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Chapter 1

Introduction

Proteins are the workhorses of the cell. The wealth of functions exerted by proteins

includes the catalysis of biochemical reactions and the binding of molecules either as

a switch which induces a specific biochemical response or as a means for transporting

the ligand to other locations in the body. On the macroscopic scale, the action of

proteins gets visible when motor proteins, which are capable of generating mechan-

ical forces, cause muscles to contract. Structural proteins fulfill functions which are

critical to maintaining the shape of the body such as actin and tubulin forming the

cytoskeleton which stabilizes the shape and the size of the cell while hard structures

as hair and nails are built of keratin. In view of the enormous diversity of protein

function, this list could be widely extended.

Historically, structural proteins are of some importance as the two principal sec-

ondary motifs of proteins derive their names from an early experiment which was

performed with keratin by Astbury [1] who had his results published in 1931. X-ray

photographs of bundles of hair revealed two markedly different interference figures

depending on whether the hair was extended or not. Astbury termed the figures

belonging to the unextended hair as α-form which was gradually replaced upon ex-

tention by what he called the β-form. It was, however, not until 1951 that thanks to

the work of Pauling [2,3] the observed keratin forms were related to the correct struc-

ture in an atomic model. Pauling showed that the α-form corresponds to a helical

conformation of the protein polypeptide chain while the β-form could be identified

to have the structure of a pleated sheet. With Pauling’s seminal work, the princi-

pal secondary motifs of proteins had been discovered: α-helices and β-sheets (see

Fig. 1.1).

Under physiological conditions, a protein adopts a well-defined compact native

state, the so-called tertiary structure or fold, where different parts of the polypeptide

chain arrange according to different secondary motifs and the latter are situated at

1



2 1. Introduction

Figure 1.1: Ribbon representation of the H119A variant of the protein Ribonucle-

ase A. The protein backbone forms three α-helices (shown in red) and several β-sheets

(shown in yellow), which are two principal secondary motifs of protein folding. The

picture was generated from data obtained via x-ray diffraction by Park et al. [4] using

the visualization program Rasmol [5].

fixed positions in space relative to one another. The phenomenon of protein folding

gains its interest from the intimate link which exists between protein fold and protein

function [6] as well as from the observation that, once in the native state, the protein,

except for minor conformational changes due to its functioning, is in general rather

stable and difficult to unfold. Moreover, during the last years, researchers have been

challenged by the fact that although the chemical structure of a given protein can

be expressed as a sequence of the 20 amino acids (the protein primary structure),

and hence the input for algorithms that predict protein structures is a simple list,

the task of assigning the correct secondary (and tertiary) structure to an amino

acid sequence has still not been resolved satisfactorily [7]. Today, there exists a

large testing ground for structure predictions thanks to protein tertiary structures

obtained by x-ray crystallography and NMR spectroscopy. In 2006, the Protein Data

Bank (www.rcsb.org) contained about 35,000 protein structures [8]. Interestingly,

the large number of proteins can be grouped together in families which share the
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same fold and have moreover sequence and functional similarities suggesting that

proteins of one family are descended from a common ancestor [9]. With an estimated

one thousand, the number of these families is relatively small compared to the total

number of different proteins. Taking further into account that these basic folds are

obtained from the various secondary motifs according to a set of “constructional

rules” and that they are robust against short-term deformations due to molecular

turbulence of the cell as well as against long-term evolutionary changes in the amino

acid sequences, has lead researchers to consider them as primary natural forms which

are governed by generative physical laws [10]. Based thereon, it has been argued that,

despite of Darwin’s evolution theory, certain traits of nature might be described with a

Platonian model which assumes a finite set of immutable natural forms supplemented

by certain “laws of form” reigning their assembly [10].

Guided by the idea of robust “Platonian” folds which are to some extent stable

against changes in the amino acid sequence, Banvar and Maritan have set up a

simplified model for protein folding [11, 12]. They model the protein backbone as a

flexible, impenetrable tube with finite radius which can be pictured as a garden hose.

The features implied in the tube representation are, on the one hand, that it supplies

space which is required by the side chains of the amino acids which protrude from the

protein backbone and, on the other hand, that the local direction of the backbone

is encoded in the local tube axis which has to be contrasted with other simplified

models representing the backbone as a chain of tethered spheres. The tendency of

a protein to assume a compact native state, which allows for burying hydrophobic

side chains inside the folded protein [13], is modeled by Banavar and Maritan via the

introduction of an effective attractive potential acting between different segments of

the tube. By tuning the tube thickness and the range of the attractive potential to

a critical ratio, the model protein can be driven to its so-called marginally compact

phase where it assumes secondary structural motifs such as helices, hairpins, and

sheetlike structures [11, 12]. The fact that the Banavar-Maritan model does not

include the chemical details of specific proteins makes them universal in the sense

that they may be considered as primary, immutable forms which serve as the building

blocks for protein folds.

A shortcome of the approach by Banavar and Maritan is that the presence of

the solvent, which in the cell is to a first approximation water, and which via the

hydrophobic effect supports proteins to adopt a compact state, enters into the model

only indirectly through the effective attractive interaction between different parts of

the tube. The purpose of the present work is to examine the tube model for proteins

directly under the influence of a solvent liquid and to describe to which extent differ-
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ent solvent configurations can lead to a favoring or not of certain secondary motifs.

When the present investigation was started a first step in this direction had just been

undertaken by Snir and Kamien [14, 15]. They concentrated on entropic effects of

the solvent on chain-like molecules represented in the tube model by considering a

simple hard-sphere solvent in the dilute limit. In this limit it becomes possible to

obtain the solvent entropy (which is the only relevant free energetic contribution for

hard spheres) within the Asakura-Oosawa model [16] which was designed originally in

order to yield depletion forces between two parallel plates mediated, e.g., by a poly-

mer solution. Snir and Kamien found that increasing the size of the solvent particles

would cause a helically bent tube to unwind with the consequence that sheetlike con-

formations would be energetically favored in the presence of large solvent particles.

However, their results are strictly valid only in the limit of infinite dilution so that

it seemed worthwhile to extend these investigations into the range of more realistic

solvent densities.

In the present work we1 do so by using the methods of density functional theory

(DFT) of classical fluids [17–19] which we embed into the context of the so-called

morphological thermodynamics which is a concept based on integral geometry and

dating from the 1990’s [20]. DFT has proved to be an excellent tool for the investi-

gation of spatially inhomogeneous classical fluids since the 1970’s and it has served,

just to mention a few examples, for the description of crystals, fluids in confined

geometries, liquid-vapor interfaces, and wetting and drying of different substrates

(see Ref. [21] for a recent review). In principle, DFT provides an exact method.

However, for almost all fluids of practical interest only approximations for the corre-

sponding density functional are known. Fortunately, for the hard-sphere fluid these

approximations are particularly reliable and can be derived beautifully as a merit

of Rosenfeld who introduced his fundamental measure theory (FMT) for the hard-

sphere fluid in 1989 [22]. More complex interactions, such as an attraction between

the fluid particles which comes on top of a hard-core repulsion, can be included into

a DFT description by using perturbation theory. Performing full three-dimensional

DFT calculations for a non-trivial solvent which contains the protein (represented

within the tube model) and scanning a variety of protein conformations is, however,

computationally extremely costly and can hardly be performed with the necessary

accuracy. These problems can be overcome by applying the concept of morphologi-

cal thermodynamics to the solvation free energy Fsol of proteins. The morphometric

approach to Fsol, which has, for very large solutes, the property of being extensive,

1Throughout this work I employ pluralis modestiae instead of the first person singular. This

facilitates the use of the active voice while avoiding the “I” and “my” which are rather unusual in

scientific texts as they are often associated with the expression of subjective, personal views.
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is based on a suitable generalization of extensivity to finite-sized solutes. Exploiting

the analogy with Hadwiger’s theorem [23] from integral geometry yields an approxi-

mate morphological form of Fsol which allows for obtaining Fsol by computing solvent

properties in a simple test geometry and, separately, a set of four geometric measures

depending on the given protein conformation. As a result, we are able to calculate

the free energetically favorable secondary motifs for a wide configuration range of

the hard-sphere solvent, including the high density regime. Moreover, results for a

solvent with a simple intermolecular attractive potential, which allows for a study of

the hydrophobic effect, are readily derived with our method. It should be mentioned

that, while hydrophobicity of certain amino acids as a driving force for protein fold-

ing has already been discussed for a long time [13], the gain in solvent entropy upon

folding has been emphasized more recently [24]. The methodology, which we employ

in the present work, covers these two aspects.

In order to orient the reader, we mention that our results concerning the biolog-

ically motivated treatment of solvation effects of proteins as represented within the

tube model are contained in Chapter 5, which is the chapter preceding the summary

and outlook. Chapters 2 to 4 deal with work which can be viewed as preparatory

to the study of protein solvation although their content, which is related to more

fundamental aspects touching upon the construction of density functionals, stands

independently of the biological application. We start this work in Chapter 2 with

a calculation of the statistical mechanics of a classical system of particles which are

confined to one spatial dimension (1D). The 1D systems are particularly appealing

as they allow for exact results even for particles with non-trivial interactions. This

predestinates the analytical results to be compared with experimental data of col-

loidal particles. In the laboratory of Prof. Bechinger in Stuttgart experiments have

been performed in which the confinement of micron-sized colloidal particles to 1D was

accomplished with the help of an optical tweezer. Obviously, the size of the colloidal

particles defines a characteristic lengthscale which is by several orders of magnitude

larger than in the case of protein solvation. Nevertheless, DFT is also perfectly suited

for treating colloidal systems where the actual solvent enters the calculations only in-

directly insofar as it mediates effective interactions and allows the colloids to perform

Brownian motion and equilibrate thermally. Besides this connection to experimental

results, the 1D setting enables us to introduce the field of DFT for classical fluids

by presenting, as an example, the density functional for hard-spheres confined to 1D

which is known exactly, contrary to the 2D and 3D counterparts. The examination of

the 1D hard-sphere functional serves as an excellent preparation for the derivation of

Rosenfeld’s FMT [22] for the hard-sphere fluid in 3D which is a subject of Chapter 3.
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While providing a very good account of many aspects of the structure of the inhomo-

geneous fluid, Rosenfeld’s FMT suffers from an inaccuracy of the underlying equation

of state in the high-density regime. This has been partly cured by subsequent mod-

ifications of the theory [25, 26] which are aimed at incorporating a more accurate

equation of state into the framework of FMT. However, this gain in accuracy has to

be paid for by a slight inconsistency between the modified FMT and an exact relation

from scaled-particle theory [27,28]. The observation of this shortcoming has triggered

our efforts of constructing a novel equation of state for the hard-sphere mixture based

on the requirement of enhancing the degree of consistency. It turns out that such a

consistency-based construction leads indeed to an equation of state which is in line

with scaled-particle theory if the one-component hard-sphere fluid is considered and

which yields a significantly better description of ternary hard-sphere mixtures as can

be shown by comparison with simulation data (see Section 3.2). Based on the im-

proved equation of state, a new version of FMT can be put forward (Section 3.3)

which, due to its high degree of consistency, proves to be greatly beneficial within the

context of morphological thermodynamics (see Section 5.1). The link between FMT

and morphological thermodynamics can, however, only be fully established if FMT

is generalized to fluids which are composed of hard particles with arbitrary shape

(including mixtures of different components). This so-called general hard-body fluid

is treated in Chapter 4 which starts with a presentation of Rosenfeld’s extention of

his FMT to fluids of non-spherical particles [29, 30]. The theory is based on rather

heuristic arguments and it has the serious drawback that it is unable to predict a sta-

ble nematic phase which is observed in hard-rod fluids. We can cure this deficiency by

pursuing more systematically Rosenfeld’s ideas, which consist in rewriting the known

low-density limit of the free energy functional with the help of the Gauss-Bonnet

theorem from differential geometry [31]. The resulting FMT gives a good account

of the isotropic-nematic transition in a rod fluid. In addition, the description of the

structure of the isotropic inhomogeneous hard-rod fluid is enhanced with respect to

Rosenfeld’s FMT as we show by comparison with data from Monte-Carlo simulations

which we have performed for the hard-spherocylinder fluid in contact with a hard

wall (see Section 4.2).

As we have mentioned earlier, the results of Chapters 2 to 4 are essential to

properly setting up the morphological thermodynamics for the solvation free energy

of proteins in the tube model (see Chapter 5). In this respect, the new FMT with

increased consistency is particularly valuable as it provides us with accurate analytical

results for the properties of the hard-sphere solvent which, in turn, guarantees us that

the biologically motivated questions can be tackled most efficiently.
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Finally, we summarize our results in Chapter 6 where we also discuss issues of

interest for future research, which naturally emerge from the questions addressed in

this work.

The results contained in this thesis have been published or are planned to be

published in the following articles:

• H. Hansen-Goos, C. Lutz, C. Bechinger, and R. Roth, From pair correlations

to pair interactions: An exact relation in one-dimensional systems, Europhys.

Lett. 74, 8 (2006).

• H. Hansen-Goos and R. Roth, A new generalization of the Carnahan-Starling

equation of state to additive mixtures of hard spheres, J. Chem. Phys. 124,

154506 (2006).

• H. Hansen-Goos and R. Roth, Density functional theory for hard-sphere mix-

tures: the White Bear version Mark II, J. Phys.: Condens. Matter 18, 8413

(2006).

• H. Hansen-Goos, R. Roth, K. Mecke, and S. Dietrich, Solvation of proteins:

linking thermodynamics to geometry, Phys. Rev. Lett. 99, 128101 (2007).

• H. Hansen-Goos and K. Mecke, Extended fundamental measure theory for the

inhomogeneous hard-body fluid, in preparation.

• H. Hansen-Goos, R. Roth, K. Mecke, and S. Dietrich, Morphological thermody-

namics of protein solvation – influence of hydrophobicity, in preparation.
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Chapter 2

Colloids in one dimension

The study of one dimensional (1D) systems has a long standing history in physics

in particular as theoretical approaches are concerned [32]. The reasons for this are

manifold. The obvious advantage of 1D systems is that they allow for complete an-

alytical treatments in many respects, e.g., when equilibrium properties are required.

This makes 1D systems a natural candidate for investigations of dynamic properties

such as for instance relaxation processes in lattice gases (a collection of many as-

pects of non-equilibrium 1D systems can be found in Ref. [33]). For these systems

approximate descriptions of the dynamics are based on the solid ground provided by

the known statics. Another complex and rich field of studies is provided by driven

systems [34] which exhibit a steady state rather than an equilibrium state and are

not governed by a Hamiltonian. A prominent example of these models is the to-

tally asymmetric simple exclusion process [35, 36] which is defined in one dimension

where it already (in contrast to 1D equilibrium systems with short-ranged interac-

tions) displays different phases. Thus for these driven systems reduced dimensionality

allows for an exhaustive study of the phenomenology which becomes rather vast if

the dimension is increased. But this is of course not the only motivation for using

1D models. Many experimental setups involve quasi 1D transport such as liquid or

gas flow through carbon nanotubes [37, 38] or single-file diffusion of molecular flu-

ids in zeolites of 1D channel structure [39]. A different experimental context, which

we consider in the following, is provided by colloidal suspensions with a scanning

laser tweezer creating a confining potential. It has been shown experimentally that

these colloidal 1D systems are governed by anomalous diffusion [40, 41]. A further

important reason for broad interest in 1D equilibrium systems is that while being

analytically solvable their structure is in many respects (excluding phase transitions)

complex enough to provide indications how suitable approximations for the treat-

ment of 2D and 3D systems can be constructed. For instance, approximations for the

9
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equilibrium properties of the hard-sphere fluid in 2D and 3D can be derived within

the so-called fundamental measure theory [22] (see Chapter 3) the structure of which

is largely inspired by the exact result in 1D.

In this chapter, we present a brief calculation of the exact pair correlation func-

tion in a 1D system with arbitrary interaction potential between next neighbors.

The results are used in connection with the experimental setup involving colloidal

particles, which we have mentioned earlier, where they serve for solving the inverse

problem of recovering the interaction potential from the pair distribution function.

Contrary to systems in higher dimensions a remarkably simple relationship can be

derived allowing for an unambiguous inversion. Finally, we establish a connection

to the theory of hard-sphere fluids by determining an effective hard-sphere radius

for the colloidal particles. In this context we present the exact solution for the gen-

eral mixture of differently-sized hard spheres confined to 1D and introduce the basic

notations of density functional theory (DFT). This sets the stage for the extension

of the 1D DFT to hard-sphere fluids in 3D which is the subject of the subsequent

Chapter 3.

2.1 Calculation of the pair distribution function

Consider a 1D system which contains N identical particles with positions denoted

by r1, . . . , rN . The particles are assumed to interact only with their nearest neigh-

bors via the potential V (r) where r denotes the distance between two neighboring

particles. Interaction with the next-nearest neighbor and more distant neighbors are

not included in our calculation. Therefore our results can only be applied to physical

systems with interactions which are either relatively short ranged or alternatively

screened by the presence of the two direct neighbors. Suppose the particles are re-

quired to remain inside the interval [0, L] which is realized by fixing two additional

particles of the same kind as the given N particles at positions r0 = 0 and rN+1 = L.

The Hamiltonian of the 1D system is given by

H =

N
∑

i=1

p2
i

2m
+

N
∑

i=0

V (ri+1 − ri) , (2.1)

where m denotes the mass of an individual particle. In the calculation of the canonical

partition function Z the momenta integrations can be carried out so that one obtains

Z =

(

2πm

βh2

)N/2

Q(L, N) , (2.2)

where h is Planck’s constant, β = 1/(kBT ) is the inverse temperature, and Q denotes

the configurational part of the partition function. As all the particles are identical
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one can assume for the calculation of Q that they remain in the given order r0 ≤

r1 ≤ · · · ≤ rN ≤ rN+1. Thus Q can be written as

Q =

∫ L

0

drNe−βV (L−rN )

∫ rN

0

drN−1e
−βV (rN−rN−1)

· · ·

∫ r3

0

dr2e
−βV (r3−r2)

∫ r2

0

dr1e
−βV (r2−r1)e−βV (r1) .

(2.3)

It was observed by Gürsey [42] that this integral is the N -fold convolution of

the function e−βV (r). It is therefore worthwhile to take the Laplace transform of Q

which simplifies the convolution product into an ordinary product. Using moreover

the formula for the inverse Laplace transform one can rewrite Q as

Q = Q(L, N) =
1

2πi

∫ c+i∞

c−i∞

eLs[F (s)]N+1ds , (2.4)

where the constant c has to be chosen greater than the real parts of all the singularities

of F (s), the Laplace transform of the function f(r) = e−βV (r), i.e.,

F (s) =

∫

∞

0

e−sr−βV (r)dr . (2.5)

Obviously, as any meaningful interaction potential fulfills V (r →∞) = 0 the function

F (s) has no singularity as long as s > 0 while it diverges for s→ 0. We must therefore

require c > 0.

In the thermodynamic limit N → ∞ the integral (2.4) can be evaluated in an

asymptotic expansion which utilizes the method of steepest decent. Defining the

more general expression

M =
1

2πi

∫ c+i∞

c−i∞

e(N+1)G(s)χ(s)ds , (2.6)

with G(s) = Ls/(N + 1) + ln F (s), the leading term of the large-N -expansion is [43]

Me−(N+1)G(c) ∼
χ(c)

(2π(N + 1)G′′(c))
1
2

(2.7)

where the constant c must be chosen according to the saddle point criterion

(G′(s))s=c = 0 . (2.8)

The physical meaning of c becomes immediately clear if one calculates the pressure

p which is exerted by the bulk particles (i.e. the N mobile particles in the limit N →

∞) onto the fixed boundary particles. Using the thermodynamic relation between
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the pressure and the system’s free energy and applying the asymptotic expansion

(2.7) in order to proceed to the thermodynamic limit N →∞ we find that

βp =
∂ ln Q

∂L

(2.4)
=

∫ c+i∞

c−i∞
seLs[F (s)]N+1ds

∫ c+i∞

c−i∞
eLs[F (s)]N+1ds

N→∞
= c , (2.9)

where c on the r.h.s. of the equation has to be chosen according to Eq. (2.8). Defining

the bulk particle number density in the 1D system as ρb = N
L

we can now rewrite

Eq. (2.8) for a large system by using the definition of G(s). The result is

ρb = −

(

F (s)

F ′(s)

)

s=βp

, (2.10)

which is the equation of state of the 1D system under consideration. As a simple

test case one can consider the ideal gas which has the trivial interaction potential

V (r) ≡ 0. From Eq. (2.5) it follows that F (s) = s−1 and thus Eq. (2.10) yields βp =

ρb, as expected. A simple non-trivial case is provided by a hard-sphere fluid which

is confined to one dimension. Denoting the sphere diameter by σhs the interaction

potential reads

V (r) = Vhs(r) =







∞ for r < σhs

0 for r ≥ σhs

(2.11)

and from Eq. (2.10) one obtains the 1D hard-sphere equation of state

βp =
ρb

1− σhsρb

(2.12)

which predicts a divergence of the pressure as ρb increases towards the close packing

density σ−1
hs .

We now come to the main issue of this section which is the calculation of the pair

distribution function. To this end we follow Salsburg et al. [43] and note that the

thermal average 〈ϕ〉 of an observable ϕ depending only on the spacial coordinates of

the particles and being invariant under interchange of particles can be calculated as

〈ϕ〉 = Q−1

∫ L

0

drNe−βV (L−rN )

∫ rN

0

drN−1e
−βV (rN−rN−1)

· · ·

∫ r3

0

dr2e
−βV (r3−r2)

∫ r2

0

dr1e
−βV (r2−r1)e−βV (r1)ϕ(r1, . . . , rN) .

(2.13)

In the 1D system the pair distribution function g(r) is related to the density

distribution ρ(r), which denotes the average probability per unit length that a particle

is located at position r. This is a consequence of bounding the system at r0 = 0

by a fixed particle of the same kind as the bulk particles. Therefore taking into
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account that g(r →∞) = 1 leads to the relation that ρ(r) = ρbg(r). The observable

belonging to the density distribution ρ(r) in the system containing N particles is

ϕ =
∑N

k=1 δ(rk − r). Taking the average of ϕ according to Eq. (2.13) yields the

quantity ρ(r). As for the derivation of Eq. (2.4) we also use the Laplace transform

and its inverse in order to obtain the intermediate result [43] (with Q from Eq. (2.4))

ρ(r) = Q(L, N)−1
N

∑

k=1

Q(r, k − 1)Q(L− r, N − k) . (2.14)

This results has an easy intuitive interpretation. The product Q(r, k − 1)Q(L −

r, N − k) equals the statistical weight of all the configurations with one particle fixed

at position r (in addition to the boundary particles at r = 0 and r = L) and k − 1

particles in the interval [0, r] and N − k particles in the interval [r, L]. Each of the

N particles can play the role of the particle which is held fixed at position r, hence

the sum. The factor Q(L, N)−1 normalizes the statistical weight in order to yield a

probability. The asymptotic expansion, Eq. (2.7), can be used to obtain the result

for ρ(r) in the thermodynamic limit,

ρ(r)
N→∞

=

∞
∑

k=1

e−βpr

[F (βp)]k
Q(r, k − 1) (2.15)

=

∞
∑

k=1

1

2π

∫ +∞

−∞

[

F (βp + it)

F (βp)

]k

eirtdt . (2.16)

In the second step we have inserted the expression for Q from Eq. (2.4) and shifted

the integration path onto the real axis.

We conclude this section with the observation that for particles interacting via a

hard core with diameter σ plus some “soft” potential V (r), i.e.,

Vhc(r) =







∞ for r < σ

V (r) for r ≥ σ ,
(2.17)

the integrals in Eq. (2.16) can be shown to vanish for r below certain values using

the theory of residues. More precisely,

1

2π

∫ +∞

−∞

[

F (βp + it)

F (βp)

]k

eirtdt = 0 for r < kσ , (2.18)

which reflects the fact that the k-th term of the sum in Eq. (2.16) corresponds to

a particle contributing from the k-th correlation shell onwards. This can also been

inferred from Eq. (2.14) as Q(r, k − 1) = 0 for r < kσ which means that an interval

carrying k − 1 particles with diameter σ must have a length of at least kσ (the

bounding particles occupy σ/2 of the interval each).
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2.2 From pair correlations to pair interactions

The pair distribution function g(r), or the closely related pair correlation function

h(r) = g(r)−1 can be obtained by analyzing real space data from experiments which

allow for direct visualization of the interacting particles. This is for instance the

case for investigations involving colloidal suspensions where the (µm-sized) colloids

can be observed by optical microscopy. The solvent constituents are of atomic size

and therefore cannot be traced using direct visualization. Their presence is reflected

through the solvent-specific interaction potential between the colloidal particles. Due

to the presence of the solvent, chemical groups dissociate from the surface of the col-

loidal particles leaving them charged. With increasing ion concentration the resulting

electrostatic interaction is more and more screened. At high salt concentrations two

colloids can approach so closely that they experience dispersion forces which eventu-

ally make them aggregate. If the screening length is large enough to prevent colloid

aggregation a colloidal suspension is termed electrostatically stabilized.

In this section, we aim to apply the previously found analytical results for the rela-

tion between the pair distribution function g(r) and the interaction potential V (r) to

a system of charge-stabilized, µm-sized colloids as it has been realized experimentally

in the group of Prof. Bechinger in Stuttgart. The confinement to 1D is induced by

a scanning laser tweezer which effectively creates a quasi-static potential constrain-

ing the colloids to a line. As we shall see in the following, our statistical mechanics

treatment of the 1D system gives us a simple relation between g(r) and V (r) which

for short-ranged pair interaction potentials V (r) allows to solve the inverse problem

(i.e. extracting V (r) from g(r)) without resorting to any approximation. It should

be noted in this context that common approaches to the inverse problem in 2D or

3D such as density functional theory [44], Ornstein-Zernike formalism (OZ) [45], and

inverse Monte-Carlo (IMC) simulations [46] require more or less far-reaching assump-

tions which can have uncontrolled effects on the derived pair interaction potentials.

The solution of the OZ integral equations requires additional closure relations whose

accuracy depends on the range of V (r). In case of IMC, an arbitrarily chosen cut-

off in the pair potential has to be introduced. It has been demonstrated that this

can lead to artificial features (e.g. a minimum in V (r) for entirely repulsive sys-

tems) [47]. Another complication which concerns even the formulation of the inverse

problem is due to the influence of many-body contributions to the particle interac-

tions. It has been shown also for colloidal suspensions that the interactions between

three colloidal particles cannot always be decomposed into only pair-wise interaction

potentials [48, 49]. For 1D systems with rather short-ranged interactions as in the

experimental realization which we discuss in this section the assumption that only
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nearest neighbors interact is valid and, as a consequence, many-body contributions

to the interaction potential can be ruled out.

For the purpose of the practical application let us examine the analytical result for

the 1D density distribution ρ(r) [Eq. (2.16)] more closely. We remind the reader that

the simple relation ρ(r) = ρbg(r) holds. The integrals in Eq. (2.16) are of the Fourier

type and a simple calculation shows that the expression for ρ(r) can be written as

ρ(r) =

∞
∑

k=1

F−1
p

{

Fp {exp[−βpr′ − βVhc(r
′)]/F (βp)}

k
}

. (2.19)

Here, we have introduce the Fourier transform Fp which is restricted to positive

arguments of the transformed function and its inverse F−1
p . They are explicitly given

by

Fp{f(r′)} =

∫

∞

0

e−itr′f(r′)dr′ (2.20)

and F−1
p {q(t)} =

1

2π

∫ +∞

−∞

eitrq(t)dt . (2.21)

For an interaction potential Vhc(r) [see Eq. (2.17)] and a bulk particle density ρb

given as input, having ρ(r) in the form of Eq. (2.19) allows for efficient numerical

computations using fast Fourier transform. In the numerical procedure we solve, in

a first step, Eq. (2.10) for the pressure βp. Then we calculate the function q(t) =

Fp {exp[−βpr′ − βVhc(r
′)]/F (βp)}. We know from Eq. (2.18) that, for the calculation

of ρ(r) at r ≤ rmax, only the first nmax = brmax/σc integrals in Eq. (2.19) are required.

Therefore we can simplify Eq. (2.19) for r ≤ rmax according to

ρ(r) =

nmax
∑

k=1

F−1
p

{

q(t)k
}

= F−1
p

{

nmax
∑

k=1

q(t)k

}

= F−1
p

{

q(t)(1− q(t)nmax)

1− q(t)

}

. (2.22)

The calculation of ρ(r) according to Eq. (2.22) concludes the numerical procedure

in which we obtain ρ(r) for the given Vhc(r) and ρb. It turns out that Eq. (2.22) with

a finite nmax (chosen depending on the interval in which ρ(r) is required) stabilizes

the numerical procedure compared to using ρ(r) = F−1
p {q(t)/(1 − q(t))} where the

limit nmax → ∞ has been taken. This is due to the divergence of q(t)/(1 − q(t)) as

t → 0 which is required in order to ensure that ρ(r → ∞) = ρb, i.e. that the bulk

value of the density is recovered for large distances from the fixed particle at r = 0.

While the calculation of the exact ρ(r) can be performed easily for arbitrary

distance r numerically, it is most instructive to take a closer look at the analytical
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expression for ρ(r) in the interval [0, 2σ] (cf. Ref. [50]). In this interval only the term

k = 1 in the sum of Eq. (2.19) contributes and for this term we can make use of the

fact that F−1
p inverts Fp. Using moreover Eq. (2.17), which defines Vhc(r), we obtain

the simple result that

ρ(r) = 0 for 0 ≤ r < σ,

ρ(r) = exp[−βpr − βV (r)]/F (βp) for σ ≤ r ≤ 2σ .
(2.23)

The first equation expresses the core condition. The second identity is very simple

due to the fact that in the interval σ ≤ r ≤ 2σ one can find only the nearest neighbor.

This particle feels on the one side the external field V (r) exerted by the fixed particle

at r = 0 and on the other side the rest of the system that pushes it toward the origin

with the pressure p.

Obviously, Eq. (2.23) provides an excellent tool for extracting both the interaction

potential and the equation of state directly from pair distribution functions measured

in experiments, provided that the range of Vhc(r) is below 2σ. In this case, we can

employ the analytical result Eq. (2.23) in order to extract βp and F (βp) from a

linear fit to ln(ρ(r)) in the interval where the short-ranged Vhc(r) vanishes, i.e. for

r . 2σ. With the knowledge of βp and F (βp) Eq. (2.23) can be directly solved for

the unknown pair potential V (r). In higher dimensions the pair distribution function

even at small separations cannot be described in such simple terms because multiple

particle interactions are important already in the first correlation shell. Therefore, as

we have mentioned above, no exact method yielding the pair potential from the pair

distribution function is available.

It is worthwhile noting that the constant F (βp) obtained from the linear fit is

related to the chemical potential µ via βµ = − ln(F (βp)/Λ), where Λ is the thermal

wavelength. Thus both the pressure p and the chemical potential µ of a system

with a given bulk density ρb can be gained in a simple way from experimental pair

correlations by making use of Eq. (2.23). Therefore, the method could be applied for

an experimental test of the Gibbs-Duhem relation which, at constant temperature,

states that ∂p/∂µ = ρb. A further interesting implication arises for experiments in

which no direct visualization of the particles is feasible so that one has to turn to

scattering techniques. Then the static structure factor S(t) is measured instead of

ρ(r). However, the two quantities are related through S(t) = 1 +
∫

exp(−itr)ρ(r)dr

[45]. For our 1D system one finds that S(t) = 1 + 2 Re{q(t)/(1 − q(t))}. It should,

however, be noted that 1D scattering experiments are difficult to realize due to the

small number of particles involved which leads to low scattering intensities.

We have now provided the analytical tools which are required for analyzing the

data obtained experimentally. Let us therefore present the experimental setup in
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Figure 2.1: (a) Snapshot of N = 45 electrostatically stabilized, polystyrene spheres

with diameter σ = 2.9µm in deionized water. The particle motion is limited to a

circular line by a circular optical trap. (b) Experimental setup.

detail. The system investigated by Lutz and Bechinger (cf. Ref. [40]) consists of a

dilute aqueous suspension of electrostatically stabilized, polystyrene spheres with a

diameter of σ = 2.9µm [see Fig. 2.1(a)]. The particles are imaged by means of an

inverted microscope and particle positions are recorded by video microscopy [51].

The particle motion is confined to a 1D optical trap which is created with an optical

tweezer. For this purpose, a single laser beam is continuously deflected by a pair of

galvanometric mirrors with a frequency f=330Hz thus forming a circular line [see

Fig. 2.1(b)]. The circle is projected with a microscope objective into the sample cell

which consists of two 200µm-spaced, flat glass substrates. The negatively charged

particles are forced towards the likely charged lower glass wall by gravity and the

vertically incident laser tweezer. Therefore the equilibrium position of the particles

is typically located about 50nm above the glass plate. Vertical particle fluctuations

are on the order of 5% of the particle diameter.

Figure 2.2(a) shows the averaged particle density in the presence of a scanning

laser focus. As can be seen, the colloids are effectively confined to a 1D toroidal

trap with a rather uniform density distribution along the circumference [Fig. 2.2(a)].

It has been demonstrated by Faucheux et al. [52] that at sufficiently high scanning

frequencies the particles experience an effective quasi-static potential. Accordingly,

the scanning frequency used in the experiments, i.e. 330Hz, is large enough such

that the particles are in thermal equilibrium and diffuse freely along the laser trap.

From the radial particle distribution the radial trap potential Vradial(R) acting on the

colloids can be obtained [Fig. 2.2(b)]. When comparing the width of the potential

with the particle diameter, it becomes clear that the spheres cannot pass each other

and that indeed the experiment is an excellent realization of a 1D trap. As expected
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Figure 2.2: (a) Particle density distribution ρ(x, y) for one of the measurements.

The particles distribute only, and there equally, along the circular line drawn by the

laser focus. (b) An averaged light potential perpendicular to the scanning direction,

sampled by the particles due to Brownian motion.

for such systems, the mean-square displacement at large times follows the well-known

square-root time dependence which is a unique signature of 1D systems [40, 41].

In order to vary the line density of particles inside the trap, measurements were

performed with N = 45 colloids trapped on circles with different radii R ' 35.5µm,

39.0µm, 42.5µm and 46.0µm, respectively. The density distribution ρ(r) is obtained

from the position data of the colloids as a histogram of the distances with the nor-

malization 1/(NM∆r), where N is the number of colloids in the trap, M the number

of evaluated snapshots and ∆r the spacial resolution of the histogram. The distances

are measured along the circular confining region which is drawn by the scanning laser

beam. The deviation from a straight line is negligible because on the range of the

particle interaction (approx. 2σ ' 5.8µm) the true distance of interacting particles

differs from that measured along the circle by less than 0.1%, even for the smallest ra-

dius of the trap. Concerning finite size effects, we remark that the correlation length

ξ is below 2σ even for the highest density as we have checked using the exact solution

for ρ(r). Given the length of the circular line it is therefore justified to regard the

system with periodic boundary conditions as having infinite extension.

An application of the analytical results requires the knowledge of the bulk particle

number density ρb. We determine ρb from the value to which the density distribution

ρ(r) converges for large argument r (which equals the distance from the fixed particle).

The values extracted from the experimental data of the four measurements are ρb '

0.202µm−1, 0.183µm−1, 0.168µm−1 and 0.155µm−1.
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Figure 2.3: (a) Logarithmic plot of ρ(r) for ρb ' 0.202µm−1. The linear behavior

of ln(ρ(r)) confirms that the pair potential V (r) is short ranged. (b) Individual and

averaged pair potentials from the measurements. The full lines correspond to the

best fit of VDLVO(r) to the averaged pair potential (circles). The curves have been

shifted for clarity along both axes (see dotted line).

In order to verify the short range of the particle interaction, we confirm for the

different measurements that ln(ρ(r)) displays linear behavior at least on the last µm

of the interval [σ, 2σ]. As an example, we show ln(ρ(r)) for ρb ' 0.202µm−1 in

Fig. 2.3(a). For each density, this linearization yields the osmotic pressure βp of the

colloids and the constant F (βp). Equation (2.23) can then be inverted directly to

yield unambiguously V (r), as shown in Fig. 2.3(b). The potentials from the four

measurements agree very well. Only the result for ρb ' 0.155µm−1, which was the

last measurement in a series of measurements performed with the same sample, shows

slight deviations. This is most likely due to the slow increase of airborne ions in the

solvent during the measurement.

We aim at finding a single pair potential that describes all measurements. This

would enable us to calculate the equation of state and the particle density distribution

for any given bulk density ρb. The interaction of charged spherical colloids in a

bulk solution (for a review see Ref. [53]) has been described by various approaches

which are valid in different regimes [54–56]. According to Derjaguin-Landau-Verwey-

Overbeek (DLVO) theory [55], the interaction between two charge stabilized colloids

can be described using a screened Coulomb potential:

βVDLVO(r) =
1

4
φ2 σ2

`Br
exp[−κ(r − σ)] , (2.24)

where `B ' 7Å is the Bjerrum length in water at room temperature. The Debye

screening length κ−1 and the normalized surface potential φ depend on the properties

of the solvent and the colloidal particles.
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Figure 2.4: (a) Pair-distribution function g(r) from the measurements compared

with the analytical calculation (full lines). The curves have been shifted vertically for

clarity. σ is the particle diameter. (b) Pressure of the colloids with interaction VDLVO

(full line). Fit of the equation of state for hard spheres (dashed line). The points

represent the pressure obtained from the four measurements through Eq. (2.23). (c)

g(r) of the system with interaction VDLVO (full line) compared to that of a hard-sphere

system with effective diameter σeff (dashed line) at a bulk density ρb ' 0.202µm−1.

