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Zusammenfassung

Eine kinetische Theorie fur nicht—inversionssymmetres8upraleiter (NCS) wird im reinen
Grenzfall und fir tiefe Temperaturen formuliert. Die Trpadgleichungen wurden ganz allge-
mein flr beliebige antisymmetrische Spin—Bahn—KoppluA§Q@C) und in einem erweiterten
Impuls— und Frequenz—Bereich geldst. Es ergibt sich eiilehBEn—Loch—symmetrische, eichin-
variante und ladungserhaltende Beschreibung, mit dere #r Strom—Response, die spezi-
fische Warmekapazitat und der Raman—Response berechde&ivie detaillierte Betrachtung
der Eichinvarianz und der dazugehorigen Phasenfluktuerides supraleitenden Ordnungspara-
meters offenbart zwei Eichmoden: Einerseits die AnderBogeliubov Mode und andererseits
eine neue Eichmode, die stark von der Symmetrie der ASOOhgibha

Als Anwendung der kinetischen Theorie wird der polarisagebhangige elektronische Ra-
man—Response fir = 0 in zwei wichtigen Gruppen von NCS erforscht, die sich nach de
ASOC klassifizieren lassen. Vertreter dieser beiden Gnupjmel CeP4Si und LkPd,Pt;_.B. Fir
die Raman-Vertices werden analytische Ausdriicke hetgeleid Potenzgesetze im Frequenz-
bereich sowie die Paarbrechungs—Peaks berechnet. Eirektghastische Doppelpeak—Struktur
wird fir NCS vorhergesagt, die dazu dienen kann das unbé&&enhaltnis der Spin—Singulett—
und Triplett—Komponente im supraleitenden Ordnungspatenzu bestimmen.

Um die dynamische Spin— und Ladungs—Suszeptibilitat voRtSe fur eine itinerante Be-
schreibung von Elektronen zu berechnen wird eine effizianteerische Methode vorgestellt.
Mithilfe einer realistischen Parametrisierung der Bandgur werden die Nesting—Funktion,
Wirkungsquerschnitte fir inelastische Neutronenstrguumd Kohn—Anomalien fur ein ausge-
wéhltes Band im nichtmagnetischen Normalzustand berécAnsgehend von der Spin— und
Ladungs—Suszeptibilitat wird eine supraleitende Padmaawirkung fur eine Gap—Gleichung in
schwacher Kopplung konstruiert. Eine Vorzeichenbettautpder entkoppelten Gap—Gleichung
stiitzt die experimentellen Hinweise flir einen starken [€tipBeitrag im Ordnungsparameter
von CeP4Si. Speziell fur diese Verbindung kann man zeigen, dasszinehmende Rashba—
artige Spin—Bahn—Kopplung den Triplett—Beitrag starkt.






Abstract

A kinetic theory for non—centrosymmetric superconduc{diGS) is formulated for low tem-
peratures and in the clean limit. The transport equatioms@lved quite generally for any kind of
antisymmetric spin—orbit coupling (ASOC) in an extendedmeatum and frequency range. The
result is a particle—hole symmetric, gauge—invariant dradge conserving description, which is
used to calculate the current response, the specific heatitamnd the Raman response func-
tion. A detailed analysis of the gauge invariance and thecated phase fluctuations of the
superconducting order parameter revealed two gauge mdueginderson—Bogoliubov mode
on the one side and a new gauge mode on the other side, whoalylstdepends on the symmetry
of the ASOC.

As application of the kinetic theory, the polarization—degence of thd" = 0 electronic
Raman response in NCS is studied for two important class@$SafC with the representative
systems CeRS&i and L,Pd,Pt;_,B. Analytical expressions for the Raman vertices are ddrive
and the frequency power laws and pair-breaking peaks acelatdd. A characteristic two—
peak structure is predicted for NCS and might serve as acatati for the unknown relative
magnitude of the singlet and triplet contributions to thpesgonducting order parameter.

An efficient numerical method is introduced in order to cldte the dynamical spin and
charge response of CgBi, using an itinerant description for the electrons. Witlealistic pa-
rameterization of the band structure, the nesting fun¢iimalastic neutron scattering cross sec-
tions, and Kohn anomalies are calculated for a selected ipath@& normal non—magnetic state.
From the spin and charge susceptibility, a supercondupiigng interaction is constructed for
the weak—coupling gap equation. A sign analysis of the deledugap equation supports the
experimental evidence of a strong triplet contributionite order parameter in CeBi. In par-
ticular for this compound, it can be shown that an increaBiaghba—type of spin—orbit coupling
strengthens the triplet contribution.






1 Introduction

Triplet superconductors are by far more exciting and irgiang than singlet superconductors, be-
cause they open a new degree of freedom: the spin. Unfoelyrthere are very few examples
of confirmed spin triplet superconductors. According to Arsbn’s theorem [1] a necessary pre-
condition for triplet superconductivity is time reversghametry and, in addition, the existence
of an inversion center. In brief, Anderson’s argument reasi$ollows: For singlet supercon-
ductors the Cooper pairs are made up of electrons \kith) and| — k, |). If, for example, an
applied magnetic field lifts the degeneracy between thesestates, superconductivity breaks
down. Since time reversal symmetfyconnects both states throu@hk, 1) = | — k, ), this
symmetry is necessary for singlet superconductors. Awaigly, for triplet superconductors the
stategk, 1), | —k, 1), |k, ) and| —k, |} have to be degenerate. This can only be achieved, when
an inversion symmetry is additionally present, sincBk, 1) = | — k,1). Thus, a combination
of T"and/ connects all of these four states. Triplet supercondugtdan occur only if these two
requirements are fulfilled.

Based on this argument, the discovery of bulk supercondtycin CePtSi without inver-
sion symmetry by Bauegt al. (2004) [2] seemed quite surprising and attracted greataste
since signatures of a singlet as well as a triplet order patanwere observed in different re-
sponse and transport measurements [3]. The resolutionsoédhtradiction was pointed out by
Frigeri et al. [4,[5,/6]: The absence of an inversion center in the crystacsire gives rise to
an antisymmetric spin—orbit coupling (ASOC), which indalies the classification of the super-
conducting order parameter with respect to spin singletigyarity and spin triplet/odd parity.
Thus, a linear combination of a singlet and triplet compadnernhe gap is, in general, possible
for non—centrosymmetric superconductors (NCS).

Even today CeRSi is one of the most studied NCS and the symmetry compongtits order
parameter is still under debate, especially the ratio betvilee singlet and triplet components to
the gap. For example, Chaptér 5 will deal with an itinerantiel@f CeP$Si, therefore | wish
to give a brief summary about the experimental work on thmpound. The crystal structure of
CePtSi is tetragonal and belongs to the space grBdpvm with the generating point groug,,
and five atoms in one unit cell. This point group has a fourilthmetry along the c-axes but
no mirror plane perpendicular to this axes, which breaksrersion symmetry. Furthermore,
antiferromagnetic order sets in &, ~ 2.2K followed by heavy fermion superconductivity
belowT. ~ 0.75K. The staggered antiferromagnetic order was studied by omestattering
experiments in Ref[[7] and the result is displayed in Eifl.tbgether with the crystal structure.

In the superconducting phase, the high critical upper fiélgl0) ~ 57" exceeds by far the
Pauli paramagnetic limiting field and thus indicates spipidt superconductivity. Muon-spin
rotation seems to confirm the microscopic coexistence oina@gm with a small magnetic mo-
ment of about 0.16z/Ce and superconductivity [[7] 8, 9]. First measurementpédycrystal
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Figure 1.1: Magnetic structure of CgBt as determined from neutron scattering experiments by
Metoki et al.[7]. (a) Crystal and magnetic structure of C¢hit The red arrows on
the Ce atoms represent the magnetic moments which areetialung the a—b—plane
in an unspecific direction but antiferromagnetically seggl. (b) The antiferromag-
netic Bragg reflection atl 0 1/2). (c) The intensity of the magnetic reflection as a
function of temperature.

samples on the spin—lattice relaxation rate showed a clebeHSlichter peak, which is usually
an indication for spin singlet superconductivity. Howe\Mukuda et al.[[10] claim in an NMR
study on a single crystal, that the singlet contributionhe trder parameter is due to a con-
tamination of pure singlet domains, because the singlealryample showed no Hebel-Slichter
peak. The pressure phase diagram shows that the SC phaseiirely enclosed in the antifer-
romagnetic regime [11, 12, 13]. Substituting Si by Ge ex¢dhds phase diagram also to negative
chemical pressures [14]. Response and transport measuecad serve to identify the symme-
try of the underlying order parameter. Among these the Larnetration depth [15], thermal
conductivity [16] and magnetic relaxation rat@7; 7" of Pt [17,[18] indicate line nodes in the
order parameter. Specific heat measurements suggest ¢énatntight be two superconducting
phase transitions [19], however, these experimentaltesah be explained by inhomogeneous
local pressure [20].

Apart from CeP4Si, many other exciting NCS have been found meanwhilgPd,iPt;_, B [21]
compounds are of strong interest because of the tunablectration of the heavier platinum,
which seems to affect the strength of the triplet contrifmutio the order parameter [22,123].
Because of this adjustable strength of the ASOC, laiger 2K — 8K [24,[25], absence of
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magnetic order and different point grodp [26], this NCS will also be of special interest in
Chaptef 4. Furthermore, Ulr is a quite unusual NCS becaysersonductivity exists inside a
ferromagnetic phase [2[7,113,/128] 29]. Time reversal symmegtulso broken in LaNi€[30,[31]
but without showing any magnetic order [32] 33]. In additibty;lr19B1s might be interesting
because of a possible triplet component in the order paesanfat certain allowed stoichiome-
tries [34,35] 36]. The compounds 4@ (Ln=La, Y) [37,/38] and KOgO; [39] are promising
candidates for further investigations, because of thenlyidg tetrahedral symmetry [40]. There
exists also a whole family of NCS with the elemental formuld3i; [41,42,[43] 44| 45] with
A=Ca, Sr, Ba and M=Co, Rh, Ir, Ni, Pd, Pt and many other NCS twhan be explained within
a BCS-like theory as Ribay, Ir.Ga [46] and RgW [47], to mention only a few examples.

Theoretical work on NCS started directly after the discgw#iCePtSi with symmetry consid-
erations about the superconducting order parameter amibptenological models[5] 6, 48,140].
A lot of work has been done on the (static) spin—suscepibiliNCS [4,[49] as well as attempts
of a microscopic pairing theory based on such calculatib8s%1,52]. Another important issue
is impurity scattering and how it affects the superconaugstate[[58, 54, 55]. Furthermore,
Andreev reflection and surface bound states have been addriesRef.[[56, 57, 58, 59]. Of par-
ticular theoretical interest in Cefi as well as in LiPB are unusual Vortex effects [60,161, 62].
Finally topologically protected states are also an intargdield of research in NCS [63, 64].

Nevertheless, there are still unexplored topics and a lekoiting open questions about NCS.
In particular many response and transport properties irpthsence of the involved antisym-
metric spin—orbit coupling (ASOC) remain unknown. In thigsis | want to address this issue
on different levels: a generalized theory which providegregsions for various response and
transport functions in a comprehensive, systematic way,aaterial specific results. For ex-
ample, one open question concerns the gauge modes, whict special theoretical interest,
and their dispersion in NCS. Furthermore, | emphasized erelictronic Raman response and
how it is affected by the ASOC. Another important issue in NE&e triplet—singlet ratio of
the superconducting order parameter. Despite many efioidsdifferent suggestions to deter-
mine this ratio in NCS[65, 57, 58], it remains still unknovar the most interesting compounds.
Hence, are there alternatives to determine the triplegtetimatio? Apart from that, it is com-
monly argued that an increasing strength of the ASOC leadsl&ger triplet component in
the order parameter (see publications osPd,Pt;_,B). Can this assumption be justified? One
main objective of this thesis is also an improved materiakcsr description, in particular for
CePtSi. Published theoretical work on NCS is restricted to sarimnd structure models and
to static calculations, for instance, of the spin suscdjyibThus, one may ask to what extent
it is possible to describe the properties of G&Pwithin an itinerant model and whether Fermi
surface nesting supports the antiferromagnetic statexgssich a model, the goal is to calculate
explicitly inelastic neutron scattering cross sectiond Knhn anomalies with special attention
to the effect of the ASOC. Finally, such a model should allodiscussion of the microscopic
pairing mechanism for superconductivity and of the trigditglet ratio in CeRSi.

This thesis is organized as follows. In the subsequentsectf this introduction, | will define
the model including the antisymmetric spin—orbit coupl{AgOC) and refer to the work done
before to solve the phenomenological superconducting gaptmn for NCS. Chaptérd 2 deals
with a generalized description of response and transp®O8. Here, a set of kinetic equations
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1 Introduction

at low temperatures in the clean limit is derived, and theaiqus are solved analytically. Special
emphasis will be placed on the gauge invariance of this thieoBectior 2.4. The applications,
discussed in Sectidn 2.5 concern the static and homogemo®f the normal and superfluid
density and the specific heat capacity. These are brief deanigr the validity of this kinetic
theory. The subsequent Chaptelrs 3 land 4 will both use theafeamm established in Chaptelr 2.
In Chaptei B, | will analyze in detail the role of the phasetfhations of the order parameter in
NCS and add the proof for the gauge invariance of the kinegory in Chapter|2. Based on
the expression for the phase fluctuations, | will presentydical results in Sectiof 313 for the
dispersion of the gauge modes in NCS. Chdpter 4 is an agphaaitthis gauge invariant kinetic
theory. | will analyze the electronic Raman response for important classes of ASOC. To
this end, the corresponding Raman vertices are first deniv8ectior 4.2. Based on this, | will
present the mixed—parity results, which may be used to migterthe unknown singlet—triplet
ratio in NCS [4.8). The last part of this thesis, Chapler ®sus Green'’s function approach to
calculate the spin and charge responses for {&P#Vhile the previous chapters contain mainly
analytical results, Sectidn 5.2 introduces a numericahoteto calculate the material specific
dynamical spin and charge susceptibilities. In this cotioec| will present a band structure
model for CePjSi in Sectior 5.8, including an evaluation of the densitytafes and the Fermi
surface nesting. The results for the dynamical spin andgehausceptibilities will be used in
Sectior 5.4 in order to present three applications with igpemphasis on a comparison of the
results with and without an ASOC. In Section 514.1, | caltulaelastic neutron scattering cross
sections. Sectidn 5.4.2 discusses the consequences &iblpgsairing scenarios based on a pair-
ing interaction mediated by spin fluctuations. Third, | exaerKohn anomalies (Sectién 5.4.3)
in CePtSi. Finally, in Chaptell6 one may find the conclusions drawmfthe main results.

1.1 Antisymmetric spin—orbit coupling in NCS

The peculiarity of non—centrosymmetric crystal strucsuigethe presence of an antisymmetric
spin—orbit coupling (ASO(ﬂ, which has many impacts on the electronic structure anduhe s
perconducting order parameter. The starting point is a iniddeiltonian for noninteracting
electrons in a non—centrosymmetric crystal [53]

H = 3, (6o + Vi Toor] ko (1.1)

koo’

where &, represents the bare band dispersion assuming time rewsmsahetry (. = &),

o,0’ =1, | label the spin state, andare the Pauli matrices. The second term describes an ASOC
with a (vectorial) coupling constant. . The pseudovector functiop, has the following symme-

try propertiesiy_, = —v, andg~vy, -1, = 7, [66]. Hereg denotes any symmetry operation of
the point grougs of the crystal under consideration. In particular, | amrested in the tetrago-

nal point group”}, (applicable to the heavy Fermion compound G&8Pwith T.=0.75 K [Z], for
example) and the cubic point groap(applicable to the system4RPd,Pt;_,B with T,=2.2-2.8 K

1See Ref.[[4, 53] for a detailed derivation of the ASOC.
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1.1 Antisymmetric spin—orbit coupling in NCS

(b)

Figure 1.2: Spherical plots of the angular dependendeygffor the point groups ¢ (a) and
O (b). Sinced||v,, these plots show also the magnitude of the gap functiondn th
pure triplet case for both point groups.

for x=0 and T.=7.2-8 K for x=3 [[Zl]ﬁ. An overview for all non—centrosymmetric point groups
and theiry, —vectors is presented in Ref. [66]. For= Cy, the ASOC reads [4, 53]

Yo = g1 (k x &) + gk k. (k2 — k2)e. . (1.2)
In the purely two—dimensional casg (= 0) one recovers the so—called Rashba interaction [67,

168,(69]. | choosg = 0 for this thesis in the absence of any experimental or theaetstima-
tion of this coefficient. For the cubic point grogp= O, ~, reads[[65]

Yie = g1k — g [ (B2 + K28, + by (k2 + kD), + . (2 + k2)e.] | (1.3)
where the rati@s /g, ~ 3/2 is estimated by Refl [65]. Because of the larger prefagiar g,
| will keep the higher order term for all further considecats. Thus, in terms of spherical
anglesk = (cos ¢ sin 6, sin ¢ sin 6, cos 6), the angular dependence|gf. | for both point groups,

illustrated in FigCLR, reads

| Yk | o sin 6 for Cly, (1.4)

1
Y| \/1 - 1—2 sin? 20 — 136 sin* @ sin® 2¢ (9sin® 0 — 4) for O (1.5)

2Point groups will be labeled in Schonflies notation.
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1 Introduction

wheregs/g; = 3/2is used. Further, it is convenient to define

I | S (1.6)

T mdPrs

By diagonalizing the Hamiltonian [EJ._(1.1)], one finds thgemvalues, (k) = & + Ay,
which physically corresponds to the lifting of the Krameegydneracy between the two spin
states at a givek in the presence of ASOC. The basis in which the band is didgamabe
referred to as théand basiswhere the Fermi surface defined by(k) = 0 is split into two
pieces labeled-. Sigrist and co—workers have shown that the presence of @Q\generally
allows for an admixture of a spin—triplet component to theeotvise spin—singlet pairing geg [5].
This implies that one may write down the following ansatz thoe energy gap matrix in spin
space:

Aaa’(k) = {W)k(T)l + dk(T) 'T]iTy}Jo’ ) (1-7)

whereyy (T') anddy(T) reflect the singlet and triplet part of the pair potentiagpectively. In
the band basis one finds immediately

Ax(k) = P (T) + |du(T)] . (1.8)

It has been demonstrated that a large ASOC compargglifas not destructive for triplet pairing
if one assumedy ||, [5,40]:
di(T) = d(T)Ay » (1.9)

where the temperature—dependent magnitud&3 andd(7") of the spin—singlet and triplet en-
ergy gaps are solutions of coupled self-consistency empuatirhus, the energy gap in Eq. (1.8)
can be written as:

Ag(k) = (T) = d(T)Al (1.10)

For theT = 0 Raman response in Chaptér 4 | will use the following ansatthi® gap function
on both bands{ and—) [48]:

Ai(k) =9 £d|ln|=¢ (1 £pmnl) =Ax, (1.11)

where the parameter= d/« represents the unknown triplet—singlet ratio. For brethyargu-
mentk is omitted, especially in lengthy expressions. Accordmtiie Bogoliubov—quasiparticle
dispersion is given b¥? (k) = &3 (k) + A% (k). If one assumes ng-dependence of the order
parameter), (k) [and alsoF), (k)] is of even parity i.e Ay (—k) = A, (k). Itis quite remarkable
that although the spin representation of the order paramete (k) does not have well-defined
parity w.r.t. k — —k, as easily seen in Ed._(1.7), the energy gap in band repeggentioes.
Note that for LyPd,Pt;_,B the parametep seems to be directly related to the substitution of
platinum by palladium, since the larger spin—orbit couplaf the heavier platinum is expected
to enhance the triplet contribution [22]. This seems to bdfiomed by penetration depth exper-
iments [70] 65].
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1.2 Phenomenological theory of Cooper—pairing

leqn| = 0.2 lem| = 0.7
1 \
O,
1 0 1
e €

Figure 1.3: Phase diagram for different strength of thelsing;), triplet (¢;) and mixing €,,)
contribution to the pairing interaction. The white, cyardaed areas display no
superconductivity, one or two superconducting instabsitrespectively.

1.2 Phenomenological theory of Cooper—pairing

As afirst step towards a microscopic description, | expl@@skible solutions of the gap equation
for NCS following the arguments of Frigeet al. [48]. For this purpose one has to perform an
unitary transformation to the helicity or band basis, whiglhbe explained in detail in Chapter 2
and also in Chaptél 5. The self-consistent gap equationréaets

A(k) = —kgT / (371:;3 ZV(k, K)F (K, iw,) (1.12)

in terms of the anomalous Green’s functions

AL (k)

Bl = A E v 20

(1.13)

where A (k) = (A, A_) is the two component order parameter and’, iw,,) denotes the
anomalous Green’s function, both in the band basis. Penfigrthe Matsubara frequency sum,
the weak—coupling gap Equatidn (1.12) for NCS reads

Ak, T) ==Y Vb A (K, T)6,(K) (1.14)
k/,u
with . By (k)
. A
0, (k) 2E\(K) tanh T (1.15)
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This gap equation represents an eigenvalue problem whitbe&agolved analytically for a phe-
nomenological pairing interaction that can be parametdras follows (extensively discussed in
Ref. [48)):

v
V(k, k) = B [(es + ec vl [7ie]) o0 + (s = ed| vl |7 |) o
— em ([l + [7el) 02 —iem (7| = I ]) o] - (1.16)

Hereeg, ¢, ¢, denote the singlet, triplet and mixed parity contributionfte pairing interaction,
respectivel;ﬁ. In this ansatz, the singlet contribution is constant arelttiplet contribution
is proportional to|~,||v. |, where the vector functioty, arises from the antisymmetric spin—
orbit coupling defined in the previous section. Kigl 1.3 igp an alternative representation of
Frigeri’s results (see Ref. [48]). Since the gap equatiorNiGS is in general & x 2 matrix
equation (forA,, A_ or alternatively for the singlet and triplet contributiom the gap), one
expects up to two superconducting instabilities. As usaiakegative contribution to the pairing
interaction is attractive and a positive contribution rispue. Thus, superconducting states with
a large singlet contribution are located on the upper lefheoof the phase diagram and triplet
states can be found predominantly on the lower right coiMeted parity states are close to the
diagonal. Depending on the three parameters, the gap equms either no solution (white area)
or reveals one (cyan area) or two superconducting insti@silired area). If the mixing ter@,
increases, one mainly finds a single superconducting transind the possibility of zero or two
instabilities is suppressed. Interestingly, the phasgrdra depends only on the absolute value
of the mixing term. As mentioned previously, it is still uaar from (specific heat) experiments,
whether CeRSi displays one or two superconducting instabilities. Fitbentheoretical point
of view, both possibilities can exist. However, most evickeiistrong triplet contribution from
various response and transport measurements combinetheithrger phase space in Hig.]1.3)
points towards only one superconducting transition.

In Chapte 2 and]3 | will use the phenomenological pairingrattion of Eq.[(1.16) with
e = 0in the parameter space with one superconducting instalskte Fig[ 1.3). In this case,
the separable ansatz for the pairing interaction reads

Vol =T 4+ Ml % e | (1.17)

wherel', andl’; represent the singlet and triplet contributions, respelsti With this choice, it
is possible to proceed analytically and to demonstrate #ogg invariance of the kinetic theory
in Chaptef2 and to calculate the properties of the gauge sniad¢CS (Chaptér]3). In Chapféer 5
and in particular in Sectidn 5.4.2, the pairing interactiothbe justified by a microscopic model
involving spin fluctuations.

