
                                                                                                    

Max-Planck-Institut für Metallforschung 
Stuttgart 

Dissertation 
an der 
Universität Stuttgart 
 
Bericht Nr. 217 
September 2007 

Multiscale Modeling of Fracture and Deformation in 
Interface Controlled Materials 
 

Nils Brödling 





Multiscale Modeling

of Fracture and Deformation
in Interface Controlled Materials

Von der Fakultät Chemie der Universität Stuttgart

zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Dipl.-Ing. Nils C. Brödling

aus Detmold

Hauptberichter: Prof. Dr. phil. E. Arzt
Mitberichter: Prof. Dr. rer. nat. A. Hartmaier
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Abstract

Many nanostructured metals are characterized by scale dependent mechanical pro-

perties and by size effects due to geometrical confinement. Dislocation activities,

interface mediated plasticity, and macroscopic yielding are quite different from tho-

se in unconstrained metals. The role of interfaces for the material properties and

for the governing deformation mechanisms remains unclear despite the large efforts

made in experimental and theoretical investigations. Here we approach the effect of

geometrical confinement on the atomic and on the mesoscopic scale. We elucidate

size effects on failure mechanisms and on scale dependent plasticity of nanostructu-

red dual phase composite materials with the aid of computer simulations.

Cleavage failure of dual phase layered materials is simulated with a mesoscopic mo-

del to clarify the scaling behavior of the materials fracture toughness. The model

accounts for the confinement effect that a layer geometry imposes on the collective

dislocation behaviour near a moving crack tip. The critical layer thickness at which

the bulk fracture toughness of the elastic-plastic material is reached as well as the

bulk fracture toughness itself increase with the cohesive strength of the interface,

but become smaller for higher yield strengths. The main conclusion drawn in this

work is that fracture toughness as a function of layer thickness saturates gradually

if dislocation activity is dispersed, dilute and not compact around the crack tip. It

increases abruptly with the thickness when dislocation activity right at the crack

tip is possible and a compact, shielding dislocation array forms near the crack tip.

Furthermore this work provides preliminary understanding of the governing me-

chanisms that control the limiting length scale for the strengthening of bioinspired

metallic nanocomposits. Large-scale molecular dynamics simulations are performed

to investigate the plastic deformation behavior of a bioinspired metallic nanocom-

posite which consists of hard nanosized Ni platelets embedded in a soft Al matrix.

The simulation results are analyzed with respect to the prevailing deformation me-

chanisms quantifying the contribution of dislocation-based plasticity and interface-

mediated interfacial slip as a function of the nanostructural scaling. The results of

the simulations show that interfacial sliding contributes significantly to the plastic

deformation despite a strong bonding across the interface. Critical for the strength

of the nanocomposite is the geometric confinement of dislocation processes in the

plastic phase. The confinement effect strongly depends on the length scale and the

morphology of the metallic nanostructure. The main conclusion drawn for this ma-

terial is that below a critical length scale, the softening caused by interfacial sliding

prevails, giving rise to a maximum strength at the optimum size.





Kurzzusammenfassung (in German)

Viele nanostrukturierte Materialien sind durch ihre Längenskalen-abhängigen me-

chanischen Eigenschaften und durch Größeneffekte gekennzeichnet. Aufgrund geo-

metrischer Einengung unterscheiden sich Versetzungsbewegungen, Grenzflächenplas-

tizität und makroskopisches Fließen grundlegend von grob strukturierten Metal-

len. Welche Rolle die Grenzflächen für die Materialeigenschaften und für die vor-

herrschenden Verformungsmechanismen spielen, ist noch nicht abschließend geklärt.

Diese Arbeit konzentriert sich auf den Einfluss geometrischer Einengung auf die

Plastizität von nanostrukturierten, zweiphasigen Metallkompositen. Mit Hilfe von

rechnergestützten Simulationen werden Größeneffekte auf Versagensmechanismen

und Materialeigenschaften auf der atomaren und mesoskopischen Skala aufgeklärt.

Das Skalierungsverhalten der Bruchzähigkeit eines durch Sprödbruch versagenden

Schichtmaterials wird mit einem diskreten Versetzungsmodell untersucht. Das Mo-

dell berücksichtigt den Einengungseffekt, den eine Schichtgeometrie auf die kollek-

tive Versetzungsbewegung in der Nähe eines laufenden Risses ausübt. Sowohl die

kritische Schichtdicke, bei der die Bulk-Bruchzähigkeit des Materials erreicht wird,

als auch die Bulk-Bruchzähigkeit selbst steigen mit der kohäsiven Festigkeit der

Grenzfläche und verringern sich mit der Fließfestigkeit des Volumenmaterials. Ei-

ne wesentliche Aussage dieser Arbeit ist, dass die Bruchzähigkeit als Funktion der

Schichtdicke graduell in eine Sättigung übergeht, wenn die Versetzungsaktivtät um

die Rissspitze herum verteilt ist. Sie steigt jedoch sprunghaft an, wenn Gleitprozesse

direkt an der Rissspitze möglich sind und eine kompakte, abschirmende Versetzungs-

reihe an der Rissspitze ausgebildet werden kann.

Weiterhin liefert diese Arbeit erste Erkenntnisse über das Verformungverhalten bio-

inspirierter Metall-Nanokomposite. Die mit großskaliger Molekulardynamik simulier-

ten Nanostrukturen bestehen aus harten in einer weichen Al-Matrix eingebetteten

Ni-Plättchen. In dieser Arbeit werden zur Aufklärung der vorherrschenden Ver-

formungsmechanismen die individuellen Gleitanteile der Versetzungsaktivitäten in

der Matrix sowie des Grenzflächengleitens als Funktion von der Strukturskalierung

quantifiziert. Die Simulationsergebnisse zeigen, dass Grenzflächengleiten trotz großer

Grenzflächenhaftung wesentlich zur plastischen Verformung beiträgt. Entscheidend

für die Festigkeit des Nanokomposits ist die Einengung der Versetzungsprozesse

innerhalb der weichen Phase. Der Einengungseffekt hängt stark von der Längen-

skala und der Morphologie der Nanostruktur ab. Eine wichtige Aussage für dieses

Materialsystem ist, dass das Material durch das Einsetzen von Grenzflächengleiten

unterhalb einer kritischen Längenskala seine Festigkeit verliert.
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1 Introduction

Interface controlled materials such as thin layered films or nanocrystalline materials

are characterized by size effects due to geometrical confinement and scale depen-

dent mechanical properties. Dislocation activities, interface mediated plasticity and

macroscopic yielding are quite different from those in unconstrained metals. Defor-

mation and failure of such materials are largely determined by the properties of the

interfaces and by size effects. Typically the characteristic length scales are of the

order of one micrometer and below. This work elucidates size effects on failure me-

chanisms and on scale dependent plasticity of nanostructured dual phase composite

materials with the aid of computer simulations on the atomic and mesoscopic scale.

The theoretical studies presented in this thesis are oriented along the fields of fai-

lure analysis of microelectronic components and structural material design. The

interfaces of the materials are viewed as discontinuities between a hard and a soft

phase. We consider two material classes of high technical and scientific interest. Thin

layered nanocomposites are used in a wide range of applications as microelectronic

components. Research interests so far have been focused on plasticity in confined

systems as thin films or nanocrystalline materials, but a detailed investigation of

fracture or delamination under geometrical confinement of the plastic zone is still

lacking. The possibility to nucleate dislocations in the crack-tip region is essential

to shield the crack from the applied load and to prevent brittle crack propagation.

However, geometrical confinement can severely affect the plastic shielding of the

crack tip. Dislocations pile up at interfaces and the resulting back-stress prevents

further dislocation nucleation at the crack tip. The second research focus is devoted

to the area of interface engineering and biomimetic design. Structural refinement

is a well-known process in the field of interface engineering to strengthen metals

and is related to the confinement of slip during deformation due to the presence of

interfaces. On the basis of the theoretical considerations, however, there must be

a limiting transition of the dominant deformation mechanism on the nano scale.

Many natural hard/soft nanocomposite materials, such as spider silk or nacre, are

1



2 Introduction

ideal examples for the design of strong and tough materials by structural refine-

ment on the nano scale. Their superior mechanical properties may be attributed

to a generic parallel staggered arrangement of their microstructure. In this thesis

a novel bio-inspired design concept for structural refinement is tested. The studies

provide preliminary understanding on the governing mechanisms that control the

limiting length scale for the strengthening of their biomimetic metallic counterparts.

Chapter 2 of the thesis presents the review of the current state of research in the

field of interface controlled materials. The survey will focus on well known scale

dependencies of mechanical strength, as well as on size effects on the dominant

deformation mechanisms in nanocrystalline materials. The modeling framework for

small scale plasticity that is developed and used in this work will be introduced with

special focus on cohesive zone interface description. Eventually, the theoretical back-

ground relevant to the studied material problems is provided, i.e. cleavage failure

of metal layer and strength of nanocrystalline materials. Chapter 3 covers a com-

bined dislocation dynamics cohesive zone model. The micro mechanical model was

developed for the simulation of fracture processes in thin metal layer materials and

further extended to describe bulk behavior of dual phase metal matrix composite

with consideration of slip and decohesion at internal interfaces. Simulation results

elucidating the effect of microstructure and layer thickness on fracture toughness

of thin metal layers are presented in chapter 4. Chapter 5 includes the atomistic

model and the limiting strength analysis of a biomorphous metallic nanocomposite.

Scale dependent mechanical properties and size effects on the prevailing deformation

mechanisms are presented over a wide range of the materials characteristic length

scales under quasi-static tensile loading conditions. Chapter 6 discusses the results

for failure and deformation of dual phase nanocomposites and the modeling strate-

gies on multiple scales. Main findings are related to the current understanding of

interface controlled plasticity in nanocrystalline. The applied simulations tools are

critical reviewed with respect to their capability in resolving the dominant defor-

mation mechanisms. Chapter 7 concludes this work with a summary of the main

results.



2 Literature and theoretical

background

This chapter is designed to review the current research focus regarding the mea-

ning of interfaces for scale dependent mechanical properties as well as their role as

barriers to lattice dislocation glide and as sources for interface mediated plastic de-

formation. This work focuses on developing structure-property relationships based

on atomistic and mesoscopic modeling. Accordingly, discrete dislocation dynamics

and molecular dynamics simulations for the study of small-scale plasticity are re-

viewed. Both frameworks are surveyed with a special focus on the description of

material interfaces. Eventually, two material classes of high technical and scientific

interest are introduced, each of which constitutes a separate length scale regime.

2.1 Scale dependence of strength on the nanometer

scale

Plastic deformation of conventional polycrystals of average grain size d > 1 µm oc-

curs in two steps. After initial plastic flow by nucleation and motion of dislocations

in grains with maximum shear stress an intensive multiplication of dislocations in

grains with various orientations leads to a dramatic increase of the dislocation densi-

ty. The stress during large scale yielding, the macroyield stress σy, is measured after

the sample has undergone significant plastic strain so that all grains contribute to

the plastic flow. The controlling factors and mechanisms of plastic flow in conven-

tional polycrystals and their grain size effects have been of major interest since the

experimental demonstration of grain size effects by Hall (1951) and Petch (1953).

The Hall-Petch (HP) law that has shown to apply to the size regime above tens of

nanometers (Kumar et al., 2003) states that σy scales with the average grain size d

as

σy = σ0 + kd−1/2. (2.1)

3



4 Literature and theoretical background

The HP constant σ0 corresponds to the yield stress of the single crystal, where k

depends on the formation of the dislocation microstructure during the deforma-

tion. For pure fcc metals typical values are σ0 ≈ 10−4µ and k ≈ 0.05µ
√

b. The

traditional derivation of the HP-laws is based on the occurrence of pile-ups that

control the elasto-plastic transition at initial plastic flow. It is assumed that a large

stress concentration ahead of the dislocation pile-up is required to transfer glide bet-

ween adjacent grains by activation of Frank-Read sources in the neighboring grain.

Bulk Frank-Read sources within the grains release dislocation loops at stress levels

proportional to the inverse of the source length. The stress ahead of a pile-up ap-

proximately scales as d−1/2 when the pile-up is modeled as a continuous distribution

of infinitesimal dislocations and the exact positions of the discrete dislocations are

neglected.

The variety of HP models differs in the assumptions for the pile-up formation. The

HP relation (2.1) describing the dependence of yield stress on the grain size was

later extended to cover flow stress at a given strain considering effects of intragra-

nular plasticity. With decreasing grain sizes the dislocation network consists more

and more of dislocation loops that are pinned at the grain boundary and partially

remain inside the grain. In this view the flow stress is controlled by a dislocation

network within the grain of density ρ (Cottrell, 1953). The resistance of the dislo-

cation network to dislocation glide scales as σy ∼ √
ρ, where the total dislocation

length of dislocations remaining inside the grain scales as lg ∼ d2 and ρ = lg
d3 . The

HP relationship is therefore also obtained for the flow stress at a given strain when

effects of intragranular plasticity are considered. However, the interpretation of the

constants is rather difficult when the HP law is applied to the flow stress (Hansen,

2004).

It is widely accepted that the extension to the nanometer grain size has consequences

for the strength of nanocrystalline materials. A deviation from the conventional HP

like scale dependence has been observed in many experiments and computer simu-

lations. Different types of deviation from the HP behavior are reported for metals

with grain sizes less than a few tens of nanometers. The deviation was found either

as an increase of the strength with a smaller slope, as a saturation of strength, or

even as a softening at very small grain sizes. The postulated transition from grain

size hardening to grain size softening suggests that there is an optimum grain size

that provides maximal strength (Yip, 1998).

The optimum grain sizes that could be confirmed in experiments lie between 10 to
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40 nm (Sanders et al., 1997; Masumura et al., 1998; Khan et al., 2000). Optimum

grain sizes have also been reported based on atomistic modeling by Yamakov et al.

(2003) and Schiøtz and Jacobsen (2003), with approximated values based on ato-

mistic simulations as 18 nm for Al and 10 − 15 nm for Cu, respectively. Different

explanations for the behavior of the flow stress for decreasing grain sizes have been

proposed. Based on their high temperature simulations, Yamakov et al. (2003) sug-

gested that the behavior may involve diffusional flow. Schiøtz and Jacobsen (2003)

found for small grain sizes that the strain is localized in the grain boundaries, indi-

cating that the main deformation mechanism operating is grain boundary sliding.

The HP relationship is expected to break down if the discreteness of the dislo-

cation microstructure becomes important, and even more, if different deformation

mechanisms set in. Yet unanswered questions are: What are the physical mecha-

nisms behind the deviation from the HP-behavior at small length scales? And most

important, what is the limiting length scale where the trend predicted by this rela-

tionship breaks down?

2.2 Deformation mechanisms in nanostructured

metals

Most understanding of the mechanisms operative under confinement during the de-

formation of nanocrystalline metals have been obtained by large-scale atomistic stu-

dies published in the last few years as reviewed in the literature (M.A. Meyers, 2006;

Wolf et al., 2005). It is known that confinement effects result in a strong interplay

between dislocation based deformation in the grain interior and plastic deformati-

on mechanisms in the grain boundary regions. The strain b/d provided by a single

dislocation crossing a grain increases with decreasing grain size. Consequently, the

number of dislocations involved in a total strain increment decreases with grain si-

ze. Dislocation based deformation in nanocrystalline metals is therefore discrete in

nature as only tens of dislocations crossing a grain are necessary to generate a total

plastic strain of a few percent. This suggests that collective dislocation motion and

dislocation multiplication vanishes gradually when the grain size decreases.

As observed experimentally (Janecek et al., 2000) and in atomistic simulations (Der-

let and Swygenhoven, 2004), deformation of the corresponding nanocrystalline ma-

terial proceeds through direct transfer of individual dislocations across the grain

from a grain boundary where they are nucleated to the opposite grain boundari-
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es at which they are annihilated. The kinetics of this deformation mechanism is

controlled by the nucleation and annihilation process. When dislocation based de-

formation is confined to even smaller grain sizes, plastic deformation mechanisms

at grain boundaries are more effective to produce overall plastic deformation and

become dominant (Kumar et al., 2003; Schiøtz and Jacobsen, 2003).

2.2.1 Dislocation based deformation under confinement

Confinement effects on plastic deformation of polycrystals arise when the glide of

lattice dislocations is effectively hindered by the presence of interfaces. In case of

heterophase interfaces, the confinement effects due to contact interactions between

lattice dislocations and interfaces appear in several forms depending on the interface

structure. Coherent interfaces maintaining the continuity of a reference lattice allow

the transmission of lattice dislocations. In semicoherent interfaces coherent regions

are separated by misfit dislocations that accommodate the lattice misfit between

the adjoining crystals. In the limit of incoherent interfaces, the spacing of the mis-

fit dislocation is comparable to the width of their cores and the lattice continuity

across the interface disappears completely. In coarse grained materials, even though

direct slip across non coherent grain boundaries is terminated by special geometric

conditions, slip may still be propagated if pile-ups of incoming dislocations generate

sufficiently high local stresses in the vicinity of the boundary to activate sources in

the adjacent crystal.

The use of atomistic simulations of nanocrystalline materials has substantially con-

tributed to the understanding of the atomic mechanisms associated with the nuclea-

tion of dislocation from bimaterial interfaces in confined systems. MD simulations

elucidated, in particular, the nucleation of partial dislocations from interfaces in

face-centered cubic (fcc) bicrystals (Sansoz and Molinari, 2004, 2005) as well as na-

nocrystalline materials (Yamakov et al., 2002, 2003, 2004; Swygenhoven and Caro,

1998; Swygenhoven et al., 1999a,b, 2001, 2002, 2004; Derlet and Swygenhoven, 2004;

Derlet et al., 2003; Schiøtz et al., 1999; Schiøtz and Jacobsen, 2003; Schiøtz and Tol-

la, 1998). Calculations by Van Swygenhoven and Schiøtz for grain sizes less than

10 nm have shown that deformation is dominated by grain boundary processes, such

as grain boundary migration or grain boundary sliding. Above this grain size, de-

formation of nanocrystalline metals is a result of both grain boundary processes

and dislocation activities within the grain. They found that sources for dislocation
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nucleation were exclusively provided by the grain boundaries of the sample. Early

simulations of nc pure Ni and Cu with a grain size of about 12 nm showed that the

leading partial dislocation is emitted, sweeps across the grain and is absorbed in

the opposite interface. Oftentimes the trailing partial dislocation is not emitted. In

this case an extended intrinsic stacking fault remains within the grain with a larger

extension than the typical equilibrium spacing between partial dislocations. In their

analysis of the grain boundary structure it was shown that nucleation of the first

partial was assisted by “atomic shuffling“ within the interface and stress-assisted

free volume migration. They suggested the stress relaxation by the nucleation of the

first partial dislocation accompanied by the interfacial atomic rearrangement was

sufficient to reduce that grain boundary energy so that the nucleation of the second

partial was unnecessary.

The simulations by Yamakov et al. (2002, 2003, 2004) for nc Al with a higher stacking

fault energy showed that the second partial dislocation may emit from the interfaces.

They analyzed a columnar structure to be able to simulate larger grain sizes. They

identified the stacking fault width as a critical length scale parameter necessary to

describe the cross-over between two deformation regimes of extended partial and

full dislocations.

In a following work by Swygenhoven et al. (2004) and Frøseth et al. (2004) it has

then been argued that the interpretation between different deformation regimes in

terms of the intrinsic stacking fault energy is insufficient and that the entire genera-

lized stacking fault curve (Zimmerman et al., 2000) needs to be taken into account.

They proposed that the dislocation activity in nanocrystalline samples should be

described by the ratio of the unstable and intrinsic stacking fault energies. The oc-

currence of full dislocation pile-ups during deformation of nc materials indicating

a correlation with the HP behavior is still under debate. Schiøtz and Tolla (1998)

observed dislocation pile-ups of several dislocations locked on grain boundaries in

nc Cu within the strengthening grain size regime of about 50 nm.

2.2.2 Interface mediated plastic deformation

Interface mediated deformation mechanisms play an important role in materials with

grain sizes smaller than the critical grain size (∼ 100 nm) to activate a dislocation

source within the grain. The mechanisms that are critical for the strength of nano-

crystalline materials are grain boundary sliding, diffusional creep at grain boundaries

and triple junctions, and rotational deformation modes. In addition, ductility and
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fracture of nanocrystalline materials is very sensitive to interfacial decohesion and

void formation.

Depending on the temperature regime, two types of grain boundary sliding are

distinguished in the theory of the deformation of polycrystals (Langdon, 2006). Ra-

chinger sliding is accommodated by the movement of intragranular dislocations and

Lifshitz sliding accommodates diffusion creep. At elevated temperatures thermal ac-

tivated processes such as diffusional matter transport becomes important. At low

temperatures and in the presence of plastic flow within the adjoining crystals in-

terface sliding can be accommodated via the motion of lattice dislocations. This

process occurs at relatively high stresses and depends upon the interface acting as

sources or sinks for lattice dislocations. The inelastic deformation within the grain

boundary region at low temperature observed in atomistic simulations (Swygenho-

ven et al., 1999,a,b) is not dominated by thermal diffusion of atoms in the grain

boundary region, even though it is sometimes regarded as ”grain boundary sliding”.

Note that grain boundary sliding is defined as a thermally activated process present

at high temperatures (Sutton and Balluffi, 1995).

In general, interface sliding in bicrystals is defined as a plastic shear displacement

of two crystals with respect to each other parallel to the interface localized in an

interfacial region in response to applied forces. Depending on the interface structure

the shear that is associated with the interface sliding can be distributed over a slap

of material which includes the interface or can be restricted to the narrow core of

the interface. As one form of plastic deformation, interface sliding contributes to

the overall plastic deformation and in addition, may be responsible for cavitation

or interfacial void formation successively leading to interfacial mechanical failure.

Contrary to the simple macroscopic view of two shearing uniform blocks, on the

atomistic scale interface sliding is a complex phenomenon that strongly depends on

the plasticity of the adjoining crystals and on the interface characteristics. Similar

to shearing of a single crystal by the passage of dislocation, interfaces sliding occurs

preferably in a non-uniform manner. This process requires lower stresses than shea-

ring of the entire interface simultaneously (Sutton and Balluffi, 1995).

Here we use the term “interface shearing“ to denote a stress induced and dislocation

assisted interface mediated process in nanocomposite structures. Contact interacti-

on between lattice dislocations and interfaces under the action of high local stresses

result in local shear displacement events of interface atoms or the motion of grain
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boundary dislocations with Burgers vector parallel to the interface. The collectively

shear-displaced interface atoms result in interface sliding of that entire segment.

For low temperatures, there is some experimental evidence for occurrence of interface

sliding in nanostructured materials produced by electrodeposition (Lu et al., 2000)

and by severe plastic deformation (Valiev et al., 2002). The effect was explained

by a very high density of extrinsic dislocations that permits easy interface sliding

(Valiev, 2004). The presence of high dislocation densities adjacent to grain boun-

daries found by electron microscopy after SPD processing seems to support this

explanation. Another explanation was proposed regarding the width of the grain

boundaries with respect to the grain size. In nanostructured materials it would be

possible to develop macroscopic sliding along planes extending over distances that

are much larger than the grain size (Hahn et al., 1997). This behaviour was found

experimentally after SPD processing for several materials (Vinogradov et al., 2001).

A body of atomistic analyses can be found in literature that addresses either the

characteristics of interfacial sliding during the deformation of metallic bicrystals

(Wolf, 1990; Sansoz and Molinari, 2004, 2005; Chandra and Dang, 1999), and more

recently, the role of interface sliding and decohesion for the deformation of metallic

nanocrystals (Schiøtz et al., 1999; Schiøtz and Jacobsen, 2003; Schiøtz and Tolla,

1998; Swygenhoven et al., 1999,a,b, 2001, 2002; Farkas et al., 2005; Derlet and Swy-

genhoven, 2004; Derlet et al., 2003). Most research on metallic bicrystals addresses

the simplest case, i.e. interface sliding at an ideal planar grain boundary. In early

works, e.g. (Wolf, 1990), the structure and energy of boundaries was analysed at 0

K and at finite temperatures without addressing plastic deformation. Chandra and

Dang (1999) studied the characteristics of interface sliding and migration of several

low-order Γ interfaces in Al. Sliding is induced by applying either displacement or

a force to one of the crystal boundaries. When subjected to an applied shear force,

they showed that grain migration and grain sliding are coupled. A major result is

that low energy boundaries offer more resistance to shear deformation than higher

energy boundaries. Sansoz and Molinari (2004, 2005) have recently used the qua-

sicontinuum method to study the deformation and failure of bicrystal models with

symmetric Γ boundaries under shear and tension. For shear loading, they specify

three different failure modes depending on the initial boundary configuration: grain

boundary sliding by atomic shuffling, nucleation of partial dislocations from the bi-

crystal interface and grain boundary migration. Atomic shuffling appeared to be
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triggered by the free volume inherent to the structural feature of the boundaries.

A larger body of recent atomistic simulations of interface sliding have focused on

nanocrystalline samples. Molecular dynamics simulations of the deformation of me-

tallic polycrystals (Schiøtz et al., 1999; Schiøtz and Jacobsen, 2003; Swygenhoven

et al., 1999; Schiøtz and Tolla, 1998; Swygenhoven et al., 1999a,b, 2001, 2002; Farkas

et al., 2005; Derlet and Swygenhoven, 2004; Derlet et al., 2003) suggest that inter-

face sliding is increasingly important when the grain size is extremely small. Van

Swygenhoven and coworkers analysed their structure evaluating the displacement

vector distribution and atomic coordination to detect the nucleation of dislocations

and the interface evolution in nanocrystalline Ni and Cu samples. The initial samp-

les were annealed at room temperature for a short period of time to equilibrate the

structure. They observed atomic shuffling and stress-assisted free volume migrati-

on along the interface plane prior to the dislocation nucleation event. However, a

quantitatively evaluation of the role of interface sliding for scale dependent plastic

deformation is lacking.

In addition to the interface mediated deformation mechanisms, there are also failure

mechanisms associated with interfaces. The effect of interfacial flaws, e.g. due to

impurities at the interface, have been a major concern in technical application for

decades. Slow decohesion where the decohesion zone evolves with time was addressed

in various research fields, such as stress-corrosion cracking or embrittlement of high

strength steel. Failure modes in nanocrystalline materials such as shear-failure, nano-

cracking and cavitation have only been addressed recently. These failure mechanisms

may occur prior to macroscopic ductile fracture in nanocrystalline materials which is

viewed to occur through a nano-void coalescence mechanism. Interfacial flaws have

therefore a significant effect on the macroscopic fracture toughness. The formation of

interfacial damage in the vicinity of a crack tip has been simulated recently by pure

atomistic approaches (Farkas et al., 2002, 2005; Sansoz and Molinari, 2004). Farkas

et al. (2002) observed grain boundary decohesion and cavitation in the atomistic

analysis for nanocrystalline Ni. The simulations show grain boundary nano-void for-

mation leading to intergranular fracture. However, initiation of interfacial damage

initiation is a coupled process between dislocation activity in the adjacent crystals

and interfacial decohesion. It remains unclear whether the initiation and evolution

of this failure mechanism is dependent on the grain size of nanocrystalline materials

due to confinement effects on plasticity.
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2.3 Modeling scale dependent plasticity in small

dimensions

Within the scope of this thesis, size effects on plasticity and on failure mechanisms

of nanostructured dual phase composite materials are investigated with the aid of

computer simulations on the atomic and mesoscopic scale. One part of these stu-

dies focuses on mesoscopic dislocation dynamics simulations. Such DD simulations

can capture the dynamical development of dislocation microstructures on time and

length scales that are important for the brittleness or ductility of a material. It is

apparent that DD methods can not capture all the atomistic details of dislocation

nucleation and reaction processes as they occur in the composite material, including

the effects of a realistic 3D structure. Therefore, MD simulations will be employ-

ed for a fundamental, atomic and physically based description of the dual phase

composites. MD simulation is a very useful tool to study details of materials failure

processes. During such simulations the equations of motion of a large number of

atoms interacting with semi-empirical potentials are solved. The principal challen-

ge of this research is the treatment of the interface between dissimilar materials.

A critical aspect for the realistic simulation of the governing material processes is

the availability, choice and implementation of appropriate interatomic potentials in

MD, respectively, cohesive zone models in DD to describe interfaces in dual phase

metallic composites.

To derive effective material properties from mesoscopic or atomistic simulations,

the nanoscale (MD), respectively, the microscale (DD) needs to be linked to the

macroscale. The macroscale is incorporated via appropriate macroscopic loading

conditions that are applied to a small scale domain, e.g. the near crack tip region,

which is then prescribed with atomistic or discrete dislocation theory. The macrosco-

pic loading is specified with a loading parameter that represents the intensity of the

acting remote field. With this approach it is possible to investigate the interaction of

interfaces with defects, like dislocations or cracks, and to deduce macroscopic quan-

tities like strength, toughness or ductility of the structure. Besides the fundamental

methods (MD,DD) there are hybrid frameworks in the field of multiscale modeling

that connect several length scales by linking different modeling schemes.
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2.3.1 The mesoscopic scale

Dislocation dynamics

In many materials problems plasticity spreads out from high stress concentrations,

e.g. a crack tip or a nanoindent. These problems involve several physical length

scales and have therefore been addressed with multiscale modeling approaches. Mo-

lecular dynamics applies to the atomic region right at the crack tip, respectively,

underneath the indenter tip. On a somewhat larger length scale DD plasticity is the

appropriate description, while at still larger distances continuum crystal plasticity

is used. As a purely atomistic framework is useful for the study of nucleation of

single dislocations and material cleavage, and continuum crystal plasticity applies

to macroscopic cracking covering local strain hardening due to a high density of

geometrically necessary dislocations, for the intermediate regime of micro and sub-

micron fracture problems discrete dislocation plasticity is an appropriate approach.

In this work, a two dimensional combined dislocation dynamics-cohesive zone model

is developed to study interface controlled microscale plasticity problems. The me-

soscopic simulation tool is used to study fracture of nanoscaled layered structures

and further modified for the simulation of representative volume elements of dual

phase metal matrix composites.

Despite inherent limitations of two-dimensional models in describing formation of

(three-dimensional) dislocation structures and atomic-scale phenomena, such models

have been shown to capture some of the most important features in the discreteness

of plastic deformation by considering nucleation of dislocations at discrete sources

and motion of individual dislocations on slip planes. At the present time, fully three

dimensional (3D) dislocation simulations have not advanced to the stage of being

able to solve boundary value problems of practical significance and two dimensio-

nal (2D) simulations continue to be an important tool to investigate plasticity in

micro- and nanostructured materials where classical continuum plasticity is often

not applicable. A number of problems concerning microscale plastic deformation

have been investigated based on the 2D DD method developed by Van der Giessen

and Needleman (1995). They introduced a technique where the boundary value pro-

blem (BVP) of discrete dislocations is transformed into a weak formulation and then

solved within a finite element (FEM) approach. Later a cohesive zone formulation

was implemented to study fracture accompanied by plastic deformation (Cleveringa

et al., 2000; Deshpande et al., 2003). Other workers followed alternative approaches
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based on Green’s functions to incorporate the evolution of a dislocation microstruc-

ture under different boundary conditions into DD models. For example, a procedure

was developed to evaluate contact stresses in the wake region of a growing fatigue

crack (Riemelmoser et al., 1997). Other applications of DD methods include the

study of nanoindentation (Kreuzer and Pippan, 2004) and constrained diffusional

creep in polycrystalline thin films on substrates (Hartmaier et al., 2003, 2005).