The best fit of VDLVO(r) to the averaged pair potential from the four measurements

is obtained for κ−1 ' 244nm and φ ' 0.174, and is in good agreement with the

experimental data [see full lines and circles in Fig. 2.3(b)]. The effective charge of

the colloids is given by the relation Zeff = `−1
B (σ/2)(1 + κσ/2)φ [57]. For our data,

we obtain Zeff ' 2500 which is in good agreement with the result of an independent

measurement (Zeff ' 2250) where the pair potential was obtained from g(r) by

inverting the Ornstein-Zernike equation in 2D [58].

Using the fitted pair potential VDLVO(r), we can now calculate the equation of state

and the density distribution ρ(r) for arbitrary values of ρb as described previously.

The results for the pair-distribution function g(r) = ρ(r)/ρb are shown in Fig. 2.4(a).

The analytical curves are in very good agreement with the experimental data. We
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have marked the interval [σ, 2σ] in order to emphasize that only experimental data

from this interval have been used for determining the common pair potential and

hence the analytical curves for the whole function g(r).

The result for the equation of state is shown in Fig. 2.4(b). As a consistency check,

we show the results for βp as obtained from the four measurements via Eq. (2.23).

We have also checked that similar agreement holds for the chemical potentials deter-

mined on the one hand side from the measured g(r) [using Eq. (2.23) together with

βµ = − ln(F (βp)/Λ)] and, on the other hand side, from the function F (βp) as it

follows when the fitted pair potential VDLVO(r) is used. Finally, we compare results

for a system with DLVO interaction to that of a hard-sphere system, where particles

interact via the potential Vhs(r) defined in Eq. (2.11). The corresponding equation

of state, Eq. (2.12), can be fitted to the experimentally measured data points for

p(ρb). The fitting parameter is the hard-sphere diameter σhs and the best fit yields

the effective diameter σeff = σhs ' 3.76µm belonging to the hard-sphere system which

is expected to behave in a most similar way compared to the colloidal system un-

der consideration. As far as bulk properties are concerned, the experimental system

can hardly be distinguished from the effective hard-sphere system in a wide range

of densities ρb [see Fig. 2.4(b)]. When microscopic structural properties are com-

pared, it turns out that the effective hard-sphere system displays results which differ

significantly from the experimental findings, as can be seen from Fig. 2.4(c). The

mapping onto an effective hard-sphere system has been carried out previously for

charge stabilized colloids in 2D [59] with qualitatively similar agreement.

After having demonstrated that the exact analytical solution for the 1D system

with arbitrary next neighbor interaction, in particular the simple Eq. (2.23), provides

a valuable tool for solving the inverse problem (i.e. recovering the interaction potential

from the pair correlations) in 1D, we shall discuss in the next section the special case

of a 1D hard-sphere system in some detail. Above, the hard-sphere system has been

shown to provide a reference system which is partly capable of yielding features of

a system with more complex interactions. In many theoretical treatments, the well

understood hard-sphere system serves as a solid foundation on which more elaborate

model fluids (or solids) can be investigated. Moreover, in the next section we shall

introduce the basic traits of density functional theory which constitutes the major

tool which we shall use throughout this work.
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2.3 Density functional theory for hard spheres in

one dimension

Using the theory of residues it can be easily shown that for a 1D system of hard

spheres (diameter σhs) interacting via the potential Vhs(r) [see Eq. (2.11)] the density

distribution ρ(r) as given in Eq. (2.16) takes the explicit form

ρ(r) = βp

∞
∑

k=1

Θ(r − kσhs)
[βp(r − kσhs)]

k−1

(k − 1)!
e−βp(r−kσhs) . (2.25)

While this is a nice result due to its relative simplicity, in many relevant cases one

is interested in fluids which experience an external potential allowing to model, e.g.,

adsorption of fluid particles at an attractive wall or fluids confined in narrow pores

where phenomena like capillary condensation or evaporation can occur in 2D and 3D

systems. In this context, Eq. (2.25) can be viewed as the density distribution ρ(r)

of hard spheres in 1D in contact with a hard “wall” located at r = σhs/2 which is

mimicked by the fixed boundary particle at r = 0.

A very versatile tool for the investigation of inhomogeneous fluids, i.e. fluids which

are subject to a spatially inhomogeneous external potential, is provided by density

functional theory (DFT) for systems obeying classical statistical mechanics. DFT

goes back to the work by Hohenberg, Kohn, and Mermin [60,61] where it was initially

formulated for quantum systems before the method was transfered to the field of

classical fluids [17–19] and later on also to crystalline (see Ref. [62] and references

therein) and glassy solids [63]. The basis of DFT as we employ it throughout this

work can be stated in the following concise form. Consider a fluid consisting of ν

different particle species, also termed components in the following, which behave

classically and interact according to the potential energy U which is a function of the

coordinates of all particles in the fluid. For given U one can construct the so-called

excess free energy functional Fex[ρ1, . . . , ρν] depending on the density distributions

ρ1(r), . . . , ρν(r) which are functions of the spacial coordinates r (reducing to r in

the 1D system). As they provide a direct generalization of the density distributions

defined earlier for the 1D system, the combinations ρi(r)dr give the probability that

a particle of species i is contained in the infinitesimal volume dr at position r. The

functional Fex is uniquely determined by the requirement that the density functional

Ω[ρ1, . . . , ρν] = Fid[ρ1, . . . , ρν] + Fex[ρ1, . . . , ρν ]

−

ν
∑

i=1

∫

drρi(r)(µi − V ext
i (r))

(2.26)
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be minimized by the density distributions ρ1(r), . . . , ρν(r) which the system assumes

in thermal equilibrium. It should be emphasized that this minimization property has

to be required for any set of chemical potentials µ1, . . . , µν and external potentials

V ext
1 (r), . . . , V ext

ν (r) which apply to the respective fluid component. The dependence

on the inverse temperature β comes into play through Fid which is the functional of

the free energy of the ideal gas (i.e. for Fex ≡ 0). In d dimensions, this part is given

by

Fid[ρ1, . . . , ρν] = β−1
ν

∑

i=1

∫

drρi(r)(ln(Λd
i ρi(r))− 1) (2.27)

with the thermal wavelengths Λi = (βh2/2πmi)
1/2 which depend on the mass mi of

a particle of species i. In addition, Fex is temperature-dependent.

When the functional given in Eq. (2.26) is evaluated for the equilibrium density

distributions one can identify the following quantities: Ω is the system’s grand po-

tential, Fid is the ideal gas part of the internal free energy and Fex is the contribution

to the intrinsic free energy due to the presence of nontrivial interactions between the

fluid particles (the index ex stands for excess, i.e. over ideal gas, free energy).

We can phrase the defining property of Fex differently: once the excess free en-

ergy density functional Fex is known, minimizing the functional Ω [Eq. (2.26)] yields

the equilibrium density distributions ρi(r) for any given chemical potentials µi and

external potentials V ext
i (r). The external potentials are a crucial ingredient of the

DFT as they induce the spacial inhomogeneities which give rise to non-trivial density

distributions ρi(r). Examples for such sources of inhomogeneities in physical systems

include for instance a container with the fluid inside, a porous medium filled with the

fluid, and a (large) molecule being immersed in the fluid which acts as a solvent. The

latter example will be treated in this work in the context of a simple model for protein

solvation (see Chapter 5). One of the simplest test geometries occurs when the fluid

is in contact with a planar hard wall. The equilibrium density distribution ρ(r) in the

analogous 1D geometry (where the term “wall” refers to a pointlike obstacle) is given

in a closed analytical form by Eq. (2.25). For more complicated external potentials,

however, calculating ρ(r) analytically is—even in 1D—not an amenable task. It is

advisable to use the functional Ω for the computation of equilibrium properties in-

stead. The minimization of Ω [Eq. (2.26)] leads to solving the set of Euler-Lagrange

equations δΩ/δρi = 0, i = 1, . . . , ν which are equivalent to the equations

ρi(r) = ρb
i exp

{

−βV ext
i (r) + c

(1)
i [ρ1, . . . , ρν; r] + βµex

i

}

, i = 1, . . . , ν. (2.28)

Here we have splitted the chemical potentials into two parts: µi = µid
i + µex

i . The

ideal gas part of µi is connected with the bulk density ρb
i of component i (i.e. the
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density in the unperturbed system far away from the inhomogeneities) via the relation

µid
i = β−1 ln(Λd

i ρ
b
i ). The one point direct correlation function is defined as

c
(1)
i [ρ1, . . . , ρν ; r] = −β

δFex[ρ1, . . . , ρν ]

δρi(r)
. (2.29)

The excess free energy density in the bulk fluid can be obtained as f b
ex(ρb

1 , . . . , ρ
b
ν) =

Fex[ρ1 = ρb
1 , . . . , ρν = ρb

ν ]/V from which we calculate the excess chemical potential

µex
i through the relation

µex
i =

∂fb
ex

∂ρb
i

. (2.30)

Obviously, for the bulk fluid the relation c
(1)
i = −βµex

i holds, which guarantees the

consistency of Eq. (2.28). We mention as an aside that, in analogy to Eq. (2.29),

higher order direct correlation functions are defined by means of higher order func-

tional derivatives [19]. Thus, once the equilibrium density profiles are obtained by

solving Eq. (2.28) the whole equilibrium microscopic structure of the fluid in the

given external potentials follows from functional derivatives of Fex.

In conclusion, DFT yields a versatile framework for the calculation of equilibrium

properties of fluids (and solids), not only on the level of density profiles and correlation

functions. Also values for free energies, which are difficult to access by means of

numerical simulations, are readily obtained from the theory. It should, however, be

noted that the bottleneck of DFT is the knowledge of the excess free energy functional

Fex. We have not mentioned so far how Fex can be derived given a fluid with specified

microscopic interaction. And, not surprisingly, for systems lacking an exact statistical

mechanics solution, only approximations for Fex are available. We shall come back to

the construction of such approximations several times in this work. In particular for

the hard-sphere fluid in 3D (Chapter 3) and the general hard-body fluid (Chapter 4),

i.e. a 3D fluid consisting of hard particles of arbitrary shape. For the hard-sphere

fluid in 1D, however, the functional Fex is known exactly [64]. Given that this exact

result exhibits already several structural features which we shall encounter in the

following chapters during the construction of the approximative 3D functionals, we

conclude the chapter with a brief presentation and discussion of the 1D functional.

Consider a system of hard spheres with centers confined to a straight line. Let

the 1D system be composed of ν different species which are characterized by their

radii Ri, i = 1, . . . , ν. The thermodynamic bulk state of the system is specified

by the chemical potentials µi or, alternatively, the bulk densities ρb
i of the different

components. Using the density distributions ρi(r) the following two weighted densities
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can be defined:

n0(r) =

ν
∑

i=1

1

2
(ρi(r − Ri) + ρi(r + Ri)) (2.31)

n1(r) =
ν

∑

i=1

∫ r+Ri

r−Ri

ρi(r)dr . (2.32)

The weighted densities constitute quantities which are non-local in the sense that

they contain information about the density profile at more than a single point in

space. If one imagines a particle of species i which is located at the position r one

can easily see that the combination 1
2

(ρi(r − Ri) + ρi(r + Ri)) weights the density

profile according to the surface (i.e. two points in 1D) of sphere i while the integral
∫ r+Ri

r−Ri
ρi(r)dr corresponds to weighting ρi(r) over the volume (i.e. a line in 1D) of

the particle. In the bulk fluid, Eqs. (2.31) and (2.32) reduce to n0 =
∑ν

i=1 ρb
i , which

equals the total particle number density Ntot/V , and n1 =
∑ν

i=1 2Riρ
b
i , which is the

total packing fraction, i.e. the fraction of the rectilinear system which is covered by

the 1D spheres.

The excess free energy density Φ1D of the system is given as a simple function of

the weighted densities,

Φ1D(r) = −n0(r) ln (1− n1(r)) , (2.33)

from which the excess free energy function Fex is obtained as

βF1D
ex [ρ1, . . . , ρν] =

∫

dr Φ1D(r) . (2.34)

We want to analyze the remarkably simple expression Eq. (2.33) in the limit of

dilute systems, i.e. ρi(r) → 0. Then one obtains from Eq. (2.33) that Φ1D(r) →

n0(r)n1(r) to lowest order in the densities ρi(r). Plugging this low-density expression

into Eq. (2.34) we obtain the lowest order result1 for the functional F 1D
ex ,

βF1D
ex

l.d.l.
−→

∫

dr n0(r)n1(r)

=
1

2

ν
∑

i,j=1

∫∫

dridrjρi(ri)ρj(rj)(ω
(0)
i ⊗ ω

(1)
j + ω

(0)
j ⊗ ω

(1)
i ) . (2.35)

For the rewriting in the last step we use the so-called weight functions

ω
(0)
i (r)

.
=

1

2
δ(Ri − |r|) and ω

(1)
i (r)

.
= Θ(Ri − |r|) (2.36)

1We refer to the limiting case ρi(r) → 0 in which we expand the density functional up to second

order in the densities ρi(r) as the low-density limit (l.d.l.).
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which generate the weighted densities, Eqs. (2.31) and (2.32), according to the formula

nα(r) =

ν
∑

i=1

∫

dr′ρi(r
′)ω

(α)
i (r − r′) , α = 0, 1 . (2.37)

The convolution product ⊗ in Eq. (2.35) is defined by

ω
(α)
i ⊗ ω

(γ)
j

.
=

∫

dr ω
(α)
i (r − ri)ω

(γ)
j (r − rj) , (2.38)

which obviously is a function only of the difference rj−ri or, more precisely, of |rj−ri|

as follows from the form of the weight functions from Eq. (2.36).

The purpose of rewriting the low-density expression for F 1D
ex in the form of Eq. (2.35)

is to identify the second order virial expansion. To this end we examine the combi-

nation

−fij(|rj − ri|) = ω
(0)
i ⊗ ω

(1)
j + ω

(0)
j ⊗ ω

(1)
i (2.39)

using the Fourier transform which transforms the convolution products appearing in

Eq. (2.39) into usual products. In Fourier space, the weight functions as defined in

Eq. (2.36) become

ω̃
(0)
i (k) =

∫

∞

−∞

dr ω
(0)
i (r)e−ikr = cos(kRi) (2.40)

ω̃
(1)
i (k) =

∫

∞

−∞

dr ω
(1)
i (r)e−ikr =

2 sin(kRi)

k
. (2.41)

With these results we obtain Eq. (2.39) in Fourier space as

−f̃ij(k) = ω̃
(0)
i (k)ω̃

(1)
j (k) + ω̃

(0)
j (k)ω̃

(1)
i (k)

=
2

k

(

cos(kRi) sin(kRj) + cos(kRj) sin(kRi)
)

=
2 sin

(

k(Ri + Rj)
)

k
, (2.42)

where we have used the appropriate angle sum identity in the last step. Considering

Eqs. (2.36), (2.41), and (2.42) it follows that fij can be written in the form

fij(|rj − ri|) = −Θ(Ri + Rj − |rj − ri|) (2.43)

in real space, which is obviously equivalent to writing

fij(|rj − ri|) ≡ exp
[

− βVij(|rj − ri|)
]

− 1 (2.44)

with the potential

Vij(|rj − ri|) =







∞ for |rj − ri| < Ri + Rj

0 for |rj − ri| ≥ Ri + Rj

(2.45)
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describing the interaction between two hard spheres of species i and j.

Equation (2.44) is precisely the definition of the Mayer f -function and thus we

have explicitly shown that Eq. (2.35) is nothing else but the second order virial

expansion

βF1D
ex

l.d.l.
−→ −

1

2

ν
∑

i,j=1

∫∫

dridrjρi(ri)ρj(rj)fij(|rj − ri|) . (2.46)

It is very interesting to note that Eq. (2.46) holds not only in 1D but provides also

the exact low-density limit for hard-body fluids in 2D and 3D (after adapting the ex-

pression to higher dimensional space). Therefore, as we shall see in the next chapter,

Eq. (2.46) provides an excellent starting point for the construction of approximate

functionals Fex for the hard-body fluid in 3D. The calculation above, which has led

us from F1D
ex as given without derivation in Eq. (2.33) to the low-density expression in

Eq. (2.46), has to be “reversed” in some sense in order to construct the approximate

functionals. In this context, the reasoning in terms of weight functions, convolutions

thereof, and Fourier transforms as presented above will prove most useful. This makes

the detailed study of the exact 1D result so valuable.

While the deconvolution of the Mayer f -function in analogy to Eq. (2.39) provides

one key for the construction of hard-body density functionals which is microscopically

based as the interaction between two particles is taken into account explicitly, the

second key is provided by arguments concerning a bulk property of the fluid, namely

the pressure. According to thermodynamics, the pressure p of the 1D hard-sphere

fluid can be obtained from the excess free energy density Φ1D, evaluated in the bulk

fluid, via

βp− n0 = −
∂(V Φ1D)

∂V
= −Φ1D +

ν
∑

i=1

∂Φ1D

∂ρi
ρi = −Φ1D +

∂Φ1D

∂n0
n0 +

∂Φ1D

∂n1
n1 , (2.47)

where, on the l.h.s., we have subtracted n0 which equals the ideal gas contribution

to βp. With the expression from Eq. (2.33) we find

βp =
n0

1− n1

(2.48)

which generalizes the 1D hard-sphere equation of state obtained in Eq. (2.12) to

multi-component systems.

An alternative route to the pressure p makes explicit use of the fact that Φ1D

provides a formulation for multi-component mixtures. The excess chemical potential

µex
i of species i, which is the reversible work required for inserting such a particle into

the given fluid mixture, can be calculated as

βµex
i =

∂Φ1D

∂ρi
=

∂Φ1D

∂n1
2Ri +

∂Φ1D

∂n0
. (2.49)
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In the limit of an inserted particle which is very large, the required work is dominated

by the work against the bulk pressure p which is needed to create a cavity which is

large enough to hold the inserted particle. More precisely, we know from scaled-

particle theory [27, 28] that limRi→∞ µex
i /(2Ri) = p and we can therefore identify

βp =
∂Φ1D

∂n1

(2.33)
=

n0

1− n1
. (2.50)

As required, the two routes to the pressure lead to the same result. The requirement

of consistency of the results for p provides, in addition to the deconvolution of the

Mayer f -function, the second crucial resource in the context of the construction of

hard-body density functionals. We will come back to these two aspects frequently

in the following Chapters 3 and 4. The simplicity and shortness of the expressions

for the 1D system have allowed us to present calculations explicitly, which, in the

cases where direct analogies occur, will permit us to spare the reader certain lengthy

details in the context of the more complex 3D functionals.



Chapter 3

Hard-sphere fluid in three

dimensions

In the last section of the previous chapter we have introduced density functional

theory (DFT) as a tool for the study of the microscopic structure of fluids subject to

arbitrary external potentials. Moreover, DFT is capable of yielding free energies of

equilibrium systems which makes it a powerful approach to calculate solvation free

energies. The latter can be obtained by minimizing the functional Ω [Eq. (2.26)]

for the fluid with and without the solute (being modeled by an appropriate external

potential), which will be discussed in detail in Chapter 5 of this work.

So far we have presented the exact density functional for 1D hard-sphere systems

only (see Section 2.3). For the general case of a fluid in 3D with interacting parti-

cles there are no exact density functionals known, except for formal multi-particle

expansions involving an infinite number of terms [45]. These expressions are of no

practical use for concrete calculations as they contain multiple integrals which cannot

be evaluated systematically within reasonable computational time and accuracy. It

is obviously more useful to find an expression for Ω in 3D which is as compact as the

1D functional [Eq. (2.34) supplemented with Eq. (2.33)], i.e., which does not require

the evaluation of an infinite number of terms but which is rather based on a restricted

set of weighted densities which can be computed easily. The construction of density

functionals for the 3D hard-sphere fluid goes back to the work of Tarazona and others

from the late 70’s and early 80’s [65] but only with the work of Rosenfeld [22, 66],

who constructed the so-called fundamental measure theory (FMT) for the hard-sphere

fluid, a functional was set up which makes use of the beautifully simple 1D result

while it is more accurate than the previous theories (cf. Refs. [67,68]). Moreover, FMT

is the first workable theory for the general inhomogeneous hard-sphere mixture (cf.

Ref. [69]). In this chapter, we present a derivation of FMT which uses the close anal-

29
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ogy to the 1D functional (Section 3.1). We further construct an improved version of

FMT (Section 3.3) which makes use of a new generalization of the Carnahan-Starling

equation of state to hard-sphere mixtures (Section 3.2). The new DFT, which we

refer to as the White Bear version of FMT Mark II (WBII), will prove especially use-

ful in the context of morphological thermodynamics (see Section 5.1) where its high

degree of self-consistency allows for obtaining accurate analytical results for thermo-

dynamic solvent properties (surface tension, bending rigidities). Therefore, the WBII

density functional enables us to perform calculations of solvation free energies of bio-

molecules within morphological thermodynamics both efficiently and accurately. We

shall elaborate on this application in the context of the biologically inspirated model

which we treat in Chapter 5.

3.1 Rosenfeld’s fundamental measure theory

In 1989, Rosenfeld presented in a seminal paper his FMT [22] which is based on ideas

originating in his “scaled field particle theory” where he obtained a representation of

the Percus-Yevick (PY) direct correlation function of a hard-particle fluid in terms

of the (fundamental) geometric measures such as volume and surface area of the

intersection body [70]. The approach connects the PY results [71–73] to the scaled-

particle theory of Reiss et al. [27, 28]. It allowed Rosenfeld to construct a density

functional on the basis of purely geometric arguments which, unlike previous DFTs,

does not require the PY results as an input but rather outputs them. At the time

when FMT was constructed, the exact 1D result which we presented in Section 2.3

was not yet published in the literature. However, as the analogy of the 1D functional

with the approximative functionals in higher dimension is so striking we choose to

exploit it for our presentation of Rosenfeld’s FMT.

As in the case of the 1D density functional the non-trivial part of the grand

potential functional Ω [Eq. (2.26)] is contained in the excess free energy functional

F3D
ex which encodes the interactions between the particles. For the 1D expression

F1D
ex we have shown that in the low-density limit the functional reduces to a double

integral over the density distributions which are coupled by the Mayer f -function

[see Eq. (2.46)]. It is known from the theory of diagrammatic expansions [45] that

the corresponding low-density limit (l.d.l.) in higher dimension assumes the same

form. Thus, for the ν-component hard-sphere fluid in 3D (with radii Ri and density

distributions ρi(r)) we have

βF3D
ex

l.d.l.
−→ −

1

2

ν
∑

i,j=1

∫

dridrjρi(ri)ρj(rj)fij(|ri − rj|) . (3.1)
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The Mayer f -function fij is defined, like in the 1D case [see Eq. (2.44)], by

fij(|ri − rj|)
.
= exp[−βVij(|ri − rj|)]− 1 , (3.2)

which uses the interaction potential Vij of the hard spheres. The latter is given

explicitly by

Vij(|r|) =







∞ for |r| < Ri + Rj

0 for |r| ≥ Ri + Rj

(3.3)

expressing the fact that the hard spheres are not allowed to overlap.

In order to identify suitable weighted densities [the analog of n0 and n1, see

Eqs. (2.31) and (2.32)] from which we can construct F 3D
ex , one can proceed like for

the 1D system where a deconvolution of the Mayer f -function fij in terms of weight

functions ω
(α)
i was formulated [see Eq. (2.39)]. Rosenfeld came up with a deconvolu-

tion of the Mayer f -function which is valid in 3D. In contrast to the deconvolution in

1D a total number of six (instead of two) weight functions is required, four of which

are scalar and two are vector valued. The deconvolution reads

−fij(|rj − ri|) = ω
(0)
i ⊗ ω

(3)
j + ω

(0)
j ⊗ ω

(3)
i + ω

(1)
i ⊗ ω

(2)
j + ω

(1)
j ⊗ ω

(2)
i

−−→ω
(1)
i ⊗

−→ω
(2)
j −

−→ω
(1)
j ⊗

−→ω
(2)
i

(3.4)

with

ω
(3)
i (r) = Θ(Ri − |r|) , ω

(2)
i (r) = δ(Ri − |r|) , −→ω

(2)
i (r) =

r

|r|
δ(Ri − |r|) , (3.5)

and ω
(1)
i (r) = ω

(2)
i (r)/(4πRi), ω

(0)
i (r) = ω

(2)
i (r)/(4πR2

i ), and−→ω
(1)
i (r) = −→ω

(2)
i (r)/(4πRi).

The convolution product ⊗ is defined, in complete analogy to the 1D case, by the

integral

ω
(α)
i ⊗ ω

(γ)
j

.
=

∫

drω
(α)
i (r− ri)ω

(γ)
j (r− rj) , (3.6)

which is, again, a function only of the difference vector rj − ri. It is important to

remark that our notation ω
(α)
i for an arbitrary weight function includes the vector

valued weight functions. The convolution of two vectorial weight functions requires to

employ the scalar product of vectors on the r.h.s. of Eq. (3.6) which, in our notation,

is not distinguished from the usual product of two scalars.

The validity of the deconvolution, Eq. (3.4), can be checked most conveniently

by mapping the expression to Fourier space were the convolutions reduce to usual

products. The corresponding calculation resembles the one which we have performed

explicitly in the 1D case [see Eq. (2.42)] though the expressions are more cumbersome.
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The 3D deconvolution Eq. (3.4) can be plugged into the expression for the exact

low density limit, Eq. (3.1), which can then be recast to the form

βF ex l.d.l.
−→

∫

dr
(

n0(r)n3(r) + n1(r)n2(r)− −→n1(r)−→n2(r)
)

(3.7)

with the weighted densities nα which are defined by

nα(r) =
ν

∑

i=1

∫

dr′ρi(r
′)ω

(α)
i (r− r′) . (3.8)

From Eq. (3.7) we can read off that in the low-density limit the excess free energy

density Φ3D behaves like Φ3D(r)→ n0(r)n3(r) + n1(r)n2(r)− −→n1(r)−→n2(r) which can

be compared with the 1D low-density limit Φ1D(r)→ n0(r)n1(r) as derived from the

exact expression for Φ1D given in Eq. (2.33). This observation constitutes a strong

motivation to construct Φ3D as a function of only the six weighted densities defined

in Eq. (3.8) with the weight functions given in and below Eq. (3.5). In the first place,

this procedure allows us to match Φ3D with the exact expression for the low-density

limit [Eq. (3.7)] which itself can be written as a function of the weighted densities.

Moreover, it is interesting to consider that the exact 1D excess free energy density

Φ1D is a function of the 1D weighted densities n0 and n1, which can be identified

from the low-density limit of Φ1D. We can, however, not expect that the assumption

Φ3D = Φ3D({nα}) is valid in 3D as it is in 1D and it can be shown that the assumption

is in fact incorrect. It seems nevertheless worthwhile to construct an approximation

for Φ3D as a function of the weighted densities. Indeed, it turns out that using

a suitable extrapolation of the low-density expression towards higher densities, an

approximative Φ3D can be constructed as a function of the weighted densities such

that the hard-sphere fluid is well described even in the high-density regime, i.e. at

packing fractions as large as 49% above which the one-component hard-sphere system

starts to crystallize. For the fcc hard-sphere crystal the functional, which we derive

in the following, fails. A functional which is suitable to describe the high-density

phase shall be discussed in the context of the general hard-body fluid (see Chapter

4) in which other “building blocks” in addition to the present weighted densities can

be identified.

The extrapolation of the exact low-density limit Φ3D → n0n3 + n1n2 −
−→n1
−→n2 to

higher densities goes as follows. We consider the case of a homogeneous hard-sphere

mixture with constant density distributions ρi(r) ≡ ρi = Ni/V . Ni is the number

or spheres of species i in the volume V . The part of the pressure of a fluid mixture

which arises from the interactions between the particles, i.e. the excess pressure pex,
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can be obtained from the excess free energy density Φ3D via

βpex = −
∂(V Φ3D)

∂V
= −Φ3D +

ν
∑

i=1

∂Φ3D

∂ρi
ρi = −Φ3D +

∑

α

∂Φ3D

∂nα
nα . (3.9)

Note that the vectorial weighted densities actually vanish in the uniform fluid. Nonethe-

less, we formally include them in the above sum. The ideal gas contribution to the

pressure is βpid =
∑

i ρi, which in terms of the weighted densities reduces to βpid = n0.

Hence, according to thermodynamics (TD), the total pressure within FMT can be

written as

βpTD = n0 − Φ3D +
∑

α

∂Φ3D

∂nα

nα . (3.10)

This is the 3D analog of Eq. (2.47) for the pressure in the 1D system.

On the other hand, the pressure can be accessed using an exact result from scaled-

particle theory [27,28] for the excess chemical potential µex
i of species i which equals

the reversible work required for the creation of a cavity that is large enough so

that it can hold a sphere of species i. For a very large sphere (Ri → ∞) scaled-

particle (SP) theory states that µex
i /Vi → pSP, where Vi = 4π

3
R3

i equals the volume

of the large sphere. We denote the total pressure of the fluid mixture by pSP in

order to distinguish it from the pressure pTD as obtained above from thermodynamic

arguments. Assuming Φ3D = Φ3D({nα}) and using that in the homogeneous bulk

fluid the weighted densities reduce to

n0 =
ν

∑

i=1

ρi , n1 =
ν

∑

i=1

ρiRi , n2 =
ν

∑

i=1

ρiAi , n3 =
ν

∑

i=1

ρiVi ,
−→n1 = −→n2 = 0 ,

(3.11)

we find for the excess chemical potential

βµex
i =

∂Φ3D

∂ρi

=
∂Φ3D

∂n3

Vi +
∂Φ3D

∂n2

Ai +
∂Φ3D

∂n1

Ri +
∂Φ3D

∂n0

, (3.12)

where we denote the surface area of the sphere i by Ai = 4πR2
i . This result is the 3D

analog of Eq. (2.49) for µex
i of the hard sphere fluid in 1D. There, the leading term is

∂Φ1D

∂n1
2Ri where 2Ri corresponds to the “volume” of a hard sphere in 1D, which can

be viewed as a blocked interval of length 2Ri on a straight line. For the 3D system

considered here, the relation limRi→∞ µex
i /Vi = pSP allows us to identify pSP from

Eq. (3.12) which yields

βpSP =
∂Φ3D

∂n3
. (3.13)

As both pTD and pSP were calculated from exact relations they have to be equal

and therefore we obtain the following differential equation for Φ3D by equating Eqs. (3.10)
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and (3.13):
∂Φ3D

∂n3
= n0 − Φ3D +

∑

α

∂Φ3D

∂nα
nα (3.14)

Rosenfeld introduced this differential equation [22] and he obtained a solution

Φ3D = ΦRF by using the ansatz

ΦRF = f1(n3)n0 + f2(n3)n1n2 + f3(n3)
−→n1
−→n2 + f4(n3)n

3
2 + f5(n3)n2

−→n2
−→n2 , (3.15)

with f1, . . . , f5 being functions of the dimensionless weighted density n3. The ansatz

Eq. (3.15) makes a linear combination of all products of the weighted densities which

share the dimension of Φ3D, i.e. (length)−3. From the definitions of the weighted

densities it can be easily shown that the dimension of nα is (length)α−3.

Plugging the ansatz Eq. (3.15) into Eq. (3.14) leads to a set of decoupled differen-

tial equations for the functions f1, . . . , f5 which can be easily solved. The integration

constants of f1, f2, and f3 can be fixed by matching ΦRF with the low-density limit

ΦRF → n0n3 + n1n2 −
−→n1
−→n2. The integration constant of f4 is determined by the

requirement that for the one-component uniform hard-sphere fluid the correct third

virial coefficient, which is known analytically [45], is reproduced. Finally, the inte-

gration constant of f5 is enforced by the requirement that the pair direct correlation

function c(2)(r) is regular in the limit r → 0 (for a related calculation of c(2)(r) see

Ref. [25]). The result is

ΦRF = −n0 ln(1− n3) +
n1n2 −

−→n1
−→n2

1− n3
+

n3
2 − 3n2

−→n2
−→n2

24π(1− n3)2
. (3.16)

Based on a derivation which makes use of a minimal number of prerequisites,

Rosenfeld’s excess free energy density ΦRF gives a remarkably good account of many

aspects of nonuniform hard-sphere fluids, pure [67, 68] or mixtures [69]. However, it

does not predict freezing, which is actually observed for the pure hard-sphere fluid

at a packing fraction η ' 0.494 [74]. This deficiency can be resolved empirically

by modifying the third term in Eq. (3.16) [75, 76], or, more systematically, by the

approach of Tarazona [77] who introduced an additional tensorial weighted density

in the last term of ΦRF. As we have mentioned earlier in this section, the latter mod-

ification will be discussed in Chapter 4 in the context of the general hard-body fluid.

Another interesting property of ΦRF is that it yields the PY direct pair correlation

function (cf. Ref. [22]) although the derivation of ΦRF does not make use of any of

the PY “ingredients” (i.e. the Ornstein-Zernike relation supplemented with the PY

closure [45]). The equation of state which follows from ΦRF can be obtained using

Eq. (3.10) or, equivalently, Eq. (3.13). Taking into account the fact that the vectorial
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weighted densities vanish in the bulk fluid, one finds the pressure to be

βpPY =
n0

1− n3
+

n1n2

(1− n3)2
+

n3
2

12π(1− n3)3
, (3.17)

which is the compressibility expression from the solution of the PY integral equation

[73]. The PY pressure is in good agreement with simulations for the pure hard-sphere

fluid at low packing fractions but close to the freezing transition it overestimates the

pressure by about 7%. More accurate and yet simple equations of state for the hard-

sphere mixture are available and can be incorporated within the context of FMT. In

the next section we present a systematic derivation of several such equations of state

one of which has not appeared in the previous literature to our knowledge. The new

equation of state will be shown to improve upon previous ones by comparison with

simulation data. In Section 3.3, which concludes this chapter, we will formulate an

improved FMT free energy density which is based on the new equation of state.

3.2 Improved equation of state for the hard-sphere

mixture

Let us examine the PY compressibility equation of state [Eq. (3.17)] for the case

of a single component hard-sphere fluid. The weighted densities are then given by

Eq. (3.11) with the additional simplification that ν = 1. Denoting the hard-sphere

packing fraction and number density by η and ρ, respectively, and using that n3 = η,

Eq. (3.17) takes the simple form

βpPY

ρ
=

1 + η + η2

(1− η)3
. (3.18)

The PY equation of state, albeit very simple, is in good agreement with the

outcome from simulation data for the hard-sphere fluid at moderate packing fractions.

We have, however, already mentioned that with increasing packing fraction the PY

equation of state starts to deviate significantly from simulation data such that the

use of a more accurate expression is in order. In principle, such an expression can

be obtained by some intelligent fitting to the numerical data and this has indeed

been widely done (for an example of related work which includes binary mixtures

see Ref. [78]). However, these approaches have several drawbacks. In the first place,

the resulting equations of state are rather cumbersome and involve extended sets of

numerical prefactors which makes them unsuitable for many analytical calculations.

Perhaps more importantly, the numerical fits are limited to mixtures with only very

few components of not too different sizes while for many application purposes, in
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particular experiments, polydispersity and strong size asymmetry have to be tackled.

A very successful equation of state for the single component hard-sphere fluid which is

both simple and accurate has been suggested empirically by Carnahan and Starling

(CS) [79]. Their expression cures the overestimation of the pressure by the PY

equation of state with a small but efficient modification. The CS equation of state

reads
βpCS

ρ
=

1 + η + η2 − η3

(1− η)3
. (3.19)

The question remains, however, how this equation, which has proved very use-

ful for the one-component fluid, can be generalized to arbitrary mixtures of hard

spheres without making use of fitting to numerical data. Our answer to this ques-

tion is based on using the requirement of consistency between the two routes to the

pressure presented in the previous Section 3.1. By equating pTD, which was obtained

by considerations based on thermodynamics, and pSP, which followed from an exact

relation from scaled-particle theory, we have shown that the PY pressure pPY is the

only mixture equation of state which guarantees full consistency of the two routes.

The deviation of pPY from simulation data is thus due to the fact that we have lim-

ited ourselves to the set of the weighted densities n0, . . . , n3 (neglecting the vectorial

weighted densities which do not contribute in the bulk fluid) as variables of the excess

free energy density Φ3D. With the “complete” (but unknown) set of variables, the

requirement pTD = pSP would lead to the exact equation of state. Having only the

variables n0, . . . , n3 at hand, we can never reach perfect consistency between pTD and

pSP for any equation of state other than pPY. Therefore, we shall base our following

calculations, in which we seek to generalize pCS to mixtures, on the requirement of

maximizing consistency between the two results for the pressure under the constraint

that pCS is recovered in the case of a pure (i.e. one-component) fluid. It will turn

out that demanding consistency up to different orders in the particle density yields

different mixture equations of state, the quality of which increases with increasing

consistency.

Considering that for the fluid mixture the weighted density n3 plays the role of the

total packing fraction (which is denoted η for the pure fluid) it is instructive to bring

Eq. (3.17) to a common denominator such that it can be compared with Eq. (3.19).

