = 0.0493, χ2 = 0.0477, magnetic R = 0.114) was
obtained based on a collinear spin structure in which the two Cu2+ moments on Cu2
sites directly adjacent along the chains are parallel, whereas Cu1 and Cu2 moments
separated by Cu3 ions are antiparallel. The magnetic moment on the Cu3 site was
refined to (almost) zero, consistent with the Zhang-Rice singlet state inferred from
the bond-length analysis mentioned above [21]. The incommensurate propagation
vector perpendicular to the chains modulates the magnitude of the Cu2+ moments.
The modulation amplitude was refined as 0.84±0.10µB on both Cu1 and Cu2 sites,
consistent with a spin-1/2 state. The spin direction resulting from the refinement
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Figure 3.4: The red points show the measured data obtained at G 4-1 for T = 1.4K.
The black line shows the Rietveld refinement for our magnetic model, for which
the magnetic moments are modulated incommensurably along the a∗ and the c∗

axis and commensurately along the b∗ direction. The green bars indicate the Bragg
reflections. The bars in the first line represent the nuclear Bragg reflections and
the bars in the second line represent the magnetic Bragg reflections. The observed
magnetic Bragg peaks are given according to their Miller indices. The inset shows
the same data but with a Rietvield refinement assuming a magnetic model with
commensurate wave propagation for all three crystallographic axis. This shows that
an incommensurate propagation vector is essential to refine our data properly.

is (0.86 ± 0.39, 0, 0.92 ± 0.07), that is, perpendicular to the chains. An additional
refinable parameter is the phase difference Ψ12 = 45 ± 4.5◦ of the modulation on
Cu1 and Cu2 sites. The spin arrangement within the nuclear unit cell is displayed
in figure 3.1. The corresponding diffraction pattern is in excellent agreement with
the data (see figure 3.4).
A comprehensive set of alternative collinear and noncollinear spin structures was
also tested, but the resulting refinements were unsatisfactory. In particular, the
diffraction patterns of the circular helix structure that yields the best agreement
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with the data generates prominent Bragg reflections (±0.5±α, 1,±0.5∓β) at 22.9◦,
where the Bragg intensity vanishes within the error (arrow in figure 3.4). The corre-
sponding magnetic R-factor is 0.3541, much worse than that of the collinear state.
If the refinement is generalized to include elliptical helix structures, the length of the
minor axis of the ellipse (0.061 ± 0.165µB along b) is consistent with zero, and the
magnetic R-factor does not improve significantly compared to the collinear state.
Although a small noncollinear component cannot be ruled out, the incommensurate
modulation therefore predominantly affects the moment amplitude.

3.5 Discussion

Although the observed spin amplitude modulation is formally analogous to spin
density waves in metallic systems, the insulating nature and robust charge order of
Na8Cu5O10 imply that it cannot arise from a Fermi surface instability. We there-
fore discuss our data in terms of superexchange interactions between local magnetic
moments, focusing first on the commensurate spin structure along the chain axis b.
The spin alignment along this axis indicates a ferromagnetic nearest-neighbor ex-
change interaction J‖1 and an antiferromagnetic next-nearest-neighbor interaction
J‖2 (figure 3.5), in agreement with electronic structure calculations for edge-sharing
copper-oxide chains [14, 25, 26, 27, 28] and with the conclusions of experiments
on a variety of undoped compounds including LiCu2O2 [29, 30] and NaCu2O2 [31],
which contain undoped chains with similar bond lengths and angles as the ones
in Na8Cu5O10. Since the Cu-O-Cu bond angle in the edge-sharing chain geometry
is close to 90◦, J‖1 is anomalously small, and the competing next-nearest-neighbor
coupling J‖2 is comparable or larger in magnitude. The undoped spin systems of
(Li,Na)Cu2O2 respond to the resulting frustration by forming incommensurate, he-
lical magnetic order propagating along the chains [29, 31, 30]. In Na8Cu5O10, charge
ordering lifts this frustration and gives rise to a commensurate spin structure along
the chains.

The situation is different for interactions between different chains. For simplic-
ity, we first ignore the small incommensurability along c and consider the magnetic
bonding pattern in the ab-plane (figure 3.5), including both interactions between di-
rectly adjacent chains within the same unit cell (J⊥1, J⊥2) and interactions between
next-nearest-neighbor chains (J⊥3). For most sign combinations of these parameters,
the inter-chain interactions are frustrated. For instance, the simplest explanation
for the approximate doubling of the unit cell along a is that J⊥3 is dominant and
antiferromagnetic, leaving the interactions between nearest-neighbor chains frus-
trated. (We note that ab-initio calculations on NaCu2O2 indeed yield antiferro-
magnetic next-nearest-neighbor inter-chain interactions of magnitude comparable
to the leading intra-chain coupling [26]). In principle, the spin system can respond
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Figure 3.5: Cut of the lattice structure along the ab plane, showing two unit cells
with inequivalent copper sites. Moreover the nearest and next-nearest neighbor
superexchange paths between the spin baring copper ions are shown. Further ex-
planation see text. The spins have been calculated by considering the propagation
vector and the phase differences between inequivalent copper ions. As a result one
obtains a spin density wave, where the amplitudes of the spins are modulated.

to the frustration by establishing either noncollinear magnetic order, as observed in
(Na,Li)Cu2O2, or periodic spin-singlet correlations, as found in models of frustrated
and/or doped quasi-two-dimensional quantum antiferromagnets [10]. Whereas the
neutron diffraction data rule out substantial noncollinearity, an admixture of spin-
singlet correlations is a possible mechanism underlying the observed spin density
modulation. To obtain a crude estimate of the magnitude of the inter-chain inter-
actions in Na8Cu5O10 in the framework of this scenario, we consider classical spins
coupled by sinusoidally modulated exchange bonds with amplitudes shown in figure
3.5. Minimization of the exchange energy E

E = −J‖2 cos Ψ12 + 2J⊥1 cos(Ψ12 +
hxa

2
)− 2J⊥3 cos(hxa) + 2J⊥2 cos(

hxa

2
) (3.1)

with respect to the phase shift Ψ12 of the modulation on the Cu1 and Cu2 sub-
lattices then yields J⊥1/J‖2 = sin Ψ12/2 sin(1

2
hxa + Ψ12) ∼ −0.72, where hx is the
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component of the incommensurate propagation vector along the a-axis determined
by the competing interactions between nearest- and next-nearest-neighbor chains.
While a full quantum-mechanical calculation is required to assess the viability of
this scenario, this simple estimate indicates that the exchange interactions between
CuO2 chains along a are comparable to those within the chains. Similar findings
have been reported for other copper-oxide chain compounds [26, 28, 32]. The smaller
incommensurability along c suggests weaker exchange interactions in this direction.
In view of the helicoidal states observed in the undoped analogues (Li,Na)Cu2O2,
the collinear spin density modulation in Na8Cu5O10 may seem surprising. However,
as other cuprates with undoped edge-sharing chains exhibit collinear spins [19, 32],
the energy balance between both types of order appears to be quite subtle. This
is also confirmed by ab-initio calculations [28, 27]. Anisotropic exchange [12, 32]
and/or order-from-disorder mechanisms [33] may be responsible for tipping the bal-
ance towards collinear order in Na8Cu5O10.

3.6 Summary

We have determined the magnetic structure of Na8Cu5O10 below its Néel tempera-
ture TN = 23 K by neutron powder diffraction. We find that the spins are collinear
and exhibit an incommensurate spin density modulation that is unusual for magnetic
insulators. A possible origin is a network of competing inter-chain exchange inter-
actions generated by commensurate charge order. In conclusion, by virtue of their
commensurate lattice structure and absence of substitutional disorder, Na8Cu5O10

and other members of the NaxCuO2 family are interesting model systems for theories
of frustrated quantum antiferromagnetism in copper oxides [8, 9, 10, 27].

3.7 Magnetic reflections in the monoclinic cell

In section 2.4 Bragg’s law 2dhkl sin θ = n · λ was derived. With Bragg’s law one
can calculate at which scattering angle 2θ the nuclear or magnetic Bragg reflections
occur. Therefore one has to calculate the distance of two scattering planes dhkl in
real space. This distance depends on the corresponding reciprocal lattice vector
~Ghkl:

dhkl =
2π√
~G2

hkl

. (3.2)
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And for the orthorhombic case it is depending on the Miller indices h, k, l and the
lattice constants (in real space) a, b, c:

dhkl =
1√(

h
a

)2
+

(
k
b

)2
+

(
l
c

)2
. (3.3)

As mentioned in section 3.2 Na8Cu5O10 has the space group C m, that means that
it has a monoclinic lattice. In order to calculate the distance dhkl between two
scattering planes for the monoclinic case; first of all the scalar product ~G2

hkl will be
calculated. Therefore the coordinates (the Miller indices) and the lattice constants
will refer to monoclinic coordinates, moreover the monoclinic vectors in real space
will be expressed by orthogonal coordinates in order to calculate the scalar product
(see figure 3.6):

Figure 3.6: The monoclinic plane given by the vectors ~a and ~c is shown. In addition
a orthorhombic coordinate system with unit vectors â′ and ĉ′ is shown. The angle
β of the monoclinic unit cell is shown.

~a = ~a ′ = a â′ (3.4)

~b = ~b ′ = b b̂′ (3.5)

~c = c cos β ĉ′ − a sin β â′ (3.6)

The reciprocal lattice vectors ~a∗, ~b∗ and ~c∗ are given by their counterparts in real
space by the following expression:

~a∗ = 2π
~b× ~c

V
(3.7)



3.7. Magnetic reflections in the monoclinic cell 39

~b∗ = 2π
~c× ~a

V
(3.8)

~c∗ = 2π
~a×~b

V
(3.9)

whereas the Volume V is given by V = (~a×~b) · ~c.
Now we will express the reciprocal lattice vectors of the monoclinic lattice by the
real lattice vectors of the orthorhombic lattice:

~a∗ =
2π

V
bc · cos β (b̂′ × ĉ′)− bc · sin β (b̂′ × â′) (3.10)

=
2π

V
[bc · cos β â′ + bc · sin β ĉ′] (3.11)

~b∗ =
2π

V
ca · cos β (ĉ′ × â′)− ca · sin β (â′ × â′) (3.12)

=
2π

V
ca · cos β b̂′ (3.13)

~c∗ =
2π

V
ab · (â′ × b̂′) =

2π

V
ab · ĉ′. (3.14)

Now we will calculate ~G2
hkl with ~Ghkl = h~a∗ + k~b∗ + l~c∗ and the volume of the unit

cell V = abc · cos β:

~G2
hkl = (h~a∗ + k~b∗ + l~c∗)(h~a∗ + k~b∗ + l~c∗) (3.15)

=
(

2π

V

) [
h2(b2c2 · cos2 β + b2c2 sin2 β) + ...

]
(3.16)

[
... 2hlab2c · sin β + k2c2a2 · cos2 β + l2a2b2

]
(3.17)

=
(

2π

V

) [
h2b2c2 + k2c2a2 cos2 β + l2a2b2 + 2hlab2c sin β

]
(3.18)

= (2π)2

[
h2

a2 cos2 β
+

k2

b2
+

l2

c2 cos2 β
+ 2hl

1

ac

sin β

cos2 β

]
(3.19)

That means that the distance between two scattering planes in real space dhkl follows:

dhkl =
1√[

h2

a2 cos2 β
+ k2

b2
+ l2

c2 cos2 β
+ 2hl 1

ac
sin β
cos2 β

] (3.20)

Now one can calculate with Bragg’s law the positions of the magnetic Bragg reflec-
tions. This was done for all three magnetic Bragg reflections of Na8Cu5O10 (section
3.4). We obtained values in accordance with the calculations with Fullprof.
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The Triple-Axis Spectrometer

The main parts of a triple-axis spectrometer are the three spectrometer axes, the
monochromator axis, analyzer axis and the sample axis. During each experiment
these are the axes which are changed in order to obtain the right experimental
conditions. Besides, it consists of other important elements as the monochromator
and the analyzer crystal, energy filters, collimators, detectors and the shielding. The
very good book from Shirane et al. [2] was used as a basis in order to describe all
parts of a triple-axis spectrometer.

4.1 Shielding

As the moderation of the neutrons is not perfect, there are fast neutrons and in
addition to these dangerous γ-rays which have to be shielded. To slow the neutrons
down one uses iron or hydrogen in different forms and finally cadmium in order
to absorb the low-energy neutrons. In order to absorb the γ-rays one uses signif-
icant amount of lead. As the fast neutrons need a lot of collisions to slow down
the shielding of the monochromator is bulky and usually consists of a large drum
filled with scattering and absorbing materials. The shielding around the analyzer,
the sample and the detector can be more compact as the number of fast neutrons
reaching these instruments is much lower. However besides the massive shielding the
monochromator and also the analyzer and the detector must still rotate smoothly
and accurately in order to ensure that precise measurements can be made [2].

4.2 Monochromator and analyzer

Apart from the source it is mostly the monochromator which determines the inten-
sity of the neutron beam on the sample. It selects a very narrow range of wave
lengths according to Bragg’s law. So this very narrow range of wavelengths depends

40
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on the separation of the crystallographic planes dhkl of the monochromator crystal.
However, if one uses a perfect single crystal as monochromator crystal the diver-
gence, of the reflected beam would be to small for an acceptable beam intensity.
Hence one uses monochromator crystals with a certain mosaicity, that means that
the crystal consist out of small crystallites which have a certain, small misorienta-
tion with respect to each other. The distribution of these misorientations of the
crystallites is assumed to be Gaussian:

W (∆) =
1√
2πη

e
−∆2

2η2 (4.1)

where ∆ is the misorientation of a crystallite with respect to the crystallite with
averaged misorientation and η is the width of the Gaussian distribution function,
which gives a measure for the mosaicity. A single crystal being used as a monochro-
mator crystal should not only have a certain mosaicity but should have a negligible
absorption. Such crystals are called ideally imperfect crystals. For diffraction, mean-
ing that Bragg’s law is valid, of the neutron beam at a large flat monochromator,
which is made of an ideally imperfect crystal, Shirane et al. [2] gives in his textbook
two different kinds of reflectivity. First the so called peak reflectivity Rp and second
the integrated reflectivity Ri. Then the peaked reflectivity is given by

Rp =
R0

1 + R0

(4.2)

where

R0 =
Qct0√

2πη sin θB

(4.3)

and

Qc =
λ3F 2

N

v2
0 sin 2θB

(4.4)

with Qc the crystallographic quantity, t0 the thickness of the monochromator,
η the monochromator mosaicity, θM the scattering angle from Bragg’s law, λ the
neutron wave length, FN the static nuclear structure factor and v0 the unit-cell
volume. And the integrated intensity is given for large values of Ri

Ri = 0.96

√
Qct0

η sin θM

. (4.5)

And if a white beam is used the λ dependent integrated intensity is given by

Rλ = R0λ cot θM . (4.6)

For the monochromator the integrated reflectivity is applicable whereas for the an-
alyzer the peaked intensity is appropriate.
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In order to get a high beam intensity the monochrometer should have a large crystal-
lographic quantity Qc making the reflectivity high (4.3). That implies (see equation
4.4) for the monochromator material a large structure factor FN meaning a big scat-
tering length and a small unit-cell volume v0. In order to keep the background low in
an inelastic scattering experiment a large Debye temperature meaning a more or less
rigid lattice and a low incoherent scattering cross section σinc or more precisely a low
relation between incoherent and coherent scattering cross section σinc/σscat are de-
sirable. In addition the absorption of neutrons of the material should be low. There
are various materials with good monochromator properties. For example Nickel and
Beryllium, however with these materials it is difficult or expensive to prepare good
monochromators. Other good materials are PG (pyrolytic graphite) and copper.
The properties of these materials being important for the use as a monochromator
are summarized in the following table, where a and c are the lattice constants [2]:

material structure a c Fn/v0 σinc/σscat

(Å) (Å) (hkl) (1011cm−2) (percent)
Nickel fcc 3.52394 (220) 1.316 0
Beryllium hcp 2.2854 3.5807 (002) 0.962 0.02

(110) 5.4985
PG layer 2.4612 6.7079 (002) 0.734 0.02

(004) 3.7467
copper fcc 3.61509 (220) 0.653 6.8

In general single crystals of the materials above are not ideally imperfect meaning
that their mosaicity is too low. This means that the angular width of the reflected
beam (the beam divergence) would be to small in order to get an acceptable beam
intensity. Hence it is important to increase the mosaicity for these materials be-
fore using them as monochromators for example by introducing dislocations within
the crystal. This is a complicated process as the reflected beam should maintain
a Gaussian shape. In summary the intensity on the sample depends on two main
properties of the monochromator, the peak intensity and the mosaicity. PG (py-
rolytic or oriented graphite) is a very good monochromator material as it has good
reflectivity properties and it has an appropriate mosaicity. Pyrolytic graphite has
oriented (00l) planes, whereas other planes in general (hkl) are oriented randomly
and generate powder like diffraction patterns. The orientation of the (00l) planes is
good enough to obtain a high reflectivity but leads moreover to a certain mosacity.
One can obtain a peak reflectivity of around 80 per cent for low energies, a mosaic-
ity η = 0.56◦ and an absorption of less then 2 per cent [2]. The peak reflectivity
decreases for higher energies because of double Bragg scattering for the following
reasons. If one uses PG as a monochromator crystal one uses for example the (002)
reflection of the oriented layers. That means the (000) and the (002) point in recip-
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rocal space determine the Ewald sphere for low energies. Hence the Ewald sphere is
small but increases for neutrons with higher energies, that means that higher Bragg
reflections for example (112) and (114) are also lying on the Ewald sphere. Thus
two or more reflections fulfill the scattering condition simultaneously. This is called
double Bragg scattering. According to Bragg’s law the scattering angles of the other
Bragg reflections are in general not the same as for the (002) reflection and thus
the intensity decreases if double Bragg scattering occurs. Furthermore in PG these
higher order reflections are powder like and hence they are represented by rings in
reciprocal space. That means the reflected intensity is further lowered for higher
energies (for PG around 60 per cent at 40meV and 80 per cent at 5meV) [2].
In order to increase the intensity on the sample further one can focus the beam (see
figure 4.1). Focusing the beam does not only increase the intensity on the sample

Figure 4.1: Behavior of the beam depending on the degree of focusing. For Li = L1

the monochromator is focused and the beam performs the maximum intensity on
the sample. From Shirane et al. [2], page 66.

but also effects the resolution. The resolution of the momentum transfer component
perpendicular to the scattering plane is decoupled from the resolution components
within the scattering plane and from the energy resolution. Within the scattering
plane a good resolution is required. Therefore vertical focusing (see figure 4.1), which
affects only the resolution perpendicular to the scattering plane, is more commonly
used (see resolution parameters in chapter 6.9.1). The effects of vertical focusing on
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the in-plane resolution of the momentum transfer and on the energy resolution have
been tested experimentally with a perfect single crystal and it has been found that
this effect can be neglected as the line width change was around 2 per cent [2]. For
vertical focusing the monochromator is bent vertically and within the framework of
geometric optics it can be approximated as a cylindrical mirror. If the source to
monochromator distance is L0 and the curvature of the monochromator is R then
the image of the source will be at a distance Li and the following relation will apply
[2]

1

L0

+
1

Li

=
2 sin θM

R
. (4.7)

Where θM is the scattering angle of the diffracted beam. The focusing condition is
obtained if the image is located at the sample. That means Li = L1, where L1 is
the monochromator to sample distance. If the beam is focused that means that the
beam intensity is maximal at the sample.
Focusing the analyzer crystal means that one maximizes the intensity at the detector
and hence a detector with a smaller size can be used. This is an advantage as the
signal to background ratio is improved.

4.3 Collimators

The moderated, emitted neutrons from the reactor core do not have a common di-
rection, they emerge in all possible directions. The monochromator and analyzer
reflect only neutrons propagating in a narrow range of directions and they influence
the beam divergence for example by focusing. However, it may be helpful to have
additional control of the beam divergence. The beam divergence can be controlled
in the horizontal scattering plane by so-called Soller collimators [34]. A Soller colli-
mator consists of parallel absorbing plates of length L and height h. The plates are
separated by a distance a. The transmission function is triangular with a FWHM
of α = a

L
in the horizontal plane and β = h

L
in the vertical plane. The efficiency of

a Soller collimator depends on the following factors [2]

1. the uniformity of the spacing of the blades throughout the collimator

2. the neutron absorption cross section of the blade material

3. the thickness of the blades

4. the straightness of the blade edges at the entrance and exit to the collimator.

A high efficiency Soller collimator was developed by Carlile et al. [35] consisting
of thin plastic films stretched by a metal frame. These plastic films are coated
with a gadolinium oxide which has a big neutron absorption coefficient. These
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collimators fulfill the conditions listed above. Especially the collimation may be
very fine as the blades are quite thin and hence the distance a between the blades
may be very small without losing too much intensity. In fact these collimators have
a high transmission. The peak transmission of the triangular transmission function
exceeds 95%. In general a collimator is used to control the beam divergence but it is
also possible to use a triple-axis spectrometer without collimators. Then the beam
divergence is determined by the monochromator and the analyzer.

4.4 Filters

According to Bragg’s law (see equation 2.30) the angle of the diffracted beam de-
pends on the ratio λ/2dhkl. If a higher order reflection (nh, nk, nl) with dnh,nk,nl =
d/n is also allowed, neutrons with a different energy and wavelength λ/n will be
diffracted at the same angle. The corresponding reflections are called higher order
reflections. As they can disturb the measured spectra it is important to have filters
in order to suppress these reflections.
The total neutron cross section which gives a measure for the attenuation of the
direct neutron beam by a certain material is given by [2]

σN = σabs + σel + σinel, (4.8)

where σabs is the cross section due to nuclear capture processes due to strong reso-
nances of the nuclei, σel is the cross section for elastic scattering and σinel corresponds
to inelastic neutron scattering. According to Bragg’s law the maximal wavelength
that can be elastically scattered is λcutoff = 2dmax

h, k, l. Where dmax
h, k, l is the maximal

spacing of the crystal. For poly-crystalline samples there is a steep increase of the
elastic cross section above λcutoff . Due to multi phonon processes the inelastic neu-
tron cross section increases with energy.
Three-axis instruments are typically used in the thermal energy range. However,
there are also a lot of high energy or fast neutrons which contribute to the back-
ground. In newer reactors one uses tangential beam tubes and heavy-water mod-
erators which reduce the number of fast neutrons. In some older reactors or if the
beam tubes look more directly at the core one needs fast neutron filters to eliminate
the large number of fast neutrons in order to reduce the background. Filters for fast
neutrons use the inelastic neutron cross section σinel of certain materials in order to
attenuate the flux at high energies. Various materials can be used as fast neutron
filters: Bi, Si, quartz (SiO2) and sapphire (Al2O3). For a high quality sapphire
crystal Tennant [36] measured the transmission and got the following results: the
transmission is high and varies slowly in the thermal (5 < Ei < 100meV ) and cold
(0.1 < Ei < 10meV ) energy range. For fast neutrons (E > 500meV ) the transmis-
sion is less than 3%. Cooling the crystal has only a small effect on the transmission.
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This material is a useful material in order to reduce the flux of fast neutrons and it
is better than quartz and silicon.
All nuclei have strong resonances given by their nuclear structure. This effect can be
used in order to build λ/2 and λ/3 filters. Due to their resonances these materials
have a a high absorption cross section for λ/2 and a low absorption cross section for
λ.
Higher order reflections can also be attenuated by so-called Bragg scattering filters.
These filters use the steep increase of σel at the cutoff wavelength λcutoff = 2dmax

h, k, l.
Freund and Forsyth [37] gave the cutoff energies for different materials. These mate-
rials are used in the poly crystalline form as the orientation of the Bragg reflections
is of no concern for the cutoff energy and hence for the use as a filter. Two use-
ful materials for Bragg scattering filters are Be and BeO with cutoff wavelengths
(energies) of 4.0Å and 4.7Å (5.2meV and 3.7meV ), respectively. For smaller wave-
length with respect to the cutoff value and for higher energies these materials can
be used in order to filter higher order reflections. Another very useful material
in order to filter higher order neutrons is PG (pyrolytic graphite). A PG filter is
placed in the beam with its c-axis parallel to the beam. Thus Bragg scattering can
occur for certain reflections and the corresponding neutrons are scattered out of the
beam. Figure 4.2 presents the transmission [38] for neutrons travelling parallel to
the c-axis for a 5-cm-thick piece of PG. It shows the transmission for the desired

Figure 4.2: Transmission of a 5-cm-thick PG filter as a function of energy for the
desired energy E, 4E and 9E. From Shirane et al. [2], page 82.
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energy E (wavelength λ) and the corresponding transmissions for the higher orders,
namely 4E (λ/2) and 9E (λ/3). Desirable is a large transmission for λ and a low
transmission for λ/2 and λ/3. It was shown by Shirane and Minkiewicz [39] that
reducing the mosaicity, improves the transmission for λ and the attenuation for λ/2.
This was shown with a 2-cm-thick PG filter with a mosaic width of 3.5 degrees and
6.5 degrees. The transmission for λ = 2.44Å decreased from 75% to 50 % and the
transmission for λ/2 increased from 0.07 % to 5 %. It is often useful to apply a
second filter in order to check whether a given signal of the beam is intrinsic or
whether it is due to second (higher) order contamination. If the intensity decreases
substantially with the use of a second filter it is due to higher order neutrons.

4.5 Absorbers

The most commonly used absorber for neutron experiments is Cadmium, which is
easily pliable and has a high absorption cross section for neutrons. Therefore it
can be easily used in order to shield experimenters from harmful stray neutrons.
However one has to consider that neutron absorption leads to emission of γ-rays.
Other materials commonly used as neutron absorbers are Gd2O3 and borated plastic
or glass.

4.6 Spectrometer alignment

First the spectrometer must be aligned in a series of steps. The center lines of the
Soller collimators must intersect the centers of rotation of the monochromator, the
sample and the analyzer. This can be done best with an optical method. This step
is called the optical alignment.
Second, one has to align the three spectrometer axes in a systematic approach in
order to avoid correlated errors. This step is called the experimental alignment.
As a first step of the experimental alignment the monochromator has to be aligned.
Therefore the nominal positions of the sample and analyzer angles (2θS and 2θA)
are set to their nominal zero positions. The analyzer should be rotated to an angle
where it is not reflecting, so that the detector looks directly into the beam reflected
from the monochromator. A single horizontal collimator should be placed between
the monochromator and the sample table. Collimation restricting the vertical di-
vergence should be placed after the sample. If one makes sure that the detector
is not saturated one can open the shutter and rotate the monochromator along its
vertical and horizontal axes in order to maximize the intensity. This should be done
iteratively.
The next step is to operate the spectrometer in a two-axis mode, with one (hori-
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zontal) collimator after the sample. A standard, Q-independent scatterer should be
placed as a sample. Therefore one can use for example a poly-crystalline vanadium
sample with 2θS ∼ 2θM (where θM is the scattering angle of the monochromator)
and the detector should be placed at a nonzero position. The translation of the
monochromator is checked by measuring the scattering intensity as the vanadium
sample is translated across the beam. The peak-intensity position marks the beam
center and should coincide with the center of rotation of the sample axis. If they
don’t coincide the monochromator should be translated to bring them into coinci-
dence.
If one is satisfied with the monochromator alignment one should simultaneously cal-
ibrate the incident wave vector and check for an offset in 2θS. This is performed
with a poly crystalline sample with known lattice spacing and with at least three
Bragg reflections, such as the vanadium sample already used in the previous align-
ment step.
The instrument is now aligned for two-axis operation. The next procedure would be
to place the sample in its position and align it by using two orthogonal reflections.
This procedure will be explained in detail in section 5.1.
The last step is to adjust the analyzer. The analyzer can be aligned either from the
beam of a properly aligned sample or from the direct beam of the monochromator.
The procedure is the following: First, the analyzer is rocked to find the position
of maximum intensity, and the analyzer angle θA is adjusted to correspond to this
position. Then the analyzer crystal and the detector arm are scanned together in
θA − 2θA mode, meaning a longitudinal scan for the analyzer is being performed,
and any necessary adjustment in the value of 2θA is made.

4.7 Goniometers

For neutron measurements at a triple-axis instrument there is commonly used a
two-circle goniometer, on which the sample is mounted. It consists of two tilt stages
which allow the rotation of the sample around two orthogonal axes. These stages are
used in order to align the sample. For aligning the sample one uses two orthogonal
reflections with the corresponding reciprocal lattice vectors along the upper and the
lower stage of the goniometer. Then it is important to align first he upper stage and
then the lower one.

