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Rigorous Computation of Plate-Wave Intensity 
Summary 
Exact analytical expressions exist for the displace
ment fields of elastic waves in homogeneous, isotrop
ic, infinite plates of constant thickness. From these 
expressions the intensity and the time-averaged ener
gy density of an arbitrary propagating mode at arbi
trary frequency is derived without any approximation 
as a function of the spatial coordinate from surface to 
surface. Spatial averaging of these quantities across 
the thickness of the plate is also performed analytical
ly and exactly. Practical application of the results to 
a particular mode requires the knowledge of its phase 
and group velocity, which in general have to be com
puted by numerical methods. Numerous diagrams il
lustrate the behaviour of the analytical expressions. 
especially for the quasi-longitudinal mode and the 
bending mode. Comparison of the exact intensity of 
the bending mode with the approximate expression 
from simple bending wave theory leads to a precise 
determination of the error which enters the conven
tional method of measuring the bending wave intensi
ty. This offers the possibility of extending the conven
tional measuring technique beyond the validity of 
thin plate theory. 

Strenge Berechnung der Intensitiit 
von Plattenwellen 
Zusammenfassung 
Fiir die Verschiebungsfelder von elastischen Wellen in 
homogenen, isotropen, unendlichen Platten konstanter 
Dicke existieren exakte analytische Ausdriicke. Daraus 
werden die Intensitiit und die zeitlich gemitteIte Energie
dichte einer beliebigen ausbreitungsfahigen Mode bei 
beliebiger Frequenz als Funktion der riiumlichen Koor
dinate von Oberfliiche zu Oberfliiche ohne jegliche Niihe
rung abgeleitet. Die riiumliche Mittelung dieser Grol3en 
iiber die Plattendicke wird eben falls analytisch und exakt 
ausgefiihrt. Die praktische Anwendung der Ergebnisse 
auf eine bestimmte Mode erfordert die Kenntnis ihrer 

1. Introduction 

Measuring the intensity of bending waves in (homoge
neous and isotropic) plates and beams has become 
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Phasen- und Gruppengeschwindigkeit, weIche im allge
meinen mit numerischen Methoden bercchnet werden 
miissen. Zahlreiche Diagramme veranschaulichen das 
Verhalten der analytischen Ausdriicke, insbesondere fUr 
die quasilongitudinale Mode und die Biegemode. Ein 
Vergleich der exakten Intensitiit der Biegemode mit der 
Niiherung aus der einfachen Biegewellenlheorie fUhrt zu 
einer genauen Bestimmung des Fehlers, der in das kon
ventionelle MeBverfahren fiir Bicgewcllenintensitiiten 
eingeht. Damit besteht die Moglichkeit, das konventio
nelle MeBverfahren iiber den GiiItigkeitsbereich der ein
fachen Biegewellentheorie hinaus anzuwenden. 

Le calcul rigoureux de l'intensite des ondes 
dans une plaque 
Sommaire 
II existe des expressions analyliques exacles pour les 
champs du dcplacement des ondes elastiques dans des 
plaques homogenes, isotropcs, inlinies et d'cpaisseur 
constanle. A partir de ces expressions, on a pu deduire, 
sans approximation aucune, les intensiles et les moyen
nes temporelles de la densite d'energie Ii une frequence 
quelconque et pour un mode arbitraire, pourvu qu'il soit 
capable de se propager, en fonction de la coordonnee 
d'espace mesurce de surface a surface. La moyenne spa
tiale de ces quantites a travers l'epaisseur de la plaque se 
fait egalement par voie analytique et sans approximation. 
L'application pmtique de ces resultats Ii un mode partieu
Iier exige en fait la connaissance de ses vitesses de phase 
et de groupe, donnees qui ne sont en general accessibles 
qu'a des methodes numeriques. De nombreux diagram
mes iIIustrent Ie comportement des expressions analy
tiques, spi:cialement pour Ie mode quasi-longitudinal et Ie 
mode de flexion. Une comparaison entre l'intensile exacte 
du mode de flexion et son approximation provenant de 
la theorie simplifiee des ondes de flexion permet une 
determination precise de l'erreur qui en tache la methode 
traditionnelle de mesure de l'intensite de ces ondes. Ainsi 
apparait la possibilite d'une extension de la tcchnique 
c\assique de ce type de mesures au dc\a mcme de la validite 
de la theorie des plaques minces. 

quite popular and above all very useful for a variety of 
applications. It has been introduced by Noiseux twen
ty years ago [1] and was further developed and applied 
by numerous authors (see e.g. [2-10]). All of this work 
is based on simple bending wave theory, which is valid 
for thin plates (or beams), i.e. in the low-frequency 
limit. Fortunately, this approximation is sufficient for 
many applications, Sometimes, however, one would 
like to know how serious the error is, if in such a 
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measurement the frequency is raised beyond the range 
of thin plate theory. It may be readily assumed that 
the measured intensity direction ·is still correct [101. 
but what about the magnitude? 