3t can be shown that the Dzyaloshinskii-Moriya interactontributes to the mixing term,,, see e.g. Ref[[48].
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2 Response and transport in the
presence of ASOC

In this chapter, | formulate a kinetic theory for non—cesynmmetric superconductors at low
temperatures in the clean limit. The transport equatioasalved quite generally in spin— and
particle—hole (Nambu) space by performing first a transédrom into the band basis and second
a Bogoliubov transformation into the quasiparticle—goaks phase space. As a result, | obtain
a particle—hole—symmetric, gauge—invariant and chargeewing description, which is valid in
the whole quasiclassical regime, i.e. for the transferredhentum|q| < kr and the frequency
w < FEr of any applied external perturbatiBnAs an example, | calculate in the stationary and
long—wavelength limit the current response and the spduifat capacity. The Chapter 3 about
new gauge modes in NCS and Chapier 4 on electronic Ramaarsugin NCS are based on the
theoretical framework of this chapter.

2.1 Introduction

The theoretical study of response and transport propeatiésw temperatures is particularly
interesting, since superconductivity in NCS covers a righety of different new features and
concepts. | will use the framework of a kinetic theory ddsed by a set of generalized Boltz-
mann equations, which | used successfully before in Ref. & Herive various response and
transport functions such as the normal and superfluid denisé specific heat capacity, and in
particular the electronic Raman response in NCS, whichheikxamined in an separate chapter.

A few general remarks about the connection between res@orsé&ansport phenomena are
appropriate at this stage. Traditionally, the notion oh#@ort implies that the theoretical de-
scription takes into account the effects of quasipartickdtering processes by a scattering rate
I'. Therefore, | would like to demonstrate with a simple exampbw response and transport are
intimately connected: consider the density response ohabmetal electrons to the presence of
the two electromagnetic potential$s**- and A®**, which generate the gauge—invariant form of
the electric fieldE = —V®** — 9A /cOt. In Fourier spaceY — iq, /0t — —iw) one may
write for the response of the charge density:

one = e*iq-My(q,w) - E ,

with M, the Lindhard tensor anq - M, -q = M, the Lindhard function, appropriately renor-

15 = 1is used in the whole thesis.
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2 Response and transport in the presence of ASOC

malized by collision effects [72]:

‘CO(qa W+ ZF)
Mo(a,w) = 1 _ _ir _ Lo(qw+il)
ol Lo(a,0)

HereLy(q,w) denotes the unrenormalized Lindhard function in the dolitess limitl" — 0:

0 0
Lo(q,w) = 1 "pta/2 ~ "p—q/2
e 4 €p+a/2 — €p-q/2 — W

pPo

In this definition of the Lindhard functiom denotes the equilibrium Fermi-Dirac distribution
function ande, = & + p represents the band structure. Now the aspect of transpog<into
play by the observation that/,(q,w) may be expressed through the full dynamic conductivity
tensoro(q,w) = €*(0n/0u)D(q,w) of the electron system as follows:

q-o(q,w)q
iw—q-D(q,w)-q/(1 —iwT)’

Mo(q, w) =

with q-o - q = iwe?Lo(q,w) and with the so—called diffusion pole in the denominator of
My(q,w) reflecting the charge conservation law. This expressiortHferLindhard response
function M, clearly demonstrates the connection between responsegerged byl/, itself)

and transport (represented by the conductigifywhich can be evaluated both in the clean limit
I' — 0 and in the presence of collisioh's# 0. In this sense, the notions of response and transport
are closely connected and therefore equitable. In thisevblohpter | consider the collisionless
case.

2.2 Derivation of the transport equations

In this section, | study the linear response of a NCS to arcfieexternal perturbation potential
of the form [73]74]

8261{
Ok;0k;

A (qw)| der . (2.1)

2
56 = (@™ (a,0) = “vic- A7 (g w) + S Al(qw)
Here ®** and A®*** denote the electromagnetic scalar and vector potentiaktiinic Raman
scattering is described in addition by the third term. Ofrseyan experiment measures either
the electromagnetic response or the Raman response. Howeseslegant and convenient to
treat any possible perturbation of a superconductor onldégoting. The last term in Eq[(2].1)
describes a Raman process where an incoming photon witbrveetential A’, polarization

&’ and frequency; is scattered off an electronic excitation. The scatteremtg@hwith vector
potential A®, polarizatione® and frequencywgy = w; — w gives rise to a Raman signal (Stokes
process) and creates an electronic excitation with mometransfelq. Furthermore, the Raman
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2.2 Derivation of the transport equations

Table 2.1: External perturbations can be decomposed intotex~function and a potential. The
vertex—function is characteristic for each response fanand can be classified ac-
cording to parity (w.r.tk — —k) and dimension.

vertex (fictive) potential parity dimension  response

ax 0&a

e pext- even scalar charge and

eV Acxt odd vector current

(EAT(I‘) — a%}“’) oT even scalar specific heat
capacity

m(M )i roALAY even tensor Raman

vertex in the so—called effective—mass approximationsead

0? e(k
AS
—mz akak (2.2)

In general, an external perturbation can be decomposediaertex functionz, and a related
potentialyg,:

ot Z b, . (2.3)

A list of all relevant vertex functions and potentlals, tatl be discussed in this chapter, is
given in Tabld 2.11. The table is confined to the transport asganse functions that | will treat
in this thesis, however, it can be extended to contain alserdhteresting transport properties
as, for example, the ultrasound attenuation which is cjosshated to the Raman response in
2D systems/[71]. The charge density response to the eléietidcE = —V o — JA™* /cot

is characterized by a constant verigx = e (electron charge) and thus of even parity (w.r.t.
k — —k), whereas the current response to the vector poteAtidl depends on the odd vertex—
function a, = evy (electron velocity). In case of the specific heat capa€ify(7T’), the role

of the fictive potential is played by the temperature chafifje which couples to the energy
variable&,. For the Raman response, this fictive potential dependssibe on the vector
potential and, hence, on the polarization of the incomind) ssattered light. The response and
transport functions will be obtained as moments of the mdomardistribution functions with
the corresponding vertex (see Section 2.5.1 and Chaptehgreas the charge, current, and
Raman response are related to the momentum distributiatidumof the electrons, the specific
heat capacity is related to the (Bogoliubov) quasipaieled hence to their distribution function.
This will become clear in Sectidn 2.5.2.

In addition to the external perturbation potentials, alsdauoular potentials can and have to be
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2 Response and transport in the presence of ASOC

taken into account, here, within a mean—field approximation

56 = 065+ Y (fiop + V) Onp = Z a0, + Vyony + Z fanony . (2.4)

pPo

The short-range Fermi-liquid interactigf), leads to a renormalization of the electron mass [75]
and the long—range Coulomb interaction with= 4re?/q? is included self-consistently through
the macroscopic density fluctuatiofis, = > dn,, with the non—equilibrium momentum dis-
tribution functiondn,.

The potential9i{*" are assumed to vary in time and space:xp(iq-r — iwt). Then, the
response to the perturbation potentials can generally beritbed by a nonequilibrium momen-
tum distribution functiomn,, ,, which is a matrix in Nambu, momentum and spin space with

= k + q/2 andp’ = k — q/2. The evolution of the nonequilibrium matrix distribution
function in time and space is governed by the matrix—kin@to Neumann) equation [76, [77]

CUﬂpp/ + Z [ﬁpp”?ép//p/] = 0 ) (25)
p//

in which the full quasiparticle ener@;p, plays the role of the Hamiltonian of the system. This
equation holds fow < Er and|q| < kg. In general, a collision integral (see e.g. Ref.I[77]),
that accounts for the relaxation of the system into localldggium through collisions, could be
inserted on the right—-hand side of Eg. (2.5). In the follayvirwill work in the collisionless
limit B. After linearization according to

ﬂp”p’ = ﬁk(qa CU) - Qﬁéq,o + 5ﬁk(q7 (,U) (26)
§ ner T §k(q7w) = é?{&q,o + 5§k(q,W) ) (27)

PP

the matrix—kinetic equation assumes the following formpmsspace:

Wiy, + Oy 0 — €

&, Omye = 08, ny — ny 0, . (2.8)

Here,w is the frequency ank+ = k4 q/2, with q representing the wave number of the external
perturbation. The equilibrium distribution functier§ and quasiparticle energ_f\?( are matrices
in Nambu and spin space:

o ng g

m = <QL 1—1;1k) 29
_ Ex t YT Ay

S = ( ) ALk —[Ek—vk-T]T)' (2.10)

This ansatz was verified by a diagonalization procedurechvhill be explained in detail. The

2An example for collision integrals in the Raman responsebeafound in Ref.[[71].
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2.2 Derivation of the transport equations

momentum and frequency—dependent deviations from equilibare defined as

on )
0 _ k 9x
oy, = < 5ng( on ) (2.11)
and 5
0 & 0Ag

respectively. In the spin basis, the matrix—kinetic Equa{l.8) represents a set of 16 equations,
which can be reduced to a set of 8 equations by an unitaryftnanation into the band basis
(also referred to as helicity basis). This SU(2) rotatiogiten by Ref. [[57]

B U O
U = exp (—ie—;ﬁv 'T) = cos%y —in, 'TSiH%Y (2.14)
Vi X Z
= 2.15
YT ol (229

which corresponds to a rotation in spin space intozhdirection about the polar angle be-
tween~y, andz. Multiplying Eq. (2.8) from left WithQLr and from right withU, _, one may
rewrite it as

WUl omUs— + Ul on U, Uy & U —ULE) U UL, Uy
= Ul 06Uy Uiy Uy = Ul np U UL OE U, (2.16)

or, more simply

wony, + omy &) — & oy = 6& g —ny 08 (2.17)
where the equilibrium distribution function and energyftshin the band basis are given by
51-60) 0 0 ~AL0;
- 0 S(1—=¢.0_) AN 0
e = 0 A6 L1460 0 (2.18)
—A* 0, 0 0 S(1+¢&,:04)
and
& 00 Ay
» | 0 & —AL 0
S~ 0 -ar —£ 0 (2.19)

AL 0 0 =&

The trick consists of adding the identity matrix with the qdate momentum—index in between
the quantities of EQL(218). Then, the deviations from efim can be parameterized as fol-
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2 Response and transport in the presence of ASOC

lows:
ont. 0 0 Y
0 oént —d¢* 0
5gf’: 0 0 —5nl_’F
60 0 6AL
i B 0 aeb =AY 0
SAY 0 0 —da&

Thus, | have now derived a set of equations in spin— and basis-fEQqs.[(2)8) and (Z2.117)] that
allow us to determine the diagonal and off-diagonal non#iégum momentum distribution
functions. In Sectioh 2.5.1 and in Chagtér 4, | will use thdiséribution functions to determine
the normal and superfluid density, specific heat capacity/tla® Raman response of NCS. From
now on, | will omit the index %" indicating the band-basis, since all further consideraiwill

be made in the band basis.

2.3 Solution by Bogoliubov transformation

In what follows, | will solve the kinetic Equation (2.117), ikeed in the previous section. For
this purpose, | perform first a Bogoliubov transformatiotoiguasiparticle space, where the
kinetic equations are easily decoupled and then solvedthéosubsequent inverse Bogoliubov
transformation | will introduce parity projected quardgito obtain finally a relation between the
diagonal and off-diagonal energy-shifts on the one sidetla@ahon—equilibrium distribution
functions on the other. As a fist step towards the solutioh@kinetic equations, the momentum
distribution matrixn, and the energy matrig (both in band-basis) are diagonalized through
the following Bogoliubov transformation

F(Ey) 0 0 0
0 E_ 0 0
0 0 0 f(~E.)
E. 0 0 0
0 E_ 0 0
Ek = E;r(ékﬁk = 0 0 —F 0 ) (223)
0o 0 0 -E.
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2.3 Solution by Bogoliubov transformation

with the Fermi-Dirac distribution functiorf(E,) = [exp(E\/ksT) + 1]71. The Bogoliubov
matrix has been found to read in the band basis

uy 0 0 vy

0 wuwu_. —v_ O
Dy = 0 v wu. 0 | (2.24)

vy 0 0  uy

with the coherence factors
k
ur(k) = \/% (1 + 2((1{))) (2.25)
B 1 k) ) Ank)

wll) = ‘\/ 3 (1 B0 e (229

satisfying the conditioru,|*> + |vA|?> = 1, by which the fermionic character of the Bogoliubov
guasiparticles is established. As indicated by the colveréactors, the order parameter on each
spin—orbit split band\ , (k) is a complex function. In order to solve the transport equnith the
band basid (2.17), one may multiply from the left with the Blagbov matrixﬁfﬁ and from the
right with B, B. The resultis

wBl om By + Bl omB, Bl & By — Bl & By, Bl 0mBy_

= B 0¢ By Bj_my By — Bj my By Bl 0§ By (2.27)

or, more simply
wovy + ov By — Ey vy = 0Eyvy — vy 0By . (2.28)

The new Bogoliubov—transformed quantities, describing dieviation from equilibrium, are
identified from the preceding equations and labeled asvigtio

vy (k) 0 0 0+ (k)

ov(k) = Bl dmB, = 8 _55”7*(1({11) __5(27((_1{12) 8 (2.29)
i) 0 0 —dvni(-k)
SE, (k) 0 0 5D, (k)

0E(k) = Bl 6§ By = 8 _55)*(1({11) —_5(;;1?(9{12) 8 .(2.30)
sD% (k) 0 0 6B, (=k)

3Here as well, identity matrices with the right momentum aedi are inserted as for the unitary transformation into
the band-basis.
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2 Response and transport in the presence of ASOC

The solution of Eq.[(2.28) for the quasipatrticle distribatfunctions is the set of the following
eight equationsX = =+):

sua(k) = ﬁizk)gjk(k)d&(k) (2.31a)
Sun(—k) = _w+7§kzk)g (k)0 Ey (—k) (2.31b)
k) = — ?EA zk)@A(k)éDA(k) (2.31c)
Svi(k) = —#%@A(k)w;(k), (2.31d)

where | have introduced the following abbreviations:

ny(k) = Ex(k+) =+ Ex(k—) (2.32)

) FIEA()] — FIEA(k—)
e NS S APSEE

(2.33)

and

1 — fIEx(k+)] — f[EA(k—)]
Ey\(k+) + Ex(k—)

The expressions for these quantities in the long—wavetelimgtt can be found in AppendixJA.

In this limit, the difference quotien, (k) is equal to the Yosida kerngl (k), which is given by

the derivative of the quasiparticle distribution function

oflEak)] _ 1 1
8E)\(k) n 4kpT COSh2 (EA_(k)>

2kpT

Oxk) =

(2.34)

(k) = — (2.35)

with respect to the quasiparticle energy (k). The Yosida kernel is crucial for the tempera-

ture dependence of all response and transport functionsordimgly, ©, (k) =P 0, (k) rep-
resents the kernel of the self—consistency Equalion](1.143 instructive to note that the dis-
tribution functionsiv, (k) anddv, (k) have a clear physical meaning: The diagonal component
dux(k) = d(al@,) (k) describes the response of the Bogoliubov quasiparticlith (e quasi-
particle creation and annihilation operatd&s &, in the band\). The off-diagonal component
5. (k) = 6(ax@,) (k) describes the pair-response. Note that the abbreviatipfl) are of
even (+) and odd {) parity w.r.t. k — —k and become very simple expressions in the small
wavelength limit (see AppendixIA).

For the inverse Bogoliubov transformation, it is convehtenntroduce parity—projected quan-
tities which are labeled by = +1:

(k) = % Sna(k) + s3ny (k)] (2.36)
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2.3 Solution by Bogoliubov transformation

s 1
667(k) = 5 [06(k) + 506 (k)] - (2.37)
In almost the same manner also the off-diagonal componentte@omposed by

335709 = § [da (10

A3k | Ak
IS NS

5g>\(_k)} : (2.38)

and " e
> ST Ax(— ) _
|A>\(k)|+ IAA(k)|5 ( k)} (2.39)

| use the same symmetry classification for the Bogoliub@ndformed quantities. The physical
meaning ob A, (k, q, w) becomes clear after a decomposition into its real and inaagipart

. 1
SAY (k) = 5 [5AA(k)

5A)\(k7 q, CU) = a)\(kv q, w)eigo,\(q,w) - A)\(k) (240)
= [5&)\(1(, q, w) + Z5¢>\(q7 w)|A>\(k) H

With Eq. (2.39), one can identif&A(;“)(k, q,w) = day(k,q,w) as the amplitude fluctuations
andéA({)(k, q,w)/Ax(k) =i0p,(q,w) as the phase fluctuations of the order parameter.

The off-diagonal energy shizftA(;)(k) can be determined from a straightforward variation of
the self-consistency Equatidn (11.14):

AL (k) = > Viiagl (k) (2.41)
k'
with 5g§\8)(k) = —HA(k)cSA(j)(k). This off-diagonal self-consistency equation will play an

important role for the gauge invariance of the theory, asheildiscussed in Chapter 3.

From the symmetry—classification, one can assign to eachdoat and response function (see
Table[2.1) the corresponding momentum distribution fmmﬁin(;)(k) or 5nf\_)(k): The vertex
function of the (charge) density and Raman response is alerilihus, only the even distribution
function (5n(j)(k) contributes to those response functions. For the curresporese (dynamic
conductivity), the vertex—functiorug (k) = evy) is odd in momentum. Thus, onlcsn(;)(k)
contributes to the conductivity upon summation okeFurther, the Bogoliubov—transformation
can now be written in this simple form

w0\ (00 000 (e

(5&)(1{)) a <_;<;>(k) q%’(k) ' 5g§s>(k) (2.42)
5E§\S) (k) B qg\s) (k) p(;) (k) | 55;5) (k)

( 5D§\3)<k) ) N ( —pf\s)(k) qiS)(k) 5A§\S)<k) , (2.43)
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2 Response and transport in the presence of ASOC

which might easily be inverted by using the sum rule

)] + ) =1 (2.4

Here, | have defined the real-valued coherence—factors

0\ (k) = [un(k-+)ux(k—)| — s|va(k-+)va(k—)| (2.45)
and
0 (k) = ur(k+)va(k=)| + s|ur(k—)vr(k+)] , (2.46)
with the explicit form
@ L Skt (k—) — s]Ax(k)[?
av (k) = \/ 2 T 2B, (k) By (ko) (2.47)
and
(s) L &ik+)6n(k—) — s|A\(k)[?
py (k) = \/ 5 2B () By (k) : (2.48)

From Egs. [(2.43) and (2.28) one finally obtains the followsmjution of the matrix—kinetic
equation

ony (k) Nii Nig Niz Ny &y (k)

ony(k) | _ | Na Nao Nog Nogy | | 05 (k) (2.49)
ogy (k) | | Nai Nz Ny3 Nay dAY (k) .
dgy (k) Nyp Ny Naz Ny dA; (k)

The vector on the left—hand side contains the non—equilitbrnomentum distribution functions
[defined in EQ.[(2.20)] which can be expressed in terms of iigahal and off-diagonal energy—
shifts [defined in Eq[{2.21) and obtained from Tdbl€ 2.1 aqd(Z.41)]. The matrix—elements
N;; read in detail:

Ny —q“”(k)g&“(kw 2(x >@<+ (k) (2.50a)
Nis = ¢ (K)gy (k)7 < > pi” (k)pl 7 (k)6 (k) (2.50b)
M = ¢§ (p!” <k>[ *’(k)] (2.500)
Nu = ¢\ ()p§” (k)g5 (k > q§ (k)i (k) (k) (2.50d)
Nay = ¢§ (k)37 (k) + pi P (k)0 (k) (2.50€)

P77 (k) — P (k)p (k)8 (k) (2.50)

17 ) - 6" 10| (2.509)
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2.3 Solution by Bogoliubov transformation

Naz = pi7 2 ()5 (k) + 4§ (k)07 (k) (2.50h)
Mﬂngkkmﬁkkmi%k»+¢’¢M§%@@&Rm (2.50i)
Ny = p§ 2(%)557 (k) + ¢ (k)07 (k) . (2.50j)

The matrix—elementd’;; are symmetric, i.eN,;; = N;; and the occurring products of coherence—
factors can be found in the Appendix A. Above, | have intrastlithe following abbreviations:

7 (k B 2.51
Y ( ) W2 — ng\s)Q(k) y)\( ) ( )

w? =1y (k)

The matrix—elementd/;3, No3 and N3, are shown to be odd w.r.€,(k) — —¢,(k). Thusin

a particle—hole symmetric theory, these terms will vanipbruintegration ove¢, (k) and are
labeledO(pha which stands for “particle—hole asymmetric”. It is convamtito rewrite these
matrix elements in terms of the functions

(k) = A”k) ()] [5706) - €57 10| (2.52)
(k) = (k)+m ()99 (253)
0.7 _ n(9esk) — 2<> (k) (2.5
2 i) )

where the first one),(k), is referred to as the Tsuneto—function![78]. A straightfard but
lengthy calculation yields

n*®, (k) — w?Ay\ (k)

Ny = )~ (2.55a)
ws—n
w
Nt = gy 0 (2.55d)
Noy = Ui [q))\(l? — i\A(k)] (2.55€)
w? =1
Ui
Noy MAA(k) (2.559)
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2 Response and transport in the presence of ASOC

0V (k)  w?—n?—4A3(k)

N3y = —2 5 18709 (k) (2.55h)
N3y = O(pha) (2.55i)
9(+)(k) w2 — ,'72 .

wheren = vy -q. Note that all expressions are valid in the whole quasiatakBmit, i.e. for

q < kr andw < FEy. For small wave numbers, as required in the Raman case, threeils
and related functions, (k), ®, (k) ande(;“) simplify considerably. The results for such a small—
q expansion can be found in AppendiXx A. Further consideratiimn response and transport
properties require both main results of this section: THatsm of the transport equation in
quasiparticle space, given by Eg.(2.31) will be used diyéciSectior 2.5.P to derive the specific
heat capacity in NCS (see Tal)le]2.1). For the discussioneofjtuge mode (Chapter 3), the
normal and superfluid density (Sectibn 215.1), and the Raresponse (Chaptét 4) the non-
equilibrium distribution functions after an inverse Bogblov transformation are necessary [see

Eq. (2.49) and Eq[(Z.55)].

2.4 Gauge invariance

The gauge invariance of this theory is an important issu&whill be discussed in the following
section. To this end, the gauge modes have to be determirtetged calculation is found in
Chaptef B) and inserted into the transport equations. Asgration of these transport equations
yields a continuity equation, which demonstrates the gaugeiance of this theory favr < Ex
andq < kg. For this purpose, it is very instructive to rebuild the angg distribution function
by combiningin andén, from Eq. [2.49) and Eq(Z.55):

wony — 0 [0ny + Pr0&] = =M\ [wo& + nd&5 | + A (W — n?) (;AT’/\\ : (2.56)
The left—-hand side of this equation has the same structuteedmearized Landau—Boltzmann
equation of the normal state. In what follows, | want to dsthe right—hand side of the above
equation. Note that all terms couplingdad\| have vanished because of particle—hole symme-
try. This means that the amplitude fluctuations of the or@gegameter do not contribute to the
response in a particle—hole symmetric theory. The phasiéitions are also given by Eq.(2149):

o w?—n? WOES + noEy
Sy + |2 My | OAT = 222 TN 2.57
In Tt [ > T TaA? A} A 27, A (2.57)
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2.4 Gauge invariance

Multiplication with the pairing—interactiomfljﬁf and summation ovek’ and the band—index
yields

2 2
AN (K) + Y Vi [0M+50M+%)\M SA; (K (2.58)
k' i H
e OEE(K) £ it ()
KON, ()

k'

Au(K)

where | have introduced), = 6Y /2 — 6,. It can be shown, that thg,(k)—integral overso,,
vanishes identically for all momerﬁaUsing the equilibrium gap Equation (1114) one arrives at

oA, w? — 12 wog (K') +1o¢;, (K)
12 )\u ,r] k/ — )\/J 1% 12 k/ 2
; |AM| ; ka’4|Au(k/)|>‘H( ) Z ka’ QAM(k/) >‘u( ) . ( 59)

k'p

These are two coupled equations (for= +) which determine the phase fluctuations of the
order parameter (gauge mode). Note that in the weak coupl@fg theory, there are only two
collective excitations possible: the Anderson—Bogolwbod 2\ mode. In NCS, there exist
two gauge modes due to the band splitting, which can be cteheadth the particle number
conservation law. In addition, due to the existence of ddtrifraction, there could be further
collective excitation analogous to Leggett's SBSOS modesdipted for the superfluid phases
of 3He [80,[81]. The latter should be connectable with the spimseovation law in NCS. Fi-
nally, massive collective modes with frequencies belawrBay exist in NCS. In Chaptét 3, it
will be shown, that the right—hand side of Elg. (2.56) vansshponk and A\ (band) summation
when inserting the above expressions for the gauge mods |&dds to the following continuity
equation for the electron density:

WY ona(k) —q- Y vic[ona(k) + Pa(k)dg (k)] = 0. (2.60)

For a conserved quantity such as the partigle= 1 or charge density,, = e, one can identify
the corresponding generalized density and current density

ong = Y _ axdna(k) (2.61)
kA

jo = Y avic[dna(k) + a(k)5EN(K)] (2.62)
kA

obeying the continuity equation
wWong —q-ja=20. (2.63)

4This is a straight forward generalization of the calculiaiio my Diploma thesis [79].
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2 Response and transport in the presence of ASOC

That s, | have demonstrated charge conservation and gavaggance of the theory fay < Ep
andq < kg.