The PY equation of state then reads

βpPY =
n0 + n1n2 + 1

12π
n3

2 − (2n0 + n1n2)n3 + n0n
2
3

(1− n3)3
. (3.20)

In order to make the analogy with Eq. (3.19) clearer, it should be kept in mind that

the weighted density n0 in the mixture corresponds to the particle density ρ of the
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pure fluid. This explains why the numerator in Eq. (3.19) starts with 1 while it starts

with n0 in Eq. (3.20) (note that Eq. (3.19) has been divided by ρ).

The key idea of our derivation is to consider the numerator of Eq. (3.20) as

the starting point for a systematic expansion in powers of n3 (which is the sole

dimensionless weighted density) with coefficients that are linear combinations of n0,

n1n2 and n3
2 (which have the dimension of βp). For the purpose of our derivation,

the expansion is pursued up to third order, i.e. as the most general ansatz for the

mixture equation of state we use

βp
(3)
TD =

{

n0 + n1n2 + 1
12π

n3
2 −

(

2n0 + n1n2 + c1n
3
2

)

n3 +
(

n0 + b2n1n2 + c2n
3
2

)

n2
3

+
(

a3n0 + b3n1n2 + c3n
3
2

)

n3
3

}/

(1− n3)
3 . (3.21)

In order to simplify the following expressions, we make two preliminary remarks

on the coefficients. Since p
(3)
TD is intended to be a generalization to mixtures of the CS

equation of state, Eq. (3.19), we require that it reduces to pCS in the case of a one-

component fluid. This condition implies immediately that c3 = 0 as the corresponding

term is∝ ρ6, whereas the highest power in the numerator of pCS is∝ ρ4. It also follows

that b3 = −12πc2 in order to assure that the terms ∝ ρ5 in the numerator of p
(3)
TD

compensate.

For additional conditions on the unknown constants in Eq. (3.21) we now turn to

the excess free energy density Φ(3) which corresponds to p
(3)
TD by solving the differential

equation (3.10) (omitting the vectorial weighted densities) with pTD
.
= p

(3)
TD. Again,

the solution is obtained using the ansatz Φ(3) = f1(n3)n0 +f2(n3)n1n2 +f4(n3)n
3
2 and

choosing integration constants such that the additional part to ΦRF is at least of forth

order in the densities ρi as ρi → 0. This assures that the low-density behavior of

ΦRF, which for the pure fluid is exact up to third order in the density, is not affected.

We obtain

Φ(3) = ΦRF + φ4(n3)
(

−c1n
3
2n3 + b2n1n2n

2
3 + a3n0n

3
3

)

+ φ5(n3)c2

(

n3
2n

2
3 − 12πn1n2n

3
3

)

(3.22)

where

φ4(n3) =
3
2
n2

3 − n3 − (1− n3)
2 ln(1− n3)

n3
3(1− n3)2

=
1

3
+

3

4
n3 +O(n2

3) (3.23)

and

φ5(n3) =
9
2
n2

3 − n3
3 − 3n3 − 3(1− n3)2 ln(1− n3)

n4
3(1− n3)2

=
1

4
+

3

5
n3 +O(n2

3) . (3.24)

In the following, we will examine the consistency of Φ(3) with the scaled-particle

theory relation for the pressure pSP [Eq. (3.13)] while pursuing the n3-expansion of

the numerator of Eq. (3.21) to increasing orders.
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First order n3-expansion

In the case of a first order expansion in n3, the pressure p
(1)
TD and the excess free

energy density Φ(1) are obtained from the general expressions, Eqs. (3.21) and (3.22),

by setting b2 = c2 = a3 = b3 = c3 = 0. The remaining free parameter c1 can be

determined from the condition that p
(1)
TD has to reduce to pCS for the one-component

fluid. We find c1 = 1/(36π). The resulting expression for p
(1)
TD is precisely the Boubĺık-

Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state [80, 81]

βp
(1)
TD = βpPY −

n3
2n3

36π(1− n3)3
≡ βpBMCSL . (3.25)

It is interesting to note that pBMCSL, which originally was obtained from an em-

pirical mixing of two thirds of the PY compressibility equation of state with one third

of the PY virial pressure, can also be derived within the present framework although

the latter does not require the analytical solution of the PY integral equation for the

hard-sphere fluid as an input.

The degree of consistency of the scaled-particle theory relation Eq. (3.13) with

the pressure p
(1)
TD can be inferred by expanding p

(1)
TD and p

(1)
SP = β−1∂Φ(1)/∂n3, as they

figure for the one-component fluid, in powers of η = n3:

βp
(1)
TD

ρ
= 1 + 4η + 10η2 + 18η3 + 28η4 + 40η5 + 54η6 + · · · (3.26)

βp
(1)
SP

ρ
= 1 + 4η + 9.67η2 + 17.50η3 + 27.40η4 + 39.33η5 + 53.29η6 + · · · . (3.27)

Second order n3-expansion

The pressure p
(2)
TD and the excess free energy density Φ(2) in the second order expansion

in n3 can be obtained from Eqs. (3.21) and (3.22) by setting the constants a3 = b3 =

c3 = 0. In order to assure that p
(2)
TD reduces to the CS pressure for the pure fluid there

are constraints on c1, c2 and b2. First, c2 has to vanish since the corresponding term is

the only term ∝ ρ5 and therefore cannot be compensated (note that in the numerator

of pCS [cf. Eq. (3.19)] the density occurs only up to order four). In addition, c1 and

b2 must obey the relation 36πc1 − 3b2 = 1. The remaining degree of freedom can be

used in order to increase the degree of consistency between p
(2)
TD from Eq. (3.21) and

p
(2)
SP from Eq. (3.13). By evaluating p

(2)
SP for the one-component fluid we obtain

βp
(2)
SP

ρ
=

1

ρ

∂Φ(2)

∂n3
= 1 + 4η + (10 + 2b2 − 12πc1) η2 +

(

19 + 27
4
b2 − 54πc1

)

η3 + · · · ,

(3.28)
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which results in a second relation between c1 and b2, namely b2 − 6πc1 = 0, in order

to enforce consistency of p
(2)
SP with p

(2)
TD up to the quadratic η term (the coefficient

of which must amount to 10). Both conditions on c1 and b2 are satisfied by setting

c1 = 1/(18π) and b2 = 1/3. Interestingly, the resulting equation of state is the

so-called extended CS (eCS) equation of state

βp(2) = βpPY −
n3

2n3

18π(1− n3)3
+

n1n2n
2
3

3(1− n3)3
≡ βpeCS, (3.29)

which has been introduced by Santos et al. [82] and which was found to be slightly

more accurate, when compared to data from computer simulations, than the BM-

CSL equation of state. The eCS equation of state was obtained by the use of an

extrapolation formula for the contact value of the radial distribution function of the

one-component fluid towards mixtures. From this formula for the contact values,

which was inspired by the analytic solution of the PY equation, a corresponding

equation of state can be derived. When substantiated with the CS result for the one-

component fluid the method outputs the eCS equation of state. It is striking to see

that our present approach is able to yield within a unifying framework the BMCSL

and the eCS equation of state, which where derived previously by obviously different

techniques.

For the above choice of parameters, consistency of p
(2)
TD and p

(2)
SP up to the term

∝ η2 in the case of the one-component fluid can be seen from the expansions

βp
(2)
TD

ρ
= 1 + 4η + 10η2 + 18η3 + 28η4 + 40η5 + 54η6 + · · · (3.30)

βp
(2)
SP

ρ
= 1 + 4η + 10η2 + 18.25η3 + 28.60η4 + 41.00η5 + 55.43η6 + · · · . (3.31)

Third order n3-expansion

The third order expansion in n3 for the pressure p
(3)
TD and the excess free energy

density Φ(3) are given by Eqs. (3.21) and (3.22) with c3 = 0 and b3 = −12πc2. In

addition, a3 = 36πc1 − 3b2 − 1 is required in order to ensure that p
(3)
TD = pCS for

the one-component fluid. It turns out that for b2 = 24πc1 − 1 and c2 = 1/(36π)

the description of the one-component fluid (ocf) through the equation of state p
(3)
TD

[Eq. (3.21)] is fully consistent with the scaled-particle theory relation [Eq. (3.13)], i.e.

we have
(

p
(3)
TD

)

ocf
=

(

p
(3)
SP

)

ocf
with βp

(3)
SP =

∂Φ(3)

∂n3

. (3.32)

Note, however, that the equality does not hold for mixtures, i.e. in terms of the

weighted densities n0, . . . , n3.
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One of the parameters c1, b2 and a3 can still be chosen freely. It seems natural

to attempt to extend the requirement of consistency between p
(3)
TD and p

(3)
SP to binary

mixtures in a first step. However, the virial expansions of p
(3)
TD and p

(3)
SP show that there

is no suitable choice of the parameters which could increase the degree of consistency

for the binary mixture. On the other hand, a3 can be chosen such that the exact

low-density result for the surface tension [83] is reproduced (see also the section below

where we compare the equations of state with simulation data). The corresponding

equation of state, however, performs worse than the BMCSL and eCS equations of

state. Therefore, we set a3 = 0 for the simplicity of the resulting equation of state

and find our choice justified a posteriori by the agreement with simulation data. An

additional argument for choosing a3 = 0 can be provided by considering the FMT

density functional which implements p
(3)
TD (see Section 3.3) in the limit of a zero

dimensional cavity (cf. Ref. [84]). It can be shown that a3 = 0 guarantees that in the

zero dimensional limit the exact free energy is recovered. The whole set of parameters

then reads: c1 = 1/(18π), b2 = 1/3, c2 = 1/(36π), a3 = 0, b3 = −1/3 and c3 = 0.

Accordingly, the pressure arising from the third order expansion is related to the eCS

formula by

βp
(3)
TD = βpeCS +

n3
2n

2
3

36π(1− n3)3
−

n1n2n
3
3

3(1− n3)3
, (3.33)

and can be written in a simple compact form:

βp
(3)
TD =

n0

1− n3
+

n1n2

(

1 + 1
3
n2

3

)

(1− n3)2
+

n3
2

(

1− 2
3
n3 + 1

3
n2

3

)

12π(1− n3)3
. (3.34)

Comparison with simulation data

In Table 3.1 we compare the compressibility z = βp/ρ of binary hard-sphere mixtures

obtained by computer simulations to those calculated from pBMCSL, peCS and the new

equation of state p
(3)
TD. First we note that the BMCSL equation of state has a general

tendency to slightly underestimate the pressure. At closer examination, the eCS

equation of state tends to systematically overestimate the pressure slightly. This

becomes most visible in the data for η = 0.45 or η = 0.49. While it is fair to say that

all three equations are in good agreement with the simulations for binary mixtures,

we find that the pressure p
(3)
TD derived in this work is always between pBMCSL and

peCS and describes the numerical data most reliably. This is substantiated by the

fact that the deviation of z
(3)
TD from the simulation data is always below five times the

error of the simulation data whereas zBMCSL and zeCS deviate by about ten times the

numerical error for several data points.

The small systematic deviations of pBMCSL and peCS which show up for the binary

mixtures are more pronounced in the case of ternary mixtures [87]. This led the
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Table 3.1: Compressibility z = βp/ρ for binary hard-sphere mixtures from simulations

and the deviations of βpBMSCL/ρ, βpeCS/ρ and βp
(3)
TD/ρ from the simulation data.

The data for radii R2/R1 = 0.3 are taken from Ref. [85] and for R2/R1 = 1
3

and

R2/R1 = 0.5 from Ref. [86]. The number densities of the components are ρ1 = x1ρ

and ρ2 = (1− x1)ρ. η is the total packing fraction. The connection to the weighted

densities is established via the relations ρ = n0 and η = n3.

x1 η z ∆zBMCSL ∆zeCS ∆z
(3)
TD

R2/R1 = 0.3
0.0625 0.40 4.410± 0.003 −0.035 0.013 −0.006

0.45 5.722± 0.005 −0.063 0.027 −0.013
0.49 7.158± 0.007 −0.081 0.065 −0.007

0.125 0.40 4.204± 0.003 −0.029 0.015 −0.003
0.45 5.421± 0.004 −0.044 0.038 0.001
0.49 6.773± 0.006 −0.070 0.061 −0.003

0.25 0.40 4.396± 0.003 −0.025 0.010 −0.004
0.45 5.704± 0.004 −0.035 0.030 0.001
0.49 7.160± 0.005 −0.054 0.052 0.000

0.50 0.40 5.176± 0.003 −0.027 −0.005 −0.014
0.45 6.831± 0.003 −0.029 0.013 −0.006
0.49 8.691± 0.004 −0.042 0.025 −0.008

0.75 0.40 6.045± 0.003 −0.021 −0.010 −0.014
0.45 8.097± 0.003 −0.022 −0.002 −0.011
0.49 10.415± 0.006 −0.037 −0.004 −0.021

R2/R1 = 1
3

0.25 0.35 3.613± 0.002 −0.016 0.003 −0.004
0.40 4.615± 0.002 −0.024 0.012 −0.003
0.45 6.006± 0.004 −0.020 0.045 0.016

0.50 0.35 4.083± 0.002 −0.016 −0.004 −0.008
0.40 5.294± 0.002 −0.018 0.005 −0.005
0.45 6.994± 0.004 −0.009 0.033 0.014

0.75 0.35 4.638± 0.002 −0.013 −0.007 −0.009
0.40 6.099± 0.003 −0.015 −0.004 −0.008
0.45 8.159± 0.005 0.002 0.023 0.013

R2/R1 = 0.5
0.25 0.35 4.370± 0.002 −0.017 −0.003 −0.008

0.40 5.702± 0.003 −0.019 0.007 −0.004
0.45 7.590± 0.004 −0.022 0.025 0.004

0.50 0.35 4.536± 0.002 −0.014 −0.005 −0.008
0.40 5.957± 0.005 −0.027 −0.008 −0.016
0.45 7.942± 0.004 −0.010 0.024 0.009

0.75 0.35 4.852± 0.002 −0.013 −0.008 −0.010
0.40 6.409± 0.003 −0.016 −0.007 −0.011
0.45 8.623± 0.005 −0.016 0.001 −0.007
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Table 3.2: The excess chemical potentials µex
i of small, medium and large spheres in

ternary hard-sphere mixtures as obtained in simulations [87]. The deviations from

the simulation data of the excess chemical potentials according to the BMCSL, eCS,

and the new equation of state [Eq. (3.34)] are shown. The size ratios are R2/R1 = 2

and R3/R1 = 3. The following compositions are considered: (a) x1 = 0.70, x2 = 0.20,

x3 = 0.10; (b) x1 = 0.60, x2 = 0.20, x3 = 0.20; (c) x1 = 0.85, x2 = 0.05, x3 = 0.10.

Size η µex
i ∆µex

BMCSL ∆µex
eCS ∆µ

(3), ex
TD

Composition (a)
small 0.40 2.86± 0.02 −0.02 0.00 −0.01

0.45 3.68± 0.04 −0.02 0.01 0.00
0.49 4.51± 0.05 −0.01 0.04 0.02

medium 0.40 9.52± 0.06 −0.05 0.01 −0.01
0.45 12.87± 0.07 −0.07 0.04 −0.01
0.49 16.48± 0.07 −0.07 0.10 0.01

large 0.40 22.88± 0.07 −0.11 0.08 0.01
0.45 31.69± 0.03 −0.18 0.18 0.02
0.49 41.44± 0.06 −0.25 0.34 0.05

Composition (b)
small 0.40 2.36± 0.01 −0.01 0.01 0.00

0.45 3.03± 0.01 −0.02 0.00 −0.01
0.49 3.68± 0.03 −0.01 0.03 0.01

medium 0.40 7.26± 0.06 −0.02 0.01 0.00
0.45 9.77± 0.04 −0.07 0.00 −0.03
0.49 12.41± 0.06 −0.06 0.04 −0.01

large 0.40 16.80± 0.03 −0.08 0.03 −0.01
0.45 23.13± 0.05 −0.14 0.07 −0.03
0.49 30.05± 0.07 −0.16 0.17 0.01

Composition (c)
small 0.40 3.05± 0.03 −0.02 0.01 0.00

0.45 3.95± 0.05 −0.03 0.01 −0.01
0.49 4.84± 0.04 −0.02 0.04 0.02

medium 0.40 10.54± 0.06 −0.05 0.03 0.00
0.45 14.26± 0.07 −0.09 0.07 0.00
0.49 18.26± 0.07 −0.10 0.15 0.03

large 0.40 25.81± 0.03 −0.15 0.14 0.02
0.45 35.67± 0.08 −0.23 0.31 0.07
0.49 46.58± 0.07 −0.32 0.54 0.12
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authors of Ref. [87] to speculate that an arithmetic average of the BMCSL and

eCS equations of state would lead to improved results. The interpolation between

BMCSL and eCS pressures is realized by the equation of state p
(3)
TD through physically

motivated concepts, rather than just by an empirical fitting to numerical data. In

Table 3.2 we show simulation data for the excess chemical potentials µex
i with i =

s, m, l for the small, medium, and large spheres in ternary mixtures together with the

deviations of the chemical potentials as obtained from the three equations of state

according to Eq. (3.12). The quality of the new equation of state p
(3)
TD, Eq. (3.34),

is clearly visible from the excellent agreement with the numerical data. Except for

one data point, the deviation is always within the statistical error while the pressures

pBMCSL and peCS are systematically in error.

After the comparison with simulation data concerning the homogeneous bulk fluid

(pressure, excess chemical potential) we now turn to properties of the one-component

bulk fluid in the presence of an inhomogeneity which is caused by the presence of a

planar hard wall. Thermodynamic quantities which are of interest in this setup are

the wall-fluid surface tension and the excess adsorption. The surface tension can be

calculated following Ref. [88]. The authors consider a homogeneous hard-sphere fluid

into which a single big hard sphere of radius Rb is inserted. The change in grand

potential due to the insertion of the big sphere is described by its excess chemical

potential. Considering Eq. (3.12) in the limit of Rb → ∞ it becomes clear that in

addition to the expression from scaled-particle theory, Eq. (3.13), which identifies

the pressure with ∂Φ3D/∂n3, it is also possible to give a physical meaning to the

derivative of the excess free energy density Φ3D with respect to the weighted density

n2. One finds that [88]

βσw =
∂Φ3D

∂n2
, (3.35)

is the wall-fluid surface tension of a hard-sphere fluid at a planar hard wall. Note that

the value of the wall-fluid surface tension depends on the definition of the dividing

interface. By construction, Eq. (3.35) chooses the dividing interface to be the physical

wall, which is the reason for choosing the index w. In order to be able to compare

this prediction to other results, it is useful to also specify the surface tension σ with

respect to the dividing surface which limits the space which is accessible to the centers

of the hard spheres. This surface lies parallel to the physical wall at a distance R

(hard-sphere radius) and hence it follows from the definition of σ (for details see

Section 5.1) that

βσ =
∂Φ3D

∂n2
− R

∂Φ3D

∂n3
. (3.36)

From the different approximations of the excess free energy density Φ3D = Φ(i),
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i = 1, . . . , 3, considered above, we can calculate the corresponding approximations for

the wall-fluid surface tension, which we denote by σ(1), σ(2) and σ(3). To be concise,

we give the explicit expression only for σ(3):

βσ(3)

Rρ
= −

1 + 2η + 8η2 − 5η3

3(1− η)3 −
ln(1− η)

3 η
. (3.37)

Here ρ and η are the hard-sphere fluid particle number density and packing fraction,

respectively. For the surface tension of the hard-sphere fluid there exists an empirical

expression,
βσHP

Rρ
= −

3

2
η

1 + 44
35

η − 4
5
η2

(1− η)3
, (3.38)

by Henderson and Plischke [89], which is often quoted as a quasi-exact description

of the wall-fluid surface tension and which was obtained by fitting to data from

molecular dynamics (MD) simulations [90]. In order to compare our result with σHP

we consider the expansion

−
2

3

(1− η)3

η

βσ(3)

Rρ
= 1 +

37

27
η −

19

18
η2 +

1

90
η3 +

1

270
η4 +

1

630
η5 + · · · . (3.39)

The smallness of the contributions from third and higher order terms leads us to

define the following approximation to σ(3):

βσ̃(3)

Rρ
= −

3

2
η

1 + 37
27

η − 19
18

η2

(1− η)3
, (3.40)

which confirms the empirical form of the Henderson-Plischke surface tension although

the numerical coefficients in σHP and σ̃(3) are clearly different. Note that the coeffi-

cient 44/35 in the Henderson-Plischke expression is imposed if one requires to recover

the exact low-density limit [83]. This limit can also be achieved on the level of the

third order n3-expansion by choosing a3 = 107/70 instead of a3 = 0. This choice,

however, would significantly worsen the equation of state p
(3)
TD as we checked by com-

parison with the pressure and excess chemical potential from simulations of the binary

and ternary mixture.

An examination of the different expressions for σ, which we plot in Fig. 3.1, shows

that σ(3) (and its approximation σ̃(3)) deviate from σHP by at most 1%. For high values

of η the relative deviation is even less than 0.5%. In contrast, the deviation of σ(1) and

σ(2) from σHP grows with increasing packing fraction and reaches 4.75% and 2.75%,

respectively, at η = 0.494. Actually, due to the scatter and error bars in the available

MD [90]1 and Monte-Carlo (MC) [91] simulation data for the surface tension it is

1The error bars for the surface tension as given in Ref. [90] are too large by a factor of 3

(J.R. Henderson, private communication). We have corrected this error for the data shown in

Fig. 3.1.
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Figure 3.1: Absolute deviation of the various expressions for the wall-fluid surface

tension σ from the empirical fit σHP by Henderson and Plischke [89] as a function

of the hard-sphere packing fraction η. σ(1) and σ(2) are calculated from the BMCSL

and eCS equations of state, σ(3) from the new equation of state [Eq. (3.34)]. Circles

denote MD data from Ref. [90], while squares denote MC data from Ref. [91]. Using

the CS equation of state, the MC data have been converted to the definition of the

dividing interface as it is common in scaled-particle theory [92].

impossible to decide whether σHP or σ(3) is more accurate at high densities. In the

low-density regime σHP, which is exact up to third order in η, yields a more accurate

description than σ(3).

Another quantity studied in simulations is the excess adsorption Γ at a planar

wall which is defined as the excess (over bulk) number of adsorbed particles per unit

surface. It is calculated according to

Γ =

∞
∫

0

dz(ρ(z) − ρb) , (3.41)

where z = −R corresponds to the location of the physical wall, ρ(z) is the equilibrium

density profile, and ρb denotes the density in the bulk. In the case of a planar hard

wall, Γ can be calculated from Gibbs’ adsorption theorem:

Γ = −

(

∂σ

∂µ

)

T,V

. (3.42)
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Figure 3.2: Absolute deviation for the planar wall excess adsorption Γ from the

empirical result ΓHP according to Ref. [89] as a function of the packing fraction η.

Γ(1) and Γ(2) were obtained from the BMCSL and eCS equations of state, Γ(3) from

the new equation of state [Eq. (3.34)]. The circles denote MD simulation data from

Ref. [90].

In Fig. 3.2 we compare the results for Γ as obtained from the surface tensions

σ(1), σ(2), and σ(3) with the result ΓHP, calculated from the empirical σHP. Again, the

comparison to MD simulation data [90] does not allow one to decide whether ΓHP

or Γ(3) is more accurate. The conclusion which can be drawn from the study of Γ is

that both expressions are more accurate than Γ(1) and Γ(2). This can be stated since

the error bars for Γ are smaller than the deviations between the various expressions

which was not the case for the results for the surface tension σ considered in Fig. 3.1.

For large packing fractions η . 0.494 the relative deviation from ΓHP is about 5.0%

for Γ(1), 2.5% for Γ(2) and 1.0% for Γ(3).

Summary

We have introduced an expansion of the equation of state for the hard-sphere mix-

ture in powers of the total packing fraction n3 with prefactors depending on the

weighted densities n0, n1 and n2 [see Eq. (3.11)]. We consider the first three orders

of the expansion and determine the coefficients by maximizing the consistency of

the respective equation of state with an exact relation from scaled-particle theory



3.3. Density functional based on the new equation of state 47

[Eq. (3.13)]. Additionally, we require that the CS equation of state [Eq. (3.19)] is

recovered in the limiting case of a one-component fluid. The first and second order

results that follow unambiguously from the method turn out to be the BMCSL and

eCS equations of state [Eqs. (3.25) and (3.29)] which are two results frequently used

for the hard-sphere mixture which have the merit of being both simple and accu-

rate. The third order expansion leads us to the definition of a new equation of state

[Eq. (3.34)] which possesses the nice property of being fully consistent with scaled

particle theory in the case of the one-component fluid. Moreover, we find by com-

paring with simulation data for binary and ternary mixtures that the new equation

of state is more accurate than the BMCSL and eCS results.

Besides the equations of state, we have derived expressions for the bulk excess

free energy density belonging to the different orders of the expansion. These lead

to results for the wall-fluid surface tension and excess adsorption of a hard-sphere

fluid at a planar hard wall which we compare to simulation data. We have shown

that the quantities calculated from the new equation of state [Eq. (3.34)] are close to

a previous empirical result [89] which is often quoted as quasi-exact. The available

simulation data, however, do not allow to decide which of the two descriptions is

more accurate.

In the next section we shall implement the new equation of state p
(3)
TD into the

context of FMT for the inhomogeneous hard-sphere fluid the basics of which we have

introduced in Section 3.1. As p
(3)
TD can be written as a function of the weighted den-

sities n0, . . . , n3 it is possible to follow the lines of Refs. [25] and [26] for the setup

of a FMT based density functional. Moreover, the new excess free energy density

Φ(3) will prove useful for investigations within the context of morphological thermo-

dynamics [93, 94] which we undertake in Chapter 5 where we use several quantities

derived from Φ(3) for the calculation of solvation free energies of a model protein.

3.3 Density functional based on the new equation

of state

We have seen in Section 3.1 that FMT provides a context in which a free energy

for the inhomogeneous hard-sphere fluid can be derived from a minimal number of

prerequisites. These are (i) the exact low-density limit of the excess free energy from

which upon close inspection the building blocks of the FMT, namely the weighted

densities nα [Eq. (3.8) with Eq. (3.5)], could be identified; (ii) the expression for the

pressure pTD [Eq. (3.10)] as it follows from thermodynamics assuming that the excess

free energy density Φ3D is a function only of the weighted densities; and (iii) an exact
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relation for the pressure pSP [Eq. (3.13)] from scaled-particle theory as it follows from

considerations concerning the reversible work which is required in order to insert a

large sphere into a given hard-sphere fluid mixture (composed of smaller spheres).

We have shown that requiring pTD and pSP to be equal for all possible hard-sphere

mixtures leads to the PY compressibility equation of state [73]. This finding, which

goes back to the work of Rosenfeld [22, 66], is remarkable insofar as none of the PY

results serves as an input for the derivation of the FMT free energy and no use of the

PY integral equation is made. The PY equation of state, however, does not yield an

accurate description of the fluid in the high density regime. This has motivated our

efforts in generalizing the very accurate and nonetheless simple CS equation of state

[Eq. (3.19)] to hard-sphere mixtures. Understandably, efforts have been undertaken

in order to combine the merits of FMT, which provides the appropriate tools for the

treatment of inhomogeneous hard-sphere fluids, with the high accuracy of CS-based

mixture equations of state.

Some years ago, Roth et al. [25] and Yu and Wu [26] have incorporated the

pressure pBMCSL into FMT. They use the fact that pBMCSL is a function of the weighted

densities n0, . . . , n3. This allows one to solve the differential equation for the excess

free energy Φ3D = ΦWB which is obtained by equating pBMCSL and the thermodynamic

expression pTD as given in Eq. (3.10). Note that for the implementation of this

approach a bulk fluid mixture is considered for which the vectorial weighted densities

vanish. Hence, the solution of the resulting differential equation is obtained by using

the dimensional ansatz Eq. (3.15) without the vectorial contributions. For this ansatz

there is a unique solution if two additional requirements are made: (i) the result

ΦWB must be compatible with the low-density limit Eq. (3.7) and (ii) for the pure

hard-sphere fluid the third virial coefficient must be recovered. Unlike in Rosenfeld’s

derivation of ΦRF the vectorial contributions have to be incorporated at a later stage.

In analogy to ΦRF the substitutions n1n2 → n1n2 −
−→n1
−→n2 and n3

2 → n3
2 − 3n2

−→n2
−→n2

are made in ΦWB. The resulting functional ΦWB is called the White-Bear version of

FMT [25]. In virtue of these substitutions, ΦWB has the correct low-density limit

Eq. (3.7) and the regularity of the pair direct correlation function for r → 0 is

guaranteed.

The White-Bear version of FMT has been shown to inherit all the good properties

of Rosenfeld’s FMT for the description of the inhomogeneous hard-sphere fluid and

to improve the predictions of thermodynamic quantities due to the more accurate

underlying equation of state. This becomes particularly apparent in the contact

densities at a hard wall which equal βp according to a sum rule (for a comparison with

simulation data see, e.g., Ref. [95]). Moreover, one finds that the prediction of the
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freezing transition of the pure hard-sphere system agrees very well with simulations

[25]. A drawback of ΦWB is, however, that the scaled-particle relation Eq. (3.13) is

violated, i.e. one finds that ∂ΦWB/∂n3 6= pBMCSL. This is of course not surprising

as the equality pTD = pSP unambiguously leads to Rosenfeld’s expression ΦRF, if

we assume that the free energy density is a function only of the weighted densities

n0, . . . , n3, and −→n1 and −→n2. Despite this inconsistency of the White-Bear version,

the quality of the resulting density distributions is high [96]. However, analytical

results obtained from the free energy density ΦWB within the context of morphological

thermodynamics are affected [97].

We conclude that there is some room for improvement with respect to the self-

consistency of the free energy density. The basis for this improvement is the new

equation of state p
(3)
TD [Eq. (3.34)] which we have derived in Section 3.2 and which, like

the BMCSL equation of state, generalizes the CS pressure to hard-sphere mixtures.

By following the recipe for the derivation of the original White-Bear version [25,26],

described above, we calculate a new functional based on the pressure p
(3)
TD:

ΦWBII = −n0 ln(1− n3) +
(

1 + 1
9
n2

3φ2(n3)
)n1n2 −

−→n1
−→n2

1− n3

+
(

1− 4
9
n3φ3(n3)

) n3
2 − 3n2

−→n2
−→n2

24π(1− n3)2
(3.43)

with

φ2(n3) =
(

6n3 − 3n2
3 + 6(1− n3) ln(1− n3)

) /

n3
3 = 1 + 1

2
n3 +O(n2

3) ,

φ3(n3) =
(

6n3 − 9n2
3 + 6n3

3 + 6(1− n3)2 ln(1− n3)
) /

(4n3
3) = 1− 1

8
n3 +O(n2

3) .

(3.44)

The new functional improves upon the White Bear version of FMT, as we shall show

in Section 5.1 within the context of morphological thermodynamics. The index WBII

is chosen to indicate that the new functional is Mark II of the White Bear functional.

Note that in the bulk fluid, where the vectorial weighted densities vanish, ΦWBII

reduces to Φ(3) from Eq. (3.22) with the numerical coefficients which correspond to

the pressure p
(3)
TD.

For comparison we mention that in the above notation the original White-Bear

functional ΦWB is recovered with φWB
2 (n3) ≡ 0 and

φWB
3 (n3) =

(

9n2
3 − 6n3 − 6(1− n3)2 ln(1− n3)

) /

(4n3
3) = 1

2
+ 1

8
n3 +O(n2

3) . (3.45)

We have compared predictions of our new version of FMT with corresponding

results obtained by the original White-Bear version for a pure hard-sphere fluid and

a binary mixture close to a planar hard wall. We have found that the density dis-

tributions resulting from numerical minimization of the functional Eq. (2.26) with
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ΦWB or ΦWBII, respectively, differ very little. For the pure hard-sphere fluid, this

can be expected from the fact that the underlying bulk equation of state is then the

same for both versions of FMT and hence the contact densities at the wall have to be

identical. Comparison with density distributions from Monte-Carlo simulations re-

vealed that the very small deviations of the DFT results from the simulation data are

clearly more significant than the mutual deviations between the two FMT versions.

We conclude that the limitations of FMT-based density functionals cannot be con-

siderably pushed forward by increasing the quality of the underlying bulk equation of

state but are rather determined by the structure of FMT itself, i.e. the set of weight

functions which are employed and hence the restriction to one-center convolutions.

For a discussion of the intrinsic limitations of FMT see Ref. [98]. A slight improve-

ment through the WBII version is indeed found for the description of the pair direct

correlation function as can be inferred from comparison with simulation data.

We shall see in Section 5.1 that one main benefit of the new functional ΦWBII

appears in the context of morphological thermodynamics. There, the self-consistency

of ΦWBII on the level of the pressure, i.e. the equality of pTD from Eq. (3.10) and pSP

from Eq. (3.13) in the case of the pure fluid, is crucial for the accuracy of analytical

expressions obtained within the morphological theory. In order to establish the link

between FMT and morphological thermodynamics, which is based on Hadwiger’s

theorem from integral geometry [23], it is necessary to formulate FMT for fluids

which are composed of hard particles of arbitrary shape. This task is the purpose of

the following Chapter 4.



Chapter 4

General hard-body fluid

In view of our study of the solvation free energy of proteins, which we elaborate

on in Chapter 5, we shall establish a connection between density functional theory

(DFT) of classical fluids [19] and Hadwiger’s theorem from integral geometry [23].

This will lead us to use the concept of morphological thermodynamics presented in

Section 5.1 which allows for very efficient calculations of solvation free energies of

complexly shaped solutes. However, concerning the required DFT background it

turns out that the FMT for hard spheres, which we have presented and developed

further in Chapter 3, is insufficient. Given that solutes with shapes different from

the spherical one are ubiquitous in applications to biological systems there is a need

to extend FMT to fluids which are composed of hard particles with arbitrary shape.

In this chapter we present a FMT for fluids of non-spherical particles and improve

the existing theory.

Besides the applications to biologically inspired problems, where the DFT de-

scribes the fluid on the molecular scale (i.e. the hard particles considered in FMT

correspond to the solvent molecules), a more direct connection between the FMT

and experimental realizations can be established for suspensions of colloidal parti-

cles. There, the colloidal particles (nano or micron sized) are represented by the

hard FMT particles while the (molecular sized) particles of the solvent which con-

tains the colloids are not taken into account explicitly and only act as a medium

which enables the colloids to perform Brownian motion. Colloidal suspensions oc-

cur in many applications and have become an object of extensive theoretical and

experimental studies [99, 100]. With the advance in particle synthesis non-spherical

colloids can be designed, exposing degrees of complexity in shape which range from

silica-coated boehmite rods [101] and gibbsite platelets [102] to conical, triangular,

and diamond-like particles composed of polymerized polystyrene spheres [103]. These

suspensions can display rich phase behavior including isotropic, nematic, and differ-

51
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ent crystalline phases (see, e.g., Ref. [104] for phase diagrams of tobacco mosaic virus

solutions). An even broader phenomenology can be observed in the case of mixtures

of differently shaped colloidal particles (for experiments with rod-sphere mixtures see

Refs. [105,106]), as well as for rods interacting via polymer-induced attraction or for

rods which dimerize (for theoretical and simulational studies of the latter examples

see Refs. [107, 108]).

In many experimental realizations, however, it is possible to prepare the colloids

in a way that their mutual interactions are essentially those of hard bodies [101,102]

such that these systems are entirely governed by entropy. The first study of entropic

effects in systems of non-spherical colloidal particles was undertaken in 1949 by On-

sager who derived the isotropic-nematic phase transition of hard spherocylinders (i.e.

a hard cylinder being capped by two hard hemispheres) from the second order virial

expansion of the excess (over ideal gas) free energy [109]. The theory is assumed to

become exact in the so-called Onsager limit which corresponds to very long sphe-

rocylinders with a length-to-diameter ratio tending to infinity (for a comprehensive

treatment of Onsager’s virial theory see the review [110]). Using a decoupling approx-

imation [111] in which higher order virial coefficients are approximated by recurring

to a suitable reference system (here, the hard-sphere fluid) Onsager’s theory has been

modified by Parsons and Lee [112,113] such that it yields the accurate location of the

isotropic-nematic transition also for short spherocylinders with length-to-diameter

ratios ≈ 3 (see Ref. [114] for a comparison of Onsager, Parsons-Lee, and simulation

results). For a description of the smectic and crystalline phases, however, as well

as for other studies involving the inhomogeneous fluid, e.g., the isotropic-nematic

interface or a nematic fluid anchoring to a surface, it becomes necessary to deal with

particle density distributions which depend both on particle orientations and particle

positions. For the description of these phases a treatment of inhomogeneous systems

is required which can be tackled using DFT. The extention of Onsager’s work to in-

homogeneous fluids started in the late 1980’s with the DFT proposed by Ho lyst and

Poniewierski [115] and a wealth of related DFTs which are also based on the Onsager

limit with some generalized decoupling approximation have emerged subsequently.

These early developments of DFT for general hard bodies have been review by Tara-

zona [116]. For a more recent DFT, a modified weighted-density approximation for

hard spherocylinders, see Ref. [117]. While the early DFTs yield good results for the

properties of inhomogeneous fluids of long rods [118] (as it is expected from the fact

that Onsager theory is accurate then) they perform poorly for short spherocylinders

or at least the interpolation between Onsager’s limit and the underlying DFT for

spherical particles is realized in a rather empirical and eclectic manner as often are
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the DFTs for spherical particles of that time too.