Apparently there are only very few places in the 
literature where the intensity of plate waves is evalu
ated for higher frequencies. Explicit expressions for 
energy density and intensity of pure shear modes (SH
waves) can be found in the textbook by Achenbach 
[11]. Analytical results for Rayleigh-waves are also 
available. but probably not weIl-known [12-14]. To 
the author's knowledge the case of non-pure-shear
modes at intermediate frequencies has been treated so 
far only once, viz. by Tamm and Weis [15], who pre
sent some numerical results in the form of diagrams. 

It is the main purpose of the present paper to com
municate analytical expressions for the energy density 
and intensity of plate waves at arbitrary frequency. No 
approximations are involved. The only prerequisite 
for the application of the expressions to a particular 
mode is the knowledge of its phase and group velocity. 
In general, these have to be obtained numericaIly, but 
they can be calculated with any desired accuracy. Nu
merous diagrams visualize the results for a typical 
Poisson's ratio (1 = 0.3. 

2. Fundamental equations 

We consider an infinite plate of thickness h consisting 
of a material which is homogeneous and isotropic, 
and which is characterized by Lame's constants A. and 
JJ or by Young's modulus E and Poisson's ratio (1, and 
by its mass density (}. AIl waves are assumed straight
crested and propagating along the x-direction (Fig. 1). 
Then the displacement vector u of a particular mode 
can be written in the form 

(1 ) 

Only real k and real ware considered in this paper. 

Fig. 1. Coordinates describing a plate of thickness h. The 
z-directioD is perpendicular to the drawing plane. 
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Plate modes are classified into four families [16]. 
The first two families show displacements along the 
z-direction only (u x = u, = 0), while the last two fami
lies possess no z-component (u z = 0). The subdivision 
in each group of families is by symmetry. 

In the foIlowing the form of the displacement field 
of each family of modes is given together with the 
dispersion relation, from which phase velocity c = w/k 
and group velocity C = dw/dk can be calculated. 

The first two families contain only pure shear 
modes with symmetric displacements 

U z = A cos (n rc y/h), n = O~ 2, 4, . .. (2) 

or with antisymmetric displacements 

uz=Asin(nrcy/h), n=J,3,5, ... (3) 

(A denotes arbitrary amplitudes). Both families to
gether are sometimes called SH-waves (a term from 
seismology: Shear-Horizontal). In fact, they can often 
by described by the same formula, e.g. in the case of 
the phase velocity c, 

where even n refers to the symmetric family and odd 
n to the antisymmetric one (c, = velocity of trans
versal waves in a three-dimensionally infinite medium, 
f = w/2rc). The group velocity C is reciprocal to the 
phase velocity for a particular value of n: 

Cc= c~. (5) 

The remaining two families of plate modes are usually 
much more important in practice but - as is well

. known - unfortunately also much more complicated. 
The displacement field of the symmetric family reads 

Ux = i A [cosh (IX 1 k y) - IXx Rs cosh (£Xl k y)], 

Uy = IXI A [sinh (£Xl k y) - IX, Rs sinh (IX 2 k y)], (6) 

and that of the antisymmetric one is obtained by ex
changing sinh and cosh: 

Ux = i A [sinh (£Xl k y) ..;.. IXx Ra sinh (lXl k y)], 

uy = £Xl A [cosh (£Xl ky) -lXyRacosh(1X2ky)]. (7) 

The new symbols are defined as follows: 

(Xl = Jl - (clcl)2, 

2£X l £X2 

£Xx = 1 + IX~' 

R = _si_nh_(_IX=-1 k_h_/2_) 
5 sinh (£x 2 k hl2l' 

(Xl = Jl - (clc,)l, 

2 
IX =--
, 1 + IX~' 

cosh (IX I k h12) 
Ra= , 

cosh (£Xl k h12) 
(8) 
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with the velocity c. oflongitudinal waves in a three-di
mensionally infinite medium. Both families possess 
one symmetric and one antisymmetric displacement 
component with respect to a sign change of the coor
dinate y. Why then should one family be called sym
metric and the other one antisymmetric? What is 
meant is the behaviour of the displacement vector 
upon reflexion by a mirror plane y = 0 rather than 
upon reflexion with respect to a point. This operation 
changes the sign of the y-component, but not the signs 
of the x- and z-components. In the case of the symmet
ric modes (6) the displacements for y < 0 can be ob
tained from the corresponding ones with y > 0 by just 
this reflexion at the plane y = 0, while for the antisym
metric modes (7) an additional sign change is neces
sary. 

The phase velocities have to be computed from the 
Rayleigh-Lamb frequency equations 

4 a1 !X2 [tanh (a2 k h/2)]± t 
(1 +a~)2 = tanh(iX t kh/2) , 

(9) 

where the plus sign applies to the symmetric family 
and the minus sign to the anti symmetric family of 
modes with vanishing z-component. (Some details of 
the numerical treatment of (9) are given in the ap
pendix.) The fundamental mode of each family, i.e. the 
mode with the lowest phase velocity, is of particular 
importance and often named after its low-frequency 
behaviour as quasi-longitudinal mode and bending 
(flexural) mode, respectively. In the high-frequency 
limit both fundamental modes become Rayleigh sur
face waves. 