The general framework for modeling the kinetics of discrete lattice dislocations in

the vicinity of material interfaces is based on continuum mechanics. Within this

mesoscopic approach, the microstructure of a solid and the internal elastic fields are

associated with a number of discrete dislocations. The driving force for dislocation

motion is assumed to be completely described within the framework of elasticity.

Cohesive zone interface description

Cohesive zone (CZ) models describing the process zone ahead of a crack tip ha-

ve widely been used for static and dynamic simulations in the area of continuum

damage or fracture mechanics, see e.g. (Raabe et al., 2004). CZ models have recent-

ly been coupled to continuum crystal plasticity models to describe the deformati-

on of nc materials accounting for both reversible elastic and irreversible inelastic

sliding-separation deformations (Wei and Anand, 2004). Other workers performed

crack propagation analysis with a cohesive modelling approach focusing on crystal

plasticity effects in the fracture behavior of metal/ceramic interfaces (Siddiq and

Schmauder, 2006). A cohesive zone formulation has first been implemented in a

discrete dislocation plasticity framework by Cleveringa et al. (2000). Their model

was mainly used to study fracture accompanied by plastic deformation (Cleveringa

et al., 2000; Deshpande et al., 2003). In all these approaches (Wei and Anand, 2004;

Siddiq and Schmauder, 2006), including the DD/CZ implementation by Cleveringa

et al. (2000), the cohesive zone models were integrated in a finite element frame-

work that requires the discretization of the interior of the continuum, particulary,

the region of high dislocation activity. The total computational time of a DD scheme

relies very much on the efficient and accurate evaluation of an auxiliary subproblem,

see chapter 3. Additionally, modeling defects near a stress concentration such as in

crack growth or contact evolution problems require a high resolution of the process

zone. For this type of problems the boundary element method (BEM) is expected

to have computational advantages besides providing a good accuracy with minimal

discretization effort compared to FEM based frameworks. The BEM has often been
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used in combination with cohesive zone model for damage locus description in brittle

materials, e.g. (Yang et al., 2001). In addition, the BEM has shown to be a quite

suitable approach for modeling DD plasticity in fatigue crack and evolving contact

problems (Kreuzer and Pippan, 2004; Riemelmoser et al., 1997), see also chapter 3.

One major objective in this work is therefore to develop a combined DD/CZ model

by means of a boundary integral method to study fracture of nanoscaled layered

structures.

The cohesive zone does not represent any physical material, but describes the co-

hesive forces that occur when the material is pulled apart. Cohesive elements are

therefore placed between two phases of continuous bulk material. When damage

occurs the cohesive zone elements open in order to simulate crack advance or deco-

hesion at interfaces, see Figure 2.1. Cohesive zone models originated from the idea

that fracture is a proceeding process in which separation takes place across an ex-

tended crack tip. The separation process is resisted by cohesive tractions ahead of

the crack tip in the so called process or cohesive zone (Raabe et al., 2004; Ortiz

and Pandolfi, 1999) which consists of a lower and an upper cohesive surface that

are held together by cohesive tractions. The cohesive tractions are related to the

cohesive separation of the surfaces by a traction-separation law (TS-law). The fai-

lure description is defined by traction-separation laws (TS-laws) (Chandra et al.,

2002) that determine the constitutive behavior of the cohesive zone model. In two

dimensions, cohesive traction can only occur in the normal and tangential direction.

In the general theory of cohesive surfaces (Xu and Needleman, 1994) the traction

vector is derived from an interfacial potential φ. The opening and shear components

deformation

∆t
′

tS
∆t

n

∆t
t S

∆t
′

n

Figure 2.1: Definition of sliding ∆t and opening ∆n separation for the cohesive surface S before at

time t and after deformation at time t′
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N and S are the derivatives with respect to normal ∆n

N = − ∂φ

∂∆n

(2.2)

and tangential separation ∆t

S = − ∂φ

∂∆t

. (2.3)

The area under the TS curves N(∆n) and S(∆t) represents the amount of work

needed for complete separation.

Cohesive zone models have been typically used as heuristically derived relationships.

The values for the quantities that are input to the analysis at the microstructural

scale are based on macroscopic parameters such as fracture toughness. In most work

the parameters stem from experimental studies and do not originate from the phy-

sics of the atomic scale. Besides crack propagation studies, cohesive zone models

have also been applied to the deformation of polycrystals (Zavattieri and Espinosa,

2001; Espinosa and Zavattieri, 2003; Wei and Anand, 2004).

Multiscale modeling approaches have recently been proposed in which the cohesive

zone formulation is based on physics of the smallest scale to solve macroscopic en-

gineering problems. The cohesive zone parameters are extracted from computations

based on molecular dynamics or quantum mechanics and passed to continuum mo-

dels. Models have been developed from results of molecular dynamics allowing the

physical insight of the atomistics to be embedded in the more computationally effi-

cient continuum descriptions, for example (Yamakov et al., 2006; Gall et al., 2000).

They applied a statistical procedure to extract traction-displacement curves from

the atomic forces and motions around crack tips for the investigation of brittle and

ductile crack propagations (Yamakov et al., 2006) and studied deformation and frac-

ture characteristics of incoherent interfaces (Gall et al., 2000). Following the same

idea of multiscale modeling, interface energies were calculated on a quantum level of

material separation to investigate the effect of atomic-level properties on chemically

induced crack formation, e.g. (Jarvis et al., 2001).

2.3.2 The atomistic scale

Molecular dynamics

MD simulation techniques have proven to be suitable to investigate the dependence

of the mechanical properties such as yield stress, flow stress and hardness on the

grain size, e.g. (Schiøtz and Tolla, 1998; Schiøtz and Jacobsen, 2003; Schiøtz et al.,
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1999; Yamakov et al., 2002, 2003). They also helped identify size effects in brittle

materials and adhesive systems and were used to demonstrate the existence of flaw

tolerant length scales (Buehler et al., 2006). Advancing computational power in re-

cent years allowed setting up three-dimensional models of nanostructured materials

and analyzing the governing deformation mechanisms even up to the Hall-Petch

regime (Schiøtz and Tolla, 1998; Schiøtz and Jacobsen, 2003). Most research work

using MD simulation techniques on understanding the mechanisms responsible for

deformation of nanostructured materials has been carried out for nanocrystalline

single phase metals. In this work, molecular dynamics (MD) is employed to study

the atomic scale mechanisms that occur in a dual phase metallic nanocomposite as

a result of an applied mechanical deformation and to derive scale dependent mecha-

nical properties.

MD refers to a well-established atomistic simulation framework to model the in-

teraction and evolution of a set of atoms under given boundary conditions, see e.g.

(Allen and Tildesley, 1996). The set of atoms is represented as point masses in space

that interact through multibody interaction potentials. The interatomic potentials

provide a model for the total potential energy of the system avoiding the complex

description of electron dynamics. In the absence of externally applied forces, the

force on a given atom fi is obtained as

fi = −∇Etot. (2.4)

The evolution of atomic positions is described with Newton’s second law of motion

fi = mr̈i, (2.5)

where the double dot signifies the second derivative with respect to time. In this

work, equilibrium atomistic simulations are performed, in which the system is isola-

ted from its surroundings with a fixed number of atoms, volume and constant total

energy is minimized. These boundary conditions correspond to the microcanonical

NVE ensemble in statistical mechanics. In the analysis presented in chapter 5, MD

calculations are used to compute minimum energy structures during the deformation

of dual phase systems within a given tolerance based on a special relaxation scheme.

The calculations are conducted with the parallel classical molecular-dynamics code

’IMD’ from the Institute of Theoretical and Applied Physics, University of Stuttgart

(Stadler et al., 1997). In the relaxation scheme, the residual force vector, defined as

the negative of the gradient of the potential energy, is set to zero to solve for appro-

piate values of ri that minimizes Etot (Bitzek et al., 2006).
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The interatomic potential used in atomistic simulation are semi-empirical and fit to

match certain material properties (lattice constant, bulk modulus, elastic constants,

vacancy formation energy) from quantum mechanics calculations or experiments.

The choice of the potential has significant impact on the performance of atomistic

simulations. Several classes of semi-empirical interatomic potentials are defined de-

pending on their complexity. Lennard-Jones 12-6 potential (Lennard-Jones, 1924),

e.g. for the simplest type of fully empirical pair potentials, the force between two

atoms is a function of only the distance between those two atoms. Cluster poten-

tials, on the other hand, consider both the distance between atoms and the angles

between sets of atoms in the force calculation. One example of a semi-empirical

potential is the the embedded-atom method (EAM) potential. The EAM potential

is known to combine an realistic description of metallic bonding together with high

computational efficiency. The EAM considers the total energy of a set of atoms in

the functional form Daw and Baskes (1984)

Etot =
1

2

∑
i,j

Φij(rij) +
∑
i,j

Fi(ρ̄i), (2.6)

where Φij(rij) is the pair-interaction term between atom pair (ij) separated by a

distance rij. ρ̄i is the host electron density induced by the surrounding atoms j at

the position of atom i. The host electron density is defined as

ρ̄i =
∑
ij

ρj(rij), (2.7)

where ρj is the electron-density function associated with atom j. Local atoms only

within a specified cut-off distance are considered. The cut-off distance typically

includes at least first and second nearest neighbors. More recently, interatomic EAM

potentials were developed to match additional structural properties, such as the

stacking fault energy (Mishin et al., 1999, 2001).

Another important issue for the atomistic setup is the calculating capacity required

to carry out the simulations. About 150 to 300 million atoms are necessary for a

model size of about 50 nanometers in three dimensions. In order to enable extensive

parameter studies over a wide range of the characteristic length scale and with a

realistic description of the atomic interaction many researchers have used quasi-two

dimensional atomistic setups of columnar structures, e.g. (Yamakov et al., 2003;

Farkas and Curtin, 2005; Zhang et al., 2004).
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Atomistic interface description

The limiting strength analysis of a biomorphous hard/soft nanocomposite (chap-

ter 5) is conducted for a metallic dual phase Ni-Al model system. Hard nanosized

nickel platelets are embedded in a soft aluminum matrix with a nanostructural mor-

phology similar to that of bone. The atomistic description of the Ni/Al interface is

based on an EAM interatomic potential for NiAl. Different EAM interatomic po-

tentials, namely those from Foiles and Daw (1987), Voter and Chen (1987), Ludwig

and Gumbsch (1995), have been employed to describe the properties of Ni-Al sys-

tems. In this study, the EAM potential developed by Ludwig and Gumbsch (1995)

is employed. The potential is known to accurately reproduce the equilibrium lat-

tice parameter and the elastic constants and to predict the correct constitutional

point defect population. Furthermore, it behaves sensibly under large strains. The

full description of the Ni-Al system requires definition of seven potential functions.

The functions are obtained by fitting to the properties of the individual Ni and

Al elements, respectively, to the properties of the Ni-Al alloys in case of the cross-

interaction functions (Ludwig and Gumbsch, 1995). The potential used for the Ni-Al

system also gives a good representation of the interatomic forces across interfaces

between Ni and Al.

2.4 Scale dependence due to plastic confinement –

case studies

2.4.1 Cleavage failure of metal layer

Research on crack initiation and fracture in layered materials is motivated by the

need for predictive models for failure on microelectronic packaging and devices. A

very important class of layered materials is a thin film bonded between two hard

substrates. The failure mechanisms alter fundamentally depending on whether the

film is ductile or brittle and on the properties of the film-substrate interface. For

macroscopic fracture of a ductile film between hard substrates, void nucleation and

growth can be assumed to be the main failure mechanism in the film.

Scale dependence in the large scale regime

The ductile failure mechanisms of traditional metal layer materials with above mi-

cron layer thickness were classified by (O´Dowd et al., 1992, 2001; Varias et al.,
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1991) as: near-tip void growth and coalescence, interface debonding near the tip,

high triaxiality cavitation and interface debonding ahead of the crack tip. Near-tip

void growth and coalescence occurs supposedly in ductile layers. Interface debonding

occurs near the tip when the local stresses at the crack tip normal to the interface

exceeds the strength of the interface. High triaxiality cavitation at a distance of

several layer thicknesses ahead of the crack tip followed by void coalescence occurs

when the interface strength is sufficiently strong and the ductile layer undergoes

substantial plastic deformation. The first two mechanisms operate if the mean spa-

cing between voids is much less than the layer thickness or if the interface bond is

weak, otherwise, the last two mechanisms are operative, see (O´Dowd et al., 2001).

Theories and numerical tools based on conventional continuum plasticity describing

fracture in layered materials in the layer thickness range of one micron and above are

well advanced (Tvergaard and Hutchinson, 1994). The main aspect that is relevant

to existing models is the restrictions that a layer geometry imposes on the expansion

of the plastic zone and to the resulting fracture toughness of layer composites, see

Figure 2.2. It has been shown experimentally and theoretically that the toughness of

a ductile layer sandwiched between elastic substrates decreases with increased mode

mixing and increases with the thickness of the ductile layer until the layer fails pla-

stically. As Varias et al. (1991) found, this is due to plastic confinement the tensile

stress at the crack tip increases as the thickness decreases. In spite of the progress

in developing appropriate models for fracture of traditional layered materials, only
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Figure 2.2: Schematics of the fracture toughness as a function of layer thickness
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a small body of experimental work exists on this topic. Recent experimental studies

for Al interlayers of various thicknesses (0.2− 3 mm) suggest that metal layers exhi-

bited failure modes that are different to those in the bulk form of the layer material.

The plastic confinement resulted in a transition from ductile to brittle failure even

in a intrinsically ductile metal such as fcc pure Al (Han et al., 2005).

Analytical pile-up model for the submicron regime

In modern industrial applications multi layer materials with multiple alternating

hard and ductile layers are used with a thickness ranging from 10 nm to 1000 nm. As a

consequence of dislocation confinement by narrowly spaced internal boundaries, the

stress variation over the layer thickness is large compared to the macroscopic yield

strength. The discrete nature of plastic flow becomes important, as size effects in this

regime are dominated by the elastic interaction between discrete dislocations with

the crack tip and the interfaces, see Figure 2.3. Appropriate modeling approaches for

the plastic flow processes must treat interfaces and dislocation activities individually

(Suo et al., 1991). When the plastic zone is modeled by a dislocation population

around the crack tip subjected to a applied stress intensity factor KI , the local

stress intensity factor kI is reduced by a shielding factor KD as

kI = KI −KD. (2.8)

KI

φ

equivalent super dislocation

Figure 2.3: Schematics of the effective superdislocation model by Hsia et al. (1994)
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Shielding dislocations emitted at the crack tip relax the high stress concentration

there, due to their elastic interaction with the crack tip. This effect is regarded

as crack tip shielding and was extensively studied by Lin and Thomson (1986).

In the absence of confinement, shielding dislocations move freely away from the

crack tip forming an inverse pile-up in which the dislocation spacing increases with

increasing distance from the crack tip. The condition for cleavage failure due to

confinement effects in the thickness regime of a few micrometers has been recently

addressed by an analytical analysis for a semi-infinite crack within a metal layer

(Hsia et al., 1994), and for crack initiation at a bimaterial interface (Mao and Lib,

1999). The central arguments in the model by Hsia et al. (1994) and the main

results are summarized in the following, see Figure 2.3. Hsia et al. (1994) considered

a semi-infinite crack tip located in the center of the metal layer interacting with

an equilibrium numbers of shielding dislocations that are pinned at the interfaces.

The dislocation microstructure is idealized by two super dislocations located at the

interfaces. The effect of crack tip blunting on the crack tip stresses is approximated

assuming the formation of a notch of semicircular shape due to dislocation emission.

The contribution KD due to the interaction forces between a semi-infinite crack tip

and a emitted dislocation located at the interface can be written (Lin and Thomson,

1986) as

KD =
µb

(1− ν)2πhφ

3

2
sin φ cos

φ

2
, (2.9)

with hφ = h/(2 sin φ). The equilibrium number n of emitted dislocations stored in

the super dislocations is estimated comparing the energy of the state with (n−1) and

the one with n dislocations. If the total energy decreases by generating an additional

dislocation across the whole crack front, the state with n dislocations is energetically

preferable. Thus, the criterion for the equilibrium dislocation number is

∆WT = W n
T −W n−1

T > 0. (2.10)

The total energy WT of a systems with two dislocation pile-ups is the sum

WT = Wd + WK + WL. (2.11)

The dislocation self energy Wd in the presence of a semi-infinite crack can be eva-

luated as the work done by dragging the dislocation against its image force along

the slip plane from the crack tip to the current location. The interaction energy

between the dislocation and the crack tip due to the presence of an applied K-field

WK is viewed similarly as the work done by the crack tip gliding force which drives
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the dislocation from crack tip to its current position. The ledge energy equals the

surface energy of the extra step emerging at the crack tip due to dislocation emis-

sion. The effect of two dislocation pile-up branches is evaluated by superposition.

The effect of blunting is simply considered by approximating the effective decrease

of the crack tip stresses. The maximum stress at the crack tip as a function of local

stress intensity factor is

σtip = β
kI√
nb

, (2.12)

where β is a geometry factor for a notch with semicircular front and nb is the blun-

ting radius caused by n dislocations with Burgers vector b. The competition between

crack advance and dislocation emission as the applied stress intensity increases ul-

timately leads to cleavage failure of the metal layer. Cleavage failure is assumed to

occur when the crack tip stress σtip has reached the cohesive strength of the ma-

terial. The applied stress intensity at this condition is the fracture toughness. The

expression for the fracture toughness-layer thickness dependence that is deduced

from the model by Hsia et al. (1994) shows the proportionality

KIc ∼
√

h

ln h
r

(2.13)

for large layer thicknesses neglecting contribution from surface energy. Furthermore

the model demonstrates that the fracture toughness scales as

KIc ≈ σ2
th. (2.14)

and thus is very sensitive to the cohesive strength.

2.4.2 Strength of nanocrystalline materials

The influence of interfaces on the mechanical deformation behavior of composite ma-

terials has drawn much attention in the last decades, see e.g. (Llorca et al., 1991). It

is also evident that in nanostructured materials the behavior of the interface domi-

nates the overall material performance as the interface-area-to-volume ratio is low.

As a rule of thumb one can speak of interface-controlled materials, if the characte-

ristic length scales are of the order of one micrometer and below. Deformation and

failure of such materials are largely determined by the properties of the interfaces

and by size effects of plasticity in the crystalline domains. Microstructural processes

such as delamination of the interface, dislocation nucleation and dislocation move-

ment depend on the interfacial properties as well as on the spatial distribution of
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the interfaces. Structural refinement by severe plastic deformation is a well-known

process in the field of interface engineering to strengthen materials (Höppel et al.,

2004). For metals at low and intermediate temperatures this strengthening is rela-

ted to the plastic confinement caused by interfaces due to the presence of particles

or grain boundaries in the initial structure. The controlling factors of interfaces on

the deformation of polycrystals appear in a wide variety of forms. Temperature and

characteristic microstructural length scales play significant roles in determining the

mechanical properties. A central research field has therefore emerged for the stu-

dy of the structure and properties of interfaces as their design is essential for the

microstructural evolution during plastic deformation and controls the ultimate ma-

croscopic bulk properties such as strength and toughness.

Recently, ultra fine grained and nanocrystalline metals as well as nanocomposites are

under extensive research. Ultra fine grained bulk materials with grain sizes between

100− 300 nm have been fabricated based on severe plastic deformation, see (Höppel

et al., 2004; May et al., 2005). The resulting nanostructured bulk materials have

homogenous and equiaxed microstructures with high fraction of high-angle grain

boundaries. The production of nanocomposites (Veprek, 1999; Kauffmann et al.,

2005) and nanocrystals (Wang et al., 2002; Chen et al., 2006) with microstructural

sizes in the range of 50 − 100 nm is currently seen to be very promising to achieve

extremely high strength and extraordinary hardness. Nanocomposites that are can-

didates for superhard materials consist of at least two phases with a well-defined

microstructure. The predominant phase provides enhanced stiffness and effectively

hinders the generation and motion of dislocations. The minority phase should in-

hibit sliding of grain boundaries (Veprek, 1999). Potential engineering applications

include friction and wear resistant cutting tools (tungsten/cobalt composite). Other

prominent biphase nanocomposite coatings consist of aluminum metal phases and

ceramic fibers, especially silicon carbide, but also aluminum oxide or aluminum ni-

tride, and have a big potential for solving tribological problems in the automotive

industry.

There has been a number of experimental studies on the deformation behavior of

nanocrystals with average grain size less than 100 nm (Kauffmann et al., 2005; Wang

et al., 2002; Yip, 1998; Arzt, 1998; Chen et al., 2006). These investigations show ge-

nerally an increasing yield stress and hardness with decreasing grain sizes down to

20 nm. For several materials an inverse Hall-Petch effect has been reported for grain
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sizes below 10 nm, where strength seems to decrease with further grain refinement

(e.g., (Volpp et al., 1997)). It is assumed that in this regime deformation is mainly

accommodated by grain boundary sliding (M.A. Meyers, 2006; Weertman, 2000) and

J.R. Weertman in (Koch, 2002). Furthermore, the failure strain is found to decrease

when grain refinement reaches the nanocrystalline regime. However, there is a great

deviation in the data obtained experimentally and strength measurements seem to

be significantly affected by imperfections in the material. A survey on experimental

measurements indicating an inverse Hall-Petch behavior of the strengths of nano-

crystalline materials is given by J.R. Weertman in (Koch, 2002). The decrease in

strength in some of these experiments has been attributed to the presence of flaws,

especially when samples were used repetitively and different grain sizes were obtai-

ned by intermediate annealing, which generally not only increases the grain size, but

also reduces the density of other defects (M.A. Meyers, 2006; Weertman, 2000).

While the yield strength is defined as the resistance to macroscopic yielding due to

dislocation glide, toughness gives structural materials adequate strength in the pre-

sence of crack-like defects. Maximizing both properties designing strong and tough

materials is a crucial task in materials engineering. As a typical trend, increasing

the materials strength leads to a decrease in the toughness, as higher toughness

is achieved by enhancing the plastic work done during formation and propagation

of cracks. Novel approaches for the development of strong and tough materials is

particularly shaped by interface engineering and biomimetic design. Many natural

nanocomposite materials, such as spider silk or nacre, are ideal examples for strong

and tough materials. These structural materials achieve extraordinary properties by,

first, the unique properties of soft organic phases confined between hard platelets,

second, microstructure (size, shape of platelets), and third, molecular interactions

at the organic-inorganic interface. Nacre, also known as mother-of-pearl, is the iri-

descent layer found inside some mollusk species such as oyster or abalone. It is made

of relatively weak materials, but due to its hierarchical microstructure, its macros-

copic mechanical properties are far superior to those of its constituents. For this

reason there is a great interest in nacre as a source of inspiration for novel designs

of composites.

Part of the motivation for the present work comes from the increasing evidence that

the superior strength and toughness of biological materials including nacre, bone

and tendon may be attributed to a generic parallel staggered arrangement of their
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microstructure (Landis, 1995; Menig et al., 2000; Gao et al., 2003). The abalone

shell, which is a composite of mineral plates sandwiched by protein-rich organic ma-

terials, has a fracture resistance 3000 times higher than that of the mineral plates

(Currey, 1977; Jackson et al., 1988). Inspired by such generic microstructure of bio-

logical materials, (Ji et al., 2004) have investigated the flow stress of a metal matrix

composite (MMC) with a biomorphous microstructure similar to that of nacre. Such

metal matrix composite would be made of staggered hard and slender nanoparticles

embedded in a ductile matrix. Ji et al. (2004) showed that the large aspect ratio

and the nanometer size of inclusions in the biomorphous MMC lead to significantly

improved properties with increased tolerance of interfacial damage. For example,

it was found that partially debonded inclusions continue to carry mechanical load

transferred via longitudinal shearing of the matrix material between neighboring in-

clusions. The larger the inclusion aspect ratio, the larger is the flow stress and work

hardening rate for the composite. Increasing the volume concentration of inclusion

also makes the biomorphous MMC more tolerant of interfacial damage.

The work by Ji et al. (2004) was based on continuum plasticity theory which can

not capture the size effect of plastic deformation at micron and submicron length

scales (Gao et al., 1999). In the present work (chapter 5), we investigate a fully ato-

mistic model of a similar metallic nanocomposite structure with the aim to study

size dependent material properties over a wide range of length scales with a fully

atomistic resolution of the material and thus without any a priori assumptions of

the deformation processes.
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3 Mesoscopic modeling of interface

controlled small scale plasticity

Interface controlled small scale plasticity problems such as crack tip plasticity under

geometrical confinement are complex, because they involve mixed displacement and

traction boundary conditions, which, moreover, dynamically change during crack

growth processes following crack path and crack tip geometry. Therefore the soluti-

ons to these problems are not trivial and require efficient computational techniques.

This chapter demonstrates how these techniques are applied to study fracture pro-

cesses under plastic confinement as well as deformation of dual phase metal matrix

composites.

In the two dimensional discrete dislocation models considered here, the microstruc-

ture of a solid and the internal elastic fields are associated with a number of discrete

dislocations and cracks within a process window, see Figure 3.1. The process win-

2000 nm

αi

F-R source

reflection

lock formation

node density crack line

h/2

Figure 3.1: Schematics of process window (red box) for the equivalent symmetric crack problem, see

text. Shown are the elementary dislocation processes around an initial crack in the two dimensional

model. Critical distances for dislocation-dislocation interaction and dislocation-interface interaction

are marked in red.

27
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dow describes the dislocation activity in the vicinity of the tip of a plane strain

mode I crack. The region shown is the lower half of the equivalent symmetric crack

problem (see following section). The crack line is modeled as a cohesive zone and

characterized by a traction-separation law. The material is assumed to be a linear

elastic, isotropic body B in which plasticity is carried by dislocation motion. Edge

dislocation dipoles are generated from pre-defined two dimensional Frank-Read (F-

R) sources. The dislocation structures are assumed to extend infinitively long into

the line direction (out of plane) of the dislocations. This motivates the plane strain

approximation. In response to the thermodynamic force acting on each individual

dislocation, i.e. by the Peach-Koehler (3.8) force which is proportional to the local

resolved shear stress at the position of the dislocation, the entire microstructure

evolves in time and space. The driving force for dislocation motion is assumed to be

completely described within the framework of linear elasticity. In the simulation pro-

cedure the evolution of the dislocation microstructure is characterized by nucleation

of dislocations at F-R sources, dislocation motion,lock formation and dissociation,

annihilation of dislocations and dislocation reflection at the crack line due to the

mirror symmetry. For the pure mode I crack analyzed in this work, it is convenient

to take advantage of the mirror symmetry of the domain with respect to the crack

line so that the problem is reduced to the analysis of the lower half plane. A mirror

symmetry line is characterized by the fact that the tangential tractions vanish. In

less symmetric crack arrangements mixed mode interactions are usually present, i.e.

both normal and shear tractions are induced on the crack line.

3.1 Basic simulation procedure

The evolution of the dislocation microstructure in the vicinity of cracks is computed

from a chosen initial configuration based on an explicit time integration scheme. The

time step of the integration algorithm is restricted to resolve dislocation-dislocation

interaction on a very small scale. Since the time step needs to be small because

of near-field dislocation interaction (annihilation, lock formation) an explicit time-

stepping algorithm is adopted for the overall solution procedure, see the flowchart

in Figure 3.2. The positions ξk of dislocations k = (1...N), where N is the total

number of dislocations, are incrementally updated over time t as

ξk
t+∆t → ξk

t + ∆tvk
t (3.1)
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• evaluate J-Integral

Prepare postprocessing

• write out data

Numerical solution of the dislocation BVP

• generate random source distribution
• define grid on boundary

Initialization of the process window

Update dislocation microstructure

lock formation, annihilation, dissociation, reflection
• evaluate constitutive rules:

• evaluate F-R-source mechanism
• evaluate P-K force

• move dislocations

• solve linear system of equations
• update right-hand-side vector

• update cohesive coefficients

• apply next load increment

• compute total mechanical fields

• assemble system matrix

if failure detected → END

if cohesive coefficients have changed

Figure 3.2: Flowchart showing simulation procedure.

where ∆t is the current time step and vk
t is the current velocity that is taken to be

proportional to the acting driving force. After each time step the mechanical equi-

librium is solved numerically for the new updated dislocation configuration ξk
t+∆t.

The total computational time of this procedure relies very much on the efficient

evaluation of the dislocation boundary value problem.

3.1.1 Initialization

At the beginning of the simulation a process window is created in which the evo-

lution of the dislocation microstructure is described. The numerical solution of a

dislocation boundary value problems requires the discretization of the crack line

into a number of boundary elements. Following the domain truncation strategy, a

computational interval is defined on the crack line that is large enough, so that

the numerical error is small in the domain of interest, i.e. the process zone in the
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vicinity of the crack tip. The number of integration points used in the simulations

is about 1000 leading to a system matrix of the dimension 2000 times 2000 as seen

later. The integration points are very dense in the process region having a constant

spacing of 8b. The process region (Figure 3.1) has a dimension of 2000 nm in the

direction of the crack line. In the process region, the moving dislocations are ex-

pected to interact strongly with the crack. They may be absorbed if they run into

the traction-free crack surface or mirrored where the material is still coherent. The

boundary of the remaining crack line is more coarsely discretized with increasing

spacing between the nodes, approximating an infinitely long crack line and cohesive

zone. The plastic deformation around the crack tip develops from a distribution of

Frank-Read dislocation sources with density ρsrc and strength σsrc corresponding to

the yield stress. Two slip planes at angles of α1 = 45
◦

and α1 = −45
◦

with respect to

the crack line are considered. Initially a randomly distributed source configuration is

generated keeping a minimum distance of 10b between neighboring slip planes that

are associated with the F-R sources.

3.1.2 Updating dislocation microstructure

The Update of the dislocation microstructure involves the evaluation of the Peach-

Koehler (P-K) force, the nucleation of dislocations, from Frank-Read (F-R) sources,

the motion of the dislocations, and the evaluation of constitutive rules that take

care of elementary dislocation processes, see Figure 3.1.

Evaluation of the Peach-Koehler force

In the general framework of defect mechanics, the microstructural evolution is go-

verned by the variation of the total potential energy with respect to changes of the

individual defect positions. This generic concept can be applied to various types of

defects, however, due to their significance to small scale plasticity, discrete disloca-

tion models have advanced most of all in recent years. An isotropic linear elastic

body B is considered containing a number of N defects at positions ξk. The defects

induce elastic eigenstrains ε∗ in the lattice and may interact with boundaries or

interfaces via elastic image fields (Eshelby, 1951). These image fields contribute to

the local stresses and hence to the total driving force that moves the defect. They

depend on the defect locations ξk and may become the major contribution to the

driving force when the defects migrate in the vicinity of boundaries and interfa-

ces. For example, dislocations tend to be pulled into a free surface or are repelled
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Figure 3.3: General boundary value problem of a finite body with dislocations and decomposition

into subproblems.

from interfaces towards stiffer materials. In the framework of linear elasticity the

defects are represented by singularities in an unbounded linear elastic domain. The

close-form solutions for their stresses and displacement fields can be found in the

literature, see (Eshelby, 1951; Mura, 1982). For example, the simplest singularity

in elasticity is the center of dilatation which can be considered as a model for an

interstitial atom.

