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Deutsche Zusammenfassung

Die Frage, ob ein genaueres Studium der Phononen-Spektren klassischer Supraleiter
wie Niob und Blei mittels inelastischer Neutronenstreuung der Mühe wert wäre, würde
sicher von den meisten Wissenschaftlern verneint werden. Erstens erkärt die berühmte
mikroskopische Theorie von Bardeen, Cooper und Schrieffer (1957), bekannt als BCS
Theorie, nahezu alle Aspekte der klassischen Supraleitung. Zweitens ist das aktuelle
Interesse sehr stark auf die Hochtemperatur-Supraleitung in Kupraten und Schwere-
Fermionen Systemen fokussiert. Daher waren die ersten Experimente dieser Arbeit, die
sich mit der Bestimmung der Phononen-Lebensdauern in supraleitendem Niob und Blei
befaßten, nur als ein kurzer Test der Auflösung eines neuen hochauflösenden Neutronen-
spektrometers am Forschungsreaktor FRM II geplant. Dieses neuartige Spektrometer
TRISP (triple axis spin echo) ermöglicht die Bestimmung von Phononen-Linienbreiten
über große Bereiche des Impulsraumes mit einer Energieauflösung im μeV Bereich, d.h.
zwei Größenordnungen besser als an klassische Dreiachsen-Spektrometern.

Philip Allen hat erstmals dargelegt, daß die Linienbreite eines Phonons proportional
zum Elektron-Phonon Kopplungsparameter λ ist. Dieser Parameter ist wesentlich für
die Beschreibung der durch Phononen vermittelten Cooper-Paarbildung in klassischen
Supraleitern. Die elektronische Energielücke in Supraleitern, deren Betrag, Symme-
trie und Temperaturabhängigkeit eng an die Bildung der Cooper-Paare gekoppelt ist,
kann damit direkt über die Messung von Phononen-Linienbreiten bestimmt werden.
Die Energielücke resultiert aus einer Umverteilung von elektronischen Zuständen und
Anregungen nahe an der Fermi-Fläche. Elektron-Phonon Streuung ist verboten für
Phononen mit Energien kleiner der Breite der Energielüche 2Δ(T ), der Bindungsen-
ergie der Cooper-Paare. Diskontinuitäten der Phononen-Linienbreiten werden daher
erwartet, wenn die Phononen-Energie 2Δ übersteigt. Die Energielücke und ihre im-
pulsabhängige Anisotropie und Symmetrie kann aus einer Abbildung dieser Diskon-
tinuitäten entlang unterschiedlicher Kristallachsen genau aufgelöst werden. Während
die Energien der Phononen als ein genaues Maß für die Breite der Energielücke dienen,
ist ihr Impuls eine ähnlich empfindliche Sonde für die Geometrie der Fermi-Fläche, die
ebenfalls Signaturen in den Phononen-Linienbreiten hinterläßt. Phononen, die parallele
Abschnitte der Fermi-Fläche verbinden, unterliegen einer verstärkten Elektron-Phonon
Streuung, was zu Extrema der Linienbreite führt (sog. Kohn-Anomalien). Eine Bild
der Fermi-Fläche kann im Prinzip durch eine Kartierung der Kohn Anomalien erstellt
werden.

Die in dieser Arbeit gemessenen Spektren der Phononen-Linienbreiten altbekannter
Supraleiter weisen neue und unerwartete Strukturen auf, die in vorhergehenden Exper-
imenten bei geringerer Auflösung nicht sichtbar waren. Anomalien wurden beobachtet
bei Phonenen, deren Energie der Breite der supraleitenden Energielücke 2Δ entspricht.
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Diese Strukturen waren nicht nur wie erwartet unterhalb der Sprungtemperatur Tc
sichtbar, sondern auch weit oberhalb im normalleitenden Bereich. Eine genauere Anal-
yse zeigte, daß diese Strukturen vorher unbekannten Kohn-Anomalien entsprechen. Da
diese Anomalien sowohl in Niob als auch in Blei beobachtet wurden, die unterschiedliche
Kristallstruktur (BCC und FCC), Fermi-Flächen und Energie-Lücken aufweisen, ist es
wahrscheinlich, daß diese Koinzidenz von 2Δ und den Kohn Anomalien ein allgemeines
Phänomen ist. Es stellte sich die Frage, ob die Kohn-Anomalien die Breite der En-
ergielücke 2Δ begrenzen. Auf diese Frage konzentrierte sich folglich der wesentliche
Teil dieser Arbeit. Zuerst wurden Messungen der Lebensdauern entlang verschiedener
Symmetrierichtungen durchgeführt. Es wurde immer eine Koinzidenz von 2Δ mit der
niederenergetischsten Kohn-Anomalie gefunden. Dies unterstützt die Annahme, daß
diese Koinzidenz kein Zufall ist. Da die Energien der Kohn-Anomalien für unter-
schiedliche Kristallrichtungen um etwa 10% variieren, liefert dieses lock-in Verhalten
zwischen 2Δ und der Kohn-Anomalie eine einfache Antwort für die seit langem gesuchte
Ursache der Anisotropie der Energielücke, die erstmals bei Tunnel-Experimenten in den
1960er Jahren beobachtet und in den folgenden Jahrzehnten intensiv diskutiert wurde.

Um weitere Informationen über diesen lock-in Mechanismus zu erhalten, wurden
weitere metallische Supraleiter untersucht. Ein Schlüsselsystem waren Pb-Bi Legierun-
gen. Bi liefert zusätzliche Elektronen und vergrößert den Radius der Fermi-Fläche. Aus
früheren Tunnel-Messungen ist bekannt, daß sowohl die Breite der Energielücke 2Δ als
auch Tc mit zunehmender Bi-Konzentration anwachsen. Inelastische Neutronenstreu-
ung an verschiedenen Pb-Bi Legierungen zeigt mit steigender Bi Konzentration eine
synchrone Verschiebung von Kohn Anomalien und 2Δ zu höheren Energien. Diese
Beobachtung unterstützt die lock-in Hypothese. Vorläufige Daten über Tantal und das
Übergangsmetall-Dicalcogenid NbSe2 sind ebenfalls konsistent mit dieser Hypothese.
Die Interpretation dieser Daten erfordert eine Erweiterung der etablierten Theorie kon-
ventioneller Supraleitung.

Phononen-Linienbreiten wurden auch für den Hochtemperatur-Supraleiter La2−xSrx
CuO4 durchgeführt. Die Erklärung der Eigenschaften dieser Materialien steckt immer
noch in den Kinderschuhen. Hier sollte die zweidimensionale Geometrie der Fermi-
Fläche zu starken, aus der Elektron-Phonon Wechselwirkung resultierenden Signa-
turen in den Phononen-Spektren führen. Die Experimente waren schwierig wegen
der hohen Anzahl von Phononen-Zweigen, die oft zusätzlichen Untergrund erzeugen
und die Ergebnisse verdunkeln. Trotzdem konnten Elektron-Phonon Linienbreiten
von transversalen akustischen Phononen-Zweigen für unter-, optimal- und überdotierte
Proben gewonnen werden.



Abstract

Asking most scientists if it is worth to have a closer look at the phonon spectra of con-
ventional superconductors like niobium and lead using inelastic neutron scattering, the
answers would be quite discouraging. First of all, there exists the famous microscopic
theory of Bardeen, Cooper, and Schrieffer (1957) known as the BCS theory, which
explains nearly all aspects of conventional superconductivity. Second, the worldwide
interest is oriented towards high temperature superconductivity in cuprates and heavy
fermion systems. Thus the first experiments of this thesis, which addressed the phonon
linewidths of superconducting niobium and lead, were only intended as a short test-
bed of the resolution properties of a new high-resolution neutron spectrometer at the
research reactor FRM II. This new generation spectrometer, TRISP (triple axis spin
echo), allows us to measure phonon linewidths over large parts of the momentum space,
with a resolution in the sub-μeV range, i.e., two orders of magnitude better than what
is achieved by conventional triple-axis neutron spectrometers.

It was pointed out by Philip Allen that the phonon linewidth is proportional to the
electron-phonon coupling parameter λ, which is an essential parameter describing the
formation of Cooper pairs in phonon mediated superconductors. The superconducting
energy gap, whose magnitude, symmetry, and temperature dependence are intimately
related to Cooper pairing, can also be directly determined in phonon linewidth mea-
surements. The opening of the gap results in a redistribution of electronic states and
excitations in the immediate vicinity of the Fermi surface. Electron-phonon scatter-
ing is suppressed for phonon energies below the gap 2Δ(T ) due to the stability of the
Cooper pairs below Tc. Discontinuities in the phonon linewidths are thus expected
when the phonon energy exceeds 2Δ(T ). Consequently, the gap and its momentum
dependent anisotropy (and also the pairing symmetry) can be accurately resolved from
a map of these discontinuities in different crystallographic directions. While phonon
energies are highly sensitive to the superconducting energy gap, their momenta can
serve as a similarly comprehensive probe of the geometry of the Fermi surface, which
also leaves an imprint on the phonon linewidth. Phonons which connect nearly parallel
segments of the Fermi surface exhibit an enhanced electron-phonon scattering proba-
bility, and thus linewidth extrema (termed Kohn anomalies) are expected. A full image
of the underlying Fermi surface is contained in a map of these Kohn anomalies.

The phonon-linewidth spectra of these long-known superconductors presented in
this thesis showed new and unexpected features that were not visible in previous low
resolution experiments. Anomalies were observed at phonon energies corresponding
to the magnitude of the superconducting gap, 2Δ, in the electron spectrum. These
features were not only visible, as expected, below the superconducting transition tem-
perature Tc, but persist to much higher temperatures. A detailed analysis showed that
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these features originate from previously unknown Kohn anomalies. As these anomalies
were observed both in niobium and lead, which have different crystal structures (BCC
and FCC), Fermi surfaces, and energy gaps, it is likely that this link between 2Δ and
the Kohn anomalies is more a general phenomenon. Thus the question arose whether
the Kohn anomalies impose a limit on the magnitude of the 2Δ gap. The major part of
this thesis was accordingly concentrated on the relation between Kohn anomalies and
2Δ. First, similar measurements were carried out along different high symmetry direc-
tions. Yet in all cases, the 2Δ gap was found to coincide with the lowest-energy Kohn
anomaly indicating that this phenomenon can not be attributed to an accident. Since
the energies of the Kohn anomalies vary (within ≈ ±10%) for different crystallographic
directions, this ”locking” of 2Δ to the Kohn anomaly provides a simple explanation
to the long quest for the origin of the gap anisotropy, which was already inferred from
tunneling experiments in the 1960’s and intensively discussed in the following decades.

To shed more light on this lock-in mechanism, other metallic superconductors were
explored. A key candidate was the Pb-Bi alloy. Bi adds electrons and increases the
radius of the Fermi surface. It was known from previous tunneling experiments that
both the gap magnitude 2Δ and Tc increase with Bi concentration. Inelastic neutron
spectroscopy on different Pb-Bi alloys revealed a shift of the Kohn anomalies to higher
energies with increasing Bi content in lockstep with 2Δ, supporting the lock-in hypoth-
esis. Preliminary data on elemental tantalum and the transition metal dichalcogenide
NbSe2 are also consistent with this hypothesis. An explanation of these data requires
an extension of the accepted theoretical framework for conventional superconductivity.

Phonon linewidth experiments were also performed on the high temperature su-
perconductor La2−xSrxCuO4, whose understanding is still in its infancy. Here the two
dimensional Fermi surface should lead to strong features in the phonon spectrum in-
duced by the electron-phonon interaction. The experiments were difficult due to the
large number of phonon branches, which often introduce additional background and
obscure the results. Nevertheless, the electron-phonon linewidths of transverse acous-
tic phonon branches in underdoped, optimally doped, and overdoped samples could be
extracted from the data.
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Chapter 1

Introduction

Superconductivity, which is the central theme of this thesis, is a fascinating state of
matter where electrons can conduct a current without dissipation and where exter-
nal magnetic fields are expelled from the sample. The history of superconductivity
starts in 1911 when H. Kamerlingh Onnes discovered that the resistivity of Hg sud-
denly drops to zero below Tc = 4.2K. Perfect diamagnetism, which today is considered
as the most unambiguous signature of superconductivity, was discovered by Meissner
and Ochsenfeld in 1933 [1]. A microscopic theory for superconductivity was founded
in 1957 by Bardeen, Cooper, and Schrieffer [2], and is now known as the BCS the-
ory. Superconductivity was explained by an effective attraction between electrons,
mediated by lattice vibrations, which allows the formation of so-called Cooper pairs
[3]. Electrons are fermions, however in pairs they have a bosonic nature which al-
lows them to condense in a single quantum state and superconduct. The BCS theory
provides a remarkably successful description of the physical properties of conventional
low-temperature superconductors.

Before the mid-1980s, superconductivity had only been observed in metals and
metallic alloys that had been cooled below 23K. In 1986, however, Georg Bednorz and
Alex Müller discovered that when lanthanum copper oxide, which is an insulator, is
doped with barium, it becomes a superconductor with a transition temperature, Tc, of
36K. Other materials, containing layers of copper and oxygen atoms alternated with
layers of other metals, with transition temperatures significantly exceeding the boiling
temperature of nitrogen were discovered soon thereafter. High-temperature supercon-
ductors belong to a class of materials that can not be explained by the BCS theory
in its original form. Even though the physical mechanism underlying pairing in high
temperature superconductors (HTSC) is far from being understood, we know that both
HTSC and BCS superconductors involve Cooper pairs which is a common property of
superconductors independent of the pairing mechanism. Unlike BCS superconductors,
where the superconducting gap has an s-wave symmetry, early experiments on HTSC
indicated singlet Cooper pairing with a d-wave symmetry where the gap has nodes on
the Fermi surface [4]. The earliest suggestions of a d-wave type pairing symmetry were
based on the assumption that the pairing was achieved by exchange of antiferromag-
netic spin excitations. Because of the appearance of the gap nodes, it was believed that
the electron-phonon mediated pairing could be ruled out. Recent theoretical considera-
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tions indicate that this may not be true [5]. There has also been a recent accumulation
of experimental results suggesting that the electron-phonon interaction does play an
important role in these materials. Angle-resolved photoemission (ARPES) [6][7], neu-
tron scattering [8], scanning tunneling spectroscopy [9], and theoretical [10][11] work
have uncovered evidence of strong electron-phonon interactions in the cuprates. While
much of this work is still controversial, it is undisputed that the electron-phonon in-
teraction in materials with strong electronic correlations, such as the cuprates, is an
interesting subject whose understanding is still in its infancy.

Recently, a new family of iron pnictide high-temperature superconductors with
transition temperatures up to 52K were discovered [12]. These materials resemble the
cuprates in some striking ways. They are also layered materials, but instead of copper
and oxygen, they contain planes of iron and arsenic. As in the cuprates and other
unconventional superconductors, the parent compound is an antiferromagnet at low
doping and increased doping destroys the antiferromagnetism leading to superconduc-
tivity. On the other hand, the conspicuous lack of the CuO2 planes in the pnictides
raises the question of a different pairing mechanism. Multiple gaps on the different
Fermi surface sheets have been observed in experiments [13][12] similar to that ob-
served in MgB2 [14]. The gaps decrease in temperature and close simultaneously at
Tc consistent with the BCS prediction, but dramatically different from that of the
pseudogap behavior in the cuprates. The nodeless and nearly isotropic gaps around
their respective Fermi surfaces raise the possibility of a pairing mechanism different
from that in cuprates, perhaps involving strong electron-phonon interaction as seen in
MgB2 [15].

It was pointed out some time ago that the phonon linewidth is directly propor-
tional to the electron-phonon coupling constant λ, and contains all the information
about the electron-phonon interaction in superconductors [16]. For the past half a
century, triple-axis spectrometry (TAS) with neutrons has been the method of choice
to experimentally determine energy- and momentum-resolved phonon spectra of solids
[17]. The energies and momenta of the incoming and scattered neutrons are selected
by crystal monochromators, and their difference yields the phonon dispersion relation.
The monochromaticity of the beam is thus coupled to the beam divergence, which
can be restricted only at the expense of beam intensity. This implies that energy
resolutions significantly better than 10% are impractical to achieve under almost all
circumstances. Since the energy resolution required to detect the normal-state electron-
phonon linewidth is typically a few μeV , phonon lifetime measurements were successful
only in few exceptional cases.

The investigations reported in this thesis were made possible by the development of
neutron resonant spin-echo (NRSE) spectroscopy, which enables the determination of
the lifetimes of dispersive excitations with μeV energy resolution over the entire Bril-
louin zone [18][19][20]. The spin echo is implemented on a triple-axis spectrometer by
using radio-frequency magnetic fields inserted between the monochromator and sample
and between the sample and the analyzer. The extremely high resolutions are obtained
by monitoring the change in the neutron spin of an initially polarised beam before and
after the scattering process. This new generation spectroscopy allowed us to study
the electron-phonon linewidths in conventional and unconventional superconductors
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extended over large parts of the momentum space and with an energy resolution in the
μeV range.

This thesis is divided in the following way. In Chapters 2, 3, and 4, an experimental
and theoretical overview of the electron-phonon interaction, and its importance in
conventional and unconventional superconductivity is given. Chapter 5 presents the
new generation inelastic neutron scattering spectroscopy, which combines the TAS and
the NRSE techniques to attain an energy resolution of almost two orders of magnitude
better than conventional neutron spectroscopy. Chapter 6 deals with the details of
the NRSE-TAS resolution function and data analysis. The experimental results are
presented and discussed in Chapter 7. Final conclusions are drawn in Chapter 8.
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Chapter 2

Phonons and Their Interactions

2.1 The Phonon-Phonon Interaction

Within the harmonic approximation, phonons are non-interacting and have an infinite
lifetime. Including higher terms (anharmonic terms) in the expansion of the potential
leads to an interaction between phonons. As a result, a phonon from a given state de-
fined by the wave vector q and the branch j of the dispersion spectrum ωj(q) will decay
into other phonons after a finite time. Phonon-phonon interactions involve different
number of phonons in the interaction process.

In perturbation theory, the crystal potential is expanded as a power of displacement
and the Hamiltonian may be written as:

H = Ho + λH3 + λ2H4 + λ3H5 + . . . (2.1)

where Ho is the harmonic Hamiltonian and H3, H4, H5,. . . are the perturbation terms
involving three, four, five . . . interacting phonons. The simplest case is the three-
phonon interaction where a phonon decays to form two other phonons and vice-versa.
The possible interactions are shown in Fig.2.1. The Hamiltonian for three-phonon
processes reads1:

H3 =
1

3!

∑
qq′q′′

∑
jj′j′′

�
3/2

23/2N1/2

φ(qj,q′j′,q′′j′′)√
ωqj ωq′j′ ωq′′j′′

δq+q′+q′′,G

× (a†−qj + aqj)(a
†
−q′j′ + aq′j′)(a

†
−q′′j′′ + aq′′j′′)

(2.2)

where φ(qj,q′j′,q′′j′′) is the 3 × 3 matrix element, q, q′, q′′ are the wave vectors
of the three phonons involved in the process and G is the reciprocal lattice vector.
The δ−function guarantees momentum conservation in these processes. The last three
terms of Eq.2.2 represent the different processes of creation and annihilation of the
three phonons.

1For a derivation of the Hamiltonian refer to [21] and [22].
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Figure 2.1: Three-phonon
interaction processes that
may destroy or create the
phonon qj. Creation of
a phonon in the process
contributes to the transi-
tion probability by a factor
[(�/2mω)(n + 1)]1/2 while
a phonon destruction con-
tributes by [(�/2mω)(n)]1/2.

The probability per unit time, that a phonon in an initial state |i〉 with index qj
will decay, as a result of one of the processes mentioned, into some other state |f〉 is
given by the Fermi ”Golden rule”:

W (i → f) =
2π

�
|〈f |H3|i〉| 2 Df (E) (2.3)

where Df (E) is the density of the final states and H3 is the three-phonon Hamiltonian
of Eq.2.2. The lifetime of this phonon qj is then defined as the reciprocal value of the
decay rate. This rate is the sum of the rates of the processes where the phonon qj is
created, minus the rate of the processes where the phonon qj is destroyed. Altogether
it follows that the lifetime τ(qj) is given by:

1

τ(qj)
=

π

16N

∑
q′j′,q′′j′′

|φ(qj,q′j′,q′′j′′)|2
ωqj ωq′j′ ωq′′j′′

δq+q′+q′,G

{[n′(n′′ + 1)(n+ 1) − nn′′(n′ + 1)]× δ(ωq − ωq′ + ωq′′)

+ [n′n′′(n+ 1) − n(n′′ + 1)(n′ + 1)]× δ(ωq − ωq′ − ωq′′)}

(2.4)

Each partial probability contains the square of the transition matrix element times a
delta function which guarantees energy and momentum conservation. The squares of
the matrix elements for the different processes differ only in the occupation numbers
of the phonons n, n′, and n′′. Higher order phonon processes, involving four or more
phonons, are more numerous and arise from higher orders of the perturbation theory
as seen from Eq.2.1. Nevertheless the strength for these interactions decreases as the
number of phonons in the interaction process increases.

As the temperature tends to zero, due to the absence of thermal phonon population
(n′ and n′′ = 0), the decay probabilities for up-conversion processes vanish. The
intrinsic phonon lifetime (due to p− p interaction) is thus dominated by spontaneous
down-conversion decay towards lower energy phonons (Fig.2.1-d). In the case of a
normal phonon dispersion, it has been discussed that four-phonon interaction is the
lowest order decay process [23]. Three-phonon decay processes are kinematically not
allowed. For anomalous phonon dispersion, however, where the phonon phase velocity
exceeds the sound velocity, collinear (i.e wave vectors of the involved phonons are all
along the same direction) intra-branch three-phonon decay processes for transverse
phonons become kinematically allowed. This leads to a finite phonon lifetime even at



2.2. The Electron-Phonon Interaction 15

q1 q2 q

�

Figure 2.2: Anomalous phonon dispersion, as is the case for liquid helium. Within the range
q1 < q < q2, the phonon phase velocity, vp exceeds the sound velocity vs and spontaneous
decay is allowed. vs = ω/q as q → 0; vp = dω/dq

zero temperature. The phonon spectrum of superfluid helium exhibits such an anomaly,
and spontaneous phonon decay at very low temperatures is experimentally observed
for phonons with vg > vs [24][25] (vg and vs are the group velocity and the sound
velocity, respectively). Fig.2.2 shows such an anomalous phonon dispersion. Within
the range q1 < q < q2, the phonon phase velocity, vp, exceeds the sound velocity. Only
phonons within this range can decay to lower-energy phonons and therefore exhibit a
finite lifetime at zero temperature.

