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◭ Title image: Top view on colloids immersed in a

critical water-lutidine mixture in the presence of a

flat substrate structured with chemical stripes of al-

ternating adsorption preferences. The colloidal par-

ticles are attracted via critical Casimir forces by

those stripes which exhibit the same adsorption

preference as the colloids via critical Casimir forces.

(Experimental snapshot by D. Vogt.)



Zusammenfassung

Statik und Dynamik kritischer Casimir-Kräfte

D
IESE Arbeit behandelt kritische Casimir-Kräfte, welche in Flüssigkeiten nahe des kri-

tischen Punktes auftreten und auf in der Flüssigkeit gelöste Kolloide — Teilchen der

Größe von Nanometern bis wenige Mikrometer — wirken. Solche kolloidalen Sus-

pensionen spielen eine bedeutende Rolle in der Natur sowie in Anwendungen und stellen ein

wichtiges Modellsystem dar. Sie werden durch die Statistische Physik beschrieben und können

in Experimenten mittels der optischen Mikroskopie direkt beobachtet werden. Wechselwirkun-

gen in kolloidalen Systemen können darüberhinaus zur Nachahmung autonomer Systeme wie

Bakterien oder für das Verständnis atomarer Mechanismen eingesetzt werden.

Der kritische Casimir-Effekt entsteht durch die räumliche Einschränkung von Fluktuationen

in der Flüssigkeit. Thermische Fluktuationen breiten sich über einen Bereich aus, der durch die

charakteristische Längenskala in einem Lösungsmittel, der Korrelationslänge ξ , gegeben ist,

und üblicherweise im molekularen Bereich liegt. Nahe des kritischen Punktes des Lösungsmit-

tels wächst ξ jedoch stark an, sodass selbst sichtbares Licht von der Flüssigkeit gestreut wird

(kritische Opaleszenz). Die Divergenz der Korrelationslänge nahe der kritischen Temperatur

T = Tc folgt einem universellen Potenzgesetz ξ ∝ |T −Tc|−ν , wobei ν ein kritischer Exponent

ist. Molekulare Details spielen für die Beschreibung eines kritischen Systems eine untergeord-

nete Rolle und die theoretische Beschreibung der kritischen Phänomene ist für eine Vielzahl

physikalischer Systeme dieselbe. Werden die kritischen Fluktuationen des Lösungsmittels von

den Kolloidteilchen sowie den Wänden des Systems eingeschränkt, entstehen effektive Kräften

auf die Kolloidteilchen — die kritischen Casimir-Kräfte, deren Stärke stark von der Abwei-

chung von der kritischen Temperatur abhängt.

Während der kritische Punkt von einfachen Flüssigkeiten oft bei hohen Temperaturen und

Drücken liegt, ist der kritische Punkt vieler binärer Flüssigkeitsmischungen bei Atmosphären-

druck und in der Nähe der Raumtemperatur erreichbar. Die kritischen Casimir-Kräfte, die auf

die in binären Flüssigkeitsmischungen gelösten Kolloidteilchen wirken, sind somit experimen-

tell relevant und können direkt gemessen werden.1

Je nach chemischen Randbedingungen auf den Oberflächen sind die kritischen Casimir-

Kräfte zwischen einem einzelnen Kolloidteilchen und einem planaren Substrat anziehend oder

abstoßend. In dieser Arbeit wird untersucht, wie sich eine Kombination verschiedener Randbe-

1C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger, Nature 451, 172 (2008).
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dingungen mittels chemisch strukturierter Substrate auf den kritischen Casimir-Effekt auswirkt.

Durch die chemische Strukturierung entstehen auch laterale Kräfte auf die Kolloidteilchen, so

dass die Kolloide nahe eines bestimmten chemischen Streifens gefangen werden können. Für

bestimmte chemische Muster werden die normalen kritischen Casimir-Kräfte auf die Teilchen

gar derart verändert, dass die Kolloide schweben können.

Der Vergleich der hier berechneten theoretischen Vorhersagen für diese Kräfte mit den vor-

handenen experimentellen Daten liefert eine sehr gute Übereinstimmung. Kritische Casimir-

Kräfte bieten somit eine Möglichkeit, Wechselwirkungen auf Kolloidteilchen gezielt in Stärke

und Wirkrichtung mittels der Temperatur des Lösungsmittels und der chemischen Randbedin-

gungen zu beeinflussen.

Während der Großteil der bisherigen Untersuchungen Systeme im thermodynamischen

Gleichgewicht betrachtet, gibt es kaum Betrachtungen der kritischen Dynamik eingeschränkter

Systeme. Durch die Ausweitung der thermischen Fluktuationen am kritischen Punkt wird auch

ein starker Anstieg der Relaxationszeiten im Lösungsmittel bewirkt. Die kritische Dynamik

kann somit ebenfalls universell beschrieben werden. Diese Arbeit untersucht den Einfluss der

gekrümmten Oberflächen von Kolloidteilchen auf die kritische Dynamik des Lösungsmittels

in ihrer Umgebung. Es zeigt sich, dass je nach Krümmung und Art der Randbedingung die

Dynamik unterschiedliche Charakteristika aufweist.

Im Folgenden werden die einzelnen Kapitel der Arbeit zusammengefasst.

Kapitel 1: Einleitung

Kapitel 1 bietet einen kurzen Überblick der Literatur zu kritischen Phänomenen und zum kri-

tischen Casimir-Effekt. Ein kritischer Punkt tritt im Phasenverhalten einer Vielzahl physikali-

scher Systeme auf, wie beispielsweise in einfachen Flüssigkeiten [Abbildung 1.1], Ferroma-

gneten [Abb. 1.2] oder binären Flüssigkeitsmischungen [Abb. 1.3]. Diese unterschiedlichen

Systeme können einheitlich mittels des Ordnungsparameters φ und dimensionslosen Größen

wie der reduzierten Temperatur τ = ±|T −Tc|/Tc beschrieben werden. Positive Werte τ > 0

entsprechen der homogenen Phase des Systems (verschwindender Ordnungsparameter), wäh-

rend τ < 0 der geordneten Phase des Systems entspricht (φ 6= 0). Die universelle Beschreibung

kritischer Phänomene hängt von nur zwei makroskopischen Größen ab, der Dimension des

Ordnungsparameters und der Raumdimension d. Für die oben genannten Systeme ist φ skalar,

weswegen diese allesamt zur Ising-Universalitätsklasse gehören.

Da eine Probe eines Materials stets eine endliche Ausdehnung hat, üben Grenzflächen Rand-

bedingungen auf das System aus. In Abschnitt 1.2.2 wird der Einfluss der Oberflächeneffekte

auf kritische Systeme beschrieben. Beispielsweise führt die Adsorptionspräferenz eines Sub-

strats für eine der Komponenten einer binären Mischung zu einer Verstärkung der Ordnung im

Vergleich zum Volumen, welche sich aufgrund der wachsenden Korrelationslänge nahe des kri-

tischen Punkts weit ausbreitet. Dies entspricht der normalen Oberflächen-Universalitätsklasse,
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welche sich von der gewöhnlichen (niedrigere Oberflächenordnung) und der speziellen (gleich

bleibende Oberflächenordnung) unterscheidet. Wird — wie in kolloidalen Suspensionen — das

Material durch mehrere Oberflächen eingegrenzt, führt dies zusätzlich zu den Oberflächeneffek-

ten zu einer Einschränkung der thermischen Fluktuationen des Ordnungsparameters. Sobald die

Korrelationslänge nahe des kritischen Punktes dieselbe Größenordnung wie der Abstand zweier

begrenzender Objekte annimmt, werden auf diese effektive Kräfte ausgeübt. Dieser kritische

Casimir-Effekt ist eng verwandt mit dem quantenelektrodynamischen Casimir-Effekt, bei dem

Kräfte “aus dem Nichts” durch die Einschränkung von Vakuumfluktuationen entstehen.

In Abschnitt 1.2.3 wird das Skalenverhalten von Systemen endlicher Größe eingeführt.

Insbesondere hängt die kritische Casimir-Kraft zwischen zwei planaren Wänden im Abstand L

von der Skalenvariablen L/ξ ab und kann mittels einer universellen Skalenfunktion beschrie-

ben werden. Abschnitt 1.2.4 führt die Molekularfeldtheorie (MFT) ein, welche das kriti-

sche Verhalten eines Materials oberhalb der Dimension d = 4 korrekt beschreibt. Um die uni-

versellen MFT-Skalenfunktionen zu erhalten, kann der Landau-Ginzburg-Wilson-Hamiltonian

[Gl. (1.6)] minimiert werden, indem man das räumliche Ordnungsparameterprofil φ(r) variiert

[Anhang A.1]. Anhand des minimierenden Profils m(r) = 〈φ(r)〉 kann mittels des Spannungs-

tensors [Anhang A.2] die kritische Casimir-Kraft bestimmt werden. Für Systeme mit komplexen

Geometrien, wie sie in dieser Arbeit betrachtet werden, kann so die universelle Skalenfunktion

für die kritische Casimir-Kraft innerhalb der MFT vollständig numerisch berechnet werden.

Nicht nur die statischen Eigenschaften kritischer Systeme sind durch die Langreichweitig-

keit der Fluktuationen geprägt, sondern auch deren Zeitentwicklung. Abschnitt 1.2.5 führt in

dynamische kritische Phänomene ein. Diese sind durch eine kritische Verlangsamung ge-

kennzeichnet, die sich in der Divergenz der Relaxationszeit tR ∝ |τ|−νz widerspiegelt, wobei z

der dynamische Exponent ist. Dynamische Universalitätsklassen hängen von der Unterschei-

dung ab, ob der Ordnungsparameter eine zeitlich erhaltene Größe ist oder nicht, und ob und

wie er an andere physikalische Größen koppelt. Der einfachste Fall, bei dem φ nicht erhalten

ist und ebenfalls nicht an andere Größen koppelt, wird als Modell A bezeichnet und beschreibt

die reine Relaxation des Ordnungsparameters in den Gleichgewichtszustand, die durch eine

Langevin-Gleichung beschrieben werden kann [Gl. 1.9].

Kapitel 2: Kritische Casimir-Kräfte zwischen Kolloiden und chemisch strukturierten

Substraten

In Kapitel 2 werden normale und laterale kritische Casimir-Kräfte untersucht, die auf kolloidale

Teilchen in der Nähe eines chemisch strukturierten Substrats wirken [Abb. 2.1]. Ein chemische

Strukturierung erzeugt eine inhomogene Adsorptionspräferenz des Substrats für die Komponen-

ten einer kritischen Flüssigkeitsmischung, in welcher die Kolloidteilchen gelöst sind.2,3 Neben

2M. Tröndle, S. Kondrat, A. Gambassi, L. Harnau, and S. Dietrich, EPL 88, 40004 (2009).
3M. Tröndle, S. Kondrat, A. Gambassi, L. Harnau, and S. Dietrich, J. Chem. Phys. 133, 074702 (2010).
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der MFT wird die Derjaguin-Näherung [Abb. B.6 im Anhang] angewandt, um die Skalen-

funktionen der Kräfte und des kritischen Casimir-Potentials zu erhalten, die auf ein Teilchen

gegenüber eines strukturierten Substrats wirken. Mittels der Derjaguin-Näherung können diese

anhand der Skalenfunktionen der kritischen Casimir-Kräfte zwischen zwei homogenen Platten

berechnet werden, die beispielsweise aufgrund von Monte-Carlo-Simulationen in der Raumdi-

mension d = 3 vorliegen. Der gültige Anwendungsbereich der Derjaguin-Näherung kann durch

entsprechende Vergleiche mit den numerisch berechneten MFT-Funktionen bestimmt werden.

Zunächst wird in Abschnitt 2.2 ein kugelförmiges Kolloid gegenüber einem chemisch ho-

mogenen Substrats betrachtet, welches im Vergleich zum Kolloid dieselbe (“(−) Randbedin-

gung”) oder eine andere (“(+) Randbedingung”) Adsorptionspräferenz aufweist. Die kritische

Casimir-Kraft wird durch Skalenfunktionen beschrieben, die vom Oberflächenabstand D zwi-

schen Kolloid und Substrat in Einheiten der Korrelationslänge, Θ =±D/ξ± (wobei ± dem Vor-

zeichen von τ entspricht), sowie in Einheiten des Kolloidradius, ∆ = D/R, abhängen [Gl. (2.1)

und (2.2)]. Der Vergleich der Derjaguin-Näherung mit den Ergebnissen der MFT zeigt, dass

erstere für Werte ∆ . 0.4 das tatsächliche Verhalten gut beschreibt [Abb. 2.2].

In Abschnitt 2.3 wird eine chemische Stufe betrachtet, die den grundlegenden Baustein

strukturierter Substrate darstellt. Aufgrund der verschiedenen Randbedingungen auf beiden Sei-

ten der chemischen Stufe wirkt eine laterale kritische Casimir-Kraft auf das Kolloid [Abb. 2.3],

welche von der Skalenvariablen Ξ = X/
√

RD abhängig ist, die dem lateralen Abstand X des

Kugelmittelpunktes von der chemischen Stufe entspricht [Gl. (2.8), (2.10), (2.17)]. Die kriti-

schen Casimir-Kräfte auf ein Kolloid können mittels der Derjaguin-Näherung in d = 3 und

d = 4 bestimmt werden, wobei sich herausstellt, dass diese für kleine Werte von D/R gut mit

den numerischen Ergebnissen der MFT übereinstimmt [Abb. 2.3 und 2.4].

In Abschnitt 2.4 werden die kritischen Casimir-Kräfte betrachtet, die auf ein Kolloid ge-

genüber eines chemischen Streifens wirken. Innerhalb der Derjaguin-Näherung können das

kritische Casimir-Potential und die -Kräfte durch die entsprechenden Skalenfunktion einer che-

mischen Stufe ausgedrückt werden [Gl. (2.25) und (2.26)]. Es zeigt sich, dass die endliche

Breite 2L des Streifens erst für L . 3
√

RD bemerkbar wird [Abb. 2.5]. Der Vergleich der

Derjaguin-Näherung mit den numerischen MFT-Ergebnissen ergibt, dass selbst für kleine Wer-

te von L/
√

RD die Derjaguin-Näherung für ∆ . 0.4 das tatsächliche Verhalten gut beschreibt

[Abb. 2.6]. Dies gilt nicht mehr allgemein für den Fall eines periodisch gemusterten Sub-

strats, welches in Abschnitt 2.5 behandelt wird. Es stellt sich heraus, dass die Derjaguin-

Näherung einerseits die kritische Casimir-Kraft für Werte Π & 2 gut beschreibt, wobei Π =

P/
√

RD die der Periode P zugehörige Skalenvariable ist [Gl. 2.31; Abb. 2.7, 2.8(a), 2.10(a)].

Andererseits stimmen für Π → 0 [Gl. 2.33] die numerisch berechneten MFT-Funktionen nicht

mehr mit der Derjaguin-Näherung überein [Abb. 2.7, 2.8(a), 2.10(b)]. Dies kann darauf zurück-

geführt werden, dass für diese Bereiche die Annahme der Additivität der Kräfte, auf welcher

die Derjaguin-Näherung basiert, nicht gilt, und nicht-lineare sowie Kanten-Effekte nicht mehr

zu vernachlässigen sind [Abb. 2.9]. In den in Kapitel 3 betrachteten Experimenten wurden al-
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lerdings solche Streifenbreiten verwendet, für welche die berechnete Derjaguin-Näherung als

gültig angenommen werden kann [Abb. 2.11].

Wie in Abschnitt 2.6 beschrieben wird, ergibt sich für bestimmte geometrische Parameter des

Streifen-Musters ein kritisches Casimir-Schweben des Kolloids. Aufgrund der Kombination

von repulsiven und attraktiven Kräften wird das Kolloidteilchen für Abstände D < D0 = D0,s

vom Substrat abgestoßen, während es für D > D0 = D0,s von ihm angezogen wird [Abb. 2.12].

Dadurch schwebt das Kolloid stabil im Abstand D0,s, welcher mittels des Temperaturabstandes

zum kritischen Punkt verändert werden kann. Es stellt sich heraus, dass genau am kritischen

Punkt (T = Tc) solch ein Schweben nicht möglich ist, während für T 6= Tc stets ein geometri-

sches Streifenmuster gefunden werden kann, das Schweben ermöglicht [Abb. 2.13]. Für eine

einmal gewählte Geometrie erscheinen mit Annäherung an die kritische Temperatur ein lokales

Maximum und ein lokales Minimum im kritischen Casimir-Potential als Funktion des Kolloi-

dabstandes D [Abb. 2.14]. Die Potential-Tiefe dieses lokalen Minimums kann typischerweise

bis zu einigen kBT betragen, sodass das Schweben stabil gegen die Brownsche Bewegung des

Kolloids ist und auch in der Anwesenheit zusätzlicher elektrostatischer Kräfte präsent bleibt

[Abb. 2.15].

Das oben beschriebene Verhalten für kugelförmige Kolloide zeigt sich ebenso für zylindri-

sche Kolloide, deren Achsen parallel zum Substrat und den Streifen liegen [Abschnitt 2.7].

Die wesentlichen Eigenschaften der Skalenfunktionen für die kritischen Casimir-Kräfte und

-Potentiale stimmen qualitativ mit denen für ein kugelförmiges Kolloid überein, insbesonde-

re hinsichtlich der Aussagen über die Gültigkeit der Derjaguin-Näherung [Abb. 2.16]. Für ein

zylindrisches Teilchen ergibt sich ebenfalls ein kritisches Casimir-Schweben über einem struk-

turierten Substrat innerhalb eines großen Bereiches geometrischer Parameter [Abb. 2.17].

Kapitel 3: Vergleich mit Experimenten

In Kapitel 3 werden die gewonnenen theoretischen Vorhersagen mit Experimenten verglichen.2,4

Dabei wird auf Messungen des kritischen Casimir-Potentials von einzelnen Kolloiden in einer

kritischen Flüssigkeitsmischung aus Wasser und 2,6-Lutidin nahe eines mit chemischen Streifen

strukturierten Substrats zurückgegriffen. Es zeigt sich, dass die experimentellen Beobachtun-

gen und Daten konsistent im Rahmen des kritischen Casimir-Effektes qualitativ und quantitativ

interpretiert werden können.

Experimentell lassen sich Muster chemischer Streifen unterschiedlicher Breite und wech-

selnder Adsorptionspräferenz für Lutidin (+) oder Wasser (−) durch Mikro-Kontakt-Drucken4

oder mittels eines fokussierten Ionenstrahls5 herstellen. Durch ihre Oberflächenladung sind die

experimentell genutzten Kolloidteilchen (Polystyrol-Kugeln vom Durchmesser 2.4µm) hydro-

4M. Tröndle, O. Zvyagolskaya, A. Gambassi, D. Vogt, L. Harnau, C. Bechinger, and S. Dietrich, Molecular

Physics 109, 1169 (2011).
5F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, Phys. Rev. Lett. 101, 208301 (2008).
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phil (entsprechend (−) Randbedingungen). In Abschnitt 3.2 werden die effektiven Wechsel-

wirkungspotentiale für die Kolloidteilchen unter den experimentellen Bedingungen berechnet.

Dazu wurde die Derjaguin-Näherung angewandt, welche — basierend auf Kapitel 2 — für den

betrachteten Bereich gültig ist. Somit kann das Potential in voller räumlicher Auflösung theore-

tisch analysiert werden [Abb. 3.1]. Da die Massendichte der verwendeten Kolloidteilchen kaum

größer als die der Flüssigkeit ist, fluktuiert ihr Abstand vom Substrat und ihre laterale Position

generell stark [Abb. 3.2]. Nahe Tc führen die kritischen Casimir-Kräfte jedoch zu einer Loka-

lisierung der Kolloidteilchen nahe der Substratoberfläche und gegenüber Streifen der gleichen

Adsorptionspräferenz [Abb. 3.3].

In Abschnitt 3.3 werden die theoretischen Vorhersagen mit den gemessenen Daten aus den

Experimenten von Soyka et al.5 und Vogt et al.4 verglichen. Experimentell wird das effektiv

eindimensionale, auf die laterale Achse projizierte Potential eines einzelnen Kolloids gemes-

sen. Für dessen theoretische Berechnung wird zusätzlich berücksichtigt, dass die chemischen

Stufen des Musters in der Realität eine Abweichung von einer idealen Linie aufweisen kön-

nen. Während der Wert der Potential-Tiefen davon nicht beeinflusst ist [Abb. 3.4], erhöht die

Berücksichtigung eines “nicht-idealen” Musters jedoch die Übereinstimmung der theoretischen

Vorhersagen für das gesamte Potential mit den experimentellen Messungen von Soyka et al.

[Abb. 3.5] signifikant. Im Hinblick darauf lässt sich festhalten, dass kritische Casimir-Kräfte

sehr stark von den geometrischen Details der chemischen Struktur abhängen und damit eine

Möglichkeit zu deren nachträglicher “Überprüfung” bieten.

Der Vergleich der Theorie mit den Experimenten von Vogt et al. liefert eine sehr gute

Übereinstimmung sowohl für die Potential-Tiefen bei unterschiedlich breiten Streifenmustern

[Abb. 3.6], als auch für den Wert der nicht-universellen Amplitude ξ0 im Vergleich zur Literatur

[Tab. 3.1]. Darüberhinaus zeigen die vollständigen Potentiale als Funktion der lateralen Koor-

dinate des Kolloids eine sehr gute Übereinstimmung der Theorie mit dem Experiment für alle

vermessenen Streifenbreiten [Abb. 3.7 und 3.8]. Der durchgeführte Vergleich zeigt somit die

quantitative Übereinstimmung der theoretischen Vorhersagen der kritischen Casimir-Kräfte auf

kolloidale Teilchen mit den experimentellen Daten. Dies bestätigt die Signifikanz des kritischen

Casimir-Effekts für kolloidale Suspensionen und weist auf neue Möglichkeiten der Nutzung von

Kolloiden als Modellsysteme oder in Anwendungen in Mikro- oder Nano-Elektromechanischen

Systemen hin.

Kapitel 4: Kritische Dynamik an kolloidalen Teilchen

Kapitel 4 behandelt dynamische Phänomene in einer Flüssigkeit am kritischen Punkt T = Tc.

Die betrachtete Dynamik entspricht der reinen Relaxation des Ordnungsparameters (Modell

A) und ist innerhalb der Molekularfeldtheorie durch die Langevin-Gleichung (4.1) bestimmt.

Die dynamischen Universalitätsklassen teilen sich in endlich ausgedehnten System wiederum

je nach Randbedingung weiter auf. In Kapitel 4 wird insbesondere die kritische Dynamik in der
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nähe einer gekrümmten Oberfläche betrachtet, wie sie bei kolloidalen Teilchen natürlicherweise

vorkommt.

Zunächst werden jedoch in Abschnitt 4.2.1 und Abschnitt 4.2.2 bekannte Untersuchungen

zur kritischen Dynamik in halbunendlichen Systemen und der Film-Geometrie mit planaren

Oberflächen vorgestellt.6,7 In der Umgebung der Oberfläche wird das Verhalten im Vergleich

zum Volumen derart modifiziert, dass die Relaxation des gemittelten Ordnungsparameters m

durch einen neuen charakteristischen Exponenten als Funktion der Zeit, m ∝ t−β1/zν , gege-

ben ist. Dieses Verhalten propagiert im Laufe der Zeit in das Volumen. Für die gewöhnliche

Oberflächenklasse (entsprechend Dirichlet-Randbedingungen) für den Ordnungsparameter an

der Oberfläche ist damit die Relaxation beschleunigt im Vergleich zum Volumen. Die räumlich-

zeitliche Entwicklung des Ordnungsparameters kann mit der Methode der finiten Elemente [An-

hang A.3] berechnet werden [Abb. 4.1 und 4.2]. In der Film-Geometrie entwickelt sich durch

die räumliche Einschränkung ein charakteristisches Verhalten für späte Zeiten: der Ordnungs-

parameter relaxiert selbst für T = Tc exponentiell [Abb. 4.3 und 4.4]. Innerhalb dieses Bereich

nimmt das Ordnungsparameterprofil entlang des Films eine sinusoidale Form an [Abb. 4.5].

In Abschnitt 4.2.3 wird die kritische Dynamik an gekrümmten Oberflächen betrach-

tet. Dabei werden unterschiedliche gekrümmte Objekte mit Krümmungsradius R mittels einer

“Krümmungs-Dimension” ds unterschieden, wobei ds − 1 die Anzahl der gekrümmten Rich-

tungen der Oberfläche ist. Dabei entspricht ds = 1 einer planaren Wand, ds = 2 einem Zylin-

der, ds = 3 einer Kugel und ds = 4 einer Hyperkugel [Gl. 4.6]. Nahe des kritischen Punktes

nimmt der Ordnungsparameter eine dynamische Skalenform an [Gl. 4.7], die bei T = Tc von

den Skalenvariablen u = (r⊥/ξ+
0 )(t/t+R,0)

−1/z und v = r⊥/R abhängt,wobei r⊥ der Abstand zur

gekrümmten Oberfläche ist und ξ+
0 sowie t+R,0 die nicht-universellen Amplituden der Korrela-

tionslänge und der Relaxationszeit sind. Für frühe Zeiten der Relaxation hängt der Ordnungs-

parameter zusätzlich von seinem Anfangsprofil ab [Gl. (4.7)]. In Abschnitt 4.2.4 wird eine

Entwicklung des dynamischen Ordnungsparameterprofils um gekrümmte Oberflächen für klei-

ne Werte von u durchgeführt, was kurzen Abständen oder späten Zeiten entspricht. Der Einfluss

der Krümmung wird durch unterschiedliche Skalenfunktionen g(v) beschrieben, die von der

Randbedingung und der Krümmungs-Dimension der Oberfläche abhängen [Abb. 4.6 und 4.7].

Während für Randbedingungen, welche die Symmetrie bewahren (gewöhnliche und speziel-

le Oberflächenklasse), g(v → ∞) für ds > 2 verschwindet, geschieht dies für die Symmetrie-

brechende normale Oberflächenklasse erst für ds > 3.

Abschnitt 4.2.5 betrachtet die Relaxation des Ordnungsparameterprofils nahe gekrümmter

Oberflächen mit der Randbedingung der gewöhnlichen Universalitätsklasse. Dabei werden

zunächst Ergebnisse der Finite-Elemente-Methode für den Fall ds = 2 betrachtet. Für kleine

Abstände r⊥ von der Zylinderoberfläche steigt das Ordnungsparameterprofil zunächst linear an

6H. Riecke, Nichtlineare Relaxation in halbunendlichen Systemen, Diplomarbeit, Ludwigs-Maximilian-

Universität München (1982).
7A. Gambassi and S. Dietrich, J. Stat. Phys. 123, 929 (2006).
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[Abb. 4.8 und 4.9], was mit der Entwicklung für kleine Werte von u aus Abschnitt 4.2.4 über-

einstimmt. Es stellt sich heraus, dass die im Rahmen dieser Arbeit verwendete Finite-Elemente-

Methode numerisch jedoch nur für die frühe Entwicklung des Ordnungsparameters genutzt wer-

den kann, so dass die vorhergesagte Skalenfunktion g(v) asymptotisch noch nicht erreicht wird

[Abb. 4.10]. Um auch späte Zeiten und alle Krümmungs-Dimensionen ds zu untersuchen, wer-

den im weiteren Verlauf von Abschnitt 4.2.5 effektiv eindimensionale Berechnungen verwen-

det. Diese bestätigen das vorhergesagte asymptotische Verhalten des Ordnungsparameterprofils

für ds = 2,3,4 und späte Zeiten t [Abb. 4.11 und 4.12]. Für T = Tc relaxiert der Ordnungs-

parameter im betrachteten Bereich für die unterschiedlichen Krümmungs-Dimensionen ds nach

einem jeweils charakteristischen Potenzgesetz m ∝ t−(2−y(ds))/2 wobei 0≤ y(ds)≤ 1 [Fig. 4.13].

Während y(1) = 0 einer planaren Wand entspricht, werden numerisch die Werte y(2) = 0.66(5)

für einen Zylinder, y(3) = 0.93(5) für eine Kugel und y(4) = 0.99(5) für eine Hyperkugel ge-

funden [Abb. 4.14 und 4.15]. Dies zeigt, dass die Krümmung der Oberfläche nicht nur im sta-

tischen Sinn einen Einfluss in Form des Auftretens der Skalenfunktion g(v) hat, sondern dass

sich auch die charakteristische Dynamik im Vergleich zu einer planaren Oberfläche ändert.

Die in einem eingeschränkten System auftretenden kritischen Casimir-Kräfte können eben-

falls zeitabhängig sein. In Abschnitt 4.3 wird ein kurzer Überblick über den aktuellen Stand

der Forschung bezüglich der Dynamik von kritischen Casimir-Kräften gegeben. Außerhalb

des thermodynamischen Gleichgewichts sind diese definitionsabhängig, wobei es sich zeigt,

dass der Spannungstensor [Anhang A.2] für flüssige Systeme die physikalisch motivierte Wahl

darstellt.

Kapitel 5: Ausblick

Kapitel 5 spricht weitere Entwicklungen des Themengebiets an, welches in den letzten Jahren

sowohl theoretisch als auch experimentell eine große Dynamik erfahren hat.

Teile dieser Arbeit wurden in den folgenden Publikationen vorab veröffentlicht:

• M. Tröndle, S. Kondrat, A. Gambassi, L. Harnau, and S. Dietrich, Normal and lateral

critical Casimir forces between colloids and patterned substrates, EPL 88, 40004 (2009).

• M. Tröndle, S. Kondrat, A. Gambassi, L. Harnau, and S. Dietrich, Critical Casimir effect

for colloids close to chemically patterned substrates, J. Chem. Phys. 133, 074702 (2010).

• M. Tröndle, O. Zvyagolskaya, A. Gambassi, D. Vogt, L. Harnau, C. Bechinger, and

S. Dietrich, Trapping colloids near chemical stripes via critical Casimir forces, Molecu-

lar Physics 109, 1169 (2011).



Levitation is a phenomenon which fascinates mankind ever since thousands of years. In

Section 2.6 of Chapter 2 it is shown how critical Casimir forces may levitate colloidal particles

above chemically patterned substrates. (This photograph has been taken in the city center of

Vienna visited on the occasion of the 8th EPS Liquid Matter Conference. The author admits

that the phenomenon shown in the image above is the only one presented in this work which

is actually not due to the critical Casimir effect.)
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1. Introduction

1.1. The critical Casimir effect in soft matter

I
N 1948, Hendrik Casimir predicted a force “out of nothing”, when he realized that two

metallic plates placed nearby in vacuum attract each other [1]. The origin of this curious

attraction are quantum fluctuations of the electromagnetic field, which are present in any

medium and in even in vacuum. These quantum fluctuations are a manifestation of Heisenberg’s

uncertainty principle [2]; “zero-point” fluctuations occur even in the ground-state of the system

and at zero temperature. Thus, surfaces which confine the medium impose boundary conditions

to the type of fluctuations inside the cavity formed by the two plates and, therefore, restrict their

spectrum. This restriction due to the presence of the bodies amounts to a change of the zero-

point energy of the system and leads to a long-ranged effective attraction acting on the metallic

plates. This force (see Eq. (1.2) on page 28 below) depends only on the speed of light charac-

terizing the response time of electromagnetic fluctuations between the two plates and Planck’s

constant [3] which characterizes the quantization of the energy of light as realized later by Al-

bert Einstein [4]. The Casimir effect is therefore a macroscopic (or mesoscopic) consequence

of a quantum effect. The theoretical prediction of the Casimir force was followed by several

experimental investigations, however a verification with high accuracy has been obtained not

until 1997 [5, 6].

In statistical physics the analogue of vacuum fluctuations are thermal fluctuations inherent

to any medium at finite temperature. Soft matter physics is governed by thermal fluctuations

and, accordingly, one of the most prominent phenomena, the Brownian motion of colloidal

particles suspended in a liquid [7], has been identified by Einstein, von Smoluchowski and

Perrin as a manifestation of the thermal fluctuations of the liquid molecules [8–11]. The term

“colloid” goes back to Thomas Graham who considered around 1860 the diffusion of organic

and inorganic substances like gum Arabic or gelatine and distinguished these “colloids” from

the “crystalloids”, which in their solid state form a crystal [12] (the term colloids stems from

the Greek word for “glue”). Today, the definition of a colloidal system is rather broad [13,

14]; according to Ref. [15] it “can be described as a microscopically heterogeneous system

where one component has dimensions in between those of molecules and those of macroscopic
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particles like sand”8,9. Thus, the definition of colloids concerns the size of colloidal particles

(in the range of 1nm to few µm) compared to the size of the solvent molecules, rather than

their state of matter or their shape. The distinguishing feature of such colloidal dispersions

is the relatively large contact area between the disperse particles and the dispersion medium

so that the interface chemistry is significant [14]. Indeed, the types of colloidal dispersions

are distinguished by the phase of the disperse and the phase of the dispersion medium. For

example, dispersions of liquid and solid colloidal particles in a gas form aerosols like smoke,

fog or hairspray; gaseous colloidal particles in a liquid form foams; liquid particles in a liquid

solvent form emulsions, e.g., milk or mayonnaise [14]. This work focuses on solid colloidal

particles immersed in a liquid, which forms sols, colloidal suspensions (dispersions), or paste

(high solid content) [15]. These colloidal dispersions are widely used in every day life, e.g.,

as paint, printing ink, or toothpaste [14, 15]. And it were such colloids — pollen particles

suspended in water droplets — observed by Brown.

The strength of thermal fluctuations is characterized by the value of kBT , where kB is the

Boltzmann constant and T is the (absolute) temperature. The transition due to thermal fluctua-

tions between different thermodynamic states of the system characterized by an energy differ-

ence of less than or much more than the value of kBT is highly probable or very improbable,

respectively [16, 17]. In contrast to quantum fluctuations in vacuum, thermal fluctuations do

generally not occur on any length scale but only on scales up to the correlation length, which

is in liquids of molecular size. However, upon approaching a critical point in the phase dia-

gram of the medium, the correlation length increases according to an algebraic singularity and

attains macroscopic values, resulting in critical opalescence discovered by Thomas Andrews in

1869 [18]. More than hundred years after Andrews’ discovery, in 1978, Michael E. Fisher and

Pierre-Gilles de Gennes realized that the confinement of these long-ranged critical fluctuations

by macroscopic or mesoscopic bodies immersed in a critical fluid — in analogy to the Casimir

effect — leads to a force acting on them [19]. At criticality, this critical Casimir force becomes

long-ranged [19].

The first direct measurements of critical Casimir forces have been performed only recently at

the University of Stuttgart by investigating the Brownian motion of solid, spherical polystyrene

colloids immersed in a critical fluid and close to a substrate [20, 21]. These experiments clearly

demonstrated that, upon approaching the critical point, the critical Casimir force can modify the

effective interaction between the colloid and the substrate by several multiples of kBT . Since,

near the critical point, the correlation length depends strongly on temperature, the strength of

the critical Casimir effect does so as well. Consequently, in contrast to the quantum Casimir

force, critical Casimir forces can be “tuned” by minute temperature changes [22, 23]. The

critical Casimir force depends strongly on the type of boundary conditions at the surfaces of the

8P. 133 of Ref. [15].
9Formally, the whole system consisting of molecules and larger particles is denoted as colloid. Typically, how-

ever, (and as used in this work) only the larger particles are called colloids.
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bodies immersed in the (near-) critical medium, and it can be attractive or repulsive, depending

on the effective type of boundary conditions (see, e.g., Refs. [24–33] and references therein).

In binary liquid mixtures, the type of boundary conditions is given by the generic adsorption

preference of the surfaces. The sign of the critical Casimir force can be set by suitable surface

treatments rather easily [20, 21] (by contrast, the quantum electrodynamic Casimir force is

typically attractive and responsible for stiction; turning it to be repulsive requires a careful

choice of the fluid and of the bulk materials of the confinement [34]).

A striking feature of the critical Casimir effect is the occurrence of a universal description.

That is, the critical Casimir force expressed in terms of suitable scaling variables depends only

on a given universality class of the bulk critical point and on the type of boundary conditions,

whereas it is independent of the microscopic structure and of the material properties of the

specific fluid medium involved (see, e.g., Refs. [24, 25] and references therein). For theoreti-

cal physicists this universality offers the opportunity to investigate the critical Casimir force in

representative models (e.g., lattice models). The corresponding predictions can be stringently

compared with data measured, e.g., for the experimentally relevant classical binary liquid mix-

tures and simple fluids because the universal features of the critical Casimir force are preserved,

independent of the actual physical system.

Whereas it has turned out to be experimentally rather difficult to align two comparably large

plates perfectly parallel at distances on the micro-scale, a break-trough in measuring Casimir

forces has been obtained using a large-radius sphere instead of the second plane [6, 20]. Such

spherical colloidal particles are not only widely used as model systems in soft matter physics,

but they have also applications at the micro- and nanometer scale and are used in micro- and

nano-electromechanical devices. As noted above, colloidal particles immersed in a fluid, are

subjected to Brownian motion; in turn, this motion can be experimentally used to scan the ef-

fective potential acting on the particle via relating the Boltzmann factor [16, 17]. In particular,

in Refs. [20, 21, 35, 36] the probability distribution of the vertical displacement of a particle

from an opposing wall was recorded via total internal reflection microscopy (TIRM), and the

effective critical Casimir potential of the particle as a function of the displacement has been

determined from these data. However, the Brownian motion of colloidal particles can not only

be used to let particles explore the normal direction of a wall, but also the lateral one. Re-

cently, the critical Casimir potential of a colloid close to a substrate with a pattern of parallel

chemical stripes with laterally alternating adsorption preference has been measured via an anal-

ogous method in Refs. [37–40]: The projected particle distribution along the lateral direction

perpendicular to the chemical stripes has been measured via digital video microscopy, and the

effective potential for a single colloid has been determined via the Boltzmann factor. From

these experiments, it turned out that suitably designed substrate patterns consisting of stripes of

surface properties, which — in the homogeneous case — correspond to attractive and repulsive

(normal) critical Casimir forces, lead to the occurrence of lateral critical Casimir forces acting

on colloids. Current techniques allow one to endow solid surfaces with precise structures on
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the nano- and micrometer-scale. Hence, the critical Casimir effect can be used to create later-

ally confining potentials for a single colloid, which can be tuned by temperature [37]. In order

to reap the full benefits of the wide range of possibilities, a thorough theoretical understand-

ing of the underlying physics is essential. In this context theoretical studies of critical Casimir

forces have been limited either to colloids facing a laterally homogeneous surface [41–46], or to

the parallel plate geometry involving chemically [47, 48] or geometrically [49, 50] structured

substrates for which lateral forces vanish if one of the substrates is homogeneous.

In order to overcome these limitations, in Chapter 2 we10 study the critical Casimir force act-

ing on spherical and cylindrical colloids close to a substrate with laterally alternating adsorption

preferences for the two components of a confined binary liquid mixture. We provide quantita-

tive predictions for the universal features of this effective force, pursuing a two-fold approach:

a full numerical analysis of the appropriate mean-field theory (MFT) and use of the so-called

Derjaguin approximation (DA) together with the knowledge of scaling functions determined by

Monte Carlo simulations in three dimensions. A suitable choice of substrate patterns may even

lead to levitation of colloids at a stable distance above the substrate due to the critical Casimir

effect (Sec. 2.6). In Chapter 3 we compare our theoretical predictions for the critical Casimir

potential of single colloids close to patterned substrates with the corresponding available ex-

perimental data including two different types of substrate surface preparation: partial removing

of a coating via a focused ion beam [37] and microcontact printing [39, 40]. It turns out that

the critical Casimir force is a sensitive probe for the geometrical details of the imprinted struc-

tures. Accounting properly for this feature, for all patterned substrates that were investigated,

our theoretical predictions agree well with the measured critical Casimir potentials.

Parts of this thesis have been published in advance in Refs. [40, 51, 52].

1.2. Theoretical background

In this Section we present briefly the necessary, well-known theoretical background concern-

ing the statics and dynamics of critical Casimir forces. In Subsec. 1.2.1 the thermodynamic

description of equilibrium critical phenomena in bulk systems is reviewed, based on Refs. [53–

60] and references therein, which are only a small fraction of the vast amount of literature on

this topic. In Subsec. 1.2.2 the description of surface critical phenomena and the Casimir effect

in soft matter systems are briefly reviewed, followed by a more thorough description of finite

size scaling in Subsec. 1.2.3. Subsection 1.2.4 briefly reviews the field theoretic description of

critical phenomena and the mean field theory is presented. Finally, in Subsec. 1.2.5 we shall

give a short account of the dynamics of critical phenomena.

10Throughout this thesis pluralis auctoris is used instead of the first person singular.
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1.2.1. Critical phenomena

Phases of matter are macroscopic regions in which the physical properties are homogeneous. In

thermal equilibrium, most materials form either a solid, liquid, or gaseous phase, determined by

external parameters. This is described by an equation of state, which relates few macroscopic

quantities, such as pressure p, temperature T and particle number density ρ . This functional

relation, e.g., ρ(p,T ), defines a surface, where each of the surface points corresponds to a

equilibrium state of the system (see, e.g., Refs. [53–55] and references therein). In Fig. 1.1 a

phase diagram is shown, which sketches such a surface for a simple fluid. At certain values

of the relevant parameters, matter can exist in two or more phases, which are separated into

different regions. This corresponds to a multivalued relation ρ(p,T ) and distinct points on

the surface ρ(p,T ). In the phase diagram such coexisting phases are represented as regions,

which do not belong to the surface of equilibrium states ρ(p,T ), but which connect coexisting

states. In Fig. 1.1 these coexistence regions are indicated as light shaded areas; lines across the

coexistence regions connect distinct phases of different density which may coexist. The triple

line connects three coexisting phases of matter: solid, liquid, and gas. Across a coexistence

region, the transition from one phase to another is discontinuous and corresponds to a jump

of the density ρ and involves a latent heat. Coexistence regions may end at a critical point

(ρc, pc,Tc), where the phase transition becomes continuous. That is, right at the critical point

the density changes continuously. Beyond the critical point, there exists only a single fluid

phase throughout the system, and there is no difference between the gaseous and the liquid

phases, which are two extensions of the fluid phase and share the same symmetry properties. In

Fig. 1.1 the coexistence region between the solid and the fluid phase does not end at a critical

point because these two phases have different characteristic symmetry properties.

From the viewpoint of statistical physics, the local density ρ(r) exhibits random thermal

fluctuations on the length scale of the bulk correlation length ξ which is generally of molecu-

lar size. However, in the vicinity of the critical point the physical system shows rather special

features, known as critical phenomena (see, e.g., Refs. [56–60] and references therein). Since

the critical isotherm has zero slope at the critical point, the compressibility diverges, reflected

in an algebraic singularity of the correlation length ξ . This leads to pronounced thermal fluc-

tuations of ρ(r) on macroscopic length scales. Even visible light is scattered by the fluctuating

fluid close to criticality, known as critical opalescence discovered around 150 years ago [18].

Whereas far from criticality thermal equilibrium favors the separation of two coexisting phases

into two macroscopic regions, close to the critical point regions of different phases may form

in any size and number. Since close to the critical point ξ is much larger than any microscopic

quantity, it is the only relevant length scale in the system; the size of the molecules, the precise

form of the molecular interaction potential, or the chemical type of the molecules forming the

fluid, are ruled out. Thus, the critical behavior exhibits universality in the sense that its features

do not depend on microscopic parameters but only on few gross features of the system.
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CPsolid

gas T

ρ

liquid

p

fluid

Tcρc

triple line

Figure 1.1: Sketch of the phase diagram of a simple fluid. In the space spanned by the three parame-

ters temperature T , pressure p, and density ρ , the states in thermal equilibrium form a surface (white

area). Distinct phases of matter may coexist at same temperature and pressure if they are connected

by a line across a coexistence region (light shaded areas) which does not belong to the surface of equi-

librium states. The triple line connects three coexisting phases: solid, liquid, and gas. The coexistence

region of the liquid and the gas phases, which are two extensions of the fluid phase, ends at a critical

point (CP) with the critical values Tc, pc, and ρc. Typical representations of a phase diagram are the

projections of the surface of equilibrium states onto the pT , pρ , or ρT -plane.

Not only simple fluids exhibit critical phenomena but also many other physical systems.

Consider the phase diagram of a uniaxial ferromagnet shown in Fig. 1.2. Here, the macroscopic

relevant quantities are not density and pressure but the magnetization m and the magnetic field

H. The physical state of the system in thermal equilibrium is then described by a surface

m(H,T ). The phase diagram shows a critical point at (m = 0,H = 0,T = Tc), where Tc is the

critical (Curie) temperature of the ferromagnet. Below Tc there are two phases corresponding to

spontaneous magnetization oriented in the one or other direction along the easy axis of the uni-

axial ferromagnet, and Weiss domains, regions of different homogeneous magnetization, may

coexist. Above Tc the material forms a paramagnetic phase which is unordered and has a non-

zero magnetization only when an external field H is applied. At the critical point, the magnetic

susceptibility which measures the ease of magnetizing a system, diverges. This is analogous

to the compressibility of a simple fluid, and correspondingly, close to the critical point, the lo-

cal magnetization m(r) exhibits large-scale fluctuations. Thus, the magnetization for a uniaxial

ferromagnet plays the same role as the density for a simple fluid. The correlation length of the

magnetic system diverges, and microscopic length scales such as the lattice constant are not rel-

evant for the critical behavior. It turns out that the critical behavior of the ferromagnetic system

is the same as for a simple fluid, just with the physical quantities replaced by corresponding

ones. The universal features of the critical phenomena for a uniaxial ferromagnet and a simple

fluid are identical, which shows that the concept of universality holds for very different physical

systems.