2.5 Applications

The applications, which | will present in the following, arestricted to the long—wavelength
and static limit and are intended to demonstrate the vglafithe theory through a comparison
to simple local equilibrium calculations. Since | solvee tinansport equations for arbitrary
frequencyw and momentung, the full potential of this theory would be exploited for andynic

q # 0 calculation of a transport property. At least a finitecalculation will be presented in
an extra chapter, namely the electronic Raman response 8§ N@Gwever, let’s first derive the
expressions for the normal and superfluid density, as wellbathe specific heat capacity in
NCS.

2.5.1 Normal and superfluid density

The normal and superfluid density are derived in the staticlang—wavelength limite¢ — 0
andq — 0). In order to preserve gauge invariance, gradient termbhebtderO(q) are still
taken into account. The parity—projected distributioncliomns are obtained from Ed. (2]49) and

from Eq. [2.55)
ony (k) = —¢a(k)o&y (k) (2.64)

oy (09 = = [0n(0) = M9 865 09+ (k)5 2

(2.65)

where | made use of thg — 0 limit with the coherence—factorg (k) — 1, p, (k) — 0, and
O\ (k) = ox(k), gr(k) — yr(k), as well as the Tsuneto—function(k) — ¢x(k) — ya(k) (see
Appendix(8). The combined expression @i, (k) anddn, (k) are now inserted in EqL_(2.62)
to derive the supercurrent density (vertex—functQn= ¢):

i =) evpi [0na(p) + 6a(p)3&s (p)] (2.66)
PA
— eZVpivpj)\,\(p) <—%A+%V§gp,\) )
PA

Here, | used the result from Sectioni2.3 that, (k)/A\(k) = idp, represents the phase fluc-
tuations of the order parameter. These phase fluctuatiswsegauge invariance in the above
expression for the supercurrent. By rewriting the supeeruias product of the superfluid density
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2.5 Applications

and the corresponding velocity, one can easily identify

i = en®-v® (2.67)
e

1
v o= £ (—5A+—v5w) . (2.68)
m c 2

Therefore, the superfluid and normal fluid density tensad rea

no= Y Pivpa(p) (2.69)
PA
njj = MOy — Ny = ZPszjyx(P) . (2.70)
PA

Thus, in this static and smati—limit one obtains a very clear picture: The Yosida—kernel
ya(k) = —0f[E\(k)]/OE\(k) generates the normal fluid density and the Tsuneto—function
(k) gives rise to the superfluid density.

It is important to realize, that this result can be derivethmfollowing alternative simple way
from local equilibrium considerations. In terms of the FefDirac distribution function on both
bandsf|E, (p)] for the Bogoliubov quasiparticles, the supercurrent cawiigen in the standard
guantum—mechanical form:

i = nvf+%;vpxp)f(mpwp-vw @71)

— % D vpi {f(EA(P)) + %ﬁ)p)))pﬂ;}

1 p@-( 8f(EA(p)>)
= ndj; — — — | == | p; p V.
{ e AN AR
This immediately implies the definition of the normal fluiddy in the form

1
ny = Do) (2.72)
PA

Thus, the results obtained with this simple local equilibripicture are in agreement with the
results in Ref.[[82].
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2 Response and transport in the presence of ASOC

2.5.2 Specific heat capacity

In order to derive the specific heat capacity, | start fromgression for the entropy of a NCS,
which has to be written in the general form

To(T) = 22 3 FIEA®)) 0 fBA@)] + {1 - JIEA@)]} {1 — f[EAp)]}
= Y8 @73

The change of the entropy as a consequence of a temperaangesii’ can then be written in
the form [82]

Téo(T) = —ZEA )oua(p (2.74)

where the quasiparticle distribution function is given hy. £.31). In the static and homoge-
nous limit, i.e. w — 0 andq — 0, this expression simplifies considerably o, (k) =
yr(k)dEx(k). The quasiparticle energy shift for a temperature chang€jigk) = (E\(k)/T —
0F\(k)/0T)T for each band [82]. Hence, the result for the entropy chaegds

Tio(T) = 3 n®EE) B - 1200 o1
PA

— Cy(T)6T (2.75)

and one may easily identify the specific heat capacity as

= % > un(p) [Ei(p) - zaAi(p)} : (2.76)
PA

2 0T

An alternative way to derive the specific heat capacity eygbmgain the concept of local equi-
librium:

Too (T Z Ex(p)df(Ex(p)) - (2.77)

The change of the BQP (Fermi-Dirac) distribution functiomhwemperature has two causes:
first the direct chang@® — T + 67 and second the change of the BQP energy with temperature
through thel'—dependence of the energy gap:

[ Ex(p) + 22RsT Ey(p)
5f(EA(p))—f< i [T+6T] ) f( ];BT ) (2.78)
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N e e 2.79)
y;(,p) ”

Hence, one arrives at the same result for the entropy change

Tio(T) = 3 S np)Ep) |Exp) ~ T2 o7 (2.80)
PA

= Cy(T)éT

and the result for the specific heat capacity is confirmed.iAdé&e in the case of the normal
and superfluid density, the result for the specific heat agpean be viewed to consist of con-
tributions from the two bands, in the sense that the sum dwespin projections = +1 is
replaced by a sum over the pseudospin variable +.

2.6 Summary

In this chapter, | derived response and transport functionson—centrosymmetric supercon-
ductors from a kinetic theory. The starting point is a geliied von Neumann equation which
describes the evolution of the momentum distribution figrcin time and space, and | derived
a linearized matrix—kinetic (Boltzmann) equationding—space. This kinetic equation (MKE) is
a4 x 4 matrix equation in both particle—hole (Nambu) and spin epa@xplored the Nambu—
structure and solved the kinetic equation quite generaflyirst performing an SU(2) rotation
into the band—basis and second applying a Bogoliubov-ftsemation into quasiparticle space.
The theory is particle—hole symmetric, applies to any kihdrgisymmetric spin—orbit coupling,
and holds for arbitrary quasiclassical frequency and mdomewith w < Er and|q| < kg.
The main results of this chapter are represented by theAfmlpequations:

* Eq. (2.8) describes the kinetics in NCS. An important poorisisted in the clarification of
the Nambu-structure of the involved quantities. The MKBs$farmed to the band-basis
is given by Eq.[(2.17) and the Bogoliubov-transformed MKBisnd in Eq. [2.2B).

* In quasiparticle space the solution of the MKE is given in £531), which is used e.g. in
Sectior 2.5.2 in order to derive the specific heat capacity.

» The general analytical solution of the MKE is found in Eq4@) with the matrix elements
in Eg. (2.50) or in a more convenient form in EQ. (2.55). Togetwith the characteristic
vertex—functions listed in Table 2.1, this solution of th& provides any response or
transport function for NCS.

Furthermore, assuming a separable ansatz for the pairiatpation, | discussed the gauge
invariance and charge conservation for this theory. A teda@nalysis about the gauge invariance
and the associated collective order parameter modes wiltémented in Chaptel 3. Within this
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2 Response and transport in the presence of ASOC

framework, | derived expressions for the normal and supdrflansity and compared the results
in the static and long—wavelength limit with those from adlbequilibrium analysis. The same
investigations were done for the specific heat capacity. dth ltases the same results were
recovered, as expected.
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3 New gauge modes

The following chapter is devoted to an interesting consaegeg¢hat emerges when solving the
matrix—kinetic equation in Chapter 2 and deserves its ovaptr. By demonstrating the gauge
invariance of this theory, | recognized, that there are tewoggg modes with interesting properties
in NCS. Since the observability of gauge modes in superottodsiis rather limited (see sum-
mary of this chapter), this topic is interesting for otheagens. It is well-known that the original
BCS description is lacking gauge invariance, and assatiaith this, violates the number con-
servation. Numbu, who received the Nobel Prize in 2008 ‘herdiscovery of the mechanism of
spontaneous broken symmetry in subatomic physics”, pouttsn his Nobel lecture [83], that
the pairing interaction, which gives rise to the Coopertahbsity, causes also collective excita-
tions in the superconductor. In the BCS—case these are eméigand the amplitude fluctuations
and on the other hand the phase fluctuations of the order péeant he phase fluctuations cou-
ple to the density and current response, restore the marischber conservation, and with it the
gauge invariance. Hence, the mode connected to these fioctsigs called gauge mode. Other
names are Nambu—Goldstone made [83] or Anderson—Bogalioioale [84] 85].

3.1 Introduction

An excellent introduction to collective order parameterde®is found in the book “The super-
fluid phases of helium 3” by Vollhardt and Wolfle [86]. In sptriplet systems, Leggett predicted
the SBSOH modes [80, 81]. There, the order parameter can be descnbadbmplex vector,
where each component can oscillate against each other. iGethithese aré8 possible collec-
tive modes, which were classified in detail by Wo6lfle![87]. Tamperature dependence of these
modes (called e.g. clapping, normal-flapping, super—ftagpivas analyzed in Ref. [88, 89].
Leggett predicted also a collective mode in two—band sumehactors which arises from fluctu-
ations of the phase difference between the order paranmtdosth bands [90]. More thato
years later this mode could finally be observed experimgnitaMgB, [91] and is still attract-
ing interest[[92]. The gauge modes, | will discuss in thedwihg, are probably different from
Leggett’s mode, since the order parameters on both band€& &te not independent of each
other.

In charged Fermi systems, the gauge modes are shifted tdabma frequency through the
Anderson—Higgs mechanism [93]. Within the kinetic—theapproach described in Chaptér 2
this is done by taking the long—-range Coulomb interactida account. For centrosymmetric
unconventional superconductors this is explained in di.[In this chapter, | will investigate
the gauge modes before Coulomb renormalization.

Ispontaneously broken spin orbit symmetry
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3 New gauge modes

3.2 Role of phase fluctuations

The gauge modes are derived from the phase fluctuations airtlee parametefA | on both
sheets of the Fermi surfage= +. Using the equilibrium gap equation and a separable pairing
interactionV’), = T's + vl |4y | |9 | Wwherel'; andT', represent the singlet and triplet contribu-
tion, one arrives at [see Eq. (2]59) in Chapter 2]:

SEHK) + 1,6 ,
Z i{ kk'iﬁllA 117 A (K) = Zv;;;”g *&f Oy @

These are two coupled equations (for= +) which determine the phase fluctuations of the order
parameteb A (k)/2|A,(k)|. In NCS, one finds fluctuations on both spin—orbit split barids
gauge invariance of the kinetic theory and charge congervaan only be demonstrated by
taking both phase fluctuations into account.

In order to calculate the dispersion of the gauge modes,abmvenient to introduce as an
additional parameter the strength of the spin—orbit cowgpli, which can be used as expansion
parameter. In agreement with the previous definition (sef@d1.1),« is just the magnitude
of the spin—orbit vector:

i = 0, (3.2)

N Yk

Y = ——— . (3.3)
([7il?) Fs

Thus, the energy dispersion and the order parameter on battslyead:

Ex(k) = & £ ol %y (3.4)
Ay(k) = £daly| . (3.5)

In order to proceed analytically, the following two assurops were required

» The equilibrium phase of the order parameter is independek and band index:
A, (k) = A,(k)/|ALk)| = ¢ = A. This means together with the ansaiz (k) =
¥ £ ad|?,| that | allow for an overall phasg, which has to be the same for each band and
therefore is also fixed between the singlet and triplet doution. Whether fluctuations
of the phase difference between both bands like Leggettidenaoe possible, might be an
issue for further investigations.

» The usual assumption, that the phase fluctuations are endent ofk:

SO (k) /2| A7 (K)| = i66,(q, w) /2.

With these assumptions, the amplitudé(') and phase fluctuations4 ) decouple. The phase
fluctuations are then determined from Hg. {3.1) by solvirig slystem of linear equations and
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3.2 Role of phase fluctuations

inserting the pairing—interaction. The result reads:

> Bi(P)A-(0) (Aol + pl] + B-(P)A-(P) [4pr] = 4]

6Ajr
= - - (3.6)
2|A4| S A_(P)ALD) [[Ap] + A ]
p,p’
SA- > BL(p)AL (D) [Ap] — [Apl] + B-(P)AL () [Apl + Apl]
— p;p’
= — — , (3.7)
2|A_] > ALP)ALP) [[Ap] + [Apl]
p,p’
with the abbreviations
w? — 775 w5§: + Nud€,,
AH = 2‘Au‘ Au s B, = TAH . (3.8)

In what follows, | will demonstrate particle conservatiar arbitrary momentung in NCS.
For this purpose, the sum rules

1 . L
5 > V=T, singlet projection (3.9)
n
1 . L
5 > UV = v | triplet projection (3.10)
i

for the pairing interaction are quite useful. Applying bstim rules to EqL(3l1) one gets

w? — 3 5AV k wo j‘ L(p)d =
Zﬁxy(p) ‘Ay((k; 3 § (p;‘z 77((1)3‘)5 (p) (D) (3.11)
0219 Z 5,205 P 4 (PG, (R) ) (3.19)

W= )
2Pl S, o PV, ) 215, (p)

With the abbreviations, defined in Ef. (B.8), this simplifies

04, (k)
ZA 2|A (k)| ZB (3.13)
. V(k)

Now, one has to go back to EQ. (2156) in Chapter 2:

0A7

wén,, — n, [6n, + ©,0¢,] = =\, [wéﬁj + ?7M5£;] + AL (w2 — 772) 2Aﬂ ) (3.15)
o
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3 New gauge modes

The r.h.s. of this equation may be rewritten with the ablaiens used in Eql(3.8):

0A (k)

2/8,00] ] 210

r.h.s.=2A,(k) [Au(k)

Performing the sun) ... on both sides of Eql(3.15) finally leads to

kpy

AL (p)

wén — q-j = 2¢ZA 2|A (p)| — B, (k) (3.17)
=0, C.f. Eq. (3.1B) ’
SA~
+ 205 A0y 2~ 4B, (0 (3.18)
ku ’irp Y
=0, c.f. Eq. [3.14)
woin—q-j=0, (3.19)

with the particle density: and the current density Thus, through this continuity equation, |
demonstrated the most important role of the phase fluchustioamely to restore the number
conservation law and, accompanied with this, the gaugeiavee for arbitrary frequencies
and momentum transfetg

Now it is instructive to take a look at the homogeneous, igg— 0 limit. In this limit,
Eq. (3.15) reads (see Appendik A for the—+ 0—expansion of all quantities):

5A
1) = 2,000 [ 6509+ S

(3.20)
For the electromagnetic response, one may insert for tregreadtperturbationg (k) = e,
even ink, the scalar electromagnetic potentisf': as described in Sectign 2.2 and in particular
in Table[2.1. The phase fluctuations may be abbreviateddy(q, w)/2 (see assumptions) and
going back from Fourier-space into the time—domain, thevateguation is equivalent to

Sn,(k) = —e), (k) [cpext- 1; (—2—065%)} . (3.21)

Clearly, the last term-c/2e 6¢,, is the gauge field for NCS (see Nambu’s Nobel lecture for the

BCS analoge in Refi. [83]). The phase fluctuatiéns can be evaluated from Ed.(8.1) igr— 0
with the result:

5A— (k) eq)ext.

This equation is nothing else than the well-known Josepbgaation for NCS in Fourier—space,
since it connects the time—derivative of the supercondggthase with an applied electromag-
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3.3 Results for the gauge modes in NCS

netic potential. In that sense, Eds. (3.6) dnd|(3.7) areefigigeneralizations of the Josephson
relation for NCS. Finally, inserting this expression intg. £3.21), one recovers again the density
conservation (in the homogenous limit):

ext.

1, (k) = A (k) | —edt 4w ~0. (3.23)

Here, one can see that the densities on both bands+ are conserved separately. The two
gauge modes, and therefore the two gauge bosons in NCS sopaotors, thus reflect through
the Goldstone theorern [94] the (charge) density consenvatn each band.

3.3 Results for the gauge modes in NCS

In order to calculate the dispersion of the gauge modes, asilexamine the phase fluctuations
given in Eqgs.[(36) and (3.7). Since the denominator is timeestor the phase fluctuations on
both bands, the gauge modes are obtained from the poles of2A :

2 2 2 2
w? —n? w —n? w
.24
<4|A -1 “'><4|A+| A+> <4\A - ><4\A+\ A*‘”"“> - 32

with (...) = > .... Thisis a fourth order equation inwhich can be solved analytically with the
k

result:
W= 1 [BH + b1 n a_foy + 04+50—} LT by + 5= aPoy + ayfo- . (3.25)
2| ap +a_ ar + o 2| ar +a_ o + o

using the following abbreviations:

r= 144 (Boy — Bo-)(a_Bry —ayBi) no_>SOC1 ) (3.26)
(Biy + i — afor — ay By )? ’
Y| s Yl (vic - (1)

Q, = M. < 2Ak > ) (3.27)

Moy ) ﬁn,u — Mew
27k, 27k,

Note that Eq.[(3.25) is an exact, but implicit solution. Fangler frequencies corrections from
the w—dependent Tsuneto—function (k, q,w) have also to be taken into account. However,
| am interested in the asymptotic behaviorq — 0, only. In this limit (see AppendikA),
the Tsuneto—function is just constant w.r.t. the frequesray momentum transfer. In order to
continue an analytical evaluation, it is convenient to expthe solution[(3.25) to the lowest
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3 New gauge modes

2A

%Uqu‘

>|q|

Figure 3.1: lllustration of the gauge modes for NCS of tetraay, tetrahedral and cubic symme-
try before charge renormalization. Both modes disperssrfall momenta linear in
q but with different slopes.

order in the spin—orbit coupling parametdﬁ:

s TR | PN o [L 0N 0] s
s [y ) roen= [y - G o] eam

Here, | neglected the effect of the spin—orbit split bandses, (k) = & + oYy o9 ¢(k).
The prefactors of botld(a?)-terms are lengthy and not shown here. Note that does not
cancel in the numerator and denominator. Thus there areistioat dispersions, even for arbi-
trary small ASOC. For vanishing ASOC, i.e. = 0, the well-known result for the Anderson—
Bogoliubov mode is recovered [85,!84]:

2
n A w—0 1
wip = <<A>> == gv§|q|2. (3.29)
Performing the momentum—integration
(...) = Ng / déx(..)Fs , (3.30)

itis now possible to examine the dispersion of the gauge sfuddow frequencies and different

2Note that this expression is not valid for exactty= 0, since on the one hand broken inversion symmetry
is assumed and on the other hand, the strength of the ASOCIlhasmée triplet—contribution to the gap is
infinitesimal small. An expression far = 0 is given in the following Eq[(3.29).
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3.3 Results for the gauge modes in NCS

type of ASOC. Additional to the tetragonal symmetty & C,,) and to the cubic symmetry
(G = 0) defined in Sectioh 111, | want to introduce here anotheisatNCS with tetrahedral
point groupG = T, which is also of interest [39, 38]. For the tetrahedral pgrdaup, the
spin—orbit vectory, reads|[66]

Yie = 8 |kl = 12)8, + by (2 — B2)e, + ko(k2 — ke | - (3.31)

In spherical coordinates and normalized, this yields:

Y| = §| sin €|\/cos2 0 — cos? psin® ¢sin® 0 (8 — 9sin”0) . (3.32)
Thus, | get forw, q, « — 0 and |9, | « sin # (Rashba—-type of SOC, as e.g. in G&it:

(1?1 \) Lo
" = —vi|q|® . (3.33)
PV
For a~,—vector with cubic or tetrahedral symmetry (as e.g. igPld.Pt;_.B or Ln,C; with
Ln=La,Y), one gets

<772":/k‘>\> 1 21 12
Ml 2 . (3.34)
vy~ vl

For the highly symmetric cubic point group, this result i¢ sorprising, since the first term
Y x k is pseudo—isotropic. Interestingly, the second term ferdtbic symmetry does not
affect the prefactot /3. Finally for small ASOC the dispersion of both gauge modesise

1 .
w? = §v§|q|2 +O(a?)  Anderson-Bogoliubov mode (3.35)

) { Lilgl? + O(a?) forG = Cu,

=9 19 ) (3.36)
3vplal® + O(a®) forG = O andg =T,

Thus, | found two gauge modes with lindgf—dispersion for NCS (see Hig 8.1 for a schematic
illustration). Of course, in charged Fermi systems, theggamodes are shifted to the plasma
frequency, usually above the pair—breaking continuumttugtshould not change the different
behaviors in the slope. One gauge made)(can be identified (forr — 0) as the well-known
Anderson-Bogoliubov mode. The second ane)(appears for broken inversion symmetry and
depends on the symmetry of the spin—orbit veétpr(which is determined by the symmetry of
the crystal structure). The slope of both dispersions isifisabby the strength of the ASOG]
according toO(a?) and can be different even for arbitrarily small (but non-ishing) ASOC,
which is displayed schematically in Flg. B.2.
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Figure 3.2: lllustration of the slope gt — 0 of the gauge modes in NCS before charge renor-
malization as a function of the spin—orbit coupling stréngt (defined through
Y = a¥y). The behavior for the cubic and tetrahedral symmetry-<{teihd side) is
clearly different from the tetragonal case (right—hane}id

3.4 Summary and discussion

For any superconductor with inversion symmetry (singletripiet), the gauge mode disperses
according tow(q) = vr/v/3|q|, gives rise to a generalized Josephson relation, and pesser
gauge invariance for the density and current response. é\sdime time, the particle number
conservation is restored, when phase fluctuations are tat@account. | calculated the phase
fluctuations in non—centrosymmetric superconductors (N@Sach of the two spin—orbit split
bands for a separable pairing interaction (neglecting ithgdest—triplet mixing term, i.e. without
Dzyaloshinskii-Moriya interaction). It remains the sudtjef further investigations, how gauge
invariance could be demonstrated with a singlet—tripleding term in the pairing interaction. It
turns out that the phase fluctuations give rise to two gaugiesim NCS. One of them reflects the
singlet contribution of the order parameter and is idehtathe Anderson—Bogoliubov mode in
the limit of vanishing ASOC. Most importantly, | discoveritht the second gauge mode, which
reflects the triplet contribution of the order parametefajsunique to NCS and (b) depends on
the symmetry of they, —vector: | obtain for cubic and tetrahedral symmeiry+/3 for the slope
of this gauge mode, whereas for tetragonal symmetry I4jna.