4.8 Detectors

In order to detect neutrons a nuclear reaction is necessary, as the neutron has no
net electric charge and therefore does’t react with matter in that sense that it is
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ionizing. There are proportional counters and scintillation detectors, the later are
better suited for higher counting rates whereas proportional counters are better
suited for lower counting rates [1].
In the following a proportional counter is shortly explained. This detector uses 3He
or BF3 gas enriched with 10B, which is under pressure. This gas is used as an
absorbing gas for the nuclear reaction, which yields charged particles. For the 3He
detector the nuclear reaction of a neutron with the 3He atom yields tritium and
a high energetic proton (∼ 0.57MeV ). This proton or the charged particles from
another nuclear reaction ionizes the gas and the resulting electrons ionize more gas.
Thus one obtains a discharge at a high voltage of around 2 − 4kV . This charge is
proportional to the initial energy of the charged particles produced by the nuclear
reaction and can therefore be discriminated from the smaller signal from γ-radiation.
The counting time is limited due to the collection of the ions and the electronics of
the preamplifier. The main advantage of a proportional counter is the high efficiency
for thermal neutrons. The efficiency η of a 3He detector is

η ∝ (1− exp(−Nσad)) , (4.9)

with N the number density of the 3He atoms, σa the absorption cross section and
d the thickness of the detector. If one would produce detectors with very high
efficiencies for thermal neutrons fast neutrons (E > 0.6eV ) would also be detected.
As one tries to avoid this a detector efficiency ηthermal for thermal neutrons of 80 %
is a good compromise as then fast neutrons are detected more unlikely.
As the neutrons are scattered in several directions it is a loss of intensity not to have
more detectors in several directions. Therefore multi detectors are used, especially
for elastic measurements. One can use several detectors with a certain angular
distance between them. For the case of gas detectors one can also use a multi
detector with several wires in order to improve the angular resolution.
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Inelastic neutron scattering with a
triple-axis spectrometer

5.1 Sample alignment

After the spectrometer (monochromator and/or analyzer) is aligned one can align
the sample (see 4.6). This is done in the two axis mode of the spectrometer. The
following scheme of a triple-axis spectrometer (see figure 5.1) helps to understand
the following discussion how a sample is aligned. The monochromator selects by

Figure 5.1: Scheme of a triple-axis spectrometer for inelastic neutron measurements
[3]. The angles are explained in the text.

Bragg scattering from the thermal neutron beam the neutrons with the propagation
vector ~k and scatters them under the angle 2θM . These neutrons compose the
incident beam on the sample with ~k = ~ki. The sample scatters the neutrons under

50
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the angle 2θ = Φ. The angle Ψ is the angle between the incident neutron beam and
a reciprocal lattice vector of the sample. The analyzer scatters the neutron beam
again under the angle 2θA. Finally the neutron beam reaches the detector.
Before aligning the sample the spectrometer is set to the two-axis mode and driven

Figure 5.2: Elastic scattering condition (Bragg condition) which must be fulfilled,
so that the sample is aligned properly.

to a 2θ angle, where a well observable Bragg reflection is expected. This angle can
be checked by hand and by the use of Bragg’s law. The next step is to bring the
scattering plane of the sample, in which the reciprocal lattice vector Ghkl is laying,
in coincidence with the scattering plane of the spectrometer, which is being defined
by the scattering vector ~K and the propagation vectors ~ki and ~kf (see figure 5.2).
This is been done by aligning two reciprocal lattice vectors of the sample to the two
goniometers (see figure 5.3). For orthorhombic samples this is especially easy, as
then the reciprocal lattice vectors are along the crystallographic axis of the sample.
Afterwards one has to change the angle Φ (turning the sample) such, that the Bragg

condition ~Ghkl = ~K for the Bragg peak to which the spectrometer was driven is
fulfilled. If this Bragg peak is found in principle the sample is aligned. By tilting
the sample (for both reciprocal lattice vectors) with the corresponding goniometer on
a corresponding Bragg reflections, one optimizes the intensity of the Bragg reflection
and hence one finds the optimal alignment of the sample. Usually then one performs
longitudinal scans (where the ratio between Ψ and Φ remains the same) in order
to check the lattice constants. After the sample alignment and the correction of
the lattice constants the spectrometer is prepared for inelastic measurements. That
means one can start to measure phonons. For our orthorhombic sample of YBCO
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Figure 5.3: Mechanical alignment of the sample on top of the goniometer plate.

6.6 with b = 3.885 and with a value of the initial propagation vector ki = 3.5Å−1 one
gets an angle 2θ ≈ 60 degrees. During our measurements described in the following
chapter we aligned the sample in the a∗c∗ and b∗c∗ plane by the use of the (2, 0, 0),
(0, 0, 9) and the (0, 2, 0), (0, 0, 9) Bragg reflections, respectively.

5.2 Dynamical structure factor for phonons

For the derivation of the dynamical structure factor for phonons, one follows the
derivation for neutron diffraction in section 2.3. From equation 2.23:

S( ~K, ω) =
1

2πh̄

∑

l

exp (i ~K~l) exp 〈U2〉
∫

exp 〈UV 〉 exp (−iωt)dt (5.1)

it follows not only the scattering function for diffraction but also the scattering
function for phonons. From 〈U2〉 it follows the Debye-Waller factor:

〈U2〉 = −2W = − h̄

2MN

∑
s

( ~K~εs)
2

ωs

coth(1/2h̄ωsβ) (5.2)

the Debye-Waller constant W , β = 1
kBT

and kB is the Boltzmann constant.
The integral in equation 2.26 contains the factor exp 〈UV 〉 which can be expanded
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by expansion of the e-function:

exp 〈UV 〉 = 1 + 〈UV 〉+
1

2!
〈UV 〉2 + ... (5.3)

The first term yields the scattering function for elastic scattering (see section 2.3).
The second term refers to the annihilation or creation of one phonon. This term
yields the scattering function and thus the differential cross section of one phonon
scattering. Therefore the expansion above is called the phonon expansion. The third
order terms yield the scattering functions of two-phonon scattering. However this
term and higher order terms have less intensity and usually contribute to a diffuse
background in inelastic neutron scattering experiments.
So in order to calculate the scattering function of one-phonon processes we have to
calculate the following expectation value:

〈ns|UV |ns〉 = 〈ns|(cas + c∗a+
s )(das + d∗a+

s )|ns〉 (5.4)

= cd∗〈ns + 1〉+ c∗d〈ns〉 (5.5)

=

(
h̄

2MN

)
( ~K ~εq)

2

ωq

(5.6)

[
exp−i(~q ~l − ωqt)〈ns + 1〉+ exp i(~q ~l − ωqt)〈ns〉

]
. (5.7)

Here the brackets still represent the thermal average and hence 〈ns〉 is the Bose
occupation number for the phonon mode with wave vector ~q and polarization j.
The Bose factor is then:

〈ns〉 =
1

exp(h̄ωq/kBT )− 1
. (5.8)

Now we can insert the one-phonon term of the phonon expansion in the equation
5.1 and obtain for the scattering function:

S( ~K, ω) =
1

2πh̄
exp(−2W )

∑

l

exp(i ~K~l) · (5.9)

(
h̄

2MN

)
( ~K ~εq)

2

ωq

∫ ∞

−∞
dt exp(−iωt) (5.10)

[
exp−i(~q ~l − ωqt)〈ns + 1〉+ exp i(~q ~l − ωqt)〈ns〉

]
. (5.11)

Using the following two expressions for the δ-function
∫

exp−i(ω ± ωq)t dt = 2πδ(ω ± ωq) (5.12)

and
∑

l

exp i( ~K ± ~q) ·~l =
(2π)3

v0

∑

G

δ( ~K ± ~q − ~G), (5.13)
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one obtains for the scattering function for one-phonon processes:

S( ~K, ω)±1 =
(2π)3

v0

1

2MN
exp−2W

∑

G

( ~Kεq)
2

ωq

(5.14)

[(
〈n(ωq)〉+

1

2
±

(
−1

2

))
δ(ω ± ωq)δ( ~K ± ~q − ~G)

]
(5.15)

where v0 is the volume of the unit cell in reciprocal space and ~G is an arbitrary
reciprocal lattice vector. This is the complete expression for the scattering function
of the one-phonon process for a given mode. The annihilation of one phonon refers
to the plus sign, whereas the creation of a phonon is referred to the minus sign.
Now we consider again all phonon modes, that means we include the sum over the
given normal modes s. Moreover we assume that there are more than one atom
within the nuclear unit cell and that they have different masses. Then we obtain for
the coherent differential cross section for the one-phonon annihilation or creation
process the following expression [3]:

(
d2σ

dΩdEf

)
=

(2π)3

v0

· kf

fi

∑

s={~q,j}

∑

~G

F 2( ~K, ~q)

2ωs

(5.16)

[(
〈n(ωq)〉+

1

2
±

(
−1

2

))
δ(ω ± ωs)δ( ~K ± ~q − ~G)

]
, (5.17)

where F ( ~K, ~q) is the dynamic structure factor:

F ( ~K, ~q) =

∣∣∣∣∣
∑

d

bd√
Md

exp(i ~K ~rd)[ ~K~εj(~q)] exp−Wd(~q)

∣∣∣∣∣ , (5.18)

where d is the index over all basis atoms within the nuclear unit cell, hence Md

is the mass of the dth atom and bd is the scattering length of the dth atom. By
introducing more than one atom within the nuclear unit cell one had also to include
the corresponding phase factor exp(i ~K ~rd) for each atom, as they are at different
positions ~rd within the unit cell.
The differential cross section for one-phonon scattering (equation 5.17) contains
besides the dynamic structure factor and the Bose factor also two products of δ-
functions in the four dimensional ω, ~K-space. These δ-functions ensure the energy
and momentum conservation during the scattering process. The plus sign within
equation 5.17 refers to the Stokes process, a scattering process where phonon cre-
ation appears. That means the energy transfer to the target is ω = +ωq, whereas the
neutron energy change is Ef−E = −h̄ωq. This is also the energy conservation during

the scattering process while the momentum conservation reads ~K = ~kf−~ki = ~G+~q.
The minus sign within equation 5.17 refers to the Anti-Stokes process, a scattering
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process where phonon annihilation appears. That means the energy transfer to the
target is ω = −ωq, whereas the neutron energy change is Ef−E = +h̄ωq. Again this
is the energy conservation during the scattering process while the momentum con-
servation reads now ~K = ~kf−~ki = ~G−~q. For T = 0 only phonon creation is possible
as there are no phonons excited within the target. Moreover it should be recognized
that the intensity for the Stokes and Anti-stokes processes depend especially on the
Bose factor (within the scattering function). The lower the temperature the more
probable are phonon creation processes compared to phonon annihilation processes.
The momentum is conserved relative to a reciprocal lattice vector ~G. If the phonon
wave vector differs by a multiple of the reciprocal lattice vector this doesn’t affect
the displacements of the atoms and hence the phonon energy doesn’t change either.
Therefore the dispersion relation of a phonon mode ω(~q) can be measured in any
Brillouin zone which is experimentally obtainable. However the dynamic structure
factor differs within different Brillouin zones if there are more than one atom within
the nuclear unit cell.
The dynamic structure factor also depends on the scalar product ~K~εq. That means
especially that the scattering geometries are different for longitudinal and transver-
sal phonons. And hence due to that factor one can distinguish between longitudinal
and transversal phonons. For a longitudinal phonon the polarization vector is par-
allel to the phonon wave vector, whereas for a transversal phonon the polarization
vector is orthogonal to the phonon wave vector.
In a three dimensional lattice with N unit cells each containing r atoms there are
three acoustic phonon branches and 3r−3 optical phonon branches. For each phonon
branch there exists a dispersion relation ω(~q). (The dispersion relation contains N
ω(~q) points.) This relation meaning the frequency goes to zero if the phonon wave
vector goes to zero for acoustic modes, whereas it remains finite for the phonon wave
vector going to zero for optical modes. For acoustic branches as well as for opti-
cal branches one third of the modes is longitudinal and two thirds are transversal
modes.
In addition, the cross section is damped with increasing temperature because of the
temperature dependent Debye-Waller factor.
The proportionality S( ~K, εq) ∝ 1/ωq is typical for any inelastic neutron scattering.
The differential cross section in equation 5.17 considers the ideal case that the
phonon lifetime is infinitely high. However in real systems the phonon-phonon in-
teraction and the electron-phonon interaction tend to give the phonon a finite life
time. One can consider this dissipation of energy and describe the phonon with the
model of the damped harmonic oscillator. Therefore on has to replace in equation
5.17 the δ-functions by a Lorentzian function, which describes the phonon with its
finite life time Γs (given as the peak half-width at half maximum, HWHM) and
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simultaneously renormalizing the phonon frequencies [2] ω2
s = ω

′2
s + Γ2

s:

1

ωs

δ(ω ± ωs) → 1

πω′
s

Γs

[ω ± ω′s]2 + Γ2
s

. (5.19)

5.3 Phonon energy analysis and constant ~K-scan

For the following two sections the book [3] was used as a good basis for information.
In the last section it was summarized that there exist several phonon branches
depending on the number of atoms within the nuclear unit cell. Measuring phonons
means now to chose one of the phonon branches and measure the corresponding
dispersion relation of this branch. That means one measures the energy of the
phonon depending on the phonon wave vector. Phonon dispersions are usually
measured in a constant ~K-mode. That means that ~K = ~G ± ~q is kept constant
during the measurements (also called scan). However, for special reasons constant
energy scans can also be useful. In figure number 5.4 is shown, that in principle
the dispersion relation can be measured by a constant ~K- or a E-energy scan. In

Figure 5.4: Schematic dispersion relation of one optical and one acoustical mode
within the first Brillouin zone (simplified figure for one dimension). Moreover a

constant ~K-scan and a constant E-scan are shown. This is in principle the way of
measuring points within the phonon dispersion relation.
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principle there are two different ways of measuring the dispersion relation by a
constant ~K-scan: Either one can measure with fixed final or with fixed initial energy.
Moreover one can measure with neutron energy loss or with neutron energy gain.
Figure 5.5 shows the scattering triangle for neutron energy loss and fixed final energy.
Fixed final energy means that the spectrometer angle 2θA is fixed during the scan.
According to Bragg’s law then the final energy of the neutrons are fixed during the
scan. Moreover the spectrometer angle 2θM is scanned during the measurement,
that means the initial energy of the neutrons varies. In figure 5.5 one recognizes

Figure 5.5: A constant ~K-scan is shown. Moreover the final energy is fixed, mean-
ing that ~kf describes a circle when the spectrometer angle φ and ϕ change. The
measurement is shown for neutron energy loss.

that
|kf | < |ki|, (5.20)

as we measure with energy loss. Moreover this figure shows the scattering condition
for inelastic scattering:

~K = ~kf − ~ki = ~Ghkl + ~q, (5.21)

which is equivalent with an Stokes transition. Moreover the figure shows how the
spectrometer angles Φ and ϕ (refers to Ψ as Ψ is in general defined as the angle
between ki and a crystallographic axis) change, whereas the scattering vector itself
~K = ~Ghkl + ~q remains constant, but the energy h̄ω changes during the scan. As a
short summary that means that the spectrometer angles 2θM , Ψ and 2θS are changed
during a scan with fixed final energy.
It is also possible to measure with fixed initial energy. In principle this is the same
as above, but that this time ~ki describes a circle during the change of Φ and ϕ and
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not ~kf . And 2θM is fix whereas 2θA is scanned. So if one measures with fixed initial
energy the spectrometer angles Ψ, 2θS and 2θA are scanned.

5.4 Polarization Analysis

With a triple-axis spectrometer one can measure both longitudinal and transversal
phonons. As shown in section 5.2 the dynamic structure factor depends on the scalar
product of the scattering vector and the polarization vector:

F ( ~K, ~q) ∝ | ~K~εj(~q)|2. (5.22)

That means that the intensity of transversal or longitudinal phonon depends on the
scattering geometry and thus one can distinguish between longitudinal and transver-
sal phonons. The scattering triangle for the measurement of a transversal phonon
is shown in figure 5.6. Transversal phonon means that the polarization vector ~εj(~q)

Figure 5.6: Scattering triangle for the measurement of a transversal phonon is shown.
For a transversal phonon the phonon wave vector ~q is orthogonal to the scattering
vector ~K, as this ensures that the scattering vector is parallel to the polarization
vector ~εj(~q). Hence the intensity is maximal due to the dynamic structure factor.

is orthogonal to the phonon wave vector ~q. Because of the dynamic structure factor
the polarization vector and the scattering vector ~K should be parallel in order to
have maximum intensity for the transversal phonon. As it is shown in the figure,
that means that the phonon wave vector ~q is almost perpendicular to the scattering
vector.
Whereas for longitudinal phonons the situation is different. This time the polariza-
tion vector is parallel to the phonon wave vector and hence the phonon wave vector
is parallel to the scattering vector, as the polarization vector needs to be parallel
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to the scattering vector in order that the intensity is maximal for the longitudinal
phonon.

5.5 Resolution function of a triple-axis spectrom-

eter

With a triple-axis spectrometer one can in general measure a point in four dimen-
sional reciprocal space ( ~K, ω). If one measures for example the dispersion relation

ω(~q) of a phonon mode one makes a constant ~K- or a constant E-scan trough
the points of the dispersion relation within the four dimensional reciprocal space:
( ~K = ~G + ~q, ω(~q)). The constant ~K-scan was explained in section 5.3.
As a basis for the following two sections the book Shirane, Shapiro and Tranquada
[2] was used in order to obtain important information about the resolution function
of a triple-axis spectrometer and spurious peaks.
However small scattering cross sections of the neutrons and limited neutron flux
available makes it necessary that one has finite beam divergences and that the
monochromator and analyzer crystals have significant mosaic widths. That means
the neutron beam has an energy and momentum distribution around the mean
values (ω0, ~K0). The measured signal in a neutron scattering experiment depends

not only on the scattering function S( ~K, ω) alone, but on the convolution of the

spectrometer resolution function R( ~K − ~K0, ω − ω0) and the scattering function.
Therefore the measured signal depends on the way how the resolution function is
scanned through the structures defined by the scattering function [2]. One might
improve the measured spectra by knowledge of the resolution function. The first
analysis of the resolution function was made by Cooper and Nathans in 1967 [40]
and the proper normalization of the resolution function was showed by Chasser and
Axe in 1973 [41].
The angular divergence is typically limited by the collimators Cj, which are situated
between the source and the monochromator, the momochromator and the sample,
the sample and the analyzer and between the analyzer and the detector. However,
one can also make inelastic neutron measurements without collimators letting the
divergence of the beam being determined by the monochromator and the analyzer
crystal. The collimators are assumed to have a gaussian transmission function with
width αj in the horizontal scattering plane and width βj in the vertical direction.
Moreover the monochromator and the analyzer are assumed to have a gaussian mo-
saic distribution of width ηM and ηA, respectively, in the horizontal plane and η

′
M

and η
′
A, respectively, in the vertical direction. Therefore it follows a gaussian distri-

bution of the energy and the momentum of the neutrons within the beam.

The neutrons incident on the sample are characterized by an average wave vector ~ki.
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Its length is determined by the monochromator and the direction by the collimator
between the monochromator and the sample. The initial momentum distribution of
~ki given by Pi(~ki−~ki) is determined by the transmission functions for the collimators
before and after the monochromator and by the monochromator itself. The final

momentum distribution of ~kf given by Pf (~kf −~kf ) is determined by the collimators
before and after the analyzer and the analyzer itself. Therefore the spectrometer
defines the distribution of the incident wave vectors ~ki reaching the sample and the
scattered wave vectors ~kf reaching the detector. Whereas the scattering properties
of the sample depend only on the energy transfer h̄ω and the momentum trans-
fer h̄ ~K. The relationship between these values is given by the law of energy and
momentum conservation:

h̄ω =
h̄2

2mn

(~k2
i − ~k2

f ), ~K = ~ki − ~kf . (5.23)

Therefore also the average energy and momentum transfer depends on ~ki and ~kf .
In order to calculate the flux reaching the detector, we consider first of all a simplified
differential cross section, where some of the prefactors of the scattering function such
as the nuclear cross section σcoh are included within the scattering function [2]:

d2σ

dEfdΩf

=
kf

ki

S( ~K, ω), (5.24)

where dΩf is the final differential element of solid angle and the final energy is
given by the dispersion relation for neutrons Ef = h̄2k2

f/2mn. By rewriting the
differentials for the solid angle and the energy and using a cartesian coordinate
system with the z-axis along ~kf one can rewrite the differential cross section in the
following form:

d3σ

dk3
f

=
h̄2

mn

· 1

ki

· S( ~K, ω). (5.25)

Together with the momentum distributions of the neutron beam before and after
the scattering process Pi and Pf one can write the flux reaching the detector in the
following form:

Fd(~ki, ~kf ) =
∫

d~kid~kfFi(ki)Pi(~ki − ~ki)
d3σ

dk3
f

Pf (~kf − ~kf ), (5.26)

where the initial flux is given by the equation Fi(ki) = kiφ(ki), which can be ap-
proximated by kiφ(ki). One can now introduce the resolution function by defining:

Fd(ω0, ~K0) = φ(ki)
∫

dωd ~KR(ω − ω0, ~K − ~K0) S( ~K, ω), (5.27)
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where ω0 and ~K0 correspond to ~ki and ~kf . This definition shows that one doesn’t
measure the scattering function at the detector but a four dimensional convolution
of the scattering function and the spectrometer resolution function. From the equa-
tions 5.24 - 5.27 one can derive an expression for the resolution function in which
it depends on an integral over the initial and final wave vectors containing the mo-
mentum distributions of the initial and final neutron beam and δ-functions ensuring
the law of energy and momentum conservation. These δ-functions give the relation
between the scattering variables of the sample (the energy and momentum transfer)
and the variables defined by the spectrometer (the initial and final wave vectors).
In order to give a functional form for the resolution function one introduces the four
dimensional vector of the deviations ∆κ:

∆κ = (
mn

h̄K0

(ω − ω0), K‖ −K0, K⊥, Kz) (5.28)

and a 4 × 4 matrix M called the resolution matrix. Moreover one has to use the
gaussian approximation, that means to consider the collimator transmission func-
tions and the mosaic distributions of the monochromator and analyzer crystals being
gaussian distributions. Then if follows for the resolution function a four dimensional
gaussian distribution [40]:

R(ω − ω0, ~K − ~K0) = R0 exp(−1

2
∆κM∆κ), (5.29)

with R0 and M being functions of the value of the initial, final wave vector ki, kf

and the scattering angle 2θS. Setting the argument of the exponential in equation
5.29 constant defines a four dimensional ellipsoid. In general the matrix M is not
diagonal, however, if one uses the paraxial approximation (small beam divergence)
then the matrix M separates in a 3 × 3 matrix coupling ω, ∆K‖ and ∆K⊥ and a
1× 1 Matrix for ∆Kz. Equation 5.29 means that the shape of the resolution func-
tion is given by the deviations ∆κ from the average values of the point ( ~K0, ω0).
Within the scattering plane these deviations can be decomposed, where ∆κ‖ is par-

allel to ~K and ∆K⊥ is perpendicular to ~K. In figure 5.7 these relationships are
shown within the scattering plane for a right handed system. That means that
the monochromator and the analyzer crystal scatters to the right. The deviation
∆Kz is perpendicular to the scattering plane. The resolution function is maximal
at ( ~K0, ω0) and decreases for deviations ∆κ and constant amplitude plots are el-

lipsoids in ( ~K, ω)-space around this maximal value. The volume and the shape of

these ellipsoids depend only on ( ~K0, ω0). Because of the extension of the resolution
ellipsoid the effective resolution depends not only on the spectrometer but also on
the structure present in the scattering function. Finally one can characterize the
resolution of a triple-axis spectrometer by the deviations ∆κ for a given amplitude
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Figure 5.7: Shows the scattering vector ~K in reciprocal space with the scattering
triangle at the left and with the deviations ∆K‖ = ∆Kparall. and ∆K⊥ = ∆Kperp.

at the right. These deviations can be used to characterize the resolution of the
spectrometer. Moreover they are the semi axis of the resolution ellipsoid describing
constant amplitudes of the resolution function.

for example the deviations for half the maximum.
The vertical direction of the deviations ∆κ is decoupled from these within the scat-
tering plane. Therefore it is enough to consider a three dimensional resolution
ellipsoid: the in-plane momentum components (scattering plane of the spectrome-
ter) and the energy. In general the shape of the resolution ellipsoid is a flattened
cigar. The peak width of a measured point depends on the relative orientation of
the resolution ellipsoid to the dispersion function. This can be understood with the
help of figure 5.8. The dispersion relation is given by the area ω( ~K) within ( ~K, ω)-

space. It shall steeply increase in the direction of the ~K-scan. The resolution is
given by the deviation components ∆κ within the scattering plane {h, k} and ∆ω
as the three dimensional resolution ellipsoid and whose two dimensional projection
on the scattering plane is shown. During a constant ~K-scan the resolution ellipsoid
moves through the ( ~K, ω) space. Wherever it crosses the dispersion relation ω( ~K)

a signal I( ~K0, ω) is being measured according to equation 5.27. This equation can
be simplified by assuming a sharp dispersion relation so that the scattering function
can be modelled as a δ-function:

S( ~K, ω) = S0δ
[
ω − ω( ~K)

]
, (5.30)

where S0 is a constant. Then for the intensity measured at point ( ~K0, ω) is

I( ~K0, ω) = V −1
i S0

∫
d ~KR

[
ω( ~K)− ω, ~K − ~K0

]
, (5.31)

where Vi is a constant so that the intensity is normalized to the monitor count
rate. That means that the measured intensity depends crucially on the spectrometer
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Figure 5.8: Constant ~K-scan is shown in a focused and a defocused condition. In the
focused condition the long axis of the resolution ellipsoid is parallel to the dispersion
relation and hence the measured peak width ∆ωfocused is minimal, whereas for the
defocused condition the long axis of the resolution ellipsoid is perpendicular to the
dispersion relation and hence the peak width ∆ωdefoc. is maximal.

resolution function. If the long axis of the resolution ellipsoid is parallel to the
dispersion relation (left part of the picture 5.8) one speaks of a ”focused” condition
and the measured peak width is minimal. Whereas if the long axis is perpendicular
to the dispersion relation the measured peak width might be quite long and we
speak of a ”defocused” condition (right part of the picture 5.8). However, if the
dispersion relation is quite flat the orientation of the resolution ellipsoid relative to
the dispersion relation is not so important.
By changing the point ( ~K, ω) in reciprocal space the resolution ellipsoid changes the
directions of its semi axis. This effect can be used by making the measurements at
points in reciprocal space where the resolution ellipsoid has the orientation of the
focused case. Moreover the choice of the spectrometer parameters will affect the
peak widths and intensities. However, there appears often the interchange between
intensity and resolution. That means a compromise between both must be found.
For example if one increases the order of the monochromator reflection one can
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increase the resolution but one reduces at the same time the measured intensity.

5.6 Spurious peaks

If one makes neutron scattering experiments one must beware of so-called spurious
peaks or spurions which are no intrinsic feature of the scattering function but which
are nevertheless well defined, sharp peaks. These features can lead to confusion even
if they are quite weak, if one wants to measure for example phonons with inelastic
neutron scattering. As then even weak features can be of comparable intensities to
the peaks which are intended to be measured. Therefore in this section different
spurions and the explanation of their appearance will be discussed.

