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Deutsche Zusammenfassung

Bald jährt sich die Entdeckung der Hochtemperatur-Supraleitung Supraleitung zum
25. Mal. Seither wurden viele Experimente durchgeführt und viele Versuche un-
ternommen, den supraleitenden Paarungsmechanismus zu erklären. Allerdings sind
viele Hindernisse wegen der ungewöhnlichen Normalzustandseigenschaften der Kuprate
aufgetaucht. Eine der größten Herausforderungen ist das Pseudogap, welches im un-
terdotierten Bereich unterhalb einer dotierungsabhängigen Temperatur T∗, welche
die supraleitende Sprungtemperatur Tc übersteigt, beobachtet wird. Bis jetzt sind
der Paarungsmechanismus der Hochtemperatur-Supraleitung und der Ursprung des
Pseudogaps kontrovers; um diese Phänomene zu erklären sind daher mehr Experi-
mente an diesen Materialien nötig.

Kuprat-Supraleiter sind Schichtsysteme. Die einzigen gemeinsame Lagen in
allen Kupraten sind Ebenen der chemischen Zusammensetzung CuO2, bestehend
aus quadratischen Kupfer-Sauerstoff Plaketten. Diese Schichten können daher als
das strukturelle Element identifiziert werden, welches die supraleitenden Cooper-
Paare beinhaltet. Es ist im Moment allgemein akzeptiert, dass die Cooper-Paar
Wellenfunktion der Hochtemperatur Supraleiter hauptsächlich dx2−y2-Wellen Sym-
metrie besitzt. In Verbindungen, in welchen die CuO2-Ebenen orthorhombisch verz-
errt sind, inklusive dem weitestgehend untersuchten YBa2Cu3O6+x, erwartet man
eine s-Wellen Beimischung zur führenden d-Wellen Paarung. Diese führt zu einer
Anisotropie der supraleitenden Energielücke 2∆ zwischen der a- und b-Achse. In den
letzten Jahrzehnten wurden die meisten Experimente an verzwillingten YBa2Cu3O6+x

Proben durchgeführt, die aus kristallographischen “Twins” zusammengesetzt sind,
bei denen die a- und b-Hauptachsen in den Ebenen jeweils vertauscht sind. Da-
her ist dieser ab-Unterschied in der supraleitenden Energielücke im verzwillingten
YBa2Cu3O6+x schwer zu beobachten. Auf der anderen Seite kann im unverzwill-
ingten YBa2Cu3O6+x-Kristall, die ab-Anisotropie inklusive die der supraleitenden
Energielücke, erforscht werden.

Wegen Problemen mit der Oberfläche ist allerdings eine genaue Bestimmung der
2∆-Lücke von YBa2Cu3O6+x mit Hilfe winkelaufgelöster Photoemissions-Spektroskopie
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(ARPES) schwierig. Raman-Streuung ist ein leistungsstarkes, viel weniger oberflächen-
sensibles Instrument, um die ab-Anisotropie in der 2∆-Lücke und damit den s-
Wellenbeitrag zur d-Wellenpaarung zu messen. Im ersten Teil der Arbeit haben wir
unverzwillingte, leicht überdotierte YBa2Cu3O6.95 (Tc=92 K) und moderat überdotierte
Y0.85Ca0.15Ba2Cu3O6.95 (Tc=75 K) Einkristalle mit Hilfe der Raman-Lichtreuungstechnik
untersucht. In Raman-Streuexperimenten mit polarisiertem Licht sind die Anre-
gungen Ag+B1g, Ag+B2g, B1g, und B2g zugänglich indem man jeweils xx (bzw.
yy), x′x′ (bzw. y′y′), x′y′ (bzw. y′x′) und xy (bzw. yx) polarisierte einfall-
ende und gestreute Lichtfelder benutzt. Hierbei bedeuten x und y die Richtung
des elektrischen Feldes vom Licht entlang der a- und b-Achsen, wohingegen x′

und y′ die diagonalen Richtungen bezeichnen. Weil das Ziel der Arbeit darin
besteht, die s-Wellenkomponente zum fhrenden d-Wellen Ordnungsparameters zu
bestimmen, fokussieren wir unsere Raman-Studie auf die xx, yy, und x′y′ Po-
larisationsgeometrien. In beiden Proben wurden Modifikationen in den elektro-
nischen Paarbrechungs-Peaks beobachtet, wenn die a- und b-Achse miteinander
vertauscht wurde. Zusätzlich besitzen die Linienformen von einigen Moden, ein-
schlielich Eben- und Sauerstoff-Schwingungen, starke Ansiotropien bezüglich der
Konfigurationen von einfallenden und gestreuten Lichtfeldern. Diese Moden zeigen
eine ausgeprägte asymmetrische Linienform (d.h. ein Fano-Profil), die eine starke
Wechselwirkung mit dem elektronischen Kontinuum nahelegt. In dieser Arbeit
werden die Raman-Spektren auf zwei verschiedene Weisen analysiert. Zunächst
haben wir den konventionellen Fano-Zugang benutzt, mit ihm erhält man Ab-
schätzungen der intrinsischen Phononen-Parameter (d.h. Phononenfrequenzen, Lin-
ienbreiten und Asymmetrie-Parameter). Zweitens haben wir ein theoretisches Mod-
ell, basierend auf dem Fano-Effekt, entwickelt, um sowohl elektronische als auch
phononische Beiträge zum Raman-Spektrum gleichberechtigt zu behandeln. Un-
sere Theorie erlaubt uns, das elektronische Raman-Signal vom phononischen Teil
zu entflechten und zugehörige Interferenz-Terme zu identifizieren. Überdies sind
wir nocheinmal auf die supraleitungsinduzierten Änderungen in den Phononen-
Linienformen zurückgekommen. Wir führen die ab-Anisotropie des elektronischen
Raman-Signals und die supraleitungsinduzierten Änderungen in den Phonon-Linienform
auf eine kleine s-Wellen Beimischung zur dx2−y2-Paarwellen-Funktion zurück. Wir
argumentieren, dass die Raman-Spektren im Einklang mit einer s-Wellen Beimis-
chung von bis zu 20% (oder gleichbedeutend mit einem 20%-tigen Unterschied in
der Amplitude der supraleitdenden Energielücke in der Ebene) sind.

Der zweite Teil dieser Arbeit wirft Licht auf unterdotiertes, unverzwillingtes
YBa2Cu3O6+x mit x = 0.45 (Tc=35 K) und x = 0.6 (Tc=62 K). Weil die Öffnung
des Pseudogaps das elektronische Signal in dieser Doping-Region unterdrückt, liegt
das Hauptaugenmerk auf dem vibronischen Raman-Response. Zusätzlich zu den
quadratischen, planaren CuO2-Schichten enthält die Kristallstruktur von YBa2Cu3O6+x



CuO-Ketten entlang der b-Achse, die bei x < 1 teilweise entleert werden. Insbeson-
dere ist bei YBa2Cu3O6.5 jede zweite Kette komplett leer und es bildet sich die sog.
ortho-II-Struktur mit einer verdoppelten Einheitszelle aus. Es wurden verschiedene
Überstrukturen, inklusive die der ortho-V-Struktur mit einer fünfmal größeren Ein-
heitszelle beobachtet.

In dieser Arbeit präsentieren wir eine detaillierte Klassifikation der Schwingungs-
Moden von YBa2Cu3O6.45 und YBa2Cu3O6.6. Diese Moden können in zwei Kat-
egorien unterteilt werden: die konventionellen Moden von YBa2Cu3O7 und die
zusätzlichen Moden, welche durch die neue Periodizität der Kupfer-Sauerstoff-Ketten
erzeugt werden. Diese induzierten Moden sind entweder z-Achsen polarisiert, beobacht-
bar in den Raman-Symmetrien xx und yy, oder x-Achsen polarisiert und daher nur
in xx-Polarisation zu beobachten. Demzufolge sind die x-Achsen polarisierte Moden
ein ausgezeichnetes Werkzeug, um die xy-Anisotropie des elektronischen Systems
von unterdotiertem YBa2Cu3O6+x zu untersuchen.

Wir haben detaillierte Untersuchungen der Temperatur-Abhängigkeit von Raman-
Spektren in xx- und yy-Polarisation an YBa2Cu3O6.45 (ortho-II) und YBa2Cu3O6.6

(ortho-V) durchgefhrt. Unsere Messungen zeigen eine fast komplette Unterdrückung
der x-Achsen polarisierten Moden, und zwar die der Yttrium- und die der planaren
Sauerstoff-Schwingungen aus den Ebenen heraus oberhalb T∗ ∼ 200K. Die z-Achsen
polarisierten Moden bestehen fort bis hin zur Raumtemperatur. Weiterhin haben
wir die Rolle möglicher Resonanzeffekte in den phononischen Spektren überprüft,
haben aber gefunden, dass die anomale Temperaturabhängigkeit unabhängig von
der Photonenenergie ist. Außerdem haben wir Kontrollexperimente durchgeführt,
in denen die Temperaturabhängigkeit der Sauerstoff-Überstruktur direkt untersucht
wurde, und fanden dass diese temperaturunabhängig ist. Die beobachtbare Anoma-
lie tritt also eng verknüpft mit einer elektronischen Instabilität auf. Der wahrschein-
lichste Kandidat ist eine “elektronische, nematische” Phase, welche kürzlich durch
inelastische Neutronen-Streuung identifiziert wurde.

Diese Arbeit ist wie folgt gegliedert. In Kapitel 1 wird ein Überblick über
die Hochtemperatur-Supraleitung, ihr generisches Phasendiagramm und die struk-
turellen Phasen von YBa2Cu3O6+x gegeben. Kapitel 2 präsentiert die Theorie
für phononische und elektronische Raman-Streuung, gruppentheoretische Berech-
nungen und Raman-Auswahlregeln sowie deren Anwendung auf Hochtemperatur-
Supraleiter. Eine Einführung in unser theoretisches Modell und zu der Analyse der
Daten wird in Kapitel 3 gegeben. Eine Beschreibung der experimentellen Daten
wird in Kapitel 4 präsentiert. Die experimentellen Resultate werden in Kapitel 5
gezeigt und diskutiert.





Abstract

The silver jubilee of the discovery of high temperature superconductivity in cuprates
is coming soon. Since its discovery, numerous experiments have been performed, and
many attempts have been made to explain the superconducting pairing mechanism
in cuprates. But several obstacles have arisen because of the anomalous normal state
properties of cuprates. One of the most challenging issues is the pseudogap, which
has been observed in the underdoped regime below a doping-dependent temperature
T∗ that exceeds the superconducting transition temperature Tc. Today, the pairing
mechanism of high-temperature superconductivity and the origin of the pseudogap
state are still controversial, hence more experiments on these materials are required
to explain these phenomena.

Cuprate superconductors are layered materials. The only common layers in all
cuprates are planes of chemical composition CuO2 comprised of quadratic copper-
oxygen plaquettes. These layers can therefore be identified as the structural element
that hosts the superconducting Cooper pairs. It is now generally accepted that the
Cooper pair wave function of high temperature superconductors (HTSCs) has a pre-
dominant dx2−y2 symmetry. For compounds in which the CuO2 layers are orthorhom-
bically distorted, including the extensively studied compound YBa2Cu3O6+x, one
also expects an s-wave admixture to the predominant d-wave pairing. This results
in an anisotropy of the superconducting energy gap 2∆ between the a- and b-axes.
Over the past decades, most of the experiments have been performed on twinned
YBa2Cu3O6+x specimens, which are composed of crystallographic “twins” in which
the two principal in-plane axes a and b are interchanged. Hence, the ab-difference
in the superconducting energy gap in twinned YBa2Cu3O6+x is difficult to observe.
In detwinned YBa2Cu3O6+x crystals, on the other hand, the ab-anisotropy of vari-
ous physical observables, including the superconducting energy gap, can be explored.

A precise determination of the 2∆-gap of YBa2Cu3O6+x using angle-resolved pho-
toemission spectroscopy (ARPES) is, however, also difficult due to sample surface
problems. Raman light scattering is another powerful, much less surface-sensitive
tool to measure the ab-anisotropy in the 2∆-gap and therefore the s-wave admixture
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to d-wave pairing symmetry. In the first part of this thesis, we have investigated de-
twinned, slightly overdoped YBa2Cu3O6.95 (superconducting Tc=92 K) and moder-
ately overdoped Y0.85Ca0.15Ba2Cu3O6.95 (Tc=75 K) single crystals using the Raman
light scattering technique. In polarized Raman scattering experiments, excitations
of Ag+B1g, Ag+B2g, B1g, and B2g symmetries are accessible by using xx (or yy),
x′x′ (or y′y′), x′y′ (or y′x′), and xy (or yx) polarizations of the incident and scattered
light fields, respectively. Here, x and y correspond to the direction of the electric
field of light along the a- and b-axes, whereas x′ and y′ correspond to the diagonal
directions. Since the purpose of this thesis is to determine the s-wave component
of the predominant d-wave order parameter, we focused our study on the Raman
signals in the xx, yy, and x′y′ polarization geometries.

In both samples, modifications of the electronic pair-breaking peaks when in-
terchanging the a and b axis were observed. In addition, the lineshapes of several
phonon modes involving plane and apical oxygen vibrations exhibit pronounced
anisotropies with respect to the incident and scattered light-field configurations.
These modes display a pronounced asymmetric lineshape (i.e., Fano-profile) sug-
gesting a strong interaction with the electronic continuum. In this thesis, the Ra-
man spectra were analyzed in two ways. Firstly, we have used the conventional Fano
approach, from which we have obtained estimates of the intrinsic phonon param-
eters (i.e., phonon frequencies, linewidths, and asymmetry parameters). Secondly,
we have developed a theoretical model based on the Fano effect to treat both elec-
tronic and phononic contributions to the Raman spectra on equal footing. Our
theory allows us to disentangle the electronic Raman signal from the phononic part
and to identify corresponding interference terms. Besides that, we have revisited
the superconductivity-induced changes in the phonon lineshapes. We attribute the
ab–anisotropy of the electronic Raman signals and of the superconductivity-induced
changes in the phonon lineshapes to a small s-wave admixture to the dx2−y2 pair
wave function. We argue that the Raman spectra are consistent with an s-wave
admixture with an upper limit of 20% (or equivalently, a 20% in-plane difference in
the magnitude of the superconducting gap).

The second part of this thesis sheds light on underdoped, detwinned YBa2Cu3O6+x

with x = 0.45 (Tc=35 K) and x = 0.6 (Tc=62 K). Since the opening of the pseu-
dogap suppresses the electronic signal in this doping range, we have focused our
attention on the vibronic Raman response. In addition to the square-planar CuO2

layer, YBa2Cu3O6+x crystal structure contains layers of CuO chains running along
the b-axis, which are partially depleted when x < 1. In YBa2Cu3O6.5, in particular,
every second chain in completely depleted, and the so-called ortho-II superstructure
with a doubled unit cell along a is formed. Various other superstructures including
the ortho-V structure with a five times larger unit cell have also been observed.



In this work, we present a detailed classification of the vibrational modes of
YBa2Cu3O6.45 and YBa2Cu3O6.6. The modes can be categorized in two groups:
the conventional modes of YBa2Cu3O7, and extra modes induced due to the new
periodicity of the copper-oxygen chains. The periodicity-induced modes are either z-
polarized, which are observable in both xx and yy Raman symmetries, or x-polarized,
which are visible only in the xx polarization geometry. Hence, the x-polarized modes
are excellent tools to probe the xy-anisotropy of the electronic system of underdoped
YBCO6+x.

We performed a detailed temperature dependence study on YBa2Cu3O6.45 (ortho-
II) and YBa2Cu3O6.6 (ortho-V) Raman spectra in both the xx and yy polariza-
tions. Our measurements revealed almost a complete suppression of the x-polarized
modes, namely the out-of-phase vibrations of yttrium and planar oxygen ions above
T∗ ∼ 200 K. The z-polarized modes in either xx or yy polarization geometries persist
up to room temperature. We also examined the possible role resonance effects on the
phononic spectra by performing temperature dependent Raman experiments using a
different exciting laser line, but found that the anomalous temperature dependence
of the phonon intensities is independent of photon energy. We also performed con-
trol experiments in which the temperature dependence of the oxygen superstructure
was studied directly, and found that it is temperature independent. The anomaly
we observed thus appears to be tied to an electronic instability. The most likely
candidate is an “electronic nematic” phase recently identified by inelastic neutron
scattering.

This thesis is organized as follows. In Chapter 1, an overview of the high-
temperature superconductivity, their generic phase diagram, and the structural
phases of YBa2Cu3O6+x are given. Chapter 2 presents the theory of phononic and
electronic Raman scattering, group theoretical calculations, and Raman selection
rules and their applications to high-temperature superconductors. An introduction
to our theoretical model and to the data analysis is given in Chapter 3. A descrip-
tion of the experimental details is presented in Chapter 4. The experimental results
are shown and discussed in Chapter 5.
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Chapter 1

Introduction

1.1 Conventional Superconductivity

After liquifying helium on 1908, H.K. Onnes [Nobel Prize, 1913] discovered super-
conductivity (a conduction of an electrical current without resistance below Tc) in
mercury. Later on, superconductivity was found in several other elements, e.g. lead
and tin. these are the so-called conventional type-I superconductors. One of the
most important observations in this class of superconductors is the complete ex-
clusion of an applied small magnetic field H < Hc1 (Hc1 is the critical magnetic
field above which superconductivity is destroyed) when they are cooled below Tc

(i.e., perfect diamagnetism). This is the so-called Meissner-Ochsenfeld effect. Other
conventional superconductors, e.g. niobium, have two critical magnetic fields Hc1

and Hc2 with Hc1 < Hc2. Below the lower critical field Hc1, they show a perfect
diamagnetism, whereas at Hc1 < H < Hc2 they undergo a mixed state of super-
conducting and normal state regions (i.e, Shubnikov phase), and they completely
leave the superconducting state above the upper critical field Hc2 [46]. These are
the so-called conventional type-II superconductors.

Numerous attempts have been made to explain the conventional superconduc-
tivity. The phenomenological theory proposed by Ginzburg and Landau [47] in 1950
was able to describe some of the observed phenomena in superconductors, whereas
an exhaustive microscopic understanding that unlocked the mysteries of conven-
tional superconductivity was first achieved by Bardeen, Cooper and Schrieffer, the
so-called BCS theory, in 1957 [48].

In metals, individual electrons carry the electrical current. These electrons (de-
scribed by Bloch wavefunctions |k, σ >, with k and σ are the electron wavevector
and spin, respectively) propagate in a perfect crystal without scattering. How-
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Figure 1.1: (a) Polarization of the lattice of atomic ions due to the movement of electrons.
(b) Schematic representation of the effective electron-electron interaction via the exchange
of a phonon q.

ever, atomic vibrations (phonons) lead to deviation of the atoms from the perfect
lattice positions, and therefore the electrons get scattered by phonons. This re-
sults in an energy dissipation (electrical resistance). In superconductors, the su-
percurrent is carried by pairs of electrons without energy dissipation. BCS theory
shows that electron pairs are formed because of the instability of the Fermi liquid to
any non-zero attractive interaction [Details about the BCS theory are presented in
Refs.[48, 49, 50]]. In conventional superconductors, the attractive force arises from
the exchange of phonons. This hypothesis was strongly supported by experiments
showing that the superconducting transition temperature Tc of mercury changes for
different isotopes [51, 52]. The Tc dependence on the atomic mass M was found to
vary as Tc ∝M−1/2.

Let us consider a lattice of atomic ions, in which free electrons propagate. At a
finite temperature, the ions are deflected from their equilibrium positions. A moving
electron will deform the lattice by attracting the neighboring positive ions. Hence,
a dense region of positive charges around the moving electron will be generated.
This results in an attraction of a second electron to the positively charged area, and
therefore to the first electron (Fig. 1.1(a)).

Quantum mechanically, a phonon will be either generated or annihilated if a
moving electron is scattered by the ions. The resulting phonon, e.g. created, can be
annihilated in another scattering process with a second electron. Thus, a phonon
is virtually exchanged between the two electrons. This exchange process leads to
an attractive interaction that binds momentarily every two electrons with opposite
momenta and opposite spins to form the so-called Cooper pairs: {k ↑,−k ↓}, that
possess zero total momentum and zero total spin (Fig. 1.1(b)).
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Within the framework of BCS theory, only electrons near the Fermi level, i.e.
∼ 0.1% of all electrons, take part in superconductivity. One of the most remark-
able features emerging from the formation of Cooper pairs is the energy gain (or,
equivalently, the condensation energy). When a metal becomes superconducting, it
lowers its energy by −N(EF )∆

2/2, with N(EF ) being the density of states at the
Fermi energy (note that the condensation energy depends on the electron-phonon
coupling V through ∆2). Consequently, the energy of a quasiparticle (an unpaired
electron influenced by the system) can be given as

Ek =
√
(ε− EF )2 +∆2, (1.1)

where ∆ is an energy gap between the BCS ground state and the first excited state
(i.e., the superconducting gap). Hence, if ∆ in Eq.(1.1) is assumed to be zero, the
energy of non-interacting electrons is recovered, whereas ∆ ̸= 0 implies that an en-
ergy of at least two times the superconducting gap energy is required to break the
Cooper pairs and create two quasiparticles.

BCS theory assumes the pairing interaction to be weak and independent of mo-
mentum (V (k) = V0) for all pairs within an energy interval of ~ωD (ωD refers to
the Debye frequency) around the Fermi surface, and zero elsewhere. Using these
approximations, BCS theory predicts the dependence of the transition temperature
Tc and the superconducting gap ∆ on the BCS coupling parameter V N(EF ) and
the Debye cutoff energy ~ωD as

Tc = 1.14
~ωD

kB
exp(− 1

N(EF )V
) (1.2)

and

∆ = 2~ωDexp(−
1

N(EF )V
), (1.3)

respectively. Besides that, the approximations noted above can explain the isotropic
s-wave order parameter of conventional superconductors.

However, the BCS theory is limited since it is unable to provide a reasonable
estimate for the Tc’s in the strong-coupling limit. This problem was overcome by
Midgal–Eliashberg theory, in which all information about phonons and electron-
phonon (ele-ph) couplings are included in the so-called Eliashberg function α2F (ω).
The total ele-ph coupling constant
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λ = λtot = 2

∫ ω0

0

α2F (ω)

ω
dω (1.4)

is obtained by summing over all phonons. Within the framework of the Midgal–
Eliashberg theory, the superconducting gap and the transition temperature are given
as

∆ = 2~ωcexp(−
1 + λ

λ− µ∗
), (1.5)

and

Tc = 1.14
~ωc

kB
exp(− 1 + λ

λ− µ∗
), (1.6)

respectively, with ωc a cutoff frequency dependent on the phonon density of states
and µ∗ the electron-electron (ele-ele) Coulomb repulsion parameter. However, the
maximum superconducting Tc predicted by Midgal–Eliashberg calculations (and
later by the McMillan equation) is about 30 K. Thirty years later, these predictions
were violated by the discovery of high temperature superconductivity (HTSC) in
cuprates which can be easily attained by cooling in liquid nitrogen (77 K).

1.2 High Temperature Superconductivity

The discovery of superconductivity with a Tc of about 35 K in lanthanum and barium
copper oxides [53] by J. Bednorz and K. Müller [Nobel prize, 1987] has encouraged
scientists throughout the world to search for superconductors with higher temper-
atures. Superconductivity with a Tc of about 90 K, i.e. higher than the boiling
temperature of nitrogen, was discovered in the YBa2Cu3O6+x system [54]. Later, a
Tc higher than 100 K was found in Bi2Sr2CaCu2O8+x [55] and Tl2Ba2Cu3O8+x [56].
Nowadays, the highest temperature superconductor in this family is the mercury-
based copper oxide (i.e. HgBa2CaCu2O6+x), with Tc of about 138 K at ambient
pressure [57], which increases to 164 K under hydrostatic pressure of 30 GPa [58].

Cuprate superconductors have a perovskite-like structure which is based on an
ABO3 unit where B refers always to copper Cu2+ ions and A-ions are different
for each cuprate system. This structure is clearly visible in the high temperature
tetragonal phase of the La2CuO4 compound, in which the Cu2+ ion is surrounded
by six oxygen ions forming the CuO6 octahedron (Fig. 1.2a). In cuprates, the
CuO2 planes in which superconductivity is believed to occur are the main building
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Figure 1.2: Crystal structure of (a) La2CuO4 (in the high temperature tetragonal phase)
and (b) YBa2Cu3O7 compounds. The shaded area denote the CuO2 planes.

blocks (Fig. 1.2). The number of the CuO2 plaquettes n vary from one copper
oxide to another. For instance, La2−xSrxCuO4 has one CuO2 layer per unit cell,
while REBa2Cu3O6+x unit cell (RE=Y, Eu, Dy, Er, or Tm) contains two per unit
cell. A2B2Can−1CunO2n+4+x compounds with A=Bi(Tl) and B=Sr(Ba) can have
one, two, or three CuO2 planes, whereas Hg2Ba2Can−1CunO2n+2+x can have up to
6 layers in the unit cell [59, 60]. The number of the CuO2 planes per unit cell
affects the value of Tc. In case that the cuprate compound can have more than one
CuO2 layer per unit cell, the Tc increases, for example, with increasing n reaching a
maximum value for n = 3 [60]. A precise determination of Tc is achieved by tuning
the oxygen (or the cation) concentration x, which controls the electronic balance
and thus the net charge per unit cell. Table 1.1 gives and overview of the several
families of cuprates, the possible number of planes, and the maximum Tc for each
of them.