The observability of these collective modes is inhibitad¢e the gauge modes are shifted to
the plasma frequency, which usually lies well above theqa@aking continuum and thus leads
to strong damping [95]. However, in some highly anisotrammpounds, the plasma frequency
may be located below the pair-breaking continuum, which faagr the observability [96]. The
amplitude fluctuations of the order parameter (which stagetsing aA) were for the first time
observed in NbS97,198] by Raman spectroscopy. Since the gauge modes couple charge

48



3.4 Summary and discussion

channel, many different experimental techniques are imcjpie suitable. Hirschfeld proposed
e.g. electromagnetic power absorption measurements éctdatllective modes in unconven-
tional superconductors [99]. However, the most natural teagnalyze gauge modes, especially
in neutral superfluids, is via sound propagation measureasre.g. ultrasound attenuation/[86].
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4 Theory of Raman response

Inelastic light scattering is a powerful tool to analyzeraiional and electronic properties of a
system (see e.g. the review in Réf. [100]). Through photavasy different types of excitations
can be generated, such as phonons, electronic excitatidmaagnons. Because of this, a typical
Raman spectrum consists of a broad electronic backgroupe@risnposed with sharp phonon
peaks at well-defined frequencies and for a well-known aton setup. In the presence
of antiferromagnetic correlations, broad two—magnonuesst are seen at higher frequencies.
Particularly interesting is the Raman response in supeetors: Spectral weight is transferred
from low frequencies to higher ones, low frequency powersland pair—breaking peaks may
occur, and the electron—phonon interaction changes theesdrad position of the phonons.

In a side—project, | contributed to an experimental work &tettronic and phononic Ra-
man scattering in detwinned YBE@uwOg 95 and Yj g5Cay 15BaxCsOg.95: s-wave admixture to
the d»_,2-wave order parameter” by Balkt al. [74]. We studied the electronic Raman effect
as well as phonon anomalies in detwinned, slightly overdopBa, Cu;Og 95 (YBCOg 95) and
moderately overdoped ¥%;Ca 15BaCuzOg 95 (YBCOg 95:Ca) single crystals. As a result of the
detwinning, in both samples, modifications due to d@hké axis anisotropy could be observed in
several phonon lineshapes. Since the theoretical modéisréference takes both, electronic
and phononic contributions to the Raman response into atcag were able to disentangle both
contributions. We concluded, that the Raman spectra argistent with ans—wave admixture
with an upper limit 0f20%.

In the presence of nonmagnetic impurities the electronim&aresponse changes signifi-
cantly: additional weight at lower frequencies in the Rarspectra hides the low frequency
power laws. Furthermore, the low temperature Raman respsim®wvs in certain symmetries a
peculiarity called universal transport, i.e. the Ramampoese becomes independent of scatter-
ing parameters. More about these interesting properteesliacussed in a publication together
with Einzel [71]. Other results of this work were modified I@@mperature power laws and a
connection between Raman response and ultrasound attenuat

Raman response for singlet superconductors has beeniertgissudied for all different kinds
of orbital anisotropies of the order parameter (see e.g. [Ré1,/102]). For triplet order pa-
rameters such a detailed analysis has not yet been done.f@r8yRuO, a few publications
exist [103]104], which focused mainly on the clapping mdzkxause in this two—dimensional
analysis the order parameter is pseudo—isotropic and tielRdman response is BCS—like. The
only non-trivial example for calculated Raman spectra obssfble pairing state in a triplet su-
perconductor is found in Ref. [105]. Since the pure triptatess can be realized in NCS as a
limiting case, | will additionally discuss the spectra o ttmost common triplet states as e.g. the
Balian—Werthamer (BW) state, the Anderson—Brinkman—ME&&8M or axial) state, and the
polar state.
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4 Theory of Raman response

An important and unresolved issue for NCS is the deternonaif the triplet—singlet ratio in
the superconducting order parameter. Analogous to theaiquesout the size of as-wave con-
tribution in cuprates, the size of the triplet—singletoati NCS remains a very interesting topic.
For all NCS this ratio is still unknown, however, there areesal proposals how to determine
this ratio: Yuaret al.[65] analyzed the temperature—dependent penetratioh depstimate the
triplet—singlet ratio for LiPd,Pt;_,B, Vorontsovet al. [57] suggested spin currents, Fujimoto
recommended Andreev reflection [58], and | propose elei@aman scattering as a probe of
the triplet—singlet ratio in NCS.

In the following, | will discuss the electronic Raman respeim NCS for the most simple case:
for T' = 0, assuming spherical Fermi—surfaces, without impurities collisionless limit) and
for the inverse effective mass approximation for the Ramentex without higher order vertex
correctiond. Precisely because of these simplifying assumptionsethdts become particularly
clear, even though analytical expressions could only baioét in special cases.

4.1 Introduction

A Raman experiment detects the intensity of the scattegbatiwith frequency—shitt = w;—wsy,
where the incoming photon of frequengy is scattered on an elementary excitation and gives
rise to a scattered photon with frequengyand a momentum transfgr The differential photon
scattering cross section of this process is given by Ref[f10

820' ws o
awaQ - w_ITOS’Y’Y((Lw) ) (41)

with the solid anglé2 and the Thompson radiuts = ¢? /mc?®. The generalized structure function
S,,(q,w) is connected through the fluctuation—dissipation theokethé¢ imaginary part of the
Raman response function, (q, w):

Son(@,) =~ [+ ()] Xy (a,) (4.2)

Here,n(w) = [exp(w/ksT) — 1] denotes the Bose distribution function. After Coulomb reno
malization and in the long—wavelength limg & 0), the Raman response function is given by
the imaginary part of (see also Ref. [108])

W)

Pw) = [ (0)

Xyy(w) = X5 (w (4.3)
Xi1 (W)

IDifferences in the Raman spectra from vertex correctioaslamcussed in Ref. [101, 102, 106].
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4.1 Introduction

Within the notation developed in Chaptér 2, the unscreersadd® response reads
X9 =7 Z apbpAp( (4.4)

where the vertex—functiomsp b, are eitherl or the corresponding momentum—dependent Ra-

man vertexy = 7 ) that describes the coupling of polarized light to the samflee long—
wavelength limit of the Tsuneto—function,(q = 0) = 4A26,/ (4E2 — w?) is given in Ap-
pendix'A and since | am interested in tile= 0 Raman response, it is possible to perform the
integration on the energy variakdg with the result (see also Ref. [101, 102]):

for 2|Ax| > w

_AAg]2
arctan
IR e
a w— w2 2
w <akb A8 -V 4'Ak> for 2] Ay| < w
FS

Vw2—4Ak2 T wt /w2 4] A2

2
I (W) = ﬂi\fF <akbk%A> : (4.6)

Vo — 4[ALP

Here the Fermi—surface average is defined as

<...>Fs7rjfo/wd9 sinf. .. . 4.7)

0

(4.5)

Note that the second term in EQ._(4.3) is often referred tdhasstreening contribution and
originates from the gauge invariance. It becomes impoftarnthe A; symmetry and accounts
for the particle conservatidh Since the ASOC leads to a splitting of the Fermi surface, the
total Raman response is given lgy’;al = s Xw with Xw = X++(A1), in which the usual
summation over the spin variableis replaced by a summation over the pseudo—spin (band)
index A. With Eq. (1.11) the unscreened Raman response for bothshianthe clean limit
[l > £(0) with the mean free pathand the coherence lengéli7’ = 0)] can be analytically
expressed

TNZy 1+ ply 2
VUL %<%<<R>2 MLES. [ (4.8)
Va2 -/

Here, N reflect the different densities of states on both bands(angl-s denotes an average

2According to a recent publication by Klein [92], this scragncontribution vanishes in all symmetries (even in
A,) for two—band superconductors when vertex—correctiomsaken into account (and far= 0). However, it
is not yet clear, whether this result applies to NCS. Thisia@ditional reason why | will show in all following
graphs the screening contribution for tAg symmetry separately.

SInterband scattering processes are neglected.
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4 Theory of Raman response

over the Fermi surface.

4.2 Raman vertices and pure triplet response

Raman scattering takes place at the center of the Brilloaimez Therefore, | consider small
momentum transfergy(— 0). This is due to the fact that the maximum momentum transfer b
light ¢u.y IS typically three orders of magnitude smaller then a tylpicave vectorkz, or k.
Furthermore, | assume non—resonant scattering, whicle isadbe when the photon energy is less
than the optical band g&) Then, the inverse effective mass approximation for the &atransor

is usually a good approximation [110, 111]

2¢(k
YW =my e el )_é§ , (4.9)

wheree®! denote the unit vectors of scattered and incident polaoizdight, respectively. The
light polarization selects elements of this Raman tensberwyf) can be decomposed into its
symmetry components and, after a straightforward calicuigsee AppendikB), expanded into
a set of basis functions on a spherical Fermi surface.

The results for the tetragonal group,Gre

0o I1<k/2

7,41 = Z Z 7“ cos4lgz$ sin? (4.10a)
k=0 1=0
0o 1<(k+1)/

’yBl Z Z fykl cos(4l — 2)¢ sin®* (4.10Db)
k=1 =1
0o 1<(k+1)/

732 Z Z vkl sin(4l — 2)¢ sin® (4.10c)
k=1 =1

and for the cubic group, | obtain

0o 1<k/2

’yAl Z Z fykl cos4l<Z> sin? (4.11a)
k=0 1=0

75512) = 7éR)(2 — 3sin?0) + (4.11b)
oo I<(k+1)/2

VE(Q) Z Z 7“ cos(4l — 2)¢ sin** 0 (4.11¢)
k=1 1=1

4Since | am interested in the low—frequency power laws in then&n signal, resonance—enhanced Raman scat-
tering is not helpful in order to extract the nodal structof¢he superconducting order parameter, because the
corresponding low—energy power laws are then changed,geRef. [109].
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4.2 Raman vertices and pure triplet response
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Figure 4.1: Raman spectra for a pure triplet order paran{eter 0) for B, , polarization of
the point group G, in backscattering geometry. The ABM (axial) state wil| =
do sin 6 is displayed in blue and the polar state widh| = do| cos 6| in green. For a
comparison, also the Raman response for the BW state (réu)dyi = d, is shown.

oo I<(k+1)/

’yTQ Z Z 'Vkl sin(4l — 2)¢ sin® (4.11d)
k=1 I=1

in a backscattering—geometry experimert)( The Raman vertices corresponding & End

E?) seem to be quite different, but it turns out that the Ramapaese is exactly the same be-
cause E) and E? are both elements of the same symmetry class. In what follbwsglect
higher harmonics and thus use only the leading term in tharesipns Of‘yl({R). Due to screen-
ing, the constant termk(= 0,/ = 0) in the A, vertex generates no Raman response, thus | used
(k = 1,1 =0). For all other vertices the leading term is given by 1,1 = 1).

In general, due to the mixing of a singlet and a triplet congmirto the superconducting
gap, one expects a two—peak structure in NCS, reflectinggmthbreaking peaks for the linear
combination [see EqL(1.111)] of the singlet order parameteand the triplet order parameter
dyx (shown in Fig[4.1L), respectively. The rafio= d/v, however, is unknown for both types of
ASOCs.

How does the Raman spectrum look like for a pure triplevave state? Some representative
examples, see Fig. 4.1, are the Balian—Werthamer (BW), stegeAnderson—-Brinkman—Morel
(ABM or axial) state, and the polar state. The simple psesatopic BW state withd, =
dok [equivalent to Eq.[(1]3) fogs = 0], as well as previous work on triplet superconductors,
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4 Theory of Raman response

restricted on a (cylindrical) 2D Fermi surface, generatessame Raman response as-awave
superconductof [103]. However, in three dimensions onainkimore interesting results for the
axial state withd,, = do(l%yél, — l%ggéy) [equivalent to Eq.[(1]2) fog, = 0]. The Raman response
for this axial state in Band B, polarizations foiG = Cy, is given by

(R)2
TNEYg
XB, , (T) BT (4.12)
28 5+ 322 + 3x* 4 5ab 1
X —10 — =22 — 102* + tor o or xln T
3 T z—1

with the dimensionless frequeney= w/2d,. An expansion for low frequencies reveals a char-
acteristic exponentﬂgm x (w/2dy)%], which is due to the overlap between the gap— and the
vertex—function: Since the Raman vertex has no weight abgoint—nodes along the—axis
(see tablé B]1 in AppendixIB), the Raman response looksaintlthe one from an isotropic
gap, leading to such an high exponent in the low—frequenpgmesion. Moreover, | calculated
the Raman response for the polar state wlifth= dok,&,; in this case one equatorial line node
crosses the Fermi surface and one obtains:

.2 37 .4 57 .6
7TNM(R)z L7 — LT+ T <1
Xp,,(T) = 87330 a? — 3a* + 2a5) arcsin x> 1 (4.13)

~ (- e+ g0 VT

with the trivial low frequency expansioyl;, , o w/2d,. While the pair-breaking peaks for the
BW and ABM state were both locatedat= 2d, (similar to the B, polarization in the singlet
d—wave case, which is peaked &), for the polar state this peak is significantly shifted to
lower frequencies{ = 1.38d,).

4.3 Mixed—parity results: determination of the
singlet—triplet ratio

Let me now turn to the predicted Raman spectra for the teti@gaoint groupGg = Cly,. In
Fig.[4.2 | show the calculated Raman response usinglEq. {itR), = 0. This Rashba-type
of ASOC splits the Fermi surface into two bands; while on the band the gap function is
Ax =9 (1+plv]) = Ay, itis A- =1 (1 — p|v,|) on the other band. Thus, depending on the
ratiop = d /1, four different cases (see polar diagrams in the insets) twalve considered: (a) no
nodes; (b) one (equatorial) line nod&_( band); (c) two line nodesY_ band); and (d) two point
nodes on both bands. Below, | will first describe all featumete numerically calculated spectra
of Fig.[4.2 according to these four cases and then a curvelskgtwith detailed information
about the analytical results (i.e. the peak and kink passliawill follow. Since the Raman
intensity in NCS is proportional to the imaginary part of

X2 = X (D) + Xy (D) (4.14)
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4.3 Mixed—parity results: determination of the singlap#at ratio

Raman intensity (arbitrary units)
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Figure 4.2: Calculated Raman specifa (A_) [blue] andx”_ (A ) [red] for B, » (solid lines)
and for A (dashed lines) polarizations for the point group.@ne obtains the same
spectrum for the Band B, symmetry. The polar diagrams in the insets demonstrate
the four qualitative different cases for the unknown ratie d/.

57



4 Theory of Raman response

it is interesting to display both contributions separatgjpe and red lines, respectively). Al-
though (except for) = 0) one always finds two pair—breaking peaks at

=1+ 4.15
2@/) =[1+£p|, (4.15)
| want to stress that these results for NCS are not just a papiion of a singlet and a triplet
spectrum. This is clearly demonstrated in Figl 4.2(a), f@ameple, in which the results for a
small triplet contribution§ = 1/2) are shown. Fox”_ (A_) I find a threshold behavior with an

adjacent maximum value ofy ,(A_) = Ng (R 7 /8/p~ . In contrast fory” (A, ) a

zero Raman signal to twice the singlet contrlbutlon foIIdvhcy a smooth increase and a singu-
larity is obtained. Note that even though the gap function does not depentl (@ee Fig[ 1.2
in Chaptei L), one obtains a small polarization—dependeHRuis unusual behavior occurs only
in A; symmetry, is due to screening, and leads to a small showder<€ 1. Except from this,
the screened spectra show the same peak positions andahffeby a scaling factor. Since
this calculation does not predict the absolute intens(tiegher the relative intensities between
different polarization setups), the scaling is arbitrasyirdicated by the y-axis labeling. In the
special case, in which the singlet contribution equalsripéet one { = 1), the gap function\ _
displays an equatorial line node without sign change. Thdisplayed in Fig. 4]2(b). Because
of this nodal structure and strong weight from the vertexfiam (x sin? §), many low energetic
guasiparticles can be excited, which leads to a squareirro@ase in the Raman intensity (see
Fig.[4.3). In this special case the pair-breaking peak iatkmt very close to elastic scattering
(w = 0.24%). In Fig.[4.2(c) the gap functioi_ displays two circular line nodes. The corre-
sponding Raman response for- 1 shows two singularities with different low frequency power
laws, namelyys, ,(A-) o w/2y andx’p, ,(A}) o« (w/2¢ — 1)'/2. The different power laws
were derived analytically and compared to the numericalutations in Fig[ 43 forA_ and in
Fig.[4.4 forA .. Especially for the large exponents, the agreement is gerf&inally, forp > 1
one recovers the pure triplet cases (d) which is given aicaljjt by Eq. (4.12).

In what follows, | want to discuss exemplarily for the tetvagl case (&) the Raman response
function without screening (i.e. for the Bsymmetries). Inserting in Ed.(4.8) the expression for
the spin—orbit vector (see E@.(1L.2) in Chapler 1) and thed®arartex for the Bor B, symmetry
[see Eq.[(4.1]0)], performing thie-integration and after several substitutions, the Ramsporse
reads

T2 N, dtt5(1 £ pt
X, (1) = = / ’ (4.16)
V1—12/22 — |1 £ pt|?

with = = w/2¢ and the triplet singlet ratip = d /) which goes from zero (pure singlet) to infin-
ity (pure triplet). For the peaks, kinks and singularitia® denominator of the above expression

5A singlet gap and a triplet gap on separated bands cannoipedtis features.
5For small exponents, good agreement is only expected fdteamfrzquencies.
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4.3 Mixed—parity results: determination of the singlap#at ratio

0.1}

0.01}

Raman intensity (arbitrary units)
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w/ 2y

Figure 4.3: Calculated Raman specira (A_) for B, , polarization for the point groug’y,
[same as blue graphs in Fig. 4.2(b) and (c)] on a double Itgait scale. The solid
lines correspond to the power laws, , (A-) o< /w/2¢ forp = 1andx’ ,(A-) o
w/2y forp = 3/2.
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Figure 4.4: Calculated Raman specira (A, ) for B, , polarization for the point groug’y,
[same as red graphs in Fig. ¥.2(a),(b) and (c)] on a doublarignic scale. The
solid lines correspond to the power law, , (A1) o< (w/2y — 1)1/2.
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4 Theory of Raman response

is decisive — it can be rewritten more conveniently:

denominatoe= /(1 + t)(1 — t)y/(z + |1 £ pt|)(z — |1 £ pt]) . (4.17)

First, | will discuss the Raman response for thig¢=band associated with the order parameter
A, (singletttriplet), displayed in red in Fig. 4.2. One can identify falifferent cases:
) < 1:
With (z — 1 — pt) < 0 the denominator is purely imaginary, therefore the Ramapaese
is zero.

(i) 1<z <1+p:

The denominator is real fgrw: — 1 — pt) > 0 < ¢t < (z — 1)/p. Thus, the Raman response
increases in this range according to

(z=1)/

p
TYENG dtt°(1 + pt)?
o VIR

%ng§(1 <z <l4p) =

(4.18)

@iy z=1+p:
For this case the denominator is proportionalto- ¢), which causes a singularity in the
Raman response.

(iv) = >1+p:
Here the denominator is purely real, hence, the Raman resgietreases with increasing
frequencyz.

The second case, associated with the order paramietésinglet-triplet), blue in Fig[ 4.2, needs
a more detailed case by case analysis:

(1) p < 1: singlet-small triplet contribution

For small triplet contribution, the Raman spectra for tlasecare displayed in Fig._4.2(a).
From the denominator

denominator= /(1 +t)(1 — t)\/(z + 1 — pt)(x — 1 + pt) (4.19)

one can identify four cases:
(i) x<1—p:
The Raman spectra in this range are gapped, because theidatars purely imagi-
nary (z — 1+ pt) < 0).
(i) z=1—p:
Considering the limiting behavior (from larger frequersgjehe Raman response shows
a step—like increase to the value

. 22N; 1=
%XQBQ(le—p)=W7§ =/ L (4.20)
’ p
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4.3 Mixed—parity results: determination of the singlap#at ratio

(i) 1—p<z<l:
Here, the denominator is real for — 1 + pt) > 0 < ¢ > (1 — x)/p. This means, the
Raman response reads:

1
2N — 5 2
(0) Y5 Ng / dtt (1 — pt)
R l—-p<az<l)=—" : 4.21
(1-z)/p
For very small triplet contributions, there might appeastaer maximum in this inter-
val.

(iv) = > 1:
For this case, the denominator is purely real and the regpimstion decreases with
increasing frequency.

(2) p = 1: equal singlet and triplet contribution

This case corresponds to the blue curve in Eig. 4.2(b). Herdraman response simplifies
to

o =, moN dtt°(1 —t)?
i, (P =1) = /\/1—t2\/:c2 (1—1)? (4.22)

which can be evaluated analytically for< 1 to

Dz < 1) = TNy [ (105 4 6992 + 40422 + 10222° + 752 4 752°)
XBus 4r | 240
1 xt/? ) A 1
x1/2

2’2

11
5 (5 + 152”4 392" + ba )H(— —\/2+x)} : (4.23)

where K, E andIl denote the complete elliptic integrals of the first, secomd third kind,
respectively. This above function has a maximum at 0.11829. .. and its low frequency
expansion is proportional tg/x.

(3) p > 1: triplet and small singlet contribution

This case corresponds to the blue graph in[Eid. 4.2(b) andHére the denominator reads

denominatoe= /(1 + t)(1 — t)y/(x + |1 — pt|)(z — |1 — pt]) . (4.24)

Clearly, for all frequencies > 0 the denominator contributes to the Raman response and at
x = p — 1 one obtains a singularity.
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Figure 4.5: Calculated Raman specirg (A_) [blue] andx,, (A ) [red] for E (solid lines) and
T, (dashed lines) polarizations for the point gralp The insets display the point
and line nodes of the gap functiax._.

The Raman response for the point graupusing Eq.[(1.B), is shown in Fig. 4.5 for the E
and T, symmetries and in Fig. 4.6 for the, Aymmetry with and without screening. As in the
previous (tetragonal) case, there is only little differebetween the unscreened and the screened
Raman response. Except from a scaling, no additional fesappear from the screening term. |
again consider four different cases: (a) no nodes; (b) sntpodes (A band); (c) six connected
line nodes A\ _ band); and (d) 8 point nodes (both bands) as illustratedanrnbets. Obviously,
the pronounced angular dependenceygf leads to a strong polarization—dependence. Thus one
gets different peak positions for the E anddblarizations iny”, (A, ). As a further consequence,
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Figure 4.6: Calculated Raman specira (A_) [blue] andx,,(A) [red] for A; polarization
with screening (solid lines) and without screening (dadimex$) for the point group
O. The insets display the point and line nodes of the gap fancii_.
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Figure 4.7: (a) Fraction of the area on the Fermi—surfadectiraributes to the pure triplet Raman
response for the cubic point grodp in dependence of the normalized frequency
x = w/2d. (b) Derivative of the area displayed in (a) with respecttd@he change
in slope atr = 1/4 in (a) becomes visible as kink in (b).

the Raman spectra reveal up to two kinks on each band)(at

w
and
w

Interestingly, the T symmetry displays only a change in slopeud®y = |1 + p| instead of a
kink, which is due to the small overlap between the gap— aaddntex—function. Furthermore,
due to the non-triviab—integration, no singularities are present. Neverthetbgsmain feature,
namely the two—peak structure, is still present and one gactly deduce the value of from
the peak and kink positions.

Finally, for p > 1 one recovers the pure triplet case (d), in which the unsedéaman
response is given by

e[ ) . 4.27
Xy (W) o¢ — <7k V(w/2d+ ) (w/2d ~ |7kD>FS -

Clearly, only the area on the Fermi surface with2d > |v, | contributes to the Raman intensity.
Since|vy,| € [0, 1] has a saddle point &, | = 1/4, one finds kinks at characteristic frequencies
w/2d = 1/4 andw/2d = 1. This is illustrated in Fig._417, where | plotted exemplang area
on the (spherical) Fermi—surface that contributes to tlme@BRaman response. Especially in the
derivative one can identify a kink at/2d = 1/4 and a jump atv/2d = 1. The full discussion
of the peak and kink positions for the cubic point group is ptately analoge to the presented
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4.4 Summary

analysis in the tetragonal case, however, for mixed—p#rgyengthier, because more cases have
to be distinguished. In contrast to the Rashba—type of SOi@dla characteristic low energy
expansionx (w/2d)? for both the A and E symmetry, whilex (w/2d)* for the T, symmetry.
Also all power laws for the cubic symmetry are obtained at@jly and they are in perfect
agreement with the numerical results.