In this work we are particularly interested in the experimentally relevant binary liquid mix-



1.2. Theoretical background 23

T

m = 0 Tc

CP

m

H

ferromagnetic

H = 0

paramagnetic

Figure 1.2: Sketch of the phase diagram of a uniaxial ferromagnet. States in thermal equilibrium cor-

respond to points on the white surface in the space of magnetization m, temperature T , and magnetic

field H . Below Tc (Curie temperature), ferromagnetic phases of positive or negative magnetization are

spontaneously formed and may coexist in Weiss-domains. Above Tc, the system is paramagnetic and

the molecular magnetic moments point in random directions along the easy axis of the magnet.

tures. Denoting the two species forming the mixture as “A” and “B”, one finds that the ther-

modynamic description is based on three intensive thermodynamic quantities: temperature T ,

pressure p, and the concentration cA of the “A”-particles [54]. At a fixed pressure p, the sum

µA + µB of the chemical potentials of the two species is fixed, and the relative concentration

determined by the difference µA − µB. Figure 1.3 shows the phase diagram of a binary liquid

mixture at fixed pressure p chosen such that the mixture is in the liquid phase. The temperature

vs concentration phase diagram shown in Fig. 1.3 represents a lower critical demixing point

(or consolute point), which frequently occurs. In addition, binary liquid mixtures have also an

upper critical demixing point not shown in Fig. 1.3. For temperatures above the critical one,

phase separation, i.e., demixing of the two species into a A-rich and a B-rich phase, occurs; in

a test tube, the phase corresponding to a higher mass density will be at the bottom of the tube.

For T < Tc the binary liquid is always in the unordered, mixed state. The coexistence curve of

a binary liquid mixture is similar to the ones for a simple fluid or a uniaxial ferromagnet. In-

deed, their critical phenomena are completely analogous: the local concentration cA(r) exhibits

large-scale fluctuations at the critical point because the bulk correlation length diverges.

The features of the critical behavior for simple fluids, uniaxial ferromagnets, and binary liquid

mixtures are universal. The underlying physical mechanism is the divergence of the length

scale of thermal fluctuations close to criticality — molecular details are ruled out. A unified

description for these very different systems can be obtained using generalized quantities which

represent the system-dependent ones. A general measure for the order of a state is characterized

by the order parameter φ(r); it is defined such that its thermal average 〈φ(r)〉 vanishes in

the disordered state and it is non-zero for ordered states. The order parameter is defined on a

mesoscopic scale, i.e., φ is a coarse-grained (but spatially varying) average of the actual system-

dependent physical observable identified with order of the system. For a simple fluid this is
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Figure 1.3: Sketch of the region around a lower critical demixing point in the phase diagram of a bi-

nary liquid mixture of “A” and “B” particles at fixed pressure. Below the critical temperature T = Tc the

binary liquid is in a mixed phase. Above Tc, phase separation into a A-rich phase (corresponding to a

high concentration cA of A-particles) and a B-rich phase (corresponding to low cA) occurs. The coex-

istence region ends at the critical point corresponding to the critical concentration cA,c. The difference

of the concentration from its critical one is steered by the “field” h = µA −µA,c, i.e., the difference of the

chemical potential for species “A” from its critical value. The reduced temperature τ = −(T − Tc)/Tc

measures the temperature difference from the critical point, such that τ > 0 corresponds to the homo-

geneous, mixed phase.

the difference of the density from its critical value, φ(r) = ρ(r)− ρc; for a ferromagnet it is

given by the magnetization φ(r) = m(r); and for a binary liquid mixture it is the concentration

difference φ(r) = cA(r)− cA,c. The temperature is generalized as the reduced temperature

τ = ±(T − Tc)/Tc, such that τ > 0 corresponds to the homogeneous, unordered phase, and

τ < 0 corresponds to the disordered state. The generalized external field h conjugate to φ

is given by the magnetic field H for a ferromagnet; for a simple fluid h is given by a linear

combination of p− pc and τ; and for a binary liquid mixture the field is given by the chemical

potential µA −µA,c. For zero bulk field (h = 0) the physical description is symmetric in terms

of φ , whereas for h 6= 0 this symmetry is broken and the thermal average of the order parameter

is non-zero also for τ > 0. That is, the critical point at τ = 0 can be only reached exactly for

h = 0, where the order parameter changes continuously from 0 for τ ≥ 0 to non-zero values for

τ < 0.

For all systems φ exhibits the same behavior for τ < 0: 〈φ(r)〉= ±a|τ|β , where a is a non-

universal amplitude depending on the actual physical system, and β > 0 is a universal critical

exponent. Similarly, the behavior of the bulk correlation length ξ is universal. It diverges as

ξ = ξ±
0 |τ|−ν upon approaching the critical point from τ ≷ 0, where ν > 0 is another critical

exponent. The two amplitudes ξ+
0 and ξ−

0 are system-dependent, however, their ratio ξ+
0 /ξ−

0

is universal. Similarly, close to the critical point all system-dependent, non-universal ampli-
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tudes can be universally related to each other, so that one is left with very few independent

non-universal amplitudes only. Not only the temperature dependence of critical phenomena is

universal but all dependencies; in particular the ones on spatial variables can be expressed in

dimensionless scaled variables, i.e., quantities divided by its characteristic size.

The universality of critical phenomena allows for a common description of many different

physical systems which can be classified into few universality classes. Their universal critical

behavior depends only on few gross features of the systems [61]:

• the spatial dimensionality d of the system,

• the symmetry properties of the order parameter φ , characterized by its dimensionality n,

• the range of the intermolecular interactions, which are classified into either short-ranged,

intermediate-ranged, or long-ranged interactions.

Here, we consider short-ranged intermolecular interactions only, which are characterized by

a spatial decay which is stronger than one with a power law behavior with an exponent of

−(d + 2) [56]; this is the generic case for most physical systems. Thus, the set (d;n) char-

acterizes completely a universality class for the critical behavior of systems with short-ranged

interactions. The physically relevant dimensions are d ≤ 3, however, it turned out to be very

useful to consider also higher dimensions.

The systems considered above have in common that there are basically two ordered phases,

which can be characterized by a scalar order parameter, which is positive for one ordered phase

and negative for the other ordered phase. Thus, the symmetry of the order parameter is one-

dimensional, n = 1, which means that these physical systems belong to the Ising universality

class. Due to universality, one can use simplified models, which share the key features, in order

to theoretically predict the critical behavior for the whole universality class. The Ising model is

such a simple lattice model, which consists of spins sitting on the sites of a d-dimensional cubic

lattice. The spins can take the values +1 or −1 and interact with their nearest neighbors only.

Thus, the order parameter measuring the local magnetization is scalar, and the intermolecular

interactions are short-ranged. At low temperatures the spins prefer a parallel alignment and

form a ferromagnetic state. At high temperatures, thermal fluctuations eventually destroy this

order and the spins are arbitrarily aligned and form a paramagnetic state. For d ≥ 2 a continuous

phase transition between the ferromagnetic and the paramagnetic state occurs at T = Tc. The

meso- and macroscopic features of the critical behavior of the Ising spin model are universal and

characterize the behavior of the corresponding d-dimensional Ising universality class. Accord-

ingly, systems with a two component order parameter, i.e., n = 2, belong to the XY universality

class referring to so-called XY-magnets. The critical behavior of normal to superfluid phase

transition of liquid helium is a famous example for the XY universality class. The Heisenberg

universality class corresponds to n = 3 inheriting its name from the Heisenberg model.
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The critical exponents characterizing the critical behavior of the physically relevant observ-

ables are different for the various universality classes. Here and in the following we focus on the

Ising universality class, which encompasses the binary liquid mixtures. In the Ising universality

class for d = 3 the critical exponents for the order parameter and the bulk correlation length

take the values β ≃ 0.33 and ν ≃ 0.63 [62].

1.2.2. Critical Casimir effect

Large samples of materials are dominated by bulk effects like the ones described above. How-

ever, life at the border is the most interesting. Finite size of a real sample, confinements of

fluids, and surfaces and interfaces of matter cause remarkable physical effects. Generically, the

surfaces which confine a binary liquid mixture preferentially adsorb one of its two components

(or the gas or liquid phase in the case of a one-component fluid). This amounts to the presence

of effective, symmetry-breaking surface fields coupling to the order parameter. Thus, either

positive or negative values of the scalar order parameter φ , which is the difference between the

local concentrations of the two species, are favored. The extension of the spatial region in the

direction normal to the surfaces, within which the local structural properties of the fluid deviate

from the bulk ones, is given by the bulk correlation length, which diverges upon approaching

the critical point. Thus, a macroscopic layer of the preferentially adsorbed material forms next

to the confining surface, known as critical adsorption [19, 63, 64].

More generally, the spatial profile of the order parameter depends on the boundary conditions

of the confining surfaces. As a consequence, the universality classes of critical phenomena are

subdivided into surface universality classes which represent the generic cases of boundary con-

ditions. Surface universality classes are characterized by a universal behavior of the influence

of the boundary condition on the physical properties of the confined medium close to its critical

point. Within the Ising universality class, one finds few surface universality classes. Depending

on the boundary conditions (BC), the confined medium falls into one of these cases. These are

[63, 65, 66]

• the ordinary surface universality class, characterized by a lower ordering at the surface

than in the bulk; this is the generic case for magnetic materials due to the effect of “miss-

ing bonds”,

• the special surface universality class, which is multicritical because the continuous phase

transition from the unordered to the ordered state occurs in the bulk and at the surface at

the same temperature, and

• the extraordinary or normal surface universality class, which corresponds to the case that

even for τ > 0 the material at the surface has a higher order than the one in the bulk; for

magnets this might be uncommon, however for fluids and binary liquid mixtures, this is

the “normal” case in the laboratory [67–70].
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The influence of the surface on the order parameter can be described via two generalized pa-

rameters, the surface enhancement c and the surface field h1. The surface enhancement which

accounts for the effect of “missing neighbors” couples in a symmetric way to the order param-

eter, i.e., independent of the sign of φ . On the other hand, h1 introduces a symmetry-breaking

surface influence on the order parameter and couples linearly to φ . Thus, the surface field ac-

counts for an external influence on the system at the surface, such as chemical properties of the

container walls confining a liquid.

Consider the case of binary liquid mixture. The inevitable preference of a surface for one of

the two species “A” or “B” results in change of the concentration cA close to the surface; the

symmetry between “A” and “B” particles is broken. The thermodynamic quantities coupling

linearly to the concentrations of the species are the corresponding chemical potentials. Thus,

the surface influence on a binary liquid mixture can be described via the surface field [71, 72]

h1 = (kBT )−1 [(µA −µA,c)surface − (µA −µA,c)
]

(1.1)

because the appropriate order parameter is given by the concentration difference cA − cA,c of

species “A” from its critical value. The strength of the adsorption at the surface is controlled via

the value of h1 and varying it yields a rich behavior of phenomena [33].

Here, we are interested in the generic case of strong adsorption at the surface. This corre-

sponds to the fixed point value h1 →±∞, which causes the order parameter formally to diverge

at the surface. As the whole concept of the order parameter is based on a coarse-grained point

of view, this divergence describes the actual concentration only at scales larger than the molec-

ular one and corresponds to the leading behavior. However, suitably close to the critical point,

this leading behavior dominates and therefore describes the actual physics very well. This kind

of boundary conditions is denoted as “(+)” corresponding to φ |surface → ∞ or as “(−)” cor-

responding to φ |surface → −∞ [63, 73]. Close to the critical point and for ξ ≫ y the order

parameter diverges algebraically as φ ∝ ±y−β/ν , where y is the distance from the surface with

(±) BC [19]. Critical adsorption is the generic case of boundary conditions exerted by surfaces

confining binary liquid mixtures, where (+) and (−) boundary conditions correspond to prefer-

ential adsorption of the one or the other species, and has been measured in various experiments

(see, e.g., Refs. [63, 64] and references therein).

The finite size of systems gives rise to pronounced effects in addition to the effect due to single

surfaces and the change of volume. The celebrated Casimir effect in quantum electrodynamics is

such a finite size effect [1, 5, 74]. The zero-point fluctuations of the electric field in vacuum are

affected when two conducting plates limit the size of the system. The spectrum of fluctuations

is restricted to modes which vanish at the surfaces plates and therefore the zero-point energy

depends on the distance of the two plates. Hendrik Casimir has predicted that this leads to an

attractive force K between two perfectly conducting plates of area A at distance L in vacuum,
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which is determined by the natural constants c and h̄ as

K(L)

A
=− π2h̄c

240L4 . (1.2)

Equation (1.2) is a special case of the more general Lifshitz formula which describes the force

due to quantum electrodynamic fluctuations between two dielectric bodies which are separated

by a third dielectric medium [75]. Similarly, the well known van-der-Waals or London disper-

sion forces are based on quantum electrodynamic fluctuations, as well, and can be described by

the Lifshitz formula [76]. Van-der-Waals forces act on separations on a molecular scale, i.e.,

of few nanometers. Since electrodynamic fluctuations occur on a (infinitely) large scale, they

lead to forces between confining media also at large separations. At larger distances, the fluctu-

ation induced forces are affected by retardation effects associated with the speed of light, which

shows up in Eq. (1.2). The quantum electrodynamic Casimir force is typically attractive and

thus responsible for stiction (“static friction”) which leads to a standstill of nano-mechanical

devices. Depending on the choice of dielectric constants, the Casimir forces can also be repul-

sive; however, this requires a careful choice of the media (see, e.g., Ref. [34] and references

therein).

Fluctuation induced forces lead to manifestations of the Casimir effect in condensed matter in

rather different fields across physics, chemistry, and biology due to the confinement of thermal

fluctuations. Their common feature is that the restriction of the spectrum of fluctuations due

to the presence of confining bodies leads to a force between them. For example, the different

manifestations of the Casimir effect in soft matter [5] include the director fluctuations of con-

fined liquid crystals [77–80], forces induced by fluctuations of interfaces [81, 82], forces within

fluctuating membranes [83–86], or forces induced by charge fluctuations [87–92].

A rather intriguing example for a fluctuation induced force in soft matter is the critical

Casimir effect, which has been predicted in a seminal work by Michael Fisher and Pierre-Gilles

de Gennes in 1978 [19]. The confinement of the long-ranged critical fluctuations of the order

parameter leads to forces acting on the confining surfaces even at large distances. The theoreti-

cal description of the critical Casimir forces is particularly challenging due to the non-Gaussian

character of the order parameter fluctuations, which contrasts with the intrinsically Gaussian na-

ture of the low energy fluctuations of the electromagnetic field. In addition, the critical Casimir

effect is also particularly rich as it allows, inter alia, symmetry breaking boundary conditions

as described above, which do not occur for electromagnetic fields. The critical Casimir force

strongly depends on the effective boundary conditions at the walls [24–33]. It is attractive for

equal symmetry breaking (±,±) BC and repulsive for opposing (±,∓) BC. Inter alia, this lat-

ter feature qualifies critical Casimir forces to be a tool to overcome the problem of stiction. As

stated above, the critical Casimir effect exhibits universality and can be described in terms of

universal functions valid for all systems which are encompassed by the same universality class.

The existence of the critical Casimir effect has been experimentally confirmed and its strength

has been first measured indirectly for wetting films [93–97]. The first direct measurement of
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this effect has been performed at the sub-micrometer scale for a spherical colloid immersed in a

(near-) critical binary liquid mixture close to a laterally homogeneous and planar substrate [20,

21]. The corresponding Monte Carlo simulation data are in very good quantitative agreement

with all available experimental data [20, 21, 98–107].

Clearly, Casimir forces are strongly affected by the properties of the confining surfaces. In

particular, their topological structure has be subject of various investigations concerning the

quantum electrodynamic Casimir effect (see, e.g., Ref. [108] and references therein). Critical

Casimir forces for geometrically structured confinements have been studied in Refs. [49, 50].

Opposing wedge-like structured surfaces even experience lateral critical Casimir forces [49,

50]. Sharing different types of boundary conditions on their surfaces, chemically structured

substrates strongly influence the effective critical Casimir forces acting on them; for a chemi-

cally structured wall opposing another planar wall forming a film geometry, the critical Casimir

force has been obtained within mean-field theory (MFT) [47, 48] and from Monte Carlo simu-

lations [109, 110].

This work focuses on colloids opposite to such chemically structured substrates. The geom-

etry of the colloids plays a crucial role for the universal properties of the critical Casimir forces

acting on them. Theoretical studies of the critical Casimir effect acting on colloidal particles

involve spherically [41–46] or ellipsoidally [111] shaped colloids adjacent to homogeneous sub-

strates, the latter ones even experience a critical Casimir torque [111].

1.2.3. Finite-size scaling

According to the theory of finite-size scaling, the critical Casimir force and the corresponding

potential can be described by universal scaling functions, which are independent of the molec-

ular details of the system but depend only on the gross features of the system, i.e., on the bulk

universality class of the associated critical point (see, e.g., Refs. [24, 25, 112, 113] and refer-

ences therein). This work focuses on the Ising universality class characterized by a scalar order

parameter φ , which is relevant for simple fluids and binary liquid mixtures, in spatial dimen-

sions d = 3 and d = 4. The critical Casimir force depends on the type of effective boundary

conditions at the walls, which are denoted by (a) and (b), and by the geometry of the confin-

ing surfaces. Note that (a) and (b) can represent the various symmetry preserving fixed-point

BC (the so-called ordinary, special, periodic, or antiperiodic boundary conditions [24, 25]) in

addition to the symmetry breaking cases (±).

Inspired by the experiments described in Refs. [20, 21, 35, 37–40], here binary liquid mix-

tures are considered with their (lower) critical point approached by varying the temperature T

towards Tc from below at fixed pressure and critical composition. This corresponds to the case

of a zero bulk field, h = 0, which is assumed throughout this work. Consider first the film ge-

ometry in which the fluid undergoing the continuous phase transition is confined between two

parallel, infinitely extended walls at distance L. According to renormalization group theory the
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normal critical Casimir force f(a,b) per unit area which is acting on the walls scales as [26–28]

f(a,b)(L,T ) = kBT
1

Ld
k(a,b)(sign(τ)L/ξ±), (1.3)

where (a,b) denotes the pair of boundary conditions (a) and (b) characterizing the two walls.

The scaling function k(a,b) depends only on a single scaling variable given by the sign of the

reduced temperature distance τ from the critical point (± for τ ≷ 0) and the film thickness

L in units of the bulk correlation length ξ±(t → 0±) = ξ±
0 |τ|−ν , where ν ≃ 0.63 in d = 3

and ν = 1/2 in d = 4 [62]. Clearly, one has f(a,b)(L,T ) = f(b,a)(L,T ). Positive values of

τ , τ > 0, correspond to the disordered (homogeneous) phase of the fluid, whereas negative

values of τ , τ < 0, correspond to the ordered (inhomogeneous) phase, where phase separation

occurs. The two non-universal amplitudes ξ±
0 of the correlation length are of molecular size

and characterized by the universal ratio ξ+
0 /ξ−

0 ≃ 1.9 in d = 3 [62, 114] and ξ+
0 /ξ−

0 =
√

2 in

d = 4 [115, 116]; ξ± is determined by the exponential spatial decay of the two-point correlation

function of the order parameter φ in the bulk.

At the critical point T = Tc, the correlation length diverges, ξ± → ∞, and the scaling function

of the critical Casimir force acting on the two planar walls attains a universal constant value

referred to as the critical Casimir amplitude [24, 25]:

k(a,b)(L/ξ± = 0) = ∆(a,b). (1.4)

Away from criticality, the critical Casimir force decays exponentially as a function of L/ξ±.

For the specific case of symmetry breaking BC a,b ∈ {+,−}, the functions k(+,±) have been

calculated exactly in d = 2 [29], for d < 4 using perturbative field-theoretical methods [117] or

effective theories [118], and in d = 3 numerically via Monte Carlo simulations [99, 100, 104–

106]. At present, a quantitatively reliable theoretical determination of both k(+,+) and k(+,−) in

d = 3 is provided only by Monte Carlo simulations. For a,b∈ {+,−} and for τ > 0 one expects

for L/ξ+ ≫ 1 a pure exponential decay of f(+,±) (see, e.g., Refs. [29, 117, 118], i.e., a decay

without an algebraic prefactor to the exponential and without a numerical prefactor to L/ξ+ in

the argument of the exponential11) corresponding to

k(+,±)(L/ξ+ ≫ 1) = A±

(
L

ξ+

)d

exp(−L/ξ+), (1.5)

where A± are universal constants [21]. Note that, in the absence of symmetry-breaking fields

inside the film, the scaling functions for (+,+) BC are the same as for (−,−) BC.

11This purely exponential decay is proven only in d = 2 and 4 but it is expected to hold for all spatial dimensions.
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1.2.4. Mean-field theory

The standard Landau-Ginzburg-Wilson fixed-point effective Hamiltonian describing critical

phenomena of the Ising universality class in the bulk is given by [63, 66, 73, 119–125]

H [φ ] =
∫

V

ddr

{
1
2
(∇φ)2 +

τ̂

2
φ 2 +

u

4!
φ 4 −hφ

}

, (1.6)

where φ(r) is the order parameter describing the fluid, which completely fills the volume V

in d-dimensional space. The first term in the integral in Eq. (1.6) penalizes local fluctuations

of the order parameter. The parameter τ̂ in Eq. (1.6) is proportional to τ , and the coupling

constant u is positive and provides stability of the Hamiltonian for τ < 0. The last term in

Eq. (1.6) vanishes for the case considered here, h = 0, which corresponds to the concentrations

of the binary liquid mixture species fixed to their critical values. In a finite-size system the bulk

Hamiltonian H [φ ] is supplemented by appropriate surface and curvature (edge) contributions

[63, 66, 73, 126]. The corresponding Hamiltonian for a surface, which adds to Eq. (1.6) is given

by [63, 66, 73, 126]

Hs[φ ] =

∫

S

d(d−1)r
{c

2
φ 2 −h1φ

}

, (1.7)

where c is the surface enhancement and h1 is the surface field. In the strong adsorption limit

[69, 127], these contributions generate boundary conditions for the order parameter such that

φ
∣
∣
surface =±∞. For binary liquid mixtures these fixed-point (±) BC are the experimentally rel-

evant ones. (Note that a weak adsorption preference might lead to a crossover between various

kinds of effective boundary conditions for the order parameter φ [21, 32, 33].) Thus, Eq. (1.7)

and additional curvature contributions can be replaced by applying the appropriate BC to φ and

using Eq. (1.6) throughout the bulk. The mean-field order parameter profile m ≡ (u/3!)1/2〈φ〉
minimizes the Hamiltonian, i.e., δH [φ ]/δφ |φ=(u/3!)−1/2m = 0. In the bulk the mean-field order

parameter is spatially constant and attains the values 〈φ〉 = ±a|τ|β for τ < 0 and 〈φ〉 = 0 for

τ > 0, where, besides ξ+
0 , a is the only additional independent non-universal amplitude appear-

ing in the description of bulk critical phenomena, and β (d = 4) = 1/2 is a standard critical

exponent. Within MFT τ̂ = τ(ξ+
0 )−2 and u = 6a−2(ξ+

0 )−2.

In Chapter 2 we present MFT results which we have calculated by minimizing numerically

H [φ ] using a 3d finite element method in order to obtain the (spatially inhomogeneous) pro-

file m(r) for the geometries under consideration. The normal and the lateral critical Casimir

forces are calculated directly from these mean-field order parameter profiles using the stress

tensor [111, 117].12 This allows one to infer the universal scaling functions of the critical

Casimir forces at the upper critical dimension d = 4 up to an overall prefactor ∝ u−1 and log-

arithmic corrections (for a general description of the field theory for critical phenomena, see,

12The details of the numerical method are described in Appendix A.1.
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e.g., Ref. [128]). The corresponding critical Casimir potential is obtained by the appropriate

integration of the normal or of the lateral critical Casimir forces.

In the case of planar walls the MFT scaling functions for the critical Casimir force can

be determined analytically [117] and one finds [see Eq. (1.4)] for the case of symmetry

breaking boundary conditions the following critical Casimir amplitudes: ∆(+,+) = ∆(−,−) =

24[K(1/
√

2)]4/u ≃ −283.61× u−1, where K is the complete elliptic integral of the first kind,

and ∆(+,−) =−4∆(+,+) (see Ref. [117] and Eq. (27) and Ref. [49] in Ref. [100]).

1.2.5. Dynamic critical phenomena

The critical phenomena described above are static, i.e., the time-independent equilibrium be-

havior of the system. However, also the dynamics of the system is altered close to a critical

point. Due to the divergence of the correlation length ξ = ξ±
0 |τ|−ν , collective behavior of the

molecules and thermal fluctuations of the order parameter occur on a large length scale. Thus,

the associated dynamic time scales grow as well, known as critical slowing down. (see, e.g.,

Refs. [129–133] and references therein).

Critical slowing down of the order parameter dynamics is expressed in terms of the dynamic

scaling hypothesis [134–137]. Accordingly, the relaxation time tR, which characterizes the

temporal persistence of order parameter fluctuations, diverges upon approaching criticality as

tR = t±R,0|τ|−νz (1.8)

upon approaching the critical point from τ ≷ 0, where τ =±(T −Tc)/Tc is the reduced tempera-

ture, ν is the bulk critical exponent as above, z is the universal dynamical critical exponent, and

t±R,0 are non-universal amplitudes (the amplitude ratio t+R,0/t−R,0 is a universal quantity). Thus,

close to the critical point, time scales which are much larger than the microscopic ones are im-

portant and the dynamics can be effectively described by means of stochastic equations for the

spatio-temporal evolution of the order parameter (see, e.g., Refs. [130, 131] for a review). It is

convenient to use field-theoretic models which allow for a systematic analysis of the dynamic

critical behavior and yield predictions for the scaling behavior of the time-dependent correlation

functions [130, 131]. Quantitatively, due to the critical slowing down, the dynamics of a con-

tinuous phase transition is determined by “slow” system variables, i.e., quantities which change

on a much larger time scale than the microscopic ones. These slow variables — including the

order parameter of the system — are related to macroscopic observables. On the other hand,

“fast” microscopic variables are usually treated as noise, which mimics stochastic forces acting

on the slow variables. The description of critical dynamics is formulated in terms of coupled

non-linear Langevin equations, which include the noise stemming from the non-critical fast

variables, as well as dissipative terms corresponding to relaxation or diffusion, and eventually

terms which are reversible in time [130, 131].
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As for the static case, universality occurs also for the dynamic behavior of the system. The

static universality classes described above are subdivided into several dynamic universality

classes, which are represented by stochastic models denoted by capital letters introduced in

Ref. [130]. The different dynamic universality classes are characterized by the structure of the

dynamical equations describing the system [130, 131]. As stated in Ref. [131] for distinguishing

the different universality classes one has to consider the following questions:

(1) Is the order parameter a conserved physical quantity?

(2) Does the order parameter couple to other conserved quantities?

– If yes, how do they couple?

Consequently, several dynamical universality classes appear, and the static universality classes

split up into sub-classes corresponding to different physical situations [130, 131]. For example,

whereas the static Ising universality class encompasses altogether uniaxial ferromagnets, simple

fluids, and binary liquid mixtures, as discussed above, the characteristic dynamical behaviors

of these three physical systems belong to different dynamical universality classes.

The uniaxial ferromagnets shown in Fig. 1.2 may be described by the simplest dynamical

model called Model A [138, 139]. Instead of studying the Glauber dynamics for the individual

spin flips on a lattice, it is convenient to study the corresponding field theory with the suitable

dynamical model for the relaxation of the system into its equilibrium state corresponding to

the static Hamiltonian of the system. Model A describes the dissipative (purely) relaxational

dynamics from a non-equilibrium to an equilibrium state [130, 131]. The order parameter in

Model A is non-conserved and does not couple to other conserved quantities. The dynamical

critical exponent for the static Ising universality class with Model A dynamics is z ≃ 2.021 in

spatial dimensions d = 3 and z = 2 in d = 4 [131].

For the gas liquid transition of simple fluids (Fig. 1.1) the scalar order parameter, which

represents the density difference between the gas and the liquid phase, is conserved [130, 140–

143]. Moreover, due to conservation of momentum in an incompressible fluid, the momentum

current appears as a secondary conserved vector field in the appropriate dynamical descrip-

tion [130, 140–142]. Whereas the longitudinal component of the momentum density (“sound

mode”) can be neglected for the critical dynamics, the transverse components of the momentum

density are left as independent hydrodynamic slow variables which couple to the order parame-

ter [130, 131, 133]. The dynamical model describing these features is known as Model H [130].

The asymptotic universality class of a binary liquid mixture (Fig. 1.3) is the same as for a sim-

ple fluid [130]. A simplified form of the actual dynamics of fluid mixtures is given by Model

B, which includes the diffusive dynamics of a conserved order parameter, but not its coupling

to other conserved quantities [130, 131]. The dynamical critical exponent for the universality

class with Model B dynamics is z = 4−η in all dimensions, where η is a static critical expo-

nent [131]. For the Ising universality class η ≃ 0.036 in d = 3 [62] and η = 0 in d = 4 [57].
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Great interest has been paid also to surface-directed spinodal decomposition, i.e., the demixing

process of a binary liquid mixture “quenched” into the miscibility gap and close to a surface

with an adsorption preference for one of the species (see, e.g., Refs. [144–148] and references

therein). Thus, regarding questions (1) and (2) on the preceding page for the characterization of

the dynamic universality classes, Model A corresponds to the answers (1) “No”, (2) “No”, and

Model B corresponds to the answers (1) “Yes”, (2) “No”.

In the following, we will mainly consider a space- and time-dependent scalar order parameter

φ(r, t) (static Ising universality class) within the universality classes of Model A dynamics.

Then, in general the stochastic Langevin equation for the order parameter is given by [132, 133,

149]

∂tφ(r, t) =−Ω̂
δH [φ ]

δφ(r, t)
+ζ (r, t), (1.9)

where Ω̂ is the kinetic coefficient and H is the (static) Hamiltonian of the system. The first

term on the RHS of Eq. (1.9) corresponds to the deterministic evolution of the order parameter,

whereas the second term corresponds to the stochastic nature characterized by ζ which is a

so-called Gaussian white noise with vanishing average 〈ζ (r, t)〉 = 0. Moreover, the noise is

correlated only over microscopic time and length scales, so that [132, 133]

〈ζ (r, t)ζ (r′, t ′)〉= 2kBT Ω̂δ (r− r′)δ (t − t ′). (1.10)

The prefactor in Eq. (1.10) is determined by the Einstein relation [132, 133, 149]. For the study

of dynamic critical phenomena the Hamiltonian is given by Eq. (1.6), so that, in the absence of

noise, the time-dependent Ginzburg-Landau (TDGL) model [Eq. (1.9)] relaxes back to a state

which minimizes H [132]. The kinetic coefficient Ω̂ depends on the character of the dynamics

of the system; for Model A dynamics Ω̂ = Ω is simply a constant relaxation rate, whereas for

Model B dynamics Ω̂ = D∇2 with the diffusion constant D [132, 133].

In order to obtain averaged expressions for macroscopic observables, such as correlation

and response functions, one has to solve the (non-linear) Langevin equation given in Eq. (1.9)

and average over the noise. The response functional formalism provides an equivalent alterna-

tive representation from which one can directly obtain observable quantities from a dynamical

functional [128, 130–133, 150–155]. For the Langevin equation in Eq. (1.9) the corresponding

dynamical functional is given by

S[φ , φ̃ ] =
∫

dt
∫

dr

{

φ̃∂tφ + Ω̂φ̃
δH [φ ]

δφ
− φ̃Ω̂φ̃ ,

}

(1.11)

where φ̃ is the auxiliary response field, which is conjugate to an external field h (see above).

Then, the average of observable O can be obtained from Eq. (1.11) by standard means when

treating e−S/kBT in a formal sense as a “probability distribution” with the path-integral measure

D [132, 133]:

〈O〉=
∫

D [φ , φ̃ ]Oe−S[φ ,φ̃ ]/kBT . (1.12)
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However, S is not real and e−S/kBT may not be strictly interpreted as a probability dis-

tribution [132]. Thus, although S plays the role of a “Hamiltonian” in a formal sense, its

“partition function”
∫

D [φ , φ̃ ]e−S[φ ,φ̃ ]/kBT = 1 and therefore the corresponding “free energy”

−kBT log(
∫

D [φ , φ̃ ]e−S[φ ,φ̃ ]/kBT ) always vanishes [133].

The response field formulation provides the basis for straightforward application of the field-

theoretic “machinery”, like perturbation theory and renormalization group, available from stat-

ics [133] and has been widely used for the field-theoretic treatment of critical phenomena [131].

The mean field theory (MFT), corresponding to a “zero loop” perturbation, amounts to taking

the averages of the terms in Eq. (1.9), i.e., dropping the noise term [156, 157].

In this work, our aim is to gradually extend previous studies on dynamic critical phenom-

ena. In particular, in Chap. 4 we provide a calculation of the Model A dynamics of the mean

field order parameter profile beyond the simple film geometry. From an experimental point of

view, the critical Casimir force acting on colloidal particles immersed in a critical binary liquid

mixture and involving curved surfaces is highly relevant [20, 21]. Accordingly, in Sec. 4.2 we

theoretically study the dynamic evolution of the order parameter close to spherical and cylin-

drical particles. Finally, in Sec. 4.3 the current literature concerning the issue of the suitable

definition of the dynamic critical Casimir force is briefly addressed.





2. Critical Casimir forces between

colloids and patterned substrates

2.1. Introduction

C
OLLOIDS can be used not only as model systems in soft matter physics but also in ap-

plications on the nano- and micrometer scale which take advantage of their interaction

with chemically structured solid surfaces. Such systems can be useful in integrated

nano-devices provided that one is able to exert active control over these interactions. Critical

Casimir forces provide such a tool, because their strength and direction can be tuned via minute

temperature changes and surface treatments of the substrate. Surfaces might be designed as to

provide temperature-controlled laterally confining potentials for single colloids, offering novel

means of self-assembly processes [37].

Here,13 we study the normal and lateral critical Casimir forces acting on colloidal particles

immersed in (near-) critical binary liquid mixtures close to a substrate with laterally alternating

adsorption preferences for the two components of the confined liquid. We provide quantitative

predictions for the universal features of these effective forces for various substrate patterns, i.e.,

in excess to regular, nonuniversal background contributions. In particular, we study the critical

Casimir effect for a three-dimensional sphere close to a homogeneous substrate [Sec. 2.2], a

chemical step [Sec. 2.3], a single chemical lane [Sec. 2.4], and periodic patterns of chemical

stripes of alternating adsorption preference [Sec. 2.5] (see Fig. 2.1). For completeness, we

also consider a cylinder which is aligned with the chemical pattern [Sec. 2.7]. We provide

quantitative predictions for the scaling functions of the critical Casimir forces, pursuing a two-

pronged approach:

(i) We calculate the force using the full three-dimensional numerical analysis of the appro-

priate mean-field theory (MFT) as described in Sec. 1.2.4 and Appendix A.1.

(ii) We use the so-called Derjaguin approximation (DA) based on the scaling functions for

the critical Casimir force in the film geometry either obtained analytically within MFT

[117] or obtained from Monte Carlo simulations [99, 100], which allows us to predict the

critical Casimir force in the physically relevant three-dimensional case.

13This chapter has been published in advance in Refs. [51, 52].
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Figure 2.1: Sketch of a spherical colloid immersed in a (near-) critical binary liquid mixture (not shown)

and close to a (patterned) planar substrate. The sphere with (b) boundary condition (BC) and radius

R is located at a surface-to-surface distance D from the substrate and its center has a lateral coordi-

nate x = X with the substrate pattern being translationally invariant in all other directions. The following

four different types of substrate surfaces are considered: homogeneous substrate [Sec. 2.2], a chem-

ical step [s; Sec. 2.3], a single chemical lane [ℓ; Sec. 2.4], and a periodically patterned substrate [p;

Sec. 2.5]. (Note that for a four-dimensional system, which we also consider, this is a three-dimensional

cut of the system, which is invariant along the fourth direction; the sphere thus corresponds to a hy-

percylinder in four dimensions.) For later reference, the box on the left side summarizes the definitions

of the various scaling variables which the scaling functions of the critical Casimir force depend on for

the listed geometrical configurations. On the right, (a), (a≷), (aℓ), (a1), and (a2) indicate the boundary

conditions corresponding to the various chemical patterns.

Inter alia, we determine the range of validity of the DA within MFT, which provides guidance

concerning its applicability in three spatial dimensions d = 3. This is an important information

because presently available Monte Carlo simulations are far from being able to capture complex

geometries [99, 100].

Currently, the possibility of realizing stable levitation of particles by means of the electrody-

namic Casimir forces has been the subject of intense theoretical investigation [158–164]. Our

results presented in Secs. 2.6 and 2.7 show that for suitable choices of the geometry of the chem-

ical pattern of the substrate, the critical Casimir forces can be used to levitate a colloid above

the substrate at a height which can be tuned by temperature. .This levitation is stable against

perturbations because it corresponds to a minimum of the potential of the critical Casimir force

acting on the colloid.

Section 2.2 is devoted to the well-studied case of a colloid close to a homogeneous substrate.

As mentioned above, the various patterns and setups are considered in Secs. 2.3–2.7. Certain
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important technical details concerning the calculation of the Derjaguin approximation are pre-

sented in the Appendices B.1–B.4.

In d = 4, as appropriate for MFT, the three-dimensional colloid is extended to the fourth

dimension as a hypercylinder, for which we also present the results of our analysis. For this

case, the physical properties are invariant along the fourth dimension. Accordingly, the MFT

results for the forces and the potentials given below are those per length along this additional

direction.

2.2. Homogeneous substrate

We first consider a three-dimensional sphere of radius R with (b) boundary condition (BC)

facing a chemically homogeneous substrate with (a) BC at a surface-to-surface distance

D as shown in Fig. 2.1, denoting this combination by (a,b). The critical Casimir force

F(a,b)(D,R,T ) normal to the substrate surface and the corresponding critical Casimir potential

Φ(a,b)(D,R,T ) =
∫ ∞

D dz F(a,b)(z,R,T) take the scaling forms [20, 21, 43–45]

F(a,b)(D,R,T ) = kBT
R

Dd−1 K(a,b)(Θ,∆) (2.1)

and

Φ(a,b)(D,R,T ) = kBT
R

Dd−2 ϑ(a,b)(Θ,∆), (2.2)

where ∆ = D/R and Θ = sign(τ)D/ξ± (for τ ≷ 0) are the scaling variables corresponding to

the distance D in units of the radius R of the colloid and of the correlation length ξ±, respec-

tively. The case d = 4 corresponds to the MFT solution up to logarithmic corrections, which we

shall neglect here. Equations (2.1) and (2.2) describe a force and an energy, respectively, per

Dd−3, which for d = 4 corresponds to considering F(a,b) and Φ(a,b) per length L4 of the extra

translationally invariant direction of the hypercylinder.

2.2.1. Derjaguin approximation

The Derjaguin approximation (DA) [165] is based on the idea of decomposing the surface of the

spherical colloid into infinitely thin circular rings of radius ρ and area dS(ρ) = 2πρdρ which

are parallel to the opposing substrate surface [20, 21, 43]. (Here we do not multiply 2πρdρ by

the linear extension L4 of the hypercylinder along its axis in the fourth dimension, because the

critical Casimir force is eventually expressed in units of L4, which therefore drops out from the

final expressions.) The distance L of a ring with radius ρ ≤ R from the substrate is given by

L(ρ) = D+R

(

1−
√

1−ρ2/R2

)

. (2.3)
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Assuming additivity of the forces and neglecting edge effects, the normal critical Casimir forces

dF(ρ) acting on these rings can be expressed in terms of the force acting on parallel plates

[Eq. (1.3)]:
dF(ρ)

kBT
=

dS

[L(ρ)]d
k(a,b)(sign(τ)L(ρ)/ξ±). (2.4)

Finally, in order to calculate the total force F(a,b) acting on the colloid, one sums up the contri-

butions of the rings, which yields

F(a,b)(D,R,T)

kBT
≃ 2π

R∫

0

dρρ [L(ρ)]−d k(a,b)(sign(τ)L(ρ)/ξ±). (2.5)

(For d = 3, F(a,b) is the force on a sphere whereas in d = 4 it is the force on a hypercylinder per

length of its axis.)

One expects the DA to describe the actual behavior accurately if the colloid is very close to

the substrate, i.e., for ∆ = D/R → 0. In this limit, Eq. (2.3) can be approximated by L(ρ) = Dα

where α = 1+ρ2/(2RD), so that one finds for the scaling function of the force [21, 43]

K(a,b)(Θ,∆ → 0) = 2π

∞∫

1

dαα−dk(a,b)(αΘ), (2.6)

and, accordingly, for the scaling function of the potential [20, 21]

ϑ(a,b)(Θ,∆ → 0) = 2π

∞∫

1

dβ

(
1

β d−1 −
1

β d

)

k(a,b)(βΘ). (2.7)

At the bulk critical point, using Eq. (1.4), one finds the well known values K(a,b)(0,0) =

2π∆(a,b)/(d−1) and ϑ(a,b)(0,0) = 2π∆(a,b)/[(d−2)(d−1)]. We note that the DA implies that

the dependence of F(a,b) and Φ(a,b) on the size R of the sphere reduces to the proportionality

∝ R indicated explicitly in Eqs. (2.1) and (2.2).

Before proceeding further one first has to assess the accuracy of the DA, which will carried

out below within MFT (d = 4). We expect the range of validity of the DA to be similar for d = 3,

so that within that range one can use the DA based on scaling functions for the film geometry

obtained from Monte Carlo simulations14 in order to calculate the critical Casimir force acting

on a colloid in d = 3.

14For the scaling function in d = 3 of the critical Casimir force acting on two parallel planar walls with (±)

BC, we use the approximation denoted by (i) in Figs. 9 and 10 of Ref. [100]. The uncertainty of the overall

amplitude of the scaling functions is about 10% to 20% as indicated by the different results obtained by the

various approximations used in Ref. [100]. Correspondingly, this uncertainty affects our predictions for the

scaling functions based on such Monte Carlo simulation data. However, the normalized scaling functions are

affected less leading to an uncertainty of at most 3%.
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Figure 2.2: (a) Scaling functions K(∓,−) for the normal critical Casimir force [Eq. (2.1)] acting on a

three-dimensional sphere with (b) = (−) BC close to a homogeneous substrate with (a) = (∓) BC

[Fig. 2.1]. The suitably normalized scaling functions K(∓,−) are shown as a function of the scaling

variable Θ = sign(τ)D/ξ± for τ ≷ 0, where τ is the reduced deviation from the critical temperature and

K(−,−)(0,0) is the value of the critical Casimir force scaling function within the DA at T = Tc for (−,−)
BC. The solid lines correspond to the Derjaguin approximation (DA, ∆ = D/R → 0) within mean-field

theory (MFT, d = 4) whereas the dotted lines correspond to the DA obtained by using Monte Carlo

(MC) results for films in d = 3 the systematic uncertainties of which are not indicated (see footnote 14).

The normalization implies that at Θ = 0 both the solid and dotted lines pass through −1 for (−,−) BC

whereas the solid line passes through 4 for (+,−) BC. The symbols correspond to the full numerical

MFT results obtained for ∆ = 1/3 and ∆ = 1, the size of which indicates the estimated numerical error.

(For (+,−) BC and τ < 0 we have not been able to calculate the corresponding scaling functions

with adequate precision due to severe numerical difficulties in obtaining the full three-dimensional order

parameter profile in the presence of two “competing” bulk values.) Since within the DA the dependence

of K(∓,−) on ∆ drops out, the difference between the symbols ⊡ and ⊙ and the solid lines measures

the accuracy of the DA in d = 4. (b) Difference ∆ϑ = ϑ(+,−)−ϑ(−,−) of the scaling functions for the

Casimir potentials [Eq. (2.2)] for (+,−) and (−,−) BC, suitably normalized by ϑ(−,−)(0,0). The solid

line corresponds to the DA within MFT and the symbols correspond to the full MFT results for ∆ = 1/3

and ∆ = 1; the dotted line is the DA for d = 3. Due to the normalization the solid line reaches 5 for

Θ = 0.
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2.2.2. Scaling functions for the normal critical Casimir force and the

potential

The expressions obtained above within the DA hold for general boundary conditions (a) and

(b) and are valid beyond the cases we consider in the following, i.e., a ∈ {+,−} and b = −.

Figure 2.2(a) shows the full numerical MFT (d = 4) results for the scaling functions K(±,−) with

∆= 1 and 1/3 compared with the corresponding DA results based on the suitable numerical inte-

gration [Eq. (2.6)] of the analytic (MFT) expression for k(±,−) [117]. Moreover, in Fig. 2.2, the

corresponding DA results for d = 3 are shown; they are obtained from the film scaling functions

determined by MC simulations (see footnote 14 on page 40) and by using the corresponding

ratio of the correlation lengths above and below Tc [62]. In Fig. 2.2(b) we report the difference

∆ϑ(Θ,∆)≡ϑ(+,−)(Θ,∆)−ϑ(−,−)(Θ,∆) computed for the various cases reported in Fig. 2.2(a),

which will be useful for describing the case of a chemically patterned substrate. The scaling

functions in d = 4 are reasonably well reproduced by the DA for ∆ . 0.4 and we expect this to

hold for d = 3 as well. The fact that for increasing values of ∆ the magnitude of the actual scal-

ing functions becomes larger compared with those within the DA (corresponding to ∆ → 0) is

in agreement with earlier results obtained for a d-dimensional hypersphere (see, e.g., Ref. [43]).