A powerful DFT for the hard-sphere fluid became available with the FMT intro-

duced by Rosenfeld in 1989 (see Ref. [22] and Chapter 3). Subsequently, Rosenfeld

has generalized FMT for arbitrarily shaped hard bodies [29, 30]. However, this orig-

inal non-spherical FMT (onFMT) has the drawback that it does not reproduce the

correct second virial coefficient for the non-isotropic fluid. Even worse, it does not

yield a stable nematic phase for a rod fluid. This failure has understandably triggered

some effort during the last years which was devoted to the construction of modified

FMTs being compatible with the Onsager limit while providing the virtues inherent to

FMT for spheres. The collection of FMTs exhibiting the correct second order virial

expansion (and hence the correct Mayer f -function) includes a FMT for mixtures

of parallel hard cubes [119], a FMT for mixtures of colloidal spheres and infinitely

thin needles [120, 121] and a FMT for the general hard-body fluid [114]. The latter

is, however, not based on one-center convolutions for the weighted densities, which

makes is computationally more demanding. Later, the work from Refs. [120,121] was

extended toward rods of finite thickness (adding one order to the expansion of the

second virial coefficient in terms of the rod thickness) but at the expense of markedly

increasing the total number of weighted densities [122]. Recently, FMTs involving

thin hard platelets have been put forward (see Ref. [123] and references therein).

While in the above work generically new weight functions depending on the prop-

erties of several species (e.g. sphere and needle) are constructed from geometric ar-

guments which apply only in certain limiting cases (e.g. vanishing thickness) in this

chapter we devise an approach which sets out from the exact expression for the

Mayer f -function of arbitrary hard bodies, formulated in terms of appropriate inte-

grals extending over the surface of intersections of hard bodies. Using this expression,

as in Rosenfeld’s FMT [22], we construct a deconvolution of the Mayer f -function

which becomes exact if an infinite number of (tensorial) one-center weight functions,

depending each on the properties of only one species of the fluid components, is em-

ployed. The FMT which we suggest adds two tensorial weighted densities to those of

onFMT [29,30] one of which has already been used in the context of FMT for hard-

sphere crystals [77] and a new one which is non-zero only for non-spherical particles.

As a consequence, our theory reduces to the former FMTs for spheres [22, 77] while

it cures one major defect of onFMT as it leads to a stable nematic phase.

This chapter starts with a presentation of Rosenfeld’s onFMT (Section 4.1.1)

which we keep rather short as onFMT is based on the notions which have been al-

ready introduced in Chapter 3 where we have discussed Rosenfeld’s FMT for hard

spheres. This is followed by the calculation of an appropriate expression of the Mayer
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f -function which is based on the Gauss-Bonnet formula (Section 4.1.2) and which is

deconvoluted using a suitable approximation (Section 4.1.3). In Section 4.1.4 the

approximate deconvolution serves as a basis for the construction of a new excess free

energy functional for the hard-body fluid which we refer to as extended-deconvolution

FMT (edFMT). In this context we also make reference to the concept of multicavity

expansions which allows us to establish the connection of the extended deconvolu-

tion with Tarazona’s functional for the hard-sphere crystal [77]. The two following

sections are devoted to applications of edFMT to the hard-spherocylinder fluid. In

Section 4.2.1 we study the ability of edFMT to describe the isotropic-nematic tran-

sition. In Section 4.2.2 we test the onFMT and edFMT predictions for the density

profiles of the isotropic hard-spherocylinder fluid in contact with a hard planar wall

by comparison with data from Monte-Carlo simulations. Concluding remarks can be

found in Section 4.3.

4.1 Derivation of the new density functional

4.1.1 Rosenfeld’s fundamental measure theory

Rosenfeld’s extention of FMT to arbitrarily shaped hard particles is based on the

observation that the deconvolution Eq. (3.4) of the Mayer f -function for hard spheres

is merely a special case of the Gauss-Bonnet theorem, which we shall introduce in

Section 4.1.2. This alternative interpretation of the deconvolution allows for replacing

the radius Ri appearing in some of the hard-sphere weight functions by the local

mean and Gaussian curvatures which are also meaningful for non-spherical surfaces

and reduce to 1/Ri and 1/R2
i , respectively, in the case of spheres. The description

is completed by generalizing r/|r| in the vectorial weight functions to the outward

surface normal of the arbitrarily shaped particle and adapting the Θ- and δ-functions

to the non-spherical shape. To this end we parametrize a given hard body Bi with

respect to some reference point Ci, e.g., the center of mass of Bi. This is achieved

by the vector Ri(r̂) which points from Ci to the point on the surface of Bi which

lies in the direction of the unit vector r̂ = r/|r| (see Fig. 4.1). Obviously, such a

parametrization is possible only for convex Bi. Note, however, that this restriction

is a consequence of the concern about a transparent notation alone. With some

straightforward generalization, the following expressions can also be used for non-

convex particles. We are now prepared to introduce Rosenfeld’s proposal for the

weight functions for non-spherical particles1 [29, 30]:

1It should be noted that the weight functions involving δ-functions contain a factor (ni(r̂)r̂)
−1

which does not appear in Rosenfeld’s original proposal [29,30]. This factor, which is a consequence
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Figure 4.1: Parametrization of a convex body Bi via Ri(r̂). The vector Ri(r̂) connects

the reference point Ci of Bi with the point of the surface ∂Bi which lies in the direction

of the unit vector r̂. The surface point is characterized by its surface normal ni(r̂) as

well as its mean curvature Hi(r̂) and its Gaussian curvature Ki(r̂).
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(4.1)

Here ni(r̂) denotes the outward normal to the surface of Bi at the surface point in-

dicated by r̂. The mean and Gaussian curvature at that surface point are denoted

by Hi(r̂) and Ki(r̂), respectively. They are obtained from the local principal cur-

vatures κI
i and κII

i according to Hi = 1
2
(κI

i + κII
i ) and Ki = κI

i κ
II
i . For spheres,

κI
i = κII

i = 1/Ri and therefore the weight functions in Eq. (4.1) reduce to those of

the hard-sphere fluid. Apart from the weight functions, the free energy model for non-

spherical particles is identical to that for the hard spheres, i.e. the weighted densities

are calculated according to Eq. (3.8) and the excess free energy density is given by

of parametrizing Bi by Ri(r̂), guarantees that the contributions from the surface of Bi are weighted

according to the surface area (for a related calculation see Appendix B).
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Eq. (3.16). We refer to the model (with some slight additional modification which we

discuss in Section 4.1.4) as the original FMT for non-spherical particles (onFMT). It

should be noted that the particle Bi in the above considerations has fixed orientation.

Freely orientating particles are realized in the theory by considering them as differ-

ent components (each of them having a given fixed orientation) of a mixture with

infinitely many components. In virtue of the applicability of FMT to mixtures this is

feasible simply by transforming the summation over the components in Eq. (3.8) into

an integral over the orientations. Along these lines it is of course also possible to treat

a mixture of differently shaped freely orientating particles. Making the dependence

of the weight functions and the density profiles on the particle orientation $ explicit,

the generalization of Eq. (3.8) for the weighted densities reads

nα(r) =

ν
∑

i=1

∫∫

d$dr′ρi(r
′, $)ω

(α)
i (r− r′, $) . (4.2)

The onFMT has several valuable properties. First, in the case of isotropic fluids it

yields the exact result for the second virial coefficient [29,30] and a good approxima-

tion for the third virial coefficient, which, interestingly, is different from the prediction

according to scaled-particle theory [124]. Recently, onFMT has been shown to fit per-

fectly into the context of morphological thermodynamics which allows for an efficient

calculation of free energies of fluids in contact with complexly shaped walls [93].

Moreover, the successful description of structural properties of the inhomogeneous

hard-sphere fluid by FMT makes onFMT a promising tool for investigations of the

general inhomogeneous hard-body fluid. A good performance is expected for parti-

cles with small deviations from sphericity. However, it has been observed that the

theory has severe drawbacks when it is applied to particles with large aspect ratios

such as extended rigid rods. The deconvolution Eq. (3.4) of the Mayer f -function is

no longer exact for general hard bodies, except in special cases such as the parallel

hard ellipsoid fluid which can be related to the hard-sphere system via an anisotropic

mapping [29, 30]. As a consequence, onFMT does not yield the correct low-density

limit, Eq. (3.1), which for the bulk fluid coincides with Onsager theory [109]. The

latter gives an accurate description of very long and thin hard rods, revealing the

presence of a nematic phase at higher densities (see, e.g., Ref. [110]). In this respect,

onFMT fails. This becomes obvious when we consider a bulk fluid where the den-

sity ρ($) = ρf($), with
∫

d$f($) = 1, is a function of the particle orientation $

only. The weighted densities are then obtained as nα =
∫

d$nα($), where nα($) is

the weighted density which takes only the particles with orientation $ into account.

Using Gauss’s divergence theorem, it follows immediately that −→n2($) ≡ 0 for all

$. Thus in the bulk fluid the terms in ΦRF [Eq. (3.16)] involving vectorial weight
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functions do not contribute. The scalar weight functions can obviously be written

as nα($) = ρ($)cα with constants cα which do not depend on $. It follows that

nα = ρcα, which implies that the weighted densities, and hence ΦRF, are independent

of the orientational distribution f($) of the particles. Consequently, onFMT does

not capture the tendency of non-spherical particles to adopt a phase other than the

isotropic one.

Our plan is to remediate this failure by improving the description of the low-

density limit by extending the deconvolution Eq. (3.4) such that contributions aris-

ing from curvature asymmetry are taken into account. To this end we employ two

additional tensorial weight functions. These allow for a modification of the excess

free energy density ΦRF such that it becomes capable of describing a stable nematic

phase. In a first step, we derive a representation of the Mayer f -function in terms of

integrals over the surface of the intersection of two hard bodies.

4.1.2 Exact decomposition of the Mayer f-function fij

Consider two orientated hard bodies Bi and Bj located at ri and rj and denote their

intersection (which depends on the vector rj − ri) by Bi ∩ Bj. Then, in analogy to

the case of hard spheres discussed in Chapter 3, the Mayer f -function fij is given by

fij(rj − ri) =

{

0 if Bi ∩ Bj = ∅

−1 if Bi ∩ Bj 6= ∅
. (4.3)

As it has been observed by Rosenfeld in the derivation of onFMT [29, 30] the

Gauss-Bonnet theorem from differential geometry [31] can be used to rewrite fij in

terms of integrals of the Gaussian curvature K. For a closed curve C with arc-length

s which bounds a simply connected portion S of a surface the Gauss-Bonnet theorem

states that
∫

S

K dA +

∫

C

κg ds = 2π . (4.4)

Here K is the Gaussian curvature of the surface and κg denotes the geodesic curvature

of C on the surface (for the sign convention of κg see Appendix A). In the case where

Bi and Bj are both convex, the surface of the intersection Bi ∩ Bj consist of two

surfaces: ∂Bi ∩ Bj which is contained in Bj and Bi ∩ ∂Bj which is contained in Bi.

The two surfaces are bounded by the same closed curve ∂Bi ∩ ∂Bj . Applying the

Gauss-Bonnet theorem Eq. (4.4) to each bounded surface separately and adding up

the results leads to
∫

∂Bi∩Bj

KidAi +

∫

Bi∩∂Bj

KjdAj +

∫

∂Bi∩∂Bj

(κg
i + κg

j)ds = 4π . (4.5)
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This equation is valid of course only in the cases where Bi ∩ Bj 6= ∅. Otherwise

the l.h.s. of Eq. (4.5) vanishes as the integrations are performed over empty sets.

Thus we can express Eq. (4.3) with the help of the Gauss-Bonnet theorem as follows:

−fij(rj − ri) =

∫

∂Bi∩Bj

Ki

4π
dAi +

∫

Bi∩∂Bj

Kj

4π
dAj +

∫

∂Bi∩∂Bj

κg
i + κg

j

4π
ds (4.6)

=

∫

∂Bi∩Bj

Ki

4π
dAi +

∫

∂Bi∩∂Bj

Hi

4π

ds

|ni × nj|
−

∫

∂Bi∩∂Bj

Hininj

4π

ds

|ni × nj|

−

∫

∂Bi∩∂Bj

∆κi

4π

(vI
i nj)

2 − (vII
i nj)

2

(1 + ninj)

ds

|ni × nj|
+ (i↔ j) . (4.7)

In the last step, we have used the result for κg
i + κg

j [Eq. (A.17)] which we derive

in Appendix A. In the formula (i↔ j) stands for the previous terms with exchanged

indices i and j. Apart from the local mean curvature Hi, the local Gaussian cur-

vature Ki, and the surface normal ni, which we have already introduced above, the

expression involves the deviatoric curvature ∆κi = 1
2
(κI

i −κII
i ), which is a measure for

the deviation from sphericity (∆κi = 0 for spheres). The unit vectors vI
i and vII

i lie

in the tangent plane (i.e. the plane perpendicular to ni) and point into the directions

of the principal curvatures κI
i and κII

i . The directions of principal curvatures are

perpendicular, thus vI
i , vII

i , and ni constitute an orthonormal basis of
� 3.

4.1.3 Properties of an approximate deconvolution of fij

The connection between Eq. (4.7) and the deconvolution Eq. (3.4), which is exact

only for spheres, becomes obvious when we realize that the first three integrals of

Eq. (4.7) can be rewritten as follows:
∫

∂Bi∩Bj

Ki

4π
dAi = ω

(0)
i ⊗ ω

(3)
j , (4.8)

∫

∂Bi∩∂Bj

Hi

4π

ds

|ni × nj|
= ω

(1)
i ⊗ ω

(2)
j , (4.9)

∫

∂Bi∩∂Bj

Hininj

4π

ds

|ni × nj|
= −→ω

(1)
i ⊗

−→ω
(2)
j . (4.10)

The calculations concerning the latter two equalities are carried out in Appendix B.

However, the last integral in Eq. (4.7),

I∆κ =

∫

∂Bi∩∂Bj

∆κi

4π

(vI
i nj)

2 − (vII
i nj)

2

(1 + ninj)

ds

|ni × nj|
, (4.11)
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cannot be written as a convolution of weight functions depending only on the proper-

ties of one species each. This is obviously a consequence of the fact that the integrand

(without the factor |ni × nj|
−1) is no longer a polynomial in the components of unit

vectors. One can, however, expand the integrand in a Taylor series in powers of the

components of unit vectors. In the present case this amounts to using the expan-

sion (1 + ninj)
−1 = 1− ninj + (ninj)

2 − . . .. Pursuing the expansion up to order n

allows for a deconvolution of I∆κ in terms of tensorial weight functions of rank up

to n + 2. In the simplest possible scenario we take n = 0, meaning that we use the

approximation (1 +ninj)
−1 = ζ, where we have introduced the constant ζ which can

be different from 1 in order to compensate for the error arising from the omission of

higher order terms in the expansion. Below, we shall determine appropriate values

of ζ for the hard-spherocylinder fluid. The deconvolution of I∆κ corresponding to an

expansion of order n = 0 reads

I∆κ ≈ ζ

∫

∂Bi∩∂Bj

∆κi

4π

(

(vI
i nj)

2 − (vII
i nj)

2
) ds

|ni × nj|

= ζ←→ω
(1)
i ⊗

←→ω
(2)
j , (4.12)

where

←→ω
(1)
i =

∆κi(r̂)

4π

(

vI
i (r̂)vI

i (r̂)T − vII
i (r̂)vII

i (r̂)T
)

δ(|Ri(r̂)| − |r|) / (ni(r̂)r̂) , (4.13)

←→ω
(2)
i = ni(r̂)ni(r̂)T δ(|Ri(r̂)| − |r|) / (ni(r̂)r̂) . (4.14)

These tensorial weight functions can be represented as 3 × 3-matrices and the

dyadic product abT stands for the matrix with entries (abT)ij = aibj. The definition

of the convolution product [Eq. (3.6)] must be extended to the tensorial weight func-

tions. To this end, we introduce as an appropriate scalar product of matrices
←→
A and

←→
B the trace of the result of matrix multiplication: Tr[

←→
A
←→
B ] =

∑

i,j AijBji. This

adds a third meaning to the multiplication of the weight functions in Eq. (3.6) which

was already defined as the usual product for the scalar weight functions and as the

vector scalar product for the vectorial weight functions.

With these steps we are lead to an extension of the deconvolution of the Mayer

f -function fij which goes beyond Eq. (3.4) but, for non-spherical particles, is still

approximate:

−fij(ri−rj) ≈ ω
(0)
i ⊗ω

(3)
j +ω

(1)
i ⊗ω

(2)
j −
−→ω

(1)
i ⊗
−→ω

(2)
j −ζ←→ω

(1)
i ⊗
←→ω

(2)
j +(i↔ j) . (4.15)

In the case of spheres the term ζ←→ω
(1)
i ⊗
←→ω

(2)
j does not contribute as the deviatoric

curvature ∆κi vanishes and therefore ←→ω
(1)
i ≡ 0. Thus the exact deconvolution for
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spheres is not altered by our extention. Rosenfeld’s decomposition for non-spherical

particles underlying onFMT [29,30] is recovered in the special case ζ = 0.

The question arises to which extend the additional term in the deconvolution does

in fact improve our expression for fij. In a first step we show that the additional

term does not contribute in the isotropic bulk fluid. Thus the extended deconvolution

inherits the property of onFMT (ζ = 0) to yield the exact second virial coefficient

B2 for the isotropic bulk fluid. Denoting the excess free energy density belonging to

the extended deconvolution with Φed, the relation Φed = B2ρ
2 + O(ρ3) holds in the

isotropic bulk fluid. We proceed analogously to the derivation of Eq. (3.7) in order

to obtain the low-density limit of Φed as imposed by the extended deconvolution

Eq. (4.15) of fij. The result is

Φed = n0n3 + n1n2 −
−→n1
−→n2 − ζTr[←→n 1

←→n 2] +O(ρ3) , (4.16)

where we have introduced the new weighted densities←→n 1 and←→n 2 which are calculated

according to Eq. (4.2) with the weight functions ←→ω 1 and ←→ω 2.

One can see easily that the trace of ←→n 1 vanishes, Tr←→n 1 = 0, no matter what

the underlying density distributions ρi(r, $) are. This is simply a consequence of the

normalization of the directions of principal curvatures: |vI
i (r̂)| = |vII

i (r̂)| = 1. In

the special case of an isotropic bulk fluid the weighted density ←→n 2 is of the simple

diagonal form ←→n 2 = 1
3
n2 � , where � is the unit matrix and n2 is the scalar weighted

density as defined above. This result can be obtained in a simple calculation from

Eq. (4.2) by realizing that the integration over the orientational degrees of freedom

yields the same result for every point of the surface of a given body, namely 1
3 � . A

subsequent integration over the surface of the given body yields the above result.

From the properties of ←→n 1 and ←→n 2 it follows immediately that Tr[←→n 1
←→n 2] vanishes

in the isotropic bulk fluid. Therefore, our additional term does not cause a FMT

with the low-density limit Eq. (4.16) to deviate from the exact result for the second

virial coefficient of the isotropic bulk fluid. The explicit construction of such a FMT

is postponed to Section 4.1.4. For the moment we only introduce the notion of

extended-deconvolution FMT (edFMT) for a suitable FMT which is based on the

low-density limit Eq. (4.16) with ζ 6= 0.

What is the situation when a non-isotropic bulk fluid is considered? The second

virial coefficient B2 then depends on the orientational distribution f($) according to

B2 =
1

2

∫∫

d$d$′f($)f($′)v($, $′) , (4.17)

where v($, $′) is the volume which is excluded by a particle of orientation $ to

another particle of orientation $′ (or vice-versa, equivalently).
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PSfrag replacements

D

L

Figure 4.2: Sketch of a spherocylinder, which consists of a solid cylinder with diameter

D and length L being capped by two solid hemispheres with diameter D. In the limit

L→ 0 the geometry of a sphere with diameter D is recovered.

Let us consider the specific case of a fluid which is composed of hard spherocylin-

ders with length L and diameter D (see Fig. 4.2). The excluded volume v($, $′) is

then given by [109]

v($, $′) = 2L2D sin γ + 2πLD2 +
4

3
πD3 , (4.18)

where γ ∈ [0, π] is the angle between the two spherocylinders.

On the other hand, edFMT provides an approximation to v($, $′) which can be

derived on the basis of Eq. (4.16) together with the relation that Φed = B2ρ
2 +O(ρ3),

see Appendix C. The result is

vFMT($, $′) = 2L2D

(

π

4
+ ζ

π

8

(

3

2
sin2 γ − 1

))

+ 2πLD2 +
4

3
πD3 . (4.19)

We first observe that vFMT($, $′) is correct up to linear order in L, only the

quadradic term in L does not agree with the exact result from Eq. (4.18). Our aim

is to determine the value of ζ such that in the isotropic fluid the average deviation of

vFMT($, $′) from the exact result is minimal. This is achieved by the least squares

criterion which requires that
∫ π

0

dγ sin γ(vFMT($, $′)− v($, $′))2 −→ minimum . (4.20)
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Figure 4.3: Different FMT approximations vFMT($, $′) to the volume v($, $′) which

is excluded by a spherocylinder (length L, diameter D) of orientation $ to a sphero-

cylinder of orientation $′ with the same aspect ratio. Shown are the deviations from

the exact result. γ is the angle between the orientations $ and $′.

The calculation can be performed easily and leads to a value of ζ = 5
4
. We

have plotted the different FMT approximations to v($, $′) in Fig. 4.3. Obviously,

our edFMT result vFMT($, $′) with ζ = 5
4

improves significantly upon Rosenfeld’s

onFMT result which has ζ = 0 and which therefore does not contain any γ-dependence.

However, in particular for spherocylinders which are aligned in the same direction

(i.e. γ is small) the deviation is pronounced even for the edFMT with ζ = 5
4
. While

in the isotropic fluid the case of small γ has a relatively small weight, this is clearly

different for the fluid in the nematic phase. It is thus not surprising that this phase

is better described by ζ > 5
4
. This is indeed what we observe when we compare

edFMT with computer simulation data for the isotropic-nematic transition (see Sec-

tion 4.2.1). There, we find that the transition for not too large L is best described

with ζ = 1.6. The corresponding curve is also included in Fig. 4.3 and yields indeed

a better description of the low γ range. Finally, we mention that 2 is an upper bound

for ζ. By choosing ζ = 2 we can reproduce the exact result for B2 in the case that

spherocylinders with fixed orientation (γ = 0) are considered. ζ > 2 would cause an

unphysical situation where B2 becomes negative for small γ in the case of elongated

spherocylinders for which the quadratic term in L dominates.
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4.1.4 Extrapolation to finite particle densities

Similar to the derivation of Rosenfeld’s excess free energy density ΦRF [Eq. (3.16)]

we need to extrapolate the low-density limit Eq. (4.16) to higher densities in order

to describe the dense fluid (and potentially solid phases) appropriately. Using the

same arguments as for the derivation of ΦRF (see Section 3.1) the extrapolation of

Eq. (4.16) can be easily shown to yield the edFMT excess free energy density

Φed = −n0 ln(1− n3) +
n1n2 −

−→n1
−→n2 − ζTr[←→n 1

←→n 2]

1− n3
+

φ(n2,
−→n2,
←→n 2)

(1− n3)2
. (4.21)

Interestingly, a dimensional analysis of the possible products of the weighted den-

sities shows that φ, the numerator of the third term, which has to be of order 3 in

the weighted densities, can depend not only on the scalar n2 and the vectorial −→n2

but also on the tensor ←→n 2. If the latter possibility is not considered one obtains φ

from ΦRF [Eq. (3.16)], i.e., φ = φ(n2,
−→n2) = 1

24π
(n3

2 − 3n2
−→n2
−→n2). It has, however,

turned out that this expression for φ is problematic as the resulting third term of ΦRF

spoils the (exactly known) result for one dimensional density distributions and causes

a strong negative divergency of the free energy for strongly peaked density distribu-

tions (see, e.g., Ref. [84]). As a consequence, the hard-sphere crystal is dramatically

overstabilized. This deficiency has been cured first by an empirical modification of

the third term [75, 76]. Subsequently, a systematic construction of the free energy

functional became possible which was based on zero dimensional cavities and correct

dimensional crossover [84]. The method led Tarazona [77] to introducing the weighted

density ←→n 2 and constructing φ as

φ(n2,
−→n2,
←→n 2) =

3

16π

(−→n T
2
←→n 2
−→n2 − n2

−→n2
−→n2 − Tr[←→n 3

2] + n2Tr[←→n 2
2]

)

. (4.22)

In contrast to Rosenfeld’s ΦRF from Eq. (3.16), the version by Tarazona yields the

exact result for monocomponent hard-sphere systems which are confined to 1D and

it describes the hard-sphere crystal very well [77]. In later work, it has been argued

that the third term with φ according to Eq. (4.22) yields also the presently best FMT

(among those which use the PY equation of state) for hard-sphere mixtures [98].

Given these merits we choose Tarazona’s φ rather than the original one of Rosenfeld

for the following calculations. This holds also for our definition of onFMT which

we henceforth take to be the special case of edFMT [Eq. (4.21) supplemented by

Eq. (4.22)] with ζ = 0, in contrast to the “original” onFMT proposed in Refs. [29,30]

which uses Rosenfeld’s φ. However, in the situations which we consider no crystals

or extremely confined fluids are involved such that the differences arising from the

different expressions for the third term are expected to be negligible. We have checked
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that this is indeed the case; more precisely, these differences are clearly dominated by

the influence of the value of ζ in Eq. (4.21). It would be in any case very interesting

to study whether the excess free energy density Φed with φ from Eq. (4.22) is suitable

for the description of crystals composed of hard non-spherical particles such as the

gyroid cubic phase of hard pear-shaped particles [125] or the simple monoclinic phase

of hard ellipsoids of revolution [126] which have been discovered recently in numerical

simulations.

The fact that our improved deconvolution Eq. (4.15) for the non-spherical par-

ticles gives rise to the tensorial weighted density ←→n 2 is particularly valuable as this

establishes a connection between the two distinctly different manners of constructing

a FMT. One the one hand, there is Rosenfeld’s original approach [22] in which the

low-density limit of the excess free energy is considered and from this the building

blocks (which are the six weighted densities n0, n1, n2, n3, −→n1, and −→n2) for the

excess free energy density ΦRF are identified. On the other hand, in later work, Tara-

zona and Rosenfeld [84] construct the functional based on zero dimensional cavities

and dimensional crossover which leads to the introduction of the additional tensorial

weighted density ←→n 2 for hard spheres [77]. In the spirit of Rosenfeld’s original ap-

proach, our work provides a motivation for introducing ←→n 2 which comes out simply

as an additional building block from considering our improved expression Eq. (4.16)

for the low-density limit of Φed. While the weighted density ←→n 1 vanishes for spheres

and cannot be included in the third term of Φed for dimensional reasons, the weighted

density←→n 2 is non-zero even for spheres and has the correct dimension2 to be incorpo-

rated. Thus the motivation for using ←→n 2 is provided following the lines of Ref. [22].

How ←→n 2 has to be incorporated into Φed cannot be answered in this way. Here the

arguments of Refs. [77, 84, 98] are necessary in order to obtain the correct form of

the numerator φ. In conclusion, the use of ←→n 2 for constructing the functional for

hard sphere systems can be viewed in some sense as a consequence of stabilizing the

theory against small deformations of the constituents from sphericity. For slightly

non-spherical particles the use of ←→n 2 is in order for a proper deconvolution of fij. As
←→n 2 is non-vanishing also for spheres, the requirement of continuity imposes the use

of ←→n 2 also for the hard-sphere fluid/crystal.

2Note here that the dimension of nα is (length)α−3 and the dimension of Φed is (length)−3.
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4.2 Comparison with data from simulations

4.2.1 Isotropic-nematic transition

For the calculation of the isotropic-nematic transition as obtained from edFMT we

consider a bulk fluid of spherocylinders (length L, diameter D) with particle den-

sity ρ. The spherocylinders are assumed to be distributed as a function of their

azimuthal angle ϑ according to the distribution function g(cos ϑ). The orientation

dependent density distribution is thus given by ρ($) = ρf($) = ρg(cos ϑ). From the

requirement of normalization we can conclude that

1

4π

∫ 2π

0

dϕ

∫ π

0

dϑ sin ϑ g(cos ϑ) =
1

2

∫ 1

−1

d(cos ϑ)g(cos ϑ) =

∫ 1

0

dxg(x)
!

= 1 . (4.23)

Here we have used that due to their symmetry spherocylinders with orientation ϑ

cannot be distinguished from those with orientation π− ϑ. We can therefore assume

without loss of generality that g(x) = g(−x). The formula for the weighted densities,

Eq. (4.2), reduces to

nα =

∫

d$nα($) =
1

4π

∫ 2π

0

dϕ

∫ π

0

dϑ sin ϑ nα($) , (4.24)

where the weighted densities from Appendix C have to be used with f($) = g(cos ϑ).

The ϕ-integrations can be carried out immediately for all the weighted densities, while

the ϑ-integrations involve the distribution g(x) and lead to a distribution dependence

of the tensorial weighted densities via the second moment I2
.
=

∫ 1

0
dxx2g(x). A simple

calculation yields

n3 = ρ
(π

4
LD2 +

π

6
D3

)

, n2 = ρ
(

πLD + πD2
)

,

n1 = ρ

(

L

4
+

D

2

)

, n0 = ρ ,

(←→n 1)11 = (←→n 1)22 = ρ
L

16
(3I2 − 1) ,

(←→n 1)33 = −ρ
L

8
(3I2 − 1) ,

(←→n 2)11 = (←→n 2)22 = ρ
(π

4
LD (1 + I2) +

π

3
D2

)

,

(←→n 2)33 = ρ
(π

2
LD (1− I2) +

π

3
D2

)

.

(4.25)

The non-diagonal elements of the tensorial weighted densities as well as the vectorial

weighted densities vanish. One can easily check that we have Tr←→n 1 = 0 and Tr←→n 2 =

n2 which was shown above to hold also for general ρ(r, $).
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The grand potential Ω of the fluid is given according to Eqs. (2.26) and (2.27) by

the expression3

Ω/V = Φid + Φed − µρ , (4.26)

where

Φid =

∫

d$ρ($)
(

ln(ρ($)Λ3)− 1
)

= ρ
(

ln(ρΛ3)− 1
)

+ ρ

∫ 1

0

dxg(x) ln g(x) (4.27)

is the free energy density of the non-interacting spherocylinders (ideal gas) and Φed

is the edFMT excess free energy density [Eq. (4.21) with Eq. (4.22)] evaluated for

the weighted densities given above in Eq. (4.25). For given fixed volume V , chemical

potential µ and particle number density ρ = N
V

the equilibrium orientational distribu-

tion g(x) must minimize the grand potential Ω, i.e., the variation δΩ/δg must vanish.

A straightforward calculation shows that this is equivalent to

g(x) = const.× exp

(

−
1

ρ

∂Φed

∂I2

x2

)

(4.28)

with a constant which is chosen such that normalization of g(x) is guaranteed. This

can be cast into the equivalent normalized form

g(x) =
α

D(α)
exp

(

−α2(1− x2)
)

(4.29)

where D(α) is Dawson’s integral

D(α) = exp(−α2)

∫ α

0

du exp(u2) (4.30)

and α satisfies the condition

α2 = −
1

ρ

∂Φed

∂I2

. (4.31)

Note that the r.h.s. of Eq. (4.31) depends on α through the second moment I2 of

g(x). From Eq. (4.29) one obtains that

I2 =

α
D(α)
− 1

2α2
=

1

3
+

4

45
α2 +O(α4) . (4.32)

Obviously, Eq. (4.29) is equivalent to g(x) ∝ exp(−α2 sin2 ϑ). This orientational

distribution, which follows here from the excess free energy Φed, has been used as an

empirical input for the description of the nematic phase in previous work [127].

3In order to lighten the expressions we omit henceforth the factor kBT which converts the units

of Φid and Φed into those of energy densities.



4.2. Comparison with data from simulations 67

In order to complete our calculation of the isotropic-nematic transition we make

Eq. (4.31) more explicit by inserting the expression for Φed. This leads to

α2 = A(3I2 − 1)− B(3I2 − 1)2 , (4.33)

where

A =
3

16

ζη`2

(1− η)
(

`
4

+ 1
6

) ,

B =
3

512

η2`3

(1− η)2
(

`
4

+ 1
6

)2 .

(4.34)

Here ` = L
D

is the spherocylinder aspect ratio and η = n3, as defined in Eq. (4.25),

is the spherocylinder packing fraction. Obviously, the isotropic distribution (α = 0)

is always a solution of Eq. (4.33), see also Eq. (4.32). One can also see immediately,

that for onFMT (ζ = 0) it follows that A = 0 and thus no solution with α 6= 0 exists.

Note that the term proportional to B is due to Tarazona’s modification [Eq. (4.22)]

of the third term of Rosenfeld’s original FMT [29, 30]. The latter FMT has B = 0.

We now come back to the edFMT excess free energy Φed which allows us to choose

ζ > 0. The analysis of the generic case shows that for small η the only solution is

the one with α = 0. At a certain “critical” packing fraction ηcr a second solution

of Eq. (4.33) with α > 0 sets in discontinuously. For η slightly larger than ηcr two

different solutions with α > 0 exist. The one corresponding to the lower value of α

runs into α = 0 when η is increased up to some ηunst. For η > ηunst two solutions exist:

one with α = 0 and one with α > 0. It should be noted that Eq. (4.33) is invariant

under the transformation α → −α which reflects the symmetry of Eq. (4.29). The

solutions of Eq. (4.33) correspond to extrema in the free energy (or, equivalently, the

grand potential) considered as a function of α. It can be shown that for η < ηcr a

single minimum at α = 0 exists. At η = ηcr a second minimum at α > 0 appears

corresponding to the nematic phase. The local maximum between the two minima

is connected with the intermediate solution of Eq. (4.33) which therefore does not

correspond to a (meta-)stable physical state. Upon increasing η the intermediate

maximum moves towards α = 0, where it gets located as η = ηunst. For η > ηunst the

free energy displays a local maximum at α = 0, indicating that the isotropic phase

is definitely unstable, and a minimum at α > 0, corresponding to the stable nematic

phase.

The orientational distribution, Eq. (4.29), allows in principle also for purely imag-

inary α which refers to a (rather odd) orientational distribution g(cos ϑ) where more

particles with ϑ ' π
2

than those with ϑ ' 0 can be found in the system. Equa-

tion (4.33) has indeed such a purely imaginary solution which emerges continuously
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from the isotropic solution (α = 0) when η is increased beyond ηunst. It can be

shown, however, that the corresponding phase is unstable w.r.t. the nematic phase

in the relevant range of η. The range of η is limited from above due to the fact that

for sufficiently large η the stable phase is the smectic one [128]. The smectic phase

has to be described by a spatially heterogeneous density distribution ρ(r, $) and it is

thus not covered by the assumptions made on ρ(r, $) in this section.

Finally, we calculate the isotropic-nematic coexistence line by solving simultane-

ously for ρiso and ρnem the equations

µiso(ρiso) = µnem(ρnem) , piso(ρiso) = pnem(ρnem) , (4.35)

where µiso/nem and piso/nem are the chemical potential and the pressure of the respective

phase as functions of the particle density. Using the edFMT free energy Φid + Φed of

the hard-spherocylinder fluid [cf. Eq. (4.26)] we obtain the chemical potentials

µiso =
∂(Φid + Φed)

∂ρ

∣

∣

∣

∣

α=0

, µnem =
∂(Φid + Φed)

∂ρ

∣

∣

∣

∣

α=αnem(ρ)

, (4.36)

where αnem(ρ) > 0 is the appropriate solution of Eq. (4.33). The pressure is obtained

as the negative of the grand potential density

piso = −(Φid + Φed)α=0 + µisoρ , pnem = −(Φid + Φed)α=αnem(ρ) + µnemρ . (4.37)

Note that the calculation of µnem in Eq. (4.36) would in principle require an

additional contribution (∂(Φid+Φed)/∂α)×(∂αnem/∂ρ) arising from the ρ-dependence

of αnem. However, due to the fact that the orientational distribution g(x) minimizes

the grand potential Ω it follows that ∂Ω/∂α = 0 and thus also ∂(Φid + Φed)/∂α

vanishes.

In Fig. 4.4 we show results for the isotropic-nematic transition for the parameter

ζ = 5
4

and ζ = 1.6. The first value was chosen as it provides the best description

of the isotropic fluid on the microscopic level (see Section 4.1.3) while ζ = 1.6 was

determined empirically in order to obtain the best fit to the simulation data by Bolhuis

and Frenkel [128] at moderate aspect ratios L/D. With ζ = 5
4

we obtain qualitative

agreement with the simulations while ζ = 1.6 yields good agreement for moderate

aspect ratios. However, when L/D grows large the difference of ρiso and ρnem at

coexistence is seriously underestimated by the theory based on the edFMT excess

free energy density Φed. This might be partially attributed to the fact that the error

made in approximating the second virial coefficient B2 by vFMT [Eq. (4.19)] grows

with increasing L. For not too long spherocylinders, however, the isotropic-nematic

transition is well described by the theory with the empirical ζ = 1.6 which is located
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Figure 4.4: Results for the isotropic-nematic transition of hard spherocylinders

(length L, diameter D) as obtained from the edFMT excess free energy density Φed

[Eq. (4.21)] with ζ = 5
4

and ζ = 1.6, respectively. For comparison we show simula-

tion data obtained by Bolhuis and Frenkel [128]. The lower (upper) line or symbol

indicates the density of the isotropic (nematic) phase at coexistence. The simulation

data for modest aspect ratios L/D gives only one point at the transition. η is the

spherocylinder packing fraction.

right in the middle of the predicted interval
[

5
4
; 2

]

(see Section 4.1.3). One might

consider obtaining a more accurate non-empirical value for ζ by using in Eq. (4.20)

some appropriate orientational distribution g(x). Then, in turn, one has ζ = ζ[g(x)]

and the minimization of Ω̂ gets more involved such that the distribution g(x) can no

longer be calculated analytically. We do not pursue this road further.