4.4 Summary

In this chapter | presented analytical and numerical redaitthe electronic (pair—breaking) Ra-
man response in non—centrosymmetric superconductorgfortemperature. To this end | an-
alyzed the two most interesting classes of tetragonal abit symmetry, applying for example
to CePiSi (G = Cy,) and LkPd,Pt_,B (G = O). Accounting for the antisymmetric spin—orbit
coupling, | provide various analytical results such as then&n vertices for both point groups,
the Raman response for several pure triplet states, powsrdad kink positions for mixed—
parity states. The numerical results cover all relevanés&®om weak to strong triplet—singlet
ratio and demonstrate a characteristic two—peak strutdiuRaman spectra of NCS. These theo-
retical predictions can be used to analyze the underlyingdeonsate in parity—violating NCS and
allow the determination of the unknown triplet—singleioatl published a short version of this
chapter in Ref.[[112]. Finally, some words about the obdahtga of these predictions are ap-
propriate. Because of the low,,Tespecially of CeR&i (0.75K), measurements of the electronic
Raman effect appear at least challenging if not impossiBen experiments on kPd,Pt;_.B
with a T, betwee2K and 8K might be very demanding. A look at published experiments on
electronic Raman scattering reveals that already in 19&0y@kumar and Klein presented in
Ref. [97] beautiful electronic Raman spectra #6t-NbSe with T.=7.2K and performed mea-
surements between5K and 2K. Furthermore, in Ref[[113], Gasparet al. described a tech-
nigue, where sample heating due to laser radiation can beeddvhen the sample is surrounded
by superfluid He because of the huge thermal conducﬁ}\/ifpherefore, Raman measurements
on materials with low T's should be possible. Another important point is the follogv Since
the theory is formulated in terms of the characteristic sprbit coupling, the results apply to
a whole class of tetragonal and cubic NCS (known and unknowhg materials CeRP%i and
Li,Pd,Pt;_.B are only examples of these classes, while the validityisfréssult is much broader.
The point group of the crystal structure and the spin—ouaipting are the only material specific
guantities that enter the calculation of this chapter. ldetigese results apply to a whole class of
tetragonal and cubic NCS.

’Sample heating can never be completely reduced due to thizKapsistance between the sample-liquid He
interface.
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5 Dynamical spin and charge
responses in CePt 3Si

So far, the previous chapters dealt with general propesfiBkCS. For these analytical consider-
ations, especially the gauge invariance in Chdpter 3, itindispensable to use a (phenomeno-
logical) separable ansatz for the pairing interaction. Msva case study, | want to focus among
other things on a microscopic justification of the pairintemaction based on spin fluctuations
in CePtSi. For this purpose, | introduce a numerical approach toutate the spin and charge
response and apply it to this particular NCS. G&8Pis still six years after its discovery one
of the most interesting NCS, because it undergoes intageptiase transitions: antiferromag-
netic order {y ~ 2.2K) and in coexistence with this, one or even two supercondgadrders
(T. =~ 0.75K). Therefore, more material specific models are needed. ®tteeanteresting
guestions is, to what extent the band structure plays a nolkis compound. Hence, | use an
itinerant description to calculate the dynamical spin andrge susceptibilities in the presence
of an ASOC. Since it is a challenge to evaluate numericabby.tdependent susceptibility in the
whole three dimensional Brillouin zone, | have to confinedhkulations to the normal state in
the vicinity of the antiferromagnetic order. Neverthe|esdkcalculations were done far = 0

to obtain sharper results. The following introduction camrgs the method to published results.
In Section 5.2 | derive quite general the main equationsHersusceptibility using a Green'’s
function approach, and together with the model band stragtuSectiori 5.3, finally some nu-
merical results for inelastic neutron scattering, a dismursof possible superconducting pairing
scenarios, and Kohn anomalies in G&Rwill be presented.

5.1 Introduction

There are different possibilities to calculate the (dyraat)isusceptibility on the whole Brillouin
zone numerically. In this case, it is convenient to take athge of the convolution theorem for
the Green’s function. The first decision is, whether thedalon is done for Matsubara fre-
guencies on the imaginary axis or on the real frequency akis first method has the advantage
that one can choose a relatively small grid in momentum spsinee the Matsubara Green'’s
functions are relatively smooth. The obvious disadvantaghe large sum of Matsubara fre-
guencies, which has to be evaluated to reach low tempeséturfae calculation on the real axis
on the other hand can easily be performed for low temperatamd especially fof' = 0. The

1The calculation e.g. of Yanas al. [114] for the superconducting state donesak’ (withoutw—dependence),
which is quite large compared to the actifalof 0.75K.
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disadvantage of this method is the figgrid which has to be adapted such that the peaks in the
spectral function are well sampled. In the following sectibwill describe exactly this method.

Furthermore, | want to calculate tlidgnamicalsusceptibility. Published results till now are
restricted to the static susceptibility [51, 115, 1114, 98]the next sections some results will be
presented which support the idea that dynamic nesting naygol important role in Cef3i.
The numerical evaluation of the dynamical susceptibilityd three dimensional Brillouin zone
in the presence of an ASOC is connected with some compugdiorts, which | could over-
come through a very efficient algorithm which is in detail kped in the following section and
in AppendixD.

5.2 Spin-susceptibility with ASOC

In general, the dynamical spin susceptibility for NCS sgpaductors is given by (see Ref. [53])

X (@ ivm) = = Z T [ Gk, i), G (K + g i+ iv4)

k Jiwn

— o F(k, iwn)ajT]_a‘T(k + q, iw, + il/m)] , (5.1)

whereTr denotes the trace, with the Pauli matriees the inverse temperature = (kg7)~*

the fermionic Matsubara frequency, = (2n + 1)7kgT and the bosonic Matsubara frequency
= 2mmkgT. The single particle normal and anomalous Mastsubara Gréerction in the

spln basis are denoted by andF, respectively. With an unitary transformation (see Sex#@

for this SU(2) spin—rotation) they can be rewritten in tewhthe Matsubara Green’s function in

the band basis [48]:

Gk, iw,) = G4 (k, iw,)6.(p) + G_(k, iw,)&_(p) (5.2)
F(k, iw,) = [F} (k, iw,) 4 (p) + F_(k,iw,)6_(p)]io, (5.3)

with the matrices

&2(K) = = [o0 A -] | (5.4)

2

and the identity matrixor,. Here, a different normalization ef, compared to the previous
chapters is used:

(5.5)
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5.2 Spin—susceptibility with ASOC

The Green'’s functions in band basis are obtained from théisalof the Gor’kov equations and
read [48]:

. twp, + &4
Gi(k,iw,) = — 5.6
:I:( 7%‘)) w72L+|A:I:|2+§:2|; ( )

: Ay
Fi(k,iw,) = . 5.7
:I:( 7lw) w%"—‘A:l:‘Q"i_f;zt ( )
Again, the energy dispersion and the order parameter ondaoitis read

a(k) = &k + Ay (5.8)
As(k) = £dlv, (5.9)

with the spin—orbit coupling strength In order to account for the periodicity of thg.—vector
in the Brillouin zone, it is convenient to defing, as derivative of the band structure [66] 51]:

1 —v, (k)
7k = v U:v(k> ) (510)
avg 0
o= [ ke 0.
B.Z.
B
" Ok

At this stage a parameterization of the band strucfyns not necessary, it will be specified in
the following Section 5)3. Note that for the non—isotromse (i.e. in the presence of an ASOC),
the following nine different components have to be evaldigeparately:

X1 X12  X13
X(Qwm) = | X2 X22 Xz | - (5.112)
X31 X32 X33

In view of the application to inelastic neutron scatterihgyill confine the evaluation to the
diagonal components of the susceptibility matrix. Fumihere, from now on | will only consider
the normal stat@.

Inserting Eq.[(5J6) and the following definitions into thepeassion for the dynamical spin
susceptibility, Eq.[(5]1), and evaluation the trace, \geddter a straightforward, but tedious

2Numerical calculations in the superconducting state desat twice as expensive, w.r.t. the memory consumption
and computational time. However the generalization idgiitéorward and already included in the algorithm
described in AppendixD.
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5 Dynamical spin and charge responses in £8Pt

calculation

X00(Q; 1) =X4400 + Xo+az + Xotyy (5.12)
TX+-00 = X+—zz — X+—-yy
TX—400 = X—+az — X—+yy
FX==00 T X——zz T X——yy

X11(9 V) =X4+400 + Xt +ee — Xttuy (5.13)
TX4+-00 = X+4—azz T X+—-yy
TX—400 = X—+az T X—+yy
TX==00 T X——zz — X——yy

X22(Q; m) =X4+400 = Xttaz T Xttuy (5.14)
TX+-00 T X+—z2 = X+—yy
TX—400 + X—faz = X—+yy
FX==00 = X——zz T X——yy

X33(Q; Wim) =X4400 = Xtt+az — Xttuy (5.15)
FX+-00 + X+—zz + X+—yy
TX—400 + X—4az + X—+yy
FX==00 = X——zz = X——yy »

with the abbreviation:

Xaij Z% )G (p, iw,) G (p + q i, + i) ¥, (P + @) - (5.16)

For the sake of completeness, | added the zeroth componehedusceptibility tensor in
Eq. (5.12), referred to as the charge susceptibility. Thicesa, 5 denote the spin—orbit split
bands

+ “+"-band — use& (k)
a, = 0 noSOC — use &g (5.17)
— “~"-band — use& (k)

and the indices, j select components of thg —vector

- 0 4, = 1 (definition)
7,7 = . . 5.18
J { 123 Ayas(k) = Aay (k) (5.18)

where | used the convenient definition that the zeroth index,c= 1. In order to evaluate the
susceptibility on the real frequency axis rather than onMia¢subara points on the imaginary
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5.2 Spin—susceptibility with ASOC

axis, | use the spectral representation of the normal Gsdanttion [116]

e}

Gk, iw,) = / g—:i(k’_“l, (5.19)
A(k, w) _ g Gk, w +1i0)] . (5.20)

Inserting the spectral representation into Eqg. (5.16) amfbpming the Matsubara frequency sum
according to

1 1 _ f@) — )
yields finally:
1 r 3. A " " ~
Caer) =13 / &’k 7i(k)Go(k, )Gk + g, v)y;(k +a) . (5.23)
BZ

Here f(x) denotes the Fermi—Dirac distribution function. In ordedéive this expression, | did
first the analytical continuatioiv,, — w + i, applied then

1 1
I —p(=) =i 24
550 7 £ 06 (x) F imdla) (5-24)

with P being the Cauchy principal value, and eventually extrathedimaginary part of the
susceptibility. Note that Ed. (5.22) can be further simgtiffor zero temperature. In this case the
boundaries of the integral can be replaced accordinﬁ’ig — f_ow by removing the step—like
Fermi—Dirac distribution function. For finite temperatuitas sufficient to add a small interval
of severakgT around this integration range. Finally, Eqg. (8.22) togethi¢h Eq. (5.23) can now
be used to calculate the susceptibility numerically. F@& plurpose, | used the following model
for the imaginary part of the Green'’s function (which is podajonal to the spectral function, see
above), anticipating a generalization to the supercomagstate:

do 9 do
@W- B+ 8 Mwt BP0

50 50
@-B)+0  wrEP+R]

(5.25)

IGo(k,w) = —uj

SFy(k,w) = —uvy (5.26)

whered, is a small (real) number which represents the quasipasticléh/damping. In all fol-
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5 Dynamical spin and charge responses in £8Pt

lowing calculations, | used, = 2meVA. The usual coherence factors read:

1 k
2 _ 14> 5.27
Ui = 5 < + Ek) ( )
1 Sk
2
= — 1 _——
T < Ek)
Ag
UkVk = E .

It is self—explanatory, that any another model e.g. with-sglergy effects and mass-renor-
malization could also be chosen. Ideally, ARPES measurfiewhich provide the spectral
function, could be used to calculate the susceptibility #n@sh compare the results to data from
inelastic neutron scattering experiments.

Atthis stage, some remarks about the method to calcyfate from Eq. [5.22) and EqL(5.23)
may be appropriate. Clearly, EQ. (5123) describes a cdivalin momentum—space, it can be
rewritten symbolically (every term is now a 3D matrix in mamigm—space) using the cross—
correlation/convolution theorem

_ % 4.6 ()] @ [Gh()A,]

= P PR < F G, (5.28)

™

Capij(€, V)

where® denotes the cross—correlationjs an element by element multiplicationdenotes the
conjugate complex ané denotes the Fourier transformation. Instead of a FouritastiFourier
transform, | use the even faster (and less memory consumisigiete sine and cosine transform
(DST, DCT) [118], taking into account all symmetrﬁs Details about the algorithm, can be
found in AppendixD.

5.3 Role of band structure in CePt 3Si

The previous considerations apply to any NCS with ASOC. Fnom on | will take a closer look

at the best studied compound, namely G8PtTo this end, a sophisticated band structure model
for the three closest bands to the Fermi edge will be derirad £.DA calculations performed by
Heid. All further considerations are then confined on thetrirderestings band, since the spin
susceptibility reveals a strong nesting vecta@at (0, 0, ), which is exactly the AFM ordering
vector. This is a strong evidence, that an itinerant desonipncluding the band structure is at

3For such a small damping one has to choose a very fine—mestetigged therefor600 x 500 x 500 k—points
in 1/8th of the Brillouin zone. Calculations with an even finer mebbwed no further improvement.

4ARPES data are not yet available on G&Rt however, for non—centrosymmetric Cef $IRPES data can be
found in Ref. [117].

SThat is in detail the time reversal symmetry, the tetragsgaimetry and the fact that the spectral function and
4, are real.
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Figure 5.1: Brillouin zone for the space groidmm, applying to CeRiSi. From bilbao crys-
tallographic server [127].

least one important part to describe the properties of {&Pt

A review about Fermi surface reconstructions for Ce—basadyi-fermion superconductors
can be found in Ref.[119]. In particular for CgBt two different LDA calculations by Samokhin
et al. [120,[121] and Hashimotet al. [122] are published and will be compared to the LDA
results obtained by Heid [123] in the following section. Fbe isostructural LaRSi, LDA
calculations are found in Ref. [122, 124]. Contributiorefirthe experimental side to clarify the
Fermi surface can be found e.g. in Ref. [1122,1125] 119] withldas—van Alphen measurements.
An interesting suggestion from Mineet al. to extract the strength of the ASO&from de
Haas—van Alphen experiments should also be mentioned.[126]

For the definition of the high symmetry points in the Brillowone of CeRSi, belonging to
the point group”,, (space grougP4mm), see FiglL.5J1. In the following section | will present a
tight binding band structure model for this tetragonal syetmnand calculate from it the density
of states (DoS). In Sectidn 5.8.2, the nesting vectors irsthand of CeR{Si will be identified.

5.3.1 Tight—binding model and DoS

In order to calculate the density of states, the nestingovecthe spin and charge susceptibility
of CePtSi, first a model for the band structure is needed. Using adrixasis—pseudopotential
codell Heid calculated in LDA approximation the band structure ©&"PSi [123]. The re-
sult for the three closest bands to the Fermi surface is stad@my the high symmetry points

5The implementation of this method, which was developed byavlet al. [128] is described in Refl [129].
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Figure 5.2: Tight—binding fit to the LDA band structure of @5t for the closest bands to the
Fermi surface:a band (red),5 band (green), and band (blue). The dashed line
corresponds to the LDA calculation and the solid line is attiginding fit to this
band structure includingth nearest neighbors in a tetragonal lattice.

in Fig.[5.2 (dashed lines). The LDA calculation was perfodnfier the electronic structure of
LaPgSi plus one negative background charge in order to accountéoconesf electron. How-
ever, the experimental crystal structure from diffractimeasurements|[2] was used (without re-
laxation). The additional background charge affects nyalm dispersion by shifting the chemi-
cal potential. The calculation was done without taking spibit coupling into account. Further,
the grid has 1¥11x9 (=1089) k—points in the irreducible Brillouin zone, which mEsponds to
a 20x20x16 grid in the whole Brillouin zone. As reference also thedatructure for LaRSi
was calculated and compared to the calculations by HasbimadRef. [122]. The agreement
for LaP§Si was good (not shown here), whereas the band structure eJP%Si shows sig-
nificant differences compared to the published results bydkhinet al. [120,[121]: In Heid’s
calculation, the so—calleglband does not cross the Fermi surface at all, while Samakbaicu-
lation shows a small hole pocket around the Z—point. Fuyrtnéat of low lying f-bands around
400meV above the Fermi surface flattens the dispersion of thend above the Fermi surface. |
assume, that all these differences are due to the appraaimfat the Ce—4f state.

However, | used this LDA—-result for “Ce”FSi to fit the coefficients of a tight—binding model
with tetragonal lattice. The model includes 4th neareggim=ors to fit thex, 5, and~y band. In
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Figure 5.3: Fermi surfaces of CgBt: (a) thes band and (b) the band.

general, the band structure can be written as

S = Z t(ijk) exp(—ik 1) — p (5.29)
(4,3,k)#(0,0,0)

wherer corresponds to the coordinate of the neighbor with the jposit, j, k). A detailed
list, including the hopping parameters for each band is dounAppendiXC. As expected, the
agreement with the LDA data is perfect, see [Fig] 5.2. | eganhéhe strength of the spin—
orbit couplinga (see Eq.[(5I8) and AppendiX C for the precise value) to aguemtitatively
with Ref. [120/121]. The result for the spin—orbit split llarand some cuts through the Fermi
surfaces are shown in Fig. 5.4 and in Figl 5.5, respectively.

From this tight—binding fit, it is now easy to construct therResurface for thed and~y
band which is displayed in Fi§. 5.3. The Fermi surface is iiteqgood agreement with the
reconstruction from Hashimotet al. in Ref. [122]. Apart from the fact, that there is no Fermi
surface from thex band, there are two topological differences: First, thelketectron pocket
around thd” point in they band which is absent in Hashimoto’s reconstruction, andrsgahe
8 small tubes pointing close to the X-point in thdand, which are also not seen in Hashimoto
et al. However, Samokhiret al. [120,/121] show small pockets at the same position inZhe
band, where the tubes end in Hig.]5.3(a). That is, there drs@ne differences between the
published Fermi surface reconstructions and my resulthgubverall shape is quite similar.

With the help of this tight binding—model one can easily aidte the density of states (DoS)
corresponding to each bard [130]:

B 1
 4q3

D(w) LLZ%%W—@y (5.30)

Again, details of the calculation can be found in Apperidi8.DThe result (without SOC) is
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Figure 5.4: Band structure model with spin—orbit coupliogthe« (red), 5 (green) andy band
(blue) of CeP4Si.
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Figure 5.5: Cuts through the spin—orbit sglibands of CeRSi for (a)k, = =, (b) k, = 2/37
and (c)k, = 1/3m.
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Figure 5.6: Density of states for the(red) 5 (green) andy band (blue) of CeRSi.

shown in Fig[5.6. Obviously, the band has zero DoS at the Fermi surface. Thband
combines 31% of the DoS and theband the remaining 61% at the Fermi edge. This is in
contradiction to Samokhiet al. [120,[121] who obtained the opposite result with théand
contributing 70% to the DoS and theband 24%. | assume that this is an effect from the Ce—4f
electrons which flatten especially ti¥eband close to the Fermi surface, leading to such a high
DoS. Thus, despite the low DoS of tldeband, | will rely to the published results and analyze
in the following the nesting properties of this band. Anetreason for a closer examination of
the 5 band might be the interesting shape, which is clearly nosiqua dimensional, like the
band.

5.3.2 Fermi surface nesting

Nesting between sheets of the Fermi surfaces is describeldebyo—called nesting—function,
which is identical to the imaginary part of the susceptipiliSy(q,w) evaluated in the limit

w — 0. For finite frequencies this is known as dynamical nesfin§ince the numerical results
are only available for finite frequencies, | chose here- 1, 1meV, which is very close to zero
compared to the bandwidth of abo2eV. To simplify matters, | switched off the spin—orbit
coupling. However, differences ity (q,w) between calculations with and without SOC are
small and will be discussed in the following Section 5.4. bwhinelastic neutron scattering.

’Note that the real part of the susceptibility for= 0 can be peaked at different position for strong dynamical
nesting.
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Figure 5.7: Nesting functio¥y(q, w) for the 5 band of CeRjSi, evaluated ab = 1.1meV.

Note that in the normal state, without SOC, the spin susipti(see Section 5]2) becomes
diagonal and isotropic. Furthermore, the spin and chargeeguibilities are equal (at least in
the normal state). Thus, only one term [namelyihe j = o = 8 = 0 term from Eq. [(5.23)]
instead of 12 has to be evaluated. The result is shown in(Efy. Brom these cuts through
different planes across the Brillouin zone, one can cleddntify the following nesting vectors
(ordered by the intensity i y):

(0,0,0) (5.31)
(0,0,7)
(m,m,0)
(0.67,0,0)
(

(

(

Qo
@1
(2
@3
Q4 = (7,0,0)
Q5 = (0.37,0.37,0)

Q 0.37,0,0.877) .

6

At this stage, one might wonder about the peak at the centdreoBrillouin zone, because
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Figure 5.8: Nesting vectors for theé band of CeRtSi. (a) @, = (0,0,7) in blue andQs =
(0.37,0,0.877) in green (b)Ys = (0.6, 0,0) in blue and®, = (7, 0,0) in green (c)
Q2 = (m,m,0) in blue and)s; = (0.37,0.37,0) in green.

from the Lindhard expression for the normal state [72) 130]

Lindhard [ (&) = [(&kiq)
X Z w— §k+q i) + 10 (532
X Lindhard(q )y — Z 1) — f(Eerq)] 0(w — Eicrq + Ex) (5.33)
Kk

such a peak is not expected. For the homogeneous kimit (0) and for finite frequencies, the
Lindhard response (the imaginary and real part) vanisimeg $he numerator becomes zero:

Xo " (q = 0,w #0) =0 (5.34)

This raises an important issue: The method | described itiddés.2 goes beyond the Lindhard
expression, since it starts from the spectral function. @ampingd, = 2meV can be seen
as quasiparticle width. Such a linewidth is not includedhe Lindhard expression. For finite
dampingd, in the Green'’s functions, | get with the substitutians: w/dy andy = & /do:

Ne | [ 1
X' (q=0,w) = ﬂ—g </ dym {z arctan(z + y) + z arctan(z — y) (5.35)

et lle eyl

(y*+1)

The last term drops out by integration and the remainingynatigon is performed, assuming just
now a spherical Fermi surface:

or 2244

(5.36)
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Figure 5.9: Real part of the susceptibility for thdand of CeR{Si without ASOC, evaluated at
w = 1.1meV.

One finds thak”(q = 0,w) is peaked aw™** = 2§,, and the Lindhard response is recovered
in the limit §; < w. Even though the Fermi surface of this model is by far not gpak this
estimation is in perfect agreement with the numerical leuehnd thus explains the quasiparticle
peak atq = 0.