Having introduced the basic nomenclature we now 
can address the actual subject of the present paper: 
Energy and energy transport of plate waves. Energy 
density e (r, t) and energy flux S (r, t) are given as a 
(unction of position r and time t by 
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for the temporal average Wpol (r) of the potential ener
gy density 

W = ! Re {O' .. & *} pol 4 --, (13) 

and for the temporal average of the energy flux, the 
intensity I(r), 

1= -!Re{Q" v*}. (14) 

Additional spatial averaging reduces to averaging 
across the plate's thickness, because the temporal av
erages are independent of x and z: 

1 +h12 

<Wkin ) = -h J wun(y)dy. 
-h12 

(15) 

This integration will be performed analytically for all 
plate modes in the following sections. In principle this 
could be done as well for the remaining space-time 
averages (Wpol) and (l). This, however, would be 
quite awkward and it can be avoided if one takes 
advantage of two theorems. 

The first one states that the space-time averages of 
kinetic and potential energy densities for a particular 
mode are equal: 

(16) 

This relation is usually taken for granted and not 
explicitly mentioned. It can be proved under rather 
general conditions on the basis of the virial theorem. 
(This proof will be published elsewhere [17). It is sur
prising that it could not be found in the literature.) 

The second theorem relates intensity, total energy 
density W = Wkin + Wpol and group velocity and was 
proved by Biot [18]. We formulate it for the x-compo
nent of the intensity because the other components are 
zero (see following sections): 

(I,)=C(W). (17) 

e=!(nv·v+O' .. e) 2 t:: - -, 

By means of eqs. (16) and (17) the space-time average 
(10) of the intensity ofa plate wave can be determined very 

easily from (Wkin). 

S=-rl'V (11) 

with particle velocity v, stress tensor ~ and strain 
tensor §.. All quantities in eqs. (10) and (11) are as
sumed to be real, i.e. evaluation from the displacement 
fields (1) implies taking the real (or imaginary) part 
only. This is a somewhat cumbersome procedure. In 
order to benefit from the complex notation of (1) we 
will confine ourselves to temporal averages. Thus we 
obtain for the temporal average Wkin (r) of the kinetic 
energy density 

(12) 

3. Normalization 

Normalization of quantities is a useful method of re
ducing the number of independent variables. Unfortu
nately, it can be done in different ways and therefore 
normalized results may not always be comparable 
with each other without some conversion. We follow 
the usual practice and measure all velocities in units of 
c" the phase velocity of the fundamental symmetric 
shear mode, which is the only non-dispersive plate 
mode. For the frequency f = w/21t we adopt the nor
malization of Cremer and Heckl [19] by cJh. As a 
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consequence the length unit is equal to the plate's 
thickness h. 

We are free to choose a third unit for material prop
erties and select the modulus .A. + 2 J1. related to longi
tudinal waves in an infinite solid. This selection has 
the advantage of involving both Lame's constants, i.e. 
both shear and compressional modulus, and is always 
positive. The units of other quantities are now fixed, 
e.g. (.l. + 2 J1.)fc: for mass density, (.A. + 2 J1.) h3 for ener
gy, .A. + 2 J1. for energy density, and (). + 2/1) C1 for 
energy flux and intensity. For an iron plate with 
(1 = 0.3, E = 200 GPa, e = 7800 kg m - 3, h = 0.01 m 
these units amount to the following values: 

= 3140 ms-t, 

cJh = 314 kHz, 

= 3.18 ~s, 

(.l. + 2J1.)/c: = 27300 kg m- 3
, 

= 269 GPa = 269 GJ m- 3
, 

(). + 2J1.)h3 = 269 kJ, 

(..1. + 2J1.)c1 =845TWm- z =8.45·1014 Wm- z. (18) 

At first sight the last number may appear astronomi
cally high and not very suitable for measuring intensi
ties of elastodynamic waves. In order, however, to get 
a number for the intensity of a wave, its amplitude has 
to be specified; and in the spirit of normalization the 
amplitude is set equal to the length unit, the plate's 
thickness, leading to unrealistically high intensities. 
For this reason the normalized quantities wilJ assume 
values around unity, which is convenient for the dia
grams. U one is to apply the results of the theory to an 
experimental situation, conversion to the measured 
quantities is necessary anyway, irrespective of the size 
of the normalization units. 

In the following all quantities are assumed to be 
normalized as described above (and therefore dimen
sionless) without introducing new symbols. Formally 
this can be achieved by 

C1 = h = ..1. + 2 J1. = 1 . (19) 

Some useful relations in accordance with (19) are 
listed below: 

'(1 

). =--, 
1-0' 

2 - 20' 
c2 -1-1-20" 

(! =Jl. 

-Z J1.=CI , 

(20) 
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4. Pure shear modes 

Energy density and intensity of pure shear modes are 
easily derived from the displacements (2) and (3) and 
the velocity relations (4) and (5) [11]. The results are 
given here for completeness and for the convenience of 
the reader. The amplitude of each mode is chosen such 
that 

Uz(y = i) = 1, 

i.e. 1 A 1 = 1 in (2) and (3). This leads to 

Wkin (y) = nZ J1.f zluzl2 

where 

IU_12={c~s2(n1ty) for n even 
- sm2 (n 1t y) for n odd . 