The elastic image fields stemming from the presence of material interfaces are de-

termined by formulating and solving a boundary value problem of a finite or semi-

infinite body containing a number of defects subject to arbitrary complex boundary

conditions, see Figure 3.3. Assuming the solid to be linear elastic and neglecting

body forces the singular field can be subtracted from the original boundary value

problem by virtue of the principle of superposition. The remaining auxiliary problem

of a finite defect-free body under modified boundary conditions has to be solved nu-

merically. The original dislocation boundary value problem is therefore decomposed

into a finite body without defects subject to the prescribed boundary conditions

t0,u0, a problem of a number of defects located in an unbounded domain and an

auxiliary problem. In the auxiliary problem the finite defect free body is subject to

boundary conditions stemming from the singular fields (̃.). Tractions ts and displace-

ments us at the boundary are compensates by equal loads on ∂B with opposite sign.

The full set of equations specifying the general dislocation boundary value problem

are summarized as follows:
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∇·σ̄ = 0

σ̄ = C : ε̄

ε̄ =
1

2
(∇ū +∇T ū)

ū|∂Bu = u0

t̄|∂Bt = t0

∇·σ̃ = 0

σ̃ = C : (ε̃− ε∗)

ε̃ =
1

2
(∇ũ +∇T ũ)

ũ|∞ = 0

t̃|∞ = 0

∇·σ̂ = 0

σ̂ = C : ε̂

ε̂ =
1

2
(∇û +∇T û)

û|∂Bu = −us

t̂|∂Bt = −ts

(3.2)

Each subproblem is specified by three sets of equations, i.e. the balance of forces,

the constitutive relation where C is the elasticity tensor, the kinematical relation

between strains and displacements, and the boundary conditions which need to be

defined on the whole boundary ∂B = ∂Bu+∂Bt. Bold symbols denote vector or tensor

quantities. Symbols ∇(.) and ∇·(.) denote the gradient and divergence operator,

respectively. The symbol (.) : (.) denote the inner product between two tensors

of higher rank. The total stress, strain and displacement fields can be determined

from the superpositions σ = σ̄ + σ̃ + σ̂, ε = ε̄ + ε̃ − ε∗ + ε̂ and u = ū + ũ + û.

Knowing the closed form solution of a single defect, the solution for σ̃ and ũ of

the second subproblem can be obtained by simple summation over all defects. The

third subproblem is used to correct the boundary conditions on the boundary ∂B
and usually requires a numerical solution procedure such as finite element (FEM)

or boundary element methods (BEM).

After specifying the general dislocation boundary value problem the total potential

energy of the body B can be written in an integral form

Π =
1

2

∫

B

(
(σ̄(x) + σ̃(x) + σ̂(x)) : (ε̄(x) + ε̃(x)− ε∗(x, ξk) + ε̂(x))

)
dV

−
∫

∂B

t0(x)·(ū(x) + ũ(x) + û(x)) dA.

(3.3)

The defect positions ξk enter the potential by the dependence of the eigenstrain

distribution ε∗(ξk). For a number of n defects the eigenstrain distribution can be

written as

ε∗(x, ξk) =
n∑

k=1

δ(x− ξk)G, (3.4)

where the discreteness of the defect distribution is mathematically represented by

the Dirac function δ(x − ξk). G is a tensor function in general. In the simple case

of a center of dilatation, G simply reduces to the unit tensor 1. For a specific
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eigenstrain distribution the expression (3.3) can usually be simplified by considering

the symmetry of the elasticity tensor in conjunction with the common techniques

in continuum mechanics to convert integral equations. The thermodynamic driving

forces are derived from the variation of the total potential energy

δΠ =
n∑

i=1

∂Π(ξk)

∂ξi

·δξi (3.5)

as

fi = −∂Π(ξk)

∂ξi

. (3.6)

This general expression may be used to derive driving forces for various types of

defects by performing the variational calculus for a given eigenstrain distribution

ε∗(x, ξk) that represents a certain type of defect.

The 2D DD model described in this work considers plane strain situations of edge

dislocations in isotropic elastic media. The dislocations are only allowed to move on

fixed slip planes as rigid entities. The self energy is therefore independent of their

locations. The eigenstrain of a dislocation line L lying in a slip plane S with unit

normal n can be written as (Mura, 1982)

ε∗(x; ξ) =
1

2
(b⊗ n + n⊗ b)δ[(x− xs)·n]H[(ξ − x)·(τ × n)] (3.7)

where H[.] is the Heaviside function, b is the Burgers vector, δ(.) the Dirac function,

τ is the unit vector tangential to L, s is a arbitrary point lying on S and ξ is a

point lying on L. (.)× (.) denotes the dyadic product of two vectors. Inserting this

expression in (3.3) one obtains with (3.6) the driving force on the dislocation line

segment at point ξ for pure dislocation glide as

f = τ × (σb), (3.8)

which is known as the Peach-Koehler force. The Peach-Koehler force is proportional

to the local stress σ at the position ξ caused by any type of boundary conditions

and internal stresses. The evaluation of the Peach-Koehler force requires solving

the problem specified in (3.2). In response to the thermodynamic force f acting on

each individual defect the entire microstructure evolves in time and space. Under

the action of an external force the dislocation microstructure evolves such that it

minimizes the total potential energy Π. In DD simulations equilibrium configuration

are usually not calculated due to computational expenses. Typically the evolution

of the microstructure is computed from a chosen initial configuration based on an

explicit time integration scheme where all dislocations are displaced simultaneously

within a time step.
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Dislocation multiplication

New dislocations are assumed being generated through the operation of Frank-Read

sources. The initial dislocation segment of a Frank-Read source bows out under the

action of a resolved shear stress until a critical Frank-Read configuration is formed.

A Frank-Read source is therefore characterized by the critical stress for activation of

the Frank-Read process, the time to form the critical configuration and the diameter

of the generated dislocation loop. In the two dimensional approximation of our

dislocation model, dislocation nucleation by a F-R source mechanism is mimicked by

point sources that generate dislocation dipoles representing dislocation loops in three

dimensions. The dipole comprises two opposite dislocations with Burger’s vectors

±b. At each time step during the simulation, a nucleation criterion is evaluated

by considering the stability of a test dislocation dipole with the average nucleation

distance

lsrc =
µb

2π(1− ν)σsrc

, (3.9)

where ν is the Poisson ratio and µ the shear modulus. When the resolved shear

stress exceeds the source strength σsrc a dislocation pair with a equilibrium spacing

of lsrc is generated. If the dipole expands or is at least stable over an initiation time

period, a new dislocation dipole is nucleated. The initiation time period is chosen

in such a way that a source is not activated by a single dislocation passing by.

Elementary dislocation processes

The P-K force (per unit length) which drives the dislocation in the slip direction is

expressed as

fi = εij3σjkbk. (3.10)

Following the Einstein summation convention, εij3 is the permutation tensor, bk is

the Burgers vector with norm b = 0.25 nm in the examples presented later. The

velocity of dislocations is assumed to be in the overdamped viscous glide regime and

follows the form

vgd =
1

B
f (3.11)

here the drag coefficient B expresses the resistance to dislocation glide.

Elementary processes related to dislocation behavior are incorporated as constitutive

rules, including short range interaction between individual dislocations and inter-

actions between single dislocations and boundaries. For the dislocation-dislocation
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interaction, a critical distance is used as an onset radius below which formation of

obstacles or dislocation annihilation is triggered (Essmann and Mughrabi, 1997),

see Figure 3.1. Obstacle formation occurs when two dislocations approach on dif-

ferent intersecting slip planes. When their distance falls below the critical distance

for dislocation-dislocation interaction, their motion is stopped. Obstacle formation

leads to a macroscopic hardening effect in the material. The obstacles act as barriers

to the glide of further dislocations such that dislocation pile-ups form behind the

two crossing dislocations, exerting an increasing driving force on them. The strength

of an obstacle is assumed to be about 50% of the materials cohesive strength. This

quantity controls the highest possible magnitude of pile-up stresses within the bulk

material due to the formation of locks. The lock is dissociated when the driving

force acting on the locking dislocations exceeds the obstacle strength. On the other

hand, if two dislocations of opposite Burgers vectors are found to be approaching

each other on parallel slip planes within the critical distance, they annihilate and

are subsequently removed from the simulation.

When a single dislocation travels across the mirror symmetry line, i.e. the crack line,

it is assumed that its mirror counterpart enters the simulation box which ensures

that there is no net dislocation slip across the mirror symmetry line. The dislocation

is transferred to a slip plane of the alternative type at the same location. This con-

sequently requires that its Burgers vector be rotated accordingly. Thus its shielding

effect with respect to the crack tip changes the sign, which in most situations neces-

sitates the update of the system matrix. Oscillations by successive back and forth

mirroring of a dislocation must be avoided since that could tremendously slow down

the solution algorithm. Hence, a driving force that pushes the dislocation across the

crack line is required to be present over the initiation time period before mirroring is

actually performed. Furthermore, for the dislocation-boundary interaction, a larger

onset distance of 40b is considered.

3.1.3 Numerical solution of the dislocation BVP

The evaluation of the Peach-Koehler force requires the numerical solution of a dis-

location boundary value problem. The iterative solution procedure is described in

detail in section 3.2.1 after the formulation of the underlying dislocation boundary

value problem has been given. The cohesive zone introduces a non-linear material

response. The convergence of the iteration process is achieved with a semi-implicit

predictor-corrector scheme with the small time step indispensable for the dislocation
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dynamics. The discretized form of the governing equations leads to a linear system of

equations that needs to be solves with system matrix and right-hand-side vector. In

order to solve the problem for the current loading step and dislocation microstruc-

ture ξk
t+∆t, first the body is iterated to be in equilibrium with all the current cohesive

nodes being held fixed (predictor step). In the second step, the cohesive zone no-

des are free to displace according to the constitutive traction-separation law that

specifies the cohesive zone model described below. The new system is solved again

and the body is found to be in equilibrium when the residual is negligible (corrector

step). After the self-consistently mechanical fields have been obtained the J-integral

is evaluated and used as a parameter measuring the effective global loading.

3.2 Numerical modeling of failure and deformation

problems

A combined discrete dislocation and cohesive zone model is presented that was first

developed to study fracture and crack tip plasticity in thin films and layered struc-

tures. The combined DD/CZ model links a two-dimensional dislocation dynamics

description of plasticity and a cohesive zone description of fracture. The developed

method will be illustrated in detail by means of a fracture analysis. It will be shown

how dislocation activities near a crack tip are confined in a thin ductile layer sand-

wiched between two brittle solids and how measurable, macroscopic quantities like

flow stress and fracture toughness of the composite material can be derived within

the limitations of a two dimensional dislocation model. Later on it will be demons-

trated how this method is extended to describe crack initiation from nanometer

sized notches, as well as, the deformation of a dual phase metallic nanocomposites

considering the possibility of interfacial sliding.

3.2.1 Fracture in confined thin ductile layer materials

Motivation

In this section special attention is paid to the restrictions that a layer geometry

imposes on the expansion of the plastic zone and to the resulting fracture toughness

of the composite structure. It will be shown that the fracture toughness of a layered

material depends critically on the geometry of the structure. Figure 3.2.1 shows a

plane strain mode I crack within a thin plastic layer embedded in an elastic matrix.
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Figure 3.4: An initial crack is located within a ductile layer. The layer thickness and the plastic

zone size are the characteristic length scales which control the fracture behavior. See text for

annotations.

The region shown is the near tip region of a much larger finite crack with a singular

stress field at the left tip (not shown in Figure 3.2.1) and a cohesive zone near the

right tip where the crack line is characterized by a traction-separation law with

theoretical strength σth and cohesive energy Γ. The plastic layer and the matrix can

have different elastic properties. Dislocations are nucleated at discrete sources within

the plastic layer. The intrinsic fracture toughness of the material (i.e. its fracture

toughness in the absence of plasticity) is specified by the cohesive energy Γ. The

collective dislocation behavior near a crack tip in a ductile layer sandwiched between

two brittle solids is analyzed via the developed two dimensional dislocation dynamics

(DD) simulations that incorporate a cohesive zone (CZ) model. The cohesive crack

tip is treated as part of a much larger finite crack confined in the ductile layer.

The combined DD/CZ model will be formulated by means of boundary integral

equations that are based on the Green’s function solution of a dislocation near a

bimaterial interface (Gutkin and Romanov, 1991; Mura, 1968; Hartmaier et al.,

2003).
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Simulation description

The simulation starts at zero applied stress with an initially dislocation–free material

and the load is increased monotonically with a constant loading rate. A homoge-

nous distribution of Frank-Read sources allows emitting pairs of dislocations when

the resolved local shear stress at the source is greater than a source strength for a

specific initiation time period. Within the elastic limit below a certain load level,

dislocations are absent and the material responds ideal elastic. Beyond this load le-

vel, pairs of dislocations are nucleated that move along the slip plane with a velocity

obeying the velocity law (3.11).

Dislocation sources close to the crack tip generate a large number of dislocations

which, due to the geometrical confinement, pile up at the interface to the elastic ma-

trix. The resulting back-stress prevents further dislocation nucleation in the crack

tip region. Dislocations may be attracted by the stress-free crack surface. They are

absorbed resulting in a surface step and eliminated from the system. The stress redis-

tribution associated with nucleation and motion of dislocations close to the crack tip

causes the driving force for crack extension to change. If the driving force decreases,

the dislocation has a shielding character and lowers the local stress intensity factor;

otherwise, the dislocation exerts an anti-shielding effect. A change from shielding to

anti-shielding is possible since shielding depends on the dislocation position.

At a higher a load level the local stress intensity factor at the crack tip exceeds a

critical value and the crack starts to grow under continuous activation of near F-R

sources. During this phase the crack behavior is strongly affected by the present dis-

location microstructure and the possibility to activate near F-R sources. Eventually

at the ultimate load level, the material finally fails by brittle crack propagation.

This is detected in the numerical solution procedure if the crack advances unstable

without additional load increase. The ultimate remote stress intensity factor where

the material finally fails by cleavage is taken as the materials fracture toughness. To

deduce the effective shielding factor of the dislocation microstructure the local and

the remote stress intensity factors are evaluated though a J-Integral analysis any

other ten time steps. The simulations capture the effect of geometrical confinement:

as the layer thickness decreases, the crack becomes less shielded and the system

behaves in an increasingly brittle fashion. This effect of the layer thickness will be

investigated in detail below.
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Formulation based on the virtual dislocation technique

The formulation of the model problem and its solution procedure are described as

follows. A semi-infinite plane strain mode I crack is assumed to propagate in a thin,

ductile layer embedded in an elastic matrix. The crack is subjected to an external

load σ∞yy over the entire crack plane. Figure 3.5 shows the boundary value problem of

a semi-infinite body with dislocations and a cohesive surface. The crack is modeled

as part of the boundary obeying a prescribed cohesive law. The crack length varies

with time and is to be determined from the analysis. Assuming the solid to be linear

elastic and neglecting body forces, by means of the principle of superposition, the

boundary value problem is decomposed into the following three subproblems:

• an infinite, defect-free body subjected to applied remote loads;

• a number of defects with singular fields located in an infinite domain;

• the image fields in a semi-infinite body to correct boundary conditions.

Knowing the closed form solution of a single defect, the solution of the second sub-

problem can be obtained by simple summation over all defects. The third subproblem

is used to correct the boundary conditions on the boundary ∂B. The tractions and

displacements at the location of the boundary arising in the first and second subpro-

blems are imposed with the opposite sign to those of a semi-infinite body without

defects. The resulting fields of the third subproblem – often regarded as the “image“

fields – become the dominant contribution when dislocation interact with the crack

tip.

The crack line is modeled as a cohesive zone and assumed to be straight and parallel
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t0 = σ∞|∂B ·n ts = σ̃|∂B ·n
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−ts − t0
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Figure 3.5: The original boundary value problem of a semi-infinite body B with boundary ∂B and

dislocations. Part of ∂B with normal vector n is traction free and the other part is subjected to

cohesive tractions. The decomposition leads to an unbounded problem with homogenous fields

(∗)∞, an unbounded problem with singular fields ˜(∗), and a corrective problem with the image

fields ˆ(∗).
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to the bi-material interface. Plastic deformation is represented by an evolving ensem-

ble of moving straight edge dislocations. The problem is assumed to be symmetric

with respect to the crack plane so that only the lower half needs to be analyzed (see

Figure 3.1). Symmetry considerations indicate that on the crack line the tangential

tractions vanish

σxy = σ∞xy + σ̂xy + σ̃xy = 0, (3.12)

and the normal displacement ahead of the crack tip remains zero,

u∞y = 0. (3.13)

The normal traction along the crack line can be written as

σyy = σ∞yy + σ̂yy + σ̃xy = N(∆), (3.14)

where ∆ = 2uy is the crack opening displacement and N(∆) is the cohesive law

specified in the next section. The no-net-dislocation flow condition across the crack

line is satisfied by mirroring dislocations instead of propagating them across the

crack line.

Cohesive zone model for crack advance

The cohesive zone at the crack tip models the decohesion of the solid along the

adjacent atomic crack surfaces ahead of the crack tip. The traction separation (TS)

law, a nonlinear stress versus separation relation for decohesion, is one of the key

constitutive relations entering in combined DD/CZ model. Two classes of TS-laws

have been proposed for implementation, the initially rigid and the initially elastic

type, see e.g (Falk et al., 2001). In initially rigid models the cohesive zone is inactive

as long as a certain stress level has not been reached. Barenblatt (1962) was the

first to propose a cohesive zone model for brittle fracture. The popular model by

Dugdale (1960) assumes that the cohesive stress remains constant up to a critical

separation distance at which it drops down to zero. The second type of model as-

sumes an initially elastic response of the cohesive zone. Most TS-laws of that type

follow a similar scheme: The cohesive traction is zero at the beginning of the defor-

mation. With increasing separation, the traction across the cohesive zone reaches a

maximum, then decreases and eventually vanishes allowing for complete decohesion.

Crack growth under increasing external loading occurs when the crack surfaces se-

parate gradually to the point where separation at the crack tip exceeds the critical

value ∆c and the cohesive traction vanishes. The applications of the cohesive zone
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Figure 3.6: TS-law with characteristic parameters including the theoretical strength σth and the

critical crack-tip opening displacement ∆c. δ1 and δ2 are shape parameters giving the fracture

energy Γ.

model in this work are reversible. During local unloading of the cohesive element,

the same traction curve is followed as during loading. For fatigue studies it would

be necessary to consider damage as an irreversible process and unloading should oc-

cur in a linear way to the origin. There is an ongoing discussion among researchers

working with cohesive zone models whether the shape of the chosen TS-law is of

importance, or whether the fracture process depends more or less exclusively on the

cohesive strength and energy. In the present work, the material separation near a

crack tip is modeled with a simple trapezoidal TS-law which is known to be very ap-

propiate for elastic-plastic materials (Tvergaard and Hutchinson, 1993). The TS-law

relates the cohesive normal traction N to the normal separation displacement ∆. In

principle, TS-laws of any shape can be implemented with little modification. The

reason for choosing a TS-law with straight segments is due to the computational

costs. An exponential law would require updating the systems matrix continuously.

The shape of the law consists of a rising, a constant and a falling segment and is

determined by five parameters; the area under the curve defines the fracture energy

Γ = 0.5σth∆c(1− δ1 + δ2), (3.15)

where σth is the cohesive strength, ∆c is the crack opening separation above which

the cohesive interaction vanishes and δ1 ,δ2 are the shape parameters that define the

corners of the trapezoid. The variation of the shape parameters controls the initial

slope and the slope of the tail, respectively. The corresponding intrinsic fracture

toughness for a purely elastic material is obtained as

kIc =

√
EΓ

1− ν2
. (3.16)

In the presence of plastic deformation in the vicinity of the loaded crack tip, higher

fracture toughness values are expected due to the elastic shielding of the crack tip.
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It is noted that the nucleation of dislocations is influenced by the ratio of the source

strength σsrc to the cohesive strength σth.

Numerical solution procedure

Now that we have described the solution strategy that is based on the superposition

principle of linear elasticity (Figure 3.5) and having introduced the cohesive zone

model (Figure 3.6), this section turns towards the solution procedure for the model

problem specified above. The solution procedure for the third subproblem (cf. Fi-

gure 3.5) is based on the theory of distributed dislocations where Green’s functions

are used to construct the corrective stress field (Hills et al., 1996). Consider the

schematics of an opened semi-infinite mode I crack parallel to a bimaterial interface

with a cohesive surface in front of the crack tip as shown in Figure 3.7. The crack

tip is located at the origin of the cartesian coordinate system.

The correcting third subproblem specified above is constructed by introducing a dis-

tribution of virtual dislocations along the boundary ∂B. The resulting stress field σ̃

due to the virtual dislocation distribution generates the correcting tractions on ∂B.
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Figure 3.7: Schematics of the model. (a) The equivalent symmetric problem, where only the lower

half of the model is analyzed. (b) A sketch of the process zone. The inner (red) frame denotes the

process domain where plastic deformation takes place. The crack tip is located at the origin of

the cartesian coordinate system. The cut-off length of the virtual dislocation distribution is much

greater than the largest expected dislocation shift. The J-integral is used as a parameter measuring

the effective global loading. The integration path of the J-Integral (outer frame) lies outside the

process domain.
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Figure 3.8: Monopole element near a

straight bimaterial interface.
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On the crack surface, the virtual dislocations create tractions equal but opposite in

sign to the surface tractions stemming from the applied loading and the dislocation

microstructure in the plastic layer (subproblems 1 and 2). Ahead of the crack tip,

the tractions are defined by the cohesive tractions following the traction-separation

relation specified above. The resulting displacement jump gives rise to the crack

opening displacement. This formulation leads to a system of singular integral equa-

tions to determine a vector density of virtual dislocations. The normal traction and

displacement fields on the crack line stemming from the virtual dislocation distri-

bution on a straight line are defined by the boundary integrals over the entire crack

line (x-axis)

σ̂yy(x, y) =

+∞∫

−∞

[Gyyx(x, y, s)Bx(s) + Gyyy(x, y, s)By(s)]ds, (3.17)

σ̂xy(x, y) =

+∞∫

−∞

[Gxyx(x, y, s)Bx(s) + Gxyy(x, y, s)By(s)]ds (3.18)

and

ûy(x, y) =

+∞∫

−∞

[Myx(x, y, s)Bx(s) + Myy(x, y, s)By(s)]ds, (3.19)

where Bx and By are the components of the virtual Burgers vector density in tan-

gential and normal direction. The Green’s functions G and M are constructed from

the basic solution of a single dislocation in the neighborhood of a straight bi-material

interface so that the elastic inhomogenity is taken into account (Mura, 1968), see

Figure 3.8. The solution for G is described by Hartmaier et al. (2003) and M is con-

structed in the same way following Gutkin and Romanov (1991) and Mura (1968).

To satisfy condition (3.13) the integral over the virtual Burgers vector distribution
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must be zero, i.e.
+∞∫

−∞

Bx(s)ds = 0 (3.20)

and
+∞∫

−∞

By(s)ds = 0. (3.21)

After evaluation of the dislocation distribution Bx and By that fulfills conditions

(3.17) to (3.21), the total stress and displacement fields are computed by superim-

posing the elastic fields of all virtual and real dislocations together with the applied

load. To accomplish this, the system of singular integral equations is evaluated nu-

merically using the boundary collocation method. The distribution of the virtual

Burgers vector is defined on boundary elements of constant displacement, such that

the boundary conditions are matched at a finite number of points along the crack

line. After discretization of the boundary into N elements of segment length ∆sβ

the discrete tractions and displacements on ∂B of element α can be expressed as

σ̂yy(x, y) =
N∑

β=1

[
Gyyx(x, y, sβ)Bβ

x (sβ) + Gyyy(x, y, sβ)Bβ
y (sβ)

]
∆sβ

= Gyyx(x, y)Bx + Gyyy(x, y)By, (3.22)

σ̂xy(x, y) =
N∑

β=1

[
Gxyx(x, y, sβ)Bβ

x (sβ) + Gxyy(x, y, sβ)Bβ
y (sβ)

]
∆sβ

= Gxyx(x, y)Bx + Gxyy(x, y)Bα
y , (3.23)

ûy(x, y) =
N∑

β=1

[
Myx(x, y, sβ)Bβ

x (sβ) + Myy(x, y, sβ)Bβ
y (s)

]
∆sβ

= Myx(x, y)Bx + Myy(x, y)By, (3.24)

where symbols typeset in boldface represent (N × N) matrices (G and M) or N-

vectors (B). Bx and By are accordingly the N-vectors of the x and y-component of

the Burgers vector distribution on ∂B.

The unknown stiffnesses of the cohesive zone elements dependent on the current

displacement discontinuities and are part of the solution. There is no simple rela-

tionship between the tractions and displacements on the crack line which may be

used to achieve a linear system of equations to solve the problems numerically. In
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Figure 3.9: a) Schematics of the linearization of a general TS-law N(∆) with tangent line at ∆n, i.e.

previous state at time tn, with offset Nn and slope Cn. b) Characteristic segments of trapezoidal

TS-law used in this work, see text.

the strategy followed here, a linear system of equations of the discretized problem is

formulated using the stiffness of the cohesive zone material obtained in the previous

iteration step. In the general case, see Figure 3.9, the nonlinear stress-separation re-

lationship N(∆) of the cohesive elements is linearized at ∆n, i.e. the previous state

at time tn, as

N (∆) ≈ N(∆n) + N ′|∆=∆n(∆−∆n) = Nn + Cn(∆). (3.25)

In the implementation of the trapezoidal TS-law which is used in this work, see

Figure 3.6, the state of each cohesive element is characterized by the offset Nn and

the tangent slope Cn, see Figure 3.9. Depending on the loading state of the cohesive

element, the coefficients Nn and Cn are set to

Nn =





0 segment I

σth segment II

σth

(1− δ2)
segment III

(3.26)

and

Cn =





σth

δ1∆c

segment I

0 segment II

σth

(1− δ2)∆c

segment III

(3.27)

During the incremental loading the elements pass through the load path prescribed

by the TS-law.
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With 2N-2 discrete integration, 2N collocation points and the two side-conditions

(3.20) and (3.21), the governing equations (3.12)-(3.14) can be written as a system

of 2N algebraic equations corresponding to (3.22)-(3.24) in the form

(
Gyyx −Tyyx Gyyy −Tyyy

Gxyx Gxyy

)(
Bx

By

)
= −

(
σ∞yy + σ̃yy −Nn

σ∞xy + σ̃xy

)
(3.28)

The matrices Tyyx = CnMyx and Tyyy = CnMyy represent the normal stresses cau-

sed by the displacements across the cohesive zone. The linearized representation of

the TS-law gives rise to a diagonal matrix Cn and the vector Nn that both depend

on the loading states of the individual cohesive elements. The element vectors σ∞

and σ̃ represent the stresses from the external load and the internal stresses stem-

ming from the dislocation microstructure, respectively. The Green’s function matrix

is validated and inverted at the start of the simulation considering the initial positi-

on of the crack. The implementation of the initially elastic TS-law requires the crack

path to be specified a priori so that the cohesive elements are distributed over the

whole dimension of the crack line. Due to the initial linear response of this cohesive

zone model at zero loading, the crack planes separate as soon as loading is applied.

The update of the mechanical fields for the updated dislocation microstructure and

updated load level at time tn+1 are computed from the previous state at time tn. The

effective remote stress intensity factor KI and the local stress intensity factor KI

are computed from a J-Integral analysis where for KI the contour of the sampling

points is chosen to be far away from the process region, see Figure 3.7.

The system (3.28) is first solved with Cn and Nn being taken from the previous

time step. In a correcting step it is checked whether the nodal stresses and nodal

separations of the elements are consistent with the TS-law and overloaded elements

are detected. The transition of an element from one branch of the TS-law to another

(cf. Figure 3.6 and (3.26), (3.27)) requires the modification of the cohesive coeffi-

cients and a new validation and inversion of the system matrix with an updated

matrix Cn+1. The stiffness of the cohesive zone material is then modified based on

this solution, and the process is repeated until the solution of the desired accuracy

is achieved. Accuracy is measured with the residual of the normal stresses, i.e. the

difference between the actual normal tractions ty on the crack line and the imposed

stresses N(∆) that are prescribed by the TS-law. For a collocation point that lies

on the cohesive zone, the traction residual can be written as

r = ty −N(∆). (3.29)
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The convergence of the iterative procedure is achieved with a predictor/corrector

scheme with the small time step indispensable for dislocation dynamics. The linear

system of equations is usually solved one or two times until the solution is achie-

ved. For points that are in the cohesive zone, both the traction vector and the

displacement vector are unknown, but related to each other through the constitu-

tive description of the cohesive zone material provided in (3.25) and (3.26), (3.27).

Points on the crack are simply special cases of the cohesive zone with zero stiffness.

Suppose that the solution at the previous loading step is known. In order to solve the

problem for the current loading step and dislocation microstructure ξk
t+∆t, first the

solution is iterated till the residual is zero with the known cohesive coefficients taken

from the previous loading step (predictor step). In the second step, the cohesive co-

efficients are updated according to the constitutive laws described above (corrector

step). The new system is solved again and the body is found to be in equilibrium

when the residual is negligible. This predictor/corrector scheme is found to produce

good convergence for the iteration process.

To obtain a physically realistic model a high initial stiffness of the cohesive zone ele-

ments is necessary, because otherwise the overall stiffness is reduced and additional

deformation will occur. However, a very high stiffness can result in spurious oscilla-

tions. Non physical oscillations in the solution for high traction gradient combined

with a low order integration scheme has been discussed by Schellekens and de Borst

(1999). In this work this behavior has been avoided using mesh refinement. The cri-

terion for crack advance and delamination are both programmed within the iterative

process. The incremental loading procedure is indispensable to resolve dislocation

dynamics.

3.2.2 Crack initiation from nanometer sized notches

Motivation

Recently pre-cracking methods have been developed for measuring accurate fracture

toughness for micro-sized specimens for MEMS applications. With new experimen-

tal set ups it is nowadays possible to investigate the effect of grain boundaries on

the fracture toughness in bicrystal materials as a function of the distance between

the crack tip and the grain boundary (Vehoff, 2007). These researchers prepared

micro-cantilever beam type specimens with dimensions of tens of micrometer and in-

troduced notches by focused ion beam machining, see Figure 3.10. The development
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Figure 3.10: Left: Bicrystal fracture speciment (adopted from Vehoff (2007); right: crack tip in

a NiAl single crystal as obtained by in-situ straining in a scanning force microscope at 293 K

(adopted from Gehling and Vehoff (2002)).

of the dislocation dynamics tool for the simulation of blunted crack tip geometries

is motivated by the a discrepancy between experiments and modelling work based

on sharp crack tip representation.