Comparing the nesting vectofy, . . . , Q¢ listed in Eq. [(5.3I1) with the band structure model,
one can identify the nesting Fermi surface sheets instisand of CeRfSi. In Fig.[5.8 some
representative examples are sketched in. Note that due tepnesentation as 2D cuts through
the Brillouin zone, it is difficult to see that the nesting ddions are actually fulfilled along
curves on the Fermi surface. Apart from t§e= 0 peak, the nesting vect@p; = (0,0, 7) is
clearly the strongest (see Fig. b.7) even though it is sndeawealong they, axisfl. This can be
attributed to the strong antiferromagnetic spin fluctuagio the vicinity of an AFM order with
exactly this ordering vectap; = (0,0, 7). Therefore, | conclude that nesting alofg plays an

8The dependence an andJ, is reproduced except for a scaling factor, which is due tonibre-spherical band
structure.
9Close to the AFM instability this peak might strongly be ented by an RPA treatment.
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important role in CeRB8i, since it may explain at least partially the staggered Adther in this
compound, which supports this itinerant model.

So far published calculations dealt only with the static,aherefore, the real part of the
susceptibility, see e.g. Yanaseal. [114]. This is a good approximation if dynamic nesting
is not important. However, | find that the real part (see Ei§) Biffers significantly from the
imaginary part of the susceptibility (see Hig.15.7). Indte&a peak at the AFM wave—vector in
Ry as seen by Yanase, | find a saddle point (Eig. 5.9) at thisippsihich might be due to the
different parameterization of the band structure.

5.4 Results

With the band structure model of Section 513.1, it is now fldego calculate different response
functions and to discuss the effect of spin fluctuations fer Cooper—pairing. Here, different
parts of the spin or charge susceptibility are importante Trelastic neutron scattering (INS)
cross section is obtained from the imaginary part of the dyoal spin susceptibility and will
be addressed in Sectibn 5J4.1. Experimental work on INS Ineady be published in Ref. [131,
132], mainly for the antiferromagnetic state. Let me remthdt all numerical results use the
band of CeR{Si for T = 0. Nevertheless, the calculations are done for the normia stidhout
antiferromagnetic ordering. For this reason, a compatigdime cited experiments, mainly about
the magnon dispersion, is not possible.

The pairing interaction for a weak—coupling model, basedmn fluctuation exchange, uses
the real part of the static spin and charge susceptibilitieSectiol 5.4.2, | will present a sign
analysis for possible superconducting pairing statesallyinn Sectior{ 5.4.13, | calculate Kohn
anomalies, using the real part of the dynamical charge ptibdégy. Kohn anomalies in CeRSi
have not yet been measured. However, excellent experiingotk in lead and niobium [133]
suggests promising results.

5.4.1 Inelastic neutron scattering

In general, the dynamical magnetic (or spin) susceptybilit(q,w) is a 8 x 3) second—rank
tensor which depends on transferred moment¢uand frequencw. The indicesi,j = z,y, 2
run over the three spatial dimensions, since the (staicui.= 0) susceptibility connects the
magnetic fieldB (B = pH; H: applied field) with the magnetic momeNt: M; = Zj XijBj.
The dynamical spin susceptibility can be decomposed inyorargetric and antisymmetric com-
ponent according to Ref. [134]:

S A
xii(@w) = x5 (@w) + x4 (a,w) | (5.37)

i s _ (9 (A) _ (A) . . . . .
with x;7”" = x;;” and;;” = —Xji - The antisymmetric tensor is uniquely related to an axial
vector [here denoted b§(q, w)] via

(4) — —ienC 5.38
Xz‘j (qaw) = —1€5k k(q,w) . ( . )
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Figure 5.10: Calculated INS along in CePtSi for w = 1.1meV (red) andv = 11meV (blue),
with (dotted) and without (solid) ASOC.

With the following parameterization

0 —x& A

xqw) =1 x&% 0 -2 |, (5.39)
oo
X2

Clqw)=—i| & |, (5.40)
X5y

the inelastic cross sectier(q, w) for neutron scattering can be written as [134]:

1k w\1-1!
olq,w) = %k_f [1 — exp (—Tﬂ (5.41)
“nuclear 9 12 .\ (), “polarized
[ scattering” Tr sz (0i; — Gi) SXip T+ neutrons”
ij

The term in the first line is the so—called Bose—factor, tha ferm in the brackets is due to
nuclear scattering and the last one vanishes for non—pethrieutronsr,,, is the magnetic form

factor of the ion,r = 5.4 x 107'3 cm andq = q/|q|. More details, especially for polarized
neutrons can be found in Ref. [134]. However, | am interegtetthe second term, which is
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relevant for the scattering on electrons:

S ~
> 0 — @) x5 = X1 = @) (- @)+ X1 - @)
ij
(Sym

" G2 — 2X3" 4y - (5.42)

For some special cases the above expression simplifiesdevably: If e.g.q = €., i.e. one
performs a scan along the@01]—axis (used, for example, to determine the spin—wave digper
in Ref. [131]), the cross section is proportionalio

o(q=(0,0,¢.),w) o S (X&) + X)) (5.43)

That means, all off-diagonal components drop out and omlstim of the susceptibilities “per-
pendicular” to theq—vector remain. Since the diagonal components of the soeptibility
are by definition symmetric, one can identb&g) = Y. In the normal state, without ASOC,
the spin susceptibility is isotropig;; = xd;; and the well-known connectionq, w) « x” is
recovered. Thus, within the notation defined in Sediioh th& neutron cross section along the
q. direction reads:

o(q = (0,0,¢:),w) o< 3 [4Xo000] without ASOC  (5.44)
o(q=(0,0,¢.),w) o I [X++00 + X+-00 + X—+00 + X——00] with ASOC (5.45)

Some examples for calculated neutron cross sections avenshd=ig.[5.10 (for typical en-
ergies) and Fid. 5.11 (spectrum over the whole bandwidtlgaidin Fig.[5.10 one can see the
quasiparticle peak at. = 0 and the AFM peak ag., = =. Interestingly, the graph including
the ASOC is always smoother than the one without ASOC. Thseore&or this may be found
in the four terms in Eq.[(5.45) that contribute to the crosstise: For each of these intra—
(X400, X——o0) @and inter—bandx(; oo, X_+00) terms, the nesting condition is a little bit differ-
ent. Averaging over all these momentum—shifted peaksslemad smoother result. Furthermore,
for both frequencies in Fig. 5.110, the graph without ASOG helow the one with ASOC. As
can be seen in Fig. 5.111, this is due to a shift in spectral ntéigm lower frequencies to higher
ones.

Finally, I want to describe an attempt which was not succgs$tith the published data for
the spin—wave dispersion for CgBt [131], | wanted to build &—dependent RPA model, which
then could have been used to renormalize the calculatedssgsiceptibility. The spin—wave
dispersion for a two—sublattice commensurate antifergpmag which is realized in CefS8i, is
given by [131]

w(@) = V[J(Qarum) — J(@)] [J(Qarn) — J(Qarn + q)] (5.46)

with the antiferromagnetic wave—vect@r, -y, = (0,0, 7) and with the exchange integraléq)
in the Fourier representatiol(q) = »__J(r)e "4'* wherer runs over all (next-)nearest neigh-

10after correction for the Bose—factor
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Figure 5.11: Calculated INS spectra for C&htt w—scan for CeRSi with (red) and without
(blue) ASOC for the wave vectey = (0,0, 0.57) (a) andq = (0, 0, ) (b).
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bors. For the/; — J;—model, proposed in Ref. [131], the following parametditrais usedt

J(q) = 2J1(cos g, + cos q,) + 4J2 cos g, cos ¢, + 2J5 cos q, + 4J4(cos ¢, + cos g, ) cos g,
+ 8.J5 €O g, cOs gy cos g, + 2Jg [cos(2¢,) + cos(2q, )]
+ 2J7 [cos(3q,) + cos(3q,)] , (5.47)

where the constant$, — J; are fitted to the experimental results. This model negleats-c
pletely theq—dependence of the spin susceptibility. Therefore, | whtdeise a more sophisti-
cated model. The bare spin susceptibijtyy, w) is calculated from the band structure and then
submitted to an RPA-treatment, which includag-@lependent coupling constant:

RPA x(q,w)
= . 5.48
e =g J(a)x(q,w) (5:49)
Then, the real and imaginary part read
RPA X' — J(@)|xol?
= il

e w) (1= J(@)x')* + J2(a)x"? (5:49)

S (q,w) = ! :

X ( ) (1 _ J(q)xl)Q + JQ(q)XIIQ

and the spin—wave dispersion is obtained from the maximufndf™* (q,w) for constantg.
The exchange integral§ — J; are adjusted, using a simulated annealing procedure sthéhat
spin—wave dispersion agrees with the experimental reduitbortunately, it was not possible to
find parameters; — J; with satisfying result. | attribute this to a break—down lo¢ titinerant
description. A solution to this problem might be to inclutle antiferromagnetism in a model as
proposed in Ref[[114]. However, from the computationahpof view such an increase of the

1The lattice constants a=b and c are set to unity.
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5.4 Results

dimension for a dynamical calculation is at least very dedfivamn

5.4.2 Consequences for the Cooper—pairing

Based on the numerical results for the spin and charge stitsiigpin the normal state, it is now
possible to construct a superconducting pairing intevactiediated by spin fluctuations in order
to shed light on the pairing scenario in CgBit As discussed in the introduction of this section,
the susceptibility is calculated in the normal state, argrigplify matters, the static case & 0)

is considered here. Thus, in contrast to the previous sedtie real part of the susceptibility is
decisive. In the following, | combine a model proposed byiifako et al.[135] with numerical
results obtained by the method of this chapter. Finally)llpvovide simple arguments from sign
considerations of the gap equation for the superconduptimng state.

The starting point is the superconducting gap equationrevbae needs the following ex-
tended definition for the superconducting order paramAtementioned in Chaptér 1, the super-
conductingd,—vector needs to be parallel to the spin—orbit veeto(if the triplet contribution
to the gap is not strongly suppressed). In general, one nestiite

d(k) = (k)7 (5.50)
Ax(k) = ¥(k) £ o(K) |l (5.51)
where the symmetry of the momentum dependence(kf is the same as that of the spin—

singlet contribution) (k) [136]. For this order parameter, the weak—coupling gap ogueeads
according to Takimotet al. [135]

¥ (k) —Vis(@)  Vie(q)  Viy(a) Fi(k —q)
do(k) | =) Vis(@)  Vie(a) —Viy(aq) Fo(k—q) | . (5.52)
dy(k) q Vys(Q) _Vy:v(Q) Vyy(q) Fy(k —q)

with the following diagonal pairing interaction due to spind charge fluctuatiofté:

Vas(@) = U? [—xe (@) 4 X @) + x5y (@) + X2 N@)] +U (5.53)
Veo(@) = U? [xee ™ (@) = xo (@) + xp (@) + o2 (q)] (5.54)
V(@) = U2 [xee (@) + X (@) = Xy (@) + X2 (@) - (5.55)
The off-diagonal components of the pairing interaction
Vey(@) = Viel(a) = U [XEA (@) + x5 (q)] (5.56)
Via(@) = —Vas(a) = iU X0 (q) — X5 (q)] (5.57)
Viy(a) = —Vys(a) = iU? X5 (q) — X574 (q)] (5.58)

121t is convenient for the following analysis to use a differsign convention compared to Takimatbal., where
the pairing interactions are positive.
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Figure 5.12: Pairing interactiovi,(q) for the singlet channel of the band in CeR}Si.

lead to a coupling of the singlet and triplet channel and amallscompared to the diagonal
components. The RPA renormalization reads:

Xee(d)

RPA _
Xee (D= T50 (@) Wyer(d) charge (5.59)
RPA x(q) .
A — spin 5.60
X a) =1 20x(q) p (5.60)

Thereby, the charge(.) and spin §) susceptibility are calculated numerically using EQsL2%-
(5.18) through the procedure described in Sedtioh 5.2 aAgjendiXD. Since the gap equation
is confined to the weak—coupling limit, the real part of thecaptibility is taken fotrv — 0. The
Matsubara frequency—integrated anomalous Green'’s furetn the right—hand side of the gap
equation are defined as follows

Fy(k) = % (Vs + dic i) (5.61)
Fa(k) = 5709 (dhp- + i) (562
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Figure 5.13: Pairing interactioii,.(q) for the triplet channeld,) of the 5 band in CeRSi. The
pairing interactionV,,(q) for the second component of the triplet chanrg))(is
obtained by exchanging, andg,.

with the abbreviation

1 B, (k) 1 E_ (k)
- + tanh .
28, (k) 2T 2B (k) " 2kgT

(5.63)

Note that there is no gap equation for the triplet compornk(k), sinced(k) || v(k) and
v.(k) = 0 for Rashba-type of SOC as in CegBit The previous form of the gap Equatién (8.52)
is rather inconvenient. In order to discuss the consequefocehe pairing from the spin and
charge susceptibilities, | made the following approximias to simplify the gap equation:

» The gap equation is linearized and particle—hole asymateims are neglected.

» The assumption that,s and, therefore},s is diagonal. For CeR$i, the off-diagonal
components of .z are small compared to the diagonal components. In the cymnmet-
ric case the off-diagonal elements vanish identically.
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5 Dynamical spin and charge responses in £8Pt

The result is a decoupled gap equation for the singlet apktrtomponent

/ 1 §+(k/) 1 g—(k/) /
g Vis(k — k') l2§+(k/) tanh T + 26 (K) tanh 2kBT} (k') (5.64)
1 &+ (k) 1 §-(K) :
g Vaa(k — [2§+( ) tanh kT + 26 (K) tanh QkBT} d,(k'), (5.65)

with the pairing interaction given in Eq$._(5153)—(8.55)otdlthat the pairing interaction for all
channeld/;;(q), V.. (q) andV,,(q) are positive on the whole Brillouine zone.

In Fig.[5.12 and in Fid. 5.13, the numerical results for tmgkdt and triplet pairing interaction
are displayed for different cuts through the Brillouine eotdere, the on—site interactiah =
286meV was chosen, such that an RPA—enhancement of at mosbadatd was obtained. The
pairing interaction for singlet and triplet looks similaitiva strongly enhanced planegt= =
in both cases and some minor contributions at the edges d@rilleuine zone in they, = 0
plane. Note that the triplet pairing interactiols,(q) andV,,(q) are for symmetry reasons
identical up to a rotation bg0° around they, axis. The asymmetry along the, ¢, directions
[see Fig[5.1B(a) and (b)] is a direct consequence of the ASOff=diagonal components in
the spin susceptibility, which would provide a couplingveegn the singlet and triplet order
parameter, are supposed to be of the same order of magnguls asymmetry.

The main difference between Fig. 5.12 and FEig. 5.13 is thenihade of the pairing inter-
action, which is stronger by an overall factor of ab@ut 3. Thus, a closer look at the sin-
glet pairing interaction is appropriate, where the strengeeak is found for the skew vector
@ = (0.757,0.757, ). This nesting vector connects the opposite parts of thelo#nd top
sheet of the Fermi surface, see Hig. 5.15. Remindingithat> 0, a sign change in the su-
perconducting order paramete would be needed to satisfy the singlet gap Equation [5.64)
with this nesting vector. In Fid. 5.14 some common superaotidg states are displayed on
the Fermi surface. These illustrations show, that it isdiffito satisfy the singlet gap equation
with extendeds—wavelld or d-wave states, since none of these singlet order paraméi@ns s
a sign change across the diagonal. The only possibility tiefgahe gap equation is provided
by p—wave states (or higher angular momenta), which is, of eyurst allowed for the singlet
gap Equation[(5.64). That is to say, the singlet componetii@fjap equation for the strongest
nesting vector remains without solution, while it would hdavor of a superconducting-wave
state (see Fig. 5.15).

The situation for the triplet gap Equation (5.65) is difierre Here, the pairing interaction
requires either small momentum transfers or no sign chamgené order parameter. For small
momentum transfer§ — 0 and thereforék =~ k’, the triplet gap equation has a solution for
any positive pairing interaction. However, Hig. 5.13(&), ¢r (d) show little weight around the
center of the Brillouine zone. Hence, the second possiblith larger momentum transfed
and sign change for the areas of the order parameter, whreatoanected b{), has to be taken

13Simple s—wave is not possible due to the required sign change of ttier grarameter. For extendedwave
pairing it is possible to connect some isolated points onReemi surface with opposite sign of the order
parameter — however, this will strongly depend on the Fetnfase.

88



5.4 Results

Figure 5.14: Projections of superconducting pairing state theg band of CePRjSi. Red/blue
areas denote a positive/negative order parameter. Thecaungkicting states are
described by (ayx = cosk, + cosk, (extendeds—wave), (b)¢ = sink, (p,~
wave), (C)dx = sin k, sin k, (d,,—wave), (d)px = cosk, — cos ky (d,2_,.—wave),
(€) px = sin k, sin k, (d,.—wave) and (fypx = 2 cos k, —cos k, —cos k, (d..—wave).
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5 Dynamical spin and charge responses in £8Pt

Figure 5.15: Important nesting vect@r = (0.757,0.757, 7) (green) for the singlet pairing in-
teraction on thes band of CeR{Si. The coloring corresponds to thg-wave state,
displayed in Figl 5.74(b).

into account. Just like in the singlet case, the pairingauéonV,.(q) is strongestin the, = =
plane with one small but important difference. Because eféahisotropy along the, andg,
direction, as seen in Fig. 5J13(b), all nesting vecQrs- (q,, g,, 7) with ¢, < ¢, are enhanced
due to the ASOC. Without ASOC, the triplet pairing interan8 for thed,(k)— andd,(k)-
component are equél,,(q) = V,,(q), and they would reflect the full tetragonal symmetry. The
enhancement fag, < ¢, can be seen best by comparing the intensity,0f q) in Fig.[5.13(b)
along theg, andg, axes or in the vicinity of the split peak close to the diagonall nesting
vectorsQ = (g, gy, ™) With g, < ¢, are in favor of g,—state (compared toza—state), which
shows no sign change along thedirection [see Fid. 5.14(b)]. Fdr..(q), the favored,—state
corresponds exactly to thé.(k)—component of the triplet order parameter with || ~, and
the simple model fory, = (—sink,,sink,,0). The analoge reasoning holds for the pairing
interactionV,,, (q), which corresponds ta, (k). That is to say, the triplet gap Equatién (5.65) is
solved by gp—wave state that is given by the antisymmetyje-vector.

To summarize the results from this sign considerationstfersuperconducting order param-
eter, it can be stated that the singlet part of the decouedeguation can hardly be fulfilled.
Except for some isolated points on the Fermi surface, it ssiiide to construct a weakly attrac-
tive pairing interaction for an extendedwave state, otherwise the singlet gap equation remains
without solution (at least for the strongest nesting vexjtoFhe triplet gap equation on the other
hand prefers a—wave state, which is just given byda—vector that is supposed to be parallel
to ~,. It turns out that this triplet state is supported by smalhmatum transfers and an addi-
tional contribution is directly related to the ASOC. Thus, &n increasing Rashba—type of SOC,
the pairing interaction favors a triplet state. For G&pPthe above sign considerations suggest,
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Figure 5.16: Feynman diagram to calculate Kohn anomalies.

that the triplet contribution to the superconducting gapdsasiderably larger than the singlet
contribution, which is confirmed by experiments (see Chdfite

5.4.3 Kohn anomalies in CePt 3Si

Kohn anomalies are calculated from the Dyson equation ferptmonon propagator (see e.qg.
Ref. [137] or for Kohn anomalies in superconductors Ref8[L3 The bare phonon Green’s
function reads [116]:

20

O q iv. ) =
Dy (a,ivm) = m ,
m q

(5.66)

with the unrenormalized phonon dispersiog, of the phonon branch. Evaluating the simple
Dyson equation for the phonon propagator in Eig. 5.16 by@atng each phonon line with a
matrix elementM,, |, one gets immediately the renormalized phonon Green'gifumc

DY (q,ivy,)

1= D(@, ivim) | Maa 12X (a, iv4)

20
== . (5.67)
(ivm)? — Q?p\ = 20 [ Mo ?x(q, i)

D)\(qa iym) -

In the presence of an ASOC the bare polarization bubble caitzdkd as follows

x(q,ivy,) = Z Tr [ (k,iwy,) (k + q, iw, + )| (5.68)

k LJiwn,

which is (up to a prefactor) the zeroth componepk[q, iv,,,)] of the susceptibility tensor de-
fined in Eq. [(5.1). Thus, the evaluation is completely anabo§ectiori 5.2. Again, the suscepti-
bility can be decomposed into 12 terms which are evaluatdejdendently using Ed. (5.22) and
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5 Dynamical spin and charge responses in £8Pt

Eq. (5.23):

. 1
Xaq, ivm) = B [ X400 + Xet+az T Xttuy (5.69)

TX+-00 = X+—z2 — X+—yy
FX=+00 = X—taz — X—+yy
TX-—00 + X——zz + Xffyy] .

After an analytical continuation according i@,, — w + 9, the renormalized phonon disper-
sion is now calculated from the poles of the phonon Greenistfan in Eq. [5.6I7), i.e. from
[Dy(q,w)]~! = 0. The result reads:

w2 = QZA -+ 2Qq>\|Mq>\|2X(q7 CU) . (570)

It can easily be seen from Eq. (5169), that many inter— an@-Hland terms contribute to the
susceptibility. From these terms, one may expect Kohn ahesst smaller momentum transfers
that correspond to the distance between two spin—orbitisptimi surfaces [139, 140, 141]. Let
me continue with some remarks to the above Eqg. {5.70). Glédasla self-consistent equation in
the renormalized phonon frequengy It turns out, that the first iteration (i.e. replaciady (2
on the right—hand side) gives already results that are grifly close to the limiting valug
The Kohn anomalies are caused by peaks in the real part oLigwegtibility. The imaginary
part contributes to the linewidth, i.e. imaginary partofFrom Eq.[(5.70), one gets at the same
time, the phonon dispersion and the linewidth.

In order to compare the above expressions to previous wotkwomlimensional electron gas
done by Pletyukhoet al.[141,[142], | evaluated Ed.(5.68) in the Lindhard approxiora|143],
i.e. for non—interacting electrons but including a Raslyyae-of SO

f gaﬁ(k_'_q)] ~ ~
K, i —4zzwm+£a it q) [N Tea] &7

This coincides with the results of Pletyukhet al. Note that Eq.[(5.69), which is used for
all figures in this section, goes clearly beyond the abovellhémd expression: First, it is not
restricted to two dimensions and the special Rashba—ty®0dF (but can deal with any type
of ASOC for three dimensional Brillouin zones), and secondd the spectral representation to
include also quasiparticle lifetime effects.

Here, | take Coulomb repulsion through a Hubb&réhto account, leading to an RPA renor-
malization according tq(q,w) = x9(q,w)/[1 — Ux9(q,w)] with U = 572meV. TheU was
chosen such that the bare susceptibility is enhanced by sttanrfactor ofl0. As an illustration,
the RPA enhancement is shown in Hig. 5.17. There, the retlopéne static susceptibili@

14y (w) is calculated on a non—equidistant grid (see Appendix D). Qg is smaller than the grid spacing, the
iteration converged.

BHere, the expressiongs in £, denotes the product of both indices.

18]n contrast to the imaginary part 6fy(w = 0, q) = 0, the real part can be evaluated through the Kramers—Kronig

92



5.4 Results

1 Re Xo(w=0) with SOC - B
1[Re xo(w=0) w/o SOC " 60es]
7 0.9[Re X(w=0) with SOC - EENEY
€ 0.8}Re X(w=0) w/o SOC -
2\0.7 3 EE'::
© EE‘u'
E 0.6 3 ggl
2 =
\CU_/O'S;EEEE‘EEEEI ﬁml
T A x
504 - EEEE!!.-.-!!!BE
@ 0.3t
0.2 -' FAFFETTE N o o wmwmmmn
0.1r ]

Figure 5.17: RPA enhancement®%(w = 0) for CePtSi alongl'Z with and without SOC.

is displayed before and after the RPA treatment along tfaxis with and without ASOC. Note
that the real part is responsible for the magnitude of therkamomaly. Again, as for INS in
Sectior5.411, the result with ASOC is significantly smoaotkepecially for larger momenta.