With the strain tensor 

and the stress tensor !! = 2 Jl!< one obtains 

wpol(Y)=iJl[k2IuzI2 +lu~12], 

(21) 

(22) 

(23) 

(24) 

(25) 

where a prime indicates differentiation with respect 
to y: 

1 u' 12 = {n2 1t
2 

sin
2 

(n 1t y) for n even (26) 
Z n2 1t2 cos2 (n 1t y) for n odd. 

At the frequency f = nl.j2 Wpol is constant over the 
cross-section of the plate. 

Locally, wkin and Wpol are different in general (except 
for n = 0 where they are the same everywhere), howev
er, upon averaging one recovers equality (16) 

(27) 

The space-time average of the energy density is the 
same for all pure shear modes provided the amplitude 
at the plate surface is of equal magnitude! By contrast 
the averaged intensity 

~ <I x> = n2 J1. C f 2 = n2 J1. -oJ 1 - 4j2 f Z (28) 

depends on n, because the group vtilocity C is different 
for different modes. Theorem (17) can be directly prov
en by integrating the expression 

~ 
1x(y) = 2n

2 
J1.luz l

z -oJ 1 - '4j2 t (29) 

which has been evaiuated from (14). As expected: only 
the shear modulus J1. enters the expressions. 
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Fig. 2. Displacement component II. (Y), energy densities 
wkin (y) + W pOI (y) = w (Y), and intensity Ix (y) of the shear 
mode n = 3 at the frequency f = 2 (11 = 0.3). 
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Fig. 3. As Fig. 2, but a frequency f = 5 and without II •. 
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Fig. 4. Average intensity component (I x> of the shear modes 
n = 0 ... 6 divided by the frequency squared versus frequency 
(11 = 0.3). 

ACUSTICA 
Vol. 12 (1990) 

In order to provide a non-trivial illustration, the 
shear mode n = 3 at the frequency f = 2 (which is 
close to the cut-on frequency 1.5) has been selected for 
Fig. 2. 

With increasing frequency Wpol approaches WlciD ' the 
group velocity approaches one, and thus I" approaches 
W (Fig. 3). In the limit of infinite frequency the average 
intensities of all modes become equal: 

(I,,) = x 2 JA.f2 

(see Fig. 4). 

5. Non-pure-shear modes 

(30) 

This section contains the general relations for all the 
modes with vanishing uz-component. The time-aver
aged kinetic energy density is simply 

Wkin (y) = 7[2 J,lf2 [lux l2 + IUyI2]. 

For the potential part the strain tensor 

and the stress tensor 

combine to 

J,l(u~ + ikuy) 

u~ + Aiku" 
o 

~) ei(b-wI) 

o . 

(31) 

(32) 

(33) 

Wpot (y) = Hk21u,,12 + lu~12 + 2H 1m {u: u~} 

+JA.lu~+ikuyI2]. (34) 

Finally, the x-component of the intensity is given by 

I,,(y) = xf[(lux I2 + J,lluyI2) k + ;, 1m {u! u~} 

+J,llm{u~u;}]. (35) 

It is evident from (33) and Uz = 0 that the z-component 
of the intensity is zero. The y-component 

ly(y) = xf[Re {u: Uy} k + AIm {u; u~} 

+ II 1m {u: u: + 2 u; u~}] (36) 

can also be shown to vanish everywhere. It is certainly 
true if u: u)s imaginary and u: u~ and u; u~ are real. 
A detailed discussion of the three velocity ranges 
c ~ 1,1 < c ~ c •• c. < c reveals that each displacement 
component is either real or imaginary (assume a real 
amplitude A for simplicity) and the product of x- and 
y-component is always imaginary. Hence I y = 0 fol
lows immediately from (36). 
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As a supplement to eqs. (6) and (7) we also list the 
derivatives of the displacement components for sym
metric modes, 

(37) 
u~(y) = ikA [oc i sinh(oc i ky) -oc2ocxRssinh(oc2ky)], 

u~ (y) = IX I k A [oc I cosh (IX I k y) - 1X2 IX, Rs cosh (1X2 k y)]. 

and for antisymmetric modes, 
(38) 

u~(y) = i k A [oc i cosh (IX I k y) - 1X2IXx Ra cosh (1X2 k y»), 

u~(y) =IX I kA[oc l sinh(oc i ky) -1X2oc,Rasinh(oc2ky)]. 

In principle, all energy quantities could be averaged 
analytically over the cross-section of the plate, be
cause only hyperbolic functions are involved. Fortu
nately (see section 3) it suffices to perform the integra
tion for the simplest quantity, Wkin , only. We obtain 
for symmetric modes 

7[2 (39) 
(Wkin) = 2Jlf21AI2 {(SI + 1) + locxl2lRsl2(S2 + 1) 

+ IIXd2 [IS, - 11 + loc,I21Rsl21S2 - 11]- 4°CI oc,S,}, 

and for antisymmetric modes 

7[ 
2 (40) 

(Wkin ) = 2 Jlf21AI2 {lSI - 11 + locxl21Ral 21S2 -11 

+ IOCl12 [(SI + 1) + 1IX,I21Ral2 (S2 + 1)]- 41 IX112 IX, S,}, 

with 

= sinh (IXmk) ( =12) S", k m ,. 
IXm 

(41) 

Note the little difference between (39) and (40) in the 
last term. It is essential for imaginary oc1, i.e. for c > Ct. 