It has been shown that the scaling functions obtained within the DA for d = 3 agree very well

— within the experimental accuracy — with the ones obtained from direct measurements of the

critical Casimir potential [20, 21] corresponding to ∆ . 0.35 (see also Ref. [48] in Ref. [100]).

2.3. Chemical step (s)

The basic building block of a chemically patterned substrate of the type we consider here, i.e.,

with translational invariance in all directions but one (x), is a chemical step (s) realized by a

substrate with (a≷) BC for x ≷ 0 at its surface. In this section we analyze the critical Casimir

force if such a substrate is approached by a colloid with (b) BC with its center located at the

lateral position x = X (see Fig. 2.1 and Ref. [37] for experimental realizations). We denote this

configuration by (a<|a>,b). The normal critical Casimir force Fs is described by the scaling

form

Fs(X ,D,R,T) = kBT
R

Dd−1 Ks(Ξ,Θ,∆), (2.8)

where Ξ = X/
√

RD is the scaling variable corresponding to the lateral position of the colloid.

It is useful to write the scaling function Ks as

Ks(Ξ,Θ,∆) =
K(a<,b)+K(a>,b)

2
+

K(a<,b)−K(a>,b)

2
ψ(a<|a>,b)(Ξ,Θ,∆), (2.9)

where the scaling functions of the laterally homogeneous substrates K(a≷,b) depend on Θ and ∆

only [Eq. (2.1)], and the scaling function ψ(a<|a>,b) varies from +1 at Ξ →−∞ to −1 at Ξ →
+∞, such that the laterally homogeneous cases are recovered far from the step. Accordingly,
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the corresponding critical Casimir potential Φs(X ,D,R,T) =
∫ ∞

D dz Fs(X ,z,R,T) can be cast in

the form

Φs(X ,D,R,T) = kBT
R

Dd−2 ϑs(Ξ,Θ,∆), (2.10)

and

ϑs(Ξ,Θ,∆) =
ϑ(a<,b)+ϑ(a>,b)

2
+

ϑ(a<,b)−ϑ(a>,b)

2
ω(a<|a>,b)(Ξ,Θ,∆), (2.11)

where ϑ(a≷,b) depend on Θ and ∆ only [Eq. (2.2)], and ω(a<|a>,b)(Ξ = ±∞,Θ,∆) = ∓1. Note

that the scaling functions ψ(a<|a>,b) and ω(a<|a>,b) are independent of the common prefactor

∝ u−1 [see Sec. 1.2.4], which is left undetermined by the analytical and numerical mean-field

calculation of Ks and ϑs.

2.3.1. Derjaguin approximation

If the sphere is close to the substrate, i.e., ∆ → 0, the DA can be applied, and one finds for the

scaling function of the critical Casimir force [see Appendix B.1]

ψ(a<|a>,b)(Ξ ≷ 0,Θ,∆ → 0) =∓1±
4
∫ ∞

1+Ξ2/2 dα α−d arccos
(

|Ξ|(2α −2)−1/2
)

∆k(αΘ)

K(a<,b)(Θ,∆ → 0)−K(a>,b)(Θ,∆ → 0)
,

(2.12)

where ∆k(Θ) = k(a<,b)(Θ)− k(a>,b)(Θ) is the difference between the scaling functions for the

critical Casimir forces acting on two planar walls with (a<,b) and with (a>,b) boundary con-

ditions, respectively. We note that according to Eqs. (2.12) and (2.6) within the DA ψ(a<|a>,b)
can be determined from the knowledge of the film scaling functions k(a,b)(Θ) [Eq. (1.3)] only.

Due to the assumption of additivity which underlies the DA, (i) ψ(a<|a>,b) vanishes at Ξ = 0 for

all Θ and it is an antisymmetric function of Ξ and (ii) ψ(a<|a>,b) = ψ(a>|a<,b); within the DA

both of these properties are valid irrespective of the type of boundary conditions on both sides

of the chemical step. (However, the actual scaling function ψ(a<|a>,b) as, e.g., obtained from

full numerical MFT calculations may violate this symmetry because the actual critical Casimir

forces are non-additive.) At the bulk critical point one has Θ = 0 so that [see Appendix B.1],

ψ(a<|a>,b)(Ξ,Θ = 0,∆ → 0) = Ξ2d−7 (15
2 (3−d)+(3−2d)Ξ2−Ξ4)(2+Ξ2)−(d− 3

2 ) (2.13)

independent of k(a≷,b). Similarly, within the DA one finds for the scaling function ω of the

critical Casimir potential [see Appendix B.1]

ω(a<|a>,b)(Ξ ≷ 0,Θ,∆ → 0) =∓1±
Ξ4 ∫ ∞

1 ds
sarccos(s−1/2)−

√
s−1

(1+Ξ2s/2)d ∆k
(
Θ[1+Ξ2s/2]

)

ϑ(a<,b)(Θ,∆ → 0)−ϑ(a>,b)(Θ,∆ → 0)
. (2.14)

This yields ω(a<|a>,b)(Ξ = 0,Θ,∆ → 0) = 0, as expected from the underlying assumption of

additivity; within full MFT this only holds in the limit ∆ → 0. At the critical point we find [see

Appendix B.1]

ω(a<|a>,b)(Ξ,Θ = 0,∆ → 0) = Ξ
(
1−d −Ξ2)(Ξ2 +2

)−3/2
. (2.15)
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Figure 2.3: Scaling function ω(+|−,−) [Eq. (2.11)] within DA (i.e., ∆ → 0) for the critical Casimir potential

of a sphere (−) facing a chemical step (+|−). The dotted and dashed lines refer to d = 3 and d = 4

(MFT), respectively. At bulk criticality (Θ = 0), ω(+|−,−) is given by Eq. (2.15), whereas for Θ 6= 0 it is

calculated on the basis of the scaling functions for the film geometry [see the main text]. For Θ & 3,

ω(+|−,−) becomes practically independent of d and coincides with the expression for Θ ≫ 1 [Eq. (2.16),

solid lines, barely distinguishable from the corresponding dashed and dotted ones].

Note that Eqs. (2.12) — (2.15) are valid beyond the symmetry breaking BC we consider in the

following, i.e., a≷ ∈ {+,−} and b =−. For (∓,−) BC the critical Casimir force f(∓,−)(D,T )

between two planar walls decays ∝ exp(−Θ) for Θ ≫ 1 [29, 117, 118] (see also footnote 11 on

page 30), which leads to a d-independent result for the scaling functions ψ(+|−,−) and ω(+|−,−)

[see Appendix B.1]:

ψ(+|−,−)(Ξ,Θ ≫ 1,∆ → 0) = ω(+|−,−)(Ξ,Θ ≫ 1,∆ → 0) =−erf
(√

Θ/2 Ξ
)

, (2.16)

where erf is the error function.

In Fig. 2.3 we compare the behavior of ω(+|−,−) calculated within the DA in d = 4 and 3;

the required scaling functions k(±,−) for the film geometry are obtained analytically in d = 4

within MFT [117] and in d = 3 from Monte Carlo simulation data [99, 100]. The systematic

uncertainty of the latter does not affect significantly (at most by 3%) the estimate of ω(+|−,−)

shown in Fig. 2.3. For Θ → 0 the Casimir potential for d = 3 as a function of the lateral coor-

dinate varies more smoothly than the corresponding MFT function [see Eq. (2.15)]. However,

for Θ & 3 the scaling functions ω(+|−,−) for d = 3 and d = 4 (MFT) practically coincide with

Eq. (2.16) valid for Θ ≫ 1.

Figure 2.4(a) compares the scaling function ω(a<|a>,b) for the critical Casimir potential of a

sphere with (−) BC in front of a (+|−) step, as obtained within the DA for d = 4 [Eq. (2.14)],

with the one obtained numerically within full MFT for ∆ = 1/3. For ∆ . 1/3 the DA captures the

scaling function very well, in particular for Θ & 3.
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Figure 2.4: (a) Scaling function ω(+|−,−) [Eq. (2.11)] for the critical Casimir potential of a spherical

colloid with (−) BC across a chemical step (+|−) as a function of Ξ ≡ X/
√

RD for various (positive)

values of Θ = D/ξ+. Within the DA ω(+|−,−) is an antisymmetric function of Ξ [Eq. (2.14)] whereas

within full MFT this antisymmetry is slightly violated, in particular for small Θ. (b) Corresponding scaling

function K
‖
s [Eq. (2.17)] of the lateral critical Casimir force, normalized by the amplitude K(−,−)(0,0) =

2π∆(−,−)/(d−1) of the normal critical Casimir force at T = Tc acting on a colloid with (−) BC close to a

homogeneous substrate with (−) BC within the DA [Sec. 2.2.1]. For both (a) and (b) the full numerical

MFT results obtained for ∆ = 1/3 are shown as symbols (the symbol size represents the estimated

numerical error) whereas the lines show the corresponding results obtained within the DA (i.e., ∆ → 0);

the dotted lines refer to d = 3 and are obtained by using Monte Carlo simulation data (see footnote 14

on page 40) and the solid lines refer to d = 4. The lines for Θ = 0 are obtained by using Eq. (2.15)

and Eq. (2.19), respectively; for Θ = 3.2,4.7,8.1 the DA lines de facto coincide with the asymptotic

results obtained for symmetry breaking BC and Θ ≫ 1 [Eq. (2.16) and Eq. (2.20), respectively] and

thus are indeed independent of d. The DA (d = 4) provides a good approximation for the full numerical

MFT data, in particular for Θ & 3. K
‖
s > 0 implies that the colloid moves to the right where it enjoys

an attractive potential versus a repulsive one for Ξ < 0. Within the DA K
‖
s is a symmetric function of Ξ

[Eqs. (2.14) and (2.18)] whereas within full MFT this symmetry is slightly violated, in particular for small

Θ.
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2.3.2. Lateral critical Casimir force

The lateral critical Casimir force is given by F
‖

s =−∂X Φs and can be cast in the scaling form

F
‖
s (X ,D,R,T) = kBT

R

Dd−1

(
D

R

)1/2

K
‖
s (Ξ,Θ,∆), (2.17)

where K
‖
s is a universal scaling function. F

‖
s and K

‖
s vanish far from the chemical step, i.e., for

|Ξ| → ∞. In Eq. (2.17) the prefactors in terms of R and D and their exponents are chosen such

that K
‖
s is regular and non-vanishing for ∆ → 0. We note that the same holds for the normal

critical Casimir forces and the corresponding potentials [see Eqs. (2.1), (2.2), (2.8), (2.10), and

the considerations following below].

Within the DA K
‖
s can be calculated from Eqs. (2.11) and (2.14):

K
‖
s (Ξ,Θ,∆ → 0) =−1

2

[
ϑ(a<,b)(Θ,∆ → 0)−ϑ(a>,b)(Θ,∆ → 0)

]
∂Ξω(a<|a>,b)(Ξ,Θ,∆ → 0).

(2.18)

At bulk criticality Θ = 0 one finds with Eq. (2.15) [see Eq. (2.12)]

K
‖
s (Ξ,Θ = 0,∆ → 0) = π∆k(0)

(
2+Ξ2)−(d− 3

2 ) . (2.19)

For (∓,−) BC and Θ ≫ 1 Eqs. (2.10), (2.11), and (2.16) lead to

K
‖
s (Ξ,Θ ≫ 1,∆ → 0) =

[
ϑ(+,−)(Θ,∆)−ϑ(−,−)(Θ,∆)

]
√

Θ

2π
exp

{

−ΘΞ2

2

}

, (2.20)

for both d = 3 and d = 4. [The prefactor ∆ϑ(Θ,∆) = ϑ(+,−)(Θ,∆)−ϑ(−,−)(Θ,∆) in Eq. (2.20)

is shown in Fig. 2.2(b).]

Figure 2.4(b) shows the comparison between the normalized lateral critical Casimir force

obtained within the DA (solid lines) and the full MFT data obtained for ∆ = 1/3 (symbols). We

infer that not only the shape of K
‖
s as a function of Ξ but also its amplitude is described well

by the DA [Eqs. (2.19) and (2.20)] for ∆ . 1/3, and in particular for Θ & 3. We expect this

feature to hold in d = 3, too, as well as for the normal critical Casimir force and the critical

Casimir potential. The lateral critical Casimir forces for d = 3 obtained within the DA on the

basis of Monte Carlo simulation data for the film geometry (see footnote 14 on page 40) are

shown in Fig. 2.4(b) as dashed lines. Compared with the previous curves, these ones have

similar shapes but their overall amplitudes in units of the normal critical Casimir force at Θ = 0

are significantly different for Θ = 0 and Θ = 3.2. This difference reflects the analogous one

observed in the normalized difference between the corresponding critical Casimir potentials for

(+,−) and (−,−) BC, reported in Fig. 2.2(b).

2.4. Single chemical lane (ℓ)

In this section we consider the case of a colloid with (b) BC close to a substrate with a single

chemical lane (ℓ) with (aℓ) BC and width 2L in the lateral x direction and which is invariant
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along the other lateral direction(s). The remaining parts of the substrate are two semi-infinite

planes at |x|> L with (a) BC [see Fig. 2.1]. The lateral coordinate X of the center of mass of the

sphere along the x direction is chosen to vanish in the center of the chemical lane. One expects

that for “broad” lanes a description in terms of two subsequent chemical steps is appropriate

[Sec. 2.3], whereas for “narrow” lanes the effects of the two subsequent chemical steps interfere.

We find that in addition to the variables characterizing the chemical step [Eq. (2.8)], a further

scaling variable Λ = L/
√

RD emerges naturally, which corresponds to the width of the lane.

Accordingly, the normal critical Casimir force Fℓ acting on the colloid can be cast in the form

Fℓ(L,X ,D,R,T) = kBT
R

Dd−1 Kℓ (Λ,Ξ,Θ,∆) , (2.21)

where Kℓ is the corresponding universal scaling function. The critical Casimir potential scales

as

Φℓ(L,X ,D,R,T) = kBT
R

Dd−2 ϑℓ (Λ,Ξ,Θ,∆) , (2.22)

with ϑℓ as the universal scaling function for the potential of a sphere close to a single chemical

lane. Analogously to Eqs. (2.9) and (2.11) we define ψℓ and ωℓ according to

Kℓ(Λ,Ξ,Θ,∆) =
K(a,b)+K(aℓ,b)

2
+

K(a,b)−K(aℓ,b)

2
ψℓ(Λ,Ξ,Θ,∆), (2.23)

and

ϑℓ(Λ,Ξ,Θ,∆) =
ϑ(a,b)+ϑ(aℓ,b)

2
+

ϑ(a,b)−ϑ(aℓ,b)

2
ωℓ(Λ,Ξ,Θ,∆), (2.24)

so that far from the lane ψℓ (Λ, |Ξ| ≫ Λ,Θ,∆) = ωℓ (Λ, |Ξ| ≫ Λ,Θ,∆) = 1. On the other hand,

only for a “broad” lane the scaling functions at the center of the chemical lane approach their

limiting value ψℓ (Λ → ∞,Ξ = 0,Θ,∆) = −1 = ωℓ (Λ → ∞,Ξ = 0,Θ,∆), corresponding to the

homogeneous case with (aℓ,b) BC.

2.4.1. Derjaguin approximation

Using the underlying assumption of additivity of the forces, within the DA (∆ → 0) we find

for the scaling functions of the critical Casimir force and of the critical Casimir potential [see

Appendix B.2]

ψℓ(Λ,Ξ,Θ,∆ → 0) = 1+ψ(aℓ|a,b)(Ξ+Λ,Θ,∆ → 0)−ψ(aℓ|a,b)(Ξ−Λ,Θ,∆ → 0) (2.25)

and

ωℓ(Λ,Ξ,Θ,∆ → 0) = 1+ω(aℓ|a,b)(Ξ+Λ,Θ,∆ → 0)−ω(aℓ|a,b)(Ξ−Λ,Θ,∆ → 0), (2.26)

respectively. Thus, within the DA, from the knowledge of the scaling functions ψ(aℓ|a,b)
[Eq. (2.12)] and ω(aℓ|a,b) [Eq. (2.14)] for the chemical step with the appropriate BC, one can

directly calculate the corresponding scaling functions for the chemical lane configuration. Ac-

cordingly, in the limit ∆ → 0 and for symmetry breaking BC, ψℓ and ωℓ can be analytically

calculated on the basis of Eqs. (2.25) and (2.26) by taking advantage of Eqs. (2.13), (2.15), and

(2.16).
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2.4.2. Scaling function for the critical Casimir potential

In Fig. 2.5(a) we show the scaling function ωℓ for the critical Casimir potential obtained within

the DA for d = 3 and d = 4 (MFT) at the bulk critical point T = Tc [Eqs. (2.26) and (2.15)] for

various values of Λ= L/
√

RD as a function of the lateral coordinate of the colloid. One can infer

from Fig. 2.5 that, at bulk criticality, the critical Casimir potential varies less pronounced in d =

3 than in d = 4. As expected, for small values of Λ (i.e., “narrow” chemical lanes), the potential

does not reach the limiting homogeneous value −1 in the center of the chemical lane. On the

other hand for large values of the scaling variable Λ (i.e., “broad” chemical lanes), ωℓ does

attain the value −1 in the center of the chemical lane and the critical Casimir potential flattens.

In this case the potential is adequately described by two independent chemical steps. However,

the criterion for being a sufficiently “broad” lane depends sensitively on Θ and d. Indeed,

from Eqs. (2.26) and (2.15) we find that at criticality (Θ = 0) the critical Casimir potential at

the center of the chemical lane (Ξ = 0) reaches the limiting value corresponding to the colloid

facing a homogeneous substrate by up to 1% for Λ & 3.3 in d = 4 and for Λ & 10 in d = 3. We

note that the curves in Fig. 2.5(a) as well as these bounds are independent of the actual boundary

conditions because for all kinds of BC the scaling function of the normal critical Casimir force

is constant at the critical point [see Eq. (1.4)].

Below we shall discuss some properties which are specific for BC with a,aℓ,b ∈ {+,−},

which exhibit the feature that the normal critical Casimir force f(∓,−) acting on two planar walls

decays purely exponentially [see the text preceding Eq. (1.5)] as a function of their distance ex-

pressed in units of the bulk correlation length [see Eqs. (1.3) and (1.5)]. In Fig. 2.5(b) the scaling

functions ωℓ in d = 3 and d = 4 obtained from Monte Carlo simulation data (see footnote 14

on page 40) and analytic MFT results [117], respectively, within the DA [see Eqs. (2.26) and

(2.16)] are shown for the same values of Λ as in Fig. 2.5(a) but off criticality. For Θ = 7.7

the curves for d = 3 and d = 4 are indistinguishable from each other and from their common

asymptotic expression given in Eq. (2.16). For Θ ≫ 1, the critical Casimir potential attains its

limiting homogeneous value in the center of the lane for values of Λ which are smaller than the

ones for Θ = 0 due to the shorter range of the forces. That is, for both d = 3 and d = 4 the

single chemical lane is almost equally well approximated by two independent chemical steps

for Λ & 1.5 at Θ = 3.3 (data not shown) and for Λ & 1.0 at Θ = 7.7 [Fig. 2.5(b)].

In Fig. 2.6 we compare the MFT ωℓ obtained within the DA (∆ → 0) at Θ= 0 [Eqs. (2.26) and

(2.15)] with the scaling function obtained from the full numerical MFT calculations for ∆ = 1/3.

We find a rather good agreement even for small values of Λ (i.e., “narrow” chemical lanes). This

shows that for the geometry of a colloid close to a single chemical lane, nonlinearities, which

are actually present in the critical Casimir effect and potentially invalidate the assumption of

additivity underlying the DA, do not affect the resulting potential for small values of ∆. We

expect this property to hold beyond MFT in d = 3 as well, in particular off criticality, i.e., for

Θ 6= 0.
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Figure 2.5: Scaling function ωℓ [Eq. (2.24)] describing the lateral variation of the critical Casimir poten-

tial of a colloid across a single chemical lane of width 2L as a function of the lateral position X of the

colloid in units of the half width of the lane [see Fig. 2.1; Ξ = X/
√

RD, Λ = L/
√

RD, Θ = D/ξ+]. Here,

ωℓ has been obtained within the DA (∆ → 0) in d = 3 and 4 [Eq. (2.26)]. In (a) the curves correspond

to Θ = 0 [Eq. (2.15)], whereas in (b) they correspond to Θ = 7.7 and a,aℓ,b ∈ {+,−} BC [Fig. 2.1].

For Θ ≫ 1 [(b)] the corresponding scaling functions obtained from Monte Carlo simulation data (see

footnote 14 on page 40) in d = 3 and from analytic MFT results [117] in d = 4 de facto coincide and

their asymptotic expressions are given by Eqs. (2.16) and (2.26). ωℓ = 1 corresponds to the laterally

homogeneous critical Casimir potential for (a,b) BC outside the chemical lane, whereas ωℓ =−1 corre-

sponds to the value of the critical Casimir potential for the homogeneous case with (aℓ,b) BC as within

the chemical lane. For large values of Λ the critical Casimir potential is the same as for two independent

chemical steps, and ωℓ reaches its limiting value −1 in the center of the lane at Ξ = 0 [see the main

text]. In (b), for Θ ≫ 1, ωℓ attains −1 in the center of the chemical lane already for smaller values of Λ

due to the exponential decay of the critical Casimir force. We note that the DA results for Θ = 0 (i.e.,

at the critical point) are independent of the actual boundary conditions which, accordingly, were not

specified in (a).
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Figure 2.6: Test of the performance of the DA for the scaling function ωℓ [Eq. (2.24)] of the critical

Casimir potential for a sphere with (−) BC close to a single chemical lane with (−) BC embedded in

a substrate with (+) BC. The MFT ωℓ is evaluated at bulk criticality Θ = 0 in d = 4 both on the basis

of the DA (lines, ∆ → 0) and of the full numerical MFT (symbols, ∆ = 1/3). There is good agreement

between the DA and the full MFT results, even for small values of Λ = L/
√

RD. Nonlinear effects, which

are inherently present in the theory, do not strongly affect the potential. For ∆ → 0 the assumption of

additivity of the critical Casimir forces underlying the DA is reliable even for small Λ.

2.5. Periodic chemical patterns (p)

In this section we consider a pattern of chemical stripes which are alternating periodically along

the x direction. The pattern consists of stripes of width L1 with (a1) BC joined with stripes of

width L2 with (a2) BC, such that the periodicity is given by P = L1 +L2. Thus, the geometry

of the substrate pattern is characterized by the two variables L1 and P [see Fig. 2.1]. The

coordinate system is chosen such that the lateral coordinate X of the center of the sphere is zero

at the center of a (a1) stripe. The normal critical Casimir force Fp acting on the colloidal particle

and its corresponding potential Φp take on the following scaling forms:

Fp(L1,P,X ,D,R,T) =kBT
R

Dd−1 Kp(λ ,Π,Ξ,Θ,∆) (2.27)

and

Φp(L1,P,X ,D,R,T) =kBT
R

Dd−2 ϑp(λ ,Π,Ξ,Θ,∆), (2.28)

where Π = P/
√

RD is the scaling variable characterizing the periodicity of the pattern and

λ = L1/P is the scaling variable chosen to correspond to the relative width of the stripe with

(a1) BC. Kp and ϑp are universal scaling functions for the normal critical Casimir force and the

critical Casimir potential, respectively. For λ = 1 or 0 the force and the potential correspond to

the homogeneous cases with (a1,b) BC or (a2,b) BC, respectively [see Sec. 2.2]. As before it
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is useful to define scaling functions ψp and ωp which vary for λ ∈ [0,1] within the range [−1,1]

and describe the lateral behavior of the critical Casimir effect:

Kp(λ ,Π,Ξ,Θ,∆) =
K(a2,b)+K(a1,b)

2
+

K(a2,b)−K(a1,b)

2
ψp(λ ,Π,Ξ,Θ,∆) (2.29)

and

ϑp(λ ,Π,Ξ,Θ,∆) =
ϑ(a2,b)+ϑ(a1,b)

2
+

ϑ(a2,b)−ϑ(a1,b)

2
ωp(λ ,Π,Ξ,Θ,∆). (2.30)

2.5.1. Derjaguin approximation

Taking advantage of the assumption of additivity of the forces underlying the DA, one finds for

the scaling function of the normal critical Casimir force in the limit ∆ → 0 [see Appendix B.3]

ψp(λ ,Π,Ξ,Θ,∆ → 0) =

1+
∞

∑
n=−∞

{

ψ(a1|a2,b)(Ξ+Π(n+ λ
2 ),Θ,∆ → 0)−ψ(a1|a2,b)(Ξ+Π(n− λ

2 ),Θ,∆ → 0)
}

. (2.31)

Thus, the knowledge of the scaling function ψ(a1|a2,b) for a single chemical step with the

appropriate BC [Sec. 2.3] is sufficient to calculate directly the corresponding scaling func-

tion of the critical Casimir force acting on a colloid close to a periodic pattern of chemical

stripes. As expected, from Eq. (2.31) one recovers the values ψp(λ = 0,Π,Ξ,Θ,∆) = 1 and

ψp(λ = 1,Π,Ξ,Θ,∆) =−1, i.e., the cases of a colloid with (b) BC facing a homogeneous sub-

strate with (a2) BC and (a1) BC, respectively [see Appendix B.3].

In the limit Π → 0, i.e., for a pattern with a very fine structure compared to the size of the

colloid, the sum in Eq. (2.31) turns into an integral [see Appendix B.3] and, as expected, ψp

becomes independent of Ξ, i.e., of the lateral position of the colloid:

ψp(λ ,Π → 0,Ξ,Θ,∆ → 0) = 1−2λ . (2.32)

Accordingly, in the limit Π → 0 the force acting on the colloid — within the DA — is the av-

erage of the ones corresponding to the two boundary conditions weighted by the corresponding

relative stripe width [see Eqs. (2.32) and (2.29)]:

Kp(λ ,Π → 0,Ξ,Θ,∆ → 0) =
L1

L1 +L2
K(a1,b)(Θ,∆ → 0)+

L2

L1 +L2
K(a2,b)(Θ,∆ → 0). (2.33)

For the scaling function of the critical Casimir potential the results are completely analogous

to Eqs. (2.31)–(2.33) [see Appendix B.3].

2.5.2. Scaling function for the normal critical Casimir force

Figure 2.7 shows the scaling function ψp [Eq. (2.29)] as a function of Ξ/Π = X/P, describing

the lateral variation of the normal critical Casimir force at Θ = 0 as obtained within the DA



52 2. Critical Casimir forces between colloids and patterned substrates

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5 2

Ξ/Π = X/P

ψ
p
(λ

,Π
,Ξ

,Θ
=

0,
∆
)

(a)

λ = 1/2

T = Tc

Π = 10
Π = 5
Π = 2.3

Π = 1.5 Π = 0.57

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5 2

Ξ/Π = X/P

ψ
p
(λ

,Π
,Ξ

,Θ
=

0,
∆
)

(b)

λ = 1/5

T = Tc Π = 10
Π = 5
Π = 2.3
Π = 0.57

Figure 2.7: MFT (d = 4) scaling function ψp [Eq. (2.29)] of the normal critical Casimir force acting on

a colloidal sphere with (b) = (−) BC which is close to a periodically patterned substrate [Fig. 2.1] with

(a1) = (−) BC on one kind of stripes [shaded areas] and (a2) = (+) BC on the other kind of stripes.

Due to this choice of the BC the colloid is attracted by the shaded stripes and repelled by the others. ψp

is shown as a function of the lateral position of the colloid X/P with P = L1 +L2 and at the bulk critical

point Θ = 0. The geometry of the pattern is characterized by Π = P/
√

RD and λ = L1/P, for which

we have chosen the values (a) λ = 0.5 and (b) λ = 0.2. The lines are the results for ψp as obtained

within the DA for d = 4 [Eqs. (2.31) and (2.13)], whereas the symbols represent the full numerical data

obtained within MFT for ∆ = 1/3 for various values of Π. For patterns which are finely structured on

the scale of the colloid size, i.e., Π . 2, the actual results deviate from the approximate ones obtained

within the DA due to the strong influence (in this context) of the inherent nonlinear effects.
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Figure 2.8: (a) The same as in Fig. 2.7, but for λ = 0.8. Also in this case, the DA turns out to be

accurate for Π & 2 while it fails to describe quantitatively the full numerical data for smaller values of

Π. (b) Comparison between the scaling functions ψp in d = 3 (dotted lines) and d = 4 (solid lines), at

T = Tc, for λ = 0.8, and within the DA. At the critical point the expression for this scaling function ψp

is known analytically [see Eqs. (2.31) and (2.13)], and the corresponding plot presented here shows

that the lateral variation of the normal critical Casimir force is less pronounced in d = 3 than in d = 4.

(We note that for Π → 0 we expect that also in d = 3 the DA fails to describe quantitatively the actual

behavior; however, we nonetheless present the curve for Π = 0.57 in order to show that the critical

Casimir force obtained within the DA practically does not change laterally for such small values of Π.)

for d = 4 [Eq. (2.31) with Eq. (2.13); solid lines] compared with the one obtained from the

full numerical MFT calculation [∆ = 1/3; symbols] for symmetry breaking boundary conditions

(a1)= (−), (a2)= (+), and (b)= (−) [Fig. 2.1]. From this comparison for λ = 0.5 [Fig. 2.7(a)]

and λ = 0.2 [Fig. 2.7(b)] and for various values of Π one can infer that for ∆→ 0 and Π≫ 1, i.e.,

L1 +L2 ≫
√

RD the DA describes well the actual behavior of the scaling function, even if the

force scaling function does not attain its limiting homogeneous values ψp =±1 in the center of

the stripes. However, for Π . 2 (in d = 4 at T = Tc) the DA does not quantitatively describe the

actual behavior and the scaling function ψp obtained from the full numerical MFT calculations

deviates from the one obtained within the DA. Within both the DA and the full numerical MFT

calculation, for Π → 0 the normal critical Casimir force loses its lateral dependence on Ξ.

But from the full numerical calculation we find that the corresponding constant value which is
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attained by ψp differs from the one obtained within DA [Eq. (2.32)]. This shows that for small

periodicities P .
√

RD nonlinearities inherent in the critical Casimir effect strongly affect the

resulting scaling functions of the force and the potential, so that in this respect the assumption

of additivity of the force and thus the use of the DA are not justified.

Figure 2.8(a) shows the same comparison as Fig. 2.7 but for λ = 0.8, which corresponds to

an areal occupation of 80% of the substrate surface with (−) BC and 20% with (+) BC. Due to

the fact that at the critical point ψ(a1|a2,b)(Ξ,Θ = 0,∆ → 0) is actually independent of the BC,

ψp(λ = 0.8,Π,Ξ,Θ = 0,∆ → 0) in Fig. 2.8(a) is, within the DA, complementary to the one for

λ = 0.2 in Fig. 2.7(b), i.e., it is obtained from the latter by a reflection with respect to ψp = 0

followed by a shift in Ξ/Π of 0.5. Instead, the full numerical data in Fig. 2.8(a) and Fig. 2.7(b)

show a different behavior as they clearly tend to assume the value −1 corresponding to the

homogeneous case with (−,−) BC. By contrast, for the case λ = 0.2 shown in Fig. 2.7(b), the

full numerical data do not reach as closely the value +1 corresponding to (+,−) BC, although

the substrate area is covered by 80% with (+) BC. This feature is addressed in more detail in

Sec. 2.7. Figure 2.8(b) compares the scaling function ψp of the normal critical Casimir force at

T = Tc and for λ = 0.2 as obtained within the DA for d = 4 (solid lines) with the corresponding

one for d = 3 (dotted lines). At T = Tc, ψp is determined by Eqs. (2.31) and (2.13) from which

one can infer that the lateral variation of the normal Casimir force is less pronounced for d = 3

than for d = 4. This qualitative feature holds for all values of λ (not shown). However, off

criticality, Θ ≫ 1, [according to Eqs. (2.31) and (2.16)] the DA scaling functions both for d = 3

as obtained from MC simulation data and for d = 4 as obtained from MFT de facto coincide

(not shown), similarly to the case of a single chemical lane in Fig. 2.5(b).

Although one would expect the DA to be valid for large radii R, the lateral variation of the

boundary conditions at the surface of the patterned substrate on a scale P.
√

RD — correspond-

ing to the limit Π → 0 — renders the DA less accurate, as it clearly emerges from the numerical

data presented in Figs. 2.7 and 2.8. The fact that a large colloid radius R does not guarantee the

validity of the DA can be understood by noting that such a discrepancy between the full numer-

ical calculation and the result of the DA approximation already emerges in the film geometry

(formally corresponding to the limit R → ∞), i.e., for a chemically patterned wall opposite to a

laterally homogeneous flat wall. This “ph” configuration has been studied in Ref. [47] within

MFT for laterally alternating chemical stripes of width L1 = S+ and L2 = S− with (+) and (−)

BC, respectively, opposite to a homogeneous substrate with (+) BC a distance L apart [see

Fig. 2.1 and the inset of Fig. 2.9]. Indeed, by using the assumption of additivity of the critical

Casimir forces underlying the DA and neglecting edge effects, the normal critical Casimir force

f ph
(DA)(S+,S−,L,T ) per unit area acting on the walls is predicted to be given by

f ph
(DA)

(S+,S−,L,T ) =
S+

S++S−
f(+,+)(L,T )+

S−
S++S−

f(+,−)(L,T ), (2.34)

where f(+,±) refer to homogeneous parallel walls, as in Eq. (1.3). At the bulk critical point the
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Figure 2.9: Normalized scaling function ∆ph of the critical Casimir force at criticality acting on a homo-

geneous planar wall with (+) BC opposite to a periodically patterned planar substrate with stripes of

alternating (+) and (−) BC as a function of v = S−/S+, where S+ and S− are the respective widths.

The symbols correspond to the MFT (d = 4) data presented in Fig. 12 of Ref. [47] for various values of

S+/L (note that ∆++
0 = ∆(+,+)/(d −1) in Fig. 12 of Ref. [47]). The dashed and dotted lines which join

the data points are a guide to the eye. The solid line corresponds to the DA result given in Eq. (2.37)

which assumes additivity of the forces and turns out to be independent of the ratio S+/L. One can im-

mediately infer from the graph that here the assumption of additivity is not justified, which is the limiting

configuration of the sphere-wall geometry for Π → 0.
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critical Casimir force is given in general by [47]

f ph(S+,S−,L,T = Tc) = kBTc
d−1

Ld
∆ph

(

v =
S−
S+

,
S+
L

)

. (2.35)

Using Eq. (2.34) together with Eqs. (1.3) and (1.4) one finds within the DA that

(d−1)∆ph
(DA)

(

v,
S+
L

)

=
v∆(+,−)+∆(+,+)

1+ v
, (2.36)

which renders the rhs of Eq. (2.36) to be independent of the scaling variable S+/L. Within MFT

as studied in Ref. [47] (d = 4), one has ∆(+,−) = −4∆(+,+) > 0 [see the end of Sec. 1.2.4] so

that

∆
ph
(DA)

(

v,
S+
L

)

=
|∆(+,+)|

3
4v−1
1+ v

. (2.37)

In Fig. 2.9 we show the comparison between the actual scaling function ∆ph (data points,

obtained numerically as reported in Fig. 12 of Ref. [47]) and ∆
ph
(DA) (Eq. (2.37), solid line)

derived by assuming additivity of the forces and neglecting edge effects. Figure 2.9 clearly

shows that the actual behavior of the critical Casimir force in the film geometry is not properly

predicted within these assumptions. This is expected to be due to the presence of nonlinear

effects and of edge effects in this context. This explains why in the limit Π→ 0 the DA (R≫ D)

used here does not capture the behavior of the critical Casimir force acting on a colloid close to

periodically patterned substrate.

In Fig. 2.10 we show the behavior of scaling function Kp [Eq. (2.27)] of the normal critical

Casimir force acting on the colloid in d = 4 with (b) = (−) BC as a function of Θ = D/ξ+

(i.e., as a function of the normal distance of the colloid from the substrate in units of the bulk

correlation length) and for various values of λ and Π. In Fig. 2.10 the scaling function Kp is

evaluated at X = 0 [see Fig. 2.1] which corresponds to the most preferred lateral position of

the colloid in which the normal force is least repulsive or most attractive [see Fig. 2.7]. From

Fig. 2.10 one can infer that the DA does not provide an accurate estimate of Kp in the whole

range of Θ for Π = 0.57 [panel (b)], whereas it does so for Π = 2.3 [panel (a)]. Indeed, for

Π = 0.57 the discrepancy between the DA and the numerical data is already significant for

Θ . 4 and 0.3 . λ . 0.9, whereas for Π = 2.3 agreement is found for all values of λ except

for Θ . 1 [Fig. 2.10(a)]. This fact suggests that for relatively small periodicities Π . 2 non-

additive and edge effects become important. On the other hand, for large values of Θ ≫ 1 the

DA describes the behavior of Kp rather well for all values of Π due to the exponential decay of

the critical Casimir force for Θ ≫ 1 [Eq. (1.5)]. Figure 2.11 shows the scaling function Kp for

d = 3 within the DA as obtained from Monte Carlo simulation data for the film geometry (see

footnote 14 on page 40). The qualitative features of the behavior of Kp in d = 3 and d = 4 are

similar.

From our analysis in d = 4 we conclude that the DA describes quantitatively well the behavior

of the actual critical Casimir force for Π& 2 for all values of Θ. For smaller values of Π, the DA



2.5. Periodic chemical patterns (p) 57

-1

0

1

2

3

4

0 2 4 6 8 10

(a)Π = 2.3
Ξ = 0

lines: DA (∆ → 0)
symbols: MFT (∆ = 1

3 )

d = 4

(+,−)

(−,−)

λ = 0
= 1/5
= 2/5
= 3/5

= 4/5
λ = 1

Θ

K
p
(λ

,Π
,Ξ

,Θ
,∆

)/
|K

(−
,−

)(
0,

0)
|

-1

0

1

2

3

4

0 2 4 6 8 10

(b)Π = 0.57
Ξ = 0

lines: DA (∆ → 0)
symbols: MFT (∆ = 1

3 )

d = 4

(+,−)

(−,−)

λ = 0
= 1/5
= 2/5
= 3/5

= 4/5
λ = 1

Θ

K
p
(λ

,Π
,Ξ

,Θ
,∆

)/
|K

(−
,−

)(
0,

0)
|

Figure 2.10: Scaling function Kp [Eq. (2.27)] of the normal critical Casimir force acting on a spheri-

cal colloid with (−) BC located at X = 0 (Ξ = X/
√

RD) close to a periodically chemically patterned

substrate [see Fig. 2.1]. Kp is suitably normalized by the absolute value of the force scaling func-

tion K(−,−)(0,0) = 2π∆(−,−)/(d − 1) for the homogeneous (−,−) case at criticality and within the DA

[Sec. 2.2.1]. The lateral position of the center of the colloid is fixed at the center of a stripe with

(a1) = (−) BC and width L1 = λP, which it is attracted to, in contrast to the second type of stripes with

(a2) = (+) BC and width L2 = (1−λ )P, which it is repelled from. The scaling variable corresponding

to the periodicity of the substrate pattern is (a) Π = P/
√

RD = 2.7 and (b) Π = 0.57, whereas the rela-

tive area fraction of the (−) stripes changes from λ = L1/(L1 +L2) = 0 to λ = 1 (top to bottom: fully

repulsive to fully attractive). In (a) and (b) the lines represent the result for the MFT critical Casimir force

within the DA [∆ → 0, d = 4, see Eq. (2.31)], whereas the symbols represent the full numerical MFT

data obtained for ∆ = 1/3. The DA agrees reasonably well with the full data for Π = 2.3 [(a)] and Θ & 1,

but for Π = 0.57 [(b)] it fails to describe the actual behavior within the ranges Θ . 4 and 0.3 . λ . 0.9

where the nonlinear effects strongly affect the resulting scaling function.
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Figure 2.11: Scaling function Kp [Eq. (2.27)] shown for Π = 0.57 and 2.3, as obtained for d = 3 within

the DA on the basis of the Monte Carlo simulation data for the film geometry (see footnote 14 on

page 40). (We note, however, that we do not expect that the curves shown for Π = 0.57 are quantita-

tively reliable.)

is only quantitatively reliable for large values of Θ (at which the force decays exponentially).

For example, for Π & 0.5 the DA result is quantitatively correct for Θ & 4. We expect these

properties to be carried over to d = 3.

2.6. Critical Casimir levitation

Rather remarkably, within a certain range of values of λ , Kp changes sign as a function of

Θ = D/ξ+ (see Figs. 2.10 and 2.11). In this context it is convenient to introduce for later

purposes another scaling variable Ψ = Π|Θ|1/2 = P/
√

Rξ± which is independent of D and

therefore does not vanish in the DA limit D ≪ R (i.e., ∆ → 0). Due to this change of sign of

Kp, there exists a certain value Θ = Θ0(Ψ,λ ,Ξ,∆) at which the normal critical Casimir force

Fp acting on the colloid vanishes. This implies that in the absence of additional forces the

colloid levitates at a height D0 determined by Θ0 and ξ+, which can be tuned by changing the

temperature. Since for fixed geometrical parameters R, X , and P the scaling variables Θ, Π, Ξ,

and ∆ depend on D, one has to consider the behavior of Fp as a function of D near D0 in order

to assess whether the levitation is stable against perturbations of D or not. Stability requires

∂DFp|D=D0 < 0 (so that for D < D0 the colloid is repelled from the patterned substrate, whereas

for for D > D0 it is attracted). According to Eq. (2.27) one has

∂DFp = kBT
R

Dd

{
−(d −1)− 1

2Π∂Π − 1
2Ξ∂Ξ +Θ∂Θ +∆∂∆

}
Kp(λ ,Π,Ξ,Θ,∆). (2.38)
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The laterally preferred position is always at X = X0 = 0, corresponding to Ξ = Ξ0 = 0, so that

within the DA (∆ → 0) one has

sign
(

∂DFp
∣
∣
D=D0,X=X0,DA

)

= sign
({

−1
2Π∂Π +Θ∂Θ

}
Kp(λ ,Π,Ξ = 0,Θ,∆ → 0)

∣
∣
Θ=Θ0

)

,

(2.39)

where we have used the implicit equation Fp|D=D0 = 0 so that Kp|D=D0 = 0. (Equation (2.39)

assumes that ∂∆Kp does not diverge ∝ ∆−1 for ∆ → 0.) In the following we only consider Θ ≥ 0

and BC (a1) = (−), (a2) = (+), and (b) = (−).

Within the DA we find that both ∂ΠKp|Θ=Θ0,Ξ=Ξ0 and ∂ΘKp|Θ=Θ0,Ξ=Ξ0 are negative, so that

according to Eq. (2.39) the sign of ∂DFp|D=D0,X=X0,DA can vary and depends on their values as

well as on Θ0 and Π. However, at criticality (Θ = 0) the second term of the rhs of Eq. (2.39)

vanishes. Thus, at the bulk critical point T = Tc the derivative ∂DFp evaluated at D = D0 and

X = X0 = 0 is always positive so that one cannot achieve stable levitation. On the other hand,

for Θ > 0 it is always possible to find geometrical configurations for which the colloid exhibits

stable levitation, as described in the following.

2.6.1. General analysis of geometrical parameters

Figure 2.12 shows the values of Θ0 at which the normal critical Casimir force acting on a

colloid vanishes as a function of the new scaling variable Ψ introduced at the beginning of this

subsection, for various λ , for Ξ = 0, and within the DA (∆ → 0) for (a) d = 4 and (b) d = 3.

The corresponding sign of ∂DFp
∣
∣
D=D0

[according to Eq. (2.39)] is also indicated: Θ0 drawn as

a solid line indicates ∂DFp
∣
∣
D=D0

< 0, i.e., stable levitation of the colloid; a dashed line, instead,

indicates ∂DFp
∣
∣
D=D0

> 0 and therefore a local maximum of the critical Casimir potential with

respect to D, which occurs within the shaded regions in Fig. 2.12. For a given value of λ (with

λ1 < λ < λ0 as we shall discuss in detail further below), e.g., λ = 0.60 in Fig. 2.12(a), the

corresponding curve for Θ0 shows a bifurcation at Ψ = Ψ∗(λ ) such that a vertical line drawn in

Fig. 2.12 at a certain Ψ intersects this curve in two points Θ0,u and Θ0,s > Θ0,u if Ψ < Ψ∗(λ ),

whereas it has no intersection for Ψ > Ψ∗(λ ). In the former case Θ0,u and Θ0,s correspond to

a local maximum and to a local minimum of the critical Casimir potential at distances D0,u =

ξ+Θ0,u and D0,s = ξ+Θ0,s, respectively, i.e., to an unstable and a stable levitation point for the

colloid, respectively. Instead, for Ψ > Ψ∗(λ ), the critical Casimir force has no zero at any finite

value of D. We note that D = 0 (stiction) and thus Θ = 0 always corresponds to the global

minimum of the potential because for D → 0 the critical Casimir potential is strongly attractive.