Formulation based on distributed displacement discontinuities

In the previous section a straight line with a distribution of virtual dislocations was

defined to model the traction boundary value problem of a crack surface within an

infinite domain. The loading was represented by a homogenous far field stress. The

effective remote stress intensity factor was derived based on a J-Integral analysis on

a contour surrounding the crack tip. The model of a blunted crack tip considers a

closed contour surrounding a finite domain around the crack tip. This approach was

chosen in view of the construction of a simulation cell that describes the deformation

of representative volume elements of bulk materials, see next section.

The FIB machined pre-crack tip is modeled as a half circle ahead of the straight

crack surface. Under assumption of mirror symmetry with respect to the crack line

an equivalent problem is considered as depicted in Figure 3.11. The crack is ass-

umed to grow parallel to the straight pre-crack surface on the x-axis. The whole

boundary ∂B can be separated into two segments ∂Bt and ∂Bu. ∂Bt contains the

complete crack line with the cohesive zone ahead of the crack tip that is defined in

the origin or the (x,y) coordinate system. The straight and the curvilinear crack seg-
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Figure 3.11: Schematics of the blunted crack tip model.
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Figure 3.12: Displacement discon-

tinuity element, equivalent to a

dislocation dipole, with local coor-

dinate system.

ments are traction free. Cohesive tractions act ahead of the notch on boundary ∂Bt.

The loading is prescribed based on the asymptotic KI-field solution. Displacements

uKI
x (r, β) =

KI

µ

√
r

2π
cos

β

2
(1− 2ν + sin2 β

2
), (3.30)

uKI
y (r, β) =

KI

µ

√
r

2π
sin

β

2
(2− 2ν + cos2 β

2
) (3.31)

are implied on boundary segments ∂Bu denoted in green far away from the crack tip

to simulate an acting external far field u(KI), where r =
√

x2 + y2, β = arctan x
y
.

KI is the mode I stress intensity factor that serves as loading parameter. The equa-

tions specifying the mixed boundary value problem for a blunted crack tip with

dislocations are summarized as follows:

tractions t on ∂Bt

tx = t̃x + t̂x = 0

ty = t̃y + t̂y = N(∆)

displacements u on ∂Bu

ux = ũx + ûx = uKI
x

uy = ũy + ûy = uKI
y , (3.32)

where tractions are defined as t = σ|∂Bt ·n. ∆ = 2uy is the opening of the crack

line. The quantities (̂.) and (̃.) denote the mechanical fields stemming from the real

dislocations and displacement discontinuities, respectively.
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In contrast to the DD model for straight growing cracks where single dislocation

elements (dislocation monopole) were used, now the mechanical fields induced by

dislocation dipoles are used as fundamental solutions for the construction of the

mixed boundary value problem. This approach allows modeling boundaries of arbi-

trary shapes in a numerical discretization. However, the use of dislocation dipoles

leads to a well defined system of algebraic equations without the need of formu-

lating extra conditions at kinks of adjacent boundary segments or at end points,

see also (Hills et al., 1996). The displacement discontinuity element used here for

the numerical integration consists of a pair of equal and opposite dislocations that

lie in a distance ∆s along the axis x̂-axis of the local coordinate system (x̂, ŷ), see

Figure 3.12. The two dislocations within an element have the same magnitude, but

opposite directions and are equivalent to a constant displacement discontinuity. The

discontinuous jump in the displacement field of single dislocations is defined to occur

along the connecting line of the two dislocations. Therefore and in contrast to single

dislocation elements, the displacement field around a dislocation dipole element is

continues. The entire boundary ∂B in Figure 3.11 is modeled by a discrete distri-

bution of finite displacement discontinuity elements. The influence functions Ḡ, M̄

for the displacement discontinuity element can therefore be constructed from the

differences of the functions G, M of single dislocations:

Ḡijk(x, y, s, s) = Gijk(x, y, s +
∆s

2
, s +

∆s

2
)

−Gijk(x, y, s− ∆s

2
, s− ∆s

2
)

(3.33)

and

M̄ij(x, y, s, s) = Mij(x, y, s +
∆s

2
, s +

∆s

2
)

−Mij(x, y, s− ∆s

2
, s− ∆s

2
),

(3.34)

where α is the angle between the global y axis and the local ŷ axis. The stress

and displacement components in the (x,y) system stemming from the displacement

discontinuities can be written as

σ̂ij(x, y) =

∫

∂B

[
Ḡijx(x, y, s)Bx(s) + Ḡijy(x, y, s)By(s)

]
ds, (3.35)

ûi(x, y) =

∫

∂B

[
M̄ix(x, y, s)Bx(s) + M̄iy(x, y, s)By(s)

]
ds. (3.36)
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Dislocation boundary value problems with blunted cracks subject to mode I loa-

ding conditions are solved by this displacement discontinuity method in a similar

framework presented above. The total dislocation boundary value problem is split

into two subproblems, a problem of dislocations embedded in a infinite elastically

homogenous body and an auxiliary problem that give rise to the image fields. The

boundary is divided into boundary segment which either traction or displacement

boundary conditions are known for. In the implementation for the blunted crack

tip model all quantities are formulated with respect to the global (x, y)- coordinate

system. Tractions tx, ty are obtained from the stress components as

[
tx(x, y)

ty(x, y)

]
=

[
σxx(x, y) σxy(x, y)

σxy(x, y) σyy(x, y)

][
nx(x, y)

ny(x, y)

]
. (3.37)

Considering the definitions (3.33) - (3.37), the governing equations (3.32) are then

solved for the displacement discontinuities Bx,By with the collocation method as

described above.

Numerical implementation and validation test

The boundary of the finite body considered in the implemented numerical procedure

consists of a number of boundary segments. The boundary segments with normal

vector n may be arbitrarily oriented with respect to a global coordinate system.

Curvilinear segments, required e.g. to model blunted crack tips, are divided into

a number of small straight line segments. In the general case, each line segment

may be subject to tractions t, displacements u or mixed boundary conditions. For

the numerical integration of (3.36) all segments are discretized into N boundary

elements. Each element i is characterized by the position of the collocation point xi,

the element width ∆si and a normal vector ni. The mid points of the elements are

taken as the collocation points. The stresses and displacements at the collocation

points represent a measure of the average stresses and displacement within the

interval ∆s.

With 2N discrete integration, 2N collocation points, the governing equations (3.32)

- (3.37) can be written as a system of 2N algebraic equations corresponding to

(3.22)-(3.24) in the form



52 Mesoscopic modeling of interface controlled small scale plasticity




Ḡxx Ḡxy

M̄xx M̄xy

−−−−−−− −−−−−−−
Ḡyx − T̄yx Ḡyx − T̄yy

M̄yx M̄yy




︸ ︷︷ ︸
system matrix A

(
Bx

By

)
=




−t̃x

uKI
x − ũx

−−−−
Nn − t̃y

uKI
y − ũy




︸ ︷︷ ︸
element vector

(3.38)

The matrices T̄yx = CnM̄yx and T̄yy = CnM̄yy represent the normal stresses caused

by the displacements across the cohesive zone. The piecewise linear TS-law of the

cohesive zone elements is linearized as described in section (3.2.1) and gives rise to

a diagonal matrix Cn and the vector Nn that both depend on the loading states of

the individual cohesive elements.

The computation of the inversion A−1 of the full system matrix, see (3.38), is a

major factor for the total computational time in a DD/CZ simulation. Therefore it

is important to make use of special properties of A. Note that A in (3.38) has the

block structure

A =

(
A11 A12

A21 A22

)
. (3.39)

In case of a straight growing crack, only A21 and A22 change when coefficients in

C are modified. The computation of A−1 is computationally more efficient when

following decomposition is considered, see e.g. (Steinbach, 2004),

A−1 =

(
B11 B12

B21 B22

)
, (3.40)

where

B11 = A−1
11 + A−1

11 A12S
−1A21A

−1
11

B12 = −A−1
11 A12S

−1

B21 = −S−1A21A
−1
11

B22 = S−1 (3.41)

with S = A22 −A21A
−1
11 A12, the Schur complement of A. Note that the numerical

effort for the inversion of a matrix of dimension (N*N) scales with N3 so that the

decomposition into block matrices of dimensions (N
2
∗ N

2
) reduces the effort by factor

of 8.

The model for blunted crack tips reduces to the representation of sharp cracks when
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the blunting radius R is set to zero and the stiffness Cn = N
δ1∆c

of the cohesive

elements is set to a very large value. The cohesive zone elements respond as rigid

springs so that no separation of material is possible ahead of the crack tip. This

setup serves to benchmark the implemented model and to check the consistency of

this method. The numerical solution for the stress components σxx,σyy and σxy are

compared with the analytical solution of the asymptotic KI-field solution

σKI
xx =

KI√
2πr

cos
β

2
(1− sin

β

2
sin

3β

2
),

σKI
yy =

KI√
2Πr

cos
β

2
(1 + sin

β

2
sin

3β

2
),

σKI
xy =

KI√
2Πr

cos
β

2
sin

β

2
cos

3β

2
,

(3.42)

where r =
√

x2 + y2, β = arctan y
x

are cylinder coordinates for a crack along the

x-axis. The stresses along the straight line defined by β = 45◦ are plotted in Figu-

re 3.13 and converge with number of elements to the analytical solution (3.42). The

deviation for small values of r is a result of the discretization. However, the deviation

shows up only within the cut-off distance that is considered for dislocation-interface

r[nm]

σ

101 102 103

10-2

10-1

100

anal.
xyσ

anal.
xxσ
anal.
yyσ

240 elements

960 elements
480 elements

Figure 3.13: Convergence test: comparison of the analytical solution (3.42) with the BEM-solution

for different numbers of boundary element. Stresses are plotted along a line with β = 45◦.



54 Mesoscopic modeling of interface controlled small scale plasticity

interaction in DD simulations. The near crack tip stresses change significantly when

the tip is considered to be blunt. The stress intensity vanishes due to the finite cur-

vature of the tip. The normalized stress component σyy for R = 200 nm is shown in

Figure 3.14 (left). On top of Figure 3.14 the normalized traction ty is plotted. The

first three boundary elements ahead of the crack tip are in the plateau regime of

the TS-law (3.6). The dipole elements in this illustrative example have a constant

length. To reduce the number of elements in a DD simulation the element length

usually varies along the boundaries. The length is taken to be small (a few b) and

constant on the part of the crack line where fracture is expected to occur. On the

other boundary segments the stress gradient is small and the element length may

increase in order to reduce the total number of elements.

Figure 3.14: The contour plots of the crack ope-

ning stress in the simulation box for a blun-

ted crack tip geometry with blunting radius

R = 200 nm. On top, the normal tractions on

the crack line are shown, tractions vanish on

the free crack surface.

Figure 3.15: Close view on the discretized

contour of the crack tip. Shown are the dis-

tribution of displacement discontinuities de-

noted by vectors and the collocation points.

The mesh is only used to visualize the stress

field, see Figure 3.14.
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Influence of blunting radius on plastic zone size

Finite changes in the crack tip geometry significantly affect the stress field around

the crack tip and influence crack advance, dislocation nucleation and dislocation mi-

gration. For some materials the effect of blunting can be large and might even change

the deformation mode from brittle cleavage to ductile dislocation emission. Blunting

decreases the local stress concentration and effectively increases the intrinsic tough-

ness. In previous models the effect of blunting has therefore been approximated by

assuming the intrinsic fracture toughness to be a function of some blunting parame-

ter, see (Hsia et al., 1994; Rice and Rosengren, 1968). The blunting of the crack tip

is taken into account by increasing the intrinsic fracture toughness, i.e. the critical

local stress intensity for final fracture. The increase in intrinsic fracture toughness

was approximated to be proportional to the number of absorbed dislocations.

The presented model is appropriate to study the effect of crack tip blunting for diffe-

rent crack tip geometries on subsequent crack propagation and dislocation emission.

The above procedure may be employed to study either the effect of atomic blunting

during dislocation emission from a crack tip source or the re-initiation of a sharp

crack from a notch. The implemented procedure is able to handle different assump-

tions for the crack tip geometry. For the smoothly blunted crack tip that is shown

in Figure 3.14 the effect of blunting is large. The loading stress intensity factor KI ,

see Figure 3.11, that is required to activate the nearest source to the crack tip is

increasing with the blunting radius R.

To illustrate the effect of the blunting radius relaxation simulations were performed

for two radii R = 200nm and R = 800nm, see Figure 3.16 and Figure 3.17. For

the simulations with two slip planes at inclination angels α1 = 45
◦

and α2 = −45
◦

the system is simply relaxed under a fixed loading of KI = 1.1MPa
√

m. In the final

stage dislocations are either in equilibrium or are blocked by the impenetrable grain

boundary which is located about 600nm ahead of the crack tip. The result is as

could be expected. The stress field decays much slower for R = 800nm compared to

R = 200nm. The tensile stress at the crack tip is also lower as a result of the reduced

stress intensity, and thus the loading needed to re-initiate the crack is increased. It is

also seen that the higher stress concentration caused by the smaller blunting radius

activates more sources in the vicinity of the crack tip. Less dislocations are nuclea-

ted near the crack tip with R = 800 nm as a result of the lower stress concentration

compared to the crack with R = 200 nm.



56 Mesoscopic modeling of interface controlled small scale plasticity

Figure 3.16: Dislocation microstructure for

R = 200 nm and K = 1.1MPa
√

m.

Figure 3.17: Dislocation microstructure for

R = 800 nm and K = 1.1MPa
√

m.

3.2.3 Deformation of a dual phase metal matrix composite

Motivation

An important class of interface controlled materials are reinforced metal-matrix

composites (MMC) due to their big potential in light weight applications. Typically,

fibers or particles of high strength and stiffness are used as reinforcements. For ex-

ample, SiC particle reinforced aluminum matrix composites achieve high yield stress,

high strength and high stiffness. The density of this composite material is decrea-

sed by increasing the volume of SiC particles. Various methods for the production

of reinforced MMC have been developed in automotive and aircraft industries to

improve the mechanical properties of the materials and to gain weight reduction

in structural applications. Particle, short fiber and layered MMCs are distinguished

according to the characteristics of their reinforcement. One important quantity of

the microstructural design of these materials is the aspect ratio of the reinforcement

defined as the length over diameter. The aspect ratio is directly proportional to

the load transfer from the matrix to the reinforcement. Another critical aspect is

the strength of the interfaces between reinforcement and matrix, which is extremely

important for the material properties such as strength and toughness.
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For the understanding of the strengthening mechanisms in metallic composites due

to reinforcements the characteristic length scale of the underlying fiber microstruc-

ture is of great importance. In the extreme case of large particles of micrometer size

and above the behavior of the composite can be described by conventional conti-

nuum plasticity models. The elastic and plastic properties are described in terms

of fixed microstructural features, i.e. the matrix and reinforcement properties, the

volume fraction, shape and distribution of the reinforcement (Bao et al., 1991; Bro-

ckenbrough et al., 1991). Damage initiation can occur either by the cracking of

the brittle reinforcements (Corbin and Wilkinson, 1992), or by the failure of the

reinforcement-matrix interface (Shen et al., 1995).

There is a range of length scales [100 nm; 1000 nm] where plasticity in MMCs is go-

verned by the nucleation and movement of discrete dislocations within the matrix

near the interfaces. The response of dislocations to external loads and to internal

fields due to the presence of interfaces dictates the plastic behavior of the matrix

in several ways. High stress concentrations due to dislocation pile-ups at material

interfaces facilitate additionally interface mediated deformation modes. These sites

are initiation spots for interfacial delamination and interfacial sliding that contribute

to the plastic deformation by dislocation glide. In turn, local high tensile stresses at

the interfaces preferably at corners partially open the interface. Spots of initiating

interfacial delamination operate as dislocation sources at low load levels and may

provide sinks for dislocation annihilation at higher loads and proceeding damage

evolution. The microscale plastic flow processes within the metal phase are not ac-

cessible by conventional continuum crystal plasticity formulations. Neither can this

size regime be approached by an atomistic analysis. Understanding of the role of

interfaces for the strength of MMC can only be reached by simulating discrete dis-

location processes interplaying with the stress fields exerted by the interfaces.

So far dislocation dynamics simulations have only been presented for crystalline bulk

materials or nanocomposites with coherent interfaces. The grain boundaries or inter-

faces were characterized by their impenetrability to dislocation motion (Cleveringa

and Van der Giessen, 1999; Cleveringa et al., 1997; Biner and Morris, 2003, 2002)

and by their discontinuously changing elastic properties across the interface (Cleve-

ringa and Van der Giessen, 1999; Cleveringa et al., 1997). A major shortcoming of

these models is the neglect of interfacial damage processes and interface mediated

plastic deformation. Interfacial decohesion and interface sliding however have a gre-



58 Mesoscopic modeling of interface controlled small scale plasticity

at effect on the load transfer at the interfaces and, thus, on the ultimate material

properties. From physical experiments and atomistic simulations reported in the li-

terature, it is clear that grain-boundary-related slip and separation phenomena play

an important role in the overall deformation of nanocomposite and noncrystalline

materials when the characteristic length scale decreases under 100 nm and dislocati-

on activities become more difficult. Besides molecular dynamics, only few modeling

studies including grain boundary phenomena have been presented, see e.g. (Wei and

Anand, 2004). These approaches, however, are on the continuum level and not ca-

pable describing discrete dislocation based plasticity in the interior of metal phases

of MMC.

The objective here is the development of a simulation tool to study mechanical pro-

perties of MMCs with a full resolution of the microscale plastic flow and interfacial

glide processes. In the combined DD/CZ model the deformation of a two-dimensional

dual phase MMC material is considered. This material contains rectangular hard pla-

telets that are regularly arranged in a soft plastic matrix. The parameter describing

the microstructure are the distribution wavelength of the hard particles in the two

dimensions, their aspect ratio, as well as, the particle-volume fraction. The objecti-

ve criterions are the macroscopic strength and toughness that are deduced from the

computed stress-strain curves that are the outcome of the analysis.

Implementation of the RVE

The MMC structures are idealized as uniformly distributed periodic arrays of aligned

unit cells. Each unit cell consists of an elastic rectangular platelet surrounded by

an plastically deforming matrix as illustrated in Figure 3.5. Under external loading,

each unit cell is regarded to behave identically. The effective mechanical properties

of the model material is then determined by considering a representative volume

element (RVE). A RVE is characterized as a lower bound of a microstructural unit

cell that is entirely typical for the whole material and that contains a sufficient

number of inclusions. The cell should be large enough, so that the computed ma-

croscopic quantities does not depend on the dislocation source configurations and

that the deformation due to the motion of dislocations can be regarded as homo-

genous. To reduce the computation time in practical applications its finite size is

chosen as small as possible to limit the area of interfaces. The simulation cell has

width w and height h which are the distribution wavelengths of the particles in x

and y direction. The reinforcing particles remain elastic with the same modulus as
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Figure 3.18: Schematics of the periodic simulation cell. Element pairs (i, i′) are defined on opposite

boundary segments ∂Bh and ∂Bw.

the soft matrix. To model the behavior of a bulk composite material the unit cell

is subjected to pure tension, which is prescribed through the macroscopic bounda-

ry condition. Macroscopic stresses and strains are defined in an average sense as

σ̄αβ =
1

2w

∫

∂Bw

σαβ(s)ds
(3.43)

To reflect the real bulk situation both a stress field and a kinematic correction need

to be implemented for the boundaries of the simulation box, see Figure 3.18. In the

formulation only displacement and traction differences ∆u and ∆t are considered

on the boundary.

To ensure the periodicity of the mechanical fields on opposite boundary segments

∂Bh and ∂Bw, the boundary tractions t follow the condition

∆t|∂Bh
(y) = t(x = 0, y)− t(x = w, y) = 0

∆t|∂Bw(x) = t(x, y = 0)− t(x, y = h) = 0 (3.44)

and the boundary displacements are forced to satisfy

∆u|∂Bh
(y) = u(x = 0, y)− u(x = w, y) = w0

∆u|∂Bw(x) = u(x, y = 0)− u(x, y = h) = h0, (3.45)

where h0 is the loading parameter that controls the macroscopic effective tensile

strain
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Eyy =
h0

h (3.46)

and w0 is determined from the condition

σ̄xx =
1

2w

∫

∂Bt

σxxds = 0.

(3.47)

Condition (3.47) ensures a uniaxial stress state as the lateral stresses are forced to

be zero. The total tractions t and displacements u are decomposed additively

t = t̂ + t̃

u = û + ũ, (3.48)

where (̃.) are the known mechanical fields stemming from the dislocation microstruc-

ture and (̂.) are the corrective fields that are determined from the auxiliary boundary

value problem. For the implementation of the conditions (3.44)-(3.47) with defini-

tion (3.48), element pairs (i, i
′
) are defined on opposite sides of the boundaries ∂Bt

and ∂Bw. Each element pair (i, i
′
) is characterized by two collocation points at

the positions xi and xi′ and 4 degrees of freedom stemming from the displacement

discontinuities B(i) = B(xi) and B(i
′
) = B(x

′
i). The four necessary equations origi-

nating from the periodicity conditions of the traction and displacement components

for each element pair (i, i
′
) are

∆ui
x = w0, if xi on ∂Bh

∆ui
y = 0, if xi on ∂Bh

∆ui
x = 0, if xi on ∂Bw

∆ui
y = h0, if xi on ∂Bw (3.49)

and

∆tix = 0, if xi on ∂B
∆tiy = 0, if xi on ∂B. (3.50)

With 2N discrete integration points, the governing equations (3.45) - (3.47) can be

written as a system of 2N algebraic equations in the form
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Ḡtx − T̄tx Ḡty − T̄ty

∆Ḡxx ∆Ḡxy

∆M̄xx ∆M̄xy

−−−−−−− −−−−−−−
Ḡnx − T̄yx Ḡny − T̄yy

∆Ḡyx ∆Ḡyy

∆M̄yx ∆M̄yy




︸ ︷︷ ︸
system matrix A

(
Bx

By

)
=




Sn − t̃t

−∆t̃x

w0 −∆ũx

−−−−
Nn − t̃n

−∆t̃y

h0 −∆ũy




.

︸ ︷︷ ︸
element vector

(3.51)

The matrices and vector quantities ∆(.) that couple elements on opposite sides of

the boundaries are defined as

∆(.) = (.)(xi)− (.)(xi′) (3.52)

∆Ḡ and ∆M̄ arise from the periodicity conditions for traction (3.44) and displace-

ment (3.45) components. The matrices T̄ represent the normal stresses caused by

the separation of the cohesive zone. The tractions and displacements defined on the

cohesive interfaces are now written with respect to normal (.)n and tangential (.)t

components following the transformation
[

(.)t

(.)n

]
=

[
cos(α) sin(α)

− sin(α) cos(α)

][
(.)x

(.)y

]
. (3.53)

The piecewise linear TS-laws of the cohesive element – now for both normal N(∆n)

and tangential components S(∆t), where ∆n and ∆t are the normal and tangential

opening displacements (see Figure 2.1)– is linearized as

N(∆) = Nn + Cn∆

S(∆) = Sn + Cn∆ (3.54)

for normal and for tangential tractions at the previous time tn, respectively.

To demonstrate the methodology a test dipole is introduced in the simulation cell

in close vicinity to the left boundary as shown in Figure 3.19. The stress fields

from the corrective boundary value problem give rise to the periodic image that

appears at the opposite right hand side boundary. The displacement discontinuities

of each boundary element are denoted as black vector symbols. At the bottom and

top boundaries the displacement discontinuities are homogenous due to the applied

homogenous stretch h0. The variation of displacement discontinuities along the right

boundary is rather strong due to the close distance of the test dipole to the boundary.
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Figure 3.19: Computation of periodic images. Shown is the distribution of the stress component

σxx.

Demonstration for a porous metal material

The model for reinforced dual phase MMC will be illustrated by means of a ficti-

tious porous metal material, see Figure 3.20. To model rectangular pores embedded

in a ductile metal matrix the interaction between matrix and reinforcement is set to

zero. Only the ductile matrix transfers the applied loading so that effectively a po-

rous metal material is considered. The two materials differ only in the pore volume

Figure 3.20: Two porous metal materials under loading in the initial state of the relaxation simu-

lation. Shown is the normalized stress component σyy

σ̄yy
.
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Figure 3.21: The normalized tensile stress σyy

σ̄yy
in the two porous metal materials.

fractions. The width and height of the simulation cell is w = 4 µm and h = 6 µm

in both cases. Sources are placed at random positions with slip plane orientations

α1 = 45
◦

and α2 = −45
◦
. The source strength is σsrc = 0.05 GPa. Dislocations

that glide towards the boundary of the simulation cell as well as dislocations that

are attracted by the free surface are simply pinned. The elastic tensile stresses that

build up in the material are large enough to operate most of the dislocation sources.

Dislocation generation and motion during loading of the composite tend to relax the

overall stresses in the matrix. Figure 3.21 shows the distribution of the tensile stress

component σyy in the materials and the corresponding dislocation microstructure.

The stresses are normalized by the macroscopic tensile stress σ̄yy. Note that the

stress concentrations in the metallic interlayer have been significantly relaxed by

dislocation motion. The dislocation distributions reveal that dislocations add up to

super-dislocations at blocking interfaces with an effective net Burgers vector parallel

to the interfaces. The total strain fields are highly non-uniform over the material.

This is illustrated very clearly by the deformed boundary meshes shown for both

materials in Figure 3.22. The deformation is scaled by a factor of 100 to make it

visible. Regardless of the reinforcement morphology, the discrete dislocation results

show regions of highly localized deformation that arise as a consequence of locali-

zed dislocation activity on one or a few slip systems. After some relaxation time

the dislocations are either in equilibrium or immobile. Both initially dislocation free

materials are relaxed under a constant loading of Eyy = 0.17 %. The initial macros-

copic tensile stress σ̄yy is about 0.11 GPa for the material with higher pore volume
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Figure 3.22: The deformed boundaries and interfaces of the RVE. Deformation is scaled up by a

factor 100 in order to show the periodic deformation.

fraction and 0.14 GPa for the other material with lower pore volume fraction, see

Figure 3.23.
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Figure 3.23: Comparison of two porous metal materials. Shown is the macroscopic tensile stress

component σ̄yy as a function of relaxation steps.
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3.3 Discussion of the method

The presented numerical methods are particularly suitable for the implementation

of cohesive zones that are used to describe crack nucleation and propagation in

elastically inhomogeneous plastic layer materials, as well as interfacial mediated

processes during the deformation of dual phase MMCs. The technique has been

thoroughly tested for the simple geometry of a single crack on a predefined crack line

in a combined DD/CZ model and has been shown to be accurate and numerically

stable. In this section a few examples are presented for a crack propagating in

a ductile layer. The correlation between the developing dislocation microstructure

and the computed macroscopic response of the material as well as the statistical

effects of random source distribution on fracture toughness and the influence of the

cohesive zone parameters are briefly discussed.

Numerical solution of the dislocation BVP: BEM versus FEM

The combined DD/CZ model for fracture in thin metal layer materials has been

formulated by means of a boundary integral method based on distributed virtual

dislocations. The governing boundary integral equations are based on Green’s func-

tion of a single dislocation near a bimaterial interface (Broedling et al., 2006; Gutkin

and Romanov, 1991; Mura, 1968; Hills et al., 1996). The numerical procedure follows

a collocation scheme.

Compared to FEM based techniques, the Green’s function approach has the follo-

wing computational advantages. First, the solution procedure for the elastic fields

includes only physical quantities (separation and traction) on the crack line so that

fewer matrix equations need to be solved. The evaluation of stresses in the interior of

the continuum can be calculated once the boundary values are determined. Second,

the FEM based approaches require discretization of the interior of the continuum,

especially in regions of dislocation activity. The evaluation of stress components

at the location of an individual dislocation involves two steps at each time incre-

ment: identifying the surrounding Gaussian points and extrapolating stresses from

the Gaussian points to the dislocation position. With the method used in this work,

dislocation numbers on the order of 2000 together with an accurate description of

the cohesive zone can easily be handled on a single CPU. On the other hand, there

are also drawbacks of the present method.



66 Mesoscopic modeling of interface controlled small scale plasticity

The applicability of Green’s function based approaches relies on whether an ap-

propriate dislocation solution exists for a given problem of interest. Even though a

few fundamental dislocation solutions can be found in the literature, the number of

possible geometries is still quite limited (Mura, 1968; Hills et al., 1996). For compo-

site materials with elastically dissimilar materials, this method can only be applied

for simple geometries. For more complex geometries, e.g. as in the blunted crack

model, the effect of elastic inhomogeneity is usually assumed to be small compared

with the inhomogeneity associated with plastic deformation so that the assumption

of an elastically homogenous, but plastically inhomogeneous material can be used.

In conclusion, Green’s function based methods are less flexible, but may be more

efficient than the DD/FEM models.

Crack growth modeling in dislocation dynamics

There are two strategies that allow modeling crack propagation problems: incremen-

tal crack extension methods and a priori definition of the entire crack line. The first

method is appropiate for cracks under mixed mode loading embedded in homoge-

nous materials where the path of crack propagation is not known in advance and

the direction of crack extension needs to be evaluated based on postulated fracture

criteria. The maximum principal stress criterion, for example, is probably the most

intuitive one. It assumes that the crack will propagate in the direction perpendicular

to the maximum principal stress. In an incremental crack extension analysis, each

crack extension increment is modeled with a new virtual dislocation element that

introduces new unknowns and extra algebraic equations that need to be solved.

Correspondingly the system matrix needs to be updated by generating new rows

and columns. Recently, more sophisticated models such as the virtual internal bond

(VIB) model were proposed (Klein and Gao, 1998; Ji and Gao, 2004). The VIB

model considers cohesive interactions between material particles as an alternative

approach to modeling fracture. It differs from cohesive zone models in that, rather

than imposing a cohesive law along a prescribed crack line, a network of cohesive

bonds is statistically incorporated into the constitutive law of the material via the

Cauchy-Born rule, i.e. by equating the strain energy density on the continuum level

to the potential energy stored in the cohesive bonds due to an imposed deformation.

In this work, we consider symmetric crack problems propagation along weak inter-

faces and the crack path is assumed to be known. In this case it is more convenient

for the implementation to discretize the whole crack path in advance. We found that



- 3.3 Discussion of the method 67

for the underlying dislocation boundary value problems, an algorithm based on a

fixed systems size is more robust. For the investigation of the influence of the shape

parameters of the TS-law, simulations were performed with ρsrc = 120/(µm)2 for

layers of 2000nm thickness with varying shape parameter δ1 (from 0.05 to 0.45); δ2

varies correspondingly since the other cohesive zone parameters were kept constant:

σth = 0.8 GPa, ∆c = 2 nm and kIc = 0.37 MPa
√

m. The reduction of the initial

slope of the TS-law reduces the sharpness of the stress concentration slightly so that

the tractions close to the crack tip decrease less rapidly. However, from Figure 3.24

it is clear that the shielding effect is not affected during loading. For clarity, the

results of only three different shape parameters are plotted. Figure 3.25 shows the

computed fracture toughness and the normalized stress intensity factor at the onset

of plasticity for nine different sets of shape parameters. The fluctuation of the values

is less than 5% from each other without an identifiable trend.

Normalized remote SIF KI/kIc

N
or

m
.l

oc
al

S
IF

k I/k
Ic

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.5

1

0.05
0.2
0.45
KI/kIc

Normalized remote SIF KI/kIc

M
ob

ile
di

sl
oc

at
io

ns

0 0.5 1 1.5
0

100

200

0.05
0.2
0.45
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Figure 3.25: Fracture toughness as a function of the shape parameter

Interaction between crack and dislocation microstructure

In the following, three numerical examples for fracture in a plastic layer are given.

