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ABSTRACT 
Relaxation volumes of point defects in cubic metals can be conveniently 

estimated by differentiating approximate formation energies with respect to the 
lattice constant. Lowest-order analytical expressions for monovacancies have been 
derived for equilibrium pair potentials and for the N-body potentials of Finnis and 
Sinclair (1984). Thesc expressions may be evaluated with little effort and prove far 
superior to other lowest-order approximations to vacancy relaxation volumes. 

$1. INTRODUCTION 
Vacancy relaxation volumes provide a stringent test of the quality of interatomic 

potentials which are supposed to yield reliable information about lattice defects. A 
classical example is the monovacancy in copper, for which all central equilibrium pair 
potentials failed to reproduce the experimental relaxation of about - 0.2 atomic 
volumes. It was necessary to include many-body interactions in order to solve this 
problem (cf. Bauer, Maysenholder and k g e r  1982). Accurate relaxation is also very 
important for calculations of vacancy formation entropies to be reliable, because the 
vibrational frequencies depend critically on the atomic positions (cf. Hatcher, Zeller 
and Dederichs 1979, Maysenholder, Bauer and Seeger 1985). 

Nevertheless, some authors avoid the computational effort needed for relaxation 
volumes and calculate only relaxation energies and displacements of near neighbours 
to the vacancy. To demonstrate that this effort can be kept quite small we present in $ 2 
a concise formulation for determining relaxation volumes of point defects in cubic 
metals from interatomic potentials, which is readily implemented in computer 
simulations using rigid boundary conditions. Starting from this formulation, which 
essentially goes back to Finnis and Sachdev (1975) and Schober and Ingle (1980), we 
derive analytical lowest-order approximations to monovacancy relaxation volumes in 
a systematic way. Since relaxation volumes of vacancies are usually small and much less 
than one atomic volume, we expect these estimates to come close to exact results. 

The general expressions of $ 2 are evaluated for equilibrium pair potentials in $ 3 
and for the potentials of Finnis and Sinclair (1984) in 5j 4. In the final section ($ 5) 
comparison is made with other lowest-order approximations, which turn out to 
provide mostly poor results. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
r
m
a
n
 
N
a
t
i
o
n
a
l
 
L
i
c
e
n
c
e
 
2
0
0
7
]
 
A
t
:
 
1
4
:
4
9
 
2
9
 
J
u
l
y
 
2
0
0
9



7 84 W. Maysenholder 

$2. METHOD 
We consider a point defect in an infinite cubic lattice, which we divide into two 

regions: region I containing the first N shells of atoms around the point defect, and 
region I1 containing all other atoms, which are supposed to be fixed to the unrelaxed 
positions of the corresponding perfect lattice. The atoms in region I are allowed to 
relax, their equilibrium positions being dependent on the positions of the atoms in 
region 11, i.e. dependent on the lattice constant. The energy of this configuration minus 
the energy of the corresponding perfect crystal with the same number of atoms is called 
the Nth approximation to the point-defect formation energy 

EF= E ( M E E ( ~ ) .  
N - m  

E(O)= EE denotes the formation energy in a rigid lattice. 

elastic dipole tensor P and the bulk modulus B according to 
The relaxation volume Ke, of a point defect in a cubic crystal is obtained from the 

Kel = tr P/(3B) (1) 

(Leibfried and Breuer 1978, p. 149). It will be shown that 

dE'") 
t rP= -a-. da 

We observe that the force Po on atom l at position XI, 

is non-zero only for atoms 1 = m lying in a mantle around region I with a thickness equal 
to the range of the interatomic interaction. In the limit N-ao  these forces become 
equal to the Kanzaki form (Kanzaki 1957); therefore, according to the standard 
expression 

with #.'")= Ix (~)J .  Because all atoms rn are in unrelaxed positions, r("') is some multiple of 
the lattice constant a, and the identity 

aE'"' - C r(m) - dE'") a , w  dr'm) 
d a r n  = a C ~ x -  ar (m)  

completes the proof of eqn. (2). Finally, the formation volume of the defect reads 

a dE'") 
3 8  da 

V F = n n +  Kej=nn----. (7) 

(A multiple of the atomic volume t2 has been added to ye,; for a vacancy n= 1, for an 
interstitial n = - 1 .) 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
r
m
a
n
 
N
a
t
i
o
n
a
l
 
L
i
c
e
n
c
e
 
2
0
0
7
]
 
A
t
:
 
1
4
:
4
9
 
2
9
 
J
u
l
y
 
2
0
0
9



Relaxation volumes of monovacancies in cubic metals 785 

We note in passing that the thermodynamic relation p=aHF/aP between the 
formation volume VF and the pressure derivative of the formation enthalpy HF can be 
transformed into 

(Partial derivatives imply constant zero temperature.) Thus, from a thermodynamic 
point of view, E'")+nPR has to be considered a formation enthalpy rather than an 
internal energy. This is because the interaction between the 'system' (region I) and the 
'pressure bath' (region 11) is contained in E'"). (The 'constant volume formation energy' 
defined by Finnis and Sachdev (1976) is equivalent to E'"'+nPR and should also be 
called an enthalpy.) 