The corresponding geometrical configuration into which the colloid is finally attracted by the

substrate [due to (a1) = (−), (b) = (−), and X = 0, see Fig. 2.1] is stabilized by the steric

repulsion of the wall.

We note that within the DA the critical Casimir potential for X = 0 is attractive at sufficiently

small distances, even if the major part of the substrate is characterized by (+) BC, i.e., even if

0 6= λ ≪ 1. Indeed, in this case the potential of the colloid at X = 0 and close to a periodically
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Figure 2.12: Values of the scaling variable Θ0 at which within the DA (∆ → 0) the normal critical Casimir

force Kp shown in Figs. 2.10 and 2.11 vanishes as a function of Ψ for (a) d = 4 and (b) d = 3 on the

basis of Monte Carlo simulation data (see footnote 14 on page 40) and for various values of λ = L1/P.

The solid lines correspond to values of Θ0 for which the levitation of the colloid at a height D0 above the

substrate is stable against perturbations of D [∂DFp|D=D0 < 0, see Eq. (2.39)]. The shaded region and

the dashed lines indicate those values of Θ0 for which ∂DFp|D=D0 > 0 and thus do not correspond to

stable levitation. For λ > λ0 with λ0(d = 4) = 4/5 and λ0(d = 3)≃ 0.88, Θ0 ceases to exist, i.e., Kp does

not exhibit a zero. For λ < λ1 with λ1(d = 4) = 1/2 and λ1(d = 3)≃ 0.545, Θ0(Ψ ց Ψ0(λ )) diverges.

(The values for Ψ0(λ ) are indicated by upward arrows.) For any λ < λ0, Θ0 exists for Ψ < Ψ∗(λ ).

(From the analysis in Fig. 2.10 we expect the DA to be quantitatively reliable only for Ψ & 2
√

Θ0 for

Θ0 . 4 and for Ψ & 0.5
√

Θ0 for Θ0 & 4, which implies λ . 0.7 in d = 3 and λ . 0.6 in d = 4.)
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patterned substrate can be approximated by the one due to a single chemical lane centered at X =

0, which has been discussed in Sec. 2.4. For given colloid radius R and width L1 = λP > 0 of

the attractive stripe, the scaling variable Λ = L1/(2
√

RD) diverges as D → 0, so that the scaling

function ωℓ(Λ,Ξ,Θ,∆) which characterizes the potential of the lane [see Eq. (2.24)] attains the

value −1 corresponding to the case of homogeneous, attractive (−,−) BC [see Fig. 2.5]. Within

this approximation and for D ≪ ξ± the critical Casimir force becomes attractive if ϑp ≃ ϑℓ < 0

which, due to Eqs. (2.24), (2.7), and (1.4), yields the condition ωℓ(Λ,Ξ = 0,Θ → 0,∆ → 0) <

1− 2∆(+,−)/(∆(+,−)−∆(+,+)), i.e., ωℓ < −0.6 in d = 4 [117] and ωℓ . −0.76 in d = 3 (see

footnote 14 on page 40); this occurs for Λ > Λ0 = 1.1 in d = 4, and Λ > Λ0 = 2.7 in d = 3,

respectively [see also Fig. 2.5(a)]. Accordingly, at distances D < λ 2P2/(4RΛ2
0) (together with

D ≪ ξ±) the critical Casimir potential Φp is negative and diverges to −∞ for D → 0. (However,

for very small values of λ this would occur at distances of microscopic scale such that the

scaling limit and thus the form of Φp do no longer hold). Thus the bifurcation of Θ0 at Ψ∗(λ )

corresponds to a transition from (metastable) levitation at D = D0,s for Ψ < Ψ∗(λ ) to stiction

at D = 0 for Ψ > Ψ∗(λ ). For Ψ < Ψ∗(λ ) the metastable levitation minimum at D0,s is shielded

from the global minimum at D = 0 by a potential barrier the height of which vanishes for

Ψ ր Ψ∗(λ ) [see Fig. 2.14].

Experimentally, one typically varies the value of ξ+ by changing the temperature [20, 21,

35, 37] and leaves the geometry (λ , P, and R) unchanged, which results in a change of Ψ via

varying T . Thus, experimentally, the transition at Ψ∗(λ ) corresponds to a de facto irreversible

transition from separation to stiction of the colloid as a function of temperature.

Moreover, from Fig. 2.12 one can infer that for both d = 3 and d = 4 there is a λ0 such that,

for 1 ≥ λ > λ0, Kp has no zero for any choice of Ψ (i.e., there is no solution Θ0) and the critical

Casimir force is attractive at all distances. Within the DA, λ0 = ∆(+,−)/(∆(+,−)−∆(−,−)) [see

also Eq. (2.33)], which renders the values λ0 = 0.80 in d = 4 [117] and λ0 ≃ 0.88 in d = 3 (see

footnote 14 on page 40).

In addition, from Fig. 2.12 one can infer that for λ0 > λ > λ1 ≃ 0.5 and Ψ. 1, Θ0,s effectively

does no longer depend on Ψ but solely on λ . Accordingly, the distance D0,s ∝ ξ+ at which the

colloid stably levitates can be tuned by temperature upon approaching criticality. However,

for λ < λ1 ≃ 0.5, Θ0,s diverges at Ψ = Ψ0(λ ) < Ψ∗(λ ) such that for Ψ0(λ ) < Ψ < Ψ∗(λ )

the colloid exhibits critical Casimir levitation at a local minimum of the potential, whereas

within this range of λ values for Ψ < Ψ0(λ ) the critical Casimir potential has only a local

(positive) maximum at D0,u; it is repulsive for D > D0,u and therefore for large values of D

(i.e., Θ ≫ 1 and Π ≪ 1) it approaches zero from positive values. This qualitative change in

the behavior of the critical Casimir potential occurs at λ = λ1. The value of λ1 is close to 0.5

because the repulsive and attractive forces for (+,−) and (−,−) BC, respectively, have similar

strengths but opposite signs for Θ ≫ 1, i.e., k(+,−)(Θ ≫ 1) ≃ −k(−,−)(Θ ≫ 1) for both d = 3

and d = 4 [see Eq. (1.5), where |A−/A+| ≃ 1.2 in d = 3 [21] and |A−/A+|= 1 in d = 4 [117]].

Accordingly, depending on λ being larger or smaller than λ1 ≃ 0.5, the area covered by one of
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the two BC prevails and the resulting force is asymptotically (i.e., Θ≫ 1) attractive or repulsive,

respectively [see the remark at the end of Sec. 2.5.1 and Eqs. (2.33) and (B.29)]. Taking into

account the slight difference in the strength of the asymptotic forces for (+,−) and (−,−) BC

one finds λ1 = (1−A+/A−)−1 which renders λ1 = 1/2 in d = 4 and λ1 ≃ 0.545 in d = 3.

The asymptotic behavior of the force at large distances can be inferred from the asymptotic

behavior of Kp(λ ,Π = ΨΘ−1/2,Ξ = 0,Θ ≫ 1,∆ → 0) ≃ A (Ψ,λ ) Θd−1e−Θ, which can be

obtained from Eqs. (2.31), (2.29), (B.29), (2.16), and (1.5) . Accordingly, the value Ψ0(λ ) at

which Θ0,s diverges is characterized by the fact that A (Ψ ≶ Ψ0(λ ),λ ) ≷ 0 so that the force

approaches zero from above or from below depending on having Ψ < Ψ0(λ ) or Ψ > Ψ0(λ ),

respectively. The condition A (Ψ0(λ ),λ ) = 0 yields the following implicit equation for Ψ0(λ ):

2λ1 =
∞

∑
n=−∞

erf
{

Ψ0(λ )√
2
(n+ λ

2 )
}

− erf
{

Ψ0(λ )√
2
(n− λ

2 )
}

. (2.40)

For λ ≪ 1 the sum on the rhs of Eq. (2.40) can be approximated by the term n = 0 alone and

one finds Ψ0(λ ≪ 1) ≃ 23/2λ−1 erf−1(λ1), where erf−1 is the inverse error function, which

yields the relations Ψ0(λ ≪ 1) ≃ 1.49/λ for d = 3 and Ψ0(λ ≪ 1) ≃ 1.35/λ for d = 4. On

the other hand, in the marginal case one expects Ψ0(λ = λ1) = 0. However, as argued above,

at the critical point (Θ = 0) the colloid does not exhibit stable levitation for any geometrical

configuration; this is in accordance with Fig. 2.12 because for T → Tc, the levitation minimum

of the potential moves to large D (D0,s = Θ0,sξ+ → ∞) and disappears at T = Tc.

In summary, as function of λ there are three distinct levitation regimes:

(i) λ > λ0 with λ0(d = 3)≃ 0.88 and λ0(d = 4) = 4/5: There is no levitation and the critical

Casimir force is attractive at all distances for any temperature.

(ii) λ0 > λ > λ1 with λ1(d = 3) ≃ 0.545 and λ1(d = 4) = 1/2: Sufficiently close to Tc,

i.e., for Ψ = P/
√

Rξ+ < Ψ∗(λ ) there is a local critical Casimir levitation minimum.

Upon approaching Tc its position D0,s = Θ0,sξ+, with Θ0,s(ξ+ → ∞) finite, moves to

macroscopic values proportional to the bulk correlation length.

(iii) λ1 > λ : As in (ii) there is a local critical Casimir levitation minimum sufficiently close to

Tc, i.e., for Ψ < Ψ∗(λ ). In general the onset of its appearance occurs further away from

Tc upon lowering λ . Upon approaching Tc the position D0,s of this minimum diverges

at a distinct nonzero reduced temperature given by Ψ0(λ ), i.e., at ξ+ = P2/[RΨ2
0(λ )]:

D0,s = Θ0,sξ+ with Θ0,s(Ψ ց Ψ0(λ ))→ ∞.

The behavior of the critical Casimir force acting on the colloid for these three cases is sketched

in Fig. 2.13.

We note that, according to Figs. 2.7, 2.8, 2.9 and 2.10, we expect that for Π . 2 and Θ . 4

and for Π . 0.5 and Θ & 4, the DA does not provide a quantitatively reliable description of

the actual behavior of Kp and therefore of Fp; thus, for values of Ψ . 2
√

Θ0 for Θ0 . 4, and
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Figure 2.13: Sketch of the normal critical Casimir forces acting on a colloid with (−) BC opposite to a

substrate patterned with stripes with (±) BC.. For the three distinct cases (i) λ > λ0, (ii) λ0 > λ > λ1,

and (iii) λ < λ1, one obtains characteristic behavior of the forces as indicated in the figure (see the main

text). For Ψ < Ψ∗(λ ) and λ < λ0 the particle eventually exhibits leviatation at a stable distance from

the substrate. For λ < λ1, levitation occurs only at values Ψ∗(λ )> Ψ > Ψ0(λ ).
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Ψ . 0.5
√

Θ0 for Θ0 & 4, we expect quantitative discrepancies between the actual behavior and

the one predicted by the DA shown in Fig. 2.12. Nonetheless our results demonstrate that the

geometric arrangement of the chemical patterns allows one to design the normal critical Casimir

force over a wide range.

2.6.2. Levitation for experimentally relevant parameters — a case study

Figures 2.14(a) and (b) show the critical Casimir potential Φp as a function of D in d = 3

within the DA based on Monte Carlo simulation data for the film geometry (see footnote 14

on page 40) for a variety of specifically chosen values of the parameters P, L1, R, and ξ . The

choice of these values is motivated by the typical experimental parameters which characterize

recent investigations of the critical Casimir force acting on colloids immersed in binary liquid

mixtures [20, 21, 35, 37]. In particular, concerning the colloid radius we focus on the data of

Ref. [35], corresponding to R = 1.35µm, while for the pattern we have chosen a periodicity

P = 1µm with λ = 0.4 (i.e., L1 = 400nm and L2 = 600nm) [Fig. 2.14(a)], or P = 0.4µm

with λ = 0.65 (i.e., L1 = 260nm and L2 = 140nm) [Fig. 2.14(b)]. A chemically patterned

substrate with these characteristics appears to be realizable with presently available preparation

techniques [37, 39, 40]. [We note that Φp as shown in Fig. 2.14(a) and (b) is expected to describe

the actual interaction potential in the scaling regime characterized by values of D and ξ+ much

larger than microscopic length scales (such as ξ+
0 ≃ 0.2nm [20, 21]) so that this prediction for

Φp is valid only for D,ξ+ & 5nm.] With this choice of parameters we have calculated Φp for

various values of ξ+ within an experimentally accessible range [20, 21, 35, 37].

From Figs. 2.14(a) and 2.14(b) one can infer that for small values of ξ+ (corresponding to

large values of Ψ > Ψ∗(λ )) the critical Casimir potential is always attractive with a monotonic

dependence on D [see also Fig. 2.12]. Upon approaching criticality, i.e., for increasing values

of ξ+ and decreasing values of Ψ < Ψ∗(λ ), a local maximum and a local minimum of the

potential develop, so that for very small as well as for large D the colloid is attracted to the

patterned substrate, whereas within an intermediate range of values for D it is repelled from it

[see also Fig. 2.12]. Thus, the colloid stably levitates at a distance D0,s corresponding to a local

minimum of the potential. The depth of this minimum ranges between a few kBT [Fig. 2.14(a)]

up to several kBT [Fig. 2.14(b)]. Upon increasing ξ+, D0,s increases as well, i.e., the colloid

position is shifted away from the patterned substrate with the potential minimum becoming

more shallow. In Fig. 2.14(a) λ = 0.4 and we find Ψ∗(λ = 0.4)≃ 4.65 and Ψ0(λ = 0.4)≃ 3.71

[see Fig. 2.12(b)] so that for Ψ < Ψ0(λ = 0.4), i.e., for ξ+ & 53.5nm [Fig. 2.14(a)] the colloid

does not exhibit stable levitation and the critical Casimir potential has a local maximum only.

The levitation minimum moves to macroscopic values of D upon approaching the temperature

corresponding to ξ+ ≃ 53.5nm. In Fig. 2.14(b) λ = 0.65 and one has Ψ∗(λ = 0.65) ≃ 2.63;

here Θ0,s remains finite for Ψ → 0 in contrast to the case λ < 0.545 [Fig. 2.12(b)]. Thus,

within the DA, for the case shown in Fig. 2.14(b) stable levitation of the colloid is preserved
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(b)R = 1.35µm
P = 0.4µm, λ = 0.65
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Figure 2.14: Critical Casimir potential Φp [Eq. (2.28)] in d = 3 of a colloid of radius R = 1.35µm close

to a periodically patterned substrate as a function of D and for various values of ξ+ for P = 1µm with

λ = 0.4 in (a) and P = 0.4µm with λ = 0.65 in (b). The values of P, λ , and ξ+ are chosen as to be

experimentally accessible in a colloidal suspension exhibiting critical Casimir forces [20, 21, 35, 37].

The critical Casimir potential for the colloid close to a patterned substrate may exhibit — depending on

the value of ξ+, and, thus, on the temperature — a local minimum corresponding to stable levitation.

(Note that (a) corresponds to case (iii) in Fig. 2.13, and (b) corresponds to case (ii) in Fig. 2.13.)
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for all finite values of ξ+ > P2/[R (Ψ∗(λ = 0.65))2]≃ 17nm. In this case upon approaching Tc

the levitation minimum moves to macroscopic values of D proportional to the bulk correlation

length ξ+.

Additional forces

The discussion above focuses on the position of mechanical equilibrium of the colloid, corre-

sponding to the point at which the forces acting on the particle vanish and the associated poten-

tial Φ has a local minimum Φmin. However, due to the thermal fluctuations of the surrounding

(near-) critical fluid at temperature T , the colloid undergoes a Brownian diffusion which allows

it to explore randomly such regions in space where the potential Φ is typically larger than Φmin

for at most few kBT . As a result, a position of mechanical equilibrium is stable against the effect

of thermal fluctuations only if the potential depth of the minimum is larger than few kBT . In

particular, if the potential barrier Φ(L1,P,0,D = D0,u,R,T )−Φ(L1,P,0,D = D0,s,R,T ), which

separates the position of the local minimum at distance D=D0,s (levitation) from the global one

at D = 0 (stiction), is not sufficiently large [see, e.g., the curves corresponding to ξ+ = 36nm in

Fig. 2.14(a) or corresponding to ξ+ . 18nm in Fig. 2.14(b)], a de facto irreversible transition

from levitation to stiction may occur as a consequence of thermal fluctuations.

In Fig. 2.15 we show the resulting total potential of the forces acting on the colloid in the

presence of an additional electrostatic repulsion which is experimentally practically unavoid-

able, in order to study its effect on critical Casimir levitation. We assume that the electrostatic

repulsion is laterally homogeneous and that it can be simply added to the critical Casimir po-

tential [21, 35] (see Sec. 3.2.2 below). Concerning the spatial dependence of the electrostatic

repulsion we consider the one of Ref. [35], which corresponds to a colloid of radius R= 1.35µm

immersed in a (near-) critical water-lutidine mixture and close to a substrate exhibiting critical

adsorption of water or lutidine [35]:

Φel(D)/kBT = exp{−κ(D−D0)}, (2.41)

where D0 = 88nm and κ−1 = 11nm [35]. (Formally, Φel in Eq. (2.41) is finite for D → 0, and

thus Φp +Φel is negative for D . 2nm and has a global minimum at D = 0 because Φp →−∞

for D → 0. However, Eq. (2.41) is actually the asymptotic form of the electrostatic interaction

which is valid for distances larger than the electrostatic screening length, i.e., D ≫ κ−1. The

corresponding total potential Φp +Φel is therefore not accurate for small values of D and is

reported in Fig. 2.15 for D > 50nm only.) As in Fig. 2.14(b) we choose P = 0.4µm, λ = 0.65,

and experimentally accessible values of ξ+.

Figure 2.15 provides a realistic comparison of the critical Casimir potential with other forces

as they typically occur in actual experimental systems. One can infer from the graph reported

in Fig. 2.15 that for this choice of parameters the critical Casimir levitation exhibited by the

colloid is rather pronounced even in the presence of electrostatic interaction. Far from the criti-

cal point (ξ+ = 10nm) the interaction of the colloid with the substrate is completely dominated
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Figure 2.15: The same as in Fig. 2.14(b) but with an electrostatic potential Φel [Eq. (3.10)] added to Φp,

which refers to actual experimental data [35]. The shaded area indicates the ranges of the positions and

the depths of the local minima of the total potential occurring if the substrate is laterally homogeneous

and purely attractive, i.e., for λ = 1 ((−,−) BC) for the range 14nm < ξ+ < 75nm leading to potential

depths between 0.5kBT and 70kBT (indicated by the shaded arrow); for λ = 1 the preferred colloid

position is dictated by the electrostatic repulsion and restricted to the range of 50nm to 75nm, whereas

the colloid position D0,s = Θ0,sξ+ due to critical Casimir levitation can be much larger and tuned by

temperature. Moreover, whereas for λ = 1 and upon approaching Tc the minima monotonically become

deeper, the levitation minima first deepen and move to smaller values of D followed by a decrease of the

depth, by becoming more shallow, and moving to larger values of D. Reducing the range and strength

of the electrostatic repulsion by adding salt to the solvent is expected to provide access to even more

details of the critical Casimir levitation potential Φp shown in Fig. 2.14(b).
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by electrostatic repulsion. Upon approaching criticality (10nm . ξ+ . 35nm) a minimum in

the total potential develops and becomes deeper due to the increasing critical Casimir attrac-

tion working against the electrostatic repulsion. For this latter range of values of ξ+ the local

minimum of the critical Casimir potential corresponding to levitation is located at distances

D0,s . 60nm at which the electrostatic repulsion still strongly contributes to the resulting total

potential [see Fig. 2.15]. Closer to the critical point (ξ+ & 45nm) the levitation minimum of

the critical Casimir potential occurs at distances D0,s & 100nm [see Fig. 2.14(b)] at which the

electrostatic force acting on the colloid is weak. Thus, here the critical Casimir effect domi-

nates and the position of the minimum of the total potential increases with increasing values

of ξ+, which allows for measurements of the critical Casimir potential for distances at which

the precise form of Φel is not important. Moreover, the depth of the minimum decreases upon

approaching criticality and the minimum becomes more shallow.

This behavior of the levitation minimum is distinct from the critical Casimir effect acting on

a colloid close to a homogeneous substrate: a local minimum also occurs in the latter case if the

critical Casimir force is purely attractive (λ = 1, (−,−) BC) and works against the electrostatic

repulsion [20, 21], due to the competition of different forces with opposite sign. (We note that

the critical Casimir levitation described above emerges from the critical Casimir force alone,

i.e., it is a feature of a single force contribution.) However, in this homogeneous case the

preferred colloid position D0,(−,−) depends crucially on the form of the electrostatic interaction

and is almost constant (50nm < D0,(−,−) < 75nm). Moreover, the depths of these latter minima

monotonically increase as a function of of ξ+ and become much larger than those shown in

Fig. 2.15 (see, e.g., Fig. 2(a) and Fig. 2(c) in Ref. [20] and Fig. 3 in Ref. [35]). In Fig. 2.15

this is indicated by the shaded area and the shaded arrow, which corresponds to the area of

the graph within which minima of the total potential in the homogeneous case λ = 1 occur

for 14nm < ξ+ < 75nm corresponding to potential depths of 0.5kBT up to 70kBT . On the

other hand, the colloid position D0,s due to critical Casimir levitation can be much larger, can

reach values of several ξ+, and can be tuned by temperature according to D0,s = Θ0,sξ+. In

conclusion, the examples presented in Figs. 2.14 and 2.15 strongly suggest that the critical

Casimir levitation of a colloid close to a patterned substrate is experimentally accessible.

2.6.3. Comparison with quantum electrodynamic Casimir levitation

By patterning the substrate, one introduces an additional (lateral) length scale into the system,

which, according to our results presented above, can finally lead to stable levitation. Introduc-

ing an additional length scale along the normal direction by stacking different materials on top

of each other may lead to levitation due to quantum electrodynamic Casimir forces [166]. The

behavior of the stable levitation distance shows a bifurcation and irreversible transitions from

separation to stiction [166] similarly to the ones described above [see Fig. 2.12]. In that context

great importance has been given to the temperature dependence of the position D0,s of stable
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quantum Casimir levitation [166], which is quantified by the value of d
dT D0,s. In the critical

Casimir case presented here, for an estimate of d
dT D0,s we pick as an example the stable lev-

itation positions for ξ+ = 18nm and ξ+ = 60nm as reported in Fig. 2.14 (a different choice

would lead to similar results). The results reported in Fig. 2.14 correspond to the experimen-

tally relevant water-lutidine mixture with ξ+
0 = 0.2nm and Tc ≃ 307K [20, 21, 35]. Therefore,

according to ξ+/ξ+
0 = |(T −Tc)/Tc|−ν , the difference in temperature required to move from

ξ+ = 18nm to ξ+ = 60nm is ∆T ≃ 0.2K. Thus we find d
dT D0,s ≃ 560nm/K for the average

temperature dependence of critical Casimir levitation [Fig. 2.14(b)], and d
dT D0,s ≃ 230nm/K

by additionally taking electrostatics into account [Fig. 2.15]. We note that in the present crit-

ical case d
dT D0,s can become arbitrarily large at temperatures corresponding to the transition

from separation to stiction and the emergence of the local minimum and the local maximum of

the critical Casimir potential [see Fig. 2.12 and the curves for ξ+ = 34nm and ξ+ = 36nm in

Fig. 2.14(a)]. This shows that the critical Casimir levitation is strongly temperature dependent,

even near room temperature, with the variation of stable separation d
dT D0,s being two orders

of magnitude larger than the one predicted for the quantum electrodynamic Casimir effect in

Ref. [166]. In general the colloid will not only be exposed to the critical Casimir force and to an

electrostatic force but also to gravity and to laser tweezers, which generate a linearly increasing

potential contribution. This attractive contribution tends to reduce the potential barriers shown

in Figs. 2.14 and 2.15 and can eliminate small barriers altogether. Thus these external forces

can be used to switch levitation on and off (compare a similar discussion related to the quantum

electrodynamic Casimir levitation in Ref. [164, 166]).

2.7. Cylindrical colloids

Currently, there is an increasing experimental interest in elongated colloidal particles which

have a typical diameter of up to several 100nm and a much larger length (see, e.g., Refs. [111,

167, 168] and references therein). These types of colloids resemble cylinders rather than

spheres. The description of their behavior in confined critical solvents calls for a natural ex-

tension of the studies presented in Secs. 2.2–2.5. Hence, in the present section we consider the

case of a 3d cylinder with (−) BC which is adjacent and parallel aligned to a periodically chem-

ically patterned substrate consisting of alternating (−) and (+) stripes as the ones discussed in

Sec. 2.5. Accordingly, the axis of rotational invariance of the cylinder is perpendicular to both

the x direction [Fig. 2.1] and the direction normal to the substrate, and it is parallel to the direc-

tion of spatial translational invariance of the chemical stripes forming the pattern. As compared

with the case of the sphere the analysis for the cylinder is technically simpler because the sys-

tem as a whole is invariant along all directions but two, the lateral one, x, and the one normal

to the substrate. (For the sphere its finite extension in the second lateral direction, which is

normal to the x-axis, matters and thus leads to a basically three-dimensional problem. Accord-
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ingly, here we do not consider short cylinders, for which this finite length matters, too.) This

reduction of the number of relevant dimensions allows us to perform numerical calculations of

adequate precision for a range of various pattern geometries which is wider than in the case of

the sphere.15 Even though the expressions derived in Appendix B.4 can be used to study the

case of a cylinder having its axis laterally displaced by an arbitrary amount X from the chemical

step, our numerical calculations for the case of a chemical stripe address only the case X = 0.

This corresponds to a lateral position of the symmetry axis of the cylinder which coincides with

the center of an attractive (−) stripe.

In Appendix B.4 we briefly derive the scaling behavior of the normal critical Casimir force

acting on the cylinder and compare it with the case of a sphere. Then, we adapt the Derjaguin

approximation appropriate for the geometry of the cylinder. On this basis, we have calculated

the scaling function of the normal critical Casimir force acting on the cylinder in d = 3 and

d = 4 on the basis of the Monte Carlo simulation data for the film geometry (see footnote 14 on

page 40) and of the analytic MFT expression for the critical Casimir force for the film geometry

[117], respectively. In addition, in order to assess the performance of the DA, we compare our

results with MFT scaling functions numerically calculated within the same approach as the one

of Sec. 1.2.4 [170].

Here we focus on the comparison between the DA appropriate for the cylinder and the full

numerical MFT data for the scaling function Kcyl
p (λ ,Π,Ξ = 0,Θ,∆) which characterizes the

normal critical Casimir force in the presence of a periodically patterned substrate; λ , Π, Ξ,

Θ, and ∆ are defined as in the case of the sphere [see Sec. 2.5 and Appendix B.4]. Figure 2.16

shows the scaling function of the normal critical Casimir force acting on a cylinder as a function

of Θ as obtained from the DA (∆ → 0) in d = 4 and from the full numerical MFT calculations

for ∆ = 1/3. Besides the quantitative differences in the scaling function as a function of Θ,

the qualitative features of the behavior of the force acting on a cylinder, which is reported in

Fig. 2.16 for various values of λ , are similar to the ones for the sphere [compare Figs. 2.10

and 2.11]. For Π = 1.92 [Fig. 2.16(a)] the DA describes the actual behavior of the critical

Casimir force rather well, in particular for Θ & 2, even for most values of λ . As in Figs. 2.10

and 2.11, for a certain range of values of λ the normal critical Casimir force changes sign at

Θ
cyl
0 (Π,λ ,Ξ = 0,∆). On the other hand for small periodicities (Π = 0.29 in Fig. 2.16(b)) the

DA in d = 4 fails to describe quantitatively the actual behavior of the force as obtained from the

full numerical MFT calculations. These strong deviations from the DA [Fig. 2.16(b)] indicate

the relevance of effects caused by the actual non-additivity of critical Casimir forces.

For λ & 0.6 the scaling function Kcyl
p of the normal critical Casimir force obtained numeri-

cally and represented by symbols in Fig. 2.16(b) is very close (much closer than within the DA)

15Here, we do not consider a cylindrical colloid which is not perfectly aligned with the pattern and which would,

therefore, experience a critical Casimir torque; this has been studied in detail in Ref. [169]. (The case of an

elongated particle aligning parallel or perpendicular opposite to a homogeneous substrate has been studied in

Ref. [111].)



2.7. Cylindrical colloids 71

-1

0

1

2

3

4

0 2 4 6 8 10

lines: DA (∆ → 0)
symbols: MFT (∆ = 1

3 )
Π = 1.92

(a)

Ξ = 0
d = 4

λ = 0
= 1/5
= 2/5
= 3/5

= 4/5
λ = 1

Θ

K
cy

l
p

(λ
,Π

,Ξ
,Θ

,∆
)/
|K

cy
l

(−
,−

)(
0,

0)
|

-1

0

1

2

3

4

0 2 4 6 8 10

lines: DA (∆ → 0)
symbols: MFT (∆ = 1

3 )
Π = 0.29

(b)

Ξ = 0
d = 4

λ = 0
= 1/5
= 2/5
= 3/5

= 4/5
λ = 1

Θ

K
cy

l
p

(λ
,Π

,Ξ
,Θ

,∆
)/
|K

cy
l

(−
,−

)(
0,

0)
|

-2

0

2

4

6

8

0 2 4 6 8 10

(c)

Ξ = 0
DA, d = 3

(+,−)

(−,−)

Π = 1.92
{

Π = 0.29
{

λ = 0
= 1/5
= 2/5
= 3/5

= 4/5
λ = 1

Θ

K
cy

l
p

(λ
,Π

,Ξ
,Θ

,∆
→

0)
/
|K

cy
l

(−
,−

)(
0,

0)
|

Figure 2.16: Normalized scaling function Kcyl
p [see Appendix B.4, including expressions for Kcyl

(−,−)(0,0)]

of the normal critical Casimir force acting on a cylindrical colloid close to and parallel to a periodically

patterned substrate. The cylinder axis is aligned with the striped pattern and positioned above the

center of a (−) stripe which has the same adsorption preference as the cylinder (analogous to Fig. 2.10

for a spherical colloid). In (a) for Π= 1.92 the appropriate DA describes the actual MFT data [170] rather

well, and for 0.3 . λ . 0.7 there is a change of sign of the force. In (b), instead, apart from the limiting

homogeneous cases λ = 0 and λ = 1, for Π = 0.29 the DA fails to describe quantitatively the actual

MFT data [170]. In (c) Kcyl
p is shown for d = 3 within the DA based on the Monte Carlo simulation data

for the film geometry (see footnote 14 on page 40) for the two cases Π = 0.29 and Π = 1.92. We expect

that also in d = 3 the DA for Π = 0.29 is not quantitatively reliable.
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to the one corresponding to the homogeneous case with (−,−) BC (corresponding to λ = 1)

and does not show a change of sign. This means that, even if the substrate is not homogeneous

but chemically patterned — but such that the larger part of the surface still corresponds to (−)

BC, i.e., λ & 0.5 — the resulting critical Casimir force acting on the colloid with (−) BC resem-

bles the behavior for laterally homogeneous (−,−) BC. This can be understood in terms of the

fixed point Hamiltonian in Eq. (1.6) which penalizes spatial variations of the order parameter at

short scales. Thus the system tries to smooth out spatial inhomogeneities of the order parameter

profile, biased by the preference of the colloidal particle. If the pattern is very finely structured,

i.e., Π = (L1 +L2)/
√

RD ≪ 1, regions with a positive order parameter close to the narrow (+)

stripes (λ ≃ 1−, i.e., L2 ≪ L1) extent only very little into the direction normal to the substrate

and the resulting order parameter profile at a distance from the substrate remains negative only

[171], so that the force resembles the one corresponding to the homogeneous case. (Note that

within the DA, the corresponding order parameter profile would simply consist of a patchwork

of the order parameter profiles corresponding to the film geometry, with no smoothing taking

place at the edges of the various spatial regions.) Similarly, but in a weaker manner due to the

opposite order parameter preference at the colloid, the curves in Fig. 2.16(b) for λ . 0.5 ap-

proach the corresponding homogeneous one for the case (+,−) (i.e., λ = 0). Thus, the fact that

both in Fig. 2.16(a) and Fig. 2.16(b) the curves for λ = 1/5 are less close to their limiting ones

for λ = 0 than the curves for λ = 4/5 are close to the ones for λ = 1 — although the portions

of the minority part of the surface are the same — is due to the fact that an order parameter

profile with (+,−) boundary conditions is energetically less preferred than the one with (−,−)

boundary conditions because in the (+,−) case an interface emerges between the two phases.

For broad stripes, i.e., in contrast to the case Π → 0, the energy costs for a similar behavior are

seemingly larger: the full numerical MFT data for λ = 1/5 and λ = 4/5 are less close to the

corresponding limiting homogeneous cases λ = 0 and λ = 1, respectively, for Π = 1.92 than

for Π = 0.29.

Figure 2.16(c) shows the scaling function Kcyl
p of the normal critical Casimir force for d = 3

within the DA as obtained by using Monte Carlo simulation data for the film geometry (see

footnote 14 on page 40). One can infer from Fig. 2.16(c) that the qualitative features of the

MFT scaling function as described above, such as the change of sign, are carried over to d = 3.

As discussed in the previous section, the vanishing of the normal critical Casimir force

corresponds to a stable levitation of the colloid at a distance D0 from the substrate only if

∂DFcyl
p |D=D0 < 0. Within the DA and at the laterally stable position Ξ = 0 the sign of ∂DFcyl

p

is given by Eq. (2.39) with Kp replaced by Kcyl
p . The behavior of Θ

cyl
0 as a function of Ψ

and the demarcation of the regions where levitation is stable against perturbations of D is

shown in Fig. 2.17, where the solid and the dashed lines correspond to stable and unsta-

ble levitation, respectively. The behavior for the normal critical Casimir force acting on the

cylinder is qualitatively similar to the one for the sphere shown in Fig. 2.12. Analogously

to the case of a sphere discussed in Sec. 2.6, no stable levitation is found at T = Tc or for
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Figure 2.17: Values of the scaling variable Θ
cyl
0 at which the normal critical Casimir force Kcyl

p acting on

a cylinder close to a periodically patterned substrate vanishes as a function of Ψ = P/
√

Rξ+ [compare

Fig. 2.12 for the case of a sphere] within the DA. The region indicated by solid lines corresponds to the

one in which the levitation of the cylinder at a height D=D0 =Θ0ξ+ is stable against small perturbations

of D, wheres in the shaded region indicated by dashed lines there is no such stable levitation although

the normal critical Casimir force acting on the colloid vanishes. For λ > λ0 with λ0(d = 4) = 4/5 and

λ0(d = 3)≃ 0.88, Θ
cyl
0 ceases to exist, i.e., Kcyl

p does not exhibit a zero. For λ < λ1 with λ1(d = 4) = 1/2

and λ1(d = 3) ≃ 0.545, Θ
cyl
0 (Ψ ց Ψ0(λ )) diverges. (The values for Ψ0(λ ) are indicated by upward

arrows.) For any λ < λ0, Θ
cyl
0 exists for Ψ < Ψ∗(λ ). We expect the DA to be quantitatively reliable only

for Ψ/
√

Θ0 & 2 for Θ0 . 4 and for Ψ/
√

Θ0 & 0.5 for Θ0 & 4.
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λ > λ0 = ∆(+,−)/(∆(+,−)−∆(−,−)), where λ0 = 0.80 in d = 4 and λ0 ≃ 0.88 in d = 3. On the

other hand, for Θ > 0, and λ < λ0, it is always possible to find values of P and R such that stable

levitation of the cylinder occurs at a certain distance from the substrate. The values of λ1 below

which one has a finite value Ψ0(λ ) at which Θ0 diverges remain the same as for the case of a

sphere, i.e., λ1(d = 4) = 1/2 and λ1(d = 3) ≃ 0.545; also the corresponding values of Ψ0(λ )

remain the same [see Eq. (2.40)].

2.8. Summary

We have investigated the universal properties of the normal and lateral critical Casimir forces

acting on a spherical or cylindrical colloidal particle close to a chemically structured substrate

with laterally varying adsorption preferences for the species of a (near-) critical classical bi-

nary liquid mixture (at its critical composition) in which the colloid is immersed. Within the

Derjaguin approximation (DA) [see Fig. B.6 in the Appendix] in spatial dimensions d = 3 and

d = 4 we have derived analytic expressions for the corresponding universal scaling functions of

the forces and the potentials for general fixed-point boundary conditions (BC) in terms of the

scaling function of the critical Casimir force acting on two parallel, homogeneous plates. These

expressions are given explicitly analytically at the bulk critical point T = Tc and – for symmetry

breaking boundary conditions — far away from the critical point. These relations enable one

to obtain predictions for actual three-dimensional systems with a sphere-inhomogeneous plate

geometry (for which currently computations are not possible) based on the scaling function for

the parallel homogeneous plate geometry, for which, e.g., Monte Carlo simulation data in d = 3

are available. Moreover, results within mean-field theory (MFT, corresponding to d = 4) and

symmetry-breaking boundary conditions [Sec. 1.2.4] have been obtained fully numerically and

have been compared with the approximate results of the DA, which allows us to explore the

limits of validity of the latter. We have studied several relevant situations [see Fig. 2.1] and our

main findings are the following:

1. First, we have studied a spherical colloid immersed in a binary liquid mixture close to

a chemically homogeneous substrate which has, compared to the colloid, the same (−)

or a different (+) adsorption preference for one of the species of the mixture [Sec. 2.2].

Close to the bulk critical point at T = Tc the critical Casimir force induced by the con-

finement of the order parameter (e.g., the concentration difference in a binary liquid mix-

ture) can be described in terms of universal scaling functions depending on the surface-

to-surface distance D of the colloid from the substrate scaled by the bulk correlation

length, Θ = sign((T −Tc)/Tc)D/ξ±, and its ratio with the radius of the colloid, ∆ = D/R

[Eqs. (2.1) and (2.2)]. The scaling functions obtained within the DA [Eqs. (2.6) and (2.7)]

are valid for ∆ → 0. From the comparison with the full numerical MFT results [Fig. 2.2]

we find that in d = 4 the DA describes the actual behavior quite well for ∆. 0.4. Based on
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Monte Carlo simulation data for the scaling function of the critical Casimir force between

parallel, homogeneous plates and within the DA we have obtained also the scaling func-

tion for the critical Casimir force on a spherical colloid close to a homogeneous substrate

in d = 3 [Fig. 2.2].

2. The basic building block of a chemically patterned substrate is a chemical step, which we

have studied in Sec. 2.3. Due to the broken translational invariance in one lateral direction

(x) the critical Casimir forces and potentials acquire a dependence on the additional scal-

ing variable Ξ = X/
√

RD, which corresponds to the lateral distance X of the center of the

spherical colloid from the position of the chemical step along the plane [Eqs. (2.8), (2.10),

and (2.17)]. Due to the different boundary conditions on both sides of the chemical step a

lateral critical Casimir force emerges, which leads to a laterally varying potential for the

colloid [Fig. 2.3]. In the limit ∆ → 0 both the scaling function for the potential and for

the lateral critical Casimir force as obtained within the DA are in agreement with the full

numerical data [Fig. 2.4]. We have derived the corresponding scaling functions within

the DA also in d = 3 by using Monte Carlo data for the parallel plate geometry [Figs. 2.3

and 2.4].

3. Section 2.4 deals with the critical Casimir forces and the corresponding potential acting

on a spherical colloid in front of a single chemical lane of width 2L, which additionally

depends on a fourth scaling variable Λ = L/
√

RD [Eqs. (2.21) and (2.22)]. It turns out

that within the DA the scaling functions for the critical Casimir force and the critical

Casimir potential across a chemical lane can be expressed in terms of the ones for the

chemical step [Eqs. (2.25) and (2.26)]. For large values of Λ the resulting potential can

be described as a suitable superposition of chemical steps, whereas for Λ . 3 one has

explicitly to account for the finite width of the chemical stripe [Fig. 2.5]. Comparing the

results of the DA with the ones obtained by a full numerical analysis, one finds that the

DA describes the actual behavior quite well for ∆ . 0.4, even for small Λ. Seemingly, in

this respect, the nonlinearities inherent in the critical Casimir effect and edge effects do

not considerably affect the resulting scaling functions [Fig. 2.6].

4. On the basis of the results of Sec. 2.4, in Sec. 2.5 we have studied the universal scal-

ing functions of the critical Casimir force and the corresponding potential for a sphere

opposite to a periodically patterned substrate with laterally alternating chemical stripes

of different adsorption preferences [Sec. 2.5]. These scaling functions [Eqs. (2.27) and

(2.28)] depend, besides the scaling variables Θ, ∆, and Ξ, on two additional scaling vari-

ables Π = P/
√

RD and λ = L1/P, which correspond to the period P = L1 +L2 of the

pattern and to the width L1 ≤ P of the stripes with the same adsorption preference as

the colloid. The scaling function for the normal critical Casimir force obtained within

the DA can be expressed in terms of the one for the chemical step and describes the ac-
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tual behavior well for Π & 2 [Eq. (2.31) and Figs. 2.7, 2.8(a) and 2.10(a)]. However,

for Π → 0 [Eq. (2.33)] the DA fails to capture quantitatively the numerically obtained

behavior within MFT, reflecting the importance of nonlinearities and edge effects in this

context, which are not accounted for by the DA [Figs. 2.7, 2.8(a) and 2.10(b)]. The failure

of the DA in the limit Π → 0 can be traced back to the fact that for the film geometry of a

patterned wall next to a laterally homogeneous flat wall, additivity of the critical Casimir

forces does not hold [Fig. 2.9].

5. The MFT scaling function of the normal critical Casimir force acting on a colloid close

to a periodically patterned substrate shows a remarkable behavior as a function of Θ =

D/ξ+. Within a certain range of values of Π and λ the critical Casimir force vanishes

at Θ0 corresponding to a distance D = D0 between the colloid and the substrate. We

have analyzed the sign of the derivative of the critical Casimir force with respect to D

at D0, which is negative if for D < D0 = D0,s the colloid is repelled from the substrate

whereas for D > D0 = D0,s it is attracted to the substrate [Fig. 2.12]. This means that

in the absence of other forces the colloid can levitate above the substrate at a stable dis-

tance which can be tuned by temperature. Stable levitation points are found also in d = 3,

within the DA and on the basis of the Monte Carlo data for the parallel plate geometry

[Figs. 2.8(b), 2.11, and 2.12(b)]. Our analysis shows that at the critical point T = Tc

levitation is not possible, whereas off criticality a geometrical configuration leading to

stable levitation can always be found [Fig. 2.13]. For fixed geometrical parameters, the

critical Casimir potential as a function of D changes from a monotonic behavior to a non-

monotonic one upon approaching criticality; a local maximum and a local minimum, the

latter corresponding to stable levitation, occur [Fig. 2.14(a) and (b)]. Experimentally, this

corresponds to a de facto irreversible transition from separation to stiction of a colloid and

a patterned substrate. The depths of these potential minima can be up to several kBT so

that the levitation is stable against Brownian motion of the colloid. The critical Casimir

levitation can be rather pronounced and robust even in the presence of electrostatic in-

teractions [Fig. 2.15]. The levitation height is proportional to the bulk correlation length

and thus can be tuned by varying temperature. Depending on the geometric parameter λ

we have identified two distinct types of temperature dependences of the levitation height

D0,s [Fig. 2.13]. In both cases it exhibits a high temperature sensitivity d
dT D0,s which,

for realistic examples at ambient temperature, is of the order of several 100nm/K. These

results show that the periodic patterning of the substrate enables one to design critical

Casimir forces over a wide range of properties.

6. This behavior is also observed for a cylindrical colloid which lies parallel to the sub-

strate such that its axis is aligned with the translationally invariant direction of the stripes

[Sec. 2.7 and Appendix B.4]. The main features of the scaling function for the corre-

sponding normal critical Casimir force are similar to the ones for the spherical colloid:
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the DA describes well the actual behavior as obtained from full numerical MFT calcula-

tions for large values of Π, but fails quantitatively for Π . 2 [Fig. 2.16]. The numerical

studies for Π → 0 indicate that a substrate with a very fine pattern, dominated by one

of the two BC as far as the corresponding covered area is concerned, leads to a normal

critical Casimir force which resembles the one for a homogeneous substrate characterized

by the dominating BC [Fig. 2.16(b)]. Based on Monte Carlo data for the parallel plate

geometry we calculated within the DA the critical Casimir force acting on a cylinder in

d = 3 [Fig. 2.16(c)]. Above a chemically patterned substrate, also for a cylinder stable

levitation is possible for a wide range of parameters [Fig. 2.17].





3. Comparison with experiments

3.1. Introduction

T
HE critical Casimir effect acting on colloidal particles immersed in a binary liquid

mixture of water and 2,6-lutidine and close to substrates which are chemically pat-

terned with stripes of antagonistic adsorption preferences obtained via different sur-

face preparation techniques has been investigated experimentally by Florian Soyka et al. [37,

38] and by Dominik Vogt et al. [39, 40]. Their measurements provide strong evidence for

the occurrence of lateral critical Casimir forces in addition to ones along the normal direction.

Upon approaching the critical point of the solvent, laterally confining potentials for the colloids

are generated by the critical Casimir effect.