To conclude, we have shown that the edFMT excess free energy Φed provides

a good description of the location of the isotropic-nematic transition of the hard-

spherocylinder fluid. Our theory has to be viewed in contrast with the previous FMTs

for non-spherical particles: Rosenfeld’s onFMT [29, 30] (corresponding to ζ = 0)

does not yield a stable nematic phase at all and the DFT by Cinacchi and Schmid

[114], which yields an isotropic-nematic transition, is no longer based on one-center

convolutions which makes it computationally more demanding.
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4.2.2 Inhomogeneous isotropic hard-spherocylinder fluid

Our edFMT for the non-spherical particles fluids, which is given by Eq. (4.21) sup-

plemented by Eq. (4.22), is derived from considerations in the spirit of Rosenfeld’s

original FMT [22]. In consequence one can expect the new functional to inherit the

ability of yielding accurate results for inhomogeneous fluids without requiring any em-

pirical fitting. Note that our theory contains the new parameter ζ which can a priori

be chosen freely. However, we provided arguments in Section 4.1.3 that ζ = 5
4

should

be the most suitable for the isotropic spherocylinder fluid while the nematic fluid

should require some larger ζ ∈
[

5
4
; 2

]

. In Section 4.2.1 we showed that ζ = 1.6 yields

the best fit to simulation data for the isotropic-nematic transition for spherocylin-

ders with moderate aspect ratios. For the sake of clearness, we mention again that

onFMT corresponds to setting ζ = 0 in Eq. (4.21) which makes it slightly different

from Rosenfeld’s FMT for non-spherical particle fluids [29, 30] as we use Tarazona’s

expression Eq. (4.22) for the third term in Eq. (4.21). We have checked that for the

calculations performed in the following the effect of the different expressions for the

third term is significantly smaller than the effect due to our different choices of ζ.

In order to study the performance of the edFMT for describing inhomogeneous

fluids of non-spherical particles we consider hard-spherocylinder fluids at a planar

hard wall. We have performed canonical Monte-Carlo (MC) simulations for three

systems which differ in the length to diameter ratios ` = L/D and the bulk packing

fractions η = (n3)bulk of the spherocylinders. Distinguishing the systems by Roman

numbers, we used `I = 2.5, ηI ' 0.346; `II = 5.0, ηII ' 0.271; `III = 10.0, ηIII ' 0.127.

We have simulated fluids contained between two distant planar hard walls located at

z = 0 and z = zmax with lateral extensions xmax and ymax in the x- and y-directions

where we applied periodic boundary conditions. The dimensions for system I are:

zmax = 5.0(L + D), xmax = ymax = 4.0(L + D); for system II: zmax = 4.0(L + D),

xmax = ymax = 4.0(L + D); and for system III: zmax = 4.0(L + D), xmax = ymax =

3.0(L+D). We have checked that errors caused by the finite extension of the systems

can be neglected. In particular the fluid-mediated interaction between the two planar

walls is sufficiently small for the chosen values of zmax as to not affect the data. We

have performed 100 independent runs for system I and 50 for systems II and III. Each

run extended over 106 MC steps and at each MC step every particle was selected once

on average. The acceptance rate for particle moves was between 40% and 70% being

larger the smaller the packing fraction of the system was. The statistical error of the

MC data which we show below could be estimated to amount to . 1%.

The packing fractions had to be kept below certain thresholds beyond which

the isotropic hard-spherocylinder fluid wets the wall with a nematic layer (having
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a nematic director which lies perpendicular to the wall normal) [129–131]. This

wetting scenario is of course amenable to a description with the present edFMT

but the corresponding biaxial geometry would complicate the numerical treatment

for the minimization of the density functional [Eq. (2.26) with Fex calculated from

Φed]. We have therefore restricted ourselves to the uniaxial geometry corresponding

to densities below the wetting transition. The particle density is then a function

only of the distance z between the center of the spherocylinder and the wall and

of the angle ϑ ∈ [0, π/2] between the cylinder axis and the wall normal. For the

numerical minimization of the functional the angle ϑ is discretized as ϑj = (j −

1)/(ν − 1) × π/2, j = 1, . . . , ν, and the system is treated as a ν-component fluid

in which each component has a fixed orientation ϑj. We have chosen ν = 25 which

makes a reasonable compromise between accuracy and efficiency of the calculation.

The spatially varying densities ρj(z) corresponding to the respective component have

to be smeared out with the different weight functions [Eqs. (4.1), (4.13), and (4.14)]

which have to be evaluated for the given orientation ϑj. The procedure is expressed

formally by Eq. (4.2), where the integration with respect to the orientations gets

absorbed in the sum over the ν components. In practice, the calculation requires a

“slicing” of the spherocylinder with orientation ϑj along planes lying perpendicular

to the hard wall. In the given system these are the iso-ρ planes. Roughly speaking,

the contribution which a given slice, say at distance z ′ from the wall, makes to the

weighted density nα(z) is proportional to ω
(α)
j (z′ − z)ρj(z

′)∆z, where ω
(α)
j (z′ − z)

is an analytically calculated factor and ∆z is the interval length corresponding to

the discretization in the z-direction. In our calculation ∆z = D/100. We spare the

reader the details of calculating the factors ω
(α)
j (z′−z) and only mention that the cut

surfaces along the iso-ρ planes correspond either to circles (arising from the capping

spheres), ellipses (arising from the cylindrical body), or a combination of both circle

and ellipse segments. The minimization of the density functional Eq. (2.26) with the

excess free energy density Φed [Eq. (4.21)] is achieved by solving the corresponding

Euler-Lagrange equations via iteration. At each step of the iteration, this requires a

convolution of the different weight functions ω
(α)
j with the respective partial derivative

∂Φed/∂nα which has to be performed in addition to the calculation of the weighted

densities nα(z).

The simulation results for the spherocylinders with L/D = 2.5 are shown in

Fig. 4.5 (upper panel) for four different orientations ϑj. Note that in order to compare

with DFT calculations, where ν = 25 fixed orientations are assumed, we have sampled

the simulation data such that all the spherocylinders with ϑ ∈ [ϑj −∆ϑ/2, ϑj + ∆ϑ/2]
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Figure 4.5: Upper panel: Density profiles ρϑ(z) from MC simulations for a fluid

of hard spherocylinders with length-to-diameter ratio L/D = 2.5 and bulk packing

fraction η ' 0.346 at a hard planar wall which is located in the x-y plane at z = 0.

The angle between the cylinder axis of the spherocylinder and the surface normal of

the wall is denoted by ϑ. Density profiles were obtained for 25 different orientations

ϑ ∈ [0, π/2] only four of which are plotted (see the main text for details). The data

have been shifted vertically for clarity. The dotted curves serve as a guide to the

eye while the dashed boxes indicate areas which are reconsidered in the lower panel.

The peak of the profile for ϑ = π/2 has a height of about 25.5. Lower panel: For

the areas indicated in the upper panel, we compare the MC data (open circles) with

the outcome of the minimization of three different FMT density functionals. These

are: onFMT which has ζ = 0 (dashed-dotted lines), edFMT with parameter ζ = 1.6

(dashed lines), and edFMT with parameter ζ = 5
4

(solid lines).
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and ∆ϑ = π/2/(ν− 1),4 are attributed to the density profile ρj(z). As a consequence

the profiles from the simulations do not jump discontinuously at low z from zero to

finite contact values as this is the case for the orientationally discrete DFT results.

Instead, there is some interval in which the density increases steeply but continuously.

Obviously, the vanishing of the profiles for low z corresponds to the range which is

inaccessible to the center of the spherocylinder due to the hard wall. For L/D = 2.5

the jump in the profile must occur at z = 0.5D for ϑ = π/2 and at z = 1.75D for

ϑ = 0 which is consistent with the data. One can observe that spherocylinders which

lie parallel to the wall (i.e. ϑ ≈ π/2) are preferentially adsorbed at the hard wall.

This behavior can be interpreted as a precursor of the nematic wetting which occurs

at higher bulk packing fractions.

In Fig. 4.5 (lower panel) we compare the MC data with the results from the

different FMT density functionals by zooming into the regions which are indicated in

the upper panel of the figure. The FMTs describe the MC data quite well for all the

different choices of the parameter ζ. In particular, the wavelength of the oscillations

is very well captured. While the case L/D = 2.5 does not allow one to decide whether

edFMT with ζ = 5
4

or ζ = 1.6 yields the better description, one can already notice

that onFMT (ζ = 0) performs slightly worse as it overestimates the contact density

for small ϑ and it underestimates the density at the minima of the oscillations for

larger ϑ. As an aside, we mention that underestimating the contact density in a

certain range of ϑ must go in hand with overestimating it in another range of ϑ, as

long as the bulk pressure is yielded correctly by the theory. This is a consequence of

the contact theorem for fluids at hard walls [132] which states that the pressure is

obtained as p = kBT
∑ν

j=1 ρc
j, where ρc

j is the density of orientation ϑj at contact with

the hard wall. As the FMTs discussed here are non-local theories they satisfy the

contact theorem. Since the bulk pressure p does not depend on ζ, the sum
∑ν

j=1 ρc
j

yields the same result irrespective of the choice of ζ.

The simulation data for the spherocylinders with L/D = 5.0 are plotted in Fig. 4.6

(upper panel). The comparison with FMT results, which we carry out in the lower

panel of Fig. 4.6, reveals now clearly the failure of onFMT which grossly overestimates

the density profiles with low ϑ while it systematically underestimates the density of

the spherocylinders with large ϑ. Concerning the edFMTs with ζ = 5
4

and ζ = 1.6 one

can see that the former yields a slightly better description of the simulation data—at

least for the part of the profiles which is close to the wall. Taking the whole z-range

of the profiles into consideration one can argue that both edFMTs describe the data

4The “boundary” intervals with j = 1 and j = ν are not centered around ϑ1 = 0 and ϑν = π/2.

These intervals are given by [0, ∆ϑ/2] and [π/2−∆ϑ/2, π/2].
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Figure 4.6: Same as Fig. 4.5 but with L/D = 5.0 and η ' 0.271. The peak of the

profile for ϑ = π/2 has a height of about 26.0.
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equally well.

Finally we show in Fig. 4.7 (upper panel) the simulation results for a fluid com-

posed of spherocylinders with L/D = 10.0 which are the most elongated which we

have considered. The detailed comparison with the FMTs in the lower panel of

Fig. 4.7 reveals again the same systematic failure of onFMT as in the two previous

cases. However, it now becomes possible to clearly discriminate between the edFMTs

with ζ = 5
4

and ζ = 1.6. While the latter underestimates the data for the orientations

for which onFMT overestimates them and vice versa, the edFMT with ζ = 5
4

gives a

very accurate description of the data over the whole range of distances from the wall

and for all spherocylinder orientations. This agreement is particularly encouraging

as ζ = 5
4

is precisely the value which was obtained in Section 4.1.3 from the require-

ment that the isotropic low-density bulk fluid is optimally described. Apparently the

suitability of the value ζ = 5
4

for the isotropic fluid survives beyond the low-density

limit and in the inhomogeneous fluid.

4.3 Conclusion

Based on a suitable expression of the Mayer f -function for convex hard bodies, which

we derive from the Gauss-Bonnet formula, we have introduced a new deconvolution

of the Mayer f -function in terms of weight functions. The latter extends a previous

deconvolution [29, 30] by the introduction of two tensorial weight functions one of

which has already been used in the related context of hard sphere crystals [77]. The

second tensorial weight function depends on the deviatoric curvature (i.e. the differ-

ence of principal curvatures) and is therefore non-zero only for non-spherical bodies.

Using the new deconvolution, we have constructed a FMT free energy functional

for the general inhomogeneous hard-body fluid, the extended-deconvolution FMT

(edFMT), which can be compared with Rosenfeld’s FMT for non-spherical particles

(onFMT) [29, 30]. In the following, we summarize the virtues of the new theory.

• edFMT does not require any input apart from the weighted densities, which

follow from the deconvolution of the known low-density limit of the excess free

energy functional. In principle, the deconvolution can be performed exactly

such that the Onsager limit is reproduced for long rods. However, in order to

guarantee that the theory can be efficiently treated numerically, we introduce an

suitable approximate deconvolution which leaves us with a single free parameter

ζ. For an isotropic bulk fluid of hard rods we obtain analytically that ζ = 5
4

is optimal, while one can argue that the nematic phase requires some ζ ∈
[

5
4
; 2

]

. Comparison with simulation data for the isotropic nematic transition
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Figure 4.7: Same as Fig. 4.5 but with L/D = 10.0 and η ' 0.127. The peak of the

profile for ϑ = π/2 has a height of about 13.5.



4.3. Conclusion 77

[128] yields indeed ζ = 1.6.

• edFMT yields a stable nematic phase for the hard-spherocylinder fluid—an

essential feature of fluids of non-spherical particles which was completely missed

by the previous onFMT. Using the parameter ζ = 1.6 the isotropic-nematic

transition is located in good agreement with simulation data [128] for not too

long spherocylinders.

• edFMT improves upon onFMT with regard to the description of the inhomoge-

neous isotropic hard-spherocylinder fluid, as we show by comparison with data

from Monte-Carlo simulations. In this context, we find the analytical value of

ζ = 5
4

confirmed.

• In contrast to other FMTs for non-spherical particles [114,120–123], edFMT is

based on weighted densities which can be calculated from one-center convolu-

tions and which depend only on the properties of one of the fluid components

each. This makes the theory conveniently tractable numerically.

• In the isotropic bulk fluid, edFMT, as its predecessor onFMT, yields the ex-

act second virial coefficient unlike previous theories, which are based on the

expansion in some small parameter (e.g. the rod thickness [122]).

• When applied to the hard-sphere fluid, edFMT reduces to Rosenfeld’s FMT for

hard spheres [22]. However, only one of the tensorial weighted densities vanishes

in the limit of spherical particles. The other one is the tensorial weighted den-

sity introduced by Tarazona [77] for the description of the hard-sphere crystal.

Our work provides thus a motivation for the use of this weighted density for the

construction of the functional. If one intends to construct a theory which is con-

tinuous for small deviations from sphericity the extended deconvolution imposes

the use of Tarazona’s tensorial weighted density also for spherical particles.

• Our theory is open for further extentions which lead to better agreement with

Onsager’s limit by the use of tensorial weighted densities with higher rank.

Different from other approaches [120–123], these extentions do not require so-

phisticated geometrical arguments but instead simply follow from expanding

our exact expression for the Mayer f -function in a Taylor series.

We want to conclude by mentioning some possible future developments and studies

related to edFMT. Obviously, it would be interesting to investigate how the present

edFMT performs when applied to phases other than the inhomogeneous isotropic and
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the bulk nematic, which have been studied in the present work. In this context, crys-

talline phases are of particular interest as these are potentially affected by spurious

divergences in the free energy functional [98]. It seems moreover worthwhile to study

the relation between edFMT and other FMTs which are compatible with Onsager’s

limit (e.g. spheres and infinitely thin needles [120]) in view also of finding additional

arguments for the appropriate choice of ζ. Furthermore, the introduction of tenso-

rial weighted densities of higher rank and the expected related improvement of the

performance of the resulting edFMT for long rods might be investigated. Finally,

a comparison of the edFMT with different closure relations of the Ornstein-Zernike

equation in the spirit of Ref. [133] may be illuminating.

With the DFT for the general hard-body fluid at hand we can proceed to the

calculation of solvation free energies of a model protein which is contained in Chap-

ter 5. To this end we shall examine the FMT for non-spherical particles in the light

of morphological thermodynamics (see Section 5.1).



Chapter 5

Protein solvation

Predicting native structures of proteins in their cellular environment is a long standing

task which has challenged researchers from diverse fields such as biology, chemistry,

informatics, and physics. Although principal secondary motifs, namely the α-helix

and the β-sheet, have been observed experimentally since the early 1930’s [1] and a

correct model of these structures in terms of covalent and hydrogen bonds has been

presented in 1951 by Pauling and coworkers [2,3], to date no algorithm exists which is

able to calculate for an arbitrary input sequence of amino acids how the protein folds,

i.e., which secondary motifs different parts of the sequence assume and how these are

located in space relative to each other. The reasons for this shortcoming are manifold,

including the number of different amino acids (20) with their individual properties,

the incomplete knowledge of the details of their interactions, effects coming from the

interaction with the solvent, and, notably, the limitations set by the calculation power

of today’s computers.

Strong interest in the determination of native states is due to the fact that knowl-

edge of a protein’s tertiary structure is crucial for understanding its function [6].

Stunningly, tertiary structure of proteins in living organisms can be reduced to an

estimated number of only 1,000 basic protein folds [9]. Considering in addition that

folds are obtained from the secondary motifs according to a set of “constructional

rules” and taking into account their stability against mutation it has been argued that

the basic folds might be viewed as primary natural forms which one can speculate to

obey physical laws in the spirit of a Platonian model of life [10]. Taking the idea of

certain robust motifs in protein folding as a guideline, Banavar and Maritan intro-

duced a simple geometrical model for protein folding which they show to reproduce

many of the basic building blocks of real proteins [11,12]. In their model, the protein

backbone is viewed as a impenetrable, flexible tube with finite thickness. This has

two important consequences: locally, an effective three body interaction is introduced

79
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by the limited local curvature and, globally, a specific interaction of cylindrical seg-

ments takes effect. While the first feature can in principle be modeled by a chain of

tethered spheres with an appropriate three neighbor potential, the second property

is genuine to the tube model. To complete the model, an attractive potential per-

pendicular to the tube axis is introduced mimicking the effect of hydrophobic amino

acids. These ingredients are sufficient to drive the model protein into the marginally

compact regime where it displays conformations which closely resemble basic folds of

real proteins. As the model does not include any chemical details, the results can be

considered indeed as “Platonian folds”.

The purpose of our investigation is to devise how the solvent effects can be cal-

culated directly rather than taking them into account via the detour of an attractive

potential in the above tube model. These solvent effects are crucial for folding [134],

in particular due to solvent entropy [24]. Concerning the latter aspect, we are able to

extend the results of a recent study by Snir and Kamien [14] to more realistic solvent

configurations. For an efficient calculation of solvation free energies we employ the

concept of morphological thermodynamics which combines Hadwiger’s theorem from

integral geometry with DFT for classical fluids (Section 5.1). Both the improved

FMT for spheres (Section 3.3) and the FMT for non-spherical particles (Chapter 4)

will prove particularly valuable in this context. The proteins are represented within

the tube model of Banavar and Maritan with the difference that we do not make

use of any net attraction between segments of the tube which would imitate the

solvent-mediated tendency of the protein to adopt compact conformations. Morphol-

ogy requires the calculation of certain geometric measures of the protein in a given

conformation. This is the subject of Section 5.2.1 where we also give the precise

definition of the tube model for the protein. We consider two different types of sol-

vent. In order to study effects which are due to the solvent entropy alone we perform

calculations for the hard-sphere solvent (Section 5.2.2). The influence of hydrophilic

and hydrophobic side chains is discussed in Section 5.2.3 where we consider a square-

well solvent, i.e., a fluid with inter-molecular attraction which can be viewed as a

first approximation of water which is the solvent in biological systems. Summary and

conclusion for this chapter are presented in Section 5.3.

5.1 Morphological thermodynamics

Hadwiger’s theorem

We start our presentation of morphological thermodynamics by introducing Had-

wiger’s theorem from integral geometry. To this end, consider a body B (a closed



5.1. Morphological thermodynamics 81

and bounded set) in
� 3 which is going to represent, at a later stage, the protein

immersed in the solvent. Concerning a characterization of B in terms of simple num-

bers, the volume V (B) of B appears to be an obvious choice. V (B) has a number

of familiar (and obvious) properties, which include: (i) motion invariance, i.e., for

every rotation and translation g we have V (gB) = V (B); (ii) continuity, i.e., for every

sequence of bodies Bn which converges (w.r.t. the Hausdorff metric) to B for n→∞

we have that V (Bn) → V (B); and (iii) additivity, i.e., for the union B1 ∪ B2 of two

bodies B1 and B2 we have V (B1 ∪ B2) = V (B1) + V (B2)− V (B1 ∩ B2) where B1 ∩ B2

is the intersection of B1 and B2.

For a more precise description of B we include the surface area A(B) into our

consideration. The question arises whether properties (i), (ii), and (iii) hold for A(B)

as well. It turns out that motion invariance and additivity are still fulfilled, while

continuity is violated [23]. As an example, take B to be a torus which we approximate

by a series of tori Bn which are not closed but have a small opening becoming narrower

and narrower with increasing n. Then we have that the Bn converge to B but A(Bn)

does not converge to A(B) due to the opening of the tori Bn which gives a finite,

additional contribution to the surface area. However, we can weaken the requirement

of continuity by asking it to hold only in the case of sets Bn and B which are convex.

This property is termed conditional continuity and it is fulfilled for both V (B) and

A(B).

Refining the characterization of B further leads us to introducing the integral

mean curvature C(B) and the integral Gaussian curvature X(B) which are defined

as

C(B) =

∫

∂B

dr
1

2

(

1

RI
+

1

RII

)

, X(B) =

∫

∂B

dr
1

RIRII
. (5.1)

Here RI and RII denote the (position-dependent) principal radii of curvature which

are defined on the surface ∂B of B. C(B) has the dimension of a length while X(B)

is dimensionless. X(B)/4π equals the Euler characteristic χ of B. For instance,

χ = 1 for all bodies B which are topologically equivalent to a sphere. One can show

that C(B) and X(B), like V (B) and A(B), have the properties of motion invariance,

conditional continuity, and additivity. As an aside, we mention that the four measures

which we have introduced are (up to constant factors) the Minkowski measures of

the body B.

The remarkable result which was obtained by Hadwiger is that in three dimensions

V (B), A(B), C(B), and X(B) are, except for linear combinations, the only measures

of B with the above properties. This result leads to Hadwiger’s theorem: every

functional ϕ, defined on the set of bodies B in
� 3, and having the properties of motion
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invariance, conditional continuity, and additivity, can be cast to the form ϕ(B) =

cV V (B) + cAA(B) + cCC(B) + cXX(B) with constant (i.e. geometry-independent)

coefficients cV , cA, cC , and cX [23].

Application to fluids

Although proved about fifty years ago, Hadwiger’s theorem has not been exploited

for physics before the mid-1990’s when it was used in the field of complex fluids for a

study of microemulsions [20]. A further early study where the term “morphological

thermodynamics” appeared is about the phase behavior of composite media [135].

Only recently, detailed quantitative analysis has settled the approach in the field of

hard-sphere fluids [93] and simple fluids with intermolecular attraction [97, 136].

The idea behind morphological thermodynamics, also termed the morphometric

approach, is to identify a physical quantity of interest which can take the place of the

functional ϕ appearing in Hadwiger’s theorem. In the present study, this quantity

is the solvation free energy Fsol of a protein under consideration. As mentioned

above, the protein is going to play the role of the body B in the theorem. The crucial

point, however, for applying Hadwiger’s theorem is to check whether the assumptions

made about ϕ are fulfilled in the present physical context, i.e., for Fsol. To this end,

imagine a protein immersed in a solvent. Concerning motion invariance we note

that Fsol does not depend on the protein’s orientation and position as long as the

bulk solvent itself has rotational and translational invariance. This is the case for all

the solvents which are considered in the following. Conflicts with this assumption

would arise, e.g., in nematic liquids, magnetic liquids or liquids which experience an

anisotropic external potential. The second property of ϕ is conditional continuity.

As an example where continuity of Fsol is violated consider a close packing of spheres

(the solvent) around a large convex body B (the solute). It is then possible to

choose B such that the elements of a sequence Bn (converging to B) allow for packing

more solvent spheres into the system then this is possible for B. Hence Fsol would

vary discontinuously in the limit Bn → B. However, in the case where close-packed

spheres figure as the solvent already the requirement of motion invariance is violated.

For solvents which are in the liquid phase we do not see how conditional continuity

could be violated. Finally, additivity of ϕ is required. Additivitity can actually

be understood as a generalization of the thermodynamic concept of extensivity to

finite-sized objects. In this sense additivity provides the crucial link between the

functional ϕ from Hadwiger’s theorem and the thermodynamic quantity Fsol. But

does Fsol obey additivity? A counter-example is readily constructed: consider an

extended protein in a configuration displaying a loop which causes two segments
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of the backbone to approach closely in space while their distance measured along

the protein backbone is large. The essence of the example, i.e. the confinement

of a portion of the solvent induced by distant parts of the backbone, is captured

in a simple model where we replace the single solute protein by a complex which

consists of two disjoint spheres. Applied to this setup, additivity implies that Fsol is

independent of the distance between the two spheres immersed in the solvent. It is,

however, a well known fact that the two bodies do experience a solvent mediated force

(solvation force) when their distance becomes comparable to the correlation length

of the solvent [137]. Thus, additivity can only be fulfilled if the distance between

the solute spheres is large compared to the correlation length of the solvent. As a

consequence, additivity breaks down for fluids possessing long-ranged correlations,

e.g., fluids near the critical point and situations of wetting or drying (for details

on the latter aspect see Refs. [138–140]). As far as the solvents considered in this

work are concerned, correlations decay rapidly, i.e., within a few particle diameters.

Therefore, we can assume additivity to hold approximatively. The related error will

be analyzed at the end of this section.

With these remarks concerning the assumptions of Hadwiger’s theorem in mind,

we apply the theorem to the solvation free energy Fsol of a protein in a given conforma-

tion to which we assign the volume V , the surface are A, the integral mean curvature

C and the integral Gaussian curvature X. Adopting a physically motivated notation

for the coefficients, the morphometric form for Fsol reads

Fsol = pV + σA + κC + κ̄X. (5.2)

According to the theorem, the coefficients are independent of the geometry of the

protein conformation which is considered. In the present context, we identify p as

the solvent pressure and σ as the interfacial tension related to the solvent covering

a planar segment of the protein surface. The bending rigidity κ characterizes the

influence on Fsol of curving the protein surface. Finally, κ̄ couples to the topolog-

ical invariant X which, roughly speaking, counts the cavities and holes containing

portions of solvent which are disconnected from the bulk fluid in the given protein

configuration. This contribution, which becomes important for the study of fluids in

porous media [141], will turn out to be irrelevant for our study of the model protein.

All coefficients have in common that they are related to solvent properties depend-

ing only on the temperature and the chemical potential and, except for the pressure

p, on the specific interaction between the protein and the solvent. The quantities

p, σ, κ, and κ̄ are referred to as thermodynamic coefficients which emphasizes their

independence of the solute geometry.
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Thermodynamic coefficients for the hard-sphere solvent

Morphometry is obviously a very useful tool for the calculation of the solvation free

energy Fsol of complexly shaped solutes as the form Eq. (5.2) allows one to divide

the calculation into two tasks. Instead of performing DFT calculations involving the

solvent under the potentially complicated external potential Vext, which is induced

by the solute (cf. the functional Ω [Eq. (2.26)]), the thermodynamic coefficients can

be obtained from DFT calculations in a simple test geometry where solutes with

simple shapes (spheres of different radii, for instance) are considered. This task

completed, the geometric measures for a range of complexly shaped solutes (or solute

configurations) can be computed, independently of the solvent properties. Finally, the

two ingredients are combined according to Eq. (5.2) in order to yield the solvation free

energy Fsol. For instance, the morphometric approach has been applied successfully

to the calculation of Fsol for various conformations of a protein represented in the

fused-spheres model [142] and to the thermodynamics of fluids which are contained

in porous media [141].

In the case where contributions due to solvent entropy are studied it is expedient

to use as a solvent the simple hard-sphere fluid. For the hard-sphere fluid the appli-

cation of morphometric thermodynamics is even more favorable than in the general

case which we have sketched above. This is due to the fact that accurate analyti-

cal expressions for the thermodynamic coefficients can be derived from FMT for the

hard-sphere fluid. Thus it is not even necessary to perform DFT calculations in the

simple test geometry from which the coefficients can be extracted. This advantage is

particularly valuable when one is interested in Fsol for various solvent conditions (for

hard spheres the relevant parameter which regulates solvent conditions is the packing

fraction η). The calculation of the analytical expressions for p, σ, κ, and κ̄ is shown

in the following.

As we have mentioned earlier in this work the connection between the morpho-

metric form [Eq. (5.2)] and FMT can be established by making use of the generalized

FMTs for fluids consisting of arbitrarily shaped hard particles (see Chapter 4). In a

first step, we denote by Φ a FMT free energy density of the general hard body fluid

which we shall specify at a later stage. For the moment we make the only assumption

that Φ is a function of the weighted densities n0, . . . , n3, calculated with the weight

functions from Eq. (4.1), which allow also for fluid components with shapes other

than the spherical one. For the following calculations only the bulk expression for

Φ is required. As the vectorial weighted densities −→n1 and −→n2 vanish in the bulk we

do not need to include them into the set of variables of Φ. The same holds for the

tensorial weighted density ←→n 1 [Eq. (4.13)] which vanishes in the case of the isotropic
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bulk fluid. There, also the weighted density ←→n 2 [Eq. (4.14)] can be expressed by

the scalar quantity n2 so that accounting for a dependence of Φ on ←→n 2 would not

yield any additional information. It can be shown, moreover, that for the isotropic

bulk fluid Tarazona’s third term for Φ [Eq. (4.21) with Eq. (4.22)] and Rosenfeld’s

original expression for the third term [Eq. (3.16)] are equivalent. In conclusion, for

the following derivation it suffices to assume that Φ is a function only of n0, . . . , n3.

For the derivation of the thermodynamic coefficients p, σ, κ and κ̄ we follow the

ideas of Refs. [88,124] which make use of the applicability of FMT to mixtures. The

basic idea is to consider the complex of the hard-sphere solvent (radius R, packing

fraction η) on the one hand and the solute body B on the other hand as two compo-

nents of a binary bulk mixture. As only a single solute particle B is contained in the

system the corresponding particle number density ρB vanishes for the infinite system,

i.e. ρB → 0. Using moreover that Fsol is precisely the excess chemical potential µex
B

of species B, which is obtained as the partial derivative of the mixture excess free

energy density Φ with respect to ρB, we find

βFsol = βµex
B

= lim
ρB→0

∂Φ

∂ρB

=
∂Φ

∂n3
Ṽ +

∂Φ

∂n2
Ã +

1

4π

∂Φ

∂n1
C̃ +

1

4π

∂Φ

∂n0
X̃ . (5.3)

The result is obtained similarly to Eq. (3.12) which we have calculated for the

derivation of Rosenfeld’s FMT for spheres. It should be emphasized, however, that

identifying in Eq. (5.3) the volume Ṽ , the surface area Ã, the integral mean curvature

C̃, and the integral Gaussian curvature X̃ of the non-spherical body B becomes

possible only with the generalization of the weighted densities n0, . . . , n3 to non-

spherical particles (see Eq. (4.1) for the corresponding weight functions). Different

from Eq. (3.12), the partial derivatives of Φ in Eq. (5.3) are evaluated for the one-

component hard-sphere fluid (radius R, packing fraction η) which is a consequence

of considering the solute component at infinite dilution (ρB → 0).

We have decorated the geometric measures of the solute body B with tildes in

order to indicate that these are calculated with respect to the physical surface of B.

It should, however, be noted that the effect of B onto the solvent has to be translated

into the action of an external potential Vex which is defined with respect to the centers

of the solvent particles. In other words, the relevant surface for the calculation of

the geometric measures figuring in Eq. (5.3) is given by the parallel surface of B

which lies at a distance R (solvent particle radius) to the physical surface of B. The

parallel surface delimits the space which is accessible to the solvent spheres. This is

meaningful in particular when portions of the solvent are trapped in cavities formed

by the solute. In this scenario, the parallel surface vanishes for cavities which are
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so small that they cannot hold a solvent particle. Obviously, such a cavity does not

contribute to Fsol which underlines why the use of the parallel surface is appropriate.

A concrete example illustrating these arguments is presented at the end of this section

where we discuss the limits of morphological thermodynamics. For convex solutes

the geometric measures V , A, C, and X, as obtained for the parallel surface of B at

distance R, can be calculated from Ṽ , Ã, C̃, and X̃ by applying Steiner’s formula [23]:

V = Ṽ + RÃ + R2C̃ + 1
3
R3X̃ ,

A = Ã + 2RC̃ + R2X̃ ,

C = C̃ + RX̃ ,

X = X̃ .

(5.4)

Steiner’s formula can be used in order to match the result for Fsol as obtained from

the FMT excess free energy in Eq. (5.3) with the initial morphometric form given in

Eq. (5.2). As a result, we can identify the thermodynamic coefficients, calculated for

the parallel surface, with certain linear combinations of the partial derivatives of Φ.

We find that

βp =
∂Φ

∂n3
,

βσ =
∂Φ

∂n2
− R

∂Φ

∂n3
,

βκ =
1

4π

∂Φ

∂n1
− 2R

∂Φ

∂n2
+ R2 ∂Φ

∂n3
,

βκ̄ =
1

4π

∂Φ

∂n0
−

R

4π

∂Φ

∂n1
+ R2 ∂Φ

∂n2
−

1

3
R3 ∂Φ

∂n3
.

(5.5)

The relation for the pressure is precisely the scaled particle relation [Eq. (3.13)]

which we have used in Chapter 3 for the derivation of Rosenfeld’s FMT. In the

following, we refer to the above analytical results for the thermodynamic coefficients

as the outcome of the “bulk route”.

We give the explicit results for the coefficients only for the case of the new excess

free energy density ΦWBII [Eq. (3.43)]:

βpWBII

ρ
=

1 + η + η2 − η3

(1− η)3
,

βσWBII

Rρ
= −

1 + 2η + 8η2 − 5η3

3(1− η)3
−

ln(1− η)

3η
,

βκWBII

R2ρ
=

4− 10η + 20η2 − 8η3

3(1− η)3
+

4 ln(1− η)

3η
,

βκ̄WBII

R3ρ
=
−4 + 11η − 13η2 + 4η3

3(1− η)3
−

4 ln(1− η)

3η
.

(5.6)
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We want to highlight that the pressure pWBII equals precisely the quasi-exact CS

pressure [Eq. (3.19)]. This is an important consequence of constructing the novel

mixture equation of state [Eq. (3.34)], which underlies the WBII version of FMT,

based on the requirement of self-consistency [see Eq. (3.32)]. In contrast, the original

White-Bear version of FMT, which is based on the a different mixture generalization

of the CS pressure [the BMCSL equation of state, Eq. (3.25), to be precise] does not

possess this feature of self-consistency, i.e. the derivative of ΦWB with respect to n3

does not yield exactly the CS pressure [25].

As we have mentioned earlier, results for the thermodynamic coefficients can be

obtained alternatively by performing DFT calculations for solutes in a simple test

geometry. The test geometry we choose here is the case where the solute particle B

is a single hard sphere S of radius Rs immersed in a pure fluid of hard spheres with

radius R and bulk density ρbulk. The solvation free energy Fsol equals the change in

grand potential ∆Ω due to the insertion of the sphere S. In order to obtain ∆Ω we

minimize the density functional Ω [Eq. (2.26)] using an excess free energy Fex which

is calculated from a given FMT expression (ΦRF, ΦWB, or ΦWBII). The solute enters

the calculations via the use of an appropriate external potential in the functional Ω.

Using the equilibrium density profile ρ(r) one can calculate ∆Ω = Ω[ρ(r)]−Ω[ρbulk].

By performing the calculation for different radii Rs of the solute sphere the function

Fsol(Rs) = ∆Ω(Rs) is obtained numerically. The extraction of the thermodynamic

coefficients p, σ, κ, and κ̄ from the values Fsol(Rs) as obtained by minimizing the

functional Ω is achieved by fitting Eq. (5.2) to the numerical DFT data. This fit

was performed for DFT data (using ΦWB or ΦWBII) in the range Rs ∈ [2R, 10R] for

various values of the packing fraction of the fluid. Indeed, we find the assumption

made by Eq. (5.2) concerning the Rs-dependence of Fsol clearly confirmed and in

accordance with previous results [93]. The thermodynamic coefficients which result

from the fitting of Eq. (5.2) to the numerical DFT data are referred to in the following

as obtained via the “minimization route”.