5.6.1 Higher-order neutrons

Higher-order neutrons can lead to spurious effects even if the intensity of higher-
order neutrons is generally hundreds of times weaker than the first order neutron
beam. A perfect monochromator would diffract one beam with well defined initial
wave vector. However the diffraction process is given by Bragg’s law which gives
the initial wave vector ki depending on the lattice constant dhkl and the scattering
angle θ:

k =
nπ

dhkl sin θ
, (5.32)

where n is an arbitrary number which gives the explanation for higher-order reflec-
tions. These higher-order neutrons are scattered under the same angle than the first
order neutrons and are hence within the neutron beam being incident on the sam-
ple (if they are not excluded by appropriate filters or velocity selectors). However
these neutrons have different energies and wave vectors and can therefore lead to
unexpected features.
For inelastic scattering one has to consider higher-order harmonics at the monochro-
mator and the analyzer [2]. In the following a formula will be presented to calculate
the energy transfer of potential spurions due to higher-order neutrons from the
monochromator and/or analyzer. The higher-order neutrons from the monochro-
mator have the initial energies:

Ei(nM) = n2
MEi, (5.33)

where nM gives the order of the scattered neutrons and the neutrons scattered by
the analyzer due to higher harmonics have the final energies:

Ef (nA) = n2
AEf , (5.34)
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where nA gives the order of the scattered neutrons at the analyzer.
Especially strong will the spurious peaks due to higher-order neutrons be if the neu-
trons are scattered elastically on the sample. Then it follows for identical monochro-
mator and analyzer crystals set for the same reflection the energy transfer at which
the potential spurion is being observed:

h̄ω =

(
1− n2

M

n2
A

)
Ei =

(
n2

A

n2
M

− 1

)
Ef . (5.35)

An example for a higher-order peak according to the above formula is if the initial
energy is fixed and set to 40meV and one wants to measure inelastically at an energy
transfer of 30meV . Then the spurious peak due to second-order harmonic scattering
of the analyzer (first order of the monochromator) will also appear at the energy
transfer of 30meV . As the monochromator scatters at first order it is not possible
to attenuate this kind of higher order reflections with an appropriate filter. A filter
is only useful if both scattering processes at the monochromator and the analyzer
crystal are of second or higher order. Especially one can filter higher order neutrons
from the monochromator by a PG filter or by a velocity selector. A velocity selector
is better, as it can filter out second-order neutrons for different initial wave vectors
~ki. That means the selector follows the initial wave vector if it is changed. With a
PG filter one is restricted to a certain range of initial wave vectors.

5.6.2 Accidental Bragg Scattering

A certain spectrometer configuration is not unique in that sense that it corresponds
to one well defined scattering event, but that also other scattering events might
occur. If the spectrometer angles of the triple-axis spectrometer are set in order to
measure an excitation with a given energy transfer and wave vector ~q, it is possible
that the scattering triangle is also appropriate for a certain Bragg peak ~G of the
sample to be scattered, meaning that especially the scattering angle 2θS is equal.
One has to consider, that the scattering condition for the elastic Bragg peak only
has to be fulfilled within the boarders of the resolution function, as the Bragg peaks
are very intensive and can lead to spurious peaks in inelastic scattering data even
if the intensity is only half the maximal value. Afterwards these neutrons might be
scattered incoherently at the analyzer and hence being measured at the detector in
addition to the neutrons which had been scattered with the correct energy. This
process for accidental Bragg scattering is shown in figure 5.9 for energy loss. A
similar situation appears for energy gain, where also the scattering angle is equal
for both the inelastic and the accidental elastic scattering process.
Instead of the incoherent scattering at the analyzer crystal, it is also possible that
the incoherent scattering occurs at the monochromator. This is also shown in fig
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Figure 5.9: Scattering triangles for energy loss spectroscopy where accidental Bragg
scattering is shown. At the left accidentally scattered neutrons at the sample are
scattered incoherently at the analyzer and hence can contribute to the measured
signal at the detector as a spurious peak. At the right incoherently scattered neu-
trons at the monochromator are accidentally scattered by the sample and can hence
contribute to the measured signal. For both cases it was intended to measure only
inelastic neutron scattering from the sample.

5.9 at the right side also for energy loss. In this case the monochromator scatters
neutrons incoherently in the same direction with the neutrons being scatterers with
initial wave vector ~ki but with the absolute value of the final wave vector ~kf . Then
these neutrons are again scattered by accidental Bragg scattering at the sample and
arrive at the detector with the neutrons being scattered inelastically.
In order to investigate spurious scattering due to accidental Bragg Scattering further
it is helpful to determine the points in ( ~K, ω) space at which they might occur.
Therefore we will derive the so-called dispersion relation for these spurions and we
will consider the case where the neutrons are scattered incoherently at the analyzer
crystal. One condition for accidental Bragg Scattering is, that the scattering angle
for the inelastic case is equal to the scattering angle for elastic scattering, which is
given by Bragg’s law:

sin θS =
G

2ki

. (5.36)

The relationship between the initial and final wave vectors ~ki, ~kf and the reciprocal

lattice vector ~G is

~G = ~ki −
(

ki

kf

)
~kf . (5.37)
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Moreover one uses the definitions of the scattering vector ~K = ~ki − ~kf and the

phonon wave vector ~q = ~K − ~G in order to derive the following two relations:

q = ki − kf (5.38)

cos α = sinθB =
G

2ki

, (5.39)

where α is the angle between the phonon wave vector ~q and the reciprocal lattice
vector −~G. For fixed final energy the formal energy transfer for the spurious peaks
due to accidental Bragg scattering and incoherent scattering at the analyzer is:

h̄ω =
h̄2

mn

kfq(1 +
q

2kf

). (5.40)

For q ¿ kf this dispersion relation is linear for fixed final energy:

h̄ω =
h̄2

mn

kfq. (5.41)

For inelastic scattering these spurious peaks are especially dangerous because of the
much higher intensity of a Bragg peak compared with the intensity for inelastic
neutron scattering. Therefore and because of finite resolution effects spurious peaks
can be observed even if the condition for accidental Bragg scattering is not exactly
fulfilled but some degrees off. Ishikawa, Fincher and Shirane found 1980 [42] that
the risk for accidental Bragg scattering can be reduced by tightening the collimation
before and after the sample.

5.6.3 Spurious peaks due to the sample holder

Always part of the sample holder is within the beam. Even if it is possible to
shield most of the part by cadmium. Moreover the cryostats for low temperature
measurements are also within the beam. The sample holder and the cryostats are
often made of Aluminium. The reason for this is first of all that aluminium is easy
machinable and it is deactivated very fast after being activated when having been
in the neutron beam for a longer time. This distinguishes Aluminium from other
metals with higher atomic numbers. These metals are often activated for a longer
time after having been in the neutron beam.
Aluminium is crystalline and therefore neutrons will be scattered elastically what
leads to further Bragg peaks in the measured data. However, these Aluminium peaks
are quite weak in intensity. But again if the measured signal is, especially in inelastic
neutron measurements, also quite weak Aluminium peaks have to be considered. At
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Figure 5.10: Diagram in order to determine aluminium peaks depending from the
initial wave vector ki

least one must know under which angles these peaks can occur. Figure 5.10 shows
for given scattering angle 2θ (corresponds to the spectrometer angle A4) and the
value of initial wave vector ki where Aluminium Bragg reflections might occur. If
one recognizes a potential spurious peak due to Aluminium one just has to look up
that graph for the spectrometer angle A4 and the value of the initial wave vector ki

under which the spurion appeared and knows whether it is a Aluminium spurion or
not.
It is also possible that air produces spurious effects due to a condensation process
of the different parts of gases within air. One can avoid these effects by using
an exchange gas like helium. As for helium gas the condensation effect is also
observable but due to the weak scattering cross section of helium this effect might
be not important for normal neutron measurements.



Chapter 6

Phonon measurements on
YBa2Cu3O6+x

This chapter contains important research results: high-resolution inelastic neutron
scattering measurements on the phonon buckling mode on the system
YBa2Cu3O6+x (x = 0.6 and x = 1.0) with fully detwinned samples. Due to these spe-
cial experimental conditions a qualitatively and quantitatively new superconductivity-
induced phonon effect could be observed.
First of all in the sections 6.1 till 6.3 general aspects of YBa2Cu3O6+x are reported.
In sections 6.4 till 6.8 special topics which are related to our measurements are pre-
sented.
Our new experimental data are presented in the sections 6.9, 6.10 and 6.11. For the
kind reader with few time especially the subsections 6.9.1 (p.95-p98), 6.9.2, 6.9.5,
6.11.2 and 6.11.3 are recommended. These provide a good overview of most of our
data. Moreover, section 6.12 is recommended as it provides a summary and relates
our data with previous literature.

6.1 The system YBa2Cu3O6+x

An interesting review of the history of structure determination of the system
YBa2Cu3O6+x is given in [43]. This article has been used as a main source of in-
formation for the following section: Shortly after the discovery of the first high
temperature superconductor (La, Ba)2CuO4 in 1986 by J. G. Bednorz and K. A.
Müeller [44] the system YBa2Cu3O6+x was discovered by Wu et al. [45]. Since
then YBa2Cu3O6+x is probably the most studied high temperature superconduc-
tor with a maximal transition temperature of about 93K at optimal doping. The
reason for this success is the property that it is easy to produce compared with
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other high temperature superconducting materials and that it performs very good
intrinsic superconducting behavior in an applied magnetic field [43]. These ceramic
high temperature superconductors are type II superconductors. Whereas the lower
critical field Bc1 is below 10mT the upper critical field reaches for YBa2Cu3O6+x

340T [46] which is above the value for other high temperature superconductors.
Moreover the superconducting transition temperature of the YBa2Cu3O6+x-system
(for optimal doping) lies above the gas liquid transition temperature of Nitrogen
(70K). This makes it possible to use this substance for technical applications with-
out the need to cool with liquid helium. The YBa2Cu3O6+x-system can be doped
from x = 0 up to x = 1 in a continuous way (oxygen non-stoichiometry). The maxi-
mal doping level (x = 1, full stoichiometry) is reached close to optimal doping. This
non-stoichiometry occurs in the oxygen chains situated between two CuO2 double
layers, in which superconductivity takes place. The fact that the superconductivity
takes place in two-dimensional CuO2 double layers is also been reflected by the fact,
that the coherence length along the c-axis is ξc ∼ 3 − 5Å whereas it is within the
double layer ξab ∼ 20− 30Å in YBa2Cu3O6+x.

6.1.1 The structure of YBa2Cu3O6+x and its self-doping mech-
anism

The contribution of neutron scattering techniques in the structure enlightment of
YBa2Cu3O6+x has been considerable and therefore we will concentrate on these tech-
niques in the following when describing the history of the Yttrium Barium Cuprate
structure determination: Wu et al. [45] synthesized the first YBa2Cu3O6+x samples
which were still composed of different phases. The compound was already supercon-
ducting but the stoichiometry couldn’t be determined exactly. Cava et al. [47] were
able to produce single phase samples of YBa2Cu3O6+x (x ∼ 0.9) for the first time.
Shortly afterwards small single crystals were available. With these single crystals it
was possible ro determine the crystal structure of Yttrium Barium Cuprate by x-ray
diffraction measurements [48]-[50] besides the CuO2 chains in the basal plain which
couldn’t be identified correctly. Moreover it was difficult to assign the correct space
group. The major problem was, that these crystals were heavily twinned.
The first correct structure analysis was obtained by neutron powder diffraction
(x ∼ 1), which is insensitive to macroscopic twinning [43]. The authors of the
following papers could identify the right space group and the existence of the CuO2

chains correctly no matter whether the measurements have been performed at a
high flux reactor [51], [52], medium flux reactor [53]-[55] or a spallation source [56],
[57]. The right structure of tetragonal YBa2Cu3O6+x (x ∼ 0.1) was also resolved
by neutron powder diffraction. This was done independently by Santoro et al. [58],
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Hewat et al. [59] and Jorgensen et al. [60].
In order to discuss the structure of the YBa2Cu3O6+x-system first of all the fully
stoichiometric compound YBa2Cu3O7.0 will be presented. Afterwards it is straight
forward to explain the changes in the structure when the oxygen content is lowert
from x = 1 to x = 0. Figure 6.1 was made with Diamond using the crystallographic
data from Wu and Gao [61]. It shows the unit cell of YBa2Cu3O7.0 which consists

Figure 6.1: Unit cell of YBa2Cu3O7.0. The light-grey ion is the Yttrium the dark-
grey ions are the Barium ions. The blue ions are the copper ions and the red ions
are the oxygen ions. The CuO2 double layer with its puckered structure is shown by
orange bonds between the oxygen and copper ions within these layers. The Yttrium
ion is in between these two layers. This double layer is encircled by two BaO layers
which contain the Barium ions and the apical oxygen. In between two of these BaO
layers there is the basal plane, which is the last important building block within the
unit cell. This basal plane contains (for the orthorhombic structure valid for the
fully stoichiometric compound) the so-called oxygen chains, which are shown with
orange CuO bonds. These oxygen chains are responsible for the intrinsic self-doping
of the CuO2 double layer with holes. For more information see text.
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of three two dimensional building blocks piled up along the c direction. One of
these building blocks is the CuO2 double layer with the Yttrium in between the
two neighboring layers. Yttrium is surrounded by eight oxygen ions. Within these
double layers the oxygen and the copper ions are not laying in the same plane. That
means these double layers are puckered. Moreover the copper ions within these dou-
ble layers are surrounded by five oxygen ions four of which are also belonging to the
double layer whereas the fifth is the so called apical oxygen. This oxygen belongs
to the BaO layer which is the neighboring building block of the double layer in the
unit cell. In figure 6.1 the CuO2 double layer is shown in the middle of the unit cell
and the bonds between the oxygen and copper ions have been drawn in orange in
order to show their puckered arrangement. The second building block are the BaO
planes which are surrounding the CuO2 double layer. The Barium ion is encircled
by eight oxygen ions for x = 0 and by ten oxygen ions for x = 1. That means
the coordination with oxygen of Barium changes with doping. The third building
block is the so called ”basal plane” which is surrounded by two BaO planes. This
plane only contains oxygen and copper ions. This basal plane comprises the oxygen
chains which are shown in orange in figure 6.1. These chains run along the b di-
rection. Here the non stoichiometry occurs. When lowering the doping from x = 1
to x ∼ 0.4 the oxygen in these chains become less and less. Around x = 0.4 the
orthorhombic structure (space group Pmmm) changes to tetragonal (space group P
4/mmm). (Where Pmmm is a subgroup of P 4/mmm, meaning that a second order
phase transition is possible.) That means that the oxygens are no longer arranged
in chains but that they are randomly placed between the copper ions along the a
and the b direction. This change in symmetry is the reason for the orthorhombic
to tetragonal phase transition. For x = 0 the copper ions in the basal plane are in
the formal valence state Cu+1, whereas the valence state of the copper ions within
the double layer is Cu+2. These valence states could be found by Hewat et al. [59]
using the so-called bond valence sum method [62]. For increasing x the copper
within the basal plane changes its valence state from Cu+1 up to Cu+2.7, however
the valence state of the copper ions within the double layer is also increased from
Cu+2 up to Cu+2.15. The valence states of the copper ions in the fully oxygenated
compound were found by David et al. [57], who were also using the bond valence
sum method [62]. The oxidation process from YBa2Cu3O6.0 up to YBa2Cu3O7.0 can
be summarized as follows: With increasing doping more and more oxygen ions are
incorporated in the basal plane (for the tetragonal structure in an arbitrary way for
the orthorhombic structure in so-called oxygen chains along the b direction). This
increases the valence state of the copper ions from +1 to +3. However this oxidation
is incomplete as part of the charge is transferred to the CuO2 double layer, where
the copper ions change their valence state from +2 up to +2.15 (self-doping). There-
fore the oxygen chains act as charge reservoir for the double layer, where the hole
concentration is increased. This increase in hole concentration seems to be crucial
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for the onset of superconductivity, which is known to take place within the CuO2

double layers in YBa2Cu3O6+x.

6.1.2 Further interesting properties of the system
YBa2Cu3O6+x: Oxygen chains and c axis anomaly

Gallagher et al. [63] has shown that it is not possible to produce YBa2Cu3O6+x sam-
ples for x below zero and above one. Moreover it was established that YBa2Cu3O6+x

can be produced from 0.1 ≤ x ≤ 0.95. In order to get different doping levels one
can use different oxygen pressures during the annealing process. Performing system-

Figure 6.2: Annealing temperatures for YBa2Cu3O6+x depending on the oxygen
content x and the partial oxygen pressure of the environment during the annealing
process. After the annealing process the samples will be quenched in order to prevent
further oxygen pick up. The diagram shows that one obtains samples with low
oxygen doping x for high temperatures and low oxygen pressures. Whereas (high)
oxygen pressures and lower annealing temperatures are necessary in order to get
samples with high oxygen doping.

atic studies of the annealing process for different temperatures and oxygen partial
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pressures PO2 (see figure 6.2) allowed Kishio et al.[64] to produce Yttrium Barium
Cuprate samples with different oxygen content (doping) x. The samples were an-
nealed in an oven with the sample under a constant flow of gasses with a certain
concentration of oxygen. With these samples they could observe the tetragonal-
orthorhombic phase transition between the symmetric tetragonal phase for low oxy-
gen content and the oxygen rich samples which have orthorhombic unit cells. They
could determine this transition to be between x ≈ 0.4 and 0.5. However these early
samples had relatively broad superconducting transition regimes.
Another very important property of YBa2Cu3O6+x are the oxygen-ordered super-
structures for the orthorhombic phase. That means that the oxygen chains running
along the b direction show a characteristic superstructure along the a direction de-
pending on the different oxygen doping level of the sample. The first evidence of
these oxygen superstructures were first revealed by transmission electron microscopy
and electron diffraction (TEM-ED). Van Tendeloo [65] first observed a doubling of
the unit cell along the a direction. These observations were confirmed by Chaill-
out et al. [66], who used samples with controlled oxygen content. They could
assign an arrangements of full and empty oxygen chains according to the scheme
full-empty-full-empty for the doping level x = 0.5. Later also samples with other
oxygen contents with more complicated superstructures were studied by the same
group [67]. Apart from the previously mentioned procedure to produce Yttrium
Barium Cuprate for different oxygen content Cava et al. [68] and Beyers et al. [69]
proposed different methods for doing so. The former one yielded the first samples
with especially sharp superconducting phase transitions. The latter could also pro-
duce high quality samples and investigated the oxygen superstructure further [69].
He described a tripling of the unit cell at around x = 0.7 with an ordering pattern
full-full-empty of the oxygen chains. Later on Cava’s technique were advanced [70]
- [74] with similar success. The initially mentioned method of annealing Yttrium
Barium Cuprate in different oxygen pressures was also advanced [75], and it was
found that all these samples perform sharp transition temperatures and all super-
conducting samples were orthorhombic.
Before returning to the oxygen ordering in YBa2Cu3O6+x and reporting theoretical
models to describe this ordering we’ll shortly report some interesting features, espe-
cially the c-axis anomaly, concerning structural parameters and its dependence on
different samples: For all samples (even for different production processes) it can
be observed that the c axis decreases with increasing doping level x (see figure 6.3).
However Cava et al. [72] found for his samples (which had been made by an alterna-
tive technique compared to the samples from Jorgensen) a sudden step like decrease
of the c axis constant at the structural phase transition between the tetragonal and
the orthorhombic phase. More detailed measurements could reveal that this sudden
change of the c axis is related to the shortening of the distance between the copper
ions in the double layer and the apical oxygen [72]. In contrast to Cava’s observa-
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Figure 6.3: Lattice parameters of the system YBa2Cu3O6+x for different doping
levels x. The change in symmetry due to the tetragonal to orthorhombic phase
transition can be well recognized around x = 0.4 in the diagram below, meaning
that the b axis is larger then the a axis for the orthorhombic phase. This is due to
the formation of oxygen chains along the b axis. In the diagram above the sudden
(Cava et al.) [72] and the smooth (Jorgensen et al.) [75] decrease of the c axis with
increasing doping level is shown. This decrease is related to the increase of the hole
concentration in the (superconducting) double layer.

tions Jorgensen et al. [75] observed a smooth decrease of the c axis constant also
around the region of the structural phase transition (in detail this decrease of the
c-axis is due to the shortening of the distance between the copper ions in the double
layer and the apical oxygen. Especially after the tetragonal orthorhombic phase
transition the slope of the decrease of this distance increases. That means that in
the orthorhombic phase this distance depends more sensitively to the doping level
[75] compared to the tetragonal phase). Hence the appearance of the c axis anomaly
is still controversial and as other groups also couldn’t observe this c axis anomaly
it seems that it depends on the special production procedure of the samples from
Cava et al. However the charge transfer process suggested by Cava et al. is now
universally accepted in that sense that it explains the onset of superconductivity in
YBa2Cu3O6+x. The bond valence sum technique confirmed that the shortening of
the c axis is related to the increase of hole doping in the double layer (∼ 0.05 holes
per Cu-ion in the double layer). Whereas Cava et al. predicts a sudden increase of
hole doping the data of Jorgensen et al. may be explained by a smooth increase of
hole doping according to their c axis measurements. As mentioned earlier this hole
doping is also related to the oxygen chains in the orthorhombic compound. In both
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cases this self-doping mechanism leads to a superconducting phase with a Tc that
is increasing rapidly after the tetragonal to orthorhombic phase transition. This
increase is related to the (sudden) increase of the hole doping in the (then supercon-
ducting) double layer. Hence this self-doping mechanism and the hole concentration
in the double layer seems to be crucial for superconductivity in YBa2Cu3O6+x. Af-
ter this increase around x = 0.6 Tc remains constant (Tc around 61K) and forms a
first plateau of the Tc versus x diagram of YBa2Cu3O6+x. A second increase of Tc

around x = 0.75 is again related to an increase of hole concentration in the super-
conducting double layer (∼ 0.03 holes per Cu-ion in the double layer). Afterwards
for increasing x a second plateau is formed around Tc = 91K. This is the reason
why it is possible to investigate the main doping dependence of the superconduct-
ing YBa2Cu3O6+x-system by investigating the properties at doping levels for both
plateaus (for example for x = 0.6 and x = 1.0).
One important property of the Yttrium Barium Cuprate system are the oxygen
chains in the basal plane which act as a charge reservoir for the (superconducting)
double layer especially in the orthorhombic phase. This charge transfer seems to be
mediated by the apical oxygens whose distance to the copper ions within the double
layer depends strongly on the doping level of YBa2Cu3O6+x for the orthorhombic
phase. A further question is why a gradual increase of the doping level and hence
a continuous increase of oxygen chains leads to two pronounced plateaus of the
Tc − x diagram. This question leads to the relationship between oxygen ordering in
the oxygen chains and the hole concentration in the superconducting double layer.
Therefore one has to find first of all a theoretical model of the ordering of the oxy-
gen ions within the oxygen chains for different doping levels. This was especially
important as in earlier times (1991) no detailed data on the oxygen ordering for
arbitrary doping level was available. However the models which have been made in
these times yielded to very important results especially to a understanding of the
two plateaus in the Tc− x phase diagram of YBa2Cu3O6+x. Therefore two different
approaches to the problem by Zaanen et al. [43] and Poulsen et al. [76] will be
presented here: Zaanen et al. proposes the following model for the oxygen ordering
in order to mimic the oxygen ordering in Yttrium Barium Cuprate. First off all they
considered the limiting cases. For x = 0 no chains are present (tetragonal case),
for x = 0.5 (already orthorhombic) oxygen chains according to the sequence full -
empty - full (doubling of the unit cell along a) are present (the fully-ordered Ortho
II phase) and for x = 1.0 all chains are full and ordered (the fully-ordered Ortho I
phase). For the doping levels in between it was assumed that the chain sequences
are empty - partially full - empty for doping levels x ≤ 0.5 and full - partially full
- full for doping levels x ≥ 0.5. The partially filled chains contain chain fragments
with ν copper and ν − 1 oxygen atoms, with x = 1/2 − 1/(2ν) for 0 ≤ x ≤ 1/2
and x = 1 − 1/(2ν) for 1/2 ≤ x ≤ 1 (for incommensurate values a mixture of
fragments with different length were considered)[43]. In fact, for YBa2Cu3O7.0, elec-
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tronic charge is transferred from the chains to the planes because both plains and
chains give rise to highly dispersive bands crossing the Fermi surface. These struc-
tures can be precisely determined by band structure calculations [43], [77]. As these
calculations are only possible for well defined (period) structures, for YBa2Cu3O6+x

with x < 1 band structure calculations have been performed using the described
model by Zaanen. The main point which came out of these considerations and
calculations described above is that only chain fragments which exceed a critical
length (ν ≥ 3) contribute to the charge transfer process. Whereas smaller chain
fragments lead to the remaining of the charge within the oxygen chains (localized
states above the Fermi energy). Moreover with this model it was possible to explain
the two plateau structure of the Tc − x phase diagram of YBa2Cu3O6+x. Hence the
great achievement of this model was to give a simple explanation to the two plateau
structure of the phase diagram just by recognizing that small chain fragments are
ineffective dopants. Later, Poulsen et al. [76] also proposed a charge transfer mech-
anism and combined it with an ASYNNI model. This model is comparable to the
asymmetric next-nearest neighbor (NNN) Ising model [43], [78], [79]. The main as-
sumption of Poulsen et al. was to state that only Ortho-I- and Ortho-II-like domains
contribute to the charge transfer to the planes. This assumption is similar to the
one of Zaanen et al. as it also means that small chain fragments do not contribute
to the charge transfer and hence to the doping mechanism. In order to calculate the
ground state of the oxygen chain clusters (in this model two dimensional clusters are
possible) they used a Monte Carlo calculation. Thus they obtained results which
are in good agreement with experimental results. Even so not all details could be
explained.
Most of the early experimental work on the superstructure of YBa2Cu3O6+x were ob-
tained by TEM-ED. However as the quality of single crystals improved also neutron
and x-ray diffraction in order to improve the knowledge on these superstructures
became possible. For example Burlet et al. [80] - [82] and Hadfield et al. [83] made
extensive studies and found that not only the oxygens in the basal plane were ordered
according to a given superstructure but that also the apical oxygen and copper ions
within the double layer are involved in the superstructure. In fact the experimental
investigations concerning the superstructure of Yttrium Barium Cuprate lasts until
nowadays (see chapter 6.6). Here one should explain the difference between coherent
Bragg scattering and diffuse scattering. Coherent Bragg scattering is based on the
periodic structure of an ideal crystal (given by the unit cell and a Bravais lattice), as
such a regular arrangement of atoms leads to well defined (resolution limited) Bragg
reflections. In practice coherent scattering occurs (for neutrons and x-rays) within
an area in the sample which is called the coherence volume and is characterized by
the coherence length which is about some thousands of Angstroms. That means
that these techniques average over the structural information within the coherence
volume. In the case of long-range ordered structures this leads to coherent Bragg
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scattering with sharp (resolution limited) Bragg reflections. However for so-called
diffuse scattering the situation is different: The ordered structures are short range
(a good example for this type of ordering are the oxygen chains in Yttrium Bar-
ium cuprate except for the fully stoichiometric case) ordered and smaller than the
coherence volume this leads to diffuse (broad) peaks in the scattering pattern. Nev-
ertheless one can integrate over the volume of these diffuse peaks and treat them
afterwards in the same way as normal (coherent) Bragg peaks. In summary the sin-
gle crystal neutron and x-ray scattering work on the superstructure of oxygen chains
in Yttrium Barium Cuprate is diffuse Bragg scattering. Only the fully oxygenated
Compound YBa2Cu3O7 is considered to be ”perfectly” ordered. But even in this
case the picture of ideal order should be challenged. Capponi et al. [51] could show
that the use of an anisotropic Debye Waller factor for the chain oxygens lead to a
significant improvement of the refinement of the diffraction pattern. This was not
the case for other atoms. This could be also observed for low temperatures conclud-
ing that there exists a static displacements of the oxygen ions within the chains.
This observation was further investigated by Francois et al [84]. Instead of refin-
ing the anisotropic Debye Waller factor for the chain oxygens he tried the so-called
random zig-zag chain pattern. This assumes for the position of the oxygen within
the chains in stead of the 1e site (0, 1/2, 0) the two-fold position 2k (±x, 1/2, 0).
This position is randomly occupied with the occupancy 1/2. That means that the
oxygen atoms within the chains are randomly shifted along the a axis by x · a. This
leads to the so-called random zig-zag oxygen chain. In agreement with earlier re-
sults from Capponi et al. a large low temperature component could be observed,
meaning that there exists a static random zig-zag chain in YBa2Cu3O6+x. Schweiss
et al. [85] made more detailed investigations on single crystals (the former results
on the zig-zag chain has been obtained by neutron powder diffraction). In summary
he could confirm the results given by neutron powder diffraction. He found that the
anisotropic Debye Waller factor along the b axis is comparable to these one of the
other atoms. However, for the component along the a axis an extremely large Debye
Waller factor appeared which was in addition strongly temperature dependent. He
also tried the model from Francois and obtained a temperature independent (low
temperature) shift of x ∼ 0.074Å. This zig-zag behavior can be well understood
with the following considerations. The formal valence state of the copper ions in
the double layer is lower compared to the valence state in the oxygen states. There-
fore it follows that the distance between copper ions in the double layer is smaller
compared to the same distance within the chains. The buckling of the double layer
intensifies this effect. That means the oxygen chains are under a compressive strain
which is the reason of the so-called zig-zag chains.
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6.1.3 Phase diagram of YBa2Cu3O6+x