Equation (7) with 00 replaced by some finite number N can readily be employed in 
computer simulations of point defects in cubic lattices (particularly if rigid boundary 
conditions arc used). We expect rapid convergence with increasing N. 

For a vacancy, the lowest-order approximations qf,) already constitute reasonable 
estimates of the relaxation volume. N = 0 means vanishing region I, no atoms relaxed, 
i.e. 

For N = 1 the nearest neighbours to the vacancy relax and suffer relative displacements 
6. If we restrict our analytical treatment to harmonic terms, S minimizes the expression 

6EJ++62EM 

(superscript 1 suppressed; subscript 6 denotes differentiation at S = 0 with a fixed), i.e. 

Therefore 

and 

a E, dE, 
le1+3B E ,  da 

v',+ v 'o  - - -. 

For N = 2 we obtain 

with E denoting the relative displacement of next-nearest neighbours. The generaliz- 
ation of eqn. (13) to N > 2  is straightforward but not very useful since anharmonic 
effects are presumably more important than relaxation of more distant shells of atoms. 
In fact, we restrict ourselves to fit/ and v',:] for the evaluation of specific potentials in 
the following sections. 
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786 W. Maysenholder 

$3. APPLICATION TO EQUILIBRIUM PAIR POTENTIALS 
The equations of $ 2  hold for general interatomic potentials in cubic lattices. Now 

we assume a pairwise interaction potential V(r) for which the volume derivative of the 
cohesive energy per atom E,, vanishes at zero pressure (equilibrium pair potential). 
Since E:vso= - Ecohr we amve at 

ql= 0 (14) 

(for zero pressure). If the range of V(r) is restricted to first and second neighbours, the 
expressions needed for VC,d/ read for a vacancy in a b.c.c. lattice: 

E d =  - 8 Wl, 1 
E,=$64 w, + 18 w, + 20W1 + 27W2), 

a---= dEa - 8(W1+W1) 
da 

with (i= 1,2) 

and 
t l  = t  $a, r2 =a. 

For the f.c.c. case we have 

E d =  - 12W1, 1 

with the same meaning of 4 and %as above except for the different nearest-neighbour 
distance r l  = fJ2 a. 

Two examples may illustrate the relatively small vacancy relaxation produced by 
equilibrium pair potentials. For the a-iron potential of Johnson (1964) we get 
6 =  - 1.9%, E ' , ~ / = E " ' - E : , , , =  -56meV, and (with E=0-800eVA-') Via/= 
-0.08R (Unfortunately, no value for Kel of the fully relaxed configuration could be 
found in the literature.) Evaluation of the modified Morse potential introduced by 
Schober and Zeller (1978) yields b=  -03%, Eli:= -4meV, and q:l= -0.02R. The 
last number is in full agreement with the value for Kc, given by Dederichs, Lehman, 
Schober, Scholz and Zeller (1978). 

94. APPLICATION TO FINNIS-SINCLAIR POTENTIALS 
The potentials of Finnis and Sinclair (1984) for the b.c.c. transition metals have 

opened new perspectives for computer simulations of lattice defects. The most 
attractive feature is the inclusion of many-body interactions without any significant 
increase of computational effort over usual pair-potential calculations. The second- 
order elastic constants can be fitted exactly even for non-zero Cauchy pressure 
P ,  = ftC, - C44). Further, ETV,, x ETV is no longer equal to - &oh but considerably 
less, as experimentally observed. If desired, both Ecob and ErV can be fitted to 
experimental data with minor modifications of the fitting procedure. 
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Relaxation volumes of monovacancies in cubic metals 787 

It remains to be seen how well experimental vacancy relaxation volumes (when 
available) can be reproduced. Matthai and Bacon (1985) have calculated relaxation 
energies, but no relaxation volumes; only the relative displacements of first and second 
neighbours are given. For estimates of vacancy relaxation volumes in these metals we 
evaluate the lowest-order approximations of 0 2 for the Finnis-Sinclair potentials. 
(Unless otherwise stated, the notation is the same as in the original paper of Finnis and 
Sinclair (1984), which is referred to as FS in the following.) 