2.2 The Electron-Phonon Interaction

In the band model description, electrons in a solid are quasi-particles which occupy
one-electron states. They are described by Bloch functions |k, σ〉 where k is the wave
vector of the electron and σ is the spin.

In a perfect crystal, an electron propagates without scattering, however, the perfect
periodicity is destroyed by the lattice vibrations of the atoms. These vibrations cause
the electrons to have a certain probability of being scattered.

The electron-phonon interaction process induces the annihilation or creation of a
phonon (q, j) and a simultaneous excitation or de-excitation of the electron from state
|k, σ〉 to |k±q, σ〉. These two processes are illustrated in the top row of Fig.2.3. Another
two possible processes are illustrated in the second row of Fig.2.3: recombination of
an electron-hole pair with the creation of a phonon, and the creation of an electron
hole pair by the annihilation of a phonon. These four basic processes can be described
quantum mechanically by a first order perturbation calculation. The Hamiltonian of
the electron-phonon interaction is2:

He−p =
∑
k,qj

g(k1,k2;qj) c†k1jck2j (a
†
-qj + aqj) (2.5)

where c†k1j and ck2j are the creation and annihilation operators for the quasi-particles

with wave vectors k1 = k+q and k2 = k, respectively; a†qj and aqj are the creation

2For more details and derivation of the Hamiltonian we point to the corresponding chapters in the
books by Ziman [21], Grimval [26], and Reissland [22]
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Figure 2.3: The different possible electron-phonon interaction processes.

and the annihilation operators of the phonon of energy ωqj and wave vector q. The
latter two operators in the Hamiltonian mean that two interactions are possible, one
in which a phonon with wave vector q in branch j is created, and a second in which a
phonon q, j is annihilated. Both processes are accompanied by an electron transition
from an initial state k1 into a final state k2. The matrix element g(k1,k2;qj) describes
the electron phonon coupling and is defined as:

g(k1,k2;qj) = −i ε(q, j) · q V (q) (2.6)

where V (q) is the matrix element of the electron-phonon pseudopotential and ε(q, j)
is the phonon polarisation. Due to the factor ε(q, j) ·q, transverse phonons in the first
Brillouin zone will not interact with the electrons. However in higher Brillouin zones,
due to Umklapp processes the factor ε(q, j) · q �= 0 in general.

2.2.1 Kohn Anomalies in the Phonon Dispersion of Metals

The coupling function (Eq.2.6) refers to the scattering of a quasi-particle from a point
k1 to a point k2 in momentum space with q = k1 − k2. Energy and momentum
conservation require that both k1 and k2 lie on the Fermi surface

3. This immediately
introduces a restriction on the phonon wave vector q: phonon wave vectors connecting
nested parts of the Fermi surface will strongly interact with the electrons leading to
a large phonon damping, whereas those which do not span the Fermi surface will not
interact with the electrons. It has been pointed out by Kohn [27] that the interaction of
phonons with the conduction electrons in a metal should cause anomalies in the phonon
spectra. The phonon dispersion should exhibit kinks at wave vectors q+G = 2kF ,
where kF is the Fermi wave vector and G is the reciprocal lattice vector. Fig.2.4-(a)
illustrates a schematic two dimensional (2D) Fermi surface. Phonons with wave vector

3This is due to the fact that the typical phonon energy is in the meV range which is three orders
of magnitude smaller that the typical electron energy.
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a) b)

Figure 2.4: (a) Schematic 2D Fermi surface. The arrows correspond to phonon wave vectors.
(b) Phonon dispersion along q. The kink corresponds to the Kohn anomaly at q = 2kF .

q+G < 2kF (represented by the short arrow in Fig.2.4-(a)) can always excite quasi-
particle quasi-hole pair since they span the Fermi surface. Their self-energy is therefore
renormalized with respect to the bare phonon energy. For q+G > 2kF this condition
is not fulfilled and those phonons do not interact with the electrons. At q+G = 2kF a
discontinuity results in the momentum dependence of the electron-phonon interaction.
This is reflected in the phonon dispersion illustrated schematically in Fig.2.4-(b). The
anomaly at q+G = 2kF is the Kohn anomaly after Walter Kohn [27].

The strength of the Kohn anomaly depends on the joint density of occupied and
unoccupied electronic states. If their quantity is large, conduction electrons may, be-
come unstable with respect to a spatially inhomogeneous perturbation. To first order,
the response of the electrons to such a perturbation is measured by the generalized
susceptibility χq. Instability sets in when this quantity diverges. This happens in a
nesting situation, that is, in a situation in which there are large areas of the Fermi sur-
face which are parallel or nearly parallel. In two dimensional systems, such instabilities
usually lead to a charge- or spin-density wave ground state.

a) b)

Figure 2.5: (a) Phonon dispersion of Pb along the (ξξ0)L branch. Two Kohn anomalies
are observed which are consistent with the Fermi surface geometry. (b) Phonon dispersion of
the (ξ00)Σ1 branch in transition-metal dichalcogenides 2H − TaSe2 and 2H −NbSe2. The
strong Kohn anomaly reflects the quasi-two dimensional nature of the Fermi surface in both
materials. The q = 0.2 wave vector corresponds to a nesting wave vector and leads to a
charge density wave instability. The figures are taken from [28](a) and [29](b).
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Figure 2.6: Dispersion curves for Pb1−xT lx alloys
alloys along the (ξξξ)L branch. The lines are guide to
the eye. The arrows indicate the location of the Kohn
anomalies which, via doping Pb with Tl, progressively
move to lower momenta due to change of the Fermi
surface. Figure is taken from [31].

Highly accurate neutron measurements of ω(q) are required to reveal these anoma-
lies. Such measurements were performed on various metals and indicate a structure of
singularities that is consistent with the Fermi surface geometry. Fig.2.5-a Shows the
phonon dispersion in elemental Pb along the (ξξ0)L branch [28]. Two Kohn anomalies
can be seen in the dispersion. The locations of those anomalies correspond to diameter
of the Fermi surface [30]. Fig.2.5-b shows the phonon dispersion in the transition-metal
dichalcogenides 2H-TaSe2 and 2H-NbSe2 [29]. A pronounced softening occurs around
q = 0.2 in both systems due to the quasi-two dimensional nature of their Fermi surface
which leads to a charge density wave ground state.

Fig.2.6 shows the phonon dispersion of the (ξξξ)L branch in Pb1−xTlx alloys [31].
Pure Pb exhibits a strong Kohn anomaly at q ≈ 0.42rlu. By doping Pb with Tl (hole
doping since Tl has one fewer electron), the Fermi surface shrinks. This is reflected in
the location of the Kohn anomaly, which gradually moves to smaller wave vectors.

In the above figures, the phonon dispersion was plotted along a specific direction. In
two or three dimensions, the locus of Kohn anomalies form a surface, ’the Kohn surface
whose shape and strength reflect the geometry of the Fermi surface. For example, from
Fig.2.4-(a), the Kohn anomaly along kx lies at a smaller wave vector than that along the
ky direction. The strengths of the anomalies also differ due to the different curvatures
along those directions.



Chapter 3

Conventional Superconductivity

3.1 Overview of the Microscopic Theory of Super-

conductivity

3.1.1 The BCS Formalism

The microscopic theory of superconductivity in metals was developed by J. Bardeen,
L.N. Cooper and J.R. Schrieffer (BCS) [2] almost fifty years after the first observation
of superconductivity in Hg in 1911. BCS outlined that the presence of an attractive
interaction between electrons leads to an instability of the normal electronic state and
the formation of a coherent many-body ground state. This attractive potential binds
two electrons of opposite spin together forming the so called Cooper pairs with zero
total spin, which condense to a single statet and form a bosonic condensate.

Until around 1950, it was a mystery as to what could be the mechanism for su-
perconductivity. The standard description of electrons in a metal was Bloch’s picture.
Obviously one had to find some interaction between the electrons which lowers the
total energy of the system when the electrons form a superconducting state.

The mechanism behind the weak attractive force binding the Cooper pairs was
first suggested by Fröhlich [32]. He proposed that the electron-phonon interaction
leads to superconductivity. This hypothesis of a pairing mechanism driven by the
electron-phonon interaction was confirmed by experiments that showed that the critical
temperature, Tc, varied with isotopic mass.

When the Hamiltonian, He−p, is written in the form described in the previous
chapter Eq.2.5, it is not transparent that it gives rise to an attraction between two
electrons. There, a phonon is created or annihilated in a scattering process with an
electron. However, after a phonon is, e.g. created, it can be annihilated by another
scattering process with an electron. Thus, a phonon is exchanged by two electrons giv-
ing rise to an effective interaction (see Fig.3.1). Such a process can occur in second and
in higher orders in the electron-phonon interaction. Without stating the mathematical
details here, Fröhlich showed indeed that the Hamiltonian which contains the effective
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interaction can be written as [33]:

He−e =
∑
q,k,k′

Vkqc
†
k′ck′+qc

†
k−qc

†
k (3.1)

with

Vkq =
| g(k1,k2;qj) |2 �ωq

(Ek1 − Ek2)
2 − �2ω2

q

(3.2)

It is immediately seen that for a small region around the Fermi energy with | (Ek1 −
Ek2) |< �ωq, phonons mediate an attractive interaction among electrons. One could
then roughly argue that a new bound state consisting of two fermions could appear,
such that the bound pair would have bosonic character, and hence, similarly to 4He,
a super fluid phase could appear. Since in this case the pair would be charged, super-
conductivity would take place.

That such a bound state can occur even in the presence of many electrons, is
the subject of the theory developed by BCS [2], [34]. The BCS theory allows the
calculation of several features such as the transition temperature to superconductivity
and the opening of a gap in the one-particle excitation spectrum. In their theory, the
following approximations were made:

a) The pairing interaction is weak.

b) The density of states is not varying too fast near the Fermi surface.

c) The pairing interaction is constant and independent of momentum (Vqk = Vo)
within the cutoffs ±�ωD near the Fermi surface, where ωD is the Debye frequency, and
zero otherwise.

These approximations lead to the BCS equations for the transition temperature Tc

and the superconducting gap Δ 1:

Tc = 1.14�ωD exp(− 1

N(EF )Vo

) (3.3)

and

Δ = 2�ωD exp(− 1

N(EF )Vo

) (3.4)

where N(EF ) is the electronic density of states at the Fermi surface. Since the pairing
interaction is constant, the gap has an isotropic s-wave symmetry.

3.1.2 The Eliashberg Formalism

The equilibrium superconducting properties of any material can be derived from the
knowledge of the spectral function or the Eliashberg function α2F (ω) where α is the
average electron-phonon interaction and F (ω) is the phonon density of states.

α2F (ω) =
1

N(EF )

∑
qj

δ(ω−ωqj)
∑

k

| g(k1,k2;qj) |2 ×δ(Ek1 −EF )δ(Ek2 −EF ) (3.5)

1For details, the reader is advised to refer to [2].
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Figure 3.1: Diagrammatic representation
of the effective electron-electron interaction
through the exchange of a phonon q.

This function measures the contribution of phonons with frequency ω to scattering
processes of electrons at the Fermi level and is related to the dimensionless electron-
phonon coupling parameter λ,

λ = 2

∫ ωo

0

α2F (ω)

ω
dω =

∑
qj

λqj (3.6)

which corresponds roughly to the productN(EF )Vo of the original BCS formula Eq.3.12.

Within the Elliasberg theory, the superconducting gap is given by:

Δ = 2�ωc exp(
λ− μ∗
λ+ 1

) (3.7)

and

Tc = 1.14�ωc exp(
λ− μ∗
λ+ 1

) (3.8)

where �ωc is a cutoff frequency related to the phonon density of states and μ∗ is
the Coulomb pseudopotential which is the reduced Coulomb repulsion experienced by
a Cooper pair. This equation has essentially summarized all the detailed information
contained in the e−p spectral function α2F (ω) into two parameters, λ and ωc. However
depending on the material, μ∗ can offset the effect of λ. An important conclusion from
Eqs.3.7 and 3.8 is that they depend exponentially on material-specific parameters. Even
though this framework provides a remarkably successful description of the physical
properties of conventional low-temperature superconductors, a reliable calculation of
the transition temperature and the energy gap from first principles still presents a
formidable challenge to theory.

3.2 Experimental Approach to the Electron-Phonon

Interaction and Superconductivity

Measurements of electron-phonon interaction in elemental superconductors have been
mostly limited to tunnelling experiments [35],[36],[37],[38]. From these experiments,
α2F (ω) can be deduced in favorable cases, and if F (ω) is known from other measure-
ments2 then α2 can be obtained. Unfortunately, in addition to this being an indirect
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Figure 3.2: Temperature dependence of the linewidths of a) [ξξ0]T2 phonons in Nb and
b) [ξξ0]T1 phonons in Nb3Sn. Superconductivity induced linewidth broadening is observed
for phonons with �ω < 2Δ due to the opening of the superconducting gap. Phonons with
�ω > 2Δ are not strongly effected. The figures are taken from (a) [39] and (b) [40].

method to measure the electron-phonon interaction, the results are often dependent on
the junction preparation.

In 1972 P. B. Allen showed that the coupling parameter λqj is related to the electron-
phonon linewidth Γe−p

q [16], and is given by

Γe−p
qj = π N(EF )�ω2

qj λqj (3.9)

where λqj is the contribution to λ from the particular phonon qj. Thus λqj can be
determined experimentally if we can measure the electron-phonon contribution to the
phonon linewidth. Eq.3.9 offers an ideal tool for the experimental study of the electron-
phonon interaction.

As has been discussed in the previous chapter, the phonon linewidth contains a con-
tribution from the anharmonic phonon-phonon interaction, Γ = Γe−p + Γp−p. As Γp−p

is strongly temperature dependent and Γe−p is roughly temperature independent
3, it is

possible to extract Γe−p by measuring Γ(T ). In addition to intrinsic effects however, an
artificial linewidth broadening in inelastic neutron spectroscopy rises from instrumental
resolution.

Measurements of the phonon linewidth in superconductors offer a direct way to
extract the electron-phonon part Γe−p. In the superconducting phase it is useful to
distinguish between two mechanisms for phonon damping. One is due to phonons
scattering from thermally excited quasiparticles and vanishes as T −→ 0. The other

2e.g. from neutron scattering measurements
3except in the vicinity of the superconducting transition temperature.
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process involves the direct excitation of the quasiparticles across the superconducting
energy gap by phonons. Since the minimum electronic excitation energy in a super-
conductor is 2Δ(T ), all phonons with energy �ωqj ≤ 2Δ(T ) are energetically incapable
of exciting an electron-hole pair and thus have a vanishing Γe−p when T << Tc. The
linewidth Γ in this case is limited by the instrumental resolution and possible p − p
contributions. By subtracting the linewidths measured at T << Tc from those just
above Tc, one obtains Γe−p. The change in the phonon-phonon linewidth within this
temperature range is negligible.

There are measurements of this type by Axe and Shirane on Nb3Sn [41],[40] and by
Shapiro et al. on Nb [39] by inelastic neutron scattering. Fig.3.2 shows the tempera-
ture dependent linewidth for both Nb and Nb3Sn. The measurements were performed
with inelastic neutron scattering on a triple axis spectrometer. Abrupt changes in the
linewidths were observed along the [ξξ0] T2 direction in Nb while for Nb3Sn changes
were observed along the [ξξ0] T1 direction. The linewidth 2Γe−p was about 0.07meV for
Nb and 0.8meV for Nb3Sn. The huge difference in 2Γe−p between these two materials
can be understood from Eq.3.9. 2Γe−p depends on the coupling parameter, λ, and on
the electronic density of states N(EF ). These two quantities are much larger in Nb3Sn
compared to Nb.

In addition to the direct measurement of the momentum dependent e− p interac-
tion, phonon linewidth measurements allow the determination of the magnitude and
the temperature dependence of the superconducting gap. In principle, measurements
of Γe−p along different momentum directions can even probe the anisotropy of the su-
perconducting energy gap. In practice however, it is difficult to obtain the requisite
energy resolution of a few μeV , comparable to the normal state e− p linewidth Γe−p.
Such investigations have therefore been limited to a few selected materials (such as Nb
and Nb3Sn). Attempts to resolve the e − p linewidths in Pb, among other materials,
by conventional neutron spectroscopy have been unsuccessful [42][43].

In Chapter 5 a neutron spin echo method will be introduced that has sufficient
energy resolution to study in detail the e− p interaction and detect fine anomalies in
the phonon spectrum of superconductors.

3.3 Anisotropy of the Superconducting Energy Gap

In the original BCS formulation, a constant effective e − e interaction and spherical
Fermi surface were assumed. The energy gap equation, when solved under these as-
sumptions, yielded a momentum independent isotropic solution. These assumptions
are , of course, rather schematic, and experimentally, gap anisotropy has been ob-
served in most superconductors.These measurements indicate a range of energy gaps
that vary with angle and may be different on different sheets of the Fermi surface
[44][45][14][46][47].

The anisotropy of the gap is directly related to the anisotropy of Vo which includes
both the anisotropy of the Fermi surface, as well as the anisotropy of the phonon
spectrum. The anisotropy within the BCS model can be simply seen if Vo is written in
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an anisotropic form as:
Vkk′ = Vo[1 + a(k)][1 + a(k′)] (3.10)

where k and k′ specify points on a spherical Fermi surface and a(k) is the anisotropy
term which is a function of momentum direction only. Then clearly the gap will be
momentum dependent exhibiting the same anisotropy as Vkk′ :

Δk = Δo(1 + ak) (3.11)

Similarly one can solve the Tc equation to obtain:

Tc = 1.14�ωD exp[− 1

N(EF )Vo(1 + a2
k)
] (3.12)

This last equation demonstrates that Tc is increased by anisotropy. However scattering
due to impurities washes out the gap anisotropy and reduces Tc. It is important to
note that in such a model, no attempt is made to relate the effective potential Vkk′ to
the fundamental parameters of the metal.

To calculate the anisotropic energy gap for a specific material at various points
on the Fermi surface, one needs the knowledge of the momentum dependence of the
spectral function α2

kFk(ω), where k refers to a particular electronic state on the Fermi
surface. The Fermi surface average of α2

kFk(ω) gives the isotropic function (Eq.3.5)
which refers to all electrons participating in superconductivity.

Different anisotropic sources lead to an anisotropy of the function α2
kFk(ω).

• The Fermi surface: Intersection of a spherical Fermi surface with the Bragg
planes results in significant distortions. These deviations from sphericity provide
a major source of gap anisotropy.

• The electronic wave function and e− p interaction: The electronic wave function
can differ from a plane wave specially in regions where the Fermi surface is not
spherical. Since this wave function enters as the initial state in the electron-
phonon matrix element g(k1,k2;qj) (see Eq.3.5), anisotropy will arise in α2

kFk(ω)
from this source.

• The phonon spectrum: The phonon energies in general depend on the direction
of k in the first Brillouin zone and therefore will also be a source of anisotropy
in α2

kFk(ω).

• Umklapp processes: For a definite electronic transition from k1 to k2, the momen-
tum transfer q=k1−k2 serves to label the phonon mode involved. For each initial
state k1, different phonon modes are involved. Not only the set of phonons are
different but also the reciprocal lattice vectors involved in the Umklapp processes
are quite distinct. These difference can lead to large anisotropies.

How big can the anisotropy in conventional superconductors be?

Fig.3.3 represents the calculated results of the gap anisotropy in pure Al (after [48]
[49]). Panel-a shows the spectral function α2

kFk(ω) along the three high symmetry
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Figure 3.3: (a) Calculated α2
kFk(ω) versus phonon frequency for the three high symmetry

directions in Al. The three curves are displaced vertically from each other to facilitate
comparison. The lower curve is for the (100) direction, the middle, (110) direction, and the
upper, (111) direction. (b) The directional electron-phonon mass-enhancement parameter,
λ(θ, φ), for Al calculated in the free electron model for phi = 1◦ (·), 23◦ (×), and 45◦ (◦), as
a function of θ. (c) The energy gap Δ(θ, φ) in the free electron model (same notations as in
(b)). (d) A schematic diagram showing the relative positions in the 1/48th irreducible zone
on the real Fermi surface of the 62 points at which calculations have been performed. (e)
The directional energy gap edge Δ(θ, φ) including anisotropy due to phonon spectrum, the
e − p Umklapp processes, and electronic band structure.The shaded regions indicate places
where there is no Fermi surface. The figure is taken from [48] and [49].

directions, (100), (110), and (111). The curves were calculated assuming a free elec-
tron model. The considerable amount of anisotropy is mainly due only to Umklapp
anisotropy and the anisotropy of the phonon spectrum itself. Panel-b shows the cal-
culated λk ≡ λ(θ, φ) along three constant φ arcs and panel-c shows the results for the
Fermi surface variation of the gap in Al (Note that band structure corrections have
been left out. The Fermi surface is assumed to be spherical and the electronic wave
functions to be plane waves). A comparison with the results for λ(θ, φ) shows that
the gap varies in much the same way. From panel-c, the authors calculated the mean
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Figure 3.4: The superconducting gap
Δ(θ, φ) for three constant phi = 1◦, 23◦,
and 45◦, as a function of θ. The regions
where the Fermi surface does not exist
are indicated by vertical lines. The calcu-
lation include anisotropy due to phonon
spectrum, the e − p Umklapp processes,
and electronic band structure. The figure
is taken from [50]. (b) Electron-phonon in-
teraction λ (top) and the superconducting
gap Δ (bottom) on the two Fermi surface
sheets of Pb at T = 0K. Figure is taken
from [51] .

square anisotropy parameter a2 =< a2
k > (see Eq.3.12),

a2 =
< Δ2

k > − < Δk >2

< Δk >2
(3.13)

and found a2 = 0.0084 which is small but significant, concluding that phonon spectrum
anisotropy and Umklapp anisotropy provide a significant source of variation in Δ(θ, φ).