Here,16 we analyze theoretically in detail the rich behavior of the spherical colloids close

to such substrates, including also background forces in excess to the critical Casimir forces.

As shown below, our theoretical analysis provides accurate information also about the vertical

probability distribution of the positions of the colloidal particles which, however, cannot be

resolved by the kind of video microscopy used in the aforementioned experiments. In com-

paring the measured data with our theoretical predictions it turns out that the critical Casimir

potential resulting from a chemical pattern depends rather strongly on its geometrical details

and it provides a sensitive tool to probe these microscopic features, which might not be easily

accessible otherwise. Indeed, the experimental data obtained for the substrates prepared via a

focused ion beam [37, 38] compare only with our corresponding theoretical predictions when

assuming that the chemical steps between two subsequent stripes within the pattern are not mi-

croscopically sharp due to the fluctuations inherent to the preparation process of the structures.

On the other hand, the measurements of the critical Casimir potentials for the colloids close to

substrates prepared via microcontact printing [39, 40] agree with the corresponding theoretical

predictions for all substrates that were analyzed. Since the strength of these confining potentials

can be tuned by minute temperature changes, this provides a new technique for “trapping” and

controlling colloids as model systems, opening encouraging perspectives for applications.

In both experiments [37, 40], a dilute suspension of charged spherical colloids, imposing (−)

BC to the order parameter of the (near-) critical solvent, is exposed to a chemically patterned

substrate, the surface of which consists of alternating stripes, which impose (−) and (+) BC.

16Parts of this chapter have been published in advance in Refs. [40, 51].
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The equilibrium spatial distribution of colloids was measured via digital video microscopy and

from it one can define an effective potential for a single colloid, which varies laterally due to

critical Casimir forces. In the experimental setups described below, the lower critical demixing

point of the water-lutidine mixture is always approached from the homogeneous (mixed) phase

at temperatures T < Tc upon increasing T at fixed critical composition of the mixture. Thus, in

the following we ignore the difference of the behavior of the correlation length above and below

Tc, and do not keep track of the subscripts “±” for ξ±, because we are exclusively dealing with

τ > 0, and the bulk correlation length ξ is always associated with ξ+. Moreover, we do not

consider bulk fields, which would correspond to an off-critical composition of the binary liquid

mixture.

3.2. Theory

3.2.1. Critical Casimir potential

As described in Chapters 1 and 2, according to renormalization group theory, in the vicinity

of the critical point at T = Tc the normal and lateral critical Casimir forces as well as the cor-

responding potential can be described by universal scaling functions. The relevant thermody-

namic properties which emerge upon approaching the point of the continuous phase transition

can be understood and analyzed in terms of the fluctuations of the order parameter φ of the

phase transition. For the consolute point of phase segregation of a binary liquid mixture φ is

given by the difference between the local and the mean concentration of one of the two compo-

nents of the mixture; the corresponding bulk universality class is of the so-called Ising type (see

Sec. 1.2). The local enhancement of the order parameter at the confining surfaces is effectively

described by symmetry-breaking surface fields and it is denoted by (+) and (−) boundary con-

ditions corresponding to having a preference for φ > 0 and φ < 0, respectively, at the surface.

For the water-lutidine mixture we are interested in, one conventionally indicates the preferen-

tial adsorption for lutidine and water as (+) and (−) BC, respectively (see also Refs. [20, 21]).

From the experimental point of view it is rather difficult to quantify the strength of the adsorp-

tion preference exhibited by the different portions of the surfaces. Therefore the comparison

with theoretical predictions requires assumptions, which can be verified a posteriori. In the

present case we have qualitative experimental evidence that the chemical treatment of the sur-

faces results in rather pronounced adsorption preferences and therefore we shall assume that

the surfaces are characterized by the strong critical adsorption fixed point (see Sec. 1.2). Thus,

for the comparison with the experimental data, we consider neither the case of weak adsorption

at the surfaces (see, e.g., Refs. [33, 35]) nor the effects due to off-critical compositions of the

mixture, which might lead to a bridging transition analogous to capillary condensation (see,

e.g., Refs. [21, 44, 172–176]).

In Sec. 2.5, for a spherical colloid with (−) BC opposite to a chemically patterned substrate
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with alternating (+) and (−) BC the critical Casimir potential has been calculated both numer-

ically within full mean-field theory (corresponding to d = 4) and by resorting to the so-called

Derjaguin approximation exploiting the full knowledge of k(+,±) in the film geometry for d = 3.

Accordingly, the critical Casimir force and the critical Casimir potential for a colloid close to a

chemically patterned wall can be expressed in terms of universal scaling functions which take

the geometry into account and which depend on the following scaled quantities:17

• Θ = z/ξ , where z is the surface-to-surface distance between the colloid and the substrate

and ξ is the bulk correlation length of the (near-) critical binary liquid mixture,

• ∆ = z/R, where R is the radius of the spherical colloid,

• Ξ = x/
√

Rz, where x is the lateral coordinate of the center of the colloid such that x = 0

corresponds to the colloid being located opposite to the center of a stripe with (−) BC,

• Π = P/
√

Rz, where P is the periodicity of the stripe pattern along the x-direction,

• λ = L−/P, where L− is the width of the stripes with (−) BC.

According to Eq. (2.28) in d = 3 the critical Casimir potential ΦC can be written as

ΦC(L−,P,x,z,R,T) = kBT
R

z
ϑp(λ ,Π,Ξ,Θ,∆), (3.1)

where ϑp is a universal scaling function [Eq. (2.30)]. The realization of the present geometri-

cal setup of a sphere facing a plane still represents a challenge for lattice based Monte Carlo

simulations. Accordingly, up to now it is not possible to obtain accurate numerical data for

this three-dimensional geometry and therefore one has to rely on the Derjaguin approximation,

based on the assumption of additivity, in order to calculate approximately the critical Casimir

potential. Within the Derjaguin approximation, the scaling function ϑp can be expressed in

terms of the known scaling functions k(±,−) for the film geometry [Eq. (1.3)] via Eqs. (2.30),

(2.7), (2.14), and (B.43):

ϑp(λ ,Π,Ξ,Θ,∆ → 0) =
ϑ(+,−)(Θ)+ϑ(−,−)(Θ)

2
+

ϑ(+,−)(Θ)−ϑ(−,−)(Θ)

2
ω(λ ,Π,Ξ,Θ),

(3.2)

where

ϑ(±,−)(Θ) = 2π

∞∫

1

dβ (β −1)β−3k(±,−)(βΘ) (3.3)

17See also Fig. 2.1. Note that, since we include in the following also gravity and in order to make explicit that the

colloids are vertically positioned above the substrate, here we denote the surface-to-surface distance between

the colloid and the substrate as “z”, which in Chapter 2 was denoted as “D”. For convenience, in the following

the lateral position of the colloidal particle is denoted as “x”, which in Chapter 2 was denoted as “X”.
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are the scaling functions of the critical Casimir potential of a colloid in front of a homogeneous

wall as calculated within the Derjaguin approximation [20], and

ωp(λ ,Π,Ξ,Θ) = 1+
∞

∑
n=−∞

{

ω(+|−,−)(Ξ+Π(n+ λ
2 ),Θ)−ω(+|−,−)(Ξ+Π(n− λ

2 ),Θ)
}

(3.4)

with ω(+|−,−) given by

ω(+|−,−)(Ξ ≷ 0,Θ) =∓1±
Ξ4 ∫ ∞

1 ds
sarccos(s−1/2)−

√
s−1

(1+Ξ2s/2)d ∆k
(
Θ[1+Ξ2s/2]

)

ϑ(+,−)(Θ)−ϑ(−,−)(Θ)
, (3.5)

where ∆k(Θ) = k(+,−)(Θ)− k(−,−)(Θ). For Θ = 0 and Θ ≫ 1 the analytic expressions for

ω(+|−,−) given in Eqs. (2.15) and (2.16) hold. In Chapter 2 the accuracy of the Derjaguin

approximation has been checked numerically within mean-field theory and it has turned out

that this approximation describes quantitatively the actual behavior of those numerical data

which correspond to Θ & 4 for ∆ . 1 and Π & 0.5, as well as to 0 ≤ Θ . 4 with ∆ . 0.3 and

Π & 2. In the experiments discussed further below the corresponding values of Θ, ∆, and Π

vary within these ranges so that, assuming that the previous quantitative conclusions extend to

d = 3, we expect the Derjaguin approximation to be quantitatively reliable.

3.2.2. Background forces

In addition to the critical Casimir force due to the critical fluctuations of the solvent, the col-

loidal particles of the suspension are subjected to additional effective forces which are charac-

terized by a smooth and rather mild dependence on temperature. Typical background forces

acting within the colloidal suspensions of present interest are due to (screened) electrostatic and

dispersion interactions and to the gravitational field. In a first approximation, which neglects

possible mutual influences of these forces,18 their total potential is given by the sum of the cor-

responding contributions: (i) the electrostatic potential Φel, (ii) the gravitational potential Φg,

(iii) the van der Waals interaction ΦvdW, and (iv) the effective critical Casimir potential ΦC.

Electrostatics

This interaction originates from the fact that, due to the formation of charge double-layers (see,

e.g., Ref. [92] and references therein), the surface of the colloids and of the substrate acquire

a surface charge once immersed in the liquid solvent. As a result, the polystyrene colloids of

radius R = 1.2µm and (−) BC immersed in water-lutidine mixtures experience an electrostatic

repulsion from the substrate. The screened electrostatic potential of the colloid at a surface-to-

surface distance z from a homogeneous substrate with (±) BC is well approximated by

Φel,±(z)/(kBT ) = exp{−κ(z− z±0 )}, (3.6)

18Note that the interplay between critical phenomena and electrostatics is rather subtle when the salt density is

much higher than the one for the experiments discussed here (see Chap. 5).
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where κ−1 is the screening length and z±0 describes the strength of the electrostatic repulsion

from the substrate with (±) BC. Although the values of these parameters are determined by

the surface charge of the colloid, the dielectric constant of the mixture etc. [177], here they

will be treated as fitting parameters of the actual experimental data for Φel,±. In experimental

conditions similar to the present ones as far as the mixture and the colloids are concerned, one

finds κ−1 ≃ 12nm [20, 21, 35] and z±0 ≃ 0.1µm to 0.2µm [20, 21, 35] as typical values at

T ≃ Tc ≃ 307K. In view of a possible difference between z+0 and z−0 , the resulting electrostatic

potential of a colloid close to a patterned substrate such as the one described above depends on

the lateral position x of the colloid. Such a dependence can be accounted for theoretically within

the Derjaguin approximation (by repeating the calculations described in Appendix B for ΦC),

which is expected to be particularly accurate due to the exponential decay of Φel,± in Eq. (3.6)

as a function of the distance z from the substrate. For this electrostatic potential Φel(x,z) one

therefore finds (for a colloid facing the center of a (−) stripe at x = 0)

Φel(x,z) =
Φel,+(z)+Φel,−(z)

2
+

Φel,+(z)−Φel,−(z)
2

Ω(x), (3.7)

where

Ω(x) = 1+
∞

∑
n=−∞

{erf([x+nP−L−/2]/Λ)− erf([x+nP+L−/2]/Λ)} , (3.8)

with Λ =
√

2Rκ−1 ≃ 0.17µm. Ω and Φel depend on the geometric parameters L− and P de-

scribing the pattern.

Dispersion forces

For the particular choice of materials and conditions used in the present experiments, van der

Waals forces turn out to be negligible compared with the other contributions [20, 21, 178]. In

addition, the dielectric permittivity ε(T ) of the water-lutidine mixture is temperature dependent.

Upon approaching the critical point, ε(T ) exhibits a weak cusplike singularity ε(T )− ε(Tc) ∝

|τ|1−α , where α ≃ 0.11 is the critical exponent of the specific heat for the three-dimensional

Ising universality class [179]. This weak variation of ε(T ) might affect the strength of the van

der Waals forces, as well as the range of the electrostatic interaction Φel [20]. However, in the

(near-) critical mixture of water and lutidine, the permittivity ε(T ) turns out to vary less than

1% for |Tc −T | < 1K [180], and therefore the van der Waals forces as well as the electrostatic

interaction are expected to be not affected significantly.

Gravity

Due to buoyancy the colloid immersed in the solvent above the patterned substrate experiences

a gravitational potential given by

Φg(z) = (ρPS−ρWL)g
4π

3
R3 z ≡ Gz, (3.9)
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where ρPS ≃ 1.055g/cm3 and ρWL ≃ 0.988g/cm3 [181] are the mass densities of the

polystyrene colloid and of the water-lutidine mixtures at the critical composition and near

Tc, respectively, and g ≃ 9.81ms−2 is the gravitational acceleration. Accordingly, at T ≃ 307K

one has G ≃ 1.12kBT µm−1 and therefore, compared to the other contributions, it turns out that

the gravitational potential depends rather mildly on the distance z because it varies only over

a few kBT on the relevant length scale of a few microns. The expression in Eq. (3.9) assumes

that the colloidal particle of mass density ρPS is floating in a homogeneous medium of mass

density ρWL. However, the laterally varying adsorption preferences of the substrate induce the

formation of alternating water-rich or lutidine-rich regions close to the surface of the patterned

substrate, which laterally alter the resulting mass density of the solvent as a consequence of

water and lutidine having different mass densities. This implies that the effective gravitational

constant G acquires a dependence on x. In addition, the preferential adsorption of the colloid,

with the ensuing formation of an adsorption profile around it, can lead to a modification of the

effective density ρPS of the colloid itself. However, on the basis of our estimates, we expect all

these effects to be negligible for the present experimental conditions [182].

3.2.3. Total potential

The total potential Φ of the sum of the forces acting on the colloid is given by

Φ(x,z,T ) = ΦC(L−,P,x,z,R,T)+Φel(x,z)+Φg(z), (3.10)

where the theoretical expressions for the individual contributions are given by Eqs. (3.1), (3.7),

and (3.9). Here and in the following we do not indicate the dependence of Φ on L−, P, and

R, because the values of these parameters are fixed for each individual experiment. Figure 3.1

shows the total potential Φ(x,z,T ) of a single colloid with (−) BC opposite to a chemically

patterned substrate, as a function of both x and z and for three values of the temperature T

close to the critical value Tc. These three values correspond to different correlation lengths ξ ,

as indicated in the figure. The gray area in the x-z plane indicates the vertical projection of

the stripe with (−) BC, the center of which corresponds to x = 0. In Fig. 3.1 the white part

of the x-z plane corresponds to the projection of the stripe with (+) BC, the center of which is

located at x = P/2 = 0.9µm. The potential of the forces acting on the colloid is translationally

invariant along the y-direction which is not shown in Fig. 3.1. Φ(x,z,T ) in Fig. 3.1 has been cal-

culated by using geometrical and interaction parameters which mimic the actual experimental

conditions and by using values of the correlation length ξ which are experimentally available.

As anticipated above, Fig. 3.1 clearly shows that the gravitational tail of the potential, which

characterizes Φ(x,z,T ) at large values of z, is indeed rather flat on the scales of kBT and of hun-

dreds of nm. As a consequence of thermal fluctuations — which cause the colloid to explore a

region of space within which the total potential Φ differs from its minimum by a few kBT —

the particle is expected to display large fluctuations ∆z ≃ kBT/G along the vertical direction.



3.2. Theory 85

0
0.45

0.9

0 0.1 0.2 0.3 0.4

-4

0

4

(a) ξ = 5nm

x [µm]
z [µm]

Φ [kBT ]

0
0.45

0.9

0 0.1 0.2 0.3 0.4

-4

0

4

(b) ξ = 22nm

x [µm]
z [µm]

Φ [kBT ]

0
0.45

0.9

0 0.1 0.2 0.3 0.4

-4

0

4

(c) ξ = 26nm

x [µm]
z [µm]

Φ [kBT ] Φ [kBT ]

-4

0

6

Figure 3.1: Total potential Φ(x,z,T ) of a colloid with radius R = 1.2µm opposite to a chemically pat-

terned substrate with L−= 0.9µm and P= 1.8µm for three temperatures corresponding to (a) ξ = 5nm,

(b) ξ = 22nm, and (c) ξ = 26nm, respectively. The electrostatic potential corresponds to z−0 = 0.12 µm,

z+0 = 0.08 µm, and κ−1 = 12nm (see the main text for details). At small separations z. z±0 , the colloid is

strongly repelled from the substrate due to electrostatics. The effective gravitational potential associated

with buoyancy is rather flat, with a spatial slope G ≃ 1.12kBT µm−1. Accordingly, the surface-to-surface

particle-substrate distance z exhibits large thermal fluctuations of the order of kBT/G ≃ 1µm as long as

ξ is small. Upon approaching the critical point [from (a) to (c)], ξ increases and a deep, local potential

minimum arises rapidly as a function of ξ above that part of the substrate (indicated by the shaded

area) with the same preferential adsorption as the colloid. The colloid is eventually confined in this

deep potential well at a distance z ≃ z−0 with almost no vertical fluctuations. The black lines correspond

to cuts through the potential surface at constant values of z and x, respectively.
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At small particle-substrate distances electrostatic forces are responsible for the strong repulsion

of the colloid from the substrate. In Fig. 3.1 we allowed for a lateral inhomogeneity of the

electrostatic potential (i.e., z+0 6= z−0 ), which might occur due to different surface charges on the

different stripes. This is clearly visible in panel (a) of Fig. 3.1, which corresponds to a rather

small value of the correlation length ξ so that, within the range z ≃ 0.1µm Fig. 3.1(a) refers

to, the contributions of the critical Casimir force are negligible. In this case, the x-dependent

electrostatic contribution dominates at small values of z, whereas the laterally homogeneous

gravitational potential dominates at larger distances. However, upon approaching the critical

point [Figs. 3.1(b) and 3.1(c)], the correlation length ξ increases and the critical Casimir force

acting on the colloid builds up; it is repulsive within the region with (+) BC whereas it is attrac-

tive within the region with (−) BC. In the latter case the behavior of the colloid is eventually

determined by the electrostatic repulsion and the attractive critical Casimir force, whereas in

the former case it is determined by gravitation and the repulsive Casimir effect. Above a certain

threshold value of ξ , which depends on the specific choice of the various geometrical and phys-

ical parameters, a very deep and steep potential well develops rapidly close to the stripe with

(−) BC, which therefore confines the vertical motion of the colloid at much smaller values of z

than before with very limited thermal fluctuations of the particle-wall distance. In contrast, the

vertical repulsive critical Casimir force, which the colloid experiences above the stripe with (+)

BC, pushes it further away from the surface, but the corresponding fluctuations of the vertical

position z (still limited only by the gravitational tail) are not significantly affected. Thus, the full

theoretical analysis of the various forces at play reveals a rather interesting energy landscape

which is strongly temperature dependent.

3.2.4. Measured potential

In order to measure experimentally the total potential Φ of the forces acting on a colloid

a very effective approach consists in monitoring the equilibrium Brownian motion of a

single particle and inferring from the sampled probability distribution function P̄(x,y,z) ∝

exp(−Φ(x,z,T )/kBT ) the potential as Φ/(kBT ) = − ln P̄ + const, where x and y are the

lateral coordinates of the projection of the colloid center onto the substrate surface. This

approach forms the basis of total internal reflection microscopy, which has been used in

Refs. [20, 21, 35] to study critical Casimir forces. Alternatively, one can study a colloidal

suspension which is sufficiently dilute so that the inter-particle interaction is negligible. In this

case, the mean equilibrium number density ρ(x,y,z) of the colloids at position (x,y,z) is pro-

portional to the single-colloid probability distribution function P̄ and therefore it is again given

by ρ(x,y,z) ∝ exp(−Φ(x,z,T )/kBT ). In the experimental setup described below, the positions

of the centers of the colloids are monitored via a digital video camera positioned below the sub-

strate. Accordingly, the surface-to-surface distances z of the colloids from the substrate are not

resolved and the camera records only the projected number density ρP(x,y) ≡
∫ ∞

0 dz ρ(x,y,z).
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Due to the translational invariance of the chemical pattern along the y direction of length

l ≫ P,R, the density ρP(x,y) can be conveniently projected further onto the x-axis, result-

ing in an effective number density ρ̂(x) = l−1 ∫ l
0 dy ρP(x,y) = l−1 ∫ l

0 dy
∫ ∞

0 dz ρ(x,y,z), which

depends only on x. This projection increases the statistics and therefore the accuracy with

which this projected density can be determined experimentally. Subsequently, an effective

potential V̂ (x) (up to an irrelevant additive constant) can be associated with ρ̂(x) such that

ρ̂(x) ∝ exp(−V̂ (x)/(kBT )). (Note that due to the thermal fluctuations of the colloids along

the vertical direction, even if one knows the average distance zavg(x) of the colloid from the

substrate at a certain lateral position x, the effective potential V̂ (x) is not simply given by

Φ(x,zavg(x),T )+ const, as it was implicitly assumed in Ref. [37].) The measured potential

δV̂ (x) = V̂ (x)−V̂ (P/2) =−kBT ln(ρ̂(x)/ρ̂(P/2)) (3.11)

is eventually defined such that it vanishes for a colloid opposite to the center of a repulsive (+)

stripe at x = P/2. We emphasize that δV̂ (x) contains universal ingredients stemming from the

scaling function associated with ΦC (see Eq. (3.10)) as well as nonuniversal contributions due

to Φel and Φg.

3.2.5. Non-ideal stripe patterns

Due to the preparation process (see below) the actual position x = xs(y) of each chemical step

separating two adjacent stripes might vary smoothly along the y-axis. This variation affects

the measured effective potential V̂ of the colloids as long as it occurs on a length scale which

is comparable or smaller than the typical distance ℓmsd along the y-axis which each particle

explores during the acquisition of the images by the camera. The images aquired during the

experiments allow one to estimate such a mean-square displacement ℓmsd to be of the order

of tens of µm [37, 39, 40]. The projection along the y-axis, which yields the density ρ̂(x),

effectively causes a broadening of ρ̂(x) compared to the case of straight (ideal) chemical steps

with xs(y) = const. In addition, locally a smooth intrinsic chemical gradient of the step leads

to such an effect, too. For illustration purposes, we first consider a single chemical step, which

is ideally located at x = 0 and which generates a potential Φ(x,z,T ). (This reasoning can be

extended to the periodic chemical pattern we are presently interested in by assuming additivity

of the forces, analogously as presented in Chap. 2.) In order to estimate the effect of these

variations of the actual position of the step along the y-axis, we assume that the local position

xs(y) of the step does not change significantly along the y-axis on the scale of the radius R of

the colloid, so that on this scale it can be considered as ideal and therefore generates a potential

Φ(x−xs(y),z,T ). For xs(y) we assume an effective Gaussian distribution p(xs) along the y-axis,

with zero average and standard deviation ∆x. Accordingly, the projection l−1 ∫ l
0 dy along the y-

axis turns into
∫ ∞
−∞ dxs p(xs) and affects the resulting projected density ρ̂(x) and the resulting

potential V̂ (x) [see Eq. (3.11)].
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3.2.6. Particle-substrate distance

The theoretical knowledge of the total potential Φ(x,z,T ) [see Eq. (3.10)] allows one to predict

the particle-substrate distance z as a function of the lateral variable x and temperature, a quantity

which is not accessible to the experiments discussed below. As anticipated above, the rather

small value of G in Eq. (3.9) is responsible for rather large fluctuations of the particle-substrate

distance z around the position z = zmin(x) at which the potential Φ(x,z,T ) has a minimum as a

function of z for a fixed lateral position x of the particle and which corresponds to the position of

mechanical equilibrium. In the presence of these large fluctuations it is convenient to consider

the x-dependent mean particle-substrate distance zavg(x), which is determined by the probability

distribution function P̄ of the colloid, i.e., by the total potential as19

zavg(x) =
1

N(x)

∞∫

0

dz z exp{−Φ(x,z,T )/(kBT )}, (3.12)

where N(x) =
∫ ∞

0 dz exp{−Φ(x,z,T )/(kBT )} is the normalization. In order to describe the

thermal fluctuations of the vertical position of the colloid it is convenient to consider the proba-

bility P̄<(z;x) that for a fixed lateral position x the colloid has a surface-to-surface distance from

the substrate smaller than a given z:

P̄<(z;x) =
1

N(x)

z∫

0

dz′ exp{−Φ(x,z′,T )/(kBT )}. (3.13)

In order to generalize the notion of “standard deviation” to the present case of an asymmetric

distribution of the particle-substrate distances at fixed lateral position, we define a lower value

zlow(x) and an upper value zupp(x) of the particle-substrate distances such that

P̄<(zlow(x);x) = 0.159 and P̄<(zupp(x);x) = 1−0.159, (3.14)

so that the probability of the colloid to be at a distance z with zlow(x) < z < zupp(x) is ≃ 68%,

whereas the probability to find it at distances smaller (larger) than zlow(x) (zupp(x)) is ≃ 16%;

these two properties define the standard deviation for a Gaussian distribution.

Figure 3.2 shows the behavior of the colloid with (−) BC above a chemically patterned

substrate for the two lateral positions (a) x = 0 and (b) x = P/2 at which the colloid is floating

19Note that the Derjaguin approximation holds only for distances which are small on the scale of the particle

size (a detailed analysis of its applicability for the system under consideration is given in Ref. [52]). However,

in Eq. (3.12) also large values of z occur. But at these large particle-wall distances the critical Casimir force

as well as the electrostatic force are negligibly small compared to the gravitational force, so that using this

approximation is nonetheless not detrimental. In principle, the integration in Eq. (3.12) is limited by the vertical

extension of the experimental sample cell of around 200µm. However, due to the gravitational contribution

to the potential, de facto no colloidal particle moves out of the vertical field of view of the camera. Thus the

integration in Eq. (3.12) can be taken to run up to infinity without quantitatively relevant consequences because

contributions from large z are strongly suppressed.



3.2. Theory 89

ξ [nm]

z
[µ

m
]

x = 0

z

(+) (+)

(−)

0

0.5

1

1.5

2

5 10 15 20 25 30 35 40 45

zupp

zavg

zlow

zmin

(a) x = 0

ξ [nm]
z

[µ
m

]

0

0.5

1

1.5

2

5 10 15 20 25 30 35 40 45

zupp

zavg

zlow

zmin

(+) (−)

(+)

x = P/2

z

(−)

(b) x = P/2

Figure 3.2: Distances of the colloid from the substrate, for a fixed lateral position (a) x = 0 and (b) x =

P/2, as a function of the bulk correlation length ξ . Here, P = 1.8µm, R = 1.2µm, L− = 0.9µm, whereas

zupp, zavg, zlow, and zmin indicate the upper, average, lower, and potential-minimum distances of the

colloid, respectively (see the main text). The solid lines correspond to the choice z−0 = z+0 = 0.09µm, the

dashed lines to z−0 = 0.12µm and z+0 = 0.09 µm, and the dotted lines to z−0 = 0.09µm and z+0 = 0.15 µm.

As expected, the fluctuations of the particle-substrate distance z for a colloid opposite to an attractive

stripe [x = 0, panel (a)] decrease significantly upon increasing the correlation length ξ , due to the fact

that the particle is mainly localized around the deep potential well which forms as a consequence of

the action of the critical Casimir force. In fact, zupp,avg,low,min ≃ z−0 for large ξ . The actual value of

z−0 strongly affects the behavior of the particle, both in determining the values of zupp,avg,low,min close

to the critical point and in setting the threshold value ξ ∗ of ξ at which one observes such a sharp

transition towards strong spatial confinement for ξ > ξ ∗. From panel (a) one infers, e.g., that ξ ∗ ≃ 17nm

and ξ ∗ ≃ 27nm for the solid and dashed curves, respectively. On the other hand, the dependence

on z+0 is not pronounced and indeed in panel (a) the dotted lines practically coincide with the solid

ones. For a colloid opposite to a repulsive stripe [x = P/2, panel (b)], due to the repulsive nature of

both the electrostatic and the critical Casimir force and the very weak gravitational attraction one has

zmin < zlow and the average position is typically of the order of 1µm with fluctuations of the same order.

As anticipated, also in this case the actual value of z+0 is not very relevant, in particular for large values

of ξ . Analogously, the behavior of the colloid at x = P/2 is not affected by the choice of z−0 and in panel

(b) the dashed lines practically coincide with the solid ones.
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above the center of a (−) and of a (+) stripe, respectively, as a function of the correlation length

ξ . In Fig. 3.2 the values of the geometrical parameters (P, R, L−) are chosen to correspond to the

actual experimental conditions, whereas the parameters z±0 governing the electrostatic repulsion

from the substrate are varied within a range which was determined by previous independent

experiments. Panel (a) clearly demonstrates that the fluctuations of z for a colloid opposite

to an attractive stripe decrease significantly upon increasing the correlation length ξ above

a certain threshold value ξ ∗ which depends on z−0 . This reflects the emergence of the deep

potential well shown in Fig. 3.1 which results from the competition between an increasingly

attractive critical Casimir force and a repulsive electrostatic repulsion, the former being always

overwhelmed by the latter around z = z−0 . Indeed, for small values of ξ the average position

zavg(x = 0) is typically determined by the competition between the electrostatic repulsion and

the gravitational part, such that zavg(x = 0)≃ z−0 +kBT/G ≃ 1µm with fluctuations of the order

of kBT/G ≃ 1µm. On the other hand, for larger values of ξ , one has zupp,avg,low,min(x = 0)≃ z−0
and there are only very small thermal fluctuations of the particle-substrate distance, at most

a few tens of nm. Depending on the relative strength of the electrostatic repulsion and the

critical Casimir attraction, one can have zmin < zlow if the former dominates the latter, i.e., at

small values of ξ or the opposite at large values of ξ . From Fig. 3.2(a) one concludes that

the choice of z−0 strongly affects the behavior of the particle, both in determining the values

of zupp,avg,low,min and in setting the threshold value ξ ∗ of ξ above which the particle becomes

strongly confined, whereas the dependence on z+0 is negligible for the behavior at x = 0, because

z+0 controls the electrostatic interaction with the adjacent stripe. Analogously, the behavior of

a colloid at x = P/2 as shown in Fig. 3.2(b), i.e., opposite to a repulsive stripe is not affected

by the choice of z−0 . However, for this configuration, also the actual value of z+0 does not affect

significantly the resulting behavior of the particle-substrate distance at x = P/2, in particular

for large values of ξ . Indeed, due to the repulsive nature of both the electrostatic and the critical

Casimir force and the weak gravitational attraction, the average position is typically of the order

of zavg(x = P/2)≃ z+0 + kBT/G ≃ kBT/G (with an additional linear contribution ∝ ξ for large

values of ξ ) allowing fluctuations of the order of kBT/G ≃ 1µm.

In Fig. 3.3 the particle-substrate distance (characterized via zavg,upp,low) and the position of

mechanical equilibrium zmin are reported as functions of the lateral coordinate of the colloid

within the period P and for two different temperatures, i.e., two different values of ξ . In

Fig. 3.3, the choice of the parameters corresponds to actually experimentally accessible val-

ues. Figure 3.3 clearly shows that for ξ = 10nm (dashed lines) the particle-substrate distance

is laterally constant and the colloid does not react to the presence of the chemical pattern on the

substrate, apart for a possible effect due to a change in the electrostatic interaction (which here

is taken to be the same on the different stripes). On the other hand, for ξ = 20nm (solid line) the

colloid is strongly attracted to that part of the substrate with the same preferential adsorption (in

Fig. 3.3 indicated by a shaded background), as a consequence of the emerging critical Casimir

forces. Indeed for |x| . L−/2 the particle is abruptly localized at a distance z ≃ z−0 , which is
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Figure 3.3: Particle-substrate distance z (characterized via zupp,avg,low , see the main text) and posi-

tion of mechanical equilibrium zmin as functions of the lateral coordinate of the particle for ξ = 10nm

(dashed curves) and ξ = 20nm (solid curves). Here, z−0 = z+0 = 0.09µm, P = 1.8µm, R = 1.2 µm,

and L− = 0.9 µm. For small values of the correlation length ξ the various characteristic distances are

almost independent of the lateral coordinate, whereas above a certain threshold value ξ ∗ of ξ (see also

Fig. 3.2) the colloid opposite to the attractive stripe is strongly confined close to the wall at a distance

z ≃ z−0 with almost no fluctuations.

primarily set by the electrostatic repulsion and which corresponds to the position zmin(0) of the

minimum of the potential, with almost no thermal fluctuations. In the region above the repulsive

stripes (in Fig. 3.3 indicated by a white background) and within the temperature range consid-

ered here, instead, the repulsive critical Casimir force pushes the colloid only slightly further

away from the substrate, by a distance of the order of the increasing correlation length ξ . But

the amplitude of the thermal fluctuations of the particle-substrate distance are barely affected

by the onset of the repulsive critical Casimir force.

The analysis of the particle-substrate distance shows that the behavior of the colloidal particle

and the resulting potential are drastically influenced by the strong attraction of the colloid close

to an attractive stripe. Accordingly, the electrostatic repulsion from this stripe, i.e., the value

of z−0 , affects significantly the total potential and has therefore to be considered carefully in the

comparison between theoretical predictions with the experimental data. On the contrary, the

actual value of z+0 as well as the actual value of κ do not significantly affect the resulting behav-

ior of the potentials as long as they are within the range appropriate for the present experiment

which can be inferred from previous, independent measurements [21].
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3.3. Comparison with the experimental data

3.3.1. Description of the experiments

Here, we shall provide a brief description of the two different experimental setups used by

Soyka et al. and Vogt et al. described in detail in Refs. [37–40]. In both experimental setups,

in order to measure the critical Casimir forces which act on a colloidal particle exposed to the

patterned substrates, polystyrene (PS) probe particles with radius R = 1.2µm have been used.

Their surface charge is 10µC/cm2 which renders them hydrophilic, realizing (−) boundary

conditions [37, 40]. The particles were dissolved in a critical water-2,6-lutidine mixture which

has a lower critical demixing point at a lutidine mass fraction of cc
L
∼= 0.286 and a critical

temperature of Tc = 307K. In both experiments [37, 40] particle positions were monitored

by digital video microscopy which allows one to track the projection of their centers onto the

substrate plane with a spatial resolution of about 50nm. While several particle trajectories were

recorded at the same time, the particle density was sufficiently small in order to to exclude the

presence of forces among neighboring colloids, such that only the single particle interaction

with the patterned substrate has been probed during the measurements [37, 40].

A temperature control which stabilizes temperatures close to Tc within only 10mK over sev-

eral hours, has been realized [37, 40]. However, in contrast to temperature changes, which could

be resolved within mK accuracy, larger errors occurred in the determination of absolute tem-

peratures (in particular the measured critical temperature), due to the fact, that the thermometer

could not be placed within the sample cell but it was instead attached outside [37, 40]. In-

deed, the thermometer measures a temperature T out lower than the actual temperature T inside

the sample cell. The temperature T out = T out
c has been associated with the critical temper-

ature T = T exp
c of the solvent in the sample at that particular temperature for which critical

opalescence is observed when shining a laser beam into the sample cell [37, 40]. This leads to

systematic errors on the absolute temperature of T out
c and T exp

c of the order of 50mK. Using the

assumption that T −T out = const (this constant could not be determined experimentally and is

inter alia dependent on the ambient temperature), the temperature difference ∆T = T out
c −T out

has been measured and identified it with T exp
c −T ≡ ∆T [37, 40]. Since the comparison with

the theoretical predictions depends crucially on the actual value Tc ≃ 307K of the critical tem-

perature, in the analysis below we account for such a possible systematic error by considering

∆T ∗
c = Tc −T exp

c as an additional fitting parameter, where Tc ≃ 307K is the actual critical tem-

perature of the water-lutidine mixture.

The experiments by Soyka et al. and by Vogt et al. differ crucially in the preparation and the

parameters of the chemical substrate pattern, as addressed below.
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3.3.2. Comparison of theory with experiments

The total potential Φ of the forces [Eq. (3.10)] acting on the colloidal particle has been calcu-

lated on the basis of the Derjaguin approximation with k(±,−) [see Eqs. (1.3) and (3.5)] obtained

from Monte Carlo simulations. In the following we shall use for the scaling functions k(±,−)

of the critical Casimir force between two planar walls with (±,−) BC the numerical estimate

referred to as “approximation (i)” in Figs. 9 and 10 of Ref. [100]. We have checked that differ-

ent [100] or more recent and accurate [106] estimates for k(±,−) actually lead to essentially the

same effective potentials, the only difference being a small additional overall shift of the result-

ing fitted value of the critical temperature. In Chapter 2 we have presented an detailed analysis

in spatial dimension d = 4 which suggests that the Derjaguin approximation we have used in

our theoretical predictions for d = 3 should be rather accurate in describing the actual potential

of the colloid within the range of parameters experimentally studied here. As anticipated above,

in order to predict the effective potential V̂ we need to fix also the value of the parameters which

determine the electrostatic interaction. For the comparison between theory and experiment we

fix the screening length to the value κ−1 = 12nm which has been reported from independent

measurements on the same system (see, e.g., Ref. [21]). In order to fit our theoretical predictions

to the experimental data, we vary instead the unknown values of the parameters z±0 [Eqs. (3.6)

and (3.7)] within the range 0.08µm to 0.15µm, which can be reasonably expected on the basis

of previous measurements on homogeneous substrates [21]. However, the results for δV̂ (0)

are hardly affected by the particular choice of z+0 so that in the following we keep it fixed at

z+0 = 0.10µm for the comparison with the experiments by Soyka et al. and z+0 = 0.09µm for

the comparison with the experiments by Vogt et al., respectively. The amplitude ξ+
0 of the cor-

relation length has been determined by independent experiments as ξ+
0 ≃ 0.20±0.02nm (see,

e.g., Tab. III in Ref. [21]) so that we vary ξ+
0 within the range 0.18nm to 0.22nm in order to

obtain the best fit to the experimental data by the theoretical scaling functions. Moreover, as

mentioned above, the experimental uncertainty in the determination of the absolute value of the

critical temperature T exp
c is taken into account by considering as an additional fitting parameter

the shift ∆T ∗
c = Tc −T exp

c of up to |∆T ∗
c | ≃ 100mK. (The values of ∆T ∗

c may be different for

the individual stripe widths L− which characterize the substrates investigated in independent

experiments.) However, the relative uncertainty in the determination of the temperature within

a single experimental run is smaller than ±10mK (see above). Thus, for the comparison car-

ried out below, we are left with ∆T ∗
c , z−0 , ξ+

0 , and ∆x (see Subsec. 3.2.5) as fitting parameters

which, however, are all limited to rather small ranges of values in order to be in accordance with

independent and previous experimental results.
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3.3.3. Experiment by Soyka et al.

First20, the theoretically predicted curves are compared with the experimental data for the criti-

cal Casimir potential for a single colloid obtained in Ref. [37]. The substrate surface confining

the colloidal suspension consists of equally spaced stripes along the y-axis which impose (−)

and (+) BC alternating along the x-axis, and have a width L− = 2.6µm and L+ = 5.2µm, result-

ing in a periodicity P = L−+L+ = 7.8µm. The chemical patterns were created by removing

locally a hydrophobic monolayer of HMDS particles from a hydrophilic glass surface with a

focused ion beam (FIB). Although under ideal conditions the resolution of FIB is within the

range of several nanometers, in the case of non-conducting surfaces distortions/deflections of

the ion beam due to an electrostatic charging of the glass surface have been observed, leading

to deviations of the chemical steps from straight lines (see Sec. 3.2.5).

A detailed analysis of the potentials adopted to the experimental conditions show that for

|x| < L−/2 the contribution of ΦC to Φtot is significant only for distances from the substrate

z . ξ , which corresponds to ∆ = z/R . 0.03, whereas for P/2+L+/2 > |x|> L−/2 the typical

distance is z≃ z−0 and therefore ∆≃ 0.12 with Θ= z/ξ & 4. In addition, the relevant geometrical

parameters are P/
√

RD ≃ 7÷ 20 and L−/
√

RD ≃ 2÷ 7, such that, based on our theoretical

analysis of the range of validity of the DA, we expect the latter to be accurate for the potentials

Φel and ΦC. Moreover, the values of Θ, P/
√

RD, and L−/
√

RD are such that the resulting

critical Casimir potential is adequately described by the superposition of a sequence of single

chemical steps.

The depths of the measured potentials are given by ∆V̂ =−δV̂ (0)> 0 [see Eq. (3.11)]. From

the experimental data ∆V̂ is determined as the difference of the potential between its value at the

center of a repulsive stripe and at the center of an attractive stripe with an uncertainty of around

±0.15kBT near the critical temperature Tc ≃ 307K. From our analysis we find that keeping the

value of ξ+
0 restricted to the range 0.20±0.02nm, the resulting predictions for the depths of the

potentials do not compare very well with the experimental data [182]. This is shown in Fig. 3.4,

where the dashed lines corresponds to one of the best fits obtained for ξ+
0 restricted to this range

(other, equally well fits are almost equal to this curve). However, the comparison improves

significantly if one allows for a change in the value of ξ+
0 within a broader range (see the solid

line in Fig. 3.4). Accordingly, the values z−0 ≃ 0.136µm, ξ+
0 ≃ 0.42nm, and ∆T ∗

c ≃ 27mK

yield a very good fit to the experimental data for ∆V̂ (Fig. 3 of Ref. [37]). Whereas ∆T ∗
c is

within the experimental accuracy, ξ+
0 is significantly larger than previous estimates ξ+

0 = 0.20±
0.02nm [20], suggesting that for the rather small corresponding values of ξ ≃ 20nm to 36nm

corrections to the leading scaling behavior might still be relevant.

In Fig. 3.5 we compare the experimental data with the resulting theoretical predictions for

δV̂ (x) (dasehd lines) across the (−) stripe (grey). As anticipated, the effects of the chemical

steps at x = 0 and L− do not interfere in the actual range of parameters. The theoretical curves

20This comparison has been performed together with Andrea Gambassi [182] and presented in Ref. [51].
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Figure 3.4: ∆V̂ as a function of ∆T = T exp
c − T (see also Ref. [182]). The symbols represent the ex-

perimental data obtained for the depth of the potential of colloids close to chemical stripes obtained via

the focused ion beam technique [37]. They are affected by an experimental uncertainty as indicated by

the errorbars (see the main text). The dashed line corresponds to one of the best fits obtained when

varying the value of ξ+
0 within the range ξ+

0 = 0.20 ± 0.02nm known from independent results (the

resulting parameters are ξ+
0 = 0.22nm, z−0 = 0.110 µm, and ∆T ∗

c = −78mK). The solid line corre-

sponds to the best fit when allowing ξ+
0 to vary within a broader range (the corresponding parameters

are ξ+
0 = 0.42 nm, z−0 = 0.136 µm, and ∆T ∗

c = 27mK).
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Figure 3.5: Lateral variation of the effective potential δV̂ [see the main text] of a colloidal particle (−)

facing a chemically patterned substrate and immersed in a binary liquid mixture at critical concentration

for various temperatures Tc −∆T . Symbols indicate the experimental data of Ref. [37], whereas the

solid and the dashed lines are theoretical predictions for the same values of parameters for an ideal

and non-ideal stripe pattern, respectively.
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— in qualitative disagreement with the experimental data — display a sharp transition between

the plateau values 0 and −∆V̂ . In order to test the robustness of this distinctive feature we varied

λ within the plausible range 8nm to 18nm, considered polydispersity (R = 1.2µm to 1.8µm),

and allowed for a possible inhomogeneous buoyancy Φg(z,x) induced by laterally varying fluid

layers adsorbed on the colloid and on the substrate. Moreover, due to their fabrication process,

the (−) stripes might have a rather weak preferential adsorption as compared to the (+) stripes,

which we tried to capture by reducing the amplitude of k(−,−) by up to 70%. Consequently,

the values of z−0 ≃ 0.10—0.14µm, ξ+
0 ≃ 0.3—0.4nm, and ∆Tc ≃ −0.1—0.1K, which yield

the best agreement with the experimental data for ∆V̂ , are affected by these changes21 but the

sharpness of the variation is not. In addition, our analysis shows that the effect of the periodic

spatial arrangement of the stripes – which would smoothen the potential for relatively small

periodicities P — is negligible for the experimental conditions used in Ref. [37]. On the same

basis, we expect the DA to be sufficiently accurate and that the non-linearities inherent in the

critical Casimir interaction, which actually invalidate the assumption of additivity of the forces

and might cause a smoothening, do not affect significantly the potential shown in Fig. 3.5.

However, if the chemical step between two adjacent chemical strips is not ideal (see

Sec. 3.2.5), this results in a pronounced modification of the resulting potentials. Even though

there is no direct measurement of such a variation of the position of the step, it is reasonable

to assume that it occurs due to the fabrication process and due to the projection of the data

onto one dimension without independent knowledge of the alignment of the chemical stripes.

In order to estimate the consequences, we have we have assumed the actual position of the

chemical step to be characterized by a Gaussian distribution with zero average and standard

deviation ∆x = 0.5µm as described in Sec. 3.2.5. The resulting δV̂ (x), which basically cor-

respond to a convolution of the original almost square-well-like potentials with a Gaussian of

width ∆x, are shown as dashed curves in Fig. 3.5. The agreement with the experimental data is

significantly improved. In view of the pronounced modifications of the resulting potential our

analysis demonstrates that critical Casimir forces respond sensitively to geometrical details of

the chemical pattern, which could not be checked independently in Ref. [37].