In the previous subsection the Tc curve depending on the doping level x has already
been investigated, especially the two plateaus at around 60K and 90K have been
mentioned. In this subsection we will summarize and complete the temperature(Tc)-
doping concentration(x) phase diagram of YBa2Cu3O6+x. Especially the subdivision
for different doping levels but also some additional information has been taken from
the paper of Regnault et al. [86]. The structure of YBa2Cu3O6+x has been discussed
in the previous subsection and it has been shown that the differences for different
doping levels x occur in the so-called oxygen chains and in the hole concentration
in the CuO2-double layer. The nowadays consensus on the resulting phase diagram
of YBa2Cu3O6+x depending on the doping level x is summarized in figure 6.4. This

Figure 6.4: This figure shows the superconducting transition temperature Tc versus
hole concentration (doping level) x phase diagram of YBa2Cu3O6+x on the right
side. And the Néel temperature TN versus hole concentration x phase diagram of
the same compound on the left side. For further explanations see the text.

figure shows the division of the phase diagram in two main parts. Below the doping
level x ≈ 0.4 on the left side of the picture the phase diagram of the antiferromag-
netic ground state is shown. This ground state persists up to the Néel temperature
which depends on the doping level. For these low hole concentrations the crystal-
lographic structure is tetragonal with space group P4/mmm. In that region the
substance is more or less an insulator what is explicitly correct for the doping level
x = 0. At around x ≈ 0.4 there appears a structural phase transition from the
tetragonal phase to the orthorhombic phase with space group Pmmm. From now
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on the system behaves more metallic which is explicitly correct for the doping level
x = 1. This doping range is characterized by a superconducting ground state which
appears up to the superconducting transition temperature Tc. The description given
above is a highly simplified picture of the system which will be made more and more
sophisticated in the following. Concerning the structural aspect the orthorhombic
phase is divided further. As described earlier in the previous subsection this is due
to the superstructures of the oxygen chains in the basal plane. The superstructure
can be characterized by two main (limiting) phases first the Ortho II phase where
any second unit cell contains an oxygen ion in the basal plane (strictly spoken this
is only the case for x = 0.5) and second the Ortho I phase where any unit cell
contains a oxygen ion. That means that there are no free places within the unit
cell left. Therefore this phase is also called the fully stoichiometric case. And the
corresponding crystals are of special quality, as no ’unordered’ interstitial places
are left. This classification is still quite schematic and further sub-categorization
is possible: at x = 0 there are no oxygen ions within the basal plane and hence
the material is a Mott insulator with an antiferromagnetic spin arrangement. In
the underdoped region (0 < x < 0.2) the material has been ’doped’ with oxygen
ions which are installed in the basal plane. They form small Cu2O-units which are
randomly distributed and they already lead to a small net hole concentration in the
CuO2 double layer. However the antiferromagnetic state remains almost unchanged.
Within the doped region (0.2 < x < 0.4) the oxygen ions are randomly distributed
within the basal plane according to the tetragonal symmetry. The charge transfer
process from the basal plane to the CuO2 double layer already increases slightly.
This is the so-called doped antiferromagnetic region as the antiferromagnetic order
within the CuO2 double layer still exists, even if more and more holes are present
within that layer. This changes at around x ≈ 0.4. At this doping level preformed
oxygen chains ( - Cu - O - Cu - O - units) orient along the b axis. That means
that the material becomes anisotropic and the tetragonal symmetry changes to an
orthorhombic symmetry. At that doping level the doped holes within the CuO2

double layer are strong enough to suppress the antiferromagnetic arrangement of
the spin structure. Slightly above x = 0.4 oxygen chain fragments increase and
according to the considerations of Zaanen [43] these fragments lead to an increasing
hole concentration within the CuO2 double layer and hence to an onset of super-
conductivity. Within the slightly underdoped regime (0.4 < x < 0.5) the oxygen
chains will become longer and longer till the Ortho II state is reached for x = 0.5,
where every second unit cell a full oxygen chain is present. According to the ideas
of Zaanen [43] and Poulsen [76] that is related with a very strong increase of the
charge transfer process from the oxygen chains to the CuO2 double layer. Therefore
the hole concentration within the CuO2 double layer and Tc increases considerably.
The doping range (0.5 < x < 0.94) is called the strongly underdoped regime. From
(0.5 < x < 0.75) the first plateau is formed. This can be understood by the simple
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models of Zaanen and Poulsen which state that small chains do not contribute to
the charge transfer process. Around x ≈ 0.7 every second oxygen chain becomes
again a certain length so that these chains also contribute to the charge transfer
process and as a consequence Tc increases again considerable so that around x ≈ 0.8
the second plateau is reached. This increase is often referred to the ’phase transi-
tion’ between the Ortho II and Ortho I phase (see figure 6.4). At x = 0.94 optimal
doping is reached meaning that the maximal superconducting transition is reached:
Tc ≈ 93K. The corresponding samples are called optimally doped. The regime for
(0.94 < x < 1) is called the overdoped regime. Within that regime Tc reduces again
slightly. For x = 1.0 both oxygen chains are completely filled and hence the fully
stoichiometric case without any empty places within the basal plane is reached.
Above the underdoped region there appears a so-called Pseudogap. That means
that even above Tc the density of electronic states is considerably reduced. This
phenomenon is one of the most interesting concerning high temperature supercon-
ductors and is still not understood completely (see also 6.3).

6.2 YBa2Cu3O6+x: a d-wave high Tc superconduc-

tor

There are still many things unclear concerning high temperature superconductiv-
ity in Cuprates. Especially the underlaying mechanism which leads to the relatively
high transition temperatures remains controversial. However a substantial difference
between conventional superconductivity in metals like lead (Tc = 7.2) and mercury
(Tc = 4.2) and unconventional superconductivity in ceramics like YBCO (Tc = 93K)
is the pairing symmetry of the Cooper pairs. Whereas in conventional superconduc-
tors this symmetry is of s-wave character, for the high Tc cuprates this pairing
symmetry is predominantly of dx2−y2-wave character. As this difference seems to be
important some experiments which give evidence for the d-wave pairing symmetry
in high Tc cuprates will be reviewed in this section. Tunnelling spectroscopy [87]
as well as angle-resolved photoemission spectroscopy [88] turned out to be strong
technics to give that evidence.
Tunnelling spectroscopy is based on the tunnelling effect of quasi-particles and may
be performed across a normal metal-insulator-superconductor (NIS) junction. Gi-
aever [89] showed for a standard BCS model that the normalized conductivity in
a NIS-junction is proportional to the BCS quasi-particle density of states. There-
fore the density of states of a superconductor especially the superconducting energy
gab (pairing energy of Cooper pairs, which are responsible for the loss-free super
current) can be probed directly by tunnelling spectroscopy. The superconducting
energy gap is an energy region above the Fermi level where the density of states
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is almost or exactly zero. Within the framework of the BCS theory the value of
this energy gap is 2∆ = 3.54kBTc in the weak coupling limit for s-waves. For high
Tc the situation is more complicated. Ozyuzer et al. [87] measured the normalized
conductivity (normalized to an estimated normal state conductance) of an NIS junc-
tion with the optimally doped Tl-2201 (Tl2Ba2CuO6, a high Tc cuprate) below Tc.
He found very good agreement of his experimental data with a theoretical model
assuming dx2−y2-wave pairing symmetry. Lombardi et al. [90] measured the (criti-
cal) Josephson currents (tunnelling of Cooper pairs between two superconductors)
of YBCO-YBCO junctions. He tilted the YBCO crystals and thus their macro-
scopic wave functions with respect to each other. Thus he could measure an angle
depending Josephson current related to the d-wave shape of the macroscopic wave
functions of both YBCO crystals. By similar experiments Smilde et al. [91] could
determined the superconducting gap of YBCO to be of 83 per cent dx2−y2-wave, 13
per cent isotropic s-wave and 5 per cent anisotropic s-wave pairing symmetry. More-
over, the experiment from Kirtley et al. [92] showed (for YBCO) that the pairing
wave function changes sign. This is an important result concerning the fact that
this way one can exclude an anisotropic s-wave pairing function for high Tc cuprates.
Thus today it is generally accepted that the pairing symmetry in high Tc cuprates
is predominantly of dx2−y2-wave character.

6.3 The pseudogap

The pseudogap has been studied extensively but some questions about it are still
under discussion. It is for example controversial whether the pseudogap appears due
to competing orders or whether it is a precursor of superconductivity (preformed
Cooper pairs without phase coherence). This question might be related to the ques-
tion whether the pseudogap evolves continuously from the superconducting energy
gap or whether the pseudogap and the superconducting gap can coexist. Tunnelling
measurements on Bi-2212 (Bi2Sr2CaCu2O8) [93], [94] can be well understood by as-
suming that the pseudogap originates from the superconducting gap by ’filling in’ of
states and thus evolves directly from it. However tunnelling [95] and scanning tun-
nelling spectroscopy [96]-[99] on Bi-2212 support the fact, that the superconducting
gap and the pseudogap can coexist. That means that this question has not been
studied in a concluding way.
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6.4 The out-of-phase phonon buckling mode in

YBa2Cu3O6+x and superconductivity-induced

phonon effects

In that chapter our measurements on the out-of-phase phonon buckling mode will
be presented. Here in this section this mode will be introduced and part of the
motivation for our measurements will be given. In order to evaluate the strength of
the electron-phonon coupling early on after the discovery of the high temperature
superconductors phonon neutron measurements have been performed on YBCO.

Figure 6.5: This figure gives an overview of the phonon modes with different sym-
metries (∆1, ∆2, ∆3, ∆4) in YBa2Cu3O7.0. The phonon modes have been measured
along the a direction [100] from the center of the Brillouin zone (Γ point) till its
boarder (X point). The energy is given in meV on the left and in THz on the right.

Figure 6.5 [100] gives an overview of these measurements. These early measure-
ments have been performed on twinned crystals of YBa2Cu3O7.0 [100], [101], [102],
[103] besides some measurements below 7 THz [101] which have been performed on a
quite small detwinned single crystal. Comparable measurements have been made on
YBa2Cu3O6.0 single crystals [100]. This overview on phonon measurements presents
most of the phonon modes in YBCO. However there are two special phonon modes
which have remarkable properties which are or might be connected to superconduc-
tivity. These are the bond-stretching and bond-bending modes where the atoms
within the CuO2 double layer are oscillating. Hence these phonon modes are of spe-
cial interest as they could be related to interesting phenomena which are connected to
superconductivity which takes place within that double layer. Especially the bond-
stretching mode have been in the focus of recent research [104]-[108]. In these inves-
tigations the energy dispersion relations have been determined. From these investi-
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gations [104] and [105] have been inelastic neutron investigations on YBa2Cu3O6.6

and on YBa2Cu3O7.0, respectively. The measurements on YBa2Cu3O7.0 have been
performed on an untwinned single crystal, whereas those on YBa2Cu3O6.6 have
been performed on a twinned single crystal. Nevertheless strong anisotropic phonon
anomalies could be found for this phonon mode for both materials. The second in-
teresting phonon mode is the bond bending mode (buckling mode) where the Cu-O
bounds are bent during the oscillation of the phonon mode. As mentioned above this
mode has been investigated on twinned samples on YBa2Cu3O7.0 [100]. Moreover
later more detailed neutron measurements have been performed, where supercon-
ductivity induced phonon softening [102] and superconductivity induced line width
broadening [103] have been found. All these measurements have been performed on
twinned singly crystals.
Recently this phonon mode has garnered attention due to a possible connection to
the ’kink’ in ARPES measurements [109]. Theoretical calculations revealed the pos-
sibility of anisotropic electron-phonon interactions between the buckling mode and
antinodal electronic states [110]. However, up to now no anisotropic neutron mea-
surements on the buckling mode have been performed on YBa2Cu3O7.0 due to the
lack on untwinned samples. Moreover one has to state that up to now this mode has
only been investigated for YBa2Cu3O7.0, whereas there does not exist data at the
second plateau of the YBCO phase diagram for example for YBa2Cu3O6.6. We ad-
dressed that problem by the preparation of fully detwinned samples for doping levels
connected to the two plateaus of the phase diagram of Yttrium Barium Cuprate:
YBa2Cu3O6.6 and YBa2Cu3O7.0. Thus we could investigate anisotropic supercon-
ductivity induced effects of the buckling mode for different doping levels. These new
and very interesting results on the buckling mode will be presented in the sections
6.11 and 6.9. In addition to fully detwinned samples these investigations benefit
from very high resolutions of the spectrometers (measurements by Reznik et al.:
2meV , our measurements: 1T1 1.2meV , Puma 0.6meV FWHM).
After having summarized the motivation for our recent set of measurements on the
buckling mode in YBa2Cu3O6+x, we will give some information about the buckling
mode and will summarize elder data on that mode. The phonon buckling mode is
a bending mode of the Cu-O bonds within the CuO2 double layer. The oscillation
is maintained by the out-of-phase transversal motion (along the c axis) of the plane
(ab plane) oxygens in the CuO2 double layer. That means that the oxygens along
the a direction oscillate with phase shift of 180 degrees with respect to the oscilla-
tion of the oxygen ions along the b axis. This is true for both layers of the double
layer independently. Moreover oxygen ions of different layers of the double layer
oscillate also with a phase shift of 180 degrees (see figure 6.6 [111]). In principle
the eigenvectors and frequencies of the buckling mode (at the Brillouin zone center)
have been calculated by the use of lattice dynamics models [112], [113]. As the
buckling phonon mode is a transversal c axis polarized phonon mode one expects
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Figure 6.6: In this figure a simplified picture of the unit cell of Yttrium Barium
Cuprate is shown. Only the ions within the CuO2 double layer have been printed as
these are the only ions which are involved in the movements of the buckling mode.
The phonon eigenvectors (oscillation of the oxygen ions) are given by black arrows
for q = 0 at the left and q = (1/2, 1/2) at the right.

strong dynamic structure factors for large Kc components. This is due to the factor
[ ~K~εj(~q)] in the formula 5.18 of the dynamic structure factor. Moreover, a detailed
calculation of the structure factor is given in [111]. There one recognizes that the
structure factor is oscillating with respect to Kc and is maximal at around Kc = 10,
Kc = 11 and Kc = 14. This dependency has also been investigated experimentally
(see figure 6.37).
The buckling mode is a quite flat mode that means it has an almost flat dispersion
around 42meV . That corresponds to 340 cm−1 and 10.2 THz. For the orthorhombic
compounds the symmetry of the buckling mode is A1g. In the tetragonal compounds
its symmetry is given by B1g. Even for the orthorhombic compounds sometimes in
the literature one speaks about the B1g-phonon mode by addressing the buckling
mode. This is due to the fact that orthorhombic distortions in the lattice structure
might be considered as small.
We want to continue with reviewing the most important results on superconductiv-
ity induced phonon effects (phonon softening and line width broadening by cooling
below Tc) on YBa2Cu3O7.0. These effects were first observed by Raman scattering
[114] - [117]. Altendorf et al. [118] investigated these superconductivity induced
phonon effects for different phonon modes with Raman measurements at the center
of the Brillouin zone. In addition he compared different doping levels. He found the
strongest effects for the 340 cm−1 phonon mode which is the phonon buckling mode.
This is the reason why this phonon mode attracted special attention in following
experiments (including this PhD thesis) which investigated superconductivity in-
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duced phonon effects. Altendorf et al. reports a strong phonon softening (around 8
cm−1, 0.99 meV ) and a strong line width broadening (also around 8 cm−1) of this
mode when cooling below TC for YBa2Cu3O7.0. These effects sharply reduce when
decreasing the doping level. For x = 0.95 the effect is already very weak, whereas for
x = 0.7 no effect can be observed. For doping levels between 0.7 < x < 0.95 the line
width of the phonon even sharpens when cooling below Tc. This effect is in addition
to the line width sharpening due to anharmonic decay of the phonon mode. Phonons
usually broaden by heating up due to anharmonic interactions with other phonon
modes [119]. Obviously the superconducting phase transition leads to a redistri-
bution of electronic states around the Fermi surface. This redistribution may also
affect the electron-phonon coupling and will therefore lead to a shift in the phonon
energy (phonon softening) and a line width broadening [103], [120]. The phonon
broadening can be understood by the fact that phonons with energies greater than
2∆ can decay by Cooper pair breaking [118], [120] and [121]. Comparison of strong
coupling models [121], [122] with the buckling mode lead to the result that the su-
perconducting gap is around the energy of that mode: 2∆ = 5.4kBTc ≈ 340cm−1.
This might explain the superconductivity induced phonon effects observed for the
buckling mode.
In order to investigate these superconductivity induced effects within the whole Bril-
louin zone the following inelastic neutron measurements have been made. Pyka et
al. [102] was the first who observed the energy shift for different phonon wave vec-
tors away from the Brillouin zone center (see figure 6.7). He used a twinned single

Figure 6.7: This figure shows the superconductivity induced phonon softening (fre-
quency shift) of the buckling mode for different phonon wave vectors which are
given in reciprocal lattice units: in-plane [1 0 0], [0 1 0] and along the c axis [0 0 1].
The energy shifts are given by subtraction of the phonon energy at 100K and 50K.
Energies are given in THz (1THz = 4.136 meV ).

crystal with 0.3 cm3. Therefore no anisotropic measurements could be made. As the
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spectrometer was optimized for high intensity the energy resolution was limited to
about 1 THz (FWHM). This is the reason why the phonon line width could not be
determined. By investigating the phonon energy for several temperatures between
100K and 10K he could prove that the energy shift occurs in a narrow range below
Tc. Moreover he investigated this energy shift for different doping levels namely for
x = 0.92 and x = 1.0 (see figure 6.7). The full and open squares refer to x = 1.0
and x = 0.87, respectively. For the optimally doped sample he obtained an energy
shift around 0.2 THz at the Brillouin zone center which gradually reduces to zero
at the boarder of the Brillouin zone. However for a small decrease in the doping
level namely for x = 0.92 the energy shift at q = 0 reduces to zero. For that doping
level the maximal energy shift (0.1THz) was found to be at q = 0.2 and decreases in
both directions towards the center and the boarder of the Brillouin zone. Moreover
it was found that this energy shift is independent of qz, what is shown at the left part
of figure 6.7. Reznik et al. reinvestigated this energy shift of the buckling mode.
However, due to a much better resolution (around 2meV ) he could also investigate
the wave vector dependency of the phonon line width (see figure 6.8). In agreement
with the measurements of Pyka et al. they found an energy shift at the center of the
Brillouin zone of about 0.8 meV , which decreases gradually towards the boarder of
the Brillouin zone along the a axis. Along the diagonal the decrease seems to take
place within the first half of the Brillouin zone. This might be a first hint towards
an anisotropic behavior of this energy shift. These measurements along the diagonal
of the Brillouin zone have been made as Reznik et al. also measured with a twinned
single crystal. The second picture below the first one shows the results for the
phonon line width within the Brillouin zone along the a direction. One recognizes a
clear (superconductivity induced) line width broadening of the buckling mode in the
middle of the Brillouin zone around q = 0.25. The inelastic neutron measurements
on the buckling mode reported here were all made with twinned single crystals.
The following three reason finally justified the reinvestigation of the buckling mode
presented in this thesis. First, the superconductivity induced phonon effects have
not been investigated upon a possible anisotropy. Second, no doping dependent
investigations away from the Brillouin zone center have been made. And third, all
the raw data shown in [102] and [103] show only one peak between the energies
37meV and 47meV , namely the buckling mode. However, our measurements with
detwinned samples and a resolution of 0.6 meV showed that at least three modes are
important within that energy range. And the buckling mode is only one of these. In
addition there is at energies above the buckling mode at around 45meV a phonon
mode involving the oscillation of the oxygens in the double layer and the chains
and there is below the buckling mode the in-plane mode of the apical oxygen at
around 40meV . Both modes couldn’t be observed within the previously described
experiments due to integral effects of the twinned crystals and resolution effects.
There has been a further motivation for our phonon measurements. R. Heid [123]
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Figure 6.8: This figure shows the dispersion relation (energy shift) and the line
width of the phonon buckling mode at different temperatures at 10K, 50K below
Tc ≈ 93K and at 100K above Tc. The measurements have been performed along the
a axis [1 0 0] and along the diagonal [1 1 0] within the Brillouin zone. The energies
are given in meV . The dashed lines are guides to the eye.

calculated the dispersion relation and the line width of the phonon buckling mode.
As a result he obtained a very strong electron phonon coupling and hence a big line
width for the buckling mode. This broadening due to the electron phonon coupling
is maximal at the center of the Brillouin zone and reduces towards the middle of
it considerably. In summary these calculation showed that the buckling mode per-
forms a very strong coupling to electronic states compared to other phonon modes
in YBCO.
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6.5 Kink in ARPES and possible relation to the

phonon buckling mode: electronic states in

the cuprates and the electron-phonon inter-

action

The (strong) electron phonon coupling has already been discussed from the phonon
point of view and the corresponding energy shifts and line width broadenings have
already been discussed in the previous section. Now the situation will be discussed
from the other point of view: is there evidence for strong electron-phonon coupling
by the investigation of the self energy of the corresponding electrons?
In order to evaluate this question the review article of Zhou et al. [124] has been
used as a source of information. The appropriate technique for these investigations of
electronic states in cuprates is angle-resolved photoemission spectroscopy (ARPES).
Before reviewing the important research which might give an answer to the above
question, ARPES and the electronic structure of the cuprates will be shortly pre-
sented. The mechanism of ARPES is quite easy: Photons from the light source (for
example synchrotron radiation source) excite electrons in the bulk which are emit-
ted at the surface as photoelectrons. The energy analyzer measures the intensity
of the photoelectrons for different energies and emission angles. The correspond-
ing data set is a so-called energy distribution curve (EDC). During the emission
process the energy and momentum is conserved. Thus the initial energy of the elec-
tron can be calculated by the knowledge of the phonon energy, the work function
and the measured kinetic energy of the photoelectrons. The initial momentum of
the electron (parallel to the sample surface) depends on the kinetic energy and the
emission angle of the photoelectrons. Thus the measurement of the EDC provides in
principle the full information on the electronic states of two-dimensional materials
(for examples the cuprates). Hence the measured intensity depending on the initial
energy and momentum of the electrons in the material I(k, ω) (given by the EDC)
is proportional to the single-particle spectral function A(k, ω)

I(k, ω) ∼ A(k, ω)|M |2f(ω), (6.1)

where |M | depends on initial energy and polarization of the phonons, on the mea-
suring geometry and on the instrumental resolution. The Fermi function is given by
f(ω). In the normal state the single-particle spectral function depends on the real
and imaginary part of the electron self-energy Σ. In other words the peak position
of the EDC determines the real part of the self-energy and the line width of the EDC
determines the imaginary part of the self-energy, namely the quasi-particle lifetime.
Most of the electronic structure of the cuprates has been investigated by ARPES
measurements. In the following paragraph the electronic structure of cuprates will
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shortly be summarized. Superconductivity takes place in the CuO2 double layer of
doped cuprates and hence its electronic structure is of special interest. First we will
discuss the electronic structure of the undoped cuprates (antiferromagnetic Mott
insulators) and afterwards we will generalize the situation for doped compounds.
Such a CuO2 layer consists of corner shared CuO4-squares. That means a Cu2+

ion is surrounded by four O2− ions. Whereas the oxygen ion has a closed 2p-shell
the highest 3d-orbital dx2−y2 of the copper ion is half filled by an electron. The
degeneracy of the five d-orbitals is repealed by a crystal field due to the oxygen
ions. As the dx2−y2-orbital points directly to the neighboring oxygen ions which are
negatively charged this orbital has the highest energy. Moreover this (half-filled)
d-Orbital and the upper most (filled) p-orbitals of the oxygens hybridize with each
other. Finally the highest (half-filled) orbital is the σ∗ anti-bonding orbital. Accord-
ing to band theory the corresponding valence band is half filled. That means the
undoped cuprates should be metals. However they are so called Mott-insulators.
The electronic structure of these materials is altered due to the strong electronic
correlations. If the highest d-electron which can be considered localized at a copper
ion hops to a neighbor and fills the half-filled d-orbital of that neighboring copper
ion it needs the Hubbard energy U because of the Coulomb repulsion of both elec-
trons (strong electronic correlations). That means within ’the’ highest d-band there
are electronic states which are separated by the Hubbard energy U . In other words
the highest d-band in strongly correlated electron systems like the cuprates is split
in a upper Hubbard and a lower Hubbard band. In between these two bands the
highest p-band of the oxygens appears (This is true for the cuprates. For vana-
dates and titanates it is below the lower Hubbard band), which has a mean energy
distance of ∆ from the upper Hubbard band. This energy is called the charge trans-
fer energy. The highest p-band and the lower Hubbard band are completely filled,
whereas the upper Hubbard band is empty. That means only if electrons can over-
come the charge transfer gap the Mott-insulator becomes conducting. Therefor the
undoped cuprates are called charge transfer insulators. Now the question appears
what happens when these Mott-insulators are doped. As explained in section 6.1.1
the CuO2 double layer is doped with holes for increasing doping level. Formally the
holes appear at the oxygen p-orbitals. Moreover the spins of the oxygen p-orbital
and the dx2−y2-orbital form a bound state a so called Zhang-Rice singlet. The cor-
responding Zhang-Rice singlet band is located directly above the filled p-band of
the oxygen ions. This way the cuprates become metallic and superconductivity can
occur. Thus doping in the cuprates leads to a metal-insulator phase transition. The
corresponding theoretical model which describes the splitting of the dx2−y2-band is
called the Hubbard model. This is the standard model in order to explain the effects
of strongly correlated electron systems.
Electron-phonon coupling in strongly correlated electron systems has not yet been
developed [124]. However one can use the undoped cuprate which is a Mott insulator
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as a starting point and may consider what happens due to hole doping. The doped
holes in these compounds have only very few energy which can be assumed to be
smaller than the phonon energy. Then these holes can be considered as polarons,
that means holes with a surrounding phonon cloud. The mass of these polarons can
become very big (corresponds to strong coupling) so that they can localize at impuri-
ties. Due to comparisons with experimental data the coupling constant for undoped
cuprates corresponds to that strong coupling regime. Thus one can understand
why the slightly doped cuprates are still insulators even if there is a finite doping
concentration. However the weak coupling regime can be better understood by per-
turbation theories (Migdal-Eliashberg theory). In that regime the electron-phonon
coupling is due to single phonon excitations (compared to the strong polaron regime,
where ’several’ phonons couple to one hole) which lead to a renormalization of the
bare band dispersion and a finite lifetime of the phonon. This finite lifetime corre-
sponds to the intrinsic phonon line width. To be correct it is the intrinsic line width
broadening in addition to the already finite line width due to anharmonic phonon
interactions. However for decreasing temperatures this effect becomes smaller (see
for example [118]; Altendorf et al. calculated this anharmonic line width broadening
and compared it with the measured line width by Raman measurements for different
doping levels in the system YBa2Cu3O6+x. Thus he could show that there appears
a pronounced superconductivity induced line width broadening).
Along the nodal direction (the diagonal in the Brillouin zone, where the d-wave gap is
zero) in the Brillouin zone the ARPES spectra of hole doped cuprates (Bi2Sr2CaCu2O8

(Bi2212), Bi2Sr2CuO6 (Bi2201) and La2−xSrxCuO4 (LSCO)) show a pronounced
kink in the dispersion relation at around 50-70meV . This kink is present above and
below Tc and is observed for various doping levels, whereas it is stronger in the un-
derdoped region compared to higher doping levels [125]-[131]. Figure 6.9 shows this
kink for different high temperature superconductors (a-c), different temperatures
(d, e) and different doping levels (a-c). Moreover in the final picture (f) the doping
dependence of the effective electron-phonon coupling strength λ′ along the nodal
direction is shown. Lanzara et al. [126] and Zhou et al. [124] relate this kink along
the nodal direction to the half-breathing mode, which shows an anomaly in neutron
experiments on La2−xSrxCuO4 (LSCO) [132], [133]. Similar phonon anomalies have
also been observed for YBa2Cu3O6+x (see section 6.7). A good argument for that
relation are the isotope induced changes of the nodal dispersion in optimally doped
(Bi2Sr2CaCu2O8 (Bi2212) [131]). However, there are also good arguments to relate
this kink to the magnetic resonance peak or to related magnetic excitations [127],
[128]. Therefore this issue is still highly controversial.
Even more interesting for our research and the question above is the recent discov-
ery of a kink within the antinodal region (This is where the superconducting gap is
maximal) of the Brillouin zone in Bi2212. This kink appears only below Tc at about
40meV , which is at lower energies compared to the nodal kink [134]. Moreover it is
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Figure 6.9: This figure shows the kink in the dispersion relation of different high
temperature superconductors with different doping levels (a-c) obtained by ARPES.
The temperature independency of this kink is shown in figures (d) and (e). Figure
(f) shows the effective electron-coupling constant with respect to the doping level for
LSCO (filled triangles), Nd-doped LSCO (filled diamonds), Bi2201 (filled squares)
and Bi2212 (filled and unfilled circles).

strong near the antinodal point (π, 0) and it becomes much weaker if the momentum
moves away from this point. The interesting point about that kink is the fact, that
it appears at the antinode where the superconducting gap is maximal. Hence this
kink may be related to the mechanism of high temperature superconductivity [124].
Again there are at least two possibilities of attributing this kink to excitations in high
temperature superconductors. Kaminski et al. [127] and Kim et al. [135] attribute
this kink to the magnetic resonance effect. However, Cuk et al. [109] could observe
this kink in optimally doped Bi2212 also above Tc and is therefore convinced that
it is due to the coupling to the B1g buckling mode instead of the resonance mode.
Moreover he found that this kink is more extended within the Brillouin zone then
Gromko et al. reported. In summary Cuk et al. and Devereaux et al. related that
antinodal kink with the B1g buckling mode by a full Migdal-Eliashberg calculation
[110] using a tight-binding model for the band structure. Moreover they claim that
therefore the B1g buckling mode is essential in explaining the mechanism of Cooper
pair building in high temperature superconductors [124]. These new developments
were a main motivation for us to reinvestigate the superconductivity induced phonon
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effects of the B1g buckling mode in the system YBa2Cu3O6+x.