In the above results, a spherical Fermi surface was assumed. The authors also stud-
ied the modifications in Δ(θ, φ) by introducing band structure effects. Fig.3.3-d shows
a projection of the Al Fermi surface onto a sphere. The shaded area indicates places
where no Fermi surface exist. These are the segments where the Bragg planes inter-
sect the Fermi surface. In these regions, the Fermi surface can be quite distorted and
the multiple plane wave nature of the electronic wave functions becomes important.
Fig.3.3-e shows the gap anisotropy along different directions including all the different
sources of anisotropy in the calculation. The mean square anisotropy parameter cal-
culated from panel-e is a2 = 0.0187, which is more than twice the result found for the
free electron model. It is thus evident that band structure effects make a significant
contribution to the gap anisotropy in Al. Another interesting feature arising from gap
anisotropy is the enhancement of Tc (see Eq.3.12). The authors calculated the ratio
T p

c /T d
c = 1.091, where T p

c and T d
c are the superconducting transition temperatures in

the pure and dirty limit, respectively. The theory predicts 9% increase in Tc compared
to a 5% increase found in experiments [48].

A similar sort of calculation for the gap anisotropy in the strong coupling super-
conductor Pb has also been performed [50]. Fig.3.4-a shows the results of Ref. [50].
The solid dots represent points where explicit calculations were performed. The value
of the mean square anisotropy for Pb is found to be a2 = 0.009, which is much smaller
than that for Al. Recent first-principles density functional calculations performed in
Pb yield a superconducting gap which exhibits largely different values on the two sheets
of the Fermi surface [51] (see Fig.3.4-b). In these calculations, the value of the gap is
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Technique Al In Pb Sn

Electromagnetic radiation 0.02 0.01 0.001/0.0002 0.02/0.01
Ultrasonic attenuation 0.011/0.02 0.0003/0.01 0.0009 0.04/0.03

Specific heat 0.01 0.01 0.33?? 0.0035
Critical magnetic field 0.013 0.027 0 0.022
Thermal conductivity 0 0.0008 0 0.01

Tunneling 0.009/0.001 - 0.007/0.031 0.026
Table 3.1: Summary of the gap anisotropy parameter < a2 > for various materials measured
by various techniques. The table is taken from [44].

underestimated (1.5meV < 2Δ < 2.2meV ), but the anisotropy value (30%) is larger
than in previous theories.

How good is the agreement between the available theories and experimental results?
From the experimental point of view, there are two different methods to measure the
anisotropy of the energy gap: Those from which only the existence of anisotropy can be
deduced, and those which can identify selective processes that allow a direct determi-
nation of Δ(k) for various k-directions in the crystal. In the first case, the anisotropy
is determined from macroscopic properties such as the specific heat, change in Tc due
to impurities, and the critical magnetic field. These properties are determined by an
angular average of Δ(k) over all states k on the Fermi surface. They are directly
proportional to the parameter < a2 >. On the other hand, experiments such as super-
conductive tunneling, ultrasonic attenuation, and microwave absorption can directly
access the momentum variation of the gap. A brief review of the gap anisotropy mea-
surements from the various mentioned techniques is given in Table-3.1. The results
suggest the existence of gap anisotropy in many materials. There is, however, a large
disagreement between values obtained by different techniques [44]. Comparison of ex-
perimental and theoretical results is thus severely limited by experimental difficulties
[52][53] which may arise from the difference in bulk and surface sensitive techniques,
uncontrolled momentum-space averaging in tunneling spectroscopy [53][52][46][47][54],
and non equilibrium effects in phonon imaging experiments [55].

It is therefore still largely unclear to what extent the calculations and the experi-
mental results are reliable.
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Chapter 4

Unconventional Superconductivity

4.1 Phenomenology of Cuprates

Superconductivity in the cuprates has been a problem standing for more than two
decades and there is still no agreement on the pairing mechanism. For some recent
reviews see [56][57][58]. Superconductivity, however, is not the only interesting property
of cuprates. The normal state (T > Tc) has also anomalous properties. Still today it
is a challenge to explain the normal state properties and in particular the underdoped
region of the phase diagram, which remains a controversial topic.

The basic building blocks of superconducting cuprates are the CuO2 planes sepa-
rated by layers with rare-earth elements. From a chemical point of view, La2−xSrxCuO4

(LSCO) is among the most simple cuprates. Holes are doped into the CuO2 plane by
substituting La with Sr. The hole doping content is therefore directly determined by
the concentration of Strontium. The lattice structure of LSCO is shown in Fig.4.1-
a. It exhibits a tetragonal or orthorhombic structure depending on doping and tem-
perature. The second order transition from low-temperature orthorhombic (LTO) to
high-temperature tetragonal (HTT) is usually used to estimate the doping level of the
samples. The lattice constants, at room temperature, are a = b = 3.8Å and c = 13.2Å
(tetragonal notation).

The Fermi surface of LSCO studied by angle resolved photoemission spectroscopy
(ARPES) is shown in Fig.4.1-b for different Sr concentrations. As the hole concentra-
tion decreases, the Fermi surface near (π, 0) smoothly moves through (π, 0) so that the
topological center of the Fermi surface is turned over from (0,0) to (π, π) for 20% Sr
concentration. On the other hand, the position of the Fermi surface near (π/2, π/2) is
less sensitively dependent on the hole concentration.

High-Tc superconductors (HTSC) exhibit a rich phase diagram. Fig.4.2 illustrates
schematically the different phases as a function of the hole doping. This section is
devoted to a brief examination of the generic phase diagram of HTSC.

Insulating regime: Band calculations predict a half-filled metallic band in the
undoped phase of the cuprate superconductors. The parent compounds are however
Mott insulators [61] due to the strong Coulomb interaction U between the d-shell Cu
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Figure 4.1: (a) Crystal structure of La2−xSrxCuO4. The CuO2 planes are seen in the
bottom and top of the unit cell. Sr substitution for La, changes the carrier concentration
on the CuO2 planes, drastically altering the electronic properties of this compound. Figure
taken from [59]. (b) The Fermi surface of La2−xSrxCuO4 for different Sr concentrations.
Figure taken from [60]

electrons. The energy cost t for an electron to jump to a neighboring site is much smaller
than the Coulomb interaction (t << U) and therefore the electrons prefer to localize
on the Cu sites. In this insulating regime the Cu spins interact via a superexchange
interaction that causes them to order antiferromagnetically below the Neel temperature
TN ≈ 300K.

Metallic regime: In the other extreme (t >> U) the electrons delocalize and form
a metallic regime. Electrons in metals have been successfully described by Landau’s
Fermi liquid theory. A signature of a Fermi liquid is a quadratic temperature depen-
dence of the in-plane resistivity ρab(T ) = ρo + AT 2 where A is a constant and the T 2

term stems from electron-electron interaction. At low-temperatures (T < 50K) such
a T-dependence has been observed in the overdoped and non-superconducting region
(x > 0.3) of LSCO [62]. Often empirical observations also suggest that conventional
Fermi liquid theory applies to the overdoped regime of HTSC.

Strange metal phase: It is still debated to what extent Fermi liquid theory applies
to the normal state of HTSC in general. The normal state of BCS superconductors is
a Fermi liquid and the BCS theory identifies superconductivity as an instability of the
Fermi sea. The normal state of optimally doped HTSCs is, however, not a standard
Fermi liquid since it exhibits anomalous metallic behavior. For example the in-plane
resistivity scales linearly with temperature ρab(T ) = ρo + AT for Tc < T < 1000K
[63]. This T-dependence demonstrates unambiguously that the normal state of optimal
doped HTSCs is not a conventional Fermi liquid. The normal state around optimal
doping is therefore often denoted as a strange metal. The microscopic mechanism for
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Figure 4.2: (a) and (b) are two different ways to draw the phase diagram. The overdoped
region is a normal metal (Fermi liquid) and the undoped compound is an antiferromagnetically
ordered Mott insulator. Between these extrema superconductivity exists. The controversy
about the pseudogap phase leads people to draw the phase diagram in two different ways as
shown in the panel (a) and (b).

this strange metal is still controversial.

Pseudogap: Another long standing problem is the normal state of underdoped
cuprates. This region of the phase diagram is often denoted as the pseudogap (PG)
phase. ARPES has directly confirmed the existence of a pseudogap in the normal state
(T > Tc) electronic spectra of the underdoped cuprates [64]. Near the (π, 0) point a
strong suppression of the density of states has been observed. The pseudogap phase has
been studied directly and indirectly by a vast number of experimental techniques [65].
This has led to a number of different definitions of pseudogap transition temperature
TPG and the pseudogap magnitude ΔPG. Although most experimental techniques agree
that TPG and ΔPG increase with decreasing doping in the underdoped regime [64], the
pseudogap phase remains an unsettled issue.

Broadly speaking there exist two different interpretations of the pseudogap phase.
The first idea is that the pseudogap is a precursor to superconductivity. In this picture,
preformed pairs form locally but without long range phase coherence in the normal state
below the crossover temperature TPG. This view has been supported by the observa-
tion of vortex-motions through the Nernst effect in the normal state of underdoped
cuprates [66][67]. As a precursor for superconductivity the pseudogap phase should
exist above the superconducting dome. The phase diagram is therefore often drawn as
shown in Fig4.2-a. The other class of models argues that the pseudogap phase is related
to a generic thermodynamic transition into a phase with a hidden order parameter.
Within this scenario, the order vanishes inside the superconducting dome as shown
in Fig4.2-b. The topology of this phase diagram is similar to that of certain heavy
fermion compounds where the superconducting dome appears around an antiferromag-
netic quantum critical point [68]. In heavy fermion materials superconductivity and
non-Fermi-liquid-behavior often appear in conjunction with a quantum critical point
[69]. This might suggest that there may be some aspects of quantum critical physics
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that are shared between the heavy fermion and cuprate materials [70].

4.2 Proposed Theories of High Tc Superconductors

There still exists no consensus about the microscopic mechanism of high-temperature
superconductivity. A microscopic theory should not only explain superconductivity,
but describe the phase diagram in general. It should provide an explanation for the
strange metal phase and the pseudogap. At zero hole doping the model should correctly
describe the Mott insulating phase and in the strongly overdoped regime a Fermi liquid
like phase should appear. Many ideas have been proposed during the last couple
of decades. Here, a few of the most influential theories are outlined. For a recent
discussion of the various scenarios, see [71].

Phonon-mediated HTSC: Some researchers emphasize the role of lattice-vibrations
[56][72], suggesting that HTSC is mediated by phonons as in conventional BCS super-
conductors. For some doping levels, an isotope effect on Tc has been observed. However
the isotope effect vanishes at optimum doping. In undoped cuprates, an isotope ef-
fect may arise from competition between superconductivity and phases with localized
electrons (e.g. stripe phases). It is difficult to reproduce the experimentally observed
d-wave pairing symmetry in such models

RVB approach: Very early on, P.W. Anderson suggested the concept of a resonant-
valence bond (RVB) state in which magnetic singlet pairs exist in a spin liquid like state
[73]. RVB correlations can lead to various other ground states such as antiferromag-
netism and superconductivity. The RVB concept provides an explanation for d-wave
superconductivity and pseudogap state, where singlet pairs exist but phase coherent
superconductivity is absent. The RVB-approach is also able to describe the strange
metal phase [74] without the use of a quantum critical point. This model provides an
explanation to many of the salient features in the phase diagram of HTSCs. For a
more detailed review see [56][75].

Spin fluctuations: While the RVB approach treats the problem with a large
Coulomb repulsion U , the spin fluctuation models start with a weak interaction U [76].
These models also provide a natural explanation for d-wave symmetry of the gap func-
tion. A naive way to understand these models is to assume that the spin fluctuations
play the same role as the phonons do for the conventional superconductors. These
models are also able to explain the strange metal phase since an antiferromagnetic
quantum critical point will lead to a marginal Fermi liquid like spectrum [77].

Inhomogeneity-induced pairing: Another class of theories emphasizes the ten-
dency of these materials to phase separate into hole rich and hole poor regions. The
fluctuations of these mesoscopic structure are then responsible for phase coherent su-
perconductivity. In the overdoped region the system is more homogeneous, which
weakens the pairing. On the other hand, in the underdoped region the system is too
granular and phase coherence can therefore not be obtained. In these models that
involve stripes or phase separation, the pseudogap is a phase where local pairing is
possible. For a review see [78].
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4.3 Experimental Overview of the Normal and Su-

perconducting Gaps in Cuprates

The symmetry of the superconducting order parameter is a forward step in under-
standing the mechanism behind high temperature superconductivity. Conventional
BCS superconductors exhibit an s-wave order parameter, reflecting the spherically
symmetric nature of the pair wave function. For cuprates, theoretical analysis of the
CuO2 plane with consideration of the strong on-site Coulomb interaction leads to other
symmetries of the order parameter [79][80][81][82]. In particular, pairing theories based
on the Hubbard model lead to a d-wave order parameter or a mixed symmetry order
parameter with a strong d-wave component [79][80][81][82].

The magnitude and symmetry of the gap function, Δ(k), can be determined ex-
perimentally. ARPES has played an important role in understanding the cuprates.
It provides the ability to measure the magnitude of the superconducting gap as a
function of momentum. High resolution ARPES experiments are consistent with the
d-wave nature of the superconducting gap [4]. Fig.4.3 shows a plot of the gap magni-
tude as a function of angle around the Fermi surface (the figure is taken from [4]). It
is clear that the gap is consistent with the form predicted for a d-wave superconductor
2Δ(k) = Δ[cos(kxa) − cos(kya)] with a zero (node) gap along the diagonal at 45◦ to
the CuO2 bond direction and a maximum gap (antinode) along the (π, 0) direction.

The gap magnitude (Δmax ≈ 30meV ) in the HTSCs is much larger than that pre-
dicted by BCS. Although different techniques yielded slightly different gap values, all
are in the range of 2Δ/kBTc =6 to 12, much larger than the value 4.3 given by BCS.
This is not the main difference between BCS and HTSC. In conventional supercon-
ductors, the appearance of the superconducting energy gap in the electronic spectrum
indicates pairing of electrons into Cooper pairs, a phase coherence, and a simultane-

Figure 4.3: Superconducting gap 2Δ(k) as
measured by angle resolved photoemission
(ARPES) on Bi2Sr2CaCu2O8+x sample with
Tc = 87K measured at T = 13K. The gap,
measured along the Fermi surface as shown in
the inset, is strongly anisotropic and exhibits a
node along the zone diagonal. The solid curve
is a fits to the data using a d-wave gap. From
H. Ding et al. [4].
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Figure 4.4: Angle resolved photoemission on underdoped Bi2Sr2CaCu2O8 sample with the
Tc = 80K at various temperatures. The different energy distribution curves (EDCs) cover
the whole Fermi surface from the node (lowest curve) up to the antinode (uppermost curve).
Gapless spectra are indicated by solid dots. The Fermi surface and location of the various
EDCs are shown in the far right panel. Figure from [83]

ous transition into a macroscopic superconducting state. In HTSC the situation is
more complicated. A pseudogap (whose relation to the superconducting gap remains a
mystery) develops well above Tc [65] [86]. Fig.4.4 shows ARPES spectrum for the tem-
perature and momentum evolution of the superconducting and the normal state gaps
in underdoped Bi2Sr2CaCu2O8 with Tc = 80K (taken from [83]). The spectra in panels
(a) ,(b) and (c) are in the superconducting state. One can clearly see the variation
of the superconducting gap along the Fermi surface. It decreases monotonically from
its maximum value at the antinode (top curve, point 14 on the zone edge) eventually
vanishing at the node (bottom curve, point 1 on the zone diagonal). The spectra in
panels (d) and (f), which are in the normal state above Tc, show a normal state pseu-
dogap persisting to temperatures far above Tc. A closer look at Fig.4.4 shows that the
momentum dependence of the gaps in the superconducting and the pseudogap states
are dramatically different. This behavior has not been observed in previous ARPES
measurements [87] because the nodal BCS-like gap region has been overlooked as a
result of insufficient momentum-space sampling.

With the enhanced momentum resolution of ARPES measurements, distinct energy
gaps has been reported by other authors as well [84]. Fig.4.5 shows high resolution
ARPES spectra for Bi2Sr2CaCu2O8+δ in the underdoped and overdoped region of the
phase diagram suggesting two distinct gaps. Close to the nodal direction, the super-
conducting gap opens at Tc and has a BCS-like temperature dependence (panel-b).
Close to the antinodal direction however, the gap persists above Tc (panel-c). Fig.4.5-g
shows a schematic summary of the temperature dependent evolution of the gap function
at three different doping levels. The normal state pseudogap strongly deviates from
d-wave symmetry. The authors [84] suggest that the energy gap opening at Tc near
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Figure 4.5: (a) A partial Fermi-surface mapping measured at 102K in a quadrant of the
first Brillouin zone in slightly underdoped Bi2212 (Tc = 92K). (b) Temperature dependence
of the fitted gap size at Fermi-surface crossing points near the node, as indicated in the
insets. The dashed lines show the temperature dependence of the superconducting gap based
on weak-coupling BCS theory and serve as a guide to the eye. (c,d,e,f) Temperature and
momentum dependence of the gap profile. (g) Schematic illustrations of the gap function
evolution for three different doping levels: Underdoped sample with Tc = 75K, Underdoped
sample with Tc = 92K, Overdoped sample with Tc = 86K. At 10K above Tc there exists
a gapless Fermi arc region near the node; a pseudogap has already fully developed near the
antinodal region (red curves). With increasing doping, this gapless Fermi arc elongates (thick
red curve on the Fermi surface), as the pseudogap effect weakens. At T < Tc a d-wave like
superconducting gap begins to open near the nodal region (green curves); however, the gap
profile in the antinodal region deviates from the simple dx2−y2 form. At a temperature well
below Tc (T << Tc) the superconducting gap with the simple dx2−y2 form eventually extends
across entire Fermi surface (blue curves) in UD92K and OD86K but not in UD75K. The
figure is obtained from ref. [84].

the nodal region is associated with the order parameter of the superconducting state,
whereas the pseudogap near the antinodal region represents an energy scale associated
with a different mechanism that may or may not be related to superconductivity. The
opening of the gap at Tc was difficult to understand in the context of previous ARPES
[88][87][89] and scanning tunnelling microscope results dominated by the antinodal
region.

Notably, the temperature dependence of the scanning tunnelling microscope (STM)
spectrum has recently been revisited and the coexistence of two energy gaps in un-
derdoped cuprates has also been suggested [85][90]. In particular, a normalization
procedure reveals that one of the gaps disappears at Tc [90]. Fig.4.6 shows represen-
tative spectra [85] measured at temperatures far above Tc that allow a comparison of
the behavior of overdoped, optimal and underdoped Bi2Sr2CaCu2O8+δ samples. Once
the pairing gaps collapse at high temperatures, the overdoped and optimally doped
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Figure 4.6: Spatially resolved STM measurements of gap formation in Bi2Sr2CaCu2O8+δ

samples with different Tc values (hole concentration of 0.12 to 0.22). (a) Representative
spectra taken at specific locations well above Tc for all doping levels . (b) Spectra taken at
20K at various locations on the underdoped (UD73) sample. Within the large gap a kink is
observed at lower energy, indicated by the arrow. Inset, distributions of the large gap and
the kink energy on the UD73 sample at 20K. The figure is from ref.[85].

samples show remarkably similar electron-hole asymmetric spectra. In contrast, the
underdoped sample (UD73) shows very different, V-shaped spectra with an ill-defined
gap, which is insensitive to increasing temperature. These spectra are qualitatively
different from those observed on optimal and overdoped samples above Tc: the gap
closes in overdoped samples but ’fills in’ for underdoped samples.

A key question is whether the gap above Tc is associated with pairing, and what
determines the temperature at which incoherent pairs form. Spatially resolved STM
measurements of gap formation on samples with different Tc values show that pairing
gaps nucleate in nanoscale regions above Tc. These regions proliferate as the temper-
ature is lowered, resulting in a spatial distribution of gap sizes in the superconducting
state. Despite the inhomogeneity, every pairing gap develops locally at a temperature
Tp slightly above Tc, following the relation 2Δ/kBTp = 7.9 ± 0.5. This observation is
also supported by measurements of fluctuating superconductivity, which have shown
that the onset temperatures for these fluctuations are well below the pseudogap tem-
perature for underdoped samples [92]. At very low doping however, all the different
spectra indicate the presence of a ’kink’ indicating the importance of a lower energy
scale, as shown in Fig.4.6-b. The probability of observing such spectra in optimal or
overdoped samples is negligible. The inset of Fig.4.6-b shows a mapping of the spatial
variation and distribution of each energy scale. The presence of this additional en-
ergy scale indicates that the large gaps seen in underdoped samples cannot be simply
associated with pairing.

Evidence for two energy scales, one related to pairing and one related to strong
pseudogap behavior in underdoped copper oxides, has also been observed in recent
Raman measurements. Electronic Raman spectroscopy is capable of probing quasipar-
ticles of the superconducting state in selected parts of momentum space, namely the
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Figure 4.7: Universal doping dependence of the ratios ωAN/Tmax
c and ωN/Tmax

c of the
antinodal (B1g) and nodal (B2g) superconducting peaks (obtained from [91]). The error bars
on the B1g and B2g Raman peak locations have also been reported and show unambiguously
that there are two energy scales in the underdoped side of hole-doped cuprates. The references
in the figure are those in [91]

antinodal (B1g symmetry, cross polarised rotated 45◦ with respect to the CuO bond)
and nodal (B2g symmetry, cross polarised parallel to the CuO bond) regions, where the
amplitude of the superconducting gap reaches its maximum and vanishes respectively.
Fig.4.7 shows the characteristic ratios ωAN/Tmax

c (Antinodal) and ωN/Tmax
c (Nodal)

for several families of cuprates as a function of doping at a fixed temperature well below
Tc (T

max
c is Tc at optimal doping). The figure is taken from [91]. These ratios have a

universal dependence on doping. For underdoped compounds, two distinct scales are
present which are clearly separated with the two ratios behaving in opposing ways as
a function of doping. A unique energy scale (and doping dependence) is recovered in
the optimally doped and overdoped regime.