1.3 Doping Mechanisms of HTSCs

Insertion of oxygen ions or partial replacement of the cations lead to an increase
of the hole concentration p in the CuO2 planes of the cuprates. Tuning x and
y presented in table 1.1 can vary the hole doping from 0 (undoped) to 0.3 holes
per Cu ion (extremely overdoped). For p = 0, the system is antiferromagnetic
insulator below a Néel temperature TN of about 400 K (Fig. 1.3). Within the
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Compound Abbreviation No. of planes Maximum Tc

La2−xSrxCuO4 0201 1 40 K
La2−xBaxCuO4 0201 1 40 K
Tl2Ba2CuO6+x 2201 1 95 K

Tl2Ba2CaCu2O8+x 2212 2 110 K
Tl2Ba2Ca2Cu3O10+x 2223 3 130 K

Bi2Sr2CuO6+x 2201 1 25 K
Bi2Sr1+xLa1−xCuO6+y 2201 1 25 K
Bi2Sr2CaCu2O8+x 2212 2 80 K
Bi2Sr2Ca2Cu3O10+x 2223 3 110 K

Bi2Sr2Ca1−xYxCu2O8+y 2212 2 35 K
HgBa2CuO4+x 1201 1 95 K

HgBa2CaCu2O6+x 2212 2 125 K
HgBa2Ca2Cu3O8+x 2223 3 135 K

YBa2Cu3O6+x 123 2 93 K
Y1−yCayBa2Cu3O6+x 123 2 93 K

YBa2Cu4O8 124 2 80 K
Table 1.1: Different families of cuprates together with the number of possible planes
and the maximum transition temperature. After Ref. [62].

hole dopings 0 < p ≤ psc1, cuprates remain nonconducting whereas TN decreases
monotonically. Beyond a hole doping psc1 and at low temperatures, the system
becomes a superconductor. All HTSCs possess a maximum Tc at a particular doping
level, i.e., pm = 0.16. Between psc1 and pm, i.e. in the underdoped regime, the Tc

increases (from left to right) following Tallon’s empirical relation [61]

Tc
Tc,max

= 1− 82.6(p− 0.16)2, (1.7)

with an exception for p ≈ 0.10−0.125, at which a Tc plateau (depression) is observed
in YBCO (LSCO) (Fig. 1.4). In the overdoped regime 0.16 < p, the Tc decreases
following Tallon’s relation, although the hole density increases. The maximum hole
concentration at which the superconductivity diminishes psc2 ≈ 0.27. For hole con-
centrations higher than 0.27, cuprates behave as metals at all temperatures.

In YBa2Cu3O6+x (YBCO), Y3+, Ba2+, and Cu2+ cations have a total electronic
charge of +13, whereas the oxygen anions contribute with a total charge of −12−2x.
Thus, the net charge balance of YBa2Cu3O6+x system is 1 − 2x per unit cell. The
−2x term is the most important for controlling the doping level of the YBa2Cu3O6+x
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Figure 1.3: Generic phase diagram of HTSCs. Psc1 and Psc2 correspond to the hole
dopings between which superconductivity sets in. TN , T∗ and Tc correspond to the
Néel, pseudogap, and superconducting transition temperatures, respectively. The arrow
indicates the doping around which a Tc suppression or plateau occur. After Hossain et.
al [64].

system. The minus sign indicates that electrons are missing, i.e., that the material
is a hole conductor, at least for x > 0.5. The −2x charge amount is determined ex-
perimentally through annealing of YBCO crystals at temperatures T∼ 500◦C using
appropriate gas flows (see chap. 4). In this process, holes can be introduced into the
planes by inserting oxygen ions into the Cu-O chains (Fig.1.2). Each incorporated
oxygen atom attracts two electrons to form an O2− ion. These electrons are partly
drawn from the CuO2 planes. This process results in the reduction of the number
of electrons in the CuO2 plaquettes, i.e., more holes are generated.The oxygen con-
tent x can vary from 0 (empty chains) to 1 (full chains). In YBCO6+x, the optimal
doping is achieved at xm ≈ 0.93 (Tc=93 K), whereas when the chains are totally
full the system is slightly overdoped with a Tc of about 86 K. Further enhancement
of the hole density requires a partial replacement of the Y3+ by Ca2+ ions [63]. The
maximum hole concentration for YBCO6+x at which the superconductivity vanishes
is achieved when the chains are fully occupied and almost 30% of the yttrium are
replaced by calcium ions [61].

Now, we shortly discuss the limitations of Tallon’s formula. This formula is not
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Figure 1.4: The superconducting critical temperature Tc as a function of p for YBCO6+x.
The dotted line displays the parabolic relationship between Tc and p (Tallon’s formula).
The inset shows ∆Tc, the difference between the measured Tc’s and the parabolic rela-
tionship. The figure is taken from [67].

accurate enough to describe the superconducting dome at hole doping levels close
to p = 0.1. Around this doping level, the superconducting transition temperature is
suppressed and exhibits a canyon shape (inset in Fig. 1.4). In YBCO6+x, however,
an additional complication arises from the presence of oxygen superstructures (see
Sec. 1.5). The Tc suppression may originate from the formation of exotic static spin
and charge stripes (see Sec.1.4.4). Therefore, the Tc-plateau of YBCO6+x remains
an unsettled issue.

1.4 Generic Phase Diagram of HTSCs

The phase diagram (Fig. 1.3) of HTSC can be divided into five regimes: antiferro-
magnetic(AF), pseudo-gap (PGS), strange metal, normal metal, and superconduct-
ing (SC) regime. In the next subsections, the physics as well as an experimental
overview of these regimes will be shortly presented.

1.4.1 Antiferromagnetic (AF) Regime

In the undoped state, each Cu+2 ion has a single electron that resides in the dx2−y2

orbital, which overlaps with either px or py orbitals of the neighboring oxygen ions.
Hence, the CuO2 planes have a half-filled energy band, and are expected to be
metallic. However, the undoped YBCO6 system was found to be an insulator. This
indicates the existence of strong electron-electron correlations. An explanation for
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this problem was presented based on the Hubbard model [68], which treats the ki-
netic energy of the electrons and their mutual Coulomb repulsion on equal footing.
Since the Coulomb repulsion dominates this competition, the electrons prefer to lo-
calize at the Cu ions giving rise to the well-known Mott insulator [69], rather than
forming a Fermi liquid (defined below). The main difference between a Mott insu-
lator and a band insulator is that the latter contains two electrons in the highest
occupied band, thus conductivity is blocked by the requirements of the Pauli ex-
clusion principle, whereas the conductivity of a Mott insulator is prevented due to
electron-electron repulsion.

Neutron scattering (NS) is a straightforward probe for the spin system in solids.
For undoped HTSC compounds, NS experiments [70, 71, 72] have revealed antifer-
romagnetic Bragg peaks at wavevectors Q=(±π/a,±π/a) (for convenience, we set
a = 1 throughout this thesis) below TN , thus showing that the magnetic moments of
the copper electrons are antiferromagnetically ordered. A possible way for the elec-
trons to lower their kinetic energy in the Néel-ordered state is to virtually hop forth
and back between the neighboring copper ions, thus generating a “super-exchange”
interaction. In this case, the electrons must keep the antiferromagnetic (AF) con-
figuration in order to satisfy the Pauli principle. Decreasing the average electron
occupancy from 1 results in lowering the Néel temperature, which reachs zero at
around p = 0.05.

1.4.2 Normal Metal

At the other side of the phase diagram (i.e. the heavily overdoped state with 0.2 <
p), the kinetic energy of the electrons exceeds their mutual Coulomb repulsion, hence
electrons become delocalized and form a Fermi liquid state [69]. Experimentally, the
normal state properties of overdoped cuprates were found to be described reasonably
well by the Fermi liquid picture. For instance, the in-plane resistivity varies as
ρ = ρ0 + aT 2 at temperatures above Tc [73, 74]. The T 2-behavior of the in-plane
resistivity originates from predominant fermion-fermion scattering. In addition, for
temperatures above Tc, the specific heat was found to vary linearly with temperature
Ce = γT [75], which again implies the emergence of Fermi liquid behavior.

1.4.3 Strange Metal Phase

The extension of the Fermi liquid regime in the underdoped part of the phase dia-
gram of HTSC remains a controversial issue (Fig. 1.3). However, the normal-state
physical properties of cuprate systems with hole density close to optimal doping
p = 0.16 can not be well described by the Fermi liquid picture. One long standing
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puzzle is the linear temperature dependence of the in-plane resistivity ρ = ρ0 + aT ,
for T > Tc [76, 77], which is neither described by the Fermi liquid model nor by
standard electron-phonon models.

The anomalous behavior of the normal state in-plane resistivity may be related
to critical fluctuations at the vicinity of a quantum critical point (QCP), which takes
place around optimal doping. This hypothesis was recently reviewed by Tallon and
Loram [23]. These authors have reviewed the doping and temperature dependences
of different physical quantities (e.g. specific heat, NMR Knight shift, and in-plane
resistivity) and found a clear distinction between the underdoped and the moder-
ately overdoped regimes. The authors [23] argued that the QCP occurs around the
hole density p = 0.19, at which the energy of the pseudogap (discussed in sec. 1.4.5)
determined from the mentioned physical quantities, falls to zero. In addition to
the spectroscopic techniques just mentioned, it has been demonstrated that the fre-
quency and intensity of the superconducting Raman pair breaking peaks in the A1g

and B1g symmetries [78] as well as the two magnon peak intensity [79] strongly
change at around the presumed QCP (p = 0.19). Moreover, the spin resonance
mode (presented in next section), which originates from coherent spin fluctuations,
becomes stronger when the hole doping departs from the optimal towards the un-
derdoping regime [more details are presented in ref. [80]].

1.4.4 The Superconducting State

So far, we have shown that cuprates become superconductors at hole densities p
between 0.05 and 0.27 and at doping dependent transition temperatures that pos-
sess a dome-like shape (Eq. 1.7). Inside the superconducting dome, a long-range
ordered state is achieved. This state can be phenomenologically described by the
GinzburgLandau “order parameter” Ψ(r) which can be identified as the wave func-
tion of the phase coherent Cooper pair condensate. It is a complex function, i.e.
Ψ(r) = ψ(r)exp(iφ(r)), with the modulus ψ(r) and phase φ(r), that can be normal-
ized so that the density of the superconducting charge carriers is given by ψ(r)2.

The superconducting transition is associated with a breakdown of the full sym-
metry group which includes gauge, crystal lattice, spin rotations, and time reversal
symmetries. For conventional superconductors with an isotropic s-wave gap, the
gauge invariance is the only symmetry that is broken below Tc. If more than one
symmetry breaks down below Tc, the resulting superconductor is classified as un-
conventional with an order parameter (gap function) that may have zeros at some
points of the momentum space [81]. This is the case for a d-wave state, which has
a symmetry lower than that of the crystal lattice.
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Figure 1.5: (a) The YBCO-Pb corner SQUID geometry used by Wollman et al. (b)
Calculated magnetic flux dependence of the SQUID critical current for the s– and d–wave
pairing symmetries. The figure is obtained from [1].

In momentum space, the pair wave function becomes wavevector dependent and
scales with the superconducting gap function ∆(k) as Ψ(k) = ∆(k)/2Ek, with Ek

being the quasiparticle energy. In order to determine the order parameter (or equiv-
alently, the gap symmetry) of HTSCs, it is necessary to figure out whether Cooper
pairs form a singlet- or triplet-state. Among different experimental techniques,
Josephson tunneling is the best to do that, since the Josephson current vanishes
if two weakly coupled superconductors have different spin pairing states. Thanks
to this advantage, tunneling measurements provided experimental evidences that
HTSCs and low-Tc conventional superconductors possess similar spin pairing state,
i.e. spin-singlet pair state (S = 0). This implies that the superconducting gap func-
tion has an even parity ( i.e., ∆(k) = ∆(−k) ) [82].

Although there is no consensus about the microscopic mechanism of HTSC,
the symmetry and magnitude of the superconducting gap function ∆(k) can be
determined experimentally. A powerful technique to probe the phase of the su-
perconducting order parameter is the phase-sensitive Josephson tunneling (PSJT).
Wollman et al. [1] have performed the first PSJT measurements on a weakly linked
Pb thin film between two orthogonally oriented ac- (or bc-) plane faces of twinned
YBCO single crystals in the so-called corner SQUID geometry (Fig.1.5). The idea
of this experiment is elegant and simple. If the YBCO compound had an s-wave
pairing symmetry, the phase of the order parameter would be the same for the a and
b faces of the YBCO crystal, thus the phase difference between the two faces, δa−b,
would be zero. In this case the critical current would be maximum at zero applied
magnetic flux [similar to that observed for s-wave superconductor (Fig.1.5(a))]. On
the other hand, if YBCO had a d-wave order parameter
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Figure 1.6: (a) Schematic of the experimental ring geometry studied in [8]. (b) Polar
arrangement of all the rings. θ denotes the angle between the junction normals and the
YBCO crystalline axes. The rings were cooled and imaged by a SQUID microscope in zero
field (outer rings) and in 0.2 µT (inner rings). The crossed lines denote the angle at which
the spontaneous magnetic flux changes (i.e, the nodal direction of the d+s pair state). (c)
Integrated flux (solid points) through the rings as a function of θ. The solid line is the
best theoretical fit to the experimental data using ∆k = ∆d(cos2θ) + ∆s with ∆s = 0.9%
. The green, vertical dotted lines denote the angles of the nodal directions in twin-free
YBCO film, which are shifted from those expected for pure dx2−y2 superconductor. This
figure is taken from [8].

∆k = ∆max(cos kx − cos ky), (1.8)

this would give rise to a phase difference δa−b of π and to a minimum current at
zero applied field (Fig.1.5(b)). The latter case was revealed by the experiment of
Wollman et al., thus showing that HTSC have a d-wave symmetry.

In cuprates of the YBCO7 type with orthorhombic crystal symmetry, an s-wave
admixture to the predominant dx2−y2-wave order parameter has been recently es-
tablished. Angle-resolved phase-sensitive measurements have been performed [8]
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on optimally doped, twin-free YBCO thin films in the so-called π-ring Josephson
junction (Fig. 1.6(a)). In this configuration, if the normal components of the gap
at the two junctions of the π-ring have an intrinsic phase shift of π, a spontaneous
supercurrent flows in the ring below Tc (at zero applied magnetic field), and there-
fore a spontaneous magnetic flux Φ will be generated. Otherwise, the spontaneous
supercurrent as well as Φ will be zero. Figure 1.6(b) shows a sketch for the sam-
ple studied by Kirtley et al. [8], which contains 72 rings with the angles between
the junction normals and the YBCO principal axes vary by 5◦. The resulting flux
Φ (normalized to the superconducting flux quantum Φ0 = h/2e) in the rings are
shown in fig. 1.6(c) (after [8]). The authors have found that the nodal direction in
twin-free YBCO film (vertical dotted lines in fig. 1.6(c)) is shifted by a few degrees
from the (2m+1) expected for pure dx2−y2-wave order parameter indicating the dif-
ferent gap size between the a and b directions. Besides that, the best fit (solid line)
to the experimental data was obtained using the the admixed dx2−y2+s pair state
(i.e.,∆k = ∆d(cos2θ) + ∆s) with ∆s/∆d ∼ 9% (solid line in fig. 1.6(c)). Hence, the
authors [8] argue that the gap along the b-axis is at least 20% larger than that along
the a-axis. Since PSJT measurements yield only lower bounds to the s-wave con-
tribution, we will extract an upper limit to the s-wave admixture from our Raman
results (see chapter. 5).

In addition to the PSJT measurements just presented, angle-resolved photoemis-
sion spectroscopy (ARPES) is advantageous for probing the wave vector dependence
of the superconducting gap ∆(k). Technically, ARPES is sensitive to the quality of
the crystals surface, thus a necessary condition for performing ARPES experiment
is the sample cleavage. Unfortunately, the cleavage interface of YBCO prefers to be
located between the Cu1-O1 and BaO layers. The polarity of this interface gener-
ates an electronic reconstruction, which in turn enhances the surface doping level
well into the overdoped regime [9]. Therefore, we limit our discussion to considering
BSCCO samples in which the ARPES response corresponds to the nominal doping
level. Figure 1.7 demonstrates the momentum dependence of the superconducting
energy gap of a Bi2Sr2CaCu2O8+x (Tc = 87K) sample measured at a temperature
well below Tc [24]. As seen, the largest energy gap is observed along the a- (or b-)
axis and the smallest one (zero) along the diagonal line between them. In addition,
the experimental data were fitted using a simple d-wave model (solid line) and the
result agrees well with the measured data. The ARPES results indeed confirm that
the gap function has a d-wave order parameter with nodes on the Fermi surface.
It is worth mentioning that ARPES measurements on twin-free YBCO6.993 [7] have
indicated a 50% anisotropy in the size of the 2∆-gap between the a- and b-axes.
These observations point to a large s-wave admixture to the predominant d-wave
order parameter, significantly exceeding the one determined by the SQUID experi-
ments described. However, these results are still controversial, because the surface



26 Chapter 1. Introduction

Kx (π)

Г

Y

M

Node

-1               0               1
-1

0

1

K
x
(π
)

Antinode 1

15

(a)                                   (b)

0 20 40 60 80
0

10

20

30

40
15

1

 

 

|∆
| 
(m
e
V
)

Fermi-surface angle (deg)

Figure 1.7: (a) Superconducting gap versus angle on the normal-state Fermi surface
(FS) of Bi2Sr2CaCu2O8+x (Tc = 87K) measured by ARPES at 13K. The solid curves
correspond to fits to the experimental data using a d-wave gap ∆(k) = ∆0(coskx− cosky).
The numbers 1 and 15 denote the gap values measured at two different locations on
the FS as shown in panel (b). The figure is taken from [24]. (b) Sketch of the Fermi
surface (green solid line) and anisotropic d-wave superconducting gap (red and blue area)
of Bi2Sr2CaCu2O8+x as determined by ARPES. In the Γ-M (or, equivalently (0,0)-(π,0)
or (0,0)-(0,π)) direction, a maximum gap in the density of states opens, whereas in the
Γ-Y direction (or, equivalently (0,0)-(π,π)), the gap is zero. The red and blue colors in
(b) indicate the change in sign of the order parameter under rotation.

properties of YBCO6+x differ from those in the bulk [9].

Electronic Raman scattering is complementary to ARPES since it is capable of
probing independently different portions of the FS by adjusting the polarizations
of the incident and scattered light (details are presented in sec. 2.5.3). In HTSCs,
B1g and B2g Raman symmetries sample electronic states at the vicinity of the antin-
odes (AN) and nodes (N) of the gap function, respectively. Recently, Le Tacon et
al [83] have studied the doping dependence of the energy of the superconducting
Raman pair breaking peaks at the nodal and antinodal regions in differently doped
HgBa2CuO4+x samples. The results are shown in Fig. 1.8. The B1g and B2g peaks
were found to be close in energy, i.e. ωAN = ωN , for the optimally doped sam-
ple. As the hole density is lowered below the optimal level, the energy of the B1g

peak ωAN increases, whereas the energy of the B2g peak follows the superconducting
dome (Fig. 1.8(a)). The doping dependences of the characteristic ratios ωAN/Tc,max

and ωN/Tc,max extracted from Raman measurements [83] and other spectroscopic



1.4. Generic Phase Diagram of HTSCs 27

0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

   ω
N
 α T

c
/T
cmax
 

        = 1- 82.6 ( p - 0.16)
2

Raman          B
1g
    B

2g
 

Hg-1201   

Bi-2212      

  

Y-123   

   

LSCO         

Nodes (B
2g
)

Anti-Nodes (B
1g
)

T<<T
c

 

 

ω
A
N
, 

ω
N
 /
k
B
T
c
,m
a
x

Doping p

(a)                                                    (b)

χ’
’
(a
rb
. 
u
n
it
s)

0 200 400 600 800 0 200 400 600 800

 

 

Opt.

95 K

 

 

Raman Sh ift ω (cm -1
)

Und.

86 K

Und.

89 K

 

 

Und.

63 K

 

 

 T << T
c

 T > T
c

 

 

Ov.

92 K

 T << T
c

 T > T
c

 

 

Ov.

92 K

Opt.

95 K

Und.

86 K

Und.

89 K

Und.

78 K

 

 

Und.

63 K

 

Und.

78 K

 

 

Raman shift (cm-1)

Figure 1.8: (a) Raman responses in the nodal (left) and antinodal (right) regions of
differently doped HgBa2CuO4+x samples. The doping decreases from up to down. Ov.,
Opt., and Und. refer to overdoped, optimally doped, and underdoped, respectively. The
maxima of the superconducting 2∆-peaks are denoted with arrows. The dashed lines
on B2g (B1g) spectra represent linear (cubic) energy dependence of the nodal (antinodal)
Raman responses. Two energy scales that depend on doping in opposite ways are seen. The
intensity of B1g peak decreases with progressive underdoping while the B2g peak intensity
prevails down to the lowest doping investigated. (b) Universal doping dependence of the
ratios ωAN/Tc,max and ωN/Tc,max of the antinodal and nodal superconducting 2∆-peaks
in different families of cuprate superconductors extracted from Raman scattering and other
techniques represented in [83]. The figure is obtained from [83].

methods (references are in [83]) for various cuprate superconductors are displayed
in fig. 1.8(b). The two ratios possess a universal doping dependence and behave
oppositely in the underdoped regime (Fig. 1.8). The authors [83] argue that the
existence of two energy scales associated with the nodal and antinodal gaps of un-
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Figure 1.9: (a) energy scan performed on slightly overdoped YBCO6.97 (Tc = 92.7K) at
the planar AF wave vector QAF = (0.5, 0.5) at 5 K in the superconducting state. (b)
Constant energy scan at 40 meV measured as shown in the inset, i.e., along the (110)
direction around QAF . A magnetic excitation, fitted with a Gaussian line-shape, observed
at 5K (open circles) completely disappears above the superconducting transition, where
only a featureless nuclear background is seen (solid circles). (c) Temperature dependence
of the magnetic intensity at 40 meV, which seems to follow the superconducting order
parameter and change significantly at Tc. Open and closed circles correspond to intensities
measured below and above the SC-transition, respectively. The figure is obtained from [86].

derdoped HTSCs reflects the different dynamical properties of the quasiparticles in
the two regions. Moreover, from these observations one may speculate that this has
to do with the superconducting and pseudogap states probably being different.

Magnetic resonance mode in the superconducting state

Besides the observation of the HTSC pairing symmetry by PSJT and ARPES
measurements, one important discovery, which might be relevant to the supercon-
ducting mechanism, is an unusual magnetic excitation in the superconducting state,
i.e., the so-called “ magnetic resonance mode” firstly observed in neutron scattering
spectra by J. Rossat-Mignot et al. [84]. This magnetic peak possesses the following
features:

• It is observed in a neutron scattering spectrum around the wave vector QAF =
(π,π) which is characteristic of the AF-ordered state in the undoped cuprates (Fig. 1.9
(b)) [85].

• Close to optimal doping, the peak intensity seems to follow the superconducting
order parameter and vanishes above Tc (Fig.1.9(c)), whereas its energy (∼ 40 meV)
remains almost unchanged [85, 86].
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Figure 1.10: Doping dependence of the resonance mode energy at (π, π) in YBCO (red cir-
cles) and BSCCO (blue squares) plotted with twice the maximum SC-gap (green squares)
as measured in BSCCO by ARPES. The figure is taken from [88].

• The energy of this mode follows the superconducting dome (Fig. 1.10) [87, 88].

The salient features of this mode can be understood in the framework of a model
that considers it as an exciton-like collective excitation in the superconducting gap
of HTSCs. The wave vector dependence of the magnetic mode energy (Fig. 1.11(a))
is governed by the threshold of the e− h spin flip continuum ωc(q), which depends
on the SC-order parameter. Since the SC-order parameter has its maximum value in
the antinodal region near (π, 0) or (0, π), ωc(q) reaches a maximum value at the wave
vector that connects the antinodal points of the Fermi surface (or equivalently, the
hot spots) i.e. at QAF (red arrow in Fig. 1.11(b)). Departing towards the nodes of
the d-wave order parameter, ωc(q) decreases rapidly reaching zero around the wave
vector qn that connects the the nodal points of the gap function. Beyond qn (region
2), the spin excitations reappear again at higher energies but with lower intensity
than that observed in region 1. The excitations in region 1 can be understood in
terms of direct e − h spin excitations whereas those appear in region 2 may arise
from umklapp spin excitations. Combining the downward and upward magnetic
mode dispersion results in an X-like or hourglass-like dispersion [86].

The spin excitations measured by constant-energy cuts at energies below the
magnetic resonance were found to be incommensurate. That is, the magnetic peak
observed for the parent cuprates splits in the superconducting state into four, each
of which is shifted from QAF by a small incommensurability constant δ. Besides the
spin exciton scenario presented above, scattering at QAF ±δ can also arise from rigid
arrays of antiferromagnetically ordered spins, i.e. stripe phase (discussed below).
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Figure 1.11: (a) Dispersion of the spin excitation. The shaded area denotes the e − h
spin flip continuum. In region 1, the magnetic mode disperses in a dome-like shape until
it disappears at around qn. In region 2 it reappears again and disperses upwards. (b)
Schematic of the d-wave order parameter with the red circles at the antinodes correspond
to the hot spots whereas the blue ones at the nodal direction refer to the cold spots.
The wave vectors connecting the hot spots and independently the cold spots are qAF and
qn, respectively. (c) calculated magnetic susceptibility Imχ in the superconducting state
within the spin exciton scenario. The figure is obtained from [86].

Although electron-phonon interaction may also be relevant for the pairing mech-
anism of high Tc superconductivity (see Sec. 1.6), the observance of the resonant
magnetic mode in the SC state points to an important role of magnetic interactions
for superconductivity in the cuprates.

The stripe phase

Uni-axial spin and charge density wave (SDW and CDW, respectively) orders
were first introduced by J. Tranquada [32] to explain the incommensurate magnetic
Bragg reflections of the La1.6−xNd0.4SrxCuO4 system. The authors [32] proposed the
ordering structure shown in Fig. 1.12. Based on this model, the distance between
charge stripes, i.e. charge periodicity, is a/2x, where a is the Cu-Cu separation.
The antiferromagnetic order of the spin system results in doubling the periodicity,
that is, a/x [69]. The reason behind static stripe formation is that the holes tend
to escape from regions of localized, antiferromagnetically ordered spins. A complete
charge-spin separation is, however, unlikely since the long range Coulomb inter-
action frustrates this separation. Finally, the competing interactions result in the
formation of striped and/or checkerboard phases as a compromise.
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Figure 1.12: Schematic of a stripe-ordered phase. The arrows show the spin order. Red
and gray circles represent copper atoms with and without a hole, respectively. Charge
rivers exist between undoped antiferromagnetically-ordered spin domains.

Besides the static spin order observed in La1.6−xNd0.4SrxCuO4, static charge
stripes in this system were observed by x-ray experiments on La2−xBaxCuO4 with
x ∼ 1/8 [37]. Recently, Raman scattering measurements also provided evidence
for dynamical charge stripes within the pseudogap state (discussed below) in the
La2−xSrxCuO4 system [33]. Magnetic excitations observed in twinned and partially
detwinned YBCO6+x by Mook et al. [12] appeared to show quasi one-dimensional
static magnetic stripes formed in the superconducting state. However, Mook’s re-
sults remain under debate since fully detwinned YBCO6+x samples have been inves-
tigated by V. Hinkov et al. and a two-dimensional geometry for the spin excitations
was observed. Additionally, temperature dependent x-ray measurements on under-
doped YBCO6+x [40] associated the opening of pseudogap state (see next subsection)
to static charge stripes order in the CuO2 planes. However, this claim is also under
debate [41]. Up to the time of this writing, the nature of the stripe dynamics, i.e.
static or fluctuating, remains an unsettled issue. Although it is still largely un-
clear whether stripes are advantageous or detrimental to the superconducting or the
pseudogap states, the observations just mentioned indicate the presence of stripes
at least in some families of cuprates.