6.6 The oxygen chains in YBCO

In the subsections 6.1.1 and 6.1.2 the important role of the oxygen chains (su-
perstructure, doping reservoir) has already been discussed. Nevertheless they are
still a matter of current research. A recent diffuse x-ray study of underdoped
YBa2Cu3O6+x [136] found an anomaly around the pseudogap temperature which
was attributed to charge stripe order. Later a similar study has been performed for
optimally doped YBa2Cu3O6+x where a four unit cell superstructure could be found.
This diffuse x-ray scattering decreases almost linearly and exists up to around 500K
[137]. These data have also been interpreted in view of a possible charge stripe
formation within the CuO2 double layer. As far as one concerns the experimental
evidence these measurements are consistent with those of Strempfer et al. [138],
which have been done concurrently and lead also to the result, that there exists
a four unit cell superstructure in optimally doped YBa2Cu3O6+x. However, they
attribute this experimental evidence uniquely to the existence of the oxygen chains.
This argument is strengthened by the fact that a Calcium doped material with the
same intrinsic doping (same oxygen content) shows the same diffuse x-ray pattern,
even if the hole concentration within the double layer is different from that of the
usual optimally doped YBa2Cu3O6+x. Moreover they report that this diffuse x-ray
scattering does not appear in the high temperature superconductor YBa2Cu4O8,
which does not have any oxygen chains. Thus it is indeed justified to assume that
this diffuse x-ray scattering is due to the oxygen chains and not on account of charge
stripe formation within the CuO2 double layer. However, it is clear that the super-
structure involves atomic displacements within the whole unit cell and thus can also
affect the CuO2 double layer.

6.7 Phonon anomalies in high temperature super-

conducting cuprates

Phonon anomalies in high Tc superconductors have been extensively reviewed by
L. Pintschovius in his review article [139] from page 5 up to 13. However here the
most important and interesting results will be summarized. It might be that these
results are related to our results on the buckling mode presented in this PhD thesis
in the following sections 6.9 and 6.11. The anomalous features reported so far on
phonon modes in cuprates are observed for the so called bond-stretching modes.
This bond-stretching mode has been studied for the system La2−xSrxCuO4 for the
undoped (x = 0) till the overdoped (x = 0.3) sample. Anomalous means for that
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compound that the energy dispersion softens considerably from the center of the
Brillouin zone till its middle and hardens again to the initial value at q = 0 towards
its boarder. This anomalous softening can not be explained by phenomenological
shell models and corresponds therefore to a renormalization of the phonon energy.
And it is stronger along [1 0 0] compared to [1 1 0]. It can be observed from the
underdoped (x = 0.1; around 15meV of phonon softening) till the overdoped sample
(around 20meV of phonon softening) and becomes stronger with increasing doping
level [139], [100], [140].

The situation in YBa2Cu3O6+x is similar compared to the results reported for

Figure 6.10: This figure shows the anomalous bond stretching vibration in the sys-
tem YBa2Cu3O6+x at 10K. The measurements for the overdoped compound are
shown at the left, whereas those for the underdoped compound are shown at the
right. For the underdoped compound this phonon mode is strongly anisotropic.

La2−xSrxCuO4. For underdoped YBa2Cu3O6.6 there could be observed a certain
energy renormalization compared to calculations [140] and with respect to the un-
doped compound YBa2Cu3O6.0 [141] for the bond-stretching vibrations. However
only along the b direction an even stronger anomalous decrease of the dispersion
relation at around q = 0.25 takes place [104] (see figure 6.10). This energy renor-
malization is strongly anisotropic. In figure 6.10 the anomalous bond stretching
vibrations measured along the a∗ (red) and along the b∗ direction (blue) are shown
together with a bond bending vibration (black). At the right the results for the un-
derdoped material YBa2Cu3O6.6 are shown, whereas the left shows the same modes
for the overdoped sample YBa2Cu3O7.0. These measurements for YBa2Cu3O7.0 show
also a strong decrease of the dispersion relation [105]. However for this compound
the energy renormalization does not seem to be strongly anisotropic.
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6.8 Stripe theory in high temperature supercon-

ductors

Tranquada et al. [142] observed static stripe order (spatial modulations of spin and
charge density) in La1.48Nd0.4Sr0.12CuO4. Since then the relation between high Tc

superconductivity and stripes are discussed. According to Pintschovius et al. [139]
the stripe picture for high Tc superconductors can only be uphold if one can find
evidence for dynamic stripe order in the cuprates. These dynamic stripes can be
observed by their coupling to phonon modes. According to Pintschovius the strong
energy renormalizations in the bond stretching modes (see section 6.7) are due to
coupling with dynamic stripes. However this assumption and further evidence for
spin stripes in high TC superconductors [143] is highly controversial. However, if
dynamic stripes are present in high temperature superconductors, they should be
observed due to their coupling to phonon modes which will then and change their
intrinsic line width. Moreover these effects should be strongly anisotropic.

6.9 Measurements on YBa2Cu3O7

Our measurements of the phonon buckling mode in YBa2Cu3O7 has been made at
the Puma spectrometer at FRM II. This spectrometer is also a thermal triple axis
spectrometer optimized for inelastic neutron scattering in the thermal energy range.
Compared to 1T1 at Saclay the Puma spectrometer yields an even better energy
resolution (below one meV). This together with a relatively high neutron flux turned
out to be crucial for our measurements on YBa2Cu3O7.
For our measurements reported in this section our YBa2Cu3O7 sample was enlarged,
so that it finally consists of 185 crystals with a total mass of 2.63 g. However it
should be stated that part of the measurements were made with a 1.8 g sample. In
any case the data have been normalized to a sample mass of 1.8 g and a monitor
counting rate of 7200000 counts. So the intensities of all our phonon scans within
this section may be compared. Besides the higher mass the sample is the same with
which the neutron spin echo measurements reported in the next chapter has been
performed. Therefore the preparation process and the quality of the sample will be
discussed in the following chapter (see section 7.1 for the preparation). In general the
quality of our single crystal is relatively high. One reason is that it consists of small
single crystals, that means inclusions and homogeneities are improbable compared
to bigger single crystals comparable to the total mass of our sample. Moreover,
here we dealt with an almost fully stoichiometric sample which can be regarded as
a ’perfect single crystal’ without defects (in reality our sample has the doping level
YBa2Cu3O7−δ with δ ≤ 0.05). This leads again to more regular and homogeneous
single crystals compared to doped ones. Another important point of the quality of
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the single crystals is how good they have been detwinned. This will be shown in
section 7.2. Moreover, the observed strong anisotropies of the phonon buckling mode
which could be observed, proves impressively that our sample has been detwinned
adequately. Here it should be mentioned that the detwinning process becomes more
and more difficult for higher doping levels (higher oxygen contents). This is due
to the anisotropic oxygen chains. Whereas for lower doping levels one detwinning
procedure is often enough to get a detwinned single crystals for our YBa2Cu3O7.0

sample for each detwinned single crystals two to three detwinning procedures were
necessary.

6.9.1 Introduction

The following anisotropic phonon measurements of the phonon buckling mode (42
meV branch) on our YBa2Cu3O7.0 sample has been made with the triple axis spec-
trometer Puma at the FRM II from January 29th till February 4th (1.8 g) and from
June 8th till June 13th 2007 (2.6 g). The sample consists of small single crystals
having been fully detwinned and aligned as a mosaic on an aluminium plate. The
mosaicity of the sample is around 1.5 degrees (this value has been determined for
the a and the b axis with the TRISP spectrometer for the sample with 2.6 g; the
spectrometer resolution of 0.4 degrees has been considered; the exact values were
1.42 along the a direction and 1.59 along the b direction). The lattice constants are
a = 3.82 (3.79)Å, b = 3.89 (3.86)Å and c = 11.68 (11.61)Å (The values in brackets
have been obtained during the sample alignment with the Puma spectrometer for
the sample with 2.6 g). The superconducting transition temperature of the sample
is Tc = 90K ±0.5K (this is the value which has been determined by susceptibility
measurements at the Physical Property Measurements System (PPMS) at MPI; it
is the averaged value of some selected single crystals which have been used for our
sample).
As described in section 6.4 the phonon buckling mode is a transversal phonon polar-
ized along the c axis, with the in plane oxygens of the CuO2 - double layer oscillating
out of phase. As a consequence the (dynamic) structure factor for this phonon mode
has a local maximum around Kc = 10 and 11. Therefore we made our measurements
adjacent to the reciprocal lattice vector ~K = (1, 0, 10) and (0, 1, 10) for the phonon
measurements along the a and b axis, respectively. At Kc = 11 we couldn’t measure
as this position in reciprocal space was not achievable with the Puma spectrometer.
It was possible to distinguish between the a and the b direction due to our fully
detwinned sample. The phonon wave vectors qa and qb for the measurements along
the a and b axis, respectively, are measured with respect to the reciprocal lattice
vectors given above. The sense of rotation of the spectrometer was (-1 1 -1) and
we used the Cu220 Monochromator and the PG 002 Analyzer. Using the Cu220
monochromotor was essential in order to reach resolutions below 1meV . The spec-
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trometer resolution has been calculated with the program RESCAL. Doing so, we
obtained an energy value of 0.6± 0.4meV . This unrivalled spectrometer resolution
for our constant ~K-scans could be achieved by using a quite small value as fixed
final energy: 8meV . This reduced the spectrometer resolution again compared to
higher standard values for the final energy. The error of the energy measurements
during our measurements is around 0.3meV . In order to reach temperatures down
to 3K we used a CCR cryostat in the first period of our measurements. However in
order to have a better temperature control in the second part of our measurements
we cooled down to 4K using the standard cryostat from the Puma spectrometer. In
order to suppress spurious speaks we used two graphite filters and we checked any
configuration for lambda half and lambda third spurious peaks from the monochro-
mator and the analyzer, respectively. We even performed temperature dependent
spurion checks for qb = 0.3 in order to ensure that there does not occur a temper-
ature dependent spurious peak. This was especially necessary as we observed this
time a quite interesting temperature dependency of the phonon buckling mode at
that specific reciprocal lattice point.
In January, we made our measurements for the following phonon wave vectors: qb

= 0.15, 0.2, 0.25, 0.3, 0.4, 0.5 along the b axis and qa = 0.15, 0.25, 0.3, 0.35, 0.4,
0.5 along a. Along the b axis we measured at 3K, 120K and 305K and along the
a direction at 3K and 120K. In order to complete our measurements from January
in June we made measurements for the following phonon wave vectors: qb = 0, 0.05,
0.1 along the b axis and qa = 0, 0.1 along the a axis at 4K (below Tc) and 100K
(above Tc). Where qa and qb are the in-plane (within the superconducting double
layer) wave vectors with respect to the reciprocal lattice vectors given above. That
means for example qa = 0.15 = q = (0.15, 0) and qb = 0.15 = q = (0, 0.15). In
summary we now have a full data set of the buckling phonon mode within the whole
Brillouin zone for both in-plane directions at temperatures below and above the su-
perconducting transition temperature. In addition to these measurements in June
we made a detailed temperature study for the phonon wave vector qb = 0.3 where
the Tc - induced broadening effect of the phonon mode was biggest. We made our
measurements at 5K, 10K, 20K, 30K, 40K, 50K, 60K, 65K, 70K, 75K, 80K, 85K,
90K below Tc and at 95K, 100K, 105K above Tc . Together with our measurements
at 120K, 200K and 305K from January we now have a detailed temperature study
of the phonon buckling mode with qb = 0.3.
Initially we made the temperature study in order to prove that the anisotropic line
width broadening for qb = 0.3 is a Tc - induced effect due to the increase of the
electron phonon coupling. However, our temperature study revealed due to the very
good resolution of the Puma spectrometer that this is no real broadening but that
there are two phonon modes. That means that we have compared to previous mea-
surements [103] three different phonon modes in the energy range from 38meV up
to 48meV (see figures 6.11 and 6.12). At high energies we see a well resolved peak
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at around 45meV . This is a c-axis polarized plane chain mode of the oxygen ions
within the CuO2 - double layer and the chain oxygens. This has been found by com-
paring the energies of this mode with previous neutron and infra-red measurements,
as this mode is infra-red active [144]. Another phonon mode an in-plane mode of
the oxygens in the CuO2 - double layer, has also the correct energy at the Brillouin
zone center to account for third phonon mode. However, this mode has been in-
tensively studied by Pintschovius [104] and it was found, that this mode disperses
upwards. Moreover, we calculated the structure factor of this phonon mode for our
experimental conditions and we obtained a rather low value which could not explain
our experimental observations. Therefore we believe that we did not observe this
in-plane mode but the previously described plane chain mode. This mode would
also explain the fact, that we couldn’t observe it for the antiferromagnetic sample
and only along the chain direction for the superconducting underdoped sample. As
this mode involves the oscillation of the chain oxygens this behavior can be easily
understood. For lower energies and q = 0.3 a double peak structure can be seen.
Here one clearly observes two peaks. Finally the phonon buckling mode is the mid-
dle peak of the three observed ones and the mode with lowest energy is the in-plane
mode of the apical oxygen (see figure 6.12). This could be found by the compari-
son of our neutron data with Raman measurements [145](see figure 6.11, this figure
shows moreover the eigenvectors of the buckling and the apical oxygen mode).
These new findings mean that the phonon buckling mode for q = 0.3 does not
broaden below Tc for the b direction and only slightly for the a direction. How-
ever this mode behaves strongly anisotropic for qb = 0.3. This has a simple reason:
the apical mode along the a direction is at a different energy compared to that of
the buckling mode, whereas along the b direction both modes the apical in-plane
mode and the buckling mode are in close vicinity [144]. This vicinity has very in-
teresting consequences: the intensity of the buckling mode along the b direction (for
qb = 0.3) looses much of its intensity by cooling below Tc whereas the neighboring
apical mode at lower energies (for the b direction) hardens and gains a comparable
amount of intensity (see figure 6.12). This remarkable effect depends not only on
the direction but is strongly q-dependent. The observation of this anisotropic Tc-
related interaction of the buckling phonon mode with the apical phonon mode at
lower energies was only possible due to two important reasons: first due to the high
resolution of the Puma spectrometer and second due to the fully detwinned sample
of YBa2Cu3O7. In former experiments [103] one could not resolve these three peaks
but measured a single broad peak. Thus the situation changed impressively from an
anisotropic Tc induced broadening effect to the anisotropic Tc induced change of the
phonon eigenvector (of the buckling phonon mode). Up to now and according to our
knowledge this has not been reported so far in literature. Our temperature study
mentioned above yields a detailed picture of this Tc induced effect for YBa2Cu3O7.
However, the investigation of the doping dependence of this effect exceeds this the-
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sis and remains for further investigations. Unfortunately for the measurements with
our YBa2Cu3O6.6 sample, we cannot make a statement about this effect as we could
not resolve all three peaks clearly from each other (see figure 6.24). However these
measurements are consistent with the picture described above that there exist three
phonon modes. This would mean that the in-plane apical oxygen mode and the
buckling mode represent the broad peak at lower energies, whereas the peak at
higher energies could be resolved from the buckling mode and represents the plane
chain mode.
Besides the anisotropic Tc effect described above with our following measurements
we could also confirm another Tc effect which has already been described previously
[103]. At q = 0 the phonon buckling mode shows a superconductivity induced soft-
ening for both in-plane directions. See figure 6.17 for the b direction (below) and the
a direction (above), respectively. Moreover these figures show, that away from the
Brillouin zone center this effect becomes slightly anisotropic. For increasing wave
vector from the Brillouin zone center to its boarder this softening effect reduces
towards the boarder of the Brillouin zone.

Resolution of the Puma spectrometer

In analogy to the resolution calculations for 1T1 the resolution of the Puma spec-
trometer has been calculated with Rescal (see subsection 6.11.2). As result we
obtained 0.6 meV, which is half the value of the resolution we calculated for 1T1.
This is the value one obtains if one projects the resolution ellipsoid (see chapter
5.5) in four dimensional energy-momentum space onto the energy axis. Similar to
the specific parameters of 1T1 here the parameters for the Puma spectrometer will
be presented. We calculated the resolution with Rescal according to the method
of Popovici. First of all we inserted the monochromator and analyzer d-spacing
dmono = 1.278Å, danal = 3.354Å, which can be calculated knowing the lattice con-
stants and the Bragg reflection. Next the mosaicities of the monochromator, the
analyzer and the sample were required. For the monochromator and the analyzer
the mosaicity is 27.6 minutes and 47.4 minutes, respectively, and for the sample 90
minutes. The scattering sense of the spectrometer was for all our measurements -1
for the monochromator, 1 for the sample and -1 for the analyzer. We measured with
fixed final energy which corresponds to a final scattering vector ~k of 1.97Å−1. All
the horizontal collimations were two degrees, whereas the vertical collimations were
three degrees. For Popovici’s method the following parameters were necessary in
addition to these one already mentioned. First we had to specify that we have a
rectangular source with a width of 2 cm and a height of 13 cm. We didn’t use guides.
Moreover we used a flat-plate sample with dimensions 0.2×2×2 cm3 and a circular
detector with a diameter of 2.54 cm2. The dimensions of the monochromator are
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0.2×26×16.2 cm3 and the analyzer are 0.2×21×15 cm3. The distances LO (source
to monochromator), L1 (monochromator to sample), L2 (sample to analyzer) and
L3 (analyzer to detector) were 209, 215, 90 and 90 cm. The horizontal and vertical
focussing of the monochromator were 0.236 1/m and 0.944 1/m, respectively, and
for the analyzer the horizontal and vertical focussing were 0.562 1/m and 0 1/m,
respectively.

Fitting function for our constant ~Q-scans: Voigt functions

All our measured data have been fitted with Voigt functions. The Voigt function
is a convolution of a Gaussian and a Lorentzian function. In general the intensity
I(ω0, ~K0) of a triple axis spectrometer is given by equation 5.27:

I(ω0, ~K0) ∼
∫

dωd ~KR(ω − ω0, ~K − ~K0) S( ~K, ω). (6.2)

That means the Intensity is proportional to the four dimensional convolution of
the spectrometer resolution function R(ω−ω0, ~K − ~K0) and the scattering function

S( ~K, ω). The resolution function is given by a four dimensional Gaussian distribu-
tion 5.29:

R(ω − ω0, ~K − ~K0) = R0 exp(−1

2
∆κM∆κ), (6.3)

(see chapter 5.5 for explanations) which can be visualized by the resolution ellip-
soid. The scattering function for phonons can be modelled by the model of the
damped harmonic oscillator, where Γ is the intrinsic line width of the corresponding
Lorentzian function:

S( ~K, ω) ∼ ∑

s={~q,j}

∑

~G

F 2( ~K, ~q)

2ω′s
(6.4)

[
〈n(ω′s)〉

1

π

Γs

[ω + ω′s]2 + Γ2
s

δ( ~K ± ~q − ~G)

]
, (6.5)

where F ( ~K, ~q) is the dynamic structure factor:

F ( ~K, ~q) =

∣∣∣∣∣
∑

d

bd√
Md

exp(i ~K ~rd)[ ~K~εj(~q)] exp−Wd(~q)

∣∣∣∣∣ , (6.6)

(see equation 5.16 - 5.19).
The Bose factor

〈n(ω′s)〉 =
1

1− exp(−h̄ω′s/kBT )
(6.7)

depends on the energy and on the temperature. It was considered by correcting
the raw data, so that it hasn’t to be considered for the fitting function. Now it is
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necessary to remind Bragg’s law. Considering the spectrometer resolution function
and inelastic scattering it reads

~K0 = ~G + ~q. (6.8)

Here ~K0 is the momentum where the spectrometer measures best. So aligning the
sample means assigning this point to (which is here modified because of inelastic
scattering) a reciprocal lattice vector (see chapter 5.1). As our measurements were

constant ~K0-scans (see chapter 5.3) that means that this quantity is kept constant
during the whole measurement. This is not true for the energy, ω0 is lower than ωs

at the start of the scan and is higher than it at the end of the scan. Our phonon
mode is almost not dispersing that means ωs can be considered as a constant. Than
the intensity during the energy scan (for one phonon mode and except the Bose
factor and proportionality constants) is given by the following equation depending
on ω0:

Iωs(ω0) ∼
∫

dωS(ω + ωs) (6.9)
∫

d ~KR(ω + ω0, ~K − ~K0) F ( ~K, ~q) δ( ~K ± ~q − ~G). (6.10)

ω0 is considered to be negative as ωs is. This intensity distribution Iωs(ω0) is the
quantity which has been measured during our measurements of the phonon buckling
mode on the triple axis spectrometer Puma. Solving the integral over d ~K using the
property of the δ-function yields directly

Iωs(ω0) ∼
∫

dωS(ω + ωs) R(ω + ω0). (6.11)

However this needs as a precondition that the excitation in ~K-space is perfectly
sharp. However if one assumes a finite length scale, this leads to a ∆ ~K in the reso-
lution function. To estimate this effect the resolution ellipsoid has been calculated
by Rescal for spectrometer conditions during the scan. The axis of the resolution
ellipsoid for the momentum directions are much smaller than the energy axis. That
means the ellipsoid is cigar-shaped with the longest axis the energy axis. However
this axis is not parallel to the energy axis of the coordinate system. This is due to
the fact that the resolution matrix M is not diagonal but has off diagonal elements
which couple the momentum space with the energy. However this tilting of the reso-
lution ellipsoid relative to the energy axis is rather independent of ~K and only slowly
varying with the energy (as calculated with Rescal). So it seems to be appropriate
by using the projection of the resolution ellipsoid onto the energy axis for the Gaus-
sian energy distribution to account in first order to the neglected coupling between
momentum space and energy. Thus using the momentum independent projection
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of the resolution ellipsoid onto the energy axis (phonon width, 0.6meV in our case)
leads to the good approximation:

Iωs(ω0) ∼
∫

dωS(ω + ωs) R(ω + ω0), (6.12)

where S is the one-dimensional Lorentzian energy distribution accounting for the
finite life-time of our phonon mode and R the one dimensional Gaussian distribution
accounting for the energy resolution of the triple axis spectrometer. In general the
energy resolution depends on ω0. This effect is 10 per cent around a mean value. If
one considerers that the estimate of collimations (we didn’t use collimators) is quite
difficult and may lead to errors of 10 up to 20 per cent of the energy resolution it
seems tolerable to use a mean value of the energy resolution for the Gaussian width
in R. With ω′ = ω + ω0 and x = ω0 − ωs we get

I(x) =
∫

dω′ R(ω′) S(x− ω′) (6.13)

which is the definition of the Voigt function (Convolution of the Gaussian function
with the Lorentzian function.) The Gaussian width is assumed to be given in units
of FWHM and the Lorentzian width is assumed to be given in units of HWHW. All
our constant ~K-scans which are showed in the following are fit with such a Voigt
(or two for the double peaks) function. The Gaussian width was assumed to be the
calculated spectrometer resolution of 0.6 meV and the Lorentzian width was used
as a refinable parameter. This refinement gives for any fit the intrinsic line width
of the phonon (considering the damped harmonic oscillator as the decisive model).
Moreover during these fits also the mean energy value of the phonon (zero point for
ω0) and its amplitude were treated as a refinable parameter. In addition a linear
background was assumed for these fits leading to two more refinable parameters:
the slope and a constant.

6.9.2 Three phonon peaks and a new superconductivity-
induced effect

In this subsection the appearance of three phonon modes and a new superconductivity-
induced effect which have already been mentioned will be summarized by giving
meaningful and significant data in order to illustrate them. Figure 6.11 above shows
the buckling mode (eigenvector see inset above) in the middle, the plane chain mode
(at higher energies) and the (in-plane) apical oxygen mode (at lower energies, eigen-
vector see inset below) for qb = 0 at 4K. The plane chain mode is clearly resolved
from the other two, which are also almost resolved with respect to each other, even
if the apical oxygen mode forms a small shoulder on the buckling mode. Figure 6.11
below shows the Raman spectra for comparable energies at 10K for B3g symmetry.
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Figure 6.11: The figure above shows the three phonon peaks in an energy range
where previous measurements only showed the buckling mode measured by inelastic
neutron scattering. The buckling mode is in the middle, the plane chain mode at
higher energies and the (in-plane) apical oxygen mode at lower energies for qb = 0 at
4K. Moreover it shows a refined fitting function consisting of three Voigt functions
and a linear background. The figure below shows Raman data which identify the
low energy peak as the in-plane apical oxygen mode with B3g symmetry. This is
indicated by the vertical line. Moreover in the inset at the right the eigenvectors of
the buckling mode (above) and the in-plane apical oxygen mode (below) are shown.

The apical oxygen mode around 39meV can clearly be observed. The second smaller
peak at higher energies polarization leakage of the buckling mode. The vertical line
demonstrates that the third peak in 6.11 (above) is indeed the B3g apical oxygen
mode. The arrows relate the eigenvectors with the corresponding phonon peak in
the raw data.
The new superconductivity-induced effect we could observe during our measure-

ments is shown in figure 6.12. This figure compares the phonon buckling mode and
the (in-plane) apical mode for temperatures below and above Tc. This figure shows
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Figure 6.12: This figure shows the superconductivity-induced interaction of the
buckling mode at qb = 0.3 with the in-plane mode of the apical oxygen
(superconductivity-induced transfer of spectral weight between both modes). There-
fore both phonon modes are shown above (at 105K) and below (at 30K) the su-
perconducting transition temperature. The black squares show the buckling mode
well below the superconducting transition temperature. The red circles represent
the buckling mode above the superconducting transition temperature. Moreover,
in order to compare both graphs with each other directly we subtracted the back-
ground.

clearly the transfer of spectral weight between these two phonon modes due to the
superconducting transition. Moreover this effect is anisotropic as nothing compara-
ble can be observed along the a∗ direction (see figure 6.13).
This anisotropic superconductivity-induced transfer of spectral weight between the
buckling mode and the in-plane apical oxygen mode which can be clearly identi-
fied in figure 6.12 is a new and very interesting effect. These new measurements
reported here are in contrast with previously measured data [103]. There it was
claimed that the buckling mode broadens considerably due to superconductivity.
However, these data have been obtained with a poorer spectrometer resolution and
on twinned samples so that the broadening effect is not real but is simply a conse-
quence of the mixing of different domains and phonon modes. Our data on untwined
samples with a very good spectrometer resolution, however, show that the buckling
mode even sharpens a little bit when cooling below Tc (see figure 6.20). In the next
section (6.10) we will show by data on underdoped antiferromagnetic YBCO that
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the buckling mode and the apical oxygen mode already hybridize without supercon-
ductivity. However, by comparing the data on underdoped and overdoped YBCO
we can further conclude, that superconductivity strongly enhances this interaction
between both modes.
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Figure 6.13: This figure presents the raw data of our phonon measurements of the
buckling mode at 3K for both in-plane directions and the corresponding fitting
functions. These graphs show impressively the anisotropy of the phonon buckling
mode for q = 0.3 at 3K.