The setup of the geometry follows Figure 3.7. The material is taken to be elastically

homogeneous with shear modulus G = 26 GPa and Poisson ratio ν = 0.33. Typical

velocities of dislocations near the crack tip are 100 to 200m
s
. In order to resolve the

whole spectrum of velocities a comparatively (Cleveringa et al., 2000) small time

step of ∆t = 2 · 10−4 ns is chosen. The simulations start at zero applied stress with

an initially dislocation free material and the load is increased monotonically with a

high constant loading rate K̇I = 105 GPa
√

m
s

in order to reduce computational time.

The nucleation and motion of dislocations close to the crack tip causes the driving

force for crack extension to change. If the driving force decreases, the dislocation

has a shielding character and lowers the local stress intensity factor; otherwise, the

dislocation exerts an anti-shielding effect. A change from shielding to anti-shielding

is possible since shielding depends on the dislocation position. The two slip planes at

inclination angels α1 and α2 considered in our model give rise to two types of active

slip systems. Taking the anticlockwise direction to be positive, α1 = −45
◦
is the more



- 3.3 Discussion of the method 69

active slip system due to the higher resolved shear stress and therefore referred

to as the primary slip system. The secondary slip system α1 = 45
◦

is expected

to respond harder and needs additional local stress concentrations to be activated.

Local stress concentration may arise at pile-ups forming at obstacles or at interfaces.

Upon loading there is a local stress intensity factor at which first nucleation occurs

on the primary slip system. For a high source density the initially active slip system

usually intersects the crack plane behind the crack tip such that the nucleated anti-

shielding dislocation migrates towards the free crack surface where it is absorbed

and causes crack blunting. The shielding dislocations migrate away from the crack

tip. For low source densities, however, it is possible that sources are active with their

slip planes intersecting the crack plane at a position ahead of the crack tip. If the

source is associated with an α1-slip plane, an anti-shielding dislocation migrates in

the region right in front of the crack tip, such that the crack tip is exposed to the

tensile stress field of the dislocation. If this source is continuously active, the resulting

dislocation array increases the driving force until it exceeds a critical value and the

crack moves to the point where the tip is exposed to the compressive stress of the

dislocation array. This sudden drop of the local stress intensity causes the crack to

be arrested again. The remote loading can be increased further and the dislocations

migrate now into the newly created free surface where they are absorbed and blunt

the crack tip. The ultimate remote stress intensity factor, where the material finally

fails by cleavage is taken as the materials fracture toughness KIc. Figure 3.26

shows simulation results for the thicknesses 1 µm, 2 µm and 4 µm of the plastic layer

with a source density of 80/µm2. The values of the cohesive zone parameters are

σth = 0.8 GPa, ∆c = 2 nm, δ1 = 0.1, δ2 = 0.2, leading to an intrinsic fracture

toughness of kic = 0.37 MPa
√

m. On top of Figure 3.26, at an intermediate loading

stage KI = 0.83kic (a1)-a3)), most of the dislocations have been nucleated on the

primary slip system. The loading is subcritical so that the crack tip remains at its

initial position. An array of shielding dislocations is positioned ahead of the crack

tip. Considering the final stage at failure (b1)- (b3), the crack in (b3) has moved

a distance ahead and has been arrested due to the sudden drop of the local stress

intensity caused by the shielding dislocation array. The simulations suggest that

under multiple active slip systems an unstable crack can be arrested if a sufficient

number of shielding dislocations have migrated ahead of the crack tip before first

crack advance occurs. The fracture toughness increases with the ductile layer thick-

ness from KIc = 1.24kic (h = 1µm), over KIc = 1.36kic (h = 2µm) to KIc = 1.56kic

(h = 4µm).
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Statistical effects due to the source distribution

The nucleation of dislocations in the model material is specified by the critical

stress for dislocation nucleation and the distribution of the sources in the process

domain. For thin layered structures, however, the source distribution degenerates to
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Figure 3.26: The contour plots of the crack opening stress in the simulation box and the evolving

dislocation microstructure. Dislocations are marked with the usual symbols. The columns 1-3 are

obtained for different h(1 µm, 2 µm, 4 µm). Below the contour plots the numbers of the total,

mirrored and absorbed dislocations are given, as well as the number of disassociated locks. On top,

the normal tractions on the crack line are shown, tractions vanish in the part where the crack is

fully open. The crack opening is plotted in the middle subplot as indicated. The plots (a1) -(a3)

show an intermediate state at KI = 0.83 kIc, whereas the stages of final failure are plotted in

(b1)-(b3).
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a one-dimensional array with only a few sources being active. Below a certain layer

thickness a source density is not defined anymore and the results will more or less

depend on the positions of the few discrete sources near the crack tip. For the source

density in the present simulations, materials with a layer thickness below about

300 nm can be considered to exhibit a brittle response, as the shielding effect of the

few involved dislocations is below 5% of the intrinsic fracture toughness. However,

for thicker layers it is worth testing how the results would depend on the randomly

generated source distribution. In Figure 3.27 and Figure 3.28 the results for two

different source distributions are displayed. Simulations were carried out for two

different layer thicknesses of 1000 nm and 2000 nm with ρsrc = 80/(µm)2. The values

of the cohesive zone parameters are σth = 0.8 GPa, ∆c = 2 nm , δ1 = 0.1 , δ2 = 0.2,

with an intrinsic fracture toughness of kIc = 0.37 MPa
√

m. Figure 3.27 shows the

microstructure at the final stage of failure. It is seen that for both thicknesses, the

source distribution has an impact on the position of the crack tip when final failure

occurs. The distribution 1 provides more sources with primary slip planes in front

of the initial crack tip position. Activation of these sources leads to emission of

shielding dislocations as the crack advances Figure 3.27. As a result, the fracture

toughness is slightly enhanced for both layer thicknesses. For both distributions an

obstacle forms almost 1 µm away from the crack tip. This obstacle shuts down some

sources on the most active primary slip plane. However, plasticity circumvents this

1000(1) 1000(2)

ρ

Parameter

src

Ductile Layer:

slip planes

mob

thickness

Cohesive Zone:

80.00

∆ o

n∆
δ1

σ

500.00
45/-45

2.00

10000.00

2.22

0.20
0.10

[nm]

[GPa/ns]

[1/ m2]

[nm]

[ ]

[ ]

µ

[nm]

0.80
th

[GPa]

σ 0.05[GPa]

G 26.00[GPa]

ν 0.33[ ]

s

δ2

Γ 0.88
kIc 0.37[MPa m0.5]

[J/m2]

Numerics:

N 1000[ ]

Loading rate:

KI [MPa m0.5] /s 0.10
o

0 5 10
0

500

1000

1500

2000

t [ns]

Mobile Dislocations

total
-45
+45

0 500 1000
0

1

2 KIc = 1.59 kIc

[nm]crack extension

Fracture ToughnessKI / kIc

KIc

1.46350002288818

0 5 10
0

1

2

3 remote
local

t [ns]

KI / kIc
Shielding

K= 0.10 MPa m0.5/s

Opening Stress Component

-20

0
Crack Opening

0

1
Normalized Tension on Crack Line

absorbed 14
mirrored 5total 80
dissociated obstacles 780

ρ

Parameter

src

Ductile Layer:

slip planes

mob

thickness

Cohesive Zone:

80.00

∆ o

n∆
δ1

σ

500.00
-45/45

2.00

10000.00

2.22

0.20
0.10

[nm]

[GPa/ns]

[1/ m2]

[nm]

[ ]

[ ]

µ

[nm]

0.80
th

[GPa]

σ 0.05[GPa]

G 26.00[GPa]

ν 0.33[ ]

s

δ2

Γ 0.88
kIc 0.37[MPa m0.5]

[J/m2]

Numerics:

N 1000[ ]

Loading rate:

KI [MPa m0.5] /s 0.10
o

0 5 10
0

500

1000

1500

2000

t [ns]

Mobile Dislocations

total
-45
+45

0 500 1000
0

1

2 KIc = 1.59 kIc

[nm]crack extension

Fracture ToughnessKI / kIc

KIc

1.20060002803802

0 5 10
0

1

2

3 remote
local

t [ns]

KI / kIc
Shielding

K= 0.10 MPa m0.5/s

Opening Stress Component

-20

0
Crack Opening

0

1
Normalized Tension on Crack Line

absorbed 4
mirrored 0total 48
dissociated obstacles 12

2000(1) 2000(2)

ρ

Parameter

src

Ductile Layer:

slip planes

mob

thickness

Cohesive Zone:

80.00

∆ o

n∆
δ1

σ

1000.00
45/-45

2.00

10000.00

2.22

0.20
0.10

[nm]

[GPa/ns]

[1/ m2]

[nm]

[ ]

[ ]

µ

[nm]

0.80
th

[GPa]

σ 0.05[GPa]

G 26.00[GPa]

ν 0.33[ ]

s

δ2

Γ 0.88
kIc 0.37[MPa m0.5]

[J/m2]

Numerics:

N 1000[ ]

Loading rate:

KI [MPa m0.5] /s 0.10
o

0 5 10
0

500

1000

1500

2000

t [ns]

Mobile Dislocations

total
-45
+45

0 500 1000
0

1

2 KIc = 1.59 kIc

[nm]crack extension

Fracture ToughnessKI / kIc

KIc

1.6298999786377

0 5 10
0

1

2

3 remote
local

t [ns]

KI / kIc
Shielding

K= 0.10 MPa m0.5/s

Opening Stress Component

-20

0
Crack Opening

0

1
Normalized Tension on Crack Line

absorbed 17
mirrored 5total 253
dissociated obstacles 21

ρ

Parameter

src

Ductile Layer:

slip planes

mob

thickness

Cohesive Zone:

80.00

∆ o

n∆
δ1

σ

1000.00
-45/45

2.00

10000.00

2.22

0.20
0.10

[nm]

[GPa/ns]

[1/ m2]

[nm]

[ ]

[ ]

µ

[nm]

0.80
th

[GPa]

σ 0.05[GPa]

G 26.00[GPa]

ν 0.33[ ]

s

δ2

Γ 0.88
kIc 0.37[MPa m0.5]

[J/m2]

Numerics:

N 1000[ ]

Loading rate:

KI [MPa m0.5] /s 0.10
o

0 5 10
0

500

1000

1500

2000

t [ns]

Mobile Dislocations

total
-45
+45

0 500 1000
0

1

2 KIc = 1.59 kIc

[nm]crack extension

Fracture ToughnessKI / kIc

KIc

1.35220003128052

0 5 10
0

1

2

3 remote
local

t [ns]

KI / kIc
Shielding

K= 0.10 MPa m0.5/s

Opening Stress Component

-20

0
Crack Opening

0

1
Normalized Tension on Crack Line

absorbed 7
mirrored 0total 103
dissociated obstacles 25

Figure 3.27: Comparison of two different source distributions 1 (left) and 2 (right) for layers of

1000nm (top) and 2000nm (bottom). Shown is the microstructure at critical loading.
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Figure 3.28: Comparison of two different source distributions 1 and 2 for layers of 1000 nm and

2000 nm. On top the local stress intensity factor kI is plotted versus the remote loading KI . The

symbols on the horizontal axis denote the critical values of KIc at which failure occurs for the

corresponding materials. At the bottom, information about the dislocation activity is displayed.

The number of mobile dislocations is assigned to the left axis. The corresponding curves are plotted

solid. The dashed curves show the relative contribution of the primary slip system and are assigned

to the right axis. Symbols are plotted sparsely to identify the curves according to the legend. The

data points lie dense along the plotted lines.

blocked slip plane and dislocation activity jumps over to neighboring slip planes. In

Figure 3.28 the shielding effect (top) and dislocation activity (bottom) is displayed.

For this model material the increase in fracture toughness due to the development

of a plastic zone is about 50 % of the intrinsic fracture toughness. The deviation of

kI from KI with onset of dislocation activity is clearly seen in Figure 3.28, top. It

is also apparent that in the material with distribution 2 (right) first nucleation of

dislocations occurs on the primary slip plane, whereas in the other material (left)

both slip systems are active at the onset of plasticity (Figure 3.28, bottom). For

the total dislocation activity however, both slip systems contribute equally for both

layer thicknesses. The influence of dislocation source distribution on the apparent
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fracture toughness is found to be about 5 to 10 percent. Even though the dislocation

microstructure might develop slightly differently, its shielding effect on the crack

tip is not changing significantly. The influence is expected to be decreasing with

increasing ductility and layer thickness.

Deformation of dual phase MMC

Although the model for reinforced dual phase MMC is highly idealized, it is expected

to exhibit characteristic features of plastic flow in dual phase nanocomposite mate-

rials with internal interfaces and to demonstrate the scale dependence of material

properties such as strength and toughness. The deformation fields in small-scale com-

posites have regions of highly localized deformation. Sliding and separation deforma-

tions at the interfaces might occur prior to failure influencing dislocation nucleation

and motion processes. Furthermore, the effective plastic flow properties within the

matrix depend on the reinforcement morphology, the slip plane orientation as well

as on the opening and shear properties of the interface.

The advantage of simulating the deformation of a RVE with periodic boundary

conditions is the small system size. However, instead of a finite number of single dis-

locations, the periodicity of the system introduces an infinite array of dislocations.

The price of this approach is the necessary evaluation of periodic image fields. It is

possible to consider the effects of PBCs embedding the simulation cell in an infinite

and periodic array of image supercells that are exact replica of the primary cell (Cai

et al., 2003). Cai et al. (2003) constructed the elastic fields of the dislocations due to

PBCs by superimposing the fields produced by the dislocation in the primary simu-

lation cell and image fields of its periodic replica. The superposition is written as a

summation of individual contribution from the image cells. The sum is then evalua-

ted semi-analytically with respect to one dimension by choosing a truncation limit.

In this work, the image fields are determined by setting up and solving an auxiliary

boundary value problem. The computational effort is closely linked to the discreti-

zation of the boundary of the simulation cell and does not depend on the number of

dislocations that are introduced in the simulation. Note that the necessity of boun-

dary discretization comes from the implementation of the displacement-controlled

boundary loading procedure. This procedure is generally required for the tensile de-

formation simulation of softening materials, see e.g. (Lin et al., 2006).

The evaluation of the materials stress-strain response can be carried out in an in-
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cremental manner. For a quasi-static simulation under monotonic loading an incre-

mental loading step is followed by a relaxation phase as presented in section 3.2.3.

During this relaxation phase the dislocation microstructure reaches an relaxed state

where the macroscopic stress levels off, see Figure 3.23. In the case of dynamic simu-

lations where complete relaxation is not allowed, the extent of relaxation depends on

the rate of change of the dislocation microstructure that is defined by the mobility

law in comparison with the applied loading rate.

In this work the model for dual phase MMC is applied to the extreme case of non

interacting interfaces to demonstrate the possibilities and limitations of the present

model. In the case of reinforced MMC with strong interfaces, the stresses are rat-

her high within the reinforcement due to the occurrence of superdislocations at the

interfaces. The stress contribution from the plastic flow leaves the reinforcement in

residual tension and the matrix in compression. Dislocation nucleation in this model

occurs first at the corners of the rectangular reinforcements where stress concentra-

tions are high. Since the elastic properties of matrix and reinforcements are equal

tensile stresses will only build up in the reinforcements after the generation of a

sufficient amount of plastic flow in the matrix. At later stages of deformation, dis-

location nucleation is expected also to occur in the vicinity of the entire front-ends

of the reinforcements.
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The fracture toughness of a layered composite material is analyzed employing the

combined two-dimensional DD/CZ model presented in section 3.2.1. The fracture

mechanism of an elastic-plastic (ductile) material sandwiched within purely elastic

layers approaches ideally brittle behaviour with decreasing layer thickness. We in-

vestigate the influence of different constitutive parameters concerning dislocation

plasticity as well as the effect of cohesive strength of the ductile material on the

scaling of fracture toughness with layer thickness.

4.1 Motivation and problem statement

The fracture toughness of the layered composite material is known to be strongly

correlated with the layer thickness and is directly influenced by the cohesive strength

of the ductile layer (Hsia et al., 1994; Broedling et al., 2006). The analytical super-

dislocation model by Hsia et al. (1994) predicts a gradual scaling behavior with a

smooth increase in fracture toughness as a function of layer thickness. However, it

is known that under strong confinement individual secondary plastic flow processes

have a great impact on the materials behavior. The distribution of the shielding

dislocations may be critical for the scaling behavior of the fracture toughness. To

clarify the remaining question whether there is a critical length scale that is cha-

racteristic for the scaling behavior, extensive parameter studies were conducted to

deduce the scale dependent fracture toughness as a function of the layer thickness.

Special focus is directed towards the effect of microstructural surroundings near the

crack tip as well as the influence of the intrinsic material properties on the scaling

behavior.

Cleavage failure of dual phase layered nanocomposites is simulated accounting for

the collective dislocation behaviour near a moving crack tip. The crack tip is embed-

ded in a metal layer sandwiched between two brittle solids. Special attention is paid

to the restrictions that a layer geometry imposes on the expansion of the plastic zone

75
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and to the resulting fracture toughness of the composite structure. For the analysis

of the fracture toughness of the layered composite material the combined discrete

dislocation and cohesive zone model for the simulation of fracture in thin metal films

is employed (section 3.2.1). The combined DD/CZ model links a two-dimensional

dislocation dynamics (DD) description of plasticity and a cohesive zone (CZ) des-

cription of fracture. The cohesive crack tip is treated as part of a much larger finite

crack confined in the ductile layer. The underlying boundary value problem is for-

mulated with a set of boundary integral equations and numerically evaluated with

a collocation method. A detailed description of the elastic boundary value problem

and the constitutive rules associated with the model is given in sections 3.2.1 and

3.1.2, respectively.
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4.2 Simulation results for the scaling behavior

The results obtained are presented and discussed in two parts. First, the influence

of the source distribution on the toughness-thickness dependence is shown. Second,

the correlation of the toughness-thickness dependence with cohesive strength and

source strength indicated by the results will be pointed out. The setup of the geome-

try follows Figure 3.2.1. The simulations start at zero applied stress with an initially

dislocation free material and the load is increased monotonically with a constant loa-

ding rate of K̇I = 103 GPa
√

nm
ns

. The material is taken to be elastically homogeneous

with shear modulus G = 26 GPa and Poisson ratio ν = 0.33.

4.2.1 Influence of the microstructural surrounding

In this section the influence of the local source distribution as well as that of the

source density within the bulk material are investigated. For fracture of thin layers

the availability of sources close to the crack tip rather than the overall source den-

sity becomes important. In Figure 4.1 simulation results for four 1 µm thick layer

materials A, B, C and D with different source distributions are plotted. Figure 4.1 a)

and Figure 4.1 b) show clearly the effect of dislocation emission right at the crack

tip. The source density of the bulk material in both simulations has been chosen

to be 80 (µm)−2 with an overall identical distribution, but in one case (shown in

Figure 4.1 b)) a source with a slip plane angle of −45
◦

has been placed at position

(x, y) = (40 nm,−50 nm). Note, that the serrated shape of the local stress intensi-

ty factor in Figure 4.1 b) is a result of the strong dislocation-interface interaction

and reflects single nucleation events of the near crack tip source. The consequence

of the existence of a crack tip source is that the number of nucleated dislocations

has been doubled. The formation of a compact dislocation pile-up of 20 dislocati-

ons exerts a strong shielding effect and causes an increase in fracture toughness of

about 20%. The results for a higher bulk source density of 120 (µm)−2 are shown in

Figure 4.1 c) and for only one crack tip source in figure Figure 4.1 d). The resulting

fracture toughnesses for the different source distributions are shown in Figure 4.2

as a function of film thickness. It is seen that for thicknesses below 1000 nm the

crack tip source is dominant, because the curves for the materials with the crack

tip source (B, C and D) do not deviate from each other in this regime. Above this

thickness the fracture toughness of the material D with only on source close to the

crack tip remains approximately constant. The curves of materials B and C start to
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Figure 4.1: Comparison of four different source distributions for a 1µm thick layer. Shown is

shielding and final microstructure for each distribution: a) 80(µm)−2 without crack tip source,

b) 80(µm)2 with crack tip source, c) 120(µm)−2 with crack tip source, d) only a single crack tip

source.
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deviate from each other at a thickness of 2000 nm. Interestingly the material with

the higher source density gives the lower fracture toughness, which is explained by

the higher dislocation density in this case, hindering the free expansion of the shiel-

ding dislocations emanating from the near crack source. Thus, the material with a

higher source density exhibits a more pronounced work hardening. The comparison

of material A and B shows that the bulk fracture toughness of a material with a

bulk source density of 80 (µm)−2 increases by about 15% when additionally a crack

tip source is considered. The influence of the bulk sources on the fracture toughness

of a layered mate-rial is noticeable only above a thickness of 1000 nm. The bulk

toughness of a material with a crack tip source increases by about 20% (10%) when

in addition to the crack tip source a distribution of bulk sources with a density of

80 (µm)−2(120 (µm)−2) is considered.
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Figure 4.2: Normalized fracture toughness as a function of layer thickness for four different source

distributions, see also Figure 4.1.
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4.2.2 Influence of intrinsic material properties

We have conducted extensive parameter studies to investigate the effect of cohesi-

ve strength, intrinsic fracture toughness as well as source strength on the resulting

fracture toughness. Figure 4.3 shows toughness-thickness curves for different sets of

parameters for a layer material with ρsrc = 80 (µm)−2 with crack tip source. Figu-

re 4.3 a)-d) reveal the effect of cohesive strength and intrinsic fracture toughness.
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Figure 4.3: Toughness-thickness dependencies for a layer material with ρsrc = 120 (µm)−2. The

stresses are given in units of 1GPa, intrinsic fracture toughnesses in MPa
√

m. a) Three different

sets of cohesive parameters and a constant source strength of 0.1GPa. b) Influence of source

strength for a constant cohesive strength of 1.6GPa. c) Influence of cohesive strength for two

different source strengths of 0.1GPa and 0.15GPa. d) Influence of cohesive energy for two sets of

source and cohesive strengths.
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Both parameters enhance the macroscopic fracture toughness significantly. Figu-

re 4.3 c) shows simulation results for two different intrinsic fracture toughnesses for

two different source strengths σsrc. A 40% increase of the intrinsic fracture toughness

enhances the bulk toughness by about 10%. We define the critical layer thickness

to be that thickness where the fracture toughness of the layer material reaches 95%

of the material’s bulk toughness. The bulk toughness as well as the critical layer

thickness is increasing with the cohesive strength. A 100% increase of the cohesive

strength enhances the bulk toughness about 10% and the critical layer thickness

about 20%. More significant is the influence of the source strength, corresponding

to the initial yield strength of the material. When dislocation nucleation is harder

(100% higher yield strength), the bulk fracture toughness drops about 20% and the

critical layer thickness decreases about 80%.
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Figure 4.4: Bulk fracture toughness (a) and critical layer thickness (b) as a function of co-

hesive strength for different source strengths. Curves correspond to two source densities of

ρsrc = 80 (µm)−2 (filled symbols), ρsrc = 120 (µm)−2 (open symbols), and three different sour-

ce strengths σsrc = 0.05GPa, 0.1GPa, 0.15GPa
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4.3 Discussion

4.3.1 Fracture behavior under confinement

The semi-brittle bulk materials considered here show a rather low fracture toughness

determined by the competition of loading rate and expansion rate of the plastic

zone. Due to this rate effect the layer materials reach their bulk fracture toughness

at a layer thickness of a few micrometers at the high loading rate applied. The

results of the numerical model are consistent with the expectation that fracture

toughness decreases with increasing yield stress, but increases with the cohesive

strength for a material with a constant layer thickness. The scaling behaviour of

the fracture toughness with layer thickness depends on these material parameters,

but also on the microstructure in the vicinity of the crack tip. Strain localization

due to easy dislocation generation right at the crack tip improves toughness in thin

layers and leads to a jump-like increase of fracture toughness with layer thickness.

However, the fracture toughness after the transition towards bulk behaviour proves

to be higher when the distribution of dislocation is more homogeneous, because in

this case the crack grows in a stable fashion over some distance. In this model the

dislocations nucleating close to the crack tip and piling up against the interface to the

elastic region do not cause decohesion at the ductile/elastic interface, nor cracking

of the brittle layer. Figure 4.5 shows that the stress at the dislocation pile-up stays

below the theoretical strength of the cohesive zone model even for the smallest layer

thicknesses. The results show that crack initiation at the ductile/elastic interface

is only expected if the interface strength is less than 50% of the bulk cohesive

strength. For numerical purposes dislocations pile up at a minimum distance of

40b to the interface, see Figure 3.1. In the following we analyze the importance

of dislocation nucleation right at the crack tip for the overall fracture toughness

of the layer materials. Various simulations have been performed with the present

DD model suggesting that for thick layers a propagating crack temporarily arrests

when it comes close to a source. This is caused by the sudden increase in the local

stress at the source due to the approaching crack tip, which causes the source to

emit a number of dislocations within a short period of time. These dislocations

suddenly exert a strong shielding effect on the crack tip, thus causing its arrest.

This mechanism has also been described by Cleveringa et al. (2000), where crack

growth in a bulk material was studied. However, we observe that for thin layers

the back stress from dislocation pile up at the ductile-elastic interface not only
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Figure 4.5: Maximum tensile stresses at the ductile/elastic interface as a function of layer thickness

for a source distribution ρsrc = 80 (µm)−2 with a crack tip source. The stresses are normalized

with respect to the theoretical strength employed in the cohesive zone model. Curves are plotted

for different cohesive stresses a) and for different source strengths b).

inhibits further dislocation generation at the source, but also increases the local

stress intensity factor in front of the crack tip. Therefore, crack arrest seems to be

more difficult in thin layers.

The crack tip source implemented in this model in order to enable dislocation activity

right at the crack tip nucleates complete dislocation dipoles, representing dislocation

loops in three dimensions. However, the anti shielding dislocations emitted from this

source are absorbed from the free crack surface right after each nucleation event

and hence the results are identical to the monopole source model used in other

work (Roberts et al., 1994; Hartmaier and Gumbsch, 2005). The strongest effect

of enabling dislocation nucleation right at the crack is that the materials fracture

toughness increases more rapidly with the layer thickness. At a thickness of about

300 nm the materials fracture toughness can already reach 120% of the intrinsic

fracture toughness, whereas a material without crack tip source still exhibits an

almost brittle response.

4.3.2 Shielding dislocations under confinement

The analytical “superdislocation“ model in (Hsia et al., 1994) considers the total

dislocation density and hence the origin of the shielding factor to be concentrated
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at a point where the slip plane that is associated with the crack tip intersects the

ductile/elastic interface. The super dislocation model underestimates the shielding

effect of a compact dislocation pile-up right at the crack tip that we found to be

the reason for a jump like increase of fracture toughness with the layer thickness.

Furthermore, in our multi source model the back stress originating from dislocation

pile-ups at the interface triggers source operation close to the interface and thus

remote to the crack tip. If the source generates dislocations on a slip plane parallel

to that of the piled-up dislocations, the newly created dislocations move back to

the crack tip and increase the local stress at the source that generated the piled-up

dislocations. Thus the secondary dislocations reduce the back stress of the pile-up

and enable further generation of shielding dislocations. The activation of the second

slip system produces dislocations that travel in front of the crack tip and exert a

strong shielding effect once the crack starts to advance. In both cases, dislocation

nucleation at the interface enhances the toughness either by reactivating crack tip

sources or by direct shielding of the advancing crack.

Hence the present numerical model predicts a rapid transition at smaller layer thick-

nesses whereas the analytical super dislocation model predicts a rather gradual

toughness-thickness dependence. Moreover, the super dislocation model does not

account for rate effects due to the competition between loading rate and expansion

rate of the plastic zone and does not indicate saturation of fracture toughness at

large layer thicknesses. Figure 4.6 a) shows that in the multiple source model the

number of total dislocations that participate in the system increases strongly with

increasing thickness. However, not all of the nucleated dislocations contribute equal-

ly to the overall shielding factor, in fact some dislocations do not contribute at all,

as can be seen by comparing the large differences in the total number of dislocations

plotted in Figure 4.6 a) to the relatively small difference in the fracture toughness of

the different source distributions. The comparison reveals that the crack tip source

provides the most efficient shielding and thus the best ratio of fracture toughness

versus number of dislocations. In Figure 4.6 b) it is shown that the number of blun-

ting dislocations gives a much better correspondence to the fracture toughness than

the total number of dislocations. This number of blunting dislocations is also rela-

ted to the magnitude of the net Burgers vector within the plastic zone and hence

to the density of geometrically necessary dislocations. In all cases where dislocati-

on generation at the crack tip is considered, the shielding is mainly caused by the

dislocations emanating from that source. If dislocation nucleation directly at the
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Figure 4.6: Comparison of four different source distributions (see text): a) Number of dislocations

present at failure as a function of layer thickness. b) Normalized fracture toughness as a function

of blunting dislocations (right). The values in the legends are the densities of the bulk source

distribution per (µm)2.

crack tip is not enabled, the net Burgers vector at failure is lower, which means that

the shielding has to be produced by non-blunting dislocations. Our results show

that fracture toughness in the regime below the critical layer thickness is strongly

dependent on the availability and activity of dislocation sources right at the crack

tip. Consequently it can be argued that since a propagating crack tip can be stop-

ped when it comes close to a dislocation source this configuration, which yields the

maximum fracture toughness, dominates the fracture process in layered structures.
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5 The strength limit in a bio-inspired

metallic nanocomposite

Large-scale molecular dynamics simulations are performed to investigate the pla-

stic deformation behavior of a bioinspired metallic nanocomposite which consists

of hard nanosized Ni platelets embedded in a soft Al matrix. The investigation is

restricted to an idealized nanocomposite structure with regular platelet distributi-

ons in a quasi-twodimensional geometry under quasi-static loading conditions. This

restriction enables us to study size dependent material properties over a wide range

of length scales with a fully atomistic resolution of the material and thus without

any a priori assumptions of the deformation processes. The simulation results are

analyzed with respect to the prevailing deformation mechanisms and their influ-

ence on the mechanical properties of the nanocomposite with various geometrical

variations. It is found that interfacial sliding contributes significantly to the plastic

deformation despite a strong bonding across the interface. Critical for the strength

of the nanocomposite is the geometric confinement of dislocation processes in the

plastic phase, which strongly depends on the length scale and the morphology of

the nanostructure. However, for the smallest structural scales, the softening caused

by interfacial sliding prevails, giving rise to a maximum strength.

5.1 Motivation and problem statement

The focus on bio-inspired metallic nanocomposites is motivated by the current rese-

arch initiatives in the area of interface engineering and biomimetic design. A number

of experimental studies on the deformation behavior of nanocrystals with average

grain size less than 100 nm show generally an Hall-Petch behavior, i.e. an increasing

yield stress and hardness with decreasing grain sizes down to 20 nm (Kauffmann

et al., 2005; Wang et al., 2002; Yip, 1998; Arzt, 1998; Chen et al., 2006). However,

the inverse Hall-Petch effect that has been reported for grain sizes below 10 nm re-

87
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gards the decrease in strength with further grain refinement, see e.g. (Volpp et al.,

1997). It is assumed that in this regime deformation is mainly accommodated by

grain boundary sliding (M.A. Meyers, 2006; Weertman, 2000; Koch, 2002). In spite

of significant progress, understanding of the deformation mechanisms of nanostruc-

tured materials at ultrafine scales is still lacking although it is of great scientific

interest. Knowledge of the governing deformation mode would enable material desi-

gners to suppress the fall-off in strength at ultra fine scale and develop novel super

hard and tough materials.