In summary, all data clearly demonstrates the existence of two distinct energy scales
in the superconducting state of underdoped cuprates, with opposite doping depen-
dence. A pseudogap formation owing to preformed Cooper pairs is not consistent with
the observed results from various techniques. The distinct temperature and doping
dependence seem to suggest a competing nature between the nodal BCS-like super-
conducting gap and the antinodal pseudogap. It is not unrealistic to assume that the
pseudogap is due to the formation of a competing state, such as a density-wave state,
which explains why some parts of the Fermi surface do not develop superconducting
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Figure 4.8: Phonon dispersion curves of undoped La2CuO4 and underdoped
La1.9Sr0.1CuO4. The figure was taken from Chaplot et al. [93].

coherence.

4.4 Importance of the Electron-Phonon Interaction

in HTSC

After the discovery of HTSC, there was initially much interest in the electron-phonon
(e − p) interaction. It was, however, soon concluded that the e − p interaction is too
weak to explain superconductivity, in particular d-wave superconductivity. The interest
was shifted to purely electronic models. Recently however, there has been substantial
experimental evidence that e− p interaction plays an appreciable role for a number of
properties.

There have been extensive studies of phonons in HTSC using neutron scattering.
For reviews, see, e.g., Pintschovius [93]. Fig.4.8 shows the phonon dispersion for un-
doped (left-hand side) and doped (right-hand side) La2−xSrxCuO4 [94]. Shell model
calculations give a rather accurate description of almost all phonon branches. One
striking exception is the highest mode of Δ1 symmetry for doped systems. This is the
so-called half-breathing phonon, which is a bond-stretching vibration of the oxygen
atoms in the CuO2 plane. This phonon is rather well described by the shell model for
the undoped system. However, doping leads to a strong softening half way along the
(ξ, 0, 0) direction. This softening is anomalous in the sense that it is not captured by
the shell model (see Fig.4.9 after [93]). The anomalous behavior is also illustrated by
the large broadening up to 5meV in the doped system. Both the softening and the
width indicate that this phonon couples strongly to doped holes. Similar anomalies
are found in several cuprates and are particularly large for systems with static stripe
order [8].

There has also been a substantial interest in a B1g phonon involving out-of-plane



4.4. Importance of the Electron-Phonon Interaction in HTSC 39

Figure 4.9: (a) Dispersion of the longitudinal (Δ1-symmetry) plane polarized Cu-O bond-
stretching vibrations along the (ξ00)- direction in La2−xSrxCuO4 [2, 7]. Lines are a guide
to the eye. Linewidth of the same phonon as a function of the reduced wavevector (ξ00) for
doping x = 0 (b), x = 0.1 (c) and x = 0.15, 0.30 (d). The full line shows the experimental
resolution including focusing effects. The figure illustrates the large broadening for the doped
system and the small intrinsic broadening for the undoped (x = 0) system. Figure after
Pintschovius [93].

and out-of-phase c-axis vibrations of oxygen atoms in the CuO2 plane. This phonon
has an energy of about 42meV for YBa2Cu3O7−δ and has been studied using both
Raman [96][95] and neutron scattering [54, 55]. This phonon shows an interesting
change of frequency and linewidth as the compound is cooled below Tc (see Fig.4.10)
and an asymmetric Fano line shape is observed in Raman scattering.

Signatures of strong coupling of phonons to electrons have also been observed in
ARPES experiments [86]. Most of the interest in the e−p interaction has been created
by the observation of a kink in the experimental electron dispersion for several cuprates
[7][97][98][99][100]. Some typical results are shown in Fig.4.11 obtained from [7]. The
authors emphasize that such a kink is found for three different families of compounds
(LSCO, Bi2201 and Bi2212), for different dopings and both below and above Tc. For
noninteracting electrons, the ratio of the slopes below and above the kink is expected
to be given by the dimensionless electron-phonon coupling 1+ λ′. Fig.4.11-f shows the
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 Figure 4.10: Temperature
dependence of frequency and
the linewidth (FWHM) of the
B1g-like mode of Y BCO6.95

(Tc = 92K) for the YY polar-
isation. The blue line corre-
sponds to the temperature de-
pendence of the pure phonon-
phonon interaction (anhar-
monicity). Superconductivity
induced changes are observed
below Tc due to the opening of
the superconducting gap. The
figure is obtained from [95].
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Figure 4.11: Dispersion in the (0, 0) −
(π, π) direction for LSCO, Bi2201 and
Bi2212 for different dopings and tempera-
tures. The results in (a) and (b) were ob-
tained for T = 20 K and in (c) for T = 30
K. The kink position in (a) is compared to
the half-breathing phonon energy at q =
(π, 0) (thick red arrow) and the phonon
width and dispersion (shaded area). Inset
in (b), dispersions off the (0, 0)−(π, π) di-
rection, showing also a sharpening of the
kink on moving away from the nodal di-
rection. The black arrows indicate the po-
sition of the kink in the dispersions. Panel
(f) shows the change 1+λ′ of the slope at
the kink. The figure is obtained from [7].

change of slope 1 + λ′ giving a value of λ′ ≈ 1.

While the early measurements showed only one kink at about 70meV , later work
found several structures at smaller binding energies [6][101]. Fig.4.12 shows the esti-
mated real part of the self-energy and its second derivative for La2−xSrxCuO4 (after
[6]). Structures at about 40− 46 and 58− 63 meV and possibly at 23− 29 and 75− 85
meV are observed (Fig.4.12-b), suggesting that there is coupling to bosons at these
energies. The multiple features show marked difference from the magnetic excitation

Figure 4.12: (a) The effec-
tive real part �Σ(k, ω) of the
electron self energy for LSCO
for different dopings. The ar-
rows in the figure mark possi-
ble fine structures in the self-
energy. (b) The second-order
derivative of the calculated
�Σ(k, ω). The four shaded
areas correspond to energies
of (23-29), (40-46), (58-63)
and (75-85) meV where the
fine features fall in. (c) The
phonon density of states for
LSCO measured from neutron
scattering. The figure is ob-
tained from [6].
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spectra measured in LSCO which is mostly featureless and doping dependent. In com-
parison, the features in Fig.4.12-b show more resemblance to the phonon density of
states (DOS), measured from neutron scattering on LSCO (Fig.4.12-c), in the sense of
the number of modes and their positions. This similarity between the extracted fine
structure and the measured phonon features favors phonons as the nature of bosons
involved in the coupling with electrons. In this case, in addition to the half-breathing
mode at 70 − 80 meV that was previously considered strongly coupled to electrons
(Fig.4.9), those results suggest that several lower energy phonons are also actively
involved.

In conclusion, evidence from different spectroscopic techniques has shown a sub-
stantial electron-phonon interaction in HTSC. It is therefore of particular interest to
study linewidth broadening and energy shift of certain phonon modes as a function
of momentum as well as doping by high resolution inelastic neutron scattering experi-
ments.
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Chapter 5

Neutron Spectroscopy

Neutron scattering studies with resolution in to the sub-μeV range are now possible by
the use of the neutron spin-echo (NSE) technique first introduced by Mezei [18], [102].
In this technique the neutron energy transfer, �ω, can be measured with a resolution
several orders of magnitude higher than the energy spread of the incident neutron
beam, contrary to the conventional neutron spectrometers.

First generation spin echo spectrometers were very successful in the study of quasi-
elastic and only weakly dispersing excitations. However for the measurement of disper-
sive excitation like phonons, a special focusing technique, proposed by Mezei in 1977,
was required. This focusing technique was realized by Golub and Gähler in 1987 [103]
and was implemented on the spectrometer TRISP ”triple axis spin echo” at the FRM-2.
This chapter is concerned with the neutron resonance spin-echo triple-axis spectroscopy
(NRSE-TAS). An overview of the basic features of TRISP and the different operating
modes are discussed.

5.1 Triple-Axis Spectroscopy

Since the 1950’s, triple-axis spectrometry (TAS) has been the method of choice to
experimentally determine energy- and momentum-resolved phonon spectra of solids
[17]. The technique uses crystal monochromators to define the initial and the final
neutron energies (the first and the third axes of the TAS). The second axis (the sample)
defines the momentum transfer. Energy and momentum conservation requires:

�ki − �kf = �Qo = �qo + �G

�
2

2m
(k2

i − k2
f ) = �ωo

(5.1)

where �ki(f) is the wave vector of the initial (final) neutron, and �qo and �ωo are the wave

vector and the energy of the elementary excitation. �G = �a∗h+ �b∗k+ �c∗l is a reciprocal
lattice vector. Rotating the three axes (monochromator, sample, and analyzer) allows
one, in principle, to probe nearly any coordinate in energy-momentum space.

43
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Figure 5.1: (a) Color coded intensity map of the TAS resolution ellipsoid in the energy-
momentum space. The measurements were performed in the TAS mode with fixed kf =
1.7Å−1 (the NRSE components switched off). (b) Focusing and defocusing TAS scan of the
(0.15 0.15 0)T2 phonon in Pb. The observed width is a convolution of the resolution ellipsoid
with the intrinsic linewidth.

The small scattering cross section of neutrons and the limited neutron flux neces-
sitates the use of large beam profiles with finite divergency. The result is a gain in
intensity at the expense of energy and momentum resolution. The energy resolution is
therefore restricted to the meV range and significantly better resolution are impractical
to achieve in almost all circumstances. Although phonon energies can be accurately
measured, their linewidths (μeV range in case of electron-phonon interaction) are usu-
ally beyond the resolution limit of the TAS.

The TAS resolution function has been treated by Cooper and Nathans and details
can be found in [104],[17]. Experimentally the resolution function, which represents
a four dimensional ellipsoid, three dimensions in momentum space and one in energy
space, is obtained by performing constant energy or momentum scans at the Bragg
peak. Fig.5.1-a shows color coded intensity map of the (200) Bragg peak from a perfect

RuMnF3 crystal in the (�Q, ω) space. The measurement was carried out on TRISP,
operated in the TAS mode. The measured signal is a convolution of the spectrometer
resolution function and the scattering function of the sample. Since the Bragg peak
of a perfect crystal is a delta-function in both �Q and ω space, the signal displays the
instrumental resolution function.

To measure the phonon energy, by performing a constant energy or a Q−scan
for example, the resolution ellipsoid is scanned through the phonon dispersion. The
observed width depends on the orientation of the resolution ellipsoid with respect to the
dispersion surface . In the ideal focusing configuration the long axis of the resolution
ellipsoid is parallel to the surface. This results in a narrow phonon peak (TAS focusing
condition). In the contrary case, when the long axis is orthogonal to the surface, the
phonon peak will be much wider (TAS defocusing condition). In a typical case, one
has no perfect focusing, instead there will be a choice between more focused and less
focused configurations (see Fig.5.1-b). Since the TAS energy resolution is in the meV
range, deconvoluting the measured peak with the resolution ellipsoid, to obtain an
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Figure 5.2: schematic layout of a classical neutron spin echo setup (top view). M, S, and
A denote the monochromator, the sample, and the analyzer (the three axes of the TAS
instrument). A polarised neutron beam (red arrows) Larmor precesses in the first coil of
constant magnetic field B (grey region) and reverses its precession in the second coil. The final
beam polarisation is measured by a supermirror polariser (P) and detected at the detector
(D).

intrinsic linewidths in the μeV range is unrealistic.

5.2 Neutron Spin Echo Spectroscopy

A neutron spin-echo method to improve the energy resolution of TAS by several orders
of magnitude without loss of intensity was proposed by Mezei, almost thirty years
ago [105]. The technique exploits the neutron’s intrinsic angular momentum (spin)
to access extremely high energy resolution [106]. The underlying physics is based on
Larmor precession. It is implemented by inserting spin polarizers and tunable Larmor
precession coils into the incident and scattered beams of the triple-axis spectrometer
(see Fig.5.2).

The neutron spin of an initially polarised beam Larmor-precesses in the first coil
and reverses its precession in the second coil (where the field is reversed; see Fig.5.2).
The net Larmor precession angle φ at the exit of the second coil becomes:

φ = φ1 + φ2 = ω1
Lo

v1

− ω2
Lo

v2

(5.2)

where φ1/2 = ω1/2Lo/v1/2 is the Larmor precession phase in the first/second arm, ω1/2 =
γnB1/2 is the Larmor frequency in the first/second arm with γn being the gyromagnetic
ratio, Lo is the length of the arm, and v1/2 is the initial/final neutron velocity. For
elastic scattering (v1 = v2) and for identical field integrals, i.e. ω1 = ω2 = ωL, the
net Larmor precession will be zero and the full polarisation will be recovered at the
detector. This is the neutron spin echo. For the case of inelastic scattering, where
the neutron loses an energy �ω and creates a phonon, the total net Larmor precession
becomes:

φ = φ1 + φ2 = ω

(
2�ωLLo

mv3
1

)
= ωτ (5.3)
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This expression is obtained by using the equation �ω = m
2
(v2

1 − v2
2), where m is the

mass of the neutron. Note that ω denotes the phonon energy rather than the Larmor
frequency which is denoted as ωL or ω1/2. The quantity in the parenthesis in Eq.5.3
has dimensions of time and is known as the spin echo time τ . The polarisation at the
exit of the second coil is the cosine of the net Larmor phase φ,

Pf = Po < cos(ωτ) >= Po

∫
R( �Q, ω)S(Q, ω) cos(ωτ)dω (5.4)

where S( �Q, ω) is the scattering function, which defines the probability of a neutron

to be scattered from the sample with energy transfer �ω and momentum transfer �Q
and R( �Q, ω) is the TAS transmission function or simply the resolution ellipsoid, which

defines the probability of a neutron with energy �ω and wave vector �Q to be transmitted
through the spectrometer. Since the resolution ellipsoid (R( �Q, ω)) has an energy width

in the sub-meV range, whereas the intrinsic phonon linewidth (S( �Q, ω)) is usually in

the μeV range, R( �Q, ω) can be assumed to be constant. Eq.5.4 therefore resembles the
time Fourier transform of the spectral function S(Q, ω). A Lorentzian phonon spectral
function, centered at ω, with a half width at half maximum (HWHM) Γ, transforms
to an exponential decay of the polarisation:

P (τ) = Po exp(−Γτ) (5.5)

Neglecting the instrumental resolution, the full polarisation of the incident beam is
recovered at the detector if the measured phonon has an infinite lifetime and the
precession fields are properly matched (spin-echo condition). If however the phonon
lifetime is finite, the net polarisation decays exponentially, and the phonon linewidth
can be determined by systematically measuring the polarisation at various τ values
(proportional to the precession fields).

5.3 Neutron Resonance Spin Echo for Dispersive

Excitations

Early versions of this technique have enabled the determination of the lifetimes of
rotons in superfluid helium [107] and optical phonons near the Brillouin zone boundary
in germanium [108]. However, a major technical obstacle has prevented more general
applications. For dispersive excitations the energy transfer ω(�q) depends strongly on
the momentum transfer �q. Fig.5.3-a shows the phonon dispersion relation with the
TAS resolution ellipsoid. The region within the resolution ellipsoid is illuminated by
neutrons. Therefore a finite momentum resolution leads to a spread in energy transfer
and thus a degradation of the neutron spin polarisation that masks the effect of the
finite phonon lifetime. A spin echo phonon focusing technique introduced by Mezei
[105] and Pynn [109] offered a solution to this problem. By tuning the NSE resolution
function to the slope of the phonon dispersion, all neutrons scattered from different �q, ω
(within the ellipsoid) of the dispersion surface of slope �∇qωo, will have a constant phase
φ. Such a first order focusing is achieved by tilting the boundaries of the precession
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Figure 5.3: (a) Schematic diagram of an acoustic phonon branch. The ellipse represents the
TAS resolution function centered on the phonon (qo, ωo). Within the ellipsoid neutrons can
scatter from phonons with different energies. (b) The tilting of the field boundaries relative
to the scattered neutron beam. By matching the path length in the field to the velocity of
the scattered neutrons (determined by the slope of the dispersion, the time of flight of all
neutrons in the magnetic field will be the same. The same consideration applies also to the
first spin echo arm. This picture was first shown by Pynn [109].

fields relative to the neutron beam so that neutrons scattered from a linear dispersion
with different final energies will spend the same time in the magnetic field regions (see
Fig.5.3-b). Since the required tilt angles are of order 10◦ − 50◦ for acoustic phonons,
this cannot be accomplished by the long solenoids used in the early work.

In the neutron resonance spin-echo (NRSE) technique introduced by Golub and
Gähler in 1987 [103], the solenoids are replaced by pairs of compact radio-frequency (rf)
coils surrounding a field-free region (see Fig.5.4). This allows larger tilt angles sufficient
to match the dispersion relations of most collective excitations in solids [110][111]. The
spin echo condition for dispersive excitations is achieved by tilting the coils in both
arms by an angle:

cos θ1,2 =
�ki,f ·

(
�ki,f − m

�
∇�q ωo

)
∣∣�ki,f

∣∣ · ∣∣�ki,f − m
�
∇�q ωo

∣∣ (5.6)

and adjusting the coil radio frequencies ω1,2 in both arms to the ratio:

ω1L1

ω2L2

=
k3

i (1− m
�

�ki · �∇qωo/k
2
i )

k3
f (1− m

�

�kf · �∇qωo/k2
f )

(5.7)

where �∇qωo is the slope of the phonon dispersion at ωo. If these two conditions are
satisfied, the spin echo time τ will be the same in both spectrometer arms:

τ =
(m

�

)2 ω1,2L1,2

k3
i,f

1(
1− m

�

�ki,f · �∇qωo/k2
i,f

) (5.8)

and will be independent of the finite momentum resolution of the TAS spectrometer.
This first order focusing technique allows us to measure the linewidth of phonons with
μeV resolution within the entire Brillouin zone.
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Figure 5.4: A schematic diagram of the spectrometer TRISP at the FRM-2. G denotes
the polarizing guide and P the transmission polarizer; M and A are the monochromator and
analyzer, as in TAS. S is the sample and D the detector; VS indicates the velocity selector.
The resonance coil pairs (RC1 and RC2) are shown in red, and the mu-metal shielding boxes
that enclose them in gray. The blue ray represents the path of the neutrons through the
spectrometer, from left to right in the diagram.

To illustrate this focusing technique and the improved energy resolution of the
NRSE compared to the conventional TAS, we mapped out the TAS resolution ellipsoid
(Fig.5.1) in the NRSE mode. Fig.5.5-a,b compares the results. In the NRSE mode,
we observe the sinusoidal modulation of the intensity. The period of the modulation
is inversely proportional to the Larmor frequency and corresponds to the spin echo
resolution. The lines of low-and-high intensity exhibit a constant phase. By tilting the
coils by θ1, θ2, the slope of those lines is tuned to the slope of the phonon dispersion.
Fig.5.5-c,d compares the phonon linewidth measured in each case. In the NRSE mode,
superconductivity induced narrowing is observed as the sample cools below Tc. This
effect is masked by the limited resolution in the TAS mode.

5.4 Neutron Resonance Spin Echo for Larmor Diffrac-

tion

The neutron Larmor diffraction technique, introduced by Rekveldt [112] allows the
measurement of the mosaicity and the Δd/d spacing of single crystals independent
of each other, and independent of beam divergence and monochromaticity needed in
conventional diffraction technique. The technique uses the same NRSE-TAS setup used
for linewidths measurement.

Neutron Larmor diffraction for measuring the lattice-spacing spread has been de-
scribed elsewhere [20]. Here we focus mainly on measuring the mosaic spread of single
crystals, which enters as a significant parameter in the resolution function. Fig.5.6
shows a schematic diagram of the Larmor diffraction setup. The rf coils in both
arms are tilted parallel to the Bragg planes of the crystal. As in ordinary spin-echo
configuration, the sense of Larmor precession is opposite in the two arms (contrary
to the measurement of the Δd/d spread, where the fields are parallel in both arms).
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Figure 5.5: Comparison of the TAS resolution ellipsoid in the (a) TAS and the (b) NRSE
modes. (c) Focusing TAS scan of the (0.3 0.3 0)T1 phonon in Pb measured below and above
the superconducting transition temperature Tc = 7.2K. The observed full widths corresponds
to the instrumental resolution. Within the error no change in the linewidths is detected across
Tc. (d) The same phonon measured in the NRSE mode. An increase in the full widths of
2Γ ≈ 14± 2μeV is observed above Tc.

In principle all neutrons that participate in a Bragg reflection from a perfect crystal
undergo a zero net Larmor precession in the two arms, independent of the wavelength
and direction of the neutrons (solid line in Fig.5.6). Reflecting on a mosaic block of
the crystal with a tilt angle α results in a different path length and thus a different
Larmor phase within the first and the second arm, as illustrated by the dashed lines in
Fig.5.6. The net Larmor phase, which now depends on the mosaic spread is given by:

φ =
ωLLo

v

(
sin θB

sin(θB + α)
− sin θB

sin(θB − α)

)

=
2ωLLo

v
cot(θB).α

(5.9)

Inserting Eq.5.9 in Eq.5.4 and assuming a Gaussian mosaic spread for the spectral func-
tion and a Gaussian transmission function (rocking scan), the final beam polarization
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Figure 5.6: Schematic neutron Larmor diffraction setup for the measurement of the sample
mosaic spread. The rf−coils are tilted parallel to the lattice planes of the crystal. The fields
in the two spin echo arms are antiparallel. Neutrons scattered from planes parallel to the
coils experience a zero net Larmor phase (solid line) whereas those scattered from mosaic
grains undergo a net Larmor phase (dashed line) and depolarise the beam.

becomes:

Pf = Po exp{−
(
2ωLLo

v

)2
cot2 θB

4 ln 2(1/A32
HH + 1/α2

HH)
} (5.10)

where θB is the Bragg angle, A3HH is the HWHM of the rocking scan, and αHH is
the HWHM mosaic spread of the sample. The mosaicity thus can be extracted by
measuring the neutron polarization as a function of the coil frequency.

