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Abstract

From the point of view of thermodynamic, materials are found as thermodynamically
stable (equilibrium) or metastable phases. These can be characterized via functions of
state that depend uniquely on the given state variables such as temperature, pressure
and composition. The graphical representations of all thermodynamically stable phases
that exist or co-exist at equilibrium is called the phase diagram of the chemical system as
function of the thermodynamic variables.

The knowledge of equilibrium phases of chemical compounds as function of thermody-
namic parameters and their thermodynamic stability lies at the foundation of our under-
standing of the properties and processes of modern materials. From the point of view of
experimental methods, the determination of the thermodynamic functions and the equi-
libria between phases is an enormous task, especially at low temperature. For that reason
it has become common practice to support the experimental research by a variety of the-
oretical calculations. Thus, in the seventies the project CALPHAD was started where
different phenomenological models and general rules for the analysis and calculation of
the phase diagrams were implemented. Over the past few years, calculations of phase
diagrams and thermodynamic properties of materials have appeared in the literature,
where typically information from experiment, such as the known existence of various or-
dered crystalline or solid solution-like phases, was combined with quantum mechanical
computations. Clearly, such ab initio calculations can be very useful for the validation of
existing phase diagrams. However, the reliance on experimental data is often a serious
limitation, especially if one attempts to predict a phase diagram or is interested in com-
peting metastable phases that might occur during the synthesis of new materials. Thus,
it is necessary to develop a method to compute phase diagrams without experimental
information.

The general approach to the analysis of the low-temperature part of a (equilibrium) phase
diagram without recourse to experimental data proceeds in several stages. First, structure
candidates are identified via global explorations of the energy landscape for different
compositions for a given chemical system. This is followed by a local optimization of
the candidates on ab initio level. Next, one can calculate the enthalpies of formation for
selected candidates, using the ideal entropy of mixing write the Gibbs energy function and
calculate the low-temperature part of the phase diagram.

The goal of this thesis has been to develop a general strategy to analyze and to predict
the low-temperature parts of phase diagrams without any input of experimental data, and
to apply this method to a number of chemical system.
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These chemical systems have been selected and investigated with several aims in mind:

• For the purpose of validation of our methodology, we have chosen systems where
enough thermodynamic data are available for a comparison between theory and
experiment, and which are sufficiently simple to be studied systematically while still
allowing for the possibility of reasonably complex phase diagrams.

• Analysis of systems where the thermodynamic data are incomplete.

• Prediction of the low-temperature part of the phase diagram including not-yet-
synthesized phases for chemical systems where no solid compounds are known so far
or even the whole phase diagram is unknown.

Thus, the following chemical systems were investigated in this thesis: quasi-binary alkali
metal halides, quasi-binary lanthanum halides, quasi-binary and quasi-ternary semicon-
ductors AIIIBV .
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Introduction





1 Introduction and Outline

1.1 Introduction

The availability of high-quality phase diagrams of chemical systems is of great importance
in materials science and engineering (1). However, in many instances, it is both very
time-consuming and difficult to determine the full phase diagram from experiment alone
(2). In particular the low-temperature part is often nearly impossible to access, since
the time scales on which equilibration to the thermodynamically stable phase takes place
exceed the time available for the experiment. Nevertheless, e.g. information about the
existence of a thermodynamically stable crystalline phase that will form by very slow
transformation processes from, say, a solid solution-like phase, is crucial for deciding
whether this compound is suitable for practical applications.

Thus, theoretical methods have been called upon for a long time to supplement the
experiments in deriving phase diagrams. Since the beginning of the seventies, these
calculations have been brought together in the CALPHAD-project (2). The methods
proposed in the CALPHAD-project have found wide applications in the field of phase
diagrams calculations (3; 4) of different types of systems, such as intermetallics (5; 6),
semiconductors (7; 8; 9) or ceramic materials (10; 11). While originally phenomenological
models and empirical interpolation functions had been employed to interpolate between
experimental data, during the past decade, first-principle calculations combined with sta-
tistical thermodynamic theories have become widely used to assist in the construction
and validation of phase diagrams (12; 13; 14; 15; 16). Recently, ab initio calculations
of the thermodynamic properties and phase diagrams have appeared in the literature
(17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27). For instance, the thermodynamic proper-
ties of Al, Ni, NiAl and Ni3Al were obtained through ab initio methods (28). And in
other work (29), the stability of different phases (fcc vs. bcc vs. hcp) of 78 pure ele-
mental solids based on ab initio calculations was compared with the stability deduced
via standard CALPHAD methods. Other authors (30) investigated phase stability and
enthalpies of formation for 69 intermetallics in the Al-M (where M = Ti, Zr or Hf) sys-
tems.

Clearly, for validation of existing phase diagrams, such ab initio calculations can be very
useful. However, if one attempts to fill in white spots in a phase diagram, there remains
a fundamental problem: Unless one knows that a solid solution-like phase or an ordered
crystalline phase exists, ab initio methods lack a starting point. An increasing number
of groups have attempted to deal with this issue by comparing the energies of several
hypothetical modifications of a chemical compound for a composition of interest (31; 32;
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1 Introduction and Outline

33; 34; 35; 36; 37; 38), where the structures of these modifications have been chosen from
among the known structure types compiled in the ICSD (39). But this approach is not
really satisfactory for several reasons: For one, experience has shown that there still exists
a plethora of possible crystalline structure types which have not yet been discovered (40).
Secondly, the decision of postulating the super-structure of a solid solution-like phase is
similarly arbitrary, unless some experimental information is available. Both these reasons
point to the final, and in some way most fundamental concern: None of these approaches
represent a way to compute the phase diagram starting only from the constituent elements
without any prior experimental information.

Since the early nineties, in the department of Prof. Jansen a new general methodology
(40; 41; 42; 43) has been developed that allows one to determine such hypothetical stable
and metastable compounds that have not yet been synthesized in a chemical system,
without any recourse to prior experimental information. The central piece of this approach
has been the global exploration of the potential energy landscapes of the chemical system,
in order to determine the local minima on these landscapes and the barriers around
them, since for sufficiently high barriers, these minimum configurations correspond to
(meta)-stable modifications of the system. In previous works, the prediction of not-yet-
synthesized compounds for a fixed chemical composition (44; 45; 46; 47; 48) was the main
goal of the investigations; however, possible structure candidates were already analyzed
also as function of composition in several systems, CaBr2/Ca2Si (49), MgO/MgF2 (50)
and Li3N/Na3N (51). In all these cases, the T ≈ 0 region of the phase diagram was
studied, without any regard to additional phases that might be thermodynamically stable
at elevated temperatures such as solid solution-like phases.

In this earlier work, a general technique (and computational power) had been lacking
which would have allowed to decide whether formation of a solid solution could take place
or single ordered crystalline phases will appear, and furthermore to compute the free
enthalpy associated with this respective phase. Thus, in this work, we have developed
an approach which allows us to determine the behaviour of the system in the subsolidus
region and predict the phase diagram at low temperatures.

In the general modular approach on which this thesis is based, the following procedure
is applied: First, we perform a global search on the energy landscape for structure can-
didates for given compositions of the quasi-binary or quasi-ternary system under investi-
gation using an empirical Coulumb-plus-Lennard-Jones potential for the potential energy
contribution to the enthalpy. Second, we perform a local optimization of the selected can-
didates on ab initio level. From the computed E(V) curves and the structural features of
the candidates one can suggest whether ordered crystalline phases or a solid solution-like
phase will be found in the system. Finally, we calculate the enthalpies of formation for se-
lected candidates and construct the low-temperature part of the phase diagrams using the
so-called Convex-hull method (52). A large number of systems were investigated to show
the capability of our approach: twenty quasi-binary alkali metal halides, six quasi-binary
and two quasi-ternary semiconductors, and the six quasi-binary lanthanum halogenide
systems.
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1.2 Outline

1.2 Outline

The thesis is divided into several parts: (I) Introduction, (II) Theoretical back-
ground, (III) Methods, (IV) Systematic application to selected chemical sys-
tems, (V) Summary, (VI) Zusammenfassung, followed by an (VII) Appendix.

In Part II: Theoretical background, we review some aspects of the theoretical ap-
proaches to the ”Energy landscape and modeling of solids”, ab initio calculations and back-
ground of the methods and models of phase diagram calculations.

In Part III: Methods, we present our new strategy to the analysis of the low-temperature
part of phase diagrams: from the exploration of an energy landscape of a given chemical
system to the construction of the low-temperature part of phase diagrams.

Part IV: Systematic application to selected chemical systems, describes studies
of three different systems: (1) ”Quasi-binary alkali halogenide systems”, (2) ”Quasi-binary
and quasi-ternary semiconductor AIIIBV systems”, (3) ”Quasi-binary lanthanum halo-
genide systems”.

Chapter 6, ”Quasi-binary alkali halogenide systems”, is split into two parts. First, in
the Section: Phase diagrams with miscibility gaps (Section 6.3), we investigate the low-
temperature part of the phase diagrams for alkali halide systems exhibiting solid-solution
behaviour. We found good agreement with available data and predicted several miscibility
curves for those systems where there is a lack of thermodynamic data. Next, in the Section:
Phase diagrams with ordered crystalline phases (Section 6.4), we investigated alkali halide
systems that exhibit ordered crystalline phases at low-temperatures. We show, that our
method can be successfully used not only for systems where solid solution-like behaviour
is stable, but also for systems with crystalline phases. We found all known phases and
predicted several new ones.

In Chapter 7: ”Quasi-binary and quasi-ternary semiconductors in AIIIBV systems (A
= Al, Ga or In; B = As or Sb)”, we investigate the low-temperature parts of the phase
diagrams for the six quasi-binary systems, MX-M’X, where M,M’ = Al, Ga, In and X = Sb
or As; and two quasi-ternary systems AlX-GaX-InX where X = Sb or As. The locations
of the miscibility gaps for all eight systems were predicted.

In Chapter 8: ”Quasi-binary lanthanum halogenide systems”, we investigate the low-
temperature parts of the phase diagrams for the six mixed lanthanum halide systems,
LaX3-LaY3, where X,Y - F, Cl, Br or I. We found that in all systems under inves-
tigation ordered crystalline phases might exist and that there is no solid solution-like
behaviour.
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Part II

Theoretical background





2 Energy landscape and modeling of
solids

Nowadays, the goals of modern solid-state chemistry are no longer to perform purely
exploratory synthesis in a chemical system, but to actually predict and subsequently syn-
thesize new crystalline compounds (53; 54). Collaboration between theory and experiment
becomes especially important, when one tries to obtain the possible (meta)stable com-
pounds in a chemical system which have not yet been synthesized in the first place. Sim-
ilarly, in many chemical systems, the amount of information gained from experiments is
not sufficient to allow the determination1 of the structure of a new crystalline compound,
as well as understanding the dynamics of transformations among various (meta)stable
modifications. In these cases, theory, and in particular computational modeling, has to
come to the assistance (55; 56). The fundamental quantity that describes a chemical
system and its dynamics from the theoretical point of view is the energy as a function of
the ionic degrees of freedom (57).

2.1 Energy landscape

2.1.1 General aspects

Every arrangement of the atoms in a solid or molecule can be described in the classical
limit by the position vectors in 3D space of all theN atoms belonging to the system. These
N position vectors xi can be combined into a 3N -dimensional vector X = (x1, . . . ,xN).
In this case, each atomic configuration is represented by a point in a 3N -dimensional
Euclidean space, called configuration space. To get the full classical description of a
solid, one should add to each atom its velocity vector vi (which can also be combined
to V = (v1, . . . ,vN) or momenta P = (p1, . . . ,pN), pi = mivi), which results in a
6N -dimensional space of both the N position vectors X and N velocity vectors V, the
so-called phase space. For simplicity, we will often replace this vector and an infinitesimal
cube in phase space around it by a state i and the integral over phase space by summation

1Sometimes ’structure determination’ is also called ’structure solution’. Also in the older literature, work
that should be classified as ’structure determination’ is sometimes advertised as ’structure prediction’.
However, since the knowledge of e.g. the cell coordinates together with the composition massively
restricts the range of feasible structures, ’prediction’ of atom positions when given this information
really should be termed ’structure determination’ (55; 56).
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2 Energy landscape and modeling of solids

over i (55; 56). The energy of such classical systems E = E (X,V) can be split into two
parts:

E = E (X,V) = Epot (X) + Ekin (V) , (2.1)

where Epot (X) is the potential energy and Ekin (V) = 1/2
∑

imiv
2
i is the kinetic en-

ergy, respectively. The time evolution of such a system is governed by Newton’s equa-
tions:

dxi

dt
=

pi

mi

= vi (2.2)

dpi

dt
= Fi = −∂Epot (X)

∂xi

(2.3)

In principle these equations can be solved and yield a unique solution (trajectories (X(t),V(t))
for every physically valid choice of initial conditions (X0,V0).

In general, an energy landscape possesses a multitude of local minima and a compli-
cated barrier structure. The minima represent stable configurations at zero temperature,
and the height of barriers around them are the measure of the stability of these con-
figurations at non-zero temperatures. Thus, the explorations of the energy landscape
give us the information which configurations are associated with (meta)stable compounds
of the chemical system under investigation (41). Once the local minima on the energy
hypersurface are known, one can switch to the further analysis and phase diagram pre-
diction.

The definition of a general (mathematical) landscape requires three elements: A configu-
ration space of states (or solutions of an optimization problem), energy (or cost) function
given as a real function over configuration space, and a neighborhood relation (topology).
Energy landscapes of atomic configurations usually have ’natural’ neighborhoods given
by the topology of R3N , but for optimizations problem we have to explicitly define such
a neighborhood relation (called moveclass).

In the case of employing global landscape exploration methods, the use of simple em-
pirical potentials is essential, because energy calculations on the ab initio level are still
computationally very expensive2. Especially since no information about cell geometry
and atom positions is available, the configurational space that needs to be investigated
is greatly enlarged due to the necessary variation of the simulation cell compared to
only an adjustment of atomic coordinates. This enforces a trade-off between the speed
and accuracy of the energy calculation. In such a case, the global optimization requires
appropriate approximations of energy functions. The resulting local minima are (only)
structure candidates and need to be refined employing local optimizations on ab initio
level.

The time evolution of the classical system, its trajectory in phase space (see Fig. 2.2), is
determined by the positions and velocities of all the atoms at some initial time t1, together

2Recently, new methods appeared in the literature (58) which allow one to explore energy landscapes
on the ab initio level.
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2.1 Energy landscape

X
1 /a.u.

0

X
2
/a.u.

E

Figure 2.1: Schematic representation of a cut through a configuration space for a single-component
system with fictive coordinates X1 and X2 (40).

with Newton’s equations and the energy function of the system, from which the forces
on the atoms can be calculated. A physical measurement consists of the average of some
observable O,

〈O〉 =
1

tobs

∫ t2

t1

O (X (t′) ,V (t′)) dt′ (2.4)

over a time interval [t1, t2] of length tobs = t2 − t1 along this trajectory. In many cases
the properties are essentially independent of the starting point t1 of the trajectory in
phase/configuration space, 〈O〉t1,t2

= 〈O〉tobs=t1−t2
. In particular, if a system can reach

equilibrium, with respect to the observable O, faster than we perform measurements,
tobs > teq (O), the so-called ensemble average,

〈O〉ens (T ) =

∫
O (V,X) e

−E(V,X)
kBT dVdX∫

e
−E(V,X)

kBT dVdX
(2.5)

equals the time average within an accuracy am,∣∣〈O〉tobs
− 〈O〉ens

∣∣ < am. (2.6)

If this is the case, we call the system (globally) ergodic, with respect to the observable
O, on the time scale tobs and up to the accuracy am. Proving that a system is ergodic
is a non-trivial task, but in many cases, the assumption of ergodicity turns out to be
justified.

There exists a third important time scale (beside tobs and teq), the so-called escape time
tesc. The escape time tells us, for how long the system remains in the locally ergodic region
R (59; 60). The concept of local ergodicity is an extension of the (global) ergodicity
concept, and refers to the fact that only a subset R of the energy landscape may be
ergodic. If we can get a reproducible diffractogram of a modification associated with R

11



2 Energy landscape and modeling of solids

Figure 2.2: 2D-projection of 3N-dimensional landscape. The blue line shows the trajectory of the time
evolution of a system on the landscape. This applies both to a trajectory of a real system
and one simulated on the computer. Blue dots indicate equal time steps, e.g. two dots might
be separated in time by one minute (for a real system) or one nanosecond (for a simulated
system). Measurements correspond to time averages of observables along the trajectory
over a time interval (e.g. encompassing 4 minutes). Note that the trajectory spends more
time in certain regions than in others. In particular, some regions are ’explored’ rather
thoroughly, i.e. one could replace the time average along the trajectory within such a region
by a (weighted) average over all states in the region, without making too much of an error.
If that is feasible, one says that this region of the landscape is ’locally ergodic’. The regions
enclosed in black rectangles are such regions that have been observed along the trajectory
shown (e.g. during a Monte Carlo simulation). The dashed rectangles are those locally
ergodic region that exist, but that have not been found during this particular simulation
run.
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2.1 Energy landscape

before the substance disintegrates or transforms to another modification, tesc (R;O) >
tobs > teq (R;O), then we are dealing with a metastable compound on our observation
scale tobs. If we are dealing with a system that is not an isolated solid but a system in
contact with an external heat bath at constant temperature, then the temperature serves
as an indicator that the solid has equilibrated with respect to its surrounding. In this
case one cannot perform reproducible experiments on a time scale that is shorter than the
temperature equilibration time3 tTeq.

Both equilibrium time and escape time are temperature dependent. In particular the es-
cape time can vary by many orders of magnitude, according to the Arrhenius4 law,

tesc ∝ e
Ebarrier

kBT (2.7)

Once the locally ergodic regions Ri have been found (for a given temperature and tobs),
one can compute the local free energy of each region (see Section 2.1.3). The kinetic
stability of the modification one associates with such a region is given by the escape time
tesc.

Temperature and other thermodynamic parameters like pressure, and external fields (elec-
tric E, magnetic B, etc.) act on the energy landscape in very different ways. Temperature,
for example, changes the dynamics of the landscape in a stochastic fashion via the av-
erage kinetic energy (〈Ekin〉 = 3/2NkBT ). The pressure p modifies the energy function
itself:

E (p = 0,E = 0, . . .) = Epot → E (p 6= 0,E 6= 0, . . .) = Epot + pV + EP + . . . . (2.8)

But, as long as these external parameters are time-independent, we are still dealing with a
fixed time-independent energy landscape, and these modifications do not pose any real dif-
ficulties. We can perform the exploration of this modified landscape E (p 6= 0, . . .) analo-
gously to the one of the potential energy landscape E (p = 0, . . .).

In any case, the first step in the exploration of an energy landscape is the determination
of the locally ergodic regions. At low temperatures, such region correspond to single
local minima and the escape times are controlled by energy barriers, and will increase
exponentially according to the Arhenius law (Eqn. (2.7)). Experience shows that in many
instances these barriers are actually high enough for local ergodicity to hold even at much
higher temperatures (55; 56). On the other hand, at intermediate temperatures there
also can exist locally ergodic regions that contain many local minima, with rather small
energy barriers between them. That allows the system to switch between these minima
on relatively short time scales. This behaviour is often found in chemical systems where
structure families exist. Such families consist of a number of candidates where different
types of atoms are randomly distributed on one of the sublattices keeping within the limits
of one overall structure type.

3Temperature is proportional to the expectation value of the kinetic energy in classical statistical me-
chanics.

4There exist no real proof for this rule, but one can, for locally ergodic regions and temperatures
T << Ebarrier, use a simple probabilistic argument to define an appropriate escape time.
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2 Energy landscape and modeling of solids

2.2.1.1. High quality empirical potentials and ab initio
methods

Nowadays, there are a large number of quite accurate empirical potentials of ever in-
creasing complexity that have been employed to model ionic compounds. The list goes
from simple two-body potentials like the Buckingham-potential (61), the Born-Huggins-
Meyer-potential (62), the simple robust potential we have been using (see the Section
5.2) or a refined version thereof with environment dependent radii (49; 50), over dipole
(63) and quadrupole (64) shell models, to various kinds of breathing potentials (65; 66;
67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79) of increasing levels of refinement. The
latter ones are discussed more fully in several reviews (80; 81; 82). Examples include
Gordon-Kim type approaches (modified electron gas, or MEG, potential induced breath-
ing, or PIB, variationally induced breathing known as VIB, and self-consistent charge
deformation model - SCAD), and Slater-Koster type tight-binding methods. As long as
these potentials can be fast evaluated, they can be considered for use in global explo-
rations.

While the more refined potentials typically allow us to compute at least some properties
of a given material with relatively high accuracy, it is not clear, whether their use during
the global optimization would be worth the cost as long as we are only interested in iden-
tifying possible structure candidates in a chemical system. For one, such potentials tend
to be much more complicated and computationally expensive than the simple potentials
we usually employ. Secondly, the number of parameters involved typically increases with
the complexity of the potential, which makes it very difficult, to construct such a potential
without detailed a priori experimental knowledge of the system. However, this contradicts
the premise of our approach, i.e., to identify the stable and metastable modifications of
a chemical system without any prior information except the identity of the participating
atoms. Of course, one can attempt to fit the parameters of the empirical potential to
ab initio calculations in the system, but this typically involves a large amount of effort.
Finally, we have found that many of these potentials are not globally applicable. They
strongly favor the structure(s) to which they have been fitted, and even successfully re-
produce their properties. But at the same time, these potentials often weaken or even
eliminate the minima representing important alternative modifications on the landscape
of the chemical system.

Regarding the ranking of structure candidates by energy using such empirical potentials,
one should bear in mind that potentials have often been fitted to a particular modification,
which could bias the results. Thus, one needs to go beyond empirical potentials and
employ various ab initio methods at least during the local optimization to achieve the
right results. Nowadays, two different general approaches are common - density functional
methods (DFT) and the Hartree-Fock approximation (HF) (for basic background see
Chapter (3)).
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2.1 Energy landscape

2.2.1.2. Energy functions with building units and
molecules

Generally, each atom of a chemical system has complete freedom of movement. It means
that we need 3N parameters to describe the system. However, in many situation, the
problem at hand can be described with a reduced set of coordinates. This is especially the
case if we are dealing with chemical reactions in which part of or the whole molecule can be
treated as rigid (building group). These constraints, of course, affect the barrier structure
of the energy landscape under investigation, by preventing certain atomic movement. The
cost one pays to reduce the number of the system’s degrees of freedom is a slightly more
complicated description of the interaction of the building units with the rest of the system.
But the reduction in the number of parameters usually outweighs this cost, especially, if
one is satisfied with an approximately correct packing of the molecules during a global
optimization. In the second step (local optimization) the atom positions can be refined
(42; 83).

In the study of the landscape of extended solids, one also often replaces some of the
atoms with more or less rigid building units, depending strongly on the question one
tries to address. If the structure candidates that contain building units all correspond to
high-lying minima (compared to the structures formed upon free movement of all atoms),
the only way to access these minima is via kinetic control. Another reason for the use of
building units is the fact that typically building units are held together by mostly covalent
forces. But, the interaction of building units with the rest of the system is mainly via
ionic or van-der-Waals forces which are easier to model and control. In this work, such
building units are not employed.

2.1.2 Global optimization methods

Quite often the problems confronting scientists can be formulated in terms of searching for
the minimum or maximum of a cost function defined over a space of acceptable solutions.
A multitude of methods have been developed to deal with this issue. They can, in general,
be divided into global and local approaches, usually called global optimization and local
optimization techniques.

Global optimization is a branch of applied mathematics and numerical analysis that deals
with the optimization of a function or a set of functions according to some criteria. The
most common form is the minimization of one real-valued function f (x) in the configura-

tion/solution space. In addition, the states
→
x may have to fulfill one or several constraints

C (x) = 0. In real-life problems, functions of many variables have a large number of local
minima and maxima. Finding an arbitrary local optimum is relatively straightforward by
using local optimization methods. Finding the global maximum or minimum of a func-
tion is a lot more challenging and has been impossible for many problems so far. The
maximization of a real-valued function g(x) can be regarded as the minimization of the
transformed function f (x) = (−1) · g (x) (84; 85; 86; 87). Typical examples of global
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2 Energy landscape and modeling of solids

optimization applications include: Structure prediction (minimize the energy/free energy
function), traveling salesman problem and circuit design (minimize the path length) (88),
chemical engineering (e.g., analyzing the Gibbs free energy), safety verification, safety
engineering (e.g., of mechanical structures, buildings), worst case analysis, mathematical
problems (e.g., the Kepler conjecture), spin glasses, etc (87).

There are several approaches: deterministic (the most successful are branch and bound
methods and methods based on real algebraic geometry), stochastic (several Monte-Carlo-
based algorithms exist such as simulated annealing (SA), direct Monte-Carlo sampling,
stochastic tunneling, parallel tempering, Monte-Carlo with minimization), and heuris-
tics and metaheuristics. The latter approaches include heuristic strategies to explore the
search space in a (more or less) intelligent way, including evolutionary algorithms (e.g., ge-
netic algorithms), swarm-based optimization algorithms (e.g., particle swarm optimization
and ant colony optimization), memetic algorithms, and algorithms combining global and
local search strategies (84; 85; 86; 87; 89; 90; 91; 92; 93; 94).

The energy landscape of a chemical system is a special case of cost functions which require
a clever combination of global optimization and local optimization methods, since in many
instances the energy landscape possesses extremely many minima and a very complicated
barrier structure (see Fig. 2.2).

2.2.2.1. Monte-Carlo methods

Monte Carlo (MC) methods are a class of computational algorithms for simulating the
behavior of various physical and mathematical systems. They are distinguished from
other simulation methods (such as molecular dynamics) by being stochastic, i.e. non-
deterministic in some manner - usually by using random numbers (or more often pseudo-
random numbers) - as opposed to deterministic algorithms (87; 95). In these stochastic
algorithms one (or many) walker at configuration i at time step t chooses one of the
neighbor configurations as test configuration j. If this configuration fulfills an acceptance
criterion, the walker moves to j; else, it remains at i. In the classical MC, one usually
employs the ratio of the Boltzmann-factors of configurations i and j as acceptance criterion
(the so-called Metropolis criterion (96)). If the energy of state j is equal to or below the
one of state i, the move is accepted. If E (j) > E (i), the move is only accepted with
probability exp (− (E (j)− E (i)) /C), where C is a control parameter. Such a weighted
random walk can be used in order to simulate the ensemble average of the chemical system
at temperature T = C/kB. In the case of a stochastic quench, only downhill moves are
accepted (T = C = 0).

In the simulated annealing (89; 90; 93) (SA) global optimization method, every point
of the search space corresponds to a state of some physical system, and the function
E(s) to be minimized is interpreted as the internal energy of the system in that state.
Therefore the goal is to bring the system, from an arbitrary initial state, to a state with
the minimum possible energy. At each step, the SA heuristic considers some neighbor s′

of the current state s, and, as in the MC simulations described above, decides between
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2.1 Energy landscape

moving the system to state s′ or staying put in state s. Upon lowering the temperature,
the ensemble one samples becomes more concentrated at low energies. The sequence of
temperatures is chosen such that the system ultimately tends to move to states of lower
energy. One can prove that for a sufficiently slow decrease in the control parameter C,
the random walk will end up in the global minimum, or at least in some of the low-lying
local minima (97). Typically this step is repeated until the system reaches a state which
is good enough for the particular application, or until a given computation budget has
been exhausted.

2.2.2.2. Gradient-based methods

The simple stochastic methods described above are very general. They can be applied to
both discrete and continuous landscapes. On the other hand, these algorithms do not take
available local information such as the derivatives of the cost function into account. Such
information is used in those classes of algorithms that follow the gradient downhill (such
as gradient descent5, line search) or take, in addition, second derivatives into account
(conjugate gradient6, Newton-Raphson, etc. (85; 86; 87)).

2.2.2.3. Genetic algorithms

The third class of global optimization methods are the so-called genetic algorithms (98;
99). A genetic algorithm is a search technique used in computer science to find approx-
imate solutions to optimization and search problems. Genetic algorithms are a partic-
ular class of evolutionary algorithms that use techniques inspired by evolutionary biol-
ogy such as inheritance, mutation, natural selection, and recombination (or crossover)
(87; 100).

Genetic algorithms are typically implemented as a computer simulation in which a pop-
ulation of abstract representations (called chromosomes) of candidate solutions (called
individuals) to an optimization problem evolves toward better solutions. Traditionally,
solutions are represented in binary fashion as strings of 0s and 1s, but different encod-
ings are also possible. The evolution starts from a population of completely random
individuals and proceeds in generations. In each generation, the fitness of the whole
population is evaluated, multiple individuals are stochastically selected from the current

5Gradient descent is an optimization algorithm that approaches a local minimum of a function by taking
steps proportional to the negative of the gradient (or the approximate gradient) of the function at
the current point. If instead one takes steps proportional to the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent. Gradient descent is also
known as steepest descent, or the method of steepest descent. When called the latter, gradient descent
should not be confused with the method of steepest descent for approximating integrals (85; 86; 87).

6In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular
systems of linear equations, namely those whose matrix is symmetric and positive definite. The
conjugate gradient method is an iterative method, so it can be applied to sparse systems which are
too large to be handled by direct methods involving the computation of the full matrix of second
derivatives.
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2 Energy landscape and modeling of solids

population (based on their fitness), and modified (mutated or recombined) to form a
new population, which becomes the current one in the next iteration of the algorithm
(87; 100).

Applied in the framework of the exploration of energy landscapes, this means that an
ensemble of configurations with the lowest energy survives preferentially from one gen-
eration to the next. The selection criteria can vary between two extremes: only those
configurations with the lowest energy survive, or all new configurations always survive
(at least for one generation). Between these two extremes one uses probabilistic criteria
analogous to the Metropolis criterion.

2.1.3 Exploration of the barrier structure

In most cases, identifying low-lying states, in particular local energy minima, is completely
sufficient. However, for structure prediction it is also very important to know to which ex-
tent the local minimum found exhibits a high degree of stability. Knowledge of the barrier
structure around minima7 gives some useful information to judge the stability of the corre-
sponding structure candidates. Investigations of the barrier structure can be accomplished
by employing both stochastic and deterministic approaches.

2.2.3.1. Threshold algorithm

The threshold algorithm (101; 102) is a stochastic approach. As soon as a local minimum
is found one can chose a sequence of energy lids Lk (Lk > Emin), and for a given lid Lk

perform long Monte Carlo (MC) walks, where every move is accepted, unless it exceeds
the energy of the lid. Every nq moves, one performs one or many quenches into the closest
local minima. Then, one repeats the procedure with another lid. From the energy lids,
where new minima are first found during one of the quenches, one deduces an estimate for
the barrier height between the starting minimum and other minima. From the distribution
of energies encountered during the runs at various lids, one can deduce the local density
of states within the basin of the starting minimum. Next, one can repeat the whole
procedure for all other local minima observed.

The transition probabilities determined by this algorithm between the local minima in-
clude both energetic, entropic and kinetic contributions. As a result, we identify the lowest
energy lids at which a transition between two minima can occur, yielding an estimate of
the (free)energy barrier between minima.

7The dynamics of relaxations and transformation is controlled by the energetic and entropic barriers
around and among the local minima.
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2.2.3.3. Free energy

If we are on a time scale where many locally ergodic regions can equilibrate among each
other, the one we are most likely to observe for a given experiment is the one with the
lowest free energy (Eqn. (2.9)).

F (R) = −kBT lnZ (R) (2.9)

Thus, we would need to perform a minimization of the local free energy over all locally
ergodic regions. The space of locally ergodic regions consists of exceedingly many but
isolated ’points’ (see Fig. 2.2). Mathematically we do not have the local free energy as a
continuous function of R. If we write down a continuous order parameter M, which allows
us to parametrize the full configurational space, we can then calculate the free energy as
a function of the order parameter. But, in this case the region of the landscape that
corresponds to a given value of this parameter M is usually not locally ergodic. In the
best case, we can divide the coordinates into two groups: those with degrees of freedom
that equilibrate very quickly, and the remaining ones that vary more slowly (so-called
reaction coordinates). If the number of the fast degrees of freedom that are decoupled
exceeds (vastly) the number of reaction coordinates, then we can approximate the full
free energy on short time scales, by computing F only with respect to the fast degrees of
freedom.

At low temperatures, the most important contribution to the local free energy of insulators
is due to the lattice vibrations (phonons), while metals also exhibit a contribution due to
the electrons at the Fermi level.

2.2.3.4. Configuration entropy and entropy of mixing

An idea of the physical nature of entropy can be gained from statistical thermodynamics.
In terms of statistical thermodynamics configuration entropy can be evaluated using an
adaption of the Boltzmann formula:

S = kB lnW (E, V,N) (2.10)

where kB is the Boltzmann’s constant and W (E, V,N) is the number of configurations in
which the components can be arranged for a particular macrostate of the system consis-
tent with the thermodynamic variables E, V and N . Assuming equal probability for all
microstates, W is a measure of the disorder of the system, and the maximum entropy is
associated with the greatest disorder. The full entropy of a system contains many con-
tributions, due to lattice vibrations around a minimum configuration, defects, etc. One
particular contribution is the so-called configurational entropy, which accounts for the
fact that a macrostate can include many local minima of the energy, each of which adds a
very similar amount of vibrational entropy to the total entropy of the system. Thus, one
can write W (E, V,N) = Wconf (E, V,N)Wphon(E, V,N), where Wconf equals the number
of such minima or ”configurations” of the system. Thus, Stotal = Sphon + Sconf , where
Sconf = kB lnWconf .
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2 Energy landscape and modeling of solids

In the case of a mixture of several components, we deal with the so-called entropy of
mixing, which can be easily derived from Eqn. (2.10). For a multi-component system, W
is equal to the number of permutations given by

W =
N !∏
i ni!

(2.11)

where N =
∑

i ni, ni is the number of atoms of type i and N is the total number of atoms
in the system. For one mole of atoms, N is equal to Avogadro’s number (NA). Using
Stirling’s approximation, we can rewrite the equation for the configurational entropy as
follows:

S = −NkB

∑
i

ni

N
ln
ni

N
= −kB

∑
i

ni ln
ni

N
(2.12)

The ideal molar entropy of mixing then is given by:

S = −NAkB

∑
i

xi lnxi (2.13)

where xi = ni/N is the mole fraction of component i. In the a case of two-component
system, we can write:

∆S = −R(x1 lnx1 + x2 lnx2) (2.14)

whereR = NAkB is the gas constant and xi is the mole fraction of component i.