Part of the motivation for this work also comes from the increasing evidence that

the superior strength and toughness of biological materials including nacre, bone

and tendon may be attributed to a generic parallel staggered arrangement of their

microstructure (Landis, 1995; Menig et al., 2000; Gao et al., 2003). Ji et al. (2004)

showed that the large aspect ratio and the nanometer size of inclusions in the bio-

morphous MMC lead to significantly improved properties with increased tolerance

of interfacial damage. For example, it was found that partially debonded inclusions

continue to carry mechanical load transferred via longitudinal shearing of the matrix

material between neighboring inclusions. The larger the inclusion aspect ratio, the

larger is the flow stress and work hardening rate for the composite. Increasing the

volume concentration of inclusion also makes the biomorphous MMC more tolerant

of interfacial damage.

The atomistic model for a dual phase (hard/soft) metallic nanocomposite is set

up as follows. The prevailing deformation mechanisms are investigated under tensile

loading for different length scales and morphologies. In particular we are quantifying

the contributions of conventional dislocation based plasticity and mechanical twin-

ning on the one side and interfacial shearing on the other side which enables us to

identify the critical length scale at which the dominant mechanisms change roles. We

furthermore study the influence of interfacial damage nucleation and evolution on

the materials strength as a function of structural scaling. Large-scale molecular dy-

namics simulations are performed to investigate the plastic deformation behavior of

a bio-inspired metallic nanocomposite which consists of hard nanosized Ni platelets

embedded in a soft Al matrix. The investigation is restricted to an idealized nano-

composite structure with regular platelet distributions in a quasi-two-dimensional

geometry under quasi-static loading conditions. This restriction enables us to study

size dependent material properties over a wide range of length scales with a fully
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atomistic resolution of the material and thus without any a priori assumptions of

the deformation processes. The simulation results are analyzed with respect to the

prevailing deformation mechanisms and their influence on the mechanical properties

of the nanocomposite with various geometrical variations.

5.2 Model and analysis techniques

As a model system for our investigations of strength and ductility resulting from

different deformation mechanisms in a metallic nanocomposite we consider a du-

al phase system consisting of hard nanosized nickel platelets embedded in a soft

aluminum matrix with a nanostructural morphology similar to that of bone, see

Figure 5.1. The specific system chosen consists of Ni platelets embedded in an Al

matrix because reliable descriptions of the atomic interaction for these atom species

are described in the literature (Ludwig and Gumbsch, 1995).

The platelets have a high aspect ratio and are in staggered alignment. Under tensile

loading in direction of the platelets this structure is expected to show high stiffness

and strength, but also enhanced toughness since large amounts of energy can be

absorbed by successive decohesion at the ends of the platelets, as well as by plastic

shearing of the metallic interlayer and finally interfacial shearing after saturation of

dislocation activity. The question is how such a microstructure design is correlated

with its mechanical properties.

We study plastic deformation of such structures under quasi-static loading condi-

tions with classical molecular dynamics simulations and compute the macroscopic

stiffness and strength of the material under geometrical variation of the nanostruc-

ture. The investigation is restricted to nanocomposites containing platelets with an

infinite extension in the out of plane direction in Figure 5.2. This allows us to stu-

dy systems with small unit cells and periodic boundary conditions in this direction

in a quasi two-dimensional analysis. It is noted here that the computation is fully

three-dimensional with the correct crystal structures for both constituents. Howe-

ver, the smallness of the numerical samples in the out-of-plane direction allows us

to investigate size dependent material properties over a wide range of length scales

and to conduct extensive studies on the governing deformation mechanisms and on

their influence on the mechanical properties of the nanocomposite structure.

For the deformation analysis of the nanocomposite a periodic unit cell of the mate-
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σ

d

Ni

Al

Figure 5.1: Schematic of the nanocomposite material considered: Hard Ni platelets are embedded

in a soft Al matrix in a staggered alignment. High stress concentrations at the fronts of the platelets

due to elastic mismatch of the two phases lead to interfacial debonding under dislocation nucleation

(red symbols). The black symbols denote the effective distribution of glide dislocations that gives

rise to plastic shear deformation. Interfacial shearing when pullout sets in after debonding is marked

with blue arrows. The platelets are mainly under tensile load, while the matrix is heavily sheared.

rials building block is considered, as depicted in Figure 5.2. The lattice constants of

Al and Ni are aAl = 4.049 Å and aNi = 3.524 Å according to the potential adopted

in this study. We restrict our analysis to laminated nanocomposites with disconti-

nuous platelet reinforcements in the x-y plane that are infinitely extended in the

z direction. Total deformation is therefore governed by a state of plane strain in

planes with normal vectors pointing in the z-direction. The simulated [110] textured

columnar nanostructures consist of two phases Ni and Al with the same crystallo-

graphic orientation. The orientation and the periodic boundary conditions cause the

nucleation of dislocations with mixed edge and screw character with Burgers vectors

b1 = [112] and b2 = [112] on two {111} slip planes. This implies that the number

of possible slip planes that can accommodate the plastic deformation is limited to
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Figure 5.2: a) Sample geometry of the building block of size d. Ni atoms are colored blue and Al

atoms yellow. b) Orientation of the building block (blue cuboid) in the crystallographic coordinate

system. The yellow planes indicate the {111} slip planes.

two. Due to this geometrical constraint we expect the material to respond harder

than laminated nanocomposites with discontinuous reinforcements in all directions.

However, the benefit of the reduction in dimension is a lower system size that allows

performing simulations under realistic quasi static loading conditions. Dynamical

effects stemming from a high loading rates usually applied in MD simulations are

thus avoided. Moreover, the temperature considered is T = 0 K.

The initial atomic configurations for the simulations are generated as follows. Two

auxiliary periodic structures of Al and Ni single crystals are created with building

block size close to that in the desired composite structure. Single platelets are then

cut out from the Ni single crystal and shifted to the final position within the com-

posite for which the periodic box of the initial Al single crystal is taken. Finally

both auxiliary samples are merged and Al atoms that are closer to the Ni atoms

than the Al-Al nearest neighbor distance are eliminated. The chosen crystal orien-

tation and the building block geometry are shown in Figure 5.2. The mechanical

properties of the metallic nanocomposite are computed with the parallel classical

molecular-dynamics code ’IMD’ from the Institute of Theoretical and Applied Phy-

sics, University of Stuttgart (Stadler et al., 1997). The analysis of scale dependency

requires comparability of the deformation mode over the entire scaling regime. It

is therefore critical for the analysis to subject all structures to a well defined loa-

ding state. Smaller modifications have been made to the code to perform uniaxial

tensile loading simulations under realistic quasi-static conditions. This work covers
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only equilibrium atomistic simulations. That means that the system is completely

isolated from its surroundings with a fixed number of atoms, volume and constant

total energy. These boundary conditions correspond to the microcanonical (NVE)

ensemble in statistical mechanics. A multi-body potential based on the embedded

atoms method (EAM) is adopted in the simulation. The potential energy includes

pair interactions between nuclei of atoms i and j and the embedding energy as a

function of the local electron density around atom i, see chapter 2. The embedding

energy is assumed to depend solely on the local electron density provided by the

surrounding atoms. The full description of the Ni-Al system requires definition of

seven potential functions. The functions are obtained by fitting to the properties of

the individual Ni and Al elements, respectively, to the properties of the Ni-Al alloys

in case of the cross-interaction functions (Ludwig and Gumbsch, 1995). The poten-

tial used for the Ni-Al system also gives a good representation of the interatomic

forces across interfaces between Ni and Al.

After sample generation the structure of the building block Figure 5.2a) is equi-

librated with respect to local interatomic forces and global axial stresses at 0 K

with periodic boundary conditions applied in all directions. For the relaxation of

global axial stresses a linear transformation is computed based on an initial guess

for the effective bulk modulus of the composite. This transformation is applied on

the simulation box and content so that the box size and shape change accordingly.

The box size in z direction is about which is greater than twice the cut-off radius

of the interatomic potentials. Due to the 13 % lattice mismatch between Ni and Al,

a semi-coherent interface forms with equally distributed misfit dislocations. During

loading the atoms are displaced according to an applied strain increment in the lon-

gitudinal loading direction via a linear transformation applied on all atoms within

the simulation box. After that the atoms are relaxed for 4000 time steps with respect

to local interatomic forces, as well as to the global axial stresses that act normal

to the loading direction. This relaxation time interval is found to be sufficient to

obtain macroscopic equilibrium configurations. During relaxation the scalar product

of the global force and momentum vectors containing the force and momentum com-

ponents of all atoms is evaluated. A negative value indicates that the momentum

would increase the total energy. In this case all momenta are reset to zero. The

uniaxial strain in the sample is maintained during the relaxation. Note that the

simulation algorithm relaxes the stress components arising from cross-contraction

by deforming the simulation box accordingly.



- 5.3 Simulation results 93

To identify nucleation and evolution of defects we use the common neighbour ana-

lysis (CNA). The CNA classifies pairs of atoms according to their local environment

(Honeycutt and Andersen, 1987; Clarke and Jónsson, 1993) and can be used to de-

tect dislocation cores, stacking faults and other defects in crystalline structures. A

key issue of the present work is to identify interfacial slip and to investigate its con-

tribution to the overall plastic deformation. Interfacial shearing of Rachinger type,

which is considered here, refers to the relative displacement of adjacent phases under

the action of high shear stress. In contrast, Lifshitz sliding denotes the displacement

of individual grains in diffusional creep via stress-driven diffusion of vacancies and

plays a significant role only at elevated temperatures. For the given morphology of

the nanocomposite, interfacial shearing can not occur without some other forms of

accommodating mechanisms like plastic slip within the individual phases either by

dislocation slip or by mechanical twinning or interfacial decohesion at the platelet

front ends. We follow the definition of the slip vector s published by Zimmerman

et al. (2002)

si =
1

ns

ns∑

i6=j

rij − r0
ij, (5.1)

where n is the number of nearest neighbours of atom i, ns is the number of slipped

neighbours, rij and r0
ij are the position vector differences of atom pair ij in the current

and a fixed reference configuration, respectively. Here, the initial relaxed stress-free

sample is defined as the reference configuration. This vector quantity is a measure

for the slip of adjacent atomic planes and indicates local plastic deformation by slip

either at the interface or within the ductile phases. Since the evaluation of the slip

vector refers to the initial configuration, pre-existing defects or interfaces will not

be visible unless they start to move.

5.3 Simulation results

We study plastic deformation of metallic nanocomposites with multi-million atom

MD simulations under quasi-static loading conditions and determine the resulting

macroscopic strength from the computed stress-stain curves under various geometri-

cal variations of the nanostructure. The stress-strain curves obtained from the MD

simulations presented here have some common features, such as a saw tooth-like

behavior as seen in Figure 5.3. The sudden drops in stress can be correlated to the

nucleation of single partial dislocations.
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Figure 5.3: A typical stress-strain curve is shown for a fine structured material with obtained from

the MD simulation. Right hand side shows the CNA, yellow atoms denote interface atoms, blue

atoms denote stacking fault planes.

For structures with larger matrix volumes between the inclusions, the number of

defects that participate in plastic deformation increases and the superposition of

multiple nucleation events results in smoother stress-strain curves. The characteri-

stic feature of a relatively coarse structured nanocomposite is a sharp drop in stress

after reaching the initial yield point. After initial yielding the stress fluctuates around

an average value that is usually lower than the stress immediately prior to the onset

of plasticity. This behavior is explained with the lack of mobile defects in the initial

ideal crystal structure. In this work we define the flow stress as the average stress

in the range of 6-8% total strain, consistent with the definition used by Schiøtz and

Tolla (1998). In this range of plastic strain, a significant density of mobile defects has

developed to accommodate the applied loading. Furthermore we adopt the labeling

convention indicated in 5.1 for the characteristic length scale of the nanocomposite

which corresponds to the distribution wavelength d of the embedded platelets along

the loading direction (Figure 5.1).

We observe various atomistic mechanisms of defect nucleation and migration that are

Table 5.1: Labeling used in this work for the distribution wavelengths d of the embedded platelets

in loading direction.

NC01 NC02 NC03 NC04 NC05 NC06 NC07 NC08 NC09

d [nm] 10,3 15,3 20,6 30,9 41,0 61,5 82,5 163,5 330,2
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characteristic of plastic deformation in the biomorphous metallic nanocomposites.

Interfacial shearing is always accompanied by an intraphase glide mechanism. Up

to NC06 only extended partial dislocations are nucleated. We find that the platelet

front ends are the sites for first dislocation nucleation due to the stress concentration

there. Extended partials are nucleated usually at the platelet corners and migrate

into the thin channels of the Al phase where they interact with the Ni/Al interfaces

by pinning or reflection, see Figure 5.4. When a dislocation is reflected at the Ni/Al

interface, the difference in the Burgers vectors of the incoming and outgoing disloca-

tion is accommodated by a finite interfacial slip step in the shearing interface so that

the total Burgers vector is conserved. Since the Ni/Al interface is semi-coherent, we

observed in some rare cases that a dislocation can migrate into the Ni phase.

We start our investigation with studying the effect of the nanostructural morpholo-

gy on the macroscopic strength. Even though both constituents are ductile metals,

interfacial decohesion is observed for materials with defected interfaces. We show

that due to the biomorphous nanostructure the materials strength is invariant to

both partial interfacial decohesion, as well as to the nanostructural morphology be-

low a critical length scale. We then study the effect of nanostructural scaling on the

nucleation and evolution of interfacial decohesion. Finally we present size dependent

plasticity for the bio-inspired morphology and investigate the contribution of inter-

facial slip to the total slip as a function of the structural refinement. As a measure

for the slip contribution we define the quantity

s̄Al =
1

s̄Al + s̄Ni + s̄int Al

∑
i

|s(i)Al
x |, (5.2)

where s̄Al is the accumulated x-component of the slip vector for Al atoms with

respect to the total slip, i.e. the accumulated x-component of all atoms s̄Al + s̄Ni +

s̄int Al. The contributions of Ni and Al interface atoms s̄Ni and s̄int Al are computed

analogously. Al interface atoms are atoms of the Al phase that have one neighbouring

Ni atom at least. We note that this quantity is an arbitrarily chosen quantity and

only gives a qualitative measure of the real contribution of the slipped atom species

to the total plastic deformation.

5.4 Effect of nanostructural morphology

Critical for hardness and resistance to plastic deformation of the metallic nanocom-

posite is the efficient geometrical confinement of the plastic phase by reinforcements.
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Figure 5.4: Visualization of slip vector analysis shows the characteristic atomistic mechanisms

that govern the plastic deformation of biomorphous metallic nanocomposites. Shown are the total

structure (top) and a close view on the interface (bottom). Highlighted areas: (A) Interface shearing,

(B) extended stacking fault, (C) mechanical twin.

The degree of geometrical confinement depends both on the interfacial properties

as well as on the structural morphology. In this section we compare plastic defor-

mation behaviour of the Ni/Al nanocomposite with different nanostructures and

study the importance of platelet morphology for the composite resistance to plastic

deformation. We consider four different samples “Standard“, “Layered“, “Short“

and “Quadratic“ with equal spatial platelet distribution wavelengths but different

platelet morphologies, as shown in Figure 5.5. Morphology “Standard“ consists of

platelets of high aspect ratio that overlap by about 50 % of the platelet length. The

reinforcing platelets in the “Layered“ sample keep minimal spacing in longitudinal

direction and form a quasi-layered substructure. The platelets volume content is

about the same as in morphology “Standard“. The volume content of the platelets
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in morphology “Short“, with the platelet aspect ratio close to one, is much smaller

than in morphology “Standard“ and “Layered“. The quadratic platelets in morpho-

logy “Quadratic“ have the same volume content as in morphology “Standard“ and

are distributed with minimal overlap. The CNA in Figure 5.5 shows different ato-

mistic features of the deformed samples at about 5.6 % of applied strain. The slip

vector analysis is shown on the right hand side in Figure 5.5 where the x-component

of the slip vector is colour coded omitting atoms with slip vector magnitude less

than 0.01 nm.

The computed stress-strain curves are shown in Figure 5.6. We start with compa-

ring the materials response of morphology “Quadratic“ and “Standard“. Note that

both materials have the same volume content of reinforcing platelets. In the initial

elastic response both curves deviate slightly indicating that material “Quadratic“ is

more compliant than material “Standard“ with platelets of high aspect ratio. Both

curves show yielding at the tensile stress of about 1.7 GPa and comparatively small

fluctuations of the flow stress. We consider now the response of material with mor-

phology ’Short’. The volume content of the reinforcing platelets is only half of that

of materials “Quadratic“ and “Standard“. The reduction in stiffness is evident. The

initial yield stress is approximately the same as that of materials “Quadratic“ and

“Standard“. However, after initial yielding the flow stress drops down to a value of

only 50% of the initial yield stress. The material with morphology “Layered“ con-

tains a similar volume content of the reinforcing Ni phase; however, the platelets are

distributed with narrow spacing in loading direction. This configuration gives rise

to high stress concentrations at the platelet front ends. During loading the inter-

face at the front ends can not sustain the high tensile stress and delaminates even

though both the constituents are ductile metals. The result is a sudden drop of the

macroscopic stress level at about 5% strain. However the delamination does not lead

to total failure of the structure. The interfacial cracks do not grow into the soft Al

matrix and the flow stress fluctuates on the same level as in materials “Quadratic“

and “Standard“.

We summarize our observation for nanostructural scaling NC07. The macroscopic

stiffness and strength are found to be invariant to morphological changes such as

variation in platelet aspect ratio. Stiffness and strength are very sensitive to the

volume content of the reinforcing Ni Phase. Narrow platelets spacing gives rise to

partial delamination of the interface at the platelet front ends but does not lower
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Figure 5.5: Comparison of four nanocomposite materials with different nanostructural morpholo-

gies. The spatial distribution wave length of the platelets is kept constant. 4a) Material “Standard“,

4b) Material “Layered“, 4c) Material “Short“, 4d) Material “Quadratic“. Common-neighbour ana-

lysis (left column): The hcp atoms indicate twin boundaries as single blue lines or stacking faults

as double blue lines. Isolated light green dots represent defected atoms of the dislocation cores.

Visualization of slip vector (right column): Shown is the distribution of the x-component of the

slip vector.
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Figure 5.6: Stress-strain curves for materials NC07 with different microstructural morphology as

shown in Figure 5.5 .

the strength of the biomorphous metal nanocomposite.

5.5 Enhanced plastic confinement due to

biomorphous design

To further understand the impact of the design of the interface network on the

macroscopic strength we constructed nanocomposite materials with regular distri-

butions of platelets with quadratic cross-sections. The interface area is equivalent

to that of the biomorphous nanocomposites for the same scaling. Figure 5.7 (left)

shows the CNA for scaling NC08. Only a few partial dislocations can be observed

within the Ni platelets and twin formation occurs predominantly within the Al pha-

se. As described later in more detail, the strength of the regular design is usually

smaller than that of the biomorphous design.
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Figure 5.7: Left: CNA analysis for nanocomposite with regularly distributed quadratic platelets for

scaling NC08. Right: structure of the flawed biomorphous nanocomposite under large applied strain.

Colours represent different atom types (not CNA). The pre-existing interfacial flaw is denoted by

red atoms that do not interact with Al phase (green) at the front-end of the central Ni platelet

(blue).

We also investigated the effect of pre-existing interfacial flaws on the materials per-

formance and tested the flaw tolerance of the biomorphous design. Flaw tolerance is

a key issue for engineering robust materials (Gao et al., 2003; Ji et al., 2004; Buehler

et al., 2006). To model interfacial delamination we constructed Ni atom species that

interact with the Ni atoms only. Figure 5.7 (right) shows part of the interface at

the front-end of the center platelet consisting of Ni atoms (marked in red) that do

not interact with the Al phase. This configuration represents an interfacial Griffith

crack that experiences a pure mode I loading under the tensile loading applied. Du-

ring loading the crack opens up and grows along the interface towards the corners

of the platelet. Under further loading the crack simply blunts without propagating

further into the Al. We insert this type of interfacial flaw into three nanocomposite

structures with different scaling and study the effect on the macroscopic strengths.

Figure 5.8 shows the strength-scaling variation of flawed biomorphous nanocomposi-

tes and nanocomposites with regularly distributed quadratic platelets in comparison

with crack-free biomorphous nanocomposites. The computation of the strength of

the biomorphous designs is described in detail below and is used here for compari-

son. To define the strengthening effect of plastic confinement, an Al base material

was constructed by inserting quadratic Ni inclusions of very low volume contents

in an Al matrix to introduce nucleation sites for dislocations. The material consists

of Al with 60 parts per million (ppm) Nickel content in form of quadratic particles
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with size 5 nm × 5 nm. For a perfect Al single crystal the yield stress obtained by

MD simulation would match the theoretical shear strength, thus a certain defect

microstructure has to be considered in the initial configuration. This material is ta-

ken as the reference material representing effectively the properties of the Al matrix

without reinforcement. The computed strength amounts to 830 MPa (blue line in

Figure 5.8). The regular design exhibits a weaker size dependence in the strength

than the biomorphous design, with a flow stress of around 1.4 GPa for all three vari-

ants tested here. Note that the biomorphous design in contrast shows its maximum

strength and thus very strong size dependence in this length scale regime. The ma-

croscopic strength of the flawed specimens proves to be strongly size dependent. For

scaling NC08 the strength is approximately on the level of the Al base material, and

increases significantly with structural refinement (Figure 5.8). The reduction of the

scaling parameter from 160 nm to 40 nm leads to a strength enhancement of about

25%.
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Figure 5.8: Comparison of size dependent strength between biomorphous, regular and flawed na-

nocomposites.
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5.6 Size dependent interfacial delamination

The observation of interfacial decohesion in Ni/Al nanocomposites with ductile con-

stituents gives rise to the question whether its occurrence is size dependent and how

the damage evolution changes as a function of the nanostructural scaling. Figure 5.9

shows simulation results for three different nanostructural scalings NC06, NC07 and

NC08 for the material morphology “Layered“. No initial flaw has been inserted, but

the decohesion occurs during the loading of the specimens. Note again the sudden

drop of the stress level of material NC07 ’layered’ after interfacial decohesion of the

platelets front ends at about 5% strain. We observe also partial delamination in

scaling NC08 at a larger strain of about 6%. However, the stress decrease is much

slower in this material after decohesion occurs. We observed no interfacial decohe-

sion in scaling NC06 and below. Figure 5.10 shows the tensile stress distributions
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Figure 5.9: Stress-strain curves of the layered like materials shown in Figure 5.10. Note the sudden

drop of the stress level of material NC07 ’layered’ after interfacial decohesion of the platelets front

ends at about 5% strain. Stress decreases much slower in material NC07 ’layered’ after initiation

of decohesion at about 6% applied strain.
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Figure 5.10: Tensile stress distribution σxx in the material normalized with respect to the average

tensile stress σ̄xx. Shown are layered like microstructures for three scalings NC06, NC07 and NC08

at two different strain levels 5.6% (left) and 7.2% (right). Stress is normalized with respect to the

macroscopic stress.

in the different scalings before and after onset of decohesion. Note the stress con-

centration around the delaminated front ends. The interfacial decohesion in scaling

Figure 5.11: CNA visualization of scaling NC06 and NC08 at a large macroscopic strain. Note

the initiation of interfacial delamination in scaling NC08 (left). No delamination occurs in scaling

NC06. However, the platelet front ends undergo severe plastic deformation by twinning formation.
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NC07 leads to a sudden total relaxation of the center platelet which is reflected by

the stress drop of the macroscopic stress. For NC08, in contrast, the center platelet

is still partially intact and carries tensile stress even after the onset of decohesion.

The relaxation of the center platelets is delayed and results in a smooth decay of

the flow stress. The high tensile stresses at the platelet front ends in scaling NC06

do not lead to decohesion at all; however, severe plastic deformation of the platelet

tips appears in the CNA; see Figure 5.11, right. The densely packed blue lines of

hcp atoms denote extensive mechanical twinning.

5.7 Effect of nanostructural scaling on strength

To investigate the scaling effects on the deformation behavior, we consider 9 different

nanocomposite materials with building block sizes d ranging from 10 to 320 nm, see

5.1. The elastic behavior of materials depends on the stretching and bending of

bonds between individual atoms. In polycrystalline and composite materials the
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Figure 5.12: Young’s modulus as a function of building block size d.
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bonds in grain boundaries or interfaces are weaker than the bulk bonds in the grain

or phase interior. With increasing grain refinement the fraction of interfacial atoms

and hence the fraction of weaker bonds increases. Figure 5.12 shows the variation of

Young’s modulus as a function of building block size. The plot includes the bounds

from the two mixing rules of the Reuss and Voigt systems (Gibson, 1994) where the

Voigt upper bound is defined as

EV oigt = ΦEP + (1− Φ)EM (5.3)

and the Reuss lower bound as

1

EReuss
=

Φ

EP
+

(1− Φ)

EM
(5.4)

where EP , EM and Φ are the Young’s modulus of the platelet material, the Young’s

modulus of the matrix material and the volume concentration, respectively. We
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Figure 5.13: Combined plots of stress and slip as a function of applied strain for scalings NC02,

NA05, NC06 and NC08.
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present here simulation results for the different morphologies, where the individual

contributions of dislocation activity in matrix and inclusions and interfacial slip to

the total plastic strain are quantified. As a measure of the contribution of interfacial

slip we defined the accumulated slip of each atom species, see Equation (5.2). It is

seen in Figure 5.13 that plastic deformation and strength of the metallic nanocom-

posites as well as the relative contributions of the different deformation mechanisms

are size dependent. In the coarsest structured material NC08 the contribution of

dislocation slip to the plastic deformation of the individual phases remains constant

throughout the deformation process. With increasing refinement we observe more

interface mediated deformation at the onset of plastic deformation. NC05 shows

the strongest variation where the contribution of interfacial shearing is very high

at the initial yield point and drops down to finally reach a plateau at about 5%

strain. At the same time the contribution of dislocation mediated plasticity in the
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Al matrix increases continuously. The nanostructural scaling strongly affects the

strength of biomorphous metallic nanocomposites. In Figure 5.14 the size depen-

dent macroscopic strength is correlated with interfacial shearing. The flow stress of

the biomorphous material reaches a maximum at an scaling of about 50 nm. This

scaling represents the cross over length scale between interfacial shearing and dislo-

cation glide dominated regimes. Figure 5.14 also includes a fit curve to data points in

the dislocation dominated regime, following the Hall-Petch relationship (2.1) (Hall,

1951; Petch, 1953), where σ0 is the lattice friction stress and k the Hall-Petch con-

stant. The curve is fit to data points within the length scale regime of 50 to 330 nm

and extrapolates the strength-size dependency into the coarse structured regime.

The best fit was obtained for the parameters σ0 = 1.2 GPa and k = 0.11 MPa
√

m.
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5.8 Discussion

Both constituents Ni and Al are intrinsically ductile materials so that the maximum

strength achievable by this material pairing is determined by the flow stress of Ni

being the harder constituent. Because of the mismatch in strength, the plastic flow

within the composite is mainly confined to the Al layers that are locally under shear

loading. Due to the chosen structure, the dislocations are geometrically confined to

narrow Al channels, which effectively strengthen the composite material. The role

of the different deformation mechanisms and the consequence for the mechanical

properties of the composite is discussed in detail in the following sections.

5.8.1 Deformation mechanisms

In our investigation we show a quantitative analysis of the role of dislocation me-

diated plasticity and interfacial shearing as deformation mechanisms. Dislocation

nucleation, dislocation glide, mechanical twinning and interface shearing are obser-

ved at all investigated length scales. The findings from the analysis of the deforma-

tion mechanisms are summarized in table 5.2

The first dislocation nucleation events occur exclusively at the platelet front-ends.

The cross-over from extended partial dislocation to full dislocation dominated pla-

stic deformation takes place within the scaling range from 160 nm to 330 nm. In the

regime from 50 to 160 nm extended partial dislocations and their mutual interactions

as well as their interactions with the interfaces dominate plastic deformation of the

material. In the scaling regime below 50 nm the Al interlayers are mainly transected

Table 5.2: Summary of the size dependent governing deformation modes in biomorphous metallic

nanocomposites.

< 50 nm [50 nm,160 nm] > 160 nm

Onset of Simultaneous nucleation Nucleation of Nucleation of partial

plasticity of extended partials extended partials and full dislocations

in interlayer at platelet front ends near platelet

and interfacial shearing front ends

During Stacking fault formation in Deformation twinning, Nucleation of full

large interlayer accompanied by reflection of extended dislocations

deformation interfacial shearing, twinning partials in interlayer everywhere

by interface shearing
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by extended stacking faults, simultaneously interfacial shearing occurs at the onset

of plastic deformation. At high strains, extensive interfacial shearing is accompanied

by growth of mechanical twins.

The dislocation-interface interaction in the metallic nanocomposite is fundamental-

ly different from that in single-phase nanocrystalline metals, in which dislocations

are pre-dominantly absorbed by grain boundaries (Schiøtz et al., 1999; Schiøtz and

Tolla, 1998; Swygenhoven et al., 2002). In the case of metallic nanocomposites con-

sidered here the plastic deformation in the size regime 20 to 160 nm characterized

by a specific localized flow pattern. Dislocations are strongly confined between the

hard/soft interfaces and travel from their nucleation sites into the Al channel where

they interact mainly by reflection, in rare cases by transmission into the Ni pha-

se. The ability of the interface to reflect incoming dislocations is very important

for the flow stress of the material and is a process that is fundamentally different

from grain boundary dislocation interaction in polycrystals. The effect is due to the

elastic mismatch between Ni platelets and Al matrix that causes a repelling image

force on the incoming dislocations. Even though tangential tractions at the interface

are easily relaxed by the motion of misfit dislocations, the normal component of the

tractions still implies a repelling image force. If interfacial shearing is difficult, this

image force is so large that dislocations do not immediately reach the interface, but

are stalled at a distance to the interface until interfacial shearing is triggered. In this

case dislocation nucleation and motion is limited and a single slip system cannot be

activated more than one time. In the other extreme case of easy interfacial shearing,

the dislocation is simply annihilated by the weak interface – as also observed in

MD simulations of polycrystals – and the corresponding slip system may operate

multiple times.