5.5 NRSE-TAS Spectrometer TRISP at FRM-2

Fig.5.7 shows the NRSE-TAS spectrometer TRISP at the FRM-2 neutron source in
Garching, Germany [113]. The compact instrument (length of the spin echo arm is
50cm) is placed on a thermal beam (excitation energies 1 to 100 meV ) at the end of
a 10m long spin-polarizing neutron guide with a critical wavelength λc = 0.8Å and
a transmission of 70% of one spin component. In combination with a horizontally
and vertically focusing pyrolytic-graphite monochromator, the polarizing guide clearly
outperforms Heusler monochromators. A velocity selector is used to cut out higher-
order contamination of the incident beam. A flat pyrolytic-graphite crystal and a
supermirror spin-polarizer are used as an analyzer in front of the detector (see Fig.5.4).
A second option of using a horizontally and vertically focusing Heusler analyzer is also
possible. A comparison of the different analyzers concerning intensity and resolution
is discussed in Chapter 6.

Fig.5.8 shows two pairs of flipper-coils within the first spin echo arm. Each single
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Figure 5.7: TRISP at the FRM-2.

flipper-coil generates two magnetic fields: a static magnetic field �Bo along the vertical
and a rotating magnetic field �Brf in the scattering plane rotating with a frequency

ωrf = γn
�Bo [103][19][114]. The coils are shielded with μ−metal and are mounted on

rotation stages. The size of the beam windows are 50×120mm2. The coil frequency ωrf

ranges from 50kHz to 400kHz1. The effective frequency ωeff = N ×ωrf where N = 2
for the normal mode (2 flipper coils operating in each arm) and N = 4 in the bootstrap
mode (4 flippers coils operating in each arm). The last bootstrap coil, immediately
in front of the detector, can be translated along the beam direction (±15mm) for

1The magnitude of the maximum frequency is limited mainly by the heat dissipation in the coils.
The coils are water and air cooled.

rfB

oP

oB

�
rf

d

Figure 5.8: (left) Simple model of a resonance flipper-coil. The static magnetic field 	Bo is
vertical to the scattering plane, and the 	Brf rotates in the scattering plane with a frequency
ωrf . (right) The pair of bootstrap coils in the first spin echo arm. The coils are covered by
μ−metal shield. Each flipper-coil can be rotated around a vertical axis by ±50◦.
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performing a spin echo scan.



Chapter 6

Experimental Aspects

The neutron resonance spin-echo technique combined with the triple axis spectrometry
is a new generation high resolution spectroscopy optimized for studying the linewidths
of elementary excitations. Despite the fact that this technique has been known for
more than two decades, TRISP is the only dedicated spectrometer of this kind up to
date1. Here we review in detail the experimental method and the data analysis. In
the first part of this chapter, we concentrate on the experimental details and describe
the steps to set the spectrometer and measure the linewidth of a specific phonon. In
the second part, we characterize the properties of the different samples used in this
work. Of high importance is the NRSE-TAS resolution function. The last part of this
chapter is devoted to the instrumental linewidth broadening and resolution correction.

6.1 Experimental Details

Inelastic neutron scattering experiments were carried out at the high-flux NRSE-TAS
spectrometer TRISP at the FRM-2 neutron source in Garching, Germany [113]. The
spectrometer was operated in the SM = −1, SS = −1, SA = +1 scattering senses
(SM, SS, SA stand for the scattering sense at the monochromator, sample and analyzer;
-1 stands for clockwise and +1 for anticlockwise). With the help of a velocity selector for
filtering out high order harmonics, the incident neutron wave vector was varied between

ki = 2.0 → 5.0Å
−1
. The choice of ki was such that a compromise between resolution

and intensity is reached. In general, the highest NRSE resolution is achieved when the
phonon dispersion surface sampled by the TAS resolution ellipsoid is minimized. This
requires the lowest possible ki. The PG monochromator, set for the (002) reflection, was
focused both vertically and horizontally with curvatures varying around ρV ≈ 0.6m−1

and ρM ≈ 0.1m−1 depending on the choice of ki. Depending on the required resolution,
measurements were performed either with a flat PG analyzer and a supermirror spin
polariser (collimation of α4 = 60′) or a vertically and horizontally focused Heussler
analyzer. No additional collimations were used.

1There are two additional NRSE-TAS instruments, namely, Flex at HMI and ZETA at ILL. Flex is
located at the cold beam and limited to small energy transfer; ZETA is currently in the commissioning
phase.

53
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t] Figure 6.1: (a) Spin echo
intensity modulation of the
Q = (0.94 1.06 0)T2 phonon in
Nb at different τ corresponding
to different coil frequencies. L
is the translation of coil-4 with
an arbitrary offset (−23.5mm
corresponds to equal arms lengths).
(b) NRSE profile of the Q =(0.94
1.06 0) phonon in Nb measured
at T = 12K. The corresponding
polarisation values are extracted
from the data of (a). The slope
of the line in the semi-logarithmic
scale corresponds to the raw phonon
linewidth Γ = 76± 4μeV . The inset
shows the focusing TAS energy scan
at Q = (1.06 0.94 0) performed in
the TAS mode.

TRISP can operate in three different modes. (i) The TAS mode (NRSE components
switched off), (ii) the NRSE mode, and (iii) the Larmor diffraction mode (where the
precession sense in the two spin echo arms is the same).

To measure the linewidths of a specific phonon (qo, ωo), the spectrometer is set in
the NRSE mode. The phonon dispersion relation along the high symmetry directions
at low temperature were measured in the TAS mode in the beginning of the experi-
ment. The slope �∇qωo is obtained from the derivative of a Born-von Karman fit to
the phonon dispersion. The coil tilt angles, the frequency ratio, and the minimum
τ value are calculated using Eqs.5.6, 5.7, and 5.8 of the previous chapter. In a TAS
focusing configuration, the required coil tilt angles are usually too large for acous-
tic phonons and are not accessible by the instrument (| θ1,2 |< 50◦). For example,
the q = (0.06 0.06 0)T2 phonon in Nb has an energy �ω = 2.74meV and a slope
�∇qω = 16.53meV Å. The calculated coil tilt angles are θ1 = 107.09◦ and θ2 = −117.12◦
in the TAS focusing mode which are experimentally inaccessible, whereas θ1 = −26.53◦
and θ2 = 16.86◦ in the TAS defocusing mode are easily accessible. As a result the TAS
is driven to a defocusing configuration. In this latter configuration, the segment of
the dispersion surface covered by the TAS resolution ellipsoid is minimized, strongly
enhancing the momentum resolution.
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For the measurement of the linewidth of a particular phonon, the TAS is driven
to (Qo, ωo) in the defocusing configuration and is kept fixed during the experiment.
The coils are tilted by an angle θ1, θ2 to match the slope of the dispersion (spin
echo phonon focusing). The neutron beam polarisation is measured for several (∼ 6)
τ values by changing the frequencies (ω1, ω2) in the flipper-coils, while keeping the
ratio (ω1/ω2) constant. For each τ , the polarisation P is measured by translating the
last flipper coil by a few millimeters (through one period) in the beam direction and
extracting the amplitude of the resulting sinusoidal intensity modulation. Fig.6.1-a
shows the intensity modulation as a function of the coil translation for two different
sets of frequencies (ω1, ω2) (corresponding to different τ values). The data corresponds
to the q = (0.06 0.06 0)T2 phonon in Nb. The polarisation is determined by fitting
the data with the function:

I(L) = Io

(
1 + P cos

2π(L− Lo)

ΔL

)
(6.1)

where Io, P , and 2πLo/ΔL are the average intensity, the polarisation and the phase
of the spin echo signal, and ΔL = �kf/mnω2 is the period of the oscillation. Fig.6.1-b
shows the polarisation extracted from the intensity modulation versus the spin echo
time τ . To extract the phonon linewidth, the data are fitted with the function P (τ) =
Po exp(−Γτ) where Γ is the HWHM of the phonon. On a semilogarithmic scale, Γ
corresponds to the slope of the line.

6.2 Samples

The measurements were performed on high quality large single crystals. For measure-
ments in the NRSE mode, larger samples (> 1cm3) are needed. Table 6.1 summarizes
the properties of the different samples used. The samples were loaded in a closed cycle
cryogen-free 4He refrigerator [116] [117] (See Fig.6.2) which operates at temperatures
between T = 3 and 300K. Measurements at lower temperatures down to 500mK were
performed using a 3He insert.

It is important to identify the properties of the samples, such as the superconduct-
ing transition temperature Tc, prior to the experiment. The conventional method to
measure the Tc is to carry out temperature dependent resistivity or magnetization mea-
surements. Due to the large sample sizes, this sort of measurements was not possible
on a PPMS setup. We have therefore measured the Tc of the large-size samples on
TRISP by means of the Meissner effect. The idea was to apply a weak magnetic field
on the sample and monitor the shift in the polarisation and the phase of the spin echo
signal as the sample cools below Tc and enters the Meissner phase. To generate a weak
field, a Helmholtz coil was wound on the outside of the cryostat, symmetrically on each
side of the sample, to attain a uniform field at the sample position. Each coil (copper
wire ∅ = 0.75mm) consisted of N = 10 loops carrying a current of I ≈ 10Amp. The
field at the sample site was:

B =

(
4

5

)3/2
μoNI

R
≈ 9 Gauss (6.2)
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Figure 6.2: Schematic layout of
an FRM-2 type closed cycle cryo-
gen free cryostat with sample stick
using pulse tube cooling [115].
-Utilization: The sample tube is filled
with Helium gas up to atmospheric
pressure. Keeping the helium flowing
out of the sample tube (to prevent air
going in) the sample stick is inserted in
carefully. After tightening the clamping
ring, the chamber is evacuated and
flushed several times with 500mbar of
helium to get air and water out. At the
end 300mbar of helium gas is filled in the
chamber. The thermal coupling of the
cold head to the sample is via the He gas.
-Temperature range: 3K to 300K.
-Cool down time from 300K to 4K ≈ 4
hours.

where μo is the permeability constant and R is the radius of the cryostat. Due to the
Meissner effect, in the superconducting phase, the field is expelled from the interior of
the sample, ensuing in a different field integral below and above Tc. Fig.6.3a-b show
the polarisation (panel-a) and the phase (panel-b) of the spin echo signal from the
(110) Bragg peak in Nb, and Fig.6.3-c shows the phase shift from the (220) Bragg
peak for the Pb1−xBix samples. In all cases a sharp discontinuity (∼ 0.2K) in both the
phase and the polarisation was observed at Tc. The extracted Tc values are in good
agreement with previously reported data [118]. Fig.6.4 shows similar measurements for
an overdoped La1.75Sr0.25CuO4 sample. The data show a broad transition (∼ 8K) from
the normal to the superconducting phase, which can be the result of an inhomogeneity
of the Sr atoms in the sample2. The Tc of the measured samples are all listed in
Table-6.1.

Another important sample property is its mosaic spread, which is highly significant
for the NRSE-TAS resolution function and data analysis. Sample mosaicity is usually
measured by gamma diffraction, where the high energy photons can penetrate through
the crystal, making it a bulk sensitive technique. Due to the large distance between
source-sample and sample-detector of gamma diffractometers (∼ 5m), the instrumen-
tal resolution is orders of magnitude smaller then the typical mosaic spread of single
crystals. This makes it a strong tool to characterize sample quality. The disadvantage
of this technique is that only a single spot (∼ 1mm2) on the large-sized crystal can be
illuminated, which in some cases can be deceptive.

The neutron Larmor diffraction technique allows measuring the mosaicity of large
single crystals independent of beam divergence and monochromaticity. The mosaic

2The broad transition can also be an effect of local pairing above the macroscopic Tc.
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Figure 6.3: Temperature dependence of the polarisation (a) and the phase (b) of the spin
echo signal at Tc under the application of a weak magnetic field. The neutron spin undergos
a phase shift as the field is expelled from the interior of the sample below Tc = 9.32± 0.04K
due to the Meissner effect. (Inset): Phase shift of the spin-echo signal. (c) Phase shift of
Pb1−x −Bix samples with different Bi concentration.

spreads of the different samples used in the experiment were measured on TRISP by the
Larmor diffraction technique. Details of the technique were given in Chapter 5. Fig.6.5
shows the mosaicity of different selected crystals. A rapid decay in the polarisation
indicates a large mosaicity since Larmor diffraction measures the Fourier transform
of the mosaic spread. Panel-a compares the different LSCO crystals, whereas panel-b
compares the Pb-1 and the Nb-1 crystals. The lines are the results of fits to the data.
The extracted mosaic spread η are listed in Table-6.1. A close look to the Nb-1 data
(Fig.6.5-b) shows a bump at large phase values (φt ∼ 5000) indicating the presence
of a small grain within the single crystal. The Gamma diffraction pattern, averaged
over many different spots on the same Nb sample, verifies the two-peak feature which
quantitatively reflects the Larmor diffraction data (Inset of Fig.6.5-b). Both techniques
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two co-aligned single crystals (solid
square). The broad transition is
presumably due to the inhomogene-
ity of the Sr atoms in the sample.
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Figure 6.5: Larmor diffraction from the (200)(x=0.08, x=0.14) and the (006)(x=0.25) Bragg
peaks in LSCO (a) and from the (110) Bragg peak in the Nb−1 and Pb−1 (b) samples. The
polarization is measured as a function of the total Larmor precession phase φt = 2ωLLo/v.
The lines are fit to Eq.5.10. The inset shows γ−diffraction pattern for the Nb − 1 sample.
Both data sets show two-peak feature and when fitted to a single Gaussian (lines in the figure)
give similar results.

give comparable results within the error bar.

While the samples shown up to now were large single crystals weighing over 10g,
the NbSe2 crystals used in the experiment, were thin platelets (thickness of ∼ 1mm
and a surface of ∼ 10mm2). The largest single crystal weighs ∼ 250mg. In principle,
NRSE-TAS experiments for phonon linewidth measurement require crystals weighing
more than 1g. A reasonable experiment thus demands to co-align several crystals. Co-
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Figure 6.6: (a) Mosaic crystal array (Mosaic) of five single NbSe2 crystals co aligned each on
a single tiny goniometer [119]. The diameter of the copper disc is 4cm. (b) Larmor diffraction
from the (201) Bragg peak of the mosaic samples. The data represents multiple Gaussians
coming from different crystals. The mosaic spread of each single crystal is estimated to be 4′

and the effective mosaic spread of the whole sample 10′
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Sample Tc [K] Mosaicity Size Scattering plane

Pb− 1 7.2* 7.4± 0.2′ ∅15× 70mm3 (hhl)
Pb− 2 7.2* 8.3± 0.2′ ∅15× 30mm3 (hk0)
Nb− 1 9.31 4.8± 0.2′ ∅30× 50mm3 (hhl)
Nb− 2 9.31* 6.8± 0.2′ ∅30× 50mm3 (hk0)

Pb0.96Bi0.04 7.34 − ∅10× 10mm3 (hk0)
Pb0.88Bi0.12 7.66 − ∅8× 40mm3 (hk0)

NbSe2 − 1 (single) 7.2* − 1× 4× 5mm3 (hk0)
NbSe2 − 2 (mosaic) 7.2* ∼ 10± 1′ 5× 4× 5mm3 (hk0)
La1.92Sr0.08CuO4 24* 11.3± 0.2′ ∅8× 40mm3 (hk0)
La1.86Sr0.14CuO4 36* 5.9± 0.2′ ∅7× 35mm3 (hk0)
La1.75Sr0.25CuO4 11.3 7.9± 0.2′ ∅6× 35mm3 (hk0)

Table 6.1: Properties of the different samples used in the experiments. The ∗ means that
the data were taken from [118].

aligning single crystals on thin Al plates (similar to what has been done in ref.[120])
results in a relatively large mosaic spread exceeding one degree [120]. As will be
discussed in the next section, such a large mosaic spread can destroy the spin echo signal
completely. We have therefore followed a different approach. Fig.6.6-a shows an array
of five co-aligned NbSe2 single crystals. Each crystal is attached to a tiny three-axis
goniometer tower (5× 5× 20mm) and separately aligned on an X-ray diffractometer.
The total sample mass is ∼ 700mg. The mosaicity of the array was measured by
Larmor diffraction and is shown in Fig.6.6-b. The data deviates from the fitted function
(which represents the Fourier transform of a single Gaussian) indicating that the mosaic
spread in real space does not resemble a single Gaussian peak but rather multiple
Gaussians (coming from different crystals). Nevertheless, the different Gaussians, each
of an estimated width η ∼ 4′, are misoriented within a range of ∼ 6′. The effective
mosaic spread of the sample array is estimated to be ∼ 10′. The sample quality is
suitable to carry out linewidth measurements, yet, the limited sample mass restricts
the measurements to high temperatures and small wave vectors. Table-6.1 summarizes
the different properties of the samples used in the experiment.

6.3 The NRSE-TAS Resolution Function

Several nonintrinsic sources lead to degradation of the neutron beam polarisation mask-
ing the effect of the finite phonon lifetime. To determine the intrinsic linewidth, the
data should be corrected for resolution effects where the combination of both the TAS
and the NRSE resolution functions should be taken into account. In spin echo measure-
ments, the TAS resolution ellipsoid defines the ”illuminated” four dimensional (4D)
surface of the phonon dispersion around the average value (Qo, ωo), whereas the NRSE
resolution function gives the artificial (non intrinsic) depolarisation of the neutron
beam scattered from this surface. A detailed treatment of the resolution theory of the
combined triple-axis (TAS) and neutron resonance spin echo (NRSE) spectroscopy can
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be found in [121]. In this section we will briefly summarize the effects of the different
sources and will use this approach to calculate the resolution function.

The sources of artificial signal depolarisation are instrumental effects and sample
properties. The parameters needed for a full resolution calculation are therefore the
instrumental parameters (the usual TAS parameters) and the sample dependent pa-
rameters, such as the mosaic spread and the curvature of the phonon dispersion surface.
Each of these sources will be briefly discussed.

6.3.1 Instrumental Resolution

In the case of inelastic scattering, the spin echo phase φ(ki, kf ) = ωτ depends on
small changes in the initial and final wave vectors, δk2

i(f), up to second order. Due to
finite beam monochromaticity and divergence, the spin echo phase will have additional
terms in δk2

i(f), i.e, φ(ki, kf , δk
2
i(f)), which will lead to signal depolarisation. This source,

however, does not have a significant effect within the experimentally accessible range
of the spin echo time τ (τ < 70ps). As an example, calculation of the instrumental
resolution for the (ξ00)T phonon in Pb gives less than 1% drop in the polarisation for
τ < 70ps. This effect is thus negligible.

6.3.2 Sample Mosaic Spread

For transverse acoustic phonon modes, a major limit to the resolution comes from the
mosaic spread of the crystal. Due to different mosaic grains in the sample the dispersion
surface will have different orientations in q-space. This will smear the dispersion surface
in energy and hence will broaden the apparent linewidth (Fig.6.5). Contrary to the
instrumental resolution, mosaicity appears as a first order contribution to the spin echo
phase. Assuming a Gaussian mosaic spread η, the beam polarisation will drop by the
factor

(2πη)1/2 exp
[− 1

2
τ 2|∇qωo(qo)|2|G|2η2

]
(6.3)

Due to the term |∇qωo(qo)|2|G|2, a dispersionless mode will not depolarise the beam
and thus will have no effect on the resolution (see Fig.6.7). For longitudinal branches,
where qo is parallel to G, the mosaicity will only appear in second order.

6.3.3 Curvature of the Phonon Dispersion Surface

The spin echo phonon focusing condition, discussed in Chapter 5, holds only for
linear dispersion. Yet, the dispersion surface within the TAS resolution ellipsoid, has
sometimes a considerable curvature. The spin echo phase will then have an additional
term

−1
2
τΔqT ĤΔq (6.4)
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Figure 6.7: Schematic diagram illustrating the smearing (Δω) of the dispersion surface due
to the angular variation in the lattice vector G. The smearing strongly depends on the slope
of the dispersion.

where Ĥ is the Hessian or the curvature matrix of the dispersion surface at the point
(qxo, qyo, qzo, ωo) and is defined as

Hij =
∂2ωσ(qx, qy, qz)

∂qi∂qj

, i, j = x, y, z. (6.5)

where ωσ(qx, qy, qz) is the energy of the phonon of branch σ, and wave vector (qx, qy, qz).

To facilitate numerical treatment, all these resolution terms were implemented in
the MATLAB code SERESCAL by K. Habicht [122].

Phonon Dispersion Surface

Due to the absence of an analytical form of the dispersion surface (except for conven-
tional spin excitations), calculation of the curvature matrix is a complicated task. We
have approximated the 4D dispersion surface by the expression:

ωσ(qx, qy, qz) =
∑

i

Ai sin

⎛
⎝π

√
(aq2

x + bq2
y + cq2

z + dqxqy)

Λ

⎞
⎠ (6.6)

The parameters Ai (with i ∼ 6 terms) and Λ describe the curvature of the phonon
branch along a particular high-symmetry direction and can be obtained from a Born-
von-Karman fit to the experimental phonon dispersion along a specific high symmetry
direction. The set of parameters a, b, c, and d, describe the curvature of the dispersion
surface along the low-symmetry directions, in and out of the scattering plane. They
define the deviation from an isotropic (spherical) dispersion surface to an anisotropic
(elliptical) one. These parameters (a, b, c, and d) are assumed to be momentum
independent and can be obtained from elliptical fits to a number of low-symmetry
phonons along different directions. Here we represent the modeled dispersion surface
for each sample.

Pb
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Figure 6.8: Modeled 3D phonon dispersion surface in the (hk0) plane in Pb from Eq.6.6.
(a) side view, (b) top view. The model precisely describes the curvature in the vicinity of the
(ξξ0T1) branch. The high symmetry data along the (ξξ0T1) direction (data from TRISP)
and the off-symmetry data (from ref.[123]) are plotted for comparison. (c) 2D cut of panel-a
at a constant energy �ω = 3.3meV .

Figure 6.9: Modeled 3D
phonon dispersion surface in
the (hk0) plane in Pb describ-
ing the dispersion in the vicin-
ity of the (ξ00T ) branch. The
high symmetry (data from
TRISP) and the off-symmetry
(from ref.[123]) data are plot-
ted for comparison.