2.2.3.5. Landscape representation

When using energy landscapes to understand the behavior of chemical systems, one faces
the problem that the energy landscapes are complicated high-dimensional objects. Finding
appropriate low-dimensional representations of the energy landscape that can be used
to distinguish relevant regions of the landscape or help to analyze specific properties
is a very important issue. There are many ways to address this problem. One of the
most useful pictorial descriptions is the so-called tree graph representation of an energy
landscape.

In computer science, a tree is a widely-used computer data structure that emulates a tree
structure with a set of linked nodes. It is a special case of a graph. Each node has zero
or more child nodes, which are below it in the tree (in computer science, unlike in nature,
trees grow down, not up). A node that has a child is called the child’s parent node. A
child has at most one parent; a node without a parent is called the root node (or root).
Nodes with no children are called leaf nodes (87; 103).

Applied to the energy landscape it means that we have to focus on the minima of the
energy landscape and their connectivity. By employing the threshold algorithm, we start
from the local minima, extend edges up in energy, which merge at the lowest energy where
a transition between two minima has been observed. We continue in this fashion until all
minima are connected. For low temperatures, this tree graph contains the full dynamics
of the energy landscape, since all escape times are larger than the equilibration times, and
the escape times are energy barrier dominated (55; 56).
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3 Methods of electronic structure
calculations

3.1 General remarks

In the previous chapter we briefly discussed the concept of the energy landscape of the
chemical system. Since in the present work we deal with ideal periodic solids, the short
overview of some aspects of the theory of ideal solids will be given in the present chap-
ter.

In 1926 Schrödinger wrote down his famous equation:

HΨ = EΨ, (3.1)

where H is the Hamiltonian of a system, Ψ - wave functions and E - energy. The Hamilto-
nian of a chemical system is represented by the following formula:

Htotal =
∑

A

p2
A

2MA

+
∑

i

p2
i

2mi

+
1

2

∑
A,B

ZZ ′e2

|RA −RB|
+

1

2

∑
i,j

e2

|ri − rj|

+
1

2

∑
A,i

Ze2

|RA − ri|
+ relativistic corrections

= TA + Te + VAB + Vee + VAe, (3.2)

where Z and Z ′ are ion charges (in units of electron charge e) numbers labeled by A and B,
respectively. RA and ri are position vectors of the ion A and electron i, respectively; MA

and mi are the masses of ion A and electron i, respectively.

The wave function of a system must be a solution of the Schrödinger equation obeying
the condition that electrons are fermions1, and the nuclei are either fermions or bosons2.
Since the mass of an ion is much bigger than the mass of an electron, - mi/MA << 1,
one can separate the electronic and the ionic degrees of freedom - the so-called the Born-
Oppenheimer approximation. As a result, we are able to solve the equation for electrons

1Fermions are particles with half-integer spin, named after Enrico Fermi.
2Bosons are particles with integer spin, named after Satyendra Nath Bose.
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3 Methods of electronic structure calculations

in a static lattice potential of fixed ions. Afterwards we determine the movement of the
nuclei around constant average positions and finally take the electron-phonon interaction
into account.

Note that no excited electronic states are accessible within the Born-Oppenheimer approx-
imation, or, if one started with an excited electronic state, the system would not relax due
to the electronic motion, but only adiabatically on its own time scale. From the assump-
tion that the ions do not move at the electronic time scale follows the Ansatz:

Ψ (X,x) = χ (X)ψ (x;X) (3.3)

Here, X and x are the ionic and the electronic degrees of freedom, respectively. Inserting
Eqn. (3.3) into the Schrödinger equation given by the Hamiltonian in Eqn. (3.2), and

assuming that χTIψ and (
→
∇ χ)(

→
∇ ψ) are small compared to χTeψ and can be omitted,

one can write
HΨ = ψ (TI + VII)χ+ (Heψ)χ = EΨ, (3.4)

where He = Te + Vee + VeI . He cannot be written as a sum of one electron terms due to
Vee. If we neglect Vee or replace it by a particle independent function Vee (x) which is the
same for all electrons, all electrons see the same, average, potential. In this case, we can
replace the many-particle equation by N identical independent one-particle equations,
the so-called band-approximation. Here, the only “remnant” of the many-body nature
of the problem is the Pauli-principle, i.e. no electronic state can be occupied by two
electrons.

However, usually, the first major approximation when dealing with the electrons is the one-
electron approximation, which leads to the Hartree- and the Hartree-Fock approximations.
This results in N one-particle equations, where each electron sees a different average
potential generated by the other N − 1 electrons. We now have to solve each one-particle
equation separately, and feed the N one-particle ground state wave functions back into
Vee, until self-consistency is reached.

3.2 Hartree-Fock method

In the end of the 1920s, D.R. Hartree introduced a procedure, which he called the self-
consistent field method, to calculate approximate wavefunctions and energies for atoms
and ions. Hartree sought to do away with empirical parameters and solve the many-body
time-independent Schrödinger equation from fundamental physical principles. In 1930
Slater and V.A. Fock independently pointed out that the Hartree method did not respect
the principle of antisymmetry of the wavefunctions. The Hartee method used the Pauli
exclusion principle in its older formulation, forbidding the presence of two electrons in
the same quantum state. However, this was shown to be fundamentally incomplete in its
neglect of quantum statistics.

Then, it was shown that the Slater determinant, a determinant of one-particle orbitals
first used by Heisenberg and Dirac in 1926, trivially satisfies the antisymmetric property
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3.2 Hartree-Fock method

of the exact solution and hence is a suitable Ansatz for applying variational principles.
The original Hartree method can then be viewed as an approximation to the Hartree-Fock
method by neglecting exchange (87).

We will discuss only the Restricted Hartree-Fock (RHF) method, where the solid is a
closed-shell system with all orbitals doubly occupied (two spin states are possible for each
electron). Open shell systems, where some of the electrons are not paired, can be dealt
with using the Restricted Open-shell Hartree-Fock (ROHF) or Unrestricted Hartree-Fock
(UHF) Hartree-Fock method.

3.2.1 Hartree-Fock algorithm

The Hartree-Fock method is typically used to solve the time-independent Schrödinger
equation for a multi-electron atom, molecule or solid described in the fixed-nuclei ap-
proximation by the electronic Hamiltonian. Because of the complexity of the differential
equations, the problem is usually impossible to solve analytically, and so the numerical
technique of iteration is applied. The method makes five major simplifications in order
to deal with this task:

• The Born-Oppenheimer approximation is inherently assumed.

• Typically, relativistic effects are completely neglected.

• The wave function is approximated by a single Slater determinant.

• The basis set is composed of a finite number of orthogonal functions.

• The effects of electron correlation are completely neglected (by “definition”).

According to the variational theorem, for a time-independent Hamiltonian operator, any
trial wavefunction will have an energy expectation value that is greater than or equal
to the true ground state wavefunction corresponding to the given Hamiltonian. As a
consequence, the Hartree-Fock energy is an upper bound to the true ground state energy
of a given molecule or solid. The limit of the Hartree-Fock energy, as the basis set becomes
infinite, is called the Hartree-Fock limit and it is a unique set of one-electron orbitals, and
their eigenvalues (87). The difference between the Hartree-Fock limit and the true energy
of the ground state is often defined as the correlation energy.

The starting point for the Hartree-Fock method is a set of approximate one-electron or-
bitals. For an atomic calculation, these are typically the orbitals for a hydrogen-like atom
(an atom with only one electron, but the appropriate nuclear charge). For a molecular or
crystalline calculation, the initial approximate one-electron wavefunctions are typically lin-
ear combinations of atomic orbitals (LCAO). This gives a collection of one electron orbitals
that, due to the fermionic nature of electrons, must be antisymmetrized. In order to deal
with this problem, Fock and Slater introduced the anti-symmetry from the outset, by using
a Slater-determinant instead of a single product. At this point, a new approximate Hamil-
tonian operator, called the Fock operator, is constructed.
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3 Methods of electronic structure calculations

Finding a ground state is actually an optimization problem, where we minimize
∫
ψ∗Hψdx

with the conditions that only anti-symmetric wave functions are admissible, because of the
Pauli-principle3, and that these wave functions are normalized,∫

|ψ|2 dx = 1. (3.5)

Within the one-determinant-Hartree-Fock approximation one first takes the functional
derivative of

∫
ψ∗Hψdx, and sets this equal to zero, taking Eqn. (3.5) into account. After

some calculation one can derive the so-called Hartree-Fock Hamiltonian:

HHF (i) = Te (i) + VeI (i) + (Vc − Vex) , (3.6)

The first terms in this Hamiltonian are a sum of kinetic energy operators for each electron,
the internuclear repulsion energy, and a sum of Coulombic attraction terms between nuclei
and electrons. The final set of terms models the Coulombic repulsion terms between each
pair of electrons within the sum. The sum is composed of a net repulsion energy for each
electron in the system, which is calculated by treating all of the other electrons within
the molecule or solid as a smooth distribution of negative charge. This is the major
simplification inherent in the Hartree-Fock method.

Note that Eqn. (3.6) only refers to the ground state wave function, and does not produce
any excited states of the many-particle Hamiltonian. A non-local term, Vex

4, reflects the
fact that electrons with the same spin ”repel” each other.

The newly constructed Fock operator is then used as the Hamiltonian in the time-
independent Schrödinger equation. Solving the equation yields a new set of approximate
one-electron orbitals. This new set of orbitals is then used to construct a new Fock op-
erator. The procedure is stopped when the change in total electronic energy is negligible
between two iterations. In this way, a set of so-called“self-consistent”one-electron orbitals
are calculated. The Hartree-Fock electronic wavefunction is then equal to the Slater de-
terminant of these approximate one-electron wavefunctions.

In modern Hartree-Fock calculations, the one-electron wavefunctions are approximated
by a linear combination of atomic orbitals (LCAO), in the form of Slater-type orbitals.
It is also very common for the atomic orbitals (AO) to be composed of a linear combi-
nation (LC) of one or more Gaussian-type orbitals, rather than Slater-type orbitals, in
the interest of saving considerable computational time. Various basis sets are used in
practice, most of which are composed of Gaussian functions, due to reasons mentioned
above.

One should note, however, that the requirement of self-consistency introduces non-linearity
back into the system. Thus, in principle, several solutions can exist, and one has to an-
alyze the solutions with respect to their properties, in order to decide, whether one has
determined the correct one. An alternative route are the so-called density functional
theories (DFT), of which the simplest ones introduce semi-phenomenological factors and
terms, in order to simplify the model and its solution.

3 By requiring that each ”orbital” is occupied only by one electron.
4Only appears in the Hartree-Fock approximation.
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3.3 Density Functional Theory (DFT)

The fundamental tenet of density functional theory is that any property of a system of
many interacting particles can be viewed as a functional of the ground state density n0(r);
that is, one scalar function of position r, n0(r) determines all information in the many-
body wavefunctions for the ground state and all excited states (104).

The original DFT of quantum systems is the method of Thomas (105) and Fermi (106)
proposed in 1927. Although their approximation is not accurate enough for present-day
electronic structure calculations, the approach illustrates the way density functional theory
works. In the original method the kinetic energy of the system of electrons is approxi-
mated as an explicit functional of the density, idealized as non-interacting electrons in a
homogeneous gas with density equal to the local density at any given point. Both Thomas
and Fermi neglected exchange and correlation among the electrons; however, their approx-
imation was extended by Dirac (107) in 1930, who formulated the local approximation
for exchange which is still in use today. The attraction of DFT is evident by the fact that
one equation for the density is considerably simpler than the full many-body Schrödinger
equation that involves 3N degrees of freedom for N electrons. However, the Thomas-
Fermi approach starts with approximations that are too crude, missing essential physics
and chemistry, such as shell structures of atoms and binding of molecules. Thus it falls
short of the goal of a useful description of electrons in matter.

The approach of Hohenberg and Kohn is to formulate DFT as an exact theory of a
many-body system. The formulation applies to any system of interacting particles in an
external potential Vext(r), including any problem of electrons and fixed nuclei, where the
Hamiltonian for the electrons can be written:

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i6=j

e2

|ri − rj|
(3.7)

DFT is based upon two theorems:

• Theorem I: For any system of interacting particles in an external potential Vext(r),
the potential Vext(r) is determined uniquely, except for a constant, by the ground state
particle density n0(r).

• Theorem II: A universal functional for the energy E[n] in terms of the density n(r)
can be defined, valid for any external potential Vext(r). For any particular Vext(r), the
exact ground state energy of the system is the global minimum value of this functional,
and the density n(r) that minimizes the functional is the exact ground state density
n0(r).

The most common implementation of DFT is through the Kohn-Sham method. The main
idea of this approach is to replace a difficult interacting many-body system obeying the
Hamiltonian with a different auxiliary system that can be solved more easily. Since there
is no unique prescription for choosing the simpler auxiliary system, this is an Ansatz.
The Ansatz of Kohn and Sham assumes that the ground state density of the original
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3 Methods of electronic structure calculations

interacting system is equal to that of some chosen non-interacting system. This leads
to independent-particle equations for the non-interacting system that can be considered
exactly soluble with all the difficult many-body terms incorporated into an exchange-
correlation functional of the density. By solving the equations one finds the ground state
density and energy of the original interacting system with accuracy limited only by the
approximations in the exchange-correlation functional.

The Kohn-Sham Ansatz rests upon two assumptions:

1. The exact ground state density can be represented by the ground state density of
an auxiliary system of non-interacting particles. This is called ”non-interacting V repre-
sentability”.

2. The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an effective
local potential V σ

eff (r) acting on an electron of spin σ at point r. The local form is not
essential, but it is an extremely useful simplification that is often taken as the defining
characteristic of the Kohn-Sham approach. The auxiliary effective potential V σ

eff (r) must
depend upon spin in order give the correct density for each spin, except in cases that are
spin symmetric.

Thus, the Kohn-Sham approach to the full interacting many-body problem can be written
as follows:

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n]. (3.8)

Here Vext(r) is the external potential due to the nuclei and any other external fields (as-
sumed to be independent of spin) and EII is the interaction between the nuclei. Thus the
sum of the terms involving Vext, EHartree, and EII forms a neutral grouping that is well de-
fined. The independent-particle kinetic energy Ts is given explicitly as a functional of the
orbitals; however, Ts for each spin σ must be a unique functional of density n(r, σ) by ap-
plication of the Hohenberg-Kohn arguments to the independent-particle Hamiltonian. All
many-body effects of exchange and correlation are grouped into the exchange-correlation
energy Exc, which can be written as follows:

Exc[n] =
〈
T̂

〉
− Ts[n] +

〈
V̂int

〉
− EHartree[n]. (3.9)

Here [n] denotes a functional of the density n(r, σ) which depends upon both position in

space r and spin σ. The sum of
〈
T̂

〉
and

〈
V̂int

〉
includes all internal energies, kinetic and

potential, of the interacting electron system. Basically, Exc is the difference of the kinetic
and the internal interaction energies of the true interacting many-body system from those
of the fictitious independent-particle system with electron-electron interactions replaced
by the Hartree energy. If the universal functional Exc[n] defined in (3.9) were known, then
the exact ground state energy and density of the many-body electron problem could be
found by solving the Kohn-Sham equation for independent-particles. To the extent that
an approximation for Exc[n] describes the true exchange-correlation energy, the Kohn-
Sham method provides a feasible approach to calculating the ground state properties of
a many-body electron system.
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3.3 Density Functional Theory (DFT)

The major problem with DFT is that the exact functionals for the exchange and corre-
lation are not known except for the free electron gas. Already in their seminal paper,
Kohn and Sham proposed making the local density approximation (LDA) or more gen-
erally the local spin density approximation (LSDA), in which the exchange-correlation
energy is simply an integral over all space with the exchange-correlation energy den-
sity at each point, to be the same as in a homogeneous electron gas with that den-
sity,

ELSDA
xc [n↑, n↓] =

∫
d3rn(r)εhom

xc (n↑(r), n↓(r))

=

∫
d3rn(r)[εhom

x (n↑(r), n↓(r)) + εhom
c (n↑(r), n↓(r))] (3.10)

Once one has made the local Ansatz of the L(S)DA, then all the rest follows. Since
the functional Exc[n

↑,n↓] is universal, it follows that it is exactly the same as for the
homogeneous gas. The only information needed is the exchange-correlation energy of the
homogeneous gas as a function of density; the exchange energy of the homogeneous gas
can be written in a simple analytic form and the correlation energy can be calculated with
great accuracy, e.g. using the Monte-Carlo method.

The success of the LSDA has led to the development of various generalized gradient ap-
proximations (GGAs). Generalized gradient approximations are still local but also take
into account the gradient of the density at the same coordinate. Using GGA, very good
results for molecular geometries and ground state energies have been achieved. Many
further incremental improvements have been made to DFT by developing better repre-
sentations of the functionals.

DFT has been very popular for calculations in solid state physics since the 1970s. In
many cases DFT with the local-density approximation gives quite satisfactory results for
solid-state calculations in comparison to experimental data, at relatively low computa-
tional costs when compared to other ways of solving the quantum mechanical many-body
problem. However, it was not considered accurate enough for calculations in quantum
chemistry until the 1990s, when the approximations used in the theory were greatly re-
fined to better model the exchange and correlation interactions. DFT is now a leading
method for electronic structure calculations in both fields. But, despite the improvements
in DFT, there are still difficulties in using density functional theory to properly describe
intermolecular interactions, especially van der Waals forces (dispersion), or in calculations
of the band gap in semiconductors (87; 108; 109; 110; 111).

In practice, Kohn-Sham theory can be applied in several distinct ways depending on what
is being investigated. A popular functional is known as BLYP (from the names Becke,
Lee, Yang and Parr). Even more widely used is B3LYP (112; 113; 114) which is a hybrid
method in which the DFT exchange functional, in this case from BLYP, is combined with
the exact exchange functional from Hartree-Fock theory. Unfortunately, although the
results obtained with these functionals are usually sufficiently accurate for most applica-
tions, there is no systematic way of improving them. Hence in the current DFT approach
it is not possible to estimate the error of the calculations without comparing them to
other methods or experiment (87; 108; 109; 110; 111).
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3 Methods of electronic structure calculations

HF and DFT, as well as other methods such as quantum Monte Carlo dealing with the
ideal solid at T = 0, are applicable for fixed positions of the ions, treated as a complicated
external static field. In the past years, there have been attempts to include the movements
of the ions in the calculations. The scheme proposed by Car and Parrinello proceeds by
performing a molecular dynamics of the ions with partially relaxed electronic degrees of
freedom, taking into account that electrons stay relatively close to the Born-Oppenheimer
surface.

3.4 Basis sets

Quantum chemical calculations are typically performed using a finite set of basis functions.
It is common to use a basis composed of a finite number of atomic orbitals, centered
at each atomic nucleus within the solid (linear combination of atomic orbitals, LCAO)5.
Initially, these atomic orbitals were typically Slater orbitals, which corresponded to a set of
functions which decayed exponentially with distance from the nuclei. Later, it was realized
that these Slater-type orbitals could in turn be approximated as linear combinations of
Gaussian orbitals instead. Because it is easier to calculate overlap and other integrals
with Gaussian basis functions, this led to huge computational savings (87; 108; 109; 110;
111; 115).

3.4.1 Basis sets types

There are many types of basis sets composed of Gaussian-type orbitals (GTOs). The
basis sets that contain only occupied orbitals are called minimal basis sets. They are
typically composed of the minimum number of basis functions required to represent all of
the electrons on each atom. Even in this case some of the largest basis sets can contain
literally dozens of basis functions on each atom. In order to achieve some flexibility within
the basis set, so-called polarization functions can be added. These, the most common
addition to minimal basis sets, are auxiliary functions with one additional node. This
is an important addition when considering accurate representations of bonding between
atoms. Another common addition to basis sets is the addition of diffuse functions. These
additional basis functions can be important when considering anions and other large,
”soft” molecular systems (87; 108; 109; 110; 111; 116).

A common naming convention for minimal basis sets is STO-XG, where X is an integer.
This X value represents the number of Gaussian primitive functions. In these basis sets,
the same number of Gaussian primitives comprise core and valence orbitals. Minimal
basis sets typically give rough results but are much cheaper than their larger counterparts
(87; 108; 109; 110; 111; 116; 117).

5A number of DFT-programs (e.g. WIEN, VASP) employ very large plane-wave sets. Those are often
combined with pseudopotentials, because the wave functions of the inner electrons are very expensive
to describe using only plane waves.
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3.4 Basis sets

The valence electrons usually contribute most of the bonding in molecules and solids.
In recognition of this fact, it is common to represent valence orbitals by more than one
basis function, (each of which can in turn be composed of a fixed linear combination of
primitive Gaussian functions). The notation for these split-valence basis sets is typically
X-YZg. In this case, X represents the number of primitive Gaussians comprising each
core atomic orbital basis function. The Y and Z indicate that the valence orbitals are
composed of two basis functions each. The first one is composed of a linear combination
of Y primitive Gaussian functions, and the other is composed of a linear combination of
Z primitive Gaussian functions (87; 116).

Basis sets in which there are multiple basis functions corresponding to each atomic orbital,
including both valence orbitals and core orbitals or just the valence orbitals, are called
double, triple, or quadruple-zeta basis sets.

3.4.2 Basis set superposition error

If we use a finite basis set in our calculations, the interaction energies are susceptible to
basis set superposition error (BSSE). As the atoms of interacting molecules (or of different
parts of the same molecule or solid) approach one another, their basis functions overlap.
If the total energy is minimized as a function of the system geometry, the short-range
energies from the mixed basis sets must be compared with the long-range energies from
the unmixed sets, and this mismatch introduces an error (87; 108; 109; 110; 111; 116;
117).
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4 Calculation of phase diagrams

Phase diagrams are graphical representations of all thermodynamically stable phases in
a chemical system at given temperature, pressure and composition. The main goal of
phase equilibrium calculations is the determination of the amount and chemical mixture
of each part of a mixture of heterogeneous substances. As a starting point, one needs to
know the characteristic functions, e.g. the Gibbs energy function1, for all possible phases
in the system even at conditions where those phases are metastable or even unstable.
Conclusions about the stability of phases can usually be derived from calculations, of
course. Once the Gibbs energy for all feasible phases and their combinations is known as
function of the thermodynamic parameters, minimization of the Gibbs energy yields the
phase diagram of the system. Nowadays, the main rules and methods of phase diagram
calculations and constructions have been formalized in the CALPHAD (CALculation of
PHAse Diagrams) project, and represented by an organization and a journal of the same
name.

4.1 Calculation of the phase
equilibrium

In general, there are two ways to determine the characteristic function of a complex
system: via experiment or by performing theoretical calculations usually based on a model
of the internal constitution of the system and the known properties of its parts. In this
presentation, we are not going to discuss the issues associated with the experimental
determination of the Gibbs energy; instead we will focus on the theoretical approach.
The main advantage of the theoretical method is that one does not need to know the
real chemical and phase compositions of the equilibrium system beforehand, since those
compositions at equilibrium can be derived from the calculations. In the following, we are
going to describe the most basic methods currently employed to compute phase diagrams,
where they can either be based on experiment or calculations or on a combination of
both.

1Nowadays, in the literature the term Gibbs free energy is often shortened to Gibbs energy. This is the
result of a 1988 IUPAC meeting to set unified terminologies for the international scientific community,
in which the adjective ”free” was supposedly banished (87).
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4 Calculation of phase diagrams

4.1.1 General definitions

In thermodynamics, and especially in the field of phase diagram calculations, the Gibbs
energy plays the main role. It is defined as follows:

G = U + pV − TS, (4.1)

where U is the internal energy, p is the pressure, V is the volume, T is the temperature
and S is the entropy. One can rewrite this equation:

G = H − TS, (4.2)

where H is the enthalpy. The Gibbs energy is a state function that is minimized when
a system reaches an equilibrium at constant pressure and temperature; thus, one can
consider the Gibbs energy as a convenient criterion of spontaneity for processes with
constant pressure and temperature.

Earlier, we have introduced the entropy (see Eqn. (2.10)) as a physical variable in sta-
tistical mechanics and thermodynamics, but one can also define entropy via dS = dq/T,
where dq is a heat change. Taking into account that (dq/dT)p = Cp, where Cp is the heat
capacity at constant pressure, one can write:

dS =
Cp

T
dT. (4.3)

Then, one can write the Gibbs energy of a substance as:

G = H298 +

∫ T

298

CpdT − T

(
S298 +

∫ T

298

Cp

T
dT

)
, (4.4)

where H298 and S298 are the enthalpy and the entropy at 298.15 K (and pressure 1 bar), re-
spectively. In practice, the Gibbs energy for pure elements or stoichiometric compounds is
usually stored in a database using some polynomial functions, e.g. :

Gm = H298
m + a+ bT + cT lnT +

n∑
2

dnT
n, (4.5)

where the left-hand-side is defined as the molar Gibbs energy relative to a standard element
reference state. Usually, the Gibbs energy of a pure phase is called Go. The symbol m
indicating that one deals with molar quantities is usually omitted. For the remainder of
this thesis, we will always refer to the molar Gibbs energy, except where explicitly noted
otherwise.

4.1.2 Multicomponent system

For a multicomponent ideal mixture one can write the total Gibbs energy function of the
system as follows:

Gideal(x) =
∑

i

xiG
o
i +RT

∑
i

xi lnxi, (4.6)
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4.1 Calculation of the phase equilibrium

where xi is a fraction of component i, Go
i is the Gibbs energy of the phase containing

the pure component i (see section above 4.1.1) and the term RT
∑

i xi lnxi is the ideal
Gibbs energy of mixing, Gideal

mix . However, there is always some interaction between the
components. Thus, one needs to introduce the so-called excess Gibbs energy of mixing,
which is defined as a difference between the real and the ideal Gibbs energy (see Eqn.
(4.6)): Gex

mix = Greal − Gideal. The simplest way to describe the excess Gibbs energy
and to take such interactions into account is via the regular solution model. In the
case of a two-component system, one can write the excess Gibbs energy of mixing as
follows:

Gex
mix = xAxBΩ, (4.7)

where Ω is the regular solution interaction energy parameter which is assumed to be
independent of temperature. If Ω is linearly dependent on temperature, we have a quasi-
regular solution model. Positive values of Ω are equivalent to repulsive interactions,
and negative values of Ω are associated with attractive interactions, respectively. The
regular solution model is the simplest of the non-ideal models and basically assumes
that the interactions between the components are independent of composition. How-
ever, it has been realized for a long time that the assumption of composition-independent
interactions is too simplistic. This has led to the development of the sub-regular so-
lution model, where interaction energies are considered to vary linearly with composi-
tion:

Gex
mix = xAxB(g0 + g1xB). (4.8)

Taking this process further, more complex composition dependences of the interaction
parameters can be considered. One of the most common methods is based on the Redlich-
Kister (118) approximation:

Gex
mix = xAxB

∑
v

gv(xA − xB)v, (4.9)

where the parameters gi can be temperature dependent. However, for phases such as inter-
stitial solutions, ordered intermetallics, ceramic compounds, slags, ionic liquids and aque-
ous solutions, simple substitutional models are generally not adequate2.

For a general multicomponent mixture, the complete expression for the total Gibbs energy
will be:

G(x) =
∑

i

xiG
o
i + RT

∑
i

xi lnxi +∑
i

∑
j>i

xixj

∑
v

g(2)
v (xi − xj)

v +
∑

i

∑
j>i

∑
k>j

xixjxk

∑
v

g(3)
v xv + . . . , (4.10)

where g
(i)
v are the interaction parameters. Equation (4.10) includes not only the binary

interaction parameters, but also one of the simplest ternary interaction parameters, which
have been considered in the present thesis for the quasi-ternary semiconductor systems

2In those cases the models used most often are sublattice models (see subsequent section) and associated
solution models (see (2)).
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(see Chapter 7). When dealing with the Gibbs energy of mixing, it is often useful to define
the Gibbs energy of formation:

∆fG = Gtotal −
∑

i

xiG
o
i = RT

∑
i

xi lnxi +
∑

i

∑
j>i

xixj

∑
v

g(2)
v (xi − xj)

v + . . . . (4.11)

4.1.3 Sublattice model

Earlier we have shown how one can approximate the Gibbs energy functions to calculate
the phase equilibrium using simple substitutional methods. But quite often such models
are not satisfactory and one needs to use special approaches to get satisfactory results.
One of the most useful models is the sublattice model, which is widely used to describe
intermetallics, ceramic compounds or other similar systems.

A sublattice phase can be envisaged as being composed of interlocking sublattices for the
atomic positions, on which the various components can mix. The model is phenomeno-
logical in nature and does not define any particular crystal structure within its general
mathematical formulation. Thus, one needs to define so-called site fractions ys

i and mole
fractions xi. Site fractions are defined via the equations:

ys
i =

ns
i

ns
V a +

∑
i n

s
i

, (4.12)

where ns
V a is the number of vacancies and, ns

i is the number of atoms of component i
on sublattice s. Mole fractions xi are related to site fractions by the following equa-
tion:

xi =

∑
sN

sys
i∑

sN
s(1− ys

V a)
, (4.13)

where Ns is total number of sites on the sublattices.

The ideal entropy of mixing is due to the many different configurations possible when the
components randomly mix on each of the sublattices. The number of permutations which
are possible, assuming ideal interchanges within each sublattice, is given by the following
formula:

Wp =
∏

s

N s!∏
i n

s
i !
, (4.14)

and the molar Gibbs ideal mixing energy is:

Gideal
mix = −TSideal

mix = kBT
∑

s

N s
∑

i

ys
i ln ys

i . (4.15)

Next, one defines the ”reference” and ”excess”Gibbs energies. The Gibbs energy reference
state can be defined by the ”end members”generated when only the pure components exist
on the sublattice. The excess Gibbs energy can be defined as the difference between the
real energy and the ideal Gibbs energy, and it is due to the interactions between different
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types of atoms within each sublattice. For the two-sublattice system (A,B)(C,D) we can
write the reference Gibbs energy:

Gref
m = yAyCG

o
AC + yByCG

o
BC + yAyDG

o
AD + yByDG

o
BD, (4.16)

where Go
XY are the Gibbs energies of the pure phases. In such an alloy (A,B)(C,D),

A-C, A-D, B-C and B-D interactions are included in the Gibbs energies of the pure
compounds. Mixing on the sublattice occurs in response to the A-B and C-D interactions,
and the simplest form of the interaction can again be modeled in a regular solution
format:

Gxs
mis = y1

Ay
1
BL

o
A,B:∗ + y1

Cy
1
DL

o
∗:C,D, (4.17)

where Lo
A,B:∗ and Lo

∗:C,D denote regular solution parameters for mixing on the sublattice
irrespective of site occupation of the other sublattice. As before (see Eqn. (4.8)) we
introduce a sub-regular model as a part of the Redlich-Kister polynomial, and we can
write the analogous sublattice sub-regular model as follows:

Gxs
mis = y1

Ay
1
By

2
CL

o
A,B:C + y1

Ay
1
By

2
DL

o
A,B:D +

y1
Cy

1
Dy

2
AL

o
A:C,D + y1

Cy
1
Dy

2
DL

o
B:C,D. (4.18)

As a next step, we can introduce some site fraction dependence, etc. In general, we can
make our models as complicated as necessary to obtain the appropriate results for the
current tasks.

Up to now, we have considered a few of the most useful methods (models) which allow one
to describe the thermodynamic properties of a system and to write the total Gibbs energy
of a system. In the next section, a brief introduction to phase diagram construction will
be given.

4.2 Construction of phase diagrams: Convex hull
method

Nowadays, in most cases the methods of phase diagram construction do not differ from
the separate calculations of the phase equilibrium, since each point of the phase diagram
is calculated without taking into account other fields of the phase diagram. For example,
one of the most commonly used methods of the phase equilibrium calculation, the method
of Gibbs energy minimization, solves the task for each point of the p-T-x phase diagrams
completely. In the case of a K-component system with n phases, one can write the Gibbs
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energy minimization problem as follows:

min
(f,x)

{
G =

n∑
i=1

f (i)G(i)(x(i))

}
n∑

i=1

f (i)x(i) = f,

K∑
k=1

xi
k = 1, i = 1, ..., n

f (i) ≥ 0, xi
k ≥ 0. (4.19)

Here, f (i) is the number of moles of the phase i; x(i) = (xi
k)k=1,...,K is a vector of mole frac-

tions of the kth component in the phase i andG(i) is the corresponding molar Gibbs energy.
Let us also assume, that fk is the total amount of the kth component in the system, f i

k is
the amount of the kth component in the ith phase (by our assumption

∑K
k=1 f

i
k = f (i)).

To reconstruct the whole phase diagram one needs to calculate all possible equilibria for
the whole range of the values (p,T,x). As a next (non-trivial) step, one deletes all unnec-
essary curves, which describe the metastable equilibria. Even using modern computers,
such methods are laborious and difficult to implement.

Recently, in the literature a new approach to phase diagram construction has been pro-
posed (52). This method is based on the convex hull construction of the initial thermody-
namic data. The system will exhibit only one phase, if the initial surface is equal to the
convex hull. If the Gibbs energies are different on the initial surfaces and on the convex
hull, then the system will exhibit several phases belonging to the respective border of the
heterogeneous fields.

This method allows one to combine the advantages of analytical and graphical meth-
ods of the phase diagram analysis. To use this method, one should write the Gibbs
energy functions of all possible phases in the system in the terms of convex mathemat-
ical analysis. This approach allows one to calculate an uniform phase diagram in the
whole range of the thermodynamic variables (p,T,x). Also one should mention, that
here one does not need to explicitly minimize the Gibbs energy or solve the system of
nonlinear equations, thus making the Convex-hull method easier to visualise and imple-
ment.

4.2.1 Convex hull algorithm

The main algorithm of phase diagram construction via the Convex hull method is most
easily presented using an example. In the Fig. 4.1, the Gibbs energy surface of the KBr-
NaBr system is depicted.

The typical double minimum shape of the function indicates the presence of a miscibility
gap in the system. To calculate the phase diagram one needs to find the boundary points
which are responsible for the equilibrium compositions.
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Figure 4.1: The Gibbs energy surface for the system KBr-NaBr, calculated using HF-
data.
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Next, one constructs the convex hull, in the following example with a step size of 10 de-
grees. The projection of the boundary points of the energy function and convex hull cross-
ing on the T-x plane gives us the miscibility gap (see Fig. 4.2).