The vacancy formation energy in a rigid b.c.c. lattice given by FS, 

ETy,o= - A(8f1+ 6f2 - 14j7 - up (1 7) 
with 

f=(8@, +6UJ2)l”, 

fi =(7@1+6@)2)1/2, f 2 = ( 8 @ 1  +5@2)1’2, 

can be approximated quite well by 

E:“, 0 Z i A f  -UP = -(&N + UP), (1 8) 
provided ~ = 1 @ ~ / @ ~ 1 $ 1 .  For a typical value v = $  the exact result is obtained by 
replacing the factor 4 in eqn. (18) by 0.5098 ... . (It should be remembered that the 
cohesive energy per atom is the sum of the pair-potential term up=4Vl +3V2 and the 
N-body term uN= -A(8@,+602)112, where A is a positive constant; P p =  -dup/dn 
and PN = - duN/dR add up to the external pressure.) Similarly, the lattice-parameter 
derivative can be calculated from eqn. (18) to within about 2%. This leads to 

Since at zero pressure PN+P,=O, ctl is generally non-zero in contrast to the pair- 
potential case of § 3. (Foreman (1963) was probably the first to realize this important 
effect of many-body interactions.) For the first-order correction v’,f/ - v’,:! we arrive at 
expressions analogous to eqn. (15), but with some additional terms: 

Ed= -8X1, 

E,, = + (64x, + l 8x2 + 2014~ + 27X2) + 2 ~ f -  (4r: - 3r r2 + 31-21, 

with (i= 1,2) 

rr = riWJ- l ,  Pi = r:@Tf- l ,  

and 

Xi=  W-AAfi, X i = q - A F p  
Table 1 shows the results for the group Vb and Vlb metals. Finnis and Sinclair 

(1984) also provide a potential for a-iron, but unfortunately it does not match the 
correct elastic constants; therefore results on Fe could not be included. (The elastic 
constants of a-iron, which are inadvertently given in units of eV/A3 in table 1 of FS 
(C. Teodosiu 1985, personal communication), have erroneously been taken by FS to be 
in units of 10’l Pa.) With the exception of chromium (P,  x0) there is an appreciable 
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788 W. Maysenholder 

Table 1. Lowest-order approximations c;”l’ to vacancy relaxation volumes and first-order 
approximations to relaxation energies and relative displacements of nearest neighbours. 
In the last two columns corresponding values for the fully relaxed vacancy from Matthai 
and Bacon (1985) are given. 

fl:/ m- Vl:/ 
Metal (n) (Q) 

V -025 -006 
Nb - 0 2 8  - 005 
Ta - 0 2 1  -0.07 
Cr -0.03 - 002 
MO - 0 1 3  -0.01 
w - 0 1 1  - 002 

vlfl 
(n) 

- 0 3 1  
- 034 
-028 
- 005 
- 0 1 4  
- 0 1 3  

-004 
- 005 
-0.08 
- 002 
- 0.0 1 
-0.03 

6 
(%I 
- 1.8 
- 1.7 
- 1.8 
- 0 7  
- 0.5 
- 0 7  

EZ 
(ev) 

-014 
-0.16 
- 0.27 
-006 
-004 
-009 

6MB 

(%I 
- 2.5 
- 2.6 
- 3.0 
- 1.1 
- 0-8 
- 1.2 

zeroth-order contribution to the vacancy relaxation volume. V;:; can be regarded as a 
reasonable estimate of Fe,, if the error is expected not to exceed the first-order 
correction I V,fj - *:/I. This expectation is supported by previous calculations for the 
noble metals (Bauer et al. 1982), where vtj/iZ= - 0.1 5, -0-22  or -0.25 for Cu, Ag or 
Au compared to the values -021, -0.31 or - 0 3 7  for the fully relaxed vacancy. In the 
last four columns of table 1 relaxation energies and relative displacements of nearest 
neighbours obtained from the present first-order approximation can be compared to 
the values of Matthai and Bacon (1985) for a fully relaxed vacancy. Apparently, the 
first-order approximation yields only or 4 of the total relaxation energy and about 3 of 
the relative displacements of the nearest neighbours. However, we expect vC,i/ to be 
closer to Kc,, because (i) it relies on the calculation of forces, which are-unlike the 
relaxation energy-not so strongly dependent on displacements and because (ii) there 
will be some cancellation of the higher-order corrections in contrast to the relaxation 
energy, which decreases monotonically with the number of relaxing shells of atoms. 