To model the dispersion for Pb, we have used the experimental data (for low-
symmetry directions) of ref.[123]. Fig.6.8a-b show the modeled phonon dispersion
surface in the (hk0) plane (Eq.6.6). The choice of the Ai, Λ, and the (a, b, c, d)
parameters are such that the model precisely describes the dispersion surface in the
vicinity of the (ξξ0)T1 branch. The experimental data along the (ξξ0)T1 (data from
TRISP) and the constant energy cuts along low-symmetry directions (data taken from
ref.[123]) are also plotted in order to have a direct comparison with the model. Fig.6.8-
c shows a 2D cut of Fig.6.8-a at a constant energy �ω = 3.3meV . The model (which
represents an ellipse in 2D) accurately describes the curvature of the dispersion in the
vicinity of the (ξξ0)T1 direction. Within the TAS resolution ellipsoid (represented by
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the blue circle) the model and the data are in perfect agreement. The experimental
dispersion, however, deviates dramatically from the model as one moves towards the
(ξ00) direction. To model the dispersion surface in the vicinity of the (ξ00) direction,
a different set of parameters was used. Fig.6.9 shows the modeled dispersion for the
(ξ00)T branch in the (hk0) plane. The experimental data are in good agreement with
the model.

Nb

Off-symmetric phonon dispersion data are lacking for the other investigated ma-
terials (Nb, LSCO). To model the dispersion surface in Nb, we have measured the
off-symmetry dispersion along several constant energy cuts. The measurements were
performed mainly in the small-q region, where the dispersion is strongly curved (see
Fig.6.10). The data are sufficient to assemble a reasonable model for the dispersion.
Fig.6.11 show the modeled phonon dispersion surface in Nb in the (hk0) plane. The
choice of the Ai, Λ, and the (a, b, c, d) parameters is such that the model describes
the dispersion surface in the vicinity of the (ξ00)T branch. The experimental data are
also plotted for comparison.

LSCO

Due to the limited neutron beam time and the relatively small sample size, the
off-symmetric phonon dispersion was not measured in LSCO. Instead, a different ap-
proach was followed to obtain these parameters. The phonon linewidth in LSCO was
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Figure 6.10: Constant energy cuts of the transverse phonon dispersion in the (a) (hk0) and
(b) (hhl) planes in Nb at three different energies. The data was taken at T = 10k. The lines
denote the high symmetry directions.



64 Chapter 6. Experimental Aspects

Figure 6.11: Modeled 3D phonon dispersion surface in the (hk0) plane in Nb from Eq.6.6.
(a) Up to Brillouin zone boundary, (b) zoomed in the small q region. The model precisely
describes the curvature in the vicinity of the (ξ00T ) branch. The high symmetry and the
off-symmetry data (from TRISP) are plotted for comparison.

investigated in detail mainly along the (ξ00)Σ4 branch for 0.05 < ξ < 0.35. The high
symmetry of the (100) direction and the small momentum range covered, allowed us
to approximate the off-symmetric curvature of the dispersion surface with two momen-
tum independent parameters (rather than the four a, b, c, d parameters for the general
case): one for the in-plane curvature ((hk0)) and one for the out-of-plane curvature
((h0l)). As we will see in the examples below, for low temperatures the intrinsic phonon
linewidth is expected to vanish as ξ → 0. The observed linewidth entirely represents
the resolution function. The off-symmetric curvature parameters for LSCO were thus
estimated using this assumption.

6.4 Data analysis and Correction

Prior to the correction procedure, the usual TAS parameters were experimentally
tested. These parameters, such as beam collimation, initial and final neutron wave
vectors, lattice spacing and mosaicity of the monochromator and analyzer, define the
dimensions of the TAS resolution ellipsoid. For example, if the ellipsoid is large, the
segment of the curved dispersion surface within the ellipsoid will also be large, resulting
in a considerable beam depolarisation. In the elastic limit the calculated TAS resolu-
tion function was compared with the widths of the measured the Bragg peaks. The
experimental (calculated) widths of the (220) Bragg peak in Ge were: longitudinal Q

resolution: ΔQx = 0.030 (0.031)Å
−1
, transverse Q resolution ΔQy = 0.018 (0.017)Å

−1
,

and elastic energy resolution ΔE = 1.00 (0.98)meV . The agreement between calcu-
lated and measured values gave us confidence in the data analysis and correction. The
intrinsic phonon linewidths were obtained by dividing the experimental raw data by
the calculated resolution function.

In Fig.6.12 we compare the calculated NRSE-TAS resolution function with the raw
experimental data for different selected phonons in Pb and Nb. The experimental
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data are normalized with a τ -independent constant (Po) to have a direct comparison
with the calculation. At small-q, the intrinsic linewidth is expected to vanish. The
decay of the polarisation can be explained entirely by the mosaicity of the sample
and the curvature of the dispersion (panel-a,c). Within statistics the intrinsic phonon
linewidth is consistent with zero. The effects of both the mosaicity and the curvature
strongly decrease with q (panel-b,d), whereas the intrinsic phonon linewidth due to the
e − p interaction in general increases with q. The data are corrected by dividing the
experimental polarisation by the calculated resolution function.

Fig.6.13 compares the calculated NRSE-TAS resolution function with the raw ex-
perimental data for the optimally doped and underdoped LSCO samples. For ξ =
0.05rlu (panel-a), the off-symmetric curvature parameters were adjusted so that the
resolution function describes the experimental data. The acoustic phonon dispersion for
the underdoped, optimally doped, and overdoped samples, measured on TRISP, did not
exhibit any doping dependence within the experimental error bars (∼ ±0.05meV ), the
same curvature parameters were used for all the samples. Panel-c shows the q = 0.05rlu
phonon for the underdoped sample. The size and mosaicity of this sample is different
from that of the optimally doped sample (see Table-6.1). Consequently, the TAS ellip-
soid and the instrumental and mosaic contributions to the NRSE resolution function
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Figure 6.12: Calculated NRSE-TAS resolution function due to instrumental, sample mosaic,
curvature and the total contribution for different selected phonons in (a,b) Pb and (c,d)
Nb. The experimental data are normalized by a τ independent factor Po to have a direct
comparison with the calculation. For small-q, the data resembles the resolution function.
The effect of both the mosaicity and the curvature of the dispersion decrease with q. The
resolution terms were calculated using SERESCAL[122].
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Figure 6.13: Calculated NRSE-TAS resolution function for optimally doped (a and b) and
underdoped (c) LSCO. The experimental data are normalized by a τ independent factor Po

to have a direct comparison with the calculation. The slight drop of the polarization at the
minimum τ value is due to the coil transmission.

are different for the two samples (panels (a) and (c) in Fig.6.14). Since the curvature
correction strongly depends on the shape of the TAS ellipsoid, false curvature param-
eters result in false resolution function for the two cases. Nevertheless, in both cases
the total resolution function agrees well with the experimental data supporting the
assumption made earlier. To further verify this point, we have compared the observed
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Figure 6.14: Calculated NRSE-TAS resolution
function due for q = (0.15 0 0)Σ4 phonon in optimally
doped LSCO measured under two different spec-
trometer configurations. The raw and the corrected
linewidths are listed in each panel. The notations are
the same as the previous figures. The slight drop of
the polarization at the minimum τ value is due to the
coil transmission.
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Figure 6.15: Direct beam
calibration for (a,b) k =
2.5Å

−1 and (c,d) k =
1.7Å

−1. The effective fre-
quency ωeff = N × ωrf

where N = 2 for the 4π
mode (2 flipper coils op-
erating in each arm) and
N = 4 for the 8π mode
(4 flippers coils operating
in each arm). The slight
drop of the polarization at
the minimum τ value is due
to the coil transmission.

and the corrected phonon linewidths of the same phonon measured in two different
spectrometer configurations. Fig.6.14 shows the ξ = 0.15rlu phonon in optimally

doped LSCO measured with ki = 3.305Å
−1

from the (0 0 6) Bragg peak (panel-a) and

with ki = 3.30Å
−1

from the (1 0 11) Bragg peak (panel-b). Despite the fact that the
observed linewidths are dramatically different, owing to the difference in the size of the
resolution ellipsoid, the corrected data are in good agreement within the error bars,
justifying the resolution correction.

In addition to the calculated resolution function, field inhomogeneities and stray
fields of the flipper coils also provide a source of signal depolarisation. This is ex-
perimentally assessed by measuring the polarisation of the unscattered beam (without
sample) as a function of the frequency and the coil tilt angles. Fig.6.15 shows the direct
beam polarisation for two different neutron wave vectors. In both cases the polarisation
is a rather smooth function of frequency and coil angles and has a negligible effect on
the linewidths. All the data were normalized by a direct beam calibration.
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Chapter 7

Results and Discussion

This chapter is concerned with the experimental study of the temperature and momen-
tum dependent phonon linewidths in superconductors. The focus is on the electron-
phonon contribution to the phonon linewidths. The first part deals with conventional
superconductors ranging from simple elements to more exotic two dimensional com-
pounds. The second part is concerned with the high temperature superconductor
La2−xSrxCuO4 over a wide doping range from underdoped to overdoped samples.

7.1 Conventional Superconductors

Using neutron resonance spin echo spectroscopy, we studied the phonons linewidths
in elemental superconductors Nb and Pb (the two elements with the highest super-
conducting transition temperatures, Tc = 9.3 and 7.2K, respectively). The strategy
of the earliest performed experiments on TRISP was to single out the e − p contri-
bution to the phonon lifetime by monitoring the evolution of the phonon lineshape
through the superconducting transition temperature, Tc. As demonstrated previously
by TAS in Nb [39], and Nb3Sn [41, 40] (where due to the large linewidths and the
perfect focusing condition achieved, the intrinsic linewidths were resolved), the e − p
contribution vanishes if the phonon energy is below the superconducting energy gap,
2Δ(T ). Other intrinsic contributions to the phonon linewidth, such as isotope disorder
and the anharmonicity of the lattice potential, do not exhibit anomalies at Tc. Tem-
perature dependent measurements of the phonon linewidths in Pb and Nb have shown
a superconductivity induced narrowing below Tc.

With a rigorous treatment of the resolution function, required to extract the e− p
contribution, we studied the momentum dependence of the phonon linewidth in both
materials. These investigations revealed a surprising relation between the supercon-
ducting gap, extracted from the measurements, and the geometry of the Fermi surface,
which also leaves an imprint on the phonon lifetimes. To further explore this phe-
nomenon, we have altered the geometry of the Fermi surface in pure Pb by doping it
with Bi and investigated its influence on the superconducting gap. Phonon anomalies
were also investigated in 2D charge density wave superconductor NbSe2.

69
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Figure 7.1: Phonon dispersion of the different acoustic branches in Nb. The data were
taken on TRISP at T = 3.5K. Lines are the result of lattice dynamical calculations.

The experimental results on the different investigated samples are presented in the
following sections.

7.1.1 Niobium

Prior to the study of the phonon linewidth, the dispersion of the transverse acoustic
branches in Nb was measured along the high symmetry directions. The dispersion
is required to calculate the NRSE parameters. The measurements were performed at
T = 3.5K and are plotted in Fig.7.1. The results are in good agreement with previously
reported high temperature measurements [124]. The temperature and momentum de-
pendence of the phonon linewidths along these two directions were studied in detail.
Fig.7.2-a shows a typical spin echo decay profile for a selected transverse acoustic
phonon along (ξ00) direction at different temperatures. The data are well described
by exponentials, corresponding to Lorentzian phonon spectral functions. Deviations
from Lorentzian line shapes were not found within the experimental error (except for
the (111) direction which will be discussed in the next section). A focusing TAS
scan through the phonon is shown in the inset. This phonon, which has an energy
�ω < 2Δ(0), is incapable of interacting with the electrons since the decay channel via
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Figure 7.2: (a) NRSE profile of the Q =(0.11 0 0)T phonon in Nb at selected temperatures.
The lines are an exponential fit whose slope in the semi-logarithmic scale corresponds to
the raw phonon linewidth . The inset shows the focusing TAS energy scan with the NRSE
components switched off. (b) The BCS superconducting gap for Nb. The line corresponds to
the energy of the phonon in (a).

e − p interaction is suppressed due to the stability of Cooper-pairs at low tempera-
tures (See Fig.7.2-b). The intrinsic linewidth at the lowest temperature (T = 3K) is
therefore expected to vanish. The nonzero observed linewidth is due to instrumental
limitations, which has been quantitatively determined on the basis of the phonon dis-
persion relations and the mosaic spreads of the single-crystal samples (See previous
chapter). These temperature-independent factors have a negligible influence on the
temperature dependence of the linewidth. Upon increasing the temperature, the su-
perconducting energy gap is reduced opening an e − p decay channel. An increase of
the slope (corresponding to an increase of the phonon linewidth) is apparent at T = 7
and 12K. The intrinsic Lorentzian phonon linewidths, Γ, are extracted by fitting the
decay profiles to exponentials (lines in Fig.7.2-a) and correcting for the resolution.

Fig.7.3 shows the outcome of a representative set of measurements of the linewidth
and energy of several selected transverse acoustic phonons in Nb as a function of tem-
perature. Phonons with energies in the vicinity of the superconducting energy gap
are subjected to strong temperature dependence across the transition temperature
Tc due to the pile up of the electronic density of states. For phonons with energies
�ω < 2Δ(T ), the e − p contribution to the linewidth vanishes as the temperature is
lowered below Tc. As a consequence, the intrinsic linewidths Γ abruptly decrease below
Tc (Fig.7.3a-f) and the phonon energies exhibit a corresponding anomaly, as stipulated
by the Kramers-Kronig relation (Fig.7.3-f). The effect is no longer present for the
�ω = 3.30meV phonon (Fig.7.3-g) whose energy exceeds the superconducting energy
gap. Instead there is some indication of an increase in phonon linewidth at low tem-
peratures. This is expected because of the pileup of electronic states just above the
energy gap 2Δ(0). For the more steeply dispersing (ξξ0)T2 branch, phonons below the
gap lie at very small-q, where the electron-phonon interaction is weak (Fig.7.3-h). The
superconductivity-induced linewidth narrowing is well described by the BCS excitation
spectrum function [125] (lines in Fig.7.3a-g), and the magnitude and temperature de-
pendence of the energy gap extracted from least-squares fits to corresponding data for
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Figure 7.3: (a)-(h) Temperature dependence of the intrinsic phonon linewidths Γ for several
selected phonons in Nb. The phonon energy shift extracted from the phase shift of the
spin echo signals is also shown for the (−0.08 − 0.08 2)T1 phonon (panel-f). The results
are Kramers-Kronig consistent. The lines are fit to the BCS excitation spectrum function
[125]. (i) The BCS expression for the superconducting energy gap in Nb together with the
experimental data extracted from panels (a)-(h). The data at T = 3.5K are extracted from
the momentum dependent linewidths of Fig.7.5

various phonons are in good agreement with prior tunneling data and with the BCS
expression (Fig.7.3-i).

The momentum dependent intrinsic linewidth of the transverse acoustic phonon
branches in Nb are shown in Fig.7.4. The measurements were performed at T = 3.5
and 12 K. The overall increase of the linewidth with q is due to the increase of the
momentum phase space where electrons can be scattered to. Sharp features are also
observed at specific wave vectors in particular along the (ξ00) direction. To help
interpret these observations, we compared the results with ab-initio density functional
perturbation calculation computed on a very fine mesh of q points in reciprocal space
[126]. The experimental results are in good overall agreement with the calculations.
The resolution of the calculations was sufficient to reproduce the sharp features in q,
in particular predicting the subtle structures at large ξ for the (ξ00)T branch. These
features are identified as Kohn anomalies arising from nesting of different segments of
the Fermi surface.
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Figure 7.4: Intrinsic linewidths of transverse acoustic phonons along (a) q = (ξ00)T (b)
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correcting the measured spin-echo decay rates for all sorts of resolution effects. The connected
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The data of Fig.7.4 contain additional exclusive information about the anisotropy
of the gap. An acoustic phonon with wave vector q = k1 − k2 and energy less than
the q−dependent gap 2Δq = Δk1 +Δk2 cannot decay into electron-hole pairs (k1 and
k2 are the electron momenta on the Fermi surface). The linewidth of this phonon
is not broadened by the e − p interaction below Tc. As its energy, however, exceeds
2Δq, the linewidth exhibits a discontinuity due to opening of the e− p decay channel.
Measurements of this kind, along different crystallographic directions, serve as a com-
prehensive probe of the superconducting energy gap anisotropy, which can be inferred
from a map of these discontinuities. Fig.7.5 displays a blowup of the linewidths and
energies of the small-q region in the vicinity of the gap for the (ξ00)T and (ξξ0)T1
branches. The measurements in this region were performed with a fine q-spacing (0.01
rlu), to closely track the discontinuity in the linewidth. At temperatures well below
Tc, where the energy gap is saturated (blue squares), sharp jumps reflecting the BCS
density of states are apparent in the linewidths when the phonon energy exceeds 2Δq.
The values 2Δ100 = 3.15± 0.05meV and 2Δ110 = 3.39± 0.05meV extracted from fits
to the BCS excitation spectrum function are significantly different, indicating an ∼ 8%
anisotropy of the superconducting gap (Note that the error bars quoted include only
the statistical error from the fits. The finite q-resolution of the spectrometer translates
into a broadening of the observed discontinuities by ∼ 0.12meV . This systematic error
however affects both gap values in the same way and therefore does not influence the
gap anisotropy). While both the magnitude and the anisotropy of the gap are con-
sistent with corresponding quantities inferred from prior tunneling data, the phonon
measurements were performed in specific crystallographic directions and thus provide
an improved basis for a comparison with theoretical calculations.

Similar measurements, performed well above the superconducting transition tem-
perature, reveal the existence of sharp anomalies in the phonon linewidth at the same
energies at which the superconducting gap saturates at low temperatures (red circles).
These anomalies are Kramers-Kronig consistent with the dispersion anomalies (Fig.7.5
c,d) and are interpreted as Kohn anomalies resulting from Fermi surface nesting [127].
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Figure 7.5: FIG. 2: Transverse-acoustic phonon parameters of Nb in the vicinity of the
superconducting gap. Phonon linewidths (a, b) and energies (c, d) are shown along (100)
and (110) above (blue symbols) and far below (red symbols) the superconducting Tc. (a,
b) The lines in the superconducting state are results of fits to the BCS excitation spectrum
function. The lines in the normal state are guides-to-the-eye. (c, d) Red and blue lines
represent the phonon dispersion (left scale), green lines represent the numerically computed
first derivative (right scale).

The data therefore indicate a surprising coincidence between the superconducting gap
and Kohn anomalies along both directions.

Presently it is unclear whether the gap energy 2Δ(0) is locked to the Kohn anomalies
or if the observed coincidence is accidental. A possible locking mechanism was proposed
by Scalapino [128]. Such a lock-in effect would limit the 2Δ(0) value to the lowest lying
Kohn anomaly. In the following sections we present more experimental data supporting
the locking hypothesis.
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7.1.2 Lead

Since the early 1960s, the phonon frequencies in lead were investigated with inelas-
tic neutron scattering on the triple axis spectrometer (TAS) [130][131][42]. Detailed
phonon dispersion relations were obtained, but the phonon linewidths were not re-
solved. Further attempts to increase the TAS resolution in the late 1970s [43], dedicated
to the study of superconductivity induced line broadening, were not successful.

The present experiments were dedicated to the study of the e− p interaction. The
measurements were mostly carried out at temperatures in the vicinity of Tc. Fig.7.6-a
shows the dispersion of the acoustic phonon branches in Pb along the high symmetry
directions. The measurements were performed at T = 3.5 and 10K. Several anomalies
are observed in the dispersion, which are in part assigned to Kohn anomalies. Those
along the (ξξ0)L branch at ξ = 0.35 and 0.50rlu (and also along (ξξξ)L not presented
here) were the first experimentally observed Kohn anomalies in metals [130]. They were
assigned to diametric Fermi surface nesting. Anomalies at these same wave vectors
are also present in the lowest lying (ξξ0)T1 branch (Fig.7.6-b), which were not quite
identified before. Whereas LDA calculations in the framework of ab-initio density
functional theory presented here [126] predict the Kohn anomalies in the longitudinal
branch, do not exhibit any irregularity in the transverse branch around these same
wave vectors. Deviations of the LDA from the experimental data are also observed at
the zone boundary, where the phonon energies are strongly damped in all the measured
branches, in agreement with prior work [130][131]. These deviations therefore originate
from factors not included in the LDA (such as relativistic and spin-orbit effects). Many
attempts to explain the observed damping at the zone boundary were made in the past.
Spin density wave (SDW) ground state driven by electronic correlations was predicted
in Pb [132]. A qualitative theory on the influence of the SDW on the lattice dynamics
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Figure 7.6: (a) Phonon dispersion of different acoustic branches in Pb. Lines are the result
of lattice dynamical calculations. (b) Phase velocity of the (ξξ0)T1 branch. The horizontal
line corresponds to the sound velocity in Pb at T = 0K [129].
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was successful in explaining the observed dips at the zone boundary [133]. Yet the
search for static density waves in Pb was unsuccessful [134].

Recently, ab initio calculations of the phonon dispersion of Pb, within the frame-
work of density functional perturbation theory, with a fully relativistic ultra soft pseu-
dopotential including spin-orbit coupling effects were reported [135]. The dips at the
zone boundary and the S-shape anomaly of the T1 branch along the (ξξ0), were well
reproduced by this method and were shown to be compatible with Kohn anomalies
because they appear only for sufficiently small values of the smearing parameter that
determines the sharpness of the Fermi surface. The spin-orbit coupling, although on
an absolute scale is quite small, turns out to have significant effects in Pb due to the
very low phonon energies.

The temperature and momentum dependence of the linewidths of the different
phonon branches presented in Fig.7.6 have been investigated by the spin echo technique.
Fig.7.7 displays a typical NRSE decay profile of the transverse acoustic (0.26 0.26 0)T1
phonon in Pb at T = 3.5 and 6K. The data are well described by exponentials. A
drop of the slope corresponding to an increase of the phonon linewidth is clearly appar-
ent. The corresponding broadening Γe−p

Pb ≈ 5μeV is way smaller than Γe−p
Nb ≈ 25μeV

obtained for Nb. This explains the unsuccessful attempts of observing a superconduc-
tivity induced anomalies in Pb by the conventional TAS spectroscopy. The extrinsic
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factors such as the effect of the mosaicity of the crystal and the curvature of the dis-
persion relation (where both strongly depend on the slope of the dispersion), which
describe the zero temperature linewidth, are larger in Nb due to the steeper phonon
dispersion.