Figure 4.2: The Gibbs energy surface and convex hull (blue lines). The red points corre-
spond to the boundary points of the energy function and convex hull crossing.
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5 Method

5.1 General approach

Starting point for our method is the energy/enthalpy landscape of a chemical system,
which is the hypersurface of the potential energy/enthalpy over the space of atom con-
figurations in the system (41). Quite generally, the modifications in the system that
should be capable of existence correspond to locally ergodic regions on the landscape of
the system. At very low temperatures, this implies that all atom configurations that
correspond to local minima of the landscape are possible structure candidates. Finding
these minima requires the use of a global optimization method, where we permit free
variation of the atom positions, cell parameters and ionic charges, during the global land-
scape exploration. Since these explorations require many millions of energy evaluations,
we perform the global search using some robust classical potential, and subsequently
locally optimize the candidates employing various ab initio methods for the energy calcu-
lation.

However, at elevated temperatures, the locally ergodic regions are not necessarily localized
around a single local minimum, but may contain many such local minima (119)1. This is
clearly the case in crystalline solid solutions, where each atom configuration (microstate)
j that contributes to the solid solution macrostate belongs to a different local minimum
mi of the potential energy. However, at the temperature at which the solid solution is
formed, all these minima mi are in equilibrium, and thus the basins around them B(mi)
form a single large locally ergodic region R =

⋃
iB(mi), whose local free energy can be

computed as

F (R) = −kBT lnZ(R);Z(R) =
∑

i

exp(−F (mi)/kBT ), (5.1)

where F (mi) = −kBT ln[
∑

j∈B(mi)
exp(−Ej/kBT )] is the local free energy associated with

the basin around a single local minimum B(mi). One necessary condition for the existence
of such a locally ergodic region is that the energies of these local minima are approximately
equal. Else, if the energies differ by more than kBT , the set of minima will split into
several pieces, which are occupied with greatly different probability. Furthermore, we
note that one usually only speaks of a solid solution, if an average periodic structure
exists over which some or all of the various atom types are randomly distributed. Else,

1In principle, such regions can be identified using swarms of extremely long Monte Carlo simulations
(120). However, for certain systems such as solid solutions or compounds containing complex ions,
alternative approaches are feasible (119) as described here for the case of solid solution-like phases.
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we deal with a structurally disordered amorphous compound, e.g. a metallic or covalent
glass2.

Thus, the signature for the existence of a solid solution is the existence of a structurally
related family of local minima, which all possess nearly the same energy. We therefore
proceed as follows in our search for possible solid solution-like phases: In a first step, we
employ the structure comparison algorithm CMPZ (122) (CMPZ is an acronym for CoM-
Pare Zelle = compare cell) in order to check, whether two local minimum configurations
found during the global landscape exploration at a given composition exhibit the same
structure if we do not distinguish between those atom types which might be randomly dis-
tributed on the same sub-lattice in a solid solution structure3. If such a set of structurally
related minima exists, we next check their energies, both on empirical potential and ab
initio level (see below section 5.2). If these energies are similar, we construct supercells of
the parent structure of the family and generate all (or a random subset for large super-
cells) of the possible structures in this family followed by a local optimization on empirical
potential and ab initio level (see below section 5.2). If all the minimum energies fall within
a narrow energy band, we can compute the local free energy of the solid solution state
approximately in the thermodynamic limit by replacing the energy of the solid solution
by the average over the minimum energies, and taking for the entropy contribution the
appropriate entropy of mixing of an ideal solution at the given composition. Alternatively,
one could compute an estimate of the partition function in the thermodynamic limit by
explicitly summing the Boltzmann factors exp(−F (mi)/kBT ) ≈ exp(−E(mi)/kBT ) over
a sufficiently large number of minimum regions corresponding to solid-solution-like atom
configurations mi. Thus, we could avoid using the entropy of mixing of an ideal solu-
tion which is only approximately valid, of course. However, the number of configurations
needed to proceed in this fashion is too expensive computationally, since for each con-
figuration (containing O(102) atoms) a local minimization on ab initio level would be
required.

Of course, if some ordered crystalline compound exhibits a lower free energy than the
solid solution, the solid solution-like phase would only be metastable. Here, we ignore
the contribution of the vibrational degrees of freedom to the local free energy. However,
since the answer to the question, whether at composition x an ordered crystalline phase, a
solid solution phase or the separation into two boundary phases with other compositions
x1 < x < x2, constitutes the thermodynamically stable phase, depends on the difference
between free energies, dropping the vibrational free energy for all these candidates is likely
to cause only a higher order error.

2In contrast, crystalline solid solutions are often called substitutionally or chemically disordered (121).
3Note that, in principle, for each composition the crystalline solid solution phase (if it exists at all) could

exhibit a different structure.

42



5.2 Ab initio calculations and global exploration: technical details

5.2 Ab initio calculations and global exploration:
technical details

When all structure candidates have been selected, we employ ab initio calculations with
the program CRYSTAL2003/06 (117; 123). For each distinct structure candidate, after
symmetry identification and idealization using the algorithms SFND (124) (acronym for
SymmetrieFiNDer = symmetry finder) and RGS (125) (acronym for RaumGruppenSucher
= space group searcher) as implemented in the program KPLOT (126), we refine the
structure by varying the cell parameters and the atom positions until a minimum of the
energy is found. Here, we use a heuristic algorithm described in detail in Refs. (48; 127),
which is based on a nested sequence of line search minimizations. Finally, the energy as
function of the volume E(V ) is obtained by interpolation of the calculated data points
with the standard Murnaghan formula (128).

In the examples shown in Part IV, all calculations were performed on both the Hartree-
Fock and DFT (Density Functional Theory) level, since experience has shown (48) that
one needs at least two different ab initio methods, in order to gain some feeling for the
quantitative validity of the results. For the DFT calculations the B3LYP functional
(Becke’s three parameter functional (112)), where the exchange-correlation term is a
weighted combination of the LDA-, Becke-, Hartree-Fock-, Vosko-Wilk-Nusair- and LYP-
exchange/correlation terms, and the LDA-VBH functional were usually employed.

The empirical potential employed during the global search for local minima consisted of
a damped Coulomb-term plus a Lennard-Jones-type potential, where the Lennard-Jones
parameters σij = ri+rj are given by the sum of the ionic radii of atoms i and j with charge
qi and qj. As a global optimization algorithm, stochastic simulated annealing (89; 90) runs
based on random Monte Carlo walks on the energy landscape with decreasing temperature
parameter were used, for each fixed composition with up to 20-30 atoms/simulation cell.
Both atom positions (85% of all Monte Carlo steps) and the parameters of the periodically
repeated simulation cell (15% of all Monte Carlo steps) were freely varied during the
random walks. In the case of the mixed quasi-binary alkali halide systems, the supercells
contained up to 64 atoms and were generated by simple multiplication of the original cell
on the vector, e.g. (1 1 2); with posterior random changing of atom position into one of the
sublattices in order to generate new ”structure-family”candidates (see Section 6.3). These
candidates were then quenched both on empirical potential and ab initio level. For the
lanthanum halide systems, the supercells contained up to 96 atoms and were generated
by the same procedure. In addition, these newly generated structures were used as input
for threshold runs, which served as an additional method besides the standard simulated
annealing to find new structure candidates with a large number of formula units (see
Section 8.1).
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5.3 Computation of the enthalpy of
formation

After the energies of the local minima for structure candidates that belong to the solid
solution-like phase or to individual ordered crystalline modifications have been obtained,
it is possible to calculate the enthalpy of formation of a compound AxB1−x by the following
formula:

∆fH(AxB1−x) = 〈E(AxB1−x)〉 − xE(A)− (1− x)E(B) + p∆V (x), (5.2)

where 〈E(AxB1−x)〉 is the total energy of the solid solution state averaged over all minima
belonging to this state, E(A) and E(B) are the energies of the pure compounds A and
B, respectively, and x is the fraction of A in the overall composition. Also, one should
note, that at standard pressure the contribution of the p∆V (x)-term is negligible, but it
becomes noticeable at elevated pressures (see Section 6.3.4).

Obviously, this procedure yields a finite number of data points for different values of x, and
the Redlich-Kister polynomial (118) was used to fit the results:

∆fH(x) = x(1− x)
N∑

i=0

ai(1− 2x)i, (5.3)

where ai are the fitting parameters. Usually, we have only included the first two terms
in the polynomial expansion, since the total number of data points and the spread
in energies for given compositions would not justify the use of higher-order polynomi-
als.

Of course, if the compound AxB1−x is an ordered crystalline compound, only one minimum
contributes to the locally ergodic region, and the energy average trivially equals the energy
E(AxB1−x). Furthermore, these data points should be treated individually, and it is
usually not appropriate to try to fit ∆fH(x) with some kind of polynomial function - the
energies of such ordered structures do not change smoothly as a function of x, since these
structures are usually not simply related to each other4.

5.4 Construction of the phase diagram

As mentioned above, the Gibbs energy of formation with respect to the pure compounds
(x = 0 and x = 1) is then calculated by adding the standard entropy of mixing Smix(x) =

4We would also expect a discontinuity in ∆fH(x) to occur, if the family of solid solution-like structures
changed from e.g. a NaCl- to a CsCl-superstructure at some value of x.
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−R[x ln(x) + (1− x) ln(1− x)]5:

∆fG(x) = RT [x lnx+ (1− x) ln (1− x)] + x(1− x)
N∑

i=0

ai(1− 2x)i, (5.4)

where R = 8.31451 (J/(mol*K)) is the universal gas constant. From ∆fG(x), the phase
diagram can now be obtained by means of the so-called convex hull method described
in the Section 4.2 (for more detail see the original reference (52)), since the thermody-
namically preferred combination of phases corresponds to linear combinations of appro-
priately chosen boundary phases with fractions x1, x2, . . . of A that minimize the total
Gibbs energy of the system. We note that as long as ∆fH(AxB1−x) can be described
by a sufficiently low-order Redlich-Kister polynomial, there will never be more than two
boundary phases for a given value of x. Furthermore, since limx→0 ∂∆fG(x)/∂x = −∞
and limx→1 ∂∆fG(x)/∂x = +∞, these boundary phases will never occur at x = 0 or x = 1
for non-zero temperature.

5Of course, if we are dealing with an ordered compound AxB1−x, only one minimum contributes, and
the additional entropy term equals zero.
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6 Quasi-binary alkali halogenide
systems

6.1 Introduction

As we have mentioned earlier, nowadays, the availability of high quality phase diagrams
plays a key-role in materials science and engineering. Thus, one can find on the market
several commercial products, e.g. FactSage (129), Thermo-Calc (130), MTDATA (131),
PANDAT (132); and many research groups are involved in the business of computing
or improving phase diagrams. Recently, many studies of phase diagram and structure
calculations started to be supported by ab initio calculations with great success, e.g. a
new metastable modification of lithium bromide, recently predicted in our group as a
possible structure candidate, has been synthesized (133).

In this thesis, a new methodology for the prediction of the low temperature region of phase
diagrams is presented. We expect, that our data can be used by experimentalists as a
starting point in their work, and can help to remove all, or as many as possible, white spots
on the phase diagrams. To validate our methodology discussed in the previous chapter,
we were guided by the following considerations: enough thermodynamic data should be
available for the systems under investigation, and the systems should be sufficiently simple
to allow a systematic study while still allowing for the possibility of reasonably complex
phase diagrams. Thus, the first systems we chose were the quasi-binary alkali halide
systems, some of which exhibit continuous solutions in the solid phase, while others only
possess ordered crystalline phases according to the literature (134). Moreover, we took
some examples where there is a lack of thermodynamic data for the solid phase, especially
at low temperatures, since here the theoretical calculations could not only validate the
phase diagrams but also yield quantitative improvements. In particular, we analyzed the
following systems: NaX-LiX, NaX-KX, KX-RbX (where X = Cl or Br), MBr-MI (where
M = Li, Na, K, Rb or Cs) and MBr-MCl (where M = Li, Na or K), all of which should
exhibit a miscibility gap, and CsX-LiX (where X = F, Cl, Br or I) and LiX-RbX (where
X = Cl, Br), where crystalline compounds are expected.
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6.2 General remarks

Our general approach to the determination of structure candidates has been given in
detail in the Part III. Specifically, the atoms in the quasi-binary halides were modeled as
spherical ions that interact via a simple empirical two-body potential, Vij(rij), consisting
of a Coulomb- and a Lennard-Jones-term that depend only on the atom-atom distance
rij, in order to allow fast calculations of the energy of a given configuration. The Lennard-
Jones parameters σij = rs(ri + rj) are given by the sum of the ionic radii of atoms i and
j with charges qi adn qj multiplied by a scaling factor rs. The ionic radii are presented in
the Appendix (see the Table A.1).

The ab initio runs were performed on both Hartree-Fock (HF) and density functional
theory (DFT) level; the basis sets were optimized versions (135) of data sets available in
the literature (136) (see Appendix, Tables A.2, A.3 and A.4).

6.3 Phase diagrams with miscibility
gaps

6.3.1 NaCl-LiCl, NaBr-LiBr and NaCl-KCl

Introduction

The NaCl-LiCl, NaBr-LiBr and NaCl-KCl systems have been studied in detail experimen-
tally in both the liquid/solid (137; 138; 139) and the low-temperature regions, including
the determination of their miscibility gaps (140; 141; 142; 143; 144). Thus, we decided to
use them as test systems for our new methodology.

Results and Discussion

For each chemical system, several hundred global optimization runs were performed for a
number of different compositions each, at a pressure of 0 Pa. In the case of the NaCl-LiCl
system, we performed calculations for 9 different compositions (1:9, 1:3, 1:2, 2:3, 1:1, 3:2,
2:1, 3:1, 9:1) besides the binary systems, and for the other systems, we considered 5 (1:3,
1:2, 1:1, 2:1, 3:1) compositions. The resulting structure candidates for each system were
analyzed with respect to their symmetries.

For a number of supercells containing up to 64 atoms, structure candidates with rocksalt
lattice super-structure were generated by permutation of the cation positions followed by
two local optimization runs: first with the empirical potential, and subsequently on ab
initio level. In Fig. 6.1, we present as a representative example the resulting E(V ) curves
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6.3 Phase diagrams with miscibility gaps

in the NaCl-LiCl system for 11 selected candidates with composition NaCl:LiCl = 1:1,
all belonging to the solid-solution-like phase in the rock salt structure type. Each atom
configuration represents one of the many possible random arrangements of Na and Li over
the cation positions in the rock salt structure type. One clearly sees that their energies
are very similar, with the spread in energy corresponding to a temperature of about 30
K.
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Figure 6.1: E(V ) curves for 11 structure candidates belonging to the solid solution state
(rocksalt superstructure) of the NaCl-LiCl system with composition 1:1, cal-
culated via the Hartree-Fock method using an all-electron basis set. Each of
these structures is a representative of the set of atom configurations that are
generated by randomly arranging the Na and Li atoms on the cation sublattice
of the rock salt structure type. Note that the energies of these structures are
very similar, with a spread in energy corresponding to a temperature of about
30 K.

In the next step, the enthalpies of formation of each compound were obtained according
to equation (5.2). Fitted parameters according to equation (5.3) for all systems are listed
in Table 6.1.

The data above allows us to calculate the Gibbs energy of the solid phase and to predict
the location of the miscibility gap. The critical parameters are listed in Table 6.2. In
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Table 6.1: The parameters of the enthalpy of formation for the NaCl-LiCl, NaBr-LiBr
and NaCl-KCl systems obtained in the present work (in Joule/mol).

System HF DFT-B3LYP
a0 a1 a0 a1

NaCl-LiCl 8267.1 −1841.7 8362.7 −650.5
NaBr-LiBr 7564.9 −580 7892.2 −693.2
NaCl-KCl 15059 2561 12667 2817

Figs. 6.2 - 6.4 one can see the predicted binodal curves (both for HF- and DFT-based
calculations), the experimental data and a plot of the miscibility gaps (134) based on the
experimental thermodynamic data.

Table 6.2: The critical parameters for the NaCl-LiCl, NaBr-LiBr and NaCl-KCl systems
obtained in the present work. Tc is the critical temperature of the decompo-
sition in K, and xc is the concentration of the second compound. T lit

c and xlit
c

are values suggested in the literature.

System Method Tc xc T lit
c xlit

c Reference
NaCl-LiCl HF 544 0.63 544, 587 0.58, 0.65 (141), (140)

DFT 509 0.56
NaBr-LiBr HF 460 0.55 519∗ 0.51 (134)

DFT 483 0.56
NaCl-KCl HF 959 0.39 771 0.47 (144)

DFT 833 0.37
∗ based on fitting the experimental data (142)

An important condition for the presence of a solid-solution phase is the existence of a
family of structurally related minima, which exhibit the same superstructure. Further-
more, the energies of these minima must be sufficiently close such that they exhibit similar
probabilities of finding the system in these basins in the thermodynamic limit. As one can
see (Fig. 6.1), the resulting E(V ) curves are closely the same, with the spread in energies
per atom δ(E) ≈ 3× 10−3 eV << kBTc ≈ 5× 10−2 eV.

Thus, we can assume that the systems will exhibit a solid solution-like phase where the
cations are randomly distributed over the cation sublattice of the rocksalt structure. One
should mention that the same behavior was observed regardless of whether the Hartree-
Fock or the DFT method was used. In the case of the NaCl-LiCl system, in the beginning
of our study, we investigated 9 different compositions besides the binary compounds.
When analyzing the data and computing the critical parameters, we noted that already
the five compositions (3:1, 2:1, 1:1, 1:2, 1:3) yielded essentially the same values for the
parameters in the Redlich-Kister polynomial and the critical parameters as we had de-
duced with using all nine compositions. Since the computational effort required for the
local optimizations of the supercells on ab initio level is very high, we decided to include
only five compositions in the final analysis of the other two systems once it had become
clear that a solid solution-like phase was present.
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Figure 6.2: The miscibility gaps in the NaCl-LiCl system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-calculations, dotted curve - fit to
experimental data (134), points - experimental data from (140; 141).
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Figure 6.3: The miscibility gaps in the NaCl-KCl system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-calculations, dotted curve - fit to
experimental data (134), points - experimental data from (144).
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Figure 6.4: The miscibility gaps in the NaBr-LiBr system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-calculations, dotted curve - fit to
experimental data (134), points - experimental data from (142).

As is well known, every solid solution becomes unstable as the temperature decreases:
ordering sets in, and, finally, a separation into its pure components takes place. Hence,
the existence of the miscibility gaps in all these systems was expected once the existence
of a solid solution-like phase had been established. The data obtained for the enthalpy
of formation at ≈ 0 K allowed us to calculate the Gibbs energy of formation using equa-
tion (5.4) and to construct parts of the phase diagrams at low temperatures. In Fig.
6.2, one can see the good agreement for the NaCl-LiCl system with the experimental
data. In the case of the NaCl-KCl and the NaBr-LiBr systems, we also correctly deduce
the existence of the miscibility gaps without input from experiment, but the quantita-
tive agreement with the experimental data is not as high as in case of the NaCl-LiCl
system.

6.3.2 KBr-NaBr, KCl-RbCl and KBr-RbBr

Introduction

Next we would like to present the investigations for the KBr-NaBr, KCl-RbCl and KBr-
RbBr systems. The first one had been experimentally studied in detail both in the liq-
uid/solid and low-temperature regions, including the miscibility gap, thus the KBr-NaBr
system could serve as a test system. In contrast KCl-RbCl and KBr-RbBr have not yet
been properly investigated experimentally, especially in the low-temperature region. Thus,
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systems containing rubidium were of particular interest.

Results and Discussion

As before, for each chemical system, several hundred global optimization runs were per-
formed for a number of different compositions each, at a pressure of 0 Pa. We performed
calculations for 7 different compositions (4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4) besides the lim-
iting binary phases. In all three cases the minima with the lowest energies belonged to
the rocksalt structure type. Thus, we generated a number of supercells containing up to
64 atoms, with rocksalt lattice super-structure by systematic permutation of the cation
positions followed by two local optimization runs: first with the empirical potential, and
subsequently on the ab initio level. In the next step, the enthalpies of formation of each
compound were obtained according to equation (5.2). Fitted parameters according to
equation (5.3) for all these systems are listed in Table 6.3.

Table 6.3: The parameters of the enthalpy of formation (according to equation (5.2))
for the rocksalt - type solid solution phases in the KBr-NaBr, KCl-RbCl and
KBr-RbBr systems obtained in the present work (in Joule/mol).

System HF DFT-B3LYP
a0 a1 a0 a1

KBr-NaBr 11253 -419 10276 -380
KCl-RbCl 3146.8 374.7 3295.4 35.1
KBr-RbBr 2017.7 58.2 2735.3 797.5

From these data we calculated the Gibbs energy of the solid phase and predicted the loca-
tion of the miscibility gap. The critical parameters are listed in Table 6.4.

Table 6.4: The critical parameters for the rocksalt - type solid solution phases in the KBr-
NaBr, KCl-RbCl and KBr-RbBr systems obtained in the present work. Tc is
the critical temperature of the decomposition in K, and xc is the concentration
of the second compound. T lit

c and xlit
c are values suggested in the literature

(134).

System Method Tc xc T lit
c xlit

c

KBr-NaBr HF 679 0.53 668∗ 0.5∗

DFT 620 0.53
KBr-RbBr HF 121 0.48 120 0.5

DFT 189 0.345
KCl-RbCl HF 195 0.42 90 0.5

DFT 198 0.49
∗ values based on fitting the experimental data (143)

In Figs. 6.5 - 6.7 one can see the predicted binodal curves (for both HF- and DFT-based
calculations), and the experimental data that are available for the KBr-NaBr system. In
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Figure 6.5: The miscibility gaps in the KBr-NaBr system. Solid line - based on Hartree-
Fock-calculations, dashed curve - based on DFT-B3LYP-calculations, dotted
line - fit to experimental high- and low-temperature data (134), points - ex-
perimental data from (143).

the case of the KCl-RbCl and KBr-RbBr systems, the miscibility gaps based on the ex-
trapolation from high-temperature data (134) are presented.

Earlier, we noted that one important condition for the presence of a solid-solution phase is
the existence of a family of structurally related minima, which exhibit the same superstruc-
ture (see Section 6.3.1). Furthermore, the energies of these minima must be sufficiently
close such that there exist similar probabilities of finding the system in these basins in
the thermodynamic limit. For the KBr-NaBr, KCl-RbCl and KBr-RbBr systems, we find
that the resulting E(V ) curves belonging to a family of minima (rocksalt structure family)
are closely the same, with the spread in energies per atom δ(E) ≈ 5× 10−4 eV << kBTc

≈ 2 − 6 × 10−2 eV. We can assume that these systems will exhibit a solid solution-like
phase where the cations are randomly distributed over the cation sublattice of the rocksalt
structure. One should mention that the same behavior was observed regardless of whether
the energy was calculated on Hartree-Fock or DFT level.

In Fig. 6.5, one can see the good qualitative and quantitative agreement of the miscibility
gap prediction (both for HF and DFT-B3LYP based calculations) with the experimental
data for the KBr-NaBr system. Figs. 6.6 and 6.7 show the corresponding results for
the KCl-RbCl and the KBr-RbBr systems. In both cases, we predict the existence of
miscibility gaps. These results agree qualitatively with the extrapolations from high-
temperature experimental data for these two systems. However, we feel that the numerical
values of the extrapolated critical temperatures and the shape of the gap are not very
reliable, and we suggest that our calculated values are more appropriate. In particular, this
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Figure 6.6: The miscibility gaps in the KCl-RbCl system. Solid line - based on Hartree-
Fock-calculations, dashed curve - based on DFT-B3LYP-calculations, dotted
line - extrapolated from high-temperature experimental data (134).
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Figure 6.7: The miscibility gaps in the KBr-RbBr system. Solid line - based on Hartree-
Fock-calculations, dashed curve - based on DFT-B3LYP-calculations, dotted
line - extrapolated from high-temperature experimental data (134).
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should hold for the KCl-RbCl system, since the HF and DFT calculations give very similar
results (see Fig. 6.6 and Table 6.4). In the case of the KBr-RbBr system, we expect that
the true location of the miscibility gap will be somewhere between the curves calculated
via HF and DFT, and we strongly suspect that the extrapolation from the experimental
high-temperature data underestimates the size of the gap. One the other hand, a possible
source of error in the exact location of the miscibility gaps is the contribution of phonons
to the free energy of formation. However, our earlier studies (145) suggest that the phonon
contributions of the ternary structures and the binary compounds cancel to first order, and
thus will not greatly influence the location of the miscibility gap (see Critical discussions
part 6.5).

6.3.3 The MBr-MI systems, where M = Li, Na, K, Rb or
Cs

Introduction

In the previous sections 6.3.1 and 6.3.2, we dealt with systems which have two types of
cations and only one type of anion. In the present section we consider systems with two
different anions and only one type of cation. As examples, we investigated the alkali metal
bromide-iodide systems with composition MBrxI1−x (0≤x≤1; where M = Li, Na, K, Rb
or Cs). Several of these systems constitute materials of practical interest; e.g. chemical
sensors based on the solid solution of KBr and KI are employed for ozone measurements
in the stratosphere (146).

Results and Discussion

For each chemical system, several hundred global optimization runs were performed for a
number of different compositions each, at a pressure of 0 Pa. We performed calculations
for 5 different compositions (1:3, 1:2, 1:1, 2:1, 3:1) besides the limiting binary phases
for each system. Our previous studies (see Sections 6.3.1 and 6.3.2) show that nine,
seven or five different compositions give essentially the same values for the parameters
in the Redlich-Kister polynomial and the critical parameters. Thus, since the compu-
tational effort required for the local optimizations of the supercells on ab initio level is
very high, we decided to include only five compositions in the analysis, once it had be-
come clear that a solid solution-like phase was going to be the thermodynamically stable
one.

The resulting structure candidates were analyzed with respect to their symmetries. In
all systems, we found that the minima with the lowest energies belonged to the rocksalt
structure type constituting a structural family likely to result in a solid solution-like phase.
Next, supercells, containing up to 64 atoms, were generated and locally optimized on ab
initio level. Subsequently, the enthalpies of formation of each compound were obtained
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according to equation (5.2). Fitted parameters according to equation (5.2) for all systems
are listed in Table 6.5.

Table 6.5: The parameters of the enthalpy of formation for the rocksalt-type solid solution
phases in the MBr-MI systems where (M = Li, Na, K, Rb or Cs) obtained in
the present work (in Joule/mol).

System HF DFT-B3LYP DFT-LDA-VBH
a0 a1 a0 a1 a0 a1

LiBr-LiI 6717.3 955.7 5757.7 986.4 - -
NaBr-NaI 5747.5 873.4 4860.5 660.6 - -
KBr-KI 4975.6 666.8 5136.8 79.9 - -
RbBr-RbI 4427.8 722.3 4309.7 625.7 4324.7 726.8
CsBr-CsI 4563.5 1016.2 4417.1 1024.2

From these data we calculated the Gibbs energy of the solid phase and predicted the loca-
tion of the miscibility gap. The critical parameters are listed in Table 6.6.

Table 6.6: The critical parameters for the rocksalt-type solid solution phases in the MBr-
MI systems where (M = Li, Na, K, Rb or Cs) obtained in the present work. Tc is
the critical temperature of the decomposition in K, and xc is the concentration
of the second compound. T lit

c and xlit
c are values suggested in the literature

(134).

System Method Tc xc T lit
c xlit

c

LiBr-LiI HF 421 0.40 481 0.5
B3LY P 366 0.39

NaBr-NaI HF 362 0.4 370 0.4
B3LY P 303 0.4

KBr-KI HF 310 0.4 364 0.5
B3LY P 309 0.49

RbBr-RbI HF 281 0.4 395 0.33
B3LY P 270 0.4
LDA− V BH 275 0.39

CsBr-CsI HF 300 0.37 391 0.5
B3LY P 292 0.36
LDA− V BH 368 0.4

In Figs. 6.8 - 6.13 one can see the predicted binodal curves (both for HF- and DFT-based
calculations), the experimental data and a plot of the miscibility gaps extrapolated from
the experimental thermodynamic data(134).

Earlier in Section 6.3.1, we noted that one important condition for the presence of a solid
solution phase is the existence of a family of structurally related minima, which exhibit
the same superstructure. Furthermore, the energies of these minima must be sufficiently
close such that they exhibit similar probabilities of finding the system in these basins in
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Figure 6.8: The miscibility gaps in the LiBr-LiI system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-B3LYP-calculations; dotted misci-
bility curve - has been extrapolated from experimental high-temperature data
(134). Bullet point on the left (T = 298 K, xLiI = 0.1): experimental data
by (147; 148) (rocksalt-type); bullet point on the right (T = 298 K, xLiI =
0.9): experimental data by (148) (rocksalt-type). In the region below the hor-
izontal dotted line, a metastable solid solution based on the wurtzite structure
type has been observed (148). Locations of the metastable ordered crystalline
modifications are indicated by dotted lines.
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Figure 6.9: The miscibility gap in the NaBr-NaI system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-B3LYP-calculations, dotted curve
- estimated from experimental data (134). Locations of the metastable ordered
crystalline modifications are indicated by dotted lines.
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Figure 6.10: The miscibility gap in the KBr-KI system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-B3LYP-calculations, dotted curve
- estimated from experimental data (134). Locations of the metastable or-
dered crystalline modifications are indicated by dotted lines.
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6 Quasi-binary alkali halogenide systems

the thermodynamic limit. For all systems in this section, we find that the resulting E(V )
curves belonging to a family of minima are closely the same, with the spread in energies
per atom δ(E)≈ 5×10−3 eV << kBTc ≈ 3×10−2 eV. We thus can assume that the systems
will exhibit a solid solution-like phase where the anions are randomly distributed over the
anion sublattice of the rocksalt structure. One should mention that the same behavior
was observed regardless of whether the energy was calculated on Hartree-Fock or DFT
basis. This allows us to calculate the miscibility gaps in all systems investigated. Figs.
6.8 - 6.13 show our data together with the miscibility gaps based on the optimization of
the experimental thermodynamic data available. Of course, in every system investigated
a number of structure candidates exhibiting ordered crystalline structures that do not
appear to belong to one of the major structure families (rocksalt, CsCl, wurtzite) have
also been observed. These candidates are all metastable with respect to the structures
belonging to the rocksalt family.
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Figure 6.11: The miscibility gaps in the RbBr-RbI system (stable rocksalt- and metastable
CsCl-type). Solid curve - based on HF-calculations, dashed curve - based
on DFT-B3LYP-calculations, dotted curve - extrapolated from experimental
high-temperature data (134) (rocksalt-type solid solution). Locations of the
metastable ordered crystalline modifications are indicated by dotted lines.

The stability of the solid solution of the RbBr-RbI systems has been discussed in many
publications (149; 150; 151; 152; 153). On the one hand many authors proposed critical
parameters above room temperature: e.g. Hovi (149) suggested that the solid solution
would be stable above 433 K, and Ahtee and Koski (150) gave 346 K as the critical
temperature. On the other hand, Ahtee and Koski (150), Thomas and Wood (151), and
Ahtee (152) were able to record X-ray powder patterns of a single solid solution-like phase
at room temperature in a dry atmosphere. From this and additional experiments Swamy
and co-workers (153) concluded that the solid solution in the RbBr-RbI system should be
stable already at room temperature. In this context our prediction (Tc ≈ 280-290 K) us-
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Figure 6.12: The miscibility gap for the stable solid solution phase (rocksalt-type) in the
RbBr-RbI system. Solid curve - based on HF-calculations, dashed curve -
based on DFT-B3LYP-calculations, dotted-dashed curve - based on DFT-
LDA-VBH-calculations, dotted curve - extrapolated from experimental high-
temperature data (134).
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Figure 6.13: The miscibility gaps in the CsBr-CsI system (stable rocksalt- and metastable
CsCl-type). Solid curve - based on HF-calculations, dashed curve - based on
DFT-B3LYP-calculations, dotted-dashed curve - based on DFT-LDA-VBH-
calculations, dotted curve - extrapolated from experimental high-temperature
data (134) (rocksalt-type solid solution). Locations of the metastable ordered
crystalline modifications are indicated by dotted lines.
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6 Quasi-binary alkali halogenide systems

ing three quite different ab initio methods is noticeably closer to the experimental results
than the one suggested by Pelton (134) based on extrapolation from high-temperature
data. In the case of the CsBr-CsI system, the few experimental data available (152; 154)
only confirm that at room temperature a solid solution phase is present for x close to
0 and 1, which agrees both with our calculations and the miscibility curve suggested by
Pelton (134) based on extrapolation from high-temperature data. No other experimen-
tal information concerning the location of the miscibility gap or some upper bound of
the critical temperatures is available. Taking the uncertainty both in the calculations
and thermodynamic extrapolations into account, we suggest that the miscibility gap is
most likely located somewhere between the HF- / B3LYP-results and the two curves
calculated with the LDA-VBH functional and extrapolated from high-temperature data,
respectively.

One should mention, that in both RbBr-RbI and CsBr-CsI, we observed that the low-
energy structure candidates of all compositions belonged to two main families exhibiting
the rocksalt and CsCl-structure type, respectively, for the anion-cation arrangement. The
small difference in energies among the structure candidates belonging to the metastable
CsCl family allowed us to conclude, that if the system could not reach the thermodynam-
ically stable rocksalt-like phase we would nevertheless observe solid solution-like behavior
in the CsCl-structure type, and we have calculated the miscibility gap for this metastable
solid solution. In the Rb-system, HF-, DFT-B3LYP- and LDA-VBH-calculations yielded
essentially the same critical parameters and miscibility gaps for the metastable solid
solution-like phase (see Tables 6.7 and 6.8), while in the case of cesium, the values com-
puted with the LDA-VBH-functional are larger then the ones for HF and B3LYP. The
resulting curves are also presented in figures 6.11 - 6.13. One can see that in the case of
the RbBr-RbI system (Figs. 6.11, 6.12) the miscibility gaps for the stable and metastable
solid solution, based on the data obtained by all ab initio methods, are very close. In con-
trast, in the case of the CsBr-CsI system, the metastable miscibility curve lies noticeably
below the stable one (see Fig. 6.13).

Table 6.7: The parameters of the enthalpy of formation for the metastable wurtzite (LiBr-
LiI system) and CsCl (in RbBr-RbI and CsBr-CsI systems) type solid solution
phases obtained in the present work (in Joule/mol).