With the aid ofthe relations (16) and (17) the spatial 
average of the intensity can be calculated from (39) or 
(40) for any plate mode with U z = 0 in a straightfor
ward manner. No approximations have been involved 
in the course of the derivation of the above expres
sions and the accuracy of the results depends only 
(apart from round-off errors etc.) on the accuracy of 
the phase and group velocities, which are needed as 
inputs. The special cases of the two fundamental 
modes will now be discussed in detail in the following 
subsections. 

5.1. The quasi-longitudinal mode 

Phase and group velocity of the fundamental symmet
ric mode are shown in Fig. 5 for the case u = 0.3. (The 
behaviour of all the results is very similar for other 
values of Poisson's ratio within the typical range be
tween u = 0.2 and u = 0.5). 
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Fig. 5. Phase velocity c and group velocity C of the quasi
longitudinal mode versus frequency (0- = 0.3). 

Analogous to the choice (21) for the pure shear 
modes the amplitude of the quasi-longitudinal mode 
is chosen such that the displacement component dom
inating at low frequencies is equal to unity at the 
surface y = 1/2: 

(42) 

The displacement field varies considerably as a func
tion offrequency (Fig. 6). While at f = 0.5 it looks still 
similar to its behaviour in the limit f -+ 0 (constant Ux 

and small linear u,), the longitudinal component Ux 

points in opposite directions at the surface and in the 
middle of the plate at intermediate frequencies. The 
surface-wave behaviour is exemplified at f = 10. At 
the surface the longitudinal component is dominant 
only at low frequencies! 

The y-dependence of the various energy quantities 
at the four frequencies of Fig. 6 can be studied in 
Fig. 7. Except at low frequencies, where the variation 
over the cross-section is smooth and small, there is a 
pronounced local minimum of W pol just below the sur
face; wand Ix reach their maximum values at the 
surface. 

The values at the surface as a function of frequency 
are shown in Fig. 8. Both at low and at high frequen
cies these surface quantities are evidently proportional 
to the frequency squared. The most conspicuous fea
ture of Fig. 8 is the singularity of Wkin at f = ~.)2, 
which is caused by the convention (42). At this partic
ular frequency phase and group velocity are indepen
dent of u(!) and known analytically: 

C=J2, C=~J2. (43) 
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Fig. 6. Displacement components ux(y) and uy(y) of the 
quasi-longitudinal mode at various frequencies f (0' = 0.3). 
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Fig. 7. Energy densities wkin (y) + Wpol (y) = w(y) and intensi
ty component J x (y) of the quasi-longitudinal mode at 
various frequencies f (a = 0.3). 
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Fig. 8. Surface values of energy densities Wkln + wpot = wand 
intensity component I x of the quasi-longitudinal mode divid
ed by the frequency squared versus frequency (0' = 0.3). 

Hence !Xl> 0, !X2 = i, k = 1[ (wavelength = twice the 
thickness) and 

ux(y) = -Acos(1ty), 

uy(y) = iAsin(1[Y), 

1[2 
Wkin(y) = 21AI2 p., 

Wpot(y) = 1[21A12 p.cos2 (1ty), 

1x(y) = J21t2IAI2 p.cos2 (ltY), 

1t2 . 

(Wkin) = (Wpol) = 21AI2 p., 

1t
2 

(1,) = J2I A I
2 

Jl. 

(44) 

The requirement ux @ = 1 leads to an infinite ampli
tude and consequently to an infinite Wkin @, while wPOI 

and Ix remain finite at the surface. It is striking that 
only the shear modulus Jl is involved in (44) and in
deed the strains and stresses, . 

: (-1 0) 
§. =i1tAcos(1ty) 0 1 ' q: = 2Jl §., (45) 

are pure shear! The singularity in Fig. 8 reflects the 
fact that the quasi-longitudinal mode at f = tJ2 
cannot be detected by strain gauges on the surface of 

the plate. 
If one were particularly interested in the frequen

cy region around t J2, one would rather choose 
lu (t)1 = 1 instead of (42). However, the rest of this 
section concentrates on the low- and high-frequency 
behaviour, where the description is more convenient 
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Fig. 9. Average energy density <w) and average intensity 
component (Ix) of the quasi-longitudinal mode divided by 
the frequency squared versus frequency (0' = 0.3). 

with convention (42). (The measurement of surface 
intensity has been put forward by Pavic [20].) 

At low frequencies the space-time averages (w) and 
(Ix) (Fig. 9) behave like the corresponding surface 
values, because there is little variation over the cross
section. At high frequencies the increase of the surface 
values with f2 is accompanied by a confinement of the 
wave to an ever decreasing surface region resulting in 
an overall behaviour proportional to only the first 
power ofthe frequency. One finds for the low-frequen
cy approximations 

c=C= {T, 
-J~ 

a .~1 +a 
!Xl = ----, !X2 = 1 ----, 

1-a 1-a 

(46) 

(47) 

(48) 

(w) = 2 Wkin = 2 wPOI = 21t2 p.f2, (49) 

<Ix)=(w)C, (50) 

and for the high-frequency approximations (cR = Ray
leigh velocity; !Xl > CX 2 > 0) 

(51) 

(52) 

(Wkin) = iJlcRfIAI2e<l,k (53) 

·{:1 +CX1(1-4CXy)+(CX1CXy)2(:2 + CX2)} , 
(54) 
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Fig. 10. Average intensity component (I,) of the quasi-lon
gitudinal mode with low- and high-frequency approxima
tions (dotted lines) versus frequency (/7 = 0.3). 