One might argue that the second-order approximation vC,f/ would be preferable to 
P‘$) for b.c.c. lattices, because first and second neighbours possess very similar distances 
to the vacancy, but evaluation of eqn. (1 3) will be quite cumbersome and beyond ‘quick 
estimates’, which are the main object of this paper. 

No experimental values of qcl for the metals of table 1 are available yet. There is 
only an assumption for molybdenum (Kcl= - 0 1  Q) made by Ehrhart (1978), which 
matches the corresponding ct/ in table 1 quite well. 

9 5. COMPARISON WlTH OTHER LOWEST-ORDER APPROXIMATIONS 
The treatment of5 3 can easily be extended to non-equilibrium pair potentials fitted 

to the elastic constants such that 

Since Etv,o = - Ecoh for any pair potential, insertion of eqn. (21) in eqn. (9) gives 

This result, however, is not in accord with the philosophy of non-equilibrium pair 
potentials. We rather should decompose E f y , o  = - 2Ec,, + Ecoh (removal of one atom 
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Relaxation volumes of monovacancies in cubic metals 789 

Table 2. Various approximations to vacancy relaxation volumes in units of S2 according to the 
equations indicated. Nearest-neighbour displacements and relaxation energies used in 
these equations are taken from Matthai and Bacon (1985). The Eshelby factor ys is 
included for convenience. 

Equation 
Metal (23) mt 

V -049 -0.25 
Nb -061 -028 
Ta -040 -021 
Cr -0.01 -0.03 
MO -020 -0.13 
W -014 -011 

Y E  

1.405 
1.290 
1 466 
1.776 
1.630 
1.687 

Equation 

(25) (26) 

-058 -073 
-054 -1.16 
-072 -048 
-032 -044 
-021 -029 
-034 -033 

(27) 

- 023 
- 020 
-031 
-018 
-01 1 
-017 

(29)$ 

-032 
-0.31 
- 034 
-018 
-0 1 1  
-016 

Eflt 
-031 
-034 
- 028 
-0.05 
-014 
-013 

t From table 1. 
$With c=l. 

and subsequent addition to a surface kink position) and observe that the volume 
derivative of the second term is compensated by the external Cauchy pressure, which 
holds the perfect crystal at the correct lattice spacing. Thus, 

(23) -- v-3 2pc - -- 
R B '  

as derived by Miller and Heald (1975) from lattice statics. The remarkable feature of 
eqn. (23) is that a pointdefect property is a function of macroscopic elastic properties 
only. By contrast, for the FS-potentials eqn. (19) may be transformed into 

c:/ 1 - U N P c  
T i =  -&) 

with a different P ,  dependence and an additional dependence on a microscopic 
property, namely the N-body part of the cohesive energy per atomic volume. 
Comparison of eqns. (23) and (24) shows poor agreement (see first and second column 
of table 2), although we notice the common trend of increasing c:{ with increasing 
Cauchy pressure. Since at present non-equilibrium potentials are generally regarded as 
unsatisfactory (see, for example, FS), eqn. (24) should certainly be preferred to eqn. (23). 

Other attempts to estimate vacancy relaxation volumes treat displacements of 
nearest neighbours by means of elasticity theory. Most simply, the volume increase of 
the sphere with the nearest neighbours on its surface is taken to be the volume change 
A P  of an infinite crystal. The additional volume change of the corresponding finite 
crystal is included via the Eshelby factor yE (see Maysenh6lder 1984), leading to 

Alternatively, using the continuum Green tensor function G, one may write 

where s(r) denotes the displacement of an atom at position r (cf. Leibfried and Breuer 
1978, p. 145). G and V. G are known analytically for the main symmetry directions in 
cubic crystals (Leibfried and Breuer 1978, N. Breuer 1981, personal communication). 
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790 W. Maysenholder 

Columns 4 and 5 of table 2 show the results from eqns. (25) and (26), respectively, 
evaluated with the relative displacements of nearest neighbours given by Matthai and 
Bacon (1985). For comparison V(,a/ from table 1 is listed again in the last column of table 
2. Obviously, the results from both eqns. (25) and (26), which would be exact for an 
elastic continuum, exceed the value etj from table 1 significantly, in the case of 
chromium even by factors of 6 and 9. This is clearly due to the appreciable deviations of 
the atomic displacements from their continuum approximations in the immediate 
vicinity of the vacancy. This inadequacy is illustrated even more drastically by the next- 
nearest neighbour displacements as given by Matthai and Bacon (1985), which point 
away from the vacancy and would lead to positive relaxation volumes. (r V - G can be 
positive for the (100)directions, e.g. for copper, but is negative for all b.c.c. transition 
metals.) 