1.4.5 The Pseudogap State

One of the most challenging features of cuprates is the so-called pseudogap state
(PG), which is most pronounced at low doping levels in the underdoped regime.
This normal state gap was found to set in below a doping-dependent temperature
T∗ far above the superconducting dome, and manifests itself in several experimental
methods as a suppression of the spectral response on cooling below T∗. One of the
first observations was in nuclear magnetic resonance (NMR) measurements in un-
derdoped YBCO6+x by Warren et al. [89]. NMR is an excellent probe for the spin
system at different nuclear sites and at different k-regions of the FS. In cuprates,
the NMR Knight shift measures the k = 0 spin susceptibility to an applied mag-
netic field, whereas the spin-lattice relaxation rate 1/63T1 is dominated by AF-spin
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Figure 1.13: (a) 63Cu spin spin-lattice relaxation rate 1/63T1T , and (b) Knight shift
∆K=Kmeasured-K(4.2 K) as a function of temperature in underdoped, optimally doped,
and overdoped Bi2Sr2CaCu2O8+x (Bi2212) with Tc’s of 79 K, 86 K, and 77.3 K, respec-
tively. Tc, T

∗, and T0 for each sample are denoted by arrows. Open circles in panel (b)
refer to 17O Knight shift of optimally doped Bi2212 [the reference is cited in [90] ]. The
figure is obtained from [90].

fluctuations around QAF=(π, π). The opening of the normal state PG was seen in
both the NMR Knight shift and the 1/63T1 spin-lattice relaxation rate of the copper
nuclei in the CuO2 planes.

Figure 1.13(a) shows the temperature dependence of the planar 63Cu spin-lattice
relaxation rate 1/63T1 and Knight shift 63∆K in underdoped (Tc= 79 K), optimally
doped (Tc= 86 K), and overdoped (Tc= 77.3 K) Bi2Sr2CaCu2O8+x samples. In the
overdoped sample, approaching the Tc from above, 1/63T1 increases continuously
since the AF spin coherence increases. In contrast, for the optimal and underdoped
samples, the 1/63T1 tends to decrease well above Tc due to the opening of the pseu-
dogap state below T∗. Simultaneously, the NMR Knight shift of planar 63Cu of
underdoped HTSC decreases gradually below temperatures high above Tc, i.e. be-
low T0 which is higher than T ∗ (Fig. 1.13(b)). This suppression in the Knight shift
has been referred to as the opening of the PGS.

Besides NMR measurements shown above, the occurrence of the pseudogap at
T < T0 has been demonstrated in resistivity measurements. The temperature de-
pendence of the normal state in-plane resistivity of underdoped HTSC revealed a
characteristic deviation of ρ from the linear behavior seen above T0 (Fig.1.14). This
anomalous behavior of ρ below T0 is understood as a consequence of the opening of
the pseudogap.
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(a) (b) 

Figure 1.14: (a) Resistivity ρ versus temperature T in differently doped YBCO thin films.
(b) dρ/dT vs temperature as a function of the oxygen content. The arrows refer to the
maxima from which T0 is obtained. The figure is taken from [91].

Various experimental techniques found different values for the pseudogap tem-
perature. For instance, the NMR Knight-shift revealed two temperature scales for
the pseudogap (i.e. T0 and T ∗ with T ∗ < T0). T∗ determined by NMR measure-
ments of the spin-lattice relaxation rate and Knight shift of 63Cu (Fig. 1.13) is lower
than T0 extracted from resistivity (Fig. 1.14) and NMR Knight-shift (Fig. 1.13(b))
measurements although both temperature scales are much higher than Tc. However,
there still exists no consensus regarding the definition of PG temperature, and the
nature of the PG state.

The origin of the PG is still one of the most intriguing questions concerning
the physics of cuprates. However, the HTSC community agreed on two possible
scenarios (or, equivalently, phase diagrams (Fig. 1.15)), regarding the physics of the
PG. The PG can be either intrinsic or extrinsic with respect to superconductivity.
The intrinsic scenario implies that incoherent Cooper pairing with d-wave symmetry
takes place at much higher temperature than Tc, i.e., precursor to superconductiv-
ity, while long range phase coherence is established when entering the SC-state. In
contrast, extrinsic models associate the PG state with a hidden order parameter
(e.g., exotic spin or charge orders) competing with superconductivity. In the earlier
model, the T∗ line decreases from a high value at weak doping and merges with
the superconducting dome on the overdoped side (Fig. 1.15a), whereas in the latter
approach it falls to zero around p = 0.19 (Fig. 1.15b) [23].
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Figure 1.15: Two scenarios of the phase diagram of HTSC cuprates. AF, PGS, SC,
SM, FL, NM refer to the antiferromagnetically ordered Mott insulator, pseudogap, super-
conducting, strange metal, Fermi liquid, and normal metal phases, respectively. TN , T∗

and Tc correspond to the Néel, pseudogap, and superconducting transition temperatures,
respectively. This figure is taken from Tallon et. al [23].

Various experimental probes provide controversial results for the PGS. For in-
stance, ARPES measurements performed by Ding et al. [24] and recently by Kanigel
et al. [92] (see also Refs. [25] and [35]) on various HTSCs have revealed that the
magnitude and the wavevector dependence of the PG are consistent with that of a
d-wave superconductor with a node in the Γ–Y direction and a maximum gap along
the Γ–M direction (see fig.1.7). Based on these observations, the PG was considered
to be associated with superconductivity. On the other hand, ARPES measurements
on underdoped Bi2Sr2CaCu2O8+x samples performed by Lee et al. [27] revealed a
sharp contrast between the superconducting and pseudogap states in the HTSC.
That is, near the nodal direction, a gap was found to open below Tc and follow
the conventional BCS-like behavior as the temperature is increased. Close to the
antinodes of the d-wave gap function, a gap that deviates from d-wave symmetry
persists above Tc, i.e., the pseudogap (Fig.1.16). Based on these two rather differ-
ent temperature evolutions of the two gaps, the authors [27] expect distinct origins
for them. These observations were later confirmed by other ARPES measurements
performed by Kondo et al. [28] on slightly overdoped, optimally doped, and under-
doped (Bi,Pb)2(Sr,La)2CuO6+x samples with Tc’s of 29 K, 35K, and 23K, respec-
tively (Fig.1.17(a-c)). In addition, the authors [28] have studied the wavevector
dependence of the coherent spectral weight of the superconducting gap (Fig.1.17(d-
f)). The spectral weight measured at temperatures deep inside the SC-dome WCP

was found to increase when departing from the nodal direction, but then starts
to decrease at the vicinity of the antinodes. At that particular angle on the FS,
the spectral weight recorded at a temperature Tc < T < T ∗, i.e. WPG increases
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Figure 1.16: (a) Symmetrized energy distribution cuts near the nodes of the d-wave gap
function in underdoped Bi2212 (Tc=92 K) taken at various temperatures. The measure-
ments were performed along cuts parallel to the M (π,0)Y (π,π) direction (inset in b).
Open circles and solid lines denote the experimental data and fit results using a phe-
nomenological model described in [27], respectively. The vertical dashed line indicates the
Fermi energy. (b) Temperature dependence of the SC-gap energy that opens at points A
and B close to the nodes. The dashed lines show the temperature evolution of the SC-gap
based on weak-coupling BCS theory. The superconducting Tc is denoted with the vertical
line. (c) Plot of the gap values near the nodes (blue and green squares) and antinodes
(red squares) against the simple d-wave gap function, |coskx − cosky|/2, at temperatures
below and above Tc. Note that 102 K < T∗. The lines are guides to the eye. The figure
is obtained from [27].

monotonically as the antinodal region is approached. The non-monotonicity of the
SC-spectral weight seems to be small for the overdoped samples whereas it gets
stronger with progressive underdoping (Fig.1.17(d-f)). The authors [28] argue that
their observations arise from a competition between the superconductivity and an
exotic order parameter formed in the pseudogap state.

Probes for the electronic spin dynamics in underdoped HTSCs revealed pro-
nounced discrepancies between the superconducting and pseudogap states. Recently,
INS experiments [30] performed on detwinned underdoped YBCO6.6 have demon-
strated that the topology of the dispersion surface of the magnetic excitations is
different in the SC- and PG-states (Fig. 1.18). That is, the incommensurability
constant δ is strongly energy-dependent in the SC-state, hence the famous hour-
glass dispersion is reproduced (Fig. 1.9), whereas δ in the PG-state is only weakly
energy-dependent that results in an ill-defined hour-glass dispersion. Furthermore,
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Figure 1.17: Momentum dependence of (a-c) the SC- (blue squares) and PG- (red circles)
energies, and (d-f) their corresponding spectral weight in overdoped (Tc=29 K), optimally
(Tc=35 K) doped and underdoped (Tc=23 K) Bi2201 samples. The measurements were
performed at temperatures below and above Tc, respectively. Dotted lines denote fits
using the d-wave model ∆ cos(2φ) to data in the nodal region (apart from the proximity
to the pseudogap region). The arrows in (d-f) refer to φ range in which the weight of the
coherent peak dominates over the pseudogap weight. The figure is taken from [27].

a−b anisotropies in the spin excitation spectrum have been found to be qualitatively
different in the two states (Fig.1 in ref. [30]). The authors [30] suggest that these
observations point to a competition between high Tc superconductivity and the PG
state in which an ordering phenomenon such as “Pomeranchuk” state may develop.

The plethora of experimental as well as theoretical attempts to discover the
physics of the PG state raised more questions than they have answered and left
the mechanism of the PG far from being understood. Therefore, additional work
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Figure 1.18: Colour representation of the magnetic intensity of detwinned YBCO6.6 ob-
served in triple-axis neutron scattering measurements at temperatures below (a,b) and
above (c,d) Tc. (a,c) and (b,d) Results obtained from scans along the a-axis and b-axis,
respectively. The crossings of black lines are measured data points. The white lines con-
nect the magnetic peak positions obtained from constant-energy scans. The hour glass
dispersion is obtained in the SC-state whereas in the PG state it is no longer discernible.
The dotted lines in (d) represent upper limits on the incommensurability δ. The figure is
obtained from [30].

is still required to shed more light on the PG state, which may open the door for
understanding the SC-pairing mechanism of HTSCs.

1.5 Structural Phases of the YBCO6+x Compound

The crystallographic structure of YBCO6+x is more complicated than the simple
perovskite structure demonstrated in Fig. 1.2 since the earlier contains additional
layers in the unit cell (Fig. 1.19). Starting from the copper oxide planes, the Cu2+

ion together with the surrounding four oxygen ions form the unit CuO2. The CuO2

planes are arranged in bilayers with Y3+ ions in the center. Each CuO2 bilayer is
surrounded by a layer comprised of barium and oxygen (the so-called apical oxygen)
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Figure 1.19: The unit cell of YBa2Cu3O7 compound.

ions. Connecting the Cu2+ ion with the nearest neighboring oxygen ions produces
the CuO5 tetrahedron. The two tetrahedra of YBCO are separated by a yttrium
Y3+ ion. Finally, each Ba-O layer is followed by a Cu1-O1 layer. For YBCO6+x

with x > 0.3, the copper Cu1 and oxygen O1 ions in this layer are arranged in
a chain-like sequence, i.e. Cu1-O1-Cu1-O1... running along the crystallographic
b-axis whereas along the a-axis the O1 ions sitting between the Cu1 ions are miss-
ing. The existence of these chains produces a small difference between the a- and
b-axes, hence the YBCO unit cell becomes orthorhombically distorted. Besides the
structural deformation just mentioned, the chains play a major role in the doping
mechanism of the YBCO system (discussed in Sec. 1.3).

YBCO structural phases are determined by the amount of oxygen ions incor-
porated in the Cu1-O1 chains. For instance, the YBCO6 system, in which the O1
ions are completely depleted, has a tetragonal structure, i.e., a = b (Fig. 1.20). For
0 < x < 0.3, the oxygen ions were found to be randomly distributed in the Cu1-O1
layer, hence the structure of the YBCO unit cell remains tetragonal (Fig. 1.21).
As x = 0.35 is approached from below, the Cu1-O1 chains tend to form, thus the
YBCO6+x unit cell starts to be orthorhombically distorted, i.e., a < b. This or-
thorhombic distortion increases with a successive increase of the oxygen density in
the chains (Fig. 1.20) reaching a maximum value for YBCO7, where the Cu1-O1
chains are completely full with O1 ions.

X-ray measurements [93] have revealed, for YBCO, six main structural phases.
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Figure 1.20: Doping dependence of the lattice parameters a and b in the orthorhombic
phase and aT in the tetragonal phase, determined by neutron diffraction measurements.
The figure is taken from [94].

In addition to the tetragonal phase discussed above, five orthorhombic superstruc-
tures (at 0.35 < x ≤ 1) were found (Fig. 1.21). These superstructures start to form
below the high temperature tetragonal to orthorhombic phase transition, i.e., below
TT−O ∼ 900 K. Below room temperature, the order parameter is largely saturated.
This results in forming the superstructures shown in Fig. 1.21 with full Cu-O and
empty Cu-vacancy chain segments along the b-direction with periodic modulation
na along the a-axis.

The superstructures just mentioned, are categorized according to the periodic
arrangement they possess along the a-axis (Fig. 1.21). For instance, when all O1
sites are completely full with oxygen ions, the fundamental ortho-I structure is
produced. This structure is equivalent to the conventional unit cell of YBCO7

(Fig. 1.19). Between the fundamental tetragonal and ortho-I structures, ortho-II,
ortho-III, ortho-V, and ortho-VIII superstructures have been obtained for YBCO6+x.
In the ortho-II (ortho-III) phase, oxygen ions are completely depleted in every sec-
ond (third) chain. The chain ordering sequence in ortho-V and ortho-VIII phases
are, however, more complicated. In the former, every third and fifth chains are
complectly missing whereas oxygen ions in the third, fifth and eighth chains of the
latter phase are absent. In x-ray measurements, these superstructures are indicated
by diffuse peaks which appear at modulation vectors Q=(nhm,0,0) with n being an
integer and h = 1/m. Here, m= 2, 3, 5 and 8 for ortho-II, ortho-III, ortho-V, and
ortho-VIII superstructures, respectively (results of ortho-II and ortho-V are pre-
sented in chapter. 5). Among the orthorhombic phases, ortho-I (x = 1) and ortho-II
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Figure 1.21: YBa2Cu3O6+x structural phases as determined by x-ray measurements. T
denotes the tetragonal phase, whereas OI–OVIII correspond to the orthorhombic ortho-I–
ortho–VIII phases. The oxygen densities expected for the structural phases are given in
parenthesis. The figure is obtained from [93].

(x = 0.5) structures possess a stable long range order, i.e., the correlation length
(ξ = 1/Γm), where Γm is the width of the observed diffuse peak, reaches several hun-
dred Angstroms. The structure of the samples studied in this work (YBa2Cu3O6.95

and Y0.85Ca0.15 Ba2Cu3O6.95) and (YBa2Cu3O6.6 and YBa2Cu3O6.45) are very close
to ortho-I and ortho-II, respectively. Vibronic Raman scattering data of each sample
set look basically the same, hence the assignment of the Raman phonons presented
in chapter 5 will be based on these two structures.

Furthermore, the formation of YBCO6+x single crystals below TT−O is usually
accompanied with spontaneous arrangement of polydomain twin structure. That is,
the as-grown crystals possess equiprobable domains of twins in which the Cu1-O1
chains are perpendicular to each other. The existence of the twin domains leaves
the crystallographic a and b axes indistinguishable, thus investigating the in-plane
anisotropy of YBCO physical properties is prevented. Since the main goal of this
work is to probe the xy-discrepancy in the Raman signals of detwinned YBCO, a
description of the twin formation and the thermomechanical detwinning procedure
will be presented in chapter 4.
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Figure 1.22: (a-c) Electronic dispersion relation extracted from momentum distribu-
tion curves measured along (0, 0)–(π, π) direction of La2−xSrxCuO4 (LSCO), Pb-doped
Bi2Sr2CaCu2O8 (Bi2212), and Pb-doped Bi2Sr2CuO6 (Bi2201) copper oxides with differ-
ent hole densities. Arrows denote the energy at which a sudden change “kink” in the
dispersion occurs. (d,e) Electronic dispersion of LSCO (p = 0.15) and Bi2212 (p = 0.16)
recorded at various temperatures below and above Tc. The figure is obtained from [103].

1.6 Electron-Phonon Interaction in HTSCs

After the discovery of HTSCs, experimental [95, 96] as well as theoretical [97] efforts
have been devoted to examine the role of the electron-phonon (ele-ph) interaction
in the Cooper pairing mechanism. Since Raman scattering is a powerful tool to
study the ele-ph interaction, it has been intensively used to study the ele-ph in-
teraction in HTSCs. For instance, ele-ph coupling constants of the CuO2 plane
phonons of RBa2Cu3O6+x superconductors (R is a rare earth element) have been
deduced from their superconductivity-induced anomalous broadenings below Tc [95]
(see also Refs. [98],[99]). Based in part on these experiments as well as the absence
of an isotope effect on Tc in optimally doped HTSCs [100], the ele-ph coupling was
found to be too weak to solely explain the high Tc superconductivity. Besides that,
it is difficult to explain the d-wave symmetry of the order parameter solely based
on a phonon-mediated pairing mechanism [101]. In addition, the discovery of the
magnetic resonance mode discussed above, has promoted more interest towards al-
ternative models with a spin-based pairing interaction [102]. Recently, there has
been several experimental evidences indicating that the ele-ph coupling plays a con-
siderable role in the physics of cuprates and must be involved in any microscopic
theory of HTSCs.

Renewed interest has been focused on the ele-ph coupling after the discovery of
an abrupt anomaly (kink) in the electronic quasiparticle dispersion along the Γ-Y
(nodal) direction in various copper oxide superconductors [103]. This kink appears
as a generic feature of all HTSC investigated in [103] and is present around 60-
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Figure 1.23: (a) Displacement pattern of oxygen ions for the q=(0.25, 0, 0) half breathing
mode propagating perpendicular to the stripe orders. The corresponding atomic displace-
ments are indicated by arrows. Large and small circles refer to copper and oxygen ions,
respectively. Open (filled) large circles represent hole-depleted (hole-rich) regions. (b)
Spectra of the half breathing mode of La2−xSrxCuO4 with dopings p=0, 0.07, 0.15, 0.3,
obtained from INS energy scans at 10 K. (c) Dispersion of the main peak of the half
breathing mode of LSCO observed in (a) together with the bond-stretching branch along
the chain direction in YBCO6.6 and YBCO6.95. The figure is obtained from [43].

70 meV for temperatures below and above the SC-transition. The authors [103]
argued that neither the opening of the superconducting gap, nor the magnetic res-
onance mode can explain this kink, because of the following: firstly, the SC-gap
energy is material dependent, whereas the energy at which the kink occurs is the
same in different cuprates. Secondly, the SC-gap as well as the magnetic mode of
optimal and overdoped HTSCs vanishes above Tc whereas the kink persists in the
normal state. Third, the electronic renormalization is seen in LSCO in which the
magnetic mode is apparently weak. A key alternative candidate proposed for this
coupling is the in-plane oxygen-stretching phonon mode seen by neutron scattering
(Fig. 1.23), since it appears at energy close to the kink energy. Besides the kink,
Lanzara et al have studied the so-called peak-dip-hump structure (Fig.2 in ref. [103])
in which the position of the peak and dip denote, respectively, the SC-gap energy
∆ and ∆ + Ω where Ω is the energy of a bosonic mode. Along the nodal direction,
the authors [103] have found that the position of the dip agrees with the energy of
the phonon mode just noted. The explanation proposed in [103] has been recently
contested by a theoretical work, in which the authors [102] argue that charge- and
spin-excitation spectra recorded by ARPES and INS, respectively, can be described
simultaneously by spin-fermion based theory. Although there still exists controversy
regarding the explanation of the “ARPES-kink”, the relevance of ele-ph coupling to
high Tc superconductivity should not be ignored.
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Signatures of strong ele-ph coupling have also been found by nuclear INS ex-
periments. For instance, the stretching phonon mode of the CuO2 plane oxygens
around ∼ 560 cm−1 of different cuprate families has received a large amount of atten-
tion [43, 104]. Reznik et al. [43] have investigated the wavevector dependence of the
stretching mode of the stripe-ordered La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4

systems and compared the results with data obtained from differently doped LSCO
and YBCO. The results reproduced from [43] are shown in Fig. 1.23. The stretching
mode was found to have one single sharp peak at q-values close to the center of
the BZ, whereas close to half-way to the zone boundary, i.e. q=(0.25,0,0), the main
peak loses a substantial fraction of its intensity and the missing intensity goes into
a low energy tail (Fig. 1.23a). Simultaneously, the main peak acquires a broaden-
ing and disperses strongly at the same wavevector. The authors [43] attribute this
strong phonon anomaly to coupling between the phonon and charge inhomogeneities
and charge stripes in the superconducting copper oxides. The absence of such an
anomaly in the non-superconducting compounds suggests that ele-ph coupling is
related to the physics of HTSCs [43].





Chapter 2

Theory of Raman Light Scattering
in Solids

As light travels through a medium, changes may occur either to its propagation di-
rection or to both its direction and energy. Deviations in the light direction without
changes in frequency, i.e. elastic scattering, is mainly caused by static scatterers
in a medium, e.g. defects or dislocations in a crystal. Fluctuations in the medium
such as atomic vibrations or charge fluctuations can modify the energy and direc-
tion of light, i.e. scattering the light inelastically. Inelastic light scattering by
molecular vibrations was first reported by the Indian physicist C.V. Raman [105].
In this chapter, I will present a classical as well as a quantum-mechanical theory
of Raman scattering [more theoretical details of Raman scattering are available in
refs. [16, 106, 107, 108, 109]]. This will be followed by group theory, selection rules,
and vibrational mode analysis of YBCO6+x. The rest of the chapter is devoted to
fundamentals of electronic light scattering in superconductors.

In an inelastic Raman scattering process, the incident photon is annihilated
while a new scattered photon is generated. This process is accompanied with either
creation (Stokes line) or annihilation (anti-Stokes line) of an elementary excitation,
e.g. phonon. As for all scattering processes, the energy and momentum conservation
conditions must be satisfied, that is,

~ωi − ~ωs ± ~Ω = 0, (2.1)

~
−→
k i − ~

−→
k s − ~−→q − ~

−→
G = 0, (2.2)

where ωi, ki, ωs , ks, Ω, and q denote the frequencies and momenta of the incident
photon, scattered photon and the elementary excitation, respectively. G is a vector

45
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belonging to the reciprocal lattice. A minus (plus) sign in Eq. (2.1) refers to a cre-
ation (annihilation) of an elementary excitation. The advantage of Eq. (2.2) is to
limit the scattering process to the portion of reciprocal space enclosed by the first
Brillouin zone. In a Raman scattering process, an incident monochromatic light
obtained usually from a laser is used. The wavelength of the visible light is of about
500 nm whereas a typical lattice constant a of a solid is around 0.5 nm. Hence, the
wave vectors of the incident and scattered laser photons (k = 2π/λ) are very small
compared with the dimensions of the Brillouin zone. Therefore, G=0 and q≈0 in
Eq. (2.2). That is, the light photons can couple only with excitations close to the
center of the Brillouin zone [109].

2.1 Classical Theory of Raman Scattering by

Phonons

Consider an infinite medium with an electronic susceptibility χ illuminated with a
monochromatic light beam of frequency ωi and wavevector ki. For simplicity, χ,
which is a second rank tensor, is assumed to be isotropic and therefore treated as a
scalar. The traveling light has a sinusoidal electromagnetic field E(t) = E0cos(ωit)
that polarizes the electronic susceptibility of the medium χ and induces a sinusoidal
polarization P (t) = χE.

At a finite temperature, the atoms in a solid are usually displaced from their
equilibrium position. The atomic displacement, which is small compared to the
lattice constant, can be written as u(r, t) = u(q, ω0)cos(q.r − ω0t) with q and ω0

are the phonon wavevector and frequency, respectively. Since Raman scattering is
associated with zone-center phonons (q ≈ 0), we can ignore the spatial dependence
of the atomic displacement, which becomes u(t) = u(ω0)cos(ω0t). In the framework
of the adiabatic (quasi-static) approximation, the electrons follow instantaneously
the slow motion of the heavy ions. Therefore, χ can be momentarily modulated by
the atomic vibrations, hence expanded as

χ(ki, ωi, u) = χ0(ki, ωi) +
∂χ

∂u
u(t) + ..., (2.3)

where χ0 is the bare electronic susceptibility (without the effect of ionic motion) and
the second term of χ(ki, ωi, u) is the susceptibility induced by atomic vibrations.
Ignoring the higher terms of χ(ki, ωi, u), the electric polarization becomes
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P (t, u) = χ0E0cos(ωit) +
∂χ

∂u
u(t)E0cos(ωit)

= χ0E0cos(ωit) +
1

2

∂χ

∂u
u(ω0)E0

{cos[(ωi − ω0)t] + cos[(ωi + ω0)t]}. (2.4)

The first term on the right hand side of Eq.(2.4) denotes the elastic Rayleigh scat-
tering, whereas the second term describes an inelastic light scattering process which
produces a Stokes (anti-Stokes) line with and a frequency ωS= ωi−ω0 (ωAS=ωi+ω0).

So far, we have discussed the second term of χ(ki, ωi, u) (Eq. 2.3) which de-
scribes the one-phonon Raman scattering. Higher orders of χ(ki, ωi, u) give rise to
higher-order Raman scattering processes. For instance, the third term of χ(ki, ωi, u)
governs the two-phonon Raman scattering process in which the phonon frequencies
are shifted from the laser frequency ωi by ±ω1 ± ω2 (ω1 and ω2 are the frequencies
of the two involved phonons) [108]. Assuming ω1 to be larger than ω2, one may ob-
serve either combinations (ω1+ω2) or difference modes (ω1−ω2) in Raman spectra.
Again, the momentum conservation principle must be satisfied, i.e. q1 ± q2 ≈ 0,
where q1 and q2 are the wavevectors of the two phonons.

What do we measure in a Raman experiment? The scattering efficiency
I(ω, T ) which is defined as “the ratio of the energy of electromagnetic waves scattered
per unit time divided by the energy of incident electromagnetic modes crossing the
scattering area per unit time” [108]. I(ω, T ) of an elementary excitation, e.g. Stokes
lines, can be given as

IS(ω, T ) =
ω4
SV

c4
| êi · (

∂χ

∂u
)0u(ω0) · ês |2 (n(ω, T ) + 1), (2.5)

where êi (ês) corresponds to the electric field vector of the incident (scattered) light,
n(ω, T ) = [exp(~ω/KBT ) − 1]−1 is the Bose-Einstein statistical factor (or equiva-
lently, the phonon occupation number), and V = AL, with A and L are the area of
the incident beam and the scattering length, respectively. If the sample is transpar-
ent, L becomes equal to the thickness of the sample along the propagation direction
of light propagation, otherwise L=(αi + αs)

−1 where α is the absorption coefficient
[108].