At high frequencies the amplitude convention (42) 
leads to 

4e-«,k 
IAI2 = (1 _ o:y (55) 

and thus to a linear frequency dependence of (w) and 
(1,,). 

The ranges of applicability of these approximations . 
to the average intensity may be inferred from Fig. 10. 
Apart from the region around the singularity the ap
proximations look rather satisfactory. In fact, the er
rors are less than 20% for f ;:;; 0.4 and f ~ 1.5, respec
tively. The ranges with errors not exceeding 10% (1 %) 
are f;:;; 0.3 (0.1) and f ~ 1.9 (3.0). 

5.2. The bending mode 

Phase and group velocity of the fundamental antisym
metric mode are shown in Fig. 11. Its amplitude is 
chosen such that the displacement component normal 
to the surface is unity at the surface y = 1/2: 

(56) 

The displacement field is plotted in Fig. 12 for various 
frequencies. The low frequency behaviour (constant u, 
and small linear u .. ) has a somewhat smaller frequency 
range of validity compared to the quasi-longitudinal 
wave. However, the transition to a surface wave ap
pears to be "smoother" than in the case of the funda
mental symmetric mode, because neither u, nor u" 
become zero at the surface. The transversal compo
nent uy is always larger than the longitudinal compo
nent u". 
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Fig. 11. Phase velocity c and group velocity C of the bending 
mode versus frequency (/7 = 0.3). 

The y-dependence of the various energy quantities 
at the four frequencies of Fig. 12 is shown in Fig. 13. 
At f = 0.1 energy density and intensity increase from 
the centre to the surface of the plate (Fig. 7, f = 0.5 
shows the opposite behaviour!). As expected, with in
creasing frequency both fundamental modes exhibit 
more and more the same behaviour. 

At high frequencies surface intensity and energy 
densities are proportional to the frequency squared 
(Fig. 14). For [ -+ 0 intensity and energy density be
have differently because the group velocity of bending 
waves is proportional to ,Jl. This is true both at the 
surface and on average (Fig. 15) since 1" and ware 
approximately constant over the cross-section. 

At low frequencies one obtains to lowest order (sim
ple bending wave theory): 

J2rt f 
CB = , CB = 2cB , (57) 

V6(1- 0') 

kB =V6(1-O')J21t[, (58) 

U,,= -iky, uy= 1, 

(w) = 2Wkin = 21t2 po[2, 

(Ix) = (w) CB • 

(59) 

(60) 

(61) 

Evidently, the space-time average of the energy densi
ty is the same for both fundamental modes if the fre
quency approaches zero and the amplitudes obey (42) 
and (56), respectively. Note that (w) depends only on 
the shear modulus J1. and not on the compressional 
modulus (which equals (1 + 0')/13 (1 - 0')] in normal
ized form), whereas (1,,) depends like the group veloc
ity C on both moduli. From (57) the average intensity 
of the bending mode is proportional to f5 /2. 

--, 
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Fig_ 12. Displacement components u,,(Y) and uy(y) of the 
bending mode at various frequencies /(u = 0.3). 
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Fig. 14. Surface values of energy densities wkin + wpol = W 

and intensity component 1% of the bending mode divided by 
the frequency squared versus frequency «(1 = 0.3). 
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The ranges with errors not exceeding 10% (1%) are 
f ~ 0.065 (0.007) and f ~ 0.77 (3.0). 

5.3. Conventional bending wave intensity 

The bending wave intensity is usually measured by 
means of two accelerometers mounted to the surface 
of the plate along the propagation direction x. Their 
mutual distance should be small compared to the 
bending wavelength in order to obtain a good estimate 
for the spatial derivative of the acceleration, which is 
needed in the familiar formula for the bending wave 
intensity I B' 

JfJih { aa; } IB = - ~Re aySfudt , (63) 

where B = E h3 /[12 (1 - 0'2)] is the bending stiffness 
and ay is the normal component of the acceleration at 
the surface y = 1/2. (Usually the bending wave intensi
ty is defined as hlB' which has the dimension power 
per unit length. We prefer definition (63), which is 
consistent with the more general intensity definition 
(14).) Eq. (63) is valid for sinusoidal waves and can be 
evaluated to 

_~ ~ w2 klu (y = 1)12 IB-2-J~ Y 2 
(64) 

with 

lu).(y = !W = IAI2 exi (1 - exl cosh2(a J k h/2) , (65) 

which reduces to 

1-20' 2k 
I = w 

B 2)6(1 _ 0')3 
(66) 

component (1,) of the bending mode divided by the frequency 101 r----------,---,----'?""1 
squared versus frequency (a = 0.3). 