System HF DFT-B3LYP
a0 a1 a0 a1

LiBr-LiI 10711 0 9513.5 0
RbBr-RbI 4744.4 171.7 4462.2 333.6
CsBr-CsI 3455 656.9 3430.5 456.6

According to the literature a solid solution is observed in the LiBr-LiI system, which ex-
hibits the metastable wurtzite structure-type (148) up to room temperature. During our
global exploration of the enthalpy landscape we only find the thermodynamically stable
rocksalt structure type; the metastable wurtzite type is only detected on the landscape
of the binary LiI - compound. This indicates that the corresponding local minima on the
empirical energy landscape are at rather high energies and are quite shallow. Nevertheless,
we have computed not only the miscibility gap for the thermodynamically stable rocksalt
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6.3 Phase diagrams with miscibility gaps

Table 6.8: The critical parameters for the metastable wurtzite (LiBr-LiI system) and
CsCl (in RbBr-RbI and CsBr-CsI systems) type solid solution phases obtained
in the present work. Tc is the critical temperature of the decomposition in K,
and xc is the concentration of the second compound.

System Method Tc xc

LiBr-LiI HF 644 0.5
B3LY P 572 0.5

RbBr-RbI HF 286 0.47
B3LY P 272 0.45

CsBr-CsI HF 222 0.38
B3LY P 214 0.4
LDA− V BH 273 0.53

solid solution, but also the miscibility gap for the metastable wurtzite solid solution (see
Tables 6.7 and 6.8), since in the binary lithium halides the energies of the wurtzite struc-
ture are quite close to those of the rocksalt modification on ab initio level (135; 155). Both
gaps are plotted in Fig. 6.8, and we note that the one associated with the wurtzite-type
extends to higher temperature than the stable one belonging to the rocksalt-type. As
we mentioned above, a solid solution of the metastable wurtzite structure-type has been
observed (148) up to room temperature (see horizontal dotted line in Fig. 6.8), but over
a period of several weeks at room temperature it transforms into a mixture of two more
stable rocksalt-type solid solution phases with different compositions exhibiting between
90% - 100% of LiI and LiBr, respectively. From our calculations, we can conclude, that
the wurtzite solid solution is actually metastable both with respect to the rocksalt solid
solution and with respect to the separation into a mixture of two solid solution phases
containing over 90% LiI and LiBr, respectively, in the (metastable) wurtzite type (see Fig.
6.8).

Also, one should mention, that for the LiBr-LiI system most experimental thermodynamic
information is still lacking; only the liquid-solid minimum has been measured so far. Thus,
the prediction of the miscibility gap for a rocksalt-type solid solution phase by Pelton (134)
appears to be quite speculative; from our data, we conclude that the critical parameters
should lie between 420 and 366 K. In this connection, the observation by Gupta and
co-workers (147), that the solubility of LiI in LiBr (in the rocksalt type solid solution)
at room temperature is about 10 mole % LiI, is in quite satisfactory agreement with our
calculations; analogous results and an additional data point at 90 mole % LiI at room
temperature have been obtained in Ref. (148) (see Fig. 6.8).
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6 Quasi-binary alkali halogenide systems

6.3.4 The MBr-MCl systems, where M = Li, Na or
K

Introduction

In the present section we consider another family of systems with two different anions and
only one type of cation. We investigated the alkali metal bromide-chloride systems with
composition MBrxCl1−x (0≤x≤1; where M = Li, Na, K). We can confirm the general obser-
vation in the literature (134) that the phase diagrams of these three alkali bromide-chloride
systems show solid solution behaviour, and we compute the miscibility gaps at low temper-
atures. This information about the systems’ stability and critical parameters of decompo-
sition should be useful for experimentalists who study the crystal growth and the chemical
and physical properties of these systems (156; 157; 158; 159).

Results and Discussion

For each chemical system, several hundred global optimization runs were performed for a
number of different compositions each, at a pressure of 0 Pa. We performed calculations
for 5 different compositions (3:1, 2:1, 1:1, 1:2, 1:3) besides the limiting binary phases. For
each composition we found for the set of structure candidates with the lowest energies,
that the energy differences between the candidates were very small. These candidates
belonged to the same structure family, indicating a solid-solution behaviour for all three
systems. After confirming this assumption by generating additional structures belonging
to this family, the enthalpy of formation for each composition x were obtained according
to equation (5.2).

The parameters for a fit of ∆fH(x) with a Redlich-Kister polynomial for all of the systems
are listed in Table 6.9.

Table 6.9: The Redlich-Kister polynomial fitting parameters of the enthalpy of formation
(according to equation 5.2) for the rocksalt-type solid solution phases in the
MBr-MCl systems (M = Li, Na or K) at standard pressure obtained in the
present work (in Joule/mol).

System HF DFT-B3LYP
a0 a1 a0 a1

LiBr-LiCl 5938.1 -1474.8 5769.8 -1632.7
NaBr-NaCl 4802.3 16.7 4207.6 90.1
KBr-KCl 3956.53 -378.86 3317.0 245.5

From this data we calculated Gibbs energies of the solid phase and predicted the location of
the miscibility gaps. The critical parameters are listed in Table 6.10.
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6.3 Phase diagrams with miscibility gaps

Table 6.10: The critical parameters for the LiBr-LiCl, NaBr-NaCl and KBr-KCl systems
at standard pressure obtained in the present work. Tc is the critical temper-
ature of the decomposition in K, and xc is the concentration of the second
compound. T lit

c and xlit
c are values suggested in the literature (134).

System Method Tc xc T lit
c xlit

c

LiBr-LiCl HF 398 0.64 301 0.5
DFT −B3LY P 396 0.65

NaBr-NaCl HF 289 0.5 289 0.5
DFT −B3LY P 253 0.48

KBr-KCl HF 242 0.57 210 0.5
DFT −B3LY P 202 0.45

In Figures 6.14 - 6.16 one can see the predicted binodal curves (both for HF- and DFT-
B3LYP-based calculations) and a plot of the miscibility gaps extrapolated from high-
temperature data (134).
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Figure 6.14: The miscibility gap in the LiBr-LiCl system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-B3LYP-calculations, dotted curve
- estimated from experimental data (134).

We found that for all systems under investigation (LiBr-LiCl, NaBr-NaCl and KBr-KCl)
the system should exhibit a solid solution-like phase regardless of whether the energy was
calculated on a HF or DFT basis. As one can see from figures 6.15 - 6.16 and table 6.10,
the critical parameters of decomposition predicted in the present work and those based
on the optimization of the available experimental thermodynamic data (134) are in good
agreement. In the case of the LiBr-LiCl system, one can see that our prediction (both
HF and DFT results) and the high-temperature extrapolation are quite different. We
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Figure 6.15: The miscibility gap in the NaBr-NaCl system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-B3LYP-calculations, dotted curve
- estimated from experimental data (134).

note that this extrapolation cannot be expected to be very reliable, since no solidus data
or thermodynamic properties for the solid phase are available in the literature, and the
authors in Ref. (134) employed an essentially arbitrary parameter in the regular solution
model (the interaction parameter is just set equal to 5000 Joule/mol based on experience
with other systems!). Thus, we suggest, that our prediction is more reasonable than the
extrapolation based on the literature data, in particular, since the HF and DFT calcula-
tions yielded practically the same results (see Figure 6.14 and Table 6.10). Our predictions
are also corroborated by the results based on empirical relations for the thermodynamic
excess behaviour for alkali halide systems (160). The authors suggested the following crit-
ical temperatures: 373K, 286K and 214K for Li-, Na- or K- bromide-chloride, respectively,
which compare well with our values (c.f. Table 6.10).

One should mention that for all systems we observed that the rocksalt structure-type
family was the thermodynamically stable one. But in the case of the KBr-KCl system, a
metastable CsCl-structure family is also present. We calculated a transition pressure be-
tween the two different types of structure families for all compositions x individually, and
we found that for the binaries and all five ternary compositions investigated the transi-
tion pressure is about 4.15 - 4.65 GPa (based both on HF and DFT-B3LYP calculations).
Thus, we estimate that there should be a phase transition from a rocksalt-type solid so-
lution to a CsCl-type solid solution somewhere between 4 and 5 GPa. Since both HF
and DFT-B3LYP are known to overestimate the transition pressure in the alkali halides
(135), our calculations are in satisfactory agreement with the experimental value of about
2 GPa for the binary compounds KCl and KBr (161). We also predict the shape of the
miscibility gap for the CsCl-structure type at 5.0 GPa, where this structure family is
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Figure 6.16: The miscibility gap in the KBr-KCl system. Solid curve - based on HF-
calculations, dashed curve - based on DFT-B3LYP-calculations, dotted curve
- estimated from experimental data (134).

stable against the rocksalt-structure type (c.f. Fig. 6.17). In addition, we calculated the
P-T-x phase diagram for the rocksalt structure-type up to 4 GPa, shown in Fig. 6.18 (see
also Table 6.11). We notice that the critical temperature decreases by about 25 degrees
with increasing pressure.

Table 6.11: The critical parameters for the KBr-KCl solid solution, from standard pres-
sure up to 5 GPa, and the Redlich-Kister polynomial fitting parameters (a1,
a0) of the enthalpy of formation (according to equation 5.2) based on the HF
data obtained in the present work. Tc is the critical temperature of the de-
composition in K, xc is the concentration of the second compound, and ”Type”
indicates the structure family stable at the given pressure (in GPa).

Pressure Type Tc xc a1 a0

0 NaCl 242 0.57 3956.53 -378.86
1 NaCl 231 0.59 3717.59 -479.22
2 NaCl 224 0.6 3531.82 -579.05
3 NaCl 218 0.62 3369.22 -678.83
4 NaCl 214 0.64 3219.45 -778.65
5 CsCl 256 0.65 3760.33 -1020.28
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Figure 6.17: The miscibility gap in the KBr-KCl system for the ”CsCl” modification at
5 GPa. Solid curve - based on HF-calculations, dashed curve - based on
DFT-B3LYP-calculations.

Figure 6.18: The P-T-x low temperature phase diagram in the KBr-KCl system for the
”rocksalt” modification for pressures between 0 and 4 GPa.
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6.4 Phase diagrams with ordered crystalline phases

6.4 Phase diagrams with ordered crystalline
phases

6.4.1 Introduction

Earlier (see Section 6.3: Phase diagrams with miscibility gaps), we have shown the
ability of our methodology in the case of the exploration of alkali halide systems ex-
hibiting continuous solutions in the solid phase, and predicted the miscibility gap at
low temperature as a result of the decomposition of such solid solutions. But alkali
halide systems exhibit not only a solid solution behaviour but one can also observe or-
dered crystalline phases (134). Thus, we have investigated two families of systems where
we found ordered crystalline phases and in which solid solutions phase would only be
metastable: CsX-LiX (X = F, Cl, Br or I) and LiX-RbX (X = Cl, Br). Besides the
already known phases (162; 163; 164; 165; 166), we find a number of additional ordered
phases that should be capable of existence but which have not yet been observed experi-
mentally.

6.4.2 The CsX-LiX systems, where X = F, Cl, Br,
I

Results and Discussion

For each chemical system, several hundred global optimization runs were performed for
a number of different compositions each, at a pressure of 0 Pa. We performed calcu-
lations for 7 different compositions (3:1, 2:1, 3:2, 1:1, 2:3, 1:2, 1:3) in addition to the
limiting binary phases. For each composition we found a list of structure candidates
and calculated the E(V )-curves for all these candidates at an ab initio level. For given
composition, the energy differences between the candidates with the lowest energies were
at least equal and in most cases considerably larger than the thermal energy at room
temperature. In addition, their cation-anion arrangements were different, and thus these
candidates could not be considered as members of one “structure family”. Furthermore,
when comparing different compositions the candidates with the lowest energies also did
not exhibit the same cation-anion superstructure either. Thus, we suggest that in these
systems no solid solutions are present as thermodynamically stable phases over the full
range of compositions and instead the low-temperature part of the phase diagram exhibits
ordered crystalline phases. Of course, standard statistical mechanical considerations of
the formation of defects show that there must be some limited solubility of the minority
cation in the host matrix of the halogenide of the majority cation for x very close to 0 or 1,
which might be interpreted as the existence of metastable solid solutions with extremely
high critical temperatures Tcrit � Tmelt. In the next step, the enthalpies of formation of
each compound were obtained according to equation (5.2). Also, one should note that in
the current calculations the contribution of the pV-term is negligible since all runs were
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done at standard pressure.

The calculations of the enthalpies of formation according to equation (5.2) showed that
some of these intermediate phases are stable against decomposition into the boundary
compounds at 0 K. Tables 6.12 - 6.13 show, for each composition, the structural data
for the most stable among these structure candidates1. Regarding the structures of these
compounds, we predominantly find Li and Cs in four (or five)-fold and eight (or seven)-
fold coordination by the halogen atoms, respectively. Furthermore, the structures usually
do not exhibit any strong tendency towards the formation of layers containing only Li or
Cs, respectively.

Table 6.12: Structure parameters, bulk moduli and enthalpies of formation (kJ/mol)
with respect to the binary compounds CsF and LiF at 0 K for the structure
candidates with the lowest energy for each composition for the CsF-LiF system
after local optimization on Hartree-Fock and DFT-B3LYP (in brackets) level.
Structure data, volume Vmin and bulk moduli are only given for the HF-
calculations.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)
C2/m (12) a = 14.29 Cs1(4i) 0.56380 0 0.23608 764.025 -2.6
monoclinic b = 6.12 Cs2(4i) 0.86573 0 0.09572 25.437 (-3.5)
Cs3LiF4 − Type1 c = 9.04 Cs3(4i) 0.30816 0 0.34670

α = γ = 90 Li1(4i) 0.91279 0 0.54995
β = 105.05 F1(4i) 0.78282 0 0.38188

F2(4h) 0 0.75201 1/2
F3(4i) 0.64529 0 0.95799
F4(4i) 0.08672 0 0.22032

Cmc21 (36) a = 3.94 Cs1(4a) 0 0.41489 0.60342 545.904 -2.3
orthorhombic b = 22.05 Cs2(4a) 0 0.79996 0.10317 25.755 (-2.7)
Cs2LiF3 − Type1 c = 6.28 Li1(4a) 0 0.95685 0.10335

α = β = γ = 90 F1(4a) 0 0 0.35323
F2(4a) 0 0.58933 0.60332
F3(4a) 0 0.19734 0.10311

Fmm2 (42) a = 22.68 Cs1(8d) 0.13616 0 0.45358 856.295 -1.9
orthorhombic b = 6.14 Cs2(4a) 0 0 0.95080 27.747 (-2.1)
Cs3Li2F5 − Type1 c = 6.14 Li1(8d) 0.21956 0 0.92418

α = β = γ = 90 F1(4a) 0 0 0.45042
F2(8b) 1/4 1/4 0.27924
F3(8d) 0.13826 0 0.95597

C2/c (15) a = 6.15 Cs1(8f) 0.25280 0.40890 1/4 613.487 -5.1
monoclinic b = 11.91 Li2(8f) 1/4 0.20900 0.36200 30.324 (-5.2)
CsLiF2 − Type1 c = 8.37 F3(8f) 0.24400 0.35700 0.42300

α = γ = 90 F4(4e) 0 0.15100 1/4
β = 90.81 F5(4e) 0 0.66300 1/4

Amm2 (38) a = 4.14 Cs1(2b) 1/2 0 0.61836 347.957 7.3
orthorhombic b = 4.23 Cs2(2a) 0 0 0.26769 33.686 (8.8)
Cs2Li3F5 − Type1 c = 19.86 Li1(2b) 1/2 0 0.87685

α = β = γ = 90 Li2(2a) 0 0 0.42380
Li3(2a) 0 0 0.01384
F1(2b) 1/2 0 0.39120
F2(2a) 0 0 0.51228
F3(2a) 0 0 0.91576
F4(2b) 1/2 0 0.78132
F5(2a) 0 0 0.10817

I4/mmm (139) a = 4.15 Cs1(2a) 0 0 0 171.971 5.4
tetragonal c = 10.00 Li1(4e) 0 0 0.68799 42.313 (5.0)
CsLi2F3 − Type1 α = β = γ = 90 F1(4d) 0 1/2 1/4

F2(2b) 0 0 1/2
C2/m (12) a = 9.95 Cs1(4i) 0.67593 0 0.27488 417.024 10.8
monoclinic b = 5.76 Li1(4i) 0.99701 0 0.30153 45.300 (9.2)
CsLi3F4 − Type1 c = 7.65 Li2(4i) 0.59339 0 0.67741

α = γ = 90 Li3(4i) 0.77932 0 0.95005
β = 108.01 F1(8j) 0.88520 0.74519 0.12156

F2(4h) 0 0.75625 1/2
F3(4i) 0.79914 0 0.69358

1For some compositions, no candidate was found which was stable with respect to the boundary com-
pounds.



Table 6.13: Structure parameters, bulk moduli and enthalpies of formation (kJ/mol)
with respect to the binary compounds CsCl and LiCl at 0 K for the structure
candidates with the lowest energy for each composition for the CsCl-LiCl sys-
tem after local optimization on Hartree-Fock and DFT-B3LYP (in brackets)
level. Structure data, volume Vmin and bulk moduli are only given for the
HF-calculations.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)
Amm2 (38) a = 10.80 Cs1(2a) 0 0 0.10578 646.334 3.1
orthorhombic b = 4.53 Cs2(4c) 0.26433 0 0.32056 12.695 (3.1)
Cs3LiCl4 − Type1 c = 13.21 Li1(2b) 1/2 0 0.54595

α = β = γ = 90 Cl1(4c) 0.73241 0 0.59817
Cl2(2b) 1/2 0 0.92747
Cl3(2a) 0 0 0.83026

Cmcm (63) a = 4.47 Cs1(4c) 0 0.00168 1/4 879.737 -2.0
orthorhombic b = 24.62 Cs2(4c) 0 0.82195 1/4 13.646 (-1.8)
Cs2LiCl3 − Type1 c = 8.00 Li1(4c) 0 0.64753 1/4

α = β = γ = 90 Cl1(8f) 0 0.58853 0.00437
Cl2(4c) 0 0.20164 1/4

Cm (8) a = 7.41 Cs1(4b) 0.24837 0.11452 0.74037 670.247 0.8
monoclinic b = 25.25 Cs2(2a) 0.25461 0 0.24875 15.580 (0.8)
Cs3Li2Cl5 − Type1 c = 5.94 Li1(4b) 0.73805 0.21766 0.70072

α = γ = 90 Cl1(2a) 0.77655 0 0.28555
β = 142.91 Cl2(4b) 0.78197 0.11581 0.79092

Cl3(4b) 0.74565 0.77129 0.26554
P4/nmm (129) a = 5.13 Cs1(2c) 1/4 1/4 0.69570 260.340 -2.6
tetragonal c = 9.90 Li1(2c) 1/4 1/4 0.08850 15.430 (-2.7)
CsLiCl2 − Type1 α = β = γ = 90 Cl1(2a) 3/4 1/4 0

Cl2(2c) 1/4 1/4 0.3318
Imm2 (44) a = 23.50 Cs1(4c) 0.11470 0 0.01373 612.829 2.7
orthorhombic b = 4.77 Li1(2b) 0 1/2 0.50756 16.638 (1.4)
Cs2Li3Cl5 − Type1 c = 5.47 Li2(4c) 0.28002 0 0.01149

α = β = γ = 90 Cl1(4c) 0.73339 0 0.48708
Cl2(4c) 0.38875 0 0.99245
Cl3(2b) 0 1/2 0.99056

Immm (71) a = 5.58 Cs1(2c) 1/2 1/2 0 333.587 -1.7
orthorhombic b = 4.65 Li1(4i) 0 0 0.80940 17.955 (-1.6)
CsLi2Cl3 − Type1 c = 12.85 Cl1(2a) 0 0 0

α = β = γ = 90 Cl2(4j) 1/2 0 0.76555
Cmcm (63) a = 5.18 Cs1(4c) 0 0.65137 1/4 785.994 4.0
orthorhombic b = 29.25 Li1(4c) 0 0.76770 1/4 22.802 (3.8)
CsLi3Cl4 − Type1 c = 5.19 Li2(4c) 0 0.53759 1/4

α = β = γ = 90 Li3(4c) 0 0.94167 1/4
Cl1(4c) 0 0.04823 1/4
Cl2(4c) 0 0.24874 1/4
Cl3(4c) 0 0.85326 1/4
Cl4(4c) 0 0.44980 1/4

Table 6.14: Structure parameters, bulk moduli and enthalpies of formation (kJ/mol)
with respect to the binary compounds CsBr and LiBr at 0 K for the structure
candidates with the lowest energy for each composition for the CsBr-LiBr sys-
tem after local optimization on Hartree-Fock and DFT-B3LYP (in brackets)
level. Structure data, volume Vmin and bulk moduli are only given for the
HF-calculations.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)
C2221 (20) a = 12.60 Cs1(4b) 0 0.27911 1/4 1592.498 0.03
orthorhombic b = 14.25 Cs2(8c) 0.27699 0.92745 0.76645 9.053 (-0.1)
Cs3LiBr4 − Type1 c = 8.87 Li1(4b) 0 0.89407 1/4

α = β = γ = 90 Br1(8c) 0.18067 0.18213 0.85394
Br2(4a) 0.51006 0 0
Br3(4a) 0.94916 0 0

C2/m (12) a = 25.88 Cs1(4i) 0.99739 0 1/4 1054.473 -2.6
monoclinic b = 4.76 Cs2(4i) 0.82304 0 0.74565 10.415 (-2.7)
Cs2LiBr3 − Type1 c = 8.56 Li1(4i) 0.64893 0 0.75211

α = γ = 90 Br1(4i) 0.58749 0 0.50213
β = 91.32 Br2(4i) 0.79626 0 0.25072

Br3(4i) 0.58871 0 0.99837
Cm (8) a = 7.95 Cs1(4b) 0.23002 0.38777 0.25725 814.084 0.6
monoclinic b = 26.97 Cs2(2a) 0.81976 0 0.85226 11.493 (0.3)
Cs3Li2Br5 − Type1 c = 6.44 Li1(4b) 0.21395 0.21734 0.20952

α = γ = 90 Br1(2a) 0.27346 0 0.81868
β = 143.85 Br2(4b) 0.22743 0.22496 0.78267
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Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)

Br3(4b) 0.80567 0.61492 0.34862
P4/nmm (129) a = 5.50 Cs1(2c) 1/4 1/4 0.69600 318.370 -3.1
tetragonal c = 10.52 Li1(2c) 1/4 1/4 0.08800 11.665 (-3.2)
CsLiBr2 − Type1 α = β = γ = 90 Br1(2a) 3/4 1/4 0

Br2(2c) 1/2 1/2 0.33200
C2/m (12) a = 16.00 Cs1(4i) 0.81078 0 0.26212 750.520 -1.4
monoclinic b = 4.60 Li1(2a) 0 0 0 12.064 (-1.6)
Cs2Li3Br5 − Type1 c = 11.08 Li2(4i) 0.55607 0 0.30989

α = γ = 90 Br1(4i) 0.40574 0 0.07214
β = 113.09 Br2(4i) 0.86980 0 0.70521

Br3(2d) 0 1/2 1/2
Immm (71) a = 4.71 Cs1(2b) 0 1/2 1/2 413.313 -1.9
orthorhombic b = 6.04 Li1(4j) 1/2 0 0.31000 13.507 (-2.1)
CsLi2Br3 − Type1 c = 14.53 Br1(4i) 0 0 0.21681

α = β = γ = 90 Br2(2d) 1/2 0 1/2
Pmc21 (26) a = 5.65 Cs1(2b) 1/2 0.53888 0.34551 529.484 4.9
orthorhombic b = 11.01 Li1(2b) 1/2 0.02940 0.71405 15.118 (4.4)
CsLi3Br4 − Type1 c = 8.52 Li2(2a) 0 0.78211 0.90724

α = β = γ = 90 Li3(2a) 0 0.16663 0.00083
Br1(2a) 0 0.00425 0.74631
Br2(2a) 0 0.60601 0.65551
Br3(2b) 1/2 0.83947 0.49824
Br4(2b) 1/2 0.77198 0.00324

Table 6.15: Structure parameters, bulk moduli and enthalpies of formation (kJ/mol)
with respect to the binary compounds CsI and LiI at 0 K for the structure
candidates with the lowest energy for each composition for the CsI-LiI system
after local optimization on Hartree-Fock and DFT-B3LYP (in brackets) level.
Structure data, volume Vmin and bulk moduli are only given for the HF-
calculations.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)
P21/m (11) a = 17.27 Cs1(2e) 0.44897 1/4 0.70436 975.698 -0.6
monoclinic b = 9.83 Cs2(2e) 0.73453 1/4 0.37799 7.158 (-0.6)
Cs3LiI4 − Type1 c = 5.76 Cs3(2c) 0 0 1/2

α = γ = 90 Li1(2e) 0.25026 1/4 0.11581
β = 93.63 I1(4f) 0.63613 0.00019 0.83294

I2(2e) 0.18474 1/4 0.58631
I3(2e) 0.90995 1/4 0.95851

Cmc21 (36) a = 5.05 Cs1(4a) 0 0.32488 0.50760 1309.730 -3.1
orthorhombic b = 27.65 Cs2(4a) 0 0.49672 0.01356 7.902 (-3.0)
Cs2LiI3 − Type1 c = 9.37 Li1(4a) 0 0.15031 0.51697

α = β = γ = 90 I1(4a) 0 0.91406 0.26420
I2(4a) 0 0.29250 0.02942
I3(4a) 0 0.91130 0.76478

C2/m (12) a = 30.72 Cs1(4i) 0.94142 0 0.34962 2103.913 -1.8
monoclinic b = 5.19 Cs2(4i) 0.74436 0 0.73188 8.340 (-1.6)
Cs3Li2I5 − Type1 c = 13.44 Cs3(4i) 0.94853 0 0.85296

α = γ = 90 Li1(4i) 0.65445 0 0.97130
β = 100.93 Li2(4i) 0.34896 0 0.58272

I1(4i) 0.55205 0 0.40296
I2(4i) 0.81303 0 0.10596
I3(4i) 0.44586 0 0.10789
I4(4i) 0.65761 0 0.19669
I5(4i) 0.81547 0 0.47879

Cmc21 (36) a = 4.96 Cs1(4a) 0 0.34484 0.48582 1561.668 -1.7
orthorhombic b = 22.38 Cs2(4a) 0 0.50971 0.26219 8.781 (-1.6)
CsLiI2 − Type1 c = 14.06 Li1(4a) 0 0.86954 0.04859

α = β = γ = 90 Li2(4a) 0 0.27872 0.78453
I1(4a) 0 0.30871 0.98012
I2(4a) 0 0.14886 0.75584
I3(4a) 0 0.99680 0.00774
I4(4a) 0 0.83866 0.71686

C2/m (12) a = 17.78 Cs1(4i) 0.30986 0 0.76639 946.110 -2.9
monoclinic b = 5.04 Li1(2d) 0 1/2 1/2 9.114 (-2.8)
Cs2Li3I5 − Type1 c = 11.72 Li2(4i) 0.05212 0 0.80234

α = γ = 90 I1(2a) 0 0 0
β = 115.73 I2(4i) 0.09746 0 0.43083

I3(4i) 0.63309 0 0.79485
P − 4m2 (115) a = 4.88 Cs1(1c) 1/2 1/2 1/2 268.434 -2.3
tetragonal c = 11.29 Li1(2g) 0 1/2 0.86800 9.506 (-2.5)
CsLi2I3 − Type1 α = β = γ = 90 I1(1b) 1/2 1/2 0

I2(2e) 0 0 0.71613
Pm (6) a = 11.30 Cs1(1b) 0.11957 1/2 0.15907 701.629 -2.6
monoclinic b = 4.94 Cs2(1b) 0.55730 1/2 0.29812 9.737 (-2.6)
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continued from previous page

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)
CsLi3I4 − Type1 c = 12.60 Li1(1b) 0.07648 1/2 0.78160

α = γ = 90 Li2(1b) 0.44888 1/2 0.92827
β = 86.57 Li3(1a) 0.36605 0 0.60942

Li4(1a) 0.01004 0 0.48414
Li5(1b) 0.70600 1/2 0.65805
Li6(1a) 0.79574 0 0.98332
I1(1a) 0.40552 0 0.05658
I2(1b) 0.32685 1/2 0.72986
I3(1b) 0.95302 1/2 0.58347
I4(1b) 0.69994 1/2 0.88971
I5(1a) 0.03584 0 0.89524
I6(1a) 0.24843 0 0.40667
I7(1a) 0.83321 0 0.21124
I8(1a) 0.61707 0 0.56348

As mentioned above, the lithium cesium halides do not exhibit solid-solution behavior.
For each composition in these systems, the observed structure candidates with the lowest
free energy correspond to ordered crystalline phases, which are at least metastable. It
is known from experiment, that there exist several crystalline modifications in the four
systems: CsLiF2 (162), CsLiCl2 (163; 164), Cs2LiCl3 (164), CsLiBr2 (165) and Cs2Li3I5
(167). According to our calculations these phases have a negative enthalpy of formation
and, thus, should be stable with respect to decomposition into the binary compounds. In
addition, we predict the existence of several new phases stable with respect to the binary
compounds. These occur in the CsF-LiF system for the compositions 3:1, 2:1 and 3:2,
in the case of the CsCl-LiCl system for the composition 1:2, in the CsBr-LiBr system
for the compositions 2:1, 2:3 and 1:2, and in the CsI-LiI system for all compositions
investigated (see Tables 6.12 - 6.15). Some of the new predicted phases appear to be
thermodynamically stable with respect to decomposition into neighboring phases (see
Figs. 1 - 4) and are probably accessible to synthesis. We also note that no information
about the structure of the experimentally observed compound Cs2LiCl3 appears to be
available in the literature (164). Since the structure candidate that we have found for the
composition Cs2LiCl3 (see Table 6.13) is stable with respect to a decomposition into two
neighboring phases, we suggest it is a strong candidate to be the compound that has been
found in experiment.

In Figs. 6.19 - 6.22, we have indicated the experimentally known phases by a thin solid
line, the - according to the calculations - predicted stable phases with a fat solid line, while
those among the predicted metastable phases that nevertheless are stable with respect to
the binary compounds are represented by a dashed line. Finally, the phases that are
metastable with respect to the binary compounds are indicated by dotted lines. Further-
more, below the actual phase diagrams, we show the enthalpies of formation with respect
to the binary compounds at 0 K, in order to give some insight into the thermodynamic
stability of the various phases.

One should mention, that we cannot exclude the possibility that structure families might
exist that exhibit a rather complicated superstructure consisting of complex arrangements
of e.g. CsCl8-cubes and LiCl4-tetrahedra or LiCl6-octahedra, where the members of the
families have very similar (relatively low) energies. Such a hypothetical structure family
might then possess a high enough configurational entropy to compete with the crystalline
low energy structures at elevated temperatures. Multi-polyhedra configurations belonging
to such structure families actually show marked similarities to structural glasses, where
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Figure 6.19: Top: The phase diagram of the CsF-LiF system. Thin solid line - experi-
mentally known high-temperature part of the phase diagram, bold solid line
- predicted stable phases, dashed line - predicted metastable phases which
are stable with respect to the binary compounds CsF and LiF, dotted line -
predicted phases that are metastable with respect to the binary compounds.
Bottom: Enthalpies of formation at 0 K with respect to the binary com-
pounds for the crystalline modifications with the lowest energy for each
concentration investigated. Bullets - Hartree-Fock-calculations, triangles -
DFT-B3LYP-calculations.
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6.4 Phase diagrams with ordered crystalline phases

Figure 6.20: Top: The phase diagram of the CsCl-LiCl system. Thin solid line - experi-
mentally known high-temperature part of the phase diagram, bold solid line
- predicted stable phases, dashed line - predicted metastable phases which
are stable with respect to the binary compounds CsCl and LiCl, dotted line -
predicted phases that are metastable with respect to the binary compounds.
Bottom: Enthalpies of formation at 0 K with respect to the binary com-
pounds for the crystalline modifications with the lowest energy for each
concentration investigated. Bullets - Hartree-Fock-calculations, triangles -
DFT-B3LYP-calculations.
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Figure 6.21: Top: The phase diagram of the CsBr-LiBr system. Thin solid line - experi-
mentally known high-temperature part of the phase diagram, bold solid line
- predicted stable phases, dashed line - predicted metastable phases which
are stable with respect to the binary compounds CsBr and LiBr, dotted
line - predicted phases that are metastable with respect to the binary com-
pounds. Bottom: Enthalpies of formation at 0 K with respect to the binary
compounds for the crystalline modifications with the lowest energy for each
concentration investigated. Bullets - Hartree-Fock-calculations, triangles -
DFT-B3LYP-calculations.
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Figure 6.22: Top: The phase diagram of the CsI-LiI system. Thin solid line - experi-
mentally known high-temperature part of the phase diagram, bold solid line
- predicted stable phases, dashed line - predicted metastable phases which
are stable with respect to the binary compounds CsI and LiI, dotted line -
predicted phases that are metastable with respect to the binary compounds.
Bottom: Enthalpies of formation at 0 K with respect to the binary com-
pounds for the crystalline modifications with the lowest energy for each
concentration investigated. Bullets - Hartree-Fock-calculations, triangles -
DFT-B3LYP-calculations.
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6 Quasi-binary alkali halogenide systems

random networks of coordination polyhedra with a high configurational entropy are often
found to be good models of the structure of the glass.

In Figs. 6.23 and 6.24, we have shown two examples of predicted structure candidates for
the CsLi2Cl3 and Cs2LiCl3 compounds.

In case of the CsLi2Cl3 structure candidate, there is one independent position of a Li atom
and one of a Cs atom. The Li atoms are coordinated by 5 atoms of Cl (in a distorted
tetragonal pyramid arrangement; the same arrangement is observed in the experimentally
known structure CsLiCl2). Each polyhedron is sharing an edge with the neighboring
Li- and Cs-centered polyhedra. The Cs atoms are coordinated by 8 atoms of Cl (in a
slightly distorted cubic arrangement), and each polyhedron is sharing a face with other
Cs-centered polyhedra.

Figure 6.23: The CsLi2Cl3 structure candidate. The cell parameters and atom positions
are listed in Table 6.13.