3.3.4. Experiment by Vogt et al.

In a recent experiment — following the one of Ref. [37] — performed by Dominik Vogt et

al. [39, 40], surfaces with a periodic pattern of alternating stripes with opposite adsorption

preferences for the two components of the binary mixture of water and lutidine were obtained

by micro-contact printing (µCP) of alkanethiols. Elastic stamps have been prepared by casting

polydimethylsiloxane onto a master which was topographically structured by a lithographic

process [40]. The stamps have been wetted with a solution of nonpolar thiols and brought into

21As the amplitude of k(−,−) is reduced, the fitted value of ξ+
0 moves closer to 0.20nm, suggesting that indeed the

preferential adsorption of the (−) stripes might be effectively rather weak.
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mechanical contact with a gold-coated glass substrate, which results in hydrophobic stripes on

the substrate surface [40]. Finally, the substrate has been dipped into a solution of another

type of thiols in order to render the remaining bare gold surface hydrophilic [40]. With this

technique periodic arrays of hydrophilic and hydrophobic stripes of widths between 0.9µm and

3µm over a typical total extension of 0.5cm2 and a typical lateral edge resolution of the order

of 50nm to 100nm have been produced [39, 40]. In contrast to the focused ion beam technique

used in Ref. [37] (Sec. 3.3.3) charging effects are basically absent in µCP; thus, one has an

improved control of the geometrical structure of the imprinted chemical pattern [40].

Depth of the potential

Figure 3.6(a) shows the depth of the measured laterally confining potential ∆V̂ = −δV̂ (0)

[Eq. (3.11)] as a function of the deviation ∆T = T exp
c − T of the temperature from the ex-

perimentally determined critical demixing temperature T exp
c , for various stripe widths L− and

measured in independent experimental runs as described above. The periodicities P of the vari-

ous patterns the stripes belong to are determined from the photolithography mask and are given

in Tab. 3.1. The potential depth ∆V̂ is determined as the difference of the potential between

its value at the center of a repulsive stripe and at the center of an attractive stripe, carrying an

uncertainty of ±0.15kBT near the critical temperature Tc ≃ 307K. Upon approaching Tc, for a

stripe width L− . 1.5µm the effects of two adjacent chemical steps interfere, which results in

an effectively reduced potential depth compared to the case of a very wide stripe (see the dashed

curves in Fig. 3.6(b); in Fig. 3.6(a) the experimental uncertainty in determining the critical tem-

perature T exp
c is responsible for the relative displacements among the various curves). The effect

of non-ideal chemical steps may result in an effectively reduced potential depth as well (see, for

example, Fig. 3.6(b) and, c.f., Fig. 3.8(b)). Accordingly, in comparing the experimental data

for ∆V̂ with the theoretical predictions we allow for an uncertainty in the local position of the

boundary between adjacent stripes, as described in Subsec. 3.2.5. However, as will be shown

below, we are able to determine ∆x rather precisely from the lateral variation of the potential.

The values of ∆x, which yield the best agreement and which are used for the comparison shown

in Fig. 3.6, are given in Tab. 3.1. On the basis of our theoretical analysis, it turns out that the

temperature dependence of the potential depth becomes independent of the stripe width when

the latter is sufficiently large. Adopting for the geometrical and physical parameters the values

corresponding to the present experimental conditions, this is expected to occur for L− & 2µm.

From Fig. 3.6 one can see, however, that the experimentally determined data for individual ex-

perimental runs are shifted along the temperature axis with respect to each other, which reflects

the uncertainty of up to 100mK in measuring the absolute value of the critical temperature. On

the other hand, within a single individual experimental run corresponding to a certain stripe

width, the temperature difference between the various data points can be measured with the

high accuracy of less than 10mK. Upon comparing the experimental data shown as symbols in
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Figure 3.6: Depth ∆V̂ of the effective potentials of a colloid close to patterned substrates, with periods

P = L−+ L+ and (−) stripe widths L− given in Tab. 3.1, as a function of the temperature deviation

from the critical temperature. The symbols represent the experimental data which are affected by

an experimental uncertainty of ±0.15kBT for the potential depth and of ±0.01K for the temperature

differences between the various data points belonging to one and the same value for L−.
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(a) ∆V̂ as a function of ∆T = T exp
c −T . (For better visibility,

the data for L− = 3.25µm are shifted by 0.1K along the ∆T

axis, as indicated by the red arrow.) The solid lines represent

the best fit of the theory to the experimental data for each in-

dividual value of L− with fixed parameters κ and z+0 which

do not affect the resulting behavior significantly as discussed

in the main text. ξ+
0 has been varied within the reasonable

range 0.18nm . ξ+
0 . 0.22nm known from the literature.

The values of all parameters corresponding to the solid lines

are given in Tab. 3.1. Clearly, for each individual L− the ac-

tual critical temperature Tc is shifted by ∆T ∗
c = Tc−T exp

c from

the value T exp
c determined experimentally, with ∆T ∗

c being

within the experimental accuracy |∆T ∗
c |. 0.1K. The dashed

curves represent a common fit to all data. For this latter fit

we have assumed ξ+
0 and z−0 to be the same for the various

independent experimental runs, independently of the corre-

sponding value of L−, whereas ∆T ∗
c = Tc−T exp

c (besides ∆x

as determined below) is used for adjustment to the data for

each individual L−. The best fit for all these parameters ren-

ders ξ+
0 = 0.22nm, z−0 = 0.11µm, and the values reported

in Tab. 3.2.
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(b) ∆V̂ as a function of ∆T + ∆T ∗
c = Tc − T

using the values of ∆T ∗
c for the best common

fit (see dashed lines in (a)) given in Tab. 3.2.

This plot takes into account the experimental

uncertainty of measuring the absolute value

of T exp
c . The data points, which have been

shifted accordingly, basically fall on top of each

other within their error bars. The dashed lines

correspond to the dashed ones shown in (a)

and represent the theoretical predictions. For

L− ≥ 1.60µm the various curves are almost

indistinguishable from each other, whereas for

L ≤ 1.30µm the potential depth is effectively

reduced due to the interference of the effects

of two neighboring steps and due to the fact

that the steps are non-ideal.
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Fig. 3.6 with our theoretical predictions we take this into account by introducing, for each value

of L−, a possible shift ∆T ∗
c (L−) = Tc−T exp

c (L−) between the actual critical temperature Tc and

the value T exp
c determined in that particular experiment. Accordingly, for the data corresponding

to a certain L−, the actual distance from the critical point is given by Tc −T = ∆T +∆T ∗
c (L−).

The dashed curves in Fig. 3.6 correspond to the common fit to all experimental data which

leads to the fitting parameters ξ+
0 and z−0 taking the same values ξ+

0 = 0.22nm and z−0 = 0.11µm

for all L− as obtained from the least-square method. On the other hand, the individual temper-

ature shifts ∆T ∗
c (L−) are given in Tab. 3.2 for each data set corresponding to a single value of

L−. The values of ξ+
0 and z−0 are both in agreement with independent previous findings [21].

Figure 3.6(b) shows the depth of the potentials as a function of ∆T +∆T ∗
c (L−) = Tc −T , i.e.,

shifted along the temperature axis by ∆T ∗
c (L−) as given in Tab. 3.2. This accounts for the un-

certainty in determining experimentally the absolute value of the temperature, and indeed, as

expected for significantly wide stripes L− ≫ ξ , the data overlap with each other within the error

bars, reflecting that in this limit ∆V̂ is independent of L−.

The solid lines in Fig. 3.6(a) correspond to fits of the theoretical predictions to each individual

experiment dealing with a specific stripe width. Distinct from the previous common fit, here for

each stripe width L− we allow for a variation of the values of ξ+
0 and z−0 in addition to ∆Tc and

∆x. On the basis of a least-square fit, best agreement is obtained for the values given in Tab. 3.1,

which agree with those obtained in independent previous studies [21] within the corresponding

experimental accuracy.

Shape of the potentials

Figures 3.7 and 3.8 show the total potential of the forces acting on the colloid as a function

of its lateral position for various temperatures and for two stripe widths. Symbols represent

the experimental data, whereas the solid and dashed lines are the corresponding theoretical

predictions with ξ+
0 , z−0 , and ∆T ∗

c fixed to the values reported in Tab. 3.1, which have been

determined from the fit of the depth ∆V̂ of the potential. In addition, for a few cases and as

indicated in the figure captions, we use the leeway provided by the experimental uncertainty

of ±10mK for the temperature value. The dashed lines in Figs. 3.7 and 3.8 are based on the

assumption that the stripe patterns are ideal whereas the solid ones refer to non-ideal patterns

for which we fitted the parameters ∆x (see Subsec. 3.2.5) in order to obtain the best agreement

between theoretical predictions and the set of experimental data at distinct temperatures. The

resulting values of ∆x for the various widths of the pattern are reported in Tab. 3.1. In fact,

the broadness of the transition regions across the chemical steps of δV̂ (x) between its extremal

values is affected practically exclusively by ∆x. We have checked that the other parameters and

potential additional effects such as polydispersity and weak adsorption cannot account for the

discrepancies of the slopes of the dashed curves and the experimentally determined ones. Thus,

∆x and L− are determined de facto independently of the choice of ξ+
0 , z−0 , and ∆T ∗

c and in the
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Table 3.1.: Values of the parameters for which best agreement is obtained between theory and the data

for δV̂ (x) for each individual experimental run, corresponding to a single value of L− (see Fig. 3.6(a)).

The values κ−1 = 12nm and z+0 = 0.09µm are fixed because their choice does not affect significantly

the resulting theoretical curves in Fig. 3.6.

P[µm] a Lexp
− [µm] b L−[µm] c ξ+

0 [nm] z−0 [µm] ∆T ∗
c [mK] ∆x[µm] d

6.0 3.0 3.25 0.22 0.103 86 0.15
5.4 2.7 2.25 0.21 0.128 -5 0.10
4.2 2.1 1.60 0.22 0.095 88 0.22
3.6 1.8 1.30 0.19 0.140 -18 0.19
1.8 0.9 0.90 0.20 0.121 -28 0.09

aMost of the experimental data for the potential δV̂ (x) discussed here are not influenced by the actual value

of P as long as P & 2L−. Accordingly, we assume the periodicity to be the one determined by the inscribed

photolithographic mask pattern reported here.
bWidth of the stripes of the photolithographic mask pattern. Due to the µCP stamping process we estimate the

uncertainty of the actual width of the thiol stripes to be up to ±0.5µm.
cValue of the stripe width for which best agreement between theory and experiment is obtained.
dValue of ∆x for which best agreement between theory and experiment is obtained (see Figs. 3.7 and 3.8).

Table 3.2.: Values of the parameters for which best agreement is obtained between theory and all

experimental data together (see Fig. 3.6(b)), so that the values of ξ+
0 and z−0 are the same, and ∆T ∗

c (in

addition to ∆x determined from the shape of the potentials; see below) is the only parameter allowed to

vary for the various stripe widths L−. As in Tab. 3.1, the values of κ−1 = 12nm and z+0 = 0.09µm are

fixed. (For a description of the parameter values P, Lexp
− , and L− see the footnotes in Tab. 3.1.)

P[µm] a Lexp
− [µm] L−[µm] ξ+

0 [nm] z−0 [µm] ∆T ∗
c [mK] ∆x[µm]

6.0 3.0 3.25 0.22 0.110 49 0.15
5.4 2.7 2.25 0.22 0.110 54 0.10
4.2 2.1 1.60 0.22 0.110 0 0.22
3.6 1.8 1.30 0.22 0.110 72 0.19
1.8 0.9 0.90 0.22 0.110 29 0.09
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Figure 3.7: Lateral variation of the effective potential δV̂ (x) (see Eq. (3.11)) for a colloid opposite to

a chemically patterned substrate and immersed in the water-lutidine binary liquid mixture at its critical

concentration for various temperatures T exp
c −∆T . Symbols indicate experimental data, whereas the

lines are the corresponding theoretical predictions for ideal (dashed lines) and non-ideal (solid lines)

stripe patterns. The parameters used to calculate the theoretical curves are given in Tab. 3.1.
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cal point is approached and the measured tempera-

ture deviations ∆T are 0.3, 0.18, 0.15 (0.153), 0.145

(0.14), 0.13 (0.128), 0.12, 0.11 (0.113), and 0.10 K

with an uncertainty of up to ±0.01K with respect to

each other. If indicated, the values in brackets are

corrected values (but compatible within the experi-

mental inaccuracy) which have been used for evalu-

ating the theoretical predictions.
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(b) Same as (a) for L− = 2.25µm and ∆T = 0.175

(0.165), 0.16 (0.152), 0.145 (0.143), 0.13, 0.115, and

0.10 K.

following they can be regarded fixed upon variation of the values of these latter parameters. In

particular, this is important for narrow stripes as shown in Fig. 3.8, where even the depth of the

potential depends on L− and ∆x, in contrast to broader stripes.

As anticipated, in the case of rather large stripe widths L− = 3.25µm and L− = 2.25µm

shown in Fig. 3.7 and for the temperatures considered here the effects of two neighboring chem-

ical steps do not interfere and the resulting potential across the center of the attractive chemical

stripe is flat. Accordingly, from the comparison between the experimental data for the shapes

of the potentials and the corresponding theoretical prediction we can infer the width L− of the

stripes — now treated as a fitting parameter — independently of its initially assumed value Lexp
−

determined by the width of the photolithography mask. Indeed, the actual width of the stripe

imprinted by the mask may differ by up to ±0.5µm from Lexp
− characterizing the mask itself.

It is only Lexp
− which is controlled during the preparation process [39]. On the other hand, the

actual value of P is the same as the one of the photolithography mask because the periodicity

is not affected by the stamping process. (Note that, within the parameter range investigated in
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Figure 3.8: Effective potential δV̂ (x) (see Eq. (3.11)) for various temperatures T exp
c −∆T and relatively

small widths of the attractive stripes. Symbols indicate experimental data, whereas the lines are the

corresponding theoretical predictions for ideal (dashed lines) and non-ideal (solid lines) stripe patterns.

The parameters used to calculate the theoretical curves are given in Tab. 3.1.
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(a) Same as Fig. 3.7(a) for L− = 1.60µm and ∆T =

0.3, 0.23 (0.218), 0.21 (0.198), 0.19 (0.182), 0.17,

0.15 (0.153) K.
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(b) Same as (a) for L− = 1.30µm (left panel) and

L− = 0.9µm (right panel) with ∆T = 0.3, 0.12, 0.1,

0.09 (0.083), 0.08 K for L− = 1.30µm and ∆T = 0.3,

0.18, 0.16, 0.145, 0.13 K for L− = 0.9µm.

Fig. 3.7, the effects of neighboring chemical steps do not influence each other and therefore

the actual value of the periodicity P of the pattern does not affect the determination of L−.) In

agreement with this observation, the comparison with the theoretical predictions leads to fit-

ted values L− which are within the aforementioned range indicated in Tab. 3.1. From Fig. 3.7

we find that the experimental techniques described above lead to rather sharp chemical steps

between two stripes with an uncertainty of only ∆x ≤ 0.15µm.

The comparison for narrower stripe widths L− . 2µm is shown in Fig. 3.8. Even for these

cases, in which the effects of two neighboring chemical steps do interfere, the experimental data

agree very well with the theoretical predictions obtained from the Derjaguin approximation.

Whereas for L− = 1.6µm and L− = 1.3µm we have to take into account an uncertainty ∆x of

the position and associated with the shape of the chemical steps of about 0.2µm, for the smallest

stripe width L− = 0.9µm the chemical pattern turns out to be almost ideal with ∆x < 0.1µm

(see Tab. 3.1).

3.4. Summary

We have presented a detailed comparison between experimental measurements and correspond-

ing theoretical predictions of critical Casimir forces acting on colloids suspended in a (near-)

critical binary liquid mixture of water and 2,6-lutidine and close to chemically patterned sub-
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strates. Experimentally, chemical patterns of stripes of different widths and with laterally al-

ternating adsorption preferences for either lutidine [(+) boundary condition] or water [(−)

boundary condition] has been obtained via removing HDMS particles with a focused ion beam

[37, 38] and by micro-contact printing of monolayers of thiols [39, 40], respectively. The so-

lute colloidal particles — 2.4µm diameter polystyrene spheres — were rendered hydrophilic,

corresponding to (−) boundary conditions, due to their surface charge. The key experimental

findings, which have been analyzed theoretically here, were the following (see Refs. [37, 40]):

At the fixed critical composition of the water-lutidine mixture, upon raising the temperature T

towards its lower critical demixing point at T = Tc, lateral forces acting on the colloidal par-

ticles arise gradually. These critical Casimir forces cause the colloidal particles to be attracted

to those chemical stripes which have the same adsorption preference as the particles and to be

repelled from those stripes with the opposite adsorption preference. These lateral and normal

contributions to the total effective forces (compare Subsec. 3.2.2) are negligible at temperatures

T more than a few hundred mK away from the critical value Tc but they increase significantly

upon approaching Tc. Eventually, they lead to laterally confining potentials for the colloidal

particles with potential depths of several kBT (see Figs. 3.4 and 3.6). These potentials can be

reversibly tuned by minute temperature changes. In contrast to the case of surface patterns

created by the focused ion beam, across a chemical step the critical Casimir potentials vary

rather abruptly between two plateau values on a length scale of ≈ 0.8µm for the case of pat-

terns created by micro-contact printing (compare Figs. 3.5 and Fig. 3.7). This indicates that

the microscopic structures of the chemical steps formed by imprinted layers of alkanethiols

with different endgroups [40] are much sharper than those created by a focused ion beam [37].

For rather narrow stripes of widths . 2µm the effects of two neighboring chemical steps in-

terfere and consequently reduce the potential depth and lead to rounded shapes of the effective

potentials (see Fig. 3.8).

These experimental observations [37, 40] can be consistently interpreted in terms of the oc-

currence of the critical Casimir effect, and it is possible to quantitatively compare the mea-

sured potentials with the corresponding theoretical predictions. We have derived the effective

potentials within the Derjaguin approximation (see Subsec. 3.2.1) based on universal scaling

functions for the critical Casimir force between two plates with (±,±) or (+,−) boundary

conditions as obtained from Monte Carlo simulation data.22 In contrast to the present exper-

imental measurements we are able to theoretically analyze the spatially fully resolved critical

Casimir potential acting on a colloid. The resulting energy landscape for a colloidal particle is

rather rich due to the interplay of several relevant forces, which we have taken into account (see

Fig. 3.1). Typically, thermal fluctuations lead to large fluctuations of the lateral position and

the distance between the colloidal particles and the substrate (see Fig. 3.2). Upon approach-

22Differences in estimates for these scaling functions as obtained from various Monte Carlo simulations do not

affect our results significantly.
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ing Tc, however, strong normal and lateral critical Casimir forces abruptly localize the colloids

very close to and above stripes exhibiting the same adsorption preference as the particles (see

Fig. 3.3). Calculating the effectively one-dimensional, projected potentials for a single colloid,

as they are obtained experimentally, we also take into account the possibility that the chemical

pattern is not ideal, in addition to other experimental uncertainties.

Concerning the experiment by Soyka et al. [37], the assumption of non-ideal steps improves

the agreement with the experimental data significantly. In view of the pronounced modifications

of the resulting potential our analysis demonstrates that critical Casimir forces respond sensi-

tively to geometrical details of the chemical pattern, which could not be checked independently

in Ref. [37]. However, in spite of this improvement in the comparison between the shapes of

the theoretical and experimental potentials, the analysis of the temperature dependence of the

corresponding potential depths renders an amplitude ξ0 of the correlation length ξ (treated as

a fitting parameter) which is about twice as large as the one known from independent previous

measurements.

This persisting discrepancy, together with the necessity to test independently the aforemen-

tioned assumption, called for a more detailed experimental study of the critical Casimir force

acting in the presence of patterned substrates, which has been realized by Vogt et al. [39, 40].

Concerning the comparison with these experiments, not only the theoretical predictions for the

potential depths agree with the experimental data (see Fig. 3.6) but also the correlation length

ξ , as determined from our comparison, follows rather well the expected universal power law

behavior and the associated non-universal amplitude ξ0 is in agreement with previous indepen-

dent experimental determinations (see Tab. 3.1). Moreover, the shapes of the potentials as a

function of the lateral position of the colloid show good agreement between the theory and the

experiments (see Figs. 3.7 and 3.8). Thus, we find that the chemical steps obtained by the ex-

perimental method used by Vogt et al. are sharp, with deviations of only a few percent in terms

of the stripe width. From the detailed comparison with rather narrow chemical stripes (see

Fig. 3.8(b)) we infer that even for such cases the Derjaguin approximation describes the actual

behavior quite well, as expected from our corresponding theoretical analysis within mean-field

theory in Chap. 2.

We conclude that the quantitatively successful comparison between the experimental data and

the theoretical predictions demonstrates the significance and reliability of the critical Casimir

effect for colloidal suspensions and reveals a new means of using them as model systems in

soft-matter physics or in applications in integrated micro- or nano-devices.



4. Dynamic critical phenomena around

colloidal particles

4.1. Introduction

CLOSE to criticality not only static properties of physical systems but also their dynam-

ics is strongly altered and it obeys universal behavior (see Sec. 1.2.5). As for the

static case, surfaces affect strongly the dynamical properties of a system, and their

influence can be studied in terms of dynamic surface universality classes [183–186]. They de-

pend on the boundary conditions and the representative, effective dynamical model [187–189].

Concerning the quantitative treatment, confining surfaces are accounted for by supplementing

the Hamiltonian H in Eqs. (1.9) and (1.11) by the surface-Hamiltonian Hs given in Eq. (1.7).

Critical dynamics in systems of finite size is a subject which is rather rarely explored and the

corresponding studies have been mainly limited to the film geometry (see, e.g., Refs. [190–192]

and references therein). In particular, spinodal decomposition with Model B dynamics has been

studied numerically within the film geometry in detail [193–197]. The dynamical evolution of

a critical system with Model A dynamics in a thin film geometry has been studied only recently

[190, 192, 198–200].

In view of using colloidal suspensions for the study of critical phenomena and critical Casimir

forces, knowledge about the influence of curved surfaces on critical dynamics is needed. Here,

we extend previous studies of critical dynamics to systems which are confined by curved objects

such as colloidal particles immersed in a fluid. Moreover, theoretically the question of the

appropriate definition of the dynamic critical Casimir force raises, which is addressed below. In

the following Sections we focus on the time evolution of the order parameter profile close to

flat and curved surfaces.

4.2. Critical dynamics in systems confined by curved

surfaces

Whereas the paradigmatic models for theoretical studies very often involve planar surfaces,

most natural and experimental objects in soft matter, such as colloidal particles, have a curved
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surface. An obvious question concerns how the critical dynamics of the fluid surrounding such

objects is affected due to non-zero curvature. In particular, one may ask how the effect of the

surface propagates with time into the bulk, and whether the dynamical behavior is influenced

by curvature as compared to the case of a planar wall.

Previous studies of critical phenomena close to curved objects inter alia include the theoreti-

cal [201, 202] and experimental [203] investigation of static critical adsorption at colloidal par-

ticles. The spatial order parameter profile turns out to depend strongly on the curvature and on

the number of directions along which the object surface is bent [201]. The dynamics of Model

A within the Ising universality class for curved surfaces has been studied on a pseudosphere

in two dimensions (see, e.g., Refs. [204–207] and references therein). The pseudosphere is a

geometric object with constant negative Gaussian curvature,23 which — according to Ref. [205]

— has been considered with respect to, e.g., quantum physics, string theory, or cosmology. In

Refs. [208, 209] the phase ordering kinetics within Model A has been studied theoretically for

surfaces implying all kinds of curvatures; in particular, the growth of the domain interfaces in

time was studied. In Ref. [209] it has been shown that the domain growth dynamics depends

strongly on the local Gaussian curvature and is qualitatively different from the one in flat sys-

tems. Basically, close to points with negative Gaussian curvature the dynamics becomes faster

as compared to the planar case [205, 209], whereas close to points of positive Gaussian cur-

vature the dynamics becomes slower [209]. In Ref. [210] conserved dynamics (Model B) has

been studied numerically at spherical particles; however, for rigid spheres no deviation from the

planar wall case has been seen — a fact which the authors of Ref. [209] attribute to the short

evolution times performed in Ref. [210]. The qualitative changes induced by curvature as seen

for the non-conserved Model A dynamics are expected to hold for Model B dynamics as well.

In order to extend previous considerations to the experimentally colloidal particles, here, we

study the relaxation of the order parameter (Model A) next to a single colloid of cylindrical

or spherical shape (zero or positive Gaussian curvature) immersed in a critical (binary) fluid.

Model A dynamics amounts to replacing the kinetic coefficient Ω̂ in the general Langevin equa-

tion Eq. (1.9) by the scalar relaxation constant Ω; within mean field theory (MFT) it is given

by Ω = (ξ+
0 )2/t+R,0 [190]. Here, we consider the Ising universality class, i.e., a scalar order

parameter field φ(r, t). As for the static case, we are mainly interested in the case without

bulk fields, h = 0. First, we briefly recall critical dynamics at planar walls and in thin films

in Subsecs. 4.2.1 and 4.2.2 and test our numerical method described in App. A.3 with these

23Every point on a surface (in d = 3) has two principal curvatures, κ1 and κ2, given by the maximum and the

minimum value of the curvatures of the surface along the tangential directions of this point. The Gaussian

curvature is defined as the product K = κ1κ2 = 1/(R1R2), where R1 and R2 are the corresponding principal radii

of curvature. The Gaussian curvature is positive, K > 0, whenever both centers of the circles corresponding

to the principal curvature (radii) lie on the same side of the surface, e.g., on every point on top of or within a

sphere surface. K = 0 whenever one of the principal curvatures vanishes, as for the case of a cylinder. Negative

Gaussian curvature, K < 0, is exhibited when the centers of the curvature circles lie on different sides of the

surface, e.g., on saddle points, or generally on hyperboloids.
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well known systems. In Subsec. 4.2.3 we study critical dynamics at curved objects within MFT

and derive a short-distance expansion in Subsec. 4.2.4 for several kinds of surface universality

classes at the boundary of the curved surface. Finally in Subsec. 4.2.5 we numerically study

the critical relaxation of the order parameter next to colloidal particles corresponding to the

ordinary surface transition (Dirichlet BC).

The critical dynamics of the relaxation of the order parameter at planar surfaces and in thin

films has been studied in Refs. [183–185, 188, 190, 192]. Due to the presence of a confining

wall, in experiments and simulations very often one has to deal with finite values of the order

parameter even in the homogeneous phase of the system. Thus, it is crucial to account for

the nonlinear terms of the Hamiltonian Eq. (1.6) and the Langevin equation Eq. (1.9). The

evolution equation for the mean field order parameter profile m(r, t) = (u/3!)−1/2〈φ(r, t)〉 can

be derived at lowest level (“zero loop expansion”) from the Langevin equation given in Eq. (1.9)

with the standard Landau-Ginzburg bulk and surface Hamiltonians given in Eqs. (1.6) and (1.7),

respectively (see Secs. 1.2.4 and 1.2.5). Since the average of the stochastic noise vanishes, one

finds for the mean field order parameter evolution in the bulk [156, 157, 190]

∂tm(r, t)+Ω
{
−∇2 + τ̂ +m2(r, t)

}
m(r, t) = 0. (4.1)

In a confined system Eq. (4.1) has to be supplemented with equations for the values of m at the

boundaries, depending on the boundary conditions at the surfaces and derived from Eq. (1.7).24

4.2.1. Nonlinear relaxation close to planar walls

Before considering the order parameter profile evolution close to a curved surface, we briefly

recall the known results obtained for the semi-infinite geometry (i.e., a single planar wall) in

Refs. [184, 185, 190]. For the semi-infinite system, the mean field order parameter spatially

depends only on the distance x⊥ from the wall located at x⊥ = 0. In the absence of bulk fields,

from renormalization-group considerations one can infer the scaling form [184, 185, 190]

m(x⊥, t) =
1

ξ+
0

(

t

t+R,0

)−β/(zν)

×Ψ
(

(x⊥/ξ+
0 )(t/t+R,0)

−1/z,sign(τ̂)t/tR,{ξ+
0 m(x′⊥,0)(t/t+R,0)

β/zν}
)

, (4.2)

where the temperature enters via the relaxation time tR [Eq. (1.8)]. Within MFT and Model

A one has β = ν = 1/2 and z = 2 (see above). The scaling function Ψ depends on the ini-

tial configuration m(x⊥,0) of the order parameter profile, which is assumed to be created via

24From Eq. (4.1) one can directly infer that the linear regime ( Gaussian approximation of H ), is valid only for

|τ̂| ≫ m2. Clearly at criticality (τ̂ = 0), the linear approximation is not applicable and the dynamical behavior

is dominated by the nonlinear contribution. For a more thorough discussion concerning the ranges of validity of

the linear regime in confined geometries see, e.g., Ref. [190].
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a bulk field which vanishes at t = 0 [184, 190]. For “large” initial order parameter values

m(x⊥,0)ξ
+
0 ≫ (t/t+R,0)

−β/zν , the dynamical evolution becomes independent of it and follows

the scaling function Ψ(u⊥,w,∞) [190].

From a short-distance expansion (more precisely, (x⊥/ξ+
0 )(t/t+R,0)

−1/z → 0), one finds that

Ψ(u⊥,w,∞) ∝ u
(β1−β )/ν
⊥ , where β1 is the surface critical exponent of the order parameter which

is in general different from β and depends on the surface universality class [190].25 That is,

close to the wall, the order parameter follows the behaviors m ∝ x
(β1−β )/ν
⊥ with distance, and

m ∝ t−β1/νz with time.

At a fixed distance x⊥ from the wall (after a non-universal transient time due to the initial

order parameter profile, but still at short times26), the order parameter first relaxes according to

the universal bulk behavior Ψ(∞,w,∞) [190]. At the critical point, i.e., tR → ∞, the bulk behav-

ior is given by Ψ(∞,0,∞) = const, i.e., m ∝ t−β/zν . As time goes by, (x⊥/ξ+
0 ) < (t/t+R,0)

1/z,

and the surface affects also the behavior at a distance x⊥ from the wall so that the order param-

eter relaxes according to the surface behavior m ∝ t−β1/νz [190]. Note that these properties of

the order parameter relaxation are affected off -criticality only when m becomes small and the

relaxation is exponential in time for t ≫ tR, and at distances from the surface much larger than

the correlation length x⊥ ≫ ξ [190].

We have applied a finite element method described in detail in App. A.3 to the semi-infinite

system with an ordinary transition at a flat surface (Dirichlet BC), i.e., m(x⊥ = 0, t) = 0. (This

effectively one-dimensional problem is used for testing the numerical method which can deal

with two spatial dimensions.) Inspired by Ref. [190] we chose an initial order parameter profile

of the form m(x⊥, t = 0) = Kx⊥/D for x⊥ < D and m(x⊥, t = 0) = K for x⊥ ≥ D, where K and

D are constants. Figure 4.1 shows a typical spatio-temporal order parameter profile close to a

single wall at T = Tc as obtained within the finite element method for the values K = 20/ξ+
0

and D = 0.1ξ+
0 .

Using the finite element method, we have been able to reproduce the dynamic critical be-

havior in an semi-infinite system. As can be inferred from Fig. 4.2, at fixed distance x⊥, after a

non-universal transient time which depends on the initial conditions, the order parameter profile

m first decays as within the bulk ∝ t−β/zν = t−1/2. After a crossover time t/t+R,0 ≃ (x⊥/ξ+
0 )z

the relaxation proceeds as at a surface m ∝ t−β1/zν = t−1.

25Within MFT, β1 = 1 for the ordinary surface universality class and β1 = 1/2 for the special universality class

[66]. For the extraordinary (normal) universality class corresponding to critical adsorption, the order parameter

at the surface and its derivative are continuous and a singularity occurs for its second derivative only. Thus,

one identifies β1 = 2; however, this singularity is so weak such that effectively the surface order parameter is

constant for the extraordinary transition which would correspond to a vanishing exponent [68].
26Beyond the MFT discussed here, in the initial time regime the order parameter evolution is given according to a

universal behavior characterized by the initial-slip exponent [186, 211].
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Figure 4.1: Order parameter profile m(x⊥, t)× ξ+
0 [Eq. (4.2)] at T = Tc as obtained numerically (see

App. A.3) from Eq. (4.1). The order parameter exhibits Dirichlet BC at the wall (ordinary surface transi-

tion). Its initial value at distances x⊥ > D = 0.1ξ+
0 has been chosen to be K = 20/ξ+

0 , so that for times

t/t+R,0 ≫ (ξ0/K)z ≃ 0.003, i.e., after a non-universal transient time, the profile evolution is universal (see

the main text).
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Figure 4.2: Cuts through the order parameter profile m shown in Fig. 4.1 at different distances x⊥ from

the wall, and as a double-logarithmic plot as function of t. Symbols correspond to numerical data

obtained via the method described in App. A.3. As expected, at fixed position x⊥ the order parameter

first decays according to the bulk behavior ∝ t−1/2. After a waiting time which increases with distance

from the wall, the profile decays according to the surface behavior ∝ t−1.
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4.2.2. Critical dynamics in thin films

Thin films, i.e., slabs Rd−1 × [0,L] of finite thickness L, provide a paradigm for studying finite-

size effects. Note that in the present context, L has to be considered much larger than the

typical microscopic length scale ξ+
0 . Whereas critical phenomena and the occurrence of critical

Casimir forces in thin films have been studied rather comprehensively as far as their equilibrium

static properties are concerned, their dynamics is a less explored subject. In particular, the order

parameter evolution within Model A dynamics in thin films has been studied recently [190,

192, 199, 200]. Here, we briefly review the MFT behavior given by Eq. (4.1) with appropriate

boundary conditions, as presented in detail in Ref. [190].

Assuming translation invariance along the directions parallel to the film walls, the order pa-

rameter profile m depends on the film thickness L in addition to the distance x⊥ ∈ [0,L] from

one wall, to time, and to temperature, and its expected scaling behavior is given by (see also

Eq. (4.2) for the semi-infinite system) [190]:

m(x⊥,L, t) =
1

ξ+
0

(

t

t+R,0

)−β/(zν)

× Ψ̂
(

x⊥/L,(L/ξ+
0 )(t/t+R,0)

−1/z,sign(τ̂)t/tR,{ξ+
0 m(x′⊥,L,0)(t/t+R,0)

β/zν}
)

. (4.3)

For T = Tc and for sufficiently large values of the initial order parameter m(x⊥,L,0)ξ
+
0 ≫

(t/t+R,0)
−β/zν the scaling function Ψ̂(x̂, t̂−1/z,0,∞) depends only on the two scaling variables x̂≡

x⊥/L and t̂ ≡ (t/t+R,0)/(L/ξ+
0 )z. Thus, for the dimensionless quantity m̂(x̂, t̂)≡ L×m(x⊥,L, t),

Eq. (4.1) reduces to [190]

∂t̂m̂(x̂, t̂)+
{
−∂ 2

x̂ + m̂2(x̂, t̂)
}

m̂(x̂, t̂) = 0, (4.4)

where the MFT values Ω = (ξ+
0 )2/t+R,0 and z = 2 have been used [190].

For the ordinary surface transition (i.e., Dirichlet BC and β1 = 1) at both confining walls of

the film, four distinct temporal regimes for the behavior of the order parameter m̂(x̂, t̂) at a fixed

position x̂ ∈ (0,1) have been predicted and numerically observed in Ref. [190]:

(i) First, the order parameter relaxes non-universally depending on the specific initial profile.

(ii) After a non-universal transient time, the early relaxation is determined by the bulk behav-

ior, and therefore m̂ ∝ t̂−β/zν .

(iii) For times t̂ & x̂z the effect of the presence of the surface has reached the points at a

distance x̂, and the order parameter relaxes according to the surface behavior m̂ ∝ t̂−β1/νz.

(iv) Within the late relaxation regime, the effects of the two surfaces of the film interfere, and

the order parameter vanishes exponentially as m̂ ∝ exp(−π2t̂).
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Figure 4.3: Numerically obtained order parameter m̂(x̂, t̂) in a film of thickness L with ordinary (Dirich-

let) BC at the two confining walls. At T = Tc, m̂ = L × m is only a function of x̂ = x⊥/L and

t̂ = (t/t+R,0)(L/ξ+
0 )−z. The initial profile m̂(x̂, t̂ = 0) has a trapezoidal shape (see the main text). Upon in-

creasing time t̂, the order parameter approaches a universal shape independent of the initial conditions.

For late times, m̂ decays exponentially with t̂ and has a sinusoidal shape as function of x̂.

The various crossover times between these regimes have been defined operatively and studied in

Ref. [190]. Whereas the first three regimes are analogous to the semi-infinite system, the latest

time regime (iv), occurs at T = Tc only for a finite size system. That is, the crossover time from

regime (iii) to (iv) diverges with (L/ξ+
0 )z [190]. This is related to the fact, that in finite systems

the actual critical point is shifted from the bulk one. Time regime (iv) is in agreement with the

solution of the linear Langevin equation valid for relatively small m̂, where the quadratic term

in Eq. (4.4) can be neglected; this solution reads [190]

m̂(iv)(x̂, t̂) =
∞

∑
n=1

αn exp(−π2n2t̂)sin(π x̂), (4.5)

where the coefficients αn depend on the initial profile [190]. If α1 6= 0, the first term of the

series dominates for large t̂.

We have applied the numerical method described in App. A.3 to the film geometry with

ordinary transitions at both confining surfaces (Dirichlet BC), i.e., m̂(x̂ = 0, t) = m̂(x̂ = 1, t) =

0. Analogously to Ref. [190] we have chosen an initial order parameter profile of the form

m̂(x̂, t̂ = 0)= K̂x̂/D̂ for x̂< D̂, m̂(x̂, t̂ = 0) = K̂ for D̂≤ x̂≤ 1−D̂, and m̂(x̂, t̂ = 0) = K̂(1− x̂)/D̂

for x̂> 1−D̂, where K̂ and D̂ are constants. Under these assumptions, m̂ is symmetric across the

axis x̂ = 1/2. In Fig. 4.3 the order parameter profile m̂(x̂, t̂) obtained within the finite element

method is shown for the film geometry at T = Tc with K̂ = 8 and D̂ = 0.125. According to

the considerations above, one expects universal behavior after a transient time depending on

the initial conditions, i.e., for t̂ ≫ 1/[m̂(x̂, t̂ = 0)]2. In the particular case shown in Fig. 4.3 this
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Figure 4.4: Order parameter profile m̂ in the film geometry as shown in Fig. 4.3 as a function of t̂

for various values of x̂. The order parameter profile decays exponentially ∝ exp(−π2t̂) for values of

t̂ & 0.05.

occurs for t̂ ≫ 0.015.

The finite element method used here is able to reproduce the feature which distinguishes the

film geometry from the semi-infinite system, i.e., the exponential decay of m̂ at T = Tc. This

is shown in Fig. 4.4, where at fixed distance x̂ the order parameter profile m̂ decays after some

time as ∝ exp(−π2t̂) (see, also Fig. 16 of Ref. [190]).

In Fig. 4.5 the order parameter m̂ is shown as a function of x̂ for various times t̂. Whereas for

small t̂, the space-dependence of m̂ shown in Fig. 4.5 resembles its nonuniversal initial condition

(i.e., a trapezoidal shape here), for t̂ & 0.05, m̂ approaches a sinusoidal shape as predicted in

Ref. [190]. The black, solid lines in Fig. 4.5 correspond to the functions Asin(π x̂), where we

have chosen A = m̂(x̂ = 1/2, t̂).

4.2.3. Dynamic critical phenomena around colloidal particles

Here we consider the relaxation of the order parameter with Model A dynamics close to a

ds-dimensional hypercylinder in infinite space, where ds −1 is the number of directions along

which the surface (of dimension d−1) of the curved object is bound, whereas along the remain-

ing directions it is infinitely extended. In particular, ds = 2 corresponds to a cylinder, ds = 3

corresponds to a sphere, and ds = 4 corresponds to a hypersphere in d = 4. This extends the case

of a planar wall (which corresponds to ds = 1) and provides the suitable treatment for colloidal

particles of rodlike or spherical shape (see, e.g., Refs. [201, 202] for equilibrium critical order

parameter profiles next to colloidal particles). Note that the extension of ds to values larger than
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Figure 4.5: Order parameter m̂ shown as function of x̂ at different times t̂. For small t̂ the shape of the

order parameter profile across the slab is dominated by its nonuniversal initial condition. For t̂ & 0.05

the sinusoidal shape predicted for the late time behavior (see the main text) is approached: the black,

solid lines correspond to Asin(π x̂) with A = m̂(x̂ = 1/2, t̂).

three is mainly due to technical reasons because the upper critical dimension of the system we

are primarily interested in is four, which corresponds to MFT. The mean field scaling function

for the order parameter profile around the colloid depends on the distance r⊥ from the surface

of the cylindrical hypersphere and on the radius of the latter in addition to time, i.e., m(r⊥,R, t),

whereas it is translationally invariant along the tangential directions and the directions r‖ paral-

lel to the cylinder axis (for ds < d).

It is convenient to introduce the dimensionless quantities R̄ ≡ R/ξ+
0 , r̄ ≡ r⊥/ξ+

0 , t̄ ≡ t/t+R,0,

τ̄ ≡ τ̂(ξ+
0 )2, and m̄ ≡ ξ+

0 m. Then, the dynamical evolution equation reads

∂t̄m̄(r̄, R̄, t̄)+

{

−∂ 2
r̄ − ds −1

r̄+ R̄
∂r̄ + τ̄ + m̄2(r̄, R̄, t̄)

}

m̄(r̄, R̄, t̄) = 0, (4.6)

which is obtained from Eq. (4.1) by using the fact that within MFT the relaxation constant can

be expressed in terms of the non-universal amplitudes as Ω = (ξ+
0 )2/t+R,0 [190]. Equation (4.6)

has to be supplemented with a boundary condition for m̄ or ∂r̄m̄ at r̄ = 0. Analogous to the

reasoning above, one obtains the following scaling behavior for m̄:

m̄(r̄, R̄, t̄) = t̄−β/(zν)Ψ̄
(

r̄/t̄1/z, r̄/R̄,sign(τ̄)|τ̄|νzt̄,{m̄(r̄′, R̄,0)(t̄)β/zν}
)

. (4.7)

For large initial values of m̄ or at late times (as long initially the order parameter is finite), the

universal scaling function Ψ̄ becomes independent of the initial conditions of the system.
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In the following we restrict ourselves to the case just described, i.e., m̄(r̄, R̄,0)(t̄)β/zν ≫ 1,

and focus on the behavior at the critical temperature. Then, Eq. (4.6) becomes

∂t̄m̄−∂ 2
r̄ m̄− ds −1

r̄+ R̄
∂r̄m̄+ m̄3 = 0, (4.8)

and the order parameter profile takes the simplified scaling form:

m̄(r̄, R̄, t̄) = t̄−β/(zν)M

(

r̄t̄−1/z,
r̄

R̄

)

, (4.9)

where M(u,v) = Ψ̄(u,v,0,∞).

4.2.4. Critical dynamics at curved objects

The curvature of a cylindrical or spherical particle influences significantly the critical behav-

ior of the medium surrounding it. Here we calculate the curvature contribution by means of a

short-distance expansion. To this end, it is convenient to separate the spatial dependencies of

the order parameter m̄ and to introduce a generalized amplitude function g(r̄/R̄) for the curva-

ture contribution [201]. Moreover, we take into account an additional amplitude function h(w)

depending on the scaling variable w = R̄t̄−1/z, which describes the influence of the curvature on

the characteristic time evolution of the system. Thus, we heuristically consider the following

ansatz:

M

(

r̄t̄−1/z,
r̄

R̄

)

= h(R̄t̄−1/z)× f
(

r̄t̄−1/z
)

×g

(
r̄

R̄

)

, (4.10)

where by definition g(v→ 0)≡ 1, with v≡ r̄/R̄. The ansatz in Eq. (4.10), which we have chosen

in order to separate the different contributions does not capture all possible forms of the scaling

function M. For the case of a planar wall (ds = 1) one has g(v) = h(w) = 1.

In order to obtain an expansion for u ≡ r̄t̄−1/z → 0, which corresponds to short distances or

to late times, we expand f around u = 0:

f (u → 0) =
∞

∑
i=−1

aiu
i. (4.11)

For i < −1, we do not find a non-zero solution of the resulting equations. After inserting

Eq. (4.11) into Eq. (4.10) one obtains differential equations for g and h corresponding to the

leading behavior via power counting of u (see App. C).

Ordinary transition — Dirichlet BC

Within the ordinary surface universality class (corresponding to c > 0 and h1 = 0 in Eq. (1.7))

the surface is less ordered than the bulk. Since for the ordinary transition β1 > β , M vanishes

at r̄ = 0, and the order parameter asymptotically satisfies a Dirichlet boundary condition [66].
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Figure 4.6: Scaling function g(v) in mean field approximation and as a function of v = r̄/R̄ = r⊥/R as

obtained from an expansion for u = r̄t̄−1/2 → 0 (see Eq. (4.10)). Here g(v) is shown for the ordinary

surface transition, i.e., Dirichlet BC at the confining curved surface and for different dimensionality ds of

the curved object. For v → 0 all curves approach the value 1 which corresponds to the case of a planar

wall. For ds ≥ 2 g(v) vanishes for large v.

Accordingly, the two first terms in the expansion of f in Eq. (4.11) vanish, i.e., a−1 = 0 and

a0 = 0.