The expressions for the high-frequency approxima
tion are identical with eqs. (51 to 54). The results, how
ever, are different for both fundamental modes be
cause the amplitudes have been chosen differently. 
From (56) we obtain 

4e-""k 
IA 12 = ext (1 _ exy)2' (62) 

The log-log-plot Fig. 16 gives an impression of the 
accuracy of the low- and high-frequency approxima
tions. The gaps within which the approximations can
not be used are wider than in the quasi-longitudinal 
case, especially if only small errors are allowed. The 
errors are less than 20% for f ~ 0.13 and f '?" 0.67. 

10° t-------:7~7'---t------1 

001 01 10 
f-

Fig. 16. Average intensity component (1%) of the bending 
mode with low- and high-frequency approximations (dotted 
lines) versus frequency «(1 = 0.3~ 

--I 
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after adopting the amplitude convention (56) and nor
malizing according to section 3. If one substitutes k by 
wlc with the low frequency approximation (57), one 
recovers the result (61). Since the ratio between Ia and 
(1:.) according to (61) is equal to calc ~ 1 and since 
(I lC ) according to (61) overestimates the exact <IlC) 
(see Fig. 16), the approximation Ia systematically 
overestimates the intensity. The error relative to the 
exact (Ix), 

o_Ia-(Ix ) 

- (Ix) , (67) 

is proportional to the frequency for f -+ 0 and 
amounts to a few percent even at f = 0.01 (Fig. 17). 
The upper limits for an error not exceeding 20%, 
10%, 1% are f ~ 0.073, 0.037, 0.004, respectively 
(0" = 0.3). 

Simple bending wave theory is considered to be 
valid if the wavelength is greater than six times the 
thickness of the plate, i.e. for k < 1[/3 ~ 1.05, which 
corresponds to frequencies below f = 0.073 (cr = 0.3). 
Beyond this frequency region the error of the velocity 
approximation (57) exceeds 10% [19] and the error of 
the intensity approximation (66) exceeds 20%. In 
many applications errors of this size may be readily 
acceptable. If a higher accuracy is desired or neces
sary, the error of the conventional bending wave in
tensity measurement can now be corrected on the 
basis of eq. (67). The error may either be estimated 
from Fig. 17 or calculated fn;Jm eqs. (40) and (66). 
Thus the intensity of the bending mode can in princi
ple be measured at arbitrary frequencies with the con
ventional technique. It appears to be practically feasi
ble at least below the onset of higher modes, i.e. below 
f = 0.5, where only the possible excitation of the 

103 .-----------,----::-::-li"'f"::=:;;WI 

1 
~ lOO ~------~~-4-----~ 

om 0.1 10 
f-

Fig. t 7. Relative error of the bending wave intensity (66) ver
sus frequency for various values of Poisson's ratio. (j is defined 
in (67). . 
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quasi-longitudinal mode may complicate matters. 
(The contribution of the quasi-longitudinal mode to 
the y-component of the acceleration can be eliminated 
by measuring on both surfaces of the plate, because 
the displacement fields of the two fundamental modes 
possess different symmetry.) 

6. Conclusion 

Exact and explicit expressions have been worked out 
for the intensity and the time-averaged energy densi
ties of an arbitrary propagating mode in a homoge
neous and elastically isotropic plate of constant thick
ness. The spatial averages of these quantities across 
the thickness of the plate have also been obtained 
analytically. The only prerequisite for the application 
of these expressions to a particular mode is the knowl
edge of its phase and group velocity. Of course, in 
general these velocities must be calculated numerical
ly. 

Particular attention has been paid to the quasi
l~ngitudinal mode and the bending mode. Low- and 
high-frequency approximations have been derived 
and their ranges of applicability have been studied. 
Finally, the accuracy of the conventional technique of 
measuring the intensity of bending waves has been 
assessed. A correction factor has been determined 
which allows an extension of this technique to higher 
frequencies provided one is able to isolate the bending 
mode portion of the measured acceleration. 

Exploration of intensity and energy density of 
higher non-pure-shear modes is straightforward and 
does not require more effort than in the case of the two 
fundamental modes once the velocities are known. 

Appendix 

This appendix addresses briefly the question of how to 
determine phase and group velocities of the two fun
damental non-pure-shear modes. Low-frequency ex
pansions of the phase velocities are available (see e.g. 
[21]), and it is well-known that in the high-frequency 
limit phase and group velocity approach the velocity 
CR of Rayleigh surface waves, which is a solution of the 
(normalized) cubic equation for ei: 

e~ - 8 c~ + 8 (3 - 2.u) ci -16 (1 - .u) = O. (A 1) 

Mindlin [22] has developed an approximation eM for 
the phase velocity of the bending mode, which can 
be used with relatively little error for arbitrary fre-
quencies: .. 

(A 2) 

[
1 3 ] 4 [ 2 ] 2 2 
Ci-(1[f)2 CM- 1+ ei (1-u) CM+ 1 _ cr =0. 
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The corresponding group velocity CM can also be ob-
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tained explicitly via the general relation 0.01 

c 
C= f dc' 

1--
c df 

(A 3) 

The three-digit accuracy claimed by Mindlin for CM 

could not be confirmed, however. The difference to the 
exact phase velocity may even affect the second deci
mal digit (Fig. A 1) and the approximation CM may 
even be worse. 