In the case of the Cs2LiCl3 structure candidate, there are two crystallographically inde-
pendent positions of Cs atoms and one for the Li atom. The Li atoms are coordinated
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by 4 (tetrahedrally arranged) atoms, where each polyhedron is sharing a vertex with
another tetrahedron and an edge with Cs-centered polyhedra. The Cs atoms are coordi-
nated by 8 atoms of Cl. There are two types of arrangements: a slightly distorted cubic
arrangement and a bi-capped trigonal prism. The Cs-centered polyhedra are connected
with each other via faces containing three (in the case of bi-capped trigonal prisms) or
four (in the case of distorted cube) Cl atoms and edges (when connecting two bi-capped
trigonal prisms with each other). The Li-Cl (≈ 2.4 - 2.8 Å) and Cs-Cl (≈ 3.6 - 4.0 Å)
distances in both structures are close to the experimental ones observed in LiCl (2.56 Å),
CsCl (3.56 Å) and CsLiCl2 (Li-Cl ≈ 2.3 - 2.6 Å; Cs-Cl ≈ 3.4 - 3.8 Å). Of course, there is
some disagreement, since usually the calculated cell parameters differ from experimental
ones.

Figure 6.24: The Cs2LiCl3 structure candidate.The cell parameters and atom positions
are listed in Table 6.13.
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6 Quasi-binary alkali halogenide systems

Table 6.16: Cell parameters of the experimentally known phases available in the literature
(39) and obtained in the present work.

ICSD data HF data DFT-B3LYP data
Space group (no.) Lattice constants

a, b, c [Å]; α, β, γ [◦]
CsLiF2 (162) a = 6.01 6.15 6.13
monoclinic b = 11.64 11.91 11.87
P2/c (15) c = 8.18 8.37 8.34

α = γ = 90 90 90
β = 90.81 90.81 90.81

CsLiCl2 (163) a = 4.92 5.13 5.05
tetragonal c = 9.50 9.90 9.74

P4/nmm (129) α = β = γ = 90 90 90
CsLiBr2 (165) a = 5.19 5.50 5.38

tetragonal c = 9.92 10.52 10.29
P4/nmm (129) α = β = γ = 90 90 90
Cs2Li3I5 (167) a = 16.67 17.78 17.31

monoclinic b = 4.72 5.04 4.90
C2/m (12) c = 10.99 11.72 11.41

α = γ = 90 90 90
β = 115.73 115.73 115.73
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6.4.3 The LiX-RbX systems, where X = Cl or
Br

Results and Discussion

For each chemical system, several hundred global optimization runs were performed for a
number of different compositions each, at a pressure of 0 Pa. We performed calculations
for 7 different compositions (3:1, 2:1, 3:2, 1:1, 2:3, 1:2 and 1:3) besides the limiting binary
phases. For each composition of the LiCl-RbCl and LiBr-RbBr systems we found a list of
structure candidates, where the energy differences between the candidates with the lowest
energies were quite large. Furthermore, their cation-anion arrangements were different,
and thus they could not be considered as members of one “structure family”. Thus,
we propose that in these systems no solid solutions are present as thermodynamically
stable phases, and instead the low-temperature part of the phase diagram exhibits ordered
crystalline phases. The calculations of the enthalpies of formation according the equation
(5.2) showed that some of these phases are stable against decomposition into the boundary
compounds at 0 K. The structural data for the most stable structure candidate for each
composition investigated are listed in Tables 6.17 and 6.18. Additional candidates that
are stable with respect to the binary compounds in each system are given in Tables A.5
and A.6 in the appendix.

Earlier in Section 6.3.1, we noted that one important condition for the presence of a solid-
solution phase is the existence of a family of structurally related minima, which exhibit
the same superstructure. Furthermore, the energies of these minima must be sufficiently
close such that there exist similar probabilities of finding the system in these basins in
the thermodynamic limit. For the LiCl-RbCl and LiBr-RbBr systems we found that the
difference in energies per atom of the modifications with the lowest energies are comparable
to or larger than room temperature (TR), e.g. for the composition Li2RbCl3 ∆(E) ≈
7× 10−2 eV > kBTR ≈ 3× 10−2 eV. Thus, we should consider all structures individually
as possible candidates for ordered stable or metastable phases at low-temperatures T <<
TR.

For each composition in these systems, the observed structure candidates with the lowest
energy correspond to ordered crystalline phases, which are at least metastable. It is known
from experiment, that there are crystalline modifications in both these systems with com-
positions LiRbCl2 (163) and LiRbBr2 (165). According to our calculations these phases
have a negative enthalpy of formation and, thus, should be stable with respect to decompo-
sition into the binary compounds (x = 0,1). In addition we predict the existence of several
new phases stable with respect to the binary compounds: in the case of the LiCl-RbCl
system for compositions 2:1, 2:3, 1:2 and 1:3, and in the case of the LiBr-RbBr system for
compositions: 2:1, 3:2, 2:3, 1:2 and 1:3. The list of structure candidates are presented in
Tables 6.17 and 6.18. In addition, many metastable modifications were identified. These
are listed in the appendix material in Ref. (168).

In Figs. 6.25 and 6.26, we have indicated the experimentally known phases by a thin
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6 Quasi-binary alkali halogenide systems

Table 6.17: Structure parameters, bulk moduli and enthalpies of formation per mole
with respect to the binary compounds LiCl and RbCl at 0 K for the structure
candidates with the lowest energy for each composition for the LiCl-RbCl sys-
tem, after local optimization on Hartree-Fock and DFT-B3LYP (in brackets)
level. Structure data, volume Vmin and bulk moduli are only given for the
HF-calculations.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H[kJ]

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)
P21/m (11) a = 9.51522 Li1(2e) 0.59058 1/4 0.13413 429.194 1.2249
monoclinic b = 5.07925 Li2(2e) 0.39632 1/4 0.58343 18.343 (0.9682)
Li3RbCl4 − Type1 c = 8.90732 Li3(2e) 0.87396 1/4 0.41927

α = γ = 90 Rb4(2e) 0.20644 1/4 0.11577
β = 94.45120 Cl5(2e) 0.13860 1/4 0.48117

Cl6(2e) 0.60258 1/4 0.41883
Cl7(2e) 0.49996 1/4 0.85831
Cl8(2e) 0.85540 1/4 0.12523

Immm (71) a = 13.13455 Li1(4f) 0.69013 1/2 0 311.692 -2.5411
orthorhombic b = 4.35029 Rb2(2d) 1/2 0 1/2 19.186 (-1.6328)
Li2RbCl3 − Type1 c = 5.45497 Cl3(4e) 0.78681 0 0

α = β = γ = 90 Cl4(2c) 1/2 1/2 0
Amm2 (38) a = 3.99163 Li1(4d) 0 0.83182 0.07617 585.760 1.6089
orthorhombic b = 19.17252 Li2(2a) 0 0 0.18580 16.990 (1.5257)
Li3Rb2Cl5 − Type1 c = 7.65403 Rb3(4e) 1/2 0.85940 0.55693

α = β = γ = 90 Cl4(4e) 1/2 0.90739 0.12684
Cl5(2a) 0 0 0.52282
Cl6(4d) 0 0.75682 0.81396

Cmcm (63) a = 4.29553 Rb1(4c) 0 0.63118 1/4 485.192 -5.0440
orthorhombic b = 15.00627 Li2(4c) 0 0.89962 1/4 16.965 (-4.8584)
LiRbCl2 − Type1 c = 7.50574 Cl3(4a) 0 0 0

α = β = γ = 90 Cl4(4c) 0 0.31314 1/4
Cm (8) a = 7.08129 Li1(4b) 0.54266 0.21756 0.24065 603.145 -1.7013
monoclinic b = 24.71031 Rb2(2a) 0.51382 0 0.69676 16.449 (-1.8029)
Li2Rb3Cl5 − Type1 c = 4.27891 Rb3(4b) 0.01685 0.12080 0.21317

α = γ = 90 Cl4(4b) 0.97455 0.76745 0.67202
β = 126.33570 Cl5(4b) 0.50790 0.88064 0.20180

Cl6(2a) 0.01185 0 0.69406
C2/m (12) a = 23.33451 Li1(4i) 0.65195 0 0.25448 779.336 -2.4789
monoclinic b = 4.20317 Rb2(4i) 0.99634 0 0.75022 15.585 (-2.6331)
LiRb2Cl3 − Type1 c = 7.95992 Rb3(4i) 0.17432 0 0.76673

α = γ = 90 Cl4(4i) 0.41413 0 0.99690
β = 93.38770 Cl5(4i) 0.20921 0 0.24167

Cl6(4i) 0.58990 0 0.49796
Pm (6) a = 6.96388 Li1(1b) 0.47661 1/2 0.25295 311.710 -2.7796
monoclinic b = 9.45272 Rb2(1a) 0.55969 0 0.56566 12.654 (-2.7458)
LiRb3Cl4 − Type1 c = 4.74932 Rb3(2c) 0.05905 0.25777 0.00624

α = γ = 90 Cl4(1b) 0.16407 1/2 0.49155
β = 85.58797 Cl5(2c) 0.56794 0.72892 0.07805

Cl6(1a) 0.06069 0 0.51301

solid line, the - according to the calculations - predicted stable phases with a fat solid
line, while the predicted metastable phases - which nevertheless are stable with respect
to the binary compounds - are represented by a dashed line. Finally, the phases that are
metastable with respect to the binary compounds are indicated by dotted lines (see Tables
6.17 and 6.18). Furthermore, below the actual phase diagrams, we show the enthalpies
of formation with respect to the binary compounds at 0 K, in order to give some insight
into the thermodynamic stability of the various phases.
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Figure 6.25: Top: The phase diagram of the LiCl-RbCl system. Thin solid line - experi-
mentally known high-temperature part of the phase diagram, bold solid line
- predicted stable phases, dashed line - predicted metastable phases which
are stable with respect to the binary compounds LiCl and RbCl, dotted
line - predicted phases that are metastable with respect to the binary com-
pounds. Bottom: Enthalpies of formation at 0 K with respect to the binary
compounds for the crystalline modifications with the lowest energy for each
concentration investigated. Bullets - Hartree-Fock-calculations, triangles -
DFT-B3LYP-calculations.
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Figure 6.26: Top: The phase diagram of the LiBr-RbBr system. Thin solid line - experi-
mentally known high-temperature part of the phase diagram, bold solid line
- predicted stable phases, dashed line - predicted metastable phases which
are stable with respect to the binary compounds LiBr and RbBr, dotted
line - predicted phases that are metastable with respect to the binary com-
pounds. Bottom: Enthalpies of formation at 0 K with respect to the binary
compounds for the crystalline modifications with the lowest energy for each
concentration investigated. Bullets - Hartree-Fock-calculations, triangles -
DFT-B3LYP-calculations.
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6.4 Phase diagrams with ordered crystalline phases

Table 6.18: Structure parameters, bulk moduli and enthalpies of formation per mole
with respect to the binary compounds LiBr and RbBr at 0 K for the structure
candidates with the lowest energy for each composition for the LiBr-RbBr sys-
tem, after local optimization on Hartree-Fock and DFT-B3LYP (in brackets)
level. Structure data, volume Vmin and bulk moduli are only given for the
HF-calculations.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] ∆f H[kJ]

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus HF
Type α, β, γ [◦] atom x y z [GPa] (DFT)
Pc (7) a = 7.93088 Li1(2a) 0.78287 0.40328 0.80755 533.905 1.1013
monoclinic b = 8.56512 Li2(2a) 0.33119 0.59837 0.59089 15.185 (0.6955)
Li3RbBr4 − Type1 c = 7.87443 Li3(2a) 0.54509 0.91577 0.00060

α = γ = 90 Rb4(2a) 0.05132 0.17383 0.49939
β = 93.49810 Br5(2a) 0.32895 0.90267 0.68506

Br6(2a) 0.76693 0.90970 0.32960
Br7(2a) 0.59620 0.41172 0.50225
Br8(2a) 0.11738 0.45936 0.81027

P − 4m2 (115) a = 4.33938 Li1(2g) 0 1/2 0.85769 197.062 -2.2618
tetragonal c = 10.46516 Rb2(1c) 1/2 1/2 1/2 13.802 (-2.1142)
Li2RbBr3 − Type1 α = β = γ = 90 Br3(1b) 1/2 1/2 0

Br4(2e) 0 0 0.29574
Amm2 (38) a = 4.30296 Li1(4e) 1/2 0.17428 0.62611 723.781 -0.7619
orthorhombic b = 20.40089 Li2(2b) 1/2 0 0.52903 12.353 (-0.6828)
Li3Rb2Br5 − Type1 c = 8.24501 Rb3(4d) 0 0.86360 0.12974

α = β = γ = 90 Br4(4d) 0 0.09750 0.61344
Br5(2b) 1/2 0 0.21754
Br6(4e) 1/2 0.24722 0.87965

Cmcm (63) a = 4.60474 Rb1(4c) 0 0.62710 1/4 593.407 -5.2284
orthorhombic b = 15.94588 Li2(4c) 0 0.10290 3/4 12.355 (-4.9250)
LiRbBr2 − Type1 c = 8.08163 Br3(4a) 0 0 0

α = β = γ = 90 Br4(4c) 0 0.30380 1/4
Cm (8) a = 7.70886 Li1(4b) 0.26688 0.21643 0.80306 739.558 -2.2655
monoclinic b = 25.89668 Rb2(4b) 0.76693 0.11872 0.77433 12.324 (-2.2291)
Li2Rb3Br5 − Type1 c = 6.33344 Rb3(2a) 0.76016 0 0.26158

α = γ = 90 Br4(4b) 0.25952 0.11657 0.75047
β = 144.20250 Br5(2a) 0.26419 0 0.26037

Br6(4b) 0.26832 0.23110 0.21937
Cmc21 (36) a = 4.54239 Li1(4a) 0 0.65247 0.23729 939.702 -3.3615
orthorhombic b = 24.68284 Rb2(4a) 0 0.00407 0.24164 11.641 (-3.2746)
LiRb2Br3 − Type1 c = 8.38169 Rb3(4a) 0 0.17392 0.74734

α = β = γ = 90 Br4(4a) 0 0.41451 0.48936
Br5(4a) 0 0.78945 0.72392
Br6(4a) 0 0.41103 0.99086

P21 (4) a = 7.18889 Li1(2a) 0.58003 0.42659 0.57805 739.104 -2.9998
monoclinic b = 7.22087 Rb1(2a) 0.50155 0.34596 0.13319 (-2.8445)
LiRb3Br4 − Type1 c = 14.23860 Rb2(2a) 0.99262 0.35216 0.87258

α = γ = 90 Rb3(2a) 0.99313 0.86164 0.62437
β = 90.44890 Br1(2a) 0.08085 0.85849 0.37817

Br2(2a) 0.49115 0.34581 0.87108
Br3(2a) 0.00127 0.35206 0.12774
Br4(2a) 0.50413 0.27611 0.41273
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6 Quasi-binary alkali halogenide systems

6.5 Critical discussion

In the current Chapter we have presented results obtained for the quasi-binary alkali
halide systems via the new strategy suggested in this thesis. When comparing our ap-
proach with those suggested in the literature (12; 14), the most important difference
is our global landscape exploration combining, in a systematic fashion, a global search
for locally ergodic regions at low temperatures with the identification of regions which
correspond to ordered crystalline phases or larger ergodic regions stable at elevated tem-
peratures, which correspond to solid solution-like phases of the system comprising families
of many structurally related minima. This approach allows us to predict the existence /
non-existence of a miscibility gap or ordered crystalline phases in an unexplored chemical
system without any recourse to experimental information or chemical intuition. In con-
trast, the studies found in the literature always assume that both the superstructure of the
solid solution/alloy type compound and the sublattice on which the chemical substitution
takes place, are known beforehand, e.g. from chemical intuition or based on experimental
information. The authors then typically employ Ising type models, e.g. within the quasi-
chemical approximation, to compute the free energy of mixing, while we endeavour to
directly estimate the partition function of the alloy phase.

In this context, we note that the specific methodology presented in this thesis, i.e., the
analysis of structurally related families of minimum configurations, can also be applied to
chemical systems, where phase transitions occur due to the freezing / unfreezing of e.g.
rotational degrees of freedom of complex ions or molecules (119; 169). Of course, in that
type of problem, the configurational entropy contribution will be quite different from the
cases presented in this work. On the other hand, phase transitions that are not associated
with a structural change of the system would require different concepts within an energy
landscape approach than the ones discussed in this work2.

Concerning the accuracy of the ab initio calculations, there appears to be a satisfactory
general agreement between the results of the HF and DFT calculations. As one would
expect, essentially all cell parameters calculated with HF are somewhat larger than the
experimental ones, if available, and cells computed with DFT are closer to experiment,
respectively (e.g. see Table 6.16).

The main problems associated with the ab initio calculations appeared when we dealt
with the rubidium and cesium compounds. Here, the limitations of the ab initio cal-
culations are expected to be particularly noticeable, since here relativistic effects play a
role. Typically, one uses pseudopotentials - in particular effective core potentials (ECP)
(172; 173) -, in order to simulate chemically inactive atomic cores and to mimic relativistic
effects for heavy-atom compounds. As we have noticed earlier (48), one needs to pay great
attention to the type of basis set employed and one might have to perform an additional
basis set optimization. Thus, we have employed a specially optimized basis set from the
literature (135) which uses such an effective core potential. The starting basis set (135)
was a Stuttgart-Dresden ECP28MBW quasirelativistic pseudopotential with a core charge

2For an example of an energy landscape analysis of magnetic systems see e.g. work by Sibani and
co-workers (170; 171).
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6.5 Critical discussion

of nine and equal number of the valence electrons (174). The authors (135) optimized the
most diffuse s functions and the most diffuse p function, and in order to allow the polariza-
tion of the 5s5p shell, the authors added a single d function.

Furthermore, we have repeated our calculations for a number of systems, where miscibility
gaps were predicted, with another density functional, LDA-VBH, which is very different
from the B3LYP-functional. In the case of the rubidium compounds (see Fig. 6.12), we find
that the three computed miscibility gaps are very similar - both for the stable (rocksalt-
type) and the metastable (CsCl-type) solid solution phase. For the cesium compounds (see
Fig. 6.13), the critical temperatures computed with LDA-VBH for the stable (rocksalt-
type) and metastable (CsCl-type) solid solutions are larger than the ones found for the
HF- and B3LYP-calculations, but they still lie within the general error bars we estimate
for our predictions. The inherent limitations of the quantum mechanical computations -
e.g. choice of functionals for DFT-calculations, choice of basis sets and pseudopotentials
-, the (according to our estimates usually quite reasonable) assumption that the phonon
contributions to the excess enthalpy are negligible, together with the finite size of the
supercells we can deal with, lead to error bars in the calculated critical temperatures of
probably up to 10%.

In this context, we note that using two or more different ab initio methods gives us
confidence that our computed critical parameters are quite satisfactory. In particular, one
should note that in the low-temperature region of the phase diagrams it is also often very
difficult to establish the thermodynamic stability or metastability of the observed phase
from experiment. Taking this into consideration, we would conclude that the obtained
results are quite trustworthy for most systems.

Also one should mention, that performing the local optimizations of the various structures
on ab initio level is very expensive computationally. Thus, we have also computed the
binodal curves and miscibility gaps using only the simple empirical potential for three test
systems: NaCl-LiCl, NaBr-LiBr and NaCl-KCl. While the qualitative result is similar to
the one obtained on ab initio level, the quantitative agreement with experiment is much
better for the ab initio calculations. For instance, the critical temperatures using the
empirical potential are twice as large as the ones based on the ab initio calculations.
Thus, it is essential to perform the local optimization runs on the ab initio level to
get the satisfactory results. As an alternative, one could attempt to construct highly-
refined empirical potentials. However, even if good approximate energy functions can be
constructed at all, the effort of deriving trustworthy quantitatively accurate and globally
valid robust potentials is usually very large. Furthermore, typically experimental input for
fitting the parameters is required, which would contradict the a priori approach pursued
in this work.

We note, that the individual solid solution-structure candidates typically exhibit space
groups with few symmetries. In such cases, the minimization of the energy on the ab initio
level is difficult, since there are very many degrees of freedom. Furthermore, additional
refinements of the (already optimized) basis sets for the compounds might result in some
further degree of improvement. Since small errors in the total energies can be magnified
when computing the phase diagrams, such minor changes might be of relevance. We had
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6 Quasi-binary alkali halogenide systems

already mentioned above that the enthalpies of formation of the compounds were obtained
for 0 K; for a more correct description of the Gibbs energy we need to know the temper-
ature dependence of the excess Gibbs energy, of course.

One possible improvement would be replacing the self-consistent combination of the aver-
age of the minimum energies and the entropy of mixing of an ideal solution in the free en-
ergy calculation, by a direct computation of the free energy via a sum over Boltzmann fac-
tors belonging to several thousand large (O(102) atoms/simulation cell) locally optimized
atom configurations which in their totality represent the solid solution-like state. However,
such an approach is still very expensive computationally.

Another step would be to include the phonon contribution to the free energy, but, again,
the computational effort required is extremely large. In order to gain at least some
rough estimate of the importance of this contribution, we have computed the phonon
contribution to the free energy of formation on empirical potential level. We find that e.g.
for the NaCl-LiCl system this contribution is less than 1%, while the relative contribution
of the phonons is somewhat larger in the e.g. NaBr-LiBr and NaCl-KCl systems. A closer
analysis of the phonon data suggests that the importance of the phonon term might
correlate with deviations of the solid solution-like state from Vegard’s law, which states
that the cell parameters (and thus the cell volume) of an alloy are a linear combination
of the parameters of the end phases a1 and a2 as function of composition x, a(x) =
xa1 + (1− x)a2. As a consequence, this implies that one should use as large supercells as
possible for the computation of the phonon contribution, in order to avoid finite size effects
that can make themselves felt as spurious deviations from Vegard’s law. Quite generally,
the results support our expectation that the vibrational contributions to the (excess) heat
capacity of the solid solution should not vary very much as function of composition even
at moderately high temperatures.

Thus, we expect that our computed data are sufficiently accurate to correctly predict
the existence/nonexistence of the miscibility gap and its location. Quite generally, we
estimate from the spread in energies over the minima belonging to the solid solution-state
that the intrinsic error in the calculations of the critical parameters Tc and xc should
not exceed 10% and ±0.05 mole fractions, respectively. We also note that part of the
discrepancy between theory and experiment might be due to difficulties in performing
the actual experiments. After all, our calculations refer to the ideal crystals in the pure
system without impurities or defects. In contrast, the experimentalist deals with the real
crystals, i.e. crystals containing defects and foreign atoms. Thus, both qualitative and
quantitative agreement of our calculations with the experimental results if available is
quite satisfactory.

Concerning the CsX-LiX and LiX-RbX systems, for a given halide system, the enthalpies
of formation for the different stable structure candidates listed in Tables 6.12 - 6.15 and
Tables 6.17 and 6.18 are rather similar. Considering the limited accuracy of the ab inito
calculations, it is difficult to draw any firm conclusion about whether a phase at a par-
ticular composition x is thermodynamically stable or only metastable with respect to
a decomposition into two neighboring phases i and j with compositions xi < x < xj.
When referring to the stability of the phases, we consider both the stability against the
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binary compounds (x = 0,1) and the overall stability against combinations of neighboring
phases.

In principle, general statistical mechanical considerations show that there must be some,
though probably very small, degree of solubility of the minority cation in the structure
of the halide of the majority cation. Apart from trying to compute at an ab initio
level the defect energy associated with introducing e.g. a Li-atom at the position of a
Cs-atom, one could try to estimate the thermodynamically allowed amount of solubility
by computing the hypothetical miscibility gap of a CsX/LiX or LiX/RbX solid solution
in the structure type of the binary compounds CsX or RbX and LiX, the CsCl- and
the rocksalt-type, respectively. This feature of defect formation / boundary solubility
would be most noticeable at high temperatures close to the melting point. We have
computed these hypothetical miscibility gaps for the CsCl/LiCl system, and we find that
even for temperatures in the range of the melting temperatures of LiCl and CsCl the
degree of solubility of the minority cation in the structure of the binary halide of the
majority cation is considerably below one percent. Since the high-temperature region
of the phase diagram is not the focus of this thesis, we do not attempt to show the
curves delimiting the regions of the phase diagrams exhibiting boundary solubility in the
figures.

Usually, predicted phases remain stable at non-zero (low) temperatures, but at elevated
temperatures phonon contributions might lead to a shift in the relative Gibbs energies.
Again, we have not calculated these vibrational terms; our experience has shown that they
are rather similar at low temperatures, and thus are only expected to be of importance at
high temperatures. An indication that this also holds true for the CsX-LiX and LiX-RbX
systems is the similarity of the bulk moduli for all candidates with a given composition,
and the systematic trend in the bulk moduli as function of composition. Since the newly
proposed structure candidates are not observed in the solidus-liquidus region of the phase
diagrams, they are expected to decompose at temperatures below the known eutectic and
/ or peritectic temperatures in the two families of systems. However, our calculations
cannot determine these decomposition temperatures; the length of the lines in the phase
diagrams on each figure is no indication of the temperature of decomposition. Note that
these considerations do not allow any statements about whether a particular metastable
phase could exist or whether a particular phase is easy to access, since these issues are
dominated by the kinetic stability of the phases and the kinetic pathways on the energy
landscape at the low temperatures involved.

We note that we cannot exclude the possibility that there might be some additional
relevant structure candidates our global explorations have failed to identify so far, since
in particular for complicated compositions stable modifications might exist, which exhibit
more atoms in the primitive unit cell than can be employed during the global optimization
due to limits in computer time.
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6.6 Conclusion

To summarize the results of the quasi-binary alkali halide systems, we have used these
system primarily to test a new general methodology that allows us to determine whether
a crystalline solid solution-like phase or ordered crystalline phases will occur in the low-
temperature part of the phase diagram of a chemical system, and to obtain the critical
parameters of the miscibility gap, without any experimental data or a priori knowledge
about the phase diagram of the system under investigation.

We have determined the critical parameters of the miscibility gap in the NaCl-LiCl, NaBr-
LiBr, NaCl-KCl and KBr-NaBr systems, which are satisfactorily close to the experimental
data. Also, we predict the miscibility gap locations in KCl-RbCl and KBr-RbBr systems
for which no low-temperature experimental data exist.

Furthermore, we have shown that our approach to the ab initio prediction of low-temperature
phase diagrams including solid solution phases can be used not only for systems with two
different cations, but also those that contain two types of anions. We find good quan-
titative agreement with experimental data for the MBr-MI systems, where M = Li, Na,
K, Rb or Cs, and we suggest improved critical parameters for the LiBr-LiI, KBr-KI and
RbBr-RbI systems.

We have found good qualitative and quantitative agreement with the miscibility gaps
based on optimization of the available thermodynamic data for the NaBr-NaCl and KBr-
KCl systems, and we have predicted the location of the miscibility gap for the LiBr-
LiCl system, for which there is no experimental data available. Finally, we have shown
that our general approach can be successfully applied not only to the prediction of the
low-temperature part of T-x phase diagrams at standard pressure, but also to the pre-
diction of the low-temperature part of P-T-x phase diagrams, which exhibit miscibility
gaps.

We have shown that our approach to the study of the low-temperature region of phase
diagrams of multinary systems yields results that are in good agreement with the data
available for the lithium cesium and lithium rubidium halides. In addition, our investiga-
tions point to a multitude of yet to be synthesized stable and metastable phases in these
quasi-binary systems. We confirmed the existence of the experimentally known phases in
all the systems under investigation. In addition, our investigations point to a multitude
of not-yet synthesized stable and metastable phases.

In the following two chapters, we are going to apply our new method to two classes of sys-
tems, where no experimental information regarding the low temperature phase diagrams is
available: quasi-binary and quasi-ternary arsenide and antimonide based semiconductors
(Chapter 7) and quasi-binary lanthanum halides (Chapter 8).
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7 Quasi-binary and quasi-ternary
semiconductors in AIIIBV systems
(A = Al, Ga or In; B = As or Sb)

7.1 Introduction

The AIIIBV semiconductor compounds have received much attention over the past decades
because of their important applications in materials science and engineering. Up to now,
a number of studies have been reported on the liquid-solid phase equilibria in the systems
MX-M’X where M,M’ - Al, Ga or In and X - As or Sb (175; 176; 177; 178; 179; 180;
181; 182; 183; 184; 185), since such information plays a key role in the growth of alloy
semiconductor crystals by liquid phase epitaxy. However, the low-temperature parts of
the phase diagrams exhibit a lack of thermodynamic data, especially for the quasi-ternary
systems. Nevertheless, such information is no less important than the one about the
high temperature parts of the phase diagrams, since the knowledge of the location of
the miscibility gap gives us information at what conditions the final products can be
used without a crash as a result of a decomposition of the solid solution at low (room)
temperatures.

However, direct experiments at low temperatures are quite difficult; it is even often nearly
impossible to access the thermodynamic equilibrium due to the low speed of solid state
reactions. Thus, computational methods based on the optimization of the direct ex-
perimental thermodynamic data (Calpad approach) or theoretical studies are needed
to supplement the experiments in deriving the phase diagrams. There are many stud-
ies available which describe the liquidus-solidus equilibria and the extrapolated misci-
bility gaps for the MX-M’X systems where M,M’ = Al, Ga or In and X = As or Sb
(186; 187; 188; 189; 190; 191; 192; 193; 194). But nevertheless, the critical parameters are
not satisfactory and sometimes the proposed values are spread over a range of hundreds
of degrees.

In this section, we apply the new strategy suggested in this thesis (see Part III) to these
quasi-binary semiconductor alloys, and where there is a lack of experimental thermo-
dynamic data at low temperatures, we predict the low-temperature part of their phase
diagrams. Moreover, we calculate the quasi-ternary phase diagrams at low-temperature
using not only information about the quasi-binary compounds but also additional simu-
lation data for the quasi-ternary systems.
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B = As or Sb)

7.2 General remarks

Our general approach to the determination of structure candidates has been given in detail
in the Part III. The systems were modeled as spherical ions that interact via a simple
empirical two-body potential, Vij(rij), consisting of a Coulomb- and a Lennard-Jones-
term that depend only on the atom-atom distance rij, in order to allow fast calculations
of the energy of a given configuration. The Lennard-Jones parameters σij = rs(ri + rj)
are given by the sum of the ionic radii of atoms i and j with charges qi and qj multiplied
by a scaling factor rs. The ionic radii are presented in the Appendix (see the Table
B.1).

The ab initio runs were performed on both Hartree-Fock (HF) and density functional the-
ory (DFT) level; the basis sets used were taken from the CRYSTAL web page (136).

7.3 Results and Discussion

For each chemical system, several hundred global optimization runs were performed for a
number of different compositions each, at a pressure of 0 Pa. We performed calculations
for 5 different compositions (MX:M’X = 3:1, 2:1, 1:1, 1:2, 1:3) besides the limiting binary
phases for all six MX-M’X systems (M,M’ = Al, Ga or In; X = As or Sb); and for 10
different compositions (AlX:GaX:InX = 1:1:1, 1:1:2, 1:2:1, 2:1:1, 1:2:2, 2:1:2, 2:2:1, 1:1:3,
1:3:1, 3:1:1) for both quasi-ternary systems. For each composition, we found for the set
of structure candidates with the lowest energies, that the energy differences between the
candidates were very small. These candidates belonged to the same structure family
(sphalerite with M and M’ located on the Zn-positions in ZnS), indicating a solid-solution
behaviour for all quasi-binary and quasi-ternary systems. As a next step, we calculated
the enthalpy of formation for each composition according to Eqn. (5.2). The parameters
for the fit of ∆fH(x) with a Redlich-Kister polynomial for all of the quasi-binary systems
are listed in Table 7.1.

Table 7.1: The Redlich-Kister polynomial fitting parameters of the enthalpy of formation
(according to equation 5.2) for solid solution phases in the MX-M’X systems
(M,M’ = Al, Ga or Sb; X = As or Sb) at standard pressure obtained in the
present work (in Joule/mol).

System HF DFT-B3LYP
a0 a1 a0 a1

AlAs-GaAs 4436.5 -120.4 4343.1 -229.2
AlAs-InAs 7777.4 122.8 8198.6 -285.3
GaAs-InAs 5727.7 -331.8 5184.4 -690.9
AlSb-GaSb 1595 368.1 2848.6 -33.7
AlSb-InSb 5268.1 309.9 5430.8 -51.5
GaSb-InSb 4355.3 375.6 4390 187.1
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From this data we calculated Gibbs energies of the solid phase and predicted the location of
the miscibility gaps. The critical parameters are listed in Table 7.2.

Table 7.2: The critical parameters for the MX-M’X systems (M,M’ = Al, Ga or Sb; X
= As or Sb) systems at standard pressure obtained in the present work. Tc is
the critical temperature of the decomposition in K, and xc is the concentra-
tion of the second compound. The literature data (xlit

c and T lit
c ) are based on

extrapolation from the liquidus-solidus region.

System HF DFT-B3LYP Literature data
xc Tc xc Tc xlit

c T lit
c Ref.

AlAs-GaAs 0.53 267 0.54 263 0.5 131 (186)
AlAs-InAs 0.49 468 0.52 494 0.5 553, 629 (180; 195)
GaAs-InAs 0.54 347 0.59 323 0.5 816, 505 (196; 197)
AlSb-GaSb 0.37 105 0.5 171 0.5 207 (188)
AlSb-InSb 0.46 319 0.5 327 0.5 217, 180 (183; 189)
GaSb-InSb 0.44 266 0.47 265 0.5 466 (190)

As a next step, we calculated the enthalpy of formation for the quasi-ternary systems for
each composition xb and xc by the following formula:

∆fH(Al1−xb−xcGaxbInxcX) = E(Al1−xb−xcGaxbInxcX)−
(1− xb− xc)E(AlX)− xbE(GaX)− xcE(InX), (7.1)

where E(Al1−xb−xcGaxbInxcX) is the energy of the structure candidate, E(AlX), E(GaX)
and E(InX) are the energies of the boundary compounds AlX, GaX and InX, respectively;
xb is the fraction of GaX, and xc is the fraction of InX in the overall composition (X = As
or Sb). In Figures 7.1 and 7.2 one can see the predicted binodal curves (both for HF- and
DFT-B3LYP-based calculations) and plots of the miscibility gaps based on extrapolation
of high-temperature data from the literature for two of the quasi-binary systems (AlAs-
GaAs-InAs and AlSb-GaSb-InSb).