The leading term for Dirichlet BC is thus a1u1 [Eq. (4.11)], and we find that a2i = 0 for all

i ∈ N. From Eq. (4.8) one obtains to leading order (see Eq. (C.4)) the following equation for

g(v):

(ds −1)g(v)+(2+ v+dsv)g
′(v)+ v(1+ v)g′′(v) = 0. (4.12)

Accordingly, g(v) is independent of the amplitude function h(R̄t̄−1/z) and of a1. Equation (4.12)

is solved for the different geometries by the functions

ds = 1 : g(v) = 1, (4.13)

ds = 2 : g(v) =
ln(1+ v)

v
≃ 1− 1

2
v+

1
3

v2 − 1
4

v3 + . . . , (4.14)

ds = 3 : g(v) =
1

1+ v
≃ 1− v+ v2 − v3 + . . . , (4.15)

ds = 4 : g(v) =
2+ v

2(1+ v)2 ≃ 1− 3
2

v+2v2 − 5
2

v3 + . . . . (4.16)

That is, close to a (curved) wall, for v → 0, the order parameter profile first grows linearly with

distance r̄ from the surface and takes for finite values of v a curvature contribution given by

Eqs. (4.14)–(4.16) and shown in Fig. 4.6. Note that there may be an additional dependence of

the order parameter on time via the scaling function h(R̄t̄−1/2).

From Eq. (4.13) we recover the case of a planar wall (ds = 1) [184, 190], i.e., asymptotically

M(u,v = 0) ∝ u, which is in agreement with the expected behavior ∝ u(β1−β )/ν with β1 = 1
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valid for the ordinary transition [66]. For ds = 1 we find the following subleading terms for the

behavior close to a planar wall:

a3 =−1
6

a1, a5 =
1

20

(

a3
1 −

1
3

a1

)

, . . . . (4.17)

Special surface universality class — Neumann boundary conditions

At the special surface transition (c = h1 = 0 in Eq. (1.7)) the order at the surface is changed just

as within the bulk. Consequently, within MFT, β1 = β = 1/2 and one has Neumann boundary

conditions at the confining surface. The leading term a0 [Eq. (4.11)] for Neumann boundary

conditions is independent of u. Moreover, one has a−1 = a1 = 0, leading to a2i−1 = 0 for all

i∈ N. To leading order the behavior of g is determined from Eq. (C.3) and independent of h(w):

(ds −1)g′(v)+(1+ v)g′′(v) = 0, (4.18)

which is solved by

ds = 1 : g(v) = 1, (4.19)

ds = 2 : g(v) = 1, (4.20)

ds = 3 : g(v) =
1

1+ v
≃ 1− v+ v2 − v3 + . . . , (4.21)

ds = 4 : g(v) =
1

(1+ v)2 ≃ 1−2v+3v2 −4v3 + . . . . (4.22)

The scaling functions g(v) for the special surface transition are shown in Fig. 4.7 for the various

values of ds. In the case of a planar wall, this is in agreement with the expected behavior

M(u → 0,0) ∝ u(β1−β )/ν = const for the special transition.

Normal (extraordinary) surface universality class — Critical adsorption

Finally, we consider the case of (strong) critical adsorption, corresponding to (±) BC, which

belongs to the normal (extraordinary) surface universality class [66]. For the normal surface

transition, the corresponding leading behavior is determined by the term a−1u−1 in Eq. (4.11).

This leading behavior determines g from Eq. (4.8) via Eq. (C.2):

vg′′(v)− (ds−3)v−2
1+ v

g′(v)+
(ds −3)v−2

v(1+ v)
g(v)+

a2
−1h2(w)

v
g3(v) = 0, (4.23)

where w = R̄t̄−1/z. For g(v) we find solutions to Eq. (4.23) for a−1 =±
√

2 and h(w)≡ 1. Then,

Eq. (4.23) for g(v) is identical to the ones obtained for the curvature part of the static MFT
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Figure 4.7: Scaling function g(v) (see Eq. (4.10)) within MFT and as function of v = r̄/R̄ = r⊥/R as

obtained from an expansion for r̄t̄−1/2 → 0 for the case of the special surface transition, i.e., Neumann

BC at the curved wall. g(v → ∞) vanishes for ds > 2, whereas it takes the planar wall value 1 for the

marginal case ds = 2.

equation of critical adsorption (see Sec. IV in Ref. [201]):

ds = 1 : g(v) = 1, (4.24)

ds = 5/2 : g(v) =
1
2v

1+ v−
√

1+ v
, (4.25)

ds = 4 : g(v) =
1

1+ 1
2v

. (4.26)

Note that in Eq. (4.25) the value of ds is extended to an unphysical non-integer value basically

due to technical reasons. Numerical solutions for ds = 2,3 are presented in Ref. [201]. An

expansion for ds = 3 and small values of v can be found in Refs. [201, 212].

The resulting dynamical behavior for the extraordinary transition at a planar wall is given by

M(u → 0,0) ∝ u−β/ν . This is formally not in agreement with the one discussed above, i.e., ∝

u(β1−β )/ν [190], because β1 = 2 for the extraordinary transition. However, at the extraordinary

transition, the order parameter and its derivative are continuous at the surface and at the critical

point, so that β1 = 2 has been obtained only for the singular part of the order parameter [66, 68].

Effectively, it is therefore reasonable to assume a constant behavior of the order parameter at the

surface corresponding to a vanishing exponent β1, so that both expressions effectively agree.

It is not surprising that the curvature contribution g(v) of the MFT scaling function M(u,v)

coincides with the corresponding static contributions in the limit u → 0 because the latter limit

corresponds to the asymptotic behavior for either short distances at all times or late stages of

relaxation at all distances, i.e., the equilibrated system.
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Small-sphere expansion

The curvature contributions g obtained for ds = 1, . . . ,4 for the extraordinary transition (see,

e.g., Fig. 7 in Ref. [213]) differ significantly from the ones obtained for the ordinary transition

and the special transition shown in Fig. 4.6 and Fig. 4.7, respectively. For the ordinary transition

g(v → ∞) = 0 for all ds ≥ 2 and for the special transition g(v → ∞) = 0 for all ds > 2, whereas

for the extraordinary transition g(v → ∞) approaches a finite value for ds < 3, and vanishes

asymptotically only above the marginal value ds = 3 [201]. This difference can be understood

in terms of a small-sphere expansion [41–43, 201].

Whenever the radius of the (hyper-)cylinder is small compared to r⊥ (but still large on a

microscopic scale), the statistical weight exp(−δH ) due to its presence can be systematically

expanded in a series with increasing powers of φ , i.e., [43, 201]

exp(−δH ) ∝ 1+ ε
φ
ds,d

R(xφ+ds−d)ω
φ
ds,d

+ ε
φ2

ds,d
R
(x

φ2+ds−d)
ω

φ2

ds,d
+ . . . , (4.27)

where ε
φ i

ds,d
are amplitudes, i = 1,2, and

ω
φ i

ds,d
=







∫

Rd−ds

dd−dsr‖φ i(r⊥ = 0), ds < d,

φ i(0), ds = d.

(4.28)

In Eq. (4.27) the corresponding exponents are given by xφ = β/ν and xφ2 = d −ν−1 [41]. For

symmetry-breaking BC at the (hyper-)cylinder such as the extraordinary transition, the term

corresponding to φ in Eq. (4.27) is crucial, because it is not invariant under a transformation

φ ↔ −φ . On the other hand, for symmetry-preserving BC, such as the ordinary and the spe-

cial transitions, ε
φ
ds,d

= 0 and the term corresponding to φ 2 (invariant under a transformation

φ ↔ −φ ) is the leading one [42]. However, this systematic small-sphere expansion is only

meaningful for positive exponents of R [201] so that the “insertion” of a small object into the

bulk can be treated as perturbation, the influence of which vanishes upon R → 0. On the other

hand, for negative exponents of R in Eq. (4.27), even an infinitely small object generates a

non-vanishing perturbation which becomes independent of R in the limit R → 0 [201]. That

is, one can infer from the value of xφ i + ds − d (i = 1,2) the marginal dimensionality of the

generalized cylinder above which a small object perturbation is — in the renormalization group

sense — “irrelevant” (i.e., g(v → ∞) = 0) and below which it is “relevant” (i.e., g(v → ∞) 6= 0)

[201]. Since for the symmetry-breaking extraordinary transition xφ is the relevant exponent,

one finds that the marginal cylinder dimensionality in d = 4 (MFT) is given by d −β/ν = 3

[201]. Analogously, for the symmetry-preserving ordinary transition the exponent xφ2 leads to

the marginal dimensionality ν−1 = 2 within MFT. Accordingly, g(v → ∞) vanishes for ds ≥ 2

for the ordinary transition, but only for ds ≥ 3 for the extraordinary transition, as observed in

the analysis above. For the special transition g does not vanish for the marginal case ds = 2 but

only for ds > 2.
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Figure 4.8: Order parameter profile m̄(r̄, R̄, t̄) (see Eq. (4.7)) around a cylindrical particle (ds = 2) shown

as contour plots within the (x,y) plane perpendicular to the cylinder axis and at various times t̄. m̄ has

been obtained using the finite element method for R̄ = 0.3 and for the initial conditions K̄ = 20 and

D̄ = 0.001 (see the main text).

4.2.5. Relaxation phenomena around colloids for the ordinary transition

In this subsection we study numerically the critical relaxation of the order parameter profile

around curved objects, the surface of which implies an ordinary boundary condition (Dirichlet

BC) on the order parameter. In the following we focus on the particular case T = Tc and initial

configurations m̄(r̄, R̄, t̄ = 0) of the order parameter profile assumed to be created via a bulk

field which vanishes at t = 0.

Results from finite element method

First, we have used the finite element method described in App. A.3 in order to calculate the

spatio-temporal evolution of the order parameter profile close to a cylinder (ds = 2). (Although

this problem is effectively only one-dimensional, the finite element method has been applied in

view of future extensions of this analysis to actual two-dimensional situations.) Analogously

to the cases presented above, we chose an initial profile of the form m(r̄, R̄, t = 0) = K̄r̄/D̄ for

r̄ ≤ D̄ and m(r̄, R̄, t = 0) = K̄ for r̄ > D̄ where the constants K̄ and D̄ are chosen carefully in

order to ensure numerical stability.

Figure 4.8 shows the order parameter profile m̄ as obtained from the finite element method at

different times for the specific case R̄ = 0.3 and the initial conditions K̄ = 20 and D̄ = 0.001. In

Fig. 4.8 the order parameter profile is shown within the (x,y) plane perpendicular to the cylinder

axis. One can infer that the order parameter relaxes towards its equilibrium value more rapidly



120 4. Dynamic critical phenomena around colloidal particles

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6

r̄

m̄
(r̄
,R̄
,t̄
)

R̄ = 0.3 t̄ = 0.012
t̄ = 0.009
t̄ = 0.005
t̄ = 0.002

R
r⊥

Figure 4.9: Order parameter profile m̄(r̄, R̄, t̄) around a cylinder and for the ordinary transition as ob-

tained via the finite element method shown as function of r̄ at different times. The graph is shown for

the specific case R̄ = 0.3 and the initial conditions K̄ = 20 and D̄ = 0.001 (see the main text). For small

values of r̄ the order parameter increases linearly as expected from the short distance expansion (black

lines) discussed in Subsec. 4.2.4. For large values of r̄ the profile becomes flat and it approaches the

bulk behavior m ∝ t−1/2.

close to the surface with Dirichlet BC than within the bulk.

In Fig. 4.9 the order parameter profile is shown as a function of r̄ for the same values of the

parameter R̄ and of times t̄ as in Fig. 4.8. From an expansion for small values of u = r̄t̄−1/2 one

obtains for the ordinary surface transition the leading behavior m̄ ∝ ū× t̄1/2g(r̄/R̄)h(R̄t̄−1/2)

(see Eq. (4.10) and Subsec. 4.2.4). Since the expansion is valid for small u, it holds for short

distances at all times, i.e., for a fixed radius R̄ the order parameter increases linearly. This

feature is reproduced by the numerical data shown in Fig. 4.9, where a linear behavior is in-

dicated as black solid lines (note that the initial profile used here corresponds to an almost

step-like function along r̄). For large values of r̄ the order parameter becomes constant and

attains the corresponding bulk values m ∝ t−1/2. Note however, that according to the analysis

discussed above, a universal behavior is approached only after a non-universal transient time

which depends crucially on the initial profile. Accordingly, universal behavior is expected for

times t̄ ≫ 1/[m̄(r̄, R̄,0)]2; for the present case shown in Figs. 4.8 and 4.9 this corresponds to

t̄ ≫ 0.003. Thus, due to the short time scales reached, the results presented in Figs. 4.8 and 4.9

and in Fig. 4.10 below may depend significantly on the chosen initial profile.

We are particularly interested in the contribution due to the curvature in difference compared

to the case of a planar wall. In order to highlight this contribution and according to the ex-

pansion discussed in Subsec. 4.2.4, Fig. 4.10 shows the value of m̄(r̄, R̄, t̄) divided by its linear

behavior at r̄ = 0, i.e., r̄×∂r̄m̄(r̄, R̄, t̄)|r̄=0, as a function of v = r̄/R̄. The data shown in Fig. 4.10

correspond to the numerical data presented in Fig. 4.9. Indeed, according to Eq. (4.10) this
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Figure 4.10: Order parameter profile m̄ around a cylinder of radius R̄ = 0.3 with Dirichlet boundary

conditions (as shown in Fig. 4.9) divided by its linear behavior at r̄ = 0, i.e., r̄× ∂r̄m̄(r̄, R̄, t̄)|r̄=0, and

shown as function of v = r̄/R̄/r⊥/R at different times t̄. According to our analysis in Subsec. 4.2.4, for

u = r̄t̄−1/2 → 0, the curves should tend towards the scaling function g(v) (see Eqs. (4.10) and (4.14)).

Since we have been able to study early regimes only, i.e., small values of t̄, we expect the data to

approach g(v) for v ≪ 1.

should tend towards the scaling function g(v) [Eq. (4.14)] for u = r̄t̄−1/2 → 0.

Results from numerical calculations

Using the numerical finite element method for critical dynamics presented in App. A.3 we have

faced severe numerical difficulties, and, therefore, we have not been able to numerically calcu-

late the order parameter relaxation close to a cylinder on large time scales within a reasonably

small numerical error. Moreover, it turned out that the results obtained via the finite element

method are subject to a rather large numerical error, as may be seen, e.g., from Figs. 4.9 and

4.10. We attribute these numerical errors to numerical difficulties in finding the minimal order

parameter profile within reasonable computing time. In addition, as discussed above, for the

case of the ordinary surface transition, the cylinder ds = 2 constitutes the marginal case in the

renormalization group sense; i.e., for ds < 2 the bulk is perturbed by the presence of a cylinder

even in the case R → 0, whereas for ds > 2 its influence vanishes for vanishing radius. That is,

finding the order parameter profile is numerically particularly challenging for the case ds = 2

because the effect of the cylinder is long-ranged, which constitutes a potential source for the

severe numerical difficulties we have faced using the finite element method.

Since we are interested in the universal behavior at time scales t̄ ≫ 1/[m̄(r̄, R̄,0)]2 and also in

the limit u = r̄t̄−1/2 → 0, we have gone beyond the finite element method discussed above. Ac-

cordingly, the mean field results presented in the following were obtained using a computational

software program [214] which solves the differential equation Eq. (4.6) numerically. Using this
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Figure 4.11: Order parameter profile m̄(r̄, R̄, t̄) around a curved object with dimensionality ds and for

the ordinary surface transition for R̄ = 0.5 and t̄ = 0.25 as function of r̄. Close to the curved surface

m̄ increases linearly ∝ r̄. For r̄ → ∞ the bulk value is approached. The effect of the (curved) surface

reaches a given distance r̄ later for increasing values of ds.

effectively one-dimensional method, we expect a numerical error of at most few percent for the

results presented below.

The analysis has been restricted to the ordinary surface transition, but we have extended the

analysis based on the finite element method to all values ds = 1,2,3,4. For the initial order

parameter profile we have conveniently chosen m̄(r̄, R̄, t̄ = 0) = K̄ tanh(δ̄ r̄), where K̄ and δ̄ are

constants. As discussed above, after some nonuniversal transient time depending on the initial

profile, i.e., t̄ ≫ 1/[m̄(r̄, R̄,0)]2, the relaxation is expected to become independent of the actual

initial configuration. Typical choices of K̄ and δ̄ are around the value 20 for both, K̄ and δ̄ , so

that for t̄ ≫ 0.003 the behavior becomes independent of the actual initial profile.

Indeed, from the analysis of the numerical data we find that the order parameter close to

the curved surface at which m̄ = 0 increases first linearly as function of the distance r̄ from

the surface for all values of ds. This is shown in Fig. 4.11, where results obtained for the

specific case R̄ = 0.3 and t̄ = 0.25 are presented (analogous results have been obtained for

all values considered R̄ = 0.1 to 1, and t̄ ≤ 4). From Fig. 4.11 one can infer that the bulk

value is approached for r̄ → ∞ differently for different values of ds. At a given time t̄, for a

planar wall (ds = 1) the effect of the surface has propagated much deeper into the bulk as for

a curved surface; in particular, for a cylinder (ds = 2) the surface affects the behavior at fixed

distance r̄ at later times than for a planar wall, but at earlier times than for a sphere (ds = 3)

or a hypersphere (ds = 4). This is in agreement with what one would expect, because with

increasing dimensionality ds of the curved surface there are less “planar” contributions from the

d − ds directions along which the curved object is translationally invariant (i.e., the “effective

surface” decreases with increasing ds).
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Figure 4.12: Value of m̄(r̄, R̄, t̄)/[r̄× ∂r̄m̄(r̄, R̄, t̄)|r̄=0] around (a) a cylinder, (b) a sphere, and (c) a hy-

persphere for the ordinary surface transition as a function of v+1 = r̄/R̄+1 obtained from calculations

performed using a computational software program. (Panel (a) corresponds to Fig. 4.10, which was ob-

tained via the finite element method for shorter time scales.) The curves are shown for various values

of the scaling parameter w = R̄t̄−1/2. For w → 0 the curves approach the scaling functions g(v) given

in Eqs. (4.14)–(4.16).
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Figure 4.13: Order parameter m̄(r̄, R̄, t̄) around a curved object and for the ordinary surface transition

for R̄ = 0.3 at fixed distance r̄ = 0.5 as function of time t̄. First, for t̄ . 0.1 the order parameter decays

according to the bulk behavior ∝ t̄−1/2, whereas for times t̄ & 0.25 the order parameter decays according

to m̄ ∝ t̄−s (see the main text). For ds = 1 (which is independent of R̄) s takes the planar wall value 1,

whereas for ds ≥ 2, s decreases for increasing ds towards the bulk value 1/2.

In order to separate the geometrical contribution due to the curvature, in Fig. 4.12 the value of

m̄(r̄, R̄, t̄)/[r̄×∂r̄m̄(r̄, R̄, t̄)|r̄=0] is shown as a function of v = r̄/R̄ for different values of R̄t̄−1/2.

According to Eq. (4.10), for r̄t̄−1/2 → 0 this quantity approaches the scaling functions g(v)

given in Eqs. (4.14)–(4.16). As can be inferred from Fig. 4.12 the curves indeed do so at

late times (w = R̄t̄−1/2 → ∞) or short distances (v → 0). For ds = 4 the scaling function is

approached already at earlier stages (Fig. 4.12(c)) compared to ds = 3 and ds = 2 (Fig. 4.12(b)

and (a)). (Note that the curves shown in Fig. 4.12 have been obtained from calculations for

various values of R̄; that is, scaling via the additional variable w = R̄t̄−1/2 holds.)

The discussion in the preceding paragraphs deals with corrections to the planar wall behavior

due to the static curvature contribution g(v). However, we find that the time evolution is altered

as well by the presence of curvature and the characteristic exponent describing the dynamics

close to the surface depends on ds. Figure 4.13 shows the order parameter for R̄ = 0.3 at the

fixed distance r̄ = 0.5 as function of time t̄ (clearly, the results for ds = 1 are independent of

R̄). After a non-universal transient time (expected at time scales smaller than the ones shown

in the graph; see the discussion above), first the profile decays according to the bulk behavior

m̄ ∝ t̄−β/zν = t̄−1/2. After times t̄ & r̄z the effect of the surface reaches at distance r̄ and the

profile decays according to m̄ ∝ t̄−s, where s is the corresponding exponent. For the semi-

infinite geometry (ds = 1) one has s =−β1/zν = 1, i.e., close to a planar wall the profile decays

faster than within the bulk due to the presence of the Dirichlet BC at the surface. We find that

the corresponding exponent s differs significantly from the planar wall case when considering

curved walls. From Fig. 4.13 we infer that 1/2 ≤ s < 1 for ds ≥ 2, and s decreases for increasing
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Figure 4.14: Value of m̄(r̄, R̄, t̄)× tβ/zν
/[

r̄t̄−1/2 × g(r̄/R̄)
]

(see the main text) for R̄ = 0.3 as function

of w = R̄t̄−1/2 for various distances r̄ from the curved wall with Dirichlet boundary conditions and for

ds = 2,3,4. For u = r̄t̄−1/2 → 0 (i.e., w → 0 or r̄ → 0), the curves approach a universal behavior h(w)

which indicates a characteristic universal dynamical behavior different from the one of a planar wall.

ds towards the bulk value 1/2. This agrees with what one would expect: due to “less” amount of

surface present for increasing ds the behavior tends towards the bulk behavior and the dynamics

becomes slower as compared to the case of a planar wall. Within the numerically sampled time

ranges we do not find a crossover towards another regime.

In Fig. 4.14 we show the value of the order parameter divided by its behavior extracted

from the expansion for u = r̄t̄1/2 → 0 derived in Subsec. 4.2.4, i.e., m̄(r̄, R̄, t̄)× tβ/zν
/[

r̄t̄−1/2 ×
g(r̄/R̄)

]
[Eqs. (4.9) and (4.10)]. For u → 0 the curves should approach the scaling function

h(w), where w = R̄t̄−1/2 (see Eq. (4.10)). We have not been able to derive an approximation to

h(w) within the approach presented in Subsec. 4.2.4. The numerical data reported in Fig. 4.14

for the particular case R̄ = 0.3 indeed approach a common behavior either at large times (i.e.,

small values of w) or close to the surface (i.e., small values of r̄); both these limits correspond

to u → 0.

From Fig. 4.15 one can infer that this behavior is common to all values of R̄ considered and

the curves approach a universal function h(w) independent of R̄. Figure 4.15 shows the same as

Fig. 4.14 but for various values of R̄ and only at distance r̄ = 0.01 from the curved wall. (Note

that — for the purpose of comparison — we show in Fig. 4.15 also the behavior for ds = 1

which is independent of R̄ as function of t̄−1/2 so that deviations from the constant behavior

indicate the times at which the u → 0 behavior is not reached for the case of a planar wall.) We

find that upon decreasing w towards zero, h(w) increases as a power law h(w → 0) ∝ w−y(ds).

From a least square fit the values y(1) = 0, y(2) = 0.66(5), y(3) = 0.93(5), and y(4) = 0.99(5)

are found. We conclude that in the presence of curvature of a surface the dynamics of the order

parameter is significantly slower as compared to a planar wall. This is in agreement with earlier
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Figure 4.15: Same as Fig. 4.14 but shown for different radii R̄ and fixed distance, r̄ = 0.01. All numerical

data approach for small values w a universal behavior h(w). For w → 0 the scaling function h increases

as a power law h(w → 0) ∝ w−y(ds), where we have found from a least square fit the values y(1) = 0,

y(2) = 0.66(5), y(3) = 0.93(5), and y(4) = 0.99(5) shown as dotted lines. (Note that we do not have

further indication about the specific values of the exponents.) For the sake of completeness we show

also the case ds = 1 for which the plotted quantity is independent of w̄. Deviations of the curve for ds = 1

from a constant value indicate deviations from the short-distance planar wall behavior ∝ r̄t̄−1.

studies for the domain interface dynamics [209].
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4.3. Dynamic critical Casimir force — state of the art

The fluctuation-induced Casimir forces which occur in finite size systems and act on the con-

fining boundaries depend on time because of the temporal fluctuations of thermal nature of the

medium in between the walls. The dynamics of critical Casimir forces is determined by the

corresponding non-equilibrium behavior of the order parameter of the confined fluid and of the

boundary conditions at the confinement. For example, after a sudden quench towards the critical

point, critical Casimir forces build up in time and tend towards their equilibrium value [198].

The dynamics of Casimir forces has been studied in few cases recently [190, 198–200, 215–

220].

However, whereas in statics the Casimir force is given by the spatial derivative of a suitable

equilibrium effective free energy, this is no longer a bona fide definition in non-equilibrium

situations. Accordingly, it is necessary to define the dynamic Casimir force on a different basis.

Currently, two different definitions of the dynamic Casimir force have been proposed and used

in literature: one relies on the stress tensor [190, 198, 215, 216, 220], whereas the other on

taking the spatial derivative of the effective Hamiltonian [199, 200]. An alternative approach for

calculating the dynamic Casimir forces, still essentially based on the stress tensor, is considered

in Refs. [217–219], where the local pressure of the fluid at the surface of an embedded object

is integrated. The definition of the non-equilibrium Casimir force is important also for the

calculation of fluctuations of Casimir forces (see Refs. [86, 221], where the stress tensor was

used) and drag forces (see Refs. [222–224], where the derivative of the effective Hamiltonian

was used). In view of the fact that these different approaches do not always yield the same

result, a clarification of their differences and of their domains of application is needed.

Recently, the authors of Ref. [225] have investigated in more detail this question, when study-

ing the variance of the Casimir force acting on inclusions embedded in a fluctuating membrane.

Their results are rather general and apply also to various instances of non-equilibrium Casimir

forces [225]. In particular, they argue that both approaches mentioned above are suitable but

they apply in different physical situations [225], as the possible variation of the order parameter

field upon a virtual displacement of the boundary is crucial. Depending on the actual physical

coupling of the order parameter at the boundary, the corresponding order parameter field may

remain constant or its value may be affected. Moreover, one may think of combinations of the

two cases of order parameter variations considered in Ref. [225]. For fluids, the order param-

eter is actually defined via a suitable coarse-grained spatial density (or density difference) of

molecules. Obviously, the fluid molecules close to a wall are displaced upon movement of the

wall. Thus, the order parameter undergoes the transformation [Eq. (A.6)] which is underlying

the definition of the force based on the stress tensor (see App. A.2). Consequently, for objects

included in a fluctuating medium — as it is the generic case for confining bodies in a fluid —

the stress tensor provides the physically motivated expression for the Casimir force [225].

Indeed, the fluid in between the confining objects plays an active role and can “transport”
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stress [198]. This may lead to interesting situations for which one has dynamic critical Casimir

forces of different strength, which act on the two walls confining a fluid film [198]. Such a

“violation” of Newton’s action-reaction-principle (actually, the counteractive forces are acting

within the medium in between or surrounding the confining objects) may occur out of equi-

librium within asymmetric setups such as the ones considered in Ref. [198], and objects may

exhibit “self-forces” or “self-propulsion” [218, 219, 226].

4.4. Summary

In this Chapter dynamic critical phenomena close to colloidal particles have been studied. The

evolution in time is the given by a Langevin equation [Eq. (4.1)]. Here, we have studied Model

A dynamics corresponding to pure relaxation of the order parameter m within mean field theory

and within the non-linear regime. We have mainly considered the situation where a non-zero

order-parameter profile has been suitably prepared within the system and we investigate its time

evolution at the critical temperature Tc. Dynamics of critical phenomena results in splitting up

each static universality class into subclasses corresponding to different effective, representative

dynamical models. These subclasses are further split up according to the type of boundary

conditions at a confining surface.

Within the bulk, critical slowing down induces a slow relaxation of the order parameter to-

wards its equilibrium value according to a power law t−β/zν as a function of time t, where z is

the universal dynamic exponent, and β and ν are the standard static critical exponents. Within

MFT and Model A dynamics z = 2 and β = ν = 1/2. In a semi-infinite system with a planar

boundary this picture is modified due to the occurrence of a second characteristic decay of the

order parameter according to t−β1/zν sufficiently close to the boundary. As a function of time,

the surface behavior propagates into the bulk. This well-known behavior of critical dynamics

for the case of the ordinary surface transition [184, 190] (Dirichlet boundary conditions) could

be reproduced by a finite element method (see Figs. 4.1 and 4.2).

For the film geometry, in addition to the surface effects observed in the semi-infinite system,

the confining surfaces start to affect each other at sufficiently large times and consequently

the order parameter profile decays exponentially even at Tc (see Figs. 4.3 and 4.4). These

well-known features of finite-size critical dynamics [190] were reproduced by our numerical

algorithm described in detail in Appendix A.3. Within the latest stage of relaxation, for the case

of the ordinary surface transition the order parameter profile attains a sinusoidal shape along the

film (see Fig. 4.5) as already predicted in Ref. [190] and confirmed by our analysis.

We have extended these previous studies to the experimentally relevant case of confinements

due to colloidal particles by considering curved surfaces in Secs. 4.2.3 — 4.2.5. Different di-

mensionalities ds of the curved body of radius R have been studied. They correspond to a planar

wall (ds = 1), a cylinder (ds = 2), a sphere (ds = 3) and a hypersphere (ds = 4), so that the corre-
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sponding Langevin equation depends inter alia on ds [Eq. (4.6)]. We have restricted the present

analysis to cases which are angular symmetric around the body axes of the curved objects. Close

to criticality, the order parameter attains a scaling form given by Eq. (4.7), which depends on the

scaling variables u = (r⊥/ξ+
0 )(t/t+R,0)

−1/z, v = r⊥/R, and sign(τ̂)|τ̂/(ξ+
0 )2|νz(t/t+R,0), where r⊥

is the distance from the curved surface. Additionally, at early times regimes the order parameter

depends significantly on its initial profile [Eq. (4.7)].

For T = Tc and the within the universal time regime which is independent of the initial or-

der parameter profile, in Sec. 4.2.4 we have performed an expansion of the order parameter

scaling function for small values u (i.e., short distances or late times) and for various values

of ds. We find that different boundary conditions correspond to different leading behaviors of

the scaling function in terms of a power series in the scaling variable u: whereas for the ordi-

nary surface transition the order parameter profile ∝ u1, the special transition corresponds to

u0, and the extraordinary transition to u−1. Accordingly, the scaling functions g(v) describing

the effect of curvature are different for the various surface universality classes (Figs. 4.6 and

4.7). For the extraordinary surface transition g(v) agrees with the results of the available studies

for static critical phenomena — reflecting, indeed, the fact that u → 0 corresponds to a system

relaxed to equilibrium. In addition, the scaling functions g(v) depend on the dimensionality ds

of the curved surface and they show qualitative differences with respect to the boundary condi-

tions. Whereas for the symmetry-preserving ordinary and special surface transitions g(v → ∞)

vanishes for ds > 2, for the symmetry-breaking extraordinary surface transition g(v → ∞) = 0

for ds > 3. This is in agreement with a small-sphere expansion from which one can derive

the marginal values of the dimensionalities ds, so that for dimensionalities below this value an

object affects the bulk even for R → 0. For symmetry-preserving BC, at the marginal value

ds = 2, g(v → ∞) vanishes for the ordinary transition but not for the special transition. For the

extraordinary transition (symmetry-breaking BC), g(v → ∞) = 0 at the marginal value ds = 3.

We have implemented a finite element method in order to calculate the time evolution of

the order parameter around a cylindrical particle for the case of the ordinary surface transition

and for T = Tc (Sec. 4.2.5). For short distances r⊥ from the surface, the order parameter pro-

files grows linearly as function of r⊥ in agreement with the short-distance expansion (Figs. 4.8

and 4.9). However, using the finite element method, we have been able to calculate the order

parameter profile only at early times so that the limiting function g(v) is not yet approached

(Fig. 4.10).

In order to overcome the numerical limitations of the two-dimensional finite element ap-

proach we have performed an effectively one-dimensional numerical calculation for various

values of ds. We have focused on the ordinary surface transition, and for ds = 2,3,4 the cor-

responding linear behavior m ∝ r⊥ close to the surface has been obtained also numerically

(Fig. 4.11). Moreover, we have found that the curvature contribution to the order parameter

profile indeed approaches the limiting scaling function g(v) (Fig. 4.12).

The presence of a curved surface does not only affect the order parameter profile as compared
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to the case of a planar surface in a static sense, i.e., via the scaling function g(v), but also its

characteristic dynamics. For T = Tc, we have found that depending on the dimensionality ds of

the curved surface, the decay of the order parameter m as a function of time at a fixed distance

from the surface first decays m ∝ t−1/2 as within the bulk, whereas at later times it follows

a power law m ∝ t−1/2(2−y(ds)). For the ordinary surface transition 0 ≤ y(ds) ≤ 1 (Fig. 4.13).

For u → 0 the critical dynamical behavior is characterized by a universal scaling function h(w),

where w= u/v= (R/ξ+
0 )(t/t+R,0)

−1/z (Fig. 4.14). That is, the different characteristic dimension-

alities of surface curvature described by ds affect the dynamical behavior. The behavior of h(w)

depends on ds and follows a characteristic power law for w → 0. Accordingly, from fits to the

numerical data we find the corresponding exponents y(1) = 0, y(2) = 0.66(5), y(3) = 0.93(5),

and y(4) = 0.99(5) (Fig. 4.15).

The critical Casimir forces acting on two or more objects confining a critical medium are

subject to dynamic processes as well. However, in systems out of thermodynamic equilibrium,

the dynamic critical Casimir force has to be defined, which is a matter of current debate in

literature. In Sec. 4.3, we have briefly reviewed the state of the art concerning the definition

the dynamic critical Casimir force. We conclude, that for the experimentally relevant fluidic

systems, the stress tensor (Appendix A.2) constitutes an appropriate definition of the dynamic

critical Casimir force.



5. Outlook

I
N the following, a brief outlook is given over recent development in the field of research of

this thesis, which has experienced a pronounced scientific activity during the last years.

This concerns theoretical as well as experimental investigations which have demonstrated

a rather rich variety of phenomena related to the critical Casimir effect.

First, we note, however, that the validity of the Derjaguin approximation inter alia used here

is of rather general interest. In this context, it seems to be important to differentiate between

forces due to surface effects only, and forces which also depend on the body of the object.

Recently, an approach for calculating the force between a body and a planar wall has been pre-

sented based on the assumption of additivity of pairwise forces [227]. The authors of Ref. [227]

present a surface integration approach in which they argue that the summation of the forces

acting on point-like objects constituting the body and a wall reduces to an integral over the sur-

face of the body of the force between two planar walls. For the case of a spherical body close

to a wall they derive an expression of the force which differs from our approach presented in

Eqs. (2.3)–(2.5) in Sec. 2.2.1 only in the limits of integration; whereas we sum up the forces

acting on “rings” (see also Fig. B.6) belonging to the semi-spherical cap next to the wall, the

approach of Ref. [227] integrates also over the rings of the upper semi-spherical cap. This dif-

ference of the two approaches stems from the type of forces. In Ref. [227] body forces are

considered, whereas here we consider critical Casimir forces which are due to the presence of

surfaces and depend only on the surface geometry and surface properties but not on the body

“behind” the surfaces. In the Derjaguin limit, i.e., R/D → 0 (see Fig. 2.1) the two approaches

both tend to the same expression [227]. Moreover, there is pronounced interest also in the

field of quantum electrodynamic Casimir forces in studying the corrections to the Derjaguin

approximation [228, 229]. However, our assessment of the range of validity of the Derjaguin

approximation revealed that the latter is applicable within the range of parameters used in the

experiments that we have compared with in Chap. 3.

In Sec. 2.7 we have studied a cylindrical colloid opposite to a patterned substrate parallel

to chemical stripes. A natural extension concerns the behavior of cylindrical colloids which

are tilted with respect to the chemical stripes. A cylinder opposite to a chemical step has been

studied in Ref. [169]. It turns out that close to the critical point a critical Casimir torque acting

on the cylindrical particle approaching the chemical step emerges. Depending on the ratio

of length and radius of the cylinder, the critical Casimir torque aims in aligning the cylinder

axis parallel or perpendicular with respect to the chemical step [169]. In view of potential
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applications, a generalization of Ref. [169] to a variety of substrate patterns as discussed within

this work seems to be rewarding.

Instead of structuring the substrate, it is possible to endow the colloid particles with a chemi-

cal pattern. Such Janus particles infer different kinds of boundary conditions at the colloid sur-

face. Thus, in the presence of a homogeneous substrate, one expects a critical Casimir torque

acting on Janus particles. Two or more Janus particles are expected to exhibit self-assembly

due to critical Casimir forces. Janus particles are experimentally feasible and exhibit promising

phenomena such as “self-propulsion” [230].

Moreover, many-body effects due to critical Casimir forces open a new variety of phenomena.

Recently, it has been observed that the critical Casimir effect may induce a demixing of two

kinds of colloidal particles with opposite boundary conditions for the binary liquid mixture

they were immersed in [231]. Thus, the demixing of the binary liquid mixture at its critical

point is transferred from the molecular scale to the length scales of visible light [231]. A phase

transition on the colloidal scale induced by the critical Casimir interaction may also occur for

a suspension of only one species of colloidal particles; in this case, one may identify a phase

diagram which has colloid-rich and colloid-poor phases [232].

In view of present research efforts and potential applications, it is important to study the ef-

fect of weak critical adsorption of the fluid at the confining surfaces, corresponding to finite

surface fields. Such weak surface fields can be realized by applying suitable surface chem-

istry and they influence the resulting behavior of the critical Casimir effect strongly [33, 35].

Another approach to create an effective reduction of the surface adsorption is to create fine

periodic chemical patterns with different (strong) adsorption preferences as discussed here.

However, our results for Π → 0 [Figs. 2.10(b) and 2.16(b)] show that a fine patterning of the

substrate with alternating boundary conditions does not necessarily lead to an effective reduc-

tion of the surface adsorption at short distances because in this range the critical Casimir force

for a inhomogeneous adsorption preference resembles the one for a homogeneous substrate

corresponding to strong adsorption. On the other hand, at large distances a periodically pat-

terned substrate does lead to an effective BC corresponding to a weak adsorption preference,

and for λ = 1/2 the surface fields even cancel out, leading to an effective BC resembling the

so-called ordinary BC [47]. This offers the interesting perspective to study, at least asymptot-

ically, critical Casimir forces with Dirichlet BC by using classical fluids instead of superfluid

quantum fluids [26–28, 93–95, 233]. A patterning on the molecular scale is not captured by

the continuous approach pursued here, which gives the universal features of the critical Casimir

effect. Nonetheless, a molecular patterning of the substrates may provide another means for

an effective reduction of the adsorption of the corresponding fluid at the surface. However, on

a molecular scale the patterning is more likely to lead to randomly distributed surface fields

which opens a new challenge in the context of critical Casimir forces.

By adding salt to the solvent of the colloidal suspension the electrostatic repulsion between

the substrate and a colloid is strongly screened; this provides the possibility to explore the spatial
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variation of critical Casimir forces over a much wider range of distances. Moreover, a rather

complex behavior of the resulting forces acting on the colloid emerges because electrostatic

forces induced by ions lead to rather delicate physical features. Recently, measurements have

shown a rich and novel behavior of a colloid immersed in a salt-rich solvent upon approach-

ing the critical point [36]. Strong attractive forces set on even several K below the critical

temperature and, in addition, these forces are found to remain attractive, independent of the

boundary conditions, (±,±) or (+,−), throughout a large temperature range. It turns out that

the coupling between electrostatic interactions and critical fluctuations has to be considered

in understanding this phenomenon [234–236]. The ion-solvent coupling can turn a repulsive

electrostatic force into an attractive one upon approaching the critical point [234]. However,

eventually these forces are dominated by the universal critical Casimir effect [234]. This allows

for a interpretation of the experimental data of Ref. [36].

Using these intriguing effects together with a chemical patterning of surfaces may open a

new field of phenomena with potential applications in colloid science.





Appendix

A. Numerics - f3dm

For the various geometries under consideration (see Fig. 2.1, inter alia, we have minimized

the Hamiltonian Eq. (1.6) with the appropriate boundary condition implied by Eq. (1.7) using

a three-dimensional finite element method (for an introduction to the finite element method,

see, e.g., Ref. [237]). Moreover, we have solved Eq. (1.9) for Model A dynamics within the

finite element method in the film geometry and around a cylinder. For the calculation of the

order parameter profile, here we have used and extended the “f3dm” library developed mainly

by Svyatoslav Kondrat [238, 239].

The f3dm-library for C/C++ [240] encompasses the f3dm-geom package which implements

a three-dimensional mesh with arbitrary boundaries based on the GNU Triangulated Surface li-

brary (GTS) [241], the 3d-mesh creator Tetgen [242], and the Gnome library (GLIB) [243]. The

f3dm-lib package provides tools to assign one or more fields, external potentials, and boundary

conditions to the three-dimensional mesh and to perform inter alia a routine based on the GNU

scientific library (GSL) [244] which minimizes a functional of these fields.

Using additional programs and bash scripts based on the f3dm-geom and the f3dm-lib pack-

ages the mean-field theoretical approach discussed within this work has been implemented nu-

merically for static and dynamic critical phenomena and the calculation of critical Casimir

forces for the various problems considered. The programs have been running mainly on com-

puter clusters operated via the Oracle®grid engine and with Intel®Xeon™E5450 2.6 GHz

quad-core CPUs (“Casimir” cluster at the Max-Planck-Institute for Intelligent Systems) or with

AMD Opteron™252/852 2.6 GHz processors (“Gibbs” cluster at the Max-Planck-Institute for

Intelligent Systems).

A.1. Numerical calculation of static critical behaviour

The basic idea of the finite element method is to subdivide complex geometries into small

“finite” elements. In three dimensional space, these elements typically are small tedrahedra, so

that the boundaries of the domain are formed by small triangles. On each element the actual

continuous field is replaced by an ansatz based on a set of discrete values of the field.

The basic form is a linear finite element, i.e., the ansatz of the function replacing the field

f is linear and interpolates in between values of the actual field at the four nodes at the edges
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Figure A.1: Sketch of the linear finite element method. The (x,y,z) space is discretized into tetrahedral

elements defined by four edge nodes (left figure). These finite elements are parametrized into (u,v,w)

space, where u,v,w ∈ [0,1] (upper right figure). The field f is approximated by a linear function which

interpolates between its actual values on the edges (lower right figure).

of the tedrahedron; this is sketched in Fig. A.1. The three-dimensional elements in (x,y,z)-

space are parametrized into (u,v,w)-space so that the tedrahedron is spanned by the tree unit

vectors eu,v,w, and the interpolation nodes are located at (0,0,0), (1,0,0), (0,1,0), and (0,0,1),

respectively (see Fig. A.1). On these “standard” tedrahedra, the field can be easily replaced by

its discretized version based on the linear ansatz, i.e.,

f (u,v,w) = f0 +u( f (1,0,0)− f0)+ v( f (0,1,0)− f0)+w( f (0,0,1)− f0), (A.1)

where f0 = f (0,0,0) and the values of the field f at the edge nodes are the same as on the edge

nodes of the original element. The first derivatives of f along the (x,y,z) directions are obtained

in terms of the inverse Jacobian matrix [J], i.e., [237]






∂x

∂y

∂z




=

[

J
]−1






∂u

∂v

∂w




 . (A.2)

For the tedrahedron used in the finite element method the Jacobian is given by

[

J
]

=






x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0




 , (A.3)

where (xi,yi,zi) are the coordinates of the nodes depicted in Fig. A.1 and det(J) = 6V , where V

is the volume of the original element [237]. (Note that all elements have to be ordered with the

same “right handed” orientation [237].)
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Figure A.2: Example of finite element mesh which numerically represents a spherical colloid close to a

substrate and immersed in a binary liquid mixture. The fluid is transferred to a mesh of finite tedrahedral

elements which vary in size in order to efficiently decrease the numerical error within regions of strongly

varying order parameter. As can be seen in the lowermost picture, which is a cut through the finite

element mesh, the colloid corresponds to a spherical hole in the mesh; the nodes at the boundaries

underlie a boundary constraint given by the BC of the surface of the colloid. The lower surface of the

box containing the finite elements underlies a boundary condition as well, whereas the other sides of

the box are “free” (in actual calculations we have used smaller finite elements and larger boxes than the

one depicted here in order to exclude a potential influence of the finite box size). The visualization of

the mesh data has been obtained via TetView [245].
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Figure A.2 shows a typical example for a mesh generated for a spherical colloid opposing a

wall. The advantage of the finite element method is that space can be subdivided into elements

of arbitrary and different sizes so that regions with a complex boundary and regions with rapidly

spatially varying fields can be occupied with rather small elements, whereas regions with a very

smoothly varying field can be“filled” with rather large elements. Thus, finite computer memory

and computing time can be efficiently used to enhance the quality of the approximation at the

regions of interest (e.g., the space in between the colloid and the wall, as shown in Fig. A.2).

Within the finite element approach the integrand of the Hamilitonian H [φ ] given in Eq. (1.6),

which contains terms in φ and ∇φ can be suitably (numerically) integrated, so that the summa-

tion over all parametrized elements yields the total functional. Starting with a random initial-

ization profile27 across the mesh and applying the appropriate boundary conditions28, we have

minimized H [φ ] using a multidimensional numerical minimization procedure [246]. A method

based on the vectorial Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [244, 247] has

been used, which varied the values of φ at each of the nodes within the mesh apart from the

ones fixed by the boundary conditions. Moreover, multiple minimization runs have been per-

formed for a given configuration with increasing mesh quality (i.e., smaller elements) within

regions of strongly varying φ , in order to minimize the numerical error of the method. Typi-

cal meshes for numerical data with reasonably small expected errors29 have been consisting of

several 100.000 nodes.