Since the Stokes and anti-Stokes lines differ only in their frequencies, one can
simply obtain the scattering efficiency of anti-Stokes lines from Eq.(2.5) through
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replacing (n(ω, T ) + 1) by n(ω, T ) and ωS by ωAS. An important consequence fol-
lowing from the intensities of the Stokes and anti-Stokes lines in Raman spectra is
that the ratio IS/IAS allows the determination of the sample temperature. Since
the anti-Stokes process can occur only if the medium is initially in an excited state
and the anti-Stokes line intensities are proportional to n(ω, T ) that vanishes at low
temperatures, we have focused our study on the Stokes scattering.

By introducing a unit vector parallel to the atomic displacement û, one can
obtain a second-rank tensor R known as the “Raman tensor”

R = (
∂χ

∂u
)0û(ω0). (2.6)

Substituting Eq. 2.6 into Eq. 2.5 reveals that the scattering intensity is proportional
to | êi · R · ês |2. This suggests that it is possible to deduce the symmetry of the
Raman tensor and the symmetry of the corresponding Raman-active phonons from
the analysis of the polarization-dependence of the Raman intensities [108].

2.2 Quantum-mechanical Theory of Raman Scat-

tering by Phonons

A microscopic description of inelastic light scattering by phonons results from third-
order time-dependent perturbation calculations of the three quantum steps shown
by the diagrams of Fig. 2.1. In this approach, events involving photons take place
through the coupling of electrons with the incident or scattered photons. The
electron-photon hamiltonian He−r can be given as

He−r =
e

mc
A.p⃗+

e2A2

2mc2
(2.7)

where A is the vector potential of the light field, p⃗ denotes the electron momentum,
c indicates the velocity of light, and e and m are the charge and mass of the electron,
respectively. The first term in Eq.(2.7) is linear in the vector potential A and dom-
inates the electron-light coupling process, whereas the second term is quadratic in
A and thus can be neglected. For a typical Raman experiment, the most important
contribution to the electronic susceptibility comes from the coupling of light to the
electronic excitations [106]. Since the direct coupling of light to the ionic excitation
is small, events involving phonons rely mainly on the ele-ph interaction Hamiltonian
He−ph given as

He−ph =
∑

k,q,µ,σ

gµk,qc
†
k+q,σck,σ(bq,µ + b†−q,µ). (2.8)
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Figure 2.1: Schematic energy band diagrams and the corresponding Feynman diagrams
of (a) two band (b) three band Stokes scattering processes. In panel (a), the ele-ph
interaction gives rise to an intraband transition, whereas in (b) the hole undergoes an
interband transition. The numbers denote the order of the quantum events described in
the text. e and h denote the electron and hole, respectively. He−r and He−ph refer to the
electron-photon and electron-phonon Hamiltonians, respectively [107].

where gµk,q is the ele-ph interaction vertex, c†k+q,σ (b†q,µ) and ck,σ(bq,µ) are the creation
and annihilation operators of electrons (phonons). µ denotes the phonon branch and
σ =↑, ↓ refers to the spin state. Note that for optical (zone-center) phonons, q in
Eq.(2.8) must be set to zero.

A first-order Raman scattering process takes place in three distinct quantum
events [106, 107, 108, 110, 111]:

(1) An electron-hole pair intermediate state |α > is generated by absorbing the
incident photon ~ωi.

(2) The electron-hole pair is scattered into another state |β > by means of
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creating a phonon via the electron-phonon Hamiltonian He−ph.

(3) By emitting a photon, the electron-hole pair in state |β > recombines and
falls back to the ground state.

Since the electrons that mediate the Raman scattering process go back to the
ground state, the electronic system after the Raman process is assumed to be un-
changed. In each of the three steps just mentioned the wavevector must be con-
served, whereas the energy conservation condition must be satisfied in the total
process. The time order of the three quantum events is arbitrary and thus 3!=6
possible diagrams have to be considered. Using Fermi’s Golden rule with the help
of Feynman diagrams [more details can be found in ref. [108]], the scattering prob-
ability is given by

Pph(ωs) = (
2π

~
)|
∑
α,β

< i|He−r(ωs)|β >< β|He−ph(ωs)|α >< α|He−r(ωi)|i >
[~ωi − (Eα − Ei)][~ωi − ~ωph − (Eβ − Ei)]

+5perm|2 × δ[~ωi − ~ωph − ~ωs], (2.9)

where |i > is the initial state of the electronic system which appears twice since the
final state in this case is identical to the initial state.

Due to the many intermediate states (real and virtual) involved in the Raman
process, extracting information about electron-phonon, electron-photon and electron
band structure together is barely feasible. This becomes possible if a small number
of intermediate states dominates the Raman process. To achieve that, one should
tune the energy of the incident laser light to resonate with the interband distance
and thus an enhanced real electronic transitions will take place. This is the so-called
ingoing resonant Raman scattering. Similarly, if the energy of the scattered light
matches the recombination energy of an electron in the upper band with a hole in
the lower band, an outgoing resonant Raman process can be achieved.

2.3 Raman Selection Rules and their Applications

to Tetragonal and Orthorhombic HTSCs

Raman scattering in solids is a powerful probe for electronic and lattice vibrational
excitations in different symmetries. The application of a particular polarization
configuration of the electric field of the incident and scattered light allows us to
probe selectively the elementary excitations on specific parts of the Fermi surface.
Therefore, performing a polarized light Raman measurements requires a good knowl-
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edge of the selection rules and their applications on precisely oriented single crystals.

In order to understand the Raman symmetries of HTSC, we recall the approxi-
mate expression of Eq. (2.5)

IS(ω, T ) =| êi ·R · ês |2 . (2.10)

If the Raman intensity of a particular excitation mode is non-vanishing when cer-
tain choices of the incident and scattered (ei and es, respectively) polarizations are
applied, this mode is considered as Raman-active (Raman-allowed) [107]. Besides
that, measuring the dependence of the Raman intensity on the geometry of the in-
cident and scattered polarizations allows us to obtain the symmetry of the Raman
tensor (Eq. 2.6) and hence the symmetry of the Raman-active modes [108]. These
are the so-called Raman selection rules which hold for all elementary excitations of
ions (phonons) and of electrons (e.g. transitions across the superconducting gap).
Therefore, polarized light Raman measurements are capable to determine both, the
energy and the symmetry of the zone-center active modes [108].

HTSCs have either D2h (orthorhombic) or D4h (tetragonal) point groups. Tables
2.1 and 2.2 show the irreducible representations of their Raman tensors, respec-
tively. To obtain the Raman symmetries of HTSC, one has to evaluate Eq. (2.5) for
the possible Raman tensors in tables 2.1 and 2.2, with all possible polarization con-
figurations of the electric fields of the incident and scattered light [112, 113, 114, 115].

Orthorhombic D2h

Ag B1g B2g B3gxx 0 0
0 yy 0
0 0 zz

  0 xy 0
yx 0 0
0 0 0

  0 0 xz
0 0 0
xz 0 0

 0 0 0
0 0 yz
0 zy 0


Table 2.1: Irreducible representations of the Raman tensor in orthorhombic HTSC
with D2h point group [112, 113].

In polarized Raman experiments, the polarization configurations are usually writ-
ten in Porto notation, i.e. i(kl)j, where i and j denote the propagation direction of
the incident and scattered photons, and k and l are the polarization of their elec-
tric fields, respectively. In this work, we are concerned with probing the ab-plane
elementary excitations in various polarization geometries, therefore the propagation
direction of the incident and scattered photons was always nearly parallel to the
crystallographic c–axis. For convenience, we skip the propagation direction of light
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Tetragonal D4h

A1g A2g B1gxx 0 0
0 xx 0
0 0 zz

  0 xy 0
−xy 0 0
0 0 0

 xx 0 0
0 −xx 0
0 0 0


B2g Eg Eg 0 xy 0

xy 0 0
0 0 0

  0 0 xz
0 0 0
zx 0 0

 0 0 0
0 0 xz
0 zx 0


Table 2.2: Same as table 2.1 but in tetragonal HTSC withD4h point group [112, 113].

and give only the polarization directions of the incident and scattered photons (let-
ters inside the parentheses).

For orthorhombic HTSCs, excitations of Ag, B1g, Ag+B1g, and Ag symmetries
are accessible by using xx (or yy), xy (or yx), x′x′ (or y′y′), and x′y′ (or y′x′) po-
larizations of the incident and scattered light fields, respectively [17, 117]. In this
notation x and y correspond to the direction of the electric field of light along the
a– and b–axes, whereas x′ and y′ denote axes rotated by 45◦ from a– or b– axes, i.e.
x′ ∼ x + y and y′ ∼ x − y, respectively. Here, the beam direction is nearly along
the c–axis. For HTSC with tetragonal point group D4h (e.g. La2−xSrxCuO4 at low
temperatures [118, 119], HgBa2Ca2Cu3O8+x [120], and Tl2Ba2CuO6+x [121, 122]),
excitations of A1g+B1g symmetry are accessible for either xx or yy polarization,
B2g for either xy or yx polarization, A1g+B2g for either x′x′ or y′y′ polarization,
and B1g for either x′y′ or y′x′ polarization of the electric field vectors. In table 2.3,
we summarize the possible in-plane polarization geometries and the corresponding
Raman symmetries in orthorhombic and tetragonal notations.

As noted in sec. 1.5, there exists two types of YBCO, twinned and detwinned.
As-grown samples display twinning in the a − b plane along [110] and [110] direc-
tions, and thus x– and y–axes are barely distinguishable. Hence, twinned samples
are approximated as tetragonal. Thermomechanically detwinned samples have or-
thorhombic structure with a ̸= b. Due to the small difference between a– and b–axis
lengths in detwinned YBCO, the structure can be described in terms of the closely
related tetragonal structure. As most previous work on YBCO has been performed
on twinned specimens [16], we follow previous publications and use the tetragonal
notation of the polarization symmetries throughout this thesis.
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Polarization geometry Raman symmetry Raman symmetry
for tetragonal HTSC for orthorhombic HTSC

xx/yy A1g+B1g Ag

xy/yx B2g B1g

x′x′/y′y′ A1g+B2g Ag+B1g

x′y′/y′x′ B1g Ag

xz/zx Eg B2g

yz/zy Eg B3g

Table 2.3: possible polarization geometries and their corresponding symmetries in
Raman experiments on orthorhombic and tetragonal HTSC.

2.4 Group Theory Analysis of q = 0 Modes of

Twinned and Twin-Free YBa2Cu3O6+x

HTSCs have complicated structures with N atoms per unit cell. Group theory is par-
ticularly helpful to identify the symmetries of the 3N − 3 optical phonons. Ortho-I
YBa2Cu3O7 and tetragonal YBa2Cu3O6 contain 13 and 12 atoms per unit cell, re-
spectively. Hence, group theory predicts for these two compounds 36 and 33 optical
phonon modes, respectively. Here, I will present the group theoretical classification
of these optical modes.

The Raman-active modes are those that transform according to one of the sym-
metries of the possible Raman tensors and scattering process achieved by the proper
scattering geometry (selection rules) [107]. This means that Raman tensors must
have even symmetry, i.e. Rij = Rji [125], and thus odd symmetry excitations are
Raman forbidden but infrared (henceforth IR) active. This holds for centrosymmet-
ric compounds, i.e. compounds that possess a center of inversion like HTSCs, in
which optical phonon modes at q = 0 cannot be both Raman and IR active.

For centrosymmetric structures, there must be at least one site of the unit cell
which sustains the full symmetry of the point group. In YBa2Cu3O7 (Fig. 1.19),
yttrium, chain copper (Cu1), and chain oxygen (O1) ions are at the inversion center
and thus have D2h site symmetry. Each of these atoms has three degrees of freedom
and can vibrate along z, y, and x axes giving rise to B1u, B2u, and B3u IR-active
modes, respectively. The remaining pairs of atoms, i.e. planar oxygen (O2 and
O3), planar copper (Cu2), barium, and apical oxygen, have C2v symmetry. Each of
these pairs vibrate in three dimensions and contribute with three odd and three even
modes: B1u, B2u, and B3u IR-allowed modes and Ag, B2g, B3g Raman-allowed modes
(fig. 2.2). The atomic vibrations in the Ag, B2g, and B3g symmetries are parallel to
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the c–, a–, and b–axis, respectively. The subscripts u and g are abbreviations for the
german “ungerade” (odd symmetry) and “gerade” (even symmetry), respectively.
Summing up these modes and subtracting the three acoustic ones gives rise to 36
optical modes for the orthorhombic YBCO unit cell [116].

YBa2Cu3O7, Orthorhombic, D2h

Atom Site symmetry Allowed modes
Y D2h B1u+B2u+B3u

O1 D2h B1u+B2u+B3u

Cu1 D2h B1u+B2u+B3u

Ba C2v Ag+B2g+B3g+B1u+B2u+B3u

Cu2 C2v Ag+B2g+B3g+B1u+B2u+B3u

O2 C2v Ag+B2g+B3g+B1u+B2u+B3u

O3 C2v Ag+B2g+B3g+B1u+B2u+B3u

O4 C2v Ag+B2g+B3g+B1u+B2u+B3u

YBa2Cu3O6, Tetragonal, D4h

Atom Site symmetry Allowed modes
Y D4h A2u+Eu

Cu1 D4h A2u+Eu

Ba C4v A1g+Eg+A2u+Eu

Cu2 C4v A1g+Eg+A2u+Eu

O2 (or O3) C2v A1g+2Eg+B1g+A2u+2Eu+B2u

O4 C4v A1g+Eg+A2u+Eu

Table 2.4: Atomic site symmetries and their corresponding optical modes of or-
thorhombic (D2h) and tetragonal (D4h) YBa2Cu3O6+x systems. Note that the Eu

and Eg modes are doubly degenerate [116].

For tetragonal YBa2Cu3O6, the O1 ions are completely missing, thus yttrium and
Cu1 ions have the full symmetry of the D4h point group. Each of these ions con-
tribute with three IR-allowed modes, i.e. A2u+Eu. The Ba, Cu2, and O4 ions have
C4v site symmetry, hence each atom gives A1g+Eg+A2u+Eu optical modes. Here,
the oxygen ions (O2 and O3) in the CuO2 planes become indistinguishable and
possess C2v site symmetry. Therefore, they produce A1g+2Eg+B1g+A2u+2Eu+B2u

phonon modes. Note that in the A1g/A2u symmetries, the ions move parallel to the
c–axis, whereas in the Eg/Eu symmetries they either move along the a– or b– axes,
respectively. The Raman B1g and the IR-B2u symmetries represent the out-of-phase
vibrations of planar oxygen atoms along the c–axis. As a result, one obtains 33
optical modes after excluding the three acoustic modes. In table 2.4, we summa-
rize the site symmetry and the corresponding optical modes for each atom of the
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orthorhombic and tetragonal YBCO unit cells [116].

Here, It is worth mentioning the peculiarity of the Raman symmetry of the
out-of-phase vibrations of planar oxygens [the so-called B1g-like mode or buckling
mode]. It belongs to the Ag symmetry in orthorhombic notations, whereas it has B1g

symmetry in tetragonal structure. Since the orthorhombic distortion in detwinned
YBCO is small, the buckling mode still holds the character of B1g symmetry.

After classifying the optical mode symmetries of YBCO, it is necessary to as-
sign the energy of the phonon modes in order to understand the observed spectrum.
The phonon frequencies can be estimated by lattice dynamical calculations following
spring and masses [126] or shell-model calculations [127, 128]. In fig. 2.2, we show
the Raman and IR- eigenmodes of YBCO7 and their expected frequencies (in cm−1)
obtained within the shell-model calculations. For the purpose of this thesis, I will
pay attention only to the Raman-active modes.

Using tetragonal notation, the 4A1g+1B1g (c-polarized) modes are the follow-
ing [60, 116, 127, 128, 129]: the lowest-frequency phonon, which is expected to
appear at 115 cm−1 (A1g), originates predominantly from vibrations of the barium
atoms. The next lowest frequency phonon, predicted at 157 cm−1 (A1g), corresponds
mainly to vibrations of copper (Cu2) ions. The vibrations of the apical oxygen ions
(O4) is anticipated at 509 cm−1 (A1g). The two modes estimated to appear at 353
cm−1 (B1g) and 477 cm−1 (A1g) are predicted to originate from out-of-phase and
in-phase vibrations of the planar oxygen ions (O2 and O3), respectively. Note that
the Local Density Approximation (LDA) predicts a small admixture of the Ba and
Cu vibrational amplitudes [130]. Since the frequencies of the remaining phonons are
well separated, the admixture, if it exists, is expected to be negligible [131].

The B2g (B3g) phonon modes originating from vibrations of Ba, Cu2, O4, O3,
and O2 are expected to appear at 70 (91), 142 (137), 346 (490), 428 (411) and 584
(545), respectively. In the Raman spectrum of HTSC, the A1g phonon modes are
10 to 100 times more intense than those of B2g/3g symmetry [113, 60]. For this rea-
son, we will focus from now on only on the 4A1g+1B1g modes. Table 2.5 shows the
4A1g+1B1g phonon frequencies calculated by spring and masses, shell-model and ab
initio approaches together with those observed in previous Raman measurements
as well as the phonon frequencies observed in our spectra (Fig. 2.3).

In detwinned YBCO6+x, the previously discussed 4A1g+1B1g modes are observ-
able for polarizations along a– and b–axis (Fig. 2.3). In addition, two defect-induced
modes appear in the yy symmetry at 232 cm−1 and at 579 cm−1. They originate
from vibrations of the copper (Cu1) and the oxygen (O1) ions, respectively, in
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115           157            353           377           509

x:                                70             142           346            428            584
y:                                        91                137  490                411               545

Ag [xx, yy, zz]:

B2g [y(zx)y]: 

B3g [x(zy)x]:

B1u (z-axis):

B3u (x-axis): 

B2u (y-axis):

118             149              166             233        306             333             537

x:             36 106 179 353 377 561            156

y:             93                  128                 169      336              412               545            564

Figure 2.2: Eigenmodes of YBa2Cu3O7 at q = 0 and their expected frequencies (in cm−1)
obtained within the shell-model calculations [127, 128]. The first two rows represent the
Raman-active 4A1g+1B1g and B2g/B3g modes whereas the lower two rows display the IR-
active B1u, B2u/B3u modes, respectively. The green arrows in the lower two rows indicate
the atoms which dominate the vibrational IR-active mode whereas red arrows indicate
almost equal contribution of the atoms. This figure is obtained from [127].
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Figure 2.3: Raman spectra of a detwinned, almost optimally doped YBa2Cu3O6.95 single
crystal in xx, yy and zz polarizations taken with an Ar+ laser line (λ=514.5 nm). The
mode assignment corresponds to Refs. [109, 116, 127, 128, 60, 135]. The intensity scales
in the three panels are the same whereas the zz spectrum was divided by 6.

the Cu–O chains, which are aligned along the crystallographic b–axis [135]. In
YBCO crystals with fully oxygenated chains, these two modes are Raman forbid-
den but infrared–allowed with B1u symmetry (Fig. 2.2 third row, third and last
modes from left) [136, 137, 138]. They become Raman-active due to breaking of the
translational symmetry by defects, i.e. unoccupied oxygen positions in the Cu1-O1
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Phonon spring mass shell- ab initio Previous Raman our results
approach model Experiment

Ba (A1g) 125 115 119 112 113
Cu2 (A1g) 193 157 151.5 154 148

O2-O3 (B1g) 346 353 339 340 340
O+O3 (A1g) 352 377 406 440 446
O4 (A1g) 496 509 472 500 501

Table 2.5: calculated phonon frequencies of the 4A1g+1B1g Raman modes using
spring-masses [126], shell model [128] and ab initio [129] approaches together with
previous Raman results [128] and our phonon frequencies (Fig. 2.3). The B2g/B3g

modes are less important for the goal of this thesis and if one is concerned, more
information are available in Refs. [132, 133, 134]

chains. [116, 135, 140]. A characteristic feature of these defect-induced modes is
their strong resonance for the yellow line of the Kr+-laser [135]. These modes are
very helpful to estimate the detwinning ratio of the YBCO crystal. For instance,
the absence of these modes in the xx-spectra indicates a high detwinning quality of
the YBCO samples [135, 136, 137, 138].

2.4.1 Polarization-Dependence of the 4A1g+1B1g Phonon In-
tensities in Detwinned YBCO6+x

Since the laser spot is much larger than the size of the twin microdomain, the
ab-plane Raman tensor elements of the 4A1g+1B1g phonons in twinned YBCO are
indistinguishable (table 2.2). The observed Raman spectra in the xx and yy symme-
tries are therefore the same, but they differ from that observed in the zz polarization
geometry. In detwinned YBCO6+x crystals, the in-plane Raman tensor elements be-
come polarization-dependent (xx ̸=yy ̸=zz (see table 2.1)). This gives rise to different
phononic as well as electronic scattering efficiencies for light polarizations along the
a–, b– and c–axis of detwinned YBCO samples. The main difference in the Raman
spectra taken for twinned and detwinned crystals is seen when light polarizations
are parallel to the a– and b–axes whereas the c–axis polarized spectrum should be
the same in both cases.

Figure 2.3 shows Raman spectra of nearly optimally doped YBCO6.95 taken
at room temperature in xx, yy and zz polarization symmetries. The polarization-
dependence of the phonon intensities reflects the differences in the phonon polariz-
abilities (αij with i and j denote the Raman tensor element) when light polarizations
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Phonon Raman Polarizability (αij)
Ba(z) αxx ≈ 0.5αyy, αzz ≈ αyy

Cu2(z) αxx ≈ αyy, αzz ≈ 1.2αyy

O2(z)-O3(z) αxx ≈ 1.4αyy, αzz ≈ 0
O(z)+O3(z) αxx ≈ αyy, αxx, αyy ≪ αzz

O4(z) αxx < αyy, αxx, αyy ≪ αzz

Table 2.6: Raman Ag phonons, and their relative polarizabilities αij for YBCO7

[125, 140].

are projected along the a–, b– or c–axis.

In tetragonal YBCO, the O2 and O3 atoms are equivalent and thus their dis-
placements are equal. For orthorhombic YBCO6+x, the existence of the chain O1
atoms induces a repulsive interaction with the planar O3 ions (parallel to the b–axis)
and thus the Raman polarizability of O3 is reduced. Therefore, the intensity of the
out-of-phase vibrations of the planar oxygens (the B1g-mode) is smaller in the yy
than in the xx symmetry [125, 140]. Since the zz component of the B1g Raman
tensor in the tetragonal symmetry is zero, the B1g phonon is absent in the Raman
spectrum for polarizations along the c-axis (Fig. 2.3). This again indicates that
this phonon keeps the B1g character even though it has Ag symmetry in orthorhom-
bic YBCO6+x. The Cu1–O1 chains play a major role in the polarizability of the
neighboring atoms, i.e. Ba and O4 atoms. Hence, their intensity is greater when
light polarizations are projected parallel to the b–axis. The polarizability of the Ba
vibrations along the c-axis is comparable to that along the b-axis, whereas for O4
atoms αzz has been found to be almost 10 times larger than αyy [125, 140].

The in-phase vibrations of planar oxygens are usually weak compared to other
phonon peaks and thus it is difficult to observe the xy-anisotropy of this phonon in-
tensity. However, it is expected that this mode has higher scattering intensity in the
yy symmetry [140]. The plane Cu2 vibrations show almost the same intensity in the
xx and yy symmetries indicating the low sensitivity of the Cu2 to the increase of O1
atoms in the chain. Again the Raman polarizability of these two modes in zz sym-
metry is larger (and their intensity is stronger) than in both, xx and yy scattering
geometries. Table 2.6 summarizes the the Raman tensor elements (or, equivalently,
Raman polarizabilities) of the five Raman-active phonons in detwinned YBCO6+x

in xx, yy, and zz Raman symmetries.

So far, I have presented a group theoretical identification of the Raman phonon
modes of tetragonal and orthorhombic (ortho-I) YBCO6+x, their energies and their
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x, y, and z relative intensities. Now, I will discuss the case in which the doping of
YBCO6+x crystal is close to 0.5.

2.4.2 Phonon Analysis of Ortho-II YBa2Cu3O6.5: Effect of
Periodicity

In YBCO6.5, the Cu1-O1 chains are ordered in the so-called ortho-II phase (D2h

space group) in which 2a × b × c supercells are formed (Fig. 1.21). Therefore, the
number of Raman- and IR-allowed phonons becomes higher [138, 139, 141, 142, 143].
The doubled YBa2Cu3O6.5 unit cell (or, equivalently, Y2Ba4Cu6O13) has 25 atoms
per supercell unit, thus 75 vibrational modes at the center of the ortho-II Brillouin
zone are expected. That is, 11Ag + 4B1g + 11B2g + 8B3g + 2Au + 14B1u + 12B2u

+ 13B3u. In addition to the known modes in ortho-I YBCO7, six Ag, four B1g, six
B2g and three B3g extra modes exist for ortho-II YBCO. Since the Bg modes are 10
times weaker than the Ag ones, and the extra Bg modes have no analogs to those of
YBCO7, the extra B1g, B2g, and B3g modes are hardly distinguishable. However, one
can recognize the strong Ag modes, therefore I will focus only on them. Again, in
the tetragonal notations the 11Ag modes are 10 A1g plus the well-known B1g mode
at 340 cm−1.

Figure 2.4 shows the eigenvectors of the 10A1g+1B1g Raman-active modes in
YBCO6.5 predicted by LDA calculations [138]. Similar to ortho-I YBCO7, the z-
polarized displacements of the Ba, Cu2, plane oxygen [(O2-O3) and (O2+O3)], and
O4 atoms are predicted to appear at 118, 151, 331, 444, and 478 cm−1, respec-
tively [138]. Additional A1g modes expected at 78, 146, 346, and 414 cm−1 are
attributed to z-axis vibrations of (Cu2(z)-Cu2’(-z)—out of phase), mixed Ba/Cu,
(O4(z)-O4’(-z)—out of phase), O4’(z), respectively (Fig. 2.4). The A1g modes an-
ticipated to appear at 171 and 593 cm−1 originate from x-polarized displacements
of yttrium Y(x) and plane oxygen O2(x) atoms.