The parameters for a fit of the excess Gibbs energy for both quasi-ternary systems are
listed in Table 7.3. From this data we calculated the Gibbs energies of the solid phase
using the Redlich-Kister model and predicted the location of the miscibility gaps according
to the following formula:

∆Gsol = ∆fHAlX−InX + ∆fHAlX−GaX

+∆fHGaX−InX − TSid + xAlXxGaXxInX

3∑
i=1

xiLi, (7.2)

where ∆fHMX−M ′X is the enthalpy of formation of the quasi-binary system (M,M’ = Al,
Ga, or In; X = As or Sb), obtained earlier in the present work (according Eqn. (5.2)); Li

= fitting parameters (see Table 7.3); Sid = ideal entropy of mixing. In Figures 7.3 and
7.4 one can see the isothermal projections of the predicted binodal curves (for HF-based
calculations) for both quasi-ternary systems.
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Table 7.3: The fitting parameters of the enthalpy of formation (according to equation
(7.2)) for solid solution phases in the AlX-GaX-InX systems (X = As or Sb)
at standard pressure obtained in the present work (in Joule/mol).

System HF DFT-B3LYP
L1 L2 L3 L1 L2 L3

AlAs-GaAs-InAs 11991 -282 4648 16105 9927 -2842
AlSb-GaSb-InSb 14289 -6698 26338 11467 -3096 15701

As we have already mentioned in the section 7.1, the pseudobinary semiconductor sys-
tems AIIIBV have been well studied, using both experimental and theoretical methods,
especially the high temperature parts of the phase diagram. But there are no direct exper-
imental results which yield the miscibility gaps in those systems. Nevertheless, standard
thermodynamic methods can be used to estimate the location of the miscibility gap from
the available liquidus-solidus data. The authors in Ref. (186) applied the regular solution
model to describe the thermodynamic properties of the solid phase in the system AlAs-
GaAs. The same model was used to describe the solidus curve in the system AlAs-InAs
(187). The GaAs-InAs system has attracted much more attention from scientists, but
there is no final conclusion about the critical parameters so far: the suggested critical
temperatures lie between 505K (197) and 875K (198). In one of the last studies de-
voted to the optimization of the thermodynamic properties in this system, the authors
suggested 816K as a temperature of solid solution decomposition (196). The authors in
Refs. (188; 189) also apply the regular solution model to describe the solid phase in the
pseudobinary AlSb-GaSb and AlSb-InSb systems. Y. Jianrong and A. Watson (190) im-
proved the regular solution model by adding temperature dependent variables to describe
the GaSb-InSb system. In all of these studies, the prediction of the miscibility gaps was
based on the low temperature extrapolation of the thermodynamic functions that had
been obtained at temperatures close to the liquid-solid equilibrium. Usually, such ex-
trapolations are not very satisfactory, especially when heat capacities are not taken into
account. On the other hand, when one performs extrapolations from (theoretically cal-
culated) zero temperature data, contributions of the heat capacities to the Gibbs energy
can often be neglected.

In the present work we found that for all systems under investigation the phase diagram
should exhibit a solid solution-like phase regardless of whether the energy was calculated
on a HF or DFT basis. Figures 7.1 and 7.2 depict quite good agreement between HF
(solid curve) and DFT (dashed curve) studies. Moreover, the same behavior was observed
not only for the six pseudobinary systems, but also for both quasi-ternary systems. Thus,
we can conclude, that there are no stable ordered compounds, at least at the compo-
sitions investigated in the present work, in either of the two ternary systems, and that
the low-temperature phase diagrams of both quasi-ternary systems exhibit miscibility
gaps.

The additional information about the enthalpies of formation for the ternary compounds
derived from the calculated data can improve the predictions of the location of the mis-
cibility gaps in the quasi-ternary systems in comparison with results obtained using only
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Figure 7.1: The miscibility gap in the GaSb-InSb system. Solid curve based on HF-
calculations, dashed curve based on DFT-B3LYP calculations, dotted curve
based on the extrapolated data from liquid/solid equilibria (190).
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Figure 7.2: The miscibility gap in the AlAs-InAs system. Solid curve based on HF-
calculations, dashed curve based on DFT-B3LYP calculations, dotted curve
based on the extrapolated data from liquid/solid equilibria (180).
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the pseudobinary data (199). E.g. if one constructs a miscibility gap based only on the
data about the pseudobinary systems, one will never observe any miscibility gaps higher
in temperature than the highest critical temperature of decomposition observed for the
three quasi-binary systems. But additional data for the enthalpies of formation of the
quasi-ternary compounds obtained in the present work allow us to predict the full misci-
bility gaps in both quasi-ternary systems under investigation even if the gap extends to
temperatures higher than the critical temperatures of decomposition for the quasi-binary
systems.

Figure 7.3: The 5 isothermal projections of the phase diagram for the AlAs-GaAs-InAs
system at [200 310 340 400 460] K, based on the HF-calculations. Red curve -
200 K, blue curve - 310 K, magenta curve - 340, cyan curve - 400 K and black
curve - 460 K.

Figures 7.3 and 7.4 depict the isothermal sections of the phase diagram for the AlAs-
GaAs-InAs and AlSb-GaSb-InSb systems at five different temperatures, chosen usually a
little bit lower and higher1 than the critical temperatures of decomposition for the quasi-
binary systems, based on the HF-data. The thin lines indicate the area of miscibility

1For the AlSb-GaSb-InSb the last three miscibility curves lie much higher than the highest critical
temperature of the quasi-binary systems.
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gaps.

Figure 7.4: The 5 isothermal projections of the phase diagram for the AlSb-GaSb-InSb
system at [260 310 400 450 472] K, based on the HF-calculations. Red curve -
260 K, blue curve - 310 K, magenta curve - 400, cyan curve - 450 K and black
curve - 465 K.

Here, one should point out the qualitative difference in the observed miscibility gaps of the
two quasi-ternary systems. In the case of the AlAs-GaAs-InAs system we do not observe
a miscibility gap at temperatures above the highest critical temperature of decomposition
for the binaries. One should mention, that the same behaviour was observed for both HF
and DFT-B3LYP methods. Those results are in qualitative agreement with data from
(200). In contrast, for the AlSb-GaSb-InSb system, a gap exists up to 467 K and 381
K for HF and DFT-B3LYP data, respectively. To explain that fact, one should refer
to the predicted enthalpies of formation and the final fitting parameters (or ”interaction”
parameters) for the excess Gibbs energies for both quasi-binary and quasi-ternary systems
(see Tables 7.1 and 7.3). In general, the binary data for the arsenide systems are bigger
than for the antimonide systems. In contrast, the final fitting parameters for the excess
Gibbs energies for quasi-ternary systems are bigger for the antimonide systems than for
the arsenide systems. This results in different shapes of the miscibility gaps for the quasi-
ternary systems.
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As an example, figure 7.5 depicts the isothermal section of the phase diagram for the
AlAs-GaAs-InAs system at 320 K, with the phase diagrams of the three quasi-binary
systems on the corresponding sides. The dotted lines show the projections of the binaries
onto the quasi-ternary phase diagram.
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Figure 7.5: Isothermal section of the phase diagram for the AlAs-GaAs-InAs system at
320 K. Blue lines indicate a temperature of 320 K, red curves are the border
of the miscibility gap in the quasi-ternary system at 320 K, black curves are
the full miscibility gaps in the quasi-binary systems.

7.4 Conclusion

To summarize, we have shown that our approach can be successfully applied to the in-
vestigation of the quasi-binary and quasi-ternary semiconductor systems AIIIBV . For the
first time, the miscibility gaps for the quasi-ternary systems were calculated based not
only on the data of the quasi-binary systems, but also including additional information
about enthalpies of formation of the quasi-ternary compounds. Previous results for the

100



7.4 Conclusion

alkali-halide systems (see Chapter 6) allow us to expect that the predicted data are quite
close to reality.
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8 Quasi-binary lanthanum halogenide
systems

8.1 Introduction

In this section, we present an investigation of the quasi-binary lanthanum halogenide sys-
tems LaX3-LaY3 (where X,Y = F, Cl, Br or I). There are no data available in the literature
about any compounds in those systems, besides the binary compounds LaX3 (201), and
only one synthesis of a mixed halide of a rare-earth element, TbFCl2, has been reported
(202). But such mixed halide compounds might be quite interesting for technological ap-
plications: the binary compounds are widely used, e.g. LaCl3 and LaBr3 doped by Ce are
employed as scintillator materials (203; 204), and the layered lanthanum carbide halides
exhibit superconducting properties (205). Thus, the investigation of the phase diagrams
of the quasi-binary lanthanum halides, including the prediction of new structure candi-
dates, should prove to be quite valuable, both for basic research in chemistry and for
applications in materials science.

8.2 General remarks

Our general approach to the determination of structure candidates has been given in detail
in the Part III. The systems were modeled as spherical ions that interact via a simple
empirical two-body potential, Vij(rij), consisting of a Coulomb- and a Lennard-Jones-
term that depend only on the atom-atom distance rij, in order to allow fast calculations
of the energy of a given configuration. The Lennard-Jones parameters σij = rs(ri +
rj) are given by the sum of the ionic radii of atoms i and j with charges qi adn qj
multiplied by a scaling factor rs. The ionic radii were presented in Appendix, see the
Table A.1.

The ab initio runs were performed on both Hartree-Fock (HF) and density functional the-
ory (DFT) level; the basis sets were optimized versions (135) of data sets available in the
literature (136) in case of the halogenides (see Appendix Table C.2); for lanthanum we used
the data available on the web page of Mike Towler (206).
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8 Quasi-binary lanthanum halogenide systems

8.3 Results and Discussion

8.3.1 Binary halides LaX3 (X = F, Cl, Br or I)

As a preliminary for our study we performed a global exploration of the energy landscape
of the pure binary lanthanum halides at a pressure of 0 Pa. We noticed that the ab initio
calculations based on the Hartree-Fock and DFT-B3LYP basis for the pure lanthanum
halides give an incorrect ranking of the candidates by energy: the new predicted modifica-
tions, obtained during the global search, appear to be more stable than the experimental
ones. Thus, we decided to repeat the ab initio calculations with an additional functional:
DFT-LDA-VBH. In this case, the ”right” results for the binary compounds (at least as
far as the ranking by energy was concerned) were obtained. As a consequence, we used
all three methods for the investigation of the mixed compounds, in order to get a better
estimate of the validity of our results.

8.3.2 Quasi-binary halides LaX3-LaY3 (X,Y = F, Cl,
Br, I)

As a preliminary step of the investigation, for each chemical system LaX3-LaY3, several
hundred global optimization runs were performed for a number of different compositions
each, at a pressure of 0 Pa. We performed calculations for 5 different compositions (X:Y =
3:1, 2:1, 1:1, 1:2, 1:3) in addition to the limiting binary phases. For each composition we
found a list of structure candidates and calculated the E(V )-curves for all these candidates
at an ab initio level. For given composition, the energy differences between the candidates
with the lowest energies were at least equal, and in most cases considerably larger, than the
thermal energy at room temperature. In addition, their cation-anion arrangements were
different, and thus these candidates could not be considered as members of one ”structure
family”, which would have indicated the possible presence of a solid solution-like phase.
Furthermore, when comparing different compositions the candidates with the lowest ener-
gies did not exhibit the same cation-anion superstructure either. Thus, we deduced that
in these systems no solid solutions are present as thermodynamically stable phases over
the full range of compositions, and instead the low-temperature part of the phase diagram
exhibits ordered crystalline phases. In the next step, the enthalpies of formation of each
compound were obtained according to equation (5.2).

The calculations of the enthalpies of formation according to equation (5.2) showed that
some of these intermediate phases are stable against decomposition into the boundary
compounds at 0 K. Tables 8.1 - 8.6 show, for each composition, the structural data for
the most stable among these structure candidates.

As we mentioned earlier, there are no experimental data available for compounds in the
quasi-binary lanthanum halide systems. At first sight, one might expect a solid-solution
behaviour for the LaBr3-LaCl3 system, since pure LaBr3 and LaCl3 crystallize in the
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same structure type (UCl3-Type) (201). Similarly, for the other five systems, the different
structure types of the binary endphases suggest that ordered crystalline phases, stable or
metastable, will be more likely to exist at low temperatures than a solid solution phase.
But, we found that in all six systems for all compositions investigated the observed struc-
ture candidates with the lowest free energy corresponded to ordered crystalline phases,
which are at least metastable, and that no solid solution-like phases were present. One
should mention that the same behaviour was observed regardless of whether the energy
was calculated on HF or DFT basis. This apparent predisposition of the mixed rare earth
halides to form crystalline ordered phases is supported by the fact that the only related
compound synthesized so far - TbFCl2, by the group of Th. Schleid (202), - is also an
ordered crystalline modification.

LaF3-LaCl3 system

Since we found that all systems under investigation exhibit ordered crystalline phases at
least at low temperatures, we decide to focus on one of the systems and perform more
detailed investigations. For this purpose, we chose the LaF3-LaCl3 system. We added
six additional compositions (F:Cl = 5:1, 4:1, 3:2, 2:3, 1:4 and 1:5). As a first step, we
performed several hundred global optimization runs, then for all structure candidates
found local ab initio minimizations were performed. Afterwards, for the candidates with
the lowest energy, according to the ab initio studies, we generated super cells to get new
candidates with a higher number of formula units1, these new structures were quenched
and served as starting points for further global searches via the threshold algorithm.
Finally, all new structure candidates were analyzed at the ab initio level. This procedure
allowed us to obtain structure candidates with Z (number of formulas units) equal 3, 4, 6
and 8 for compositions with 16 or 20 atoms per formula unit; the standard random walk
based on simulated annealing usually takes too long to find deep lying minima for such
large systems.

Figure 8.1 depicts the information about the low-temperature region of the phase diagram
of the LaF3-LaCl3 system derived from the landscape exploration and ab initio energy
minima studies. The top part of a figure indicates by a solid line, at which composition
new possible stable compounds are expected, together with the experimentally known
binaries; metastable compounds correspond to dashed lines2. The bottom part of the
figures shows the convex hulls for the quasi-binary lanthanum halide system at T = 0 K,
obtained in the present work. The solid black curves correspond to the HF calculations,
the red lines to the DFT-B3LYP data, and finally the blue curves to the DFT-LDA-VBH
results, respectively. The circles and squares correspond to the two structure candidates
with the lowest energy for a given composition. Here, colors have the same meaning as
for the solid curves. If the ranking of these candidates by energy is not the same for all
three ab initio methods, we depict by circles those, for which the HF calculations yield
the lowest energy while the squares correspond to the structure candidates which have

1Usually, we double or triple the cell in one direction.
2Our calculations cannot determine the decomposition temperatures of predicted phases; thus, the length

of the lines in the phase diagrams are no indication of the temperature of decomposition.
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Figure 8.1: Top: Low-temperature phase diagram for the LaF3-LaCl3 system: solid lines
dashed and dotted lines indicate stable metastable and unstable phases, re-
spectively. Bottom: The ground state convex hull for the LaF3-LaCl3 sys-
tem; the enthalpies of formation at 0 K are given with respect to the binary
compounds. The black curve corresponds to the Hartree-Fock calculations,
the red curve to the DFT-B3LYP calculations, the blue curve to the DFT-
LDA-VBH calculations. The circles and squares correspond to the structure
candidates with the lowest energy according to the HF data and DFT-LDA-
VBH data, respectively. Composition 5:1: circles =̂ La2F5Cl-Type83, squares
=̂ La2F5Cl-Type77; 4:1: circles =̂ La5F12Cl3-Type6, squares =̂ La5F12Cl3-
Type35; 3:1: circles =̂ La4F9Cl3-Type14, squares =̂ La4F9Cl3-Type10; 2:1:
circles =̂ LaF2Cl-Type16; 3:2: circles =̂ La5F9Cl6-Type25; 1:1: circles =̂
La2F3Cl3-Type37, squares =̂ La2F3Cl3-Type24; 2:3: circles =̂ =̂ La5F6Cl9-
Type13; 1:2: circles =̂ LaFCl2-Type19, squares =̂ LaFCl2-Type91; 1:3: cir-
cles =̂ La4F3Cl9-Type4, squares =̂ La4F3Cl9-Type3; 1:4: circles =̂ La5F3Cl12-
Type1; 1:5: circles =̂ La2FCl5-Type33 (see Table 8.1 for more detail).
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the lowest energy when using the DFT-LDA-VBH method.

All modifications present as corners on the convex hull for the three ab initio methods
can be considered as serious candidates for thermodynamically stable phases at least at 0
K, being stable with respect to the binary compounds and neighboring phases. Thus, in
the case of the LaF3-LaCl3 system promising structure candidates exist for compositions:
2:1, 1:2 and 1:5. We note, that only for one additional composition, La2FCl5, we found a
new compound that can be considered as a possible thermodynamically stable candidate
beyond the ones found for simpler compositions. Structural data is presented in Table
8.1.
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Table 8.1: Structure parameters, bulk moduli, minimum energies (in hartree / formula
unit) at 0 K for ordered crystalline structure candidates for the LaF3-LaCl3
system after local optimization on DFT-LDA-VBH level.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

P21/m (11) a = 4.14812 La1(2e) 0.77286 1/4 0.82277 232.501 -17393.5926
monoclinic b = 5.32316 La2(2e) 0.74002 1/4 0.41586 122.152
La2F5Cl − Type − 77 c = 10.52940 F1(4f) 0.72065 0.99172 0.22066

α = γ = 90 F2(2e) 0.26841 1/4 0.56377
β = 90.0303 F3(4f) 0.76897 0.50072 0.62780

Cl1(2e) 0.24269 1/4 0.04264
C2/m (12) a = 17.08088 La1(4i) 0.39853 0 0.60153 486.354 -17393.5882
monoclinic b = 4.10101 La2(4i) 0.87367 0 0.08712 114.620
La2F5Cl − Type − 83 c = 7.60237 F1(4i) 0.02781 0 0.23003

α = γ = 90 F2(4i) 0.70758 0 0.96616
β = 114.0378 F3(4i) 0.55439 0 0.68177

F4(4i) 0.12441 0 0.59137
F5(4i) 0.58369 0 0.06039
Cl1(4i) 0.78420 0 0.68223

Cm (8) a = 21.18163 La1(2a) 0.13661 0 0.97681 639.700 -43663.7377
monoclinic b = 4.20016 La2(2a) 0.67493 0 0.47618 106.452
La5F12Cl3 − Type − 6 c = 7.21497 La3(2a) 0.34386 0 0.39435

α = γ = 90 La4(2a) 0.00921 0 0.40695
β = 94.7342 La5(2a) 0.86321 0 0.88496

F1(2a) 0.10459 0 0.64698
F2(2a) 0.65029 0 0.80489
F3(2a) 0.45386 0 0.35173
F4(2a) 0.38078 0 0.72268
F5(2a) 0.22968 0 0.39715
F6(2a) 0.80049 0 0.53963
F7(2a) 0.56319 0 0.47727
F8(2a) 0.11698 0 0.31060
F9(2a) 0.88672 0 0.25517
F10(2a) 0.61312 0 0.13347
F11(2a) 0.35891 0 0.06383
F12(2a) 0.92222 0 0.59710
Cl1(2a) 0 0 0
Cl2(2a) 0.74989 0 0.13745
Cl3(2a) 0.24990 0 0.78255

Pm (6) a = 7.43523 La1(1a) 0.92828 0 0.48308 305.598 -43663.7458
monoclinic b = 4.06103 La2(1b) 0.44937 1/2 0.52503 112.896
La5F12Cl3 − Type − 35 c = 10.14226 La3(1a) 0.67158 0 0.84532

α = γ = 90 La4(1a) 0.34004 0 0.17901
β = 93.7184 La5(1b) 0.17306 1/2 0.81973

F1(1b) 0.77189 1/2 0.50880
F2(1a) 0.27736 0 0.42177
F3(1a) 0.32697 0 0.67039
F4(1b) 0.12953 1/2 0.57363
F5(1a) 0.00124 0 0.71851
F6(1b) 0.41846 1/2 0.29149
F7(1a) 0.64034 0 0.60885
F8(1b) 0.26616 1/2 0.05233
F9(1a) 0.62132 0 0.35840
F10(1b) 0.83709 1/2 0.79261
F11(1a) 0.36723 0 0.91844
F12(1b) 0.49477 1/2 0.76656
Cl1(1a) 0 0 0
Cl2(1b) 0.64136 1/2 0.05236
Cl3(1b) 0.02359 1/2 0.28534

Pm (6) a = 10.73235 La1(1a) 0.74753 0 0.77742 259.582 -35146.7580
monoclinic b = 4.09359 La2(1b) 0.00164 1/2 0.38916 103.567
La4F9Cl3 − Type − 10 c = 5.91147 La3(1a) 0.26425 0 0.80712

α = γ = 90 La4(1b) 0.49372 1/2 0.35998
β = 91.8243 F1(1a) 0.61483 0 0.43859

F2(1b) 0.86189 1/2 0.70129
F3(1a) 0.46372 0 0.06066
F4(1b) 0.38504 1/2 0.73242
F5(1a) 0.38449 0 0.47157
F6(1a) 0.11852 0 0.47313
F7(1b) 0.62738 1/2 0.69905
F8(1a) 0.88316 0 0.45421
F9(1b) 0.14769 1/2 0.71054
Cl1(1a) 0 0 0
Cl2(1b) 0.74365 1/2 0.15115
Cl3(1b) 0.24621 1/2 0.17206

Pm (6) a = 7.44598 La1(1a) 0.34787 0 0.24935 265.141 -35146.7439
monoclinic b = 6.72356 La2(1a) 0.83240 0 0.48403 100.667
La4F9Cl3 − Type − 14 c = 5.29627 La3(1b) 0.08654 1/2 0.72638

α = γ = 90 La4(1b) 0.58808 1/2 0.96542
continued on next page
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continued from previous page

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

β = 90.4758 F1(2c) 0.62660 0.18849 0.19964
F2(2c) 0.12459 0.18690 0.50246
F3(2c) 0.31220 0.70131 0.97123
F4(1a) 0.52291 0 0.64208
F5(2c) 0.80011 0.30983 0.71484
Cl1(1a) 0 0 0
Cl2(1b) 0.42621 1/2 0.47339
Cl3(1b) 0.93297 1/2 0.21727

Pmmn (59) a = 4.12273 La1(2a) 1/4 1/4 0.31045 139.261 -8876.5953
orthorhombic b = 5.42062 F1(4e) 1/4 0.52533 0.61126 93.940
LaF2Cl − Type − 16 c = 6.23154 Cl1(2b) 1/4 3/4 0.07553

α = β = γ = 90
Cm (8) a = 21.50564 La1(2a) 0 0 0 742.170 -44742.5044
monoclinic b = 4.22987 La2(2a) 0.50630 0 0.43702 89.351
La5F9Cl6 − Type − 25 c = 8.20564 La3(2a) 0.16441 0 0.39945

α = γ = 90 La4(2a) 0.25836 0 0.91209
β = 96.128 La5(2a) 0.83475 0 0.32171

F1(2a) 0.93524 0 0.22319
F2(2a) 0.61289 0 0.39113
F3(2a) 0.51150 0 0.14306
F4(2a) 0.78853 0 0.03185
F5(2a) 0.39321 0 0.34765
F6(2a) 0.27869 0 0.21181
F7(2a) 0.04938 0 0.28516
F8(2a) 0.07785 0 0.57037
F9(2a) 0.72408 0 0.34394
Cl1(2a) 0.53693 0 0.79502
Cl2(2a) 0.93266 0 0.59836
Cl3(2a) 0.69458 0 0.71831
Cl4(2a) 0.14263 0 0.04778
Cl5(2a) 0.39082 0 0.94616
Cl6(2a) 0.29323 0 0.57290

Pm (6) a = 12.53339 La1(1a) 0 0 0 313.649 -18112.7735
monoclinic b = 4.19471 La2(1b) 0.77411 1/2 0.59150 84.577
La2F3Cl3 − Type − 37 c = 5.99003 La3(1b) 0.33093 1/2 0.54657

α = γ = 90 La4(1a) 0.54848 0 0.18244
β = 95.1479 F1(1a) 0.88046 0 0.63575

F2(1b) 0.44482 1/2 0.23398
F3(1b) 0.64350 1/2 0.27002
F4(1a) 0.41891 0 0.45386
F5(1b) 0.92011 1/2 0.86853
F6(1a) 0.67956 0 0.50835
Cl1(1a) 0.76389 0 0.02749
Cl2(1b) 0.55637 1/2 0.77313
Cl3(1b) 0.14424 1/2 0.82926
Cl4(1a) 0.18608 0 0.33807
Cl5(1a) 0.35287 0 0.89386
Cl6(1b) 0.96303 1/2 0.33467

Pmc21 (26) a = 4.26054 La1(2a) 0 0.80444 0 301.213 -18112.7769
orthorhombic b = 8.71145 La2(2b) 1/2 0.74358 0.44593 87.864
La2F3Cl3 − Type − 24 c = 8.11557 F1(2b) 1/2 0.24190 0.64684

α = β = γ = 90 F2(2b) 1/2 0.97714 0.93261
F3(2a) 0 0.78535 0.30732
Cl1(2a) 0 0.52323 0.53107
Cl2(2a) 0 0.09552 0.15098
Cl3(2b) 1/2 0.34232 0.29978

Pm (6) a = 10.44620 La1(1a) 0 0 0 863.373 -45821.2453
monoclinic b = 8.38723 La2(2c) 0.08470 0.74251 0.49631 74.197
La5F6Cl9 − Type − 13 c = 9.90246 La3(1a) 0.54578 0 0.35675

α = γ = 90 La4(2c) 0.33433 0.74799 0.01192
β = 95.659 La5(2c) 0.61886 0.74839 0.71622

F1(1a) 0.40148 0 0.14017
F2(1a) 0.22477 0 0.95748
F3(2c) 0.52236 0.74740 0.48239
F4(1a) 0.56807 0 0.60005
F5(2c) 0.10688 0.74374 0.06167
F6(1a) 0.13226 0 0.57520
Cl1(1b) 0.51429 1/2 0.90988
Cl2(2c) 0.33787 0.74340 0.69118
Cl3(1a) 0.80867 0 0.76613
Cl4(1a) 0.99514 0 0.28792
Cl5(2c) 0.27925 0.78910 0.32156
Cl6(2c) 0.04479 0.74224 0.78028
Cl7(2c) 0.56255 0.71025 0.20175
Cl8(2c) 0.80442 0.76849 0.48664
Cl9(2c) 0.81373 0.75307 0.02075
La6(1b) 0.99102 1/2 0.98952
La7(1b) 0.43187 1/2 0.38970
F7(1b) 0.33202 1/2 0.15796
F8(1b) 0.22120 1/2 0.93528
F9(1b) 0.53933 1/2 0.61905
F10(1b) 0.21901 1/2 0.48939
Cl10(1a) 0.51724 0 0.89256

continued on next page
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8 Quasi-binary lanthanum halogenide systems

continued from previous page

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Cl11(1b) 0.79963 1/2 0.75586
Cl12(1b) 0.00612 1/2 0.28586

Cc (9) a = 8.80746 La1(4a) 0.99887 0.71953 0.98613 386.066 -9236.1748
monoclinic b = 6.39364 F1(4a) 0.99720 0.49908 0.23451 62.994
LaFCl2 − Type − 19 c = 7.07211 Cl1(4a) 0.81911 0.06208 0.09718

α = γ = 90 Cl2(4a) 0.17292 0.93748 0.36245
β = 104.2052

Cm (8) a = 8.37186 La1(4b) 0 0.13760 0 483.729 -9236.1830
monoclinic b = 13.93511 La2(2a) 0.56584 0 0.06717 80.525
LaFCl2 − Type − 91 c = 5.14552 F1(2a) 0.85933 0 0.08511

α = γ = 90 F2(2a) 0.86971 0 0.60273
β = 126.3099 F3(2a) 0.19163 0 0.15143

Cl1(4b) 0.22580 0.13092 0.70062
Cl2(4b) 0.75782 0.19796 0.22085
Cl3(4b) 0.54937 0.11500 0.52154

P2 (3) a = 10.80432 La1(2e) 0.63454 0.01076 0.74249 483.198 -37304.1828
monoclinic b = 5.53356 La2(2e) 0.12909 0.02144 0.77597 47.905
La4F3Cl9 − Type − 4 c = 8.08755 F1(1a) 0 0 0

α = γ = 90 F2(2e) 0.25559 0.08478 0.01118
β = 92.1067 Cl1(2e) 0.12588 0.52148 0.76127

Cl2(2e) 0.37601 0.03499 0.63577
Cl3(2e) 0.34835 0.51242 0.32933
Cl4(2e) 0.11826 0.01213 0.36724
Cl5(1c) 1/2 0.78167 0

Pm (6) a = 8.71193 La1(1a) 0.16556 0 0.57702 347.707 -37304.3022
monoclinic b = 4.48553 La2(1a) 0.72254 0 0.94415 73.479
La4F3Cl9 − Type − 3 c = 8.89835 La3(1b) 0.65392 1/2 0.44415

α = γ = 90 La4(1b) 0.12083 1/2 0.07616
β = 90.6014 F1(1a) 0 0 0

F2(1a) 0.54826 0 0.48943
F3(1b) 0.84310 1/2 0.01820
Cl1(1b) 0.61689 1/2 0.77158
Cl2(1b) 0.34118 1/2 0.51148
Cl3(1a) 0.21836 0 0.25187
Cl4(1b) 0.07578 1/2 0.76670
Cl5(1b) 0.98892 1/2 0.39643
Cl6(1a) 0.33158 0 0.87305
Cl7(1b) 0.49993 1/2 0.13922
Cl8(1a) 0.84281 0 0.63193
Cl9(1a) 0.76218 0 0.25195

Cm (8) a = 24.94958 La1(2a) 0.50204 0 0.13445 1004.602 -46899.9871
monoclinic b = 4.51642 La2(2a) 0.37696 0 0.61756 61.580
La5F3Cl12 − Type − 1 c = 8.92048 La3(2a) 0.23205 0 0.10983

α = γ = 90 La4(2a) 0.72976 0 0.60433
β = 91.9502 La5(2a) 0.05324 0 0.77781

F1(2a) 0 0 0
F2(2a) 0.82804 0 0.61086
F3(2a) 0.54515 0 0.89882
Cl1(2a) 0.68605 0 0.30171
Cl2(2a) 0.80434 0 0.13800
Cl3(2a) 0.11639 0 0.05546
Cl4(2a) 0.28303 0 0.80138
Cl5(2a) 0.02066 0 0.32224
Cl6(2a) 0.41170 0 0.32476
Cl7(2a) 0.16030 0 0.63945
Cl8(2a) 0.41624 0 0.91816
Cl9(2a) 0.69668 0 0.91015
Cl10(2a) 0.27464 0 0.43412
Cl11(2a) 0.94726 0 0.64873
Cl12(2a) 0.56025 0 0.58573

P21/m (11) a = 5.87592 La1(2e) 0.54079 1/4 0.35726 390.241 -18831.9521
monoclinic b = 8.69839 La2(2e) 0.99711 1/4 0.87573 64.722
La2FCl5 − Type − 33 c = 7.67138 F1(2e) 0.30769 1/4 0.09100

α = γ = 90 Cl1(4f) 0.80960 0.05786 0.13948
β = 95.5694 Cl2(4f) 0.65724 0.06225 0.67512

Cl3(2e) 0.10943 1/4 0.52017
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8.3 Results and Discussion

In Figs. 8.2 and 8.3, we have shown two examples of predicted structure candidates for
the LaF2Cl and LaFCl2 compounds.

In the case of the LaF2Cl candidate, there is one independent position of La in the unit
cell (for more details see Table 8.1). The La atoms are coordinated by 6 F atoms and
4 Cl atoms. There are two ways the polyhedra are connected, via an edge contain-
ing two atoms of F or Cl, and via a face (containing two atoms of F and one atom of
Cl).

Figure 8.2: The LaF2Cl-Type16 structure candidate. The cell parameters and atom po-
sitions are listed in Table 8.1.

In the case of the LaFCl2 candidate, there are two crystallographically independent posi-
tions of La atoms (for more details see Table 8.1). Both La(1) and La(2) are coordinated
by 3 F atoms and 6 Cl atoms. The polyhedra around La(1) are connected with each other
via Cl- containing edges or F- containing faces. The polyhedra coordinating La(2) are
connected with the polyhedra around La(1) via faces containing two atoms of Cl and one
atom of F or via a simple Cl vertex. The La-Cl and La-F distances in both structures
are in the range of ≈ 2.9 - 3.4 Åand ≈ 2.3 - 2.5 Å, respectively. They are close to the
experimental values observed in crystalline LaCl3 (≈ 2.9 Å) and LaF3 (≈ 2.4 - 2.5 Å).
There is some disagreement, of course, since usually the calculated cell parameters are
different from the experimental ones.

In this context, one should note that the strategy of an energy landscape exploration
via generating super cells as starting point for threshold runs allows us to find at least
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8 Quasi-binary lanthanum halogenide systems

Figure 8.3: The LaFCl2-Type91 structure candidate. The cell parameters and atom po-
sitions are listed in Table 8.1.

some new structure candidates with a large number of formula units3 (and atoms) in the
primitive cell, which could not be obtained during a standard simulated annealing run.
Of course, this does not exclude the possibility, that some important local minima have
been missed, but nevertheless this approach allows us to investigate the energy landscape
in more detail.

Other quasi-binary lanthanum halide systems

Figures 8.4 - 8.7 depict the information about the low-temperature region of the remain-
ing five phase diagrams derived from the landscape exploration and ab initio energy
minima studies. As well as in case of the LaF3-LaCl3 system, the top part of a fig-
ure indicates by a solid line, at which composition new possible stable compounds are
expected, together with the experimentally known binary compounds; metastable com-
pounds correspond to dashed lines. The bottom part of the figures shows the convex
hulls for the quasi-binary lanthanum halide system at T = 0 K, obtained in the present
work.