The LDA calculation for the phonon dispersion in Cgbttwas done by Heid [123], using
density—functional perturbation thedﬂz It bases on the experimental structure of GEPtle-
termined by Baueet al. [2], whereas the electronic structure was taken from L SiRtlus one
additional background charge (corresponding to the Ceedfren). This calculation, shown in
Fig.[5.18, uses the Ce mass (however, the La mass leads tixapptely the same results). The
internal parameters (i.e. the position of the atoms indigeunit cell) were not optimized, i.e.
there might be some residual forces.

In order to proceed, one needs the matrix—elemghts, |2, which are provided by Heid's
LDA calculations [123]. A simple linear model for the aveegigmatrix—elements of a typical
phonon branch then re

2

'
[Mq[*(p) = 7ogps p € [051]. (5.72)

relation precisely fow = 0.

17A review about this linear—response method is found in Re4].

8In general, the matrix—elements are aksalependent. Then, these matrix—elements have to be intlottethe
momentum—sum of the spin susceptibility. However, | makeublual assumption, that this-dependence is
weak.
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Figure 5.18: LDA calculation of the phonon dispersion foP§8i by Heid [123]. The dots mark
evaluated points in the Brillouin zone and the solid lingsresent interpolations.
The right—hand side displays the phonon density of states.

Herep parameterizes the distance from fhepoint to the boundary of the Brillouin zone. The
dependence on the phonon branclvas neglected, since the matrix—elements for the lowest TA
and LA modes were comparable. However, if experimentalfdat@comparison were available,

it would be easy to include this polarization effect.

Further, | used the following interpolations of the LDA datzown in Fig[5.18 through the
lowest lying phonons as bare phonon dispersion:

Qg = 0.062¢ sin (gp> forI'Z | (5.73)
Qg = 0.074¢, sin (gp> for X |

3
(g = 0.08t; sin (gp> +0.012¢; sin (%p) for TM .

Of course, the LDA calculation contains already corredifyom the static polarization bubble.
That is, if the LDA calculation would be performed on a finergmgKohn anomalies might
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Figure 5.19: Kohn anomalies for thidband of CeRjiSi with ASOC alond"Z. The solid (red) line
in (a) represents the bare phonon dispersion from[Eq.l(&th@)green symbols are
the result for the renormalized phonon dispersion. The bjuebols represent the
phonon linewidth™ which is scaled by a facta0. In (b), the differences between
the bare phonon dispersion and the renormalized phonoerdisp are plotted in
red (with ASOC) and green (without ASOC). Furthermore, thdarlying real part
of the static charge susceptibilityx(w = 0) is shown with (blue) and without
(magenta) ASOC for comparison.
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Figure 5.21: Kohn anomalies for titeband of CeRiSi with ASOC along"M. Same coloring as
in Fig.[5.19.

become visibléS. On the other hand, effects from the ASOC were not includetthis LDA
approac@. Hence, in order to fit experimental data, first the Kohn and@msaalculated in
the static limit without ASOC should be subtracted to obtaie bare phonon dispersion, and
only then, the dynamical results including the ASOC showdnzluded. Since | have only two
data points along one direction in the Brillouin zone (coneplig.[5.18), such an expensive
procedure is superfluous. However, here | am interestedeireffiects of the ASOC on Kohn
anomalies. Therefore, it is convenient to use the above ghdispersion for the calculation
with and without ASOC. Otherwise a direct comparison wouwdtlre possible.

Fig.[5.21(a) shows a comparatively strong Kohn anomalyectoghe M—point, which is seen
even better in the linewidth or by subtracting the bare phatispersion from the renormalized
one [see Fid. 5.21(b)]. As in the previous sections, theedifice between switching on/off the
ASOC is tiny and in contrast to the predictions of Ref. [1380,1141] (for 2D systems), the
results in Fig[[5.19, Fid. 5.20 and F[g. 5.21 do not show &ufuil Kohn anomalies at smaller
momenta. | attribute this to the different nesting condisidor the inter— and intra—band con-
tributions together with the relatively broad and smalllkseia the real part of the susceptibility
(see Figl.5.17). This is also a question of dimensionaldy-dimensional systems tend to show
deeper and sharper Kohn anomalies [146]. The linewidthashho Figs[5.2055.21 are compa-
rable with experimental results (concerning the increasbd zone boundary and the maximum
value), e.g. on Pb and Nb which experiences also a strong $887. [

19This depends also on the accuracy of the calculation, eshetor small Kohn anomalies as observed in bulk
materials. Further, the linewidth has to be calculated rseply, e.g. using Refl. [145].

20Furthermore, it is not obvious which diagrams are includedFT methods as LDA, since this is a non—
diagrammatic approach.
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5.5 Summary

5.5 Summary

In this chapter, | introduced a method to calculate effidyetite dynamical spin and charge
susceptibilities in NCS for arbitrary ASOC in the whole thrdimensional Brillouin zone at
low temperatures in the normal state close to the AFM phagde nmiethod uses the spectral
function as input and has therefore the potential to go lgléayond a Lindhard analysis. For this
purpose, it would be desirable to use, for instance, thetsgddanction obtained from (future)
ARPES experiments to compare the calculated spin and chesgenses to other experiments
like INS and eventually develop an RPA model to renormaleesusceptibilities. The results in
this chapter can be seen as a proof of principle, that dynaaiauilations including ASOC are
possible. For the first time, the dynamic nesting functioevialuated and shows a pronounced
peak at the antiferromagnetic wave ved®r (0,0, r) for the 8 band of CeRiSi. Differences
between the real and imaginary part of the susceptibility.fo— 0 provide evidences for non
negligible dynamic nesting. The difference for the caltedaINS spectra and for the Kohn
anomalies with and without ASOC is tiny. The predicted add#l peaks at small momenta
are not visible due to an overlap of many broad peaks origigdtom up to twelve inter— and
intra—band terms. Calculated Kohn anomalies (assumingPandRhancement of about a factor
ten) suggest that experiments might be promising. A sigiyaisaof the weak—coupling gap
equation including a pairing interaction based on spin @lattons points towards a strong triplet
component in the superconducting order parameter of SePFurthermore, | showed in this
case that with increasing strength of the ASOC a largeretrigbntribution is favored.
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6 Summary

Non-centrosymmetric superconductors (NCS) have now beehesd for six years and they
are still of special interest, since theory predicts thespmlsty of a mixed singlet—triplet order
parameter. A lot of experimental and theoretical work hasnbeitiated due to this unique prop-
erty. The majority of NCS are well described by a BCS—likeotlyehowever there are also many
compounds with exotic and surprising properties, as ligtatie introduction. One of them is
CePtSi, which was studied in the last part of this thesis. The omentional superconduct-
ing state in such a compound necessitates a generalizedptiescof response and transport
functions in such NCS.

| set up the basic equations for a linear response and trertsgory in NCS, discussed the
gauge invariance of this theory, found a new gauge mode witdonventional dispersion and
derived gauge invariant expressions for various respondetransport functions. As a case
study, | considered in detail the electronic Raman respoRse this purpose, | used a kinetic
equation approach. Starting from a von Neumann equatioerivetl a generalized Boltzmann
equation which is a x 4 matrix equation in particle—hole (Nambu) and spin spaceolvesl
this set of coupled equations int-q space by finding the appropriate transformations which
diagonalized them by first performing a SU(2) rotation irfte so—called band basis and then
applying a Bogoliubov—transformation into quasipartisg@ce. The transport equations could
be solved analytically for an extended momentum and frequeange ¢ < Er and|q| <
kr). The theory is particle—hole symmetric, applies to anydkai antisymmetric spin—orbit
coupling (ASOC) and is gauge invariant. As an example, Méeriexpressions for the normal
and superfluid density as well as for the specific heat capacthe presence of an ASOC. A
comparison with a simple local equilibrium analysis reeeaperfect agreement, as expected.
A straightforward generalization of this kinetic theoryutab include, for example, effects from
impurity scattering. | have performed such an analysisttegewith Einzel in Ref.[[71] for
centrosymmetric superconductors.

The gauge invariance of the kinetic theory is by itself apriesting theoretical topic. | demon-
strated the gauge invariance by assuming a separable &orsthte pairing interaction. For non—
vanishing ASOC, two phase fluctuations are obtained, béigng both spin—orbit split bands.
Only by taking those two phase fluctuations into accountulad@rove the gauge invariance of
the transport theory. In addition to the gauge invariane¢igconnected to the particle conser-
vation on each band separately, the phase fluctuations @isoige to a generalized Josephson
relation for NCS, which is derived for the first time in thise#is. It turned out that two gauge
modes are present in NCS. | calculated the slope of both ganagkes in the limiting case of
vanishing ASOC and without taking the long range Coulomérittion into account. The first
gauge mode can be identified as the Anderson—Bogoliubov mddeh is present in any (sin-
glet or triplet) superconductor. The second gauge modeiggiario NCS with a characteristic
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6 Summary

slope that depends on the symmetry of the ASOC. The effectooldinb interaction, which
usually shifts the gauge modes to the plasma frequencyjmsradopic of further investigations
as well as the influence of these gauge modes on responseasgddrt functions. Furthermore,
the connection to collective modes in two—band supercandsipredicted by Leggett [90] and
recently experimentally observed in MgE21] is worth additional research.

As application of the kinetic theory, | calculated the elentc (pair—breaking) Raman re-
sponse in NCS for zero temperature and in the clean limith\Wagard to the most interesting
NCS, | analyzed the Raman response for an ASOC of tetragooiak @roupg = C,) and cubic
(point groupG = O) symmetry. | provided both, analytical and numerical resuFirst, | pro-
vided analytical expressions for the Raman vertex for bothtmroups. Second, | evaluated the
electronic Raman response for the limiting case of a purigdiet order parameter and third, | an-
alyzed the mixed parity state in a case by case study, regealcharacteristic two peak structure
for NCS and the exact peak and kink position in the spectragdisas the low frequency power
laws. Further, | provided numerical calculations covemtigelevant cases from weak to strong
triplet—singlet ratio. It turned out that this ratio canigabe deduced from the peak positions in
the electronic Raman response. As a result, | propose a néwoth® determine this unknown
triplet—singlet ratio in parity—violating NCS. The expaental examination is still outstanding
but might be promising, especially for NCS with highHgr A topic of further investigations
might be the consequence of the new gauge mode on the eiecRaman response. A very
recent publication by Klein [92] discussed this topic footvand superconductors like MgB
with interesting results concerning the screening couatign in the electronic Raman response.
Nevertheless, it remains unclear to what extent the refultsvo—band superconductors can be
adopted for NCS. Of course, a more material specific calcmatvhich takes the actual Fermi
surface into account, is still an outstanding issue. Howefes should be done in cooperation
with experimental work.

Finally, I introduced an efficient numerical method to céte the dynamical spin and charge
responses in NCS, using all symmetries of the problem viarelis cosine and sine transforma-
tions. In detail, the spin and charge susceptibilities feP€Si in the whole three dimensional
Brillouin zone was calculated. Since such an evaluatioatisar expensive with respect to mem-
ory and computation time, | confined the analysis to the nostaée without magnetic order but
for low temperatures. With the spectral function as a stgntioint, the method has the potential
to go clearly beyond a Lindhard analysis. For further ingegions it might, for example, be
desirable to use the spectral function obtained from ARPEfrments in order to calculate
the spin and charge responses. Instead, | provided a pa@ragibn of the three closest bands
to the Fermi surface, using LDA calculations by Heid [123pr Bll subsequent calculations |
used the3 band with the most interesting nesting features, althouigluhd a smaller density
of states (31%) compared to Samokbinal. [120,/121], who attributed 70% of the density of
states (DoS) to thg band. | argue that this difference is due to an approximdbothe Ce—4f
electrons: in Heid's LDA calculation they were treated asKkggound charge. Thus the low—
lying f—-bands, which can be seen in Samokhin’s calcula@gma,missing in my model. Clearly
these f—bands flatten especially thé&and dispersion close to the Fermi surface leading to such
a high DoS. The dynamic nesting function was evaluated aodeth a pronounced peak at the
antiferromagnetic wave vect&@ = (0,0, 7) for the 8 band. Large differences between the real

100



and imaginary part of the susceptibility for— 0 provide evidences for non—negligible dynamic
nesting. Further, using this band structure, | calculagseaieexample inelastic neutron scattering
cross sections for the axis and Kohn anomalies for different scans through thddaiih zone
with and without ASOC. In both cases, the difference fromAB®C were small and additional
peaks for small momenta, predicted in Ref. [139,/140] 14¥pwet observed. | attribute this to
the higher dimensionality and to an overlap of many broadkgeaginating from up to twelve
inter— and intra—band terms. Calculated Kohn anomaliegesitghat experiments might be
promising although Kohn anomalies are usually hard to déteébree dimensional compounds.
All previous work on the spin and charge susceptibilitieBI®S (including microscopic pairing
theories as, for example, in Ref. [50, 51) 52]) was restlittethe static susceptibility and thus
neglected dynamical nesting effects. In this sense, thitsasan be seen as a proof of the princi-
ple that dynamic calculations on the whole Brillouin zomeJuiding ASOC, are possible. Using
numerical results for the spin— and charge susceptibihity @ model proposed by Takimogb

al. [135], I qualitatively analyzed the superconducting pajrinteraction. In this model, the
pairing interaction is constructed from spin fluctuatio@me can hardly find a solution to the
singlet part of the weak—coupling gap equation. The trip&et of this decoupled gap equation
prefers ap—wave state, where the correspondig-vector is proportional to the antisymmet-
ric spin—orbit coupling vectofy,.. Furthermore, it turns out that an increasing Rashba—type o
spin—orbit coupling strengthens the triplet contributiorihe superconducting gap. Solving the
gap equation with a dynamical pairing interaction, basetherspin and charge susceptibilities
calculated in this thesis, would be a natural continuatibthis work. Further improvements
might concern the inclusion of an antiferromagnetic ordeav@n a superconducting gap in such
a calculation.

Coming back to the questions raised in the introductios,lflads me to the following conclu-
sions: | could successfully extend a kinetic formalism farious response and transport func-
tions to describe NCS. The discussion of the gauge invagiahthis theory led to the discovery
of a new gauge mode with unusual dispersion. | showed ddtedieulations of the dynamical
spin and charge susceptibilities in the three dimensiomahentum space and in presence of an
ASOC. A pairing interaction based on spin fluctuations shiowsarticular for CeR{Si that the
triplet contribution to the order parameter increases &itashba—type of spin—orbit coupling.
Through a sign analysis of the decoupled gap equation, drhes clear that the triplet contri-
bution is considerably larger than the singlet contributio the gap in CeR&i. For this case,
a threshold behavior is expected in the Raman spectra. Wsmginetic approach to calculate
the electronic Raman response, revealed a new experinmeatabd to determine the unknown
triplet—singlet ratio of the superconducting order pareme
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Appendix A

Small g—expansion

For small wave numbers, i.g. — 0, the Tsuneto and related functions, which play an important
role in the matrix—elementd;; [see Eq.[(2.55)], will simplify considerably. Taking into@unt
terms to the orde® () with . = vy - q, | obtain the well-known expression for the Tsuneto—
function [147]

(w? — )0 (k) + neoa(k)

: _ 2
aty M) = ) G B 0] — e — 463 A
where (k) (k) A2(K)
__om _ Sx A
2= 500 ~ 509" T Rag MY #2)
is the derivative of the electron distribution function hetband\ and
Of [Ex(k)] 1 1
P e o (5)

is the derivative of the quasiparticle distribution fulcti

The following limits are also of interest: the homogenousiti(q = 0), e.g. for the Raman
response and the static limit & 0), used in local equilibrium situations

Mk,g=0) = % (A.4)
A

w—0q—0

For the following smallj—expansion | omitted the band labefor better readability:

2 2 2 2

. Tk Ak - 2€k gk "

lim 6,7 = 20 —0) — = A.6a
am Oy K+ 1E?2 E? (yx — bk) B ( )
o Mk,

}llﬂ%ek “ B (Y — ) (A.6b)

2 A2(A2 2 242 2 2

. The Ak(Ak - 451{) Nilie | Ak 4 S

lim &, = — b6y — — =% A.6C
om P ¢k+4E12< 2E] (yx — bk) 1B | By k+6Eﬁ K ( )
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Appendix A Smallq—expansion

9+
06y = 7 — Ok
771( Ak - 2&12( l% "
_ _ _ >k A.
SEIE El% (yx — bk) Bk (A.6d)
o = P — ok
2 A2/A2 2
Mk Ak(Ak - 4€k) nkgk " gk "
= —0 A.6
e opr Wm0 Ekk+6E3k ’ (A.6e)

where f"
following expansions:

denotes the nth derivative gf( £y) with respect toF.

Furthermore, | find the

2 A2
MAL
211_)1%771( = 2FEy (1 + SE ) (A.7a)
& AL
iy = o (1 5 AT
limgj =y _77_1% //+€k " (A7C)
a0 T T g \ T 3k '
nk A12< gk "
1 =0 —=(y — 0 . A.7d
1m Ok = Ok + 8E2 [Eﬁ (?/k k) Ek } ( )
The ten products of coherence—factors in Eq. (2.50) havéotlosving explicit form:
o 2
Eres Br_
1 E by — A}
[ } k+ LUk §ktli— + 5 (A.8b)
By Br_
) (4 }Ek—§k+ + By S AS
k qk - 9 Ek‘i’Ek* ( . C)
(0, () _ 1 Bt = P G A.8d
(), () _ D&y + 56 A.8
k Fk 9 Ek‘i’Ek* ( ' e)
Ay By + Ex—
(=),,(+) _ 2k k4 k A.8f
qk pk 2 Ek+Ek— ( . )
and the smal§—limit of each coherence—factors reads:
2 A2
+ _ Sk (| mAL
dmact = B (1 AE} ) (A.93)
2 A2
) _ 4 MmAk
2112% . =1 SE (A.9b)
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Appendix B

Derivation of the Raman vertices

In order to derive the relevant expressions for the poladnadependent Raman vertices, | start
from a general dispersion relation for tetragonal symmtty)

€x = Z Z a$t [cos(nkya) + cos(nkya)] cos(rk.c) (B.1)
n=1 r=0
+ Z Z bC4“ cos(nkza) cos(nkya) cos(rk,c)
n=0 r=0
+ Z Z St | [cos(nkya) cos(mkya) + cos(mkya) cos(nkya)] cos(rk.c)
n=1 m=1 r=0

and for the cubic symmetry))

€x = Z a2 [cos(nk,a) + cos(nkya) + cos(nk.c)] (B.2)

n=1

+ Z b9 cos(nk,a) cos(nk,a) cos(rk.a)
n=0

oo n—1
+ Z Z cgm [cos(mkya) cos(mkya) cos(nk,a)
n=1m=1
+ cos(mk,a) cos(nkya) cos(mk,a) + cos(nkya) cos(mkya) cos(mk.a)]

oco n—1m-—1

+ Z Z Z dnmr cos(nkya) cos(mkya) cos(rk.a)

n=2 m=1 r=0
+ cos(nk,a) cos(rkya) cos(mk,a) + cos(mkya) cos(nkya) cos(rk,a)
+ cos(rk,a) cos(nkya) cos(mk,a) + cos(mkya) cos(rkya) cos(nk,a
+ cos(rkga) cos(mkya) cos(nk,a)] .
Time reversal symmetry allows only for even functions of neoumk in the energy dispersion.

Furthermore, the dispersion must be invariant under allnsgtry elements of the point grogp
of the crystal. For small momentum transfers and nonres@tattering, the Raman tensor is
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Appendix B Derivation of the Raman vertices

given by the effective—mass approximation

yk)=m> & 826(1‘)‘ el (B.3)

whereé®! denote the unit vectors of the scattered and incident aléoin light, respectively.
The light polarization vectors select elements of the Rateasor according to

1 =el et (B-4)

where the Raman tenseg. can be decomposed into its symmetry components and later ex-
panded into Fermi surface harmonics:

Va8 VB> YEM
C4v

Y= VB, Ya® ~ VB VE® (B.5)
YEM YE® Va®
Ya, + 720 — V3vpe@ Y Vr®
T = Vo Ya, + YE® + V3R T : (B.6)
V) T YA, — 2VEm

Here | have omitted all non—Raman active symmetries suchasiie vertices é\” and Aﬁz) are
equal up to some constants determined by the band struahdéhe vertices for ® and E? in

Cy, differ only by a rotation of the azimuthal angteby 7/2. Since this rotation is an element
of the corresponding point groups, these vertices areim@ntoo. The same holds for‘ﬁ‘, ng)

and T§3). Therefore, the upper indices will be omitted in the follagi(whenever possible). For
the tetragonal group’y, the A;, B;, B, and E symmetries are Raman active in backscattering
geometry. Relevant polarizations for this group are:

"=+ W =+

W=t — 2 WY =t —

N = N = (B.7)
"= R =

W= " =

"= Nk =t =i

The cubic groug reveals three Raman active symmetries, namely(&", E®), and T, (still
assuming backscattering geometry). The relevant potaimare:

zT A @ (2 o' A (1)
N =% N — V3w N =% N N
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(1) (2) 'y EM
W=+ + V3 WY =+ —

W = WY = V3 (B.8)
= W = it 442"

W= %f =5 i

W=y — 29 = V3 —inl

Here, | have defined the unit polarization vectgfs= (x + y)/v2 andy’ = (x —y)/v2. L
and R denote left and right circularly polarized light witbsitive and negative helicity, respec-
tively (e* = (x +4y)/Vv?2, e® = (% — iy)/v/2). Note that in a backscattering configuration
the polarization vectore’* are pinned to the coordinate system of the crystal axes.eTdrey;
some caution is advised when choosing the proper helicityhi® scattered polarization vector
eS. Although the Raman vertices'Eand E? seem to look completely different, the Raman
response turns out to be exactly the same. From a tight-HAgirahalysis one obtains the same
(band structure) prefactors for both vertices, thfiS’ andv/3v£® generate both the same Ra-
man response. Note that it is not possible to measyand EV independently in backscattering
geometry with the crystal c—axis aligned parallel to thetdseam.

The Raman vertices are extracted from the band structurerbparing the symmetry compo-
nents of the Raman tensor with the second derivative of taeggrdispersion. This can be done
by solving a set of 6 coupled linear equations — the 6 equationrespond exactly to the 6 free
components of the symmetric tensor of inverse effectivessnaad to the 6 symmetry elements
(vertices) to be determined. Finally | make a series expanisik, in order to get the angular
dependence of the vertices on the Fermi surface. The rdeuliise tetragonal point group,C
are

oo 1<k/2

7,41 Z Z 7,” cos 4l sin? (B.9a)

k=0 1=0
oo 1<(k+1)/2

%(91 = Z Z 7“ Cos(4l — 2)¢ sin®¥ (B.9b)
k=1 =1
oo I<(k+1)/2

%S_;Q —Z Z 'sz S1n(4l—2)<;5 sin? (B.9¢)
k=1 =1

’ny = Z nykl sin(2l — 1)¢ sin 2k0 (B.9d)

k=1 =1
and for the cubic point grou@, | obtain

0o I<k/2

7,41 Z Z Vkl cos 4l sin? (B.10a)

k=0 =0
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Appendix B Derivation of the Raman vertices

fyg?z) = fyéR)(Q — 3sin® ) +

oo I<(k+1)/2

7E<2> = Z Z ’sz cos(4l — 2)¢ sin®

k=1
oo U< (k+1)/

’y(TQ = Z Z 'Vkl s1n(4l —2)¢ sin?*

k=1 =1

(B.10b)

(B.10c)

(B.10d)

in a backscattering—geometry experimer)( The leading terms in this expansion'g(f) are
also illustrated in Table'Bl1 for the tetragonal point grauyl in Tablé B.R for the cubic point

group.
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Table B.1: Spherical representation of the first terms inséimges expansion for the Raman ver-
tices of tetragonal symmetry. In;Aymmetry also the second terginf 6) is illus-
trated, because the first term does not contribute to the Ra@sponse.

symmetry | vertex | spherical plot
A 1,sin%4
B, cos(2¢) sin” 6
B, sin(2¢) sin” 6
E sin(¢) sin(20)
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Appendix B Derivation of the Raman vertices

Table B.2: Spherical representation of the first terms insétmges expansion for the Raman ver-
tices of cubic symmetry. In Asymmetry also the second tergin? 6) is illustrated,
because the first term does not contribute to the Raman respon

symmetry | vertex | spherical plot
A 1,sin%6
EM 2 — 3sin*0
E® cos(2¢) sin? 0
T sin(2¢) sin(26)
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Appendix C
Tight—binding fit

The band structure which is used to calculate the spin— aatyeksusceptibility is obtained
from a fit to an LDA calculation performed by Heid. The LDA calation was performed for
LaPtSi plus one negative background charge in order to accouttidamneif electron. The cal-

culation was done without spin—orbit coupling on a grid Witk 11x9 (=1089) k—points in the

irreducible Brillouine zone, which corresponds to a<20x 16 grid in the whole Brillouinzone.

