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The Eshelby factor for cubic crystals has been calculated for arbitrary anisotropy. One of the two integrations needed 
could be performed analytically. An expansion up to 4th order in the anisotropy and exact results for special cases are also 
given. 

The Eshelby factor plays an important role in the physics of point defects in crystals [1-3] .  To recall its def- 
inition let us consider a crystal of volume V containing a point defect. The volume change of the crystal due to 
the defect depends on the boundary condition at the surface of the crystal: If  the surface is force-free, the volume 
change be A V; if the crystal were embedded in an infinite medium with the same elastic properties, the volume 
change would be different, say AV**. The ratio 

7E =-AV/AV** >I 1 (I) 

is called Eshelby factor [ 1,2] .i. Within the framework of linear elasticity theory one obtains for arbitrary crys- 
tal symmetry (see, e.g., ref. [3] ) 

A V = Tr(SP), (2) 

A V .  = - p  : f d 3 r [ V V  • G(r)] . (3) 
V 

(P: double-force tensor of the point defect at r = 0, $ and G: tensor of compliances and tensor Green's function 
of the elastic medium.) The strain field leading to AV** consists essentially of shear strains, i.e. AV** is, roughly 
speaking, the dilation at the location of the point defect. By contrast, the volume change AV I = AV - AV** due 
to the free surface ("image forces") stems from dilations which are more or less homogeneously distributed over 
the whole crystal. AV is independent of the volume of the crystal, whereas AV** and therefore 7E will in general 
depend on size and shape of V [cf. (2),(3)]. 

In the following we confine ourselves to crystals with cubic symmetry [bulk modulus K = (el l  + 2c12)/3 , 
shear moduli G 1 = (Cll - c12)/2 and G 2 = c44 ] and spherical shape with the point defect in the centre of the 
sphere. Then AV** and 7E become independent of the crystal volume [3] : 

AV = Tr P/3K,  (2') 

AV** = ½Tr P</~- ~(/~)'/~)~, (3') 

1 Address from September 1, 1983 onwards: Department of Physics, University of California, Berkeley, CA 94720, USA. 
*1 In ref. [3] ~i~ 1 is termed Eshelby factor. 
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3,~ 1 = K(/~" ~'(/~)'/~)~ . (4) 

(~: Fourier transform of G;/~: unit vector in reciprocal space; ( )E: directional average.) Although ~ is known 
analytically (e.g. ref. [4]), it appears not to be possible to get an analytical expression for "YE except for special 
cases. 

The result for isotropic media is well known [ 1 ] 

?E = 1 +4G/3K = 3(1 - v)/(1 + v) (5) 

(G = G 1 = G 2 ; v = Poisson's ratio) and can be used as a first approximation for anisotropic media if G is replaced 
by Voigt's average G = (2G 1 + 3G2)/5 [2,5] : 

")'EV -~ 1 + 4S- 1 f = G/K. (6 )  

(~: stiffness.) 7EV constitutes an upper limit to "YE [5,6]  and is taken as a starting point for more accurate approx- 
imations. In the following we shall express our results in terms of K defined by 

? E = ? E V / (  1 +K) ,  K / > 0 .  (7) 

While ~'EV is independent of the anisotropy, the deviation K is a function of both the stiffness ~" [defined in (6)] 
and the anisotropy a defined by 

a = (G 1 - G2)/(G 1 + G2) .  (8) 

Numerical values for ')'E can be obtained by two-dimensional numerical integration. This has been done for 
a number of  materials (e.g. refs. [7,8] ) and can be done for any cubic material using the computer program 
ANISCO [9]. However, it is possible to perform one of the integrations analytically. We get 

1 
s" e2) -  1/2 

= g f [ ( r  I - r 2 ) ( 1  - + T2] dx ,  (9) 
0 

with 

- (1  - x2) 2 [131 +/32 x2] 
C -  

/33 +(1 --x2)[/31(7x2 + 1) +/32(1 - -x2 )x  2] ' 

T1 =/34 + (1 - x2)[/35(7x 2 + 1) +/36(1 - x2)x  2] 

/33 +(1 - x2)[/31(7x2 + 1)+/32(1 - x 2 ) x  2] ' T2 =(/35 +/36x2)/~1 +/32x2), 

/31=a(1-a)[~(5-a)+½(l+a)Y], / 3 2 = 2 a 2 [ - ] ( 5 - a ) + ( 1 - a ) ~ ] ,  /33=(1 a)2[~(5-a)+](l+a)~], 

/34 = - S a ( 1 - a )  2 ,  / 3 5 = a ( 1 - a ) ( 5 - 3 a ) ,  /36 =2a2(  1 5 + a ) "  

This result may be useful for practical purposes because the remaining integration can be done with little numer- 
ical effort *2, e.g. using Simpson's rule. 