Figure 6.13 compares the measurements of the buckling mode between both in-
plane directions at 3K. It clearly shows the remarkable intensity difference of the
buckling phonon mode (peak in the middle of the figure). It is the first time that
this anisotropy has been reported as earlier measurements of the buckling mode had
been made with twinned samples [103]. The (in-plane) apical oxygen mode also
shows anisotropic behavior: whereas it is very weak (actually zero) along the a∗

direction, it shows an even higher amplitude than the buckling mode along the b∗

direction. Actually there is no in-plane apical oxygen mode at energies just below
the energy of the buckling mode for the a∗ direction, however, it was possible to
refine such a mode with a very small amplitude. This is due to the fact that the
sample was not perfectly detwinned. The plane chain mode at energies above the
energy of the buckling mode shows also a very pronounced anisotropy. Compared
to the b∗ direction this mode is softer and much stronger in intensity along the a∗

direction. This is a rather temperature and phonon wave vector independent trend.
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A comparison of the intensities of the plane chain mode for different in-plane di-
rections and temperatures at 3K and 120K shows that the intensities along the b∗

direction are much weaker than those along a∗. Only the center of the Brillouin
zone is an exception. This can be understood by the fact that this phonon mode
involves the chain oxygens and therefore shows a pronounced anisotropy.

As mentioned earlier the discovery that there exist three phonon modes (for
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Figure 6.14: This figure presents the raw data of our phonon measurements of the
buckling mode at 3K for the phonon wave vectors qb = 0.25 and qb = 0.3. We
believe that the in-plane apical oxygen mode is superimposed to the buckling mode
for q = 0.25 even if we cannot resolve both peaks for that phonon wave vector.

qb = 0.3) in the energy range 37meV ≤ E ≤ 48meV which can be addressed
by neutron scattering and not only the buckling mode is one of the main advances
of this PhD thesis. And its validity has been remarkable shown by our temperature
study especially by figure 6.12. Unfortunately the role of the apical oxygen mode
along b∗ is difficult to interpret for other points within the Brillouin zone. To discuss
this issue figure 6.14 has been included within this PhD thesis. Figure 6.14 compares
the raw data between the phonon wave vectors qb = 0.25 and qb = 0.3 at 3K. The
”buckling mode” at qb = 0.25 has been fitted with a relatively broad line shape,
whereas at qb = 0.3 the fitting function consists of a double Voigt function, where
the buckling mode is the mode at higher energies and a second, the in-plane apical
oxygen mode appears. Therefore we believe that this broad peak also consists of the
buckling mode and the apical oxygen mode which could not be resolved completely.
This might be an interesting point for further investigations.
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6.9.3 A further interesting effect
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Figure 6.15: This figure shows the buckling mode at the center of the Brillouin
zone (aligned in the a∗c∗ plane) for different temperatures at 4K and 100K. One
observes a superconductivity phonon softening consistent with previous phonon mea-
surements on that phonon mode [103]. Moreover these data reveal a very interesting
effect: a superconductivity-induced transfer of spectral weight between the Raman
active buckling mode and the plane chain mode.

After having discussed the new superconductivity-induced transfer of spectral
weight between the buckling mode and the apical oxygen mode, now a similar ef-
fect concerning the plane chain mode at higher energies will be discussed. Figure
6.15 compares the buckling mode at the center of the Brillouin zone (aligned in the
a∗c∗ plane) at 4K and 100K. With respect to the phonon line width this phonon
behavior is usual, as the phonon broadens due to anharmonic effects for increasing
temperature. And the phonon softening can be explained due to the superconducting
transition [103]. However, these data show a further interesting superconductivity-
induced effect concerning the plane chain mode. It can be observed that the plane
chain mode exchanges spectral weight with the buckling mode when cooling below
Tc. This is an interesting effect as both modes should not show this behavior as they
have different symmetries, the buckling mode is Raman active whereas the plane
chain mode is infra-red active.
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Figure 6.16: This figure shows all three phonon modes at 4K measured at the
center of the Brillouin zone. The difference between both figures is the fact that
the sample has been oriented within different scattering planes. For qa it has been
oriented in the a∗c∗ plane and for qb it has been oriented within the b∗c∗ plane.
Nevertheless both graphs show the phonon modes at the same point in reciprocal
space. Therefore it is interesting that the plane chain mode has different intensities
for both measurements. This can be understood by the fact, the oxygen chains are
involved in that phonon mode. This is another hint, that we attributed the correct
phonon eigenvector to this mode.

Besides this superconductivity-induced transfer of spectral weight between the buck-
ling mode and the plane chain mode, this plane chain mode shows further interesting
properties at the center of the Brillouin zone. Figure 6.16 shows the plane chain
mode at the center of the Brillouin zone measured at 4K. The black data were ob-
tained by aligning the sample in the a∗c∗ plane, whereas the red data were obtained
when the sample was aligned within the b∗c∗ plane. Even so for both measurements
the phonon wave vector of the plane chain mode was q = 0 the intensity differs
remarkably. These data means that this phonon mode has a eigenvector which is
not symmetric in a and b. This is the case for the plane chain mode as it involves
the oxygen ions of the chains. This effect means, that we have assigned the correct
eigenvector for this phonon mode.
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6.9.4 Energy dispersion of the buckling mode
in YBa2Cu3O7

In the previous subsection our measured data set was presented as raw data and
appropriate fits with Voigt functions. In the following subsection the results of
these fits namely the energy of the phonons and the intrinsic phonon temperature-
dependent line width Γ of the interesting phonon at q = 0.3 will be shown. Figure
6.17 compares the energy dispersion of the phonon buckling mode measured along
the a∗ and b∗ direction for different temperatures below the superconducting tem-
perature at 3K and above Tc at 120K. Moreover the energy of the apical oxygen
mode is also shown for these phonon wave vectors where it was observable. First of
all it should be mentioned that the dispersion is quite flat at 120K. A comparison
of the dispersion relations for both temperatures above and below Tc shows that the
phonon mode softens considerably at the Brillouin zone center. The magnitude of
the softening reduces for both in-plane directions towards the middle of the Brillouin
zone. However, along the b∗ direction this trend is superimposed with the interac-
tion of the buckling phonon mode with the apical oxygen mode. Therefore this
mode is also included in graphic. For q = 0.3 both phonon modes could be clearly
resolved from each other. However, for q = 0.25 only one broad peak was observable
instead of two peaks. Therefore the error bar of the buckling mode is quite big, as
the energy is probably strongly affected by the interaction with the apical oxygen
mode. Considering this effect the dispersion relations along both in-plane directions
are more or less isotropic within the error bars.

6.9.5 Temperature study of the intensity of the buckling
mode and the apical oxygen mode.

As described in the introduction the main (anisotropic) effect revealed by our mea-
surements is the superconductivity-induced interchange of spectral weight between
the buckling mode and the in-plane apical oxygen mode for qb=0.3. In order to
prove this effect a detailed temperature study of the intensities of both phonon
modes has been made, which will be presented in this subsection. Figure 6.18 com-
pares the intensities of the buckling mode and the in-plane apical mode at qb = 0.3
for several temperatures. At room temperature the buckling mode has a relatively
high intensity and is well pronounced, whereas the in-plane apical mode has a very
low intensity and is hardly visible. For decreasing temperature the intensity of the
buckling mode decreases considerably till 120K, whereas the intensity of the in-
plane apical oxygen phonon mode increases. However most of the effect takes place
around Tc: the buckling mode looses considerably in intensity around Tc, whereas
the intensity of the in-plane apical oxygen mode increases considerably. Whereas
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Figure 6.17: This figure shows the energy dispersion of the phonon buckling mode
measured along the a∗ (above) b∗ (below) direction for different temperatures at
3K, 120K. Moreover at these wave vectors where the apical oxygen mode could
be observed, in addition the energy values of this mode are shown for 3K. Almost
all the phonons within the Brillouin zone show superconductivity induced phonon
softening when one cools below Tc. At qb = 0.25 we couldn’t resolve the buckling
mode from the apical oxygen mode. That explains the big error bar within our
figure. The lines are guides to eye.

above Tc the intensity of the phonon buckling mode is much higher compared to
the intensity of the in-plane apical oxygen mode for T < Tc the situation is inverse.
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Figure 6.18: This figure shows a detailed temperature study from 5K up to 305K in
different temperature steps measured at qb = 0.3 for the intensities of both phonons
the buckling mode and the in-plane apical oxygen mode. This figure gives the
answers to several questions which can be posed concerning the anomalous effect
described above for qb = 0.3. It shows that it is a superconductivity-induced effect
and it explains the anisotropy of the effect due to an interaction of the buckling
mode with the neighboring apical oxygen mode. And this mode is only in close
vicinity to the buckling mode along the b∗ direction. This figure finally approves the
anisotropic superconductivity-induced phonon effect described above. The lines are
guides to the eye.

Here it has to be mentioned that the buckling mode and the in-plane apical oxygen
mode are in close vicinity (1.5meV − 2meV apart from each other). So figure 6.18
proves that there exists a superconductivity-induced exchange of spectral weight for
these two phonon modes. That means especially that the phonon eigenvectors of
both modes change during this process. This is an important and interesting fact
which was not been reported in literature so far.
This transfer of spectral weight between the buckling mode and the in-plane apical
oxygen mode should be connected with the energy difference ∆E of both phonon
modes. This energy difference ∆E is shown in figure 6.19. On recognizes that the
energy difference of both phonon modes first increases for decreasing temperature
from 305K towards 120K. However then for decreasing the temperature further
both modes approach each other. Especially from Tc down till 50K both modes are
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Figure 6.19: This figure shows the energy difference of the buckling mode and the
in-plane apical oxygen mode at qb = 0.3 for several temperatures. One observes that
the both modes are especially below Tc in close vicinity. This is consistent with the
picture that then both modes are interacting with each other. The line is a guide
to the eye.

in very close vicinity. This confirms the fact that both modes interact strongly with
each other.
Previous measurements on the buckling mode with twined samples revealed a line

width broadening at around q = 0.25 [103]. However, due to the high resolution of
the Puma spectrometer, we could resolve the buckling mode from its neighboring
phonon modes and could hence determine the real line width. Figure 6.20 shows the
line width of the buckling mode for different temperatures from above to below Tc.
In contrast to the previous measurements mentioned above one observes that the
line width reduces from 1.75 ± 0.5 above Tc till 0.75 ± 0.5 below Tc. Figures 6.19
and 6.20 show that the buckling mode softens and sharpens when cooling below Tc.
This is due to an unusual electron-phonon coupling. As usually a phonon broad-
ens due to a coupling to continuous electronic excitations. Instead such a unusual
electron-phonon coupling could be explained due to a coupling to a collective mode.
Such collective modes appear in high temperature superconductors below Tc. The
most prominent examples are the ”so-called” magnetic resonance mode [146] and
Josephson plasmons [149].
In summary, the figures 6.12, 6.18, 6.19 and 6.20 describe a consistent story: figure
6.12 shows the transfer of spectral weight between the buckling mode and the apical
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Figure 6.20: This figure shows the line width of the three phonon peaks: the buck-
ling mode (red), the apical oxygen mode (black) and the plane chain mode (blue)
measured at qb = 0.3 for different temperatures. As the buckling mode and the
apical oxygen mode can not be resolved completely, it was not possible to to refine
both modes with all parameters being free. Instead the line width of the apical
mode was assumed to be constant. This way the phonon line width of the buckling
mode could be determined depending on the temperature.

oxygen mode. Together with figure 6.18 it shows that this effect is superconductivity-
induced. Figure 6.19 shows, that due to the superconducting transition both phonon
modes approach each other. As the buckling mode sharpens during this approaching
6.20 this phonon softening can be explained as unusual electron-phonon interaction,
where the buckling mode interacts with a collective mode rather then the quasi-
particle continuum of electronic states. This also explains the strong q-dependency
and the anisotropy of the effect. Due to this superconductivity induced approaching
(one forth of the initial distance) between the buckling mode and the apical oxy-
gen mode the strong interaction of both modes can naturally be explained. The
change of the intensity in neutron scattering is directly related to the eigenvector
of the phonon via the dynamic structure factor. Therefore we can describe our
effect finally as a superconductivity-induced change of the eigenvector of the buck-
ling mode due to unusual electron-phonon interaction. This is a qualitatively and
quantitatively new effect.
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6.10 Measurements on YBa2Cu3O6.1

In addition to the measurements on the superconducting samples of YBa2Cu3O6.6

and YBa2Cu3O7, we also made comparable measurements on an underdoped anti-
ferromagnetic sample of YBa2Cu3O6.1. This sample is not superconducting. The
sample mass was around 25 grammes and the experiments were performed at 1T1 in
Saclay. The experimental conditions were the same as for the 6.6-compound being
described in section 6.11.2.
These measurements on this underdoped compound which are shown in figures 6.21
and 6.22 serve as a reference to the data which we obtained on the superconducting
samples and which were described above. Both figures show that for the antiferro-
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Figure 6.21: This figure shows the buckling mode at the Brillouin zone center mea-
sured at 12K for an underdoped sample. No plane chain mode at higher energies
and no apical oxygen mode at lower energies can be observed.

magnetic compound no plane chain mode at higher energies is observable. This can
be understood, as for this doping level no oxygen chains exist. Therefore only the
buckling mode and the apical oxygen mode can be observed. Whereas the buckling
mode can be observed for all q values, the apical oxygen mode is - similar to the
situation in the overdoped compound - especially strong in the second half of the
Brillouin zone. That means that the buckling mode and apical oxygen mode hy-
bridize (mix) in the second half of the Brillouin zone due to an anti-crossing of both
phonon modes. For the underdoped compound this is shown for q = 0.4 and at 12K
in figure 6.22. The low temperature situation in the antiferromagnetic compound
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Figure 6.22: This figure shows the apical oxygen and the buckling mode at q = 0.4
measured at 12K for an underdoped sample. It indicates the coupling of the buckling
and apical oxygen mode. Usually an in-plane mode (apical mode) should be very
weak in the Brillouin zone where we measured. That means it already mixes with
the buckling mode even without superconductivity. However, superconductivity
enhances this effect strongly (see figure 6.12).

is therefore comparable to the high temperature (above Tc) data of the supercon-
ducting overdoped sample. That means that the buckling mode is much stronger in
intensity compared to the apical oxygen mode. However, for the overdoped sample
(YBa2Cu3O7), at temperatures below Tc the buckling mode and the apical oxy-
gen mode are comparable in intensity. That means that the hybridization of both
modes in the superconducting sample is strongly enhanced by superconductivity.
Thus our data on the antiferromagnetic sample also support that we discovered a
new superconductivity-induced effect in the superconducting sample with doping
level x = 7.

6.11 Measurements on YBa2Cu3O6.6

The entire phonon measurements on YBa2Cu3O6.6 has been performed at the ther-
mal three axis spectrometer 1T1 at LLB. The reactor Orphée at LLB is a fission
source amongst others for thermal neutrons. The spectrometer 1T1 is especially
well suited for our experiments as it is optimized for inelastic phonon scattering and
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one can obtain a very good energy resolution. This was especially necessary for our
measurements as here we will report inelastic neutron scattering data of the phonon
buckling mode in YBa2Cu3O6.6. Our sample consists of small single crystals which
has been annealed [64] in order to get the right oxygen content, afterwards they
have been detwinned [147] so that we could perform anisotropic measurements and
finally they have been oriented on a small aluminium plate. The total crystal mass
of the whole sample was around 2.5 gramme. The space group of the orthorhombic
YBa2Cu3O6.6 is Pmmm and the unit cell parameters are a ∼ 3.83Å, b ∼ 3.88Å and
c ∼ 11.72Å. The good quality of the sample has been proven by earlier measure-
ments [148].

6.11.1 Early measurements and spurion checks

Our (my) first triple axis measurements have been made without tests for spurious
peaks. As pointed out in the previous chapter in inelastic neutron scattering spuri-
ous peaks can play a major role and falsify the intrinsic data considerably. Therefore
later on we checked our spectrometer configurations for spurious peaks and indeed
we had to conclude that our data might be contaminated by spurious peaks for most
of the points in reciprocal space where we have measured. However at the boarder
of the Brillouin zone our phonon measurements were not contaminated. Especially
these measurements were quite interesting as they already showed the two peak
structure of the phonon buckling mode along the b∗ axis. Ironically it was this dou-
ble peak structure which led us to the belief that spurion checks are necessary in
order to exclude that the second peak is a spurious one. Later on we proved that
this second peak is an in-plane mode of the in-plane oxygens in the CuO2 double
layer and that this mode is closely related to the phonon buckling mode. Therefore
these early measurements will be shortly reported here: we measured the energy
dispersion and the line width of the transverse out-of-phase phonon buckling mode
of YBa2Cu3O6.6 which is polarized in the c-direction. The sample was oriented suc-
cessively by aligning the reciprocal lattice vectors a∗, c∗ and b∗, c∗ in the scattering
plane (of the spectrometer) to investigate the anisotropy of that phonon mode. In
order to maximize the structure factor the phonons were measured adjacent to the
reciprocal lattice vectors ~K = (-1, 0, 10) and (0, -1, 10) for the a∗ and b∗ axis
respectively, which are predominantly along the direction of the polarization. We
measured this phonon at the center of the Brillouin zone (q = 0, Kh = Kk = −1)
and moreover for different wave vectors q depending on the temperature and the
scattering plane. As the phonons within the Brillouin zone except for the boarder
(q = 0.5, Kh = Kk = −0.5) were contaminated by spurious peaks the complete data
set won’t be presented here. The measurements were made with fixed final energy
(8meV ). As monochromator the 220 reflection of an array of Cu crystals (Cu220)
and as analyzer the 002 reflection of an array of graphite crystals (PG002) were
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Figure 6.23: Early measurements of the phonon buckling mode in YBa2Cu3O6.6 at
16K (below the superconducting transition temperature) for q = 0.35 and 0.5 along
both in-plane directions a∗ (on the left) and b∗ (on the right). The red line is a
Gaussian fit above a linear background to our measured data. The measurements at
q = 0.35 might be contaminated by an intensive spurious peak, whereas for q = 0.5
the configuration was clean. Along the b∗ axis there can be clearly observed two
peaks, whereas along the a∗ direction only one peak is visible. This second peak is
no spurious peak but belongs to the phonon buckling mode. Therefore this mode is
strongly anisotropic. Due to our fully detwinned sample we were able to measure
anisotropic effects.

used. Both, the monochromator and the analyzer were horizontally and vertically
focusing. We didn’t use collimators. In order to suppress higher order contamina-
tions we used two PG filters. For reaching temperatures down to 16K we used a
displex. That the air around the sample couldn’t freeze out and spurions due to
the air could be prevented we used helium as an exchange gas as a local sample
environment.
Figure 6.23 shows the phonon buckling mode in YBa2Cu3O6.6 below the transi-
tion temperature for both in-plane directions a∗ and b∗. A clear anisotropy can
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be observed. Especially along the b∗ direction two peaks could be observed. By
our spurion test we showed that this second peak is no spurious peak, however the
phonon with wave vector q = 0.35 might be contaminated by a spurious peak.
We found that all the phonons are contaminated by a spurious peak besides the
phonon with wave vector q = 0.5. This result is valid for both in-plane directions
a∗ and b∗. Especially third order spurious peaks from the analyzer had been con-
taminating the data. Therefore we searched for equivalent positions in reciprocal
space without spurious peaks and made for any of these positions a detailed spurion
check. Meaning that we searched for higher order spurions from the analyzer and the
monochromator. In order to test for the analyzer spurions we set the spectrometer
to an elastic scattering condition and then fixed the monochromator θ and 2θ angle.
Afterwards we checked all the configurations. In order to check for monochromator
spurions we set the analyzer 2θ angle to 0 and fixed it. Afterwards we checked all
the configurations again. We found clean positions adjacent to the reciprocal lattice
vectors ~K = (1, 0, 10) and (0, 1, 10). So all the measurements we will present in the
following and which were presented in section 6.9 has been performed at points in
reciprocal space without contamination. Details are given in the next subsection.

6.11.2 Introduction

In the following sections our energy dispersion and line width measurements of the
transverse out-of-phase phonon buckling mode on YBa2Cu3O6.6 (around 42.5meV )
for both in-plane directions a∗ and b∗ and different temperatures (above, below Tc

and at room temperature) will be presented.

Notably we measured adjacent to the reciprocal lattice vector ~K = (1, 0, 10) and
(0, 1, 10) in order to maximize the dynamic structure factor. These points define
centers of the Brillouin zones and with respect to these points the phonon wave
vectors qa = 0.15, 0.25, 0.35 along a∗ and qb = 0.15, 0.25, 0.3, 0.35, 0.4 along b∗ were
measured. Due to spurious peaks two exceptions were necessary: the boarder of the
Brillouin zone q = 0.5 was measured at ~K = (−0.5, 0, 10) and (0,−0.5, 10), and the

center of it was measured at ~K = (1, 0, 9.9) and (0, 1, 9.9) for the a∗ and b∗ direc-
tion, respectively. In addition the phonon with wave vector q = 0.35 was measured
also at the points ~K = (0.65, 0, 11) and (0, 0.65, 11). This was necessary as for the
other configuration our phonon showed a very strong anomaly (see figures 6.24 and
6.25). We made our measurements above and below the superconducting transition
temperature Tc = 61K at 16K(12K) and 70K, moreover for the b∗ direction we also
made room temperature measurements at 300K.
Our scans were so-called ~K-scans (meaning that the point in reciprocal space is
kept constant, see chapter 5.3) with an energy varying around 42meV . The final
energy was fixed at 8meV . As monochromator the 220 reflection of an array of Cu
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crystals (Cu220) and as analyzer the 002 reflection of an array of graphite crystals
(PG002) were used. By using that monochromator reflection we could obtain an en-
ergy resolution of about 1.2meV . Moreover we used two graphite filters in order to
reduce contamination from spurious peaks. Further spectrometer and environment
conditions were equal to these reported for the early measurements in section 6.11.1.
Moreover resolution calculations have been made and the important spectrometer
parameters for these calculations are given in the next subsection. It should be
stressed that our sample was fully detwinned this was especially important to mea-
sure the anisotropic effects described below. All our raw data have been fitted with
a Voigt function above a linear background. This will be explained in some detail
in a following subsection.
During the experiments described above we observed two interesting features of this
phonon mode. First of all in general we observed a two peak structure for the
phonons measured along the b∗ direction, whereas along a∗ only one peak could be
observed. The two peak structures were fitted with a double Voigt function above
a linear background. A good example for the double peak structure is the q = 0.5
phonon shown in figure 6.28. In order to investigate the two-peak structure observed
along b∗ further, we made l-scans ~K = (0,−0.5, l) for the energies where the two
peaks appear: 44meV and 41.5meV . Thus we could follow the l-dependence of the
dynamic structure factor of these phonon modes. We observed for both energies the
characteristic minimum of the structure factor for l = 8 and the increase between
l = 8 and l = 11. Concerning these results the second peak should be related to
the phonon buckling mode (often referred to be the main peak in the following).
Later on we identified this second peak (smaller peak) as an c-axis polarized phonon
mode of the oxygens in the CuO2 double layer and the oxygen chains(see section
6.9). The second feature is quite interesting, as it concerns the line width of the
phonon buckling mode (main peak with lower energy), which is a measure for the
electron-phonon coupling. We observed a superconductivity induced ”line width
broadening” around wave vector qb = 0.35 along the b∗ direction (see figure 6.31)
whereas ”this broadening” couldn’t be observed along the a∗ direction (see figure
6.32). So this effect is strongly anisotropic. The phonon at qb = 0.35 was measured

at ~K = (0, 0.65, 11) as the corresponding phonon at ~K = (0, 0.65, 10) showed a
strong anomaly. This is the most interesting feature of our measurements and is
shown in figures 6.24 till 6.27. The strong damping of the qb = 0.35 phonon leads
to the assumption that the phonon line width is extraordinary big for that particu-
lar phonon. This coincides with the observation shown in figure 6.31 that the line
width is maximal at around qb = 0.3 till 0.35. However, for YBa2Cu3O7 we observed
around that wave vector a third phonon mode in the vicinity of the buckling mode.
Hence we are convinced, that this broad feature is reality a superposition of this
phonon mode with the buckling mode. It turned out (see below in the section for
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the measurements on YBa2Cu3O7) that this phonon anomaly can be explained by a
superconductivity induced interaction of the buckling mode with this third phonon
mode, which involves the oscillation of the apical oxygen. Therefore this phonon
anomaly is consistent with the picture we developed in order to explain our data
on YBa2Cu3O7. Concerning our raw data, it was correct to fit the data with two
peaks along b∗ and with one peak along the a∗ direction. Moreover we want to state
that we carefully checked for spurious peaks and that we therefore believe that we
measured real effects.

Resolution of 1T1 calculated with Rescal

For all the points in reciprocal space for which measurements have been made also
the triple axis resolution function have been calculated using the computer program
Rescal. Anyway it should be stressed that the resolution was independent of the
point in reciprocal space ~K where we made our measurements within an accuracy of
two digits. That means the resolution for all our measurements was 1.2meV . This is
the value one obtains if one projects the resolution ellipsoid (see chapter 5.5) in four
dimensional energy-momentum space onto the energy axis. Now the specific pa-
rameters of the triple axis spectrometer 1T1 at Saclay, which has been necessary as
an input to Rescal for calculating the resolution, shall be presented. We calculated
the resolution with Rescal according to the method of Popovici, that means it was
especially essential to know the dimensions of the neutron source, the monochro-
mator, the sample and the analyzer. First of all we inserted the monochromator
and analyzer d-spacing dmono = 1.278Å, danal = 3.354Å, which can be calculated
knowing the lattice constants and the Bragg reflection. See also [2], p. 61. Next the
mosaicities of the monochromator, the analyzer and the sample were required. For
the monochromator and the analyzer the mosaicity is 36 minutes and for the sample
90 minutes. The scattering sense of the spectrometer was for all our measurements
a W configuration, meaning that it was 1 for the monochromator, -1 for the sample
and 1 for the analyzer. We measured with fixed final energy which corresponds to
a final scattering vector ~k of 1.96Å−1. Moreover the horizontal and vertical collima-
tions for the distances source to monochromator, monochromator to sample, sample
to analyzer and analyzer to detector were required. All the horizontal collimations
were two degrees. The vertical collimation for the first two distances were 110 min-
utes and for the last two distances 100 minutes. Moreover the program needs the
information of the lattice constants, the scattering plane and the initial and final
point of the scan (in four dimensional energy-momentum space). For Popovici’s
method the following parameters were necessary in addition to these one already
mentioned. First we had to specify that we have a rectangular source with a width
of 4 cm and a height of 7 cm. We used guides with horizontal divergence of 60 min-
utes and vertical divergence of 120 minutes. Moreover we used a flat-plate sample
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with dimensions 0.2× 2× 2 cm3 and a rectangular detector with a width of 1.5 cm
and a height of 10 cm. The dimensions of the monochromator are 0.2× 36× 70 cm3

and the analyzer are 0.2× 24× 90 cm3. The distances LO (source to monochroma-
tor), L1 (monochromator to sample), L2 (sample to analyzer) and L3 (analyzer to
detector) were 387, 180, 90 and 90 cm. The horizontal and vertical focussing of the
monochromator were 0.27 1/m and 0.01 1/m, respectively, and for the analyzer the
horizontal and vertical focussing were 0.42 1/m and 0.01 1/m, respectively.

Fitting function for our constant ~Q-scans: Voigt functions

In analogy to our measurements for YBa2Cu3O7.0 all our measured data on
YBa2Cu3O6.6 which will be presented in the next sections have also been fitted
with Voigt functions. The Gaussian width is again assumed to be given in units
of FWHM and the Lorentzian width in units of HWHW. All our constant ~K-scans
which are showed in the following are fit with such a Voigt (or two for the double
peak) function. The Gaussian width was assumed to be the calculated spectrometer
resolution of 1.2 meV and the Lorentzian width was used as a refinable parameter.
This refinement gives for any fit the intrinsic line width of the phonon (considering
the damped harmonic oscillator as the decisive model). Moreover during these fits
also the mean energy value of the phonon (zero point for ω0) and its amplitude were
treated as a refinable parameter. In addition a linear background was assumed for
these fits leading to two more refinable parameters: the slope and a constant. In
the following the most interesting features of the buckling mode, the anomaly at
q = 0.35 and the anisotropy of the in-plane oxygen mode will be presented.
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6.11.3 The phonon anomaly at qb = 0.35

The intensity anomaly at q = (0, 0.35) = qb = 0.35 at 16K is the most amazing
feature of our data on the buckling mode. The phonon at this specific wave vector
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Figure 6.24: This figure shows the buckling phonon mode along the b∗ axis for wave
vectors q = 0.3, 0.35, 0.4 at 16K measured with Kc = 10. This graph clearly shows
the intensity anomaly at q = 0.35. That means the buckling mode doesn’t have
intensity.

seems to be extremely broad. However it is probable that this ”broadening” is due
to a second (third) phonon mode the Raman active B3g apical oxygen mode. As
this would be consistent with the effect which we found for comparable experimental
conditions in YBa2Cu3O7. It seems furthermore to be interesting, as this intensity
anomaly is very different depending on l. For l = 10 the buckling phonon mode
vanishes almost which is again consistent with our data on YBa2Cu3O7, whereas it
can be clearly observed for l = 11.
Figure 6.24 shows the buckling phonon mode along the b∗ axis for wave vectors
q = 0.3, 0.35, 0.4 at 16K measured with Kc = 10. For higher energies a second
mode an in-plane mode of the copper oxygens can be observed. As mentioned ear-
lier these phonons have been fitted according to the Levenberg-Marquardt-gradient
method with Voigt (double Voigt) functions. The fits of the two phonons show that
the main peak almost vanishes for q = 0.35 whereas for neighboring wave vectors
this buckling mode can be clearly seen. For q = 0.3 one can clearly distinguish
two peaks the buckling mode at 40.6meV and the plain-chain mode at 44.3meV .
For q = 0.4 one observes a clear peak at 41.8meV with a pronounced shoulder at
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Figure 6.25: This figure shows the phonon buckling mode for q = 0.35 at different
temperatures. Above Tc at 70K and 300K one observes a clear peak (the buckling
mode) at around 41.5meV , whereas at 16K no peak can be seen. Only for higher
energies a smaller peak is visible. See also text.