It is worthwhile to note that the discrete approximation of the order parameter field via the

finite element method may lead to the existence of various numerical “local” minima of H [φ ]

which do not correspond to the order parameter profile which minimizes H in a global sense.

Typically, the minimization mechanisms lead to a relatively fast convergence towards to glob-

ally minimizing profile. However, in particular situations, the minimization routines in use

do not efficiently overcome this problem within reasonable computer time on a large mesh as

used here so that the results obtained may not be reliable. We have observed that H given

in Eq. (1.6) can be well globally minimized within our approach and the meshes under con-

sideration for τ̂ ≥ 0, whereas for τ̂ < 0, reliable results were only obtained within reasonable

computing time for homogeneous boundary conditions (±,±). This is due to the fact that for

τ̂ < 0 the order parameter minimum attains two different (“competing”) values ±a|τ|β within

27For a given geometrical configuration, calculations for different temperatures (i.e., values of τ̂ in Eq. (1.6)) have

been performed not only with random initialization profiles but also with order parameter profiles minimizing

H for a value τ̂ ± δ τ̂ corresponding to a nearby temperature in order to improve the numerical performance.
28For (±) BC corresponding to φ →∞ at the boundary, which is clearly not numerically feasible, we have used the

short-distance expansion close to the confining planar wall and the spherical colloid (see, e.g., [50, 201, 202]

and references therein). However, we have chosen the “short distance” ε from the boundaries such that the

resulting data for the universal scaling functions were not affected by the particular choice of ε .
29The expected numerical error of the finite element method used here in order to obtain the MFT scaling functions

for the systems under consideration are at most of the range of few percent and indicated in the corresponding

figures via the size of the points of the numerically obtained MFT data.
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the bulk, biased by the boundary conditions (±) at the confining walls. For different bound-

ary conditions (±,∓) regions with different minimizing φ occur within the space between the

colloid and the wall, which are separated by a (smooth) interface. It turns out that finding the

precise location of this interface is subjected to a large numerical error. Thus, we do not present

results for τ < 0 and boundary conditions different from (±,±) (see, e.g., Fig. 2.2) because we

focus on the experimentally relevant regime τ ≥ 0.

A.2. Stress tensor

The normal and lateral critical Casimir forces can be calculated directly from the order param-

eter profile via the stress tensor. Numerically, this has the advantage, that one avoids difficult

calculations of differences of free energies, which here are connected to numerical errors of

small differences of large numbers (due to the presence of the (±) boundary conditions at the

walls) with finite accuracy.

The stress tensor originates from quantum field theory and describes the variation of the

action S [ϕ] under a transformation of the field ϕ [128]. The stress tensor is connected to

Noether’s theorem and associated with the constants of classical motion, namely energy and

momentum [128]. Accordingly, we consider the variation of the action given by

S [φ ] =

∫

V

ddr L (ϕ(r),∇ϕ(r)), (A.4)

where the Langrangean density L depends on the field ϕ(r) and its derivatives ∇ϕ , and V

indicates the domain of the system. Upon performing an infinitesimal translation of the system

by ε(r)

r 7→ r̃ = r+ ε(r), (A.5)

the field is transformed as

ϕ(r) 7→ ϕ̃(r̃) = ϕ(r), (A.6)

so that to first order in ε one has (see, e.g., also Refs. [128, 225])

ϕ̃(r) = ϕ(r)− ε(r) ·∇ϕ(r). (A.7)

For the derivatives of ϕ analogous statements hold. Then, the variation of the action δS =

S [ϕ̃]−S [ϕ] is given by [128, 212]

δS =−
∫

V

ddr (∂ jεi(r))Ti j (A.8)

where εi is the ith component of ε , and where the components of the stress tensor T are

Ti j = L δi j −
∂L [ϕ]

∂ (∂ jϕ)
∂iϕ. (A.9)
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Via Gauss’ theorem Eq. (A.8) can be written as

δS =
∫

V

ddr εi(r)∂ jTi j −
∮

S

dd−1r εi(r)Ti jn j, (A.10)

where n j is the jth component of the normal unit vector n (pointing outside) on the boundary S

of the volume V . For fields ϕ which fulfil the corresponding Euler-Lagrange equation, i.e., the

classical equation of motion for the action S , the stress tensor is divergence free, and the first

term on the rhs of Eq. (A.10) vanishes [128].

This formalism can be transferred to statistical physics via identifying the action with the free

energy Hamiltonian, i.e., S [ϕ] ↔ H [φ ]. Correspondingly, within MFT, δH /δφ = 0, and

∂ jTi j = 0. Then, one can relate the stress tensor to the force F acting on the volume enclosed by

the surface S upon considering the translation ε(r)≡ eiℓi; Eq. (A.10) yields

F =−ei
∂H

∂ℓi
=

∮

S

dd−1r eiTi jn j. (A.11)

Within MFT, the force on a colloidal particle is given by an integral over any surface surround-

ing the colloid. Note that this identification can also be constructed from the definition of

continuum mechanics (see, e.g., Appendix B of Ref. [225]). Within the view of continuum me-

chanics Eq. (A.6) corresponds to the assumption that each particle displaced from r to r̃ keeps

its value of the order parameter φ during the translation [225].

According to Eq. (A.9) for the Ginzburg-Landau-Wilson fixed point Hamiltonian given in

Eq. (1.6) one has [117]

Ti j =−∂iφ∂ jφ +δi j

(
1
2
(∇φ)2 +

τ̂

2
φ 2 +

u

4!
φ 4
)

. (A.12)

For the normal force (along the z-direction) acting on the colloid one integrates Tzz over any

surface surrounding the colloid, whereas for the lateral force (along the x-direction) the cor-

responding stress tensor component is given by Tzx. Note that one may add divergence-free

terms to the stress-tensor in order to make it renormalizable or to ensure its conformal invari-

ance [47, 212, 248, 249]. However, these so called improvement terms do not contribute to F

in Eq. (A.11) because Gauss’ theorem applies (this has been shown in Ref. [50] for the film

geometry and in Ref. [111] for colloidal particles).

Numerically, we calculate the normal and lateral critical Casimir forces acting on the col-

loidal particle by integrating the stress tensor over a connected set of triangular surfaces of the

tetrahedral finite elements. The resulting connected closed surface may be of any shape, how-

ever, it turned out to be numerically convenient to resemble a spherical shape as well: Within

the linear finite element method the first derivatives of φ are assumed to be constant within each

element [Eqs. (A.1) and (A.2)]. Thus, the relative numerical error of the value of ∇φ is larger

than the corresponding relative error of φ . Since within the stress tensor given in Eq. (A.9)
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Figure A.3: (a) Numerically minimized order parameter profile m(r)×ξ+
0 for a spherical colloid opposite

to a homogeneous substrate with (+,+) BC and at T = Tc shown as contour plot along the plane y= 0.

The graph indicates the particular case R = D = ξ+
0 and is shown for illustration purposes only. (Note

that the universal scaling functions obtained numerically are independent of ξ+
0 .) The white layers

next to the colloid and the substrate (shaded areas) indicate the regions where the short-distance

expansion for the order parameter profile was assumed to hold. Panel (b) shows the absolute value of

the gradient, |∇m(r)|×(ξ+
0 )2 as obtained from the linear finite element method. Clearly, |∇m(r)| obeys

a much larger numerical uncertainty than m(r) due to the assumption of linearity of m within one finite

element (see the main text). Since the value of |∇m|, however, affects the stress tensor we calculate

the latter one on surfaces on which |∇m| is small (dashed line) in order to reduce the numerical error

for the critical Casimir force.
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terms containing derivatives of φ occur, this numerical error applies to the stress tensor as well.

However, the freedom in choosing the actual surface domain over which one integrates Ti j al-

lows for a integrating over a particular surface at which the value of |∇φ | is comparably small.

We have checked that choosing such surfaces significantly improves the quality of the numer-

ical data for the critical Casimir forces. Typically, the average absolute value of ∇φ for the

order parameter minimizing H around a sphere close to a wall is rather small on a surface of

another sphere with a radius which is 1.5 to 3 times larger than the one of the sphere and sym-

metrically located along the xy-direction around the original sphere such its distance from the

wall is half of the original sphere-wall distance. This is indicated in Fig. A.3 which shows an

example of m(r) = (u/3!)1/2〈φ(r)〉 and |∇m(r)| as obtained numerically for a colloid opposite

to a substrate. Thus, in order to obtain the MFT numerical data of the normal and lateral crit-

ical Casimir forces acting on colloids we have integrated the stress tensor given in Eq. (A.12)

over spherical surfaces at which we expect |∇φ | to be small so that its rather large relative error

compared to the numerical error of φ does not affect the result for the scaling functions of the

critical Casimir force significantly.

A.3. Numerical calculation of critical dynamics

One of the aims of the present work is the application and extension of present numerical rou-

tines to dynamic critical phenomena. Since typical experimental setups for the determination

of Casimir forces, such as a colloid opposite to a wall, involve rather complex geometries, it

is viable to use tools being able to deal with arbitrary geometries, such as the finite element

method (see App. A.1). For numerically calculating the timtimeion of a given system one can

either observe the state after certain iteration steps, or one can use one dimension of the mesh

of finite elements as a time axis. Here, we have used the latter method in order to calculate the

dynamical critical order parameter evolution of the Ising universality class with Model A dy-

namics (see Sec. 1.2.5 and Chap. 4) within MFT around cylindrically shaped colloidal particles

and for the film and semi-infinite geometry.

In order to extend the minimization routine for the finite element method described above

and implemented for static critical phenomena to dynamics one has to define the appropriate

functional to be minimized. However, the dynamical functional S given in Eq. (1.11) obtained

within the response functional formalism is not suited for the purpose here because it the cor-

responding “partition function” is always unity and therefore the corresponding “free energy”

vanishes (see the discussion below Eq. (1.11) on page 34). Here, we indirectly solve the dy-

namical Langevin equation for the order parameter by minimizing the squared lhs of Eq. (4.1)

(or Eq. (4.6), respectively)

Heff[m]≡
∫

V

ddr
∫

dt
[
∂tm(r, t)+Ω

{
−∇2 + τ̂ +m2(r, t)

}
m(r, t)

]2
, (A.13)



Numerics - f3dm 143

Figure A.4: Example of a mesh of finite elements used for the numerical calculation of dynamic critical

phenomena visualized via TetView [245] (actually much finer-grained meshes have been used). The

axis parallel to the cylinder axis corresponds to the time axis, whereas the two axes perpendicular to it

correspond to two spatial dimensions. Here, one aims at calculating the order parameter profile around

a cylindrical colloid (circle) at a fixed position along the time axis.

and apply the appropriate boundary conditions. The existence of a solution m(r, t) for Eq. (4.1)

implies that Heff vanishes and is minimal for the correct spatio-temporal order parameter profile

m(r, t), and the integrand in Eq. (A.13) vanishes for each space-time point. We have extended

the present finite element method by assigning two space axes and one time axis to the three-

dimensional mesh in order to being able to also capture the time evolution within complex

two-dimensional geometries beyond the semi-infinite or the film geometry.

Figure A.4 sketches a finite element mesh for a cylindrical colloidal particle immersed in a

fluid in two spatial dimensions and along the time axis. Here, it is assumed that the colloid does

not change its position (or shape) during time evolution. Accordingly the cylindrical “hole” in

the mesh on the surface of which one applies some boundary conditions, is translated along the

time axis.

Since in Heff [Eq. (A.13)] also second derivatives of m occur, one needs a quadratic finite

element method (the linear finite element method used above for static critical phenomena may

allow for the calculation of second derivatives only indirectly). To this end we have used com-

plete quadratic Langrangean finite elements with tetrahedral shape and ten nodes, as shown

in Fig. A.5 [237]. In contrast to the linear elements, six additional nodes are introduced at

the center of each connection line between two edge nodes. Within the quadratic finite element

method one assumes a quadratic form of the approximative field replacing the actual field within
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Figure A.5: Sketch of the quadratic finite element method, for which the finite elements of the linear

finite element method (Fig. A.1) are extended by six additional nodes located at the center of each

connection line between two edge nodes. The field f is approximated by a quadratic function which

interpolates between the actual values of f at the ten nodes. Therefore, one can also calculate second

derivatives needed for the description of dynamic critical phenomena (see the main text).

the tetrahedral elements, i.e., the field f on the parametrized coordinate (u,v,w) is approximated

by

f (u,v,w) = f0 +2( f0 + f1 −2 f4)u
2 +2( f0 + f2 −2 f6)v

2 +2( f0 + f3 −2 f7)w
2

+4( f0 − f6 − f4 + f5)uv+4( f0 − f7 − f6 + f9)vw+4( f0 − f7 − f4 + f8)uw

+(−3 f0 − f1 +4 f4)u+(−3 f0 − f2 +4 f6)v+(−3 f0 − f3 +4 f7)w, (A.14)

where fi are the values of the actual field on the nodes i = 0, . . . ,9 as shown in Fig. A.5. The

first derivatives of f are given by Eq. (A.2) with the Jacobian matrix Eq. (A.3). They are no

longer constant within a single element but depend on the coordinates (u,v,w). The (constant)

second derivatives of f are given by [237]













∂ 2
x

∂ 2
y

∂ 2
z

∂x∂y

∂y∂z

∂x∂z













=
[

T1

]






∂u

∂v

∂w




+

[

T2

]













∂ 2
u

∂ 2
v

∂ 2
w

∂u∂v

∂v∂w

∂u∂w













. (A.15)

For a constant Jacobian as used here (non-curvilinear elements), [T1] = 0 in Eq. (A.15) and the

first term on the rhs vanishes [250]. The second term on the rhs of Eq. (A.15) is determined by
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the elements ji j ≡ J−1
i j of the inverse Jacobian matrix, i.e., [237]

[

T2

]

=













j2
11 j2

12 j2
13 2 j11 j12 2 j12 j13 2 j13 j11

j2
21 j2

22 j2
23 2 j21 j22 2 j22 j23 2 j23 j21

j2
31 j2

32 j2
33 2 j31 j32 2 j32 j33 2 j33 j31

j11 j21 j12 j22 j13 j23 j11 j22 + j12 j21 j12 j23 + j13 j22 j11 j23 + j13 j21

j21 j31 j22 j32 j23 j33 j21 j32 + j22 j31 j22 j33 + j23 j32 j21 j33 + j23 j31

j31 j11 j32 j12 j33 j13 j31 j12 + j32 j11 j32 j13 + j33 j12 j31 j13 + j33 j11













. (A.16)

Analogous to the static case, depending on the boundary conditions, it is useful to replace the

actual BC by fixing nodes at the confining surfaces with values obtained via a short distance

expansion. We have used the expansion for a planar wall (ds = 1) and for a cylinder (ds = 2),

respectively, as derived in Sec. 4.2.4, in particular for ordinary surface transition (Dirichlet BC).

Failure of numerical approach

It turned out, that the method presented here, is rather slowly converging towards the actual

order parameter profile solving Eq. (4.1). This can be attributed to pronounced numerical diffi-

culties in minimizing Heff[m] given in Eq. (A.13). Moreover, in order to determine the evolution

of the order parameter on a long time scale accurately, one needs quite large numerical meshes

extended along the time axis.
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B. Calculation of the Derjaguin approximation for patterned

substrates

The calculation of a Derjaguin-like approximation for the critical Casimir force acting on a

colloid in the presence of a chemically patterned substrate presented in the following have been

performed together with Andrea Gambassi [251, 252].

B.1. Derjaguin approximation for a chemical step

In this appendix we first calculate within the DA the normal critical Casimir force Fs(X ,D,R,T)

[Eq. (2.8)] acting on a spherical colloid of radius R facing a chemical step by using the DA. (We

cannot directly calculate the lateral critical Casimir force F
‖
s (X ,D,R,T) within the DA because

for two parallel homogeneous plates such a force vanishes.) In a second step we derive the

critical Casimir potential Φs(X ,D,R,T) =
∫ ∞

D dz Fs(X ,z,R,T) by integrating this result for the

normal critical Casimir force. In a third step the lateral critical Casimir force is obtained as

F
‖
s (X ,D,R,T) =−∂X Φs(X ,D,R,T) =−

∫ ∞
D dz ∂X Fs(X ,z,R,T) [see Sec. 2.3.2].

In the spirit of the DA, the surface of the spherical colloid with (b) BC is thought of as

being made of a pile of (infinitely thin) rings parallel to the opposing substrate and with an area

dS(ρ)= 2πρdρ , where ρ is the radius of the ring. Each of these rings is partly facing (in normal

direction) the surface with (a<) BC, with an extension dS<(ρ), and partly facing the surface

with (a>) BC on the other side of the chemical step [Fig. B.6], with an extension dS>(ρ), such

that dS(ρ) = dS<(ρ)+ dS>(ρ). For an assigned ρ , dS≷(ρ) depend, inter alia, on the lateral

position X of the colloid. Using the assumption of additivity of the forces underlying the DA we

suppose that the contribution dFs(ρ) of the ring to the total critical Casimir force Fs is given by

the sum of the critical Casimir forces which would act, in a film, on portions of areas dS< and

dS> in the presence of (a<,b) and (a>,b) BC, respectively. According to Eq. (1.3) this leads to

the following expression for the force acting on a single ring:

dFs(ρ)

kBT
=

dS<(ρ)

Ld(ρ)
k(a<,b)(sign(τ)L(ρ)/ξ±)+

dS>(ρ)

Ld(ρ)
k(a>,b)(sign(τ)L(ρ)/ξ±), (B.1)

where L(ρ) is the substrate-ring distance [Fig. B.6] as given in Eq. (2.3), and k(a≷,b) are the

scaling functions of the critical Casimir force in the film geometry with (a>,b) and (a<,b)

BC, respectively [see Eq. (1.3)]. This assumption neglects all edge effects along the boundary

between the areas dS>(ρ) and dS<(ρ), which might actually be relevant in view of the spatial

variation of the order parameter profile. It is therefore important to test the validity of this

assumption at least in some relevant cases. This is carried out in Sec. 2.3 for d = 4, i.e., within

MFT.

Without loss of generality in the following we assume X > 0, i.e., that the normal projection

of the center of the sphere falls on the part of the substrate with (a>) BC [Figs. 2.1 and B.6].
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Figure B.6: Sketch concerning the Derjaguin approximation for the critical Casimir force acting on a

colloid opposite to a chemical step. The critical Casimir force is subdivided into contributions from rings

parallel to the substrate. The projection of the area dS(ρ) of a ring onto the substrate is separated into

the areal contributions dS< and dS> which emerge as the intersection of the projected ring with the half-

planes carrying (a<) and (a>) BC, respectively [see the main text]. The sphere has a surface-to-surface

distance D from the substrate and its center has a lateral distance X from the chemical step.

The results for X < 0 are obtained by exchanging in the formulas below a< ↔ a> and X ↔−X .

Taking into account that dS(ρ) = dS<(ρ)+dS>(ρ) one can rewrite Eq. (B.1) as

dFs(ρ)

kBT
=

dS(ρ)

Ld(ρ)
k(a>,b)(sign(τ)L(ρ)/ξ±)+

dS<(ρ)

Ld(ρ)
∆k(sign(τ)L(ρ)/ξ±), (B.2)

where ∆k(Θ) = k(a<,b)(Θ)− k(a>,b)(Θ). Summing up all force contributions from the rings of

different radii ρ , one finds for the total normal force acting on the sphere

Fs(X ,D,R,T) = F(a>,b)(D,R,T )+∆F(X ,D,R,T), (B.3)

where F(a>,b) is the force acting on a sphere close to a homogeneous substrate with (a>) BC

and is given by Eq. (2.5) or by Eqs. (2.1) and (2.6). This term does not contribute to the lateral

critical Casimir force experienced by the colloid near the chemical step, because it does not

depend on the lateral coordinate of the colloid. The second term ∆F in Eq. (B.3) corresponds

to the integration of the force differences ∆k in the region of overlap between the projection of

the sphere onto the substrate plane and that part of the substrate with (a<) BC. For each ring

this area is given by [see Fig. B.6]

dS<(ρ) =







0, ρ < X ,

2arccos(X/ρ)ρdρ , X ≤ ρ ≤ R.
(B.4)

This leads to

∆F(X ,D,R,T)

kBT
= 2

R∫

X

dρ ρ arccos

(
X

ρ

)
∆k(sign(τ)L(ρ)/ξ±)

Ld(ρ)
. (B.5)
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In the spirit of the DA, the radius of the sphere is taken to be large compared to its distance to

the substrate, i.e., ∆ = D/R ≪ 1, and the contributions from the rings closest to the substrate

dominate. Therefore, it is well justified and in accordance with the DA to assume X/R ≪ 1

because the contributions of rings with large radii do not change the behavior of the force in

the Derjaguin limit. Within these two limits we can use the parabolic approximation for the

distance of the rings to the substrate [Eq. (2.3)], L(ρ) ≃ Dα , with α = 1+ρ2/2RD. Changing

the integration variable in Eq. (B.5) we directly find

∆F(X ,D,R,T) = kBT
R

Dd−1 ∆K(Ξ,Θ,∆), (B.6)

where ∆K is a universal scaling function given by

∆K(Ξ,Θ,∆ → 0) = 2

∞∫

1+Ξ2/2

dα α−d arccos

(

Ξ√
2(α−1)

)

∆k(αΘ). (B.7)

Note that the relevant scaling variable Ξ = X/
√

RD can take on arbitrary values, irrespective

of the two assumptions D/R ≪ 1 and X/R ≪ 1. From Eq. (B.7) one finds with Eqs. (2.6) and

(2.9) directly the expression for the scaling function ψ(a<|a>,b) given in Eq. (2.12).

The critical Casimir potential Φs(X ,D,R,T) =
∫ ∞

D dlFs(X , l,R,T) can be separated analo-

gously to Eq. (B.3), i.e.,

Φs(X ,D,R,T) = Φ(a>,b)(D,R,T )+∆Φ(X ,R,D,T) (B.8)

with

∆Φ(X ,R,D,T) =

∞∫

D

dl∆F(X , l,R,T) =: kBT
R

Dd−2 ∆ϑ(Ξ,Θ,∆). (B.9)

Using Eq. (B.7), the scaling function ∆ϑ is given by

∆ϑ(Ξ,Θ,∆) = 2

∞∫

1

dy
1

yd−1

∞∫

1+Ξ2/(2y)

dα
1

αd
arccos

(

Ξ
√

2y(α −1)

)

∆k(yαΘ). (B.10)

By changing the integration variable α 7→ z ≡ 2y(α − 1)/Ξ2 followed by y 7→ v ≡ y+Ξ2z/2

one obtains

∆ϑ(Ξ,Θ,∆) = Ξ2
∞∫

1

dz

∞∫

1+zΞ2/2

dv
1
vd

arccos(1/
√

z)∆k(vΘ). (B.11)

After changing the order of integration

∞∫

1

dz

∞∫

1+zΞ2/2

dv =

∞∫

1+Ξ2/2

dv

2(v−1)/Ξ2
∫

1

dz, (B.12)
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and using the primitive30

∫

dzarccos(1/
√

z) = zarccos(1/
√

z)−
√

z−1+ c, (B.13)

one obtains after a final change of variables v 7→ w ≡ 2(v−1)/Ξ2

∆ϑ(Ξ,Θ,∆) =
Ξ4

2

∞∫

1

ds
1

(1+Ξ2s/2)d

[

sarccos(s−1/2)−
√

s−1
]

∆k(Θ[1+Ξ2s/2]). (B.14)

From Eq. (B.14) together with Eq. (2.7) one obtains the final expression for the scaling function

of the critical Casimir potential as given in Eq. (2.14).

Bulk critical point: Θ = 0

In order to calculate the critical Casimir force acting on the colloid at the bulk critical point one

inserts Eq. (1.4) into Eq. (B.7) and obtains

∆K(Ξ,Θ = 0,∆) = 2
(
∆(a<,b)−∆(a>,b)

)
∞∫

1+Ξ2/2

dα α−d arccos

(
Ξ√

2α −2

)

(B.15)

=: Ξ2 (∆(a<,b)−∆(a>,b)

)
Id(Ξ

2/2),

where ∆(a,b) = k(a,b)(0) [see Eq. (1.4)], and with the substitution α 7→ z = Ξ/
√

2(α −1) for

d > 1,

Id(a) = 2

1∫

0

dz
z2d−3

(z2+a)d
arccos(z). (B.16)

For Id(a) the recursion relation

Id+1(a) =
1
d

a1−d d
da

[adId(a)] (B.17)

holds, so that I4 and I3 can be expressed in terms of I2. Performing the integration we find31

I2(a) =
π

2a

[

1− a1/2

(1+a)1/2

]

, (B.18)

and therefore with Eq. (B.17)

I3(a) =
π

4a

[

1−
3
2a1/2 +a3/2

(1+a)3/2

]

, (B.19)

30See Eq. 7.8.3 on p. 168 in Tables of indefinite integrals, edited by Y. A. Brychkov, O. I. Marichev, and A. P.

Prudnikov (Gordon and Breach, New York, 1989), with the substitution z 7→ x = 1/
√

z.
31See Eq. (4) of Tab. 234 in Nouvelles tables d’intégrales définies, edited by D. B. De Haan (P. Engels, Leide,

1867); note that there is a misprint in Eq. 4.521.8 in Table of Integrals, Series, and Products, Sixth edi-

tion, edited by I. S. Gradshteyn and I. M. Ryzhik (Academic, London, 2000). The correct expression is
∫ 1

0 dx x
(

arccos(x)
)
/(1+ qx2)2 = π(

√
1+ q− 1)/(4q

√
1+ q) for q >−1.
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and

I4(a) =
π

6a

[

1−
15
8 a1/2 + 5

2a3/2 +a5/2

(1+a)5/2

]

. (B.20)

Thus, from Eqs. (B.16), (B.19), and (B.20) together with the expression for K(a≷,b)(0,0) =

2π∆(a≷,b)/(d − 1) [Sec. 2.2.1] and Eq. (2.9), one finds the expression for the scaling function

ψ(a<|a>,b) given in Eq. (2.13). The critical Casimir potential at Θ = 0 for d = 3 and 4 can be

found from Eq. (B.10) together with Eq. (B.16):

∆ϑ(Ξ,Θ = 0,∆) = Ξ2 (∆(a<,b)−∆(a>,b)

)
∞∫

1

dy y−dId

(
Ξ2

2y

)

, (B.21)

and from a change of variable y 7→ a = Ξ2/(2y) one finds

∆ϑ(Ξ,0,∆) =
2d−2

Ξ2d−4

(
∆(a<,b)−∆(a>,b)

)
Ξ2/2
∫

0

da ad−2Id(a). (B.22)

Using Eq. (B.17) and the limiting behavior Id(a → 0) = π/(2(d−1)a), we find

∆ϑ(Ξ,0,∆) =
Ξ2

2(d−1)

(
∆(a<,b)−∆(a>,b)

)
Id−1(Ξ

2/2). (B.23)

From Eqs. (B.18), (B.19), and (B.23) together with ϑ(0,0) as given in Sec. 2.2.1 one obtains

Eq. (2.15) for the scaling function of the critical Casimir potential at Tc.

Far from criticality: Θ ≫ 1

Far from the critical point, i.e., for Θ ≫ 1, and for symmetry breaking boundary conditions

(a<) = (+), (a>) = (−), and (b) = (−) Eq. (1.5) holds and the integrals in Eqs. (B.7) and

(B.14) can be calculated analytically. For Θ ≫ 1 Eq. (B.7) turns into

∆K(Ξ,Θ ≫ 1,∆) = 2(A−−A+)Θ
d

∞∫

1+Ξ2/2

dα arccos

(

Ξ√
2(α−1)

)

e−αΘ. (B.24)

Substituting α 7→ β = 2(α −2)/Ξ2 one has

∆K(Ξ,Θ ≫ 1,∆) = Ξ2(A−−A+)Θ
de−Θ

∞∫

1

dβ arccos(β−1)e−Ξ2Θβ/2. (B.25)

Integrating by parts leads to

∆K(Ξ,Θ ≫ 1,∆) = (A−−A+)Θ
d−1e−Θ

∞∫

1

dβ
1

β
√

β −1
e−Ξ2Θβ/2. (B.26)
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By using the relation32

∞∫

1

dβ
1

β
√

β −1
e−a2β = π erfc(a), (B.27)

where a > 0 and erfc(a) = 1− erf(a) = 2π−1/2 ∫ ∞
a dwexp(−w2) is the complementary error

function, we finally arrive at

∆K(Ξ,Θ ≫ 1,∆) = π(A−−A+)Θ
d−1e−Θ erfc(Ξ

√

Θ/2). (B.28)

The scaling function K(∓,−) for Θ ≫ 1 in the homogeneous case [Sec. 2.2] is given by [21]

K(∓,−)(Θ ≫ 1,∆ → 0) = 2πA±Θd−1e−Θ (B.29)

and from Eqs. (2.9), (B.28), and (B.29) one obtains the expression for ψ(−|+,−) as given in

Eq. (2.16). Similarly, after rewriting Eq. (B.14) for Θ ≫ 1 as

∆ϑ(Ξ,Θ ≫ 1,∆) = (A−−A+)Θ
de−Θ Ξ4

2

∞∫

1

ds
(

sarccos(s−1/2)−
√

s−1
)

e−Ξ2Θs/2, (B.30)

one can integrate by parts, which yields

∆ϑ(Ξ,Θ≫ 1,∆)= (A−−A+)Θ
d−2e−Θ

∞∫

1

ds
1√

s−1

[
1
s
+

ΘΞ2

2

(
1+ΘΞ2)− Θ2Ξ4

2
s

]

e−Ξ2Θs/2.

(B.31)

Using Eq. (B.27) and the relations [which follow from taking successive derivatives −d/d(a2)

of Eq. (B.27)]

∞∫

1

ds
1√

s−1
e−a2s =

√
π

a
e−a2

,

∞∫

1

ds
s√

s−1
e−a2s =

√
π

2a3

(
1+2a2)e−a2

, (B.32)

one ends up with

∆ϑ(Ξ,Θ ≫ 1,∆) = π(A−−A+)Θ
d−2e−Θ erfc(Ξ

√

Θ/2). (B.33)

Together with the expression for the homogeneous case [see Sec. 2.2 and Ref. [21]],

ϑ(∓,−)(Θ ≫ 1,∆ → 0) = 2πA±Θd−2e−Θ, (B.34)

one obtains the expression for ω(−|+,−) given in Eq. (2.16).

32See Eq. (26) on p. 136 in Tables of Integrals Transforms, Vol. I, Bateman Manuscript Project, edited by H.

Erdelyi (McGraw-Hill, New York, 1954).
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B.2. Derjaguin approximation for a single chemical lane

Based on the assumption of additivity which underlies the Derjaguin approximation one can

use the results presented in Sec. 2.3 for a chemical step in order to study a chemical lane. The

chemical lane configuration can be regarded as the superposition of two chemical steps, one (A)

being a chemical step located at x =−L with (a|aℓ) BC, and the other one (B) being a chemical

step located at x = L with (aℓ|a) BC. This superposition overcounts a contribution correspond-

ing to a homogeneous substrate with (aℓ) BC which must be subtracted [see Eq. (2.9)]:

(A) :
(a) |

−L

(aℓ)
::::::::

+

(B) :
(aℓ)

::::::::|
L

(a)







− ::::
(aℓ)

:::::::: =
(a) |

−L

(aℓ)
::::|

L

(a)

K
(A)
s + K

(B)
s − K(aℓ,b) = Kℓ, (B.35)

where

K
(A)
s (Λ,Ξ,Θ,∆) =

K(a,b)+K(aℓ,b)

2
+

K(a,b)−K(aℓ,b)

2
ψ(a|aℓ,b)(Ξ+Λ,Θ,∆) (B.36)

and

K
(B)
s (Λ,Ξ,Θ,∆) =

K(a,b)+K(aℓ,b)

2
+

K(aℓ,b)−K(a,b)

2
ψ(aℓ|a,b)(Ξ−Λ,Θ,∆). (B.37)

Since within the DA ψ(aℓ|a,b) = ψ(a|aℓ,b), Eqs. (B.35)–(B.37) and Eq. (2.23) lead directly to

Eq. (2.25). The procedure for calculating the critical Casimir potential is analogous to the one

discussed here for the force and leads to Eq. (2.26).

B.3. Derjaguin approximation for periodic chemical patterns

In order to obtain the scaling function for the critical Casimir force and the potential of a sphere

close to a periodic chemical pattern one can follow a procedure analogous to the one presented

in Appendix B.2. Indeed, in order to form a lane ℓ′ with (a1) BC on an otherwise homogeneous

portion of a substrate with (a2) BC and lateral extension P, one can proceed as follows:

(A): superimpose onto the substrate the single chemical lane ℓ studied in Sec. 2.4, with aℓ= a1,

a = a2, suitably positioned in space such that it coincides with the lane ℓ′ to be formed.

(B): subtract the contribution of a homogeneous substrate with (a2) BC, which is overcounted

in the previous superposition. After this subtraction, the contribution to the force resulting

from that part — marked by (?) in Eq. (B.38) — of the original substrate which is not

affected by the formation of the extra lane is unchanged.
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(?)
QPPPPPPR

P
︷ ︸︸ ︷

(a2)
(?)

QPPPPPPR

(A) : +
(a2) |

X ′− L1
2

(a1)
::::|

X ′+ L1
2

(a2)

(B) : − (a2)

=
(?)

QPPPPPPR
(a2) |

X ′− L1
2

(a1)
::::|

X ′+ L1
2

(a2)
(?)

QPPPPPPR

lane ℓ′

(B.38)

The contribution ∆F to the critical Casimir force experienced by a colloid close to such a sub-

strate and due to the addition of the lane is characterized by the scaling function [see Eq. (2.23)]

∆K(λ ,Π,Ξ−Ξ′,Θ,∆ → 0) = Kℓ(Π
λ
2 ,Ξ−Ξ′,Θ)−K(a2,b) =

K(a2,b)−K(a1,b)

2

×
[

ψ(a1|a,b)(Ξ−Ξ′+Πλ
2 ,Θ,∆ → 0)−ψ(a1|a,b)(Ξ−Ξ′−Πλ

2 ,Θ,∆ → 0)
]

(B.39)

where we have used the relation (L1/2)/
√

RD = Πλ/2 and have introduced Ξ′ ≡ X ′/
√

RD,

with X ′ as the position of the center of the added lane ℓ′. The force resulting from a periodic

pattern can now be obtained by starting out with a homogeneous substrate with (a2) BC and by

iterating the procedure discussed above which adds progressively displaced lanes at positions

X ′ = nP, i.e., Ξ′ = nΠ, with n ∈ Z. The resulting force is characterized by the scaling function

Kp(λ ,Π,Ξ,Θ,∆ → 0) = K(a2,b)+
+∞

∑
n=−∞

∆K(λ ,Π,Ξ−nΠ,Θ,∆ → 0) (B.40)

which, together with Eq. (2.29), yields immediately Eq. (2.31) for ψp.

For λ = 0 or λ = 1 one recovers from Eq. (2.31) the homogeneous cases with (a2,b) BC or

(a1,b) BC, respectively. Obviously, for λ = 0, the sum in Eq. (2.31) vanishes, and one is left

with ψp(λ = 0,Π,Ξ,Θ,∆ → 0) = 1, corresponding to (a2,b) BC. On the other hand for λ = 1,

the sum in Eq. (2.31) can be easily evaluated [see Eq. (2.12) for |Ξ| → ∞]:

lim
M,N→∞

N

∑
n=−M

{
ψ(a1|a2,b)(Ξ+Π(n+ 1

2),Θ,∆)−ψ(a1|a2,b)(Ξ+Π(n− 1
2),Θ,∆)

}

= lim
M,N→∞

{
ψ(a1|a2,b)(Ξ+Π(N+ 1

2),Θ,∆)−ψ(a1|a2,b)(Ξ+Π(−M− 1
2),Θ,∆)

}
=−2, (B.41)

where we have used the fact that ψ(a1|a2,b)(Ξ = ±∞,Θ,∆) = ∓1. Accordingly, ψp(λ =

1,Π,Ξ,Θ,∆ → 0) =−1, which corresponds to the homogeneous case with (a1,b) BC.
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In the limit Π → 0 (i.e., for very fine patterns compared with
√

RD), the sum in Eq. (2.31)

turns into an integral:

∞

∑
n=−∞

{

ψ(a1|a2,b)(Ξ+Π(n+ λ
2 ),Θ,∆)−ψ(a1|a2,b)(Ξ+Π(n− λ

2 ),Θ,∆)
}

−−−→
Π→0

1
Π

∞∫

−∞

dη
{

ψ(a1|a2,b)(Ξ+η + Πλ
2 ,Θ,∆)−ψ(a1|a2,b)(Ξ+η − Πλ

2 ,Θ,∆)
}

=

∞∫

−∞

dη λ
d

dη
ψ(a1|a2,b)(Ξ+η,Θ,∆)

= λ
{

ψ(a1|a2,b)(+∞,Θ,∆)−ψ(a1|a2,b)(−∞,Θ,∆)
}
=−2λ , (B.42)

and finally one finds Eq. (2.32).

For completeness, we provide the corresponding expression for the scaling function of the

critical Casimir potential ωp within the DA:

ωp(λ ,Π,Ξ,Θ,∆ → 0) =

1+
∞

∑
n=−∞

{

ω(a1|a2,b)(Ξ+Π(n+ λ
2 ),Θ,∆ → 0)−ω(a1|a2,b)(Ξ+Π(n− λ

2 ),Θ,∆ → 0)
}

. (B.43)

In the limit Π → 0, ωp reduces to

ωp(λ ,Π → 0,Ξ,Θ,∆ → 0) = 1−2λ . (B.44)

Accordingly, within the DA and in the limit Π → 0 the critical Casimir potential is the average

of the ones corresponding to the two boundary conditions, weighted with the corresponding

relative stripe width:

ϑp(λ ,Π → 0,Ξ,Θ,∆ → 0) = λϑ(a1,b)(Θ,∆ → 0)+(1−λ )ϑ(a2,b)(Θ,∆ → 0). (B.45)

B.4. Cylinder close to a patterned substrate

Derjaguin approximation for a homogeneous substrate

Similarly to the case of a sphere discussed before, the critical Casimir force Fcyl
(a,b) per unit

length acting on a (three-dimensional) cylinder of radius R with (b) BC close to and parallel

to a substrate with (a) BC at a surface-to-surface distance D can be expressed in terms of a

universal scaling function Kcyl:

Fcyl
(a,b)(D,R,T ) = kBT

R1/2

Dd−1/2
Kcyl
(a,b)(Θ,∆), (B.46)

with Θ = sign(τ)D/ξ± and ∆ = D/R as before. Equation (B.46) describes a force divided

by a length and per Dd−3 which for d = 4 corresponds to considering Fcyl
(a,b) per length of its
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axis and per length of the extra translationally invariant direction of a hypercylinder [compare

Eq. (2.1)]. The geometric prefactor in Eq. (B.46), however, differs from the one for the sphere

[Eq. (2.1)] because it is chosen such that within the DA (∆ → 0) the scaling function Kcyl
(a,b)

attains a nonzero and finite limit, as discussed before. The DA can be implemented along the

lines of Sec. 2.2.1 for the sphere. Here the surface of the cylindrical colloid is decomposed

into pairs of infinitely narrow stripes of combined area dS = 2Mdρ , positioned parallel to the

substrate at a distance L(ρ) from it [Eq. (2.3)] and each at a distance ρ from the symmetry plane

of the configuration. M is the length of the cylinder and drops out from Fcyl
(a,b) which follows

analogously from Eqs. (2.4) and (2.5):

Fcyl
(a,b)(D,R,T )/kBT ≃ 2

R∫

0

dρ [L(ρ)]−d k(a,b)(sign(τ)L(ρ)/ξ±), (B.47)

where L(ρ) is given in Eq. (2.3). Finally, in the limit ∆ → 0 we obtain

Kcyl
(a,b)(Θ,∆ → 0) =

√
2

∞∫

1

dα (α −1)−
1
2 α−d k(a,b)(Θα). (B.48)

At the bulk critical point Θ = 0 one finds Kcyl
(a,b)(0,0) =

√
2π [Γ(d − 1

2)/Γ(d)]∆(a,b) so that

Kcyl
(a,b)(0,0) = [3π/(4

√
2)]∆(a,b) ≃ 1.66×∆(a,b) for d = 3 and Kcyl

(a,b)(0,0) = [5π/(8
√

2)]∆(a,b) ≃
1.38×∆(a,b) for d = 4.

Derjaguin approximation for a chemical step

Here, we assume that the axis of the cylinder is parallel to the chemical step, i.e., perpendicular

to the x direction [Fig. 2.1], as well as parallel to the substrate. The projection of the position

of the axis of the cylinder with respect to the x direction is denoted by X , so that at X = 0 the

cylinder is positioned directly above the chemical step [Fig. 2.1]. Accordingly, the problem is

effectively two-dimensional and the corresponding DA can be performed much easier than in

Appendix B.1. Following an approach analogous to the one adopted for the sphere in Sec. 2.3

and in Appendix B.1, we rewrite the normal critical Casimir force per unit length acting on the

cylinder as in Eq. (B.3):

Fcyl
s (X ,D,R,T) = Fcyl

(a>,b)
(D,R,T )+∆Fcyl(X ,D,R,T). (B.49)

Within the DA we find for ∆ → 0 [compare Eq. (B.6)]

∆Fcyl(X ,D,R,T) = kBT
R1/2

Dd−1/2
∆Kcyl(Ξ,Θ,∆ → 0), (B.50)

where [compare Eq. (B.7)]

∆Kcyl(Ξ,Θ,∆ → 0) =
√

2

∞∫

1+Ξ2/2

dα (α −1)−
1
2 α−d∆k(Θα). (B.51)
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Using Eq. (B.51) and Eq. (B.48) we find for the whole range of values of Ξ the scaling function

ψ
cyl
(a<|a>,b) which is defined completely analogous to Eq. (2.9) [compare Eq. (2.12)]:

ψ
cyl
(a<|a>,b)(Ξ ≷ 0,Θ,∆ → 0) =∓1±

√
2
∫ ∞

1+Ξ2/2 dα (α −1)−
1
2 α−d∆k(Θα)

Kcyl
(a<,b)

(Θ,∆ → 0)−Kcyl
(a>,b)

(Θ,∆ → 0)
. (B.52)

Derjaguin approximation for a periodic chemical pattern

The derivation of the scaling function for the critical Casimir force acting on the cylinder close

to and aligned with a periodic chemical pattern as studied in Sec. 2.7 is analogous to the one for

the sphere described in Appendix B.3. The final formula for ψ
cyl
p is the same as in Eq. (2.31)

with ψ(a1|a2,b) replaced by ψ
cyl
(a1|a2,b)

given by Eq. (B.52). This renders the critical Casimir force

per unit length

Fcyl
p (L1,P,X ,D,R,T) = kBT

R1/2

Dd−1/2
Kcyl

p (λ ,Π,Ξ,Θ,∆) (B.53)

where Kcyl
p is defined as in Eq. (2.29) with K(a1,b) and K(a2,b) replaced by Kcyl

(a1,b)
and Kcyl

(a2,b)
,

respectively, which are given by Eq. (B.48), and with ψp replaced by ψ
cyl
p . The corresponding

results are shown in Fig. 2.16.
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C. Short distance expansion for critical dynamics

In order to obtain an expansion for small values of u = r̄t̄−1/2 the ansatz given in Eq. (4.10) for

the order parameter is inserted into the corresponding Langevin equation Eq. (4.8). Replacing

β , ν , and z with their MFT values one obtains

t̄−3/2
{

h(w)

[

−1
2

f (u)g(v)−
[

1
2

u+
ds −1
1+ v

v

u

]

f ′(u)g(v)− f ′′(u)g(v)−2
v

u
g′(v) f ′(u)

−ds −1
1+ v

v2

u2 g′(v) f (u)− v2

u2 g′′(v) f (u)

]

− w

2
f (u)g(v)h′(w)+( f (u)g(v)h(w))3

}

= 0. (C.1)

According to Eq. (4.11) we replace the scaling function f by a power series in terms of u; for

general values of ds from we find from power counting (in u) the following differential equations

for g

u−3 :
a−1h(w)

1+ v

[
((ds−3)v−2)g(v)+(a−1h(w))2(1+ v)g3(v)−

v((ds −3)v−2)g′(v)+ v2(1+ v)g′′(v)
]
= 0, (C.2)

u−2 : a0h(w)

{

3(a−1h(w))2g3(v)− v2

1+ v

[
(ds−1)g′(v)+(1+ v)g′′(v)

]
}

= 0, (C.3)

u−1 : 3a−1(a
2
0 +a1a−1)h

3(w)g3(v)
a−1

2
wh′(w)g(v)

−a1
vh(w)

1+ v

[

(ds−1)g(v)+(2+(ds+1)v)g′(v)+ v(1+ v)g′′(v)
]

= 0. (C.4)

These equations apply for different boundary conditions corresponding to suitable choices of

the constants a−1, a0, and a1 as given in Sec. 4.2.4.
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