Thek—space anisotropy of the spin—orbit coupling is given by(@&d.0):

1 —vy (k)
Y=~ v, (k) (C.1)
avg 0
Vhe = / dk [v2(k) + v2(k)] (C.2)
B.Z.
_ O
Upy = T (C.3)

An estimation for the strength of the spin—orbit interactigp was obtained from a compari-
son with Ref.[[120], 121]. The tight—binding coefficients wewvaluated from a least squares fit
via repeated simulated annealing with more weight closbeéd=ermi surfacl. | considered a
simple tetragonal lattice and used a tight—binding fit idotg 4th nearest neighbor model. For
the tetragonal symmetry of CeBi this implies 74 hopping terms plus the chemical potential
as fitting parameters. This task is not overdetermined lsecthe dispersion is known at 1089
k—points. Furthermore this large number of terms in theefispn does not slow down the cal-
culation of the spin or charge susceptibility. Insteadravides a simple approach to interpolate
between the LDA—-results. In general, the band structurdeanritten as

§k = Z Lk exp(—ik 1) — 1, (C.4)
(4,3,k)#(0,0,0)

wherer corresponds to the coordinate of tfiej, k)th neighbor {, j, k¥ € 0, £1,+2,...). Note
that for tetragonal symmetry 2, 4 or even 8 terms can be d¢elleto form the hopping terms
t1,t9,ts3,.... The tight—binding terms are labeled in the following waphese the expression in

1The weighting—function decreases smoothly by a factor oftd¢ farthest part of the Fermi surface.
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Appendix C Tight-binding fit

the brackets denote a representative coordifiajek) of the corresponding hoppmg—teﬁ’n

tiv (0,1,0): 2cos(ky) + 2cos(ky)

ta  (1,1,0): 4cos(k,)cos(ky)

ts  (0,2,0): 2cos(2k,)+ 2cos(2k,)

ty  (1,2,0): 4cos(k )cos(2k: ) + 4 cos(2k,) cos(ky)

ts  (2,2,0): 4cos(2k,) cos(2k,)

te  (0,3,0): 2cos(3ky) + 2 cos(3k,)

tz  (1,3,0): 4cos(k,)cos(3k,) + 4 cos(3k,) cos(k,)

ts  (2,3,0): 4cos(2k,) cos(3k,) + 4 cos(3k,) cos(2k,)

to  (3,3,0): 4cos(3k;) cos(3ky)

tio (0,4,0): 2cos(4ky) + 2 cos(4k,)

ti1 (1,4,0): 4cos(k,)cos(4k,) + 4 cos(4k,) cos(k,)

tiz (2,4,0): 4cos(4k,) cos(2k,) + 4 cos(2k,) cos(4k,)

tis (3,4,0): 4cos(3k,) cos(4k,) + 4 cos(4k,) cos(3k,)

tie (4,4,0): 4cos(4k;) cos(4ky)

tis (0,0,1): 2cos(k,)

tie (0,1,1): 4cos(k,)(cos(k,) + cos(ky))

tiz (1,1,1): 8cos(k,)cos(k )Cos(k: )

tis (0,2,1): 4cos(k,)(cos(2k,) + cos(2k,))

tiw (1,2,1): 8cos(k,)(cos(2k,) cos(k,) + cos(k,) cos(2k,))
tao (2,2,1): 8cos(2k,) cos(2k,) cos(k,)

tar (0,3,1): 4cos(k,)(cos(3ky,) + cos(3k;))

tos (1,3,1): 8cos(k.)(cos(k )cos(3k ) + cos(3k,) cos(ky))
tas (2,3,1): 8cos(k,)(cos(2k,) cos(3k,) + cos(3k,) cos(2k,))
toa (3,3,1): 8cos(3k,) cos(3k,) cos(k,)

tas (0,4,1): 4cos(k,)(cos(4k,) + cos(4k,))

tae (1,4,1): 8cos(k,)(cos(k,) cos(4k,) + cos(4k,) cos(ky))
tar (2,4,1): 8cos(k,)(cos(2k,) cos(4k,) + cos(4k,) cos(2ky))
tas (3,4,1): 8cos(k,)(cos(3k,) cos(4k,) + cos(4k,) cos(3ky))
tag  (4,4,1): 8cos(4k,) cos(4k,) cos(k,)

tso (0,0,2): 2cos(2k,)

ts1 (0,1,2): 4cos(2k,)(cos(ky) + cos(k;))

ts2 (1,1,2): 8cos(ky) cos(ky) cos(2k,)

ts3 (0,2,2): 4cos(2k;z)(cos(2k ) + cos(2k,))

tsa (1,2,2): 8cos(2k,)(cos(2k,) cos(k,) + cos(k,) cos(2ky))
tss  (2,2,2): 8cos(2k,) cos(2k,) cos(2k,)

tss  (0,3,2): 4cos(2k,)(cos(3ky) + cos(3k;))

tsy (1,3,2): 8cos(2k,)(cos(k ) cos(3k,) + cos(3k,) cos(ky))
tss (2,3,2): 8cos(2k,)(cos(2k,) cos(3k,) + cos(3k,) cos(2k,))
tso  (3,3,2): 8cos(3k,) cos(3k,) cos(2k,)

tyo (0,4,2): 4cos(2k,)(cos(4ky) + cos(4k,))

2Here, and for the numerical calculations the lattice patarse = b andc are set to unity.
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Appendix C Tight-binding fit

The band structure fit for thé band of CePR4Si yields

t; = 1.000000
t5 = 0.152182
19 = 0.116762

t13 = 0.039534
t17 = —0.550543
to1 = —0.024705
tos = 0.015041
99 = 0.006012
t33 = 0.114648
t37 = 0.005362
t41 = 0.004461
145 = —0.142076
19 = 0.014536
53 = —0.023640
t57 = 0.005883
tgs = —0.038766
teg = —0.002996
t73 = 0.005178

1 = 3.502108

1o = 0.358493
te = 0.191377
t10 = 0.039128
t14 = 0.056700
t1g = 0.295727
9o = —0.025429
96 = —0.015057
30 = —0.957762
taq = 0.011217
t42 = 0.006155
tis = —0.022716
t50 = —0.019409
t54 = —0.009391
tss = —0.000134
te2 = 0.013199
tes = 0.008778
tro = —0.021220
t74 = —0.000642

ty = —0.331107
t; = —0.030291
t11 = 0.032885
t15 = 0.026333
tio = 0.245089
to3 = 0.015342
toyr = 0.006583
t31 = —0.050089
ts5 = 0.010295
t30 = —0.034375
ty3 = —0.000725
t4r = 0.066993
ts1 = 0.029159
tss = —0.003495
tso = 0.002172
te3 = 0.031846
ter = 0.016811
t71 = —0.002964

ty = —0.239777
ts = 0.071605
t12 = —0.063346
tis = —0.581673
ts0 = 0.101670
to4 = 0.057998
tog = —0.018151
tas = 0.082644
tas = —0.024208
tio = —0.019411
t4a = —0.005928
tis = —0.018927
ts2 = 0.005648
tss = 0.007018
teo = —0.099237
tes = —0.003015
tes = 0.000073
tro = 0.003475

(C.5)

with a band filling of 79% and an average Fermi surface velaifiv,,, = 5.67. All energies for
the 5 band are in units of, = 110meV.
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The band structure fit for the band of CeRiSi yields

t; = 1.0000000000

15 = 0.4606822361

19 = 0.0283846721
t13 = 0.0004517330
t17 = —0.5307504915
o1 = 0.1560826003
195 = 0.0021459710
99 = 0.0093740937
133 = —0.2514351956
ts7 = —0.0321245747
t41 = 0.0102369900
t45 = 0.0338374626
t49 = —0.0301460101
53 = 0.0062649306
ts7 = —0.0044342855
te1 = 0.0011495392
165 = 0.0154413697
teo = 0.0072284189
t73 = 0.0000006775

w=16.3470040783 ,

1o = 1.1178001181

t¢ = —0.1930080172
t10 = 0.0301898255
114 = —0.0337674838
t1g = 0.0374165878
122 = 0.1085002201
tos = 0.0198868041
t30 = 0.6908026711
134 = 0.0024786220
t3g = 0.0135155493
142 = —0.0038180767
t46 = 0.0285164402
t50 = 0.0079961794
t54 = —0.0063695654
tss = —0.0030729050
te2 = 0.0004766283
tes = —0.0019055742
t70 = 0.0053892621
t74 = 0.0015909850

t; = —0.1410421595
t; = —0.0206163996
t11 = —0.0016314998
t15 = —0.2949050094
t1o = 0.0878828981
ty3 = 0.0079798286
tyr = 0.0182870364
t3 = 0.0474742444
t35 = 0.1021525091
ts9 = 0.0148221376
t43 = —0.0040011344
tyr = —0.0150683613
ts1 = —0.0283918016
ts5 = 0.0013259022
tso = —0.0014544178
te3 = —0.0489321791
ter = —0.0068828978
tr = —0.0015550213

t4 = 0.0111206866
tg = —0.0843128680
t12 = 0.1321370343
t16 = —0.1929239743
tog = —0.0279976298
tog = 0.0015452003
132 = 0.0054831515
136 = 0.0385854454
t40 = 0.0266323284
t4qs = —0.0003175090
t48 = 0.0050793228
t52 = 0.0047951579
156 = 0.0006566319
teo = 0.0938227199
tes = —0.0027245761
tes = 0.0018700372
t7o = 0.0028751649

(C.6)

with a band filling of 100% and an average Fermi surface vBlaxfiv,,, = 5.94. All energies
for thea band are in units of, = 94.8meV.
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Appendix C Tight-binding fit

The band structure fit for the band of CeRiSi yields

¢, = 1.0000000000
t5 = —0.0881807558
ty = —0.07576775836
t13 = —0.0274816592
t17 = 0.2657876240
to1 = 0.0033060425
tos = —0.0250342549
ta9 = —0.0019879082
ta3 = 0.0676645801
t37 = 0.0387860395
ty = 0.0055942211
ts5 = 0.0373775930
t10 = 0.0124204469
ts3 = 0.0063743217
ts, = —0.0130591564
te1 = —0.0015232407
tes = 0.0086236334
teo = 0.0031465533
tr3 = —0.0027824194

w = —2.584748075 ,

ty = —0.9863811694
ts = 0.1024991958
t10 = 0.0118515101
t14 = —0.0357290040
t1s = —0.1392880068
toy = 0.0017467623
tos = 0.0163487800
tao = 0.0942887273
tay = 0.0479353882
tas = —0.0163599983
ty = 0.0109728517
ts6 = 0.0055582039
tso = —0.0042163248
tsy = 0.0287118487
tss = 0.0065672078
te2 = —0.0005436420
tes = —0.0078038493
t70 = 0.0131697214
tza = —0.0030127833

ty = —0.0443368655
t7 = 0.0386005277
t11 = 0.0057126110
t15 = —1.0178540886
t19 = 0.0507704098
toy = —0.0165076881
tor = —0.0168667925
ts1 = —0.0981892595
ts5 = —0.0565567613
ta9 = —0.0036732412
t3 = —0.0021006428
tyr = 0.0016125044
ts1 = —0.0379666852
ts5 = 0.0083141516
ts9 = —0.0006983135
te3 = —0.0094508036
ter = —0.0012953419
t71 = 0.0067105992

t4 = —0.1001570806
ts = —0.0744509386
t12 = 0.0186993542

t16 = —0.1505399388
120 = —0.0136928392
tog = —0.0146710760
tog = 0.0123139569

132 = —0.1041405791
t36 = —0.0396506599
tyo = —0.0278015863
144 = —0.0005992281
t4g = —0.0001577827
152 = —0.0200240936
t56 = 0.0020636029

teo = 0.0053095940

tea = 0.0019553688

tes = —0.0013943071
t7o = —0.0042129027

(C.7)

with a band filling of 20% and an average Fermi surface vetafiv,,, = 4.35. All energies for
the~ band are in units of; = 129.9 meV.
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Appendix D

Algorithms to calculate the DoS and
susceptibility

A schematic data flow of the algorithm used to calculate omepmment of the spin or charge
susceptibility is displayed in Fig. D.1. Let me comment tfféedent steps:

First, two grids with dimension00 x 500 x 500 are filled with band structure data for
each of the two bands (band dispersi§p;--vector and in the superconducting state also
the value of the gap and the coherence factors on the Bmkomone). The grid repre-
sentsl /8th of the Brillouine zone, in order to account for the tetnagjoand time reversal
symmetry.

w—loop:

The susceptibility can be evaluated at arbitrary frequesaciSince the real part of the
susceptibility is calculated via Kramers—Kronig, | needdoer the whole bandwidth. For
INS and Kohn anomalies, only the low—frequency contribui®important. Therefore,

| chose a non—equidistant-sampling according te*. For all calculations in this thesis
300 frequencies were evaluated.

v-loop:

The v integration, see Eq[(5.22), goes fromw...0 (plus a margin ofl5kgT, which
should be sufficiently large for finite temperatures). Irsthange, 200 frequencies are
evaluated and then integrated using the Simpson-rule.

Both grids are then filled with the spectral function for twresponding frequency. For
the calculation of the spectral function, the symmetry gltre diagonal'Z is also taken
into account.

DCT/DST and multiplication:

According to the symmetry of;, either a discrete cosine or a discrete sine transforma-
tion is performed (see Appendix D.1). | used the FFTw—Ilipfad8,/149] which is much
faster, than e.g. algorithms from Numerical recipes [15U0he discrete trigonometric
transformations (DTT) are performed in each dimensionrsgply. Unfortunately, these
transforms are associated with different index—shiftssfach dimensions (if the convolu-
tion involves they,—vectors). Furthermore, the DTT-libraries avoid to staesg, which
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Appendix D Algorithms to calculate the DoS and susceptibili

Start: fill 2 grids with band-structure data

Loop: w (non-equidistant)

Loop: V
Grid 1 R A Grid 2
Z
M
G (v) r X Gh(w +v)
1><% 1><%‘
DCT/DST DCT/DST

L element by element J

multiplication
v

inverse DTT

¥
Loop: V- integration
¥

downscale and write to file

¥

Loop: W

Figure D.1: Schematic data flow of the algorithm, calculgtime dynamicalq—dependent
susceptibility.
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D.1 Numerical convolution

are e.g. needed when a different inverse transform is usédé |dads to the problem,

that the size of the grid is not constant: The inverse transfoeeds one more sample in
each dimension. Because of these index—shifts, one hakaactae of the element by

element multiplication. In each dimension, 4 differentesabave to be taken into account,
dependent on whether the right and/or left sample is staredto

Inverse DTT:
The inverse DTT is always a DCT, since the multiplicationwd teven or two odd func-
tions is always even.

Downscaling:

The data volume from 300 frequencies timeg)a x 500 x 500 grid in g—space would be
to large and to unhandy to store. Therefore, a trilinearpaiation ing—space is applied
(see Appendix DJ2) to downscale the grid td@ x 100 x 100 mesh. Thus, the data
volume for each data file (12 terms for a single entry in thespsbility tensor have to
be evaluated) shrinks from hypothetically 37GB to 300MBtd\itat only the imaginary
part of the susceptibility is stored. The real part is cated when the data file is read out.
Then, the Kramers—Kronig transform takes only a few seconds

D.1 Numerical convolution

In order to calculate the susceptibility, one has to evaldla¢ following expression (see Sec-
tion[5.2):

Cosislev) = 25 PG ® [, GE
(D.2)

Instead of applying the cross—correlation theorem, it isem@mnvenient to first introduce the
following abbreviation8

F() = 4,0k, €) (D.3)
9(k) = 4, (k)G (k. v) (D.4)
hm%=ﬂ@®g&%=/dkﬂwmk+® (D.5)

4t is not common to write down explicitly the argument of thenétion when using the symbolic notation for
cross—correlations or convolutions. However, here it essary, because the functiofig can be even or odd
w.r.t. one component .
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Appendix D Algorithms to calculate the DoS and susceptibili

and then convert the cross—correlationnto a convolution«@

_ f(k)xg(k;) for freven, f(—k) = f(k)
Ma) = { —f(k) xg(ky) for frodd, f(—k)=—f(k) (D-6)

where | used
f(k) @ g(ki) = f*(=ki) x g(ki) = f(—Fki) x g(ky) (D.7)

and the fact thaf = f* is real.
At this stage, a closer look at the symmetry of theector in each dimension for the Rashba—
type of SOC is appropriate. From the definitiomoin Eq. (5.10) one obtains:

Vo(—=kg, by, k) = Yo (k) —even —DCT
Vo (ks, =Ky, k2) = —2(k) —odd —DST
Vo (ks by, —k2) = Y2(k) —even —DCT
(D.8)
Vy(—ke, ky, k) = =, (k) —odd —DST
Ay (kg —ky, k) = 4y (k) —even —DCT
Yy kg, by, —k2) = 7, (k) —even —DCT

with the abbreviations “DST"="Discrete Sine Transfornoaii and “DCT ="Discrete Cosine
Transformation”.

The discretization of EqL(DL6) leads to a circular conviolat. .. © . . .), defined in Ref[[118].
Adopting the notation of this publication, it turns out tibaty one of the 40 possible convolutions
in the (anti)symmetric case is compatible with a feasibl@a@ignment and with the provided
DTT algorithms by FFTw([149]. The data alignment and the esponding trigonometric trans-
forms for the symmetric and antisymmetric case are showigiflEZ2 and Figl D.B, respectively.
In particular, the discretized convolutions read:

¢ even symmetry
(HSHSOHSHS — WSWS

h(n = 1) = Cr.' {Coe[f(n)] x Cae[g(n)]}
» odd symmetry

(HAHA®HAHA ) — WSWS

h(n = 1) = =C! {Seel f(n)] X Sae[g(n)]}

Here | used the following abbreviations (conform with RAfLE)):

1 forn =20
[Clrelmn = (—1)™ forn=N form,n=0,...,N (D.9)
2cos (™) otherwise

2The convolution is separately performed in each dimensitigh is indicated by indexing the momentum.
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D.1 Numerical convolution

n 0 1 2 3
HSHS —-—1—@—1—O—+—-0O—+ f(n), g(n)

1026 0/ / ™ 21 N 1DCT-II

WSWA o—0—0© O+

101‘61 01 1 7T1 2m N+11DCT-I
—0—0—°O 2C7)T->h(n—1)

hh

0 T

Figure D.2: Data alignment for a symmetric convolution of tengthN = 2. Note that the
length of the output has increased by one sample, sincedhk bircles denote actu-
ally stored data points and the white circles denote datapthat are not stored due
to symmetry reasons. Arrows denote the shifts of the indiges 1/2 or 1 sample
in the corresponding step. At the place of the blue circlesra has to be filled and
the content of the array corresponding to the red circle ias teleted/overwritten.
On the left—-hand side of this diagram the notation from REL8] is used and on
the right—hand side the corresponding names for the atgosite.g. in Ref/[148] is

Q

displayed.
[Chclyun = 2 cos (M) form,n—=0,..., N —1 (D.10)
[Sse]mn = 2sin (M) for { g:oo ,]i[v_ ) (D.11)

The denominations for the symmetries of the data array w#pect to the left and right bound-
ary are also explained in Ref. [118]:
WS : whole sampleymmetric

WA : whole sample atisymmetric
HS . half sample gmmetric
HA : half sample atisymmetric
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Appendix D Algorithms to calculate the DoS and susceptibili

n 0 1 2 3
I—llAHA 00— .—I—O—I—O—2|—> f(ni> g(n)
Soe 0 @ T N | DsTa
WAWS O \. \O o—-0O~»
101‘61 01 1 Wl 2m N+11DCT-I
WSWS 3 .4_2 O 2?: h(n — 1)

Figure D.3: Data alignment for an antisymmetric convolatad the lengthV = 2. Note that
also in this case the length of the output has increased bgamele. The symbols
are explained in Fig. DI2

D.2 Trilinear interpolation

In order to interpolate the value of a function at the posifio, y, z) between the 8 closest lattice
points in a cubic gri&, it is convenient to define first, the nearest neighbors

Pr= (=], [yl [2]) By = («], [yl [2])
Py = ([«], Tyl, [2)) Py = (L], [yl [2])
B = (L], [y, [21) B = ([«], [yl [21)
Pr = («], Tyl [2]) By = (lz], Tyl [2])

with |z| = floor(z) (C—syntax) andz| = ceil(z) (C—syntax). The value of the function at
positioni is denoted byf;. Furthermore, one can define the distances to pintvhich is the
closest to the origin:

Ar =x — |z] (D.12)
Ay =y - ly]
Az=2z—|z].
The interpolated valu¢ then reads:
f=f0—-Az)(1—-Ay)(1—Az) + f5 (1 — Az)(1 — Ay)Az (D.13)

+ fo Az(l — Ay)(1 — Az)
+ f3 AzAy(l — Az)
+ f1 (1 = Az)Ay(l — Az)

+ fo Az(1 — Ay)Az
+ fr AzAyAz
+ fs (1 — Az)AyAz .

3The lattice constants are set to unity, hence the interipolaan be done on a cubic instead of a tetragonal lattice.
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D.3 DoS in 3D

D.3 DoSin 3D

The density of states (DoS) in three dimension was calalilageng the so—called Simplex—
algorithm after Eschrig [151]. In the normal state, the DeSjiven by (see, for example,
Ashcroft/Mermin [130]):

D(w) = L/BZ dk>6(w — &) - (D.14)

473

Using the notation of Refl [151], one can identify= 1 and>; = 0. Thus, the contribution of
each simplex in three dimensions (i,j=0,1,2,3) to the irakgimplifies to:

€ <w
w — €5
i) =3 w=e) D.15
J(w,v,€) v Z o) ( )
(#J)

with D(w) = > J(w,v,¢;), where the sum includes all simplices with the same volume
In three dimensions, it is convenient to subdivide cubes értietrahedrons with equal volume
(without loss of accuracy alsb tetrahedrons with different volume could further reduce th

computational effort). Labeling the corners of one cubef{\edge lengtth = 7/N) according
to

1:(0,0,0) 2: (h,0,0) 3: (h, h,0) 4:(0,h,0) (D.16)
5:(0,0,h) 6:(h,0,h) 7:(h,h,h) 8:(0,h,h)

| get the following6 tetrahedrons:

tetra- | corners
hedron|| 0123
0] 2316
(1 5316
(1) 5376 (B-17)
(V) 5374
V) 5314
(VI) 5784

This special choice prevents divisions by zero for energpeatsions with the following sym-
metry¢(k,, ky, k.) = £(ky, ks, k), which is present for the point groups, andO.
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