The behavior of the studied nanocomposite shows an intermediate behavior. On the

first view, the interface seems to be surprisingly weak. Since the interaction of Ni

and Al atoms is strong, one might expect that interface shearing should be of a

very limited importance in this system. However, due to the large lattice mismatch

between the Ni platelets and the Al matrix, the density of misfit dislocations at the

interface is rather high and interfacial shearing occurs easily. The strength of the

interface is reflected in the fact that delamination occurs only under very extreme

conditions and only at high plastic strains. Dislocations can very effectively be ab-

sorbed at free surfaces in the case of such delamination of the interfaces.
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In highly confined metal phases deformation caused by interfacial shearing can only

be accommodated by mechanical twinning and twin boundary migration in the pla-

stic phase. Note that twinning in nanostructured Al has also been reported in the

literature (Schiøtz et al., 1999; Schiøtz and Tolla, 1998; Swygenhoven et al., 2002;

Yamakov et al., 2003, 2002). With increasing refinement the deformation is almost

entirely mediated by interfacial shearing. At ultrafine scales, eventually, the volume

concentration of interface atoms becomes very large so that the material behavior

is governed by the deformation of a quasi-amorphous structure at the interfaces.

5.8.2 Mechanical properties

Flow stress in coarse structured composites is determined by the presence of the

internal interfaces between the soft Al phase and the hard Ni platelets that act as

barriers to dislocation motion. For small structural sizes, the flow stress is mainly

determined by the possibility of dislocation reflection at the interfaces. The initial

samples considered here as atomistic models for the Ni/Al nanocomposite are highly

idealized structures. The high stress levels before the first load drop that indicates

the point of initial yield are caused by the lack of any initial dislocations. The de-

finition of the flow stress as the stress average value within the strain interval of 6

to 8% total strain is therefore necessary. At this stage of deformation a reasonable

defect density has developed within the structure and the shape of the platelets is

fairly rounded off. The biomorphous design that arranges reinforcing hard platelets

of high aspect ratio in a soft ductile matrix is critical for the increase in strength

within the scales from 50 to 160 nm. Below 50 nm the material strength is found to

be invariant with respect to platelet morphology if the volume content of the reinfor-

cing phase is kept constant. Furthermore, the materials strength becomes invariant

to fluctuations of the platelet distribution that could give rise to narrow platelet

spacing below the same scaling of 50 nm. This value seems to be a critical refine-

ment level where the design of the interface network seems to play only a minor role

for the mechanical properties of metallic nanocomposites.

The presence of interfacial flaws at the platelet front-ends dramatically decreases the

strength of the materials above a scaling of about 80 nm. The initial flaws always

grow to cover the entire front-end thus creating a large free surface area. As a result

the effective plastic confinement is strongly damped since dislocations can easily be

absorbed. Below this scale the material exhibits a good flaw tolerance. In this size
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regime the flow stress is determined by a few discrete dislocation processes within

confined Al channels between neighboring platelets. A robust design of hard/soft

metallic nanocomposites requires reinforcements of large aspect ratio to limit the

size of advancing interfacial cracks when the interfaces have only little tensile resi-

stance. The large aspect ratio of reinforcements would be even more important in

case the tensile strength of the interfaces is low.

Conventional polycrystals are known to exhibit strong dependence of strength on

the grain size that causes hardening with increasing refinement (Hansen, 2005). This

behavior has been observed to follow the Hall-Petch relation, see (2.1). Our investi-

gations reveal that nanocomposites with defect free interfaces may show a hardening

effect of the Hall-Petch type within the length scale regime of 50 to 160 nm, see Figu-

re 5.14. The estimated value for the Hall-Petch constant for the investigated Ni/Al

nanocomposite is an overestimation but of the same order of magnitude as obtained

from experimental analysis for pure Al (Hansen, 2005). The background stress σ0,

however, is overestimated by several orders of magnitude by our MD simulations.

This is due to the fact that only a limited number of slip systems are available in the

quasi two-dimensional analysis of perfect structures at 0 K presented in this work.

The commonly excepted explanation of the hardening effect in polycrystals is cha-

racterized by dislocation pile-ups at grain boundaries. In atomistic investigations of

nanocrystalline single-phase metals pile-ups containing a few dislocations have been

observed in size regimes above the maximum strength (Schiøtz and Jacobsen, 2003).

However, formation of dislocation pile-ups are not found in the metallic nanocompo-

sites considered here. The leading dislocations on a single slip plane are eventually

reflected at the Ni/Al interfaces when pushed by local buildup of stresses from fol-

lowing dislocations. The mechanical deformation in the regime of 50 to 160 nm is

rather determined by the motion and interaction of extended partial dislocations as

well as by a small amount of interfacial slip. Stacking faults and twin boundaries are

observed to play the role of dislocation obstacles. Our investigations reveal that the

increasing number of stacking faults and twin boundaries with increasing structural

refinement causes the hardening effect of the Hall-Petch type. In the case of high-

quality interfaces interfacial shearing is the limiting mechanism that causes a strong

decrease in strength below a critical length scale of 50 nm. This observation is in

agreement with the ’inverse Hall-Petch effect’ found for nanocrystalline single-phase

metals (Schiøtz and Jacobsen, 2003; Schiøtz et al., 1999; Schiøtz and Tolla, 1998).
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6 Discussion of interface controlled

plasticity

Now that we have discussed the effect of confinement in the failure and deformation

studies of the specific material problems considered in this work, this chapter turns

towards the main findings regarding interface controlled plasticity, and relates these

to the literature review.

6.1 The natural size of the plastic zone

In this work dislocation dynamics simulations of crack tip plasticity were performed

at a relatively high loading rate because of computational limits. In general, a low

loading rate and a large intrinsic fracture energy both increase the spread of the

plastic zone, the fracture toughness and, hence, the computational costs. Also the

assumed intrinsic fracture energy is rather low compared to real systems, compare

with Lane et al. (2000). However, in the analysis of the critical layer thickness and

bulk fracture toughness we considered the thickness dependence of the normalized

fracture toughness with respect to the intrinsic value to eliminate this effect. Re-

garding the findings at this high loading rate, we expect that the formation of the

localized slip at the crack tip is rather rate independent and so the scaling behavior

for thinner films. However, we expect that the size of the plastic zone and the re-

sulting fracture toughness for thicker films is sensitive to the loading rate because

then the mobility of the dislocations within the bulk of the layer material becomes

more important.

In the absence of geometrical confinement it is found that the size of the plastic zone,

determined by the yield strength and the cohesive strength of the material, deter-

mines the bulk fracture toughness. However the slip localization is not beneficial for

the fracture toughness at large layer thicknesses. This can be seen by considering

the bulk fracture toughness that was found to be lower compared to a model with

113
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Figure 6.1: Contour plot of the crack opening stress at the crack tip and the evolving dislocation

microstructure. Note the localized slip at the crack tip interacting with the bulk plasticity generated

by easily operating sources in the bulk

a homogeneous source distribution, see section 4.2.1.

Interesting is the role of the local yield strength, i.e. the source strength, for slip

localization. We found the largest plastic zone sizes when the cohesive strength was

high but also the local yield strength. Easy source operation in the bulk tends to

reduce the mobility of the dislocations stored in the slip zone at the crack tip and

limits the spread of the plastic zone under the high loading rate.

6.2 The plastic flow under microscale confinement

The plastic deformation that dominates the mechanical behavior of the considered

hard/soft materials under confinement has the following characteristics. Plastic flow

in soft metal volumes originates from stress concentrations (crack tips, platelet cor-

ners) where it is constrained by interfaces of adjoined hard and soft phases. Under

confinement, the emitted dislocations pile up near the interfaces. The back stress

from pile-ups decreases the stress intensity at the operating primary source, but also

increases the stress intensity at the interface. Important for the plastic flow under

confinement is how this secondary stress concentration can be relaxed in order to

allow further relaxation of the primary stress concentration, see Figure 6.2. In the

case of strong interfaces, the high stress intensity at the interface is relaxed by dis-
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Figure 6.2: Mesoscopic simulation with strong interfaces. Sources in the vicinity of the interface

are activated relaxing the stress of the dislocations piling up.

locations that are generated from operating dislocation sources in the vicinity of

the interface as demonstrated in the confined crack-tip plasticity study. This leads

effectively to a resulting dislocation stored in the vicinity of the interface.

The atomistic deformation analysis performed in this work indicates that, in the

case of easily shearing interfaces, dislocation pile-ups at hard/soft interfaces are not

stable resulting in a different relaxation mechanism. Dislocations that are pushed

into the interface get finally reflected accompanied by a finite interfacial slip step.

The reflected dislocations migrate back into the soft phase, see Figure 6.3.

Figure 6.3: Atomistic simulation with weak interfaces. Reflection mechanism of a partial dislocation

in twinning configuration at the interface, before (left) and after (right) reflection. Green atoms

denote interface atoms and dislocation cores, blue atoms denote stacking fault planes.
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6.3 The limiting mechanism under nanoscale

confinement

Our simulation results suggest that for the biomorphous metallic nanocomposite

interface shearing is not a self-containing deformation mode in the sense that it is

independent of other deformation mechanisms, it is rather dislocation-assisted. The

entire deformation mode of the material is rather complex. The Ni/Al interfaces are

under pure shear loading due to the biomorphous design and the hard/soft material

pairing. This local loading condition of the interfaces will certainly facilitate the

reflection mechanism.

However, this type of dislocation reflection mechanism was demonstrated in other

atomistic simulations of Cu-Ni nanolayered materials (Henager Jr. and Hoagland,

2004) where macroscopic loading was applied parallel to the interfaces. They consi-

dered an atomistic model of a gliding pre-existing dislocation in a coherent Cu-Ni

layered system initially containing no misfit dislocations and demonstrated a ”re-

bound mechanism”for the creation of misfit dislocations. In the initial samples, the

2.7 % misfit for cube-on-cube oriented Cu-Ni films is entirely accommodated by

elastic coherency strain when the layers are below the critical thickness for misfit

dislocation formation. Shen (2003), and recently, Shen and Leger (2006) have inves-

tigated the interaction between dislocations and interfaces in thin metal films and

have particulary focused on the meaning of the resistance to interface shearing. Shen

(2003) found for the two extreme cases, when atoms at the interface have the capa-

bility of unrestricted tangential slide, an oncoming dislocation tends to be reflected

by the interface. On the other hand, when the interfacial atoms are not allowed to

slide, the oncoming dislocation tends to be pinned near the interface and becomes

temporarily immobile. Shen and Leger (2006) later introduced a sliding parameter

to specify the maximum allowable sliding distance corresponding to a small local

tangential displacement along the interface. They found that when the interface

atoms are allowed a maximum sliding distance of only 0.5% of the atomic spacing,

the dislocation motion and overall film response are already not very different from

the case of a free sliding interface.

In our atomistic model semi-coherent interfaces form with equally distributed mis-

fit dislocations due to the 13 % lattice mismatch between Ni and Al caused by the

large misfit. The reflection mechanism is expected to be facilitated due to the easy-
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shearing interfaces caused by the dense misfit dislocation network. The reflection

mechanism may be important for the propagation of slip in metallic hard/soft na-

nocomposites at very small scales. Under the condition of geometrical confinement

pure edge dislocations are reflected at the interfaces with the line direction being

parallel to the interface. In this case the incoming dislocation with Burgers vector

b1 is reflected at the interface and glides back into the crystal with b2 under the

action of the applied stress. A residual dislocation with Burgers vector br = b1− b2

remains in the interface. For coherent interfaces, the energy that is required for this

process can be approximated by the self-energy of the residual dislocation br left

behind at the interface. The energetical costs may be substantially lower when easy

shearing interfaces are present due to large lattice mismatch of the two adjoining

phases. Figure 6.4 shows schematically the meaning of interface shearing for the

spread of dislocation based plasticity. At small strains, single residual dislocations

may be accommodated by reacting with the present misfit dislocations that easily

glide along the interfaces. At large strains, successively reflected dislocations can

only be accommodated by extensive interface shearing. The spread of plasticity by

propagation of slip is therefore expected to be controlled by the mobility of the pre-

sent misfit dislocations at small strains, and by the shear strength of the interfaces

for large strains. The local shear stress at the interface is required to overcome the

shear strength in order to activate the reflection mechanism. Thus, the interfacial

shear strength becomes the controlling factor for the spread of the plastic flow at

small scales.
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Figure 6.4: Schematics of the proposed slip propagation mechanism in nanocomposites with easily

shearing interfaces.
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In the crack-tip plasticity study presented in this work the interfaces are assumed to

have infinite resistance. In the mesoscopic dislocation dynamics model the number

of present Frank-Read sources is limited for layer thickness of 300 nm as sources are

homogenously distributed within the layer material. Below 300 nm, the high stres-

ses due to the interface dislocation pile-ups can not be relaxed because there is no

sources available. For easily sliding interfaces in very thin confined metal layer, the

back-stress on the crack-tip source could be relaxed by this reflection mechanism and

further dislocation nucleation right at the crack tip would be possible. Consequently,

it can be speculated that for easily sliding interfaces the fracture toughness of the

layer materials would be higher at very small thicknesses compared to interfaces

with strong bonding.

6.4 Scaling behavior under submicron confinement

Our atomistic and mesoscopic simulation results suggest that the scale dependence is

related to the dislocation mean free path. In case of localized plastic flow originating

at the interfaces, the mean free path is directly related to the scaling of the materials

microstructure and gives rise to a high scaling sensitivity. When the plastic flow is

taken over from the volume material at larger scale it is only indirectly related to

the microstructural scaling. The dislocation mean free path is then a complicated

function of evolving dislocation microstructure.

In our discrete dislocation and molecular dynamics simulations, dislocations are ge-

nerated from randomly distributed bulk sources (DD), respectively, from random

interaction of dislocations in the bulk (MD) and are stored in the material by trap-

ping each other in a random way. When reducing the scaling of the microstructure

(layer thickness, building block size) the plastic flow is more and more localized and

shows a specific flow pattern that is characteristic for the material. Under strong

confinement in a specific size regime, almost all of the dislocations that participate

in the plastic deformation are confined between the hard/soft interface. For confined

crack tip plasticity, in the thickness regime 300 to 1000 nm dislocation activity right

at the crack tip leads to the formation of a compact shielding dislocation array, see

section 4.3.2. The characteristic dislocation array for thin layers, however, is created

by blunting dislocations, i.e. dislocations moving out from the layer material. This
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shielding array consists of dislocations stored close to crack tip and can be seen as

an array of geometrically necessary dislocation that is the most effective dislocation

configuration in the sense that it provides a high shielding factor with a small num-

ber of dislocations. The dislocation array is a source of long-range internal stresses

that increase the stress intensity in front of the initial crack tip and drive cleavage.

We found that also other dislocation configurations may exert shielding on the crack

tip, however, far more dislocations randomly generated within the bulk are necessa-

ry to give the same amount of shielding, see Figure 4.1 a) and b). If the scaling is

increased, i.e. for thicker layers, a cluster of shielding dislocations that are generated

in the bulk material forms ahead of the initial crack tip. This configuration provides

shielding more efficiently than a long single dislocation array interacting with the

background plasticity.

The flow pattern that we found in the atomistic analysis of metallic biomorphous

nanocomposites for the scaling regime 20 to 160 nm is characterized by the localized

slip within the shearing of ductile interlayer, see section 5.8.1. Even though macros-

copically a homogeneous tensile deformation is applied, deformation is microscopi-

cally non-homogeneous as a consequence of the microstructural heterogeneity. The

soft interlayer need to shear simultaneously to allow for a macroscopic homogeneous

tensile deformation. The characteristic flow pattern that causes the shearing of the

metallic interlayer takes place by dislocations traveling from their nucleation sites at

the platelet corners into the Al channel where they interact mainly by the reflection

mechanism with the Ni-Al interface. The strength-scaling curve we deduced from

our analysis seems to bend over on larger scales (d > 160 nm) representing another

regime with less scale sensitivity, see Appendix 5.14. That means that analogously

to the toughness-thickness scaling of confined crack tip plasticity the scaling sensiti-

vity is reduced at larger scales due to a strain hardening behaviorwhen the specific

localized flow pattern interacts with the background plasticity from the material

volume. The strain hardening effect gives rise to a higher flow stress with increasing

density of dislocations.

Furthermore, the transition of the governing deformation mechanism, from extended

partial dislocations to full dislocations, with decreasing scaling is recently correlated

with a plateau for the strength-scaling relationship (Yamakov et al., 2004). In the

case of regularly designed nanocomposites, the strength was nearly constant in the

investigated regime where the occurrence of extended partial dislocations was still
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dominant, see Figure 5.8. However in the case of biomorphous nanocomposites, the

transition in the strength-scaling relationship is clearly correlated to the transition

from dislocation slip to interface shearing.

In the case studies investigated in this work, the mechanical properties of the

hard/soft nanocomposites showed a higher sensitivity to the microstructural sca-

ling within the size regime where the deformation is dominated by a specific flow

pattern of localized plasticity. This regime is characterized by intermittent and corre-

lated motion of interacting dislocations, strain proceeds through uncorrelated events

of individual dislocation nucleations and propagations. The dislocation mean free

path coincides with the characteristic scale of the material, i.e. the layer thickness

or the building block size. With increasing scaling, the evolving specific dislocation

pattern interact with the background plasticity from the material volume. Plastic

deformation is then provided more efficiently by dislocations generated from random

sources in the volume material. On the large scale range (thick layers, large building

block sizes), the scaling sensitivity changes significantly.

6.5 Strong and tough due to bone-like design?

In this work, we studied the generic design concept of biological materials such as

bone or nacre. We focused on a model system for mineralized collagen fibrils where

hard Ni platelets play the role of the hydroxyapatite mineral platelets, and where

an Al matrix simulates the behavior of the soft organic collagen.

6.5.1 The hard/soft material pairing

In real bone, the ratio of the elastic moduli between hard and soft phase is more

than 100 (Jager and Fratzl, 2000). The hard hydroxyapatite phase can considered

to be rigid compared to the soft collagen phase. The breaking of sacrificial bonds in

real bone allows for a pure shear-tension mode as described by Ji et al. (2004). In

our model Ni/Al nanocomposite the mechanical incompatibility is no that signifi-

cant so that we did not observe the expected decohesion at the platelet front ends.

Decohesion was only found under very extreme conditions and only at high plastic

strains. Even though the mechanical dissimilarity between Ni and Al is not that

significant as in the biological mineral/collagen counterpart, the deformation mode

we found is in agreement with experimental findings and corresponds to the theo-
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Figure 6.5: Tensile (top) and shear (bottom) stress distribution in the bone-like nanocomposite

before (left) and right after (right) the yield point.

retical consideration of the shear-tension load transfer mechanism (Ji et al., 2004).

See Figure 6.5(left), macroscopic uniaxial loading σ̄xx is transmitted through tensile

loading of the platelets and shear loading of the soft matrix. At the macroscopic

initial yield point the maximum shear load is reached which the matrix can sustain,

Figure 6.5(right). The stress enhancement σplatelet
xx /σ̄xx, i.e. the platelets longitudi-

nal internal stress divided by the applied stress, is about 1.5. For bone under tensile

strain, stress enhancement factors of 2.8 are reported in the literature (Almer and

Stock, 2005).

6.5.2 The soft phase

It is believed that strength and toughness of the soft matrix become controlling

factors for the mechanical performance of bone (Jager and Fratzl, 2000; Gao et al.,

2003). We found that since the hard phase is not capable of dissipating much energy,

the soft matrix between the hard Ni platelets plays a crucial role by dissipating

energy and redistributing high stresses that occur at the platelet corner. In the case

of a flawed interface the soft phase provides effective shielding. Even though we

found that on large scale interfacial flaws open up to cracks under loading and grow

along the interface towards the corners of the platelet, due to efficient shielding the

crack simply blunts without propagating further into the Al phase.
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6.5.3 The overlapping platelets of large aspect ratio

The amount of mineral is usually thought to determine the stiffness of the fibril.

Our simulations suggest that the properties of the the geometrical arrangement of

the two components have a larger influence on the properties than traditionally ass-

umed, see Figure 5.6. We found that with increasing grain refinement the fraction of

interfacial atoms and hence the fraction of weaker bonds increases, see Figure 5.12.

One may speculate that the larger the aspect ratio the smaller the interface content

that is under tensile load, and hence the smaller the compliance contributed by the

interface. The strength of the confined soft matrix was found to control the mecha-

nical performance of the metallic nanocomposite. The overlapping of the platelets

is very important in two ways. First, the confinement effect strengthens the yielding

soft phase. At large strains, where the platelets are pulled with respect to each other,

due to the large aspect ratio the strengthening effect is still maintained so that the

flow stress keeps a constant level. Second, the toughening effect under tensile loading

in direction of the platelets is great when the aspect ratio is high since large amounts

of energy can be absorbed by successive plastic shearing of the metallic interlayer

and finally interfacial shearing after saturation of dislocation activity.

6.5.4 The nanoscale

It has been reported (Jager and Fratzl, 2000; Gao et al., 2003) that the overall

mechanical performance of the fibril depends crucially on the shear properties of

the organic matrix. The small dimensions (a few nanometers) of both, the mineral

particles and the organic layers between them, were proposed to be essential to

ensure the mechanical performance of the tissue (Jager and Fratzl, 2000; Gao et al.,

2003). We tested the effect of the scaling on both strength and flaw tolerance of the

metallic nanocomposite. Notably, we find for the bio-inspired design the maximum

strength (highest level of flow stress) and flaw tolerance (flow stress invariance with

respect to flaws) is achieved at the same length scale (50 nm).

6.6 Critical view on the models

6.6.1 Applicability of the numerical tools

The computational burden of mesoscopic DD simulations is oftentimes underesti-

mated even in the two dimensional case compared to atomistic simulations. Clearly,
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both tools address different time and length scales. The underlying theory of the

mesoscopic model is linear elasticity. Introducing image forces due to the two ex-

treme cases of free surfaces or fully constrained boundaries already causes extra

computational burden, however, the problem remains linear. The computational

time required for the analysis of interface controlled plasticity problems increases

drastically because the combined DD/CZ model involves complex boundary condi-

tions. The complexity comes from the non-linear constitutive law of the cohesive

zone model that is introduced when crack growth or interface shearing and opening

is considered. The constitutive relationships for the atomistic simulation specifying

the interaction between the atoms are intrinsically non-linear. The presence of in-

terfaces is therefore irrelevant for the computational time involved.

The setup of an efficient combined DD/CZ model is characterized by the compro-

mise between numerical accuracy and computational time. Practically, the accuracy

should be measured based on the macroscopic mechanical property that is the ulti-

mate output of the analysis. However, it must be noted that the necessary discreti-

zation refinement of the cohesive zone is also related to the considered parameter

range of the cohesive zone model. The application of the mesoscopic model to a new

problem requires a phase of preliminary testing in order to develop a robust algo-

rithm. This is generally the case when the analysis evolves numerical integration,

however, particulary important in a crack growth analysis. The numerical resoluti-

on of crack advance is strongly related to the activation of sources, dislocation slip,

and hence, to the computed fracture toughness. In consequence, the application of

mesoscopic tools is less flexible.

6.6.2 Physical description of the deformation mechanisms

The geometric restriction due to the plane strain approximation in the atomistic

model restricts in-plane plastic deformation in the soft Al phase to the nucleation

and motion of 60◦ dislocations. Dislocation nucleation and motion are both affected

by this restriction. In the quasi two-dimensional model stacking faults can be gene-

rated more easily compared to the situation within a three dimensional structure.

Even though aluminium has a high stacking fault energy compared to other fcc me-

tals, our model material for the soft phase corresponds rather to a metal with low

stacking fault energy. Furthermore it should be noted that in fully three dimensional

structures the nucleation of dislocations from interfaces depends on the scaling, i.e.
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there is a scaling dependence of the threshold stress to nucleate a dislocation from

the interface. This relation is not represented in the atomistic model. However, the

macroscopic strength that we deduce from out atomistic model is related to the

flow stress at large plastic strains which is determined by the confinement effect on

dislocation motion and not by the dislocation nucleation process.

6.7 Outlook

The DD/CZ model presented in this paper will be employed to understand the

competition between crack growth and dislocation nucleation for a crack that may

atomically blunt during dislocation formation. Surprisingly, on the dislocation dy-

namics scale the effect of crack tip blunting has only been addressed secondarily.

The results from the sharp crack tip model assesses the impact of finite crack tip

blunting for the competition of crack reinitiation versus dislocation nucleation. Ul-

timately we will attenuate the role of near interfaces for this competition. Is the

discrepancies between DD simulations and experimental results regarding the order

of the characteristic length scale caused by the neglect of shape change of the crack

tip?

Especially mesoscopic approaches have great potential in validating continuum me-

thods based on strain gradient theories and can help to put continuum theories on

a more physically solid basic. We did not evaluate the dislocation distribution with

respect to volumes containing net Burgers vector in our atomistic simulations as we

did not expect high strain gradients near the weak interfaces. However, geometri-

cally necessary dislocations with respect to long-range internal stresses in the sense

of Mughrabi (2006) seem only to play a role in the regime above 160 nm. In future

we will try to access the scaling behavior in the large scale regime by a discrete

dislocation model of hard/soft composite to model the symmetrical multiple slip

in the soft phases and to identify the formation of net Burgers vectors in the in-

terface regions. See the simulated dislocation microstructure in Figure 6.6 (right),

the stresses are rather high within the platelets due to the occurrence of super-

dislocations at the interfaces. The bio-inspired design concept for strong and tough

material investigated here for the first time provides a solid basis to extend future

research in the following steps. (I) Based on the results obtained for the atomistic

model that was fully described through EAM potentials, we can now start to make

reasonable approximations to reduce the computational costs: since the platelets do



- 6.7 Outlook 125

not deform plastically, they can be modeled by simple biharmonic potentials. Such

a model would allow studying the effect of elastic mismatch by varying the stiffness

of the platelets. Computational costs could be reduced significantly by modeling

the platelets simply as rigid solids, a reasonable assumption considering real bone

tissue. (II) Several questions can be asked from a physical point of view. Does the

deformation mode or the deformation mechanisms change when the platelets are

discontinuous in all directions as in bone? What is the meaning of interface shearing

in this case? Furthermore, what is the influence of the crystal orientation? Do we

still see the strong scaling dependence when the slip planes are aligned parallel to

the platelets? (III) The research potential of this material is also fascinating consi-

dering engineering aspects. In order to investigate the effect of interface strength on

the mechanical performance we plan to employ a simple Lennard-Jones potential for

the interface description that would introduce controlling parameters for the inter-

face strength.(IV) Eventually one may think of using a gel-like material for the soft

phase that mimics collagen more realistically. Such a highly viscous polymer would

introduce a strong loading rate sensitivity. At low loading rates, due to confinement
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Figure 6.6: Tensile stress redistribution in the biomorphous metallic nanocomposite on the atomi-

stic scale (top; scale is in Å ) and on the mesoscopic scale (bottom, scale is in nm)
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the fluid-like material would still maintain its mechanical integrity and respond as

a soft deformable solid. Under very high loading rates, however, it would respond

ultra-hard.



7 Conclusions

7.1 Mesoscopic modeling

This works presents an combined two dimensional dislocation dynamics (DD) - cohe-

sive zone (CZ) model to analyze the dynamics of discrete dislocation (DD) problems

in two dimensions accounting for the interaction of cohesive boundaries, interfaces

and cracks with a dislocation microstructure. The underlying boundary value pro-

blem of dislocations in a finite elastic medium is solved with a Greens function

approach. Frank-Read like sources are distributed homogenously in the plastic layer

containing two slip systems. A cohesive zone model of trapezoidal shape is imple-

mented to describe crack propagation. It needs fracture energy and maximum tensile

strength of the interface as input parameters (Broedling et al., 2006).

The combined DD/CZ is a valuable tool for understanding the complex interplay

of dislocation plasticity with small-scale boundary conditions which interact to con-

trol fracture and deformation in nano- and microstructured metallic composites.

The Green’s function approach is, though not very flexible in it its application, a

computationally efficient method to consider nano scaled structures such as sharp

and blunt crack tips as well as bulk behavior of nanocomposites. The focus on the

numerical parameters involved in DD/CZ modelling yields that the influence of the

random source distribution can give rise to statistical fluctuation in the fracture

toughness of about 5-10% without changing significant trends in other parameters.

The variation of the shape of the traction-separation law leaves results unchanged

within 5%.

7.2 Confined crack tip plasticity

The two dimensional combined DD/CZ model is employed to study the fracture

mechanism of a layered composite material. Frank-Read like dislocation sources are

distributed homogenously in an elastic-plastic layer sandwiched within elastic regi-

127
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ons. The competition between nucleation and motion of shielding dislocations and

the crack propagation determines the amount of plastic energy dissipation and thus

the fracture toughness. A general result is that fracture toughness scales with the si-

ze of the plastic zone. This leads to an embrittlement of the layered structure due to

geometrical confinement. However, even in the absence of geometrical confinement

it is found that the size of the plastic zone, now determined by the yield strength

and the cohesive strength of the material, decides on its bulk fracture toughness

(Broedling et al., 2008b).

The results of the numerical model show that fracture of the layered structure un-

dergoes a transition from ideally brittle to bulk behaviour with increasing layer

thickness. The critical layer thickness at which the bulk fracture toughness of the

elastic-plastic material is reached as well as the bulk fracture toughness itself incre-

ase with the cohesive strength of the interface, but become smaller for higher yield

strengths. Fracture toughness as a function of layer thickness saturates gradually if

dislocation activity is dispersed, dilute and not compact around the crack tip and

increases abruptly within the layer thickness range of 300 to 1000 nm when dislo-

cation activity right at the crack tip is possible and a compact array of shielding

dislocations forms near the crack tip. While the slip localization is beneficial for the

fracture toughness at small layer thicknesses, the bulk fracture toughness is found

to be slightly lower compared to a model with a homogeneous source distribution.

Nucleation of dislocations on sources away from the crack tip increases the density

of shielding dislocations in front of the crack and thus shields the crack after it starts

to propagate. This leads to a jump like crack advance, with periods of crack arrest

in regions where groups of dislocations elastically shield the crack from the applied

load. While in thicker layers crack growth is thus stable over some distance, crack

arrest in very thin layer materials seems to be more difficult. This is caused by the

back stress from the dislocation array near the crack tip that adds to the applied

load and by the comparatively small density of shielding dislocations in front of the

crack tip.

7.3 Size effects in metallic nanocomposites

A bio-inspired design concept of a dual phase hard/soft metallic nanocomposite

is investigated on the example of a Ni/Al system under uniaxial loading (Broed-



- 7.4 Summary of main findings 129

ling et al., 2008a). The study is restricted to nanocomposites with regular platelet

distributions in a quasi-two-dimensional geometry, i.e. the platelets are considered

infinitely long in the third direction by virtue of periodic boundary conditions. This

quasi-two-dimensional model allows us to study size dependent mechanical proper-

ties over a wide range of characteristic length scales under realistic quasi-static

loading conditions. The characteristic length scale of the nanocomposite is given by

the distribution wavelength of the embedded platelets in loading direction.

The investigations on size dependent plasticity of biomorphous metallic nanocompo-

sites with self-similar nanostructures reveal that dislocation nucleation, dislocation

glide, deformation twinning as well as interfacial slip and decohesion occur on all in-

vestigated length scales. However, quantifying the contribution of dislocation-based

plasticity and interface-mediated interfacial slip as a function of the nanostructu-

ral scaling shows clearly that a transition in the dominant deformation mechanism

occurs from interfacial sliding at small length scales to dislocation processes at lar-

ger length scales. In the structures considered here, this transition takes place at a

length scale of 50 nm. Notably, we find a maximum in the calculated flow stress at

the same length scale. For larger length scales the geometric constraint on disloca-

tion processes is relieved and the strength of the material decreases steadily. Our

simulations show that the strength within the regime of 50-160 nm scales in agree-

ment with the Hall-Petch relation. Below 50 nm, softening occurs due to interfacial

sliding as is confirmed by a slip vector analysis.