Since xx and yy symmetries are indistinguishable for twinned YBCO6.5, the 11
Ag modes appear in both, xx and yy Raman spectra. The case is different for de-
twinned YBCO6.5. For instance, the z-polarized atomic vibrations are expected to
be present in either xx or yy polarization geometries, whereas the x-polarized vibra-
tions of yttrium and planar oxygen O2 ions are expected to appear only when light
polarizations are parallel to the a–axis. Therefore, Y(x) and O2(x) are excellent
tools to probe the xy-anisotropy of the electronic system of underdoped YBCO6+x

with x close to 0.5.
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Figure 2.4: Main atomic displacements of the Ag modes of YBa2Cu3O6.5 (ortho-II) as
obtained by LDA calculations. The LDC predicted frequencies (in parentheses) are com-
pared to the experimentally obtained values. The circles surround the five Ag modes
(4Ag+1B1g in tetragonal notations) of ortho-I structure whereas the rectangles enclose
the x-polarized periodicity-induced phonon modes. The figure is taken from Ref. [138].

In the literature, Raman peaks observed for YBCO6.5 at 171 cm−1 [138], 187
cm−1 [142], and 215 cm−1 [143] have been assigned to the Y(x) mode whereas those
observed at 579 cm−1 [138], 593 cm−1 [141], and 615 cm−1 [142] have been attributed
to the plane stretching mode O2(x). Thus, the exact nature of these modes is still
controversial. Aiming to solve this controversy, we will present a comprehensive
temperature and doping dependent study of these modes in sec. 5.3.
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2.5 Fundamentals of Electronic Light Scattering

In a crystal, light can be scattered by electronic excitations in two ways; interband
and intraband processes. The earlier contribution is resonant and usually domi-
nates the Raman scattering in insulators and semiconductors whereas the latter is
non-resonant and common for doped semiconductors or metals. Here, we will be
concerned with low-energy intraband transitions in metallic and superconducting
YBCO.

2.5.1 Electronic Raman Scattering in Metals

In a pure metal, the low energy elementary excitations are inaccessible by optical
techniques [109, 81]. Raman allowed excitations with a frequency ω must have a
small wavevector K compared to the dimensions of the BZ, i.e. 0 < K ≪ BZ . The
minimum wavevector transfer must be

K = 2ω(
KF

ωF

), (2.11)

where KF and ωF denote the Fermi wavevector and Fermi energy, respectively.
In pure metals, the initial and final states are nearly the same. That is, for any
initial state below the Fermi energy (Fig. 2.5a), there is no final state for which the
momentum transfer condition (Eq. 2.11) is satisfied. Hence, no optical transitions
are allowed for pure metals.

 

Ñw 

EF EF 

Ñw 

K 

(a) (b) 

2D 

Figure 2.5: (a) Band diagram for a metal in the normal state. EF represents the Fermi
energy. The arrow labeled ~ω symbolizes intraband excitations which are optically forbid-
den (no real final state). (b) Corresponding diagram for the superconducting state with
∆ denotes the superconducting gap [109].

A pure metal can hardly be obtained. Impurities, atomic displacement, disor-
ders or any crystal defects results in breaking of the translational symmetry of the
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crystal. Hence, a finite electron mean free path l will be generated. This leads to
a smearing of the wavevector of the Raman excitation at the center of the BZ by
an amount of 1/l. As a result, Eq. (2.11) can be fulfilled and intraband electronic
excitations become Raman-active [109, 81].

A second reason for the low intensity of Raman scattering signals in pure metals is
that the incoming light is usually screened by the electrons of the metal. Therefore,
the optical penetration depth λ is small which results in a weak scattering cross
section.

2.5.2 Electronic Raman Scattering in Conventional Super-
conductors

Below the SC-transition, the low energy electronic continuum of a conventional su-
perconductor undergoes a frequency redistribution accompanied with an electronic
gap ∆ opening around the Fermi surface (Fig. 2.5). In contrast to metals, in which
Raman excitations requires a minimal momentum difference between the initial and
final states (Eq. 2.11), vertical transitions can destroy the Cooper pairs and pro-
mote quasiparticles across the SC-gap. BCS theory predicts that an energy of 2∆
is needed to break the Copper pairs. This energy can be obtained from the exciting
laser used in a Raman experiment. Hence, the opening of the SC-gap allows the in-
traband electronic excitations to be Raman-active although the momentum transfer
is zero [81].

Raman spectra of BCS superconductors, e.g. Nb3Sn, reveal a complete suppres-
sion of the electronic scattering at low frequencies, i.e. ω < 2∆, accompanied with
a well-defined maximum at 2∆. Klein and Dierker [144, 145] were able to describe
the imaginary part of Raman response of a conventional superconductor. Based on
their calculations, the imaginary part of the Raman susceptibility, at T = 0, can be
written as

χ′′ =
2πNF

ω
Re⟨ |γk|2|∆k|2√

ω2 − 4|∆k|2
⟩FS = ⟨γ2kθk(ω)⟩FS, (2.12)

where NF is the density of states at the Fermi surface, γk is a Raman vertex ele-
ment selected by the polarization geometries of the incident and scattered light (to
be defined below), ∆k is the wavevector-dependent SC-gap. ⟨...⟩FS stands for an
average over the Fermi surface, and can be written as [146]
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⟨(· · · )θk(ω)⟩ =
1

V

∑
k

(· · · )∆2
k tanh

(
Ek

2T

)
×
(

1/E2
k

ω + iη + 2Ek

− 1/E2
k

ω + iη − 2Ek

)
, (2.13)

with θk(ω) is the Tsuneto function given by

θk(ω) = NF
4|∆k|2

ω
√
ω2 − 4|∆k|2.

(2.14)

The approximation behind Eq.(2.12) is valid when ∆k (and also γk) does not
change significantly for small deviations of k perpendicular to the Fermi surface, e.g.,
a constant s-wave gap. Figure 2.6 displays a SC-electronic Raman peak of a BCS
superconductor modeled using Eqs. (2.12)-(2.14). The Tsuneto function (Eq. 2.14)
describes the singularity in the electronic signal at ω = 2∆. For a simple isotropic
s-wave gap ∆ = ∆0 = constant, the Raman intensity is zero for energies less than
the 2∆-gap. The curve above ω = 2∆ describes the density of electronic states of a
BCS superconductor.

An important consequence arising from Eq.(2.12) is that the Raman response is
proportional to the square of the amplitude of the SC-gap. This suggest that Raman
scattering is phase insensitive, i.e. insensitive to the sign of the order parameter.
Therefore, Raman scattering provides information only about the magnitude of the
superconducting gap and not about the phase. In addition, the Raman efficiency
is proportional to the square of the Raman vertex γk, which can be defined as a
contraction of the curvature of the electronic band εk and the incident and scattered
plane waves with polarization vectors eαi and eβs , respectively. In the non-resonant
limit, γk can be approximated as

γk =
m

~2
∑
α,β

eαs
1

m∗ e
β
i

=
m

~2
∑
α,β

eαs
∂2εk
∂kα∂kβ

eβi (2.15)

with m∗ being the effective mass tensor.

Equation 2.15 suggests that one can probe selectively different portions of the
Fermi surface. Strictly speaking, choosing a particular scattering configuration is
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Figure 2.6: (a) Calculated spectra for an isotropic s-wave gap of a conventional super-
conductor using Eq. (2.12). (b) Raman spectrum of MgB2 taken at various temperatures
in the E2g symmetry. Panel (b) is taken from Ref. [147]

equivalent to selecting a particular component of the effective mass tensor. The
different components of the effective mass tensor may have different wavevector de-
pendences, and thus one can probe the superconducting gap on different portions
of the FS. Note that Raman scattering differs from angle resolved photoemission
spectroscopy (ARPES). Raman measurements probe an average of the electronic
states around a particular k-point of the FS whereas ARPES measurements can
precisely determine the topology of the FS for materials with quasi-two-dimensional
electronic structure. Since BCS superconductors have an isotropic s-wave pairing
symmetry, the 2∆ gap is insensitive to the scattering polarization geometry.

2.5.3 Electronic Raman Scattering in Tetragonal HTSCs

Raman scattering in HTSCs is different than in BCS superconductors because of the
different pairing symmetry. The application of different polarization geometries al-
lows probing different portions of the FS [148, 149, 150]. For instance, the x′y′ light
polarizations (B1g symmetry) allows the coupling of light to the electronic states in
the vicinity of the antinodal region whereas the xy polarization configuration probes
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A1g B1g B2g
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Figure 2.7: Relationship between the A1g, B1g and B2g scattering geometries (second raw)
and the corresponding weighted portions of the Fermi surface (third raw). In the second
raw, the squares indicates the CuO2 planes and the orange (blue) circles correspond to
copper (oxygen) ions. The incident and scattered photon polarizations with respect to
the Cu–O bond (x– or y–axes) are indicated with arrows. In the third raw, the solid lines
represent the Fermi surface of HTSCs in the Brillouin zone whereas the circles refer to
weighted parts of the Fermi surface.

the B2g excitations around the nodes of the FS (Fig. 2.7). The fully symmetric A1g

electronic continuum can not be probed independently, but it can be obtained by
subtracting the crossed polarization spectra from the parallel polarization ones, i.e
either xx− x′y′ or x′x′ − xy [16, 148, 151].

The Raman spectra of HTSCs show no 2∆ peak for any polarization geometry,
instead they show in the superconducting state a broad hump even at very low tem-
peratures [152, 153]. Electronic Raman scattering shows that the maximum value of
the gap (∆max) is located near the (±kx,0) and (0,±ky) axes of the Brillouin zone.
Since the B2g spectrum reflects the density of the electronic states around the nodes
(±kx,±ky), the frequency of the B2g peak appears at ∆(B2g) ≈ 0.6∆(B1g) [154].
The fully symmetrical A1g geometry probes simultaneously a combination of both,
the B1g and B2g electronic states. In general, it has been observed for HTSCs that
∆(A1g) ≤ ∆(B2g) < ∆(B1g) (see fig. 2.8). Although different energies observed
for the superconducting gap in different scattering geometries are consistent with
d-wave pairing symmetry, they cannot be taken as a direct evidence for it.
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Figure 2.8: Electronic Raman spectra of Bi2212 (Tc=91 K) taken at 100 K (normal
state) and 10 K (superconducting state) in various symmetries as indicated. The 2∆ peak
position is marked with arrows. This figure is taken from [81].

Since complete suppression of scattering at low frequencies has never been ob-
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Figure 2.9: Cubic and linear behaviors of the low energy parts of the 20 K Raman spectra
of Bi2212 (Tc=90 K) in the B1g and B2g symmetries, respectively. This figure is taken
from [148](see also Refs. [154, 155, 156]).

served in HTSC, the frequency-dependence of the low energy part in B1g and B2g

Raman spectra (the power laws) must be considered. Several experimental Raman
studies for different HTSCs show that the χ′′(B1g) is proportional to ω

3 for ω ≪ 2∆
whereas χ′′(B2g) decreases linearly for ω → 0 (Fig. 2.9). This behavior is consis-
tent with a d-wave gap with maximum value at (±kx,0) or (0,±ky) points of the
BZ [153, 118, 154].

The polarization dependence of the electronic signal intensities also provides in-
sight into the symmetry of the superconducting gap since the Raman intensity is
a measure of the density of electronic states excited across the gap. In contrast to
conventional superconductors, the Raman intensities of a d-wave gap look different
when changing the scattering geometry. Figure 2.10 shows the intensity ratios of
the continua observed in the A1g, B1g and B2g geometries of La1.83Sr0.17CuO4 (Af-
ter [154]). Comparison of the continuum intensities at energies far from the 2∆
broad peak shows that the ratios χ′′(A1g):χ

′′(B1g):χ
′′(B2g) are almost 8:4:1 for opti-

mally doped HTSCs consistent with d-wave pairing [154, 157, 158].

Due to the differences in the pairing symmetry and the Raman signals between
conventional and tetragonal HTSCs noted above, Eqs.(2.12) and (2.15) must be
modified to account for the polarization dependence of the HTSC spectra. Now, we
present a theoretical approach for Raman scattering in optimally doped tetragonal
HTSCs. High Tc superconductivity is believed to take place in the copper-oxygen
planes. The simplest way to describe the two-dimensional “normal-state” band
structure of a single CuO2 plane is [154, 167]
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Figure 2.10: Electronic Raman spectra of La1.83Sr0.17CuO4 taken below the SC-transition
in various symmetries as indicated. The 2∆ peak position is marked with arrows. Note
that the relative intensities χ′′(A1g):χ

′′(B1g):χ
′′(B2g) around 400 cm−1 are almost 8:4:1.

This figure is taken from [154].

εk = −2t
[
cos kx + cos ky

]
− 4t′ cos kx cos ky − µ, (2.16)

where t and t′ are the hopping parameters to the nearest and next nearest neighbors,
respectively, and µ is the chemical potential. Accordingly, the vertices of the A1g,
B1g, and B2g Raman scattering channels can be identified, respectively, as
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γA1g = t(cos kx + cos ky) + 4t′ cos kx cos ky, (2.17a)

γB1g = t(cos kx − cos ky), (2.17b)

γB2g = 4t′ sin kx sin ky. (2.17c)

Devereaux et al. [148, 150] have calculated the Raman responses of HTSCs. In this
model, long range Coulomb interaction Vr =

4πe2

r2
was taken into account. Using the

gap function ∆(k) as given in Eq.(1.8), the A1g, B1g, and B2g Raman responses of
tetragonal HTSC are expressed as

χ(ω)A1g = ⟨γ2A1g
θk(ω)⟩ −

⟨γA1gθk(ω)⟩
⟨θk(ω)⟩

, (2.18a)

χ(ω)B1g = ⟨γ2B1g
θk(ω)⟩, (2.18b)

χ(ω)B2g = ⟨γ2B2g
θk(ω)⟩. (2.18c)

The second term on the right hand side of Eq.(2.18a) represents the so-called “screen-
ing effect” which arises from the long range Coulomb interaction. This term van-
ishes in the B1g and B2g symmetries. Devereaux and Einzel [150] showed that
the screening gives rise to the following effects: firstly, it smears the A1g peak
intensity. Secondly, it results in a significant shift of the A1g peak to lower fre-
quencies. The influence of the screening effect on the Raman spectra has been
experimentally observed in the polarization dependence of the 2∆–gap energy, i.e.
∆(B2g) ≤ ∆(A1g) < ∆(B1g). On the other hand, the intensity of the A1g peak is
larger than both, the B1g and B2g signals (Figs. 2.8 and 2.10). Krantz and Cardona
[159] have reexamined this problem and concluded that the screening effect takes
place only in HTSCs with a single CuO2-layer, whereas multilayer HTSCs possess
interband scattering and thus an intense unscreened A1g signal can be expected.
Experimentally, the case is different. For instance, the A1g scattering intensity of
monolayer HTSCs, e.g. La2−xSrxCuO4 (fig. 2.10), Tl2Ba2CuO6+x [121, 160] and
HgBa2CuO4+x [161, 162], was found to be more intense than that of B1g and B2g

symmetries, leaving this puzzle unsolved.

Since the orthorhombic distortion influences the pairing order parameter as
well as the Raman vertices of HTSCs, orthorhombicity effects must be included
in Eqs.(1.8–2.18c). This will be discussed later in subsec.(3.3).



Chapter 3

Analysis of Raman Signals of
Optimally and Overdoped HTSCs

The low energy Raman response (i.e. ω <1000 cm−1) in HTSCs is dominated by
electronic (intraband) and vibronic excitations. Most previous work focused either
on the superconducting gap or on the phonon self-energy effects below Tc. Here, we
treat the electronic and vibronic Raman responses as well as their interdependence
on equal footing. In this section, we present the analysis procedure for the Raman
spectra of optimally and overdoped HTSCs. We start with a description for the
conventional Fano theory which we use to fit the phonons individually. Afterwards,
a generalized form of the Fano formula used to fit the overall Raman spectrum, i.e.
global fit, will be presented. We will show that both fit procedures are capable of
extracting the phonon self-energy effects below Tc, whereas a realistic shape of the
electronic signal is achieved only by using the global fit.

3.1 Conventional Fano Theory

The Fano effect, named after the Italo-American physicist Ugo Fano [163], is related
to phonon lineshape asymmetries observed by optical spectroscopies e.g. Raman or
infrared (IR). This effect is seen in in the spectra as a characteristic distortion of
the Lorenzian phonon lineshape [see fig. 3.2].

A system with two coupled excited levels is shown in fig. 3.1. The system has a
ground ground state |G >, excited electronic continuum |ei > with i=1,2,3,...,and
a one-phonon excited state |p >. Higher-phonon states are neglected for simplicity.
Transitions from the ground state to the excited states |ei > and |p > are Raman
active and are represented by the Raman matrix elements γ and T , respectively.
The matrix element g represents the ele-ph coupling between |ei > and |p >. Here,
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g 

Tσ γσ 
 

|G> 

|p> 

|ei> 

i=1,2,3,… 

 

Figure 3.1: System with discrete phononic and continuous electronic continuum coupled
by a matrix element g.

γ ∝ < G|He−r|e > and g ∝ < e|He−ph|p > whereas T involves both γ and g as
T ∝ < G|He−r|e >< e|He−ph|p >< e|He−r|G > (the numerator of Eq.( 2.9)). If the
wavefunctions of |p > and |ei > interact incoherently, they will simply produce a
Lorenzian peak superimposed on top of a broad electronic continuum. On the con-
trary, the presence of a coherent interaction g between |p > and |ei > will generate a
constructive and destructive interference observed as a maximum and minimum, re-
spectively (Figs. 3.1 and 3.2). This is the so-called “Fano-type lineshape”. In other
words, the Fano profile does not consist anymore of one Lorenzian peak centered
at the intrinsic frequency ω0, but it rather becomes asymmetric with a maximum
(ωmax) and minimum (ωmin) shifted from ω0 [106, 116, 17].

The Raman scattering cross section of the “Fano-type lineshape” is given by
[17, 106, 116]

IF (ω) =
πρ(ω)γ2(~ω0 − ~ω − g T

γ
)2

[~ω0 − ~ω + g2R(ω)]2 + π2g4ρ(ω)2
. (3.1)

The Kramers-Kronig related functions R(ω) and ρ(ω) denote real and imaginary
parts of the electronic response function χ(ω) = R(ω) + iρ(ω), respectively, and ω0

is the renormalized (intrinsic) phonon frequency. Equation 3.1 can be reformulated
as

IF (ω) = CF
(q + ϵ)2

1 + ϵ2
+ background, (3.2)
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Figure 3.2: Calculated Fano profile for different values of the asymmetry parameter q.
The curves have been normalized to the amplitude at the maximum [17]. The vertical
green line indicates the position of the intrinsic phonon frequency ω0. ωmax and ωmin

denotes the position of the maximum (constructive interference) and minimum (destructive
interference) intensities of a Fano-type lineshape, respectively.

with

q =
[gT/γ + g2R(ω)]

πg2ρ(ω)
and ϵ =

[ω − ω0 − g2R(ω)]

πg2ρ(ω)
, (3.3)

where q is the so-called “Fano asymmetry parameter” and CF is a proportionality
factor. One notices the main difference between a Lorentzian and a Fano formula in
the numerator of Eq.( 3.2). The numerator is replaced by one for a Lorenzian peak.

Equations (3.1)-(3.3) contain the following information [17]:

(i) The lineshape of a Fano-type phonon peak is highly dependent on the sign
of q. If q is negative, the low energy part of the phonon peak is lifted up while the
high energy side is pushed down (Fig. 3.2). A good example for that is the buck-
ling mode at 340 cm−1 of YBCO [details will be presented in chap. 5]. The reverse
happens for a positive sign of q like, for example, the apical oxygen phonon mode
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in LSCO [164]. The value of q plays the major role in determining the strength of
distortion of the Fano lineshape. For example, when q → ∞ (gργ → 0) a Lorenzian
linshape is recovered whereas the Fano lineshape becomes apparent with decreasing
q. In the special case |q| = 1, the lineshape is maximally asymmetric (Fig. 3.2).

(ii) As mentioned earlier, the extrema at ωmax and ωmin of a Fano-line are shifted
from the intrinsic phonon frequency ω0. To extract ω0, one has to find the roots of
(∂IF (ω)/∂ϵ) and substitute them in Eq.(3.2). The results are

(1)ϵ = −q ⇒ ω0 = ωmin + qΓ (2)ϵ = 1/q ⇒ ω0 = ωmax − Γ/q. (3.4)

Simultaneously, the apparent linewidth (ΓHWHM) is related to the intrinsic linewidth
(Γ) by

ΓHWHM = 2Γ|(1 + q2)

(1− q2)
|. (3.5)

Usually, the standard Fano formula (Eq. 3.2) is appropriate to fit qualitatively the
Fano lineshapes seen in xx (or yy) Raman spectra of YBCO. For a particular Raman
phonon of detwinned YBCO, the intrinsic position and linewidth observed in the xx
and yy symmetries must be identical. That is, at the center of Brillouin zone

ωxx
0 = ωyy

0 Γxx
0 = Γyy

0 . (3.6)

Note that the derivation of Eq. (3.4) assumes that the Raman intensity I(ω) is
described by Eq.(3.2) with an ω-independent background. Moreover, if I(ω) =
(q+ϵ)2

1+ϵ2
+ αω + β (with α ̸= 0) is assumed, one obtains higher correction terms for

q > 1: ωmax − ω0 = Γ/q + 1
2
1+q2

q4
Γ2 α + .... Since, however, the slope α is relatively

small, those higher corrections are of the order of 2% for the B1g-phonon, for exam-
ple. Therefore, it is reasonable to work with Eq.(3.4).

(iii) ρ(ω) and R(ω) are energy-dependent. For a flat continuous electronic back-
ground, ρ(ω) can be assumed as constant and therefore R = 0. Hence, ϵ and q
become (ω − ω0)/Γ and T/πρgγ, respectively. This can be applied to the Raman
spectra of high Tc superconductors in the normal state (at T > Tc). Since a broad
pair-breaking peak develops in the electronic continuum below Tc, g

2R(ω) which
is highly dependent on the assumed background, has to be taken into account (see
next subsections).
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(iv) The denominator of Eq.(3.1) implies that due to the ele-ph coupling, the
phonon acquires an intrinsic linewidth of 2Γ = 2πg2ρ(ω) where Γ is the half-width
at half-maximum (HWHM).

(v) Regardless of the nature of the matrix elements γ, T , g, the asymmetry pa-
rameter q ≈ T/πρgγ implies that any anomaly occurring in the phonon linewidth
is always accompanied by changes in q.

(vi) |γ|2 and |T |2 measure, respectively, the strength of light coupling to the
electronic and phononic excitations. |γ|2 (|T |2) is proportional to the electronic
(phononic) Raman efficiency, hence they are highly dependent on the incident pho-
ton energy.

(vii) In principle, the asymmetry parameter is a complex quantity, that is,
q̂ = qr + iqi. Throughout this thesis, we assume the Raman matrix elements T ,γ,
and g to be real and therefore q is real.

(viii) When the phonon lineshape is fitted with Eq.(3.2), the quantity Ip =
πCF q

2Γ is a measure for the phonon integrated intensity (∼ |T |2), equivalent to the
area enclosed by a Lorenzian lineshape.

In a Raman experiment on HTSCs, a nonzero intensity usually remains (even
after subtracting the dark current of the detector) at the frequency where a destruc-
tive interference between the phononic state and the electronic background should
cancel the signal, i.e. IF (ωmin) ̸= 0. Such effects may arise from an intrinsic non-
interacting background, i.e. an inactive part of the electronic system, or from other
excitations such as two-phonon or two-magnon processes. Besides that, anharmonic
decay may also contribute to the phonon linewidth. In addition, incoherent contri-
butions to the Fano line may arise from the existence of isotopes or the variation of
atomic concentration within the scattering volume [116, 17].

3.2 Phenomenological Model of the Electronic Ra-

man Response of Optimally and Overdoped

HTSCs: Generalized Fano Theory

The measured Raman intensity Iσ(ω) is related to the imaginary part of the elec-
tronic response function Imχσ(ω) via
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Iσ(ω) = A [1 + n(ω)] Imχσ(ω), (3.7)

where σ represents the symmetry projected out by the incoming and outgoing po-
larization vectors, n(ω) denotes the Bose distribution and A is a coupling constant.
The Raman response of optimally and overdoped HTSC at ω < 1000 cm−1 is dom-
inated by electronic (intraband) and phononic excitations. In order to disentangle
the electronic and phononic Raman excitations of highly doped cuprates, it is nec-
essary to employ a proper fitting procedure. A phonon interacting with intraband
excitations acquires a renormalized self-energy and exhibits an asymmetric, Fano-
type line shape (see sec. 3.1). To describe such an electron-phonon coupled Raman
spectrum, the following formula can be employed [165, 166, 167, 168, 169, 170, 171]

Imχσ(ω) = ρσ(ω) +
g2σ

γ(ω) [1 + ϵ2(ω)]

×
{
S2(ω) + 2ϵ(ω)S(ω)ρσ(ω)− ρ2σ(ω)

}
, (3.8)

where ϵ(ω) = (ω2 − Ω2)/2ω0γ(ω) and S(ω) = S0 + Rσ(ω). The renormalized
phonon frequency and the renormalized phonon line width are given by Ω2 =
ω2
0 − 2ω0g

2
σRσ(ω), and γ(ω) = Γ0 + g2σρσ(ω), respectively, with the intrinsic phonon

frequency ω0 and the intrinsic phonon line width Γ0. The parameter S0 , which
represents the phonon asymmetry, can be expressed in terms of the electron-phonon
coupling gσ, the Raman phonon matrix element Tσ, and the Raman electronic ma-
trix element γσ, that is, S0 = Tσ/(γσ.gσ). Since gσ, Tσ, and γσ are assumed in our
model to be real, S0 will be real. While the first term in Eq.(3.8), ρσ(ω), describes
the “bare” electronic Raman response, the second term represents the phononic
contribution and its coupling to the electronic background. Note that by setting
S to zero, Eq.(3.8) will simply produce a Lorenzian peak superimposed on a broad
electronic continuum.

The frequency-dependent electronic response function χσ(ω) can either be com-
puted from a microscopic model [167] or be determined from a fit to the Raman data
using a phenomenological model function [168, 169, 170, 18]. These two approaches
will be described in the following two subsections.

It is instructive to note that formula 3.8 can be brought into the form of the
widely used “standard” Fano profile, Eq.( 3.2) with the asymmetry parameter rewrit-
ten as

q = −S(ω)/[ρ(ω)]. (3.9)
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To extract renormalized phonon parameters the Raman spectra are often fitted us-
ing the simplified Fano profile, Eq. 3.2, with the Fano parameter q, the renormalized
phonon frequency ω0, and the renormalized phonon line width Γ (half-width at half-
maximum, HWHM) kept frequency independent. In this fitting procedure (Eq. 3.2),
only a small frequency region of the electronic continuum near to the phonon is an-
alyzed [see section 5.2]. While such an approach can give valuable insights into the
temperature dependence of the phonon line shapes, the intrinsic electron-phonon
coupling constants and the shape of the electronic continuum χ(ω) in the SC state
cannot be determined. We will compare the simplified Fano formula (3.2) with our
generalized theory [Eq.(3.8)] in sec. 5.2.