We now compare the results from the bulk and minimization routes as obtained

for the different versions ΦWB and ΦWBII of FMT. In Fig. 5.1 we show our results

for the thermodynamic coefficients calculated from the new functional ΦWBII. The

agreement for p is perfect by construction of the equation of state, Eq. (3.34), and very

good for the surface tension σ. The analytical result for σ has already been considered

in Section 3.2 where a comparison with simulation data revealed σWBII to be of high

accuracy for intermediate and high packing fractions of the hard-sphere solvent. At

low packing fractions, however, we found a small deviation from the exact low density

limit of σ [83]. Only for the bending rigidities κ and κ̄ a slight inconsistency between
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Figure 5.1: Results for the four thermodynamic coefficients p, σ, κ, and κ̄ of the hard-

sphere fluid are shown as obtained from the new excess free energy density ΦWBII,

Eq. (3.43). The analytical expressions given in Eqs. (5.6) are denoted by the lines,

while the results from the minimization route are given by the symbols. η is the

packing fraction. At η ≈ 0.494 the hard-sphere fluid freezes.

the bulk and the minimization route appears. However, this inconsistency remains

below 1% at high values of η and we conjecture from the very good agreement of

σWBII with simulation data that also κWBII and κ̄WBII deliver accurate expressions

for the thermodynamic coefficients of the hard-sphere fluid. With Eq. (5.6) we have

obtained a set of analytical expressions for the thermodynamic coefficients which

are more accurate than previous suggestions, namely the results calculated from the

original White-Bear version or those from Rosenfeld’s FMT.

As an illustration, we plot in Fig. 5.2 the difference of various results for the

four thermodynamic coefficients, p, σ, κ, and κ̄, from the analytical expressions

[Eq. (5.6)] of the WBII version. Again, we find a high degree of self-consistency

of the new functional ΦWBII (symbols, except the crosses in Fig. 5.2). In contrast,

the inconsistency of the original White-Bear version, which can be read off from the

distance between the dashed line and the crosses in Fig. 5.2, is considerably larger

and appears even for the pressure. The analytical expressions derived in the bulk

route from ΦWB are therefore of lower quality than Eqs. (5.6), which manifests itself



5.1. Morphological thermodynamics 89

-0.03

0

0.03

-0.03

0

0.03

-0.03

0

0.03

0 0.1 0.2 0.3 0.4 0.5

-0.03

0

0.03

PSfrag replacements

β
∆

p
R

3
β
∆

σ
R

2
β
∆

κ
R

β
∆

κ̄
p − pWBII

σ − σWBII

κ − κWBII

κ̄ − κ̄WBII

η

Figure 5.2: Various results for the four thermodynamic coefficients, p, σ, κ, and κ̄.

Shown are the differences of these coefficients obtained by various routes and theories

to the analytical WBII results [Eq. (5.6)], cf. the lines in Fig. 5.1. The symbols (except

the crosses) denote the WBII results from the minimization route. For comparison,

we also show results from the original White-Bear version: those from the bulk route

are plotted as dashed lines while the crosses denote the outcome of the minimization

route.

also in their poorer agreement with simulations (see Section 3.2). The fact that

the results from the minimization route are so close for the two versions of FMT is

a direct consequence of the strong similarity of the corresponding density profiles.

This observation can be rationalized by noting that for the pure fluid the contact

values of the density profile at a planar wall (and hence the bulk pressure) coincide

for both versions of FMT as the underlying one-component equation of state is the

CS expression in both cases. Concerning the thermodynamic coefficients as obtained

from Rosenfeld’s excess free energy density ΦRF [Eq. (3.16)], we mention that pRF

follows the PY compressibility result [Eq. (3.18)] which quantitatively differs from

simulations so that the analytical expressions from the bulk route only yield a semi-

quantitative description of the thermodynamic coefficients beyond the low-density
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limit. Surprisingly, the agreement between the bulk and the minimization route

is comparable to that of ΦWB except for the pressure where ΦRF is consistent by

construction [97]. Intuitively, one might expect a better agreement for ΦRF than for

ΦWBII because the former is self-consistent on the level of the pressure for arbitrary

mixtures and not just for the pure fluid. The interesting observation that consistency

between the bulk and minimization route is relatively low for ΦRF will be encountered

again in the following where we consider the contact density of the hard-sphere fluid

at a curved hard wall.

The contact density of the hard-sphere fluid at a hard wall is connected to the

normal derivative of the grand potential Ω [93]. The case of interest here is again

a hard-sphere fluid (radius R, packing fraction η) around a sphere S with radius

Rs. Due to the symmetry of the problem, the normal derivative of Ω reduces to a

derivative with respect to Rs at constant chemical potential. It can be calculated

from the density functional Ω[ρ(r)], where ρ(r) is the equilibrium density profile.

This leads us to

∂Ω

∂Rs
=

∫

dr
δΩ[ρ(r)]

δρ

∂ρ(r)

∂Rs
+

∫

dr ρ(r)
∂Vext(r)

∂Rs
. (5.7)

The first integral vanishes due to the equilibrium condition for ρ(r), i.e. δΩ/δρ = 0.

The derivative of the external potential gives rise to a δ-peak located at a distance R

from the physical hard wall (cf. the introduction of the parallel surface above), and

one finds [143]

β
∂Ω

∂Rs

= 4π(Rs + R)2ρc (5.8)

where ρc is the contact value of the density of the fluid at the sphere S. Using the

morphometric form Eq. (5.2) for Fsol, the grand potential Ω of the fluid containing

the sphere S is Ω(Rs) = −pVtot + Fsol, where Vtot is the total volume of the system

which is independent of Rs. When the morphometric expression for Ω(Rs) is inserted

into Eq. (5.8) one obtains for the contact density ρc

ρc = βp +
2βσ

Rs + R
+

βκ

(Rs + R)2
. (5.9)

For Rs → ∞ the planar wall contact theorem ρc = βp is recovered and for finite

values of Rs the contact density is lowered as has to be expected for a convex surface.

We show results for the contact density ρc of a hard-sphere fluid with packing

fraction η = 0.4 as a function of the radius Rs in Fig. 5.3. The symbols are the con-

tact densities obtained from the density profiles which were calculated by minimizing

numerically the density functional Eq. (2.26) which uses one the three FMT excess

free energy densities. The lines in Fig. 5.3 show the morphometric prediction accord-

ing to Eq. (5.9) with the analytical expressions for the thermodynamic coefficients
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Figure 5.3: Contact value ρc of the density of a hard-sphere fluid (radius R, packing

fraction η = 0.4) at a single sphere with radius Rs. We show results obtained from the

excess free energy densities ΦRF [Eq. (3.16)], ΦWB, and ΦWBII [Eq. (3.43) and below],

respectively. We compare results from the numerical minimization of the density

functional Eq. (2.26) (symbols) with the morphometric prediction (lines) according

to Eq. (5.9).

from the different versions of FMT (see the above explanation of the bulk route).

Our first observation is that the numerical results from ΦWB and ΦWBII are nearly

indistinguishable and indeed in the planar wall limit, Rs →∞, the data coincide by

construction of the functionals. Taking this fact into account, it is understandable

that the results for ρc at finite values of Rs are very similar. The numerical data for

ΦRF tends towards the PY pressure for Rs →∞ which is known to overestimate the

actual pressure in the hard-sphere fluid for sufficiently high values of η. In the limit

Rs → 0 (point-like object) the data from the three versions of FMT are close.

Comparing with the analytical predictions from morphometry, we find very good

agreement between the results from ΦWBII over the whole interval of Rs. Only for

very small radii Rs a slight deviation is visible. Therefore, the new functional im-
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Figure 5.4: 2D sketch of solvent particles (in red) inside a cavity. When the size

of the cavity is decreased, a singular point is reached at which the solvent has to

be squeezed out of the cavity. This singularity is reflected by the vanishing of the

parallel surface (in blue) which is constructed at distance R (solvent radius) from the

physical wall.

proves upon the results obtained from the original White Bear version of FMT, which

performs well at small radii, but leads to some error at large values of Rs due to the

the pressure inconsistency of ΦWB. As mentioned above for the thermodynamic co-

efficients, a rather poor agreement in the case of Rosenfeld’s FMT is also observed

for the contact density. While the approach is consistent for large values of Rs by

construction of the functional, in the range of smaller values of Rs a deviation is

clearly visible. This behavior has been observed previously [88]. We find this fact

remarkable because it shows that, from the point of view of self-consistency on the

level of σ, κ, and κ̄, the new hard-sphere mixture equation of state [Eq. (3.34)] is

better suited for an implementation within FMT than the PY mixture equation of

state Eq. (3.17) itself. This is even more surprising as the latter is characterized by

full consistency for mixtures on the level of the pressure p, while pressure consistency

of Eq. (3.34) is guaranteed only for the one-component fluid.

Limits of morphological thermodynamics

We have mentioned above that the morphometric form for Fsol [Eq. (5.2)] constitutes,

in principle, an excellent tool for efficient free energy calculations over a large set of

protein configurations. The task of determining solvent properties can be shifted to a

simple test geometry and has to be completed only once. The computational effort for

obtaining the four geometric measures and combining them according to Eq. (5.2) is

significantly lower than performing calculations which treat the solvent in a complex
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geometry. But how accurate is the morphometric form for Fsol? Recent calculations

using DFT of the hard-sphere fluid have shown that morphometry is accurate within

the (small) numerical error for the case of solved particles having simple convex shapes

[93]. This result is very encouraging but it should be realized that the breakdown

of additivity [property (iii) in Hadwiger’s theorem] occurs for solute particles with

concave regions which are necessary to induce a confinement of the solvent. We

have therefore designed a more rigorous test for morphometry. We consider the

interfacial tension γ of a hard-sphere fluid (radius R, packing fraction η = 0.38)

which is contained inside a cylinder (radius Rcyl). γ is defined as γ = 1
A

(Ω − Ωbulk)

where Ω = −pVtot + Fsol is the grand potential of the system with the solute and

Ωbulk = −p(Vtot − V ) is the grand potential of the bulk reference system (V and A

are the solute volume and surface area, respectively). Using the morphometric form

for Fsol [Eq. (5.2)] in the above expression for γ one finds

γ = σ +
κC

A
+

κ̄X

A
= σ −

κ

2(Rcyl − R)
. (5.10)

In the last step, we have used that X = 0 in the cylindrical geometry (as one of

the principal curvatures vanishes) and we have moreover plugged in the results for

C and A in the given geometry. As we have mentioned earlier, the measures V , A,

C, and X have to be calculated with respect to the parallel surface which, for the

cylindrical pore considered here, is depicted in Fig. 5.1. The parallel wall is given as

the surface of a cylinder with a radius Rcyl − R. Therefore, we have C = − A
2(Rcyl−R)

and the singular point Rcyl = R, where the parallel surface vanishes and the solvent

has to be squeezed out of the cavity, is reflected, mathematically, in the singularity

of Eq. (5.10). The observed property that the parallel surface vanishes in regions

which are not accessible for the solvent holds also in arbitrary geometries and is a

simple consequence of the fact that the parallel surface is constructed such that it

delimits the space accessible to the centers of the solvent particles. On the level of

the geometric measures, the singular point where the parallel surface vanishes (i.e.

Rcyl = R for the cylinder) is marked by the discontinuity of a geometric measure (X

in spherical geometry, C in cylindrical geometry). In the present example, C is a

negative constant for Rcyl ≥ R and C = 0 for Rcyl < R. As we shall see in the next

section, the need to consider the parallel surface makes calculations of the geometric

measures more involved, but it guarantees us to capture important features of the

underlying physics.

Coming back to the calculation of γ in the cylindrical pore, we note that, as an

alternative to Eq. (5.10), γ can be calculated with DFT using the defining relation

γ = 1
A

(Ω[ρ(r)] − Ωbulk), where Ω[ρ(r)] is the density functional evaluated for the
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Figure 5.5: Interfacial tension γ of a hard-sphere fluid (radius R, packing fraction

η = 0.38) inside a cylinder with radius Rcyl. The results from DFT calculations

(WBII of FMT) oscillate around the prediction from morphometry, Eq. (5.10).

equilibrium density distribution ρ(r). We have obtained data for γ using the WBII

functional [Eq. (2.26) with Fex calculated from Eq. (3.43)].

The results from the two approaches are compared in Fig. 5.5. The thermody-

namic coefficients σ and κ have been obtained by fitting Eq. (5.10) to the DFT data

for Rcyl ∈ [10R, 20R]. The morphometric prediction is excellent for Rcyl > 7R, only

for smaller cylinder radii deviations from the DFT data appear, which become more

pronounced for narrower cylinders. This is in agreement with our previous remark

that morphomotry is supposed to perform well also for confined fluids as long as the

length scale of the confinement is large compared to the correlation length of the

fluid. Even for narrow cylinders we find the deviations reasonably small compared to

the absolute value of γ and morphometry still captures the trend of γ which would

persist after smoothing the DFT data by averaging out the characteristic oscillations

which are caused by packing effects of the solvent particles. The capability of pre-

dicting the general trend suggests an explanation for the success of morphometry in a

recent calculation of Fsol for protein G where confinement on the scale of the solvent

correlation length is strongly present [142]. However, concerning the following results

for the model protein, which are obtained using morphometry, we note that charac-

teristic oscillations in situations of extreme confinement are not reproduced but their

contribution to Fsol is sufficiently small so as not to affect the overall behavior.



5.2. Results for a model protein 95

PSfrag replacements

Ph

2Rh

2Rt

Figure 5.6: Left: helical conformation of a protein in the tube model. Right: a

possible parallel surface for the same conformation. Due to self-intersection one or

several helical intersection lines (in red) appear giving rise to additional contributions

to the integral mean and Gaussian curvatures.

5.2 Results for a model protein

5.2.1 Geometric measures

We have calculated the geometric measures for a broad range of protein conformations

in the tube model covering two principal secondary motives, namely helices and β-

sheets. When the contributions from turns are neglected, β-sheets are attained in

the limit of helices with infinite radius where all the calculations can be performed

analytically using elementary geometry. We therefore focus here on the more involved

case of truly helical conformations.

Helical tube conformations are obtained from a helical curve which is determined

by two numbers: the pitch Ph and the radius Rh. The standard parametrization of

the right-handed helical curve is

x = Rh cos τ , y = Rh sin τ , z = Phτ/2π , (5.11)

where τ ∈ (−∞, +∞). The corresponding conformation of the tube with radius Rt is

given by the set of all the points having a distance lower than or equal to Rt from the

helical curve (see left of Fig. 5.6). Obviously, for given parameters Ph and Rh there
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exists a specific value of Rt such that tubes with larger radius cannot be realized in

this helical conformation as they would self-intersect. An examination of the helical

close-packing problem shows that two regimes can be distinguished [144]. Consider

a situation where the tube radius Rt is kept fixed. Then for large helix radius Rh the

close-packing is obtained by reducing Ph to the point below which consecutive turns

of the helix would start to intersect. In the limit Rh →∞ of this regime the geometry

of a β-sheet is recovered. Following the line of these turn-to-turn distance limited

close-packed helices while decreasing Rh causes the helical centerline of the tube to

bend more and more strongly. A point is reached where the radius of curvature of

the helical curve equals the tube radius Rt. Further decrease of Rh would cause the

tube to bend so strongly that is would self-intersect locally. In this curvature limited

regime Ph has to be chosen larger than according to the global turn-to-turn distance

constraint in order to avoid self-intersection. The crossover between the two regimes

occurs at R∗

h ' 0.8622Rt and P ∗

h ' 2.166Rt corresponding to a pitch to radius ratio

c∗ = P ∗

h/R∗

h ' 2.512. These parameters define one peculiar helix from the set of

close-packed helices which marks the crossover point between the two regimes. This

helix is termed “optimal” as it appears in packing problems of tubes subject to local

compactness conditions [145]. Strikingly, the geometry of helical conformations of

many real proteins appears closely related to that of the optimal helix [145].

As we have discussed above, the geometric measures for a helical conformation

Rh, Ph, Rt and solvent particles with hard-core radius R must be calculated for the

body resulting from a parallel shift of the surface by the distance R. The right of

Fig. 5.6 shows an example for such a parallel body. Self-intersection, which is absent

in the helical protein conformation, occurs for the parallel body and complicates the

calculation of the geometric measures. Given that the equations for the determination

of intersection lines (see Fig. 5.6) are transcendental we do not attempt an analytical

calculation of the geometric measures and perform the volume, surface and curvature

integrations numerically. The question remains, however, how intersection lines must

be treated in this context. Clearly, possible line contributions must originate from

the integrals of curvature. For their calculation we apply the following regularization

of the intersection line. Imagine a small sphere with radius ε which is rolled along

the groove with an intersection line at its bottom. In this way two lines tracking

the points of contact between the small sphere and the parallel surface are drawn.

These define the vicinity of the intersection line. The regular surface is constructed

by “filling” the groove in the vicinity of the intersection line such that the contact

between the small sphere and the modified surface is extended over the whole vicinity.

In the limit ε→ 0 the contributions of the vicinity to the integral curvatures converge
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to finite numbers. In particular, for the helical geometry we obtain the following line

contributions to the integral mean and Gaussian curvatures (per unit length of the

intersection line)

Cline = −(π/2− θ/2) , Xline = −2κline cos(θ/2) . (5.12)

Here θ is the opening angle of the intersection line groove and κline denotes the

curvature of the intersection line. Our expressions are consistent with the result for

the case of two intersecting spheres [146].

Results for the geometric measures of the close-packed helical conformations are

shown in Fig. 5.7. Note that the integral Gaussian curvature always vanishes, which

expresses the fact that the parallel body of a helix is topologically equivalent either

to a solid or a hollow cylinder. For an easy comparison of the results for different

solvent radii R we have subtracted the (R-dependent) values of the volume and the

surface area corresponding to a β-sheet, Vβ and Aβ. These are approached in the

limit Rh → ∞. For the integral mean curvature this subtraction is unnecessary as

Cβ ≡ 0. The figure focuses on the turn-to-turn distance limited regime (Rh > R∗

h)

while only the onset of the curvature limited regime is shown. There, the geometric

measures quickly approach Vstr, Astr, and Cstr which are the values for a stretched

tube, i.e., a tube with a straight center line. This behavior reflects the fact that

for Rh < R∗

h the pitch Ph must be strongly increased compared to the turn-to-turn

distance limited regime which causes the surface of the tube to be more exposed to

the solvent. The values ∆V β
str = (Vstr − Vβ)/(R3

t L̃) and ∆Aβ
str = (Astr − Aβ)/(R2

t L̃)

are tabulated in the figure. In our calculations L̃ = L/Rt is the dimensionless length

of the tube which is considered in the limit L → ∞ such that contributions coming

from the end points of the tube are negligible. For the integral mean curvature, the

R-dependence drops out and one finds Cstr/(RtL̃) = π.

We discuss some of the main features of the curves here, coming back to them

in the context of solvation free energies for the different solvents. The curves for

the volume V have their global minimum at Rh = R∗

h when R is small. At R =

Ruw ' 0.0835Rt the minimum starts to move to Rh > R∗

h while its absolute value

with respect to Vβ remains roughly unchanged. This trend persists even for R larger

than shown in Fig. 5.7. The value of V at Rh = R∗

h increases with R for R > Ruw

exceeding Vβ at Rh ' 0.1373Rt. The results for the surface area A at small R behave

similar to the volume results. Above R = Rs ' 0.0465Rt an interval appears where

the surface area decays almost linearly. This is followed by an increase to the level

of Aβ which is connected to the linear part with a cusp. The cusp moves to larger

Rh when R is increased. It is situated at a larger value of Rh than the minimum of

the corresponding volume curve. Exactly at the location of the cusp, the results for
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Figure 5.7: Volume V , surface area A, and integral mean curvature C for a range of

close-packed helical tube conformations. Calculations are performed on the parallel

body at different distances R (radius of solvent hard core). The integral Gaussian

curvature X vanishes, consistent with the given topology. The helices with Rh < R∗

h

are curvature limited close-packed; those with Rh > R∗

h are turn-to-turn distance

limited close-packed. The limit Rh →∞ corresponds to the β-sheet conformation.
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the integral mean curvature C display at discontinuity where C/(RtL̃) drops from a

value between 1.5 and 2.0 to almost zero. It is instructive to compare this behavior

with the case of a hollow cylinder mentioned in Section 5.1 where the discontinuity

of C indicates that the solvent has to be squeezed out from the cylindrical cavity. It

turns out that in the helical geometry the meaning of the discontinuity is the same.

Given R > Rs and Rh > R∗

h only the exterior of the helix can be probed by the

solvent particles if Rh is below the location of the discontinuity. If Rh is increased

above the discontinuity the space near the central axis of the helix grows large enough

to hold the solvent particles. This observation reveals an interesting meaning of the

threshold value Rs. A particle with this or a smaller size can enter even the cavity

formed by the optimal close-packed helix. The curves of C for R < Rs display a jump

at Rh < R∗

h. This corresponds to a connection between the cavity and the bulk being

established due to the increase of the pitch Ph in the curvature limited regime. For

solvent sizes slightly above Rs the situation is even more complex. There, a small

interval of values for Rh below R∗

h exists where a cavity accessible to the solvent

particles forms again (not shown). However, for sufficiently small helix radii Rh the

cavity always connects to the bulk and C/(RtL̃)→ π.

5.2.2 Hard-sphere solvent

In recent work, Snir and Kamien have calculated the solvation free energy Fsol of he-

lical conformations of molecules in the tube model for a hard-sphere solvent [14, 15].

They obtain results within the Asakura-Oosawa model [16] which neglects the inter-

actions between solvent particles completely. Therefore, Fsol is directly proportional

to the volume V of the protein calculated for the parallel body. More precisely

Fsol = pV where p = ρkBT is the solvent pressure obtained from the solvent particle

number density ρ. The simplicity of the Asakura-Oosawa model allows us to read off

the results for Fsol directly from the volume curves of different helical conformations

in Fig. 5.7.1 Accordingly, for solvent particles smaller than Ruw the optimal close-

packed helix, which is characterized by Rh = R∗

h and Ph = P ∗

h , has the lowest free

energy. When the solvent particles are larger, the minimal free energy is assumed for

some Rh > R∗

h. This was interpreted in Ref. [14] such that larger solvent particles

lead to a favoring of sheetlike folding, i.e., they cause the helix to unwind. It should

be noted that the Asakura-Oosawa model is valid only at low solvent densities ρ. In

this regime, however, the solvent part of the protein’s free energy is small as it is

proportional to ρ. Employing the morphometric form of Fsol [Eq. (5.2)] allows us to

1The figure is restricted to the set of close-packed helices. A complete scan of the configuration

space of helices shows that minima in V are always assumed on this set.
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obtain reliable results for the hard-sphere solvent beyond the low-density limit.

It should be mentioned that the Asakura-Oosawa model constitutes indeed a

special case of the morphometric form for Fsol, namely the case where p equals the

pressure of the ideal gas and the higher thermodynamic coefficients σ, κ, and κ̄

are set to zero which is their correct value in the uncorrelated ideal gas. In order

to treat the hard-sphere solvent beyond the low-density limit extrapolations for the

thermodynamic coefficients to higher densities are required. Conveniently, accurate

analytical expressions for the coefficients as functions of the hard-sphere fluid packing

fraction η are available from the recent WBII version of FMT as we have shown in

Section 5.1. The coefficients are plotted in Fig. 5.1. In particular, the pressure p is

the quasi-exact CS expression and the result for the planar wall surface tension σ has

been shown to compare very well with data from computer simulations. For η → 0,

the expressions reduce to those of the ideal gas: p is linear in η, σ quadratic, and κ

cubic.

The fact that we have the coefficients available as functions of η through simple

analytical expressions is particular valuable as it allows us to perform a detailed scan

over the range of all possible solvent densities. We calculate the solvation free energy

Fsol according to Eq. (5.2) for the set of close-packed helices for different solvent

conditions which are determined via the solvent packing fraction η and the solvent

particle radius R. As a result, we discern three different parameter regions where Fsol

is minimal (i) for the optimal helix with Rh = R∗

h, (ii) for the β-sheet with Rh →∞,

and, (iii) for certain finite values Rh > R∗

h which we refer to as unwound helix. These

regions are plotted as a function of η and R in Fig. 5.8.

In the limit η → 0 the result of Snir and Kamien is recovered: below R = Ruw

the optimal helix minimizes Fsol, above the minimum is assumed for an unwound

helical configuration (Rh > R∗

h). However, taking into account also the diagram

beyond vanishing solvent packing fraction η shows that the statement that larger

solvent particles lead to a favoring of β-sheets can hardly be sustained. On the

contrary, the only region where the β-sheet minimizes Fsol is situated at small solvent

particles (R ≈ 0.05Rt) with large packing fractions η & 0.3. The nature of the

regime of unwound helices at large solvent particles can be inferred from the curves

of Fsol shown in Fig. 5.9(d). As has to be expected from the Asakura-Oosawa results

by Snir and Kamien, the curves display a minimum at Rh > R∗

h originating from

the volume contribution. However, the minimum is separated from the sheetlike

configuration by an energy barrier arising from the surface contribution (cf. Fig. 5.7)

which enters into the calculation of Fsol with a negative sign as σ < 0 [see Eq. (5.2)].

Therefore the picture conveyed in Ref. [14] that increasing the solvent particle size
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lines. In the limit η → 0 there is no transition at R = Rs. The solvent configurations

indicated by dots are discussed in Fig. 5.9.

R leads continuously to a sheetlike geometry is misleading. Note further that the

effect of the surface area contribution is to stabilize the optimal helix conformation

with respect to the unwound helix as can be seen from the transition line which

increases from R = Ruw at η = 0 to R > 0.2Rt at large η. The discontinuities of the

curves in Fig. 5.9 are due to the contribution from the integral mean curvature. In

consequence, it locates the characteristic helix radius which divides two qualitatively

different regimes. Helices with larger radius Rh contain in their interior solvent which

is disconnected from the bulk. In contrast, the cavities offered by helices with radii

smaller than the location of the jump position are so narrow that they cannot hold

solvent particles. Coming from large helix radii Rh the discontinuity corresponds

to the point where the solvent has to be squeezed out from the inner part of the

helix. Once this is completed, the system can easily relax towards smaller radii

Rh and eventually meet the the optimal helix configuration as in Fig. 5.9(c). Note

that the discontinuity in Fsol is a consequence of assuming a hard body interaction

between the protein tube and the solvent particles. It would be smeared out if soft

interaction potentials were used. Figure 5.9 shows characteristic free energy curves

for all the different regions of the diagram in Fig. 5.8. From the curves the presence of
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Figure 5.9: Fsol for the different solvent configurations which are indicated in the

diagram Fig. 5.8, except P6. Fsol is shown for configurations along the line of close-

packed helices with a focus on the turn-to-turn distance limited regime (Rh > R∗

h).

In the curvature limited regime (Rh < R∗

h) the values ∆F β
str, given in the table, are

reached.

continuous (in Rh) and discontinuous transition lines between the regions in Fig. 5.8

can be understood. In order to assess the stability of the helical conformations shown

in Fig. 5.9 we have checked that increasing the pitch of the close-packed helices by

0.02R leads to higher Fsol in all the cases. In the table which is given with Fig. 5.9

we compare Fsol for the β-sheet with the value corresponding to a stretched tube

by calculating the quantity ∆F β
str = ((Fsol)str − (Fsol)β)/(kBT L̃). As an interesting

result, the large values of ∆F β
str prove that in the hard-sphere solvent both the optimal

helix and the β-sheet are clearly favorable energetically compared to the stretched

tube configuration which is devoid of any economic packing. Finally, we note that

the free energy curves become flatter with increasing R. Therefore, if additional

contributions to the overall protein free energy, which can be formulated in a first
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approach in terms of a bending stiffness [14], are taken into account, the results for

Fsol cease to determine the protein configuration for solvent particles much larger

than those included in Fig. 5.8. This observation has to be seen as an additional

restriction of the unwinding hypothesis of Ref. [14] which assumes a solvent driven

tendency of sheet formation in the range of large solvent particles.

5.2.3 Square-well solvent

Contrary to the hard-sphere solvent, where accurate analytical expressions for the

thermodynamic coefficients are available, this is not the case for more complicated

solvents. However, the morphometric approach is still viable as we show exemplarily

for the square-well fluid which can serve as a crude model for water [136]. The square-

well fluid is obtained by adding to the hard-sphere interaction a constant attractive

potential

wsw(|r− r′|) =







−εsw if |r− r′| ≤ Rsw

0 otherwise
(5.13)

acting between particles at positions r and r′. We use Rsw = 3R, where R is the

hard core radius of the particles. The square-well potential can be included in the

density functional Ω[ρ] [Eq. (2.26)] via a corresponding excess free energy functional

F ex
sw[ρ] which adds to the excess free energy functional for the hard sphere part of the

interaction. Making a simple mean field approximation we use

F ex
sw[ρ] =

1

2

∫∫

drdr′ρ(r)ρ(r′)wsw(|r− r′|) . (5.14)

The hard core interaction is implemented through the WBII excess free energy func-

tional [cf. Eq. (3.43)] such that the thermodynamic coefficients for hard spheres shown

in Fig. 5.2 are reproduced in the limit of vanishing square-well interaction strength

εsw = 0. Making use of the minimization route, which we have explained in Sec-

tion 5.1, we can access the thermodynamics coefficients for εsw > 0. To this end the

equilibrium grand potential Ω is obtained from the numerical minimization proce-

dure of the functional Ω[ρ] for different solute particles which enter the calculations

through the external potential. When the solute particles are chosen to be simply

spheres of different radii the calculation of the corresponding Ω, and hence Fsol, can

be performed efficiently. The thermodynamic coefficients are extracted by fitting the

morphometric form Eq. (5.2) for Fsol, which is a cubic polynomial in the radius of

the solute sphere, to the numerical data. We find that the quality of the fit is ex-

cellent. For solute spheres with sizes in the range of 2R and 10R the coefficients

are determined with a standard error below 1%. Our results for the packing fraction
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Figure 5.10: Left: thermodynamic coefficients of a square-well fluid as a function of

εsw, the strength of the attraction between particles. Right: thermodynamic coeffi-

cients for a square-well fluid (εsw = 0.8kBT ) at a wall acting through a short-ranged

potential of strength εwall on the fluid.

η = 0.384, which corresponds to 55.5 Molar of water with an assumed hard core

radius of R = 1.4 Å, are shown on the left of Fig. 5.10. The critical point of the given

square-well fluid being located at ηcr = 0.130 and εsw = 0.785kBT we can attribute the

fluid to the liquid part of the phase diagram when εsw, the attraction between solvent

particles, is larger than 0.785kBT . Upon increasing εsw at constant temperature T ,

the pressure of the fluid decreases linearly, consistent with the analytical result from

the underlying density functional. At εsw = 1.215kBT the liquid becomes metastable

with respect to the gas phase with ηg = 0.005. Slightly above, at εsw = 1.218kBT , the

pressure of the liquid vanishes. Both σ and κ change sign when εsw is increased. The

increase in σ means that building up an interface at a neutral surface becomes more

costly energetically. In particular, the square-well fluid retreats from the neutral wall

in contrast to the hard-sphere fluid which is adsorbed.

In order to go beyond a neutral wall which corresponds to a protein surface without

any specific interaction with the solvent, we determine thermodynamic coefficients for

a square-well fluid with η = 0.384 and εsw = 0.8kBT subject to a wall potential Vwall

adding to the potential of the hard wall. We choose Vwall to be constant with a value

−εwall over a short range of dwall = R/10 in front of the hard wall. The motivation

for choosing Vwall short-ranged is that otherwise one would have to expect also strong
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Figure 5.11: Left: Fsol for a hydrophobic protein (εwall = −3.0kBT ) in a square-well

fluid with εsw = 0.8kBT . The solvent packing fraction is η = 0.384 and the solvent

particle radii are R = 0.125Rt (P4), R = 0.2Rt (P5), and R = 0.25Rt (P6). Right:

Fsol for a hydrophilic protein (εwall = 3.0kBT ) in the same solvents. The curves for

Fsol assume their global maxima for some Rh < R∗

h (not shown).

interactions between different parts of the protein. This would potentially give rise to

important contributions to the free energy which are of other origin that the solvent.

The results for different strengths εwall of the wall potential are shown on the right

of Fig. 5.10. Obviously, a repulsive wall (εwall < 0) does not have much effect on the

coefficients. This can be explained by the fact that at εsw = 0.8kBT the square-well

fluid retreats even from the neutral wall such that an additional repulsion over a short

range acts only on a rather small amount of liquid. In conclusion, the hydrophobicity

of the wall (εwall < 0) is in fact basically equivalent to a neutral wall. In the case of a

hydrophilic wall (εwall > 0) the sign of σ becomes negative again as in the case of the

hard-sphere solvent. In contrast, κ, which is positive for the hard spheres, remains

negative when εwall is increased. The corresponding picture is that the square-well

fluid at a hydrophilic wall likes convex domains as Vwall is experienced then over a

lager volume. The hard-sphere fluid on the other hand likes concave domains which

allow the fluid to maximize its excess adsorption. The implications of this difference

for the value of Fsol turn out to be far-reaching.

In order to illustrate the influence of the sign of κ we turn to our results for a

hydrophilic protein (εwall = 3.0kBT ) in a square-well solvent (εsw = 0.8kBT ) which are
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shown on the right of Fig. 5.11. The curves are rather similar to those for the neutral

protein in a hard-sphere solvent [cf. Fig. 5.9(c)] reflecting the similar ratio and signs of

p and σ. Due to the different sign of κ, however, at the discontinuity the curves jump

from lower to higher Fsol in the case considered here. This has two important effects.

First, the β-sheet is shifted to a level which is situated energetically much higher than

the optimal helix. The second, crucial effect of negative κ is to lower the energetic level

of the stretched tube, which maximizes C, to values which lie close to the minimum

belonging to the optimal helix. For large solvent particles the stretched tube is even

more favorable compared to the helical conformation. If a bending stiffness is included

in the tube model, helical conformations require additional energy compared to the

stretched tube which compensates for the slight disadvantage of the stretched tube

in terms of Fsol even for the smaller solvent particles. Our results suggest that the

tendency of a protein to arrange in a compact configuration (its fold) is undermined

by a prominent presence of hydrophilic groups. Note that if in the hydrophilic setup

the sign of κ was inverted, the curves would become qualitatively the same as for

the neutral protein in a hard-sphere solvent. In particular, Fsol of the helix and the

β-sheet would be shifted below the level of the stretched tube conformation.

On the other hand, we can identify hydrophobicity of certain side chains as a

driving force for protein folding. This is reflected in our results for the hydrophobic

protein (εwall = −3.0kBT ) in a square-well solvent (εsw = 0.8kBT ) which we show on

the left of Fig. 5.11. From the large values of ∆F β
str a strong tendency to arrange

into a compact configuration can be read off (cf. the values given in Fig. 5.9). The

configuration with lowest Fsol, however, is no longer the optimal helix but a helical

conformation with a larger radius corresponding to the point where the cavity formed

by the helical tube has precisely the size at which it could in principle hold the solvent

particles. However, the influence of the discontinuity of C is such that the minimum is

assumed on the branch of Fsol which corresponds to an empty cavity. In other words,

the helix is widened up to the point where the solvent particles fit into the cavity but

as a consequence of hydrophobicity the solvent does not enter the cavity. One can

speculate that this widened helical conformation with its empty cavity provides space

for hydrophobic side chains to be shielded from the solvent. For reasons of clarity,

we have not included in Fig. 5.11 the curves corresponding to a slightly increased

pitch. They are always situated at higher values of Fsol attesting for the stability of

the close-packed helical conformations both in the hydrophobic and hydrophilic case.
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5.3 Conclusion

In Section 5.1 of this chapter we have introduced the morphometric approach to the

solvation free energy Fsol of a solute which in the present investigation is a protein

represented in the tube model of Banavar and Maritan [11, 12] (see Fig. 5.6). The

morphometric form of Fsol [Eq. (5.2)] allows for a very efficient calculation of solvation

free energies as solvent properties and the potentially complex solute geometry are

treated separately, rather than performing DFT calculations involving the solvent un-

der the complicated external potential which is induced by the solute. The approach

has been shown to be very reliable for simple convex solutes in a hard-sphere sol-

vent [93] while deviations due to packing effects occur when a convex solute strongly

confines portions of the solvent. Also in Section 5.1 we have investigated a confined

fluid which allows us to estimate that deviations of the morphometric prediction from

the full DFT calculations have only a minor effect on our results for the solvation

free energy of the model protein.

In order to assess the effect of solvent entropy on how the protein folds we have con-

sidered in Section 5.2.2 a hard-sphere solvent for which the thermodynamic proper-

ties are given through accurate analytical expressions thanks to the novel hard-sphere

equation of state [Eq. (3.34)] and the corresponding density functional [Eq. (3.43)].

This allows us to perform a scan over a large range of solvent configurations which

are characterized by the solvent radius R and packing fraction η. Therefore we are

able to extend recent results by Snir and Kamien [14,15] to solvents beyond the limit

of vanishing packing fraction. While their results for η → 0 are recovered in our

approach, contributions to Fsol due to solvent surface tension σ and bending rigid-

ity κ [see Eq. (5.2)] become important for η > 0. The influence of these additional

contribution sheds new light on the results of Snir and Kamien and we find that

their conclusion that increasing the size of the solvent particles “leads to the favoring

of sheetlike folding” [14] should be questioned. Mainly three findings of our work

challenge their statement: First, the only regime where the β-sheet minimizes Fsol

is situated at small solvent particles with packing fractions η > 0.3. Second, large

solvent particles are indeed identified to lead to helical conformations which have

slightly larger radii than the so-called optimal helix. But these helical conformations

have still lower Fsol than the β-sheet and are separated from the sheetlike confor-

mation through an energy barrier which arises from the surface area contribution.