Alternatively, we can derive a lowest-order approximation from another method 
described in Schober and Ingle (1980) which determines Kanzaki forces from the 
displacements in region I via the force constant matrix of the perfect crystal. For N = 1 
it is easily shown that 

with 

EL=E,+  12R1 

82, + 2 ~ p ( 7 r : + 3 r ~  r,) i 
for pair potentials in b.c.c. and f.c.c. lattices and Finnis-Sinclair potentials in b.c.c. 
lattices, respectively. As in the method of 0 2, higher-order approximations converge 
quickly to the exact result. However, the results ofeqn. (12) are clearly better than those 
of eqn. (27): for the examples of 0 3 with 6 according to eqn. (10) we obtain -0.1 1 51 
(modified Morse) and - 0-30 R (Johnson 1964), which is far too large in both cases. The 
results for the Finnis-Sinclair potentials (see table 2) have been evaluated with the 6s 
from Matthai and Bacon (1985). 

Finally we discuss the possibility of estimating vacancy relaxation volumes from the 
relaxation energy Elel, which is assumed to equal the negative of the elastic energy Eel of 
a continuum with a spherical hole of volume cQ. Following Kriiner (1954) we get 

with Po =f tr P and arrive at 

It is not clear how large the hole should be for optimal simulation of a vacancy. 
Reasonable volumes may range from one atomic volume up to the volume of the 
'nearest-neighbour sphere' ( z 5.4451 for a b.c.c. lattice). With c = 1 we obtain (except for 
chromium) surprising similarity with VlE] from table 1 (see table 2), but this must be 
considered accidental. Although the results from eqn. (29) with c = l  may be not 
unreasonable in many cases (the numbers are -0.1 1, -0.21 and -0.34 for Cu, Ag and 
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Relaxation volumes of monovacancies in cubic metals 79 1 

Au, respectively), they can be very misleading as in the case of chromium (cf. also the 
discussion of related problems in the palladium-hydrogen system by Bass, Oates, 
Schober and Stoneham 1984). 

In conclusion we propose to use eqns. (9) and (12) for zeroth and first-order 
approximations to vacancy relaxation volumes. These estimates are theoretically well 
founded, do not require information on the relaxed configuration and can be calculated 
relatively quickly. 

ACKNOWLEDGMENT 
The author is grateful to Professor A. Seeger for acritical reading of the manuscript. 

REFERENCES 
BASS, R., OATES, W. A., SCHOBW, H. R., and STONEHAM, A. M., 1984, J .  Phys. F, 14, 2869. 
BAUER, R., MAYSENH~LDER, W., and SEEGER, A., 1982, Phys. Lett., 90 A, 55 and unpublished 

DEDERICHS, P. H., LEHMAP~W, C., SCHOBFR, H. R., SCHOLZ, A., and ZELLER, R., 1978, J .  nucl. 

EHRHART, P., 1978, J .  nucl. Matm., 69+70, 200. 
FINNIS, M. W., and SACHDW, M., 1976, J .  Phys. F, 6,965. 
FINNIS, M. W., and SmcLm, J. E., 1984, Phil. Mag. A, 50,45. 
FOREMAN, J. E., 1963, Phil. Mag., 8, 1211. 
HATCHER, R. D., ZELLER, R., and DEDERICHS, P. H., 1979, Phys. Reu. B, 19, 5083. 
JOHNSON, R.  A., 1964, Phys. Rev., 134, A1329. 
KANZAKI, H. J., 1957, J .  Phys. Chem. Sol., 2, 24. 
KRGNER, E., 1954, Actu metall., 2, 302. 
LEIBFRIED, G., and BREW N., 1978, Point Defects in Metals I (Berlin: Springer). 
MAITHAI, C. C., and BACON, D. J., 1985, Phil. Mag. A, 52, 1. 
MAYSENH~LDER, W., 1984, Phys. Lett., 100 A, 289. 
MAYSENHOLDER, W., BAUER, R., and SEW, A., 1985, Phys. Lett., 109 A, 393. 
MILLER, K. M., and HEALD, P. T., 1975, Phys. Stat. Sol. (b), 67, 569. 
SCHOBER, H. R.,  and INGLF, K .  W., 1980, J .  Phys. F, 10, 575. 
SCHOBER, H. R., and ZELLER, R., 1978, J .  nucl. Muter., 69+70, 341. 

results. 

Muter., 69 + 70, 176. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
r
m
a
n
 
N
a
t
i
o
n
a
l
 
L
i
c
e
n
c
e
 
2
0
0
7
]
 
A
t
:
 
1
4
:
4
9
 
2
9
 
J
u
l
y
 
2
0
0
9