44.9meV . One would expect for the phonon with wave vector q = 0.35 for the main
peak an energy around 41meV . However at that energy value the intensity is rather
small. One observes a peak around 43meV which is probably s superposition of a
very weak buckling mode and the plain chain mode. That means the intensity of the
buckling mode changes dramatically when changing the wave vector from q = 0.3
to q = 0.4. As mentioned earlier that anomaly can only be observed along the b∗

direction and it can be explained in a natural way by assuming that there exists a
third phonon at an energy below but close to that of the buckling mode which in-
terchanges spectral weight at Tc with the buckling mode. So that intensity anomaly
for the YBa2Cu3O6.6 sample is consistent with the observations from YBa2Cu3O7.
Figure 6.25 shows the buckling mode for wave vector q = 0.35 for different tem-
peratures at 16K (black), 70K (red) and 300K (green). Again one recognizes
the anomaly for that phonon. For temperatures above the superconducting transi-
tion temperature this phonon is well defined and one recognizes a peak at around
41.5meV . Moreover these peaks possess a shoulder at high energy values. These
shoulders indicate the second peak (plane chain mode), which is only present along
the b∗ direction. At 16K, however, one cannot recognize a peak at that position.
In summary this figure again demonstrates the intensity anomaly of the buckling
mode at q = 0.35.
Figure 6.26 shows the phonon mode for wave vector 0.35 at different temperatures
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Figure 6.26: This figure shows the phonon buckling mode for phonon wave vector
0.35. This time it has been measured for Kc = 11. It is really interesting that
the intensity anomaly of the buckling mode cannot be observed for that reciprocal
lattice vector. However, these measurements strengthen the fact, that the buckling
mode seems to be quite broad. This effect can again be attributed to the fact, that
there exists a third phonon mode at an energy below and close to the buckling mode.

(12K (black), 70K (red) and 300K (green)). But this time we measured adjacent

to the reciprocal lattice point ~K = (0, 0.65, 11). There the dynamic structure factor
is also relatively high. For Kc = 11 there appeared a strong buckling mode and the
in-plane mode which could be fit very well with two Voigt functions. This is shown
in figure 6.26. One clearly recognizes that the buckling mode is much broader at
12K than at 70K or at 300K. This effect is superconductivity induced and is prob-
ably due to an enhancement of the intensity of a third phonon mode (apical oxygen
in-plane oscillation) which is for the b∗-direction below but close to the buckling
mode.
The anisotropy behavior of the intensity anomaly of the buckling mode is one of

the most interesting features we could observe. The observation of this anisotropy
was only possible due to our fully detwinned sample. Along the b∗ direction this
mode seems to be broadened due to an intensity increase of the nearby apical oxygen
mode for temperatures below Tc. This is in contrast to the a∗ direction where no
superconductivity induced ”broadening” can be observed. This is shown in figure
6.27. This figure shows the phonon mode for q = 0.35 measured along a∗ at 16K
and 70K. Clearly one observes that the peak for lower temperature is sharper than
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Figure 6.27: This figure shows the buckling mode again for q = 0.35 but this time
measured along the a∗ axis at 16K and 70K. Here we clearly observe that this
mode at 16K is sharper compared to the phonon measured at 70K. This is the
reason why we claim that the phonon anomaly at q = 0.35 is anisotropic. This fact
can easily be interpreted by the explanation of this effect by a third phonon mode
(in-plane mode of the apical oxygens) as along the a∗-direction this mode is not in
contrast to the b∗-direction in close vicinity to the buckling mode. Moreover, the
anisotropy is not only reflected by that anomaly but also by the fact, that along the
a∗ direction no plane chain mode can be observed.

this one for higher temperature. This is the normal behavior expected due to anhar-
monic effects. Therefore the phonon anomaly described above can only be observed
along b∗. Moreover, along a∗ no plain chain mode at higher energies can be observed.
This can be explained ba the fact that this modes involves the chain oxygens, which
are situated along the b direction. This naturally explains the disappearance of this
phonon mode along the a∗ direction.

6.11.4 Anisotropy between the a∗ and b∗ axis of the phonon
buckling mode: two peak structure along the b axis

In the last subsection we showed and described the anomaly at q = 0.35 and its
remarkable anisotropy. However, there appears another interesting anisotropy: con-
cerning the plain chain mode for energies above that of the buckling mode. This
phonon mode can only be observed along the b∗-direction. This anisotropy will be
showed in the following subsection.
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Figure 6.28: This figure shows the phonon buckling mode at q = 0.5 for the b∗

direction at 16K (black) and at 70K (red). Moreover it shows also the measurements
along a∗ at 16K (green) and at 70K (blue). Along the a∗ direction the plain chain
mode at around 44.5meV cannot be observed, whereas along b∗ it is definitely there.
This is an remarkable anisotropy of the phonon spectra at this doping level.

Figure 6.28 shows the phonon buckling mode and the plain chain mode at q = 0.5 for
both scattering directions and at temperatures below and above Tc. The phonons
at 16K are shown in black and green and are measured along b∗ and a∗, respec-
tively. The phonons at 70K are shown in red and blue and are measured along b∗

and a∗, respectively. First of all a remarkable anisotropy can be observed: along
the b∗ direction the plain chain mode at around 44.5meV is clearly visible, whereas
along a∗ it does not appear. Moreover, the plane chain mode becomes smaller for
increasing temperature, whereas the main peak becomes stronger in intensity. This
behavior can not be observed for all the other phonons in the Brillouin zone mea-
sured along the b∗ direction and is a hint for a superconductivity-induce interaction
of both phonon modes. The phonons measured along the a∗ axis are much weaker in
intensity compared to these one measured along b∗. Moreover these phonons show
a normal temperature behavior as the phonon broadens when the temperature is
increased. Along the b∗ axis the plane chain mode is observed and the buckling
mode shows an almost equal line width at 16K and 70K.

Figure 6.29 shows the very strong anisotropy of the q = 0.35 phonon at 16K.
This anisotropy is really amazing. Whereas along the a∗ direction only the buckling
mode can be observed, along b∗ direction we observe the buckling phonon mode in
the middle, the plane chain mode of the layer and chain oxygens at higher energies
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Figure 6.29: This figure shows the phonon buckling mode at qb = 0.35 for both
scattering directions at 16K. This picture shows the anisotropic phonon anomaly
of the phonon buckling mode very nice. On the one hand one observes a single
sharp phonon peak along the a∗ direction as one expects it for one phonon. On the
other hand there are at least two phonon modes along the b∗ direction: the buckling
mode and the plane chain mode (at 44.5meV ) of the layer and chain oxygens which
appears only along the b∗-direction. Moreover we believe that there is even a third
phonon the apical oxygen mode for lower energies which can not be resolved from
the buckling mode.

and probably the in-plane apical oxygen mode at lower energies. Here one can imag-
ine how important it was to measure with a detwinned sample in order to observe
this anisotropy.

Figure 6.30 shows the phonon mode for wave vector q = 0.25 for both scatter-
ing directions at 16K. It shows two relatively sharp phonons as expected for low
temperatures. It is interesting that the plane chain mode appears only along the b∗

direction. That means it is independent from the phonon anomaly described above
and is a second very interesting feature, which is also strongly anisotropic.
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Figure 6.30: This figure shows the phonon mode for q = 0.25 at 16K. It compares
the phonons for both scattering directions. The main peaks are equal in intensity and
are quite sharp. However, along the b∗ direction a second peak at higher energies the
plane chain mode of the layer and chain oxygens can be observed. This reflects again
the fact, that this second phonon mode is only observable along the b∗ direction.

6.11.5 Line width and energy dispersion of the phonon buck-
ling mode in YBa2Cu3O6.6

After having described the intensity phonon anomaly of the buckling mode and the
anisotropy of the plane chain mode, we want to present the results of the refinement
procedures, where all phonon peaks were fitted with Voigt functions. First we will
present the anisotropic line width of the buckling mode and afterwards the also
anisotropic dispersion relation. The error bars are given as they were calculated by
the fitting program Mfit (for Matlab) distributed online by the ILL. Although we
believe that there exist three phonon modes (the buckling mode, the plane chain
mode and the in-plane apical oxygen mode), we could only observe the two main
phonon peaks (the buckling mode and the plane chain mode). Therefore a possible
increase in intensity of the apical oxygen mode at q = 0.35 along b∗ could only be
observed by a ”broadening” of the buckling mode. Along the a∗ direction, for most
of the phonon wave vectors the buckling mode shows the usual phonon behavior,
that means it broadens when increasing the temperature. However for the phonon
wave vector q = 0.15 a clear broadening for cooling down below Tc can be observed.

Figure 6.31 shows the phonon line width of our phonon mode measured along
the b∗ direction for different temperatures. Below Tc at 16K (black), above Tc at
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Figure 6.31: This figure shows the phonon line width Γ of the phonon buckling mode
measured along the b∗ direction and it compares the temperature below Tc (16K,
black), above Tc (70K, red) and at room temperature (300K, green) with each
other. A clear phonon anomaly can be observed for these measurements along b∗.
This is being indicated in the figure by a connection between the points of the same
temperature. This clearly shows that the line width at 16K is bigger than the line
width at 70K within most of the whole Brillouin zone. This effect can be understood
by a superconductivity-induced exchange of spectral weight between the buckling
mode and the in-plane apical oxygen mode. See text below and corresponding data
for YBa2Cu3O7 (figure 6.12).

70K (red) and at room temperature at 300K (green). Here we observed a real
phonon anomaly at around phonon wave vector q = 0.35, which can be explained
by a superconductivity-induced interaction of the buckling mode with the in-plane
apical oxygen mode. Due to that coupling the latter mode increases in intensity and
constitutes together with the buckling mode a broad feature. In order to observe
this anomaly more clearly we measured for 16K in addition to the standard wave
vectors the phonon line width also at q = 0.3 and q = 0.4. These measurements
affirm the anomaly. This is a completely different story compared to the effect along
a∗ where only one phonon mode could be observed. The phonons at the center of
the Brillouin zone show for both temperature very high phonon line widths. This
might be due to the coupling of the buckling mode to the oxygen chains which is
much stronger along the b∗ direction compared to the a∗ direction (we want to re-
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Figure 6.32: This figure shows the phonon line width Γ of our phonon mode mea-
sured at 16K and it compares the different scattering directions a∗(black) and b∗(red)
with each other. Connecting lines between points of the same scattering direction
show the pronounced anomaly: the ”broadening” of the buckling mode can only
be observed along b∗ and is hence strongly anisotropic. Together with figure 6.31
we can state that we have a superconductivity induced strongly anisotropic phonon
anomaly around wave vector q = 0.35. This anisotropy can be understood by the
fact, that the in-plane apical oxygen mode is only in close vicinity to the buckling
mode along the b∗ direction.

mind that we measured this phonon at Kc = 9.9 instead of Kc = 10). Along a∗

this phonon has a line width of around 1meV for 16K and 1.75meV for 70K, these
values seem to be more appropriate and will fit nicely in the whole picture. Last but
not least it shall be discussed the line width for 300K. Here the line widths of the
phonon with q = 0.5 is remarkable. As it is comparable in line width with the much
lower temperatures at 70K and 10K. This is also not explainable easily. However
the very broad line width for smaller wave vectors are again well understood.
Figure 6.32 compares the line width of the phonon buckling mode for different in-
plane directions a∗(black) and b∗(red) at 16K. It demonstrates again the phonon
anomaly which can be observed along the b∗ direction. Along this direction a pro-
nounced ”broadening” can be observed, whereas the phonon line width remains
almost constant along the a∗ direction. To stress this effect points for different
phonon wave vectors and the same scattering directions are connected with straight
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lines in figure 6.32. The most important fact about this anomaly is that it is
superconductivity-induced, meaning it can only be observed at 16K and not at
70K, and maybe more interesting it is only observed along the b∗ direction and
not along a∗, meaning that it is a strongly anisotropic effect. This ”broadening
effect” can be understood by the superconductivity-induced intensity increase of
the in-plane apical oxygen mode, which is along the b∗ direction in close vicinity to
the buckling mode. Most probably this phonon mode could not be resolved from
the buckling mode. After having shown the interesting anomaly in the phonon line
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Figure 6.33: This figure shows the dispersion of the phonon buckling mode for
measurements along the a∗ axis for different temperatures: at 16K (black) and at
70K (red). The main tendency of the q-dependency is that the energy increases
towards the boarder of the Brillouin zone for both temperatures. Therefore the
dispersion seems to be rather temperature independent between 16K and 70K.

width of the buckling mode in YBa2Cu3O6.6 which is probably related to the apical
oxygen mode, it is also worth looking at the energy dispersion.
Figure 6.33 shows the energy dispersion of the phonon buckling mode along the a∗

direction and compares the temperature at 16K (black) with the temperature at
70K (red). It can be recognized that the phonon hardens from the center of the
Brillouin zone towards its boarder. This effect seems to be rather independent from
the temperature as it can be observed for both temperatures above and below Tc.

Figure 6.34 presents the energy dispersion of the phonon buckling mode which
was obtained by measuring the mode along the b∗ direction. The graph shows the
measurements for the whole Brillouin zone at temperatures 16K, 70K and 300K.
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Figure 6.34: This figure shows the dispersion of the phonon buckling mode for
measurements along the b∗ axis for different temperatures: at 16K (black), 70K
(red) and at 300K (green). The energy for this phonon along b∗ is almost the same
as along a∗ for the boarder of the Brillouin zone. And for decreasing wave vector
the phonon also begins to soften, however at around q = 0.3 the phonon hardens
again considerably. This can only be observed along b∗. Except for q = 0.35 there
can no temperature dependency be observed. See text for a further discussion.

however, at the center of the Brillouin zone no measurement for 300K was possi-
ble. The phonon shows a pronounced ”softening” from the center of the Brillouin
zone towards its middle at around q = 0.3. Then the phonon hardens again till the
boarder of the Brillouin zone. This effect is again almost temperature independent.
However, at q = 0.35 a certain difference appears as the phonon hardens when cool-
ing down from 70K to 16K. This ”softening” ot the buckling mode is related to the
phonon anomaly at around q = 0.35.
In summary we can conclude that the phonon bucking mode shows a pronounced
”broadening” at q = 0.35 along b∗ for 16K. This ”broadening” is superconductivity-
induced and it is strongly anisotropic. It is most probably related to the interaction
of the buckling mode with the apical oxygen mode (at lower energies), as it was de-
scribed for YBa2Cu3O7. The ”softening” of this phonon mode around q = 0.3 might
be related to that ”broadening” effect. In any case this phonon anomaly seems to
be very interesting. Another interesting fact is that we observe two peaks along the
b∗ direction and only one along a∗. This is again a pronounced anisotropy of the
phonon spectra which was not expected, but can be understood by the eigenvector
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of this plane chain mode (at higher energies).

6.11.6 Intensities of the phonon buckling mode for both di-
rections a∗ and b∗
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Figure 6.35: This figure shows the intensity (amplitude of the Voigt function) of the
phonon buckling mode. The intensity increases towards the middle of the Brillouin
zone where it is maximal. This can be observed for both temperatures above and
below Tc.

As mentioned earlier the anisotropy of the intensity of the buckling mode be-
tween both in-plane directions a∗ and b∗ and the corresponding anomaly at qb = 0.35
is an very interesting feature. Therefore the intensity of the buckling mode will be
investigated and presented in detail. The intensity is given by the formula 6.13. If
we don’t consider the shape of the phonon but are only interested in the maximal
intensity depending on temperature T and ~K this formula tells us that we have to
consider the corresponding dependencies of the scattering function 6.4. As men-
tioned earlier we have corrected the experimental data (intensities) with the Bose
factor. Therefore the obtained maximal intensities by the fits should be independent
of temperature. For the ~K-dependency of the intensity we have to consider the dy-
namical structure factor 6.6. Our phonon is polarized along the c axis. That means
the factor ~K~ε depends only on Kc, which is the same for all measured phonons
(the exception Kc = 11 is not considered in this subsection). And the phase of
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Figure 6.36: This figure shows the intensity (amplitude of the Voigt function) of the
phonon buckling mode. The intensities decrease from the center of the Brillouin zone
towards the boarder for all temperatures. Moreover for 10K the intensity anomaly
is been observed at q = 0.35. See more details in the text.

the dynamical structure factor is symmetric in a and b (see 6.4) at least in first
approximation. Therefore the differences between the measurements along a∗ and
b∗ should be comparable. However this is not the case.
Figure 6.35 shows the maximal intensities of the phonon buckling mode along the a∗

direction for different temperatures, that means the amplitude of the Voigt function
with which the peaks were fit. The intensities are quite low for the phonons at the
center and the boarder of the Brillouin zone. And in the middle there seems to be a
pronounced maximum. This behavior can be observed for both temperatures above
and below Tc.
Figure 6.36 shows the maximal intensity of our phonon mode along the b∗ direction
for different temperatures. The overall tendency within the Brillouin zone (from
center to boarder) is a pronounced decrease in intensity for both temperatures. How-
ever, as for 70K (and 300K) this decrease is the only feature for 10K the situation
is more complicated. Around q = 0.35 there can be observed the intensity anomaly.
The intensity for this wave vector is extremely reduced, whereas the intensities of the
neighboring wave vectors are enhanced. This feature is superconductivity-induced.
As explained earlier this behavior is probably due to an interaction of the buck-
ling mode with the apical oxygen mode which is concerning the mean energy of
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the phonons in close vicinity to the buckling mode. For YBa2Cu3O7 a correlated
increase in intensity of that apical oxygen mode can be observed. Therefore we as-
sume that the intensity anomaly for YBa2Cu3O6.6 reported here is due to a similar
process.

6.11.7 ~K-dependence of the phonon buckling mode in
YBa2Cu3O6.6

In the previous subsections we already mentioned that there appears the plane chain
mode apart from the phonon buckling mode in YBa2Cu3O6.6 along the b∗ direction.
Until now we didn’t investigate the relation of the plane chain mode to the buckling
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Figure 6.37: This figure shows the Kc = l -dependence of the two peaks being
observed. The red graph gives the dynamic structure factor for the main peak
at 41.5meV (buckling mode). And the black graph gives the same factor for the
energy equal 44meV which is related to the maxima of the second peak (plane chain
mode). The graph shows that both structure factors are very similar what shows
the relationship between both phonon modes. See also text.

mode. Therefore we measured the maxima of both peaks (the main peak at lower
energies and the smaller peak at higher energies) depending on the Kc = l -value.
That means we determined the dynamical structure factor for both peaks. The
dynamical structure factor of the phonon buckling mode shows a characteristic l-
dependency: it has a pronounced minimum at around l = 8 and a strong maximum
at l = 10 or 11. Figure 6.37 shows the l dependent measurements for both peak
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energies: at 41.5meV for the main peak in red and at 44meV for the small peak in
black. Both graphs show a very similar if not identical behavior. Both the minimum
are around l = 8 and the maximum beginning at around l = 10 can be observed
for both energies. This means that the plane chain mode seems to be related to the
buckling mode. In any case both modes originate due to a c-axis oscillation of the
oxygen ions within the CuO2 double layer. Moreover, it could be that the buckling
mode is not only interacting with the apical oxygen mode but also with its second
neighbor the plane chain mode at higher energies.

6.12 Comparison and discussion of our measure-

ments on YBa2Cu3O7 and YBa2Cu3O6.6

The first sections of this chapter especially 6.4 and 6.5 are a kind of motivation
for the neutron measurements on the buckling mode in this thesis. Moreover, they
present a useful basis in order to discuss our measured data from sections 6.11 and
6.9 which will be in addition to its discussion shortly be summarized here.
As we measured the phonon buckling mode on YBa2Cu3O7 and YBa2Cu3O6.6, we
first of all observed three independent phonon modes within the energy range where
earlier measurements only observed one peak namely the phonon buckling mode.
This can be understood by considering that these measurements were performed
with twinned single crystals and a spectrometer resolution around 2meV , whereas
we used detwinned crystals and spectrometer resolutions around or below 1meV .
Moreover, these three peaks could be identified. Starting from the lowest energy
these phonon modes are the in-plane apical oxygen mode, the out-of-plane buckling
mode of the in-plane oxygens and the c-axis polarized plane chain phonon mode of
the plane and chain oxygens. For YBa2Cu3O7 we observed all of these three modes at
the Brillouin zone center and at q = 0.3. However, for other phonon wave vectors and
for the measurements on YBa2Cu3O6.6 we only observed the buckling and the plane
chain mode of the plane and chain oxygens. For YBa2Cu3O6.6 the plane chain mode
could only be observed along b∗ direction, whereas for YBa2Cu3O7.0 this phonon
mode could be observed for both in-plane directions. That means for YBa2Cu3O6.6

this phonon mode behaves strongly anisotropic, whereas for YBa2Cu3O7.0 the be-
havior is symmetric. This might be related to chain oxygens and the superstructure
of the oxygen chains.
In addition to this effect, we could confirm the superconductivity-induced phonon
softening of the buckling mode at q = 0 for YBa2Cu3O7.0 and we excluded that this
effect appears for YBa2Cu3O6.6. This is consistent with earlier measurements [103],
[118].
However, the main effect, a very interesting and completely new effect could be
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observed in YBa2Cu3O7.0, where we observed a superconductivity-induced transfer
of spectral weight between the buckling mode and the in-plane apical oxygen mode
at q = 0.3. This effect can only be observed along the b∗ direction, as the apical
mode along the a∗ direction is not in the vicinity of the buckling mode. Moreover,
in YBa2Cu3O6.6, we could also observe an anisotropic superconductivity induced
intensity loss of the buckling mode at q = 0.35. However due to statistics or the
resolution, there we could not prove the relationship with the apical oxygen mode.
In any case we showed the important fact, that superconductivity-induced phonon
effects are also present in doping levels far away from the optimally doped case.
There is a certain wave vector within the Brillouin zone where the buckling mode
shows strong anisotropic anomalies related to superconductivity independent from
the doping level.
This superconductivity-induced loss of intensity of the buckling mode in the under-
doped superconducting sample and the transfer of spectral weight in the overdoped
sample, can be understood by considering the electron-phonon interaction. Due to
the electron-phonon interaction the buckling mode and the in-plane apical oxygen
mode approach each other, see figure 6.19. This happens around Tc. Then being
close enough together both phonon modes interact strongly with each other and
exchange spectral weight. That means we have a superconductivity-induced cross-
ing of two phonon modes, which means that the eigenvectors of the phonon modes
change. Normally superconductivity renormalizes the energy and the line width
broadens, without changing the eigenvector of a phonon mode. However, in our
case the phonon line width sharpens, therefore here we observe unusual electron-
phonon coupling. This shows especially that the electron-phonon coupling in high
temperature superconductors is strong enough in order to lead to very interesting
effects which appear in the superconducting phase for different doping levels. As
the Fermi surface of YBa2Cu3O7 is only weakly nested, we can exclude nesting as a
reason for the unusual electron-phonon coupling we observed. However, a possible
explanation for such an unusual electron-phonon coupling is that the phonon mode
does not interact with the quasi-particle continuum of the electronic states, but with
superconductivity-induced collective modes. The most prominent examples for such
collective modes are the spin-1 resonance mode [146] and Josephson plasmons [149].
However, both modes do not have the correct dispersion in order to be able to in-
teract with our phonon modes. Therefore it should be investigated whether further
predicted collective modes [150], [151], [152] and [153] could be candidates which
explain the unusual electron-phonon coupling which we observed for the buckling
phonon mode.
A further interesting fact is that the distance of the apical oxygen to the CuO2

double layer in YBa2Cu3O6+x plays an important role in the hole doping process
leading to superconductivity (see section 6.1.1). This is further evidence that the
interaction of these two phonon modes are closely related to electronic states close
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to the Fermi level. In summary our data show, that the superconducting phase tran-
sition has important consequences on the buckling mode. This is not controversial.
The following question is still highly controversial: why shouldn’t be the buckling
mode via this unusual electron-phonon interaction in addition to antiferromagnetic
fluctuations also be important for the formation of the Cooper pairs.
In order to discuss this question further it might be interesting to consider the
electron-phonon interaction from the other point of view namely from that one of
the electron. In section 6.5 ARPES measurements have been discussed which re-
late the phonon buckling mode with the kink of the electron dispersion along the
antinodal direction. At the antinode the superconducting gap is maximal. There-
fore Cuk et al. and Devereaux et al. are convinced that the buckling mode is
important to explain the formation of Cooper pairs [124]. However, this is still
controversial. Additional neutron and ARPES measurements are necessary in order
to elucidate this issue more conclusively. Especially ARPES measurements on our
YBa2Cu3O7.0 sample should be performed as the ideas from Cuk and Devereaux rely
on data on LSCO. Then one could compare ARPES and neutron data for the same
sample and strengthen or weaken the relationship between the buckling mode and
antinodal electronic states. Moreover, it is known that the phonon buckling mode,
which modulates the buckling of the copper-oxide layers, supports d-wave pairing
in high temperature superconductors [154], [155], [156] and [157]. However, other
phonon modes especially the bond stretching modes are considered to weaken d-
wave superconductivity. Therefore the overall effect of phonons in high T ′

cs should
only be weak. However, it is very important to investigate this situation again,
by considering the unusual electron-phonon coupling which was uncovered by the
data which we presented. Moreover, the buckling mode should be investigated by
neutron spectroscopy for other high temperature superconductors, in order to inves-
tigate whether these superconductivity-induced intensity effects can also be observed
in other compounds. It would be especially interesting to investigate this effect in
Hg1234 where for a phonon mode concerning the oxygens in the CuO2 layers also a
superconductivity-induced phonon softening could be observed [158], [159].
However, independent from the question whether these superconductivity-induced
intensity effects are related to Cooper pair formation or not, they are interesting
phonon anomalies and might be related to other phonon anomalies observed in high
temperature superconductors. In section 6.7 phonon anomalies in YBa2Cu3O6+x

have been described for the bond stretching mode around q = 0.25. Therefore these
phonon anomalies in YBa2Cu3O6+x might have similar reasons. Pintschovius et al.
(see section 6.7) relate these anomalies with the formation of dynamical stripes.
However, we could explain our phonon anomalies with electron-phonon interaction
and the interaction of the buckling mode with the (in-plane) apical oxygen mode.
So this anisotropic anomaly can be explained in a natural way without considering
stripe effects. So we cannot support the idea of stripe formation in Yttrium Barium
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Cuprate. However, both phonon anomalies could be related to strong electron-
phonon coupling. In YBa2Cu3O6+x the bond stretching mode might be related
to the kink in ARPES measurements at the nodal direction of the Brillouin zone,
whereas the buckling mode is related to the antinodal kink. The anomalies of the
bond stretching mode related to the nodal electronic states are not explicitly super-
conductivity induced, whereas the anomalies of the buckling mode, which is related
to the antinodal electronic states where the gap is maximal, is a clear superconduc-
tivity induced effect. This relation would be analogous to the situation in LSCO
where a similar relationship between phonon anomalies and the kinks in ARPES
measurements have been made (see section 6.5).
In summary we presented an anisotropic phonon anomaly of the intensity of the
buckling mode in YBa2Cu3O6+x, which can be related to a superconductivity-
induced transfer of spectral weight between the buckling mode and the in-plane
apical oxygen mode in YBa2Cu3O7.0. This is strong experimental evidence that
there appears unusual electron-phonon interaction in YBa2Cu3O6+x. Moreover a
relation to the antinodal electronic states at the Fermi surface, where the supercon-
ducting gap is maximal, seems possible. This could mean that the buckling mode
in YBa2Cu3O6+x is necessary to explain the formation of Cooper pairs. This is in
contradiction to the usual opinion that only antiferromagnetic correlations should
be responsible for the Cooper pair formation in high temperature superconductors.
However, we hope that our measurements are a small but interesting contribution
to the controversial discussion whether these magnetic correlations are uniquely re-
sponsible for Cooper pair formation or not.