Third, in order to obtain a pronounced unwinding of the helix, the size of the solvent

particles has to be increased considerably. We show that for large solvent particles

the curves of Fsol become quite flat such that energetic contributions of other origin

than the solvent determine the protein folding.
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In Section 5.2.3 we apply our method to a more complex solvent with intermolecu-

lar attraction and we include specific interactions between the protein and the solvent.

To be more specific, we study hydrophobic and hydrophilic proteins in a square-well

fluid which can serve as a crude model for water. We find that for a protein with a

predominance of hydrophilic groups the tendency to adopt a compact folded state is

extremely weak. This can be attributed to the influence of the integral mean curva-

ture of the protein surface which enters Eq. (5.2) with opposite sign compared to the

hard-sphere case. Moreover, the role of hydrophobic side chains as a driving force for

folding is reflected in our results. Compact protein configurations, helices as well as

the β-sheet, are shown to lead to Fsol much smaller than for the stretched (unfolded)

protein configuration.

In conclusion, we have used the background provided by morphological thermo-

dynamics in order to calculate Fsol for a protein in the tube model of Banavar and

Maritan efficiently. The method has been employed for the hard-sphere fluid, which

allows to assess entropic effects, and for the square-well fluid, which provides a crude

model of water and which allows for studying the role of hydrophobic and hydrophilic

amino acids. Future work could be centered around including more chemical details

of given amino acid sequences. This might be realized by partitioning the protein

surface into domains which, as a function of the corresponding amino acid, expose

different interactions with the solvent. It should be noted that in this approach ad-

ditional line contributions to Fsol stemming from the domain boundaries are to be

expected. A further interesting topic of future research lies in the study of protein

folding under confinement which might constitute a challenging test of the morpho-

metric approach for Fsol as packing effects of the solvent are more important when

the protein is located in the crowded environment of the cell.



Chapter 6

Summary and Outlook

The aim of this thesis has been to study the influence of different solvent conditions

on protein folding. Given that protein function is crucially determined by the sec-

ondary and tertiary structure which are assumed under physiological conditions, it is

most worthwhile to investigate the influence of the solvent, as a major characteristics

of the cellular environment, on how a protein folds. Our focus for this study is on

the entropic effects caused by the solvent, the essence of which is captured already

if the solvent is chosen to be the relatively well understood hard-sphere fluid. How-

ever, even for this idealized model solvent free energy calculations in the potentially

complex geometries provided by different protein conformations risk to become time

consuming if high accuracy and an extensive scan of solvent properties are required.

We devise a method for calculating the solvation free energy Fsol which makes use of

the results of the so-called morphological thermodynamics based on Hadwiger’s the-

orem from integral geometry [23]. The concept has been applied in statistical physics

since the mid-1990’s [20, 135] and rather recently in the context of the hard-sphere

fluid [93]. The basic equation for Fsol within morphological thermodynamics is rather

simple. The theory states that

Fsol = pV + σA + κC + κ̄X , (6.1)

where p, σ, κ, and κ̄ are properties of the solvent1 which depend on the solvent tem-

perature, the chemical potential, and the specific interaction of a given domain of the

protein with the solvent. However, these thermodynamic coefficients are independent

of the protein conformation. The latter is encoded in the geometric measures V , A,

C, and X which can be attributed to an arbitrary given protein conformation.2

1To be more specific, p is the pressure, σ the planar wall surface tension, and κ and κ̄ are the

bending rigidities of the solvent.
2These geometric measures are the volume V , the surface area A, the integral mean curvature

C, and the integral Gaussian curvature X of the protein for a given conformation.

109
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The obvious advantage of Eq. (6.1) is that it allows one to avoid the treatment

of solvents in the complex geometries which can be induced by the protein. Instead,

solvent properties have to be calculated only once in test geometries which use so-

lutes of simple shape. In a second step, the geometric measures for different protein

conformations can be computed relatively easily and they can be finally joined with

the solvent properties according to the simple equation Eq. (6.1) in order to yield

Fsol. It should be mentioned, however, that Eq. (6.1) for Fsol constitutes merely an

approximation to the exact solvation free energy. In the case of the hard-sphere sol-

vent this approximation has been shown to be extremely accurate for simple convex

solutes [93] but there are deviations from the exact results if concave solutes, which

give rise to solvent confinement, are considered. In Section 5.1, which belongs to the

last chapter of the present work, we give an introduction to morphological thermo-

dynamics together with a discussion of its strengths and limitations. The preceding

Chapters 2 to 4 are to a large extent preparatory to our setting up of the morphologi-

cal approach to Fsol but they can be appreciated also independently of the biologically

inspired applications in Chapter 5.

In Chapter 2 we present a rigorous calculation of the statistical mechanics of a

system of particles confined to one dimension (1D) with arbitrary pair potentials

acting between next neighbors. The formal solution of the 1D system is known since

the 1950’s [42, 43] but so far it has not been, to our knowledge, connected with

experiments. We use a surprisingly simple relation resulting from the exact solution

which allows for an unambiguous solution of the inverse problem which consists in

recovering the pair interaction potential between the particles from a measured pair

distribution function. The procedure is applied to data from measurements on a

system of charge-stabilized colloids which are confined to 1D using an optical tweezer.

As expected, given that the underlying theory is exact, we find excellent agreement

between theory and experiment. Thus the 1D system provides one of the rare cases

in which experimental results can be reproduced one-to-one by theory due to the fact

that in 1D the statistical mechanics is exactly solvable.

The solvability of the 1D case enables us to illustrate our introduction to density

functional theory of classical fluids (DFT), which we provide in Section 2.3, with

the exact result for the excess (over the ideal gas) free energy functional F 1D
ex for

the 1D hard-sphere mixture [64]. The expression for F 1D
ex is valuable for mainly

two reasons. First, it proves that DFT provides a means of accessing conveniently

the exact thermodynamics of the 1D hard-sphere system under arbitrary external

potentials for which a calculation based on evaluating the partition function is barely

manageable. This constitutes a motivation for using DFT also in the 3D case for
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which free energy calculations have to be performed for various external potentials

resulting from the presence of the solute (i.e. a protein or a simpler object in a test

geometry). Second, we can analyze the structure of F 1D
ex in some detail which provides

us with the appropriate tools for the construction of approximations for the excess

free energy functional F 3D
ex of the hard-sphere fluid in 3D. Given the relative simplicity

of the 1D result this approach allows us to spare the reader some of the details of the

more cumbersome calculations related to the 3D functionals.

The construction of F 3D
ex is undertaken in Chapter 3 following the lines of Rosen-

feld’s seminal work from 1989 [22]. From a close inspection of the exactly known

low-density limit of F 3D
ex a set of six weighted densities can be identified. These

are the four scalar functions n0(r), . . . , n3(r) and the two vectorial functions −→n1(r)

and −→n2(r) which all depend on the spatial coordinates r and which are obtained by

smearing out the density profiles of the multi-component hard-sphere mixture. Using

an exact relation for the pressure from scaled-particle theory [27, 28] the approxi-

mate excess free energy density ΦRF [Eq. (3.16)] can be constructed as a function of

the weighted densities. This defines Rosenfeld’s fundamental measure theory (FMT)

for the hard-sphere mixture. Remarkably, although based on completely unrelated

premises, FMT renders the results for the pressure and the pair direct correlation

function as they are obtained by solving the Ornstein-Zerneke integral equation with

the Percus-Yevik (PY) closure [45]. In particular, for the pressure the PY compress-

ibility result
pPY

kBT
=

n0

1− n3

+
n1n2

(1− n3)2
+

n3
2

12π(1− n3)3
(6.2)

follows from ΦRF. The pressure pPY is a function of the bulk values of the weighted

densities which are given by

n0 =

ν
∑

i=1

ρi , n1 =

ν
∑

i=1

Riρi , n2 =

ν
∑

i=1

4πR2
i ρi , n3 =

ν
∑

i=1

4π

3
R3

i ρi (6.3)

for a ν-component fluid of spheres with particle number densities ρi and radii Ri.

In particular n0 is the total particle number density and n3 equals the total packing

fraction of the hard-sphere mixture. The vectorial weighted densities vanish in the

homogeneous bulk fluid.

While at moderate packing fractions the pressure pPY is in good agreement with

simulation data for the one-component hard-sphere fluid, it overestimates the actual

pressure by about 7% close to the freezing transition of the fluid. This has been cured

for the one-component fluid by an empirical correction of the equation of state which

gives rise to the Carnahan-Starling (CS) pressure pCS [79]. In order to make pCS

useable within the context of FMT it has to be expressed in terms of the weighted



112 6. Summary and Outlook

densities n0, . . . , n3 which is equivalent to generalizing pCS to hard-sphere mixtures.

This is the purpose of Section 3.2 where we introduce a systematic expansion of the

pressure in terms of powers of n3. By maximizing consistency with the exact relation

from scaled-particle theory, which we have mentioned above, we obtain without any

fitting the Boubĺık-Mansoori-Carnahan-Starling-Leland (BMCSL) pressure pBMCSL

[80, 81] if the expansion is pursued to first order. Including the next higher order

leads unambiguously to the recently proposed extended CS (eCS) pressure peCS [82].

The third order of the expansion renders the new equation of state

p(3)

kBT
=

n0

1− n3

+
n1n2

(

1 + 1
3
n2

3

)

(1− n3)2
+

n3
2

(

1− 2
3
n3 + 1

3
n2

3

)

12π(1− n3)3
(6.4)

which, different from pBMCSL and peCS, is fully consistent with scaled-particle theory

for the one-component hard-sphere fluid. Besides this virtue, the comparison with

simulation data for the pressure and the chemical potential of various hard-sphere

mixtures as well as for the surface tension and adsorption shows that p(3) improves

both on pBMCSL and peCS. In Section 3.3 we describe how the novel equation of state

p(3) can be incorporated into the framework of FMT such that the strengths of p(3)

can be exploited also for inhomogeneous fluids within DFT. The resulting excess free

energy density is denoted by ΦWBII [Eq. (3.43)] and it is referred to as the White

Bear version of FMT Mark II (WBII).

It has been shown previously [88] that the morphological form for Fsol [Eq. (6.1)]

is perfectly compatible with the structure of FMT if the latter is extended to flu-

ids which are composed of arbitrarily shaped hard particles. Such a generalized

FMT has been proposed by Rosenfeld in 1994 [29, 30]. This original non-spherical

FMT (onFMT) is introduced in Chapter 4. While onFMT reproduces properties

of isotropic fluids quite well (e.g. the theory yields the exact second virial coeffi-

cient) it fails completely in describing the nematic phase which is always disfavored

free energetically by onFMT. In order to cure this shortcoming we make use of the

Gauss-Bonnet theorem [31] to derive an exact expression for the low-density limit

of Fex in terms of integrals which extend over the surface of the intersection of two

hard bodies. Approximations to the exact result can be deconvoluted in terms of

weight functions which, for the simplest approximation, gives rise to the weighted

densities n0(r), . . . , n3(r) and −→n1(r) and −→n2(r) which follow from some straightfor-

ward adaptation of the corresponding weighted densities for spheres to the generally

shaped hard particles. When the approximation to the exact result is improved by

including the lowest-order expansion of the curvature asymmetry term, two addi-

tional tensorial weighted densities ←→n 1(r) and ←→n 2(r) can be identified which can be

represented as 3× 3-matrices. The excess free energy density Φed which follows from
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the extended set of weighted densities can be easily constructed and the correspond-

ing theory is termed extended deconvolution FMT (edFMT). In Section 4.2 we show

that edFMT improves upon onFMT with respect to several issues. First, edFMT is

able to predict the isotropic-nematic transition as we show by comparison with data

from computer simulations of hard spherocylinders [128]. The theory agrees well

with the data for spherocylinders with moderate aspect ratios. Second, the descrip-

tion of the inhomogeneous isotropic hard-spherocylinder fluid is enhanced by edFMT

compared to onFMT. In order to demonstrate this we have performed Monte Carlo

simulations of different hard-spherocylinder fluids with length-to-diameter ratios up

to 10.0 subjected to the external potential induced by a planar hard wall which gives

rise to the inhomogeneity of the fluid. Moreover, edFMT provides a motivation for

employing the weighted density ←→n 2, which unlike ←→n 1 does not vanish for spheres,

also for the construction of an FMT for the hard-sphere systems. Thereby, a link

between Rosenfeld’s low-density limit based approach and the work by Tarazona [77],

who previously introduced ←→n 2 in order to obtain a proper FMT for the hard-sphere

crystal, can be established.

With the improved FMT version WBII and the generalization of FMT to fluids of

non-spherical particles at hand we can push the high degree of efficiency, which results

from employing the morphometric form of Fsol [Eq. (6.1)], even further. Matching Fsol

as obtained from the excess free energy density ΦWBII (or, more precisely, the corre-

sponding FMT for non-spherical particles) with Eq. (6.1) provides us with analytical

expressions for the thermodynamic coefficients p, σ, κ, and κ̄ as functions of the hard-

sphere packing fraction η and the hard-sphere radius R [Eq. (5.6)]. A comparison

with the aforementioned calculation of the coefficients for simple solute geometries

by means of a full DFT treatment reveals the high accuracy and consistency of the

analytical expressions which are superior to earlier results (see Section 5.1). For the

calculation of Fsol in the biologically inspired system this means that a wide range of

solvent characteristics (η, R) can be covered conveniently.

We have mentioned at the beginning of the summary that our motivation for

investigating the hard-sphere solvent is to study the effect of solvent entropy. The

question remains what the appropriate counterpart to the hard-sphere solvent is

regarding the protein representation. A simple protein model has been proposed some

time ago by Banavar and Maritan [11,12,145] who modeled the protein backbone as

an impenetrable, flexible tube with a well-defined diameter. Their model protein was

shown to display various secondary motifs similar to those occurring in real proteins if

the tube is subjected to local compactness conditions [145] or to an effective attractive

potential between different tube segments mimicking the hydrophobic effect [12].
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However, the direct influence of the solvent on bio-molecules represented in the tube

model has been investigated only recently by Snir and Kamien [14, 15]. They have

studied the effects on chain-like molecules due to solvent entropy which leads them

to the conclusion that increasing the size of the solvent particles causes helical chain

conformations to unwind such that sheetlike conformations appear to be favored.

However, the results of Snir and Kamien are valid only in the limit of infinitely diluted

hard-sphere solvents. Using the morphometric form [Eq. (6.1)] for the solvation free

energy Fsol and the new analytical results for the thermodynamic coefficients for

the hard-sphere solvent we are able to extend these previous results to the more

relevant case of arbitrary solvent densities (see Section 5.2.2). It turns out that

sheetlike folding is associated with small solvent particles at large solvent densities

in contrast to the previous unwinding hypothesis which locates the β-sheet in the

domain of large solvent particles. We can, however, confirm even for high solvent

densities Snir’s and Kamien’s result that large solvent particles lead to a favoring

of helices which are packed somewhat loosely. Nevertheless, we can show that these

loose helical conformations are always separated from the sheetlike conformation by

an energy barrier which disproves the unwinding hypothesis even in the limit of very

large solvent particles for which the solvent entropy ceases to be significant anyway.

In order to study the influence of hydrophobicity and hydrophilicity on protein

folding it is expedient to use a solvent with intermolecular attraction which is an

essential feature of water models. We show that a treatment of such a solvent is

feasible in the context of morphological thermodynamics (see Section 5.2.3). Our

model fluid is the simple square-well fluid which is obtained by adding a constant,

short-ranged attractive potential to the hard-sphere repulsion. The attraction can

be treated by perturbation theory leading to a simple modification of the underlying

DFT. Thermodynamic coefficients for Eq. (6.1) can, however, no longer be obtained

analytically from the density functional as in the case of FMT for hard spheres which

is a consequence of the lack of a good DFT for square-well mixtures. Nevertheless,

Eq. (6.1) can still be applied with thermodynamic coefficients obtained from full

DFT calculations in a simple test geometry. Besides the attraction between the

solvent particles, our model also includes characteristic interactions of the solute

with the solvent particles. In this way thermodynamic coefficients corresponding

either to hydrophilic amino acids (solute-solvent attraction) or hydrophobic amino

acids (solute-solvent repulsion) can be obtained within the numerical procedure. Our

results for the solvation free energy Fsol of the protein in the tube model confirm the

role of hydrophobic amino acids as a driving force for protein folding while we find

no tendency of the protein to fold in the hydrophilic scenario.
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In the remainder of this chapter we indicate possible routes for future research

concerning the issues which have been investigated in this thesis. We have shown that

the exact 1D density functional for the hard-sphere mixture provides an excellent ba-

sis for the derivation of approximative theories in higher dimensions. It would be of

great interest if analogous results for mixtures of particles with arbitrary interaction

potentials could be derived. In the literature there are in fact some examples of ex-

act 1D DFTs for particles with more complicated interactions than the hard-body

repulsion (see Ref. [147] and references therein). However, these functionals do not

possess the structural simplicity of the hard-sphere analog such that to date it is not

clear if they can be useful for obtaining results in higher dimensions. In particular,

an improved theory for the general mixture might provide analytical expressions for

the thermodynamic coefficients for fluids more complex than the hard-sphere fluid.

In turn, this would facilitate the calculation of Fsol within morphological thermody-

namics.

In view of the derivation of equations of state for the hard-sphere mixture, which

has led us in this work to the improved expression p(3) [Eq. (6.4)] for the pressure,

we note that basically two routes for further improvement are conceivable. First, an

improved expression for the underlying equation of state for the one-component fluid

can be employed and, second, the degree of consistency can be enhanced by requiring

full thermodynamic consistency not only for the pure fluid but also for mixtures. The

first issue might lead one to use the Kolafa equation of state (quoted in Ref. [148])

which is rather simple and slightly better than the Carnahan-Starling equation of

state or more elaborate expressions as obtained from detailed fitting of simulation

data [149,150]. While for sure these modifications would give rise to equations of state

for mixtures which are rather cumbersome as compared to the expression for p(3), it is

expected that the performance for multi-component mixtures and highly asymmetric

mixtures is mainly determined by the second issue, i.e., the degree of consistency.

We have, however, already checked in the course of deriving p(3) that a remaining

degree of freedom cannot be used in order to extend consistency to the level of the

binary mixture. Thus, it seems that such intrinsic limitations of the description are

due to the restricted set of four weighted densities n0, . . . , n3 [Eq. (6.3)]. Work aimed

at investigating these limitations and possibly extending the set of variables might

take into consideration a related study by Tarazona et al., who discuss the intrinsic

limitations of FMT [98].

Several aspects of FMTs for fluids of hard bodies with arbitrary shapes might

be interesting to study in the future. The exact expression for the low-density limit

of the excess free energy functional [Eq. (3.1) with Eq. (4.7)] can serve to identify
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additional tensorial weighted densities of higher rank than that of ←→n 1 and←→n 2 which

allow for matching Onsager’s limit for particles with large aspect ratios more closely.

Such an extension should improve the FMT for these particles, in particular the

size of the density gap at the isotropic-nematic transition should be predicted more

precisely (cf. Section 4.2.1). However, the addition of tensorial weighted densities

of higher rank to the FMT would complicate and impede the numerical treatment

of spatially inhomogeneous systems, which, at moderate densities and aspect ratios,

are already very well described by the present improved theory. As a very interest-

ing test the present FMT could be applied to systems of non-spherical particles in

the high-density regime such as the gyroid structure which has been found recently

for compressed pear-shaped particles [125]. This application would allow to assess

whether Tarazona’s modification of Rosenfeld’s FMT, which avoids spurious diver-

gencies of the density functional occurring for the hard-sphere crystal, is sufficient

for a reliable description also of crystals of general hard bodies. More extensive work

in this direction might consist in mapping out complete phase diagrams of differ-

ent hard-body fluids with the new FMT and compare the results with the outcome

of numerical simulations. Moreover, a comparison of the edFMT with results from

integral equations as obtained in Ref. [133] might be illuminating.

Given the complexity of biological systems, many aspects concerning the issue

of protein solvation remain to be investigated. Extentions of the present study can

be distinguished according to whether they concern the protein or the solvent char-

acteristics. The protein description can be refined by modelling a given amino acid

sequence, in a first approach, in terms of hydrophilic and hydrophobic patches on

the protein tube. The solvation free energy can then still be calculated within mor-

phological thermodynamics but one has to care about additional contributions to

the geometric measures stemming from the boundary lines between different patches.

Such a procedure may lead to an understanding of the folds of concrete proteins while

the results, however, would no longer be of general character such as the effects due to

solvent entropy which have been calculated in Chapter 5. Further refinement of the

protein description can be obtained by including internal energetic contributions due

to hydrogen bonds between amino acids from different parts of the protein backbone

or, less specifically, by introducing a bending stiffness of the protein backbone into

the model in the spirit of Ref. [14]. As far as the solvent description is concerned,

improvement can obviously be realized by using models of water which are more re-

alistic than the simple square-well fluid. We emphasize that Eq. (6.1) is applicable

also for more complex solvents, but in this case DFT is likely to be insufficient for the

calculations of thermodynamic coefficients. This is due to the aforementioned lack of
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a good DFT for attractive interactions which makes accurate density functionals for

more complex water models difficult to obtain. However, it seems practicable to de-

termine Fsol from numerical simulations of complex solvents containing solutes with

simple shapes and use the data for the calculation of the thermodynamic coefficients.

A further extention of the investigation, which concerns the solvent description in

the more general sense of the description of the surrounding medium, could be cen-

tered around studying protein folding in confinement. As a matter of fact, protein

folding occurs in the often crowded environment of the cell where the assumption of

confinement is realistic. This has motivated studies of protein folding in nanopores

where confinement has been shown to either stabilize or destabilize the folded state,

depending on whether the pore is permeable to the solvent [151, 152]. It would be

highly interesting to study the issue with the help of morphological thermodynamics.

The application of Eq. (6.1) to portions of the solvent which are confined between

the protein and the walls of some container would provide an additional stringent

test of the performance of the morphometric approach to Fsol.
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Appendix A

Geodesic curvature of the

intersection line

Given are two convex bodies Bi and Bj with an intersection Bi ∩ Bj 6= ∅. Let the

intersection line C = ∂Bi ∩ ∂Bj be parametrized with unit velocity via r = r(s).

We calculate the geodesic curvatures κg
i and κg

j of C on the surfaces ∂Bi and ∂Bj in

the point r(s = 0). Without loss of generality we can assume r(s = 0) = 0. The

equations describing ∂Bi and ∂Bj in the vicinity of r = 0 can be written as Taylor

expansions

−nτr =
1

2
κI

τ (vI
τr)2 +

1

2
κII

τ (vII
τ r)2 + h.o.t. , τ = i, j . (A.1)

Here nτ is the outward normal on the respective surface, and κI
τ and κII

τ denote the

principal curvatures. The unit vectors vI
τ and vII

τ indicate the directions of principal

curvatures. It will become clear in the following that the higher order terms in vI
τr and

vII
τ r (h.o.t.) are irrelevant for the calculation of κg

τ . In particular, as C is contained

in ∂Bi and ∂Bj the parametrization r(s) must obey the equations

−nτr(s) =
1

2
κI

τ (vI
τr(s))2 +

1

2
κII

τ (vII
τ r(s))2 + h.o.t. , τ = i, j . (A.2)

Taking the first and second derivatives on both sides of Eq. (A.2) w.r.t. s yields

equations for r′(s) and r′′(s):

−nτr
′(s) = κI

τ (vI
τr(s))(vI

τr
′(s)) + κII

τ (vII
τ r(s))(vII

τ r′(s)) + h.o.t. , τ = i, j ,

(A.3)

−nτr
′′(s) = κI

τ (vI
τr

′(s))2 + κI
τ (vI

τr(s))(vI
τr

′′(s))

+ κII
τ (vII

τ r′(s))2 + κII
τ (vII

τ r(s))(vII
τ r′′(s)) + h.o.t. , τ = i, j . (A.4)
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Evaluating the equations at s = 0 leads to a vanishing of the higher order terms and

we obtain the simple equations

−nτr
′(0) = 0 , τ = i, j , (A.5)

−nτr
′′(0) = κI

τ (vI
τr

′(0))2 + κII
τ (vII

τ r′(0))2 , τ = i, j . (A.6)

As C is parametrized with unit velocity it follows immediately from Eq. (A.5) that

r′(0) = ±
ni × nj

|ni × nj|

.
= t . (A.7)

Using in the next step that r′(s)r′′(s) ≡ 0 due to the constant velocity and that in

addition Eq. (A.6) holds, we can construct r′′(0) from its projections in the directions

of ni, nj, and t. The result is

−r′′(0) =
Mi −Mjninj

|ni × nj|2
ni +

Mj −Mininj

|ni × nj|2
nj , (A.8)

where we have introduced the shorthand

Mτ = κI
τ (vI

τt)2 + κII
τ (vII

τ t)2 , τ = i, j . (A.9)

The curvature κ and principal normal n of C at s = 0 are given by κ = |r′′(0)|

and n = r′′(0)/|r′′(0)|. By definition, the geodesic curvature of C on ∂Bτ is given by

κg
τ = στκ sin ωτ , where ωτ ∈ [0, π] is the angle between nτ and n. The sign of κg

τ

is στ = +1 if the projection of n onto the tangent plane of ∂Bτ points inwards the

bounded surface S [cf. Eq. (4.4)], and στ = −1 if it points outwards. With Eq. (A.8)

and the definition of κg
τ we calculate

κg
i = σi|ni × r′′(0)| = σi

|Mj −Mininj|

|ni × nj|
(A.10)

and κg
j is given by the same expression with i ↔ j. For the determination of σi we

calculate the projection of r′′(0) onto the tangent plane of ∂Bi which is the plane

perpendicular to ni:

(r′′(0))proj = r′′(0)− (nir
′′(0)) ni = −

Mj −Mininj

|ni × nj|2
(

nj − (ninj)ni

)

. (A.11)

The direction pointing outwards the surface S = ∂Bi is indicated by the projection

of nj onto the tangent plane of ∂Bi which is simply (nj)proj = nj − (ninj)ni. A

comparison with (r′′(0))proj and the definition of σi show that we must choose σi =

sgn(Mj −Mininj). It follows for κg
i , and with similar arguments for κg

j , that

κg
i =

Mj −Mininj

|ni × nj|
, κg

j =
Mi −Mjninj

|ni × nj|
. (A.12)
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The sum κg
i + κg

j , which appears in Eq. (4.5), gives rise to the expression

κg
i + κg

j = (Mi + Mj)
1− ninj

|ni × nj|
. (A.13)

Finally, we express Mτ from Eq. (A.9) differently. From the fact that vI
τ and vII

τ

constitute an orthonormal basis of the tangent plane of ∂Bτ it follows for the unit

vector t that (vI
τt)2 + (vII

τ t)2 = 1. This allows us to formulate Mτ in terms of the

mean curvature Hτ = 1
2
(κI

τ + κII
τ ) and the deviatoric curvature ∆κτ = 1

2
(κI

τ − κII
τ ):

Mτ = κI
τ (vI

τt)2 + κII
τ (vII

τ t)2

=
1

2
(κI

τ + κII
τ )

(

(vI
τt)2 + (vII

τ t)2
)

+
1

2
(κI

τ − κII
τ )

(

(vI
τt)2 − (vII

τ t)2
)

= Hτ + ∆κτ

(

(vI
τt)2 − (vII

τ t)2
)

. (A.14)

Using further the definition of t [Eq. (A.7)] and the fact that nτ , vI
τ and vII

τ are

orthonormal, relations like the following can be derived:

(vI
i t)2 =

(vI
i (ni × nj))

2

|ni × nj|2
=

(vII
i nj)

2

1− (ninj)2
. (A.15)

Thus we obtain

Mi = Hi −
∆κi

1− (ninj)2

(

(vI
i nj)

2 − (vII
i nj)

2
)

(A.16)

and the corresponding expression with i↔ j. Plugging this into Eq. (A.13) we arrive

at the final result

κg
i + κg

j = Hi
1− ninj

|ni × nj|
−∆κi

(vI
i nj)

2 − (vII
i nj)

2

(1 + ninj)|ni × nj|
+ (i↔ j) . (A.17)



122 A. Geodesic curvature of the intersection line



Appendix B

Intersection of two delta-shells

Consider first the case of two planes with normal vectors ni and nj with an intersection

line which runs through the origin. We call F the integral of the function f(x, y, z)

along the intersection line which is defined as

F =

∫∫∫

dx dy dz f(x, y, z) δ(cin
x
i x + cin

y
i y + cin

z
i z) δ(cjn

x
j x + cjn

y
jy + cjn

z
jz) (B.1)

where ci and cj are arbitrary non-zero constants. We perform the z-integration and

use that, according to the second delta-function, z = z(x, y) = −
nx

j

nz
j

x −
ny

j

nz
j

y must

hold. This leads to

F =

∫∫

dx dy
f(x, y, z(x, y))

|cj||nz
j |

δ

[

ci

(

nx
i −

nz
i n

x
j

nz
j

)

x + ci

(

ny
i −

nz
i n

y
j

nz
j

)

y

]

. (B.2)

Performing now the y-integration yields

F =

∫

dx
f(x, y(x), z(x))

|ci||cj||n
y
i n

z
j − ny

jn
z
i |

(B.3)

where

y(x) = −
nx

i n
z
j − nz

i n
x
j

ny
i n

z
j − nz

i n
y
j

x and z(x) = −
ny

i n
x
j − nx

i n
y
j

ny
i n

z
j − nz

i n
y
j

x . (B.4)

In a last step we parametrize the intersection line by its arclength s. Using that

ds =
√

1 + y′(x)2 + z′(x)2 dx we arrive at the final result

F =

∫

ds
f(x(s), y(s), z(s))

|ci||cj||ni × nj|
. (B.5)

Consider now the intersection of two bodies centered at ri and rj which are

parametrized via Ri(r̂) and Rj(r̂) as shown in Fig. 4.1. We calculate the contri-

bution of a given point r0 of the intersection line to the convolution ω
(1)
i ⊗ ω

(2)
j in

order to demonstrate the validity of Eq. (4.9). For the convolutions −→ω
(1)
i ⊗

−→ω
(2)
j and

123



124 B. Intersection of two delta-shells

←→ω
(1)
i ⊗

←→ω
(2)
j essentially the same arguments apply. From Eqs. (3.6) and Eq. (4.1)

we know that

ω
(1)
i ⊗ ω

(2)
j =

∫

dr
Hi

4π
δ
(

|Ri(r̂− ri)| − |r− ri|
)/(

ni · (r̂− ri)
)

× δ
(

|Rj(r̂− rj)| − |r− rj|
)/(

nj · (r̂− rj)
)

, (B.6)

where we suppress in the notation the dependences of Hi, ni, and nj on the spacial

coordinates. For clarity, we have denoted the scalar product by the dot. It is useful

to apply a transformation r → r0 + δr such that the integration is performed w.r.t.

δr. By definition of r0 the point δr = 0 corresponds to a zero of the arguments Ai and

Aj of the two delta-functions in Eq. (B.6). For the contribution of the point r0 to the

convolution, Ai and Aj are relevant only to lowest order in δr. We therefore calculate

Ai = |Ri( ̂r0 − ri + δr)|−|r0−ri +δr| in more detail. By definition Ri( ̂r0 − ri + δr) =

λ(r0 − ri + δr) with positive λ ∈
�

which is itself a function of r0 − ri + δr. To

lowest order in δr the curvature of the intersecting surfaces is not relevant. We can

thus reach the point Ri( ̂r0 − ri + δr) in the vicinity of Ri(r̂0 − ri) = r0 − ri simply

by moving within the tangent plane of the surface i which is spanned by vI
i and

vII
i . In other words Ri(r̂0 − ri) + µIv

I
i + µIIv

II
i = Ri( ̂r0 − ri + δr) or, equivalently,

r0 − ri + µIv
I
i + µIIv

II
i = λ(r0 − ri + δr). This relation can be solved for λ by taking

the scalar product of both sides with ni. As niv
I
i = niv

II
i = 0 we obtain that

λ− 1 = −
niδr

ni · (r0 − ri)
(B.7)

It follows that

Ai = |Ri( ̂r0 − ri + δr)| − |r0 − ri + δr|

= λ|r0 − ri + δr| − |r0 − ri + δr|

= −
niδr

ni · (r0 − ri)
|r0 − ri + δr|

= −
niδr

ni · (r̂0 − ri)
+O(δr2) . (B.8)

In consequence, at the point r0 Eq. (B.6) becomes

ω
(1)
i ⊗ ω

(2)
j =

∫

d(δr)
Hi

4π
δ

(

−
niδr

ni · (r̂0 − ri)

)

/(

ni · (r̂0 − ri)
)

× δ

(

−
njδr

nj · (r̂0 − rj)

)

/(

nj · (r̂0 − rj)
)

=

∫

Hi

4π

ds

|ni × nj|
, (B.9)

where we have used the equality of Eqs. (B.1) and (B.5) in the last step. This

completes the demonstration of the statement made in Eq. (4.9).
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Second virial coefficient for

spherocylinders

Consider a bulk fluid which is composed of spherocylinders with length L and diame-

ter D (see Fig. 4.2). Due to translational invariance the particle density is a function

of the spherocylinder orientation $ only, i.e., ρ(r, $) = ρ($) = ρf($) with constant

bulk density ρ and orientational distribution f($). The scalar weighted densities for

fixed orientation $ can be calculated from Eq. (4.1) and Eq. (4.2). Independent of

the shape of the particles which are considered, one finds the relations

n3($) = ρf($)v , n2($) = ρf($)a , (C.1)

where v and a are the volume and the surface area of the particles under consideration.

Using the expression for spherocylinders yields

n3($) = ρf($)
(π

4
LD2 +

π

6
D3

)

, n2($) = ρf($)
(

πLD + πD2
)

. (C.2)

For the calculation of n1 and n0 the contributions of the surface area of the

spherocylinder have to be weighted with the mean and Gaussian curvatures which

are H = 1
D

and K = 0 for the cylinder and H = 2
D

and K = 4
D2 for the capping

hemispheres. Applying further the required division by 4π (see Eq. (4.1)) yields

n1($) = ρf($)

(

L

4
+

D

2

)

, n0($) = ρf($) . (C.3)

The vectorial weighted densities −→n1($) and −→n2($) vanish in the bulk fluid. The

calculation of the tensorial weighted densities ←→n 1($) and ←→n 2($) is a bit more in-

volved than for the scalar weighted densities. We write the orientation $ in a more

explicit fashion by using spherical coordinates (ϑ, ϕ). The orientation $ is then
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encoded in the matrix

R =







cos ϕ cos ϑ − sin ϕ cos ϕ sin ϑ

sin ϕ cos ϑ cos ϕ sin ϕ sin ϑ

− sin ϑ 0 cos ϑ






. (C.4)

The matrix R corresponds to a rotation mapping the vector (0, 0, 1)T onto

(cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ)T which points into the direction $. Consider first a

spherocylinder which is orientated along the (0, 0, 1)T-direction. A contribution to
←→n 1($) is only made by the cylinder and not by the capping hemispheres which have a

deviatoric curvature ∆κ = 0 [see Eq. (4.13)]. The directions of principal curvature of

the cylinder are given by vI = (− sin ϕ′, cos ϕ′, 0)T (ϕ′ ∈ [0, 2π]) and vII = (0, 0, 1)T

with a corresponding deviatoric curvature ∆κ = 1
D

. According to Eq. (4.13) and

Eq. (4.2) the weighted density ←→n 1($) can be obtained by using these vectors vI and

vII as

←→n 1($) = ρf($)
L

4

∫ 2π

0

dϕ′

2π

(

(RvI)(RvI)T − (RvII)(RvII)T
)

, (C.5)

where the integrals are calculated as

∫ 2π

0

dϕ′

2π
(RvI)(RvI)T

=
1

2







sin2 ϕ + cos2 ϕ cos2 ϑ − sin ϕ cos ϕ sin2 ϑ − cos ϕ sin ϑ cos ϑ

− sin ϕ cos ϕ sin2 ϑ cos2 ϕ sin2 ϑ + cos2 ϑ − sin ϕ sin ϑ cos ϑ

− cos ϕ sin ϑ cos ϑ − sin ϕ sin ϑ cos ϑ sin2 ϑ







(C.6)

and

∫ 2π

0

dϕ′

2π
(RvII)(RvII)T = (RvII)(RvII)T

=







cos2 ϕ sin2 ϑ sin ϕ cos ϕ sin2 ϑ cos ϕ sin ϑ cos ϑ

sin ϕ cos ϕ sin2 ϑ sin2 ϕ sin2 ϑ sin ϕ sin ϑ cos ϑ

cos ϕ sin ϑ cos ϑ sin ϕ sin ϑ cos ϑ cos2 ϑ






. (C.7)

Concerning the calculation of ←→n 2($) we note that both the cylindrical body

and the capping hemispheres do contribute in this case. The surface normal of the

hemispheres is given by nhs = (cos ϕ′ sin ϑ′, sin ϕ′ sin ϑ′, cos ϑ′)T with ϕ′ ∈ [0, 2π]

and ϑ′ ∈ [0, π]. As we are dealing with the translational invariant bulk fluid the

hemispheres can be considered as being connected to form a single sphere which

simplifies the choice of the parameter region for ϕ′ and ϑ′. The cylindrical body of
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the (0, 0, 1)T-oriented spherocylinder has the surface normal ncyl = (cos ϕ′, sin ϕ′, 0)T

with ϕ′ ∈ [0, 2π]. Using Eq. (4.14) and Eq. (4.2) we find that

←→n 2($) = ρf($)πLD

∫ 2π

0

dϕ′

2π
(Rncyl)(Rncyl)

T

+ ρf($)πD2

∫ π

0

dϑ′
sin ϑ′

4π

∫ 2π

0

dϕ′(Rnhs)(Rnhs)
T , (C.8)

where
∫ 2π

0

dϕ′

2π
(Rncyl)(Rncyl)

T =

∫ 2π

0

dϕ′

2π
(RvI)(RvI)T , see Eq. (C.6), (C.9)

and
∫ π

0

dϑ′
sin ϑ′

4π

∫ 2π

0

dϕ′(Rnhs)(Rnhs)
T =

1

3
· � . (C.10)

Here � denotes the unit matrix.