All modifications present as corners on the convex hull for the three ab initio methods
can be considered as serious candidates for thermodynamically stable phases at least at 0
K, being stable with respect to the binary compounds and neighboring phases. Thus, in

3We performed calculations up to 8 formula units.
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8.3 Results and Discussion

the case of the LaF3-LaBr3 system promising structure candidates exist for compositions
2:1 and 1:2, and in the case of the LaBr3-LaCl3 system for compositions: 3:1, 1:1 and
1:3, respectively. Similarly in the LaBr3-LaI3 and LaCl3-LaI3 systems thermodynamically
stable structure candidates lie on the convex hull for compositions 3:1, 2:1, 1:2 and 1:3.
Here, one should mention that in the case of the Hartree-Fock calculations the compounds
with compositions 1:1 also lie on the convex hull for both these systems. However, since
DFT calculations with both the B3LYP and the LDA-VBH and also three additional
functionals (to clarify this issue, we performed additional calculations for all modifications
in all three systems containing iodide with three other functionals: BECKE-PWGGA,
LDA-LYP and LDA-PWGGA) do not favour the candidates with this composition, we
suggest that the 1:1 compounds are not stable but only metastable. Finally, in the case of
the LaF3-LaI3 system, stable structures with compositions 2:1, 1:2 and 1:3 should exist.
We note that for all structure candidates the equilibrium volume per formula unit was
the largest (smallest) when calculated using the HF approximation (DFT with the LDA-
VBH functional), in agreement with the general expectations when using those ab initio
methods.

As we mentioned earlier, for some compositions we have found that the ranking of the
structure candidates as a function of energy depended on the ab initio methods used,
similar to the binary lanthanum halides. In some of these instances, we reach the limit
of the accuracy of the ab initio methods, and thus without any other facts as guidance,
it is not possible to choose between two candidates. However, these disagreements in the
ranking are to a certain degree self-consistent: Whenever two structures yielded a dif-
ferent ranking, the HF-method always preferred the modification with the lower density
and the DFT-calculation the one with higher density, respectively. Thus, in the tables
8.1 - 8.6 we listed for every composition in all systems under investigation the hypo-
thetical modifications with the lowest energy according to at least one of the ab initio
methods4.

In principle, we cannot exclude the possibility that there might exist some additional
relevant structure candidates, which our global explorations have failed to identify so far.
Thus, one should consider the present results as a starting point for further investigations.
From a theoretical point of view, the technique suggested in the previous section can be
one of these steps. In particular for more complicated compositions, which have not been
analyzed, stable modifications might exist that exhibit more atoms in the primitive unit
cell than can be employed during the usual global optimization runs due to limits in
computer time. But nevertheless, we can conclude that all the mixed lanthanum halides
should exhibit at least some ordered crystalline phases at low temperatures, and that no
solid solution-like phases are thermodynamically stable in the low-temperature region of
the corresponding phase diagrams.

4The numbering of the modifications (e.g. La4F9Cl3-Type10) in the tables and the figure captions refers
to the order of appearance of local minimum structures in a given chemical system for a particular
composition during the global energy landscape explorations.
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Figure 8.4: Top: Low-temperature phase diagram for the LaF3-LaBr3 system: solid lines
and dashed lines indicate stable and metastable phases, respectively. Bot-
tom: The ground state convex hull for the LaF3-LaBr3 system; the enthalpies
of formation at 0 K are given with respect to the binary compounds. For
notation c.f. Figure 8.1. Composition 3:1: circles =̂ La4F9Br3-Type2; 2:1: cir-
cles =̂ LaF2Br-Type17; 1:1: circles =̂ La2F3Br3-Type21, squares =̂ La2F3Br3-
Type35; 1:2: circles =̂ LaFBr2-Type28, squares =̂ LaFBr2-Type69; 1:3: circles
=̂ La4F3Br9-Type28, squares =̂ La4F3Br9-Type6 (see Table 8.2 for more de-
tail).
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Figure 8.5: Top: Low-temperature phase diagram for the LaF3-LaI3 system: solid lines
and dashed lines indicate stable and metastable phases, respectively. Bottom:
The ground state convex hull for the LaF3-LaI3 system; the enthalpies of
formation at 0 K are given with respect to the binary compounds. For notation
c.f. Figure 8.1. Composition 3:1: circles =̂ La4F9I3-Type30; 2:1: circles =̂
LaF2I-Type13; 1:1: circles =̂ La2F3I3-Type18, squares =̂ La2F3I3-Type29; 1:2:
circles =̂ LaFI2-Type63; 1:3: circles =̂ La4F3I9-Type7, squares =̂ La4F3I9-
Type10 (see Table 8.3 for more detail).
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Figure 8.6: Top: Low-temperature phase diagram for the LaCl3-LaI3 system: solid lines
and dashed lines indicate stable and metastable phases, respectively. Bottom:
The ground state convex hull for the LaCl3-LaI3 system; the enthalpies of
formation at 0 K are given with respect to the binary compounds. For notation
c.f. Figure 8.1. Composition 3:1: circles =̂ La4Cl9I3-Type4; 2:1: circles LaCl2I-
Type62 =̂; 1:1: circles =̂ La2Cl3I3-Type3, squares =̂ La2Cl3I3-Type33; 1:2:
circles =̂ LaClI2-Type50; 1:3: circles =̂ La4Cl3I9-Type9 (see Table 8.5 for
more detail).
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Figure 8.7: Top: Low-temperature phase diagram for the LaBr3-LaI3 system: solid lines
and dashed lines indicate stable and metastable phases, respectively. Bottom:
The ground state convex hull for the LaBr3-LaI3 system; the enthalpies of
formation at 0 K are given with respect to the binary compounds. For no-
tation c.f. Figure 8.1. Composition 3:1: circles =̂ La4Br9I3-Type6, squares =̂
La4Br9I3-Type2; 2:1: circles =̂ LaBr2I-Type18, squares =̂ LaBr2I-Type67; 1:1:
circles =̂ La2Br3I3-Type1, squares =̂ La2Br3I3-Type37; 1:2: circles =̂ LaBrI2-
Type70, squares =̂ LaBrI2-Type67; 1:3: circles =̂ La4Br3I9-Type17, squares =̂
La4Br3I9-Type13 (see Table 8.6 for more detail).
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Table 8.2: Structure parameters, bulk moduli, minimum energies (in hartree / formula
unit) at 0 K for ordered crystalline structure candidates for the LaF3-LaBr3

system after local optimization on DFT-LDA-VBH level.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Pm (6) a = 7.26044 La1(1b) 0.11663 1/2 0.24636 304.041 -33809.3828
monoclinic b = 4.09183 La2(1b) 0.80352 1/2 0.74532 84.518
La4F9Br3 − Type − 2 c = 10.77039 La3(1a) 0.60561 0 0.21982

α = γ = 90 La4(1a) 0.31746 0 0.77178
β = 108.156 F1(1a) 0.51038 0 0.99188

F2(1b) 0.15827 1/2 0.81205
F3(1b) 0.76727 1/2 0.17216
F4(1a) 0.31787 0 0.29070
F5(1b) 0.52770 1/2 0.82512
F6(1a) 0.96408 0 0.29386
F7(1b) 0.40251 1/2 0.17265
F8(1a) 0.96391 0 0.69747
F9(1a) 0.61577 0 0.70950
Br1(1a) 0 0 0
Br2(1b) 0.25975 1/2 0.54130
Br3(1b) 0.71829 1/2 0.45150

Pmmn (59) a = 6.02660 La1(2a) 1/4 1/4 0.34166 156.216 -8430.8116
orthorhombic b = 4.14826 F1(4f) 0.54582 1/4 0.60105 82.540
LaF2Br − Type − 17 c = 6.24867 Br1(2b) 1/4 3/4 0.90382

α = β = γ = 90
Pmn21 (31) a = 5.82107 La1(2a) 0 0.73306 0 485.064 -16775.3627
orthorhombic b = 10.45040 La2(2a) 0 0.29706 0.04779 47.741
La2F3Br3 − Type − 21 c = 7.97377 F1(4b) 0.25320 0.27625 0.27128

α = β = γ = 90 F2(2a) 0 0.51427 0.00643
Br1(2a) 0 0.01317 0.04831
Br2(2a) 0 0.25238 0.64607
Br3(2a) 0 0.64794 0.40567

Pm (6) a = 6.37413 La1(1a) 0 0 0 357.333 -16775.4202
monoclinic b = 4.33414 La2(1a) 0.95225 0 0.55789 72.728
La2F3Br3 − Type − 35 c = 13.00228 La3(1b) 0.63457 1/2 0.77341

α = γ = 90 La4(1b) 0.39546 1/2 0.21587
β = 95.8533 F1(1b) 0.05948 1/2 0.10227

F2(1a) 0.27345 0 0.13945
F3(1b) 0.86841 1/2 0.63832
F4(1a) 0.70184 0 0.86548
F5(1b) 0.91539 1/2 0.91423
F6(1a) 0.67151 0 0.67396
Br1(1a) 0.73834 0 0.17965
Br2(1b) 0.73883 1/2 0.40769
Br3(1b) 0.44225 1/2 0.98201
Br4(1a) 0.22798 0 0.36442
Br5(1a) 0.16203 0 0.78385
Br6(1b) 0.31562 1/2 0.58451

Cc (9) a = 9.22772 La1(4a) 0.00258 0.81552 0.01992 453.011 -8344.6060
monoclinic b = 6.48750 F1(4a) 0.00275 0.99807 0.27130 51.448
LaFBr2 − Type − 28 c = 7.70515 Br1(4a) 0.18204 0.54514 0.40984

α = γ = 90 Br2(4a) 0.82820 0.54575 0.65619
β = 100.8573

P21 (4) a = 5.90589 La1(2a) 0.62804 0 0.60660 384.336 -8344.6102
monoclinic b = 6.91307 La2(2a) 0.31256 0.50249 0.82466 65.835
LaFBr2 − Type − 69 c = 9.44334 F1(2a) 0.55944 0.18063 0.38669

α = γ = 90 F2(2a) 0.42698 0.31686 0.61417
β = 94.5499 Br1(2a) 0.73024 0.24773 0.88366

Br2(2a) 0.27727 0.25396 0.10276
Br3(2a) 0.94874 0.51870 0.59019
Br4(2a) 0.20260 0.98858 0.76905

Amm2 (38) a = 5.98538 La1(4d) 0 0.12924 0.56609 1396.866 -33292.0932
orthorhombic b = 22.39540 La2(4d) 0 0.10433 0.00163 30.500
La4F3Br9 − Type − 14 c = 10.42087 F1(2a) 0 0 0

α = β = γ = 90 F2(4d) 0 0.86394 0.78910
Br1(4e) 1/2 0.12859 0.57565
Br2(4d) 0 0.90383 0.29054
Br3(4d) 0 0.23804 0.04701
Br4(2a) 0 0 0.65013
Br5(4e) 1/2 0.90150 0.99352

Pm (6) a = 9.93207 La1(1b) 0.46709 1/2 0.76564 434.786 -33292.1865
monoclinic b = 4.46754 La2(1a) 0.97239 0 0.74223 56.033
La4F3Br9 − Type − 6 c = 9.80293 La3(1a) 0.47953 0 0.25128

α = γ = 90 La4(1b) 0.98514 1/2 0.14489
β = 91.6897 F1(1a) 0 0 0

F2(1b) 0.05797 1/2 0.78305
F3(1b) 0.54028 1/2 0.18754
Br1(1a) 0.27011 0 0.69815
Br2(1a) 0.66518 0 0.63051
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Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Br3(1a) 0.16835 0 0.28415
Br4(1b) 0.79325 1/2 0.89668
Br5(1b) 0.42835 1/2 0.46019
Br6(1b) 0.26070 1/2 0.01991
Br7(1b) 0.94868 1/2 0.49676
Br8(1a) 0.78807 0 0.23042
Br9(1a) 0.52494 0 0.95666

Table 8.3: Structure parameters, bulk moduli, minimum energies (in hartree / formula
unit) at 0 K for ordered crystalline structure candidates for the LaF3-LaI3
system after local optimization on DFT-LDA-VBH level.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Amm2 (38) a = 4.19939 La1(4d) 0 0.28880 0.88121 650.222 -33804.0560
orthorhombic b = 11.16907 La2(2b) 1/2 0 0.18906 79.031
La4F9I3 − Type − 30 c = 13.86304 La3(2b) 1/2 0 0.76196

α = β = γ = 90 F1(4e) 1/2 0.38049 0.83174
F2(4d) 0 0.88620 0.77243
F3(2a) 0 0 0.41620
F4(4d) 0 0.88726 0.22339
F5(4e) 1/2 0.16851 0.86929
I1(2a) 0 0 0
I2(4e) 1/2 0.30777 0.08482

Pmmn (59) a = 6.49124 La1(2a) 1/4 1/4 0.12994 169.305 -8429.0357
orthorhombic b = 4.18578 F1(4f) 0.55529 1/4 0.90048 73.556
LaF2I − Type − 13 c = 6.23112 I1(2b) 1/4 3/4 0.60363

α = β = γ = 90
P21/c (14) a = 7.07639 La1(4e) 0.73648 0.67267 0.33622 508.539 -16770.0354
monoclinic b = 6.82338 F1(4e) 0.50024 0.57263 0.77885 44.849
La2F3I3 − Type − 18 c = 12.01868 F2(2a) 0 0 0

α = γ = 90 I1(4e) 0.09087 0.01371 0.36386
β = 118.8001 I2(2b) 1/2 0 0

P21 (4) a = 7.07678 La1(2a) 0.64755 0 0.90277 476.067 -16770.0386
monoclinic b = 6.75310 La2(2a) 0.14409 0.92952 0.40654 49.285
La2F3I3 − Type − 29 c = 10.12532 F1(2a) 0.74567 0.21318 0.74478

α = γ = 90 F2(2a) 0 0.22880 0.44983
β = 100.3172 F3(2a) 0.53255 0.23383 0.04083

I1(2a) 0.50047 0.22369 0.38579
I2(2a) 0.97566 0.66934 0.88697
I3(2a) 0.24440 0.19963 0.75041

P2/c (15) a = 9.87443 La1(4e) 0 0.67263 1/4 534.789 -8341.0406
monoclinic b = 6.73669 F1(4b) 0 1/2 0 43.551
LaFI2 − Type − 63 c = 8.17135 I1(8f) 0.81333 0.01826 0.37274

α = γ = 90
β = 100.3104

Amm2 (38) a = 6.40948 La1(4d) 0 0.36810 0.21391 1648.764 -33276.0639
orthorhombic b = 23.82931 La2(4d) 0 0.59770 0.79917 25.590
La4F3I9 − Type − 7 c = 10.79505 F1(4d) 0 0.63142 0

α = β = γ = 90 F2(2a) 0 0 0.29188
I1(4d) 0 0.59531 0.49798
I2(4e) 1/2 0.59441 0.80124
I3(2a) 0 0 0.63092
I4(4d) 0 0.26425 0.75756
I5(4e) 1/2 0.63218 0.20705

Cm (8) a = 11.11218 La1(4b) 0.14085 0.74605 0.47555 1158.203 -33276.1512
monoclinic b = 11.46707 La2(2a) 0.80256 0 0.92062 40.264
La4F3I9 − Type − 10 c = 9.09164 La3(2a) 0.19343 0 0.10552

α = γ = 90 F1(2a) 0 0 0
β = 91.2866 F2(4b) 0.12365 0.88188 0.29186

I1(4b) 0.89733 0.82428 0.65039
I2(2a) 0.75274 0 0.27028
I3(2a) 0.58812 0 0.65129
I4(4b) 0.66567 0.75374 0.95658
I5(4b) 0.91041 0.67062 0.26780
I6(2a) 0.21401 0 0.62368

Table 8.4: Structure parameters, bulk moduli, minimum energies (in hartree / formula
unit) at 0 K for ordered crystalline structure candidates for the LaBr3-LaCl3
system after local optimization on DFT-LDA-VBH level.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Pm (6) a = 6.52089 La1(1a) 0.17314 0 0.32405 491.639 -34371.0104
monoclinic b = 9.43690 La2(1b) 0.10303 1/2 0.59011 48.594
La4Br9Cl3 − Type − 3 c = 7.99019 La3(1a) 0.62216 0 0.82164

α = γ = 90 La4(1b) 0.67638 1/2 0.08447
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Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

β = 90.8449 Br1(2c) 0.30512 0.81460 0.62800
Br2(2c) 0.80923 0.31103 0.79161
Br3(2c) 0.98600 0.31151 0.28480
Br4(2c) 0.48268 0.18664 0.12327
Br5(1b) 0.51213 1/2 0.42700
Cl1(1a) 0 0 0
Cl2(1a) 0.79340 0 0.49792
Cl3(1b) 0.29233 1/2 0.91161

Pm (6) a = 10.76111 La1(1b) 0.07361 1/2 0.18020 463.163 -34371.0194
monoclinic b = 4.75842 La2(1a) 0.57776 0 0.19165 52.279
La4Br9Cl3 − Type − 6 c = 9.04515 La3(1b) 0.60466 1/2 0.68632

α = γ = 90 La4(1a) 0.10013 0 0.69837
β = 90.1597 Br1(1b) 0.48429 1/2 0.99530

Br2(1a) 0.27785 0 0.18775
Br3(1b) 0.89388 1/2 0.68966
Br4(1a) 0.98142 0 0.37597
Br5(1a) 0.69263 0 0.87994
Br6(1a) 0.39490 0 0.69313
Br7(1b) 0.18445 1/2 0.50250
Br8(1b) 0.49370 1/2 0.37875
Br9(1b) 0.77987 1/2 0.18356
Cl1(1a) 0 0 0
Cl2(1a) 0.67852 0 0.50473
Cl3(1b) 0.17345 1/2 0.87861

P4/mmm (123) a = 6.00141 La1(1a) 0 0 0 203.817 -8704.1602
tetragonal c = 5.65892 Br1(2f) 0 1/2 0 25.727
LaBr2Cl − Type − 21 α = β = γ = 90 Cl1(1b) 0 0 1/2
Cmc21 (36) a = 4.74211 La1(4a) 0 0.23423 0 456.007 -8704.1993
orthorhombic b = 10.90598 Br1(4a) 0 0.94155 0.00056 53.091
LaBr2Cl − Type − 28 c = 8.81728 Br2(4a) 0 0.64768 0.19110

α = β = γ = 90 Cl1(4a) 0 0.66024 0.80982
P21 (4) a = 6.02229 La1(2a) 0.68599 0 0.99997 441.249 -17854.2028
monoclinic b = 8.26474 La2(2a) 0.17671 0.75643 0.50547 55.521
La2Br3Cl3 − Type − 30 c = 8.86574 Br1(2a) 0.13948 0.15832 0.00222

α = γ = 90 Br2(2a) 0.37380 0.80047 0.19154
β = 90.5776 Br3(2a) 0.35288 0.10115 0.50060

Cl1(2a) 0.87522 0.96386 0.31464
Cl2(2a) 0.88020 0.95746 0.68885
Cl3(2a) 0.38091 0.79659 0.80812

P2/m (10) a = 5.64209 La1(1a) 0 0 0 191.269 -9149.9432
monoclinic b = 5.65528 Br1(1c) 0 0 1/2 27.971
LaBrCl2 − Type − 18 c = 6.00479 Cl1(1b) 0 1/2 0

α = γ = 90 Cl2(1d) 1/2 0 0
β = 93.3628

Cmcm (63) a = 4.65591 La1(4c) 0 0.22851 1/4 426.288 -9149.9909
orthorhombic b = 10.67912 Br1(4c) 0 0.94178 1/4 57.718
LaBrCl2 − Type − 14 c = 8.57361 Cl1(8f) 0 0.65582 0.44220

α = β = γ = 90
Pm (6) a = 8.14950 La1(1a) 0.15090 0 0.47020 418.672 -37045.7690
monoclinic b = 8.71182 La2(1a) 0.65369 0 0.81734 59.745
La4Br3Cl9 − Type − 1 c = 5.89777 La3(1b) 0.89982 1/2 0.33266

α = γ = 90 La4(1b) 0.39274 1/2 0.95970
β = 90.9011 Br1(1a) 0 0 0

Br2(1b) 0.54966 1/2 0.49147
Br3(1a) 0.50052 0 0.29052
Cl1(2c) 0.19091 0.68835 0.26373
Cl2(2c) 0.85821 0.80856 0.52122
Cl3(2c) 0.69906 0.31189 0.01488
Cl4(1b) 0.06130 1/2 0.77813
Cl5(2c) 0.35577 0.80918 0.76816

Table 8.5: Structure parameters, bulk moduli, minimum energies (in hartree / formula
unit) at 0 K for ordered crystalline structure candidates for the LaCl3-LaI3
system after local optimization on DFT-LDA-VBH level.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Pm (6) a = 8.51816 La1(1b) 0.09807 1/2 0.32002 441.176 -37040.4181
monoclinic b = 8.52080 La2(1b) 0.59589 1/2 0.01420 56.451
La4Cl9I3 − Type − 4 c = 6.07866 La3(1a) 0.83592 0 0.49980

α = γ = 90 La4(1a) 0.35451 0 0.79645
β = 90.5815 Cl1(2c) 0.79860 0.30689 0.30352

Cl2(2c) 0.63897 0.81086 0.80357
Cl3(2c) 0.31379 0.30166 0.03010
Cl4(2c) 0.14239 0.19144 0.51360
Cl5(1a) 0.50952 0 0.34721
I1(1a) 0 0 0
I2(1b) 0.94930 1/2 0.82012
I3(1b) 0.44462 1/2 0.51812

Pmna (62) a = 8.59025 La1(4c) 0.37688 1/4 0.09759 450.831 -9148.2169
orthorhombic b = 8.53386 Cl1(8d) 0.66602 0.05834 0.10744 55.184
LaCl2I − Type − 62 c = 6.14983 I1(4c) 0.02738 1/4 0.90564

α = β = γ = 90
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Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Pmmm (47) a = 6.51460 La1(2m) 0 0.73192 0 442.279 -17848.7567
orthorhombic b = 12.08639 Cl1(2n) 0 0.72929 1/2 23.409
La2Cl3I3 − Type − 3 c = 5.61710 Cl2(1e) 0 1/2 0

α = β = γ = 90 I1(1a) 0 0 0
I2(2o) 1/2 0.72613 0

P21/m (11) a = 8.58756 La1(2e) 0.38267 1/4 0.05324 534.531 -17848.8288
monoclinic b = 9.62731 La2(2e) 0.86467 1/4 0.44876 44.205
La2Cl3I3 − Type − 33 c = 6.52787 Cl1(2e) 0.11214 1/4 0.77664

α = γ = 90 Cl2(4f) 0.34488 0.92242 0.83841
β = 97.93 I1(4f) 0.85613 0.95102 0.71134

I2(2e) 0.52511 1/4 0.61745
Pccn (56) a = 7.09230 La1(4c) 1/4 1/4 0.90435 602.654 -8700.6314
orthorhombic b = 7.53198 Cl1(4a) 0 0 0 37.186
LaClI2 − Type − 50 c = 11.28163 I1(8e) 0.03148 0.42821 0.16711

α = β = γ = 90
C2 (5) a = 10.48511 La1(4c) 0.74949 0.24793 0.59878 1236.799 -34354.9457
monoclinic b = 10.22189 La2(4c) 0.26556 0.25074 0.89033 36.015
La4Cl3I9 − Type − 9 c = 11.53971 Cl1(4c) 0.71415 0 0.49575

α = γ = 90 Cl2(2a) 0 0.78236 0
β = 90.0421 I1(4c) 0.69981 0.04612 0.82399

I2(4c) 0.22170 0.44371 0.16678
I3(2a) 0 0.17830 0
I4(4c) 0.55278 0.28745 0.33622
I5(4c) 0.94604 0.21832 0.33953

Table 8.6: Structure parameters, bulk moduli, minimum energies (in hartree / formula
unit) at 0 K for ordered crystalline structure candidates for the LaBr3-LaI3
system after local optimization on DFT-LDA-VBH level.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

P2/m (10) a = 13.65901 La1(2m) 0.76373 0 0.62192 919.475 -33028.1568
monoclinic b = 6.00972 La2(2m) 0.25372 0 0.86652 22.477
La4Br9I3 − Type − 6 c = 12.49627 Br1(2m) 0.99157 0 0.26862

α = γ = 90 Br2(2n) 0.76993 1/2 0.62349
β = 116.3154 Br3(2m) 0.74266 0 0.37198

Br4(2n) 0.24959 1/2 0.86252
Br5(1d) 1/2 0 0
I1(2m) 0.76372 0 0.88236
I2(1g) 1/2 0 1/2

Pm (6) a = 8.56977 La1(1b) 0.40503 1/2 0.03113 520.771 -33028.3420
monoclinic b = 9.39647 La2(1b) 0.90320 1/2 0.68687 46.393
La4Br9I3 − Type − 2 c = 6.46881 La3(1a) 0.64973 0 0.16290

α = γ = 90 La4(1a) 0.16158 0 0.54513
β = 91.2992 Br1(2c) 0.85338 0.81408 0.48049

Br2(2c) 0.20026 0.68883 0.74024
Br3(2c) 0.36358 0.18453 0.24813
Br4(2c) 0.69191 0.30891 0.97236
Br5(1a) 0.48296 0 0.74125
I1(1a) 0 0 0
I2(1b) 0.05661 1/2 0.21975
I3(1b) 0.55854 1/2 0.49106

P4/mmm (123) a = 6.00520 La1(1a) 0 0 0 234.776 -8256.5937
tetragonal c = 6.51025 Br1(2f) 0 1/2 0 21.987
LaBr2I − Type − 18 α = β = γ = 90 I1(1b) 0 0 1/2
Pmna (62) a = 8.69103 La1(4c) 0.12405 1/4 0.07796 522.780 -8256.6439
orthorhombic b = 9.33154 Br1(8d) 0.16894 0.93858 0.87431 46.554
LaBr2I − Type − 67 c = 6.44606 I1(4c) 0.96924 1/4 0.60948

α = β = γ = 90
Pmmm (47) a = 6.00161 La1(2q) 0 0 0.74000 486.904 -16511.4034
orthorhombic b = 6.50329 Br1(1c) 0 0 1/2 20.997
La2Br3I3 − Type − 1 c = 12.47506 Br2(2s) 1/2 0 0.26160

α = β = γ = 90 I1(2r) 0 1/2 0.73636
I2(1a) 0 0 0

Pc (7) a = 7.05161 La1(2a) 0 0.87917 0 599.842 -16511.4658
monoclinic b = 8.25471 La2(2a) 0.55002 0.38529 0.99939 37.806
La2Br3I3 − Type − 37 c = 12.40210 Br1(2a) 0.36821 0.30392 0.51007

α = γ = 90 Br2(2a) 0.67015 0.40766 0.33047
β = 123.8081 Br3(2a) 0.19840 0.80163 0.50554

I1(2a) 0.03789 0.42263 0.68995
I2(2a) 0.52158 0.91513 0.32044
I3(2a) 0.89315 0.90969 0.69388

P42/ncm (138) a = 7.49600 La1(4e) 1/4 1/4 0.38754 662.694 -8254.8411
tetragonal c = 11.79379 Br1(4d) 0 0 0 33.700
LaBrI2 − Type − 70 α = β = γ = 90 I1(8i) 0.04897 0.04897 0.66770
Pmna (62) a = 8.75833 La1(4c) 0.13285 1/4 0.48102 616.453 -8254.8481
orthorhombic b = 9.96216 Br1(4c) 0.43966 1/4 0.67578 37.605
LaBrI2 − Type − 67 c = 7.06521 I1(8d) 0.83829 0.06478 0.31597

α = β = γ = 90
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Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus
Type α, β, γ [◦] atom x y z [GPa]

Amm2 (38) a = 6.49171 La1(4d) 0 0.88191 0.98146 2048.711 -33017.4528
orthorhombic b = 25.36203 La2(4d) 0 0.62683 0.96167 19.554
La4Br3I9 − Type − 27 c = 12.44335 Br1(2a) 0 0 0

α = β = γ = 90 Br2(4d) 0 0.62827 0.72169
I1(4d) 0 0.11499 0.72222
I2(4e) 1/2 0.11556 0.98718
I3(4e) 1/2 0.62861 0.96497
I4(4d) 0 0.74583 0.47674
I5(2a) 0 0 0.44607

Pm (6) a = 7.18885 La1(1a) 0.34217 0 0.19372 630.008 -33017.5918
monoclinic b = 10.47912 La2(1b) 0.29391 1/2 0.93785 35.803
La4Br3I9 − Type − 13 c = 8.36435 La3(1a) 0.80243 0 0.69260

α = γ = 90 La4(1b) 0.85240 1/2 0.42328
β = 91.0335 Br1(1a) 0 0 0

Br2(1a) 0.14769 0 0.50174
Br3(1b) 0.64709 1/2 0.11950
I1(2c) 0.50091 0.81648 0.89976
I2(2c) 0.13824 0.31520 0.22304
I3(2c) 0.99388 0.68533 0.72820
I4(2c) 0.64449 0.18162 0.39250
I5(1b) 0.47062 1/2 0.60087
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8.4 Conclusion

8.4 Conclusion

To summarize, we have found, that the subsolidus regions in the quasi-binary lanthanum
halide systems exhibit ordered crystalline phases and no solid solution-like phases appear
to be thermodynamically stable. In each system, we found a number of compositions,
where modifications exist that can be considered as thermodynamically stable with respect
to the binaries and neighboring phases.
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9 Summary

From the point of view of thermodynamic, materials are found as thermodynamically
stable (equilibrium) or metastable phases. These can be characterized via functions of
state that depend uniquely on the given state variables such as temperature, pressure
and composition. The graphical representations of all thermodynamically stable phases
that exist or co-exist at equilibrium is called the phase diagram of the chemical system as
function of the thermodynamic variables.

Nowadays, phase diagrams continue to play a key role in material science and engineering.
Usually, the phase diagrams are studied experimentally. However, in many instances,
it is both very time-consuming and difficult to determine the full phase diagram from
experiment only. This applies especially to the low-temperature parts, since the time
scales on which equilibration to the thermodynamically stable phase takes place often
exceed the time available for the experiment. Nevertheless, e.g. information about the
existence of a thermodynamically stable crystalline phase that will form by very slow
transformation processes from, say, a solid solution-like phase, is crucial for deciding
whether this compound is suitable for practical applications. Recent years have seen
a large increase in the number of theoretical studies to support and complement the
experiments in deriving phase diagrams.

The goal of this thesis has been to develop a computational strategy to analyze and
predict phase diagrams, with the main focus on the low-temperature parts. The crucial
new aspect is the ability to predict, whether a solid solution or crystalline like compounds
are present, without recourse to experimental data. The starting point of this method
is the global exploration of the energy landscape of a given chemical system for several
compositions and the subsequent analysis of thousands of crystal structures on the ab
initio and thermodynamic level.

The first step of a general modular approach developed in this work is a global optimization
on the enthalpy landscape using an empirical Coulomb plus Lennard-Jones potential for
the potential energy contribution to the enthalpy. This is followed by a local optimization
of all obtained structure candidates on the ab initio level (using several ab initio methods:
Hartree-Fock plus at least one DFT method). The candidates with the lowest energy are
selected and their enthalpies of formation are calculated. Of special importance is whether
we observe a number of structurally related candidates with approximately same energy,
where (part of the) atoms are randomly distributed over one of the sublattices of the
structure. In this case we deal with a so-called structure family, and we expect a solid
solution to occur at low temperatures. In contrast, when the structure candidates exhibit
big differences in energy and belong to different structure types, then we expect ordered
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9 Summary

crystalline compounds to be present which can be thermodynamically stable, metastable
or unstable. Finally, after this analysis the low-temperature parts of the phase diagrams
are constructed.

The main part of the thesis has dealt with the application of the suggested approach to
numerous chemical systems. The following chemical systems have been selected to be
studied: quasi-binary alkali metal halides, quasi-binary lanthanum halides, quasi-binary
and quasi-ternary semiconductors AIIIBV .

In the case of the quasi-binary alkali metal halides, 20 systems were studied. For 14
of these systems (NaCl-LiCl, NaBr-LiBr, NaCl-KCl, KBr-NaBr, KCl-RbCl, KBr-RbBr,
MBr-MI (M = Li, Na, K, Rb or Cs) and MBr-MCl (M = Li, Na or K)) it was predicted that
solid solutions should be present as the thermodynamically stable phase. Based on the
obtained data for the enthalpies of formation the locations of the corresponding miscibility
gaps were calculated, and a good agreement with experimental data (where available) was
found. The remaining 6 systems (CsX-LiX (X = F, Cl, Br or I) and LiX-RbX (X = Cl
or Br)) were predicted to contain ordered crystalline phases, again in agreement with
experimental observations. Besides the experimentally known phases, several new ones
were predicted as possible candidates for synthesis.

The low temperature parts of the phase diagrams of the quasi-binary lanthanum halides
(LaX3-LaY3, (X, Y = F, Cl, Br or I)) have not been investigated experimentally, up to
now. The exploration of the energy landscape and the further analysis of the various
structure candidates found have shown that the low-temperature parts of all six systems
should exhibit ordered crystalline phases. Several possible candidates were proposed as
thermodynamically stable modifications.

In a third project, the low temperature part of the phase diagrams of the quasi-ternary
semiconductors AlSb-GaSb-InSb and AlAs-GaAs-InAs were investigated. In the liter-
ature, the liquid/solid equilibria for the quasi-binary semiconductors (AA’)IIIBV have
been well studied, but no investigations of the low-temperature regions of the phase di-
agrams have been reported. In this thesis, the energy landscapes of the quasi-binary
semiconductor MM’As and MM’Sb (M, M’ = Al, Ga or In) plus the two quasi-ternary
systems AlSb-GaSb-InSb and AlAs-GaAs-InAs were explored globally. The analysis of
the computed data have shown that a solid solution-like phase should be thermodynami-
cally stable in all systems. Based on these data the locations of the miscibility gaps were
calculated and the low-temperature parts of the six quasi-binary and two quasi-ternary
phase diagrams were predicted.
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10 Zusammenfassung

Grundsätzlich können im Sinne der chemischen Thermodynamik Stoffe im Gleichgewicht
oder im Ungleichgewicht (metastabil) vorliegen. Die Gleichgewichtszustände sind eindeu-
tig durch den Satz der jeweils eingestellten Zustandsvariablen festgelegt und durch die
Zustandsfunktionen beschrieben. Eine Darstellung des Phasenbestandes im Gleichgewicht
in der Abhängigkeit von den Zustandsvariablen wird als Phasen- oder Zustandsdiagramm
bezeichnet.