In three special cases K can be evaluated in terms of  elementary functions: 

(i) a =1:  ~ :=4~,  i.e. 7E = 1 .  (10) 

7~ t c~3 [5 - 9°~2 - 3(1 - 20e2)1/2] 4 I 
(ii) a = - 1 :  K - + s ( 3  + 4~')f~ 3 in (2 + 3 o t ) Z ( 2 - 3 t ~ - ~ 2  + - 3 ~ - 4 ~ 1  -- 2ct2)3/2] 9+5g" 

a 2 = 3/(9 + 5~'). (11) 

*2 For a = - 1  the integrand has a discontinuous derivative at x 2 = 1/2 [e 2 = 1, integrand = - s / ( 3  + 5s')]. 
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(iii) ~. 3 ( 5 - a )  5 ( 5 a - 1 ) '  i.e. c12+c44 = 0  or K = 2 G 1 / 3 - G 2 :  

1 [ /i-a\ 1/2 / 4a \1/2] 
r = ~-~ 15 +a  - 3(7a + 5 ) t ~ J  a r c s i n ~ )  J .  (12) 

It may be noted that the slope aK/Da becomes infinite at a = 1, and expansion of r around a = 1 is non-trivial be- 
because the Taylor expansion of the integrand does not converge for all values of x. Despite Of its complicated 
appearance the second formula (11) describes an essentially linear behaviour in the region of physical interest (the 
relation K = ~g is accurate to better than 0.01 for g ~ 1). The last case (12) can be obtained by straghtforward in- 
tegration of (3) because an analytical expression for G is available [4]. Unfortunately, there seem to be no crys- 

tals with c12 + c44 = 0 , 3  
Fig. 1 shows the variation of 7E and K by means of contour lines (lines of constant value) for the regime ~ ~< 1, 

which presumably contains all real cubic materials. The approximation 7EV would lead to horizontal contour 
lines in fig. la. In fig. lb  the infinite slope mentioned above causes - although scarcely visible - an infinite slope 

of the contour lines of K at a = 1. The dahed line marks the relation c12 + c44 = 0, where (12) holds. 
For weak anisotropy K can be expanded in powers of the anisotropy a. Because of the choice of 7Ev the term 

linear in a vanishes. 

*a In search of analytical expressions for K one is concerned with the reduction of hyperelliptic integrals of genus two. The sub- 
stitution y = 1 - x 2 in (9) transforms the radicand into a 6th order polynomial which factorizes into polynomials of degrees 
3, 2, and 1. Hence all zeroes are known explicitly. If two zeroes ate equal, the hyperalliptic integrals reduce to elliptic ones. In 
the region of physical interest this occurs only in the cases (i)-(iii). In (i) we have two triple zeroes, in (ii) and (iii) two double 
zeroes, and the elliptic integrals can be further reduced to elementary functions. A more general condition for the reducibility 
[10] is satisfied along the dotted line in fig. 1. On this line K can be expressed by a linear combination of elliptic integrals. 
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Fig. 1. Contour lines of the Eshelby factor "rE (a) and of its deviation ~ Co) from the isotropic approximation "tEV as a function 
of the anisotropy a and the stiffness ~'. The dashed line indicates c12 + c44 = 0. For the dotted line see footnote 3. 
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K ~ 64(15 + 32~)~ a2 + 128(2655 + 5748~ -- 2240~2)~ a'3 

175(3 + 4~) 2 125125(3 + 4g) 3 

6 February 1984 

64[27(74905 + 435832~) + 400g'2(70587 + 72256~)] ~ a4 (13) 
+ 

10635625(3 + 4~') 4 

Taking only the first term in (13) leads to a relative error in K less than 16% for [a[ ~< 0.5 and g ~< 1. Inclusion 
o f  terms up to a 4 reduces the error to less than 3%. Since K ~ 0.1 in this range, the accuracy of  the Eshelby factor 
is better  than 1.6% and 0.3%, respectively. 

Similar approximations have been derived already by Dederichs and Pollman [5]. In fact, eq. (20) in ref. [5] 
corresponds to the first term of  (13) divided by (1 - ~a) 2. As a consequence, that approximation is worse for 
a < 0 and bet ter  for a > 0 than the first term of  (13). The variational approximation of  Dederichs and Pollmann 
(eq. (21) in re f. [5])  and the approximat ion (13) presented here possess comparable accuracy. 

The author is grateful to Professor A. Seeger for suggesting the subject and for advice on this work. 
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