To complete the phenomenological model function [Eq. 3.8], we need to either
assume an expression that describes the real and imaginary parts of the electronic
response function χ(ω), or compute the electronic Raman response from a micro-
scopic model. Let us first describe a phenomenological model function for χ(ω).
Following along the lines of Refs. [168, 169, 170, 172] we express the imaginary part
of the electronic Raman efficiency with three terms

ρ(ω) = Cn
ω√

ω2 + ω2
T

+

[
C1

1 + ϵ21(ω)
− (ω → −ω)

]
−
[

C2

1 + ϵ22(ω)
− (ω → −ω)

]
, (3.10)

where ϵ1(ω) = (ω − ω1)/Γ1 and ϵ2(ω) = (ω − ω2)/Γ2. The first term in Eq.(3.10)
models an incoherent electronic background, which dominates the response in the
normal state of cuprate superconductors. It is linear in ω at small frequencies and
becomes constant for large Raman shifts [171]. Another frequently used expression
is I∞tanh(ω/ωT ) where I∞ (or, equivalently, Cn) and ωT are fit parameters [168,
169, 173, 174, 175]. The second and third terms are Lorentzians describing the
pair-breaking peak located below 2∆, and the suppression of spectral weight at low
frequencies, respectively. The latter is due to the opening of the SC gap. The last
two terms in Eq.(3.10) decrease in intensity and peak at lower frequency as the
superconducting transition temperature Tc is approached from below. The (ω →
−ω) terms, similar to the C1 and C2 terms but with ω replaced by −ω, are essential
to achieve the symmetry requirements for the Raman response. In the normal state,
the electronic response function is entirely described by the incoherent contribution
[first term in Eq.(3.10)]. The real part of the electronic response function, R(ω), is
obtained from the Kramers-Kronig transform of ρ(ω) as [172]
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R(ω) =
Cn

π
[ln

√
ω2
T + ω2

cut + ωcut√
ω2
T + ω2

cut − ωcut

+
ω√

ω2 + ω2
T

ln (
ωcut − ω

ωcut + ω

×
ω2
T − ωωcut +

√
(ω2

T + ω2
cut)(ω

2 + ω2
T )

ω2
T + ωωcut +

√
(ω2

T + ω2
cut)(ω

2 + ω2
T )

)]. (3.11)

Since R(ω) renormalizes the phonon frequency ω0 and the parameter S0, formula
(3.8) together with Eq.(3.10) and its Kramers-Kronig transform yield a fully self-
consistent analysis of the Raman spectra. To compute the Kramers-Kronig trans-
form of the incoherent part in Eq.(3.10), a cut-off frequency ωcut has to be intro-
duced, which results in a constant offset in the real part of the electronic response
R(ω). Provided ωc is chosen large enough (ωc ∼ 8000 cm−1), however, this error
only leads to negligibly small corrections.

An electron-phonon coupled Raman spectrum modeled with Eqs.(3.8) and (3.10)
is illustrated in fig. 3.3. In panel (a), the Raman efficiency is well reproduced by the
overall fit and therefore the intrinsic phonon parameters (ω0 and Γp) (Fig. 3.3(a))
and the bare electronic response (Fig. 3.3(b)) can be extracted. Figure 3.3a shows
that ω0 extracted from this fit procedure is equivalent to the intrinsic frequency
of a Lorenzian phonon peak measured, for instance, in inelastic neutron scattering
experiments. In fig. 3.3(b), the imaginary part of the electronic response function
ρ(ω) (henceforth, the electronic response) is depicted where ω1 and Γ1 display the
center frequency and the width (HWHM) of the 2∆ peak, respectively. The elec-
tronic response for ω → 0 (the solid curve below the horizontal dotted line) arises
from a combination of the the first and third terms of Eq.( 3.10) and describes the
suppression of spectral weight due to the opening of the 2∆-gap below Tc.

We will use expression (3.8) together with (3.10) to describe the coupling of the
electronic background to the phonons whose lineshapes exhibit the clearest manifes-
tations of the electron-phonon interaction (e.g., the in-plane B1g phonon at around
340 cm−1) (subsec. 5.1.1). If several phonons are fitted using Eqs. (3.8) and (3.10),
each acquires an interference term. In order to reduce the number of free fit pa-
rameters, the remaining phonons at 115, 150, 232, 440, 501, and 578 cm−1 can be
described using Lorentzian profiles I(ω)

I(ω) =
A

[Γ2 + (ω − Ω0)2]
(3.12)

with A, Ω0 and Γ being the phonon amplitude, frequency and linewidth (HWHM),
respectively. In the next subsection this procedure will be improved for the SC state
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Figure 3.3: (a) An electron-phonon coupled Raman spectrum (open circles) in the su-
perconducting state (T< Tc) with the overall fit of Eqs. 3.8 and 3.10 (red solid line) are
displayed. At the bottom, the bare phonon contribution (blue solid line) with the intrinsic
phonon parameters (ω0 and Γp) are demonstrated. The inset in (a) presents the difference
between the maximum of the Fano-type peak Ω and the intrinsic phonon frequency ω0.
(b) The phonon subtracted Raman spectrum (open circles) with the electronic response
[Eq. 3.10] (red solid line) are shown. The suppression of spectral weight due to the opening
of the 2∆-gap observed for ω → 0 [combination of the first and last terms of Eq. 3.10] is
denoted by the the area below the horizontal dotted line. The inset in (b) describes the
first term of Eq. 3.10 and shows the crossover frequency ωT above which the maximum of
the frequency-independent Raman intensity is observed. For clarity, the spectra and the
fits are vertically shifted. The short horizontal ticks denote the offsets.

by employing a microscopic description of the pair-breaking excitations.
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3.3 Microscopic Description of the Superconduct-

ing State in Orthorhombic Optimally and Over-

doped HTSCs

To describe the polarization-dependent electronic response function χσ(ω) in the su-
perconducting state, we employ a microscopic model using a realistic tight-binding
band structure with anisotropic hopping parameters and a superconducting gap
with a mixture of dx2−y2- and s-wave symmetries. Such a microscopic approach in
conjunction with the analysis of the Raman spectra based on Eq.(3.8) allows us to
obtain precise information about the wavevector dependence of the superconducting
order parameter. In particular, we are interested in estimating the magnitude of a
possible s-wave admixture to the dx2−y2 pair wave function.

The starting point of our calculation is the microscopic model introduced in
Ref. [21]. Since the unit cell of metallic and superconducting YBCO is orthorhombi-
cally distorted, the normal state band structure, the gap symmetry, and the Raman
vertices are expected to be slightly different from those describing the tetragonal
structure [Eqs.(1.8), (2.16)–(2.18)]. Here, the normal state band dispersion of a
single copper-oxygen plane becomes

εk = −2t
[
(1 + δ0) cos kx + (1− δ0) cos ky

]
−4t′ cos kx cos ky − µ, (3.13)

and the gap function

∆k =
∆0

2

(
cos kx − cos ky

)
+∆s, (3.14)

where δ0 and ∆s represent symmetry-breaking terms that lower the symmetry from
tetragonal to orthorhombic in an effective one-band description of a single copper-
oxygen plane [21].

Since the ∆s admixture to the d-wave pairing is assumed to be isotropic, the
gap function is expected to change only along the x and y axes of the Brillouin zone
while the nodes remain the same. Therefore, only the A1g and B1g Raman vertices
will be affected (for convenience, we use tetragonal representations), that is,

γA1g ,k
∝ t [(1 + δ0) cos kx + (1− δ0) cos ky] + 4t′ cos kx cos ky, (3.15a)

γB1g ,k
∝ t [(1 + δ0) cos kx − (1− δ0) cos ky] , (3.15b)
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respectively. Eq.(2.17c) is still valid for describing the B2g Raman vertex. Finally,
the electronic Raman response function in the SC state (for σ = A1g and B1g chan-
nels) will be given by [21]

χσ(ω) =
⟨
γ2σθk(ω)

⟩
− ⟨γσθk(ω)⟩2

⟨θk(ω)⟩
. (3.16)

Note that for orthorhombic HTSCs, both A1g and B1g Raman spectra are influenced
by the screening term, whereas in tetragonal HTSCs the screening acts only on the
Raman A1g spectrum.





Chapter 4

Experimental Aspects

4.1 Preparation of Twin-Free YBa2Cu3O6+x Sam-

ples

The high quality single crystals of YBa2Cu3O6+x and Y1−yCayBa2Cu3O6+x used
in this thesis were grown by the top-seeded solution (flux) growth method. The
growth procedure is described in refs.[177, 178]. Since the starting mixture is molten
at temperatures of about 1000◦C, the as-grown crystal structure at this particular
temperature is tetragonal. When cooling the crystals slowly through the tetragonal
to orthorhombic transition temperature (TT−O which is between 750 and 500 ◦C)
in the presence of an oxygen atmosphere, they become orthorhombically distorted
due to formation of the Cu-O chains along the b-axis. The T-O transition is usually
accompanied with elastic shear stresses that relax through formation of a polydo-
main twin structure, i.e. two equiprobable families of twins [179, 180]. Annealing
the YBCO6+x crystals (annealing conditions of our samples are listed in table 4.1)
allows obtaining the desired oxygen concentration in the samples, whereas its influ-
ence on the polydomain twin structure is small.

By examining the as-grown crystals under polarized light microscope, the poly-
domain twin arrangement appears as successively ordered bright and dark fringes
aligned parallel to [110] and [110] directions. Vlasko-Vlasov et al. [181] have found
that thin YBCO crystals are opaque (transparent) for light polarized along the
b–axis (a–axis) and thus, the light phase shift coming from both axes is different.
Therefore, the image contrast of the twin domains changes as the analyzer is rotated
by 90◦ around the microscope axis indicating the reciprocal exchange of the a– and
b–axes (Fig. 4.1(a)).

Due to the presence of twin polydomains in the as-grown YBCO samples, the

83
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(a) As-grown                      (b) Detwinned 

Figure 4.1: Microphotographs of the same single crystal (a)before and (b) after detwin-
ning. The pictures are taken under a polarized light microscope. This figure is taken from
ref. [179]

ab-anisotropy of their physical properties cannot be determined. In order to obtain
twin-free YBCO samples, the as-grown single crystals should be thermomechanically
treated using the so-called “detwinning procedure” in which the twin domain walls
move due to the application of high temperature and pressure [179, 182, 30].

 

Figure 4.2: Schematic diagram of detwinning device used in this thesis. This figure is
taken from ref. [179]

A schematic diagram of the detwinning device is shown in fig.(4.2). The de-
twinning procedure requires crystals with sharp edges, i.e. squares or rectangles.
Therefore, our samples were cut into rectangular shapes of typical size of 3×3×1
mm3 to be detwinned individually. Each sample was then placed between two quartz
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Sample Ann. Ann. Det. Det. Tc (K) ∆Tc

Gas Temp.(◦C) Gas Temp. (K)
YBCO6.95:Ca O2 400 O2 520 75 6
YBCO6.95 O2 520 O2 520 92 3

YBCO6.6:Ca Synthetic Air 585 O2 500 82 8
YBCO6.6 Synthetic Air 585 Ar 400 62 2
YBCO6.45 99.5% Ar+0.5%O2 585 Ar 400 35 3

Table 4.1: Annealing and detwinning conditions of the YBCO samples investigated
in this thesis. The crystals were annealed for almost one week and then quenched
in liquid nitrogen in order to avoid further oxygen diffusion whereas detwinning was
performed in about 3-4 hours and the samples were cooled quickly without using
liquid nitrogen.

stress-plates (horizontal arrows in fig. 4.2). Afterwards, a constant mechanical stress
of about 1× 107 N/m2 was applied along the [100] direction. In order to keep the
required oxygen concentration of our sample unchanged and to avoid any further
oxygen exchange between the sample and the surrounding atmosphere, the sample
chamber was sealed and a suitable gas flow was adjusted during the detwinning pro-
cess. Afterwards, the temperature of the crystal was rapidly elevated (within less
than 5 minutes) to an appropriate detwinning temperature and kept fixed during
the detwinning process. The subsequent development of the twin domains was mon-
itored by a polarized light microscope. When a single domain sample was observed
(usually after almost 3 hours), the heater was switched off and the sample was cooled
down quickly (within less than 5 minutes) to about 150◦C. Finally, the sample was
left inside the detwinning chamber until it cooled down to room temperature. Ta-
ble 4.1 summarizes the annealing and detwinning conditions of the samples used in
this thesis.

4.2 Sample Characterization

After the detwinning process, we have measured the superconducting transition
temperatures of our samples using a superconducting quantum interference de-
vice (SQUID). The magnetization curves of the Y0.85Ca0.15Ba2Cu3O6.95 (henceforth
YBCO6.95:Ca), YBCO6.95, Y0.87Ca0.13Ba2Cu3O6.6 (henceforth YBCO6.6:Ca), YBCO6.6

and YBCO6.45 crystal show an onset of Tc= 75 K, 92 K, 82 K, 62 K and 35 K, with a
transition width ∆Tc of less than 6 K, 3 K, 8 K, 3 K and 3 K, respectively (Fig. 4.3).
This indicates good homogeneity of the samples. Employing Tallon’s phenomenolog-
ical expression (Eq. 1.7) with Tc,max = 93K, the hole doping p levels of our samples
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Figure 4.3: Temperature dependence of the dc-magnetization of the samples studied in
this work.

are estimated as 0.21 (moderately overdoped), 0.17 (slightly overdoped), 0.125 (un-
derdoped) ,0.1 (underdoped), and 0.07 (underdoped) per planar Cu ion, respectively.

Using light microscopy, the sample surfaces, which are of high importance in
Raman scattering experiments, appeared to be in good condition (clean and shiny).
In order to obtain higher surface quality, we followed along the lines of Ref. [183]
and etched our samples in a 1% Br/Ethanol solution for 2 − 3 minutes and then
cleaned them with pure ethanol.

Determining the orientations of the crystallographic axes for each single crystal
is necessary for the application of Raman selection rules. Polarized light microscopy
and Laue x-ray diffraction show that the a–, b– and c–axes are always parallel to the
edges of our rectangular-shaped samples. Raman scattering is indeed a powerful tool
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to determine the crystallographic axes as well as the detwinning ratio of the crystals,
because the number of the phonon modes as well as the electronic background in
xx, yy and zz symmetries are different (see subsec. 5.1.1). Raman spectra measured
at different spots of the ab-surface of each sample look nearly identical, confirming
the homogeneity of our single crystals.

4.3 Raman Setup

A schematic diagram of one of the Raman spectrometers at the Max-Planck-Institute-
Stuttgart is shown in fig. 4.4. Like any other spectroscopic technique, Raman scat-
tering requires at least a source of excitations, an efficient system to collect the
weak scattered intensity, a spectrometer for analyzing the scattered intensity, and a
sensitive detector.

For excitation, a discrete monochromatic line emitted from an Ar+/Kr+ mixed
gas laser is used. This laser source is tunable, i.e. capable to give ten discrete laser
lines (from red to violet light). The emmitted laser light is usually accompanied
with plasma lines, which have higher strength than phonons. To exclude these lines
from the measured signal, a plasma filter is installed in the optical track. In order
to avoid sample overheating which may cause severe damage to the sample surface,
the incident laser intensity must be adjusted depending on the sample sensitivity.
As light travels along the optical path, it spreads out with a small angle, therefore
pin holes are needed to collimate the divergent light beam. For opaque samples,
the Raman experiment is usually performed in backscattering geometry. For this
reason, a prism is used to rotate the direction of the laser light by 90 degrees. The
prism (which acts here as a mirror) is of small size and hence it cuts a negligible
fraction of the scattered intensity towards the entrance of the spectrometer.

Since Raman scattering is a probe for polarization-dependent excitations, a po-
larizer and an analyzer were placed into the light path before and after the sample
(pieces number 4 and 11 in fig. 4.4). Selection rule analysis can be achieved by either
rotating the polarizer and the analyzer or by rotating the sample while the polarizer
and analyzer are kept fixed to a particular geometry.

The intensity of the inelastically scattered light is 4 − 6 orders of magnitude
weaker than the incident laser intensity. Besides that, imperfections of the optics
and/or light scattering by dust particles can produce a strong background of stray
light. Therefore, a good spectrometer is required to detect such weak excitations and
to exclude the undesired stray light. To achieve this goal, a single-monochromator
with 1800 grooves per millimeter equipped with a Notch-filter is sufficient. Our spec-
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trometers consist of three monochromators with 1800 grooves/mm (Dilor XY-triple
grating spectrometer) designed in a subtractive mode. The first two monochroma-
tors are used to cut the stray light whereas the third disperses the Raman spectra.
For instance, the scattered radiation (polychromatic light) enters the first monochro-
mator through the entrance slit S1 and gets dispersed by the grating G1 (Fig. 4.5).
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The slit between the first and the second monochromators S1/2 selects a spectral
range between λ1 and λ2 and cuts the undesired radiation. Afterwards, the dis-
persed radiation recombine after the second grating G2. The resulting radiation
is polychromatic but limited to only the spectral range between λ1 and λ2. Then,
the spectrum is transmitted through the third slit S2/3 and analyzed by the third
grating G3. Finally, the analyzed radiation is recorded by a charge-coupled device
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(CCD) camera.

4.4 Measurements

The Raman scattering experiments were performed in backscattering geometry. For
excitation, the 514.5 nm line of an Ar+/Kr+ mixed gas laser was used. In order
to avoid laser-induced heating of the sample, the power of the incident laser was
kept below 10 mW at the sample surface with a laser spot of 100 µm in diameter.
Some of the spectra presented in this work were also measured using a Labram
(Jobin Yvon) single-grating Raman spectrometer equipped with a Notch-filter. For
excitation, a solid-state exciting laser (λ=532 nm) and a He+/Ne+ mixed gas laser
(λ=632.8 nm) were used. In this case, the power density at the sample surface was
kept to less than 4 mW with a laser spot of 15 µm in diameter. The resolution of
our spectrometers was of about 3 cm−1. The direction of the incident laser light
was always nearly parallel to the crystallographic c-axis. For accurate study of the
temperature dependence of the Raman spectra at low temperatures, the samples
were placed at the cold finger of a cryostat cooled by liquid helium flow with a tem-
perature stabilization better than 1 K. For a precise determination of the phonon
frequencies and linewidths, a calibration spectrum of a nearby argon or neon line
was measured after each YBCO spectrum.

The x-ray diffuse scattering measurements presented in subsec. 5.4 were con-
ducted at the high energy wiggler beamline BW5 at the Synchrotronstrahlungslabor
(HASYLAB) at the Deutsches Elektronen-Synchrotron (DESY). The energy of the
x-ray beam was 100 keV. A closed cycle cryostat was used to reach temperatures as
low as 8 K.



Chapter 5

Results and Discussion

5.1 YBCO6.95 and YBCO6.95:Ca

5.1.1 ERS in xx versus yy Symmetries: Signature for s-wave
Admixture to the d-wave Pairing Symmetry

Figures 5.1-5.3 show Raman spectra of detwinned YBCO6.95 and YBCO6.95:Ca crys-
tals measured at various temperatures. As in other high-Tc superconductors [16,
154, 156, 83, 184], the normal-state spectra exhibit a flat electronic continuum with
superimposed phonons. Below Tc, a significant fraction of the electronic spectral
weight is transferred to higher energies, resulting in a broad pair-breaking peak in
the continuum. In addition, the phonon lineshapes reveal characteristic changes.
In B1g polarization this spectral-weight redistribution is most pronounced because
electronic Raman scattering in this geometry is sensitive to the maximum of the
SC gap along the anti-nodal direction of the two-dimensional SC gap. We therefore
focus in this work on this geometry, along with the xx and yy polarization channels
that provide direct information about the in-plane anisotropy of the electronic re-
sponse.

Figure 5.2 gives an overview of the phonon modes of YBCO6.95 in the xx and yy
polarization geometries. As expected based on a group-theoretical analysis (sec.2.4)
five phonons appear in both polarization channels. The lowest-frequency phonon
at 113 cm−1 (A1g) originates predominantly from vibrations of the barium atoms.
The next lowest frequency phonon at 148 cm−1 (A1g) corresponds mainly to the
vibrations of copper (Cu2 ions). The vibrations of the apical oxygen ions (O4) ap-
pears at 501 cm−1 (A1g). The two modes at 340 cm−1 (B1g) and 446 cm−1 (A1g)
originate from out-of-phase and in-phase vibrations of the planar oxygen ions (O2
and O3), respectively [109]. Two additional defect-induced modes appear in the
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Figure 5.1: Raman spectra of a detwinned slightly overdoped YBa2Cu3O6.95 single crystal
in the yy symmetry taken with an Ar+ laser line (λ=514.5 nm) at 20 K (black) and 100
K (red). The normal state spectrum reveal a flat electronic background. The arrow
denotes the spectral weight transfer due to the opening of the superconducting gap, which
is marked with the shaded area.

yy symmetry at 232 cm−1 and at 579 cm−1. They originate from vibrations of the
copper (Cu1) and the oxygen (O1) ions, respectively, in the Cu–O chains, which are
aligned along the crystallographic b–axis [135]. In YBCO crystals with fully oxy-
genated chains, these two modes are Raman forbidden but infrared–allowed (B1u

symmetry) [136, 137, 138]. They become Raman-active due to breaking of the
translational symmetry by defects, i.e., unoccupied oxygen positions in the Cu1-O1
chains [116, 135, 140]. The absence of the strong mode at 579 cm−1 in the data
with xx polarization confirms the high detwinning ratio of our crystal (∼ 95%). In
Ca-doped YBCO (Fig. 5.3), the Ca ions partially replace the Y ions at the center
of inversion of the YBCO unit cell, thus the Raman activity of their vibrations, if
any, should be very weak. Hence, the assignment of the phonon modes is identical.
Again, the anisotropy of the phonon spectrum confirms the nearly perfect detwin-
ning ratio of our YBCO6.95:Ca crystal.

We have employed a non-linear fit procedure with ten (six) independent fit pa-
rameters to the Raman spectra of YBCO6.95 and YBCO6.95:Ca in the superconduct-
ing (normal) state. Cn and ωT describe the intensity and position of the maximum
of the normal-state electronic background given by the square root of a rational
function. In the superconducting state C1/C2, ω1,2, and Γ1,2 describe amplitude,
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Figure 5.2: Raman spectra of a detwinned slightly overdoped YBa2Cu3O6.95 single crys-
tal in xx and yy polarization taken with an Ar+ laser line (λ=514.5 nm). The mode
assignment corresponds to Refs. [109, 112, 116, 135, 140]. The spectra were shifted by a
constant offset with respect to each other. The intensity scales in left and right panels are
the same.

position and width of a Lorentzian function reflecting the region of the pair-breaking
peak. Finally, Γ0, ω0, and S0 effectively characterize amplitude, width, position, and
asymmetry of a generalized Fano function (describing the B1g phonon). Note that
for not too strong frequency dependences of ρ(ω) and R(ω), the renormalization
of the Fano formula due to the electronic background can be simply viewed as an
offset of the parameters entering in the Fano formula [cf. Eqs. (3.2), (3.3) and (3.8)].

The results of this fit procedure are shown in Figs. 5.4-5.6 together with the
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Figure 5.3: Raman spectra of a detwinned overdoped Y0.85Ca0.15Ba2Cu3O6.95 sample in
xx and yy polarizations taken with λ=514.5 nm at 80 K. For clarity, the yy spectrum was
vertically shifted with the horizontal line indicates the corresponding baseline.

experimental data. Table 5.2 lists the corresponding fit parameters. Note that on
general grounds the extracted ω0 and Γ0 parameter values need to be identical at a
given temperature for all measurements of a given phonon. In Table 5.2 we show,
however, the parameter values that correspond to the best (non-linear least squares)
fit to the data. The differences reflect the error bars of our procedure. It is important
to emphasize that the Fano profile of the B1g-mode shown in Figs. 5.4-5.8 results
from the interaction with the electronic Raman signal; both electronic and phononic
contributions and their interdependence can be described by Eqs.(3.8) and (3.10).
The final result agrees well with the measured data. Thus, our model allows us to
some extent to disentangle the electronic and phononic parts of the Raman response,
and to identify the shape of the electronic background. However, strictly speaking,
only a combination of parameters such as g2ρ and g2R can be extracted. This fit
procedure is improved for the SC state by employing a microscopic description of
the pair-breaking excitations (see below).
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Figure 5.4: xx and yy Raman spectra of YBCO6.95 (λ = 514.5 nm) in the normal state
at T = 100 K (a,c) and in the superconducting state at T = 20 K (b,d). Open circles
show the experimental data. The solid curves represent the fitting result with formula 3.8
and four Lorentzians for the remaining A1g phonons whereas the dashed curves depict the
electronic background.

5.1.2 B1g Raman Signals

To describe the combined electronic and phononic Raman response in the SC state,
we use Eq. 3.8 together with the real and imaginary parts of the electronic Raman
response in the SC state, Eq. 3.16. We have assumed the same band structure pa-
rameters as in Ref. [21] together with ∆d = 30 meV, ∆s = 0, 3 and 6 meV, and
η = 5 meV. Furthermore, we assume that the bare fit parameters do not change as
we go from the normal state to the SC state.

In Figure 5.7(a) we show numerical results obtained from our theoretical model
and their comparison with the data on YBCO6.95 obtained in B1g-polarization. The
calculations have been performed at T = 20 K and for various s-wave contributions.
The best description for both the B1g-mode and the electronic response is found
if ∆s is assumed to be 10% of the maximum of the dx2−y2-wave gap (short dotted
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Figure 5.5: Same as Fig. 5.4 but for the overdoped sample YBCO6.95:Ca.