In view of these deficiencies Mindlin's approxima
tion has been taken only as a starting point for a 
numerically exact solution of the dispersion relation 
(9). (The Van Wijngarden-Dekker-Brent Method [23] 
is used for root finding.) Except for very low frequen
cies, where C = 2 c holds, the group velocity of the 
bending mode has been determined by (A 3) with nu
merical differentiation of c with respect to f. (It ap
pears possible to arrive at an explicit expression for 
dc/df by means of an implicit differentiation of the 
dispersion relation (9). The numerical differentiation 
could then be avoided.) 

There are no serious problems with an accurate 
computation of the bending mode velocities; (Xl and (X2 

and hence the whole dispersion relation remain real 
for arbitrary frequency. The case of the quasi-longitu
dinal mode is more complicated. While (Xl stays real 
for any frequency, (X2 is imaginary for low frequencies 
and real for frequencies where the phase velocity be
comes smaller than unity. Further, (X2 = i at f = t J2 
leads to a singularity in the dispersion relation due to 
(1 + (X~)2 = 0 and tanh «(X2 k12) = 00. In order to ob
tain solution in the vicinity of f = t J2 one has to 
deal with 

at 

cosh «(X 2 k12) 
(1 + (X~)2 

cos (7t I (X21 flc) 

(1 + (XW 
(A 4) 
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Fig. A L Absolute error of Mindlin's approximations CM and 
CM to the exact phase and group velocities C and C versus 
frequency (0" = 0.3). 

while the denominator becomes 

(A 8) 

One can show that p = - q in the limit q -+ O. During 
the iteration procedure, however, p and q are consid
ered as independent variables. Therefore we write 

p= _q_Hq2 (A 9) 

and determine H from 

H-- P+ q . 
- q2' (AW) 

This looks bad for q -+ 0, but with reasonable starting 
values for the root finding procedure eq. (A 10) did not 
cause any trouble_ This is related to the fact that H 
becomes independent of p and q for the solution q at 
frequencies with p -+ O. (The case p = 0 should be 
treated separately, of course_) (A 7) can now be rewrit-

f = tJ2(1 + p), C = J2(1 + q) (A 5) ten as 

with small values of p and q. The numerator of(A4) is 
expanded around 7t/2, 

(7t) (S2 S4 ) cos -+5 =-s 1--+-+ 2 3! 5! ... (A 6) 

with 

(A 7) 

s= 7t [(1-q-H q2)J1 +4q+2q2-1-q)] 
2(1 + q) 

7t 
.,.--,---,-K. 
2(1 + q) 

(A 11) 

Since s will be divided by q2, bracket K should be 
determined quite accurately. We do this by an iterative 
solution of 

_ - (2 H + 6) - 6 H q + (H2 + 4 H + 2) q2 + 4 H (1 + H) q3 + 2 H2 q4 K= _ (AI2) 
K q2 + 2(1 + q) 

starting with R = 0 on the right-hand side (K = R q2). Thus one arrives at 

cosh «(X2 k12) - 7t R ( 52 54 _ ) 

(1 + (X~)2 = 8 (1 + q)(2 + q)2 I - 3! + 5! + ... (A 13) 



ACUSTICA 
Vol. 72 (1990) 

in a numerically convenient manner. Apart from the 
truncation of the series (A 6) no approximations have 
been made. Therefore (A 13) can be applied in an ap

preciable range around f = t J2 provided ex2 remains 

imaginary, i.e. c > 1. 
The frequency fl' where the phase velocity of the 

quasi-longitudinal mode is equal to one, obeys the 

transcendental equation . 

~J2(1 - (1)f1 = tanh ( nf1) (A 14) 
4 J2(1 - 0") 

and is shown in Fig. A 2 as a function of Poisson's 
ratio 0". (Negative values of 0" appear not to have been 
discussed so far for plate waves, although this range is 
not generally forbidden within the framework of lin
earized elastodynamics, which only requires positive 

moduli for shear and compression, i.e. - 1 < 0" < 1/2. 
Nevertheless it would be worthwhile to investigate the 

dispersion diagram for 0" < O. For instance, the solu

tions c = J.j. at f = i J2 (independent of 0") and c = 1 
at fl = t J2 for some negative 0" (0" ~ - 0.27) indicate 
that the two velocity values belong to different modes, 
whereas for 0" > 0 they belong to the same mode!) 
The region around fl can be treated by expanding 

sinh (ex2 k/2) and by subsequent cancellation of ex2, 
which removes the singularity of the dispersion rela

tion at ex2 = o. 
A more detailed discussion of the numerical solution 

of the Rayleigh-Lamb frequency equations, especially 
for higher modes, is certainly beyond the scope of the 
present paper. For some reason no descriptions of 
numerical procedures appear to exist in the literature. 
Perhaps, considerations like this appendix have been 
regarded as trivial in the past. Nowadays, the develop
ment and publication of a reliable and efficient com
puter code for the velocities of plate waves is overdue. 

Note added in proof: Negative values of Poisson's ratio have 
now been discussed extensively by A. Freedman (J. Sound 
Vib. 137 [1990], 209-266). 
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Fig. A2. Frequency fl where the phase velocity of the quasi
longitudinal mode equals one versus Poisson's ratio. 
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