Using the fact that nα =
∫

d$nα($) we obtain from Eq. (4.16) the low-density

limit of the free energy density

Φed = n0n3 + n1n2 −
−→n1
−→n2 − ζTr[←→n 1

←→n 2] +O(ρ3) (C.11)

=

∫∫

d$d$′
(

n0($)n3($
′) + n1($)n2($

′)− −→n1($)−→n2($′)

− ζTr[←→n 1($)←→n 2($
′)]

)

+O(ρ3) (C.12)

=
ρ2

2

∫∫

d$d$′f($)f($′)vFMT($, $′) +O(ρ3). (C.13)

which proves Eq. (4.19). The equality of Eqs. (C.12) and (C.13) follows from some

algebra involving the above expressions for the weighted densities nα($) and the

relation that

sin γ =

∣

∣

∣

∣

∣

∣

∣







cos ϕ sin ϑ

sin ϕ sin ϑ

cos ϑ






×







cos ϕ′ sin ϑ′

sin ϕ′ sin ϑ′

cos ϑ′







∣

∣

∣

∣

∣

∣

∣

(C.14)

where γ is the angle between the directions $ and $′.
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Zusammenfassung

Proteine erfüllen in Organismen eine Vielzahl von ganz unterschiedlichen Aufgaben.

Proteine treten beispielsweise als Enzyme in Erscheinung, indem sie als Katalysator

bei biochemischen Reaktionen wirken, sowie als Transportproteine, indem sie lebens-

wichtige Substanzen wie den Sauerstoff im Blut transportieren. Auf der makrokopi-

schen Skala wird die Wirkung von so genannten Motorproteinen sichtbar, die für die

Kontraktion der Muskeln verantwortlich sind und somit das Ausüben von Kräften

ermöglichen. Als letztes Beispiel sei hier die Bedeutung von Proteinen für die Sta-

bilisierung der Körperzellen genannt, welche ihre Form dank des durch Aktin und

Tubulin gebildeten Zytoskelettes aufrecht erhalten können, sowie die Stabilisierung

fester Stukturen wie Haare und Nägel durch Keratin.

Erstaunlicherweise werden diese “Alleskönner” der Zelle aus einem überschaubaren

Baukasten von nur 20 Aminosäuren (plus Selenocystein), welche zu linearen Ketten

zusammengefügt sind, gebildet. Unter physiologischen Bedingungen nehmen Protei-

ne einen wohldefinieren kompakten Zustand ein, der als Tertiärstruktur des Proteins

bezeichnet wird und in dem die Abschnitte der Polypeptidkette entsprechend gewis-

ser Sekundärmotive gefaltet sind und diese sich gegeneinander in charakteristischer

Weise anordnen. Die wichtigsten Sekundärmotive der Proteinfaltung sind die α-Helix

und das β-Faltblatt, die experimentell erstmals 1931 von Astbury nachgewiesen [1]

aber erst 1951 durch Pauling in einem atomaren Modell korrekt entschlüsselt wur-

den [2,3]. Das große Interesse an einem vollständigen Verständnis der Proteinfaltung

ergibt sich aus der Tatsache, dass die Tertiärstruktur eines Proteins dessen Funktion

ganz entscheidend bestimmt [6]. Außerdem erweisen sich gefaltete Proteine als er-

staunlich stabil gegen Versuche, sie zu entfalten, abgesehen von eventuellen kleineren

Änderungen der physiologischen Struktur, welche die Ausübung der Proteinfunktion

unterstützen. Jedoch hat sich herausgestellt, dass, obwohl das Problem der Vorhersa-

ge von Tertiärstrukturen als Eingabe nichts weiter als die Sequenz der Aminosäuren

verlangt, eine verlässliche Berechnung der physiologischen Struktur noch nicht befrie-

digend gewährleistet werden kann [7].

Heute existiert bereits eine große Anzahl von bekannten Proteinstrukturen, die als
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Prüfstein für Algorithmen zur Strukturvorhersage dienen können. Mittels Röntgen-

kristallografie und NMR-Spektroskopie wurden bis zum Jahr 2006 etwa 35.000 Pro-

teinstrukturen ermittelt, welche in der Protein Data Bank (www.rcsb.org) archiviert

sind [8]. Interessanterweise kann diese große Zahl von Proteinen in Familien einge-

teilt werden, innerhalb derer die Proteine nach ihrer Tertiärstruktur eng miteinander

verwandt sind und auch häufig ähnliche Funktionen ausüben [9]. Die Zahl dieser

Familien wird auf nur etwa 1.000 geschätzt und es wird vermutet, dass die Pro-

teine innerhalb einer Familie auf einen gemeinsamen Ahnen zurückgeführt werden

können [9]. Außerdem wurde bemerkt, dass die den Familien zugrunde liegenden fun-

damentalen Tertiärstrukturen aus den diversen Sekundärmotiven gemäß einer Reihe

von “Bauvorschriften” zusammengesetzt sind und dass sie stabil gegen Mutationen

der zugehörigen Aminosäuresequenz sowie gegen molekulare Turbulenz in der Zelle

sind [10]. Diese Tatsachen haben Wissenschafter dazu bewogen, diese fundamenta-

len Proteinstrukturen als primäre natürliche Formen, welche durch unabänderliche

Gesetze regiert werden, zu beschreiben [10]. In diesem Sinne wurde argumentiert,

dass unbeschadet Darwins Evolutionslehre gewisse Züge der Proteinfaltung im Rah-

men eines platonischen Modelles verstanden werden können, welches unabänderliche

Formen und ebensolche Gesetze, nach denen diese Formen zusammengefügt werden,

involviert [10].

Diese Idee gewisser stabiler “platonischer” Proteinstrukturen diente Banavar und

Maritan als Motivation für die Formulierung eines vereinfachten Modells der Protein-

faltung [11,12]. Sie stellen die Polypeptidkette durch einen biegsamen undurchdring-

lichen Schlauch mit vorgegebenem endlichen Radius dar, was in einem einfachen

Bild durch einen Gartenschlauch veranschaulicht werden kann. Diese Schlauchdar-

stellung des Proteins stellt einerseits sicher, dass die chemischen Bestandteile der

verschiedenen Aminosäuren genügend Raum haben, während andererseits lokal die

Richtung der Polypeptidkette durch die Schlauchachse vorgegeben wird, was in an-

deren Modellierungen, wie der anhand verbundener Kugeln, so nicht gegeben ist.

Die Eigenschaft eines Proteins unter physiologischen Bedingungen eine kompakte

Tertiärstruktur anzunehmen, die hauptsächlich dadurch zu Stande kommt, dass in

einer kompakten Konfiguration hydrophobe Aminosäuren bevorzugt im Innern des

Proteins vom Lösungsmittel abgeschirmt werden [13], wird bei Banavar und Mari-

tan dadurch abgebildet, dass sie eine effektive attraktive Wechselwirkung zwischen

den verschiedenen Segmenten des Schlauches einführen. Indem man den Schlauch-

radius und die Reichweite des attraktiven Potentials aufeinander abstimmt, kann

das Modellprotein in die so genannte marginal kompakte Phase gebracht werden,

wo der Proteinschlauch verschiedene Sekundärmotive annimmt, wie zum Beispiel die
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α-Helix, das β-Faltblatt und β-Schleifen [11, 12]. Bedenkt man, dass das Banavar-

Maritan-Modell keinerlei Informationen über chemische Details bestimmter Proteine

beinhaltet, so zeigt sich, dass die erhaltenen Motive einen universellen Charakter be-

sitzen und daher in der Tat in dem Sinne gewisser primärer mutationsstabiler Formen,

welche als Bausteine für die Tertiärstruktur dienen, verstanden werden können.

Ein Nachteil des Ansatzes von Banavar und Maritan besteht darin, dass die Wir-

kung des Lösungsmittels (in erster Linie Wasser), das durch den hydrophoben Ef-

fekt Proteine zur Bildung kompakter Strukturen veranlasst, nur indirekt anhand der

effektiven attraktiven Wechselwirkung zwischen verschiedenen Teilen des Protein-

schlauches erfasst wird. In der vorliegenden Arbeit wird hingegen die Wirkung des

Lösungsmittels auf Proteine im Schlauchmodell unmittelbar berechnet, wodurch es

möglich wird, das Auftreten gewisser Sekundärmotive mit konkreten Lösungsmittel-

eigenschaften in Verbindung zu bringen. Insbesondere wird dabei die Entropie des

Lösungsmittels behandelt, deren Zunahme durch die Bildung eines kompakten phy-

siologischen Zustandes von Bedeutung für die Proteinfaltung ist [24]. Zu dem Zeit-

punkt, da diese Untersuchung begonnen wurde, war bereits ein erster Schritt in diese

Richtung im Schlauchmodell unternommen worden. Snir und Kamien haben 2005

durch das Lösungsmittel hervorgerufene entropische Effekte auf kettenartige Mo-

leküle untersucht, welche sie im Schlauchmodell darstellen und als Lösungmittel eine

verdünnte Harte-Kugel-Flüssigkeit annehmen [14, 15]. Im Limes niedriger Dichte ist

es möglich, die Entropie des Lösungsmittels (welche für harte Kugeln der einzig rele-

vante Beitrag zur freien Energie ist) im so genannten Asakura-Oosawa-Modell [16] zu

erhalten, das ursprünglich zur Berechnung von entropischen Kräften zwischen paral-

lelen Platten entwickelt wurde. Snirs und Kamiens Ergebnisse führen die Autoren

zu dem Schluss, dass große Lösungsmittelteilchen β-Faltblatt-artige Proteinkonfi-

gurationen begünstigen während für kleine Lösungsmittelteilchen Helix-Strukturen

bevorzugt sind. Da jedoch ihre Ergebnisse erst im Limes verschwindender Dichte

exakt werden, erschien es sinnvoll, die Untersuchungen in den Bereich realistischer

Lösungsmitteldichten auszuweiten.

In der vorliegenden Arbeit werden zu diesem Zweck Methoden der Dichtefunk-

tionaltheorie (DFT) für klassische Flüssigkeiten [17–19] verwendet, welche in den

Rahmen der so genannten morphologischen Thermodynamik eingebettet werden. Das

Konzept der morphologischen Thermodynamik baut auf dem Satz von Hadwiger aus

der Integralgeometrie [23] auf, der seit Mitte der 1990er Jahre Anwendung in der

Statistischen Physik gefunden hat [20]. Vor wenigen Jahren wurden erstmals auch

Harte-Kugel-Flüssigkeiten im Rahmen der morphologischen Thermodynamik unter-

sucht [93]. Die wichtigste Gleichung der Theorie, die in dieser Arbeit zur Anwendung
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kommt, ist der so genannte morphometrische Ansatz für die Lösungsenergie Fsol eines

Proteins. Diese liest sich

Fsol = pV + σA + κC + κ̄X , (1)

wobei p, σ, κ und κ̄ Eigenschaften des Lösungsmittels sind, während V , A, C und X

als geometrische Maße für eine bestimmte Proteinkonfiguration charakteristisch sind.

Die so genannten thermodynamischen Koeffizienten p, σ, κ und κ̄ hängen nur von

der Temperatur und dem chemischen Potential des Lösungsmittels sowie der Protein-

Lösungsmittel-Wechselwirkung ab. Es können p als Druck, σ als Oberflächenspannung

an einer planaren Wand sowie κ und κ̄ als Biegesteifigkeiten identifiziert werden.

Die geometrischen Maße V , A, C und X erhält man als Integrale über das Volu-

men beziehungsweise die Oberfläche des Proteins in einer gegebenen Konfiguration.

Es sind V das Volumen des Proteins, A der Flächeninhalt der Oberfläche, C das

Oberflächenintegral der mittleren Krümmung und X das Oberflächenintegral der

Gaußschen Krümmung. Entscheidend für die Bedeutung von Gl. (1) ist die Tatsache,

dass die thermodynamischen Koeffizienten nicht von der gegeben Proteinkonfigura-

tion abhängen.

Offensichtlich bietet Gl. (1) für die Berechnung von Fsol einen entscheidenen

Vorteil gegenüber einer numerischen DFT Rechnung, welche das Lösungsmittel in

dem in der Regel komplizierten externen Potential, das durch das Protein induziert

wird, zu bewältigen hat. Während eine solche DFT-Rechnung bereits für einfache

Lösungsmittel zeitaufwendig sein kann, besonders wenn eine hohe numerische Genau-

igkeit verlangt ist, erlaubt Gl. (1), die thermodynamischen Koeffizienten zunächst in

einer einfachen Testgeometrie (zum Beispiel anhand sphärischer gelöster Teilchen) zu

berechnen. Anschließend können in einer relativ einfachen numerischen Rechnung die

geometrischen Maße für verschiedene Proteinkonfigurationen erhalten werden, wel-

che dann letztendlich mit den thermodynamischen Koeffizienten gemäß Gl. (1) linear

kombiniert werden, woraus sich Fsol ergibt. Diese alternative Rechnung benötigt keine

Behandlung des Lösungsmittels in komplizierten Geometrien und ist deshalb wesent-

lich schneller als die volle DFT Rechnung. Es sollte jedoch angemerkt werden, dass

Gl. (1) lediglich eine Näherung für Fsol darstellt von der allerdings gezeigt worden ist,

dass sie im Fall einfacher konvexer gelöster Teilchen extrem genau ist [93]. Es ist aber

zu beachten, dass es im Falle von konkaven gelösten Teilchen, bei denen Teile des

Lösungsmittels durch das Protein eingeschränkt werden, zu merklichen Abweichun-

gen der morphometrischen Form für Fsol von Ergebnissen der vollen DFT-Rechnungen

kommt. Im Abschnitt 5.1, der sich im letzten Kapitel dieser Arbeit vor Zusammen-

fassung und Ausblick (Kapitel 6) befindet, geben wir eine Einführung in das Konzept

der morphologischen Thermodynamik in deren Rahmen wir auch die Stärken und
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Schwächen dieses approximativen Ansatzes diskutieren. Die voranstehenden Kapi-

tel 2 bis 4 stellen zu großen Teilen eine Vorbereitung des morphometrischen Ansatzes

für Fsol dar; sie enthalten jedoch auch wichtige Resultate, die unabhängig von der

biologisch inspirierten Anwendung in Kapitel 5 von Bedeutung sind. Die Arbeit be-

ginnt mit Kapitel 1, in dem eine kurze Einführung in das Thema gegeben und der

Aufbau der Arbeit erläutert wird.

Im Kapitel 2 stellen wir eine exakte Berechnung von Eigenschaften eindimensiona-

ler (1D) Systeme vor, die sich den Methoden der Statistischen Mechanik bedient. Es

wird dabei eine Wechselwirkung zwischen den Teilchen des Systems durch ein beliebi-

ges Potential, welches zwischen nächsten Nachbarn wirkt, angenommen. Die formale

Lösung dieses Problems ist seit den 1950er Jahren bekannt [42, 43] sie wurde aber

unseres Wissens bisher noch nicht mit experimentellen Ergebnissen in Verbindung

gebracht. Wir verwenden einen erstaunlich einfachen Zusammenhang, der aus der

exakten Lösung folgt und mit Hilfe dessen wir eine eindeutige Lösung für das inverse

Problem, welches darin besteht, das Paar-Wechselwirkungspotential aus gemessenen

Paar-Verteilungsfunktionen zu bestimmen, angeben können. Die Methode wird auf

Messdaten von kolloidalen Suspensionen, deren Teilchen mit Hilfe optischer Fallen

auf 1D eingeschränkt sind, angewendet. Da die zugrunde liegende Theorie exakt ist,

findet man, wie erwartet, eine sehr gute Übereinstimmung zwischen Theorie und Ex-

periment. Damit stellen die 1D Systeme den seltenen Fall dar, dass experimentelle

Ergebnisse eins-zu-eins durch eine exakte Theorie nachvollzogen werden können, wel-

che insbesondere die Probleme bei der Lösung des inversen Problems, die in höheren

Dimensionen auftreten, zu vermeiden erlaubt.

Die Lösbarkeit des 1D Systems erlaubt uns auch, unsere Einführung in die DFT,

welche wir im Abschnitt 2.3 geben, mit Hilfe des exakten Ergebnisses für das Über-

schuss (das heißt über das ideale Gas hinausgehende) Freie-Energie-Funktional F 1D
ex

für die 1D Harte-Kugel-Mischung zu illustrieren. Aus zwei Gründen ist der Aus-

druck für F1D
ex für uns wertvoll. Erstens lässt sich damit zeigen, dass DFT ein ge-

eignetes Mittel ist, um die exakten Eigenschaften des 1D Harte-Kugel-Systems mit

beliebigen externen Potentialen zu erhalten. Für beliebige externe Potentiale ist die

herkömmliche Rechnung, die eine Auswertung der Zustandssumme vornimmt, nicht

praktikabel. Diese Beobachtung liefert uns eine Motivation dafür, DFT auch für 3D

Systeme zu verwenden, wo wir im Rahmen der biologischen Fragestellung freie Energi-

en für diverse externe Potentiale, die aus der Gegenwart des gelösten Proteins (oder

eines einfacheren Teilchens in einer Testgeometrie) resultieren, berechnen müssen.

Zweitens analysieren wir die Struktur von F 1D
ex im Detail, was uns mit den Werkzeu-

gen ausstattet, die für die Konstruktion von Näherungen für das Überschuss-Freie-
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Energie-Funktional F 3D
ex für die Harte-Kugel-Flüssigkeit in 3D äußerst hilfreich sind.

Da das Funktional in 1D relativ einfach ist, erlaubt uns diese Vorgehensweise, dem

Leser einige verwandte länglichere Rechnungen für die 3D Funktionale zu ersparen.

Die Konstruktion von F 3D
ex wird in Kapitel 3 gemäß Rosenfelds bahnbrechender

Arbeit aus dem Jahr 1989 [22] vorgenommen. Anhand einer genauen Betrachtung des

exakt bekannten Limes von F 3D
ex im Fall niedriger Dichte lassen sich sechs gewich-

tete Dichten identifizieren. Dies sind die vier skalaren Funktionen n0(r), . . . , n3(r)

und die zwei vektoriellen Funktionen −→n1(r) und −→n2(r), die alle von den räumlichen

Koordinaten r abhängen und die durch ein Ausschmieren der Dichteprofile der gege-

benen mehrkomponentigen Harte-Kugel-Mischung über einen Bereich, der der Kugel-

größe entspricht, erhalten werden. Unter Verwendung einer exakten Relation aus der

Scaled-Particle-Theorie [27, 28] kann eine approximative Überschuss-Freie-Energie-

Dichte ΦRF [Gl. (3.16)] als Funktion der gewichteten Dichten konstruiert werden. Dies

definiert Rosenfelds Fundamentalmaßtheorie (FMT) für die Harte-Kugel-Mischung.

Bemerkenswerterweise liefert FMT den gleichen Druck und die gleiche direkte Paar-

Korrelationsfunktion, wie man sie aus der Lösung der Ornstein-Zerneke-Integralglei-

chung unter Verwendung der Percus-Yevick (PY) Näherung erhält, obwohl FMT auf

gänzlichen anderen Voraussetzungen aufgebaut ist. Insbesondere folgt für den Druck

das PY-Kompressibilitäts-Ergebnis

pPY

kBT
=

n0

1− n3
+

n1n2

(1− n3)2
+

n3
2

12π(1− n3)3
(2)

aus ΦRF. Der Druck pPY ist eine Funktion der Bulk-Werte der gewichteten Dichten,

die durch

n0 =

ν
∑

i=1

ρi , n1 =

ν
∑

i=1

Riρi , n2 =

ν
∑

i=1

4πR2
i ρi , n3 =

ν
∑

i=1

4π

3
R3

i ρi (3)

gegeben sind, wobei der Index i die unterschiedlichen Komponenten einer ν-kompo-

nentigen Flüssigkeit bezeichnet, welche durch die Teilchenzahldichten ρi und die Ku-

gelradien Ri charakterisiert sind. Insbesondere ist n0 die gesamte Teilchenzahldichte

und n3 ist die gesamte Packungsdichte der Harte-Kugel-Mischung. Die vektoriellen

gewichteten Dichten verschwinden in der homogenen Bulk-Flüssigkeit.

Während der Druck pPY in guter Übereinstimmung mit Simulationsergebnis-

sen für einkomponentige Harte-Kugel-Flüssigkeiten bei nicht zu hohen Dichten ist,

so überschätzt pPY den tatsächlichen Druck in der Nähe des flüssig-fest-Übergangs

um circa 7%. Diese Ungenauigkeit wurde im Fall der einkomponentigen Flüssigkeit

durch eine empirische Modifikation der Zustandsgleichung korrigiert, welche auf den

Carnahan-Starling (CS) Druck pCS führte [79]. Um pCS auch im Rahmen der FMT
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nutzbar zu machen, ist es nötig, die CS Zustandsgleichung als Funktion der gewich-

teten Dichten n0, . . . , n3 auszudrücken, was gleichbedeutend mit einer Verallgemei-

nerung von pCS für Harte-Kugel-Mischungen ist. Dies geschieht im Abschnitt 3.2

dieser Arbeit mit Hilfe einer systematischen Entwicklung des Druckes nach Potenzen

von n3. Indem wir die Konsistenz mit einer bereits oben erwähnten exakten Rela-

tion aus der Scaled-Particle-Theorie maximieren, erhalten wir ohne empirische An-

passung von Parametern den Boubĺık-Mansoori-Carnahan-Starling-Leland (BMCSL)

Druck pBMCSL [80,81], wenn wir die Entwicklung in erster Ordnung durchführen. Ei-

ne Hinzunahme der nächst höheren Ordnung führt in eindeutiger Weise auf den vor

einiger Zeit vorgeschlagenen erweiterten CS (eCS) Druck peCS [82]. Indem wir die

Entwicklung in dritter Ordnung betrachten, können wir die neue Zustandsgleichung

p(3)

kBT
=

n0

1− n3
+

n1n2

(

1 + 1
3
n2

3

)

(1− n3)2
+

n3
2

(

1− 2
3
n3 + 1

3
n2

3

)

12π(1− n3)3
(4)

herleiten, die im Gegensatz zu pBMCSL und peCS im Falle der einkomponentigen Harte-

Kugel-Flüssigkeit vollständig konsistent mit der Scaled-Particle-Theorie ist. Neben

dieser wichtigen Eigenschaft zeigt sich, dass p(3) eine deutlich bessere Übereinstim-

mung mit Simulationsergebnissen für den Druck und das chemische Potential ver-

schiedener Harte-Kugel-Mischungen sowie für die Oberfächenspannung und die Ad-

soption liefert als pBMCSL und peCS. Im Abschnitt 3.3 beschreiben wir, wie die neue

Zustandsgleichung p(3) in den Rahmen der FMT eingearbeitet werden kann, wodurch

ihre Stärken auch für inhomogene Flüssigkeiten mittels DFT nutzbar werden. Die

resultierende Überschuss-Freie-Energie-Dichte wird mit ΦWBII [Gl. (3.43)] bezeichnet

und die dadurch definierte Theorie wird die White-Bear-Version der FMT Mark II

(WBII) genannt.

Es wurde bereits früher gezeigt, dass die morphometrische Form für Fsol [Gl. (1)]

uneingeschränkt kompatibel mit der Struktur der FMT ist [88], vorausgesetzt, dass

eine Verallgemeinerung der FMT für Flüssigkeiten aus beliebig geformten harten

Teilchen verwendet wird. Eine solche FMT wurde durch Rosenfeld im Jahr 1994

vorgeschlagen [29, 30]. Diese originale nicht-sphärische FMT (onFMT) wird im Ka-

pitel 4 vorgestellt. Während onFMT Eigenschaften isotroper Flüssigkeiten recht gut

reproduziert (beispielsweise liefert die Theorie den exakten zweiten Virialkoeffizi-

ent), so versagt sie bei der Beschreibung der nematischen Phase, die gemäß onFMT

immer eine höhere freie Energie als die isotrope Phase hat. Um diesen gravieren-

den Mangel zu beheben, bedienen wir uns des Gauß-Bonnet-Theorems [31] mit Hil-

fe dessen wir einen exakten Ausdruck für Fex im Limes niedriger Dichten herlei-

ten, der sich in Form von Integralen über die Oberfläche des Schnittes von Paaren

harter Körper schreibt. Näherungen an dieses exakte Ergebnis können als Summe
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von Faltungen so genannter Gewichtsfunktionen geschrieben werden, was für die

einfachste Näherung zu den gewichteten Dichten n0(r), . . . , n3(r) sowie −→n1(r) und
−→n2(r) führt, die sich durch einfache Anpassungen der entsprechenden gewichteten

Dichten für die harten Kugeln an die beliebig geformten Teilchen ergeben. Ver-

bessert man die Näherung an das exakte Ergebnis, indem man den aufgrund von

Krümmungsasymetrie auftretenden Beitrag in niedrigster Ordnung berücksichtigt, so

erhält man zwei zusätzliche tensorielle gewichtete Dichten ←→n 1(r) und ←→n 2(r), die als

3× 3-Matrizen dargestellt werden können. Die Überschuss-Freie-Energie-Dichte Φed,

die sich mit dem erweiterten Satz von gewichteten Dichten ergibt, kann leicht kon-

struiert werden und die entsprechende Theorie wird Extended-Deconvolution-FMT

(edFMT) genannt. Wir zeigen im Abschnitt 4.2, dass edFMT in mehrfacher Hin-

sicht eine Verbesserung bezüglich onFMT bringt. Erstens ist edFMT in der Lage,

den Isotrop-Nematisch-Übergang vorherzusagen, wie wir anhand eines Vergleiches

mit Daten aus Computersimulationen von Harte-Sphärozylinder-Flüssigkeiten [128]

zeigen. Die Theorie erzielt gute Übereinstimmung mit den Simulationen für nicht

zu lange Sphärozylinder. Zweitens liefert edFMT eine bessere Beschreibung der in-

homogenen isotropen Harte-Sphärozylinder-Flüssigkeit als dies durch onFMT erzielt

wird. Um dies zu zeigen, führen wir Monte-Carlo-Simulationen von verschiedenen

Harte-Sphärozylinder-Flüssigkeiten mit Länge-zu-Durchmesser-Verhältnissen bis zu

10.0 durch, die in Kontakt mit einer planaren harten Wand sind, welche die Inhomo-

genität der Flüssigkeit hervorruft. Außerdem stellt edFMT eine Motivation dar, die

tensorielle gewichtete Dichte ←→n 2(r), die anders als ←→n 1(r) im Spezialfall von harten

Kugeln nicht verschwindet, auch für die Konstruktion einer FMT für Harte-Kugel-

Systeme zu verwenden. Dadurch kann ein neuer Zusammenhang zwischen Rosenfelds

FMT, die auf der Untersuchung des Grenzfalls niedriger Dichte fußt, und den Arbei-

ten Tarazonas [77], der bereits früher auf ganz anderem Wege ←→n 2(r) einführte, um

eine reguläre FMT für den Harte-Kugel-Kristall zu erhalten, hergestellt werden.

Mit Hilfe der verbesserten FMT-Version WBII und der Verallgemeinerung der

FMT für Flüssigkeiten aus nicht-sphärischen Teilchen lässt sich die hohe Effizienz,

die aus der Verwendung der morphometrischen Form für Fsol [Gl. (1)] folgt, noch

weiter steigern. Vergleicht man Fsol, wie es aus der Überschuss-Freien-Energiedichte

ΦWBII (oder, genauer, aus der entsprechenden FMT für nicht-sphärische Teilchen)

folgt, mit Gl. (1), so erhält man geschlossene Ausdrücke für die thermodynamischen

Koeffizienten p, σ, κ und κ̄ als Funktionen der Packungsdichte η und des Radius

R der harten Kugeln [Gl. (5.6)]. Ein Vergleich dieser Ausdrücke mit den Ergebnis-

sen für die thermodynamischen Koeffizienten, wie sie aus der vollen DFT-Rechnung

in einer einfachen Testgeometrie (spärische gelöste Teilchen) folgen, zeigt die ho-
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he Genauigkeit und Konsistenz der analytischen Ausdrücke, die früheren Resulta-

ten überlegen sind (siehe Abschnitt 5.1). Für die Berechnung von Fsol im Rahmen

der biologisch inspirierten Fragestellung bedeutet das, dass ein großer Bereich von

Lösungsmittelkonfigurationen (η, R) mit hoher Effizienz und Genauigkeit abgedeckt

werden kann.

Wie eingangs bemerkt erlaubt uns der morphometrische Ansatz für Fsol die Un-

tersuchung von Snir und Kamien [14, 15] für ein Protein, das im Schlauch-Modell

dargestellt wird und in einer stark verdünnten Harte-Kugel-Flüssigkeit gelöst ist,

auf den relevanten Bereich beliebiger höherer Dichten des flüssigen Lösungsmittels

auszuweiten. Im Gegensatz zu der Folgerung von Snir und Kamien, die die Bil-

dung von β-Faltblättern mit großen Lösungsmittelteilchen und die von Helices da-

gegen mit kleinen Lösungsmittelteilchen assoziieren, finden wir, dass die einzigen

Lösungsmittelkonfigurationen für die das β-Faltblatt stabil ist, in dem Bereich klei-

ner Lösungsmittelteilchen bei gleichzeitig hoher Lösungsmitteldichte lokalisiert sind.

Wir können allerdings Snirs und Kamiens Ergebnis, dass große Lösungsmittelteilchen

zu einer Bevorzugung von Helices, die weniger dicht gepackt sind, führen, auch in dem

Bereich hoher Lösungsmitteldichten bestätigen. Diese Beobachtung wurde durch Snir

und Kamien in dem Sinne eines Unwinding-Übergangs, der die Helixstruktur in die

Faltblattstruktur überführt, interpretiert. Unsere Ergebnisse zeigen jedoch, dass die-

se weniger dicht gepackten Helix-Konfigurationen von der Faltblatt-Konfiguration

durch eine Energiebarriere getrennt sind, was die Unwinding-Hypothese selbst in dem

Grenzfall sehr großer Lösungsmittelteilchen, in dem sowieso die Lösungsmittelentropie

an Bedeutung verliert, widerlegt.

Um den Einfluss hydrophiler und hydrophober Aminosäuren auf die Proteinfal-

tung zu untersuchen, ist es nützlich, ein Lösungsmittel mit attraktiver Wechselwir-

kung zwischen den Teilchen zu betrachten, da diese ein entscheidener Faktor des

wichtigsten Lösungsmittels in der Natur, nämlich Wasser, ist. Wir zeigen, dass auch

ein solches Lösungsmittel im Rahmen der morphologischen Thermodynamik behan-

delt werden kann (siehe Abschnitt 5.2.3). Exemplarisch verwenden wir als Modell-

Lösungsmittel eine einfache Square-Well-Flüssigkeit, die man erhält, indem man ein

kurzreichweitiges attraktives Wechselwirkungspotential konstanter Stärke zu dem re-

pulsiven Harte-Kugel-Wechselwirkungspotential hinzufügt. Diese attraktive Wechsel-

wirkung kann mittels Störungstheorie behandelt werden, was zu einem einfachen

Zusatzterm in dem Dichtefunktional der zugehörigen DFT führt. Allerdings können

anhand dieses Dichtefunktionals keine analytischen Ausdrücke für die thermodyna-

mischen Koeffizienten, die in Gl. (1) auftreten, berechnet werden, was eine Kon-

sequenz der Ermangelung einer guten DFT für Square-Well-Mischungen ist. Glei-
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chung (1) kann dennoch für die Berechnung von Fsol verwendet werden, indem man

die thermodynamischen Koeffizienten anhand von numerischen DFT-Rechnungen in

einer einfachen Testgeometrie (sphärische gelöste Teilchen) bestimmt. Zusätzlich zu

der attraktiven Wechelwirkung zwischen den Lösungsmittelteilchen erweitern wir das

Modell um charakteristische Wechselwirkungen zwischen dem gelösten Molekül und

den Lösungsmittelteilchen. Auf diesem Wege können thermodynamische Koeffizien-

ten ermittelt werden, die entweder hydrophilen Aminosäuren (attraktive Wechsel-

wirkung zwischen dem gelösten Molekül und dem Lösungsmittel) oder hydrophoben

Aminosäuren (repulsive Wechselwirkung zwischen dem gelösten Molekül und dem

Lösungsmittel) entsprechen. Unsere Ergebnisse für Fsol von Proteinen im Schlauch-

modell bestätigen die Rolle von hydrophoben Aminosäuren als eine treibende Kraft

für die Proteinfaltung während wir in dem Fall hydrophiler Aminosäuren keine Ten-

denz der Proteine zur Herausbildung von kompakten Tertiärstrukturen beobachten.

Das abschließende Kapitel 6 der Arbeit enthält eine Zusammenfassung der Er-

gebnisse und einen Ausblick auf mögliche zukünftige Untersuchungen, die im Zusam-

menhang mit den Themen dieser Arbeit stehen. Wir gehen hier nur auf den Teil des

Ausblicks ein, der die biologisch inspirierte Fragestellung der Arbeit betrifft. Erweite-

rungen der vorliegenden Untersuchung können danach unterschieden werden, ob sie

die Modellierung des Proteins oder die des Lösungsmittels betreffen. Die Beschreibung

des Proteins lässt sich verfeinern, indem konkrete gegebene Aminosäuresequenzen

durch eine Partitionierung des Proteinschlauches in hydrophile und hydrophobe Be-

reiche abgebildet werden. Die Lösungsenergie Fsol kann in diesem Fall noch immer

durch die morphometrische Form Gl. (1) berechnet werden, wobei allerdings unter

Umständen zusätzliche Linienbeiträge zu den geometrischen Maßen, welche von den

Grenzlinien zwischen den unterschiedlichen Bereichen herrühren, berücksichtigt wer-

den müssen. Ein solches Vorgehen kann helfen, die Tertiärstruktur gegebener Prote-

ine zu verstehen, während die Ergebnisse jedoch ihren allgemeinen Charakter, den

sie in der Untersuchung entropischer Lösungsmitteleffekte in Kapitel 5 haben, ver-

lieren würden. Weitere Verfeinerungen des Proteinmodells könnten die Hinzunahme

innerer energetischer Beiträge durch Wasserstoffbrückenbindungen zwischen verschie-

denen Bereichen des Proteins oder, allgemeiner, die Einführung einer Biegesteifigkeit

der Polypeptidkette im Stil von Ref. [14] umfassen. Eine offensichtliche Verbesse-

rungmöglichkeit der Beschreibung des Lösungsmittels stellt die Verwendung von Mo-

dellen für Wasser da, die realistischer als die einfache Square-Well-Flüssigkeit sind.

Es soll betont werden, dass Gl. (1) auch für solche komplexeren Lösungsmittel ver-

wendbar ist, wobei jedoch voraussichtich eine Berechnung der thermodynamischen

Koeffizienten durch DFT unzureichend ist. Dies ergibt sich aus der bereits erwähnten
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Ermangelung guter Störungstheorien für attraktive Wechselwirkungen, wodurch es

schwierig ist, Dichtefunktionale für komplexere Wassermodelle zu erhalten. Es er-

scheint jedoch machbar, Fsol anhand von numerischen Simulationen für einfach ge-

formte gelöste Moleküle in kompexen Lösungsmitteln zu bestimmen und mit Hilfe

dieser Daten die thermodynamischen Koeffizienten zu berechnen. Eine andere Er-

weiterung der Untersuchung, welche die Beschreibung des Lösungsmittels in dem

allgemeineren Sinne der Beschreibung des umgebenden Mediums betrifft, könnte sich

mit der Proteinfaltung in Gegenwart von äußeren räumlichen Einschränkungen be-

fassen. Tatsächlich findet die Faltung von Proteinen in der gedrängten Zellumgebung

statt, so dass die Annahme räumlicher Einschränkung realistisch sein kann. Frühere

Arbeiten haben gezeigt, dass räumliche Einschränkung in gewissen Situationen ei-

ne entscheidende Auswirkung auf die Proteinfaltung hat [151, 152] und es wäre von

großem Interesse, diesen Aspekt im Rahmen der morphologischen Thermodynamik

zu untersuchen. Die Anwendung von Gl. (1) auf Teile des Lösungmittels, die zwischen

dem Protein und einem äußeren Behälter eingeschränkt sind, würde einen weiteren

anspruchsvollen Test der Leistungsfähigkeit des morphometrischen Ansatzes für Fsol

bedeuten.
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(2004).

[88] P. Bryk, R. Roth, K.R. Mecke, and S. Dietrich, Phys. Rev. E 68, 031602 (2003).

[89] D. Henderson and M. Plischke, Proc. R. Soc. Lond. A 400, 163 (1985).

[90] J.R. Henderson and F. van Swol, Mol. Phys. 51, 991 (1984).
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gemacht haben.

149



150 Danksagung

• Moni und Roland dafür, dass sie ihre Schwäche für original österreichischen
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