Phasendiagramme spielen eine Schlüsselrolle in den Material- und Ingenieurwissenschaf-
ten. Traditionell werden Phasendiagrammen experimentell bestimmt. Dieses ist in aller
Regel ein zeitaufwendiges und auch oft schwieriges Unterfangen. Letzteres trifft vor allem
auf den Bereich niedriger Temperaturen zu, da sich das thermodynamische Gleichgewicht
hier nur sehr langsam einstellt und die für das Experiment zur Verfügung stehende Zeit
eher nicht ausreicht. Gleichwohl sind auch solche Zustände von Bedeutung, und Informa-
tionen über eine thermodynamisch stabile kristalline Phase, die durch einen sehr langsa-
men Transformationsprozess aus einem Mischkristall entsteht, sind sehr wichtig bei der
Entscheidung, ob diese Phase für praktische Anwendungen brauchbar ist oder nicht. In den
letzten Jahren nahm die Zahl der theoretischen Arbeiten, die zum Ziel hatten, die experi-
mentell bestimmten Phasendiagramme zu komplettieren, stark zu.

Das Ziel dieser Dissertation ist es, eine computergestützte Strategie zu entwickeln, mit der
Phasendiagramme berechnet werden können, wobei die jeweiligen Niedertemperaturberei-
che besonders im Fokus stehen. Hierbei kann es beispielweise darum gehen vorherzusagen,
ob ein Mischkristall oder ausgeordnete kristalline Verbindungen vorliegen.

Der Ausgangspunkt des hier entwickelten Verfahrens ist eine Untersuchung der globa-
len Energielandschaft des zu charakterisierenden chemischen Systems für verschiedene
Zusammensetzungen. Anschließend folgt eine Nachoptimierung der gefundenen existie-
renden Strukturen (einige Tausende) auf ab initio Ebene sowie deren thermodynamischen
Analyse.

Der allgemeine modulare Ansatz, wie er im Rahmen dieser Arbeit entwickelt wird, umfasst
im ersten Schritt die globale Suche nach Minima der Enthalpielandschaft eines chemischen
Systems. Dabei wird ein empirisches Potential, das einen Coulomb- und einen Lennard-
Jones-Term umfasst, für die Berechnung des Beitrags der potentiellen Energie zur Enthal-
phie verwendet. Danach erfolgt auf ab initio Ebene eine lokale Optimierung aller beobach-
teter Stukturkandidaten, wobei mehrere ab initio Verfahren, zum Beispiel Hartree-Fock
und mindestens eine DFT Methode, zur Anwendung kommen.
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10 Zusammenfassung

Die Strukturen mit der niedrigsten Energie werden ausgewählt und deren Bildungsenthal-
phien berechnet. Von besonderer Wichtigkeit ist, ob eine Anzahl strukturell verwandter
Kandidaten mit der ungefähr gleichen Energie beobachtet werden, bei denen ein Teil
der Atome in vielfältiger Weise über ein Untergitter der gleichen Basisstruktur verteilt
sind. In diesen Fällen haben wir es mit einer sogenannten Strukturfamilie zu tun, und
wir erwarten einen Mischkristall bei niedrigen Temperaturen. Sind die Kandidaten jedoch
unterschiedlicher Struktur und weisen sie einen großen Energieunterschied auf, liegen in-
dividuelle kristalline Verbindungen vor, welche thermodynamisch stabil oder metastabil
sein können. Aus den erhaltenen Bildungenthalpien und -entropien wird der Sub-solidus
Bereich des Phasendiagramm berechnet.

Der Hauptteil der Doktorarbeit beschäftigt sich mit der Anwendung des vorgestellten
Ansatzes auf verschiedene chemische Systeme: quasi-binäre Alkalimetallhalogenide, quasi-
binäre Lanthanhalogenide, sowie quasi-binäre und quasi-ternäre AIIIBV Halbleiter.

Im Fall der quasi-binären Alkalimetallhalogenide wurden 20 Systeme untersucht. Für 14
dieser Systeme (NaCl-LiCl, NaBr-LiBr, NaCl-KCl, KBr-NaBr, KCl-RbCl, KBr-RbBr,
MBr-MI (M = Li, Na, K, Rb oder Cs) und MBr-MCl (M = Li, Na oder K)) wurde
das Auftreten von festen Lösungen und Mischungslücken vorhergesagt. Die berechneten
Zustandsfelder stimmen gut mit den (unvollständig) vorliegenden experimentellen Wer-
ten überein. In den verbliebenen 6 Systemen (CsX-LiX (X = F, Cl, Br oder I) und
LiX-RbX (X = Cl oder Br)) wurden geordnete kristalline Phasen vorhergesagt, was sich
ebenfalls mit den experimentellen Beobachtungen deckt. Neben bereits bekannten ter-
nären Verbindungen wurden mehrere neue als mögliche Synthesekandidaten vorherge-
sagt.

Die Niedertemperaturbereiche in den Phasendiagrammen der quasi-binären Lanthanhalo-
genide (LaX3-LaY3, (X, Y = F, Cl, Br or I)) sind bislang nicht experimentell untersucht.
Die hier durchgeführte Untersuchung der Energielandschaft sowie die weiteren Analysen
der gefundenen Strukturkandidaten legen nahe, dass in allen sechs Systemen geordnete
kristalline Verbindungen existieren sollten. Verschiedene dieser Kandidaten wurden als
thermodynamisch stabile Modifikationen berechnet.

In einem dritten Projekt wurden die Niedertemperaturbereiche der Phasendiagramme
von den quasi-ternären Halbleitern AlSb-GaSb-InSb und AlAs-GaAs-InAs untersucht.
Die bisherige Literatur der quasi-binären Halbleiter vom Typ (AA’)IIIBV beschäftigt sich
ausgiebig mit dem Gleichgewicht zwischen dem flüssigen und festen Zustand. Untersu-
chungen der Niedertemperaturbereiche der Phasendiagramme sind jedoch unbekannt. In
dieser Doktorarbeit wurden die Energielandschaften der quasi-binären Halbleiter MM’As
und MM’Sb (M, M’ = Al, Ga und In) sowie die der zwei quasi-ternären Systeme AlSb-
GaSb-InSb und AlAs-GaAs-InAs global untersucht. Die Analyse der berechneten Da-
ten zeigt, dass in allen Systemen eine thermodynamisch stabile feste Lösung vorliegt.
Basierend auf diesen Daten wurden die Mischungslücken berechnet und die Niedertem-
peraturbereiche der sechs quasi-binären und der zwei quasi-ternären Phasendiagramme
vorhergesagt.
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Appendix





A Quasi-binary alkali halogenide
systems

A.1 Alkali halogenides: auxiliary data

A.1.1 General data

Table A.1: Ionic radii of atoms r(q) ([Å]) and charges q used in the present work for the
global landscape explorations of the alkali halide systems.

Li Na K Rb Cs
q +1 +1 +1 +1 +1
r(q) 0.78 0.98 1.41 1.49 1.65

Cl Br I
q −1 −1 −1
r(q) 1.81 1.96 2.2

Table A.2: Summary of basis set optimizations (135).

Element Basis set name Shell Shell Exponent
no type

NaCl-LiCl, NaBr-LiBr and NaCl-KCl
Li 6-1G 2 sp 0.5197
Na 8-511G 3 sp 0.5468

4 sp 0.2361
3 d 0.4319

K 86-511G - - -
Cl 86-311G 4 sp 0.320

5 sp 0.125
Br [HAYWLC]-31 - - -

LiBr-LiCl
Li 6-11G 2 sp 0.528

2 sp 0.1745
Br [HAYWLC]-31 4 sp 0.0999
Cl 86-311G 3 sp 0.3117

3 d 0.1172
NaBr-NaCl

Na 8-511G 3 sp 0.5390
3 sp 0.2021
3 d 0.2675

Br [HAYWLC]-31 4 sp 0.1006
Cl 86-311G 3 sp 0.3144

3 d 0.1217
KBr-KCl

K 86-511G 4 sp 0.3949
4 sp 0.2170
4 d 0.3774

Br [HAYWLC]-31 4 sp 0.0989
Cl 86-311G 3 sp 0.317

continued on next page
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A Quasi-binary alkali halogenide systems

continued from previous page
Element Basis set name Shell Shell Exponent

no type
3 d 0.1178

KBr-NaBr
K 86-511G 4 sp 0.3949

4 sp 0.2170
3 d 0.3774

Na 8-511G 3 sp 0.5390
3 sp 0.2021
3 d 0.2675

Br [HAYWLC]-31 4 sp 0.0989
KCl-RbCl

K 86-511G 4 sp 0.3941
4 sp 0.2212
3 d 0.4218

Rb ECP28MWB 5 p 0.3262
5 p 0.134
4 d 0.2967

Cl 86-311G 3 sp 0.3154
3 sp 0.1156

KBr-RbBr
K 86-511G 4 sp 0.3949

4 sp 0.2170
3 d 0.3774

Rb ECP28MWB 5 p 0.3248
5 p 0.1328
4 d 0.3032

Br [HAYWLC]-31 4 sp 0.0975
LiCl-RbCl

Li 6-11G 2 sp 0.5315
2 sp 0.2088

Rb ECP28MWB 5 p 0.3262
5 p 0.134
4 d 0.2967

Cl 86-311G 3 sp 0.3154
3 d 0.1156

LiBr-RbBr
Li 6-11G 2 sp 0.528

2 sp 0.1745
Rb ECP28MWB 5 p 0.3248

5 p 0.1328
4 d 0.3032

Br [HAYWLC]-31 4 sp 0.0975
LiBr-LiI

Li 6-11G 2 sp 0.5258
2 sp 0.1585

Br [HAYWLC]-31 4 sp 0.0999
I [HAYWLC]-31 5 sp 0.0885

NaBr-NaI
Na 8-511G 3 sp 0.5397

3 sp 0.2097
3 d 0.2301

Br [HAYWLC]-31 4 sp 0.1006
I [HAYWLC]-31 5 sp 0.0889

KBr-KI
K 86-511G 4 sp 0.39638

4 sp 0.2169
4 d 0.4750

Br [HAYWLC]-31 4 sp 0.0989
I [HAYWLC]-31 5 sp 0.0885

RbBr-RbI
Rb ECP28MWB 5 p 0.3255

5 p 0.1347
5 d 0.3147

Br [HAYWLC]-31 4 sp 0.0975
I [HAYWLC]-31 5 sp 0.088

CsBr-CsI
Cs ECP46MWB 6 p 0.2810

6 p 0.1162
6 d 0.2538

Br [HAYWLC]-31 4 sp 0.0966
I [HAYWLC]-31 5 sp 0.0873

CsF-LiF
Cs ECP46MWB 6 p 0.2823

6 p 0.1124
5 d 0.2678

Li 6-11G 2 sp 0.5147
2 sp 2.0376

F 7-311G 2 sp 0.4378
2 sp 0.1469

CsCl-LiCl
Cs ECP46MWB 6 p 0.2817

6 p 0.1158
5 d 0.2467

Li 6-11G 2 sp 0.5315
continued on next page
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A.1 Alkali halogenides: auxiliary data

continued from previous page
Element Basis set name Shell Shell Exponent

no type
2 sp 0.2088

Cl 86-311G 3 sp 0.3168
3 d 0.1139

CsBr-LiBr
Cs ECP46MWB 6 p 0.2814

6 p 0.1161
5 d 0.2527

Li 6-11G 2 sp 0.528
2 sp 0.1745

Br [HAYWLC]-31 4 sp 0.0966
CsI-LiI

Cs ECP46MWB 6 p 0.2810
6 p 0.1162
5 d 0.2538

Li 6-11G 2 sp 0.5258
2 sp 0.1585

I [HAYWLC]-31 5 sp 0.0873

A.1.2 The CsX-LiX systems, where X = F, Cl, Br or
I

Table A.3: Summary of basis set optimizations (135).

Element Basis set name Shell Shell Exponent
no type

CsF-LiF
Cs ECP46MWB 6 p 0.2823

6 p 0.1124
5 d 0.2678

Li 6-11G 2 sp 0.5147
2 sp 2.0376

F 7-311G 2 sp 0.4378
2 sp 0.1469

CsCl-LiCl
Cs ECP46MWB 6 p 0.2817

6 p 0.1158
5 d 0.2467

Li 6-11G 2 sp 0.5315
2 sp 0.2088

Cl 86-311G 3 sp 0.3168
3 d 0.1139

CsBr-LiBr
Cs ECP46MWB 6 p 0.2814

6 p 0.1161
5 d 0.2527

Li 6-11G 2 sp 0.528
2 sp 0.1745

Br [HAYWLC]-31 4 sp 0.0966
CsI-LiI

Cs ECP46MWB 6 p 0.2810
continued on next page
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A Quasi-binary alkali halogenide systems

continued from previous page
Element Basis set name Shell Shell Exponent

no type
6 p 0.1162
5 d 0.2538

Li 6-11G 2 sp 0.5258
2 sp 0.1585

I [HAYWLC]-31 5 sp 0.0873

A.1.3 The LiX-RbX systems, where X = Cl or
Br

Table A.4: Summary of basis set optimizations (135).

Element Basis set name Shell Shell Exponent
no type

LiCl-RbCl
Li 6-11G 2 sp 0.5315

2 sp 0.2088
Rb ECP28MWB 5 p 0.3262

5 p 0.134
4 d 0.2967

Cl 86-311G 3 sp 0.3154
3 d 0.1156

LiBr-RbBr
Li 6-11G 2 sp 0.528

2 sp 0.1745
Rb ECP28MWB 5 p 0.3248

5 p 0.1328
4 d 0.3032

Br [HAYWLC]-31 4 sp 0.0975
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Table A.5: Structure parameters, bulk moduli, minimum energies, and energy differences
(∆E) between the structure candidate and the candidate with the lowest en-
ergy (in hartree / formula unit) at 0 K for ordered crystalline structure candi-
dates for the LiCl-RbCl system after local optimization on Hartree-Fock level.
The candidates with the lowest energy are listed in Table 6.17 for all compo-
sitions investigated. The candidates given in the table below are metastable
with respect to decomposition into neighboring phases, but stable with respect
to decomposition into the binary compounds LiCl and RbCl.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus (∆E)
Type α, β, γ [◦] atom x y z [GPa]
Composition: LiRb2Cl3
C2/m (12) a = 18.13828 Li1(4i) 0.63917 0 0.04907 801.831 -1433.9753
monoclinic b = 4.81380 Rb2(4i) 0.69044 0 0.68565 15.115 (0.0005)
LiRb2Cl3 − Type2 c = 9.54180 Rb3(4i) 0.03665 0 0.26558

α = γ = 90 Cl4(2b) 0 1/2 0
β = 105.75560 Cl5(4i) 0.15716 0 0.94587

Cl6(4i) 0.31751 0 0.68720
Cl7(2d) 0 1/2 1/2

P − 62m (189) a = 7.66526 Li1(1a) 0 0 0 223.737 -1433.9732
hexagonal c = 4.39697 Rb2(2d) 1/3 2/3 1/2 12.954 (0.0026)
LiRb2Cl3 − Type3 α = β = 90 Cl3(3f) 0.30648 0 0

γ = 120
Pmn21 (31) a = 4.65467 Li1(2a) 0 0.93526 0.72634 425.905 -1433.9756
orthorhombic b = 13.50468 Rb2(2a) 0 0.41339 0.18568 14.200 (0.0002)
LiRb2Cl3 − Type4 c = 6.77547 Rb3(2a) 0 0.78520 0.18396

α = β = γ = 90 Cl4(2a) 0 0.39903 0.68532
Cl5(2a) 0 0.02957 0.42338
Cl6(2a) 0 0.76348 0.67963

Pc (7) a = 4.89897 Li1(2a) 0.55316 0.35658 0.45393 404.519 -1433.9725
monoclinic b = 10.55458 Rb2(2a) 0.05575 0.99313 0.70277 14.937 (0.0023)
LiRb2Cl3 − Type5 c = 7.82550 Rb3(2a) 0.05337 0.63633 0.43659

α = γ = 90 Cl4(2a) 0.55516 0.87789 0.44712
β = 91.34070 Cl5(2a) 0.05284 0.26725 0.46325

Cl6(2a) 0.55267 0.49241 0.19671
Cm (8) a = 16.23643 Li1(2a) 0.19756 0 0.57831 844.369 -1433.9723
monoclinic b = 4.39525 Li2(2a) 0.35714 0 0.12999 14.216 (0.0025)
LiRb2Cl3 − Type6 c = 12.03593 Rb3(2a) 0.46482 0 0.44466

α = γ = 90 Rb4(2a) 0.80502 0 0.86148
β = 100.56230 Rb5(2a) 0.64474 0 0.19207

Rb6(2a) 0.03279 0 0.82047
Cl7(2a) 0.45613 0 0.99912
Cl8(2a) 0.63149 0 0.66807
Cl9(2a) 0.21381 0 0.01297
Cl10(2a) 0.11831 0 0.39355
Cl11(2a) 0.34874 0 0.65699
Cl12(2a) 0.86460 0 0.23773

Cm (8) a = 23.93524 Li1(2a) 0.06471 0 0.36636 775.099 -1433.9757
monoclinic b = 4.28356 Li2(2a) 0.76236 0 0.07644 15.423 (0.0001)
LiRb2Cl3 − Type7 c = 7.84493 Rb3(2a) 0.58937 0 0.87871

α = γ = 90 Rb4(2a) 0.41353 0 0.22039
β = 105.49290 Rb5(2a) 0.23786 0 0.55626

Rb6(2a) 0.41358 0 0.72104
Cl7(2a) 0.62225 0 0.44012
Cl8(2a) 0.82348 0 0.38165
Cl9(2a) 0.82799 0 0.88768
Cl10(2a) 0.99844 0 0.55317
Cl11(2a) 0.00436 0 0.06034
Cl12(2a) 0.20491 0 0.01163

Composition: LiRb3Cl4
P21/m (11) a = 12.09866 Li1(2e) 0.37840 1/4 0.41208 557.555 -1917.4138
monoclinic b = 4.61585 Rb2(2e) 0.40064 1/4 0.81228 14.954 (0.0056)
LiRb3Cl4 − Type2 c = 9.98685 Rb3(2e) 0.88185 1/4 0.36325

α = γ = 90 Rb4(2e) 0.83276 1/4 0.86548
β = 91.39710 Cl5(2e) 0.61215 1/4 0.44589

Cl6(2e) 0.39394 1/4 0.14810
Cl7(2e) 0.15516 1/4 0.39525
Cl8(2e) 0.12452 1/4 0.99046



Table A.6: Structure parameters, bulk moduli, minimum energies, and energy differences
(∆E) between the structure candidate and the candidate with the lowest en-
ergy (in hartree / formula unit) at 0 K for ordered crystalline structure candi-
dates for the LiBr-RbBr system after local optimization on Hartree-Fock level.
The candidates with the lowest energy are listed in Table 6.18 for all compo-
sitions investigated. The candidates given in the table below are metastable
with respect to decomposition into neighboring phases, but stable with respect
to decomposition into the binary compounds LiBr and RbBr.

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus (∆E)
Type α, β, γ [◦] atom x y z [GPa]
Composition: Li2RbBr3
P21/m (11) a = 4.74302 Li1(2e) 0.47321 1/4 0.91578 401.460 -77.9531
monoclinic b = 5.98327 Li2(2e) 0.06278 1/4 0.19188 14.020 (0.0004)
Li2RbBr3 − Type2 c = 14.22902 Rb1(2e) 0.37155 1/4 0.62417

α = γ = 90 Br1(2e) 0.12816 1/4 0.37961
β = 96.17360 Br2(2e) 0.94323 1/4 0.82447

Br3(2e) 0.53291 1/4 0.10108
C2/m (12) a = 7.54472 Li1(8j) 0.23041 0.80812 0.74844 781.919 -77.9495
monoclinic b = 13.28055 Rb1(4i) 0.71304 0 0.75693 14.035 (0.004)
Li2RbBr3 − Type3 c = 7.81077 Br1(4g) 0 0.72869 0

α = γ = 90 Br2(4h) 0 0.28261 1/2
β = 92.43130 Br3(4i) 0.19361 0 0.75214

Imm2 (44) a = 5.90418 Li1(4d) 0 0.18835 0.33648 385.073 -77.9504
orthorhombic b = 14.71978 Rb1(2b) 0 1/2 0.31625 14.727 (0.0031)
Li2RbBr3 − Type4 c = 4.43081 Br1(4d) 0 0.69421 0.82560

α = β = γ = 90 Br2(2a) 0 0 0.26558
Pmmn (59) a = 5.89517 Li1(4e) 1/4 0.05698 0.24898 387.616 -77.9515
orthorhombic b = 14.04437 Rb1(2b) 1/4 3/4 0.23439 14.521 (0.002)
Li2RbBr3 − Type5 c = 4.68170 Br1(4e) 1/4 0.94881 0.75022

α = β = γ = 90 Br2(2a) 1/4 1/4 0.33902
Composition: Li2Rb3Br5
Imm2 (44) a = 24.99243 Li1(4c) 0.71086 0 0.57580 832.983 -151.7345
orthorhombic b = 4.65157 Rb2(4c) 0.39184 0 0.94289 11.105 (0.006)
Li2Rb3Br5 − Type2 c = 7.16520 Rb3(2a) 0 0 0.94015

α = β = γ = 90 Br4(4c) 0.21311 0 0.29869
Br5(4c) 0.39252 0 0.43760
Br6(2a) 0 0 0.44167

C2 (5) a = 7.28878 Li1(4c) 0.13744 0.72883 0.91739 831.531 -151.7330
monoclinic b = 7.36539 Rb2(4c) 0.08391 0.21442 0.73638 11.114 (0.0075)
Li2Rb3Br5 − Type3 c = 15.54286 Rb3(2b) 0 0.71025 1/2

α = γ = 90 Br4(2b) 0 0.20987 1/2
β = 94.76530 Br5(4c) 0.90802 0.70595 0.26139

Br6(4c) 0.25794 0.06587 0.93812
C2 (5) a = 7.29321 Li1(4c) 0.13694 0.23262 0.41750 831.694 -151.7330
monoclinic b = 7.36245 Rb2(4c) 0.91696 0.74653 0.76356 11.110 (0.0075)
Li2Rb3Br5 − Type4 c = 15.54395 Rb3(2a) 0 0.24866 0

α = γ = 90 Br4(4c) 0.74190 0.89567 0.56199
β = 94.82080 Br5(2a) 0 0.74981 0

Br6(4c) 0.90847 0.25503 0.76122
Cm (8) a = 7.15368 Li1(4b) 0.64356 0.20920 0.33524 785.986 -151.7327
monoclinic b = 26.06444 Rb2(4b) 0.09963 0.88546 0.64513 11.654 (0.0078)
Li2Rb3Br5 − Type5 c = 4.50180 Rb3(2a) 0.55298 0 0.86622

α = γ = 90 Br4(2a) 0.08151 0 0.13059
β = 110.54820 Br5(4b) 0.54068 0.88613 0.36059

Br6(4b) 0.90452 0.21605 0.04786
Cm (8) a = 7.91439 Li1(4b) 0.51415 0.21519 0.97145 759.695 -151.7395
monoclinic b = 25.04511 Rb2(2a) 0.48170 0 0.37506 11.880 (0.001)
Li2Rb3Br5 − Type6 c = 4.46226 Rb3(4b) 0.99660 0.88254 0.97727

α = γ = 90 Br4(2a) 0.97105 0 0.45897
β = 120.80630 Br5(4b) 0.89724 0.23224 0.36496

Br6(4b) 0.45645 0.11449 0.85894
Composition: LiRb2Br3
Pmc21 (26) a = 5.38571 Li1(2b) 1/2 0.84434 0.91429 583.181 -94.3165
orthorhombic b = 11.91691 Rb2(2a) 0 0.52970 0.64013 11.447 (0.0029)
LiRb2Br3 − Type2 c = 9.08650 Rb3(2a) 0 0.86166 0.35114

α = β = γ = 90 Br4(2b) 1/2 0.37558 0.86562
Cm (8) a = 25.74231 Li1(2a) 0.92230 0 0.66032 933.614 -94.3122
monoclinic b = 4.52394 Li2(2a) 0.24965 0 0.94916 12.028 (0.0072)
LiRb2Br3 − Type3 c = 8.38985 Rb1(2a) 0.42008 0 0.16700

α = γ = 90 Rb2(2a) 0.58663 0 0.81505
β = 107.14940 Rb3(2a) 0.58555 0 0.30822

Rb4(2a) 0.75069 0 0.47576
Br1(2a) 0.00094 0 0.48044
Br2(2a) 0.81465 0 0.93642
Br3(2a) 0.17645 0 0.13808
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Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus (∆E)
Type α, β, γ [◦] atom x y z [GPa]

Br4(2a) 0.99949 0 0.97674
Br5(2a) 0.36151 0 0.51101
Br6(2a) 0.17005 0 0.63488

Cm (8) a = 17.17879 Li1(2a) 0.34124 0 0.14280 1008.594 -94.3121
monoclinic b = 4.67022 Li2(2a) 0.18786 0 0.58430 11.043 (0.0073)
LiRb2Br3 − Type4 c = 12.77285 Rb1(2a) 0.01222 0 0.81020

α = γ = 90 Rb2(2a) 0.45704 0 0.44855
β = 100.18770 Rb3(2a) 0.62997 0 0.18047

Rb4(2a) 0.80172 0 0.86130
Br1(2a) 0.35074 0 0.66520
Br2(2a) 0.44614 0 0.00013
Br3(2a) 0.09895 0 0.37866
Br4(2a) 0.62194 0 0.67040
Br5(2a) 0.84152 0 0.26301
Br6(2a) 0.19493 0 0.99990

Cm (8) a = 19.70191 Li1(2a) 0.65005 0 0.01252 964.102 -94.3171
monoclinic b = 4.94459 Li2(2a) 0.35193 0 0.93863 11.664 (0.0023)
LiRb2Br3 − Type5 c = 10.31705 Rb1(2a) 0.96245 0 0.70884

α = γ = 90 Rb2(2a) 0.68576 0 0.64596
β = 106.41430 Rb3(2a) 0.31542 0 0.30847

Rb4(2a) 0.03893 0 0.24688
Br1(2a) 0.31819 0 0.65440
Br2(2a) 0.83388 0 0.05326
Br3(2a) 0.68329 0 0.29371
Br4(2a) 1/2 0 0.47110
Br5(2a) 0.49994 0 0.97579
Br6(2a) 0.15515 0 0.87594

Composition: LiRb3Br4
P21/m (11) a = 10.36559 Li1(2e) 0.89933 1/4 0.41947 750.087 -131.2113
monoclinic b = 9.84495 Rb2(2e) 0.46524 1/4 0.50042 9.978 (0.0016)
LiRb3Br4 − Type2 c = 7.35076 Rb3(4f) 0.75892 0.00088 0.98342

α = γ = 90 Br4(4f) 0.24263 0.96505 0.51231
β = 90.65350 Br5(2e) 0.99873 1/4 0.09749

Br6(2e) 0.49562 1/4 0.99895
Pmn21 (31) a = 14.00384 Li1(2a) 0 0.80186 0.43544 706.531 -131.2051
orthorhombic b = 7.12363 Rb2(4b) 0.24999 0.76002 0.88552 10.578 (0.0078)
LiRb3Br4 − Type3 c = 7.08243 Rb3(2a) 0 0.28268 0.89834

α = β = γ = 90 Br4(2a) 0 0.78098 0.85422
Br5(2a) 0 0.20885 0.39846
Br6(4b) 0.29208 0.26199 0.88638

Cmc21 (36) a = 14.07191 Li1(4a) 0 0.08105 0.55473 1431.126 -131.2071
orthorhombic b = 14.24443 Rb2(4a) 0 0.35396 0.11832 10.406 (0.0058)
LiRb3Br4 − Type4 c = 7.13969 Rb3(8b) 0.75067 0.12193 0.11731

α = β = γ = 90 Br4(8b) 0.21055 0.87121 0.11957
Br5(4a) 0 0.60554 0.11878
Br6(4a) 0 0.90489 0.68641

P21 (4) a = 8.56114 Li1(2a) 0.03401 0.50764 0.59998 724.677 -131.2058
monoclinic b = 5.31544 Rb2(2a) 0.41894 0.79306 0.12969 10.528 (0.0071)
LiRb3Br4 − Type5 c = 15.94570 Rb3(2a) 0.57173 0.24467 0.60824

α = γ = 90 Rb4(2a) 0.91625 0.32021 0.13740
β = 92.93400 Br5(2a) 0.59082 0.25711 0.27221

Br6(2a) 0.25016 0.30381 0.00102
Br7(2a) 0.80559 0.75549 0.50875
Br8(2a) 0.92057 0.32723 0.73426

P21 (4) a = 7.10561 Li1(2a) 0.95514 0.55920 0.89168 713.447 -131.2038
monoclinic b = 7.13187 Rb2(2a) 0.99814 0.11792 0.64626 10.463 (0.0091)
LiRb3Br4 − Type6 c = 14.08012 Rb3(2a) 0.50581 0.60958 0.63309

α = γ = 90 Rb4(2a) 0.50774 0.57964 0.12837
β = 90.86670 Br5(2a) 0.54587 0.57955 0.88010

Br6(2a) 0.99389 0.14733 0.90615
Br7(2a) 0.49755 0.10694 0.61756
Br8(2a) 0.99104 0.11575 0.31934

P21 (4) a = 15.52462 Li1(2a) 0.60616 0.02475 0.54322 689.621 -131.2114
monoclinic b = 8.63870 Rb2(2a) 0.13881 0.77134 0.81702 10.659 (0.0015)
LiRb3Br4 − Type7 c = 5.17515 Rb3(2a) 0.40328 0.03126 0.96225

α = γ = 90 Rb4(2a) 0.86321 0.77642 0.18396
β = 96.47830 Br5(2a) 0.67138 0.02010 0.06880

Br6(2a) 0.77555 0.52498 0.64429
Br7(2a) 0.50210 0.27711 0.50068
Br8(2a) 0.95054 0.02414 0.71600

Ama2 (40) a = 9.13183 Li1(4b) 1/4 0.00094 0.59994 1346.202 -131.2037
orthorhombic b = 12.97403 Rb2(4a) 0 0 0.13896 11.005 (0.0092)
LiRb3Br4 − Type8 c = 11.36260 Rb3(8c) 0 0.22182 0.86908

α = β = γ = 90 Br4(4a) 0 0 0.47180
Br5(4b) 1/4 0.78955 0.13129
Br6(4b) 1/4 0 0.83181
Br7(4b) 1/4 0.20977 0.13169

C2 (5) a = 6.13585 Li1(2b) 0 0.73578 1/2 621.716 -131.2042
monoclinic b = 6.13866 Rb2(4c) 0.35973 0.98394 0.72942 11.859 (0.0087)
LiRb3Br4 − Type9 c = 16.71271 Rb3(2a) 0 0.48327 0

α = γ = 90 Br4(4c) 0.92990 0.98347 0.86487
β = 99.01920 Br5(4c) 0.79615 0.98614 0.59864

Pm (6) a = 7.23352 Li1(1b) 0.25389 1/2 0.81225 365.622 -131.2102
continued on next page
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continued from previous page

Space group (no.) Lattice constants Atom (Multip., Wyckoff lett.), Vmin[Å3] Emin

Crystal system, a, b, c [Å]; Relative coordinates Bulk modulus (∆E)
Type α, β, γ [◦] atom x y z [GPa]
monoclinic b = 10.41021 Rb2(2c) 0.82179 0.74070 0.50725 10.143 (0.0027)
LiRb3Br4 − Type10 c = 4.87111 Rb3(1a) 0.32821 0 0.11809

α = γ = 90 Br4(2c) 0.33772 0.72911 0.63699
β = 94.60650 Br5(1a) 0.82649 0 0.01624

Br6(1b) 0.93141 1/2 0.01790
Pm (6) a = 8.56079 Li1(1b) 0.61951 1/2 0.00904 336.667 -131.2057
monoclinic b = 4.66425 Rb2(1a) 0.07900 0 0.12352 11.010 (0.0072)
LiRb3Br4 − Type11 c = 8.51507 Rb3(1a) 0.60174 0 0.52284

α = γ = 90 Rb4(1a) 0.09281 0 0.61928
β = 98.03350 Br5(1b) 0.86553 1/2 0.81834

Br6(1a) 0.45070 0 0.92659
Br7(1b) 0.29340 1/2 0.40864
Br8(1b) 0.80339 1/2 0.29165

Cm (8) a = 31.20721 Li1(2a) 0.87595 0 0.47646 1368.479 -131.2070
monoclinic b = 5.27125 Li2(2a) 0.75836 0 0.98503 10.959 (0.0059)
LiRb3Br4 − Type12 c = 8.35569 Rb3(2a) 0.98681 0 0.83503

α = γ = 90 Rb4(2a) 0.63509 0 0.72968
β = 95.37360 Rb5(2a) 0.50138 0 0.36246

Rb6(2a) 0.26147 0 0.49349
Rb7(2a) 0.12532 0 0.19461
Rb8(2a) 0.36239 0 0.01047
Br9(2a) 0.93527 0 0.20005
Br10(2a) 0.55541 0 0.00848
Br11(2a) 0.81299 0 0.75528
Br12(2a) 0.81044 0 0.25156
Br13(2a) 0.21408 0 0.92139
Br14(2a) 0.41385 0 0.61467
Br15(2a) 0.06634 0 0.55146
Br16(2a) 0.68393 0 0.37799
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B Quasi-binary and quasi-ternary
semiconductors

B.1 Semiconductors: AIIIBV : auxiliary
data

Table B.1: Ionic radii of atoms r(q) ([Å]) and charges q used in the present work for the
global landscape explorations of the semiconductor A3B5 systems.

Al Ga In As Sb
q +3 +3 +3 −3 −3
r(q) 0.57 0.62 0.8 2.3 2.4
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C Quasi-binary lanthanum halogenide
systems

C.1 Lanthanum halides: auxiliary data

Table C.1: Ionic radii of atoms r(q) ([Å]) and charges q used in the present work for the
global landscape explorations of the lanthanum halide systems.

La F Cl Br I
q +3 −1 −1 −1 −1
r(q) 1.22 1.33 1.81 1.96 2.2

Table C.2: Summary of basis set optimizations (135).

Element Basis set name Shell Shell Exponent
no type

F 7-311G 2 sp 0.4378
2 sp 0.1469

Cl 86-311G 3 sp 0.3168
3 d 0.1139

Br [HAYWLC]-31 4 sp 0.0966
I [HAYWLC]-31 5 sp 0.0873
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