Fig.7.8 shows the temperature dependence of the intrinsic linewidth Γ for two
(ξξ0)T1 phonons with energies below (panel-a) and above (panel-b) the supercon-
ducting energy gap 2Δ(0) (panel-c). A decrease of Γ in the superconducting state is
evident for the E = 2.48meV phonon. The line represents a fit to the BCS excitation
spectrum function [125]. The extracted gap value is plotted in Fig.7.8-c which is in
good accord with the magnitude of the superconducting energy gap from tunneling
data [136]. The effect is no longer present for the E = 3.20meV phonon whose energy
exceeds 2Δ. The sharp structure at T=6K in panel-a and the slight increase in phonon
linewidth below Tc in panel-b are due to the pileup of the electronic states just above
the gap. For the more steeply dispersing T2 phonon along (ξξ0) and the T phonon
along (ξ00), the superconductivity-induced phonon linewidth renormalization is much
smaller than that of the T1 phonon. This is expected on general grounds, because the
steep dispersion of these modes imply that the linewidth effects are restricted to wave
vectors close to the Brillouin zone center.

Along (111), an accurate determination of Γ was not feasible since the observed
NRSE profiles strongly deviate from an exponential decay. Fig.7.9-a,b displays the
observed NRSE profiles for two different phonons. An oscillation of the polarisation is
observed as a function of the spin echo time τ . Even though temperature dependent
measurements of the polarisation at a single τ value reveal a superconductivity-induced
linewidth reduction of magnitude similar to that of the T1-phonon along (ξξ0) (Fig.7.9-
c), extracting an absolute linewidth is quite complex. Similar deviation from a single
exponential decay were also observed for (111) phonons in Nb (Fig.7.9-d). These de-
viations indicate that S(Q, ω) does not resemble a single Lorentzian. The observed
signal is attributed to the complex dispersion surface of two nearly degenerate trans-
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Figure 7.9: NRSE profile for transverse acoustic phonons along the (ξξξ) direction in
(a,b) Pb and (d) Nb. The lines are guide to the eye. (c) Temperature dependance of the
polarisation at τ = 28ps for the phonon in (b). The right scale gives the relative estimated
raw linewidth. (e) Modeled two Lorentzian peaks corresponding to two phonon groups within
the TAS resolution ellipsoid. (f) The Fourier transform of (e).

verse phonon branches sampled by the finite q-volume of the spectrometer. Neutrons
scattered from both branches with different final energies lead to an oscillation and
reduction of the spin-echo signal. To explain this situation, in Fig.7.9-e we present
a simple model for S(Q, ω) with two Lorentzian peaks and in Fig.7.9-f we display its
Fourier transform. The result is similar to the observed data. The oscillation and the
decay envelope of the polarisation depend on the intensity ratio (which is given by the
phonon eigenvectors for the two branches), the widths, and the splitting of the two
peaks (in the off-symmetry direction). Due to the complexity of the (111) branch, the
momentum dependent measurements were therefore focused mainly along the (100)
and (110) directions.

Fig.7.10 shows the momentum dependent intrinsic phonon linewidth along the
(100)T and the (110)T2 directions at selected temperatures. The data are compared
to predictions of LDA calculations [126]. For the low-q region, a fair agreement be-
tween the experiment and the LDA is reached. Kohn anomalies along the (ξ00)T at
ξ ≈ 0.35rlu and along the (ξξ0)T2 branch at ξ ≈ 0.5 − 0.6rlu are observed experi-
mentally and qualitatively reproduced by the theory. Remarkable deviations from the
LDA, however, occur at the zone boundary, where phonon broadening is observed in
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Figure 7.10: Intrinsic linewidths of acoustic phonons along (a) q = (ξ00)T (b) q = (ξξ0)T2
in Pb at different temperatures above and below Tc. The data are corrected for resolution
effects. The connected solid circles are the results of ab initio lattice-dynamical calculations,
as described in the text. Error bars indicate the statistical errors.

both branches. This huge increase in the linewidths is Kramers-Kronig consistent with
the dips observed in the phonon dispersion at the zone boundary (Fig.7.6). These de-
viations are believed to be due to spin-orbit coupling, not included in the calculations
presented here, which has significant effects on the phonon energies in Pb [135].

The intrinsic wave vector dependent linewidth of the transverse acoustic phonon
mode along (ξξ0)T1 is shown in Fig.7.11-a. At all temperatures, sharp anomalies
in the phonon linewidths are seen at ξ ∼ 0.25, ∼ 0.35, and ∼ 0.50 rlu. The same
features also appear in the phonon dispersion relation (Fig.7.6): maxima in the phonon
linewidth coincide with characteristic S-shaped deviations from the q-linear dispersion,
as stipulated by the Kramers-Kronig relation. These phonons with the anomalous wave
vectors are intrinsically unstable towards decay into other elementary excitations. In
principle, the decay products can be either other phonons (generated, for instance,
by anharmonic terms in the lattice potential) or electron-hole pairs (originating from
Kohn anomalies). The features at ξ ∼ 0.35 and 0.50 rlu can be associated with
Kohn anomalies, because these wave vectors are known as nesting vectors of the Fermi
surface [137]. Indeed, pronounced Kohn anomalies were observed at ξ ≈ 0.35, 0.45
0.50 and 0.65 rlu in the longitudinal phonon branch [130][131](see Fig.7.11-b) and
qualitatively reproduced by the LDA assigning their origin to Fermi surface nesting.
For the transverse branches, the calculations do not reproduce the sharp features in the
linewidths observed by the experiment. Nevertheless, their corresponding appearance
in the longitudinal branch indicate that their absence in the transverse branches is
not due to poor Fermi surface sampling. The origin of the feature at ξ ∼ 0.25rlu is
more subtle (Fig.7.11-a), because this wave vector does not match any known spanning
vector of the Fermi surface. A possible origin is a three-phonon decay process previously
observed in the spectrum of phonons in liquid helium, which are unstable because their
phase velocity exceeds the velocity of sound [24],[25]. Indeed, accurate measurements
of the dispersion (Fig.7.6) shows that the phonon phase velocity exceeds the sound
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superconducting gap, which was experimentally confirmed by tunneling spectroscopy [136].
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At T = 0.5 K, for instance, fits to two peaks with energies at the end points of the error bar
are in acceptable agreement with the data.

velocity around ξ ∼ 0.25rlu. This process has not been observed in solids and deserves
further investigation. Anharmonic terms in the lattice potential may also contribute
to the anomaly.

Now we focus on the influence of superconductivity on the phonon linewidths and
explore the validity of the phenomenon observed in Nb. As the superconductor is
cooled below Tc, the electron-hole decay channel is closed (and Γ is reduced) below
the energy gap 2Δ(T ). This effect is observed at low wave vectors ξ in Fig.7.11-a. In
particular, Γ→ 0 for T << Tc around ξ = 0.32 (corresponding to a phonon energy of
2.47 meV, below the low-temperature limit of 2Δ ∼ 2.8 meV known from tunnelling
measurements [136]). For lower energies around ξ ∼ 0.25, however, Γ remains nonzero
even at the lowest temperatures, supporting the notion that the linewidth anomaly
at this wave vector originates from p − p interaction and not from electron-hole pair
production. We have removed the contribution of this process for clarity and show only
the phonon linewidth Γe−p directly attributable to the e − p interaction (Fig.7.11-c).
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surface of Pb, with arrows indicating decay channels responsible for the Kohn anomalies in
the panels (a) and (b) respectively.

As expected, Γe−p exhibits a maximum due to the pileup of electronic density of states
above 2Δ(T ), which moves to progressively higher energies upon cooling and closely
tracks the energy gap determined in prior tunnelling measurements [136] (Fig.7.11-d).
Surprisingly, the superconductivity-induced maximum of Γe−p merges with the Kohn
anomaly as T → 0. At T = 0.5 K, both anomalies are indistinguishable within the
measurement error.

In Fig.7.12-a,b we show a blowup of the linewidth of the lowest energy transverse
acoustic phonons along the (ξξ0) and (ξ00) branches. Kohn anomalies in the normal
state (T = 10 K) are observed in both directions as sharp increases in the linewidth,
and the 2Δ gaps extracted from the low temperature data in the superconducting state
coincide with these anomalies along both directions. The nesting wave vectors, that
generate the Kohn anomalies, are illustrated in Fig.7.12-c,d by arrows connecting the
tubular sheet of the Pb Fermi surface. Once again similar to the observation in Nb, the
2Δ extracted from the low temperature data coincide with the lowest Kohn anomaly
along these two directions. While 2Δ110 = 2.80 ± 0.05 meV is in agreement with the
average gap value for Pb determined by tunneling spectroscopy, 2Δ100 = 3.49 ± 0.05
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Figure 7.13: Phonon linewidths and Kohn anomalies in Pb calculated in the framework of
ab-initio density functional perturbation theory [126]. (a) Linewidths of longitudinal (green)
and transverse (black, red) acoustic phonons along selected directions in the Brillouin zone.
Jumps in the linewidths indicate Kohn anomalies due to Fermi surface nesting. (b, c) Locus
of Kohn anomalies extracted from the jumps in the longitudinal phonon linewidths in the
(hk0) and (hhl) planes (blue points). Solid (dashed) lines are the constant-energy surfaces
of the lowest-energy transverse acoustic phonon branch at 2.8meV (2.8meV ± 10%)

meV exceeds the average by ≈ 20% (top scale in Fig. 3) due to locking to the Kohn
anomaly along the (100) direction. This surprising lock-in effect, observed in Pb and
Nb along different directions, provides a clue to the origin of the superconducting gap
anisotropy.

To complement the experimental data, we present LDA calculations [126] of the
phonon energies and linewidths in Pb on a grid with a spacing of 0.02 rlu in the en-
tire (hk0) and (hhl) planes. Fig.7.13-a shows the calculated phonon linewidths along
selected directions. For the transverse branches, the calculations do not reproduce the
sharp features in the linewidths observed in the experiment above Tc (Fig.7.12), pre-
sumably due to the absence of the spin-orbit coupling [135]. However, Kohn anomalies
resulting from nesting of the Fermi surface are clearly seen in the longitudinal branches
at momentum points that closely agree with the experimental results, confirming our
interpretation of the experimental normal-state features in terms of Kohn anomalies.
Fig.7.13-b,c show maps of Kohn anomalies extracted from jumps in the numerically
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computed longitudinal acoustic phonon linewidths in the (hk0) and (hhl) planes (blue
symbols). Constant-energy surface of the lowest transverse acoustic phonon branch at
a phonon energy corresponding to 2Δ = 2.8 meV (solid lines) are also plotted. Re-
markably, this surface coincides with a Kohn anomaly within ±10% (dashed lines in
Fig.7.13-b,c) over the entire Brillouin zone, except for a narrow segment along (100).
This implies that lock-in of the momentum-dependent gap to a Kohn anomaly along
all directions in momentum space can generate a gap with an average of 2.8 meV and a
slight (±10%) anisotropy over most of the Brillouin zone, in agreement with tunneling
data. The lock-in mechanism can also explain the dramatic enhancement of the gap
along (100) (Fig.7.12-a), where the Kohn anomaly is located relatively far from the
2.8 meV constant-energy surface. This enhancement has thus far not been reported,
presumably because it covers only a very small portion of the Brillouin zone (Fig.7.13).
The superconducting gap anisotropy therefore appears to mirror the locus of Kohn
anomalies in momentum space. The lock-in mechanism thus leads to a simple new
explanation of the gap anisotropy.

A similarly detailed comparison for Nb is not possible, because at the small wave
vectors corresponding to the location of the lowest-lying Kohn anomalies, the numerical
values of the phonon frequencies are largely unstable due to strong anharmonic effects.
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7.1.3 Lead-Bismuth Alloys

If the superconducting energy gap is controlled by Kohn anomalies and therefore by the
geometry of the Fermi surface, varying the latter will correspondingly modify the gap.
A possible way to alter the Fermi surface is to apply hydrostatic pressure. Indeed all
superconductors exhibit changes in their superconducting transition temperature under
pressure. This approach however requires tiny samples, not suitable for inelastic neu-
tron scattering. Doping a material with charge carriers (electrons or holes) changes the
dimensions of the Fermi surface and thus systematically displaces the Kohn anomaly
to larger or smaller wave vectors. Whether the superconducting gap will follow the
Kohn anomaly, supporting the locking effect observed in elemental Nb and Pb, is the
aim of the present investigation.

To shed more light on the relation between Kohn anomalies and 2Δ, several crystals
of Pb doped with different Bi concentrations were grown [139]. Doping with Bi, which
has one electron more than Pb, expands the Fermi surface shifting the nesting to larger
wave vectors. 2Δ is therefore expected to increase. Tunneling measurements indeed
show a strong dependence of the gap 2Δ and Tc of Pb-Bi alloys on the Bi concentration.
Fig.7.14 represents the data taken from [118]. Both quantities dramatically increase
with doping. Similar measurements on Pb-Tl alloys (where Tl has one electron less
than Pb) show the decrease of the two quantities with doping [118]. Generally speaking,
the trend is in the right direction, where in the Bi (electron) doping the FS expands
shifting the Kohn anomaly to larger wave vectors, whereas in the Tl (hole) doping,
the FS shrinks reducing the nesting wave vectors. We systematically investigated the
dispersion and the linewidth of Pb-Bi alloys with different Bi concentrations. The Tc

of the high quality samples are plotted (red symbols) in Fig.7.14-a (See the previous
chapter for details). The doping and the gap magnitude of the samples are deduced
from the Tc measurements. As shown in Fig.7.14-b, the phase diagram of these alloys
indicate that the face centered cubic (FCC) structure persists up to 20% Bi doping.
No evidence of contamination from the other phases were observed in the neutron
diffraction data for both crystals.
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Figure 7.14: (a) The 2Δ gap and the Tc for the Pb-Bi system, taken from [118]. The red
symbols correspond to the Tc of the samples used in the present work. (b) Composite phase
diagram of the Pb-Tl and Pb-Bi alloys, taken from [138].
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Figure 7.15: (a) Phonon dispersion of the (ξξ0)T1 branch in Pb1−xBix alloys with x=0
(pure Pb), 0.03, and 0.10. The inset shows a blowup of the anomalous part of the dispersion.
(b) The computed first derivative of the Born-von-Karman fit to the dispersion data of (a)
for the three samples.

Fig.7.15-a displays the doping dependence of the (ξξ0)T1 phonon branch in Pb1−xBix
samples measured at T = 10K. A clear doping dependence is observed within the ξ-
range of 0.35− 0.45 rlu. In pure Pb, the ξ = 0.35rlu corresponds to the nesting wave
vector where the Kohn anomaly is observed (Fig.7.12-a). Upon progressive doping, we
observe the systematic shift of the Kohn anomaly to larger wave vectors (see inset).
This shift is clearly seen in the numerically computed first derivative of the Born-von-
Karman fit to the dispersion data (Fig.7.15-b). The curves are shifted from the pure
Pb by 0.014rlu for Pb0.97Bi0.03 and 0.038rlu for Pb0.9Bi0.1.

The momentum dependent phonon linewidth of the same (ξξ0) branch is shown in
Fig.7.16 for the three samples. The vertical shift of the data with doping is most likely
due to scattering from disorder (Due to the Bi nuclei which have similar effect as the
isotope effect). The increase of the jump magnitude with doping is due to the increase
of the electronic density of states at the Fermi surface. Even though dense momentum
measurements were not performed (due to the relatively small sample volume and
the limited neutron beam time), the presented data are consistent with the shifted
anomaly. For pure Pb (panel-a), the peak in the linewidth, corresponding to the Kohn
anomaly, lies at ξ = 0.355rlu (the value is obtained from a fit to a BCS like excitation
spectrum see Fig.7.12). While the density of the measured points does not allow us
to precisely determine the Kohn wave vector for the Pb-Bi alloys, those wave vectors
can be estimated from the shift of the slope observed in Fig.7.15-b with respect to
the pure Pb sample. The resultant Kohn anomalies lie at ξ = 0.37rlu for Pb0.97Bi0.03

and ξ = 0.39rlu for Pb0.9Bi0.1. Both values lie within the shaded area of fig.7.16.
Interestingly, the phonon energies corresponding to the Kohn wave vectors in both
cases, 2.84meV and 3.0meV for Pb0.97Bi0.03 and Pb0.9Bi0.1 respectively, closely trace
the superconducting gap 2Δ of Fig.7.14. This coincident momentum dependence of
2Δ and Kohn anomalies in pure elements and alloys with different crystal structures
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Figure 7.16: The raw phonon linewidth of the (ξξ0)T1 branch in Pb1−xBix alloys with x=0
(pure Pb), 0.03, and 0.10. The shaded are indicate the widths of the jumps.

(BCC and FCC), phonon spectrums, Fermi surfaces, and gap values, therefore is quite
unlikely to be accidental, suggesting that the superconducting gap at low temperatures
is controlled by the location of Kohn anomalies in the lowest energy acoustic phonon
spectrum.

Apart from this phenomenon, the appreciable softening of the zone boundary
phonons with Bi doping follows the same trend as the Kohn anomaly observed around
0.35−0.45 rlu. Both become pronounced with doping. Those dips at the zone boundary
were also interpreted as Kohn anomalies since they depend strongly on the sharpness
of the Fermi surface [135].



7.1. Conventional Superconductors 87

7.1.4 Transition Metal Dichalcogenide 2H-NbSe2

To test the generality of the phenomenon observed in the elements Nb and Pb and
the alloy Pb-Bi, we extended the investigation to more exotic superconductors. Tran-
sition metal dichalcogenides (TMD) possess a weakly coupled layered structure. The
two-dimensional nature of these materials strongly favors the occurrence of electronic
instabilities driven by Fermi surface nesting, which lead to the formation of charge
density waves (CDW). Among the different TMDs, 2H-NbSe2 has attracted particular
attention because of the coexistence of the CDW and superconducting phases. The
nature and the competition between these two ground states remains a challenging
issue [140].

Conventional CDW transitions are understood in terms of Fermi-surface nesting,
leading to the formation of a CDW gap [141]. The CDW and superconducting gaps can
be described by the value Δ(0) = 1.76kBT*, where T* denotes Tc for superconductivity
and TCDW for the CDW [141]. It is believed that if these two ground states coexist,
they should occur on different parts of Fermi surface. Recent ARPES experiments
on NbSe2 indicated a highly anisotropic superconducting gap which varies among, and
even within the different Fermi surface sheets. Surprisingly, the largest superconducting
gaps were found to occur at points on the Fermi surface that are directly connected by
the CDW ordering vector, i.e. nesting wave vector, in direct contrast to the established
view that the two ground states only compete [45][142].
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Figure 7.17: (a) Constant energy scans of the (ξ00)Σ3 phonon branch in NbSe2. The
measurements were performed with fixed kf = 2.5Å

−1. For ξ > 0.15rlu two phonon groups
are observed. (b) The dispersion of the (ξ00)Σ3 branch at T=300K. The blue symbols
represent the acoustic branch whereas the red symbols represent the optical branch which
approaches the acoustic branch for ξ > 0.2rlu. The lines are guide to the eye.
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Figure 7.18: (a) The computed first derivative of the acoustic phonon dispersion (Fig.7.17.
(b) The full width at half maximum (FWHM) of the energy scans as a function of ξ. The
width (instrumental resolution) is highly sensitive to the slope of the dispersion. The line is
guide to the eye.

The phonon spectrum of 2H-NbSe2 has been studied in the past [29]. Detailed mea-
surements of the longitudinal Σ1 branch revealed a two dimensional Kohn anomaly
near half way through the Brillouin zone leading to a CDW. The lower transverse
branches were however not carefully studied. We have therefore investigated the dis-
persion and linewidths of the lowest energy acoustic phonon branch in 2H-NbSe2 single
crystals [143]. Detailed measurements with a q−spacing of 0.01rlu were performed in
the vicinity of the expected superconducting gap. Fig.7.17 shows the dispersion of
the transverse acoustic (ξ00)Σ3 branch carried out on a single crystal (SC) weighing
≈ 200mg at T = 300K. The blue symbols indicate the acoustic branch, whereas
the red symbols indicate the optical branch. A kink in the dispersion is observed at
ξ ≈ 0.11rlu (the lines indicate the change in the slope of the dispersion which inter-
sect around ξ ≈ 0.11rlu). Surprisingly, this kink lies at an energy corresponding to
the largest superconducting energy gap [142]. Fig.7.18-a displays the computed first
derivative of the dispersion, which clearly shows an anomaly around ξ = 0.1rlu. A sim-
ilar kink is observed in the resolution limited phonon widths (FWHM extracted from
the TAS energy scans) (Fig.7.18-b). The observed FWHM displays the instrumental
TAS resolution which is strongly sensitive to the slope of the dispersion.

A kink in the phonon dispersion can either be caused by the screening electrons
(Kohn anomaly) or by the interatomic forces. For layered systems with weak inter-layer
forces, a convex curvature is expected for the transverse acoustic mode with out-of-
plane polarisation (ΣTA⊥). Due to the crystal symmetry, the slope of this branch
should be equal to that of the transverse acoustic mode in the direction perpendicular
to the layers (ΔTA). In fact, in the absence of the inter-layer interactions, the energies
of the ΔTA branch would be identically zero, and the ΣTA⊥ branch would have a
dispersion curve of quadratic form near the zone center. MoS2, which is a semiconduc-
tor and therefore has no conduction electrons, exhibits a convex dispersion due to its
weakly coupled layer structure [144]. The (ξ00)Σ3 phonon branch in NbSe2, which has
out-of-plane polarisation, is therefore expected to exhibit a weak convex curvature.