YBCO6.95 S0 2Γ0 ω0 ω0(INS) ω0(sqrt) ω0(lin.)
B1g (100K) 1.5 15.3 343.1 343.9 342.8 341.9
XX (100K) 1.8 12.2 342.9 343.9 339.1 340.7
YY (100K) 1.8 12.2 342.9 343.9 339.5 338.7
B1g (20K) 2.6 14.8 338.6 338.4 335.8 335.7
XX (20K) 4.1 13.2 336.4 338.4 333.0 332.5
YY (20K) 2.1 13.8 336.3 338.4 334.2 334.2

Table 5.1: Extracted parameter values of the B1g oxygen vibration in YBCO6.95

measured at 20 K and 100 K, respectively. Left part: asymmetry parameter S0,
intrinsic phonon linewidth (FWHM) 2Γ0, and intrinsic phonon frequency ω0 using
the generalized Fano approach of Eq.(3.8). Right part: ω0 extracted with Eq.(3.2)
for different phenomenological electronic backgrounds [sqrt = first term in Eq.(3.10);
lin. = linear background with offset at ω = 0]. For comparison we display in the
middle part ω0 obtained from inelastic neutron scattering (INS) experiments by
Reznik et al. [96]
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Figure 5.6: B1g Raman spectra of YBCO6.95 (λ = 514.5 nm) in the normal state at
T = 100 K (a) and in the superconducting state at T = 20 K (b). Open circles show the
experimental data, the solid curve the fitting result with formula 3.8 and four Lorentzians
for the remaining A1g phonons. The insets show the corresponding data after phonon
subtraction. Panels (c) and (d) show the phonon-subtracted spectra for the xx and yy
channels, respectively. The vertical lines in (c,d) indicate the maxima of the electronic
peak intensity at 450 cm−1 and 480cm−1, respectively. (e-h) Same as (a-d) but for the
overdoped sample YBCO6.95:Ca. The spectra were recorded at 80 K (normal state) and
12 K (SC state). The vertical lines in (g,h) indicate the maxima of the electronic peak
intensity at 290 cm−1 (XX) and 355 cm−1 (YY), respectively.

line); this also accounts for the slight shift of the pair breaking peaks in xx and yy
polarizations (Fig. 5.6 (c) and (d)). Furthermore, our numerical results solely for the
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Figure 5.7: (a) B1g Raman spectra of YBCO6.95 in the superconducting state at T = 20 K
(λ=514.5 nm). Open circles show the experimental data. The short dashed, short dot-
ted, and short dash-dotted curves are the theoretical result obtained with Eq. 3.16. The
B1g phonon was also taken into account. We show results for various s-wave contribu-
tions ∆s/∆d = 0 (dashed); 0.1 (dotted); 0.2 (dash-dotted). The dashed, dotted, and dash-
dotted curves show the calculated imaginary part of the electronic response, χ′′

B1g
(ω).

(b) Subtracted spectra [20K (sc-state)-100K (n-state)] for the B1g polarization channel
of YBCO6.95. Before subtraction the spectra were divided by the Bose factor. The solid
curve depicts the theoretical result for 10% s-wave contribution.

electronic response, i.e. the 2∆-pair-breaking peak, are also displayed in Fig. 5.7
(dashed, dotted and dash-dotted lines). They are obtained by setting all phononic
parts and the corresponding interference terms in Eq. (3.8) to zero. Interestingly, we
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Figure 5.8: (a) B1g Raman spectra of YBCO6.95:Ca in the superconducting state at T =
12 K (λ=514.5 nm). Open circles show the experimental data. The short dashed, short
dotted, and short dash-dotted curves are the theoretical result obtained with Eq. 3.16. The
B1g phonon was also taken into account. We show results for various s-wave contributions
∆s/∆d = 0.05 (dashed); 0.15 (dotted); 0.25 (dash-dotted). The dashed, dotted, and dash-
dotted curves show the calculated imaginary part of the electronic response, χ′′

B1g
(ω).

(b) Subtracted spectra [12K (sc-state)-80K (n-state)] for the B1g polarization channel of
YBCO6.95:Ca. Before subtraction the spectra were divided by the Bose factor. The solid
curve depicts the theoretical result for 15% s-wave contribution.

find that the pair-breaking peak shifts to lower energies with increasing ∆s, a fact
which has been discussed in a previous paper by Schnyder et al. [21]. In addition,
the cubic low-energy response, i.e. its (ω/2∆0)

3-behavior found for ∆s = 0 changes
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if ∆s ̸= 0: we obtain linear correction terms which are, however, proportional to
∆s/∆d, and thus barely observable [3].

Figure 5.7(b) shows the differences (χ′′
S−χ′′

N), which were obtained by subtracting
the spectra at 20 and 100 K after dividing by the Bose factor. The solid line is ob-
tained after subtracting the model function 3.10 for the normal state [see Fig. 5.6(a)]
from the results for the SC state when ∆s/∆d = 0.1 [dotted line in Fig. 5.7(a)]. We
find that the position of the pair-breaking peak at ∼ 460 cm−1 (and partly its shape)
is well described by our theory. This confirms that 10% s-wave contribution [short
dotted line in Fig. 5.7(a)] yields an excellent description of the electronic Raman
response. Furthermore, the temperature-dependence of the related B1g phonon is
also reproduced (Fig. 5.7(b)). Note that the difference between experimental and
calculated data at small energies is likely to be due to elastic impurity scattering
which is not taken into account in our theoretical model. Here, we emphasize that
the low-energy power laws in Figs. 5.6 and Fig. 5.7(a) are changed in the presence
of an s-wave contribution while there exists no power law for the subtracted data in
Fig. 5.7(b).

Finally, we return to the moderately overdoped sample. Raman data on YBCO6.95:
Ca above and below Tc in several polarization geometries are displayed in Fig. 5.6.
In the absence of specific information about the electronic band dispersions of this
material, we modeled these data by scaling the magnitude of the energy gap ∆d by
the ratio of transition temperatures (i.e. ∆d(YBCO6.95:Ca) = 25 meV and ∆s =
0, 2.5 and 5 meV), keeping all other model parameters identical to those used for
YBCO6.95. The best fit was obtained for ∆s/∆d = 0.15 (however the estimated error
bars are about ±0.05), slightly larger than the corresponding quantity in YBCO6.95.
Note that the quality of the fit is comparable to the one for YBCO6.95, although
separate plane and chain subsystems were not introduced in the analysis [185, 186].
The previously observed difference between spectra in xx and yy geometry was con-
firmed (Fig. 5.6), but our model calculations suggest that this is a consequence of
the s-wave admixture to the gap [3], obviating the need to introduce quantum in-
terference between scattering from chains and planes[78, 185].

5.2 Temperature Dependent Phonon Lineshapes

5.2.1 Anisotropic Fano Profile

Several phonons in YBCO display a pronounced asymmetric lineshape suggesting a
strong interaction with the electronic continuum. As shown in Fig. 5.9 the asym-
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Figure 5.9: Fano-analysis [Eq.(3.2)] of three different phonons measured at a temperature
of 20 K (λ=514.5 nm). (a,b) The fit of the 340 cm−1 mode, which corresponds to the out-
of-phase vibrations of the planar oxygen, along yy and xx polarizations, respectively.(c,d)
same as (a,b) but for the in-phase planar oxygen mode around 440 cm−1 and apical oxygen
mode at 501 cm−1. Open circles show the experimental data. The dash-dotted lines are
the results of the overall fit to the experimental data. The solid lines are the results of
fits to Fano–profiles [Eq.(3.2)] as described in the text. The dotted lines correspond to a
linear background. The intensity units are arbitrary but the same in the four vignettes.

metry is most pronounced for the 340 cm−1 mode. Interestingly, the phonon peak
reflecting the vibration of the apical oxygen at 501cm−1 exhibits a strong asymmetry
for a polarization of incident and scattered light along the a–axis, whereas along the
b–axis the phonon appears to be almost symmetric (see Fig. 5.9). Two additional
modes are present in this spectral range. The mode at 440 cm−1 originates from an
in-phase vibration of the oxygen atoms O2 and O3. Additional modes are present
at about 472 cm−1 and 480 cm−1 for polarizations parallel to the a- and b-axis, re-
spectively. As mentioned above, these modes are Raman forbidden, but correspond
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to IR allowed vibrations involving the Cu1-O1 chains [187]. Due to defects (oxygen
vacancies) in the Cu1-O1 chains they become Raman active. Similar to previous
temperature dependent Raman experiments on YBCO7−δ [140, 188, 189, 190] and
HgBa2Ca3Cu4O10+δ, [99] we have fitted the phonons of YBCO6.95 by using simple
Fano profiles. The solid lines in Fig. 5.9 are the results of fits to the experimental
data using Eq. 3.2, the dash dotted lines correspond to the resulting fitted lineshape
of the entire spectrum. The calculated profiles agree well with the measured spectra.

In order to obtain estimates of the intrinsic phonon positions and linewidths, we
have followed the procedure used in Ref.[20] and corrected the peak position and
linewidth using Eq.(3.4). Figure 5.10 shows the apparent and intrinsic positions and
linwidths of the B1g phonon in xx and yy polarizations. The apparent phonon posi-
tions (peak maxima) and linewidths are polarization dependent, i.e. different along
xx and yy symmetries, whereas the intrinsic positions and linewidths are the same
in both polarization geometries. The difference in the apparent parameters (ωp and
Γp) reflects the xy-discrepancy of the asymmetry of the phonon lineshapes, which
contains valuable information about the xy–anisotropy of the 2∆ gap (sec.5.2.3).

Fits to the simplified Fano profile of Eq. (3.2) are much less complicated than the
fitting procedure to the full spectrum discussed above. This is a key advantage espe-
cially in situations in which several closely spaced phonons partially overlap as is the
case, for instance, for the apical-oxygen vibration in Fig. 5.9. The multi-parameter,
global fit [Eq. (3.8)] yields unstable results for these phonons. It is important to
note, however, that the quantities extracted from simple Fano fits are renormalized
by the electronic response function, and therefore deviate slightly from the intrinsic
phonon frequency ω0 and the bare linewidth Γ0 of Table 5.2. We will compare the
results of both procedures in detail at the end of the next subsection.

Since the energy of the pair breaking peak in YBCO6.95:Ca is lower than the one
in YBCO6.95, it coincides with the energy of the B1g phonon mode. Therefore, fits
using the simplified Fano profile (Eq. 3.2) are, however, barely achievable. Due to
this reason, we will focus the discussion on the phonons of YBCO6.95.

5.2.2 Superconductivity-Induced Changes in the Phonon Fre-
quencies and Linewidths

Figure 5.11 shows the temperature dependence of the energies and linewidths of
two particular phonons, the 340 cm−1 and 501 cm−1 modes, measured with light
polarization along the crystallographic a– and b–axes. The spectra were taken at
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Figure 5.10: Frequency and line width versus temperature of the 340 cm−1 mode (λ=514.5
nm). Triangles and circles are the apparent values obtained using Eq.(3.2) (before asym-
metry correction) for the xx- and yy-polarization, respectively. Squares and crosses are
the corresponding intrinsic values using Eqs.(3.2) and (3.4) (after asymmetry correction).
Inset displays the Fano analysis of the 340 cm−1 mode for the xx (triangles) and yy (cir-
cles) polarizations. ωp and ω0 correspond to the apparent and intrinsic phonon frequencies,
respectively.

temperatures ranging from 20 to 300 K. The temperature dependence of the phonon
energy and linewidth in the normal state arises from anharmonic phonon-phonon
interactions, i. e., the decay of a high-energy optical phonon into two phonons of
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lower energy with opposite momenta [191, 192]. For simplicity, assuming the result-
ing phonons to have the same energy [191, 192] and using Bose-Einstein statistics,
this decay process leads to

Γanh.(T ) = ΓT=0
anh.(1 + 2n(ωp/2)). (5.1)

This process, implying decay through real transitions, is strictly valid for the line
width, but has been also used for the frequency shift although, in this case, vir-
tual transitions also play a role. In Fig. 5.11, both linewidth and peak position
were fitted simultaneously for the temperature range above Tc (solid lines). Both
of these quantities show abrupt changes at the SC transition temperature due to
the opening of the superconducting gap, as previously observed in YBCO (see for
example Refs. [140, 188, 189, 190]) and also other superconducting compounds like
HgBa2Ca3Cu4O10 [99, 120] and Bi2Sr2CaCu2O8 [193, 194].

Within the error bars of ∼ 0.8 cm−1 in (a)-(c) and 2.0 cm−1 in (d), the phonon
peak position and linewidth of the 340 cm−1 mode is the same for the xx and yy po-
larizations (see Fig. 5.11(a) and (b)). Taking the phonon positions and linewidths in
the SC state as ωs

p and Γs
p, the maximum change in the phonon position and linewidth

is obtained from ∆ω = ωs
p(T̃ )− ωp(T = 100 K) and ∆Γ = Γs

p(T̃ )− Γp(T = 100 K),

where T̃ denotes the temperature at which the maximum of the SC-induced changes
occurs [195]. The additional softening below Tc due to the electron–phonon inter-
action is about -6 cm−1. The change in linewidth (FWHM) is +3 cm−1, reflecting
a broadening. For the vibration of the apical oxygen, i.e. the 501 cm−1 mode, the
corresponding shift (hardening) and broadening are +3 cm−1 and +5 cm−1, respec-
tively. The SC-induced changes for the 340 cm−1 and 501 cm−1 modes are in good
agreement with previous data obtained on twinned YBCO [140, 188, 189, 190, 195].

The SC-induced changes in the phonon linewidth and peak position (for a phonon
labeled as µ) can be related to changes in the phonon self–energy Σµ(ω) = |gµ|2 Π(ω+
iη) (with η → 0), resulting from the interaction between the phonons and the elec-
tronic system below Tc [21, 176, 194]. The induced frequency shifts ∆ω are related
to the real part of the phonon polarization Π by [97, 176, 196]:

∆ω

ω0

=
1

N(0)
λReΠ(ω0), (5.2)

while the induced changes in the linewidth can be calculated via:

∆Γ

ω0

=
1

N(0)
λ ImΠ(ω0). (5.3)
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Figure 5.11: Frequency and line width (FWHM) obtained using Eqs.(3.2) and (3.4)
versus temperature of the 340 cm−1 mode and the 501 cm−1 mode of YBCO6.95 for the
xx- and yy-polarization, respectively (λ=514.5 nm). Below Tc a comparison between
calculations for s = ∆s/∆d = 0 (dashed line), 0.1 (dash-dotted line), and 0.2 (dotted line)
is displayed. The solid line corresponds to the temperature dependence of pure phonon–
phonon interaction (interpreted as Klemens decay into two phonons of equal frequencies).

Here, N(0) denotes the electronic density of states at the Fermi level and λ is the
dimensionless electron-phonon coupling constant which can be given as [197]:
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λ = 2
∑
k

∑
µ

∫
dω

ω
|gµk,0|

2 F µ
k (ω)δ(ϵk). (5.4)

F µ
k (ω) denotes the spectral function for phonon µ under consideration [197]. Taking

into account screening effects, i.e. the long-range Coulomb force, the self-energy is
given by [21, 97, 176, 196]:

Σλ(ω) = −
⟨(
gµk,0

)2
θk(ω)

⟩
+

⟨
gµk,0θk(ω)

⟩2
⟨θk(ω)⟩

, (5.5)

where the angular brackets are defined by Eq. 2.13. The symmetry of the optical
phonons is reflected in the matrix element gµk,0. The electron-phonon coupling of
phonons of A1g and B1g symmetry are in a first approximation given by

g
B1g

k,0 = gB1g
(cos kx − cos ky)/2, (5.6a)

g
A1g

k,0 = gA1g
(cos kx + cos ky)/2, (5.6b)

with the electron-phonon coupling strength gB1g
and gA1g

(Note that there is more

than one phonon of A1g symmetry). Calculations of the superconductivity-induced
phonon self-energy effects show that phonons below the energy of the supercon-
ducting gap 2∆max should soften below Tc (i.e. they should shift to lower ener-
gies) [21, 176, 196], whereas phonons above 2∆max should harden (see fig. 5.12).
This is confirmed in our experiments (not all data are shown here) and in previous
work (see Refs. [19], [140], [188], [189] and [190]). The energy of the apical oxygen
phonon (501 cm−1 = 62.5 meV) is right at the gap energy and is therefore sen-
sitive to small changes in the energy of the SC gap. The 340 cm−1 mode is well
below the SC energy gap for T ≪ Tc. With increasing temperature the energy
of the 2∆ gap shifts to lower energies and moves through the energy of the 340
cm−1 mode. Changes to the phonon self–energy are predicted to be strongest when
the phonon energy coincides with the energy of the 2∆ gap and to decrease with
increasing the separation from the 2∆ gap. This explains the monotonic decrease
and nonmonotonic behavior (maximum of the linewidth at 75 K) of the 501 and
340 cm−1 modes, respectively. A similar behavior was observed by Limonov et al.
[18]. Again, the same reason can explain the weak superconductivity-induced line
shape changes of the Ba vibrations near 115 cm−1. Since the phonon frequency
of the Ba-mode is considerably smaller than the amplitude of the superconducting
gap, the coupling of this mode to the electronic continuum is much weak (Fig. 5.13).

Finally, we discuss the role of the s-wave contribution to the superconducting gap
∆k = ∆k/2(coskx − cosky) + ∆s. Our numerical results obtained with Eqs. (3.13)–
(3.16) and Eqs. (5.2)–(5.6) using the fits reported in Sec. 5.1.2 and those displayed
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Figure 5.12: The real part of the superconductivity–induced self–energy of the A1g

phonons calculated at zero temperature. Negative and positive values refer to soften-
ing and hardening, respectively. Inset (1) shows the corresponding imaginary part of the
self–energy with negative (positive) values correspond to linewidth broadening (sharpen-
ing). Inset (2) displays schematic electronic density of states (full lines) in the normal and
superconducting states interacting with phonons at energies below and above the 2∆–gap.
The arrows in inset (2) indicate the softening (shift to lower energy) and hardening (shift
to higher energy) of phonons 1 and 2, respectively. This figure is obtained from [21].

in Fig. 5.11. We compare ∆s = 0 (dashed line) with ∆s = 3 meV (dash-dotted
line) and ∆s = 6 meV (dotted line). We find that the results obtained with 20 %
s-wave contribution cannot describe our data. This is clearly visible in Figs. 5.11(a)
and (c) which show the SC-induced changes ∆ω in the position of the corresponding
phonon. In particular, for the 501 cm−1-mode which is known to be very sensitive to
the superconducting gap [21], one predicts a softening for ∆s = 6 meV, while instead
a hardening is observed. Therefore, our data imply an upper limit of ∆s/∆d = 0.2.
The best agreement is obtained for 10% s-wave admixture.

At the end of this subsection, we are contrasting our generalized Fano theory
[see Eq. (3.8)] with the standard Fano approach described by Eq. (3.2). The main
difference between both approaches is the theoretical description of the electronic
Raman response. While in the standard Fano approach the background is assumed
either to be linear (see Fig. 5.9) or to follow a square-root behavior [first term in
Eq. (3.10)] in both the normal and SC-state, our generalized Fano theory is able to
take the rearrangement of spectral weight due to the opening of the superconduct-



108 Chapter 5. Results and Discussion

0 100 200 300
7

8

9

10

11

12

0 100 200 300
114

116

118

120

122

0 100 200 300
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

 

 

 

 

T
c
                                              T

c
                                              T

c
YBCO

6.95

(a)                                              (b)                                             (c)

Temperature (K)                         Temperature (K)                        Temperature (K)

q
-1
 

L
in
w
id
th
 (
c
m

-1
)

 XX

 YY

F
re
q
u
e
n
c
y
 (
c
m

-1
)

 

 

 

Figure 5.13: Frequency, line width (FWHM) and asymmetry parameter (q−1) obtained
using Eq. (3.2) versus temperature of the Ba-mode of YBCO6.95 for the xx- and yy-
polarization, respectively (λ=514.5 nm). The solid lines represent the temperature de-
pendence of pure phonon-phonon interaction (Klemens decay). The dotted vertical line
denotes the Tc.

ing gap into account. Within our microscopic description [Eqs. (3.13)–(3.16)] it is
then possible to determine the ratio ∆s/∆d. Another difference between both Fano
theories concerns the asymmetry parameter q: in our generalized theory it becomes
ω-dependent which allows a self-consistent description of the B1g-phonon and the
electronic Raman response from 80 to about 1000 cm−1. Thus, in other words, no
specific frequency interval close to the phonon peak position [see Fano lineshape
analysis in Figs. 5.9(a) and (b)] needs to be selected.

We have summarized our comparison in Table I in which the intrinsic frequency
of the B1g-phonon extracted from both Fano theories is displayed: ω0 obtained from
Eq. (3.8) [left part, third column], ω0 obtained from Eqs. (3.2) and (3.4) either
for a square-root [ω0(sqrt)] or linear background [ω0(lin.)] (right part). These values
have to be compared with ω0 obtained from inelastic neutron scattering experiments
[ω0(INS)] (middle column). One clearly sees that the values for ω0 obtained from
our generalized Fano theory are similar to those measured in INS experiments. On
the other hand, the values extracted from the standard Fano approach differ by 1.1
[B1g(100K), ω0(sqrt)] to 5.9 [XX(20K), ω0(lin.)] wavenumbers. Note, however, that
these values can be substantially modified if a specific frequency interval around the
peak position of the B1g-phonon is defined and the corresponding lineshape analysis
is then restricted to this interval (see Fig. 5.9.) These improved values are shown in
Fig. 5.11. In the case of the apical oxygen vibration analyzed in Figs. 5.9(c) and (d),
a fit with Eq. (3.8) is hardly possible due to the multiple peak structure between
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400 cm−1 and 540 cm−1. Therefore, we have used Eqs. (3.2), (3.4), and (3.10). On
the whole, we find characteristic differences between our self-consistent, generalized
Fano theory and the standard Fano approach, but our conclusions about the ratio
∆s/∆d are independent of the theory used provided that Eqs. (3.2), (3.4), and (3.10)
are restricted (or strongly weighted) to an interval around the peak position of the
phonon being investigated.

5.2.3 Temperature Dependence of the Asymmetry Param-
eter

Figure 5.14 shows the temperature dependence of the asymmetry parameters q−1
xx

and q−1
yy in Eq. (3.2) as obtained from the fits of the Fano profile to the experimental

spectra. We discuss these data in the framework of the approximate expression

q ≈ Tσ/γσ
gσχ′′

σ

, (5.7)

already applied in Raman work on other high Tc superconductors. [98, 99, 138]
We first focus on temperatures above Tc and note that q−1

xx ≈ q−1
yy ∼ −0.12 for

the 340 cm−1 mode, whereas a pronounced difference in the asymmetry parameters
along in xx and yy geometries is observed for the 501 cm−1 mode (q−1

xx ∼ −0.20,
q−1
yy ∼ −0.08). As gσ is a materials parameter independent of the light-field configu-
ration and χ′′

σ is weakly ω-dependent, the strong variation of asymmetry parameters
must be attributed to differences in Tσ/γσ. Our results are in fair agreement with the
phononic and electronic Raman efficiencies (proportional to |Tσ|2 and |γσ|2, respec-
tively) calculated in refs. [159, 198] using density functional methods. For instance,

the calculated |γ/T |yy
|γ/T |xx (∼ q−1

yy

q−1
xx
) in the normal state is about 1.2 and 0.65 for the 340

cm−1 and 501 cm−1 modes, respectively. The changes of the asymmetry parameters
with temperature in the normal state may reflect a temperature dependence of γσ,
i.e. parameters in the electronic band structure as well as that of the anharmonic
linewidth, but their detailed origin cannot be disentangled.

Moving to the superconducting state, we note that the only parameter in Eq. (5.7)
expected to change significantly across Tc is the response function χ

′′
σ. The temper-

ature dependence of q−1
xx and q−1

yy below Tc therefore also reflects the ab-anisotropy
in the 2∆-gap. Thus we have computed the temperature evolution of the asym-
metry parameters in the superconducting state, using the same model parameters
described in Sec. 3.2. The reasonable agreement with the data (Fig. 5.14) demon-
strates the self-consistency of our approach. However, since the superconductivity-
induced modification of q−1

xx and q−1
yy is relatively subtle (compared to that observed

in the normal state), this analysis does not provide constraints on the ratio ∆s/∆d
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Figure 5.14: Fano asymmetry parameter (λ = 514.5 nm) of both polarization channels
for the 340 cm−1 and 503 cm−1 mode of YBCO6.95, respectively. Results of the theoretical
calculations for different s-wave admixtures (0, 0.1, and 0.2) are also shown.

beyond those already discussed above.

It is interesting to note that other Ag modes also reveal a temperature-dependent
asymmetry. In particular, we have observed that the Ba mode near 115 cm−1 is
symmetric (i.e. q−1 = 0) for T → 0 and its asymmetry increases monotonically to
q−1 = 0.25 (see fig. 5.13). Its intensity, however, is rather weak compared with the
B1g mode (and this applies even more so to the Cu mode near 150 cm−1), so we
have not used these modes further in our discussion. Their asymmetry has been
analyzed in more detail in Refs. [153, 199], however without considering a possible
s-component to the dx2−y2-wave gap.
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Figure 5.15: Raman spectra of a detwinned underdoped YBa2Cu3O6.6 single crystal in
xx and yy Raman channels taken with an Ar+ laser line (λ =514.5 nm) at 20 K. The
mode assignment corresponds to Refs. [138, 143, 142]. The horizontal dotted line shows
the baseline of the yy spectrum.

5.3 Underdoped YBCO6.6 and YBCO6.45

5.3.1 Mode Assignments

Oxygen-deficient YBCO6.6 (YBCO6.45) crystallizes in an ortho–V (ortho–II) super-
structure; hence its elementary supercell becomes 5a× b× c (2a× b× c) [93]. Fig-
ure 5.15 and 5.16 display the Raman spectra of a detwinned YBCO6.6 crystal mea-
sured at various temperatures in xx and yy polarization geometries. Due to the
formation of the oxygen superstructures, several modes in addition to the conven-
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Atomic YBCO6.6 YBCO6.45

displacement xx yy xx yy
Cu2(z)-Cu2’(-z) 109 110 – –

Ba(z) 120.7 122 – –
mixed Ba/Cu(2)(z) 145.3 144.6 142.7 142.7
B2g/B2g symmetry 188.9 187.4 188.1 188.4

Y(x) 203.6 – – –
Cu1 (B1u symmetry) – 232.7 – 230.7

O2-O3(z) 340 340 338.8 338.6
O2+O3(z) 453.7 452.7 450.8 450.4
Defect mode 464.3 – – –

O4(z) 487.2 489.7 484.2 484.9
Defect mode – 547.9 – 545.7

O2(x) 562.1 – 552.5 –
O2(x) 594.9 – – –

O1 (B1u symmetry) – 579.7 – 580.4
O2(x) 594.9 – 588.5 –
O2(x) 612 – – –

Table 5.2: Phonon frequencies (in cm−1) of YBCO6.6 and YBCO6.45 measured in xx
and yy polarization geometries at 20 K.

tional 4 A1g+1 B1g phonons of YBCO7 are observed. The phonon peaks near 121
(A1g), 145 (A1g), 340 (B1g), 453 (A1g) and 486(A1g) cm−1 are ascribed to vibra-
tions of Ba, mixed Ba/plane copper Cu(2), O(2)-O(3) (out-of-phase), O(2)+O(3)
(in-phase) oxygen and apical oxygen atoms, respectively [18, 45]. The frequency
of the apical oxygen vibrations is highly dependent on the oxygen concentration in
YBCO6+x [112]. The appearance of the apical oxygen mode at around 486 cm−1

agrees with previous Raman measurements [112, 138] and confirms that our samples
are underdoped with oxygen concentrations of O6.6 (p = 0.1) (O6.45 with p = 0.07).