Chapter 7

Neutron spin echo measurements
on YBa2Cu3O7

7.1 Preparation of the sample

In order to compare the electron phonon coupling for different doping levels a slightly
overdoped sample of YBCO has been made: YBa2Cu3O7. That means that the Cu-
O chains are completely filled with oxygen atoms.
First of all the crystals have been made by the crystal growth service group at MPI.
These crystals didn’t have the right oxygen content. Afterwards good crystals have
been selected for the annealing process. During this process the crystals get the
right oxygen content while being in an oven under pure oxygen pressure of 1 bar.
The annealing procedure within the oven, that means the temperature profile was
the following: First of all the temperature rises with a rate of 150 K/h for 4.1 h
so that the oven reaches a maximal temperature of 630 degree Celsius. This tem-
perature remains for 5h before the temperature decreases by a rate of 30 K/h for
5.3h. Afterwards the oven remains at a temperature of 470 degree Celsius for 100
hours. The temperature is decreased further by a rate of 2K/h for 25 hours, so that
the oven reaches a temperature of 420 degree Celsius. This temperature remains
the same for 48 hours. Then the temperature is again decreased now by 0.7 K/h
for 78 hours. Afterwards the oven has a temperature of 365 degree Celsius which
remains the same for several days. This happens so that the Cu-O chains can be
filled. The whole annealing procedure happens under oxygen atmosphere. So that
the crystals are not exposed in a hot state in the air the crystals are cooled down to
the temperature of liquid nitrogen immediately after leaving the oxygen atmosphere
in the oven. If the crystals would remain in air under a high temperature it could
be that part of the oxygen which has been built into the crystal by the annealing
process would diffuse out of the crystal again.

140
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After this process the crystals are slightly overdoped that means the maximal doping
with oxygen has been reached. In order to check this for some of the annealed crys-
tals of each batch the transition temperature, which changes with the doping level,
was measured with the PPMS (Physical Property Measurement System). Therefore
the magnetization of the crystals was measured depending on the temperature. The
transition temperature of the measured crystals was 90 ± 0.5K. This is slightly
below the temperature for the optimally doped YBa2Cu3O6.93.
The space group of YBa2Cu3O7 is orthorhombic and the ab-plane is nearly quadratic.
That means that the length of the a and the b axis only differ by around 2 %. There-
fore after the growing process the crystals are fully twinned. That means that there
exist domains within the crystal where the a and the b axis are interchanged com-
pared with neighboring domains. Therefore the single crystals had to be detwinned.
In order to detwin the crystals they are stressed between two small glass plates (with
a gold foil between the glass plates and the crystal) which are compressed with a
force up to 57N and they are set again under oxygen atmosphere. Under these
circumstances the crystals are heated again for two hours up to 470 degree Celsius.
After this procedure the crystal has been detwinned with a certain probability. We
could detwin single crystals of YBa2Cu3O7 with a mass up to around 50mg. The
smaller the single crystal was the easier it was to detwin. However certain single
crystals with a certain internal structure, meaning that they were no perfect single
crystals, couldn’t be detwinned at all. Even if the above procedure was repeated
two or sometimes even three times. For the experiment, whose results are reported
in this chapter, we detwinned more than 100 single crystals which yielded a total
mass of 1.5g.

7.2 Quality of the sample

After having aligned our sample with the Trisp spectrometer we made some mea-
surements in order to check the quality of our sample. These measurements were
done in the tree axis mode, that means without the spin echo option. Moreover the
spectrometer was operating in the elastic mode, that means the initial and the final
wave vector were equal ki = kf = 2.1Å−1. One of the points in reciprocal space we
used for the alignment was the strong (2 0 0) reflection of the sample and the en-
ergy transfer was also set to zero. Therefore first of all we made a longitudinal scan
around the (2 0 0) reflection in order to check how good our sample is detwinned. In
figure number 7.1 the resulting graph can be seen. The distance between the small
and the large peak corresponds to the difference in the lattice constants a and b. So
the small peaks reflects the parts within the sample which are not detwinned. From
the ratio of the intensities of both peaks one can determine the degree of detwinning
of the sample. This consideration yields that 86 % of the crystal is detwinned. If
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Figure 7.1: Longitudinal scan around the reciprocal lattice point (2 0 0) with the
energy also set to zero of our YBa2Cu3O7 sample. This scan was made in order to
investigate how good our sample is detwinned. The red line is a double Gaussian fit
to the experimental data. 86% of the corresponding crystal were detwinned.

one considers that it is quite difficult to detwin YBa2Cu3O7 as the Cu-O chains are
completely filled, this is a good result.
Except the degree of detwinning for our crystal we also checked the mosaicity
(FWHM of a elastic peak measured by an A3 scan) of our crystal. The mosaic-
ity of our crystal is of special interest as we built up our sample out of small single
crystals. These single crystals have been aligned with a Laue machine. Thus the
mosaicity is an important value in order to characterize our sample. We measured
the mosaicity for two reciprocal lattice points within the scattering plane. This was
the a∗c∗ plane. We didn’t measure the mosacity for a point along the b∗ axis as
we aligned our sample only within the a∗c∗ plane of the sample. For the mosacities
along the a* and the c∗ direction we obtained a similar value for both directions: 1.6
degrees (FWHM). This value was obtained after deconvolution of the spectrometer
resolution. Considering that our crystal consists out of several small single crystals
that is also a good value.

7.3 Three axis measurements

Before we made our neutron spin echo scans we tried to identify the phonon without
the spin echo option that means we performed normal triple axis experiments. How-
ever for most of the temperatures and points within the Brillouin zone we couldn’t
identify the phonon. The reasons could have been that the resolution was around
6meV and the signal to background ratio was quite small. Therefore it could be
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that a relatively broad peak vanished in high background. However our spin echo
scans were much more successful and for two of the three measured temperatures it
was consistent with previous Raman measurements made with comparable samples.
Another reason could have been that our spectrometer wasn’t optimized for normal
triple axis measurements.

7.4 The neutron spin echo technique

In this section the neutron spin echo technique will be presented shortly by a classi-
cal model, which is enough to understand the technique so far that one can describe
and analyze the spin echo data. For a semiclassical and quantum mechanical treat-
ment one can read the paper of Thomas Keller [160] with the title ”Neutron Spin
Echo - A technique for high resolution neutron scattering”. This title reflects the
main advantage of the spin echo technique as the energy resolution is much higher
compared with standard triple axis spectrometers.
This high energy resolution can be obtained by the use of neutron spin echo coils
which polarize the neutrons. One of these coils is situated between the monochroma-
tor and the sample and the other one between the sample and the analyzer. Besides
these two coils the set-up of the neutron spin echo spectrometer TRISP in Munich,
with which we made the following experiments, is equal to the set-up of a normal
triple-axis spectrometer for unpolarized neutrons (see figure 7.2). In order to pro-
tect the measured spectra from higher order contamination of the monochromator
a velocity selector (VS) is used. This velocity selector changes with the wave vector
~ki of the initial neutrons being selected by the monochromator and hence filters out
higher order contaminations for a certain ~ki.
In order to understand the principle of neutron spin echo it is important to know

what happens with the neutrons within the coils. The coils exert a magnetic field
on the neutrons. Therefore they begin to precess according to their velocity. The
neutrons travel with a given velocity v parallel to the y axis through the coils. The
exerted magnetic field B is along the z axis and the polarization P is along the x
axis (see figure 7.2). The angle φ1, which is the angle of precession of the neutrons
travelling through the first coil, is given by the following formula [160]:

φ1 =
2ωz,1L1

v1

(7.1)

where the Larmor frequency is given by

ωL,1 = 2ωz,1 = 2µB1/h̄, (7.2)

with L1 being the length of the first coil (between the monochromator and the
sample), B1 is the magnetic field of the first coil, v1 is the velocity of the neutrons
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Figure 7.2: Spectrometer set-up of the neutron spin echo spectrometer Trisp in
Munich. This set-up is similar with the set-up of a triple-axis spectrometer besides
the two coils, which are situated between the sample and the monochromator or
the analyzer respectively. When the neutron beam is travelling with v1 along the y
direction within the first coil, it is exposed to a magnetic field along the z direction
and it is polarized along the x direction. Within the second coil the neutron beam
is exposed to the same magnetic field but along the minus z direction.

travelling within the first coil (this value depends on the wavelength of the neutrons
and hence on their wave vector), µ is the magnetic moment of the neutron and h̄ is
Planck’s constant.
After leaving the first coil the neutrons are polarized and they are travelling through
the sample. If one measures phonons the corresponding neutrons change their energy
by exciting or annihilating a phonon within the sample. That means the change of
the neutron wavelength or the wave vector depends on the energy of the excitation.
After having left the sample the neutrons come through the second coil between the
sample and the analyzer where they are again exposed to a magnetic field, which
is antiparallel to the magnetic field from the first coil. The corresponding angle of
precession is given by

φ2 = −2ωz,2L2

v2

, (7.3)

where the index 2 stands for the second coil or for the neutrons travelling through the
second coil. Assuming that the coils are identical (B1 = B2 = B,L1 = L2 = L) the
total angle of precession depends especially on the two different neutron velocities
before and after the sample:

φ = φ1 + φ2 = 2ωzL ·
[

1

v1

− 1

v2

]
. (7.4)



7.4. The neutron spin echo technique 145

Within the quasi-elastic approximation one can assume v2 = v1 + δv, δv ¿ v1 and
hence it follows for the precession angle:

φ =
2ωzL

v2
1

δv. (7.5)

Together with the neutron energy transfer h̄ω

h̄ω =
m

2
(v2

2 − v2
1) = mv1δv, (7.6)

where m is the neutron mass, we have the final equation for the precession angle:

φ =

(
2h̄ωzL

mv3
1

)
ω = ωτNSE. (7.7)

This equation defines the neutron spin echo time τNSE. τNSE gives a measure, how
fast the precession angle changes with the energy. It can thus be considered as a
measure for the ”resolution” of a spin echo experiment. And we can write for the
neutron spin echo time:

τNSE =

(
2h̄ωzL

mv3
1

)
= 1.863× 10−16B[Gauss]L[cm]λ3[Å]. (7.8)

This equation reflects the advantage of long wavelength for high resolution. As a
large neutron spin echo time means that the resolution is quite high.
The scattering function S(q, ω) gives the probability with which a neutron is scat-
tered inelastically by the sample with the energy transfer h̄ω. The value of the
polarization P is then given by the mean value of the cosine of the precession angle:

P = 〈cos φ〉 =
∫

dωS(q, ω) cos ωτNSE (7.9)

That means that the polarization is the cosine Fourier transform of the scattering
function S(q, ω). To be correct one should not only integrate over the distribution
of the energy transfer but also over the incident velocity spectrum given by the
incident neutron flux from the reactor.
Due to the finite lifetime of the phonons their energy distribution has a Lorentzian
line shape. That means the scattering function S(q, ω) is a Lorentzian function:

S(q, ω) = S(ω) =
Γ

π(Γ2 + ω2)
, (7.10)

where Γ is the half width at the half maximum (HWHM). with a Lorentzian line
shape one can rewrite the dependence of the polarization P from the spin echo time
τNSE (equation 7.9):

P =
∫

dωS(q, ω) cos ωτNSE = exp(−Γτ). (7.11)
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That means that the dependence of the polarization from the spin echo time and
the line width is an e-function. For simplicity for τNSE it is written in the following
τ .

7.5 Neutron spin echo measurements

As shown in the last section for phonons with a finite lifetime the dependence of the
polarization, which is been measured with the spin echo spectrometer (Trisp), from
the neutron spin echo time is an e-function. In order to measure the phonon line
width one measures for different τ -values the polarization of the neutron beam and
makes afterwards an fit with the following fitting function through the measured
points:

y = P0 · exp(−0.0015185 · Γ · x), (7.12)

where y corresponds to the polarization, P0 is the polarization at the origin, and
x corresponds to the neutron spin echo time. This way the phonon line width
Γ is treated as free parameter and therefore obtained from the fit. The numerical
constant ensures that the spin echo times are given in picoseconds. The polarization
is given in per cent of the full polarization. That means in order to measure the
phonon line width one has to measure the polarization for different spin echo times.
According to equation 7.8 the spin echo time depends on the magnetic field exerted
from the coil the length of the coil and the wave length of the neutrons passing
through the coil. Moreover the magnetic field depends on the current which flows
through the coil:

B · L = c · I, (7.13)

where I is the current through the coil of length L and with a magnet field B. In
order to determine the constant one considers the elastic signal of a coil for one
Larmor precession (see figure 7.3). If one considers the precession angle for one
Larmor precession this yields the following equation:

B · L =
v

γ
= c · I, (7.14)

where v is the neutron velocity depending on the wave vector of the neutrons and γ is
the gyromagnetic ratio γ = 2920·1/(Gauss·s). The period of the polarization signal
in figure 7.3 corresponds to the current given in equation 7.14. With a polarization
signal due to elastic scattering one can determine this period or in other words the
corresponding current very accurately whereas this isn’t the case for the signal due
to inelastic scattering as there the statistics is worse. With that knowledge finally
one can calculate the constant in equation 7.14. That the magnetic field depends
linear on the current flowing through the coil is also true for inelastic measurements,
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Figure 7.3: Elastic spin echo signal for the coil in the first spectrometer arm (between
the monochromator and the sample). The measurement of the elastic signals for
both coils are important for the analyzes of the spin echo data. For more information
see the text. The measured data have been fitted by a formula like equation 7.15.
One can understand the sinusoidal shape of the elastic scattering signal with formula
7.11, if one considers a very sharp (δ-like) scattering function.

thus we have determined the relation between the magnetic field and the current
for a given coil. Now we can calculate the spin echo time with equation 7.8 and
7.14 depending on the current which is flowing through the coils. One has only to
measure the polarization depending on the current for elastic scattering for both
coils. That means we can now calculate the current for both coils such that the
resulting spin echo times τ are equal. This is the condition for inelastic spin echo
measurements. And a precondition for useful data. In order to obtain a polarization
scan (see figure 7.4) one has to scan the current around the mean value in one coil,
whereas this mean value corresponds to the fixed current in the second coil so that
the spin echo times are equal. Finally one obtains the polarization by fitting the
scans like figure 7.4 with the formula

y = I0/2 · (1 + P · cos (2π · (x− x0)/dl)) , (7.15)

with y corresponding to the total intensity, which is measured during the experi-
ment and x the corresponding current, I0 the initial intensity, P the polarization,
x0 the initial current and dl the period of the polarization. The polarization curve
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Figure 7.4: Inelastic spin echo scan. That means the polarization (dependence of
polarization from the intensity see equation 7.15) is measured for different currents
within the first coil. Within the second coil a current flows so that the spin echo
time is equal to the mean value of the first coil. We measured within the ac-plane at
reciprocal lattice point (1 0 14) and with an energy 43.5 meV at 100K. The measured
data have been fitted by a formula like equation 7.15. The fit has been weighted for
each point according to the value of the error bar.

in figure 7.4 corresponds to one measuring point of the polarization depending on
the spin echo time. That means in order to determine the phonon line width one
has to make several such measurements with different spin echo times. The maximal
current through the coils limits the measuring points which can be obtained.

7.6 Neutron spin echo measurements

on YBa2Cu3O7

With the neutron spin echo technique explained in the last two sections we measured
the phonon buckling mode (42.5 meV phonon mode) in our untwinned YBa2Cu3O7

sample (which has a superconducting transition temperature Tc of around 90 de-
grees) for different phonon wave vectors q. First off all we made measurements at
the Brillouin zone center (q = 0) and afterwards for q = 0.25, 0.4, 0.5. We made
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these measurements for different temperatures. For the phonon wave vectors q = 0
and q = 0.25 we measured above the transition temperature Tc at T = 100K and
below the transition temperature Tc at T = 70K and T = 10K. For the phonon
wave vectors q = 0.4 and q = 0.5 we measured only one temperature above and
below Tc for T = 100K and T = 10K. The measurements were performed so that
the a∗c∗-plane of the sample was coincident with the scattering plane of the spec-
trometer. For the measurements in the following section we used the same sample
of YBa2Cu3O7 with a superconducting transition temperature of about 90K.
As monochromator a pyrolytic graphite crystal was used with the (002) reflection.
As analyzer we used a Heussler crystal with the (111) reflection. The monochro-
mator crystal was horizontally and vertically bent but the analyzer was only bent
horizontally.
We made the following spin echo experiments with the spectrometer configuration (-
+ +). That means that the direction of rotation for the monochromator was nega-
tive whereas the directions of rotation for the sample and the analyzer were positive.
We measured with fixed final energy and kf = 3.5Å−1. In order to maximize the
dynamic structure factor we measured at the reciprocal lattice point (1 0 14) and
the energy at which we measured was 43.5meV . So that we could follow the weakly
dispersing phonon buckling mode through the Brillouin zone.
Figure 7.5 presents the measured data for Q = (1, 0, 14, 43.5) at 100K. We per-

formed eleven inelastic spin echo scans comparable to the scan shown in figure 7.4.
The fit for each scan to a sinusoidal polarization function described in the previous
section yielded the polarization for a given τ -value. All polarization points depend-
ing on the neutron spin echo time were plotted in one diagram and a least square fit to
the e-function given in the last section was performed in order to determine the line
width of the measured phonon. From that plot we obtained for Q = (1, 0, 14, 43.5)
at 100K a half width of half maximum (HWHM) of 807± 236µeV . One recognizes
that the polarization for small τ -values decreases faster than the fitted function and
that the neutron beam was almost depolarized for τ -values around 0.4. For larger
τ values the polarization increases again. This can be due to fact that we didn’t
measure only one phonon but two phonons, which couldn’t be resolved due to the
triple-axis spectrometer resolution. A second phonon which is close enough in en-
ergy to the other one yields an oscillation in the polarization-τ -diagram. However
the envelope of the points and our fitted function should yield the right value for
the phonon line width.
From the corresponding plot for 70K of figure 7.5 we obtained for Q = (1, 0, 14, 43.5)
at 70K a half width of half maximum (HWHM) of 1353±393µeV . In the polarization-
τ diagram one could also observe an oscillation, which is not as strong as for 100K.
Figure 7.6 presents the measured data for Q = (1, 0, 14, 43.5) at 10K. Again we per-

formed for eleven τ -values the polarization scans and performed also an least square
fit to the e-function given above. From that plot we obtained for Q = (1, 0, 14, 43.5)
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Figure 7.5: Neutron spin echo measurements for Q = (1, 0, 14, 43.5) at 100K with
a spectrometer configuration ( - + +). We measured with fixed final energy and
kf = 3.5Å−1. One recognizes that the polarization for small τ -values decreases
faster than the fitted function and that the neutron beam was almost depolarized
for τ -values around 0.4. For larger τ values the polarization increases again. For a
possible explanation see text.

at 10K a half width of half maximum (HWHM) of 1681±329µeV . Again we observe
a relative steep decrease of the polarization for small spin echo times and almost
depolarization before the polarization increases again for higher spin echo times.

Figure 7.7 presents the measured data for Q = (0.75, 0, 14, 43.5) at 100K and
10K. We performed for seven τ -values the polarization scans for each graph and
performed also an least square fit to the e-function given above. From these plots we
obtained for Q = (0.75, 0, 14, 43.5) at 100K a half width of half maximum (HWHM)
of 1529± 312µeV and at 10K a HWHM of 1833± 340µeV . For the measurements
at 100K we didn’t observe an oscillation of the polarization depending on the spin
echo time compared to the data we measured at the center of the Brillouin zone.
The measured data are lying more or less on the fitted e-function. However for 10K
there is an odd point which doesn’t lay on the fitted e-function.
From the corresponding plot for 70K of figure 7.7 we obtained for Q = (0.75, 0, 14,
43.5) at 70K a half width of half maximum (HWHM) of 1838 ± 446µeV . In the
polarization- τ diagram one could also observe an oscillation comparable to these
ones observed at the Brillouin zone center.

Figure 7.8 presents the measured data for Q = (0.6, 0, 14, 43.5) at 100K and
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Figure 7.6: Neutron spin echo measurements for Q = (1, 0, 14, 43.5) at 10K with
a spectrometer configuration ( - + +). We measured with fixed final energy and
kf = 3.5Å−1.

10K. We performed for six τ -values the polarization scans for each graph and per-
formed also an least square fit to the e-function given above. From these plots we
obtained for Q = (0.6, 0, 14, 43.5) at 100K a half width of half maximum (HWHM)
of 1689± 395µeV and at 10K a HWHM of 1108± 328µeV . For the measurements
at 100K we didn’t observe an oscillation of the polarization depending on the spin
echo time compared to the data we measured at the center of the Brillouin zone.
The measured data are lying more or less on the fitted e-function. However for 10K
a depolarization before an increase of the polarization for higher spin echo times
could again be observed.

Figure 7.9 presents the measured data for Q = (0.5, 0, 14, 43.5) at 100K and
10K. We performed for six τ -values the polarization scans for each graph and per-
formed also an least square fit to the e-function given above. From these plots we
obtained for Q = (0.5, 0, 14, 43.5) at 100K a half width of half maximum (HWHM)
of 1993± 432µeV and at 10K a HWHM of 1449± 308µeV . For the measurements
at 100K and 10K we didn’t observe an oscillation of the polarization depending on
the spin echo time compared to the data we measured at the center of the Brillouin
zone. The measured data are lying more or less on the fitted e-function.
As mentioned previously one possible explanation for the oscillations of the polariza-
tion depending on the spin echo time can be, that another phonon is in the vicinity
of the phonon buckling mode. Due to the spectrometer resolution function it can
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Figure 7.7: Neutron spin echo measurements for Q = (0.75, 0, 14, 43.5) at 100K
and 10K with a spectrometer configuration ( - + +). We measured with fixed final
energy and kf = 3.5Å−1. Compared to the measurements at the Brillouin zone
center at this q value no oscillation of the polarization could be observed. However
for 10K there exists an odd point which isn’t lying on the fitted function.

be possible, that we couldn’t resolve these two phonons completely and therefore we
measured both. This would result in such an oscillation. Therefore we calculated
the spectrometer resolution function for the configuration of the spectrometer with
which we measured the data above. For our calculation we considered the effective
collimations, the lattice constants of the monochromator and the analyzer, the mo-
saicities of the monochromator, the analyzer and the sample, Popovici’s parameters:
the width and the hight of the source, the width, hight and the depth of the detec-
tor, monochromator, analyzer, sample and finally the distances between these, the
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Figure 7.8: Neutron spin echo measurements for Q = (0.6, 0, 14, 43.5) at 100K
and 10K with a spectrometer configuration ( - + +). We measured with fixed
final energy and kf = 3.5Å−1. Compared to the measurements at the Brillouin
zone center at this q value no oscillation of the polarization could be observed at
T = 100K. However for 10K there exists again a depolarization before an increase
of the polarization for higher spin echo times.

focusing of the monochromator and the analyzer and that we measured at the recip-
rocal lattice point Q = (1, 0, 14) at an energy of 43.5meV and with fixed final energy
corresponding to a final wave vector kf = 3.5Å−1 and a spectrometer configuration
( - + +). These calculations were performed with Rescal and Popovici’s method [?]
was employed. The result of the resolution of the spectrometer for the given config-
uration was 6.719 meV. That means we covered the energy range 40.5 ≤ E ≤ 46.5
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Figure 7.9: Neutron spin echo measurements for Q = (0.5, 0, 14, 43.5) at 100K and
10K with a spectrometer configuration ( - + +). We measured with fixed final
energy and kf = 3.5Å−1. Compared to the measurements at the Brillouin zone
center at this q value no oscillation of the polarization could be observed.

by our spin echo measurements. If one compares this energy range with the data
shown in sections 6.9 and 6.11 one recognizes, that we indeed measured two phonon
branches with our spin echo measurements: The buckling mode and the plane chain
mode. This explains our observed oscillations.
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7.7 Summary of results and comparison with Ra-

man results and previous neutron scattering

data

Our results of the neutron spin echo measurements obtained with the untwinned
YBa2Cu3O7 sample are summarized in figure 7.10. It shows the line width (HWHM)
of the out of phase buckling phonon mode (42.5meV mode) for the measured q
values and different temperatures above and below the superconducting transition
temperature of our sample of about 90K. However, as we could observe oscillations
these values might be strongly affected by the distance between the buckling mode
and the apical oxygen mode (see figure 6.12).

The ”line width” seems to increase from the Brillouin zone center towards the
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Figure 7.10: Summary of the results of our neutron spin echo measurements. The
diagram shows the ”line width” of the out of phase buckling phonon mode (HWHM)
for different q values and different temperatures above and below Tc.

boarder of the Brillouin zone for 100K and 70K. Whereas such a trend couldn’t
be observed for the data at 10K. Here it seems that something interesting happens
at q around 0.3. For an optimally doped sample of YBa2Cu3O6.93 with a transition
temperature of 92K Raman measurements have been made. These measurements
can be compared to the neutron spin echo measurements. For 10K a HWHM of
1.96 ± 0.06meV , 70K a HWHM of 2.36 ± 0.06meV and for 100K a HWHM of
1.91 ± 0.06meV was measured for the phonon line width by Raman spectroscopy.
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For 100K and 70K the results of the Raman measurements are lying within the error
bars of the neutron spin echo data. However for 10K there exists a clear discrepancy
which might be due to the close vicinity of the apical oxygen mode.
D. Reznik et al. [103] measured the phonon line width of the same phonon with
a triple-axis spectrometer also for different q values and for T = 100K above the
transition temperature and for T = 50K below the transition temperature. For
the 100K data they found a constant phonon line width within the Brillouin zone
of around 2meV FWHM. At the Brillouin zone center their result is within our
error bars, however, for higher q values we measured a larger phonon line width
compared to their data. For 50K at the Brillouin zone center they measured a
phonon line width of about 2.4meV , the line width increased to about 2.8meV at
q = 0.25 and decreased again towards the border of the Brillouin zone to about
2.2meV . These data are within our error bars throughout the whole Brillouin zone.
However, we couldn’t recognize a maximum of the phonon line width at around
q = 0.25, which was indicated by the data of Reznik et al. In any case one has
to consider the fact that we measured with a completely different sample. They
used a big single crystal, which was twinned. Whereas we used an array of small
single crystals which has been detwinned and aligned in one direction. So our single
crystal was without any inclusions and probably of higher quality. Considering our
new data from sections 6.9 and 6.11 one has to state that in both cases (spin echo
data and previous measurements by D. Reznik) most probably the distance between
the buckling mode and the plane chain mode was measured and not the line width of
the phonon buckling mode as intended. However, these spin echo measurements are
nevertheless of certain importance, as they prove that these further phonon modes
are not spurious.
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157



158 Chapter 8. Acknowledgement

Paris introduced me to magnetic and nuclear neutron diffraction, respectively. D.
Reznik introduced me to neutron spectroscopy on a triple-axis spectrometer. To-
gether with D. Lamago his successor I spent some interesting beam times and they
even accompanied me to our measurements at the FRM II in Munich. T. Keller
introduced me to the technique of neutron spin echo spectroscopy and several ad-
vanced aspects of triple-axis spectroscopy. Last but not least I shared two very
successful beam times together with K. Hradil from the University of Göttingen and
the FRM II. Therefore I’m especially grateful. There I also get acquainted with R.
Mole who give us additional help. In addition I would like to thank all the techni-
cians at LLB and FRM II who helped us with their technical knowledge during our
experiments.
During my PhD I had a good and important collaboration with the Raman group.
Therefore I’m very thankful to M. Bakr for making the Raman measurements and
C. Ulrich and M. Cardona for discussions. I’m also very thankful to M. Bröll, who
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Darüberhinaus bin ich besonders meinen lieben Eltern, Brüdern und Herrn Hart-
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[9] See, e.g., A. Lüscher, A.I. Milstein, and O.P. Sushkov, Phys. Rev. Lett. 98,
037001 (2006).

[10] See, e.g., S. Papanikolaou, K.S. Raman, and E. Fradkin, Phys. Rev. B 75,
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