The presence of interfacial flaws dramatically decreases the strength above a length

scale of 80 nm, below this scale the material exhibits a good flaw tolerance. Chan-

ges in structural morphology with respect to the platelet distribution and platelets

aspect ratio have an influence on the strength of the nanocomposite even at small

scales, but only if the mean free path of dislocations is affected. Our simulations

indicate that a larger mean free path means a softer material, even if the volume

content of hard inclusions is the same.

7.4 Summary of main findings

Dislocation mean free path determines scaling behavior

The scale dependence is related to the dislocation mean free path. In case of localized

plastic flow originating at the interfaces, the mean free path is directly related to the
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scaling of the materials microstructure and gives rise to a high scaling sensitivity.

When the plastic flow is taken over from the volume material at larger scale, the

dislocation mean free path is a complicated function of the evolving dislocation

microstructure which is only indirectly related to the microstructural scaling.

The role of interface sliding

For biomorphous metallic nanocomposites, interface sliding is not a self-containing

deformation mode in the sense that it is independent of other deformation mecha-

nisms, it is rather dislocation-assisted. Interface sliding plays a similar role at the

nanoscale that geometrical necessary dislocations play at the microscale. Both the

formation of geometrical necessary dislocations and interface sliding are essential

to accommodate the inhomogeneous plastic deformation in hard/soft composites.

However, where the strength increases due to the presence of geometrical necessa-

ry dislocations on the microscale, the presence of interface sliding at the nanoscale

leads to dramatic reduction in strength with decreasing scale.

Interface properties determine the limits of strength

This general conclusion is drawn from a continuum point of view. The interfaces in

metallic nanocomposites are sources of strain gradients due to the dissimilar yield

strengths of soft and hard phases. The magnitude of the strain gradients depend on

the microstructural scaling. The smaller the scaling the higher the strain gradient

in order to accommodate the local deformation. At the limit of ultra confinement

the strain gradients become very large. The plastic strain distribution appears to

be discrete. On this scale the mechanical behavior is totally determined by the

tangential interface strength. Can the interface sustain the high stresses associated

with the steep strain gradient? If the interface is strong, the ductility of a soft

volume material may cease causing embrittlement due to confinement (Broedling

et al., 2008b). In the other limit of a weak interface, a strong composite becomes

soft (Broedling et al., 2008a).
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8.1 Einleitung

Grenzflächenbestimmte Materialsysteme, wie z.B. Schichtmaterialien oder nanokris-

talline Materialien, sind aufgrund geometrischer Einengung der Plastizität durch

Längenskalen-abhängige Materialeigenschaften gekennzeichnet. Verformung und Ver-

sagen sind bestimmt durch die Eigenschaften der Grenzflächen und durch Größen-

effekte auf die vorherrschenden Verformungsmechanismen. Die vorliegende Arbeit

setzt sich zum Ziel, durch Modellbildung und Simulation Größeneffekte und ska-

lenabhängige Materialeigenschaften von nanostrukturierten, zweiphasigen Kompo-

sitmaterialen auf der atomaren und mesoskopischen Skala aufzuklären.

Die zwei untersuchten Materialsysteme sind von großem technischem und wissen-

schaftlichem Interesse. Dünne Schichtmaterialien werden in großer Breite in mi-

kroelektronischen Bauteilen eingesetzt. Forschungsgegenstand war bisher die plasti-

sche Verformung in solch eingeengten Systemen. Aber eine genaue Betrachtung des

Bruchversagens und der Delamination unter geometrischer Einengung der plasti-

schen Zone fehlt bisher in der Literatur. Die Möglichkeit der Versetzungsentstehung

in der Rissspitzenumgebung ist für das Verformungsverhalten, für die Abschirmung

des Risses und somit für die Vermeidung von Sprödbruchversagen äußerst wichtig.

Im Rahmen dieser Arbeit wurde ein mikromechanisches Modell entwickelt, mit dem

das Spaltbruchversagen eines zweiphasigen Schichtmaterials unter Berücksichtigung

der kollektiven Versetzungsbewegung in der Nähe einer fortschreitenden Rissspitze

simuliert werden kann.

Das zweite Materialsystem stammt aus dem Gebiet der biomimetischen Werkstof-

fentwicklung und der Grenzflächentechnik. Strukturverfeinerung als ein wichtiger

Härtungsmechanismus ist eng verknüpft mit der Behinderung des Versetzungsglei-

tens durch Grenzflächen während der Verformung. Gemäß theoretischen Überle-

gungen muss es jedoch auf der Nanoskala eine Grenze für die maximal erreichbare

Festigkeit geben. Diese untere Grenze ist durch den Wechsel des vorherrschenden

131
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Verformungsmechanismus festgelegt. Viele natürlich vorkommende Nanokomposi-

te, wie z.B. Spinnenseide oder Perlmutt, sind Vorbilder für feste und gleichzeitig

zähe Materialen aufgrund einer besonderen Nanostrukturierung. Die überragenden

Eigenschaften beruhen auf einem parallel ausgerichteten Aufbau der Mikrostruk-

tur. In dieser Arbeit wurde ein bio-inspiriertes Materialkonzept für extrem harte

und gleichzeitig zähe Materialien getestet. Die Untersuchungen liefern erste grund-

legende Erkenntnisse über die entscheidenden Verformungsmechanismen und die

kritische Längenskala, die die Festigkeit des Pendants eines biomimetischen Metall-

Nanokomposits bestimmen.

8.2 Methoden

8.2.1 Mesoskopische Modelle für Kleinbereichsplastizität

In der vorliegenden Arbeit wird ein gekoppeltes Kohäsivzonen-/ Versetzungsdy-

namikmodel für 2D Probleme der Kleinbereichsplastizität entwickelt (Broedling

et al., 2006). Das mikromechanische Modell berücksichtigt die Wechselwirkung ei-

ner Versetzungsmikrostruktur mit Grenzflächen oder einem Riss. Die Auswertung

der Peach-Koehler Kraft führt auf ein Versetzungsrandwertproblem, bei dem die

Versetzungs-Grenzflächen-Wechselwirkung mit Hife des Superpositionsprinzips der

linearen Elastizitätstheorie abgespalten wird, siehe hierzu Abbildung 3.5. Die nu-

merische Lösung des dem Modell zugrunde liegenden Versetzungsrandwertproblems

erfolgt über einen Ansatz mit Greenschen Funktionen. Die Versetzungsplastizität ist

durch die Nukleation von Stufenversetzungen an Frank-Read-artigen Quellen und

deren Bewegung auf zwei Gleitsystemen beschrieben, siehe Abbildung 8.1. Der Riss-

fortschritt ist durch ein Kohäsivzonenmodell erfasst, das durch Zugfestigkeit und

Bruchenergie als Eingangsparameter spezifiziert wird. Das mikromechanische Mo-

dell wird anschließend erweitert, um einerseits Rissspitzenfelder an stumpfen Rissen

numerisch zu modellieren sowie andererseits das Volumenverhalten von zweiphasi-

gen Metallmatrix-Verbundwerkstoffen unter Berücksichtigung innerer Grenzflächen

beschreiben zu können.

Bruchversagen duktiler Schichten

Das 2D Modell beschreibt die Prozesszone in der Nähe der Rissspitze eines Mo-

dus I belasteten Risses unter Annahme eines ebenen Verzerrungszustandes und un-

ter Ausnutzung der Spiegelsymmetrie des Problems. Dabei wird die Rissspitze als
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Abbildung 8.1: Schematische

Darstellung des gekoppelten

Kohäsivzonen-/ Versetzungsdyna-

mikmodels zur Beschreibung eines
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der Nahbereich eines viel längeren endlichen Risses betrachtet, siehe Abbildung 8.1.

Die Abbildung zeigt lediglich die rechte Rissspitze mit der Kohäsivzone, die durch

eine Spannungs-Rissöffnungs-Beziehung (TS-law) charakterisiert ist. Die Auswer-

tung der Peach-Koehler-Kraft führt auf ein reines Spannungsrandwertproblem für

einen halb-unendlichen Raum, das mit der Methode der virtuellen Versetzungen

gelöst wird (Hills et al., 1996). Die numerische Integration des sich daraus ergebe-

nen Systems aus Randintegralgleichungen erfolgt mit der Kollokationsmethode.

Als Anfangsbedingung für die Simulationen wird ein versetzungs- und spannungs-

freies Material angenommen. Die Spannungsintensität wird mit einer konstanten

Rate inkrementell erhöht. Der Simulationsalgorithmus beinhaltet neben der Verset-

zungsmultiplikation (Frank-Read-Quellmechanismus), der zeitlichen Integration der

Versetzungsbewegung (Annahme eines viskosen Versetzungsgleitens) und der Er-

fassung elementarer, kurzreichweitiger Versetzungswechselwirkungen (Versetzungs-

blokade, Dissoziation) auch die numerische Auswertung der Peach-Koehler-Kraft

unter Berücksichtigung der langreichweitigen Versetzungs-Kohäsivzonenwechselwir-

kung. In dieser Arbeit wird ein trapezförmiges Kohäsivzonenmodell (Tvergaard and

Hutchinson, 1993) implementiert, wodurch eine nicht-lineare Materialantwort indu-

ziert wird. Die Lösung des Versetzungsrandwertproblems erfolgt iterativ durch ein

semi-implizites Prediktor-Korrektorverfahren und Linearisierung des Kohäsivzonen-

gesetzes, siehe hierzu das Flussdiagram in Abbildung 3.2. Dieses Vorgehen ergibt sich

aus der zeitlichen Auflösung der Versetzungsprozesse, die einen sehr kleinen Zeit-

schritt erfordert. Der effektive Abschirmungsintensitätsfaktor der Rissspitze ergibt

sich aus der Differenz der lokalen und globalen Spannungsintensitätsfaktoren. Diese

werden numerisch durch Auswerten des J-Integrals berechnet, siehe hierzu Abbil-

dung 3.7.
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Modell für stumpfe Rissspitzen

Das mesoskopische Modell für stumpfe Rissspitzen ist motiviert durch die Diskre-

panz zwischen Simulationsergebnissen aus Versetzungsdynamikmodellen und Ergeb-

nissen aus Experimenten in Bezug auf die Größenordnung der charakteristischen

Längenskala, auf denen eine Wechselwirkung zwischen Rissspitze und Grenzfläche

beobachtet wird (Vehoff, 2007). Die unterschiedlichen Größenordnungen können auf

die Annahme eines scharfen Risses in DD Simulationen zurückgeführt werden, wo-

durch die plastische Zone lokal auf einen kleinen Bereich an der Rissspitze begrenzt

bleibt.

In dem Modell für stumpfe Risse wird ein mit einem fokussierten Ionenstrahl erzeug-

ter Anriss als halbkreisförmige Rissspitzengeometrie modelliert. Das diesem Modell

zugrunde liegende Randwertproblem ist für ein endliches, die Rissspitze umfassen-

des Gebiet formuliert, siehe hierzu Abbildung 3.11. Für die numerische Integration

der Randintegralgleichungen werden Randelemente auf Basis von Verschiebungsdis-

kontinuitäten verwendet. Dieses Vorgehen hat gegenüber der Methode der virtuellen

Versetzungen den Vorteil, dass bei geknickten Rissen keine zusätzlichen Übergangs-

bedingungen implementiert werden müssen, siehe (Hills et al., 1996). Im Modell

für stumpfe Risse wird die äußere Belastung durch geeignete Verschiebungsrandbe-

dingungen entsprechend eines im Modus I belasteten Risses auf Randsegmenten weit

weg von der Rissspitze simuliert.

Verformung von Metallmatrix-Verbundwerkstoffen

In der Literatur sind Versetzungsdynamik-Simulationen nur für kristalline Volumen-

materialien oder Nanokomposite mit kohärenten Grenzflächen beschrieben worden.

Die Grenzflächen waren dabei entweder durch ihre diskontinuerlich veränderlichen

elastischen Eigenschaften (Cleveringa and Van der Giessen, 1999; Cleveringa et al.,

1997) und/oder als für Versetzungen undurchdringlich modelliert worden (Cleve-

ringa and Van der Giessen, 1999; Cleveringa et al., 1997; Biner and Morris, 2003,

2002). Atomistische Simulationen zeigen jedoch, dass die Grenzflächeneigenschaf-

ten in grob strukturierten Kompositen einen großen Einfluss auf die makrosko-

pischen mechanischen Eigenschaften haben. Zum Beispiel können schon kleinste

Grenzflächenanrisse die Festigkeit eines grob strukturierten Metallmatrix-Komposits

extrem verringern (Broedling et al., 2008a).

Das Ziel in dieser Arbeit ist die Entwicklung eines Simulationswerkzeugs für die
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Untersuchung des Volumenverhaltens von Metallmatrix-Kompositwerkstoffen mit

Auflösung der mikroskaligen Versetzungsprozesse und des Grenzflächengleitens. Die

wesentlichen Änderungen bestehen in der Implementierung einer periodischen Si-

mulationszelle zur Beschreibung der Volumenverformung eines representativen Vo-

lumenelementes (RVE), siehe Abbildung 3.18 und Abbildung 3.19. In dem Modell

wird die äußere Belastung durch eine im makroskopischen Sinne homogene Dehnung

aufgebracht. In der Implementierung der Periodizitätsforderung sind alle makrosko-

pischen Größen - auch die äußere Belastung - als Mittelwerte der lokalen mechani-

schen Felder definiert. Die mechanischen Felder (Spannungen und Verschiebungen)

können auf dem Rand der Simulationszelle um diese Mittelwerte fluktuieren.

8.2.2 Atomistisches Modell für metallische Nanokomposite

Einen weiteren Schwerpunkt in der vorliegenden Arbeit bildet der Einsatz großskali-

ger Molekulardynamik zur Simulation zweiphasiger metallischer Nanokomposite mit

einer nanoskaligen Strukturmorphologie ähnlich der in biologischen Nanokompositen

(Knochen, Perlmutt), siehe Abbildung 5.1. Hierbei steht die Analyse der vorherr-

schenden Verformungsmechanismen im Vordergrund. Das betrachtete atomistische

Ni/Al-Modellsystem besteht aus harten, nano-dimensionierten Ni-Plättchen, die in

einer Al-Matrix eingebettet sind. Die Untersuchungen sind beschränkt auf Nanokom-

posite mit gleichmäßig verteilten Plättchenanordnungen in quasi-zweidimensionalen

Strukturen, d.h. die Plättchen werden in der dritten Raumrichtung als unendlich

ausgedehnt betrachtet. Durch die Reduktion der Dimension ist es möglich, die Simu-

lationen unter realistischen quasi-statischen Belastungsbedingungen durchzuführen

und so dynamische Effekte aufgrund von hohen Belastungsraten zu vermeiden. Die

simulierten [110] texturierten kolumnaren Nanostrukturen bestehen aus zwei Kom-

ponenten (Ni und Al) mit der gleichen kristallographischen Orientierung. Die Orien-

tierung und die aufgebrachten periodischen Randbedingungen erlauben Versetzungs-

nukleation und Versetzungsbewegung auf effektiv nur zwei, zur Belastungsrichtung

±60◦ geneigten Gleitsystemen, siehe Abbildung 5.1.

Die mechanischen Eigenschaften werden mit dem am Institut für theoretische und

angewandte Physik, Universität Stuttgart, entwickelten, parallelen Molekulardy-

namik-Code “IMD“ berechnet (Stadler et al., 1997). Zur Simulation einer einachsi-

gen, quasi-statischen Zugbelastung werden geringfügige Modifikationen an dem Co-

de vorgenommen. Die Beschreibung der interatomaren Wechselwirkung wird mit ei-
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nem embedded atom (EAM) Wechselwirkungsmodell (Ludwig and Gumbsch, 1995)

realisiert. Dieses Modell eignet sich belegterweise gut für eine realistische Beschrei-

bung der interatomaren Kräfte entlang von Ni/Al Grenzflächen. Zur Identifizierung

der Nukleation und Bewegung von Defekten werden in dieser Arbeit die common

neighbour analysis (CNA) und die Gleitvektor-Analyse eingesetzt. Die Berechnung

des Gleitvektors folgt dem Vorschlag von Zimmerman et al. (2002). Während die

CNA verwendet wird, um Atompaare hinsichtlich ihrer lokalen Umgebung zu klas-

sifizieren und dadurch Versetzungskerne, Stapelfehler und andere Defekte der kris-

tallinen Struktur nachweisen zu können, wird der Gleitvektor als Maß verwendet,

um das Auftreten von Gleitmechanismen sowohl in den duktilen Komponenten als

auch in den Grenzflächen zu quantifizieren.

8.3 Ergebnisse und Diskussion

8.3.1 Skalenabhängige Bruchzähigkeit dünner Schichten

Einfluss der mikrostrukturellen Umgebung an der Rissspitze

Es werden sowohl der Einfluss der lokalen Quellverteilung als auch die Quellvertei-

lungsdichte untersucht. Für dünne Schichtmaterialien mit einer Schichtdicke unter

300 nm ist das Bruchverhalten durch die lokale Quellverteilung selbst und nicht

mehr durch deren Dichte kontrolliert. Deswegen wird angenommen, dass in diesem

Größenbereich die Möglichkeit der Versetzungsnukleation direkt an der Rissspitze

das Bruchverhalten dominiert und der Einfluss von Volumenquellen vernachlässig-

bar ist, siehe Abbildung 4.1. In den vier Simulationen eines 1 µm dicken Schicht-

materials werden für das Volumenmaterial unterschiedliche Quelldichten angenom-

men. Zusätzlich wird für die Materialien in Abbildung 4.1 b), c) und d) eine Riss-

spitzenquelle nahe der Rissspitze berücksichtigt, siehe Abbildung 4.1 a) und b).

Für das Skalierungsverhalten ergibt sich, dass die Bruchzähigkeit dünner Schichten

(h < 1000 nm) durch die Versetzungsnukleation direkt an der Rissspitze kontrolliert

wird, siehe Abbildung 8.2. Der Einfluss der Volumenquellen zeigt sich nur für dicke

Schichten (h > 1000 nm) durch eine Änderung der Bruchzähigkeit des Volumenma-

terials, die das Material im Grenzfall sehr dicker Schichten erreicht.
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Abbildung 8.2: Normierte

Bruchzähigkeit als Funktion der

Schichtdicke für vier verschiedene

Quellverteilungen, siehe auch

Abbildung 4.1.
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Einfluss der intrinsischen Materialeigenschaften

Die Bruchzähigkeit als Funktion der Schichtdicke geht graduell in eine Sättigung

über, wenn die Versetzungsprozesse an der Rissspitze breit verteilt sind. Sie steigt

jedoch im Bereich 300− 1000 nm sprunghaft an, wenn an der Rissspitze lokalisierte

Gleitprozesse möglich sind und eine kompakte Versetzungsreihe von abschirmenden

Versetzungen gebildet werden kann. Die numerischen Simulationen zeigen, dass das

analytische “Superversetzungsmodel“ von Hsia et al. (1994) den Abschirmungsef-

fekt lokal an der Rissspitze auftretender Gleitprozesse unterschätzt und den daraus

resultierenden sprunghaften Anstieg der Bruchzähigkeit nicht abbildet. Im Fall von

lokal an der Rissspitze auftretenden Gleitprozessen kann das Skalierungsverhalten

durch die Bruchzähigkeit des Volumenmaterials und durch die kritische Schichtdi-

cke beschrieben werden, bei der die Bruchzähigkeit des Schichtmaterials 95% der

Bruchzähigkeit des Volumenmaterials erreicht (Broedling et al., 2008b). Die nume-

rischen Ergebnisse machen den starken Einfluss der kohäsiven Festigkeit, der int-

rinsischen Bruchzähigkeit und auch der Fließfestigkeit auf das Skalierungsverhalten

deutlich, siehe Abbildung 8.3. Unter anderem zeigt sich, dass bei einer Verdopp-

lung der kohäsiven Festigkeit die Bruchzähigkeit des Volumenmaterials um 10%

und die kritische Schichtdicke um 20% ansteigt. Einen großen Einfluss hat auch

die intrinsische Fließfestigkeit des Volumenmaterials. Wenn beispielsweise die Ver-

setzungsnukleation durch eine Verdopplung der Fließfestigkeit erschwert wird, fällt

die Bruchzähigkeit des Volumenmaterials um 20% ab und die kritische Schichtdicke
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Abbildung 8.3: Bruchzähigkeit des Volumenmaterials (a)) und kritische Schichtdicke (b)) als Funk-

tion der kohäsiven Festigkeit für unterschiedliche Fließfestigkeiten. Kurven entsprechen zwei Quell-

dichten ρsrc = 80 (µm)−2 (gefüllte Symbole), ρsrc = 120 (µm)−2 (offene Symbole) und drei unter-

schiedlichen Fließfestigkeiten σsrc = 0.05GPa, 0.1GPa und 0.15GPa.

um sogar 80%. Weiterhin zeigen die numerischen Untersuchungen, dass in dicke-

ren Schichten ein instabil fortschreitender Riss zum Stillstand kommen kann, wenn

die Rissspitze auf eine Versetzungsquelle trifft, die in kurzer Zeit eine Reihe von

Versetzungen mit stark abschirmendem Charakter emittieren kann. Dieses Verhal-

ten wurde für Volumenmaterialien auch von Cleveringa et al. (2000) beschrieben.

In sehr dünnen Schichten kann man jedoch davon ausgehen, dass dieses Verhalten

nicht auftritt, da sich zeigt, dass durch den emittierten primären Versetzungsaufstau

eine hohe Spannungsintensität vor der Rissspitze induziert wird, die die auf den Riss

wirkende treibende Kraft stark erhöht (Broedling et al., 2008b).

8.3.2 Größeneffekte in bioinspirierten Metall-Nanokompositen

Die charakteristische Längenskala des bio-inspirierten metallischen Nanokomposits

ist durch die Verteilungswellenlänge d (building block size) der eingebetteten Plätt-

chen gegeben. Die Untersuchung der skalenabhängigen Verformungsmechanismen

und Materialeigenschaften erfolgt anhand von neun selbstähnlichen Nanostruktu-

ren, siehe Tabelle 8.1.

Die Festigkeit des Materials wird in Analogie zu Schiøtz and Jacobsen (2003) als die

mittlere Fließspannung im Intervall [6%; 8%] der Gesamtdehnung definiert.
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Tabelle 8.1: Verwendete Kennzeichnung des Skalierungsparamters d (building block size), entspricht

der Verteilungswellenlänge der eingebetten Plättchen in Belastungsrichtung.

NC01 NC02 NC03 NC04 NC05 NC06 NC07 NC08 NC09

d [nm] 10,3 15,3 20,6 30,9 41,0 61,5 82,5 163,5 330,2

Grenzflächendefekte und Strukturmorphologie

Für die Skalierung NC07 zeigt das Aspektverhältniss der Plättchen keinen wesent-

lichen Einfluss auf die Steifigkeit, siehe Abbildung 5.5. Steifigkeit und Festigkeit

zeigen sich jedoch sehr empfindlich gegenüber Änderungen des Volumenanteils der

verstärkenden Ni-Phase. Für einen engen Plättchenabstand wird darüberhinaus ei-

ne bei höheren Dehnungen einsetzende Delamination der Ni/Al Grenzfläche an den

Stirnseiten der Plättchen beobachtet. Die Beobachtung der Grenzflächendelamina-

tion in einem Nanokomposit mit duktilen Komponenten bringt die Frage auf, ob

dieser Schädigungsmechanismus skalenabhängig ist und wie der Schädigungsverlauf

von der Strukturskalierung abhängt. Für die biomorphe Struktur wird deshalb der

Einfluss der durch einen engen Plättchenabstand hervorgerufenen Delamination so-

wie der Einfluss von vorhandenen Grenzflächenanrissen auf die makroskopische Fes-

tigkeit des Materials auf verschiedenen Skalen eingehend analysiert. Die Festigkeit

des fehlerbehafteten Nanokomposits zeigt sich dabei stark skalenabhängig. Während

die verstärkende Wirkung der Plättchen bei einer groben Skalierung von NC08 voll-

kommen verloren geht, wird die Festigkeit des Materials bei einer feinen Skalierung

von NC05 nicht wesentlich beeinträchtigt.

Skalenabhängige Verformungsmechanismen

Ein wichtiges Ziel dieser Arbeit ist es, die Rolle des Grenzflächengleitens und der

Versetzungsplastizität quantitativ zu untersuchen. Dazu wird über den gesamten

Dehnungsbereich [0; 8%] der Gleitvektor nach Zimmerman et al. (2002) ausgewer-

tet. Für die Analyse der skalenabhängigen Verformungsmechanismen in der duktilen

Phase sowie in der Grenzfläche werden die CNA und die Gleitvektoranalyse einge-

setzt. Versetzungsgleiten, mechanische Zwillingsbildung sowie Grenzflächengleiten

und Dekohäsion konnten auf allen betrachteten Längenskalen beobachtet werden.

Die in Abhängigkeit von der Längenskala dominierenden Verformungsmechanismen

sind in Tabelle 5.2 zusammengetragen.

Die hier beobachteten Wechselwirkungen zwischen Versetzungen und Grenzflächen
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unterscheiden sich grundlegend von denen sonst von einphasigen nanokristallinen

Metallen bekannten. Dort werden die Versetzungen vornehmlich von den Korngren-

zen absorbiert (Schiøtz et al., 1999; Schiøtz and Tolla, 1998; Swygenhoven et al.,

2002). In den hier untersuchten Strukturen bewegen sich die Versetzungen von ihren

Nukleationsquellen an den Stirnseiten der Plättchen hinein in die Al-Kanäle, wo sie

durch Reflexion, in seltenen Fällen auch durch Transmission, mit den Grenzflächen

wechselwirken. Dieser Mechanismus ist auch in anderen atomistischen Simulatio-

nen von Cu-Ni Schichtsystemen bekannt und als “rebound“-Mechanismus bezeich-

net worden (Henager Jr. and Hoagland, 2004; Shen, 2003; Shen and Leger, 2006).

Shen (2003) und kürzlich Shen und Leger (2006) haben den Einfluss der Scherfes-

tigkeit der Grenzfläche auf diesen Mechanismus beschrieben. Die Scherfestigkeit der

Grenzfläche scheint also in zweiphasigen (hart/weich) Metall-Nanokompositen einen

starken Einfluss auf das plastische Fließen und somit auch auf die makroskopischen

Materialeigenschaften zu haben.

Korrelation von Materialfestigkeit und Grenzflächengleiten

Die Skalierung der Nanostruktur hat einen starken Einfluss auf die Festigkeit des

biomorphen Nanokomposits (Broedling et al., 2008a). Als Maß für die individuel-

len Gleitanteile der Versetzungsaktivitäten in Matrix, Plättchen sowie des Grenz-

flächengleitens ist der akkumulierte, anteilige Gleitvektor eingeführt worden (siehe

Abschnitt 5.2). In Abbildung 8.4 ist die skalenabhängige Materialfestigkeit zusam-

men mit dem Anteil des Grenzflächengleitens aufgetragen. Die Festigkeit des bio-

morphen Materials erreicht ihren Maximalwert bei einer Skalierung von 50 nm. Diese

Skalierung stellt eine kritische Längenskala zwischen zwei Bereichen dar, der eine

dominiert durch Grenzflächen- und der andere durch Versetzungsgleiten. Die abge-

leiteten Werte für die Hall-Petch-Konstante sind zwar überschätzt, sie entsprechen

jedoch ihrer Größenordnung nach experimentellen Befunden (Hansen, 2005). Durch

die geometrischen Restriktionen des Modellsystems sowie der betrachteten Tempe-

ratur von 0 K wird jedoch die Hintergrund-Spannung σ0 von dem atomistischen

Modell um mehrere Größenordnungen überschätzt.

Bewertung des Ni-Al-Modellsystems

In dem Modellsystem für Metall-Nanokomposite mit knochenähnlicher Nanostruk-

tur übernehmen die Ni-Plättchen die Rolle des harten Hydroxylapatit, während die

Al-Phase die weiche, organische Kollagen-Matrix simuliert. Obwohl die mechani-
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schen Eigenschaften der gewählten Komponenten bei weitem nicht so signifikant

verschieden sind wie in dem biologischen Vorbild (Jager and Fratzl, 2000), ent-

spricht dennoch der für das im Metallmatrix-Nanokomposit gefundene shear-tension-

Verformungsmechanismus dem experimentellen Befund (Jager and Fratzl, 2000) und

theoretischen Überlegungen (Ji et al., 2004), (Gao et al., 2003).

(1) Die weiche Al-Phase spielt eine wichtige Rolle für die Umlagerung der Span-

nungskonzentrationen an den Stirnseiten der Plättchen, für das Abschirmen von

vorhandenen Grenzflächenanrissen und kontrolliert somit die mechanischen Eigen-

schaften des Materials bei großen Strukturskalierungen. (2) Die Überlappung der

verstärkenden Plättchen mit großem Aspektverhältnis ist sowohl für die geome-

trische Einengung der Plastizität gerade bei großen Dehnungen als auch für die

Duktilität äußerst wichtig. (3) Die kritische Längenskala für maximale Festigkeit

ist nanoskalig und liegt bei d=50 nm. Interessanterweise beginnt darunter auch der

Bereich der Fehlertoleranz, in dem die mechanischen Eigenschaften des Materials

nicht mehr durch vorhandene Grenzflächenanrisse beinflusst werden.

8.4 Schlussfolgerungen

In der vorliegenden Arbeit wurde der Einfluss geometrischer Einengung auf die Plas-

tizität und auf die mechanischen Eigenschaften zweiphasiger (hart/weich) Nanokom-

posite untersucht. Aus den numerischen Ergebnissen konnten folgende Schlussfolge-
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rungen gezogen werden:

(I) Die Dickenabhängigkeit der Bruchzähigkeit sehr dünner Metallschichten wird

durch die Versetzungsnukleation an der Rissspitze kontrolliert. Bei dickeren Schich-

ten muss zusätzlich die Versetzungsnukleation im Volumen des Schichtmaterials

berücksichtigt werden. Die Bruchzähigkeit hängt dann stark von der Fließfestig-

keit des Schichtmaterials, der Grenzflächenfestigkeit und von der natürlichen Größe

der plastischen Zone ab. Ein Modell mit nur einer Rissspitzenquelle erwieß sich als

ausreichend, um die Schichtdickenabhängigkeit der Bruchzähigkeit für sehr dünne

Schichten (h < 1000 nm) abzubilden.Wolf et al. (2005)

(II) In bio-inspirierten Metallmatrix-Nanokompositen ist die große Hall-Petch-artige

Festigkeitssteigerung aufgrund von Strukurverfeinerung durch Grenzflächengleiten

limitiert. Auf einer kritischen Längenskala wird die Festigkeit des Materials maxi-

mal. Dort ist der Effekt geometrischer Einengung auf die Versetzungsbewegung sehr

groß und Grenzflächengleiten setzt ein. Die kritische Längenskala wird durch die

Scherfestigkeit der Grenzfläche und durch die Fließgrenze der Matrix definiert.
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