We turn now to the phonon modes originating from the formation of the super-
structures. Since YBCO6.6 has a larger unit cell than YBCO6.45, one would expect
the former to have more Raman lines than the latter. But as listed in table 5.2,
both samples reveal the same number of Raman modes, which is similar to that of
YBCO6.5 in ref. [138]. Thus, we have based the assignment of the extra modes on
the ortho–II structure, i.e., the conventional 4 A1g+1 B1g modes presented above
plus the periodicity-induced 6 A1g+ 4 B1g modes [138, 199].

Some of the periodicity-induced modes are seen in both xx and yy geometries.
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This is the case, for example, for the A1g mode at 109 cm−1, which is attributed to
the z-polarized out-of-phase vibrations of plane copper atoms [Cu2(z)-Cu2’(-z)] as
well as for the weak O4’(z) vibrations near 382 cm−1 (the eigenvectors are shown in
Fig. 2.4). The out-of-phase vibrations of the apical oxygen [O4(z)-O4’(-z)] expected
to appear at 352 cm−1 are hardly recognized because of the adjoining strong mode
at 340 cm−1. The two modes near 233 and 580 cm−1 in the yy scattering channel
are usually assigned to vibrations of the Cu1 and O1 atoms of the symmetry-broken
chains, i.e. defect-induced modes [138, 135]. The absence of the chain modes in the
xx symmetry confirms a high detwinning ratio of our samples (∼ 95%).

Most of the periodicity-induced modes appear only in the xx symmetry. The
peak at 203 cm−1 agrees in energy with that attributed to the x-polarized yttrium
vibrations [138, 142, 143]. The phonon mode at 464 cm−1 is attributed to vibra-
tions involving the Cu–O chains [187, 45]. The modes recorded at 562, 589 ,and 612
cm−1 originate from stretching vibrations of the O2 plane oxygen atoms along the
x-axis [138, 139, 142].

As the z-polarized atomic vibrations are present in either xx or yy polarization
geometries, the 203, 562, 589, and 612 cm−1 vibrational modes appear only when
light polarizations are parallel to the a-axis, i.e., the axis along which the unit cell is
extended. These modes are thus excellent tools for investigating the xy-anisotropy
of the electronic system of underdoped YBCO6+x. In YBCO6.45 (Fig. 5.17), the
phonon modes are similar to those observed for YBCO6.6; hence their assignments
are identical.

5.3.2 Temperature dependence of Phonons

Figures 5.16(a,b) and 5.17(a,b) show the Raman spectra of YBCO6.6 and YBCO6.45,
respectively, taken at various temperatures using the 514.52 nm laser line. The
most striking observation in the spectra is the strong temperature dependence of
the phonon intensities. For both dopings, some of the phonon lines present at the
lowest temperatures are hardly detectable above ∼ 200 K. The strongest effect is
seen in phonons around 203 cm−1 and in the group of phonons with an energies
between ∼ 400 and 650 cm−1 in the xx polarization. By contrast, all the phonon
modes present at low temperatures in the yy polarization geometry persist up to
room temperature (Fig. 5.21).

In order to examine the possible existence of resonant effects here, we have car-
ried out the same measurements using the red laser line (λ = 632.8 nm). The
results are presented in Figs. 5.16(c,d) and 5.17(c,d) for YBCO6.6 and YBCO6.45,
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Figure 5.16: Raman spectra of a detwinned, underdoped YBa2Cu3O6.6 single crystal in
xx and yy Raman channels taken with (a,b) an Ar+ laser line (λ =514.5 nm) and with
(c,d) a He+/Ne+ laser line (λ =632.8 nm) at various temperatures. The intensity scales
are the same in (a,b) and in (c,d). The insets show the 20 K(sc-state)-60 K(n-state) signal
in the xx and yy symmetries.

respectively. We observed modifications of the relative intensities of phonons com-
pared to the measurements performed using 514.53 nm laser light (Figs. 5.16(c,d)
and 5.17(c,d)). This is clearly visible in the relative strength of the Y(x) and O(x)
modes with respect to that of the B1g mode at 340 cm−1 in both compounds. For
instance, the observed ratio between the area enclosed by the three peaks at 561,
589, and 611 cm−1 and that of the B1g mode at 60 K is about 0.8 when the sample
is illuminated with green light (λ = 514.5 nm), whereas this ratio increases to about
4 when the exciting light is changed to red (λ = 632.8 nm).

However, the unusual disappearance of several phonon lines in the xx symmetry
with increasing temperature above 200 K is still clearly observable in the two sam-
ples when changing the exciting laser line. This suggests that this giant anomaly in
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Figure 5.17: Raman spectra of a detwinned underdoped YBa2Cu3O6.45 single crystal in
xx and yy Raman channels taken with (a,b) an Ar+ laser line (λ =514.5 nm) and with
(c,d) a He+/Ne+ laser line (λ =632.8 nm) at various temperatures. The intensity scales
are the same in (a,b) and in (c,d).

the phonon intensities is indeed a material-associated phenomenon, and not merely
the influence of resonance effects.

Furthermore, we have fitted the phonons of YBCO6.6 using Lorentzian profiles
(Eq. 3.12). The solid lines in Figs. 5.18(a,b) (spectra measured using λ = 514 nm)
and 5.19c(a,b) (spectra measured using λ = 632.8 nm) are the results of fits to
the experimental data, and the dash-dotted lines corresponding to the resulting fit-
ted lineshape of the entire spectrum. The calculated profiles agree well with the
measured spectra. Figures 5.18(c) and 5.19(c) display the temperature evolution of
the integrated intensity A × Γ of the 203, 462, 486, 560, 589 and 612 cm−1 peaks
of YBCO6.6 extracted from the fits using Eq. 3.12. We notice, however, that the
superconductivity-related changes in the phonon intensities below Tc seems to be
dependent on the incident photon energy.

We have fitted the phonon intensities in Figs. 5.18(c) and 5.19(c) for the tem-
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Figure 5.18: (a,b) Analysis of the Raman phonon peaks of a detwinned, underdoped
YBa2Cu3O6.6 single crystals between 360 cm−1 and 720 cm−1 measured at a temperature
of 20 K in the xx-symmetry using a green laser line (λ =514.5 nm). The analysis was
performed using Lorenzian profiles. The phonon assignment is discussed in the text. The
intensity units in panels (a,b) are arbitrary but of the same scale. (c) Renormalized
integrated intensity (I(T)/I(60 K)) versus temperature of various phonon modes. The
mode assignment is discussed in the text. The solid line shows the fitting result using the
a(T − T ∗)n formula with T∗=200 K.

perature range between 60 K and 200 K using the formula a(T −T ∗)n, with T∗=200
K. The best description (solid lines) for the temperature dependence of the phonon
intensities is obtained if n is assumed to be ∼ 0.5. The power-law behavior of the
intensity is indicative of an underlying phase transition.

Similar analysis has been performed for the YBCO6.45 spectra. Since the xx
Raman spectra in the green light experiment reveal a complicated and weak phonon
structure in the energy range between 520 and 650, reliable results were extracted
only from the data recorded with the red line (Fig. 5.20). Interestingly, we notice
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Figure 5.19: Same as fig. 5.18 but spectra are taken with a He+/Ne+ laser line (λ =632.8
nm).

that the modes of both samples, which persist up to room temperature, are the
conventional Raman modes of the ortho–I unit cell. However, before discussing
the possible origins of the dramatic changes in the phonon intensities around 200 K,
we will briefly describe in the following section the evolution of the electronic signals.

5.3.3 Electronic Raman signals

Raman spectra of optimally- or overdoped HTSCs in the normal state are linear
in ω at small frequencies, becoming almost flat for large energies [45, 200]. As
the slope at low frequency is inversely proportional to the scattering rate of charge
carriers, it is expected to increase as the temperature is lowered in conventional met-
als [201, 202]. It is well established that the opposite occurs in underdoped cuprates,
that is, the Raman response loses a fraction of the low energy spectral weight below
a certain temperature. This is confirmed in our experiments (Figs. 5.16 and 5.17)
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Figure 5.20: (a) Analysis of the Raman phonon peaks of a detwinned, underdoped
YBa2Cu3O6.45 single crystals between 500 cm−1 and 720 cm−1 measured at a temper-
ature of 20 K in the xx-symmetry using red laser line (λ =632.8 nm). The analysis was
performed using Lorenzian profiles. The inset displays the folding of a phonon dispersion
due to a periodic structure. (b) Renormalized integrated intensity (I(T)/I(20 K)) versus
temperature of various phonon modes. The phonon assignment is discussed in the text.

and in previous work (see Refs. [29, 203]). We observe a suppression in the spectral
weight between ω1 ∼ 200 cm−1 and ω2 ∼ 800 cm−1 in the spectra measured in the
yy geometry as the temperature is lowered. The energy scale of the depletion in
the electronic signal coincides with the energy of the pseudogap seen in ellipsom-
etry measurements of the c-axis conductivity [31]. A precise determination of the
temperature at which this suppression takes place is, however, not achievable here.
Although the electronic redistribution is weaker in the spectra recorded using the
red laser line, the effect is still visible.

Finally, when the sample is cooled below the superconducting transition, the
Raman spectrum loses an additional fraction of the spectral weight at low energy
(i.e., lower than ω1 in figs. 5.16 and 5.17). This is again more pronounced in the
yy geometry, as illustrated in the inset of fig. 5.16. Although no superconducting
coherence peak is observed, this effect likely originates from the opening of the
superconducting gap, whereas the earlier suppression is often tentatively associated
with the opening of the pseudogap.
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5.4 Possible Origins of the Phonon Anomalies

As shown in section 5.3.2, the most unusual effect observed in the temperature de-
pendence of the phononic structure of the detwinned, underdoped YBCO6.6 crystal
is the disappearance of the yttrium and O2 vibrations along the a-axis above T∗ ∼
200 K. This observation is independent of the different photon energies used in the
measurement. A similar trend is observed for YBCO6.45 phonons. Interestingly, the
temperature at which the phonons disappear essentially corresponds to that below
which the depletion in the electronic response is seen.

The Y(x) and O2(x) modes are a direct consequence of the formation of oxygen
superstructures in our samples, which result in folding of the Brillouin zone due to
the new periodicity along the a-axis. Thus, the zone edge modes in the ortho-I cell
(Raman-forbidden) become zone center Raman active in the ortho–II case (see inset
in fig. 5.20(a)). This is well confirmed in our results. The combined width of the
562, 589, and 612 cm−1 peaks agrees with the energy difference between the oxygen
stretching mode at Q = 0 and that at Q = π/a of YBCO6.6 measured by INS [42].
The same argument holds for the YBCO6.45 sample. Besides that, a different num-
ber of peaks associated with the stretching vibrations of plane oxygens are observed
in YBCO6.6 and YBCO6.45, i.e, three and two, respectively (Figs. 5.19 and 5.20).
This likely originates from the different Cu–O chain periodicities in both dopings,
leading to different foldings.
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Figure 5.22: Temperature dependences of the integrated intensity of (a) the (4.4 0 2.5)
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(b) show the respective Q-scans along a∗ at 10 K. For data analysis, the diffuse peaks were
modeled using Lorenzian profiles and their integrated intensities were normalized at every
temperature to the intensity of the (4 0 0) Bragg peak.

A first, natural explanation for the disappearance of these phonon modes above
T∗ is the disappearance of the superstructure (or, equivalently, the loss of the Cu–O
chain periodicity). To examine this hypothesis, we have performed x-ray diffraction
measurements on our samples. Figure 5.22 displays the diffuse peaks characteristic
of the oxygen superstructures obtained for YBCO6.6 and YBCO6.45 samples as well
as their integrated intensities at temperatures between 10 K and 300 K. The diffuse
peaks of each superstructure persist up to temperatures well above T∗. Within the
experimental error, the integrated intensities of the diffuse peaks exhibit a smooth
decrease with no anomalies observed either at Tc or at T

∗. This rules out any ex-
planation of the singular behavior of phonon intensities based on structural phase
transitions.

Since the superstructures of our samples are present above T∗, an alternative
explanation for the giant enhancement of the extra mode intensities at low temper-
atures arises from modifications in the electronic system. In other words, breaking of
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(a)                                                   (b)

Figure 5.23: (a) The real part of the far-infrared c-axis conductivity of underdoped
YBCO6.5 (Tc=52 K) single crystal at various temperatures. The arrows denote the planar
oxygen bending phonon (320 cm−1) and the transverse optical Josephson plasmon (410
cm−1) modes. (b) Temperature dependence of the loss (gain) in the spectral weight of
the 320 cm−1 ∆ SW320 (circles) (410 cm−1 SW410 (squares)). This figure is taken from
Ref. [205].

the YBCO7 (ortho-I) translational symmetry by the periodic rearrangement of the
Cu–O chains, leads to the appearance of these modes at all temperatures, whereas
their intensities are significantly enhanced through a strong ele-ph coupling below
T∗. Correlation of the phonon anomaly with changes in the electronic channel is fur-
ther supported by the apparent correspondence of the temperature scales extracted
from both vibronic and electronic Raman responses.

Interestingly, infrared ellipsometric study of the c-axis conductivity of under-
doped YBCO6.5 [205] revealed a sizable anomaly in the spectral weight of both,
the planar oxygen bending phonon mode at 320 cm−1 (decrease) and the so-called
“transverse optical Josephson plasmon” mode around 400–500 cm−1 (increase) at
around 150 K (Fig. 5.23), which is comparable to the onset temperature of our
phonon anomalies. The ellipsometric results [205] showed that part of the gain in
the spectral weight of the latter mode comes from electronic redistributions, and
not merely from the the spectral weight loss of the 320 cm−1 mode. Evidently, there
exists an intimate relationship between the above mentioned findings and the strong
phonon anomalies observed in our work. Again, this suggests an electronic origin
for these observations.

Recent temperature-dependent IR ellipsometry studies of the c-axis [31] as well
as in-plane conductivity of underdoped YBCO6+x [206] point towards precursor su-
perconducting fluctuations that develop within the pseudogap state at Tonset (with
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This figure is taken from Ref. [212].

Tc < Tonset < T ∗), i.e, phase-disordered superconductivity starts to develop below
Tonset whereas long-rang phase coherence sets in below Tc. Evidence for super-
conducting fluctuations has also been found [207] in different families of high Tc

superconductors by vortex Nernst experiments (the detection of an electric field Ey

when a temperature gradient ∇xT is applied in the presence of a magnetic field
Hz). The temperature scale of the phonon anomalies we report here is compatible
with the ellipsometry and Nernst effect measurements just mentioned. Precursor
superconducting fluctuations picture agrees with our results since the temperature,
at which the phonon anomalies happen, slightly decreases with decreasing hole den-
sity (i.e., T∗ ∼ 200 K (Fig. 5.19) and 175 K (Fig. 5.20) for YBCO6.6 and YBCO6.45,
respectively) whereas the pseudogap temperature is expected to increase with low-
ering the doping level.

Besides the superconducting fluctuations just mentioned, other effects may occur
at this temperature scale. Since the phonon anomalies we observe exhibit a one-
dimensional anisotropy, key candidates which may cause such effect can be static
stripes [32], a Pomeranchuk instability [208] or nematic states [30, 209].

INS measurements have revealed a sizable anomaly in the dispersion of the pla-
nar oxygen bond-stretching mode (at around 70 meV =562 cm−1) of YBCO6+x and
La2−xSrxCuO4 [42, 43, 210, 211] half-way to the BZ boundary. These observations
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Figure 5.25: Temperature dependence of the amplitude of the superconducting (∆) and
CDW (Φ) order parameters for the hole doping δ = 0.114. This figure is taken from
Ref. [216].

have been interpreted as a consequence of the formation of charge stripes in cuprates.
The influence of the formation of static charge stripes on the lattice dynamics of
cuprates has been theoretically emphasized by E. Kaneshita et al [212]. In these
calculations, the authors have shown that the formation of charge stripes allows
for folding the phonon dispersion around the wavevector of the charge stripe via
umklapp processes (Fig. 5.24). At first glance, these calculations can qualitatively
explain the doping dependence of the multipeak structure observed for the O2(x)
vibrations, if charge stripes exist in underdoped YBCO6.6 and YBCO6.45 with differ-
ent modulation wavevectors. Although one-dimensional static charge/spin stripes
have been reported in YBCO6+x system [12, 40], debate about these results was
later reopened [30, 41]. Rigid stripe arrays have never been observed in YBCO6+x

by microscopical probes like, for example, NMR/NQR, neutrons scattering, or x-
ray measurements. Due to these reasons, a static stripe scenario is less probable to
cause the phonon anomalies we present here. However, our results cannot rule out
the existence of fluctuating stripes which was reported by a previous Raman work on
underdoped, twinned YBCO6+x [213] and/or local charge ordering in a checkerboard
configuration observed by scanning tunneling microscopy (STM) measurements in
variously doped Bi2Sr2CaCu2O8+x [34, 214].

The pseudogap is a rich state with a large variety of observations. Recently,
d-charge-density waves (d−CDW ) have been suggested as an origin for the pseudo-
gap state (see for example Ref. [215, 216]). In this scenario, a competition between
the superconducting and the d−CDW order parameters is expected. Although the
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temperature evolution of the phonon intensities we report here cannot be taken as a
strong evidence for the formation of d− CDW in the pseudogap state, there exists
similarities with the temperature evolution of the d− CDW s calculated by Zeyher
and Greco [216] (Figs. 5.19 and 5.25). The phonon intensities (Fig. 5.19) show an
increase with cooling the sample down until Tc and then a decrease (saturation in
the green light experiment (Fig. 5.18)). This nonmonotonic behavior may arise from
a competition between the pseudogap (with d − CDW ) and the superconducting
states. Despite these similarities, more work remains to be done in order to examine
the possible existence of d− CDW in the pseudogap state.

The onset temperature of the phonon anomalies we present here coincides with
pronounced rearrangement of the magnetic excitation spectrum observed by inelas-
tic neutron scattering, which has been interpreted as evidence of an electronic liquid
crystal state [30, 208, 209]. Therefore, the most likely scenario that can qualita-
tively explain our data is an unidirectional, nematic state involving charge degrees
of freedom that develops below T∗. In this state, the rotational but not translational
symmetry is spontaneously broken.

This scenario may hold for the phonon anomalies we observe. The orthorhom-
bic distortion as well as the new periodicity of the Cu-O chains, which seem to
be temperature independent (Fig. 5.22), induce several phonon modes (Sec.5.3.1).
The nematic phase sets in at a temperature close to the pseudogap or onset of su-
perconductivity temperatures affecting mostly the x-polarized yttrium and oxygen
vibrational modes. Due to the interaction between the phonon modes and the elec-
tronic nematic order, the phonon intensities initially increase monotonically down to
the superconducting transition and then they abruptly decreases (Fig. 5.19). This
non-monotonicity indicates a possible competition between the nematic and super-
conducting states.

Within the framework of the nematic order scenario, nematicity is expected to
diminish at hole dopings close to the optimal doping level [208]. This hypothesis can-
not be examined by performing Raman experiments on optimally doped YBCO6.93

single crystal, since the Y(x) and O2(x) phonons are prohibited by Raman symmetry
considerations. Therefore, we have prepared a Y0.87Ca0.13Ba2Cu3O6.6 (YBCO6.6:Ca)
single crystal (Tc= 82 K, p ≈ 0.13), in which the Cu-O chain periodicity was kept
the same as that of YBa2Cu3O6.6 but with a higher hole density due to the cal-
cium doping. The Raman results are shown in fig. 5.26. It is clearly seen that the
x-polarized phonon anomalies seen in Ca-free YBCO6.6 (Fig. 5.19) are much less
pronounced in the slightly underdoped YBCO6.6:Ca (Fig. 5.26(c)), suggesting that
the nematic state weakens when approaching the optimal doping from below. Again,
these observations support the nematic phase scenario.
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Figure 5.26: (a,b) Raman spectra of a detwinned, slightly underdoped
Y0.87Ca0.13Ba2Cu3O6.6 single crystal in the xx and yy Raman channels, respec-
tively, taken with a He+/Ne+ laser line (λ =632.8 nm) at various temperatures. The
ellipse in (a) indicates the O2(x) vibrational modes. (c) Renormalized integrated intensity
(I(T)/I(20 K)) versus temperature of various x-polarized phonon modes recorded in the
xx-symmetry. (d) same as (c) but for various z-polarized phonon modes taken in the xx
and yy symmetries. All phonons were analyzed using Lorenzian profiles. The phonon
assignment is discussed in the text.

Although the presence of the nematic order phase below T∗ is generally consistent
with the phonon anomalies we observe, more experiments have to be done before
accepting or refuting this scenario.
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M. Bröll, C.T. Lin and B. Keimer, in press.



130 BIBLIOGRAPHY

[45] M. Bakr, A. Schnyder, D. Manske, C. T. Lin, B. Keimer, M. Cardona and
C. Ulrich, Phys. Rev. B 80, 064505 (2009).

[46] A. Abrikosov, Nobel Lecture (2003).

[47] V.L. Ginzburg and L.D. Landau, Zh. Eksp. Theor. Fiz 20, 1064 (1950).

[48] J. Bardeen, L.N. Cooper, and J.R. Schrieffer Phys. Rev. 108, 1175 (1957).

[49] J. Bardeen, Nobel Lecture (1972).

[50] W. Buckel and R. Kleiner in Superconductivity Fundamentals and Applications,
Wiley-Vch Verlag (2004).

[51] E. Maxwell, Phys. Rev. 78, 477 (1950).

[52] C.A. Reynolds, B. Serin, W.H. Wright, and L.B. Nesbitt, Phys. Rev. 78, 487
(1950).

[53] J.G. Bednorz and K.A. Müller, Z. Phys. B- Condensed Matter 64, 189-193
(1986).

[54] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang,
Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett. 58, 908 (1987).

[55] H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Jpn. J. Appl. Phys. 27,
L209-L210 (1988).

[56] Z.Z. Sheng, A.M. Hermann, Nature (London) 332, 55-58 (1988).

[57] A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature (London) 363, 56 (1993).

[58] L. Gao, Y.Y. Xue, F. Chen, Q. Xiong, R.L. Meng, D. Ramirez, C.W. Chu,
J.H. Eggert and H.K. Mao, Phys. Rev. B 50, 4260 (1994).

[59] N.M. Plakida, in High-Temperature Superconductivity Experiment and Theory
Springer-Verlag, Berlin, Heidelberg (1995).

[60] M. Cardona in [107], Chap. 5.

[61] J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman and J. D. Jorgensen,
Phys. Rev. B 51, 12911 (1995).

[62] M. Le Tacon, Ph.D. Thesis, University of Paris, France (2007).

[63] C. Bernhard and J.L. Tallon, Phys. Rev. B 54, 10201 (1996).



BIBLIOGRAPHY 131

[64] M.A. Hossain, J.D.F. Mottershead, D. Fournier, A. Bostwick, J.L. McChesney,
E. Rotenberg, R. Liang, W.N. Hardy, G.A. Sawatzky, I.S. Elfimov, D.A. Bonn,
and A. Damascelli, Nature Physics 4, 527 (2008).

[65] H. Alloul, J. Bobroff, M. Gabay, and P.J. Hirschfeld, Rev. Mod. Phys. 81, 45
(2009).

[66] T. Valla, A.V. Fedorov, J. Lee, J.C. Davis, G.D. Gu, Science 314, 1914 (2006).

[67] R. Liang, D.A. Bonn, and W.N. Hardy, Phys. Rev. B 73, 180505(R) (2006).

[68] J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).

[69] J. Orenstein and A.J. Millis, Science 288, 468-474(2000).

[70] D. Vaknin, S.K. Sinha, D.E. Moncton, D.C. Johnston, J.M. Newsam,
C.R. Safinya, and H.E. King,Jr., Phys. Rev. Lett. 58, 2802 (1987).

[71] J.M. Tranquada, D.E. Cox, W. Kunnmann, H. Moudden, G. Shirane, M. Sue-
naga, P. Zolliker, D. Vaknin, S.K. Sinha, M.S. Alvarez, A.J. Jacobson, and
D.C. Johnston, Phys. Rev. Lett. 60, 156 (1988).

[72] J.M. Tranquada, A.H. Moudden, A.I. Goldman, P. Zolliker, D.E. Cox, G. Shi-
rane, S.K. Sinha, D. Vaknin, D.C. Johnston, M.S. Alvarez, A.J. Jacobson,
J.T. Lewandowski, and J.M. Newsam, Phys. Rev. B 38, 2477 (1988).

[73] S. Nakamae, K. Behnia, N. Mangkorntong, M. Nohara, H. Takagi, S.J.C. Yates,
and N.E. Hussey, Phys. Rev. B 68, 100502 (2003).

[74] J. Galvisa, H. Castroa, E. Farberb, Microelectronics Journal 39, 1385 (2008).

[75] K.A. Moler, D.L. Sisson, J.S. Urbach, M.R. Beasley, A. Kapitulnik, D.J. Baar,
R. Liang, and W.N. Hardy, Phys. Rev. B 55, 3954 (1997).

[76] H. Takagi, B. Batlogg, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and
W.F. Peck,Jr., Phys. Rev. Lett. 69, 2975 (1992).

[77] A.P. Mackenzie, S.R. Julian, D.C. Sinclair, C.T. Lin, Phys. Rev. B 53, 5848
(1996).

[78] T. Masui, T. Hiramachi, K. Nagasao, and S. Tajima, Phys. Rev. 79, 014511
(2009).

[79] S. Sugai, H. Suzuki, Y. Takayanagi, T. Hosokawa, and N. Hayamizu, Phys.
Rev. B 68, 184504 (2003).



132 BIBLIOGRAPHY

[80] V. Hinkov, Ph.D. Thesis, University of Stuttgart, Germany (2007).

[81] O. V. Misochko, Physics-Uspekhi 46, 373-392 (2003).

[82] For a review, see C.C. Tsuei and J.R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

[83] M. Le Tacon, A. Sacuto, A. Georges, G. Kotliar, Y. Gallais, D. Colson, A. For-
get, Nat. Phys. 2, 537 (2006).

[84] J. Rossat-Mignod, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy,
J.Y. Henry, G. Lapertot, Physica C 185-189, 86 (1991).

[85] H.F. Fong, B. Keimer, D. Reznik, D.L. Milius, and I.A. Aksay, Phys. Rev. B
54, 6708 (1996).

[86] For a review, see Y. Sidis , S. Pailhès, V. Hinkov, B. Fauqué, C. Ulrich, L. Ca-
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