From the data of Fig.7.17 and Fig.7.18 it is not straightforward to verify whether
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Figure 7.19: Raw phonon linewidths of the (ξ00)Σ3 branch in NbSe2 measured on the single
crystal (SC) at T=300K. The increase in the linewidth with decreasing ξ is due the curva-
ture and mosaic contributions to the NRSE resolution. The line represents the momentum
dependency of the instrumental resolution.

in addition to a convex curvature, a sharp kink is present. While a convex curvature
resulting from weak inter-layer forces will have no effect on the momentum dependent
phonon linewidth, a kink originating from a Kohn anomaly will lead to a sharp broad-
ening of the phonons. We have therefore studied the momentum dependent phonon
linewidth of the (ξ00)Σ3 branch. Due to the relatively small sample size (200mg)
the measurements were restricted to small energies and high temperatures. Fig.7.19
shows the raw results. The data are not corrected for resolution due to the lack of the
off-symmetry dispersion data. The increase in the linewidth at small wave vectors is
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Figure 7.20: (a) Energy scan of the ξ = 0.1rlu phonon in the single crystal (SC) and the
mosaic crystal (MC) at T=300K. The scans were performed under different spectrometer con-
figuration. ra is the horizontal focusing of the Heussler analyzer. (b) NRSE scans of the same
phonon under different spectrometer configurations. (-1-1-1) represents the scattering sense
of the particular scan. All other NRSE scans were performed in the (-1-1+1) configuration.
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Figure 7.21: Summary of the raw phonon linewidth of the (ξ00)Σ3 branch in NbSe2 mea-
sured under different experimental configurations. The increase in the linewidths with de-
creasing ξ is mainly a result of the resolution. Measurements under the same experimental
condition for the two samples (SC and MC) display the same result (ξ = 0.10rlu).

entirely due to resolution effects from the curvature and the mosaic spread of the sam-
ple. The dotted line represents the trend of the resolution function, which decreases
with q (see section 6.4). A jump in the raw linewidths above ξ = 0.11rlu, the same
wave vector where the dispersion exhibits a kink, is observed. The statistics however
is not enough to draw solid conclusions.

To perform similar measurements at temperature below and just above Tc, a larger
mosaic array of single crystals (MC) was prepared. The sample array was composed of
five single crystals, each attached and co aligned on a tiny goniometer (see Fig.6.6-a).
The total weight of the sample array was ≈ 700mg with an effective mosaic spread of
η ≈ 10′. To further enhance the intensity, the graphite analyzer with the supermir-
ror spin polariser was replaced by a horizontally focused Heussler analyzer. Fig.7.20-a
compares a TAS energy scan of the ξ = 0.1rlu phonon performed with the SC and MC
under different spectrometer configurations. A gain of a factor of three in intensity
is reached with the mosaic crystal (solid green and black circles). While the inten-
sity is further enhanced by the horizontal focusing (ra=0.22 where ra is the radius
of curvature) of the Heussler analyzer, the resulting phonon peak is also broadened.
Fig.7.20-b compares the corresponding NRSE scans. The linewidth in the SC and
the MC measured with the graphite analyzer (Black and green circles) display similar
results ensuing a comparable mosaic spread for the two samples. The slight drop of
the initial polarisation for the MC is due to the inhomogeneous distribution of the
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crystals. The linewidths measured with the Heussler analyzer all show a broadening
as a consequence of the worse resolution. Fig.7.21 displays a summary of the momen-
tum dependent linewidths carried out at different temperatures. Even with the large
crystal array and the focused analyzer, measurements at low temperature were mainly
possible for small ξ. It is important to note that NbSe2 exhibits two critical tempera-
tures: Tc = 7.2K and TCDW = 33.5K. No appreciable temperature dependency across
any of the two critical temperatures was observed. This is foreseen since these wave
vectors are too small to connect any two points on any of the 2D Fermi surface sheets,
and thus weakly interact with the electrons. Instead due to the low dimensionality of
the Fermi surface, only a few but rather sharp features at nesting wave vectors are
expected which require measurements on a wider momentum range. At large ξ (above
0.10rlu), where we expect to come across a connection between the superconducting
gap and the observed kink at room temperature, the intensities were too low for a
descent measurement.

A larger crystal array (total weight ≈ 3gr) is therefore essential for a conclusive
experiment.
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7.2 High Temperature Superconductor LSCO

Based on the successful observation of e − p linewidths with μeV resolution in con-
ventional superconductors, we extended the research to the more sophisticated high
temperature superconductors, whose understanding is still in its infancy. Unlike the
simple elemental superconductors, which exhibit mainly distinct acoustic branches,
La2−xSrxCuO4 has 7 atoms per unit cell and therefore displays 18 optical and 3 acous-
tic phonon branches extended to energies up to ≈ 80meV . The focus of the present
work was mainly on the low energy acoustic phonons. These branches, however, are
highly contaminated by the presence of several low-lying optical modes, which cross
and anti-cross the acoustic branches. To avoid spurious effects in the NRSE measure-
ments, it was essential to have a map of the low lying phonon energies prior to the
NRSE measurements.

We have investigated the temperature and momentum dependence of the phonon
energies and linewidths in La2−xSrxCuO4 (LSCO) in the underdoped (x=0.08), opti-
mally doped (x=0.14), and overdoped (x=0.22) samples [145]. Most of the measure-
ments were carried out on the transverse acoustic (ξ00)Δ4 branch. Fig.7.22 displays the
dispersion of the transverse acoustic (ξ00)Δ4 phonon branch for the different dopings

measured at T = 10K. The measurements were performed with a fixed kf = 3.2Å
−1

near the (1 0 11) Bragg peak which has the highest structure factor for this phonon
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Figure 7.22: (a) Phonon dispersion of the transverse acoustic (ξ00)Δ4 branch for the
different samples used in the experiment. The measurements were performed on TRISP and
on PUMA spectrometers at the FRM-2. The low lying optical and the longitudinal acoustic
branches taken from [93] are represented by the black lines. (b) TAS energy scans of the
ξ = 0.23rlu phonon at T = 10K measured on TRISP near the (0 0 6) and (1 0 11) Bragg
peaks. The difference in intensity is due to the phonon structure factor. (c,d,e) TAS energy
scans near the (1 0 11) carried out on TRISP and near the (0 0 6) carried out on PUMA.
The lines are the results of fits to Gaussians.
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Figure 7.23: Raw NRSE profile for several selected transverse acoustic (ξ00)Δ4 phonons
in optimally doped LSCO. The ξ = 0.15rlu phonon displays a single exponential decay (a).
The difference in the raw linewidths is due to the q−resolution. For ξ > 0.40rlu the NRSE
signal is contaminatedby the nearby optical branches (b,c). The lines in (b,c) are guide to
the eye.

branch (see Fig.7.22-b). The low lying optical branches as well as the longitudinal
acoustic branch for the undoped sample, taken from [93], are also plotted. To dis-
tinguish among the different branches and their eigenvectors, high resolution TAS
measurements were carried out on PUMA spectrometer at the FRM-2, which is opti-
mized to measure phonon dispersions rather than linewidths. The measurements were

performed with a fixed kf = 2.662Å
−1

near the (0 0 6) Bragg peak to optimize the
momentum resolution. Graphite filters were used to filter out the higher harmonics.
Fig.7.22-d,e displays two sets of energy scans showing multiple phonon groups from
the different branches. The extracted energies are plotted in Fig.7.22-a. Except for
the Δ2, all other branches show a transverse component and are visible near the (0 0
6) Bragg peak. Due to their same symmetry, the optical Δ4 branch anti-crosses the
transverse acoustic Δ4 branch near ξ ≈ 0.4rlu leaving a gap in the phonon spectrum.

Due to the mixing of the different branches and the contamination of the acous-
tic (ξ00)Δ4 phonons, NRSE scans showed deviations from a single Lorentzian for
ξ > 0.40rlu. Fig.7.23 displays raw NRSE profiles for several (ξ00)Δ4 phonons. While
the ξ = 0.15rlu phonon shows a single exponential decay (panel-a), an appreciable
oscillation of the beam polarisation as a function of the spin echo time τ is observed
for the ξ = 0.45 and 0.70rlu phonons (panel-b,c) which strongly deviate from a single
exponential decay. These deviations indicate finite scattering within the TAS ellipsoid
from the nearby modes. To avoid spurious effects, the spin echo measurements were
confined to low-ξ region of the dispersion. Fig.7.23-a also shows the remarkable en-
hancement of resolution for measurements near the (0 0 6) Bragg peak compared to
that of the (1 0 11), however for a huge expense of intensity as shown in Fig.7.22-b.

The temperature dependence of the energy and the linewidth of two selected phonons
in optimally doped LSCO is shown in Fig.7.24. The measurements were performed

near the (0 0 6) Bragg peak with fixed kf = 2.6Å
−1
. The energies and the linewidths

are extracted from the relative phase and polarisation shifts of the spin echo signal
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Figure 7.24: Energy (a,b) and linewidth (c,d) shifts of two selected transverse acoustic
(ξ00)Δ4 phonons in optimally doped LSCO. The lines are guide to the eye. (e) Spin echo
intensity modulation measured at τ = 10.1ps at 40 and 200 K. The phase shift of the signal
is proportional to the energy shift, whereas the change in the polarisation depends on the
linewidth shift. (f) The (3/2 3/2 2) supperlattice peak in optimally doped LSCO which
is allowed in the low temperature orthorhombic (LTO) phase and forbidden in the high
temperature tetragonal (HTT) phase.

(Fig.7.24-e). Both quantities follow the trend of the structural phase transition in op-
timally doped LSCO from a HTT to LTO phase (Fig.7.24-f). While the ξ = 0.20rlu
phonon does not show a remarkable anomaly across Tc ≈ 35K, the ξ = 0.15rlu phonon
exhibits a superconductivity induced broadening of ≈ 20μeV below Tc (Fig.7.24-d).
Fig.7.25 summarizes the temperature and momentum dependent phonon linewidth in
optimally doped LSCO. The NRSE profiles, within this momentum range, are well de-
scribed by single exponentials (panel-b). The measurements were performed near the
(0 0 6) Bragg peak to optimize the resolution. Within the momentum range covered
in the experiment, linewidth broadening of ≈ 40μeV is observed between 50 and 280K
ensuing from the structural phase transition at To ≈ 210K. Both spectra however
also exhibit an additional momentum dependent broadening for ξ > 0.20rlu. This
linewidth broadening can be due to e − p interaction, which weakens for ξ < 0.15rlu
presumably due to the geometry of the Fermi surface (where phonons with wave vectors
ξ < 0.15rlu do not have enough momentum to scatter electrons across the antinodal
part of the Fermi surface). At T = 10K in the superconducting state, the ξ = 0.25rlu
phonon exhibits a slight linewidth narrowing. This is expected since this phonon lies
below the superconducting energy gap 2Δq (inset of Fig.7.25-a), where the e − p in-
teraction is suppressed due to the stability of the Cooper pairs. Yet the ξ = 0.15rlu
phonon, which is expected to lie far below 2Δq, shows an anomalous broadening below
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Figure 7.25: (a) Momentum dependence of the intrinsic phonon linewidth in optimally
doped LSCO at selected temperatures. The lines are guide to the eye. The open red circle
represents the linewidth extracted from Fig.7.24. The inset shows the d-wave superconducting
energy gap which crosses the phonon dispersion at ξ ≈ 0.32rlu. (b) Raw NRSE profile of the
ξ = 0.20rlu phonon at selected temperatures. The lines are fit to exponentials.

Tc. Similar anomalous linewidth broadening in the superconducting state was observed
in the overdoped and the underdoped samples for ξ < 0.20rlu (Figs.7.27,7.26). This
broadening, which seems to be induced by superconductivity, can not be understood
within the excepted gap magnitudes for LSCO [60][146]. Such a broadening would be
expected only for phonons which lie above 2Δq. While the optimally doped and under-
doped samples show linewidth narrowing below 0.20rlu, the overdoped sample exhibits
linewidth broadening even for small phonon wave vectors. This can be understood from
the geometry of the Fermi surface, where in the overdoped regime the antinodal (π, 0)
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Figure 7.26: (a) Momentum dependence of the intrinsic phonon linewidth in overdoped
LSCO at selected temperatures. The lines are guide to the eye. The inset shows the d-
wave superconducting energy gap which crosses the phonon dispersion at ξ ≈ 0.17rlu. (b)
Raw NRSE profile of the ξ = 0.10rlu phonon at selected temperatures. The lines are fit to
exponentials.
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Figure 7.27: (a) Momentum dependence of the intrinsic phonon linewidth in overdoped
LSCO at selected temperatures. The lines are guide to the eye. The inset shows the Fermi
surface in underdoped (left) and overdoped (right) LSCO [60]. In the underdoped case,
phonons with wave vector smaller than the red arrow (∼ 0.20rlu) can not scatter electrons
along the 100 direction. This restriction does not hold for the overdoped case. (b) Raw NRSE
profile of the ξ = 0.15rlu phonon at selected temperatures. The lines are fit to exponentials.

region becomes connected (see inset of Fig.7.27-a). The momentum and the doping
dependence of the linewidth at low temperatures supports the e − p nature as the
origin to the observed broadening. Yet the anomalous temperature dependency across
Tc remains unclear.

In addition to the (ξ00)Δ4 branch, measurements of the transverse acoustic (ξ00)Δ3

and (ξξ0)Σ4 branches were also performed. Fig.7.28 shows the dispersion of the trans-
verse acoustic (ξ00)Δ3 branch in optimally doped LSCO. The measurements were

performed with a fixed kf = 2.5Å
−1

near the (2 0 0) Bragg peak at T =10, 50 and
250K. A considerable hardening is observed at 250K, presumably due to the struc-
tural transition from LTO to HTT at To ≈ 210K (Fig.7.24-f). The low lying Δ2 and
Δ4 symmetry optical branches taken from [93] are also plotted. Due to their different
symmetry, both branches cross the Δ3 branch. Scattering from these optical branches
was not observed in the measurements near the (2 0 0) Bragg peak, as is obvious by
the single Gaussian peaks in Fig.7.28-a,b. NRSE scans for two (ξ00)Δ3 phonons are
shown in Fig.7.29. The ξ = 0.45rlu phonon, shows an oscillation of the polarisation as
a function of the spin echo time τ , apparently due to contamination from the nearby
optical Δ2 branch. Though signatures of the Δ2 branch were not observed in the TAS
energy scans, this can be due to the fact that in a TAS focusing case, a weak scattering
from the Δ2 branch leads to a constant background, which is hardly detectable. On
the other hand the ξ = 0.30rlu phonon, which lies away from the optical branches, dis-
plays a single exponential behavior (panel-a). Nevertheless, superconductivity induced
linewidth broadening was not observed across Tc.

Fig.7.30-b,c,d display several TAS energy scans of the (ξξ0)Σ4 phonon branch in
optimally doped LSCO. The measurements were performed at T = 10K with a fixed

kf = 2.2Å
−1

near the (0 0 6) Bragg peak which displays the highest phonon structure
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factor (Panal-a). The acoustic (ξξ0)Σ4 phonon dispersion is shown in panel-e. Data
for the transverse acoustic Σ3 branch taken from [147] are also plotted. While the two
branches are nearly overlapping, the Σ3 branch should have a zero structure factor
near the (006) Bragg peak, since it is polarised along the ε = (110) direction, out of
the scattering plane, i.e (Q.ε)2 = 0. Indeed the energy scans display single phonon
groups corresponding to the Σ4 branch. Fig.7.31 shows NRSE scans for two (ξξ0)Σ4

phonons in optimally doped LSCO (x=0.14). The measurements were performed with
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The Σ3 acoustic branch taken from [147] is also plotted.

fixed kf = 2.5Å
−1
. An appreciable oscillation of the beam polarisation as a function

of the spin echo time τ is, ones again, observed for the ξ = 0.05rlu phonon (panel-a)
which strongly deviates from a single exponential decay. The two acoustic modes (Σ3

transverse and Σ1 longitudinal), which might lie within the TAS ellipsoid centered at
ξ = 0.05rlu, should in principle have zero structure factors near the (006) Bragg peak.
Nevertheless, due to the finite out-of-plane resolution, scattering from the off-symmetry
phonons of those branches seems to be the source of signal contamination. The NRSE
profile for the ξ = 0.10rlu phonon (panel-b), displays a single exponential decay at
both temperatures. Yet the remarkable difference of the initial polarisation Po for the
two temperatures (inset), and the slight higher polarisation around τ = 6ps compared
to the τ = 4ps at T = 5K are indications of a weak but a finite contamination from
a nearby phonon group. Even though the intrinsic linewidths do not represent single
Lorentzians, both phonons exhibit a significant temperature dependence between 5 and
50K which can be attributed to superconductivity. The phonon linewidth across Tc of
this particular phonon branch was investigated by Chou et al. [148] in optimally doped
LSCO. With the limited energy resolution of the TAS, they were able to establish an
upper limit of 100μeV on the change in the linewidth across Tc. From the present data
we can estimate a Γe−p ≈ 40μeV as an upper limit.

It is worth mentioning that LSCO develops a domain structure, known as ’twins’,
in the orthorhombic phase. Such a domain structure which leads to the splitting of the
Bragg peaks and therefore the acoustic phonon dispersion, also leads to oscillation of the
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Figure 7.31: Raw NRSE profile of the transverse acoustic (ξξ0)Σ4 phonons with ξ = 0.05rlu
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of (b) gives the initial polarisation (Po) and the raw linewidths (Γ) extracted from exponential
decay fits.

NRSE signal. Nevertheless, the magnitude of this splitting (≈ 0.005rlu corresponding
to a maximum splitting of≈ 20μeV of the acoustic dispersion) will lead to an oscillation
of period Δτ > 200ps. Within the experimentally covered τ range (0 − 15ps), the
polarisation can be assumed to be constant.

In summary, we have observed signatures of e− p interaction in underdoped, opti-
mally doped, and overdoped LSCO. Momentum dependent broadening ≈ 40μeV were
observed for the transverse acoustic (ξ00)Δ4 branch. This branch however displayed
an anomalous temperature dependency across Tc. The lower transverse acoustic Δ3

branch along the same direction did not exhibit any anomaly across Tc. Clear signature
of superconductivity induced broadening across Tc was only observed for the transverse
acoustic (ξξ0)Σ4 phonons.
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Chapter 8

Conclusion

Neutron resonance spin-echo spectroscopy was used to investigate the lifetimes of acous-
tic phonons in conventional and unconventional superconductors. A major improve-
ment of the energy resolution by almost two orders of magnitude, compared to con-
ventional triple-axis spectroscopy, was achieved, which made this research possible.

In elemental superconductors Nb and Pb, the electron-phonon contribution to the
phonon lifetimes were resolved with μeV resolution along the high symmetry directions.
The results confirmed the ab-initio lattice-dynamical calculations [126][135]. The su-
perconducting energy gap 2Δ(T ) was accurately determined form the temperature
and momentum dependent discontinuities in the phonon lifetimes. The temperature
dependence of the extracted gap values agree well with the BCS expression of the
superconducting gap [2]. Surprisingly, in both elements, the low-temperature gap con-
verged with sharp Kohn anomalies originating from Fermi-surface nesting. While the
gap value, 2Δ(0), along the high-symmetry directions probed experimentally, differed
by 8 and 20% in Nb and Pb, respectively, this gap anisotropy mirrored the normal
state Kohn anomalies in momentum space. The coincident momentum dependence
of both quantities suggests that the superconducting gap and its momentum depen-
dent anisotropy at low temperatures are controlled by the locus of Kohn anomalies
in the acoustic phonon spectrum. Based on ab-initio density-functional calculations
it appears plausible that this coincidence extends over the entire Brillouin zone. This
mechanism of gap anisotropy thus provides a new perspective to this long-standing
problem. While the same ingredients that had been discussed in prior theoretical work
are involved, namely anisotropies of the Fermi surface and the phonon spectrum, they
are combined in a surprisingly simple manner.

Further experiments, carried out on two Pb-Bi samples with 3 and 10% Bi concen-
tration, revealed the expansion of the Fermi surface and the consecutive displacement
of the Kohn anomalies to larger wave vectors. In both alloys, the superconducting
energy gap was found to follow and lock to the Kohn anomaly enhancing both the gap
magnitude and the Tc. These experiments on pure elements and alloys demonstrate
that the low temperature limit of the superconducting energy gap locks in to the lowest
Kohn anomaly in transverse acoustic phonons. A locking mechanism was proposed by
Scalapino which includes feedback effects of superconductivity on the phonon spec-
trum [128], but further theoretical work is required to provide a definitive, quantitative
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explanation of the ”lock-in” effect. Lastly, work on other elemental and compound
superconductors is required to assess the generality of the lock-in mechanism. While
the effect is clearly inoperative for superconductors with very low transition temper-
atures, whose gap is far below the lowest-energy Kohn anomaly, its presence in other
superconductors with known or suspected gap anisotropy, such as elemental tin [46] or
gallium [47], is an interesting subject of further investigation.

Based on the successful observation of e − p linewidths with μeV resolution in
conventional superconductors, the research was extended to the high temperature su-
perconductor La2−xSrxCuO4 (LSCO). The temperature and momentum dependence
of the transverse acoustic phonon energies and linewidths in underdoped (x=0.08),
optimally doped (x=0.14), and overdoped (x=0.22) LSCO samples were investigated.
Due to the contamination of the acoustic branches, by the presence of several low-
lying optical modes, measurements were confined to specific regions of the dispersion.
Signatures of superconductivity induced broadening of Γe−p ≈ 40μeV above Tc was
observed for the transverse acoustic (ξξ0)Σ4 phonons. The lowest transverse acous-
tic (ξ00)Δ3 branch did not exhibit any anomaly (within the error bars of ≈ 10μeV )
across Tc, whereas the higher acoustic Δ4 branch along the same direction displayed
an anomalous temperature dependent broadening below Tc for all measured samples.
The observed temperature dependence suggests that the gap magnitude which these
phonons probe is quite small. Momentum and doping dependent linewidth broadening
of ≈ 40μeV were also observed for this same branch. In addition, the acoustic (ξ00)Δ4

phonons displayed softening of ≈ 100μeV and broadening of ≈ 50μeV at the HTT
to LTO structural phase transition, whereas the acoustic (ξ00)Δ3 phonons displayed
hardening of ≈ 400μeV .

An upper limit of Γe−p ≈ 50μeV for acoustic phonons can be concluded for all
the dopings, which is comparable to the e− p contribution to the linewidths observed
in conventional superconductors with much smaller transition temperatures. Clearly,
therefore coupling of electrons to the acoustic phonons alone can not explain the high
transition temperatures in cuprates. Contributions of the optical phonon modes to the
pairing interaction are an important subject for further investigations.
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[32] H. Fröhlich. Phys. Rev., 79:845, 1950.
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